
HTML 175

TUTORIAL 3
OBJECTIVES

Session 3.1
• Create a reset style sheet
• Explore page layout designs
• Center a block element
• Create a floating element
• Clear a floating layout
• Prevent container collapse

Session 3.2
• Use CSS grid styles
• Define a grid layout
• Place items within a grid
• Work with grid areas

Session 3.3
• Explore positioning styles
• Work with relative positioning
• Work with absolute positioning
• Work with overflow content

Designing a Page 
Layout
Creating a Website for a Chocolatier

Case	|	Pandaisia Chocolates
Anne Ambrose is the owner and head chocolatier of Pandaisia 
Chocolates, a chocolate shop located in Essex, Vermont. You have 
been asked to assist on the redesign of the company’s website. Anne 
has provided you with three pages from the website to start your 
work. She has written all of the content, compiled the necessary 
images and graphics, and written some of the text and color styles. 
She needs you to complete the project by designing the page layout 
using the CSS layout properties. 

STARTING DATA FILES

tutorial

pc_about_txt.html
pc_home_txt.html
pc_info_txt.html
pc_grids_txt.css
pc_home_txt.css
pc_reset_txt.css
+ 22 files

review

pc_specials_txt.html
pc_specials_txt.css
+ 12 files

code1

code3-1_txt.html
code3-1_float_txt.css
+ 11 files

code2

code3-2_txt.html
code3-2_layout_txt.css
+ 1 file

code3 code4

code3-3_txt.html
code3-3_scroll_txt.css
+ 10 files

code3-4_txt.html
debug3-4_txt.css
+ 2 files

sp_home_txt.html
sp_layout_txt.css
+ 13 files

ss_dday_txt.html
ss_layout_txt.css
+ 4 files

demo_grid1.html
demo_grid2.html
demo_positioning.html
+ 6 files

html03

case1 case2 demo

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 176

The left and right column 
sections are floated with 
widths of 33% and 67%, 
respectively.

To prevent an element
containing only floated
elements from collapsing,
use the after pseudo-element 
and the content property to 
generate a placeholder element.

The display property 
defines how an element 
should be laid out.

The width property defines 
the width of an element, the 
max-width property sets 
its maximum possible width, 
the min-width property 
sets its minimum width.

The vertical navigation list 
and contactInfo section are 
floated as separate columns.

The clear property displays 
the element only when the 
left, right, or both floated 
objects have been cleared.

To horizontally center 
a block element, set 
the left and right 
margins to auto.

All horizontal list items 
are floated on the left to 
create columns.

The float property takes 
an object out of normal 
document flow and floats 
it on the left or right 
margin of its container 
element.

Session 3.1 Visual Overview:

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 177 

Page body is horizontally 
centered within the 
browser window.

Horizontal list items 
are floated into 
separate columns.

Left and right sections 
are floated into 
separate columns.

The contents of the page 
footer are floated into 
separate columns.

Page Layout with Floating Elements

© Brenda Carson/Shutterstock.com;  
© Brent Hofacker/Shutterstock.com;  
© Jim Bowie/Shutterstock.com;  
© wacomkaShutterstock.com;  
© Shebeko/Shutterstock.com; 
Source: Facebook;  
Source: Twitter, Inc.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 178

Introducing the display Style
The study of page layout starts with defining how an individual element is presented on 
the page. In the first tutorial, you learned that HTML elements are classified into block 
elements, such as paragraphs or headings, or into inline elements, such as emphasized 
text or inline images. However, whether an element is displayed as a block or as inline 
depends on the style sheet. You can define the display style for any page element with 
the following display property

display: type;

where type defines the display type. A few of the many type values are shown 
in Figure 3–1.

Figure 3–1	 Some values of the display property

Display Value Appearance
block Displayed as a block

table Displayed as a web table

inline Displayed inline within a block

inline-block Treated as a block placed inline within another block

run-in Displayed as a block unless its next sibling is also a block, in which case, it is  
displayed inline, essentially combining the two blocks into one

inherit Inherits the display property of the parent element

list-item Displayed as a list item along with a bullet marker

none Prevented from displaying, removing it from the rendered page

For example, to supersede the usual browser style that displays images inline, you 
can apply the following style rule to display all of your images as blocks:

img {display: block;}

If you want to display all block quotes as list items, complete with list markers, you 
can add the following style rule to your style sheet:

blockquote {display: list-item;}

You can even prevent browsers from displaying an element by setting its display 
property to none. In that case, the element is still part of the document structure but it 
is not shown to users and does not occupy space in the displayed page. This is useful 
for elements that include content that users shouldn’t see or have no need to see.

You’ll use the display property in creating a reset style sheet.

Creating a Reset Style Sheet
You learned in the last tutorial that your browser applies its own styles to your page 
elements unless those styles are superseded by your own style sheet. Many designers 
prefer to work with a “clean slate” and not have any browser style rules creep into the final 
design of their website. This can be accomplished with a reset style sheet that supersedes 
the browser’s default styles and provides a consistent starting point for page design.

You also can hide elements 
by applying the style 
visibility: hidden;, 
which hides the element 
content but leaves the 
element still occupying the 
same space in the page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 179 

You’ll create a reset style sheet for the Pandaisia Chocolates website. The first style 
rule in your sheet will use the display property to display all of the HTML 5 structural 
elements in your web page as blocks. While current browsers already do this, there 
are some older browsers that do not recognize or have predefined display styles for 
elements as such header, article, or footer. By including the display property 
in a reset style sheet, you add a little insurance that these structural elements will be 
rendered correctly.

You will complete the reset style sheet by adding other style rules that set default 
padding and margins around commonly used page elements, define some basic 
typographic properties, and remove underlining from hypertext links found within 
navigation lists.

To create a reset style sheet:
w	 1.	 Use the text editor or HTML editor of your choice to open the pc_reset_txt.css  

file from the html03 c tutorial folder. Enter your name and the date in the 
comment section of the file and save the document as pc_reset.css.

w	 2.	 Within the Structural Styles section, insert the following style rule to define 
the display properties of several HTML 5 structural elements:

article, aside, figcaption, figure, 
footer, header, main, nav, section {  
   display: block; 
}

Figure 3–2 highlights the new style rule in the document.

To complete the reset style sheet:
w	 1.	 Within the Typographic Styles section, insert the following style rule to define 

the typographic styles for several page elements:

address, article, aside, blockquote, body, cite, 
div, dl, dt, dd, em, figcaption, figure, footer, 
h1, h2, h3, h4, h5, h6, header, html, img, 
li, main, nav, ol, p, section, span, ul { 
 
   background: transparent; 
   font-size: 100%; 
   margin: 0; 
   padding: 0; 
   vertical-align: baseline; 
}

Figure 3–2	 Displaying structural elements as blocks 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 180

w	 2.	 Add the following style rules to remove list markers from list items found 
within navigation lists:

nav ul { 
   list-style: none; 
   list-style-image: none; 
} 
 
nav a { 
   text-decoration: none; 
}

w	 3.	 Set the default line height to 1 (single-spaced) by applying the following style 
rule to the page body:

body { 
   line-height: 1; 
}

Figure 3–3 describes the new style rules in the document.

w	 4.	 Save your changes to the file.

Figure 3–3	 Completing the reset style sheet

single spaces 
all body text

does not display markers 
for unordered lists within 
navigation lists

does not underline 
hypertext links within 
navigation lists

aligns all 
content with the 
baseline

removes all 
margin and 
padding spaces

makes the 
background color 
transparent

sets the font size 
equal to the font 
size of the parent

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 181 

This is a very basic reset style sheet. There are premade reset style sheets freely 
available on the web that contain more style rules used to reconcile the various 
differences between browsers and devices. Before using any of these reset style sheets, 
you should study the CSS code and make sure that it meets the needs of your website. 
Be aware that some reset style sheets may contain more style rules than you actually 
need and you can speed up your website by paring down the reset sheet to use only 
the elements you need for your website.

The first page you will work on for Pandaisia Chocolates is the site’s home page. 
Anne has already created a typographical style sheet in the pc_styles1.css file. Link 
to the style sheet file now as well as the pc_reset.css style sheet you just created and 
the pc_home.css style sheet that you will work on for the remainder of this session to 
design the page layout.

To get started on the Pandaisia Chocolates home page:
w	 1.	 Use your editor to open the pc_home_txt.css file from the html03 c tutorial 

folder. Enter your name and the date in the comment section of the file and 
save the document as pc_home.css.

w	 2.	 Use your editor to open the pc_home_txt.html file from the same folder. 
Enter your name and the date in the comment section and save the file as 
pc_home.html.

w	 3.	 Within the document head, directly after the title element, insert the following 
link elements to link the home page to the pc_reset.css, pc_styles1.css and 
pc_home.css style sheets:

<link href="pc_reset.css" rel="stylesheet" /> 
<link href="pc_styles1.css" rel="stylesheet" /> 
<link href="pc_home.css" rel="stylesheet" />

w	 4.	 Take some time to study the content and structure of the pc_home.html 
document. Pay particular attention to the use of ID and class names throughout 
the document.

w	 5.	 Save your changes to the file. You might want to keep this file open as you 
work with the pc_home.css style sheet so that you can refer to its content 
and structure.

The reset style sheet 
should always be the first 
style sheet listed before 
any other style sheets to 
ensure that your default 
styles are applied first.

Anne has sketched the general layout she wants for the home page, shown in 
Figure 3–4. Compare the pc_home.html file content to the sketch shown in Figure 3–4 to 
get a better understanding of how the page content relates to Anne’s proposed layout.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 182

Before creating the page layout that Anne has sketched out for you, you’ll examine 
different types of layout designs.

Exploring Page Layout Designs
One challenge of layout is that your document will be viewed on many different 
devices with different screen resolutions. When designing for the web, you’re usually 
more concerned about the available screen width than screen height because users can 
scroll vertically down the length of the page, but it is considered bad design to make 
them scroll horizontally. 

A page designer needs to cope with a wide range of possible screen widths ranging 
from wide screen monitors with widths of 1680 pixels or more, down to mobile 
devices with screen widths of 320 pixels and even less. Complicating matters even 
more is that a screen width represents the maximum space available to the user, but 
some space is always taken up by toolbars, sidebar panes, and other browser features. 
In addition, the user might not even have the browser window maximized to fill the 
entire screen. Thus, you need a layout plan that will accommodate a myriad of screen 
resolutions and browser configurations.

Fixed, Fluid, and Elastic Layouts
Web page layouts fall into three general categories: fixed, fluid, and elastic. A fixed layout 
is one in which the size of the page and the size of the page elements are fixed, usually 
using pixels as the unit of measure. The page width might be set at 960 pixels and the 

Figure 3–4	 Proposed home page layout

The Store Products Services Location & Hours

Pandaisia Chocolates 

Home

chocolates Fudges TrufflesToffees

Online Store My Account Contact UsSpecials

header

left column section

vertical navigation lists

footer

horizontal navigation list

right column 
section

horizontal 
navigation list

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 183 

width of the company logo set to 780 pixels. These widths are set regardless of the screen 
resolution of the user’s device and this can result in the page not fitting into the browser 
window if the device’s screen is not wide enough.

By contrast, a fluid layout sets the width of page elements as a percent of the 
available screen width. For example, the width of the page body might be set to fill 
90% of the screen and the width of the company logo might be set to fill 80% of that 
page body. Under a fluid layout, the page resizes automatically to match the screen 
resolution of the user’s device. Figure 3–5 shows how a three-column layout might 
appear in both a fixed and a fluid design.

Figure 3–5	 Fixed layouts vs. fluid layouts

FIXED

256px 512px 512px

FLUID

20% 40% 40%

1280px 100%

fixed layouts stay the same size
regardless of screen resolution

fluid layouts change with
the screen resolution

With different devices accessing your website, it’s usually best to work with a fluid 
layout that is more adaptable to a range of screen resolutions. Fixed layouts should only 
be used when you have more control over the devices that will display your page, such 
as a web page created specifically for a digital kiosk at a conference. 

Another layout design is an elastic layout in which all measurements are expressed 
in em units and based on the default font size used in the page. If a user or the designer 
increases the font size, then the width, height, and location of all of the other page 
elements, including images, change to match. Thus, images and text are always sized 
in proportion to each other and the layout never changes with different font sizes. The 
disadvantage to this approach is that, because sizing is based on the font size and not 
on the screen resolution, there is a danger that if a user sets the default font size large 
enough, the page will extend beyond the boundaries of the browser window.

Finally, the web is moving quickly toward the principles of responsive design in 
which the layout and design of the page change in response to the device that is 
rendering it. The page will have one set of styles for mobile devices, another for tablets, 
and yet another for laptops or desktop computers. You’ll explore how to implement 
responsive design in Tutorial 5.

Because width is such an integral part of layout, you will start designing the 
Pandaisia Chocolates home page by defining the width of the page body and elements 
within the page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 184

Working with Width and Height
The width and height of an element are set using the following width and height 
properties

width: value; 
height: value;

where value is the width or height using one of the CSS units of measurement or as 
a percentage of the width or height of the parent element. For example, the following 
style rule sets the width of the page body to 95% of the width of its parent element (the 
browser window):

body {width: 95%;}

Usually, you do not set the height value because browsers automatically increase 
the height of an element to match its content. Note that all block elements, like the 
body element, have a default width of 100%. Thus, this style rule makes the body 
element width slightly smaller than it would be by default.

Setting Maximum and Minimum Dimensions
You can set limits on the width or height of a block element by applying the following 
properties

min-width: value; 
min-height: value; 
max-width: value; 
max-height: value;

where value is once again a length expressed in one of the CSS units of measure (usually 
pixels to match the measurement unit of the display device). For example, the following 
style rule sets the width of the page body to 95% of the browser window width but 
confined within a range of 640 to 1680 pixels:

body { 
   width: 95%; 
   min-width: 640px; 
   max-width: 1680px; 
}

Maximum and minimum widths are often used to make page text easier to read. Studies 
have shown that lines of text that are too wide are difficult to read because the eye has 
to scan across a long section of content and that lines of text that are too narrow with 
too many line returns break the flow of the material.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 185 

R
E
FE

R
E
N
C
E

Setting Widths and Heights

•	 To set the width and height of an element, use the styles

width: value; 
height: value;

where value is the width or height in one of the CSS units of measurement or a 
percentage of the width or height of the parent element.

•	 To set the minimum possible width or height, use the styles

min-width: value; 
min-height: value;

•	 To set the maximum possible width or height, use the styles

max-width: value; 
max-height: value;

Set the width of the page body for the Pandaisia Chocolates home page to 95% 
of the browser window ranging from 640 pixels to 960 pixels. Also display the 
company logo image as a block with its width set to 100% so that it extends across 
the page body. You do not have to set the height of the logo because the browser will 
automatically scale the height to keep the original proportions of the image.

To set the initial dimensions of the page:
w	 1.	 Return to the pc_home.css file in your editor and add the following style rule 

to the Body Styles section:

body { 
   max-width: 960px; 
   min-width: 640px; 
   width: 95%; 
}

w	 2.	 Within the Body Header Styles section, insert the following style rule to set 
the display type and width of the logo image:

body > header > img { 
   display: block; 
   width: 100%; 
}

Figure 3–6 highlights the newly added style rules in the style sheet.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 186

Figure 3–6	 Setting the width of the page body and logo

Figure 3–7	 Initial view of the body header

web page width is 95% 
of the browser window 
ranging from 640 pixels 
to 960 pixels

displays the logo image 
as a block element

sets the width of the logo 
to 100% of the page body

page body width is 95% 
of the browser window

browser window 
background

logo is 100% of the 
body width

body background

w	 3.	 Save your changes to the file and then open the pc_home.html file in your 
browser. Figure 3–7 shows the current layout of the page body and logo.

w	 4.	 Change the width of your browser window and verify that the size of the 
page body and the size of the logo resize as needed within the range of 640 
to 960 pixels.

The page body is currently placed on the left margin of the browser window. Anne 
would like it centered horizontally within the browser window. 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 187 

Centering a Block Element
Block elements can be centered horizontally within their parent element by setting 
both the left and right margins to auto. Thus, you can center the page body within the 
browser window using the style rule:

body { 
   margin-left: auto; 
   margin-right: auto; 
}

Modify the style rule for the page body to center the Pandaisia Chocolates home 
page horizontally by setting the left and right margins to auto.

To center the page body horizontally:
w	 1.	 Return to the pc_home.css file in your editor and, within the style rule for the 

body selector, insert the properties:

margin-left: auto; 
margin-right: auto;

Figure 3–8 highlights the newly added styles.

Figure 3–8	 Centering the page body

setting the left and right 
margins to auto forces 
block elements to be 
horizontally centered 
within their parent

w	 2.	 Save your changes to the file and then reload the pc_home.html file in your 
browser. Verify that the page body is now centered within the browser window.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 188

Vertical Centering
Centering an element vertically within its parent element is not easily accomplished 
because the height of the parent element is usually determined by its content, which 
might not be a defined value. One solution is to display the parent element as a table 
cell with a defined height and then set the vertical-align property set to middle. 
For example, to vertically center the following h1 heading within the div element

<div> 
   <h1>Pandaisia Chocolates</h1> 
</div>

you would apply the style rule:

div { 
   height: 40px; 
   display: table-cell; 
   vertical-align: middle; 
}

Using this style rule, the h1 heading will be vertically centered. 

IN
SI
G
H
T

Working with Element Heights

The fact that an element’s height is based on its content can cause some confusion. 
For example, the following style rule appears to set the height of the header to 50% of 
the height of the page body:

body > header {height: 50%;}

However, because the total height of the page body depends on the height of 
its individual elements, including the body header, there is circular reasoning in this 
style rule. You can’t set the page body height without knowing the height of the body 
header and you can’t set the body header height unless you know the height of the 
page body. Most browsers deal with this circularity by leaving the body header height 
undefined, resulting in no change in the layout.

Heights need to be based on known values, as in the following style rules where 
the body height is set to 1200 pixels and thus the body header is set to half of that or 
600 pixels.

body {height: 1200px;} 
body > header {height: 50%;}

It is common in page layout design to extend the page body to the height of the 
browser window. To accomplish this, you set the height of the html element to 100% 
so that it matches the browser window height (a known value defined by the physical 
properties of the screen) and then you set the minimum height of the page body to 
100% as in the following style rules:

html {height: 100%;} 
body {min-height: 100%;}

The result is that the height of the page body will always be at least equal to the height 
of the browser window, but it will extend beyond that if necessary to accommodate extra 
page content.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 189 

To vertically center a single line of text within its parent element, set the line height 
of the text larger than the text’s font size. The following style rule will result in an 
h1 heading with vertically centered heading text.

h1 { 
   font-size: 1.4em; 
   line-height: 2em; 
}

Note that this approach will only work for a single line of text. If the text wraps to a 
second line, it will no longer be vertically centered. Vertical centering is a common design 
challenge and there are several other workarounds that have been devised over the years. 
The simplest approach is to use CSS grid styles, a topic that we’ll discuss in the next session.

Next, you will lay out the links in the navigation list. Anne wants the links displayed 
horizontally rather than vertically. You can accomplish this using CSS floats.

Floating Page Content
By default, content is displayed in the page in the order it appears within the HTML file 
as part of the normal document flow. Floating an element takes it out of position and 
places it along the left or right edge of its parent element. Subsequent content that is 
not floated occupies the space previously taken up by the floated element. Figure 3–9 
shows a diagram of an element that is floated along the right margin of its container 
and its effect on the placement of subsequent content.

Figure 3–9	 Floating an element

original layout element is floated on the right margin
and the subsequent page content

wraps around it

To float an element, apply the following float property

float: position;

where position is none (the default), left to float the object on the left margin, or 
right to float the object on the right margin. If sibling elements are floated along the 
same margin, they are placed alongside each other within a row as shown in Figure 3–10.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 190

Note that for the elements to be placed within a single row, the combined width 
of the elements cannot exceed the total width of their parent element, otherwise any 
excess content will automatically wrap to a new row.

Figure 3–10	 Floating multiple elements in a row

original layout

float: left float: left float: left

when several elements are floated on the
same margin, they are aligned within a row

R
E
FE

R
E
N
C
E

Floating an Element

•	 To float an element within its container, apply the style

float: position;

where position is none (the default), left, or right.

Anne wants you display the content of navigation lists belonging to the 
horizontalNavigation class within a single row. You will accomplish this by floating 
each item in those navigation lists on the left margin using the float property. Create 
this style rule now.

To lay out horizontal navigation list items:
w	 1.	 Return to the pc_home.css file in your editor and go to the Body Header 

Styles section.

w	 2.	 Because there are five links in the navigation list, you’ll make each list item 
20% of the width of the navigation list by adding the following style rule:

body > header > nav.horizontalNavigation li { 
   width: 20%; 
}

To be confined to a single 
row, the total width of 
floated elements cannot 
exceed the width of the 
container.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 191 

w	 3.	 Insert the following style rule within the Horizontal Navigation Styles section 
to display every list item within a horizontal navigation list as a block floated 
on the left.

nav.horizontalNavigation li { 
   display: block; 
   float: left; 
}

Figure 3–11 highlights the styles used with list items.

w	 4.	 Save your changes to the file and then reload the pc_home.html file in your 
browser. Figure 3–12 shows the revised layout of the navigation list in the 
page header.

�oats the list item 
within every horizontal 
navigation list as a 
block on the left

sets the width of 
the list item to 20% 
of the width of the 
navigation list

the width of each 
list item set to 20% 
and floated on the 
left margin

Figure 3–11	 Floating items in the navigation list

Figure 3–12	 Floating items in a horizontal navigation list

Anne doesn’t like the appearance of the hypertext links in the navigation list. Because 
the links are inline elements, the background color extends only as far as the link text. She 
suggests you change the links to block elements and center the link text within each block.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 192

To change the display of the hypertext links:
w	 1.	 Return to the pc_home.css file in your editor.

w	 2.	 Within the Horizontal Navigation Styles section, insert the following style rule to 
format the appearance of the hypertext links within the horizontal navigation lists:

nav.horizontalNavigation a { 
   display: block; 
   text-align: center; 
}

Figure 3–13 highlights the style rule for the hypertext links.

w	 3.	 Save your changes to the file and then reload the pc_home.html file in 
your browser. 

w	 4.	 Hover your mouse pointer over the links in the navigation list. Note that the 
link text is centered within its block and the background color extends fully 
across the block rather than confined to the link text. See Figure 3–14.

Trouble?  Don’t worry about the jumble of elements displayed after the body 
header. You’ll straighten out those objects next.

Figure 3–13	 Formatting hyperlinks in horizontal navigation lists

Figure 3–14	 Links in the body header

displays the 
link as a block

centers the 
link text within 
the block

each hypertext 
link displayed as 
a block with the 
link text centered 
within the block

You have completed the design of the body header. Next, you will lay out the middle 
section of the home page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 193 

Figure 3–15	 Clearing a float

float: right;float: right;

clear: right;

original layout floating an element on the 
right margin

last element is displayed once 
the right margin is clear of 

floated objects

Clearing a Float
In some layouts, you will want an element to be displayed on a new row, clear of 
previously floated objects. To ensure that an element is always displayed below your 
floated elements, apply the following clear property:

clear: position;

where position is left, right, both, or none. A value of left displays the element 
only when the left margin is clear of floating objects. A value of right displays the 
element only when the right margin is clear. A value of both displays the element only 
when both margins are clear of floats. The default clear value is none, which allows the 
element to be displayed alongside any floated objects.

Figure 3–15 shows how use of the clear property prevents an element from being 
displayed until the right margin is clear of floats. The effect on the page layout is that 
the element is shifted down and is free to use the entire page width since it is no longer 
displayed alongside a floating object.

IN
SI
G
H
T

Creating Drop Caps with CSS

A popular design element is the drop cap, which consists of an enlarged initial letter 
that drops down into a body of text. To create a drop cap, you increase the font size 
of an element’s first letter and float it on the left margin. Drop caps also generally 
look better if you decrease the line height of the first letter, enabling the surrounding 
content to better wrap around the letter. Finding the best combination of font size 
and line height is a matter of trial and error, and unfortunately, what looks best in 
one browser might not look as good in another. The following style rule works well in 
applying a drop cap to the first paragraph element:

p:first-of-type::first-letter { 
   font-size: 4em; 
   float: left; 
   line-height: 0.8; 
}

For additional design effects, you can change the font face of the drop cap to a 
cursive or decorative font.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 194

To float the left and right column sections:
w	 1.	 Return to the pc_home.css file in your editor. Go to the Left Column Styles 

section and insert the style rule:

section#leftColumn { 
   clear: left; 
   float: left; 
   width: 33%; 
}

w	 2.	 Within the Right Column Styles section, insert:

section#rightColumn { 
   float: left; 
   width: 67%; 
}

Note that you do not apply the clear property to the right column because you 
want it to be displayed in the same row alongside the left column. Figure 3–16 
highlights the style rules for the left and right columns.

Figure 3–16	 Float the left and right column sections

�oats the left column 
on the left margin 
with a width of 33% 
of the page body

�oats the right 
column alongside 
the left column with 
a width of 67%

displays the left 
column once the left 
margin is clear of 
previously �oated 
elements

The next part of the Pandaisia Chocolates home page contains two section elements 
named leftColumn and rightColumn. Set the width of the left column to 33% of the body 
width and set the width of the right column to 67%. Float the sections side-by-side on 
the left margin, but only when the left margin is clear of all previously floated objects.

R
E
FE

R
E
N
C
E

Clearing a Float

•	 To display a non-floated element on a page with a floated element, use the following 
style so the non-floated element can clear the floated element

clear: position;

where position is none (the default), left, right, or both.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 195 

To complete the right column section:
w	 1.	 Within the Right Column Styles section, insert the following style rules to 

format the inline images and list items:

section#rightColumn img { 
   display: block; 
   width: 100%; 
} 
 
section#rightColumn > nav.horizontalNavigation li { 
   width: 25%; 
}

Note that you do not have to include a style rule to float the items in the 
horizontal navigation list because you have already created that style rule in 
Figure 3–11. Figure 3–17 describes the new style rules in the style sheet.

w	 2.	 Save your changes to the file and then reload the pc_home.html file in your 
browser. Figure 3–18 shows the layout of the left and right column sections.

Figure 3–17	 Formatting the right column section

displays every image 
in the right column as 
a block with a width 
equal to the width of 
its parent element

sets the width of 
each list item to 25% 
of the width of the 
navigation list

The right column contains a horizontal navigation list containing four items, each 
consisting of an image and a label above the image. Anne wants the four items placed 
side-by-side with their widths set to 25% of the width of the navigation list. Anne also 
wants the images in the right column displayed as blocks with their widths set to 100% 
of their parent element.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 196

Anne doesn’t like that the text in the left column crowds the right column and page 
boundary. She suggests that you provide more interior space by increasing the padding 
in the left column.

Figure 3–18	 Layout of the left and right columns

horizontal navigation 
list with each image 
and label set to 25% 
of the list width

left column occupies 
33% of the width of 
the page body

right column 
occupies 67% 
of the width

© Brenda Carson/Shutterstock.com; © Brent Hofacker/Shutterstock.com; © Jim Bowie/Shutterstock.com;  
© wacomkaShutterstock.com; © Shebeko/Shutterstock.com

To increase the left column padding:
w	 1.	 Return to the pc_home.css file in your editor and go to the Left Column 

Styles section.

w	 2.	 Insert the property padding: 1.5em; into the section#leftColumn style rule 
as shown in Figure 3–19.

Figure 3–19	 Increasing the padding of the left column

increases the interior 
padding to 1.5em

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 197 

This simple change has caused the layout to crash. What went wrong?

Refining a Floated Layout
When the total width of floated objects exceeds the width of their parent, excess 
content is automatically wrapped to a new row. The reason the layout for the Pandaisia 
Chocolates home page crashed is that increasing the padding in the left column, 
increased the column’s width beyond its set value of 33%. Even this small increase 
caused the total width of the two columns to exceed 100% and, as a result, the right 
column moved to a new row.

To keep floats within the same row, you have to understand how CSS handles 
widths. Recall that block elements are laid out according to the box model, as 
illustrated previously in Figure 2–38, in which the content is surrounded by the padding 
space, the border space, and finally the margin space. By default, browsers measure 
widths using the content box model in which the width property only refers to the 
width of the element content and any padding or borders constitute added space. 

CSS also supports the border box model, in which the width property is based on 
the sum of the content, padding, and border spaces and any space taken up by the 
padding and border is subtracted from space given to the content. Figure 3–21 shows 
how the two different models interpret the same width, padding, and border values. 

Figure 3–20	 Page layout crashes with increased padding

the right column is 
forced to wrap to 
a new row, ruining 
the page layout

increased padding 
increases the width 
of the left column, 
making it bigger 
than 33% of the 
page body width

w	 3.	 Save your changes to the style sheet and then reload the pc_home.html file 
in your browser. Figure 3–20 shows the result of your change.

© Brenda Carson/Shutterstock.com; Source: Facebook; Source: Twitter, Inc.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 198

You can choose the layout model using the following box-sizing property

box-sizing: type;

where type is content-box (the default), border-box, or inherit (to inherit the 
property defined for the element’s container). Many designers prefer to use the border 
box model in page layout so that there is no confusion about the total width of each 
element.

Height values are similarly 
affected by the type of 
layout model used.

Figure 3–21	 Comparing the content box and border box models

10px 

Content Box model 

10px 10px 5px 

Border Box model 

10px 10px 5px 5px 

Style Properties 
width:   200px;
padding:  10px;
border:    5px;

Total Width = 230px

200px 

170px 

Total Width = 200px

5px 

R
E
FE

R
E
N
C
E

Defining How Widths Are Interpreted

•	 To define what the width property measures, use the style:

box-sizing: type;

where type is content-box (the default), border-box, or inherit (to inherit the 
property defined for the element’s container).

Add the box-sizing property to the reset style sheet and apply it to all block elements.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 199 

To set the block layout model:
w	 1.	 Return to the pc_reset.css file in your editor.

w	 2.	 Add the following style property to the style rule for the list of block 
elements:

box-sizing: border-box;

Figure 3–22 highlights the revised style rule.

To lay out the page footer:
w	 1.	 Return to the pc_home.css file in your editor and scroll down to the Footer 

Styles section.

w	 2.	 Insert the following style rules:

footer { 
   clear: left; 
} 
 
footer > nav.verticalNavigation { 
   float: left; 
   width: 22%; 
} 
 
footer > section#contactInfo { 
   float: left; 
   width: 34%; 
}

Figure 3–22	 Adding the border-box style to the reset style sheet

applies border-box 
sizing to all of the 
listed block elements

w	 3.	 Save your changes to the style sheet and then reload the pc_home.html file 
in your browser. Verify that the layout of the left and right columns has been 
restored and additional padding has been added within the left column.

The final part of the Pandaisia Chocolates home page is the footer, which contains 
three vertical navigation lists and a section element with contact information for 
the store. Once the left margin is clear of previously floated objects, float these four 
elements on the left margin with the widths of the three navigation lists each set to 22% 
of the body width and the section element occupying the remaining 34%.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 200

Figure 3–23 highlights the layout style rules for the page footer.

Figure 3–23	 Setting the layout of the page footer

sets the width of the 
verticalNavigation lists 
to 22% and floats 
them on the left

sets the width of the 
contactInfo section to 
34% and floats it on 
the left

displays the footer 
once the left margin is 
clear of floated objects

w	 3.	 Save your changes to the style sheet and then reload pc_home.html in your 
browser. Figure 3–24 shows the new layout of the footer.

Figure 3–24	 Page footer layout

width of the contactInfo 
section set at 34% of the 
footer width and �oated 
on the left

each vertical navigation 
list set at 22% of the 
footer width and 
�oated on the left

© Brent Hofacker/Shutterstock.com; © Jim Bowie/Shutterstock.com;  
© wacomkaShutterstock.com; © Shebeko/Shutterstock.com;  
Source: Facebook; Source: Twitter, Inc.

Anne asks you to change the background color of the footer to a dark brown to better 
show the text content.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 201 

To set the footer background color:
w	 1.	 Return to the pc_home.css file in your editor and go to the Footer Styles section.

w	 2.	 Insert the following property for the footer selector:

background-color: rgb(71, 52, 29);

Figure 3–25 highlights the footer background color style.

w	 3.	 Save your changes to the style sheet and then reload pc_home.html in your 
browser. Note that the background color is not changed.

Figure 3–25	 Setting the footer background color

footer background 
set to a dark brown

Why didn’t the change to the background color take effect? To help you understand 
why, you’ll look once again at the nature of floated elements.

Working with Container Collapse
Recall that a floated element is taken out of the document flow so that it is no longer 
“part” of the element that contains it. Literally it is floating free of its container. When 
every element in a container is floated, there is no content left. As far as the browser is 
concerned, the container is empty and thus has no height and no background to color, a 
situation known as container collapse. Figure 3–26 demonstrates container collapse for 
a container that has three floating objects that exceed the boundaries of their container.

Figure 3–26	 Container collapse

container expanded
to enclose floated

content

container doesn’t
enclose floated

content

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 202

What you usually want in your layout is to have the container expand to surround 
all of its floating content. One way this can occur is if the container is followed by 
another element that is displayed only when the margins are clear of floats. In that 
situation, the container’s height will expand up to that trailing element and in the 
process surround its floating content.

The problem with the footer in the Pandaisia home page is that there is no trailing 
element—the footer is the last element in the page body. One way to fix that problem 
is to use the after pseudo-element to add a placeholder element after the footer. The 
general style rule is

container::after { 
   clear: both; 
   content: ""; 
   display: table; 
}

where container is the selector for the element containing floating objects. The clear 
property keeps this placeholder element from being inserted until both margins are 
clear of floats. The element itself is a web table but contains only an empty text string 
so that no actual content is written to the web page. That’s okay because the mere 
presence of this placeholder element is enough to keep the container from collapsing.

Add a style rule now to create a placeholder element that keeps the footer from 
collapsing around its floating content.

To find other ways to 
prevent container collapse, 
search the web using the 
keywords CSS clearfix.

To keep the footer from collapsing:
w	 1.	 Return to Footer Styles section in the pc_home.css file and, after the style 

rule for the footer element, insert the following rule:

footer::after { 
   clear: both; 
   content: ""; 
   display: table; 
}

Figure 3–27 highlights the new rule in the style sheet.

w	 2.	 Save your changes to the style sheet and then reload pc_home.html in 
your browser. Figure 3–28 shows the completed layout of the Pandaisia 
Chocolates home page.

Figure 3–27	 Preventing the footer from collapsing

places the element 
after both the 
margins are clear

creates an element 
after the footer

the element 
consists of an 
empty web table

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 203 

Figure 3–28	 Final layout of the Pandaisia Chocolates home page

footer has expanded 
to contain all �oated 
content

© Brenda Carson/Shutterstock.com; © Brent Hofacker/Shutterstock.com; © Jim Bowie/Shutterstock.com; 
© wacomkaShutterstock.com; © Shebeko/Shutterstock.com; Source: Facebook; Source: Twitter, Inc.

Note that the footer now has a dark brown background because it has 
expanded in height to contain all of its floated content.

w	 3.	 Close any of the documents you opened for this session.

R
E
FE

R
E
N
C
E

Keeping a Container from Collapsing

•	 To prevent a container from collapsing around its floating content, add the following 
style rule to the container

 container::after { 
   clear: both; 
   content: ""; 
   display: table; 
}

where container is the selector for the element containing the floating content.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 204

PR
O
SK

IL
LS

Problem Solving: The Virtue of Being Negative

It’s common to think of layout in terms of placing content, but good layout also must 
be concerned with placing emptiness. In art and page design, this is known as working 
with positive and negative space. Positive space is the part of the page occupied by 
text, graphics, borders, icons, and other page elements. Negative space, or white 
space, is the unoccupied area and provides balance and contrast to elements contained 
in positive space.

A page that is packed with content leaves the eye with no place to rest; which 
also means that the eye has no place to focus and maybe even no clear indication 
about where to start reading. Negative space is used to direct users to resting stops 
before moving on to the next piece of page content. This can be done by providing 
a generous margin between page elements and by increasing the padding within an 
element. Even increasing the spacing between letters within an article heading can 
alleviate eye strain and make the text easier to read.

White space also has an emotional aspect. In the early days of print advertising, 
white space was seen as wasted space, and thus, smaller magazines and direct mail 
advertisements would tend to crowd content together in order to reduce waste. By 
contrast, upscale magazines and papers could distinguish themselves from those 
publications with an excess of empty space. This difference carries over to the web, 
where a page with less content and more white space often feels more classy and 
polished, while a page crammed with a lot of content feels more commercial. Both can 
be effective; you should decide which approach to use based on your customer profile.

You’ve completed your work on the Pandaisia Chocolates home page. In the next 
session, you’ll work on page layout using the technique of grids.

Session 3.1 Quick Check

	 1.	 To display an element as a block-level use:
a.	 display: block-level; 
b.	 display: block; 
c.	 display: inline; 
d.	 display: display-block; 

	 2.	 What are three types of layouts?
a.	 inline, fluid, static
b.	 fixed, floating, static
c.	 fixed, fluid, elastic
d.	 inline, block, scrolling

	 3.	 Provide a style rule to set the maximum width of an element to 960 pixels.
a.	 maximum-width: 960px;
b.	 maxw: 960px;
c.	 width: 960px;
d.	 max-width: 960px;

R
E
V
IE

W

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 205 

	 4.	 Provide a style rule to horizontally center a block element within its container 
with a top/bottom margin of 20 pixels.
a.	 margin: 20px center;
b.	 margin: center 20px;
c.	 margin: auto 20px;
d.	 margin: 20px auto;

	 5.	 Provide a style rule to place an object on the right margin of its container.
a.	 margin: right;
b.	 text-align: right;
c.	 float: right;
d.	 padding: right;

	 6.	 Provide a style rule to display an object only when all floating elements have 
cleared.
a.	 clear: float;
b.	 clear: floats;
c.	 clear: both;
d.	 clear: all;

	 7.	 Your layout has four floated elements in a row but unfortunately the last 
element has wrapped to a new line. What is the source of the layout mistake?
a.	 The widths of the floated elements exceed the available width of their 

container.
b.	 You cannot float more than one object within a row.
c.	 You have to clear the first three floating object to make room for the fourth.
d.	 You have to clear the fourth floating object to make room for the first three.

	 8.	Provide a style rule to change the width property for the header element so 
that it measures the total width of the header content, padding, and border 
spaces.
a.	 box-sizing: border-box;
b.	 box-sizing: content-box;
c.	 box-sizing: all;
d.	 box-sizing: complete;

	 9.	 What causes container collapse?
a.	 The width of the child elements exceeds the width of the container.
b.	 The width of the container element is fixed at 0 pixels.
c.	 The height of the container element is fixed at 0 pixels.
d.	 All child elements are floating so that they are free of the container, leaving 

the container with no content.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 206

The grid-template-
areas property de�nes 
the areas in the grid

Use the grid-area 
property to place items 
within grid areas.

The grid-template-
columns property 
establishes the size and 
number of grid columns

To create a grid container 
set the display property
to grid.

A fractional unit, 
indicated by the unit 
abbreviation fr, expands or 
contracts to �ll available 
space; these fractional units 
keep the columns widths in 
a 2:1 proportion.

The grid-column-gap 
property sets the interior 
space between grid 
columns.Use the grid-row

and grid-column 
properties to place items 
at and across speci�ed 
grid rows and columns.

Session 3.2 Visual Overview: 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 207 

footer element 
placed in the 
footer grid area

Page header covers the 
grid from column gridline 
1 to –1 (the last gridline)

aside element 
placed in the 
FAQ grid area

Columns 
laid out in a 
proportion 
of 2:1

CSS Grid Layouts

© Twin Design/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 208

Introducing Grid Layouts
In the previous session, you used the float property to lay out a page in sections 
that floated alongside each other like columns. In this session, you’ll explore how to 
generalize this technique by creating a page layout based on a grid.

Overview of Grid-Based Layouts
Grids are a classic layout technique that has been used in publishing for hundreds of 
years and, like many other publishing techniques, can be applied to web design. In a 
grid layout, the page is comprised of a system of intersecting rows and columns that 
form a grid. The rows are based on the page content. A long page with several articles 
might span several rows, or it could be a home page with introductory content that 
fits within a single row. The number of columns is based on the number that provides 
the most flexibility in laying out the page content. Many grid systems are based on 
12 columns because 12 is evenly divisible by 2, 3, 4, and 6, but other sizes are also 
used. Figure 3–29 shows a 12-column grid layout.

space between 
columns 

space between 
rows 

grid rows 

grid columns

The page designer then arranges the page elements within the chosen grid. Figure 3–30 
shows one possible layout comprised of a main header element (the tan area), three 
major sections (the lavender, light green, and blue areas), as well as a navigation bar 
and a footer (the dark green areas). Some sections (like the dark green and blue areas) 
are further divided into small subsections.

Figure 3–29	 Page grid

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 209 

It should be stressed that the grid is not part of the web page content. Instead, it’s a 
systematic approach to visualizing how to best fit content onto the page. Working from 
a grid has several aesthetic and practical advantages, including

•	Grids add order to the presentation of page content, adding visual rhythm, which is 
pleasing to the eye.

•	A consistent logical design gives readers the confidence to find the information they seek.
•	New content can be easily placed within a grid in a way that is consistent with 

previously entered information.
•	A well designed grid is more easily accessible for users with disabilities and special needs.
•	Grids speed up the development process by establishing a systematic framework for 

the page layout.

There are two basic types of grid layouts: fixed grids and fluid grids.

Fixed and Fluid Grids
In a fixed grid, the widths of the columns and margins are specified in pixels, where 
every column has a fixed position. Many fixed grid layouts are based on a page width 
of 960 pixels because most desktop screen widths are at 1024 pixels (or higher) and a 
960-pixel width leaves room for browser scrollbars and other features. The 960-pixel 
width is also easily divisible into halves, thirds, quarters, and so forth, making it easier 
to create evenly spaced columns.

The problem of course with a fixed grid layout is that it does not account for other 
screen sizes and thus, a fluid grid, in which column widths are expressed in percentages 
rather than pixels, is often used to provide more support across different devices. In the 
examples to follow, you’ll base your layouts on a fluid grid system.

Grids are often used with responsive design in which one grid layout is used with 
mobile devices, another grid layout is used with tablets, and yet another layout is used 
with desktop computers. A layout for a mobile device is typically based on a 1-column 
grid, tablet layouts are based on grids of 4 to 12 columns, and desktop layouts are often 
based on layouts with 12 or more columns.

Figure 3–30	 Layout based on a grid

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 210

CSS Frameworks
Designing your own grids can be time-consuming. To simplify the process, you can 
choose from the many CSS frameworks available on the web. A framework is a software 
package that provides a library of tools to design your website, including style sheets for 
grid layouts and built-in scripts to provide support for a variety of browsers and devices. 
Most frameworks include support for responsive design so that you can easily scale your 
website for devices ranging from mobile phones to desktop computers.

Some popular CSS frameworks include

•	�Bootstrap (getbootstrap.com)
•	�Neat (neat.bourbon.io)
•	Unsemantic (unsemantic.com)
•	�Profound Grid (www.profoundgrid.com)
•	�HTML 5 Boilerplate (html5boilerplate.com)
•	�Skeleton (getskeleton.com)

While a framework does a lot of the work in building the grid, you still need to 
understand how to interact with the underlying code, including the style sheets used 
to create a grid layout. In place of third-party frameworks, you can design your own 
grids using grid styles from CSS. Achieving Candidate Recommendation status by the 
W3C in December, 2017, the CSS grid styles are now widely supported by all major 
browsers on almost every device.

Introducing CSS Grids
The CSS grid model is a set of CSS design styles used to create grid-based layouts. 
Before discussing the CSS styles, we should first explore the key terms and concepts 
associated with building a CSS grid. Each CSS grid is laid out in a set of row and 
column gridlines as shown in Figure 3–31.

row grid line

column grid line

Figure 3–31	 Row and column gridlines

To reference positions within a grid, the CSS grid model numbers the gridlines in the 
horizontal and vertical directions, starting from the top-left corner of the grid with the 
row gridlines and then moving left to right with the column gridlines along the bottom. 
Both gridlines start with a value of “1” and increase in value down and across the grid 
(see Figure 3–32.)

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 211 

Figure 3–33	 Numbering gridlines from right to left

–5

–4

–4

–3

–3

–2

–2
–1

–1

The advantage of using both positive and negative gridline numbers is that you can 
always reference both the first gridline (1) and the last gridline (21) no matter the size 
of the grid. This will become important later when placing items at specific locations 
within the grid or sizing those items to cover multiple rows and columns.

The cells that are created from the intersection of the horizontal and vertical 
gridlines will contain the elements from the web page. An element can be contained 
within a single cell or it can span several cells within a grid area. Figure 3–34 shows 
a grid area consisting of three rows and two columns. Note that grid areas must be 
rectangular; you cannot have an L-shaped grid area.

For countries and regions 
that read material right- 
to-left rather than left- 
to-right, the grid 
numbering system is 
reversed to reflect  
reading order.

Figure 3–32	 Numbering gridlines

1

1

2

2

3

3

4
4

5

You can reference gridlines in the reverse order starting from the bottom-right corner 
with the first row and column gridlines in those directions are given a value of “21” as 
shown in Figure 3–33.

grid area covering 3 
rows and 2 columns of 
the grid

Rows and columns are also called tracks or grid tracks.

Figure 3–34	 Grid area within a CSS grid

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 212

You will create a grid for a web page describing the Pandaisia Chocolates company. 
Anne has already written and marked up the content of the page. Open Anne’s file now.

To open the file containing information about the company:
w	 1.	 Use your editor to open the pc_about_txt.html file from the html03 c tutorial 

folder. Enter your name and the date in the comment section and save the 
file as pc_about.html.

w	 2.	 Take some time to examine the contents of the page.

w	 3.	 Open the pc_about.html file in your browser. See Figure 3–35.

Figure 3–35	 Initial About Pandaisia Chocolates page

There is currently no layout for the page contents and all the structural elements 
appear stacked within a single column. Anne sketches her idea for a different page 
layout, shown in Figure 3–36.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 213 

Anne’s layout consists two grids: one nested within the other. The outer grid consists 
of three rows and two columns. The first and third rows contain the page header and 
page footer, with the header and footer both spanning an entire row. The second row 
displays information about the company in the first column and a list of frequently 
asked questions is displayed in the second column. Within the second row is a nested 
grid of two rows and two columns containing four articles about Pandaisia Chocolates, 
its operations, and products. You will use the CSS grid model to create this grid layout.

Creating a CSS Grid
To create a CSS grid, you must first identify a page element as the grid container using 
the following display property:

display: grid;

Figure 3–37 shows a simple web page containing a div element with the id "outer" 
that contains six nested div elements. The outer element is displayed as a grid and each 
of the six child elements become items within that grid. The grid is limited to those six 
div elements. Any elements nested within those div elements are not part of the grid 
structure.

FAQOur Company

About Chocolate

Enjoying Chocolate

Single-Origin and Blends Ethical Produce

Healthy Chocolate

About Pandaisia Chocolates

Pandaisia Chocolates © 2021 All Rights Reserved

�rst row

�rst column

second row

second column

third row

2 × 2 grid nested 
within the �rst 
column of the 
second row

Figure 3–36	 Proposed grid layout for the About Pandaisia Chocolates page

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 214

The six child div elements are now grid items, so they are no longer considered 
block-level elements because they are fixed within the grid structure. You couldn’t, for 
example, float any of those elements because floating them would remove them from 
the grid and the CSS grid model doesn’t allow that. The entire grid itself is considered a 
block-level element and thus could be floated or resized within the web page just like 
any other block-level element.

Grids can also be created as inline elements using the style:

display: inline-grid;

which creates the grid inline with other elements in the web page. In this session 
we will only examine grids as block-level elements, but be aware than any of the 
techniques introduced for setting up a grid can be applied to both the block-level and 
inline versions.

Use the display property now to define outer and inner grids described in  
Figure 3–36. You will place all your grid styles within a separate CSS file.

Web Page

each child element 
is part of the grid

HTML Content

CSS Styles

outer element is 
marked as a grid

Figure 3–37	 Using the display style

To create the grid style sheet:
w	 1.	 Use your editor to open the pc_grids_txt.css file from the html03  tutorial 

folder. Enter your name and the date in the comment section and save the 
file as pc_grids.css.

w	 2.	 Within the Grid Styles for Page Body section, insert the following style rule to 
define a grid for the entire page body:

body { 
   display: grid; 
}

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 215 

w	 3.	 Within the Grid Styles for Nested Grid section, insert the following style rule 
to turn the section element into a grid:

section { 
   display: grid; 
}

Figure 3–38 highlights the newly added code.

displays the children 
of the body element 
within a grid

displays the children 
of the section 
element within a 
grid

Figure 3–38	 Creating two grids for the web page

w	 4.	 Save your changes to the file and then return to the pc_about.html file in 
your editor.

w	 5.	 Within the head section, add the following link element to link the web 
page to the pc_grids.css style sheet.

<link href="pc_grids.css" rel="stylesheet" />

w	 6.	 Save your changes to the file.

Having set up the grids you will next use CSS to define the rows and columns of the 
grid structure.

Working with Grid Rows and Columns
To define the number and size of grid columns, use the following grid-template-
columns style:

grid-template-columns: width1 width2 …;

where width1, width2, etc. is a space-separated list that defines the width of the 
columns or tracks within the grid. For example, the following style rule creates two grid 
columns: the first 250 pixels in width and the second with a width of 100 pixels.

grid-template-columns: 250px 100px;

The number of columns 
in the grid is determined 
by the number of entries 
in the grid-template-
columns property.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 216

Column widths can be expressed using any CSS unit measures such as pixels, em 
units, and percentages. You can also use the keyword auto to allow the column width 
to be automatically set by the browser. The following style creates a three-column grid 
with the width of the first column fixed at 100 pixels, the third column at 50 pixels, 
and the center column occupying whatever space remains.

grid-template-columns: 100px auto 50px;

You might use such a layout in a page in which the first and third columns contain 
navigation lists that are fixed in size while the middle column contains an article that 
should expand to fill the remaining space.

Figure 3–39 shows a two-column grid with fixed widths of 250 pixels and 100 
pixels. Notice that the number of rows is not defined, so that the browser automatically 
adds rows as needed to contain all page elements within the grid container. Because 
there are six grid items, this grid is arranged in a layout of three rows and two columns. 
If there were eight child elements the grid would be four rows by two columns, and 
so forth.

Figure 3–39	 Setting the grid columns

rows are implicitly 
created from the 
grid content

columns are 
explicitly de�ned 
in the style sheet

de�nes a two-column 
grid layout using 
absolute widths

Figure 3–39 highlights an important contrast between explicit grids and implicit grids. 
An explicit grid completely defines the number and size of the grid rows and columns. 
An implicit grid contains rows and/or columns that are generated by the browser as 
it populates the grid with items from the grid container. In most grid layouts you will 
explicitly define the columns and let the browser fill out the grid rows drawn from the 
web page content.

To explicitly define the number of rows and their height, use the following  
grid-template-rows property:

grid-template-rows: height1 height2 …;

where height1, height2, etc. define the heights of the grid rows. Figured 3-40 shows 
an example of an explicit grid in which both the columns and rows are defined in the 
CSS style sheet.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 217 

In an implicit grid, the row heights are determined by the page element. You can also 
set the row heights in an implicit grid using the following grid-auto-rows property:

grid-auto-rows: height1 height2 …;

where height1, height2, etc. are the heights of the rows with the sequence repeating 
for each new set of rows. For example, the style:

grid-auto-rows: 100px;

sets the height of each row to 100 pixels, while the style

grid-auto-rows: 100px 200px;

sets the height of the first row in the implicit grid to 100 pixels, the height of the second 
row to 200 pixels, and then repeats those heights for each subsequent set of two rows 
until the grid is filled.

Track Sizes with Fractional Units
A grid layout will often need to adapt to devices of various screen widths and sizes. 
One way of accomplishing this is with flexible units. A fr (fractional) unit, indicated 
by the unit abbreviation fr, creates grid tracks that expand or contract in size to fill 
available space while retaining their relative proportions to one another. The following 
is an example of a grid in which the track sizes of the columns and rows is set using 
fractional units:

grid-template-columns: 4fr 1fr; 
grid-template-rows: 4fr 2fr 1fr;

As the size of the display window changes, the column widths maintain their 
proportions so that the first column is always four times wider than the second column 
and the row heights maintain their proportion of 4:2:1. See Figure 3–41.

If the content of a grid 
item is greater than can 
be displayed within 
the allotted height, the 
browser will automatically 
increase the row height to 
match.

Figure 3–40	 Explicitly defining grid columns and rows

explicitly de�nes 
both the rows and 
columns of the grid

50px

100px

100px250px

150px

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 218

Fractional units are often combined with absolute units to create grid layouts that 
are both fixed and flexible. The following style rule generates a grid in which the width 
of the first column is set to 250 pixels with the remaining space allotted to the other 
two columns in a proportion of 2 to 1.

grid-template-columns: 250px 2fr 1fr

Such a layout might be used in a web page in which the first column contains a 
navigation list whose width is fixed, the second column contains an article of primary 
importance, and the third column contains a sidebar of lesser importance. As the 
size of the display window changes, the width of the second and third columns 
automatically change, filling the screen while maintaining their 2:1 ratio.

Repeating Columns and Rows
Some grid layouts involve 12 or 16 columns or more. With so many columns it’s 
difficult to specify the size of each column. You can simplify the layout style by using 
the following repeat() function 

repeat(repeat, tracks)

where repeat is the number of repetitions of the tracks specified in tracks. For 
example, the following expression creates a layout consisting of one fixed column 250 
pixels in width followed by four sets of two columns in which the first column in each 
set is twice the width of the second column for a total of nine grid columns.

grid-template-columns: 250px repeat(4, 2fr 1fr);

In place of a repeat value, you can use the keyword auto-fill to fill up the grid 
with as many columns (or rows) that will fit within the grid container. The following 
style uses the auto-fill keyword to fill the grid with as many 100 pixel-wide 
columns that will fit within the container: 

grid-template-columns: 250px repeat(auto-fill, 100px);

Any grid item that cannot fit within the grid container will be automatically wrapped 
to a new row. This type of layout could be used with an image gallery in which each 

Figure 3–41	 Using flexible units in a grid

fr unit sets �exible 
track sizes

columns maintain a 
proportion of 4:1

rows maintain a 
proportion of 
4:2:1

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 219 

row contains as many 100 pixel-wide images that can fit within the display window, 
arranged in columns.

Finally, you can switch between fixed and flexible track sizes using the following 
minmax() function

minmax(min, max)

where min is the minimum track size for a row and column and max is the maximum. 
Used in the following style rule, the grid will contain as many columns of equal width 
that can fit within a grid container down to a minimum width of 100 pixels:

grid-template-columns: repeat(auto-fill, minmax(100px, 1fr));

Figure 3–42 shows how such a layout would be applied to grid containers of different 
widths.

Figure 3–42	 Using the minmax function in a grid

each row is �lled 
with as many 
equal-width items 
as will �t within 
the grid, down to 
a minimum width 
of 100 pixels

As the grid container decreases in size, grid items are automatically wrapped to a 
new row. Under each layout, the columns are given equal widths down to a minimum 
width value of 100 pixels.

Applying a Grid Layout
Now that you’ve seen how to set the size of rows and columns within a grid, you will 
apply your knowledge to the About Pandaisia web page. From Anne’s proposed layout 
shown earlier in Figure 3–36, you’ve learned that the two columns in the outer grid 
should be displayed in a proportion of 2:1, while the four articles about chocolate in 
the nested grid should be displayed with columns of equal width. You will define the 
column widths for both the outer and nested grids using fractional units. You won’t, 
however, explicitly define the number and height of the grid rows, leaving the browser 
to implicitly lay out that content.

To define the grid columns:
w	 1.	 Return to the pc_grids.css file in your editor.

w	 2.	 Within the style rule for the body element, add the style:

grid-template-columns: 2fr 1fr;

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 220

	 4.	 Save your changes to the file and then reload pc_about.html in your browser. 
Figure 3–44 shows part of the layout of the page under the current grid structure.

creates two grid 
columns with the �rst 
column twice the width 
of the second

creates two grid 
columns of equal width

�rst column is twice the 
width of the second

nested grid in a 
2-column layout

w	 3.	 Within the style rule for the section element, add:

grid-template-columns: repeat(2, 1fr);

		  Figure 3–43 highlights the newly added code.

Figure 3–43	 Creating two grids for the web page

Figure 3–44	 Web page with the column layout

Tw
in

 D
es

ig
n/

Sh
ut

te
rs

to
ck

.c
om

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 221 

The page layout does not resemble the plan that Anne outlined in Figure 3–36 
because we have not specified where each item should be placed within the grid. That 
will be the final step in designing the grid layout. Before doing that however, it would 
be helpful to view the page with gridlines superimposed on the web page. We can do 
that with outline styles.

Outlining a Grid
Outlines are simply lines drawn around an element, enclosing the element content, 
padding, and border spaces. Unlike borders, which you’ll study in the next tutorial, an 
outline doesn’t add anything to the width or height of the object, it only indicates the 
extent of the element on the rendered page.

The width of the line used in the outline is defined by the following outline-width 
property

outline-width: value;

where value is expressed in one of the CSS units of length, or with the keywords 
thin, medium, or thick. The line color is set using the outline-color property

outline-color: color;

where color is a CSS color name or value. Finally, the design of the line can be set 
using the following outline-style property

outline-style: style;

where style is none (to display no outline), solid (for a single line), double, 
dotted, dashed, groove, inset, ridge, or outset. All the outline properties can be 
combined into the following outline shorthand property

outline: width style color;

where width, style, and color are the values for the line’s width, design, and 
color. For example, the following style rule uses the wildcard selector along with the 
outline shorthand property to draw a 1 pixel dotted green line around every element on 
the web page:

* { 
   outline: 1px dotted green; 
}

Note that there are no separate outline styles for the left, right, top, or bottom edge 
of the object. The outline always surrounds an entire element.

Adding an Outline to an Element

•	 To add an outline around an element, use the property

outline: width style color;

where width, style, and color are the outline width, outline design, and outline 
color respectively. These attributes can be listed in any order.

R
E
FE

R
E
N
C
E

Outlines can also be 
applied to inline elements 
such as inline images, 
citations, quotations, and 
italicized text.

Use the outline property now to add an outline to each item in both the outer 
and inner grids.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 222

To define the grid columns:
	 1.	 Return to the pc_grids.css file in your editor.

	 2.	 At the bottom of the style sheet, add the following style rule to place a red 
dashed outline around every child of the body element:

body > * { 
   outline: 2px dashed red; 
}

	 3.	 Add the following style rule to place a blue dashed outline around every 
child of the section element:

section > * { 
   outline: 2px dashed blue; 
}

		  Figure 3–45 highlights the code for the style rules.

Most browsers include 
developer tools for viewing 
the gridlines from a CSS 
grid. See your browser 
documentation for specific 
instructions.

	 4.	 Save your changes to the file and then reload pc_about.html in your browser. 
Figure 3–46 shows the outlines around both the outer and inner grids.

Figure 3–45	 Adding outlines to grid items

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 223 

Figure 3–46	 Web page with grid items outlined

items in the inner 
grid appear with 
a blue outline

items in the outer 
grid appear with 
a red outline

Adding an outline makes it clear how each item is placed within the grid. Next you 
will change the location and sizes of the grid items to match Anne’s proposed layout.

Placing Items within a Grid
By default, grid items are laid out in document order going from left to right and up to 
down, with each item placed within a single cell. Thus, the page header in Figure 3–46, 
being the first item in the grid, appears in the first row and column. The next item, an 
article about the company, occupies the cell in the second column of the first row. 
Subsequent items are placed in cells in the next rows filling the grid until the last item 
is reached, which in this case is the page footer. In many layouts however, you might 
want to move items around or a have a single item occupy multiple rows and columns.

Tw
in

 D
es

ig
n/

Sh
ut

te
rs

to
ck

.c
om

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 224

Placing Items by Row and Column
To move a grid item to a specific location within the grid, use the following grid-row 
and grid-column properties:

grid-row: row; 
grid-column: column;

where row is the row number and column is the column number. Thus, to place the 
article element in a grid cell located in the first row and second column of the grid, 
apply the following style rule:

article { 
   grid-row: 1; 
   grid-column: 2; 
}

To extend a grid item so that it covers multiple rows or multiple columns, include the 
starting and ending gridline in the style property as follows:

grid-row: start/end; 
grid-column: start/end;

where start is the starting gridline and end is the ending gridline. Figure 3–47 shows 
a page layout in which grid items 6, 8, and 9 have been moved and resized using 
the grid-row and grid-column properties. For example, item 6 is moved to the first 
row and second column of the grid while items 8 and 9 have been resized to cover 
multiple rows and/or columns. The other items in the grid are placed in their default 
locations and sized to fit within a single grid cell.

Defining Grids with CSS

•	 To assign a CSS grid to an element, use the property

display: grid;

•	 To define the number of rows and columns within the grid, use the properties

grid-template-rows: height1 height2 …;
grid-template-columns: width1 width2 …;

where height1, height2, width1, width2, etc. define the row heights or column 
widths.

•	 To place an element within a specific intersection of grid rows and columns, use the 
properties

grid-row-start: integer;
grid-row-end: integer;
grid-column-start: integer;
grid-column-end: integer;

where integer defines the starting and ending row or column that contains the 
content.

•	 To more compactly set the location of the element within the grid, use the properties

grid-row: start/end;
grid-column: start/end;

where start and end are the starting and ending coordinates of the row and columns 
containing the element.

R
E
FE

R
E
N
C
E

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 225 

Figure 3–47	 Placing items within a grid layout

1

1

2

3

4

5

2 3 4 5

Starting and ending gridlines can also be expressed in the following four properties:

grid-column-start: integer; 
grid-column-end: integer; 
grid-row-start: integer; 
grid-row-end: integer;

so that the style rule grid-column: 2/5 is equivalent to:

grid-column-start: 2; 
grid-column-end: 5;

Which approach you use is a matter of personal preference.
You can also use negative gridline numbers (shown earlier in Figure 3–33) to extend 

an item from the first gridline to the last. Recall that since the last column or row 
gridline has a value of -1, the expression

grid-column: 1/-1;

would extend the grid item across the entire row from the first gridline to the last. 
Similarly, the expression

grid-row: 1/-1;

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 226

would create a grid item that extends across an entire column. Note that this technique 
only works with explicit grids because in an implicit grid there is no defined last 
column or row.

Using the span Keyword
Another way of setting the size of a grid cell is with the span keyword. The general 
syntax is:

grid-row: span value; 
grid-column: span value;

where value is the number of rows or columns covered by the item. The following 
style rule extends the article element across 2 rows and 3 columns of the grid.

article { 
   grid-row: span 2; 
   grid-column: span 3; 
}

To specify both the location and the size of the item, include the starting gridline 
in the style rule. The following style rule places the article element in the first row 
and fourth column of the grid while spanning two rows and three columns from that 
location.

article { 
   grid-row: 1/span 2; 
   grid-column: 4/span 3; 
}

In Anne’s proposed layout, the page header should occupy a single row, extending 
from the first column to the last. Use the grid-column style rule now to display the 
body header across the first row of the grid.

IN
SI
G
H
T

Naming Gridlines

Gridline numbers can be difficult and cumbersome to work with, so the CSS grid 
model also supports gridline names, which are descriptive names for row and 
column gridlines. Gridline names are created by adding a name enclosed within 
square brackets into the grid-template-columns or grid-template-rows style. 
For example, the following style creates a grid with three columns and four column 
gridlines named row-start, main-start, main-end, and row-end.

grid-template-columns: [row-start] 50px [main-start] 250px 
[main-end] 100px [row-end];

To extend a grid item across the entire row, you could apply the style:

grid-column: 1/4;

or

grid-column: row-start/row-end;

An article could be placed within the center grid column with the style:

grid-column: main-start/main-end;

Gridline names can make your CSS code easier to interpret and manage and can be 
more easily updated if you insert additional rows or columns within your grid layout.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 227 

To place the body header across the first row:
w	 1.	 Return to the pc_grids.css file in your editor.

w	 2.	 Directly below the style rule for the body element, insert the following style 
rule as shown in Figure 3–48.

body > header { 
   grid-row: 1; 
   grid-column: 1/-1; 
}

Figure 3–48	 Spanning the body header across the grid row

Figure 3–49	 Body header in the first row

body header 
extends from 
the �rst 
gridline to the 
last

header placed in 
the �rst grid row

number of the 
last gridline

number of the 
�rst gridline

w	 3.	 Save your changes to the file and reload pc_about.html in your browser.  
The body header extends across the first row of the grid (see Figure 3–49.)

body header 
occupies the 
�rst row

Gridlines are a quick and effective method of placing and sizing grid items, but they 
can be confusing when applied to a grid of several rows and columns. An easier and 
more intuitive approach is to use grid areas.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 228

Placing Grid Items by Area
In the grid areas approach to layout you identify sections of the grid with item names, 
creating a textual representation of the layout. Figure 3–50 shows a grid of four 
rows and three columns in which several items span multiple rows and columns, 
represented both visually as it would appear on the web page and textually. 

visual representation textual representation

header

side1

side2

footer

header

main

main

footer

header

nav

nav

footer

To create a textual representation in a style sheet, use the following  
grid-template-areas property:

grid-template-areas: "row1" 
                     "row2" 
                     …;

where row1, row2, etc. are text strings containing the names of the areas for each row. 
Thus, to create the grid layout shown in Figure 3–50, you would enter the style:

grid-template-areas: "header header header" 
                     "side1 main nav" 
                     "side2 main nav" 
                     "footer footer footer";

You will add a grid-template-areas property to the style sheet, representing the 
layout Anne proposed in Figure 3–36.

To place the body header across the first row:
w	 1.	 Return to the pc_grids.css file in your editor.

w	 2.	 Within the style rule for the body element, insert the following style:

grid-template-areas: "header   header" 
                     "intro    faq" 
                     "articles faq" 
                     "footer   footer";

See Figure 3–51.

Make sure you enclose 
each row of the grid layout 
within a set of quotation 
marks.

Figure 3–50	 Mapping out grid areas

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 229 

To assign elements to grid areas, use the following grid-area property:

grid-area: area;

where area is the name of an area defined in the grid-template-areas property.  
Use the grid-area property now to assign elements from the web page to areas within 
the grid.

To assign the page elements to grid areas:
w	 1.	 Below the body > header style rule, add the following style to assign the 

article element to the intro grid area.

body > article {grid-area: intro;}

w	 2.	 Place the aside element in the faq grid area with the style:

body > aside {grid-area: faq;}

w	 3.	 Place the section element in the articles grid area with the style:

body > section {grid-area: articles;}

w	 4.	 Place the body footer element in the footer grid area using the style:

body > footer {grid-area: footer;}

Figure 3–52 highlights the newly added code.

Figure 3–51	 Defining areas for the outer grid

header spans 2 
columns

footer spans 2 
columns

faq spans 2 
rows

intro and articles 
occupy single grid cells

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 230

place the aside 
element in the 
faq area

place the article 
element in the 
intro area

place the section 
element in the 
articles area

place the footer 
element in the 
footer area

Figure 5–52	 Assigning elements to grid areas

The grid-area property can also be used as a shorthand to place and size grid 
items using gridline numbers. The general syntax is:

grid-area: row-start/col-start/row-end/col-end;

where row-start, col-start, row-end, and col-end are the starting and ending 
gridline numbers from the grid’s rows and columns. For example, the following 
expression places the grid item to extend from the first row gridline through the fourth 
and from the third column gridline through the fifth.

grid-area: 1/3/4/5;

The only remaining part of the About Pandaisia web page that needs to be placed 
within the layout is the “About Chocolate” h1 heading that appears in the nested grid. 
Anne wants this heading to extend across two columns in the first row of that grid. 
Add a style rule to place the heading now.

To place the h1 heading:
w	 1.	 Below the style rule for the section element, add the following rule to place 

the h1 heading:

section > h1 { 
   grid-area: 1/1/2/3; 
}

See Figure 3–53.

Figure 3–53	 Placing the h1 heading

extends the h1 heading from 
the first through second row 
gridlines and the first through 
third column gridlines

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 231 

Figure 3–54	 About Pandaisia web page

w	 2.	 Save your changes to the pc_grids.css file and then reload the pc_about.html 
file in your browser. Figure 3–54 shows the complete layout of the page.

w	 3.	 Return to the pc_grids.css file in your text editor.

w	 4.	 Remove the two style rules that create the red and blue dashed outlines and 
then save your changes to the file.

w	 5.	 Reload the pc_about.html file in your browser and confirm that the grid 
outlines are removed from the rendered page.

Tw
in

 D
es

ig
n/

Sh
ut

te
rs

to
ck

.c
om

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 232

Compare the appearance of the page content in Figure 3–54 with the schematic 
diagram shown earlier in Figure 3–36 to see how using a grid provided a unified layout 
for the page. As you become more experienced with setting up and applying grids, you 
can move to more intricate and dynamic page layouts.

IN
SI
G
H
T

Generating Content with Lorem Ipsum

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer nec odio. Praesent 
libero. Sed cursus ante dapibus diam. Sed nisi. Nulla quis sem at nibh elementum 
imperdiet. Duis sagittis ipsum. Vestibulum lacinia arcu eget nulla. Sed dignissim  
lacinia nunc.

That previous paragraph is an example of lorem ipsum, which is nonsensical, 
improper Latin commonly used in page design as filler text. Rather than creating large 
portions of sample text before you can view your layout, lorem ipsum is used to quickly 
generate sentences, lines, and paragraphs that resemble the structure and appearance 
of real text. Lorem ipsum is a particularly useful tool for web designers because they 
can begin working on page design without waiting for their clients to supply all the 
page content.

Many popular web editors include tools to generate lorem ipsum text strings in 
a wide variety of formats and styles. There are also lorem ipsum generators freely 
available on the web that  supplement the lorem ipsum text with HTML markup tags.

Defining the Grid Gap 
Another part of grid layout is defining the space between items in a grid. So far, all our 
layouts have assumed no spacing, but many layouts include interior spaces to allow 
each item “room to breathe.” The gap size is defined using the following grid-gap 
property:

grid-gap: row column;

where row is the internal space between grid rows and column is the internal space 
between grid columns. Figure 3–55 shows a grid layout in which the rows are 
separated by a 10-pixel space and the columns by a space of 30 pixels.

Figure 3–55	 Setting the grid gap

style to set the row 
and column gap

column gap is 
30 pixels

row gap is 
10 pixels

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 233 

You can also set the grid gaps for rows and columns using the following properties:

grid-column-gap: value;
grid-row-gap: value;

where value is the size of the gap in one of the CSS units of measure. Anne wants you 
to add a 15-pixel column gap to the About Pandaisia web page but leave the row gap 
at its default value of 0 pixels.

To set the size of the column gap:
w	 1.	 Return to the pc_grids.css file in your editor.

w	 2.	 Within the style rule for the body element, add the following property to set 
the column gap size as shown in Figure 3–56.

grid-column-gap: 15px;

Figure 3–56	 Setting the size of the column gap

interior space between 
columns set to 15 pixels

w	 3.	 Save your changes to the file then reload the pc_about.html file in your 
browser. As shown in Figure 3–57, the gap between the first and second 
columns is set to 15 pixels.

w	 4.	 You’ve completed your work on the web page. Close the pc_about.html and 
pc_grids.css files.

Figure 5–57	 Gap between the first and second columns

15-pixel gap 
between columns

Tw
in

 D
es

ig
n/

Sh
ut

te
rs

to
ck

.c
om

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 234

Note that, unlike margins, the gap size setting is applied only to the interior space 
between the grid items and not to the exterior space between the grid items and the 
edge of the grid container.

Managing Space within a Grid
The grid-gap property allows you to define the space between grid items. CSS 
includes other properties to manage the space around the content of each grid cell. 
By default, there is no space between the grid cell borders and the grid cell content.  
However, you can position the content within the grid cell using the align-items and 
justify-items properties. The align-items property sets the vertical placement of 
the content, while the justify-items property sets the horizontal placement. The 
syntax of both properties is:

align-items: placement; 
justify-items: placement;

where placement is:

•	stretch to expand the content between the top/bottom or left/right edges, removing 
any spacing between the content and the cell border (the default)

•	start to position the content with the top or left edge of the cell
•	end to position the content with the bottom or right edge of the cell
•	center to center the content vertically or horizontally within the cell

Figure 3–58 shows the impact of the align-items and justify-items properties 
on the placement of the content within each grid cell. By default, there is no spacing 
between the content and the cell border as the content “stretches” to fill the cell 
(shown in the grid on the left in the figure). In the grid on the right, the content is 
placed at the start (top) and horizontal center of the cell and spacing is added between 
the cell content and the cell borders.

Figure 3–58	 Applying the align-items and justify-items properties

align-items:   stretch;
justify-items: stretch;

align-items:   start;
justify-items: center;

You can explore the 

align-items and 

justify-items 
properties using the 
demo_grid1.html file from 
the html03 c demo folder.

TRY IT

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 235 

Alignment for a Single Grid Cell
The align-items and justify-items properties apply to every cell in the grid. To 
align and justify only one cell, apply the align-self and justify-self properties to 
the content within the grid cell. The placement values are the same as for the align-
items and justify-items properties. For example, the following style rule displays the 
content of the article element in both the horizontal and vertical center of the grid cell.

article { 
   align-self: center; 
   justify-self: center; 
}

Using the align-self and justify-self properties is a quick and easy way 
of centering your content within the web page. Before the introduction of the CSS 
grid model, this was a difficult task involving a lot of CSS hacks, but now it can be 
accomplished by simply placing the item within a grid and centering the content both 
horizontally and vertically.

Aligning the Grid
In some layouts involving fixed units, the space taken up by the items within the grid 
will be less than the total space allotted to the grid container itself, creating unused 
space in the container. By default, the grid will be positioned at the top-left corner 
of the container, but you can modify that position using the align-content and 
justify-content properties:

align-content: placement; 
justify-content: placement;

where placement is:

•	start to position the grid with the top or left edge of the container (the default)
•	end to position the grid with the bottom or right edge of the container
•	center to center the grid vertically or horizontally within the container
•	space-around to insert an even amount of space between each grid item, with  

half-sized spaces on the far ends
•	space-between to insert an even amount of space between each grid item, with no 

space at the far ends
•	space-evenly to insert an even amount of space between each grid item, including 

the far ends

As with the other grid properties, the align-content property positions the grid 
vertically within the container and the justify-content property moves the grid 
horizontally. Figure 3–59 shows how the interior space within the grid container can be 
managed using the align-content and justify-content properties. In the left grid, 
the layout is centered both horizontally and vertically within the container. In the right 
grid, the grid items themselves are positioned evenly within the container.

You can explore the 

align-content and 

justify-content 
properties using the 
demo_grid2.html file from 
the html03 c demo folder.

TRY IT

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 236

Figure 3–59	 Applying the align-content and justify-content properties

align-content:   center;
justify-content: center;

align-content:   space-evenly;
justify-content: space-evenly;

PR
O
SK

IL
LS

Written Communication: Getting to the Point with Layout

Page layout is one of the most important aspects of web design. A well-constructed 
layout naturally guides a reader’s eyes to the most important information in the page. 
You should use the following principles to help your readers quickly get to the point:

•	 Guide the eye. Usability studies have shown that a reader’s eye first lands in the top 
center of the page, then scans to the left, and then to the right and down. Arrange 
your page content so that the most important items are the first items a user sees.

•	 Avoid clutter. If a graphic or an icon is not conveying information or making the 
content easier to read, remove it.

•	 Avoid overcrowding. Focus on a few key items that will be easy for readers to locate 
while scanning the page, and separate these key areas from one another with ample 
white space. Don’t be afraid to move a topic to a different page if it makes the 
current page easier to understand.

•	 Make it manageable. It’s easier for the brain to process information when it’s 
presented in smaller chunks. Break up long extended paragraphs into smaller 
paragraphs or bulleted lists.

•	 Use a grid. Users find it easier to digest content when it’s aligned vertically and 
horizontally. Using a grid helps you line up your elements in a clear and consistent way.

•	 Cut down on distractions. If you’re thinking about using blinking text or a cute 
animated icon, don’t. The novelty of such features wears off very quickly and 
distracts users from the valuable content.

Always remember that your goal is to convey information to readers, and that 
an important tool in achieving that is to make it as easy as possible for readers to 
find that information. A thoughtfully constructed layout is a great aid to effective 
communication.

The align-content and justify-content properties are useful when you want 
to center your entire layout within the web page in both the horizontal and vertical 
directions.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 237 

In the next session, you’ll explore CSS positioning styles that allow you to place page 
elements anywhere within the rendered page.

Session 3.2 Quick Check

	 1.	To change an element into a grid container, apply the style:
a.	 display: grid-container; 
b.	 grid-template-columns: auto;
c.	 display: grid;
d.	 All of the above

	 2.	 A fractional unit (fr) is:
a.	 part of a pixel
b.	 a fraction of an em unit
c.	 a fraction of any fixed unit
d.	 used to create elements that expand or contract to fill available space

	 3.	 To explicitly define the columns within a grid, use the CSS property:
a.	 grid-template-columns
b.	 grid-columns
c.	 columns
d.	 grid-auto-columns

	 4.	 To implicitly define the height of grid rows, use:
a.	 grid-template-rows
b.	 grid-rows
c.	 rows
d.	 grid-auto-rows

	 5.	 To position a grid item in the second row and cover the second and third 
column, apply the style(s):
a.	 grid-row: 2; 

grid-column: 2/3;
b.	 grid-row: 2; 

grid-column: 2/4;
c.	 row: 2; 

column: 2/3;
d.	 grid-row: 2; 

column-span: 2/2;
	 6.	 To define a grid layout with areas, use the property:

a.	 grid-areas
b.	 grid-area
c.	 grid-template-areas
d.	 grid-areas-template

	 7.	 To place an element in the grid area named “intro”, apply the style:
a.	 grid-area: intro;
b.	 grid-template-areas: "intro";
c.	 area: intro;
d.	 All of the above

	 8.	 To set the space between grid columns to 15 pixels and the space between grid 
rows to 10 pixels, apply the style:
a.	 gap: 10px 15px;
b.	 grid-gap: 10px 15px;
c.	 grid-gap: 15px/10px;
d.	 gap: 15px/10px;

	 9.	 To horizontally center the content of a grid cell, apply the style:
a.	 align-content: center;
b.	 align-self: center;
c.	 justify-self: center;
d.	 justify-content: center;

R
E
V
IE

W

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 238

Session 3.3 Visual Overview: 

Top and left values can be 
expressed using any of 
the CSS units of measure, 
including pixels and 
percentages, where a 
percentage represents 
the percent width or 
height of the containing 
element.

Relative positioning is 
used to shift an element 
from its default position in 
the document �ow.

Absolute positioning is 
used to place an element 
at speci�ed coordinates 
within a container element.

When overflow is set 
to auto, the browser 
automatically displays 
scrollbars for over�owed 
content.

The top property 
provides the top 
coordinate for an 
element using relative, 
absolute, or �xed 
positioning.

The left property 
provides the left 
coordinate for the 
positioned element.

The overflow 
property determines 
how the browser 
should handle content 
that exceeds the space 
allotted to the element.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 239 

Layout with Positioning Styles

20px

185px

135px

5%

42%

75% info3 is placed 135 pixels 
from the top and 75% 
from the left edge.

Vertical scrollbar 
is automatically 
added to view 
the over�owed 
content.

info1 is placed 20 pixels 
from the top of the 
main element and 5% 
from the left edge.

info2 is placed 185 pixels 
from the top and 42% 
from the left edge of the 
main element.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 240

Positioning Objects
In the last session, you developed a layout in which page objects were strictly aligned 
according to the rows and columns of a grid. While a grid layout gives a page a feeling 
of uniformity and structure, it does limit your freedom to place objects at different 
locations within the page. In this session, you’ll explore how to “break out” of the grid 
using the CSS positioning styles.

The CSS Positioning Styles
CSS supports several properties to place objects at specific coordinates within the page 
or within their container. To place an element at a specific position within its container, 
you use the following style properties

position: type; 
top: value; 
right: value; 
bottom: value; 
left: value;

where type indicates the kind of positioning applied to the element, and the top, right, 
bottom, and left properties indicate the coordinates of the top, right, bottom, and left 
edges of the element, respectively. The coordinates can be expressed in any of the CSS 
measuring units or as a percentage of the container’s width or height.

CSS supports five kinds of positioning: static (the default), relative, absolute, 
fixed, and inherit. In static positioning, the element is placed where it would have 
fallen naturally within the flow of the document. This is essentially the same as not 
using any CSS positioning at all. Browsers ignore any values specified for the top, 
left, bottom, or right properties under static positioning.

Relative Positioning
Relative positioning is used to nudge an element out of its normal position in the 
document flow. Under relative positioning, the top, right, bottom, and left properties 
indicate the extra space that is placed alongside the element as it is shifted into a new 
position. For example, the following style rule adds 250 pixels of space to the top of the 
element and 450 pixels to the left of the element, resulting in the element being shifted 
down and to the right (see Figure 3–60):

div { 
   position: relative; 
   top: 250px; 
   left: 450px; 
}

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 241 

Note that the layout of the other page elements are not affected by relative positioning; 
they will still occupy their original positions on the rendered page, just as if the object 
had never been moved at all.

Relative positioning is sometimes used when the designer wants to “tweak” the page 
layout by slightly moving an object from its default location to a new location that fits 
the overall page design better. If no top, right, bottom, or left values are specified with 
relative positioning, their assumed values are 0 and the element will not be shifted at all.

Absolute Positioning
Absolute positioning places an element at specific coordinates within a container 
where the top property indicates the position of the element’s top edge, the right 
property sets the position of the right edge, the bottom property sets the bottom edge 
position, and the left property sets the position of the left edge.

For example, the following style rule places the header element 620 pixels from the 
top edge of its container and 30 pixels from the left edge (see Figure 3–61).

header { 
   position: absolute; 
   top: 620px; 
   left: 30px; 
}

To place an element at the 
bottom right corner of its 
container, use absolute 
positioning with the right 
and bottom values set to 
0 pixels.

original layout layout under relative positioning

250 pixels

450 pixelsother page elements 
retain their original 
positions

position: 
relative;
top: 250px;
left: 450px;

object shifted 
250 pixels down 
and 450 pixels 
to the right 
from its default 
position

Figure 3–60	 Moving an object using relative positioning

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 242

To place an object with absolute positioning, you use either the top/left coordinates or 
the bottom/right coordinates, but you don’t use all four coordinates at the same time 
because that would confuse the browser. For example an object cannot be positioned 
along both the left and right edge of its container simultaneously.

As with floating an element, absolute positioning takes an element out of normal 
document flow with subsequent elements moving into the space previously occupied 
by the element. This can result in an absolutely positioned object overlapping other 
page elements.

The interpretation of the coordinates of an absolutely positioned object are all 
based on the edges of the element’s container. Thus the browser needs to “know” 
where the object’s container is before it can absolutely position objects within it. If the 
container has been placed using a position property set to relative or absolute, 
the container’s location is known and the coordinate values are based on the edges 
of the container. For example the following style rules place the article element at 
a coordinate that is 50 pixels from the top edge of the section element and 20 pixels 
from the left edge.

section { 
   position: relative; 
} 
section > article { 
   position: absolute; 
   top: 50px; 
   left: 20px; 
}

Note that you don’t have to define coordinates for the section element as long as 
you’ve set its position to relative. 

The difficulty starts when the container has not been set using relative or absolute 
positioning. In that case, the browser has no context for placing an object within the 
container using absolute positioning. As a result, the browser must go up a level in 
the hierarchy of page elements, that is, to the container’s container. If that container 
has been placed with absolute or relative positioning, then any object nested within it 

You can explore positioning  
styles using the file demo_
positioning.html from the 
html04 c demo folder.

TRY IT

Figure 3–61	 Moving an object using absolute positioning

 

original layout layout under absolute positioning

30px

620px

position: 
absolute;
top: 620px;
left: 30px;

other page 
elements move into 
the space previously 
occupied by the 
now absolutely 
positioned object

top-left corner of 
object placed 
620 pixels down 
and 30 pixels to 
the right of the 
top-left edge of 
the web page

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 243 

Coordinates can be expressed in percentages as well as pixels. Percentages are used 
for flexible layouts in which the object should be positioned in relation to the width 
or height of its container. Thus, the following style rule places the article element 
halfway down and 30% to the right of the top-left corner of its container.

article { 
   position: absolute; 
   top: 50%; 
   left: 30%; 
}

can be placed with absolute positioning. For example, in the following style rule, the 
position of the article element is measured from the edges of the body element, not 
the section element:

body {position: absolute;} 
 
body > section {position: static;} 
 
body > section > article { 
   position: absolute; 
   top: 50px; 
   left: 20px; 
}

Proceeding in this fashion the browser will continue to go up the hierarchy of 
elements until it finds a container that has been placed with absolute or relative 
positioning or it reaches the root html element. If it reaches the html element, the 
coordinates of any absolutely positioned object are measured from the edges of the 
browser window itself. Figure 3–62 shows how the placement of the same object can 
differ based on which container supplies the context for the top and left values.

If all of the objects within 
a container are placed 
using absolute positioning, 
the container will have no 
content and will collapse.

Figure 3–62	 Context of the top and left coordinates

 

absolute positioning from the
inner container  

position: relative; 

80px 

40px 

absolute positioning from the
outer container  

80px 

40px 

position: relative; 

position: absolute; 
top: 80px; 
left: 40px; 

position: absolute; 
top: 80px; 
left: 40px; 

because the inner 
container has not been 
placed using relative or 
absolute positioning, the 
context shifts up the 
hierarchy to the outer 
container

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 244

Using the Positioning Styles
Anne wants you to work on the layout for a page that contains an infographic on 
chocolate. She sketched the layout of the infographic page, as shown in Figure 3–63.

As the container of the article changes in width or height, the article’s position will 
automatically change to match.

Fixed and Inherited Positioning
When you scroll through a document in the browser window, the page content scrolls 
along. If you want to fix an object within the browser window so that it doesn’t scroll, you 
can set its position property to fixed. For example, the following style rule keeps the 
footer element at a fixed location, 10 pixels up from the bottom of the browser window:

footer { 
   position: fixed; 
   bottom: 10px; 
}

Note that a fixed object might cover up other page content, so you should use it with 
care in your page design.

Finally, you can set the position property to inherit so that an element inherits 
the position value of its parent element.

R
E
FE

R
E
N
C
E

Positioning Objects with CSS

•	 To shift an object from its default position, use the properties

position: relative; 
top: value; 
left: value; 
bottom: value; 
right: value;

where value is the distance in one of the CSS units of measure that the object should 
be shifted from the corresponding edge of its container.

•	 To place an object at a specified coordinate within its container, use the properties

position: absolute; 
top: value; 
left: value; 
bottom: value; 
right: value;

where value is a distance in one of the CSS units of measure or a percentage of the 
container’s width or height.

•	 To fix an object within the browser window so that it does not scroll with the rest of 
the document content, use the property

position: fixed;

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 245 

Because the placement of the text and figures do not line up nicely within a grid, 
you’ll position each graphic and text box using the CSS positioning styles. Anne has 
already created the content for this page and written the style sheets to format the 
appearance of the infographic. You will write the style sheet to layout the infographic 
contents using the CSS positioning styles.

The first box of Valentine’s
Day chocolates was created 
by British chocolatier 
Richard Cadbury in 1868.  

A single cocoa tree produces
about 800 bars of milk 
chocolate or 400 bars of dark 
chocolate every year.  

The Ivory Coast accounts
for 40% of the worldwide 
cocoa production.

The word chocolate comes 
from the Azetc word, xocalatl, 
which means bitter water.  

Favorite Box Chocolates 

Dark 
36% 

Milk 
55% 

White 
9% 

Top Chocolate-Loving Nations (per capita) 

22% of all chocolate
consumption takes place 
between 8 p.m. and midnight.  

Dark chocolate is one of the
most potent sources of 
antioxidants, having up to 5 
times more antioxidant power 
than so-called “super berries.”  

Eating 40 grams of good quality
organic dark chocolate every day 
significantly reduces your levels of 
stress hormones and improves your 
overall health.  

Figure 3–63	 Proposed layout of the chocolate infographic

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 246

To format the main element:
w	 1.	 Use your editor to open the pc_info_txt.css file from the html03  tutorial 

folder. Enter your name and the date in the comment section of the file and 
save the document as pc_info.css.

w	 2.	 Go to the Main Styles section and insert the following style rule to format the 
appearance of the main element:

main { 
   position: relative; 
   height: 1400px; 
   width: 100%; 
}

It will be easier to see the effect of placing the different div elements if they 
are not displayed until you are ready to position them. Add a rule to hide the 
div elements, then as you position each element, you can add a style rule to 
redisplay it. 

w	 3.	 Directly before the Main Styles section, insert the following style rule to hide 
all of the infoboxes:

div.infobox {display:none;}

Figure 3–64 highlights the newly added code in the style sheet.

When you want to position 
objects in an exact or absolute 
position within a container, set 
the position property of the 
container to relative.

Next, you’ll start working on the pc_info.css file, which will contain the positioning 
and other design styles for the objects in the infographic. You will begin by formatting 
the main element, which contains the infographics. Because you’ll want the position 
of each infographic to be measured from the top-left corner of this container, you will 
place the main element with relative positioning and extend the height of the container 
to 1400 pixels so that it can contain all eight of the graphic elements.

To open the infographic file:
w	 1.	 Use your editor to open the pc_info_txt.html file from the html03  tutorial 

folder. Enter your name and the date in the comment section of the file and 
save the document as pc_info.html.

w	 2.	 Directly after the title element, insert the following link elements to attach 
the file to the pc_reset.css, pc_styles3.css, and pc_info.css style sheets.

<link href="pc_reset.css" rel="stylesheet" /> 
<link href="pc_styles3.css" rel="stylesheet" /> 
<link href="pc_info.css" rel="stylesheet" />

w	 3.	 Take some time to study the structure and content of the pc_info.html 
document. Note that Anne has placed eight information graphics, each 
within a separate div element with a class name of infobox and an id name 
ranging from info1 to info8.

w	 4.	 Close the file, saving your changes.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 247 

places the main 
element using 
relative positioning

sets the height of the main 
element to 1400 pixels and 
makes it the width of the 
page body

hides the div elements of 
the infobox class

w	 4.	 Save your changes to the file and then open the pc_info.html file in your 
browser. Verify that the browser shows an empty box, about 1400 pixels high, 
where the infographic will be placed.

Next, you will add a style rule for all of the information boxes so that they are placed 
within the main element using absolute positioning.

To position the information boxes:
w	 1.	 Return to the pc_info.css file in your editor and scroll down to the Infographic 

Styles section.

w	 2.	 Add the following style rule to set the position type of all of the 
information boxes.

div.infobox { 
   position: absolute; 
}

w	 3.	 Within the First Infographic section, add the following style rule to position 
the first information box 20 pixels from the top edge of its container and 5% 
from the left edge.

div#info1 { 
   display: block; 
   top: 20px; 
   left: 5%; 
}

Note that we set the display property to block so that the first information 
box is no longer hidden on the page. Figure 3–65 highlights the style rules for 
all of the information boxes and the placement of the first information box.

Figure 3–64	 Setting the display styles of the main element

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 248

To place the next two boxes:
w	 1.	 Return to the pc_info.css file in your editor and go to the Second Infographic 

section.

w	 2.	 Add the following style rule to place the second box 185 pixels down from 
the top of the container and 42% from the left edge.

div#info2 { 
   display: block; 
   top: 185px; 
   left: 42%; 
}

w	 4.	 Save your changes to the file and then reload the pc_info.html file in your 
browser. Figure 3–66 shows the placement of the first information box.

places every 
information box 
using absolute 
positioning

places the first box 
20 pixels from the 
top edge of the 
main element and 
5% from the left

Figure 3–65	 Placing the first information box 

Figure 3–66	 Appearance of the first information box

placement of the 
first information box

Now place the second and third information boxes.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 249 

third 
information 
box

second 
information 
box

places the second 
box 185 pixels 
from the top and 
42% from the left

places the third 
box 135 pixels 
from the top and 
75% from the left

w	 4.	 Save your changes to the file and reload pc_info.html in your browser. Figure 3–68 
shows the placement of the first three information boxes.

w	 3.	 Within the Third Infographic section insert the following style rule to place 
the third box 135 pixels from the top edge and 75% of the width of its 
container from the left edge. 

div#info3 { 
   display: block; 
   top: 135px; 
   left: 75%; 
}

Figure 3–67 highlights the style rules to position the second and third 
information boxes.

Figure 3–67	 Positions of the second and third boxes

Figure 3–68	 Placement of the first three boxes 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 250

Place the next three information boxes.

To place the next three boxes:
w	 1.	 Return to the pc_info.css file in your editor, go to the Fourth Infographic 

section and place the fourth box 510 pixels from the top edge and 8% from 
the left edge.

div#info4 { 
   display: block; 
   top: 510px; 
   left: 8%; 
}

w	 2.	 Add the following style rule to the Fifth Infographic section to position the 
fifth box:

div#info5 { 
   display: block; 
   top: 800px; 
   left: 3%; 
}

w	 3.	 Add the following style rule to the Sixth Infographic section to position the 
sixth box:

div#info6 { 
   display: block; 
   top: 600px; 
   left: 48%; 
}

Figure 3–69 highlights the positioning styles for the fourth, fifth, and sixth 
information boxes.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 251 

places the fifth 
box 800 pixels 
from the top and 
3% from the left

places the sixth 
box 600 pixels 
from the top and 
48% from the left

places the fourth 
box 510 pixels 
from the top and 
8% from the left

w	 4.	 Save your changes to the file and reload pc_info.html in your browser. 
Figure 3–70 shows the revised layout of the infographic.

fourth 
information 
box

fifth 
information 
box

sixth 
information 
box

Figure 3–69	 Positions of the fourth, fifth, and sixth boxes 

Figure 3–70	 Placement of the next three boxes 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 252

To place the last two boxes:
w	 1.	 Return to the pc_info.css file in your editor, go to the Seventh Infographic 

section and insert the following style rules:

div#info7 { 
   display: block; 
   top: 1000px; 
   left: 68%; 
}

w	 2.	 Add the following style rules to the Eighth Infographic section:

div#info8 { 
   display: block; 
   top: 1100px; 
   left: 12%; 
}

Figure 3–71 highlights the style rules for the seventh and eighth information 
boxes.

w	 3.	 Scroll up to before the Main Styles section and delete the style rule  
div.infobox {display: none;} because you no longer need to hide any 
information boxes.

w	 4.	 Save your changes to the file and reload pc_info.html in your browser. 
Figure 3–72 show the complete layout of the eight boxes in the infographic.

places the eighth 
box 1100 pixels 
from the top and 
12% from the left

places the 
seventh box 
1000 pixels from 
the top and 68% 
from the left

Figure 3–71	 Positioning the seventh and eighth boxes 

Complete the layout of the infographic by placing the final two boxes on the page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 253 

seventh 
information box

eighth
information box

Figure 3–72	 Final layout of the infographic 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 254

Anne likes the appearance of the infographic, but she is concerned about its length. 
She would like you to reduce the height of the infographic so that it appears within 
the boundaries of the browser window. This change will create overflow because the 
content is longer than the new height. You will read more about overflow and how to 
handle it now.

IN
SI
G
H
T

IN
SI
G
H
T

Creating an Irregular Line Wrap

Many desktop publishing and word-processing programs allow designers to create 
irregular line wraps in which the text appears to flow tightly around an image. This is 
not easily done in a web page layout because all images appear as rectangles rather 
than as irregularly shaped objects. However, with the aid of a graphics package, you 
can simulate an irregularly shaped image.

The trick is to use your graphics package to slice the image horizontally into several 
pieces and then crop the individual slices to match the edge of the image you want 
to display. Once you’ve edited all of the slices, you can use CSS to stack the separate 
slices by floating them on the left or right margin, displaying each slice only after the 
previous slice has been cleared. For example, the following style rule stacks all inline 
images that belong to the “slice” class on the right margin:

img.slice { 
   clear: right; 
   float: right; 
   margin-top: 0px; 
   margin-bottom: 0px; 
}

Now any text surrounding the stack of images will tightly match the image’s 
boundary, creating the illusion of an irregular line wrap. Note that you should always 
set the top and bottom margins to 0 pixels so that the slices join together seamlessly.

Handling Overflow
The infographic is long because it displays several information boxes. If you reduce the 
height of the infographic you run the risk of cutting off several of the boxes that will no 
longer fit within the reduced infographic. However you can control how your browser 
handles this excess content using the following overflow property

overflow: type;

where type is visible (the default), hidden, scroll, or auto. A value of visible 
instructs browsers to increase the height of an element to fit the overflow content. 
The hidden value keeps the element at the specified height and width, but cuts off 
excess content. The scroll value keeps the element at the specified dimensions, but 
adds horizontal and vertical scroll bars to allow users to scroll through the overflowed 
content. Finally, the auto value keeps the element at the specified size, adding scroll 
bars only as they are needed. Figure 3–73 shows examples of the effects of each 
overflow value on content that is too large for its space.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 255 

CSS also provides the overflow-x and overflow-y properties to handle overflow 
specifically in the horizontal and vertical directions.

overflow: visible; overflow: hidden; overflow: scroll; overflow: auto;

box extends to make
all of the content visible

overflowed content
is hidden from the

reader

horizontal and
vertical scrollbars are

added to the box

scrollbars are added
only where needed

R
E
FE

R
E
N
C
E

Working with Overflow

•	 To specify how the browser should handle content that overflows the element’s 
boundaries, use the property

overflow: type;

where type is visible (the default), hidden, scroll, or auto.

You decide to limit the height of the infographic to 450 pixels and to set the overflow 
property to auto so that browsers displays scroll bars as needed for the excess content.

To apply the overflow property:
w	 1.	 Return to the pc_info.css file in your editor and go to the Main Styles section.

w	 2.	 Within the style rule for the main selector, insert the property overflow: auto;.

w	 3.	 Reduce the height of the element from 1400px to 450px.

Figure 3–74 highlights the revised code in the style rule.

Figure 3–73	 Values of the overflow property

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 256

w	 4.	 Close the file, saving your changes.

w	 5.	 Reload the pc_info.html file in your browser. As shown in Figure 3–75, the 
height of the infographic has been reduced to 450 pixels and scrollbars have 
been added that you can use to view the entire infographic.

sets the height of 
the infographic 
to 450 pixels

displays scrollbars 
if the content 
overflows the 
allotted height

Figure 3–75	 Final layout of the infographic page

scrollbar automatically 
added to view the 
infographic content

height of the 
infographic set 
at 450 pixels

w	 6.	 Close any open files now.

 

Figure 3–74	 Setting the overflow property 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 257 

Clipping an Element
Closely related to the overflow property is the clip property, which defines a 
rectangular region through which an element’s content can be viewed. Anything that 
lies outside the boundary of the rectangle is hidden. The syntax of the clip property is

clip: rect(top, right, bottom, left);

where top, right, bottom, and left define the coordinates of the clipping rectangle. 
For example, a clip value of rect(100px, 270px, 260px, 65px) defines a clip region whose 
top and bottom boundaries are 100 and 260 pixels from the top edge of the element, and 
whose right and left boundaries are 270 and 65 pixels from the element’s left edge. See 
Figure 3–76.

Managing White Space with CSS

Scroll bars for overflow content are usually placed vertically so that you scroll down to 
view the extra content. In some page layouts, however, you may want to view content 
in a horizontal rather than a vertical direction. You can accomplish this by adding the 
following style properties to the element:

overflow: auto; 
white-space: nowrap;

The white-space property defines how browsers should handle white space in the 
rendered document. The default is to collapse consecutive occurrences of white space 
into a single blank space and to automatically wrap text to a new line if it extends beyond 
the width of the container. However, you can set the white-space property of the 
element to nowrap to keep inline content on a single line, preventing line wrapping. 
With the content thus confined to a single line, browsers will display only horizontal scroll 
bars for the overflow content. Other values of the white-space property include normal 
(for default handling of white space), pre (to preserve all white space from the HTML file), 
and pre-wrap (to preserve white space but to wrap excess content to a new line).

100px

65px

clip: rect(100px, 270px, 260px, 65px) clipped image

270px

260px

© Brent Hofacker/Shutterstock.com

IN
SI
G
H
T

Figure 3–76	 Clipping an image 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 258

The top, right, bottom, and left values also can be set to auto, which matches the 
specified edge of the clipping region to the edge of the parent element. A clip value of 
rect(10, auto, 125, 75) creates a clipping rectangle whose right edge matches the right 
edge of the parent element. To remove clipping completely, apply the style clip: auto. 
Clipping can only be applied when the object is placed using absolute positioning.

R
E
FE

R
E
N
C
E

Clipping Content

•	 To clip an element’s content, use the property

clip: rect(top, right, bottom, left);

where top, right, bottom, and left define the coordinates of the clipping rectangle.
•	 To remove clipping for a clipped object, use
clip: auto;

Stacking Elements
Positioning elements can sometimes lead to objects that overlap each other. By default, 
elements that are loaded later by the browser are displayed on top of elements that are 
loaded earlier. In addition, elements placed using CSS positioning are stacked on top of 
elements that are not. To specify a different stacking order, use the following z-index 
property:

z-index: value;

where value is a positive or negative integer, or the keyword auto. As shown in 
Figure 3–77, objects with the highest z-index values are placed on top of other page 
objects. A value of auto stacks the objects using the default rules.

z-index: 1

z-index: 2

z-index: 3

 

The z-index property works only for elements that are placed with absolute positioning. 
Also, an element’s z-index value determines its position relative only to other elements that 
share a common parent; the style has no impact when applied to elements with different 
parents. Figure 3–78 shows a layout in which the object with a high z-index value of 4 is 
still covered because it is nested within another object that has a low z-index value of 1.

Figure 3–77	 Using the z-index property to stack elements

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 259 

You do not need to include the z-index property in your style sheet because none 
of the elements in the infographic page are stacked upon another.

z-index: 1

z-index: 2

z-index: 3

z-index: 4
nested object

PR
O
SK

IL
LS

Problem Solving: Principles of Design

Good web page design is based on the same common principles found in other areas 
of art, which include balance, unity, contrast, rhythm, and emphasis. A pleasing layout 
involves the application of most, if not all, of these principles, which are detailed below:

•	 �Balance involves the distribution of elements. It’s common to think of balance in terms of 
symmetrical balance, in which similar objects offset each other like items on a balance 
scale; but you often can achieve more interesting layouts through asymmetrical balance, 
in which one large page object is balanced against two or more smaller objects.

•	 �Unity is the ability to combine different design elements into a cohesive whole. This is 
accomplished by having different elements share common colors, font styles, and sizes. 
One way to achieve unity in a layout is to place different objects close to each other, 
forcing your viewers’ eyes to see these items as belonging to a single unified object.

•	 �Contrast consists of the differences among all of the page elements. To create 
an effective design, you need to vary the placement, size, color, and general 
appearance of the objects in the page so that your viewers’ eyes aren’t bored by the 
constant repetition of a single theme.

•	 �Rhythm is the repetition or alteration of a design element in order to provide a 
sense of movement, flow, and progress. You can create rhythm by tiling the same 
image horizontally or vertically across the page, by repeating a series of elements 
that progressively increase or decrease in size or spacing, or by using elements with 
background colors of the same hue but that gradually vary in saturation or lightness.

•	 �Emphasis involves working with the focal point of a design. Your readers need a few 
key areas to focus on. It’s a common design mistake to assign equal emphasis to all 
page elements. Without a focal point, there is nothing for your viewers’ eyes to latch 
onto. You can give a page element emphasis by increasing its size, by giving it a 
contrasting color, or by assigning it a prominent position in the page.
Designers usually have an intuitive sense of what works and what doesn’t in page 

design, though often they can’t say why. These design principles are important 
because they provide a context in which to discuss and compare designs. If your page 
design doesn’t feel like it’s working, evaluate it in light of these principles to identify 
where it might be lacking.

 

Figure 3–78	 Stacking nested objects 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 260

Anne is pleased with the final design of the infographic page and all of the other 
pages you’ve worked on. She’ll continue to develop the website and test her page 
layouts under different browsers and screen resolutions. She’ll get back to you with 
future projects as she continues the redesign of the Pandaisia Chocolates website.

R
E
V
IE

W
Session 3.3 Quick Check

	 1.	 To shift an object from its default placement in the document flow but keep it 
within the document flow, use:
a.	 absolute positioning
b.	 relative positioning
c.	 fixed positioning
d.	 static positioning

	 2.	 Provide a style to shift rule to shift an article element 15 pixels to the left of its 
default position in the document flow.
a.	 article { 

   position: absolute; 
   left: 15px; 
}

b.	 article { 
   position: relative; 
   left: 15px; 
}

c.	 article { 
   position: absolute; 
   left: -15px; 
}

d.	 article { 
   position: relative; 
   left: -15px; 
}

	 3.	 Provide a style to place an article element 15 pixels up from the top edge of its 
container element.
a.	 article { 

   position: absolute; 
   top: 15px; 
}

b.	 article { 
   position: relative; 
   top: 15px; 
}

c.	 article { 
   position: absolute; 
   top: -15px; 
}

d.	 article { 
   position: relative; 
   top: -15px; 
}

	 4.	 To place an object using absolute positioning within its container, the 
container:
a.	 must also have absolute positioning
b.	 must have absolute or relative positioning
c.	 must have statistic positioning
d.	 must not have any position property value

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 261 

	 5.	 Provide a style property to display scrollbars when the element content 
exceeds the element’s boundaries.
a.	 overflow: auto;
b.	 overflow: scroll;
c.	 overflow: scrollbar;
d.	 overflow: true;

	 6.	 An inline image is 400 pixels wide by 300 pixels high. Provide a style rule to 
clip this image by 10 pixels on each edge.
a.	 clip: rect(10, 390, 290, 10);
b.	 clip: 10;
c.	 clip: -10;
d.	 clip: 10 390 290 10;

	 7.	 If two elements overlap, the one displayed on top will:
a.	 be listed first in the document order
b.	 have the greater height and width
c.	 have the lower z-index value
d.	 have the higher z-index value

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 262

Coding Challenge 1

Data Files needed for this Coding Challenge: code3-1_txt.html, code3-1_float_txt.css, code3-1.css, 
lincoln01.png - lincoln10.png

Figure 3–79 shows an example page containing two applications of floating objects. In the first 
line of Lincoln’s second inaugural speech a drop capital is created by floating the first letter of the 
first paragraph next to the surrounding text. The text of the speech is wrapped around the image of 
Lincoln using an irregular line wrap. This effect is created by cutting the Lincoln image into separate 
strips which are floated and stacked on top of each other. In this Coding Challenge you will explore 
how to create both effects.

C
O

D
E

Figure 3–79	 Coding Challenge 3-1 example page

Do the following:

	 1.	 Open the code3-1_txt.html and code3-1_float_txt.css files from the html03 c code1 folder.  
Enter your name and the date in each document and save the files as code3-1.html and 
code3-1_float.css respectively.

	 2.	 Go to the code3-1.html file in your editor. Within the head section insert a link element linking 
the page to the code3-1_float.css style sheet file. Take some time to study the content of the page 
and then save your changes to the file.

	 3.	 Go to the code3-1_float.css file in your editor. 

Li
br

ar
y 

of
 C

on
gr

es
s,

 P
rin

ts
 &

 P
ho

to
gr

ap
hs

 D
iv

is
io

n,
 R

ep
ro

du
ct

io
n 

nu
m

be
r L

C
-D

IG
-

pp
m

sc
a-

19
46

9 
(d

ig
ita

l fi
le

 fr
om

 o
rig

in
al

)

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 263

	 4.	 To create a drop cap, insert a style rule for the selector p:first-of-type:first-letter and 
add the following styles:
a.	 Float the element on the left margin.
b.	Set the font size to 4em and the line height to 0.8em.
c.	 Set the size of the right margin and padding space to 0.1em. Set the bottom padding to 

0.2em.
	 5.	 Display the first line of the speech in small caps by adding a style rule for the selector  

p:first-of-type:first-line that changes the font variant to small-caps and the  
font size to 1.4em.

	 6.	 For all img elements create a style rule to set the height of the image to 3.3em and float the 
image on the right margin, but only when the page is cleared of floats.

	 7.	 Save your changes to the style sheet.
	 8.	 Open the page in your browser and verify the layout of the page resembles that shown in 

Figure 3-79.
	 9.	 Submit the completed file to your instructor.

Coding Challenge 2

Data Files needed for this Coding Challenge: code3-2_txt.html, code3-2_grad_txt.css, code3-2.css, 
landscape.png

Figure 3–80 shows a proposed layout for a new web page. At this point the final content is not ready 
for the web page, so the layout is shown using lorem ipsum text. You’ve been given the HTML code 
for the page and your challenge is to create the page layout using CSS grid styles.

C
O

D
E

Figure 3–80	 Coding Challenge 3-2 example page

Complete the following:

	 1.	 Open the code3-2_txt.html and code3-2_layout_txt.css files from the html03 c code2 folder. 
Enter your name and the date in each document and save the files as code3-2.html and 
code3-2_layout.css respectively.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 264

	 2.	 Go to the code3-2.html file in your editor. Within the head section insert a link element linking 
the page to the code3-2_layout.css file. Study the contents of the file, taking note of the structure, 
element names, and element ids. Save your changes.

	 3.	 Go to the code3-2_layout.css file. Create a style rule for the header, footer, aside, article, 
and a (hyperlink) elements to set the padding space to 10 pixels and add a 3-pixel gray dashed 
outline.

	 4.	 Create a style rule for the body element that:
a.	 Sets the width to 90% of the browser window, ranging from a minimum width of 640 pixels 

up to a maximum width of 1024 pixels.
b.	Sets the top/bottom margin to 30 pixels and the left/right margin to auto.
c.	 Displays the body as a CSS grid.
d.	Creates six grid columns each with a width of 1fr.
e.	 Creates five grid rows with widths of 50 pixels, 30 pixels, 1fr, 1fr, and 100 pixels.
f.	 Adds a grid gap of 15 pixels.

	 5.	 Display the a (hyperlink) element as a block.
	 6.	 Set the size of the grid items as follows:

a.	 Have the header element span from gridline 1 to gridline -1.
b.	Have the article#intro element span two rows and two columns.
c.	 Have the article#main element two rows and three columns.
d.	Have the footer element span two columns. 

	 7.	 Save your changes to the style sheet.
	 8.	 Open the page in your browser and verify the layout of the page resembles that shown in 

Figure 3–80.
	 9.	 Submit the completed file to your instructor.

Coding Challenge 3

Data Files needed for this Coding Challenge: code3-3_txt.html, code3-3_scroll_txt.css,  
code3-3_styles.css, image01.png - image09.png

You can use the CSS positioning and overflow styles to create a scrolling slideshow. Figure 3–81 
shows an example of a slideshow consisting of nine sketches by Renaissance masters. You’ve been 
given the HTML code for this document and you’ve been asked to write the style rules to generate 
the slideshow.

C
O

D
E

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 265

Complete the following to create the web page:

	 1.	 Open the code3-3_txt.html and code3-3_scroll_txt.css files from the html03 c code3 folder. 
Enter your name and the date in each document and save the files as code3-3.html and 
code3-3_scroll.css respectively.

	 2.	 Go to the code3-3.html file in your editor. Link the file to the code3-3_scroll.css style sheet file. 
Review the contents of the document and then save your changes to the file.

	 3.	 Go to the code3-3_scroll.css file in your editor. Create a style rule for the section element with 
the id “container” with the following styles:
a.	 Set the width of the element to 900 pixels and the height to 370 pixels.
b.	Horizontally center the element by adding a 10-pixel top/bottom margin and set the left/right 

margin to auto.
c.	 Place the element with relative positioning, setting the top value to 30 pixels and the left value 

to 0 pixels.
d.	Add a 2-pixel solid brown outline to the element.
e.	 Have the browser automatically display scrollbars for any overflow content.

	 4.	 Create a style rule for every div element, setting the width to 300 pixels and the height to 330 
pixels. Position the element with absolute positioning.

	 5.	 Display every inline image as a block-level element with a width and height of 300 pixels.
	 6.	 There are nine div elements with ids ranging from “slide1” to “slide9”. Set the left position of 

the elements in 300-pixel increments starting with 0 pixels for slide1, 300 pixels for slide2, 600 
pixels for slide3, and so forth up to 2400 pixels for slide9.

	 7.	 Save your changes to the style sheet.
	 8.	 Open the page in your browser. Verify that the nine images are displayed within a scroll box and 

that you can using a horizontal scrollbar to scroll through the image list.
	 9.	 Submit the completed file to your instructor.

Figure 3–81	 Coding Challenge 3-3 example page

Source: Public Domain

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 266

Coding Challenge 4

Data Files needed for this Coding Challenge: code3-4_txt.html, debug3-4_txt.css, code3-4_.css, 
redball.png

Figure 3–82 shows a completed web page that uses CSS to design the page layout. You’ve been given 
the initial HTML and CSS code for this web page, but there are several errors in the CSS stylesheet. 
Use your knowledge of CSS to locate and fix the errors.

D
E

B
U

G

Do the following:

	 1.	 Open the code3-4_txt.html and debug3-4_txt.css files from the html03  code4 folder. Enter 
your name and the date in each document and save the files as code3-4.html and debug3-4.css 
respectively.

	 2.	 Go to the code3-4.html file in your editor. Link the page to the debug3-4.css style sheet file. 
Study the contents of the file and then save your changes.

	 3.	 Go to the debug3-4.css file in your browser. 
	 4.	 The body element should have a width that is 90% of the width of the browser window ranging 

from a minimum of 600 pixels up to a maximum of 1024 pixels. Fix the syntax errors in the body 
style rule that defines the width of the web page.

	 5.	 The style rule for the body element sets up a grid layout for the page. However, there are several 
errors in defining the grid areas, grid columns, and grid gaps. Fix the syntax errors in the style 
rule.

	 6.	 Go to the style rules in the Grid Areas section that assigns page elements to areas of the grid. 
Locate and fix the errors in assigning elements to grid areas.

Figure 3–82	 Coding Challenge 3-4 example page

Maxim Maksutov/sshutterstock.om; @Shebeko/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 267

	 7.	 The style rules for the horizontal navigation list and the section element also define grid styles 
for those elements. Locate and fix errors in the code that set up the grid columns.

	 8.	 The last paragraph within the section div selector should be placed with absolute positioning 
1 pixel and 5 pixels from the bottom right corner of the container element. However, there is an 
error in defining the selector. Find and fix the error.

	 9.	 Save your changes and open the code3-4.html file in your browser. Verify that design of the page 
resembles that shown in Figure 3–82.

	10.	 Submit the completed file to your instructor.

Figure 3–83	 March Specials web page

Review Assignments

Data Files needed for the Review Assignments: pc_specials_txt.html, pc_specials_txt.css,  
2 CSS files, 8 PNG files, 1 TTF file, 1 WOFF file

Anne wants you to work on another page for the Pandaisia Chocolates website. This page will 
contain information on some of the specials offered by the company in March; it will also display a 
list of some awards that the company has won. As you work on the page, you will use clip art images 
as placeholders until photographs of the awards are available. A preview of the completed page is 
shown in Figure 3–83.

�Anne has already created the page content and some of the design styles to be used in the page. Your 
job will be to come up with the CSS style sheet to set the page layout.

© Arina P Habich/Shutterstock.com;
© Alexander Chaikin/Shutterstock.com; © ESB Professional/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 268

Complete the following:

	 1.	 Use your editor to open the pc_specials_txt.html and pc_specials_txt.css files from the 
html03  review folder. Enter your name and the date in the comment section of each file, 
and save them as pc_specials.html and pc_specials.css respectively.

	 2.	 Go to the pc_specials.html file in your editor. Within the document head, create links to the 
pc_reset2.css, pc_styles4.css, and pc_specials.css style sheets.

	 3.	 Take some time to study the content and structure of the document, paying careful attention to 
the use of ids and class names in the file. Save your changes to the file.

	 4.	 Go to the pc_specials.css file in your editor. Within the Page Body Styles section, add a style rule 
for the body element that sets the width of the page body to 95% of the browser window width 
within the range of 640 to 960 pixels. Horizontally center the page body within the window by 
setting the left and right margins to auto.

	 5.	 Go to the Image Styles section and create a style rule that displays all img elements as blocks 
with a width of 100%.

	 6.	 Anne wants the navigation list to be displayed horizontally on the page. Go to the Horizontal 
Navigation Styles section and create a style rule for every list item within a horizontal navigation 
list that displays the list item as a block floated on the left margin with a width of 16.66%.

	 7.	 Display every hypertext link nested within a navigation list item as a block.
	 8.	 Next, you will create the grid styles for the March Specials page. Go to the Grid Styles section 

and create a style rule for the body element that displays the element as a grid with two columns 
in the proportion of 2:1 (using fr units) with a column grid gap of 20 pixels.

	 9.	 Create a style rule for the header and footer elements that has both elements span the grid 
from the gridline number 1 to gridline number -1.

	10.	Create a style rule for the section element with the id “sub” that displays that element as a grid 
consisting of three columns of equal width by repeating the column width 1fr three times.

	11.	 Go to the Specials Styles section. In this section, you will create styles for the monthly specials 
advertised by the company. Create a style rule for all div elements of the specials class that sets 
the minimum height to 400 pixels and adds a 1 pixel dashed outline around the element with a 
color value of rgb(71, 52, 29).

	12.	 Go to the Award Styles section. In this section, you will create styles for the list of awards won 
by Pandaisia Chocolates. Information boxes for the awards are placed within an aside element. 
Create a style rule for the aside element that places it using relative positioning, sets its height to 
650 pixels, and automatically displays scrollbars for any overflow content.

	13.	 Every information box in the aside element is stored in a div element. Create a style rule that 
places these elements with absolute positioning and sets their width to 30%.

	14.	Position the individual awards within the awardList box by creating style rules for the div 
elements with id values ranging from award1 to award5 at the following (top, left) coordinates: 
award1 (80px, 5%), award2 (280px, 60%), award3 (400px, 20%), award4 (630px, 45%), and 
award5 (750px, 5%). (Hint: In the pc_specials.html file, the five awards have been placed in a 
div element belonging to the awards class with id values ranging from award1 to award5.)

	15.	 Save your changes to the style sheet and then open the pc_specials.html file in your browser. 
Verify that the layout and design styles resemble the page shown in Figure 3–83.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 269

Case Problem 1

Data Files needed for this Case Problem: sp_home_txt.html, sp_layout_txt.css, 2 CSS files, 11 PNG files

Slate & Pencil Tutoring  Karen Cooke manages the website for Slate & Pencil Tutoring, an online 
tutoring service for high school and college students. Karen is overseeing the redesign of the website 
and has hired you to work on the layout of the site’s home page. Figure 3–84 shows a preview of the 
page you’ll create for Karen.

Figure 3–84	 Slate & Pencil Tutoring home page

Karen has supplied you with the HTML file and the graphic files. She has also given you a base style 
sheet to initiate your web design and a style sheet containing several typographic styles. Your job will 
be to write up a layout style sheet according to Karen’s specifications.

Complete the following:

	 1.	 Using your editor, open the sp_home_txt.html and sp_layout_txt.css files from the html03  case1 
folder. Enter your name and the date in the comment section of each file, and save them as  
sp_home.html and sp_layout.css respectively.

	 2.	 Go to the sp_home.html file in your editor. Within the document head, create links to the  
sp_base.css, sp_styles.css, and sp_layout.css style sheet files. Study the content and structure of 
the file and then save your changes to the document.

© Monkey Business Images/Shutterstock.com;
© Courtesy Patrick Carey

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 270

	 3.	 Go to the sp_layout.css file in your editor. Go to the Window and Body Styles section. Create a 
style rule for the html element that sets the height of the browser window at 100%.

	 4.	 Create a style rule for the page body that sets the width to 95% of the browser window ranging 
from 640 pixels up to 960 pixels. Horizontally center the page body within the browser window. 
Finally, Karen wants to ensure that the height of the page body is always at least as high as the 
browser window itself. Set the minimum height of the browser window to 100%.

	 5.	 Add a style rule to display all inline images as blocks.
	 6.	 Within the CSS Grid Styles section create a style rule that displays the body element as a grid 

with four columns of length 1fr.
	 7.	 Create a style rule for the img element with id "logo" so that the logo image spans three columns 

and has a width of 100%.
	 8.	 For the horizontal navigation list and the footer element create a style rule so that those 

elements span four columns. Create a style for the aside element to span two columns.
	 9.	 Within the Horizontal Navigation List Styles section create a style rule for li elements nested 

within the horizontal navigation list that display each element as a block with a width of 12.5% 
and floated on the left margin.

	10.	Within the Section Styles section create a style rule for inline images within the section element 
that sets the width of the image to 50% and centers the image using a top/bottom margin of 0 
and a left/right margin of auto.

	11.	Create a style rule for paragraphs within the section element that sets the width of the 
paragraph to 70% and centers the paragraph using a top/bottom margin of 0 and a left/right 
margin of auto.

	12.	Go to the Customer Comment Styles section and create a style rule for the aside element setting 
the width to 75% and the bottom padding to 30 pixels.

	13.	The six aside elements will be displayed in two columns. For odd-numbered aside elements, 
use the justify-self grid property to place the element on the end (right) margin. (Hint: Use 
the nth-of-type(odd) pseudo-class to select the odd-numbered aside elements.)

	14.	 Float inline images nested within the aside element on the left with a width of 20%.
	15.	 Float paragraphs nested within the aside element on the left with a width of 75% and a left 

margin of 5%.
	16.	 Save your changes to the file and then open the sp_home.html file in your browser. Verify that 

the layout and appearance of the page elements resemble that shown in Figure 3–84.

Case Problem 2

Data Files needed for this Case Problem: ss_dday_txt.html, ss_layout_txt.css, 1 CSS file, 3 PNG files

A Soldier’s Scrapbook  Jakob Bauer is a curator at the Veteran’s Museum in Raleigh, North Carolina. 
Currently he is working on an exhibit called A Soldier’s Scrapbook containing mementos, artifacts, 
journals, and other historic items from the Second World War. You’ve been asked to work on a 
page for an interactive kiosk used by visitors to the exhibit. Jakob has already supplied much of the 
text and graphics for the kiosk pages but he wants you to complete the job by working on the page 
layout. 

The page you will work on provides an overview of the Normandy beach landings on June 6th, 1944. 
Since this page will be displayed only on the kiosk monitor, whose screen dimensions are known, 
you’ll employ a fixed layout based on a screen width of 1152 pixels.

Jakob also wants you to include an interactive map of the Normandy coast where the user can hover 
a mouse pointer over location markers to view information associated with each map point. To create 
this effect, you’ll mark each map point as a hypertext link so that you can apply the hover pseudo-
class to the location. In addition to the interactive map, Jakob wants you to create a drop cap for the 
first letter of the first paragraph in the article describing the Normandy invasion. Figure 3–85 shows a 
preview of the page you’ll create.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 271

Complete the following:

	 1.	 Using your editor, open the ss_dday_txt.html and ss_layout_txt.css files from the html03  case2 
folder. Enter your name and the date in the comment section of each file, and save them as 
ss_dday.html and ss_layout.css respectively.

	 2.	 Go to the ss_dday.html file in your editor. Within the document head, create links to the  
ss_styles.css and ss_layout.css style sheet files. Study the content and structure of the document. 
Note that within the aside element is an image for the battle map with the id mapImage. Also 
note that there are six marker images enclosed within hypertext links with ids ranging from 
marker1 to maker6. After each marker image are div elements of the mapInfo class with IDs 
ranging from info1 to info6. Part of your style sheet will include style rules to display these div 
elements in response to the mouse pointer hovering over each of the six marker images.

	 3.	 Save your changes to the file and then go to the ss_layout.css file in your editor.
	 4.	 Go to the Article Styles section. Within this section, you’ll lay out the article describing the 

Normandy Invasion. Create a style rule to float the article element on the left margin and set 
its width to 384 pixels.

Figure 3–85	 Normandy Invasion kiosk page

… displays 
information about 
the location

hovering the pointer 
over the map marker …

Source: Chief Photographer’s Mate (CPHOM) Robert F. Sargent, U.S. Coast Guard/National Archives and Records Administration; 
Source: U.S. Department of Defense/Wikimedia Commons; © Patrick Carey

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 272

	   5. Jakob wants the first line from the article to be displayed in small capital letters. Go 
to the First Line and Drop Cap Styles section and create a style rule for the first paragraph of the 
article element and the first line of that paragraph, setting the font size to 1.25em and the font 
variant to small-caps. (Hint: Use the first-of-type pseudo-class for the paragraph and the 
first-line pseudo-element for the first line of that paragraph.)

	   6. Jakob also wants the first letter of the first line in the article’s opening paragraph to 
be displayed as a drop cap. Create a style rule for the article’s first paragraph and first letter that 
applies the following styles: (a) sets the size of the first letter to 4em in a serif font and floats it on 
the left, (b) sets the line height to 0.8em, and (c) sets the right and bottom margins to 5 pixels. 
(Hint: Use the first-letter pseudo-element for the first letter of that paragraph.)

	 7.	 The interactive map is placed within an aside element that Jakob wants displayed alongside the 
Normandy Invasion article. Go the Aside Styles section and create a style rule that sets the width 
of the aside element to 768 pixels and floats it on the left margin.

	 8.	 Next, you will lay out the interactive map. The interactive map is placed within a div element 
with the ID battleMap. Go to the Map Styles section and create a style rule for this element that 
sets its width to 688 pixels. Center the map by setting its top/bottom margins to 20 pixels and its 
left/right margins to auto. Place the map using relative positioning.

	 9.	 The actual map image is placed within an img element with the ID mapImage. Create a style rule 
for this element that displays it as a block with a width of 100%.

	10.	Go to the Interactive Map Styles section. Within this section, you’ll create style rules that position 
each of the six map markers onto the battle map. The markers are placed within hypertext links. 
Create a style rule for every a element of the battleMarkers class that places the hypertext link 
using absolute positioning.

	11.	Create style rules for the six a elements with IDs ranging from marker1 to marker6, placing them 
at the following (top, left) coordinates:

		  marker1	 (220, 340) 
marker2	 (194, 358) 
marker3	 (202, 400) 
marker4	 (217, 452) 
marker5	 (229, 498) 
marker6	 (246, 544)

	12.	The information associated with each map marker has been placed in div elements belonging to 
the mapInfo class. Go to the Map Information Styles section and create a style rule that hides this 
class of elements so that this information is not initially visible on the page.

	   13. To display the information associated with each map maker, you need to create a 
style rule that changes the map information’s display property in response to the mouse pointer 
hovering over the corresponding map marker. Since the map information follows the map marker 
in the HTML file, use the following selector to select the map information corresponding to the 
hovered map marker: a.battleMarkers:hover + div.mapInfo. Write a style rule for this 
selector that sets its display property to block.

	14.	 Save your changes to the style sheet and then load ss_dday.html in your browser. Verify that a 
drop cap appears for the first letter of the Normandy Invasion article and the first line of the first 
paragraph is displayed in small caps. Test the interactive map by first verifying that none of the 
information about the six battle locations appears on the page unless you hover your mouse 
pointer over the marker on the battle map. Further verify that when you are not hovering over the 
battle marker, the information is once again not visible on the page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 273

STARTING DATA FILES

TUTORIAL 4
OBJECTIVES

Session 4.1
•	Create a figure box
•	Add a background image
•	Add a border to an element
•	Create rounded borders
•	Create a graphic border

Session 4.2
•	Create a text shadow
•	Create a box shadow
•	Create linear and radial 

gradients
•	Set the opacity of an element

Session 4.3
•	Apply a 2D and 3D 

transformation
•	Apply a CSS filter
•	Create an image map

Graphic Design 
with CSS
Creating a Graphic Design for a 
Genealogy Website

Case	|	Tree and Book
Kevin Whitmore is the founder of Tree and Book, a social 
networking website for people interested in documenting their 
family histories, creating online photo albums, and posting stories 
and information about members of their extended families. He has 
come to you for help in upgrading the site’s design. Kevin wants to 
take advantage of some of the CSS styles that can be used to add 
interesting visual effects to his site in order to give his website more 
impact and visual interest.

tutorial

tb_genta_txt.html
tb_komatsu_txt.html
tb_visual1_txt.css
tb_visual2_txt.css
+ 21 files

review

tb_ferris_txt.html
tb_kathleen_txt.html
tb_visual3_txt.css
tb_visual4_txt.css
+ 16 files

code1

code4-1_txt.html
code4-1_back_txt.css
+ 2 files

code2

code4-2_txt.html
code4-2_grad_txt.css
+ 2 files

code3 code4

code4-3_txt.html
code4-3_cube_txt.css
+ 6 files

code4-4_txt.html
debug4-4_txt.css
+ 2 files

sf_torte_txt.html
sf_effects_txt.css
+ 11 files

cf_home_txt.html
cf_effects_txt.css
+ 9 files

24 demo pages
+ 21 files

html04

case1 case2 demo

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 274

Session 4.1 Visual Overview:

The background 
property de�nes all 
background options, 
including the use of 
multiple backgrounds.

The cover keyword 
speci�es that the 
background image 
should completely 
cover the background.

The border-left and 
border-right 
properties add borders 
to the left and right 
edge of the element.

The background-
image property applies 
an image �le to the 
element background.

The border property 
adds a border around 
all sides of the element.

The padding-box 
keyword speci�es 
that the background 
extends through the 
padding space.

The content-box 
keyword speci�es 
that the background 
extends only over 
the element content.

The no-repeat 
keyword speci�es that 
no tiling is done with 
the background image.

Every border is de�ned by 
its width, style, and color.

The border-radius 
property creates 
rounded corners with 
the speci�ed radius.

The border-image 
property de�nes an 
image �le used to 
create a graphic border.

The border images are 
based on an image �le, 
the size of the slice from 
the image, and how slices 
are displayed along the 
element edge.

Logo Design Studio Pro; 
Source: wiki Media;  
© imtmphoto/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 275

Backgrounds and Borders

The tb_back1.png image 
is tiled to �ll the element 
background.

The background image 
tb_back4.png covers the 
entire article’s padding space.

The background image 
tb_back3.png is placed 
at the lower-left corner 
of the article.

The background image 
tb_back2.png is placed 
at the right corner of 
the article.

The aside element 
has a 4-pixel wide 
double border.

The aside element has 
a rounded corner with 
a radius of 30 pixels.

The border image 
is based on the 
tb_border.png �le.

Source: Wikimedia Commons; Design Studio Pro;  imtmphoto/Shutterstock.com; imtmphoto/
Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 276

Creating Figure Boxes
So far your work with CSS visual design styles has been limited to typographical styles 
and styles that modify the page’s color scheme. In this tutorial, you’ll explore other CSS 
styles that allow you to add figure boxes, background textures, background images, 
and three-dimensional effects to your web pages.

You’ll start by examining how to work with figure boxes. In books and magazines, 
figures and figure captions are often placed within a separate box that stands apart 
from the main content of the article, using the following figure and figcaption 
elements:

<figure> 
   content 
   <figcaption>caption text</figcaption> 
</figure>

where content is the content that will appear within the figure box and caption text 
is the description text that accompanies the figure. The figcaption element is optional 
and can be placed either directly before or directly after the figure box content. For 
example, the following code marks a figure box containing the tb_komatsu.png image 
file with the caption (L-R): Ikko, Mika, Hiroji, Genta, Suzuko.

<figure> 
   <img src="tb_komatsu.png" alt="family portrait" /> 
   <figcaption>(L-R): Ikko, Mika, Hiroji, Genta, Suzuko</figcaption> 
</figure>

While the figure element is used to contain an image file, it can also be used 
to mark any page content that you want to stand apart from the main content of an 
article. For instance, the figure element could contain a text excerpt, as the following 
code demonstrates:

<figure> 
  <p>'Twas brillig, and the slithy toves<br /> 
      Did gyre and gimble in the wabe;<br /> 
      All mimsy were the borogoves,<br /> 
      And the mome raths outgrabe.</p> 
  <figcaption> 
    <cite>Jabberwocky, Lewis Carroll, 1832-98</cite> 
  </figcaption> 
</figure>

Kevin plans on using figure boxes throughout the Tree and Book website to mark 
up family and individual photos along with descriptive captions. He’s created a set of 
sample pages for the Komatsu family that you will work on to learn about HTML and 
CSS visual elements and styles. Open the family’s home page and create a figure box 
displaying the family portrait along with a descriptive caption.

The semantic difference 
between the figure and 
aside elements is that the 
figure element should 
be used for content that 
is directly referenced from 
within an article while the 
aside element is used for 
extraneous content.

To create a figure box:
w	 1.	 Use your editor to open the tb_komatsu_txt.html file from the html04 c tutorial 

folder. Enter your name and the date in the comment section of the file and 
save it as tb_komatsu.html.

For this web page, you’ll work with a new style sheet named tb_visual1.css. 
Kevin has already created a reset style sheet and a typographical style sheet 
in the tb_reset.css and tb_styles1.css files respectively.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 277

Format the appearance of the figure box by adding new style rules to the tb_visual1.css 
style sheet file.

w	 2.	 Within the document head, insert the following link elements to link the 
page to the tb_reset.css, tb_styles1.css, and tb_visual1.css style sheet files.

<link href="tb_reset.css" rel="stylesheet" /> 
<link href="tb_styles1.css" rel="stylesheet" /> 
<link href="tb_visual1.css" rel="stylesheet" />

w	 3.	 Scroll down to the article element and, directly after the h1 element, insert 
the following code for the figure box displaying the Komatsu family portrait.

<figure> 
   <img src="tb_komatsu.png" alt="family portrait" /> 
   <figcaption>(L-R): Ikko, Mika, Hiroji,  
               Genta, Suzuko 
   </figcaption> 
</figure>

Figure 4–1 highlights the code for the family portrait figure box.

w	 4.	 Take some time to review the content and structure of the rest of the document 
and then save your changes to the file.

caption associated 
with the image

image within 
the �gure box

Figure 4–1	 Inserting a figure box

To format and view the figure box:
w	 1.	 Use your editor to open the tb_visual1_txt.css files from the html04 c tutorial 

folder. Enter your name and the date in the comment section of the file and 
save it as tb_visual1.css.

w	 2.	 Scroll down to the Figure Box Styles section at the bottom the document and 
insert the following style rule for the figure element:

figure { 
   margin: 20px auto 0px; 
   width: 80%; 
}

w	 3.	 Add the following style to format the appearance of the image within the 
figure box:

figure img { 
   display: block; 
   width: 100%; 
}

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 278

w	 4.	 Finally, insert the following rule for the figure caption:

figure figcaption { 
   background-color: white; 
   font-family: 'Palatino Linotype', Palatino,  
                'Times New Roman', serif; 
   font-style: italic; 
   padding: 10px 0; 
   text-align: center; 
}

Figure 4–2 highlights the style rules for the figure box, image, and caption.

w	 5.	 Save your changes to the file and then open the tb_komatsu.html file in 
your browser. Figure 4–3 shows the initial appearance of the page.

Figure 4–2	 Formatting the figure box and caption

�gure box is 80% of the 
width of the header and 
centered horizontally

�gure image is displayed 
as a block with a width 
equal to the �gure box

�gure caption is centered 
and displayed in a serif 
italic font on a white 
background

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 279

With all of the content for the Komatsu Family page now added, you will start 
working on enhancing the page’s appearance, starting with the CSS background styles.

Figure 4–3	 Initial design of the Komatsu family page 

�gure image

�gure caption

�gure box

Source: Design Studio Pro; Source: Wikimedia Commons; © imtmphoto/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 280

Exploring Background Styles
Thus far, your design choices for backgrounds have been limited to color using either 
the RGB or HSL color models. CSS also supports the use of images for backgrounds 
through the following background-image style:

background-image: url(url);

where url specifies the name and location of the background image. For example, the 
following style rule uses the trees.png file as the background of the page body.

body { 
   background-image: url(trees.png); 
}

This code assumes that the trees.png file is in the same folder as the style sheet; if the 
figure is not in the same folder, then you will have to include path information pointing 
to the folder location in which the image file resides.

IN
SI
G
H
T

Choosing your Graphic File Format

Graphic files on the web fall into two basic categories: vector images and bitmap 
images. A vector image is an image comprised of lines and curves that are based 
on mathematical functions. The great advantage of vector images is that they can be 
easily resized without losing their clarity and vector files tend to be compact in size. 
The most common vector format for the web is SVG (Scalable Vector Graphics), 
which is an XML markup language that can be created using a basic text editor and 
knowledge of the SVG language.

A bitmap image is an image that is comprised of pixels in which every pixel is 
marked with a different color. Because a graphic file can be comprised of thousands of 
pixels, the file size of a bitmap image is considerably larger than the file size of a vector 
image. The most common bitmap formats on the web are GIF, JPEG, and PNG. 

GIF (Graphic Interchange Format) is the oldest standard with a palette limited to 
256 colors. GIF files, which tend to be large, have two advantages: first, GIFs support 
transparent colors and second, GIFs can be used to create animated images. Because 
GIFs have a limited color palette, they are unsuitable for photos. The most popular 
photo format is JPEG (Joint Photographic Experts Group), which supports a palette 
of over 16 million colors. JPEGs also support file compression, allowing a bitmap 
image to be stored at a smaller file size than would be possible with other bitmap 
formats. JPEGs do not support transparent colors or animations.

The PNG (Portable Network Graphics) format was designed to replace GIFs with its 
support for several levels of transparent colors and palette of millions of colors. A PNG 
file can also be compressed, creating a file that is considerably smaller and, therefore, 
takes up considerably less space than its equivalent GIF file. PNG files also contain 
color correction information so that PNGs can be accurately rendered across a variety of 
display devices.

In choosing a graphic format for your website, the most important consideration is 
often file size; you want to choose the smallest size that still gives you an acceptable 
image. This combination means that users will view a quality image but they will not 
have to wait for the graphic file to download. In addition to file size, you want to 
choose a format that supports a large color palette. For these reasons, most graphics 
on the web are now in either JPEG or PNG format, though GIFs are still often found on 
legacy sites. 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 281

Tiling a Background Image
The default browser behavior is to place the background image at the top-left corner 
of the element and repeat the image in both the vertical and horizontal direction until 
the background is filled. This process is known as tiling because of its similarity to the 
process of filling up a floor or other surface with tiles.

You can specify the type of tiling to be applied to the background image, or even 
turn off tiling, by applying the following background-repeat style:

background-repeat: type;

where type is repeat (the default), repeat-x, repeat-y, no-repeat, round, or 
space. Figure 4–4 displays the effect of each background-repeat type. 

Figure 4–4	 Examples of background-repeat types

background-repeat: repeat;

image is tiled both
horizontally and vertically

background-repeat: repeat-x;

image is tiled horizontally

background-repeat: repeat-y;

image is tiled vertically

background-repeat: no-repeat;

image is not tiled

background-repeat: round;

background image is tiled and
resized to fit in the container a

whole number of times

background-repeat: space;

background image is
tiled and spaces added to fit

in the container a whole
number of times

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 282

Kevin has supplied you with an image file, tb_back1.png to fill the background of the 
browser window. Use the default option for tiling so that the image is displayed starting 
from the top-left corner of the window and repeating until the entire window is filled.

R
E
FE

R
E
N
C
E

Adding a Background Image

•	 To add an image to the background, use the CSS style

background-image: url(url);

where url specifies the name and location of the background image.
•	 To specify how the image should be tiled, use

background-repeat: type;

where type is repeat (the default), repeat-x, repeat-y, no-repeat, round, or space.

To add a background image to the browser window:
w	 1.	 Return to the tb_visual1.css file in your editor.

w	 2.	 Go to the HTML Styles section and add the following style rule to change the 
background of the browser window:

html { 
   background-image: url(tb_back1.png); 
}

Note that because you are using the default setting for tiling the 
background image, you do not need to include the background-repeat 
style rule. Figure 4–5 highlights the new style rule.

w	 3.	 Save your changes to the file and then reload tb_komatsu.html in your 
browser. Figure 4–6 shows the tiled background in the browser window.

tiles the tb_back1.png 
image 
le across the 
browser window 
background

Figure 4–5	 Defining a background image

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 283

Note that the page body covers part of the tiled images in the browser window. 
However, even though the background images are hidden, the tiling still continues 
behind the page body.

Attaching the Background Image
A background image is attached to its element so that as you scroll through the element 
content, the background image scrolls with it. You can change the attachment using the 
following background-attachment property

background-attachment: type;

where type is scroll (the default), fixed, or local. The scroll type sets the background 
to scroll with the element content. The fixed type creates a background that stays in place 
even as the element content is scrolled horizontally or vertically. Fixed backgrounds are 
sometimes used to create watermarks, which are translucent graphics displayed behind the 
content with a message that the content material is copyrighted or in draft form or some 
other message directed to the reader. The local type is similar to scroll except that it is 
used for elements, such as scroll boxes, to allow the element background to scroll along 
with the content within the box.

Setting the Background Image Position
By default, browsers place the background image in the element’s top-left corner. 
You can place the background image at a different position using the following 
background-position property:

background-position: horizontal vertical;

where horizontal and vertical provide the coordinates of the image within 
the element background expressed using one of the CSS units of measure or as a 
percentage of the element’s width and height. For example, the following style places 
the image 10% of the width of the element from the left edge of the background and 
20% of the element’s height from the background’s top edge.

background-position: 10% 20%;

Background coordinates 
are measured from the 
top-left corner of the 
background to the top-left 
corner of the image.

Figure 4–6	 Tiled background image in the browser window 

tiled image in 
browser window 
background

page body

Source: Design Studio Pro; Source: Wikimedia 
Commons; © imtmphoto/Shutterstock.com 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 284

If you specify a single value, the browser applies that value to both the horizontal 
and vertical position. Thus, the following style places the background image 30 pixels 
from the element’s left edge and 30 pixels down from the top edge.

background-position: 30px;

You can also place the background image using the keywords left, center, and 
right for the horizontal position and top, center, and bottom for the vertical position. 
The following style places the background image in the bottom-right corner of the element.

background-position: right bottom;

Typically, the background-position property is only useful for non-tiled images 
because, if the image is tiled, the tiled image fills the background and it usually doesn’t 
matter where the tiling starts.

Defining the Extent of the Background
You learned in Tutorial 2 that every block element follows the Box Model in which the 
element content is surrounded by a padding space and beyond that a border space 
(see Figure 2-38). However, the element’s background is defined, by default, to extend 
only through the padding space and not to include the border space. You can change 
this definition using the following background-clip property:

background-clip: type;

where type is content-box (to extend the background only through the element 
content), padding-box (to extend the background through the padding space), or 
border-box (to extend the background through the border space). For example, the 
following style rule defines the background for the page body to extend only as far as 
the page content. The padding and border spaces would not be considered part of the 
background and thus would not show any background image.

body { 
   background-clip: content-box; 
}

Because the background extends through the padding space by default, all 
coordinates for the background image position are measured from the top-left corner 
of that padding space. You can choose a different context by applying the following 
background-origin property:

background-origin: type;

where type is once again content-box, padding-box, or border-box. Thus, the 
following style rule places the background image at the bottom-left corner of the page body 
content and not the bottom-left corner of the padding space (which would be the default).

body { 
   background-position: left bottom; 
   background-origin: content-box; 
}

Based on this style rule, the padding space of page body would not have any background 
image or color, other than what would be defined for the browser window itself.

You can explore the 
impact of different CSS 
background styles using 
the demo_background.
html file in the html04 c 
demo folder.

TRY IT

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 285

Sizing and Clipping an Image
The size of the background image is equal to the size stored in the image file. To specify 
a different size, apply the following background-size property:

background-size: width height;

where width and height are the width and height of the image in one of the CSS units 
of length or as a percentage of the element’s width and height. The following style sets 
the size of the background image to 300 pixels wide by 200 pixels high.

background-size: 300px 200px;

CSS also supports the sizing keywords auto, cover, and contain. The auto keyword 
tells the browser to automatically set the width or height value based on the dimensions 
of the original image. The following style sets the height of the image to 200 pixels and 
automatically scales the width to keep the original proportions of the image:

background-size: auto 200px;

The cover keyword tells the browser to resize the image to cover all of the element 
background while still retaining the image proportions. Depending on the size of 
the element, this could result in some of the background image being cropped. The 
contain keyword scales the image so that it’s completely contained within the element, 
even if that means that not all of the element background is covered. Figure 4–7 displays 
examples of a background set to a specific size, as well as resized to either cover the 
background or to have the image completely contained within the background.

If you specify only one size 
value, the browser applies 
it to the image width 
and scales the height 
proportionally.

Figure 4–7	 Examples of background-size types

image is resized so that it is 
contained within the element, 
but part of the background is 
left uncovered

image is resized to �ll the 
background, but part of the 
image is cropped

image is scaled at the speci�ed 
dimensions

background-size: 200px 300px; background-size: cover; background-size: contain;

300px

200px

Source: Wikimedia Commons

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 286

The background Property
All of these different background options can be organized in the following background 
property:

background: color url(url) position / size repeat attachment 
origin clip;

where color is the background color, url is the source of the background image, 
position is the image’s position, size sets the image size, repeat sets the tiling of 
the image, attachment specifies whether the image scrolls with the content or is fixed, 
origin defines how positions are measured on the background, and clip specifies the 
extent over which the background is spread. For example, the following style rule sets 
the background color to ivory and then uses the draft.png file as the background image 
fixed at the horizontal and vertical center of the page body and sized at 10% of the 
body’s width and height:

body { 
   background: ivory url(draft.png)  
               center center / 10% 10%  
               no-repeat fixed content-box content-box;
}

The rest of the property sets the image not to repeat and to use the content box for 
defining the background origin and clipping. Note that the page body will have an ivory 
background color at any location where the draft.png image is not displayed. If you 
don’t specify all of the option values, the browser will assume the default values for the 
missing options. Thus, the following style rule places the draft.png at the horizontal and 
vertical center of the page body without tiling:

body { 
   background: ivory url(draft.png) center center no-repeat; 
}

You can explore the CSS 
background style using the 
demo_background2.html 
file in the html04 c demo 
folder.

TRY IT

R
E
FE

R
E
N
C
E

Setting Background Image Options

•	 To specify how the image is attached to the background, use

background-attachment: type;

where type is scroll (the default), fixed, or local.
•	 To set the position of the background image, use

background-position: horizontal vertical;

where horizontal and vertical provide the coordinates of the image within the 
element background.

•	 To define the extent of the background, use

background-clip: type;

where type is content-box, padding-box (the default), or border-box.
•	 To define how position coordinates are measured, use

background-origin: type;

where type is content-box, padding-box (the default), or border-box.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 287

Since no size, attachment, origin, and clip values are specified, the size of the 
image will be based on the dimensions from the image file, the image will scroll with 
the body content, and the background origin and clipping will extend through the page 
body’s padding space.

Kevin wants you to include a semi-transparent image of the family patriarch, Genta 
Komatsu, as a background image placed in the lower-right corner of the article on the 
Komatsu family. Add a style rule to the tb_visual1.css file to display the tb_back2.png 
image within that element without tiling.

The background property 
includes the "/" character 
only when you need 
to separate the image 
position value from the 
image size value.

To add a background image to the page article:
w	 1.	 Return to the tb_visual1.css file in your editor and scroll down to the Article 

Styles section.

w	 2.	 Add the following style rule:

article { 
    background: url(tb_back2.png) bottom right / 15%  
                no-repeat content-box; 
}

Figure 4–8 highlights the style rule applied to the page article.

w	 3.	 Save your changes and then reload tb_komatsu.html in your browser. 
Figure 4–9 shows the placement of the background image.

Figure 4–8	 Adding a background to the page article

Figure 4–9	 Placement of the background image

image �le sets the width of the 
image to 15% of the 
article width

positions the image 
with respect to the 
article content

places the image at 
the lower-right corner

does not tile the image

background image placed 
in lower-right corner of the 
article content with no tiling

Source: Wikimedia Commons; © imtmphoto/Shutterstock.com

Kevin likes the addition of the image of Genta Komatsu and would like you to add 
another background image showing the family matriarch, Mika Komatsu, and a third 
image giving the article a paper-textured background.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 288

Adding Multiple Backgrounds
To add multiple backgrounds to the same element, you list the backgrounds in the 
following comma-separated list:

background: background1, background2, …;

where background1, background2, and so on are the properties for each background. 
For example the following style rule applies three different backgrounds to the header 
element:

header { 
   background: url(back2.png) top left no-repeat, 
               url(back1.png) bottom right no-repeat, 
               rgb(191, 191, 191); 
}

Backgrounds are added in the reverse order in which they’re listed in the style rule. In 
this style rule, the background color is applied first, the back1.png background image 
is placed on top of that, and finally the back2.png background image is placed on top 
of those two backgrounds.

Individual background properties can also contain multiple options placed in a 
comma-separated list. The following style rule creates the same multiple backgrounds 
for the header element without using the background property:

header { 
   background-image: url(back2.png), url(back1.png); 
   background-position: top left, bottom right; 
   background-repeat: no-repeat; 
   background-color: rgb(191, 191, 191); 
}

Note that if a background style is listed once, it is applied across all of the backgrounds. 
Thus the background-color and the background-repeat properties are used in all 
the backgrounds.

Revise the style rule for the article element to add two more backgrounds.

Always list the background 
color last so that it provides 
the foundation for your 
background images.

To add a background image to the page article:
w	 1.	 Return to the tb_visual1.css file in your editor and return to the Article Styles 

section.

w	 2.	 Type a comma after the first background listed for the article element and 
before the semicolon (;), then press Enter.

w	 3.	 Be sure the insertion point is before the semicolon (;), then add the following 
code to display two more background images followed by a background 
color: 

url(tb_back3.png) bottom left / 15% no-repeat content-box, 
url(tb_back4.png) 100%/cover no-repeat, 
rgb(211, 211, 211)

The background color acts as a fallback design element and will not be 
displayed except for browsers that are incapable of displaying background 
images. Figure 4–10 displays the code for the multiple backgrounds applied 
to the page article.

The properties for multiple 
backgrounds need to be 
separated by commas.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 289

Kevin is pleased with the revised backgrounds for the browser window and the page 
article. Next, you will explore how to work with CSS border properties.

Figure 4–10	 Adding multiple background images

Figure 4–11	 Revised background for the page article

uses a gray color as the background 
if the browser doesn’t support 
background images

places the second background 
image at the lower-left corner of 
the article content with no tiling 
and a width of 15%

places the third background 
image, scaled to cover all of the 
padding box of the article 
without repeating

commas used to separate one 
background from the next

tb_back3.png

tb_back4.png

tb_back2.png

Trouble?  Be sure your code matches the code in Figure 4–10, including 
the commas used to separate the components in the list and the ending 
semicolon.

w	 4.	 Save your changes and then reload tb_komatsu.html in your browser. 
Figure 4–11 shows the three background images displayed with the article.

Source: Wikimedia Commons; © imtmphoto/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 290

Working with Borders
So far, you have only worked with the content, padding, and margin spaces from the 
CSS Box model. Now, you will examine the border space that separates the element’s 
content and padding from its margins and essentially marks the extent of the element 
as it is rendered on the page.

Setting Border Width and Color
CSS supports several style properties that are used to format the border around each 
element. As with the margin and padding styles, you can apply a style to the top, right, 
bottom, or left border, or to all borders at once. To define the thickness of a specific 
border, use the property

border-side-width: width;

where side is either top, right, bottom, or left and width is the width of the 
border in one of the CSS units of measure. For example, the following style sets the 
width of the bottom border to 10 pixels.

border-bottom-width: 10px;

Border widths also can be expressed using the keywords thin, medium, or thick; 
the exact application of these keywords depends on the browser. You can define the 
border widths for all sides at once using the border-width property

border-width: top right bottom left;

where top, right, bottom, and left are the widths of the matching border. As with 
the margin and padding properties, if you enter one value, it’s applied to all four 

IN
SI
G
H
T

Blending Backgrounds

Multiple backgrounds are stacked on top of each other, with the first background listed 
in the code placed on top of subsequent backgrounds. By default, the backgrounds on 
the top of the stack will obscure the lower-ordered backgrounds unless there is gap or 
a transparent color that allows the backgrounds at the bottom of the stack to appear. 
Thus, each background acts as its own background layer, separate in appearance from 
other backgrounds.

To combine multiple backgrounds into a single background, use the following 
background-blend-mode style:

background-blend-mode: type;

where type defines the method by which the backgrounds are combined. Possible 
type values include:

•	normal	 backgrounds are stacked (the default)
•	multiply	� background colors are multiplied, leading to a darker image 

combined of several colors
•	overlay	� background colors are mixed to reflect the lightness and darkness of 

the colors
•	darken	 backgrounds are replaced with the darkest of background colors
•	lighten	 backgrounds are replaced with the lightest of the background colors

Several other type options are also available. You can specify a comma-separated list 
of blend values, so that each background layer is blended in a different way with all the 
other backgrounds.

To explore the impact of 
the background-blend-
mode style on multiple 
backgrounds, open the 
demo_blend.html file in 
the html04 c demo folder.

TRY IT

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 291

Or to specify styles for all four borders use the property: 

border-style: top right bottom left;

Figure 4–12	 Examples of border styles

solid dashed dotted

double outset inset

groove ridge none

borders; two values set the width of the top/bottom and left/right borders, respectively; 
and three values are applied to the top, left/right, and bottom borders, in that order. 
Thus, the following property sets the widths of the top/bottom borders to 10 pixels and 
the left/right borders to 20 pixels:

border-width: 10px 20px;

The color of each individual border is set using the property

border-side-color: color;

where side once again specifies the border side and color is a color name, color 
value, or the keyword transparent to create an invisible border. The color of the four 
sides can be specified using the following border-color property

border-color: top right bottom left;

where top right bottom left specifies the side to which the color should be 
applied. Thus, the following style uses gray for the top and left borders and black for the 
right and bottom borders:

border-color: gray black black gray;

If no border color is specified, the border will use the text color assigned to the element.

Setting the Border Design
CSS allows you to further define the appearance of borders using the following border styles:

border-side-style: style;

where side once again indicates the border side and style specifies one of the nine 
border styles displayed in Figure 4–12.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 292

Kevin wants the page body to stand out better against the tiled images used as the 
background for the browser window. He suggests you add solid borders to the left 
and right edges of the page body and that you add a double border around the aside 
element containing links to other Komatsu family pages.

R
E
FE

R
E
N
C
E

Adding a Border

•	 To add a border around every side of an element, use the CSS property

border: width style color;

where width is the width of the border, style is the design style, and color is the 
border color.

•	 To apply a border to a specific side, use

border-side: width style color;

where side is top, right, bottom, or left for the top, right, bottom, and left borders.
•	 To set the width, style, or color of a specific side, use the properties

border-side-width: width; 
border-side-style: style; 
border-side-color: color;

To add borders to the page elements:
w	 1.	 Return to the tb_visual1.css file in your editor and go to the Page Body 

Styles section.

w	 2.	 Add the following style rule for the page body:

body { 
   border-left: 1px solid rgb(51, 51, 51); 
   border-right: 1px solid rgb(51, 51, 51); 
}

w	 3.	 Go to the Aside Styles section and add the following style rule for the aside 
element:

aside { 
   border: 4px double rgb(45, 93, 62); 
}

As with the other border rules, you can modify the style of all borders or combinations 
of the borders. For example, the following style uses a double line for the top/bottom 
borders and a single solid line for the left/right borders.

border-style: double solid;

All of the border styles discussed above can be combined into the following 
property that formats the width, style, and color of all of the borders

border: width style color;

where width is the thickness of the border, style is the style of the border, and color 
is the border color. The following style rule inserts a 2-pixel-wide solid blue border 
around every side of each h1 heading in the document:

h1 {border: 2px solid blue;}

To modify the width, style, and color of a single border, use the property

border-side: width style color;

where side is either top, right, bottom, or left.

You can explore the CSS 
border style using the 
demo_border.html file in 
the html04 c demo folder.

TRY IT

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 293

Kevin is concerned that the design of the page is too boxy and he wants you to 
soften the design by adding curves to some of the page elements. You can create this 
effect using rounded corners.

Creating Rounded Corners
To round off any of the four corners of a border, apply the following border-radius 
property:

border-radius: top-left top-right bottom-right bottom-left;

where top-left, top-right, bottom-right, and bottom-left are the radii of 
the individual corners. The radii are equal to the radii of hypothetical circles placed 
at the corners of the box with the arcs of the circles defining the rounded corners 
(see Figure 4–15).

w	 4.	 Save your changes to the file and then reload tb_komatsu.html in your 
browser. Figure 4–14 shows the appearance of the page with the newly 
added borders. Note that the background color and other styles associated 
with the aside element are in the tb_styles1.css file.

Figure 4–14	 Page design with borders

right page 
border

double border around 
the aside element

left page 
border

Source: Wikimedia Commons; © imtmphoto/Shutterstock.com

Figure 4–13	 Adding borders to the page body and aside element

adds a 4-pixel double 
medium green border 
to the aside element

adds a 1-pixel solid 
gray border to the 
left and right edges 
of the page body

Figure 4–13 highlights the style rules that create borders for the page body 
and aside element.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 294

Figure 4–15	 Setting rounded corners based on corner radii

60px

60
p

x

100px

10
0p

x

140px

140p
x

20px

20px

border-radius: 20px 60px 100px 140px;

If you enter only one radius value, it is applied to all four corners; if you enter two 
values, the first is applied to the top-left and bottom-right corners, and the second is 
applied to the top-right and bottom-left corners. If you specify three radii, they are 
applied to the top-left, top-right/bottom-left, and bottom-right corners, in that order. 
For example, the following style rule creates rounded corners for the aside element in 
which the radii of the top-left and bottom-right corners is 50 pixels and the radii of the 
top-right and bottom-left corners is 20 pixels.

aside {border-radius: 50px 20px;}

To set the curvature for only one corner, use the property:

border-corner-radius: radius;

where corner is either top-left, top-right, bottom-right, or bottom-left.

You can explore the CSS 
border-radius style using 
the demo_radius.html 
file in the html04 c demo 
folder.

TRY IT

R
E
FE

R
E
N
C
E

Creating a Rounded Corner

•	 To create rounded corners for an element border, use

border-radius: top-left top-right bottom-right bottom-left;

where radius is the radius of the rounded corner in one of the CSS units of 
measurement and top-left, top-right, bottom-right, and bottom-left are the 
radii of the individual corners.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 295

Thus, the following style rule creates elongated corners in which the ratio of the 
horizontal to vertical radius is 50 pixels to 20 pixels.

border-radius: 50px/20px;

Note that using percentages for the radius value can result in elongated corners if 
the element is not perfectly square. The following style rule sets the horizontal radius to 
15% of element width and 15% of the element height. If the element is twice as wide 
as it is high for example, the corners will not be rounded but elongated.

border-radius: 15%;

When applied to a single corner, the format to create an elongated corner is slightly 
different. You remove the slash between the horizontal and vertical values and use the 
following syntax:

border-corner-radius: horizontal vertical;

For example, the following style creates an elongated bottom-left corner with a 
horizontal radius of 50 pixels and a vertical radius of 20 pixels.

border-bottom-left-radius: 50px 20px;

Rounded and elongated corners do not clip element content. If the content of the 
element extends into the corner, it will still be displayed as part of the background. 
Because this is often unsightly, you should avoid heavily rounded or elongated corners 
unless you can be sure they will not obscure or distract from the element content.

Add rounded corners with a radius of 30 pixels to the aside element.

To create a circular border, 
use a square element with 
an equal width and height 
and the corner radii set 
to 50%.

You can explore how to 
create elliptical corners 
using the demo_ellipse.
html file in the html04 c 
demo folder.

TRY IT

150px

80
p

x

border-radius: 150px/80px;

The corners do not need to be circular. Elongated or elliptical corners are created by 
specifying the ratio of the horizontal radius to the vertical radius using the style:

border-radius: horizontal/vertical;

where horizontal is the horizontal radius of the corner and vertical is the vertical 
radius of the same corner (see Figure 4–16).

Figure 4–16	 Creating an elongated corner

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 296

To add rounded corners to an element:
w	 1.	 Return to the tb_visual1.css file in your editor and go to the Aside Styles section.

w	 2.	 Add the following style to the style rule for the aside element:

border-radius: 30px;

Figure 4–17 highlights the style to create the rounded corners for the aside 
border.

w	 3.	 Save your changes to the file and reload tb_komatsu.html in your browser. 
Figure 4–18 shows the rounded corners for the aside element border.

Figure 4–17	 Adding rounded corners to the aside element border

sets the radius at each 
border corner to 30 pixels

Figure 4–18	 Aside element border with rounded corners

rounded corner

© imtmphoto/Shutterstock.com

Kevin likes the revision to the border for the aside element. He also wants you to 
add a border to the family portrait on the Komatsu Family page. However, rather than 
using one of the styles shown in Figure 4–12, Kevin wants you to use a graphic border 
that makes it appear as if the figure box came from a torn piece of paper. You can 
create this effect using border images.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 297

To apply a border image, use the following property

border-image: url(url) slice repeat fill;

where url is the source of the graphic image, slice is the width or height of the slices 
used to create the sides and corners, repeat indicates whether the side slices should 
be stretched or tiled to cover the border’s four sides, and fill is an optional attribute 
that fills the image background with the graphic image file. The repeat option supports 
the following values:

•	stretch:	 The slices are stretched to fill each side.
•	repeat:	 The slices are tiled to fill each side.
•	round:	� The slices are tiled to fill each side; if they don’t fill the sides with an integer 

number of tiles, the slices are rescaled until they do.
•	space:	� The slices are tiled to fill each side; if they don’t fill the sides with an integer 

number of tiles, extra space is distributed around the tiles.

For example, the following style cuts 10-pixel-wide slices from the frame.png image file 
with the four side slices stretched to cover the length of the four sides of the object’s border:

border-image: url(frame.png) 10 stretch;

Figure 4–19	 Slicing a graphic image to create a border

slices are stretched to 
match the image border

20px

20px

20px

frame.png

border slices

20px

border-image: url(frame.png) 20 stretch;

© imtmphoto/Shutterstock.com

Applying a Border Image
A border image is a border that it is based on a graphic image. The graphic image is sliced 
into nine sections representing the four corners, the four sides, and the interior piece. The 
interior piece is discarded because that is where the content of the object will appear; the 
four corners become the corners of the border and the four sides are either stretched or 
tiled to fill in the border’s top, right, bottom, and left sides. Figure 4–19 shows an example 
of an image file, frame.png, sliced into nine sections to create a border image.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 298

The size of the slices is measured either in pixels or as a percentage of the image file 
width and height. A quirk of this property is that you should not specify the pixel unit if 
you want the slices measured in pixels but you must include the % symbol when slices 
are measured in percentages.

You can create slices of different widths or heights by entering the size values in a 
space-separated list. For instance, the following style slices the graphic image 5 pixels 
on the top, 10 pixels on the right, 15 pixels on the bottom, and 25 pixels on the left:

border-image: url(frame.png) 5 10 15 25 stretch;

The slice sizes follow the same top/right/bottom/left syntax used with all of the CSS 
border styles. Thus, the following style slices 5% from the top and bottom sides of the 
graphic image, and 10% from the left and right sides:

border-image: url(frame.png) 5% 10% stretch;

You can also apply different repeat values to different sides of the border. For 
example, the following style stretches the border slices on the top and bottom but tiles 
the left and right slices:

border-image: url(frame.png) 10 stretch repeat;

You can explore how to 
create a border image 
using the demo_frame.
html file in the html04 c 
demo folder.

TRY IT

R
E
FE

R
E
N
C
E

Creating a Graphic Border

•	 To create a border based on a graphic image, use

border-image: url(url) slice repeat fill;

where url is the source of the border image file, slice is the size of the border 
image cut off to create the borders, repeat indicates whether the side borders 
should be either stretched or tiled to cover the object’s four sides, and fill is an 
optional attribute that fills the image background with the graphic image file.

The torn paper image that Kevin wants to use is based on the graphic image file 
tp_border.png file. Use the border-image property to add a border image around the 
figure box on the Komatsu Family page, tiling the border slices to fill the sides. Note that 
in order for the border image to appear you must include values for the border-width 
and border-style properties.

To create a graphic border:
w	 1.	 Return to the tb_visual1.css file in your editor and scroll to the Figure Box 

Styles at the top of the file.

w	 2.	 Add the following style to the style rule for the figure box:

border-style: solid; 
border-width: 25px; 
border-image: url(tb_border.png) 50 repeat;

Figure 4–20 displays the styles used to create the graphic border.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 299

Kevin appreciates the effect you created, making it appear as if the family portrait 
was torn from an album and laid on top of the web page.

Figure 4–21	 Figure box with border image

graphic image 
slices are tiled to �ll 
the border sides

border image 
created from the 
tb_border.png �le

w	 3.	 Save your changes and reload tb_komatsu.html in your browser. Figure 4–21 
shows the appearance of the border image.

© imtmphoto/Shutterstock.com

Figure 4–20	 Adding a border image

slices 50 pixels 
from each side of  
the border image

uses the
tb_border.png file 
for the graphical 
border

tiles the side 
slices to fill the 
border sides

border width and 
style values are 
required for the 
border image

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 300

In the next session, you’ll continue to work with the CSS graphic styles to add  
three-dimensional effects through the use of drop shadows and color gradients. If you 
want to take a break, you can close your open files and documents now.

PR
O
SK

IL
LS

Problem Solving: Graphic Design and Legacy Browsers

Adding snazzy graphics to your page can be fun, but you must keep in mind that 
the fundamental test of your design is not how cool it looks but how usable it is. Any 
design you create needs to be compatible across several browser versions if you want 
to reach the widest user base. To support older browsers, your style sheet should use 
progressive enhancement in which the older properties are listed first, followed by 
browser extensions, and then by the most current CSS properties. As each property 
supersedes the previous properties, the browser will end up using the most current 
property that it supports.

For example, the following style rule starts with a basic 5-pixel blue border that 
will be recognized by every browser. It is followed by browser extensions for Opera, 
Mozilla, and WebKit to support older browsers that predate adoption of the CSS 
border-image property. Finally, the style list ends with the CSS border-image 
property, recognized by every current browser. In this way, every browser that opens the 
page will show some type of border.

border: 5px solid blue; 
-o-border-image: url(paper.png) 30 repeat; 
-moz-border-image: url(paper.png) 30 repeat; 
-webkit-border-image: url(paper.png) 30 repeat; 
border-image: url(paper.png) 30 repeat;

Be aware, however, that the syntax for an extension may not match the syntax for 
the final CSS specification. For example, the following list of styles creates a rounded 
top-right corner that is compatible across a wide range of browser versions:

-moz-border-radius-top-right: 15px; 
-webkit-border-top-right-radius: 15px; 
border-top-right-radius: 15px;

Note that the syntax for the Mozilla extension does not match the syntax for the 
WebKit extension or for the final CSS specification. As always, you need to do your 
homework to learn exactly how different browser versions handle these CSS design styles.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 301

R
E
V
IE

W

Session 4.1 Quick Check

	 1.	 The element to create a figure caption is:
a.	 caption
b.	 figurecap
c.	 figcaption
d.	 alt

	 2.	 Lines and curves based on mathematical functions comprise a:
a.	 bitmap image
b.	 png image
c.	 figure image
d.	 vector image

	 3.	 To tile a background image in the horizontal direction only, use:
a.	 repeat-x
b.	 repeat-y
c.	 repeat-horizontal
d.	 repeat-h

	 4.	 To display the background image only within a content box, apply the style:
a.	 background-origin: content-box;
b.	 background: content-box;
c.	 background-display: content-box;
d.	 background-clip: content-box;

	 5.	 To create a 5-pixel wide brown border with a dotted line, apply the style:
a.	 border-style: 5px brown dotted;
b.	 border-type: brown 5px dotted;
c.	 border-outline: dotted brown 5px;
d.	 border: 5px brown dotted;

	 6.	 To use rounded corners with a radius of 15 pixels in a border, apply the style:
a.	 border-width: 15px;
b.	 border-radius: 15px;
c.	 border-arc: 15px;
d.	 corner-radius: 15px;

	 7.	 To create an elongated corner with a horizontal radius of 10 pixels and a 
vertical radius of 5 pixels, use:
a.	 border-radius: 10px 5px;
b.	 border-radius: 5px 10px;
c.	 border-radius: 10px/5px;
d.	 border-radius: 5px/10px;

	 8.	 To create a border image using the border.png file with a slice size of 30 pixels 
and the slices stretched along the borders, use:
a.	 border-image: url(border.png) 30 stretch;
b.	 border: url(border.png) 30 stretch;
c.	 border-img: url(border.png) 30 stretch;
d.	 border-slice: url(border.png) 30 stretch;

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 302

Session 4.2 Visual Overview:

The box-shadow 
property adds a drop 
shadow to a block 
element.

The inset keyword 
places the shadow 
inside the element.

The text-shadow 
property adds a drop 
shadow to a text 
string.

The opacity property 
makes an object 
semi-transparent.

The radial-gradient 
function creates a color 
gradient proceeding 
outward from a central 
point.

The linear-gradient 
function creates a color 
gradient proceeding 
along a straight line.

The color-stop de�nes 
the extent of a color 
within a gradient.

This value sets 
the shadow size.

These color values 
set the shadow color.

The color value sets 
the shadow color.

This value sets 
the shadow blur.

These values 
set the shadow 
offsets.

The distance values set 
the shadow offsets.

This value sets 
the opacity of the 
�gure to 55%.

This value sets 
the shadow blur.

Logo Design Studio Pro; Source: wiki Media;  
© imtmphoto/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 303

Shadows and Gradients

This shows a 
box shadow on 
the left edge of 
the page body.

This shows a box 
shadow inside 
the page article.

This shows the 
�gure box is 
displayed as 
55% opaque.

The radial gradient 
proceeds from white in the 
center to medium green on 
the edges.

There is a box shadow on 
the right edge of the 
page body.

The box shadow creates 
a halo around the aside 
element.

The linear gradient proceeds 
at an angle of 15°
counter-clockwise from light 
green to dark green.

The heading 
text has a 
text shadow.

Source: Design Studio Pro; Source: Wikimedia Commons; imtmphoto/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 304

Creating Drop Shadows
In this session, you will examine some design styles that create 3D effects, making the 
page content appear to jump out of the browser window. The first styles you’ll explore 
are used to create drop shadows around text strings and element boxes.

Creating a Text Shadow
To give the text on your page visual impact, you can use CSS to add a shadow using 
the following text-shadow property

text-shadow: color offsetX offsetY blur;

where color is the shadow color, offsetX and offsetY are the distances of the 
shadow from the text in the horizontal and vertical directions, and blur defines the 
amount by which the shadow spreads out, creating a blurred effect. The shadow offset 
values are expressed so that positive values push the shadow to the right and down 
while negative values move the shadow to the left and up. The default blur value is 0, 
creating a shadow with distinct hard edges; as the blur value increases, the edge of the 
shadow becomes less distinct and blends more in the text background.

The following style creates a red text shadow that is 10 pixels to the right and 5 pixels 
down from the text with blur of 8 pixels:

text-shadow: red 10px 5px 8px;

Multiple shadows can be added to text by including each shadow definition in the 
following comma-separated list.

text-shadow: shadow1, shadow2, shadow3, …;

where shadow1, shadow2, shadow3, and so on are shadows applied to the text with 
the first shadow listed displayed on top of subsequent shadows when they overlap. The 
following style rule creates two shadows with the first red shadow placed 10 pixels to 
the left and 5 pixels up from the text and the second gray shadow is placed 3 pixels to 
the right and 4 pixels down from the text. Both shadows have a blur of 6 pixels:

text-shadow: red -10px -5px 6px,  
             gray 3px 4px 6px;

Figure 4–22 shows examples of how the text-shadow style can be used to achieve a 
variety of text designs involving single and multiple shadows.

You can explore the 
text-shadow style and 
creating multiple text 
shadows by using the 
demo_text.html file from 
the html04 c demo folder.

TRY IT

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 305

Kevin wants you to add two text shadows to the h1 heading The Komatsu Family. 
The first text shadow will be a light-green highlight with hard edges and the second 
shadow will be semi-transparent gray and blurred.

Figure 4–22	 Examples of text shadows

text-shadow: gray 4px 6px 5px; color: rgb(150, 187, 60);
text-shadow: black -4px -3px 5px;

color: white;
text-shadow: black 0px 0px 1px;

  color: white;
  text-shadow: green 0px 0px 25px;

color: white;
text-shadow: black 0px 0px 3px,
                      green 4px 4px 4px,
                      blue 0px 0px 55px;

background-color: 
rgb(110, 137, 20);
color: rgb(90, 127, 0);
text-shadow: black 1px 1px 1px,
                      white 0px -2px 0px;

R
E
FE

R
E
N
C
E

Creating a Text Shadow

•	 To add a shadow to a text string, use the property

text-shadow: color offsetX offsetY blur;

where color is the shadow color, offsetX and offsetY are the distances of the 
shadow from the text in the horizontal and vertical directions, and blur defines the 
amount by which the shadow is stretched.

To add a text shadow:
w	 1.	 If you took a break after the previous session, reopen or return to the  

tb_visual1.css file in your editor and scroll to the Article Styles section.

w	 2.	 Add the following style for the h1 heading in the article header:

article header h1 { 
   text-shadow: rgb(181, 211, 181) 2px 2px 1px, 
                rgba(21, 21, 21, 0.66) 5px 5px 25px; 
}

Figure 4–23 highlights the style to add text shadows to the h1 heading.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 306

Figure 4–23	 Adding text shadows

shadow 
color

horizontal 
offset vertical 

offset

semi-transparent 
gray shadow 
with soft edges

blur 
size

light green text 
shadow with hard 
edges

w	 3.	 Save your changes and reload tb_komatsu.html in your browser. Figure 4–24 
shows the shadow effect added to the h1 heading.

Figure 4–24	 Article heading with text shadows

Kevin likes the shadow effect and the use of the light green shadow, which appears to give 
a highlight to the heading text. Next, he wants you to add shadows to other page objects.

Creating a Box Shadow
Shadows can be added to any block element in the web page by using the box-shadow 
property

box-shadow: color offsetX offsetY blur;

where color, offsetX, offsetY, and blur have the same meanings for box shadows 
as they do for text shadows. As with text shadows, you can add multiple shadows by 
including them in the following comma-separated list

box-shadow: shadow1, shadow2 …;

where once again the first shadow listed is displayed on top of subsequent shadows.
In the last session, you used left and right borders to set off the page body from the 

browser window background. Kevin would like you to increase this visual distinction 
by adding drop shadows to the left and right sides of the page body.

If no shadow color is 
provided, the browser uses 
black as the default color.

soft gray background 
shadow light green 

highlight shadow

© imtmphoto/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 307

To add a box shadow:
w	 1.	 Return to the tb_visual1.css file in your editor and go to the Page Body 

Styles section.

w	 2.	 Within the style rule for the body element, insert the following styles:

box-shadow: rgb(51, 51, 51) 15px 0px 25px, 
            rgb(51, 51, 51) -15px 0px 25px;

Figure 4–25 highlights the style to add box shadows to the page body.

w	 3.	 Save your changes and reload tb_komatsu.html in your browser. Figure 4–26 
shows the drop shadows added to the page body.

Figure 4–25	 Adding box shadows

Figure 4–26	 Page body with drop shadows

drop shadow on the 
page body’s right edge

drop shadow on the 
page body’s left edge

gray shadow color

drop shadow on 
the left edge drop shadow on 

the right edge

Source: Design Studio Pro; Source: Wikimedia Commons; © imtmphoto/Shutterstock.com

Box shadows can be placed inside the element as well as outside. By adding an 
interior shadow you can create the illusion of a beveled edge in which the object appears 
to rise out of its background. To create an interior shadow, add the inset keyword to the 
box-shadow property

box-shadow: inset color offsetX offsetY blur;

where the meanings of the offsetX and offsetY values are switched when applied to 
interior shadowing so that positive offsetX and offsetY values move the shadow to 
the left and up within the box, while negative offsetX and offsetY values move the 
shadow to the right and down.

Explore multiple box 
shadows with the  
demo_box.html file from 
the html04 c demo folder.

TRY IT

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 308

An object can contain a mixture of exterior and interior shadows. Figure 4–27 
shows examples of box shadows, including one example that mixes both interior and 
exterior shadows.

Figure 4–27	 Examples of box shadows

box-shadow: 15px 15px;

background-color: rgb(90, 141, 191);
box-shadow: inset rgb(0, 51, 101) -10px -15px 15px,
                               inset white 5px 5px 5px;

background-color: rgb(101, 191, 101);
box-shadow: inset rgb(0, 101, 51) 10px 15px 15px,
                      inset white -5px -5px 25px,
                      rgb(51, 51, 51) -10px -10px 20px;

box-shadow: rgb(127, 90, 0) -10px -10px 15px;

Kevin suggests that you add inset shadows to the article element, placing medium 
gray shadows within the article to make it appear raised up from the surrounding page 
content.

To add inset shadows:
w	 1.	 Return to the tb_visual1.css file in your editor and go to the Article Styles 

section.

w	 2.	 Within the style rule for the article element, insert the following box-shadow 
style:

box-shadow: inset rgb(71, 71, 71) -10px -10px 25px, 
            inset rgb(71, 71, 71) 10px 10px 25px;

Figure 4–28 highlights the newly added code for the inset box shadow.

Positive and negative offset 
values for interior shadows 
have the opposite meaning 
from positive and negative 
offset values for exterior 
shadows.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 309

places a medium-
gray shadow in the 
lower-right interior 
corner

places a medium-gray 
shadow in the 
upper-left interior 
corner

inset keyword 
places shadow 
inside the object

interior shadow 
placed on the right 
and down based on 
negative offset values

interior shadow 
placed on the left 
and up based on 
positive offset values

Figure 4–28	 Adding an inset shadow

Figure 4–29	 Page article with interior shadowing

w	 3.	 Save your changes and reload tb_komatsu.html in your browser. The inset 
shadow for the page body element is shown in Figure 4–29.

Source: Wikimedia Commons; © imtmphoto/Shutterstock.com

By default, a box shadow has the same size and dimensions as its page object offset 
in the horizontal and vertical direction. To change the shadow size, add the spread 
parameter to the box-shadow property, specifying the size of the shadow relative to 
the size of the page object. A positive value increases the size of the shadow, while a 
negative value decreases it. For example, the following style creates a gray shadow that 
is offset from the page object by 5 pixels in both the vertical and horizontal direction 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 310

with no blurring but with a shadow that is 15 pixels larger in the horizontal and 
vertical directions than the object:

box-shadow: gray 5px 5px 0px 15px;

On the other hand, the following style creates a shadow that is 15 pixels smaller 
than the page object:

box-shadow: gray 5px 5px 0px -15px;
R
E
FE

R
E
N
C
E

Creating a Box Shadow

•	 To add a shadow to a block element, use

box-shadow: color offsetX offsetY blur spread;

where color is the shadow color, offsetX and offsetY are the distances of the 
shadow from the element in the horizontal and vertical directions, blur defines the 
amount by which the shadow is stretched and spread sets the size of the shadow 
relative to the size of the block element. If no spread is specified, the shadow has the 
same size as the block element.

•	 To create an interior shadow, include the inset keyword

box-shadow: inset color offsetX offsetY blur spread;

•	 To create multiple shadows place them in a comma-separated list:

box-shadow: shadow1, shadow2, …;

where shadow1, shadow2, and so on are definitions for individual shadows with the 
first shadows listed displayed on top of subsequent shadows.

One application of the spread parameter is to create a visual effect in which the 
object appears to be surrounded by a halo. This is achieved by setting the shadow 
offsets to 0 pixels while making the shadow larger than the page object itself. Kevin 
suggests that you use this technique to add a green halo to the aside element.

To increase the shadow size:
w	 1.	 Return to the tb_visual1.css file in your editor and go to the Aside Styles 

section.

w	 2.	 Within the style rule for the aside element, insert the following style:

box-shadow: rgba(51, 91, 51, 0.4) 0px 0px 20px 10px;

Figure 4–30 highlights the style to add a halo to the aside element.

Figure 4–30	 Creating a spreading shadow

semi-transparent 
green shadow

zero shadow offset 
in the horizontal and 
vertical direction

shadow is 10 pixels 
wider and taller 
than the object

20-pixel blur

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 311

Figure 4–31	 Aside element with glowing effect

green halo added 
around aside box

w	 3.	 Save your changes and reload tb_komatsu.html in your browser. Figure 4–31 
shows the revised appearance of the aside element with the glowing green 
shadow.

© imtmphoto/Shutterstock.com

IN
SI
G
H
T

Creating a Reflection

WebKit, the rendering engine for Safari and Google Chrome, includes support for 
adding reflections to page objects through the following property

-webkit-box-reflect: direction offset mask-box-image;

where direction is the placement of the reflection using the keywords above, 
below, left, or right; offset is the distance of the reflection from the edge of 
the element box, and mask-box-image is an image that can be used to overlay the 
reflection. For example, the following style rule creates a reflection that is 10 pixels 
below the inline image:

img { 
   -webkit-box-reflect: below 10px; 
}

There is no equivalent reflect property in the official W3C CSS specifications. Before 
using the reflect property, you should view the current browser support for the 
-webkit-box-reflect property at caniuse.com.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 312

Applying a Color Gradient
So far you have worked with backgrounds consisting of a single color, though that 
color can be augmented through the use of drop shadows. Another way to modify the 
background color is through a color gradient in which one color gradually blends 
into another color or fades away if transparent colors are used. CSS supports linear 
gradients and radial gradients.

Creating a Linear Gradient
A linear gradient is a color gradient in which the background color transitions from a 
starting color to an ending color along a straight line. Linear gradients are created using 
the linear-gradient function

linear-gradient(color1, color2, …)

where color1, color2, and so on are the colors that blend into one another starting 
from color1, through color2, and onto the last color listed. The default direction for 
a linear color gradient is vertical, starting from the top of the object and moving to the 
bottom. 

Gradients are treated like background images and thus can be used with any 
CSS property that accepts an image such as the background, background-image, 
and list-style-image properties. For example, to create a linear gradient as a 
background for the page body, you could apply the following style rule:

body { 
   background: linear-gradient(red, yellow, blue); 
}

Figure 4–32 shows the appearance of this vertical gradient as the background color 
transitions gradually from red down to yellow and then from yellow down to blue.

When using multiple 
backgrounds, gradients 
can be combined with solid 
colors and background 
images to create interesting 
visual effects; one gradient 
can also be overlaid on top 
of another.

Figure 4–32	 Linear gradient with three colors

vertical g
rad

ient

linear-gradient(red, yellow, blue)

To change from the default vertical direction, you add a direction value to the 
linear-gradient function

linear-gradient(direction, color1, color2, …)

where direction is the direction of the gradient using keywords or angles. Direction 
keywords are written in the form to position where position is either a side of the 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 313

object or a corner. For example the following linear gradient moves in a straight line to 
the left edge of the object blending from red to yellow to blue:

background: linear-gradient(to left, red, yellow, blue);

To move toward the corner, include both corner edges. The following style moves the 
gradient in the direction of the object’s bottom right corner:

background: linear-gradient(to bottom right, red, yellow, blue);

To move in a direction other than a side or corner, you can express the direction 
using an angle value. Angles are measured in degrees with 0deg equal to to top, 
90deg equal to to right, 180deg equal to to bottom, and 270deg equal to to left 
(see Figure 4–33.)

For square objects, a 
direction of 45deg is 
equivalent to a direction of 
to right top.

Figure 4–33	 Linear gradient directions

0deg 

90deg 

180deg 

270deg 

45deg 

135deg 225deg 

315deg 

to top 

to right 

to bottom 

to left 

For example, the following gradient points at a 60 degree angle:

background: linear-gradient(60deg, red, yellow, blue);

Figure 4–34 shows other examples of linear gradients moving in different directions 
using both syntaxes.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 314

IN
SI
G
H
T

Transparency and Gradients

Interesting gradient effects can be achieved using transparent colors so that the 
background color gradually fades away as it moves in the direction of the gradient. For 
example, the following style creates a linear gradient that gradually fades away from its 
initial solid red color:

linear-gradient(rgba(255, 0, 0, 1), rgba(255, 0, 0, 0))

Note that since the final color is completely transparent it will adopt the background 
color of the parent element.

You can also use gradients to create background images that appear to fade by 
using multiple backgrounds in which the gradient appears on top of an image. For 
example, the following background style creates a fading background using the 
back.png image file:

background: linear-gradient(rgb(255, 255, 255, 0), rgb(255, 
255, 255, 1)),url(back.png));

When rendered by the browser, the background image will start as solid but gradually 
fade to white as the linear gradient proceeds through the element background.

Figure 4–34	 Directions of linear gradients

linear-gradient(to left bottom, red, yellow, blue)

linear-gradient(300deg, red, yellow, blue)

linear-gradient(-200deg, red, yellow, blue)

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 315

Note that the degree values can be negative in which case the direction is pointed 
counter-clockwise around the circle shown in Figure 4–33. A negative angle of –45deg, 
for example, would be equivalent to a positive angle of 315deg, an angle of –200deg 
would be equal to 160deg, and so forth.

Gradients and Color Stops
The colors specified in a gradient are evenly distributed so that the following gradient 
starts with a solid red, solid green appears halfway through the gradient, and finishes 
with solid blue: 

background: linear-gradient(red, green, blue);

To change how the colors are distributed, you define color stops, which represent 
the point at which the specified color stops and the transition to the next color begins. 
The linear-gradient function using color stops has the general form

linear-gradient(direction, color-stop1, color-stop2, …)

where color-stop1, color-stop2, and so on are the colors and their stopping 
positions within the gradient. Stopping positions can be entered using any of the CSS 
units of measurement. For example, the following gradient starts with solid red up 
until 50 pixels from the starting point, red blends to solid green stopping at 60 pixels 
from the starting point and then blends into solid blue 80 pixels from the start. After 
80 pixels, the gradient will remain solid blue to the end of the background.

linear-gradient(red 50px, green 60px, blue 80px)

Similarly, the following style rule sets the color stops using percentages with solid 
red for the first 25% of the background, transitioning to solid green from 25% to 
75% of the background, and then transitioning to solid blue from 75% to 95% of the 
background size. From that point to the end, the background remains solid blue.

linear-gradient(red 25%, green 75%, blue 95%)

Figure 4–35 shows an example of a linear gradient in which color stops are used to 
create a narrow strip of yellow within a background of red blended into blue.

You can create your own 
linear gradients using the 
demo_linear.html file from 
the html04 c demo folder.

TRY IT

Figure 4–35	 Linear gradient color stops

solid red (start to 25%)

red to blue (25% to 45%)

blue to red (51% to 75%)

linear-gradient(red 25%, blue 45%, yellow 49%, blue 51%, red 75%)

solid red (75% to end)

blue to yellow to blue 
(45% to 49% to 51%)

Kevin suggests you use a linear gradient that transitions from light green to dark green 
as the background for the page footer. 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 316

To apply a linear gradient:
w	 1.	 Return to the tb_visual1.css file in your editor and go to the Footer Styles 

section.

w	 2.	 Insert the following style rule for the footer element:

footer { 
   background: linear-gradient(345deg, rgb(172, 232, 172),  
                                       rgb(21, 35, 21) 80%); 
}

Figure 4–36 highlights the style to create the linear gradient.

�nal color is 
dark green

initial color 
is light green

gradient is 
pointed at a 
345° angle

background is 
dark green from 
80% to the end

Figure 4–36	 Applying a linear gradient

end of gradient

start of gradient

Figure 4–37	 Page footer with linear gradient background

w	 3.	 Save your changes and reload tb_komatsu.html in your browser. Figure 4–37 
shows the revised appearance of the page footer with a linear gradient.

The other color gradient supported in CSS is a radial gradient. You will explore how 
to create radial gradients now.

Creating a Radial Gradient
A radial gradient is a color gradient that starts from a central point and proceeds 
outward in a series of concentric circles or ellipses. Figure 4–38 shows an example of a 
radial gradient consisting of a series of concentric ellipses radiating from a central red 
color to an ending blue color.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 317

Figure 4–38	 A radial gradient of three colors

radial-gradient(red, yellow, blue)

Radial gradients are created using the following radial-gradient function.

radial-gradient(shape size at position, color-stop1,  
color-stop2, …)

The shape value defines the shape of the gradient and is either ellipse (the default) 
or circle. The size value defines the extent of the gradient as it radiates outward and 
can be expressed with a CSS unit of measure, a percentage of the background’s width 
and height, or with one of the following keywords:

•	farthest-corner	� (the default) Gradient extends to the background corner farthest 
from the gradient’s center.

•	farthest-side	� Gradient extends to background side farthest from the gradient’s 
center.

•	closest-corner	 Gradient extends to the nearest background corner.
•	closest-side	� Gradient extends to the background side closest to the 

gradient’s center.

The position defines where the gradient radiates from and can be expressed in 
coordinates using pixels, percentages of the element’s width and height, or with the 
keywords: left, center, right, top, and bottom. The default is to place the gradient 
within the center of the background. 

Finally the color-stop1, color-stop2 … values are the colors and their stopping 
positions within the gradient and have the same interpretation used for linear gradients 
except they mark stopping points as the gradient radiates outward. Note that the 
color stops are optional, just as they are in linear gradients. For example the following 
function defines a circular gradient radiating from the horizontal and vertical center of 
the background through the colors red, yellow, and blue: 

radial-gradient(circle closest-corner at center center,  
                red, yellow, blue)

The gradient ends when it reaches the closest background corner. Anything outside of 
the gradient will be a solid blue.

Figure 4–39 shows other examples of the different effects that can be accomplished 
using the radial-gradient function. Note that when parameters of the radial-gradient 
function are omitted they take their default values.

You can explore how 
to create your own 
radial gradients using the 
demo_radial.html file from 
the html04 c demo folder.

TRY IT

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 318

Kevin would like you to apply a radial gradient to the background of the aside 
element. The gradient will start from a white center blending into to a medium green 
and then into a darker shade of green.

Figure 4–39	 Examples of radial gradients

radial-gradient(circle closest-side, red, yellow, blue)

radial-gradient(120px 180px at 25% 75%, red, yellow, blue)

radial-gradient(at right, red 46%, yellow 50%, blue 54%)

To apply a radial gradient:
w	 1.	 Return to the tb_visual1.css file in your editor and go to the Aside Styles 

section.

w	 2.	 Add the following style to the style rule for the aside element:

background:  
radial-gradient(white, rgb(151, 222, 151),  
                rgb(81, 125, 81));

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 319

Note that this style supersedes the previous background style created in the 
tb_styles1.css style sheet. Figure 4–40 highlights the code to create the radial 
gradient.

w	 3.	 Save your changes and reload tb_komatsu.html in your browser. Figure 4–41 
shows the radial gradient within the aside element.

Figure 4–40	 Applying a radial gradient

Figure 4–41	 Aside element with radial gradient background

color at the center

color in the middle

outside color

center of 
gradient

end of 
gradient

© imtmphoto/Shutterstock.com

Kevin likes the effect of the radial gradient on the aside element and feels that it 
works well with the glowing effect you added earlier.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 320

Repeating a Gradient
As you add more color stops, the gradient function can become unwieldy and overly 
complicated. One alternative is to repeat the gradient design. You can repeat linear and 
radial gradients using the functions

repeating-linear-gradient(params) 
repeating-radial-gradient(params)

where params are the parameters of the linear-gradient or the radial-gradient 
functions already discussed. The only requirement for a repeating gradient is that a 
stopping position is required for the last color in the list that is less than the size of the 
object background. Once the last color in the color list is reached, the gradient starts 
over again. For example, the following function repeats a vertical gradient starting with 
white transitioning to black, transitioning back to white at 10% of the height of the 
object, and then repeating that pattern each time it reaches the next 10% of the height 
of the object:

repeating-linear-gradient(white, black 10%)

Figure 4–42 shows some other examples of repeating linear and radial gradients.

You can create your own 
repeating gradients using 
the demo_repeat_linear.
html and demo_repeat_
radial.html files from the 
html04 c demo folder.

TRY IT

IN
SI
G
H
T

Gradients and Browser Extensions

The gradient functions were heavily revised as they went from being browser-specific 
properties to the final syntax approved by the W3C. If you work with older browsers, 
you may need to accommodate their versions of these gradient functions. For example, 
the following linear gradient that blends red to blue going in the direction to the right 
edge of the background

linear-gradient(to right, red, blue)

would be expressed using the old WebKit gradient function as:

-webkit-gradient(linear, left, right, from(red), to(blue))

Other older versions of browsers such as Mozilla, Internet Explorer, and Opera have 
their own gradient functions with different syntax. You can study these functions using 
the online support at the browser websites or doing a search on the Web for CSS 
gradient functions.

Note that not all browser extensions support the same types of gradients, which 
means that it is difficult and sometimes impossible to duplicate a particular gradient 
background for every browser. Thus, you should not make gradients an essential 
feature of your design if you want to be compatible with older browsers.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 321

The last visual effect that Kevin wants you to add to the Komatsu Family page is to 
make the figure box semi-transparent so that it blends in better with its background.

Figure 4–42	 Repeating a gradient

repeating-linear-gradient(to left bottom, red 5%, yellow 18%, blue 20%) 

repeating-radial-gradient(circle, red 10%, yellow 25%, blue 30%) 

R
E
FE

R
E
N
C
E

Creating a Gradient

•	 To create a linear gradient, use the function

linear-gradient(direction, color-stop1, color-stop2, …)

where direction is the direction of the gradient and color-stop1, color-stop2, 
and so on are the colors and their stopping positions within the gradient.

•	 To create a radial gradient, use the function

radial-gradient(shape size at position, color-stop1,  
color-stop2, …)

where shape defines the shape of the gradient, size sets the gradient size, position 
places the center of the gradient, and color-stop1, color-stop2, and so on are the 
colors and their stopping positions within the gradient.

•	 To repeat a gradient, use the functions

repeating-linear-gradient(params) 
repeating-radial-gradient(params)

where params are the parameters of the linear-gradient or the radial-gradient 
functions.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 322

Creating Semi-Transparent Objects
In Tutorial 2, you learned that you could create semi-transparent colors that blend with 
the background color. You can also create whole page objects that are semi-transparent 
using the following opacity property:

opacity: value;

where value ranges from 0 (completely transparent) up to 1 (completely opaque). 
For example, the following style rule makes the page body 70% opaque, allowing a bit 
of the browser window background to filter through

body { 
   opacity: 0.7; 
}

R
E
FE

R
E
N
C
E

Making a Semi-transparent Object

•	 To make a page object semi-transparent, use the property

opacity: value;

where value ranges from 0 (completely transparent) up to 1 (completely opaque).

Kevin suggests that you set the opacity of the figure box to 55% in order to blend the 
figure box with the paper texture background you added to the article element.

IN
SI
G
H
T

Gradients as Images

Gradients can be treated as images and thus can be tiled within a background or 
used with the border-image style. For example, the following style rule creates a 
background of radial gradients repeated in the horizontal and vertical directions:

background-size: 50% 50%; 
background-image-repeat: repeat; 
background-image: radial-gradient(circle, yellow, blue);

Note that setting the background size to 50% 50% sets the width and height of 
each radial gradient to half of the width and height of the object. By setting the 
background-image-repeat style to repeat, the entire background is filled with 
radial gradients, resulting in two rows of two gradient images.

The following code shows how to use a linear gradient as a border image:

border: 30px solid transparent; 
border-image: (linear-gradient(yellow, blue)), 15);

with the image file replaced by the linear-gradient() function. The gradient is generated 
for the entire object but is trimmed with a slice width of 15px to form the gradient 
border.

You can explore gradients 
as backgrounds in the 
demo_linear_image.html 
and demo_radial_image.
html files in the html04 c 
demo folder

TRY IT

You can explore 
gradient borders using the 
demo_gradient_border.
html file in the html04 c 
demo folder.

TRY IT

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 323

To create a semi-transparent object:
w	 1.	 Return to the tb_visual1.css file in your editor and scroll up to the Figure Box 

Styles section.

w	 2.	 Within the style rule for the figure element, insert the following style:

opacity: 0.55;

Figure 4–43 highlights the code to make the figure box semi-transparent.

Figure 4–43	 Creating a semi-transparent object

sets the opacity of 
the �gure box to 55%

w	 3.	 Save your changes and reload tb_komatsu.html in your browser. Figure 4–44 
displays the semi-transparent figure box with part of the background paper 
texture showing through.

Figure 4–44	 Changing the opacity of the figure box

part of the 
background 
page texture 
shows through
in the �gure box

© imtmphoto/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 324

At this point you’ve completed your work on the design of the Komatsu Family page. 
In the next session, you will learn how to use CSS to apply transformations and filters. 
You will also learn how to work with image maps to create linkable images. Close any 
open files now.

PR
O
SK

IL
LS

Written Communication: How to Use Visual Effects

The CSS visual styles can add striking effects to your website, but they might not be 
supported by older browsers. This leaves you with the dilemma of when and how to 
use these styles. Here are some tips to keep in mind when applying visual effects to 
your website:

•	 Because not every user will be able to see a particular visual effect, design your 
page so that it is still readable to users with or without the effect.

•	 Be aware that some visual effects that flicker or produce strobe-like effects can 
cause discomfort and even photo-epileptic seizures in susceptible individuals. 
Avoid clashing color combinations and optical illusions that can cause these 
conditions.

•	 If you need to create a cross-browser solution, use browser extensions and be 
aware that the browser extension syntax might not match the syntax of the CSS 
standard.

•	 Consider using graphic images to create your visual effects. For example, rather 
than using the CSS gradient functions, create a background image file containing 
the gradient effect of your choice.

No matter how you employ visual effects on your website, remember that the most 
important part of your site is its content. Do not let visual effects distract from your 
content and message.

R
E
V
IE

W

Session 4.2 Quick Check

	 1.	 Provide a style rule to create a red text shadow that is 5 pixels to the right and 
10 pixels up from the text with a blur of 15 pixels.
a.	 text-shadow: red 5px 10px 15px;
b.	 text-shadow: red -5px 10px 15px;
c.	 text-shadow: red 5px -10px 15px;
d.	 text-shadow: red -5px -10px 15px;

	 2.	 Provide a style rule to add a blue drop shadow to a page object that is 2 pixels 
to the left, 5 pixels up and with a blur radius of 8 pixels.
a.	 box-shadow: blue 2px 5px 8px;
b.	 box-shadow: blue -2px 5px 8px;
c.	 box-shadow: blue 2px -5px 8px;
d.	 box-shadow: blue -2px -5px 8px;

	 3.	 Provide a style to add a green interior drop shadow that is 2 pixels to the left, 
5 pixels up and a blur radius of 8 pixels.
a.	 box-shadow: green 2px 5px 8px;
b.	 box-shadow: green 2px 5px 8px inset;
c.	 box-shadow: green -2px -5px 8px;
d.	 box-shadow: green -2px -5px 8px inset;

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 325

	 4.	 Provide a style rule to create a red halo effect with no shadow offset, a blur of 
15 pixels and a shadow size that is 10 pixels larger than the element.
a.	 box-shadow: red 0px 0px 15px 10px;
b.	 box-shadow: red 0px 0px 10px 15px;
c.	 box-shadow: red 15px 10px 0px 0px;
d.	 box-shadow: red 10px 15p x0px 0px;

	 5.	 Provide code for a linear gradient that moves in the direction of the lower-left 
corner of the element through the colors: orange, yellow, and green.
a.	 linear-gradient(left bottom, orange, yellow, green)
b.	 linear-gradient(bottom left, orange, yellow, green)
c.	 linear-gradient(to left bottom, orange, yellow, green)
d.	 linear-gradient(from right top, orange, yellow, green)

	 6.	 Create a linear gradient that moves at a 15 degree angle with the color orange 
stopping at 10% of the background, yellow stopping at 50%, and green 
stopping at 55%.
a.	 linear-gradient(15deg, 10% orange, 50% yellow, 55% green)
b.	 linear-gradient(15deg, orange 10%, yellow 50%, green 55%)
c.	 linear-gradient(15deg, orange 10% yellow 50% green 55%)
d.	 linear-gradient(195deg, 10% orange, 50% yellow, 55% green)

	 7.	 Create a radial gradient that extends to the farthest background corner, going 
through the colors orange, yellow, and green.
a.	 radial(farthest-corner, orange, yellow, green)
b.	 radial-gradient(from farthest-corner, orange, yellow, green)
c.	 radial-gradient(farthest-corner, orange, yellow, green)
d.	 radial(farthest-corner, orange, yellow, green)

	 8.	 Create a repeating circular gradient of orange, yellow, and green bands 
centered at the right edge of the element with the colors stopped at 10%, 20%, 
and 30% respectively.
a.	 radial-gradient(circle at right center, orange 10%, yellow 

20%, green 30%)
b.	 radial-gradient-repeat(circle at right center, orange 10%, 

yellow 20%, green 30%)
c.	 radial-gradient-repeat(circle at right center, orange 10% 

10%, yellow 20% 20%, green 30% 30%)
d.	 repeating-radial-gradient(circle at right center, orange 

10%, yellow 20%, green 30%)
	 9.	 Create a style rule to set the opacity to 75%.

a.	 transparency: 25%;
b.	 transparency: 0.25;
c.	 opacity: 75%;
d.	 transform: opacity(0.75);

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 326

Session 4.3 Visual Overview:

Logo Design Studio Pro; Source: wiki Media;  
© imtmphoto/Shutterstock.com

The transform property 
is used to rotate, rescale, 
skew, or shift a page 
object.

The filter property is 
used to modify an 
object's color, brightness, 
contrast, or general 
appearance.

The rotateX and translateY 
functions rotate the object 30° 
around the x-axis and move it 
50 pixels toward the viewer.

The sepia function 
displays the object 
in a sepia tone.

The scale function 
reduces the object to 
90% of its default size.

The rotateZ and 
rotateY functions 
rotate the object 30° 
around the z-axis and 
60° around the 
y-axis.

The grayscale function 
displays the object in 
grayscale.

The saturate and contrast 
functions increase the 
color saturation by 50% 
and increase the color 
contrast by 20%.

Perspective is used in 
3D transformations to 
measure how rapidly 
objects appear to recede 
from or approach the 
viewer.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 327

Transformations and Filters

The image uses a 
sepia tone and is 
rotated around 
the x-axis.

This shows the 
image in grayscale 
and rotated around 
the z and y axes.

This shows a rescaled 
image with increased 
color saturation and 
contrast; it is rotated 
around the y-axis.

Source: Design Studio Pro; Source: Wikimedia Commons; imtmphoto/Shutterstock.com 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 328

Transforming Page Objects
In this session, you will examine some CSS styles that can be used to transform the 
appearance of page objects through rotation, rescaling, and translation in space. To 
accomplish these transformations, you’ll use the following transform property:

transform: effect(params);

where effect is a transformation function that will be applied to the page object and 
params are any parameters required by the function. Figure 4–45 describes some of 
the CSS transformation functions.

Figure 4–45	 CSS 2D transformation functions

Function Description
translate(offX, offY) Moves the object offX pixels to the right and offY pixels down; 

negative values move the object to the left and up

translateX(offX) Moves the object offX pixels to the right; negative values move the 
object to the left

translateY(offY) Moves the object offY pixels down; negative values move the 
object up

scale(x, y) Resizes the object by a factor of x horizontally and a factor of y 
vertically

scaleX(x) Resizes the object by a factor of x horizontally

scaleY(y) Resizes the object by a factor of y horizontally

skew(angleX, angleY) Skews the object by angleX degrees horizontally and angleY 
degrees vertically

skewX(angleX) Skews the object by angleX degrees horizontally

skewY(angleY) Skews the object by angleY degrees vertically

rotate(angle) Rotates the object by angle degrees clockwise; negative values 
rotate the object counter-clockwise

matrix(n, n, n, n, n, n) Applies a 2D transformation based on a matrix of six values

For example, to rotate an object 30° clockwise, you would apply the following style 
using the rotate function:

transform: rotate(30deg);

To rotate an object counter-clockwise, you would use a negative value for the angle 
of rotation. Thus, the following style rotates an object 60° counter-clockwise:

transform: rotate(-60deg);

Figure 4–46 displays the effects of other transformation functions on a sample 
page image.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 329

Figure 4–46	 Examples of CSS Transformations

transform: translate(40px, -35px);

transform: skew(30deg, 20deg);

transform: scale(0.8, 0.5);

transform: rotate(-90deg);

© imtmphoto/Shutterstock.com

Transforming an object has no impact on the page layout. All of the other page 
objects will retain their original positions.

You can apply multiple transformations by placing the effect functions in a 
space-separated list. In this situation, transformations are applied in the order listed. 
For example, the following style first rotates the object 30° clockwise and then shifts it 
20 pixels to the right.

transform: rotate(30deg) translateX(20px);

You can explore different 
2D CSS transformations 
using the demo pages 
demo_transform2d.html 
and demo_transform2dm.
html from the html04 
c demo folder.

TRY IT

R
E
FE

R
E
N
C
E

Applying a CSS Transformation

•	 To apply a transformation to a page object, use the property

transform: effect(params);

where effect is a transformation function that will be applied to the page object and 
params are any parameters required by the function.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 330

The website has pages with photos for each individual in the Komatsu family. Kevin 
wants you to work on transforming the photos on Genta Komatsu’s page. Kevin has already 
created the page content and a layout and typographical style sheet but wants you to work 
on the style sheet containing the visual effects. Open the Genta Komatsu page now.

© mtmphoto/Shutterstock.com

To open the Genta Komatsu page:
w	 1.	 Use your editor to open the tb_genta_txt.html and tb_visual2_txt.css 

files from the html04  tutorial folder. Enter your name and the date in 
the comment section of both files and save them as tb_genta.html and 
tb_visual2.css respectively.

w	 2.	 Return to the tb_genta.html file in your editor. Within the document head, 
insert the following link elements to link the page to the tb_reset.css,  
tb_styles2.css, and tb_visual2.css style sheet files.

<link href="tb_reset.css" rel="stylesheet" /> 
<link href="tb_styles2.css" rel="stylesheet" /> 
<link href="tb_visual2.css" rel="stylesheet" />

w	 3.	 Take some time to scroll through the contents of the file. Note that the document 
content consists mainly of three figure boxes each containing a different photo of 
Genta Komatsu.

w	 4.	 Close the file, saving your changes.

w	 5.	 Open the tb_genta.html file in your browser. Figure 4–47 shows the initial 
layout and design of the page content.

Figure 4–47	 Initial design of the Genta Komatsu page

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 331

Kevin feels that the page lacks visual interest. He suggests you transform the bottom 
row of photos by rotating them and shifting them upward to partially cover the main 
photo, creating a collage-style layout. Apply the transform property now to make 
these changes.

To apply the transform style:
w	 1.	 Go to the tb_visual2.css file in your editor and scroll as needed to the 

Transformation Styles section.

w	 2.	 Insert the following style rule to rotate the figure2 figure box 40°  
counter-clockwise, reduce it to 80% of its former size, and shift it 20 pixels to 
the right and 100 pixels up. Also, add a style to create a drop shadow using 
the code that follows:

figure#figure2 { 
   transform: rotate(-40deg) scale(0.8, 0.8)  
              translate(20px, -100px); 
   box-shadow: rgb(101, 101, 101) 10px 10px 25px; 
}

w	 3.	 Add the following style rule to rotate the figure3 figure box 10° clockwise, 
resize it to 90% of its current size, and shift it 120 pixels upward. Also add a 
drop shadow to the figure box using the following style rule:

figure#figure3 { 
   transform: rotate(10deg) scale(0.9, 0.9)  
              translateY(-120px); 
   box-shadow: rgb(101, 101, 101) 10px -10px 25px; 
}

Figure 4–48 describes the newly added style rules.

Figure 4–48	 Transforming the figure boxes

rotates the box 40° 
counter-clockwise

rotates the box 10° 
clockwise

moves the box 120 
pixels up

reduces the box size to 
90% of its original size

reduces the box size to 
80% of its original size

moves the box 20 pixels to 
the right and 100 pixels up

w	 4.	 Save your changes to the file and then reload tb_genta.html in your browser. 
Figure 4–49 shows the revised design of the page’s content.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 332

The transformations you applied rotated the figure boxes along a two-dimensional 
or 2D space that consisted of a horizontal and vertical axis. CSS also supports 
transformations that operate in a three-dimensional or 3D space.

Figure 4–49	 Viewing the transformed figure boxes

box rotated 40° 
counter-clockwise, 
rescaled and shifted 
up and to the right

box rotated 10° 
clockwise, rescaled 
and shifted up©imtmphoto/Shutterstock.com

IN
SI
G
H
T

Setting the Transformation Origin

By default, transformations originate in the center of the page object. When an object 
is rotated, for example, it rotates the specified number of degrees around its horizontal 
and vertical center. If you wish to rotate around a different point, such as the object’s 
left edge or bottom-right corner, you can modify the transformation origin using the 
following transform-origin property:

transform-origin: horizontal vertical;

where horizontal and vertical specify the location of the origin of the 
transformation. For example, the following set of style rules used in conjunction will 
rotate an object 30 degrees clockwise arounds its bottom-right corner:

transform: rotate(30deg); 
transform-origin: right bottom;

You can explore the 
transform-origin 
property in the demo_
transform2d.html and 
demo_transform2dm.html 
files from the html04 c 
demo folder.

TRY IT

Transformations in Three Dimensions
A 3D transformation is a change that involves three spatial axes: an x-axis that runs 
horizontally across the page, a y-axis that runs vertically, and a z-axis that comes 
straight out of the page toward and away from the viewer. Positive values along the 
axes are to the right, down, and toward the reader; negative values are to the left, up, 
and away from the reader (see Figure 4–50.)

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 333

For example the following style rotates the object 60° around the x-axis, making it appear 
as if the top of the object is farther from the viewer and the bottom is closer to the viewer.

transform: rotateX(60deg);

To truly create the illusion of 3D space however, you also need to set the perspective 
of that space.

Understanding Perspective
Perspective is a measure of how rapidly objects appear to recede from the viewer 
in a 3D space. You can think of perspective in terms of a pair of railroad tracks that 
appear to converge at a point, known as the vanishing point. A smaller perspective 

View 3D rotations and 
perspective values with the 
demo_3dview.html file in 
the html04 c demo folder.

TRY IT

Function Description
translate3d(offX, offY, 
offZ)

Shifts the object offX pixels horizontally, offY pixels vertically, and 
offZ pixels along the z-axis

translateX(offX)

translateY(offY)

translateZ(offZ)

Shifts the object offX, offY, or offZ pixels along the specified axis

rotate3d(x, y, z, angle) Rotates the object around the three-dimensional vector (x, y, z) at a 
direction of angle

rotateX(angle)

rotateY(angle)

rotateZ(angle)

Rotates the object around the specified axis at a direction of angle

scale3d(x, y, z) Resizes the object by a factor of x horizontally, a factor of y 
vertically, and a factor of z along the z-axis

scaleX(x)

scaleY(y)

scaleZ(z)

Resizes the object by a factor of x, y, or z along the specified axis

perspective(p) Sets the size of the perspective effect to p

matrix3d(n, n, …, n) Applies a 3D transformation based on a matrix of 16 values

Figure 4–51	 CSS 3D transformation functions

Figure 4–50	 A page object viewed in 3D

y-axis—

—

—

+

+

+
x-axis

z-a
xis

© imtmphoto/Shutterstock.com

With the addition of a third spatial axis, you can create effects in which an object 
appears to zoom toward and away from users, or to rotate in three dimensional space. 
Figure 4–51 describes the 3D transformations supported by CSS.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 334

value causes the tracks to converge over an apparently shorter distance while a larger 
perspective value causes the tracks to appear to go farther before converging. 

You define the perspective of a 3D space using the perspective property

perspective: value;

where value is a positive value that measures the strength of the perspective effect 
with lower values resulting in more extreme distortion. For example, the following style 
rule sets the perspective of the space within the div element to 400 pixels.

div { 
   perspective: 400px; 
}

Any 3D transformations applied to children of that div element will assume 
a perspective value of 400 pixels. Perspective can also be set for individual 
transformations using the following perspective function:

transform: perspective(value);

Thus, the following style rule sets the perspective only for the figure1 figure box 
within the div element as the figure box is rotated 60° around the x-axis.

div figure#figure1 { 
   transform: perspective(400px) rotateX(60deg); 
}

You use the perspective property when you have several transformed objects 
within a container that all need to appear within the same 3D space with a common 
perspective. You use the perspective function when you have only one object 
that needs to be transformed in the 3D space. Figure 4–52 compares two different 
perspective values for an object rotated 60° around the x-axis in 3D space.

Note that the smaller perspective value results in a more extreme distortion as the 
top of the object appears to more quickly recede from the viewer while the bottom 
appears to approach the viewer more rapidly.

Explore multiple 3D 
transformations with the 
demo_transform3dm.html 
file in the html04 c demo 
folder.

TRY IT

R
E
FE

R
E
N
C
E

Setting Perspective in 3D

•	 To set the perspective for a container and the objects it contains, use the property

perspective: value;

where value is a positive value that measures the strength of the perspective effect 
with lower values resulting in more extreme distortion.

•	 To set the perspective of a single object or to set the perspective individually of 
objects within a group of objects, use the perspective function

transform: perspective(value);

Figure 4–52	 Transformations in three dimensions

transform: perspective(150px) rotateX(60deg); transform: perspective(300px) 
rotateX(60deg);

© imtmphoto/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 335

To apply the 3D transformations:
w	 1.	 Return to the tb_visual2.css file in your editor.

w	 2.	 Directly after the Transformation Styles comment, insert the following style 
rule to set the perspective of the 3D space of the article element.

article { 
   perspective: 600px; 
}

w	 3.	 Next, insert the following style rule for the figure1 figure box to rotate it 30° 
around the x-axis, shift it 50 pixels along the z-axis, and add a drop shadow.

figure#figure1 { 
   transform: rotateX(30deg) translateZ(50px); 
   box-shadow: rgb(51, 51, 51) 0px 10px 25px; 
}

w	 4.	 Add the following functions to the transform property for the figure2 
figure box to rotate the box 30° around the z-axis and 60° around the y-axis:
rotateZ(30deg) rotateY(60deg)

w	 5.	 Add the following functions to the transform property for the figure3 
figure box to rotate the box counter-clockwise 70° around the y-axis and 
shift it 20 pixels away from the user along the z-axis:
rotateY(-70deg) translateZ(-20px)

Figure 4–53 highlights the 3D transformations styles in the style sheet.

Figure 4–53	 Applying 3D transformations

sets the perspective 
of the article space 
to 600 pixels

rotates the box 30° 
around the z-axis and 
60° around the y-axis

rotates the box 30° 
around the x-axis 
and shifts it forward 
50 pixels along the 
z-axis

rotates the box 70° 
counter-clockwise 
around the y-axis and 
shifts it backward 
20 pixels along the 
z-axis

adds a box shadow 
on the box’s bottom 
border

Add a 3D transformation to each of the three figure boxes in the Genta Komatsu page, 
making it appear that they have been rotated in three dimensional space along the x-, y-, and 
z-axes, setting the perspective value to 600 pixels for all of the objects in the page article.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 336

You have only scratched the surface of what can be done using transformations. 
For example, you can create a mirror image of an object by rotating it 180° around the 
y-axis. You can create virtual 3D objects like cubes that can be viewed from any angle 
or spun. You are only limited by your imagination.

Figure 4–54	 Figure boxes in 3D space

image rotated 30° 
around the z-axis 
and 60° around the 
y-axis

image rotated 30° 
around the x-axis 
and moved forward 
50 pixels along the 
z-axis

image rotated 70° 
counter-clockwise 
around the y-axis and 
shifted backward 20 
pixels along the z-axis

© imtmphoto/Shutterstock.com

w	 6.	 Save your changes to the file and then reload tb_genta.html in your browser. 
Figure 4–54 shows the result of applying 3D transformations to each of the 
figure boxes on the page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 337

IN
SI
G
H
T

Managing a 3D Space

You might want to have several objects that coexist within the same 3D space. You can 
do this by creating a container for all those objects, allowing them to share a common 
3D perspective using the following transform-style property:

transform-style: type;

where type is either preserve-3d to preserve the 3D space for all nested elements 
or flat to allow the nested elements to exist within their own separate 3D spaces. For 
example, the following style rules will pass the same 3D space to all elements nested 
within the container, including any value assigned to the perspective property.

#container { 
   transform-style: preserve-3d; 
}

An object in a 3D space is considered to have a front and a back. The default behavior 
is to allow any text or images on the front to “bleed through” to the back (thus 
appearing in reverse when the object is rotated around the x or y axes.) You can turn 
off this feature setting the backface-visibility property to hidden, which prevents 
text and images on the front face of the object from appearing on the back face. 
Setting backface-visibility to visible restores the default.

Exploring CSS Filters
A final way to alter an object is through a CSS filter. Filters adjust how the browser 
renders an image, a background, or a border by modifying the object’s color, 
brightness, contrast, or general appearance. For example, a filter can be used to change 
a color image to grayscale, increase the image’s color saturation, or add a blurring 
effect. Filters are applied using the filter property

filter: effect(params);

where effect is a filter function and params are the parameters of the function. 
Figure 4–55 describes the different filter functions supported by most current  
browsers.

Explore managing multiple 
objects within a 3D space 
in the demo_preserve3d.
html, demo_cards.html, 
and demo_cube.html files 
from the html04  demo 
folder.

TRY IT

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 338

Function Description
blur(length) Applies a blur to the image where length defines the size of blur in pixels

brightness(value) Adjusts the brightness where values from 0 to 1 decrease the 
brightness and values greater than 1 increase the brightness

contrast(value) Adjusts the contrast where values from 0 to 1 decrease the contrast 
and values greater than 1 increase the contrast

drop-shadow(offsetX  
offsetY blur color) 

Adds a drop shadow to the image where offsetX and offsetY are 
horizontal and vertical distances of the shadow, blur is the shadow 
blurring, and color is the shadow color

grayscale(value) Displays the image in grayscale from 0, leaving the image unchanged, 
up to 1, displaying the image in complete grayscale

hue-rotate(angle) Adjusts the hue by angle in the color wheel where 0deg leaves the 
hue unchanged, 180deg displays the complimentary colors and 
360deg again leaves the hue unchanged

invert(value) Inverts the color from 0 (leaving the image unchanged), up to 1 
(completely inverting the colors)

opacity(value) Applies transparency to the image from 0 (making the image 
transparent), up to 1 (leaving the image opaque)

saturate(value) Adjusts the color saturation where values from 0 to 1 decrease the 
saturation and values greater than 1 increase the saturation

sepia(value) Displays the color in a sepia tone from 0 (leaving the image 
unchanged), up to 1 (image completely in sepia)

url(url) Loads an SVG filter file from url 

Figure 4–55	 CSS filter functions

Figure 4–56 shows the impact of some of the filter functions on a sample image.

Figure 4–56	 CSS filter examples

�lter: none; �lter: sepia(0.8); �lter: saturate(2.5);

�lter: blur(3px); �lter: hue-rotate(60deg); �lter: invert(0.9);

©imtmphoto/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 339

Filter functions can be combined in a space-separated list to create new effects. 
For example, the following style reduces the object’s color contrast and applies a 
sepia tone.

filter: contrast(75%) sepia(100%);

With multiple filter effects, the effects are applied in the order they are listed. Thus, a 
style in which the sepia effect is applied first followed by the contrast effect will result 
in a different image than if the order is reversed. 

Explore the CSS filter styles 
with the demo_filter.html 
file in the html04 c demo 
folder.

TRY IT

R
E
FE

R
E
N
C
E

Applying a CSS Filter

•	 To apply a CSS filter to a page object, use the property

filter: effect(params);

where effect is a filter function and params are the parameters of the function.

Kevin wants you to apply filters to the photos in the Genta Komatsu page. He wants 
a sepia tone applied to the first photo, a grayscale filter applied to the second photo, 
and a color enhancement applied to the third photo.

To apply the CSS filters:
w	 1.	 Return the tb_visual2.css file in your editor and go down to the Filter Styles 

section.

w	 2.	 Change the figure1 figure box to a sepia tone by adding the following 
style rule:

figure#figure1 { 
   filter: sepia(0.8); 
}

w	 3.	 Change the figure2 figure box to grayscale by adding the style rule:

figure#figure2  { 
   filter: grayscale(1); 
}

w	 4.	 Increase the saturation and contrast for the figure3 figure box with the style 
rule:

figure#figure3  { 
   filter: saturate(1.5) contrast(1.2); 
}

Figure 4–57 highlights the CSS filters added to the style sheet.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 340

w	 5.	 Save your changes to the file and then reload tb_genta.html in your browser. 
Figure 4–58 shows the final design of the Genta Komatsu page.

Figure 4–57	 Applying the filter property

displays the 
figure1 figure 
box in sepia

provides more 
cross-browser 
support by adding 
the WebKit 
browser extension

increases the color 
saturation and 
contrast in the 
figure3 figure box

displays the 
figure2 figure 
box in grayscale

Figure 4–58	 Filters applied to the web page photos

grayscale

sepia tone

color saturation and 
contrast increased

© imtmphoto/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 341

IN
SI
G
H
T

IN
SI
G
H
T

Box Shadows and Drop Shadows

You may wonder why you need a drop-shadow filter if you already have the  
box-shadow property. While they both can be used to add shadowing to a page 
object, one important difference is that the drop-shadow filter creates a shadow 
that traces the shape of the object, while the box-shadow property always applies 
a rectangular shadow. Another important difference is that you can only change the 
size of a shadow using the box-shadow property. Thus, if you want to apply a drop 
shadow around objects such as text or a circular shape, use the drop-shadow filter. 
However, if you need to create an internal shadow or change the size of the drop 
shadow shadow, use the box-shadow property.

You’ve completed your redesign of the Genta Komatsu page by adding 
transformation and filter effects to make a more visually striking page. Kevin now wants 
to return to the page for the Komatsu family. He wants you to edit the family portrait 
on the page so that individual pages like the Genta Komatsu page can be accessed 
by clicking the person’s face on the family portrait. You can create this effect using an 
image map.

Working with Image Maps
When you mark an inline image as a hyperlink, the entire image is linked to the 
same file; however, HTML also allows you to divide an image into different zones, or 
hotspots, which can then be linked to different URLs through information provided 
in an image map. HTML supports two kinds of image maps: client-side image maps 
and server-side image maps. A client-side image map is an image map that is defined 
within the web page and handled entirely by the web browser, while a server-side 
image map relies on a program running on the web server to create and administer the 
map. Generally client-side maps are easier to create and do not rely on a connection 
to the server in order to run.

Defining a Client-Side Image Map
Client-side image maps are defined with the following map element

<map name="text"> 
   hotspots 
</map>

where text is the name of the image map and hotspots are defined regions within 
an image that are linked to different URLs. Client-side image maps can be placed 
anywhere within the body of a web page because they are not actually displayed by 
browsers but are simply used as references for mapping the locations of the hotspots 
within the image. The most common practice is to place a map element below the 
corresponding inline image.

Each hotspot within the map element is defined using the following area element:

<area shape="shape" coords="coordinates"  
      href="url" alt="text" />

where shape is the shape of the hotspot region, coordinates are the list of points that 
define the boundaries of that region, url is the URL of the hypertext link, and text is 
alternate text displayed for non-graphical browsers. 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 342

Hotspots can be created as rectangles, circles, or polygons (multisided figures) 
using shape values of rect, circle, and poly respectively. A fourth possible shape 
value, default, represents the remaining area of the inline image not covered by any 
hotspots. There is no limit to the number of hotspots you can add to an image map. 

For rectangular hotspots, the shape and coords attributes have the general form:

shape="rect" coords="left,top,right,bottom" 

where left, top are the coordinates of the top-left corner of the rectangle and right, 
bottom are the coordinates of the bottom-right corner. Coordinates for hotspot shapes 
are measured in pixels and thus, the following attributes define a rectangular hotspot 
with the left-top corner at the coordinates (100, 20) and the right-bottom corner at 
(230, 220):

shape="rect" coords="100,20,230,220"

To determine the coordinates of a hotspot, you can use either a graphics program 
such as Adobe Photoshop or image map software that automatically generates the 
HTML code for the hotspots you define. Note that coordinates are always expressed 
relative to the top-left corner of the image, regardless of the position of the image on 
the page. For example, in Figure 4–59, the top-left corner of this rectangular hotspot is 
100 pixels right of the image’s left border and 20 pixels down from the top border. 

Do not overlap the 
hotspots to avoid 
confusing the user 
about which hotspot is 
associated with which URL.

Figure 4–59	 Defining a rectangular hotspot

(230, 220)

shape=“rect” coords=“100,20,230,220”

(100, 20)

©imtmphoto/Shutterstock.com

Circular hotspots are defined using the attributes

shape="circle" coords="x,y,radius"

where x and y are the coordinates of the center of the circle and radius is the circle’s 
radius. Figure 4–60 shows the coordinates for a circular hotspot where the center of the 
circle is located at the coordinates (160, 130) with a radius of 105 pixels.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 343

Figure 4–60	 Defining a circular hotspot

shape=“circle” coords=“160,130,105” 

105 pixels

(160, 130)

©imtmphoto/Shutterstock.com

Polygonal hotspots have the attributes

shape="poly" coords="x1,y1,x2,y2,…"

where (x1, y1), (x2, y2), … set the coordinates of each vertex in the shape. Figure 4–61 
shows the coordinates for a 5-sided polygon.

Figure 4–61	 Defining a polygonal hotspot

(230, 194)(73, 194)

(160, 233)

shape=“poly” coords=“73,14,230,14,230,194,160,233,73,194”

(73, 14) (230, 14)

© imtmphoto/Shutterstock.com

To define the default hotspot for an image, create the following hotspot:

shape="default" coords="0,0,width,height"

where width is the width of the image in pixels and height is the image’s height. 
Any region in the image that is not covered by another hotspot activates the default 
hotspot link.

Default hotspots should 
always be listed last.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 344

R
E
FE

R
E
N
C
E

Creating an Image Map

•	 To create an image map, use

<map name="text"> 
   hotspots 
</map>

where text is the name of the image map and hotspots are the hotspots within the 
image.

•	 To define each hotspot, use

<area shape="shape" coords="coordinates" href="url" alt="text" />

where shape is the shape of the hotspot region, coordinates list the points 
defining the boundaries of the region, url is the URL of the hypertext link, and text 
is alternate text that is displayed for non-graphical browsers.

•	 To define a rectangular hotspot, use the shape and attribute values

shape="rect" coords="left,top,right,bottom"

where left, top are the coordinates of the top-left corner of the rectangle and 
right, bottom are the coordinates of the bottom-right corner.

•	 To define a circular hotspot, use

shape="circle" coords="x,y,radius"

where x and y are the coordinates of the center of the circle and radius is the circle’s 
radius.

•	 To define a polygonal hotspot, use

shape="poly" coords="x1,y1,x2,y2,…"

where (x1, y1), (x2, y2), and so on provide the coordinates of each vertex in the 
multisided shape.

•	 To define the default hotspot link, use

shape="default" coords="0,0,width,height"

where width and height is the width and height of the image.

Kevin has provided you with the coordinates for five rectangular hotspots to cover 
the five faces on the Komatsu family portrait. Add an image map named “family_map” 
to the tb_komatsu.html page with rectangular hotspots for each of the faces in the 
family portrait.

To create an image map:
w	 1.	 Open or return to the tb_komatsu.html file in your editor.

w	 2.	 Directly below the figure box, insert the following HTML code:

<map name="family_map"> 
   <area shape="rect" coords="74,74,123,141" 
    href="tb_ikko.html" alt="Ikko Komatsu" /> 
   <area shape="rect" coords="126,109,177,172" 
    href="tb_mika.html" alt="Mika Komatsu" /> 
   <area shape="rect" coords="180,157,230,214" 
    href="tb_hiroji.html" alt="Hiroji Komatsu" /> 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 345

   <area shape="rect" coords="258,96,312,165" 
    href="tb_genta.html" alt="Genta Komatsu" /> 
   <area shape="rect" coords="342,86,398,162" 
    href="tb_suzuko.html" alt="Suzuko Komatsu" />	  
</map>

Figure 4–62 highlights the HTML code for the image map and hotspots.

Figure 4–62	 Inserting an image map

name of the 
image map

shape of 
the hotspot

URL of the 
hotspot link

alternate text 
for the hotspot

coordinates of the 
rectangular hotspot

w	 3.	 Save your changes to the file.

With the image map defined, your next task is to apply that map to the image in the 
figure box.

Applying an Image Map
To apply an image map to an image, you add the following usemap attribute to the img 
element

<img src="url" alt="text" usemap="#map" />

where map is the name assigned to the image map within the current HTML file.

R
E
FE

R
E
N
C
E

Applying an Image Map

•	 To apply an image map to an image, add the usemap attribute to the img element

<img src="url" alt="text" usemap="#map" />

where map is the name assigned to the image map.

Apply the family_map image map to the figure box and then test it in your web 
browser.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 346

To apply an image map:
w	 1.	 Add the attribute usemap="#family_map" to the img element for the family 

portrait.

Figure 4–63 highlights the code to apply the image map.

Figure 4–63	 Applying an image map

Applies the family_map 
image map to the image

w	 2.	 Save your changes to the file and then reload tb_komatsu.html in your 
browser.

w	 3.	 Click the five faces in the family portrait and verify each face is linked to a 
separate HTML file devoted to that individual. Use the link under the image 
of each individual to return to the home page.

Kevin likes the addition of the image map and plans to use it on other photos in the 
website.

PR
O
SK

IL
LS

Problem Solving: Image Maps with Flexible Layouts

Image maps are not easily applied to flexible layouts in which the size of the image 
can change based on the size of the browser window. The problem is that, because 
hotspot coordinates are expressed in pixels, they don’t resize and will not point to the 
correct region of the image if the image is resized.

One way to deal with flexible layouts is to create hotspots using hypertext links that 
are sized and positioned using relative units. The image and the hypertext links would 
then be nested within a figure element as follows:

<figure class="map"> 
   <img src="image" alt="" /> 
   <a href="url" id="hotspot1"></a> 
   <a href="url" id="hotspot2"></a> 
   … 
</figure>

The figure box itself needs to be placed using relative or absolute positioning and the 
image should occupy the entire figure box. Each hypertext link should be displayed as a 
block with width and height defined using percentages instead of pixels and positioned 
absolutely within the figure box, also using percentages for the coordinates. As the 
figure box is resized under the flexible layout, the hotspots marked with the hypertext 
links will automatically be resized and moved to match. The opacity of the hotspot 
links should be set to 0 so that the links do not obscure the underlying image file. Even 
though the hotspots will be transparent to the user, they will still act as hypertext links.

This approach is limited to rectangular hotspots. To create a flexible layout for 
other shapes, you need to use a third-party add-in that automatically resizes the shape 
based on the current size of the image.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 347

You’ve completed your work on the Komatsu Family pages for Tree and Book. Kevin 
will incorporate your work and ideas with other family pages as he continues on the 
site redesign. He’ll get back to you with more projects in the future. For now you can 
close any open files or applications.

R
E
V
IE

W

Session 4.3 Quick Check

	 1.	 Provide the transformation to shift a page object 5 pixels to the right and 10 
pixels up.
a.	 transform: translate(5px, 10px);
b.	 transform: translate(5px, -10px);
c.	 transform: translate(-5px, -10px);
d.	 translate: -5px 10px;

	 2.	 Provide the transformation to reduce the horizontal and vertical size of an 
object by 50%.
a.	 scale: 0.5, 0.5;
b.	 transform: scale(0.5, 0.5);
c.	 transform: rescale(0.5, 0.5);
d.	 transform: resize(0.5, 0.5);

	 3.	 Provide the transformation to rotate an object 30° counter-clockwise around 
the x-axis.
a.	 transform: rotate(-30deg);
b.	 transform: rotate(30deg);
c.	 transform: rotateX(30deg);
d.	 transform: rotateX(-30deg);

	 4.	 Provide the filter to increase the brightness of an object by 20%.
a.	 filter: brightness(20%);
b.	 filter: brightness(0.2);
c.	 filter: brightness(1.2);
d.	 brightness: 0.2;

	 5.	 Provide the filter to decrease the contrast of an object by 30%.
a.	 filter: contrast(0.3);
b.	 filter: contrast(0.7);
c.	 filter: contrast(30%);
d.	 filter: contrast(-0.3);

	 6.	 Provide the code to create a triangular hotspot with vertices at (200, 5), (300, 
125), and (100, 125), linked to the info.html file.
a.	 <area type="poly" coords="200, 5, 300, 125, 100, 125" 

href="info.html" />
b.	 <area type="triangle" coords="200, 5, 300, 125, 100, 125" 

href="info.html" />
c.	 <area type="draw" coords="200, 5, 300, 125, 100, 125" 

href="info.html" />
d.	 <area type="poly" coords="5, 200, 125, 300, 125, 100" 

href="info.html" />
	 7.	 Provide code to attach the logo.png image to the mapsites image map: 

a.	 <img src="logo.png" map="mapsites" alt="" />
b.	 <img src="logo.png" map="#mapsites" alt="" />
c.	 <img src="logo.png" imgmap="mapsites" alt="" />
d.	 <img src="logo.png" usemap="#mapsites" alt="" />

	 8.	 Provide a style rule to transfer 3D space from a container element to its nested 
elements.
a.	 transform-style: perspective;
b.	 preserve-3d: true;
c.	 transfer-style: preserve-3d;
d.	 transform-style: preserve-3d;

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 348

Coding Challenge 1

Data Files needed for this Coding Challenge: code4-1_txt.html, code4-1_back_txt.css,  
code4-1.css, ws.png

Figure 4–64 shows a web page containing text from a Shakespearean sonnet. In this Coding 
Challenge you will augment the text of the poem with background colors and images and add a 
graphic border.

C
O

D
E

Figure 4–64	 Coding Challenge 4-1 example page

Do the following:

	 1.	 Open the code4-1_txt.html and code4-1_back_txt.css files from the html04 c code1 folder. Enter 
your name and the date in each document and save the files as code4-1.html and  
code4-1_back.css respectively.

	 2.	 Go to the code4-1.html file in your editor. Within the head section insert a link element linking 
the page to the code4-1_back.css style sheet file.

	 3.	 Enclose the content of the sonnet within a figure element. At the top of the figure element insert 
a figure caption containing the HTML code Sonnet 116 <cite>by William Shakespeare</cite>.

	 4.	 Save your changes to the file and return to the code4-1_back.css file in your editor.
	 5.	 Create a style rule for the figure element that:

a.	 Sets the padding space to 20 pixels.
b.	Adds a 20-pixel border in the ridge style with the color value rgb(52, 52, 180).
c.	 Has a background consisting of the image file ws.png placed in the bottom right corner of the 

figure box and set to 45% of the width of the figure box with no tiling.  Be sure to separate the 

So
ur

ce
: N

A
SA

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 349

position of the image and its size with the / character. Add a second background containing 
the color rgba(52, 52, 180, 0.3). Enter both background properties within a single style rule 
separated by a comma.

d.	Has a black box shadow that is 5 pixels to the right, 10 pixels down with a blur size of 15 
pixels.

	 6.	 Create a style rule for the figure caption that:
a.	 Sets the font size to 1.8em.
b.	Centers the text of the caption.
c.	 Adds a 2-pixel bottom solid bottom border of the color value rgb(52, 52, 180).

	 7.	 Save your changes to the style sheet.
	 8.	 Open the page in your browser and verify that the design resembles that shown in Figure 4–64.
	 9.	 Submit the completed file to your instructor.

Figure 4–65	 Coding Challenge 4-2 example page

Coding Challenge 2

Data Files needed for this Coding Challenge: code4-2_txt.html, code4-2_grad_txt.css,  
code4-2.css, landscape.png

Figure 4–65 shows a web page containing text of a poem by Ella Wheeler Wilcox entitled “Dawn.” 
To augment the poem, a background image containing a linear gradient has been added to the web 
page. In addition, text shadows have been added to bring the text of the poem out of the page.

C
O

D
E

O
pe

nC
lip

A
rt

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 350

Complete the following:

	 1.	 Open the code4-2_txt.html and code4-2_grad_txt.css files from the html04  code2 folder. 
Enter your name and the date in each document and save the files as code4-2.html and 
code4-2_grads.css respectively.

	 2.	 Go to the code4-2.html file in your editor. Within the head section insert a link element linking 
the page to the code4-2_grad.css file. Save your changes to the file.

	 3.	 Go to the code4-2_grad.css file. Create a style rule for h1 and h2 elements that adds a white text 
shadow 2 pixels above and to the left of the text with a blur radius of 3 pixels.

	 4.	 Create a style rule for paragraphs that adds a red text shadow 2 pixels down and to the right of 
the text with a blur radius of 3 pixels.

	 5.	 Create a style rule for the article element that adds a black inset box shadow with a 
horizontal and vertical offset of 0 pixels, a blur radius of 50 pixels and a size of 20 pixels.

	 6.	 Create a style rule for the article element that sets the radius of the border corners to 150 
pixels.

	 7.	 Create a style rule for the article element that adds the following multiple backgrounds:
a.	 A background containing the image file landscape.png placed with no tiling at the bottom 

right corner of the element with a size of 100%.
b.	A linear gradient at an angle of 165 degrees that goes from black to the color value rgb(0, 0,  

200) with a color stop of 65%, to rgb(211, 0, 55) with a color stop of 75%, to orange with a 
color stop of 80%, and finally to yellow with a color stop of 82%.

	 8.	 Save your changes to the style sheet.
	 9.	 Open the page in your browser and verify that the design resembles that shown in Figure 4–65.
	10.	 Submit the completed file to your instructor.

Coding Challenge 3

Data Files needed for this Coding Challenge: code4-3_txt.html, code4-3_cube_txt.css, code4-3.css, 
image01.png - image05.png

Figure 4–66 shows a web page in which five faces of the cube are displayed in a 3D view. You can 
create this effect using the CSS 3D transformation styles. The page also contains CSS styles for box 
shadows and text shadows that you will have to add.

C
O

D
E

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 351

Complete the following to create the web page:

	 1.	 Open the code4-3_txt.html and code4-3_cube_txt.css files from the html04 c code3 folder. 
Enter your name and the date in each document and save the files as code4-3.html and 
code4-3_cube.css respectively.

	 2.	 Go to the code4-3.html file in your editor. Within the head section insert a link element that 
links the page to the code4-3_cube.css style sheet file. Note that within the web page the five 
images are contained with a div element with the ID value “cube”. The images are given ID 
values of img1 through img5. Save your changes to the file.

	 3.	 Go to the code4-3_cube.css file in your editor. Create a style rule for the h1 element that 
changes the font color to white and adds a text shadow with horizontal and vertical offsets of 0 
pixels, a blur radius of 20 pixels and a shadow color value of rgb(120, 85, 0).

	 4.	 Create a style rule for a div element with the id “cube” that sets the perspective size of the 3D 
space to 500 pixels. Use the transform-style property to preserve the 3D setting for the 
children of this element so that the cube and its children exist in the same 3D space.

Figure 4–66	 Coding Challenge 4-3 example page

So
ur

ce
: P

ub
lic

 D
om

ai
n

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 352

	 5.	 For all img elements create a style rule that applies a sepia filter with a value of 1. Add a black 
box shadow with horizontal and vertical offsets of 0 pixels and a blur radius of 20 pixels.

	 6.	 Create the following style rules for the five image elements:
a.	 For the img1 image, translate the image -150 pixels along the z-axis.
b.	For the img2 image, rotate the image 90 degrees around the x-axis and translate the image 

-150 pixels along the z-axis.
c.	 For the img3 image, rotate the image -90 degrees around the y-axis and translate the image 

150 pixels along the z-axis.
d.	For the img4 image, rotate the image 90 degrees around the y-axis and translate the image 

150 pixels along the z-axis.
e.	 For the img5 image, rotate the image -90 degrees around the x-axis and translate the image 

-150 pixels along the z-axis.
	 7.	 Save your changes to the style sheet.
	 8.	 Open the page in your browser and verify that the design resembles that shown in Figure 4–66.
	 9.	 Submit the completed file to your instructor.

Coding Challenge 4

Data Files needed for this Coding Challenge: code4-4_txt.html, debug4-4_txt.css, code4-4_.css, 
Michelangelo.png

Figure 4–67 shows a completed web page that uses CSS design elements to enhance the appear-
ance of a poem by Walt Whitman. You’ve been given a copy of the files for this web page, but there 
are several syntax errors in the CSS stylesheet. Use your knowledge of CSS to fix the stylesheet code 
and complete the page.

D
E

B
U

G

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 353

Do the following:
	 1.	 Open the code4-4_txt.html and debug4-4_txt.css files from the html04  code4 folder. Enter 

your name and the date in each document and save the files as code4-4.html and debug4-4.css 
respectively.

	 2.	 Go to the code4-4.html file in your editor. Within the head section insert a link element that 
links the page to the code4-4_debug.css style sheet file. Study the contents of the file and then 
save your changes.

	 3.	 Go to the debug4-4.css file in your browser. The first style rule adds two text shadows to the h1 
heading: a dark brown shadow and a white highlight. The shadows are not appearing in the web 
page. Locate and fix the syntax error in this style rule.

	 4.	 The next style rule was written to add a box shadow to the article element that has an offset 
of 0 pixels in the horizontal and vertical directions, blur radius of 30 pixels and size value of 5 
pixels. Fix the syntax errors in this style rule.

	 5.	 The next style rule creates a border image for the article element using a linear gradient for 
the image. Fix the syntax error in this style rule.

	 6.	 The final style rule defines the background for the article element consisting of:
a.	 A radial gradient going from white circle located near the top left corner of the background, 

to semi-transparent yellow, semi-transparent brown, and semi-transparent ochre,

Figure 4–67	 Coding Challenge 4-4 example page

Walt Whitman; Source: Public Domain

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 354

b.	A sketch by Michelangelo located in the lower right corner sized at 75% of the width of the 
element, and 

c.	 An ivory-colored background fill. There are several syntax errors in the code. Locate and fix 
all of the errors.

	 7.	 Save your changes and open the code4-4.html file in your browser. Verify that design of the page 
resembles that shown in Figure 4–67.

	 8.	 Submit the completed file to your instructor.

Review Assignments

Data Files needed for the Review Assignments: tb_ferris_txt.html, tb_kathleen_txt.html,  
tb_visual3_txt.css, tb_visual4_txt.css, 3 CSS files, 1 HTML file, 10 PNG files, 1 TTF file, 1 WOFF file

Kevin wants you to work on another family page for the Tree and Book website. The page was created 
for the Ferris family with content provided by Linda Ferris-White. Kevin is examining a new color 
scheme and design style for the page. A preview of the design you’ll create is shown in Figure 4–68.

Figure 4–68	 Ferris Family page

Source: Design Studio Pro; Source: Wikimedia Commons;  
© Elzbieta Sekowska/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 355

All of the HTML content and the typographical and layout styles have already been created for 
you. Your task will be to complete the work by writing the visual style sheet to incorporate Kevin’s 
suggestions.

Complete the following:

	 1.	 Use your HTML editor to open the tb_visual3_txt.css, tb_visual4_txt.css, tb_ferris_txt.html and 
tb_kathleen_txt.html files from the html04  review folder. Enter your name and the date in the 
comment section of each file, and save them as tb_visual3.css, tb_visual4.css, tb_ferris.html, 
and tb_kathleen.html respectively.

	 2.	 Go to the tb_ferris.html file in your editor. Add links to the tb_base.css, tb_styles3.css, and  
tb_visual3.css style sheets in the order listed.

	 3.	 Scroll down and, within the main element header and after the h1 heading, insert a figure box 
containing: a) the tb_ferris.png inline image with the alternate text Ferris Family using the image 
map named portrait_map and b) a figure caption with the text Kathleen Ferris and daughter Linda 
(1961).

	 4.	 Directly below the figure box, create the portrait_map image map containing the following 
hotspots: a) a rectangular hotspot pointing to the tb_kathleen.html file with the left-top coordinate 
(10, 50) and the right-bottom coordinate (192, 223) and alternate text, “Kathleen Ferris” and b) a 
circular hotspot pointing to the tb_linda.html file with a center point at (264, 108) and a radius of 
80 pixels and the alternate text, Linda Ferris-White.

	 5.	 Take some time to study the rest of the page content and structure and then save your changes to 
the file.

	 6.	 Go to the tb_visual3.css file in your editor. In this file, you’ll create the graphic design styles for 
the page.

	 7.	 Go to the HTML Styles section and create a style rule for the html element to use the image file 
tb_back5.png as the background.

	 8.	 Go to the Page Body Styles section and create a style rule for the body element that: a) adds a left 
and right 3-pixel solid border with color value rgb(169, 130, 88), b) adds a box shadow to the right 
border with a horizontal offset of 25 pixels, a vertical offset of 0 pixels and a 35-pixel blur and a 
color value of rgb(53, 21, 0), and then adds the mirror images of this shadow to the left border.

	 9.	Go to the Main Styles section. Create a style rule for the main element that: a) applies the 
tb_back7.png file as a background image with a size of 100% covering the entire background 
with no tiling and positioned with respect to the padding box and b) adds two inset box 
shadows, each with a 25-pixel blur and a color value of rgb(71, 71, 71), and then one with 
offsets of –10 pixels in the horizontal and vertical direction and the other with horizontal and 
vertical offsets of 10 pixels. 

	10.	 Create a style rule for the h1 heading within the main header that adds the following two text 
shadows: a) a shadow with the color value rgb(221, 221, 221) and offsets of 1 pixels and no blurring 
and b) a shadow with the color value rgba(41, 41, 41, 0.9) and offsets of 5 pixels and a 20-pixel blur.

	11.	 Go to the Figure Box Styles section. Create a style rule for the figure element that sets the top/bottom 
margin to 10 pixels and the left/right margin to auto. Set the width of the element to 70%.

	12.	Next, you’ll modify the appearance of the figure box image. Create a style rule for the image 
within the figure box that: a) sets the border width to 25 pixels, b) sets the border style to solid, c) 
applies the tb_frame.png file as a border image with a slice size of 60 pixels stretched across the 
sides, d) displays the image as a block with a width of 100%, and e) applies a sepia tone to the 
image with a value of 80% (include the WebKit browser extension in your style sheet).

	13.	Create a style rule for the figure caption that: a) displays the text using the font stack ‘Palatino 
Linotype’, Palatino, ‘Times New Roman’, serif, b) sets the style to italic, c) sets the top/bottom 
padding to 10 pixels and the left/right padding to 0 pixels, and d) centers the text.

	14.	 Go to the Article Styles section. Here you’ll create borders and backgrounds for the article that Linda 
Ferris-White wrote about her mother. Create a style rule for the article element that: a) displays 
the background image file tb_back6.png placed at the bottom-right corner of the element with a 
size of 15% and no tiling, b) adds an 8-pixel double border with color value rgb(147, 116, 68) to 
the right and bottom sides of the article element, c) creates a curved bottom-right corner with a 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 356

	17.	 Go to the tb_kathleen.html file in your editor and create links to the tb_base.css, tb_styles4.css, 
and tb_visual4.css files. Study the contents of the file and then close it, saving your changes.

	18.	Go to the tb_visual4.css file in your editor. Scroll down to the Transformation Styles section and 
add a style rule for the article element to set the size of the perspective space to 800 pixels.

	19.	Create a style rule for the figure1 figure box to translate it –120 pixels along the z-axis.
	20.	Create a style rule for the figure2 figure box to translate it –20 pixels along the y-axis and rotate 

it 50° around the y-axis.
	21.	Create a style rule for the figure3 figure box to translate it –30 pixels along the y-axis and rotate 

it –50° around the y-axis.

radius of 80 pixels, and d) adds an interior shadow with horizontal and vertical offsets of –10 pixels, 
a 25-pixel blur, and a color value of rgba(184, 154, 112, 0.7).

	15.	Kevin wants a gradient background for the page footer. Go to the Footer Styles section and create 
a style rule for the footer that adds a linear gradient background with an angle of 325°, going 
from the color value rgb(180, 148, 104) with a color stop at 20% of the gradient length to the 
value rgb(40, 33, 23) with a color stop at 60%.

	16.	 Save your changes to the style sheet and then open tb_ferris.html in your browser. Verify that the 
colors and designs resemble that shown in Figure 4–68.
Next, you will create the design styles for individual pages about Kathleen Ferris and Linda 
Ferris-White. A preview of the content of the Kathleen Ferris page is shown in Figure 4–69.

Figure 4–69	 Kathleen Ferris page

© Elzbieta Sekowska/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 357

	22.	Go to the Filter Styles section to apply CSS filters to the page elements. Create a style rule for the 
figure1 figure box that applies a saturation filter with a value of 1.3.

	23.	 Create a style rule for the figure2 figure box that sets the brightness to 0.8 and the contrast to 1.5.
	24.	 Create a style rule for the figure3 figure box that sets the hue rotation to 170°, the saturation to 3, 

and the brightness to 1.5.
	25.	 Save your changes to the file and then return to the tb_ferris.html file in your browser. Verify that 

you can display the individual pages for Kathleen Ferris and Linda Ferris-White by clicking on their 
faces in the family portrait. Further verify that the appearance of the Kathleen Ferris page resembles 
that shown in Figure 4–69. (Note: Use the link under the pictures to return to the home page.)

Case Problem 1

Data Files needed for this Case Problem: sf_torte_txt.html, sf_effects_txt.css, 2 CSS files, 9 PNG files

Save your Fork  Amy Wu has asked for your help in redesigning her website, Save your Fork, a baking 
site for people who want to share dessert recipes and learn about baking in general. She has prepared a 
page containing a sample dessert recipe and links to other pages on the website. A preview of the page 
you’ll create is shown in Figure 4–70.

© Mateusz Gzik/Shutterstock.com; © Jelly/Shutterstock.com; © Courtesy Patrick Carey

Figure 4–70	 Save your Fork sample recipe page

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 358

Amy has already created a style sheet for the page layout and typography, so your work will be 
focused on enhancing the page with graphic design styles.

Complete the following:
	 1.	 Using your editor, open the sf_torte_txt.html and sf_effects_txt.css files from the html04  case1 

folder. Enter your name and the date in the comment section of each file, and save them as 
sf_torte.html and sf_effects.css respectively.

	 2.	 Go to the sf_torte.html file in your editor. Within the document head create links to the sf_base.
css, sf_layout.css, and sf_effects.css style sheet files in that order. Take some time to study the 
structure of the document and then close the document, saving your changes.

	 3.	 Go to the sf_effects.css file in your editor. Within the Body Header Styles section, create a style 
rule for the body element to add drop shadows to the left and right border of the page body 
with an offset of 10 pixels, a blur of 50 pixels, and the color rgb(51, 51, 51). Note that the right 
border is a mirror image of the left border.

	 4.	 Go to the Navigation Tabs List Styles section. Amy has created a navigation list with the class 
name tabs that appears at the top of the page with the body header. Create a style rule for the 
body > header nav.tabs selector that changes the background to the image file sf_back1.
png with no tiling, centered horizontally and vertically within the element and sized to cover the 
entire navigation list. 

	 5.	 Amy wants the individual list items in the tabs navigation list to appear as tabs in a recipe box. 
She wants each of these “tabs” to be trapezoidal in shape. To create this effect, you’ll create a 
style rule for the body > header nav.tabs li selector that transforms the list item by setting 
the perspective of its 3D space to 50 pixels and rotating it 20° around the x-axis. 

	 6.	 As users hover the mouse pointer over the navigation tabs, Amy wants a rollover effect in which 
the tabs appear to come to the front. Create a style rule for the body > header nav.tabs li 
selector that uses the pseudo-element hover that changes the background color to rgb(231, 
231, 231).

	 7.	 Go to the Left Section Styles section. Referring to Figure 4–70, notice that in the left section of 
the page, Amy has placed two vertical navigation lists. She wants these navigation lists to have 
rounded borders. For the vertical navigation lists in the left section, create a style rule for the 
section#left nav.vertical selector that adds a 1-pixel solid border with color value  
rgb(20, 167, 170) and has a radius of 25 pixels at each corner.

	 8.	 The rounded corner also has to apply to the h1 heading within each navigation list. Create a 
style rule for h1 elements nested within the left section vertical navigation list that sets the top-
left and top-right corner radii to 25 pixels.

	 9.	Go to the Center Article Styles section. The article element contains an image and brief 
description of the Apple Bavarian Torte, which is the subject of this sample page. Create a style 
rule for the section#center article selector that adds the following: a) a radial gradient 
to the background with a white center with a color stop of 30% transitioning to rgb(151, 151, 
151), b) a 1-pixel solid border with color value rgb(151, 151, 151) and a radius of 50 pixels, 
and c) a box shadow with horizontal and vertical offsets of 10 pixels with a 20-pixel blur and 
a color of rgb(51, 51, 51).

	10.	Go to the Blockquote Styles section. Amy has included three sample reviews from users of the 
Save your Fork website. Amy wants the text of these reviews to appear within the image of a 
speech bubble. For every blockquote element, create a style rule that does the following: a) 
sets the background image to the sf_speech.png file with no tiling and a horizontal and vertical 
size of 100% to cover the entire block quote, and b) uses the drop-shadow filter to add a drop 
shadow around the speech bubble with horizontal and vertical offsets of 5 pixels, a blur of 10 
pixels and the color rgb(51, 51, 51).

	11.	Amy has included the photo of each reviewer registered on the site within the citation for each 
review. She wants these images to appear as circles rather than squares. To do this, create a style 
rule for the selector cite img that sets the border radius to 50%.

	12.	 Save your changes to the style sheet file and then open sf_torte.html in your browser. Verify that 
the design of your page matches that shown in Figure 4–70. Confirm that when you hover the 
mouse over the navigation tabs the background color changes to match the page color.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 359

Case Problem 2

Data Files needed for this Case Problem: cf_home_txt.html, cf_effects_txt.css, 2 CSS files, 7 PNG files

Chupacabra Music Festival  Debra Kelly is the director of the website for the Chupacabra Music 
Festival, which takes place every summer in San Antonio, Texas. Work is already underway on the 
website design for the 15th annual festival and Debra has approached you to work on the design of 
the home page.

Debra envisions a page that uses semi-transparent colors and 3D transformations to make an attractive 
and eye-catching page. A preview of her completed design proposal is shown in Figure 4–71.

© Memo Angeles/Shutterstock.com; © Ivan Galashchuk/Shutterstock.com; © Andrey Armyagov/ 
Shutterstock.com; © Away/Shutterstock.com; Source: Facebook; Source: Twitter, Inc. 

Figure 4–71	 Chupacabra 15 home page

Debra has provided you with the HTML code and the layout and reset style sheets. Your job will be 
to finish her work by inserting the graphic design styles.

Complete the following:
	 1.	Using your editor, open the cf_home_txt.html and cf_effects_txt.css files from the  

html04  case2 folder. Enter your name and the date in the comment section of each file, and 
save them as cf_home.html and cf_effects.css respectively.

	 2.	 Go to the cf_home.html file in your HTML editor. Within the document head, create a link to the 
cf_reset.css, cf_layout.css, and cf_effects.css style sheets. Take some time to study the content and 
structure of the document. Pay special note to the nested div elements in the center section of 
the page; you will use these to create a 3D cube design. Close the file, saving your changes.

	 3.	 Return to the cf_effects.css file in your editor and go to the HTML Styles section. Debra wants 
a background displaying a scene from last year’s festival. Add a style rule for the html element 
that displays the cf_back1.png as a fixed background, centered horizontally and vertically in the 
browser window and covering the entire window.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 360

	 4.	 Go to the Body Styles section and set the background color of the page body to rgba(255, 255, 
255, 0.3).

	 5.	 Go to the Body Header Styles section and change the background color of the body header to 
rgba(51, 51, 51, 0.5).

	 6.	 Debra has placed useful information for the festival in aside elements placed within the left and 
right section elements. Go to the Aside Styles section and create a style rule for the section aside 
selector that adds a 10-pixel double border with color rgba(92, 42, 8, 0.3) and a border radius of 30 
pixels.

	 7.	 Debra wants a curved border for every h1 heading within an aside element. For the selector section 
aside h1, create a style rule that sets the border radius of the top-left and top-right corners to 30 
pixels.

	 8.	 Define the perspective of the 3D space for the left and right sections by creating a style rule for those 
two sections that sets their perspective value to 450 pixels.

	 9.	 Create a style rule that rotates the aside elements within the left section 25° around the y-axis. Create 
another style rule that rotates the aside elements within the right section –25° around the y-axis.

	   10. Go to the Cube Styles section. Here you’ll create the receding cube effect that appears 
in the center of the page. The cube has been constructed by creating a div element with the id cube 
containing five div elements belonging to the cube_face class with the ids  
cube_bottom, cube_top, cube_left, cube_right, and cube_front. (There will be no back face for 
this cube.) Currently the five faces are superimposed upon each other. To create the cube you have to 
shift and rotate each face in 3D space so that they form the five faces of the cube. First, position the 
cube on the page by creating a style rule for the div#cube selector containing the following styles:
a.	 Place the element using relative positioning.
b.	Set the top margin to 180 pixels, the bottom margin to 150 pixels, and the left/right margins 

to auto.
c.	 Set the width and height to 400 pixels.
d.	Set the perspective of the space to 450 pixels.

	11.	 For each div element of the cube_face class, create a style rule that places the faces with absolute 
positioning and sets their width and height to 400 pixels.

	   12. Finally, you’ll construct the cube by positioning each of the five faces in 3D space so that 
they form the shape of a cube. Add the following style rules for each of the five faces to transform their 
appearance.
a.	 Translate the cube_front div element –50 pixels along the z-axis.
b.	Translate the cube_left div element –200 pixels along the x-axis and rotate it 90° around the y-axis.
c.	Translate the cube_right div element 200 pixels along the x-axis and rotate it  

90° counter-clockwise around the y-axis.
d.	Translate the cube_top div element –200 pixels along the y-axis and rotate it  

90° counter-clockwise around the x-axis.
e.	 Translate the cube_bottom div element 200 pixels along the y-axis and rotate it 90° around the 

x-axis.
	13.	 Save your changes to style sheet file and open cf_home.html in your browser. Verify that the layout of 

your page matches Figure 4–71 including the center cube with the five faces of photos and text.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 361

OBJECTIVES

Session 5.1
•	Create a media query
•	Work with the browser 

viewport
•	Apply a responsive design
•	Create a pulldown menu with 

CSS

Session 5.2
•	Create a flexbox
•	Work with flex sizes
•	Explore flexbox layouts

Session 5.3
•	Create a print style sheet
•	Work with page sizes
•	Add and remove page breaks

Designing for the 
Mobile Web
Creating a Mobile Website for a 
Daycare Center

Case	|	Trusted Friends Daycare
Marjorie Kostas is the owner of Trusted Friends Daycare, an early 
childhood education and care center located in Carmel, Indiana. 
You’ve been hired to help work on the redesign of the company’s 
website. Because many of her clients access the website from 
their mobile phones, Marjorie is interested in improving the site’s 
appearance on mobile devices. However, your design still has to 
be compatible with tablet devices and desktop computers. Finally, 
the site contains several pages that her clients will want to print, so 
your design needs to meet the needs of printed media.

TUTORIAL 5

STARTING DATA FILES

HTML 361

tutorial

tf_articles_txt.html
tf_home_txt.html
tf_prek_txt.html
tf_flex_txt.css
tf_navicon_txt.css
tf_print_txt.css
tf_styles1_txt.css
+ 9 files

review

tf_tips_txt.html
tf_print2_txt.css
tf_styles4_txt.css
+ 6 files

code1

code5-1_txt.html
code5-1_media_txt.css
+ 3 files

code2

case1

code3

case2

code4

code5-2_txt.html
code5-2_flex_txt.css
+ 14 files

code5-3_txt.html
code5-3_print_txt.css
+ 2 files

html05

code5-4_txt.html
code5-4_debug_txt.css
+ 3 files

gp_cover_txt.html
gp_page1_txt.html
gp_page2_txt.html
gp_page3_txt.html
gp_layout_txt.css
gp_print_txt.css
+ 23 files

cw_home_txt.html
cw_styles_txt.css
+ 12 files

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 362

Session 5.1 Visual Overview: 
This sets the 
initial scale of the 
viewport to 1.0.

The                               
tag is used to set the 
properties of the 
layout viewport.

This sets the width of 
the layout viewport 
equal to the width of 
the visual viewport.

Responsive designs 
should start with base 
styles that apply to all 
devices, followed by 
mobile styles, tablet 
styles, and then 
desktop styles.

A media query is 
used to apply 
speci�ed style rules 
to a device based on 
the device type and 
the device features.

Within a media query 
are style rules that are 
only applied to devices 
that match the query.

This media query 
matches screens 
with a minimum 
width of 481 pixels.

This media query 
matches screens 
with a maximum 
width of 480 pixels.

This media query 
matches screens 
with a minimum 
width of 769 pixels.

The viewport meta 
tag is used to set the 
properties of the 
layout viewport.

© Robert Kneschke/Shutterstock.com; © dotshock/Shutterstock.com; BenBois/openclipart;  
JMLevick/openclipart; Molumen/openclipart

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 363

Media Queries

Desktop styles are applied 
once the screen width is 
769 pixels and greater.

Mobile styles are 
applied when the 
screen width is 0 
to 480 pixels.

Tablet styles are 
applied once the 
screen width 
exceeds 480 pixels.

dotshock/Shutterstock.com; Robert Kneschke/Shutterstock.com; Jmlevick/openclipart; Easy/openclipart; BenBois/openclipart

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 364

Introducing Responsive Design
In the first four tutorials, you created a single set of layout and design styles for 
your websites without considering what type of device would be rendering the site. 
However, this is not always a practical approach and with many users increasingly 
accessing the web through mobile devices, a web designer must take into 
consideration the needs of those devices. Figure 5–1 presents some of the important 
ways in which designing for the mobile experience differs from designing for the 
desktop experience.

Figure 5–1	 Designing for mobile and desktop devices

User Experience Mobile Desktop
Page Content Content should be short and to the 

point.
Content can be extensive, giving 
readers the opportunity to explore all 
facets of the topic.

Page Layout Content should be laid out within 
a single column with no horizontal 
scrolling.

With a wider screen size, content can 
be more easily laid out in multiple 
columns.

Hypertext Links Links need to be easily accessed 
via a touch interface.

Links can be activated more precisely 
using a cursor or mouse pointer.

Network Bandwidth Sites tend to take longer to load 
over cellular networks and thus 
overall file size should be kept 
small.

Sites are quickly accessed over high-
speed networks, which can more easily 
handle large file sizes.

Lighting Pages need to be easily visible in 
outdoor lighting through the use of 
contrasting colors.

Pages are typically viewed in an office 
setting, allowing a broader color 
palette.

Device Tools Mobile sites often need access 
to devices such as phone dialing, 
messaging, mapping, and built-in 
cameras and video.

Sites rarely have need to access 
desktop devices.

Viewing a web page on a mobile device is a fundamentally different experience 
than viewing the same web page on a desktop computer. As a result, these differences 
need to be taken into account when designing a website. Figure 5–2 shows the current 
home page of the Trusted Friends website as it appears on a mobile device. 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 365

Notice that the mobile device has automatically zoomed out to display the complete 
page width resulting in text that is difficult to read and small hypertext links that 
are practically unusable with a touch interface. While the design might be fine for 
a desktop monitor in landscape orientation, it’s clear that it is ill-suited to a mobile 
device. 

What this website requires is a design that is not only specifically tailored to the 
needs of her mobile users but also is easily revised for tablet and desktop devices. This 
can be accomplished with responsive design in which the design of the document 
changes in response to the device rendering the page. An important leader in the 
development of responsive design is Ethan Marcotte, who identified three primary 
components of responsive design theory:

•	flexible layout so that the page layout automatically adjusts to screens of different widths
•	responsive images that rescale based on the size of the viewing device
•	media queries that determine the properties of the device rendering the page so that 

appropriate designs can be delivered to specific devices

In the preceding tutorials, you’ve seen how to create grid-based fluid layouts and 
you’ve used images that scaled based on the width of the browser window and web 
page. In this session, you’ll learn how to work with media queries in order to create a 
truly responsive website design.

Introducing Media Queries
Media queries are used to associate a style sheet or style rule with a specific device or 
list of device features. To create a media query within an HTML file, add the following 
media attribute to either the link or style element in the document head

media="devices"

For more information 
on the development of 
responsive design, refer to 
Responsive Web Design 
by Ethan Marcotte (http:// 
alistapart.com/article/ 
responsive-web-design).

Figure 5–2	 Trusted Friends home page displayed on a mobile device

the small text links are 
dif�cult to activate 
using touch

double column layout 
reduces the size of the 
page text within the 
columns

empty space 
indicates poor use of 
the available screen

small article text is 
dif�cult to read

© Robert Kneschke/Shutterstock.com; BenBois/openclipart

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 366

where devices is a comma-separated list of supported media types associated with a 
specified style sheet. For example, the following link element accesses the output.css 
style sheet file but only when the device is a printer or projection device: 

<link href="output.css" media="print, projection" />

If any other device accesses this web page, it will not load the output.css style sheet 
file. Figure 5–3 lists other possible media type values for the media attribute.

Figure 5–3	 Media types

Media Type Used For 
all All output devices (the default) 

braille Braille tactile feedback devices 

embossed Paged Braille printers 

handheld Mobile devices with small screens and limited bandwidth 

print Printers

projection Projectors

screen Computer screens

speech Speech and sound synthesizers, and aural browsers

tty Fixed-width devices such as teletype machines and terminals

tv Television-type devices with low resolution, color, and limited scrollability

When no media attribute is used, the style sheet is assumed to apply to all devices 
accessing the web page.

The @media Rule
Media queries can also be used to associate specific style rules with specific devices by 
including the following @media rule in a CSS style sheet file

@media devices { 
   style rules  
}

where devices are supported media types and style rules are the style rules 
associated with those devices. For example, the following style sheet is broken into 
three sections: an initial style rule that sets the font color of all h1 headings regardless 
of device, a second section that sets the font size for h1 headings on screen or 
television devices, and a third section that sets the font size for h1 headings that are 
printed:

h1 { 
   color: red; 
} 
@media screen, tv { 
   h1 {font-size: 2em;} 
} 
@media print { 
   h1 {font-size: 16pt;} 
}

Note that in this style sheet, the font size for screen and television devices is expressed 
using the relative em unit but the font size for print devices is expressed using points, 
which is a more appropriate sizing unit for that medium.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 367

Finally, you can specify media devices when importing one style sheet into another 
by adding the media type to the @import rule. Thus, the following CSS rule imports the 
screen.css file only when a screen or projection device is being used:

@import url("screen.css") screen, projection;

The initial hope was that media queries could target mobile devices using the handheld 
device type; however, as screen resolutions improved to the point where the cutoff 
between mobile, tablet, laptop, and desktop was no longer clear, media queries began to 
be based on what features a device supported and not on what the device was called.

Media Queries and Device Features
To target a device based on its features, you add the feature and its value to the media 
attribute using the syntax:

media="devices and | or (feature:value)"

where feature is the name of a media feature and value is the feature’s value. The 
and and or keywords are used to create media queries that involve different devices or 
different features, or combinations of both. 

The @media and @import rules employ similar syntax:

@media devices and|or (feature:value) { 
   style rules 
}

and

@import url(url) devices and|or (feature:value);

For example, the following media query applies the style rules only for screen devices 
with a width of 320 pixels.

@media screen and (device-width: 320px) { 
   style rules 
}

Figure 5–4 provides a list of the device features supported by HTML and CSS.

Figure 5–4	 Media features

Feature Description
aspect-ratio The ratio of the width of the display area to its height 

color The number of bits per color component of the output device; if the 
device does not support color, the value is 0 

color-index The number of colors supported by the output device 

device-aspect-ratio The ratio of the device-width value to the device-height value

device-height The height of the rendering surface of the output device 

device-width The width of the rendering surface of the output device 

height The height of the display area of the output device 

monochrome The number of bits per pixel in the device’s monochrome frame buffer 

orientation The general description of the aspect ratio: equal to portrait when 
the height of the display area is greater than the width; equal to 
landscape otherwise 

resolution The resolution of the output device in pixels, expressed in either dpi 
(dots per inch) or dpcm (dots per centimeter)

width The width of the display area of the output device 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 368

All of the media features in Figure 5–4, with the exception of orientation, 
also accept min- and max- prefixes, where min- provides a minimum value for the 
specified feature, and max- provides the feature’s maximum value. Thus, the following 
media query applies style rules only for screen devices whose width is at most 700 
pixels:

@media screen and (max-width: 700px) { 
   style rules 
}

Similarly, the following media query applies style rules only to screens that are at 
least 400 pixels wide:

@media screen and (min-width: 400px) { 
   style rules 
}

You can combine multiple media features using logical operators such as and, not, 
and or. The following query applies the enclosed styles to all media types but only 
when the width of the output devices is between 320 and 480 pixels (inclusive):

@media all and (min-width: 320px) and (max-width: 480px) { 
   style rules 
}

Some media features are directed toward devices that do not have a particular 
property or characteristic. This is done by applying the not operator, which negates 
any features found in the expression. For example, the following query applies only to 
media devices that are not screen or do not have a maximum width of 480 pixels:

@media not screen and (max-width: 480px) { 
   style rules 
}

For some features, you do not have to specify a value but merely indicate the 
existence of the feature. The following query matches any screen device that also 
supports color:

@media screen and (color) { 
   style rules 
}

Finally, for older browsers that do not support media queries, CSS provides the only 
keyword to hide style sheets from those browsers. In the following code, older browsers 
will interpret only as an unsupported device name and so will not apply the enclosed 
style rules, while newer browsers will recognize the keyword and continue to apply the 
style rules.

@media only screen and (color) { 
   style rules 
}

All current browsers support media queries, but you will still see the only keyword 
used in many website style sheets.

If you specify a feature 
without specifying a 
device, the media query 
will apply to all devices.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 369

Applying Media Queries to a Style Sheet
You meet with Marjorie to discuss her plans for the home page redesign. She envisions 
three designs: one for mobile devices, a different design for tablets, and finally a design 
for desktop devices based on the current appearance of the site’s home page (see 
Figure 5–5).

Creating a Media Query

•	 To create a media query that matches a device in a link or style element within an 
HTML file, use the following media attribute

media="devices and|or (feature:value)"

where devices is a comma-separated list of media types, feature is the name of a 
media feature, and value is the feature’s value

•	 To create a media query, create the following @media rule within a CSS style sheet

@media devices and|or (feature:value) { 
   style rules 
}

where style rules are the style rules applied for the specified device and feature.
•	 To import a style sheet based on a media query, apply the following @import rule 

within a CSS style sheet

@import url(url) devices and|or (feature:value);

R
E
FE

R
E
N
C
E

Figure 5–5	 Trusted Friends home page for different screen widths

mobile

0px 480px 768px

tablet desktop

© Robert Kneschke/Shutterstock.com; © dotshock/Shutterstock.com; BenBois/openclipart; JMLevick/openclipart;  
Easy/openclipart

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 370

The mobile design will be used for screen widths up to 480 pixels, the tablet design 
will be used for widths ranging from 481 pixels to 768 pixels, and the desktop design 
will be used for screen widths exceeding 768 pixels. To apply this approach, you’ll 
create a style sheet having the following structure:

/* Base Styles */ 
   style rules 
 
/* Mobile Styles */ 
@media only screen and (max-width: 480px) { 
   style rules 
} 
 
/* Tablet Styles */ 
@media only screen and (min-width: 481px) { 
   style rules 
} 
 
/* Desktop Styles */ 
@media only screen and (min-width: 769px) { 
   style rules 
}

Note that this style sheet applies the principle mobile first in which the overall page 
design starts with base styles that apply to all devices followed by style rules specific 
to mobile devices. Tablet styles are applied when the screen width is 481 pixels or 
greater, and desktop styles build upon the tablet styles when the screen width exceeds 
768 pixels. Thus, as your screen width increases, you add on more features or replace 
features found in smaller devices. In general, with responsive design, it is easier to add 
new styles through progressive enhancement than to replace styles.

Marjorie has supplied you with the HTML code and initial styles for her website’s 
home page. Open her HTML file now.

To open the site’s home page:
w	 1.	 Use your editor to open the tf_home_txt.html and tf_styles1_txt.css 

files from the html05 c tutorial folder. Enter your name and the date in 
the comment section of each file and save them as tf_home.html and  
tf_styles1.css respectively.

w	 2.	 Return to the tf_home.html file in your editor and, within the document 
head, create links to the tf_reset.css and tf_styles1.css style sheet files.

w	 3.	 Take some time to scroll through the contents of the document to become 
familiar with its contents and structure and then save your changes to the file, 
but do not close it.

Next, you’ll insert the structure for the responsive design styles in the tf_styles1.css 
style sheet, adding sections for mobile, tablet, and desktop devices.

To add media queries to a style sheet:
w	 1.	 Return to the tf_styles1.css file in your editor.

w	 2.	 Marjorie has already inserted the base styles that will apply to all devices at 
the top of the style sheet file. Take time to review those styles.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 371

w	 3.	 Scroll to the bottom of the document and add the following code and 
comments after the New Styles Added Below comment.

/* ============================== 
   Mobile Styles: 0px to 480px 
   =============================== 
*/ 
@media only screen and (max-width: 480px) { 
 
} 
 
/* ================================ 
   Tablet Styles: 481px and greater 
   ================================ 
*/ 
@media only screen and (min-width: 481px) { 
 
} 
 
/* ================================= 
   Desktop Styles: 769px and greater 
   ================================= 
*/ 
@media only screen and (min-width: 769px) { 
 
}

Figure 5–6 highlights the media queries in the style sheet file.

Figure 5–6	 Creating media queries for different screen widths

media query matching 
screen devices with a 
maximum width of 480 pixels

media query matching 
screen devices with a 
minimum width of 481 pixels

media query matching 
screen devices with a 
minimum width 769 pixels

w	 4.	 Save your changes to the file.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 372

The media queries you’ve written are based on the screen width. However, before 
you can begin writing styles for each media query, you have to understand how those 
width values are interpreted by your browser.

Exploring Viewports and Device Width
Web pages are viewed within a window called the viewport. For desktop computers, 
the viewport is the same as the browser window; however, this is not the case with 
mobile devices. Mobile devices have two types of viewports: a visual viewport 
displaying the web page content that fits within a mobile screen and a layout viewport 
containing the entire content of the page, some of which may be hidden from the user.

The two viewports exist in order to accommodate websites that have been written 
with desktop computers in mind. A mobile device will automatically zoom out of a 
page in order to give users the complete view of the page’s contents, but as shown 
earlier in Figure 5–2, this often results in a view that is too small to be usable. While 
the user can manually zoom into a page to make it readable within the visual viewport, 
this is done at the expense of hiding content, as shown in Figure 5–7. 

Figure 5–7	 Comparing the visual and layout viewports

visual viewport

layout viewport

© Robert Kneschke/Shutterstock.com; BenBois/openclipart

Notice in the figure how the home page of the Trusted Friends website has been 
zoomed in on a mobile device so that only part of the page is displayed within the 
visual viewport and the rest of the page, which is hidden from the user, extends into the 
layout viewport.

Widths in media queries are based on the width of the layout viewport, not the 
visual viewport. Thus, depending on how the page is scaled, a width of 980 pixels 
might match the physical width of the device as shown in Figure 5–2 or it might extend 
beyond it as shown in Figure 5–7. In order to correctly base a media query on the 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 373

physical width of the device, you have to tell the browser that you want the width of 
the layout viewport matched to the device width by adding the following meta element 
to the HTML file:

<meta name="viewport" content="properties" />

where properties is a comma-separated list of viewport properties and their values, 
as seen in the example that follows:

<meta name="viewport"  
 content="width=device-width, initial-scale=1" />

In this meta element, the device-width keyword is used to set the width of the 
layout viewport to the physical width of the device’s screen. For a mobile device, 
this command sets the width of the layout viewport to the width of the device. The 
line initial-scale=1 is added so that the browser doesn’t automatically zoom out 
of the web page to fit the page content within the width of the screen. We want the 
viewport to match the device width, which is what the above meta element tells the 
browser to do.

Configuring the Layout Viewport

•	 To configure the properties of the layout viewport for use with media queries, add the 
following meta element to the HTML file

<meta name="viewport" content="properties" />

where properties is a comma-separated list of viewport properties and their values.
•	 To size the layout viewport so that it matches the width of the device without 

rescaling, use the following viewport meta element

<meta name="viewport" 
content="width=device-width, initial-scale=1" />

R
E
FE

R
E
N
C
E

Add the viewport meta element to the tf_home.html file now, setting the width of the 
layout viewport to match the device width and the initial scale to 1.

To define the visual viewport:
w	 1.	 Return to the tf_home.html file in your editor.

w	 2.	 Below the meta element that defines the character set, insert the following 
HTML tag:

<meta name="viewport" 
content="width=device-width, initial-scale=1" />

Figure 5–8 highlights the code for the viewport meta element.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 374

w	 4.	 Save your changes to the file.

w	 5.	 Open the tf_home.html file in your browser. Figure 5–9 shows the initial 
design of the page.

Figure 5–8	 Setting the properties of the viewport

sets the width of the 
layout viewport to the 
width of the device

page does not 
automatically zoom 
out when the page 
is initially opened 
by the browser

Figure 5–9	 Mobile layout of the Trusted Friends home page

footer

company 
logo

navigation 
menu

main article

aside 
comments

submenu

submenu title

© Robert Kneschke/Shutterstock.com 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 375

Now that you’ve set up the media queries and configured the viewport, you can 
work on the design of the home page. You’ll start by designing for mobile devices.

IN
SI
G
H
T

Not All Pixels Are Equal

While pixels are a basic unit of measurement in web design, there are actually two 
types of pixels to consider as you design a website. One is a device pixel, which 
refers to the actual physical pixel on a screen. The other is a CSS pixel, which is the 
fundamental unit in CSS measurements. The difference between device pixels and 
CSS pixels is easiest to understand when you zoom into and out of a web page. For 
example, the following style creates an aside element that is 300 CSS pixels wide: 

aside: {width: 300px;}

However, the element is not necessarily 300 device pixels. If the user zooms into 
the web page, the apparent size of the article increases as measured by device pixels 
but remains 300 CSS pixels wide, resulting in 1 CSS pixel being represented by several 
device pixels.

The number of device pixels matched to a single CSS pixel is known as the device-
pixel ratio. When a page is zoomed at a factor of 2x, the device-pixel ratio is 2, with a 
single CSS pixel represented by a 2×2 square of device pixels. 

One area where the difference between device pixels and CSS pixels becomes 
important is in the development of websites optimized for displays with high device-
pixel ratios. Some mobile devices are capable of displaying images with a device 
pixel ratio of 3, resulting in free crisp and clear images. Designers can optimize their 
websites for these devices by creating one set of style sheets for low-resolution displays 
and another for high-resolution displays. The high-resolution style sheet would load 
extremely detailed, high-resolution images, while the low-resolution style sheet would 
load lower resolution images better suited to devices that are limited to smaller device-
pixel ratios. For example, the following media query

<link href="retina.css" rel="stylesheet" 
media="only screen and (-webkit-min-device-pixel-ratio: 2) " />

loads the retina.css style sheet file for high-resolution screen devices that have device-
pixel ratios of at least 2. Note that currently the device-pixel-ratio feature is a 
browser-specific extension supported only by WebKit.

Creating a Mobile Design
A mobile website design should reflect how users interact with their mobile devices. 
Because your users will be working with a small handheld touchscreen device, one 
key component in your design is to have the most important information up-front and 
easily accessible, which means your home page on a mobile device needs to be free of 
unnecessary clutter. Another important principle of designing for mobile devices is that 
you should limit the choices you offer to your users. Ideally, there should only be a few 
navigation links on the screen at any one time.

With these principles in mind, consider the current layout of the Trusted Friends 
home page shown in Figure 5–9. The content is arranged within a single column 
providing the maximum width for the text and images, but an area of concern for 
Marjorie is the long list of hypertext links, which forces the user to scroll vertically 
down the page to view information about the center. Most mobile websites deal with 
this issue by hiding extensive lists of links in pulldown menus, appearing only in 
response to a tap of a major heading in the navigation list. You’ll use this technique for 
the Trusted Friends home page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 376

Creating a Pulldown Menu with CSS
Marjorie has already laid the foundation for creating a pulldown menu in her HTML 
code. Figure 5–10 shows the code used to mark the contents of the navigation list in 
the body header.

Figure 5–10	 Submenus in the navigation list

nested submenu 
lists associated with 
submenu titles

submenu titles

Marjorie has created a navigation bar that includes topical areas named Classes, 
Parents, and About Us. Within each of these topical areas are nested lists containing 
links to specific pages on the Trusted Friends website. Marjorie has put each of these 
nested lists within a class named submenu. So, first you’ll hide each of these submenus 
to reduce the length of the navigation list as it is rendered within the user’s browser. 
You’ll place this style rule in the section for Base Styles because it will be used by both 
mobile and tablet devices (but not by desktop devices as you’ll see later).

To hide a submenu:
w	 1.	 Return to the tf_styles1.css file in your editor.

w	 2.	 Scroll to the Pulldown Menu Styles section and add the following style rule:

ul.submenu { 
   display: none; 
}

Figure 5–11 highlights the styles to hide the navigation list submenus.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 377

Next, you want to display a nested submenu only when the user hovers the mouse 
pointer over its associated submenu title, which for this page are the Classes, Parents, 
and About Us titles. Because the submenu follows the submenu title in the HTML file 
(see Figure 5–10), you can use the following selector to select the submenu that is 
immediately preceded by a hovered submenu title:

a.submenuTitle:hover+ul.submenu

However, this selector is not enough because you want the submenu to remain visible 
as the pointer moves away from the title and hovers over the now-visible submenu. So, 
you need to add ul.submenu:hover to the selector:

a.submenuTitle:hover+ul.submenu, ul.submenu:hover

Figure 5–11	 Hiding the navigation list submenus

prevents the submenu 
unordered lists from 
being displayed 

w	 3.	 Save your changes to the file and then reload the tf_home.html file in your 
browser. Verify that the navigation list no longer shows the contents of the 
submenus but only the Home, Classes, Parents, About Us, and Contact Us 
links. See Figure 5–12.

Figure 5–12	 Navigation list with hidden submenus

submenu lists 
are hidden

© Robert Kneschke/Shutterstock.com 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 378

To make the submenu visible, you change its display property back to block, resulting 
in the following style rule:

a.submenuTitle:hover+ul.submenu, ul.submenu:hover { 
	 display: block;  
}

You may wonder why you don’t use only the ul.submenu:hover selector. The 
reason is that you can’t hover over the submenu until it’s visible and it won’t be visible 
until you first hover over the submenu title. Add this rule now to the tf_styles1.css style 
sheet and test it.

To redisplay the navigation submenus:
w	 1.	 Return to the tf_styles1.css file in your editor.

w	 2.	 Add the following style rule to the Pulldown Menu Styles section:

a.submenuTitle:hover+ul.submenu, ul.submenu:hover { 
   display: block; 
}

Figure 5–13 highlights the styles to display the navigation list submenus.

Figure 5–13	 Displaying the hidden submenus

selects the submenu that is 
preceded by a hovered-over 
submenu title

selects the now-visible 
submenu as it’s being 
hovered over

makes the submenu visible 
by changing the display 
property to block

w	 3.	 Save your changes to the file and then reload the tf_home.html file in your 
browser. Hover your mouse pointer over each of the submenu titles and 
verify that the corresponding submenu becomes visible and remains visible 
as you move the mouse pointer over its contents.

Figure 5–14 shows the revised appearance of the navigation list using the 
pulldown menus.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 379

The hover event is used with mouse pointers on desktop computers, but it has a 
different interpretation when applied to mobile devices. Because almost all mobile 
devices operate via a touch interface, there is no hovering. A mobile browser will 
interpret a hover event as a tap event in which the user taps the page object. When 
the hover event is used to hide an object or display it (as we did with the submenus), 
mobile browsers employ a double-tap event in which the first tap displays the page 
object and a second tap, immediately after the first, activates any hypertext links 
associated with the object. To display the Trusted Friends submenus, the user would tap 
the submenu title and to hide the submenus the user would tap elsewhere on the page.

To test the hover action, you need to view the Trusted Friends page on a mobile 
device or a mobile emulator.

Testing Your Mobile Website
The best way to test a mobile interface is to view it directly on a mobile device. 
However, given the large number of mobile devices and device versions, it’s usually not 
practical to do direct testing on all devices. An alternative to having the physical device 
is to emulate it through a software program or an online testing service. Almost every 
mobile phone company provides a software development kit or SDK that developers 
can use to test their programs and websites. Figure 5–15 lists some of the many mobile 
device emulators available on the web at the time of this writing.

Figure 5–14	 Displaying the contents of a pulldown menu 

hovering over the 
submenu title displays 
the corresponding 
submenu list

© Robert Kneschke/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 380

Browsers are also starting to include device emulators as part of their developer 
tools. You will examine the device emulator that is supplied with the Google Chrome 
browser and use it to view the Trusted Friends home page under a device of your 
choosing. If you don’t have access to the Google Chrome browser, review the steps that 
follow and apply them to the emulator of your choice.

Figure 5–15	 Popular device emulators

Mobile Emulator Description
Android SDK Software development kit for Android developers 

(developer.android.com/sdk)

iOS SDK Software development kit for iPhone, iPad, and other iOS devices 
(developer.apple.com)

Mobile Phone Emulator Online emulation for a variety of mobile devices 
(www.mobilephoneemulator.com)

Mobile Test Me Online emulation for a variety of mobile devices (mobiletest.me)

Opera Mobile SDK Developer tools for the Opera Mobile browser 
(www.opera.com/developer)

Viewing the Google Chrome device emulator:
w	 1.	 Return to the tf_home.html file in the Google Chrome browser and press 

F12 to open the developer tools pane.

w	 2.	 If necessary, click the device icon  located at the top of the developer 
pane to display the device toolbar.

w	 3.	 Select a device of your choosing from the drop-down list of devices on the 
developer toolbar.

w	 4.	 Refresh or reload the web page to ensure that the display parameters of your 
selected device are applied to the rendered page.

The emulator also allows you to view the effect of changing the orientation of 
the phone from portrait to landscape.

w	 5.	 Click the rotate button  located on the device toolbar to switch to 
landscape orientation. Click the rotate button again to switch back to 
portrait mode.

Google Chrome’s device emulator can also emulate the touch action. The 
touch point is represented by a semitransparent circle  .

w	 6.	 Move the touch point over Classes, Parents, or About Us and verify that 
when you click (tap) the touch point on a submenu title the nested submenu 
contents are displayed.

w	 7.	 Verify that you when you click elsewhere in the page the submenu contents 
are hidden.

Figure 5–16 shows the effect of opening a submenu with the touch emulator.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 381

An important aspect of mobile design is optimizing your site’s performance under 
varying network conditions. Thus, in addition to emulating the properties of the mobile 
device, Google Chrome’s device emulator can also emulate network connectivity.

Marjorie wants to increase the font size of the links in the navigation list to make 
them easier to access using touch. She also wants to hide the customer comments that 
have been placed in the aside element (because she doesn’t feel this will be of interest 
to mobile users). Because these changes only apply to the mobile device version of the 
page, you’ll add the style rules within the media query for mobile devices.

Figure 5–16	 Using the Google Chrome device emulator tool

media device
ranges

select the 
mobile device

device width and 
height in pixels

click to change the 
device orientation

click to display the 
device emulator

touch emulation 
shows up as a 
blurred circle

© Robert Kneschke/Shutterstock.com

w	 8.	 Continue to explore Google Chrome’s device emulators, trying out different 
combinations of devices and screen orientations. Press F12 again to close 
the developer window.

To hide the customer comments:
w	 1.	 Return to the tf_styles1.css file in your editor and go to the Mobile Styles 

section.

w	 2.	 Within the media query for screen devices with a maximum width of 480 pix-
els, add the following style rule to increase the font size of the hypertext links 
in the navigation list. Indent the style rule to offset it from the braces around 
the media query.

nav.horizontal a { 
   font-size: 1.5em; 
   line-height: 2.2em; 
}

The styles rules for a media 
query must always be 
placed within curly braces 
to define the extent of the 
query.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 382

w	 3.	 Add the following style rule to hide the aside element (once again indented 
from the surrounding media query):

aside { 
   display: none; 
}

Figure 5–17 highlights the style rules in the media query for mobile devices.

Figure 5–17	 Hiding the aside element for mobile devices

hides the aside 
element

increases the size 
of the navigation 
links

closing curly brace 
for the media query

applies the style rules only 
for screen devices with a 
maximum width of 480 pixels

opening curly 
brace for the 
media query

w	 4.	 Save your changes to the file and then reload the tf_home.html file in your 
browser. Reduce the width of the browser window to 480 pixels or below (or 
view the page in your mobile emulator). Verify that the customer comments 
are no longer displayed on the web page and that the size of the navigation 
links has been increased.

Figure 5–18 shows the final design of the mobile version.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 383

Now that you’ve completed the mobile design of the page, you’ll start to work on 
the design for tablet devices.

Creating a Tablet Design 
Under the media query you’ve set up, your design for tablet devices will be applied for 
screen widths greater than 480 pixels. The pulldown menu you created was part of the 
base styles, so it is already part of the tablet design; however, with the wider screen, 
Marjorie would like the submenus displayed horizontally rather than vertically. You can 
accomplish this by adding a style rule to the tablet media query to float the submenus 
side-by-side.

Figure 5–18	 Final design of the mobile version of the home page

increased font size 
in the navigation list

customer comments 
not displayed in the 
mobile version

To begin writing the tablet design:
w	 1.	 Return to the tf_styles1.css file in your editor and scroll down to the media 

query for the tablet styles.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 384

w	 2.	 Within the media query, add the following style to float the five list items, 
which are direct children of the main menu, side-by-side. Set the width of 
each list item to 20% of the total width of the main menu.

ul.mainmenu > li { 
float: left; 
width: 20%; 
}

w	 3.	 Double the widths of the submenus so that they stand out better from the 
main menu titles by adding the following style rule.

ul.submenu { 
width: 200%; 
}

Figure 5–19 highlights the style rule within the media query for tablet 
devices.

Figure 5–19	 Formatting the navigation menus for tablet devices

�oats the menu list items 
horizontally with a width 
of 20% of the main menu

doubles the width of 
each submenu

w	 4.	 Save your changes to the style sheet and then reload the tf_home.html file in 
your web browser.

w	 5.	 Increase the width of the browser window beyond 480 pixels to switch from 
the mobile design to the tablet design. Verify that the submenu titles are 
now laid out horizontally and that if you hover your mouse pointer over the 
submenu titles, the contents of the submenu are made visible on the screen. 
See Figure 5–20.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 385

Marjorie notices that opening the submenus pushes the subsequent page content 
down to make room for the submenu. She prefers the submenus to overlay the page 
content. You can accomplish this by placing the submenus with absolute positioning. 
Remember that objects placed with absolute positioning are removed from the 
document flow and thus, will overlay subsequent page content. To keep the submenus 
in their current position on the page, you’ll make each main list item a container for its 
submenu by setting its position property to relative. Thus, each submenu will be 
placed using absolute positioning with its main list item. You will not need to set the top 
and left coordinates for these items because you’ll use the default value of 0 for both. 
Because the submenus will overlay page content, Marjorie suggests you add a drop 
shadow so, when a submenu is opened, it will stand out more from the page content.

Figure 5–20	 Pulldown menus for the tablet layout

menu items �oated 
side-by-side

opening the 
submenu pushes the 
subsequent page 
content down

width of the submenu 
is double the width of 
the submenu title

pulldown menu appears 
when the user hovers the 
mouse pointer over the 
submenu title

© Robert Kneschke/Shutterstock.com;

w	 6.	 Scroll down as needed and note that the customer comments now appear 
at the bottom of the page because they were only hidden for the mobile 
version of this document.

To position the navigation submenus:
w	 1.	 Return to the tf_styles1.css style sheet in your editor.

w	 2.	 Locate the style rule for the ul.mainmenu > li selector in the Tablet Styles 
section and add the following style:

position: relative;

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 386

w	 3.	 Add the following style to the ul.submenu selector in the Tablet Styles 
section:

box-shadow: rgb(51, 51, 51) 5px 5px 15px; 
position: absolute;

Figure 5–21 highlights the new styles.

Figure 5–21	 Placing the pulldown menus with absolute positioning

applies the style rules only 
for screen devices with a 
minimum width of 481 pixels

places the menu list 
items using relative 
positioning

absolutely positions 
the submenus within 
each menu list item

adds a drop shadow 
to each submenu

w	 4.	 Save your changes to the style sheet and then reload the tf_home.html file in 
your web browser.

w	 5.	 Verify that when you open the pulldown menus, the subsequent page 
content is not shifted downward. Figure 5–22 highlights the final design for 
the tablet version of the home page.

page content does 
not shift when the 
pulldown menu is 
opened

Figure 5–22	 Revised design of the pulldown menus

© Robert Kneschke/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 387

You’ll complete your work on the home page by creating the desktop version of the 
page design.

Creating a Desktop Design 
Some of the designs that will be used in the desktop version of the page have already 
been placed in the Base Styles section of the tf_styles1.css style sheet. For example, the 
maximum width of the web page has been set to 1024 pixels. For browser windows 
that exceed that width, the web page will be displayed on a fixed background image of 
children playing. Other styles are inherited from the style rules for tablet devices. For 
example, desktop devices will inherit the style rule that floats the navigation submenus 
alongside each other within a single row. All of which illustrates an important principle 
in designing for multiple devices: don’t reinvent the wheel. As much as possible allow 
your styles to build upon each other as you move to wider and wider screens.

However, there are some styles that you will have to implement only for desktop 
devices. With the wider screen desktop screens, you don’t need to hide the submenus 
in a pulldown menu system. Instead you can display all of the links from the navigation 
list. You’ll change the submenu background color to transparent so that it blends in 
with the navigation list and you’ll remove the drop shadows you created for the tablet 
design. The submenus will always be visible, so you’ll change their display property 
from none to block. Finally, you’ll change their position to relative because you no 
longer want to take the submenus out of the document flow and you’ll change their 
width to 100%. Apply the styles now to modify the appearance of the submenus.

To start working on the desktop design:
w	 1.	 Return to the tf_styles1.css style sheet in your editor and within the media 

query for devices with screen widths 769 pixels or greater insert the following 
style rule to format the appearance of the navigation submenus.

ul.submenu { 
   background: transparent; 
   box-shadow: none; 
   display: block; 
   position: relative; 
   width: 100%; 
}

w	 2.	 The navigation list itself needs to expand so that it contains all of its floated 
content. Add the following style rule to the media query for desktop devices:

nav.horizontal::after { 
   clear: both; 
   content: ""; 
   display: table; 
}

w	 3.	 Finally with no hidden submenus, there is no reason to have a submenu title. 
Add the following style rule to remove the submenu titles:

nav.horizontal a.submenuTitle { 
   display: none; 
}

Figure 5–23 highlights the new style rules in the desktop media query.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 388

With a wider screen, you want to order to avoid long lines of text, which are difficult 
to read. Modify the layout of the desktop design so that the main article and the 
customer comments are floated side-by-side within the same row.

Figure 5–23	 Adding design styles for the browser background and page body

applies the style rules only 
for screen devices with a 
minimum width of 769 pixels

expands the 
navigation list 
to contain all 
�oated lists

sets the width of 
the submenus 
to 100% places the 

submenus 
with relative 
positioning

makes submenu 
backgrounds 
transparent

makes submenus 
always visible

removes the 
drop shadows

hides the 
submenu titles

To change the layout of the article and aside elements:
w	 1.	 Within the media query for desktop devices, add the following style rules to 

float the article and aside elements:

article { 
   float: left; 
   margin-right: 5%; 
   width: 55%; 
} 
aside { 
   float: left; 
   width: 40%; 
}

Figure 5–24 highlights the final style rules in the desktop media query.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 389

w	 3.	 Resize your web browser and verify that as you change the browser window 
width, the layout changes from the mobile to the tablet to the desktop 
design.

Figure 5–24	 Styles for the article and aside elements

�oats the main article 
with a width of 55% and 
a right margin of 5%

�oats the aside element 
with a width of 40%

w	 2.	 Save your changes to the style sheet and then reload tf_home.html in your 
browser.

Figure 5–25 shows the final appearance of the desktop design.

Figure 5–25	 Final desktop design for the Trusted Friends home page

navigation list expands to 
contain �oated content

submenus are laid 
out horizontally 
and are always 
visible

article and aside 
elements are 
arranged in two 
columns

© Robert Kneschke/Shutterstock.com; © dotshock/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 390

You show the final design of the home page to Marjorie. She is pleased by the 
changes you’ve made and likes that the page’s content and layout will automatically 
adapt to different screen widths.

PR
O
SK

IL
LS

Problem Solving: Optimizing Your Site for the Mobile Web

The mobile browser market is a rapidly evolving and growing field with more new 
devices and apps introduced each month. Adapting your website for the mobile web 
is not a luxury, but a necessity.

A good mobile design matches the needs of consumers. Mobile users need quick 
access to main sources of information without a lot of the extra material often found 
in the desktop versions of their favorite sites. Here are some things to keep in mind as 
you create your mobile designs:

•	 Keep it simple. To accommodate the smaller screen sizes and slower connection 
speeds, scale down each page to a few key items and articles. Users are looking for 
quick and obvious information from their mobile sites.

•	 Resize your images. Downloading several images can bring a mobile device to a 
crawl. Reduce the number of images in your mobile design, and use a graphics 
package to resize the images so they are optimized in quality and sized for a smaller 
screen.

•	 Scroll vertically. Readers can more easily read your page when they only have to 
scroll vertically. Limit yourself to one column of information in portrait orientation 
and two columns in landscape.

•	 Make your links accessible. Clicking a small hypertext link is extremely difficult to 
do on a mobile device with a touch screen interface. Create hypertext links that are 
easy to locate and activate.

Above all, test your site on a variety of devices and under different conditions. 
Mobile devices vary greatly in size, shape, and capability. What works on one device 
might fail utterly on another. Testing your code on a desktop computer is only the first 
step; you may also need access to the devices themselves. Even emulators cannot 
always capture the nuances involved in the performance of an actual mobile device.

You’ve completed your work on the design of the Trusted Friends home page with 
a style sheet that seamlessly transitions between mobile, tablet, and desktop devices. 
In the next session, you’ll explore how to use flexible boxes to achieve a responsive 
design.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 391

R
E
V
IE

W

Session 5.1 Quick Check

	 1.	 Which of the following is not a part of responsive design theory?
a.	 flexible layouts
b.	 pulldown menus
c.	 image rescaling
d.	 media queries

	 2.	 Which attribute do you add to a link element for aural browsers?
a.	 media = "aural"
b.	 type = "aural"
c.	 media = "speech"
d.	 type = "speech"

	 3.	 What @rule do you use for braille device?
a.	 @media braille
b.	 @braille true
c.	 @type braille
d.	 @media nonscreen

	 4.	 What @rule loads style rules for screen devices up to a maximum width of 
780 pixels?
a.	 @screen: 780px
b.	 @media screen and (width: 780px)
c.	 @screen and (width <= 780px)
d.	 @media screen and (max-width: 780px)

	 5.	 What attribute would you add to a link element for screen devices whose 
width ranges from 480 pixels up to 780 pixels (inclusive)?
a.	 media="screen" min-width="480px" min-width="480px"
b.	 media="screen and (width=480px - 780px)"
c.	 minScreenWidth = "480px" maxScreenWidth = "780px"
d.	 media="screen and (min-width: 480px and max-width: 780px)"

	 6.	 In general, what media rules should be listed first in your media queries if you 
want to support mobile, tablet, laptop, and desktop devices?
a.	 mobile
b.	 tablet
c.	 laptop
d.	 desktop

	 7.	 Which viewport displays the web page content that fits within mobile screen?
a.	 layout
b.	 visual
c.	 webpage
d.	 browser

	 8.	 Which viewport contains the entire content of the page, some of which may be 
hidden from the user?
a.	 layout
b.	 visual
c.	 webpage
d.	 browser

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 392

Session 5.2 Visual Overview: 
A �exbox contains items 
whose size automatically 
expands or contracts to match 
the dimensions of the box.

The �ex-basis value 
provides the basis or 
initial size of the item 
prior to �exing.

The �ex-shrink value 
speci�es how fast the 
item shrinks below its 
basis size relative to 
other items in the 
�exbox.

The �ex-grow value 
speci�es how fast the 
item grows above its 
basis size relative to 
other items in the 
�exbox.

To de�ne the 
orientation of the 
�exbox and whether 
items can wrap to a 
new line, apply the 
flex-flow property.

Use the flex property 
to de�ne the size of 
the �ex items and
how they will grow or 
shrink in response to 
the changing size of 
the �exbox.

To create a �exbox, set 
the display property 
to �ex.

© dotshock/Shutterstock.com; BenBois/openclipart; JMLevick/openclipart

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 393

Flexible Layouts

With narrower 
screens, a �exbox 
layout automatically 
places items within 
a single column.

With wider screens, 
the items are free to 
expand, automatically 
placing themselves 
into multiple columns.B

en
B

oi
s/

op
en

cl
ip

ar
t

Jm
le

vi
ck

/o
p

en
cl

ip
ar

t

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 394

Introducing Flexible Boxes
So far our layouts have been limited to a grid system involving floating elements 
contained within a fixed or fluid grid of rows and columns. One of the challenges 
of this approach under responsive design is that you need to establish a different 
grid layout for each class of screen size. It would be much easier to have a single 
specification that automatically adapts itself to the screen width without requiring a 
new layout design. One way of achieving this is with flexible boxes.

Defining a Flexible Box
A flexible box or flexbox is a box containing items whose sizes can shrink or grow 
to match the boundaries of the box. Thus, unlike a grid system in which each item 
has a defined size, flexbox items adapt themselves automatically to the size of their 
container. This makes flexboxes a useful tool for designing layouts that can adapt to 
different page sizes.

Items within a flexbox are laid out along a main axis, which can point in either the 
horizontal or vertical direction. Perpendicular to the main axis is the cross axis, which 
is used to define the height or width of each item. Figure 5–26 displays a diagram of 
two flexboxes with items arranged either horizontally or vertically along the main axis.

Figure 5–26	 Horizontal and vertical flexboxes

vertical �exbox 

main axis 

�ex item �ex item �ex item 
�ex item 

�ex item 

�ex item 

cross axis 

main axis 

horizontal �exbox 

cross axis 

To define an element as a flexbox, apply either of the following display styles

display: flex;

or

display: inline-flex;

where a value of flex starts the flexbox on a new line (much as a block element 
starts on a new line) and a value of inline-flex keeps the flexbox in-line with its 
surrounding content.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 395

Cross-Browser Flexboxes
The syntax for flexboxes has gone through major revisions as it has developed from 
the earliest drafts to the latest specifications. Many older browsers employ a different 
flexbox syntax, in some cases replacing the word flex with box or flexbox. The complete 
list of browser extensions that define a flexbox would be entered as:

display: -webkit-box; 
display: -moz-box; 
display: -ms-flexbox; 
display: -webkit-flex: 
display: flex;

To simplify the code in the examples that follow, you will limit your code to the 
W3C specification. This will cover the current browsers at the time of this writing. 
However, if you need to support older browsers, you may have to include a long list of 
browser extensions for each flex property.

Setting the Flexbox Flow
By default, flexbox items are arranged horizontally starting from the left and moving to 
the right. To change the orientation of the flexbox, apply the following flex-direction 
property

flex-direction: direction;

where direction is row (the default), column, row-reverse, or column-reverse. 
The row option lays out the flex items from left to right, column creates a vertical layout 
starting from the top and moving downward, and the row-reverse and  
column-reverse options lay out the items bottom-to-top and right-to-left respectively.

Flex items will all try to fit within a single line, either horizontally or vertically. But 
if they can’t, those items can wrap to a new line as needed by applying the following 
flex-wrap property to the flexbox

flex-wrap: type;

where type is either nowrap (the default), wrap to wrap the flex items to a new line, 
or wrap-reverse to wrap flex items to a new line starting in the opposite direction 
from the current line. For example, the following style rules create a flexbox in which 
the items are arranged in a column starting from the top and going down with any flex 
items that wrap to the second column starting from the bottom and moving up.

display: flex; 
flex-direction: column; 
flex-wrap: wrap-reverse;

Additional items in this flexbox will continue to follow a snake-like curve with the 
third column starting at the top, moving down, and so forth.

Both the flex-direction and flex-wrap properties can be combined into the 
following flex-flow style

flex-flow: direction wrap;

where direction is the direction of the flex items and wrap defines whether the 
items will be wrapped to a new line when needed. Figure 5–27 shows an example of 
flexboxes laid out in rows and columns in which the flex items are forced to wrap to 
a new line. Note that the column-oriented flexbox uses wrap-reverse to start the new 
column on the bottom rather than the top.

Some older browsers do 
not support the flex- 
flow property, so for full 
cross-browser support, 
you might use the flex-
direction and flex-
wrap properties instead.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 396

Marjorie wants you to use flexboxes to design a page she’s created describing the 
pre-k classes offered by Trusted Friends. She has already created the content of the page 
and several style sheets to format the appearance of the page elements. You’ll create a 
style sheet that lays out the page content drawing from a library of flexbox styles.

Figure 5–27	 Flexbox layouts

1 2 3 

4 5 

1 

2 

3 

4 5 

�ex-�ll: row wrap; �ex-�ll: column wrap-reverse; 

7 6 

7 6 

Defining a Flexbox

•	 To display an element as a flexbox, apply the display style

display: flex;

•	 To set the orientation of the flexbox, apply the style

flex-direction: direction;

where direction is row (the default), column, row-reverse, or column-reverse.
•	 To define whether or not flex items wrap to a new line, apply the style

flex-wrap: type;

where type is either nowrap (the default), wrap to wrap flex items to a new line, or 
wrap-reverse to wrap flex items to a new line starting in the opposite direction from 
the current line.

•	 To define the flow of items within a flexbox, apply the style

flex-flow: direction wrap;

where direction is the direction of the flex items and wrap defines whether the items 
will be wrapped to a new line when needed.

R
E
FE

R
E
N
C
E

To open the pre-k page and style sheet:
w	 1.	 Use your editor to open the tf_prek_txt.html and tf_flex_txt.css files 

from the html05 c tutorial folder. Enter your name and the date in the 
comment section of each file and save them as tf_prek.html and tf_flex.css 
respectively.

w	 2.	 Return to the tf_prek.html file in your editor and, within the document head, 
create links to the tf_reset.css, tf_styles2.css, and tf_flex.css style sheets in 
that order.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 397

w	 6.	 Save your changes to the file.

w	 3.	 Take some time to scroll through the contents of the document to become 
familiar with its contents and structure and then save your changes to the file, 
leaving it open.

w	 4.	 Go to the tf_flex.css file in your editor.

w	 5.	 Go to the Base Flex Styles section and insert the following style rules to 
display the entire page body as a flexbox oriented horizontally with overflow 
flex items wrapped to a new row as needed:

body { 
   display: flex; 
   flex-flow: row wrap; 
}

Figure 5–28 highlights the new flexbox styles in the style sheet.

Figure 5–28	 Setting the flex display style

orients the �exbox 
by rows, wrapping to 
a new line as needed

displays the page 
body as a �exbox

Now that you’ve defined the page body as a flexbox, you’ll work with styles that 
define how items within a flexbox expand and contract to match the flexbox container.

Working with Flex Items
Flex items behave a lot like floated objects though with several advantages, including 
that you can float them in either the horizontal or vertical direction and that you can 
change the order in which they are displayed. While the size of a flex item can be 
fixed using the CSS width and height properties, they don’t have to be. They can 
also be “flexed”—automatically adapting their size to fill the flexbox. A flex layout is 
fundamentally different from a grid layout and requires you to think about sizes and 
layout in a new way.

Setting the Flex Basis
When items are allowed to “flex” their rendered size is determined by three properties: 
the basis size, the growth value, and the shrink value. The basis size defines the initial 
size of the item before the browser attempts to fit it to the flexbox and is set using the 
following flex-basis property

flex-basis: size;

Because flexboxes can 
be aligned horizontally 
or vertically, the flex-basis 
property sets either the initial 
width or the initial height 
of the flex item depending 
on the orientation of the 
flexbox. 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 398

where size is one of the CSS units of measurement, a percentage of the size of the 
flexbox, or the keyword auto (the default), which sets the initial size of the flex item 
based on its content or the value of its width or height property. For example, the 
following style rule sets the initial size of the aside element to 200 pixels:

aside { 
   flex-basis: 200px; 
}

The flex-basis property should not be equated with the width and height 
properties used with grid layouts; rather, it serves only as a starting point. The actual 
rendered size of the aside element in this example is not necessarily 200 pixels but 
will be based on the size of the flexbox, as well as the size of the other items within the 
flexbox.

Defining the Flex Growth
Once the basis size of the item has been defined, the browser will attempt to expand 
the item into its flexbox. The rate at which a flex item grows from its basis size is 
determined by the following flex-grow property

flex-grow: value;

where value is a non-negative value that expresses the growth of the flex item relative 
to the growth of the other items in the flexbox. The default flex-grow value is 0, 
which is equivalent to not allowing the flex item to grow but to remain at its basis size. 
Different items within a flexbox can have different growth rates and the growth rate 
largely determines how much of the flexbox is ultimately occupied by each item.

Figure 5–29 shows an example of how changing the size of a flexbox alters the size 
of the individual flexbox items. 

Figure 5–29	 Growing flex items beyond their basis size

�ex-basis: 100px; 
�ex-grow: 1; 

�ex-basis: 100px; 
�ex-grow: 3; 

�ex-basis: 100px; 
�ex-grow: 1; 

�ex-basis: 100px; 
�ex-grow: 3; 

100px 100px 

150px 250px 

50px 

second item grows at 3x the rate of the �rst as the �exbox expands 

both �ex items have the same basis size 

150px 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 399

In the figure, the basis sizes of the two items are 100 pixels each with the growth 
of the first item set to 1 and the growth of the second item set to 3. The growth values 
indicate that as the flex items expand to fill the flexbox, item1 will increase 1 pixel 
for every 3 pixels that item2 increases. Thus, to fill up the remaining 200 pixels of a 
400-pixel wide flexbox, 50 pixels will be allotted to the first item and 150 pixels will 
be allotted to the second item, resulting in final sizes of 150 pixels and 250 pixels 
respectively. If the width of the flexbox were to increase to 600 pixels, item1 and 
item2 will divide the extra 400 pixels once again in a ratio of 1 to 3. Item1 will have a 
total size of 200 pixels (100px + 100px) and item2 will expand to a size of 400 pixels 
(100px + 300px).

Notice that unlike a grid layout, the relative proportions of the items under a flex 
layout need not be constant. For the layout shown in Figure 5–29, the two items share 
the space equally when the flexbox is 200 pixels wide, but at 400 pixels the first item 
occupies 37.5% of the box while the second item occupies the remaining 62.5%.

To keep a constant ratio between the sizes of the flex items, set their basis sizes to 0 
pixels. For example, the following style rules will result in a flexbox in which the first 
item is always half the size of the second item no matter how wide or tall the flexbox 
becomes.

div#item1 { 
   flex-basis: 0px; 
   flex-grow: 1; 
} 
div#item2 { 
   flex-basis: 0px; 
   flex-grow: 2; 
}

One of the great advantages of the flexible box layout is that you don’t need to 
know how many items are in the flexbox to keep their relative proportions the same. 
The following style rule creates a layout for a navigation list in which each list item is 
assigned an equal size and grows at the same rate.

nav ul { 
   display: flex; 
} 
nav ul li { 
   flex-basis: 0px; 
   flex-grow: 1; 
}

If there are four items in this navigation list, each will be 25% of the total list size 
and if at a later date a fifth item is added, those items will then be allotted 20% of 
the total size. Thus, unlike a grid layout, there is no need to revise the percentages to 
accommodate new entries in the navigation list; a flexible box layout handles that task 
automatically.

Note that if the flex-grow value is set to 0, the flex item will not expand beyond its 
basis size, making that basis value the maximum width or height of the item.

Defining the Shrink Rate
What happens when the flexbox size falls below the total space allotted to its flex 
items? There are two possibilities depending on whether the flexbox is defined to wrap 
its contents to a new line. If the flexbox-wrap property is set to wrap, one or more of 
the flex items will be shifted to a new line and expanded to fill in the available space 
on that line. Figure 5–30 shows a flexbox layout in which three items each have a basis 
size of 200 pixels with the same growth value of 1. 

If all items have flex-grow 
set to 1 and an equal flex 
basis, they will always have 
an equal size within the 
flexbox.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 400

As shown in the figure, as long as the flexbox is at least 600 pixels wide, the items will 
equally share a single row. However, once the flexbox size falls below 600 pixels, the three 
items can no longer share that row and the last item is wrapped to a new row. Once on that 
new row, it’s free to fill up the available space while the first two items equally share the space 
on the first row. As the flexbox continues to contract, falling below 400 pixels, the first two 
items can no longer share a row and the second item now wraps to its own row. At this point 
the three items fill separate rows and as the flexbox continues to shrink, their sizes also shrink.

If the flexbox doesn’t wrap to a new line as it is resized, then the flex items will 
continue to shrink, still sharing the same row or column. The rate at which they shrink 
below their basis size is given by the following flex-shrink property

flex-shrink: value;

where value is a non-negative value that expresses the shrink rate of the flex item 
relative to the shrinkage of the other items in the flexbox. The default flex-shrink 
value is 1. For example, in the following style rules, item1 and item2 will share the 
flexbox equally as long as the width of the flexbox is 400 pixels or greater. 

div { 
   display: flex; 
   flex-wrap: nowrap; 
} 
div #item1 { 
   flex-basis: 200px; 
   flex-grow: 1; 
   flex-shrink: 3; 
} 

Figure 5–30	 Shrinking flex items smaller than their basis size

flex-basis: 200px; 
flex-grow: 1; 

900px 

flex-basis: 200px; 
flex-grow: 1; 

flex-basis: 200px; 
flex-grow: 1; 

500px 

300px 300px 300px 

flex-basis: 200px; 
flex-grow: 1; 

250px 250px 

flex-basis: 200px; 
flex-grow: 1; 

flex-basis: 200px; 
flex-grow: 1; 

500px 

flex-basis: 200px; 
flex-grow: 1; 

150px 

150px 

flex-basis: 200px; 
flex-grow: 1; 

150px 

flex-basis: 200px; 
flex-grow: 1; 

150px 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 401

div #item2 { 
   flex-basis: 200px; 
   flex-grow: 1; 
   flex-shrink: 1; 
}

However, once the flexbox falls below 400 pixels, the two items begin to shrink 
with item1 losing 3 pixels for every 1 pixel lost by item2. Note that if the flex-shrink 
value is set to 0, then the flex item will not shrink below its basis value, making that 
basis value the minimum width or height of the item.

The flex Property
All of the size values described above are usually combined into the following flex property

flex: grow shrink basis;

where grow defines the growth of the flex item, shrink provides its shrink rate, and 
basis sets the item’s initial size. The default flex value is

flex: 0 1 auto;

which automatically sets the size of the flex item to match its content or the value of 
its width and height property. The flex item will not grow beyond that size but, if 
necessary, it will shrink as the flexbox contracts.

The flex property supports the following keywords: 

•	auto	� Use to automatically resize the item from its default size (equivalent to 
flex: 1 1 auto;)

•	initial	� The default value (equivalent to flex: 0 1 auto;)
•	none	� Use to create an inflexible item that will not grow or shrink (equivalent to 

flex: 0 0 auto;)
•	inherit	� Use to inherit the flex values of its parent element

As with other parts of the flex layout model, the flex property has gone through several 
syntax changes on its way to its final specification. To support older browsers, use the browser 
extensions: -webkit-box, -moz-box, -ms-flexbox, -webkit-flex, and flex in that order.

Sizing Flex Items

•	 To set the initial size of a flex item, apply the style

flex-basis: size;

where size is measured in one of the CSS units of measurement or as a percentage of 
the size of the flexbox or the keyword auto (the default).

•	 To define the rate at which a flex item grows from its basis size, apply the style

flex-grow: value;

where value is a non-negative value that expresses the growth of the flex item relative 
to the growth of the other items in the flexbox (the default is 0).

•	 To define the rate at which a flex item shrinks below its basis value, apply

flex-shrink: value;

where value is a non-negative value that expresses the shrink rate of the flex item 
relative to other items in the flexbox (the default is 0).

•	 To define the overall resizing of a flex item, apply

flex: grow shrink basis;

where grow defines the growth of the flex item, shrink provides its shrink rate, and 
basis sets the item’s initial size.

R
E
FE

R
E
N
C
E

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 402

Applying a Flexbox Layout
Now that you’ve seen how to size items within a flexbox, you can return to the layout 
for the Pre-K Classes page at Trusted Friends Daycare. The body element, which you 
already set up as a flexbox, has four child elements: the page header, an aside element 
describing the daily class schedule, a section element describing the classes, and 
the page footer. Marjorie wants the header and the footer to always occupy a single 
row at 100% of the width of the page body. For wide screens, she wants the aside 
and section elements displayed side-by-side with one-fourth of the width assigned to 
the aside element and three-fourths to the section element. For narrow screens, she 
wants the aside and section elements displayed within a single column. Figure 5–31 
displays the flex layout that Marjorie wants you to apply.

body header 

aside 

main section 

body footer 

body header 

aside main section 

body footer 

narrow screen wide screen 

Figure 5–31	 Proposed flex layout for the Pre-K page

Using the techniques of the first session, this would require media queries with one 
grid layout for narrow screens and a second grid layout for wide screens. However, you 
can accomplish the same effect with a single flex layout. First, you set the width of the 
body header and footer to 100% because they will always occupy their own row:

header, footer { 
   width: 100%; 
}

Then, you set the basis size of the aside and section elements to 120 and 361 
pixels respectively. As long as the screen width is 481 pixels or greater, these two 
elements will be displayed side-by-side; however, once the screen width drops below 
481 pixels, the elements will wrap to separate rows as illustrated in the narrow screen 
image in Figure 5–31. Because you want the main section element to grow at a rate 
three times faster than the aside element (in order to maintain the 3:1 ratio in their 
sizes), you set the flex-growth values to 1 and 3 respectively. The flex style rules are

aside { 
   flex: 1 1 120px; 
} 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 403

 
section#main { 
   flex: 3 1 361px; 
}

Note that you choose 481 pixels as the total initial size of the two elements to 
match the cutoff point in the media query between mobile and tablet/desktop devices. 
Generally, you want your flex items to follow the media query cutoffs whenever 
possible. Add these style rules to the tf_flex.css style sheet now.

To define the flex layout:
w	 1.	 Within the tf_flex.css file in your editor, add the following style rules to the 

Base Flex Styles section:

header, footer { 
   width: 100%; 
} 
 
aside { 
   flex: 1 1 120px; 
} 
 
section#main { 
   flex: 3 1 361px; 
}

Figure 5–32 highlights the newly added style rules to define the flex item sizes.

Figure 5–32	 Set the flex properties of the flex items in the page body

displays the header 
and footer at a width 
of 100%, occupying 
an entire row

sets the initial size of 
the aside element to 
120 pixels and sets 
the growth and shrink 
factors to 1

sets the initial size of 
the main section to 
361 pixels and has it 
grow and shrink at a 
3:1 ratio compared to 
the aside element

w	 2.	 Save your changes to the file and then open the tf_prek.html file in your web 
browser.

w	 3.	 Change the size of the browser window or use the device emulator tools in 
your browser to view the page under different screen widths. As shown in 
Figure 5–33, the layout of the page changes as the screen narrows and widens.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 404

Flexboxes can be nested within one another and a flex item can itself be a flexbox 
for its child elements. Within the topics section, Marjorie has created six articles 
describing different features of the center’s pre-k curriculum. She wants these articles to 
share equal space within a row-oriented flexbox, with each article given a basis size of 
200 pixels. The style rules are:

section#topics { 
   display: flex; 
   flex-flow: row wrap; 
} 
 
section#topics article { 
   flex: 1 1 200px; 
}

Marjorie also wants the items in the navigation list to appear in a row-oriented 
flexbox for tablet and desktop devices by adding the following style rules to the media 
query for screen devices whose width exceeds 480 pixels:

nav.horizontal ul { 
   display: flex; 
   flex-flow: row nowrap; 
} 
 
nav.horizontal li { 
   flex: 1 1 auto; 
}

The navigation list items will appear in a single row with no wrapping and the width of 
each item will be determined by the item’s content so that longer entries are given more 
horizontal space. With the growth and shrink values set to 1, each list item will grow and 
shrink at the same rate, keeping the layout consistent across different screen widths.

Add these style rules now.

Figure 5–33	 Flex layout under different screen widths

narrow screen wide screen

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 405

To lay out the topic articles and navigation list:
w	 1.	 Return to the tf_flex.css file in your editor and go to the Base Flex Styles 

section.

w	 2.	 Add the following style rules to create a flex layout for the page articles.

section#topics { 
   display: flex; 
   flex-flow: row wrap; 
} 
 
section#topics article { 
   flex: 1 1 200px; 
}

Figure 5–34 highlights the style rules for the article topics layout.

Figure 5–34	 Creating a flex layout for articles in the topics section

sets the basis size of 
each article to 200 pixels, 
growing and shrinking at 
the same rate

orients the �exbox as a 
row and wraps items to a 
new line as needed

displays the topic section 
as a �exbox

w	 3.	 Scroll down to the media query for tablet and desktop devices and add the 
following style rule to create a flex layout for the navigation list. (Indent your 
code to set it off from the media query braces.)

nav.horizontal ul { 
   display: flex; 
   flex-flow: row nowrap; 
} 
 
nav.horizontal li { 
   flex: 1 1 auto; 
}

Figure 5–35 highlights the style rules for the navigation list and list items.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 406

Figure 5–35	 Creating a flex layout for the navigation list

bases the size of each 
item on its content 
and has them grow 
and shrink at the 
same rate

orients the �exbox 
in the row direction 
with no wrapping

displays the 
unordered list 
as a �exbox

w	 4.	 Save your changes to the file and reload the tf_prek.html file in your web 
browser.

w	 5.	 View the page under different screen widths and verify that, for tablet and 
desktop screen widths, the navigation list entries appear in a single row. Also, 
verify that the articles in the topics section flex from a single column layout to 
two or more rows of content. See Figure 5–36.

Figure 5–36	 Flex layout under a desktop screen width

articles �ex in layout 
from a single column 
to a 2 × 3 grid, 
depending on the 
screen width

navigation list 
appears in a single 
row for tablet and 
desktop devices

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 407

Marjorie likes how using flexboxes has made it easy to create layouts that match a 
wide variety of screen sizes. However, she is concerned that under the single column 
layout used for mobile devices the daily schedule appears first before any description 
of the classes. She would like the daily schedule to appear at the bottom of the page. 
She asks if you can modify the layout to achieve this.

Reordering Page Content with Flexboxes
One of the principles of web page design is to, as much as possible, separate the page 
content from page design. However, a basic feature of any design is the order in which 
the content is displayed. Short of editing the content of the HTML file, there is not an 
easy way to change that order.

That at least was true before flexboxes. Under the flexbox model you can place the 
flex items in any order you choose using the following order property

order: value;

where value is an integer where items with smaller order values are placed before 
items with larger order values. For example, the following style arranges the div 
elements starting first with item2, followed by item3, and ending with item1. This is 
true regardless of how those div elements have been placed in the HTML document.

div#item1 {order: 100;} 
div#item2 {order: -1;} 
div#item3 {order: 5;}

Note that order values can be negative. The default order value is 0.
For complete cross-browser support, you can apply the following browser extensions 

with flex item ordering:

-webkit-box-ordinal-group: value;  
-moz-box-ordinal-group: value; 
-ms-flex-order: value; 
-webkit-order: value; 
order: value;

Most current browsers support the CSS specifications, so you will limit your code to 
those properties.

If flex items have the 
same order value, they 
are arranged in document 
order.

Reordering a Flex Item

•	 To reorder a flex item, apply the style

order: value;

where value is an integer where items with smaller order values are placed before 
items with larger order values.

R
E
FE

R
E
N
C
E

For mobile devices, Marjorie wants the page header displayed first, followed by the 
main section, the aside element, and ending with the page footer. Add style rules now 
to the mobile device media query in the tf_flex.css style sheet to reorder the flex items.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 408

To lay out the topic articles and navigation list:
w	 1.	 Return to the tf_flex.css file in your editor and go to the Mobile Devices 

media query.

w	 2.	 Add the following style rules, indented to offset them from the braces in the 
media query:

aside { 
   order: 99; 
} 
footer { 
   order: 100; 
}

Note that the other flex items will have a default order value of 0 and thus 
will be displayed in document order before the aside and footer elements.

Figure 5–37 highlights the style rules to set the order of the aside and 
footer elements.

Figure 5–37	 Setting the order of a flex item

places the aside 
element before 
the body footer

places the body 
footer at the end 
of the �exbox

w	 3.	 Save your changes to the file and then reload the tf_prek.html file in your 
web browser.

w	 4.	 Reduce the width of the browser window below 480 pixels to show the 
mobile layout. Verify that the class schedule now appears at the bottom of 
the file directly before the body footer.

You’ve completed the ordering and flex layout of the Pre-K Classes page. You’ll 
conclude your review of flexboxes by examining how flex items can be arranged within 
the flexbox container.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 409

Exploring Flexbox Layouts
You can control how flex items are laid out using the justify-content, align-
items, and align-content properties. You examine each property to see how 
flexboxes can be used to solve layout problems that have plagued web designers for 
many years.

Aligning Items along the Main Axis
Recall from Figure 5–26 that flexboxes have two axes: the main axis along which the 
flex items flow and the cross axis, which is perpendicular to the main axis. By default, 
flex items are laid down at the start of the main axis. To specify a different placement, 
apply the following justify-content property

justify-content: placement;

where placement is one of the following keywords:

•	flex-start	� Items are positioned at the start of the main axis (the default).
•	flex-end	� Items are positioned at the end of the main axis.
•	center	� Items are centered along the main axis.
•	space-between	� Items are distributed evenly with the first and last items aligned 

with the start and end of the main axis.
•	space-around	� Items are distributed evenly along the main axis with equal space 

between them and the ends of the flexbox.

Figure 5–38 shows the impact of different justify-content values on a flexbox 
oriented horizontally. 

Figure 5–38	 Values of the justify-content property

�ex-start �ex-end 

center space-between 

space-around 

Remember that, because items can flow in any direction within a flexbox, these 
diagrams will look different for flexboxes under column orientation or when the 
content flows from the right to the left. Note that the justify-content property has 
no impact when the items are flexed to fill the entire space. It is only impactful for flex 
items with fixed sizes that do not fill in the entire flexbox.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 410

Aligning Flex Lines
The align-content property is similar to the justify-content property except that 
it arranges multiple lines of content along the flexbox’s cross axis. The syntax of the 
align-content property is:

align-content: value;

where value is one of the following keywords:

•	flex-start	� Lines are positioned at the start of the cross axis.
•	flex-end	� Lines are positioned at the end of the cross axis.
•	stretch	� Lines are stretched to fill up the cross axis (the default).
•	center	� Lines are centered along the cross axis.
•	space-between	� Lines are distributed evenly with the first and last lines aligned 

with the start and end of the cross axis.
•	space-around	� Lines are distributed evenly along the cross axis with equal space 

between them and the ends of the cross axis.

Figure 5–39 displays the effect of the align-content values on three lines of flex items 
arranged within a flexbox.

Figure 5–39	 Values of the align-content property

�ex-start �ex-end 

center 

stretch 

space-between space-around 

Note that the align-content property only has an impact when there is more than 
one line of flex items, such as occurs when wrapping is used with the flexbox.

Aligning Items along the Cross Axis
Finally, the align-items property aligns each flex item about the cross axis, having the 
syntax

align-items: value;

where value is one of the following keywords:

•	flex-start	 Items are positioned at the start of the cross axis.
•	flex-end	 Items are positioned at the end of the cross axis.
•	center	 Items are centered along the cross axis.
•	stretch	 Items are stretched to fill up the cross axis (the default).
•	baseline	 Items are positioned so that the baselines of their content align.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 411

Figure 5–40 displays the effect of the align-items values on three flex items placed 
within a single line. 

Figure 5–40	 Values of the align-items property

�ex-start center �ex-end 

stretch baseline 

A B C 

Note that the align-items property is only impactful when there is a single line of flex 
items. With multiple lines, you use the align-content property to layout the flexbox 
content. To align a single item out of a line of flex items, use the following align-self 
property

align-self: value;

where value is one of the alignment choices supported by the align-items property. 
For example, the following style rule places the footer at the end of the flexbox cross 
axis, regardless of the placement of the other flex items.

footer { 
   align-self: flex-end; 
}

Both the align-content and align-items properties have a default value of 
stretch so that the flex items are stretched to fill the space along the cross-axis. 
The effect is that all flex items within a row will share a common height. This can be 
observed earlier in Figure 5–36 in which all of the article boxes have the same height, 
regardless of their content. It’s difficult to achieve this simple effect in a grid layout 
unless the height of each item is explicitly defined, but flexboxes do it automatically.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 412

Creating a Navicon Menu
A common technique for mobile websites is to hide navigation menus but to indicate 
their presence with a navicon, which is a symbol usually represented as three 
horizontal lines  . When the user hovers or touches the icon, the navigation menu is 
revealed.

Marjorie has supplied you with a navicon image that she wants you to use with the 
mobile layout of the Pre-K Classes page. Add this image to the Pre-K Classes web page 
within the navigation list in the body header.

IN
SI
G
H
T

Solving the Centering Problem with Flexboxes

One of the difficult layout challenges in web design is vertically centering an element 
within its container. While there are many different fixes and “hacks” to create vertical 
centering, it has not been easily achieved until flexboxes. By using the justify-content 
and align-items properties, you can center an object or group of objects within a 
flexbox container. For example, the following style rule centers the child elements of the 
div element both horizontally and vertically:

div { 
   display: flex; 
   justify-content: center; 
   align-content: center; 
}

For a single object or a group of items on a single line within a container, use the 
align-items property as follows:

div { 
   display: flex;  
   justify-content: center; 
   align-items: center; 
}

You can also use the align-self property to center one of the items in the flexbox, 
leaving the other items to be placed where you wish.

To insert the navicon image:
w	 1.	 Return to the tf_prek.html file in your editor.

w	 2.	 Directly after the opening <nav> tag in the body header, insert the following 
hypertext link and inline image.

<a id="navicon" href="#"> 
   <img src="tf_navicon.png" alt="" /> 
</a>

Figure 5–41 highlights the code to create the navicon.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 413

Next, you’ll insert the styles to hide and display the contents of the navigation list 
in a style sheet named tf_navicon.css. You’ll apply the same styles for navicon that you 
used in the last session to hide and display the navigation submenus in the Trusted 
Friends home page. As with those menus, you’ll use the hover pseudo-class to display 
the navigation list links whenever the user hovers over the navicon, or in the case of 
mobile devices, touches the navicon. Add these styles now.

Figure 5–41	 Inserting the navicon

navicon image

To add styles for the navicon image:
w	 1.	 Within the document head of the tf_prek.html file, add a link to the  

tf_navicon.css style sheet file after the link for the tf_flex.css file. Save your 
changes to the file.

w	 2.	 Use your editor to open the tf_navicon_txt.css files from the html05 c 
tutorial folder. Enter your name and the date in the comment section of the 
file and save it as tf_navicon.css.

w	 3.	 By default, the navicon will be hidden from the user. Go to the Base Styles 
section and add the following style rule:

a#navicon { 
   display: none; 
}

w	 4.	 The navicon will be displayed only for mobile devices. Go to the media query 
for mobile devices and add the following style rule to display the navicon.

a#navicon { 
   display: block; 
}

w	 5.	 When the navicon is displayed, you want the contents of the navigation list 
to be hidden. Add the following style rule within the mobile device media 
query:

nav.horizontal ul { 
   display: none; 
}

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 414

w	 6.	 Finally, add the following style rule to the mobile device query that displays 
the contents of the navigation list when the user hovers over the navicon or 
the contents of the navigation list.

a#navicon:hover+ul, nav.horizontal ul:hover { 
   display: block; 
}

Figure 5–42 highlights the style rules for the navicon hypertext link.

Figure 5–42	 Style rules for the navicon image

does not display 
the navicon for 
most devices

displays the navicon 
for mobile devices

hides the navigation 
list for mobile 
devices

displays the navigation list 
when the user hovers over 
the navicon or moves the 
mouse pointer over the 
navigation list

w	 7.	 Save your changes to the file and then reload the tf_prek.html file in your 
browser or mobile devices. Resize the viewport as needed to display the 
mobile layout.

w	 8.	 Verify that as you hover over or touch the navicon, the navigation list 
appears, as shown in Figure 5–43. 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 415

The methods you used in this tutorial to create pulldown menus and navicon menus 
represent what you can accomplish when limited to CSS and the hover pseudo-class. 
As you increase your skill and knowledge of HTML, you’ll learn other, more efficient 
ways of creating mobile navigation menus using program scripts and web frameworks. 
If you want to explore how to take advantage of these tools, search the web for navicon 
libraries of prewritten code that can be inserted into your website.

Figure 5–43	 Action of the navicon for mobile devices

menu opens when the 
user hovers over or 
taps the navicon

navicon

BenBois/openclipart

w	 9.	 Verify that hovering over or touching other parts of the page hides the 
navigation list.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 416

PR
O
SK

IL
LS

Written Communication: Speeding Up Your Website by Minifying and 
Compressing

Once your website is working and you are ready to distribute it to the web, you have 
one task remaining: minifying your code. Minifying refers to the process of removing 
unnecessary characters that are not required for your site to execute properly. For 
example, the following text in a CSS file contains comments and line returns and blank 
spaces, which makes the text easy to read, but these features are not required and 
have no impact on how the browser renders the page:

/* Tablet Styles */ 
 
nav.horizontal > ul > li { 
display: block; 
}

A minified version of this code removes the comment and the extraneous white-space 
characters leaving the following compact version:

nav.horizontal>ul>li{display:block;}

Minifying has several important advantages:

•	 Minifying reduces the amount of bandwidth required to retrieve the website 
because the files are smaller.

•	 The smaller minified files load faster and are faster to process because extraneous 
code does not need to be parsed by the browser.

•	 A faster site provides a better user experience.
•	 Smaller files means less server space required to host the website.
•	 Search engines, such as Google, evaluate your website based on page load speed 

and will downgrade sites with bloated code that take too long to load.

There are several free tools available on the web to automate the minification 
process including CSS Minifier, Compress HTML, HTML Minifier, and CSS Compressor. 
Also, many HTML editors include built-in minifying tools. Remember, a minified file is 
still a text file and can be read (though with difficulty) in a text editor. 

To further reduce your file sizes, consider compressing your files using utilities like 
Gzip. A compressed file is no longer in text format and must be uncompressed before 
it is readable. All modern browsers support Gzip compression for files retrieved from a 
server. Make sure you know how to properly configure your web server to serve Gzip-
compressed file in a readable format to the browser.

The process of minifying your files is irreversible, so make sure you retain the version 
with the text in a readable format and all of your comments preserved. Most minifying 
and compression tools will make a backup of your original files.

You’ve completed your work on the design of the Pre-K Classes page for Trusted 
Friends Daycare. In the next session, you’ll explore other uses of media queries by 
designing a page for printed output. You may close your files now.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 417

R
E
V
IE

W

Session 5.2 Quick Check

	 1.	 Which of the following is not a style to display an element as a flexbox?
a.	 display: -chrome-flex;
b.	 display: -webkit-flex;
c.	 display: -webkit-box
d.	 display: -ms-flexbox;

	 2.	 To display items within a flexbox in a column filled from the bottom upward, 
use: 
a.	 flex-direction: column up;
b.	 flex-direction: column-bottom;
c.	 flex-direction: column-reverse;
d.	 flex-direction: column-to-top;

	 3.	 To set the initial size of a flexbox item to 250 pixels, use:
a.	 flex-size: 250px;
b.	 flex-basis: 250px;
c.	 flex: 250px;
d.	 flex-from: 250px;

	 4.	 To set the growth rate of a flexbox item to a rate of 4, use:
a.	 flex-rate: 4;
b.	 flex: 4x;
c.	 flex-growth: 4;
d.	 flex-grow: 4;

	 5.	 Which of the following sets the div element to be equal in size regardless of 
the size of the flexbox container?
a.	 div {flex: equal;}
b.	 div {flex: 1 1 100px;}
c.	 div {flex: 1 1 0px;}
d.	 div {flex: 0 0 0px}

	 6.	 To reorder of the placement of a flex item within its flexbox, use:
a.	 flex-reorder
b.	 flex-move
c.	 flex-basis;
d.	 order

	 7.	 To center flex items along the flexbox’s main axis, use:
a.	 justify-content: center;
b.	 align-content: center;
c.	 flex-position: center;
d.	 flex-main: center;

	 8.	 To center flex items along the flexbox’s cross axis, use:
a.	 justify-content: center;
b.	 align-content: center;
c.	 flex-position: center;
d.	 flex-main: center;

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 418

Session 5.3 Visual Overview: 

Use the page-break-
before property to 
insert page breaks before 
elements.

The display property 
is set to none for objects 
you don’t want printed.

The @page rule de�nes 
the size and margins
of the printed page.

For print layouts, fonts 
should be sized in 
points and widths and 
heights expressed in 
inches or centimeters.

Use the after 
pseudo-element along 
with the content 
property to display the 
text of all hypertext 
URLs.

Use the page-break-
inside property to 
prohibit page breaks 
within an element.

Use the orphans 
property to limit the 
number of lines stranded 
at the bottom of a page.

Use the widows 
property to limit the 
number of lines 
stranded at the top 
of a page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 419

Print Styles

page 1 page 2

page 3

Page size is set at
8.5 inches by 11 inches 
with a 0.5 inch margin 
in portrait orientation.

Hypertext URLs 
are displayed in 
bold after the 
hypertext link.

Page break is not 
allowed inside the 
unordered list.

Page break is inserted 
before the article 
element, starting it on 
a new page.

Pr
es

sm
as

te
r/

Sh
ut

te
rs

to
ck

.c
om

G
la

d
sk

ik
h 

Ta
tia

na
/

Sh
ut

te
rs

to
ck

.c
om

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 420

Designing for Printed Media
So far your media queries have been limited to screens of different widths. In this 
session you’ll explore how to apply media queries to print devices and work with 
several CSS styles that apply to printed output. To do this you’ll create a print style 
sheet that formats the printed version of your web document.

Previewing the Print Version
Marjorie has created a page containing articles of interest for parents at Trusted Friends 
Daycare. She has already written the page content and the style sheets for mobile, 
tablet, and desktop devices. Open the articles document now.

To open the Articles of Interest page:
w	 1.	 Use your editor to open the tf_articles_txt.html file from the html05 c 

tutorial folder. Enter your name and the date in the comment section of the 
file and save it as tf_articles.html.

w	 2.	 Within the document head, create links to the tf_reset.css and tf_styles3.css  
style sheet files in that order.

w	 3.	 Scroll through the document to become familiar with its contents and then 
save your changes to file, but do not close it.

w	 4.	 Open the tf_articles.html file in your web browser.

w	 5.	 Take some time to view the contents of the page under different screen 
resolutions, noting how Marjorie has used responsive design to create 
different page layouts based on the screen width.

Now, you’ll examine how Marjorie’s page will appear when printed.

w	 6.	 Use the Print Preview command within your browser to preview how this 
page will appear when printed. Figure 5–44 shows a preview of the first two 
pages of the print version using a black and white printer.

Figure 5–44	 Print version of the Articles of Interest page

page 1 page 2

image is 
split by 
page break

page breaks at 
an awkward spot

navigation links 
do not need to 
be printed

background 
might not 
print well

© Pressmaster/Shutterstock.com; © Gladskikh Tatiana/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 421

Browsers support their own internal style sheet to format the print versions of the 
web pages they encounter. However, their default styles might not always result in 
the best printouts. Marjorie points out that the print version of her page has several 
significant problems:

•	The printed version includes two navigation lists, neither of which have a purpose in 
a printout.

•	Page breaks have been placed in awkward places, splitting paragraphs and images in two.
•	Background colors, while looking good on a screen, might not print well.

Marjorie would like you to design a custom print style sheet that fixes these problems 
by removing unnecessary page elements and choosing page breaks more intelligently.

Applying a Media Query for Printed Output
To apply a print style sheet, you use the media attribute in your link elements to target 
style sheets to either screen devices or print devices. Modify the tf_articles.html file now 
to access a new style sheet named tf_print.css into which you include your print styles.

Trouble?  Depending on your browser and printer, your print preview might 
appear different from the preview shown in Figure 5–44.

To access a print style sheet:
w	 1.	 Use your editor to open the tf_print_txt.css file from the html05 c tutorial 

folder. Enter your name and the date in the comment section and save it as 
tf_print.css.

w	 2.	 Return to the tf_articles.html file in your editor. Add the attribute 
media="all" to the link element for the tf_reset.css style sheet to apply it 
to all devices.

w	 3.	 Add the attribute media="screen" to the link element for the tf_styles3.css 
style sheet to apply it only to screen devices.

w	 4.	 Add the following link element for print styles:

<link href="tf_print.css" rel="stylesheet" media="print" />

Figure 5–45 highlights the revised link elements in the file.

To avoid mixing screen 
styles with print styles, 
identify styles common 
to both devices with the 
media type all. 

styles for all devices

styles for screen 
devices

styles for print 
devices

Figure 5–45	 Style sheets for different devices

w	 5.	 Save your changes to the file and close it.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 422

You’ll start designing the print version of this page by hiding those page elements 
that should not be printed, including the navigation list, the aside element, and the 
body footer.

To hide elements in the print version:
w	 1.	 Return to the tf_print.css file in your editor.

w	 2.	 Go to the Hidden Objects section and add the following style rule:

nav.horizontal, aside, footer { 
   display: none; 
}

Figure 5–46 highlights the style rule to hide page elements.

Figure 5–46	 Hiding page elements for printing

sets the display of the 
navigation list, aside 
element, and body 
footer to do not display

w	 3.	 Save your changes to the file and then reload the tf_articles.html file in your 
browser and preview the printed output. Verify that the navigation lists, 
aside elements, and body footer are not displayed in the printed version.

Next, you’ll define the page size of the print version of this document.

Working with the @page Rule
In CSS every printed page is defined as a page box, composed of two areas: the 
page area, which contains the content of the document, and the margin area, which 
contains the space between the printed content and the edges of the page.

Styles are applied to the page box using the following @page rule

@page { 
   style rules 
}

where style rules are the styles applied to the page. The styles are limited to 
defining the page size and the page margin. For example, the following @page rule sets 
the size of the page margin to 0.5 inches:

@page { 
   margin: 0.5in; 
}

The page box does not support all of the measurement units you’ve used with the 
other elements. For example, pages do not support the em or ex measurement units. In 
general, you should use measurement units that are appropriate to the dimensions of 
your page, such as inches or centimeters.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 423

Setting the Page Size
Because printed media can vary in size and orientation, the following size property 
allows web authors to define the dimensions of the printed page

size: width height;

where width and height are the width and height of the page. Thus to define a page 
that is 8.5 inches wide by 11 inches tall with a 1-inch margin, you would apply the 
following style rule:

@page { 
   size: 8.5in 11in; 
   margin: 1in; 
}

You can replace the width and height values with the keyword auto (to let 
browsers determine the page dimensions) or inherit (to inherit the page size from the 
parent element). If a page does not fit into the dimensions specified in the @page rule, 
browsers will either rotate the page or rescale it to fit within the defined page size.

Using the Page Pseudo-Classes
By default, the @page rule is applied to every page of the printed output. However, if 
the output covers several pages, you can define different styles for different pages by 
adding the following pseudo-class to the @page rule:

@page:pseudo-class { 
   style rules 
}

where pseudo-class is first for the first page of the printout, left for the pages that 
appear on the left in double-sided printouts, or right for pages that appear on the right 
in double-sided printouts. For example, if you are printing on both sides of the paper, 
you might want to create mirror images of the margins for the left and right pages of 
the printout. The following styles result in pages in which the inner margin is set to 5 
centimeters and the outer margin is set to 2 centimeters:

@page:left {margin: 3cm 5cm 3cm 2cm;} 
@page:right {margin: 3cm 2cm 3cm 5cm;}

Page Names and the Page Property
To define styles for pages other than the first, left, or right, you first must create a page 
name for those styles as follows

@page name { 
   style rules 
}

where name is the label given to the page. The following code defines a page style 
named wideMargins used for pages in which the page margin is set at 10 centimeters 
on every side:

@page wideMargins { 
   margin: 10cm; 
}

Once you define a page name, you can apply it to any element in your document. 
The content of the element will appear on its own page, with the browser automatically 

Users can override the 
page sizes and orientations 
set in @page rule by 
changing the options in 
their print dialog box.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 424

inserting page breaks before and after the element if required. To assign a page name to 
an element, you use the following page property

selector { 
   page: name; 
}

where selector identifies the element that will be displayed on its own page, and 
name is the name of a previously defined page style. Thus the following style rule 
causes all block quotes to be displayed on separate page(s) using the styles previously 
defined as the wideMargins page:

blockquote { 
   page: wideMargins; 
}

Creating and Applying Page Styles

•	 To define a page box for the printed version of a document, use the CSS rule

@page { 
   size: width height; 
}

where width and height are the width and height of the page.
•	 To define the page styles for different output pages, use the rule

@page:pseudo-class { 
   style rules 
}

where pseudo-class is first for the first page of the printout, left for the pages 
that appear on the left in double-sided printouts, or right for pages that appear on 
the right in double-sided printouts.

•	 To create a named page for specific page styles, apply the rule

@page name { 
   style rules 
}

where name is the label assigned to the page style.
•	 To apply a named page style, use the rule

selector { 
   page: name; 
}

where selector identifies the element that will be displayed on its own page, and 
name is the name of a previously defined page style.

R
E
FE

R
E
N
C
E

You’ll use the @page rule to define the page size for the printed version of the 
Articles of Interest document. Marjorie suggests that you set the page size to 8.5 × 11 
inches with 0.5-inch margins.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 425

To define the printed page size:
w	 1.	 Return to the tf_print.css file in your editor.

w	 2.	 Go to the Page Box Styles section and add the following rule:

@page { 
   size: 8.5in 11in; 
   margin: 0.5in; 
}

Figure 5–47 highlights the rule to set the page size.

Figure 5–47	 Setting the page size

sets the page to 
8.5 inches wide by 
11 inches long

sets the margin to 
0.5 inches around 
the page content

w	 3.	 Save your changes to the file.

With printed output, widths and heights are measured not in pixels but in inches 
or centimeters. Font sizes are not measured in pixels but rather in points. With that in 
mind, create styles to format the sizes of the text and graphics on the page.

To format the printed text:
w	 1.	 Go to the Typography Styles section and insert the following styles to format 

the appearance of h1 and h2 headings and paragraphs:

h1 { 
   font-size: 28pt; 
   line-height: 30pt; 
   margin: 0.3in 0in 0.2in; 
} 
 
h2 { 
   font-size: 20pt; 
   margin: 0.1in 0in 0.1in 0.3in; 
} 
 
p { 
   font-size: 12pt; 
   margin: 0.1in 0in 0.1in 0.3in; 
}

w	 2.	 Within the List Styles section, add the following style rules to format the 
appearance of unordered lists:

ul { 
   list-style-type: disc; 
   margin-left: 0.5in; 
}

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 426

Next, you’ll format the appearance of images on the page.

Figure 5–48	 Typographical formats

Figure 5–48 shows the typography and list styles in the print style sheet.

format of 
unordered lists

format of 
paragraphs

format of h2 
headings

format of h1 
headings

font sizes are 
measured in 
points

margins are 
measured 
in inches

To format the printed images:
w	 1.	 Within the Image Styles section, add the following style rule to format the 

appearance of inline images within each article element:

article img { 
   border: 2px solid rgb(191, 191,191); 
   display: block; 
   margin: 0.25in auto; 
   width: 65%; 
}

Figure 5–49 shows the style rule for inline images on the printed page.

displays all article images with 
a gray border, with a width of 
65% of the page body, and 
centered horizontally

Figure 5–49	 Image formats

w	 2.	 Save your changes to the style sheet and then reload the tf_articles.html file 
in your browser and preview the appearance of the printed page. Figure 5–50 
shows the appearance of the first page printed using a black and white printer.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 427

Marjorie notices that all of the hyperlinks in the document appear in blue and 
underlined as determined by the default browser style. While this identifies the text as 
a hypertext link, it doesn’t provide the reader any information about that link. She asks 
you to modify the style sheet to fix this problem.

Figure 5–50	 Preview of the first printed page

print version 
of the images

© Pressmaster/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 428

Formatting Hypertext Links for Printing
Because printouts are not interactive, it’s more useful for the reader to see the URL of a 
hypertext link so that he or she can access that URL at another time. To append the text 
of a link’s URL to the linked text, you can apply the following style rule:

a::after { 
   content: " (" attr(href) ") "; 
}

This style rule uses the after pseudo-element along with the content property and 
the attr() function to retrieve the text of the href attribute and add it to the contents 
of the a element.

You should be careful when using this technique. Appending the text of a long and 
complicated URL will make your text difficult to read and might break your page layout 
if the text string extends beyond the boundaries of its container. One way to solve this 
problem is to apply the following word-wrap property to the URL text:

word-wrap: type;

where type is either normal (the default) or break-word. A value of normal breaks 
a text string only at common break points such as the white space between words. A 
value of break-word allows long text to be broken at arbitrary points, such as within a 
word, if that is necessary to make the text string fit within its container. Because a URL 
has no common break points such as blank spaces, applying the break-word option 
ensures that the text string of the URL will be kept to a manageable length by breaking 
it as needed to fit within the page layout.

Be sure to include blank 
spaces around the href 
value so that the URL 
does not run into the 
surrounding text.

Formatting Hypertext for Printing

•	 To add the URL after a hypertext link, apply the style rule:

a::after { 
   content: " (" attr(href) ") "; 
}

•	 To automatically wrap the text of long URLs as needed, add the following style to the 
link text:

word-wrap: break-word;

R
E
FE

R
E
N
C
E

Format the appearance of hypertext links in the document to display each link’s URL 
and to display the hypertext links in a black bold font with no underlining, then use the 
word-wrap property to keep long URLs from extending beyond the boundaries of their 
container.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 429

To format the hypertext links:
w	 1.	 Return to the tf_print.css file in your editor and go to Hypertext Styles 

section, inserting the following styles to format the appearance of all 
hypertext links, appending the URL of each link:

a { 
   color: black; 
   text-decoration: none; 
} 
 
a::after { 
   content: " (" attr(href) ") "; 
   font-weight: bold; 
   word-wrap: break-word; 
}

Figure 5–51 describes the style rules used to format printed hypertext links.

Figure 5–51	 Formatting printed hypertext links

displays hypertext 
links in black with 
no underlining

adds the URL of 
the hypertext link 
in a bold font

allows the URL to 
wrap in order to 
preserve page layout

w	 2.	 Save your changes to the style sheet and then reload the tf_articles.html 
file in your browser and preview the page printout. Figure 5–52 shows the 
appearance of the printed hypertext links found on the second page of 
Marjorie’s printout.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 430

Figure 5–52	 Preview of the hypertext links on page 2

URL of each 
hypertext link

© Gladskikh Tatiana/Shutterstock.com 

You can search the web for several free scripting tools that give you more options for 
how your URLs should be printed, including scripts that automatically append all URLs 
as footnotes at the end of the printed document.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 431

Working with Page Breaks
When a document is sent to a printer, the browser determines the location of the page 
breaks unless that information is included as part of the print style sheet. To manually 
insert a page break either directly before or directly after an element, apply the 
following page-break-before or page-break-after properties:

page-break-before: type; 
page-break-after: type;

where type has the following possible values:

•	always	 Use to always place a page break before or after the element
•	avoid	 Use to never place a page break
•	left	 Use to place a page break where the next page will be a left page
•	right	 Use to place a page break where the next page will be a right page
•	auto	 Use to allow the printer to determine whether or not to insert a page break
•	inherit	 Use to insert the page break style from the parent element

For example, if you want each h1 heading to start on a new page, you would apply the 
following style rule to insert a page break before each heading:

h1 { 
   page-break-before: always; 
}

Adding a Page Break

•	 To set the page break style directly before an element, apply the property

page-break-before: type;

where type is always, avoid, left, right, auto, or inherit.
•	 To set the page break style directly after an element, apply

page-break-after: type;

R
E
FE

R
E
N
C
E

After the first article, Marjorie wants each subsequent article to start on a new page. 
To select every article after the initial article, use the selector

article:nth-of-type(n+2)

which selects the second, third, fourth, and so on article elements in the document 
(see “Exploring the nth-of-type Pseudo-class” in Tutorial 2.) To ensure that each of the 
selected articles starts on a new page, insert the page break before the article using the 
following style rule:

article:nth-of-type(n+2) { 
   page-break-before: always; 
}

Add this style rule to the print style sheet now.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 432

To print each article on a new page:
w	 1.	 Go to the Page Break Styles section and insert the following style rule:

article:nth-of-type(n+2) { 
   page-break-before: always; 
}

Figure 5–53 highlights the style rule to insert the article page breaks.

Figure 5–53	 Adding page breaks before the document articles

selects every article 
after the �rst one

inserts a page break 
before the article

w	 2.	 Save your changes to the file and then reload the tf_articles.html file in your 
browser and preview the printed page. Verify that the second article in the 
document on Community Involvement starts on a new page.

Next, you’ll explore how to remove page breaks from the printed version of your 
web page.

Preventing Page Breaks
You can prevent a page break by using the keyword avoid in the page-break-after 
or page-break-before properties. For example, the following style rule prevents page 
breaks from being added after any heading.

h1, h2, h3, h4, h5, h6 { 
   page-break-after: avoid; 
}

IN
SI
G
H
T

How Browsers Set Automatic Page Breaks

Browsers establish page breaks automatically, unless you manually specify the page 
breaks with a print style sheet. By default, browsers insert page breaks using the 
following guidelines:

•	 Insert all of the manual page breaks as indicated by the page-break-before, 
page-break-after, and page-break-inside properties

•	 Break the pages as few times as possible
•	 Make all pages that don’t have a forced page break appear to have the same height
•	 Avoid page breaking inside page elements that have a border
•	 Avoid page breaking inside a web table
•	 Avoid page breaking inside a floating element

Other styles from the print style sheet are applied only after attempting to satisfy 
these constraints. Note that different browsers apply page breaks in different ways, so 
while you can apply general rules to your print layout, you cannot, at the current time, 
make the print versions completely consistent across browsers.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 433

Unfortunately in actual practice, most current browsers don’t reliably support 
prohibiting page breaks in this fashion. Thus, to prevent page breaks after an element, 
you will usually have to manually insert a page break before the element so that the 
element is moved to the top of the next page.

For other print layouts, you will want to prevent page breaks from being placed 
inside an element. This usually occurs when you have a long string of text that you 
don’t want broken into two pages. You can prevent printers from inserting a page break 
by using the following page-break-inside property

page-break-inside: type;

where type is auto, inherit, or avoid. Thus, to prevent a page break from appearing 
within any image you can apply the following style rule:

img { 
   page-break-inside: avoid; 
}

Unlike the page-break-before and page-break-after properties, almost all 
current browsers support the use of the avoid keyword for internal page breaks.

To avoid page breaks:
w	 1.	 Return to the tf_print.css file in your editor and go to the Page Break Styles 

section and insert the following style rule:

img, ol, ul { 
   page-break-inside: avoid; 
}

Figure 5–54 highlights the style rule to avoid page breaks in lists and images.

Preventing Page Breaks Inside an Element

•	 To prevent a page break from occurring within an element, apply the style:

page-break-inside: avoid;

R
E
FE

R
E
N
C
E

Marjorie asks you to revise the print style sheet to prevent page breaks from 
occurring within images, ordered lists, and unordered lists.

Figure 5–54	 Avoiding line breaks within lists and images

avoids line breaks 
within lists and images

w	 2.	 Save your changes to the file.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 434

Note that the avoid type does not guarantee that there will never be a page break 
within the element. If the content of an element exceeds the dimensions of the sheet of 
paper on which it’s being printed, the browser will be forced to insert a page break.

Working with Widows and Orphans
Page breaks within block elements, such as paragraphs, can often leave behind widows 
and orphans. A widow is a fragment of text left dangling at the top of page, while an 
orphan is a text fragment left at the bottom of a page. Widows and orphans generally 
ruin the flow of the page text, making the document difficult to read. To control the size 
of widows and orphans, CSS supports the following properties:

widows: value; 
orphans: value;

where value is the number of lines that must appear within the element before a page 
break can be inserted by the printer. The default value is 2, which means that a widow 
or orphan must have at least two lines of text before it can be preceded or followed by 
a page break.

If you wanted to increase the size of widows and orphans to three lines for the 
paragraphs in a document, you could apply the style rule

p { 
   widows: 3; 
   orphans: 3; 
}

and the browser will not insert a page break if fewer than three lines of a paragraph 
would be stranded at either the top or the bottom of the page. 

Controlling the Size of Widows and Orphans

•	 To set the minimum size of widows (lines stranded at the top of a page), apply the 
property

widows: value;

where value is the number of lines that must appear at the top of the page before the 
page break.

•	 To set the minimum size of orphans (lines stranded at the bottom of a page), apply 
the property

orphans: value;

where value is the number of lines that must appear at the bottom of the page before 
the page break.

R
E
FE

R
E
N
C
E

Use the widows and orphans properties now, setting their size to 3 for paragraphs in 
the printed version of the Articles of Interest page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 435

To avoid widows and orphans:
w	 1.	 Within the Page Break Styles section of the tf_print.css file, add the 

following style rule.

p { 
   orphans: 3;  
   widows: 3; 
}

Figure 5–55 highlights the style rule for setting the size of widows and 
orphans.

Figure 5–55	 Setting the size of widows and orphans

widows and orphans 
set to a minimum of 
3 lines each

w	 2.	 Save your changes to the file and then reload the tf_articles.html file in your 
browser. Preview the appearance of the printed document. Figure 5–56 
shows the final appearance of the printed version of this document.

Figure 5–56	 Final print version of the document

page 1 page 3page 2

© Pressmaster/Shutterstock.com; © Gladskikh Tatiana/Shutterstock.com;

Trouble?  Depending on your browser and your default printer, your printed 
version may look slightly different from the one shown in Figure 5–56.

You’ve completed your work on the print styles for the Articles of Interest page. By 
modifying the default style sheet, you’ve created a printout that is easier to read and 
more useful to the parents and customers of Trusted Friends Daycare.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 436

PR
O
SK

IL
LS

Written Communication: Tips for Effective Printing

One challenge of printing a web page is that what works very well on the screen often 
fails when transferred to the printed page. For example, some browsers suppress 
printing background images, so that white text on a dark background, which appears 
fine on the computer monitor, is unreadable when printed. Following are some tips 
and guidelines you should keep in mind when designing the printed version of your 
web page:

•	 Remove the clutter. A printout should contain only information that is of immediate 
use to the reader. Page elements such as navigation lists, banners, and advertising 
should be removed, leaving only the main articles and images from your page.

•	 Measure for printing. Use only those measuring units in your style sheet that are 
appropriate for printing, such as points, inches, centimeters, and millimeters. 
Avoid expressing widths and heights in pixels because those can vary with printer 
resolution.

•	 Design for white. Because many browsers suppress the printing of background 
images and some users do not have access to color printers, create a style sheet 
that assumes black text on a white background.

•	 Avoid absolute positioning. Absolute positioning is designed for screen output. 
When printed, an object placed at an absolute position will be displayed on the first 
page of your printout, potentially making your text unreadable.

•	 Give the user a choice. Some readers will still want to print your web page exactly 
as it appears on the screen. To accommodate them, you can use one of the many 
JavaScript tools available on the web that allows readers to switch between your 
screen and print style sheets.

Finally, a print style sheet is one aspect of web design that works better in theory 
than in practice. Many browsers provide only partial support for the CSS print styles, 
so you should always test your designs on a variety of browsers and browser versions. 
In general, you will have the best results with a basic style sheet rather than one that 
tries to implement a complicated and involved print layout.

In this tutorial you’ve learned how to apply different styles to different types of 
devices and output formats. Marjorie appreciates the work you’ve done and will 
continue to rely on your knowledge of media queries, flexible layouts, and print 
styles as she redesigns the Trusted Friends website. You can close any open files or 
applications now.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 437

R
E
V
IE

W

Session 5.3 Quick Check

	 1.	 What attribute do you add to a link element to indicate that the style sheet is 
used for printed media?
a.	 rel="print"
b.	 type="print"
c.	 media="print"
d.	 print="yes"

	 2.	 What @rule is used for setting the properties of the printed page box?
a.	 @page
b.	 @print
c.	 @margin
d.	 @printout

	 3.	 To set the right-side printed page to have a 3 centimeter top/bottom margin and 
a 5 centimeter left/right margin, use:
a.	 @page:right {margin: 3cm 5cm;}
b.	 @page:right {margin: 5cm 3cm;}
c.	 @page {side: right; margin: 5cm 3cm;}
d.	 @page.right {margin: 5cm 3cm;}

	 4.	 To apply a page break before every section element, use:
a.	 section {break: before;}
b.	 section {page-break: before;}
c.	 section {break-before: true;}
d.	 section {break-before: always;}

	 5.	 To prevent a page break from being placed within any header element, use:
a.	 header {break: never;}
b.	 header {page-break-inside: avoid;}
c.	 header {inside-break: never;}
d.	 header {break: none;}

	 6.	 What style do you apply to allow the browser to wrap long strings of text to a 
new line whenever needed?
a.	 word-break: auto;
b.	 word-wrap: true;
c.	 word-wrap: break-word;
d.	 word-inside-break: always;

	 7.	 To limit the size of widows for all article elements to 3 lines or more, use:
a.	 article {widows: 2;}
b.	 article {widows: 3;}
c.	 article {widows: 3+;}
d.	 article {widows: >2;}

	 8.	 To display the URL of a hypertext link, use the property:
a.	 attr(link)
b.	 attr(url)
c.	 attr(hypertext)
d.	 attr(href)

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 438

Coding Challenge 1

Data Files needed for this Coding Challenge: code5-1_txt.html, code5-1_media_txt.css,  
code5-1_layout.css, code5-1_logo.jpg, code5-1_photo.jpg

Use media queries to create a responsive design for the menu shown in Figure 5–57. You will need to 
create three menu layouts: one for screen widths 500 pixels or less, another for screen widths of 501 
pixels to 710 pixels, and a third for screen widths greater than 710 pixels.

C
O

D
E

Figure 5–57	 Coding Challenge 5-1 example page

Do the following:

	 1.	 Open the code5-1_txt.html and code5-1_media_txt.css files from the html05 c code1 folder. 
Enter your name and the date in each document and save the files as code5-1.html and 
code5-1_media.css respectively.

	 2.	 Go to the code5-1.html file in your editor. Within the head section insert link elements linking 
the page to the code5-1_layout.css and code5-1_media.css files. 

	 3.	 Add a viewport meta tag to the document head to set the width of the layout viewport equal to 
the width of the device and set the initial scale of the viewport to 1.0. Review the contents of the 
file and then save your changes.

	 4.	 Go to the code5-1_media.css file in your editor.

©
 C

ou
rt

es
y 

Pa
tr

ic
k 

C
ar

ey

©
 C

ou
rt

es
y 

Pa
tr

ic
k 

C
ar

ey

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 439

	 5.	 Create a media query for devices with a maximum width of 500 pixels. Within the query do the 
following:
a.	 Set the display of the img element within the article element to none.
b.	Center the text contained within the ul element belonging to the submenu class.

	 6.	 Create a media query for devices with a minimum width of 501 pixels. Within the query do the 
following:
a.	  Float the nav element on the left page margin.
b.	Set the width of the nav element to 130 pixels and the height to 400 pixels.
c.	 Set the top margin of the nav element to 30 pixels, the right margin to 25 pixels, and the 

bottom and left margins to 0 pixels.
	 7.	 Create a media query for devices with a minimum width of 710 pixels. Within the query do the 

following:
a.	 Set the float property of the nav element to none, its width to 100% and its height to auto. 

Set the nav element margins to 0.
b.	Set the display of ul elements of the mainmenu class to flex with the flex flow in the row 

direction with no wrapping; justify the contents of the flexbox in the center.
c.	 Set the flex property of li elements with the ul.mainmenu element to have a growth factor 

of 0, a shrink factor of 1, and a basis value of 120 pixels.
	 8.	 Save your changes to the file and then view the page under different screen widths, verifying that 

the menu format changes as the screen width changes as shown in Figure 5–57.
	 9.	 Submit the completed file to your instructor.

Coding Challenge 2

Data Files needed for this Coding Challenge: code5-2_txt.html, code5-2_flex_txt.css,  
code5-2_layout.css, and 13 image files

Figure 5–58 shows the layout of a page that displays cards containing social media icons. Create 
this page using CSS flex styles so that the icons are always laid out in rows and columns for any 
screen width.

C
O

D
E

Figure 5–58	 Coding Challenge 5-2 example page

©
 2

01
9 

G
ra

p
hi

cs
Fu

el

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 440

Do the following:

	 1.	 Open the code5-2_txt.html and code5-2_flex_txt.css files from the html05 c code2 folder. Enter 
your name and the date in each document and save the files as code5-2.html and code5-2_flex.
css respectively.

	 2.	 Go to the code5-2.html file in your editor. Within the head section insert link elements linking 
the page to the code5-2_layout.css and code5-2_flex.css files. Review the contents of the file and 
then save your changes.

	 3.	 Go to the code5-2_flex.css file in your editor.
	 4.	 Display the section element as a flexbox. Set the flow of items within the flexbox to go in row 

order with reverse wrapping so that the first item (Facebook) appears in the bottom-left corner 
and the last item (E-mail) appears in the top-right corner.

	 5.	 Set the growth and shrink rate of the div elements of the card class to 1 and 1. Set the flex basis 
of those elements to 200 pixels.

	 6.	 Display each div element of the card class itself as a flexbox.
	 7.	 Apply the following flex layout to the items within the card div elements:

a.	 Lay out the items in column order with no wrapping.
b.	Justify the content of the items within the flexbox with space between.
c.	 Center each of the items with respect to the cross axis.

	 8.	 Save your changes to the style sheet file and then open code5-2.html in your browser. Test the 
layout under different screen widths, verifying that the div cards always fill up the page grid and 
that for a width small enough, the contents are laid out in a single column.

	 9.	 Submit the completed file to your instructor.

Coding Challenge 3

Data Files needed for this Coding Challenge: code5-3_txt.html, code5-3_print_txt.css,  
code5-3_layout.css, and 1 image file

A list of the top 15 travel sites on the web is shown in Figure 5–59. The style sheet code for the screen 
version has already been written, but you have been tasked to create the style sheet for the print 
version. Complete the web page by writing the print styles and linking them to the web page.

C
O

D
E

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 441

Figure 5–59	 Coding Challenge 5-3 example page

Do the following:

	 1.	 Open the code5-3_txt.html and code5-3_print_txt.css files from the html05 c code3 folder. 
Enter your name and the date in each document and save the files as code5-3.html and 
code5-3_print.css respectively.

	 2.	 Go to the code5-3.html file in your editor. Within the head section insert link elements linking 
the page to the code5-3_layout.css and code5-3_print.css files. Use the code5-3_layout.css file 
for screen output and the code5-3_print.css file for printed output. Review the contents of the file 
and then save your changes.

	 3.	 Go to the code5-3_print.css file in your editor.
	 4.	 Set the printed page size to 8.5 by 11 inches with a 1-inch margin.
	 5.	 Remove all underlining from hypertext links.
	 6.	 Prevent the browser from inserting page breaks within any nav element.
	 7.	 Set the line height of every li element nested within a nav and ol element to 0.3 inches.
	 8.	 Use the after pseudo-element to display printed hypertext link in the following format: link [ url ] 

and add the following styles to the after pseudo-element:
a.	 Display the url text as an inline block.
b.	Set the left margin of the url text to 20 pixels.
c.	 Set the value of the word-wrap property to "break-word".

	 9.	 Save your changes to the file.
10.	View the printed version of the page in your browser to verify that it resembles Figure 5–59.
11.	 Submit the completed file to your instructor.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 442

Coding Challenge 4

Data Files needed for this Coding Challenge: code5-4_txt.html, code5-4_debug_txt.css,  
code5-4_layout.css, code5-4_logo.jpg, code5-4_photo.jpg

You have been asked to revise a website involving responsive design that contains several errors. A 
preview of the page under different screen widths is shown in Figure 5–60. Fix the errors in the code 
for the HTML and CSS file.

D
E

B
U

G

Figure 5–60	 Coding Challenge 5-4 example page

Do the following:

	 1.	 Open the code5-4_txt.html and code5-4_debug_txt.css files from the html05 c code4 folder. 
Enter your name and the date in each document and save the files as code5-4.html and 
code5-4_debug.css respectively.

	 2.	 Go to the code5-4.html file in your editor. Within the head section insert link elements linking 
the page to the code5-4_layout.css and code5-4_debug.css files. Review the contents of the file.

	 3.	 There is a single error within the head section of the page. Locate the error and fix it. Save your 
changes to the file.

	 4.	 Go to the code5-4_debug.css file in your editor. There are 8 separate syntax errors in the 
stylesheet. Locate and correct all eight errors and then save your changes.

	 5.	 Test both the code5-4.html andcode5-4_debug.css files in a validator to confirm that both pass 
validation with no errors or warnings reported.

	 6.	 View the code5-4.html file in your browser under different screen widths and compare your 
page to Figure 5–60, confirming that your page layout matches the one shown in the figure.

	 7.	 Submit the completed file to your instructor. 

©
 C

ou
rt

es
y 

Pa
tr

ic
k 

C
ar

ey
©

 C
ou

rt
es

y 
Pa

tr
ic

k 
C

ar
ey

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 443

Review Assignments

Data Files needed for the Review Assignments: tf_print2_txt.css, tf_styles4_txt.css, tf_tips_txt.html, 
2 CSS files, 4 PNG files 

Marjorie meets with you to discuss the redesign of the blog page showing parenting tips. As with 
the other pages you’ve worked on, she wants this page to be compatible with mobile devices, tablet 
and desktop devices, and printers. Marjorie has already written the page content and has done much 
of the initial design work. She needs you to complete the project by writing media queries for the 
different display options. Figure 5–61 shows a preview of the mobile design and the desktop design.

mobile version desktop version

© Courtesy Patrick Carey

Figure 5–61	 Parenting Tips page

You’ll use several flexboxes to create the layout for these two designs so that the page content 
automatically rescales as the screen width changes. 

Complete the following:

	 1.	 Use your HTML editor to open the tf_tips_txt.html, tf_styles4_txt.css, and tf_print2_txt.css files 
from the html05 c review folder. Enter your name and the date in the comment section of each 
file, and save them as tf_tips.html, tf_styles4.css, and tf_print2.css respectively.

	 2.	 Go to the tf_tips.html file in your editor. Add a viewport meta tag to the document head to set 
the width of the layout viewport equal to the width of the device and set the initial scale of the 
viewport to 1.0.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 444

	 3.	 Create links to the following style sheets: a) the tf_base.css file to be used with all devices, b) the 
tf_styles4.css file to be used with screen devices, and c) the tf_print2.css file to be used for 
printed output.

	 4.	 Take some time to study the contents and structure of the document, paying special attention to 
the IDs and class names of the elements, and then save your changes.

	 5.	 Go to the tf_styles4.css file in your editor. Note that Marjorie has placed all of her styles in the 
tf_designs.css file and imported them into this style sheet. You will not need to edit that style 
sheet file, but you might want to view it to become familiar with her style rules.

	 6.	 Go to the General Flex Styles section. Within this section, you’ll create a flexible layout that 
varies in response to changing screen widths.

	 7.	 In the General Flex Styles section create a style rule for the body element that displays the page 
body as a flexbox flowing in the row direction, wrapping content to a new line as needed.

	 8.	 The page content is divided into two section elements with IDs of left and right. The left section 
does not need as much of the screen width. Create a style rule for the left section that sets its flex 
growth and shrink rates to 1 and 8 respectively and sets its flex basis size to 130 pixels.

	 9.	 The right section requires more screen width. Create a style rule for the right section that sets its 
flex growth and shrink values to 8 and 1 and sets its flex basis size to 351 pixels.

10.	Next, set the display of the section element with class ID of tips as a flexbox. Have the content of 
the flexbox flow in the row direction with row wrapping enabled.

11.	  Create a style rule for the article element that lays it out with a flex growth value of 2, flex 
shrink value of 1, and a flex basis size of 351 pixels.

12.	The biographical asides within each tips section need to occupy less screen space. Create a style 
rule for the aside element that lays it out with a flex growth value of 1, flex shrink value of 2, 
and a flex basis size of 250 pixels.

13.	 Finally, the horizontal navigation list at the top of the page will also be treated as a flexbox. 
Create a style rule for the nav.horizontal ul selector that displays it as a flexbox in column 
orientation with wrapping.

14.	Go to the Mobile Devices section and create a media query for screen devices with a maximum 
width of 480 pixels.

15.	 For mobile devices, the vertical list of links to archived parenting tips should be displayed in 
several columns at the bottom of the page. Within the media query you created in the last step, 
add the following style rules:
a.	 for the nav.vertical ul selector, create a style rule that displays it as a flexbox in column 

orientation with wrapping. Set the height of the element to 240 pixels.
b.	to give the section element with an ID of left a flex order value of 99 to place it near the 

bottom of the page.
c.	 to give the body > footer selector an order value of 100 to put it at the page bottom.

16.	Marjorie wants to hide the navigation list at the top of the page when viewed on a mobile 
device unless the user hovers (or taps) a navicon. Using the technique shown in this tutorial, add 
the following style rules to set the behavior of the navicon within the media query for mobile 
devices:
a.	 Display the navicon by creating a style rule for the a#navicon selector to display it as a block.
b.	Set the display property of the nav.horizontal ul selector to none.
c.	 Display the navigation list contents in response to a hover or touch by creating a style rule for 

the a#navicon:hover+ul, nav.horizontal ul:hover selector that sets its display value to 
block.

17.	Go to the Tablets and Desktop Devices section. Create a media query for screen devices with a 
width of at least 481 pixels. Under the wider screens, the contents of the horizontal navigation 
list at the top of the page should be displayed in several columns. In order to have the list items 
wrap to a new column, add a style rule to the media query that sets the height of the ul element 
within the horizontal navigation list to 160 pixels.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 445

18.	 Save your changes to the style sheet and then open the tf_tips.html file in your browser or 
device emulator. Verify that as you change the screen width the layout of the page automatically 
changes to match the layout designs shown in Figure 5–61.

		  Next, you’ll create the print styles for the Parenting Tips page. Figure 5–62 shows a preview of the 
output on a black and white printer.

Figure 5–62	 Parenting Tips print version

page 1 page 2

© Courtesy Patrick Carey

19.	Go to the tf_print2.css file in your editor. Go to the Hidden Objects section and hide the display 
of the following page elements: all navigation lists, the h1 heading in the body header, the left 
section element, and the body footer.

20.	Go to the Page Box Styles section and set the page size to 8.5 inches by 11 inches with a margin 
of 0.5 inches.

21.	Go the Header Styles section and add a style rule that displays the logo image as a block with a 
width of 100%.

22.	Go to the Typography Styles section and add the following style rules for the text in the printed 
pages:
a.	 For headers within the article element, set the bottom margin to 0.2 inches.
b.	For h1 headings within the article element, set the font size to 24 points and the line height 

to 26 points.
c.	 For the aside element, set the background color to rgb(211, 211, 211) and add a top margin 

of 0.3 inches.
d.	For h1 headings in aside elements, set the font size to 18 points and the line height to 20 

points.
e.	 For images within aside elements, set the width to 0.8 inches.
f.	 For paragraphs, set the font size to 12 points with a top and bottom margin of 0.1 inches.

23.	Go to the Hypertext Styles section and add style rules to display all hypertext links in black with 
no underline. Also, insert a style rule that adds the text of the URL after the hypertext link in bold 
with the word-wrap property set to break-word.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 446

24.	Go to the Page Break Styles section and add the following style rules to
a.	 insert page breaks after every aside element.
b.	never allow a page break within an ol, ul, or img element.
c.	 set the size of widows and orphans within paragraphs to 3 lines each.

25.	 Save your changes to the file.
26.	Reload the tf_tips.html file in your browser and preview its printed version. Verify that your pages 

resemble those shown in Figure 5–62 (there may be differences depending on your browser and 
your printer).

Case Problem 1

Data Files needed for this Case Problem: gp_cover_txt.html, gp_page1_txt.html, gp_page2_txt.html, 
gp_page3_txt.html, gp_layout_txt.css, gp_print_txt.css, 2 CSS files, 21 PNG files

Golden Pulps  Devan Ryan manages the website Golden Pulps, where he shares tips on collecting 
and fun stories from the “golden age of comic books”—a period of time covering 1938 through the 
early 1950s. Devan wants to provide online versions of several classic comic books, which are now 
in the public domain. 

He’s scanned the images from the golden age comic book, America’s Greatest Comics 001, published 
in March, 1941, by Fawcett Comics and featuring Captain Marvel. He’s written the code for the HTML 
file and wants you to help him develop a layout design that will be compatible with mobile and desktop 
devices. Figure 5–63 shows a preview of the mobile and desktop version of a page you’ll create.

Figure 5–63	 Golden Pulps sample page

mobile version desktop version

© Courtesy Patrick Carey; Source: Comic Book Plus

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 447

Complete the following:

	 1.	 Using your editor, open the gp_cover_txt.html, gp_page1_txt.html, gp_page2_txt.html,  
gp_page3_txt.html, gp_layout_txt.css, and gp_print_txt.css files from the html05 c case1 folder. 
Enter your name and the date in the comment section of each file, and save them as gp_cover.
html, gp_page1.html, gp_page2.html, gp_page3.html, gp_layout.css, and gp_print.css respectively.

	 2.	 Go to the gp_cover.html file in your editor. Add a viewport meta tag to the document head, 
setting the width of the layout viewport to the device width and setting the initial scale of the 
viewport to 1.0.

	 3.	 Create links to the following style sheets: a) the gp_reset.css file to be used with all devices, b) 
the gp_layout.css file to be used with screen devices, and c) the gp_print.css file to be used for 
printed output.

	 4.	 Take some time to study the contents and structure of the file. Note each panel from the comic 
book is stored as a separate inline image with the class name panel along with class names of 
size1 to size4 indicating the size of the panel. Size1 is the largest panel down to size4, which is 
the smallest panel. Close the file, saving your changes.

	 5.	 Repeat Steps 2 through 4 for the gp_page1.html, gp_page2.html, and gp_page3.html files.
	 6.	 Go to the gp_layout.css file in your editor. In this style sheet, you’ll create the layout styles 

for mobile and desktop devices. Note that Devan has used the @import rule to import the  
gp_designs.css file, which contains several graphical and typographical style rules.

	 7.	 Go to the Flex Layout Styles section and insert a style rule to display the body element as a 
flexbox oriented as rows with wrapping.

	 8.	 The page body content has two main elements. The section element with the ID sheet contains 
the panels from the comic book page. The article element contains information about the 
comic book industry during the Golden Age. Devan wants more of the page width to be 
given to the comic book sheet. Add a style rule that sets the flex growth and shrink rate of the 
section#sheet selector to 3 and 1 respectively and set its flex basis size to 301 pixels.

	 9.	 Less page width will be given to the article element. Create a style rule to set its flex growth 
and shrink values to 1 and 3 respectively and set its flex basis size to 180 pixels.

10.	Go to the Mobile Devices section and create a media query for screen devices with a maximum 
width of 480 pixels.

11.	With mobile devices, Devan wants each comic book panel image to occupy a single row. Create a 
style rule that sets the width of img elements belonging to the panel class to 100%.

12.	 For mobile devices, Devan wants the horizontal navigation links to other pages on the Golden 
Pulps website to be displayed near the bottom of the page. Within the media query, set the flex 
order of the nav.horizontal selector to 99.

13.	Create a style rule to set the flex order of the body > footer selector to 100.
14.	Go to the Tablet and Desktop Devices: Greater than 480 pixels section and create a media query 

that matches screen devices with widths greater than 480 pixels. 
15.	 For tablet and desktop devices, you’ll lay out the horizontal navigation list as a single row of 

links. Within the media query, create a style rule for the nav.horizontal ul selector that displays 
that element as a flexbox, oriented in the row direction with no wrapping. Set the height of the 
element to 40 pixels.

16.	 For the nav.horizontal ul li selector set the flex growth shrink, and basis size values to 1, 1, and 
auto respectively so that each list items grows and shrinks at the same rate.

17.	With wider screens, Devan does not want the panels to occupy their own rows as is the case 
with mobile devices. Instead, within the media query create style rules, define the width of the 
different classes of comic book panel images as follows:
a.	 Set the width of size1 img elements to 100%.
b.	Set the width of size2 img elements to 60%.
c.	 Set the width of size3 img elements to 40%.
d.	Set the width of size4 img elements to 30%.

18.	 Save your changes to the file and then open the gp_cover.html file in your browser or device 
emulator. Click the navigation links to view the contents of the cover and first three pages. Verify 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 448

that with a narrow screen the panels occupy their own rows and with a wider screen the sheets 
are laid out with several panels per row. Further verify that the horizontal navigation list is placed 
at the bottom of the page for mobile devices.

19.	Devan also wants a print style that displays each comic book sheet on its own page and with 
none of the navigation links. Go to the gp_print.css style sheet in your editor. Add style rules to
a.	 hide the nav, footer, and article elements.
b.	set the width of the element referenced by the section#sheet selector to 6 inches. Set the top/

bottom margin of that element to 0 inches and the left/right margin to auto in order to center 
it within the printed page.

c.	 set the width of img elements belong to the size1 class to 5 inches, size2 images to 3 inches, 
size3 images to 2 inches, and size4 images to 1.5 inches.

20.	 Save your changes to the file and then reload the contents of the comic book pages in your 
browser and preview the printed pages. Verify that the printed page displays only the website 
logo, the name of the comic book, and the comic book panels.

Case Problem 2

Data Files needed for this Case Problem: cw_home_txt.html, cw_styles_txt.css, 2 CSS files,  
10 PNG files

Cauli-Wood Gallery Sofia Fonte is the manager of the Cauli-Wood Gallery, an art gallery and coffee 
shop located in Sedona, Arizona. She has approached you for help in redesigning the gallery’s 
website to include support for mobile devices and tablets. Your first project will be to redesign the 
site’s home page following the principles of responsive design. A preview of the mobile and desktop 
versions of the website’s home page is shown in Figure 5–64.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 449

Sofia has already written much of the HTML code and some of the styles to be used in this project. 
Your job will be to finish the redesign and present her with the final version of the page.

Complete the following:

	 1.	 Using your editor, open the cw_home_txt.html and cw_styles_txt.css files from the html05 c 
case2 folder. Enter your name and the date in the comment section of each file, and save them 
as cw_home.html and cw_styles.css respectively.

	 2.	 Go to the cw_home.html file in your editor. Within the document head, insert a meta element 
that sets the browser viewport for use with mobile devices. Also, create links to cw_reset.css and 
cw_styles.css style sheets. Take some time to study the contents and structure of the document 
and then close the file saving your changes.

	 3.	 Return to the cw_styles.css file in your editor. At the top of the file, use the @import rule to 
import the contents of the cw_designs.css file, which contains several style rules that format the 
appearance of different page elements.

	   4. At the bottom of the home page is a navigation list with the ID bottom containing 
several ul elements. Sofia wants these ul elements laid out side-by-side. Create a style rule for the 
nav#bottom selector displaying its element as a flexbox row with no wrapping. Set the justify-
content property so that the flex items are centered along the main axis.

	 5.	 For the nav#bottom ul selector, create a style rule to set the flex growth rate to 0, the shrink rate 
to 1, and the basis value to 150 pixels.

Figure 5–64	 Cauli-Wood Gallery home page

mobile version desktop version

Right: © Tischenko Irina/Shutterstock.com; © re_bekka/Shutterstock.com; © Boyan Dimitrov/Shutterstock.com;  
© rubtsov/Shutterstock.com; © Fotocrisis/Shutterstock.com; © Anna Ismagilova/Shutterstock.com;  
© DeepGreen/Shutterstock.com; Source: Facebook; Source: Twitter, Inc.  
Left: © Tischenko Irina/Shutterstock.com; © Courtesy Patrick Carey; © re_bekka/Shutterstock.com;  
© Anna Ismagilova/Shutterstock.com; © rubtsov/Shutterstock.com; Source: Facebook; Source: Twitter, Inc.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 450

	 6.	 Sofia wants more highly contrasting colors when the page is displayed in a mobile device. Create 
a media query for mobile screen devices with maximum widths of 480 pixels. Within that media 
query, insert a style rule that sets the font color of the body element to rgb(211, 211, 211) and 
sets the body background color to rgb(51, 51, 51). 

	 7.	 Sofia also wants to reduce the clutter in the mobile version of the home page. Hide the following 
elements for mobile users: the aside element, any img element within the article element, 
and the spotlight section element.

	 8.	 At the top of the web page is a navigation list with the ID top. For mobile devices, create a style 
rule for the nav#top ul selector, displaying the element as a flexbox row with wrapping. For each 
list item within the nav#top ul selector, set the font size to 2.2em. Size the list items by setting 
their flex values to 1 for the growth and shrink rates and 130 pixels for the basis value.

	 9.	 Under the mobile layout, the six list items in the top navigation list should appear as square 
blocks with different background images. Using the selector nav#top ul li:nth-of-type(1) 
for the first list item, create a style rule that changes the background to the background image 
cw_image01.png. Center the background image with no tiling and size it so that the entire image 
is contained within the background. 

	10.	Repeat the previous step for the next five list items using the same general format. Use the  
cw_image02.png file for background of the second list item, the cw_image03.png file for the 
third list item background, and so forth up through the nav#top ul li:nth-of-type(6) selector.

	   11. Sofia has placed hypertext links for the gallery’s phone number and e-mail address 
in a paragraph with the ID links. For mobile users, she wants these two hypertext links spaced 
evenly within the paragraph that is displayed below the top navigation list. To format these links, 
create a style rule that displays the element referenced by the p#links selector as a flexbox row 
with no wrapping, then add a style that sets the value of the justify-content property to 
space-around.

12.	 She wants the telephone and e-mail links to be prominently displayed on mobile devices. For 
each p#links a selector, apply the following style rule that: a) displays the link text in white on 
the background color rgb(220, 27, 27), b) sets the border radius around each hypertext to 20 
pixels with 10 pixels of padding, and c) removes any underlining from the hypertext links.

13.	Next, you’ll define the layout for tablet and desktop devices. Create a media query for screen 
devices whose width is 481 pixels or greater. Within this media query, display the body element 
as a flexbox in row orientation with wrapping.

14.	The page body has four children: the header, the footer, the article element, and the aside 
element. The article and aside elements will share a row with more space given to the 
article element. Set the flex growth, shrink, and basis values of the article element to 2, 1, 
and 400 pixels. Set those same flex values for the aside element to 1, 2, and 200 pixels.

	   15. For tablet and desktop devices, the top navigation list should be displayed as a 
horizontal row with no wrapping. Enter a style rule for the nav#top ul selector to display that 
element as a flexbox with a background color of rgb(51, 51, 51) and a height of 50 pixels. Use 
the justify-content and align-items property to center the flex items within that flexbox 
both horizontally and vertically.

16.	 For the nav#top ul li selector, create a style rule for those list items, setting the flex growth rate 
to 0, the flex shrink rate to 1, and the basis value to 80 pixels.

17.	 Sofia doesn’t want the links paragraph displayed for tablet and desktop devices. Complete the 
media query for tablet and desktop devices by creating a style rule for the p#links selector to 
hide the paragraph.

18.	 Save your changes to the style sheet and then open the cw_home.html file in your browser or 
device emulator. Verify that the layout and contents of the page switch between the mobile 
version and the tablet/desktop version shown in Figure 5–64 as the screen width is increased and 
decreased.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.


	Cover
	Preface��������������
	Brief Contents
	Table of Contents
	HTML Level I: Tutorials
	Tutorial 1: Getting Started with HTML 5: Creating a Website for a Food Vendor
	Session 1.1 Visual Overview: The Structure of an HTML Document
	Exploring the World Wide Web
	Introducing HTML
	Tools for Working with HTML
	Exploring an HTML Document
	Creating the Document Head
	Adding Comments to Your Document
	Session 1.1 Quick Check
	Session 1.2 Visual Overview: HTML Page Elements
	Writing the Page Body
	Linking an HTML Document to a Style Sheet
	Working with Character Sets and Special Characters
	Working with Inline Images
	Working with Block Quotes and Other Elements
	Session 1.2 Quick Check
	Session 1.3 Visual Overview: Lists and Hypertext Links
	Working with Lists
	Working with Hypertext Links
	Specifying the Folder Path
	Linking to a Location within a Document
	Linking to the Internet and Other Resources
	Working with Hypertext Attributes
	Validating Your Website
	Session 1.3 Quick Check
	Review Assignments
	Case Problems

	Tutorial 2: Getting Started with CSS: Designing a Website for a Fitness Club
	Session 2.1 Visual Overview: CSS Styles and Colors
	Introducing CSS
	Exploring Style Rules
	Creating a Style Sheet
	Working with Color in CSS
	Employing Progressive Enhancement
	Session 2.1 Quick Check
	Session 2.2 Visual Overview: CSS Typography
	Exploring Selector Patterns
	Working with Fonts
	Setting the Font Size
	Controlling Spacing and Indentation
	Working with Font Styles
	Session 2.2 Quick Check
	Session 2.3 Visual Overview: Pseudo Elements and Classes
	Formatting Lists
	Working with Margins and Padding
	Using Pseudo-Classes and Pseudo-Elements
	Generating Content with CSS
	Inserting Quotation Marks
	Validating Your Style Sheet
	Session 2.3 Quick Check
	Review Assignments
	Case Problems


	HTML Level II: Tutorials
	Tutorial 3: Designing a Page Layout: Creating a Website for a Chocolatier 
	Session 3.1 Visual Overview: Page Layout with Floating Elements
	Introducing the display Style
	Creating a Reset Style Sheet
	Exploring Page Layout Designs
	Working with Width and Height
	Floating Page Content
	Session 3.1 Quick Check
	Session 3.2 Visual Overview: CSS Grid Layouts
	Introducing Grid Layouts
	Introducing CSS Grids
	Creating a CSS Grid
	Working with Grid Rows and Columns
	Outlining a Grid
	Placing Items within a Grid
	Defining the Grid Gap
	Managing Space within a Grid
	Session 3.2 Quick Check
	Session 3.3 Visual Overview: Layout with Positioning Styles
	Positioning Objects
	Handling Overflow
	Clipping an Element
	Stacking Elements
	Session 3.3 Quick Check
	Review Assignments
	Case Problems

	Tutorial 4: Graphic Design with CSS: Creating a Graphic Design for a Genealogy Website
	Session 4.1 Visual Overview: Backgrounds and Borders
	Creating Figure Boxes
	Exploring Background Styles
	Working with Borders
	Session 4.1 Quick Check
	Session 4.2 Visual Overview: Shadows and Gradients
	Creating Drop Shadows
	Applying a Color Gradient
	Creating Semi-Transparent Objects
	Session 4.2 Quick Check
	Session 4.3 Visual Overview: Transformations and Filters
	Transforming Page Objects
	Exploring CSS Filters
	Working with Image Maps
	Session 4.3 Quick Check
	Review Assignments
	Case Problems

	Tutorial 5: Designing for the Mobile Web: Creating a Mobile Website for a Daycare Center
	Session 5.1 Visual Overview: Media Queries
	Introducing Responsive Design
	Introducing Media Queries
	Exploring Viewports and Device Width
	Creating a Mobile Design
	Creating a Tablet Design
	Creating a Desktop Design
	Session 5.1 Quick Check
	Session 5.2 Visual Overview: Flexible Layouts
	Introducing Flexible Boxes
	Working with Flex Items
	Reordering Page Content with Flexboxes
	Exploring Flexbox Layouts
	Creating a Navicon Menu
	Session 5.2 Quick Check
	Session 5.3 Visual Overview: Print Styles
	Designing for Printed Media
	Working with the @page Rule
	Working with Page Breaks
	Session 5.3 Quick Check
	Review Assignments
	Case Problems


	HTML Level III: Tutorials
	Tutorial 6: Working with Tables and Columns: Creating a Program Schedule for a Radio Station
	Session 6.1 Visual Overview: Structure of a Web Table
	Introducing Web Tables
	Adding Table Borders with CSS
	Spanning Rows and Columns
	Creating a Table Caption
	Session 6.1 Quick Check
	Session 6.2 Visual Overview: Rows and Column Groups
	Creating Row Groups
	Creating Column Groups
	Exploring CSS Styles and Web Tables
	Tables and Responsive Design
	Designing a Column Layout
	Session 6.2 Quick Check
	Review Assignments
	Case Problems

	Tutorial 7: Designing a Web Form: Creating a Survey Form
	Session 7.1 Visual Overview: Structure of a Web Form
	Introducing Web Forms
	Starting a Web Form
	Creating a Field Set
	Creating Input Boxes
	Adding Field Labels
	Designing a Form Layout
	Defining Default Values and Placeholders
	Session 7.1 Quick Check
	Session 7.2 Visual Overview: Web Form Widgets
	Entering Date and Time Values
	Creating a Selection List
	Creating Option Buttons
	Creating Check Boxes
	Creating a Text Area Box
	Session 7.2 Quick Check
	Session 7.3 Visual Overview: Data Validation
	Entering Numeric Data
	Suggesting Options with Data Lists
	Working with Form Buttons
	Validating a Web Form
	Applying Inline Validation
	Session 7.3 Quick Check
	Review Assignments
	Case Problems

	Tutorial 8: Enhancing a Website with Multimedia: Working with Sound, Video, and Animation
	Session 8.1 Visual Overview: Playing Web Audio
	Introducing Multimedia on the Web
	Working with the audio Element
	Exploring Embedded Objects
	Session 8.1 Quick Check
	Session 8.2 Visual Overview: Playing Web Video
	Exploring Digital Video
	Using the HTML 5 video Element
	Adding a Text Track to Video
	Using Third-Party Video Players
	Session 8.2 Quick Check
	Session 8.3 Visual Overview: Transitions and Animations
	Creating Transitions with CSS
	Animating Objects with CSS
	Session 8.3 Quick Check
	Review Assignments
	Case Problems

	Tutorial 9: Getting Started with JavaScript: Creating a Countdown Clock
	Session 9.1 Visual Overview: Creating a JavaScript File
	Introducing JavaScript
	Working with the script Element
	Creating a JavaScript Program
	Debugging Your Code
	Session 9.1 Quick Check
	Session 9.2 Visual Overview: JavaScript Variables and Dates
	Introducing Objects
	Changing Properties and Applying Methods
	Writing HTML Code
	Working with Variables
	Working with Date Objects
	Session 9.2 Quick Check
	Session 9.3 Visual Overview: JavaScript Functions and Expressions
	Working with Operators and Operands
	Working with the Math Object
	Working with JavaScript Functions
	Running Timed Commands
	Controlling How JavaScript Works with Numeric Values
	Session 9.3 Quick Check
	Review Assignments
	Case Problems

	Tutorial 10: Exploring Arrays, Loops, and Conditional Statements: Creating a Monthly Calendar
	Session 10.1 Visual Overview: Creating and Using Arrays
	Introducing the Monthly Calendar
	Introducing Arrays
	Session 10.1 Quick Check
	Session 10.2 Visual Overview: Applying a Program Loop
	Working with Program Loops
	Comparison and Logical Operators
	Program Loops and Arrays
	Session 10.2 Quick Check
	Session 10.3 Visual Overview: Conditional Statements
	Introducing Conditional Statements
	Completing the Calendar App
	Managing Program Loops and Conditional Statements
	Session 10.3 Quick Check
	Review Assignments
	Case Problems


	Appendix A: Color Names with Color Values, and HTML Character Entities
	Appendix B: HTML Elements and Attributes
	Appendix C: Cascading Styles and Selectors
	Appendix D: Making the Web More Accessible
	Appendix E: Designing for the Web
	Appendix F: Page Validation with XHTML
	Glossary
	Index



