Diophantine Equations Problems

Amir Hossein Parvardi *

September 22, 2011

Dedicated to Mahan Malihi, Goodarz Mehr, Behzad Behzadi, and Ahmad Reza Goodarzvand, who are gold medalists of Iran mathematical olympiad 2011.

^{*}email: ahpwsog@gmail.com, blog: http://math-olympiad.blogsky.com

- 1. Find all pairs (a, b) of positive integers that satisfy the equation $a^{b^2} = b^a$.
- **2.** Find all pairs of positive integers (n, k) such that $n! = (n+1)^k 1$.
- **3.** Solve the following equation in integers (x, y, z):

$$2x^4 + 2x^2y^2 + y^4 = z^2.$$

4. Determine all triples (x, y, z) of positive integers such that

$$(x+1)^{y+1} + 1 = (x+2)^{z+1}$$

5. Solve the diophantine equation: $x^a - 1 = y^b$ where x, y, a, b > 1 are integers and $x \equiv 1 \pmod{y}$.

6. Find all pairs (p, n) of positive integers which satisfy the equation $2^n = p + 3^p$.

7. Find all positive integer solutions to $2^x = 3^y + 5$.

8. Let p, q, r different primes. Prove that the diophantine equation: $z^r + x^p = 2y^q$ has an infinite set of solutions with x > 1, y > 1, z > 1 and $z^r \neq x^p$.

9. Prove that there do not exist solutions to $x^2y^2 = z^2(z^2 - x^2 - y^2)$ in positive integers.

10. Solve the equation $3^x = 2^x y + 1$ in positive integers.

- **11.** Find all integer solutions to $x^5 = y^2 + 1$.
- 12. Prove that the equation

 $x^3 + y^3 = 9$

has infinitely many rational solutions.

13. Find all positive integers x, y, z such that $xy^2 = z^3 + 1$ and x does not have prime factors of the form 6k + 1.

14. Find all integer solutions to the equation $7^x = 3^y + 4$.

15. prove that the equation $x^3 + y^3 = z^4 - t^4$ has infinitely many solutions with gcd(x, y, z, t) = 1.

16. Solve the following equation in rational numbers x, y, z:

$$x^{2} + y^{2} + z^{2} + 3(x + y + z) + 5 = 0.$$

17. Let a, b, c some positive integers and x, y, z some integer numbers such that we have a) $ax^2 + by^2 + cz^2 = abc + 2xyz - 1$; b) $ab + bc + ca \ge x^2 + y^2 + z^2$. Prove that a, b, c are all sums of three squares of integer numbers.

18. Show that the number $x^8 + x^7 - x^5 - x^4 - x^3 + x + 1$ cannot be a perfect square whenever x is an integer greater than 1.

19. Find all integer solutions to the equation $x^2 + xy + y^2 = z^2$.

20. Prove that the equation $x^3 = y^2 + 3$ does not have any positive integer solutions.

21. Prove that the equation $x^n = y^2 + 3$ does not have any positive integer solutions for n = 4k - 1.

22. Let n be a positive integer. Prove that the equation

$$x+y+\frac{1}{x}+\frac{1}{y}=3n$$

does not have solutions in positive rational numbers.

23. Prove that

$$k^{4} + (k+1)^{4} + (k+2)^{4} = n^{2} + (n+1)^{2}$$

has no integer solutions.

24. Solve the following diophantine equation in \mathbb{N} (or more generally in \mathbb{Z}):

$$\sum_{k=1}^{n} a_k = \prod_{k=1}^{n} a_k.$$

25. Determine positive integers m, n such that $m^2 + mn + n^2$ is square.

26. Find all the solutions of the equation

$$a+b+c=abc$$

in the set of non-negative integers.

27. Determine all pairs (x, y) of positive integers such that $\frac{x^2y+x+y}{xy^2+y+11}$ is an integer.

28. Find all primes p, q such that $2^p = q^q + q + 2$.

29. Find all positive integers n and m such that

$$m! + 1 = (m! - 1)^2$$
.

30. Solve in positive integers the following equation:

$$n^3 - 5n + 10 = 2^k$$

31. Find all the solutions of the following equation in the set of positive integers

$$x^y = y^x - (x+y).$$

32. Find all positive integers x, y, z, n such that $x^3 + y^3 + z^3 = nx^2y^2z^2$.

33. Find all non-negative integers m, n, p, q such that

$$p^m q^n = (p+q)^2 + 1$$

34. Find all positive integers m and n such that $1 + 5 \cdot 2^m = n^2$.

35. Let a, b, n be positive integers such that $2^n - 1 = ab$. Let $k \in \mathbb{N}$ such that $ab + a - b - 1 \equiv 0 \pmod{2^k}$ and $ab + a - b - 1 \neq 0 \pmod{2^{k+1}}$. Prove that k is even.

36. Find all positive integer solutions to $a^2 = b^3 + 1$.

37. Is it possible for a perfect square (which is not a power of 10) to contain only 0s and 1s in its decimal representation ?

38. Are there integers m and n such that $5m^2 - 6mn + 7n^2 = 1985$?

39. Prove that there are no integer solutions to the equation $x^6 = y^5 + 24$.

40. Find all integer solutions to $2^n - 7 = x^2$

41. Find all numbers triples (k, n, p) of positive integers such that

$$5^k - 3^n = p^2$$

42. Find all positive integers x, y such that $x + x^2 = y + y^2 + y^3$.

43. Solve in positive integers the equation $(x^2 + 2)(y^2 + 3)(z^2 + 4) = 60xyz$.

44. Solve the equation

$$(a^{2}, b^{2}) + (a, bc) + (b, ac) + (c, ab) = 199.$$

in positive integers. (Here (x, y) denotes the greatest common divisor of x and y.)

45. Prove that the equation $m(m+1)(m+2)(m+3) = n(n+1)^2(n+2)^3(n+3)^4$ doesn't have any solution in positive integers.

46. Find all positive integers (a, b, c) satisfying

$$4a^3 + b + c = 4abc + 2a.$$

47. Find integral solutions to the equation

$$(m^2 - n^2)^2 = 16n + 1.$$

48. Show that the Diophantine equation

$$\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} + \frac{1}{x_1 x_2 \cdots x_n} = 1$$

has at least one solution for every positive integers n.

- **49.** Solve in intergers the equation $x^3 + x^2 + x + 1 = y^2$.
- **50.** Find all pairs (a, b, c, d) integer such that $a^2 + 5b^2 = 2c^2 + 2cd + 3d^2$.

Solutions

1. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=1238. 2. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=3452. 3. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=5944. 4. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=28543. 5. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=28571. 6. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=414069. 7. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=27477. 8. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=23528. 9. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=33738. 10. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=31947. 11. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=29845. 12. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=29434. 13. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=28590. 14. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=48431. 15. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=48538. 16. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=44214. 17. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=47030. 18. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=47266. 19. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=81412 20. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=78452 21. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=78452 22. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=76624 23. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=69709 24. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=63671 25. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=51513 26. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=52572 27. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=432480 28. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=103328 29. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=103131 30. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=103239 31. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=100680 32. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=98325 33. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=88312 34. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=86541 35. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=85144 36. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=127208 37. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=121555 38. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=121391 **39.** http://www.artofproblemsolving.com/Forum/viewtopic.php?t=118920 40. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=66245 41. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=117107 42. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=110513 43. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=148577 44. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=146491 45. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=141874 46. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=160187 47. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=154072 48. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=150698 49. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=149349 50. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=180808