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ABSTRACT
Many indoor sensing applications leverage knowledge of relative
proximity among physical objects and humans, such as the notion
of “within arm’s reach”. In this paper, we quantify this notion
using “proximity zone”, and propose a methodology that empiri-
cally and systematically compare the proximity zones created by
various wireless technologies. We find that existing technologies
such as 802.15.4, Bluetooth Low Energy (BLE), and RFID fall
short on metrics such as boundary sharpness, robustness against in-
terference, and obstacle penetration. We then present the design
and evaluation of a wireless proximity detection platform based
on magnetic induction - LiveSynergy. LiveSynergy provides sweet
spot for indoor applications that require reliable and precise prox-
imity detection. Finally, we present the design and evaluation of
an end-to-end system, deployed inside a large food court to of-
fer context-aware and personalized advertisements and diet sug-
gestions at a per-counter granularity.

Categories and Subject Descriptors
B.0 [Hardware]: General; B.4 [Hardware]: Input/Output & Data
Communication; H.4.m [Information Systems Applications]: Mis-
cellaneous

General Terms
Design, Experimentation, Measurement
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1. INTRODUCTION
Low-power wireless technologies are often used for both com-

munication and proximity sensing. Many applications rely on short-
range radio to restrict which receivers can receive their transmis-
sions. This property is particularly useful in person-scope appli-
cations, where human wearable devices can discover and interact
with other devices embedded in the environment without explicit
human interventions.

To make these applications intuitive to human users, the discov-
ered objects in the environment must be within the personal inter-
action sphere, i.e., “within arm’s reach”. For example, a computer
may automatically wake up when a user sits in front of the desk.
But, it should not react to people walking past the cubicle. A de-
partment store may tag a cloth rack to beacon the sizes and material
information of clothes hanging on the rack. This information only
needs to reach people who can see and touch these clothes. A home
appliance (e.g., refrigerator or microwave) may change its user in-
terface when a person stands in front of it. All these applications
share the same architecture: wireless beacons are attached to sta-
tionary objects, and mobile nodes carried by human communicate
with them when in their proximity. To make these applications
robust, beacon nodes must create predictable and stable coverage
zones for mobile nodes to discover. In fact, fuzzy zone boundaries
introduce uncertainty to the user location, and can lower the user
experience with false positives, such as in the case of targeted ad-
vertisement. Or, it can lower security such as in the case of building
door access.

Many typical low power communication technologies, such as
Bluetooth 4.0 (a.k.a. Bluetooth Low Energy or BLE) and ZigBee
(with 802.15.4 as the physical layer) have difficulties maintaining
robust communication zones. The 2.4 GHz band is prone to exter-
nal interferences. Human bodies, Wi-Fi activities, and metal ob-
jects nearby can significantly alter the signal propagation patterns
and the receiving noise floor. While many previous research studies
these effects from the perspective of point-to-point communication
link quality, such as bit-error rates and data goodput [8, 19], little
has been done to quantify the impact on proximity sensing at the
human interaction scale. For example, humans react to messages in
the order of seconds. As long as a node can be discovered within a
few seconds, there is no perceivable difference for the applications.
On the other hand, human interactions are less tolerable to obstruc-
tions, such as human body or any object blocking the view, and the
reach between senders and receivers.

One of the key challenges for characterizing and comparing across
wireless proximity technologies is to define comparison metrics.
Practically, one can sample the waveform propagation field with
only discrete receivers. In this paper, we first propose a method-
ology to reconstruct spatial and temporal patterns from wireless
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receivers. Then, we apply a machine learning technique based on
support vector machines (SVM) to infer parametric models from
discrete samples. With model parameters defining the white, grey,
and black zones, the comparison is resilient to temporary noise and
disturbance.

Using this methodology, we empirically characterize and sys-
tematically compare the proximity zones across several technolo-
gies: BLE, 802.15.4, and 900 MHz RFID reader. Results show that
none of them can produce robust proximity zones for person-scope
applications. We then investigate an alternative wireless beacon
based on magnetic-inductive (MI) coupling. Humans, furniture,
and most construction materials do not affect magnetic propaga-
tion pattern. Thus, MI proximity zones are much more intuitive
and practical for human interactions than those using existing tech-
nologies.

MI coupling components used to suffer from size, cost, and power
inefficiency. However, recent development in the hardware, espe-
cially passive keyless entry (PKE) in the automotive industry, has
made it feasible to integrate MI communication (MIC) onto mote-
sized devices. To this end, we design and implement LiveSynergy,
a MIC-capable platform with both MI transmitter and receiver. We
evaluate the proximity zone generated by this new kind of wireless
communication. The comparison to other alternatives shows sig-
nificant advantages in zone consistency over time, boundary sharp-
ness, and robustness to human obstruction. We also discuss our ex-
perience from deploying a LiveSynergy-enabled system in a cafete-
ria to deliver personalized nutrition and fitness information to din-
ers at each food counter.

In summary, this paper makes the following contributions:

• We propose methodologies that empirically and systemati-
cally compare the proximity zones created by various wire-
less technologies.

• We design, implement, and evaluate a magnetic-induction
based wireless proximity sensing platform - LiveSynergy.

• With real data traces, we show that MI solution exhibits sig-
nificantly more robust zones than BLE, 802.15.4 and RFID
alternatives.

• We share the experience from deploying LiveSynergy in an
real-world application.

The rest of this paper is organized as follows: in Section 2, we
survey related work in wireless proximity sensing. In Section 3, we
give an empirical definition of proximity zones and how to compare
them. After comparing the proximity zone for RF-based technolo-
gies in Section 4, we motivate and describe our design of LiveSyn-
ergy (Section 5). We evaluate LiveSynergy’s proximity zone prop-
erties in Section 6 and demonstrate a real-world application deploy-
ment at cafeteria in Section 7.

2. RELATED WORK
Proximity detection can be achieved either directly by proximity

sensing, or indirectly by inferring their absolute positions. Many
proximity sensing are initiated by humans, for example, using RFID
scanning [5], near field communication (NFC) touching, 1-D or 2-
D barcode scanning, or optical sensing such as bokode [12]. These
types of technologies require explicit actions from human, adding
a level of inconvenience. Proximity sensing can also be initiated
by the environment, typically through computer vision techniques
using conventional cameras [2, 20] or Kinect-like depth cameras.

Indirect sensing technologies are hard to achieve proximity ac-
curacy. Positioning services such as GPS are not feasible indoors as

they require line-of-sight to satellites. Ultrasound-based localiza-
tions [16, 6] do not penetrate solid objects. Infrared-based systems,
such as ActiveBadge [21], have difficulty localizing objects with
fluorescent lighting or direct sunlight, and have an effective range
on the order of meters, offering poor granularity for small spaces.
Inertia sensors based approaches, such as double-integration of ac-
celerometer data, are often inaccurate due to large DC/offset er-
rors, and require frequent recalibration [3]. Wi-Fi fingerprinting
typically requires a time-consuming training phase and costly re-
calibration [23, 1]. Wi-Fi also suffers from multi-path effect and
Raleigh fading, leading to inaccurate location estimates [18]. Us-
ing pressure floor sensors for localization do not scale to large sys-
tems [13] and they do not work for lightweight objects such as those
on the table.

These technology are either too fine grained, requiring explicit
user actions for discovery, or too coarse grained to pinpoint objects
or people within the vicinity of a few meters. As a result, current
applications have to make compromises, such as requiring a person
to actively swipe a security card when entering a building, or inac-
curately localizing people based on association to the same Wi-Fi
access point.

With increasing attention in this domain, several technologies
have emerged as leading choices for proximity detection indoors.
Bluetooth Low Energy (BLE) is a part of Bluetooth 4.0 specifica-
tion, targeting directly at low energy application. While it suffers
from the same interference problem as other technologies on the
2.4 GHz band, it has the unique advantage of being standard on
newer mobile phones. Long-range RFID is another technology de-
signed for locating objects. While it has the advantage of using
passive tags, it is easily affected by obstructions, and often requires
heavy post-processing for outlier reduction [22]. Devices based on
802.15.4 (PHY and MAC layers of the Zigbee specification) have
also been used extensively, particularly in the sensornet commu-
nity. In this paper, we evaluate these three technologies with respect
to our application requirements.

LiveSynergy leverages dynamic magnetic fields for proximity
sensing, which inductively couple the beacon and the receiver, alle-
viating much of the interference issues. The theory of operation for
magnetic tracking has been explored initially by Raab et. al. [17],
and has been commercialized for high-end motion tracking appli-
cations [15]. These commercial devices are typically expensive and
not optimized for proximity detections at scale. In [9], Markham
et. al. used magneto-induction for tracking underground beavers.
Their system uses a relatively large antenna (5m × 1m), which is
not practical in indoor scenarios, but provided the inspiration for
our work. We compare our platform against 802.15.4, BLE, and
long-range RFID, and evaluate it under a real application deploy-
ment.

3. PROXIMITY ZONE
The desired length of “an arm’s reach” is application dependent.

For example, in the scenario of automatic computer-login, the de-
sirable range of detection is perhaps the size of the cubicle or the
immediate space in front of the monitor; in case of targeted adver-
tising at the shopping mall, the desired detection range could be
the two-meter space in front of a particular brand of merchandise.
While the detection range is moderate in these applications, the
sharpness and consistency of the detection boundary are of great
importance, and directly impact the application performance and
user experience. For example, in the first scenario, if the region of
detection has a large “grey” area where detections happen sporadi-
cally and unpredictably, the computer may not identify the correct
user in a timely manner.
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Figure 1: Example proximity zone from single dimensional
dataset.

In this paper, we refer to this detection space as the proximity
zone. Being able to accurately specify the “proximity zone” of an
object or space, and reliably tell when someone enters and exits
this zone are paramount for these applications. In the rest of this
section, we first list a set of evaluation metrics for the proximity
zones common to this class of person-scope applications. Based
on these metrics, we propose an empirical definition of “proxim-
ity zone”, which allows us to better evaluate and compare various
technologies.

3.1 Evaluation Metrics
The following are the metrics for evaluating proximity zones:

• Boundary sharpness: The boundary of the proximity zone
should be as binary as possible - either in or out. The region
of sporadic detections, or the “grey” zone, should be mini-
mal.

• Boundary consistency: Proximity detection should be con-
sistent over time. This requires the technology to be robust
against temporal interferences such as external noises and en-
vironmental variations.

• Obstacle penetration: Since both the beaconing node and
the listening node can be mobile, e.g., being carried by hu-
mans, the radio technology should be robust against obstruc-
tions such as the human body. Specifically, the radio recep-
tion should not change significantly regardless locations on
the body.

• Additional metrics: A number of additional properties also
impact their real-world applicability, such as the range and
the geometric shape of the zones, the beaconing frequency
achievable by the transmitters, the power consumption of the
devices, the form-factor of the mobile tag, and the cost of the
overall system.

3.2 Empirical Definition
Since waveform propagation from beacons is a physical phe-

nomenon, it is more useful to characterize the zones from the re-
ceiver’s point of view. We propose an empirical definition for prox-
imity zones, inferred over the packet reception ratio and the trans-
mission distance. Unlike ranging, where RSSI or LQI is sometimes
used to infer distance information, in the case of proximity detec-
tion, the event of successfully receiving a packet is the primary
indicator of whether the receiver is within the proximity zone of a
beacon 1.

While this definition relies on empirical data collected at the re-
ceiver, and is only a sampling of the space, it provides a practical
metric for evaluation against real application requirements.

Conceptually, a proximity region consists of three adjacent zones:
the white zone, the grey zone, and the black zone. It is also equiva-
lently defined by two boundaries: the white/grey boundary and the
grey/black boundary. Figure 1 shows the one-dimensional view of
1However, we do use RSSI in deciding the primary zone in the case
of overlapping zones (c.f. Section 7)

a proximity zone based on measurement data along a single axis.
With additional data, the same methodologies described below can
work on two-dimensional and three-dimensional proximity zones.
After empirically determining proximity zones, we can then eval-
uate the above metrics of boundary sharpness, consistency and so
on.

The classification and evaluation procedure starts from collecting
packet reception statistics at various distances from the transmitter.
Then, these statistics allow us to classify and determine whether
each location falls in the white, grey, or black zone. Finally, we
apply a machine learning technique based on support vector ma-
chines (SVM) to infer the continuous coverage of the zones from
these discrete samples.

3.2.1 Classification of Points
Assume a beacon broadcasts at a fixed frequency f , for a total of

α packets from time t to time t′. Let:

P = a point in space at a distance of (px, py, pz)
from the beacon

W = detection window
PRRτ = packet reception rate measured between τ and τ +W

where τ ∈ [t, t′ −W )

We first define the indicator function I(τ) as:

I(τ) =

{
0, if PRRτ 6 ε

1, if PRRτ > ε

where ε is the PRR threshold

Then,

Color(P, t, t′) = white,

if
∏
τ

I(τ) = 1 : ∀τ ∈ [t, t′ −W )

Color(P, t, t′) = grey,

if
∑
τ

I(τ) > 1 and
∏
τ

I(τ) = 0 : ∀τ ∈ [t, t′ −W )

Color(P, t, t′) = black,

if
∑
τ

I(τ) = 0 : ∀τ ∈ [t, t′ −W )

Here P represents the location of the receiver node. W defines
the sliding window size in computing all possible PRRs over the
duration of the dataset at P . We collectively term these sliding-
window PRR values as WPRR. I(τ) labels each sliding window
into 1 if the corresponding PRR is above an application specific
threshold ε, or 0 if otherwise. Using this indicator function, we can
label P as “white” if all sliding windows are 1, “grey” if some but
not all are 1, and “black” if all are 0. This definition allows us to
label points around a beacon into {white, grey, black}, according
to how likely beacons are detected by a receiver at that point over
some period of time [t, t′].

We note that WPRR is fundamentally different from computing a
single PRR over the entire dataset at P and then evaluating whether
PRRp > γ. Specifically, looking at a single PRR over the entire
dataset does not consider the uniformity of successful packet recep-
tions over time. Most applications can tolerate losing a few packets
within a given time window, as long as the receiver hears at least
one beacon in that time window.

Additionally, if ε is set to 0, it is equivalent to stating I(τ) =
1 if the time between consecutive packet receptions is less than
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the detection window W , which is the minimum requirement for
detection to happen. In the context of the sliding window, having
ε = 0 equates to having the inter-packet arrival time to be always
smaller than the detection windows W . In this specific form, one
could build a histogram of the inter-packet arrival times and see
if any falls beyond the detection window W . However, to allow
applications to specify the degree of likelihood of detection, we
leave ε as a user definable parameter.

3.2.2 Classification of Zones
Given a set of points P and their colors, we can then find the

boundaries that divide the proximity regions into three zones of
white, grey, and black colors. There are multiple approaches to
grouping points into zones. Due to the nondeterministic nature of
the boundaries of the proximity zone, we take statistical learning
approaches to find these boundaries. We could consider the bound-
ary detection problem as a classification problem. We first define
two boundaries.

• The white/grey boundary separates the white points {P |Color(P, t, t′)
= white} from the grey points {P | Color(P, t, t′) = grey}.
We use notation fw/g as the classifier that fw/g(x) > 0 for
any white point x and fw/g(x′) < 0 for any grey point x′.
We use equation fw/g(x) = 0 to represents the decision
boundary.

• The grey/black boundary separates the grey points {P |Color(P, t, t′)
= grey} from the black points {P |Color(P, t, t′) = black}.
Similarly, we use notation fg/b as the classifier that fg/b(x) >
0 for any grey point x and fg/b(x′) < 0 for any black point
x′. Equation fg/b(x) = 0 represents the decision boundary.

Based on the boundaries, we infer the three proximity zones as
below.

• Grey zone: {x|fw/g(x) > 0 and fg/b(x) < 0}. Be-
tween the white/grey boundary and grey/black boundary.

• White zone: {x|fw/g(x) < 0}. Inside the white/grey bound-
ary is the white zone.

• Black zone: {x|fg/b(x) > 0}. Outside the grey/black bound-
ary is the black zone.

We use support vector machines (SVM) as the classifier to find
the boundaries of the zones in this paper. SVM seeks maximum-
margin hyperplane to separate two classes. The objective of classi-
cal SVM is shown in Equation 1.

w = argmin ||w||2

s.t. yi(wTxi − b) ≥ 1, for all i
(1)

where w and b are the parameters to define the hyperplane to sepa-
rate the two classes.

To accommodate application-specific requirements, we introduce
two user-definable parameters in our classification model.

One parameter is the error tolerance, which indicates how clean
the zones should be. There could be multiple boundary candidates
sometimes. For example, we could choose one smooth boundary
with some misclassified points. At the same time, we could also
have a non-smooth boundary without any misclassified point. In
terms of learning, it is a tradeoff between training loss and regu-
larization. We could specify the cost parameter C for misclassified
example to choose the best decision boundary for the specific sce-
nario.

Another parameter is the strictness of a zone. We may expect
the white zone, as well as the black zone, to contain no grey points.
We should notice that although strictness is related to error toler-
ance, however, strictness is non-symmetry. For example, while we
require no grey point be misclassified to white or black, we allow
white or black points to be misclassified as grey. In terms of the
classification problem, strictness could be controlled by the differ-
ence of costs for false positive and false negative. We could set the
cost parameter (or the cost of false positive)C and the cost for false
negative C′ to be different. Formally, given C, we could define the
strictness parameter γ to be γ = 1− C

C′ .
For our problem, we adapt the classical SVM model. By slack-

ing on the hard constraints for error tolerance and adding the cost
parameters, we formulate the problem as,

w =argmin
f

{
||w||2 + C(

l∑
yi=1

(1− yif(xi))+)

+ C′(

l∑
yi=−1

(1− yif(xi))+)
} (2)

where (z)+ = max(z, 0). Parameter C and C′ are the costs for
misclassification of false positive and false negative, respectively.

Since our zone boundary might not be linear, we apply the ker-
nel trick in the SVM problem to obtain nonlinear boundaries. We
use the RBF kernel as the kernel function. In this case, the decision
boundary could be specified as {x|fw/g ≡ 〈φ(x),w〉 = 0} for the
classifier fw/g , where φ(x) is the feature mapping function for the
RBF kernel. Similarly, for the classifier fg/b, the decision bound-
ary is {x|fg/b ≡ 〈φ(x),w〉 = 0}. With the boundaries defined,
we could compute the sizes of each zone for our evaluation pur-
pose. Because the black zone is not closed, it can not be computed.
In fact, the zone of the greatest interest is the grey zone. However,
computing the area of grey zone is non-trivial since its boundaries
might be irregular. Section 6.4 presents the heuristics we use to
compute the area.

The SVM also provides information on how well boundaries fit
the training data in terms of loss. Therefore, we could further cap-
ture the fitness of proximity zones by the classification accuracy.

In summary, user can specify the following input parameters to
the classification model:

• Error tolerance: Corresponds to the cost parameter C in
SVM, which specifies a trade-off between smoothness of the
boundary and mis-classification.

• Strictness γ: ComputesC′ = C ·γ+C to specify the appli-
cation’s tolerance to false positives (i.e., sporadic detections
occurring outside the nominal zone range) and false nega-
tives (i.e., missing detections inside the nominal zone range).
For example, for applications that cannot tolerate any miss-
ing detection or false detections, γ can be set to 1 to coerce
the model to include all grey points into the grey zone.

Together with the learning model in (2), we could obtain the bound-
aries, as well as the following metrics,

• Size of the white and grey zone, which can be computed nu-
merically based on the boundaries.

• Boundary sharpness, defined as the area ratio of the white
zone to the sum of white zone and grey zone, size(white)

size(white)+size(grey)
.

• Fitness of proximity zones, which provides a measure of
how well the zone boundaries fit the data, or a confidence
measure of the proximity zone classification.

224



0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1
Pa

ck
et

 R
ec

ep
tio

n 
R

at
io

 

 
Morning
Afternoon
Night

0 5 10 15 20 25 30

Night
Afternoon

Morning

Distance (m)

(a) 802.15.4

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Pa
ck

et
 R

ec
ep

tio
n 

R
at

io

 

 

Morning

Afternoon

Night

0 10 20 30 40 50 60 70

Night
Afternoon

Morning

Distance (m)

(b) BLE

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Pa
ck

et
 R

ec
ep

tio
n 

R
at

io

 

 

Morning

Afternoon

Night

0 0.5 1 1.5 2 2.5 3

Night
Afternoon

Morning

distance (m)

(c) RFID

Figure 2: (top) the WPRR at different distances, and (bottom) zone boundaries, for the corresponding radio

4. EVALUATION OF EXISTING TECHNOLO-
GIES

Using the procedure for determining proximity zones in Sec-
tion 3, we evaluate some of the common radios for beaconing:
802.15.4, Bluetooth Low Energy (BLE), and RFID.

4.1 Boundary Sharpness and Consistency
To characterize grey zones of each radio, we collected packet

reception data at different positions from the transmitter as outlined
below. We primarily focus on single dimensional data here since it
can clearly illustrate our results. We defer the analysis of data from
two dimensions to later sections.
Experiment methodology: The hardware setup consists of a pair
of TI CC2540 BLE dev boards (transmitting on 2.4 GHz at 0 dBm),
a pair of TelosB motes with 802.15.4-compliant TI CC24240 radio
(transmitting on 2.4 GHz at 0 dBm), and a Impinj Speedway R1000
RFID reader (transmitting on 902 MHz at 8 dBm).

Experiments take place on a floor inside a typical office building,
and the floor contains cubicles separated by semi-metallic walls
and metallic over-head shelves. For each experiment, we position
the receiver at various locations along a line from the beacon on
a small hallway. The distance intervals are adaptive depending on
the range of the technology. At each location, the packet recep-
tion data is collected over a period of 200 seconds. WPRR is then
computed using a windows size of 3 seconds and an ε of 0. Using
the algorithm described in Section 3, each point is then assigned a
color from {white, grey, black}, and the white/grey and grey/black
boundaries are computed for each experiment with a strictness pa-
rameter of 0.99.

Finally, to capture the time-variant nature of the radio due to en-
vironment changes, we repeated the experiments three times through-
out the day: morning, afternoon, and night.
Results: Figure 2 shows the WPRR at each sampling location and
zone boundaries for all three radio technologies at different times
of the day.

From the PRR vs. distance figures on top of Figure 2, we ob-
serve that the average WPRR for 802.15.4 fluctuates significantly
over a large distance between 5 and 20 meters, suggesting that the
boundary is not sharp spatially. The confidence interval also varies
with distances, suggesting that packet reception changes signifi-
cantly over both space and time. In comparison, average WPRR
for BLE is a little better than 802.15.4 spatially, leading to slightly

shorter grey zones. However, BLE has a relatively large confidence
interval outside the white zone, signifying that the packet reception
is not uniform over time. This suggests that BLE is more suscep-
tible to bursty packet loss, in which case BLE requires a larger
window, or human wait time, for the proximity detection to be re-
liable in the grey zone. However, inside the white zone, BLE has
a smaller confidence interval than 802.15.4, possibly because BLE
employs forward error correction rather than error detection. RFID,
in comparison, has much smaller confidence intervals, which sug-
gests that packet reception is consistent over time, and results in
smaller grey zones. An interesting observation is the dip at around
1.75 m. Further experiments with different heights at the same dis-
tance reveal that this dip is isolated at that height, and is therefore
an effect of the physical environment such as the multi-path effect.
We summarize the boundary sharpnesses of all three in the table at
the end of this subsection.

While we can see that RFID is more consistent than 802.15.4 and
BLE over short periods of time from their respective WPRR con-
fidence intervals, to better understand each radio’s tolerance to en-
vironmental changes, we consider data across three different times
of the day. From Figure 2, we can see that both 802.15.4 and BLE
have large variances in WPRR curves and zone boundaries, while
WPRR curves for RFID almost overlap. An explanation is that both
802.15.4 and BLE occupy the unlicensed 2.4 GHz band shared with
many office equipments, such as Wi-Fi, whereas RFID operates on
the fairly quiet 902 MHz band. We further quantify consistency in
terms of the standard deviations across zone boundaries between
the three trials:
RMS(σ(borderwhite/grey), σ(bordergrey/black))

A smaller RMS value is preferable. We summarize consistencies
in the table below.

802.15.4 BLE RFID
Boundary sharpness 0.32 0.70 0.77
Boundary consistency 0.12 0.13 0.13

4.2 Human Obstacle Penetration
Previous studies have shown that human body can significantly

affect the packet reception of 802.15.4 [11]. This section extends
the experiments to include BLE and RFID.
Experiment Methodology: The user carries the receiver in the
right pants pocket, which is one of the most common locations to
carry mobile devices. At each distance from the transmitter, we
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Figure 3: Packet reception ratio when the user, with the receiver in the right pants pocket, is in different body orientations

calculate PRR from 500 packets as the user changes the body ori-
entation by 90◦ each round.
Results: In Figure 3, y-axis corresponds to different orientations of
the user with respect to the beacon. “Face” means the user is facing
the beacon at 0◦; “farside” means the user is −90◦ with respect
to the original orientation, standing between the receiver and the
beacon; “back” means the user is at 180◦ with his back facing the
beacon; and “nearside” sideways at 90◦. x-axis is distance from the
beacon, and color of the block represents PRR (white=1). Proxim-
ity zones from the same time period is added as a reference. This
figure shows that human body has a significant impact on all three
radio technologies. PRR for 802.15.4 is almost zero beyond one or
two meters, regardless of orientation. BLE has PRR of 1 in the ini-
tial 20 meters, but drops sharply to zero for the rest 16 meters in the
original white zone, also independent of orientation. PRR for RFID
is zero for all distance at the “farside” and “back” orientations. The
other two orientation are slightly better with 50% receptions. This
result suggests that none of these three technologies are suitable for
proximity detection of humans.

4.3 Additional Metrics
Signal propagation and geometry: Beaconing platforms based
on 802.15.4 and BLE radios usually use omni-directional antennas,
with typical transmission range of about 100 m. However, as previ-
ously shown, their signals attenuate with amoeba-like propagation
patterns [10], which is not desirable for applications requiring a
consistent boundary.

Off-the-shelf RFID readers are usually coupled with directional
antennas, with a range in the neighborhood of meters. Compared to
802.15.4 and BLE, the radio propagation attenuates more evenly in
different directions. RFID antennas usually have a radiation angle
less than 180 degrees.
Form Factor and Costs: Form factor and costs play a huge role
in realizing ubiquitous deployments. While RFID can produce a
more consistent and smaller grey zone, 802.15.4 and BLE have ad-
vantages in both form factor and costs. Specifically, long-range
RFID readers have a relatively large antenna due to the lower ra-
dio frequency, but the cost of long-range RFID readers range from
hundreds to thousands of dollars, such as Impinj Speedway R1000.

5. LIVESYNERGY PLATFORM
Section 4 shows that existing beaconing technologies are not

ideal for reliable and precise proximity detection. Fundamental
problems such as external interferences motivate us to explore dif-
ferent beaconing hardware technology, rather than software tricks.
In this section, we first discuss magnetic induction, then present a
platform we developed for proximity detection - LiveSynergy.

5.1 Magnetic Induction Communication
Magnetic induction communication (MIC) has a different elec-

Figure 4: (left) Pulse, and (right) Link

tromagnetic radiation pattern and properties than most existing bea-
coning technologies.

First, MIC is near-field with a sharp signal drop off. Specifi-
cally, signals of far-field solutions such as Bluetooth attenuate at
the square of distance from the transmitting antenna, or 1/r2, near-
field signals attenuate at 1/r3. This implies that the transition zone
of magnetic fields is relatively small, and results in a “sharper”
boundary given a specific receiver sensitivity. Section 6 shows that
LiveSynergy can produce a boundary in the sub-meter range.

Second, the physical environment has less impact on MIC sig-
nals. MIC is immune from radio frequency (RF) interference while
most existing technologies mentioned in Section 4 operate on the
crowded 2.4 GHz spectrum. In addition, the magnetic signal does
not attenuate over non-metal obstacles, nor suffer from multi-path
effect. As a result, MIC signal propagates and attenuates evenly in
all directions and consistently over time.

5.2 Platform Design
Applying MIC to real-world proximity detection, we developed

a platform called LiveSynergy with a transmitter – Pulse, and a re-
ceiver – Link. Specifically, spaces or physical objects can be instru-
mented with Pulses that beacon modulated magnetic fields to en-
code unique IDs. Links carried by humans read the signal strength
of the magnetic field and demodulate the signal for the Pulse ID.
Both Pulse and Link are equipped with 802.15.4 radios for data
communication. In additional, similar to [7], Pulse is powered di-
rectly by AC, and has the ability to measure power and perform
actuation, which is useful for some applications. The rest of this
section discusses the hardware design choices of Pulse and Link in
more detail.

5.2.1 Pulse Transmitter
Pulse (c.f. left of Figure 4) consists of four primary hardware

components: microcontroller (MCU) and radio, magnetic transmit-
ter tuned at 125kHz, energy metering, and a mechanical relay for
actuation.
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Magnetic Transmitter: Pulse generates the dynamic magnetic field
in three stages. First, the MCU encodes the payload data and tog-
gles its IO pins according to the bits. Then, a driver circuit am-
plifies the toggling pattern to provide sufficient power. Finally, the
antenna transmits the signal as magnetic pulses in the air. The rest
of the discussion focuses on each of these stages.

The magnetic transmitter software stack on MCU largely deter-
mines the data transmission rate and reliability through the choice
of modulation scheme and maximum transmission unit (MTU).
Preliminary results showed that simple duration-based on/off key-
ing modulation does not achieve high reliability. We opted Manch-
ester encoding, as the self-clocking nature reduces the chance of
several types of data failure. In addition, preliminary results sug-
gested an MTU larger than 16 bytes can significantly impact the
PRR. Finally, the bit signal duration can impact the reliability or
the transmission rate if the duration is too short or long respec-
tively. In our system, a data rate of 2730 bps provides the sweet
spot.

The I/O pin from the MCU, signaling at 3.3V, connects to the in-
put of a buffer powered at 12VDC; the output of the buffer connects
to the input of an inverter, also powered at 12VDC. The two ends
of the MI antenna are connected to the outputs of both the buffer
and the inverter. This design effectively doubles the voltage swing
across the antenna. In addition, power-limiting resistors are put in
series with the antenna to artificially decrease the range, if needed.

The antenna size and geometry partially determine the transmis-
sion range. In [9], a relatively large antenna (5m × 1m) is used
to obtain a range of 5m. However, such a large antenna is not
practical in indoor scenarios. Pulse has a PCB mountable antenna
specifically designed for PKE applications, with a dimension of
8cm× 1.5cm.
Microcontroller and Radio: To mitigate interference and noise
issues that often exist in modern office buildings, and to ensure
adequate RF range, we opted the sub-1 GHz band instead of the
popular 2.4 GHz spectrum. Our radio stack conforms to 802.15.4c,
a 779 Mhz PHY layer amendment to the 802.15.4 standard.

To simplify our RF design phase and ensure optimal RF per-
formance, we use the SuRF core module from PeoplePower [14],
which integrates TI CC430 and RF matching network (balum).
CC430 is a SoC with MSP430 MCU (with 32 KB ROM and 4 KB
RAM) and CC1101 low-power radio chipset. We designed a com-
pact 1 dB monopole PCB antenna based on the TI reference de-
sign [4].

5.2.2 Link Receiver
Link (c.f. right of Figure 4) is a mobile device carried by hu-

mans to receive and decode the IDs from dynamic magnetic fields
transmitted by Pulses. Link is battery-powered inside a 9.2cm ×
5.8cm × 2.3cm enclosure. The three primary hardware compo-
nents include MCU and radio, 3D magnetic coil, and wake up chip.
Since Link and Pulse share the same MCU and radio, the discus-
sion below focuses on the latter two.

The 3D receiver coil is tuned to 125 kHz, and sensitive in all
three dimensions providing spatial freedom to the human carrying
the Link. Since magnetic field is not significantly attenuated by
non-ferrous materials, the signal reception is similar regardless of
Link’s location on the body. The outputs from the coil are small
electrical signals in x, y, and z dimensions, and they are connected
to a low-power wake up chip, AS3932. AS3932 reduces analog
circuitry with an integrated programmable gain amplifier (PGA),
offloads computation by digitizing the analog magnetic signals, and
reduces MCU power consumption by firing a wakeup signal only
when a magnetic field with valid preamble is decoded.
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Figure 5: WPRR vs. distance for morning, afternoon, and
night, and associated 1D proximity zones.

Upon being waken up by the AS3932 chip, the MCU uses its in-
ternal clock to periodically capture the value of the AS3932 output
pins. After the software stack successfully verifies the 16-bit CRC,
it delivers the payload data to the application.

Finally, we note that the magnetometer inside existing mobile
phones use Hall elements and can theoretically detecting dynamic
magnetic fields (in addition to static fields). Unfortunately, de-
tailed inspection of popular magnetometer chips reveal that dy-
namic magnetic field is filtered out in hardware to reduce “noise”
from the earth magnetic field. It is our hope that sensor manufac-
turers can lift this limit and enable MIC on future mobile phones.

6. EVALUATION OF LIVESYNERGY
The evaluation methodology is similar to that used in Section 4.

We place a pair of Pulse and Link to perform the test at three differ-
ent times of the day. In each trial, the Pulse is fixed in position and
transmits an ID using MI at 5Hz. We position the Link at differ-
ent distances from the Pulse, with variable intervals to cover more
points inside and near the grey region. For each distance, Pulse
transmits 1,000 packets; the Link records successful receptions, to-
gether with timestamps and RSSI. In addition, for every position,
we rotate Pulse with respect to the Link, at angles from 0◦ to 180◦

in 30◦ increments. While this is still a small subset of all the de-
grees of freedom between a pair of antennas, this at least enables
us to create proximity zones in both 1D and 2D space.

6.1 Boundary Sharpness and Consistency
The top part of Figure 5 shows the WPRR vs. distance graph

for MI in a single dimension, collected at three different times of
the day. In comparison to 802.15.4 (Figure 2(a)) and BLE (Fig-
ure 2(b)), packet reception ratio of MI is significantly better – it is
more uniform, as indicated by shorter confidence intervals; and it
is more consistent over time, as indicated by the similar average
WPRR readings across three trials. In comparison to RFID (Fig-
ure 2(c)), the variance of WPRR readings is about the same, but MI
exhibits better signal decay characteristics than RFID. There are
still some fluctuations in MI’s WPRR curve since ferrous materials
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Figure 6: Body orientation vs. distance

in the environment do affect magnetic propagation, but much less
severe than RFID. The bottom part of Figure 5 shows the proxim-
ity zone for MI, computed using our definition in Section 3. This
figure shows that the zone boundary for MI is sharp in all three
time periods of the day, with a boundary sharpness of 0.82, which
is much better than 802.15.4, BLE, and RFID. From this result,
we can conclude that LiveSynergy, using magnetic induction as the
beaconing signal, is able to generate proximity zones with the most
consistent and the sharpest boundaries among current technologies
studied in this paper.

To better differentiate MI from RFID, we compare results in two
dimensions, as described in more detail in Section 6.4.

6.2 Human Obstacle Penetration
Figure 6 shows the PRR vs. distance with the Link being carried

in the right pant pocket at different orientations from the Pulse.
This figure shows that human body has very little impact on the
MI signal propagation. In contrast, 802.15.4, BLE, and RFID are
easily affected by human bodies and other obstacles, as seen in Fig-
ure 3. This is because those technologies operate at much higher
frequencies than MI, and also because MI is inductively coupled.
This property makes MI ideal for applications where a mobile “tag”
needs to be carried by a human. On the hand, MI signal is blocked
by ferrous objects, which may be a problem for some applications,
but desired for some others (e.g., applications using ferrous mate-
rials as natural zonal boundaries).

6.3 Additional Metrics
Geometry: From Figure 7, we can observe that the proximity

zone of Pulse in two dimensions extends to all directions, covering
all 360◦. This same observation also applies to 3D.

Range: The maximum range (i.e., radius) is around 5m, but it
can be artificially decreased by limiting the antenna output power.
This range is desirable for a range of indoor applications as de-
scribed in Section 1.

Beacon rate, power, size, and cost: We summarize these met-
rics in the table in Section 6.5.

6.4 Comparisons to RFID in 2D
Because long-range RFID exhibits the sharpest boundary among

all previous technologies, as seen in Section 4, we compare MI with
RFID in more detail here. Using packet reception data measured
in the x-y plane, we were able to find the zone boundaries in 2D
by applying our methodologies in Section 3. As Figure 7 shows,
in two dimensions, the white/grey and grey/black boundaries are
curves, and zones are represented as areas.

From the MI proximity zone on the left, we can see that the MI’s
white zone is relatively circular, centered at the MI transmitter, with
a small grey zone surrounding it. In contrast, RFID has a much nar-

Figure 7: Proximity zones for MI and RFID in 2D space

rower proximity zone with an angle less than 180◦. This geome-
try is not as desirable for applications that require omni-directional
coverage. The grey zone of RFID is also much bigger than that of
MI. We used Monte Carlo method to estimate the areas of white
and grey zones for both MI and RFID, and found that the boundary
sharpness ratio for MI to be 0.70, and for RFID to be 0.25. This
shows that MI has a much sharper boundary than RFID. Further-
more, the range of MI is about 5m omni-directionally where RFID
is only about 1m in the right half plane. Combined with the advan-
tages MI has over RFID in terms of consistency and body penetra-
tion, MI is the more viable proximity detection solution than RFID
for many indoor applications.

6.5 Summary
Summary of evaluation results for LiveSynergy/MI:

Boundary sharpness 0.82
Consistency 0.03
Penetration Excellent
Geometry Omnidirectional
Range 5m
Max beacon rate 50Hz
Power 19.75mA
Tag form factor 9cm x 6cm x 2cm
Cost (tx, rx) ($50, $30)/pc @ 100 units

7. APPLICATION DEPLOYMENT
Results from Section 6 show that magnetic induction communi-

cation (MIC) is a viable solution for reliable and precise proxim-
ity detection. This section discusses a real-world deployment at a
large cafeteria to provide personalized advertisements and diet sug-
gestions. The discussion starts by giving the deployment overview,
discussing the end-to-end system, and then presenting deployment
results and experiences.

7.1 Deployment Overview
Providing personalized shopping experience has been a recurring

application in the ubiquitous computing community. On one hand,
shops can deliver targeted advertisements and coupons; on the other
hand, shoppers can receive suggestions based on their shopping his-
tory and preferences. We highlight the potential of MIC communi-
cation in such applications by instrumenting the cafeteria inside a
large company with Pulses, as seen in Figure 8. Diners carry Links,
which are associated to their mobile phones running our mobile ap-
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Figure 8: A Pulse is installed at the Teppanyaki counter, pro-
jecting a proximity zone of 5m radius. Links carried by diners
in their pockets detect this zone as they enter.

plication. Food counters in the cafeteria are organized by types of
food offered. The proximity readings are maintained at a back-
end server, and used to deliver real-time targeted advertisements
and coupons for the particular food counter that the customer is
near. The entire user experience depends on performance of the
LiveSynergy system in detecting diners, and how targeted adver-
tisements and coupons are delivered.

Figure 10 shows Pulses at five different locations in the cafeteria:
the entrance, the “Japanese” counter, the “A La Carte” counter, the
“Teppanyaki” counter, and the “Vegetarian” counter. Pulses bea-
con twice per second, while Links report MIC beacons heard once
every second. Aggregating beacon reports help lower the wireless
network load, and help resolving cases where beacons from multi-
ple Pulses are heard. Specifically, Link reports the Pulse ID with
the highest signal strength in the current detection time window.

The back-end server performs a simple time-window threshold
filtering on the location readings to differentiate between passing-
by and staying. Using this data, the server can push context-aware
information to the customer in a timely manner, through a native
application running on the mobile phone.

7.2 System Architecture

Figure 9: End-to-end LiveSynergy system architecture

Our system architecture (c.f. Figure 9) includes three main com-
ponents: the LiveSynergy platform for detecting when humans en-
ter and exit cafeteria counters; a networking and data representa-

Figure 10: Movement trails from three customers in the cafete-
ria deployment.

tion layer enabling communication among counters, services in the
cloud, and app clients; and an application layer consisting of a mo-
bile application for providing feedback and visualization.
Networking: Our network needs to be reliable since interactions
between humans and physical objects rely on reliable data exchange,
and it should be low latency to support timely feedback to users. We
designed our network to meet these requirements by using single-
hop at the wireless sensor layer, reliable proxy gateway, and REST
over IPv6. Nodes (Pulses and Links) directly connect to the edge
router via single-hop, and communicate using UDP over IPv6. Ap-
plications, as well as multiple services hosted in the cloud, commu-
nicate with the edge router using HTTP over Ethernet.
Data Representation and Web Services: To enable interoperabil-
ity between applications and services provide by our system, we
designed a simple message format based on JSON, which is com-
mon in RESTful web services. Similar to XML, JSON is text-
based, human-readable, self-describing, and language independent.
However, compared to XML, JSON is light-weight with a smaller
grammar and simpler data structure.

7.3 Deployment Results
Figure 10 shows the floor-map of the cafeteria, labeled with both

the locations of each food counter, and the movement trails of the
three diners in our study. Diners enter the cafeteria from the en-
trance at the lower left corner at different times. Each diner takes
a different route and visits various food counters on the way. The
trails are indicated by three different colors, and direction is in-
dicated by arrows of the same color; purple-shaded circles repre-
sent proximity zones of Pulses (approximated to perfect circles in
this figure), with radius equaling the mean of the actual ranges of
Pulses. As our ground truth, we recorded a video as the customers
walk around the cafeteria purchasing food. The video is times-
tamped so that we can correlate events in the footage to the actual
proximity detection data we collected.

Figure 10 also overlays our deployment data over the floor-map.
Circles of varying sizes indicate locations of detections, using data
reported by Links as they intersect the proximity zones of Pulses.
The size is proportional to the RSSI recorded by the Link, and red
lines connecting green circles to the center of the purple circles
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Figure 11: Windows Phone 7.5 application

indicate which Pulse that particular Link detects (i.e. being associ-
ated with). To avoid clustering the figure, we only draw red lines
for the first detection after the “green” customer enters a new Pulse
zone.

From this figure, one can observe a few key results. First, the
boundaries of the Pulse proximity zones are sharp, with no false
positives or negatives. The detections occur consecutively within
each proximity zones projected by Pulses. There is a little delay
between entering of a zone and the time of first detection, as seen
by the slight offset between the edge of the purple circle and the first
green circle. This delay is also observed at the exit of the zone. This
is expected since Links run a simple window-based filtering before
reporting the detection. This delay is well within the tolerance.
Second, the detections are consistent for all three customers as they
enter and exit the five zones, as evident from the detection locations
for all three customers – the three different colors of detections cir-
cles all exist inside the same purple circles (+ the detection delay).
Additionally, we observe that RSSI is indeed proportional to the
distance between the Link and the Pulse. This allows the system to
correctly resolve overlapping zones by “associating” to the closest
proximity zone. For example, the “green” customer is first associ-
ated with the “Japanese counter”, then switched (correctly) to the
“A La Carte counter” in the overlapping area of both zones.

All three diners installed our native Windows Phone 7.5 applica-
tion. Figure 11 shows “green” customer’s screenshots as he walks
past various food counters, as labeled by A, B, and C. First, after
his Link detects the Pulse ID of the entrance and forward to the
server, our web service sends a notification message to his mobile
phone. Then, the phone displays a notification at the top of the

screen without interrupting the foreground application. Clicking
the notification opens the main screen of our mobile application
with the menu2 and promotional items. At the “Japanese counter”,
the web service pushes counter-specific coupons (tuna sashimi).
Then, at the meat-heavy “Teppanyaki counter”, the diner receives
a diet alert of excessive meat consumption based on his purchase
history, with the advice of vegetarian dishes instead.

This simple mobile application demonstrates that the LiveSyn-
ergy proximity detection platform enables useful context-aware ap-
plications, without the need for heavy post-processing. We plan to
build a personal energy footprint application and a cardless secu-
rity entry system based on our LiveSynergy platform in the near
future.

8. CONCLUSIONS
In this paper, we study the proximity zones established by wire-

less beacons in person-scale applications. We first propose a method-
ology based on sampling and classification techniques that enable
us to compute zone boundaries and other metrics such as boundary
sharpness, consistency, and body penetration. Using this methodol-
ogy, we empirically evaluate three prominent technologies: 802.15.4,
BLE, and 900MHz RFID, using data collected over a large pe-
riod of time in both x and y dimensions. We show that 802.15.4
and BLE have large grey regions and are inconsistent over time.
While RFID has sharp boundaries, it suffers heavily from atten-
uation by obstacles such as the human body. To overcome these
shortcomings, we describe the design, implementation, and evalu-
ation of a magnetic-induction based proximity sensing platform –
LiveSynergy, which creates sharp and consistent boundaries that is
not affected by human obstacles. These characteristics make MI
significantly more robust than BLE, 802.15.4, and RFID alterna-
tive. Finally, through a real-world deployment, we demonstrate that
LiveSynergy is able to successful support human interacting with a
smart environment. As future work, we plan to explore the possi-
bility of integrating MI into regular mobile devices and expanding
its applications.
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2Dish items in A2 are pre-populated and are not the actual menu.
We plan to synchronize the menu with the cafeteria in the future.

230



10. REFERENCES
[1] P. Bahl and V. Padmanabhan. Radar: an in-building rf-based

user location and tracking system. In INFOCOM, volume 2,
pages 775 –784 vol.2, 2000.

[2] B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. A. Shafer.
Easyliving: Technologies for intelligent environments. In
HUC, 2000.

[3] I. Constandache, X. Bao, M. Azizyan, and R. R. Choudhury.
Did you see bob?: human localization using mobile phones.
In Proceedings of the sixteenth annual international
conference on Mobile computing and networking, MobiCom
’10, pages 149–160, New York, NY, USA, 2010. ACM.

[4] Fredrik Kervel. DN023: 868 MHz, 915 MHz and 955 MHz
Inverted F Antenna. http://focus.ti.com/lit/an/
swra228b/swra228b.pdf.

[5] D. H and D. Fox. Mapping and localization with rfid
technology. In International Conference on Robotics and
Automation, 2003.

[6] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster.
The anatomy of a context-aware application. Wireless
Networks, 8:187–197, 2002. 10.1023/A:1013767926256.

[7] X. Jiang, S. Dawson-Haggerty, P. Dutta, and D. Culler.
Design and Implementation of a High-Fidelity AC Metering
Network. In Proc. IPSN/SPOTS, 2009.

[8] C.-J. M. Liang, B. Priyantha, J. Liu, and A. Terzis. Surviving
Wi-Fi Interference in Low Power ZigBee Networks. In Proc.
SenSys, 2010.

[9] A. Markham, N. Trigoni, and S. Ellwood. Revealing the
Hidden Lives of Underground Animals with
Magneto-Inductive Tracking. In Proc. SenSys, 2010.

[10] Matthew M. Holland and Ryan G. Aures and Wendi B.
Heinzelman. Experimental Investigation of Radio
Performance in Wireless Sensor Networks. In SECON, 2006.

[11] E. Miluzzo, X. Zheng, K. Fodor, and A. T. Campbell. Radio
characterization of 802.15.4 and its impact on the design of
mobile sensor networks. In EWSN, 2008.

[12] A. Mohan, G. Woo, S. Hiura, Q. Smithwick, and R. Raskar.
Bokode: imperceptible visual tags for camera based
interaction from a distance. ACM Transactions on Graphics,
28, 2009.

[13] R. J. Orr and G. D. Abowd. The smart floor: a mechanism
for natural user identification and tracking. In CHI ’00, CHI
EA ’00, pages 275–276, New York, NY, USA, 2000. ACM.

[14] People Power. People Power | Helping Save the Green.
http://www.peoplepowerco.com.

[15] Polhemus. Polhemus, Innovation in Motion.
http://http://polhemus.com/.

[16] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The
cricket location-support system. In MobiCom, 2000.

[17] F. Raab, E. Blood, T. Steiner, and H. Jones. Magnetic
position and orientation tracking system. In IEEE
Transactions on Aerospace and Electronic Systems, 1979.

[18] B. Sklar. Rayleigh fading channels in mobile digital
communication systems .i. characterization.
Communications Magazine, IEEE, 35(7):90 –100, jul 1997.

[19] K. Srinivasan, M. A. Kazandjieva, S. Agarwal, and P. Levis.
The b-factor: measuring wireless link burstiness. In SenSys,
2008.

[20] T. Teixeira, D. Jung, and A. Savvides. Tasking networked
cctv cameras and mobile phones to identify and localize
multiple people. In Ubiquitous Computing/Handheld and
Ubiquitous Computing, pages 213–222, 2010.

[21] R. Want, A. Hopper, V. Falcão, and J. Gibbons. The active
badge location system. ACM Trans. Inf. Syst., 10:91–102,
January 1992.

[22] E. Welbourne, K. Koscher, E. Soroush, M. Balazinska, and
G. Borriello. Longitudinal study of a building-scale rfid
ecosystem. In MobiSys ’09, pages 69–82, New York, NY,
USA, 2009. ACM.

[23] M. Youssef and A. Agrawala. The horus wlan location
determination system. In MobiSys, 2005.

231

http://focus.ti.com/lit/an/swra228b/swra228b.pdf
http://focus.ti.com/lit/an/swra228b/swra228b.pdf
http://www.peoplepowerco.com
http://http://polhemus.com/

	1 Introduction
	2 Related Work
	3 Proximity Zone
	3.1 Evaluation Metrics
	3.2 Empirical Definition
	3.2.1 Classification of Points
	3.2.2 Classification of Zones


	4 Evaluation of Existing Technologies
	4.1 Boundary Sharpness and Consistency
	4.2 Human Obstacle Penetration
	4.3 Additional Metrics

	5 LiveSynergy Platform
	5.1 Magnetic Induction Communication
	5.2 Platform Design
	5.2.1 Pulse Transmitter
	5.2.2 Link Receiver


	6 Evaluation of LiveSynergy
	6.1 Boundary Sharpness and Consistency
	6.2 Human Obstacle Penetration
	6.3 Additional Metrics
	6.4 Comparisons to RFID in 2D
	6.5 Summary

	7 Application Deployment
	7.1 Deployment Overview
	7.2 System Architecture
	7.3 Deployment Results

	8 Conclusions
	9 Acknowledgments
	10 References



