
94-93نیمسال دوم -سیستمھای توزیع شده 2/20/2015

1

سیستمهاي توزیع شده
علیرضا تقی زاده: مدرس

بسمه تعالی

کتاب مرجع

Distributed systems: principles and
paradigms
Andrew S. Tanenbaum, Maarten Van Steen

Second Edition, 2007 Pearson Education. Inc.

2

94-93نیمسال دوم -سیستمھای توزیع شده 2/20/2015

2

Chapter 1:
INTRODUCTION

Before 1980s:
• large and expensive mainframes.
Around mid 1980s:
• microprocessors, high-speed computer networks.

3

 It is now not only feasible, but easy, to put together
computing systems composed of large numbers of
computers connected by a high-speed network.

“distributed systems, in contrast to the
previous centralized systems”

DEFINITION

A distributed system
is a collection of independent

computers that
appears to its users as a single

coherent system.

4

94-93نیمسال دوم -سیستمھای توزیع شده 2/20/2015

3

LAYERED MODEL

5

CHARACTERISTICS

1- Differences between the various computers
and the ways in which they communicate are
mostly hidden from users.

6

2- Relatively easy to expand or scale.

3- Continuously available, although perhaps
some parts may be temporarily out of order.

94-93نیمسال دوم -سیستمھای توزیع شده 2/20/2015

4

GOALS & ISSUES

1. ACCESSIBILITY
2. TRANSPARENCY
3. OPENNESS
4. SCALABILITY

7

MAKING RESOURCES ACCESSIBLE

The main goal of a distributed system is to make it easy
for the users (and applications) to access remote
resources, and to share them in a controlled and
efficient way.

8

⁺ Economics
⁺ Collaborate and exchange information.

⁻ Security is becoming increasingly important.

94-93نیمسال دوم -سیستمھای توزیع شده 2/20/2015

5

DISTRIBUTION TRANSPARENCY

 Access transparency deals with hiding differences in
data representation and the way that resources can
be accessed by users.

9

 Location transparency refers to the fact that users
cannot tell where a resource is physically located in
the system. Naming plays an important role in
achieving location transparency.

DISTRIBUTION TRANSPARENCY

Migration transparency in which resources can be
moved without affecting how those resources can be
accessed.

10

 Replication transparency deals with hiding the fact
that several copies of a resource exist.

 Relocation transparency is the situation in which
resources can be relocated while they are being
accessed without the user or application noticing
anything.

94-93نیمسال دوم -سیستمھای توزیع شده 2/20/2015

6

DISTRIBUTION TRANSPARENCY

 Concurrency transparency that each user does
not notice that the other is making use of the same
resource.

11

 Making a distributed system failure transparent
means that a user does not notice that a resource
(he has possibly never heard of) fails to work
properly, and that the system subsequently
recovers from that failure.

DEGREE OF TRANSPARENCY

There is a trade-off between a high degree of
transparency and the performance of a system.

12

A wide-area distributed system that connects two
processes in two points far from each other, suffers
from several hundreds of milliseconds using a
computer network
For example, Attempting to mask a transient server

failure before trying another one may slow down
the system as a whole.

94-93نیمسال دوم -سیستمھای توزیع شده 2/20/2015

7

DEGREE OF TRANSPARENCY

As distributed systems are expanding to devices
that people carry around, and where the very
notion of location and context awareness is
becoming increasingly important, it may be best
to actually expose distribution rather than trying
to hide it.
• As a simple example, consider an office

worker who wants to print a file from her
notebook computer.

13

OPENNESS

• Another important goal of distributed systems
is openness. An open distributed system is a
system that offers services according to
standard rules that describe the syntax and
semantics of those services.

14

94-93نیمسال دوم -سیستمھای توزیع شده 2/20/2015

8

OPENNESS
 In distributed systems, services are generally specified through

interfaces, which are often described in an Interface Definition
Language (IDL).

15

 Interface definitions written in an IDL nearly always capture
only the syntax of services. In other words, they specify
precisely the names of the functions that are available
together with types of the parameters, return values,
possible exceptions that can be raised, and so on.

 The hard part is specifying precisely what those services do,
that is, the semantics of interfaces. In practice, such
specifications are always given in an informal way by means
of natural language.

OPENNESS

Proper specifications are complete and neutral:

16

 Just as important is the fact that specifications do
not prescribe what an implementation should look
like: they should be neutral.

 Complete means that everything that is necessary
to make an implementation has indeed been
specified.

94-93نیمسال دوم -سیستمھای توزیع شده 2/20/2015

9

OPENNESS

Completeness and neutrality are important for
interoperability and portability.

17

 Interoperability characterizes the extent by which two
implementations of systems or components from different
manufacturers can co-exist and work together by merely
relying on each other's services as specified by a common
standard.

 Portability characterizes to what extent an application
developed for a distributed system A can be executed without
modification, on a different distributed system B that
implements the same interfaces as A.

SCALABILITY

Scalability is one of the most important design goals
for developers of distributed systems. Scalability of a
system can be measured along at least three
different dimensions:

18

First, a system can be scalable with respect to its size, meaning
that we can easily add more users and resources to the system.

Second, a geographically scalable system is one in which the users
and resources may lie far apart.

Third, a system can be administratively scalable, meaning that it
can still be easy to manage even if it spans many independent
administrative organizations.

94-93نیمسال دوم -سیستمھای توزیع شده 2/20/2015

10

DECENTRALIZED ALGORITHMS

A decentralized algorithms generally have the
following characteristics, which distinguish them
from centralized algorithms:

19

• No machine has complete information about the system
state.

• Machines make decisions based only on local information.

• Failure of one machine does not ruin the algorithm.

• There is no implicit assumption that a global clock exists.

SCALABILITY ISSUES (Geographical)

• It is currently hard to scale existing distributed
systems that were designed for local-area networks.

20

• Communication in wide-area networks is inherently
unreliable, and virtually always point-to-point. In
contrast, local-area networks generally provide
highly reliable communication facilities based on
broadcasting, making it much easier to develop
distributed systems.

94-93نیمسال دوم -سیستمھای توزیع شده 2/20/2015

11

SCALABILITY ISSUES (administrative)

A difficult, and in many cases open question is
how to scale a distributed system across
multiple, independent administrative domains.
A major problem that needs to be solved is that
of conflicting policies with respect to resource
usage (and payment), management, and
security.

21

SCALING TECHNIQUES

In most cases, scalability problems in distributed
systems appear as performance problems caused by
limited capacity of servers and network. There are now
basically only three techniques for scaling:

– Hiding communication latencies,
– Distribution,
– and Replication

22

94-93نیمسال دوم -سیستمھای توزیع شده 2/20/2015

12

HIDING COMMUNICATION LATENCIES

Hiding communication latencies is important to achieve
geographical scalability. The basic idea is simple: try to
avoid waiting for responses to remote (and potentially
distant) service requests as much as possible.
• For example, when a service has been requested at a

remote machine, an alternative to waiting for a reply
from the server is to do other useful work at the
requester's side.

23

HIDING COMMUNICATION LATENCIES

There are many applications that cannot make effective
use of asynchronous communication. For example,
interactive applications.
• A much better solution is to reduce the overall

communication, for example, by moving part of the
computation to the client.

24

94-93نیمسال دوم -سیستمھای توزیع شده 2/20/2015

13

HIDING COMMUNICATION LATENCIES

25

Figure 1-4. The difference between letting (a) a server or (b) a client check forms as they
are being filled.

DISTRIBUTION

Distribution involves taking a component,
splitting it into smaller parts, and subsequently
spreading those parts across the system.
• An excellent example of distribution is the

Internet Domain Name System (DNS).

26

94-93نیمسال دوم -سیستمھای توزیع شده 2/20/2015

14

DISTRIBUTION

27

Figure 1-5. An example of dividing the DNS name space into zones.

Replication

Considering that scalability problems often appear in
the form of performance degradation, it is generally a
good idea to actually replicate components across a
distributed system.
• Replication not only increases availability, but also

helps to balance the load between components
leading to better performance.

28

94-93نیمسال دوم -سیستمھای توزیع شده 2/20/2015

15

Replication vs. Caching

Caching is a special form of replication, although the
distinction between the two is often hard to make or
even artificial.

29

• As in the case of replication, caching results in making a
copy of a resource, generally in the proximity of the
client accessing that resource.

• However, in contrast to replication, caching is a
decision made by the client of a resource, and not by
the owner of a resource.

Replication issues

• There is one serious drawback to caching and
replication that may adversely affect scalability.
Because we now have multiple copies of a resource,
modifying one copy makes that copy different from
the others. Consequently, caching and replication
leads to consistency problems.

30

94-93نیمسال دوم -سیستمھای توزیع شده 2/20/2015

16

Sum up

• One could argue that size scalability is the least
problematic from a technical point of view.

• Geographical scalability is a much tougher problem
as Mother Nature is getting in our way.

• Finally, administrative scalability seems to be the
most difficult one, rarely also because we need to
solve nontechnical problems (e.g., politics of
organizations and human collaboration).

31

Types of distributed systems

• Distributed computing systems
• Distributed information systems
• Distributed embedded systems

32

94-93نیمسال دوم -سیستمھای توزیع شده 2/20/2015

17

Distributed computing systems

An important class of distributed systems is the one
used for high performance computing tasks.
• Cluster computing: the underlying hardware consists

of a collection of similar workstations or PCs, closely
connected by means of a high speed local area
network.

• Grid computing: a federation of computer systems,
where each system may fall under a different
administrative domain, and may be very different
when it comes to hardware, software, and deployed
network technology.

33

Cluster computing

34

Linux-based Beowulf cluster

94-93نیمسال دوم -سیستمھای توزیع شده 2/20/2015

18

Grid Computing

35

Software for realizing grid computing evolves around providing
access to resources from different administrative domains. Focus is
often on architectural issues. An architecture proposed by Foster et
al. (2001) is shown below:

Grid Computing

36

• Fabric layer provides interfaces to local resources at
a specific site. (e.g. querying the state and
capabilities of a resource, along with functions for
actual resource management such as locking
resources).

• Connectivity layer consists of communication
protocols for supporting grid transactions that span
the usage of multiple resources.

• Resource layer is responsible for managing a single
resource. It uses the functions provided by the
connectivity layer and calls directly the interfaces
made available by the fabric layer.

94-93نیمسال دوم -سیستمھای توزیع شده 2/20/2015

19

Grid Computing
• Collective layer deals with handling access to multiple

resources and typically consists of services for resource
discovery, allocation and scheduling of tasks onto
multiple resources, data replication, and so on.

• Application layer consists of the applications that operate
within a virtual organization and which make use of the
grid computing environment.

Typically the collective, connectivity, and resource layer form the
heart of what could be called a grid middleware layer. These
layers jointly provide access to and management of resources
that are potentially dispersed across multiple sites.

37

Distributed Information Systems

Many of the existing middleware solutions are the result of
working with an infrastructure in which it was easier to integrate
applications into an enterprise-wide information system. We can
distinguish several levels at which integration took place:
• In many cases, a networked application simply consisted of a

server running that application (often including a database)
and making it available to remote programs, called clients.
Integration at the lowest level would allow clients to wrap a
number of requests, possibly for different servers, into a
single larger request and have it executed as a distributed
transaction. The key idea was that all, or none of the
requests would be executed.

38

94-93نیمسال دوم -سیستمھای توزیع شده 2/20/2015

20

Distributed Information Systems

• As applications became more sophisticated and were
gradually separated into independent components
(notably distinguishing database components from
processing components), it became clear that integration
should also take place by letting applications
communicate directly with each other. This has now led
to a huge industry that concentrates on enterprise
application integration (EAl).

39

Transaction Processing Systems

Programming using transactions requires special primitives that
must either supplied by the underlying distributed system or by the
language runtime system. The characteristic feature of a
transaction is either all of these operations are executed or none
are executed. More specifically, transactions are:
1. Atomic: To the outside world, the transaction happens

indivisibly.
2. Consistent: The transaction does not violate system invariants.
3. Isolated: Concurrent transactions do not interfere with each

other.
4. Durable: Once a transaction commits, the changes are

permanent.
40

94-93نیمسال دوم -سیستمھای توزیع شده 2/20/2015

21

Nested transaction

• A nested transaction is constructed from a number of sub-
transactions. The top-level transaction may fork off children
that run in parallel with one another, on different machines,
to gain performance or simplify programming.

41

a transaction for
planning a trip

Nested transaction
• The permanence referred to applies only to top-level

transactions.
• When any transaction or subtransaction starts, it is

conceptually given a private copy of all data in the entire
system for it to manipulate as it wishes. If it aborts, its
private universe just vanishes, as if it had never existed. If
it commits, its private universe replaces the parent's
universe.

• Likewise, if an enclosing (higher-level) transaction aborts,
all its underlying subtransactions have to be aborted as
well.

42

94-93نیمسال دوم -سیستمھای توزیع شده 2/20/2015

22

Transactional programming model

43

Enterprise Application Integration

In modern environment, application components
should be able to communicate directly with each
other and not merely by means of the request/reply
behavior that was supported by transaction processing
systems. Several types of communication middleware
exist.
1. RPC
2. RMI

44

94-93نیمسال دوم -سیستمھای توزیع شده 2/20/2015

23

Remote Procedure Call (RPC)

• With remote procedure calls (RPC), an application
component can effectively send a request to another
application component by doing a local procedure
call, which results in the request being packaged as a
message and sent to the callee.

• Likewise, the result will be sent back and returned to
the application as the result of the procedure call.

45

Remote Method Invocations (RMI)

• As the popularity of object technology increased,
techniques were developed to allow calls to remote
objects, leading to what is known as remote method
invocations (RMI).

• An RMI is essentially the same as an RPC, except that
it operates on objects instead of applications.

46

94-93نیمسال دوم -سیستمھای توزیع شده 2/20/2015

24

Message-oriented Middleware

• RPC and RMI have the disadvantage that the caller and
callee both need to be up and running at the time of
communication. In addition, they need to know exactly
how to refer to each other.

• This tight coupling is often experienced as a serious
drawback, and has led to what is known as message-
oriented middleware, or simply MOM. In this case,
applications simply send messages to logical contact
point. Likewise, applications can indicate their interest
for a specific type of message, after which the
communication middleware will take care that those
messages are delivered to those applications.

47

Distributed embedded systems

• Matters have become very different with the
introduction of mobile and embedded computing
devices. We are now confronted with distributed
systems in which instability is the default behavior.

• The devices in these, what we refer to as distributed
pervasive systems, are often characterized by being
small, battery-powered, mobile, and having only a
wireless connection, although not all these
characteristics apply to all devices.

48

94-93نیمسال دوم -سیستمھای توزیع شده 2/20/2015

25

Distributed embedded systems

Requirements for pervasive applications:
1. Embrace contextual changes: means that a device

must be continuously be aware of the fact that its
environment may change all the time.

2. Encourage ad hoc composition: refers to the fact
that many devices in pervasive systems will be used
in very different ways by different users.

3. Recognize sharing as the default: means to easily
read, store, manage, and share information.

49

Some examples of pervasive systems

• Home Systems: should be completely self-configuring
and self-managing.

• Electronic Health Care Systems: such a network should
at worst only minimally hinder a person. To this end, the
network should be able to operate while a person is
moving, with no strings (i.e., wires) attached to immobile
devices.

• Sensor Networks: their limited resources, restricted
communication capabilities, and constrained power
consumption demand that efficiency be high on the list
of design criteria.

50

