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1 Introduction

No exercises assigned.

2 Fundamentals of Unconstrained Optimization

Problem 2.1
gjl = 100 - 2(zy — 22)(=221) + 2(1 — 21)(—1)
= —400x1 (29 — 23) — 2(1 — x1)
252 = 200(xy — 22)
— Vi) = _400“(;50@? T
gz = —400[z1(—221) + (22 — 22)(1)] + 2 = —400(zy — 3z3) + 2
2 2
8525:):1 - 8515:1:2 = 400z
2
gxg = 200
v - [

1. Vf(z") = [g] and z* = G) is the only solution to V f(z) =0

2. V2f(z*) = [_8230 _24(1)%0} is positive definite since 802 > 0, and det(V2f(z*)) =

802(200) — 400(400) > 0.

3. Vf(x) is continuous.

(1), (2), (3) imply that z* is the only strict local minimizer of f(x).



Problem 2.2

of
— = 842
o1 + 221
of
=L = 124
8:62 2
8 + 2z 0
— Vi@ = [12—4@] - [0}
One solution is x* = <_34> .
This is the only point satisfying the first order necessary conditions.
Vif(z) = 0 _g4| 18mot positive definite, since det(V*f(z)) = -8 < 0.

Therefore, z* is NOT a minimizer. Consider min(—f(x)). It is seen that
V2[—f(x)] is also not positive definite. Therefore z* is NOT a maximizer.

Thus z* is a saddle point and only a stationary point.
O

The contour lines of f(x) are shown in Figure 1.

Problem 2.3
(1)
filz) = d'z
i=1
_% .
o] Lo

_82];1 88251
9 i 9?3 aix _
Vi) = |0 o [Shen] =0




45f .
4 i
35t i
3t i
25f .
‘ \ //
15F .
s 55 S 45 " -35 -3 -25 -2
Figure 1: Contour lines of f(x).
(2)
n n
fz(.%') = .TTA.I‘ = Z Z Aijxixj
i=1 j=1
0,
V fo() [ aﬁﬂ =[S A T ]
= 220 Aijj]szlmn (since A is symmetric)
= 24z
2 _ 02 f o 8221-2-Aimiw
vf2($) o [(%csait} s=1---n _[Ww} s=1---n
t=1---m t=1---m
= [ASt+AtS]S:1'--n =24
t=1---n



Problem 2.4

For any univariate function f(z), we know that the second oder Taylor
expansion is

fle+Ax) = f(z) + fV(2)Az + %f‘” (z + tAz)Aa?,
and the third order Taylor expansion is
Fla+ Az) = f(@) + fO @) + 5 O ) A + é FO(@ + tAz) AL,

where t € (0, 1).
For function fi(x) = cos(1/x) and any nonzero point x, we know that

(1) - 1 .1 (2) B 1 1 1
i (x)——smg, 1 (:B)——ﬁ cos;+2xsm; .

So the second order Taylor expansion for fi(z) is

cos = cos%%—(lsinl)Ax

1 1
r+Ax z2 T

x + tAz)sin mﬁ} Az?,

1 1
T 2(x+tAz)E COS o riAz — 2(
where t € (0,1). Similarly, for fa(z) = cosx, we have
fél)(az) = —sinz, f2(2) () = —cosx, f2(3) (x) =sinzx.
Thus the third order Taylor expansion for fa(z) is
) 1 9 1., 3
cos (x + Az) = cosx — (sinx)Ax — §(COS x)Azr® 4+ g[sm (x + tAz)|Az”,
where ¢t € (0,1). When 2 = 1, we have
. 1 2 1. . 3
cos(1+ Azx) =cosl — (sinl)Ax — g(cos 1)Az” + g[sm (14 tAx)]Az”,

where t € (0, 1).



Problem 2.5

Using a trig identity we find that
2

1 ? 2 ) 1
f(l’k):<1+2k> (cos”k + sin k):<1+2k> 7

from which it follows immediately that f(xgi1) < f(xg).

Let 6 be any point in [0, 27r]. We aim to show that the point (cos 6, sin §)
on the unit circle is a limit point of {xy}.

From the hint, we can identify a subsequence &, , &y, ks, - - - such that
lim;_, §k; = 0. Consider the subsequence {w; };”;1 We have

. L 1 cos k;
Jlggo Thj = glgrolo <1 + 2’f> [ sin k; ]
o 1 . cos &
o jll.rgo (1 * 2’“) glggo [ sinﬁk; ]
| cos®
| sinf |-
Problem 2.6

We need to prove that “isolated local min” = “strict local min.” Equiv-
alently, we prove the contrapositive: “not a strict local min” = “not an
isolated local min.”

If * is not even a local min, then it is certainly not an isolated local
min. So we suppose that z* is a local min but that it is not strict. Let N
be any nbd of z* such that f(z*) < f(z) for all x € N. Because z* is not a
strict local min, there is some other point z € N such that f(z*) = f(zn).
Hence x s is also a local min of f in the neighborhood N that is different
from z*. Since we can do this for every neighborhood of #* within which z*
is a local min, z* cannot be an isolated local min.

Problem 2.8

Let S be the set of global minimizers of f. If S only has one element, then
it is obviously a convex set. Otherwise for all z,y € S and « € [0, 1],

flaz+ (1 —a)y) <af(z)+ (1—a)f(y)

since f is convex. f(x) = f(y) since x,y are both global minimizers. There-
fore,

flaz+ (1 —a)y) <af(z)+ (1 -a)f(z) = f(z).

10



But since f(z) is a global minimizing value, f(z) < f(az + (1 — a)y).
Therefore, f(az+ (1 —ay) = f(x) and hence ax + (1 —a)y € S. Thus S is
a convex set. O

Problem 2.9

—V f indicates steepest descent. (px) - (—=Vf) = ||pll - IV f]| cos@. pi is a
descent direction if —90° < 8 < 90° <= cosf > 0.

pr-—Vf
" = cosf >0 <~ pr-Vf<O0.
el IV £]]
_ [ 2621 +23)
V= [4x2(1’1 + 3)

Pk Vi

Ay )6

0

which implies that pg is a descent direction.

() ()

flor +apr) = F(1—a,0)") = (1 - a) + a*)?

d 1
— — f(zp +aupr) =2(1 —a+a®)(=1+2a) =0 only when a = 7

da
. d? 9

It is seen that — f(zr + arpk) =6(20° —2a+1) =3>0,s0

da? el a=1

2 2

1
a=g is indeed a minimizer.

O

Problem 2.10
Note first that

n
Tj= E Sjizi + 8.
=1

11



By the chain rule we have

of Ox; T
azz Z 8% 8ZZ ;Sﬂ S Vi )]

For the second derivatives, we apply the chain rule again:

n

9 o df(x)
8zz<3zkf(z) N (97,2’]C Z Sﬂ 8l‘j

. x) Oy
N ZZS *Ox,;01; 8171 azks

7j=11=1
)
= [S v f(a:)S]kZ_.
Problem 2.13
¥ =0
|l Tpr1 — 2% k k
= 1 d —_— 1.
|xp — x| E+1 < o k+1

k
For any r € (0,1),3 ko such that V k > ko, —— > r.

k+1
This implies x; is not Q-linearly convergent.
Problem 2.14
N () () S cw
Hﬂfk _ x*HQ ((05)2k)2 (0.5)2k+1 .
Hence the sequence is Q-quadratic.
Problem 2.15
_ ! =1 =0
=g = s
lopy =o'l _ R 1 ke
lxp — x| (k+1)!  k+1

12



This implies zj is Q-superlinearly convergent.

|lzps1 — x| k!k! k!
— — —_
leg — 22 (k+1)! k+1

This implies x is not Q-quadratic convergent.

Problem 2.16

For k even, we have

ke =2l _we/k 1
|z — x| Tk k ’

while for £ odd we have

Iz =l _ Q% 97 e
e — x| xp_1/k (1/4)2}“71 ’
Hence we have .
|Zpt1 — 2™ _
Llidin 2 S N
(e

so the sequence is Q-superlinear. The sequence is not Q-quadratic because
for k even we have
Jopss =l afk 1

— — —4?" .
o —2" 2~ 22 kO

The sequence is however R-quadratic as it is majorized by the sequence
2 = (0.5)2k, k=1,2,.... For even k, we obviously have

zp = (0.25)2 < (0.5)% = 2,
while for £ odd we have

2k71

op < 21 = (0.25)27 = ((0.25)/2)2 = (0.5)2" = ..

A simple argument shows that z; is Q-quadratic.

13



3 Line Search Methods

Problem 3.2

Graphical solution
We show that if c¢; is allowed to be greater than co, then we can find a
function for which no steplengths a > 0 satisfy the Wolfe conditions.

Consider the convex function depicted in Figure 2, and let us choose ¢; =
0.99.

D(a)

sufficient decrease line

Figure 2: Convex function and sufficient decrease line

We observe that the sufficient decrease line intersects the function only once.
Moreover for all points to the left of the intersection, we have

1

¢'(a) < 5

Now suppose that we choose co = 0.1 so that the curvature condition requires
¢ (o) > —0.1. (1)

Then there are clearly no steplengths satisfying the inequality (1) for which

the sufficient decrease condition holds.
O

14



Problem 3.3

Suppose p is a descent direction and define
¢(a) = flx+ap), a=0.
Then any minimizer a* of ¢(«) satisfies
¢(a”) =V f(z+a'p)p=0. (2)

A strongly convex quadratic function has the form

flx) = %xTQ:U + bz, Q >0,

and hence
Vf(z)=Qx+b. (3)

The one-dimensional minimizer is unique, and by Equation (2) satisfies
[Q(z +a*p) +b]Tp=0.

Therefore
(Qz+0)'p+a™p'Qp=0
which together with Equation (3) gives

o = Qz+b)'p _ Vf(@)p
pTQp pTQp

Problem 3.4

Let f(z) = %:cTQa;—i—bTx—i—d, with @ positive definite. Let zj be the current
iterate and p a non-zero direction. Let 0 < ¢ < %
The one-dimensional minimizer along xy + apy is (see the previous ex-
ercise)
Vi T,
Pi Qpr,

O =

Direct substitution then yields

(Vflpe)? C(kaTpk)Q
pFQpy pFQpy

flan) + (1 =)oV il pe = f(y) —

15



Now, since V fr = Qz + b, after some algebra we get

(VAiee)? | 1(Vfpe)?
piQpr 2 piQpy
from which the first inequality in the Goldstein conditions is evident. For

the second inequality, we reduce similar terms in the previous expression to
get

[y + agpr) = f(xg) —

T 2
Fan+ o) = Jon) — 5 AL
k

which is smaller than

(Vflpr)?

Far) + conV filpe = flak) — cm.

Hence the Goldstein conditions are satisfied.

Problem 3.5
First we have from (A.7)
||| = | B~'Bz| < ||B~!|| - | Bxll,
Therefore
|Bz|| > [lz]| /| B~

for any nonsingular matrix B.

For symmetric and positive definite matrix B, we have that the matrices
B2 and B~'/? exist and that ||BY2|| = | B||'/? and ||[B~'/2| = || B~'||'/2.
Thus, we have

ViTp p’ Bp
cosf = — =

VAl [1Bpll - [lpll
- pTBp B pTBl/2B1/2p
—1B] - [Ipl? 1B - lIplI?
_ B2 )

1Bl - llpll> = IB=Y2)12- |B]| - [Ip]|?
1 1

= > —
IB=H-IBI — M

16



We can actually prove the stronger result that cos > 1/M 12 Defining
p=BY2p =B Y2V, we have

~ p'Bp p'p
cosf = = Rie 1725
VA lpll - [1BY2p|| - | B=1/2p||
_ 1] _ 1 L 1 .
IBY2|| - |lpll - 1B=Y2| - \lpll  |BY2| - |B=Y/2|| — M2
Problem 3.6

If g — x* is parallel to an eigenvector of Q, then

Vf(ro) = Qzo—b=Qro—Qz"+Qx* =
= Qzo — ")+ Vf(z")
= Mxg—2x")

for the corresponding eigenvalue A. From here, it is easy to get

V&V fo = N(zo— %) (zo — x¥),
VfOTQVfo = M(zo — 2" (zg — z%),
VIiiQ 'V = Mxo—a*) (zo —z¥).

Direct substitution in equation (3.28) yields
|lz1 — a:*HzQ =0orxz =z

Therefore the steepest descent method will find the solution in one step.

Problem 3.7
We drop subscripts on V f(xy) for simplicity. We have

Tpt1 = T — oV f,

so that
Tpy1 — 2" =x) — 2" —aVf,

By the definition of || - ||22, we have

k1 = 2% = (2re1 — )T Qapry — 2)
= (2, — 2" —aV ) Q(zy — 2" — aV[)
= (2 — ") Q(z1, — %) — 2aV T Q(z), — %) + *VTQV f
= ek — 23 = 2aV [T Qg — %) + 2V TQV f

17



Hence, by substituting Vf = Q(x), — 2*) and a = VfIVf/(VfTQVf), we
obtain
|zkr1 — 213 = ok — 23 — 2aV TV +*VTQV f
= [lzx — 2|3 — 2V TV /(VIIQVE) + (VFIV )/ (V QY f)
= [lzx — 2[5 — (VFIV)?/(VIQVS)
(ViTVf)?
VITQV f)llzx — 23
= e~ [1- erroet el |
(VITQV)(VTQIV )

where we used

= |l — 2%

P

lzx — 2™ = VI QTIVS
for the final equality.

Problem 3.8
We know that there exists an orthogonal matrix P such that
PTQP = A =diag{\1, Mo, , \n}.

So
PTQ=tp = (PTQP)~t = AL,

Let z = P~ 'z, then

(aT2)? (z72)? (32 2)? 1

@TQDETQ ) — (TANETATL) (D DA 2D Sl B

K3
> % > %

Let u; = 22/, 22, then all u; satisfy 0 < w; <1 and Y, u; = 1. Therefore

(«’2)? 1 _ o) 0
@TQo)TQ e) — (Tyuh)(Twin ) o)

where ¢(u) = ﬁ and ¥(u) = 3w\
Define function f(\) = %, and let A = > uiA;. Note that A€ A1, Al
Then

¢(u) = ~ = f(N). ()




Let h(\) be the linear function fitting the data (A, /\%) and (A, ﬁ) We
know that

hA) = — 4 M Ay,

Because f is convex, we know that f(A) < h(A) holds for all A € [\, \,].

Thus
Zuzf <Zuz z Zuz z _h (6)

Combining (4), (5) and (6), we have

2T x)? . _
W = % 2 % 2 mln)\1<)\<)\n hgig (Slnce )\ S [Al,)\nD
= mlnA1<,\<,\n ﬁ

M ALAn .
= )\1)\71, . mln)\lg)\g)\n m
1

= M- TRy (since the minimum happens at d = %)

This completes the proof of the Kantorovich inequality.

Problem 3.13
Let ¢4(a) = aa®+ba+c. We get a, b and ¢ from the interpolation conditions
$q(0) = ¢(0) = ¢=¢(0),
9,(0) =¢'(0) = b=¢'(0),
dq(a0) = d(a0) = a=(d(ao) — $(0) — ¢'(0)an)/af.

This gives (3.57). The fact that ap does not satisfy the sufficient decrease
condition implies

0 < ¢(ap) —¢>(0) c1¢/(0)ao
( )aOv

where the second inequality holds because ¢; < 1 and ¢'(0) < 0. From here,
clearly, a > 0. Hence, ¢, is convex, with minimizer at

¢'(0)ag
2 [p(ap) — ¢(0) — ¢'(0)xo]

o] = —

19



Now, note that
0< (Cl — 1)¢/(0)040
= ¢(0) + 19’ (0)ap — ¢(0) — ¢'(0)ag
< p(ao) — ¢(0) — ¢'(0)a,

where the last inequality follows from the violation of sufficient decrease at
ag. Using these relations, we get

4 Trust-Region Methods

Problem 4.4

Since liminf ||ggx|| = 0, we have by definition of the liminf that v; — 0,
where the scalar nondecreasing sequence v; is defined by v; = infg>; ||gl|-
In fact, since {v;} is nonnegative and nondecreasing and v; — 0, we must
have v; = 0 for all 7, that is,

zlgz llgr|| = 0, for all s.

Hence, for any ¢ = 1,2,..., we can identify an index j; > ¢ such that
llgj. |l < 1/i, so that

Jim lg;[| = 0.
By eliminating repeated entries from {7j;}9°,, we obtain an (infinite) subse-
quence S of such that lim;ecs ||gi|| = 0. Moreover, since the iterates {z; }ics
are all confined to the bounded set B, we can choose a further subsequence
S such that

limz; = Teo,
iES

for some limit point zo,. By continuity of g, we have ||g(zx)|| = 0, so
9(Tx) = 0, so we are done.

Problem 4.5

Note first that the scalar function of 7 that we are trying to minimize is
1
o(r) = mi(rp}) = mi(=7Dxgi/9xll) = fo—7 Okl gkl +57° Algi B/ gkl

20



while the condition [|7p}|| < Ay and the definition p; = —Aggr/||gk| to-
gether imply that the restriction on the scalar 7 is that 7 € [—1,1].

In the trivial case g = 0, the function ¢ is a constant, so any value will
serve as the minimizer; the value 7 = 1 given by (4.12) will suffice.

Otherwise, if g,{Bkgk = 0, ¢ is a linear decreasing function of 7, so its
minimizer is achieved at the largest allowable value of 7, which is 7 =1, as
given in (4.12).

If g%Bkgk # 0, ¢ has a parabolic shape with critical point

_ Aded el
A2l Bigr/llgel?  Argl Brox

If ngBkgk < 0, this value of 7 is negative and is a mazimizer. Hence, the
minimizing value of 7 on the interval [—1, 1] is at one of the endpoints of
the interval. Clearly ¢(1) < ¢(—1), so the solution in this case is 7 = 1, as
in (4.12).

When g,:gBkgk > 0, the value of 7 above is positive, and is a minimizer
of ¢. If this value exceeds 1, then ¢ must be decreasing across the interval
[—1,1], so achieves its minimizer at 7 = 1, as in (4.12). Otherwise, (4.12)
correctly identifies the formula above as yielding the minimizer of ¢.

Problem 4.6

Because ||g||? = g7g, it is sufficient to show that

(9"9)(9"9) < (¢"Bg)(g" B 'g). (7)

We know from the positive definiteness of B that ¢” Bg > 0, ¢’ B~'g > 0,
and there exists nonsingular square matrix L such that B = LLT, and thus
B! = L7 TL7! Define u = L”g and v = L™'g, and we have

ulv=(¢g"L)(L"g) = g"9g.
The Cauchy-Schwarz inequality gives

(9" 9)(g"g) = (" v)* < (u"w)(v"v) = (¢"LLg)(¢" LT L™ "g) = (gTBg)Eg)TBlg)-
8

Therefore (7) is proved, indicating

llgll*
(9" Bg)(9* B~1g)

v = <1 (9)

21



The equality in (8) holds only when LTg and L~!g are parallel. That is,
when there exists constant o # 0 such that L7g = aL~'g. This clearly
implies that ag = LLTg = By, ég = L TL7'g = B~'g, and hence the
equality in (9) holds only when g, Bg and B~'g are parallel.

Problem 4.8
On one hand, ¢2(A) = & — ||p(1>\)H and (4.39) gives
d 1 d 1 d
@) = 222 = Z(IpV)|12 3/2 (V)12
2 () O /\(II M%) 5 (P72 < (e (%)
_ 1 34 (479 RS
= 3lpIT dA uf+n2_ ;;,X+A
where g; is the j-th column of ). This further implies
6200 _ _ Ip)ITEREE PR
L) af9? n  (afg?
N D . LA 3 U L

On the other hand, we have from Algorithm 4.3 that g = R~ "pand R~'R~T
(B + AI)~!. Hence (4.38) and the orthonormality of q1,qa, ..., g give

q] qj

2 _ T p-l1p-T B+ )~ T
ol = p"(RTRT)p = p (B + A = pZA+A

n

B q g e " q] g z”: 4 g
- PN I P25 Wy Wy [ A Wiy S
7j=1 7j=1

j=1
_ z”: (479 (11)
= A
Substitute (11) into (10), then we have that
&) __ |l ol - )
(A d* A
Therefore (4.43) and (12) give (in the [-th iteration of Algorithm 4.3)
2 _ ~A
A — O 4 1] ) l[pul = A0 4 <HPZH> <”le ) .
lal® A [l A

This is exactly (4.44).
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Problem 4.10

Since B is symmetric, there exist an orthogonal matrix ) and a diagonal
matrix A such that B = QAQT, where A = diag {\1,A\2,..., A} and \; <
Ao < ...\, are the eigenvalues of B. Now we consider two cases:

(a) If Ay > 0, then all the eigenvalues of B are positive and thus B is
positive definite. In this case B 4+ AI is positive definite for A = 0.

(b) If Ay < 0, we choose A = —A; + € > 0 where € > 0 is any fixed
real number. Since A; is the most negative eigenvalue of B, we know that
Ai+A>e>0holds forall i = 1,2,...,n. Note that B4+ = Q(A+€l)Q7,
and therefore 0 < A\j+e€ < Ag+e < ... < A\, +e€ are the eigenvalues of B+ Al.
Thus B + Al is positive definite for this choice of A.

5 Conjugate Gradient Methods

Problem 5.2

Suppose that pg,...,p; are conjugate. Let us express one of them, say p;,
as a linear combination of the others:

Di = 0opo + -+ + o1y (13)

for some coefficients o (k = 0,1,...,1). Note that the sum does not include
p;- Then from conjugacy, we have

0=pyAp; = oopgApo+ -+ o1pg Api
= UopgApo-
This implies that og = 0 since the vectors pg,...,p; are assumed to be

conjugate and A is positive definite. The same argument is used to show
that all the scaler coefficients ox(k = 0,1,...,1) in (13) are zero. Equation
(13) indicates that p; = 0, which contradicts the fact that p; is a nonzero

vector. The contradiction then shows that vectors pg,...,p; are linearly
independent.
O
Problem 5.3
Let
g(a) = o(xk + apk)
1
= 50421?%142% + oAy, — b) pr. + d(r).
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Matrix A is positive definite, so «y is the minimizer of g(«) if ¢'(ax) = 0.
Hence, we get

g (ar) = axp} Apy + (Azy — b) py, = 0,

or
g = — (Azy, — b)Tpy _ r} ok .
pi Api P Apy,

Problem 5.4
To see that h(o) = f(xg+ oopo + - - - + ok—1Pk—1) is a quadratic, note that
oopo + -+ + okp—1pk—1 = Po

where P is the n x k matrix whose columns are the n x 1 vectors p;, i.e.

P P
| |
and o is the k x 1 matrix
o=lo0 - or]”
Therefore
ho) = %(azo + Po)T A(zo + Po) + b7 (20 + Po)
= %ngxo +af APo + %UTPTAPO' +b'zg + (V' P)o
_ %ngxo + 00 + [PT A 20 + PTHo + %UT(PTAP)U
= C+blo+ %UTAJ
where

1 A .
C = —al' Azo + b  z0, b=PT'ATzy+P"» and A=PTAP
2 0

If the vectors pg - - - pr_1 are linearly independent, then P has full column

rank, which implies that R
A=praAp

is positive definite. This shows that h(c) is a strictly convex quadratic.
O
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Problem 5.5
We want to show
span {rg,r1} = span {rg, Aro} = span {pg,p1}. (14)
From the CG iteration (5.14) and py = —ry we know
r1 = Ax; — b= A(zo + appo) — b = (Azg — b) — agArg = 19 — apArg. (15)
This indicates r1 € span {rg, Ar¢} and furthermore
span {rg,r1} C span {rg, Arg} . (16)

Equation (15) also gives

1 1
Arg= —(ro —r1) = —r9g — —11.
Qo g Qo

This shows Arg € span {rg,r1} and furthermore
span {ro, 71} 2 span {rg, Aro} . (17)

We conclude from (16) and (17) that span {rg,r1} = span {rg, Aro}.
Similarly, from (5.14) and py = —rp, we have

p1=—r1+ Bipo = —Piro —r1 or r1 = pipo — pi1-

Then span {rg,m1} C span{po,p1}, and span{rg,r1} 2 span{pg,p1}. So
span {rg,r1} = span {pg,p1}. This completes the proof.

Problem 5.6
By the definition of r, we have that

Thp1 = Axpy — b= A(xy + appr) — b
= Apxp + apApr — b =1 + aiApg.

Therefore )
App = —(Thg1 — k). (18)
Qg
Then we have

1 1 1

T T T T

P Api = Djy (— (Th41 — k) = — PR Tht1 — — Pk Tk-
ay ay ay
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The expanding subspace minimization property of CG indicates that pgrkﬂ =

p;‘g_lrk =0, and we know pg = —ri + BpPr_1, SO
1 1 By 1
Pk Apk = ——(=rf + Bepi_1)rk = —rirk — —pi_ime = —7rf e (19)
o o o o

Equation (18) also gives
1

T _ T
T Apk = rk+1(ak (Tkt1 = Tk))
1
_ T T
= OTka—HTkJrl - 70% Tk+1Tk
1 1
T T
= OTka.;.ﬂk—i-l - 70% Tk+1(_Pk + ﬂkpk—l)
1 1 0
T T k. T
= —Thy1Tk+1 T —Tkp1Pk — — Tht1Pk—1
o k1Rt o k1 oy 1
1
T
= —T Tk4+1-
o k1Rt

This equation, together with (19) and (5.14d), gives that

By = rgHApk - érg+17‘k+1 o rl:cpﬂrk—&-l
+1 = = = .
pprk o%,j"g?"k rkTrk
Thus (5.24d) is equivalent to (5.14d). O

Problem 5.9

Minimize ®(&) = 22T(CTAC Y- (C7Ty)TE <«  solve (C-TAC V)i =

C~Th. Apply CG to the transformed problem:
fo=Azg—b=(CTACHCxy— CTo=C"T(Azg—b) = C Try.

Po = —To Ty . _7 T AT
— Do = -C (Myo) =-CC Cy() = —Cy().
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e ag— igro _ rgC'CTro g M'ro _ rdyo _ .
pLApy Y CTC-TAC 'Cyo  y§Ayo  p§Awo

L 70 Yo
T1 =29+ Gopyg = Cx1 = Cxg + (—=C)

g Ao
T
o Yo
== 21 =770 TO Yo = Zo + oPo
by Ayo
. . A Aa -T -T ToTyO —T g—1
71 =7y + GoApg=C "ri1=C""rg+ TiC AC™(=Cyp)
Y2 Ayo
T()Tyo
= ri=ro+ 5, —A(=y) = ro+ aodpo
Y20 Ayo

7¢,T,’2 7,,T —1 —TT, 7,,T Z‘ Z —l,r. 7,,T

1

p1 = —F1 4 Pipo = —Cy1 = —C~"ry + Bi(—Cyo)

= y1 =M 'ri + Biyo = p1 = —y1 + Fipo ( because p1 = Cpy).

By comparing the formulas above with Algorithm 5.3, we can see that
by applying CG to the problem with the new variables, then transforming
back into original variables, the derived algorithm is the same as Algorithm
5.3 for kK = 0. Clearly, the same argument can be used for any k; the key is
to notice the relationships:

T = Cxy,
pr = Cpy,
Ty = CiTT‘k

Problem 5.10

From the solution of Problem 5.9 it is seen that 7; = C~Tr; and T = C'_Trj.
Since the unpreconditioned CG algorithm is applied to the transformed
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problem, by the orthogonality of the residuals we know that fin‘j = 0 for
all ¢ # j. Therefore

0= f;frfj = T;“FC_I . C_Trj = TZTM_lrj.

Here the last equality holds because M~ = (CTC)~! = Cc~1C-T.

6 Quasi-Newton Methods

Problem 6.1

(a) A function f(z) is strongly convex if all eigenvalues of V2 f(z) are positive
and bounded away from zero. This implies that there exists ¢ > 0 such that

p'V2f(x)p > alpl|>  for any p. (20)
By Taylor’s theorem, if 211 = g + agpk, then

1
Vi(@rs1) = V(og) + /0 [V2f(xk + zompr)arpr]dz.

By (20) we have

Pty = owpp [V F(zri — V()]
1
— a%/ [PE V2 f () + zagpr)pr] dz
0
> o||pk||2a% > 0.

The result follows by noting that s = agpg.

O
1 1
I le, wh =—  weh - _—
(b) For example, when f(z) 1 e have g9(z) @117 Obviously
1 1
F0)=1,F(1) = 5,9(0) = —1,9(1) = —.

So

Ty = (F(1) = 7(0)) (9(1) ~ 9(0)) = —3 < 0

and (6.7) does not hold in this case.
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Problem 6.2

The second strong Wolfe condition is
T T
|V f(zr + arpe) pie| < c2 |V f (k)" pi|
which implies

V(e +owpr) o > —ca |V (@) pil

= V() p
since pg is a descent direction. Thus
Vi(@r+awpe) ok = V(@) e = (co = DV () pr
> 0

since we have assumed that co < 1. The result follows by multiplying both
sides by ay and noting s = agpr, yr = V f(xr + axpr) — Vf(zk).

]
7 Large-Scale Unconstrained Optimization

Problem 7.2

Since si # 0, the product

T
HkJrlSk = (I — kYK ) S

T
Yy Sk
T
_ Y Sk
= Sk — —7—Sk
Yi. Sk
=0

illustrates that H k+1 1is singular.
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Problem 7.3

We assume line searches are exact, so V f,? 1Pk = 0. Also, recall s = agpy.
Therefore,

Pi+1 = —HpaV frp

T T T
S S SkS
(0 o
Yi. Sk Y. Sk Yy, Sk
T T T
= — <<I — pl;yk > <I — y];ﬂpk> —I-Oékpl;pk ) V fr+1
Yi Pk Yi. Pk Yi. Pk

T
= - (I - D ) Vfii1

Yi. Pk
N
= Vi + —2 Ly,
Y. Dk
as given.
Problem 7.5

For simplicity, we consider (z3 —z4) as an element function despite the fact
that it is easily separable. The function can be written as

3

f@)=>_ ¢:i(Uix)

=1
where
¢i(u1, ug, us, ug) = uguge™ TUBTU,
p(v1,v2) = (v1v2)?,
d(wr,w2) = wy — wa,

and

o |

[an}
S o O
O =R = O
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Problem 7.6
We find

Bs = (i UZTB[Z]UZ> S
=1
= D Ul Busy
=1
= D Uly
i=1

=Y

so the secant equation is indeed satisfied.

8 Calculating Derivatives

Problem 8.1

Supposing that L. is the constant in the central difference formula, that is,

‘W [f(:v—I—eei) — fx — ee;)

< L.€
oz 2e ”_ s

and assuming as in the analysis of the forward difference formula that
jcomp(f(x + ee)) — f (& + ce))| < Lyu,
|comp(f(x — ee;)) — f(x —ee;))| < Lyu,

the total error in the central difference formula is bounded by

2ul
Lc€2 + Tef .

By differentiating with respect to €, we find that the minimizer is at

B qu 1/3
“~\a2L,)

so when the ratio Ly/L. is reasonable, the choice € = u'/* is a good one.
By substituting this value into the error expression above, we find that both
terms are multiples of u?/3, as claimed.

1/3
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Figure 3: Adjacency Graph for Problem 8.6

Problem 8.6

See the adjacency graph in Figure 3.
Four colors are required; the nodes corresponding to these colors are {1},

{2}, {3}, {4,5,6}.
Problem 8.7

We start with

1
V.CEl =10 ) V:EQ = 5 Vm’g =
0

O = O
= o O
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By applying the chain rule, we obtain

x2
Vzy =21Vares+ 23V = (21,
0
0
Vs = (cosxs)Vrs = 0 ,
COS T3
X2
Vag = " Vay = ™72 (21|,
0
To Sin xg
Vz7 =24Vas +25Vry = | xysinzs |,
T1X9 COST3
T2 To Sin x3
Vag = Vag + Vaor =% (x| + | xysinxg |,
0 T1T9 COS T3
1 g
VZEQ = —V:rg - 7Vl’3.

9 Derivative-Free Optimization
Problem 9.3
The interpolation conditions take the form
9= f) —fla)  I=1...q-1, (21)

where
¢ = (7 Aslsbhics, {%(55)2}>T I=1,....m—1,

and s' is defined by (9.13). The model (9.14) is uniquely determined if and
only if the system (21) has a unique solution, or equivalently, if and only if
the set {5' : 1 =1,...,q— 1} is linearly independent.

Problem 9.10

It suffices to show that for any v, we have max;—1 2 . n41 Ude > (1/4n)||v]|1-
Consider first the case of v > 0, that is, all components of v are nonnegative.
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We then have

1 1
o7 T
> > = .
; 1%1a><n . dj > v Tdpiq o€ V= nHle

Otherwise, let i be the index of the most negative component of v. We have

that
[l ==> v+ > v <nfuil+ Y v

Uj<0 UjZO ”UjZO

We consider two cases. In the first case, suppose that

|vi] > o ZUJ

vj>0

In this case, we have from the inequality above that
[0l < nfvil + (2n)]vil = (3n)]vil,

so that

maxd'v > dlv
deDy,

= (1-1/2n)vil + (1/2n) ) v,

J#1
> (1=1/2n)vi - (1/2n) D v
J74,0;<0
> (1—1/2n)|vi| — (1/2n)n|v;]
> (1/2—1/2n)vi]
> (1/4)|vil
> (1/12n)[v]l1,

which is sufficient to prove the desired result. We now consider the second

case, for which
|vi] < Z vj.
”UJ>0
We have here that

D SR DIV $E
v; >0

ijO UjZO
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so that

max d! v > dzﬂv
deDy

v; <0 v; >0
1 1
2 o | l|+2nzvj
v; >0
1 1
= g+ g D v
v;>0

[V
5| -
I\ M
S
_l_
—
]
<

Y
|

which again suffices.

10 Least-Squares Problems

Problem 10.1
Recall:

(i) “J has full column rank” is equivalent to “Jz =0 =z = 0";

(ii) “JTJ is nonsingular” is equivalent to “J7Jzr =0 = x = 07;

(iii) “JT.J is positive definite” is equivalent to “z”JTJz > 0(Vx)” and
“TJTJr=0=2=0".
(a) We want to show (i) < (ii).

e ()= (i) JTJr=0=2"JTJz=0= |Jz|i =0= Jz =0 =
(by (1)) z =0.

e (i) = (i). Jr=0=JTJz=0= (by (ii)) x = 0.
(b) We want to show (i) < (iii).

o (i) = (iii). z7J7Jx = ||Jz|%? > 0(Vx) is obvious. 2T JTJz = 0 =
|Jz]|3=0= Jz=0= (by (i)) z=0.
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o (iii) = (). Jr=0=2TJTJo = ||Jz||3 = 0= (by (i) z = 0.

Problem 10.3

(a) Let @ be a n x n orthogonal matrix and = be any given n-vector. Define
qi(i=1,2,--- ,n) to be the i-th column of Q. We know that

|2 = ifi=j
do={ Tt D 22

Then

1Qz|* = (Qz)"(Qx)
= (111 + 222 + -+ 20qn) (11 + T2G2 + -+ Tpgn)

= ZinquiTq]' (by (22))

i=1 j=1
n

= ) af ==l
i=1

(b) If IT = I, then J'J = (Q1R)"(Q1R) = R'R. We know that the
Cholesky decomposition is unique if the diagonal elements of the upper
triangular matrix are positive, so R = R.

Problem 10.4
(a) It is easy to see from (10.19) that

n
J = g aiuivz-T: E Uiuiv;[.
i=1

1:0; 70

Since the objective function f(x) defined by (10.13) is convex, it suffices to
show that Vf(z*) = 0, where z* is given by (10.22). Recall vl v; = 1 if
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i = j and 0 otherwise, uiTuj = 11if ¢ = 5 and 0 otherwise. Then

Vi@*) = J'(Jz* —y)

T _ T uly
= J Z UV} Z p v; + Z TV | — Y
0

_i:aﬁéO 1:0;7#0 v 0=
O
= JT D Sl yuvfv) —y
. ag;
| 1:037#0
= | > o] | | Y wfyui—y
1:0;7#0 1:0;7#0
= > oiluyuiu]uw) = > owiluly)
1:0;7#0 1:0;7#0
= Y ailulyvi— Y owiuly) =0.
1:0;7#0 1:0;,7#0

(b) If J is rank-deficient, we have

T
U:

= E Zyvi+ E TiVj.
g; 0

3:0;70 10 =

Then

2
*12 _ U’;Fy 2
= (Y)Y 2
i
0

1:0; 70 0=

which is minimized when 7; = 0 for all ¢ with ¢; = 0.
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Problem 10.5

For the Jacobian, we get the same Lipschitz constant:

IN

A

IN

[T (z1) = J(z2)]]

max [[(J(z1) = J(z2))ul

max
flul=1

(Vri(z1) — Vri(z2)) Ty,
(Vrp(z1) — Vrm (x2))
|

drn”axl max |(Vrj(z1) — Vrj(22) u

ul|=1J

mmax max[[Vr(@1) = Vrj(we)|llluf[leos(Vrs(z1) = Vrj(22), u)l
LH{L‘l—xQH.

For the gradient, we get L = L(L; + Lo), with L; = max,ep||r(x)||; and
Ly = maxzep Y052 [ Vrj(@)|:

IN

M=

IN

IN

IV f(x1) = V f(22)]
ZV?‘J (x1)rj(x1) ZVT’] (x2)rj(22)

Jj=1 j=1
> (Vri(@1) = Vrj(@a))ri(@1) + Y Vrj(wo)(rj(e) — rj(x2))
1 j=1

Vrj(w1) = Vrj(@)l| |rj(@)| + Y IVr(@2)l| |rj(a1) = rj(z2)]

j=1 j=1
m m

Lljwr — 2| Y |rj(@)| + Lz — w2 Y[ Vry(x2)|
=1 =1

Li|zy — |-
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Problem 10.6
If J=U1SVT, then (JTJ + \) = V(S? + AI)VT. From here,

p"M = —V(S*+AD)SUr
n
a; T
= u; )v
; o + )\( i
0-7: T
= = > i
1:0;7#0 % +A
Thus,
o 2
= 5 ()
1:0;7#0 % +A
and
T
(T
li LM _ %
ro? Z i vi
1:0;7#0
0
11 Nonlinear Equations
Problem 11.1
Note s”'s = ||s||3 is a scalar, so it sufficies to show that |[ss|| = ||s||3. By
definition,
lss™|l = max [|(ss)z]2.
[[zlla=1
Matrix multiplication is associative, so (ss” )z = s(s”x), and sz is a scalar.
Hence,
max |s(sTxz)||2 = max |sTz||s]2.
llzll2=1 l[e]l2=1
Last,

|57 2| = |lIsll2llz]l2 cos Os.a| = [Is|2] cos s a,

which is maximized when |cosf; ;| = 1. Therefore,

max |8T33| = ||s]|2,
llzll2=1

which yields the result.
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Problem 11.2

Starting at zg # 0, we have r'(xp) = qwg_l. Hence,

q
T 1
T =T — — g = <1—>:Uo-
qr q

A straghtforward induction yields

k
1
T = (1— ) o,
q

which certainly converges to 0 as k — oo. Moreover,

so the sequence converges Q-linearly to 0, with convergence ratio 1 — 1/q.

Problem 11.3

For this function, Newton’s method has the form:

B r(xz) —5 4 23 + 4x
Tkl = Tk r(z) kT TR 1 3224 4
Starting at o = 1, we find
5 .3
—x) + xp + 4z 4
o= —52:4+§a:2+4 =lmg=-1
0 0
5 .3
—x2 + x5 + 4x; 4
R T -Ew i Ak
1 1
r3 = —1,

as described.
A trivial root of r(z) is x = 0, i.e.,

r(z) = (—z — 0)(z* — 2% — 4).

The remaining roots can be found by noticing that f(x) = z* — 2% — 4 is

quadratic in y = 2. According to the quadratic equation, we have the roots

1+V17 14+ V17

y 2 2
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As a result,

r(:p):(m)(:}c 1\/ﬁ) (m 1+\/ﬁ> (z+ 1\/ﬁ> (:er L+ V17

Problem 11.4

The sum-of-squares merit function is in this case

@) = % (sin(52) — )2
Moreover, we find
f'(x) = (sin(bz) —z)(5cos(bz) —1),
f(x) = —25sin(5x) (sin(5x) — x) 4 (5cos(5z) — 1)2.

The merit function has local minima at the roots of r, which as previously
mentioned are found at approximately z € S = {—0.519148,0,0.519148}.
Furthermore, there may be local minima at points where the Jacobian is
singular, i.e., z such that J(z) = 5cos(5z) — 1 = 0. All together, there are
an infinite number of local minima described by

z* € SU{z | 5cos(bz) =1 A f'(z) > 0}.

Problem 11.5

First, if J7r = 0, then ¢()\) = 0 for all \.
Suppose J7r # 0. Let the singular value decomposition of J € R™*" be

J=USV
where U € R™*™ and V € R"*" are orthogonal. We find (let z = STUTr):
¢\ = I+ D)~ T |

I(VISTUTUSY + AVTV) =1y Tz
I(VT(STS + AI)V)~1V T2

= |[VI(STS + X))~ tvV Ty (sinceV ! = V7T)
= |[VT(STS + \I)~1z||

= ||(STS+ A~ (sinceVT is orthogonal)
= (D)~

41



where D() is a diagonal matrix having

o2+ X\, i=1,...,min(m,n)
D] = { A, i =min(m,n)+1,..., max(m,n).
Each entry of y(\) = (D()\)) !z is of the form
2
yi(A) =
[DM)];i

Therefore, |y;(A1)]| < |yi(A2)| for Ay > Ay > 0and i =1,...,n, which implies
(ﬁ()\l) < (;3(/\2) for Ay > Ay > 0.

Problem 11.8

Notice that
JITr=0=+TJJ"r = 0.

If v = JTr, then the above implies
T JJTr =oTv = ||u||2 =0

which must mean v = JXr = 0.

Problem 11.10
The homotopy map expands to

H(@ ) = A2 -1)+1-N)(z—a)
= Ax2—|—(1—)\)x—%(1+)\).

For a given A, the quadratic formula yields the following roots for the above:

A—1£/(1T=A2+2X1+))
2\
A—14+1+3)2
2) '

By choosing the positive root, we find that the zero path defined by

{,\ = 0 = z=1/2,
_ A=14+V143)2
A€ (0,1] = z=a—fES

connects (3,0) to (1,1), so continuation methods should work for this choice
of starting point.
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12 Theory of Constrained Optimization

Problem 12.4

First, we show that local solutions to problem 12.3 are also global solutions.
Take any local solution to problem 12.3, denoted by xg. This means that
there exists a neighborhood N(zg) such that f(z¢) < f(z) holds for any
x € N(x0) N . The following proof is based on contradiction.

Suppose xg is not a global solution, then we take a global solution & € €2,
which satisfies f(xo) > f(Z). Because (2 is a convex set, there exists a € [0, 1]
such that axzo + (1 — a)Z € N(z9) N Q. Then the convexity of f(z) gives

flazg + (1 —a)?) < af(ze) + (1 —a)f(T)
< af(zo) + (1 —a)f(zo)
= f(w())a
which contradicts the fact that g is the minimum point in N(z9) N Q. It
follows that xyp must be a global solution, and that any local solution to

problem 12.3 must also be a global solution.
Now, let us prove that the set of global solutions is convex. Let

S = {x | = is a global solution to problem 12.3},

and consider any x1,xy € S such that x; # x2 and = az; + (1 — a)xa,
€ (0,1). By the convexity of f(z), we have

flazi + (1 —a)xs) < af(z1) + (1 — a)f(x2)
=af(r1) + (1 - a)f(z1)
= f(z1).

Since = € €2, the above must hold as an equality, or else z1 would not be a
global solution. Therefore, z € S and S is a convex set.

Problem 12.5
Recall
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Minimizing f is equivalent to minimizing ¢t where |v;(z)| <t, i =1,...,m;
i.e., the problem can be reformulated as

min ¢
X

Similarly, for f(z) = max v;(x), i = 1,...,m, the minimization problem
can be reformulated as

min ¢
X

st.t—vi(zr)>0,i=1,...,m.

Problem 12.7

Given
(1 Ya@VE @Y g
d=— (1= VgaE) Ve
we find
C1\T CT s
Vel (z)d = -Vl (z) (I— W) Vf(z)
CT e Cc1\T CT xT T
= Ve @)V () + T Hléc)fgué( L
= 0.
Furthermore,
C1\T CT T
Vi) = <) (1= VT ) v )
T xT C1\T CT T X
V)i + @V Hlé C>l>(<xv”|21< )V /(@)
TI' C1\T 2
— s+ LIV

The Holder Inequality yields

T@IVer(@)]
T@PIIVer(@)]?,

V1 (2)Ver(a)] <
= (VT (2)Ver(2))? <

IVf
IVf
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and our assumption that (12.10) does not hold implies that the above is
satisfied as a strict inequality. Thus,

(VST (@)Ver(x))®
[Ver()]|?
IV (@) [[Ver ()]
Ve ()|

Vi (@)d= ~|Vf()*+

< —IVf@)]* +

= 0.

Problem 12.13

The constraints can be written as

ci(x) =2 —(z1 —1)% = (29 — 1) >0,
co(x) =2 — (21 — 1)? — (23 +1)% >0,
cs(z) =21 >0,

coi- 3] wmen= [ 7] wo- [

All constraints are active at z* = (0,0). The number of active constraints
is three, but the dimension of the problem is only two, so {V¢; | i € A(z*)}
is not a linearly independent set and LICQ does not hold. However, for
w = (1,0), Veg(z*)Tw > 0 for all i € A(z*), so MFCQ does hold.

Problem 12.14

The optimization problem can be formulated as
min f(z) = |la|
st.c(z)=alz+a>0.

The Lagrangian function is

L)) = f(@) - Ae(a)

= HxH2 — )\(aT:U + )
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and its derivatives are

VoL(z,A\) = 22— Aa
VazL(z,\) = 21.

Notice that the second order sufficient condition Vg, L(x,\) = 21 > 0 is
satisfied at all points.
The KKT conditions V,L(z*, A*) = 0, \*¢(z*) = 0, A* > 0 imply

)\*
¥ ="—a

2

and o o
A*lal]
2

There are two cases. First, if a > 0, then the latter condition implies
A* =0, so the solution is (z*, A\*) = (0,0). Second, if o < 0, then

o 2
(", \") = — ( a, >
lall>" [lal?

N=0 or alz*+a= +a=0.

Problem 12.16

Eliminating the z9 variable yields

1’2::]:\/1—56%

There are two cases:

Case 1: Let 22 = \/1 — z2. The optimization problem becomes

min f(z1) =21 +4/1 — 22
1

The first order condition is
Vi=l-—2L_—9

\/1—.56%

which is satisfied by x; = +1/4/2. Plugging each into f and choosing
the value for x; that yields a smaller objective value, we find the
solution to be (z1,z2) = (—1/v2,1/v/2).
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Case 2: Let 29 = —/1 — z{. The optimization problem becomes

min f(z1) =21 — /1 — 22
1

The first order condition is

Vi=1+——1_ =0,
1—33%

which is satisfied by x; = +1/4/2. Plugging each into f and choosing
the value for z; that yields a smaller objective value, we find the
solution to be (z1,22) = (—1/v2,—1/v/2).

Each choice of sign leads to a distinct solution. However, only case 2 yields
the optimal solution

()

Problem 12.18
The problem is

Hxliyn (x—1)2+ (y —2)?
sjt. (x—1)2 -5y =
The Lagrangian is
L,y ) = (@ —1)2+ (y — 22 = Mz — 1) — 5y)
= (1=X)(z - 1)+ (y—2)* + 5y,

which implies

%L(w,y, A) = 201 =XN)(z—-1)

0
a—yL(x, y,A\) = 2(y—2)+5A\

The KKT conditions are
20 =Xz =1)= 0
2(y*—2)+5X" =0
(z* —1)> =5y = 0
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Solving for z*, y*, and A*, we find z* = 1, y* = 0, and \* = % as the only

real solution. At (x*,y*) = (1,0), we have

2(r —1 0 0
el e A ]
(z*,y*)
so LICQ is satisfied.

Ve(@, y)| (e ) = [ 5
Now we show that (z*,y*) = (1,0) is the optimal solution, with f* = 4.
We find

w e Fy(\) & w= (w1, ws) satisfies [Ve(z*, y*)]  w=0
o [0 -5 [wl] —0
wa

= 'UJQZO,

then for all w = (wy,0) where wy # 0,
_4
wTVZL(x*,y*,X‘)w — [wl 0} |:2(1O 5) (2):| |:u())1:|
2 4
= W > 0 (for wy # 0).

Thus from the second-order sufficient condition, we find (1, 0) is the optimal
solution.

Finally, we substitute (z — 1)? = 5y into the objective function and get
the following unconstrained optimization problem:

min 5y +(y —2)* = y* +y+4.

Notice that y? +y+4 = (y + %)2 + 1745 > %, so § = —1/2 yields an objective
value of 15/4 < 4. Therefore, optimal solutions to this problem cannot yield
solutions to the original problem.

Problem 12.21
We write the problem in the form:
min — T1X9

Z1,22

s.t.l—x%—x%ZO.
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The Lagrangian function is
L(z1,29,\) = —z129 — M1 — 27 — 3).

The KKT conditions are

—T — )\(—2$1)
—T1 — )\(—2l’2)
A

\Y,
o o o o

A1 = 2t — a5)

We solve this system to get three KK'T points:

(1,39, \) € {(0,0,0), (\f *f ;) , <*f*f;>}

Checking the second order condition at each KKT point, we find

e e{ (7F)-(-5-7))
2 272 |’ 27 2

are the optimal points.

13 Linear Programming: The Simplex Method

Problem 13.1

We first add slack variables z to the constraint Asx + Boy < by and change
it into

Aox + Boy + 2z =by, z2>0.
Then we introduce surplus variables s; and slack variables s9 into the two-
sided bound constraint | < y < u:

y_81:l7 y"‘SQZU; 81207 8220*

Splitting = and y into their nonnegative and nonpositive parts, we have

r=z2" -2, 27 =max(z,0) >0, 2~ =max(—x,0) >0,
+ —

(
y=y"—y , y"=max(y,0) >0, y =max(—y,0)>0.
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Therefore the objective function and the constraints can be restated as:
maxclz +d'y < min—c'(zT —2z7) —d'(yt —y)
Aix=b & Al(l’—"_ — .75_) =b
Asw + Boy <by & As(xt —27 )+ Bo(yT —y7) +2=0bo
I<y<u & yt—y —s1=Ly" —y +s2=u,
with all the variables (z*,2~,y",y7, 2, s1, s2) nonnegative. Hence the stan-
dard form of the given linear program is:

M T - $+ B
c T
—d y+
Minimize, + ;- v+ y= 2 51,0 d Y~
0 Z
0 S1
L O 1 | s2
-t T
- xi
A —-A1 O 0 0 0 O +
' Ay —Ay By —B, I 0 0| |Y
subject to 0 0 I —-I 0 —-I 0 y B
o o0 I —-I 0 0 I :
L S1
L S2 |

$+,x_,y+,y_, Z,81,52 > 0.

Problem 13.5

It is sufficient to show that the two linear programs have identical KKT
systems. For the first linear program, let @ be the vector of Lagrangian
multipliers associated with Az > b and s be the vector of multipliers asso-
ciated with > 0. The Lagrangian function is then

Li(z,m,s) =cle —nl (Az — b) — sTx.

The KKT system of this problem is given by

ATr+s = ¢
Az > b

z > 0

T > 0

s > 0

7l (Az —b) = 0
sTay = 0.
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For the second linear program, we know that max b’ 7 < min —b” . Simi-
larly, let 2 be the vector of Lagrangian multipliers associated with A7 < ¢
and y be the vector of multipliers associated with = > 0. By introducing
the Lagrangian function

Lo(m,z,y) = bl — xT(c — AT’]T) — yT7r,

we have the KKT system of this linear program:

Arx—b = vy

ATr < ¢

™ > 0

x > 0

y > 0

2T (c—ATn) = 0
yI'r = 0.

Defining s = ¢ — AT and noting that y = Az — b, we can easily verify that
the two KKT systems are identical, which is the desired argument.

Problem 13.6

Assume that there does exist a basic feasible point & for linear program
(13.1), where m < n and the rows of A are linearly dependent. Also as-
sume without loss of generality that B(Z) = {1,2,...,m}. The matrix
B =[Ai];_y 5, is nonsingular, where A; is the i-th column of A.

On the other hand, since m < n and the rows of A are linearly dependent,
there must exist 1 < k& < m such that the k-th row of A can be expressed as a
linear combination of other rows of A. Hence, with the same coefficients, the
k-th row of B can also expressed as a linear combination of other rows of B.
This implies that B is singular, which obviously contradicts the argument
that B is nonsingular. Then our assumption that there is a basic feasible
point for (13.1) must be incorrect. This completes the proof.

Problem 13.10

By equating the last row of L1U; to the last row of P1L*1B+P1T, we have
the following linear system of 4 equations and 4 unknowns:

lsou33 = ug3
lsougs  +  l53u44 = uxy
lsougs + lssugs +  ls54uss = ugs
lsows + Ilsswys + lsqws + wo = ws.
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We can either successively retrieve the values of l52, l53, [54 and wy from

lso = wag/usz

ls3 = (uga — lsousa)/uas

lsa = (u2s — Isouss — ls3uas)/uss
Wy = wz — lspws — I53wyq — l54ws,

or calculate these values from the unknown quantities using

lsa = wuo3/uss
lss = (u24uss — u23uss)/(uszuaq)
lsa = (u25u33U4q — U23USHULL — U24U33U45 + U23U34U45) [ (U33U44US5)
. u23 U24U33 — U3U34
w2 = W2 —W3— — W4
us33 U33U44
U2sU33ULL — U23UZ5ULL — U24UIZUA5 + UR3U3AULS
—ws _

U33U44U55
14 Linear Programming: Interior-Point Methods

Problem 14.1
The primal problem is

min xq
1,22

st.x14+x20=1
(1,22) >0,
so the KKT conditions are

T1+ 20— 1
)\+81 -1
F(z, A\ s) = A+ s9 =0,
T1S1
T252

with (1,22, $1,$2) > 0. The solution to the KKT conditions is
(xla x2, 81,82, )\) = (07 17 17 07 0)7
but F'(x, A, s) also has the spurious solution

(.I'l,.f(}Q, 51, 52, )‘) - (17 07 07 _17 1)
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Problem 14.2
(i) For any (z,\,s) € Na(61), we have

Az =b (23a)
A"\ +s=c (23b)
x>0 (23c¢)
5>0 (23d)
| X Se — uell2 < 01p. (23e)
Given 0 < 6, < 02 < 1, equation (23e) implies
| X Se — pellz < Orp < Oap. (24)

From equations (23a)-(23d),(24), we have (z,),s) € Na(f2). Thus
NQ(Ql) C Ng(eg) when 0 < 91 < 92 < 1.

For any (z,\,s) € N_oo(71), we have

Az =0 (25a)
AT +s=c¢ (25b)
x>0 (25¢)
5> 0 (25d)
TiS; > i, i=1,2,...,n. (25€)
Given 0 < 79 < < 1, equation (25d) implies
TiS; > Y1 > Yol (26)

We have from equations (25a)—(25d),(26) that (z,\,s) € N_s(72).
This shows that N_o(71) C N_oo(72) when 0 < 75 <1 < 1.

(ii) For any (z, A, s) € Na(6), we have

Az =10 (27a)

AT h+s=¢ (27Db)
x>0 (27¢)

s>0 (27d)

|XSe - pells < 0. (27e)
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Equation (27e) implies

n

Z(misi — ) < 0*”. (28)

i=1
Suppose that there exists some k € 1,2, ..., n satisfying
TESkp < ypu where v <1—46. (29)

We have

zpsk < yp < (1= 0)p
= xpsp — pu < —0u <0
— (zpsp — p)? > 02
Obviously, this contradicts equation (28), so we must have zxsg > yu
for all k = 1,2,...,n. This conclusion, together with equations (27a)—

(27d), gives (z,A,s) € N_oo(7y). Therefore No(0) C N_oo(7y) when
v<1-6.

Problem 14.3
For (Z, A, 5) € N_wo(7) the following conditions hold:
(Z,\,8) € F°, (30)
T8 > yu, i=1,...,n. (31)

Therefore, for an arbitrary point (z,\,s) € F° we have (z,\,s) € N_oo(7)
if and only if condition (31) holds. Notice that

X;S; nr;s;
>y &

Tis; 2 Y = >

zTs

Therefore, the range of v such that (z, \, s) € N_(7) is equal to the set

. xS
I = : < min .
{7 7= 1<i<n xls }
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Problem 14.4

First, notice that if || X Se — pe|l2 > 6 holds for § = 1, then it must hold
for every 6 € [0,1). For n = 2,

| X Se —pell2 >p < (x151 — (z959 — p)? > p?
2 2 2
<£U181 - !E282) <33282 - $151) <SE1S1 + 1‘282>
=1 > || —
2
54 2(33181 — x282 (ZL‘181 + $282)

= \/5(95151 — T9S9) > X181 + T2S2

181 V241
>

282 V2 -1

which holds, for example, when

(g e ()

~ 5.8284,

Problem 14.5
For (x, )\, s) € N_oo(1) the following conditions hold:

(z,\,s) € FY (32)
xS >, i=1,...,m. (33)
Assume that for some ¢ = 1,...,n we have x;s; > p. Then,
zT's
wmisicnp & ——>p e op>p,
i=1 "
which is a contradiction. Therefore, x;s; = p for i = 1,...,n. Along with

condition (32), this coincides with the central path C.
For (z, ), s) € N3(0) the following conditions hold:

(z,\,s) € FO (34)

n

D (wisi — p)* <0. (35)

=1
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If x;8; # p for some ¢ = 1,...,n, then

n

Z(xisi - /’L)Z > 07

i=1
which contradicts condition (35). Therefore, z;s; = p for i = 1,...,n which,
along with condition (34), coincides with C.
Problem 14.7
Assuming

lim p= lim 27s/n#0,

x;8;—0 x;8;—0

i.e., xpsE > 0 for some k # i, we also have

lim z7s#0 and lim logals # —oo.

x;8;—0 x;s;—0

Consequently,

n
:C}slin—1>0 ¢, = xil;inl)o (plogx S Zlogmzs,>

i=1
= p lim logasz— lim logxisy —---— lim logx,s,
x;8;—0 x;8;,—0 x;8;,—0
= c¢— lim loguz;s;
z;8;—0
= OO,

as desired, where c is a finite constant.

Problem 14.8
First, assume the coefficient matrix
0 AT 1
M=]A 0 0
0

S X

is nonsingular. Let
My=1[0 AT I], My=[A 0 0], Ms=[S 0 X],

then the nonsingularity of M implies that the rows of My are linearly inde-
pendent. Thus, A has full row rank.
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Second, assume A has full row rank. If M is singular, then certain rows
of M can be expressed as a linear combination of its other rows. We denote
one of these such rows as row m. Since I, S, X are all diagonal matrices
with positive diagonal elements, we observe that m is neither a row of M;
nor a row of M3. Thus m must be a row of My. Due to the structure of
I, S, and X, m must be expressed as a linear combination of rows of My
itself. However, this contradicts our assumption that A has full row rank,
so M must be nonsingular.

Problem 14.9
According to the assumptions, the following equalities hold
AAz = 0 (36)
ATAN+ As = 0. (37)

Multiplying equation (36) on the left by AAT and equation (37) on the left
by AzT yields

ANTAAz = 0 (38)
AzTATAN+ AzTAs = 0. (39)
Subtracting equation (38) from (39) yields
AzTAs =0,

as desired.

Problem 14.12
That AD?A” is symmetric follows easily from the fact that
(AD?ATY" = (AT (D*)" (4)T = AD2AT
since D? is a diagonal matrix.
Assume that A has full row rank, i.e.,
ATy=0 = y=0.
Let x #£ 0 be any vector in R™ and notice:
tTAD?ATy = 2TADDATz
= (DATz)" (DA"z)
= vl

= lli3,
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where v = DATz is a vector in R™. Due to the assumption that A has full
row rank it follows that ATz # 0, which implies v # 0 (since D is diagonal
with all positive diagonal elements). Therefore,

eTAD? ATz = ||v||2 > 0,

so the coefficient matrix AD?A7” is positive definite whenever A has full row
rank.
Now, assume that AD?A7 is positive definite, i.e.,

2T AD?*ATz >0

for all nonzero z € R™. If some row of A could be expressed as a linear
combination of other rows in A, then ATy = 0 for some nonzero y € R™.
However, this would imply

yTAD?* ATy = (yTADQ) (ATy) =0,

which contradicts the assumption that AD?AT is positive definite. There-
fore, A must have full row rank.

Finally, consider replacing D by a diagonal matrix in which exactly m of
the diagonal elements are positive and the remainder are zero. Without loss
of generality, assume that the first m diagonal elements of m are positive.
A real symmetric matrix M is positive definite if and only if there exists a
real nonsingular matrix Z such that

M=2zz"T. (40)
Notice that
C = AD?A” = (AD)(AD)" = (BD') (BD")",

where B is the submatrix corresponding to the first m columns of A and D’
is the m x m diagonal submatrix of D with all positive diagonal elements.
Therefore, according to (40), the desired results can be extended in this case
if and only if BD’ is nonsingular, which is guaranteed if the resulting matrix
B has linearly independent columns.
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Problem 14.13

A Taylor series approximation to H near the point (z, A, s) is of the form:

(2(7), A7), 5(7)) = ((0),A(0),5(0))
+ 7 (#(0),1(0),5(0))
+ %TQ (7(0), 3"(0), 8"(0)) +++ .
where (500)(0),XU)(O),g(J‘)(O)) is the jth derivative of (@(T)A(T),gm)

with respect to 7, evaluated at 7 = 0. These derivatives can be deter-
mined by implicitly differentiating both sides of the equality given as the

definition of H. First, notice that (i’(T), N (1), §’(7')) solves

0 AT 1[0 e
A0 0 N = | - |- (41)
Sty 0 X(r)] [§() —XSe

After setting 7 = 0 and noticing that X (0) = X and S(0) = S, the linear
system in (41) reduces to

0 AT 17 [Z'(0) —Te
A 0 o |NO|l = | -n |, (42)
s o x| |#0) —XSe

which is exactly the system in (14.8). Therefore,

(@’(0), N (0), §’(0)) - (Azaﬁ, Axaft Asaff) . (43)

Differentiating (41) with respect to 7 yields

0o AT I (1) 0
A0 0 || M| = 0 : (44)
S(t) 0 X(n)] [§(7) —2X'(1)5"(1)e

If we let (AzCOTT ANCOTT A SCOIT) he the solution to the corrector step, i.e.,
when the right-hand-side of (14.8) is replaced by (0,0, —AX aﬁASaﬁe),

then after setting 7 = 0 and noting (43) we can see that

(A$C0rr, A)\COIT’ ASCOIT) . (45)

N | —

(&0, 3(0).5"(0)) =
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Finally, differentiating (44) with respect to 7 yields

0 AT T 7 [&(n) 0
A0 0 | |\n)| = v (6)
S(ry 0 X(r)] () -3 (X"(n)§'(r) + §"(1)X'(7)) e

Setting 7 = 0 and noting (43) and (45), we find

0o AT 17 [2"(0) 0
A 0 0o [N = 0 A7)
S 0 x| [&0) 3 (axcoragaff . ageorr xaff) o

In total, a Taylor series approximation to H is given by

(#1)AM),5() = (@A)
7 (A0t anafl Agof)
+7_2 (AxCOI'I' AACOIT ASCOI'I')

3
T N7 N7, N7,
o (870, 47(0),5(0) ).
where (@"'(0), X'(0), .§"'(0)) solves (47).

Problem 14.14

By introducing Lagrange multipliers for the equality constraints and the
nonnegativity constraints, the Lagrangian function for this problem is given
by

L(z,y, N\, s) =cla+dly — N (Ajx + Ayy — b) — sT .

Applying Theorem 12.1, the first-order necessary conditions state that for
(z*,y*) to be optimal there must exist vectors A and s such that

ATA+5s = ¢ (48)
ATN = 4, (49)

A1z + Ay = b, (50)
xis; = 0, i=1,...,n, (51)

(x,s) > 0 (52)
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Equivalently, these conditions can be expressed as

AT +s—¢
ATN —d
F(x7y7)\7 S) - All‘ + A2y _ b - 07 (53)
XSe
(x,s) > 0. (54)

Similar to the standard linear programming case, the central path is de-
scribed by the system including (48)-(52) where (51) is replaced by

TiS; = T, ’i:l,...,n.

The Newton step equations for 7 = ou are

0 0 A{ I Az —7re
T _
0 0 4 0] Ayl _ rq (55)
Al A2 0 0 AN —Tp
S 0 0 X| |[As —XSe+ope
where
ry = A1z + Aoy = b, rC:A{)\—I—S—c, and rd:Agx\—d.
By eliminating As from (55), the augmented system is given by
0 0 Al [Az —rq
A A 0| |Ay|l = —7p ; (56)
-D72 0 AT] |AX —re+s—ouX le
As = —s+opXte— D 2Az, (57)
where D = §—1/2Xx1/2,
We can eliminate Az from (56) by noting
~D2Az+ ATAN = —r.+s—ouXle
= Az = —D?(re+s—opX te— ATAN),
which yields the system
0 AT Ayl -7y (58)
Ay ADPAT| AN T |[=ry+ AiD? (—re+ s —opXle)
Az = —D*(—r.+s—ouX 'e— AlTA)\) (59)
As = —s+ouX te—D2Ax. (60)

Unfortunately, there is no way to reduce this system any further in general.
That is, there is no way to create a system similar to the normal-equations
in (14.44).
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15 Fundamentals of Algorithms for Nonlinear Con-
strained Optimization
Problem 15.3
(a) The formulation is
min x1 + x9
s.t. x% + x% =2

0 S:Elfgl
0 S $2j§ 1.

This problem has only one feasible point, namely x1 = o = 1. Thus
it has a solution at z* = x5 = 1, and the optimal objective is 2.

(b) The formulation is

min 1 + 22 (61a)
st a?+a3<1 (61b)
T —+ To = 3 (610)

Substituting equation (61c) into (61b), we get
234+ (3 —21)* <1 which implies % — 32, +4 <0.

This inequality has no solution; thus the feasible region of the original
problem is empty. This shows that the problem has no solution.

(c) The formulation is

min T1T2

st. x4+ x9=2

Since the constraint of this problem is linear, we eliminate xo from the
objective and get an unconstrained problem, namely

min z,(2 —z1) = —(x; — 1) + L.
Obviously, when |z; — 1| — +o0, we see that —(z; — 1) +1 — —oo0.

This shows that the original problem is unbounded below, hence it has
no solution.
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Problem 15.4

The optimization problem is

min z? + y2
I,y

st (x—1)% = ¢>

If we eliminate z by writing it in terms of y, i.e. © = ¢/y2 + 1, then the
above becomes the unconstrained problem

min f(y) = (y*? +1)* + 2

Notice f > 0, so the optimal solution to the unconstrained problem is y* = 0,
which corresponds to the optimal solution (z*,y*) = (1,0) to the original
problem.

Problem 15.5

We denote the i*® column of B~! by y;, (i =1,2,...,m), and the j*! column
of =B7!N by 2, (j = 1,2,...n —m). The existence of B~! shows that

Y1, Y2, .., Ym are linearly independent. Let us consider
[Y Z] — B~' -B7'N _ | Y2 - Ym AL 22 .. Znem
0 I 0 0 ... 0 e e ... en_ml|’

In order to see the linear dependence of [Y Z], we consider

k1 [yl] t ko [yﬂ Ttk [ym] tt [ﬂ Tty [ﬂ Tt tnm [z”‘m} = 0.
€1 €2 e

0 0 0 n—m
(62)
The last (n — m) equations of (62) are in fact
tier +t2e2 + -+ tp—men—m =0,
where e; = [00 -+~ 0100 -+ 0]". Thus t; = to = --- = t,,_,, = 0. This
shows that the first m equations of (62) are
ki + kaya + -+ - + kmym = 0.
It follows immediately that k1 = ks =--- =k, =t =to =+ =t_m =0,

which indicates that the collection of columns of [Y Z] form a linearly
independent basis of R™.
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Problem 15.6

Recall ATII = YR. Since II is a permutation matrix, we know II7 = 7

Thus A = IRTYT. This gives
AAT =ORTYTYRIIT.
The matrix [Y Z] is orthogonal, so Y7Y = I. Then (63) gives
AAT = TIRT RTIT
(AAT™t = IRT'R~TTIT
AT(AAT) = (YRODOR'RTOT
AT(AATY = YRTOT
AT(AATY b = YR TTIT).

Problem 15.7

(a) We denote the i*" column of matrix

; | | |
|:(B1N)T:| = y’1 y‘z s Yn by ;.
]

Then
lyill* = 1+ [|(B7'N)i||* > 1.

-1

(63)

Thus Y is no longer of norm 1. The same argument holds for the

matrix .
~B7IN
z= |77
Furthermore,
_ p-1
Y'Z = [I B7'N] [ BI N] =-B'N+B'N =0,
_ p-1
AZ = [B N] [ BI N] =-BB'N+N =0.

These show that the columns of Y and Z form an independent set and

Y, Z are valid basis matrices.
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(b) We have from A = [B N] that

T
AAT =B N] {fﬁ] =BBT + NNT
Therefore,
1 —1ANT Tp-T
AY = [B N] {(BlN)T} =B+ N(B'N)T=B+NN'B

= (BBT + NNTYBT = (AAT)BT.
And then,
(AY)™! = BT(AAT)™!

— Y(AY) ' =y BT(44T)!
— Y(AY) 1 AAT) = Y BT (AAT)"1(AAT) = Y BT

- [ (BII N)T] BT = [NTB-TBT]| = [ﬁﬂ = AT,

This implies Y (AY) ™! = AT(AAT)~1. Thus Y/(AY) "o = AT(AAT) b,
which is the minimum norm solution of Az = b.

Problem 15.8

The new problem is:

. . 9 1 4 1
min sin(r; +x2) + 23+ - | x4 + 25 + =6

3 2
s.t. 8xr1 —6x0+ x3+ 924 + 425 =6
3x1 + 229 — x4+ 6x5 +4xg = —4
311 + 2x3 > 1.

If we eliminate variables with (15.11):

T
3 8 —6 9 4\ | 6
=—\ls 1 _1 3wt _4)
L6 i 2 12/ g
T3



the objective function will turn out to be (15.12). We substitute (15.11)
into the inequality constraint:

1 < 3z +2(—8x1 + 6xg — 94 — 425 + 6)
= —13x1+ 1229 — 1814 — 8x5 + 12

— —13z1 + 1229 — 1824 — 8x5 > —11,

which is exactly (15.23). Thus the problem turns out to be minimizing
function (15.12) subject to (15.23).
16 Quadratic Programming

Problem 16.1

(b) The optimization problem can be written as

1
min —2' Gz + d* x
z 2

s.t. e(x) >0,
where
Tr1 — T2
G = -8 =2 , d= -2 , and c(z) = |4—x1 —x2
-2 -2 -3
3—IE1
Defining
1 -1
A=Vce(z)=|-1 -1{,
-1 0

we have the Lagrangian
L(z, )) = %xTGac +dTe — Ae(a)
and its corresponding derivatives in terms of the x variables
VoL(z,A) =G +d— A"\ and V. L(z,\) = G.

Consider z = (a,a) € R2. Tt is easily seen that such an x is feasible for a < 2
and that

q(z) = —7a* —5a — —oc0 as a — —oo.
Therefore, the problem is unbounded. Moreover, V,.L = G < 0, so no

solution satisfies the second order necessary conditions are there are no local
minimizers.
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Problem 16.2

The problem is:

min i(x —20)T (z — x0)

T

s.t. Az = b.
The KKT conditions are:

Multiplying (64) on the left by A yields

Az* — Azg — AATX = 0.

Substituting (65) into (66), we find
b— Azy = AAT ),

which implies

A = (AAT) N (b — Amy).

Finally, substituting (67) into (64) yields

z* = xo 4+ AT(AAT) Y (b — Axy).

Consider the case where A € R1*". Equation (68) gives

v — 20 = AT(AAT) " L(b — Azg) = —

so the optimal objective value is given by

fr= %(96* — m0)" (2% — o)

2 \ 11413
11

REE

AT (b — Azy),

_ 1 ( ! )2 (b — azo)T AAT (b — Axo)

= (I14113) (b — Azo)" (b — Auo)

214

1 1

S (b— Amp)>.
2 || All3

and the shortest distance from zq to the solution set of Ax = b is

1 |b—A.’L‘0|
V2fr = b— Axg)? = .
\/ A T
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Problem 16.6

First, we will show that the KKT conditions for problem (16.3) are satisfied
by the point satisfying (16.4). The Lagrangian function for problem (16.3)
is

1
L(z,\) = §:cTGx +d"z — X' (Az — D),
so the KKT conditions are

Gr+d—ATA= 0
Az = b.

The point (z*, \*) satisfies the KKT conditions if and only if

G —AT| [z*]  [-d

A 0 NP b ]
which is exactly the system given by (16.4).

Now assume that the reduced Hessian Z7GZ is positive definite. The

second order conditions for (16.3) are satisfied if w! V. L(z*, \*)w = wl Gw >
0 for all w € C(x*,\*),w # 0. By definition, w € C(z*, \*) if w = Zu for

any real u, so
wlGw =u'ZTGZu > 0

and the second order conditions are satisfied.

Problem 16.7
Let x = z* + aZu,a # 0. We find
q(z) = q(z" + aZu)

= %(x* + aZu) ' G(z* + aZu) + d¥ (z* + aZu)

= %x*TG:Jc* + az* T GZu + %oﬁuTZTGZu +d"z* + ad’ Zu

= q(z*) + %aQuTATGZu +a(@TGZu+ d' Zu).
A point (z*, \*) satisfying the KKT conditions yields

0=Gz* +d— AT\

Taking the transpose and multiplying on the right by Zu, we find

0=a2"TGZu+d" Zu - NTAZu = 2*TGZu + d* Zu,
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so in fact )
q(z) = q(z*) + §a2uTATGZu.

If there exists a u such that " ZTGZu < 0, then q(z) < g(z*). Hence
(x*, \*) is a stationary point.
Problem 16.15

Suppose that there is a vector pair (z*, \*) that satisfies the KKT conditions.
Let u be some vector such that u” ZTGZu < 0, and set p = Zu. Then for
any a # 0, we have

A(x™ + ap) = b,

so that x* + ap is feasible, while
1
g(2" +ap) = ¢(2") +ap’ (Gz" + ) + ;a’p’ Gp
1
= q(z") + 5a’p" Gp
< q(@"),

where we have used the KKT condition Gz* + ¢ = AT\* and the fact that
pT ATX* = wTZTATX* = 0. Therefore, from any z* satisfying the KKT
conditions, we can find a feasible direction p along which ¢ does not increase.
In fact, we can always find a direction of strict decrease when ZTGZ has
negative eigenvalues.

Problem 16.21

The KKT conditions of the quadratic program are

Gr+d—ATXx— AT = o,

Axr —b> 0,
Ax —b= 0,

[Az —b);\i= 0,i=1,...,n
A> 0.
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Introducing slack variables y yields

Gr+d—ATA—- AT = 0,

Az —y—b= 0,

Ar—b= 0,
yNi=0,1=1,...,n

(y,A) = 0,

which can be expressed as

Gr+d—ATX—- ATy
Az —y—0

F($ay7)\7ﬂ>: Ax_b =0.
YAe
The analog of (16.58) is
G —AT —AT 0 Ax -7y
A 0 0 —I| [AX] _ -7
A 0 0 0| [Aun| 75
0 0 Y A Ay —AYe+ope

where

ra=Gx+d— AT\, r,=Ax —y—b, and ry = Az —b.

17 Penalty and Augmented Lagrangian Methods

Problem 17.1

The following equality constrained problem

min — 2*
x

st.x=0

has a local solution at z* = 0. The corresponding quadratic penalty function
is

1
Qi) = —a' + Spa?,
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which is unbounded for any value of pu.
The inequality constrained problem
min 2°
x
st.x>0

has a local solution at * = 0. The corresponding quadratic penalty function
is

Qusp) = 2+ Lu(la]™)?

2

1
= 2’ + iﬂ(max(—%o))Q
- a3 ifx>0
T P+ ipe? ifz <o,

which is unbounded for any value of u.

Problem 17.5

The penalty function and its gradient are

Qi) = 50 + 23+ s =17 and ¥QUuz) = [# 74,
2 229

respectively. For p = 1, the stationary point is (—1/9,0) and the contours
are shown in figure 4.

Problem 17.9

For Example 17.1, we know that z* = (—1,—1) and \* = —%. The goal
is to show that ¢q(z; ) does not have a local minimizer at (—1, —1) unless
p> X =

We have from the definition of the directional derivative that for any
p= (p17p2)7

D(¢1(z*;p),p) = V(@) p+pud_ |Vela) p|
€€
= (p1+p2) + p|=2(p1 + p2)|

_ {(1—2u)(p1+p2) if p1+p2 <0
(L+2p)(p1 +p2) if p1+p2>0.
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Figure 4: Contours for the quadratic penalty function Q(x;pu), u = 1.

It is easily seen that when p < %, we can always choose p; + p2 < 0 such
that

(1 =2p)(p1 +p2) <0,
in which case p is a descent direction for ¢;(z*; ). On the other hand, when
> %, there can be no descent directions for ¢ (x*; ) since D(p1(x*; ), p) >

0 always holds. This shows that ¢1(z; 1) does not have a local minimizer at
x* = (—1,—1) unless p > ||\ = %

18 Sequential Quadratic Programming

Problem 18.4

When 6 # 1, we have
0.8S{Bk8k

O = —— ok Rk
sy Brsi — stk
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where s{yk < O.28£Bksk. Therefore

spri = sp (Okyr + (1 — 0k) Bisg)
= Ok(skyr) + (1 — 6k)s). Brsk
0.85% By, s 0.2s” By.si, — sTyk
= ———kRE szyk k k S;QFBIcSk

T T T T
sy, Brsk — s, Yk s3, Brsk — 1, Yk

= SgB—kSk(OSSTy + 0.2 Bys —sTy)
szksk—sgyk Ok Ik Ok PRk e Tk

T
Sk BkSk T T
= ————F— (0.2s5;, Bysp — 0.2s3, yg
sF Bsg — stk ( )

= 0.2sf Bysk
> 0.

This shows that the damped BFGS updating satisfies (18.17).

Problem 18.5

We have

2
c(x) =224+ 25—1 and Ve(z) = [2?} ,
2
so the linearized constraint at xy is

0 = c(zg) + Vc(a:k)Tp
= 1‘% + :r:% — 14 2z1p1 + 2x9p2.

(a) At zx = (0,0), the constraint becomes
0=-1,
which is incompatible.
(b) Atz = (0,1), the constraint becomes
0 = 2pg,
which has a solution of the form p = (¢,0),q € R.
(c) At xp = (0.1,0.02), the constraint becomes
0 = —0.9896 -+ 0.2p; + 0.04ps,

which has a solution of the form p = (4.948,0) + ¢(—0.2,1),q € R.
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(d) At zx = —(0.1,0.02), the constraint becomes
0 = —0.9896 — 0.2p; — 0.04p2,

which has a solution of the form p = —(4.948,0) + ¢(—0.2,1),q € R.

19 Interior-Point Methods for Nonlinear Program-
ming
Problem 19.3
Define the vector function
c(z) = Dr(x),

where D is a diagonal scaling matrix with nonzero diagonal entries. The
Jacobian corresponding to ¢(z) is

VCl(l‘)T DHVm(x)T
Ax) = : = : = DJ(z).
Ven(z)T Dy V1 (2)T

Therefore, the Newton step p is obtained via the solution of the linear system
DJ(z)p = —Dr(z),

which is equivalent to
J(z)p = —r(z)

since D is nonsingular.

Problem 19.4

Eliminating the linear equation yields 1 = 2 — x3. Plugging this expression
into the second equation implies that the solutions satisfy

—322 4+ 225 +1=0. (69)

Thus, the solutions are

(21,m2) € {(1’1)7 <;;)}
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Similarly, multiplying the first equation by 2 yields the system

x1x2+x%—2x2 —0
Ty — 223+ 1|

Subtracting the first equation from the second again yields (69), and the
solutions remain unchanged.
Newton’s method applied to the two systems yields the linear systems

1 1 d— — 1+ 90— 2
To x1 — 4x9 o ZL‘1:L‘2—2:E%+1

Ty X1+ 29 —2
xT9 Tr1 — 4$2

and
_ T1T2 + x% — 2x9

- [w1x2—2x%+1} '

From the point x = (1, —1), the steps are found to be d = (4/3,2/3) and
d = (1/2,1/2), respectively.

Problem 19.14

For clarity, define

W wmT”
0 0
U= 0 , V= 0 ,
0 0
and -
D A
=3 %)
where

110 _|Ag 0O
D_[O E] andA—[AI IiE

It can easily be shown that

o1 D! - D'AT(AD'ATY1AD™! D 1AT(AD-1AT)!
N (AD~'ATYAD! —(AD=tATY=L |7

so the solution r of the primal-dual system (C+UVT)r = —s can be obtained
via the Sherman—Morrison—Woodbury formula as

r=—(C+UVhH)ls=—(Cc'—clug+victu)y-tvic s,

which requires only solutions of the system C'v = b for various b.
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