Chapter 9: Center of Mass and Linear Momentum

\checkmark Center of Mass
\checkmark Newton's Second Law for a System of Particles
\checkmark Linear Momentum
\checkmark Impulse
\checkmark Collision

Chapter 9: Center of Mass and Linear Momentum

Session 19:

\checkmark Impulse
\checkmark Collision
\checkmark Examples

Impulse

$$
\overrightarrow{\mathbf{p}}=m \overrightarrow{\mathbf{v}} \quad \overrightarrow{\mathbf{F}}=\frac{d \overrightarrow{\mathbf{p}}}{d t}
$$

$$
\overrightarrow{\mathbf{F}}(t)=\frac{d \overrightarrow{\mathbf{p}}}{d t} \quad \square \quad d \overrightarrow{\mathbf{p}}=\overrightarrow{\mathbf{F}}(t) d t \quad \square \quad \int_{\overrightarrow{\mathbf{p}}_{i}}^{\overrightarrow{\mathbf{p}}_{f}} d \overrightarrow{\mathbf{p}}=\int_{t_{i}}^{t_{f}} \overrightarrow{\mathbf{F}}(t) d t
$$

$$
\Delta \overrightarrow{\mathbf{p}}=\overrightarrow{\mathbf{p}}_{f}-\overrightarrow{\mathbf{p}}_{i}=\int_{t_{i}}^{t_{f}} \overrightarrow{\mathbf{F}}(t) d t=\overrightarrow{\mathbf{J}}
$$

$$
\begin{array}{|l|l|}
\hline \mathbf{J}=\Delta \overrightarrow{\mathbf{p}} \quad \text { Impulse-momentum theorem } \\
\hline
\end{array}
$$

Impulse

$$
\overrightarrow{\mathbf{J}}=\Delta \overrightarrow{\mathbf{p}}=\int_{t_{i}}^{t_{i}} \overrightarrow{\mathbf{F}}(t) d t
$$

$$
\left\{\begin{array}{l}
J_{x}=\Delta \mathbf{p}_{x}=\int_{t_{t_{1}}}^{t_{x}} \mathbf{F}_{x}(t) d t \\
J_{y}=\Delta \mathbf{p}_{y}=\int_{t_{i}}^{t_{y}} \mathbf{F}_{y}(t) d t \\
J_{z}=\Delta \mathbf{p}_{z}=\int_{t_{i}}^{t_{z}} \mathbf{F}_{z}(t) d t
\end{array}\right.
$$

$$
\mathbf{J}=\mathbf{F}_{\text {avg }}\left(t_{f}-t_{i}\right)=\mathbf{F}_{\text {avg }} \Delta t
$$

Ex 11: In a particular crash test, a car of mass 1500 kg collides with a wall as shown in Figure. The initial and final velocities of the car are $\overrightarrow{\mathbf{v}}_{i}=-15 \hat{\mathbf{i}} \mathrm{~m} / \mathrm{s}$ and $\overrightarrow{\mathbf{v}}_{f}=2.6 \hat{\mathbf{i}} \mathrm{~m} / \mathrm{s}$, respectively. If the collision lasts $\mathbf{0 . 1 5 0} \mathbf{s}$, find the impulse caused by the collision and the average net force exerted on the car.

$$
\begin{array}{r}
\overrightarrow{\mathbf{J}}=m\left(\overrightarrow{\mathbf{v}}_{f}-\overrightarrow{\mathbf{v}}_{i}\right)=1500[2.6 \hat{\mathbf{i}}-(-15 \hat{\mathbf{i}})] \Rightarrow \overrightarrow{\mathbf{J}}=2.64 \times 10^{4} \hat{\mathbf{i}} \quad \mathrm{~kg} . \mathrm{m} \\
\overrightarrow{\mathbf{J}}=\overrightarrow{\mathbf{F}}_{\text {avg }} \Delta t
\end{array}
$$

combination of the normal force on the car from the wall and any friction force between the tires and the ground as the front of the car crumples

Ex 12: (Problem 9.25 Halliday)

A 1.2 kg ball drops vertically onto a floor, hitting with a speed of $\mathbf{2 5} \mathbf{~ m} / \mathbf{s}$. It rebounds with an initial speed of $10 \mathrm{~m} / \mathrm{s}$. (a) What impulse acts on the ball during the contact? (b) If the ball is in contact with the floor for $\mathbf{0 . 0 2 0} \mathbf{~ s}$, what is the magnitude of the average force on the floor from the ball?

$$
\overrightarrow{\mathbf{J}}=\Delta \overrightarrow{\mathbf{p}}=m \overrightarrow{\mathbf{v}}_{f}-m \overrightarrow{\mathbf{v}}_{i}
$$

$$
\overrightarrow{\mathbf{J}}=m\left(\overrightarrow{\mathbf{v}}_{f}-\overrightarrow{\mathbf{v}}_{i}\right)=1.2[10 \hat{\mathbf{j}}-(-25 \hat{\mathbf{j}})]=42 \hat{\mathbf{j}} \quad \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

$$
\left|\vec{F}_{\text {avg }}\right|=\frac{|\overrightarrow{\mathbf{J}}|}{\Delta t}=\frac{42}{0.020}=2.1 \times 10^{3} \mathrm{~N}
$$

$$
\left|\overrightarrow{\mathbf{F}}_{\text {avg }}\right| \gg m g \approx 10 \mathrm{~N}
$$

Impulse Approximation: one force acting on a particle acts for a short time (impulsive force), but is much greater than any other force present.

Ex 13: Figure below is an overhead view of the path taken by a race car driver as his car collides with the racetrack wall. Just before the collision, he is traveling at speed $\mathbf{v}_{\mathrm{i}}=70 \mathrm{~m} / \mathrm{s}$ along a straight line at 30° from the wall. Just after the collision, he is traveling at speed $\mathbf{v}_{\mathbf{f}}=50 \mathrm{~m} / \mathrm{s}$ along a straight line at 10° from the wall. His mass is $\mathbf{8 0} \mathbf{~ k g}$. What is the impulse on the driver due to the collision?

$$
\overrightarrow{\mathbf{J}}=\Delta \overrightarrow{\mathbf{p}}=\overrightarrow{\mathbf{p}}_{f}-\overrightarrow{\mathbf{p}}_{i}
$$

$$
\left\{\begin{array}{l}
J_{x}=\Delta \mathbf{p}_{x}=m\left(\mathbf{v}_{f x}-\mathbf{v}_{i x}\right) \\
J_{y}=\Delta \mathbf{p}_{y}=m\left(\mathbf{v}_{f y}-\mathbf{v}_{i y}\right)
\end{array}\right.
$$

$\left\{J_{x}=80[50 \cos (-10)-70 \cos 30]=-910 \mathrm{~kg} . \mathrm{m} / \mathrm{s}\right.$

$$
\left[J_{y}=80[50 \sin (-10)-70 \sin 30]=-3495 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\right.
$$

$$
\overrightarrow{\mathbf{J}}=-910 \hat{\mathbf{i}}-3495 \hat{\mathbf{j}}
$$

$$
|\vec{J}|=\sqrt{(910)^{2}+(3495)^{2}}=3616 \mathrm{~kg} . \mathrm{m} / \mathrm{s}
$$

$$
\theta=\tan ^{-1} \frac{J_{y}}{J_{x}}=\tan ^{-1}\left(\frac{-3495}{-910}\right)=75^{\circ}\left(-105^{\circ}\right)
$$

Ex 14: (Problem 9.37 Halliday)

A soccer player kicks a soccer ball of mass 0.45 kg that is initially at rest. The foot of the player is in contact with the ball for $3 \times \mathbf{1 0}^{-\mathbf{3}} \mathbf{s}$, and the force of the kick is given by

$$
F(t)=\left(6 \times 10^{6}\right) t-\left(2 \times 10^{9}\right) t^{2} \quad N ; 0 \leq t \leq 3 \times 10^{-3} s
$$

where \boldsymbol{t} is in seconds. Find the magnitudes of (a) the impulse on the ball due to the kick, (b) the average force on the ball from the player's foot during the period of contact, (c) the maximum force on the ball from the player's foot during the period of contact, and (d) the ball's velocity immediately after it loses contact with the player's foot.

$$
\mathbf{J}=\Delta \mathbf{p}=\int_{t_{i}}^{t_{t}} \mathbf{F}(t) d t
$$

$$
\mathbf{J}=\Delta \mathbf{p}=\int_{0}^{3 \times 10^{-3}}\left[\left(6 \times 10^{6}\right) t-\left(2 \times 10^{9}\right) t^{2}\right] d t=\left(6 \times 10^{6}\right) \frac{t^{2}}{2}-\left.\left(2 \times 10^{9}\right) \frac{t^{3}}{3}\right|_{0} ^{3 \times 10^{-3}}=9 \mathrm{~N} . \mathrm{s}
$$

$$
\left|\overrightarrow{\mathbf{F}}_{\text {avg }}\right|=\frac{|\overrightarrow{\mathbf{J}}|}{\Delta t}=\frac{9}{3 \times 10^{-3}}=3 \times 10^{3} \mathrm{~N}
$$

$$
\frac{d F(t)}{d t}=0 \Rightarrow\left(6 \times 10^{6}\right)-2\left(2 \times 10^{9}\right) t=0 \square t=1.5 \times 10^{-3} s \square F_{\max }=4.5 \times 10^{3} \mathrm{~N}
$$

$$
\mathbf{J}=\Delta \mathbf{p}=m v_{2}-m \underbrace{v_{1}}_{0}=9 \mathrm{~N} . \mathrm{s} \quad \square \quad v_{2}=20 \mathrm{~m} / \mathrm{s}
$$

Collision

$\vec{F}_{\text {net }}=\frac{d_{\boldsymbol{p}_{c o m}}}{d_{t}}$

$$
\overrightarrow{\mathbf{F}}_{n e t}=0 \quad \frac{d \overrightarrow{\mathbf{p}}_{c o m}}{d t}=0 \quad \Longrightarrow \quad \overrightarrow{\mathbf{p}}_{c o m}=\text { constant }
$$

$$
\overrightarrow{\mathbf{p}}_{1 i}+\overrightarrow{\mathbf{p}}_{2 i}=\overrightarrow{\mathbf{p}}_{1 f}+\overrightarrow{\mathbf{p}}_{2 f} \quad \text { Conservation of linear momentum }
$$

$$
m_{1} \vec{v}_{1 i}+m_{2} \vec{v}_{2 i}=m_{1} \vec{v}_{1 f}+m_{2} \vec{v}_{2 f}
$$

Kinetic Energy in Collisions

Elastic: $\left\{\begin{array}{l}m_{1} \overrightarrow{\mathbf{v}}_{1 i}+m_{2} \overrightarrow{\mathbf{v}}_{2 i}=m_{1} \overrightarrow{\mathbf{v}}_{1 f}+m_{2} \overrightarrow{\mathbf{v}}_{2 f} \\ \frac{1}{2} m_{1} \mathbf{v}_{1 i}^{2}+\frac{1}{2} m_{2} \mathbf{v}_{2 i}^{2}=\frac{1}{2} m_{1} \mathbf{v}_{1 f}^{2}+\frac{1}{2} m_{2} \mathbf{v}_{2 f}^{2}\end{array}\right.$

Inelastic: $\left\{\begin{array}{l}m_{1} \overrightarrow{\mathbf{v}}_{1 i}+m_{2} \overrightarrow{\mathbf{v}}_{2 i}=m_{1} \overrightarrow{\mathbf{v}}_{1 f}+m_{2} \overrightarrow{\mathbf{v}}_{2 f} \\ \frac{1}{2} m_{1} \mathbf{v}_{1 i}^{2}+\frac{1}{2} m_{2} \mathbf{v}_{2 i}^{2} \neq \frac{1}{2} m_{1} \mathbf{v}_{1 f}^{2}+\frac{1}{2} m_{2} \mathbf{v}_{2 f}^{2}\end{array}\right.$

Perfectly Inelastic: $\quad m_{1} \overrightarrow{\mathbf{v}}_{1 i}+m_{2} \overrightarrow{\mathbf{v}}_{2 i}=\left(m_{1}+m_{2}\right) \overrightarrow{\mathbf{v}}_{f}$

Elastic Collision in One Dimension

$$
\begin{aligned}
m_{1} \mathbf{v}_{1 i}+m_{2} \mathbf{v}_{2 i} & =m_{1} \mathbf{v}_{1 f}+m_{2} \mathbf{v}_{2 f} \\
\frac{1}{2} m_{1} \mathbf{v}_{1 i}^{2}+\frac{1}{2} m_{2} \mathbf{v}_{2 i}^{2} & =\frac{1}{2} m_{1} \mathbf{v}_{1 f}^{2}+\frac{1}{2} m_{2} \mathbf{v}_{2 f}^{2}
\end{aligned}
$$

$$
\mathbf{v}_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} \mathbf{v}_{1 i}+\frac{2 m_{2}}{m_{1}+m_{2}} \mathbf{v}_{2 i}
$$

$$
\left(\mathbf{v}_{1 i}-\mathbf{v}_{2 i}\right)=-\left(\mathbf{v}_{1 f}-\mathbf{v}_{2 f}\right)
$$

$$
\left\{\begin{array}{l}
\mathbf{v}_{1 f}=\mathbf{v}_{2 i} \\
\mathbf{v}_{2 f}=\mathbf{v}_{1 i}
\end{array}\right.
$$

$$
\text { if } \mathbf{v}_{2 i}=0
$$

$$
\left\{\begin{array}{l}
\mathbf{v}_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} \mathbf{v}_{1 i} \\
\mathbf{v}_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} \mathbf{v}_{1 i}
\end{array}\right.
$$

Ex 15: (Problem 9.37 Halliday)

Block 1 of mass m_{1} slides from rest along a frictionless ramp from height $\mathbf{h}=\mathbf{2 . 5} \mathbf{m}$ and then collides with stationary block 2, which has mass $\mathrm{m}_{2}=\mathbf{2} \mathbf{m}_{1}$. After the collision, block 2 slides into a region where the coefficient of kinetic friction $\boldsymbol{\mu}_{\mathrm{k}}$ is $\mathbf{0 . 5 0 0}$ and comes to a stop in distance d within that region. What is the value of distance \mathbf{d} if the collision is (a) elastic and (b) completely inelastic?

$$
K_{i}+U_{i}=K_{f}+U_{f} \quad 0+m_{1} g h=\frac{1}{2} m_{1} v_{1}^{2}+0
$$

$$
v_{1}=\sqrt{2 g h}=\sqrt{2(9.8)(2.5)}=7 \mathrm{~m} / \mathrm{s}
$$

Elastic: $\mathbf{v}_{2 i}=0 \square\left\{\begin{array}{l}\mathbf{v}_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} \mathbf{v}_{1 i} \\ \mathbf{v}_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} \mathbf{v}_{1 i}\end{array} \square\left\{\begin{array}{l}\mathbf{v}_{1 f}=-\frac{1}{3} \mathbf{v}_{1 i}=-\frac{7}{3} \mathrm{~m} / \mathrm{s} \\ \mathbf{v}_{2 f}=\frac{2}{3} \mathbf{v}_{1 i}=\frac{14}{3} \mathrm{~m} / \mathrm{s}\end{array}\right.\right.$

$$
\left(0-\frac{1}{2} m_{2} v_{2 f}{ }^{2}\right)=-\mu_{k} m_{2} g d \quad \square \quad d=\frac{v_{2 f}^{2}}{2 \mu_{k} g}=\frac{(4.66)^{2}}{2(0.5)(9.8)}=2.22 \mathrm{~m}
$$

Perfectly Inelastic: $m_{1} \mathbf{v}_{1 i}+m_{2} \underbrace{\mathbf{v}_{2 i}}_{0}=\left(m_{1}+m_{2}\right) \mathbf{v}_{f} \square \mathbf{v}_{f}=\frac{m_{1}}{m_{1}+m_{2}} \mathbf{v}_{1 i}=\frac{\mathbf{v}_{1 i}}{3}=\frac{7}{3} \mathrm{~m} / \mathrm{s}$

$$
d=\frac{v_{f}^{2}}{2 \mu_{k} g}=\frac{(2.33)^{2}}{2(0.5)(9.8)}=0.55 \mathrm{~m}
$$

Ex 16: The ballistic pendulum is an apparatus used to measure the speed of a fast-moving projectile such as a bullet. A projectile of mass m_{1} is fired into a large block of wood of mass $\mathbf{m}_{\mathbf{2}}$ suspended from some light wires. The projectile embeds in the block, and the entire system swings through a height \mathbf{h}. How can we determine the speed of the projectile from a measurement of \mathbf{h} ?

Perfectly Inelastic: $\quad m_{1} \mathbf{v}_{1 A}+m_{2} \underbrace{\mathbf{v}_{2 i}}_{0}=\left(m_{1}+m_{2}\right) \mathbf{v}_{B}$

$$
\mathbf{v}_{B}=\frac{m_{1}}{m_{1}+m_{2}} \mathbf{v}_{1 \mathrm{~A}}
$$

$$
K_{i}+U_{i}=K_{f}+U_{f} \quad \square \frac{1}{2}\left(m_{1}+m_{2}\right) \mathbf{v}_{B}^{2}+0=0+\left(m_{1}+m_{2}\right) g h
$$

$$
\frac{1}{2}\left(m_{1}+m_{2}\right)\left(\frac{m_{1}}{m_{1}+m_{2}} \mathbf{v}_{1 A}\right)^{2}=\left(m_{1}+m_{2}\right) g h
$$

$$
\mathbf{v}_{1 A}=\left(\frac{m_{1}+m_{2}}{m_{1}}\right) \sqrt{2 g h}
$$

Ex 17: A 1500-kg car traveling east with a speed of $\mathbf{2 5} \mathbf{~ m} / \mathrm{s}$ collides at an intersection with a 2500-kg truck traveling north at a speed of 20 m/s as shown in Figure. Find the direction and magnitude of the velocity of the wreckage after the collision, assuming the vehicles stick together after the collision.

$$
\begin{aligned}
& \text { ogether after the collision. } \\
& \left\{\begin{array}{l}
\overrightarrow{\mathbf{p}}_{i}=\overrightarrow{\mathbf{p}}_{f i}=\mathbf{p}_{x f} \\
\mathbf{p}_{y i}=\mathbf{p}_{y f} \\
m_{2} \mathbf{v}_{2 i}=\left(m_{1}+m_{2}\right) \mathbf{v}_{f} \sin \theta
\end{array}\right. \\
& \begin{array}{l}
\frac{m_{2} \mathbf{v}_{2 i}}{m_{1} \mathbf{v}_{1 i}}=\frac{\sin \theta}{\cos \theta}=\tan \theta \\
\theta=\tan ^{-1}\left(\frac{2500 \times 20}{1500 \times 25}\right)=53.1^{\circ} \\
\mathbf{v}_{f}=\frac{m_{1}}{\left(m_{1}+m_{2}\right) \cos \theta}=\frac{(1500)(25)}{(4000) \cos (53.1)}=15.6 \mathrm{~m} / \mathrm{s}
\end{array}
\end{aligned}
$$

