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Preface

R and S-PLUS are statistical-computing er_lvironments, mchc?rpkc))ratl;
ing implementations of the S programming language. lelS 025-
aims to teach the use of R and S-PLU§ in _the context ofhapp.le regrnd
sion analysis—typically studied by s_ocxal scientists a.nd ?‘t erIs ina szc?hat
course in applied statistics. As the t%tle of the.: boo!( implies, .as'surlnmeth_
the reader is learning or is otherw1s§: familiar w1_th the statistica -
ods that I describe; thus, this book is a companion to a te_)l(t or coursn
on modern applied regression, such as (but not ne;es;ar;: y) rr11y9 907“),1
Applied Regression, Linear Models, and Related Met c::l 'Ef( ox, o7
Of course, different texts and courses l}avg ‘somewhat di erentf got rest,
and if you encounter a topic that is i{n;at?nhar, or that is not of interest,
ip it or to pass over it lightly. _
fee'll'lfiree z\::iljggity of chezp, powerful, and convenient computmlg h.as Fevci
olutionized the practice of statistical data analysns, as it hasl 1rev.o ;tlo&?tel
other aspects of our society. Once upon a time, but we I’V‘l‘t mka e5§
memory, data analysis was typically perforfned by statxstlcil:l L “pac asgthe
running on mainframe computers. The primary input me 1umdwrimed
punch card, large data sets were stored on magnetic tapes,lan“ pS red
output was produced by line printers; data were in rectangular “case- ZS
variable” format. The job of the software was to combine instructio
for data analysis with a data set to produce a prlnted.report..Cc;mputéng
jobs were submitted in “batch mode,” rather than interactively, an tha
substantial amount of time—houlrs,. or even days—elapsed between the
issi job and its completion. . .
Su%f‘f:;f;lstl:;l;f galtch-oriented computers were superseded by mte:raitu;)e,
time-shared, terminal-based computing systems and then successwedythy
personal computers and workstations, networks of comp.uter;s, an te
Internet. But some statistical sofrware.stlll in use traces its erxtag;z1 o
the days of the card reader and line printer. Statistical packaghes, suc ?ﬁ
SAS and SPSS, have acquired a variety of accoutrements (such as grap.ll
ical interfaces and limited programming capabilities), but they are sti

i i c in Fox (1997), and many of the
i this book correspond closely to those in , and | K
o Th;l;:liﬁzsdi:‘x;egc:; that source. My regression text also provides a general statistical reference
exam|
for the methods discussed here.
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[)]]]lCl aﬂy orle ted tOWaId COIIlbllll
ng in
g structions Vvlth reCtallgU1aI data

This model o isti i
orbie Standardf I;t:ttgitéc‘;aifccémpunng often works well in the applica-
ver 10, do.somethinn ata analysis. It is relatively difficult, how-
e soiotcn] macens is nonstaqdard or to add to the cap,ability
s I y p.rcci)grammmg a new technique. In contrast
e Buaes provide access to a variety of data and pro ramz
. eloping statistical software in traditional program-

ming languages, such
mine as C or FORTRAN, however, is a time-consuming

S is a high-lev r g acllitate
gh-level compute i
_ . rogramming | i
gl : °r p g language designed to facili
hie mp emiren atlosl’?f statlsFlcal methods. It is embedded in a “pfroglhatmt
mnig env. osnmr-enr ,” including an interpreter for the S language rwit};
Wish ch thfe Su erpl ossfr?_mmelr can interact in a conversational manr,ler3 S
one of several statistical programmi Vi :
n ; 1
. Stae e g g environments; others include
In a good istl ‘ v \
sta 1 1
- tlSl'ZlCal programming environment, one can have one’
cake and eat it too: Routine data analysis is convenient, but so are pros
k d R , -

gramming and the incor i
poration of new statisti 1
S balances these factors especially well: prcal methods. I believe that

Capab € (o] 5
h [e):¢ mcor OIatlng a Wlde l’ange

of standard statistical applicati
. pplications, i
of freely available add-on libraries ?slclzing:?;:\?) Py an even wider range

m The S pr i i
programming language is easy to use (the easiest programming

language that I hav
e encountered i
ment of statistical applicationsr.e ) and s finely tuned o the develop-

B The S i i
o gfrc:,?;a:vm(r)lfung language is also very carefully designed from th
point of view computer science as well as statistics. Indeed, ] he
, principal designer of S, won the 1998 Software é rem
ystem

Award of the Associati .
System. sociation for Computing Machinery (ACM) for the S

2. With SAS, i i
2. , In particular, the situation i
B oo 17 P D:ATA sstlzuainon is not so clear-cut, because there are several facilitt
R o lang]:a;ea” )SImple Erogramming language for manipulav:in;cél:t;es for
compurarions, and the ili e Provides 2 . o
macro faciliry all ot i ;
o A y allows the user to build licati P ormorate DATA
e arecily allov applications that incor
steps and calls 10 SAS . Nevertheless, programming 1 i i P Soncinent
' AS procedures. N > ng in SAS is substantially | i
e o ertheless P : ) y less consistent
B e e ; ing environment, and i i 1
d toward processing rectangular data sets ;o pl'ot'.tiu‘;:enm'nS fj" oy that
¢ printed output.

3. A compiler tran
slates a progra i i
B e gram written in a programming | i i
> g language
eyl ot }fchli‘;cm?gs:[é InAclo;tras}? an interpreter tmgnslitclsn:::ujl ﬂe)l:iif: e o
high-level. interacti R i theory ! l e or 5
‘ Stive lenguans aoch ac 8. oo eory possible to write a compil

Dagl-lens . Interactive as S, it is difficulr to do so. Compi ot
e . apl interpreted programs. In advanced usc, R énglled programs ufua Iy xceare

. compiled programs written in FORTRAN and‘ C and SPLUS both bave faciltes for

4. Parallel brief presentati
. . .
4. Parall (1997).p ntations of different statistical-computing environments may be found

e found in Stine

m The two implementations of S—R and S-PLUS—are very solid, 1ncor-
porating, for example, sound numerical algorithms for statistical com-

putations.
S is a product of Bell Labs, where it was developed, and continues to

be developed, by experts in statistical computing, including John Cham-
bers, Richard Becker, and Allan Wilks. Like most good software, S has
evolved substantially since its origins in the mid-1970s. The most recent
major versions still in use are S3 and 54, which have some significant

differences. Although Bell Labs originally distributed S directly, it 1s now

available only as the commercial product S-PLUS, sold by Insightful Cor-

poration. There are implementations of S-PLUS for Windows PCs and

for a variety of Unix/Linux systems. The most recent Windows versions

as 1 write this are S-PLUS 2000, which corresponds to the S3 language,

and S-PLUS 6.0, which corresponds to the S4 language.

R is an independent, open-source, and free implementation of the S
language, developed by an international team of statisticians, nOw includ-
ing John Chambers. The current version is R 1.3.1, which runs on Win-
dows PCs, Macintoshes, and various flavors of Unix and Linux. Version
1.3.1 of R 1s relatively close to §3; version 1.4, still in development,
will move R toward 4.5 There will remain some important differences
between the tWO implementations of the S language, but most are at a
relatively deep level and largely will not concern us; when necessary; 1
discuss differences between R and S-PLUS and berween S3 and S4.

|

———

Differences Among Versions of S
| point out many small differences between $.PLUS and R and between
63 and S4 in boxes such as this one. The title of the box will tell you
whether the information in it is relevant to your version of S.

It is easy to get tangled up in the nomenclature of jmplementations and
versions, so 1 will adopt the following simple rule for this book: I will
use “S” generically to refer both to R and S-PLUS and to the S3 and S4
language versions of S proper. As I mentioned, distinctions will be made
as necessary.

One of the great strengths of S is the ability to add new capabilities
to the software. Not only is it possible to write functions (programs),
but it is convenient to combine related sets of functions and data in

S
5. Version 1.4 of R is due for release in December 2001; currently, three “minot” versions of R
the tenths place in the version number) are released yearly, so you will almost

(corresponding to
2n the one described in this book. Significant developments

surely be working with a newer version th
will appear on the Web site for the book.
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PREFACE

i—F’LUS., “library sections” and R “packages” (both of which I will call

libraries”). Currently, for example, there are more than 100 contributed
packages ayailable on the R Web site {see below), many of them prepared
by experts in various areas of applied statistics, such as resampling meth-
ods, mixed models, and survival analysis. In the statistical literature, new
methods are often accompanied by implementations in S; indeed, S has
becc_;me a kind of lingua franca of statistical computing—at least among
statisticians.®

The computer output and graphs in this book were produced with R.
Note as well that the title of the book places R first. It may seem peculiar

to favor R in this manner—after all, S-PLUS came first—but there are
several good reasons to do so:

1. R is free software, which makes its use in college and university
courses (_and other settings where cost is important) especially attrac-
tive. It is true that S-PLUS offers generous site-license plans to

educ'at.tlonal institutions, but this is only helpful if your institution
participates.

As.mentione.:d, there are implementations of R for Macintoshes,
which are still used in many educational institutions.

3. While S-PLUS maintains some advantages—a graphical user interface
{GUI), for example—I believe that the current development of R is

more d)fnamic. R has excited a great deal of interest in the statistical-
computing community.

.It is my expectation that most readers of the book will use a
Windows implementation of R or S-PLUS, and the presentation in
the textr reflects that assumption, but virtually everything should
apply equally to other implementations. The Web site for the book
http://www.socsci.mcmaster. ca/jfox/Books/companion/, include;
bnef instructions for downloading, installing, and using the Windows
version of R, and for downloading and installing add-on packages.”
The home page for R, http://www.r-project.org/, provides access to
a panoply of resources and information, including a link to the Com-
prehensive R Archive Network (CRAN), from which R software can
be downlioaded. Information about S-PLUS is available from Insightful
Corporation at http://www. insightful.com/.

6. In economerrics, for example, Stara i i i
bl 6 aoomlanas's e sgc i;] Sden:_ggfars to be more widely used. I hope that this book will

7. If you have difficulty accessing this Web site, please check the Sage Publications Web site at

wwv. S b. fi i i «
kil s?r?f%‘: Lhceo;o:‘:' up-to-darte information. Search for “John Fox” and follow the links to the

PREFACE

Xiii

In addition to instructions for obtaining and installing R, the Web site
for the book contains the following materials:

m Downloadable versions of the car (companion to applied regression)
library for R and S-PLUS. This library includes software and data sets
described in the book.

® An appendix (referred to as the “Web appendix” in the text) conrain-

ing brief information on using S for various extensions of regression

analysis not considered in the main body of the text: nonlinear regres-

sion, robust and resistant regression, nonparametric regression, Cox

- regression for survival data, mixed-effects models, structural-equation

models, and bootstrapping. I have relegated this material to a down-

loadable appendix in an effort to keep the text to a reasonable length.

I plan to update the appendix from time to time as new developments
warrant.

@ Downloadable scripts for all of the examples in the text.
@ Some information for instructors using R in their classes.

® Errata and updated information about R and S-PLUS.

This book is not intended as documentation for R and S-PLUS®: It
is meant to be read, though not necessarily from cover to cover. Vari-
ous facilities of S are introduced as they are needed in the conrtext of
detailed, worked-through examples. If you want to locate information
about a particular feature, however, consult the index of functions and
operators, or the subject index, at the end of the book; there is also an
index of data sets used in the text. Occasionally, more demanding mate-
rial (e.g., requiring a knowledge of matrix algebra) is marked with an
asterisk; this material may be skipped without loss of continuity, as may
the footnotes.’

Most readers will want to try out the examples in the text. You should
therefore install R or S-PLUS (and the car library) before you start to
work through the book. As you duplicate the examples in the text, feel
free to innovate, experimenting with S commands that do not appear

8. S-PLUS comes with extensive documenration, Likewise, thorough documentation for R is avail-
able through the R Web site. Both R and S-PLUS have substantial (and overlapping) user commu-
nities who contribute to active and helpful e-mail lists. See the previously mentioned Web sites for
derails. [And remember to observe proper “neriquette”: Look for answers in the documentation
and frequently-asked-questions (FAQ) lists before posting a question to an e-mail discussion list; the
people who answer your question are volunteering their time.]

9. The foomnotes to the text include several kinds of material: (1) references ro other parts of the text
and, occasionally, to other sources; (2) minor elaboration of points in the text; and (3) indications
of portions of the text that represent (I hope) innocent distortion for the purpose of simplification.
The object is to present more complete and correct information withous interrupting the flow of the
text and without making the main text overly difficult.
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s e ples in different chapters are independent of each

Here is a brief chapter synopsis:
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Chapter 5 f i
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Cha i
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and 2 Cotnht:l isos:;l;lele_xieptnon_ of the asterisked material, Chapters 1
ers. Some readgers ?:h information that should be of interest to all read-
before secing conerer ose V\.Jhohprefer to learn about general principles
before Chamsors 3 he applications) may want to read Chapters 7 and 8
ically dependent ortl :)(t)llllgh 6. Although some topics are obviously log-
linear models in Ch ers {e.g., regression diagnostics for generalized

apter 6 depends on material on generalized linear

models in Chapter § i n
needed. pter 5), sections of Chapters 3 through 6 may be read as

1 employ a few simple typographical conventions:

@ Computer input and output, as well as S libraries, functions, and vari-
ables, are printed in 2 monospaced typewriter font.

@ Occasionally, generic specifications (to be replaced by particular infor-

mation, such as a variable name) are given in typewriter italtcs.

@ S input and output are printed as they appear on the computer screen,
although 1 sometimes edit output for brevity or clarity; elided mate-
rial in computer output is indicated by three widely spaced periods

(.

m Sinputis preceded by the > or + (continuation) prompts, as explained
in Chapter 1.

Graphical output 18 printed in many figures scattered throughout the
text; in normal use, graphs typically appear on the computer screen in
graphics windows, although both R and S-PLUS provide excellent facili-
ties for saving and printing graphs.

This book deals with the command-line interface to R and S-PLUS.
S-PLUS additionally employs a graphical user interface (GUI), which per-
mits the user to access many functions through menus and dialog boxes.
It is also possible to program graphical interfaces to user-built applica-
tions. Similar facilities for building graphical interfaces exist in R, but
they are not as extensive.

1 have chosen to ignore the GUI in S-PLUS for several reasons: (1) It is
essentially self-explanatory tO USEIS familiar with standard Windows soft-
ware; in fact, this is one of the primary advantages of a menw/dialog-box

interface. (2) Many of the facilities of S-PLUS are not available through
the GUL (3) Perhaps most important, 1 believe that graphical interfaces
of this kind are best for casual or occasional use of statistical software.
Accomplished users generally prefer the command-line interface, espe-
cially if an analysis needs to be repeated or modified (and before we
begin, how do we know?). So, be prepared to exercise your typing skills.

There is, of course; much to S beyond its application t regression
models. The S3 language 1s documented in two books: The New S Lan-
guage: A Programming Environment for Data Analysis and Graphics
(Becker, Chambers, & Wilks, 1988), which describes the details of S0,
and an edited volume, Szatistical Models in S (Chambers & Hastie, 1992),
which describes the S3 object-oriented programming System and facilities
for specifying and fitting statistical models. Similarly, Chambers’s 1998

book, Programming With Data, describes the 54 language.

—

10. Actually, The New S Language describes S2, which is incorporated in $3.
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There are several relatively advanced statistics texts that deal with
particular applications of S, such as to survival analysis (Therneau &
Grambsch, 2000) and mixed models (Pinheiro & Bates, 2000). Likewise,
some statistics texts that do not focus on S are nevertheless associated
with S libraries that implement the methods discussed in the book: Exam-
ples include resampling methods (Efron & Tibshirani, 1994; Davison &
Hinkley, 1997), methods for dealing with missing data (Schafer, 1997),
and nonparametric regression and smoothing (Hastie & Tibshirani, 1990;
Bowman & Azzalini, 1997; Loader, 1999). Additional sources may be
found on the R and S-PLUS Web sites.

Two general texts on S are particularly worthy of mention here: The
third edition of Modern Applied Statistics With S-PLUS (Venables &
Ripley, 1999) demonstrates the use of S for a wide range of statistical
applications. The book is associated with several S libraries, including
the MASS library, to which I make occasional reference. Venables and
Ripley’s text is generally more advanced and has a broader focus than
my book; there are also some differences in emphasis: For example, the
R and S-PLUS Companion has more material on diagnostic methods.
The same authors’ § Programming (Venables & Ripley, 2000) provides
an advanced, in-depth treatment of programming in the various imple-
mentations and versions of the S language.
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Introducing R
and S-PLUS

The purpose of this chapter is to introduce you to the S language
and to the R and S-PLUS interpreters. After describing some of the
basics of S, I proceed to illustrate its use in analyzing a typical, if small,
regression problem. The chapter concludes with a brief description of S
functions for familiar operations in basic statistics.

[ know that many readers are in the habit of beginning a book at
Chapter 1, skipping the Preface. Please read the Preface before this first
chapter: In particular, I assume that you have installed R or S-PLUS on
your computer and that you have access to the car library associated “_nth
this book. Moreover, the Preface includes information on typographical
and other conventions employed in the text.

smasics JIKEN

Figure 1.1 shows the R “Gus” (graphical user interface) window imme.:-
diately after R is started. Under the opening message in the R ConsFJIe is
the > (“greater than”) prompt. Although there are several ways to inter-
act with the R interpreter (see Section 1.1.6), I will assume, at least for
the present, that statements for the interpreter are typed directly into the
R Console.
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Version 1.3.1 (2001~08-31)
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R is free softvare and comes vith ABSOLUTELY NO VARRANTY.
You are welcome to redistribute :t under certein cooditions.
Type "licemse()' or 'licence()' for distribution detaile.

‘R 15 @ collaboraetive project with many contributors.
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Type “demo()' for some demos, “help()' Xor on-line help, or
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Figure 1.1  The R “Gui” window, showing the R Console. (R version 1.3.1.)

The R “Gui”

The R Gui (unlike the graphical interface to S-PLUS) does not provide
access to statistical functions in R. Because the menus in the R Gui have
changed significantly from version to version, | defer a discussion of the
menus to the Web site for the text. | draw your attention, however, to

the Packages menu, which provides a convenient means of installing and
updating R libraries.

Figure 1.2 shows the main S-PLUS window at the start of a session. Ini-
tially, the Object Browser subwindow has the focus, but I have brought
the Commands subwindow to the front and resized it. The Commands

window is similar to the R Console, and we can shift the focus to this
window simply by clicking in it.

Interacting with the Interpreter

Data analysis in S proceeds as an interactive dialog with the interpreter.
We type an S statement at the > prompt, press the Enter key, and the

opyraght (c) 1986, 3001 n;:a
k Technologies, Inc.
K . Copyright Lucent
exsion 6.0.1 Relgsse Cendidete 3 tor K
Rorking dats will be
lsuadmimsteator

crosott Vandows : 2001

an C:\Progres Filestlnsighttulispluséiuser

o
v
1 1 ioct Browser and Com-
- .PLUS window, showing Object
Figwee 12 Tl;;;r:a:zbiglléliwg ‘The Commands window was brought to the
m

front and resized. (S-PLUS version 6.0.1.)

iate
by executing the statement and, as appropriate,

interpreter responds t, or sending output to 2

. : o
returning a result, producing graphical outp
file or device. ~
The S language 1nc
+ addition
- subtraction
* multiplication
/ division
-~ exponentiation . o
Here arF:e some simple examples of arithmetic in S

Judes the usual arithmetic operations:

> 243
[11 5
> 2-3
1 -1
> 2%3
[1] 6
> 2/3
[1] 0.6666667
> 273
[1] 8

>
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Notice that output lines are preceded by [1]: When printed output con-
sists of many values spread over several lines, each line begins with the
index (number) of the first element in that line. An example will appear
shortly. Notice, as well, that after the interpreter executes a statement
and returns a value, it waits for the next statement, as signified by the >
prompt.

Several arithmetic operations may be combined to build up more or
less complex expressions:

> 472-3%2
(13 10

In the usual notation, this statement is 4* — 3 x 2. S employs common
conventions for precedence of mathematical operators. So, for exam-
ple, exponentiation takes place before multiplication, which takes place
before subtraction; if two operations have equal precedence (such as addi-
tion and subtraction), then they take place from left to right:

> 1-6+4
(1] -1

You can always explicitly specify the order of evaluation of an expres-
sion by using parentheses; thus, the expression 472-3*2 is equivalent to

> (472)-(3%2)
[1] 10

Be careful with the unary minus sign, - (negation), which has a higher
order of precedence than binary arithmetic operators:

> 2°-3

(1] 0.125

> ~2--3

(1] 1

>-2 - -3

(11 1

Although spaces are not required to separate the elements of an arith-
metic expression, judicious use of spaces can help to clarify the meaning
of the expression: Compare the last S statement with the preceding one,
for example. Placing spaces around operators usually makes expressions
more readable -(and, indeed, would improve the readability of some of
the preceding examples).

- S Functions

In addition to the common arithmetic operators, S includes many (liter-
ally hundreds) of functions, for mathematical operations, for statistical

B it i i
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data analysis, for making graphs, and for other purposes. Function argu-
ments (values passed to functions) are specified within parentheses after
the function name. For example, to calculare the natural log of 100, that
is log,100 or In 100, we type:

> log(100)
[1] 4.60517

To compute the log of 100 to the base 10, we specify:

> log(100, base=10)
f11 2

The log and logb Function in S4

In S4, the log function calculates natural logarithms; logb (with a base
argument) behaves like the log function in S3 and R. For example, in S4
the log of 100 to the base 10 is 1ogb(100, base=10).

In general, arguments to S functions may be specified in the order in
which they occur in the function definition (to be described shortly) or
by name, followed by = (equal sign) and a value. Argument names may
be abbreviated, as long as the abbreviation is unique; thus, the previous
example may be more compactly rendered as

> log(100, b=10)
(1] 2

To obtain information about a function, use the help function. For
example:

> help(log)
log package:base R Documentation
Logarithms and Exponentials

Description:

‘log’ computes natural logarithms, ‘loglO’ computes common (i.e.,
base 10) logarithms, and ‘log2’ computes binary (i.e., base 2)
logarithms. The general form ‘log(x, base)’ computes logarithms
with base ‘base’ (‘logl0’ and ‘log2’ are only special cases).

- - . \v,-’ o

Usage:

log(x)

log(x, base)

log10(x)

log2(x)



Arguments:
X! a numeric or complex vector.

base: positive number. The base with respect to which logarithms
are computed. Defaults to e=‘exp(1)’.

Value:

A vector of the same length as ‘x’ containing the transformed
values. ‘log(0)’ gives ‘-Inf’ (when available).

An alternative that requires less typing is to use the ? (help) operator,
for example, 71log. As explained in the Preface, the three widely separated
dots (. . .) mean that I have elided some information. Help informa-
tion is not printed in the R Console, but in a help window. Several help
formats are supported by R, including standard Windows help. S-Plus
also provides standard Windows help.

Because base is the second argument of the log function, we can also
type

> 1og(100,10)
[1] 2

An argument to a funcrion may have a default value—a value that the
argument assumes if it is not explicitly specified in the function call. For
example, the base argument to the log function defaults to e >~ 2.718,
the base of the natural logarithms.

S is a functional programming language: Both the “primitive” pro-
grams that comprise the language and the programs that users write
are functions. Indeed, the distinction between primitives and user-defined
functions is somewhat artificial in S." Even the arithmetic operators in S
are really functions and may be used as such:

> ’+7(2,3)

{11 5

We need to place quotation marks around ’+’ (either single or double
quotes will do) so that the interpreter does not get confused, but our
ability to use + and the other arithmetic functions as in-fix operators,
as in 2+3, is really just “syntactic sugar,” simplifying the construction of

S expressions but not fundamentally altering the functional character of
the language.

1. Section 1.1.4 briefly discusses user-defined functions; the topic is treated in greater depth in

Chapter 8. In both S-PLUS and R, experienced programmers can also access programs written in
FORTRAN and C.

S would not be very convenient

i ithmeti
t a time. The arl d me
zcl)n more complex data structures than individual num

Vectors and Variables

to use if we had to compute one vahiz
tions, can opera
rs. and most S func , :
o res th bers. The simplest

E . 1 : ] “]'Et” Cf
.
(o} theSe data stru S 9

i indivi is really a
numbers.? Indeed, in S, an individual number 1 y

S1IY 1e eleﬂlellt. 1& SlIrlPle Vvay to COnS[ruCt a vector 18 Wlth the C func[lo“,
g

which combines its elements:

y vectors a resulits. I r exam 18
als return S 15 (o] p y
{0] (o) 8] S
V‘a]l ()ﬂle i[]]](',ll()lls
the SEqueuce Opfn ator (~) genera[es COnSCCU[lVe ﬂumbers, Whlle [he Seq
(SeqUEHCE) funCtlon dOCS IIlllCh [he same thlng, bu[ more ﬂeXIbly.

> 1:4
111234

> 4:1
(11 4321

> -1:2
(] -1 0o 1 2

> seq(1,4)
(1 1234

> seq(2, 8, by=2) # specify interval
1] 2468

> seq(0, 1, by=.1) P
[i]q0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

> seq(0, 1 length=11) # specify number of eltzmznts
[1]qo.E> 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. d
1 # is ignore
The pound sign (#) signifies a comment: Text to the right of g
e
interpreter. .  ectors on
bY_;_}QZ 1stangard arithmetic functions and operators apply t

an element-wise basis:

> ¢(1,2,3,4)/2
[1] 0.5 1.0 1.5 2.0

——

2. 1 refer 10 vectors as
{described in Chapter 2).

s” using tha rm loosely, ecause lists ir are a distn uctul
list that te loosel b S distinct data structure
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> ¢(1,2,3,4)/c(4,3,2,1)
[1] 0.2500000 0.6666667 1.5000000 4.0000000

> log(c(0.1, t, 10, 100), 10)
11 -1 0 1 2

If the operands are of different lengths, then the shorter of the two is
extended by repetition [as in ¢(1,2,3,4)/2 above]; if the length of the
longer operand is not a multiple of the length of the shorter, then a warn-
ing message is printed, bur the interpreter proceeds with the operation:
> c(1,2,3,4) + c(4,3)
115577

i

> ¢c(1,2,3,4) + c(4,3,2)
115558 :
Warning message:
longer object length
is not a multiple of shorter object length in:
c(1, 2, 3, 4) + c(q, 3, 2)

Operands of Different Lengths in S4

In S4, performing an arithmetic operation on operands of different lengths
produces an error (rather than a warning) when the length of the longer
oOperator is not a multiple of the length of the shorter one.

S would also be of little use if we were unable to save the results
returned by functions; we do so by assigning values to variables, as in
the following example:

> x <- ¢(1,2,3,4)

> x

(111234

The left-pointing arrow (<-) is the assignment operator; it is composed
of the two characters < (less than) and - (dash or minus), with no inter-
vening blanks, and is usually read as gets: “The variable x gets the value
c(1,2,3,4).”

The rule for naming variables in $ is simple: Variable names are com-
posed of letters (a-z, A-Z), numerals {0-9), and periods (.), and may be
arbitrarily long. The first character must be a letter or a period, but vari-
able names beginning with a period are reserved by convention for special
purposes.” Names in S are case sensitive; so, for example, x and X are

3. Nonstandard names may be used in a variety of contexts, including assignments, by enclosing the

names in single or double quotes (e.g., *first name’ <- *John). In most circumstances, however,
nonstandard names are best avoided.
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distinct variables. It is generally a good idea to use descriptive names—for
example, total.income rather than x2.* Typing the name of a variable
causes its value to be printed.

Once defined, variables may be used in S expressions in the normal
manner:

> x/2
[1] 0.5 1.0 1.5 2.0

including in the definition of other variables:
>y <- sqrt(x)
>y
{1] 1.000000 1.414214 1.732051 2.000000

In this example, sqrt is the square-root function, so sqrt(x) is equiva-
lent to x~.5.

Unlike in many programming languages, in S variables are dynamically
defined and redefined: We need not tell the interpreter in advance how
many values x is to hold; whether it contains integers (whole numbers)
or real numbers; or whether it is a2 numeric variable, a character variable,
or something else. Moreover, if we wish, we may redefine the variable x:

> x <- rnorm(100) # 100 standard normal random numbers
> x
[1] -0.04821767 -0.60571637 -0.39322377 0.43416765 0.28387745
(6] 1.35957233 0.06703925 0.07497876 0.34170083 0.61477147
[11] -0.61420864 -0.46709553 0.41896732 -0.51487725 ~0.17473063
[16] 0.20457797 -0.15066077 1.74732395 -0.27819601 1.31427698
{21] -0.61184541 -0.57516762 0.04810963 0.94873165 0.57223627

> summary(x)
Min. 1st Qu. Median Mean 3rd Qu. Max.
~-2.83600 -0.51550 0.03029 0.06216 0.58720 3.99900

The rnorm function generates standard-normal random numbers—in this
case, 100 of them. (Two additional arguments allow us to sample values
from a normal distribution with arbitrary mean and standard deviation;
the defaults, employed here, are mean=0 and sd=1.) Notice that when a
vector prints on more than one line, the number of the leading element
of each line is printed in brackets.

The function summary is an example of a generic function: How it
behaves depends on its argument. Applied (as here) to a numeric vec-
tor, summary prints the minimum and maximum values of the argument,
along with the mean, median, and first and third quartiles.

If we wish to print only one of the elements of a vector, we can specify
the index of the element within square brackets; for example, x[21] is

4. Two common naming styles are conventionally employed in S: (1) separating parts of a name by
periods, as in total.income, or (2) separating by uppercase letters, as in totalIncome. I prefer the
first seyle, but this is purely a matter of raste.



the 21st element of the vector x:

> x[21]
[1] -0.6118454

Indexing in S is quite flexible. We may also specify a vector of indices
> x[11:20]

[1] -0.6142086 -0.4670955 0.4189673 —0.5148772 -0.1747306
{63

0.2045780 -0.1506608 1.7473240 -0.2781960 1.3142770

Negative indices cause the corresponding values of the vector to be omit-
ted:

> x[-(11:100)]

[1] -0.04821767 -0.60571637 -0.39322377 0.43416765 0.28387745
[6] 1.35957233 0.06703925 0.07497876 0.34170083 0.61477147

The parentheses around 11:100 serve to avoid generating numbers from
—11 to 100!
A vector may also be indexed by a logical vector of the same length.

Logical values are either T (or TRUE) or F (or FALSE), and frequently arise
through the use of comparison operators:
== equals

!=  not equals
less than or equals
< less than
>  greater than
>= greater than or equals
Note, in particular, that the double equals (==) is used for testing equality,
because = is reserved for specifying function arguments.

<=

Use of = for Assignment in S4

in S4, the equal sign (=) may also be used for assignment in place of the
arrow (<-), except inside a function call, where = is exclusively employed
to specify arguments by name. Because reserving the equal sign for spec-

ification of function arguments leads to clearer S expressions, | encourage
you to use the arrow for assignment, even in S4.

Logical values may also be used in conjunction with the logical oper-
ators:

and
| or
! not
Here are some simple examples:
> 1 ==2
[1] FALSE

[1] TRUE
>1<2

[1] TRUE
>1>2

[1] FALSE
> 1 >= 2
[1] FALSE
>T&T

[1] TRUE
>T&F

[1] FALSE
>F&F

[1] FALSE .
>TIT

[1] TRUE
>T | F

[1] TRUE
>F | F

[1] FALSE
> 1 (T, F)
[1] FALSE TRUE

i i com-
nd a somewhat more extended example illustrating the use of the
a
parison and Jogical operators:
s> z <- x[1:10])
>z

7745
[1] -0.04821767 -0.60571637 -0.39322377 0443416762 %.2?1?7147
{6l 1.35957233 0.06703925 0.07497876 0.3417008 .

ALS ALSE
>[i]<FAiSi TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE F

> 0.5 o TRUE
>[21] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FAL

= note [o] i han |
£ hlgher precedence t
z < 0.5 l z > 0.5 # te <, >

> 0.5 # absolute value -
>[?§SéilSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALS

> z[abs(z) > 0.5]
[1] -0.6057164 1.3595723 0.6147715

The following points are noteworthy:

] ces in
m We need to be careful in typing z < -0.5; glthoughl.rr;gitosgawould
S expressions are optional, the space after < is cruaal: .
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assign the value 0.5 to z.° (As I mentioned, even when the spaces

are not required around operators, they usually help to clarify an S
expression.)

m Logical operators have lower precedence than comparison operators,
and so z < -0.5 | z > 0.5 is equivalent to (z < -0.5) | (z >
0.5). When in doubt, parenthesize!

® The abs function takes the absolute value of its argument.

® As the last expression illustrates, we can index a vector by a logical
vector of the same length, selecting the elements with TRUE indices.

In addition to the vectorized and (&) and or (|) operators presented
here, there are special and (&&) and or (! |) operators that take individ-
ual logical values as arguments. These are sometimes useful in writing
programs (see Chapter 8).

it User-Defined Functions

As you probably guessed, S includes functions for calculating many com-
mon statistical summaries, such as the mean of a vector:

> mean(x)
f1] 0.06216418

Recall that x is a vector of 100 standard-normal random numbers. Were
there no mean function, we could have calculated the mean straightfor-
wardly using sum and length:

> sum(x)/length(x)
[1] 0.06216418

To do this repeatedly every time we need a mean is inconvenient, so—in
the absence of the “primitive” function mean—we could define our own
mean function:

> my.mean <- function(x) sum(x)/length(x)
>

5. Another occasional (and difficult to diagnose) source of errors is the artempted use of the under-
score in variable names, as in
>x.1<=0
Error in 1 <- 0 : invalid (do_set) left-hand side to assignment

The underscore character (_) is a synonym for the assignment arrow (<-). The offending expression
is therefore equivalent to x <- 1 <- 0, which tries to assign the value O to the numeral 1 and then

o x. Even correct use of the underscore leads to difficult-to-read expressions and should therefore
be discouraged.

Wy e
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8 We define a function using the function function. (I could nor resist
writing that sentence!®) The arguments to function, here just x, are
the formal arguments of the function being defined, my.mean. As
explained below, when the function my.mean is called, a real argument
will appear in the place of the formal argument. The remainder of
the function definition is an expression specifying the body of the
function.

® The rule for naming functions is the same as that for naming vari-
ables. I avoided using the name mean because I did not wish to redefine
the primitive function mean, which is a generic function with greater
utility than our simple version. Actually, we cannot damage the defi-
nitions of primitive functions, but if we define a function of the same
name, our version will be used in place of the standard function, and
is said to “shadow” or “mask” the standard function. This behavior
is explained in Chapter 2.

® The bodies of most user-defined functions are more complex than in
this example, consisting of a compound expression comprising sev-
eral simple S expressions, enclosed in braces and separated by semi-
colons or newlines. I introduce additional information about writing

functions as required, and take up the topic more systematically in
Chapter 8.

Having defined the function my.mean, we may use it in the same man-
ner as the primitive functions. Indeed, many of the standard functions in
S are not true primitives, but are themselves written in the S language.

> my.mean(x)

[1] 0.06216418
> my.mean(y)

(1] 1.536566

> my.mean(1:100)
11 s0.5

As these examples illustrate, there is no necessary correspondence
between the name of the formal argument x of the function my.mean
and the actual argument to the function, which need not be named x.
Function arguments are evaluated by the interpreter, and it is the value
of the argument that is passed to the function, not its name. Function
arguments (and any variables that are defined within a function) are local
to the function: Local variables exist only while the function executes
and are distinct from global variables of the same name. In the example,

6. Actually, function is a “special form,” not a true function, because its arguments (here, the
formal argument x) are not evaluated. The distinction is technical, and it will do no harm to think
of function as a function that rerurns a function as its result.



the last call to my.mean passed the value 1:100 to the argument x, but
this did not change the contents of the global variable x:

> x
[1] -0.04821767 -0.60571637 —0.39322377 0.43416765 0.28387745

[6] 1.35957233 0.06703925 0.07497876 0.34170083 0.61477147
[11] -0.61420864 -0.46709553 0.41896732 -0.51487725 -0.17473063

~5 Cleaning Up

In R, user-defined variables and functions exist in a region of memory
called the “workspace.” The R workspace can be saved at the end of
a session (or even during the session), in which case it is automatically
loaded at the start of the next session. Different workspaces can be saved
in different directories, as a means of keeping several projects separate.
Starting R in a directory loads the corresponding workspace.”

The objects function lists the names of variables and functions resid-
ing in the R workspace:

> objects()

[1] "last.warning" "my.mean" "x" "y" "z"

The function objects requires no arguments, but we nevertheless need
to type parentheses after the function name. Were we to type only the
name of the function, then objects would not be called—instead the
definition of the objects function would be printed. (Try it!) The variable
last.warning was generated automatically by the R interpreter earlier
in the current session:

> last.warning

$"longer object length

is not a multiple of shorter object length"
c(1, 2, 3, 4) + c(4, 3, 2)

Saving Data in S-PLUS

In S-PLUS, user-defined objects are saved in files in a special data direc-
tory (named _data in the Windows version of S3, and .data in 54), and
therefore persist from session to session. As in R, projects can be kept

separate by using different directories. The objects function lists objects
in the S-PLUS data directory.

7. See the Web site for the book and the R documentation for additional information on organizing
separate projects.

- natural in the process of using Sto defme vgnables——and cl)cc:xascxgze
et that we do not want to retain. It is good general p b
_a“Y f“nCt‘OHS'd—_n R if you intend to save the workspace, t0 clean up a }elr
» S-P;Ifjfsgoarill tilme to time. We may use the remove function to delete the

yours

variables x, y, and 2

s> remove(x, Y. z)
> objects() )
[1] "last.warning" "my .mean

(1 am keeping the function my.mean for use in Section 1.1.7.)

Using remove in S-PLUS

] r vec-
in S-PLUS, you must specify the names of objects as a chan::;ie. ec
trc;r rather’than the objects themselves, as the argument to T :

2 b
example, remove(c(C’x’, ’y’, 2 N.

Command Editing and Output Management

i find it necessary to cOI-
of typing an S command, you may o s
lrréctthgrcgl(:;?fy t}tlipcommand before pressing Enter. Both R and S

-line editing:
support command-line e .
m In S-PLUS, you may use€ the left and right arrow keys or the mouse

ithi nd line; the
move the text-insertion cursor within t‘he ‘currenthcolr.nr:athci End, e
Home key moves the cursor to the beginning of the line,

to the end of the line.

i left
m R is somewhat less flexible: You must move the cursor with the
and right arrow, Howme, and End keys.

i th
m The Delete key deletes the character under the cursor 1n R, and to the
right of the cursor in S-PLUS.

m In both R and S-PLUS, the Backspace key deletes the character to the
left of the cursor.

b
The standard Windows Edit menu and keyboard shortct::ttse xrrtlay e
- employed, along with the mouse, to block, copy, and pas .

' ommand-history mecha-
tion. both R and S-PLUS 1mplerpent ac >
- lﬂ_ adi;::t)?llows you to recall (and edit) previously entered con;(rzasn s
mftr;:out having to retype them. Use the up and down arrow y
w
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move backward and forward in the command history. Press Enter in

the normal manner to submit a recalled (and possibly edited) com-
mand to the interpreter.

It is advantageous to use an editor to write functions: It is imprac-
tical to write any but the simplest function at the command prompt.
The Script window in S-PLUS incorporates a reasonable, if minimal, pro-
gramming editor. Moreover, copy-and-paste operations may be used with
any plain-text (ASCII) editor, such as Windows Notepad. Simply prepare
your program in the editor, block and copy a function definition, and
paste this text into the R Console or S-PLUS Commands window. Alter-
natively, a program prepared in an editor may be saved to a file and read
into R or S-PLUS via the source function.

My personal preference is to use the shareware WinEdt programming
editor, which may be set up to work directly with R (see the R Web site
for details). Many people prefer the free Emacs editor, which is available
for a variery of platforms, including Windows, and which may also be
set up to work with R or S-PLUS.

I also use an editor for data analysis in S, blocking and submitting com-
mands for execution rather than typing them at the command prompt.
{In Notepad, you would block and copy the commands to be submitted,
pasting them directly into the R Console or S-PLUS Commands win-
dow.) This mode of operation makes it easy to fix errors, particularly
in multiline commands, and to try out alternatives. When [ work in the
editor, I build a permanent, reusable record of input to my S session as
a by-product.

As T work, [ save text and graphical output from $ in a word-
processing (e.g., Word or WordPerfect) document. I simply block and
copy text output from R or S-PLUS, pasting it into the word processor,
and taking care to use a monospaced (i.e., rypewriter) font, such as
Courier New. Similarly, I copy and paste graphs. In both R and S-PLUS,
right-clicking on a graphics window brings up a menu that allows you
to save the graph to a file or copy it to the Windows clipboard; alter-
natively, you may use the File menu in R or the Edit menu in S-PLUS
when a graphics window has the focus. In R, copying the graph to the
clipboard as a Windows Metafile (rather than as a bitmap) generally
produces a more satisfactory result.

- When Things Go Wrong

No one is perfect, and it is impossible to use a computer without mak-
ing mistakes. Part of the craft of computing is learning to recognize the
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source of errors. I hope that the following advice and information will
help you to fix errors in S commands:

® Although it never hurts to be careful, do not worry too much about
generating errors. An advantage of working in an interactive system is
that you can proceed step by step, fixing mistakes as you go.

® If you are unsure whether a command is properly formulated, or
whether it will do what you intend, try it out and carefully examine
the result. You can often debug a command, or series of commands,
by trying it on a scaled-down problem with an obvious answer. If the
answer that you get differs from the one that you expected, focus your
attention on the nature of the difference.

B When you do generate an error, read the error or warning message
carefully. It is often possible to figure out the source of the error from
the message. Some of the most common errors are simply typing mis-
takes: For example, when the interpreter tells you that an object is not
found, suspect a typing error (or that you have forgotten to attach the
library containing the object).

B Sometimes, however, the source of an error may be subtle, particularly
because an S command can generate a sequence of function calls (of
one function by another), and the error message may originate deep
within this sequence. The traceback function (cailed with no argu-
ments) provides information about the sequence of function calls lead-
ing up to an error. Although the formar of the output from traceback
differs among R, $3, and S4, the general nature of the informarion
provided is similar. Here is a simple example employing R:

> letters
[1] ma" "b™ nct tg" ve" "fV "g" "h" "iv "j" k" 1" "m" "n" "o"
[16] "p" "g" "x" “"s" U Mt v gt txt oyt otz
> my.mean(letters)
Error in sum(..., na.rm = na.rm) : invalid "mode" of
argument

The variable letters contains the lowercase letters, and, of
course, calculating the mean of character data makes no sense. The
source of the problem is obvious here, but notice that the error occurs
in the sum function, not directly in my.mean; traceback shows the
(short) sequence of function calls culminating in the error:

> traceback()
2: sum(x)
1: my.mean{letters)

B Remember that not all errors generate error messages. Indeed, the ones
that do not are more pernicious, because you may fail to notice them.



a income: Percentage of occupational incumbents 1 the 170U Lo wees

Al
ways check your output for reasonableness, and follow up suspi-
sus who earned more than $3500 per year.

cious results.

yOu Ileed to lnterrupt the execution Of a comman }) &0[1 nla)

in R or S-PLUS by i
pressing the Esc (escape) k i i
mouse to press the Stop button in the tocl))lb)ar.ey, oA R by using the

@ education: Percentage of occupational incumbents in 1950 who were
high-school graduates.

m prestige: Percentage of respondents in a social survey who rated the
occupation as good or better in prestige.

Duncan performed 2 linear least squares regression of prestige on
income and education. He proceeded to use the regression equation
to predict the prestige Jevels of occupations for which the income and

AN EXTENDED ILLUSTRATIO
N: DUNCAN'S
OCCUPATIONAL-PRESTIGE REGRESSION

In thi educational levels were known but for which there were no direct prestige
n this section, I illust i i i in hi i
frame (data se;) N rate how to regd data from a fle into an S data ratm%s._Duncar;1 did qo; leninlploy occupational type 1n his analysis, and 1
how to ; > oW to draw some simple graphs to examine the data largely ignore the variable here.
€
b thI:_ 2rld(::rm a linear least squares regression analysis, and how tc;
of “diagnosticc’l’uxice);h()fdth? Prellml.nary regression model using a variety T
tional capabilities of z s. It is my intention both to introduce some addi- Reading the Data e B e
data analysis Al? c())f hand to convey the flavor of using S for statistical o v
. these topics a : e
so you should not be concernr::d if ;gutf;g;?;i atdlength later in the book, The first step is tO read the data into an S data frame, using the i
The data in the file Duncan.txt wer o erstand all of the details. read.table function: a
(1961). The first few li e originally analyzed by Duncan D , _
nes of the data file are as follows: 5> Duncan <- read.table( D:/data/Duncan.txt’, header=T)
’ > Duncan
accountant type income education prestige type income education prestige
pilot pro: 62 86 82 accountant prof 62 86 82
: prof 72 76 83 ilot rof 72 76 83
archit P 2
authorect prof 75 92 90 architect prof 75 92 90
prof 55 90 76 author rof 55 90 76
chemist P
minister prof 64 86 90 chemist prof 64 86 90
professor prof 21 84 87 minister prof 21 84 87 :
dentist prof 64 93 93 professor prof 64 93 93
reporter prof 20 100 90 dentist prof 80 100 90
; we 7 87 52 reporter we 67 87 52
engin
glneer prof 72 86 88 engineer prof 72 86 88
The first row . > summary(Duncan)
of . ;
e the file consists of variable (column) names: type type income education prestige
Contain,s e a; ion, and prestige. Each subsequent row of the ﬁlé be :21 Min. : 7.00 Min. 7.00 Min. @ 3.00 -
ata for one i : . . . .
this data set, the observ(;lz-s ervation, with values separated by spaces. I prof:12 ::;21; 00 veaion . 2500 rl«:n?: 100
row is the r;ame of the olons are occupanions, and the first entry in each o Mea: .41.87 Mean . 52.56 Mean .47.69
ccupation; note i : 141, : B2. :47. .
for the observation-name Col?xmn "’l"h that there is ng variable name 3rd Qu.:64.00 3rd Qu.: 84.00 3rd Qu.:81.00
10 of which are shown . There are 45 occupations in all, only e .g1.00 Max. :100.00 Max.  :97.00
The variables are defined as follows: m The initial argument to read.table is the location of the file contain-
m type: Type of occupati ing the data to be read. Note that the file name is given in quotes and
_ upation—bc (blue collar), we (white coll hat f d slashes (/ d rather than th dard Wind
(professional or managerial) ) collar), or prof that forward slashes (/) are use rather than the standard Windows
& ) back slashes (\) to separate directories in the path to the file.
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# The argument header=T tells read.table that the first row of the file
contains variable names.

® Here, I assign the data frame to the variable Duncan. I prefer to begin
the names of data frames with uppercase letters, to use lowercase
names for variables within dara frames, and to name data frames for
the files from which the data were read. S enforces none of these con-
ventions, but I find that they help me to keep things straight.

The file Duncan.txt is supplied with the car library. As explained
in the next chapter, this and other data sets in an attached library are
available as data frames without being read explicitly. To duplicate the
example here, make a copy of Duncan.txt.?

Typing Duncan implicitly invokes the generic print function, which
prints the data frame in a suitable format. (This is normally how objects
get printed in S.)

The generic summary function also has a “method” that is appropriate
for data frames. As described in Chapter 8, generic functions know how
to adapt their behavior to their arguments. Thus, a function such as
summary may be used appropriately with diverse kinds of objects. Because
the column in the data file corresponding to type contains character
data, the read. table function by default made type a factor—a kind of
variable appropriate for categorical data. The summary function simply
counts the number of observations in each category of the factor. The
other variables—income, education, and prestige—are numeric, and
the summary function reports the minimum, maximum, median, mean,
and the first and third quartiles for each numeric variable.

“Attaching” the Duncan data frame allows us to access its columns by
name, much as if we had directly defined the variables in the data set:

> attach(Duncan)
> prestige
[1] 82 83 90 76 90 87 93 90 52 88 57 89 97 59 73 38 76 81 45 92

[21] 39 34 41 16 33 53 67 57 26 29 10 15 19 10 13 24 20 7 3 16
f41] 6 11 8 41 10

Reading and manipulating data is the subject of Chapter 2, where the
topic is developed in greater detail.

8. After installing the car library on a Windows system, locate the subdirectory library\car\data
under the main R directory. The zip archive Rdata.zip in this subdirectory contains all the data
sets in car. Using a zip utility, extract the file Duncan.txt from the archive. Alternatively, if you are
using S-PLUS, the file Duncan. txt may be downloaded from the Web site for the book.
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Figure 1.3  Distribution of prestige.

Examining the Data T

Before fitting a regression model to Duncan’s occupational-prestige data,
it is advisable to become more intimately acquainted with the data.
Figure 1.3(a) shows a histogram for the response variable prestige,
produced by a call to the hist function:

> hist(prestige)
>

The function hist is different from the S functions that we previously
encountered in that it does not return a visible result,” bur rather has
the “side effect” of drawing a graph; the graph appears in a separate
graphics window, and it may be copied to the Windows clipboard, saved
to a file, or printed.

The histogram in Figure 1.3(a) has perhaps too few bins (class inter-
vals) for a data set with » = 45 observations. A rough rule is that the
number of bins for a variable with fewer than 100 observations should
be no more than about 2./7. (Other, more flexible, rules are described

in Chapter 3.) Using S to calculate the recommended maximum number
of bins:

> 2xsqrt(length(prestige))
[1] 13.41641

9. The hist function does, however, return an invisible result—a “list” that contains the information
necessary to draw the histogram. To render this list visible, assign it to a variable, e.g., result <-
hist(prestige), and then print result. Lists are discussed in Chapter 2.
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I therefore request 12 bins:

> hist(prestige, nclass=12)
>

igl;sn[;ct)riltcisdle)zircir::v;ng a hls,t’ogram with 10 bins (balancing my request
against its desire I« Fi§m21§e3(gﬁb§rsdfor Fge endpoints of the bins); the
. . . The distributi i
;0 bedblmodal, with observations stacking up nzzrotfhep Il‘c?:vzg:ngpf;;éi
g;):;lr;ra:;;s).(piiizgsz r;::.;estlge is a percentage, this behavior is not alto-
B ed, we may ﬁr}d later on that we need to use a logit
g s). or.51mllar transformation of this variable. As it turns out
ho&eveﬁ it will prove unnecessary to transform prestige. o
allone i, .(t)}l:ldhalso examine the distributions of the predictor variables,
20 f] tl th('e relationship between prestige and each predictor, and
draw: a S1ons 1plbetweeq th’e; two predi'ctors. The pairs function in S
dr cat;erg ot matrices”; the function is quite flexible, and I take
ad a(;-;;age ol thflS flexibility by placing h.istograms for the variables along
gonal of the graph. To better discern the pairwise relationships

amon i 1
p g the variables, I augment each scatterplot with a least squares line
and with a nonparametric-regression smooth.°

> pairs(cbind(prestige,income,education),
+ panel=function(x,y){

+ points(x,y)

+ abline(lm(y~x), lty=2)

+ lines(lowess(x,y))

+ },

+ diag.panel=function(x){

+ par (new=T)

: ?ist(x, main="", axes=F, nclass=12)
+ )

>

;lzﬁs :}):pressnon is substantially more complex than the other S function
s that we have encountered, and therefore requires some explanation:

m Th i i i
e cbind (column-bind) function constructs a three-column matrix

fI‘Om prestl q
g Py in me, and uc ion, as y p
e come ed at 3 re ulred b the alrs

- . .
The panel argument to pairs specifies a function that draws each

off-diagonal panel of the scatterplot matrix. The function must have

10. Nonparametric rcgression is discussed i
: .
0 P in the Web appendlx to the book. Here‘ the method is

two arguments (which I call x and y), representing the horizontal and
ertical variables in each plot. The panel function can be a prede-
fined function or—as here—can be a so-called “anonymous” function,
defined “on the fly.”!’ My panel function consists of three statements:

1. points(x,y) plots the points.

2. abline(lm(y~x), 1ty=2) drawsa broken line (specified by the
line type,'? 1ty=2) with intercept and slope given by a linear
regression of y on X, computed by the 1m (linear-model) func-
tion. Note the sequence of events here: The 1m function fits a
linear regression of y on x, returning a linear-model object; this
object is then passed as an argument to abline, which uses the
intercept and slope of the regression to draw a line on the plot.

3. 1lines(lowess(x,y)) draws a solid line (the default line type)
showing the nonparametric regression of y on X. Again, note
the sequence of operations: The lowess function computes and
returns coordinates for points on a smooth curve relating y to
x; these coordinates are passed as an argument to 1ines, which
connects the points with line segments on the graph.

Because there is more than one statement in the function body, these
statements are enclosed as 2 block in curly braces, { and J. Notice
how the lines are indented to reveal the structure of the expres-
sion; this convention is optional but advisable. If no panel function
is specified, then panel defaults to points: Try simply specifying
pairs (cbind(prestige,income, education)).

m The diag.panel argument similarly tells pairs what, in addition to

the variable names, to plot on the diagonal of the scatterplot matrix.
The function supplied must take one argument (x), corresponding to
the current diagonal variable:

1. par(new=T) prevents the bist function from trying to clear the
graph: High-level S plotting functions, such as plot, hist, and
pairs, by default clear the current graphics device prior to draw-
ing a new plot. Other, lower-level plotting functions, such as
points, abline, and lines, do not clear the current graphics
device by default, but rather add elements to the graph.

2. hist(x, main="", axes=F, nclass=12) plots a histogram for
x, suppressing both the main title and the axes.

11. The function is termed “anonymous” because it literally is never given a name: The function
object returned by function is left unassigned.

12. Chapter 7 discusses the construction of S graphics, including selection of line types.

!
|
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Figure 1.4  Scatterplot matrix for prestige, income, and education.

The scatterplot matrix for prestige, income, and education appears
in Figure 1.4. The variable names on the diagonal label the cells: For
example, the scatterplot in the upper right-hand corner has education
on the horizontal axis and prestige on the vertical axis.

The pairs Function in S-PLUS

The pairs function in S-PLUS does not take a diag.panel argument, so

it is not possible to place univariate displays, such as histograms, down
the diagonal of the scatterplot matrix.

Like prestige, education appears to have a bimodal distribution. S
used rather too many bins in plotting the distribution of income, but
some follow-up work (not shown) suggests that the distribution is best
characterized as irregular. The pairwise relationships among the variables
seem reasonably linear, but two or three observations appear to stand
out from the others.

If you frequently want to make scatterplot matrices like this, then
it would save work to write a function to do the repetitive parts of

e R

o ednk Rl
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the task:'?

> scatmat <- function(..., nclass=NULL) {
+ pairs(cbind(...),

+ panel=function(x,y){

+ points(x,y)

+ abline (lm(y~x), lty=2)

+ lines(lowess(x,y))

+ },

+ diag.panel=function(x){

+ par (new=T)

+ hist(x, main="", axes=F, nclass=nclass)
+ b

+ )

+ }

>

Specifying nclass=NULL in the function definition provides a default
value for nclass, to be passed as an argument to hist. Note the use of
the special formal argument . . .; this argument will match any number
of real arguments when the function is called. For example:

> scatmat (prestige,income, education, nclass=12)
>

produces a graph identical to the graph as shown in Figure 1.4. (The
scatterplot. matrix function in the car library, described in Chapter 3,
is substantially more flexible than the scatmat function just defined.)

It is not convenient in S to identify individual observations in a scat-
terplot matrix, and so I proceed by drawing a separate scatterplot for the
two predictors, education and income:

> plot(income, education)

> # Use the mouse to identify points:
> identify(income, education, row.names(Duncan))
(11 6 16 27

> row.names (Duncan) {c(6,16,27)]

(1] "minister" “conductor"  "RR.engineer"

The function plot is the workhorse high-level plotting function in S.
Called with two vectors as arguments, plot draws a scatterplot. The
identify function allows us to label points interactively with a mouse.
The first two arguments to identify give the coordinates of the points,
and the third argument gives point labels; row.names (Duncan) extracts
the observation names from the Duncan data frame to provide point
labels. The result is shown in Figure 1.5. Notice that identify returns

13. As mentioned, the pairs function in S-PLUS does not take a diag.panel argument, and so
scatmat will not work without modification. Try it!
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Figure 1.5  Scatterplot of education by income. Three points were labeled

interactively with the mouse.

the indices of the identified points {as I verify by indexing into the vec-
tor row.names (Duncan)]. To duplicate this figure, you have to move the
mouse cursor near each point to be identified, clicking the left mouse

button; after identifying the points, click the right mouse button to exit .

from identify.

Ministers are unusual in combining relatively low income with a rel-
atively high level of education; railroad conductors and engineers are
unusual in combining relatively high levels of income with relatively low
education. Additional work (not shown) confirms that ministers and con-
ductors are the observations that also stand out in the other scatterplots.

None of these observations, however, is an outlier in the univariate dis-
tributions of the three variables.

Regression Analysis

Duncan’s interest in the data was in how prestige is related to income
and education in combination. I have thus far addressed the distribu-
tions of the three variables and the pairwise (that is, marginal) rela-

tionships between them. Following Duncan, I fit 2 linear least squares
regression to the data:

> duncan.model <- lm(prestige ~ income + education)
> duncan.model

Call:

lm(formula = prestige ~ income + education)

Coefficients: .
(Intercept) income education
-6.0647 0.5987 0.5458

Recall that I attached the Duncan data frame, and cox}seqll{ently I C;;l]
access the variables in it by name. The argument to 1m 1s a:n;zﬂ'-n;io el
formula, with the response variable on the left of th.e tilde ( ')'bl e ingthe
hand side of the model formula specifies .the Predlctordvana} es in the
regression. We read the formula as “prestige 1s modeled as income p
edl"ll"(ila:i;n-function returned a linear-model object, which'l assigned to
the variable duncan.model. Printing this object (by typing its nar;le) ;:lr:r-l
duced a brief report of the results of the regression. The summary Iunc
produces 2 more complete report:

> summary(duncan~m°del)

Call: ‘
Im(formula = prestige ~ income + education)

Residuals:
Min 1Q Median 3Q Max
-29.5380 -6.4174 0.6546 6.6051 34.6412

Coefficients:

Estimate Std. Error t value Pr>lt])

- 27194 -1.420 0.163
(Intercept) —-6.06466 4,
income 0.59873 0.11967 5.003 1.05e~05 **x*
education 0.54583 0.09825 5.555 1.73e-06 **xx*

Signif. codes: 0 wxx>  0.001 *x’ 0.01 ‘%> 0.05
¢ 0.4 <71

Residual standard error: 13.37 on 42 degrees of fr?ed3m82

Multiple R-Squared: 0.8282, Adjusted R-squared: .

F-statistic: 101.2 on 2 and 42 degrees of freedom,
p-value: 1.11e-016

Both income and education have highly statisticall.y sxg(;uﬁcapt, ;n:.
rather large, regression coefﬁcientg For example, Aholdmg. e gcatlc;serage
stant, a 1 percent increase in high-income earners 1s associated on
with an increase of about 0.6 percent 1n high prestige ratings. -
Notice that S writes very small (anc.i very large) numbers 1r{ Os_csleor
tific notation. For example, 1.05e-05 1s 1t60- be reaq as 1.05 x
0.0000105, and 1.11e-016 = 1.11 x 10" is effectlvely 0. A
If you find the «statistical significance’ asFerlsks that R prints y
ing, as I do, you can suppress them by entering

> options(show.signif.stars=F)
>




28

INTRODUCING R AND S-PLUS

Placing this statement in the Rprofile file in R’s etc subdirectory

will permanently banish the offending asterisks. You can use the same
approach to set other options in R.

Linear models are described in greater detail in Chapter 4.

Linear-Model Summaries in S-PLUS

The summary method for linear models in S-PLUS prints the correlation
matrix for the coefficient estimates by default. To suppress the coefficient
correlations, include the argument correlation = F. As well, S-PLUS
does not print significance asterisks.

Regression Diagnostics

Assuming that the regression in the previous section adequately summa-
rizes the data does not make it so. It is therefore wise after fitting a
regression model to check the model carefully. S includes some facili-
ties for “regression diagnostics,” and the car library associated with this

book substantially augments these capabilities. We may attach the car
library in the following manner:

> library(car)

Attaching package ‘car’:

The following object(s) are masked from package:base :

dfbetas rstudent

The warning message indicates that the dfbetas and rstudent functions
in car will take precedence over functions with the same names in R’s
base library. Chapter 2 explains how objects in one library can mask those
in another. It is generally bad practice to mask objects in the base library,
but the versions of dfbetas and rstudent in car are more general than
the standard ones; see Chapter 6 on regression diagnostics for details.

The 1m object duncan.model contains a variety of information about
the regression. The rstudent function uses some of this information to
calculate “studentized” residuals for the model. A histogram of the stu-
dentized residuals, in Figure 1.6(a), is unremarkable:

> hist(rstudent(duncan.model), nclass=12)
>

e R s e SR DR G e

i

L

Ho e

b (il <t A~

Sided

LAV

1.2 AN EXTENDED ILLUSTRATION

Histogram of rstudent(duncan.modei)

o u

- minister o {

Frequency

Studentized Residuals{duncan.model)

|
Hl=N=

o~ o y
o~ 4 .
o - O reporter
— T T 1 T T T T T
2 40 1 2 3 -2 R 0 1 2

rstudent{duncan.model) t Quantiles

(a) (b)

Figure 1.6  Histogram and ¢ quantile-comparison plot of the studentized

residuals from the regression of prestige on income and
education.

Observe the sequence of operations here: rstudent takes a linear-modet
object (previously returned by 1m) as an argument, returning studentized
residuals, which are passed to hist.

If the errors in the regression are really normally distributed with zero
means and constant variance, then the studentized residuals are each
t-distributed with 7z — p — 1 degrees of freedom, where p is the number
of coefficients in the model (including the regression constant).

The generic qq.plot function (from the car library) has a method for
linear models:

> qq.plot(duncan.model, labels=row.names(Duncan), simulate=T)
(11 96

The resulting plot is shown in Figure 1.6(b). The function extracts the
studentized residuals and plots them against the quantiles of the appro-
priate ¢ distribution; if the studentized residuals are ¢-distributed, then
the plot should be approximately linear. The comparison line on the plot
is drawn through the quartiles of the two distributions. In this case, the
residuals pull away from the comparison line at both ends, suggesting
that the residual distribution is relatively heavy tailed, and raising the
possibility that we might do better here with a method of robust or resis-
tant regression than with least squares.*

Setting simulate=T in the call to qq.plot produces a bootstrapped
pointwise 95 percent confidence envelope for the studentized residuals.

14. Robust and resistant regression in S are described in the Web appendix to the book.




;[}‘ll';ecfiesstlrcilgiiisoitrasy ne.ar'the boundaries of the envelope at both ends of
o ety Oin.ts ?r::afymg the labels argument to qq.plot allows us
to Kent ofpthe disttt?;acFlvely; 1 ldentlﬁed' the most extreme residual at
eact of the dis ribution—the occupations reporter and minister.
Tc)qqd.p 1(')t unction returns the indices of the two identified points.
E:)m_emeup ];Cate t'hls gra'ph,' point the mouse successively at the two
_ observations, clicking the left mouse button when the cursor
is near each point. After identifying the points, exit from lot b
clicking the right mouse button. ’ ey
culla;t)ir:ceﬁ:d to Theck for hlgh-}evgrage and influential observations by cal-
g hat values _and Cook’s distances, plotting these statistic i
the observation indices: e

> plot(hatvalues(duncan.model))
> abline(h = ¢(2,3)*3/45)

> y( . hat.value ( unc .model row.names (Dun.
>
identif 1:45 s(d an.mode ) » ( Can))

> plot(cookd(duncan.model))
> abline(h = 4/(45-3))

> iden 1fy(1 145, ¢ kd(dun an
’ . » . can
t 00. C model) row.names (Dun ))

E:te Vzlﬁ)ltjs au“ier as\l::lw{)n me¥gure 1.7. The horizontal lines in the plot of
pa vaue ,p o yha l:Lnfe, are at twice and three times the average
pat val c,l ug cut?f s.for noteyvorthy values. The horizontal line
in. e flln ex plot of Cook’s distances is at 4/(n — p), a rough cutoff for
il'l;srm 'uencel:ameasu.re. As.before, I used _the identify function to label
eresting observations with the mouse; in each case, identify returns
the indices of the identified points. Qur attention is cirawn in particul
to the occupations minister and conductor. ’ o
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Figure 1.7

Ir}dex ploFs of hat values and Cook’s distances from the regression
of prestige on income and education.

prestige | others

Added-Variable Plot Added-Variable Plot

Fryre— minister ©

o minister

prestige | others

60 40 20 O 20 40

income | others education | others

Figure 1.8 Added-variable plots for income and education in Duncan’s
occupational-prestige regression.

Because observations in a regression can be jointly as well as individ-
ually influential, I also examine added-variable (partial-regression) plots
for the predictors:

> av.plots(duncan.model, 1abels=row.nanes(Duncan))

1: (Intercept)
2:income
3:education
Selection: 2

1: (Intercept)
2:income
3:education
Selection: 3

1: (Intercept)
2:income
3:education
Selection: O
>

The av.plots function in car presents the user with a numbered menu to
select plots; I chose added-variable plots for the income and education
coefficients, and ignored the regression constant (intercept).15 In each
plot, av.plots gave me an opportunity to identify points interactively
with the mouse. The added-variable plots, which appear in Figure 1.8,

15. Including the argument ask=F 10 av.plots draws all the plots on a single page.
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Component+Residual{prestige)

confirm and strengthen our previous observations: We should be con-
cerned about the occupations minister and conductor, which work
together to decrease the income coefficient and increase the education
coefficient. The occupation RR.engineer has relatively high leverage on
these coefficients, but is more in line with the rest of the data.

I next use the cr.plots function to generate component-plus-residual
(partial-residual) plots for income and education:

> c¢r.plots(duncan.model)

1:income
2:education
Selection: 1

1l:income
2:education
Selection: 2

1:income
2:education
Selection: 0
>

The cr.plots function also interacts with the user through a text
menu. The component-plus-residual plots appear in Figure 1.9. Each
plot includes a least squares line (representing the regression plane
viewed edge on in the direction of the corresponding predictor) and a

Component+Residual Plot

Component+Residual Plot

Component+Residual(prestige)

20 40 80 80 20 40 80 80 100

income education

Figure 1.9  Component-plus-residual plots for income and education in

Duncan’s occupational-prestige regression. The span of the
nonparametric-regression smoother was set to 0.7.
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Figure 1.10  Spread-level plot of studentized residuals from Duncan’s regres-

sion of prestige on income and education.

nonparametric-regression smooth (with the span of the smoother set to
0.7—see Section 3.2). The purpose of these plots is to detect nonlinearity,
evidence of which is slight here.

I check whether the size of the residuals changes with the fitted values,
using the spread.level.plot function, which has a method for linear
models: :

> spread.level.plot(duncan.model)

Suggested power transformation: 0.8653151

The graph produced by spread.level.plot, in Figure 1.10, shows lit-
tle association of residual spread with level, and the suggested power
transformation of the response variable, prestige®®’, is essentially no
transformation at all. Using the ncv.test function in car, I follow up
with score tests for nonconstant variance, checking for an association of
residual spread with fitted values and with any linear combination of the
predictors:

> ncv.test(duncan.model)
Non-constant Variance Score Test
Variance formula: ~fitted.values

Chisquare = 0.3810967 Df =1 p = 0.5370169

> ncv.test(duncan.model, var.formula= ~ income + education)
Non-constant Variance Score Test

Variance formula: ~ income + education

Chisquare = 0.6976023 Df =2

p = 0.7055334

Both tests are far from statistically significant.
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Finally, on the basis of the influential-data diagnostics, I try removing
the observations minister and conductor from the regression:

> remove <- which.names(c(’minister’, ’conductor’), Duncan)
> remove

[1] 6 16

> duncan.model.2 <- update(duncan.model, subset=-remove)
> summary(duncan.model.?2)

Call:
Im(formula = prestige ~ income + education, subset = -remove)
Residuals:

Min 1Q Median 3Q Max

-28.612 -5.898 1,937 5.616 21.551

Coefficients:

Estimate Std. Error t value Pr(>it|)
(Intercept) -6.40899 3.65263 -1.755 0.0870
income 0.86740 0.12198 7.111 1.31e-08
education 0.33224 0.09875 3.364 0.0017

Residual standard error: 11.42 on 40 degrees of freedom

Multiple R-Squared: 0.876, Adjusted R-squared: 0.8698

F-statistic: 141.3 on 2 and 40 degrees of freedom,
p-value: 0

Note the use of the which.names function in car to determine the indices
of minister and conductor; actually, I knew from my previous work
that these are observations 6 and 16. Rather than respecifying the regres-
sion model from scratch, I refit it using the update function, removing the
two observations via the subset argument to update. The coefficients of
income and education have changed substantially with the deletion of
these two observations. Further work (not shown) suggests that remov-
ing the occupations RR.engineer and reporter does not make much of
a difference.

Chapter 6 has more extensive information on regression diagnostics in
S, including use of functions in the car library.

S FUNCTIONS FOR BASIC STATISTICS

The focus of this book is on using S for regression analysis, broadly
construed. In the course of developing this subject, we will encounter,
and indeed have encountered, a variety of S functions for basic sta-

tistical rpethods (mean, hist, etc.), but the topic is not addressed
systematically.

Table 1.1 S Functions for basic statistical methods. All functions are present in both
R and S-PLUS, unless marked [R] for R only or [S] for S-PLUS only. All
functions are in the R base library, unless the library is shown explicitly.
Chapter references are to the current text.

Method S Function(s) R Library Reference

Histogram hist Chapter 3

Stem-and-leaf display stem Chapter 3

Boxplot boxplot Chapter 3

Scatterplot plot Chapter 3

Time-series plot ts.plot ts

Mean mean

Median median

Quantiles quantile

Extremes range, min, max

Variance var

Standard deviation stdev [S], sd [R]

Covariance matrix var

Correlations cor

Basic statistical dnorm, dt, df, dchisqg, dbinom, etc. Chapter 3

distributions: normal,  pnorm, pt, pf, pchisg, pbinon, etc.
t, F, chi-square, gnorm, qt, qf, qchisq, gbinom, etc.
binomial, etc. rnorm, rt, rf, rchisg, rbinom, etc.

Simple regression 1m Chapter 4

Multiple regression 1m Chapter 4

Analysis of variance aov, lm, anova Chapter 4

Contingency tables table, xtabs [R], crosstabs [S] Chapter 5

Generating random sample, rnorm, etc.

samples

t tests for means t.test

Tests for proportions prop.test, binom.test ctest

chi-square test for chisq.test ctest

independence
Various friedman.test, kruskal.test, ctest

nonparametric tests

wilcox.test, etc.

Because I expect that most readers
is worthwhile to draw an orienting roa
statistical operations. Rather than des
statistics at length, however, I simply

of the book will be new to S, it
d map of S functions for familiar
cribing the use of S for basic applied
provide in tabular form (Table 1.1)

the names of some of the S functions that implement these operations,
referring the interested reader to the on-line documentation (accessible,
recall, through the help command and ? operator). This table is not
meant to be complete.

All the functions listed are in libraries attached by default to the
S-PLUS search path. As indicated under R Library, some of these func-
tions are in R libraries other than the base library; these other libraries

liae-oirig e,

—
Bt
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are not attached by default, but are part of the basic R distribution.
Where there is a substantial discussion of a function later in the present
text, this is indicated under Reference. Functions present only in one of
R or S-PLUS are marked [R] or [S], as appropriate; other functions are
common to R and S-PLUS, although the details of their implementation
may differ.

Y ST T
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———
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CAPTER 2

Reading and
Manipulating Data

%s I mentioned in the Preface, a traditional statistical computer pack-
L Aage, such as SAS or SPSS, is designed primarily to transform rect-
angular data sets into printed reports and graphs. A rectangular data set
has rows representing observations and columns representing variables.
S, in contrast, is a programming language embedded in a statistical com-
puting environment; it is designed to transform data objects into other
data objects, (generaily brief) printed reports, and graphs.

S supports rectangular data sets, in the form of data frames, but as
a programming language, it also supports a variety of other data struc-
tures. One by-product of this generality is flexibility: It is typically much
easier to accomplish tasks not directly designed into the software in S
than in a statistical package. Another by-product of generality, however,
is complexity. In this chaprter, I attempt to cut through the complexiry
to explain what you need to know about data in S in order to work
efficiently as a statistical data analyst:

® There are often many ways to accomplish a task in S. For com-
mon tasks—reading data into an S data frame from a text file, for
example—I generally explain one or two good ways to proceed rather
than aiming at an exhaustive treatment.

® | limit the presentation to those aspects of the S language that are most
useful to practicing data analysts. For example, I avoid a fully general
exposition of S modes and classes.

& [ suggest that users of S adopt conventions that will facilitate their
work and minimize confusion, even when the S language does not

37



enforce these conventions. For example, I begin the names of data

frgmes with uppercase letters and the names of variables in data frames
with lowercase letters.

Section 2.'1 describes how to read data into S variables and data
frames. Section 2.2 explains how to work with data stored in data
fFames. Section 2.3 introduces matrices, higher-dimensional arrays, and
lists. Finally, Section 2.4 deals more abstractly with the organizati;n of
data in S, introducing the notions of data modes, attributes, and classes.

DATA INPUT

Although there are many ways to read data into R and S-PLUS, I will
concentrate on just four: typing data directly at the keyboard, reading
data from an ASCII (plain-text) file into an S data frame, “importing”
datg saved by a statistical package, and accessing data from a library. In
addirion, I will explain how to generate certain kinds of patterned data.

1t is impractical to enter large data sets directly at the keyboard, and it
is wasteful to reenter data that are already available in machine-readable
form. It is occasionally convenient, however, to enter small data sets
directly, and we frequently find it necessary to enter a few numbers, for
example, in the process of augmenting a graph.

We saw in the previous chapter how to use the ¢ (combine) function
to enter a vector of numbers:

> x <~ ¢(1,2,3,4)
> X
[1] 1234

The same procedure works for vectors of other types, such as character
data or logical data:

> names <- c(’John’, ’Georges’, ’Mary’)
> names
[1] "John" "Georges" "Mary"

> v <= c(T,F)
> v

{1] TRUE FALSE

Characrer strings may be input between single or double quotation
marks: for example, *John’ and "John" are equivalent.

Entering data in this manner works well for very short vectors.
Although entries may be continued over several lines simply by omitting
the terminal right parenthesis until the data are complete,! it is more
convenient to use the scan function, which prompts with the index of
the next entry.

To illustrate, consider the darta in the following table, which originates
in an experiment conducted by Fox and Guyer (1978):

Sex
Condition Male ‘ Female
Public Choice | 49 54
64 61
. 37 79
52 64
68 29
Anonymous 27 40
58 39
52 44
41 34
30 44

In this experiment, 20 four-person groups of subjects played 30 trials of a
game in which each subject could make either cooperative or competitive
choices. Half the groups were composed of women and half of men.
Half the groups of each sex were randomly assigned to a public-choice
condition in which the choices of all individuals were made known to the
group after each trial; the other groups were assigned to an anonymous-
choice condition in which only the aggregated choices were revealed. The
data in the table give the number of cooperative choices made in each
group, out of 30 x 4 = 120 choices in all.
To enter the number of cooperative choices as a vector:

> cooperation <- scan()
1: 49 64 37 52 68 54

7: 61 79 64 29

11: 27 58 52 41 30 40 39
18: 44 34 44

21:

Read 20 items

1. You may have noticed in some of the previous examples that when an S statement is continued
on additional lines, the > prompr is replaced by the interpreter with the + (plus) prompt on the
continuation lines. S recognizes that a line is to be continued when it is syntactically incomplete—for
example, when a left parenthesis needs to be balanced by a right parenethesis or when the right
argument to a binary operator, such as *, has not yer been entered.
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> cooperation
[1] 49 64 37 52 68 54 61 79 64 29 27 58 52 41 30 40 39 44

{191 34 44
The number before the colon on each input line is the index of the next
observation to be entered; entering a blank line terminates scan. I entered
the data for the Male, Public-Choice treatment first, followed by the data
for the Female, Public-Choice treatment, and so on.

I could enter the condition and sex of each group in a similar manner,
but because the data are patterned, it is more economical to use the rep
(replicate) function. The first argument to rep specifies the data to be
repeated; the second argument specifies the number of repetitions:

> rep(5,3)

11 555

> rep(c(1,2,3), 2)
1 123123

When the first argument to rep is a vector, the second argument can be a
vector of the same length, specifying the number of times to repeat each
entry of the first argument:

> rep(1:3, 3:1)
(11111223

In the current context, we may proceed as follows:

> condition <- rep(c(’public’, ’'anonymous’), ¢(10,10))
> condition

{11 "public" "public" "public" "public"
[5] "public" "public" "public" "public"
[9] "public" "public" "anonymous" "anonymous"

[13] "anonymous" "anonymous" "anonymous" "anonymous"
[17] "anonymous" "anonymous" "anonymous" "anonymous"

> sex <- rep(rep(c(’male’, ’female’), c(5,5)), 2)

> sex
(1] "male" "male" "male" "male" "male" "female"
(7] "female" "female" "female" "female" "male" "male"
[13] "male" "male" "male" ‘“female" "female" "female"

[19] "female" "female"

To construct the vector sex, I used rep twice—first to generate five
’male’ character strings followed by five ’female’ character strings, and
then to repeat this pattern of 10 strings two times.

Finally, it is convenient to put the three variables together in a data
frame:

> Guyer <- data.frame(cooperation, condition, sex)
> Guyer

cooperation condition sex
1 49 public male

k‘i_
3
4
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2 64 public  male
3 37 public male
19 34 anonymous female
20 44 anonymous female

In the process, condition and sex are converted from character variables
into factors. The distinction is discussed in Section 2.2.3.

Both R and S-PLUS have spreadsheet-like data editors that may be
used to enter, examine, and modify data frames. [ find these editors use-
ful primarily for viewing the contents of data frames and for modifying
individual values, for example, to fix an error in the data. In R, to enter
data into a new data frame, we may type:

> Guyer <- edit(as.data.frame(NULL))
>

This opens the data editor, into which we may type variable names and
data values. Figure 2.1 shows the editor after the data values have been
entered. (Out of laziness, I entered condition as P or A, and sex as M
or F.) An existing data frame can be viewed or edited by using the fix
function, as in £ix(Guyer).

- Data Editor

" |cooperation|condition|sex. varé vars varé var?

64

37

52

68

54

61

79

alafs|afa|sjo|d

64

29

127

i ==|=|=]{=]=

58

=

> | = | | = o[ [ ]|o]|o|o|o|0|[o}o|o|o

IR

(KN

Figure 2.1  The R data editor.



The Data Editor in S-PLUS

In S-PLUS, we may enter a new data frame in the data editor by selecting
New —> Data Set from the File menu. To view or edit an existing data
frame, double-click on its name in the Object Explorer window.

> File Input to a Data Frame

Delimited Data

The previous example shows how to construct a data frame from preex-
isting variables. More frequently, as illustrated in Chapter 1, we read data
from an ASCII (plain-text) file into an S data frame using the read.table
function. I assume that the input file is organized in the following manner:

m The first line of the file gives the names of the variables separated
by “white space” (one or more blanks or tabs); these names are
valid $ variable names and, in particular, contain no embedded blanks.
If the first variable in the dara file is to provide row names for the
data frame, then there is one fewer variable name than columns of
data; otherwise, there is one variable name for each column. I prefer
to use variable names that begin with lowercase letters.

B Each subsequent line contains data for one observation, with the data
values separated by white space. The data values in each line need
not appear in the same place as long as the number of values in
each line is the same; ensuring that the data values line up neatly in
columns makes it easier to examine the input file, however. Charac-
ter data either contain no embedded blanks (my preference) or are
enclosed in single or double quotes. Thus, for example, wvhite.collar,
'white collar’, and "white collar" are valid character-data val-
ues, but white collar is not. Character and logical data are automat-
ically converted to factors on input. You may avoid this conversion
by specifying the argument as.is=T to read.table, but representing
categorical data as factors is generally desirable.

One variation on this simple scheme is worth mentioning: Many pro-
grams, such as spreadsheets, create ASCII files with dara values sep-
arated by commas—so-called “comma-delimited files.” Supplying the
argument sep=",’ to read.table accommodates this form of data. In

comma-delimited data, blanks may be included in unquoted character
strings, but commas may not.

m Missing data appear explicitly, preferably encoded by the characters
NA (not available); in particular, missing data are not left blank. There
is, therefore, the same number of data values in each line of the input
fle even when some of the values represent missing data. If different
characters are used to encode missing data, and it is inconvenient to
replace them in an editor, then you may specify the missing-data code
in the na.strings argument to read.table. For example, both SAS
and SPSS recognize the period (.) as an input missing-data indicator;
to read a file with period encoding missing data, use na.strings=’.".
For more details, see the on-line documentation for read.table.

This specification is more rigid than it needs to be, but it is clear and
usually is easy to satisfy. Most spreadsheet, database, and statistical pro-
grams are capable of producing ASCII files of this format, or produce files
that can be put in this form with minimal editing. Use an ASCII editor
(such as Windows Notepad or a programming editor) to edit data files.
If you use a word-processing program (such as Word or WordPerfect),
be careful to save the file as an ASCII file; read.table cannot read data
saved in the default formats employed by word-processing programs.

I use the data in the file Prestige.txt to illustrate.” This data set is
similar to the Duncan occupational-prestige data employed as an example
in the previous chapter, with occupations as observations. Here are a few
lines of the dara file (recall that the ellipses represent omitted lines—there
are 102 occupations in all):

education income women prestige census type

GOV.ADMINISTRATORS 13.11 12351 11.16 68.8 1113  prof
GENERAL .MANAGERS 12.26 25879 4.02 69.1 1130  prof
ACCOUNTANTS 12.77 9271 15.70 63.4 1171 prof
COMMERCIAL.ARTISTS 11.09 6197 21.03 57.2 3314  prof
RADIO.TV.ANNOUNCERS 12.71 7562 11.15 57.6 3337 wc
ATHLETES 11.44 8206 8.13 54.1 3373 NA
SECRETARIES 11.59 4036 97.51 46.0 4111  wc
ELEVATOR.OPERATORS  7.58 3582 30.08 20.1 6193 bc
FARMERS 6.84 3643 3.60 44.1 7112 NA
FARM.WORKERS 8.60 1656 27.75 21.5 7182 bc
ROTARY.WELL.DRILLERS 8.88 6860 0.00 35.3 7711 bc

The variables in the data set are defined as follows:

B education: the average number of years of education for occupational
incumbents in the 1971 Census of Canada.

2. As in Chapter 1, you can extract this file from the car library or download it from the Web site
for the book.
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® income: the average income of occupational incumbents, in dollars, in

the 1971 Census.

m women: the percentage of occupational incumbents in the 1971 Census
who were women.

W prestige: the average prestige rating for the occupation obtained in
a sample survey conducted in Canada in 1966.

B census: the code of the occupation in the standard 1971 Census occu-
pational classification.

® type: professional and managerial (prof), white-collar (wc), blue-
collar (bc), or missing (NA).

To read the data into S, I enter’:

> Prestige <- read.table(’D:/data/Prestige.txt’, header=T)
> Prestige

education income women prestige census type

GOV . ADMINISTRATORS 13.11 12351 11.16 68.8 1113 prof
GENERAL . MANAGERS 12.26 25879 4.02 69.1 1130 prof
ACCOUNTANTS 12.77 9271 15.70 63.4 1171 prof
COMMERCIAL.ARTISTS 11.09 6197 21.03 57.2 3314 prof
RADIO.TV.ANNOUNCERS 12.71 7562 11.15 57.6 3337 wc
ATHLETES 11.44 8206 8.13 54.1 3373 NA
SECRETARIES 11.59 4036 97.51 46.0 4111  wc
ELEVATOR . OPERATORS 7.58 3582 30.08 20.1 6193 bc
FARMERS 6.84 3643 3.60 44.1 7112 NA
FARM. WORKERS 8.60 1656 27.75 21.5 7182 bc
ROTARY.WELL.DRILLERS 8.88 6860 0.00 35.3 7711 bc

Even though I am running R on a Windows system, directories in the file
system are separated by a / (forward slash) rather than by the standard
Windows \ (back slash); this is because the back slash has special mean-
ing in an S character string.* To keep things tidy, I prefer to name a data
frame for the file from which the data were read, and to begin the name
of the data frame with an uppercase letter.

3. Including the argument header=T is unnecessary in R when, as here, the first row of the data file,
containing variable names, has one fewer entry than the dara lines that follow. In this setup, the first
entry on each data line represents the row label for the corresponding observation. Nevertheless, it
does not hure to specify header=T, and gerting into the habit of doing so will save you grief when
you read a file with variable names but without row names.

4. The back slash serves as a so~called “escape” character, indicatng that the next character has
special meaning: For example, \n represents a new-line character (i.e., go to the beginning of the
next line), while \t is the tab character. Such special characters can be useful in creating printed
outpur, A back slash may be entered in a character string as \\.

*

e

ot BRI

Bhae Al VPR <

i

2.1 DATA INPUT

45

Occasionally, when we try to read a data set from a text file, some
of the input lines contain the wrong number of elements, producing an
error in read.table. To simulate this condition, I prepared a version of
the Prestige.txt data file in which missing values (i.e., NAs) were erro-

neously replaced by blanks. Trying to read this file yields the following
result:

> Prestige <- read.table(’D:/data/Prestige-bugged.txt’, header=T)
Error in scan(file = file, what = what, sep = sep, quote = quote,
skip = 0, : line 34 did not have 7 elements

Having determined that the data file Prestige-bugged.txt contains
at least one error, it is convenient to use the count.fields function
to discover whether there are other errors as well, and, if there are, to
determine their location:

> counts <- count.fields(’D:/data/Prestige-bugged.txt’)
> counts

Mr77777777777T7 77T T T TTTTTTTTTTTT

B17777677T7T7T77T 7777 T7 7777776777777
617776777677 7T7T7T7T7T7T77777 777777777
1) 7777777777777

> which(counts != 7)

(1] 35 54 64 68

Once we know the location of the errors, it is simple the fix the input file
in a text editor that keeps track of line numbers. (Notice that read.table
reports that the 34th data line is in error, and that this corresponds to
the 35th line in the file, since the first line is the header.)

Fixed-Format Data

You may find it necessary to read data from a fixed-format input file
in which the data values are not separated by delimiters such as white
space or commas. To illustrate the process of reading these kinds of
data, I have created a fixed-format version of the Canadian occupational-

prestige data set, which I placed in the file Prestige-fixed.txt. The file
looks like this:

GO¥. ADMINISTRATORS

13.111235111.1668.81113prof
GENERAL . MANAGERS

12.2625879 4.0269.11130prof

ACCOUNTANTS 12.77 927115.7063.41171prof
TYPESETTERS 10.00 646213.5842.29511bc
BOOKBINDERS

8.55 361770.8735.29517bc

The first 25 characters in each line are reserved for the occupation name,
the next five spaces for the education value, the next five for income,
and so on. Notice how many of the data values run together, making
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the file difficult to decipher: If you have a choice, fixed-format input is
best avoided. We may use the read.fwf (read fixed-width-format files)
function to input the data into an R data frame:

> Prestige <- data.frame(scan(’d:/data/Prestige-fixed.txt’,
+ list (occupation="", education=0, income=0, women=0,

+ prestige=0, census=0, type=""),

+ widths=c(25, 5, 5, 5, 4, 4, 4)))

>

The col.names argument to read.fwf supplies names for the variables;
row.names indicates that one of the variables (here, occupation) should

be used to define row names; and the widths argument gives the field
width of each variable in the input file.

Reading Fixed-Format Data in S-PLUS

S-PLUS does not have read. fwf, but much the same task may be accom-
plished with the scan function. Creating a data frame is a two-step pro-
cess, using scan to read the data into a list of data vectors and then
converting this list into a data frame. For example:

> Prestige <~ data.frame(scan(’d:/data/Prestige-fixed.txt’,

+ list(occupation="", education=0, income=0, women=0,
+ prestige=0, census=0, type=""),

+ widths=c(25, 5, 5, 5, 4, 4, 4)))

>

The second argument to scan is a list defining variable names and
types, with "* (an empty character string—or any character string) indi-
cating character data and 0 (or any number) indicating numeric data. The
widths argument works as for read.fwf in R. It should be possible to
specify a row.names argument to data.frame, but | have not been able
to get this to work properly in S-PLUS.

You will doubtless encounter data sets that have been prepared in another
statistical system, such as SAS or SPSS. If you have access to the other
program, then it is generally straightforward to “export” the data as
an ASCII file, subsequently reading the data into S with read.table, as
described in the preceding section. Alternatively, R provides facilities for
“importing data” from other programs through functions in the foreign

library (which may be downloaded from the R Web site). Currently, func-
tions are available for importing data files from S3, SAS, SPSS, Minitab,
and Stata. There is also an R interface to the Excel spreadsheet program.’

Importing Data in S-PLUS

In S-PLUS, it is most straightforward to import data via the graphical inter-
face: Select Import Data—> From File from the File menu. S-PLUS will
read data from several statistical programs, including SAS, SPSS, Minitab
(S4 only), Stata, and Systat, the mathematical programs Gauss and Matlab,
and a variety of spreadsheet and database programs.

Accessing Data in S Libraries

Many § libraries, including the car library, contain data sets. In R, which
stores working data in memory, it is necessary to use the data function to
read a data frame from an attached library into memory. Then the data
frame may be attached in the normal manner. For example, to access the
Duncan data frame from the car library in R:

> library(car)

> data(Duncan)

> Duncan

type income education prestige
accountant prof 62 86 82
pilot prof 72 76 83
architect prof 75 92 90
author prof 55 90 76
chemist prof 64 86 90
minister prof 21 84 87
professor prof 64 93 93
janitor bc 7 20 8
policeman bec 34 47 41
waiter bc 8 32 10

> attach(Duncan)
>

5. In addition, both R and S-PLUS have sophisticated facilities for accessing data stored in binary
formats, in database-management systems, on the Internet, and in other locations. These facilities
are described in the manuals for R and S-PLUS.
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Accessing Data in S-PLUS Libraries

In S-PLUS, it is sufficient to attach a library, via the library function, to
make the data sets in the library accessible. If the data set is a data frame,
then the data frame may simply be attached in the normal manner. That
is, the data function is not needed and is not used in S-PLUS.

I have defined several variables in the course of this section, some of
which are no longer needed, so it is time to clean up:

> objects()

(1] "Duncan" "Guyer" "Prestige" "condition"
{5] "cooperation" “"names" "gex" et

[9] lell

> remove(names, v, X)

>

I retain the data frames Duncan, Guyer, and Prestige and the vectors

condition, cooperation, and sex for subsequent illustrations in this
chapter.

Reminder: Removing Objects in S-PLUS

Remember that in S-PLUS the names of objects to be removed must be
given as a character vector: for example, remove (c(’names’, 'x’, 'y’)).

Getting Data Out of S

I hope and expect that you will rarely have to get your data out of S to
use with another program, but doing so is nevertheless straightforward.
As in the case of reading data, there are many ways to proceed, but
a particularly simple approach is to use the write.table function to
output a data frame to an ASCII file. The syntax for write.table is
essentially the reverse of that for read. table. For example, the following
command writes the Duncan data frame to a file:

> write.table(Duncan, ’c:/temp/Duncan.txt’)
>

By default, row labels and variable names are included in the file. In
R, data values are separated by blanks, and all character strings are
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quoted, whether or not they contain blanks. This default behavior can
be changed—see the documentarion for write.table.

Exporting Data from S-PLUS

In S-PLUS, data values exported by write.table are separated by com-
mas, and strings are not quoted. S-PLUS can also export data in a variety
of other formats: Select Export Data—To File from the File menu.

WORKING WITH DATA FRAMES

It is perfectly possible in S to analyze data stored in vectors, but I gen-
erally prefer to begin with a data frame, typically read from a file via
the read.table function, or accessed from an S library. Almost all the
examples in this book use data frames from the car library.

In many statistical packages, such as SPSS, a single data set is active
at any given time; in other packages, such as SAS, individual statistical
procedures draw their data from a single source. This is not the case
in S, where data may be used simultaneously from several sources, pro-

viding substantial flexibility, but also the possibility of interference and
confusion.

The Search Path 2.2.1

When you type the name of a variable or a function, the R interpreter
looks for an object of that name in the locations specified by the search
path. To view the current search path, use the search function:

> search()

[1] ".GlobalEnv"
[4] "Autoloads"

"D“.ncan"
"package:base"

"package:car"

If, therefore, I type the name of the variable prestige, R will look first
in the “global environment” (the region of memory in which R stores
working data), then in the data frame Duncan (which I attached to the
search path in the preceding section), then in the car library (which I
previously attached via the library function), then in a special list of
objects whose loading from libraries can take place automatically (and
which I will subsequently ignore), and, finally, in the R base library.
Because there is no variable named prestige in the working data, but



there is such a variable in the Duncan data frame, when I type prestige,
I get the prestige variable from Duncan, as we may readily verify:

> prestige
[1] 82 83 90 76 90 87 93 90 52 88 57 89 97 59 73 38 76 81

[19] 45 92 39 34 41 16 33 53 67 57 26 29 10 15 19 10 13 24
[37] 20 7 316 6 11 8 41 10

> Duncanl[, ’prestige’]
[1] 82 83 90 76 90 87 93 90 52 88 57 89 97 59 73 38 76 81

[19] 45 92 39 34 41 16 33 63 67 57 26 29 10 15 19 10 13 24
[37] 20 7 3 16 6 11 8 41 10

Typing Duncanl[,’prestige’] directly extracts the column named
prestige from the Duncan data frame.®

Suppose, now, that I attach the Prestige data frame to the search
path. The default behavior of the attach function is to attach a data

frame in the second position of the search path, after the global environ-
ment:

> attach(Prestige)

> search()

[1] ".GlobalEnv" "Prestige" "Duncan"

[4] "package:car" "Autoloads" "package:base"

Consequently, the data frame Prestige is attached before the data frame
Duncan; and if I now simply type prestige, then the prestige variable

in Prestige will be located before the prestige variable in Duncan is
encountered:

> prestige
[1] 68.8 69.1 63.4 56.8 73.5 77.6 72.6 78.1 73.1 68.8
[11) 62.0 60.0 53.8 62.2 74.9 55.1 82.3 58.1 58.3 72.8
(21] 84.6 59.6 66.1 87.2 66.7 68.4 64.7 34.9 72.1 69.3
[91] 38.9 36.2 29.9 42.9 26.5 66.1 48.9 35.9 25.1 26.1
[101) 42.2 35.2

The prestige variable in Duncan is still there—it is just being “shad-
owed” or “masked” (that is, hidden) by prestige in Prestige:

> Duncanl[, *prestige’]

[1] 82 83 90 76 90 87 93 90 52 88 57 89 97 59 73 38 76 81
[19] 45 92 39 34 41 16 33 53 67 57 26 29 10 15 19 10 13 24
[371 20 7 316 6 11 8 41 10

6. Information on indexing data frames is presented in Section 2.3.4.

Because variables in one data frame can shadow variables in another,
it is generally good practice to attach only one data frame at a time—
unless there is a valid reason for accessing data simultaneously from two
data frames. You can remove a data frame from the search path with the
detach function:

> detach(Prestige)

> search()

{1] ".GlobalEnv" "Duncan" "package:car"
[4] "Autoloads" "package:base"

Calling detach with no arguments detaches the second entry in the search
path.

Using detach in S-PLUS

In S-PLUS, you need to specify the name of the data frame to be
detached as a character string, rather than the object itself: e.g.,
detach(’Prestige’). This usage also works in R.

Now that Prestige has been detached, prestige again refers to the
variable by that name in the Duncan data frame:

> prestige

[1] 82 83 90 76 90 87 93 90 52 88 57 89 97 59 73 38 76 81
[19] 45 92 39 34 41 16 33 53 67 57 26 29 10 15 19 10 13 24
[37] 207 3 16 6 11 8 41 10

Because the working data are the first item in the search path, glob-
ally defined variables shadow variables of the same names anywhere else
along the path. This is why I use an uppercase letter at the beginning
of the name of a data frame. Had I, for example, named the data frame
prestige rather than Prestige, then the variable prestige within the
data frame would have been shadowed by the data frame itself. To access
the variable would then require a relatively awkward construction, such
as prestigel, ’prestige’].

Our focus here is on manipulating data, but it is worth mentioning that
S locates functions in the same way that it locates data. Consequently,
functions earlier on the path can shadow functions of the same name
later on the path.

In the previous chapter, 1 defined a function called my.mean, avoid-
ing the name mean so that the mean function in the base library would
not be shadowed. To understand the consequences of failing to take this



52

READING AND MANIPULATING DATA

precaution, note that the mean funcrion in the base library can calculate
“trimmed” means as well as the ordinary arithmetic mean. For example:

> mean(prestige)
[1] 47.68889

> mean(prestige, trim=0.1)
[1] 47.2973

Specifying mean(prestige, trim=0.1) removes the largest and smallest
10 percent of the dara, calculating the mean of the middle 80 percent of
observations. Trimmed means provide more efficient estimates of the cen-
ter of a heavy-tailed distribution—for example, when outliers are present;
in this example, trimming makes little difference.

Suppose that I define my own mean function, making no provision for
trimming:

> mean <- function(x){

+ warning(’'The mean function in the base package is shadowed’)
+ sum(x) /length(x)

+ }

>

The first line in my mean function prints a warning message. The purpose
of the warning is simply to verify that this function executes in place of
the mean function in the base library. Had I carelessly shadowed the base
mean function, I would not have politely provided a warning:

> mean(prestige)
(1] 47.68889
Warning message:

The mean function in the base package is shadowed in: mean(prestige)

The essential point here is that because my mean function resides in
the global environment, it is encountered on the search path before the
mean function in the base package. Shadowing the base mean function is
inconsequential as long as my function is equivalent; but if, for example,
I try to calculate a trimmed mean, my function does not work:

> mean(prestige, trim=0.1)

Error in mean(prestige, trim = 0.1) : unused argument(s) (trim ...)
Shadowing standard S functions is a practice generally to be avoided.

Suppose, for example, that a robust-regression function tries to calculate

a trimmed mean, but fails because the base mean function is shadowed

by my redefined mean function. If we are not on the lookout for this

problem, the resulting error message may prove cryptic.
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Illustrating Function Shadowing in S4

The standard mean function is a generic function, and S4 does not permit
a nongeneric version of a function to shadow the generic. (Try it.) To
illustrate one function shadowing another in 54, let us instead use stdev:

> stdev <- function (x) {

+ warning("The standard stdev function is shadowed")
+ sgrt (var(x))
+ }

Warning: Conflicting definitions of "stdev" on databases
9C:\Program Files\Insightfull\splus6\users\Administrator"
and "splus"

> stdev (prestige)
Warning in stdev(prestige): The standard stdev function
is shadowed

[1] 17.204

> remove(’stdev’)
>

Note that S4 warns us of the conflict when our stdev is defined.
Remember to remove stdev when you are finished.

We can, however, use the same name for a variable and a function, as
long as the two do not reside in the working data. Consider the following
example:

> mean <- mean(prestige) # uses then overwrites our mean function

Warning message:

The mean function in the base package is shadowed in: mean(prestige)

> mean
[1] 47.68889

Recall that everything to the right of the # {pound sign) is a comment,
ignored by the S interpreter. Specifying mean <- mean(prestige) causes
our mean function to calculate the mean prestige and then stores the
result in a variable called mean, which has the effect of destroying our
mean function (and good riddance to it). The variable mean in the working
data does not, however, shadow the function mean in the base library:

> mean(prestige, trim=.1)
{1] 47.2973

Before proceeding, let us tidy up a bit:

> remove{mean)
> detach(Duncan)
>



The Search Path in S-PLUS

A word on the Flifference in the search path between R and S-PLUS: Data
and functn_ons in S-PLUS are stored in files, which reside in data and
function directories. Here is an example of a search path in S-PLUS:

> search()

[1]1 "C:\\Program Files\\Insightful\\splus6\\users\\Administrator"
[2] "Duncan"
{3} "car"

[4] "splus"
[5] "stat"

[6] "data"

[7] “"trellis"
[8] "nlme3"
[9] "menu"
[10] "sgui"
[11] "winspj"
[12] "main"

>

This gxample uses S-PLUS version 6, based on S4; the listing of the search
path in S-PLUS 2000, based on S3, looks different. The first directory
contains the working data, and is therefore analogous to the global envi-
ronment in R. (The concept of an environment in R does not correspond
precisely to a data base in S-PLUS—an environment is more nearly a list
of data bases—but the distinction is subtle, and | will not pursue it here.)
The Duncan data frame, added to the search path via the attach function,
is in the second position, followed by the car library. Notice that several
libraries appear by default at the end of the path.

Missing Data

MlSSlng flata are a regrettably common feature of real data sets. Two
kinds of issues arise in handling missing data:

W There are relatively deep statistical issues concerning how best to use
available information in the presence of missing data (see, for exam-
ple, Little & Rubin, 1987; Schafer, 1997). I will ignore these issues
here, except to remark that S is well designed to exploit sophisticated

approaches to missing data (and, indeed, the methods described in
Schafer, 1997, are available in §7)

7. See the missing library for S-PLUS 6 and the less extensive norm library for R.

@ There are intellectually trivial but often practically vexing mechanical
issues concerning computing with missing data in S. These are the
subject of the present section. Partly these issues arise because of the
diverse data structures and kinds of functions available simultaneously
to the S user, but partly similar issues arise in all statistical computing
systems, although they may sometimes be disguised.

As we have seen, on data input, missing values are typically encoded
by the characters NA (not available). The same characters are used to print
missing information. Many functions in S know how to handle missing
data, although sometimes they have to be explicitly told what to do.

To illustrate, let us access the data set Freedman in the car library;
because the car library is already in the search path, all I need to do in
R is to use the data and attach functions; I also print out the first few
rows of Freedman:

> data(Freedman)
> attach(Freedman)
> Freedman([1:10,] # first 10 rows
population nonwhite density crime

AKRON 675 7.3 746 2602
ALBANY 713 2.6 322 1388
ALBUQUERQUE NA 3.3 NA 5018
ALLENTOWN 534 0.8 491 1182
ANAHETM 1261 1.4 1612 3341
ATLANTA 1330 22.8 770 2805
BAKERSFIELD 331 7.0 41 3306
BALTIMORE 1981 21.6 877 4256
BEAUMONT 315 20.7 240 2117
BINGHAMTON 305 0.6 147 1063

These data, on 110 U.S. metropolitan areas, are originally from the
1970 Statistical Abstract of the United States, and were employed by
Freedman (1975) as part of a wide-ranging study of the social and
psychological effects of crowding. (Freedman argues, by the way, that
high density tends to intensify social interaction, and thus the effects of
crowding are not simply negative.) The variables in the data set are as
follows:

m population: total 1968 population, in thousands.
B nonwhite: percentage nonwhite population in 1960.
® density: population per square mile in 1968.

B crime: number of serious crimes per 100,000 residents in 1969.
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Some of Freedman’s data are missing (for example, the populatioen
and density for Albuquerque). Here are the values for density:

> density
[1]1 746 322 NA 491 1612 770 41 877 240
[10] 147 272 1831 1252 832 630 NA NA 328
{191 308 1832 640 1361 NA 583 194 320 215

{100] NA NA 123 132 1170 166 383 419 405
(109] 220 513

Suppose, now, that [ try to calculate the median density. (As we will
see shortly, the density values are highly positively skewed, so using the
mean as a measure of the center of the distribution would be a bad idea.)

> median(density)
(1] NA

S tells me that the median density is missing. This is the pedantically cor-
rect answer: Several of the density values are missing, and consequently
we cannot, in the absence of those values, know the median, but this is
probably not what I had in mind when I asked for the median density.
By setting the na.rm (NA-remove) argument of median to TRUE, [ instruct
S to calculate the median of the remaining, nonmissing values:

> median(density, na.rm=T)
[1] 412

Several other S functions that calculate statistical summaries, such as
mean and var (variance), also work like this, but not all S functions han-
dle missing data in this manner.

Most plotting functions simply ignore missing data. For example, to
construct a scatterplot of crime against density, including only the
observations with valid data for both variables, simply enter:

> plot(density, crime)
> identify(density, crime, row.names (Freedman))
{11 50 67 73

The resulting plot, including three observations identified with the mouse,
appears in Figure 2.2. (Recall that you identify observations by pointing
at them with the mouse and clicking the left mouse button; you exit
from identify by clicking the right mouse button.) It is apparent that
density is highly positively skewed, making the plot very difficult to
read. I would like to try plotting crime against the log of density, but
wonder whether the missing data will spoil the computation. The log
function in S behaves sensibly, however: The result has a missing entry
wherever—and only where—there was a missing entry in the argument:

> log(c(1,10,NA,100), base=10)
{11 0 1 NA 2
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Figure 2.2  Scatterplot of crime by density for Freedman’s data on crowd-

ing and crime. Three cities with high density were identified
interactively with the mouse.

Logs in S4

Remember, in S4, you must use the function logb in place of log to
calculate logs to an arbitrary base.

Other functions that compute on vectors in an element-wise fashion—
such as the arithmetic operators—behave similarly.

I, therefore, may proceed as follows, producing the graph in Figure 2.3:

> plot(log(density, base=10), crime)
>

This graph is much easier to read, and it now appears that there is a
weak, positive relationship between crime and density. (I will address
momentarily how to produce the lines in the plot.)

Statistical modeling functions in S have a special argument, na.action,
which specifies how missing data are to be handled; na.action is set to
a function that takes a data frame as an argument and returns a similar
dara frame composed entirely of valid data. The simplest na.action is
na.omit, which removes all observations with missing data on any vari-
able in the computation. An alternative, for example, would be to supply
an na.action that imputes the missing values.

The prototypical statistical modeling function in S is 1m (linear model),
which is described extensively in Chapter 4. For example, to fit a linear
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Figure 2.3  Scatterplot of crime by logjodensity, showing linear least

squares and nonparametric-regression (lowess) lines.

regression of crime on the log of density, removing observations with
missing data on either crime or density, enter:

> lm(crime ~ log(density, base=10))

Call:
lm(formula = crime ~ log(density, base = 10))

Coefficients:

(Intercept) log(density, base = 10)
1297.3 542.6

The 1m function returns a linear-model object; because the returned object
was not saved in a variable, the interpreter simply printed a brief report

gf;he regression. To plot the least squares line on the scatterplot in Figure

> abline(lm(crime ~ log(density, base=10)), lty=2)
; b

The linear-model object returned by 1m is passed to abline, which draws
the regression line; specifying 1ty=2 (line type 2) produces a broken line.

In R, the default na.action is given by the na.action option, which
is initially set to na.omit:

> options(’na.action’)
$na.action
[1] "na.omit"

There is another na.action function named na.exclude, which is simi-
lar to na.omit in that it removes observations with missing data from a
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statistical model. When quantities such as residuals are calculated, how-
ever, na.exclude causes entries corresponding to observations with miss-
ing data to be NA, rather than simply absent from the result. Filling out
results with NAs can be advantageous because it preserves the number of
observations in the data set—for example, in plotting residuals against a
predictor, we need do nothing special to ensure that both variables have
the same number of entries. I suggest that you adopt na.exclude as the
default na.action. If you run across a modeling function that does not
yet support na.exclude, then you can use na.omit.

pa.action in S-PLUS

in S-PLUS, in contrast to R, there is no global na.action option.
The default na.action for statistical modeling functions such as 1lm is
na.fail, which reports an error when missing data are encountered. To
change this behavior, supply an appropriate na.action argument, such
as na.omit or na.exclude. The na.exclude function is available in 54
but not in S3.

Some functions in S, particularly older ones, make no provision for
missing data, and simply fail if an argument has a missing entry. In these
cases, we need somewhat tediously to handle the missing data ourselves.
A relatively straightforward way to do so is to use the is.na function
to test for missing data, and then to exclude the missing data from the
calculation.

For example, to locate all observations with valid data for both crime
and density, I enter:

> good<—!(is.na(density) | is.na(crime))

> good

[1] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[10) TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE

I then use good to select the valid observations by indexing (a topic
described in Section 2.3.4). For example, it is convenient to use the
Jowess function to add a nonparametric-regression smooth to a scatter-
plot (see Figure 2.3), but lowess makes no provision for missing data:

> lines(lowess (log(density[good], base=10), crime [goodl))
>

By indexing density and crime with the logical vector good, I extract
only the observations that have valid data for both variables.

Suppose, as is frequently the case, that we analyze a data set with a
complex pattern of missing dara, fitting several statistical models to the
dara. If the models do not all employ exactly the same variables, then it is
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likely that they will be fit to different subsets of nonmissing observations.
Then if we compare models, for example, with an incremental F test or
a likelihood-ratio test, the comparison will be invalid.

To avoid this problem, we can first use na.omit to filter the data frame
for missing data, including all variables that we intend to use in our data
analysis. For example, for Freedman’s data, we may proceed as follows,
assuming that we want to use all four variables in the data frame:

detach (Freedman)

Freedman.good <- na.omit(Freedman)

attach(Freedman.good)

Freedman.good[1:10,] # first 10 observations
population nonwhite density crime

vV V V V

AKRON 675 7.3 746 2602
ALBANY 713 2.6 322 1388
ALLENTOWN 634 0.8 491 1182
ANAHEIM 1261 1.4 1612 3341
ATLANTA 1330 22.8 770 2805
BAKERSFIELD 331 7.0 41 3306
BALTIMORE 1981 21.6 877 4256
BEAUMONT 315 20.7 240 2117
BINGHAMTON 305 0.6 147 1063
BIRMINGHAM 739 32.1 272 2285

> dim(Freedman.good)
(1] 100 4

Notice that I detach Freedman because there is no need to access
variables in both data frames simultaneously (and the variables in
Freedman.good, now in position 2 on the search list, will shadow those
in Freedman in any event): As mentioned, it is generally advisable to
have only one data frame attached at a time, unless there is a specific
reason to access data from several sources at once. The dim (dimension)
function tells us that there are 100 observations and 4 variables in the
Freedman.good data frame; all missing data have been removed.

Numeric Variables and Factors

If you construct S data frames as I have suggested, by reading data from
files using read.table, or from numeric and character vectors using
data.frame, your data frames will consist of two kinds of data: numeric
variables and factors. Both read.table and data.frame by default trans-
late character data into factors.

Before proceeding, let us clean up a bit:

> detach(Freedman.good)
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> objects()

[1] "Duncan” "Freedman" "Freedman.good" "Guyer"
[6] "Prestige” "condition" "cooperation" "good"
[9] "last.warning" "sex"

> remove(good, Freedman.good)
>

Near the beginning of this chapter, I entered data trom Fox and Guyer’s
experiment on anonymity and cooperation into the “global” variables
cooperation, condition, and sex. (Variables created by assignment at
the command prompt are global variables defined in the working data.)
The latter two variables are character vectors, as we may verify for
condition:

> condition

[1] "public" "public" "public" "public"
[6] "public" "public" "public" "public"
{11] "anonymous" "anonymous" "anonymous" "anonymous" "anonymous"
[16] "anonymous" “anonymous" "anonymous" 'anonymous" "anonymous"

"public”
“public"

> is.character(condition)
{1] TRUE

Note the use of the “predicate” function is.character. Types of data
are discussed more systematically in Section 2.4.

After entering the data, I defined the data frame Guyer, which also con-
tains variables named cooperation, condition, and sex. I now artach
the data frame, bur before doing so, I remove the global variables so that
they do not shadow the variables of the same names in the dara frame:

> remove(cooperation, condition, sex)

> attach(Guyer)
>

There is, by the way, a general lesson here: Because the global envi-
ronment is the first entry on the search path, global variables in general
shadow variables by the same names in data frames on the path. You
can take advantage of this fact, or it can be a source of trouble and
confusion. For example, when we make a change to a variable in an
attached data frame (e.g., cooperation[1] <- NA) the change is actually
made to a copy of the variable in the working data. Likewise, the assign-
ment cooperation <- cooperation makes a copy of cooperation in
the working data.

Let us take a look at the variable condition in the attached data
frame:

> condition

(1] public public public public
(7] public public public public anonymous anonymous
{13] anonymous anonymous anoNymous amonymous anonymous anonymous

public public
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[19] anonymous anonymous
Levels: anonymous public

> is.character(condition)
[1] FALSE

> is.factor(condition)
[1] TRUE

As promised, the version of condition in the data frame is a factor
ratl}er than a character vector. A factor is a representation of a categorical
variable; factors are stored more economically than character vectors
and the manner in which they are stored saves information about th;
levels (category set) of a factor. When a factor is printed, its values are
not quoted (as they would be for a character vector), and (in R) the levels
are listed. ’

Mgst important, many functions in S, including the statistical modeling
functlons‘such as 1m, know how to deal with factors. For example, when
Fhe generic supnary function is called with a data frame as its argixment
it prints various statistics for a numeric variable but simply counts the,
number of observations in each level of a factor:

> summary (Guyer)
cooperation condition sex

Min. :27.00 anonymous:10  female:10
1st Qu.:38.50 public :10 male :10
Median :46.50

Mean :48.30

3rd Qu.:88.75

Max. :79.00

A Factors have ungrdered levels. An extension, called ordered factors, is
discussed (along with factors) in Chapter 4 on linear models.

Modifying Data

For the most part, data modification in S occurs naturally and unremark-
ably., When I wanted to plot crime against the log of density in Freed-
man’s data, for example, I simply specified log(density, base=10); in
this case, I did not even have to create a new variable, say 1og.densi,ty
as one Would have to do in a typical statistical package like SAS o;
SPSS.8 Similarly, in regressing crime on the log of density, I just used
log(density, base=10) on the right-hand side of the linear model.

8. An alternative would have been i i i 1
e to plot crime against density, using a log axis f i
Chapters 3 and 7 for general discussions of plotring data in S. Y ¢ g axis for density. See
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Creating new variables is similarly straightforward. Unless we take
explicit steps to the contrary, assignments in S create global variables in
the working data. So, for example, with the Guyer data frame -attached
(as is currently the case), let us calculate the percentage of cooperative
choices in each group. Recall that the variable cooperation counts the
number of cooperative choices out of 120 choices in all:

> perc.coop <~ 100*cooperation/120
>

The variable perc.coop resides in the working data, not in the Guyer
dara frame. It is generally harmless, and even desirable, to create global
variables from a currently attached data frame, as long as we are careful
to clean up after we are finished.

Suppose, instead, that I replace the variable cooperation in the data
frame with the percentage of cooperative choices:

> Guyer$cooperation <= 100*cooperation/120

> Guyer
cooperation condition sex
1 40.83333 public  male

2 53.33333 public male
3 30.83333 public male

20 36.66667 anonymous female

Note the use of the $ (dollar sign) for indexing a variable in a data
frame: This “list-like” indexing is discussed in Section 2.3.4. Although the
variable cooperation in the data frame has been modified, the attached
version of the data frame is unaffected, as we may readily verify:

> cooperation
[1] 49 64 37 52 68 54 61 79 64 29 27 58 52 41 30 40 39 44 34 44

Detaching and reattaching the data frame makes the definition of
cooperation current:

> detach(Guyer)
> attach(Guyer)
> cooperation
{11 40.83333 53.33333 30 83333 43.33333 56.66667 45.00000
[7] 50.83333 65.83333 53 33333 24.16667 22.50000 48.33333
[13] 43.33333 34.16667 25.00000 33.33333 32.50000 36.66667
[19) 28.33333 36.66667

A similar procedure may be employed to add a new variable to a data
frame. The following statement, for example, adds the logit (log-odds) of
cooperation to the Guyer data frame:
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> Guyer$logit.coop <- log(cooperation/(100-cooperation))
> Guyer

cooperation condition sex logit.coop

1 40.83333 public male ~0.37085958
2 63.33333 public male 0.13353139
3 30.83333 public male ~0.80792270

20 36.66667 anonymous female -0.54654371

The assignment takes place in the global version of Guyer, however,
rather than in the previously attached version, and consequently the new
variable logit.coop is not immediately available:
> logit.coop
Error: Object "logit.coop" not found
> detach(Guyer)
> attach(Guyer)
> logit.coop
[1] -0.37085958 0.13353139 -0.80792270 -0. 26826399 0.26826399
[6] -0.20067070 0.03333642 0.65587579 0.13353139 -1. 14356368
{11] -1.23676263 -0.06669137 ~-0.26826399 -0.65587579 -1.09861229
(161 -0.69314718 -0.73088751 -0.54654371 -0.92798677 -0.54654371

Because of the awkwardness of detaching and reattaching the data
frame, and the attendant possibility of error, I generally prefer to cre-
ate new and modified variables in the working data rather than directly
in an attached data frame. If I want to save the new or modified vari-
ables in the data frame, then I can assign them to the data frame when I
clean up.

Transforming numerical data is usually a straightforward operation,
simply employing mathematical operators and functions. Categorizing
numerical data and recoding categorical variables are often more com-
plicated matters. A number of functions in S are employed to create and
to deal with categorical data, but I limit discussion to two that I find
particularly useful: the standard S function cut and the function recode
in the car library.

The cut function dissects the range of a numerical variable into class
intervals. The first argument to the function is the variable to be cat-
egorized; the second argument gives either the number of equal-width
intervals or a vector of cut points at which the division is to take place.
For example, to divide the range of cooperation into four equal-width
intervals, I specify:

> coop.4 <~ cut{cooperation, 4)

> summary(coop.4)

(22.5,33.3) (33.3,44.2] (44.2,55] (55,65.9]}

6 7 5 2

R responds by creating a factor, the levels of which are named for the inter-
vals. Because cooperation is not uniformly distributed across its range,
the several levels of coop.4 contain different numbers of observations.

ik
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Suppose, alternatively, that we want to dissect cooperation into three
levels containing roughly equal numbers of observations’ and to name
these levels *1low’, 'med’, and ’high’; we may proceed as follows:

> coop.groups <- cut(cooperation,

+ quantile(cooperation, c(0, 1/3, 2/3, 1)),
+ include.lowest=T,
+ labels=c(’low’, ’med’, ’high’))

> summary(coop.groups)
low med high
7 6 7

Note the use of the quantile function to locate the cut points. Had we
wished to divide cooperation into four groups, for example, we would
simply have specified different quantiles: c(0, .25, .5, .75, 1).

The cut Function in S-PLUS

In S-PLUS, the cut function creates a category variable rather than a
factor. A category is an older S representation for categorical data. It is a
simple matter to “coerce” a category to a factor: For example; coop.4 <-
as.factor(cut(cooperation, 4)).

The recode function may also be used to dissect a quantitative variable
into class intervals. For example:

> coop.2 <- recode(cooperation, ’lo:50=1; 50:hi=2’)
> coop.2
(1J12112122211111111111

The recode function works as follows:

m The first argument is the variable to be recoded, here cooperation.

m The second argument is a character string (i.e., enclosed in single or
double ‘quotes) containing the recode specifications.

m Recode specifications are of the form old.values=new.value; there
may be several recode specifications separated by semicolons.

®m The “old values” may be a single value, including NA; a range, of the
form minimum:mazimum, as in the example (where the special values
1o and hi may be used to stand in for the smallest and largest val-
ues of the variable); a vector of values, typicaily specified with the

9. Roughly equal numbers of observations in the three intervals are the best we can do, because
n = 20 is not evenly divisible by 3.
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c (combine) function; or the special symbol else, which, if present,
should appear last.

An observation that fits into more than one recode specification is
assigned the value of the first one encountered. For example, a group
with cooperation exactly equal to 50 would get the “new” value 1.

& Character dara may appear as both “old” and “new” values. You
must be careful with quotation marks, however: If single quotes are

employed to enclose the recode specifications, then double quotes must
be used for the values (and vice versa).

@ When a factor is recoded, the “old” values should be specified as
character strings; the result is a factor, even if the “new” values are
numbers, unless the argument as.factor.result is set to FALSE.

@ Character data may be recoded to numeric and vice versa. To recode a

character or numeric variable to a factor, set as.factor.result=TRUE.

® If an observartion satisfies none of the recode specifications, then the
“old” value for that observation is carried over into the result.

To provide a richer context for some further illustrations of the use
of recode, I detach the Guyer data frame, do some housecleaning, and
attach the Womenlf data frame from the car library:

> detach(Guyer)

> remove(perc.coop, coop.4, coop.groups, coop.2)

> data(Womenlf)

> attach(Womenlf)

> sample.20 <- sort(sample(nrow(Womenlf), 20)) # 20 random obs.
>

sample.20

[1] 14 28 41 47 51 56 66 72 76 80 99 104 117 118
[15] 129 131 153 177 188 224

> Womenlf [sample.20,] # 20 randomly selected rows

partic hincome children

region
14 not.work 9 present Prairie
28 not.work 19 present Ontario
41 not.work 9 present BC
47 not.work 7 present Ontario
51 parttime 10 present Prairie
66 not.work 17  absent Atlantic
66 not.work 15 present Ontario
72 not.work 17 present Ontario
76 parttime 38 present Ontarie
80 parttime 19 present BC
99 fulltime 15  absent Ontario
104 not.work 15  absent BC
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117 not.work 19 absent BC
118 not.work 19  absent BC
129 parttime 13 present Prairie
131 parttime 19 present Ontario
153 not.work 5 absent BC
177 not.work 15 present Ontario
188 not.work 7 present BC
224 not.work 19 present Quebec

The sample function is used to pick a random sample of 20 rows in the
data frame, selecting 20 random numbers without replacement from 1
to the number of rows in Womenlf; the numbers are placed in ascending
order by the sort function. .

The data in Womenlf originate in a social survey of the Canadian pop-
ulation conducted in 1977. The data pertain to married women between
the ages of 21 and 30, with variables defined as follows:

B partic: labor-force participation, parttime, fulltime,or not .work
{not working outside the home).

B hincome: husband’s income, in $1000s (actually, family income minus
wife’s income).

B children: presence of children in the household: present or absent.

B region: Atlantic, Quebec, Ontario, Prairie, BC (British Columbia).
Now consider the following recodes:

> working <- recode(partic,
+ " c(’parttime’, »fulltime’)=’yes’; ’not.work’=’no’ ")
> working[sample.20] # 20 sampled observations
[1] no no no no yes no no no yes yes yes no no 1o
[15] yes yes no no no 1o
Levels: no yes

> working.alt <- recode (partic, # equivalent to previous recode

+ " c(’parttime’, »fulltime’)=’'yes’; else=’no’ ")
> all(working == working.alt) # check
[1] TRUE

> fulltime <- recode(partic,
+ " 7fulltime’=’yes’; Jparttime’=’no’; 'not.work’=NA ")
> fulltime[sample.20] # 20 sampled observations
[1) NA NA NA NA no NA NA NA no no yes NA NA NA
[15] no no NA NA NA NA
Levels: no yes

> region.4 <~ recode(region, v c(’Prairie’,’BC’)="West’ ")
> region.4[sample.20] # 20 sampled observations

[1] West Ontario West Ontario West Atlantic
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g 2.3

[7] Ontario Oantario Ontario West
[13] West West West
[19] West Quebec

Levels: Atlantic Ontario Quebec West

Ontario West
Ontario West Ontario

In ail these examples, factors (either partic or region ) are recoded, and
consequently recode returns factors as results.

m The first two examples yield identical results, with the second example
illustrating the use of else. To verify that all of the values in working
and working.alt are the same, I use the all function along with the
element-wise comparison operator == (equals).

m In the third example, a factor fulltime is created, indicating whether
a woman who works outside of the home works full time or part time;
fulltine is NA (missing) for women who do not work outside the home.

® The fourth and final example illustrates how values that are not
recoded (here Atlantic, Quebec, and Ontario in the factor region)
are simply carried over to the result.

I once more clean up before proceeding:

> detach(Womenlf)

> remove(working, working.alt, fulltime, region.4, sample.20)
>

MATRICES, ARRAYS, AND LISTS

We have thus far encountered and used several data structures in S:

m Vectors: One-dimensional arrays of numbers or character strings.
Single numbers and character strings in S are treated as vectors of
length 1.

® Factors: One-dimensional arrays of levels.

m Data frames: Two-dimensional data tables, with the rows defining
observations and the columns defining variables. Data frames are het-
erogeneous in the sense that some columns may be numeric and others
may be factors (or may even contain character data or logical data).

In this section, I describe three other common data structures: matrices,
arrays, and lists.
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69

Matrices

You may be aware that much of applied statistics is naturally expressed
mathematically using vectors and matrices. Matrices in S are two-
dimensional arrays of elements all of which are of the same mode—for
example, numbers, character strings, or logical values.

Matrices may be constructed using the matrix function, which
reshapes its first argument into a matrix with the specified number of
rows (the second argument) and columns (the third argument). For
example:

> A <- matrix(1:12, 3, 4) # 3 rows, 4 columns
> A
[,11 [,21 0,31 [,4]
1 4 7 10
{2,] 2 5 8 11
[3,] 3 6 9 12

> B <- matrix(c(’a’,’b’,’c’), 4, 3, byrow=T)

> B

(.1 ,2]1 [,3]
[i,] g "p" e
[2’] "al np" nen
[3’] wan upr  we
[4’:] "t "p" neh

A matrix is filled by columns, unless the optional argument byrow is set
to TRUE. The second example illustrates that if there are fewer elements
in the first argument than in the matrix being defined, then the elements
are simply recycled.

A defining characteristic of a matrix is that it has a dim (dimension)
attribute with two elements: the number of rows and the number of
columns. A vector, in contrast, does not have a dim attribute®:

> dim(A)
11 34
> dim(B)
{11 4 3

> v <- sample(10,10) # permutation of 1 to 10
> v
{110 4 7 9 56 3 2 6 8 1
> dim(v)
NULL

10. More correctly, a matrix is a vector with a two-element dim artribute.
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Note that sample(10,10) produces

a random permutation of th -
bers from 1 to 10. . P ©

y Fofr more on attnbutes.in S, see Section 2.4. S includes extensive facil-
les for matrix computation, some of which are described in Chaprer 8.

Higher-dimensional arrays of homogeneous elements may be created with

the array function; here is an example employing a three-dimensional
array:

> array.3 <- array(1:24, c(4,3,2))
> array.3

» oo 1

# 4 rows, 3 columns, 2 layers

(.1 [,21 [,3]
[1,] 1 5 9

[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12
, s 2

[,13 [,2) ,3]
{1, 13 17 21
[2,] 14 18 22
[3,] 15 19 23
{4, 16 20 24

> dim(array.3)
[1} 4 3 2

'_I'he order. of the_dimensions is row, column, and “layer,” and the array
is .ﬁlled with the ¥nde)_< of the first dimension “moving” most quickly. We
will seldom require higher-dimensional arrays in this book,

233 Lists

Lists are one-dimensional data structures composed of potentially hetero-
geneous elements. Indeed, the elements of a list may themselves be—and
usually are—complex data structures, including other lists. Here is an
example of a list, constructed with the 1ist function:

> 1ist.1 <~ list(mat.l1=A, mat.2=B, vec=v) # 3-item list

2.3 MATRICES, ARRAYS, AND Li>1>

> list.1
$mat.1

[,11 [,21 [,3] [,4)
[1,] i 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
$mat .2

[,11 [,2) [,3]

{1,1 "a" "p* e
[2,] "a" "br e
(3,0 "a" "b" "'
(4,3 va" "bv e

$vec .
{110 4 7 9 5 3 2 6 8 1

This list contains a numeric matrix, a character matrix, and a numeric
vector. Notice that I named the elements in the call to the 1ist function;
these are arbitrary names that I chose, not standard arguments to list.
Because they permit us to collect related information regardless of its
form, lists provide the foundation for the class-based object system in S.
Classes are described in Section 2.4 and in Chapter 8. Data frames, for
example, are lists with some special properties that permit them to behave
somewhat like matrices.

Indexing

A common operation in S is to extract some of the elements of a vec-
tor, matrix, array, or list by specifying the indices of the elements to be
extracted. Indices are specified between square brackets—[ and 1.1 have
already used this construction on several occasions, and it is now time to
consider indexing more systematically.

As we saw in the first chapter, a vector may be indexed by a single
number or by a vector of numbers; indeed, indices may be specified out
of order, and an index may be repeated to extract the corresponding
element more than once:

> v

[1]10479532681

> v[2]

[1] 4

> v[c(4,2,6)]

[1] 943

> vic(4,2,49)]

(1949
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Specifying negative indices suppresses the corresponding elements of
the vector:

> v[-¢(2,4,6,8,10)]
(1] 10 7 5 2 8

If a vector has a names attribute, then we can also index the elements
by name'!:

> names(v) <- lettersf{1:10]
> names(v)
[1] Ilau Ilbll llcll I|dll |Ie|l Ilfll ||gll llhll “i" lljll

[ ()fy,)i),lg))]

> c
fig
382

® o<

Finally, a vector may be indexed by a logical vector of the same length:

>v <6

a b c d e f g h i j
FALSE TRUE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE
[v < 6] # all entries less than 6
g
21

> oV
o e <
w +h

Any of these forms of indexing may be used on the left-hand side of
the assignment operator to replace elements of a vector. For example:

> yv <- v # make copy of v

> wv
a b cde f g h i j
10 4 7 9 5 3 2 6 8 1
> vvlc(1,3,5)] <= ¢(1,2,3)

> wv

v abecdefghi]
1429332681
>W[C(’b’,’d’,’f',’h’,’j’)] <= 0
> v
abcdefghil}
1020302080
remove(vv)

v Vv

11. The vector letters contains the 26 lowercase letters from ’a’ to *z’; LETTERS similarly con-
tains the uppercase letters.

£
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Indexing extends straightforwardly to matrices and to higher-dimensio-
nal arrays. Indices corresponding to different dimensions of the array are
separated by commas; if the index for a dimension is left unspecified,
then all of the elements along that dimension are selected.

I demonstrate with the matrix A:

> A

[,11 0,21 0,31 [,4]
1,1 1 4 7 10
2,1 2 5 8 11
(3.1 3 6 9 12

> A[2,3] # element in row 2, column 3
[1] 8

> Ale(1,2), 2] # rows 1 and 2, column 2
[11 ¢ 5

> Alc(1,2), c(2,3)] # rows 1 and 2, columns 2 and 3
(.11 [,2]

{1,] 4 7

(2,1 5 8

> A{c(1,2),] # rows 1 and 2, all columns
0,11 [,21 [,3] [,4]

{1,] 1 4 7 10

(2,1 2 5 8 11

Notice that the second example, A[2,3], returns a single-element vector
rather than a 1 x 1 matrix; likewise, the third example, Alc(1,2),
2], returns a vector with two elements rather rhan a 2 x 1 matrix.
More generally in indexing a matrix or array, dimensions of extent

1 are automatically dropped. Specifying drop=F circumvents this
behavior:

> Ale(1,2), 2, drop=F] # returns 1-column matrix

[,1]
(1,1 4
f2,] 5

Negative indices, row or column names (if they are defined), and logi-

cal vectors of the appropriate length may also be used to index a matrix
or a higher-dimensional array:

> a(,-¢(1,3)] # omit columns 1 and 3
[,11 [,21

4 10
2,] 5 11
(3.1 6 12
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> Al-1,-2] # omit row 1 and column 2
{,11 [,2] [,3]

[1,] 2 8 i1

[2,] 3 9 12

> rownames(A) <~ c(’one’, ’two’, ’three’)
> Zolnames(A) <= cCw,’x’, %y, 'z*)
>

# set row names
# set column names

WXy

one 147

two 258 11

three 3 6 9

> Alc(’one’,’two’), c(’x’,’y")]
Xy

one 4 7

two 5 8

> Afle(T,F,T),]

WXy z
one 147 10
three 3 6 9 12

Used on the lefF of the assignment arrow, we may replace indexed
elements in a matrix or array:

> AA <~ A # make a copy of A

> AA

WXy 2z
one 14710
two 258 11
three 3 6 9 12

> AA[1,] < 0 # set first row to zeros

> AA

WXy z
one 000 O
two 25811
three 3 6 9 12

> remove (AA)
>

L . . .
lsts may be 1ndexed much as vectors, but some special considerations
apply. Recall the list that I constructed earlier:

> list.1
$mat.1

[,13 [,2] [,3] [,4]
(1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

3

: ;&
g4
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$mat .2

[,1] [,21 0.3]
[1’] ||all Ilbll llcll
[2’] nat nph nen
[3,] llall Ilbl! Ilcll
[4'] ngt npH e

$vec
f1 10 4 7 9 5 3 2 6 8 1
> 1list.1[c(2,3)] # elements 2 and .3
$mat .2
(,11 [,21 [,3]
[t,] "a" "p" "c"
[2,] ||a|| "p" wen
(3,1 "a* "b" "c"

[4,] ngt nph nen
$vec
{1} 10 ¢ 7 9 5 3 2 6 8 1

> 1ist.1[2] # returns a one-element list
$mat .2
[,11 [,21 [L,3]
[1’] nugv np" net
[2’] nah M nen
[3'] ngn npY nen
[4,] "a “p" ve"
Even when we specify a single element of the list, as in the last exam-
ple, we get a single-element list rather than (in this case) a matrix. To
extract the matrix in position 2 of the list, we may use double-bracket
notation:
> 1ist.1[[2]] # returns a matrix
(,13 [,21 [,3)
[1,] "a" "b" “c"
[2 ,] "a" "p e
[3,] nat "p" net
[4,] "a" "b" "c"
The distinction between a one-element list and the element itself is subtle,
but it can occasionally trip us up if we are not careful.
If the list elements are named, then we can use the names in indexing
the list:
> list.1[’mat.1’]
$mat .1
[,13 [,2) (,31 [,4)
(1,] 1 4 7 10
2,1 2 5 g 11
(3,3 3 6 9 12

# produces a one-element list
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> list.1[[’mat.1’]] # extracts a single element
[,11 .21 (,3] (,4]

(1,3 1 4 7 10

{2,] 2 5 8 11

(3,3 3 6 9 12

An element name may also be used (either quoted, or if it is a legal S
name, unquoted) after the $ (dollar sign) to extract a list element:

> list.1$mat.1

(,11 (,21 (,31 C,4]
{1,] 1 4 7 10
{2,] 2 5 8 11
(3,1 3 6 9 12

Used on the left-hand side of the assignment arrow, dollar-sign indexing
allows us to replace list elements, to define new elements, or to delete an

element:
> list.i$mat.i <~ matrix(i, 2, 2) # replace element
> list.1$title <- ’an arbitrary list’ # new element
> list.i$mat.2 <- NULL # delete element
> list.1
$mat.1
(,11 (,2]

(1,1 1 1
[2,] 1 1

$vec
1 10 4 7 9 5 3 2 6 8 1

$title
(1] "an arbitrary list"

Data frames may be indexed either as lists or as matrices. Recall the
Guyer data frame:

> Guyer ’
cooperation condition sex logit.coop
1 40.83333 public male -0.37085958
53.33333 public male 0.13353139
3 30.83333 public male -0.80792270

19 28.33333 anonymous female -0.92798677
20 36.66667 anonymous female -0.54654371

> attach(Guyer)
>

Because no row names were specified when I entered the data, the row
names are simply the character representation of the row numbers.
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Indexing Guyer as a matrix:

> Guyer[,1] # first column
[1] 40.83333 53.33333 30.83333 43.33333 56.66667
{7] 50.83333 65.83333 53.33333 24.16667 22.50000
[13] 43.33333 34.16667 25.00000 33.33333 32.50000
[19] 28.33333 36.66667

> Guyer(,’cooperation’] # equivalent
[1] 40.83333 53.33333 30.83333 43.33333 56.66667
[7] 50.83333 65.83333 53.33333 24.16667 22.50000
{13] 43.33333 34.16667 25.00000 33.33333 32.50000
[19] 28.33333 36.66667

> Guyer[c(1,2),] # rows 1 and 2
cooperation condition sex logit.coop

i 40.83333 public male -0.3708596

2 53.33333 public male 0.1335314

> Guyer(c(’1’,'27), ’cooperation’]
{1] 40.83333 53.33333

> Guyer[-(6:20),] # drop rows 6 through 20
cooperation condition sex logit.coop

1 40.83333 public male -0.3708596

2 53.33333 public male 0.1335314

3 30.83333 public male -0.8079227

4 43.33333 public male -0.2682640

5 56,66667 public male 0.2682640

> Guyer[sex == ’female’ & condition == 'public’,]
cooperation condition sex logit.coop

6 45.00000 public female -0.20067070

7 50.83333 public female 0.03333642

8 65.83333 public female 0.65587579

9 53.33333 public female 0.13353139

10 24.16667 public female -1.14356368

Alternatively, indexing the data frame Guyer as a list:

> Guyer$cooperation
{11 40.83333 53.33333 30.83333 43.33333 56.66667
[7] 50.83333 65.83333 53.33333 24.16667 22.50000
[13] 43.33333 34.16667 25.00000 33.33333 32.50000
{19] 28.33333 36.66667

> Guyer{[’cooperation’]]
[1] 40.83333 53.33333 30.83333 43.33333 56.66667
{7] 50.83333 65.83333 53.33333 24.16667 22.50000
[13] 43.33333 34.16667 25.00000 33.33333 32.50000
[19] 28.33333 36.66667
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> Guyer[’cooperation’]

cooperation
1 40.83333
2 53.33333
3 30.83333

20 36.66667

Notice that specifying Guyer [’cooperation’] returns a one-column
data frame rather than a vector.

As has become my habit, I clean up before continuing:
> detach(Guyer)

> remove(A, B, v, array.3, list.1)
>

DATA ATTRIBUTES, MODES, AND CLASSES*

This se;tion deals more abstractly with data in S. I aim to introduce
the topic rather than to cover it exhaustively. The information here is
occasmgally useful in routine data analysis, and certainly useful for pro-
gramming in S, but you may safely skip the section on first reading.

All objects in S have at least two “attributes”: mode and length. For
example, numeric data are of mode numeric and character data of mode
character:

> x <= 1:10

> mode (x)

[1] "numeric"

> length(x)

[1] 10

> y <= c("one", "two", “three")
> mode (y)

[1] “character"

> length(y)

[1]) 3

Llsts_ are of mode 1list, as are data frames and the objects produced
by statistical modeling functions such as 1m (linear model):

> list.2 <~ list(x, y)

> mode(list.2)

[1] "list"

> length(list.2)

[1] 2

2.4 DATA ATTRIBUTES, MODED, AND LLndoe>

> mode (Guyer)
[1] "iist"

> length(Guyer)
[1] 4

> attach(Duncan)

> mod <~ lm(prestige ~ income + education) # regression model
> mod

Call:
1m(formula = prestige ~ income + education)

Coefficients:
(Intercept) income education
-6.0647 0.5987 0.5458
> mode (mod)
[1] "list"
> length(mod)
[1]) 12
> names (mod)
[1] “coefficients” "residuals" veffects”
[4] “rank" vfitted.values" "“assign"
(7] "“qr" ndf .residual" “"xlevels"
{10] “call" "terms” "model"

There is a distinction between the printed representation of an object
(such as the linear-model object mod) and its internal structure. We do not
normally interact directly with an object produced by a modeling func-
tion, and therefore do not need to see its internal structure; interaction
with the object is the province of functions created for that purpose (for
example, the generic summary function).

Because all objects in S have a mode and a length, so do functions
(and even S expressions):

> mode(mean)
(1] “function"
> length(mean)
[1] 1

Objects may have attributes beyond mode and length, as we may dis-
cover with the attributes function. For example, a matrix has a dim
(dimension) attribute of length two, and may have a dimnames (dimen-
sion names) attribute as well:

> A<-matrix(1:15, 3, 5) # 3 rows, 5 coluumns
> A
(,11 [,21 (,3) [,4] [,s8]
{1,] 1 4 7 10 13
(2,1 2 5 8 11 14
(3,1 3 6 9 12 15
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> rownames(A)<-c(’a’,’b’,’c’)

> colnames(A)<-c(’v’,’w’,’x’,’y’,’2%)
> attributes(A)

$dim

[1] 3 5

$dimnames
$dimnames [[1]]
[1] n all Ilbll llcll

$dimnames{[21]
[1] Myt Ul g uyu "ot

The class-based, object-oriented programming system in S3 and R is
driven by objects that have a class attribute. For example, data frames
are of class data.frame (and also have other attributes appropriate to
this kind of object):

> attributes(Duncan)
$names

[1] "type" "income" "education" "prestige"
$class

(1] "data.frame"

$row.names
[1] "accountant" "pilot"
[3] "architect" "author"
(5] "chemist" "minister"
(43] "janitor" "policeman"

[45] "waiter"

Likewise, factors, such as the variable type in the currently attached
Duncan data frame, are of class factor (and also have a levels
attribute):

> type

[1] prof prof prof prof prof prof prof prof wc prof prof
{12]) prof prof prof prof wc prof prof prof prof wc wc
[23] w¢ wec be bec bec bec be bec be bec be
[34] bc bc bec be bec bc be bec bec bec be
[45] be
Levels: bc prof we

> attributes(type)
$levels
[1] Il'bc " ||pr°f " Ilwcll
$class

(1] v"factor"

w R e
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To discover whether an object has a class {and, if so, what thar class
is), you can use the class function:

> class(Duncan)
{1] “data.frame"

> class(type)
{1] "factor"

> class(A)

NULL
The variable A, recall, is a matrix, and matrices in S3 and R have no
class. (That may be a bad pun, but if it is, [ don’t quite understand it.)
Object-oriented programming in S is taken up briefly in Chapter 8.

Standard S functions exist to create data of different modes and for
many classes (constructor functions), to test for modes and classes (pred-
icate functions), and to convert data to a particular mode or class (coer-
cion functions).

Constructor functions conventionally have the same name as their
mode or class. For example:

> num <- numeric(5) # create numeric vector of zeros of length 5

> num

(11oo0o000

> fac <~ factor(c(’a’,’b’,’c’,’c’,’b’,’a’)) # create factor
> fac

{filJabccba

Levels: abc

By convention, predicates in S prefix the characters “is.” to the name
of the mode or class:

> is.numeric(num) # predicate for mode numeric
(1] TRUE

> is.numeric(fac)
(1] FALSE

> is.factor(fac) # predicate for class factor
[1] TRUE
The names of coercion functions employ the prefix “as.”:

> char <- as.character(fac) # coerce to mode character
> char
[1] Hatt wpt ocR e npu Hau

> as.numeric(fac) # coerce to mode numeric
11123321

> as.numeric(char)
{1] NA NA NA NA NA NA
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Warning message:
NAs introduced by coercion

The last two examples illustrate that coercion may cause information to
be lost.

Constructor, predicate, and coercion functions are occasionally avail-
able for types of objects that, strictly speaking, are neither modes nor
classes. For example:

> B <- matrix(1:9, 3, 3)

> B

[,13 ,21 (,3]

f1,1] 147

(2, 258

[3,]369

# matrix constructor

> is.matrix(B) # matrix predicate
[1] TRUE

> as.vector(B) # coerce to vector
[1] 123456789

I do not bother to clean up at the end of the current chapter, because
I will not save the R workspace. More generally, in this book I assume
that each chapter represents an independent S session.

Data Storage and Housekeeping in S-PLUS

Because all globally defined objects are stored in files in the working-data
directory, they normally persist from session to session. S-PLUS can be
set to prompt for saving global objects when the session is terminated,
and housekeeping can be performed at that point.

Data in S4

The preceding sections describe the organization of data in R and S3.
Data in S4 are organized in a somewhat different manner, though the
differences are mostly transparent in everyday use. Most fundamentally,
all objects in S$4 have a class, as well as a mode and length. For example!?:

> vec <- 1:10

> char.vec <- letters{1:5]

> mat <- matrix(1:12, 3, 4)

12. By the way, this is true not only of data objects, bur of other objects as well—such as functions
and expressions. In S3 and R, all objects have a length and a mode, but not necessarily a class. The
ability to manipulate objects such as expressions and functions is very powerful in advanced use
of S. I invite the reader to apply the class, mode, and length functions to a variety of objects.

B
i3
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> vec
(1] 1 2 3 4 5 6 7 8 910

> char.vec
[1] “a" "b" llcll lldll "B“

> mat

[,13 [,21 [,3] [,4]
[1,] i 4 7 10
[2.] 2 5 8 11
[3,] 3 6 9 12

> class(vec)
[1] "integer"
> mode(vec)
[1] "numeric"
> length(vec)
[1] 10

> class(char.vec)
[1] “character"

> mode (char.vec)
[1] "character"

> length(char.vec)
(11 5

> class(mat)
[1] "matrix"
> mode (mat)
[1]) "numeric"
> length(mat)
[1] 12

The predicate and coercion functions familiar from S3 work in 54
as well, but $4 also provides the general functions is and as for these
purposes: :

> is.matrix(mat)
[1J T

> is.matrix(vec)
[1] F

> is(mat, ’matrix’)

(1] 1

> as.vector(mat)
1] 1 2 3 4 5 6 7 8 9101112

> as(mat, ’vector’)
1 1+ 2 3 4 5 6 7 8 9101112
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Finally, classes in S4 are not implemented via a class artribute
(although the S3 class system, based on the class attribute, is still sup-

ported for “backwards compatibility”). The S4 class system is described
briefly in Chapter 8.

CAPTER 3

Exploring and
Transforming Data

Examination—particularly graphical examination—of data is an
important prelude to statistical modeling, and a step that is skipped
at the peril of the data analyst. Although it employs a very simple graph-
ical approach, which imposes some limitations on the kinds of graphs
that can be created, S provides very strong facilities for constructing sta-
tistical graphs. Indeed, the original developers of S were also important
innovators in statistical graphics (see, for example, Chambers, Cleveland,
Kleiner, & Tukey, 1983).

This chapter assumes general familiarity with standard procedures for
exploratory data analysis, statistical graphics, and data transformation,
and shows how these procedures are implemented in S. I make occa-
sional reference to freely available S libraries, including the car library
associated with this book. The chapter takes up the following topics:

m Distriburional displays, including histograms, stem-and-ieaf displays,
density estimates, boxplots, and quantile-comparison plots.

m Dlots of the relationship between two variables, including various ver-
sions of scatterplots, scatterplot smoothers, bivariate density estimates,
and parallel boxplots.

m Multivariare displays, including scatterplot matrices, coplots, and
(briefly) dynamic three-dimensional scatterplots.

@ Transformations of data to symmetry, constant spread, and linearity.

The general focus is on graphical tools that are broadly useful in sta-
tistical data analysis.

85
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5.4 EAANMENING LD o i

Histogram of income

3.1 EXAMINING DISTRIBUTIONS

25

Histograms and Stem-and-Leaf Displays

20

The most common graph of the distribution of a quantitative variable is

the hzstogram, which dissects the range of the variable into class intervals

call.ed bms.(usgally of equal width), and counts the number of obserj

vations falling in each bin. The counts (or percentages, proportions, or

densities, calculated from them) are plotted in a bar gra’ph. An exam’ le

constructed by the following S commands, appears in Figure 3.1: pe
> library(car)

Frequency
15

10

b T T T T T
> L 0 5000 10000 15000 20000 25000
> data(Prestige) |
> attach(Prestige)

> Prestige(1:5,] # first 5 obs.

income

X Figure 3.2  Revised histogram of income.
GOV, ADMINISTRATO education income women prestige census type '
. RS 13.11 12351 11.16 68.8
. . 1113 . .
GENERAL . MANAGERS 12.26 925879 4.02 60.1 1130 giz: I find that the rule that R uses to determine the number of bins,

ACCOUNTANTS 12.77 9271 15.70 63.4 1171 prof ... together with its effort to produce “nice” cut points between the bins,
PURCHASING.OFFICERS 11.42 8865 9.1t 56.8 1175 prof often produces too few bins. The function n.bins in car implements a
CHEMISTS 14.62 8403 11.68 73.5 2111 prof number of rules for calculating the desired number of bins; the default
rule used by n.bins, from Freedman and Diaconis (1981), sets the rec-

> hist(income) .
ommended number of bins to

>

. ; 13 .
. . _ 7n'/3(max — min
Ehe dCanad{an occupational-prestige data set, on which this example is \V———————'( )_\ >
ased, was introduced in the previous chapter. 205~ Qi)
i ) | where 7 is the number of observations, max — min is the range of the
istogram of income : data, Q; — Q, is the interquartile range, and the “ceiling” brackets
8 - indicate rounding up to the next integer. Applying this rule to income
in the Canadian occupational-prestige data produces the histogram in
S Figure 3.2:
- ; > n.bins(income)
%) (=2 B
& ° [1] 15
4 > hist(income, nclass=n.bins(income), col=1)
L 8 > box()
>
o | i
# The nclass argument to hist suggests the number of bins to employ, and
o J — — col=1 specifies that the histogram bars are to be drawn in black; finally,

' T T T T T \ box() draws a rectangle around the histogram.! Alternatively, you can
0 5000 10000 15000 20000 25000 30000 ’ use the breaks argument to hist to set the endpoints of the bins, as in
breaks=seq(0, 30000, 2500). Note that the lowest and highest break

income

Figure 3.1  Histogram of income in the Canadian occupational-prestige darta.

1. Chapter 7 includes a discussion of color use in R and S-PLUS.

B

"
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points should include all of the data. The break points do not have to
be evenly spaced (bur histograms with unequal-width bins are difficult to
interpret). You may also wish to take a look at the truehist function in
the MASS library.

The stem function in S creates stem-and-leaf displays:

> stem(income)
The decimal point is 3 digit(s) to the right of the |

0 | 6979

2 | 44689001125556667999
4 | 012233456777881111234566889
6 | 01233556679901145679
8 | 000012334488999936
10 | 4004

12 | 45

14 | 026

1615

18 | 3

20 |

22 |

24 | 39

hist and stem in S-PLUS

The hist function in S-PLUS does a better job, in my experience, of
picking the number of bins for a histogram; moreover, the S-PLUS version
of the function incorporates several rules as options for suggesting the
number of bins, rendering the n.bins function in car unnecessary. The
S-PLUS version of stem is also more capable than the R version, and
allows, for example, for trimming outliers.

Density Estimates .

Nonparametric density estimation often produces a more satisfactory rep-
resentation of a distribution by smoothing the histogram. The kernel-
density estimate at the value x of a variable X is defined as

Bt = 2= 2K (252),

i=1

where the x; are the n observations on the variable; K is a kernel
function—a symmetric, single-peaked density function, such as the nor-
mal density; and b is a bandwidth parameter, which controls the degree

3.1 EXAMINING DISTRIBUTIONS
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Histogram of income

N

Density

0.00000 0.00004 0.00008 0.00012

T T T T T T
0 5000 10000 15000 20000 25000

income

Figure 3.3  Nonparametric kernel-density estimates for the distribution of
income, using the default bandwidth (heavier line) and half the
default bandwidth (lighter line).

of smoothing: Larger values of the bandwidth produce smoother density

estimates. The factor 1/nbh ensures that the density estimate encloses an
area of 1.

The density function in' S implements kernel-density estimation, by
default using a normal kernel?:

> hist(income, nclass=n.bins(income), probability=T,

lines(density(income, adjust=.5), lwd=1)

+ ylab=’Density’)

> lines(density(income), lwd=2)

> points(income, rep(0, length(income)), pch="|")
> box()

>

>

This example, which produces Figure 3.3, illustrates how an S graph can
be built up by successive calls to graphics functions.> The hist function
constructs the histogram, with probability=T specifying density scaling
(i.e., the areas of the histogram bars sum to 1) and ylab='Density’ fur-
nishing the label for the vertical axis of the graph. The lines function
draws the density estimate on the graph, the coordinates of which are cal-
culated by the call to density; 1wd=2 specifies a line of double thickness.

2. Several freely available S libraries provide sophisticated facilities for density estimation. See, in
particular, the sm library (Bowman & Azzalini, 1997) and the locfit library (Loader, 1999). Non-
parametric density estimation is extensively described in Silverman (1986).

3. Chapter 7 describes in more detail how to construct graphs in S.
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The points function is used to draw a one-dimensional scatterplot (or
“rugplot”) at the bottom of the graph, using a vertical bar as the plotting
symbol, with the horizontal coordinates given by income and the vertical
coordinates all Os. The second call to density, with adjust=0.5, speci-
fies a bandwidth half the default value and therefore produces a rougher

density estimate (shown in the figure as a lighter line, 1wd=1).

Density Estimation in S-PLUS

The function density in S-PLUS does not take an adjust argument, but

several methods are available to select the bandwidth for the density esti-
mate. See help(density) for details.

3.1.3 Quantile-Comparison Plots

We often want to compare the distribution of a variable with a theo-
retical reference distribution, such as the normal distribution. An effec-
tive graphical means of doing so is provided by the guantile-comparison
plot, plotting the ordered data against the corresponding quantiles of the
reference distribution. If the data conform to the reference distribution,
then the quantile-comparison plot should be linear, within sampling error.
S provides the ggrorm function for making quantile-comparison plots
against the normal distribution, but I prefer the qq.plot function in the
car library. By default, qg.plot compares the data to the normal distri-
bution, and provides a 95 percent pointwise confidence envelope around

a line fit to the plot:

> qq.plot(income, labels=row.names(Prestige))
[1] 26 17 24 2

The resulting graph is shown in Figure 3.4. The argument labels=
row.names(Prestige) allows us to label points interactively by their
occupation names: Placing the mouse cursor near a point and clicking
the left button causes the point label to appear on the plot; clicking the
right mouse button exits from qq.plot. Notice that qq.plot returns the
indices of the labeled points.

The qq.plot function can also be used to plot the data against any
reference distribution for which there are quantile and density functions
in S, which includes just about any distribution that you may wish to
use. Simply specify the “root” word for the distribution. For example,
the root for the normal distribution is norm (with density function dnorm
and quantile function qnorm); the root for the chi-square distribution is

er 2 @:3&1,.1&; g .
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Figure 3.4 Normal quantile-comparison plot for income. The broken lines
give a pointwise 95 percent confidence envelope around the fit-
ted solid line. Several points were labeled interactively with the

mouse.

chisq (dchisq and qchisq). Root words for some other commonly ‘use.d
distributions are binom, for the binomial distribution; £ for‘the. F fhstn-
bution; t for the ¢ distribution; and unif for the uniform ch.stnbutlon.

In addition to density and quantile functions, S also provides cumula-
tive distribution functions (CDFs, prefix p) and pseudo-r‘andom-nufr}b'er
generators (prefix r): For example, pnorm gives cumulative probab:lmgs
for the normal distributions, while rnorm generates normal random vari-
ables. Table 3.1 summarizes the principal arguments to these probability
functions.

To illustrate, I use the rchisq function to generate a random sample
from the chi-square distribution with 3 degrees of freedom, and p.lot
the sample against the distribution from which it was drawn (producing
Figure 3.5):

> qq.plot(rchisq(100,3), distribution=’chisq’, daf=3)
>

Boxplots

Finally, among these univariate displays, Figure 3.6 shows a boxplot of
income, produced by the following S commands:

> boxplot (income, ylab=’income’) .
> identify(rep(i,length(incoma)), income, row.names(Prestige))
[1] 2 17 24 25 26
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Table 3.1  Arguments for some standard probability functions in S. Most of
the arguments are self-explanatory. For the binomial distribution,
size represents the number of binomial trials, while prob repre-
sents the probability of success on each trial. Not all arguments are
shown for all functions; consult the R or S-PLUS on-line documen-
tation for details.

Distribution Density Function Quantile Function
Normal dnorm(x, mean=0, sd=1) quorm(p, mean=0, sd=1)
Chi-square dchisq(x, df) qchisq(p, df)

F df (x, df1, df2) qf (p, dfl, df2)

t - dt(x, d4f) qt(p, df)

Binomial dbinom(x, size, prob) qbinom(p, size, prob)
Uniform dunif (x, min=0, max=1) qunif (p, min=0, max=1)

Distribution Distribution Function Random Number Function

Normal pnorm(q, mean=0, sd=1) rnorm(n, mean=0, sd=1)
Chi-square pchisq(q, df) rchisq(n, df)

F pf(q, dafl, df2) rf(n, df1, df2)

t pt(q, df) rt{n, df)

Binomial pbinom(q, size, prob) rbinom(n, size, prob)
Uniform punif(q, min=0, max=1) runif(n, min=0, max=1)

The call to boxplot is self-explanatory. The identify function is used
to label points on the plot interactively; I take advantage of the fact that
in R the points in a boxplot are all graphed at the horizontal coordinate
1, while the vertical coordinates are given by the variable plotted, here
income.

K

10

rchisq(100, 3)
6
1

"illllll
o 2 4 6 8 10 12

chisq quantiles

Figure 3.5  Quantile-comparison plot of a sample of size #n = 100 from x2(3)
against the distribution from which the sample was drawn.
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Figure 3.6  Boxplot of income. Several observations were labeled interac-
tively with the mouse.

Point Labels for Boxplots in S-PLUS

The same general approach works in S-PLUS, but the points are plotted
at horizontal coordinates of 50, rather than 1. That is, we enter rep(50,
length(income)) to specify horizontal coordinates to identify.

EXAMINING RELATIONSHIPS

Scatterplots 3.
The scatterplot, possibly the most useful of all statistical graphs for data
analysis, is the standard graph for examining the relationship between
two quantitative variables. I will show you how to make several kinds of
scatterplots in S.

When it is presented with two numeric-vector argument, which it
interprets as giving horizontal and vertical coordinates, respectively, the
default behavior of the plot function is to make a scatterplot.* Contin-
uing, with the Canadian occupational-prestige data, I enter (producing
Figure 3.7):

> plot(income, prestige)
>

4. plot is a generic function, and so, as explained in more detail in Chapter 8, its behavior depends
on the class of its first argument.

3.2
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Figure 3.7  Simple scatterplot of prestige by income for the Canadian

occupational-prestige data.

Wii;tleerpretanon of a scartterplot is often assisted by enhancing the plot
ast squares and nonparametric-regression lines. The scatterplot

function in car does this b
y default, and al i
the two variables (as in Figure 3.8): w0 also adds marginal boxploss for

> scatterplot(income, prestige, span=.6, lwd=3
+ labels=rownames (Prestige)) ,
[1] 217 21 24

® The nonparametric-regression curve on the plot is drawn by a local-
regression smpother. Local regression works by fitting a least squares
line in the neighborhood of each observation, placing greater \?vei ht
on points cl(?ser to the focal observation. A fitted value for the fo%:al
gbsecnlrvatlon is extracted from each local regression, and the resulting
U::_ T\;lalues are connected to p.roducl:e the nopparametric-regression

e proportion of observations included in each local fir, called

the span of the local regression (and specified by the span ar;',ument

tos =
K catterplot, here span=.6), controls the smoothness of the result:
arger spans produce smoother regression curves.’

The labels argument supplies names for the points, permitting us to
identify obsgrvations interactively with the mouse: P,oim the mguse t
an observation and click the left button; click the right button to exait
from scatterplot, which returns the indices of the identified points.

5. Nonparametric regression is described in much more derail in the Web appendix to the book
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Enhanced scatterplot of prestige by income. Several points were
identified interactively with the mouse.

Figure 3.8

® Finally, specifying the line width as 1wd=3 makes the regression lines
on the plot thicker than they would be by default (1wd=1).

Coded Scatterplots

A categorical variable can be encoded on a scatterplot by using a differ-
ent plotting symbol or color for each of its categories. The scatterplot
function in car may be used to create coded scatterplots, for example,
for prestige by income, coded by type of occupation (Figure 3.9):

> scatterplot(prestige ~ income | type, span=.8)
>

The variables for the scatterplot are given in a formula, as y~z| groups.
I selected span=.8 because of the relatively small number of observations
in the occupational groups: Using a small span in a small data set tends to
produce a nonparametric-regression curve that is too rough. The legend
on the graph, automatically generated by the scatterplot function, is
placed interactively with the mouse: Click the left button to position the
upper-left corner of the legend. Although the reproduction of the graph in
Figure 3.9 is in monochrome, in the original graph each group is plotted
in a different color.

The overall scatterplot of prestige by income (Figure 3.8) suggests a
nonlinear relationship between the two variables, but the coded scatter-
plot indicates that the relationship between prestige and income may
well be linear within occupational types. The slope of the relationship
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prestige

Figure 3.9  Scatterplot of prestige by income, coded by type of occupation.

looks steepest for blue-collar occupations, and least-steep for professional
and, managerial occupations.

Jittering Scatterplots

Discrete, quantitative variables typically result in uninformative scat-

terplots. The example in Figure 3.10(a) was produced by the following S
statements:

detach(Prestige)
data(Vocab)

attach(Vocab)

plot (education, vocabulary)

vV V V V. V

The data for this illustration come from the 1989 U.S. General Social Sur-
vey, conducted by the National Opinion Research Center. The two vari-
ables in the plot are education in years (education) and the respondent’s
score on a 10-word vocabulary test (vocabulary). Because education
can only take on 21 distinct values, and vocabulary only 11 distinct val-
ues, many of the nearly 1000 observations in the data set are overplotted;
indeed, in a larger data set, all of the possible 11 x 21 = 231 plotting

positions might be occupied, producing a meaningless rectangular grid
of dots.
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Figure 3.10  Scatterplots of vocabulary by education: (a) unjittered; (b)

default jittering; (c) twice default jittering, with least squares and
lowess lines.

Jittering the data by adding a small random quantity to each coordi-
nate (Cleveland, 1994) serves to separate the overplotted points. We can
use the jitter function in S for this purpose:

> plot(jitter(education), jitter(vocabulary))
>

The result is shown in Figure 3.10(b). We can control the degree of jitter-
ing via the argument factor; for example, specifying factor=2 doubles

the jitter (yielding, in my opinion, a more satisfactory result for the cur-
rent example):

> plot(jitter(education, factor=2), jitter(vocabulary, factor=2))
>

To complete the picture, I add least squares and nonparametric-
regression lines (using, note, the original, unjittered data for these
computations), producing Figure 3.10(c):

> abline(lm(vocabulary ~ education), lwd=3, lty=2)
> lines(lowess(education, vocabulary, f=.2), lwd=3)
>
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The.least squares line on the graph is computed by 1m and drawn by
abline; thej argument 1wd to abline sets the width of the regression line
while the line type 1ty=2 specifies a broken line. The lowess functiox;
(an acronym for locally weighted regression) returns coordinates for the
local-rejgres.smn curve, which is drawn by lines; the span of the local
regression is set by the argument £ to lowess. Of course, I could have
more c.onvf.mently used the scatterplot function in car to make the
graph in Figure 3.10{(c), but I wanted to demonstrate how to construct
a simple plot from its components (a topic described in detail in Chap-
ter 3.10). g
. The relationship between vocabulary and education appears nearly
linear, and we can also discern other features of the data that previ-

ously were hid.den by overplotting, such as the relatively large number of
respondents with 12 years of education.

Bivariate Density Estimates

Another context in which scatterplots are frequently uninformative is
in 1‘arge d.ata sets, particularly where the relationship between the two
variables in Fhe plot is weak, and therefore much of the plot is filled. An
gxample, using a moderately large data set, appears in Figure 3.11, and
is produced with the following S commands: ’

> detach(Vocab)

> data(SLID)

> attach(SLID)

> plot(education, wages)
>
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Figure 3.11  Scatterplot of wages by education in the SLID/Ontario data.
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The SLID data are drawn from the 1994 Canadian Survey of Labour
and Income Dynamics; the data set includes only respondents from the
province of Ontario. The two variables in the scatterplot are years of
education (education) and the individuals’ composite hourly wage rate,
in dollars (wages). Examination of the data reveals that education is
measured to the nearest tenth of a year and that there are only 126
different values of this variable among the roughly 4000 individuals who
have valid data on both education and wages. In contrast, there are
more than 1500 distinct values of wages:

> valid <- !(is.na(wages) | is.nma(education))
> sum(valid)

[1] 4014

> sort(unique(education[validl))

[13 0.0 1.0 1.5 2.0 3.0 4.0 4.1 4.5 4.8 5.0 5.5 6.0
(13} 6.4 6.5 7.0 7.3 7.5 7.6 8.0 8.2 8.3 8.5 8.8 9.0
{251 9.1 9.2 9.4 9.5 9.6 9.8 9.9 10.0 10.1 10.2 10.3 10.4

[109] 18.0 18.1 18.2 18.3 18.4 18.5 18.6 18.7 18.8 19.0 19.1 19.2
[121) 19.3 19.4 19.5 19.7 19.9 20.0

> length(.Last.value) # number of distinct values
[1] 126

> length(unique(wages[valid]))

[1] 1533

A simpler R equivalent to the first command is:

> valid <~ complete.cases(wages, education)
>

Summing a logical variable counts the number TRUE: In evaluating
sum(valid), S “coerces” the logical variable valid to a numeric vector
of 0s and 1s. The automatic variable .Last.value allows us to access
the previous result without recomputing it.

We can improve this scatterplot somewhat by jittering education and
by making the plotting symbols smaller, but the graph still conveys a rela-
tively poor impression of the relationship between wages and education.
Figure 3.12 employs both of these strategies, but also adds a bivariate
kernel-density plot to the graph, using the sm.density function in the
sm library (described in detail in Bowman & Azzalini, 1997):

> library(sm)

> sm.density(cbind(education [valid], wages[validl),
+ display=’image’, xlab=’Education’,

+ ylab='Wages’, col=gray (seq(1, 0, length=100)))

> points(jitter(education, amount=.25), wages, cex=.15)
> box()
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Wages

Education

Figure 3.12  Bivariate density estimate for education and wages. A jittered
scatterplot, least squares line, and lowess line are added to the

plot.

> lines(lowess(education{valid], wages(validl, £=1/3), 1lwd=3)
> abline(lm(wages ~ education), lty=2, lwd=3)

> remove(valid)

>

To create a bivariate density plot, the sm.density function expects a
matrix as its first argument, which I construct from education and wages
with cbind (“bind columns”); display=’image’ and col=gray(seq(1,
0, length=100)) produce a gray-scale plot, with darker values indicat-
ing a higher density of data.® I add the jittered observations to the density
plot with the points function, specifying cex=.15 to shrink the points to
15 percent of their normal size.” The rest of the commands are familiar
from previous examples.

Parallel Boxplots

Parallel boxplots help us to visualize the relationship between a quantita-
tive response variable and a categorical predictor. An illustration, based
on data from Ornstein (1976) on interlocking directorates among 248
major Canadian corporations, appears in Figure 3.13. The figure was

6. Color specification works differently in S-PLUS, as described in Chapter 7.

7. The graphics parameter cex denotes character expansion; graphics parameters are discussed in
Chapter 7.

s
¢ AR

i A R

3.2 EXAMINING RELATIONSHIPS

101

o2
8
e o3
o1
$ 89 o
3 536
2 3
s T
5 o | :
g ¥ - 130
z : 270
& T —
= =3
o
T T T T
CAN oTH UK us

Figure 3.13  Parallel boxplots of interlocks by nation of control for Orn-

stein’s interlocking-directorate data.

produced by the following S statements:

> detach(SLID)

> data(Ornstein)

> attach(Ornstein)

> Ornstein[sort(sample(248,5)),] # sample 5 obs.
assets sector nation interlocks

73 3879 WoD CAN 27
152 809 MAN UK 0
174 589 MIN 0TH 23
193 495 MAN CAN 0
217 359 AGR Us 0

> boxplot(interlocks ~ nation, ylab=’Number of Interlocks’)
> identify(as.numeric(nation), interlocks)
11 + 2 3 5 6 91327

The variables in the data set include the assets of the corporation (in
millions of dollars), the corporation’s sector of operation, the nation
in which the firm is controlled, and the number of interlocking direc-
torate and executive positions (interlocks) maintained berween each
company and others in the data set. The identify function is used to
label individual points interactively; because the names of the compa-
nies were not given in the original source, there is no third argument to
identify, and the firms are labeled simply by position within the data
set, which is in descending order by assets: The identified points, which
have low observation numbers, are therefore among the largest firms in
the data set. Specifying as.numeric(nation) converts the factor nation
into numbers suitable for plotting as horizontal coordinates.
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Parallel Boxplots in S-PLUS

The boxplot function in S-PLUS does not support specifying the plot as
a formula. Instead, the split function may be used to divide the data
into groups for plotting, as in boxplot (split(interlocks, nation)).
Be.cau..xst.e of the manner in which boxplot in S-PLUS scales the horizontal
axis, it is relatively inconvenient to identify individual points in the plot.

EXAMINING MULTIVARIATE DATA

Because thg media on which we draw graphs (paper, computer displays)
are two dimensional, examining multivariate data is intrinsically more
difficult than examining univariate or bivariate data. Three-variable data
are a special case, however, and features such as perspective and motion
can convey a sense of depth in a three-dimensional scatterplot. The most
effective software of this kind allows the user to manipulate—for exam-
ple, rotate or rock—the display, to mark points, and to plot surfaces
such as regression surfaces, along with points. ’
Dynamic three-dimensional displays are currently absent from R,
a!though one can construct three-dimensional static graphs (th!:eei
fjlmenS}onal surface plots appear in Chapter 7, for example), and a link
is proylded to the independent XGobi and GGobi systems for visualizing
data in three and more dimensions {Swayne, Cook, & Buja, 1998).
Relatively primitive facilities for three-dimensional dynamic graphics are
available in S-PLUS; see, in particular, the spin and brush functions.
Partly becau.se it is difficult to convey the use of dynamic-graphics sys-
tems on the printed page, and partly because these facilities are relatively
underdeveloped in S, I do not pursue the topic here. I refer the interested
reader to the S-PLUS documentation and to other software. In addition
to XGobl and GGobi, Cook and Weisberg’s (1999) Arc system, built on
the Lisp-Stat statistical computing environment (Tierney, 1990), is partic-
ularly noteworthy for its three-dimensional dynamic regression graphics
providing much more than is currently available in S. ’

Scatterplot Matrices

Scatterplot matricgs show the pairwise (i.e., marginal) relationships
among a set of variables. In S, scatterplot matrices are constructed by the

Figure 3.14

.%i" ° 8
® © =]
. @
prestige e
° &
[=4
§ L
o~

®o°| | income
<

10000

14

6 8 10

20 40 60 80

Scatterplot matrix for the Canadian occupational-prestige data.

pairs function. An example, using the Canadian occupational-prestige
data, appears in Figure 3.14:

> detach(Ornstein)

> attach(Prestige)

> pairs(cbind(prestige, income, education, women))
>

I usually want to augment the scatterplots in a scatterplot matrix
and place distributional displays, such as density estimates, on the diag-
onal. The pairs function supports these features through its panel
and diag.panel arguments (as illustrated in Chapter 1 using Duncan’s
occupational-prestige data). Because it is tedious to define panel functions
each time, however, I prefer to let the scatterplot.matrix function in
car do most of the work:

> scatterplot.matrix(cbind(prestige, income, education, women),

+ diagonal='density’, span=.75)

>
The result is shown in Figure 3.15. Other values for the diagonal
argument to scatterplot.matrix are ’boxplot’, ’histogram’, and
'qqplot’ (all of which may be abbreviated—e.g., diag=’hist’ or even
d=’h’).

Incidentally, the general rule for abbreviating the name of an argu-
ment to a function is that you must supply as many characters as are
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20 40 80 80

25000

10000

14

Figure 3.15  Scawterplot matrix for the Canadian occupational-prestige
data, with density estimates on the diagonal, created by the

scatterplot.matrix function.

necessary to identify the argument uniquely. Because no other argument
to scatterplot.matrix begins with the letter “d,” for example, d
is a suitable abbreviation for diagonal. I adopt a similar convention
for character-string arguments to functions in car (such as the value
‘histogram’ for the argument diagonal). My general practice in the
text, however, is to spell out arguments and their values fully.

The scatterplot.matrix function also supports marking points by
groups: Type help(scatterplot.matrix) for details.

Trellis Graphics in S-PLUS and Lattice Graphics in R

S-PLUS includes the relatively new “Trellis graphics” system for drawing
muitipanel graphical displays, such as scatterplot matrices and condition-
ing plots (described in the next section). The Trellis graphics function for
scatterplot matrices is called splom. Most of Trellis graphics, including
splom, has been implemented in the lattice library for R, which, as |
write this, is still in a preliminary form.
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Conditioning Plots §

Tracing out the average value of a response variable conditional on one
or several predictors is the essence of regression analysis. Often, we focus
on the relationship between the response and one predictor, holding other
predictors constant at particular values—that is, condirionally fixing the
values of other predictors. This idea of “statistical control” is typically
realized in a statistical model that makes more-or-less strong assumptions
about the nature of the relationship of the response to the predictors,
such as an assumption of linearity. Indeed, fitting regression models in S
is the principal focus of this text.

Conditioning plots {coplots), due to Cleveland (1993), implement sta-
tistical control graphically in the absence of a statistical model. To con-
struct a coplot, we focus on a particular predictor, and set each other
predictor to a relatively narrow range of values (if the predictor is quan-
titative) or to a specific value (if it is categorical). The subranges for a
quantitative predictor are typically set to overlap (and are termed “shin-
gles”) rather than to partition the data into disjoint subsets (or bins).
Then, for each combination of values of the conditioning predictors, we
construct a scatterplot relating the response to the focal predictor, arrang-
ing these scatterplots in an array. Because each panel of a coplot describes
a subset of the data, this method works best for large data sets, which can
be subdivided without producing sparse subsets. Mareover, if we condi-
tion on more than two, or perhaps three, predictors, the array of coplots
becomes unwieldy and difficult to comprehend. The coplot function in
S permits at most two conditioning predictors, although we can always
subset the data ourselves and construct a coplot for each part.’

To illustrate coplots, I return to the SLID data set, plotting the log of
wages against education, conditioning on the numeric variable age and
the factor sex:

> detach(Prestige)

> attach(SLID)

> coplot(log(wages) ~ education | age + sex, panel=panel.car,
+ col=gray(.5), lwd=3, cex=0.4)

Missing rows: 3 57 8 10 11 13 15 16 17 18 19 21

Using the log transformation of wages serves to reduce the skew in this
variable and to make its partial relationship to education more nearly
linear: See the next section of the chapter, on transformations.

8. Trellis graphics, mentioned in the previous section, powerfully generalize coplots, permitting any
number of conditioning variables. We do not require Treilis graphics for the applications described
in this book.
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As in pairs, the panel argument to coplot specifies a function to
draw the panels. The default in R is points, which produces a bare scat-
terplot. The parel.car function draws a lowess line and a least squares
line on each scartterplot. Note the use of col=gray(.5), cex=0.4, and
1wd=3 to tone down the points and emphasize the lines in the plots. The
marginal panels at the right and top give, respectively, the levels at which
sex and age are fixed. Thus, the top row of the plot array pertains to
males and the bottom row to females; age increases from left to right.
The age ranges overlap (by default, the overlap includes 50 percent of
the observations in adjacent panels), with a roughly equal number of

observations in each column of the plot array. The coplot appears in
Figure 3.16.

The coplot function in S-PLUS
In S-PLUS, the default pane! function for coplot is panel.smooth, which
adds a lowess line to each panel {and which is also available in R). Spec-
ifying the point color as col=gray(.5) does not work in S-PLUS, where

colors must be given by number. (Color selection in R and S-PLUS is
discussed in Chapter 7.)

TRANSFORMING DATA

Variable transformations serve a variety of purposes in data analysis, and
are used in particular to make distributions more symmetric or normal,
to stabilize spread (variation), and to render relationships between vari-
ables more nearly linear. These purposes frequently, but not necessarily,
harmonize with one another.

The “family” of powers and roots, where a variable x is replaced by
x' = xP, is often useful in these contexts. For example, x' = x* when
p=2,x = ./x when p = 1/2, and x’ = 1/x when p = —1.

It is sometimes convenient to replace these simple powers and

roots with the essentially similar Box-Cox family of transformations
(Box & Cox, 1964):

xP -1

x = P — when p # 0,

log,x whenp=0.
We may, in any event, treat the log transformation (to any base) as a
kind of “zeroth™ power.

The family of powers and roots and the Box-Cox family only make
sense when all of the data values are positive, a characteristic that we
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Figure 3.16  Conditioning plot (coplot) of wages by education, controlling
for age and sex, for the SLID dara.

can always impose on the data by adding a sgfﬁciently large constant
(called a start) to each data value. Because their effeq on the shape of
the distribution of a variable is the same, we treat ordinary powers and
corresponding Box-Cox powers interchangeably. ‘ .

Powers and roots are easy to calculate directly in S, as s the Box-

‘Cox family. For convenience, car provides the box.cox function, which

automatically computes a suitable start when there are negative or zero
values in the data:

> box.cox(1:5, 2)
[1) 0.5 2.0 4.5 8.0 12.5

> box.cox(0:5, 2)

[1] 0.0078125 0.6328125 2.2578125 4.8828125 8.5078125

[6] 13.1328125

Warning message: ' .

start = 0.125 added to data prior to transformation in:
box.cox(0:5, 2)
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Proportions that get close to the boundaries of 0 and 1 (or percent-
ages that get close to 0 and 100) often do not respond well to power
transformations. Among several similar, generally useful, transformations
of proportions—the logit transformation, the probit transformation, the
inverse-arcsine transformation, and some others—the logit transforma-
tion is the most commonly employed:

p
l-p

logit(p) = log,

The logit transformation, however, breaks down for proportions of pre-
cisely 0 or 1. We can get around this problem by remapping the interval
(0, 1) to (.025, .975), for example.

Again, the logit transformation is simple to calculate in S, either from
proportions or percentages. The logit function in car takes care of

remapping proportions or percentages when there are Os or 1s {(or 0 or
100 percent) in the data:

> logit(seq(0.1, 0.9, 0.1))
[1] -2.19722 -1.38629 -0.84730 -0.40547 0.00000 0.40547
{71 0.84730 1.38629 2.19722

> logit(seq(0, 1, 0.1))

{1] -3.66356 -1.99243 -1.29505 -0.80012 -0.38467 0.00000

[7] 0.38467 0.80012 1.29505 1.99243 3.66356

Warning message:

Proportions remapped to (0.025,0.975) in: logit(seq(0, 1, 0.1))

To illustrate the use of the logit transformation, I apply it to the
distribution of the gender composition of occupations in the Canadian
occupational-prestige data:

> detach(SLID)

> attach(Prestige)

> plot(density(women, from=0, to=100))

> plot(density(logit(women), adjust=.75))

Warning message:

Proportions remapped to (0.025,0.975) in: logit(women)

The resulting density plots—before and after the logit transformation—
are shown in Figure 3.17. The density plot for the untransformed per-
centages is confined to the domain 0 to 100. The untransformed data, in
panel (a), stack up near the boundaries, especially near 0; the transformed
data, in panel (b), appear berter behaved, and the densiry plot reveals
three apparent concentrations or groups of occupations.
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Figure 3.17  Distribution of women in the Canadian occupational-prestige

data, (a) before and (b} after logit transformation.

Using plot with density in S-PLUS

Entering plot(density(women, from=0, to=100)) in S-PLUS graphs
the density estimate as a sequence of points rather than as a line. To
plot the density estimate as a line, instead enter plot(density(women,
from=0, to=100), type='1’). Recall that the demsity function in
S-PLUS does not recognize the argument adjust.

Transformations for Normality and Symmetry

All the univariate displays discussed in Section 3.1 are useful for
examining the distribution of a variable for symmetry, but normal
quantile-comparison plots are most appropriate for checking departures
from normality. Positive skew can be “corrected” by moving the variable
“down the ladder” of powers and roots from x (i.e., no transforma-
tion) to x/2, x® x(-V etc.; negative skews by moving “up the ladder”
to x@, x| etc.

One way to select a transformation to symmetry is by trial and error,
replotting the data for different powers and examining the results. The
Ask function in car facilitates the process of trial and error:
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transformed income

norm quantiles

3.4 TRANSFORMING DATA

111

Figure 3.18 Normal quantile-comparison plot for the Box-Cox cube-root

;ransformation of income in the Canadian occupational-prestige
ata.

> Ask(p, function(p) qq.plot(box.cox(income, p),
+ ylab="transformed income’))

Enter p : 0

Enter p : 1/2

Enter p : 1/3

Enter p :

>

The second argument to Ask is the function to be called repeatedly; in
this case, the function is “defined on the fly” and takes a single argum;nt
the power p for the Box-Cox transformation of income in the Prestige:
data set; I then simply call the qq.plot function for the transformed data.
The first argument to Ask is the argument to be modified, in this case
the power p. (If the function called by Ask takes additional, non-varying
arguments, then these are specified by name as subsequent arguments t(;
Ask.) When you enter a value in response to the prompt from Ask, make
sure _that the R Console (or S-PLUS Commands window) has the’foc:us
by_ clicking in its window, if necessary, or selecting its window from th;
Window menu. Enter an empry line to exit from Ask.

Recall that the distribution of income is positively skewed, so we
should tljansform the variable down the ladder of powers am’:l roots;
I successively try the powers p = 0, p = 1/2, and p = 1/3. Both thé
log (p = 0) and cube-root (p = 1/3) transformations work reasonably
well helje. The normal quantile-comparison plot produced by p = 1/3 is
shown in Figure 3.18: The transformed distribution of income is quite
symmetric now, but heavy tailed relative to the normal distribution.

Another, if less interactive, approach to finding a transformation to
symmetry is to generate a sequence of plots in a for loop’:

> for (p in c(1/2, 1/3, 0, -1/3, -1/2, -1))
+ qq-plot (box.cox (income, P,
+ ylab=paste(’transformed income, p =’ ,p))

The qq.plot function is called once for each of six values of p. Here,
paste is used to compose the label for the vertical axis. This approach
works in the Windows version of R, where we can record a sequence of
plots, by selecting Recording in the History menu, which appears when
a graphics window has the focus. Use the Page Up and Page Down keys
to move through the recorded plots.!

Maximum-Likelihood Estimation of Normalizing Powers®

An alternative to trial and error is to estimate the normalizing trans-
formation parameter A in x*. The box. cox.powers function in car finds
normalizing transformations for individual variables or multinormalizing
transformations for several variables, by the method of maximum like-
lihood. For example, for income in the Canadian occupational-prestige
data:

> summary(box.cox.powers (income))
Box-Cox Transformation to Normality

Est.Power Std.Err. Wald(Power=0) Wald(Power=1)
0.1793 0.1108 1.6179 -7.4062

L.R. test, power = 0: 2.7103 df =1 p 0.0997
L.R. test, power = 1: 47.261 df =1 p = 0

The function box.cox.powers returns an object. Simply printing the
object produces just the estimated power(s); the summary method for the
object, however, prints a more complete report.

In this case, the maximum-likelihood estimate of the- normalizing
power is A = 0.18; we have strong evidence that ) is not equal to 1; and
we cannot reject the hypothesis that A = 0 (the log transformation). We
know from our previous work that A = 0.18 will make the distribution
of income symmetric, but it still will have heavier tails than the normal
distribution.

9. Loops and other S programming constructs are described in Chaprer 8.

10. Alternatively, we may place all six plots on the same page, for example, in 2 2 x 3 array; this
can be accomplished in S by specifying par (mfrow=c(2,3)) prior to the for loop that draws the
plots.
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Likewise, to find transformations of income and education that make
their joint distribution as close to bivariate normal as possible:

> summary (box.cox.powers(cbind(incone, education)))
Box-Cox Transformations to Multinormality

Est.Power Std.Err. Wald(Power=0) Wald(Power=1)
0.2617 0.1014 2.5799 -7.2800
0.4242 0.4033 1.0517 -1.4278

income
education

0: 7.694 df =2 p =0.0213
48.8727 df =2 p=0

L.R. test, all powers
L.R. test, all powers = 1:

That is A, = 0.26 =~ 1/4 and A, = 0.42 = 1/2. According to the Wald
tests (which under the stated hypotheses follow an asymptotic standard
normal distribution), the transformation of income is statistically signif-
icant but that of education is not. Applying these transformations to
each variable produces the scatterplot in Figure 3.19:

> scatterplot(income”.25, education”.S5, span=.75, lwd=3)
>

It is apparent from the scarterplot that while the univariate distributions
of transformed income and education are quite symmetric, their joint
distribution does not appear to be bivariate normal.

a0

3.5+

o

educalion™).5

2.5

income"0.25

o o —] F ®

Figure 3.19  Scatterplot of education’ by income®
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Transformations to Equalize Spread

We previously examined the relationship berween number of interlocks
and nation of control among the 248 large Canadian corporations in
Ornstein’s interlocking-directorate data set (Figure 3.13). As is often the
case, there is an association between level and spread in these data:
Nations with a relatively high level of interlocks (Canada, Other) show
more variation than nations with fewer interlocks on average (UK., U.S.).
A spread-level plot (Tukey, 1977) is a scatterplot of log-interquartile-
range versus log-median and may be constructed directly from the data
by the spread.level.plot function in car:

> detach(Prestige)

> attach(Ornstein)

> spread.level.plot(interlocks + 1 ~ nation)

LowerHinge Median UpperHinge Hinge-Spread

Us 2 6.0 13 11
UK 4 9.0 14 10
CAN 6 13.0 30 24
OTH 4 15.5 24 20

Suggested power transformation:
>

0.15345

The graph produced by spread.level.plot is shown in Figure 3.20.
When, as here, there is a positive association between spread and level,

Spread-Level Plot for interlocks + 1 by nation

CAN o
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Figure 3.20 Spread-level plot for the relationship between number of

interlocks and nation of control in Ornstein’s interlocking-
directorate data.
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tog10(interlocks + 1)
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Figure 3.21  Parallel boxplots for log;q(interlocks+1) by nation of con-
trol.

we can make the spreads more nearly equal by transforming the variable
down the ladder of powers and roots. Suppose a line is fit to the spread-
level plot and that the slope of the line is b; a spread stabilizing power
transformation is then given by p =1 —b.

The expression interlocks + 1 appears on the left-hand side of the
formula passed to spread.level.plot. I used the start of 1 because
some firms have O interlocks. The function returns a table giving the
first quartile (“lower hinge”), median, third quartile (“upper hinge”),
and interquartile range (“hinge-spread”), along with the suggested power
transformation of interlocks + 1. The suggested power, p = 0.15, is

close to the log transformation. Figure 3.21 shows parallel boxplots for
the log-transformed data:

old.margins <- par(mar=c(5.1, 4.1, 4.1, 4.1))

boxplot(log(interlocks+1,10) ~ nation,
ylab="1logl0(Interlocks + 1)’)

power .axis (power=0, base=10, at=c(1,10,100),
axis.title=’Interlocks + 1’)

par (mar=old .margins)

remove (old.margins)

VVV +V + VYV

The spreads in the transformed data for the four groups are much less
different than those in the untransformed data (Figure 3.13).

The production of the boxplot is very simple, taking just one com-
mand; I use logs to the base 10 for interpretability. The remaining S state-
ments leave space for, and then plot, the right-side axis, which translates
the log scale back to the number of interlocks (plus 1). The car function
power.axis draws the additional axis (treating the log transformation
as the zero power). After making the plot, I restore the original margins

oo

|ogx.\f; X,

Wy

logy

Figure 3.22 Mosteller and Tukey’s bulging rule for finding linearizing trans-
formations: When the bulge points down, transform y down the
Jadder of powers and roots; when the bulge points #p, trans-
form y up; when the bulge points left, transform x down; when
the bulge points right, transform x up.

of the plot window.!’ The functions box.cox.axis and prob.axis 1
car may be used similarly to produce axes on the untransformed scale
corresponding to Box-Cox and logit transformations.

Transformations to Linearity

Another common application of power transformations is to linearize
nonlinear relationships. An analytic approach to linearizing transfor.ma—
tions is discussed in Chapter 6; here 1 consider tria} an.d erro, guldgd
by Mosteller and Tukey’s (1977) bulging rule, which is illustrated in
Figure 3.22. .

An example appears in Figure 3.23. Panel (a) of this figure shows t.he
relationship between infan _mortality rate (infant deal?hs per 1000 live
births) and GDP per capita (in U.S. dollars) for 193 nations of tbe wquc.l;
the data are from the United Nations (1998). Because the relationship 1s

i i i i function. The mar setting
_ Many global graphics parameters in § are sct of querlned with the par fun I
ilslfor they :lot ma%gi:s; see help(par) for derails. Graphics parameters are discussed in Chapter 7.

L_
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o o Siarra.Leons

o o Afghanistan

infant.mortality

T
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transformed infant mortality

o Afghanistan

o olraq

ransiormed GDP/capia

(b)

Figure 3.23

with both variables log-transformed.

monotone (infant mortality decreases with GDP, though at a declining
rate) and simple (the direction of curvature of the relationship does not
change), power transformation of one o .
strategy. The graph is produced by the following S commands:

> detach(Ornstein)
> data(UN)

Relationship between infant morality (per 1900)
capita (U.S. dollars) for 193 nations: (a) original scatterplot;

r both variables is a promising

z
] |

X
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> UN[1:5,] # first 5 obs.

infant.mortality gdp

Afghanistan 154 2848
Albania 32 863
Algeria 44 1531
American-Samoa 11 NA
Andorra NA NA

> attach(UN)
> scatterplot(gdp, infant.mortality, labels=row.names(UN))

(1]

1 63 65 87 107 166

There are 207 nations in all, but some data are missing. Using the mouse,

I identified a few observations in the scatterplot.

To search for linearizing transformations by trial and error, I invoke
the Ask function:

> Ask(p, function(p) scatterplot(box.cox(gdp,pl1]),

+ box.cox(infant.mortality, pl21),

+ xlab=’transformed GDP/capita’,

+ ylab=’transformed infant mortality’,
+ labels=row.names (UN)))

Enter p : c(0,1)

Enter p : c(0,0)

Enter p :

>

Because Ask expects only one changing argument, I specify this argu-
ment, p, as a two-element vector; the first element, p[1], is used for a
Box-Cox power transformation of gdp, the second element, p(2], for
the transformation of infant.mortality. The bulge in the original scat-
terplot [Figure 3.23(a)] points down and to the left, and 1 therefore try
transforming both infant morality and GDP per capita down the ladder
of powers and roots. My second attempt, specifying “0” powers (i.e.,
log transformations) for both variables, produces Figure 3.23(b). These
transformations serve not only substantially to straighten the relationship
between the variables, but also to make each variable more symmetric,

rendering the scatterplot much easier to examine.
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HAPTER 4

Fitting Linear Models

S provides excellent facilities for specifying and firting linear and
) related statistical models. The basic S function for firting linear
&  models by least squares is 1m. The model is specified by a formula—a
? special notation in which the arithmetic operators +, -, *, /, and ~ take
3 on meanings different from their ordinary ones. I augment these facilities
E in car with functions for testing hypotheses, as described in this chapter,
& and for regression “diagnostics,” discussed in Chapter 6.

p The current chapter begins with linear regression models, the specifica-
tion of which is very simple, and gradually introduces more complex linear
~ models. The chapter concludes with a general discussion of 1m. 1 take up
the closely related topic of generalized linear models in the next chapter;
; other regression models are described in the Web appendix to the text.

LINEAR LEAST SQUARES REGRESSION m

Simple Regression

The data frame Davis in car contains data on the measured and reported
heights and weights of 200 men and women engaged in regular exercise':

> library(car)

1. Some of the data values are missing, however: There are 182 complete observations for the
regression reported below.

119
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> data(Davis)
> names(Davis)
f1] "sex" "weight" "height" "repwt" "repht"

> Davis(1:5,]

sex weight height repwt repht
7 182 77 180
58 161 51 159
53 161 54 158
68 177 70 175
59 157 59 155

g N
m=zmm3

Here, weight and repwt are in kilograms, and height and repht are in
centimeters. One of the objects of the researcher who collected thgse data
(Davis, 1990) was to determine whether reports of height anc_l weight are
sufficiently accurate to replace the actual measurements, which suggests
regressing each measurement on the corresponding report; I focus here
on weight. ) . .

Let y = weight and x = repwt; then the simple linear regression model

yi=a+Bx; +¢g
is fit in S in the following manner:
> attach(Davis)
> davis.mod <- lm(weight ~ repwt)

> davis.mod

Call:
1m(formula = weight ~ repwt)

Coefficients:
(Intercept) repwt
5.336 0.928

The formula weight ~ repwt, with the response variable on t.he left-
hand side of the tilde (~) and the predictor on the right, specifies the
regression of weight on repwt.

As is my usual practice, | attach the Davis data frame to make the
variables in it visible on the search path. An alternative is to suppl.y
a data argument to 1m, as in lm(weight ~ repwt, data=D.a.vis). .ThlS
approach has the advantage of associating the model e)Fpllcxtly with a
data frame—which may avoid problems, for example, if the mof.{el is
updated when the data frame is no longer artached. It is my experience,
however, that new users of S find it simpler to attach a data frame to
the search path.

The 1m function returns a linear-model object, which I save in
davis.mod. Printing the object produces a brief report. The summary
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method for linear models yields more informarion:
> summary(davis.mod)

Call:
lm(formula = weight ~ repwt)

Residuals:
Min 1Q Median 3Q Max
-7.048 -~1.868 -0.728 0.601 108.705

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 5.3363 3.0369 1.76 0.08
repwt 0.9278 0.0453 20.48 <2e-16

Residual standard error: 8.42 on 181 degrees of freedom

Multiple R-Squared: 0.699, Adjusted R-squared: 0.697

F-statistic: 420 on 1 and 181 degrees of freedom,
p-value: 0

Handling Missing Data with 1m in S-PLUS

Recall that the default na.action for 1m in S-PLUS is na.fail. There
is missing data in Davis’s data set, and so it is necessary to set
na.action=na.omit Or na.exclude to make this example work. An
alternative is to filter the data set for missing data prior to attaching it; for
example, Davis.good <- na.omit(Davis).

If individuals are unbiased reporters of their weight, then the regres-
sion intercept should be 0 and the slope 1; the least squares regression
coefficients are close to 0 and 1, although the intercept is nearly signifi-
cantly different from 0, as the ¢ test for the intercept demonstrates. The
¢ test for the slope shows that it is highly significantly different from 0; as
well, the slope estimate is almost two standard errors from 1, and so it is
nearly significantly different from 1. The squared correlation, R? = .699,
is by most standards quite large, but it is not large in the current context,
where we are contemplating replacing a measurement by a report. The
residual standard deviation is 8.42 kg, a large average error of prediction.

I should have started (of course!) by plotting the data, and I now do
so belatedly:

> plot(repwt, weight)
> abline(davis.mod)

> abline(0, 1, lty=2)
>
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Figure 4.1  Scatterplot of measured weight (weight) by reported weight

(repwt) for Davis’s data.

The fun(;tion abline plots a line on the graph given its intercept and
slopefe1ther directly, as in abline(0, 1, 1lty=2), which plots a bro-
ken lmg (line type 2) with intercept 0 and slope 1, or by extracting the
regression coefficients from an 1m object, as in abline(davis.mod). The

Fesultlng graph, vs{hich appears in Figure 4.1, reveals an extreme outlier,
interactively identified as observation 12:

> identify(repwt, weight)
[1] 12
>

Recall that to identify a point, place the mouse cursor near the point and
press the left mouse button; to exit from identify, press the right mouse
button.

. Bec.ausse the outlier is at a relatively low-leverage point, the regres-
sion line is not greatly affected, and the least squares line is quite close
to the line of unbiased reporting. Nevertheless, the outlier appears to
increase the intercept of the regression line slightly and to decrease its
slope slightly; moreover, the outlier inflates the residual standard error
and substantially decreases the correlation.

It seems bizarre that an individual who weighs more than 160 kg
WOlllld report her weight as less than 60 kg, but there is a simple expla-
nation: On data entry, subject 12’s height in centimeters and weight in
kilograms were inadvertently exchanged. The proper course of action
would be to correct the data, bur to extend the example, I instead will use

4.1 LINEAR LEAST SQUARES REGRESSION

the update function to refit the model removing the 12th observation:

> davis.mod.2 <- update(davis.mod, subset=-12)
> summary(davis.mod.2)

Call:
1m(formula = weight ~ repwt, subset = -12)
Residuals:

Min 1Q Median 3Q Max

-7.530 -1.101 -0.132 1.129 6.389

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 2.7338 0.8148 3.36 0.00097
repwt 0.9584 0.0121 78.93 < 2e-16

Residual standard error: 2.25 on 180 degrees of freedom

Multiple R-Squared: 0.972, Adjusted R-squared: 0.972

F-statistic: 6.23e+003 on 1 and 180 degrees of freedom,
p-value: Y]

Equivalently, 1 could have used 1m to fit a new model, specifying the
subset argument, but update generally is a more convenient way to
make small changes to a model. As expected, the intercepr is now even
closer to 0 and the slope closer to 1; the squared correlation is much
larger; and the standard deviation of the residuals is much smaller (if not
wholly negligible). Paradoxically (because of the smaller error variance),
the intercept and slope are now significantly different from the respective
values of 0 and 1.

Multiple Regression

Fitting a mulriple linear regression is equally simple. To provide an illus-
tration, let us rerurn to the Canadian occupational-prestige data, intro-
duced in Chapter 2:

> detach(Davis)

> data(Prestige)

> attach(Prestige)

> names(Prestige)

[1] "education" "income"  “women" "prestige" "census"
(6] "type"

Then let us regress occupational prestige, y, on the average number
of years of education of occupational incumbents, x;; their average level
of income, x,; and the percentage of women in the occupation, x;—fitting
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the model

¥, = a+ Bix;y + Byxip + Bixiz + &5

> prestige.mod <~ lm(prestige ~ income + education + women)
> summary(prestige.mod)

Call:
1m(formula = prestige ~ income + education + women)

Residuals:
Min 1Q Median 3Q Max
-19.825 =-5.333 -0.136 5.159 17.504

Coefficients:
Estimate Std. Error t value Pr(>Itl)
(Intercept) -6.794334  3.239089 -2.10 0.039

income 0.001314  0.000278 4.73 T.6e-06
education 4.186637  0.388701 10.77 < 2e-16
women -0.008905 0.030407 -0.29 0.770

Residual standard error: 7.85 on 98 degrees of freedom

Multiple R-Squared: 0.798, Adjusted R-squared: 0.792

F-statistic: 129 on 3 and 98 degrees of freedom,
p-value: 0

There is, therefore, strong evidence that occupational prestige is related
to the income and education levels of the occupations, but not to their
gender composition. We will revisit this model in Chapter 6 on regression
diagnostics.

Standardized Regression Coefficients

I am not terribly enamoured of standardized regression coefficients, but
obraining them in S is not hard: One way to proceed is by standardizing
all of the variables to mean 0 and standard deviation 1, using the scale
function:

> Prestige.scaled <- data.frame(scale(
+ Prestigel,c(’prestige’, ’income’, ’education’, ’women’)]))

> Prestige.scaled{1:5,]

prestige income education women
1.27680 1.30787 0.86935 -0.56167

"GENERAL .MANAGERS 1.29424 4.49398 0.55781 -0.78673
ACCOUNTANTS 0.96293 0.58246  0.74473 -0.41857
PURCHASING.OFFICERS 0.57931 0.48684 0.24994 -0.62629
CHEMISTS 1.54998 0.37803  1.42277 -0.54528

GOV . ADMINISTRATORS
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> summary(lm(prestige ~ income + education + women,
+ data=Prestige.scaled))

Call:

lm(formula = prestige ~ income + education + women,
data = Prestige.scaled)

Coefficients:
Estimate Std. Error t value Pr(>jt|)

(Intercept) -2.66e-16  4.52e-02 -5.9e-15 1.00
income 3.24e-01 6.86e-02 4.73 7.6e-06
education 6.64e-01 6.16e-02 10.77 < 2e-16
women ~1.64e-02 5.61e-02 -0.29 0.77

Residual standard error: 0.456 on 98 degrees of freedom

As an alternative to attaching the Prestige.scaled data frame, I have
instead specified a data argument to lm (as explained previously). In
this manner, I avoid detaching the Prestige data frame, which [ intend
to use below: Having both Prestige and Prestige.scaled attached
simultaneously is not useful, because the variables in the more recently
attached Prestige.scaled would shadow those in Prestige.

The intercept of the standardized regression model is necessarily 0
(within rounding error). We can suppress the intercept by specifying -1
in the model formula, but doing so changes the residual degrees of free-

dom and, hence, the residual standard error, coefficient standard errors,
and ¢ values?:

> summary(lm(prestige ~ income + education + women - 1,
+ data=Prestige.scaled))

Call:

lm(formula = prestige ~ income + education + women - 1,
data = Prestige.scaled)

Coefficients:

Estimate Std. Error t value Pr(>|t])
income 0.3242 0.0682 4.75 6.8e-06
education 0.6640 0.0613 10.83 < 2e-16
women -0.0164 0.0558 -0.29 0.77

Residual standard error: 0.454 on 99 degrees of freedom

2. In any event, the standard errors of the standardized regression coefficients are nor strictly correct:
Compurting standardized coefficients requires estimates of the standard deviations of the variables,
which are also subject to sampling variation.
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DUMMY-VARIABLE REGRESSION
Factors

In dummy-variable regression (also called analysis of covariance), there
are both quantitative and categorical predictors. In S, categorical predic-
tors are most naturally treated as factors. Recall that the read.table
function by default makes factors of character data.

Consider, for example, the variable type (type of occupation) in the
currently attached Prestige data frame:

> type

{1} prof prof prof prof prof prof prof prof prof prof prof prof
[13] prof prof prof prof prof prof prof prof prof prof prof prof
[25) prof prof prof bc prof prof wc prof wc NA wc wc

[97) bc bec be bc  be be
Levels: bc prof wc

We can tell that type is a factor (1) because its values are printed
unquoted and (2) because (in R) the levels (i.e., categories) of the factor
are prigted below the values. The three levels represent blue-collar (bc)
professional and managerial (prof), and white-collar (wc) occupationst
The levels were automatically alphabetized when the factor was created;
more about this later. ’

Some of the occupations have missing type; because I intend to fit
several models to these data, it will be safest to ensure that all models
use the same subset of valid observations. A simple way to make sure
that this is the case is to create, and then attach, a new version of the
data frame consisting only of complete observations:

> detach(Prestige)
> Prestige.2 <- na.omit(Prestige)
> attach(Prestige.2)
> type

[1] prof prof prof prof prof prof prof prof prof prof prof prof
[13] prof prof prof prof prof prof prof prof prof prof prof prof

[25] prof prof prof bc  prof prof we prof we wec wc wc

[97] be bc

Levels: bc prof wc

Fact.ors are vectors of class factor; they encode level membership
numerically, with information about the levels of the factor saved in a
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levels attribute:

> class{type)
[1] "factor"

> unclass (type)
1122222

2222222222222222222222122
[31] 323333333333333333333133311111
61 111111111111111111111111111111
91 12111111

attr(,"levels")
[1] llbcll |Ipr°f n "VC"

The unclass function removes the class attribute of its argument, in this
instance causing type to be printed by the default print method rather
than by the print method for factors. This allows us to see the internal
structure of the object.

Contrasts . 4.2.2

Because a factor is intrinsically categorical, it would be entirely mean-
ingless to treat its numeric levels as a quantitative predictor in a linear
model. Instead, we need to code dummy regressors or contrasts to rep-
resent the levels of the factor. We could do this manually, but $ will code
contrasts for us automatically. I assume that the notion of coding dummy
regressors, and the particular coding schemes that are described here, are
at least somewhat familiar.

How S codes dummy regressors is controlled by the contrasts option:

> options(’contrasts’)
$contrasts

unordered
“contr.treatment"

ordered
“contr.poly"

Two values are provided by this option: one for unordered factors (the -
current context), and the other for ordered factors (to be described later

in this section). Each value corresponds to a function that converts a
factor into an appropriate set of contrasts.

Default Contrasts in S-PLUS

In S-PLUS, the default contrast type for unordered factors is contr .helmert,
which is described later in this section.
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We can see how the contrasts for a factor are coded by using the
contrasts function:

> contrasts(type)

prof wc
be 0 0
prof 10
we 0 1

The 0/1 coding scheme employed by contr.treatment is often termed
dummy coding or indicator coding. The first level of the factor is taken as
the “reference” or “baseline” category. The choice of reference category
is essentially arbitrary, and we can modify-it, if we wish, in the following
manner:

> contrasts(type) <- contr.treatment(levels(type), base=2)
> contrasts(type)

bc we
be 1 0
prof 0 0
we 01

Dummy coding produces easy-to-interpret regression coefficients, but
other choices are available in S.

Helmert Coding

> contrasts(type) <- ’contr.helmert’
> contrasts(type)

(1 [,2]
bc -1 -1
prof 1 -1
we 0 2

Helmert coding produces orthogonal (i.e., uncorrelated) contrasts when
there are equal numbers of observations at the different levels of the
factor; whether or not there are equal observations at the different levels,
the coefficients for the Helmert regressors compare each level with the
average of the “preceding” ones.

Deviation Coding

> contrasts(type) <- ’contr.sum’
> contrasts(type)
(,11 G,2]
be 1 o]
prof o] 1
we -1 -1

4.2 DUMMY-VARIABLE REGRESSION
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> contrasts(type) <- NULL
>

Deviation coding results from so-called “sigma” or “sum-to-zero” con-
straints on the coefficients of the over-parametrized model: The coefficient
for the last level (here wc) is implicitly constrained equal to the sum of the
coefficients for the other levels, and the redundant last coefficient is omit-
ted from the model. Each coefficient compares the corresponding level of
the factor to the average of the other levels. [Entering contrasts(type)
<~ NULL ensures that the contrasts option applies once more to type.]

An alternative to changing the contrasts of individual factors is to reset
the global contrasts option. For example:

> options(contrasts = c(’contr.helmert’, ’contr.poly’))
>

Finally, as explained in Section 4.7, contrasts may be assigned to fac-
tors in the call to 1m.

Before proceeding, I return the contrasts option to its default value:

> options(contrasts = c(’contr.treatment’, ’contr.poly’)
>

Changing the Contrast Type in S-PLUS

In S-PLUS, you cannot change the contrast type for a factor simply by
specifying a character string with the name of the contrast function.
Instead, you may take the following approach:

> contrasts(type) <- contr.treatment(c("bc", "wc"; "prof"))
> contrasts(type) <- contr.helmert(levels(type))

> contrasts(type) <- contr.sum(levels(type))

Notice that to specify the baseline level for contr.treatment, it is
necessary to give the levels explicitly, with the baseline listed first.

There is an additional complication in S4: You must explicitly copy the
factor (here, type) from the attached data frame into the working data
before making a change to it, by entering type <- type. This operation
takes place automatically in S3 (and R).
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Ordered -Factors

An ordered factor may be created in the following manner:

> type.ord <- ordered(type, levels=c(’bc’, ’wc’, ’prof’))
> type.ord
[1] prof prof prof prof prof prof prof prof prof prof prof prof
[97] bc  be
Levels: bc < wc < prof

> round(contrasts(type.ord), 3)
.L .Q

bc -0.707 0.408

wec 0.000 -0.816

prof 0.707 0.408

1 specified the levels of the factor explicitly to avoid ordering them alpha-
betically, which would be inappropriate here: The conventional order of
these levels is be (blue-collar occupations), we (white-collar occupations),
prof (professional and managerial occupations).

Because type.ord is an ordered factor, contrasts are created by default
using contr.poly, which codes orthogonal polynomials when the fac-
tor levels are equally spaced and there are equal numbers of obsgrva-
tions at the different levels. The first term (labeled .L) represents a linear
trend; the second (.Q), a quadratic trend. In general, the order of the
polynomial {two, in this example) is one less thap the number of lev-
els (three). Polynomial contrasts are most compelling when the ordered
factor is a quantitative discrete variable—for example, numl?er of sur-
viving grandparents—but they are also useful for ordinal predictors such
as type.ord. Helmert contrasts may also be of interest for an ordered
factor.

4.’24 Fitting Additive Dummy-Regression Models

Suppose that we want to regress prestige on income, education, and
type of occupation. The additive dummy-regression model takes the
form

yi =+ Bixy + Boxp + idiy + vadin + &5
where y = prestige, x, = income, x, = education, and the specific

form of the ds depends on the coding scheme used for the three categories
of type—say, “treatment” contrasts.
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To fit this model, we simply need to add the factor type to the right-
hand side of the model formula:

> prestige.mod.1 <- lm(prestige ~ income + education + type)
> summary(prestige.mod.1)

Call:
lm(formula = prestige ~ income + education + type)

Residuals:
Min 1Q Median 3Q Max
-14.953 ~-4.449 0.168 5.057 18.632

Coefficients:*
Estimate Std. Error t value Pr(>|t])

(Intercept) -0.622929 5.227525 -0.12 0.91
income 0.001013 0.000221 4.59 1.4e-05
education 3.673166  0.640502 5.73 1.2e~07
typeprof 6.038971  3.866855 1.56 0.12
typewc -2.737231 2.513932 -1.09 0.28

Residual standard error: 7.09 on 93 degrees of freedom

Multiple R-Squared: 0.835, Adjusted R-squared: 0.828

F-statistic: 118 on 4 and 93 degrees of freedom,
p-value: 0

Because the first level of type (i.e., bc) is the baseline level, we obtain
coefficients for the levels prof and wc, along with the regression constant
(the “Intercept”) and coefficients for income and education.

The ¢ values in the regression summary are adequate for testing one-
degree-of-freedom effects, such as those of income and education in
this model, but because the choice of coding and’ baseline category is
essentially arbitrary, we usually want to test the two coefficients for type

simultaneously. S provides the anova function to test terms in a linear
model:

> anova(prestige.mod.1)
Analysis of Variance Table

Response: prestige
Df Sum Sq Mean Sq F value Pr(>F)

income 1 14022 14022 278.56 <2e-16
education 1 9053 9053 179.85 <2e-16
type 2 591 296 5.87 0.004
Residuals 93 4681 50

The sums of squares reported by the anova function are, however,
“sequential” sums of squares: for income ignoring education and type;
for education after income but igroring type; and for type after
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income and education.’ For nonorthogonal data (i.e., when regressors
for different terms in the model are correlated), sequential sums of
squares do not, in general, correspond to meaningful hypotheses about
parameters in the model. Here, however, the last test, for type, gives us
what we want, and we already have ¢ values for the single-df effects,
income and education.

The anova function may also be used to calculate an incremental (or
“extra-sum-of-squares”) F test contrasting two nested linear models. For
example, we may omit type from the model, and contrast the result with
the full model, obtaining the same F statistic for type as before:

> prestige.mod.0 <- lm(prestige ~ income + education)
> anova(prestige.mod.0, prestige.mod.1)
Analysis of Variance Table

Model 1: prestige ~ income + education

Model 2: prestige ~ income + education + type
Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 95 5272

2 93 4681 2 591

5.87 0.004

The Anova function in car (note the uppercase 4, to distinguish it from
anova) calculates a proper test for each of the terms in the linear model*;
in the case of one-df effects, these F tests are simply #*:

> Anova(prestige.mod.1)
Anova Table (Type II tests)

Response: prestige

Sum Sq Df F value Pr(>F)

income 1059 1 21.03 1.4e-05
education 1655 1  32.89 1.2e-07
type 591 2 5.87 0.004
Residuals 4681 93

A last point on the additive dummy-regression model: By omitting the
regression constant from the model, we can force S to fit a different
intercept for each group. This practice is potentially confusing, however,
because the hypothesis that the resulting three coefficients for type are all
0 is no longer equivalent to-the hypothesis of no type effects. Moreover,
in models without a constant, R? loses its usual interpretation, as does

3. Following popular terminology introduced by the SAS statistical computer package, sequential
sums of squares are often called Type I sums of squares. The anova function in S-PLUS (but not
R) can also calculate so-called Type III sums of squares, which would give us the result that we
are looking for here, but which introduce additional considerations in models with interactions. !
discuss Type 11 and Type IIl sums of squares later in this chapter.

4, By defaulr, the Anova function calculates Type II sums of squares, but it can calculate Type Il

sums of squares as well. For this additive model, Type Il and Type III sums of squares are identical.
See foomore 3.

4
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the omnibus F test for the model. [ suggest that you generally avoid this
kind of specification.

The constant is suppressed by including -1 on the right-hand side of
the model formula:

> prestige.mod.2 <- lm(prestige ~ income + education + type - 1)
> summary(prestige.mod.2)

Coefficients:
Estimate Std. Error t value Pr(>|tl)

income 0.00:013  0.000221 4.59 1.4e-05
education 3.673166 0.640502 5.73 1.2e-07
typebc -0.622929 5.227525 -0.12 0.91
typeprof  5.416041  8.692156 0.62 0.53
typewc -3.360160 6.960162 -0.48 0.63

Residual standard error: 7.09 on 93 degrees of freedom

Multiple R-Squared: 0.981, Adjusted R-squared: 0.98

F-statistic: 966 on 5 and 93 degrees of freedom,
p-value: 0

> Anova(prestige.mod.2)
Anova Table (Type II tests)

Response: prestige
Sum Sq Df F value Pr(>F)

income 1059 1 21.03 1.4e-05
education 1655 1  32.89 1.2e-07
type 923 3 6.11 0.00077
Residuals 4681 93

The F tests for income and education are the same as before, but, as

explained, the F for type now tests a different, and uninteresting, hypoth-
esis.

Dummy Regression with Interactions

The additive dummy-regression model fits identical slopes in all the levels
of a factor. Building interactions into the model permits different slopes
at different levels (“different slopes for different folks”).

Interactions are specified by colons (:) in the model formula; for exam-
ple, I use update to add interactions to the dummy-regression model for
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the prestige data (as explained below):

> prestige.mod.3 <- update(prestige.mod.1,
+ . ~ . + income:type + education:type)

> summary(prestige.mod.3)

Call:

Im(formula = prestige ~ income + education + type + income:type +
education:type)

Residuals:

Min 1Q Median 3Q Max
-13.46 -4.23 1.35 3.83 19.63
Coefficients:

Estimate Std. Error t value Pr(>|tl)

(Intercept) 2.28e+00  7.06e+00 0.32 0.748
income 3.52e~03 5.56e-04 6.33 9.6e-09
education 1.71e+00 9.57e-01 1.79 0.077
typeprof 1.54e+01 1.37e+01 1.12 0.266
typewc -3.35e+01 1.77e+01  -1.90 0.061
income:typeprof -2.90e-03 5.99e-04 -4.85 5.3e-06
income:typewc -2.07e~03 8.94e-04 -2.32 0.023
education:typeprof 1.39e+00  1.29e+00 1.08 0.284
education:typewc 4.29e+00  1.76e+00 2.44 0.017

Residual standard error: 6.32 on 89 degrees of freedom

Multiple R-Squared: 0.875, Adjusted R-squared: 0.863

F-statistic: 77.6 on 8 and 89 degrees of freedom,
p-value: 0

> Anova(prestige.mod.3)
Anova Table (Type II tests)

Response: prestige
Sum Sq Df F value Pr(>F)

income 1132 1 28.35 7.5e-07
education 1068 1 26.75 1.4e-06
type 591 2 7.40 0.0011
income:type 952 2 11.92 2.6e-05
education:type 238 2 2.99 0.0556
Residuals 3553 89

This specification fits the model
¥i =+ Bixy + Baxp + vid;y + 12din
+8y1x,0d;y + 8pxpdyy + 851x0d;y + Spxpdn + &

' Rather than _specifying the model from scratch, I have updated the pre-
viously fit additive model (prestige.mod.1). In the formula argument
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(i.e., the second argument) to update, the periods (.) are to be read as

““the previous value,” and so 1m reuses the previous left-hand side of

the model, and adds interactions between income and type and berween
education and type to the previous right-hand side.

The Type II tests computed by Anova obey the principle of marginal-
ity, and are summarized in the following table; for example, the “main-
effect” test for income ignores the interactions between income and type,
to which income is marginal (but not between education and type):

Sum of Squares for |after... ignoring...

income:type

income education, type,
education:type

education income, type, education:type
income:type
type income, education income:type,

education:type

income:type income, education, type,
education:type
education:type income, education, type,

income:type

The “ignoring/after” terminology is a shorthand: For example, the
sum of squares for income ignoring income:type and after education
and type is calculated by contrasting the residual sums of squares for
two (nested) models: the model including income, education, type,
and education:type; and the model including education, type, and
education:type (but omitting income). The denominator for the F-test
is taken from the estimated error variance for the full model. The Anova
funcrion calculates the various sums of squares without actually refitting
the model.

In writing the formula for a linear model, it is not necessary to sep-
arately specify interactions and their lower-order relatives, such as main
effects; using asterisks (*) generates an interaction and all of the terms
marginal to it. Thus, the previous model (prestige.mod.3) could have
been fit as:

> lm(prestige ~ income*type + education¥type)

S linear-model formulas also make provision for nested effects: The
term A %in% B is interpreted as “A nested within B.” In the current
dummy-regression context, we can use nesting to fit separate education
and income slopes at each level of occupational type:

> Im(prestige ~ type + (income + education) %inY% type)

Parentheses in model formulas are expanded in the usual manner: Thus,
(income + education) %in% type is equivalent to income %inl. type
+ education %in% type.
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Nesting Effects in $-PLUS

In S-PLUS, (income + education) %in’ type does not expand to income
%inY% type + education %in% type. if we desire the second specification,
we need to enter it directly.

Suppressing the regression constant fits a separate intercept for each
type, as well as separate slopes:

> 1m(prestige ~ type + (income + education) %in% type - 1)

Call:
im(formula = prestige ~ type + (imcome + education) %in% type - 1)

Coefficients:
typebc typeprof typevc
2.27575 17.62765 -31.26090
typebc:income typeprof:income typewc: income
0.00352 0.00062 0.00145
typebc:education typeprof:education typewc:education
1.71327 3.10108 6.00415

This kind of parametrization, however, makes it relatively difficult to
test for type effects and interactions with type. In particular, a properly
formulated analysis of variance for the nested model tests the hypotheses
(1) that all the intercepts are zero, (2) that all the income slopes are zero,
and (3) that all the education slopes are zero—not, for example, that
the education slopes are equal to each other.

4.3 ANALYSIS OF VARIANCE MODELS

It is, from one point of view, unnecessary-to consider analysis of variance
models separately from the general class of linear models, but doing so
helps to clarify how interactions among factors are handled in S.

Let us begin by detaching the Prestige data frame and accessing
data from an experiment on conformity reported by Moore and Krupat

(1971):
> detach(Prestige.2)
> data(Moore)
> attach(Moore)
> Moore
partner.status conformity fcategory fscore
1 low 8 low 37
2 low 4 high 57

ok
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3 low 8 high 65
44 high 10 high 52
45 high 15 medium 44

The 45 subjects in the experiment interacted with a partner who was
of either relatively low or relatively high status (as recorded in the
factor partner.status). In the course of the experiment, the subjects
made intrinsically ambiguous judgments, exchanging these judgments
with their partners; the partners’ judgments were manipulated so that
they disagreed with the subjects on 40 critical trials. After exchanging
initial judgments, the subjects were given the opportunity to change their
judgments. The variable conformity records the number of times in
these 40 trials that each subject deferred to his or her partner’s judgment.
The variable fscore is a measure of “authoritarianism,” and fcategory
is a categorized version of this variable, dissecting fscore into thirds,
labeled low, medium, and high.

Employing partner.status and fcategory as factors, Moore and
Krupat performed a two-way analysis of variance of conformity.’ To
replicate their analysis, [ start by re-ordering the levels of the factor
fcategory, because the alphabetical order is not what we want. (I could
treat fcategory as an ordered factor, but do not do so.)

> fcategory <- factor(fcategory, levels=c(’low’,’medium’,’high’))
> fcategory
{1] low high high low low low medium medium

{41] medium high low high medium

Levels: low medium high

Next, I use the tapply (table-apply) function to find the mean and
standard deviation of conformity, along with the frequency count of
observations, for all combinations of levels (cells) of the two factors®:

> means <- tapply(conformity, list(fcategory, partner.status), mean)
> means
high low
low 17.400 8.900
medium 14.273 7.250
high 11.857 12.625

5. Actually, Moore and Krupat categorized authoritarianism separately within each level of partner’s
status. The results I present here are similar to theirs, but my procedure is more defensible.

The reader may want to consider variations on the analysis: Using fscore, the quantitative ver-
sion of authoritarianism, in place of the factor fcategory, produces a dummy regression. Because
conformity is a disguised proportion (conforming responses out of 40), a logit transformation of
conformity/40 might be tred.

6. The tapply function, and other functions in the “‘apply" family, are described in Chaprer 8.
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> tapply(conformity, list(fcategory, partner.status),
+ function(x) sqrt(var(x)))
high low
low 4.5056 2.6437
medium 3.9520 3.9476
high 3.9340 7.3473

> tapply(conformity, list(fcategory, partner.status), length)

high low
low 5 10
medium i1 4
high 7 8

The first argument to tapply is the variable to be summarized; the second
argument is a list of factors; and the third argument is the function to
be applied. Note how I define a function for the standard deviation “on
the fly,” as the square root of the variance: It would be simpler to use sd
(in R) or stdev (in S-PLUS), but the example illustrates how to employ
an anonymous function as an argument to tapply. I assign the means

toa variable so that I can conveniently plot them, along with the data
(Figure 4.2):

> Fcat <- as.numeric(fcategory)

> plot(c(0.5, 3.5), range(conformity), xlab="F category’,

+ ylab=’Conformity’, type=’n’, axes=F) .

> axis(1, at=1:3, labels=c(’low’, ’medium’, ’high’)) # x-axis
> axis(2) # y-axis

> box()

> points(jitter(Fcat[partner.status == ’low’]),

+ conformity[partner.status == ’low’}, pcb=’L’)

> points(jitter(Fcat[partner.status == ’high’]),

+ conformity[partner.status == ’high’], pch="H’)

> lines(1:3, means[,1], 1ty=1, 1lwd=3, type='b’, pch=19, cex=2)
> lines(1:3, means[,2], 1ty=3, lwd=3, type=’b’, pch=1, cex=2)
> legend(locator(1), c(’high’,’low’), lty=c(1,3),

+ 1wd=c(3,3), pch=c(19,1))

>

Here is a brief explanation of the commands used to draw this graph”:

m The function as.numeric “coerces” the factor fcategory to numbers,
which are used for horizontal coordinates in the graph.

m Specifying type='n’ in the call to plot sets up the coordinate space
for the graph without plotting the darta.

m The axis function draws tick marks and tick labels, while box places
a frame around the graph.

7. Chapter 7 describes S graphics in greater detail, including a general strategy for building up
complex graphs. )
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m The points function adds the data, using the plotting character °L’
for low partner’s status and *H’ for high partner’s status. Jittering the
points horizontally helps to separate them visually.

@ The lines function plots the profiles of means, providing different
symbols (pcb=19 and pch=1) and line types (1ty=1 and 1ty=3) for the
two levels of partner.status.

m Finally, legend adds.a legend to the graph, positioning it with the
mouse via the locator function, as explained in the preceding chapter.
(Click the left mouse button to set the upper-left corner of the legend.)

legend in S-PLUS

In the S-PLUS version of legend, the argument marks is used in place of
peh to specify plotting characters.

The standard deviation in the low-status, high-authoritarian condition
is substantially larger than in the other conditions, and the plot reveals
that two of the eight observations in this condition have especially large
conformity scores; I label these observations interactively with the mouse:

> identify(Fcat, conformity)
[1] 16 19

Because the profiles of means in Figure 4.2 are not parallel, fcategory
and partner.status appear to interact in affecting conformity, much

L 16
H et high L9
° H ~o» low
« H
e HH
'E © H H T{
s 7 H
€. L
8 B oL H oL ,
=4 L . H
O.E L P Hll:
L RICIER . o8
L L e LH
w
n
I'n L
T T T
low medium high
F category

Figure 4.2

avoid overplotting.

Conformity by partner’s status and authoritarianism for Moore
and Krupat's experiment. The points are jittered horizontally to
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in the manner that Moore and Krupat anticipated. I invite the reader to
redo the analysis described immediately below, removing observations 16
and 19.

How to formulate hypotheses, contrasts, and sums of squares in

In light of these considerations, I fit an analysis of variance model to

Moore and Krupat’s data employing sum-to-zero contrasts and calculat-
ing both Type II and Type III tests:

two-way and higher-way analysis of variance is the subject of a great
deal of controversy and confusion. This is not the place to disentangle
the issue (see, for example, the discussion in Fox, 1997, Section 8.2}, but
I will make the following brief points:

> optioms(contrasts=c(’contr.sum’, ’contr.poly’))
> moore.mod <- lm(conformity ~ fcategory * partner.status)
> summary (moore.mod)

Call:

- . . . . . 1 = ity ~
m The essential goal in analysis of variance is to test meaningful hypothe- n(formula = comformity ~ fcategory * partner.status)
ses about differences among cell means and their averages. Contrast Residuals:
" coding and sums of squares should follow from the hypotheses. Min 1q Median 3q  Max

-8.625 -2.900 ~0.273 2.727 11.375

m Issues only arise in so-called “unbalanced” data—that is, when the
numbers of observations in different cells are unequal, as is the case Coefficients:
for Moore and Krupat’s experiment. Estimate Std. Error t value Pr(>itl)
(Intercept) 12.051 0.728 16.56 <2e-16
m It is difficult to go wrong if you construct tests that conform to the fcategoryl 1.099 1.026  1.07 0.2908
principle of marginality, always ignoring higher-order relatives (e.g., fcategory2 ~1.289 1.061 -1.22 0.2314
the interaction A:B) when testing lower-order terms (e.g., the main partner.statusi 2.459 0.728 3.38 0.0017
effect A). This approach produces what are sometimes termed Type II fcategoryl:partner.statusl  1.791 1.026  1.74 0.0889
sums of squares. fcategory2:partner.statusl 1.052 1.061 0.99 0.3273
m If you are careful, however, you can test lower-order terms after their Residual standard error: 4.58 on 39 degrees of freedom
higher-order relatives—for example the main effect of A after the B Multiple R-Squared: 0.324, Adjusted R-squared: 0.237
main effect and the A:B interaction. The main effect of A, in this con- F-statistic: 3.73 on 5 and 39 degrees of freedom, p-value: 0.0074
struction, represents the effect of A averaged over the categories of B. > Anova(moore.mod)
Whether or not this effect really is of interest is another matter, which Anova Table (.i.yp o IT tests)
depends on context. The incremental sum of squares for a term after
everything else in the model is sometimes called a Type III sum of Response: conformity
squares. In S, to get properly formulated Type III sums of squares, you Sum Sq Df F value Pr(>F)
should use contr . sum or contr.helmert to code factors; in particular, fcategory 12 2 0.28 0.7596
using contr.treatment with Type III sums of squares will produce partner.status 212 1 10.12 0.0029
tests of generally meaningless hypotheses. fcategory:partner. status 175 2 4.18 0.0226
Residuals 818 39
® Analogous issues arise in other linear models: Consider a dummy- ’

regression model with one factor (A) and one quantitative predictor
(or covariate, X). Suppose that we test the hypothesis that the “main
effect” of A is O in the model that includes interactions between A
and X. This tests that the intercepts for the different levels of A are the
same; but if the slopes vary across the levels of A, then the separation

> Anova(moore.mod, type=’III’)
Anova Table (Type III tests)

Response: conformity
Sum Sq Df F value Pr(>F)

(Intercept) 5753 1 274.36 <2e~-16
among the levels varies with the value of X, and assessing this sepa- fcategory 36 2  0.86 0.4315
ration at X = 0 is probably not meaningful. To justify Type T sums partner.status 240 1 11.42 0.0017
of squares, we could express X as deviations from its mean, making fcategory:partner. status 175 2 4.18 0.0226
the test for differences in intercepts a test for differences among levels Residuals 818 39

of A at the average score of X. Proceeding in this manner produces a
meaningful, but not necessarily interesting, test.

Notice that when sum-to-zero contrasts are employed (in this case, by

resetting the global contrasts option), the coefficients for the factor are
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numbered, rather than named for the factor levels. Here, for example,
the two coefficients for fcategory, which has levels low, medium, and
high, are called fcategoryl and fcategory2, rather than (as I would
prefer) fcategorylow and fcategorymedium. If you do not remember
the categories for a factor, or their order, you can recover this information
by specifying, for example, levels(fcategory).

In this instance, the Type II and Type III tests produce similar results.
You may wish to repeat the analysis with Helmert (contr.helmert) and
indicator (contr.treatment) contrasts.

USER-SPECIFIED CONTRASTS*

There are times when we are interested in testing finer-grain, single-
degree-of-freedom hypotheses about differences among the levels of a
factor. Suppose that the vector p represents the population factor-level
means in a one-way analysis of variance (or the raveled cell means for
a two-way or higher-way classification). If there are p means, then there
are p — 1 degrees of freedom for differences among them.

Let the contrast matrix C be a p x (p — 1) matrix of rank p — 1, each
of the columns of which sums to 0. Then

w=m103)

is a linear model for the cell means (where 1 is a p x 1 vector of 1’s).
The trick is to formulate C so that the (p — 1) x 1 parameter vector v
represents interesting contrasts among the level means. Because [1, C] is

nonsingular (reader: why?), we can solve for the parameters as a linear
transformation of the means:

2] = e

A particularly simple way to proceed (though not the only way) is to
make the columns of C mutually orthogonal. Then, the rows of [1, C]~!
are proportional to the corresponding columns of [1, C], and we can
directly code the contrasts of interest among the means in the columns
of C.

None of this requires that the factor have equal numbers of observa-
tions at its several levels, but if these frequencies are equal, then not only
are the columns of C orthogonal, but the columns of the model matrix
X constructed from C are orthogonal as well. Under these circumstances,
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we can partition the regression sum of squares for the model into one-
degree-of-freedom components due to each contrast.

Baumann and Jones (as reported in Moore & McCabe, 1993) con-
ducted an experiment in which each of 66 children was assigned at
random to one of three experimental groups, 22 subjects to a group.
The groups represent different methods of teaching reading: a standard
method (called “Basal”) and two new methods {called “DRTA” and
“Strat”). The researchers conducted two pretests and three posttests of
reading comprehension. I focus here on the third posttest. The data for
the study reside in the data frame Baumann:

> detach(Moore)
> data(Baumann)
> attach(Baumann)
> Baumann

group pretest.l pretest.2 post.test.l post.test.2 post.test.3
1 Basal 4 3 5 4 41
2 Basal 6 5 9 5 41
23 DRTA 7 2 7 6 31
24 DRTA 7 6 5 6 40
65 Strat 5 3 6 8 45
66 Strat 8 3 4 6 42

The researchers were interested in whether the new methods produce
better results than the standard method and whether the new methods
differ in their effectiveness:

> tapply(post.test.3, group, mean)
Basal DRTA Strat
41.045 46.727 44.273

> tapply(post.test.3, group, function(x) sqrt(var(x)))
Basal DRTA Strat
5.6356 7.3884 5.7668

> plot(group, post.test.3, xlab=’Group’, ylab=’Reading Score’)
>

Plotting scores against a factor produces parallel boxplots (Figure 4.3).
The means and boxplots suggest that there may be differences among
the groups—specifically, between the new methods and the standard
one.

It appears natural here to define two contrasts: (1) Basal versusthe
average of DRTA and Strat and (2) DRTA versus Strat:

> contrasts(group) <- matrix(c(1,-0.5,-0.5, 0,1,-1), 3, 2)
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Figure 4.3  Posttest reading score by condition for Baumann and Jones’s data.

> contrasts(group)
[,11 [,2]
Basal 1.0 o]
DRTA -0.5 1
Strat -0.5 -1

> summary(lm(post.test.3 ~ group))

Call:
1m(formula = post.test.3 ~ group)

Residuals:
Min 1Q Median 3Q Max
-16.73 -3.61 1.11 3.95 12.95

Coefficients:

Estimate Std. Error t value Pr(>ltl|)
(Intercept) 44.015 0.777 56.63 <2e-16
groupl -2.970 1.099 -2.70 0.0088
group2 1.227 0.952  1.29 0.2020

Residual standard error: 6.31 on 63 degrees of freedom
Multiple R-Squared: 0.125, Adjusted R-squared: 0.0967
F-statistic: 4.48 on 2 and 63 degrees of freedom,

p-value: 0.0152

The ¢ statistics for groupl and group? test the two hypotheses of interest,
and so we have strong evidence that the new methods are superior to the
old, but little evidence of a difference in efficacy between the two new
methods.

User-specified contrasts may also be used for factors in more complex
linear models, including multifactor models with interactions.

X
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GENERAL LINEAR HYPOTHESES*

A general martrix formulation of the linear models considered in this
chapter is

y=XB +5,

where y is an # x 1 vector containing the response; X is an # x p model
matrix, the first column of which usually contains 1s; § is a p x 1 vector
of model parameters; and € is an # x 1 vector of errors. Assuming that
X is of full-column rank, the least squares regression coefficients are

b = (X'X)"'X'y.

All the hypotheses described in this chapter, and others that I have
not discussed, can be tested as general linear hypotheses, of the form
H,: LB = c, where L is a g x p hypothesis matrix (of rank g), containing
prespecified constants, and c is a prespecified g x 1 vector, most often
containing Os. Under H,, the test statistic

_ (b~ oy [LXX) 'L (Lb — o

F
0 qu

follows an F distribution with g and 7 — p degrees of freedom; s* is the
estimated error variance for the model.
Here are two nonstandard examples:

Duncan’s occupational-prestige regression. Suppose that we want
to test that the coefficients of income and education are the same.
Because both income and education in the Duncan data set are per-
centages (of relatively high-income earners and of high-school graduates,

respectively), this hypothesis arguably makes some sense. Using the
linear.hypothesis function in car:

> detach(Baumann)
> data(Duncan)
> attach(Duncan)
> duncan.mod <- lm(prestige ~ income + education)
> summary(duncan.mod)
Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) -6.0647 4.2719 -1.42 0.16
income 0.5987 0.1197 5.00 1.1e-05

education 0.5458 0.0983 5.56 1.7e-06
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> linear.hypothesis(duncan.mod, c(0, 1, -1))
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Even though the regression coefficients are closer to 0 and 1 when obser-

F-Test vation 12 is omitted, the hypothesis of unbiased reporting is acceptable
8s = 12-1257952 SSE = 7506.7 F = 0.068233 Df = 1 and 42 for the original dara set but not for the corrected data (because the error
p =0.

sum of squares is much smaller when observation 12 is deleted).

In this case, the hypothesis matrix consists of a single row, L = (0, 1, -1},
contrasting the income and education coefficients; the right-hand-side
vector for the hypothesis is implicitly ¢ = (0). The test shows that the
difference between the two coefficients is not statistically significant.

DATA AND CONFIDENCE ELLIPSES m

Davis’s regression of measured on reported weight. 1 previously fit
two models to Davis’s data: davis.mod includes a bad observation, while

davis.mod.2 deletes the bad (12th) observation:

> detach(Duncan)
> davis.mod

Call:

Im(formula = weight ~ repwt)

Coefficients:

(Intercept) Tepwt
5.336 0.928

> davis.mod.2

Call:
im(formula = weight ~ repwt, subset = -12)
Coefficients:
(Intercept) repwt
2.734 0.958

If individuals are unbiased reporters of their weight, then the intercept

should be 0 and the slope 1; we can test these values simultaneously as
a linear hypothesis:

> diag(2) # order-2 identify matrix
(,11 [,2]

f1.] 1 0

[2,] 0 1

> linear.hypothesis(davis.mod, diag(2), c(0,1))

F-Test

SS = 245.97 SSE = 12828 F=1.7353 Df = 2 and 181
p = 0.17927

> linear.hypothesis(davis.mod.2, diag(2), c(0,1))

F-Test

SS = 59.691 SSE = 914.3 F = 5.8757 Df = 2 and 180

p = 0.0033733

Here, the hypothesis matrix L is just an order-2 identify matrix, con-
structed in S by diag(2), while the right-hand-side vecror is ¢ = (0, 1)".

prrepeac:

T

T AT T T T

#

Data ellipses and ellipsoids (i.e., the generalization of ellipses beyond
two dimensions) provide a visual interpretation of correlation. Moreover,
when variables are bivariately or multivariately normally distributed,
data ellipses and ellipsoids represent estimated probability contours, con-
raining expected fractions of the data (see, for example, Monette, 1990).

The data.ellipse function in car draws data ellipses for a pair
of variables. Illustrating with income and education in Duncan’s
occupational-prestige data [Figure 4.4(a)}:

> data.ellipse(income, education, levels=c(.5,.75,.9, .95))
> identify(income, education, row.names (Duncan))
[1] 6 16 27

The contours are set to enclose 50, 75, 90, and 95 percent of bivarate-
normal data. Three observations identified with the mouse—representing
ministers, railroad conductors, and railroad engineers—are outside of the
95 percent normal contour.

Earlier in this chapter, I regressed prestige on income and education,
placing the resulting 1m object in duncan.mod. The following command
draws a 95 percent joint-confidence region for the coefficients of income
and education in this regression:

> confidence.ellipse(duncan.mod)
>

The 95 percent confidence ellipse in Figure 4.4(b) is the rescaled 90
degree rotation of the 95 percent data ellipse in Figure 4.4(a) (see, e.g.,
Fox, 1997, Section 9.4.4; Monette, 1990). Thus, the positively correlated
predictors income and education produce negatively correlated coeffi-
cients.?

8. The confidence.ellipse function also draws approximate confidence ellipses for the coefficients
of generalized linear models, discussed in the next chapter. The scatterplot.matrix function in
car has facilities for drawing data ellipses as well. Similar functions are provided by the ellipse
library for R.
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MORE ON 1n AND MODEL FORMULAS

The 1m function has several additional useful arguments, and some of the
arguments that [ discussed have uses that were not mentioned. The args
function prints out the arguments to 1m (as it will for any function):

> args(lm)

function (formula, data = list(), subset, weights, mna.action,

method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
singular.ok = TRUE, contrasts = NULL, offset =

= NULL, ...)
NULL

These are the arguments for the R implementation of 1m; the arguments
for the S-PLUS implementation are nearly the same.

Here is some additional information about the arguments to 1m; for

further details, you can type help(lm) to access the on-line documenta-
tion.

formula

As we have seen, a model formula for 1m consists of a left-hand side,
specifying the response variable, and a right-hand side, specifying the
terms in the model; the two sides of the formula are separated by a tilde
(~). We read the formula 2 ~ b as “a is modeled as b,” or “a is regressed
onb.”

The left-hand side of the formula can be any valid S expression that
evaluates to a numeric vector of the appropriate length. On the left side
of the formula, the arithmetic operators -, +, *, /, and ~ have their usual
meanings, and we can call whatever functions are appropriate to our
purpose. For example, with reference to Moore and Krupat’s data, we

could replace the number of conforming responses with the percentage
of conforming responses:

> 1m(100*conformity/40 ~ partmer.status*fcategory, data=Moore)

or (using the logit function in car) with the log-odds of conformity:
> 1m(logit(conformity/40) ~ partmer.status*fcategory, data=Moore)

The right-hand side of the model formula may include factors and
expressions that evaluate to numeric vectors and matrices. Because sev-
eral operators have special meaning in formulas, arithmetic expressions
that use them have to be “protected.” Expressions are protected auto-
matically when they are inside function calls: For example, the + in
the term log(a + b) has its usual arithmetic meaning on the right-
hand side of 2 model formula, even though a + b does not when it is

‘unprotected.
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The identity function 1() may be used to protect otherwise unpro-
tected arithmetic expressions in model formulas. For example, to regress
prestige on the sum of education and income in Duncan’s data set

(thus implicitly forcing the coefficients of these two predictors to be
equal), we may write:

> 1m(prestige ~ I(income + education), data=Duncan)

I have already described most of the special operators that appear on
the right of linear-model formulas. In the following table (adapted from
Chambers & Hastie, 1992, p. 29), A and B represent elements in a linear
model: numeric vectors, matrices, factors, Or expressions (suchasd + e
or dxe) composed from these:

Expression | Interpretation Example

A+ B include both A and B income + education
A-B exclude B from A axb*d ~ a:b:d

A:B all interactions of A and B type:education

A*B A+ B+ A:B type*education

B %in% A |B nested within A education %in’% type
A/B A + B %ink A type/education

Ak all effects crossed up to order k | (a + b + d)"2

The last two operators, / and -, are new to us: / is a shorthand
for nesting, in the same sense as * is a shorthand for crossing; and =
builds crossed effects up to the order given in the “exponent.” Thus,
the example in the table, (a + b + d)"2, expands to all main effects
and pairwise interactions among a, b, and d: thatis,a + b + d + a:b +
a:d + b:d. Note that this is equivalent to another example in the table,
a*b*d - a:b:d. The intercept, represented by 1 in model formulas, is

included in the model unless it is explicitly excluded, by specifying -1 in
the formula.

4.7.2 data

When 1m is called from the command line, the data argument defaults
to the “global environment,” and so objects will be found in the normal
manner along the search path, such as in an attached data frame. The
data argument can also be set to a list structure with named components,
typically a data frame.

e .

T
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subset

As the term implies, the subset argument may be used to fit a model to
a subset of observations. Several forms are possible:

® A logical vector, as in

> lm(weight ~ repwt, data=Davis,
+ subset = sex == ’F’) # fit only to women

B A numeric vector of observation indices:

> lm(weight ~ repwt, data=Davis,
+ subset=1:100) # use only obs. 1 to 100

® A numeric vector with negative entries, indicating observations to be
omitted from the fit:

> lm(prestige ~ income + education, data=Duncan,
+ subset=-c(6,16)) # exclude obs. 6, 16

B A character vector containing the row names of the observations to
be included (an option for which it is hard to provide a compelling
example).

weights : -4.7.4

If it is specified, the weights argument takes a numeric vector of length
equal to the number of observations, and produces a weighted least
squares fit. Letting w; represent the weight attached to observation i and
e, the residual for observation i, coefficients are computed to minimize
the weighted residual sum of squares, Y w;e?. Weighted least squares
regression is appropriate when the error variance is different for differ-
ent observations, but is known up to a constant of proportionality (see
Section 6.3).

In R, the default na.action is given by the na.action option, which
is initially set to *na.omit’, deleting observations with missing data. In
S-PLUS, there is no general missing-data default option, and na.action
in 1m defaults to na.fail, which produces an error when it encounters
missing data. The function na.exclude is similar to na.omit, but saves
information about the deleted observations: This information may be
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used by functions, such as residuals, that do computations on linear-
model objects. Although I will not pursue the possibility here, you can
handle missing data in other ways by writing suitable missing-data func-
tions and using these in place of na.omit, na.fail, or na.exclude.

Because we usually fit more than one model to the data, it is generally
advantageous to handle missing data outside of 1m, to ensure that ail
models are fit to the same subset of valid observations. To do otherwise
is to invite inconsistency. This is true, incidentally, not only in S but in
other statistical software as well.

method, model, x, y, qr'

These are technical arguments, relating to how the computations are
performed and what information is stored in the returned linear-model
object.

singular.ok*

Under normal circumstances, S builds a full-rank model matrix, removing
redundant dummy regressors, for example. Under some circumstances,
however—perfect collinearity, for example, or when there is an empty
cell in an analysis of variance—the model matrix may be of deficient
rank, and not all the coefficients in the linear model will be estimable.
If singular.ok is TRUE, then S will fit the model anyway, automat-
ically omitting the redundant (or “aliased”) parameters. In S-PLUS,
singular.ok defaults to FALSE; in R, only singular.ok = TRUE is
currently supported.

contrasts

This argument allows you to specify contrasts for factors in a linear
model, in the form of a list with named elements. For example:

> lm(conformity ~ partmer.status * fcategory,
+ contrasts=list(partner.status=contr.sum, fcategory=contr. poly))

4.7 MORE ON 1m AND MODEL FORMULAS
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offset (R only)

An offset is a term added to the right-hand side of a model with no
associated parameter to be estimated—it implicitly has a fixed coefficient
of 1. In a linear model, specifying a variable as an offset is equivalent
to subtracting the variable from the response. Offsets are of more use in
generalized linear models (discussed in Chapter 5) than in linear models.
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Fitting Generalized
Linear Models
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_33 synthesis due to Nelder and Wedderburn (1972), generalized lin-
.7\ ear models (GLMs) substantially extend the range of application of
linear statistical models by accommodating response variables with non-
normal conditional distributions. Except for the error, the right-hand side
of a generalized linear model is essentially the same as for a linear model,
and thus the formulas used to specify the right-hand side of GLMs in
S are the same as those described in the preceding chapter. Despite the
diversity and broad applicability of generalized linear models, the exten-
sion of the procedures for fitting linear models in S to GLMs is largely
straightforward.

Section 5.1 summarizes the general structure of GLMs, and introduces
the glm function in S. The most commonly used GLMs in social research
(beyond models with normal errors) are models for categorical data and
for count data, which are described in Sections 5.2 and 5.3, respectively.
Section 5.4 briefly takes up the less frequently employed gamma and
inverse-Gaussian GLMs, and summarizes the arguments to the glm func-
% tion in S.
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¢ THE STRUCTURE OF GENERALIZED 5.1
3 LINEAR MODELS

;‘ A generalized linear model consists of three components:

1. A random component, specifying the conditional distribution
of the response variable, ¥;, given the predictors. Traditionally,

155
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the random component is an exponential family—the normal
{Gaussian), binomial, Poisson, gamma, or inverse-Gaussian family
of distributions—but, as I will explain, the implementation of
generalized linear models in S is somewhat broader.

2. A linear function of the regressors, called the linear predictor,
ni=a+B1xil+"'+kaik

on which the expected value u; of y; depends. The xs may include
quantitative predictors, but they may also include transformations
of predictors, polynomial terms, contrasts generated from factors,
interaction regressors; and so on. That is, the linear predictor is as
general as in the linear model of the previous chapter.

3. An invertible link function g(u,) = m;, which transforms the expec-
tation of the response to the linear predictor. The inverse of the
link function is sometimes called the mean function: g lm) = i
Standard link functions and their inverses are shown in Table 5.1.
The logit, probit, and complementary log-log links are for bino-
mial data, where y; represents the observed proportion and u; the
expected proportion of “successes” in #; binomial trials—that is,
u; is the probability of a success. For the probir link, ® is the
standard-normal cumulative distribution function, and &' is the
standard-normal guantile function. An important special case is
binary data, where all the binomial trials are 1, and therefore all
the observed proportions y; are either 0 or 1.

Generalized linear models in S are fit with the gim function. Most
of the arguments of gim are similar to those of 1m: For example, the
response variable and regressors are given in a model formula, and data,
subset, and na.action arguments determine the data on which the
model is fir. In addition, the family argument to glm is used to specify

Table 5.1  Standard link functions and their inverses: u; is the expected value
of the response; 7; is the linear predicror.

Link n; = g) wi =g (m)
Identity i i

Log log, i em
Inverse it !
Inverse square ur? 3 1
Square root JBi 7?
Logit log, 72 =
Probit () &1 (n)

Complementary log-log log,[— log {1 — u:)] 1 — exp[— exp(n;)]
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Table 5.2 Default (canonical) link, response range, and conditional variance
function for generalized linear model families; ¢ is the dispersion
parameter, 7); is the linear predictor, and u; is the expectation of y;
(the response). In the binomial family, »; is the number of trials. '

Family Default Link Range of y; Viy:lmi)
gaussian identity {—00, 400) ¢
binomial logit OITL w1 = )
poisson log 0,1,2,... ;i
(.}amma inverse (0, o0} du?
inverse.gaussian 1/mu~2 (0, ) bl

a family-generator function, which may itself take additional arguments
such as a link function. ’

The names of the generator functions for the five standard exponential
families are given in Table 5.2, along with the default (or canonical) link
the range of the response variable, and the conditional variance of the’
response for each family. All family names start with lowercase letters
except for the Gamma family (to avoid confusion with the gamma functior;
in S). Canonical links are not only the ones most commonly used, but
they also arise naturally from the general formula for distributions in
the exponential families. Nevertheless, other links may be more appro-
priate for the specific problem at hand, and, indeed, one of the strengths
of the GLM paradigm—in contrast, for example, with transformation
of the response variable in a linear model (as described in Chapter 6)—is
the separation of the link function from the condirional distribution of
the response.

.For distributions in the exponential families, the variance is a function
of the mean together with a dispersion parameter ¢. For the binomial
and Poisson distributions, the dispersion parameter is fixed to 1; for the
Gaussian distribution, the dispersion parameter is the usual error vari-
ance, often symbolized by o2, as in Chaptér 4.

Table 5.3 shows the links available for each family-generator func-
tion. Note that these differ somewhat in R and S-PLUS. Nondefault
links are selected via a 1ink argument to the family generator functions:
for example, binomial (1ink=probit). The quasi, quasibinomial, and
quasipoisson family generators do not correspond to exponential fam-
ilies; these family generators are described in Section 5.4. If no family
argument is supplied to glm, then the gaussian family, with identity
link, is assumed, resulting in a fit identical to that of 1m, albeit computed
less efficiently—like using a sledge hammer to set a rack.

GLM s are typically fit to data by the method of maximum likelihood.
Denote the maximum-likelihood estimates of the regression parameters
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Table 5.3 Farr}ily generators and link functions for glm: S, available in S-PLUS; R,
available in R. In éach case, the default link is shown in boldface. -
link

family identity inverse log logit probit cloglog sqrt 1/mu~2
gaussian S,R R R
binomial R SR S,R S,R
poisson SR SR S
Gamma S,R SR SR ’
inverse.gaussian R R R R
quasi S,;R SR SR S,R SR SR SR SR
quasibinomial R R R ’ ’
quasipoisson R R R

as &, By, ..., B These imp!y an estimate of the mean of the response,

a; = g"(&‘+ [:;lxi] + oo Brxy).
The log-likelihood for the model, maximized over the regression coef-
ficients, is

loge LO = Zloge p(ﬁ”u ¢; yi)?
i=1

yvhere pl) is the probability or probability-density function correspond-
ing to the family employed. A “saturated” model, which dedicates one

parameter to each observation, and hence fits the data perfectly, has log-
likelihood

IOgc L1 = ZIOge p(yn ¢a y;)

i=1
Twice the difference between these log-likelihoods defines the residual

deviance under the model, a generalization of the residual sum of squares
for linear models:

D(y; ’1) = z(logc Ll - loge LO)

Dividing the deviance by the estimated dispersion produces the scaled
deviance: D(y; L)/ .

MODELS FOR CATEGORICAL RESPONSES

52:1 Dichotomous Data

As1 explained,_ three link functions are provided for the binomial family:
the logit, probit, and complementary log-log links. The logit and probit

PR

xSy YA

RS R NN I

59 MODELS FOR CATEGORICAL RESPONSES 1 59

w4 TS

08

0.6

L'(n)

n

04

02 — logit

== - probit

- = complementary log-log
- T T T T
-4 -2 0 2 4

v A PR S

Figure 5.1  Comparison of logit, probit, and complementary log-log links.
The probit link is rescaled to match the variance of the logistic

distribution, m2/3.

links approach probabilities of 0 and 1 symmetrically and—once their
variances are equated—are very similar. The complementary log-log link
is asymmetric and may therefore be useful when the logit and probit links
are inappropriate. The logit, probit, and complementary log-log links are
compared in Figure 5.1.

The response for a binomial GLM may be specified in several forms:

m For binary data, the response may be a variable or an S expression
that evaluates to 0s (“failure”) and 1s (“success”); a logical variable
or expression (with TRUE representing success and FALSE failure); or
a factor (in which case the first category is taken to represent failure
and the others success).

® For binomial data, the response may be a two-column matrix, with
the first column giving the count of successes and the second the count
of failures for each binomial observation.

m Also for binomial data, the response may be a vector giving the pro-
portion of successes, while the binomial denominators (total counts or
numbers of trials) are given by the weights argument to gim.

Binary Data

To illustrate fitting a binomial GLM, let us turn to a Jogistic regression
(linear logit model) from Long’s (1997) text on categorical data analysis.
This example draws on data from the 1976 U.S. Panel Study of Income
Dynamics, originally employed in a different context by Mroz (1987).
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The same data are used by Berndt (1991) as an exercise in linear logis-
tic regression. The data are in the data frame Mroz; printing 10 of the
# = 753 observations at random:

> library(car)

> data(Mroz)
> Mroz[sort(sample(753,10)),] # sample 10 obs.

1fp k5 k618 age wc hc lug inc
46 yes O 2 34 no no 1.24479 5.000
57 yes O 0 55 yes yes 2.26545 14.000
1561 yes 0 2 42 yes yes 1.49503 27.500
197 yes O 1 36 no mno 1.88442 11.100
288 yes 0 2 34 no mno 0.98727 3.900
365 yes 0 2 46 no no 0.91629 12.400
489 no O 0 44 no mo 0.51422 18.900
516 no 1 2 36 mno yes 0.87148 17.045
617 no 2 1 30 mno mno 0.48838 16.200
655 mno 1 3 35 no mno 0.90876 24.000

The variables in this data frame are defined as follows (using the variable
names employed by Long):

Variable Description ) Remarks

1fp Wife’s labor-force participation Factor: no, yes

k5 Number of children aged § and younger 0-3, few 3s

k618 Number of children aged 6 to 18 0-8, few > 5

age Wife’s age in years 30-60, single years
we Wife’s college attendance Factor: no, yes

he Husband’s college attendance Factor, no, yes
ivg Log of wife’s estimated wage rate See text

inc Family income excluding wife’s income $1000s

With the exception of lwg, the definition of these variables is straightfor-
ward. The log of the woman’s estimated wage rate is based on her actual
earnings if she is in the labor force; if the woman is not in the labor
force, then this variable is based on the predicted value from a regres-
sion of log wages on the other predictors in the model (for women in
the labor force, of course). As I will explain in Chapter 6 (on regression
diagnostics), this definition of expected earnings creates a problem for
the logistic regression.

Because the default contrast type in R is “treatment” contrasts, the fac-
tors will generate 0/1 dummy regressors, with no as the baseline category
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(see Section 4.2). Fitting a linear logit model to Mroz’s data is simple:
> attach(Mroz)

> mod.mroz <- glm(lfp ~ k5 + k618 + age + wc + hc + lwg + inc,
+ family=binomial)
> summary(mod.mroz)

Call:

glm(formula = lfp ~ k5 + k618 + age + wc + hc + lwg + inc,
family = binomial)

Deviance Residuals:
A Min 1Q Median 3Q Max
-7.106 -1.080 0.588 0.971 2.189

Coefficients:
Estimate Std. Error z value Pr(>izl)

(Intercept) 3.18214 0.64432 4.94 7.9e-07
k5 ~1.46291 0.19697 -7.43 1.1e-13
k618 -0.06457 0.06800 -0.95 0.34231
age -0.06287 0.01278 -4.92 8.7e-07
wcyes 0.80727 0.22997 3.51 0.00045
hcyes 0.11173 0.20603 0.54 0.58760
lwg 0.60469 0.15081 4.01 6.1e-05
inc -0.03445 0.00821 -4.20 2.7e-05

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1029.75 on 752 degrees of freedom
Residual deviance: 905.27 on 745 degrees of freedom
AIC: 921.3

Number of Fisher Scoring iteratioms: 3

Reminder: Default Contrasts in S-PLUS

Recall that, in S-PLUS, the default contrast type for unordered factors
is Helmert contrasts—which for dichtomous factors, such as in Mroz's
data, produces the coding —1 and +1 for the levels no and yes, respec-
tively. To produce the results reported here, change the default contrasts

to contr.treatment, or change the contrasts for the individual factors in
the model.

The printout produced by summary is very similar to the printout for
a linear model. The ratos of the coefficients to their standard errors
are Wald statistics for testing the hypothesis that the corresponding
regression parameters are O; these are asymptotically normally dis-
tributed under the null hypothesis (but can be problematic in binomial
GLMs). In addition, the summary includes the deviance and degrees
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of freedom for a model with only an intercept (the null deviance), the
residual deviance and degrees of freedom for the fitted model, and the
Akiake information criterion (AlC). I discuss residuals for GLMs in
Chapter 6.

The AIC is an index of fit that takes account of the parsimony of the
model by penalizing for the number of parameters; it is defined as

AIC = -2 x (maximized log-likelihood) + 2 x (number of parameters),

and thus smaller values are indicative of a better fit to the data. In the
current context, the AIC is just the residual deviance plus twice the num-
ber of regression coefficients {including the intercept). The AIC is used
to compare the fit of alternative (and not necessarily nested) models with
different numbers of parameters, and is typically employed for model
selection.

The anova function may be used to compute a likelihood-ratio test
or F test for nested GLMs. The type of test is selected via an optional
test argument, set either to 'Chisq’ (for the likelihood-ratio test) or to
'F7; the default is to report sequential differences in the deviance bur no
test statistic. Because anova uses the estimated dispersion parameter in
calculating the denominator of F statistics, there is no sense in specifying
F tests when the dispersion parameter is fixed, as in a binomial model
(but see the discussion of the quasibinomial and quasipoisson families
in Section 5.4).

For example, to compute a likelihood-ratio test for the coefficient of
k5 in the logistic regression for Mroz’s data:

> anova(update(mod.mroz, . ~ . - k5), mod.mroz, test="Chisq’)
Analysis of Deviance Table
Model 1: 1fp ~ k618 + age + wc + hc + lwg + inc
Model 2: 1fp ~ k5 + k618 + age + wc + hc + lwg + inc

Resid. Df Resid. Dev Df Deviance P(>|Chil)
1 746 972 ’

2 745 905 1 66 3.5e-16

The generic Anova function in car will also handle GLMs, calculating
likelihood-ratio, Wald, or F tests, specified via the test argument (with
LR’ as the default, and 'Wald’ and ’F’ as options). Likelihood-ratio
tests and F tests require refitting the model, while Wald tests do not.
Moreover, the F tests computed by Anova base the estimated dispersion
on the Pearson statistic (by default), and therefore are not the same as
likelihood-ratio tests even when, as in the binomial and Poisson models,
the dispersion is fixed.

As in the case of linear models, Anova will compute either Type Il or
Type-III tests (selected via the type argument). For the Mroz regression,
there is no distinction between the two types of tests, because there are
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no higher-order terms in the model; as well, because in this case each
rerm in the model has only 1 degree of freedom, the Wald chl-square
statistics provided by Anova are simply the squares of the zs printed out
by the summary function. ) . _—

For example, to obtain a likelihood-ratio test for each term in the
model fit to Mroz’s data:

> Anova(mod.mroz)
Anova Table (Type II tests)

Response: 1lfp
LR Chisq Df Pr(>Chisq)

k5 66.5 1 3.3e-16
k618 0.9 1 0.34204
age 25.6 1 4.2e-07
' 12.7 1 0.00036
hc 0.3 1 0.58749
1lwg 17.0 1 3.7e-05
inc 19.5 1 1.0e-05

In analogy to the analysis of variance for a linear model, this table is
termed an analysis of deviance.

Binomial Data -

ittine a GLM with binomial denominators greater thaq 1 is espe-
cialii;t usgeful in analyzing a contingency table that inclufies a .dxchotomot‘l’,s
response variable. Consider, for example, the data given in Table 5.4,
from Campbell, Converse, Miller, and Stokes’s (1960) classic study of vfot-
ing in the 1956 U.S. presidential election. The body of thf: table gives re‘;l
quency counts for combinations of categories of the predicrors (perceive

i lection and intensity
Table 5.4  Voter turnout by perceived closeness of the e : j
. of partisan preference for the 1956 U.S. presidential election. Fre-
quency counts are shown in the body of the table. Source of data:
Campbell et al. (1960, Table 5-3).
f Turnout Logit
jved Intensity o, : o
Iéel;cszzgss Preference Voted Did Not Vote 108, Sae: vor
One-sided Weak 91 39 gi;gz
Medium 121 49 .
Strong 64 24 0.981
Close Weak 214 87 02(;(;
Medium 284 76 1.084
Strong 201 25 2.
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Figure 5.2  Voter turnout by perceived closeness of the election and intensity
of partisan preference.

closeness of the election and intensity of partisan preference) and the
response (whether or not the respondent reported voting in the election).

The final column of Table 5.4 shows the sample logit for each combi-
nation of categories of the predictors, computed as the log-odds of voting.
These logits are graphed in Figure 5.2, much as one would graph cell
means in an analysis of variance when the response variable is quantita-
tive. Voter turnout appears to increase with intensity of preference, but
much more dramatically when the election is perceived close than when
it is perceived one sided.

To analyze the data with a binomial logit model, we may define vari-
ables containing the predictors (as factors) and the cell counts of suc-
cesses and failures. I enter preference, which has three categories, as
an ordered factor; because the alphabetical ordering of the levels of
closeness and preference is not what we want, [ specify the levels
explicitly:

> closeness <- factor(rep(c(’ome.sided’, rclose’), c(3,3)),

+ 1evels=c(’one.sided’, ’close’))

> preference <- ordered(rep(c(’weak’, 'medium’, 'strong’), 2),
+ levels=c(’weak’, ’'medium’, ’strong’))

> voted <- c(91, 121, 64, 214, 284, 201)
> did.not.vote <- c(39, 49, 24, 87, 76, 25)
>

Then, to check the data (and reproduce Table 5.4):

> logit.turnout <- log(voted/did.not.vote)
> data.frame(closeness, preference, voted, did.mot.vote,
+ logit=logit.turnout)
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165

closeness preference voted did.not.vote logit

1 one.sided weak 91 39 0.84730

2 one.sided medium 121 49 0.90397

3 one.sided strong 64 24 0.98083

4 close weak 214 87 0.90007

5 close medium 284 76 1.31824

6 close strong 201 25 2.08443

Figure $.2 is constructed as follows:

> par(mar=c(5.1, 4.1, 4.1, 4.1)) # leave room for right axis
> plot(rep(1:3, 2), logit.turnout, type='n’, axes=F,

+ xlab=’Intensity of Preference’, R
+ ylab=’Logit (Voted/Did Not Vote) ’)

> axis(1, at=1:3, labels=c(’Weak’, ’'Medium’, ’Strong’)) # x-axis
> axis(2) # y-axis

> prob.axis(side=’right’, at=seq(.7, .85, by=.05),

+ axis.title=’Proportion(Voted)’) # right y-axis

> box()

> points(1:3, logit.turnout [1:3], pch=1, type=’b’,

+ 1lty=1, 1lwd=3, cex=2) # one-sided

> points(1:3, logit.turnout[4:6], pch=16, type=’b’,

+ 1ty=2, lwd=3, cex=2) # close

> text(locator(2), c(’'Close’, ’One-Sided’)) # position the labels
>

Note the use of the prob.axis function from car to draw a right-
side probability axis, preceded by setting the mar (margins) graphics
parameter to leave enough room at the right for the axis title. The text
function is used along with locator to place the labels ’Close’ and
One-Sided’ on the graph: Click the left mouse button to position each
label.!

We want to fit the logit-model analog of a two-way analysis of variance
to the data of Campbell et al. (1960):

> options(contrasts=c(’contr.sun’, ’contr.poly’))
> mod.campbell <- glm(cbind(voted, did.not.vote) ~
+ closeness * preference, family=binomial)

> summary(mod.campbell)

Call:

glm(formula = cbind(voted, did.not.vote) ~ closemess * preference,
family = binomial)

Deviance Residuals:
13 o o o 0 0 O

1. Chaprer 7 describes a gcneral strategy for constructing graphs in S.
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Coefficients:

Estimate Std. Error z value Pr(>i{zl)
(Intercept) 1.1725 0.0746 15.71 < 2e-16
closenessi -0.2618 0.0746 -3.51 0.00045
preference.L 0.4659 0.1392 3.35 0.00082
preference.Q 0.0752 0.1184 0.63 0.52558
closenessl:preference.L -0.3715 0.1392 -2.67 0.00762
closenessl:preference.§ -0.0669 0.1184 -0.57 0.57196

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3.4832e+01
Residual deviance: -3.7914e-14
AIC: 44.09

on 5 degrees of freedom
on 0 degrees of freedom

Number of Fisher Scoring iteratioms: 2

The. residuals for this model are all 0, and, consequently, the residual
deviance is 0 as well (—3.79 x 10~'* ~ 0, within rounding error): The
m‘odel,‘ which has six independent parameters, necessarily fits the six
binomial proportions perfectly. A model of this type is called a saturated
model. Had we fit an equivalent binary logit model to the 1275 individ-
ual observations comprising Campbell et al’s data set, we would have
obrtained exactly the same estimared coefficients and standard errors, but
a nonzero deviance for the six-coefficient model. Differences in deviance
berween alternative models (and, consequently, likelihood-ratio tests),
however, would be unchanged.

Examining the Wald tests for the coefficients of the model, there is
strong evidence (p < .01) for an interaction between perceived closeness
of the election and the linear trend over intensity of preference. An anal-

ysis of deviance table, produced by the Anova function, combines the 2
degrees of freedom for preference:

> Anova(mod.campbell)
Anova Table (Type II tests)

Response: cbind(voted, did.not.vote)
LR Chisq Df Pr(>Chisq)

closeness 8.289 1 0.004
preference 19.11 2 7.1e-05
closeness:preference 7.12 2 0.028

As in an analysis of variance, the Type II tests for the “main effects”
shquld not be interpreted here in the presence of the significant inter-
action between closeness and preference. Had we specified Type 1l
tests, we could have interpreted each of the main-effects tests as an aver-
age over the levels of the other factor. {These tests, however, would be of
dubious interest in light of the interaction.)
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popn ey

Polytomous Data =

There are several procedures for analyzing polytomous (multiple-
category) responses. One approach is to resolve an m-category polytomy
into a set of # — 1 nested dichotomies. Another approach is to general-
ize the binomial GLM to a multinomial logit or probit model. Finally,
specialized logit and probit models have been introduced for ordered
categorical responses.

Nested Dichotomies

Nested dichotomies are based on successive binary divisions of the
category set of a polytomous response. They are, perhaps, best explained
by an example: The data frame Womenlf contains data drawn from a
social survey of the Canadian population conducted in 1977; the data
are for # = 263 married women between the ages of 21 and 30.

> data(Womenlf)
> Womenlf [sort(sample(263, 10)),] # sample 10 obs.
partic hincome children region

16 not.work 15 present Atlantic
43 parttime 28 absent Ontario
86 fulltime 27  absent BC
99 fulltime 15 absent Ontario
102 not.work 23 present Atlantic
108 not.work 19 present Ontario
173 not.work 7 present Ontario
184 fulltime 18 absent Ontario
185 not.work 13  absent Ontario
240 not.work 13 present Quebec

The following variables are included in this data set?:

m partic: labor-force participation, a factor with levels not.work,
parttime, and fulltime.

B hincome: husband’s income, in thousands of dollars.

B children: presence of children in the household, a factor with levels
absent and present.

B region: a factor with levels Atlantic, Quebec, Ontario, BC, and
Prairie.

2.1 have listed the levels of partic in their natural order, and of region from east to west, bur the
levels are in alphabetical order in the data frame.
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Using the recode function from car, I define two nested dichotomies
to represent the three categories of labor-force participation—working
versus not working outside the home and part-time versus full-time
work:

> attach(Womenlf)
> working <~ recode(partic, " »not.work’ = ’no’; else = ryes’ ")

> fulltime <~ recode (partic,
+ v rfulltime’ = ’yes’; 'parttime’ = 'no’; ’mot.work’ = NA ™)

> working
{1) no no mno mno 0o no no yes mo no no yes mo no mno
{16] no no no mno no yes mo Yyes yes no no no no no Yyes

[256] no yes mo no no no no no
Levels: no yes

> fulltime
[1] NA NA NA NA NA NA NA yes NA NA NA yes NA NA NA
[16] NA NA NA NA NA no NA yes yes NA NA NA NA NA yes
{31] NA NA NA NA NA NA NA yes NA mo NA no no NA no

(256] NA yes NA NA NA NA NA NA
Levels: mno yes

@ In forming a set of nested dichotomies, each compound category is
subdivided until there are only elementary categories left. Thus, the
yes category for the working dichotomy, which comprises women
working part time and full time, is subdivided into the two categories,
yes and no, of the fulltime dichotomy.

m Even when, as here, there are only three categories in the polytomy,
there is more than one way of forming nested dichotomies. For exam-
ple, we could alternatively define the dichotomies {full time vs. part
time or not working} and {part time vs. not working}. Models for
alternative sets of nested dichotomies are not equivalent, and so this
approach should only be used when there is a substantively compelling
resolution of the polytomy into a specific set of nested dichotomies.
For example, in work on education, it is common to employ so-
called continuation dichotomies: (less than high school vs. some high
school or more}, {incomplete high school vs. high-school graduate or

more}, (high-school graduate vs. some postsecondary or more}, and so
forth.

m Except for the highest-level dichotomy {working, in the example),
other dichotomies are defined only for subsets of observations. For

example, women who are not working outside the home are NA for
the fulltime dichoromy.
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[ proceed by fitting 2 binomial GLM separately to each nested
dichotomy. By the mode of formation of nested dichotomies, models
fit to different dichotomies are statistically independent. This means,
for example, that we can sum chi-square test statistics and degrees of
freedom over the models and can combine the models to get fitted
probabilities for the several categories of the polytomy (see below).

For the women’s labor-force participation data:

> options(contrasts=c(’contr.treatment’, ’contr.poly’))

> mod.working <- glm(working ~ hincome + children + regiom,
+ family=binomial)

> supmary (mod.working)

Coefficients:

Estimate Std. Error z value Pr(>!zl)
(Intercept) 1.2677 0.5527 2.29 0.022

hincome -0.0453 0.0206 -2.20 0.027
childrenpresent -1.6043 0.3018 -5.32 1.1e-07
regionBC 0.3420 0.5848 0.58 0.589
regionOntario 0.1878 0.4675 0.40 0.688
regionPrairie 0.4719 0.5566 0.85 0.397
regionQuebec -0.1731 0.4994 -0.35 0.729

> mod.fulltime <- glm(fulltime ~ hincome + childremn + regiom,
+ family=binomial)
> summary (mod.fulltime)

Coefficients:

Estimate Std. Error z value pr(>izD)
(Intercept) 3.7616 1.0568 3.56 0.00037
hincome -0.1048 0.0403 -2.60 0.00936
childrenpresent -2.7478 0.5687 -4.83 1.4e-06
regionBC -1.1825 ©1.0274 -1.15 0.24977
regionOntario -0.1488 0.8469 ~0.18 0.86057

s regionPrairie -0.3917 0.9630 -0.41 0.68417

regionﬂuebec 0.1484 0.9328 0.16 0.87359
> Anova(mod.working)
Anova Table (Type II tests)

Response: working
LR Chisq Df Pr(>Chisq)

hincome 5.13 1 0.024
children 30.55 1 3.3e-08
region 2.43 4 0.657

> Anova(mod.fulltime)
Anova Table (Type II tests)

169
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Response: fulltime
LR Chisq Df Pr(>Chisq)

hincome 7.8 1 0.0051
children 31.9 1 1.6e-08
region 2.7 4 0.6176

In th1§ examp}e, the results are broadly similar for the two dichotomies:
Wor.kmg outside the home, and working full time among those workiné
oquxde the home, both decline with husband’s income and presence of
'chlldrcr}. In both cases, there is no evidence of region effects. We could
if we wished, manually add the corresponding likelihood-ratio chi-squaré

statistics ar_ld degrcses of freedom (e.g., for the region effects) across the
two analysis of deviance tables.

Reminder: Handling Missing Data in S-PLUS
Remember that, unlike R, S-PLUS does not have an na.action option.
The dgfault_na.action for glm (as for 1m) is na.fail. Because the
fulltime dichotomy has NAs for women who are not in the labor

force, it is necessary to include the argument na.action=na.omit oOr
na.action=na.exclude in the call to glm.

To graph the resuls, I begin by refitting the models, eliminating region:

> mod.working.1 <- update(mod.working, . ~ . - region)
> mod.fulltime.1 <- update(mod.fulltime, . ~ . - regiom)
>

'fThen, using the expand.grid function, I construct an artificial data frame
or all combinations of values of the predictors, letting hincome and
children range over their values (1 to 45, and absent, present, respec-
tively)®: ’

> predictors <- expand.grid(hincome=1:45,

+ children=c(’absent’, ’present’))

> predictors

hincome children

1 1  absent
2 2  absent
3 3 absent
44 44  absent
45 45  absent
46 1 present
47 2 present
89 44 present
90 45 present

3. Here husband’s income is discrete, but we can take the same approach for a continuous predictor,
using enough values along its range to suggest 2 smooth curve.

-
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Children Absent Children Present

Fitted Probability
Fitted Probability

Husband's Income Husband's Income

Fitted probabilities for the women’s labor-force participation
data from binary logit models fit to the working and fulltime
dichotomies.

Figure 5.3

The predict function returns fitted values for the two models:

> p.work <- predict (mod.working.1, predictors, type=’response’)
> p.fulltime <- predict(mod.fulltime.l, predictors,

+ type=’response’)

> p.full <- p.work * p.fulltime

> p.part <- p.work * (1 - p.fulltime)

> p.mot <= 1 - p.work

>

Specifying the argument type= 'response’ to predict yields fitted values
on the probability scale; the default, type=’1link’, produces fitted val-
ues on the logit scale. The fitted values for the fulltime dichotomy are
conditional on working outside the home; I multiply by the probability
of working to produce inconditional fitted probabilities of working full
time. The unconditional probability of working part time is found simi-
larly, and the probability of not working outside the home is calculated
as the complement of the probability of working.

So as not to clutter the graph unduly, I use the mfrow plot parameter
to create two panels: one for children absent and the other for children
present. The result is shown in Figure 5.3*

> par(mfrow=c(1,2)) # 1 row and 2 columns of plots

> plot(c(1,45), c(0,1),
+ type='n’, xlab="Husband’s Income", ylab="Fitted Probability’,
+ main=’Children Absent’)

> lines(1:45, p.not{1:45), 1lty=1, 1wd=3) # not working

4. General strategies for constructing complex graphs are described in Chapter 7.
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1lines(1:45, p.part(1:45], 1ty=2, 1wd=3) # part-time
Jines(1:45, p.fulll1:45], 1ty=3, lwd=3) # full-time
1egend(locator(1), 1ty=1:3, 1lwd=3,

legend=c{’not working’, ‘part-time’, *full-time’))

+ V V V

> plot(c(1,45), c(0,1),

+ type='n’, xlab="Husband’s Income", ylab=’Fitted Probability’,
+ main=’Children Present’)

> lines(1:45, p.not[46:90], 1ty=1, 1wd=3)

> lines(1:45, p.part[46:90], 1ty=2, lwd=3)

> lines(1:45, p.full[46:90], 1ty=3, 1lwd=3)

>

Note that the horizontal axis label (the xlab argument fo plot) is
enclosed in double quotes because a single quote {in the form of the
apostrophe in Husband’ s) appears in the label. The legend for the graph
is positioned with the mouse using the locator function.

Multinomial Logit Model

The multinomial logit model is an alternative to nested dichotomies
for a polytomous response. Aside from treating one of the categories—
say, the first—as an arbitrary baseline {to impose the constraint that the
fitted probabilities across the m categories of the response sum to 1),
the multinomial logit model treats the categories of the response sym-
metrically. Letting p; denote the probability that observation i falls in
response category /, the model is given by the equations®

b= expla; + Byxin + -0+ BiiXix)
i1 4 Y, explag + Bixy+--t BreXix)

forj=2,...,m,

wn=1-2m; (for category 1).
j=2
The as and s are then logistic-regression coefficients for log-odds of
membership in each category relative to the first:

Hij ;
10g,-ﬁ_—;=a,-+[3\,-x,-1+~-~+[3,dx,-k forj=2,...,m.
When m = 2, this is just the asual binomial logit model. Moreover, for
the log-odds berween any pair of response categories j and j # 1,

log, Hij _ logz(l“"ii/l“"il )

Mjj :u'ij’/ it
i iy
=log, — —log, —
gy Mt

=(a;—a;) + (By; — By +--- + (B — By)%i-

5. | assume here that the model has constant terms—the a;s—but this is not a requirement.
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’_I'hus, the logistic-regression coefficients for the log-odds of membership
in category j versus j are given by differences in the corresponding
parameters of the multinomial logit model.

The multinomial logit model cannot be fit by glm, but the multinom
function in the nnet library (one of the R and §-PLUS libraries associated
with Venables & Ripley, 1999) will do the trick; some functions in nnet
require the MASS library, so [ load that as well:

> library(nnet)

> library(MASS)

> mod.multinom <- multinom(participation ~ hincome + children)
# weights: 12 (6 variable)

initial value 288.935032

iter 10 value 211.454772

final value 211.440964

converged

> summary(mod.multinom, cor=F, Wald=T)
Re-fitting to get Hessian

Call:
multinom(formula = participation ~ hincome + children)

Coefficients:

(Intercept) hincome childrenpresent
parttime -1.4323 0.0068926 0.021456
fulltime 1.9828 ~0.0972300 -2.558605
Std. Exrors:

(Intercept) hincome childrenpresent
parttime 0.59247 0.023455 0.46904
fulltime 0.48418 0.028096 0.36220

Value/SE (Wald statistics):

(Intercept) hincome childrenpresent
-2.4175 0.29387 0.045744 ’
4.0953 -3.46067 -7.064106

parttime
fulltime

Residual Deviance: 422.88
AIC: 434.88

Specifying cor=F as an argument tO SUMMATY SUPPIESses printing the cor-
relation matrix of the coefficient estimates, while Wald=T prints out the
Wald statistic for each coefficient. Examining the Wald statistics, the coef-
ficients for the logit of parttime versus the baseline not .work are, apart
from the regression constant, small and nonsignificant, while the coef-
ficients for the logit of fulltime versus not.work are much larger and
highly statistically significant. Apparently, husband’s income and presence
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of children primarily affect the decision to work full time, as opposed to
part time or not to work outside the home.

Taking an approach similar to the onel employed for nested binomial
logit models, we can obtain and plot fitted probabilities for the three
categories of the response as a function of the two predictors:

> p.fit <- predict(mod.multinom, predictors, type=’probs’)
>

Specifying type=’probs’ returns fitted probabilities for each cate-
gory. of the response. The default, type=’class’, applies the so-called
“Bayes prediction rule” to assign each observation to the highest-
probability category. Printing out the first few fitted probabilities:

> data.frame(predictors, p.fit)[1:5,] # first & rows:®
hincome children not.work parttime fulltime

1 absent 0.12770 0.030700 0.84160

absent 0.13847 0.033519 0.82801

absent 0.14994 0.036546 0.81352

absent 0.16212 0.039788 0.79810

absent 0.17501 0.043249 0.78174

oD LN
oD N

Plots of the fitted values are shown in Figure 5.4. The S statements to
produce these graphs are similar to those employed for Figure 5.3, and
so 1 omit the details. Comparing the fits from Figures 5.3 and 5.4, we
can see that the two models produce similar, but not identical results. In
particular, for the nested-dichotomies model, the probability of working
part time turns down at high levels of husband’s income when children
are present, while, for the multinomial logit model, this probability con-
tinues to rise gradually. Because high husband’s income is a region of the
predictor space where data are sparse, we should not overinterpret this
difference, and the two models have similar degrees of overall fit to the

Children Absent ~ Children Present
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Figure 5.4  Fitted probabilities from the multinomial logit model fit to the
women’s labor-force participation data.
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data: Both models use six parameters, and the deviance for the 'multmo-
mial logit model is 422.9, while that for the combined nested logit _modc':ls
is 424.3 (only slightly worse). In this example, however, the multinomial
logit model draws our attention more clearly to the fact that the two
predictors primarily serve to differentiate full-time work from the other
two response categories.

Proportional-Odds Model

There are several statistical models for ordinal responses, developed,
for example, in Agresti (1984), Clogg and Shihadch (199.4), and P.owers
and Xie (2000). Using continuation dichotomies, as described prevxousl};;
is one approach that is sometimes applic{ablc. Another common approac
is the proportional-odds logistic regression model. .

Suppose that there is a continuous, bu.t unobservable, response var-
able, £, that is a linear function of k predictors plus a random error:

&= a+ Byxi + o+ BeXa T &

We cannot observe £ directly, but instead implicitly dissect its range into
m class intervals at the (unknown) cut points &; < < < s
producing the observed ordinal response variable y. That 1s,
1 if & < ey,
2 ifa, <& <a,
Yi= H
m—1 if @,y <& < Ams
m if a,q <&
The cumulative probability distribution of y is given by
Pr(y, < j)=Pr(& = &)
=Pria+ Byxat + Brxi + & = a,-)
=Pr(g; caj—a— Bixan— Brxa)
for j = 1,2,...,m—1. If the errors g; are independently distributed
according to the standard logistic distribution, then we get the ordcrc':d
Jogit model®:
logit[Pr(Y; > j)] = log, Pr(Y, <)
=(a@-a)+Bxat -t BeXi
forj=1,2,... ,m—1.

—_—

6. Alternatively, if the errors are normally distributed, t_hcp we obrain the orde;ccl:l Rmb"dm?g;h
Because the normal and logistic distributions are very similar, so are the ordered logit and p
models.
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Figure 5.5 The proportional-odds model: Cumulative probabilities, Pr(y >
i), plotted against the linear predictor, 7, for a four-category
ordered response.

Because the equations for logit[Pr(Y; > /)] for different values of j differ
only in their intercepts, the regression curves for the cumulative prob-
abilities Pr(Y; > j) are horizontally parallel, as illustrated in Figure 5.5;
in this figure, the cumulative probabilities are plotted for a four-category
response against an imagined linear predictor n = a -+ Byxy + -+ B
The designation “proportional odds” follows from the constant differ-
ence between the cumulative log-odds (logits) for different categories,
which translates into a constant ratio of odds.

Assuming that the errors follow a standard logistic distribution fixes the
scale of the latent response & but not its origin; a consequence is that the
general intercept ¢ is not identified independently of the cut points a;. Set-
ting @ = 0 to fix the origin of ¢, the negatives of the category boundaries
(i.e., the —a;) become the intercepts for the logistic regression equations.

Compared with logit models for nested dichotomies, or with the multi-
nomial logit model, both of which use (m — 1)(k + 1) parameters, the
proportional-odds model is relatively parsimonious, with only 7 + k-1
independent parameters. A corollary is thar the proportional-odds model
is more restrictive than these other models and may not fit the data well.
The models are not properly nested to perform a likelihood-test—that is,
the proportional-odds model is not a specialization of either the nested-
dichotomies model or the multinomial logit model—but comparison of
the relative fit of the models (e.g., via the AIC) can be informative. There
is also a score test (as far as | know, unavailable in S) of the proportional-
odds assumption. An “informal” likelihood-ratio test, comparing the

deviances for the proportional-odds and multinomial logit models, usu-

ally produces results similar to the score test for proportional odds.
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~ The proportional-odds model may be fit in S using the polr tunction
in the MASS library, which was loaded previously {Venables & Ripley,
1999). For the women’s labor-force data, we may proceed as follows:

> mod.polr <- polr(participation ~ hincome + children)
> summary (mod.polr)

Re-fitting to get Hessian

Call:

polr(formula = participation ~ hincome + children)

Coefficients: -

Value Std. Error t value
hincome -0.053901 0.01949 -2.7655
childrenpresent -1.971957 0.28695 -6.8722

Intercepts:

Value Std. Error t value
not.work|parttime -1.852 0.386 -4.794
parttimelfulltime -0.941 0.370 ~2.544

Residual Deviance: 441.66
AIC: 449.66

The AIC for the proportional-odds model (449.7) is substantially larger
than that for the multinomial logit model fit earlier (434.9), casting doubt
on the assumption of proportional odds. A rough analysis of deviance

yields a p value of .00008, suggesting the inadequacy of the proportional-
odds model:

> 1 - pchisq(441.66 - 422.88, df = 6 - 4)
[1] 8.3555e-05

The fit of the proportional-odds model, shown in Figure 5.6, is also
quite different from that of the multinomial logit model (Figure 5.4)
and the nested-dichotomies model (Figure 5.3). Fitted values to produce
Figure 5.6 are obtained much as for the multinomial logit model:

> p.fit <- predict(mod.polr, predictors, type='probs’)
>

POISSON GENERALIZED LINEAR

MODELS FOR COUNT DATA

Poisson generalized linear models arise in two common formally identical
but substantively distinguishable contexts: when the response variable in
a regression model takes on nonnegative integer values, such as a count,
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Figure 5.6  Fitted probabilities from the proportional-odds model fit to the

women’s labor-force participation data.

and to analyze associations among categorical variables in a contingency
table of counts. The default link for the poisson family generator is the
log link. .

Poisson Regression

Recall Ornstein’s (1976) data on interlocking-directorate and top execu-
tive positions among 248 major Canadian firms, introduced in Chapter 3:

> data(Ornstein)
> Ornstein([sort(sample(248,10)),] # sample 10 obs.
assets sector nation interlocks

23 14163 AGR CAN 4
26 12810 TRN CAN 40
27 12080 MIN Us 29
64 4298 AGR OTH 15
88 2801 woD CAN 18
145 888 WoD CAN 2
173 590 MAN Us 2
177 566 AGR Us 0
182 540 MAN CAN 6
212 375 MAN Us 8

Ornstein performed a least squares regression of the number of interlocks
maintained by each firm on the firm’s assets and dummy variables for
the firm’s nation of control and sector of operation. Because the response

T e eer TPt PO TS
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Figure 5.7  Distribution of number of interlocks maintained by 248 large

Canadian corporations.

variable (interlocks) is a count, a Poisson linear model might be prefer-
able. Indeed, the marginal distribution of number of interlocks, in Figure
5.7, shows many zero counts and a substantial positive skew.

To construct this graph, I first use the table function to find the fre-
quency distribution of counts:

> attach(Ornstein)
> tab <- table(interlocks)
> tab
interlocks
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o8 19 14 11 8 14 11 6 12 7 4 12 9 8 4 3
94 107
11
The numbers on top of the frequencies are the different values of
interlocks: Thus, there are 28 firms with 0 interlocks, 19 with 1
interlock, 14 with 2, and so on. The graph is produced by plotting the
ordered unique values of interlocks against the counts:

x <~ sort(unique(interlocks))

plot(x, tab, type=’h’, x1ab=’Number of Interlocks’,
ylab='Frequency’)

points(x, tab, pch=16)

vV V + V V

Specifying type="h’ in the call to plot produces the vertical (“histogram-
like”) lines, while the points function adds the filled circles (pch=16) at
the tops of the lines.

et e — e R
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Using glm to fit a Poisson regression model is very simple:

> mod.ornstein <~ glm(interlocks ~ assets + nation + sector,
+ family=poisson)
> summary(mod.ornstein)

Call:
glm(formula = interlocks ~ assets + nation + sector,
family = poisson)

Deviance Residuals:
Min 1Q Median 3Q Max
-5.991 -2.477 -0.858 1,347 7.361

Coefficients:
Estimate Std. Error z value Pr(>lzl)

(Intercept) 2.32e+00 5.18e-02 44.83 < 2e-16
assets 2.09e-05 1.20e-06 17.34 < 2e-16
nationOTH ~1.63e-01  7.35e-02 -2.22  0.0265
nationUK -5.77e-01 8.90e-02 -6.49 8.7e-11
nationUS -8.26e-01 4.89e-02 -16.90 < 2e-16
sectorBNK  -4.09e-01 1.56e-01 -2.62 0.0087
sectorCON  ~6.20e-01 2.11le-01 -2.93  0.0034
sectorFIN 6.77e-01 6.87e-02 9.85 < 2e-16
sectorHLD 2.08e~01 1.19e-01 1.76 0.0786
sectorMAN 5.27e-02  7.52e~02 0.70 0.4839
sectorMER 1.78e-01  8.65e-02 2.05 0.0399
sectorMIN 6.21e~01  6.68e-02 9.29 < 2e-16
sectorTRN 6.78e-01  7.48e-02 9.07 < 2e-16
sectorWdD 7.12e-01 7.52e-02 9.46 < 2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 3737.0 on 247 degrees of freedom
Residual deviance: 1887.4 on 234 degrees of freedom
AIC: 2813

Number of Fisher Scoring iterations: 4

> Anova(mod.ornstein)
Anova Table (Type II tests)

Response: interlocks
LR Chisq Df Pr(>Chisq)

assets 391 1 <2e-16
nation 329 3 <2e-16
sector 361 9 <2e-16

The analysis of deviance, produced by the Anova function from car,
shows that all three predictors have highly statistically significant effects.
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Log-Linear Models for Contingency Tables

Poisson GLMs may also be used to fit log-linear models to a contin-
gency table of frequency counts, where the object is to model association
among the variables in the table (see, e.g., Fienberg, 1980; Agresti, 1990;
Powers & Xie, 2000). The variables constituting the classifications of
the table are treated as “predictors” in the Poisson model, while the cell
count plays the role of the “response.”

In Section 5.2.1, I introduced Campbell et al.’s data on voter turnout
in the 1956 U.S. presidential election, using a binomial logit model to
analyze a three-way contingency table for turnout by perceived closeness
of the election and intensity of partisan preference. The binomial logit
model treats turnout as the response.

An alternative is to construct a log-linear model for the expected cell
count. Let us reenter the data in the following format, raveling the 2 x
3 x 2 table of counts into a 12-element vector and using the expand. grid
function to generate a data frame with all combinations of categories of
the three variables in the table:

> counts <- ¢(91, 39, 121, 49, 64, 24, 214, 87, 284, 76, 201, 25)

v

Campbell <- expand.grid(turnout=c(’voted’,’did.not.vote’),
preference=c(’weak’, ’medium’, ’strong’),
+ closeness=c(’one.sided’, ’close’))

+

> cbind(Campbell, counts)
turnout preference closeness counts

1 voted weak one.sided 91
2 did.not.vote weak one.sided 39
3 voted medium one.sided 121
4 did.not.vote medium one.sided 49
5 voted strong one.sided 64
6 did.not.vote strong one.sided 24
7 voted weak close 214
8 did.not.vote weak close 87
9 voted medium close 284
10 did.not.vote medium close 76
11 voted strong close 201
12 did.not.vote strong close 25

Notice that the leftmost argument to expand.grid (here turnout) is the
one whose values change most quickly.

Log-linear models are usually defined using sum-to-zero contrasts, and
so I reset the contrasts option for unordered factors accordingly:

> options(contrasts=c(’contr.sum’, ’contr.poly’))
S i
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I'then fit a “saturated” log-linear model to the data by a Poisson regres-
sion of the cgll counts on all main effects and interactions among the
three factors in the contingency table’:

> attach(Campbell)

> mod.loglin <- glm(counts ~ closeness * preference * turnout,
+ family=poisson)

> summary(mod.loglin)

Call:
glm(formula = counts ~ closeness * preference * turnout,
family = poisson)

Deviance Residuals:
[t} o 0 0 0 0 00 0 0 0 0 0

Coefficients:

Estimate Std. Error z value
(Intercept) 4.3777 0.0373 117.35
closenessl -0.3446 0.0373 -9.24
preferencel 0.1238 0.0499 2.48
preference2 0.2891 0.0483 5.98
turnoutl 0.5862 0.0373 15.71
closenessl:preferencel ~0.0698 0.0499 ~1.40
closenessl:preference2 0.0215 0.0483 0.45
closenessl:turnoutl -0.1309 0.0373 -3.51
preferencel:turnoutl -0.1494 0.0499 -2.99
preference2:turnoutl -0.0307 0.0483 -0.63
closenessi:preferencel:turnoutl  0.1177 0.0499 2.36
closenessl:preference2:turnoutl 0.0273 0.0483 0.57

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 6.6929e+02 on 11 degrees of freedom
Residual deviance: ~4.4415e-16 on 0 degrees of freedom
AIC: 98.62

Number of Fisher Scoring iterations: 2’

Because the saturated model has as many parameters (12) as there
are cells in the rable, the deviance under the model is 0. An anal-
ysis of deviance reveals that the highest-order term, closeness X
prefgrgnce % turnout, is statistically significant, suggesting that the
association between any pair of the variables depends on the level of the

In structural analogy 1o terms i an ANOVA model. two-wav and higher-order terms in a log-
linear model are often called “interactions,” but they are more clearly conceptualized as association
parameters.

R
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third:

‘> Anova(mod.loglin)
Anova Table (Type II tests)

Response: counts
LR Chisq Df Pr(>Chisq)

closeness 201 1 < 2e-16
preference 56 2 6.8e-13
turnout 376 1 < 2e-16
closeness:preference 12 0.540
closeness:turnout 8 1 0.004
preference:turnout 19 2 7.1e-05
closeness:preference:turnout 7 2 0.028

> detach(Campbell)
>

As mentioned, I previously treated turnout as the response variable
for a logit model fit to the three-way table. As long as a log-linear model
for the table includes the one-way and two-way terms for the predictors,
closeness and preference, along with the one-way term for turnout,
it is equivalent to a binomial logit model with turnout as the response.
Therefore, the likelihood-ratio test for the closeness x preference X
turnout association in the log-linear model is identical to the likelihood-
ratio test for the closeness x preference interaction in the logit model

for turnout.

Preparing Data for Fitting a Log-Linear Model

Contingency tables are more naturally represented as multi-way arrays
of counts, rather than as vectors. Indeed, the table function, the xtabs
function (in R), and the crosstabs function (in S-PLUS) all take individ-
ual observations as input and return contingency tables in the form of
arrays.

1 do not have the original data set that produced Campbell et al’s
table, but if I did, I could proceed as follows?®:

> campbell <- table(turnout, preference, closeness)
> campbell
, closeness = one.sided

preference
turnout weak medium strong
voted 91 121 64
did.not.vote 39 49 24

-

8. Because 1 do not have the data, the input and output shown here are simulated.
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, , closeness = close

preference
turnout weak medium strong
voted 214 284 201
did.not.vote 87 76 25

In R, applying the as.data.frame coercion function to the rable object
ravels the table into a form suitable for input to glm, producing the same
results as above (using the automatically generated variable Freq as the
response in the Poisson GLM)’:

- > Campbell <- as.data.frame(campbell)

> Campbell

turnout preference closeness Freq
1 voted weak one.sided 91
2 did.not.vote weak one.sided 39
3 voted medium one.sided 121
4 did.not.vote medium one.sided 49
5 voted strong one.sided 64
6 did.not.vote strong one.sided 24
7 voted weak close 214
8 did.not.vote weak close 87
9 voted medium close 284
10 did.not.vote medium close 76
11 voted strong close 201
12 did.not.vote strong close 25

> mod.loglin <~ glm(Freq ~ closeness * preference * turnout,
+ family=poisson, data=Campbell)
>

Raveling Tables in S-PLUS

In S-PLUS, applying as.data.frame to a table object does not produce
a data frame suitable for input to glm. (Try it!) You may instead use the
following simple function:

> ravel.table <- function(table){

+ cbind(expand.grid(dimnames(table)),
+ Freq=as.vector (table)
+
>

¥

9. An alternative is to use the loglin function in S {or the loglm function in the MASS library, which
provides a formula-based front end to loglin): loglin fits hierarchical log-linear models to rables
in the form of multidimensional arrays, using the method of iterative proportional firting. [ see little
advantage to this approach, however.
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Figure 5.8 Gamma densities for various values of the shape parameter, ¥ =

1/¢.
ODDS AND ENDS

Other Generalized Linear Models

Gamma Models

Though less common than binomial and Poisson GLMs, gamma
models are also potentially useful. The gamma distribution requires a
nonnegative, continuous response variable.'® The gamma distribution is
appropriate when the conditional standard deviation of the response y
is proportional to its mean p, that is, when the coefficient of variation

Viy|m)/w is constant. The specific shape of distributions in the gamma
family depends on a shape parameter , which, in a gamma GLM,
is the inverse of the dispersion parameter. Some representative gamma
distributions are shown in Figure 5.8.

Quasi-Likelihood Estimation

As you may be aware, GLMs are fit to data by an iterated weighted
least squares (TWLS) procedure (see Section 5.5). Aside from its com-
putational advantages, IWLS produces coefficient standard errors and a

10. The inverse-Gaussian family is also appropriate for continuous nonnegative data, but although I
have seen theoretical discussions of inverse-Gaussian GLMs, I have never encountered an application.
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The Anova function in car estimates the dispersion parameter when
F tests are requested, and thus applies a correction for overdispersion
in binomial and Poisson GLMs. In R, essentially the same effect can be
achieved by employing the quasibinomial and quasipoisson families in
fitting the GLM in the first place. The summary of the resulting fitted model
provides coefficient standard errors and ¢ tests corrected for dispersion.
For example, for Ornstein’s interlocking-directorate regression:

variety of other useful quantities as by-products. For GLMs in the expo-
nential families, IWLS yields maximum-likelihood estimates, but the pro-
cedure requires only the link and variance functions. In quasi-likelibood
estimation, this property of IWLS is exploited to calculate estimates for
an arbitrary combination of link and variance functions, in the absence
of an explicit conditional distribution for the response.

The resulting estimates share many of the properties of maximum-
likelihood estimates, including asymptotic normality, asymptotic unbias,
and the usual covariance matrix for the estimates. This is not an unfamiliar ;
idea: When we apply least squares regression to a model with nonnormal > mod.ornstein.q <- update(mod.omstein, fanily=quasipoisson)
errors, for example, the resulting estimates are unbiased, asymptotically > sumnary (mod.orastein.q)
normal, and have the usual covariance matrix, as long as the assump-

Call:

‘tions of linearity, constant error variance, and independence hold. When ' glu(formula = interlocks ~ assets + nation + sector ;
Fhe errors are nonnormal, moreover, the least squares estimates are not family = quasipoisson) , !‘
in general maximum-likelihood estimates, but are still maximally effi- C

cient among linear unbiased estimators (by the Gauss-Markov theorem), Coefficients:

Estimate Std. Error t value Pr(>ith)
(Intercept) 2.325e+00 1.458e-01 15.943 < 2e-16
assets 2.085e-05 3.381e-06 6.167 3.03e-09
nationOTH -1.632e-01 2.068e-01 -0.789 0.430793

though no longer necessarily among all unbiased estimators.

In S, quasi-likelihood estimation for GLMs is achieved by specifying
the quasi family generator, with 1ink and variance as arguments. These
arguments default to ’identity’ and ’constant’, respectively, a com- :
bination that yields linear least squares estimates. Of course, there would sectorTRN  6.778e-01 2.102e-01  3.224 0.001444
be no reason to compute the least squares estimates in this convoluted sectorWD  7.115e-01 2.116e-01  3.363 0.000902
manner.

B

(Dispersion parameter for quasipoisson family taken to be 7.9079)

Overdispersed Binomial and Poisson Models Null deviance: 3737.0 on 247 degrees of freedom
Residual deviance: 1887.4 on 234 degrees of freedom
As we have seen, the binomial and Poisson GLMs fix the dispersion AIC: NA

parameter ¢ to 1. It is possible, however, 1o fit versions of these mod-
els in which the dispersion is a free parameter, to be estimated along

1
|
i

Number of Fisher Scoring iterations: 4

with the coefficients of the linear predicror, although the resulting error > Anova(mod.ornstein.q, test='F’) 1
distribution is not an exponential family. Anova TableA (Type IIAt;sts) !

It turns out that the regression coefficients are unaffected by allow- |
ing dispersion different from 1, but the coefficient standard errors are Response: interlocks F
multiplied by the square root of é. Because the estimated dispersion typ- _ Sss ot F PrOR é
ically exceeds 1, this inflates the standard errors; put another way, failing assets 300.90 1 49.4311 2.23767 ‘
to account for “overdispersion” produces misleadingly small standard pation iﬁ'i‘é ; 12’?,:?, i'zﬁigz |
errors, overstating the precision of the estimated coefficients. . :::;Zials 1350245 234 A A :

So-called overdispersed binomial and Poisson models arise in several >
different circumstances. For example, in modeling proportions, it is
possible that the probability of success u varies for different individuals
who share identical values of the predictors (this is called “unmodeled
heterogeneity”} or that the individual successes and failures for a “bino-
mial” observation are not independent, as required by the binomial 1, producing much
distribution. standard Poisson regression model.

Note the use of update to change the family argument to glm. In this
case, the estimated dispersion, ¢ = 7.9079, is substantially greater than
larger standard errors than were obtained from the

IR

ORI ey o byl
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Overdispersed Poisson and Binomial Models in S-PLUS

Although the quasipoisson family is not present in S-PLUS, the same
result can be achieved using the quasi family generator—for example,
update(mod.ornstein, family=quasi(link=1log, var='mu’)). Asim-
ilar approach can be taken to fit overdispersed binomial GLMs, using
family=quasi(link=logit, var="mu(1-mu)’), as long as none of the
observed y values is 0 or 1—a stipulation that precludes fitting an overdis-
persed binomial GLM to binary data by this method.

“Rolling Your Own” Generalized Linear Model

In addition to the flexibility provided by the standard and quasi fam-
ily generators, it is also possible to add family generators, link func-
tions, and variance functions to S—assuming, of course, that you have
the necessary statistical knowledge and programming prowess. Venables
and Ripley’s MASS library, for example, includes a family generator for
negative-binomial GLMs, an alternative to the Poisson GLM for overdis-
persed count data.

I Arguments to glm

The glm function in R takes the following arguments (and the arguments
to glm in S-PLUS are nearly identical):
> args(glm)
function (formula, family=gaussian, data=1list (), weights=NULL,
subset=NULL, na.action=na.fail, start=NULL, offset=NULL,
control=glm.control(. ..), model=TRUE, method="glm.fit",
x=FALSE, y=TRUE, contrasts=NULL, ...)

I have already discussed in some detail the use of the formulaand family
arguments. The data, subset, na.action, and contrasts arguments
work as in 1m (see Section 4.7).

Here are a few comments on the other arguments to glm:

weights

These are so-called “prior” weights, as for 1m, not to be confused with
the weights employed in the IWLS fitting procedure (see Section 5 S

11. In 5-PLUS, applying the weights function to a firted glm object yields the weights from the final
TWLS iteration, not the prior weights. .
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A‘s mex_ltioned pr.eviously, the weights argument may be used to specify
binomial denominarors in a binomial GLM. '

start

Thxs argument supplies start values for the coefficients in the linear
predictor; it is usually safe to let glm find its own start values

offset (R only)

As for a linear model, an offset is included in the li i i
a fixed coefficient of 1, but (unlike in a linear modt;;e?; aprgtf\:[oihvivsltih
not generally the same as simply subtracting the offset from the left-hanj
side of the model. Equivalently, one may use the offset function as part
of the specification of the linear predictor in the glm model formulap

control

This argument allows the user to set several rechnical parameters, in
the form of a list controlling the IWLS fitting algorithm: epsilon ,the
convergence criterion (which defaults to 0.0001), representing the r,nax-
imum relative change in the deviance before a solution is declared and
iteration stops; maxit, the maximum number of iterations (default, 10);
gnd trace (default, FALSE), which, if TRUE, causes a record of the fVVLS:
iterations to be printed. These control parameters can also be specified
directly as arguments to glm. The ability to control the TWLS fitting pro-

cess is sometimes useful—for example, wh
3 , when convergence proble
encountered. & ° e e

model, method, x, y

As for linear models, these are technical options.

FITTING GENERALIZED LINEAR MODELS 3
BY ITERATED WEIGHTED LEAST SQUARES* ?

As mentioned, maximum-likelihood estimates fo i i

. , I : r generalized linear mod-

ils in S alre obtam;:d Zy iterated weighted least squ;res (IWLS), also called

iteratively reweighted least squares (IRLS). It i

freratively reweigh ( ). It occasionally helps to know
IWLS‘ proceeds by forming a quadratic local approximation to the

log-likelihood function; maximizing this approximate log-likelihood is a
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linear weighted least squares problem. Suppose that the vector B con-
tains the current estimates of the regression parameters of the GLM.
From (E)hese estimates, we calculate the current values of the linear predic-
tor, 7, = x,89; the fitted values, u = g~'(n"); the variance function,
o = V(") /¢, the working response,

)
o oy { 9
Zi =m0 )
K (y # )(5ﬂi)
and the weights

® _ L
io— T 57
Ciyf't) [(371,'/3F«i) (t)]

where the ¢; are fixed constants (e.g., in the binomial family, ¢; = #;?).
Then we perform a weighted least squares regression of z¥ on the xs in
the linear predictor, minimizing the weighted sum of squares _;_; w;(z; —
x;B)?, where x{ is the ith row of the model matrix, obtaining new esti-
mates of the regression parameters, B*1. This process is initiated with

suitable starting values, 8%, and continues until the coefficients stabilize
at the maximum-likelihood estimates, 8.

The estimated asymptotic covariance matrix of B is obtained from the
last iteration of the IWLS procedure, as

T(B) = $X'WX)™,
where W = diag{w;}.

Binomial logistic regression provides a relatively simple illustration; we
have (after algebraic manipulation):

! = [1 +exp(=n{")] 7,

o = 1 - )

(37],- i 1
3#:‘) . ;Lf-')(l - ;Lf-t))’

(1)
2= 4 (v, = )0,

w(t)_?l‘l/
i T i

12. The values

F] n
2= =0, - (52 )
op;

are called working residuals and play a role in diagnostics for GLMs (see Section 6.6).

. -® 300

CHAPTER O

Diagnosing Problems in
Linear and Generalized
Linear Models

Regression diagnostics are methods for determining whether a fit-
ted regression model adequately represents the data. I construe the
term “regression” broadly in this chapter to include methods that are
appropriate for linear and generalized linear models. Because most of
the methods for diagnosing problems in linear models extend naturally
to generalized linear models, I deal at greater length with linear-model
diagnostics, briefly introducing the extensions to GLMs.

Linear models fit by least squares make strong, and often unrealis-
tic, assumptions about the structure of the data. When these assump-
tions are violated, least squares estimates can behave badly and may even
completely misrepresent the data. Regression diagnostics can reveal such
problems and often point the way toward solutions.

Section 6.1 describes methods for detecting unusual data, including
outliers, high-leverage points, and influential observations. Section 6.2
deals with detecting and correcting nonnormally distributed errors, and
Section 6.3 with nonconstant error variance. Section 6.4 takes up the
problem of nonlinearity. Collinearity and the related topic of variable
selection are the subjects of Section 6.5. The final section of the chap-
ter considers the extension of diagnostic methods to generalized linear
models, such as logistic and Poisson regression.

Most of the methods discussed in this chapter are programmed in the
car library. Many of these methods can also be obtained straightfor-
wardly, but more tediously, by using standard facilities available in S.

191
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For example, added-variable plots (described in Section 6.1.3) are con-
structed by regressing a particular predictor and the response on all the
other predictors, computing the residuals from these auxiliary regres-
sions, and plotting one set of residuals against the other. This is not hard
to do in S, although the steps are somewhat more complicated when
there are factors, interactions, or polynomial terms in the model. It is my
experience, however, that diagnostic methods are much more likely to be
employed when their use is convenient. Thus, the av.plots function in
car makes all the added-variable plots for a linear or generalized linear
model available through a2 menu, and adds such enhancements as a least
squares line and point identification.

As well, some of the diagnostic functions in car are more general than
similar functions in standard S. For example, cookd in car is a generic
function, with methods for linear and generalized linear models, while
cooks.distance in R is applicable only to linear models.

m UNUSUAL DATA

Unusual data can wreak havoc with least squares estimates and may
prove interesting in their own right. Unusual data in regression include
outliers, high-leverage points, and influential observations.

1?“‘ Outliers: Studentized Residuals

Regression outliers are y values that are unusual conditional on the values
of the predictors. The standard statistics for detecting regression outliers
are the studentized residuals for the model.!

There are several equivalent routes to the studentized residuals, but
one that is particularly illuminaring is, via the mean-shift outlier model

yi=a+Bixy + -+ Brxy + vdi + &,

where d is a dummy regressor coded 1 for a particular observation (let
us say the first) and O for all others. If v % 0, then the conditional
expectation of the first observation differs systematically from the others.
The ¢ statistic for testing the null hypothesis Hy: ¥ = 0 (which has n —k —
2 degrees of freedom) is the studentized residual for the first observation.

1. Unfortunately, although the terminology that I employ is the most common, it is not univer-
sal. What I call “studentized residuals™ are sometimes termed “externally studentized residuals” or
“deleted studentized residuals.”

6.1 UNUSUAL DATA
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To obtain a complete set of studentized residuals, we could refit the
mean-shift model 7 times, once for each observation in the data set. In
practice, there are much more efficient ways to do the computation that
do not require refitting the model.

Generally, our attention is drawn to the largest (absolute) studentized
residual, and this presents a problem: Even if the studentized residuals
were independent, which they are not, there would be an issue of simul-
taneous inference involved in picking the largest of # test statistics. The
dependence of the studentized residuals complicates the issue. We can
deal with this problem (1) by Bonferroni adjustment of the p value for
the largest absolute studentized residual, multiplying the usual two-tail
p by n, or (2) by constructing a quantile-comparison plot of the studen-
tized residuals with a confidence envelope that takes their dependence
nto account.

In Chapter 1, I introduced Duncan’s occupational-prestige data,
regressing prestige on occupational income and education levels:

> library(car)
Attaching Package "package:car":

The following object(s) are masked from package:base :
dfbetas rstudent

> data(Duncan) |
> attach(Duncan)

> mod.duncan <~ lm(prestige ~ income + education)
>

Note that the rstudent function in car masks rstudent in the R
base library: Studentized residuals are standardly available in R via the
rstudent function; car provides a generic version of rstudent, with
methods for linear and generalized linear models.

The qq.plot function in car has a method for linear models, plot-
ting studentized residuals against the corresponding quantiles of ¢ with
n —k — 2 degrees of freedom. Setting the argument simulate to TRUE
generates a 95 percent pointwise confidence envelope for the studentized

residuals, using a parametric version of the bootstrap.> The method used
is from Atkinson (1985).

> qq.plot(mod.duncan, simulate=T, labels=row.names(Duncan))
(11 8

The ‘resulting plot is shown in Figure 6.1. The qq.plot function returns
the index of the observation with the largest srudentized residual

2. Bootstrap methods in § are described in the Web appendix to the book.
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3 minister o

Studentized Reslduals(mod.duncan)

t Quantiles

6.1 UNUSUAL DATA

19D

Figure 6.1  Quantile-comparison plot of studentized residuals from Duncan’s

occupgnonal-prestige regression, showing the pointwise 95 per-
cent .snnu'lated confidence envelope. The observation minister
was identified interactively with the mouse.

‘(mini‘ster‘), which strays outside of the confidence envelope and which I
identified interactively with the mouse: Point identification in qq.plot is
turned on by supplying the labels argument; to identify a point, place
the mouse cursor near it and press the left button; press the right but-
ton to exit from qq.plot. The distribution of the studentized residuals
looks heavy-tailed compared with the reference ¢ distribution: Perhaps
?jainei*th()d of robust regression would be more appropriate for these

a.

The generic outlier.test function in car, which has a method for

linear models, performs a Bonferroni ¢ test f
: s, or the largest absol -
dentized residual (3.1345, for minister): & s st

> outlier.test(mod.duncan, labels=row.names(Duncan))
max|rstudent| df unadjusted p Bonferroni p
3.1345 41 0.0031772 0.14297

Dbservation: minister

The Bonferroni-adjusted p value is not statistically significant.

Leverage: Hat Values

OE;ervatlons that are relatively far from the center of the predictor space,
taking account of the correlational pattern among the predictors, have

3. S functions for robust and resistant regression are described in the Web appendix to the text.

potentially greater influence on the least squares regression coefficients;
such points are said to have “high leverage.” The most common mea-
sures of leverage are the hat values, so called because they arise from
the relationship between the fitted values (i.e., 3;, or “y hat”) and the
observed response (y;). The fitted values are linear combinations of the
observations, 3; = Xi_; b;%i> and so b represents the weight attached to
y, in the determination of ;. The hat value, h; = Y0y b2, summarizes the
weights associated with y; in the determination of all of the fitted values*
The average hat value is b = (k+ 1)/n, where k+ 1 is the number of coef-
ficients in the regression model (including the constant). A rough rule is
that hat values that exceed 2 (or, in small samples, 35) are noteworthy.

The generic function hatvalues in car has methods for linear and gen-
eralized linear models. One way of examining the hat values (and other
individual-observation diagnostic statistics) is to construct an index plot,
graphing the hat values against the corresponding observation indices.
For example, Figure 6.2 shows an index plot for the hat values from
Duncan’s occupational-prestige regression:

> plot(hatvalues(mod. duncan))

> abline(h=c(2, 3)*3/45, 1lty=2) # reference lines

> identify(1:45, hatvalues (mod.duncan) , row.names (Duncan))
[1] 6 16 27

I used abline to draw horizontal reference lines at 2h and 3h. The
occupations railroad engineer (RR.engineer), conductor, and minister,
interactively identified with the mouse, stand out from the rest.

Influence Measures

An observation that combines “outlyingness” with high leverage exerts
influence on the regression coefficients, in the sense that if the observation
is removed, the coefficients change substantially.

4. * The vector of fitted values is given by

Xb
X(X'X)"' Xy
Hy,

i

¥y

where
H= by} = IXXX,

called the hat matrix, projects y into the subspace spanned by the columns of the model matrix X.
Because H = H'H, the hat values b; are simply the diagonal entries of the hat matrix.
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° RR.engineer
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Index
Figure 6.2  Index plot of the hat values from Duncan’s occupational_—prestige
‘regression. The horizontal lines show twice and three times the
average hat value. Three observations were identified with the
mouse.
dfbeta and dfbetas

The most direct measure of influence, termed dfbet}a,»,-, assesses the
impact on the jth coefficient of deleting the ith observation:

dfbeta,-,- = bi(_,') - b;’,

where b, is the coefficient computed using all of the data and bj_, 1s
the same coefficient computed with observation ! omltted. The compu-
tation of the dfbeta; can be accomplished without having to refit the
model. ‘ . . fin

The dfbeta; are expressed in the metric (units of measurement) o the
coefficient b;. A standardized version, dfbetas;, divides dfbeta; by the
standard error of b;. ‘ . '

The standard dfbetas function in R takes a linear model as its argu-
ment and returns all of the dfbetas;;. The generic dfbetas funcﬁlﬁn in
car shadows the standard function and provides methods. for both linear
and generalized linear models. The car library also contains the function
dfbeta.

’ i isplay the first

Let us calculate dfbetas; for Duncan’s regression and display
few values:

> dfbs.duncan <- dfbetas(mod.duncan)

> dfbs.duncan(1:5,] # first 5 obs.

(Intercept) income education

1 -2.2534e-02 6.6621e-04 0.03594387

9 -2.5435e-02 5.0B77e-02 -0.00811827

3 -9.1867e-03 6.4837e-03 0.00661927

4 -4.7204e-05 -6.0177e-05 0.00013975

5 -6.5817e-02 1.7005e-02 0.08677706

6.1 UNUSUAL DATA
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Figure 6.3  dfbetas; values for the income and education coefficients in

Duncan’s occupational-prestige regression.

We could examine each column of the dfbetas matrix separately (e.g., via
an index plot), but because we are not really interested here in influence
on the regression intercept, and because there are just two slope coeffi-
cients, I instead plot influence on the income coefficient against influence
on the education coefficient (Figure 6.3):

> plot(dfbs.duncarn(,c(2,3)]) # for bi and b2

> identify(dfbs.duncan[,2], dfbs.duncan(,3], row.names(Duncan))
(1] 6 16 27

The negative relationship between the dfbetas;; values for the two pre-
dictors reflects the positive correlation of the predictors themselves. Two
pairs of values stand out: The observations minister and conductor
make the income coefficient smaller and the education coefficient larger.
(I also identified the occupation railroad engineer in the plot.)

Cook’s Distance

A practical problem with dfbeta; or dfbetas; is their large number:
These sets of diagnostic statistics contain # values for each of the &£+ 1
regression coefficients—that is, 7 x (k + 1) values in all. Several sum-
mary measures have been proposed, the most commonly used of which is
Cook’s D,, a scale-invariant measure of the distance between the regres-
sion coefficients with the ith observation absent and present.

Cook’s distance may be expressed as

I S/

T 2k+1) T 1=k
where e? is the squared residual for the ith observation, s> is the variance
of the residuals, and #; is (as above) the hat value for observation i. The
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Figure 6.4  Index plot of Cook’s distances for Duncan’s occupational-prestige

r_egression. The horizontal line is at 4/(# — k — 1). Two observa-
tions were identified with the mouse.

first factor may be thought of as a measure of outlyingness and the second
as a measure of leverage. The value 4/(n — k — 1) has been suggested as
a rough cuto.ff for noteworthy values of D;.

The generic function cookd in car has methods for linear-model and
generalized-linear-model objects. Applying this function to Duncan’s

regression once again draws attention to the occupations minister and
conductor (see Figure 6.4):

> plot(cookd(mod.duncan))
> abline(h=4/42, lty=2)

> identify(1:45, cookd(mod.duncan), row
? Jdemeit , row.names(Duncan))

'{ile “bubble plot” in Figure 6.5 combines the display of studentized
resi ual§, hat values, and Cook’s distances, with the areas of the circles
proportional to Cook’s D;*:

plot (hatvalues(mod.duncan), rstudent(mod.duncan), type=’n’)

cook <- sqrt(cookd(mod.duncan))

points(hatvalues(mod.duncan), rstudent(mod.duncan),
cex=10*cook/max (cook))

abline(h=c(-2, 0, 2), 1lty=2)

abline(v=c(2, 3)*3/45, 1lty=2)

identify(hatvalues{mod.duncan), rstudent(mod.duncan)
row.names (Duncan)) ’

[1] 6 9 16 27

+ VV V 4+ V VYV

Tk}e plot funf:tion is usgd to set up the coordinate space for the graph,
without plotting the points (via the argument type=’n’). Then points

5. In Chapter 8, I describe how to write a function for constructing graphs of this kind.

6.1 UNUSUAL DATA

rstudent(mod.duncan)

0.05 010 0.15 020 0.25

hatvalues{mod.duncan)

Figure 6.5 Plot of hat values, studentized residuals, and Cook’s distances
for Duncan’s occupational-prestige regression. The size of the cir-
cles is proportional to Cook’s D;. Several observations have been
identified with the mouse.

is employed to add circles to the graph, with radius proportional to the
square root of Cook’s D and, consequently, area proportional to Cook’s
D; this is accomplished (in R) via the cex (“character-expansion”) argu-
ment to points; the factor 10 scales the circles to a reasonable size and
was determined by trial and error. The abline function draws horizon-
tal and vertical lines on the graph. Finally, unusual points are labeled
interactively with identify.

Drawing Circles in S-PLUS

Vectorized use of the argument cex is not supported by S-PLUS. An alter-
native, which works in both S-PLUS and R, is to draw the circles in a for
loop:

> cook <- Sqrt(as.vectot(cookd(mod.duncan)))

> max.cook <- max{cook)

> hat <- hatvalues(mod.duncan)

> rstud <- rstudent(mod.duncan)

> for (i in 1:length(cook))

+ points (hat[i], rstud [i], cex=10*cook[i]/max.cook)
>

[The odd construction as.vector(cookd(mod.duncan)) is required by
S3 to strip away the names attribute of the vector of Cook’s distances,
which otherwise causes a problem for the cex argument to points.] See
Chapter 7 for more information on drawing graphs, and Chapter 8 for a
discussion of programming constructs such as for loops.
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Added-Variable Plots

A potential defect of single-observation deletion diagnostics is that they
can fail to identify influential pairs or subsets of observations, which
can mask each other’s presence. Added-variable plots (also called partial-
regression plots) reduce the higher-dimensional regression problem to a
series of two-dimensional plots and show leverage and influence of the
observations on each coefficient of the model.

The added-variable plot for the first predictor, x,, is formed by regress-
ing both the response variable y and the predictor x, on all of the other
predictors, x,, ... , %. The residuals from these regressions (say, €, &
and e, ) are then plotted against each other. It turns out that 'the
slope from the simple regression of ey, , on ey, , is the multiple
regression slope b;, that the residuals from this simple regression are the
multiple-regression residuals, ¢;, and that the standard exror of the simple
regression slope is (except for degrees of freedom) the multiple-regression
standard error for b,. A similar added-variable plot can be constructed
for each coefficient of the model, including the constant, and coefficients
for dummy regressors and interaction regressors.

The av.plots function in car works for both linear and generalized
linear models, presenting the user with a menu of plots®:

> av.plots(mod.duncan, labels=row.names(Duncan))

1:(Intercept)
2:income
3:education
Selection: 2

1: (Intercept)
2:income
3:education
Selection: 3

1: (Intercept)
2:income
3:education
Selection: O
>

I have selected the added-variable plots for the income and education
coefficients in Duncan’s regression {shown in Figure 6.6); entering 0 exits
from the menu. Notice how the occupations minister and conductor
act jointly to depress the income coefficient and inflate the education
coefficient; the occupation railroad engineer has high leverage on both
coefficients, but is more or less in line with the rest of the data.

6. Alrernartively, the argument ask=F causes all of the plots to be drawn on a single “page.”

6.2 NONNORMAL ERRORS
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Figure 6.6  Added-variable plots for the income and education coefficients

in Duncan’s occupational-prestige regression. Several points were
interactively identified with the mouse.

Sall (1990) has suggested a generalization of the added-variable plot,
termed a leverage plot, that constructs a single graph for a multiple-
degree-of-freedom term such as a set of dummy regressors. The plot
shows leverage and influence on the hypothesis thar all of the coefficients
in the term are 0. It should be understood that an observation can change
the individual coefficients in a term substantially without affecting the F
for the hypothesis that the texm is 0, and thus leverage plots are poten-
tially less informative than separate added-variable plots for each coeff-

cient. There is a leverage.plots function in car, which works only for
linear models.

NONNORMAL ERRORS

Least squares regression performs best when the errors are normally dis-
tributed. Substantially nonnormal errors can compromise the efficiency of
least squares (e.g., in the case of heavy-tailed errors) and can cast doubt
on the reasonableness of estimating the conditional mean of y given the
xs (e.g., when the errors are skewed). The distribution of the regression
residuals is the key to discovering the distribution of the errors, although
the relationship between the two is not altogether simple: Even if the
errors are normally and independently distributed with constant vari-
ance, the residuals have different variances and are dependent. Moreover,
because they are weighted averages of the data, the residuals tend to look

normal even when the errors are not, a phenomenon sometimes termed
“supranormality.”
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A quantile-comparison plot of studentized residuals against the ¢ distri-
bution, as described in Section 6.1.1, is useful in drawing our attention to
the tail behavior of the residuals, clearly revealing heavy-tailed or skewed
distributions. A nonparametric density estimate, however, does a better
job of conveying a general sense of the shape of the distribution of the
residuals.

In Chapter 5, I fit a Poisson regression to Ornstein’s data on interlock-
ing directorates among Canadian corporations, regressing the number of
interlocks maintained by each firm on the firm’s assets, nation of con-
trol, and sector of operation. Because number of interlocks is a count,
the Poisson model is a natural starting point, but the original source
employed a least squares regression similar to the following”:

> detach(Duncan)
data(Ornstein)
attach(Ornstein)
mod.ornstein <- lm(interlocks + 1 ~ assets + nation + sector)
Anova (mod.ornstein)

Anova Table (Type II tests)

>
>
>
>

Response: interlocks + 1
Sum Sq Df F value Pr(>F)

assets 16904 1 175.06 < 2e-16
nation 3449 3 11.91 2.Be-07
sector 3706 9 4.26 3.9e-05

Residuals 22595 234

Our interest here is to examine the residuals from this regression, and so
I have not printed a summary of the model (as I would do, of course,
were we really interested in the results of the analysis). I bave also added
1 to the number of interlocks because we will shortly consider power
transformations of the response variable and want to avoid values of 0;
in a linear model, adding 1 to the response simply increases the regression
constant by 1.

Quantile-comparison and density plots of the studentized residuals, in
Figure 6.7, are produced by the following S statements:

> qq.plot(mod.orastein, sim=T)
> plot(density(rstudent (mod.ornstein)), main=’rstudent )
>

The studentized residuals are positively skewed, a condition that often
can be corrected by transforming y down the ladder of powers and
roots. Trial and error here suggests the square-root transformation of
interlocks.

7. Ornstein (1976) employed both assets and the log of assets in the regression. No criticism is

implied here, by the way: As far as I know, in the 1970s sociologists did not use Poisson regression
models for count data.

6.2 NONNORMAL ERROR>
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Figure 6.7 Quantile-comparison plot and nonparametric density estimate
for the distribution of the studentized residuals from Ornstein’s
interlocking-directorate regression.

Reminder: Density Plots in S-PLUS

Recall that to make a density plot in S-PLUS, you have to supply the
argument type="1" to the plot function:

> plot(density(rstudent(mod.ornstein)), type=’1")
>

Box-Cox Transformation of y

The Box-Cox regression model (Box & Cox, 1964) is an alternative to
guided trial and error for transforming the response:

W= a+ Byxiy + -+ BeXi + 0o

where

for A # 0,
log, y for A=0.

(A)
Yi =

The normalizing power-transformation parameter A is estimated, along
with the regression coefficients and error variance, by the method of max-
imum likelihood.
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3 for this variable is the approximate score statistic for the transforma-
- tion. An added-variable plot for the constructed variable in the auxiliary
g - regression—alled a constructed-variable plot—shows leverage and influ-
g 7 3 = ence on the decision to transform y.
% o 5 . _ The box.cox.var function in car facilitates the computation of the
i‘; 2 ?;, = ' constructed variable. Thus, for Ornstein’s regression:
g 8
B =3 0 > mod.ornstein.cv <- update(mod.ornstein,
s s + . ~ . + box.cox.var(interlocks + 1))
. T l
2 1 0 1 2 03 04 05 > summary(mod.ornstein.cv)
ambda lambda
Estimate Std. Error t value Pr(>|tl)
Figure 6.8  Profile log-ikelihood for the transformation parameter A in the ;z‘s‘z:cep"’) _;':}{Zig; ;'gzztgg fzg_el <02§;_1{§
Box-Cox model applied to Ornstein’s interlocking-directorate : : : :

regression.”

box.cox.var(interlocks + 1) 6.94e-01 3.91e-02 17.73 < 2e-16

The boxcox function in Venables and Ripley’s (1999)_ MASS library'ﬁts
the Box-Cox model, producing a plot of the profile log-likelihood against
the transformation parameter A:

> av.plots(mod.ornstein.cv, ’box.cox.var(interlocks + 1)’)
>

> library(MASS)
> boxcox(mod.ornstein)
>

We are only interested in the ¢ test and added-variable plot for the
constructed variable, and we can request the latter directly from the
av.plots function, bypassing the menu; the constructed-variable plot
is shown in Figure 6.9. The t statistic for the constructed variable
demonstrates that there is very strong evidence of the need to trans-
form y (cf. the likelihood-ratio test, which may be read roughly off

The resulting plot is shown in the left panel of Figure 6.8. By default,
boxcox plots over the range —2 < A < 2, but we can focus more clqsely
on the value of A that maximizes the likelihood, as shown in the right
panel of Figure 6.8:

> boxcox(mod.ornstein, lambda=seq(.1, .5, by=.01))
>

Added-Variable Plot

. . 40 - s
Thus, A ~ 0.3, with the 95 percent confidence mtenfal for A running
from just under 0.2 to just over 0.4—quite a sharp estimate. g ¥
' g -
= 10
Constructed-Variable Plot i,
for the Box-Cox Transformation i
Atkinson (1985) suggests an approximate score test and diagnostic. plot 20
for the Box-Cox transformation of y, based on the constructed variable A 1 1 [
7/

B
40 20 0 20 40 60

()

. L~ \/n
where 7 is the geometric mean of y; that is, y = (Yo X Yo X oo X ¥a) "
The constructed variable is added to the regression, and the ¢ statistic

box.coxvar{interocks + 1) jothers

Figure 6.9  Constructed-variable plot for the Box-Cox transformation of y in
Ornstein’s interlocking-directorate regression.




206

DIAGNOSING PROBLEMS IN LINEAR AND GENERALIZED LINEAR MODELS

6.3

Figure 6.8%). The constructed-variable plot suggests that this evidence is

spread through the data, rather than being dependent on a small fraction
of the observations.

NONCONSTANT ERROR VARIANCE

One of the assumptions of the standard linear model is that the condi-
tional variance of y (the error variance) is everywhere the same. Because
the regression surface is generally high dimensional, it is not possible to
look directly at the distribution of the residuals around the fitted surface.
A common pattern of nonconstant error variance, however, is for the
spread of y to increase with its level, a pattern that can be detected by
plotting residuals against firted values—projecting the higher-dimensional
point cloud onto a two-dimensional surface. It is important to realize that
plots of this kind are not infallible: Incorrectly modeling the dependence
of the mean of y on the xs can also produce nonconstant spread in a plot
of residuals against fitted values (see, e.g., Cook, 1998, Section 1.2.1).

Because the residuals do not have the same variance, even when the
error variance is constant, I prefer to plot studentized residuals against
fitted values. For example, for Ornstein’s interlocking-directorate regres-
sion (Figure 6.10):

> plot(fitted.values(mod.ornstein), rstudent (mod.ornstein))
> abline(h=0, lty=2) # zero line
>

Although the skewness in the fitted values makes the plot difficult to
examine, it appears that the residual spread increases with the level of
the fitted values. The diagonal lining up of the points on the lower left
reflects the fact that the number of interlocks cannot be less than 0, an
observation that suggests that a linear model is not altogether appropri-
ate for these data. Recall the Poisson GLM fit to Ornstein’s data in the
preceding chapter. .

An alternative diagnostic adapts Tukey’s (1977) spread-level plot, plot-
ting the log of the absolute studentized residuals against the log of the
fitted values. This approach also produces a suggested spread-stabilizing
power transformation of y. The spread.level.plot function in car has

8. The likelihood-ratio chi-square statistic, on 1 degree of freedom, is twice the difference in the
log-likelihood at A = A (the maximum-likelihood estimate) and at A = 1 {corresponding to no trans-
formation). Here, the test statistic is approximately 2{1250 — 1169) = 162, which is overwhelmingly
staistically significant. The test statistic can be computed more accurately by assigning the (invisible)
result of the boxcox function to a variable and examining it. (By default, boxcox plots rather than

prints its result when a graphics window is open.) In the current example, the more precise value of
the LR test statistic is 2(1243.2 — 1169.1) = 148.2.

Sy e e s
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rstudent(mod.omstein)

0 20 40 60 80 10O

fitted.values(mod.omstein)

Figure 6.10  Plot of studentized residuals against fitted values for Ornstein’s

interlocking-directorate regression.

a method for linear models:

> spread.level.plot(mod.ornstein)

Suggested power transformation: 0.32222

Warning message:

Start = 2 added to fitted values to avoid O or negative values.
in: spread.level.plot.lm(mod.ornstein)

Because there are some negative fitred values, the function adds a start of
2 before taking logs. The spread-level plot, shown in Figure 6.11, has an
obvious tilt to it. The suggested transformation, approximately the 1/3
power, is similar to the normalizing transformation estimated previously
by the Box-Cox method.

Spread-Level Piot for mod.ornstein

5.000

0.500

Absolute Studentized Residuals
0.050

0.005
1

T T T T T T T
1 2 5 10 20 50 100

Fitted Values + 2

Figure 6.11  Spread-level plot of studentized residuals against fitted values for

Ornstein’s interlocking-directorate regression.




208 DIAGNOSING PROBLEMS IN LINEAR AND GENERALIZED LINEAR MODELS

Score Tests for Nonconstant Error Variance

Breusch and Pagan (1979) and Cook and Weisberg (1983) suggest a score
test for nonconstant error variance in a linear model, based on the rela-

tionship
Vie) = gl¥o + Nz + + YpZi)-

Here, the z; are predictors of the error variance, and the function g(-) of
the linear predictor v + 712 + - + YpZsp need not be known. In typical
applications, the zs are the same as the predictors in the linear model
(i.e., the xs), or there is just one z, the fitted values § from the linear
model—in which case we test for a dependence of spread on level.

The ncv. test function in car implements this score test. Let us apply
nev. test to test for the dependence of spread on level (the default) in
Ornstein’s regression, and for a more general dependence of spread on the
predictors in the regression (given in a one-sided formula as the optional
second argument to ncv. test):

> ncv.test(mod.ornstein)

Non-constant Variance Score Test

Variance formula: ~fitted.values

Chisquare = 46.985 Df =1 p = 7.1518e-12

> ncv.test(mod.ornstein, ~ assets * nation + sector)
Non-constant Variance Score Test

Variance formula: ~ assets + nation + sector
Chisquare = 74.735 Df = 13 p = 1.0663e-10

Both tests are highly statistically significant, and the difference between
the two suggests that the relationship of spread to level does not entirely
account for the pattern of nonconstant error variance in these data. This
conclusion is slightly misleading, however: In addition to nonconstant
error variance, the partial relationship berween interlocks and assets
is nonlinear. Transforming assets to straighten the relationship simpli-
fies the pattern of nonconstant error variance to a more straightforward
dependence of spread on level. I invite the reader to examine the data
more closely. The more general lesson here is that the problems of non-
constant spread and nonlinearity can be related.

Other Approaches to Nonconstant
Error Variance

I have suggested transformation as a strategy for stabilizing error vari-
ance, but other approaches are available. In particular, if the pattern
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of error variance is known up to a constant of proportionality, then
weighted least squares (WLS) regression may be employed in preference
to qrdinary least squares (OLS). WLS fits the regression model by mini-
mizing the weighted sum of squared residuals, Y w,e?, where the weight
w; attached to observation i is inversely proportional to the variance of
the error &;.

. In S, WLS is performed by specifying the weights argument to 1m, giv-
ing the weight w; for each observation. If, for example, we had reasc’nz: to
believe that the error variance in Ornstein’s regression were proportional
to assets, V(g;) = o* x assets;, then we could fit the model weighting
each observation inversely in proportion to this variable:

> lm(interlocks ~ assets + nation + sector, weights=1/assets)

Suil another approach, which does not require that we know the
form vof dependence of V(g;) on the xs, is to correct the estimated
covariance matrix of the regression coefficients for nonconstant spread.
“Hgteroscedasticity-consistent standard errors” were introduced by
White (1980).° Subsequent work has suggested small modifications to
White’s procedure (see Long and Ervin, 2000).

White’s approach is implemented in the hcem (“heteroscedasticiry-
consistent covariance matrix”) function in car. The specific form of
the correction employed is given by the type argument, which defaults
to 'hc3’, the method recommended by Long and Ervin; White’s orig-
inal correction corresponds to ’hc0’. These corrections may also be

employed in the linear.hypothesis and Anova functions. For example,
for Ornstein’s regression:

> Anova(mod.ornstein, white.adjust=’hc3’)
Anova Table (Type II tests)

Response: interlocks + 1
Sum Sq Df F value Pr(>F)

assets 14387 1 149.0 < 2e-16
nation 4542 3 15.7 2.5e-09
sector 5211 9 6.0 1.5e-07

Residuals 22595 234

Compare these F tests with the standard tests reported previously in Sec-
tion 6.2.

9. - White proposed estimating the covariance matrix of the regression coefficients b by
7(b) = (X'X)'XEX(X'X)",

where S = diag{e?}, in place of the usual V(b) = s*(X'X)~.
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m NONLINEARITY

The standard linear model assumes that the expectation of the error
is everywhere 0; nonlinearity, construed broadly, covers any violation
of this assumption—that is, any systematic departure from the func-
tional form specified in the model. Because the regression surface is gen-
erally high dimensional, one cannot look directly for departures from
the model (but see the methods of nonparametric regression described
in the Web appendix to the book). Instead, I focus here on nonlinearity in
the more conventional sense of a nonlinear partial relationship between
the response and a particular predictor.

.

Component + Residual and CERES Plots

Component + residual plots (also called partial-residual plots) are a sim-
ple graphical device for detecting nonlinearity in multiple regression. The
partial residuals for the predictor x; are formed by adding the fitted linear
component in this predictor to the least squares residuals:

eif =e;+ b’-x,'".

The partial residuals ¢; are then plotted against x;.)° Interpretation of
component + residual plots is often enhanced by adding a least squares
line to the plot (representing the regression surface viewed edge on in the
direction of x;) and a nonparametric-regression smooth.

The cr.plots function in car constructs component + residual plots
for linear and generalized linear models, by default via a text menu pre-
sented to the user, much in the manner of the av.plots function. Con-
sider, by way of example, the Canadian occupational-prestige regression
(discussed in Chapter 4 and refit here):

detach(Ornstein)

data(Prestige)

attach(Prestige)

mod.prestige <- lm(prestige ~ income + education + women)
cr.plots(mod.prestige)

Vv V V VvV V

[

:Change span = 0.5
2:income

10. This sounds similar to the added-variable plor for x,, but represents a different two-dimensional
projection of the (k + 1)-dimensional point cloud of the data. Added-variable plots are usually more

suitable for detecting leverage and influence on the regression coefficients than they are for revealing
nonlinearity. See Cook (1996).

e TR e
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3:education
4:women
Selection: 2

i:Change span = 0.5
2:income
3:education

4 :women

Selection: 3

i:Change span = 0.5
2:income
3:education

4 :women

Selection: 4

i:Change span = 0.5
2:income
3:education

4 :women

Selection: 0

>

The first selection (Change span) may be used to adjust the span of the
Jocal-regression smoother, which initially is set to 0.5. The plots that are
produced appear in Figure 6.12. All three component + residual plots
show some nonlinearity: prestige appears to increase with income, but
at a declining rate; prestige also seems to increase with education, but
here the relationship is nearly linear, and the departure from linearity is
not simple—with the direction of curvature changing. Finally, the par-
tial relationship between prestige and percentage women is weak but
apparently nonmonotone, with higher levels of prestige associated with
percentages near 0 and 100, and lower levels in the middle.

Because the relationship of prestige to income is monotone and sim-
ple, a power transformation may serve to straighten it; in contrast, we
can try to model the relationship of prestige to women as a quadratic,
via poly (see below). Using the Ask function facilitates trial-and-error
selection of a power transformation for income:

> Ask(p, function(p) cr.plots(im(prestige ~ box.cox(income, p)

+ + education + poly(women, 2)), ’box.cox(income, p)’))
Enter p : 1

Enter p : .5

Enter p : O

Enter p : -.5

Enter p :

>

Specifying box.cox (income, p)’ as the second argument to cr.plots
produces only one component + residual plot each time the model is
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l
(
l
I )
nt+Residual Plot . log(income, 10)  31.094 4.316 7.20 1.3e-10
Component+Residual Plot compene | education 3.770  0.347 10.85 < 2e-16
5 2 ) | poly(women, 2)1  15.088 9.336  1.62  0.109
-E: :ﬁ% 20 | poly(women, 2)2  15.871 6.970 2.28 0.025
=
g % 10 ! Residual standard error: 6.95 on 97 degrees of freedom
é e‘E’ 0 I Multiple R-Squared: 0.843, Adjusted R-squared: 0.837
i S 10 l F-statistic: 131 on 4 and 97 degrees of freedom,
g 8 | p-value: 0
€ g2 . .
S o The term poly(women, 2) in the linear model fits orthogonal polyno-
mial regressors of degree 1 (i.e., a linear term) and 2 (i.e., a quadratic
oducation I term uncorrelated with the linear term). Except for the orthogonality of
the linear and quadratic terms, this is equivalent to specifying women +
I(women"2) in the model formula. [It is necessary to use the identity func-
tion 1() to “protect” the expression women"2 because exponentiation has
= special meaning within a model formula, as explained in Section 4.7.]
% The two specifications are equivalent in the sense that when the linear
S and quadratic components are combined, they trace out the same partial-
2 regression curve. Therefore, both forms of the model have identical fits to
L4 the data. Orthogonal polynomials have computational advantages, how-
g ever, and they allow us to examine the ¢ statistics for the coefficients to
g see the statistical significance of each term.
3
wormen Using Ask in S-PLUS
- - Using the Ask function to refit the model repeatedly, displaying a
Figure 6.12  Component + residual plots for the Canadian occupational- component + residual plot for each fit, takes advantage of the “scoping”
prestige regression. rules in ll)il (the rules according) to r:vhidcl';fthe interpreter resolves referetr;ces
. - to variables in S expressions). The different scoping rules in S3 and S4
refit, bypassing the cr.plot}s menu. The resultllng_ ptl)oti_ (nOt' Sg;::iﬁz S‘tlk%e make it more difﬁcﬁrlt to use Ask in this manpnef We can, however,
gest that a log transformation c.io_es a reasonab e job o lstralg g proceed as follows:
regression. Fitting and summarizing the resulting model: A
i - ige ~ log(income, 10) + education > Ask(p, function(p) {
> mod.prestige.2 <~ lm(prestige g + assign(’income.p’, box.cox(income, p), frame=1)
+  + poly(vomen, 2)) + cr.plots(lm(prestige ~, income.p
+ + education + poly(women,2)), ’income.p’)
> summary(mod.prestige.2) . 1
Enter p : 1
Call: ]
1m(formula = prestige ~ log(income, 10) + education .
. + poly(women, 2)) A general consideration of scoping in S is well beyond the level of this
book; see, for example, Venables and Ripley (2000, Section 3.4) and a
Residuals: brief discussion in the Web appendix to the text. A cautionary note is
Min 1Q Median 3Q Max in order, however: Using the assign function with frame =1 assigns a
-14.82 -5.54 0.63 4.04 18.56 value to the global variable income.p; if a global variable by this name
¥ already exists, its value will be overwritten.
Coefficients: :
Estimate Std. Error t value Pr(>itl)
(Intercept) -110.600 13.982 -7.91 4.2e-12
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A potential problem with component + residual plots is that they
can be fooled by strong nonlinear relationships among the predictors, a
phenomenon called “leakage.” One way to deal with this problem is to
fit a polynomial (typically, quadratic) regression in the focal predictor x;
rather than only a linear term. The cr.plots function accommodates this
procedure via its order argument; the default, order = 1, corresponds to
a linear fit. A related approach, introduced by Cook (1993}, is to use a
nonparametric-regression smoother to adjust for nonlinear relationships
among the predictors, a method that he terms CERES (for combining
conditional expectations and residuals). The ceres.plots funcrion
in car implements Cook’s approach. For the Canadian occupational-
prestige regression, higher-order component -+ residual plots and CERES

plots are nearly identical to the standard component + residual plots in
Figure 6.12.

Box-Tidwell Transformations of the Predictors

As in transforming the response, transformations of the predictors in
regression can be estimated by maximum-likelihood. This possibility was
suggested by Box and Tidwell (1962), who introduced the model

yi=a+ Bix] + -+ Bx + &,

where the usual assumptions are made about the errors: £, ~ NID(0, o).
Of course, we do not necessarily want to transform all of the predictors,
and in some contexts—such as when dummy regressors are present in
the model—it does not even make sense to do so.

The Box-Tidwell regression model is a nonlinear model, which, in prin-
ciple, can be fit by nonlinear least squares.!’ Box and Tidwell describe
a more efficient computational approach, which is programmed in the
box.tidwell function in car. Let us apply this function to the Cana-
dian occupational-prestige regression, estimating power-transformation
parameters for income and education,'? but specifying a quadratic par-
tial regression for women:

> box.tidwell(prestige ~ income + education,
+ other.x= ~poly(women, 2))
income education
Initial Power -0.91030 2.24354
Score Statistic -5.30129  2.40556

11. Nonlinear least squares is taken up in the Web appendix to the book.

12. Recall, however, that the curvature of the relationship of prestige to education changes direc-
tion, and so a power transformation is not altogether appropriate here.
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p-value 0.00000 0.01615
MLE of Power -0.03777 2.19283
iteratioms = 12

The one-sided formula for the argument other.x indicates the terms in
the model that are 7ot to be transformed—here the quadratic in women.
The score tests for the power transformations of income and education
suggest that both predictors need to be transformed; the maximum-
likelihood estimates of the transformation parameters are ¥; = —0.04
for income (effectively, the log transformation of income), and §, = 2.2
for education (effectively, the square of education).

Constructed-Variable Plots
for Box-Tidwell Transformations

Constructed variables for the Box-Tidwell transformations of the predic-
tors are given by x;log, x;. These can be easily computed and added to
the regression model to produce approximate score tests and constructed-
variable plots. Indeed, these constructed variables are the basis for Box
and Tidwell’s computational approach to fitting the model and yield the
score statistics printed by the box.tidwell function.

To obtain constructed-variable plots (Figure 6.13) for income and
education in the Canadian occupational-prestige regression:

> mod.prestige.cv <- lm(prestige ~ income + education
+ + poly(women, 2) + I(incomexlog(income))

+ + I(education*log(education)))

> summary (mod.prestige.cv)

Coefficients:
Estimate Std. Error t value Pr(>itl)

I(income * log(income)) -2.430e-03 4.584e-04 -5.301 7.46e-07
I(education * log(educatiomn)) 5.298e+00 2.202e+00 2.406 0.0181

> av.plots(mod.prestige.cv)

: (Intercept)

:income

education

:poly(women, 2)1

:poly(women, 2)2

:I(income * log(income))
:I(education * log(education))

~N O W
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Added-Variable Plot

Added-Variable Plot

prestige |others
prastige | others

05 0.0 05

education ® log(education)) | others

Yincome * log(income)) | others

Constructed-variable plots for the Box-Tidwell transformation
of incone and education in the Canadian occupational-prestige
regression.

Figure 6.13

Selection: 6

Selection: 7

Selection: 0

>
Note, once again, the use of the identity func?ion OB “protect” tf;e
multiplication operator *, which would otherw1se.be u:terg?reted spe”cxal y
within a model formula, inappropriately generating “main effects” and
an “interaction” (see Section 4.7). .

The constructed-variable plot for income reveals.some high-leverage
points in determining the transformation of this_ pred.lctor, but even when
these points are removed, there is still substantial evidence for the trans-
formation in the rest of the data.

COLLINEARITY AND VARIABLE SELECTION

Variance-Inflation Factors

When there are strong linear relationships among the Predlcto_rs ina
regression analysis, the precision of the estimarted regression coefficients

iy KRR
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declines. The estimared sampling variance of the jth regression coefficient
may be written as

2

PN 5° 1

V)= e o

where s? is the estimated error variance, s? is the sample variance of x5
and 1/(1 — R?), called the variance-inflation factor (VIE,) for b,, is a func-
tion of the multiple correlation R, from the regression of x; on the other
xs. The variance-inflation factor is the simplest and most direct measure
of the harm produced by collinearity: The square root of the VIF indi-
cates how much the confidence interval for B; is expanded relative to
similar, uncorrelated data. If we wish to explicate the collinear relation-
ships among the predictors, then we can examine the coefficients from
the regression of each predictor with a large VIF on the other predictors.

The variance-inflation factor is not applicable, however, to sets of
related regressors for multiple-degree-of-freedom effects, such as con-
trasts constructed to represent a factor or polynomial regressors. Fox and
Monette (1992) generalize the notion of variance inflation by considering
the relative size of the joint confidence region for the coefficients associ-
ated with a related set of regressors.'> The resulting measure is called a
generalized variance-inflation factor (or GVIF). If there are p regressors
in a term, then GVIF"/% s a one-dimensional expression of the decrease
in precision of estimation due to collinearity—analogous to taking the
square root of the usual variance-inflation factor. When p = 1, the GVIF
reduces to the usual VIE.

The vif function in car calculates variance-inflation factors for the
terms in a linear model. When each term has 1 degree of freedom, the
usual VIF is returned; otherwise, the GVIF is calculated.

As a first example, consider the data on the 1980 U.S. Census under-

count in the data frame Ericksen (from work by Ericksen, Kadane, &
Tukey, 1989):

> detach(Prestige)
> data(Ericksen)
> Ericksen

13. * Let Ry, represent the correlation matrix among the regressors in the set in question, R,, the
correlarion matrix among the other regressors in the model, and R the correlation matrix among all
of the regressors in the model. Fox and Monette show that the squared area, volume, or hypervolume
of the joint confidence region for the coefficients in either set is expanded by the generalized variance-

inflation factor
detR,,detR,,
detR
relative to similar data in which the two sets of regressors are uncorrelated with each other. This

measure is independent of the bases selected to span the subspaces of the two sets of regressors and
s0, for example, is independent of the contrast-coding scheme employed for a factor.

GVIF =
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minority crime poverty language highschool

Alabama 26.1 49 18.9 0.2 43.5
Alaska 5.7 62 10.7 1.7 17.5
Arizona 18.9 81 13.2 3.2 27.6
San.Francisco 24.8 107 13.7 9.2 26.0
Washington.DC 72.6 102 18.6 1.1 32.9
housing city conventional undercount
Alabama 7.6 state 0 -0.04
Alaska 23.6 state 100 3.35
Arizona 8.1 state - 18 2.48
San.Francisco 20.3 city 0 5.18
Washington.DC 21.0 city 0 5.93

These variables describe 66 areas of the United States, inclgding 16
major cities, the 38 states without major cities, and the remamde;rs of
the 12 states that contain the 16 major cities. The following variables
are included:

® minority: percentage of residents who are black or Hispanic.
crime: serious crimes per 1000 residents.
poverty: percentage of residents who are poor.

language: percentage having difficulty speaking or writing English.

highschool: percentage of those 25 years of age or older who have
not finished high school.

® housing: percentage of dwellings in small, multiunit buildings.
® city: a factor with levels state and city.

B conventional: percentage of households counted by personal enumer-
ation (rather than by mail-back questionnaire with follow-ups).

® undercount: the estimated percentage undercount (with negative num-
bers indicating an estimated overcount).

Let us regress the Census undercount on the other variables:

> mod.census <~ lm(undercount ~ ., data=Ericksen)
> summary(mod.census)

Call:
Im(formula = undercount ~ ., data = Ericksen)
Residuals:

Min 1Q Median 3Q Max

-2.8356 ~0.8033 ~0.0553 0.7050 4.2467

R
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Coefficients:
Estimate Std. Error t value Pr(>lt|)

(Intercept) =-0.61141  1.72084 -0.36 0.72368
minority 0.07983  0.02261  3.53 0.00083
crime 0.03012  0.01300  2.32 0.02412
poverty -0.17837  0.08492 =-2.10 0.04012
language 0.21512  0.09221  2.33 0.02320
highschool  0.06129  0.04477  1.37 0.17642
housing -0.03496  0.02463 ~-1.42 0.16126
citystate  -1.15998  0.77064 -1.51 0.13779
conventional 0.03699  0.00925  4.00 0.00019

Residual standard error: 1.43 on 57 degrees of freedom

Multiple R-Squared: 0.708, Adjusted R-squared: 0.667

F-statistic: 17.2 on 8 and 57 degrees of freedom,
p-value: 1.04e-012

Note the compact model formula: When we include the data argument
to 1m, we may use a dot (-) on the right-hand side of the model formula
to represent all the variables in the data frame with the exception of the
response (here undercount).

Checking for collinearity, we see that three coefficients (for minority,
poverty, and highschool) have variance-inflation factors exceeding 4,
indicating that confidence intervals for these coefficients are more than
twice as wide as they would be for uncorrelated predictors:

> vif(mod.census)

minority crime poverty language highschool
5.0091 3.3436 4.6252 1.6356 4.6192
housing city conventional
1.8717 3.5378 1.6913

To illustrate the computation of generalized variance-inflation factors,
I return to Ornstein’s interlocking-directorate regression, where it turns
out that collinearity is relatively slight:

> vif (mod.ornstein)
GVIF Df GVIF~(1/2Df)

assets 2.6748 1 1.6355
nation 1.4347 3 1.0620
sector 3.6538 9 1.0746

Other, more complex approaches to collinearity include principal-
components analysis of the predictors or standardized predictors and
singular-value decomposition of the model matrix or the mean-centered
mode] matrix. These, too, are simple to implement in S. See the princomp
and prcomp functions (in the mva library in R) and the svd and eigen
functions (discussed in Chapter 8).
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Variable Selection

Collinearity is a problem with the dara, not (necessarily) with the regres-
sion model. That is, it is perfectly possible to have a well-specified regres-
sion model for which the data do not contain sufficient information to
produce informative coefficient estimates. For this reason, there can be no
general solution to the problem of collinearity, and methods that purport
to provide a general solution do so at the expense of implicitly chang-
ing the questions asked of the data or imposing, often surreptitiously,
additional constraints on the model.

The situation is somewhat different, however, when the goal of the
regression analysis is to produce a prediction equation, rather than to
understand the manner in which the predictors influence the response. As
long as the x values for new observations to be predicted are within the
configuration of x values on which the prediction equation was devel-
oped, we can hope for success.

Perhaps the most common approach in this setting is variable selec-
tion, where we seek to reduce the predictors to an optimal subset. Vari-
able selection can also be useful in the absence of collinearity, although
selection of noncollinear predictors is relatively straightforward. Finally,
by way of preamble, in performing variable selection we should seek to
avoid capitalizing on chance—an objective that can be achieved by some
form of cross-validation.™

There are two general (and many specific) approaches to variable selec-
tion: Stepwise methods seek good subsets of predictors by adding or sub-
tracting terms one at a time; optimal subset methods, in contrast, locate
the subset of predictors of a given size that maximizes some measure of
fit to the data, perhaps even by enumerating all the subsets of predictors.

Several functions in S may be employed for variable selection. Let us
look at step and regsubsets; in R, step is in the base library and
regsubsets in the leaps library.

Variable-Selection Functions in S-PLUS

In S-PLUS, the standard step function is somewhat different from the one
described here, which instead corresponds more closely to the stepAIC
function in the MASS library. As well, there is no regsubsets function, but
the leaps function performs the same task, albeit with different syntax.
See help(step) and help(leaps) for details.

14. In cross-validation, the daca are divided into two or more parts; a statistical model fit to part of
the dara is then tested on the remainder. See, for example, Fox (1997, Chaprer 16).

A
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The step function, as the name implies, takes a stepwise approach to
variable selection and can perform both forward and backward selec-
tion (i.e., adding terms to, and eliminating terms from, the model). An
advantage of step is that it is applicable to a broad range of models
(e.g., many GLMs) and that it respects multiple-degree-of-freedom terms
and relarions of marginality among terms: step will not, for example
remove one of a set of contrasts for a factor, nor will it remove a mair;
effect that is marginal to an interaction that is rerained in the model. A
disadvantage of all stepwise methods is that they may fail to find optimal
subsets of predictors. Researchers using these methods are also prone to
overinterpret the results: There are often many subsets of predictors of a
given size that are nearly equally good. This, of course, is not the fault
of the step function. ’

»By default, step attempts to maximize the AIC (Akiake information
criterion, see Section 5.2) by both adding and subtracting terms. Applying
step to the model that I fit to the Census undercount data produces the
following result:

> census.step <- step(mod.census)
Start: AIC= 55.21

undercount ~ minority + crime + poverty + language + highschool +
housing + city + conventional

Df Sum of Sq RSS AIC
<none> 116.0 B5.2
- highschool 1 3.8 119.8 55.3
- housing 1 4.1 120.1 B55.5
- city 1 4.6 120.6 55.8
- poverty 1 9.0 1256.0 58.1
- crime 1 10.9 126.9 59.2
- language 1 11.1 127.1 58.2
- minority 1 25.4 141.4 66.3
- conventional 1 32.5 148.5 69.5

Starting with the full model, step has discovered that the AIC goes
up when any one of the predictors is eliminated, and, consequently,
it immediately terminates, returning a linear-model object identical to thc;
original model:

> summary(census.step)

Call:
Im(formula = undercount ~ minority + crime + poverty + language +
highschool + housing + city + conventional, data = Ericksen)

The AIC applies a relatively light penalty for lack of parsimony, adding
twice the number of parameters to the deviance for the model. The alter-
native BIC (Bayes information criterion) applies a heavier penalty, adding
log,n times the number of parameters to the deviance. The step function



222

DIAGNOSING PROBLEMS IN LINEAR AND GENERALIZED LINEAR MODELS

accommodates the BIC through the argument k, which specifies the mul-
tiple of the number of parameters to employ as a penalty. Here, n = 66,

and so:

> census.step.bic <- step(mod.census, k=log(66))
Start: AIC= 74.92

undercount ~ minority + crime + poverty + language + highschool +
housing + city + conventional

Df Sum of Sq RSS AIC

~ highschool 1 3.8 119.8 72.9
- housing 1 4.1 120.1 73.0
- city 1 4.6 120.6 73.3
<none> 116.0 74.9
-~ poverty 1 9.0 1256.0 75.6
- crime 1 10.9 126.9 76.7
~ language 1 11.1 127.1 76.7
- minority 1 25.4 141.4 83.8
- conventional 1 32.5 148.5 87.0

Step: AIC= 72.86

undercount ~ minority + crime + poverty + language + housing +
city + conventional

Df Sum of Sq RSS AIC

- housing 2.3 122.1 69.9
- city 1 4.2 124.0 71.0
- poverty 1 5.2 1256.0 71.5
- crime 1 7.4 127.2 T72.6
<none> 119.8 72.9
- language 1 8.1 127.9 73.0
- minority 1 30.8 150.6 83.8
- conventional 1 31.0 160.8 83.9

Step: AIC= 66.33
undercount ~ minority + crime + language + conventional

Df Sum of Sq RSS AIC
<none> 131.3 66.3

- language 1 12,5 143.8 68.2
- crime 1 14.7 146.0 69.1
- conventional 1 26.6 157.8 74.3
~ minority 1 59.8 191.1 86.9

Using the BIC (stili labeled AIC in the output), step eventually settles

on a subset of four predictors: language, crime, conventional, and
minority.
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We can start step in a forward direction by beginning with a model
including only the regression constant and supplying candidate predictors
via the scope argument:

> census.step.forward <- step(lm(undercount ~ 1, data=Ericksen),

+ scope= ~ minority + crime + poverty -+ language
+ + highschool + housing + city + conventional,
+ k=log(66))

Start: AIC= 122.58
undercount ~ 1

Df Sum of Sq RSS AIC
+ minority 1 196 201 82
+ city 1 178 219 88
+ crime 1 175 221 88
+ language 1 111 286 105
+ poverty 1 64 333 115
+ housing 1 41 356 120
<none> 397 123
+ highschool 1 8 389 125
+ comventional 1 0.041 397 127
Step: AIC= 81.87
undercount ~ minority

Df Sum of Sq RSS AIC
+ highschool 1 30 171 75
+ language 1 30 171 76
+ crime 1 29 172 76
+ conventional 1 27 174 77
+ city 1 17 184 80
<none> 201 82
+ poverty 1 12 189 82
+ housing 1 2 199 85
~ minority 1 196 397 123

Step: AIC= 66.33

undercount ~ minority + conventionmal + crime + language

Df Sum of Sq RSS AIC
<none> 131.3 66.3
+ poverty 1 6.5 124.8 67.2
- language 1 12.5 143.8 68.2
- crime 1 14.7 146.0 69.1
+ housing 1 2.2 129.1 69.4
+ city 1 1.9 129.3 69.5
+ highschool 1 0.4 130.8 70.3
- conventional 1 26.6 157.8 74.3
- minority 1 59.8 181.1 86.9
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In this case, we arrive at the same subset of predictors by both
approaches, but starting with the full model is generally more reliable.

Using an efficient computational method, the regsubsets function in
the leaps library finds the optimal subset of predictors of each size. By
default, the function returns only optimal subsets and only computes
subsets up to size 8; these defaults can be changed using the nbest and
nvmax arguments, respectively.

The leaps library includes plot and summary methods for objects
returned by regsubsets, but I prefer the subsets function in car. By
default, subsets plots the BIC for each model against the number of

predictors, automatically generating a code for the predictors in the
model:

> library(leaps)

> census.subsets <- regsubsets(undercount ~ ., nbest=10,
+ data=Ericksen)

> subsets(census.subsets)

>

Alternatively, we could plot the R? for each model, the adjusted R?, the
residual sum of squares, or Mallows’s C, statistic. The BIC plot appears
in the left-hand panel of Figure 6.14. The plot.subsets function posi-
tions the legend interactively, with a left-button mouse click indicating
the upper-left corner of the legend. This graph clearly conveys the large
number of models that are roughly equally effective, but it is impossible
to read the individual models. In the right-hand panel, I focus on subsets
of three to five predictors, which have the lowest BICs:

> subsets(census.subsets, min.size=3, max.size=5, legend=F)
>
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Figure 6.14  Plots of BIC against subset size for up to 10 best subsets of

each size. The initial model is for the regression of the Census
undercount on 8 predictors.
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I could also restrict the verrical axis of the plot, by specifying the ylim
argument to subsets.

For this example, the model with the smallest BIC overall (including
the predictors minority, crime, language, and conventional) is the
same as the one identified by the stepwise approach.

DIAGNOSTICS FOR GENERALIZED m
LINEAR MODELS

Most of the diagnostics of the preceding sections extend relatively
straightforwardly to generalized linear models. These extensions typically
take advantage of the computation of maximum-likelihood estimates for
generalized linear models by iterated weighted least squares. The final
weighted least squares fit linearizes the model and provides a quadratic
approximation to the log-likelihood. Approximate diagnostics are then
either based directly on the weighted least squares solution or derived
from statistics easily calculated from this solution. Seminal work on the
extension of linear least squares diagnostics to generalized linear models
was done by Pregibon (1981), Landwehr, Pregibon, and Shoemaker
(1984), Wang (1985, 1987), and Williams (1987). ‘

The following functions in car have methods for generalized linear
models: rstudent, hatvalues, cookd, dfbeta, dfbetas, outlier.test,
av.plots, cr.plots, and ceres.plots. I will illustrate the use of these
functions selectively, rather than exhaustively repeating all the topics cov-
ered for linear models in the previous sections of the chapter.

Outlier, Leverage, and Influence Diagnostics  6.6.1

Hat Values

Hat values for a generalized linear model can be taken directly from the
final iteration of the IWLS procedure for fitting the model, and have the
usual interpretation—except that, unlike in a linear model, the hat values
in a generalized linear model depend on y as well as on the configuration
of the xs.

Residuals

Several kinds of residuals can be defined for generalized linear models:

B Response residuals are simply the differences berween the observed
response and its estimated expected value: y; — 4.
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This is essentially Williams’s definition, except that 1 divide by the esti-
mated dispersion ¢ to scale D; asan F statistic rather than as a chi-square
statistic.

Approximate values of dfbeta; and dfbetas; may be obtained directly
from the final iteration of the IWLS procedure.

I am aware of two extensions of added-variable plots to generalized
linear models: Suppose that the focal regressor is x;. Wang (1985) pro-
ceeds by refitting the model with x; removed, extracting the working
residuals from this fit. Then, x; is regressed on the other xs by WLS, using
the weights from the last IWLS step and obtaining residuals. Finally, the
two sets of residuals are plotred against each other. The Arc software
developed by Cook and Weisberg (1999) employs a similar procedure,
except that weights are not used in the least squares regression of x; on
the other xs. The av.plots function in the car library implements both
approaches, with Wang’s procedure as the default.

To illustrate some of these results, recall from Chapter 5 the binary
Jogistic regression of labor-force participation on husband’s income and
presence of children for young married Canadian women:

> data(Womenlf)

> attach(Womenlf)

> mod.working <- glm(partic != »not .work’ ~ hincome + children,

+ family=binomial)

> summary (mod.working)

Call:

glm(formula = partic != ’not.work’ ~ hincome + children,

family = binomial)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.677 -0.865 =-0.777 0.929  1.997
Coefficients:
Estimate Std. Error z value Pr(>lzD)
(Intercept) 1.3358 0.3835 3.48 0.0005
hincome -0.0423 0.0198 -2.14 0.0323
childrenpresent -1.5756 0.2921 -5.39 6.9e-08
(Dispersion parameter for binomial family taken to be 1
Null deviance: 356.15 on 262 degrees of freedom
Residual deviance: 318.73 on 260 degrees of freedom
AIC: 325.7
Number of Fisher Scoring iteratioms: 3
The expression partic != »not.work’ creates a logical vector, which

serves as the binary response variable in the model.

18]
o
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Figure 6.15  Index plot of Cook’s distances from the logistic regression of
women’s labor-force participation on husband’s income and
presence of children. Two observations were identified interac-
tively with the mouse.

To calculate and plot Cook’s distances for this fit (Figure 6.15):

> plot(cookd(mod.working))
> identify(1:length(partic), cookd(mod.working))
[1] 76 77

The expression 1:length(partic) generates the observation indices to
be used as horizontal coordinates by identify.

Note that [ have extracted the Cook’s distances twice; it would have
been more efficient to save the values in a variable, but unless the data set
is large, the calculation is nearly instantaneous anyway. Clearly, observa-
tions 76 and 77 have much larger Cook’s distances than any of the other
observations.

Let us follow up by calculating and plotting dfbeta; (Figure 6.16):

> dfb <~ dfbeta(mod.working)
> dfbl1:5,] # first 5 obs.

(Intercept) hincome childrenpresent
1 0.0021293 -0.00014152 -0.0102200
2 -0.0025005 0.00016620 -0.0104562
3 0.0273334 -0.00181673 -0.0057556
4 0.0161297 -0.00107207 -0.0091358
5 0.0099899 -0.00066398 -0.0097021

> plot(dfb[(,2], ylab=’dfbeta(hincome)’) # for bl
> identify(1:length(partic), dfb[,2])
[1]1 76 77

> plot(dfb(,3], ylab=’dfbeta(children)’) # for b2
>

4
]
&
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Figure 6.16 Index plots of dfbeta for the coefficients of husband’s income
and presence of children.

Comparing the dfbeta; values to the magnitudes of the coefficients in
the logistic regression, none of the observations appears terribly influen-
tial, although observations 76 and 77 do stand out in their impact on
the husband’s income coefficient. These two observations are for women
who were in the labor force despite having children and high-income hus-
bands. Removing just one of these two observations does not alter the
results much (as the approximate dfbeta values suggest, and the reader
can confirm), but removing both observations changes the coefficient of
husband’s income by more than 40 percent:

> summary(update(mod.working, subset=-c(76, 77)))

Coefficients:

Estimate Std. Error z value Pr(>|z})
(Intercept) 1.6090 0.4051 3.97 7.1e-05
hincome ~0.0603 0.0212 -2.85 0.0044
childrenpresent -1.6476 0.2977 -5.53 3.1le-08

Two factors combine to produce this result: (1) The linear approxima-
tions involved in calculating deletion diagnostics for GLMs tend to under-
state the effect of deleting observations, and (2) observations 76 and 77,
as an influential pair, partly mask each other’s presence.

Notice the banding in the index plot of dfbeta; for the children coef-
ficient. The four bands are produced by the binary response and the
dummy regressor, each of which takes on only two values. When the
response is discrete, diagnostic plots for GLMs often show these kinds of
effects.
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Nonlinearity Diagnostics

Component + residual and CERES plots also extend straightforwardly

to generalized linear models. Nonparametric smoothing of the resulting

scatterplots can be important to interpretation, especially in models for

b{nary responses, where the discreteness of the response makes the plots

ilfﬁcult to examine. Similar effects can occur for binomial and Poisson
ata.

Component + residual and CERES plots use the linearized model from
the last step of rbe IWLS fit. For example, the partial residual for x; adds
the \_avorku_lg residual to b;x;; the component + residual plot graphs the
partial residual against x;.

' An illustrative component + residual plot, for assets in Ornstein’s
1qterlocking-directorate Poisson regression (from Chapter 5), appears in
Figure 6.17 and is constructed by the following S commands:

> detach(Womenlf)

> attach(Ornstein)

> mod.ornstein.pois <- glm(interlocks ~ assets + nation + sector,

+ family=poisson)

> cr.plots(mod.ornstein.pois)

:Change span = 0.5
rassets

:nation

:sector

Selection: 2

W N e

Component+Residual Plot

Component+Residual(interlocks)

T T T i
0 50000 100000 150000

assets

Figure 6.17 Component + residual plot for assets in Ornstein’s

interlocking-directorate Poisson regression.
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Figure 6.18  Component + residual plot for log(assets) in the respecified
Poisson regression model for Ornstein’s interlocking-directorate

data.

This plot is difficult to examine because of the substantial positive skew in
assets, but it appears as if the assets slope is a good deal steeper at the
left than at the right. I therefore investigated transforming assets down
the ladder of powers and roots, eventually arriving at the log transfor-
mation, the component + residual plot for which appears quite straight
(Figure 6.18):

> mod.ornstein.pois.2 <- glm(interlocks ~ log(assets) + nation
+ + sector, family=poisson)

> cr.plots(mod.ornstein.pois.2, ’log(assets)’)

>

The Box-Tidwell constructed-variable plot for power transformation
of an x also extends directly to generalized linear models, augmenting the
model with the constructed variable x;log,x;. For example, for Ornstein’s
interlocking-directorate Poisson regression, we may proceed as follows,
fitting an auxiliary model and obtaining an added-variable plot for the
constructed variable (Figure 6.19):

> mod.ornstein.pois.cv <- update(mod.ornstein.pois,

+ . ~ . + I(assets*log(assets)))

> summary (mod.ornstein.pois.cv)

Coefficients:

Estimate Std. Error z value Pr(>izl)
(Intercept) 2.14e+00 5.36e-02 39.89 < 2Ze-16
assets 2.81e-04 1.69e-05 16.65 < 2e-16
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Figure 6.19  Constructed-variable plot for the power transformation of

assets in Ornstein’s interlocking-directorate Poison regression.

I(assets * log(assets)) -2.18¢-05 1.41e-06 -15.42 < 2e-16

> av.plots(mod.ornstein.pois.cv, ’'I(assets * log(assets))’)
(1112

The z test statistic for the constructed variable leaves little doubt about
the need for transforming assets. The constructed-variable plot supports
the transformation.

An estimate of the transformation parameter can be obtained from the
coefficient of assets in the original Poisson regression (2.09 x 10-%) and
the coefficient of the constructed variable (—2.18 x 10~%):

. ~2.18 x 10~
A=1+ e 105

that is, essentially the log transformation, A = 0.

1 conclude with a reexamination of the binary logistic-regression model
fit to Mroz’s women’s labor-force participation data (in Chapter 3).
Recall that one of the predictors in this model—the log of the woman’s
expected wage rate (Lwg)—has a peculiar definition: For women in the
labor force (for whom the response variable in the regression, 1£p, is 1),
1wg is the log of the actual wage rate; while for women not in the labor
force {for whom 1fp is 0), 1wg is the log of the predicted wage rate.

= —0.043,

15. Essentially the same calculation is the basis of Box and Tidwell’s irerative procedure for finding
transformations in linear least squares regression.
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Figure 6.20  Component + residual plot for 1wg in the binary logistic regres-

sion for Mroz’s women’s labor-force participation data.

To obtain a component + residual plot for 1wg (Figure 6.20):

detach(Ornstein)

data(Mroz)

attach(Mroz)

mod.mroz <- glm(lfp ~ k& + k618 + age + wc + hc + lwg + inc,
family=binomial)

cr.plots(mod.mroz, ’lwg’)

vV V + V V V V

The peculiar split in the plot reflects the binary response variable, with the
lower cluster of points corresponding to 1fp = 0 and the upper cluster
to 1fp = 1. It is apparent that lwg is much less variable when 1fp = 0,
inducing an artifactual curvilinear relationship berween lwg and 1fp: We
expect fitted values (such as the values of 1lug when 1fp = 0) to be more
homogeneous than observed values, because fitted values lack a residual
component of variation.

I leave it to the reader to construct component + residual or CERES
plots for the other predictors in the model.
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CHAPTER /.

Drawing Graphs

I

{/—\} ne of the strengths of S is its ability to produce high-quality sta-
- tistical graphs. This strength reflects the origin of S at Bell Labs,
long a center for innovation in statistical graphics.

From one point of view, standard S graphics are very simple: Making
graphs in S is like drawing in ink on a piece of paper. Once an object
is drawn, it cannot be erased (except by drawing over it, for example
in another color), and if a graph is to be changed in some fundamental
way, it is necessary to redraw it. Interaction with S graphs is limited to
identifying points and locating coordinates. Graphics windows can also
be resized in the normal manner—by dragging a side or corner with the
mouse. There is currently a great deal of interest in extending graphics in
R and S-PLUS. R, for example, may be linked to the XGobi and GGobi
systems for interactive three-dimensional graphics (Swayne et al. 1998),
and S-PLUS provides several extensions to the $ graphics system. This
chapter, however, focuses on standard S graphics.

The simplicity of S graphics is also one of its attractions. First, pursu-
ing the ink-on-paper analogy, the user can build up a complex S graph
in a sequence of simple operations. Showing you how to do this is the
principal task of the present chapter.

Second, although the graphical model in S is simple, there are many
useful and sophisticated kinds of graphs that are already programmed
in S. Frequently, there is a plot method that produces a standard graph
or set of graphs for objects of a given class (try plotting a data frame
or a linear-mode! object, for example). Indeed, one of the goals of the
car library is to provide functions that make it easy to create graphs—
such as added-variable plots and component + residual plots—that are
useful in regression analysis (see, in particular, Chapters 3 and 6). In
most instances, you will be able to use an existing function to create the
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graph that you want in a single command; the present chapter shows
you how to proceed on those relatively rare occasions when you have to
innovate.

This chapter, as well as the following chapter on programming, deals
with general matters, and 1 have employed many of the techniques dis-
cussed here in the earlier parts of the book. Rather than introducing this
material near the beginning of the book, however, | prefer to regard pre-
vious examples of S graphs as background and motivation.

71 A GENERAL APPROACH TO § GRAPHICS

It helps to think concretely about drawing graphs. When [ want to con-
struct an especially complicated graph, for example, I generally start with
a rough paper sketch, showing all the elements of the graph. I can then
think more clearly about how to get S to draw what [ need.

For the most part, the discussion in this chapter is confined to two-
dimensional coordinate plots, and a logical first step in drawing such
a graph is to define a coordinate system. Sometimes that first step will
include drawing axes and axis labels on the graph, along with a rect-
angular frame enclosing the plotting region; sometimes, however, these
elements will be omitted or added in separate steps, in order to assert
greater control over what is plotted. The guts of the graph generally con-
sist of plotted points, lines, text, and, occasionally, shapes and arrows.
Such elements are added as required to the plot. The current section
describes, in a general way, how to perform these tasks.

Defining a Coordinate System: plot

In S, plot is a generic function, the default method for which can be
used to make a variety of point and line graphs; plot can also be used
to define a coordinate space, which is my main reason for discussing it
here. The list of arguments to the R implementation of plot.default is
also a good starting point for understanding how to use the § plotting
system':
> args(plot.default)
function (x, y = NULL, type = "p", xlim = NULL, ylim = NULL,
log = "", main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
ann = par("ann"), axes = TRUE, frame.plot = axes,

1. The arguments to the S-PLUS version of plot.default are less informarive.

N
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panel.first = NULL, panel.last = NULL, col = par("col")

bg = NA, pch = par("pch"), cex = 1, lty = par("lty"),

lab = par("lab"), lwd = par("lwd"), asp = NA, ...)
NULL

To see in full detail what the arguments mean, consult the documenta-

. 2. . X s
tion for plot.default?; the following points are of immediate interest
however: '

[ ] The first two arguments, x and y, can provide, respectively, the hor-
izontal and vertical coordinates of points or lines to be pl:;)rred and
?lso define a data-coordinate system for the graph. The argument x
is required. In constructing a complex graph, a good starting point is
often to use x and y to establish the range of the axes—which can

be as simple as specifying each of these arguments as a two-element
vector.

® type, naturally enough, determines the type of graph to be drawn, of
Which there are several: The default type, ’p’, plots points at the cc;or-
d}mates specified by x and y. The character used to draw the points is
given by the argument pch; in R, but not in S-PLUS, pch may designate
a vector of characters, which may therefore differ for different points.
Specifying type="1’ produces a line graph; specifying type='n’ sets
up the plotting region to accommodate the data but plots nothing.
Other types of graphs available in both R and S-PLUS include: ’b’
b_oth points and lines; ’o’, points and lines overlaid; ’h?, “histogramz
like” vertical lines; and s’ and ’S’, “stairstep-like” lines, starting
horizontally and vertically, respectively. ’

® The arguments x1im and ylim may be used to define the limits of the
horizontal and vertical axes; usually, these arguments are unnecessary,
because S will pick reasonable limits from x and y, bur they provide ar;
additional measure of control over the graph. For example, extending
the limits of an axis can provide room for explanatory text; Z:ontractin
the limits can cause some data to be omitted from the gr;ph. s

m The log argument makes it easy to define logarithmic axes: log="x’
produces a logged horizontal axis, log="y’, a logged vertical axis, and
log="xy’ (or log="yx’), logged axes for both variables.

B xlab and ylab take character-string arguments, which are used to label
the axes; similarly, the argument main may be used to place a title
above the plot (or the title function may be called subsequently to
add a title). The default axis label, NULL, is potentially misleading, in

2. In general, in this chapter, | will not discuss all of the argume i
- t nts E ics f
tions that { describe. Details are available in the documemagrion for ;v::ll;bslff’ff{]s[he graphics func:
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that by default plot constructs labels from the arguments x and y. To

suppress the axis labels, either specify empty labels—e.g., x1ab=""—or
(in R) set ann=FALSE.

@ Setting axes=FALSE and (in R) frame.plot=FALSE, respectively, sup-
presses drawing axes and a box around the plotting region.

m In R, the argument col may be used to specify the color (or colors) for
the points and lines drawn on the plot; in §-PLUS, col gives the color
for the plot as a whole. Color selection is described in Section 7.1.3.

m cex (for “character expansion”) specifies the relative size of points
in the graph; the default size is cex=1. In R, cex may be a vector,
indicating the size of each point individually; in S-PLUS, cex is a single
value applying to all points (and text) in the graph.

m The arguments 1ty and lwd select the type and width of lines drawn
on the graph; see Section 7.1.2 for more information on drawing lines.

For example, the following command sets up the blank plot in
Figure 7.1, with axes and frame, but without axis labels:

> plot(c(0,1), c(0,1), type='n’, xlab="", ylab="")
5 .

Several arguments to plot, such as pch and col, take their defaults
from the par function. This function is used to set and retrieve a variety
of graphics parameters. For instance,

> par(’col’)
[1] "black"
=}
© |
o
o
(=]
< |
<o
o
(=]
o |
(=]
T T T T T
00 02 04 06 08 10
Figure 7.1  Empty plot, produced by plot(c(0,1), c(0,1), type=’n’,

xlab=" u ) ylab=" u ) .
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To change the general default plotting color to red, for example, we could
(in R) enter par(col=’red’); in S-PLUS, colors are specified only by
number—see Section 7.1.3. To print our the current values of all the
plotting parameters, call par with no arguments:

> par ()

$adj

[1] 0.5

$ann
[1) TRUE

$ask
[1] FALSE

$yaxs
[1] llrll

$yaxt
[1] " s "

$ylog
[1] FALSE

Table 7.1 presents brief descriptions of some of the plotting parameters
that can be set by par; many of these can also be used as arguments
to plot and other graphics functions. For complete information on the
plotting parameters available in R and S-PLUS, see the documentation
for par.

Adding Graphical Elements: axis, points,
lines, text, and so on

Having defined a coordinate system, we typically want to add graphical
elements, such as points and lines, to the plot. Several functions useful
for this purpose are described here.

As you might expect, points and lines add points and lines to the
current plot; either function can be used to plot points, lines, or both,
but their default behavior follows their names. The argument pch is used
to select the plotting symbol, as the following example (which produces
Figure 7.2) illustrates:

> plot(1:25, xlab=’Symbol Number’, ylab="", type=’n’)

> for (pch in 1:25) points(pch, pch, pch=pch)
> lines(1:25, type=’h’, lty=2)
>

e T
- ::15.»:;-5.—&—;?1

2

e
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Table 7.1~ Some plotting parameters set by par: [R], R only; [$], S-PLUS only.

Parameter Default Value Purpose
adj 0.5 Text-string justification: 0 = left,
0.5 = centered, 1 = right
amn [R] TRUE Annotate graph
cex 1 Relative character expansion
col ’black’ [R], 1 [§] Default color
las 0 Orientation of axis labels: 0 = parallel
to axis
1ty ’solid’ [R], 1 [§] Default line type
lud 1 Default line width
mar c(5.1, 4.1, 4.1, 2.1) Plot margins in lines of text: bottom,
left, top, right
mfcol, mfrow c(1,1) Plot array, filled by columns or rows:
number of rows, columns
new FALSE If FALSE, next high-level plotting
function clears plots
pc.:h 1 Plotting symbol: number or character
pin Current values Size of plot in inches: width, height
pty ‘m’ Type of plotting region: *m’ maximal;
’s’ square
srt 0 Rotation of character strings, in degrees
usr Current values Range of data (“user”) coordinates:
X-min, X-max, y-min, y-max
8 v
2 i
N i
© o :
T '
e b i
o L 5
- i
10 15 25
Symbol Number
Figure 7.2 Plotting symbols (pch) by number.
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The plot function sets up the coordinate system for the graph. A for
loop cycles through the plotting symbols, numbered from 1 through 25,
and points is used to place each symbol on the plot at the coordinates
corresponding to its number. Finally, the lines function draws broken
vertical lines (selected by 1ty=2: see below) up to the symbols; because
lines is given only one vector of coordinates, these are interpreted as ver-
tical coordinates, to be plotted against their indices as horizontal coordi-
nates (here, the integers from 1 through 25). Specifying type='h’ draws
spike-like (or histogram-like) lines up to the points.

As mentioned in the preceding section, in R (but not in $-PLUS) pch
can be given a vector of symbol numbers, and line types may be specified
by name as well as by number; consequently, a more compact way of
producing the plot in Figure 7.2 in R would be:

> plot(1:25, pch=1:25, xlab=’Symbol Number’, ylab="")
> lines(1:25, type=’h’, lty=’dashed’)
>

One can also plot arbitrary characters, as the following example
(shown in Figure 7.3) illustrates:

> plot(1:26, xlab='letters’, ylab="", type='n’, axes=F)
> box()

> for (letter in 1:26)

+ points(letter, 27 - letter, pch=letters{letter])

>

Again, a more compact version in R replaces the for loop with a
single call to points; and in R, we can replace the separate call to

letters

Figure 7.3  Plotting characters—the lower case letters.
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Figure 7.4  Line types (1ty), by number.

box, which places a frame around the plotting region, by the argument
frame.plot=T in the initial call to plot.

As shown in Figure 7.4, several different line types are available in §
plots:

> plot(c(1,7), c(0,1), type='n’, axes=F,

+ xlab='Line Type (lty)’, ylab="")

> box ()

> axis(1, at=1:6) # x-axis

> for (1ty in 1:6) lines(c(lty, lty, 1ty + 1),

+ c(0, 0.5, 1), lty=lty)

>

The lines function connects the points whose coordinates are given by
its first two arguments, x and y. If a coordinate is NA, then the line drawn
will be discontinuous. Line type (1ty) may be specified by number (as
here) or, in R, by name, such as ’solid’, ’dashed’, and so on. Line
width is given by the 1wd parameter, which defaults to 1. The exact effect
varies according to the graphics device used to display the plot, but the
general unit seems to be pixels: Thus, for example, 1wd=2 specifies a line
2 pixels wide.

Note the use of axis in creating Figure 7.4. The first argument to this
function indicates the position of the axis: 1 corresponds to the bottom
of the graph, 2 to the left side, 3 to the top, and 4 to the right side.
The at argument controls the location of tick marks. There are several
other arguments as well. Of particular note is the labels argument: If
labels=T, then numerical labels are used for the tick marks; otherwise,
labels takes a vector of character strings [e.g., c(’male’, ’female’)]

to provide tick labels.
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(a) (b)

one

another string

three
example text

Figure 7.5  Plotting character strings with text.

The text function places character strings on a plot; the function has
several arguments that determine the position, size, and font that are
employed. For example, the following commands produce Figure 7.5(a):

plot(c(0,1), c(0,1), axes=F, type=’n’, xlab="", ylab="")

box ()
text(x=c(.2, .8), y=c(.2, .7),
c(’example text’, ’another string’))

title(’(a)’)

v V + V VvV V

I often find it helpful to use the locator function along with text
to position text with the mouse; locator returns a list with vectors of
x and y coordinates corresponding to the position of the mouse cursor
when the left button is clicked. Figure 7.5(b) was constructed as follows:

> plot(c(0,1), c(0,1), axes=F, type=’n’, xlab="", ylab="")

> box()
> text(locator(3), c(’one’,’two’, ’three’))

> title(’ (b)’)

>
To position each of the three text strings, I moved the mouse cursor to a
point in the plot and clicked the left button. Called with no arguments,
locator () returns pairs of coordinates corresponding to left clicks, until
the right mouse button is pressed.

Another useful argument to text, not employed in these examples, is
adj, which controls the horizontal justification of text: 0 specifies left
justification, 0.5 centering (the initial default, given by par), and 1 right
justification. In R, if two values are given, adj=c(x, ), then the second

controls vertical justification.
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(a) arrows (b) segments

s LUl

Figure 7.6  The arrows and segments functions.

As their names suggest, the arrows and segments functions may be
used to add arrows and line segments to a plot. For example, the follow-
ing statements produce Figure 7.6(a) and (b):

plot(c(1,5), c(0,1), axes=F, type=’n’, xlab="", ylab="")
arrows (x0=1:5, yO=rep(0.1, 5),

x1=1:5, yl=seq(0.3, 0.9, len=5), code=3)
title(’(a) arrows’)

v + V V

plot(c(1,5), c(0,1), axes=F, type=’n’, xlab="", ylab="")
segments(x0=1:5, y0=rep(0.1, 5),

x1=1:5, yl=seq(0.3, 0.9, len=5))
title(’ (b) segments’)

v V + V V

The argument code=3 to arrows produces double-headed arrows in R.

Arrows and Line Segments in S-PLUS

The S-PLUS implementation of arrows does not support the code argu-
ment and draws only single-headed arrows. As well, the arguments to
arrows and segments in S-PLUS are called x1, y1, x2, and y2 (rather
than x0, y0, x1, and y1).

Another self-descriptive function is polygon, which takes as its first
two arguments vectors defining the x and y coordinates of the vertices of
a closed figure; for example, to produce Figure 7.7:

> plot(c(0,1), ¢(0,1), type=’n’, xlab="", ylab="")
> polygon(c(.2,.8,.8), c(.2,.2,.8), col=1)

> polygon(c(.2,.2,.8), c(.2,.8,.8))
>

The col argument, if specified, gives the color to use in filling the polygon
(see the discussion of colors in Section 7.1.3)."
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Figure 7.7  Filled and unfilled triangles produced by polygon.

The legend function may be used to draw a legend on a plot; the
function has a number of arguments, and its use differs somewhat in R
and S-PLUS. An illustration using R appears in Figure 7.8:

> plot(c(1,5), c(0,1), axes=F, type=’n’, xlab="", ylab="",

+ frame.plot=T)

> legend(locator(1), legend=c(’group A’, ’group B’, ’group C’),
+ lty=1:3, pch=1:3)

>

Note the use of locator to position the legend: I find that this is often
easier than computing where the legend should be placed. In S-PLUS, the
pch argument would be replaced by marks.

—— group A
-4 group B
-+ group C

Figure 7.8  Using the legend function.
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Specifying Colors

Usmg different colors is often the most effective means of distinguish-
ing graphical elements such as lines or points. Although I am limited to
ynonochrome graphs in this book, the specification of colors in S graphs
is nevertheless straightforward to describe.

Plotting .functions such as lines and points specify color via the col
argument; in R, the col argument is vectorized, allowing you to select a
separate color for each point. In both R and S-PLUS, colors may be spec-
%ﬁe}(i by number. The following commands display the numbered colors
in R:

> piechart(rep(l, length(palette())), col=palette())
and in S-PLUS:

> piechart(rep(1,16), col=1:16)

In R, the n'umbex_'ed colors are given by a color palette; calling the
palette function with no arguments prints out the current palette:
> palette()

[1] "plack" "red" ugreen3n "plue" "cyan"

"magenta"
[7] "yellow" ‘“white" .

Tk}ls function may also be employed to reset the color palette. Like-
wise, Fhe numbered colors employed for S-PLUS graphsheet plots may be
examined and reset in the Color Schemes dialog box, accessible through
the Options menu.

That is.the end of the color story for standard S-PLUS graphs, but R is
more flexible: First, colors in R may be referenced by name as well as by
number. For example, using the default palette, col="red’ is equivalent
to col=2. The full set of color definitions appears in the editable file
rgb.txt, which resides in the R etc subdirectory.

Second, R permits you to specify colors as RGB (red, green, blue)
values. For example, the rainbow function creates a spectrum of RGB
colors:

> rainbow(10)

[1] "#FFO000" "#FF9900" "#CCFFOO" "#33FFO0" "#OOFF66" "#OOFFFF"
[7] “#0066FF" "#3300FF" "#CCOOFF" "#FF0099"

Similarly, the gray function creates gray levels from black [gray(0)] to -

white [gray(D)]:

> gray(0:8/8)
[1] "#000000" "#202020" "#404040" "#606060" "#808080" "#9F9F9F"
[7] “#BFBFBF" "#DFDFDF" "#FFFFFF"

The color codes are represented as hexadecimal (base 16) numbers of
the form "#RRGGBB", where each pair of hex digits encodes the intensity

g e e e e

of one of the three primary colors—from 00 (i.e., 0 in decimal) to FF
(i.e., 255 in decimal). To get a sense of how this works, try each of the
following commands:

> piechart(rep(1,100), col=rainbow(100), labels=rep("", 100))

> piechart(rep(1,100), col=gray(0:100/100)., labels=rep("", 100))

PUTTING IT TOGETHER: EFFECT DISPLAYS

As 1 explained, most of the graphs that you want to create in routine
data analysis are easily obtained in S. The aim of this chapter is to show
you how to construct the small proportion of graphs that require custom
work. By their nature, such graphs are diverse, and it would be futile
to try to cover their construction exhaustively. Instead, I will develop an
example that is sufficiently rich to demonstrate many of the techniques
described in the preceding section.

“Effect displays” are graphical representations of linear or generalized
linear models that are most useful for understanding models with inter-
actions (see Fox, 1987, for a general description): Briefly, effect displays
focus on the high-order terms in a linear model, showing each such term
along with its lower-order relatives and setting other terms in the model
to typical values.

Effect displays are perhaps best understood through an example, so
let us consider a logit model fit by Cowles and Davis (1987) to data
on volunteering for psychological experiments. These authors were inter-
ested in the personality factors that predispose individuals to volunteer;
in particular, they expected that the standard personality dimensions of
introversion-extraversion and stability-neuroticism would interact in their
effect on volunteering. Both of these personality dimensions were assessed
by scales that take on integer values between O and 24. Cowles and
Davis’s data, on 1421 subjects, are in the data frame Cowles in the car
library:

> library(car)

> data(Cowles)

> dim(Cowles)

[1] 1421 4

> Cowles[sort(sample(1421, 10)),1 # sample 10 obs.

neuroticism extraversion sex volunteer
108 14 8 female no
283 10 12 female no
311 5 16 male no
355 22 13 male no



248

DRAWING GRAPHS

1070 14 12 female no
1071 4 8 female no
1205 15 13  male yes
1222 12 2 male yes
1304 10 9 female yes
1416 4 10 female yes

Cowles and Davis fit the following model to their data:

> mod.cowles <~ glm(volunteer ~ neuroticism * extraversion + sex,
+ data=Cowles, family=binomial)
> summary(mod.cowles)

Coefficients:

Estimate Std. Exrror z value Pr(>lzl)
(Intercept) ~2.35820 0.50104 -4.71 2.5e-06
neuroticism 0.11078 0.03763 2.94 0.0032
extraversion 0.16682 0.03770 4.42 9.7e-06
sexmale -0.24715 0.11161 -2.21 0.0268

neuroticism:extraversion ~0.00855 0.00293 -2.92 0.0035

The anticipated interaction between neuroticism and extraversion
proves highly statistically significant, but it is not easy to appreciate the
nature of the interaction directly from the coefficients of the model: We
can see that volunteering is positively related to each of these predictors
when the other predictor is 0 and that the slope for each predictor
declines as the value of the other predictor increases. Beyond that, how-
ever, we need to make mental calculations to interpret the interaction.
The main effect of sex is also statistically significant, with males less
inclined to volunteer than females, at fixed levels of neuroticism and
extraversion. The sex main effect is much easier to interpret from its
coefficient than the interaction is: When the probability of volunteering
is near .5, that probability is approximately —.247/4 = —.062 lower for
males than for females.

Because the structure of the model is relatively simple, with two quan-
titative predictors (neuroticism and extraversion) and a factor (sex),
one approach that works here is to plot the full response surface. I pro-
ceed by calculating fitted values under the model for all combinations of
the predictors; the 25 x 25 x 2 = 1250 combinations are conveniently

generated by the expand.grid function, and predict can then be used
to find the fitted values:

> neuroticism <- 0:24
> extraversion <- 0:24
> sex <- c(’male’, ’female’)
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> graph.data <~ expand.grid(neuroticism=neuroticism,

+ extraversion=extraversion, sex=sex)

> graph.data$fit <- predict(mod.cowles, newdata=graph.data,
+ type=’response’)

> graph.data

neuroticism extraversion sex fit
1 0 0 male 0.068795
2 1 0 male 0.076239
3 2 0 male 0.084416
4 3 0 male 0.093382
5 4 0 male 0.103192
6 5 0 male 0.113904
7 6 0 male 0.125572
8 7 0 male 0.138248
9 8 0 male 0.151982
10 9 0 male 0.166816
1248 22 24 female 0.393356
1249 23 24 female 0.371051
1250 24 24 female 0.349283

Supplying type=’response’ as an argument to predict produces fitred
values on the probability scale, rather than on the logit scale.

I proceed to construct three-dimensional plots of the logistic-regression
surface, using the persp function to graph the data for males and females
separately; the result is shown in Figure 7.9:

> prob <- matrix(graph.data$fit(graph.datagsex=="male’], 25, 25)
> persp(nmeuroticism, extraversiom, prob,

+ phi=30, theta=45, expand=0.65, d=2, shade=0.75,
ticktype=’detailed’, zlab=’Probability(Volunteer)’,
main=’Males’)

+ 4+

> prob <- matrix(graph.data$fit[graph.data$sex=="female’], 25, 25)
> persp(neuroticism, extraversiom, prob,

+ phi=30, theta=45, expand=0.65, d=2, shade=0.75,

+ ticktype=’detailed’, zlab=’Probability(Volunteer)’,

+ main=’Females’)

>

To draw these graphs, the fitted probabilities for males, and then for
females, are extracted, and each set of fitted values is reshaped into a
25 x 25 matrix. The first two arguments to persp pertain to the variables
defining the “floor” of the figure—here the predictors neuroticism and
extraversion, each a vector of values running from 0 to 24; the vertical
values, defining the height of the surface at each point on the predictor
grid, are given by the matrix of fitted probabilities, in prob. The remain-
ing arguments control the orientation and appearance of the graph (see
the documentation for persp).
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Males

Females

Figure 7.9  Fitted probability of volunteering as a funcrion of extraversion,
neuroticism, and sex.

Surface Plots in S-PLUS

The graphs in Figure 7.9 were drawn by the persp function in R; the S-
PLUS version of persp has somewhat different arguments. The wireframe
function in the S-PLUS trellis library (a version of which will likely
eventually find its way into the lattice library in R) can also draw three-
dimensional surface plots of this kind.

A d%fferent strategy for plotting the response surface in a two-
dimensional graph is employed in Figure 7.10: Here I let one of the

Rt
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Figure 7.10  Effect display for the interaction between extraversion
and neuroticism. Each line represents a different value of
neuroticism (N), given at the right of the plot.

predictors, neuroticism, range over irs values, setting the other predic-
tor, extraversion, successively to the values 0, 6, 12, 18, and 24. Instead
of drawing separate plots for males and females, I take advantage of
the fact that sex enters the model additively and simply average over
the two categories of this factor (which may be thought of as obraining
fitted values for a group composed half of males and half of females).
The vertical bars on the plot give +1 standard error around the fit at
selected points; these error bars are computed on the logit scale and then
translated to the probability scale.
Let us consider, step by step, how Figure 7.10 is constructed:

1. The first step is to compute the quantities to be plotted. I could use
the predict funcrion, working on the logit scale and subsequently aver-
aging the values obrained for women and men, but I also want standard
errors for the averages. Instead, I construct a model matrix at the points
in the predictor space where fitted values are desired, using the value
0.5 for the dummy regressor for sex and adding a column of 1s for the
constant and a product column for the neuroticism X extraversion
interaction:

> extraversion <- 0:24

> neuroticism <- seq(0, 24, by=6)

> graph.data <~ expand.grid(meuroticism=neuroticism,

+ extraversion=extraversion)

> X <~ cbind(constant=1, as.matrix(graph.data), sex=0.5,

+ neuro.extra=graph.data$neuroticism * graph.data$extraversion)
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> X

constant neuroticism extraversion sex neuro.extra
1 1 0 0 0.5 0
2 1 6 0 0.5 0
3 1 12 0 0.5 0
4 1 18 0 0.5 0
5 1 24 0 0.5 0
6 1 o] 1 0.5 0
7 1 6 1 0.5 6
8 1 12 1 0.5 12
9 1 18 1 0.5 18
10 1 24 10.5 24
121 1 0 24 0.5 0
122 1 6 24 0.5 144
123 1 12 24 0.5 288
124 1 18 24 0.5 432
1285 1 24 24 0.5 576

2.* Let X, represent the model matrix for the predicted values; the
predicted values on the logit scale are then simply Xyb, where b is the
vector of logistic-regression coefficients. Similarly, the standard errors at
the fitted values are the square roots of the diagonal entries of X, Vi Xo,
where V), is the covariance matrix of the coefficients; +1 standard error
around the fitted values represents an approximate pointwise 2/3 confi-
dence interval for the population logistic-regression surface. Finally, both
the fitted values and the endpoints of the intervals are translated to the
probability scale using the relationship p = 1/[1 + exp(—logit)]:

> logit <- X %*) coefficients(mod.cowles)
> se <~ sqrt(diag(X %*% Var(mod.cowles) %*% t(X)))
> prob <- matrix(i/(i+exp(-logit)), 5, 25,)
> low <~ matrix(1/(i+exp(-(logit - se))), 5, 25)
> high <- matrix(i/(1+exp(-(logit + se))), 5, 25)
> prob

[,1] [,2] [,3] (,4] [,s] [,6] L7
.077146 0.089892 0.10450 0.12118 0.14009 0.16142 0.18529
.139780 0.154254 0.16993 0.18685 0.20504 0.22450 0.24525
.240040 0.251943 0.26423 0.27690 0.28993 0.30332 0.31705
.380411 0.383450 0.38650 0.38955 0.39262 0.39569 0.39878
.544098 0.534548 0.52497 0.51538 0.50577 0.49616 0.48655

,_,
w
i
coooo

£,221  [,23] [,24] [,25]
0.73524 0.76641 0.79494 0.82080

[2,] 0.64758 0.67347 0.69834 0.72210
0.54871 0.56455 0.58026 0.59581
0.44584 0.44902 0.45221 0.45540

[5,1 0.34741 0.33875 0.33019 0.32174

The 5 rows and 25 columns of the matrices prob, low, and high
correspond respectively to the 5 values of neuroticism (0, 6, 12, 18,
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and 24) and 25 values of extraversion (0, 1, 2, ..

. 5 24) at which the
fit is evaluated.

Although this step is a bit more difficult, the aim is simple: to produce
fitted values on the logit scale (logit) and their standard errors (se)
for each combination of values of the predictors. The fitted values on
the logit scale are then translated to the probability scale (prob). The
standard errors are used to calculate +1-standard-error intervals around
the fitted values on the logit scale, and these limits are also translated to
the probability scale (Low and high).

3. Next, I set up a coordinate system for the graph, making sure to
include the confidence limits around the fit (low and high) and leav-
ing room for explanatory text to be placed on the plot [high + 0.05;
x1im=c(0,30)]. The argument xaxt="n’ suppresses the horizontal axis.
This step and the remaining steps are shown (cumulatively) in the panels
of Figure 7.11:

> plot(range(extraversion), range(c(low, high + 0.05)), type=’n’,

+ x1ab=’Introversion-Extraversion’,

+ ylab=’Probability of Volunteering’,

+ xaxt=’n’, x1lim=c(0,30))

>

4. I use the axis function to add the horizontal axis to the plot, plac-

ing tick marks from 0 to 24 (and therefore allowing extra room to the
right, since the horizontal axis runs to 30):

> axis(1, at=seq(0, 24, by=6))
>

5. Looping through the five values of neuroticism, I draw a line on
the graph for each value, and then place a label immediately to the right
of the line, using the text function and setting adj=0>:

> for (neuro in 1:5){

+ lines(extraversion, prob(neuro,])

+ text (25, 'prob[neuro,25],

+ paste(’N = ’, neuroticismlneurol),
+ adj=0)

+ ¥

>

6. Next, I use the arrows function in R to place error bars around
some of the fitted values; the variables extra and neuro hold the indices
at which error bars are placed. The argument code=3 to arrows pro-
duces double-headed “arrows,” angle=90 specifies arrow “heads” at

3. Loops and other programming constructs are described in the next chapter.
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Figure 7.11  Successive steps in building the effect plot.

right angles to the shafts, and length=0.05 controls the length of the
arrow heads:

> extra <- seq(l, 25, by=6)

> for (neuro in c(i, 3, 5)){

+ arrows (extraversion[extral, low[neuro, extral,
extraversion[extral, high[neuro, extral,
;ngle=90, code=3, lty=2, length=0.05)

v o4+ + o+
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Plotting Error Bars in S-PLUS
Recall that the arrows function in S-PLUS is not as capable as in R. In
S-PLUS, we can plot error bars as vertical lines with segments or write
our own simple function to add fancier error bars to plots.

7. The final step is to place the label »Stability-Neuroticism’ at
the upper right of the graph. I use the mouse (via the locator function)
to set the label on the plot; adj=1 right-justifies the text, making it easier
to position the label, and cex=0.75 prints the label smaller than the rest
of the text:

> text(locator(1), 'Stability-Neuroticism’, adj=l, cex=0.75)
>

GRAPHICS DEVICES

Graphics devices in S send graphs to graphics windows, to files, or to
“hard-copy” devices such as printers and plotters. It almost always makes
sense to create graphs in windows, saving them to files, sending them
to hard-copy devices, or copying and pasting them into other programs
as desired. A new graphics window may be created directly in the Win-
dows version of R with the windows function, and in S-PLUS with the
graphsheet function.

It is sometimes useful to have multiple graphics windows so that
graphs can be juxtaposed on the screen. An alternative is to create several
graphs on the same device [e.g., using par (mfrow=c (rouws, colums)],
to use graphsheets with multiple pages in S-PLUS, or to activate the
graphics history in R. All these mechanisms are explained in the R and
S-PLUS documentation.

If multiple devices are defined, only one is current at any given time.
High-level graphics functions, such as plot, automatically open 2 graph-
ics window if there is no current graphics device or clear the current
device. The function dev.list returns a list of all open devices, dev.cur
returns the number of the current device, and dev.set sets the current
device. A newly created graphics device becomes the current device.

An R graphics window or S-PLUS graphsheet “page” may be copied
to the clipboard when its window has the focus and then pasted into

4. There are other functions that create graphics devices, including trellis.device, which should
be used with trellis graphics (created by functions in the trellis library in S-PLUS and lattice
library in R).
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another application, such as a graphics editor or word-processing pro-
gram. Almost all of the graphs in this book were created in this manner.
A graph also may be saved to a file in a variety of graphics formars

or printed via the File menu (or, in R, by right-clicking in the graphics
window).

-
i

CAPER 8

Writing Programs

This book is principally about using S to fit linear and generalized
linear models, tasks that can be accomplished routinely by using the
built-in capabilities of S and readily available libraries. Moreover, existing
statistical procedures programmed in S extend far beyond the realm of
linear and generalized linear models. Nevertheless, the main advantage
of working in a statistical programming environment—rather than with
a statistical package—is programmability.

S is a full-fledged programming language, with a variety of data and
control structures. My object, however, is not to provide the background
required to become an accomplished S programmer, but rather to convey
the basic programming concepts and procedures that will enable you to
use S more effectively in routine (and not-so-routine) data analysis. I have
in mind primarily the “quick-and-dirty” programs that can facilitate your
work in S rather than polished programs written for general use.

Further informarion may be found in several places, not least the doc-
umentation for R and S-PLUS. In addition, Venables and Ripley (2000)
is an excellent advanced source on programming in S.

m The first section of the chapter reviews function definition in S.

® Matrix algebra is the common language of much of applied statistics.
The second section shows how to perform a variety of matrix opera-
tions in S.

m The S programming language provides a range of control structures.
The third section takes up conditionals, loops, and recursion. This sec-
tion also includes an extended illustration employing the programming
techniques described in the chaprer.
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8.1

® The fourth section introduces the apply function and its relatives,

which can -be useful for avoiding loops in S programs, producing
cleaner, and sometimes more efficient, programs.

[ '_l'hg fifth section describes class-based, object-oriented programming
in S.

u The conc.lgding section of the chapter provides some general advice
about writing S programs.

The material in this chapter could have been placed earlier in the book
and from one point of view it would have been more logical to do so:
After all, in the course of the preceding chapters, I occasionally intro-
duced examples that made use of the programming concepts and struc-
tures described here. I feel, however, that this earlier material motivates
the discussion in this chapter.

The data structures that we will require in this chapter—vectors, matri-

ces, data frames, and lists—are already familiar (and were described in
Chapter 2).

DEFINING FUNCTIONS

S is a functional programming language, and writing programs in
S entails defining functions. Let us begin with a simple but useful exam-
ple: Take a look again at Figure 6.5 on regression diagnostics. This is
a scatterplot of hat values versus studentized residuals from a linear
xqodel; the points are plotted as circles with areas proportional to Cook’s
distances. Imagine that you want to draw this graph routinely for linear
and generalized linear models, so that it makes sense to encapsulate the

cqnstruclztion of the graph in a funcrion. The following function does the
trick, with a few bells and whistles:

> influence.plot <- function(model, scale=10, col=c(i,2),
+ labels=names(rstud), ...){

+ hatval <~ hatvalues(model)

+ rstud <- rstudent(model)

* cook <~ sqrt{as.vector(cookd(model)))

+ # as.vector is needed for S3

+ scale <- scale/max(cook)

+ p <- length(coef (model))

+ n <- length(rstud)

+ cutoff <~ sqrt{4/(n - p)) # for sqrt of Cook’s D

+ plot(hatval, rstud, xlab=’Hat-Values’,

+ ylab=’Studentized Residuals’, type=’n’, ...)

+ abline(v=c(2, 3)*p/n, 1lty=2)
+ abline (h=c(-2, 0, 2), lty=2)

# reference lines
# reference lines

2w

R

g

%
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for (i in 1:n) -# loop over observations
points(hatvallil, rstud[i), cex=scalexcook[i],
col=if (cook[i] > cutoff) col[2] else coll1l)
if (labels{1] !'= FALSE) identify(hatval, rstud, labels)
¥

v + + + + ¢+

In practice, I would not enter a function definition directly at the com-
mand prompt, but rather would use an editor to compose the function,
as explained in Chaprer 1. ‘

All the techniques employed in the influence.plot function, includ-
ing control structures such as loops (for) and conditionals (if), are dis-
cussed later in the current chapter. Let us concentrate, for the present, on
the general structure of this example.

Functions are defined using the function special form. The argu-
ments to function specify the formal (or dummy) arguments of
influence.plot, which include model, scale, col, labels, and ...
these dummy arguments are matched to real arguments when the func-
tion is called, for example, in the following command:

> influence.plot(im(prestige ~ income + education, data=Duncan))

The equals sign (=) is used to assign the default value of an argument in
the function definition (e.g., 10 for scale), just as it is used to specify
a value for the argument when the function is called. Here the result
returned by the 1m function matches the argument model; scale, col, and
labels are unspecified and hence receive their default values; and ... is
simply missing from the function call.

The formal argument . .. is special, in that it may be matched by any
number of real arguments when the function is called; within the func-
tion, . .. may be referenced as a local variable. In influence.plot, ...
serves to “soak up” extra arguments to be passed to the plot function;
failing to specify ... when influence.plot is called simply means that
no additional arguments are passed to plot. Variables defined within the
body of the function are also local to the function.

When a function is called, its arguments may be specified by posi-
tion (i.e., in the order given in the function definition), by name, or by
both. The usual convention is to specify the first one or two arguments
by position and any remaining arguments by name; if arguments are
skipped (either because they are not needed or because default values are
to be used), then the remaining arguments must be specified by name, as
must arguments that are supplied out of order. Named arguments may be
abbreviated as long as the abbreviation is unique. For example, because
no other argument to influence.plot begins with the letter s, the argu-
ment scale may be abbreviated to scal, sca, sc, or s.
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Although formal arguments are associated with real arguments when
the function is called, an argument is not evaluated until its first use.
At that point, the argument is evaluated in the environment from which
the funcrion was called. In contrast, default values for arguments, if they
exist, are evaluated in the environment of the function itself. This pro-
cess of “lazy evaluation” frequently proves efficient and convenient—for
example, the default value of one argument can depend on another argu-
ment or even on a value computed in the body of the function (e.g., the
default value of labels in influence.plot references the local variable
rstud)—but it can occasionally trip up the unwary programmer.

The remainder of the function definition is an S expression defining the
body of the function. This is usually a compound expression, enclosed
in braces, { }. The value returned by the function may be given in an
explicit call to the return function or—more typically—is the value of
the last expression executed in the function body.

The details of influence.plot should be largely self-explanatory, but
note the following:

B The call to plot sets up the coordinate space for the graph.

® The funcrion abline is used to place vertical and horizontal reference
lines on the plot—the former at twice and three times the average hat
value, and the latter at studentized residuals of —2, 0, and 2.

B So thar the function will work both in R and in S-PLUS, the circles
are plotted by calls to points in a for loop over the observation

indices 1 to # (rather than in a vectorized call to points, as would be
appropriate only in R).

® The relative diameters of the circles are controlled by the cex (char-
acter expansion) argument, set to be proportional to the square root
of Cook’s distance; the scale factor establishes the general size of the
circles. (S3 requires that observation names be stripped by as.vector
from the Cook’s distances, before these quantities are passed to cex.)

® The circles are plotted in different colors, depending on whether

Cook’s D exceeds the cutoff 4/(n — p); the colors to be used are given
by the col argument to the function.

® Finally, unless the labels argument is set to FALSE, the identify func-
tion is called to label points interactively; by default, the point labels
are taken from the observarion names associated with the studentized
residuals. Because identify returns the indices of the identified points,
and because this result becomes the value returned by the if statement
that terminates the function, influence.plot returns these indices as
well. Remember that points are identified by clicking the left mouse
button; to exit from influence.plot, click the right button.
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Figure 8.1  Graph produced by the influence.plot function. Several points
were identified interactively with the mouse.

Let us try out influence.plot on Duncan’s occupational-prestige
regression:

> library(car)

> data(Duncan)

> influence.plot(lm(prestige ~ income + education, data=Duncan),
+ ylim=c(-3, 4), col=gray(c(0.5, 0)))

(11 6 916 27

The resulting graph appears in Figure 8.1. I set col =gray(c(.75, 0)
(i.e., medium gray and black) because the default colors in R (black and
red) would not reproduce properly in the book; specifying ylim=c(-3,
4) expands the range of the vertical axis and is present to illustrate the
use of an argument passed down to plot, via .. ..

WORKING WITH MATRICES*

S incorporates extensive facilities for matrix and linear algebra. This sec-
tion concentrates on basic matrix operations.

Ler us begin by defining some matrices via the matrix function; recall
that matrix fills matrices by columns, unless the argument byrow is set
to TRUE:

> A <~ matrix(c(i, 2, -4, 3, 5, 0), 2, 3)
> B <- matrix(1:6, 2, 3)
> C <- matrix(c(2, -2, 0, 1, -1, 1, 4 ,4, -4), 3, 3, byrow=T)



262  WRITING PROGRAMS

[,13 [,21 [,3]
[1,] 1 -4 5
[2,] 2 3 0

.11 [,21 ,33
[1,] 1 3 5
2,]

2 4 6
>C

(,11 [,2} [,3]
[1,] 2 =2 0

[2,] 1 -1 1
[3,] 4 4 -4

Matrix addition, subtraction, negation, and the product of a matrix

and a scalar use the usual operators; addition and subtraction require
matrices of the same order:

> A+ B

(13 [,2] [,3]
[1,] 2 -1 10
[2,] 4 7 6

>A-B

[,11 0,2 [,3]
[1,] 0o -7 0
[2,] 0 -1 -6

>A+ C # A and C not of same order

Error in A + C : non-conformable arrays

> 2x%xA

[,1]1 [,2) [,3]
[1,] 2 -8 10
2,] 4 6 0

(,13 [,2] ,3]
[1,] ~1 4 -5
[2,] -2 -3 0

Using * 1o multiply two matrices forms the element-wise product
(fgr matrices of the same order). The standard matrix product is formed
with the inner-product operator, %*%, which requires that the matrices
be conformable for multiplication:

> A Y% C

[,1) [,23 [,3]

[1,] 8 22 -24

2, 7 -1 3

o

s

TS - TG
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In matrix products, vectors are treated as row or column vectors, as
required:

> a <- rep(i, 3)
>b <-c(1, 5, 3)
> C Y a

.1
1,1 0
[2,] 1
(3,] 4

>a % C .
[,1] [,2) L,3]
[1,] 7 1 -3

>a %% b
[,1]
[1,] 9

The last example illustrates that the inner product of two vectors of the
same length, a %% b, is a scalar (actually, a 1 x 1 matrix). The outer
product may be obrained via the outer function:

> outer(a, b)

[,1) [,2 ,3]
[1,] 1 5 3
(2,] 1 5 3
[3,] 1 5 3

The outer function may be used with operations other than multipli-
cation; an optional third argument, which defaults to ’*’, specifies the
function to be applied to pairs of elements from the first two arguments.

The function t returns the transpose of a matrix:

> t(B)

[,11 0,21
1,3 1 2
[2,]1 3 4
[3,] 5 6

The solve function provides the inverse of a square, nonsingular
matrix:

> solve(C)

,1 2] [,3]
[1,] -2.4227e-16 0.5 1.2500e-01
[2,] -5.0000e-01 0.5 1.2500e-01
{3,] -5.0000e~01 1.0 6.2063e-17

As is typically the case in computer calculations with real numbers, there
are small rounding errors, since the first and third diagonal entries should
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be 0; rounding the result makes it easier to read:

> round(solve(C), 3)

(,11 ,21 3]
{1,] 0.0 0.50.125
[2,] -0.5 0.5 0.125
(3,1 -0.5 1.0 0.000

The fractions function in the MASS library is also helpful here:

> library(MASS)
> fractions(solve(C))
(,11 (,21 L,3])

{1,] 0 1/2 1/8
2,1 -t/2 1/2 1/8
3,1 -1/2 1 0

The solve function may be used more generally to solve systems of
linear simultaneous equations; for example, to solve Cx = b for x:

> solve(C, b)
{11 2.875 2.375 4.500

In this example, the answer is simply x = C~'b, as we may easily verify:

> solve(C) %*% b
(11

[1,] 2.875

[2,]1 2.375

[3,] 4.500

If the system of equations is overdetermined, solve provides the least
squares fit; for example, in

> D <- matrix(c(t, 2, 3, 5, 7, 8), 3, 2, byrow=T)
>D
(,11 (,2]
1,] 1 2
[2,] 3 5
£3,] 7 8

> solve(D, b) # 3 inconsistent egns., 2 unknowns
[1] -1.7848 1.9494

we obtain (D'D)”'D'b.
Underdetermined systems produce an error:

> solve(d, c(1,2)) # 2 eqns., 3 unknowns
Error in solve.default(A, c(i, 2)) : singular matrix ‘a’ in solve

Consider, now, finding the least squares coefficients for a linear
model with model matrix X and response vector y, using the Canadian
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occupational-prestige data as an example:

> data(Prestige)
> attach(Prestige)
> X <- cbind(i, as.matrix(Prestige(,1:3])) # attach the constant
> y <~ Prestigefl,4]
> X[1:5,] # first 5 rows
education income women

GOV.ADMINISTRATORS 1 13.11 12351 11.16
GENERAL . MANAGERS 1 12.26 25879 4.02
ACCOUNTANTS 1 12.77 9271 15.70
PURCHASING.OFFICERS 1 11.42 8865 9.11
CHEMISTS 1 14.62 8403 11.68

>y # prestige
[1] 68.8 69.1 63.4 56.8 73.56 77.6 72.6 78.1 73. 68.8 62.0 60.
[13] 53.8 62.2 74.9 55.1 82.3 58.1 5 1

78.1 1 8 0
8.3 72.8 84.6 59.6 66.1 87.2

w ”n

[97]) 48.9 35.9 25.1 26.1 42.2 35.2

Notice that selecting a single column from the data frame (here, col-
umn 4, which is prestige) produces a vector rather than a one-column
matrix: In indexing, S automatically drops dimensions with extent 1. We
can circumvent this behavior by specifying drop=F (see Section 2.3.4 on
indexing):

> Prestige(,4, drop=F]

prestige
GOV. ADMINISTRATORS 68.8
GENERAL . MANAGERS 69.1
ACCOUNTANTS 63.4
TYPESETTERS 42.2
BOOKBINDERS 35.2

In this case, however, either a vector or a one-column marrix will do.
The usual formula for the least squares coefficients is b = XX) Xy I
is simple to write this formula directly as an § expression':

> solve(t(X) %x% X) %% t(X) %% y

f,1]
1,1 -6.7943342
{2,] 4.1866373
[3,1 0.0013136
[4,] -0.0089052

1. As mentioned above, solve(X, y) also produces the least squares fit, but my purpose here is to
illustrate translating a familiar matrix formula into an S expression—and what is more familiar than
the formula for the least squares coefficients?
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This approach—forming and inverting X'X—will break down in certain
instances, and there are numerically superior methods for solving least
squares problems.? Unless the data are ill conditioned or the data set
very large, however, the computation will go through just fine, as we may
verify via the 1m function for the current illustration:

> lm(prestige ~ education + income + women)

(Intercept)
-6.79433

education income women
4.18664 0.00131 -0.00891

Among their other virtues (and despite their deficiencies), quick and dirty
computations are often useful in learning how statistical methods work.

The eigen function calculates eigenvalues and eigenvectors of square
matrices (including asymmetric matrices, which may have complex eigen-
values and eigenvectors). For example, an eigenanalysis of the correlation
matrix for the predictors in the Canadian occupational-prestige regres-
sion is provided by the following commands:

> R <- cor(cbind(education, income, women))
> R # correlation matrix

education income women
education 1.000000 0.57758 0.061853
income 0.577580 1.00000 -0.441059
women 0.061853 -0.44106 1.000000
> eigen(R)
$values

[1] 1.69770 1.05964 0.24266

$vectors

women income education
education 0.56106 -0.605273  0.56467
income 0.72125 0.022711 -0.69230
women -0.40621 -0.795694 -0.44930

The eigenvectors—the columns of the list component $vectors—are
each normalized to length 1, and therefore give the “loadings” for a
principal-components analysis based on the correlations, while the eigen-
values give the collective variation accounted for by each component.
Principal-components analysis can also be performed by the princomp
and prcomp functions (in the mva library in R). Other matrix factor-
izations available in S include the singular-value, QR, and Cholesky
decompositions: See the on-line help for svd, qr, and chol.

2. We may do a bit better in large data sets by forming squares and cross-products as crossprod(X)
and crossprod(X, y), but computations via the QR decomposition of the model matrix X, for
example, will be more numerically stable in ill-conditioned problems, for example, when the columns
of X are nearly collinear (see Chambers, 1992). This is the default approach taken by the 1= function.
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The determinant of a square matrix may be computed in R or $4 by
the funcrion det; for example:

> det(R)
[1] 0.43653

Calculating Determinants in S3

The determinant function det does not exist in S3. A simple approach,
which may break down in certain ill-conditioned problems, is to compute
the determinant as the product of the eigenvalues:

> det <- function(X) prod(eigen(X, only.values=T)$values)

Depending on its argument, the function diag may be used to extract
or to set the main diagonal of a matrix, to create a diagonal matrix from
a vector, or to create an identity matrix of specified order:

> diag(R) # extract diagonal

education income women

i 1 1
> diag(R) <- NA # set diagonal
>R

education income women

education NA 0.57758 0.061853
income 0.577580 NA -0.441059
women 0.061853 -0.44106 NA

> diag(1:3) # make diagonal matrix
[,11 ,2 ,3]

[1,] 1 0 0
[2,1 0 2 0
-[3,] 0 0 3

> diag(3) # order-3 identity matrix
[,13 [,21 [,3]

[1,] 1 0 0

[2,] o 1 0

[3.] o o 1

The MASS library includes a function, ginv, for computing generalized
inverses of square and rectangular matrices. Further facilities for matrix
computation are provided by the Matrix library. At the time of writing,
the Matrix library is available for R and for S3, bur not for 54.




268  WRITING PROGRAMS
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- PROGRAM CONTROL: CONDITIONALS, '}I‘":;:ifelse function in S provides a vectorized conditional, as required
LOOPS, AND RECURSION

> abs.2 <~ function(x) ifelse(x < 0, -x, x)
> abs.2(-3:3)
Conditionals 113210123

The general format of ifelse is
The basic construct for conditional evaluation in S is the if statement,

ifelse(wvector.condition, true.vector, false.vector)
which takes one of the following two general forms:

The three arguments of ifelse are all vectors of the same length;
1. if (logical.condition) command wherever an element of vector. condition is TRUE, the corresponding
2. if (logical.condition) command else alternative.command element of trug.vector is selected; where vector. condition is FALSE,
the corresponding element of false.vector is returned.

More complex conditionals can be handled by cascading if/else
statements. For example, the following function returns -1, 0, or 1
according to the sign of a number—negative, zero, or positive, consecu-

® In these constructions, if the first element of logical. condition
evaluates to TRUE or to a nonzero number, then command is
evaluated and its value is returned.

m If logical.condition evaluates to FALSE or 0 in the first form, tively.

then NULL is returned. > sign.1l <- function(x) {
+ if (x < 0) -1

® If logical.condition evaluates to FALSE or O in the second + else if (x > 0) 1
form, then alternative.command is evaluated and its value + else 0
returned. + }

® In either case, command (or alternative.command) may be a > sign.1(-5)
compound $ command, with the elementary commands that (] -1

compose it enclosed in braces and separated by semicolons or
new lines; when a compound command is evaluated, the value
returned is the value of its last elementary command. (Some
examples of compound commands appear below in the context

Once again, this is an artificial example, because this functionality is
provided by the sign function in S.

The same technique may be applied to the ifelse function, for exam-
ple, to provide a vector of signs:

of loops.)
> sign.2 <- function(x) {
The if statement is usually used in writing functions. Here, for exam- + ifelse (x < 0, -1,
ple, is a simple function that returns the absolute value of a number: + ifelse(x > 0, 1, 0))
> abs.1 <~ function(x) if (x < 0) -x else x v ¥ !
> abs.1(-5) > sign.2(c(~5, 0, 10))
(s (1] -1 0 1
> abs.1(5) . . .. X
[l 5 Alternatively, complex conditionals can be handled by the switch
‘ function (see the R or S-PLUS documentation for examples).
: Of course, in a real application we would use the abs function in S for
i‘ this purpose.
5 When abs. 1 is applied to a vector, it does not produce the result that we . g
(probably) intended, because only the first element in the condition x < 0 Loops (Iteration) ®

(which in the following illustration is TRUE) controls the action taken:

> abs.1(-3:3) # the first element, -3, controls the result The for, while, and repeat statements in S are used to implement
11 3 2 1 0-1-2-3 loops. Consider, for example, the task of computing the factorial of a
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nonnegative integer:

nl=n{n-1)---2)(Q1),
0l =

> fact.l <- function (x){

+ if (x <= 1) return(l)

+ f <~ 1 # initialize

+ for (i in 1:x) f <- f * i # accumulate product
+ f # returm result

+

}

> fact.1(5)
[1] 120 .

This, too, is an artificial problem: We can calculate the factorial of
very easily in S, either as gamma (n+1) or, for 7 > 0, as prod(1:n). Note
how, in this example, I initialize the local variable £ to 1, accumulate
the factorial product in the loop, and implicitly return the product as the
result of the function. It is also possible to return a result explicitly—for
example, return(f).

Integer Arithmetic in S4

A subtle problem arises in S4 when the fact . 1 function computes a large
result: In S4, when all numbers in a calculation are integers, “integer
arithmetic” (rather than “real arithmetic”) is performed. This can cause
an integer “overflow” if the result is a very large number. Try computing
fact.1(15), for example. To circumvent this problem, we can initialize
the computation at £ <- 1.0 (rather than at £ <~ 1), which is repre-

sented internally by S4 as a real number, causing the computation to be
done in real arithmetic.

The general format of the for statement is

for (loop.variable in values) command
In executing the loop, Loop.variable successively takes on the values in
the vector or list values; command is usually (but not in the preceding
example) a compound command enclosed in braces, { }, and is evaluated
each time through the loop using the current value of loop.variable.

In contrast, while loops iterate (repeat) as long as the specified condi-
tion holds true; for example:

> fact.2 <- function (x){

+ i <- f <- 1 # initialize

+ while (i <= x) {

+ £ <~ £ * i # accumulate product
+ i <- 1+ 1 # increment counter
+ }
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+ f # return result
+ }

> fact.2(5)

{11 120

The general format of a while loop is
while (logical.condition) command

where command, which is typically a compound command, is executed as
long as logical.condition holds.
Finally, repeat loops iterate until a break is executed:

> fact.3 <- function(x){

+ if ((1is.numeric(x)) |l (x != floor(x))
+ i1 (x < 0) |l (Qength(x) > 1))

+ stop(’argument must be a non-negative integer’)
+ i <~ f <- 1 # initialize

+ repeat {

+ f <- £ * i # accumulate product

+ i <=~ i+ 1 # increment counter

+ if (i > x) break # termination test
+ }

+ f # return result

* }

> fact.3(5)

[1) 120

> fact.3(1.5)

Error in fact.3(1.5) : argument must be a non-negative integer

Note the use of the || (double-or) operator here: || differs from | in two
respects:

1. | applies element-wise to vectors, while | | takes single-element log-
ical arguments.

2. || evaluates its right argument only if its left argument is FALSE.
This second characteristic can be exploited to prevent the evalua-
tion of an expression that would otherwise cause an error—in the
illustration, x != floor(x) is not evaluated if x is not numeric,
for example.

Similar comments apply to the && (double-and) operator: The right
argument of && is evaluated only if its left argument is TRUE.

This example also illustrates how the stop function may be used to
interrupt the execution of a function, signaling an error—in this case
when the input to fact .3 is inappropriate. As a general matter, checking
input to a function is good programming practice.
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The general format of repeat loops is simply

repeat command

If the loop is not to repeat endlessly, there must be a termination rest in
command, which is almost always a compound command.

Recursion is at times an elegant alternative to looping; recursive functions
are functions that call themselves:

> fact.4 <~ function(x){

+ if (x <= 1) 1 # termination condition
+ else x * fact.4(x - 1) # recursive call
+ }

> fact.4(5)

[1] 120

This recursive implementation of the factorial relies on the properties
nl=nx(n—1)! and 0! = 1! = 1. A potential pitfall of the procedure,
however, is that the name of the function can change by assignment (here
to factorial):

> factorial <- fact.4

> remove(fact.4)

> factorial(5) # tries to call the removed fact.4
Error in factorial(5) : couldn’t find function "fact.4"

Consequently, a safer approach is to use the special Recall function (in
place of the function’s name) to implement the recursive call:

> fact.5 <- function(x){

+ if (x <= 1) 1

+ else x * Recall(x - 1) # recursive call
+ }

> fact.5(5)

[1] 120

> factorial <- fact.5
> remove(fact.5)

> factorial(5) # still works with fact.5 removed
[1} 120 .
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e

An Extended lllustration: Binary
Logistic Regression*

With the exception of the introductory influence.plot function in
Section 8.1, all of the preceding programming examples have been trivial;
their purpose was transparency. The purpose of the current section is
to illustrate how the programming techniques described in this chapter
can be applied to a more complex problem. To this end, I develop two
programs for fitting binary logistic-regression models. Although they are
more realistic, these examples are in another sense artificial, because
logistic regression is handled perfectly well by the glm function (as
described in Chapter 5); indeed, checking results against glm will tell us
whether my programs work properly.

Estimation by the Newton-Raphson Method

The Newton-Raphson method is a common iterative approach to
estimating a logistic-regression model. The method may be succinctly
described as follows:

1. Choose initial estimates of the regression coefficients, such as b, =
0 (where the subscript 0 indicates that these are initial values).

2. Ar each iteration ¢, update the regression coefficients by the for-
mula

bz = bl—l + (X’Vz—lx)_lxl(y - pt—l)s

where X is the model matrix, with x; as its ith row; y is the response
vector (containing Os and 1s); p,_; is the vector of fitted response
probabilities from the previous iteration, the ith entry of which is

1

and V,_; is a diagonal marrix, with diagonal entries p; ,_,(1 —
i, e-1)-

3. Step 2 is repeated until b, is close enough to b,_;. At convergence,
the estimated asymptotic covariance matrix of the coefficients is

given by (X'VX)~, which is, conveniently, a by-product of the pro-
cedure.

Programming the Newton-Raphson method in S is straightforward:

> lreg <~ function(X, y, max.iter=10, tol=1E-6){
+ # X is the model matrix
+ # y is the response vector of Os and 1s
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# pax.iter is the maximum number of iterations
# tol is a-convergence criterion
X <~ cbind(l, X) # add constant
b <~ b.last <- rep(0, ncol(X)) # initialize coefficients
it <~ 1 # initialize iteration counter
while (it <= max.iter){
p <~ as.vector(1/(1 + exp(-X %*% b)))
V <- diag(p * (1 - p))
var.b <- solve(t(X) %*% V %*% X)
b <~ b + var.b %*% t(X) %% (y - p) # update coef.
if (max(abs(b - b.last)/(abs(b.last) + 0.01xtol)) < tol)
break
b.last <- b # update previous coef.
it <~ it + 1 # increment counter
}
if (it > max.iter) warning(’maximum iterations exceeded’)
list(coefficients=as.vector(b), var=var.b, iterations=it)

}

VT T ik S + o+

The only slightly tricky point here is the test for convergence, which
checks that the maximum absolute proportional change in the coefficients
is less than some small tolerance, by default 107¢: In calculating relative
changes, I protect against dividing by numbers very close to 0 by adding
a fraction of the tolerance to the denominator.® To protect against a run-
away calculation, the argument max. iter specifies the maximum number
of iterations (implemented in a while loop), which defaults to 10. The
function begins by appending a column of 1s to the model matrix for the
regression intercept. The function returns a list consisting of the regres-
sion coefficients, their estimated covariance matrix, and the number of
iterations performed.

To illustrate the application of this function, I return to Mroz’s labor-

force participation data, employed as an example of logistic regression in
Section 5.2.

> data(Mroz)

> attach(Mroz)

Mroz[1:5,] # first 5 obs.

1fp k5 k618 age wc hc lwg inc

\'2

1 yes 1 0 32 no no 1.210165 10.91
2yes O 2 30 mno no 0.328504 18.50
3 yes 1 3 35 no no 1.514128 12.04
4 yes O 3 34 no no 0.0921156 6.80
5 yes 1 2 31 yes no 1.524280 20.10

3. The convergence test could be incorporated into the termination condition for the while joop, but
I wanted to illustrate breaking out of a loop. I invite the reader to reprogram lreg in this manner.

Be careful, however, that the loop does not terminate the first time through, since b and b.1ast both
start at 0.
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The response variable, 1fp, and two of the predictors, wc and hc, are
factors. Because (unlike glm) the lreg function will not handle factors
properly, these variables must be converted to numeric data.* This is
easily done with the recode function in car:

> 1fp <~ recode(lfp, " ’yes’=l; 'no’=0 ", as.factor=F)

> wc <- recode(wc, " ’yes’=l; ’mno’=0 ", as.factor=F)

> hc <- recode(hc, " ’yes’=l; ’no’=0 ", as.factor=F)

> mod.mroz <- lreg(cbind(k5, k618, age, wc, hec, lwg, inc), 1fp)
>

Finally, I extract the coefficients from mod.uroz and compute their stan-
dard errors:

> mod.mroz$coefficients
[1] 3.182140 -1.462913 -0.064571 -0.062871 0.807274 0.111734
[7] 0.604693 -0.034446

> sqrt(diag(mod.mroz$var))
[1] 0.6443751 0.1970006 0. 0680008 0.0127831 0.2299799 0. 2060397
[7] 0.1508176 0.0082084

I invite the reader to compare these values with those computed by glm
(as reported in Section 5.2).

Estimation by General Optimization

Another approach to fitting the logistic-regression model is to let a
general-purpose optimizer do the work of maximizing the log-likelihood,

log, L =Y y;log,p; + (1 — y)log, (1 - i),

where, as before, p; = 1/[1 + exp(—x/b)] is the fitted probability of
response for observation i. :

Optimizers work by evaluating the gradient (vector of partial deriva-
tives) of the “objective function” (here the log-likelihood) at the current
estimates of the parameters, iteratively improving the parameter estimates
using the information in the gradient; iteration ceases when the gradient
is sufficiently close to 0. Information on the matrix of second deriva-
tives (the Hessian) may be used as well. Depending on the optimizer,
expressions for the gradient and Hessian may be supplied by the user,
or these quantities may be approximated numerically by taking differ-
ences; if expressions for the derivatives are available, then it is usually
advantageous to use them.

4. If we were seriously programming a logistic-regression function, it would be desirable for the
function to handle a model formula—a topic beyond the scope of this chapter.
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In the current context, the gradient and Hessian are very simple:

dlog, L
= 2()’.‘ — D)%
dlog, L o

abay XVX,

where X is the model matrix, x; is the ith row of X written as a column,
and V = diag{p;(1 — p,)}.

Several general optimizers are available in S, including the optim and
nlm functions in R, and nlminb, nlmin, and ms in S-PLUS. I will illustrate
how to proceed using optim; because, by default, optim minimizes the
criterion function, I work with the negative of the log-likelihood (i.e.,
half the deviance) and the negative gradient:

>
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
>

lreg.2 <~ function(X, y, method=’BFGS’){

X <- cbind(1, X)

neglogl <- function(b, X, y) {
p <- as.vector(1/(1 + exp(-X %*} b)))
- sum(y*log(p) + (1 - y)*log(l - p))
}

grad <- function(b, X, y){
p <- as.vector(1/(1 + exp(-X %% b)))
= apply(((y - p)*X), 2, sum)

}

result <- optim(rep(0, ncol(X)), negloglL, gr=grad,
hessian=T, method=method, X=X, y=y)

list(coefficients=result$par, var=solve(result$hessian),
deviance=2*result$value,
converged=result$convergence == 0)

In the 1reg.2 function:

1.

The negative log-likelihood and the negative gradient are defined
as local functions, neglogL and grad, respectively. Like local vari-

ables, local functions exist only within the function in which they
are defined.

Even though X and y are local variables in 1reg.2, they are passed
as arguments to neglogl and grad, along with the parameter vec-
tor b. In R, this is not strictly necessary, but it is in S-PLUS, and

doing so allows me to show you how to pass additional arguments
through the optimizer.’

S. A consideration of “scoping” rules for R and S-PLUS is above the level of this book; see, for
example, Venables and Ripley (2000, Chapter 3) and a brief treatment in the Web appendix to the

text.
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The optim function in R provides several general optimizers. |
have had good luck with the BFGS method for this kind of prob-
lem, so I have made this the default, but by providing an explicit
method argument to lreg.2, and passing this argument down to
optim, [ also have made it easy to substitute another method. See
help(optim) for details.

® The first argument to optim gives start values for the
parameters—in this case, a vector of Os.

® The second argument gives the objective function to be mini-
mized (here, the local function neglogL), and the third argument
gives the gradient (gr=grad). The first argument of the objec-
tive function and gradient must be the parameter vector (in this
example, b).

B Specifying hessian=T asks optim to return the Hessian, the
inverse of which provides the estimated covariance matrix of the
coefficients. The Hessian is computed numerically: optim does
not allow us to supply an expression for the Hessian.

B As explained, the method argument specifies the optimization
method to be employed.

® The two remaining arguments, X and y (the model matrix and
the response vector), are passed by optim ro neglogL and grad.

If the gradient is not given as an argument, optim will compute it
numerically. As I mentioned, it is generally a good idea to supply
an expression for the gradient, if one is available.

optim returns a list with several components. [ pick out the
parameters, the Hessian, the value of the objective function at the
minimum, and a code indicating whether convergence has been
achieved.

Trying out lreg.2 on Mroz’s data produces the following results:

> mod.mroz.2 <- lreg.2(cbind(k5, k618, age, wc, hc, lwg, inc), 1fp)
> mod.mroz.2%coefficients

(1]
(7]

3.182114 -1.462898 -0.064569 -0.062870 0.807268 0.111731
0.604687 -0.034447

> sqrt(diag(mod.mroz.2$var))

[11
(71

0.6444435 0.1970014 0.0680002 0.0127858 0.2299802 0.2060394
0.1508174 0.0082086

> mod.mroz.2$converged

f11

TRUE
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Optimization in S-PLUS
Unlike optim in R, the generally similar nlminb function in S-PLUS per-

mits the specification of an expression for the Hessian. Here is a version
of 1reg.2 that uses niminb:

> lreg.2 <~ function(X, y){
X <- cbind(1i, X)
k <- ncol(X)
tri <- outer(l:k, 1:k, "<=") # triangle
neglogl <- function(b, X, y) {
p <- as.vector(1/(1 + exp(-X %*% b)))
- sum(y*log(p) + (1 - y)*log(l - p))
¥
grad <- function(b, X, y, tri){
p <- as.vector(1/(1 + exp(-X %*% b)))
grad <~ - colSums((y - p)*X)
hess <~ (t{(X) %% diag(p*(1 - p)) %% X)[tril
list(gradient=grad, hessian=hess)
¥
result <~ nlminb(rep(0, ncol(X)), neglogl, gradient=grad,
hessian=T, X=X, y=y, tri=tri)
list(coefficients=result$par, deviance=2+result$objective,
var=solve(result$hessian), gradient=result$grad.norm,
message=result$message)

[V T T ik S I L N S 4

Notice that nlminb expects grad to return both the gradient and a
vector giving one triangle of the Hessian.

Estimation by Iterated Weighted Least Squares

A third approach to the problem, which I will leave as an exercise for
the reader, is to use iterated weighted least squares (IWLS) to compute
the logistic-regression coefficients (as glm does). The relevant formulas
(for binomial logistic regression) are given in Section 5.5.

m apply AND ITS RELATIVES

Avoiding loops and recursion can make § programs more compact, eas-
ier to read, and sometimes more efficient in execution. S provides several
facilities that we have already encountered—for example, matrix func-
tions and operators and vectorized functions—that encourage us to write
loopless expressions for tasks that would require loops in lower-level pro-
gramming languages, such as FORTRAN and C. The apply function,

e R
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and its relatives lapply, sapply, and tapply, can also help us to avoid
loops or recursion.

The apply function invokes (“applies™) another function along speci-
fied coordinates of an array. Although this is a useful facility for manipu-
lating higher-dimensional arrays (for example, in working with multi-way
contingency tables), in most instances the array in question is a matrix
or data frame (treated as a matrix).

By way of example, consider the data frame DavisThin in the car
library: The data represent the responses of 191 subjects to a seven-item
“drive for thinness” summated-rating scale and are part of a larger data
set for a study of eating disorders; each item is scored from 0 to 3. The

scale is to be formed by summing the items (DT1 through DT7) for each
subject:

> detach(Mroz)

> data(DavisThin)

> DavisThin[1:10,] # first 10 rows
DT1 DT2 DT3 DT4 DTS DT6 DT7

O 00 NGO W
WONOOOOOOOo
NOWNOO O OOO
HONOOOOOOO

0

WO WNNKHrOOOOO
WWWNOO O o0 O
WO WNOO O O OO
OO WO OO0 0000

> dim(DavisThin)
{1] 191 7

We can calculate the scale score for each subject by applying the sum
function along the rows (the first coordinate) of the data frame:

> DavisThin$thin.drive <~ apply(DavisThin, 1, sum)

> DavisThin$thin.drive
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
o 0 O o 0 1 8 19 3 15 14 4 7 12 15 O

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
0 3 6 1 0O 0 0 0 6 2 0 7 2 4 0

The numbers above the sums are the row names (subject numbers) from
the DavisThin data frame. Notice that I have chosen to add a variable
(thin.drive) to the data frame, rather than to define the scale in the
working data.

Similarly, if we are interested in the column means of the data frame,
they may be simply calculated as follows, by averaging along the second
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{column) coordinate:

> apply(DavisThin, 2, mean)

DT1 DT2 DT3 DT4 DTS
0.46597 1.02094 0.95812 0.34031 1.10995
DT6 DT7 thin.drive

0.93194 0.56545 5.39267

To extend the example, imagine that some items comprising the scale
are missing for certain subjects; to simulate this situarion, I will eliminate
the scale from the data frame and arbitrarily replace some of the data
with NAs:

> DavisThin$thin.drive <- NULL # remove thin.drive
> DavisThin{1,2] <- DavisThin(2,4] <- DavisThin[10,3] <- NA
> DavisThin({1:10,] # first 10 rows
DT1 DT2 DT3 DT4 DTS DT6 DT7
0 NA 0 0 0

o

WO~ DO WN
WoONOOOO OO
WO WNROOOO
FPowNOOOoOOOo
WwwWwNOoOOoOOOoOo
WO WNOOOOO
cowoooooo o

0

=

If we simply apply sum over the rows of the data frame, then the
result will be missing for observations with any missing items, as we may
readily verify:

> apply(DavisThin, 1, sum)([1:10] # first 10
1 2 3 45 6 7 8 910
NANA O O O 1 819 3 NA

A simple alternative is to average over the items that are present, mul-
tiplying the resulting mean by 7 (to restore 0 to 21 as the range of the

scale); this procedure is easily implemented by defining an anonymous
function in the call to apply:

> apply(DavisThin, 1, function(x) 7#*mean(x, na.rm=T)) [1:10]

1 2 3 4 5 6 7 8 9

0.000 0.000 0.000 0.000 0.000 1.000 8.000 19.000 3.000
10
15.167

Last, suppose that we are willing to work with the average score if
more than half of the seven items are valid, but want the scale.to be NA
if there are four or more missing items:

> DavisThin[1,2:5] <- NA # create some more missing data
> DavisThin[1:10,] # first 10 rows
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DT1 DT2 DT3 DT4 DT5 DT6 DT7
NA NA NA O

[=]
=z
E

000 NGO D WN
WONOOOOOO
(A)O(A)MMOOOOE
O WNOOO OO
HONOOOOO

WwwNnNoO O OooOo
WO WhNhOOOoOOoOOo
OO WO OOoOOoOOoOOoOo

-
[=]
=z
E

> make.scale <- function(items){

+ if (sum(is.na(items)) >= 4) NA

+ else T*mean(items, na.rm=T)

+ }

> apply(DavisThin, 1, make.scale){1:10] # first 10

1 2 3 4 5 6 7 8 9

NA 0.000 0.000 0.000 0.000 1.000 8.000 19.000 3.000
10

15.167

The lapply and sapply functions are similar to apply, but reference
the successive elements of a list. To illustrate, I convert the data frame
DavisThin to a list:

> thin.list <- as.list(DavisThin)
> thin.list
$DT1

[11000000020310010000302003003000
(1811 00002102000

$DT2
(11N 00 0 0 1 2 3 0 3 01 3 3 3024030

(18] 0 0 0 0 1 1 0 0 0 0 O

$DT7
(1]000000030030002003002000003000

[1811 00000001000

The list elements are the variables from the data frame. To calculate the
mean of each element (eliminating missing data):

> lapply(thin.list, mean, na.rm=T)

$DT1

{1] 0.46597
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$DT2
[1] 1.0263

$DT3
[1] 0.95767

$DT4
[1] 0.34392

$DT5
[1]) 1.1188

$DT6
[1] 0.93194

$DT7
[1] 0.56545

Notice that additional arguments to the function that is applied may be
specified (here, the na.rm argument to mean); this is true for apply as
well.

The lapply function returns a list as its result; sapply works similarly,

but tries to simplify the result, in this case returning a vector with named
elements:

> sapply(thin.list, mean, na.rm=T)
DT1 DT2 DT3 DT4 DTS DT6 DT7
0.46597 1.02632 0.95767 0.34392 1.11579 0.93194 0.56545

Finally, tapply (“table apply”) applies a function to each cell of a
“ragged array” containing data for a variable cross-classified by one or

more factors. I recall an example from Section 4.3, employing Moore
and Krupat’s conformity data:

> data(Moore)
> attach(Moore)

> Moore

partner.status conformity fcategory fscore
1 low 8 low 37
2 low 4 high 57
3 low 8 high 65
44 high 10 high 52
45 high 15 medium 44

The factor partner.status has levels low and high; the factor
fcategory has levels low, medium, and high; and the response,
conformity, is a numeric variable. We may, for example, use tapply

8.5 OBJECT-ORIENTED PROGRAMMING INS 283

to calculate the mean conformity for each combination of levels of
partner.status and fcategory:

> tapply(conformity,
+ 1list(Status=partner.status,
+ Authoritarianism=fcategory), mean)

Authoritarianism
Status high low medium
high 11.857 17.4 14.273
low 12.625 8.9 7.250

> detach(Moore)
>

Because 1 did not explicitly order the levels of the factors, the levels
appear in alphabetical order—not what we probably would want.

OBJECT-ORIENTED PROGRAMMING IN S* 8.5

Object-oriented programming in § is based on simple procedures of
“object dispatch,” where functions can be written to adapt their behavior .
automatically to the classes of their arguments, as explained below. The
general notion of object dispatch is implemented differently in S versions
3 and 4. R, up to version 1.3.1 (the current version at the time that [ am
writing), implements the $3 object-oriented programming system; there
are plans to incorporate 54 classes into R version 1.4.¢

S Version 3 R

In S3, the class attribute of an object determines the specific behavior
of a generic function by invoking a method function appropriate to the
object’s class. Not all objects in S have a class attribute, however. In
its simplest form, the class attribute of an object consists of a character

vector with a single element, giving the class of the object. For example,
the 1m function returns a linear-model object of class *1m’:

> mod.prestige <- 1m(prestige ~ income + education + women,
+ data=Prestige)

6. Rather than replacing the S3-style object system in R, the $4 object system will be implemented
primarily as a methods library.
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> attributes(mod.prestige)

$names
{1] "coefficients" ‘"residuals" "effects"
(4] "rank" "fitted.values" "assign"
[7] “qr* "df .residual" "xlevels"
[10] "call" "terms" "model"
$class
(1] "1m"

The function class may be used to extract or (on the left-hand side of
an assignment) to set an object’s class:

> class(mod.prestige)
[1] "im"

Generic functions are written to invoke methods determined (in most
instances) by the class of their first argument. For example, the generic
print function has the following definition:

> print
function (x, ...)
UseMethod ("print")

When print is called with an argument of class *1m’, for example, it
looks for a function named print. 1m; if such a function exists, it is called
as print.lm(x, ...). Indeed, it is perfectly proper to call print.lm
directly; thus, all of the following commands are equivalent:

> mod.prestige

Call:

lm(formula = prestige ~ income + education + women,
data = Prestige)

Coefficients:
(Intercept) income education women
-6.79433 0.00131 4.18664 -0.00891

> print(mod.prestige)

Call:

lm(formula = prestige ~ income + education + women,
data = Prestige)

Coefficients:
(Intercept) income education women
~-6.79433 0.00131 4.18664 -0.00891

> print.lm(mod.prestige)

Call:

Im(formula = prestige ~ income + education + women,
data = Prestige)
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Coefficients:
(Intercept) income education women
-6.79433 0.00131 4.18664 -0.00891

Recall that the print function is called automatically by any S statement
that is not an assignment—for example, when we simply type the name
of an object.

Suppose that we invoke the (hypothetical) generic function fun with
argument arg; if there is no method function for arg’s class, or if arg has
no class, then S looks for a method named fun.default. For example,
classless objects are printed by print.default. If, under these circum-
stances, there is no default function, S reports an error.

Method selection is slightly more complicated for objects whose class-
attribute vector contains more than one element. Consider, for example,
an object returned by the glm function:

> mod.mroz <- glm(lfp ~ ., family=binomial, data=Mroz)

> class(mod.mroz)

[1) "gln" "1m"

If we invoke a generic function with mod.mroz as its argument, say
fun(mod.mroz), then S will look first for a method named fun.glm;
if a function by this name does not exist, then it will search next for
fun.1lm, and finally for fun.default. We say that the object mod.mroz is
of (primary) class “glm” and inberits from class "1m". Inheritance permits
economical programming through generalization, but it can also get you
into trouble (if, for example, there is no function fun.glm, but fun.1m is
inappropriate for mod.mroz 7).

“Quick-and-dirty” programming, which is the focus of this chapter,
generally does not require writing object-oriented functions, but under-
standing concretely how the object system in S works is often useful.
To this end, consider the following object-oriented version of my first
logistic-regression program (from Section 8.3.4), which employs the
Newton-Raphson algorithm:

> lreg.3 <- function(X, y, predictors=colnames(X), max.iter=10,

tol=1E~6, constant=T){
if (lis.numeric(X) || !is.matrix(X))
stop(’X must be a numeric matrix’)
if (!is.numeric(y) |1 !all(y == 0 | y == 1))
stop(’y must contain only Os and 1s’)
if (nrow(X) != length(y))
stop(’X and y contain different numbers of observations’)
if (comstant) {
X <= cbind(1, X)
colnames(X) [1] <- ’Constant’

}

T T i S

7. In a case like this, the programmer of fun.lm should be careful to create a function fun.glm,
which calls the default method or reports an error (as appropriate).
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b <- b.last <- rep(0, ncol(X))
it <~ 1
while (it <= max.iter){
p <- as.vector(1/(1 + exp(-X %*% b))
V <- diag(p * (1 - p))
var.b <~ solve(t(X) %*% V %% X)
b <= b + var.b %% t(X) %% (y - p)
if (max(abs(b - b.last)/(abs(b.last) + 0.01*tol)) < tol)
break
b.last <- b
it <= it + 1
} .
dev <- -2+sum(y*log(p) + (1 - y)*log(l - p))
if (it > max.iter) warning(’maximum iterations exceeded’)
result <- list(coefficients=as.vector(b), var=var.h,
deviance=dev, converged= it <= max.iter,
predictors=predictors)
class(result) <- ’lreg’
result

}

VTS Ik T Tk S S S

As in Section 8.3.4, the first two arguments of lreg.3 are the model
matrix X and the response vector y, which contains 0s and 1s.

In rewriting the function, I provided for predictor names, which, by
default, are the column names of the model matrix X, and allowed the
regression constant to be suppressed.

The function begins by performing some checks on the data.

Before returning an object (called result in lreg.3) containing
logistic-regression coefficients, their covariance matrix, and so on, the
function assigns to the object the class ’lreg’.

Applying 1reg.3 to Mroz’s data:

> mod.mroz.3 <- lreg.3(cbind(k5, k618, age, wc, hc, lwg, inc), 1fp)
> class(mod.mroz.3)

[1] ulregn

> mod.mroz.3
$coefficients

[1] 3.182140 -1.462913 -0.064571 -0.062871 0.807274 0.111734
[7] 0.604693 -0.034446

$var

[,1] [,2] [,3] [,4] [,5]
[1,] 0.41521927 -0.06305186 ~2.3035e-02 -7.6663e-03 0.01281877
[2,] -0.08305186 0.03880924 1.9573e-03 1.2216e-03 -0.00454977

[7,] 0.00014344 2.2746e-02 -1.0779e-04
[8,] -0.00048973 ~1.0779e-04 6.7377e-05
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$deviance
(1] 905.27

$converged
[1] TRUE

$predictors
[1:] "COnSta.nt" Ilksll |Ik618ll |Iage|l |le||
[6] Ilhcll L lwgll L inc"

attr(,"class")
[1] "lreg"
>

We may now write ’lreg’ methods for standard generic functions,
such as print and summary:

> print.lreg <- function(x) {

coef <~ x$coefficients

names (coef) <- x$predictors

print(coef)

if (1x$converged) cat(’\n **x lreg did not converge *xx\n’)
invisible (x)

}

+ o+ + + +

> summary.lreg <- function(object) {

+ b <- object$coefficients

+ se <~ sqrt(diag(object$var))

+ z <~ b/se

+ table <- cbind(b, se, z, 2*(1-pnorm(abs(z))))

+ colnames(table) <- c(’Coefficient’, ’Std.Error’, ’z’, ’p’)
+ rownames (table) <- object$predictors

+ print(table)

+ cat (*\nDeviance =’, object$deviance,’\n’)

+ if ('object$converged)

+ cat(’\n Note: *** lreg did not converge ***\n’)
+

b

> mod.mroz.3

Constant k& k618 age wc hc
3.182140 -1.462913 -0.064571 -0.062871 0.807274 0.111734
1lwg inc

0.604693 ~0.034446 )

> summary(mod.mroz.3)
Coefficient Std.Error 4 P

Constant 3.182140 0.6443751 4.93834 7.8792e-07
k5 -1.462913 0.1970006 -7.42593 1.1191e-13
k618 -0.064571 0.0680008 -0.94956 3.4234e-01
age -0.062871 0.0127831 -4.91826 8.7317e-07
wc 0.807274 0.2299799 3.51019 4.4778e-04
hec 0.111734 0.2060397 0.54229 5.8762e-01
lwg 0.604693 0.1508176 4.00943 6.0864e-05
inc -0.034446 0.0082084 -4.19650 2.7107e-05

Deviance = 905.27

TS
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The print.lreg method prints a brief report, while the output produced
by summary.1lreg is somewhat more extensive. Note the use within these
methods of print and cat to produce output. We are already familiar
with the generic function print; the cat function may also be used for
printed output: Each “new-line” character (*\n’) in the argument to cat
causes output to resume at the start of the next line. It is convenrional
for the first argument of a method to be the same as the first argument
of the corresponding generic function (here x for print and object for
summary).

It is also conventional for print methods to pass through their prin-
cipal argument as an invisible result and for summary methods to create
and return objects. According to this scheme, summary.lreg would pro-
duce an object of class 1reg. summary, to be printed by a corresponding
print method (i.e., print.1lreg. summary, which I would then have to
write), but that seems an unnecessary complication here.

= 19

512: S Version 4

The object system in S4, while broadly similar to that in S3, is more
formal, consistent, and pervasive. There is, however, backward compat-
ibility to S3 classes, so that most software written in the older object-

oriented style still works (including the example developed in the previous
section).

In S4, every object belongs to one and only one class.® Classes are
defined globally, via the setClass funcrion. Adapting the earlier example,

I define a class of ’1reg’ objects to contain the results of a logistic
regression:

setClass(’lreg’,

representation(coefficients=’numeric’ , var=’matrix’,
iterations=’numeric’, deviance=’numeric’,

>
+
+
+ predictors=’character’))
>

8. Thar some objects in $3 do not have a class artribute can occasionally be a cause of inconve-
nience. Suppose, for example,

thar we want to define a method fun.matrix for the generic function
fun to be applied to matrix objects. Matrices in 3, however, are unclassed objects. The data. class
function can often be of help here: data.class returns the class of an object, if it has one; other-
wise, it returns another identifier, such as 'matrix’ for a matrix object or *numeric’ for a numeric

vector. Thus, a generic function might be written in the following manner to accommodate objects
with and without a class attribute:

> fun <- function(object, ...){

+ if (is.oull(class(object))) class(object) <-
+ UseMethod(’fun’, object)

+}

data.class(object)
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The first argument to setClass is the name of the class being dgﬁned,

here *1reg’. The second argument calls the representation function to

define the slots that compose objects of class ’1reg’; each argument to

representation is a slot name that identifies the kind of data (e.g_., a

numeric vector, a matrix, a character vector) that the slot is to conrain.
My S4 object-oriented logistic-regression program uses the Newrton-

Raphson algorithm (as explained in Section 8.3.4):
> lreg.4 <- function(X, y, predictors=colnames(X),
+ constant=T, max.iter=10, tol=1E-6){
+ if (!is.numeric(X) || !is.matrix(X))
+ stop(’X must be a numeric matrix’)
+ if (!is.numeric(y) || 'all(y == 0 | y == 1))
+ stop(’y must contain only Os and 1s’)
+ if (nrow(X) != length(y))
+ stop(’X and y contain different numbers of observations’)
+ if (constant) {
+ X <- cbind(1, X)
+ colnames(X) [1] <- ’Constant’
+ ¥

+ b <~ b.last <- rep(0, ncol(X))

+ it <= 1

+ while (it <= max.iter){

+ p <- as.vector(1/(1 + exp(-X %*% b)))

+ V <- diag(p * (1 ~ p))

+ var.b <- solve(t(X) %*% V %*% X)

+ b <= b + var.b %x% t(X) %x% (y - p)

+ if (max(abs(b - b.last)/(abs(b.last) + 0.01*tol)) < tol)

+ break

+ b.last <~ b

+ it <- it + 1

+ }

+ if (i > max.iter) warning(’maximum iterations exceeded’)

+ result <- new(’lreg’,coefficients=b,var=var.b,iterations=it,

+ deviance=-2xsum(y*log(p) + (1 - y)*log(l - p)),

+ predictors=predictors)

+ result

+

>

}

This function creates the class *1reg’ object result by calling the gen-
eral object-constructor function new and supplying the contents of each
slot; 1reg.4 terminates by returning the object result.

Let us try out lreg.4 on Mroz’s data:

> mod.mroz.4 <- lreg.4(cbind(k5, k618, age, wc, hc, lwg, inc), 1fp)

> class(mod.mroz.4)

(1] "lreg"

> mod.mroz.4

An object of class "lreg”

Slot "coefficients":
[1] 3.182140 -1.462913 -0.064571 -0.062871 0.807274 0.111734
{71 0.604693 -0.034446
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Slot "“"var":

Constant k5 k618 age

Constant 0.41521927 -0.063051B6 -0.023034861 —7.6663e~-003
k5 -0.06305186 0.03880924 0.001957324 1.2216e-003

k618 —-0.02303486 0.00195732 0.004624113 3.7474e-004

lwg -0.00673674 0.00014344 0.022745938 -1.0779¢-004
inc =0.00025326 -0.00048973 ~0.000107789 6.7377e-005

Slot "iteratiomns":
[1] &

Slot "deviance":
[1] 905.27

Slot "predictors":
[1] "Constant" "k5" "k618"

n age" . rye"
[6] het "lwg" "inc"

In $3, typing the name of an object (or entering any statement that
is not an assignment) causes the generic print function to be invoked;
similarly, in $4, typing the name of an object invokes the show function.
Because I have not yet defined a ’show’ method for objects of class
'1reg’, the default method—which in 54 is the function simply named
show—is invoked; show has the following definition:

> show

## automatic display of the value of a task. This is 2 generic
## with default method a call to ‘print()’

function(object)
{
print(object)
invisible (NULL)
}

I proceed to define a >show’ method for objects of class "1reg’ by calling
the setMethod function:

> setMethod(’show’, signature(object=’lreg’),
+ definition=function(object){

+ coef <- object@coefficients

+ names (coef) <- object@predictors

+ print(coef)

+ }

+ )

>

B The first argument to setMethod gives the name of the method that
we wish to create (here, *show’).

ooy

8.5 OBJECT-ORIENTED PROGRAMMING IN S 291

m The second argument indicates the signature of the method-—thar is,
the kind of objects to which it applies. In 54, methods can have com-
plex signatures that depend upon the classes of several arguments;
in this instance, however, the show method has only one argument,
object, and the method is meant to apply to objects of class *1reg’.

m The final argument to setMethod defines the method function;
this may be a preexisting function or, as here, a function defined
“on the fly.” Methods in S4 have to employ the same arguments as
the generic function (e.g., the single argument object for a ’show’
method). Notice that the operator @ (the at sign) is used to extract the
contents of a slot (much as $ is used to extract a list element).

Let us verify that the new method works properly:

> mod.mroz.4
Constant k5 k618 age we he lwg
3.1821 -1.4629 -0.064571 -0.062871 0.80727 0.11173 0.60469

inc
~-0.034446

The *show’ method for objects of class *1reg’ reports only the regres-
sion coefficients. I next define a ’summary’ method that outputs more
information abourt the logistic regression:

> setMethod(’summary’, signature(object=’lreg’),

+ definition=function(object, ...){

+ b <- object@coefficients

+ se <- sqrt(diag(object@var))

+ z <~ b/se ‘
+ table <~ cbind(b, se, z, 2*(1-pnorm(abs(z)))) k
+ colnames(table) <- c(’Coefficient’, ’Std.Error’, 'z?, 'p’)

+

+

+

+

+

>

print (table)
cat(’\nDeviance =’, object@deviance,’\n’)

}

rownames(table) <- object@predictors \

Because the generic summary function has two arguments, object
and . .., so must the method, even though ... is never used in the body
of the method. (In a generic function, the argument ... can be used to
“soak up” different arguments for different methods.) Applying summary
to the model produces the desired result:

> summary(mod.mroz.4)
Coefficient Std.Error z P !
Constant 3.182140 0.6443751 4.93834 7.8792e-007
k5 ~1.462913 0.1970006 -7.42593 1.1191e-013
k618 -0.064571 0.0680008 -0.94956 3.4234e-001
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age  -0.062871 0.0127831 -4.91826 8.7317e-007
we 0.807274 0.2299799 3.51019 4.4778e-004
he 0.111734 0.2060397 0.54229 5.8762e-001
lug 0.604693 0.1508176 4.00943 6.0864e-005
inc  -0.034446 0.0082084 -4.19650 2.7107e-005

Deviance = 905.265914855628

Finally, a word about inheritance in S4: Recall that in $3 an object can
have more than one class. The first class is the object’s primary class, but
if a method for a particular generic function does not exist for the pri-
mary class, methods for the second, third, and so on, classes are searched
for successively. In S4, in contrast, each object belongs to one and only
one class. Inheritance is (as it should be) a relationship between classes
and nor a property of objects. If one class extends another class, then the
first class inherits the methods of the second. Inheritance is established
by the setIs function: setIs(’classA’, ’classB’) asserts that classA
extends, and therefore can inherit methods from, classB; put another
way, objects of class ’classA’ also belong to class ’classB’.

The object-oriented programming system in S4 is more complex than
that in S3—indeed, I have only scratched the surface here, showing how
to do in S4 what we previously learned to do in $3. The S4 object system
is quite new; whether its added complexity will prove productive for
developing statistical software remains to be seen. At the moment, almost
all object-oriented software in S uses the older approach.

WRITING S PROGRAMS

Programming is a craft. Like most crafts, it is a combination of art and
science; and as is true of most crafts, facility in programming is partly the
product of experience. The purpose of this section is to give general, mis-

cellaneous, and mostly unoriginal, advice ahour the craft of programming
in S, organized as brief points:

B Program experimentally. One of the advantages of programming in an
interpreted environment is the ability to type S statements and have
them immediately evaluared. You can therefore try out key parts of
your program, and correct them, before incorporating them into the
program. Often, you can simply copy a debugged statement from the
R Console (or S-PLUS Commands window) into your program editor.

& Work from the bottom up. You will occasionally encounter a moder-
ately large programming project. It is almost always helpful to break a
large project into smaller parts, each of which can be programmed as
an independent function. In a truly complex project, these funcrions
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may be organized hierarchically, with some calling others. If some of
these small functions are of more general utility, then you can maintain
them as independent programs and reuse them; if the small functions
are unique to the current project, then they may eventually be incorpo-
rated as local functions. Traditionally, large projects were programmed
“from the top down”—beginning with the highest level of generality—
bur a functional, interpreted programming language such as S makes
it easier to “build the language up” to the program.’

B If possible and reasonable, avoid loops. Programs that avoid loops are

generally easier to read and often are more efficient, especially if a loop
would be executed a very large number of times. Some processes, such
as numerical optimization, are intrinsically iterative, but in many other
cases loops can be avoided by making use of vectorized calculations,
matrix operations, functions such as apply, or even recursion. Some-
times, however, a loop will be the most natural means of expressing a
computation.

® Test your program. Before worrying about speed, memory usage, ele-

gance, and so on, make sure that your program provides the right
answer. Program development is an iterative process of refinement,
and getting a program to function correctly is the key first step. In
checking out your program, try to anticipate all of the circumstances
that the program will encounter and test each of them. Furthermore,
in “quick-and-dirty” programming, the time that you spend writing
and debugging your program will probably be vastly greater than
the time the program spends executing. Remember the programmer’s
adage!®: “Make it right before you make it faster.” (And emphasize
the “quick”—in the sense of quick program development—as opposed
to the “dirty.”)

W Learn to use debugging tools. It is rare to write a program that works
correctly the first time that it is tried, and debugging is therefore an
important programming skill. Working in an interpreted environment
simplifies debugging: As explained in Section 1.1.7, the traceback
function can help you to locate the source of an error. Often, all thar is
required to pinpoint the error is to add statements to the program that
call the print or cat functions to print out partial resulrs. Similarly,
inserting calls to the browser function in a program (see the on-line
help) allows interactive inspection of local variables. Both R and S-
PLUS also provide a variety of more sophisticated debugging tools: In

9. See Graham (1994, 1996) for an eloquent discussion of these points in relation to another func-
tional programming language—Lisp.

10. This dictum, and a great deal of other good advice on programming, originates in Kernighan
and Planger (1974); see also Kernighan and Pike (1999).
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particular, take a look at the documentation for the debug function in
R and the inspect function in S-PLUS.

m Document the program. Unless your program is to be used only once
and then thrown away, its use should be documented in some man-
ner. The best documentation is to write programs in a transparent
and readable style—use descriptive variable names; avoid clever but
opaque tricks; do not pack too many operations into one line of pro-
gram code; indent program lines (for example, in loops) to reveal the
structure of the program. You can also add a few comments to the
beginning of a function to explain what the function does and what its
arguments mean (look back at the lreg function in Section 8.3.4, for
example). It is my assumption that you are programming for yourself,
rather than for others, and this decreases the burden of preparing doc-
umentation, but you want to understand your own programs when
you return to them a month or a year later.

PRy —
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Index of Data Sets

The following data frames are all in the car library.

Baumann, methods of teaching reading,
143-144

Cowles, volunteering for an experiment,
247-255

Davis, measured and reported weight and
height, 119-123, 146-147

DavisThin, drive for thinness scale,
279-282

Duncan, prestige of U.S occupations,
18-34, 43, 47-53, 145-148,
193-201, 261

Ericksen, U.S. Census undercount,
217-225

Freedman, population density and crime
in U.S. cities, 55-60

Guyer, anonymity and cooperation,
39-42, 48, 6165, 76-79

Moore, conformity, partner’s status, and
authoritarianism, 136-142, 282-283

Mroz, U.S. married women’s labor-force
participation, 159-163, 233,
274-275, 285-288

Ornstein, interlocking directorates among
Canadian firms, 100-101, 113-114,
178-180, 187-188, 202-209,
230-232

Prestige, prestige of Canadian
occupations, 43-51, 86-96, 103-104,
108-112, 123-136, 210-216, 265

SLID, Survey of Labour and Income
Dynamics (Ontario), 98-100,
105-107

UN, infant-mortality and GDP, 115-117
Vocab, vocabulary and education, 96-98

Womenlf, Canadian married women’s
labor-force participation, 66-68,
167-177, 227-229
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Index of Functions,
Operators, Control

Structures, and
Other Symbols

Functions in the car library are marked [car].

+, addition, 34, 119, 149, 262

&%, and, 12, 271

=, argument specification, 5, 259

_, assignment, 12n

=, assignment, 10

<-, assignment, 8, 12n, 72, 74

» 0 v character string, 38, 42, 66

#, comment, 7

., compact left or right-side (model formula),
135, 219

{ }, compound statement, 23, 260, 268, 270

*, crossing (model formula), 119, 135, 150,
216

- crossed up to order {model formula), 119,
150, 213

/, division, 34, 149

2, documentation, 6, 35

==, equals, 10, 68

\, escape next character, 44n

-, exponentiation, 3—4, 149

-, exclude term (model formula), 119, 135,
150

;, expression separator, 13, 268

(), function call, 5

>, greater than, 10-11

>=, greater than or equals, 10-11

(), grouping, 4, 12

%inY%, nested within (model formula),
135-136, 150

+, include rerm (model formula), 149-150

[ 1, indexing, 9-10, 50, 71-75, 77-78

Y%*%, inner product, matrix product, 262-263

:, interaction {model formula), 133, 150

~, is modeled as (model formula), 27, 120

<, less than, 10-11

<= less than or equals, 10-11

$, list element, 63, 77, 291

L[ 11, lisc element, 75. 77

=, multiplication, 3—4, 149, 262

/, nesting (model formula), 119, 150

1, not, 10-11

1=, not equals, 10-11

11, or, 12, 271

:, sequence, 7

@, slot extraction, 291

-, subtraction, negation, 34, 149, 262

&, vecrorized and, 10-12

i, vectorized or, 10-12, 271

..., unspecified arguments (model formula),
25,259, 261, 291

abline, add line to graph given intercept
and slope, 23, 58, 97-98, 121-122,
199, 206, 260

abs, absolute value, 12, 268

all, all elements TRUE2, 68

anova, analysis of variance or deviance table,
35, 131-132, 162
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Anova [car], analysis of variance or deviance
table, 132-135, 132n, 162-163, 166,
180, 183, 187, 209

aov, analysis of variance, 35

apply, apply a function to margins of an
array, 137n, 278-280, 293

args, print funcrion arguments, 149

array, array COnstructor, 70

arrows, draw arrows on graph, 244,
253~255

as, general coercion, 83

as.character, coerce to mode character, 81

as.data.frame, coerce to data frame, 184

Ask [car], supply function arguments
interactively, 109-110, 117, 211, 213

as.numeric, coerce to mode numeric, 81,
101, 138

assign, assign value to variable, 213

as.vector, coerce to vector, 82-83, 199, 260

attach, add data frame to search list, 20, S0,
54, 63-64

attributes, of object, 79-80

av.plots [car], added-variable plots, 31-32,
192, 200, 205, 215-216, 225,227,232

axis, add an axis to a graph, 138, 239, 242,
253

binomial, GLM family generator, 157-158

binom. test, exact test for a proportion, 35

box, frame graph data region, 87, 138,
241-242

boxcox, Box-Cox regression, 204

box. cox [car], Box-Cox power
transformations, 107, 110-111, 117,211

box.cox.axis [car], axis for Box-Cox
transformed variable, 115

box. cox.powers [car], normalizing
cransformations, 111-112

box.cox.var [car], constructed variable for
Box-Cox regression, 205

boxplot, 35, 91-92, 101-102, 114

box , tidwell [car], Box-Tidwell regression,
214215

break, terminate loop, 271

browser, debugging, 293

¢, combine, 7, 38, 66

cat, printed outpur, 293

cbind, join by columns, 22

ceres.plots [car], 214, 225

chisq.test, test for independence ina
contingency table, 35

chol, Cholesky decomposition, 266

class. of obiject, 81, 82n, 83, 284, 286

colnames, second component of dimnames,
74

confidence.ellipse [car], 147-148, 147n

contrasts, set Or View CONtrasts, 128-130,
143-144

contr.helmert, Helmert contrasts, 129

contr.poly, othogonal-polynomial contrasts,
130

contr.sum, deviation-coded contrasts, 129

contr.treatment, dummy-coded contrasts,
128-129, 161

cookd [car], Cook’s distances, 30, 192,
198-199, 225, 228

cooks.distance, Cook’s distances, 192

coplot, conditioning plots, 105-106

cor, correlations, 35, 266

count.fields, in each line of a data file, 45

crossprod, sums of squares and products,
266n

crosstabs, contingency table, 35, 183

cr.plots [car|, component + cesidual plots,
32-33, 210-214, 225, 230-231, 233

cut, dissect range of variable, 64-65

data, read data from a library, 47

data.class, class of object or substitute for
class, 288n

data.ellipse [car|, 147-148

data.frame, dara frame constructor, 40, 60

dbinom, binomial probability-mass function,
35,92

dehisq, chi-square density, 35, 91-92

debug, execute function line-by-line, 294

density, kernel density estimation, 89-90,
109, 202-203

det, determinant, 267

detach, remove data frame or library from
search path, 51, 63-64

dev. cur, current graphics device, 255

dev.1ist, list of open graphics devices. 255

dev.set, set current graphics device, 255

af, F density, 35, 92

dfbeta [car], coefficient change on case
deletion, 196, 225, 228

dfbetas [car], standardized coefficient
change on case deletion, 28, 196, 225

diag, matrix diagonal, diagonal matrix,
identity matrix, 267

dim, dimension arttribute, 69

dnorm, normal density, 35, 90, 92
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dt, 7 density, 35, 92
-dunif, uniform densicy, 92

edit, edit and return object, 41
eigen, eigenvalues and eigenvectors, 219,

266
else, conditional evaluation, 268

expand.grid, all combinations of values,
170, 181, 248-249

factor, constructor for class factor, 81, 137,

164

fix, edit and alter object, 41

floor, round down, 271

for, iteration, 111, 199, 239, 241, 253-254,
259-260, 269-270

fractions, write numbers as rational
fractions, 264

friedman.test, Friedman rank-sum test, 35

function, function definition, 13, 23n,
258-260

gamma, gamma function, 270

Gamma, GLM family generator, 157-158

gaussian, GLM family generator, 157-158

ginv, generalized inverse, 267

glm, generalized linear model, 156-159, 161,
165, 169-170, 180, 182, 184, 187-189,
248,273, 275, 285 ‘

graphsheet, new graphics device, 255

gray, generate RGB gray levels, 246-247

hatvalues |car], 30, 195, 199, 225
heem [car], heteroscedasticity-consistent
coefficient covariance matrix, 209
help, documentarion, 5-6, 35, 149
hist, histogram, 21-23, 29, 35, 86-89

1, identity function, 150, 213, 216

identify, point identification, 25-26, 30, 56,
91-92, 101, 122, 139, 199, 2238, 260

if, conditional evaluation, 259-260. 268

ifelse, vectorized conditional, 269

inspect, debugging, 294

inverse.gaussian, GLM family generator,
157-158

invisible. return but do not print result,
287-288

is, general predicate, 83

is.character, predicate for mode characrer,
61

.factor, predicate for class factor, 81

is.matrix, matrix predicate, 82-83

is.na, missing-data predicate, 59

is.numeric, predicate for mode numeric, 81

i

]

jitter, randomly perturb coordinates, 97, 99

kruskal.test, Kruskal-Wallis rank-sum test,
35

lapply, apply a function to list elements,
279, 281-282

legend,addalegendtoagraph, 138-139,172,
245

length, number of elements, 12, 78-79, 82n,
83, 138

levels, of a factor, 142

leverage.plots [car], 201

library, attach library to search path, 28,
47

linear.hypothesis [car], test of, 145-147,
209

lines, add lines to a graph, 23, 89, 97-98,
138-139, 239, 241-242, 246, 253

list, list constructor, 70-71

1m, linear model, 26-27, 29, 35, 57-59,
97-98, 119-121, 123-124, 131, 133,
135-136, 149-153, 209, 211, 219,
266, 266n, 283

locator, return mouse coordinates, 165,
172, 243, 245, 255

log, logarithm, 5-6, 56, 62, 149

logb, logarithm with base, 5, 57

logit [car], logit transformations, 108

loglin, log-linear model, 184n

loglm, log-linear model, 184n

lowess, local linear regression smoother, 59,
97-98

matrix, matrix constructor, 69, 82, 249, 261
max, maximum, 35

mean, 12, 35, 52, 56, 137, 280

median, 35, 56

min, minimum, 35

mode, of object, 78-79, 82n, 83

ms, general optimization, 276

multinom. multinomial logit model, 173

AR
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na.exclude, remove missing dara, 151-152,
170

na.fail, signal error with missing data,
151-152, 170

names, names attribute, 72-73

na.omit, remove missing darta, 60, 126,
151-152, 170

n.bins [car], number of histogram bins, 87

ncv.test [car], test of non-constant error .
variance, 33, 208

new, general formal-object constructor, 289

nlm, general optimzation, 276

nlmin, general optimzation, 276

nlminb, general optimization, 276-278

nrow, number of rows, 66

numeric, constructor for mode numeric, 81

objects, list objects, 14

optim, general optimization, 276-278

options, set or query options, 27, 58, 127,
129, 141, 165, 181

ordered, constructor for class ordered
{factor), 130, 164

outer, general outer product, 263

outlier.test [car], 194, 225

pairs, scarrerplot matrix, 22-24, 103

par, set or query graphics parameters, 23,
111n, 165, 171, 238-240, 243, 255

pbinom, binomial CDF, 35, 92

pchisg, chi-square CDF, 35, 92, 177

persp, perspective surface plot, 249-250

pf, F CDF, 35, 92

piechart, 246-247

plot, generic graphs, 25, 35, 93, 93n, 109,
138, 143, 179, 195, 198, 202-203, 224,
236-245, 253, 255, 260

plot.default, default plot method,
236-237

pnorm, normal CDF, 35, 91-92

points, add point-symbols to a graph, 23,
89-90, 138-139, 179, 198-199, 239,
241, 246, 260

poisson, GLM family generator, 157-158,
178

polr, proportional-odds logistic regression,
177

poly, orthogonal polynomial regressors, 211,
213

polygon, draw a polygon on a graph, 244

power . axis [car], axis for power-transformed
variable, 114

precomp, principal-components analysis, 219,
266

predict, predicted values from model, 171,
174, 177, 248-249, 251

princomp, principal-components analysis,
219, 266

print, generic output, 20, 285-286,
287-288, 290, 293

print.default, default print method, 285

print.1n, print method for linear-model
objects, 285-286

prob.axis [car], axis for logit-transformed
variable, 115

prod, product, 270

prop.test, tests for proportions, 35

pt, t CDF, 35, 92

punif, uniform CDF, 92

gbinom, binomial quantile function, 35, 92

qchisg, chi-square quantile function, 35,
91-92

qf, F quantile function, 35, 92

gnorm, normal quantile function, 35, 90, 92

qqnorm, normal quantile-comparison plots,
90

qq.plot [car], quantile-comparison plots,
29-30, 90-92, 110-111, 193-194, 202

qr, QR decomposition, 266

qt, t quantile function, 35, 92

quantile, sample quantiles, 35, 65

quasi, GLM family generator, 157-158, 186,
188

quasibinomial, GLM family generator,
157-158, 187

quasipoisson, GLM family generator,
157-158, 187-188

qunif, unform quantile function, 92

rainbow, generate RGB colors, 246-247

range, minimum and maximum, 35

rbinom, binomial random numbers, 35, 92

rchisq, chi-square random numbers, 35,
91-92

read.fvf, read fixed-width-format files, 46

read.table, read data from file to data
frame, 19-20, 4246, 60, 126

Recall, recursion, 272

recode [car], recode variable, 64-68, 168,
275

regsubsets, subset regression, 220, 224

remove, delete objects, 15, 48

rep, replicate data, 40
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repeat, iteration, 269, 271-272

return, terminate function and return result,
260, 270

rf, F random numbers, 35, 92

rnorm, normal random numbers, 9, 35,
91-92

round, round-off numbers, 264

rownames, first component of dimnames, 74,
90

row.names, row names of data frame, 25-26

rstudent [car], studentized residuals, 28-
30, 193, 199, 225

rt, ¢t random numbers, 35, 92

runif, uniform random numbers, 92

sample, random sample, 35, 66-67, 69-70,
101

sapply, apply a function to list elements,
279, 281-282

scale, standardize variables, 124

scan, input data, 3940, 46

scatterplot.matrix [car], 25, 94-95, 98,
103-104, 117, 147n

sd, standard deviation, 35, 138

search, search path, 49-51, 54

segments, add line segments to a graph, 244,
255

seq, generate sequence, 7

setClass, define formal class, 288-289

setIs, define formal inheritance, 292

setMethod, define formal method, 290-291

show, generic display, 290~291

sign, of number, 269

sm.density, bivariate kernel-density
estimation, 99

solve, solve linear equations, least-squares
fit, matrix inverse, 263-265, 265n

sort, order data, 66-67, 179

source, read commands from file, 16

split, divide data into groups, 102

splonm, scatterplot matrix, 104

spread.level.plot [car], 33, 113-114,
206-207

sqrt, square-root, 9

stdev, standard deviation, 35, 33, 138

stem, stem-and-leaf display, 35, 88

step, stepwise model selection, 220-224

stepAIC, stepwise model selection, 220

stop, terminate function and signal error,
271

subsets [car|, plot regression subsers,
224225

sun, 12, 99, 279-280

summary, generic summaries, 9, 20, 27-28,
62, 79, 111, 120-121, 161, 163, 173,
224, 287-288, 291

svd, singular-value decomposition, 219, 266

switch, conditional evaluation, 269

t, matrix transpose, 263

table, contingency table, 35, 179, 183

tapply, apply a function to cells of a ragged
array, 137-138, 137n, 279, 282~283

text, add text to a graph, 165, 239, 243,
253, 255

traceback, debugging, 17, 293

trellis.device, new graphics device, 255n

truehist, histogram, 88

ts.plot, time-series plot, 35

t.test, ¢ tests for means, 35

unclass, remove class attribute, 127

unique, distinct values, 99, 179

update, refit model, 34, 123, 134-135, 170,
187

var, variance or covariance matrix, 35, 56,
138

vif [car], variance-inflation factors, 217,
219

warning, print warning message, 286

weights, observation weights, 188n

vhich, TRUE indices, 45

which.names [car], observation indices, 34

while, iteration, 269~271, 274, 274n

wilcox.test, one and two sample Wilcoxon
tests, 35

windows, new graphics device, 255

vireframe, 3D surface plot, 250

write.table, output dara frame to ASCII
file, 48—49

xtabs, contingency table, 35, 183
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Berndt, E. R., 159

Bowman, A. W., xvi, 89n, 99
Box, G. E. P, 106, 203, 214
Breusch, T. S., 208

Buja, A., 102

Campbell, A., 163, 175

Chambers, J. M., xv, 85, 266n
Cleveland, W. S., 85, 97, 105

Clogg, C. C,, 175

Converse, P. E., 163

Cook, D., 102

Cook, R. D., 102, 206, 210n, 214, 227
Cowles, M., 247

Cox, D. R., 106, 203

Davis, C., 120, 247
Davison, A. C., xvi
Diaconis, P, 87

Duncan, O. D., 18

Efron, B., xvi
Ericksen, E. ., 217
Ervin, L. H., 209

Fienberg, S. E., 181

Fox, J., ix, X, 39, 140, 147, 217, 220n, 247
Freedman, D., 87

Freedman, J. L., 55

Graham, P, 293n
Grambsch, P. M., xvi
Guyer, M., 39

Hastie, T. J., xv, xvi
Hinkley, D. V., xvi

Kadane, J. B., 217
Kernighan, B. W, 293n
Kleiner, B., 85

Krupat, E., 136

Landwehr, J. M., 225
Litle, R. J. A, 54

Loader, C, xvi, 89n
Long, J. S., 159, 209

McCabe, G. P, 143
Miller, W. E., 163
Monette, G., 147, 217
Moore, D. S., 143
Moore, J. C,, Jr, 136
Mosteller, £ W., 115
Mroz, T. A,, 159

Nelder, J. A., 155
Ornstein, M. D., 100, 178, 202n

Pagan, A. R., 208

Pike, R., 293n

Pinheiro, J. C., xvi
Plauger, P. J., 293n
Powers, D. A., 175, 181
Pregibon, D., 225

Ripley, B. D., xvi, 173, l.77, 204, 213, 257, 276
Rubin, D. B., 54

Sall, J., 201

Schafer, J. L., xvi, 54
Shihadeh, E. S., 175
Shoemaker, A. C., 225
Silverman, B. W., 89n
Stine, R., x

Stokes, D. E., 163
Swayne, D. E, 102, 235

Therneau, T. M.. xvi

Tibshirani, R. J., xvi

Tidwell, P. W, 214

Tierney, L., 102
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Venables, W. N., xvi, 173, 177, 204, 213, 257,
276

Wang, P. C., 223, 227
Wedderburn, R. W. M., 155
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Abbreviation of arguments, 5, 103-104, 259
Added-variable (partial-regression) plots, 31,
192, 200-201, 210n
for constructed variables, 205-206
for GLMs, 227
Akiake information criterion (AIC), 162,
176-177, 221
Analysis of covariance. Sec regression,
dummy
Analysis of deviance (for GLM), 162-163,
166, 170, 177, 180
Analysis of variance, 35, 131-133, 136-142,
182n, 209
Applying a function
over an array, 279-281
over a list, 281-282
over a table, 137-138, 282-283
Arithmetic, 34
vectorized, 7-8
Arrays, 70, 73-74, 183, 279
ragged, 282
Assignment, 8, 10, 12n, 64, 72, 74, 76
and printing, 9, 285
Attributes, 69, 78-80
Axes, 138, 165, 236-237, 242, 253
labels, 237-238, 240
logarithmic, 237
suppressing, 23, 238

Basic statistics, 34-36
Bayes information criterion (BIC), 221-225
Bayes prediction rule, 174
Binary data, 159-163
Binomial

dara, 156, 163-166

family (for GLM)}, 156
Block of statements. See compound expressions
Boostrapping, xiii, 29, 193, 193n
Bonferroni test, for outliers, 193-194
Boxplots, 35, 91-94

parallel, 100, 114, 144-145
Bubble plot of Cook’s distances, 198199,

258-261

Bulging rule, 115
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C (programming language), x, 6n, 278
car library, 1, 28, 85, 104, 191, 235,
diagnostics, 28-29, 192199, 217
graphics, 29, 87, 103, 113-115, 192-194,
200-201, 205-207, 210, 214,

224-225
hypothesis tests, 132, 145, 162, 180, 187,
194, 208-209

obraining, xiii
other funcrions, 64—66,107-108, 168,214
Categorical data, 20, 64, 158-184
CERES plots, 214
for GLMs, 230
Character data, 38, 42, 60-61, 66, 78
Cholesky decomposition, 266
Classes, 71, 80-82, 82n, 93n, 127, 283-293
Coercion, 81
Collinearity, 216-220
Color, use of, 87n, 100, 238, 240, 244-247,
260-261
Comma-delimited files, 42
Command line, xv
editing, 15
Comments, 7, 53, 294
Comparison operators, 10-11
Compiler, xn
Complementary log-log, link function,
156-159
Component + residual (partial-residual)
plots, 32, 210-214, 226, 230-231
Compound expressions, 13, 23, 268-272
Conditionals, 259, 268-269
Conditioning plots (coplots), 105-106
Confidence envelope
for quantile-comparison plots, 90
for studentized residuals, 29-30, 193-194
Confidence interval, for response surface, 252
Confidence region, joint, 147-148 i
Constructed-variable plots i
for Box-Cox regression, 204-206
for Box-Tidwell regression, 215-216,
231-232
Contingency tables
chi-square test for independence in, 35
constructing, 35, 183-184
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logit models for, 163-166
log-linear models for, 181-184
raveling, 184
Continuation dichotomies, 168, 175
Contrasts, 127-130, 152, 221
deviation-coded (sum-to-zero), 128-129,
140-141, 181
dummy-coded (treatment, indicator), 128,
140, 160-161
Helmert, 128, 140, 161
interactions, 144
orthogonal-polynomial, 130 (see also
orthogonal polynomial regressors)
user-specified, 142-144
Convergence, testing for, 274
Cook’s distances, 30, 197-199, 226-228,
258-260
Coordinates, locating, 243. See also
identification of points
Coordinate space, for graph, defining, 138,
198, 236-237. 241, 253, 260
Correlations, 35
CRAN (Comprehensive R Archive Network),
X
Crossed effects 150. See also interactions
Cross-validation, 220, 220n
Cumulative distribution functions (CDFs),
91-92

Data
binary, 159-163, 230
binomial, 156, 163-166, 230
categorical, 20, 64, 158~184
character, 38, 42, 60-61, 66, 78
count, 177-184, 202n, 230
dichotomous, 158-166
editing, 4142
exporting, 49
fixed-format, reading, 45-46
importing, 46~47
input from file, 18-19, 4246
input from keyboard, 38-42
in libraries, 47
logical, 38, 99
missing, 43, 54-60, 126, 151-152, 156,
242, 280
in models, 150, 156
numeric, 20, 60, 66, 78
ordinal, 175-177
patterned, 40
polytomous, 167-178
working, 49-51, 61-64 (see also global
environment)
Database management systems, 47n
Dara frames, 18-19, 37, 4041, 61, 68, 78,
80, 279
attaching, 20, 4748, 50, 64, 120

detaching, 51, 64
file input into, 4247
indexing, 76-78
missing data, removing, 60
Debugging, 16-28, 293-294
Default values, of arguments, 6, 259
Density estimation, nonparametric, 88-90,
103, 108-109, 202-203
bivariate, 98-100
Density functions, 90-92
Deviance, 158, 161-162, 166, 175, 182,
276. See also analysis of deviance
residuals, 226
Dfbeta, 196, 227-229
Dfbetas, 196-197, 227
Diagnostics. See added-variable plots;
,component -+ residual plots; Cook’s
distances, hat values; leverage plots,
spread-level plots; studentized residuals;
variance-inflation factors
Dichotomous data, 158-166
Dichotomies, nested, 167-172, 176
Dispersion parameter {for GLM), 157, 186
Distributions, statistical, 35, 90-92
Documentation, xiiin, 5-6, 35, 257, 294
specific, 149, 237, 237n, 239, 255, 266,
269, 277, 293

Editing
command-line, 15
data, 4142
functions, 16, 259, 292
Effect displays, 247-255
Eigenvalues and eigenvectors, 219, 266
Ellipse, data and confidence, 147-148
Emacs (editor), 16
Errors, 16-18, 271, 293
in data input, 45
Escape character (\), use of, 44n
Excel, 47
Exponential families of distributions,
156-157
Exporting data, 48~49
Extremes, 35

Factors, 20, 41, 60-62, 68, 80, 126-129,
181, 192, 217. See also contrasts
coercing to numeric, 101, 138
levels of, 62, 126, 137, 142, 167n
ordered, 62, 127, 130
recoding, 64—68
variable selection and, 221
FAQs (frequently asked questions), xiiiz
Formulas, model, 27, 95, 119-120, 134-135,
149-150, 156
compact, 219
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one-~“ed, 123
rre.~rting "thmer . perators in,
=150, 213, 216
FORTRAN, x, 6n, 278
F tests. See also analysis of variance; linear
hypothesis
corrected for nonconstant error variance,
209
for GLMs, 162, 187
Functions, 4
anonymous, 23, 138, 280
arguments, 5-6, 13, 25, 149, 259-260
coercion, 81-83
constructor, 8§1-82
editing of, 16, 259
family generator (for GLM), 157-158
generic, 9, 20, 93n, 192-193, 195, 198,
236, 283-293
link (in GLMs), 156-158
local, 276, 293
methods, 20, 283~293
modeling, 57-58, 78
panel, 23-24, 103, 106
predicate, 61, 81-83
recursive, 272
side effects of, 21
user-defined, 6, 12-14, 25, 258-261
value of, 260

Gauss (programming environment), ix, 47
Gaussian family (for GLM), 156
Generalized linear models (GLMs}, 155-158.
See also log-linear models; quasi-
likelihood; regression, gamma; regression,
logistic; regression, negative-binomial;
regression, Poisson
diagnostics for, 225-233
GGoby, 102, 235
Global environment, 49, 52, 54, 61, 150. See
also working data
Global variables, 13-14, 51, 61, 63
Gradient, in optimization, 275-278
Graph, type of, 237
Graphics. See also plotting
devices, 23, 255-256
interactive, 235, 243 (see also coordinates,
locating; identification of points)
margins, 115n
parameters, 100n, 111n, 115n, 165, 171,
238-240
Trellis, 104, 105n
windows, 16, 21, 235, 255
GUI (graphical user interface), xii, xv, 1-2

Hat martrix, 195n
Hat values, 30, 194199, 225, 258, 260

Help. See documentation

Hessian, in optimization, 275-278

Heterogeneity, unmodeled, 186

Heteroscedasticity. See nonconstant error
variance

Hereroscedasticity-consistent standard errors,
209

Histograms, 21-23, 28-29, 35, 86-88

History, command, 15-16

Identification of points, 25-26, 30-31, 90,
94, 101, 194, 228, 260

Identity function, 150, 213, 216

Importing data, 46

Indexing, 9-10, 63, 71-78, 265

to remove missing data, 59

Index plots, 30, 195, 197

Influencial data, 30

Inheritance, of methods, 285, 292

Integer arithmetic, in S4, 270

Interactions, 133-136, 139, 166, 182n, 183,
192, 248

Interpreter, x, xn, 1-2

Interrupt execution, 18

Inverse-Gaussian family (for GLM), 156,
185n

Inverse-link function {mean function, in
GLM), 156

Invisible outpurt, 21n, 288

[rerated weighted least squares (TWLS,
iteratively reweighted least squares),
185, 189-190, 225, 230, 278

Iteration, 111, 241, 253, 259~260, 269-272

avoiding, 279, 293

Lazy evaluation, of arguments, 260
Length (attribute), 78-79, 82, 82n
Letters,

lowercase, 17, 72n

uppercase, 72n
Leverage, in regression. See hat values
Leverage plots, 201
Libraries, ix, 2, 20, 47, 89n

car (see car library)

foreign, 46

lattice, 104, 255n

leaps, 220, 224

locfit, 89n

MASS, xvi, 173, 177, 184n, 188, 204, 220,

264, 267

Matrix, 267

methods, 283n

mva, 266

anet, 173

sm, 89n, 99

trellis, 104, 255n
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Library sections, S-PLUS, xii
Likelihood-ratio tests,
for Box-Cox model, 205, 206n
in GLMs, 162-163, 166, 170, 183
for proportional odds (informal),
176-177
Linear hypothesis, test of, 145-147, 209
Linear models. See analysis of variance;
regression, dummy; regression, linear
Linear predictor {in GLM), 156, 176
Linear simultaneous equations, solving, 264
Link functions (in GLM), 156-158
Linux, xi
Lisp-Stat, ix, 102
Lists, 70-71, 74-78, 281
Local functions, 276, 293
Local variables, 13, 259-260, 276
Logical data, 38, 99
Logical operators, 10-12, 271
Logit
link function, 156-159-
log-odds, 164, 172-173, 176
models (see regression, binary logistic;
regression, binomial logistic;
regression, multinomial logistic;
regression, proportional-odds
logistic)
transformation, 108, 115
transforming to probabilities, 252-253
Log-linear models, 181-184
Log link function, 178
Loops, See iteration

Macintosh, xi—xii
Mallows’s C,, 224
Masking of objects, 13, 28, 50-53, 60-61,
196
Matlab, 47
Matrices, 69-70, 73~74, 261-267, 279, 288n
arithmetic, 262-263
decompositions (Cholesky, QR, singular-
value), 266, 266n
determinant, 267
diagonal, 267
eigenvalues and eigenvectors, 219, 266
generalized inverse, 267
identity, 267
inverse, 263
main diagonal of, 267
transpose, 263
Maximum-likelihood estimation
of Box-Cox model, 203-204
of Box-Tidwell model, 214-215
of GLMs, 157, 188-189, 225
in logistic regression, 275-276
of normalizing powers, 111-112,
203-206

Mean-shift outlier model, 192
Minitab, 47

Missing data. See data, missing
Mixed-effects models, xiii, xvi
Mode (attribute}, 78-79, 82, 82n

Names,

conventions for, 9n, 20, 37-38, 42, 51

of files, 19

nonstandard, 8n

of observations, 25

rules for, 8, 13
Nested dichotomies, 167-172, 176
Nested effects, 135-136, 150
Newrton-Raphson method. 273-274, 285,

289

Nonconstant error variance, 33, 206-209
Nonlinearity, 208, 210-216, 230-233
Nonnormal errors, 201206
Nonparametric tests, 35
Numeric data, 20, 60, 66, 78

Object-oriented programming, xv, 80,
283-292

Observations, removing from models, 34,
123

Offset, in linear or generalized linear model,
153, 189

Operators, precedence of, 12. See also
arithmetic; assignment; comparison
operators; logical operators

Optimization, general, 275-278

Options, setting, 27-28, 127, 129, 181

Orthogonal polynomial regressors, 213. See
also regression, polynomial;

contrasts, orthogonal-polynomial
Outliers. See studentized residuals
Overdispersion, 186-188

Packages, R, xii. See also libraries
Parentheses, use of in expressions, 4, 12
Partial-regression plots. See added-variable
plots
Partial-residual plots. See component +
residual plots
Partial residuals, 210
for GLMs, 226, 230
Pearson residuals, 226
Permutation, random, 70
Plotting. See also axes; color; graphics
arrows, 236, 244, 253-254
characters, size of, 238, 240, 260
circles, 199
error bars, 253-255
frame, 138, 236, 238, 242
legend, 95. 139, 245
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lines, 23, 58, 95, 122, 139, 195, 236-242
line segments, 244
missing darta in, 242
multivariate data, 102-106
points, 23, 139, 179, 236, 239
polygons, 236, 244-245
“rug” (on axis), 90
symbols, 239-241
text, 236, 240, 243, 253-255
Plots, recording, 111
Poisson family (for GLM), 156, 178
Polytomous data, 167-178
Principal-components analysis, 219, 266
Principle of marginaliry, 140, 221
Probability distributions, 90-92
Probit link function, 156-159
Profile log-likelihood, 204
Prompts, command line (>, +), xv, 1-2, 4,
3%9n
Proportions, tests for, 35
Pseudo-random numbers. See random-
number generation

Quantile-comparison plots, 29-30, 90-91,
193-194, 202

Quantile functions, 90, 92

Quantiles, 35, 65

Quasi-likelihood, 185-186

Quotation marks, around strings, 6, 38, 42,
172

QR decomposition, 266, 266n

R, ix—xiii, 1, §
color specification, 239
Console, 1, 6, 110, 292
editing data, 41
obtaining, xiii
S4 classes in, 283
Random-number generation, 9, 91-92
Recoding variables, 6468, 168, 275
Recursion, 272
Regression,
binary logistic, 159-163, 227, 273-278,
285-291
binomial logistic, 163-166, 172, 181-183,
189-190, 232-233, 247-248
Box-Cox, 203-206
Box-Tidwell, 214-216, 232n
Cox, xiii
diagnostics. See added-variable plots;
component + residual plots; Cook’s
distances; hat values; leverage plots;
spread-level plots; studentized
residuals; variance-inflation factors
dummy, 126-136, 140

gamma, 185
intercept (constant), suppressing, 125,
132, 136
linear, 23, 26-27, 35, 119-125
multinomial logistic, 172-177
negative-binomial, 188
nonlinear, xiii, 214n
nonparametric, xiii, xvi, 59, 94, 97-98,
106, 210-211
ordered probit, 175n
overdispersed binomial and Poisson,
186-188
Poisson, 178-180, 202, 206, 231-232
polynomial, 192, 211-214, 217
proportional-odds (ordered) logistic,
175-177
quadratic, 211-214
robust, xiii, 194, 194n
stepwise, 220-224
subset, 22,0, 224-225
weighted least squares, 151, 190, 209, 226
Removing objects, 15, 48
Resampling methods, xvi. See also
bootstrapping
Response residuals, 225
Response surface, plotting, 248-255

S, versions of, xi
53 language, xi, xv
determinants, 267
S4 language, xi, xv
assignment, 10, 129
classes, 288-292
data, 82-84
interger arithmertic, 270
logarithms in, 5, 57
operands of different lengths, 8,
Sampling, 35, 67
SAS, ix, xn, 37, 43, 4647
Saturated model, 158, 166, 182
Scatterplot matrices, 22~24, 102-104, 147n
Scatterplots, 25-26, 35, 93-95
coded, 95-96
jictered, 96-98, 99
one-dimensional, 90
three-dimensional, 102
Scientific notation, 27
Scripts, for examples, xiii
Scope, rules for, 213, 276n
Score tests
for nonconstant error variance, 33, 208
for nonlinearity, 215
for nonnormality, 205
for proportional odds, 176
Search path, 49-54, 61, 120, 150
Sequences, 7
Shadowing, of objects. See masking
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Signature, of method, 291
Singular-value decomposition, 219, 266
Slots, in S4 objects, 289-291
Sorting, 67
Spaces, use of in expressions, 4, 11-12
S-PLUS, ix—xiii, xvi, 1-3
Ask, using, 213
categories (vs. factors), 65
Commands window, 2, 110, 292
contrasts, 127, 129, 161
data, 14, 41-42, 46, 49, 51, 82
graphics, elements, 100n, 106, 139, 199,
239, 244, 255
graphics, specific, 24, 88, 90, 93, 102,
106, 109, 203
graphics, Trellis, 104, 255
linear-model summaries, 28
missing data in, 59, 121, 170
nesting effects, 136
Object Browser, 2
optimization, 278
overdispersed Poisson and binomial
models, 188
Script window, 16
search path, 54
variable selection, 220
Spread-level plots, 33, 113, 206-207
SPSS, ix, 37, 43, 4647
Standardized coefficients, 124-125
Standardized deviance residuals, 226
Standardized Pearson residuals, 226
Stata, ix, 47
Statistical programming environments, ix
Stem-and-leaf displays, 35, 88
Structural-equation models, xiii
Studentized residuals, 28-29, 192-194,
198-199, 202, 206-207, 226, 258, 260
Subset of observations, fitting model to, 34,
123, 151, 156
Summated-rating scale, forming, 279-281
Surface plot, 3D, 249-250
Survival analysis, xvi
Systat, 47

Time-series plots, 35
Title, of plot, 237
Transformations
Box-Cox family, 106-107, 110, 115,
203-206
Box-Tidwell, of predictors, 214-216, 231
for linearity, 115-117, 211-212, 214-216,
231

for normality and symmetry. 109-112,
203-206
logit, 108, 115
power (including log), 33, 106-116, 202,
206, 211, 214, 214n, 231
spread-stabilizing, 113-115, 206
Trellis graphics, 104, 105n, 255
t tests
for constructed variables, 205
for contrasts, 144
for means, 35
for regression coefficients, 131-132, 213
Types [, II, and Il sums of squares and tests,
132n, 140-141, 162, 166
Typographical conventions, xv, 1

Unix, xi
Updating models, 34, 123, 133-135, 187

Variables. See assignment; global variables;
local variables; names

Variable selection, 220-225

Variance, 35

Variance-inflation factors, 217-219, 217n

Vectors, 7, 68

Wald tests
for Box-Cox transformations, 112
in GLMs, 162-163, 166
in multinomial logistic regression, 173
Warnings, 14, 17, 53
Web appendix, xiii, 193n, 194n, 210, 213,
214n, 276n
Web site
for text, xii, 20n, 43n
R, xii, 47
Sage, xii
S-PLUS, xii
Weighted least squares, 151, 190, 209, 226
Windows (operating system), Xi-xii, xv, 6,
15, 44
clipboard, 16, 21, 255
Notepad, 16, 43
WinEdt (editor), 16
Working data, 49-51, 61-64. See also global
environment
Working residuals, 190n, 226, 230
Working response, 190

XGobi, 102, 235
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