
1. (a) Noting that the vertical displacement is 10.0 m – 1.50 m = 8.50 m downward (same 
direction as Fg ), Eq. 7-12 yields  

2cos (2.00 kg)(9.80 m/s )(8.50 m)cos 0 167 J.gW mgd φ= = ° =

(b) One approach (which is fairly trivial) is to use Eq. 8-1, but we feel it is instructive to 
instead calculate this as ΔU where U = mgy (with upwards understood to be the +y
direction). The result is  

2( ) (2.00 kg)(9.80 m/s )(1.50 m 10.0 m) 167 J.f iU mg y yΔ = − = − = −

(c) In part (b) we used the fact that Ui = mgyi =196 J. 

(d) In part (b), we also used the fact Uf = mgyf = 29 J. 

(e) The computation of Wg does not use the new information (that U = 100 J at the 
ground), so we again obtain Wg = 167 J. 

(f) As a result of Eq. 8-1, we must again find ΔU = –Wg = –167 J. 

(g) With this new information (that U0 = 100 J where y = 0) we have  

Ui = mgyi + U0 = 296 J. 

(h) With this new information (that U0 = 100 J where y = 0) we have  

Uf = mgyf + U0 = 129 J. 

We can check part (f) by subtracting the new Ui from this result. 



(b) In going from its initial position to the highest point on its path, the ball moves 
vertically through a distance equal to L, but this time the displacement is upward, 
opposite the direction of the force of gravity. The work done by the force of gravity is  

2(0.341 kg)(9.80 m/s )(0.452 m) 1.51 J.W mgL= − = − = −

(c) The final position of the ball is at the same height as its initial position. The 
displacement is horizontal, perpendicular to the force of gravity. The force of gravity 
does no work during this displacement. 

(d) The force of gravity is conservative. The change in the gravitational potential energy 
of the ball-Earth system is the negative of the work done by gravity:  

2(0.341 kg)(9.80 m/s )(0.452 m) 1.51 JU mgLΔ = − = − = −

as the ball goes to the lowest point. 

(e) Continuing this line of reasoning, we find  

2(0.341 kg)(9.80 m/s )(0.452 m) 1.51 JU mgLΔ = + = =

as it goes to the highest point. 

(f) Continuing this line of reasoning, we have ΔU = 0 as it goes to the point at the same 
height.

(g) The change in the gravitational potential energy depends only on the initial and final 
positions of the ball, not on its speed anywhere. The change in the potential energy is the 
same since the initial and final positions are the same. 

2. (a) The only force that does work on the ball is the force of gravity; the force of the rod 
is perpendicular to the path of the ball and so does no work. In going from its initial 
position to the lowest point on its path, the ball moves vertically through a distance equal 
to the length L of the rod, so the work done by the force of gravity is  

2(0.341 kg)(9.80 m/s )(0.452 m) 1.51 JW mgL= = = .



3. (a) The force of gravity is constant, so the work it does is given by W F d= ⋅ , where 
F is the force and d  is the displacement. The force is vertically downward and has 
magnitude mg, where m is the mass of the flake, so this reduces to W = mgh, where h is 
the height from which the flake falls. This is equal to the radius r of the bowl. Thus 

W mgr= = × × = ×− − −( . ) ( .2 00 10 22 0 103 2 kg) (9.8 m s m) 4.31 10 J.2 3

(b) The force of gravity is conservative, so the change in gravitational potential energy of 
the flake-Earth system is the negative of the work done: ΔU = –W = –4.31 × 10–3 J. 

(c) The potential energy when the flake is at the top is greater than when it is at the 
bottom by |ΔU|. If U = 0 at the bottom, then U = +4.31 × 10–3 J at the top. 

(d) If U = 0 at the top, then U = – 4.31 × 10–3 J at the bottom. 

(e) All the answers are proportional to the mass of the flake. If the mass is doubled, all 
answers are doubled. 



4. We use Eq. 7-12 for Wg and Eq. 8-9 for U.

(a) The displacement between the initial point and A is horizontal, so φ = 90.0° and 
0gW = (since cos 90.0° = 0). 

(b) The displacement between the initial point and B has a vertical component of h/2
downward (same direction as Fg ), so we obtain  

2 51 1 (825 kg)(9.80 m/s )(42.0 m) 1.70 10  J
2 2g gW F d mgh= ⋅ = = = × .

(c) The displacement between the initial point and C has a vertical component of h
downward (same direction as Fg ), so we obtain  

2 5(825 kg)(9.80 m/s )(42.0 m) 3.40 10  Jg gW F d mgh= ⋅ = = = × .

(d) With the reference position at C, we obtain  

2 51 1 (825 kg)(9.80 m/s )(42.0 m) 1.70 10  J
2 2BU mgh= = = ×

(e) Similarly, we find  

2 5(825 kg)(9.80 m/s )(42.0 m) 3.40 10  JAU mgh= = = ×

(f) All the answers are proportional to the mass of the object. If the mass is doubled, all 
answers are doubled. 



5. The potential energy stored by the spring is given by U kx= 1
2

2 , where k is the spring 
constant and x is the displacement of the end of the spring from its position when the 
spring is in equilibrium. Thus 

k U
x

= = = ×2 2 25
0 075

8 9 102 2
3J

m
N mb g

b g.
. .



2(1.50 kg)(9.80 m/s )(12.5 m) 184 JW mgh= = = .

(b) The force of gravity is conservative, so the change in the potential energy of the 
snowball-Earth system is the negative of the work it does: ΔU = –W = –184 J. 

(c) The potential energy when it reaches the ground is less than the potential energy when 
it is fired by |ΔU|, so U = –184 J when the snowball hits the ground. 

6. (a) The force of gravity is constant, so the work it does is given by W F d= ⋅ , where 
F  is the force and d  is the displacement. The force is vertically downward and has 
magnitude mg, where m is the mass of the snowball. The expression for the work reduces 
to W = mgh, where h is the height through which the snowball drops. Thus 



7. The main challenge for students in this type of problem seems to be working out the 
trigonometry in order to obtain the height of the ball (relative to the low point of the 
swing) h = L – L cos θ (for angle θ measured from vertical as shown in Fig. 8-34). Once 
this relation (which we will not derive here since we have found this to be most easily 
illustrated at the blackboard) is established, then the principal results of this problem 
follow from Eq. 7-12 (for Wg ) and Eq. 8-9 (for U ).

(a) The vertical component of the displacement vector is downward with magnitude h, so 
we obtain 

2

(1 cos )

(5.00 kg)(9.80 m/s )(2.00 m)(1 cos30 ) 13.1 J
g gW F d mgh mgL θ= ⋅ = = −

= − ° =

(b) From Eq. 8-1, we have ΔU = –Wg = –mgL(1 – cos θ ) = –13.1 J. 

(c) With y = h, Eq. 8-9 yields U = mgL(1 – cos θ ) = 13.1 J. 

(d) As the angle increases, we intuitively see that the height h increases (and, less 
obviously, from the mathematics, we see that cos θ decreases so that 1 – cos θ increases), 
so the answers to parts (a) and (c) increase, and the absolute value of the answer to part (b) 
also increases. 



(c) With y = h = 5R, at P we find  

2 25 5(3.20 10  kg)(9.80 m/s )(0.12 m) 0.19 JU mgR −= = × = .

(d) With y = R, at Q we have 

2 2(3.20 10  kg)(9.80 m/s )(0.12 m) 0.038 JU mgR −= = × =

(e) With y = 2R, at the top of the loop, we find 

2 22 2(3.20 10  kg)(9.80 m/s )(0.12 m) 0.075 JU mgR −= = × =

(f) The new information ( )vi ≠ 0  is not involved in any of the preceding computations; 
the above results are unchanged. 

8. We use Eq. 7-12 for Wg and Eq. 8-9 for U.

(a) The displacement between the initial point and Q has a vertical component of h – R
downward (same direction as Fg ), so (with h = 5R) we obtain  

2 24 4(3.20 10  kg)(9.80 m/s )(0.12 m) 0.15 Jg gW F d mgR −= ⋅ = = × = .

(b) The displacement between the initial point and the top of the loop has a vertical 
component of h – 2R downward (same direction as Fg ), so (with h = 5R) we obtain  

2 23 3(3.20 10  kg)(9.80 m/s )(0.12 m) 0.11 Jg gW F d mgR −= ⋅ = = × = .



9. We neglect any work done by friction. We work with SI units, so the speed is 
converted: v = 130(1000/3600) = 36.1 m/s. 

(a) We use Eq. 8-17: Kf + Uf = Ki + Ui with Ui = 0, Uf = mgh and Kf = 0. Since 
K mvi = 1

2
2 , where v is the initial speed of the truck, we obtain 

2 2
2

2

1 (36.1 m/s) 66.5 m
2 2 2(9.8 m/s )

vmv mgh h
g

= = = = .

If L is the length of the ramp, then L sin 15° = 66.5 m so that L = (66.5 m)/sin 15° = 257 
m. Therefore, the ramp must be about 2.6×102 m long if friction is negligible. 

(b) The answers do not depend on the mass of the truck. They remain the same if the 
mass is reduced. 

(c) If the speed is decreased, h and L both decrease (note that h is proportional to the 
square of the speed and that L is proportional to h).



2 2(167 J) 12.9 m/s.
2.00 kg

fK
v

m
= = =

(b) If we proceed algebraically through the calculation in part (a), we find Kf = – ΔU = 
mgh where h = yi – yf and is positive-valued. Thus, 

2
2fK

v gh
m

= =

as we might also have derived from the equations of Table 2-1 (particularly Eq. 2-16). 
The fact that the answer is independent of mass means that the answer to part (b) is 
identical to that of part (a), i.e., 12.9 m/sv = .

(c) If Ki ≠ 0 , then we find Kf = mgh + Ki (where Ki is necessarily positive-valued). This 
represents a larger value for Kf than in the previous parts, and thus leads to a larger value 
for v.

10. We use Eq. 8-17, representing the conservation of mechanical energy (which neglects 
friction and other dissipative effects). 

(a) In the solution to exercise 2 (to which this problem refers), we found Ui = mgyi = 196J 
and Uf  = mgyf  = 29.0 J (assuming the reference position is at the ground). Since Ki = 0 
in this case, we have 
 0 196 J 29.0 JfK+ = +

which gives Kf  = 167 J and thus leads to 



11. (a) If Ki is the kinetic energy of the flake at the edge of the bowl, Kf is its kinetic 
energy at the bottom, Ui is the gravitational potential energy of the flake-Earth system 
with the flake at the top, and Uf is the gravitational potential energy with it at the bottom, 
then Kf + Uf = Ki + Ui.

Taking the potential energy to be zero at the bottom of the bowl, then the potential energy 
at the top is Ui = mgr where r = 0.220 m is the radius of the bowl and m is the mass of the 
flake. Ki = 0 since the flake starts from rest. Since the problem asks for the speed at the 

bottom, we write 1
2

2mv  for Kf. Energy conservation leads to 

W F d mgh mgLg g= ⋅ = = −( cos )1 θ  .

The speed is 2 2.08 m/sv gr= = .

(b) Since the expression for speed does not contain the mass of the flake, the speed would 
be the same, 2.08 m/s, regardless of the mass of the flake. 

(c) The final kinetic energy is given by Kf = Ki + Ui – Uf. Since Ki is greater than before, 
Kf is greater. This means the final speed of the flake is greater. 



top

Δ ΔK U
K K mgL

+ =
− + =

0
00

which, upon requiring Ktop = 0, gives K0 = mgL and thus leads to 

20
0

2 2 2(9.80 m/s )(0.452 m) 2.98 m/sKv gL
m

= = = = .

(b) We also found in the Problem 4 that the potential energy change is ΔU = –mgL in 
going from the initial point to the lowest point (the bottom). Thus, 

            

bottom

Δ ΔK U
K K mgL

+ =
− − =

0
00

which, with K0 = mgL, leads to Kbottom = 2mgL. Therefore, 

2bottom
bottom

2 4 4(9.80 m/s )(0.452 m) 4.21 m/sKv gL
m

= = = = .

(c) Since there is no change in height (going from initial point to the rightmost point), 
then ΔU = 0, which implies ΔK = 0. Consequently, the speed is the same as what it was 
initially,

right 0 2.98 m/sv v= = .

(d) It is evident from the above manipulations that the results do not depend on mass. 
Thus, a different mass for the ball must lead to the same results. 

12. We use Eq. 8-18, representing the conservation of mechanical energy (which neglects 
friction and other dissipative effects). 

(a) In the solution to Problem 4 we found ΔU = mgL as it goes to the highest point. Thus, 
we have 



2 2 2
0 (17.0 m/s) (9.80 m/s )(42.0 m) 26.5 m/s.Bv v gh= + = + =

(c) Similarly, 

2 2 2
0 2 (17.0 m/s) 2(9.80 m/s )(42.0 m) 33.4 m/s.Cv v gh= + = + =

(d) To find the “final” height, we set Kf = 0. In this case, we have 

K U K U

mv mgh mgh

f f

f

0 0

0
21

2
0

+ = +

+ = +

which yields 
2 2
0

2

(17.0 m/s)42.0 m 56.7 m.
2 2(9.80 m/s )f
vh h
g

= + = + =

(e) It is evident that the above results do not depend on mass. Thus, a different mass for 
the coaster must lead to the same results. 

13. We use Eq. 8-17, representing the conservation of mechanical energy (which neglects 
friction and other dissipative effects). 

(a) In Problem 4, we found UA = mgh (with the reference position at C). Referring again 
to Fig. 8-33, we see that this is the same as U0 which implies that KA = K0 and thus that  

vA = v0 = 17.0 m/s. 

(b) In the solution to Problem 4, we also found U mghB = 2.  In this case, we have 

K U K U

mv mgh mv mg h
B B

B

0 0

0
2 21

2
1
2 2

+ = +

+ = + FHG
I
KJ

which leads to  



14. We use Eq. 8-18, representing the conservation of mechanical energy. We choose the 
reference position for computing U to be at the ground below the cliff; it is also regarded 
as the “final” position in our calculations. 

(a) Using Eq. 8-9, the initial potential energy is given by Ui = mgh where h = 12.5 m and 
1.50 kgm = . Thus, we have 

1
2

K U K U

mv mgh mv

i i f f

i

+ = +

+ = +1
2

02 2

which leads to the speed of the snowball at the instant before striking the ground: 

v
m

mv mgh v ghi i= +F
HG

I
KJ = +2 1

2
22 2

where vi = 14.0 m/s is the magnitude of its initial velocity (not just one component of it). 
Thus we find v = 21.0 m/s. 

(b) As noted above, vi is the magnitude of its initial velocity and not just one component 
of it; therefore, there is no dependence on launch angle. The answer is again 21.0 m/s. 

(c) It is evident that the result for v in part (a) does not depend on mass. Thus, changing 
the mass of the snowball does not change the result for v.



15. We take the reference point for gravitational potential energy at the position of the 
marble when the spring is compressed. 

(a) The gravitational potential energy when the marble is at the top of its motion is 
gU mgh= , where h = 20 m is the height of the highest point. Thus, 

U g = × =−50 10 9 8 0 983 2. . . . kg m s 20 m  Jc hd ib g

(b) Since the kinetic energy is zero at the release point and at the highest point, then 
conservation of mechanical energy implies ΔUg + ΔUs = 0, where ΔUs is the change in 
the spring's elastic potential energy. Therefore, ΔUs = –ΔUg = –0.98 J. 

(c) We take the spring potential energy to be zero when the spring is relaxed. Then, our 
result in the previous part implies that its initial potential energy is Us = 0.98 J. This must 
be 1

2
2kx , where k is the spring constant and x is the initial compression. Consequently, 

k U
x

s= = = × =2 2 0 98
0 080

31 10 312 2
2( . )

( . )
. . J

 m
 N m   N cm.  



16. We use Eq. 8-18, representing the conservation of mechanical energy. The reference 
position for computing U is the lowest point of the swing; it is also regarded as the 
“final” position in our calculations. 

(a) In the solution to problem 7, we found U = mgL(1 – cos θ ) at the position shown in 
Fig. 8-34 (which we consider to be the initial position). Thus, we have 

K U K U

mgL mv

i i f f+ = +

+ − = +0 1 1
2

02( cos )θ

which leads to 

v mgL
m

gL= − = −2 1 2 1( cos ) ( cos ).θ θ

Plugging in L = 2.00 m and θ = 30.0° we find v = 2.29 m/s. 

(b) It is evident that the result for v does not depend on mass. Thus, a different mass for 
the ball must not change the result. 



h) is the lowest point of the swing; it is also regarded as the “final” position in our 
calculations. 

(a) Careful examination of the figure leads to the trigonometric relation h = L – L cos θ
when the angle is measured from vertical as shown. Thus, the gravitational potential 
energy is U = mgL(1 – cos θ0) at the position shown in Fig. 8-34 (the initial position). 
Thus, we have 

K U K U

mv mgL mv

f f0 0

0
2

0
21

2
1 1

2
0

+ = +

+ − = +cosθb g
which leads to 

2 2
0 0 0 0

2 2

2 1 (1 cos ) 2 (1 cos )
2

(8.00 m/s) 2(9.80 m/s )(1.25 m)(1 cos 40 ) 8.35 m/s.

v mv mgL v gL
m

θ θ= + − = + −

= + − ° =

(b) We look for the initial speed required to barely reach the horizontal position — 
described by vh = 0 and θ = 90° (or θ = –90°, if one prefers, but since cos(–φ) = cos φ, the 
sign of the angle is not a concern). 

K U K U

mv mgL mgL

h h0 0

0
2

0
1
2

1 0

+ = +

+ − = +cosθb g
which yields  

2
0 02 cos 2(9.80 m/s )(1.25 m)cos 40 4.33 m/s.v gL θ= = ° =

(c) For the cord to remain straight, then the centripetal force (at the top) must be (at least) 
equal to gravitational force: 

mv
r

mg mv mgLt
t

2
2= =

where we recognize that r = L. We plug this into the expression for the kinetic energy (at 
the top, where θ = 180°). 

1
2
1
2

K U K U

mv mgL mv mg

mv mgL mgL mg L

t t

t

0 0

0
2

0
2

0
2

0

1
2

1 1 180

1
2

1 2

+ = +

+ − = + − °

+ − = +

cos cos

cos ( ) ( )

θ

θ

b g b g

b g

17. We use Eq. 8-18, representing the conservation of mechanical energy (which neglects 
friction and other dissipative effects). The reference position for computing U (and height 



(d) The more initial potential energy there is, the less initial kinetic energy there needs to 
be, in order to reach the positions described in parts (b) and (c). Increasing θ0 amounts to 
increasing U0, so we see that a greater value of θ0 leads to smaller results for v0 in parts (b) 
and (c). 

which leads to  

2
0 0(3 2cos ) (9.80 m/s )(1.25 m)(3 2cos 40 ) 7.45 m/s.v gL θ= + = + ° =



18. We place the reference position for evaluating gravitational potential energy at the 
relaxed position of the spring. We use x for the spring's compression, measured positively 
downwards (so x > 0 means it is compressed). 

(a) With x = 0.190 m, Eq. 7-26 gives  

21 7.22 J 7.2 J
2sW kx= − = − ≈ −

for the work done by the spring force. Using Newton's third law, we see that the work 
done on the spring is 7.2 J. 

(b) As noted above, Ws = –7.2 J. 

(c) Energy conservation leads to 

K U K U

mgh mgx kx

i i f f+ = +

= − +0
21

2

which (with m = 0.70 kg) yields h0 = 0.86 m. 

(d) With a new value for the height ′ = =h h0 02 172. m , we solve for a new value of x
using the quadratic formula (taking its positive root so that x > 0). 

mgh mgx kx x
mg mg mgkh

k
′ = − + =

+ + ′
0

2
2

01
2

2b g

which yields x = 0.26 m. 



Using the fact that h = 5R, we find mv2 = 8mgR. Thus, the horizontal component of the 
net force on the block at Q is  

F = mv2/R = 8mg=8(0.032 kg)(9.8 m/s2)= 2.5 N. 

and points left (in the same direction as a ).

(b) The downward component of the net force on the block at Q is the downward force of 
gravity  

F = mg =(0.032 kg)(9.8 m/s2)= 0.31 N. 

(c) To barely make the top of the loop, the centripetal force there must equal the force of 
gravity: 

mv
R

mg mv mgRt
t

2
2= =   

This requires a different value of h than was used above. 

210
2
1 ( ) (2 )
2

P P t t

t t

K U K U

mgh mv mgh

mgh mgR mg R

+ = +

+ = +

= +

Consequently, h = 2.5R = (2.5)(0.12 m) = 0.30 m. 

(d) The normal force FN, for speeds vt greater than gR  (which are the only 
possibilities for non-zero FN — see the solution in the previous part), obeys 

2
t

N
mvF mg

R
= −

19. (a) At Q the block (which is in circular motion at that point) experiences a centripetal 
acceleration v2/R leftward. We find v2 from energy conservation: 

K U K U

mgh mv mgR

P P Q Q+ = +

+ = +0 1
2

2



2 5N
mghF mg
R

= −

Thus, the graph for h ≥ 2.5R consists of a straight line of positive slope 2mg/R (which can 
be set to some convenient values for graphing purposes).  

Note that for h ≤ 2.5R, the normal force is zero.  

from Newton's second law. Since 2
tv  is related to h

by energy conservation 

K U K U gh v gRP P t t t+ = + = +1
2

22

then the normal force, as a function for h (so long as 
h ≥ 2.5R — see solution in previous part), becomes 



20. (a) With energy in Joules and length in meters, we have 

ΔU U x U x dx
x

= − = − ′ − ′zb g b g b g0 6 12
0

.

Therefore, with U (0) = 27 J, we obtain U(x) (written simply as U) by integrating and 
rearranging:

U x x= + −27 12 3 2 .

(b) We can maximize the above function by working through the / 0dU dx = condition,
or we can treat this as a force equilibrium situation — which is the approach we show. 

F xeq= − =0 6 12 0  

Thus, xeq = 2.0 m, and the above expression for the potential energy becomes U = 39 J. 

(c) Using the quadratic formula or using the polynomial solver on an appropriate 
calculator, we find the negative value of x for which U = 0 to be x = –1.6 m. 

(d) Similarly, we find the positive value of x for which U = 0 to be x = 5.6 m 



21. (a) As the string reaches its lowest point, its original potential energy U = mgL
(measured relative to the lowest point) is converted into kinetic energy. Thus, 

mgL mv v gL= =1
2

22 .

With L = 1.20 m we obtain v = 4 85. m s .

(b) In this case, the total mechanical energy is shared between kinetic 1
2

2mvb  and 
potential mgyb. We note that yb = 2r where r = L – d = 0.450 m. Energy conservation 
leads to 

mgL mv mgyb b= +1
2

2

which yields v gL g rb = − =2 2 2.42 m s2b g .



22. We denote m as the mass of the block, h = 0.40 m as the height from which it dropped 
(measured from the relaxed position of the spring), and x the compression of the spring 
(measured downward so that it yields a positive value). Our reference point for the 
gravitational potential energy is the initial position of the block. The block drops a total 
distance h + x, and the final gravitational potential energy is –mg(h + x). The spring 
potential energy is 1

2
2kx  in the final situation, and the kinetic energy is zero both at the 

beginning and end. Since energy is conserved 

K U K U

mg h x kx

i i f f+ = +

= − + + 1
2

0 2( )

which is a second degree equation in x. Using the quadratic formula, its solution is 

x
mg mg mghk

k
=

± +b g2 2
.

Now mg = 19.6 N, h = 0.40 m, and k = 1960 N m , and we choose the positive root so 
that x > 0. 

x =
+ +

=
19.6 19.6 2 19.6 0.40 1960

0.10 m .
2 b gb gb g

1960



23. Since time does not directly enter into the energy formulations, we return to Chapter 
4 (or Table 2-1 in Chapter 2) to find the change of height during this t = 6.0 s flight. 

Δy v t gty= −0
21

2

This leads to Δy = −32 m . Therefore 2318 J 3.2 10  JU mg y −Δ = Δ = − ≈ − × .



h
v

g
=

°
=0

2
sin 28

4.4 m
2b g .

(b) We see that all reference to mass cancels from the above computations, so a new 
value for the mass will yield the same result as before. 

24. From Chapter 4, we know the height h of the skier's jump can be found from 
v v ghy y

2
0
20 2= = −  where v0 y = v0 sin 28° is the upward component of the skier's “launch 

velocity.” To find v0 we use energy conservation. 

(a) The skier starts at rest y = 20 m above the point of “launch” so energy conservation 
leads to 

mgy mv v gy= = =1
2

m s2 2 20  

which becomes the initial speed v0 for the launch. Hence, the above equation relating h to 
v0 yields 



25. (a) To find out whether or not the vine breaks, it is sufficient to examine it at the 
moment Tarzan swings through the lowest point, which is when the vine — if it didn't 
break — would have the greatest tension. Choosing upward positive, Newton's second 
law leads to 

T mg m v
r

− =
2

where r = 18.0 m and m W g= = =688 9 8 70 2. . kg . We find the v2 from energy 
conservation (where the reference position for the potential energy is at the lowest point). 

mgh mv v gh1
2

    2= =2 2

where h = 3.20 m. Combining these results, we have 

T mg m gh
r

mg h
r

= + = +FHG
I
KJ

2 1 2

which yields 933 N. Thus, the vine does not break.  

(b) Rounding to an appropriate number of significant figures, we see the maximum 
tension is roughly 9.3×102 N. 



(b) We now set the above expression again equal to 64 J (with θ being the unknown) but 
with zero speed (which gives the condition for the maximum point, or “turning point” 
that it reaches). This leads to θmax = 79°.

(c) As observed in our solution to part (a), the total mechanical energy is 64 J. 

26. (a) We take the reference point for gravitational energy to be at the lowest point of the 
swing. Let θ be the angle measured from vertical. Then the height y of the pendulum 
“bob” (the object at the end of the pendulum, which i this problem is the stone) is given 
by L(1 – cosθ ) = y . Hence, the gravitational potential energy is

mg y = mgL(1 – cosθ ).

When θ = 0º (the string at its lowest point) we are told that its speed is 8.0 m/s; its kinetic 
energy there is therefore 64 J (using Eq. 7-1). At θ = 60º its mechanical energy is 

Emech =
1
2 mv2 + mgL(1 – cosθ ) . 

Energy conservation (since there is no friction) requires that this be equal to 64 J.  
Solving for the speed, we find v = 5.0 m/s. 



27. We convert to SI units and choose upward as the +y direction. Also, the relaxed 
position of the top end of the spring is the origin, so the initial compression of the spring 
(defining an equilibrium situation between the spring force and the force of gravity) is y0
= –0.100 m and the additional compression brings it to the position y1 = –0.400 m. 

(a) When the stone is in the equilibrium (a = 0) position, Newton's second law becomes 

net

spring

F ma
F mg

k

=
− =

− − − =
0

0100 8 00 9 8 0( . ) ( . ) ( . )

where Hooke's law (Eq. 7-21) has been used. This leads to a spring constant equal to k = 
784 N/m. 

(b) With the additional compression (and release) the acceleration is no longer zero, and 
the stone will start moving upwards, turning some of its elastic potential energy (stored in 
the spring) into kinetic energy. The amount of elastic potential energy at the moment of 
release is, using Eq. 8-11, 

U ky= = − =1
2

1
2

784 0 400 62 71
2 2( ) ( . ) . . J  

(c) Its maximum height y2 is beyond the point that the stone separates from the spring 
(entering free-fall motion). As usual, it is characterized by having (momentarily) zero 
speed. If we choose the y1 position as the reference position in computing the 
gravitational potential energy, then 

K U K U

ky mgh

1 1 2 2

1
20 1

2
0

+ = +

+ = +

where h = y2 – y1 is the height above the release point. Thus, mgh (the gravitational 
potential energy) is seen to be equal to the previous answer, 62.7 J, and we proceed with 
the solution in the next part. 

(d) We find 2
1 2 0.800 mh ky mg= = , or 80.0 cm. 



28. We take the original height of the box to be the y = 0 reference level and observe that, 
in general, the height of the box (when the box has moved a distance d downhill) is 

sin 40y d= − ° .

(a) Using the conservation of energy, we have 

K U K U mv mgy kdi i+ = + + = + +0 0 1
2

1
2

2 2.

Therefore, with d = 0.10 m, we obtain v = 0.81 m/s. 

(b) We look for a value of d ≠  0 such that K = 0. 

K U K U mgy kdi i+ = + + = + +0 0 0 1
2

2 .

Thus, we obtain mgd kdsin40 1
2

2° =  and find d = 0.21 m. 

(c) The uphill force is caused by the spring (Hooke's law) and has magnitude kd = 25.2 N. 
The downhill force is the component of gravity sin 40mg ° = 12.6 N. Thus, the net force 
on the box is (25.2 – 12.6) N = 12.6 N uphill, with a = F/m =(12.6 N)/(2.0 kg) = 6.3 m/s2.

(d) The acceleration is up the incline. 



29. The reference point for the gravitational potential energy Ug (and height h) is at the 
block when the spring is maximally compressed. When the block is moving to its highest 
point, it is first accelerated by the spring; later, it separates from the spring and finally 
reaches a point where its speed vf is (momentarily) zero. The x axis is along the incline, 
pointing uphill (so x0 for the initial compression is negative-valued); its origin is at the 
relaxed position of the spring. We use SI units, so k = 1960 N/m and x0 = –0.200 m. 

(a) The elastic potential energy is 1
2 0

2 39 2kx = .  J . 

(b) Since initially Ug = 0, the change in Ug is the same as its final value mgh where m = 
2.00 kg. That this must equal the result in part (a) is made clear in the steps shown in the 
next part. Thus, ΔUg = Ug = 39.2 J. 

(c) The principle of mechanical energy conservation leads to 

K U K U

kx mgh

f f0 0

0
20 1

2
0

+ = +

+ = +

which yields h = 2.00 m. The problem asks for the distance along the incline, so we have 
d = h/sin 30° = 4.00 m. 



30. From the slope of the graph, we find the spring constant 

k F
x

= = =Δ
Δ

010 10. .N cm N m  

(a) Equating the potential energy of the compressed spring to the kinetic energy of the 
cork at the moment of release, we have 

1
2

1
2

2 2kx mv v x k
m

= =

which yields v = 2.8 m/s for m = 0.0038 kg and x = 0.055 m. 

(b) The new scenario involves some potential energy at the moment of release. With d = 
0.015 m, energy conservation becomes 

1
2

1
2

1
2

2 2 2 2 2kx mv kd v k
m

x d= + = −c h

which yields v = 2.7 m/s. 



K U K U

mgh kx

A A C C+ = +

+ = + 0 1
2

0 2

which yields 

h kx
mg

= =
×

=
2 2

22 2 12 9 8

1.35 10 N m 0.055 m

kg m s
0.174 m

4c hb g
b g c h.

.

Therefore,

+ =
°

=
°

=x h
sin30

0.174 m
sin30

0.35 m .

(b) From this result, we find = − =0.35 0.055 0.29 m , which means that 
Δy = − = −sin mθ 015.  in sliding from point A to point B. Thus, Eq. 8-18 gives 

       0
1
2

0

Δ Δ

Δ

K U

mv mg hB

+ =

+ =2

which yields v g hB = − = − − =2 9 8 015Δ . . .b gb g 1.7 m s  

31. We refer to its starting point as A, the point where it first comes into contact with the 
spring as B, and the point where the spring is compressed |x| = 0.055 m as C. Point C is 
our reference point for computing gravitational potential energy. Elastic potential energy 
(of the spring) is zero when the spring is relaxed. Information given in the second 
sentence allows us to compute the spring constant. From Hooke's law, we find 

k F
x

= = = ×270 N
0.02 m

1.35 10 N m4 .

(a) The distance between points A and B is Fg  and we note that the total sliding distance 
+ x  is related to the initial height h of the block (measured relative to C) by 

h
x+

= sin θ

where the incline angle θ is 30°. Mechanical energy conservation leads to 



32. The work required is the change in the gravitational potential energy as a result of the 
chain being pulled onto the table. Dividing the hanging chain into a large number of 
infinitesimal segments, each of length dy, we note that the mass of a segment is (m/L) dy
and the change in potential energy of a segment when it is a distance |y| below the table 
top is  

dU = (m/L)g|y| dy = –(m/L)gy dy

since y is negative-valued (we have +y upward and the origin is at the tabletop). The total 
potential energy change is 

U mg
L

y dy mg
L

L mgL
L

= − = =
−z 1

2
4 322

4

0
( ) .

/

The work required to pull the chain onto the table is therefore  

W = ΔU = mgL/32 = (0.012 kg)(9.8 m/s2)(0.28 m)/32 = 0.0010 J. 



(with spring compressed amount x = 0.200 m) is given by h1 = ( D  + x) sin θ, where 
37θ = ° .

(a) Energy conservation leads to 

2 2
1 1 2 2 2

1 10 ( )sin sin
2 2

K U K U mg D x kx mv mgDθ θ+ = + + + + = +

which yields, using the data m = 2.00 kg and k = 170N/m, 

v gx kx m2
22 2 40= + =sin .θ m s  .

(b) In this case, energy conservation leads to 

1 1 3 3

2 2
3

1 10 ( )sin 0
2 2

K U K U

mg D x kx mvθ

+ = +

+ + + = +

which yields 2
3 2 ( )sin / 4.19 m/s.v g D x kx mθ= + + =

33. All heights h are measured from the lower end of the incline (which is our reference 
position for computing gravitational potential energy mgh). Our x axis is along the incline, 
with +x being uphill (so spring compression corresponds to x > 0) and its origin being at 
the relaxed end of the spring. The height that corresponds to the canister's initial position 



34. The distance the marble travels is determined by its initial speed (and the methods of 
Chapter 4), and the initial speed is determined (using energy conservation) by the original 
compression of the spring. We denote h as the height of the table, and x as the horizontal 
distance to the point where the marble lands. Then x = v0 t and h gt= 1

2
2  (since the 

vertical component of the marble's “launch velocity” is zero). From these we find 
x v h g= 0 2 . We note from this that the distance to the landing point is directly 
proportional to the initial speed. We denote v0 1 be the initial speed of the first shot and D1
= (2.20 – 0.27) m = 1.93 m be the horizontal distance to its landing point; similarly, v02 is 
the initial speed of the second shot and D = 2.20 m is the horizontal distance to its 
landing spot. Then 

02
02 01

01 1 1

    v D Dv v
v D D

= =

When the spring is compressed an amount , the elastic potential energy is 1
2

2k . When 
the marble leaves the spring its kinetic energy is 1

2 0
2mv . Mechanical energy is conserved: 

1
2 0

2 1
2

2mv k= , and we see that the initial speed of the marble is directly proportional to 
the original compression of the spring. If 1 is the compression for the first shot and 2

is the compression for the second, then v v02 2 1 01= b g . Relating this to the previous 
result, we obtain 

2 1
1

2.20 m (1.10 cm) 1.25 cm
1.93 m

D
D

= = = .



35. Consider a differential element of length dx at a distance x from one end (the end 
which remains stuck) of the cord. As the cord turns vertical, its change in potential 
energy is given by 

( )dU dx gxλ= −

where /m hλ =  is the mass/unit length and the negative sign indicates that the potential 
energy decreases. Integrating over the entire length, we obtain the total change in the 
potential energy: 

2

0

1 1
2 2

h
U dU gxdx gh mghλ λΔ = = − = − = − .

With m=15 g and h = 25 cm, we have 0.018 JUΔ = − .



36. Let NF be the normal force of the ice on him and m is his mass. The net inward force 
is mg cos θ – FN and, according to Newton's second law, this must be equal to mv2/R,
where v is the speed of the boy. At the point where the boy leaves the ice FN = 0, so g cos 
θ = v2/R. We wish to find his speed. If the gravitational potential energy is taken to be 
zero when he is at the top of the ice mound, then his potential energy at the time shown is  

U = –mgR(1 – cos θ ).

He starts from rest and his kinetic energy at the time shown is 1
2

2mv . Thus conservation 
of energy gives 

0 11
2

2= − −mv mgR( cos )θ ,

or v2 = 2gR(1 – cos θ ). We substitute this expression into the equation developed from 
the second law to obtain g cos θ = 2g(1 – cos θ ). This gives cos θ = 2/3. The height of 
the boy above the bottom of the mound is  

h = R cos θ = 2R/3 = 2(13.8 m)/3 = 9.20 m. 



mg(d + x)sin(30º) = 9.50 J    d = 0.396 m. 

(b) The block is still accelerating (due to the component of gravity along the incline, 
mgsin(30º)) for a few moments after coming into contact with the spring (which exerts 
the Hooke’s law force kx), until the Hooke’s law force is strong enough to cause the 
block to being decelerating. This point is reached when  

kx = mgsin30º 

which leads to x = 0.0364 m = 3.64 cm; this is long before the block finally stops (36.0 
cm before it stops). 

37. (a) The (final) elastic potential energy is  

U = 
1
2 kx2 = 

1
2 (431 N/m)(0.210 m)2 = 9.50 J. 

Ultimately this must come from the original (gravitational) energy in the system mgy
(where we are measuring y from the lowest “elevation” reached by the block, so y = (d + 
x)sin(30º). Thus,  



38. (a) The force at the equilibrium position r = req is 

13 7
eq eq eq

12 60 0dU A BF r rdr r r
= − = − + ==

which leads to the result 

r A
B

A
Beq = FHG

I
KJ = F

HG
I
KJ

2 112
1
6

1
6

. .  

(b) This defines a minimum in the potential energy curve (as can be verified either by a 
graph or by taking another derivative and verifying that it is concave upward at this 
point), which means that for values of r slightly smaller than req the slope of the curve is 
negative (so the force is positive, repulsive). 

(c) And for values of r slightly larger than req the slope of the curve must be positive (so 
the force is negative, attractive). 



(b) The force acting on the particle is related to the potential energy by the negative of the 
slope:

x
UF
x

Δ= −
Δ

From the figure we have 35 J 15 J 10 N
2 m 4 mxF −= − = +

−
.

(c) Since the magnitude 0xF > , the force points in the +x direction.

(d) At x = 7.0m, the potential energy is U3 = 45 J which exceeds the initial total energy E1.
Thus, the particle can never reach there. At the turning point, the kinetic energy is zero. 
Between x = 5 and 6 m, the potential energy is given by 

( ) 15 30( 5),     5 6.U x x x= + − ≤ ≤

Thus, the turning point is found by solving 37 15 30( 5)x= + − , which yields x = 5.7 m.  

(e) At x =5.0 m, the force acting on the particle is  

(45 15) J 30 N
(6 5) mx

UF
x

Δ −= − = − = −
Δ −

The magnitude is | | 30 NxF = .

(f) The fact that 0xF < indicated that the force points in the –x direction. 

39. From Fig. 8-50, we see that at x = 4.5 m, the potential energy is U1 = 15 J. If the 
speed is v = 7.0 m/s, then the kinetic energy is  

K1=mv2/2 = (0.90 kg)(7.0 m/s)2/2 = 22 J. 

The total energy is E1 = U 1+ K1 = (15 + 22) J = 37 J. 

(a) At x = 1.0 m, the potential energy is U2 = 35 J. From energy conservation, we have 
K2=2.0 J > 0. This means that the particle can reach there with a corresponding speed  

2
2

2 2(2.0 J) 2.1 m/s.
0.90 kg

Kv
m

= = =



2 2(16.0 J) 12.6 m/s.
0.200 kg

Kv
m

= = =

(c) At the turning point, the speed of the particle is zero. Let the 
position of the right turning point be .Rx  From the figure shown on the 
right, we find Rx  to be 

16.00 J 0 24.00 J 16.00 J 7.67 m.
7.00 m 8.00 m R

R R

x
x x

− −= =
− −

(d) Let the position of the left turning point be .Lx  From the figure 
shown, we find Lx  to be  

16.00 J 20.00 J 9.00 J 16.00 J 1.73 m.
1.00 m 3.00 m L

L L

x
x x

− −= =
− −

40. In this problem, the mechanical energy (the sum of K and U) remains constant as the 
particle moves. 

(a) Since mechanical energy is conserved, B B A AU K U K+ = + , the kinetic energy of the 
particle in region A (3.00 m 4.00 mx≤ ≤ ) is  

12.0 J 9.00 J 4.00 J 7.00 JA B A BK U U K= − + = − + = .

With 2 / 2,A AK mv=  the speed of the particle at 3.5 mx = (within region A) is  

2 2(7.00 J) 8.37 m/s.
0.200 kg

A
A

Kv
m

= = =

(b) At 6.5 m,x = 0U =  and 12.0 J 4.00 J 16.0 JB BK U K= + = + = by mechanical 
energy conservation. Therefore, the speed at this point is  



(f) As mentioned in the previous part, the minimum of the U curve occurs at x = 4.0 m. 

(g) The force (understood to be in newtons) follows from the potential energy, using Eq. 
8-20 (and Appendix E if students are unfamiliar with such derivatives). 

F dU
dx

x e x= = − −4 4b g /

(h) This revisits the considerations of parts (d) and (e) (since we are returning to the 
minimum of U(x)) — but now with the advantage of having the analytic result of part (g). 
We see that the location which produces F = 0 is exactly x = 4.0 m. 

(c) The problem asks for a graphical determination of the turning points, which are the 
points on the curve corresponding to the total energy computed in part (a). The result for 
the smallest turning point (determined, to be honest, by more careful means) is x = 1.3 m. 

(d) And the result for the largest turning point is x = 9.1 m. 

(e) Since K = E – U, then maximizing K involves finding the minimum of U. A graphical 
determination suggests that this occurs at x = 4.0 m, which plugs into the expression  
E – U = –3.7 – (–4xe–x/4) to give 2.16 J  2.2 JK = ≈ . Alternatively, one can measure 
from the graph from the minimum of the U curve up to the level representing the total 
energy E and thereby obtain an estimate of K at that point. 

41. (a) The energy at x = 5.0 m is E = K + U = 2.0 J – 5.7 J = –3.7 J. 

(b) A plot of the potential energy curve (SI units understood) and the 
energy E (the horizontal line) is shown for 0 ≤ x ≤ 10 m. 



42. Since the velocity is constant, a = 0 and the horizontal component of the worker's 
push F cos θ (where θ = 32°) must equal the friction force magnitude fk = μk FN. Also, the 
vertical forces must cancel, implying 

applied (8.0N)(0.70m) 5.6 JW = =

which is solved to find F = 71 N. 

(a) The work done on the block by the worker is, using Eq. 7-7, 

W Fd= = °= ×cos .θ 71 56 102 N 9.2 m cos32 J .b gb g

(b) Since fk = μk (mg + F sin θ ), we find 2
th (60 N)(9.2m) 5.6 10 J.kE f dΔ = = = ×



43. (a) Using Eq. 7-8, we have 

applied (8.0 N)(0.70m) 5.6 J.W = =

(b) Using Eq. 8-31, the thermal energy generated is 

th (5.0 N)(0.70m) 3.5J.kE f dΔ = = =



(c) Much of the work (105 J ) has been “wasted” due to the 70.6 J of thermal energy 
generated, but there still remains (105 – 70.6 ) J = 34.4 J which has gone into increasing 
the kinetic energy of the block.  (It has not gone into increasing the potential energy of 
the block because the floor is presumed to be horizontal.) 

44. (a) The work is W = Fd = (35.0 N)(3.00 m) = 105 J. 

(b) The total amount of energy that has gone to thermal forms is (see Eq. 8-31 and Eq. 
6-2)  
 

ΔEth = μk mgd = (0.600)(4.00 kg)(9.80 m/s2)(3.00 m) = 70.6 J. 

If 40.0 J has gone to the block then (70.6 – 40.0) J = 30.6 J has gone to the floor. 



45. (a) The work done on the block by the force in the rope is, using Eq. 7-7, 

cos (7.68 N)(4.06m)cos15.0 30.1J.W Fd θ= = ° =

(b) Using f for the magnitude of the kinetic friction force, Eq. 8-29 reveals that the 
increase in thermal energy is 

th (7.42 N)(4.06m) 30.1J.E fdΔ = = =

(c) We can use Newton's second law of motion to obtain the frictional and normal forces, 
then use μk = f/FN to obtain the coefficient of friction. Place the x axis along the path of 
the block and the y axis normal to the floor. The x and the y component of Newton's 
second law are 

  x:      F cos θ – f  = 0 
 y: FN + F sin θ – mg = 0, 

where m is the mass of the block, F is the force exerted by the rope, and θ is the angle 
between that force and the horizontal. The first equation gives  

f = F cos θ = (7.68 N) cos15.0° = 7.42 N 

and the second gives  

FN = mg – F sin θ = (3.57 kg)(9.8 m/s2) – (7.68 N)sin15.0° = 33.0 N. 

Thus,
7.42 N 0.225
33.0 Nk

N

f
F

μ = = = .



46. Equation 8-33 provides ΔEth = –ΔEmec for the energy “lost” in the sense of this 
problem. Thus, 

2 2 2 2 2
th

4

1 1( ) ( ) (60 kg)[(24 m/s) (22 m/s) ] (60 kg)(9.8 m/s )(14 m)
2 2
1.1 10  J.

i f i fE m v v mg y yΔ = − + − = − +

= ×

That the angle of 25° is nowhere used in this calculation is indicative of the fact that 
energy is a scalar quantity. 



47. (a) We take the initial gravitational potential energy to be Ui = 0. Then the final 
gravitational potential energy is Uf = –mgL, where L is the length of the tree. The change 
is

U U mgLf i− = − = − = − ×( ( .25 12 2 9 103 kg) 9.8 m s  m)  J .2d i

(b) The kinetic energy is 2 2 21 1 (25 kg)(5.6 m/s) 3.9 10  J
2 2

K mv= = = × .

(c) The changes in the mechanical and thermal energies must sum to zero. The change in 
thermal energy is ΔEth = fL, where f is the magnitude of the average frictional force; 
therefore,

2 3
23.9 10  J 2.9 10  J 2.1 10  N

12 m
K Uf

L
Δ + Δ × − ×= − = − = ×



48. We work this using the English units (with g = 32 ft/s), but for consistency we 
convert the weight to pounds 

11b(9.0)oz 0.56lb
16oz

mg = =

which implies 20.018 lb s /ftm = ⋅ (which can be phrased as 0.018 slug as explained in 
Appendix D). And we convert the initial speed to feet-per-second

vi =
F
HG

I
KJ =( .818

3600
120mi h) 5280 ft mi

 s h
ft s

or a more “direct” conversion from Appendix D can be used. Equation 8-30 provides 
ΔEth = –ΔEmec for the energy “lost” in the sense of this problem. Thus, 

2 2 2 2
th

1 1( ) ( ) (0.018)(120 110 ) 0 20 ft lb.
2 2i f i fE m v v mg y yΔ = − + − = − + = ⋅



49. We use SI units so m = 0.075 kg. Equation 8-33 provides ΔEth = –ΔEmec for the 
energy “lost” in the sense of this problem. Thus, 

2 2
th

2 2 2

1 ( ) ( )
2
1 (0.075 kg)[(12 m/s) (10.5 m/s) ] (0.075 kg)(9.8 m/s )(1.1 m 2.1 m)
2
0.53 J.

i f i fE m v v mg y yΔ = − + −

= − + −

=



th (10 N)(5.0m) 50JkE f dΔ = = =
and Eq. 7-8 to get 

(2.0 N)(5.0m) 10J.W Fd= = =

Similarly, Eq. 8-31 gives 
W K U E

U
= + +
= + +

Δ Δ Δ
Δ

th

10 35 50

which yields ΔU = –75 J. By Eq. 8-1, then, the work done by gravity is W = –ΔU = 75 J. 

50. We use Eq. 8-31 to obtain 



51. (a) The initial potential energy is 

U mgyi i= = = ×(520 1 kg) 9.8m s  (300 m) .53 10  J2 6d i

where +y is upward and y = 0 at the bottom (so that Uf = 0). 

(b) Since fk = μk FN = μk mg cosθ we have th cosk kE f d mgdμ θΔ = =  from Eq. 8-31. 
Now, the hillside surface (of length d = 500 m) is treated as an hypotenuse of a 3-4-5 
triangle, so cos θ = x/d where x = 400 m. Therefore, 

ΔE mgd x
d

mgxk kth  J .= = = = ×μ μ ( . ) ( ) ( . ) ( ) .0 25 520 9 8 400 51 105

(c) Using Eq. 8-31 (with W = 0) we find 

K K U U Ef i i f= + − −

= + × − − ×

= + ×

Δ th

J
0 153 10 0 51 10
0 102 10

6 5

6

. .

. .

(d) From 2 / 2,fK mv=  we obtain v = 63 m/s. 



52. Energy conservation, as expressed by Eq. 8-33 (with W = 0) leads to 

2
th

2 2

10 0 0
2

1 (200 N/m)(0.15m) (2.0kg)(9.8m/s )(0.75m) 2.25J
2

i f i f k

k k

E K K U U f d kx

mgdμ μ

Δ = − + − = − + −

= =

which yields μk = 0.15 as the coefficient of kinetic friction. 



53. Since the valley is frictionless, the only reason for the speed being less when it 
reaches the higher level is the gain in potential energy ΔU = mgh where h = 1.1 m. 
Sliding along the rough surface of the higher level, the block finally stops since its 
remaining kinetic energy has turned to thermal energy ΔE f d mgdkth = = μ , where 

0.60μ = . Thus, Eq. 8-33 (with W = 0) provides us with an equation to solve for the 
distance d:

K U E mg h di = + = +Δ Δ th μb g

where 2 / 2i iK mv=  and vi = 6.0 m/s. Dividing by mass and rearranging, we obtain 

d v
g

hi= − =
2

2
12

μ μ
. m.



54. (a) An appropriate picture (once friction is included) for this problem is Figure 8-3 in 
the textbook.  We apply equation 8-31, ΔEth = fk d, and relate initial kinetic energy Ki to 
the "resting" potential energy Ur:

Ki + Ui  = fkd + Kr + Ur   20.0 J + 0 = fkd + 0 + 
1
2kd2

where fk = 10.0 N and k = 400 N/m. We solve the equation for d using the quadratic 
formula or by using the polynomial solver on an appropriate calculator, with d = 0.292 m 
being the only positive root. 

(b) We apply equation 8-31 again and relate Ur to the "second" kinetic energy Ks it has at 
the unstretched position. 

Kr + Ur = fkd + Ks + Us
1
2kd2 = fkd + Ks + 0 

Using the result from part (a), this yields Ks = 14.2 J. 



(c) The energy that appears as kinetic energy is originally in the form of potential energy 

in the compressed spring. Thus, K U kximax = = 1
2

2 , where k is the spring constant and x is 

the compression. Thus, 

x K
k

= = =2 2 67
640

0 46max . .
J

N m
mb g

55. (a) The vertical forces acting on the block are the normal force, upward, and the force 
of gravity, downward. Since the vertical component of the block's acceleration is zero, 
Newton's second law requires FN = mg, where m is the mass of the block. Thus f = μk FN
= μk mg. The increase in thermal energy is given by ΔEth = fd = μk mgD, where D is the 
distance the block moves before coming to rest. Using Eq. 8-29, we have 

ΔEth kg m s m J= =0 25 35 9 8 7 8 672. . . . .b gb gd ib g

(b) The block has its maximum kinetic energy Kmax just as it leaves the spring and enters 
the region where friction acts. Therefore, the maximum kinetic energy equals the thermal 
energy generated in bringing the block back to rest, 67 J. 



56. We look for the distance along the incline d which is related to the height ascended by 
Δh = d sin θ. By a force analysis of the style done in Ch. 6, we find the normal force has 
magnitude FN = mg cos θ which means fk = μk mg cosθ. Thus, Eq. 8-33 (with W = 0) 
leads to 

0
0

= − + +
= − + +

K K U E
K mgd mgd

f i

i k

Δ Δ th

sin cosθ μ θ
which leads to 

d K
mg

i

k

=
+

=
°+ °

=
sin cos . . sin . cos

. .
θ μ θb g b gb gb g

128
4 0 9 8 30 0 30 30

4 3m



57. Before the launch, the mechanical energy is mech,0 0EΔ = . At the maximum height h
where the speed of the beetle vanishes, the mechanical energy is mech,1E mghΔ = . The 
change of the mechanical energy is related to the external force by 

mech mech,1 mech,0 cosavgE E E mgh F d φΔ = Δ − Δ = = ,

where Favg is the average magnitude of the external force on the beetle.  

(a) From the above equation, we have  

6 2
2

4

(4.0 10  kg)(9.80 m/s )(0.30 m) 1.5 10  N.
cos (7.7 10 m)(cos 0 ) avg
mghF

d φ

−
−

−

×= = = ×
× °

(b) Dividing the above result by the mass of the beetle, we obtain 

2
4

(0.30 m)  3.8 10 .
cos (7.7 10 m)(cos 0 ) 

avgF ha g g g
m d φ −= = = = ×

× °



ΔE f d mgdk kth J= = = ° = ×μ θcos . . cos . .010 267 61 20 15 102b gb gb g

(b) The potential energy change is  

ΔU = mg(–d sin θ) = (267 N)(– 6.1 m) sin 20° = –5.6 × 102 J. 

The initial kinetic energy is 

2 2
2

1 1 267 N (0.457 m/s ) 2.8J.
2 2 9.8m/si iK mv= = =

Therefore, using Eq. 8-33 (with W = 0), the final kinetic energy is 

K K U Ef i= − − = − − × − × = ×Δ Δ th J2 8 56 10 15 10 41 102 2 2. . . . .c h

Consequently, the final speed is v K mf f= =2 55.  m s . 

58. (a) Using the force analysis shown in Chapter 6, we find the normal force 
cosNF mg θ=  (where mg = 267 N) which means fk = k NFμ =μk mg cos θ. Thus, Eq. 8-31 

yields



59. (a) With x = 0.075 m and k = 320N m,  Eq. 7-26 yields W kxs = − = −1
2

2 0 90.  J.  For 
later reference, this is equal to the negative of ΔU.

(b) Analyzing forces, we find FN = mg which means k k N kf F mgμ μ= = . With d = x, Eq. 
8-31 yields

ΔE f d mgxk kth  J= = = =μ ( . ) ( . ) ( . ) ( . ) . .0 25 2 5 9 8 0 075 0 46

(c) Eq. 8-33 (with W = 0) indicates that the initial kinetic energy is 

K U Ei = + = + =Δ Δ th  J0 90 0 46 136. . .  

which leads to v K mi i= =2 10.  m s.



K U E

mv mgd

i

i k

= +

= +

Δ Δ th

1
2

2 sin cosθ μ θb g

where vi = 14. .m s  Dividing by mass and rearranging, we obtain 

2

0.13m.
2 (sin cos )

i

k

vd
g θ μ θ

= =
+

(b) Now that we know where on the incline it stops (d' = 0.13 + 0.55 = 0.68 m from the 
bottom), we can use Eq. 8-33 again (with W = 0 and now with Ki = 0) to describe the 
final kinetic energy (at the bottom): 

K U E

mv mgd

f

k

= − −

= ′ −

Δ Δ th

1
2

2 sin cosθ μ θb g

which — after dividing by the mass and rearranging — yields 

v gd k= ′ − =2 2 7sin cos . .θ μ θb g m s  

(c) In part (a) it is clear that d increases if μk decreases — both mathematically (since it is 
a positive term in the denominator) and intuitively (less friction — less energy “lost”). In 
part (b), there are two terms in the expression for v which imply that it should increase if 
μk were smaller: the increased value of d' = d0 + d and that last factor sin θ – μk cos θ
which indicates that less is being subtracted from sin θ when μk is less (so the factor itself 
increases in value). 

60. This can be worked entirely by the methods of Chapters 2–6, but we will use energy 
methods in as many steps as possible. 

(a) By a force analysis of the style done in Ch. 6, we find the normal force has magnitude 
FN = mg cos θ (where θ = 40°) which means fk = k NFμ  = μk mg cos θ where μk = 0.15. 
Thus, Eq. 8-31 yields  

ΔEth = fk d = μk mgd cos θ.

Also, elementary trigonometry leads us to conclude that ΔU = mgd sin θ. Eq. 8-33 (with 
W = 0 and Kf = 0) provides an equation for determining d:



Numerically, we have, with m = (5.29 N)/(9.80 m/s2)=0.54 kg,  

2

2

(20.0 m/s) 19.4 m/s
2(9.80 m/s )(1 0.265/5.29)

h = =
+

.

(b) We notice that the force of the air is downward on the trip up and upward on the trip 
down, since it is opposite to the direction of motion. Over the entire trip the increase in 

thermal energy is ΔEth = 2fh. The final kinetic energy is K mvf = 1
2

2 , where v is the 

speed of the stone just before it hits the ground. The final potential energy is Uf = 0. Thus, 
using Eq. 8-31 (with W = 0), we find 

1
2

2 1
2

2
0
2mv fh mv+ = .

We substitute the expression found for h to obtain 

2
2 20

0
2 1 1

2 (1 / ) 2 2
fv mv mv

g f w
= −

+
which leads to 

2 2
2 2 2 2 20 0

0 0 0 0
2 2 21

(1 / ) (1 / )
fv fv f w fv v v v v

mg f w w f w w f w f
−= − = − = − =

+ + + +

where w was substituted for mg and some algebraic manipulations were carried out. 
Therefore,

0
5.29 N 0.265 N(20.0 m/s) 19.0 m/s
5.29 N 0.265 N

w fv v
w f

− −= = =
+ +

.

61. (a) The maximum height reached is h. The thermal energy generated by air resistance 
as the stone rises to this height is ΔEth = fh by Eq. 8-31. We use energy conservation in 
the form of Eq. 8-33 (with W = 0): 

K U E K Uf f i i+ + = +Δ th

and we take the potential energy to be zero at the throwing point (ground level). The 

initial kinetic energy is K mvi = 1
2 0

2 , the initial potential energy is Ui = 0, the final kinetic 

energy is Kf = 0, and the final potential energy is Uf = wh, where w = mg is the weight of 

the stone. Thus, wh fh mv+ = 1
2 0

2 , and we solve for the height: 

2 2
0 0

2( ) 2 (1 / )
mv vh
w f g f w

= =
+ +

.



Setting this equal to Eq. 8-9 (to find the height to which it climbs) we get H = ¾d.  Thus, 
the block (momentarily) stops on the inclined ramp at the right, at a height of  

H = 0.75d = 0.75 ( 40 cm) = 30 cm 

measured from the lowest plateau. 

62. In the absence of friction, we have a simple conversion (as it moves along the 
inclined ramps) of energy between the kinetic form (Eq. 7-1) and the potential form (Eq. 
8-9).  Along the horizontal plateaus, however, there is friction which causes some of the 
kinetic energy to dissipate in accordance with Eq. 8-31 (along with Eq. 6-2 where μk = 
0.50 and FN = mg in this situation).  Thus, after it slides down a (vertical) distance d it 

has gained K = 
1
2 mv2 = mgd, some of which (ΔEth = μk mgd) is dissipated, so that the 

value of kinetic energy at the end of the first plateau (just before it starts descending 
towards the lowest plateau) is K = mgd – μk mgd = 0.5mgd. In its descent to the lowest 
plateau, it gains mgd/2 more kinetic energy, but as it slides across it “loses” μk mgd/2 of it.  
Therefore, as it starts its climb up the right ramp, it has kinetic energy equal to  

K = 0.5mgd + mgd/2– μk mgd/2 = 3 mgd / 4. 



63. The initial and final kinetic energies are zero, and we set up energy conservation in 
the form of Eq. 8-33 (with W = 0) according to our assumptions. Certainly, it can only 
come to a permanent stop somewhere in the flat part, but the question is whether this 
occurs during its first pass through (going rightward) or its second pass through (going 
leftward) or its third pass through (going rightward again), and so on. If it occurs during 
its first pass through, then the thermal energy generated is ΔEth = fkd where d ≤ L
and k kf mgμ= . If it occurs during its second pass through, then the total thermal energy 
is ΔEth = μk mg(L + d) where we again use the symbol d for how far through the level area 
it goes during that last pass (so 0 ≤ d ≤ L). Generalizing to the nth pass through, we see 
that  

ΔEth = μk mg[(n – 1)L + d].

In this way, we have  
mgh mg n L dk= − +μ 1b gc h

which simplifies (when h = L/2 is inserted) to 

d
L

n
k

= + −1 1
2μ

.

The first two terms give 1 1 2 35+ =μ k . ,  so that the requirement 0 1≤ ≤d L  demands 

that n = 3. We arrive at the conclusion that d L = 1
2

, or 

1 1 (40 cm)=20 cm
2 2

d L= =

and that this occurs on its third pass through the flat region. 



Thus, we see that its kinetic energy right at the beginning of its “rough slide” (heading 
uphill towards B) is  

KC = 
1
2 m(4.980 m/s)2 = 12.4m

(with SI units understood).  Note that we “carry along” the mass (as if it were a known 
quantity); as we will see, it will cancel out, shortly. Using Eq. 8-37 (and Eq. 6-2 with FN

= mgcosθ) and siny d θ= , we note that if d < L (the block does not reach point B), this 
kinetic energy will turn entirely into thermal (and potential) energy 

KC = mgy + fk d   12.4m = mgdsinθ + μk mgdcosθ.
 
With μk = 0.40 and θ = 30º, we find d = 1.49 m, which is greater than L (given in the 
problem as 0.75 m), so our assumption that d < L is incorrect.  What is its kinetic energy 
as it reaches point B?  The calculation is similar to the above, but with d replaced by L
and the final v2 term being the unknown (instead of assumed zero): 

1
2 m v2 = KC − (mgLsinθ  + μk mgLcosθ) . 

This determines the speed with which it arrives at point B:   

2

2 2

2 (sin cos )

(4.98 m/s) 2(9.80 m/s )(0.75 m)(sin 30 0.4cos30 ) 3.5 m/s.
B C kv v gL θ μ θ= − +

= − ° + ° =

64. We will refer to the point where it first encounters the “rough region” as point C (this 
is the point at a height h above the reference level). From Eq. 8-17, we find the speed it 
has at point C to be 

vC = vA
2 − 2gh = (8.0)2 − 2(9.8)(2.0) = 4.980 ≈ 5.0 m/s. 



65. We observe that the last line of the problem indicates that static friction is not to be 
considered a factor in this problem. The friction force of magnitude f = 4400 N 
mentioned in the problem is kinetic friction and (as mentioned) is constant (and directed 
upward), and the thermal energy change associated with it is ΔEth = fd (Eq. 8-31) where d
= 3.7 m in part (a) (but will be replaced by x, the spring compression, in part (b)). 

(a) With W = 0 and the reference level for computing U = mgy set at the top of the 
(relaxed) spring, Eq. 8-33 leads to 

U K E v d g f
mi = + = −FHG
I
KJΔ th 2

which yields v = 7 4. m s for m = 1800 kg. 

(b) We again utilize Eq. 8-33 (with W = 0), now relating its kinetic energy at the moment 
it makes contact with the spring to the system energy at the bottom-most point. Using the 
same reference level for computing U = mgy as we did in part (a), we end up with 
gravitational potential energy equal to mg(–x) at that bottom-most point, where the spring 
(with spring constant k = ×15 105. N m ) is fully compressed. 

K mg x kx fx= − + +b g 1
2

2

where K mv= = ×1
2

4 9 102 4.  J using the speed found in part (a). Using the abbreviation 

ξ = mg – f = 1.3 × 104 N, the quadratic formula yields 

x
kK

k
=

± +
=

ξ ξ 2 2
0 90. m  

where we have taken the positive root. 

(c) We relate the energy at the bottom-most point to that of the highest point of rebound 
(a distance d' above the relaxed position of the spring). We assume d' > x. We now use 
the bottom-most point as the reference level for computing gravitational potential energy. 

1
2 2

2 82
2

kx mgd fd d kx
mg d

= ′ + ′ ′ =
+

=b g . m.

(d) The non-conservative force (§8-1) is friction, and the energy term associated with it is 
the one that keeps track of the total distance traveled (whereas the potential energy terms, 
coming as they do from conservative forces, depend on positions — but not on the paths 
that led to them). We assume the elevator comes to final rest at the equilibrium position 
of the spring, with the spring compressed an amount deq given by 

eq eq 0.12m.mgmg kd d
k

= = =



In this part, we use that final-rest point as the reference level for computing gravitational 
potential energy, so the original U = mgy becomes mg(deq + d). In that final position, then, 
the gravitational energy is zero and the spring energy is 2

eq / 2kd . Thus, Eq. 8-33 becomes 

mg d d kd fd

d

eq eq
2

total

total

+ = +

+ = × +

d i

b gb gb g c hb g b g

1
2

1800 9 8 012 37 1
2

15 10 012 44005 2. . . . .

which yields dtotal = 15 m. 



2 21 1 (300kg)(120m/s) 216J.
2 2

K mv= = =

(b) The magnitude of the kinetic frictional force is 

2 3(0.400)(300kg)(9.8m/s ) 1.18 10 N.Nf F mgμ μ= = = = ×

(c) Let the distance the crate moved relative to the conveyor belt before it stops slipping 
be d, then from Eq. 2-16 (v2 = 2ad = 2(f / m)d) we find 

ΔE fd mv Kth = = =1
2

2 .

Thus, the total energy that must be supplied by the motor is 

th 2 (2)(216J) J.W K E K= + Δ = = = 432

(d) The energy supplied by the motor is the work W it does on the system, and must be 
greater than the kinetic energy gained by the crate computed in part (b). This is due to the 
fact that part of the energy supplied by the motor is being used to compensate for the 
energy dissipated ΔEth while it was slipping.  

66. (a) Since the speed of the crate of mass m increases from 0 to 1.20 m/s relative to the 
factory ground, the kinetic energy supplied to it is 



(c) The assumption is no longer that the slope of the bottom of the slide is horizontal, but 
rather that the slope of the top of the slide is vertical (and 12 m to the left of the center of 
curvature). Returning to the pendulum analogy, this corresponds to releasing the 
pendulum from horizontal (at θ1 = 90° measured from vertical) and taking a snapshot of 
its motion a few moments later when it is at angle θ2 with speed v = 6.2 m/s. The 
difference in height between these two positions is (just as we would figure for the 
pendulum of length R)

Δh R R R= − − − = −1 12 1 2cos cos cosθ θ θb g b g

where we have used the fact that cos θ1 = 0. Thus, with Δh = –4.0 m, we obtain θ2 =70.5° 
which means the arc subtends an angle of |Δθ| = 19.5° or 0.34 radians. Multiplying this 
by the radius gives a slide length of s' = 4.1 m. 

(d) We again find the magnitude f ' of the frictional force by using Eq. 8-31 (with W = 0): 

0
1
2

2

= + +

= − + ′ ′

Δ Δ ΔK U E

mv mgh f s

th

so that we obtain f ' = 1.2 × 102 N. 

67. (a) The assumption is that the slope of the bottom of the slide is horizontal, like the 
ground. A useful analogy is that of the pendulum of length R = 12 m that is pulled 
leftward to an angle θ (corresponding to being at the top of the slide at height h = 4.0 m) 
and released so that the pendulum swings to the lowest point (zero height) gaining speed 
v = 6 2. .m s  Exactly as we would analyze the trigonometric relations in the pendulum 
problem, we find 

h R h
R

= − = −FHG
I
KJ = °−1 1 481cos cosθ θb g

or 0.84 radians. The slide, representing a circular arc of length s = Rθ, is therefore (12 
m)(0.84) = 10 m long. 

(b) To find the magnitude f of the frictional force, we use Eq. 8-31 (with W = 0): 

0
1
2

2

= + +

= − +

Δ Δ ΔK U E

mv mgh fs

th

so that (with m = 25 kg) we obtain f = 49 N. 



With L = 1.20 m, we have d = 0.60(1.20 m) = 0.72 m. 

Notice that if d is greater than this value, so the highest point is lower, then the speed of 
the ball is greater as it reaches that point and the ball passes the point. If d is less, the ball 
cannot go around. Thus the value we found for d is a lower limit. 

68. We use conservation of mechanical energy: the mechanical energy must be the same 
at the top of the swing as it is initially. Newton's second law is used to find the speed, and 
hence the kinetic energy, at the top. There the tension force T of the string and the force 
of gravity are both downward, toward the center of the circle. We notice that the radius of 
the circle is r = L – d, so the law can be written  

T mg mv L d+ = −2 b g ,

where v is the speed and m is the mass of the ball. When the ball passes the highest point 
with the least possible speed, the tension is zero. Then 

mg m v
L d

v g L d=
−

= −
2

b g .

We take the gravitational potential energy of the ball-Earth system to be zero when the 
ball is at the bottom of its swing. Then the initial potential energy is mgL. The initial 
kinetic energy is zero since the ball starts from rest. The final potential energy, at the top 
of the swing, is 2mg(L – d) and the final kinetic energy is 1

2
2 1

2mv mg L d= −b g  using the 
above result for v. Conservation of energy yields 

mgL mg L d mg L d d L= − + − =2 1
2

3 5b g b g .



69. There is the same potential energy change in both circumstances, so we can equate 
the kinetic energy changes as well: 

ΔK2 = ΔK1
1
2 mvB

2 – 
1
2 m(4.00 m/s)2 = 

1
2 m(2.60 m/s)2 – 

1
2 m(2.00 m/s)2

which leads to vB = 4.33 m/s.



70. (a) To stretch the spring an external force, equal in magnitude to the force of the 
spring but opposite to its direction, is applied. Since a spring stretched in the positive x
direction exerts a force in the negative x direction, the applied force must be 

252.8 38.4F x x= + , in the +x direction. The work it does is 

1.00 1.00
2 2 3

0.500.50

52.8 38.4(52.8 38.4 ) 31.0 J.
2 3

W x x dx x x= + = + =

(b) The spring does 31.0 J of work and this must be the increase in the kinetic energy of 
the particle. Its speed is then 

v K
m

= = =2 2 310
217

535
.

.
. .

J
kg

m sb g

(c) The force is conservative since the work it does as the particle goes from any point x1
to any other point x2 depends only on x1 and x2, not on details of the motion between x1
and x2.



K U E mgdf k= − − = −th  (sin cos )θ μ θ

which leads to the speed at the bottom of the ramp 

v
K
m

gdf
k= = − =

2
2 55  m s.sin cos .θ μ θb g

(b) This speed begins its horizontal motion, where fk = μk mg and ΔU = 0. It slides a 
distance d' before it stops. According to Eq. 8-31 (with W = 0), 

0

0 1
2

0

1
2

2

2

= + +

= − + + ′

= − − + ′

Δ ΔK U E

mv mgd

gd gd

k

k k

Δ th

   

μ

θ μ θ μsin cosb gc h

where we have divided by mass and substituted from part (a) in the last step. Therefore, 

′ =
−

=d
d k

k

sin cos
. .

θ μ θ
μ

b g 54 m  

(c) We see from the algebraic form of the results, above, that the answers do not depend 
on mass. A 90 kg crate should have the same speed at the bottom and sliding distance 
across the floor, to the extent that the friction relations in Ch. 6 are accurate. Interestingly, 
since g does not appear in the relation for d', the sliding distance would seem to be the 
same if the experiment were performed on Mars! 

71. This can be worked entirely by the methods of Chapters 2–6, but we will use energy 
methods in as many steps as possible. 

(a) By a force analysis in the style of Chapter 6, we find the normal force has magnitude 
FN = mg cos θ (where θ = 39°) which means fk = μk mg cos θ where μk = 0.28. Thus, Eq. 
8-31 yields  

ΔEth = fk d = μk mgd cos θ.

Also, elementary trigonometry leads us to conclude that ΔU = –mgd sin θ where 
3.7 md = . Since Ki = 0, Eq. 8-33 (with W = 0) indicates that the final kinetic energy is 



if d < L.  With μk = 0.70, we find d = 9.3 m, which is indeed less than L (given in the 
problem as 12 m).  We conclude that the block stops before passing out of the “rough” 
region (and thus does not arrive at point D).

72. (a) At B the speed is (from Eq. 8-17)  

2 2 2
0 12 (7.0 m/s) 2(9.8 m/s )(6.0 m) 13 m/s.v v gh= + = + =

(a) Here what matters is the difference in heights (between A and C):

2 2 2
0 1 22 ( ) (7.0 m/s) 2(9.8 m/s )(4.0 m) 11.29 m/s 11 m/s.v v g h h= + − = + = ≈

(c) Using the result from part (b), we see that its kinetic energy right at the beginning of 

its “rough slide” (heading horizontally towards D) is 
1
2 m(11.29 m/s)2 = 63.7m (with SI 

units understood).  Note that we “carry along” the mass (as if it were a known quantity); 
as we will see, it will cancel out, shortly. Using Eq. 8-31 (and Eq. 6-2 with FN = mg) we 
note that this kinetic energy will turn entirely into thermal energy 

63.7m = μk mgd



73. (a) By mechanical energy conversation, the kinetic energy as it reaches the floor 
(which we choose to be the U = 0 level) is the sum of the initial kinetic and potential 
energies:   

K = Ki + Ui = 
1
2 (2.50 kg)(3.00 m/s)2 + (2.50 kg)(9.80 m/s2)(4.00 m) = 109 J. 

For later use, we note that the speed with which it reaches the ground is  

v = 2K/m  = 9.35 m/s. 

(b) When the drop in height is 2.00 m instead of 4.00 m, the kinetic energy is  

K =
1
2 (2.50 kg)(3.00 m/s)2 + (2.50 kg)(9.80 m/s2)(2.00 m) = 60.3 J. 

(c) A simple way to approach this is to imagine the can is launched from the ground at 
0t =  with speed 9.35 m/s (see above) and ask of its height and speed at t = 0.200 s, 

using Eq. 2-15 and Eq. 2-11:   

 y = (9.35 m/s)(0.200 s) – 
1
2 (9.80 m/s2)(0.200 s)2 = 1.67 m, 

             v = 9.35 m/s – (9.80 m/s2)(0.200 s) = 7.39 m/s. 

The kinetic energy is  

K = 
1
2 (2.50 kg) (7.39 m/s)2 = 68.2 J. 

(d) The gravitational potential energy  

U = mgy = (2.5 kg)(9.8 m/s2)(1.67 m) = 41.0 J 



(d) The potential energy there is U U Uf i= + =Δ 6 75. J . 

(e) If Uf = 0, then U U Ui f= − = −Δ 6 75. J . 

(f) Since mg y UΔ = Δ , we obtain 0.459 myΔ = .

74. (a) The initial kinetic energy is Ki = =1
2

215 3 6 75. .b gb g J . 

(b) The work of gravity is the negative of its change in potential energy. At the highest 
point, all of Ki has converted into U (if we neglect air friction) so we conclude the work 
of gravity is –6.75 J. 

(c) And we conclude that ΔU = 6 75. J . 



75. We note that if the larger mass (block B, mB = 2 kg) falls d = 0.25 m, then the smaller 
mass (blocks A, mA = 1 kg) must increase its height by sin 30h d= ° . Thus, by 
mechanical energy conservation, the kinetic energy of the system is 

total 3.7 JB AK m gd m gh= − = .



76. (a) At the point of maximum height, where y = 140 m, the vertical component of 
velocity vanishes but the horizontal component remains what it was when it was 
launched (if we neglect air friction). Its kinetic energy at that moment is 

K vx= 1
2

055 2. .kgb g

Also, its potential energy (with the reference level chosen at the level of the cliff edge) at 
that moment is U = mgy = 755 J. Thus, by mechanical energy conservation, 

K K U vi x= − = − =
−

1550 755
2 1550 755

055
b g

.
= 54 m/s. 

(b) As mentioned vx = vi x so that the initial kinetic energy 

( )2 21
2i i x i yK m v v= +

can be used to find vi y. We obtain vi y = 52 m s . 

(c) Applying Eq. 2-16 to the vertical direction (with +y upward), we have 

2 2 2 2 22 (65 m/s) (52 m/s) 2(9.8 m/s )y i yv v g y y= − Δ = − Δ

which yields Δy = −76 m. The minus sign tells us it is below its launch point. 



77. The work done by F  is the negative of its potential energy change (see Eq. 8-6), so 
UB = UA – 25 = 15 J. 



The x and y applications of Newton's second law provide two equations:  

  F1 cos θ – fk – mg sin θ  = ma

FN – F1 sin θ – mg cos θ  = 0. 

(a) The trunk is moving up the incline at constant velocity, so a = 0. Using fk = μk FN, we 
solve for the push-force F1 and obtain 

F
mg k

k
1 =

+
−

sin cos
cos sin

.
θ μ θ

θ μ θ
b g

The work done by the push-force F1  as the trunk is pushed through a distance  up the 
inclined plane is therefore 

( )( )

( )( )( )( ) ( )( )
( )

1 1
k

2

3

cos sin cos
cos

cos sin

50 kg 9.8 m s 6.0 m cos30 sin 30 0.20 cos30
cos30 0.20 sin 30

2.2 10 J.

kmg
W F

θ θ μ θ
θ

θ μ θ
+

= =
−

° ° + °
=

° − °

= ×

(b) The increase in the gravitational potential energy of the trunk is 

2 3sin (50kg)(9.8m/s )(6.0m)sin 30 1.5 10 J.U mg θΔ = = ° = ×

Since the speed (and, therefore, the kinetic energy) of the trunk is unchanged, Eq. 8-33 
leads to 

W U E1 = +Δ Δ th .

Thus, using more precise numbers than are shown above, the increase in thermal energy 
(generated by the kinetic friction) is 2.24 × 103 J – 1.47 × 103 J = 7.7 × 102 J. An alternate 
way to this result is to use ΔE fkth =  (Eq. 8-31). 

78. The free-body diagram for the trunk is shown. 



79. The initial height of the 2M block, shown in Fig. 8-64, is the y = 0 level in our 
computations of its value of Ug.  As that block drops, the spring stretches accordingly.  
Also, the kinetic energy Ksys is evaluated for the system -- that is, for a total moving mass 
of 3M.

(a) The conservation of energy, Eq. 8-17, leads to 

Ki + Ui = Ksys + Usys   0 + 0 = Ksys + (2M)g(–0.090) + 
1
2 k(0.090)2 .

Thus, with M = 2.0 kg, we obtain Ksys = 2.7 J. 

(b) The kinetic energy of the 2M block represents a fraction of the total kinetic energy: 

2
2

2

(2 ) / 2 2
(3 ) / 2 3

M

sys

K M v
K M v

= = .

Therefore, K2M = 
2
3(2.7 J) = 1.8 J. 

(c) Here we let y = –d and solve for d.

Ki + Ui = Ksys + Usys   0 + 0  =  0 + (2M)g(–d) + 
1
2 kd2 .

Thus, with M = 2.0 kg, we obtain d = 0.39 m.



80. Sample Problem 8-3 illustrates simple energy conservation in a similar situation, and 
derives the frequently encountered relationship: 2 .v gh=  In our present problem, the 
height is related to the distance (on the θ =10º slope) d = 920 m by the trigonometric 
relation h = d sinθ. Thus,  

22(9.8 m/s )(920 m)sin10 56 m/s.v = ° =



81. Eq. 8-33 gives thf i imgy K mgy E= + − Δ , or 

 (0.50 kg)(9.8 m/s2)(0.80 m) = 
1
2 (0.50 kg)(4.00 /s)2 + (0.50 kg)(9.8 m/s2)(0) – ΔEth

which yields ΔEth = 4.00 J – 3.92 J = 0.080 J. 



82. (a) The loss of the initial K = 
1
2 mv2 = 

1
2 (70 kg)(10 m/s)2 is 3500 J, or 3.5 kJ. 

(b) This is dissipated as thermal energy; ΔEth = 3500 J = 3.5 kJ.  



83. The initial height shown in the figure is the y = 0 level in our computations of Ug, and 
in parts (a) and (b) the heights are ya =(0.80 m)sin 40°= 0.51 m and yb = (1.00 m) sin 40°
= 0.64 m, respectively. 

(a) The conservation of energy, Eq. 8-17, leads to 

Ki + Ui = Ka + Ua   16 J + 0 = Ka + mgya +
1
2k(0.20 m)2

from which we obtain Ka = (16 – 5.0 – 4.0) J = 7.0 J. 

(b) Again we use the conservation of energy 

Ki + Ui = Kb + Ub   Ki + 0 = 0 + mgyb +
1
2 k(0.40 m)2

from which we obtain Ki = 6.0 J + 16 J = 22 J.



84. (a) Eq. 8-9 gives U = (3.2 kg)(9.8 m/s2)(3.0 m) = 94 J. 

(b) The mechanical energy is conserved, so K = 94 J. 

(c) The speed (from solving Eq. 7-1) is v = 2(94 J) /(32 kg) = 7.7 m/s. 



85. (a) Resolving the gravitational force into components and applying Newton’s second 
law (as well as Eq. 6-2), we find  

Fmachine – mgsinθ – μk mgcosθ = ma.

In the situation described in the problem, we have a = 0, so 

Fmachine = mgsinθ + μk mgcosθ = 372 N. 

Thus, the work done by the machine is  Fmachined = 744 J = 7.4 × 102 J.

(b) The thermal energy generated is μk mgcosθ d = 240 J = 2.4 × 102 J.  



86. We use P = Fv to compute the force: 

F P
v

= = ×
F
HG

I
KJ
F
HG

I
KJ

= ×92 10

32 5 1852 1000
3600

55 10
6

6W

knot km h
knot

m km
s h

N.
. .

.
b g



87. Since the speed is constant ΔK = 0 and Eq. 8-33 (an application of the energy 
conservation concept) implies 

W E E Eapplied th th cube th floor= = +Δ Δ Δb g b g .

Thus, if Wapplied = (15 N)(3.0 m) = 45 J, and we are told that ΔEth (cube) = 20 J, then we 
conclude that ΔEth (floor) = 25 J. 



88. (a) We take the gravitational potential energy of the skier-Earth system to be zero 
when the skier is at the bottom of the peaks. The initial potential energy is Ui = mgH,
where m is the mass of the skier, and H is the height of the higher peak. The final 
potential energy is Uf = mgh, where h is the height of the lower peak. The skier initially 

has a kinetic energy of Ki = 0, and the final kinetic energy is K mvf = 1
2

2 , where v is the 

speed of the skier at the top of the lower peak. The normal force of the slope on the skier 
does no work and friction is negligible, so mechanical energy is conserved: 

21
2i i f fU K U K mgH mgh mv+ = + = +

Thus,
22 ( ) 2(9.8 m/s )(850 m 750 m) 44 m/sv g H h= − = − = .

(b) We recall from analyzing objects sliding down inclined planes that the normal force 
of the slope on the skier is given by FN = mg cos θ, where θ is the angle of the slope from 
the horizontal, 30° for each of the slopes shown. The magnitude of the force of friction is 
given by f = μk FN = μk mg cos θ. The thermal energy generated by the force of friction is 
fd = μk mgd cos θ, where d is the total distance along the path. Since the skier gets to the 
top of the lower peak with no kinetic energy, the increase in thermal energy is equal to 
the decrease in potential energy. That is, μk mgd cos θ = mg(H– h). Consequently, 

3

(850 m 750 m) 0.036
cos (3.2 10  m)cos30k

H h
d

μ
θ

− −= = =
× °

.



89. To swim at constant velocity the swimmer must push back against the water with a 
force of 110 N. Relative to him the water is going at 0.22 m/s toward his rear, in the same 
direction as his force. Using Eq. 7-48, his power output is obtained: 

P F v Fv= ⋅ = = =110 0 22 24N m s W.b gb g.



the effect of friction force f in stopping the auto over a distance d by K fdi = , where the 
road is assumed level (so ΔU = 0). With 

( ) ( )113 km/h 113 km/h (1000  m/km)(1 h/3600 s) 31.4 m/s,iv = = =

we obtain 
( )

( )
22 1673kg (31.4 m/s)

100 m.
2 2 8230 N

i iK mvd
f f

= = = =

90. The initial kinetic energy of the automobile of mass m moving at speed vi is 

K mvi i= 1
2

2 , where m = 16400/9.8 = 1673 kg. Using Eq. 8-31 and Eq. 8-33, this relates to 



91. With the potential energy reference level set at the point of throwing, we have (with 
SI units understood) 

ΔE mgh mv m= − = −F
HG

I
KJ

1
2

9 8 81 1
2

140
2 2. .b gb g b g

which yields ΔE = –12 J for m = 0.63 kg. This “loss” of mechanical energy is presumably 
due to air friction. 



92. (a) The (internal) energy the climber must convert to gravitational potential energy is 

( )( )( )2 690 kg 9.80 m/s 8850 m 7.8 10 J.U mghΔ = = = ×

(b) The number of candy bars this corresponds to is 

6

6

7.8 10 J 6.2 bars .
1.25 10 J bar

N ×= ≈
×



93. (a) The acceleration of the sprinter is (using Eq. 2-15) 

a x
t

= = =2 2 7 0
16

5 472 2
2Δ b gb g

b g
.

.
. .

m
s

m s

Consequently, the speed at t = 1.6s is v at= = =547 16 88. . . .m s s m s2c hb g  Alternatively, 
Eq. 2-17 could be used. 

(b) The kinetic energy of the sprinter (of weight w and mass m = w/g) is 

( )( )22 2 2 31 1 1 670 N/(9.8 m/s ) 8.8 m/s 2.6 10 J.
2 2 2

wK mv v
g

= = = = ×

(c) The average power is 
3

3
avg

2.6 10 J 1.6 10 W.
1.6 s

KP
t

Δ ×= = = ×
Δ



94. We note that in one second, the block slides d = 1.34 m up the incline, which means 
its height increase is h = d sin θ where 

θ = F
HG
I
KJ = °−tan .1 30

40
37  

We also note that the force of kinetic friction in this inclined plane problem is 
cosk kf mgμ θ= , where μk = 0.40 and m = 1400 kg. Thus, using Eq. 8-31 and Eq. 8-33, 

we find 
W mgh f d mgdk k= + = +sin cosθ μ θb g

or W = 1.69 × 104 J for this one-second interval. Thus, the power associated with this is 

4
4 41.69 10  J 1.69 10  W 1.7 10  W

1 s
P ×= = × ≈ × .



95. (a) The initial kinetic energy is 2(1.5 kg)(20 m/s) / 2 300 J.iK = =

(b) At the point of maximum height, the vertical component of velocity vanishes but the 
horizontal component remains what it was when it was “shot” (if we neglect air friction). 
Its kinetic energy at that moment is 

[ ]21 (1.5 kg) (20 m/s)cos34 206 J.
2

K = ° =

Thus, Δ U = Ki – K = 300 J – 206 J = 93.8 J. 

(c) Since Δ U = mg Δ y, we obtain 

2

94 J 6.38 m
(1.5 kg)(9.8 m/s )

yΔ = = .



(b) When its speed is v = 4 m/s, its mechanical energy is 1
2

2 5mv U+ b g . This must equal 
the energy at the origin: 

1
2

5 1
2

02 2mv U mv U+ = +b g b go

so that the speed at the origin is 

v v
m

U Uo = + −2 2 5 0b g b gc h.

Thus, with U(5) = 246 J, U(0) = 0 and m = 20 kg, we obtain vo = 6.4 m/s. 

(c) Our original formula for U is changed to  

U x x xb g = − + +8 3
2

2 5
3

3

in this case. Therefore, U(2) = 11 J. But we still have vo = 6.4 m/s since that calculation 
only depended on the difference of potential energy values (specifically, U(5) – U(0)).

96. From Eq. 8-6, we find (with SI units understood) 

U x x dxξ ξ ξ
ξb g c h= − − − = +z 3 5 3

2
5
3

2

0

2 3 .

(a) Using the above formula, we obtain U(2) ≈ 19 J. 



97. Eq. 8-8 leads directly to Δy = 
68000 J

(9.4 kg)(9.8 m/s2)  = 738 m.



98. Since the period T is (2.5 rev/s)−1 = 0.40 s, then Eq. 4-33 leads to v = 3.14 m/s.  The 
frictional force has magnitude (using Eq. 6-2)   

f = μk FN = (0.320)(180 N) = 57.6 N. 

The power dissipated by the friction must equal that supplied by the motor, so Eq. 7-48 
gives P = (57.6 N)(3.14 m/s) = 181 W. 



(c) Now we have |x| = 0.040 m which is greater than xi, so this represents an increase in 
the potential energy (relative to what we had initially). Specifically, 

 

ΔU = 
1
2 (3200 N/m)(0.040 m)2 – 1.44 J = +1.12 J 1.1 J≈ .

99. (a) In the initial situation, the elongation was (using Eq. 8-11)   

xi = 2(1.44)/3200 = 0.030 m (or 3.0 cm). 

In the next situation, the elongation is only 2.0 cm (or 0.020 m), so we now have less 
stored energy (relative to what we had initially). Specifically,  

ΔU = 
1
2 (3200 N/m)(0.020 m)2 – 1.44 J = –0.80 J. 

(b) The elastic stored energy for |x| = 0.020 m, does not depend on whether this 
represents a stretch or a compression. The answer is the same as in part (a), ΔU = –0.80 J. 



100. (a) At the highest point, the velocity v = vx is purely horizontal and is equal to the 
horizontal component of the launch velocity (see section 4-6): vox = vo cosθ, where 

30θ = ° in this problem. Eq. 8-17 relates the kinetic energy at the highest point to the 
launch kinetic energy: 

     Ko  = mg y + 
1
2 mv2 = 

1
2 mvox

2 + 
1
2 mvoy

2.

with y = 1.83 m. Since the mvox
2/2 term on the left-hand side cancels the mv2/2 term on 

the right-hand side, this yields voy = 2gy ≈ 6 m/s. With voy = vo sinθ, we obtain  

vo = 11.98 m/s ≈ 12 m/s. 

(b) Energy conservation (including now the energy stored elastically in the spring, Eq. 
8-11) also applies to the motion along the muzzle (through a distance d which 
corresponds to a vertical height increase of dsinθ ): 

1
2 kd 2 = Ko + mg dsinθ d = 0.11 m. 



101. (a) We implement Eq. 8-37 as 

Kf  = Ki + mgyi – fk d = 0 + (60 kg)(9.8 m/s2)(4.0 m) – 0 = 2.35 × 103 J.

(b) Now it applies with a nonzero thermal term: 

Kf = Ki + mgyi – fk d = 0 + (60 kg)(9.8 m/s2)(4.0 m) – (500 N)(4.0 m) = 352 J.



102. (a) We assume his mass is between m1 = 50 kg and m2 = 70 kg (corresponding to a 
weight between 110 lb and 154 lb). His increase in gravitational potential energy is 
therefore in the range 

5 5
1 2 2 10 3 10m gh U m gh U≤ Δ ≤ × ≤ Δ ≤ ×

in SI units (J), where h = 443 m. 

(b) The problem only asks for the amount of internal energy which converts into 
gravitational potential energy, so this result is the same as in part (a). But if we were to 
consider his total internal energy “output” (much of which converts to heat) we can 
expect that external climb is quite different from taking the stairs. 



103. We use SI units so m = 0.030 kg and d = 0.12 m. 

(a) Since there is no change in height (and we assume no changes in elastic potential 
energy), then ΔU = 0 and we have 

2 3
mech 0

1 3.8 10  J.
2

E K mvΔ = Δ = − = − ×

where v0 = 500 m/s and the final speed is zero. 

(b) By Eq. 8-33 (with W = 0) we have ΔEth = 3.8 × 103 J, which implies 

f E
d

= = ×Δ th  N31 104.

using Eq. 8-31 with fk replaced by f (effectively generalizing that equation to include a 
greater variety of dissipative forces than just those obeying Eq. 6-2). 



104. We work this in SI units and convert to horsepower in the last step. Thus, 

v =
F
HG

I
KJ =80 1000

3600
22 2km h m km

s h
m sb g . .

The force FP needed to propel the car (of weight w and mass m = w/g) is found from 
Newton’s second law: 

F F F ma wa
gPnet = − = =

where F = 300 + 1.8v2 in SI units. Therefore, the power required is  

( ) ( )( ) ( )

( )

2 4

4

12000 0.92
300 1.8 22.2 22.2 5.14 10  W

9.8
1 hp5.14 10  W 69 hp.

746 W

P
waP F v F v
g

= ⋅ = + = + + = ×

= × =



m Pt
v vf i

=
−

=
×

−
= ×2 2 15 10 360

25 10
2 1 102 2

6

2 2
6b gc hb g

b g b g
.

.
W s

m s m s
kg.

(b) With t arbitrary, we use Pt m v vi= −1
2

2 2c h  to solve for the speed v = v(t) as a 

function of time and obtain 

v t v Pt
m

t
tib g b g b gc h

= + = +
×

×
= +2 2

6

6

2 10
2 15 10

21 10
100 15

.
.

.

in SI units (v in m/s and t in s). 

(c) The force F(t) as a function of time is 

F t P
v t t

b g b g= = ×
+

15 10
100 15

6.
.

in SI units (F in N and t in s). 

(d) The distance d the train moved is given by 

360
1/ 2 3/ 2

360 3

0 0
0

3 4 3( ) 100 100 6.7 10  m.
2 9 2

t
d v t dt t dt t′ ′= = + = + = ×

105. (a) With P = 1.5 MW = 1.5 × 106 W (assumed constant) and t = 6.0 min = 360 s, the 
work-kinetic energy theorem becomes 

W Pt K m v vf i= = = −Δ 1
2

2 2d i.

The mass of the locomotive is then 



K U K U f d

mv mgy f d

mv mgd mgd

k

k

k

0 0

0
2

0
2

1
2

0 0

1
2

+ = + +

+ = + +

= +

top top

sin cosθ μ θ

which — upon canceling the mass and rearranging — provides the result for d:

d v
g k

=
+

=0
2

2
15

μ θ θcos sin
.b g m .  

(c) The thermal energy generated by friction is fkd = μk mgd cos θ = 26 J. 

(d) The slide back down, from the height y = 1.5 sin 30° is also described by Eq. 8-33. 
With ΔEth  again equal to 26 J, we have 

K U K U f d mgy mvktop top bot bot bot+ = + + + = + +0 1
2

0 262

from which we find vbot m s= 21. .

106. We take the bottom of the incline to be the y = 0 reference level. The incline angle is 
30θ = ° . The distance along the incline d (measured from the bottom) is related to height 

y by the relation y = d sin θ.

(a) Using the conservation of energy, we have 

K U K U mv mgy0 0 0
21

2
0 0+ = + + = +top top

with v0 50= . m s. This yields y = 1.3 m, from which we obtain d = 2.6 m. 

(b) An analysis of forces in the manner of Chapter 6 reveals that the magnitude of the 
friction force is fk = μkmg cos θ. Now, we write Eq. 8-33 as 



K kd kd d f dk= − + −1
2

2
0b g .

In this first approach, we could work through the dK
dd

= 0  condition (or with the special 

capabilities of a graphing calculator) to obtain the answer K
k

kd fkmax = −1
2 0

2b g .  In the 

second (and perhaps easier) approach, we note that K is maximum where v is 
maximum — which is where a = 0  equilibrium of forces. Thus, the second approach 
simply solves for the equilibrium position 

F f kxkspring = = 80. 

Thus, with k = 4000 N/m we obtain x = 0.02 m. But x = d0 – d so this corresponds to d = 
0.08 m. Then the methods of part (a) lead to the answer Kmax = 12.8 J ≈ 13 J. 

107. (a) The effect of a (sliding) friction is described in terms of energy dissipated as 
shown in Eq. 8-31. We have 

ΔE K k k fk= + − = −1
2

0 08 1
2

010 0 022 2. . .b g b g b g

where distances are in meters and energies are in Joules. With k = 4000 N/m and 
80 N,kf = we obtain K = 5.6 J. 

(b) In this case, we have d = 0.10 m. Thus, 

ΔE K k fk= + − = −0 1
2

010 0102. .b g b g
which leads to K = 12 J. 

(c) We can approach this two ways. One way is to examine the dependence of energy on 
the variable d:

ΔE K k d d kd f dk= + − − = −1
2

1
20

2
0
2b g

where d0 = 0.10 m, and solving for K as a function of d:



108. We assume his initial kinetic energy (when he jumps) is negligible. Then, his initial 
gravitational potential energy measured relative to where he momentarily stops is what 
becomes the elastic potential energy of the stretched net (neglecting air friction). Thus, 

U U mghnet grav= =

where h = 11.0 m + 1.5 m = 12.5 m. With m = 70 kg, we obtain Unet = 8580 J ≈ 8.6 × 103

J.



T mg m v
r

T m g gL
L

mg− = = +FHG
I
KJ =

2 4 5 .

With m = 0.092 kg, the tension is given by T = 4.5 N. 

(c) The pendulum is now started (with zero speed) at 90iθ = ° (that is, hi = L), and we 
look for an angle θ such that T = mg. When the ball is moving through a point at angle θ,
then Newton's second law applied to the axis along the rod yields 

T mg m v
r

− =cosθ
2

which (since r = L) implies v2 = gL(1 – cos θ ) at the position we are looking for. Energy 
conservation leads to 

         (1

K U K U

mgL mv mgL

gL gL gL

i i+ = +

+ = + −

= − + −

0 1
2

1

1
2

1

2 ( cos )

( ( cos )) cos )

θ

θ θ

where we have divided by mass in the last step. Simplifying, we obtain 

1 1cos 71
3

θ −= = ° .

(d) Since the angle found in (c) is independent of the mass, the result remains the same if 
the mass of the ball is changed. 

109. The connection between angle θ (measured from vertical) and height h (measured 
from the lowest point, which is our choice of reference position in computing the 
gravitational potential energy mgh) is given by h = L(1 – cos θ ) where L is the length of 
the pendulum. 

(a) Using this formula (or simply using intuition) we see the initial height is h1 = 2L, and 
of course h2 = 0. We use energy conservation in the form of Eq. 8-17. 

 (2

K U K U

mg L mv

1 1 2 2

20 1
2

0

+ = +

+ = +)

This leads to v gL= 2 . With L = 0.62 m, we have  

22 (9.8 m/s )(0.62 m) 4.9 m/sv = = .

(b) The ball is in circular motion with the center of the circle above it, so a v r= 2 /
upward, where r = L. Newton's second law leads to 



Note: one might wish to check that the skier stays in contact with the hill — which is 
indeed the case, here. For instance, at A we find v2/r ≈ 2 m/s2 which is considerably less 
than g.

(b) With KA = 0, we have 

K U K U K mgyB B A A B A+ = + + = +0 0  

which yields KB = 724 J, and the corresponding speed is v K m= =2 4 9. m s.

(c) Expressed in terms of mass, we have 

K U K U

mv mgy mv mgy

B B A A

B B A A

+ = +

+ = +1
2

1
2

2 2 .

Thus, the mass m cancels, and we observe that solving for speed does not depend on the 
value of mass (or weight). 

110. We take her original elevation to be the y = 0 reference level and observe that the 
top of the hill must consequently have yA = R(1 – cos 20°) = 1.2 m, where R is the radius 
of the hill. The mass of the skier is 600/9.8 = 61 kg. 

(a) Applying energy conservation, Eq. 8-17, we have 

0 .B B A A B A AK U K U K K mgy+ = + + = +

Using KB = 1
2

261 8 0kg m sb gb g. , we obtain KA = 1.2 × 103 J. Thus, we find the speed at 
the hilltop is  

v K m= =2 6 4. m s .



111. (a) At the top of its flight, the vertical component of the velocity vanishes, and the 
horizontal component (neglecting air friction) is the same as it was when it was thrown. 
Thus,

K mvxtop kg m s= = °1
2

1
2

0 050 8 0 302 2
. . cosb g b gc h = 1.2 J. 

(b) We choose the point 3.0 m below the window as the reference level for computing the 
potential energy. Thus, equating the mechanical energy when it was thrown to when it is 
at this reference level, we have (with SI units understood) 

mgy K K

m m mv

0 0

2 29 8 30 1
2

8 0 1
2

+ =

+ =. . .b gb g b g

which yields (after canceling m and simplifying) v = 11 m/s. 

(c) As mentioned, m cancels — and is therefore not relevant to that computation. 

(d) The v in the kinetic energy formula is the magnitude of the velocity vector; it does not 
depend on the direction. 



Thus, the gravitational energy is being reduced at the rate of 3.9 × 104 W. 

(b) Since the velocity is constant, the rate of change of the kinetic energy is zero. Thus 
the rate at which the mechanical energy is being dissipated is the same as that of the 
gravitational potential energy (3.9 × 104 W). 

112. (a) The rate of change of the gravitational potential energy is 

dU
dt

mg dy
dt

mg v= = − = − = − ×68 9 8 59 39 104b gb gb g. . J s.  



113. The water has gained  

ΔK = 
1
2 (10 kg)(13 m/s)2 – 

1
2 (10 kg)(3.2 m/s)2 = 794 J 

of kinetic energy, and it has lost ΔU = (10 kg)(9.8 m/s2)(15 m) = 1470 J . 

of potential energy (the lack of agreement between these two values is presumably due to 
transfer of energy into thermal forms).  The ratio of these values is 0.54 = 54%.  The 
mass of the water cancels when we take the ratio, so that the assumption (stated at the end 
of the problem: m = 10 kg) is not needed for the final result.



114. (a) The integral (see Eq. 8-6, where the value of U at x = ∞ is required to vanish) is 
straightforward.  The result is U(x) = −Gm1m2/x.

(b) One approach is to use Eq. 8-5, which means that we are effectively doing the integral 
of part (a) all over again.  Another approach is to use our result from part (a) (and thus 
use Eq. 8-1). Either way, we arrive at 

W = 
G m1 m2

x1
− 

G m1 m2
x1+ d  = 

G m1 m2 d
 x1(x1 + d) . 



115. (a) During one second, the decrease in potential energy is 

− = − = × = ×Δ ΔU mg y( ) ( .55 106  kg) 9.8m s  (50 m) 2.7 10  J2 9d i

where +y is upward and Δy = yf – yi.

(b) The information relating mass to volume is not needed in the computation. By Eq.  
8-40 (and the SI relation W = J/s), the result follows:  

P = (2.7 × 109 J)/(1 s) = 2.7 × 109 W. 

(c) One year is equivalent to 24 × 365.25 = 8766 h which we write as 8.77 kh. Thus, the 
energy supply rate multiplied by the cost and by the time is 

( . .2 7 10 2 4 109 10× F
HG

I
KJ = ×W)(8.77 kh) 1 cent

1 kWh
cents  = $2.4 × 108.



116. (a) The kinetic energy K of the automobile of mass m at t = 30 s is 

K mv= =
F
HG

I
KJ

F
HG

I
KJ = ×1

2
1
2

1500 72 1000
3600

30 102

2

5kg km h m km
s h

J .b g b g .

(b) The average power required is 

P K
tavg

J
s

W.= = × = ×Δ
Δ

30 10
30

10 10
5

4. .

(c) Since the acceleration a is constant, the power is P = Fv = mav = ma(at) = ma2t using 

Eq. 2-11. By contrast, from part (b), the average power is P mv
tavg =

2

2
 which becomes 

1
2

2ma t  when v = at is again utilized. Thus, the instantaneous power at the end of the 

interval is twice the average power during it: P P= = × = ×2 2 10 10 2 0 104 4
avg W W.b gc h. .  



K11 = Emax – U11 = (14.0 – 12.0) J = 2.00 J. 

(g) Now we have W = F4 Δx =(–1.00 N)(1.00 m) = –1.00 J, so the potential energy at 
12.0 mx = is  

U12 = 1.00 J + U11 = (1.00 + 12.0) J = 13.0 J. 

(h) Thus, the kinetic energy at x = 12.0 m is  

K12 = Emax – U12 = (14.0 – 13.0) = 1.00 J. 

(i) There is no work done in this interval (from x = 12.0 m to x = 13.0 m) so the answers 
are the same as in part (g): U12 = 13.0 J. 

(j) There is no work done in this interval (from x = 12.0 m to x = 13.0 m) so the answers 
are the same as in part (h): K12 = 1.00 J. 

(k) Although the plot is not shown here, it would look like a “potential well” with 
piecewise-sloping sides: from x = 0 to x = 2 (SI units understood) the graph if U is a 
decreasing line segment from 11 to 5, and from x = 2 to x = 3, it then heads down to zero, 
where it stays until x = 8, where it starts increasing to a value of 12 (at x = 11), and then 
in another positive-slope line segment it increases to a value of 13 (at x = 12).  For 

12x >  its value does not change (this is the “top of the well”). 

117. (a) The remark in the problem statement that the forces can be associated with 
potential energies is illustrated as follows: the work from x = 3.00 m to x = 2.00 m is  

W = F2 Δx =(5.00 N)(–1.00 m) = –5.00 J, 

so the potential energy at x = 2.00 m is U2 = +5.00 J.   

(b) Now, it is evident from the problem statement that Emax = 14.0 J, so the kinetic energy 
at x = 2.00 m is  

K2 = Emax – U2 = 14.0 – 5.00 = 9.00 J. 

(c) The work from x = 2.00 m to x = 0 is W = F1 Δx =(3.00 N)(–2.00 m) = –6.00 J, so the 
potential energy at x = 0 is  

U0 = 6.00 J + U2 = (6.00 + 5.00) J = 11.0 J. 

(d) Similar reasoning to that presented in part (a) then gives  

K0 = Emax – U0 = (14.0 – 11.0) J = 3.00 J. 

(e) The work from x = 8.00 m to x = 11.0 m is W = F3 Δx =(–4.00 N)(3.00 m) = –12.0 J, 
so the potential energy at x = 11.0 m is U11 = 12.0 J.   

(f) The kinetic energy at x = 11.0 m is therefore  



(l) The particle can be thought of as “falling” down the 0 < x < 3 slopes of the well, 
gaining kinetic energy as it does so, and certainly is able to reach x = 5. Since U = 0 at x
= 5, then it’s initial potential energy (11 J) has completely converted to kinetic: now K = 
11.0 J. 

(m) This is not sufficient to climb up and out of the well on the large x side (x > 8), but 
does allow it to reach a “height” of 11 at x = 10.8 m.  As discussed in section 8-5, this is 
a “turning point” of the motion. 

(n) Next it “falls” back down and rises back up the small x slopes until it comes back to 
its original position. Stating this more carefully, when it is (momentarily) stopped at x = 
10.8 m it is accelerated to the left by the force 3F ; it gains enough speed as a result that it 
eventually is able to return to x = 0, where it stops again. 



The total energy, therefore, is great enough to reach the point x = 0 where U = 11.0 J, 
with a little “left over” (11.9 J – 11.0 J  = 0.9025 J).  This is the kinetic energy at x = 0, 
which means the speed there is  

v = 2(0.9025 J)/(2 kg) = 0.950 m/s. 

It has now come to a stop, therefore, so it has not encountered a turning point. 

(b) The total energy (11.9 J) is equal to the potential energy (in the scenario where it is 
initially moving rightward) at x = 10.9756 ≈ 11.0 m.  This point may be found by 
interpolation or simply by using the work-kinetic-energy theorem:  

Kf = Ki + W = 0    11.9025 + (–4)d = 0   d = 2.9756 ≈ 2.98 

(which when added to x = 8.00 [the point where F3 begins to act] gives the correct result).  
This provides a turning point for the particle’s motion. 

118. (a) At x = 5.00 m the potential energy is zero, and the kinetic energy is  

K = 
1
2 mv2 =

1
2 (2.00 kg)(3.45 m/s)2 = 11.9 J. 



119. (a) During the final d = 12 m of motion, we use 

1 1 2 2

21 0 0 0
2

k

k

K U K U f d

mv f d

+ = + +

+ = + +

where v = 4.2 m/s. This gives fk = 0.31 N. Therefore, the thermal energy change is 
3.7 J.kf d =

(b) Using fk = 0.31 N we obtain fkdtotal = 4.3 J for the thermal energy generated by friction; 
here, dtotal = 14 m. 

(c) During the initial d' = 2 m of motion, we have 

K U W K U f d W mv f dk k0 0 1 1
20 0 1

2
0+ + = + + ′ + + = + + ′app app

which essentially combines Eq. 8-31 and Eq. 8-33. This leads to the result Wapp = 4.3 J, 
and — reasonably enough — is the same as our answer in part (b). 



(c) The two integrations that need to be performed are each of the form   2x dx so that 
we are adding two equivalent terms, where each equals x2 (evaluated at x = 4, minus its 
value at x = 1). Thus, the work done is 2(42 – 12) = 30 J. 

(d) This is another conservative force field, as can be easily verified by calculating that 
the net work done here is zero. 

(e) The forces in (b) and (d) are conservative. 

120. (a) The table shows that the force is +(3.0 N)i^ while the displacement is in the +x
direction ( d

→
 = +(3.0 m)i^ ), and it is –(3.0 N)i^ while the displacement is in the –x

direction.  Using Eq. 7-8 for each part of the trip, and adding the results, we find the 
work done is 18 J. This is not a conservative force field; if it had been, then the net work 
done would have been zero (since it returned to where it started). 

(b) This, however, is a conservative force field, as can be easily verified by calculating 
that the net work done here is zero. 



121. We use Eq. 8-20.  

(a) The force at x = 2.0 m is 

(17.5 J) ( 2.8 J) 4.9 N.
4.0 m 1.0 m

dUF
dx

− − −= − ≈ − =
−

(b) The force points in the +x direction (but there is some uncertainty in reading the graph 
which makes the last digit not very significant). 

(c) The total mechanical energy at x = 2.0 m is 

E mv U= + ≈ − − = −1
2

1
2

2 0 15 7 7 552 2( . )( . ) . .  

in SI units (Joules). Again, there is some uncertainty in reading the graph which makes 
the last digit not very significant. At that level (–5.5 J) on the graph, we find two points 
where the potential energy curve has that value — at x ≈ 1.5 m and x ≈ 13.5 m. Therefore, 
the particle remains in the region 1.5 < x < 13.5 m. The left boundary is at x = 1.5 m.  

(d) From the above results, the right boundary is at x = 13.5 m.   

(e) At x = 7.0 m, we read U ≈ –17.5 J. Thus, if its total energy (calculated in the previous 
part) is E ≈ –5.5 J, then we find 

1
2

12 2 352mv E U v
m

E U= − ≈ = − ≈ J  m s( ) .

where there is certainly room for disagreement on that last digit for the reasons cited 
above.



(a) We use energy conservation in the form of Eq. 8-17. 

K U K U

mgL mv mgL

1 1 2 2

1 2
2

20 1 1
2

1

+ = +

+ − = + −cos cosθ θb g b g

With L = 1.4 m, θ1 = 30°, and θ2 = 20°, we have 

v gL2 2 12 14= − =cos cos .θ θb g m s. 

(b) The maximum speed v3 is at the lowest point. Our formula for h gives h3 = 0 when θ3
= 0°, as expected. From 

K U K U

mgL mv

1 1 3 3

1 3
20 1 1

2
0

+ = +

+ − = +cosθb g
we obtain v3 19= . m s .

(c) We look for an angle θ4 such that the speed there is v v4 3 3= . To be as accurate as 
possible, we proceed algebraically (substituting v gL3

2
12 1= − cosθb g  at the appropriate 

place) and plug numbers in at the end. Energy conservation leads to 

K U K U

mgL mv mgL

mgL m v mgL

gL
gL

gL

1 1 4 4

1 4
2

4

1
3
2

4

1
1

4

0 1 1
2

1

1 1
2 9

1

1
2

2 1
9

+ = +

+ − = + −

− = + −

− =
−

−

cos cos

cos cos

cos
cos

cos

θ θ

θ θ

θ
θ

θ

b g b g

b g b g
b g

where in the last step we have subtracted out mgL and then divided by m. Thus, we obtain 

1
4 1

1 8cos cos 28.2 28 .
9 9

θ θ−= + = ° ≈ °

122. The connection between angle θ (measured from vertical) and height h (measured 
from the lowest point, which is our choice of reference position in computing the 
gravitational potential energy) is given by h = L(1 – cos θ ) where L is the length of the 
pendulum. 



f d K U f d m v v mgyk k= − − = − +Δ Δ 1
2 0

2 2
0c h .

Therefore, the mechanical energy reduction (due to friction) is fk d = 2.4 × 104 J. 

(b) With d = 50 m, we solve for fk and obtain 4.7 × 102 N. 

123. Converting to SI units, v0 8 3= . m s  and v = 111. m s . The incline angle is 
5.0θ = ° . The height difference between the car's highest and lowest points is (50 m) sin 

θ = 4.4 m. We take the lowest point (the car's final reported location) to correspond to the 
y = 0 reference level. 

(a) Using Eq. 8-31 and Eq. 8-33, we find 



124. Equating the mechanical energy at his initial position (as he emerges from the canon, 
where we set the reference level for computing potential energy) to his energy as he lands, 
we obtain 

K K U

K

i f f

f

= +

= +1
2

60 16 60 9 8 3 92kg m s kg m s m2b gb g b gc hb g. .

which leads to Kf = 5.4 × 103 J. 



licorice could “spring back” to its original shape. Still, to the extent that U kx= 1
2

2

applies, the graph is a parabola (not shown here) which has its vertex at the origin and is 
either concave upward or concave downward depending on how one wishes to define the 
sign of F (the connection being F = –dU/dx).

(e) As a crude estimate, the area under the curve is roughly half the area of the entire 
plotting-area (8000 N by 12 mm). This leads to an approximate work of  
1
2

(8000 N) (0.012 m) ≈ 50 J. Estimates in the range 40 ≤ W ≤ 50 J are acceptable. 

(f) Certainly dissipative effects dominate this process, and we cannot assign it a 
meaningful potential energy. 

125. (a) The compression is “spring-like” so the maximum force relates to the distance x
by Hooke's law: 

F kx xx m.= =
×

=750
2 5 10

0 00305.
.

(b) The work is what produces the “spring-like” potential energy associated with the 
compression. Thus, using Eq. 8-11, 

2 5 21 1 (2.5 10 )(0.0030) 1.1J.
2 2

W kx= = × =

(c) By Newton's third law, the force F exerted by the tooth is equal and opposite to the 
“spring-like” force exerted by the licorice, so the graph of F is a straight line of slope k.
We plot F (in newtons) versus x (in millimeters); both are taken as positive. 

(d) As mentioned in part (b), the spring potential energy expression is relevant. Now, 
whether or not we can ignore dissipative processes is a deeper question. In other words, it 
seems unlikely that — if the tooth at any moment were to reverse its motion — that the 



126. (a) This part is essentially a free-fall problem, which can be easily done with 
Chapter 2 methods. Instead, choosing energy methods, we take y = 0 to be the ground 
level.

K U K U mgy mvi i i+ = + + = +0 1
2

02

Therefore v gyi= =2 9 2. m s, where yi = 4.3 m. 

(b) Eq. 8-29 provides ΔEth = fkd for thermal energy generated by the kinetic friction force. 
We apply Eq. 8-31: 

K U K U mgy mv f di i i k+ = + + = + +0 1
2

02 .
.

With d = yi, m = 70 kg and fk = 500 N, this yields v = 4.8 m/s. 



P F v
v
v

= ⋅ =
=
=

RST
300 10
900 30

W for m s
W for m s

We note that the average of these two values agrees with the result in part (b). 

127. (a) When there is no change in potential energy, Eq. 8-24 leads to 

W K m v vapp = = −Δ 1
2

2
0
2c h .

Therefore, ΔE = ×6 0 103. J . 

(b) From the above manipulation, we see Wapp = 6.0 × 103 J. Also, from Chapter 2, we 
know that Δ Δt v a= = 10 s. Thus, using Eq. 7-42, 

P W
tavg W .= = × =

Δ
6 0 10

10
600

3.

(c) and (d) The constant applied force is ma = 30 N and clearly in the direction of motion, 
so Eq. 7-48 provides the results for instantaneous power 



128. The distance traveled up the incline can be figured with Chapter 2 
techniques: v v a x x2

0
2 2 200= + → =Δ Δ m. This corresponds to an increase in height 

equal to y = (200 m) sin θ = 17 m, where 5.0θ = ° . We take its initial height to be y = 0. 

(a) Eq. 8-24 leads to 

W E m v v mgyapp = = − +Δ 1
2

2
0
2c h .

Therefore, ΔE = ×8 6 103. J . 

(b) From the above manipulation, we see Wapp = 8.6 × 103 J. Also, from Chapter 2, we 
know that Δ Δt v a= = 10 s . Thus, using Eq. 7-42, 

P W
tavg W= = × =

Δ
8 6 10

10
860

3.

where the answer has been rounded off (from the 856 value that is provided by the 
calculator).

(c) and (d) Taking into account the component of gravity along the incline surface, the 
applied force is ma + mg sin θ = 43 N and clearly in the direction of motion, so Eq. 7-48 
provides the results for instantaneous power 

P F v
v
v

= ⋅ =
=
=

RST
430 10
1300 30

W for m / s
W for m / s

where these answers have been rounded off (from 428 and 1284, respectively). We note 
that the average of these two values agrees with the result in part (b). 



for the mass of rainwater. One-third of this “falls” to the ocean, so it is m = 2 × 1015 kg 
that we want to use in computing the gravitational potential energy mgh (which will turn 
into electrical energy during the year). Since a year is equivalent to 3.2 × 107 s, we obtain 

Pavg W.=
×

×
= ×

2 10 9 8 500
32 10

31 10
15

7
11c hb gb g.

.
.

129. We want to convert (at least in theory) the water that falls through h = 500 m into 
electrical energy. The problem indicates that in one year, a volume of water equal to AΔz
lands in the form of rain on the country, where A = 8 × 1012 m2 and Δz = 0.75 m. 
Multiplying this volume by the density ρ = 1000 kg/m3 leads to 

m A ztotal kg= = × = ×ρ Δ 1000 8 10 0 75 6 1012 15b gc hb g.



130. The spring is relaxed at y = 0, so the elastic potential energy (Eq. 8-11) is 
U kyel = 1

2
2 . The total energy is conserved, and is zero (determined by evaluating it at its 

initial position). We note that U is the same as ΔU in these manipulations. Thus, we have 

0 = + + = − −K U U K U Ug e g e

where Ug = mgy = (20 N)y with y in meters (so that the energies are in Joules). We 
arrange the results in a table: 

position y –0.05 –0.10 –0.15 –0.20 

K (a) 0.75 (d) 1.0 (g) 0.75 (j) 0 

Ug (b) –1.0 (e) –2.0 (h) –3.0 (k) –4.0 

Ue (c) 0.25 (f) 1.0 (i) 2.25 (l) 4.0 



131. The power generation (assumed constant, so average power is the same as 
instantaneous power) is 

3 3 3 2
8(3 / 4)(1200m )(10 kg / m )(9.8m / s )(100m) 8.80 10  W.

1.0s
mghP

t
= = = ×



(d) With M > > m, the kinetic energy is essentially just that of m. Since E = 1 × 10–19 J, its 
kinetic energy is K = E – U ≈ 2.1 × 10–19 J. 

(e) Since force is related to the slope of the curve, we must (crudely) estimate 
F ≈ × −1 10 9 N  at this point. The sign of the slope is positive, so by Eq. 8-20, the force is 

negative-valued. This is interpreted to mean that the atoms are attracted to each other. 

(f) Recalling our remarks in the previous part, we see that the sign of F is positive 
(meaning it's repulsive) for r < 0.2 nm. 

(g) And the sign of F is negative (attractive) for r > 0.2 nm. 

(h) At r = 0.2 nm, the slope (hence, F) vanishes. 

132. The style of reasoning used here is presented in §8-5. 

(a) The horizontal line representing E1 intersects the potential energy curve at a value of r
≈ 0.07 nm and seems not to intersect the curve at larger r (though this is somewhat 
unclear since U (r) is graphed only up to r = 0.4 nm). Thus, if m were propelled towards 
M from large r with energy E1 it would “turn around” at 0.07 nm and head back in the 
direction from which it came. 

(b) The line representing E2 has two intersection points r1 ≈ 0.16 nm and r2 ≈ 0.28 nm 
with the U (r) plot. Thus, if m starts in the region r1 < r < r2 with energy E2 it will bounce 
back and forth between these two points, presumably forever. 

(c) At r = 0.3 nm, the potential energy is roughly U = –1.1 × 10–19 J. 



133. (a) Sample Problem 8-3 illustrates simple energy conservation in a similar situation, 
and derives the frequently encountered relationship: v = 2gh .  In our present problem, 
the height change is equal to the rod length L. Thus, using the suggested notation for the 
speed, we have vo = 2gL . 

(b) At B the speed is (from Eq. 8-17)  

2
0 2 4v v gL gL= + = .

The direction of the centripetal acceleration (v2/r = 4gL/L = 4g) is upward (at that 
moment), as is the tension force.  Thus, Newton’s second law gives  

T – mg = m(4g) T = 5mg.

(c) The difference in height between C and D is L, so the “loss” of mechanical energy 
(which goes into thermal energy) is –mgL.

(d) The difference in height between B and D is 2L, so the total “loss” of mechanical 
energy (which all goes into thermal energy) is –2mgL.



(b) The potential energy U(x) and the kinetic energy K(x) are shown in the next.  The 
potential energy curve begins at 4 and drops (until about x = 2); the kinetic energy curve 
is the one that starts at zero and rises (until about x = 2). 

134. (a) The force (SI units understood) from Eq. 8-20 is plotted in the graph below. 



135. Let the amount of stretch of the spring be x. For the object to be in equilibrium 

kx mg x mg k− = =0 .

Thus the gain in elastic potential energy for the spring is 

ΔU kx k mg
k

m g
ke = = F

HG
I
KJ =1

2
1
2 2

2
2 2 2

while the loss in the gravitational potential energy of the system is 

− = = FHG
I
KJ =ΔU mgx mg mg

k
m g

kg

2 2

which we see (by comparing with the previous expression) is equal to 2ΔUe. The reason 
why ΔU Ug e≠ Δ  is that, since the object is slowly lowered, an upward external force 
(e.g., due to the hand) must have been exerted on the object during the lowering process, 
preventing it from accelerating downward. This force does negative work on the object, 
reducing the total mechanical energy of the system. 
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