
1. An isothermal process is one in which Ti = Tf which implies ln(Tf/Ti) = 0. Therefore, 
with Vf/Vi = 2.00, Eq. 20-4 leads to 

( )( ) ( )= ln = 2.50 mol 8.31 J/mol K ln 2.00 = 14.4 J/K.f
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2. From Eq. 20-2, we obtain 

( ) ( ) 4= = 405 K 46.0 J/K = 1.86 10  J.Δ ×Q T S



3. We use the following relation derived in Sample Problem 20-2: 

= ln .Δ f

i

T
S mc

T

(a) The energy absorbed as heat is given by Eq. 19-14. Using Table 19-3, we find 

( ) ( ) 4J= = 386 2.00 kg 75 K = 5.79 10  J
kg K

Δ ×
⋅

Q cm T

where we have used the fact that a change in Kelvin temperature is equivalent to a change 
in Celsius degrees. 

(b) With Tf = 373.15 K and Ti = 298.15 K, we obtain 

( ) J 373.15= 2.00 kg 386 ln = 173 J/K.
kg K 298.15

Δ
⋅

S



4. (a) This may be considered a reversible process (as well as isothermal), so we use ΔS = 
Q/T where Q = Lm with L = 333 J/g from Table 19-4. Consequently, 

ΔS =
333 12.0

273
= 14.6

 J / g  g
K

 J / K.
a fa f

(b) The situation is similar to that described in part (a), except with L = 2256 J/g, m = 
5.00 g, and T = 373 K. We therefore find ΔS = 30.2 J/K. 



5. (a) Since the gas is ideal, its pressure p is given in terms of the number of moles n, the 
volume V, and the temperature T by p = nRT/V. The work done by the gas during the 
isothermal expansion is 

2 2

1 1

2

1

ln .= = =
V V

V V

dV VW p dV n RT n RT
V V

We substitute V2 = 2.00V1 to obtain 

( )( )( ) 3= ln2.00 = 4.00 mol 8.31 J/mol K 400 K ln2.00 = 9.22 10  J.W n RT ⋅ ×

(b) Since the expansion is isothermal, the change in entropy is given by 

( )1S T dQ Q TΔ = = ,

where Q is the heat absorbed. According to the first law of thermodynamics, ΔEint = Q −
W. Now the internal energy of an ideal gas depends only on the temperature and not on 
the pressure and volume. Since the expansion is isothermal, ΔEint = 0 and Q = W. Thus, 

39.22 10 J= = = 23.1 J/K.
400 K

×Δ WS
T

(c) ΔS = 0 for all reversible adiabatic processes. 



6. An isothermal process is one in which Ti = Tf which implies ln (Tf /Ti) = 0. Therefore, 
Eq. 20-4 leads to 

( ) ( )
22.0= ln = = 2.75 mol.

8.31 ln 3.4/1.3
Δ f
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V
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V



( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

0.200 kg 900 J/kg K 100 C 0.0500 kg 4190 J/kg K 20 C
0.200 kg 900 J/kg K 0.0500 kg 4190 J/kg K

57.0 C 330 K.

fT
⋅ ° + ⋅ °

=
⋅ + ⋅

= ° =

(b) Now temperatures must be given in Kelvins: Tai = 393 K, Twi = 293 K, and Tf = 330 K. 
For the aluminum, dQ = macadT and the change in entropy is 

( )( ) 330 Kln 0.200 kg 900 J/kg K ln
373 K

22.1 J/K.
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(c) The entropy change for the water is 

330 Kln (0.0500 kg) (4190 J kg.K) ln
293K

24.9 J K.
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(d) The change in the total entropy of the aluminum-water system is  

ΔS = ΔSa + ΔSw = −22.1 J/K + 24.9 J/K = +2.8 J/K. 

7. (a) The energy that leaves the aluminum as heat has magnitude Q = maca(Tai − Tf),
where ma is the mass of the aluminum, ca is the specific heat of aluminum, Tai is the 
initial temperature of the aluminum, and Tf is the final temperature of the aluminum-
water system. The energy that enters the water as heat has magnitude Q = mwcw(Tf − Twi),
where mw is the mass of the water, cw is the specific heat of water, and Twi is the initial 
temperature of the water. The two energies are the same in magnitude since no energy is 
lost. Thus, 

( ) ( ) += = .
+

− − a a ai w w wi
a a ai f w w f wi f

a a w w

m c T m c Tm c T T m c T T T
m c m c

The specific heat of aluminum is 900 J/kg⋅K and the specific heat of water is 4190 J/kg⋅K.
Thus,



8. We follow the method shown in Sample Problem 20-2.  Since 

ΔS = f

i

T

T

dTmc
T

 = mc ln(Tf /Ti) , 

then with ΔS = 50 J/K, Tf = 380 K, Ti = 280 K and m = 0.364 kg,  we obtain c = 4.5×102

J/kg.K.



( ) ( ) 300.0 K= ln = 0.101 kg 386 J/kg K ln = 0.710 J/K.
305.5 K
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(b) Since the temperature of the reservoir is virtually the same as that of the block, which 
gives up the same amount of heat as the reservoir absorbs, the change in entropy LS ′Δ of
the reservoir connected to the left block is the opposite of that of the left block: LS ′Δ  = 
−ΔSL = +0.710 J/K. 

(c) The entropy change for block R is 

( ) ( ) 300.0 K= ln = 0.101 kg 386 J/kg K ln = +0.723 J/K.
294.5 K
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(d) Similar to the case in part (b) above, the change in entropy RS ′Δ  of the reservoir 
connected to the right block is given by RS ′Δ  = −ΔSR = −0.723 J/K. 

(e) The change in entropy for the two-block system is  

ΔSL + ΔSR = −0.710 J/K + 0.723 J/K = +0.013 J/K. 

(f) The entropy change for the entire system is given by  

ΔS = ΔSL + LS ′Δ + ΔSR + RS ′Δ  = ΔSL − ΔSL + ΔSR − ΔSR = 0, 

which is expected of a reversible process. 

9. This problem is similar to Sample Problem 20-2. The only difference is that we need to 
find the mass m of each of the blocks. Since the two blocks are identical the final 
temperature Tf is the average of the initial temperatures: 

T T Tf i f= 1
2

+ = 1
2

305.5 + 294.5 = 300.0c h a f K  K  K. 

Thus from Q = mcΔT we find the mass m:

m Q
c T

= = 215
386 300.0 294.5

= 0.101 .
Δ ⋅ −

J
 J / kg K  K  K

 kga fa f

(a) The change in entropy for block L is



10. We concentrate on the first term of Eq. 20-4 (the second term is zero because the final 
and initial temperatures are the same, and because ln(1) = 0). Thus, the entropy change is 

ΔS = nR ln(Vf /Vi)  . 

Noting that ΔS = 0 at  Vf  = 0.40 m3, we are able to deduce that Vi = 0.40 m3.  We now 
examine the point in the graph where ΔS = 32 J/K and Vf  = 1.2 m3; the above expression 
can now be used to solve for the number of moles.  We obtain n = 3.5 mol. 



( )( )( ) ( )( )( )
( )( ) ( )( )

1 1 ,1 2 2 ,2

1 1 2 2

+ 50.0 g 386 J/kg K 400 K + 100 g 128 J/kg K 200 K
+ 50.0 g 386 J/kg K + 100 g 128 J/kg K

320 K.

i i
f

m c T m c T
T

m c m c
⋅ ⋅

= =
⋅ ⋅

=

(b) Since the two-block system in thermally insulated from the environment, the change 
in internal energy of the system is zero. 

(c) The change in entropy is 

( )( ) ( )( )

1 2 1 1 2 2
,1 ,2

= + = ln + ln

320 K 320 K= 50.0 g 386 J/kg K ln + 100 g 128 J/kg K ln
400 K 200 K

1.72 J K.

f f
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Δ Δ Δ
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11. (a) We refer to the copper block as block 1 and the lead block as block 2. The 
equilibrium temperature Tf satisfies  

m1c1(Tf − Ti,1) + m2c2(Tf − Ti2) = 0, 

which we solve for Tf :



12. We use Eq. 20-1: 

      
10.0 2 3 3

5.00
(10.0) (5.00) 0.0368 J/K.

3
VnC dT nAS nA T dT
T

Δ = = = − =  



• process 1 → 2 

(d) The work is given by Eq. 19-14:

W = nRT1 ln (V2/V1) = RT1 ln3 =1.10RT1.

Thus, W/ nRT1= ln3 = 1.10. 

(e) The internal energy change is ΔEint = 0 since this is an ideal gas process without a 
temperature change (see Eq. 19-45). Thus, the energy absorbed as heat is given by the 
first law of thermodynamics: Q = ΔEint + W ≈ 1.10RT1, or Q/ nRT1= ln3 = 1.10. 

(f) ΔEint = 0 or ΔEint / nRT1=0

(g) The entropy change is ΔS = Q/T1 = 1.10R, or ΔS/R = 1.10. 

• process 2 → 3 

(h) The work is zero since there is no volume change. Therefore, W/nRT1 = 0 

13. The connection between molar heat capacity and the degrees of freedom of a 
diatomic gas is given by setting f = 5 in Eq. 19-51. Thus, 5 / 2, 7 / 2V pC R C R= = , and 

7 / 5γ = . In addition to various equations from Chapter 19, we also make use of Eq. 20-4 
of this chapter. We note that we are asked to use the ideal gas constant as R and not plug 
in its numerical value. We also recall that isothermal means constant-temperature, so T2 = 
T1 for the 1 → 2 process. The statement (at the end of the problem) regarding “per mole” 
may be taken to mean that n may be set identically equal to 1 wherever it appears. 

(a) The gas law in ratio form (see Sample Problem 19-1) is used to obtain 

1 1 2
2 1

2 1

1= =     0.333
3 3

V p pp p
V p

= = .

(b) The adiabatic relations Eq. 19-54 and Eq. 19-56 lead to 

31 1
3 1 1.4 1.4

3 1

1= =   0.215
3 3

pV pp p
V p

γ

= = .

(c) Similarly, we find  
1

31 1
3 1 0.4 0.4

3 1

1 0.644.
3 3

TV TT T
V T

γ −

= = = =



or W /nRT1= −0.889.

(m) Q = 0 in an adiabatic process. 

(n) ΔEint /nRT1= +0.889.

(o) ΔS/nR=0. 

(i) The internal energy change is 

( ) ( ) int1
int 3 2 1 10.4

1

5= = 1 0.889   0.889.
2 3V

ETE nC T T R T RT
nRT
ΔΔ − − ≈ − ≈ −

This ratio (−0.889) is also the value for Q/nRT1 (by either the first law of 
thermodynamics or by the definition of CV).

(j) ΔEint /nRT1= −0.889.

(k) For the entropy change, we obtain 

0.4
0.43 3 1

1 1 1

35 5ln ln (1) ln (1) (1) ln 0 ln (3 ) 1.10 .
2 2

VV C T TS n n
R V R T T

−Δ = + = + = + ≈ −

• process 3 → 1 

(l) By definition, Q = 0 in an adiabatic process, which also implies an absence of entropy 
change (taking this to be a reversible process). The internal change must be the negative 
of the value obtained for it in the previous process (since all the internal energy changes 
must add up to zero, for an entire cycle, and its change is zero for process 1 → 2), so 
ΔEint = +0.889RT1. By the first law of thermodynamics, then,  

W = Q − ΔEint = −0.889RT1,



14. (a) It is possible to motivate, starting from Eq. 20-3, the notion that heat may be 
found from the integral (or “area under the curve”) of a curve in a TS diagram, such as 
this one. Either from calculus, or from geometry (area of a trapezoid), it is 
straightforward to find the result for a “straight-line” path in the TS diagram: 

straight

+
=

2
Δi fT T

Q S

which could, in fact, be directly motivated from Eq. 20-3 (but it is important to bear in 
mind that this is rigorously true only for a process which forms a straight line in a graph 
that plots T versus S). This leads to  

Q = (300 K) (15 J/K) = 4.5×103 J 

for the energy absorbed as heat by the gas. 

(b) Using Table 19-3 and Eq. 19-45, we find 

( )( )( ) 3
int

3= = 2.0 mol 8.31 J/mol K 200 K 400 K = 5.0 10  J.
2

E n R TΔ Δ ⋅ − − ×

(c) By the first law of thermodynamics, 

W Q E= = 4.5 5.0 = 9.5 .− Δ − −int  kJ  kJ  kJa f



Melting is an isothermal process. The energy leaving the ice as heat is mLF, where LF is 
the heat of fusion for ice. Thus,

ΔS = Q/T = mLF/T = (0.010 kg)(333 × 103 J/kg)/(273 K) = 12.20 J/K. 

For the warming of the water from the melted ice, the change in entropy is 

= ln ,f
w

i

T
S mc

T
Δ

where cw is the specific heat of water (4190 J/kg ⋅ K). Thus, 

( ) ( ) 288 K= 0.010 kg 4190 J/kg K ln = 2.24 J/K.
273 K

SΔ ⋅

The total change in entropy for the ice and the water it becomes is 

= 0.828 J/K +12.20 J/K + 2.24 J/K = 15.27 J/K.SΔ

Since the temperature of the lake does not change significantly when the ice melts, the 
change in its entropy is ΔS = Q/T, where Q is the energy it receives as heat (the negative 
of the energy it supplies the ice) and T is its temperature. When the ice warms to 0°C, 

( ) ( ) ( ) ( )= = 0.010 kg 2220 J/kg  K 10 K = 222 J.I f iQ mc T T− − − ⋅ −

When the ice melts, 

Q mLF= = 0.010 333 10 = 3.33 10 .3 3− − × − × kg  J / kg  Ja fc h

When the water from the ice warms, 

Q mc T Tw f i= = 0.010 4190 15 = 629 .− − − ⋅ −c h a fa fa f kg  J / kg  K  K  J

15. The ice warms to 0°C, then melts, and the resulting water warms to the temperature 
of the lake water, which is 15°C. As the ice warms, the energy it receives as heat when 
the temperature changes by dT is dQ = mcI dT, where m is the mass of the ice and cI is the 
specific heat of ice. If Ti (= 263 K) is the initial temperature and Tf (= 273 K) is the final 
temperature, then the change in its entropy is 

( )( ) 273 Kln 0.010 kg 2220 J/kg K ln = 0.828 J/K.
263 K

f

i

T f
I IT

i

TdQ dTS mc mc
T T T

Δ = = = = ⋅



The total energy leaving the lake water is  

Q = −222 J − 3.33 × 103 J − 6.29 × 102 J = −4.18 × 103 J. 

The change in entropy is 
34.18 10  J= = 14.51 J/K.

288 K
S ×Δ − −

The change in the entropy of the ice-lake system is ΔS = (15.27 − 14.51) J/K = 0.76 J/K. 



16. (a) Work is done only for the ab portion of the process. This portion is at constant 
pressure, so the work done by the gas is 

0

0

4

0 0 0 0 0 0
0

(4.00 1.00 ) 3.00   3.00
V

V

WW p dV p V V p V
p V

= = − = =

(b) We use the first law: ΔEint = Q − W. Since the process is at constant volume, the work 
done by the gas is zero and Eint = Q. The energy Q absorbed by the gas as heat is Q = nCV
ΔT, where CV is the molar specific heat at constant volume and ΔT is the change in 
temperature. Since the gas is a monatomic ideal gas, 3 / 2VC R= . Use the ideal gas law to 
find that the initial temperature is  

0 04b b
b

p V p VT
nR nR

= =

and that the final temperature is  

0 0 0 0(2 )(4 ) 8c c
c

p V p V p VT
nR nR nR

= = = .

Thus,
0 0 0 0

0 0
8 43= = 6.00 .

2
p V p VQ nR p V
nR nR

−

The change in the internal energy is ΔEint = 6p0V0 or ΔEint/p0V0=6.00. Since n = 1 mol, 
this can also be written Q = 6.00RT0.

(c) For a complete cycle, ΔEint = 0 

(d) Since the process is at constant volume, use dQ = nCV dT to obtain 

ln .c

b

T c
V VT

b

TdQ dTS nC nC
T T T

Δ = = =

Substituting 3
2VC R=  and using the ideal gas law, we write 

0 0

0 0

(2 )(4 ) 2.
(4 )

c c c

b b b

T p V p V
T p V p V

= = =

Thus, 3
2 ln 2S nRΔ = . Since n = 1, this is 3

2 ln 2 8.64 J/K.S RΔ = = .

(e) For a complete cycle, ΔEint = 0 and ΔS = 0. 



17. (a) The final mass of ice is (1773 g + 227 g)/2 = 1000 g. This means 773 g of water 
froze. Energy in the form of heat left the system in the amount mLF, where m is the mass 
of the water that froze and LF is the heat of fusion of water. The process is isothermal, so 
the change in entropy is

ΔS = Q/T = –mLF/T = –(0.773 kg)(333 × 103 J/kg)/(273 K) = −943 J/K. 

(b) Now, 773 g of ice is melted. The change in entropy is 

= = = +943 J/K.FQ mLS
T T

Δ

(c) Yes, they are consistent with the second law of thermodynamics. Over the entire cycle, 
the change in entropy of the water-ice system is zero even though part of the cycle is 
irreversible. However, the system is not closed. To consider a closed system, we must 
include whatever exchanges energy with the ice and water. Suppose it is a constant-
temperature heat reservoir during the freezing portion of the cycle and a Bunsen burner 
during the melting portion. During freezing the entropy of the reservoir increases by 943 
J/K. As far as the reservoir-water-ice system is concerned, the process is adiabatic and 
reversible, so its total entropy does not change. The melting process is irreversible, so the 
total entropy of the burner-water-ice system increases. The entropy of the burner either 
increases or else decreases by less than 943 J/K. 



for the phase change experienced by the ice (with To = 273.15 K). The total entropy 
change is (with T in Kelvins) 

system
285.39 273.15 285.39ln ln ln
293.15 263.15 273.15 273.15

( 11.24 0.66 1.47 9.75)J/K 0.64 J/K.

F i
w w i i i w

L mS m c m c m cΔ = + + +

= − + + + =

18. In coming to equilibrium, the heat lost by the 100 cm3 of liquid water (of mass mw = 
100 g and specific heat capacity cw = 4190 J/kg⋅K) is absorbed by the ice (of mass mi
which melts and reaches Tf > 0 °C). We begin by finding the equilibrium temperature: 

( ) ( )( ) ( )
warm water cools ice melts melted ice warmsice warms to 0

0
+ + + = 0

20 + 0 10 + + 0 = 0w w f i i F i w i f

Q
Q Q Q Q

c m T c m L m c m T

=

− ° ° − − ° − °

which yields, after using LF = 333000 J/kg and values cited in the problem, Tf = 12.24 °
which is equivalent to Tf = 285.39 K. Sample Problem 19-2 shows that 

2
temp change

1

= ln TS mc
T

Δ

for processes where ΔT = T2 – T1, and Eq. 20-2 gives 

melt
o

= FL mS
T

Δ



19. We consider a three-step reversible process as follows: the supercooled water drop (of 
mass m) starts at state 1 (T1 = 268 K), moves on to state 2 (still in liquid form but at T2 = 
273 K), freezes to state 3 (T3 = T2), and then cools down to state 4 (in solid form, with T4
= T1). The change in entropy for each of the stages is given as follows:

ΔS12 = mcw ln (T2/T1),

ΔS23 = −mLF/T2,

               ΔS34 = mcI ln (T4/T3) = mcI ln (T1/T2) = −mcI ln (T2/T1).

Thus the net entropy change for the water drop is 

( )

( )( ) ( )( )

2
12 23 34

1 2

= + + = ln

1.00 g 333 J/g273 K= 1.00 g 4.19 J/g K 2.22 J/g K ln
268 K 273 K

= 1.18 J/K.

F
w I

T mLS S S S m c c
T T

Δ Δ Δ Δ − −

⋅ − ⋅ −

−



(d) Similarly, the cooling of the original-water involves an entropy change of 

339.67

353.15

' 339.67'ln 21.2 J/K
353.15

cm dT cm
T

= = −

(e) The net entropy change in this calorimetry experiment is found by summing the 
previous results; we find (by using more precise values than those shown above) Snet = 
4.39 J/K. 

20. (a) We denote the mass of the ice (which turns to water and warms to Tf) as m and the 
mass of original-water (which cools from 80º down to Tf) as m′.  From ΣQ = 0 we have 

LF m + cm (Tf – 0º) + cm′ (Tf  – 80º) = 0 . 

Since LF = 333 × 103 J/kg, c = 4190 J/(kg·Cº), m′ = 0.13 kg and m = 0.012 kg, we find Tf
= 66.5ºC, which is equivalent to 339.67 K. 

(b) Using Eq. 20-2, the process of ice at 0º C turning to water at 0º C involves an entropy 
change of 

Q
T    =

LF m
273.15 K   =  14.6 J/K . 

(c) Using Eq. 20-1, the process of m = 0.012 kg of water warming from 0º C to 66.5º C 
involves an entropy change of 

339.67

273.15

339.67ln 11.0 J/K
273.15

cmdT cm
T

= = .



(f) The change in entropy may be computed by using Eq. 20-4: 

21 1

1 1

2.00 4.00 3= ln + ln = ln 2.00 + ln (2.00)
2

= ln 2.00 + 3 ln 2.00 = 4 ln 2.00 = 23.0 J/K.

V
V TS R C R R

V T
R R R

Δ

The second approach consists of an isothermal (constant T) process in which the volume 
halves, followed by an isobaric (constant p) process.  

21. We note that the connection between molar heat capacity and the degrees of freedom 
of a monatomic gas is given by setting f = 3 in Eq. 19-51. Thus, 3 / 2, 5 / 2V pC R C R= = ,
and 5 / 3γ = .

(a) Since this is an ideal gas, Eq. 19-45 holds, which implies ΔEint = 0 for this process. Eq. 
19-14 also applies, so that by the first law of thermodynamics,  

Q = 0 + W = nRT1 ln V2/V1 = p1V1 ln 2 Q/p1V1= ln2 = 0.693. 

(b) The gas law in ratio form (see Sample Problem 19-1) implies that the pressure 
decreased by a factor of 2 during the isothermal expansion process to V2=2.00V1, so that 
it needs to increase by a factor of 4 in this step in order to reach a final pressure of 
p2=2.00p1. That same ratio form now applied to this constant-volume process, yielding 
4.00 = T2T1 which is used in the following: 

( ) ( )2
2 1 1 1 1 1 1

1

3 3 3 91 4 1
2 2 2 2V

TQ nC T n R T T nRT p V p V
T

= Δ = − = − = − =

or 1 1/ 9 / 2 4.50Q p V = = .

(c) The work done during the isothermal expansion process may be obtained by using Eq. 
19-14:

W = nRT1 ln V2/V1= p1V1 ln 2.00 W/p1V1= ln2 = 0.693. 

(d) In step 2 where the volume is kept constant, W = 0. 

(e) The change in internal energy can be calculated by combining the above results and 
applying the first law of thermodynamics: 

( )int total total 1 1 1 1 1 1 1 1
9 9= = ln 2 + ln 2 + 0 =
2 2

E Q W p V p V p V p VΔ − −

or ΔEint/p1V1 = 9/2 = 4.50. 



(g) Here the gas law applied to the first (isothermal) step leads to a volume half as big as 
the original. Since ln(1/ 2.00) ln 2.00= − , the reasoning used above leads to

Q = – p1V1 ln 2.00 1 1/ ln 2.00 0.693.Q p V = − = −

(h) To obtain a final volume twice as big as the original, in this step we need to increase 
the volume by a factor of 4.00. Now, the gas law applied to this isobaric portion leads to 
a temperature ratio T2/T1 = 4.00. Thus, 

( ) ( )2
2 1 1 1 1 1 1

1

5 5 5 15= = = 1 = 4 1 =
2 2 2 2p

TQ C T R T T RT p V p V
T

Δ − − −

or Q/p1V1 = 15/2 = 7.50. 

(i) During the isothermal compression process, Eq. 19-14 gives  

W = nRT1 ln V2/V1= p1V1 ln (−1/2.00) = −p1V1 ln 2.00 W/p1V1= −ln2 = −0.693.

(j) The initial value of the volume, for this part of the process, is 1 / 2iV V= , and the final 
volume is Vf = 2V1. The pressure maintained during this process is p′ = 2.00p1. The work 
is given by Eq. 19-16: 

( ) ( )1 1 1 1 1 1 1
1= = = 2.00 2.00 = 3.00   / = 3.00.
2f iW p V p V V p V V p V W p V′ ′Δ − −

(k) Using the first law of thermodynamics, the change in internal energy is 

( )int total total 1 1 1 1 1 1 1 1 1 1
15 9= = ln 2.00 3 ln 2.00 =
2 2

E Q W p V p V p V p V p VΔ − − − −

or ΔEint/p1V1 = 9/2 = 4.50. The result is the same as that obtained in part (e). 

(l) Similarly, = 4 ln 2.00 = 23.0 J/K.S RΔ  the same as that obtained in part (f). 



22. (a) The final pressure is 

( ) ( ) ( ) ( )3 3 31.00 m 2.00 m 1.00 m
= 5.00 kPa = 5.00 kPa 1.84 kPa .i f

f
V V a

p e e
−−

=

(b) We use the ratio form of the gas law (see Sample Problem 19-1) to find the final 
temperature of the gas: 

( )
3

3

(1.84 kPa)(2.00 m )600 K 441 K .
(5.00 kPa)(1.00 m )

f f
f i

i i

p V
T T

pV
= = =

For later purposes, we note that this result can be written “exactly” as Tf = Ti (2e–1). In 
our solution, we are avoiding using the “one mole” datum since it is not clear how precise 
it is. 

(c) The work done by the gas is 

( ) ( )

( ) ( )( )

/ /

1.00 3 1.00 2.00

(5.00 kPa) 5.00 kPa

5.00 kPa 1.00 m

3.16 kJ .

f fi i

ii

f V VV V a V a V a

Vi V
W pdV e dV e ae

e e e

− −

− −

= = = ⋅ −

= −

=

(d) Consideration of a two-stage process, as suggested in the hint, brings us simply to Eq. 
20-4. Consequently, with 3

2VC R=  (see Eq. 19-43), we find 

( )1 1

3

3 3 3 3ln + ln = ln2 + ln 2 ln2 + ln2 + ln
2 2 2 2

(5000 Pa) (1.00 m ) 5 3ln 2
600 K 2 2

1.94 J K.

f f i i

i i i

V T pVS nR n R nR e e
V T T

− −Δ = =

= −

=



23. We solve (b) first. 

(b) For a Carnot engine, the efficiency is related to the reservoir temperatures by Eq. 20-
13. Therefore, 

H L
H

75 K= = = 341 K
0.22

T TT
ε
−

which is equivalent to 68°C.  

(a) The temperature of the cold reservoir is TL = TH – 75 = 341 K – 75 K = 266 K. 



24. Eq. 20-13 leads to 
L

8
H

373 K= 1 = 1 = 0.9999995
7 10  K

T
T

ε − −
×

quoting more figures than are significant. As a percentage, this is ε = 99.99995%. 



25. (a) The efficiency is 

H L

H

(235 115) K 0.236 23.6% .
(235+273) K

T T
T

ε − −= = = =

We note that a temperature difference has the same value on the Kelvin and Celsius 
scales. Since the temperatures in the equation must be in Kelvins, the temperature in the 
denominator is converted to the Kelvin scale. 

(b) Since the efficiency is given by ε = |W|/|QH|, the work done is given by 

4 4
H 0.236(6.30 10 J) = 1.49 10 J .W Qε= = × ×



26. The answers to this exercise do not depend on the engine being of the Carnot design. 
Any heat engine that intakes energy as heat (from, say, consuming fuel) equal to |QH| = 
52 kJ and exhausts (or discards) energy as heat equal to |QL| = 36 kJ will have these 
values of efficiency ε and net work W.

(a) Eq. 20-12 gives 

L

H

1 0.31 31% .Q
Q

ε = − = =

(b) Eq. 20-8 gives 
H L 16 kJ .W Q Q= − =



27. With TL = 290 k, we find 

L L
H

H

290 K= 1 = =
1 1 0.40

T TT
T

ε
ε

−
− −

which yields the (initial) temperature of the high-temperature reservoir: TH = 483 K. If 
we replace ε = 0.40 in the above calculation with ε = 0.50, we obtain a (final) high 
temperature equal to H 580 KT ′ = . The difference is 

H H = 580 K 483 K = 97 K.T T′ − −



L

H

333 K= 1 = 1 = 0.107.
373 K

T
T

ε − −

We recall that a Watt is Joule-per-second. Thus, the (net) work done by the cycle per unit 
time is the given value 500 J/s. Therefore, by Eq. 20-11, we obtain the heat input per unit 
time: 

H

0.500 kJ s 4.67 kJ s .
0.107

W
Q

ε = =

(b) Considering Eq. 20-8 on a per unit time basis, we find (4.67 – 0.500) kJ/s = 4.17 kJ/s 
for the rate of heat exhaust. 

28. (a) Eq. 20-13 leads to 



W = Q = 1.47 × 103 J – 5.54 × 102 J = 9.18 × 102 J. 

(d) The efficiency is

ε = W/Qin = (9.18 × 102 J)/(1.47 × 103 J) = 0.624 = 62.4%. 

29. (a) Energy is added as heat during the portion of the process from a to b. This portion 
occurs at constant volume (Vb), so Qin = nCV ΔT. The gas is a monatomic ideal gas, so 

3 / 2VC R=  and the ideal gas law gives

ΔT = (1/nR)(pb Vb – pa Va) = (1/nR)(pb – pa) Vb.

Thus, ( )3
in 2 b a bQ p p V= − . Vb and pb are given. We need to find pa. Now pa is the same as 

pc and points c and b are connected by an adiabatic process. Thus, c c b bp V p Vγ γ=  and 

( )
5 3

6 41= = = 1.013 10  Pa = 3.167 10  Pa.
8.00

b
a c b

c

Vp p p
V

γ

× ×

The energy added as heat is 

( ) ( )6 4 3 3 3
in

3= 1.013 10  Pa 3.167 10  Pa 1.00 10  m = 1.47 10  J.
2

Q −× − × × ×

(b) Energy leaves the gas as heat during the portion of the process from c to a. This is a 
constant pressure process, so 

( ) ( )

( )( )( )
out

4 3 3 2

5 5= = =
2 2

5= 3.167 10  Pa 7.00 1.00 10  m = 5.54 10  J,
2

p a a c c a a cQ nC T p V p V p V V

−

Δ − −

× − × − ×

or 2
out| | 5.54 10  JQ = × . The substitutions Va – Vc = Va – 8.00 Va = – 7.00 Va and 5

2pC R=
were made. 

(c) For a complete cycle, the change in the internal energy is zero and  



30. From Fig. 20-28, we see QH = 4000 J at TH = 325 K.  Combining Eq. 20-11 with Eq. 
20-13, we have

W
 QH

 = 1 – 
TC

 TH
W  = 923 J . 

Now, for HT ′ = 550 K, we have

1         1692 J 1.7 kJC
H

H H

TW Q
Q T

′= − = ≈
′ ′



11 1 0.750 75.0%
4

a

c

T
T

ε = − = − = =

where the gas law in ratio form has been used.  

(e) This is greater than our result in part (c), as expected from the second law of 
thermodynamics. 

31. (a) The net work done is the rectangular “area” enclosed in the pV diagram: 

( )( ) ( )( )0 0 0 0 0 0 0 02 2 .W V V p p V V p p V p= − − = − − =

Inserting the values stated in the problem, we obtain W = 2.27 kJ. 

(b) We compute the energy added as heat during the “heat-intake” portions of the cycle 
using Eq. 19-39, Eq. 19-43, and Eq. 19-46: 

( ) ( )

( ) ( )0 0

0 0

3 5+ 1 +
2 2

3 5 3 51 + 2 1 + 4 2
2 2 2 2

13
2

b c b
abc V b a p c b a a

a a a

b c b
a

a a a

T T TQ nC T T nC T T n R T n R T
T T T

T T TnRT p V
T T T

p V

= − − = − −

= − − = − −

=

where, to obtain the last line, the gas law in ratio form has been used (see Sample 
Problem 19-1). Therefore, since W = p0V0, we have Qabc = 13W/2 = 14.8 kJ. 

(c) The efficiency is given by Eq. 20-11: 

H

2 0.154 15.4%.
13

W
Q

ε = = = =

(d) A Carnot engine operating between Tc and Ta has efficiency equal to 



32. (a) Using Eq. 19-54 for process D → A gives 

( )0
0 0 0=         8 =

32D D A A
pp V p V V p Vγγ γ γ

which leads to 8 = 32  5 / 3γ γ = . The result (see §19-9 and §19-11) implies the gas is 
monatomic. 

(b) The input heat is that absorbed during process A → B:

( )H 0 0
5 5 5= = 1 = 2 1 =
2 2 2

B
p A A

A

TQ nC T n R T nRT p V
T

Δ − −

and the exhaust heat is that liberated during process C → D:

( )L
L 0 0

5 5 1 5= = 1 = 1 2 =
2 2 4 2p D D

D

TQ nC T n R T nRT p V
T

Δ − − −

where in the last step we have used the fact that 1
4D AT T=  (from the gas law in ratio 

form — see Sample Problem 19-1). Therefore, Eq. 20-12 leads to 

L

H

11 1 0.75 75%.
4

Q
Q

ε = − = − = =



33. (a) We use HW Qε = . The heat absorbed is H
8.2kJ 33kJ.
0.25

W
Q

ε
= = =

(b) The heat exhausted is then L H 33kJ 8.2 kJ 25kJ.Q Q W= − = − =

(c) Now we have H
8.2kJ 26 kJ.
0.31

W
Q

ε
= = =

(d) Similarly, C H 26 kJ 8.2 kJ = 18kJQ Q W= − = − .



34. All terms are assumed to be positive. The total work done by the two-stage system is 
W1 + W2. The heat-intake (from, say, consuming fuel) of the system is Q1 so we have (by 
Eq. 20-11 and Eq. 20-8) 

( ) ( )1 2 2 3 31 2

1 1 1

1 .
Q Q Q Q QW W

Q Q Q
ε

− + −+= = = −

Now, Eq. 20-10 leads to 
31 2

1 2 3

= = QQ Q
T T T

where we assume Q2 is absorbed by the second stage at temperature T2. This implies the 
efficiency can be written 

3 1 3

1 1

= 1 = .T T T
T T

ε −−



(e) The process 4 → 1 is adiabatic, so 4 4 1 1p V p Vγ γ=  and 

4 1
1.30

1 4

1 0.165,
(4.00)

p V
p V

γ

= = =

where we have used V4 = 4.00V1.

(f) The efficiency of the cycle is ε = W/Q12, where W is the total work done by the gas 
during the cycle and Q12 is the energy added as heat during the 1 → 2 portion of the cycle, 
the only portion in which energy is added as heat. The work done during the portion of 
the cycle from 2 to 3 is W23 =  p dV. Substitute 2 2p p V Vγ γ=  to obtain 

( )3

2

1 12 2
23 2 2 2 3 .

1
V

V

p VW p V V dV V V
γ

γ γ γ γ

γ
− − −= = −

−

35. (a) The pressure at 2 is p2 = 3.00p1, as given in the problem statement. The volume is 
V2 = V1 = nRT1/p1. The temperature is 

2 2 1 1 2
2 1

1

3.00 3.00   3.00.p V p V TT T
nR nR T

= = = =

(b) The process 2 → 3 is adiabatic, so 1 1
2 2 3 3T V T Vγ γ− −= . Using the result from part (a), V3 = 

4.00V1, V2 = V1 and γ =1.30, we obtain 

1 0.30
3 3 2

1 2 3

13.00 3.00 1.98
/ 3.00 4.00

T T V
T T V

γ −

= = = = .

(c) The process 4 → 1 is adiabatic, so 1 1
4 4 1 1T V TVγ γ− −= . Since V4 = 4.00V1, we have

1 0.30
4 1

1 4

1 0.660.
4.00

T V
T V

γ −

= = =

(d) The process 2 → 3 is adiabatic, so 2 2 3 3p V p Vγ γ=  or ( )3 2 3 2p V V pγ= . Substituting V3

= 4.00V1, V2 = V1, p2 = 3.00p1 and γ =1.30, we obtain 

3
1.30

1

3.00= 0.495.
(4.00)

p
p

=



1
1 1

1

2 1 1 11 1 .
1 4 2 4

nRT
nRTγ γ
γε

γ − −

−= − = −
−

With γ = 1.30, the efficiency is ε = 0.340 or 34.0%. 

Similarly, the work done during the portion of the cycle from 4 to 1 is 

( )1 11 1 1 1 1
41 4 1 1 1

1 1= = 1 = 1 .
1 1 4 1 4

p V p V nRTW V V
γ

γ γ
γ γγ γ γ

− −
− −− − − − −

− − −

No work is done during the 1 → 2 and 3 → 4 portions, so the total work done by the gas 
during the cycle is 

1
23 41 1

2 1= + = 1 .
1 4

nRTW W W γγ −−
−

The energy added as heat is

Q12 = nCV (T2 – T1) = nCV (3T1 – T1) = 2nCVT1,

where CV is the molar specific heat at constant volume. Now  

γ = Cp/CV = (CV + R)/CV = 1 + (R/CV),

so CV = R/(γ – 1). Here Cp is the molar specific heat at constant pressure, which for an 
ideal gas is Cp = CV + R. Thus, Q12 = 2nRT1/(γ – 1). The efficiency is 

Substitute V2 = V1, V3 = 4.00V1, and p3 = 3.00p1 to obtain 

1 1 1
23 1 1

3 1 3 1= 1 = 1 .
1 4 1 4

p V nRTW γ γγ γ− −− −
− −



36. Eq. 20-10 still holds (particularly due to its use of absolute values), and energy 
conservation implies |W| + QL = QH. Therefore, with TL = 268.15 K and TH = 290.15 K, 
we find 

( )H
H L H

L

290.15
268.15

TQ Q Q W
T

= = −

which (with |W| = 1.0 J) leads to H
1 13J.

1 268.15 / 290.15
Q W= =

−



37. A Carnot refrigerator working between a hot reservoir at temperature TH and a cold 
reservoir at temperature TL has a coefficient of performance K that is given by

L

H L

TK
T T

=
−

.

For the refrigerator of this problem, TH = 96° F = 309 K and TL = 70° F = 294 K, so

K = (294 K)/(309 K – 294 K) = 19.6. 

The coefficient of performance is the energy QL drawn from the cold reservoir as heat 
divided by the work done: K = |QL|/|W|. Thus,

|QL| = K|W| = (19.6)(1.0 J) = 20 J. 



38. (a) Eq. 20-15 provides 

L
H L

H L

1 C
C

C

Q KK Q Q
Q Q K

+= =
−

which yields |QH| = 49 kJ when KC = 5.7 and |QL| = 42 kJ. 

(b) From §20-5 we obtain 

H L 49.4 kJ 42.0 kJ 7.4 kJW Q Q= − = − =

if we take the initial 42 kJ datum to be accurate to three figures. The given temperatures 
are not used in the calculation; in fact, it is possible that the given room temperature 
value is not meant to be the high temperature for the (reversed) Carnot cycle — since it 
does not lead to the given KC using Eq. 20-16. 



39. The coefficient of performance for a refrigerator is given by K = |QL|/|W|, where QL is 
the energy absorbed from the cold reservoir as heat and W is the work done during the 
refrigeration cycle, a negative value. The first law of thermodynamics yields QH + QL – 
W = 0 for an integer number of cycles. Here QH is the energy ejected to the hot reservoir 
as heat. Thus, QL = W – QH. QH is negative and greater in magnitude than W, so |QL| = 
|QH| – |W|. Thus, 

H .
Q W

K
W
−

=

The solution for |W| is |W| = |QH|/(K + 1). In one hour, 

7.54MJ 1.57 MJ.
3.8 1

W = =
+

The rate at which work is done is (1.57 × 106 J)/(3600 s) = 440 W. 



40. (a) Using Eq. 20-14 and Eq. 20-16, we obtain 

( )L 300 K 280 K1.0 J 0.071J.
280 KC

Q
W

K
−= = =

(b) A similar calculation (being sure to use absolute temperature) leads to 0.50 J in this 
case.

(c) With TL = 100 K, we obtain |W| = 2.0 J. 

(d) Finally, with the low temperature reservoir at 50 K, an amount of work equal to |W| = 
5.0 J is required. 



The work done by the engine is used to drive the refrigerator, so W is the same for the 
two. Solve the engine equation for W and substitute the resulting expression into the 
refrigerator equation. The engine equation yields W = (T1 – T2)Q1/T1 and the substitution 
yields

( )
3 3 14

3 4 1 1 2

= 1 = 1.Q Q TT
T T W Q T T

− −
− −

Solving for Q3/Q1, we obtain 

( )
( )

2 13 34 1 2 1 2

1 3 4 1 3 4 1 4 3

1
1 .

1
T TQ TT T T T T

Q T T T T T T T T
−− −= + = =

− − −

With T1 = 400 K, T2 = 150 K, T3 = 325 K, and T4 = 225 K, the ratio becomes Q3/Q1=2.03.

41. The efficiency of the engine is defined by ε = W/Q1 and is shown in the text to be

1 2 1 2

1 1 1

T T T TW
T Q T

ε − −= = .

The coefficient of performance of the refrigerator is defined by K = Q4/W and is shown in 
the text to be  

4 4 4

3 4 3 4

T Q TK
T T W T T

= =
− −

.

Now Q4 = Q3 – W, so
(Q3 – W)/W = T4/(T3 – T4).



42. (a) Eq. 20-13 gives the Carnot efficiency as 1 – TL /TH .  This gives 0.222 in this case.  
Using this value with Eq. 20-11 leads to  

W = (0.222)(750 J) = 167 J. 

(b) Now, Eq. 20-16 gives KC = 3.5.  Then, Eq. 20-14 yields |W| = 1200/3.5 = 343 J.



43. We are told K = 0.27KC where 

L

H L

294 K= = = 23
307 K 294 KC

TK
T T− −

where the Fahrenheit temperatures have been converted to Kelvins. Expressed on a per 
unit time basis, Eq. 20-14 leads to 

( )( )
L| | / 4000 Btu h 643 Btu h.

0.27 23
W Q t
t K

= = =

Appendix D indicates 1 But/h = 0.0003929 hp, so our result may be expressed as |W|/t = 
0.25 hp. 



44. The work done by the motor in t = 10.0 min is |W| = Pt = (200 W)(10.0 min)(60 s/min) 
= 1.20 × 105 J. The heat extracted is then 

( ) ( )5
L 6

L
H L

270K 1.20 10 J
1.08 10 J.

300K 270K
T W

Q K W
T T

×
= = = = ×

− −



45. We need nine labels: 

Label Number of molecules on side 1 Number of molecules on side 2 
I 8 0 
II 7 1 
III 6 2 
IV 5 3 
V 4 4 
VI 3 5 
VII 2 6 
VIII 1 7 
IX 0 8 

The multiplicity W is computing using Eq. 20-20. For example, the multiplicity for label 
IV is 

( ) ( ) ( ) ( )
8! 40320= = = 56

5! 3! 120 6
W

and the corresponding entropy is (using Eq. 20-21) 

( ) ( )23 23= ln = 1.38 10 J/K ln 56 = 5.6 10 J/K.S k W − −× ×

In this way, we generate the following table: 

Label W S
I 1 0 
II 8 2.9 × 10–23 J/K 
III 28 4.6 × 10–23 J/K 
IV 56 5.6 × 10–23 J/K 
V 70 5.9 × 10–23 J/K 
VI 56 5.6 × 10–23 J/K 
VII 28 4.6 × 10–23 J/K 
VIII 8 2.9 × 10–23 J/K 
IX 1 0 



total = 2 2 2 2 = 2 .NN × × × ×

With N  = 50, we obtain Ntotal = 250 =1.13 × 1015.

(c) The percentage of time in question is equal to the probability for the system to be in 
the central configuration: 

( ) ( ) 14

50 15

25;50 1.26 1025;50 11.1%.
2 1.13 10

W
p ×= = =

×

With N = 100, we obtain

(d) W(N/2, N) = N!/[(N/2)!]2 = 1.01 × 1029,

(e) Ntotal = 2N =1.27 × 1030,

(f) and p(N/2;N) = W(N/2, N)/ Ntotal = 8.0%. 

Similarly, for N = 200, we obtain

(g) W(N/2, N) = 9.25 × 1058,

(h) Ntotal =1.61 × 10 60,

(i) and p(N/2; N) = 5.7%. 

(j) As N increases the number of available microscopic states increase as 2N, so there are 
more states to be occupied, leaving the probability less for the system to remain in its 
central configuration. Thus, the time spent in there decreases with an increase in N.

46. (a) We denote the configuration with n heads out of N trials as (n; N). We use Eq. 20-
20:

( ) ( ) ( )
1450!25;50 = = 1.26 10 .

25! 50 25 !
W ×

−

(b) There are 2 possible choices for each molecule: it can either be in side 1 or in side 2 
of the box. If there are a total of N independent molecules, the total number of available 
states of the N-particle system is 



( ) ( )
!= .

2 ! 2 !B
NW

N N

If one-third of the molecules are in each third of the box, then the multiplicity is 

( ) ( ) ( )
!= .

3 ! 3 ! 3 !A
NW

N N N
The ratio is 

( ) ( )
( ) ( ) ( )

2 ! 2 !
= .

3 ! 3 ! 3 !
A

B

N NW
W N N N

(c) For N = 100, 
1650!50!= = 4.2 10 .

33!33!34!
A

B

W
W

×

47. (a) Suppose there are nL molecules in the left third of the box, nC molecules in the 
center third, and nR molecules in the right third. There are N! arrangements of the N
molecules, but nL! are simply rearrangements of the nL molecules in the right third, nC!
are rearrangements of the nC molecules in the center third, and nR! are rearrangements of 
the nR molecules in the right third. These rearrangements do not produce a new 
configuration. Thus, the multiplicity is 

!= .
! ! !L C R

NW
n n n

(b) If half the molecules are in the right half of the box and the other half are in the left 
half of the box, then the multiplicity is 



48. Using Hooke’s law, we find the spring constant to be 

1.50 N 42.86 N/m
0.0350 m

s

s

Fk
x

= = = .

To find the rate of change of entropy with a small additional stretch, we use Eq. 20-7 (see 
also Sample Problem 20-3) and obtain 

3| | (42.86 N/m)(0.0170 m) 2.65 10  J/K m
275 K

dS k x
dx T

−= = = × ⋅ .



49. Using Eq. 19-34 and Eq. 19-35, we arrive at 

Δv = ( 3 − 2 ) RT/M

(a) We find, with M = 28 g/mol = 0.028 kg/mol (see Table 19-1), Δvi=87 m/s at 250 K, 

(b) and Δvf =122 ≈1.2 102 m/s at 500 K. 

(c) The expression above for Δv implies  

T  =
M

R( 3 − 2 )2 (Δv)2

which we can plug into Eq. 20-4 to yield

ΔS = nR ln(Vf /Vi) + nCV ln(Tf /Ti) = 0 + nCV ln[(Δvf)2/(Δvi)2] = 2nCV ln(Δvf /Δvi).

Using Table 19-3 to get CV = 5R/2 (see also Table 19-2) we then find, for n = 1.5 mol, ΔS
= 22 J/K. 



50. The net work is figured from the (positive) isothermal expansion (Eq. 19-14) and the 
(negative) constant-pressure compression (Eq. 19-48).  Thus, 

Wnet = nRTH ln(Vmax/Vmin) + nR(TL – TH)

where n = 3.4, TH = 500 K, TL = 200 K and Vmax/Vmin = 5/2  (same as the ratio TH /TL ).
Therefore, Wnet = 4468 J.  Now, we identify the “input heat” as that transferred in steps 1 
and 2:

Qin = Q1 + Q2 = nCV (TH – TL)  + nRTH ln(Vmax/Vmin)

where CV  = 5R/2 (see Table 19-3).  Consequently, Qin = 34135 J.  Dividing these results 
gives the efficiency:  Wnet /Qin = 0.131 (or about 13.1%). 



Therefore,

( )
L

H L

1= .
f i F

dm PT
dt T T c T T L− − +

Now, P = 100 × 106 W, TL = 0 + 273 = 273 K, TH = 800 + 273 = 1073 K, Ti = –40 + 273 
= 233 K, Tf = 0 + 273 = 273 K, c = 2220 J/kg·K, and LF = 333 × 103 J/kg, so 

( )( )
( )( )

6

3

100 10  J/s 273 K 1=
1073 K 273 K 2220 J/kg K 273 K 233 K + 333 10  J/kg

82kg/s.

dm
dt

×

− ⋅ − ×

=

We note that the engine is now operated between 0°C and 800°C. 

51. (a) If TH is the temperature of the high-temperature reservoir and TL is the 
temperature of the low-temperature reservoir, then the maximum efficiency of the engine 
is

( )
( )

H L

H

800 + 40  K
= = = 0.78  or  78%.

800 + 273  K
T T

T
ε −

(b) The efficiency is defined by ε = |W|/|QH|, where W is the work done by the engine and 
QH is the heat input. W is positive. Over a complete cycle, QH = W + |QL|, where QL is the 
heat output, so ε = W/(W + |QL|) and |QL| = W[(1/ε) – 1]. Now ε = (TH – TL)/TH, where TH
is the temperature of the high-temperature heat reservoir and TL is the temperature of the 
low-temperature reservoir. Thus, 

L L
L

H L H L

1 1 and .T WTQ
T T T Tε

− = =
− −

The heat output is used to melt ice at temperature Ti = – 40°C. The ice must be brought to 
0°C, then melted, so  

|QL| = mc(Tf – Ti) + mLF,

where m is the mass of ice melted, Tf is the melting temperature (0°C), c is the specific 
heat of ice, and LF is the heat of fusion of ice. Thus,

WTL/(TH – TL) = mc(Tf – Ti) + mLF.

We differentiate with respect to time and replace dW/dt with P, the power output of the 
engine, and obtain

PTL/(TH – TL) = (dm/dt)[c(Tf – Ti) + LF].



52. (a) Combining Eq. 20-11 with Eq. 20-13, we obtain 

( )L
H

H

260K1 500 J 1 93.8J.
320K

TW Q
T

= − = − =

(b) Combining Eq. 20-14 with Eq. 20-16, we find 

( ) ( )L
H L

L
260K

320K 260K

1000J 231 J.T
T T

Q
W

−−

= = =



(d) The net result for the system is (30.5 – 27.1) J/K = 3.4 J/K. (Note: these calculations 
are fairly sensitive to round-off errors. To arrive at this final answer, the value 273.15 
was used to convert to Kelvins, and all intermediate steps were retained to full calculator 
accuracy.) 

53. (a) Starting from 0Q =  (for calorimetry problems) we can derive (when no phase 
changes are involved) 

1 1 1 2 2 2

1 1 2 2

+= = 40.9 C,
+f

c m T c m TT
c m c m

°

which is equivalent to 314 K. 

(b) From Eq. 20-1, we have 

( )( )314

copper 353

314= = 386 0.600 ln = 27.1 J/K.
353

cm dTS
T

Δ −

(c) For water, the change in entropy is 

( )( )314

water 283

314= = 4190 0.0700 ln = 30.5 J/K.
283

cm dTS
T

Δ



54. For an isothermal ideal gas process, we have Q = W = nRT ln(Vf /Vi ).  Thus,

ΔS = Q/T = W/T = nR ln(Vf /Vi )

(a) Vf /Vi = (0.800)/(0.200) = 4.00, ΔS = (0.55)(8.31)ln(4.00) = 6.34 J/K. 

(b) Vf /Vi = (0.800)/(0.200) = 4.00, ΔS = (0.55)(8.31)ln(4.00) = 6.34 J/K. 

(c) Vf /Vi = (1.20)/(0.300) = 4.00, ΔS = (0.55)(8.31)ln(4.00) = 6.34 J/K. 

(d) Vf /Vi = (1.20)/(0.300) = 4.00, ΔS = (0.55)(8.31)ln(4.00) = 6.34 J/K. 



55. Except for the phase change (which just uses Eq. 20-2), this has some similarities 
with Sample Problem 20-2.  Using constants available in the Chapter 19 tables, we 
compute 

ΔS = m[cice ln(273/253) + 
Lf

273  + cwater ln(313/273)] =  1.18 × 103 J/K. 



56. Eq. 20-4 yields

ΔS = nR ln(Vf /Vi)  + nCV ln(Tf /Ti)  =  0 + nCV ln(425/380) 

where n = 3.20 and CV = 3
2 R  (Eq. 19-43). This gives 4.46 J/K. 



57. (a) It is a reversible set of processes returning the system to its initial state; clearly, 
ΔSnet = 0. 

(b) Process 1 is adiabatic and reversible (as opposed to, say, a free expansion) so that Eq. 
20-1 applies with dQ = 0 and yields ΔS1 = 0. 

(c) Since the working substance is an ideal gas, then an isothermal process implies Q = W,
which further implies (regarding Eq. 20-1) dQ = p dV. Therefore, 

( )pV
nR

dQ p dV dVnR
T V

= =

which leads to 3 ln(1/ 2) 23.0 J K.S nRΔ = = −

(d) By part (a), ΔS1 + ΔS2 + ΔS3 = 0. Then, part (b) implies ΔS2 = −ΔS3. Therefore, ΔS2 = 
23.0 J/K. 



58. (a) The most obvious input-heat step is the constant-volume process. Since the gas is 

monatomic, we know from Chapter 19 that 3
2VC R= . Therefore, 

( ) ( )3 J1.0 mol 8.31 600 K 300 K 3740 J.
2  mol KV VQ nC T= Δ = − =

⋅

Since the heat transfer during the isothermal step is positive, we may consider it also to 
be an input-heat step. The isothermal Q is equal to the isothermal work (calculated in the 
next part) because ΔEint = 0 for an ideal gas isothermal process (see Eq. 19-45). 
Borrowing from the part (b) computation, we have 

( ) ( )isotherm H
J= ln2 = 1 mol 8.31 600 K ln2 = 3456 J.

 mol K
Q nRT

⋅

Therefore, QH = QV + Qisotherm = 7.2 × 103 J. 

(b) We consider the sum of works done during the processes (noting that no work is done 
during the constant-volume step). Using Eq. 19-14 and Eq. 19-16, we have 

W nRT V
V

p V V= +H
max

min
min min maxln

F
HG
I
KJ −b g

where (by the gas law in ratio form, as illustrated in Sample Problem 19-1) the volume 
ratio is 

V
V

T
T

max

min

H

L

K
 K

= = 600
300

= 2. 

Thus, the net work is 

( ) ( )

( ) ( ) ( )( )

max
H min min H L H L

min

2

= ln2 + 1 = ln2 + 1 2 = ln2

J= 1 mol 8.31 600 K ln2 300 K
 mol  K

= 9.6 10  J.

VW nRT p V nRT nRT nR T T
V

− − −

−
⋅

×

(c) Eq. 20-11 gives 

H

0.134 13%.W
Q

ε = = ≈



59. (a) Processes 1 and 2 both require the input of heat, which is denoted QH. Noting that 
rotational degrees of freedom are not involved, then, from the discussion in Chapter 19, 

3 / 2, 5 / 2V pC R C R= = , and 5 / 3γ = . We further note that since the working substance 
is an ideal gas, process 2 (being isothermal) implies Q2 = W2. Finally, we note that the 
volume ratio in process 2 is simply 8/3. Therefore, 

( )H 1 2
8= + = ' + 'ln
3VQ Q Q nC T T nRT−

which yields (for T = 300 K and T' = 800 K) the result QH = 25.5 × 103 J. 

(b) The net work is the net heat (Q1 + Q2 + Q3). We find Q3 from nCp (T − T') = −20.8 ×
103 J. Thus, W = 4.73 × 103 J. 

(c) Using Eq. 20-11, we find that the efficiency is 

3

3
H

4.73 10 0.185 or 18.5%.
25.5 10

W
Q

ε ×= = =
×



60. (a) Starting from 0Q =   (for calorimetry problems) we can derive (when no phase 
changes are involved) 

1 1 1 2 2 2

1 1 2 2

+= = 44.2 C,
+f

c m T c m TT
c m c m

− °

which is equivalent to 229 K. 

(b) From Eq. 20-1, we have 

( ) ( )229

tungsten 303

229= = 134 0.045 ln = 1.69 J/K.
303

cm dTS
T

Δ −

(c) Also, 

( )( )229

silver 153

229= = 236 0.0250 ln = 2.38 J/K.
153

cm dTS
T

Δ

(d) The net result for the system is (2.38 – 1.69) J/K = 0.69 J/K. (Note: these calculations 
are fairly sensitive to round-off errors. To arrive at this final answer, the value 273.15 
was used to convert to Kelvins, and all intermediate steps were retained to full calculator 
accuracy.) 



which yields H = 90.7 J/s.  Using Eq. 20-2, this is associated with an entropy rate-of-
decrease of the high temperature reservoir (at 573 K) equal to

S/t = –90.7/573 = –0.158 (J/K)/s. 

And it is associated with an entropy rate-of-increase of the low temperature reservoir (at 
303 K) equal to

S/t = +90.7/303 = 0.299 (J/K)/s. 

The net result is (0.299 – 0.158) (J/K)/s = 0.141 (J/K)/s. 

61. From the formula for heat conduction, Eq. 19-32, using Table 19-6, we have 

H  = kA
TH - TC

L   = (401) ( )π(0.02)2  270/1.50



62. (a) Eq. 20-14 gives K = 560/150 = 3.73. 

(b) Energy conservation requires the exhaust heat to be 560 + 150 = 710 J. 



63. (a) Eq. 20-15 can be written as |QH| = |QL|(1 + 1/KC ) = (35)(1 + 1
4.6 ) = 42.6 kJ. 

(b) Similarly, Eq. 20-14 leads to |W| = |QL|/K = 35/4.6 = 7.61 kJ. 



64. (a) A good way to (mathematically) think of this is: consider the terms when you 
expand

(1 + x)4 = 1 + 4x + 6x2 + 4x3 + x4.

The coefficients correspond to the multiplicities.  Thus, the smallest coefficient is 1. 

(b) The largest coefficient is 6. 

(c) Since the logarithm of 1 is zero, then Eq. 20-21 gives S = 0 for the least case. 

(d) S = k ln(6) = 2.47 × 10−23 J/K.



65. (a)  Eq. 20-2 gives the entropy change for each reservoir (each of which, by definition, 
is able to maintain constant temperature conditions within itself).  The net entropy change 
is therefore 

ΔS   =
+|Q|

273 + 24  + 
−|Q|

273 + 130  = 4.45 J/K 

where we set |Q| = 5030 J.   

(b) We have assumed that the conductive heat flow in the rod is “steady-state”; that is, 
the situation described by the problem has existed and will exist for “long times.”  Thus 
there are no entropy change terms included in the calculation for elements of the rod 
itself. 



66. Eq. 20-10 gives 

to to

from from

300K 75.
4.0K

Q T
Q T

= = =



67. We adapt the discussion of §20-7 to 3 and 5 particles (as opposed to the 6 particle 
situation treated in that section). 

(a) The least multiplicity configuration is when all the particles are in the same half of the 
box. In this case, using Eq. 20-20, we have 

3!= = 1.
3!0!

W

(b) Similarly for box B, W = 5!/(5!0!) = 1 in the “least” case. 

(c) The most likely configuration in the 3 particle case is to have 2 on one side and 1 on 
the other. Thus, 

3!= = 3.
2!1!

W

(d) The most likely configuration in the 5 particle case is to have 3 on one side and 2 on 
the other. Thus, 

5!= = 10.
3!2!

W

(e) We use Eq. 20-21 with our result in part (c) to obtain 

( )23 23= ln = 1.38 10 ln3 = 1.5 10  J/K.S k W − −× ×

(f) Similarly for the 5 particle case (using the result from part (d)), we find  

S = k ln 10 = 3.2 × 10−23 J/K. 



68. A metric ton is 1000 kg, so that the heat generated by burning 380 metric tons during 
one hour is ( ) ( ) 6380000 kg 28 MJ kg = 10.6 10  MJ.×  The work done in one hour is 

( ) ( ) 6= 750 MJ s 3600 s = 2.7 10  MJW ×

where we use the fact that a Watt is a Joule-per-second. By Eq. 20-11, the efficiency is 

6

6

2.7 10 MJ 0.253 25%.
10.6 10 MJ

ε ×= = =
×



69. Since the volume of the monatomic ideal gas is kept constant it does not do any work 
in the heating process. Therefore the heat Q it absorbs is equal to the change in its inertial 

energy: int
3
2

dQ dE n R dT= = . Thus, 

( ) ( )3 2 3 3 J 400 Kln 1.00 mol 8.31 ln
2 2  mol K 300 K

3.59 J/K.

f

i

T f

T
i

TnR dTdQS nR
T T T

Δ = = = =
⋅

=



70. With the pressure kept constant, 

( ) 3 5= = + = + = ,
2 2p VdQ nC dT n C R dT nR nR dT nRdT

so we need to replace the factor 3/2 in the last problem by 5/2. The rest is the same. Thus 
the answer now is 

( )5 5 J 400 K= ln = 1.00 mol 8.31 ln = 5.98 J/K.
2 2  mol  K 300 K

f

i

T
S nR

T
Δ

⋅



71. The change in entropy in transferring a certain amount of heat Q from a heat reservoir 
at T1 to another one at T2 is ΔS = ΔS1 + ΔS2 = Q(1/T2 − 1/T1).

(a) ΔS = (260 J)(1/100 K – 1/400 K) = 1.95 J/K. 

(b) ΔS = (260 J)(1/200 K – 1/400 K) = 0.650 J/K. 

(c) ΔS = (260 J)(1/300 K – 1/400 K) = 0.217 J/K. 

(d) ΔS = (260 J)(1/360 K – 1/400 K) = 0.072 J/K. 

(e) We see that as the temperature difference between the two reservoirs decreases, so 
does the change in entropy. 



72. The Carnot efficiency (Eq. 20-13) depends linearly on TL so that we can take a 
derivative

L

H L H

1= 1 =T d
T dT T

εε − −

and quickly get to the result. With 0.100dε ε→ Δ =  and TH = 400 K, we find dTL → ΔTL

= −40 K. 



( ) ( ) ( ) ( )
14! 50!= = = 1.26 10 .

2 ! 2 ! 25! 25!A
NW

N N
×

(b) For configuration B

( ) ( )
13! 50!= = = 4.71 10 .

0.6 ! 0.4 ! [0.6(50)]![0.4(50)]!B
NW

N N
×

(c) Since all microstates are equally probable, 

1265= = 0.37.
3393

B

A

Wf
W

≈

We use these formulas for N = 100. The results are 

(d) ( ) ( ) ( )( )
29! 100!= = = 1.01 10 .

2 ! 2 ! 50! 50!A
NW

N N
×

(e) ( ) ( )
28! 100!= = = 1.37 10 .

0.6 ! 0.4 ! [0.6(100)]![0.4(100)]!B
NW

N N
×

(f) and f WB/WA ≈ 0.14. 

Similarly, using the same formulas for N = 200, we obtain 

(g) WA = 9.05 × 1058,

(h) WB = 1.64 × 1057,

(i) and f = 0.018. 

(j) We see from the calculation above that f decreases as N increases, as expected. 

73. (a) We use Eq. 20-16. For configuration A



Qnet =
1
2 (2.00)(50) = 50 J  . 

(d) Since we are dealing with an ideal gas (so that Eint = 0 in an isothermal process), 
then

W1 2  = Q1 2  = 700 J   . 

(e) Using Eq. 19-14 for the isothermal work, we have 

W1 2 = nRT ln V2
V1

   . 

where T = 350 K.  Thus, if V1 = 0.200 m3, then we obtain 

V2 = V1 exp (W/nRT)  = (0.200) e0.12  = 0.226 m3   . 

(f) Process 2  3 is adiabatic; Eq. 19-56 applies with  = 5/3 (since only translational 
degrees of freedom are relevant, here). 

T2V2
-1 = T3V3

-1

This yields V3 = 0.284 m3.

(g) As remarked in part (d), Eint = 0 for process 1  2. 

(h) We find the change in internal energy from Eq. 19-45 (with CV = 32 R):

Eint  = nCV (T3 – T2) = –1.25 × 103 J   . 

(i) Clearly, the net change of internal energy for the entire cycle is zero.  This feature of a 
closed cycle is as true for a T-S diagram as for a p-V diagram. 

(j) For the adiabatic (2  3) process, we have W = − Eint.  Therefore, W = 1.25 × 103 J.  
Its positive value indicates an expansion.  

74. (a) From Eq. 20-1, we infer Q = T dS, which corresponds to the “area under the 
curve” in a T-S diagram.  Thus, since the area of a rectangle is (height)×(width), we have 
Q1 2 = (350)(2.00) = 700J. 

(b) With no “area under the curve” for process 2  3, we conclude Q2 3 = 0. 

(c) For the cycle, the (net) heat should be the “area inside the figure,” so using the fact 
that the area of a triangle is ½ (base) × (height), we find 



75. Since the inventor’s claim implies that less heat (typically from burning fuel) is 
needed to operate his engine than, say, a Carnot engine (for the same magnitude of net 
work), then QH′ < QH (See Fig. 20-35(a)) which implies that the Carnot (ideal refrigerator) 
unit is delivering more heat to the high temperature reservoir than engine X draws from it.  
This (using also energy conservation) immediately implies Fig. 20-35(b) which violates 
the second law. 
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