
1. The initial position vector ro  satisfies r r r− =o Δ , which results in 

o
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(3.0 j 4.0k)m (2.0i 3.0 j 6.0 k)m ( 2.0 m) i (6.0 m) j ( 10 m) kr r r= − Δ = − − − + = − + + − .



2. (a) The position vector, according to Eq. 4-1, is ˆ ˆ= ( 5.0 m) i + (8.0 m)jr − .

(b) The magnitude is 2 2 2 2 2 2| |  +  +  ( 5.0 m) (8.0 m) (0 m)  9.4 m.r x y z= = − + + =

(c) Many calculators have polar ↔  rectangular conversion capabilities which make this 
computation more efficient than what is shown below. Noting that the vector lies in the 
xy plane and using Eq. 3-6, we obtain: 

1 8.0 mtan 58   or  122
5.0 m

θ −= = − ° °
−

where the latter possibility (122° measured counterclockwise from the +x
direction) is chosen since the signs of the components imply the vector is 
in the second quadrant. 

(d) The sketch is shown on the right. The vector is 122° counterclockwise 
from the +x direction.

(e) The displacement is r r r′Δ = − where r  is given in part (a) and 
ˆ (3.0 m)i.r′ = Therefore, ˆ ˆ(8.0 m)i (8.0 m)jrΔ = − .

(f) The magnitude of the displacement is 2 2| | (8.0 m) ( 8.0 m) 11 m.rΔ = + − =

(g) The angle for the displacement, using Eq. 3-6, is  

1 8.0 mtan  = 45   or  135
8.0 m

− − ° °
−

where we choose the former possibility (−45°, or 45° measured clockwise
from +x) since the signs of the components imply the vector is in the 
fourth quadrant. A sketch of rΔ  is shown on the right. 



3. (a) The magnitude of r  is 

2 2 2| | (5.0 m) ( 3.0 m) (2.0 m) 6.2 m.r = + − + =

(b) A sketch is shown. The coordinate values are in 
meters. 



(a) In unit-vector notation, we have 1 2
ˆ ˆ(10 cm)i  and  ( 10 cm) j.r r= = − Thus, Eq. 4-2 gives 

2 1
ˆ ˆ( 10 cm)i ( 10 cm) j.r r rΔ = − = − + −

and the magnitude is given by 2 2| | ( 10 cm) ( 10 cm) 14 cm.rΔ = − + − =

(b) Using Eq. 3-6, the angle is  

1 10 cmtan 45  or 135 .
10 cm

θ − −= = ° − °
−

We choose 135− ° since the desired angle is in the third quadrant. In terms of the 
magnitude-angle notation, one may write 

2 1
ˆ ˆ( 10 cm)i ( 10 cm) j (14 cm 135 ).r r rΔ = − = − + − → ∠ − °

(c) In this case, we have 1 2
ˆ ˆ ˆ( 10 cm) j and (10 cm) j, and  (20 cm) j.r r r= − = Δ =  Thus, 

| | 20 cm.rΔ =

(d) Using Eq. 3-6, the angle is given by 

1 20 cmtan 90 .
0 cm

θ −= = °

(e) In a full-hour sweep, the hand returns to its starting position, and the displacement is 
zero.

(f) The corresponding angle for a full-hour sweep is also zero.

4. We choose a coordinate system with origin at the 
clock center and +x rightward (towards the “3:00” 
position) and +y upward (towards “12:00”). 



5. Using Eq. 4-3 and Eq. 4-8, we have 

avg

ˆ ˆ ˆ ˆ ˆ ˆ( 2.0i + 8.0j 2.0k) m (5.0i 6.0j + 2.0k) m ˆ ˆ ˆ( 0.70i +1.40j 0.40k) m/s.
10 s

v − − − −= = − −



6. To emphasize the fact that the velocity is a function of time, we adopt the notation v(t)
for / .dx dt

(a) Eq. 4-10 leads to 

2ˆ ˆ ˆ ˆ ˆ( )  (3.00 i 4.00 j + 2.00k) (3.00 m/s)i (8.00  m/s) jdv t t t t
dt

= − = −

(b) Evaluating this result at t = 2.00 s produces ˆ ˆ= (3.00i  16.0j) m/s.v −

(c) The speed at t = 2.00 s is 2 2 | | (3.00 m/s) ( 16.0 m/s) 16.3 m/s.v v= = + − =

(d) The angle of v  at that moment is 

1 16.0 m/stan 79.4  or 101
3.00 m/s

− − = − ° °

where we choose the first possibility (79.4° measured clockwise from the +x direction, or 
281° counterclockwise from +x) since the signs of the components imply the vector is in 
the fourth quadrant. 



The total displacement is 

1 2 3
ˆ ˆ ˆ ˆ(40.0 km)i (15.3 km) i (12.9 km) j (50.0 km) i

ˆ ˆ(5.30 km) i (12.9 km) j.

r r r rΔ = Δ + Δ + Δ = + + −

= +

The time for the trip is (40.0 + 20.0 + 50.0) min = 110 min, which is equivalent to 1.83 h. 
Eq. 4-8 then yields 

avg
5.30 km 12.9 kmˆ ˆ ˆ ˆi   j = (2.90 km/h) i + (7.01 km/h) j.
1.83 h 1.83 h

v = +

The magnitude is 
2 2

avg| | (2.90 km/h) (7.01 km/h) 7.59 km/h.v = + =

(b) The angle is given by

1 7.01 km/htan 67.5   (north of east),
2.90 km/h

θ −= = °

or 22.5°  east of due north. 

7. The average velocity is given by Eq. 4-8. The total displacement Δr  is the sum of 
three displacements, each result of a (constant) velocity during a given time. We use a 
coordinate system with +x East and +y North.

(a) In unit-vector notation, the first displacement is given by 

1
km 40.0 min ˆ ˆ = 60.0 i = (40.0 km)i.
h 60 min/h

rΔ

The second displacement has a magnitude of 20.0 minkm
h 60 min/h(60.0 ) 20.0 km,) ( =⋅  and its 

direction is 40° north of east. Therefore, 

2
ˆ ˆ ˆ ˆ(20.0 km) cos(40.0 ) i (20.0 km) sin(40.0 ) j (15.3 km) i (12.9 km) j.rΔ = ° + ° = +

And the third displacement is 

3
km 50.0 min ˆ ˆ60.0  i = ( 50.0 km) i.
h 60 min/h

rΔ = − −



avg

ˆ ˆ(483 km)i (966 km)j ˆ ˆ(215 km/h)i (429 km/h) j.
2.25 h

v −= = −

with a magnitude 2 2
avg| | (215 km/h) ( 429 km/h) 480 km/h.v = + − =

(d) The direction of avgv is 26.6° east of south, same as in part (b). In magnitude-angle 
notation, we would have avg (480 km/h  63.4 ).v = ∠ − °

(e) Assuming the AB trip was a straight one, and similarly for the BC trip, then | |rAB  is the 
distance traveled during the AB trip, and | |rBC  is the distance traveled during the BC trip. 
Since the average speed is the total distance divided by the total time, it equals 

483 km  966 km 644 km/h.
2.25 h

+ =

8. Our coordinate system has i  pointed east and j  pointed north. The first displacement 
is ˆ(483 km)iABr =  and the second is ˆ( 966 km) j.BCr = −

(a) The net displacement is 

ˆ ˆ(483 km)i (966 km)jAC AB BCr r r= + = −

which yields 2 2 3|  | (483 km) ( 966 km) 1.08 10  km.ACr = + − = ×

(b) The angle is given by 
1 966 kmtan 63.4 .

483 km
θ − −= = − °

We observe that the angle can be alternatively expressed as 63.4° south of east, or 26.6° 
east of south. 

(c) Dividing the magnitude of rAC  by the total time (2.25 h) gives  



9. The (x,y) coordinates (in meters) of the points are A = (15, −15), B = (30, −45), C = (20, 
−15), and D = (45, 45). The respective times are tA  = 0, tB  = 300 s, tC  = 600 s, and tD  = 
900 s.  Average velocity is defined by Eq. 4-8.  Each displacement Δr→  is understood to 
originate at point A.

(a) The average velocity having the least magnitude (5.0 m/600 s) is for the displacement 
ending at point C: | | 0.0083 m/s.avgv =

(b) The direction of avgv  is 0° (measured counterclockwise from the +x axis). 

(c) The average velocity having the greatest magnitude ( 2 2(15 m) (30 m) / 300 s+ ) is 
for the displacement ending at point B: | | 0.11 m/s.avgv =

(d) The direction of avgv  is 297° (counterclockwise from +x) or −63°  (which is 
equivalent to measuring 63° clockwise from the +x axis). 



(b) We note (from the graph) that θ = 0 when t = 14.0 s.  Thus, e + 2ft = 0 at that time.  
This determines the parameter f :

23.5 m/s 0.125 m/s
2 2(14.0 s)
ef
t

− −= = = − .

10. We differentiate 2ˆ ˆ5.00 i ( ) jr t et ft= + + .

(a) The particle’s motion is indicated by the derivative of  r→  : v  =  5.00 i^  +  (e + 2ft) j^ .
The angle of its direction of motion is consequently  

θ = tan−1(vy /vx ) = tan−1[(e + 2ft)/5.00].

The graph indicates θo = 35.0° which determines the parameter e:

e = (5.00 m/s) tan(35.0°) = 3.50 m/s. 



11. We apply Eq. 4-10 and Eq. 4-16. 

(a) Taking the derivative of the position vector with respect to time, we have, in SI units 
(m/s), 

2ˆ ˆ ˆ ˆ ˆ = (i + 4 j + k) = 8 j + k .dv t t t
dt

(b) Taking another derivative with respect to time leads to, in SI units (m/s2),

ˆ ˆ ˆ=  (8 j + k) = 8 j .da t
dt



12. We use Eq. 4-15 with v1  designating the initial velocity and v2  designating the later 
one.

(a) The average acceleration during the Δt = 4 s  interval is 

2 2
avg

ˆ ˆ ˆ ˆ ˆ ˆ( 2.0 i 2.0 j+5.0k) m/s (4.0 i 22 j+3.0k) m/s ˆ ˆ( 1.5 m/s ) i (0.5m/s ) k.
4 s

a − − − −= = − +

(b) The magnitude of aavg  is 2 2 2 2 2( 1.5 m/s ) (0.5 m/s ) 1.6m/s .− + =

(c) Its angle in the xz plane (measured from the +x axis) is one of these possibilities: 

2
1

2

0.5 m/stan 18 or 162
1.5 m/s

− = − ° °
−

where we settle on the second choice since the signs of its components imply that it is in 
the second quadrant. 



2.00
ˆ ˆ ˆ ˆ [2.00(8) 5.00(2)]i + [6.00 7.00(16)] j  (6.00 i  106 j) mtr = = − − = −

(b) Taking the derivative of the given expression produces 

2 3ˆ ˆ( ) = (6.00   5.00) i  28.0  jv t t t− −

where we have written v(t) to emphasize its dependence on time. This becomes, at  
t = 2.00 s, ˆ ˆ = (19.0 i  224 j) m/s.v −

(c) Differentiating the v t( )  found above, with respect to t produces 2ˆ ˆ12.0 i 84.0 j,t t−
which yields 2ˆ ˆ =(24.0 i 336 j) m/sa −  at t = 2.00 s. 

(d) The angle of v , measured from +x, is either 

1 224 m/stan 85.2 or 94.8
19.0 m/s

− − = − ° °

where we settle on the first choice (–85.2°, which is equivalent to 275° measured 
counterclockwise from the +x axis) since the signs of its components imply that it is in 
the fourth quadrant. 

13. In parts (b) and (c), we use Eq. 4-10 and Eq. 4-16. For part (d), we find the direction 
of the velocity computed in part (b), since that represents the asked-for tangent line. 

(a) Plugging into the given expression, we obtain 



Since the desired angle is in the second quadrant, we pick 135° ( 45°  north of due west). 
Note that the displacement can be written as ( )o 56.6 135r r rΔ = − = ∠ ° in terms of the 
magnitude-angle notation. 

(c) The magnitude of vavg  is simply the magnitude of the displacement divided by the 
time (Δt = 30.0 s). Thus, the average velocity has magnitude (56.6 m)/(30.0 s) = 1.89 m/s. 

(d) Eq. 4-8 shows that vavg  points in the same direction as Δr , i.e, 135° ( 45°  north of 
due west). 

(e) Using Eq. 4-15, we have 

2 2o
avg

ˆ ˆ(0.333 m/s )i (0.333 m/s )j.v va
t

−= = +
Δ

The magnitude of the average acceleration vector is therefore equal to 
2 2 2 2 2

avg| | (0.333 m/s ) (0.333 m/s ) 0.471 m/sa = + = .

(f) The direction of avga  is 
2

1
2

0.333 m/stan 45  or 135 .
0.333 m/s

θ −= = ° − °

Since the desired angle is now in the first quadrant, we choose 45° , and avga  points 
north of due east. 

14. We adopt a coordinate system with i  pointed east and j  pointed north; the 
coordinate origin is the flagpole. We “translate” the given information into unit-vector 
notation as follows: 

o o
ˆ ˆ(40.0 m)i     and     = ( 10.0 m/s)j
ˆ ˆ(40.0 m) j     and     (10.0 m/s)i.

r v

r v

= −

= =

(a) Using Eq. 4-2, the displacement Δr  is 

o
ˆ ˆ( 40.0 m)i (40.0 m) j.r r rΔ = − = − +

with a magnitude 2 2| | ( 40.0 m) (40.0 m) 56.6 m.rΔ = − + =

(b) The direction of Δr  is

1 1 40.0 mtan tan 45.0  or 135 .
40.0 m

y
x

θ − −Δ= = = − ° °
Δ −



15. We find t by applying Eq. 2-11 to motion along the y axis (with vy = 0 characterizing 
y = ymax ):

0 = (12 m/s) + (−2.0 m/s2)t t = 6.0 s. 

Then, Eq. 2-11 applies to motion along the x axis to determine the answer:   

vx = (8.0 m/s) + (4.0 m/s2)(6.0 s) = 32 m/s. 

Therefore, the velocity of the cart, when it reaches y = ymax , is (32 m/s)i^.



where we have used Δx = 12.0 m, vx = 4.00 m/s, and ax = 5.00 m/s2 .  We use the 
quadratic formula and find t = 1.53 s.  Then, Eq. 2-11 (actually, its analog in two 
dimensions) applies with this value of t.  Therefore, its velocity (when Δx = 12.00 m) is  

2 2
0

ˆ ˆ ˆ(4.00 m/s)i (5.00 m/s )(1.53 s)i  (7.00 m/s )(1.53 s)j
ˆ ˆ(11.7 m/s) i (10.7 m/s) j.

v v at= + = + +
= +

Thus, the magnitude of v is 2 2| | (11.7 m/s) (10.7 m/s) 15.8 m/s.v = + =

(b) The angle of v , measured from +x, is

1 10.7 m/stan 42.6 .
11.7 m/s

− = °

16. We find t by solving 2
0 0

1
2x xx x v t a tΔ = + + :

2 2112.0 m 0 (4.00 m/s) (5.00 m/s )
2

t t= + +



17. Constant acceleration in both directions (x and y) allows us to use Table 2-1 for the 
motion along each direction. This can be handled individually (for Δx and Δy) or together 
with the unit-vector notation (for Δr). Where units are not shown, SI units are to be 
understood.

(a) The velocity of the particle at any time t is given by v v at= +0 , where v0  is the 
initial velocity and a  is the (constant) acceleration. The x component is vx = v0x + axt = 
3.00 – 1.00t, and the y component is

vy = v0y + ayt = –0.500t

since v0y = 0. When the particle reaches its maximum x coordinate at t = tm, we must have 
vx = 0. Therefore, 3.00 – 1.00tm = 0 or tm = 3.00 s. The y component of the velocity at this 
time is 

vy = 0 – 0.500(3.00) = –1.50 m/s; 

this is the only nonzero component of v  at tm.

(b) Since it started at the origin, the coordinates of the particle at any time t are given by 
r v t at= +0

1
2

2 .  At t = tm this becomes 

( )( ) ( )( )21ˆ ˆ ˆ ˆ ˆ3.00i 3.00 1.00 i 0.50 j 3.00 (4.50 i 2.25 j) m.
2

r = + − − = −



( )( ) ( )2 ˆ ˆ ˆ6.0 4.0 i + 8.0 j 6.0 8.0 idv da t t t
dt dt

= = − = −

in SI units. Specifically, we find the acceleration vector at 3.0 st =  to be 

( ) 2ˆ ˆ6.0 8.0(3.0) i ( 18 m/s )i.− = −

(b) The equation is a t= −6 0 8 0. .b gi = 0 ; we find t = 0.75 s. 

(c) Since the y component of the velocity, vy = 8.0 m/s, is never zero, the velocity cannot 
vanish.

(d) Since speed is the magnitude of the velocity, we have

| |v v= ( ) ( )2 226.0 4.0 8.0 10t t= − + =

in SI units (m/s). To solve for t, we first square both sides of the above equation, followed 
by some rearrangement: 

( ) ( )2 22 26.0 4.0 64   100 6.0 4.0 36t t t t− + = − =

Taking the square root of the new expression and making further simplification lead to  

2 26.0 4.0 6.0 4.0 6.0 6.0 0t t t t− = ± − ± =

Finally, using the quadratic formula, we obtain 

( )( )
( )

6.0 36 4 4.0 6.0
2 8.0

t
± − ±

=

where the requirement of a real positive result leads to the unique answer: t = 2.2 s. 

18. We make use of Eq. 4-16. 

(a) The acceleration as a function of time is 



2 2
0 0 0

3 3

3 3

ˆ ˆ ˆ ˆ( ) (20.0i 40.0 j) [(5.00 3 / 2)i (2.00 2 )j]
ˆ ˆ ˆ ˆ        (20.0i 40.0 j) (5.00 / 2)i (2.00 2 /3)j

ˆ ˆ   (20.0 5.00 / 2)i (40.0 2.00 2 /3)j

t t
r t r vdt t t dt

t t t t
t t t t

= + = + + + + +

= + + + + +
= + + + + +

(a) At 4.00 st = , we have ˆ ˆ( 4.00 s) (72.0 m)i (90.7 m) j.r t = = +

(b) ˆ ˆ( 4.00 s) (29.0 m/s)i (34.0 m/s) jv t = = + . Thus, the angle between the direction of 
travel and +x, measured counterclockwise, is 1tan [(34.0 m/s) /(29.0 m/s)] 49.5 .θ −= = °

 

19. We make use of Eq. 4-16 and Eq. 4-10.  

Using ˆ ˆ3 i 4 ja t t= + , we have (in m/s) 

( ) ( )2 2
0 0 0

ˆ ˆ ˆ ˆ ˆ ˆ( )  (5.00i 2.00j) (3 i 4 j) 5.00 3 / 2 i 2.00 2 j
t t

v t v a dt t t dt t t= + = + + + = + + +

Integrating using Eq. 4-10 then yields (in metes) 



20. The acceleration is constant so that use of Table 2-1 (for both the x and y motions) is 
permitted. Where units are not shown, SI units are to be understood. Collision between 
particles A and B requires two things. First, the y motion of B must satisfy (using Eq. 2-15
and noting that θ is measured from the y axis) 

2 2 21 1  30 m (0.40 m/s ) cos .
2 2yy a t tθ= =

Second, the x motions of A and B must coincide: 

2 2 21 1(3.0 m/s) (0.40 m/s ) sin .
2 2xvt a t t tθ= =

We eliminate a factor of t in the last relationship and formally solve for time: 

2

2 2(3.0 m/s) .
(0.40 m/s ) sinx

vt
a θ

= =

This is then plugged into the previous equation to produce 

2
2

2

1 2(3.0 m/s)30 m (0.40 m/s ) cos
2 (0.40 m/s ) sin

θ
θ

=

which, with the use of sin2 θ = 1 – cos2 θ, simplifies to 

( )( )
2

2

9.0 cos 9.030 1 cos cos .
0.20 1 cos 0.20 30

θ θ θ
θ

= − =
−

We use the quadratic formula (choosing the positive root) to solve for cos θ :

( )( )21.5 1.5 4 1.0 1.0 1cos
2 2

θ
− + − −

= =

which yieldsθ = F
HG
I
KJ = °−cos .1 1

2
60



21. (a) From Eq. 4-22 (with θ0 = 0), the time of flight is 

2

2 2(45.0 m) 3.03 s.
9.80 m/s

ht
g

= = =

(b) The horizontal distance traveled is given by Eq. 4-21: 

0 (250 m/s)(3.03 s) 758 m.x v tΔ = = =

(c) And from Eq. 4-23, we find 

2(9.80 m/s )(3.03 s) 29.7 m/s.yv gt= = =



22. We use Eq. 4-26 

( )22 2
0 0

max 0 2
max

9.50m/s
sin 2 9.209 m 9.21m

9.80m/s
v vR
g g

θ= = = = ≈

to compare with Powell’s long jump; the difference from Rmax is only ΔR =(9.21m – 
8.95m) = 0.259 m. 



23. Using Eq. (4-26), the take-off speed of the jumper is

2

0
0

(9.80 m/s )(77.0 m) 43.1 m/s
sin 2 sin 2(12.0 )

gRv
θ

= = =
°



24. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. 

(a) With the origin at the initial point (edge of table), the y coordinate of the ball is given 
by y gt= − 1

2
2 .  If t is the time of flight and y = –1.20 m indicates the level at which the 

ball hits the floor, then 
( )

2

2 1.20 m
0.495s.

9.80 m/s
t

−
= =

−

(b) The initial (horizontal) velocity of the ball is v v= 0 i . Since x = 1.52 m is the 
horizontal position of its impact point with the floor, we have x = v0t. Thus, 

0
1.52 m 3.07 m/s.
0.495 s

xv
t

= = =



25. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. The initial velocity is horizontal so that v y0 0=  and 
v vx0 0 10= = m s. 

(a) With the origin at the initial point (where the dart leaves the thrower’s hand), the y
coordinate of the dart is given by y gt= − 1

2
2 , so that with y = –PQ we have 

( )( )221
2 9.8 m/s 0.19 s 0.18 m.PQ = =

(b) From x = v0t we obtain x = (10 m/s)(0.19 s) = 1.9 m. 



26. (a) Using the same coordinate system assumed in Eq. 4-22, we solve for y = h:

2
0 0 0

1sin
2

h y v t gtθ= + −

which yields h = 51.8 m for y0 = 0, v0 = 42.0 m/s, θ0 = 60.0° and t = 5.50 s. 

(b) The horizontal motion is steady, so vx = v0x = v0 cos θ0, but the vertical component of 
velocity varies according to Eq. 4-23. Thus, the speed at impact is 

( ) ( )2 2
0 0 0 0cos sin 27.4 m/s.v v v gtθ θ= + − =

(c) We use Eq. 4-24 with vy = 0 and y = H:

H
v

g
= =0 0

2

2
67 5

sin
.

θb g  m.



(b) And we use Eq. 4-22 to solve for the initial height y0:

2 2 2
0 0 0 0

1 1( sin ) 0 ( 40.3 m/s)(10.0 s) (9.80 m/s )(10.0 s)
2 2

y y v t gt yθ− = − − = − −

which yields y0 = 897 m. 

27. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below 
the release point. We write θ0 = –30.0° since the angle shown in the figure is measured 
clockwise from horizontal. We note that the initial speed of the decoy is the plane’s speed 
at the moment of release: v0 = 290 km/h, which we convert to SI units: (290)(1000/3600) 
= 80.6 m/s. 

(a) We use Eq. 4-12 to solve for the time: 

0 0
700 m( cos ) 10.0 s.

(80.6 m/s) cos ( 30.0 )
x v t tθΔ = = =

− °



28. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. The coordinate origin is throwing point (the stone’s 
initial position). The x component of its initial velocity is given by v vx0 0 0= cosθ  and the 
y component is given by v vy0 0 0= sinθ , where v0 = 20 m/s is the initial speed and θ 0 = 
40.0° is the launch angle. 

(a) At t = 1.10 s, its x coordinate is 

x v t= = ° =0 0 20 0 110 40 0 16 9cos . . cos . .θ m / s s mb gb g

(b) Its y coordinate at that instant is 

( )( ) ( )( )22 2
0 0

1 1sin 20.0m/s 1.10s sin 40.0 9.80m/s 1.10s 8.21m.
2 2

y v t gtθ= − = ° − =

(c) At t' = 1.80 s, its x coordinate is x = ° =20 0 180 40 0 27 6. . cos . .m / s s m.b gb g

(d) Its y coordinate at t' is

( )( ) ( ) ( )2 2120.0m/s 1.80s sin 40.0 9.80m/s 1.80s 7.26m.
2

y = ° − =

(e) The stone hits the ground earlier than t = 5.0 s. To find the time when it hits the 
ground solve y v t gt= − =0 0

1
2

2 0sin θ  for t. We find 

t v
g

= = ° =2 2 20 0
9 8

40 2 620
0sin

.
.

sin .θ
m / s

m / s
s.2

b g

Its x coordinate on landing is 

( )( )0 0cos 20.0 m/s 2.62 s cos 40 40.2 m.x v t θ= = ° =

(f) Assuming it stays where it lands, its vertical component at t = 5.00 s is y = 0. 



29. The initial velocity has no vertical component — only an x component equal to +2.00 
m/s. Also, y0 = +10.0 m if the water surface is established as y = 0. 

(a) x – x0 = vxt readily yields x – x0 = 1.60 m. 

(b) Using y y v t gty− = −0 0
1
2

2 , we obtain y = 6.86 m when t = 0.800 s and v0y=0.

(c) Using the fact that y = 0 and y0 = 10.0, the equation y y v t gty− = −0 0
1
2

2  leads to 

22(10.0 m) / 9.80 m/s 1.43 st = = .

During this time, the x-displacement of the diver is x – x0 = (2.00 m/s)(1.43 s) = 2.86 m. 



Thus, the speed of the stone when max / 2y y=  is  

2 2 2 2(21.4 m/s) ( 12.7 m/s) 24.9 m/sx yv v v= + = + − = .

(c) The percentage difference is

24.9 m/s 21.4 m/s 0.163 16.3%
21.4 m/s

− = = .

30. (a) Since the y-component of the velocity of the stone at the top of its path is zero, its 
speed is 

2 2
0 0cos (28.0 m/s)cos 40.0 21.4 m/sx y xv v v v v θ= + = = = ° = .

(b) Using the fact that 0yv =  at the maximum height maxy , the amount of time it takes for 
the stone to reach maxy  is given by Eq. 4-23:

0 0
0 0

sin0 siny
vv v gt t

g
θθ= = − = .

Substituting the above expression into Eq. 4-22, we find the maximum height to be   

2 2 2
2 0 0 0 0 0 0

max 0 0 0 0
sin sin sin1 1  ( sin ) sin .

2 2 2
v v vy v t gt v g

g g g
θ θ θθ θ= − = − =

To find the time the stone descends to max / 2y y= , we solve the quadratic equation given 
in Eq. 4-22: 

2 2
20 0 0 0

max 0 0
sin (2 2) sin1 1( sin ) .

2 4 2 2
v vy y v t gt t

g g
θ θθ ±

±= = = − =

Choosing t t+=  (for descending), we have

0 0

0 0
0 0 0 0

cos (28.0 m/s)cos 40.0 21.4 m/s

(2 2) sin 2 2sin sin (28.0 m/s)sin 40.0 12.7 m/s
2 2 2

x

y

v v

vv v g v
g

θ

θθ θ

= = ° =

+= − = − = − ° = −



31. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below 
the release point. We write θ0 = –37.0° for the angle measured from +x, since the angle 
given in the problem is measured from the –y direction. We note that the initial speed of 
the projectile is the plane’s speed at the moment of release. 

(a) We use Eq. 4-22 to find v0:

2 2 2
0 0 0 0

1 1  ( sin ) 0 730 m sin( 37.0 )(5.00 s) (9.80 m/s )(5.00 s)
2 2

y y v t gt vθ− = − − = − ° −

which yields v0 = 202 m/s. 

(b) The horizontal distance traveled is x = v0tcos θ0 = (202 m/s)(5.00 s)cos(–37.0°) = 806 m. 

(c) The x component of the velocity (just before impact) is

vx = v0cosθ0 = (202 m/s)cos(–37.0°) = 161 m/s. 

(d) The y component of the velocity (just before impact) is

vy = v0 sin θ0 – gt = (202 m/s) sin (–37.0°) – (9.80 m/s2)(5.00 s) = –171 m/s. 



( ) 2
0 0 0

1sin 1.10m
2

y y v t gtθ= + − =

which implies it does indeed clear the 0.90 m high fence. 

(b) At t = 0.508 s, the center of the ball is (1.10 m – 0.90 m) = 0.20 m above the net. 

(c) Repeating the computation in part (a) with θ0 = –5.0° results in t = 0.510 s and 
0.040 my = , which clearly indicates that it cannot clear the net. 

(d) In the situation discussed in part (c), the distance between the top of the net and the 
center of the ball at t = 0.510 s is 0.90 m – 0.040 m = 0.86 m. 

32. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below 
the point where the ball was hit by the racquet. 

(a) We want to know how high the ball is above the court when it is at x = 12.0 m. First, 
Eq. 4-21 tells us the time it is over the fence: 

( )0 0

12.0 m 0.508 s.
cos 23.6 m/s cos 0
xt

v θ
= = =

°

At this moment, the ball is at a height (above the court) of 



33. We first find the time it takes for the volleyball to hit the ground. Using Eq. 4-22, we 
have

2 2 2
0 0 0

1 1  ( sin ) 0 2.30 m ( 20.0 m/s)sin(18.0 ) (9.80 m/s )
2 2

y y v t gt t tθ− = − − = − ° −

which gives 0.30 st = . Thus, the range of the volleyball is

( )0 0cos (20.0 m/s) cos18.0 (0.30 s) 5.71 mR v tθ= = ° =

On the other hand, when the angle is changed to 0 8.00θ ′ = ° , using the same procedure as 
shown above, we find

2 2 2
0 0 0

1 1  ( sin ) 0 2.30 m ( 20.0 m/s)sin(8.00 ) (9.80 m/s )
2 2

y y v t gt t tθ ′ ′ ′ ′ ′− = − − = − ° −

which yields 0.46 st′ = , and the range is 

( )0 0cos (20.0 m/s) cos18.0 (0.46 s) 9.06 mR v tθ′ ′= = ° =

Thus, the ball travels an extra distance of 

9.06 m 5.71 m 3.35 mR R R′Δ = − = − =



Then Eq. 4-21 yields Δx = (v0 cos θ0)t = 38.7 m. Thus, using Eq. 4-8, the player must 
have an average velocity of 

avg 

ˆ ˆ(38.7 m) i (55 m) i ˆ( 5.8 m/s) i
2.81s

rv
t

Δ −= = = −
Δ

which means his average speed (assuming he ran in only one direction) is 5.8 m/s.  

34. Although we could use Eq. 4-26 to find where it lands, we choose instead to work 
with Eq. 4-21 and Eq. 4-22 (for the soccer ball) since these will give information about 
where and when and these are also considered more fundamental than Eq. 4-26. With Δy
= 0, we have 

2
0 0 2

1 (19.5 m/s)sin 45.0( sin )    2.81 s.
2 (9.80 m/s ) / 2

y v t gt tθ °Δ = − = =



   
35. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. The coordinate origin is at its initial position (where it is 
launched). At maximum height, we observe vy = 0 and denote vx = v (which is also equal 
to v0x). In this notation, we have v v0 5= .  Next, we observe v0 cos θ0 = v0x = v, so that we 
arrive at an equation (where v ≠ 0  cancels) which can be solved for θ0:

1
0 0

1(5 )cos cos 78.5 .
5

v vθ θ −= = = °



36. (a) Solving the quadratic equation Eq. 4-22:

2 2 2
0 0 0

1 1  ( sin ) 0 2.160 m (15.00 m/s)sin(45.00 ) (9.800 m/s )
2 2

y y v t gt t tθ− = − − = ° −

the total travel time of the shot in the air is found to be 2.352 st = . Therefore, the 
horizontal distance traveled is

( )0 0cos (15.00 m/s)cos 45.00 (2.352 s) 24.95 mR v tθ= = ° = .

(b) Using the procedure outlined in (a) but for 0 42.00θ = ° , we have 

2 2 2
0 0 0

1 1  ( sin ) 0 2.160 m (15.00 m/s)sin(42.00 ) (9.800 m/s )
2 2

y y v t gt t tθ− = − − = ° −

and the total travel time is  2.245 st = . This gives 

( )0 0cos (15.00 m/s)cos 42.00 (2.245 s) 25.02 mR v tθ= = ° = .



(a) Different approaches are available, but since it will be useful (for the rest of the 
problem) to first find the initial y velocity, that is how we will proceed. Using Eq. 2-16, 
we have 

2 2 2 2 2
1 0 02 (6.1 m/s) 2(9.8 m/s )(9.1 m)y y yv v g y v= − Δ = −

which yields v0 y = 14.7 m/s. Knowing that v2 y must equal 0, we use Eq. 2-16 again but 
now with Δy = h for the maximum height: 

2 2 2 2
2 0 2 0 (14.7 m/s) 2(9.8 m/s )y yv v gh h= − = −

which yields h = 11 m. 

(b) Recalling the derivation of Eq. 4-26, but using v0 y for v0 sin θ0 and v0x for v0 cos θ0,
we have 

2
0 0

10 ,
2y xv t gt R v t= − =

which leads to 0 02 / .x yR v v g=  Noting that v0x = v1x = 7.6 m/s, we plug in values and 
obtain

R = 2(7.6 m/s)(14.7 m/s)/(9.8 m/s2) = 23 m. 

(c) Since v3x = v1x = 7.6 m/s and v3y = – v0 y = –14.7 m/s, we have 

2 2 2 2
3 3 3 (7.6 m/s) ( 14.7 m/s) 17 m/s.x yv v v= + = + − =

(d) The angle (measured from horizontal) for  v3  is one of these possibilities: 

1 14.7 mtan 63   or   117
7.6 m

− − = − ° °

where we settle on the first choice (–63°, which is equivalent to 297°) since the signs of 
its components imply that it is in the fourth quadrant. 

37. We designate the given velocity ˆ ˆ(7.6 m/s)i (6.1 m/s) jv = +  as v1 −  as opposed to the 
velocity when it reaches the max height v2  or the velocity when it returns to the ground 
v3 −  and take v0  as the launch velocity, as usual. The origin is at its launch point on the 
ground.



2 2 2
0 0

1 1( sin ) (25.0 m/s)sin 40.0 (1.15 s) (9.80 m/s )(1.15 s) 12.0 m.
2 2

y v t gtθΔ = − = ° − =

(b) The horizontal component of the velocity when it strikes the wall does not change 
from its initial value: vx = v0 cos 40.0° = 19.2 m/s. 

(c) The vertical component becomes (using Eq. 4-23) 

2
0 0sin (25.0 m/s) sin 40.0 (9.80 m/s )(1.15 s) 4.80 m/s.yv v gtθ= − = ° − =

(d) Since vy > 0 when the ball hits the wall, it has not reached the highest point yet. 

38. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. The coordinate origin is at the release point (the initial 
position for the ball as it begins projectile motion in the sense of §4-5), and we let θ0 be 
the angle of throw (shown in the figure).  Since the horizontal component of the velocity 
of the ball is vx = v0 cos 40.0°, the time it takes for the ball to hit the wall is 

22.0 m 1.15 s.
(25.0 m/s)cos 40.0x

xt
v
Δ= = =

°

(a) The vertical distance is 



39. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. The coordinate origin is at the end of the rifle (the initial 
point for the bullet as it begins projectile motion in the sense of § 4-5), and we let θ0 be 
the firing angle. If the target is a distance d away, then its coordinates are x = d, y = 0. 
The projectile motion equations lead to 0 0cosd v θ=  and 0 0 0

1
2

2= −v t gtsinθ .
Eliminating t leads to 2 00

2
0 0v gdsin cosθ θ − = . Using sin cos sinθ θ θ0 0

1
2 02= b g , we 

obtain
2

2
0 0 0 2 2

0

(9.80 m/s )(45.7 m)sin  (2 ) sin(2 )
(460 m/s)

gdv gd
v

θ θ= = =

which yields 3
0sin(2 ) 2.11 10θ −= × and consequently θ0 = 0.0606°. If the gun is aimed at a 

point a distance  above the target, then tan θ 0 = d  so that

0tan (45.7 m) tan(0.0606 ) 0.0484 m 4.84 cm.d θ= = ° = =



(c) From y gt= − 1
2

2 , we see that the ball has reached the height of  

( )( )221
2| 9.80 m/s 0.205 s | 0.205 m− = at the moment the ball is halfway to the batter. 

(d) The ball’s height when it reaches the batter is ( )( )221
2 9.80 m/s 0.409 s 0.820m− = − ,

which, when subtracted from the previous result, implies it has fallen another 0.615 m. 
Since the value of y is not simply proportional to t, we do not expect equal time-intervals 
to correspond to equal height-changes; in a physical sense, this is due to the fact that the 
initial y-velocity for the first half of the motion is not the same as the “initial” y-velocity 
for the second half of the motion. 

40. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. The initial velocity is horizontal so that 0   0yv =  and 

0 0 161 km hxv v= = .  Converting to SI units, this is v0 = 44.7 m/s. 

(a) With the origin at the initial point (where the ball leaves the pitcher’s hand), the y
coordinate of the ball is given by y gt= − 1

2
2 , and the x coordinate is given by x = v0t.

From the latter equation, we have a simple proportionality between horizontal distance 
and time, which means the time to travel half the total distance is half the total time. 
Specifically, if x = 18.3/2 m, then t = (18.3/2 m)/(44.7 m/s) = 0.205 s. 

(b) And the time to travel the next 18.3/2 m must also be 0.205 s. It can be useful to write 
the horizontal equation as Δx = v0Δt in order that this result can be seen more clearly. 



41. Following the hint, we have the time-reversed problem with the ball thrown from the 
ground, towards the right, at 60° measured counterclockwise from a rightward axis. We 
see in this time-reversed situation that it is convenient to use the familiar coordinate 
system with +x as rightward and with positive angles measured counterclockwise.  

(a) The x-equation (with x0 = 0 and x = 25.0 m) leads to  

25.0 m = (v0 cos 60.0°)(1.50 s), 

so that v0 = 33.3 m/s.  And with y0 = 0, and y = h > 0 at t = 1.50 s, we have 
y y v t gty− = −0 0

1
2

2  where v0y = v0 sin 60.0°.  This leads to h = 32.3 m. 

(b) We have  
                           vx = v0x = (33.3 m/s)cos 60.0° = 16.7 m/s 

               vy = v0y – gt = (33.3 m/s)sin 60.0° – (9.80 m/s2)(1.50 s) = 14.2 m/s. 

The magnitude of v is given by 

2 2 2 2| | (16.7 m/s) (14.2 m/s) 21.9 m/s.x yv v v= + = + =

(c) The angle is  
1 1 14.2 m/stan tan 40.4 .

16.7 m/s
y

x

v
v

θ − −= = = °

(d) We interpret this result (“undoing” the time reversal) as an initial velocity (from the 
edge of the building) of magnitude 21.9 m/s with angle (down from leftward) of 40.4°. 



(b) Since 2 2
0(19 m/s) 31 m/syv+ =  (the first point on the graph), we find 0 24.5 m/s.yv =

Thus, with t = 2.5 s, we can use 21
max 0 0 2yy y v t gt− = − or v v g y yy y

2
0

2
00 2= = − −max ,b g  or 

( )1
max 0 02 yyy y v v t− = +  to solve. Here we will use the latter: 

max 0 0 max
1 1( ) (0 24.5m/s)(2.5 s) 31 m
2 2y yy y v v t y− = + = + =

where we have taken y0 = 0 as the ground level. 

42. In this projectile motion problem, we have v0 = vx = constant, and what is plotted is 
2 2.x yv v v= +  We infer from the plot that at t = 2.5 s, the ball reaches its maximum height, 

where vy = 0. Therefore, we infer from the graph that vx = 19 m/s. 

(a) During t = 5 s, the horizontal motion is x – x0 = vxt = 95 m. 



43. (a)  Let m = d2

 d1
= 0.600 be the slope of the ramp, so y = mx there.  We choose our 

coordinate origin at the point of launch and use Eq. 4-25.  Thus, 

2 2

2 2

(9.80 m/s )tan(50.0 ) 0.600
2(10.0 m/s) (cos50.0 )

xy x x= ° − =
°

which yields x = 4.99 m.  This is less than d1 so the ball does land on the ramp.  

(b) Using the value of x found in part (a), we obtain y = mx = 2.99 m.  Thus, the 
Pythagorean theorem yields a displacement magnitude of x2 + y2  = 5.82 m. 

(c) The angle is, of course, the angle of the ramp: tan−1(m) = 31.0º.   



(b) The height of the person when he is directly above the second wheel can be found by 
solving Eq. 4-24. With the second wheel located at  23 m (23/ 2) m 34.5 m,x = + =  we 
have

2 2 2

0 0 2 2 2 2
0 0

(9.8 m/s )(34.5 m)tan 3.0 m (34.5 m) tan 53
2 cos 2(26.52 m/s) (cos53 )

25.9 m.

gxy y x
v

θ
θ

= + − = + ° −
°

=

Therefore, the clearance over the second wheel is 25.9 m 18 m 7.9 mwy y hΔ = − = − = .

(c) The location of the center of the net is given by 

22 2
0 0

0 0 2 2 2
0 0

sin 2 (26.52 m/s) sin(2 53 )0 tan 69 m.
2 cos 9.8 m/s

vgxy y x x
v g

θθ
θ

⋅ °= − = − = = =

44. (a) Using the fact that the person (as the projectile) reaches the maximum height over 
the middle wheel located at 23 m (23/ 2) m 34.5 mx = + = , we can deduce the initial 
launch speed from Eq. 4-26: 

2 2
0 0

0
0

sin 2 2 2(9.8 m/s )(34.5 m) 26.5 m/s
2 2 sin 2 sin(2 53 )

vR gxx v
g

θ
θ

= = = = =
⋅ °

.

Upon substituting the value to Eq. 4-25, we obtain 

2 2 2

0 0 2 2 2 2
0 0

(9.8 m/s )(23 m)tan 3.0 m (23 m) tan 53 23.3 m.
2 cos 2(26.5 m/s) (cos53 )

gxy y x
v

θ
θ

= + − = + ° − =
°

Since the height of the wheel is 18 mwh = , the clearance over the first wheel is 
23.3 m 18 m 5.3 mwy y hΔ = − = − = .



45. Using the information given, the position of the insect is given by (with the Archer 
fish at the origin) 

cos (0.900 m)cos36.0 0.728 m
sin (0.900 m)sin 36.0 0.529 m

x d
y d

φ
φ

= = ° =
= = ° =

Since y corresponds to the maximum height of the parabolic trajectory (see Problem 4-
30): 2 2

max 0 0sin / 2y y v gθ= = , the launch angle is found to be

( )
2

1 1 1
0 2 2

0

2 2(9.8 m/s )(0.529 m)sin sin sin 0.9044 64.8
(3.56 m/s)

gy
v

θ − − −= = = °



(c) The angle relative to horizontal is  

1 1 24.6 m/stan tan 71.1 .
8.43 m/s

y

x

v
v

θ − − −= = = − °

We may convert the result from rectangular components to magnitude-angle 
representation:

(8.43, 24.6) (26.0 71.1 )v = − → ∠ − °

and we now interpret our result (“undoing” the time reversal) as an initial velocity of 
magnitude 26.0 m/s with angle (up from rightward) of 71.1°. 

46. Following the hint, we have the time-reversed problem with the ball thrown from the 
roof, towards the left, at 60° measured clockwise from a leftward axis. We see in this 
time-reversed situation that it is convenient to take +x as leftward with positive angles 
measured clockwise. Lengths are in meters and time is in seconds. 

(a) With y0 = 20.0 m, and y = 0 at t = 4.00 s, we have y y v t gty− = −0 0
1
2

2   where 

v vy0 0 60= °sin .   This leads to v0 = 16.9 m/s. This plugs into the x-equation 0 0xx x v t− =
(with x0 = 0 and x = d) to produce d = (16.9 m/s)cos 60°(4.00 s) = 33.7 m. 

(b)We have  

0
2

0

(16.9 m/s)cos60.0 8.43 m/s
(16.9 m/s)sin 60.0 (9.80m/s )(4.00 s) 24.6 m/s.

x x

y y

v v
v v gt

= = ° =
= − = ° − = −

The magnitude of v is 2 2 2 2| | (8.43 m/s) ( 24.6 m/s) 26.0 m/s.x yv v v= + = + − =



47. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below 
impact point between bat and ball. The Hint given in the problem is important, since it 
provides us with enough information to find v0 directly from Eq. 4-26. 

(a) We want to know how high the ball is from the ground when it is at x = 97.5 m, which 
requires knowing the initial velocity. Using the range information and θ0 = 45°, we use 
Eq. 4-26 to solve for v0:

( )( )2

0
0

9.8 m/s 107 m
32.4 m/s.

sin 2 1
gRv

θ
= = =

Thus, Eq. 4-21 tells us the time it is over the fence: 

( )0 0

97.5 m 4.26 s.
cos 32.4 m/s cos 45
xt

v θ
= = =

°

At this moment, the ball is at a height (above the ground) of 

y y v t gt= + − =0 0 0
21

2
9 88sin .θb g m

which implies it does indeed clear the 7.32 m high fence. 

(b) At t = 4.26 s, the center of the ball is 9.88 m – 7.32 m = 2.56 m above the fence. 



Substituting the above expression into Eq. 4-22, we find the maximum height to be   

2 2 2
2 0 0 0 0 0 0

max 0 0 max max 0 0
sin sin sin1 1( sin ) sin .

2 2 2
v v vy v t gt v g

g g g
θ θ θθ θ= − = − =

To find the time when the player is at max / 2y y= , we solve the quadratic equation given 
in Eq. 4-22: 

2 2
20 0 0 0

max 0 0
sin (2 2) sin1 1( sin ) .

2 4 2 2
v vy y v t gt t

g g
θ θθ ±

±= = = − =

With t t−=  (for ascending), the amount of time the player spends at a height max / 2y y≥
is

0 0 0 0 0 0 max
max

max

sin (2 2) sin sin 1 0.707
2 2 2 2

v v v t tt t t
g g tg

θ θ θ
−

− ΔΔ = − = − = = = = .

Therefore, the player spends about 70.7% of the time in the upper half of the jump. Note 
that the ratio max/t tΔ  is independent of 0v  and 0θ , even though tΔ  and maxt  depend on 
these quantities.  

48. Using the fact that 0yv =  when the player is at the maximum height maxy , the amount 
of time it takes to reach maxy  can be solved by using Eq. 4-23:

0 0
0 0 max

sin0 siny
vv v gt t

g
θθ= = − = .



which gives 
sin (7.27 m)sin(11.3 ) 1.42 m.y d α= − = − ° = −

Therefore, at landing the skier is approximately 1.4 m below the launch level.  

(c) The time it takes for the skier to land is  

0 0

cos (7.27 m)cos(11.3 ) 0.72 s
cos (10 m/s)cos(9.0 )x

x dt
v v

α
θ

°= = = =
°

.

Using Eq. 4-23, the x-and y-components of the velocity at landing are 

0 0
2

0 0

cos (10 m/s)cos(9.0 ) 9.9 m/s
sin (10 m/s)sin(9.0 ) (9.8 m/s )(0.72 s) 5.5 m/s

x

y

v v
v v gt

θ
θ

= = ° =
= − = ° − = −

Thus, the direction of travel at landing is

1 1 5.5 m/stan tan 29.1 .
9.9 m/s

y

x

v
v

θ − − −= = = − °

or 29.1°  below the horizontal. The result implies that the angle between the skier’s path 
and the slope is 29.1 11.3 17.8φ = ° − ° = ° , or approximately 18°  to two significant figures.  

49. (a) The skier jumps up at an angle of 0 9.0θ = °  up from the horizontal and thus 
returns to the launch level with his velocity vector 9.0°  below the horizontal. With the 
snow surface making an angle of 11.3α = °  (downward) with the horizontal, the angle 
between the slope and the velocity vector is 0 11.3 9.0 2.3φ α θ= − = ° − ° = ° .

(b) Suppose the skier lands at a distance d down the slope. Using Eq. 4-25 with 
cosx d α=  and siny d α= −  (the edge of the track being the origin), we have 

2

0 2 2
0 0

( cos )sin cos tan .
2 cos
g dd d

v
αα α θ
θ

− = −

Solving for d, we obtain 

( ) ( )
2 2 2
0 0 0 0

0 0 02 2

2
0 0

02

2 cos 2 coscos tan sin cos sin cos sin
cos cos

2 cos sin( ).
cos

v vd
g g
v
g

θ θα θ α α θ θ α
α α
θ θ α
α

= + = +

= +

Substituting the values given, we find 

2

2 2

2(10 m/s) cos(9.0 ) sin(9.0 11.3 ) 7.27 m.
(9.8 m/s )cos (11.3 )

d °= ° + ° =
°



50. From Eq. 4-21, we find 0/ xt x v= . Then Eq. 4-23 leads to 

0 0
0

.y y y
x

gxv v gt v
v

= − = −

Since the slope of the graph is −0.500, we conclude g
vox

= 1
2 vox = 19.6 m/s.  And from 

the “y intercept” of the graph, we find voy = 5.00 m/s. Consequently, θo = tan−1(voy  ⁄ vox) = 
14.3°.



we see the first equation gives t = x/v0 cos θ0, and when this is substituted into the second 
the result is 

y x gx
v

= −tan
cos

.θ
θ0

2

0
2 2

02

One may solve this by trial and error: systematically trying values of θ0 until you find the 
two that satisfy the equation. A little manipulation, however, will give an algebraic 
solution: Using the trigonometric identity 1 / cos2 θ0 = 1 + tan2 θ0, we obtain 

1
2

1
2

0
2

0
2

2
0 0

2

0
2

gx
v

x y gx
v

tan tanθ θ− + + =

which is a second-order equation for tan θ0. To simplify writing the solution, we denote 

( )( ) ( )2 22 2 21 1
02 2/ 9.80 m/s 50 m / 25 m/s 19.6m.c gx v= = =

Then the second-order equation becomes c tan2 θ0 – x tan θ0 + y + c = 0.  Using the 
quadratic formula, we obtain its solution(s). 

( ) ( )( )
( )

2 2

0

4 50 m (50 m) 4 3.44 m 19.6 m 19.6 m
tan .

2 2 19.6 m
x x y c c

c
θ

± − + ± − +
= =

The two solutions are given by tan θ0 = 1.95 and tan θ0 = 0.605. The corresponding (first-
quadrant) angles are θ0 = 63° and θ0 = 31°. Thus, 

(a) The smallest elevation angle is θ0 = 31°, and

(b) The greatest elevation angle is θ0 = 63°. 

If kicked at any angle between these two, the ball will travel above the cross bar on the 
goalposts.

51. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. The coordinate origin is at the point where the ball is 
kicked. We use x and y to denote the coordinates of ball at the goalpost, and try to find 
the kicking angle(s) θ0 so that y = 3.44 m when x = 50 m. Writing the kinematic 
equations for projectile motion:

21
0 0 0 0 2cos , sin ,x v y v t gtθ θ= = −



52. For Δy = 0, Eq. 4-22 leads to t = 2vosinθo/g, which immediately implies tmax = 2vo/g
(which occurs for the “straight up” case: θo = 90°). Thus, 

1
2 tmax = vo/g 1

2  = sinθo.

Therefore, the half-maximum-time flight is at angle θo = 30.0°.  Since the least speed 
occurs at the top of the trajectory, which is where the velocity is simply the x-component 
of the initial velocity (vocosθo = vocos30° for the half-maximum-time flight), then we 
need to refer to the graph in order to find vo – in order that we may complete the solution.  
In the graph, we note that the range is 240 m when θo = 45.0°.  Eq. 4-26 then leads to vo = 
48.5 m/s.  The answer is thus (48.5 m/s)cos30.0° = 42.0 m/s.



53. We denote h as the height of a step and w as the width. To hit step n, the ball must fall 
a distance nh and travel horizontally a distance between (n – 1)w and nw. We take the 
origin of a coordinate system to be at the point where the ball leaves the top of the 
stairway, and we choose the y axis to be positive in the upward direction. The coordinates 
of the ball at time t are given by x = v0xt and y gt= − 1

2
2 (since v0y = 0). We equate y to  

–nh and solve for the time to reach the level of step n:

t nh
g

= 2 .

The x coordinate then is 

0 2

2 2 (0.203 m)(1.52 m/s) (0.309 m) .
9.8 m/sx

nh nx v n
g

= = =

The method is to try values of n until we find one for which x/w is less than n but greater 
than n – 1. For n = 1, x = 0.309 m and x/w = 1.52, which is greater than n. For n = 2, x = 
0.437 m and x/w = 2.15, which is also greater than n. For n = 3, x = 0.535 m and x/w = 
2.64. Now, this is less than n and greater than n – 1, so the ball hits the third step. 



54. We apply Eq. 4-21, Eq. 4-22 and Eq. 4-23. 

(a) From Δx v tx= 0 , we find 0 40 m / 2 s 20 m/s.xv = =

(b) From Δy v t gty= −0
1
2

2 , we find ( )2 21
0 253 m (9.8 m/s )(2 s) / 2 36yv = + = m/s. 

(c) From v v gty y= − ′0  with vy = 0 as the condition for maximum height, we obtain 
2(36 m/s) /(9.8 m/s ) 3.7 s.t′ = =  During that time the x-motion is constant, so 

0 (20 m/s)(3.7 s) 74 m.x x′ − = =



(b) We apply 21
0 0 2yy y v t gt− = −  to the motion above the wall, 

( ) ( )2
2 1 1

10 4.00 s 4.00 s
2yy y v g− = = −

and obtain v1y = 19.6 m/s. One second earlier, using v1y = v0y – g(1.00 s), we find 
0 29.4 m/syv = . Therefore, the velocity of the ball just after being hit is 

0 0
ˆ ˆ ˆ ˆi j (12.5 m/s) i  (29.4 m/s) jx yv v v= + = +

Its magnitude is 2 2| | (12.5 m/s) +(29.4 m/s) 31.9 m/s.v = =

(c) The angle is  
1 1 29.4 m/stan tan 67.0 .

12.5 m/s
y

x

v
v

θ − −= = = °

We interpret this result as a velocity of magnitude 31.9 m/s, with angle (up from 
rightward) of 67.0°. 

(d) During the first 1.00 s of motion, y y v t gty= + −0 0
1
2

2  yields

( )( ) ( )( )221
21.0 m 29.4 m/s 1.00 s 9.8 m/s 1.00 s 25.5 m.h = + − =

55. Let y0 = h0 = 1.00 m at x0 = 0 when the ball is hit. Let y1 = h (the height of the wall) 
and x1 describe the point where it first rises above the wall one second after being hit; 
similarly, y2 = h and x2 describe the point where it passes back down behind the wall four 
seconds later. And yf = 1.00 m at xf = R is where it is caught. Lengths are in meters and 
time is in seconds. 

(a) Keeping in mind that vx is constant, we have x2 – x1 = 50.0 m = v1x (4.00 s), which 
leads to v1x = 12.5 m/s. Thus, applied to the full six seconds of motion:  

xf – x0 = R = vx(6.00 s) = 75.0 m. 



56. (a) During constant-speed circular motion, the velocity vector is perpendicular to the 
acceleration vector at every instant.  Thus,  v

→
 ·  a→   = 0. 

(b) The acceleration in this vector, at every instant, points towards the center of the circle, 
whereas the position vector points from the center of the circle to the object in motion.  
Thus, the angle between  r→  and  a→  is 180º  at every instant, so  r→ × a→  = 0. 



and his centripetal acceleration is a = =
7 85

15
41

2.
. .

m / s
m

m / s2b g

(c) When the passenger is at the highest point, his centripetal acceleration is downward, 
toward the center of the orbit. 

(d) At the lowest point, the centripetal acceleration is 24.1 m/sa = , same as part (b). 

(e) The direction is up, toward the center of the orbit.

57. (a) Since the wheel completes 5 turns each minute, its period is one-fifth of a minute, 
or 12 s. 

(b) The magnitude of the centripetal acceleration is given by a = v2/R, where R is the 
radius of the wheel, and v is the speed of the passenger. Since the passenger goes a 
distance 2πR for each revolution, his speed is 

v = =
2 15

12
7 85

π m
s

m / sb g .



58. The magnitude of the acceleration is 

a v
r

= = =
2 210

25
4 0

m / s
m

m / s2b g . .  



59. We apply Eq. 4-35 to solve for speed v and Eq. 4-34 to find centripetal acceleration a.

(a) v = 2πr/T = 2π(20 km)/1.0 s = 126 km/s = 1.3 × 105 m/s. 

(b) The magnitude of the acceleration is 

a v
r

= = = ×
2 2

5126
20

7 9 10
km / s

km
m / s2b g . .  

(c) Clearly, both v and a will increase if T is reduced. 



60. We apply Eq. 4-35 to solve for speed v and Eq. 4-34 to find acceleration a.

(a) Since the radius of Earth is 6.37 × 106 m, the radius of the satellite orbit is  

r = (6.37 × 106  + 640 × 103 ) m = 7.01 × 106 m. 

Therefore, the speed of the satellite is 

v r
T

= =
×

= ×2 2 7 01 10
98 0 60

7 49 10
6

3π π .
. / min

.
m

min s
m / s.

c h
b gb g

(b) The magnitude of the acceleration is 

a v
r

= =
×

×
=

2 3 2

6

7 49 10
7 01 10

8 00
.

.
. .

m / s
m

m / s2c h



61. The magnitude of centripetal acceleration (a = v2/r) and its direction (towards the 
center of the circle) form the basis of this problem. 

(a) If a passenger at this location experiences a = 183. m / s2  east, then the center of the 
circle is east of this location. The distance is r = v2/a = (3.66 m/s)2/(1.83 m/s2) = 7.32 m.  

(b) Thus, relative to the center, the passenger at that moment is located 7.32 m toward the 
west. 

(c) If the direction of a  experienced by the passenger is now south—indicating that the 
center of the merry-go-round is south of him, then relative to the center, the passenger at 
that moment is located 7.32 m toward the north. 



62. (a) The circumference is c = 2πr = 2π(0.15 m) = 0.94 m. 

(b) With T = (60 s)/1200 = 0.050 s, the speed is v = c/T = (0.94 m)/(0.050 s) = 19 m/s. 
This is equivalent to using Eq. 4-35. 

(c) The magnitude of the acceleration is a = v2/r = (19 m/s)2/(0.15 m) = 2.4 × 103 m/s2.

(d) The period of revolution is (1200 rev/min)–1 = 8.3 × 10–4 min which becomes, in SI 
units, T = 0.050 s = 50 ms. 



63. Since the period of a uniform circular motion is 2 /T r vπ= , where r is the radius and 
v is the speed, the centripetal acceleration can be written as 

22 2

2

1 2 4 .v r ra
r r T T

π π= = =

Based on this expression, we compare the (magnitudes) of the wallet and purse 
accelerations, and find their ratio is the ratio of r values.  Therefore, awallet = 1.50 apurse .
Thus, the wallet acceleration vector is  

2 2 2 2ˆ ˆ ˆ ˆ1.50[(2.00 m/s )i +(4.00 m/s )j]=(3.00 m/s )i +(6.00 m/s )ja = .



(3.00 m/s)(8.00 s) 3.82 m.
2 2
vTr
π π

= = =

(a) The x coordinate of the center of the circular path is 5.00 m 3.82 m 8.82 m.x = + =

(b) The y coordinate of the center of the circular path is 6.00 m.y =

In other words, the center of the circle is at (x,y) = (8.82 m, 6.00 m). 

64. The fact that the velocity is in the +y direction, and the acceleration is in the +x
direction at t1= 4.00 s implies that the motion is clockwise. The position corresponds to 
the “9:00 position.” On the other hand, the position at t2=10.0 s is in the “6:00 position” 
since the velocity points in the -x direction and the acceleration is in the +y direction. The 
time interval 10.0 s 4.00 s 6.00 stΔ = − =  is equal to 3/4 of a period: 

36.00 s     8.00 s.
4

T T= =

Eq. 4-35 then yields



65. We first note that a1
→

 (the acceleration at t1 = 2.00 s) is perpendicular to a2
→

 (the 
acceleration at t2=5.00 s), by taking their scalar (dot) product.:

2 2 2 2
1 2

ˆ ˆ ˆ ˆ[(6.00 m/s )i+(4.00 m/s )j] [(4.00 m/s ) i+( 6.00 m/s )j]=0.a a⋅ = ⋅ −

Since the acceleration vectors are in the (negative) radial directions, then the two 
positions (at t1 and t2) are a quarter-circle apart (or three-quarters of a circle, depending 
on whether one measures clockwise or counterclockwise).  A quick sketch leads to the 
conclusion that if the particle is moving counterclockwise (as the problem states) then it 
travels three-quarters of a circumference in moving from the position at time t1 to the 
position at time t2 .  Letting T stand for the period, then t2 –  t1  = 3.00 s = 3T/4. This gives 
T = 4.00 s.  The magnitude of the acceleration is 

2 2 2 2 2 2(6.00 m/s ) (4.00 m/s) 7.21 m/s .x ya a a= + = + =

Using Eq. 4-34 and 4-35, we have 2 24 /a r Tπ= , which yields 

2 2 2

2 2

(7.21 m/s )(4.00 s) 2.92 m.
4 4
aTr
π π

= = =



66. When traveling in circular motion with constant speed, the instantaneous acceleration 
vector necessarily points towards the center.  Thus, the center is “straight up” from the 
cited point.   

(a) Since the center is “straight up” from (4.00 m, 4.00 m), the x coordinate of the center 
is 4.00 m.  

(b) To find out “how far up” we need to know the radius. Using Eq. 4-34 we find 

( )22

2

5.00 m/s
2.00 m.

12.5 m/s
vr
a

= = =

Thus, the y coordinate of the center is 2.00 m + 4.00 m = 6.00 m.  Thus, the center may 
be written as (x, y) = (4.00 m, 6.00 m). 



67. To calculate the centripetal acceleration of the stone, we need to know its speed 
during its circular motion (this is also its initial speed when it flies off). We use the 
kinematic equations of projectile motion (discussed in §4-6) to find that speed. Taking 
the +y direction to be upward and placing the origin at the point where the stone leaves its 
circular orbit, then the coordinates of the stone during its motion as a projectile are given 
by x = v0t and y gt= − 1

2
2 (since v0y = 0). It hits the ground at x = 10 m and y = –2.0 m. 

Formally solving the second equation for the time, we obtain t y g= −2 / , which we 
substitute into the first equation: 

v x g
y0 2

10 9 8
2 2 0

15 7= − = −
−

=m m / s
m

m / s.
2

b g b g
.

.
.

Therefore, the magnitude of the centripetal acceleration is 

a v
r

= = =
2 2

2157
15

160
.
.

.
m / s
m

m / sb g



68. We note that after three seconds have elapsed (t2 – t1 = 3.00 s) the velocity (for this 
object in circular motion of period T ) is reversed; we infer that it takes three seconds to 
reach the opposite side of the circle.  Thus, T = 2(3.00 s) = 6.00 s.

(a) Using Eq. 4-35, r = vT/2π, where 2 2(3.00 m/s) (4.00 m/s) 5.00 m/sv = + = , we obtain 
4.77 mr = . The magnitude of the object’s centripetal acceleration is therefore a = v2/r = 

5.24 m/s2.

(b) The average acceleration is given by Eq. 4-15: 

2 22 1
avg

2 1

ˆ ˆ ˆ ˆ( 3.00i 4.00j) m/s (3.00i 4.00j) m/s ˆ ˆ( 2.00 m/s )i+( 2.67 m/s ) j
5.00 s 2.00 s

v va
t t

− − − − += = = − −
− −

which implies 2 2 2 2 2
avg| | ( 2.00 m/s ) ( 2.67 m/s ) 3.33 m/s .a = − + − =



c t c g t g
ˆ ˆ ˆ(12.5 m/s) i ( 5.6 m/s) i (18.1 m/s) iv v v= − = − − =

relative to the truck. Since the velocity of the cheetah relative to the truck at the 
beginning of the 2.0 s interval is ˆ( 8.3 m/s)i− , the (average) acceleration vector relative to 
the cameraman (in the truck) is 

2
avg

ˆ ˆ(18.1 m/s)i ( 8.3 m/s)i ˆ(13 m/s )i,
2.0 s

a − −= =

or 2
avg| | 13 m/s .a =

(b) The direction of avga is ˆ+i , or eastward. 

(c) The velocity of the cheetah at the start of the 2.0 s interval is (from Eq. 4-44) 

0 cg 0 ct 0 tg
ˆ ˆ ˆ( 8.3 m/s)i ( 5.6 m/s)i ( 13.9 m/s)iv v v= + = − + − = −

relative to the ground. The (average) acceleration vector relative to the crew member (on 
the ground) is 

2 2
avg avg

ˆ ˆ(12.5 m/s)i ( 13.9 m/s)i ˆ(13 m/s )i,   | | 13 m/s
2.0 s

a a− −= = =

identical to the result of part (a). 

(d) The direction of avga  is ˆ+i , or eastward. 

69. We use Eq. 4-15 first using velocities relative to the truck (subscript t) and then using 
velocities relative to the ground (subscript g). We work with SI units, so 
20 km / h 5.6 m / s→ , 30 km / h 8.3 m / s→ , and 45 km / h 12.5  m / s→ . We choose 
east as the + i  direction. 

(a) The velocity of the cheetah (subscript c) at the end of the 2.0 s interval is (from Eq.  
4-44)



The magnitude is cg| | 1 km/h.v =

(d) The direction of cgv is −x, or downstream. 

70. We use Eq. 4-44, noting that the upstream corresponds to the ˆ+i direction.

(a) The subscript b is for the boat, w is for the water, and g is for the ground. 

bg bw wg
ˆ ˆ ˆ(14 km/h) i ( 9 km/h) i (5 km/h) i.v v v= + = + − =

Thus, the magnitude is bg| | 5 km/h.v =

(b) The direction of bgv is +x, or upstream. 

(c) We use the subscript c for the child, and obtain 

v v vc g c b b g  km / h) i  km / h) i (  km / h) i= + = − + = −( (6 5 1 . 



71. While moving in the same direction as the sidewalk’s motion (covering a distance d
relative to the ground in time t1 = 2.50 s), Eq. 4-44 leads to 

vsidewalk + vman running = 
d
 t1

  . 

While he runs back (taking time t2 = 10.0 s) we have 

vsidewalk − vman running = − 
d
 t2

  . 

Dividing these equations and solving for the desired ratio, we get 12.5
7.5 = 5

3  = 1.67. 



72. We denote the velocity of the player with PFv  and 
the relative velocity between the player and the ball be 

BPv . Then the velocity BFv  of the ball relative to the 
field is given by BF PF BPv v v= + . The smallest angle 
θmin corresponds to the case when BF PFv v⊥ . Hence, 

1 1
min

| | 4.0 m/s180 cos  180 cos  130 .
| | 6.0 m/s

PF

BP

v
v

θ − −= ° − = ° − = °



,1 1

,

1.03 knotstan tan 1.5
38.4 knots

AB x

AB y

v
v

θ − −= = = °

which is to say that vA B  points 1.5° east of north.

(c) Since they started at the same time, their relative velocity describes at what rate the 
distance between them is increasing. Because the rate is steady, we have 

| | 160 4.2 h.
| | 38.4

AB

AB

rt
v
Δ= = =

(d) The velocity vA B  does not change with time in this problem, and rA B  is in the same 
direction as vA B  since they started at the same time. Reversing the points of view, we 
have v vA B B A= −  so that r rA B B A= −  (i.e., they are 180° opposite to each other). Hence, 
we conclude that B stays at a bearing of 1.5° west of south relative to A during the 
journey (neglecting the curvature of Earth). 

73. The velocity vectors (relative to the shore) for ships A and B are given by 

ˆ ˆ( cos 45 ) i ( sin 45 ) j
ˆ ˆ( sin 40 ) i ( cos 40 ) j,

A A A

B B B

v v v

v v v

= − ° + °

= − ° − °

with vA = 24 knots and vB = 28 knots. We take east as + i  and north as j .

(a) Their relative velocity is 

ˆ ˆ ( sin 40 cos 45 ) i ( cos 40 sin 45 ) jA B A B B A B Av v v v v v v= − = ° − ° + ° + °

the magnitude of which is 2 2| | (1.03 knots) (38.4 knots) 38 knots.A Bv = + ≈

(b) The angle θ which vA B  makes with north is given by 



74. The destination is D
→

 = 800 km j^  where we orient axes so that +y points north and +x
points east.  This takes two hours, so the (constant) velocity of the plane (relative to the 
ground) is  vpg

→
 = (400 km/h) j^ .  This must be the vector sum of the plane’s velocity with 

respect to the air which has (x,y) components (500cos70º, 500sin70º) and the velocity of 
the air (wind) relative to the ground  vag

→
 .  Thus, 

(400 km/h) j^  = (500 km/h) cos70º i^ + (500 km/h) sin70º j^  +  vag
→

which yields 
 vag

→
  =( –171 km/h)i^  –( 70.0 km/h)j^ . 

(a) The magnitude of agv  is 2 2
ag| | ( 171 km/h) ( 70.0 km/h) 185 km/h.v = − + − =

(b) The direction of agv  is 

1 70.0 km/htan 22.3   (south of west).
171 km/h

θ − −= = °
−



75. Relative to the car the velocity of the snowflakes has a vertical component of 8.0 m/s 
and a horizontal component of 50 km/h = 13.9 m/s. The angle θ from the vertical is found 
from 

13.9 m/stan 1.74
8.0 m/s

h

v

v
v

θ = = =

which yields θ = 60°. 



76. Velocities are taken to be constant; thus, the velocity of the plane relative to the 
ground is ˆ ˆ(55 km)/(1/4 hour) j= (220 km/h)jPGv = . In addition, 

ˆ ˆ ˆ ˆ(42 km/h)(cos 20 i sin 20 j) (39 km/h)i (14 km/h)j.AGv = ° − ° = −

Using PG PA AGv v v= + , we have

ˆ ˆ(39 km/h)i (234 km/h)j.PA PG AGv v v= − = − +

which implies | | 237 km/hPAv = , or 240 km/h (to two significant figures.) 



77. Since the raindrops fall vertically relative to the train, the horizontal component of the 
velocity of a raindrop is vh = 30 m/s, the same as the speed of the train. If vv is the vertical 
component of the velocity and θ is the angle between the direction of motion and the 
vertical, then tan θ = vh/vv.  Thus vv = vh/tan θ = (30 m/s)/tan 70° = 10.9 m/s. The speed of 
a raindrop is  

v v vh v= + = + =2 2 30 10 9 32( ( . m / s)  m / s)  m / s2 2 .



78. This is a classic problem involving two-dimensional relative motion. We align our 
coordinates so that east corresponds to +x and north corresponds to +y. We write the 
vector addition equation as v v vBG BW WG= + .  We have vWG = ∠ °( . )2 0 0  in the magnitude-
angle notation (with the unit m/s understood), or vWG = 2 0. i  in unit-vector notation. We 
also have vBW = ∠ °( . )8 0 120  where we have been careful to phrase the angle in the 
‘standard’ way (measured counterclockwise from the +x axis), or ˆ ˆ( 4.0i+6.9j) m/s.BWv = −

(a) We can solve the vector addition equation for vBG:

ˆ ˆ ˆ ˆ ˆ(2.0 m/s) i ( 4.0i+6.9j) m/s ( 2.0 m/s)i (6.9 m/s) j.BG BW WGv v v= + = + − = − +

Thus, we find | | .vBG = 7 2  m/s.  

(b) The direction of BGv  is 1tan [(6.9 m/s) /( 2.0 m/s)] 106θ −= − = ° (measured 
counterclockwise from the +x axis), or 16° west of north. 

(c) The velocity is constant, and we apply y – y0 = vyt in a reference frame. Thus, in the 
ground reference frame, we have (200 m) (7.2 m/s)sin(106 ) 29t t= ° → =  s. Note: if a 
student obtains “28 s”, then the student has probably neglected to take the y component 
properly (a common mistake). 



79. We denote the police and the motorist with subscripts p and m, respectively. The 
coordinate system is indicated in Fig. 4-49. 

(a) The velocity of the motorist with respect to the police car is 

ˆ ˆ ˆ ˆ( 60 km/h) j ( 80 km/h)i (80 km/h)i (60 km/h) j.m p m pv v v= − = − − − = −

(b) vm p  does happen to be along the line of sight. Referring to Fig. 4-49, we find the 

vector pointing from one car to another is ˆ ˆ(800 m)i (600 m) jr = −  (from M to P). Since 
the ratio of components in r  is the same as in vm p , they must point the same direction. 

(c) No, they remain unchanged. 



80. We make use of Eq. 4-44 and Eq. 4-45. 

The velocity of Jeep P relative to A at the instant is  

ˆ ˆ ˆ ˆ(40.0 m/s)(cos 60 i sin 60 j) (20.0 m/s)i (34.6 m/s) j.PAv = ° + ° = +

Similarly, the velocity of Jeep B relative to A at the instant is  

ˆ ˆ ˆ ˆ(20.0 m/s)(cos30 i sin 30 j) (17.3 m/s)i (10.0 m/s) j.BAv = ° + ° = +

Thus, the velocity of P relative to B is

ˆ ˆ ˆ ˆ ˆ ˆ(20.0i 34.6 j) m/s (17.3i 10.0 j) m/s (2.68 m/s)i (24.6 m/s)j.PB PA BAv v v= − = + − + = +

(a) The magnitude of PBv  is 2 2| | (2.68 m/s) (24.6 m/s) 24.8 m/s.PBv = + =

(b) The direction of PBv  is 1tan [(24.6 m/s) /(2.68 m/s)] 83.8θ −= = °  north of east (or 6.2º 
east of north). 

(c) The acceleration of P is 

2 2 2ˆ ˆ ˆ ˆ(0.400 m/s )(cos 60.0 i sin 60.0 j) (0.200 m/s )i (0.346 m/s ) j,PAa = ° + ° = +

and PA PBa a= . Thus, we have 2| | 0.400 m/s .PBa =

(d) The direction is 60.0° north of east (or 30.0° east of north). 



81. Here, the subscript W refers to the water. Our coordinates are chosen with +x being 
east and +y being north. In these terms, the angle specifying east would be 0° and the 
angle specifying south would be –90° or 270°. Where the length unit is not displayed, km 
is to be understood. 

(a) We have v v vA W A B B W   = + , so that

vA B  = (22 ∠  – 90°) – (40 ∠  37°) = (56 ∠  – 125°) 

in the magnitude-angle notation (conveniently done with a vector-capable calculator in 
polar mode).  Converting to rectangular components, we obtain 

ˆ ˆ( 32km/h) i (46 km/h) j .A Bv = − −

Of course, this could have been done in unit-vector notation from the outset. 

(b) Since the velocity-components are constant, integrating them to obtain the position is 
straightforward ( )r r v dt− = z0    

ˆ ˆ(2.5 32 ) i (4.0 46 ) jr t t= − + −

with lengths in kilometers and time in hours. 

(c) The magnitude of this r  is r t t= − + −( . ) ( . )2 5 32 4 0 462 2 . We minimize this by 
taking a derivative and requiring it to equal zero — which leaves us with an equation for t

dr
dt

t
t t

= −
− + −

=1
2

6286 528
2 5 32 4 0 46

0
2 2( . ) ( . )

which yields t = 0.084 h. 

(d) Plugging this value of t back into the expression for the distance between the ships (r), 
we obtain r = 0.2 km. Of course, the calculator offers more digits (r = 0.225…), but they 
are not significant; in fact, the uncertainties implicit in the given data, here, should make 
the ship captains worry. 



depends on t and on the boat’s speed (relative to the water), and we set it equal to the 
Pythagorean “sum” of the triangle’s sides: 

4 0 200 82 112 2. .b g b gt t= + +

which leads to a quadratic equation for t

46724 180 4 14 8 02+ − =. . .t t

We solve this and find a positive value: t = 62.6 s.

The angle between the northward (200 m) leg of the triangle and the hypotenuse (which 
is measured “west of north”) is then given by 

θ =
+F

HG
I
KJ = F

HG
I
KJ = °− −tan

.
tan .1 182 11

200
151
200

37
t

82. We construct a right triangle starting from the clearing on the 
south bank, drawing a line (200 m long) due north (upward in our 
sketch) across the river, and then a line due west (upstream, leftward 
in our sketch) along the north bank for a distance (82 m) (1.1 m/s)t+ ,
where the t-dependent contribution is the distance that the river will 
carry the boat downstream during time t.

The hypotenuse of this right triangle (the arrow in our sketch) also 



83. Using displacement = velocity × time (for each constant-velocity part of the trip), 
along with the fact that 1 hour = 60 minutes, we have the following vector addition 
exercise (using notation appropriate to many vector capable calculators): 

(1667 m ∠ 0º)  + (1333 m ∠ −90º) + (333 m ∠ 180º) + (833 m ∠ −90º) + (667 m ∠ 180º) 
+ (417 m ∠ −90º) = (2668 m ∠ −76º). 

(a) Thus, the magnitude of the net displacement is 2.7 km. 

(b) Its direction is 76° clockwise (relative to the initial direction of motion). 



84. We compute the coordinate pairs (x, y) from x = (v0 cosθ )t and 21
0 2siny v t gtθ= −

for t = 20 s and the speeds and angles given in the problem.  

(a) We obtain  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, 10.1 km, 0.56 km , 12.1 km,1.51 km
, 14.3 km, 2.68 km , 16.4 km, 3.99 km

A A B B

C C D D

x y x y
x y x y

= =
= =

and (xE, yE) = (18.5 km, 5.53 km) which we plot in the next part. 

(b) The vertical (y) and horizontal (x) axes are in kilometers. The graph does not start at 
the origin.  The curve to “fit” the data is not shown, but is easily imagined (forming the 
“curtain of death”). 



85. Let vo = 2π(0.200 m)/(0.00500 s) ≈ 251 m/s (using Eq. 4-35) be the speed it had in 
circular motion and θo = (1 hr)(360º/12 hr [for full rotation]) = 30.0º.  Then Eq. 4-25 leads 
to

2 2

2 2

(9.8 m/s )(2.50 m)(2.50 m) tan 30.0 1.44 m
2(251 m/s) (cos30.0 )

y = ° − ≈
°

which means its height above the floor is 1.44 m + 1.20 m = 2.64 m. 



86. For circular motion, we must have v  with direction perpendicular to  r→   and (since 
the speed is constant) magnitude 2 /v r Tπ=  where 2 2(2.00 m) ( 3.00 m)r = + −  and 

7.00 sT = . The  r→  (given in the problem statement) specifies a point in the fourth 
quadrant, and since the motion is clockwise then the velocity must have both components 
negative.  Our result, satisfying these three conditions, (using unit-vector notation which 
makes it easy to double-check that 0r v⋅ = ) for v = (–2.69 m/s)i^ + (–1.80 m/s)j^.



87. Using Eq. 2-16, we obtain 2 2
0 2v v gh= − , or 2 2

0( ) / 2 .h v v g= −

(a) Since 0v = at the maximum height of an upward motion, with 0 7.00 m/sv = , we 
have 2 2(7.00 m/s) / 2(9.80 m/s ) 2.50 m.h = =

(b) The relative speed is 0 7.00 m/s 3.00 m/s 4.00 m/sr cv v v= − = − =  with respect to the 
floor. Using the above equation we obtain 2 2(4.00 m/s) / 2(9.80 m/s ) 0.82 m.h = =

(c) The acceleration, or the rate of change of speed of the ball with respect to the ground 
is 9.80 m/s2 (downward). 

(d) Since the elevator cab moves at constant velocity, the rate of change of speed of the 
ball with respect to the cab floor is also 9.80 m/s2 (downward). 



ground is  vo
→

 = (vox – vs) i
^  + voy j

^ .  The horizontal and vertical displacement (relative to 
the ground) are therefore 

          xland – xlaunch = Δxbg = (vox – vs) tflight

          yland – ylaunch =  0  = voy tflight  + 1
2 (−g)(tflight)2 . 

Combining these equations leads to  

Δxbg =
2 vox voy

g   –
2voy

g vs.

The first term corresponds to the “y intercept” on the graph, and the second term (in 
parentheses) corresponds to the magnitude of the “slope.” From Figure 4-54, we have 

 40 4 .bg sx vΔ = −

This implies voy = (4.0 s)(9.8 m/s2)/2 = 19.6 m/s, and that furnishes enough information to 
determine vox.

(a) vox = 40g/2voy = (40 m)(9.8 m/s2)/(39.2 m/s) = 10 m/s. 

(b) As noted above, voy = 19.6 m/s. 

(c) Relative to the sled, the displacement Δxbs does not depend on the sled’s speed, so 
Δxbs = vox tflight = 40 m. 

(d) As in (c), relative to the sled, the displacement Δxbs does not depend on the sled’s 
speed, and Δxbs = vox tflight = 40 m. 

88. Relative to the sled, the launch velocity is  vo rel
→

 = vox i
^  + voy j

^ .  Since the sled’s 
motion is in the negative direction with speed vs (note that we are treating vs as a positive 
number, so the sled’s velocity is actually –vs i^ ), then the launch velocity relative to the 



(b) Using the result from part (a), we find vbg = vbw cosθ = 5.5 km/h. Thus, traveling a 
distance of  = 6.4 km requires a time of (6.4 km)/(5.5 km/h) = 1.15 h or 69 min. 

(c) If her motion is completely along the y axis (as the problem implies) then with vwg = 
3.2 km/h (the water speed) we have 

total  =  +  = 1.33 h
 +   bw wg bw wg

D Dt
v v v v−

where D = 3.2 km. This is equivalent to 80 min. 

(d) Since 

+bw wg bw wg bw wg bw wg

D D D D
v v v v v v v v

+ = +
− − +

the answer is the same as in the previous part, i.e., total = 80 mint .

(e) The shortest-time path should have 0 .θ = °  This can also be shown by noting that the 
case of general θ leads to 

ˆ ˆcos  i  ( sin  + ) jbg bw wg bw bw wgv v v v v vθ θ= + = +

where the x component of vbg  must equal l/t. Thus, 

 = 
cosbw

lt
v θ

which can be minimized using dt/dθ = 0.  

(f) The above expression leads to t = (6.4 km)/(6.4 km/h) = 1.0 h, or 60 min. 

89. We establish coordinates with i  pointing to the far side of the river (perpendicular to 
the current) and j  pointing in the direction of the current. We are told that the magnitude 
(presumed constant) of the velocity of the boat relative to the water is | |  = 6.4 km/h.bwv
Its angle, relative to the x axis is θ.  With km and h as the understood units, the velocity 
of the water (relative to the ground) is ˆ(3.2 km/h)j.wgv =

(a) To reach a point “directly opposite” means that the velocity of her boat relative to 
ground must be ˆ= ibg bgv v  where vbg > 0 is unknown. Thus, all j  components must cancel 

in the vector sum v v vbw wg bg +   =  , which means the 
bwv  sin θ = (–3.2 km/h) j , so

θ = sin–1 [(–3.2 km/h)/(6.4 km/h)] = –30°. 



ˆ ˆ ˆ = [( 755 m) (276 m)]i + (231 m 231 m) j (1031 m) i.rΔ − − − = −

The magnitude of the displacement rΔ  is | | 1031 m.rΔ =

(b) The direction of rΔ is î− , or westward. 

90. We use a coordinate system with +x eastward and +y upward.

(a) We note that 123° is the angle between the initial position and later position vectors, 
so that the angle from +x to the later position vector is 40° + 123° = 163°. In unit-vector 
notation, the position vectors are 

1

2

ˆ ˆ ˆ ˆ = (360 m)cos(40 ) i + (360 m)sin(40 ) j = (276 m)i +(231 m) j
ˆ ˆ ˆ ˆ = (790 m) cos(163 ) i + (790 m) sin(163 ) j = ( 755 m)i + (231 m) j

r

r

° °

° ° −

respectively. Consequently, we plug into Eq. 4-3 



91. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. 

(a) With the origin at the firing point, the y coordinate of the bullet is given by 
y gt= − 1

2
2 . If t is the time of flight and y = – 0.019 m indicates where the bullet hits the 

target, then 
( ) 2

2

2 0.019 m
6.2 10 s.

9.8 m/s
t −= = ×

(b) The muzzle velocity is the initial (horizontal) velocity of the bullet. Since x = 30 m is 
the horizontal position of the target, we have x = v0t. Thus, 

2
0 2

30 m 4.8 10 m/s.
6.3 10 s

xv
t −= = = ×

×



92. Eq. 4-34 describes an inverse proportionality between r and a, so that a large 
acceleration results from a small radius. Thus, an upper limit for a corresponds to a lower 
limit for r.

(a) The minimum turning radius of the train is given by 

r v
amin

max . .
.= = = ×

2 2
3216

0 050 9 8
7 3 10

km / h
m / s

m.
2

b g
b gc h

(b) The speed of the train must be reduced to no more than 

( )( )2 3
max 0.050 9.8 m/s 1.00 10  m 22 m/sv a r= = × =

which is roughly 80 km/h. 



93. (a) With r = 0.15 m and a = 3.0 × 1014 m/s2, Eq. 4-34 gives 

v ra= = ×6 7 106.  m / s.

(b) The period is given by Eq. 4-35: 

T r
v

= = × −2 14 10 7π . s.  



94. We use Eq. 4-2 and Eq. 4-3. 

(a) With the initial position vector as r1  and the later vector as r2 ,  Eq. 4-3 yields 

ˆ ˆ ˆ ˆ ˆ[( 2.0 m) 5.0 m]i [(6.0m) ( 6.0 m)]j (2.0 m 2.0 m) k ( 7.0 m) i (12 m) jrΔ = − − + − − + − = − +

for the displacement vector in unit-vector notation.  

(b) Since there is no z component (that is, the coefficient of k̂  is zero), the displacement 
vector is in the xy plane. 



(b) At t = 7.5 s, the particle has traveled a fraction of 7.5/20 = 3/8 of a revolution around 
the circle (starting at the origin). Relative to the circle-center, the particle is therefore at φ
= 3/8 (360°) = 135° measured from vertical in the manner discussed above. Referring to 
Fig. 4-56, we compute that this position corresponds to  

x = (3.00 m)sin 135° = 2.1 m  
y = (3.0 m) – (3.0 m)cos 135° = 5.1 m  

relative to the coordinate origin. In our magnitude-angle notation, this is expressed as (R
∠ θ ) = (5.5 ∠  68°). 

95. We write our magnitude-angle results in the form R ∠ θb g  with SI units for the 
magnitude understood (m for distances, m/s for speeds, m/s2 for accelerations). All angles 
θ are measured counterclockwise from +x, but we will occasionally refer to angles φ
which are measured counterclockwise from the vertical line between the circle-center and 
the coordinate origin and the line drawn from the circle-center to the particle location (see 
r in the figure). We note that the speed of the particle is v = 2πr/T where r = 3.00 m and T
= 20.0 s; thus, v = 0.942 m/s. The particle is moving counterclockwise in Fig. 4-56. 

(a) At t = 5.0 s, the particle has traveled a fraction of 

5.00 s 1
20.0 s 4

t
T

= =

of a full revolution around the circle (starting at the origin). Thus, relative to the circle-
center, the particle is at 

φ = ° = °1
4

360 90( )       

measured from vertical (as explained above). Referring to Fig. 4-56, we see that this 
position (which is the “3 o’clock” position on the circle) corresponds to x = 3.0 m and y = 
3.0 m relative to the coordinate origin. In our magnitude-angle notation, this is expressed 
as ( ) ( )4.2 45R θ∠ = ∠ ° . Although this position is easy to analyze without resorting to 
trigonometric relations, it is useful (for the computations below) to note that these values 
of x and y relative to coordinate origin can be gotten from the angle φ from the relations  

sin , cosx r y r rφ φ= = − .

Of course, R x y= +2 2  and θ comes from choosing the appropriate possibility from 
tan–1 (y/x) (or by using particular functions of vector-capable calculators). 



(h) The acceleration has magnitude a = v2/r = 0.30 m/s2, and at this instant (see part (a)) it 
is horizontal (towards the center of the circle). Thus, our result is ( )0.30 180∠ ° .

(i) Again, a = v2/r = 0.30 m/s2, but at this instant (see part (c)) it is vertical (towards the 
center of the circle). Thus, our result is ( )0.30 270∠ ° .

(c) At t = 10.0 s, the particle has traveled a fraction of 10/20 = 1/2 of a revolution around 
the circle. Relative to the circle-center, the particle is at φ = 180° measured from vertical 
(see explanation, above). Referring to Fig. 4-56, we see that this position corresponds to x
= 0 and y = 6.0 m relative to the coordinate origin. In our magnitude-angle notation, this 
is expressed as ( ) ( )6.0 90R θ∠ = ∠ ° .

(d) We subtract the position vector in part (a) from the position vector in part (c):  

( ) ( ) ( )6.0 90 4.2 45 4.2 135∠ ° − ∠ ° = ∠ °

using magnitude-angle notation (convenient when using vector-capable calculators). If 
we wish instead to use unit-vector notation, we write 

ˆ ˆ ˆ ˆ(0 3.0 m) i (6.0 m 3.0 m) j ( 3.0 m)i (3.0 m) jRΔ = − + − = − +

which leads to | | 4.2 mRΔ =  and θ = 135°. 

(e) From Eq. 4-8, we have avg /v R t= Δ Δ . With 5.0 stΔ = , we have 

avg
ˆ ˆ( 0.60 m/s) i (0.60 m/s) jv = − +

in unit-vector notation or (0.85 ∠  135°) in magnitude-angle notation. 

(f) The speed has already been noted (v = 0.94 m/s), but its direction is best seen by 
referring again to Fig. 4-56. The velocity vector is tangent to the circle at its “3 o’clock 
position” (see part (a)), which means v  is vertical. Thus, our result is ( )0.94 90∠ ° .

(g) Again, the speed has been noted above (v = 0.94 m/s), but its direction is best seen by 
referring to Fig. 4-56. The velocity vector is tangent to the circle at its “12 o’clock 
position” (see part (c)), which means v  is horizontal. Thus, our result is ( )0.94 180∠ ° .



96. Noting that v2 0= , then, using Eq. 4-15, the average acceleration is 

( ) ( ) 2
avg

ˆ ˆ0 6.30 i 8.42 j m/s
ˆ ˆ2.1i 2.8 j m/s

3 s
va
t

− −Δ= = = − +
Δ



97. (a) The magnitude of the displacement vector Δr  is given by 

2 2 2| | (21.5 km) (9.7 km) (2.88 km) 23.8 km.rΔ = + + =
Thus,

avg
| | 23.8 km| | 6.79 km/h.

3.50 h
rv
t

Δ= = =
Δ

(b) The angle θ in question is given by 

1

2 2

2.88 kmtan 6.96 .
(21.5 km) (9.7 km)

θ −= = °
+



98. The initial velocity has magnitude v0 and because it is horizontal, it is equal to vx the 
horizontal component of velocity at impact. Thus, the speed at impact is 

2 2
0 03yv v v+ =

where 2yv gh=  and we have used Eq. 2-16 with Δx replaced with h = 20 m. Squaring 
both sides of the first equality and substituting from the second, we find 

v gh v0
2

0
22 3+ = b g

which leads to 2
04gh v=  and therefore to 2

0 (9.8 m/s )(20 m) / 2 7.0 m/s.v = =



( )0 0 0 0
ˆ ˆcos i sin j.v v v gtθ θ= + −

(a) With v0 = 30 m/s and θ0 = 60°, we obtain ˆ ˆ(15i +6.4 j) m/sv = , for t = 2.0 s. The 

magnitude of v is 2 2| | (15 m/s) (6.4 m/s) 16 m/s.v = + =

(b) The direction of v is
1tan [(6.4 m/s) /(15 m/s)] 23 ,θ −= = °

measured counterclockwise from +x.

(c) Since the angle is positive, it is above the horizontal. 

(d) With t = 5.0 s, we find ˆ ˆ(15i 23 j) m/sv = − , which yields 

2 2| | (15 m/s) ( 23 m/s) 27 m/s.v = + − =

(e) The direction of v is 1tan [( 23 m/s) /(15 m/s)] 57θ −= − = − ° , or 57° measured 
clockwise from +x.

(f) Since the angle is negative, it is below the horizontal. 

99. We choose horizontal x and vertical y axes such that both components of v0  are 
positive. Positive angles are counterclockwise from +x and negative angles are clockwise 
from it. In unit-vector notation, the velocity at each instant during the projectile motion is 



100. The velocity of Larry is v1 and that of Curly is v2. Also, we denote the length of the 
corridor by L. Now, Larry’s time of passage is t1 = 150 s (which must equal L/v1), and 
Curly’s time of passage is t2 = 70 s (which must equal L/v2). The time Moe takes is 
therefore

1 1
1 2 1 2 150 s 70 s

1 1 48s.
/ /

Lt
v v v L v L

= = = =
+ + +



v
y gt

ty0

21
2

15 1
2

9 8 4 5

4 5
217=

+
=

− +
=

( . ( . )( .

.
.

 m)  m / s  s)

 s
 m / s.

2 2

The magnitude of the initial velocity is 

v v vx y0 0
2

0
2 10 2 217 24= + = + =( . ( . m / s)  m / s)  m / s.2 2

(b) The initial angle satisfies tan θ0 = v0y/v0x. Thus, θ0 = tan–1 [(21.7 m/s)/(10.2 m/s) ]= 
65°.

101. We adopt the positive direction choices used in the textbook so that equations such 
as Eq. 4-22 are directly applicable. The coordinate origin is at the initial position for the 
football as it begins projectile motion in the sense of §4-5), and we let θ0 be the angle of 
its initial velocity measured from the +x axis. 

(a) x = 46 m and y = –1.5 m are the coordinates for the landing point; it lands at time t = 
4.5 s. Since x = v0xt,

v x
tx0

46 10 2= = = m
4.5 s

 m / s..

Since y v t gty= −0
1
2

2 ,



102. We assume the ball’s initial velocity is perpendicular to the plane of the net. We 
choose coordinates so that (x0, y0) = (0, 3.0) m, and vx > 0 (note that v0y = 0). 

(a) To (barely) clear the net, we have 

( )2 2 2
0 0

1 12.24 m 3.0 m 0 9.8 m/s
2 2yy y v t gt t− = − − = −

which gives t = 0.39 s for the time it is passing over the net. This is plugged into the x-
equation to yield the (minimum) initial velocity vx = (8.0 m)/(0.39 s) = 20.3 m/s. 

(b) We require y = 0 and find t from 21
0 0 2yy y v t gt− = − . This value 

( ) 22 3.0 m /(9.8 m/s )(t = 0.78 s)=  is plugged into the x-equation to yield the 
(maximum) initial velocity vx = (17.0 m)/(0.78 s) = 21.7 m/s. 



103. (a) With Δx = 8.0 m, t = Δt1, a = ax , and vox = 0,  Eq. 2-15 gives 

8.0 m = 12 ax(Δt1)2 ,

and the corresponding expression for motion along the y axis leads to 

Δy = 12 m = 12 ay(Δt1)2 .

Dividing the second expression by the first leads to / 3 / 2y xa a = = 1.5.

(b) Letting t = 2Δt1, then Eq. 2-15 leads to Δx = (8.0 m)(2)2 = 32 m, which implies that its 
x coordinate is now (4.0 + 32) m = 36 m.  Similarly, Δy = (12 m)(2)2 = 48 m, which 
means its y coordinate has become (6.0 + 48) m = 54 m. 



(a) We obtain 

v ra= = =5 0 7 0 9 8 19. . .m m / s m / s.2b gb gc h

(b) The time to go around once (the period) is T = 2πr/v = 1.7 s. Therefore, in one minute 
(t = 60 s), the astronaut executes 

60 s 35
1.7 s

t
T

= =

revolutions. Thus, 35 rev/min is needed to produce a centripetal acceleration of 7g when 
the radius is 5.0 m. 

(c) As noted above, T = 1.7 s. 

104. We apply Eq. 4-34 to solve for speed v and Eq. 4-35 to find the period T.



105. The radius of Earth may be found in Appendix C. 

(a) The speed of an object at Earth’s equator is v = 2πR/T, where R is the radius of Earth 
(6.37 × 106 m) and T is the length of a day (8.64 × 104 s):

v = 2π(6.37 × 106 m)/(8.64 × 104 s) = 463 m/s. 

The magnitude of the acceleration is given by 

a v
R

= =
×

=
2 2

6

463
6 37 10

0 034
m / s

m
m / s2b g

.
. .  

(b) If T is the period, then v = 2πR/T is the speed and the magnitude of the acceleration is 

2 2 2

2

(2 / ) 4v R T Ra
R R T

π π= = = .

Thus,

T R
a

= = × = ×2 2 6 37 10
9 8

51 10
6

3π π .
.

.m
m / s

s = 84  min.2



t v= = =/ ( )15 36 m) / (0.417 m / s  s.  

If the various times given are independent of the escalator length, then the answer does 
not depend on that length either. In terms of  (in meters) the speed (in meters per 
second) of the person walking on the stalled escalator is 90 , the speed of the moving 
escalator is 60 , and the speed of the person walking on the moving escalator is 

( ) ( )90 60 0.0278v = + = . The time taken is t v= = =0 0278 36. s  and is 
independent of .

106. When the escalator is stalled the speed of the person is pv t= , where  is the 
length of the escalator and t is the time the person takes to walk up it. This is vp = (15 
m)/(90 s) = 0.167 m/s. The escalator moves at ve = (15 m)/(60 s) = 0.250 m/s. The speed 
of the person walking up the moving escalator is  

v = vp + ve = 0.167 m/s + 0.250 m/s = 0.417 m/s 

and the time taken to move the length of the escalator is 



107. (a) Eq. 2-15 can be applied to the vertical (y axis) motion related to reaching the 
maximum height (when t = 3.0 s and vy = 0): 

ymax – y0  = vyt – 
1
2gt2  . 

With ground level chosen so y0 = 0, this equation gives the result ymax = 12 g(3.0 s)2 = 44 m. 

(b) After the moment it reached maximum height, it is falling; at t = 2.5 s, it will have 
fallen an amount given by Eq. 2-18: 

yfence – ymax  =  (0)(2.5 s) – 
1
2 g(2.5 s)2

which leads to yfence = 13 m. 

(c) Either the range formula, Eq. 4-26, can be used or one can note that after passing the 
fence, it will strike the ground in 0.5 s (so that the total "fall-time" equals the "rise-time").  
Since the horizontal component of velocity in a projectile-motion problem is constant 
(neglecting air friction), we find the original x-component from 97.5 m = v0x(5.5 s) and 
then apply it to that final 0.5 s.  Thus, we find v0x = 17.7 m/s and that after the fence  

Δx = (17.7 m/s)(0.5 s) = 8.9 m. 



108. With gB = 9.8128 m/s2 and gM = 9.7999 m/s2, we apply Eq. 4-26: 

R R v
g

v
g

v
g

g
gM B

M B B

B

M

− = − = −
F
HG

I
KJ

0
2

0 0
2

0 0
2

02 2 2 1sin sin sinθ θ θ

which becomes 
2

2

9.8128 m/s 1
9.7999 m/sM B BR R R− = −

and yields (upon substituting RB = 8.09 m) RM – RB = 0.01 m = 1 cm. 



109. We make use of Eq. 4-25. 

(a) By rearranging Eq. 4-25, we obtain the initial speed: 

v x g
x y0

0 02
=

−cos ( tan )θ θ

which yields v0 = 255.5 ≈ 2.6 × 102 m/s for x = 9400 m, y = –3300 m, and θ0 = 35°. 

(b) From Eq. 4-21, we obtain the time of flight: 

0 0

9400 m 45 s.
cos (255.5 m/s) cos35
xt

v θ
= = =

°

(c) We expect the air to provide resistance but no appreciable lift to the rock, so we 
would need a greater launching speed to reach the same target. 



110. When moving in the same direction as the jet stream (of speed vs), the time is 

t1 = 
d

vja + vs
 , 

where d = 4000 km is the distance and vja is the speed of the jet relative to the air (1000 
km/h). When moving against the jet stream, the time is 

t2 = 
d

vja − vs
  ,

where t2 – t1 = 
70
60 h . Combining these equations and using the quadratic formula to solve 

gives vs = 143 km/h. 



(b) Adapting Eq. 2-11, the velocity of the particle is given by 

v v at= +0 .

Thus, at t = 3.8 s, the velocity is 

( )( )2 2ˆ ˆ ˆ ˆ ˆ(8.0 m/s) j (4.0 m/s ) i (2.0 m/s ) j 3.8 s (15.2 m/s) i (15.6 m/s) jv = + + = +

which has a magnitude of 

2 2 2 2(15.2 m/s) (15.6 m/s) 22 m/s.x yv v v= + = + =

111. Since the x and y components of the acceleration are constants, we can use Table 2-1 
for the motion along both axes. This can be handled individually (for Δx and Δy) or 
together with the unit-vector notation (for Δr). Where units are not shown, SI units are to 
be understood. 

(a) Since r0 0= , the position vector of the particle is (adapting Eq. 2-15) 

( ) ( ) ( ) ( )2 2 2 2
0

1 1ˆ ˆ ˆ ˆ ˆ8.0 j 4.0 i 2.0 j 2.0 i + 8.0 +1.0 j.
2 2

r v t at t t t t t= + = + + =

Therefore, we find when x = 29 m, by solving 2.0t2 = 29, which leads to t = 3.8 s. The y
coordinate at that time is y = (8.0 m/s)(3.8 s) + (1.0 m/s2)(3.8 s)2 = 45 m. 



112. We make use of Eq. 4-34 and Eq. 4-35. 

(a) The track radius is given by 

2 2

2

(9.2 m/s) 22 m
3.8 m/s

vr
a

= = = .

(b) The period of the circular motion is T = 2π(22 m)/(9.2 m/s) = 15 s. 



(c) The x component of velocity does not change: vx = v0 = 1.00 × 109 cm/s = 1.00 × 107

m/s.  

(d) The y component of the velocity is 

( )( )17 2 9 8 61.00 10 cm/s 2.00 10 s 2.00 10 cm/s 2.00 10 m/s.y yv a t −= = × × = × = ×

113. Since this problem involves constant downward acceleration of magnitude a, similar 
to the projectile motion situation, we use the equations of  §4-6 as long as we substitute a
for g. We adopt the positive direction choices used in the textbook so that equations such 
as Eq. 4-22 are directly applicable. The initial velocity is horizontal so that v y0 0=  and 

9
0 0 1.00 10xv v= = × cm/s. 

(a) If is the length of a plate and t is the time an electron is between the plates, then 
= v t0 , where v0 is the initial speed. Thus 

9
9

0

2.00 cm 2.00 10 s.
1.00 10 cm/s

t
v

−= = = ×
×

(b) The vertical displacement of the electron is 

( )( )22 17 2 91 1 1.00 10 cm/s 2.00 10 s 0.20 cm 2.00 mm,
2 2

y at −= − = − × × = − = −

or | | 2.00 mm.y =



114. We neglect air resistance, which justifies setting a = –g = –9.8 m/s2 (taking down as 
the –y direction) for the duration of the motion of the shot ball. We are allowed to use 
Table 2-1 (with Δy replacing Δx) because the ball has constant acceleration motion. We 
use primed variables (except t) with the constant-velocity elevator (so ' 10 m/sv = ), and 
unprimed variables with the ball (with initial velocity 0 20 30 m/sv v′= + = , relative to the 
ground). SI units are used throughout. 

(a) Taking the time to be zero at the instant the ball is shot, we compute its maximum 
height y (relative to the ground) with 2 2

0 02 ( )v v g y y= − − , where the highest point is 
characterized by v = 0. Thus, 

y y v
g

= + =o m0
2

2
76

where o o 2 30 my y′= + =  (where o 28 my′ =  is given in the problem) and v0 = 30 m/s 
relative to the ground as noted above. 

(b) There are a variety of approaches to this question. One is to continue working in the 
frame of reference adopted in part (a) (which treats the ground as motionless and “fixes” 
the coordinate origin to it); in this case, one describes the elevator motion with 

oy y v t′ ′ ′= +  and the ball motion with Eq. 2-15, and solves them for the case where they 
reach the same point at the same time.  Another is to work in the frame of reference of the 
elevator (the boy in the elevator might be oblivious to the fact the elevator is moving 
since it isn’t accelerating), which is what we show here in detail: 

Δ
Δ

y v t gt t
v v g y

ge
e e

e

e= − =
+ −

0
2 0 0

21
2

2

where v0e = 20 m/s is the initial velocity of the ball relative to the elevator and Δye =  
–2.0 m is the ball’s displacement relative to the floor of the elevator. The positive root is 
chosen to yield a positive value for t; the result is t = 4.2 s. 



115. (a) With 7/10 3 10 m/sv c= = ×  and 220 196 m/s ,a g= =  Eq. 4-34 gives 

2 12/ 4.6 10  m.r v a= = ×

(b) The period is given by Eq. 4-35: 52 / 9.6 10  s.T r vπ= = × Thus, the time to make a 
quarter-turn is T/4 = 2.4 × 105 s or about 2.8 days. 



116. Using the same coordinate system assumed in Eq. 4-25, we rearrange that equation 
to solve for the initial speed: 

v x g
x y0 2

 =  
cos  (  tan   0 0θ θ − )

which yields v0 = 23 ft/s for g = 32 ft/s2, x = 13 ft, y = 3 ft and θ0 = 55°. 



117. The (box)car has velocity v vc g  i= 1  relative to the ground, and the bullet has 
velocity

v v vb g0 2 2 i  j= +cos sinθ θ

relative to the ground before entering the car (we are neglecting the effects of gravity on 
the bullet).  While in the car, its velocity relative to the outside ground is 
v v vbg = +08 2. cos sinθ θ i 0.8  j2  (due to the 20% reduction mentioned in the problem). The 
problem indicates that the velocity of the bullet in the car relative to the car is (with v3

unspecified) v vb c  j= 3 . Now, Eq. 4-44 provides the condition 

2 2 3 1
ˆ ˆ ˆ ˆ0.8 cos  i 0.8 sin j  j  i

b g b c c gv v v
v v v vθ θ

= +
+ = +

so that equating x components allows us to find θ. If one wished to find v3 one could also 
equate the y components, and from this, if the car width were given, one could find the 
time spent by the bullet in the car, but this information is not asked for (which is why the 
width is irrelevant). Therefore, examining the x components in SI units leads to 

( )1000 m/km
3600 s/h1 11

2

85 km/h
cos cos  

0.8 0.8 (650 m/s)
v

v
θ − −= =

which yields 87° for the direction of vb g  (measured from i , which is the direction of 
motion of the car). The problem asks, “from what direction was it fired?” — which 
means the answer is not 87° but rather its supplement 93° (measured from the direction of 
motion). Stating this more carefully, in the coordinate system we have adopted in our 
solution, the bullet velocity vector is in the first quadrant, at 87° measured 
counterclockwise from the +x direction (the direction of train motion), which means that 
the direction from which the bullet came (where the sniper is) is in the third quadrant, at  
–93° (that is, 93° measured clockwise from +x).



( )( )2
0 2 9.80 m/s 5.00 m 9.90 m/syv = =

(a) Since v0 sin θ0 = v0y, with v0 = 12.0 m/s, we find θ0 = 55.6°. 

(b) Now, vy = v0y – gt gives t = (9.90 m/s)/(9.80 m/s2) = 1.01 s. Thus, Δx = (v0 cos θ0)t = 
6.85 m. 

(c) The velocity at the target has only the vx component, which is equal to v0x = v0 cos θ0
= 6.78 m/s. 

118. Since 22
0 2y yv v g y= − Δ , and vy=0 at the target, we obtain 



119. From the figure, the three displacements can be written as  

1 1 1 1

2 2 1 2 1 2

3 3 3 2 1

ˆ ˆ ˆ ˆ ˆ ˆ(cos i sin j) (5.00 m)(cos30 i sin 30 j) (4.33 m)i (2.50 m) j

ˆ ˆ ˆ ˆ[cos(180 )i sin(180 )j] (8.00 m)(cos160 i sin160 j)
ˆ ˆ( 7.52 m)i (2.74 m) j

ˆ[cos(360 )i sin

d d

d d

d d

θ θ

θ θ θ θ

θ θ θ

= + = ° + ° = +

= ° + − + ° + − = ° + °
= − +

= ° − − + + 3 2 1
ˆ ˆ ˆ(360 )j] (12.0 m)(cos 260 i sin 260 j)

ˆ ˆ( 2.08 m)i (11.8 m) j
θ θ θ° − − + = ° + °

= − −

where the angles are measured from the +x axis. The net displacement is  

1 2 3
ˆ ˆ( 5.27 m)i (6.58 m) j.d d d d= + + = − −

(a) The magnitude of the net displacement is 

2 2| | ( 5.27 m) ( 6.58 m) 8.43 m.d = − + − =

(b) The direction of d is

1 1 6.58 mtan tan 51.3  or 231 .
5.27 m

y

x

d
d

θ − − −= = = ° °
−

We choose 231° (measured counterclockwise from +x) since the desired angle is in the 
third quadrant. An equivalent answer is 129− ° (measured clockwise from +x).



Because sin φ = sin (180° – φ), there are two roots of the above equation: 

1
02 sin (0.218) 12.58 and  167.4 .θ −= = ° °

which correspond to the two possible launch angles that will hit the target (in the absence 
of air friction and related effects). 

(a) The smallest angle is θ0 = 6.29°. 

(b) The greatest angle is and θ0 = 83.7°.

An alternative approach to this problem in terms of Eq. 4-25 (with y = 0 and 1/cos2 = 1 + 
tan2) is possible — and leads to a quadratic equation for tanθ0 with the roots providing 
these two possible θ0 values. 

120. With v0 = 30.0 m/s and R = 20.0 m, Eq. 4-26 gives 

sin 2  =   =  0.218.0θ gR
v0

2



(d) The direction of avgv is 1tan [( 0.22 km/h) /(0.67 km/h)] 18θ −= − = − ° , or 18° south
of east. 

(e) The average speed is distinguished from the magnitude of average velocity in that it 
depends on the total distance as opposed to the net displacement. Since the camel travels 
140 km, we obtain (140 km)/(90 h) = 1.56 km/h 1.6 km/h≈ .

(f) The net displacement is required to be the 90 km East from A to B. The displacement 
from the resting place to B is denoted 3.rΔ  Thus, we must have

1 2 3
ˆ+  +  = (90 km) ir r rΔ Δ Δ

which produces 3
ˆ ˆ(30 km)i (20 km)jrΔ = +  in unit-vector notation, or (36  33 )∠ °  in 

magnitude-angle notation.  Therefore, using Eq. 4-8 we obtain 

avg
36 km|  | =  = 1.2 km/h.

(120 90) h
v

−

(g) The direction of avgv is the same as r3  (that is, 33° north of east). 

121. On the one hand, we could perform the vector addition of the displacements with a 
vector-capable calculator in polar mode ((75  37 ) + (65   90 ) = (63   18 )),∠ ° ∠ − ° ∠ − °
but in keeping with Eq. 3-5 and Eq. 3-6 we will show the details in unit-vector notation. 
We use a ‘standard’ coordinate system with +x East and +y North. Lengths are in 
kilometers and times are in hours. 

(a) We perform the vector addition of individual displacements to find the net 
displacement of the camel. 

1

2

1 2

ˆ ˆ                   = (75 km)cos(37 ) i  (75 km) sin(37 ) j
ˆ                   =( 65 km) j

ˆ ˆ +  = (60 km) i (20 km ) j .

r

r

r r r

Δ ° + °

Δ −

Δ = Δ Δ −

If it is desired to express this in magnitude-angle notation, then this is equivalent to a 
vector of length 2 2| | (60 km) +( 20 km)  = 63 kmrΔ = −  . 

(b) The direction of rΔ  is 1tan [( 20 km) /(60 km)] 18θ −= − = − ° , or 18° south of east. 

(c) We use the result from part (a) in Eq. 4-8 along with the fact that Δt =  90 h.  In unit 
vector notation, we obtain 

avg

ˆ ˆ(60 i 20 j) km ˆ ˆ= = (0.67 i 0.22 j) km/h.
90 h

v − −

This leads to avg|  | = 0.70 km/h.v



(c) Differentiating r with respect to t, we obtain 

2 2 2
0 0 0

2 2 2
0 0 0

3 sin / 2 / 2
sin / 4

v v gt g tdr
dt v v g t g t

θ
θ

− +=
− +

Setting / 0dr dt = , with 0 16.0 m/sv = and 0 40.0θ = ° , we have 2256 151 48 0t t− + = .
The equation has no real solution. This means that the maximum is reached at the end of 
the flight, with  

2
0 02 sin / 2(16.0 m/s)sin(40.0 ) /(9.80 m/s ) 2.10 s.totalt v gθ= = ° =

122. We make use of Eq. 4-21 and Eq.4-22. 

(a) With vo = 16 m/s, we square Eq. 4-21 and Eq. 4-22 and add them, then (using 
Pythagoras’ theorem) take the square root to obtain r:

2 2 2 2 2
0 0 0 0 0 0

2 2 2
0 0 0

( ) ( ) ( cos ) ( sin / 2)

        sin / 4

r x x y y v t v t gt

t v v g t g t

θ θ

θ

= − + − = + −

= − +

Below we plot r as a function of time for θo = 40.0º: 

(b) For this next graph for r versus t we set θo = 80.0º. 



(e) The horizontal distance is  0 0cos (16.0 m/s)cos 40.0 (2.10 s) 25.7 m.xr v tθ= = ° =

(f) The vertical distance is 0yr = .

(g) For the θ0 = 80º launch, the condition for maximum r is 2256 232 48 0t t− + = , or 
1.71 st = (the other solution, t = 3.13 s, corresponds to a minimum.) 

(h) The distance traveled is 

2 2 2(1.71) (16.0) (16.0)(9.80)sin80.0 (1.71) (9.80) (1.71) / 4 13.5 m.r = − ° + =

(i) The horizontal distance is

0 0cos (16.0 m/s)cos80.0 (1.71s) 4.75 m.xr v tθ= = ° =

(j) The vertical distance is 
2 2 2

0 0
(9.80 m/s )(1.71s)sin (16.0 m/s)sin80 (1.71s) 12.6 m.

2 2y
gtr v tθ= − = ° − =

(d) The value of r is given by

2 2 2(2.10) (16.0) (16.0)(9.80)sin 40.0 (2.10) (9.80) (2.10) / 4 25.7 m.r = − ° + =



123. Using the same coordinate system assumed in Eq. 4-25, we find x for the elevated 
cannon from 

y x gx
v

y= − = −tan
cos

θ
θ0

2

0 0
22

30
b g

 where  m.

Using the quadratic formula (choosing the positive root), we find 

x v
v v gy

g
=

+ −F

H
GG

I

K
JJ0 0

0 0 0 0
2 2

cos
sin sin

θ
θ θb g

which yields x = 715 m for v0 = 82 m/s and θ0 = 45°. This is 29 m longer than the 686 m 
found in that Sample Problem. Since the “9” in 29 m is not reliable, due to the low level 
of precision in the given data, we write the answer as 13 10  m.×



124. (a) Using the same coordinate system assumed in Eq. 4-25, we find 

y x gx
v

gx
v

= − = − =tan
cos

.θ
θ

θ0

2

0 0
2

2

0
22 2

0
b g

    if 0

Thus, with v0 = 3.0 × 106 m/s and x = 1.0 m, we obtain y = –5.4 × 10–13 m which is not 
practical to measure (and suggests why gravitational processes play such a small role in 
the fields of atomic and subatomic physics). 

(b) It is clear from the above expression that |y| decreases as v0 is increased. 



v0y – gt again but now “starting the clock” at the highest point so that v0y = 0 (and 

1.0 st = ). This leads to vy = –9.8 m/s and ( )22(10 m/s) 9.8 m/s 14 m/s+ − = .

(c) The x0 value may be obtained from x = 0 = x0 + (10 m/s)(1.0s), which yields 
0 10m.x = −

(d) With v0y = 9.8 m/s denoting the y-component of velocity one second before the top of 
the trajectory, then we have y y v t gty= = + −0 0 0

1
2

2 where t = 1.0 s. This yields 

0 4.9 m.y = −

(e) By using x – x0 = (10 m/s)(1.0 s) where x0 = 0, we obtain x = 10 m. 

(f) Let t = 0 at the top with 0 0 0yy v= = . From 21
0 0 2yy y v t gt− = − , we have, for t = 1.0 s, 

2 2(9.8 m/s )(1.0 s) / 2 4.9 m.y = − = −

125. At maximum height, the y-component of a projectile’s velocity vanishes, so the 
given 10 m/s is the (constant) x-component of velocity. 

(a) Using v0y to denote the y-velocity 1.0 s before reaching the maximum height, then 
(with vy = 0) the equation vy = v0y – gt leads to v0y = 9.8 m/s. The magnitude of the 
velocity vector (or speed) at that moment is therefore 

2 2 2 2
0 (10 m/s) (9.8 m/s) 14 m/s.x yv v+ = + =

(b) It is clear from the symmetry of the problem that the speed is the same 1.0 s after 
reaching the top, as it was 1.0 s before (14 m/s again). This may be verified by using vy = 



126. With no acceleration in the x direction yet a constant acceleration of 1.4 m/s2 in the y
direction, the position (in meters) as a function of time (in seconds) must be 

r t t= F
HG

I
KJ( . ) ( . )6 0 14 2i + 1

2
 j  

and v  is its derivative with respect to t.

(a) At t = 3.0 s, therefore, ˆ ˆ(6.0i 4.2 j)v = +  m/s. 

(b) At t = 3.0 s, the position is ˆ ˆ(18i 6.3j)r = +  m. 



127. We note that 
v v vPG PA AG= +

describes a right triangle, with one leg being vPG  (east), another leg being vAG

(magnitude = 20, direction = south), and the hypotenuse being vPA  (magnitude = 70). 
Lengths are in kilometers and time is in hours. Using the Pythagorean theorem, we have 

2 2 2 2| |  | |   70 km/h | | (20 km/h)PA PG AG PGv v v v= + = +

which is easily solved for the ground speed: | |vPG  =  67 km / h.  



point shown (1.25 s after the ball is released) which is when the ball returns to its original 
height. In English units, g = 32 ft/s2.

(a) Using x – x0 = vxt we obtain vx = (40 ft)/(1.25 s) = 32 ft/s. And y y v t gty− = = −0 0
1
2

20

yields ( )( )21
0 2 32 ft/s 1.25 s 20 ft/s.yv = =  Thus, the initial speed is 

2 2
0 0 | | (32 ft/s) (20 ft/s) 38 ft/s.v v= = + =

(b) Since vy = 0 at the maximum height and the horizontal velocity stays constant, then 
the speed at the top is the same as vx = 32 ft/s. 

(c) We can infer from the figure (or compute from 00y yv v gt= = − ) that the time to reach 

the top is 0.625 s. With this, we can use y y v t gty− = −0 0
1
2

2 to obtain 9.3 ft (where y0 =

3 ft has been used). An alternative approach is to use ( )2 2
0 02 .y yv v g y y= − −

128. The figure offers many interesting points to analyze, and others are easily inferred 
(such as the point of maximum height). The focus here, to begin with, will be the final 



129. We denote vPG  as the velocity of the plane relative to the 
ground, vAG  as the velocity of the air relative to the ground, and 
vPA  as the velocity of the plane relative to the air. 

(a) The vector diagram is shown on the right: v v vPG PA AG= + .
Since the magnitudes vPG and vPA are equal the triangle is 
isosceles, with two sides of equal length.  

Consider either of the right triangles formed when the bisector 
of θ is drawn (the dashed line). It bisects vAG , so 

( ) ( )
AG

PG

70.0 mi/hsin / 2
2 2 135 mi/h
v
v

θ = =

which leads to θ = 30.1°.  Now vAG  makes the same angle with the E-W line as the 
dashed line does with the N-S line. The wind is blowing in the direction 15.0° north of 
west. Thus, it is blowing from 75.0° east of south. 

(b) The plane is headed along vPA , in the direction 30.0° east of north. There is another 
solution, with the plane headed 30.0° west of north and the wind blowing 15° north of 
east (that is, from 75° west of south). 



2

ˆ ˆ2i cos j
2 4

ˆsin j.
8 4

dr tv
dt
dv ta
dt

π π

π π

= = +

= = −

Thus, we obtain: 

time t  0.0 1.0 2.0 3.0 4.0 

x 0.0 2.0 4.0 6.0 8.0 
(a)

r
→

position y 0.0 1.4 2.0 1.4 0.0 

vx  2.0 2.0 2.0  
(b)

v
→

velocity vy  1.1 0.0 −1.1

ax  0.0 0.0 0.0  
(c)

a
→

acceleration ay −0.87 −1.2 −0.87

And the path of the particle in the xy plane is shown in the following graph.  The arrows 
indicating the velocities are not shown here, but they would appear as tangent-lines, as 
expected.

130. Taking derivatives of ˆ ˆ2 i 2sin( / 4) jr t tπ= +  (with lengths in meters, time in seconds 
and angles in radians) provides expressions for velocity and acceleration: 



131. We make use of Eq. 4-24 and Eq. 4-25. 

(a) With x = 180 m, θo = 30º, and vo = 43 m/s, we obtain 

2 2

2 2

(9.8 m/s )(180 m)tan(30 )(180 m) 11 m
2(43 m/s) (cos30 )

y = ° − = −
°

or | | 11 my = . This implies the rise is roughly eleven meters above the fairway.  

(b) The horizontal component (in the absence of air friction) is unchanged, but the 
vertical component increases (see Eq. 4-24). The Pythagorean theorem then gives the 
magnitude of final velocity (right before striking the ground): 45 m/s. 



21
0 0 20 .f y f p fy y v t g t− = = −  This gives us v0y = 1.25gp, and we see we need another 

equation (by analyzing another point, say, the next-to-last one) 21
0 0 2y py y v t g t− = −

with y = 6 and t = 2; this produces our second equation v0y = 2 + gp. Simultaneous 
solution of these two equations produces results for v0y and gp (relevant to part (b)). Thus, 
our complete answer for the initial velocity is ˆ ˆ(10 m/s)i (10 m/s)j .v = +

(b) As a by-product of the part (a) computations, we have gp = 8.0 m/s2.

(c) Solving for tg (the time to reach the ground) in y y v t g tg y g p g= = + −0 0 0
1
2

2   leads to a 
positive answer: tg = 2.7 s. 

(d) With g = 9.8 m/s2, the method employed in part (c) would produce the quadratic 
equation 24.9 10 2 0g gt t− + + =  and then the positive result tg = 2.2 s. 

132. We let gp denote the magnitude of the gravitational acceleration on the planet. A 
number of the points on the graph (including some “inferred” points — such as the max 
height point at x = 12.5 m and t = 1.25 s) can be analyzed profitably; for future reference, 
we label (with subscripts) the first ((x0, y0) = (0, 2) at t0 = 0) and last (“final”) points ((xf,
yf) = (25, 2) at tf = 2.5), with lengths in meters and time in seconds. 

(a) The x-component of the initial velocity is found from xf  –  x0 = v0x tf. Therefore, 
0 25 / 2.5 10 m/s.xv = =  And we try to obtain the y-component from 
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