1. (a) Eq. 19-3 yields n = Mgw/M = 2.5/197 = 0.0127 mol.
(b) The number of atoms is found from Eq. 19-2:

N =nN, = (0.0127)(6.02 x 107) = 7.64 x 10*".



2. Each atom has a mass of m = M/Na, where M is the molar mass and N4 is the
Avogadro constant. The molar mass of arsenic is 74.9 g/mol or 74.9 x 10 kg/mol.
Therefore, 7.50 x 10** arsenic atoms have a total mass of

(7.50 x 10**) (74.9 x 10~ kg/mol)/(6.02 x 10 mol™") = 0.933 kg.



3. With V=1.0x 10°m’, p=1.01 x 10" Pa, and 7= 293 K, the ideal gas law gives

_pr (101x107" Pa) (10X 107 m’)

= =4.1x 107 mole.
RT (8.31J/mol-K)(293 K)

n

Consequently, Eq. 19-2 yields N = nNy = 25 molecules. We can express this as a ratio
(with ¥ now written as 1 cm®) N/V = 25 molecules/cm’.



4. (a) We solve the ideal gas law pV = nRT for n:

100Pa)(1.0x10™°m’
n= pV = ( a)( o ) =547 % 10_811'101.
RT ~ (8.31J/mol-K)(220K)

(b) Using Eq. 19-2, the number of molecules N is

N =nN, =(5.47 %10 mol) (6.02x 10 mol™") = 3.29 x 10" molecules.



5. Since (standard) air pressure is 101 kPa, then the initial (absolute) pressure of the air is
pi = 266 kPa. Setting up the gas law in ratio form (where n; = nyand thus cancels out —
see Sample Problem 19-1), we have

which yields

' T. -2 3
pr=p,| 2 || 2 | =(266kpa)| 102X 10 300K _ 567 1pa
v, \T 167x10°m’ | 273K

Expressed as a gauge pressure, we subtract 101 kPa and obtain 186 kPa.



6. (a) With 7= 283 K, we obtain

~ pv (100 x10°Pa)(2.50m’)

n= = = 106mol.
RT  (8.31J/mol-K)(283K)

(b) We can use the answer to part (a) with the new values of pressure and temperature,
and solve the ideal gas law for the new volume, or we could set up the gas law in ratio
form as in Sample Problem 19-1 (where n; = nrand thus cancels out):

T
v, =v,| Lol 2L =(2.50m’) L00KPa 1 303K 1 _ 5 29 .
p, )\ T 300kPa ) { 283K



7. (a) In solving pV = nRT for n, we first convert the temperature to the Kelvin scale:
T =(40.0+273.15)K =313.15 K . And we convert the volume to SI units: 1000 cm® =

1000 x 10°® m’. Now, according to the ideal gas law,

_pr_ (1.01x10°Pa)(1000 x 10 m")

n = = =3.88 x 10~ mol.
RT ~ (831J/mol-K)(313.15K)

(b) The ideal gas law pV = nRT leads to

o BV (1.06x10° Pa)(1500x 10°m’) 93K,
nR (3.88 %107 mol)(8.31J/mol -K)

We note that the final temperature may be expressed in degrees Celsius as 220°C.



8. The pressure p; due to the first gas is p; = nRT/V, and the pressure p, due to the
second gas is p, = noRT/V. So the total pressure on the container wall is

mRT
4

- ”zﬁT = (n, + 112)E

p=p +p,=

The fraction of P due to the second gas is then

)2 n,RT |V n, 0.5

p _(n1+n2)(RT/V) n + n, T2+05 7




9. (a) Eq. 19-45 (which gives 0) implies Q = W. Then Eq. 19-14, with T = (273 +
30.0)K leads to gives 0 =-3.14x 10° J,or| Q| =3.14 x 10° I.

(b) That negative sign in the result of part (a) implies the transfer of heat is from the gas.



10. The initial and final temperatures are 7, =5.00°C=278 K and 7, =75.0°C =348 K,

respectively. Using ideal-gas law with V; =V, we find the final pressure to be

Vv, T. T,
pf_f:—/ = pf:—fpiz ﬁ (1.00 atm)=1.25 atm .
)24 T T 278K

i i



11. Using Eq. 19-14, we note that since it is an isothermal process (involving an ideal gas)
then Q = W = nRT In(V;/V;) applies at any point on the graph. An easy one to read is Q
= 1000 J and V; = 0.30 m’, and we can also infer from the graph that 7; = 0.20 m’. We
are told that » = 0.825 mol, so the above relation immediately yields 7= 360 K.



12. Since the pressure is constant the work is given by W = p(V, — V). The initial volume
is V, = (AT, —BT?)/p , where T1=315 K is the initial temperature, 4 =24.9 J/K and

B=0.00662 J/K*. The final volume is ¥, = (4T, — BT})/p , where T»=315 K. Thus

W=AT,~-T,)-B(T; - T;")
=(24.9 J/K)(325 K —315 K)—(0.00662 J/K*)[(325 K)> — (315 K)*]=207 J..



13. Suppose the gas expands from volume V; to volume V; during the isothermal portion
of the process. The work it does is

V./ Vde Vf
W—ij pdV_nRTfK = nRTIn L,

i

where the ideal gas law pJ = nRT was used to replace p with nRT/V. Now V; = nRT/p;
and Vy=nRT/py, so V{/V:= pilps. Also replace nRT with p;V; to obtain

W =pV. In P
Py

Since the initial gauge pressure is 1.03 x 10° Pa,

pi=1.03x10°Pa+1.013 x 10° Pa=2.04 x 10’ Pa.
The final pressure is atmospheric pressure: py=1.013 X 10° Pa. Thus

2.04 x10° Pa

S 1=2.00x10"J.
1.013 x10° Pa

W = (2.04 x 10° Pa)(0.14m3) ln[

During the constant pressure portion of the process the work done by the gas is W =
pAVi— V). The gas starts in a state with pressure py, so this is the pressure throughout this
portion of the process. We also note that the volume decreases from V,to V. Now V=

piVilpy, so

W=p, Vi_ﬂ = (p,— 1)V, = (1.013x10° Pa — 2.04x10° Pa)(0.14m")
| », |
= —1.44x10*J.

The total work done by the gas over the entire process is

W=200x10"]-1.44%x10*1=5.60x10J.



14. (a) At the surface, the air volume is
V= Ah=x(1.00 m)*(4.00 m)=12.57 m* =12.6 m’.

(b) The temperature and pressure of the air inside the submarine at the surface are
7, =20°C=293K and p, = p, =1.00 atm . On the other hand, at depth #=80m, we

have 7, =-30°C =243 K and
1.00 atm

= p, + pegh =1.00 atm + (1024 kg/m*)(9.80 m/s>)(80.0 m)————
D, =Dyt Pg ( g/m”)( ) )1.01><105 -

=1.00 atm+7.95 atm =8.95 atm.

Therefore, using ideal-gas law, pV = NkT , the air volume at this depth would be

2h Lo oy L Vlz(l.OOatm] 258 12,57 m) =116 m’.
pV, T, )\ T, 8.95 atm )| 293K

(c) The decrease in volume is AV =V, =V, =11.44 m’. Using Eq. 19-5, the amount of air

this volume corresponds to is

_ pAV (895 atm)(1.01x10° Pa/atm )(11.44m’ )

= 5.10x10° mol .
RT (8.31 J/mol-K) (243K)

Thus, in order for the submarine to maintain the original air volume in the chamber,
5.10x10° mol of air must be released.



15. (a) At point a, we know enough information to compute x:

2500Pa)(1.0m’
n= 214 = ( a)( o ) =1.5mol.
RT  (8.31J/mol-K) (200K)

(b) We can use the answer to part (a) with the new values of pressure and volume, and
solve the ideal gas law for the new temperature, or we could set up the gas law as in
Sample Problem 19-1 in terms of ratios (note: n, = n, and cancels out):

3
pV, _ T, — T, = (200K) 7.5kPa 3.Om3
pyV, T, 2.5kPa ) 1.0m

which yields an absolute temperature at b of T, = 1.8x10° K.

(c) As in the previous part, we choose to approach this using the gas law in ratio form
(see Sample Problem 19-1):

3
PV =£:TC _ (200K) 2.5kPa 3.om3
vV, T, 2.5kPa ) 1.0m

which yields an absolute temperature at ¢ of 7, = 6.0x10* K.

(d) The net energy added to the gas (as heat) is equal to the net work that is done as it
progresses through the cycle (represented as a right triangle in the pJ diagram shown in
Fig. 19-21). This, in turn, is related to * “area” inside that triangle (with
area = 1 (base)(height) ), where we choose the plus sign because the volume change at

the largest pressure is an increase. Thus,

%(2.0m3) (5.0x10°Pa) =5.0x 10 J.



16. We assume that the pressure of the air in the bubble is essentially the same as the
pressure in the surrounding water. If d is the depth of the lake and p is the density of
water, then the pressure at the bottom of the lake is p; = po + pgd, where py is
atmospheric pressure. Since p; V7 = nRT), the number of moles of gas in the bubble is

n=p V]/RT] = (p() + ,Ogd)V1/RT1,

where ¥V is the volume of the bubble at the bottom of the lake and 77 is the temperature
there. At the surface of the lake the pressure is py and the volume of the bubble is V, =
nRT,/po. We substitute for n to obtain

Po + pgd v
Py

293K ) [ 1.013x 10° Pa +(0.998 x 10’ kg/m" ) (9.8 m/s* ) (40m)

277K 1.013 % 10° Pa

T
V==
1

(20 cm3)

=1.0x10% cm’.



17. When the valve is closed the number of moles of the gas in container 4 is ny =

paV4/RT, and that in container B is np = 4ppV4/RTs. The total number of moles in both
containers is then

% 4
n=n,+n, = ?A (%+%J = const.
A B

After the valve is opened the pressure in container 4 is p’y = Rn’4T4/V4 and that in
container B is p’s = Rn’pTp/4V 4. Equating p’4 and p’p, we obtain Rn'4T4/Vy = Rn'sTp/4V 4,
orn’g=(4T4/Tp)n’ 4. Thus,

’ ’ ’ 4T 4
n=n,+tng; =n, (1+T_Aj:nA+nB:%(%+%j.
B y B

We solve the above equation for n’:

/
n,

(pA/TA +4pB/TB)
(1+ 4T, /T,)

_r
R

Substituting this expression for n’, into p’V, = n’4RT4, we obtain the final pressure:

’_ n,RT, _Pat 4psT, /T,
v, 1+4T,/T,

=2.0x 10’ Pa.

p



18. Appendix F gives M = 4.00 x 107 kg/mol (Table 19-1 gives this to fewer significant
figures). Using Eq. 19-22, we obtain

= 2.50 x 10° m/s.

3RT (3 (8.31 J/mol-K) (1000K)
v = —
m M 4.00 x 10~ kg/mol



19. According to kinetic theory, the rms speed is

f3RT
vrms =
M

where T is the temperature and M is the molar mass. See Eq. 19-34. According to Table
19-1, the molar mass of molecular hydrogen is 2.02 g/mol = 2.02 x 10> kg/mol, so

=1.8%x10% m/s.

ms

_[3(8.31J/mol-K)(2.7K)
~\ 2.02x107 kg/mol



20. The molar mass of argon is 39.95 g/mol. Eq. 19-22 gives

3(8.31J/mol-K) (313K
y = [RT_ P3E31mol K)BISK) _ )
M 39.95 x 10 kg/mol




21. Table 19-1 gives M = 28.0 g/mol for nitrogen. This value can be used in Eq. 19-22
with 7 in Kelvins to obtain the results. A variation on this approach is to set up ratios,
using the fact that Table 19-1 also gives the rms speed for nitrogen gas at 300 K (the
value is 517 m/s). Here we illustrate the latter approach, using v for vips:

,/3RT /M \/Z
T

v1 3RT, /M

() With T, = (20.0 +273.15) K = 293 K, we obtain

=(517mvs) 293K =511m/s.
300K

(b) In this case, we set v, =+ v, and solve v, /v, =/T, /T, for T:

2 2
nzg(ﬁj :(293K)(lj =73.0K
v, 2

which we write as 73.0 — 273 = —200°C.

(c) Now we have v4 = 2v; and obtain
2
T, :T{v_“j =(293K)(4):1.17 x10° K
V,

which is equivalent to 899°C.



22. First we rewrite Eq. 19-22 using Eq. 19-4 and Eq. 19-7:

The mass of the electron is given in the problem, and & = 1.38 x 107> J/K is given in the
textbook. With 7= 2.00 x 10° K, the above expression gives vims = 9.53 x 10° m/s. The
pressure value given in the problem is not used in the solution.



23. In the reflection process, only the normal component of the momentum changes, so
for one molecule the change in momentum is 2mv cosé, where m is the mass of the
molecule, v is its speed, and @1s the angle between its velocity and the normal to the wall.
If N molecules collide with the wall, then the change in their total momentum is 2Nmv
cos 6, and if the total time taken for the collisions is Az, then the average rate of change of
the total momentum is 2(N/Af)mv cos@. This is the average force exerted by the N
molecules on the wall, and the pressure is the average force per unit area:

—3 ﬁ mv cos@
P4\ Ar

- (WJ(LO x1075™)(3.3 x 107" kg) (1.0 X 10° m/s ) cos 55°
. m

=1.9 x 10’ Pa.

We note that the value given for the mass was converted to kg and the value given for the
area was converted to m”.



24. We can express the ideal gas law in terms of density using # = Mam/M:

M, RT _ pM

V = => p= .
P M P =Ry

We can also use this to write the rms speed formula in terms of density:

\/3RT 3(pM/p) 3p
.

(a) We convert to SI units: p=1.24 x 102 kg/m’ and p = 1.01 x 10’ Pa. The rms speed is
\/3(1010)/0.0124 =494 m/s.

(b) We find M from p=pM/RT with T =273 K.

pRT _ (0.0124kg/m’) (8.31J/mol-K )(273K)

M = 3
p 1.01 x 10" Pa

=0.0279 kg/mol = 27.9 g/mol.

(c) From Table 19.1, we identify the gas to be N,.



25. (a) Eq. 19-24 gives K, == (1.38x 107 J/K)(273K)=5.65x 107" J .

N | W

(b) For T'=373 K, the average translational kinetic energy is K,,, = 7.72 X 1077 .

(c) The unit mole may be thought of as a (large) collection: 6.02 x 10> molecules of
ideal gas, in this case. Each molecule has energy specified in part (a), so the large
collection has a total kinetic energy equal to

K,.=N.K

avg

= (6.02x107)(5.65%10' J)= 3.40x10° J.

mole
(d) Similarly, the result from part (b) leads to

K_ .= (6.02x107)(7.72x107' 1)=4.65 x 10’ J.



26. The average translational kinetic energy is given by K, =3kT, where & is the

Boltzmann constant (1.38 x 10 >* J/K) and 7 is the temperature on the Kelvin scale. Thus

K, = % (1.38 x 107 J/K) (1600K) = 3.31x 107 J .



27. (a) We use € = Ly/N, where Ly is the heat of vaporization and N is the number of
molecules per gram. The molar mass of atomic hydrogen is 1 g/mol and the molar mass
of atomic oxygen is 16 g/mol so the molar mass of H,O is (1.0 + 1.0 + 16) = 18 g/mol.
There are Nx = 6.02 x 10 molecules in a mole so the number of molecules in a gram of
water is (6.02 x 10% mol")/(18 g/mol) = 3.34 x 10** molecules/g. Thus

e = (539 cal/g)/(3.34 x 10*/g) = 1.61 x 10*° cal = 6.76 x 10" J.

(b) The average translational kinetic energy is

K. =3 kT = %(1.38 x 107 J/K)[(32.0+273.15)K] = 6.32 x 107" J.

avg E

The ratio &/Kayg is (6.76 x 102 1)/(6.32 x 10" J) =10.7.



28. We solve Eq. 19-25 for d:

1 1
d = =
\/7»75\/5 (N/V) \/(0.80 x 10° cm) T2 (2.7 10" /cm?)

which yields d=3.2 x 10" c¢m, or 0.32 nm.



29. (a) According to Eq. 19-25, the mean free path for molecules in a gas is given by

|
- Lrd*NIV

where d is the diameter of a molecule and N is the number of molecules in volume V.
Substitute d = 2.0 X 107 m and N/V = 1 x 10° molecules/m’ to obtain

1

A= =6x10"m.
V2m(2.0 x 10 m)> (1% 10° m™

(b) At this altitude most of the gas particles are in orbit around Earth and do not suffer
randomizing collisions. The mean free path has little physical significance.



30. Using v = fA with v= 331 m/s (see Table 17-1) with Eq. 19-2 and Eq. 19-25 leads to

f _ v
E\/Endz (N/V)]

3 3 S
:(8.0><107 m )(ﬁj:[g_oxl(y m J 1.01 x10° Pa
s-mol/ \ V' s-mol ) | (8.31 J/mol-K) (273.15K)

=3.5x 10’ Hz.

= (331m/s) T2 (3.0 x 107" m)’ (%}

where we have used the ideal gas law and substituted n/V = p/RT. If we instead use v =
343 m/s (the “default value” for speed of sound in air, used repeatedly in Ch. 17), then
the answer is 3.7 x 10° Hz.



31. (a) We use the ideal gas law pV = nRT = NkT, where p is the pressure, V is the
volume, 7 is the temperature, n is the number of moles, and N is the number of molecules.
The substitutions N = nN, and k = R/Nx were made. Since 1 cm of mercury = 1333 Pa,
the pressure is p = (10 ')(1333 Pa) = 1.333 x 10"* Pa. Thus,

-4
N_v»p 1.333x10"" Pa = 3.27x10" molecules/m’> =3.27x10" molecules/cm’ .

vV kT (1.38x1072 J/K)(295K)

(b) The molecular diameter is d = 2.00 x 10'° m, so, according to Eq. 19-25, the mean
free path is
1 1

L2rd*N 1V 2m(2.00x107° m)? (3.27%10" m™)




32. (a) We set up a ratio using Eq. 19-25:

C(nv2d. (NIV)) (dNZ T

A’Ar
My,  U(mi2d2 (N/7)) \dy

Therefore, we obtain

d, [ _\/27.5><10—6 em _ .
dy, Ay 9.9x10° ecm

(b) Using Eq. 19-2 and the ideal gas law, we substitute N/V = Nan/V = Nap/RT into Eq.
19-25 and find
RT

A=—F7—7—.
nx/zdszA

Comparing (for the same species of molecule) at two different pressures and
temperatures, this leads to
A, T, )\ p,

With 4; =9.9 x 10°° cm, T} = 293 K (the same as 75 in this part), p; = 750 torr and p, =
150 torr, we find A, = 5.0 X 107 cm.

(c) The ratio set up in part (b), using the same values for quantities with subscript 1, leads
toAr=7.9x 10°° cm for 7, =233 K and p, = 750 torr.



33. (a) The average speed is

N
Vavg = %ZV,' = %[4(200 m/s)+2(500 m/s) +4(600 m/s)] =420 m/s.
i=1

(b) The rms speed is

N
Vins = \/%va = \/%[4(200 m/s)* +2(500 m/s)’ +4(600 m/s)*] = 458 m/s
i=1

(c) Yes, Vims > Vayg.



34. (a) The average speed is

_ Zny, _ [2(1.0)+4(2.0)+6(3.0) +8(4.0)+2(5.0)] en/s

Vo, =3.2cm/s.
£ Xn 2+4+6+8+2
(b) From v, = +/Znv’/Zn, we get
2 2 2 2 2
V- 2(1.0)° +4(2.0)° +6(3.0)° +8(4.0) +2(5.0° .,
2+4+6+8+2

(c) There are eight particles at v = 4.0 cm/s, more than the number of particles at any
other single speed. So 4.0 cm/s is the most probable speed.



35. (a) The average speed is v = %, where the sum is over the speeds of the particles

and N is the number of particles. Thus

(2.0+3.0+4.0+5.0+6.0+7.0+8.0+9.0+10.0+11.0) km/s
10

2
/ %
(b) The rms speed is given by v, = A Now

D v =[(2.0)° +(3.0)° +(4.0)* +(5.0)° +(6.0)°
+(7.0)> +(8.0)* +(9.0)* +(10.0)> + (11.0)* ] km* /s> = 505 km” / s>

2 2
v = ,/W =7.1 kms.

= 6.5km/s.

Vv =

SO



36. (a) From the graph we see that v, = 400 m/s. Using the fact that M = 28 g/mol =
0.028 kg/mol for nitrogen (N, ) gas, Eq. 19-35 can then be used to determine the absolute

temperature. We obtain 7= %MVPZ/R =2.7x10* K.

b) Comparing with Eq. 19-34, we conclude vims =\3/2 vy, = 4.9x10% m/s.
( paring q p



37. The rms speed of molecules in a gas is given by v, =+/3RT/M , where T is the
temperature and M is the molar mass of the gas. See Eq. 19-34. The speed required for
escape from Earth's gravitational pull is v=,/2gr, , where g is the acceleration due to

gravity at Earth's surface and r. (= 6.37 x 10° m) is the radius of Earth. To derive this
expression, take the zero of gravitational potential energy to be at infinity. Then, the
gravitational potential energy of a particle with mass m at Earth's surface is

U= —GMm/ri =-mgr,,

where g =GM / 7 was used. If v is the speed of the particle, then its total energy is

E =—-mgr, ++mv’ . If the particle is just able to travel far away, its kinetic energy must
tend toward zero as its distance from Earth becomes large without bound. This means £ =
0and v= \/@ . We equate the expressions for the speeds to obtain \/3RT /M = \/2 ar, .
The solution for T'is T=2gr.M /3R.

(a) The molar mass of hydrogen is 2.02 x 10~ kg/mol, so for that gas

2(9.8m/s*)(6.37x10°m)(2.02x10~ kg/mol )
3(8.31J/mol-K)

T = =1.0x10* K.

(b) The molar mass of oxygen is 32.0 x 10~ kg/mol, so for that gas

2008 ) 10m) (2010 kgl
3(8.31J/mol - K)

(c) Now, T =2g,r»M / 3R, where r,, = 1.74 X 10° m is the radius of the Moon and n =
0.16g is the acceleration due to gravity at the Moon's surface. For hydrogen, the
temperature is

. 2(0.16)(9.8m/s”)(1.74x10°m)(2.02x107 kg /mol CAAXIO K.
3(8.313/mol-K)

(d) For oxygen, the temperature is

. 2(0.16)(9-8m/s” )(1.74x10°m) (32.0x10~ kg /mol) _ 7 0X10° K.
3(8.31J/mol-K)

(e) The temperature high in Earth's atmosphere is great enough for a significant number
of hydrogen atoms in the tail of the Maxwellian distribution to escape. As a result the
atmosphere is depleted of hydrogen.

(f) On the other hand, very few oxygen atoms escape. So there should be much oxygen
high in Earth’s upper atmosphere.



38. We divide Eq. 19-31 by Eq. 19-22:

Voe \SRT/M,  [8M,

Vet N3RT/M, \31M,

leads to

which, for v, , =2

rmsl?

m, M, 8\v

rmsl

Lﬂzs_n[v&zf;_uj.



39. (a) The root-mean-square speed is given by v, =./3RT/M . See Eq. 19-34. The
molar mass of hydrogen is 2.02 x 10~ kg/mol, so

ms — o

2.02x107 kg/mol

(b) When the surfaces of the spheres that represent an H, molecule and an Ar atom are
touching, the distance between their centers is the sum of their radii:

d=r+rn=05x10%cm+1.5x10%cm=2.0x10"%cm.

(c) The argon atoms are essentially at rest so in time ¢ the hydrogen atom collides with all
the argon atoms in a cylinder of radius d and length vz, where v is its speed. That is, the
number of collisions is Td*viN/ V, where, N/V is the concentration of argon atoms. The
number of collisions per unit time is

nd’vN _ n(Z.OXIO_IO m)2 (7_0><103 m/s) (4.0><1025 m‘3) =3.5%10" collisions/s.




40. We divide Eq. 19-35 by Eq. 19-22:

v, \2RL,/M _ 2T,

Vo BRI /M \ 3T,

L _3(v)_3
T 2\v 2

ms

which, for v, =v_, leads to

m



41. (a) The distribution function gives the fraction of particles with speeds between v and
v + dv, so its integral over all speeds is unity: | P(v) dv = 1. Evaluate the integral by
calculating the area under the curve in Fig. 19-24. The area of the triangular portion is
half the product of the base and altitude, or Lav,. The area of the rectangular portion is

the product of the sides, or avy. Thus,

1 3
JP(v)dv = Eavo +av, = > av, ,

so 2av, =1 and avy = 2/3=0.67.

(b) The average speed is given by v,,, = J-vP(v)a’v. For the triangular portion of the

distribution P(v) = av/vy, and the contribution of this portion is

2
a a avy, 2
— | Vdv=—ov, =L =2y,
Vo 3v, 3 9

where 2/3vy, was substituted for a. P(v) = a in the rectangular portion, and the
contribution of this portion is

a_‘:VUvdv =%(4v§ —vg) =37av§ =V,.

Therefore,

2 vavg
Vag = VotV =1.22v, = =1.22.
9 v

(c) The mean-square speed is given by v’ = Iva(v)dv. The contribution of the

ms

triangular section is

0 1
a4 v3dv=ng =—v,.
Vo 4v, 6
The contribution of the rectangular portion is
W 5. Ao s 3\ _Ta 5 14,
aLvdv—3(8v0 v)—3v0—9v0.

Thus,

vm:\/Eﬂalvo = m =131,
6" 9 v
0



(d) The number of particles with speeds between 1.5vy and 2vy is given by N .[2:} P(v)dv.

The integral is easy to evaluate since P(v) = a throughout the range of integration. Thus
the number of particles with speeds in the given range is

Na(2.0vy — 1.5v9) = 0.5N avy = N/3,

where 2/3vy was substituted for a. In other words, the fraction of particles in this range is
1/3 or 0.33.



42. The internal energy is

E, =%nRT =%(1.0m01)(8.31 J/mol-K)(273K) =3.4x10° J.

nt



43. (a) The work is zero in this process since volume is kept fixed.
(b) Since Cy = %R for an ideal monatomic gas, then Eq. 19-39 gives O = +374 J.

(€) AEw=0— W=+3741.

(d) Two moles are equivalent to N = 12 x 10* particles. Dividing the result of part (c) by
N gives the average translational kinetic energy change per atom: 3.11 x 107**]J.



44. (a) Since the process is a constant-pressure expansion,

W = pAV =nRAT =(2.02mol)(8.31 J/mol-K)(15K)=249].
(b) Now, C, = %R in this case, so Q = nC,AT = +623 J by Eq. 19-46.

(c) The change in the internal energy is AEj,= Q — W=+374 .
(d) The change in the average kinetic energy per atom is

AKoyg = AE/N=+3.11 x 1077 J.



45. When the temperature changes by AT the internal energy of the first gas changes by
nmC, AT, the internal energy of the second gas changes by n,C; AT, and the internal
energy of the third gas changes by n3Cs; AT. The change in the internal energy of the
composite gas is

AEin = (7’11 Ci+nyC+ns C3) AT.

This must be (n; + ny + n3) Cy AT, where Cy is the molar specific heat of the mixture.
Thus,

C o= nC, +n,C, +n,C,
’ n +n, +n,

With 7,=2.40 mol, Cy;=12.0 J/mol-K for gas 1, n,=1.50 mol, C»,=12.8 J/mol-K for gas 2,
and n3=3.20 mol, C3=20.0 J/mol-K for gas 3, we obtain Cy=15.8 J/mol-K for the mixture.



46. Two formulas (other than the first law of thermodynamics) will be of use to us. It is
straightforward to show, from Eq. 19-11, that for any process that is depicted as a
straight line on the pV diagram — the work is

-+
2

straight

which includes, as special cases, W = pAV for constant-pressure processes and W = 0 for
constant-volume processes. Further, Eq. 19-44 with Eq. 19-51 gives

E = n(ijT = (gij

where we have used the ideal gas law in the last step. We emphasize that, in order to
obtain work and energy in Joules, pressure should be in Pascals (N / m?) and volume
should be in cubic meters. The degrees of freedom for a diatomic gas is /= 5.

(a) The internal energy change is

Eintc _Einta = %(pcl/c _pal/a ) :§(<20X103 Pa)(40m3)_(50><103 Pa>(20m3))

=-5.0x10° J.

(b) The work done during the process represented by the diagonal path is

diag —

W, —(%}(VC—V;) = (3.5x10°Pa)(2.0m’)

which yields Wiag = 7.0% 10° J. Consequently, the first law of thermodynamics gives

Otag =AE, + Wy, =(=5.0x10° +7.0x10%) J =2.0x10° J.

iag
(c) The fact that AEj,; only depends on the initial and final states, and not on the details of
the “path” between them, means we can write AE, =E, . —E,, , =-5.0x10" J for the
indirect path, too. In this case, the work done consists of that done during the constant

pressure part (the horizontal line in the graph) plus that done during the constant volume
part (the vertical line):

w.

indirect

=(5.0x10° Pa)(2.0m’)+0=1.0x10* J.

Now, the first law of thermodynamics leads to

O et =AE AW . =(=5.0x10" +1.0x10") ] =5.0x10° J.

indirect



47. Argon is a monatomic gas, so f = 3 in Eq. 19-51, which provides

C, =2 R=2(8.31 Umol-K)[ L |- 29 <al
272 4.186 mol-C°

where we have converted Joules to calories, and taken advantage of the fact that a Celsius
degree is equivalent to a unit change on the Kelvin scale. Since (for a given substance) M
is effectively a conversion factor between grams and moles, we see that ¢y (see units
specified in the problem statement) is related to Cy by C, =c, M where M =mN, , and

m 1s the mass of a single atom (see Eq. 19-4).
(a) From the above discussion, we obtain

M _Cle _ 2.98/0.015 _66x107 g,
N, N,  6.02x10

(b) The molar mass is found to be M = Cy/cy = 2.98/0.075 = 39.7 g/mol which should be
rounded to 40 g/mol since the given value of ¢y is specified to only two significant
figures.



48. (a) According to the first law of thermodynamics Q = AEi, + W. When the pressure is
a constant W = p AV. So

5 ; [ 1x10° m?
AE, = Q- pAV =20.9 J-(1.01x10° Pa}(100 cm’ —50 cm”) o |10

(b) The molar specific heat at constant pressure is

0 0 RO _ (8.31J/mol-K)(20.9J)
" nAT  n(pAV/nR) p AV (1.01x10°Pa)(50x10°m")

=34.4J/mol-K.

(c) Using Eq. 19-49, Cy = C, — R =26.1 J/mol-K.



49. (a) From Table 19-3, C, =5 R and C, =] R . Thus, Eq. 19-46 yields

Q=ncpAT=(3.oo)G(8.31)j (40.0)=3.49x10"J.
(b) Eq. 19-45 leads to

AE,, =nC,AT = (3.00)(%(8.31))(40.0) =2.49%10° J.

(c) From either W = Q — AEiy or W = pAT = nRAT, we find W =997 J.

(d) Eq. 19-24 is written in more convenient form (for this problem) in Eq. 19-38. Thus,
the increase in kinetic energy is

AK =A(NK )=n ER AT =1.49x10° J.
trans avg 2

Since AE, =AK, . +AK

trans rot ?

the increase in rotational kinetic energy is

AK  =AE_ —AK__ =249x10° J]-1.49x10° J=1.00x10" J.

int trans

Note that had there been no rotation, all the energy would have gone into the translational
kinetic energy.



50. Referring to Table 19-3, Eq. 19-45 and Eq. 19-46, we have

AE,

nt

=nC,AT = %nRAT

0 = nCpAT:%nRAT.

Dividing the equations, we obtain

Thus, the given value Q = 70 J leads toAE, , =50 J.



51. The fact that they rotate but do not oscillate means that the value of / given in Table
19-3 is relevant. Thus, Eq. 19-46 leads to

0 =nCAT =n( ZR)(T, ~1) =nRT, @(;_,_ j

1

where 7; = 273 K and n = 1.0 mol. The ratio of absolute temperatures is found from the
gas law in ratio form (see Sample Problem 19-1). With p, = p; we have

N[
|

IS
t!)

Therefore, the energy added as heat is

0 =(1.0mol)(8.31 J/mol~K)(273K)(9(2—1) ~8.0x10°J.



52. (a) Using M = 32.0 g/mol from Table 19-1 and Eq. 19-3, we obtain

M, — 120g

sam

M 32.0 g/mol

=0.375 mol.

(b) This is a constant pressure process with a diatomic gas, so we use Eq. 19-46 and
Table 19-3. We note that a change of Kelvin temperature is numerically the same as a
change of Celsius degrees.

Q=nC,AT = n(%R)AT =(0.375 mol)(%j(&Sl J/mol-K) (100K ) =1.09x10"J.

(c) We could compute a value of AEj,; from Eq. 19-45 and divide by the result from part
(b), or perform this manipulation algebraically to show the generality of this answer (that
is, many factors will be seen to cancel). We illustrate the latter approach:

AE.

nt

nGR)AT S o1
7

QO n(IR) AT



53. (a) Since the process is at constant pressure, energy transferred as heat to the gas is
given by O = nC, AT, where n is the number of moles in the gas, C, is the molar specific
heat at constant pressure, and AT is the increase in temperature. For a diatomic ideal gas
C, =%R. Thus,

0= %nRAT = %(4.00mol) (8.31J/mol - K)(60.0K) = 6.98x10° J.

(b) The change in the internal energy is given by AEi, = nCy AT, where Cy is the specific
heat at constant volume. For a diatomic ideal gas C, =3 R, so

AE, = %nRAT = %(4.00m01) (8.31J/mol.K)(60.0K) = 4.99x10°J.

(c) According to the first law of thermodynamics, AEi, = Q — W, so
W=0-AE  =6.98x10°J-4.99%x10°J=1.99x10’J.
(d) The change in the total translational kinetic energy is

AK = %nRAT _ %(4.00m01)(8.31]/m01 .K)(60.0K)=2.99%10].



54. (a) We use Eq. 19-54 with V', /V, = 3 for the gas (assumed to obey the ideal gas law).

i

/4
pVi =p V= L [%] =(2.00)"’
s

which yields p;= (2.46)(1.0 atm) = 2.46 atm.

(b) Similarly, Eq. 19-56 leads to

-1
T, =T, (VK] =(273K)(1.23) =336 K.

A

(c) We use the gas law in ratio form (see Sample Problem 19-1) and note that when p; =
p2 then the ratio of volumes is equal to the ratio of (absolute) temperatures. Consequently,
with the subscript 1 referring to the situation (of small volume, high pressure, and high
temperature) the system is in at the end of part (a), we obtain

B_oh_2BK 4413,
v, T 336K

The volume ¥ is half the original volume of one liter, so

¥, =0.813(0.500L) = 0.406 L.



55. (a) Let p;, Vi, and T; represent the pressure, volume, and temperature of the initial
state of the gas. Let p;, V; and Ty represent the pressure, volume, and temperature of the

final state. Since the process is adiabatic p V' = p V,”, so
p bV =PsVy

VY ( 43L j"“
= L4 = 1.2atm)=13.6atm = 14 atm.

We note that since V; and Vy have the same units, their units cancel and p, has the same
units as p;.

(b) The gas obeys the ideal gas law pV = nRT, so p;Vi/lp/Vy= Ti/ Trand

T,
1T

1

Y {(13.6atm)(0.76L)

(1.2atm)(4.3L) }(310K) =6.2x10° K.



56. The fact that they rotate but do not oscillate means that the value of f given in Table
19-3 is relevant. In §19-11, it is noted that y= C,/Cy so that we find y= 7/5 in this case.
In the state described in the problem, the volume is

_ nRT _(2.0mol)(8.31 J/mol-K )(300K)

— =0.049 m’.
p 1.01x10° N/m

Vv

Consequently,

pV7 =(1.01x10° N/m?)(0.049m*)"* =1.5%10° N - m?2.



57. Since AEjy does not depend on the type of process,
(AEim )path 2 = (AE‘int )path 1°

Also, since (for an ideal gas) it only depends on the temperature variable (so AEi, = 0 for
isotherms), then

(AEint )pathl = Z (AEim )adiabat '

Finally, since Q = 0 for adiabatic processes, then (for path 1)

( int )adiabatic expansion =-W=-40J
(AE,,) =-W=-(-25)J=251.

adiabatic compression

Therefore, (AE =—40J+25J=-15J.

int )path 27



58. Let p,,V, and T, represent the pressure, volume, and temperature of the air at
y, =4267 m. Similarly, let p,V and T be the pressure, volume, and temperature of the
air at y =1567 m. Since the process is adiabatic p,V;” = pV”. Combining with ideal-gas
law, pV = NkT , we obtain

pV?=p(T/p) =p~'T" =constant = p' 'T"=p T/

With p=pe™® and y=4/3 (which gives (1-7)/y=-1/4), the temperature at the end
of the decent is

-y

-y v
7= p2 4 T = ﬁ r T = @0V = e—(1416><10’4/m)(1567 m-4267 m)/4(268 K)
p 1 poe_ay 1 1

=(1.08)(268 K) =290 K =17°C



59. The aim of this problem is to emphasize what it means for the internal energy to be a
state function. Since path 1 and path 2 start and stop at the same places, then the internal
energy change along path 1 is equal to that along path 2. Now, during isothermal
processes (involving an ideal gas) the internal energy change is zero, so the only step in
path 1 that we need to examine is step 2. Eq. 19-28 then immediately yields —20 J as the
answer for the internal energy change.



60. Let p;, Vi, and T; represent the pressure, volume, and temperature of the initial state of
the gas, and let p;, V}, and Ty be the pressure, volume, and temperature of the final state.

Since the process is adiabatic p,V;" = p foy. Combining with ideal-gas law, pV = NkT ,
we obtain

ini}/ =p(T; /pi)y = pi]_yT;y =constant — pil_y]:‘y = p;_nyy
With y=4/3 which gives (1-y)/y=-1/4, the temperature at the end of the adiabatic

expansion is

1-y

7 -1/4

T, = & Ti{s.oo_ath (278 K) =186 K =-87°C.
- P, 1.00 atm



61. (a) Eq. 19-54, p V" = p,V,”, leads to

200L

Y Y
V.
=p|—+| = 400atm=(1.00atm)| ——
Py p’(VJ ( )(74.3LJ

which can be solved to yield

_In(p,/p) _In(4.00atm/1.00atm) _ 7
“n(v/v,)  W(200L/743L) S

This implies that the gas is diatomic (see Table 19-3).

(b) One can now use either Eq. 19-56 (as illustrated in part (a) of Sample Problem 19-9)
or use the ideal gas law itself. Here we illustrate the latter approach:

PV nRT; -
Py = nrl = D= 446K,

(c) Again using the ideal gas law: n = P; V;/RT; = 8.10 moles. The same result would, of
course, follow from n = P¢Vy/RTy.



62. Using Eq. 19-53 in Eq. 18-25 gives

vyt
W= p [ vy = pyr

Using Eq. 19-54 we can write this as

1_ / _1—1/}/
1=y

i

In this problem, y = 7/5 (see Table 19-3) and Py/P; = 2. Converting the initial pressure
to Pascals we find P; V; = 24240 J. Plugging in, then, we obtain W =—1.33 x 10*J.



63. In the following C, =3 R is the molar specific heat at constant volume, C, =3 R is

the molar specific heat at constant pressure, AT is the temperature change, and » is the
number of moles.

The process 1 — 2 takes place at constant volume.

(a) The heat added is
3 3 3
Q0=nC, ATzanRAT = E(l.OOmol)(SS1]/m01-K)(6OOK—3OOK) =3.74%x10"J.

(b) Since the process takes place at constant volume the work W done by the gas is zero,
and the first law of thermodynamics tells us that the change in the internal energy is

AE_ =0=3.74x10"].
(c) The work W done by the gas is zero.
The process 2 — 3 is adiabatic.
(d) The heat added is zero.

(e) The change in the internal energy is

3

AE,, =nC, AT =—nRAT :%(I.OOmol)(SSIJ/mol-K)(455K—600K) =—1.81x10°J.

int

(f) According to the first law of thermodynamics the work done by the gas is
W=0Q-AE, =+1.81x10].

The process 3 — 1 takes place at constant pressure.

(g) The heat added is

Q=nC,AT =§nRAT =§(1.oo mol) (8.31J/mol - K) (300K —455K) = —3.22x10° J.

(h) The change in the internal energy is

AE, =nC,AT =%nRAT =§(l.00mol) (8.31J/mol - K) (300K —455K) =—1.93x10° J.



(1) According to the first law of thermodynamics the work done by the gas is
W=0-AE_ =-3.22x10"] +1.93x10° ] =-1.29x10° J.

(j) For the entire process the heat added is

0=3.74x10°J +0-3.22x10° ] =5201.
(k) The change in the internal energy is

AE_ =3.74x10°J-1.81x10° J-1.93x10 ] =0.

(1) The work done by the gas is

W =0+1.81x10°J-1.29x10°J =520 J.

(m) We first find the initial volume. Use the ideal gas law p;V; = nRT) to obtain

_ nRT, (1.00mol)(8.31J/mol-K)(300K)

=2.46%x10"m>.
)2 (1.013x10° Pa)

4

(n) Since 1 — 2 is a constant volume process Vs = V; = 2.46 x 10> m’. The pressure for
state 2 is

_ nRT, _(1.00 mol)(8.31J/mol-K)(600K)

7 YT =2.02x10°Pa.
g .

P,

This is approximately equal to 2.00 atm.
(0) 3 — 1 is a constant pressure process. The volume for state 3 is

_nRT; (1.00mol)(8.31J/mol-K)(455K)

" . =3.73x107 m’.
)2 .013x10" Pa

Vs

(p) The pressure for state 3 is the same as the pressure for state 1: p3 = p; = 1.013 x 10°
Pa (1.00 atm)



64. Using the ideal gas law, one mole occupies a volume equal to

_nRT _ (1)(8.31)(50.0)
p 1.00x10™*

V =4.16x10" m’.

Therefore, the number of molecules per unit volume is

_nN, (1) (6-02X1023) _1.45%10" molecules

V 4.16x10" m’

~|=

Using d = 20.0 x 10’ m, Eq. 19-25 yields

k=;=38.8 m.

Vo ()



65. We note that AK =n(2 R)AT according to the discussion in §19-5 and §19-9. Also,

AEi: = nCyAT can be used for each of these processes (since we are told this is an ideal
gas). Finally, we note that Eq. 19-49 leads to C, = Cy + R = 8.0 cal/mol'K after we
convert Joules to calories in the ideal gas constant value (Eq. 19-6): R = 2.0 cal/mol-K.
The first law of thermodynamics Q = AEi, + W applies to each process.

* Constant volume process with A7 =50 K and » = 3.0 mol.

(a) Since the change in the internal energy is AEj, = (3.0)(6.00)(50) = 900 cal, and the
work done by the gas is W = 0 for constant volume processes, the first law gives O = 900
+ 0 =900 cal.

(b) As shown in part (a), W= 0.

(c) The change in the internal energy is, from part (a), AEiy = (3.0)(6.00)(50) = 900 cal.

(d) The change in the total translational kinetic energy is

AK =(3.0)(2(2.0))(50) = 450 cal.

* Constant pressure process with A7= 50 K and n = 3.0 mol.

(e) W= pAV for constant pressure processes, so (using the ideal gas law)
W = nRAT = (3.0)(2.0)(50) = 300 cal.

The first law gives Q = (900 + 300) cal = 1200 cal.

(f) From (e), we have W=300 cal.

(g) The change in the internal energy is AEi, = (3.0)(6.00)(50) = 900 cal.

(h) The change in the translational kinetic energy is AK = (3.0)(%(2.0)) (50)=450cal.

* Adiabiatic process with AT =50 K and » = 3.0 mol.
(1) O = 0 by definition of “adiabatic.”
(j) The first law leads to W = Q — Eiy: = 0 — 900 cal =-900 cal.

(k) The change in the internal energy is AEi, = (3.0)(6.00)(50) = 900 cal.

(1) As in part (d) and (h), AK = (3.0)(%(2.0))(50) =450cal.



66. The ratio is

mgh  2gh 2Mgh
mv: /2 v 3RT

rms

where we have used Eq. 19-22 in that last step. With 7=273 K, 2 =0.10 m and M = 32
g/mol = 0.032 kg/mol, we find the ratio equals 9.2 x 10°°.



67. In this solution we will use non-standard notation: writing p for weight-density
(instead of mass-density), where p. refers to the cool air and py, refers to the hot air. Then
the condition required by the problem is

Fhet = Fouoyant — hot-air-weight — balloon-weight
267x10°N = pV—pV —2.45x10° N
where V'=2.18 x 10° m® and p. = 11.9 N/m’. This condition leads to p,= 9.55 N/m’.
Using the ideal gas law to write py, as PMg/RT where P = 101000 Pascals and M = 0.028

kg/m’ (as suggested in the problem), we conclude that the temperature of the enclosed air
should be 349 K.



Pl o33,
3.00

Do

68. (a) In the free expansion from state 0 to state 1 we have Q = W = 0, so AEiy = 0,
1

which means that the temperature of the ideal gas has to remain unchanged. Thus the

final pressure is
_ oV P
b= = = 0
Vv, 3.00V, 3.00

(b) For the adiabatic process from state 1 to 2 we have p, V1" =p, V57, i.e.,

1
po (3007, ) = (3.00): p¥y

3.00 70

which gives y=4/3. The gas is therefore polyatomic.

_L_p (3.00)" =1.44
1, yZ

1

(c) From T = pV/nR we get

alltel



69. (a) By Eq. 19-28, W =-374 J (since the process is an adiabatic compression).
(b) O = 0 since the process is adiabatic.

(c) By first law of thermodynamics, the change in internal energy is AEi,= Q — W =+374
J.

(d) The change in the average kinetic energy per atom is

AKig = AEn/N=+3.11 x 1077 J.



70. (a) With work being given by
W= pAV = (250)(-0.60) J =150,

and the heat transfer given as —210 J, then the change in internal energy is found from the
first law of thermodynamics to be [-210 — (-150)] J =-60 J.

(b) Since the pressures (and also the number of moles) don’t change in this process, then
the volume is simply proportional to the (absolute) temperature. Thus, the final
temperature is % of the initial temperature. The answer is 90 K.



71. This is very similar to Sample Problem 19-4 (and we use similar notation here)

except for the use of Eq. 19-31 for v,y (Whereas in that Sample Problem, its value was
just assumed). Thus,

B MT

_ Sgeed _ vavg _ lﬁ 16TCR
f " distance 2 - k .

Therefore, with p = 2.02 x 10° Pa, d = 290 x 10> m and M = 0.032 kg/mol (see Table
19-1), we obtain f=7.03 x 10°s™".



72. Eq. 19-25 gives the mean free path:

A = 1 _ nRT
\2d& meeNWV)  A\2d me, PN

where we have used the ideal gas law in that last step. Thus, the change in the mean free
path is
. —MRAT RO
- \/Edzneo PN \/Ea’zneo PN C,

where we have used Eq. 19-46. The constant pressure molar heat capacity is (7/2)R in
this situation, so (with N =9 x 10* and d =250 x10™"*m) we find

AL=152%x10"m =1.52nm.



73. (a) The volume has increased by a factor of 3, so the pressure must decrease
accordingly (since the temperature does not change in this process). Thus, the final
pressure 1s one-third of the original 6.00 atm. The answer is 2.00 atm.

(b) We note that Eq. 19-14 can be written as P;V;In(V;/V;). Converting “atm” to “Pa” (a
Pascal is equivalent to a N/m”) we obtain W = 333 J.

(c) The gas is monatomic so Y= 5/3. Eq. 19-54 then yields Py = 0.961 atm.
(d) Using Eq. 19-53 in Eq. 18-25 gives

vyr - _prV,—pV
-y -y

W= ini}/ .ﬁ/f Vrdy = ini}/

where in the last step Eq. 19-54 has been used. Converting “atm” to “Pa”, we obtain
W =2361.



74. (a) With P, = (20.0)(1.01 x 10° Pa) and ¥, = 0.0015 m’, the ideal gas law gives
PVi=nRT, = T'=121.54K = 122 K.
(b) From the information in the problem, we deduce that 7,=3T7; = 365 K.

(c) We also deduce that 75 = T} which means AT = 0 for this process. Since this involves
an ideal gas, this implies the change in internal energy is zero here.



75.(a) We use pV;” = p, V,” to compute y.

_In(p,/p,) In(1.0atm/1.0x10° atm)

=2
In(V,/V;)  In(1.0x10°L/1.0x10°L) 3’

Therefore the gas is monatomic.

(b) Using the gas law in ratio form (see Sample Problem 19-1), the final temperature is

=2.7x10*K.

7 (1.0><105 atm)(1.0x103L)
T, =T, =(273K)
‘ pV, (1.0atm)(1.0x10°L)

(c) The number of moles of gas present is

1.01x10° Pa)(1.0x10° cm®
- :( a)( o ):4.5><104 mol.
RT, (8.31 J/mol -K)(273K)

(d) The total translational energy per mole before the compression is

1

K, = %RTI. :%(8.31 J/mol-K)(273K) =3.4x10" J.

(e) After the compression,

3

K, =§RT/. ==(8.31J/mol-K)(2.7x10* K} =3.4x10J.
T2 2

: 2
(f) Since v, o< T, we have

2
ms,; __

T
> —1227—31320010
vie T, 27x10°K

rms,f’



76. We label the various states of the ideal gas as follows: it starts expanding
adiabatically from state 1 until it reaches state 2, with ¥, = 4 m’; then continues on to
state 3 isothermally, with 73 = 10 m’; and eventually getting compressed adiabatically to
reach state 4, the final state. For the adiabatic process 1—2 pV" = p, V), for the
isothermal process 2 — 3 p.V> = p3V3, and finally for the adiabatic process
354 p/ =pV/. These equations yield

ENIATIA AN IATT AT
P4 p3V4 p2V3 V; prz V3 V:‘ .

We substitute this expression for p4 into the equation p; V' = p4V4 (since T) = T4) to obtain
ViVs = V,2Vs. Solving for V4 we obtain

- Wi _ (2.0m3)(130m3) sout
v, 4.0m




77. (a) The final pressure is
_pV, _(32atm)(1.0L)

Vv, 4.0L

=8.0atm,

Py

(b) For the isothermal process the final temperature of the gas is 7y = 7; = 300 K.

(c) The work done is

V v
W =nRT, ln[—f] =pV, ln(—fJ = (32atm)(1.01x10° Pa/atm ) (1.0x10~ m3)ln(4'0L]
Vi v 1.0L

i i

=4.4x10°].

For the adiabatic process p,V; = p V'] . Thus,

(d) The final pressure is

¥ 503
V. 1.0L

=p|—<| =(32atm)| —— =3.2atm.
Pr p’[V} ( )(4.0Lj

.
(e) The final temperature is

p,V,T_(3.2atm)(4.0L)(300K)

1

T = =
T p (32atm)(1.0L)

l

=120K .

(f) The work done is

3 3
W:Q_AEint :_AEint :_EnRAT:_E(prf _ini)

= —%[(3.2atm)(4.0L)—(32 atm)(1.0L) |(1.01x10° Pa/atm)(10~° m*/L)
=2.9x10°J .

(g) If the gas is diatomic, then y= 1.4, and the final pressure is
Al roLY"
=p.|—+1| =(32atm)| —— | =4.6atm.
(h) The final temperature is

V.T. (4.6atm)(4.0L)(300K
szpf f t=( am)( )( )=170K
TV (32atm)(1.0L)




(1) The work done is

5 5
W =0-AE, == nRAT Z_E(prf -pV,)

=—%[(4.6atm)(4.0L)—(32 atm)(1.0L) |(1.01x10° Pa/atm) (10~ m’/L)

=3.4x%x10°7.



78. We write =273 K and use Eq. 19-14:

w = (1.00mol) (8.31 J/mol-K) (273K) m(%}

which yields W = —653 J. Recalling the sign conventions for work stated in Chapter 18,
this means an external agent does 653 J of work on the ideal gas during this process.



79. (a) We use pV = nRT. The volume of the tank is

17 g/mol

p 1.35x10° Pa

nRT  (77%)(8-31 J/mol- K ) (350K)

v =3.8x107 m’ =38L.

(b) The number of moles of the remaining gas is

, pv  (87x10°Pa)(3.8x107 m’)
w=PV _

=r—= =13.5mol.
RT"  (8.31J/mol-K)(293K)

The mass of the gas that leaked out is then Am =300 g — (13.5 mol)(17 g/mol) =71 g.



80. We solve

3RT _ [3R(293K)
M. A M

helium hydrogen
for 7. With the molar masses found in Table 19-1, we obtain

4.0

)=580K

which is equivalent to 307°C.



81. It is recommended to look over §19-7 before doing this problem.
(a) We normalize the distribution function as follows:

3
=
VO

jo“ P(v)dv=1= C=

(b) The average speed is
2
I° vP(v)dv= J- v(%] dv=§vo :
0 o 4
(c) The rms speed is the square root of

2
J‘“ v P(v)dv= I v? (%] dv=§vf.
0 0 5

Therefore, v, . =+/3/5v, =0.775v,.



82. To model the “uniform rates” described in the problem statement, we have expressed
the volume and the temperature functions as follows:

Ve = Vi Iy - T;
V=1; +(—f1—)t and T=7}+(—"T—)t
Sf f

where V;=0.616 m’, ¥; =0.308 m’, 7, =7200s, ;=300 K and 7y = 723 K.

(a) We can take the derivative of V' with respect to ¢ and use that to evaluate the
cumulative work done (from ¢ = 0 until ¢ = 7):

RT
W= fpdV = f (”V )(%) dt=12.2 7+ 238113 In(14400 — 7) — 2.28 x 10°

with SI units understood. With 7= 7, our result is W =-77169 ] = =77.2 kJ, or |[W | =
77.2 kJ.

The graph of cumulative work is shown below. The graph for work done is purely
negative because the gas is being compressed (work is being done on the gas).

1000 2000 3000 4000 5000 6000 7000

o] t
~20000

40000

—=60000

w

3

(b) With Cy =5 R (since it’s a monatomic ideal gas) then the (infinitesimal) change in

. . dT S . o
internal energy is nCydT Z%nR (Ej dt which involves taking the derivative of the
temperature expression listed above. Integrating this and adding this to the work done

gives the cumulative heat absorbed (from ¢ = 0 until 7 = 7):

RT T
0= f (”7) (‘2—’3 + 3R (‘i,—t) dt =30.5 1+ 238113 In(14400 — 1) — 2.28 x 10°

with SI units understood. With T =1 ; our result is Qital = 54649 J = 5.46% 10* J.



The graph cumulative heat is shown below. We see that Q > 0 since the gas is absorbing
heat.

o
soooo—f
40000—3
30000—3
20000—5

10000

T T T T T T TT
0 1000 2000 3000 4000 5000 6000 7000

Qtotal
n(Ty- T)
smaller than the constant-volume molar heat Cy-

(c) Defining C = we obtain C = 5.17 J/mol-K. We note that this is considerably

We are now asked to consider this to be a two-step process (time dependence is no longer
an issue) where the first step is isothermal and the second step occurs at constant volume
(the ending values of pressure, volume and temperature being the same as before).

(d) Eq. 19-14 readily yields W =—43222 J ~ —4.32 x10* J (or | W | = 4.32 x10* ), where
it is important to keep in mind that no work is done in a process where the volume is held
constant.

(e) In step 1 the heat is equal to the work (since the internal energy does not change
during an isothermal ideal gas process), and step 2 the heat is given by Eq. 19-39. The
total heat is therefore 88595 ~ 8.86 x10* J.

(f) Defining a molar heat capacity in the same manner as we did in part (c), we now
arrive at C = 8.38 J/ mol-K.



83. (a) The temperature is 10.0°C — T'= 283 K. Then, with n = 3.50 mol and V,/V, = 3/4,
we use Eq. 19-14:

Vf
W =nRT In| L | =-2.37kJ.

0

(b) The internal energy change AEj, vanishes (for an ideal gas) when AT = 0 so that the
First Law of Thermodynamics leads to Q = W = -2.37 kJ. The negative value implies
that the heat transfer is from the sample to its environment.



84. (a) Since n/V = p/RT, the number of molecules per unit volume is

molecules
3

5
LOIXI0Pa _ o 1 oos
(83111 )(293K) m

N_aNy . (ij(é.oleom)
% RT

mol-K

(b) Three-fourths of the 2.5 x 10*° value found in part (a) are nitrogen molecules with M
= 28.0 g/mol (using Table 19-1), and one-fourth of that value are oxygen molecules with
M =32.0 g/mol. Consequently, we generalize the Ms,m = NM/N, expression for these two
species of molecules and write

32.0
6.02x10%

28.0

>y =1.2x10°g.
6.02% 10 8

%(2.5><1025) +%(2.5><1025)



85. For convenience, the “int” subscript for the internal energy will be omitted in this
solution. Recalling Eq. 19-28, we note that z E =0, which gives

cycle

AE, ,+AE, +AE. . ,+AE, ,+AE, . ,=0.

A—B B—=C

Since a gas is involved (assumed to be ideal), then the internal energy does not change
when the temperature does not change, so

AE, ., =AE, ,, =0.

Now, with AEg_,4 = 8.0 J given in the problem statement, we have

AE

B—C

+AE

C—-D

+8.0J=0.

In an adiabatic process, AE = —W, which leads to —5.0 J+AE,
obtain AEc_,p=-3.0J.

+8.0 J=0, and we

—-D



86. (a) The work done in a constant-pressure process is W = pAV. Therefore,
W =(25N/m*) (1.8m>-3.0m’) =—301.

The sign conventions discussed in the textbook for Q indicate that we should write —75 J
for the energy which leaves the system in the form of heat. Therefore, the first law of
thermodynamics leads to

AE, =Q-W =(=75T)—(-30 J)=—45 I.

(b) Since the pressure is constant (and the number of moles is presumed constant), the
ideal gas law in ratio form (see Sample Problem 19-1) leads to

3
=1 | 2] = Gooky | L™ | = 1 8x10° K.
v 3.0m

It should be noted that this is consistent with the gas being monatomic (that is, if one
assumes C, =3 R and uses Eq. 19-45, one arrives at this same value for the final

temperature).



87. (a) The p-V diagram is shown below. Note 7
that o obtain the above graph, we have chosen 1804,
n = 0.37 moles for concreteness, in which case 160
the horizontal axis (which we note starts not at 4
zero but at 1) is to be interpreted in units of
cubic centimeters, and the vertical axis (the
absolute pressure) is in kilopascals. However,
the constant volume temp-increase process
described in the third step (see problem
statement) is difficult to see in this graph since
it coincides with the pressure axis.

(b) We note that the change in internal energy is zero for an ideal gas isothermal process,
so (since the net change in the internal energy must be zero for the entire cycle) the
increase in internal energy in step 3 must equal (in magnitude) its decease in step 1. By
Eq. 19-28, we see this number must be 125 J.

(c) As implied by Eq. 19-29, this is equivalent to heat being added to the gas.



88. (a) The ideal gas law leads to

y _NRT _ (1.00mol)(8.31J/mol-K) (273K)
T p 1.01x10° Pa

which yields ¥ = 0.0225 m® = 22.5 L. If we use the standard pressure value given in
Appendix D, 1 atm = 1.013 x 10° Pa, then our answer rounds more properly to 22.4 L.

(b) From Eq. 19-2, we have N = 6.02 x 10* molecules in the volume found in part (a)
(which may be expressed as ¥ =2.24 x 10* cm’), so that

N 6.02x10%

7_W:l@xlo19 molecules/cm”’ .
24x10*cm
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