1. (a) The center of mass is given by

_ 0+0+4+0+(m)(2.00 m)+(m)(2.00 m)+ (m)(2.00 m) _
on 6m

1.00 m

(b) Similarly, we have

_ 0+ (m)(2.00 m) + (m)(4.00 m) + (m)(4.00 m)+ (m)(2.00 m)+0

com
om

=2.00 m.

(c) Using Eq. 12-14 and noting that the gravitational effects are different at the different
locations in this problem, we have

6
Zx,m‘g‘
_a T amg txmyg, + X gy + xm, g, + X gs + XM

3 =0.987 m.
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(d) Similarly, yeog = [0 + (2.00)(m)(7.80) + (4.00)(m)(7.60) + (4.00)(m)(7.40) +
(2.00)(m)(7.60) + 01/(8.00m + 7.80m + 7.60m + 7.40m + 7.60m + 7.80m) = 1.97 m.



2. The situation is somewhat similar to that depicted for problem 10 (see the figure that
accompanies that problem). By analyzing the forces at the “kink” where F is exerted, we
find (since the acceleration is zero) 27 sin @ = F, where @ is the angle (taken positive)
between each segment of the string and its “relaxed” position (when the two segments are
collinear). Setting 7 = F therefore yields 8 = 30°. Since o = 180° — 20 is the angle
between the two segments, then we find o= 120°.



3. The object exerts a downward force of magnitude F = 3160 N at the midpoint of the
rope, causing a “kink” similar to that shown for problem 10 (see the figure that
accompanies that problem). By analyzing the forces at the “kink” where F is exerted, we
find (since the acceleration is zero) 27 sin@ = F, where 6 is the angle (taken positive)

between each segment of the string and its “relaxed” position (when the two segments are
colinear). In this problem, we have

6 =tan"| 92 | Z11 50,
1.72m

Therefore, T'= F/(2sinf) = 7.92 x 10° N.



4. From 7=7x F, we note that persons 1 through 4 exert torques pointing out of the
page (relative to the fulcrum), and persons 5 through 8 exert torques pointing into the
page.

(a) Among persons 1 through 4, the largest magnitude of torque is (330 N)(3 m) = 990
N-m, due to the weight of person 2.

(b) Among persons 5 through 8, the largest magnitude of torque is (330 N)(3 m) = 990
N-m, due to the weight of person 7.



5. Three forces act on the sphere: the tension force T of the rope
(acting along the rope), the force of the wall F v (acting horizontally
away from the wall), and the force of gravity mg (acting
downward). Since the sphere is in equilibrium they sum to zero. Let

6 be the angle between the rope and the vertical. Then Newton’s
second law gives

vertical component : 7 cos 8—mg=0
horizontal component:  Fy— T sin 8=0.

(a) We solve the first equation for the tension: 7 = mg/ cos 6. We
substitute cos@= L/~ L* +7° to obtain

_mgVLE+rt (0.85 kg)(9.8 m/sz)\/(0.080 m)’ +(0.042 m)* _
L 0.080 m

T 94 N.

(b) We solve the second equation for the normal force: F, =Tsiné

Usingsin@=r/~L* +r° , we obtain

Fo- Tr _ mgNL+7r’ r_mgr _(0.85kg)(9.8 m/s*)(0.042 m)

SN L Je+r L (0.080 m)

=44 N.




6. Our notation is as follows: M = 1360 kg is the mass of the automobile; L = 3.05 m is
the horizontal distance between the axles; ¢=(3.05—1.78) m=1.27 mis the horizontal

distance from the rear axle to the center of mass; F is the force exerted on each front
wheel; and, F, is the force exerted on each back wheel.

(a) Taking torques about the rear axle, we find

Mgl (1360kg)(9.80m/s*)(1.27 m)
2L 2(3.05m)

=2.77x10° N.

E:

(b) Equilibrium of forces leads to 2F, + 2F, = Mg, from which we obtain F, =3.89x10°N .



7. We take the force of the left pedestal to be F; at x = 0, where the x axis is along the
diving board. We take the force of the right pedestal to be F, and denote its position as x
= d. W is the weight of the diver, located at x = L. The following two equations result
from setting the sum of forces equal to zero (with upwards positive), and the sum of
torques (about x,) equal to zero:

F+F,-W=0
Fd+W(L-d)=0
(a) The second equation gives

F=-Ltmd [ 30m) seon=—1160N
d 1.5m

which should be rounded offto 7, =—1.2x10° N. Thus, | F; |=1.2x10° N.

(b) Since F| is negative, indicating that this force is downward.

(c) The first equation gives F, =W —F, =580 N+1160N=1740 N

which should be rounded off to 7, =1.7x10° N. Thus, | F, |=1.7x10° N.

(d) The result is positive, indicating that this force is upward.

(e) The force of the diving board on the left pedestal is upward (opposite to the force of
the pedestal on the diving board), so this pedestal is being stretched.

(f) The force of the diving board on the right pedestal is downward, so this pedestal is
being compressed.



8. Let /,=15mand/,=(5.0-1.5) m=3.5 m. We denote tension in the cable closer to

the window as F; and that in the other cable as F,. The force of gravity on the scaffold
itself (of magnitude m,g) is at its midpoint, /, =2.5mfrom either end.

(a) Taking torques about the end of the plank farthest from the window washer, we find

Fomgl+mgl _(80kg) (9.8m/s%) (3.5 m)+H60kg) (9.8 m/s?) (2.5 m)
: 0 +1, 5.0m
=8.4x10° N.

(b) Equilibrium of forces leads to

F+F, =mg+m,g=(60kg+80kg)(9.8m/s*)=1.4x10° N

which (using our result from part (a)) yields F, =53x10°N .



9. The forces on the ladder are shown in the diagram on the right. F is
the force of the window, horizontal because the window is frictionless.
F> and F5 are components of the force of the ground on the ladder. M is
the mass of the window cleaner and m is the mass of the ladder.

F

The force of gravity on the man acts at a point 3.0 m up the ladder and
the force of gravity on the ladder acts at the center of the ladder. Let 0
be the angle between the ladder and the ground. We use

cos@=d /L orsin@=~L"—d*/L to find &= 60°. Here L is the length Fs

of the ladder (5.0 m) and d is the distance from the wall to the foot of Mg mg
the ladder (2.5 m). 0

<
«

(a) Since the ladder is in equilibrium the sum of the torques about its s
foot (or any other point) vanishes. Let ¢ be the distance from the foot of the ladder to the
position of the window cleaner. Then,

Mglcos@+mg(L/2)cos@—FLsinf=0,

and
Fe (Ml+mL/2)gcos€ [(75kg)(3.0m)+(10kg)(2.5 m)](9.8m/s*) cos 60°
! Lsin@ (5.0m)sin 60°
=2.8x10>N.

This force is outward, away from the wall. The force of the ladder on the window has the
same magnitude but is in the opposite direction: it is approximately 280 N, inward.

(b) The sum of the horizontal forces and the sum of the vertical forces also vanish:

F-F=0
F,—-Mg-mg=0

The first of these equations gives F, = F, =2.8x10°N and the second gives
F,=(M +m)g =(75kg+10kg) (9.8 m/s*) =8.3x10°N

The magnitude of the force of the ground on the ladder is given by the square root of the
sum of the squares of its components:

F= \/Fj + F? = /(28 x10°N)* +(83x10°N)* =88x10°N.
(c) The angle ¢ between the force and the horizontal is given by
tan ¢ = F3/F, = 830/280 = 2.94,

so ¢=T71°. The force points to the left and upward, 71° above the horizontal. We note that
this force is not directed along the ladder.



10. The angle of each half of the rope, measured from the dashed line, is

6@ =tan™’ 0.30m | _ 1.9°.
9.0m

Analyzing forces at the “kink” (where F is exerted) we find

£ _ 30N =8.3x10°N.

- 2sin@ 2sinl.9°




11. The x axis is along the meter stick, with the origin at the
zero position on the scale. The forces acting on it are shown
on the diagram below. The nickels are at x = x; = 0.120 m,
and m is their total mass. The knife edge is at x = x, = 0.455 m
and exerts force F . The mass of the meter stick is M, and the
force of gravity acts at the center of the stick, x =x3 =0.500 m. ~ x,

Since the meter stick is in equilibrium, the sum of the torques
about x, must vanish: i

mg
Mg(x3 —x2) —mg(x2 —x;) = 0.

Thus,

X, —x, (0.455m—0.120m

M = m=
X, — X, 0.500m-0.455m

j(l0.0g)=74.4 g.



12. (a) Analyzing vertical forces where string 1 and string 2 meet, we find

w, _ 40N _ 40N

cos ¢ ~ c0s35°

(b) Looking at the horizontal forces at that point leads to
T, =T,sin35°=(49N)sin35° =28 N.
(c) We denote the components of 73 as 7y (rightward) and 7, (upward). Analyzing

horizontal forces where string 2 and string 3 meet, we find 7, = 7, = 28 N. From the
vertical forces there, we conclude 7;, = wg=50 N. Therefore,

L=\T+T% =57N.

(d) The angle of string 3 (measured from vertical) is

6=tan™" E =tan”’ (ﬁ] =29°.
Ty 50



13. (a) Analyzing the horizontal forces (which add to zero) we find F;, = F3 = 5.0 N.
(b) Equilibrium of vertical forces leads to F\, = F; + F, =30 N.
(c) Computing torques about point O, we obtain

(10 N)(3.0m)+(5.0 N)(2.0m)

Fd=FEb+Fa=d=
30N

=1.3m.




14. The forces exerted horizontally by the obstruction and vertically (upward) by the
floor are applied at the bottom front corner C of the crate, as it verges on tipping. The
center of the crate, which is where we locate the gravity force of magnitude mg = 500 N,
is a horizontal distance ¢ =0.375mfrom C. The applied force of magnitude /"= 350 N is

a vertical distance 4 from C. Taking torques about C, we obtain

_mgl _ (500N)(0.375m)
F 350N

=0.536m.

h



15. Setting up equilibrium of torques leads to a simple “level principle” ratio:

2.6cm
12cm

=8.7N.

F, :(4ON)%:(40N)



16. With pivot at the left end, Eq. 12-9 leads to
—msg% — Mgx+ TRL =0

where m; is the scaffold’s mass (50 kg) and M is the total mass of the paint cans (75 kg).
The variable x indicates the center of mass of the paint can collection (as measured from
the left end), and 7% is the tension in the right cable (722 N). Thus we obtain x = 0.702 m.



17. The (vertical) forces at points 4, B and P are F,, Fp and Fp, respectively. We note
that Fp = W and is upward. Equilibrium of forces and torques (about point B) lead to

F, +F,+W=0
bW —aF,=0.

(a) From the second equation, we find
Fy=bWla= (15/5)W=3W = 3(900 N)=2.7x10° N..
(b) The direction is upward since F4 > 0.

(c) Using this result in the first equation above, we obtain

F,=W —F, =—4W =-4(900 N) = -3.6X10°N,
or | F,|=3.6x10°N .

(d) Fz points downward, as indicated by the minus sign.



18. Our system consists of the lower arm holding a

bowling ball. As shown in the free-body diagram, the Y 7
forces on the lower arm consist of 7 from the biceps A
muscle, F from the bone of the upper arm, and the
gravitational forces, mg and Mg . Since the system is
in static equilibrium, the net force acting on the system d
15 Ze10: O < lower arm ball
0= F.,=T-F-(m+M)g -
In addition, the net torque about O must also vanish: Mg
0= 1, =@ +OF -D\me)-LMg).  Fy  *
o

(a) From the torque equation, we find the force on the lower arms by the biceps muscle to
be
_(mD+ML)g _[(1.8kg)(0.15 m)+(7.2 kg)(0.33 m)](9.8 m/s*)

d 0.040 m
=648 N = 6.5x10> N.

T

(b) Substituting the above result into the force equation, we find F to be

F=T—(M+m)g=648N—(7.2kg+1.8kg)(9.8 m/s’) =560 N =5.6x10" N.



19. (a) With the pivot at the hinge, Eq. 12-9 gives TLcos8 — mg% = 0 . This leads to
6 =78°. Then the geometric relation tand= L/D gives D = 0.64 m.

(b) A higher (steeper) slope for the cable results in a smaller tension. Thus, making D
greater than the value of part (a) should prevent rupture.



20. With pivot at the left end of the lower scaffold, Eq. 12-9 leads to
Ly
—mg5 - mgd+ Trl, =0

where m, is the lower scaffold’s mass (30 kg) and L, is the lower scaffold’s length (2.00
m). The mass of the package (m = 20 kg) is a distance d = 0.50 m from the pivot, and Ty
is the tension in the rope connecting the right end of the lower scaffold to the larger
scaffold above it. This equation yields 7z = 196 N. Then Eq. 12-8 determines 7; (the
tension in the cable connecting the right end of the lower scaffold to the larger scaffold
above it): Tp = 294 N. Next, we analyze the larger scaffold (of length L, = L,+ 2d and
mass m;, given in the problem statement) placing our pivot at its left end and using Eq.
12-9:

—mg% —Tyd—Te(Li—d)+TL, = 0.

This yields = 457 N.



21. We consider the wheel as it leaves the lower floor. The floor no longer exerts a force
on the wheel, and the only forces acting are the force F' applied horizontally at the axle,
the force of gravity mg acting vertically at the center of the wheel, and the force of the
step corner, shown as the two components f, and f,. If the minimum force is applied the
wheel does not accelerate, so both the total force and the total torque acting on it are zero.

F

fv A r—h r
mg

ﬁ14

We calculate the torque around the step corner. The second diagram indicates that the
distance from the line of F to the corner is » — A, where r is the radius of the wheel and 4
is the height of the step.

The distance from the line of mg to the corner is /7 +(r— k)" =+2rh—h* . Thus,

F(r—h)—mg 2rh—h*> =0.
The solution for F is

N2rh—h? o \/2(6.00><10_2m)(3.00><10_2m)—(3.00><10‘2m)2
—n e (6.00x10 2 m)—(3.00x10 > m)
=13.6 N.

F:

(0.800 kg)(9.80 m/s*)



22. As shown in the free-body diagram, the forces on the climber
consist of 7 from the rope, normal force F, v on her feet, upward static

frictional force f and downward gravitational force mg . Since the

climber is in static equilibrium, the net force acting on her is zero.
Applying Newton’s second law to the vertical and horizontal
directions, we have

OZZF;et,x :FN _TSin¢
0=> F,, =Tcosg+f,—mg.

In addition, the net torque about O (contact point between her feet
and the wall) must also vanish:

0=>7,, =mgLsin@—TLsin(180°—6—¢)
o

From the torque equation, we obtain 7 =mgsin@/sin(180°—8—¢). Substituting the
expression into the force equations, and noting that f, = u F, , we find the coefficient of
static friction to be

f, _mg—Tcos¢ mg—mgsin@cosp/sin(180°—60—¢)
F,  Tsing  mgsinBsing/sin(180°—6—g)
_1-sinf@cos@/sin(180°—6—¢)

~ sin@sing/sin(180°— 60— @)

/’lS =

With 8=40° and ¢ =30°, the result is

_1-sin@cos@/sin(180°—F—¢) 1-sin40°cos30°/sin(180°-40°-30°)
sin@sin ¢/ sin(180° -6 — @) sin 40°sin 30°/sin(180° —40°—-30°)

1.19.




23. (a) All forces are vertical and all distances are measured along an axis inclined at 6=
30°. Thus, any trigonometric factor cancels out and the application of torques about the
contact point (referred to in the problem) leads to

F - (15kg)(9.8m/s ) (35cm)—(2.0kg)(9.8m/s” ) (15em)

=1.9x10° N.
2.5cm

(b) The direction is upward since F. >0

tricep
(c) Equilibrium of forces (with upwards positive) leads to

E

tripcep

+F

humer

+(15kg)(9.8m/s”)—(2.0kg)(9.8m/s’) =0

and thus to F,

L ==2.IXI0’N, or | F, . |=2.1xI0°N.

umer

(d) The minus sign implies that /| points downward.



24. As shown in the free-body diagram, the forces on the climber
consist of the normal forces F), on his hands from the ground and

F,, on his feet from the wall, static frictional force f, and

downward gravitational force mg . Since the climber is in static

equilibrium, the net force acting on him is zero. Applying Newton’s
second law to the vertical and horizontal directions, we have

OZZqut,x :FNZ_f;
OZZqut,y =Fy —mg.

In addition, the net torque about O (contact point between his feet
and the wall) must also vanish:

0= Zrml =mgd cos@—F,,Lsiné .
o

The torque equation gives F,, =mgd cos@/Lsin@=mgd cot@/L .

FNZ /\
L
d
mg FNl
0> )
Js
[«— a —>|

On the other hand,

from the force equation we have F,, = f, and F,, =mg. These expressions can be

combined to yield

f.=F,,=F, cotﬁ%.

On the other hand, the frictional force can also be written as f, = u F,,

.» where g is the

coefficient of static friction between his feet and the ground. From the above equation

and the values given in the problem statement, we find z to be

a d 0.914 m 0.940 m

M. =cot Hi =

L - L J210m)*-(0.914m)* 2.10m

=0.216.



25. The beam is in equilibrium: the sum of the forces and the sum of the torques acting
on it each vanish. As shown in the figure, the beam makes an angle of 60° with the
vertical and the wire makes an angle of 30° with the vertical.

(a) We calculate the torques around the hinge. Their sum is
TL sin 30° — W(L/2) sin 60° = 0.

Here W is the force of gravity acting at the center of the beam, and 7' is the tension force
of the wire. We solve for the tension:

_ Wsin60° _ (222N)sin 60°

= - - =192 N.
2 sin30° 2sin30°

(b) Let F, be the horizontal component of the force exerted by the hinge and take it to be
positive if the force is outward from the wall. Then, the vanishing of the horizontal
component of the net force on the beam yields F;, — 7 sin 30° =0 or

F, =T'sin30°=(192.3N)sin30°=96.1N.

(c) Let F, be the vertical component of the force exerted by the hinge and take it to be
positive if it is upward. Then, the vanishing of the vertical component of the net force on
the beam yields F, + T'cos 30°—~ W =0 or

F =W —Tcos30°=222N—(192.3N)cos30°=55.5N.



26. (a) The problem asks for the person’s pull (his force exerted on the rock) but since we
are examining forces and torques on the person, we solve for the reaction force
F, (exerted leftward on the hands by the rock). At that point, there is also an upward
force of static friction on his hands f; which we will take to be at its maximum value
W Fy, . We note that equilibrium of horizontal forces requires F),, = F,, (the force exerted
leftward on his feet); on this feet there is also an upward static friction force of magnitude
LbF . Equilibrium of vertical forces gives

f+f,-mg=0=F, =—"¢ =34x10°N.
M,

(b) Computing torques about the point where his feet come in contact with the rock, we

find

mg(d +W)_IU1FN1W
F

N1

=0.88 m.

mg(d+w)—fiw—Fyh=0 = h=

(c) Both intuitively and mathematically (since both coefficients are in the denominator)
we see from part (a) that F,, would increase in such a case.

(d) As for part (b), it helps to plug part (a) into part (b) and simplify:
h=(d+w)u, +du,

from which it becomes apparent that /4 should decrease if the coefficients decrease.



27. (a) We note that the angle between the cable and the strut is
a=0— ¢=45°-30°=15°
The angle between the strut and any vertical force (like the weights in the problem) is =

90° — 45° = 45°. Denoting M = 225 kg and m = 45.0 kg, and / as the length of the boom,
we compute torques about the hinge and find

T_Mgésinﬂ+mg(§)sinﬁ _ Mgsin B+mgsin /2
Isina sina '

The unknown length ¢ cancels out and we obtain 7'= 6.63 x 10° N,

(b) Since the cable is at 30° from horizontal, then horizontal equilibrium of forces
requires that the horizontal hinge force be

F. =T cos30°=5.74x10°N.
(c) And vertical equilibrium of forces gives the vertical hinge force component:

F,=Mg+mg+Tsin30" =5.96x10°N.



28. (a) The sign is attached in two places: at x; = 1.00 m (measured rightward from the
hinge) and at x, = 3.00 m. We assume the downward force due to the sign’s weight is
equal at these two attachment points: each being half the sign’s weight of mg. The angle
where the cable comes into contact (also at x,) is

0= tan"'(d,/d;) =tan"'(4.00 m/3.00 m)
and the force exerted there is the tension 7. Computing torques about the hinge, we find

_Imgx +imgx, _3(50.0kg) (9.8 m/s*) (1.00 m)+2£(50.0 kg) (9.8m/s*)(3.00 m)
x,siné (3.00 m)(0.800)
=408 N.

T

(b) Equilibrium of horizontal forces requires the horizontal hinge force be
F.=Tcos 8=245N.
(c) The direction of the horizontal force is rightward.
(d) Equilibrium of vertical forces requires the vertical hinge force be
F,=mg—Tsin =163 N.

(e) The direction of the vertical force is upward.



29. The bar is in equilibrium, so the forces and the torques acting on it each sum to zero.
Let 7; be the tension force of the left-hand cord, 7, be the tension force of the right-hand
cord, and m be the mass of the bar. The equations for equilibrium are:

vertical force components 7, cos@+7. cos¢p—mg =0
horizontal force components ~T,sin@+7 sing=0

torques mgx—T Lcos¢=0.

The origin was chosen to be at the left end of the bar for purposes of calculating the
torque. The unknown quantities are 7;, 7,, and x. We want to eliminate 7; and 7,, then
solve for x. The second equation yields 7; = 7, sin ¢ /sin € and when this is substituted
into the first and solved for 7, the result is

mg sin @

" singcos@+cosgsind

This expression is substituted into the third equation and the result is solved for x:

sinfcos¢ _7 sinfcos¢
singcos@+ cosgsingd  sin(6+ @)

The last form was obtained using the trigonometric identity sin(4 + B) = sin 4 cos B +
cos 4 sin B. For the special case of this problem €+ ¢=90° and sin(€+ @) = 1. Thus,

x=Lsinfcosg =(6.10 m) sin36.9°cos53.1°=2.20 m.



30. (a) Computing torques about point 4, we find

T . Lsin@=Wx_ +W, (%)

We solve for the maximum distance:

X

max

_[Zw sin9—W,’7/2jL_((500 N)sin 30.0° (200 N)/2

j(3.00 m)=1.50m,
w 300 N

(b) Equilibrium of horizontal forces gives F. =T cos@ =433 N.

(¢) And equilibrium of vertical forces gives F, =W +W, T, sin6 =250N.



31. The problem states that each hinge supports half the door’s weight, so each vertical
hinge force component is F), = mg/2 = 1.3 x 10> N. Computing torques about the top
hinge, we find the horizontal hinge force component (at the bottom hinge) is

r_(27ke) (9.8m/s*)(0.91 m/2)

. =80N.
2.1m—2(0.30m)

Equilibrium of horizontal forces demands that the horizontal component of the top hinge
force has the same magnitude (though opposite direction).

(a) In unit-vector notation, the force on the door at the top hinge is
F,, = (=80 N)i +(1.3x10°N)].
(b) Similarly, the force on the door at the bottom hinge is

Fypon = (480 N)i +(1.3x10°N)j



32. (a) Computing torques about the hinge, we find the tension in the wire:

Wx
Lsin@’

TLsin@-Wx=0=T=

(b) The horizontal component of the tension is 7 cos €, so equilibrium of horizontal
forces requires that the horizontal component of the hinge force is

F = ‘x cosd= Wx .
’ Lsin@ Ltan@

(c) The vertical component of the tension is 7 sin &, so equilibrium of vertical forces
requires that the vertical component of the hinge force is

F=w—| " |sino-= W(1—1).
’ Lsin@ L




33. We examine the box when it is about to tip. Since it will rotate about the lower right
edge, that is where the normal force of the floor is exerted. This force is labeled F) on
the diagram below. The force of friction is denoted by f, the applied force by F, and the
force of gravity by W. Note that the force of gravity is applied at the center of the box.
When the minimum force is applied the box does not accelerate, so the sum of the
horizontal force components vanishes: ' — f'= 0, the sum of the vertical force components
vanishes: F,, =W =0, and the sum of the torques vanishes:

FL—-WL/2=0.

Here L is the length of a side of the box and the origin was chosen to be at the lower right
edge.

F\
A Fy
J
278
(a) From the torque equation, we find
F= L 890N =445N.
2 2

(b) The coefficient of static friction must be large enough that the box does not slip. The
box is on the verge of slipping if W, = f/F. According to the equations of equilibrium

Fy=W=890Nandf=F=445N,
S0

_ABN 0.50.

A= 500N

(c) The box can be rolled with a smaller applied force if the force points upward as well
as to the right. Let 8 be the angle the force makes with the horizontal. The torque
equation then becomes

FL cos @+ FL sin 6— WL/2 =0,

with the solution
/4

- 2(cos@+sin @)




We want cos@+ sindto have the largest possible value. This occurs if 8= 45° a result we
can prove by setting the derivative of cos@ + siné equal to zero and solving for 6. The
minimum force needed is

_ W _ 890N _315N.
4c0s45° 4cos4ds°
o
F A Fy

SA~



34. As shown in the free-body diagram, the forces on the climber AF
consist of the normal force from the wall, the vertical component F, v

and the horizontal component F, of the force acting on her four

fingertips, and the downward gravitational force mg . Since the

climber is in static equilibrium, the net force acting on her is zero.
Applying Newton’s second law to the vertical and horizontal

directions, we have T
O z net,x 4F}l - FN H
0 Z net,y = 4E1 - mg ° l
(—. —

In addition, the net torque about O (contact point between her feet
and the wall) must also vanish: Fy

0= Z o =(mg)a—(4F)H .

(a) From the torque equation, we find the horizontal component of the force on her
fingertip to be

mga _ (70 kg)(9.8 m/s*)(0.20 m)

4H 4(2.0 m)
(b) From the y-component of the force equation, we obtain
2
F=me _(0kOSMS) 5160\

"4 4

h



35. (a) With the pivot at the hinge, Eq. 12-9 yields
TLcos@—F,y=0.

This leads to 7' = (F,/cos@)(y/L) so that we can interpret F,/cos@ as the slope on the
tension graph (which we estimate to be 600 in SI units). Regarding the £} graph, we use
Eq. 12-7 to get

Fp=Tcos@ — F,=(-F,)(y/L) — F,

after substituting our previous expression. The result implies that the slope on the Fj
graph (which we estimate to be —300) is equal to —F,, or F,, = 300 N and (plugging back
in) 8= 60.0°.

(b) As mentioned in the previous part, F, = 300 N.



36. (a) With F' = ma = —u, mg the magnitude of the deceleration is

la| = g = (0.40)(9.8 m/s*) = 3.92 m/s’.

(b) As hinted in the problem statement, we can use Eq. 12-9, evaluating the torques about
the car’s center of mass, and bearing in mind that the friction forces are acting
horizontally at the bottom of the wheels; the total friction force there is f; = tygm = 3.92m
(with SI units understood — and m is the car’s mass), a vertical distance of 0.75 meter
below the center of mass. Thus, torque equilibrium leads to

(3.92m)(0.75) + Fn(2.4) — Fnr(1.8) =0.
Eq. 12-8 also holds (the acceleration is horizontal, not vertical), so we have Fy, + Fy,=
mg, which we can solve simultaneously with the above torque equation. The mass is
obtained from the car’s weight: m = 11000/9.8, and we obtain Fy, = 3929 = 4000 N.

Since each involves two wheels then we have (roughly) 2.0x 10° N on each rear wheel.

(c) From the above equation, we also have Fyy= 7071 = 7000 N, or 3.5x10° N on each
front wheel, as the values of the individual normal forces.

. O- rect 1elds (approximate IX of friction on each rear whee ,
(d) Eq. 6-2 directly yields (approximately) 7.9x10°N of fricti h heel

(e) Similarly, Eq. 6-2 yields 1.4x10°N on each front wheel.



37. The free-body diagram on the right shows the forces acting on |
the plank. Since the roller is frictionless the force it exerts is F 9'

normal to the plank and makes the angle 8 with the vertical. Its /
magnitude is designated F. W is the force of gravity; this force
acts at the center of the plank, a distance L/2 from the point where
the plank touches the floor. F), is the normal force of the floor

and f is the force of friction. The distance from the foot of the h
plank to the wall is denoted by d. This quantity is not given 14
directly but it can be computed using d = A/tan6.
tvifo f
The equations of equilibrium are:
<« d—>
horizontal force components Fsinf—f=0
vertical force components Fcos@-W+F, =0

torques  F,d — fh—W (d —%cos8)=0.

The point of contact between the plank and the roller was used as the origin for writing
the torque equation.

When 8= 70° the plank just begins to slip and f'= usFy, where [ is the coefficient of
static friction. We want to use the equations of equilibrium to compute Fi and f for 8 =

70°, then use u; = f/Fy to compute the coefficient of friction.

The second equation gives F' = (W — Fy)/cos 6 and this is substituted into the first to
obtain

f=(W-—Fy)sin @cos 8= (W — Fy) tan 6.
This is substituted into the third equation and the result is solved for Fjy:

o d—(L/2)00s6+htan6W_ h(1+tan® @)—(L/2)sin@ W
N d+htan@ h(1+tan® 6)

9

where we have use d = h/tan@ and multiplied both numerator and denominator by tan 6.
We use the trigonometric identity 1+ tan’6 = 1/cos* 8 and multiply both numerator and
denominator by cos®8 to obtain

E, =W 1—L cos?sing |.
2h

Now we use this expression for Fyy in f= (W — Fy) tan @to find the friction:

f= ML in0c0s6.
2h



We substitute these expressions for fand Fy into i = f/F and obtain

_ Lsin’*6cosé
Hs 2h— Lsin@cos’8’

Evaluating this expression for &= 70°, we obtain

(6.1m)sin’ 70°cos70°
= _ =034,
2(3.05m)—(6.1m)sin70°cos’ 70°




38. The phrase “loosely bolted” means that there is no torque exerted by the bolt at that
point (where A connects with B). The force exerted on A at the hinge has x and y
components F, and F,. The force exerted on A4 at the bolt has components G, and G, and
those exerted on B are simply —G, and — G,, by Newton’s third law. The force exerted on
B at its hinge has components /1, and H,. If a horizontal force is positive, it points
rightward, and if a vertical force is positive it points upward.

(a) We consider the combined AUB system, which has a total weight of Mg where M =
122 kg and the line of action of that downward force of gravity is x = 1.20 m from the
wall. The vertical distance between the hinges is y = 1.80 m. We compute torques about
the bottom hinge and find

Mgx

y

F,=-—5"=_797N.

If we examine the forces on A4 alone and compute torques about the bolt, we instead find
F = "48Y _ 565N
!

where m,4 = 54.0 kg and ¢ = 2.40 m (the length of beam A). Thus, in unit-vector notation,
we have

F=Fi+F,j=(-797 N)i+(265 N)].

(b) Equilibrium of horizontal and vertical forces on beam A readily yields G, = — F, =
797 N and G, = mg — F, = 265 N. In unit-vector notation, we have

G=Gi+G,j=(+797 N)i+(265 N);

(c) Considering again the combined AUB system, equilibrium of horizontal and vertical
forces readily yields H, =— Fy =797 N and H, = Mg — F,,= 931 N. In unit-vector notation,
we have

H=Hi+H j=(+797N)i+(931 N)j

(d) As mentioned above, Newton’s third law (and the results from part (b)) immediately
provide — G, =— 797 N and — G, = — 265 N for the force components acting on B at the
bolt. In unit-vector notation, we have

~G=-G,i-G,j=(-797 N)i - (265 N)]



39. The force diagram shown below depicts the situation just
before the crate tips, when the normal force acts at the front
edge. However, it may also be used to calculate the angle for
which the crate begins to slide. 7 is the force of gravity on the
crate, I, is the normal force of the plane on the crate, and f'is

the force of friction. We take the x axis to be down the plane
and the y axis to be in the direction of the normal force. We
assume the acceleration is zero but the crate is on the verge of
sliding.

(a) The x and y components of Newton’s second law are
Wsin@—f=0 and F,, —W cos@=0
respectively. The y equation gives Fy= W cos 6. Since the crate is about to slide
S= usFn= (W cos 6,
where 4 1s the coefficient of static friction. We substitute into the x equation and find

Wsin@—uWcos@=0=>tan0=u_

This leads to 6= tan ™! s = tan ' 0.60 = 31.0°.

In developing an expression for the total torque about the center of mass when the crate is
about to tip, we find that the normal force and the force of friction act at the front edge.
The torque associated with the force of friction tends to turn the crate clockwise and has
magnitude fh, where 4 is the perpendicular distance from the bottom of the crate to the
center of gravity. The torque associated with the normal force tends to turn the crate
counterclockwise and has magnitude F,¢/2, where ¢ is the length of an edge. Since the

total torque vanishes, fh=F, (/2. When the crate is about to tip, the acceleration of the

center of gravity vanishes, so f = W sin € and Fy = W cos 6. Substituting these
expressions into the torque equation, we obtain

6 =tan™ i =tan"’ 12—m =33.7°.
2h 2(0.90m)

As @is increased from zero the crate slides before it tips.
(b) It starts to slide when €= 31°.

(c) The crate begins to slide when 8= tan™' 1, = tan™' 0.70 = 35.0° and begins to tip when
6= 33.7°. Thus, it tips first as the angle is increased.

(d) Tipping begins at 8= 33.7° = 34°,



40. Let x be the horizontal distance between the firefighter and F ~
the origin O (see figure) that makes the ladder on the verge of Y \

sliding. The forces on the firefighter + ladder system consist of

the horizontal force F from the wall, the vertical component

F,, and the horizontal component F, of the force ﬁp on the ;

ladder from the pavement, and the downward gravitational Mg

forces Mg and mg , where M and m are the masses of the Hg,

firefighter and the ladder, respectively. Since the system is in

static equilibrium, the net force acting on the system is zero. E,,

Applying Newton’s second law to the vertical and horizontal ||

directions, we have all

l€«— x —>»|

O:ZFnet,x:Fw_pr | da |

0=Y F., =F,—(M+mg.
Since the ladder is on the verge of sliding, F, = F, . Therefore, we have

F,=F,=uF, =puM+mg.

s py

FP)’

In addition, the net torque about O (contact point between the ladder and the wall) must

also vanish:

0=>"7, =—h<Fw)+x(Mg>+§<mg>=o.

Solving for x, we obtain

L= hF,—(a/3)ymg hu (M +m)g—(a/3)mg hu (M +m)—(a/3)m
Mg Mg M

Substituting the values given in the problem statement (with a =~/ L* —h*> =7.58 m), the

fraction of ladder climbed is

x _ b (M +m)—(a/3)m _ (9.3 m)(0.53)(72 kg+45 kg) - (7.58 m/3)(45 kg)

Ma (72 kg)(7.58 m)
= 0.848 ~ 85%.



41. The diagrams below show the forces on the two sides of the ladder, separated. F4 and
Fr are the forces of the floor on the two feet, T is the tension force of the tie rod, W is the
force of the man (equal to his weight), F}, is the horizontal component of the force exerted
by one side of the ladder on the other, and F) is the vertical component of that force. Note
that the forces exerted by the floor are normal to the floor since the floor is frictionless.
Also note that the force of the left side on the right and the force of the right side on the
left are equal in magnitude and opposite in direction.

Since the ladder is in equilibrium, the vertical components of the forces on the left side of
the ladder must sum to zero: F, + F4 — W = 0. The horizontal components must sum to
zero: T — Fj, = 0. The torques must also sum to zero. We take the origin to be at the hinge
and let L be the length of a ladder side. Then

F4L cos 8— W(L/4) cos 8— T(L/2) sin 8= 0.

Here we recognize that the man is one—fourth the length of the ladder side from the top
and the tie rod is at the midpoint of the side.

The analogous equations for the right side are Fz — F, =0, F;, — T =0, and FgL cos 6 —
T(L/2) sin 8= 0.

There are 5 different equations:

E+F,-W=0,

T-F =0
F,Lcos@—W(L/4)cos@—T(L/2)sinf=0
F.-F =0

F,Lcos@—-T(L/2)sin@=0.

The unknown quantities are Fy, Fg, F\, Fj, and T.



(a) First we solve for 7 by systematically eliminating the other unknowns. The first
equation gives Fy = W — F), and the fourth gives F, = Fr. We use these to substitute into
the remaining three equations to obtain

T-F,=0
WLcos@—F,Lcos@—-W(L/4)cos@—T(L/2)sin@=0
F.Lcos@—-T(L/2)sin@=0.

The last of these gives Fr = Tsin@/2cos@= (1/2) tan6. We substitute this expression into
the second equation and solve for 7. The result is

4
4tan 6

To find tand, we consider the right triangle formed by the upper half of one side of the
ladder, half the tie rod, and the vertical line from the hinge to the tie rod. The lower side
of the triangle has a length of 0.381 m, the hypotenuse has a length of 1.22 m, and the

vertical side has a length of \/(1.22 rn)2 - (0.381m)2 =1.16m. This means

tan &= (1.16m)/(0.381m) = 3.04.
Thus,
T = M =211N.
4(3.04)

(b) We now solve for F4. Since F, = Fg and Fg = T sin@/2cos6, F\, = 3W/8. We substitute
this into F, + F,— W= 0 and solve for F,. We find

F,=W—F =W =3W/8=5W/8=5(884 N)/8=534 N.

(c) We have already obtained an expression for Fr: Fr = 3W/8. Evaluating it, we get Fp =
320 N.



42. (a) Eq. 12-9 leads to

TLsin® — m,gx — mbg(@ =0.
This can be written in the form of a straight line (in the graph) with
T=(“slope”)7 + “y-intercept”,

where “slope” = m,g/sin@ and “‘y-intercept” = m;g/2sinf. The graph suggests that the
slope (in ST units) is 200 and the y-intercept is 500. These facts, combined with the given
m, + mp= 61.2 kg datum, lead to the conclusion:

sinfd=61.22g/1200 = 6= 30.0°.
(b) It also follows that m, = 51.0 kg.

(c) Similarly, m,= 10.2 kg.



43. (a) The shear stress is given by F/4, where F is the magnitude of the force applied
parallel to one face of the aluminum rod and A4 is the cross—sectional area of the rod. In
this case F' is the weight of the object hung on the end: F' = mg, where m is the mass of
the object. If  is the radius of the rod then 4 = /. Thus, the shear stress is

F _ mg _ (1200kg) (9.8 m/s’)
A xr 7(0.024 m)’

=6.5x10°N/m*.

(b) The shear modulus G is given by
_F/ A4

A/ L
where L is the protrusion of the rod and Ax is its vertical deflection at its end. Thus,

_(F/AL _(6.5%10° N/m’*)(0.053m)

=1.1x10" m.
G 3.0x10° N/m’

Ax




44. (a) The Young’s modulus is given by

t : i i
= ST _ (lope of the stress-strain curve = 150X10"N/m” _ 7.5%10""N/m>.

strain 0.002

E

(b) Since the linear range of the curve extends to about 2.9 X 10® N/m? this is
approximately the yield strength for the material.



45. (a) Let F4 and Fp be the forces exerted by the wires on the log and let m be the mass
of the log. Since the log is in equilibrium F4 + F — mg = 0. Information given about the
stretching of the wires allows us to find a relationship between F4 and Fjp. If wire 4
originally had a length L, and stretches by AL, then AL, = F,L,/ AE , where 4 is the

cross—sectional area of the wire and E is Young’s modulus for steel (200 x 10° N/m?).
Similarly, AL, = F,L,/ AE . If ¢ is the amount by which B was originally longer than 4

then, since they have the same length after the log is attached, AL, = AL, + ¢ . This means

FL, :FBLB+

L=/
AE AE

We solve for F:
_F,L, AE(

F, .
LB LB

We substitute into Fy + F5 —mg = 0 and obtain

F o= mgLB+AE€.
4 L,+L,

The cross—sectional area of a wire is
A= =(120x107m)’ =452x10°m’.

Both L4 and L may be taken to be 2.50 m without loss of significance. Thus

(103 kg) (9.8 m/s%) (2.50 m)+(4.52x10° m*)(200x10° N/m*) (2.0x10~> m)
4 2.50m+2.50m

=866 N.
(b) From the condition Fy + Fz—mg = 0, we obtain
F,=mg—F,=(103kg)(9.8m/s’) —866 N=143 N.

(c) The net torque must also vanish. We place the origin on the surface of the log at a
point directly above the center of mass. The force of gravity does not exert a torque about
this point. Then, the torque equation becomes F4d — Fipdp = 0, which leads to

di B BN _ 4 165,
d, F, 866N



46. Since the force is (stress x area) and the displacement is (strain % length), we can
write the work integral (eq. 7-32) as

W= IF dx = j(stress)A (differential strain)L = AL I(stress) (differential strain)

which means the work is (wire-area) x (wire-length) x (graph-area-under-curve). Since
the area of a triangle (see the graph in the problem statement) is %(base)(height) then we

determine the work done to be

W = (2.00 x 10™° m*)(0.800 m)(3)(1.0 x 107)(7.0 x 10" N/m?) = 0.0560J .



47. (a) Since the brick is now horizontal and the cylinders were initially the same length
¢, then both have been compressed an equal amount A/ . Thus,

Al FA Al F,
and — =
¢ AE, 0 AE,

which leads to
F, AE, _ (24;)(2E,) _4

FB - AB EB AB EB

When we combine this ratio with the equation Fy + Fz = W, we find F4/W =4/5=0.80 .
(b) This also leads to the result Fg/W = 1/5 = 0.20.
(c) Computing torques about the center of mass, we find F4d, = Fpdp which leads to

do By _1_5s
d, F, 4



48. Since the force is (stress x area) and the displacement is (strain x length), we can
write the work integral (eq. 7-32) as

W= IF dx = j(stress)A (differential strain)L. = AL I(stress) (differential strain)

which means the work is (thread cross-sectional area) % (thread length) % (graph-area-
under-curve). The area under the curve is

graph area :%asl +%(a +b)(s, _Sl)+%(b+0)(53 —5,) :%[asz +b(s; —s,)+c(s, —S2)]
=%[(0.12><109 N/m?*)(1.4)+(0.30x10° N/m?)(1.0) +(0.80x10’ N/mz)(0.60)]

=4.74x10° N/m’.

(a) The kinetic energy that would put the thread on the verge of breaking is simply equal
to W

K =W = AL(graph area) = (8.0x10™"> m*)(8.0x10° m)(4.74x10* N/m*)=3.03x107 J.
(b) The kinetic energy of the fruit fly of mass 6.00 mg and speed 1.70 m/s is

1 1 § ]
K, :Emfvj = (6.00x10 5 kg)(1.70 m/s)> =8.67x107° J.

(¢) Since K, <W, the fruit fly will not be able to break the thread.

(d) The kinetic energy of a bumble bee of mass 0.388 g and speed 0.420 m/s is

K, = %mbvj = %(3.99><10-4 kg)0.420 m/s)* =3.42x107 J.

(e) On the other hand, since K, > W, the bumble bee will be able to break the thread.



49. The flat roof (as seen from the air) has area 4 = 150 m x 5.8 m = 870 m”. The volume
of material directly above the tunnel (which is at depth d = 60 m) is therefore

V=4 xd=(870 m®) x (60m) = 52200 m’.

Since the density is p = 2.8 g/cm® = 2800 kg/m’, we find the mass of material supported
by the steel columns to be m = pV = 1.46 x 10° m’.

(a) The weight of the material supported by the columns is mg = 1.4 x 10° N.

(b) The number of columns needed is

143x10°N

n=7 6 3 =175
5(400x10°N/m”)(960x10"m")




50. On the verge of breaking, the length of the thread is
L=L,+AL=L(1+AL/L))=L,(1+2)=3L,,

where  L;=0.020m is the original length, and /
strain=AL/L, =2, as given in the problem. The free-

body diagram of the system is shown on the right. The
condition for equilibrium is

mg =2Tsin @

where m is the mass of the insect and 7 = A(stress). Since the volume of the thread
remains constant is it 1is being stretched, we have V=A4L =AL , or
A=A,(L,/L)=A4,/3. The vertical distance Ay is

5 T oL L
Ay=+J(L/2) —(L0/2)* = 3 =\21,.
Thus, the mass of the insect is
= 2T'sin@  2(A,/3)(stress)sin@ 24 (stress) Ay 4x/§A0 (stress)
g g 3g 3L,/2 Og
_ 44/2(8.00x107'2 m?)(8.20x10° N/m?)
9(9.8 m/s*)
=421x10" kg

or 0.421 g.



51. Let the forces that compress stoppers 4 and B be F4 and Fj, respectively. Then
equilibrium of torques about the axle requires FR = ryF, + rgFp. If the stoppers are
compressed by amounts |[Ay4| and |Ayg| respectively, when the rod rotates a (presumably
small) angle € (in radians), then |Ay ,|=7,0 and |Ay,|=r,6.

Furthermore, if their “spring constants” k are identical, then k& = |F/Ay| leads to the
condition F4/r, = Fp/rp which provides us with enough information to solve.

(a) Simultaneous solution of the two conditions leads to

Rr, Fe (5.0 cm)(7.0 cm)

F, = = 220 N)=118 N=1.2x10° N.
o (7.0 cm)*+(4.0 cm)? ( )
(b) It also yields
F, = Rr, (5.0 cm)(4.0 cm) (220 N)=68 N.

P24+r2 (7.0 cm)>+(4.0 cm)



52. (a) With pivot at the hinge (at the left end), Eq. 12-9 gives
—mgx—Mg% + FLh=0

where m is the man’s mass and M is that of the ramp; F}, is the leftward push of the right
wall onto the right edge of the ramp. This equation can be written to be of the form (for a
straight line in a graph)

Fy=(“slope”)x + (“y-intercept”),
where the “slope” is mg/h and the “y-intercept” is MgD/2h. Since h = 0.480 m and D =

4.00 m, and the graph seems to intercept the vertical axis at 20 kN, then we find M = 500
kg.

(b) Since the “slope” (estimated from the graph) is (5000 N)/(4 m), then the man’s mass
must be m = 62.5 kg.



53. With the x axis parallel to the incline (positive uphill), then

YF=0 = T cos 25° —mg sin 45° = 0.

Therefore, 7= 76 N.



54. The beam has a mass M = 40.0 kg and a length L = 0.800 m. The mass of the package
of tamale is m = 10.0 kg.

(a) Since the system is in static equilibrium, the normal force on the beam from roller 4 is
equal to half of the weight of the beam:

F,= Mg/2 = (40.0 kg)(9.80 m/s>)/2 = 196 N.

(b) The normal force on the beam from roller B is equal to half of the weight of the beam
plus the weight of the tamale:

F=Mg/2 + mg = (40.0 kg)(9.80 m/s*)/2 + (10.0 kg)(9.80 m/s*)= 294 N.

(c) When the right-hand end of the beam is centered over roller B, the normal force on the
beam from roller 4 is equal to the weight of the beam plus half of the weight of the
tamale:

Fy= Mg + mg/2 = (40.0 kg)(9.8 m/s%) + (10.0 kg)(9.80 m/s>)/2 = 441 N.

(d) Similarly, the normal force on the beam from roller B is equal to half of the weight of

the tamale:
Fs=mg/2 = (10.0 kg)(9.80 m/s*)/2 = 49.0 N.

(e) We choose the rotational axis to pass through roller B. When the beam is on the verge
of losing contact with roller A4, the net torque is zero. The balancing equation may be
written as
L M
mgx=Mg(L/4-x) = x=— .
& 8( ) 4 M+m

Substituting the values given, we obtain x = 0.160 m.



55. (a) The forces acting on bucket are the force of gravity, down, and the tension force
of cable A, up. Since the bucket is in equilibrium and its weight is

W, =m,g=(817kg)(9.80m/s*)=8.01x10°N,

the tension force of cable A is T, =8.01x10°N..

(b) We use the coordinates axes defined in the diagram. Cable A makes an angle of & =
66.0° with the negative y axis, cable B makes an angle of 27.0° with the positive y axis,
and cable C is along the x axis. The y components of the forces must sum to zero since
the knot is in equilibrium. This means 75 cos 27.0° — T4 cos 66.0° = 0 and

- _ €0866.0°
? c0s27.0°

(cos 66.0°

(8.01x10°N)=3.65x10°N.
c0s27.0°

(c) The x components must also sum to zero. This means

Tc+ Tpsin 27.0°— T4 sin 66.0° =0
Which yields

T.=T,sin66.0°—T, sin 27.0° = (8.01x10° N)sin 66.0° - (3.65x10° N)sin 27.0°
=5.66x10° N.



56. (a) Eq. 12-8 leads to 7 sin40° + 75 sin@= mg . Also, Eq. 12-7 leads to
T cos40° — T, cos@= 0.
Combining these gives the expression

_ mg
’ cos@tan40°+sind

To minimize this, we can plot it or set its derivative equal to zero. In either case, we find
that it is at its minimum at €= 50°.

(b) At 6=50°, we find T, = 0.77mg.



57. The cable that goes around the lowest pulley is cable 1 and has tension 7} = F. That
pulley is supported by the cable 2 (so 7> = 27 = 2F) and goes around the middle pulley.
The middle pulley is supported by cable 3 (so 73 = 27> = 4F) and goes around the top
pulley. The top pulley is supported by the upper cable with tension 7, so 7= 273 = 8F.
Three cables are supporting the block (which has mass m = 6.40 kg):

T+T+T, :mg:F:%:&%N.

Therefore, T=8(8.96 N) =71.7 N.



58. Since all surfaces are frictionless, the contact force F exerted by the lower sphere on
the upper one is along that 45° line, and the forces exerted by walls and floors are
“normal” (perpendicular to the wall and floor surfaces, respectively). Equilibrium of
forces on the top sphere leads to the two conditions

F

wall

=Fcos45° and F'sin45°=mg.

And (using Newton’s third law) equilibrium of forces on the bottom sphere leads to the
two conditions

F' =Fcos45° and F',  =Fsin45°+mg.

wall
(a) Solving the above equations, we find F o0 = 2mg.
(b) We obtain for the left side of the container, F''ya = mg.

(c) We obtain for the right side of the container, Fyay = mg.

(d) We get F'=mg/sin 450:\/§mg .



59. (a) The center of mass of the top brick cannot be further (to the right) with respect to
the brick below it (brick 2) than L/2; otherwise, its center of gravity is past any point of
support and it will fall. So a; = L/2 in the maximum case.

(b) With brick 1 (the top brick) in the maximum situation, then the combined center of
mass of brick 1 and brick 2 is halfway between the middle of brick 2 and its right edge.
That point (the combined com) must be supported, so in the maximum case, it is just
above the right edge of brick 3. Thus, a, = L/4.

(c) Now the total center of mass of bricks 1, 2 and 3 is one—third of the way between the
middle of brick 3 and its right edge, as shown by this calculation:

L _2m(0)tm(-L/2)_ L

com 3 m 6

where the origin is at the right edge of brick 3. This point is above the right edge of brick
4 in the maximum case, so a3 = L/6.

(d) A similar calculation

- 3m(0)+ m(—L/2) _ L
com dm 8

shows that as = L/8.

(e)Wefind h=" 4 =25L/24.



60. (a) If L (= 1500 cm) is the unstretched length of the rope and AL =28cmis the
amount it stretches then the strain is

AL/ L=(28cm)/(1500cm)=19x10".

(b) The stress is given by F/4 where F is the stretching force applied to one end of the
rope and 4 is the cross—sectional area of the rope. Here F' is the force of gravity on the
rock climber. If m is the mass of the rock climber then ¥ = mg. If r is the radius of the

rope then 4 = m” . Thus the stress is

2
L e (95kg)(9'im/52) =1.3x10" N/m?’.
A zr 7(4.8x107 m)

(c) Young’s modulus is the stress divided by the strain:

E=(13x10"N/m%) /(1.9 x 10°)=6.9 x 10° N/m”.



61. We denote the mass of the slab as m, its density as p, and volume as V' =LTW . The
angle of inclination is € =26°.

(a) The component of the weight of the slab along the incline is

F, =mgsin@ = pVgsin@
=(3.2x10° kg/m’)(43m)(2.5m)(12m)(9.8 m/s*)sin 26° = 1.8x10’ N.

(b) The static force of friction is

Sy =1 Fy = umgcos@=u pVgcost
=(0.39)(3.2x10° kg/m®)(43m)(2.5m)(12m)(9.8 m/s*) cos 26° = 1.4x10” N.

(c) The minimum force needed from the bolts to stabilize the slab is
F,=F—f =1.77x10'N-1.42x10" N =3.5x10° N.
If the minimum number of bolts needed is n, then F, /nAd < 3.6x10° N/m”, or

6
S 3.5x10° N 152

nz
(3.6x10° N/m*)(6.4x10™* m?)

Thus 16 bolts are needed.



62. The notation and coordinates are as shown in Fig. 12-6 in the textbook. Here, the
ladder's center of mass is halfway up the ladder (unlike in the textbook figure). Also, we
label the x and y forces at the ground f; and Fy, respectively. Now, balancing forces, we

have
2F,=0 = f, =F,
XF,=0 = Fy=mg

Since f; = f;, max, We divide the equations to obtain

f:v,max _ _FW

F, 1 mg

S

Now, from X 1, = 0 (with axis at the ground) we have mg(a/2) — F,,h = 0.
Pythagorean theorem, / = \/Lz - a’, where L = length of ladder. Therefore,

£y _al2 a

mg AN [L-d

In this way, we find
2u L

S

a
= = g=—=
# WL -d? J1+4u2

But from the



63. Analyzing forces at the knot (particularly helpful is a graphical view of the vector
right-triangle with horizontal “side” equal to the static friction force f; and vertical “side”
equal to the weight mpg of block B), we find f; = mpg tan & where 8= 30°. For f; to be at
its maximum value, then it must equal ym,g where the weight of block A4 is m4g= (10
kg)(9.8 m/s”). Therefore,

Um,g=mygtand = (U, =%tan30020.29.



64. To support a load of W = mg = (670 kg)(9.8 m/s®) = 6566 N, the steel cable must
stretch an amount proportional to its “free” length:

AL = (KJL where 4 = m?
AY
and = 0.0125 m.

6566 N
7(0.0125 m)? (2.0x10" N/m?)

(a) If L =12 m, then AL:( j(12 m)=8.0x10""m.

(b) Similarly, when L =350 m, we find AL =0.023m.



65. With the pivot at the hinge, Eq. 12-9 leads to
—mgsinG % + TLsin(180°— 6, - 6) = 0.

where 6, = 60° and 7=mg/2. This yields & = 60°.



66. (a) Setting up equilibrium of torques leads to

E

far end

L=(73kg)(9.8 m/s2)§+ (2700 N)%

which yields Fpuena = 1.5 x 10° N.

(b) Then, equilibrium of vertical forces provides

F =19%x10°N.

near end

=(73)(9.8)+2700— F,

ar end



67. (a) and (b) With +x rightward and +y upward (we assume the adult is pulling with
%
force P to the right), we have

XF,=0 = W=Tcosf=270N

YF.=0 = P=Tsin®=72N
where 8= 15°.

(c) Dividing the above equations leads to
P
= tan 0.

Thus, with W =270 N and P =93 N, we find 8= 19°.



68. We denote the tension in the upper left string (bc) as 7" and the tension in the lower
right string (ab) as 7. The supported weight is Mg = 19.6 N. The force equilibrium
conditions lead to

T’ cos60° =T cos20° horizontal forces
T’sin 60° = W + T sin 20° vertical forces.

(a) We solve the above simultaneous equations and find

w

T= - =15N.
tan 60° cos 20° —sin 20°

(b) Also, we obtain 7" = T cos 20°/ cos 60° =29 N.



69. (a) Because of Eq. 12-3, we can write
T + (myg £-90°)+(myg £—-150°) =0.

Solving the equation, we obtain 7_"> =(106.34 £ 63.963°). Thus, the magnitude of the
tension in the upper cord is 106 N,

(b) and its angle (measured ccw from the +x axis) is 64.0°.



70. (a) The angle between the beam and the floor is

sin”! (d /L)=sin"" (1.5/2.5) = 37°,

5
so that the angle between the beam and the weight vector 7 of the beam is 53°. With L =
2.5 m being the length of beam, and choosing the axis of rotation to be at the base,

L
2T, =0 = PL—W@sins.%o =0

Thus, P="% W sin 53° =200 N.

(b) Note that

P +W =200 £90°) + (500 £ -127°) = (360 £ —146°)
using magnitude-angle notation (with angles measured relative to the beam, where
"uphill" along the beam would correspond to 0°) with the unit Newton understood. The
"net force of the floor" Fris equal and opposite to this (so that the total net force on the

5
beam is zero), so that | Fy | = 360 N and is directed 34° counterclockwise from the beam.

(c) Converting that angle to one measured from true horizontal, we have €= 34° + 37° =
71°. Thus, f; = Frcos@and Fy = Fysin 6. Since f; = f; max, We divide the equations to
obtain

F 1
N _ = — = tan@ .
f;',max MS

Therefore, 14 = 0.35.



71. The cube has side length / and volume ¥ = [°. We use p = BAV /V for the pressure p.
We note that

AV AP (I+AIY - 3PA _3g
v P P P I

Thus, the pressure required is

_3BAI _3(1.4x10" N/m’)(85.5cm—85.0cm)
/ 85.5cm

=2.4x10° N/m’.




72. Adopting the usual convention that torques that would produce counterclockwise
rotation are positive, we have (with axis at the hinge)

27.=0= TLsin60" — Mg(%)zo

where L = 5.0 m and M = 53 kg. Thus, 7= 300 N. Now (with F), for the force of the hinge)

XF.=0=F, =-Tcosf=-150N
2LF,=0= F, = Mg—Tsind=260N

where @= 60°. Therefore, F, =(~1.5x10> N)i+(2.6x10> N)].



73. (a) Choosing an axis through the hinge, perpendicular to the plane of the figure and
taking torques that would cause counterclockwise rotation as positive, we require the net
torque to vanish:

FLsin90°—Thsin65°=0

where the length of the beam is L = 3.2 m and the height at which the cable attaches is 4
= 2.0 m. Note that the weight of the beam does not enter this equation since its line of
action is directed towards the hinge. With F'= 50 N, the above equation yields 7= 88 N.

(b) To find the components of F ", we balance the forces:

2F. =0 = F,=Tcos25°-F
ZFyZO = F,=Tsin25°+W

where W is the weight of the beam (60 N). Thus, we find that the hinge force components
are F,, = 30 N rightward and F,, = 97 N upward. In unit-vector notation,

F,=(30 N)i+(97 N)j.



74. (a) Computing the torques about the hinge, we have TLsin40° = W%sin 50° where

the length of the beam is L = 12 m and the tension is 7= 400 N. Therefore, the weight is
W =671 N, which means that the gravitational force on the beam is 17“w =(-671 N)j .

(b) Equilibrium of horizontal and vertical forces yields, respectively,

Fringer =T =400 N
Fiinge, =W =671N

where the hinge force components are rightward (for x) and upward (for y). In unit-vector

notation, we have F,._=(400 N)i+(671 N)]

inge



75. We locate the origin of the x axis at the edge of the table and choose rightwards
positive. The criterion (in part (a)) is that the center of mass of the block above another
must be no further than the edge of the one below; the criterion in part (b) is more subtle
and is discussed below. Since the edge of the table corresponds to x = 0O then the total
center of mass of the blocks must be zero.

(a) We treat this as three items: one on the upper left (composed of two bricks, one
directly on top of the other) of mass 2m whose center is above the left edge of the bottom
brick; a single brick at the upper right of mass m which necessarily has its center over the
right edge of the bottom brick (so a; = L/2 trivially); and, the bottom brick of mass m.
The total center of mass is

(2m)(a,—L)+ma, +m(a,—L/2)
4m

0

which leads to a, = 5L/8. Consequently, 7 = a, + a; = 9L/8.

(b) We have four bricks (each of mass m) where the center of mass of the top and the
center of mass of the bottom one have the same value x., = b, — L/2. The middle layer
consists of two bricks, and we note that it is possible for each of their centers of mass to
be beyond the respective edges of the bottom one! This is due to the fact that the top
brick is exerting downward forces (each equal to half its weight) on the middle blocks —
and in the extreme case, this may be thought of as a pair of concentrated forces exerted at
the innermost edges of the middle bricks. Also, in the extreme case, the support force
(upward) exerted on a middle block (by the bottom one) may be thought of as a

concentrated force located at the edge of the bottom block (which is the point about
which we compute torques, in the following).

If (as indicated in our sketch, where F;()p has magnitude mg/2) —
we consider equilibrium of torques on the rightmost brick, we tOPV
obtain
1 mg
mg(bl—ELj:T(L—bl) ‘
. . g
which leads to b; = 2L/3. Once we conclude from symmetry
that b, = L/2 then we also arrive at 4 = b, + by = 7L/6. s

F bottom



76. One arm of the balance has length ¢, and the other has
length /,. The two cases described in the problem are expressed (in terms of torque
equilibrium) as

ml,=ml, and ml =m,/l,.

We divide equations and solve for the unknown mass: m = \/mm, .



77. Since GA exerts a leftward force T at the corner 4, then (by equilibrium of horizontal
forces at that point) the force Fiag in C4A must be pulling with magnitude

T __rf

“& sin45°

This analysis applies equally well to the force in DB. And these diagonal bars are pulling
on the bottom horizontal bar exactly as they do to the top bar, so the bottom bar CD is the
“mirror image” of the top one (it is also under tension 7). Since the figure is symmetrical
(except for the presence of the turnbuckle) under 90° rotations, we conclude that the side
bars (DA and BC) also are under tension 7 (a conclusion that also follows from
considering the vertical components of the pull exerted at the corners by the diagonal
bars).

(a) Bars that are in tension are BC, CD and DA.
(b) The magnitude of the forces causing tension is 7 =535 N.

(c) The magnitude of the forces causing compression on CA and DB is

Fy =27 =(1.41)535 N =757 N.



78. (a) For computing torques, we choose the axis to be at support 2 and consider torques
which encourage counterclockwise rotation to be positive. Let m = mass of gymnast and
M = mass of beam. Thus, equilibrium of torques leads to

Mg(1.96m)—mg(0.54m)— F/(3.92m)=0.

Therefore, the upward force at support 1 is ;1 = 1163 N (quoting more figures than are
significant — but with an eye toward using this result in the remaining calculation). In

unit-vector notation, we have 17"1 ~(1.16x10° N)} .

(b) Balancing forces in the vertical direction, we have F| + F, — Mg—mg =0, so that the
upward force at support 2 is F, =1.74 x 10° N. In unit-vector notation, we have
F, =(1.74x10° N)].



79. (a) Let d = 0.00600 m. In order to achieve the same final lengths, wires 1 and 3 must
stretch an amount d more than wire 2 stretches:

AL] = AL3 = ALz + d .
Combining this with Eq. 12-23 we obtain

dAE
F1:F3: Fz + T .

Now, Eq. 12-8 produces F, + F; + F, — mg = 0. Combining this with the previous
relation (and using Table 12-1) leads to F;= 1380 N =1.38x10°N .

(b) Similarly, 7, = 180 N.



80. Our system is the second finger bone. Since the system is in
static equilibrium, the net force acting on it is zero. In addition, the
torque about any point must be zero. We set up the torque equation

about point O where F. act:
d . . .
0= Zrnet =— 3 Esina+(d)F,sin@+(d)F,sing.
o

Solving for F, and substituting the values given, we obtain

_3(F, sin @+ F) sin @) _ 3[(162.4 N)sin10°+(13.4 N)sin 80°]
sin @ sin 45°
~1.8x10* N.

F

t

=175.6 N




81. When it is about to move, we are still able to apply the equilibrium conditions, but (to
obtain the critical condition) we set static friction equal to its maximum value and picture

the normal force ﬁN as a concentrated force (upward) at the bottom corner of the cube,

directly below the point O where P is being applied. Thus, the line of action of F v passes

through point O and exerts no torque about O (of course, a similar observation applied to
the pull P). Since Fy = mg in this problem, we have fimax = tmg applied a distance /4
away from O. And the line of action of force of gravity (of magnitude mg), which is best
pictured as a concentrated force at the center of the cube, is a distance L/2 away from O.
Therefore, equilibrium of torques about O produces

L L (8.0 cm)
h=mg| = _ L _80em) 4
Hmgh =mg ( 2} = A T 27,0 em)

for the critical condition we have been considering. We now interpret this in terms of a
range of values for /.

(a) For it to slide but not tip, a value of i less than that derived above is needed, since
then — static friction will be exceeded for a smaller value of P, before the pull is strong
enough to cause it to tip. Thus, ¢ < L/2h = 0.57 is required.

(b) And for it to tip but not slide, we need y greater than that derived above is needed,
since now — static friction will not be exceeded even for the value of P which makes the
cube rotate about its front lower corner. That is, we need to have g > L/2h = 0.57 in this
case.



82. The assumption stated in the problem (that the density does not change) is not meant
to be realistic; those who are familiar with Poisson’s ratio (and other topics related to the
strengths of materials) might wish to think of this problem as treating a fictitious material
(which happens to have the same value of £ as aluminum, given in Table 12-1) whose
density does not significantly change during stretching. Since the mass does not change,
either, then the constant-density assumption implies the volume (which is the circular
area times its length) stays the same:

(P L)pew = (PL)ga = AL =L[(1000/999.9)* — 1] .
Now, Eq. 12-23 gives
F=m”EAL/L = m*(7.0 x 10°N/m*)[(1000/999.9)* — 1] .

Using either the new or old value for r gives the answer F =44 N.



83. Where the crosspiece comes into contact with the beam, there is an upward force of
2F (where F'is the upward force exerted by each man). By equilibrium of vertical forces,
W = 3F where W is the weight of the beam. If the beam is uniform, its center of gravity is
a distance L/2 from the man in front, so that computing torques about the front end leads

to
W£ =2Fx= 2(K)x
2 3

which yields x = 3L/4 for the distance from the crosspiece to the front end. It is therefore
a distance L/4 from the rear end (the “free” end).



84. (a) Setting up equilibrium of torques leads to a simple “level principle” ratio:

E.. =(11kg)(9.8 m/sz)w — 40N
91cm
(b) Then, equilibrium of vertical forces provides
Elinge = (1 lkg) (98 m/S2) - F;atch = 66 N



85. We choose an axis through the top (where the ladder comes into contact with the
wall), perpendicular to the plane of the figure and take torques that would cause
counterclockwise rotation as positive. Note that the line of action of the applied force

F intersects the wall at a height of (8.0 m)/5=1.6m; in other words, the moment arm

for the applied force (in terms of where we have chosen the axis) is
7, =(4/5)(8.0 m) =6.4m. The moment arm for the weight is half the horizontal distance

from the wall to the base of the ladder; this works out to be \/ (10 m)>—(8m)*/2=3.0m.

Similarly, the moment arms for the x and y components of the force at the ground (ﬁ’g)

are 8.0 m and 6.0 m, respectively. Thus, with lengths in meters, we have
27, =F(6.4m)+W (3.0 m)+F, (8.0 m)—F, (6.0 m)=0.

In addition, from balancing the vertical forces we find that W = F, (keeping in mind that
the wall has no friction). Therefore, the above equation can be written as

Y7, = F(6.4 m)+W (3.0 m)+ F, (8.0 m)— W (6.0 m)=0.

(a) With F =50 N and W = 200 N, the above equation yields F, = 35 N. Thus, in unit
vector notation we obtain

F, =(35 N)i+(200 N)].

(b) With /=150 N and W =200 N, the above equation yields F,, = —45 N. Therefore, in
unit vector notation we obtain

F, =(~45 N)i+(200 N)j.

(c) Note that the phrase “start to move towards the wall” implies that the friction force is
pointed away from the wall (in the - direction). Now, if f' = —F,, and Fiy = F,, = 200 N
are related by the (maximum) static friction relation (f' = fsmax = L Fn) With g = 0.38,
then we find F,, = —76 N. Returning this to the above equation, we obtain

Fe (200N)(3.0m)+ (76 N)(8.0m)
B 6.4m

=1.9x10° N.



86. The force F exerted on the beam is F'= 7900 N, as computed in the Sample Problem.
Let F/4 = S,/6, where S, =50x10° N/m” is the ultimate strength (see Table 12-1), then

6F _ 6(7900 N)

=———— —_=95x10"m’.
S, 50x10° N/m

A=

Thus the thickness isv4 =+/9.5x10™* m? =0.031m.
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