1. An isothermal process is one in which 7; = Ty which implies In(7/T;) = 0. Therefore,
with V/V;=2.00, Eq. 20-4 leads to

Vf
AS =nRIn| ~- |=(2.50 mol)(8.31 J/mol K )In(2.00) =14.4 J/K.

i



2. From Eq. 20-2, we obtain

O =TAS = (405 K)(46.0 J/K)=1.86x10" J.



3. We use the following relation derived in Sample Problem 20-2:
Tf

AS =mcln| —= |.
T

(a) The energy absorbed as heat is given by Eq. 19-14. Using Table 19-3, we find

O = cmAT = [386L](2.00 kg)(75 K)=5.79x10* J

kg-K

where we have used the fact that a change in Kelvin temperature is equivalent to a change
in Celsius degrees.

(b) With 7y=373.15 K and 7; = 298.15 K, we obtain

AS = (2.00 kg)| 386 ln(373'15J=173J/K.
kg K ) (298.15



4. (a) This may be considered a reversible process (as well as isothermal), so we use AS =
O/T where Q = Lm with L = 333 J/g from Table 19-4. Consequently,

(3337/g)(12.0 g)
273K

AS= =14.6 J/K.

(b) The situation is similar to that described in part (a), except with L = 2256 J/g, m =
5.00 g, and 7= 373 K. We therefore find AS =30.2 J/K.



5. (a) Since the gas is ideal, its pressure p is given in terms of the number of moles 7, the
volume ¥, and the temperature 7" by p = nR7/V. The work done by the gas during the
isothermal expansion is

A ,dV V.
W= dV =nRT | —=nRTIn—=%.
J v L5 7

1

We substitute V> =2.00V; to obtain

W = nRT 1n2.00 = (4.00 mol)(8.31 J/mol-K (400 K)1n2.00 =9.22x10" J.

(b) Since the expansion is isothermal, the change in entropy is given by
AS=[(yT)do=0/T,

where Q is the heat absorbed. According to the first law of thermodynamics, AEiy = O —
W. Now the internal energy of an ideal gas depends only on the temperature and not on
the pressure and volume. Since the expansion is isothermal, AEj,; = 0 and Q = W. Thus,

3
ASZKZKII?J:Z&I J/K.

(c) AS = 0 for all reversible adiabatic processes.



6. An isothermal process is one in which 7; = Ty which implies In (7}/T;) = 0. Therefore,
Eq. 20-4 leads to
22.0

.
AS=nRIn| L | =>n= =2.75 mol.
V. (8.31)In(3.4/1.3)

i



7. (a) The energy that leaves the aluminum as heat has magnitude O = muc (T, — 1)),
where m, is the mass of the aluminum, ¢, is the specific heat of aluminum, 7,; is the
initial temperature of the aluminum, and 7} is the final temperature of the aluminum-
water system. The energy that enters the water as heat has magnitude Q = m,.c, (T — T\)),
where m,, is the mass of the water, ¢, is the specific heat of water, and T, is the initial
temperature of the water. The two energies are the same in magnitude since no energy is
lost. Thus,

MCq (Tm' _Tf) — ey (Tf _Twz‘) =T, = MoCulu T CT

ma CG + mwcw

The specific heat of aluminum is 900 J/kg-K and the specific heat of water is 4190 J/kg-K.
Thus,

~(0.200 kg) (900 J/kg K )(100°C) +(0.0500 kg ) (4190 J/kg - K)(20°C)
- (0.200 kg) (900 J/kg-K)+(0.0500 kg )(4190 J/kg-K)
=57.0°C =330 K.

(b) Now temperatures must be given in Kelvins: 7,; = 393 K, T,,; = 293 K, and 7;= 330 K.
For the aluminum, dQ = m,c,dT and the change in entropy is

T,
AS, = (%€ = me, "9 = e, In= =(0.200 kg) (900 Jkg-K)In| 220K
T T, 373K
=221 JK.
(c) The entropy change for the water is
| T
AS, = [ o e, [T 2 e, In=L = (0.0500 kg) (4190 J/kgK)In| 220K
T T T. 293K
—+249J/K.

(d) The change in the total entropy of the aluminum-water system is

AS = AS, + A4S, =-22.1J/K+249J/K=+2.8 J/K.



8. We follow the method shown in Sample Problem 20-2. Since
7, dT
AS= mc |’ == =mec In(T;/T; ,
[N (T;/T)

then with AS'= 50 J/K, T;= 380 K, 7; = 280 K and m = 0.364 kg, we obtain c = 4.5%10?
J/kgK.



9. This problem is similar to Sample Problem 20-2. The only difference is that we need to
find the mass m of each of the blocks. Since the two blocks are identical the final
temperature 7y1s the average of the initial temperatures:

T} =

(T, +7,)==(305.5 K+294.5 K) = 300.0 K.

| =
N | —

Thus from Q = mcAT we find the mass m:

m= © _ 2157 =0.101 kg.
c¢AT (386 J/kg-K)(300.0 K—294.5K)
(a) The change in entropy for block L is
T
AS, =mc In| L |= (0.101kg)(386 J/kg-K)ln(?)OO'O Kj =—-0.710 J/K.
o 3055K

(b) Since the temperature of the reservoir is virtually the same as that of the block, which
gives up the same amount of heat as the reservoir absorbs, the change in entropy AS; of

the reservoir connected to the left block is the opposite of that of the left block: AS, =
—AS; =+0.710 J/K.

(c) The entropy change for block R is

300.0 K
2945 K

Tf
AS,=mcln - =(0.101 kg)(386 J/kg-K)In

iR

j =+0.723 J/K.
(d) Similar to the case in part (b) above, the change in entropy AS; of the reservoir
connected to the right block is given by AS;, = —ASg =-0.723 J/K.

(e) The change in entropy for the two-block system is
AS; + ASg=-0.710 J/K + 0.723 J/K =+0.013 J/K.
(f) The entropy change for the entire system is given by

AS:ASL+ ASZ +ASR+ AS;2 :ASL —ASL +ASR —ASRZO,

which is expected of a reversible process.



10. We concentrate on the first term of Eq. 20-4 (the second term is zero because the final
and initial temperatures are the same, and because In(1) = 0). Thus, the entropy change is

AS = nR In(V;/V)) .
Noting that AS =0 at Vy = 0.40 m3, we are able to deduce that V; = 0.40 m’. We now
examine the point in the graph where AS=32J/K and Vy =1.2 m’; the above expression
can now be used to solve for the number of moles. We obtain n = 3.5 mol.



11. (a) We refer to the copper block as block 1 and the lead block as block 2. The
equilibrium temperature 77 satisfies

mici(Ty —T;1) + macy(Ty —Tin) = 0,
which we solve for 77:

o _maT, tme T, (50.0 g)(386 I/kg K) (400 K) +(100 g)(128 kg K)(200 K)
T me tme, (50.0 g)(386 J/kg-K)+(100 g)(128 J/kg-K)

=320 K.

(b) Since the two-block system in thermally insulated from the environment, the change
in internal energy of the system is zero.

(c) The change in entropy is

T, T,
AS=AS, +AS, =myc, In| = |+m,c,In| —=——
T T

il i,2

=(50.0 g)(386 J/kg-K)In 320K +(100 g)(128 J/kg-K)In
400 K

320 K
200 K

=+1.72 J/K.



12. We use Eq. 20-1:

nC, dT 10.0

AS = =nd[ T%dT = ﬁ[ (10.0)* = (5.00)’ |=0.0368 J/K.
T 00 3




13. The connection between molar heat capacity and the degrees of freedom of a
diatomic gas is given by setting /=5 in Eq. 19-51. Thus, C,, =5R/2, C,=7R/2, and

y="7/5. In addition to various equations from Chapter 19, we also make use of Eq. 20-4

of this chapter. We note that we are asked to use the ideal gas constant as R and not plug
in its numerical value. We also recall that isothermal means constant-temperature, so 7, =
T, for the 1 — 2 process. The statement (at the end of the problem) regarding “per mole”
may be taken to mean that » may be set identically equal to 1 wherever it appears.

(a) The gas law in ratio form (see Sample Problem 19-1) is used to obtain

p=p| 2|2 = 22ologass,
£ 3 P 3

(b) The adiabatic relations Eq. 19-54 and Eq. 19-56 lead to
(c) Similarly, we find

e process 1 — 2
(d) The work is given by Eq. 19-14:
W =nRT, In (Vo/V1) = RT, In3 =1.10RT.
Thus, W/ nRT;= In3 = 1.10.
(e) The internal energy change is AEj,; = 0 since this is an ideal gas process without a
temperature change (see Eq. 19-45). Thus, the energy absorbed as heat is given by the
first law of thermodynamics: Q = AEjy+ W= 1.10RT), or O/ nRT=1n3 = 1.10.
(f) AEin =0 or AEiy / nRT1=0
(g) The entropy change is AS = Q/T) = 1.10R, or AS/R = 1.10.

e process 2 — 3

(h) The work is zero since there is no volume change. Therefore, W/nRT,= 0



(1) The internal energy change is

AE,
AE, =nC, (T, —T2)=(1)[§RJ (%—Tl]z—o.mm = i ==0.889.
1

This ratio (—0.889) is also the value for Q/nRT; (by either the first law of
thermodynamics or by the definition of Cy).

() AEin /nRT1=—0.889.
(k) For the entropy change, we obtain

AS ol B Sl Bl SV il B3 ) 0 S 304 =
?—nln[—Jﬂqun(T]—(l) 1n(1)+(1)(2j1n£ - j—0+2ln(3 ) ~—1.10 .

1 1 1

e process 3 — 1

(1) By definition, Q = 0 in an adiabatic process, which also implies an absence of entropy
change (taking this to be a reversible process). The internal change must be the negative
of the value obtained for it in the previous process (since all the internal energy changes

must add up to zero, for an entire cycle, and its change is zero for process 1 — 2), so
AEi = +0.889RT). By the first law of thermodynamics, then,

W =Q — AEiy = —0.889RT1,
or W /nRT,=-0.889.
(m) Q = 0 in an adiabatic process.
(n) AEin /nRT;=+0.889.

(0) AS/nR=0.



14. (a) It is possible to motivate, starting from Eq. 20-3, the notion that heat may be
found from the integral (or “area under the curve”) of a curve in a 7S diagram, such as
this one. Either from calculus, or from geometry (area of a trapezoid), it is
straightforward to find the result for a “straight-line” path in the 7S diagram:

T+T,
Qstraight = 2 A AS

which could, in fact, be directly motivated from Eq. 20-3 (but it is important to bear in
mind that this is rigorously true only for a process which forms a straight line in a graph
that plots 7 versus S). This leads to

0=300K) (15J/K)=4.5x10"J
for the energy absorbed as heat by the gas.
(b) Using Table 19-3 and Eq. 19-45, we find

AE, = n(%RJATZ (2.0 mol)(8.31 J/mol-K ) (200 K —400 K )=-5.0x10" J.

(c) By the first law of thermodynamics,

W=0-AE, =45kI—(-5.0kJ)=9.5kJ.



15. The ice warms to 0°C, then melts, and the resulting water warms to the temperature
of the lake water, which is 15°C. As the ice warms, the energy it receives as heat when
the temperature changes by dT is dQ = mc;dT, where m is the mass of the ice and ¢; is the
specific heat of ice. If 7; (= 263 K) is the initial temperature and 7y (= 273 K) 1s the final
temperature, then the change in its entropy is

| T
AS = deQ =me, [/ %T =me, In~=(0.010 kg) (2220 J/kg-K)ln(%j =0.828 J/K.

1

Melting is an isothermal process. The energy leaving the ice as heat is mLp, where L is
the heat of fusion for ice. Thus,

AS = O/T = mLi/T = (0.010 kg)(333 x 10° J/kg)/(273 K) = 12.20 J/K.

For the warming of the water from the melted ice, the change in entropy is

T,
AS=mc,In—,
T

where ¢, is the specific heat of water (4190 J/kg - K). Thus,

288 K
AS=(0.010ke)(4190 J/)ke-K) In| ——— |=2.24 J/K.
(0.010 kg) (4190 Jkg K) n(mj

The total change in entropy for the ice and the water it becomes is

AS=0.828 JJK+12.20 J/JK+2.24 J/K=15.27 J/K.

Since the temperature of the lake does not change significantly when the ice melts, the
change in its entropy is AS = Q/T, where Q is the energy it receives as heat (the negative
of the energy it supplies the ice) and T is its temperature. When the ice warms to 0°C,

Q=-me, (T, -T,)=—(0.010 kg)(2220 J/kg- K)(10 K)=-2227.

When the ice melts,
O=-mL, =—(0.010 kg)(333x10° J/ kg)=-3.33x10" .
When the water from the ice warms,

O=-mc,(T,—T)=—(0.010 kg)(4190 T/ kg- K)(15 K)=-629 J.



The total energy leaving the lake water is
0=-2227-333x10°T-629%x10°T=-4.18x 10’ J.

The change in entropy is

3
Mz—mlngz—M.Sl J/K.

The change in the entropy of the ice-lake system is AS = (15.27 — 14.51) J/K = 0.76 J/K.



16. (a) Work is done only for the ab portion of the process. This portion is at constant
pressure, so the work done by the gas is

W=[" p,dV = p, (4007, ~1.00V,) =3.00p,¥;, = KV=3.00

Dy

(b) We use the first law: AEj, = Q — W. Since the process is at constant volume, the work
done by the gas is zero and Ei, = Q. The energy Q absorbed by the gas as heat is O = nCy
AT, where Cy is the molar specific heat at constant volume and AT is the change in
temperature. Since the gas is a monatomic ideal gas, C,, =3R /2. Use the ideal gas law to

find that the initial temperature is

pV, _4p,

];) =
nR nR

and that the final temperature is

Ve _Cp)E) _8pl,
" nR nR nR

Thus,

3 8pV, 4p,V.
==—npR| —L2 -0 1=6.00p,V,.
Q 2 ( nR nR j Pt

The change in the internal energy is AEiy= 6poVy or AEin/poVo=6.00. Since n = 1 mol,
this can also be written O = 6.00RT).

(c) For a complete cycle, AEi, =0
(d) Since the process is at constant volume, use dQ = nCy dT to obtain

_dO _ . dT T,
AS = J‘T—VLCV‘L’)7—I’IC’V1HF.

b

Substituting C,, =2 R and using the ideal gas law, we write

I _pV, _Q2p)Ar) _5
T, pV, p4ry)

Thus, AS=2nRIn2. Since n =1, thisis AS=3RIn2=8.64 J/K..

(e) For a complete cycle, AEi, = 0 and AS = 0.



17. (a) The final mass of ice is (1773 g + 227 g)/2 = 1000 g. This means 773 g of water
froze. Energy in the form of heat left the system in the amount mLy, where m is the mass
of the water that froze and L is the heat of fusion of water. The process is isothermal, so
the change in entropy is

AS = Q/T = —mLy/T=—(0.773 kg)(333 x 10° J/kg)/(273 K) = —943 J/K.

(b) Now, 773 g of ice is melted. The change in entropy is

(c) Yes, they are consistent with the second law of thermodynamics. Over the entire cycle,
the change in entropy of the water-ice system is zero even though part of the cycle is
irreversible. However, the system is not closed. To consider a closed system, we must
include whatever exchanges energy with the ice and water. Suppose it is a constant-
temperature heat reservoir during the freezing portion of the cycle and a Bunsen burner
during the melting portion. During freezing the entropy of the reservoir increases by 943
J/K. As far as the reservoir-water-ice system is concerned, the process is adiabatic and
reversible, so its total entropy does not change. The melting process is irreversible, so the
total entropy of the burner-water-ice system increases. The entropy of the burner either
increases or else decreases by less than 943 J/K.



18. In coming to equilibrium, the heat lost by the 100 cm’ of liquid water (of mass m,, =
100 g and specific heat capacity c,, = 4190 J/kg-K) is absorbed by the ice (of mass m;
which melts and reaches 7> 0 °C). We begin by finding the equilibrium temperature:

S 0=0

Qwarm water cools + Q =0

ice warms to 0° + Qice melts + Qmelted ice warms

c,m,, (T, =20°)+cm, (0°=(=10°))+L.m, +c,m, (T, —0°)=0

which yields, after using Lr = 333000 J/kg and values cited in the problem, 7y = 12.24 °
which is equivalent to 7y= 285.39 K. Sample Problem 19-2 shows that

T
A Stemp change =mc 11'1 [?Zj

1

for processes where AT =T, — T}, and Eq. 20-2 gives

L
A Smelt = ;—,—m

o

for the phase change experienced by the ice (with 7, = 273.15 K). The total entropy
change is (with 7 in Kelvins)

AS,ion = M,C, ln(285’39j+m,ci 111(273.15}%% 1n(285.39)+ L, m,

293.15 263.15 273.15) 273.15
=(-11.24+0.66+1.47+9.75)J/K = 0.64 J/K.



19. We consider a three-step reversible process as follows: the supercooled water drop (of
mass m) starts at state 1 (77 = 268 K), moves on to state 2 (still in liquid form but at 7, =
273 K), freezes to state 3 (75 = T5), and then cools down to state 4 (in solid form, with 7}

= T1). The change in entropy for each of the stages is given as follows:
ASlz = mcy, In (Tz/Tl),

AS23 = —mLF/Tz,
AS34 = mcy In (T4/T3) = mcy In (T]/Tz) = —mcy In (Tz/T])

Thus the net entropy change for the water drop is

AS=AS,, +AS,, +AS,, Zm(cw—c,)ln( .
2

1

1.00 g)(333 J/
=(1.00 g)(4.19 J/g- K -2.22 J/g-K)ln(273 Kj_( g)(333 J/g)
268 K 273K

=-1.18 J/K.



20. (a) We denote the mass of the ice (which turns to water and warms to 7j) as m and the
mass of original-water (which cools from 80° down to 7;) as m’. From X0 = 0 we have

Lrm+cm (T;—0°) +cm’ (Tr —80°) =0.

Since L= 333 x 10° J/kg, ¢ = 4190 J/(kg-C®), m" = 0.13 kg and m = 0.012 kg, we find Ty
= 66.5°C, which is equivalent to 339.67 K.

(b) Using Eq. 20-2, the process of ice at 0° C turning to water at 0° C involves an entropy
change of
Q _ _Lem  _
T = 21315K — 14.6 J/JK.
(c) Using Eq. 20-1, the process of m = 0.012 kg of water warming from 0° C to 66.5° C
involves an entropy change of

L339.67 cmdl ln(339'67J:11,0 JK.
7315 T 15

(d) Similarly, the cooling of the original-water involves an entropy change of

[rremdl m'ln[339'67j=—21.2 JK
5315 T 353.15
(e) The net entropy change in this calorimetry experiment is found by summing the

previous results; we find (by using more precise values than those shown above) AS, =
4.39 J/K.



21. We note that the connection between molar heat capacity and the degrees of freedom
of a monatomic gas is given by setting /= 3 in Eq. 19-51. Thus, C, =3R/2, C,=5R/2,

and y=5/3.

(a) Since this is an ideal gas, Eq. 19-45 holds, which implies AEj, = 0 for this process. Eq.
19-14 also applies, so that by the first law of thermodynamics,

Q: 0+ W=nRT1 In Vz/Vl :prl In2 - Q/pr1: In2 = 0.693.

(b) The gas law in ratio form (see Sample Problem 19-1) implies that the pressure
decreased by a factor of 2 during the isothermal expansion process to /,=2.00V, so that
it needs to increase by a factor of 4 in this step in order to reach a final pressure of
p2=2.00p;. That same ratio form now applied to this constant-volume process, yielding
4.00 = 75T, which is used in the following:

3 3 T 3 9
Q=chAT=n(5Rj(T2—T1)=5nRT{72—1J=5pIVI(4—1)=5pr1

1
or O/ pV,=9/2=4.50.

(c) The work done during the isothermal expansion process may be obtained by using Eq.
19-14:

W= I’lRT1 In Vz/Vlzprl In2.00 - W/pl V1: In2 = 0.693.

(d) In step 2 where the volume is kept constant, W = 0.

(e) The change in internal energy can be calculated by combining the above results and
applying the first law of thermodynamics:

total

9 9
AE = O = Wit = [prl 1n2+5p1V1j_(p1V1 ln2+0) :Eprl

or AEin/p1V1=9/2 =4.50.

(f) The change in entropy may be computed by using Eq. 20-4:

AS =R ln(z'OOV1 j+ C, 11{4'0T0T1 j =RIn2.00 +(%len (2.00)°

1 1

=RIn2.00+3RIn2.00=4RIn2.00=23.0 J/K.

The second approach consists of an isothermal (constant 7) process in which the volume
halves, followed by an isobaric (constant p) process.



(g) Here the gas law applied to the first (isothermal) step leads to a volume half as big as
the original. Since In(1/2.00) =—1In2.00, the reasoning used above leads to

O=-p1V1In2.00 = Q/pV,=-In2.00=-0.693.

(h) To obtain a final volume twice as big as the original, in this step we need to increase
the volume by a factor of 4.00. Now, the gas law applied to this isobaric portion leads to
a temperature ratio 7,/7; = 4.00. Thus,

5 5 T, 5 15
0=CAT = ER(Tz -T)= ERTl (TZ—IJZ Eprl (4-1) :Eprl

1
or O/p\Vi=15/2="17.50.
(1) During the isothermal compression process, Eq. 19-14 gives

W =nRT, In Vo/Vi=piViIn (=1/2.00) =—p V1 In 2.00 = W/p,V,=—-In2 =-0.693.

(j) The initial value of the volume, for this part of the process, is V; =¥, /2, and the final

volume is ¥y = 2V;. The pressure maintained during this process is p” = 2.00p;. The work
is given by Eq. 19-16:

W=/ AV = p(V,-¥,)=(2.00p, )(2.001/1 —%Vlj =3.00pV, = W/pV,=3.00.
(k) Using the first law of thermodynamics, the change in internal energy is

AEvint = Qtotal - W

t

15 9
otal (?PJ/] - ln2.00]—(3p1K -V ln2.00) - Eprl

or AEin/p1V1=9/2 =4.50. The result is the same as that obtained in part (e).

(1) Similarly, AS =4R1In2.00 = 23.0 J/K. the same as that obtained in part (f).



22. (a) The final pressure is

1.00 m*=2.00 m3)/1 .00 m3

p, =(5.00 kpa) e 7 = (5,00 kpa) =1.84 kPa .

(b) We use the ratio form of the gas law (see Sample Problem 19-1) to find the final
temperature of the gas:

r - i[pf fJ:( k) L8 kP00 m') _ e
» Y, (5.00 kPa)(1.00 m®)

For later purposes, we note that this result can be written “exactly” as Ty = T; (2e™M). In
our solution, we are avoiding using the “one mole” datum since it is not clear how precise
it is.

(c) The work done by the gas is

W= f pdV = J:/ (5.00 kPa) eV ay = (5.00 kPa) e [ ~ae™ |

v,
=(5.00 kPa) e (1.00 m* ) (e - ™)
=3.16 kJ .

(d) Consideration of a two-stage process, as suggested in the hint, brings us simply to Eq.
20-4. Consequently, with C, =2 R (see Eq. 19-43), we find

V T v
AS=nR In| -~ +n(ER)1n L =nR(ln2+iln(2e_l) =p’—V’ ln2+éln2+ilne_1
V. 2 T 2 T 2 2

i i

—In2-=
600 K 2

_ (5000 Pa)(1.00 m3)[5 3}
2
=1.94 J/K.



23. We solve (b) first.

(b) For a Carnot engine, the efficiency is related to the reservoir temperatures by Eq. 20-
13. Therefore,
T, _humh Rk
£ 0.22

which is equivalent to 68°C.

(a) The temperature of the cold reservoiris 7 = Ty — 75 =341 K- 75 K =266 K.



24. Eq. 20-13 leads to
T, 1 373K

— =22 =0.9999995
T,  7x10°K

quoting more figures than are significant. As a percentage, this is €= 99.99995%.



25. (a) The efficiency is

T,-T, (235-115K

= =0.236=23.6% .
T,  (2358273)K

E =

We note that a temperature difference has the same value on the Kelvin and Celsius
scales. Since the temperatures in the equation must be in Kelvins, the temperature in the
denominator is converted to the Kelvin scale.

(b) Since the efficiency is given by €= |W]/|Qnu|, the work done is given by

7| = €]0,|=0.236(6.30x10* J) =1.49x10* J .



26. The answers to this exercise do not depend on the engine being of the Carnot design.
Any heat engine that intakes energy as heat (from, say, consuming fuel) equal to |Qn| =
52 kJ and exhausts (or discards) energy as heat equal to |Qr| = 36 kJ will have these
values of efficiency £ and net work W.

(a) Eq. 20-12 gives
o

e=1-—=031=31%.

H

(b) Eq. 20-8 gives
W =|0y|—-|0.|=16 KJ .



27. With 71, = 290 k, we find

8=1—£:>TH= 7, _ 290K

T, - 1-0.40
which yields the (initial) temperature of the high-temperature reservoir: 7y = 483 K. If
we replace € = 0.40 in the above calculation with £ = 0.50, we obtain a (final) high

temperature equal to 7;; =580 K . The difference is

T, -T, =580 K—483 K =97 K.



28. (a) Eq. 20-13 leads to

e=1-Tu 1 3B K 4107
T, 373K

We recall that a Watt is Joule-per-second. Thus, the (net) work done by the cycle per unit
time is the given value 500 J/s. Therefore, by Eq. 20-11, we obtain the heat input per unit
time:
/4 0.500 kJ/s
£= =
04| 0.107

=4.67 KI/s .

(b) Considering Eq. 20-8 on a per unit time basis, we find (4.67 — 0.500) kJ/s = 4.17 kl/s
for the rate of heat exhaust.



29. (a) Energy is added as heat during the portion of the process from a to b. This portion
occurs at constant volume (V3), so Oi, = nCy AT. The gas is a monatomic ideal gas, so
C, =3R/2 and the ideal gas law gives

AT = (1nR)ps Vs — pa Va) = (UnR)ps — pa) V-

Thus, Q,, =3(p,—p,)V,. V» and p, are given. We need to find p,. Now p, is the same as

P and points ¢ and b are connected by an adiabatic process. Thus, p V. = p,V, and

Vv Y 1 5/3
=p =|L = —— | (1.013%x10° Pa)=3.167x10" Pa.
pa pL (Vj pb (8.00) ( a) a

c

The energy added as heat is
0, =%(1.013><106 Pa—3.167x10* Pa)(1.00x107° m*)=1.47x10" J.

(b) Energy leaves the gas as heat during the portion of the process from ¢ to a. This is a
constant pressure process, so

Qout:nCpAT:%(paI/a _pcK‘):%pa(Va _Vc)

=%(3.167><104 Pa)(~7.00)(1.00x107° m*)=—5.54x10" J,

or | Q,,[=5.54x10% J . The substitutions V, — V. = V,—8.00 ¥, =—-7.00 ¥, and C, =3R
were made.

(c) For a complete cycle, the change in the internal energy is zero and
W=0=147x10°T-554x10*T=9.18 x 10* J.
(d) The efficiency is

£=W/Qin=(9.18 x 10> 1)/(1.47 x 10° J) = 0.624 = 62.4%.



30. From Fig. 20-28, we see Oy = 4000 J at 7 = 325 K. Combining Eq. 20-11 with Eq.
20-13, we have
w T,

EZI_T_; = W =9237.

Now, for 7, = 550 K, we have

= 0,=16921~1.7k]



31. (a) The net work done is the rectangular “area” enclosed in the pV diagram:
W=(V=V,)(p—py)=(2V,=V;) (2P, = Py) =V, 1y
Inserting the values stated in the problem, we obtain W =2.27 kJ.

(b) We compute the energy added as heat during the “heat-intake” portions of the cycle
using Eq. 19-39, Eq. 19-43, and Eq. 19-46:

3 T 5 T T

a a a

T, [g(g_l};(g_gn:pon(g@_l)g@_z))

13
:71701/;)

where, to obtain the last line, the gas law in ratio form has been used (see Sample
Problem 19-1). Therefore, since W = poVy, we have Q.p. = 13W/2 = 14.8 kJ.

(c) The efficiency is given by Eq. 20-11:

8=1:%=0.154=15.4%.

4]
(d) A Carnot engine operating between 7. and 7, has efficiency equal to

8=1—£=1—120.750=75.0%
1, 4

where the gas law in ratio form has been used.

(e) This is greater than our result in part (c), as expected from the second law of
thermodynamics.



32. (a) Using Eq. 19-54 for process D — A gives
Y — ¥ Py Y_ Y
pDVD _pAVA = 3_2 (81/;)) _pOK)
which leads to 8" =32 = y=5/3. The result (see §19-9 and §19-11) implies the gas is

monatomic.

(b) The input heat is that absorbed during process 4 — B:

5 T, 5 5
Oy =nC,AT=n (ERJ T, [Fj_lj =nRT, (Ej (2-1)=p/, (Ej

and the exhaust heat is that liberated during process C — D:

- —nl2 Ll Sl-2y=-Lp (2
QL—nCpAT—n(2RjTD [1 T} nRTD(2j(1 2) poVo( j

5 4 2

where in the last step we have used the fact that7,, =17, (from the gas law in ratio
form — see Sample Problem 19-1). Therefore, Eq. 20-12 leads to

1

9 =1-=075=75%

H

e=1-




33.(a) Weuse €= |W/QH| . The heat absorbed is |QH| = % = 802—21{; =33kl.

(b) The heat exhausted is then |QL| = |QH| —|W| =33kJ-8.2kJ =25kJ.

w
(c) Now we have |QH| =—| :&kj =26Kk].
e 031

(d) Similarly,

Oc| =|0u|-|W|=26kI-8.2kI =18K].



34. All terms are assumed to be positive. The total work done by the two-stage system is
W, + W,. The heat-intake (from, say, consuming fuel) of the system is O; so we have (by
Eq. 20-11 and Eq. 20-8)

£ W +W, :(QI_Q2)+(Q2_Q3) :1_%
2 2 0

Now, Eq. 20-10 leads to

where we assume (), is absorbed by the second stage at temperature 7». This implies the
efficiency can be written




35. (a) The pressure at 2 is p» = 3.00p;, as given in the problem statement. The volume is
V> = V1 =nRTi/p;. The temperature is

T = .V, _ 3.00p/
2

=3.007, =
nR nR

(b) The process 2 — 3 is adiabatic, so T,V =T,/ Using the result from part (a), V3 =
4.007,, V,=V; and y=1.30, we obtain

r-1 0.30
__ L 3002 :3.00(Lj =1.98.
T,/3.00 . 4.00

N

(c) The process 4 — 1 is adiabatic, so T, =TV”"". Since V4 = 4.00V;, we have

7-1 0.30
ﬂ = 5 = (Lj =0.660.
T\, 4.00

(d) The process 2 — 3 is adiabatic, so p,V; = p,Vi7 or p,=(V,/V;)" p,. Substituting V3
=4.00V,, Voa=V1, p»=3.00p; and y=1.30, we obtain

Py _ 300

pl - W = 0495

(e) The process 4 — 1 is adiabatic, so p, V] = p,V;” and

4
&Z 5 Z;m=0.165,
n Y (4.00)"

where we have used V4 =4.00V;.

(f) The efficiency of the cycle is £ = W/Q,,, where W is the total work done by the gas
during the cycle and Q) is the energy added as heat during the 1 — 2 portion of the cycle,
the only portion in which energy is added as heat. The work done during the portion of

the cycle from 2 to 3 is W3 = [p dV. Substitute p = p,V’7 /V'” to obtain

s vy _ _
Wy :szz}/JZ 4 de=[—};/2_21 j (Vzl T~V 7).



Substitute V, =V, V3 =4.00V1, and p3 = 3.00p; to obtain
W, = 3pV, - 1_] _ [ 3nRT] 1_% .
-y 47 y—1 47
Similarly, the work done during the portion of the cycle from 4 to 1 is
/4
Wy =220\ (7 ) 20 (1oL ) <[ RT lj
y—1 y—1 47 y—1 47

No work is done during the 1 — 2 and 3 — 4 portions, so the total work done by the gas

during the cycle is
W =W+, = 2R (1——1_] j
y—1 47

The energy added as heat is

Q12 = l’lCV(Tz— T1) = nCV(3T1 — Tl) :2I’ZCVT1,
where Cy is the molar specific heat at constant volume. Now
Y= Cp/CV: (CV + R)/CV: 1+ (R/CV),

so Cy = R/(y— 1). Here C, is the molar specific heat at constant pressure, which for an
ideal gas is C, = Cy + R. Thus, Q1> = 2nRT/(y— 1). The efficiency is

g:2nRTl(1 1}7—1 .

y—1 \ 47 )2aRT, 47

With y=1.30, the efficiency is £= 0.340 or 34.0%.



36. Eq. 20-10 still holds (particularly due to its use of absolute values), and energy
conservation implies || + QL = Q. Therefore, with 7y, = 268.15 K and 7y = 290.15 K,

we find
o (T i 1 (290,15
oul-lal (-t (2012

L

which (with [ = 1.0 J) leads to |0 |= || (1_268 115/290 lsj:m



37. A Carnot refrigerator working between a hot reservoir at temperature 7y and a cold
reservoir at temperature 71 has a coefficient of performance K that is given by

For the refrigerator of this problem, 7 = 96° F =309 K and 71 = 70° F =294 K, so
K=(294 K)/(309 K -294 K) = 19.6.

The coefficient of performance is the energy O; drawn from the cold reservoir as heat
divided by the work done: K = |Qy|/|W]. Thus,

|01 =KW= (19.6)(1.0J) =20 J.



38. (a) Eq. 20-15 provides

0, [1+KC]
Ke=—777=1%|=|0|| ——
|QH|_|QL| | | | | KC

which yields |Qy| = 49 kJ when K¢ = 5.7 and |Qy| = 42 kJ.
(b) From §20-5 we obtain

W|=104|-]0.| =494 KI-42.0 kI =7.4 k]

if we take the initial 42 kJ datum to be accurate to three figures. The given temperatures
are not used in the calculation; in fact, it is possible that the given room temperature
value is not meant to be the high temperature for the (reversed) Carnot cycle — since it
does not lead to the given K¢ using Eq. 20-16.



39. The coefficient of performance for a refrigerator is given by K = |Qr|/|W], where O\ is
the energy absorbed from the cold reservoir as heat and W is the work done during the
refrigeration cycle, a negative value. The first law of thermodynamics yields Ony + Q1 —
W = 0 for an integer number of cycles. Here Oy is the energy ejected to the hot reservoir
as heat. Thus, O = W — On. Oy is negative and greater in magnitude than W, so |Qy| =
|Oul = [W]. Thus,
oWl
]

The solution for || is |W| = |Qu|/(K + 1). In one hour,

7.54M]J
1= 3.8+1

=1.57M1J.

The rate at which work is done is (1.57 x 10° J)/(3600 s) = 440 W.



40. (a) Using Eq. 20-14 and Eq. 20-16, we obtain

lid =|]§—L|= (1.07) (%J =0.071J.
c

(b) A similar calculation (being sure to use absolute temperature) leads to 0.50 J in this
case.

(c) With 7. = 100 K, we obtain || =2.0 J.

(d) Finally, with the low temperature reservoir at 50 K, an amount of work equal to || =
5.0 J is required.



41. The efficiency of the engine is defined by €= W/Q, and is shown in the text to be

n-T, W _I-T,
42 5 —=-12z
7 0 7

The coefficient of performance of the refrigerator is defined by K = Q4/W and is shown in
the text to be
I O
L-T, ~ W T,-T,
Now Q4= Q03— W, so
(Q3 - W)/W: T4/(T3 - T4)

The work done by the engine is used to drive the refrigerator, so W is the same for the
two. Solve the engine equation for W and substitute the resulting expression into the
refrigerator equation. The engine equation yields W = (T} — T2)(Q:/T; and the substitution
yields

Solving for 03/Q;, we obtain

Q3_£ T, j[ﬂ—zj_[ T, ][Tl—nj_l—(n/ﬂ)
== ——+1 = = )
o (n-1, L L-1,)\ T ) 1-(T/L)

With 77 =400 K, 7, = 150 K, 75 = 325 K, and 74 = 225 K, the ratio becomes Q3/0;=2.03.




42. (a) Eq. 20-13 gives the Carnot efficiency as 1 — 7. /Ty . This gives 0.222 in this case.
Using this value with Eq. 20-11 leads to

W= (0.222)(750 J) = 167 1.

(b) Now, Eq. 20-16 gives K¢ =3.5. Then, Eq. 20-14 yields || = 1200/3.5 =343 J.



43. We are told K = 0.27K¢ where

_ L 294K
© T,-T 307K-294K

where the Fahrenheit temperatures have been converted to Kelvins. Expressed on a per
unit time basis, Eq. 20-14 leads to

w
W] _1Q.1/¢ _ 4000 Btu/h _ 643 Bru/h.

¢t K (027)(23)

Appendix D indicates 1 But/h = 0.0003929 hp, so our result may be expressed as |W|/t =
0.25 hp.



44. The work done by the motor in # = 10.0 min is || = Pt = (200 W)(10.0 min)(60 s/min)
=1.20 x 10° J. The heat extracted is then

T, jw| (270K) (1.20x10°J)
T,-T.  300K-270K

=1.08%x10°7J.

0. [= K| =



45. We need nine labels:

Label | Number of molecules on side 1 | Number of molecules on side 2
I 8 0
II 7 1
111 6 2
v 5 3
A% 4 4
VI 3 5
VII 2 6
VIII 1 7
IX 0 8

The multiplicity W is computing using Eq. 20-20. For example, the multiplicity for label
IVis
8! 40320

(9(3)  (120)(6)

and the corresponding entropy is (using Eq. 20-21)

S=kInw =(1.38x10 J/K) In(56) =5.6x10™ J/K.

In this way, we generate the following table:

Label w S
I 1 0
11 8 | 29x102 /K

11 28 | 4.6x 102 JK
v 56 | 5.6x 102 J/K
\ 70 | 5.9x 10 J/K
VI 56 | 5.6x10%J/K
VII 28 | 4.6x 102 J/K
VIII 8 | 29x102JK
X 1 0




46. (a) We denote the configuration with n heads out of N trials as (n; N). We use Eq. 20-
20:

50!

_ 14
(25!)(50_25)!—1.26x10 .

W (25;50) =

(b) There are 2 possible choices for each molecule: it can either be in side 1 or in side 2
of the box. If there are a total of N independent molecules, the total number of available
states of the N-particle system is

N =2x2x2x---x2=2",

total

With N = 50, we obtain Nig = 2"=1.13 x 10",

(c) The percentage of time in question is equal to the probability for the system to be in
the central configuration:

w(25;50) 1.26x10"

- ~11.1%.
2% 1.13x10" °

p(25;50) =

With N =100, we obtain

(d) W(N/2, Ny= NV/[(N/2)!T = 1.01 x 10%,

(€) Nt = 2" =1.27 x 10%°,

(f) and p(N/2;N) = W(N/2, N)/ Niota1= 8.0%.

Similarly, for N =200, we obtain

(g) W(N/2, N)=9.25 x 10,

(h) Nt =1.61 x 10 %,

(1) and p(N/2; N) = 5.7%.

(j) As N increases the number of available microscopic states increase as 2, so there are

more states to be occupied, leaving the probability less for the system to remain in its
central configuration. Thus, the time spent in there decreases with an increase in V.



47. (a) Suppose there are n; molecules in the left third of the box, n¢c molecules in the
center third, and nz molecules in the right third. There are N! arrangements of the N
molecules, but n;! are simply rearrangements of the n; molecules in the right third, n¢!
are rearrangements of the n¢ molecules in the center third, and ng! are rearrangements of
the nz molecules in the right third. These rearrangements do not produce a new
configuration. Thus, the multiplicity is

N!
W=———.
n,'n.lng!

(b) If half the molecules are in the right half of the box and the other half are in the left
half of the box, then the multiplicity is

_ N!
" (N/2)YN/2)

If one-third of the molecules are in each third of the box, then the multiplicity is

~ N!
Wa= (N/3)\(N/3){(N/3)!

The ratio is
(N/2))(N/2)!

(N/3)Y(N/3)(N/3)!

LN
WB

(c) For N=100,

| |
Wy o SO0 o si0m,
W, 33133134!



48. Using Hooke’s law, we find the spring constant to be

=L 1N 4 g6 Nm.
X 0.0350m

To find the rate of change of entropy with a small additional stretch, we use Eq. 20-7 (see
also Sample Problem 20-3) and obtain

d_S
dx

_k|x|_ (42.86 N/m)(0.0170 m)
T 275K

=2.65%x10" J/K-m.




49. Using Eq. 19-34 and Eq. 19-35, we arrive at

Av= (3 =2 WRTM

(a) We find, with M = 28 g/mol = 0.028 kg/mol (see Table 19-1), Av=87 m/s at 250 K,
(b) and Av;=122 =1.2x10” m/s at 500 K.

(c) The expression above for Av implies

M >
T=——"7="=3(Av
R 2 &
which we can plug into Eq. 20-4 to yield
AS = nR In(V;/V;) + nCy In(T;/T;) = 0 + nCy In[(Av)*/(Av:)*] = 2nCy In(Av; /AV)).

Using Table 19-3 to get Cy= 5R/2 (see also Table 19-2) we then find, for n = 1.5 mol, AS
=22 J/K.



50. The net work is figured from the (positive) isothermal expansion (Eq. 19-14) and the
(negative) constant-pressure compression (Eq. 19-48). Thus,

Whet = nRTH In(Vinax/ Vinin) + BR(T1 — Th)

where n = 3.4, Ty = 500 K, 7, = 200 K and Viax/Vimin = 5/2 (same as the ratio 7y /T1).
Therefore, Wpet = 4468 J. Now, we identify the “input heat” as that transferred in steps 1
and 2:

Qin = Ql + QZ = nCV(TH_ TL) + nRTH 1n(Vmax/Vmin)

where Cy = 5R/2 (see Table 19-3). Consequently, Oi, = 34135 J. Dividing these results
gives the efficiency: Wye/Oin = 0.131 (or about 13.1%).



51. (a) If Ty is the temperature of the high-temperature reservoir and 71 is the
temperature of the low-temperature reservoir, then the maximum efficiency of the engine
is

— 800+40) K
£= =T _ ( ) =0.78 or 78%.
T,  (800+273) K

(b) The efficiency is defined by €= |W|/|Qu|, where W is the work done by the engine and
Oy 1s the heat input. W is positive. Over a complete cycle, Oy = W+ |Q1|, where Oy is the
heat output, so €= W/(W + |Qv|) and |Qy| = W[(1/€) — 1]. Now &= (T — Tr)/ Ty, where Ty
is the temperature of the high-temperature heat reservoir and 71 is the temperature of the
low-temperature reservoir. Thus,

1,__& and |Q,|= udht
2 H_TL TH_TL

The heat output is used to melt ice at temperature 7; = — 40°C. The ice must be brought to
0°C, then melted, so
0Ll = mc(Ty—T;) + mLp,

where m 1s the mass of ice melted, 7 is the melting temperature (0°C), c is the specific
heat of ice, and Lr is the heat of fusion of ice. Thus,

WTL/(TH — TL) = mc(Tf— T,) + mLF.

We differentiate with respect to time and replace dW/dt with P, the power output of the
engine, and obtain

PTL/(TH - TL) = (dm/dt)[c(]}— T,) + LF]

dm _( PT} 1
di \T,=T, )\ e(T,-T)+L, |

Now, P=100x 10° W, 7. =0+ 273 =273 K, Ty = 800 + 273 = 1073 K, T, = —40 + 273
=233K, T;=0+273 =273 K, ¢ =2220 J/kg-K, and Lr= 333 X 10° J/kg, so

Therefore,

dm | (100x10° J/s)(273 K) 1
di | 1073K-273K || (2220 J/kg-K)(273 K—233 K)+333x10° J/kg

= 82kg/s.

We note that the engine is now operated between 0°C and 800°C.



52. (a) Combining Eq. 20-11 with Eq. 20-13, we obtain

T 260K
| =04 [I_T_Lj =(500J) (I_M] =93.81.

H
(b) Combining Eq. 20-14 with Eq. 20-16, we find

0] 1000J

= =2311.
(THT—LTL) (320?(695601()

)=




53. (a) Starting from ZQ =0 (for calorimetry problems) we can derive (when no phase

changes are involved)

_ emT +c,m,T,

T, =40.9°C,
omy tc,m,
which is equivalent to 314 K.
(b) From Eq. 20-1, we have
314 emdT 314
AS, e = [ = (386)(0.600)1n(gj =-27.1JKK.

(c) For water, the change in entropy is

314

AS, e = = (4190)(0.0700)11{2—%} =30.5 J/K.

water

fl4 cmdT

83

(d) The net result for the system is (30.5 — 27.1) J/K = 3.4 J/K. (Note: these calculations
are fairly sensitive to round-off errors. To arrive at this final answer, the value 273.15
was used to convert to Kelvins, and all intermediate steps were retained to full calculator
accuracy.)



54. For an isothermal 1deal gas process, we have Q = W = nRT In(V;/V;). Thus,
AS=Q/T = W/T = nR In(V;/V;)

(a) V¢/Vi=(0.800)/(0.200) = 4.00, AS = (0.55)(8.31)In(4.00) = 6.34 J/K.

(b) V;/Vi=(0.800)/(0.200) = 4.00, AS = (0.55)(8.31)In(4.00) = 6.34 J/K.

(c) V¢/Vi=(1.20)/(0.300) = 4.00, AS = (0.55)(8.31)In(4.00) = 6.34 J/K.

(d) V;/V; = (1.20)/(0.300) = 4.00, AS = (0.55)(8.31)In(4.00) = 6.34 J/K.



55. Except for the phase change (which just uses Eq. 20-2), this has some similarities
with Sample Problem 20-2. Using constants available in the Chapter 19 tables, we
compute

L .
AS = m[cice In(273/253) + 553 + Cyar IN(313/273)] = 118 X 10° JK.



56. Eq. 20-4 yields
AS = nRIn(V;/V;) + nCyIn(Ty/T;) = 0+ nCyIn(425/380)

where n=3.20 and Cy = %R (Eq. 19-43). This gives 4.46 J/K.



57. (a) It 1s a reversible set of processes returning the system to its initial state; clearly,
ASpet = 0.

(b) Process 1 is adiabatic and reversible (as opposed to, say, a free expansion) so that Eq.
20-1 applies with dQ = 0 and yields AS; = 0.

(c) Since the working substance is an ideal gas, then an isothermal process implies O = W,
which further implies (regarding Eq. 20-1) dQ = p dV. Therefore,

dQ cpdV _ dV

which leads to AS, =nRIn(1/2)=-23.0 J/K.

(d) By part (a), AS; + AS; + AS; = 0. Then, part (b) implies AS; = —ASs. Therefore, AS, =
23.0 J/K.



58. (a) The most obvious input-heat step is the constant-volume process. Since the gas is

monatomic, we know from Chapter 19 that C, = %R . Therefore,

3

0, =nC,AT=(1.0 mol)(gj(&ﬁ !

mol-

](600 K —300 K)=3740 J.

Since the heat transfer during the isothermal step is positive, we may consider it also to
be an input-heat step. The isothermal Q is equal to the isothermal work (calculated in the
next part) because AEj; = 0 for an ideal gas isothermal process (see Eq. 19-45).
Borrowing from the part (b) computation, we have

J
mol-K

O, = NRT,In2 = (1 mol) (8.31 j(600 K)In2 = 3456 1.

Therefore, Oy = Oy + Oisotherm = 7.2 X 10° J.

(b) We consider the sum of works done during the processes (noting that no work is done
during the constant-volume step). Using Eq. 19-14 and Eq. 19-16, we have

W = I’IRTHIH(%) +pmin(Vmin - Vmax)

min

where (by the gas law in ratio form, as illustrated in Sample Problem 19-1) the volume
ratio is

Thus, the net work is

W=nRT,In2+p_. V.

min

[1_@} nRT,In2+nRT, (1-2)= nR(T,In2~T, )
J
mol- K

=(1 mol)(8.31 j((600 K)In2-(300 K))

=9.6x10" I.

(c) Eq. 20-11 gives

€:K:0.134 =~ 13%.

H



59. (a) Processes 1 and 2 both require the input of heat, which is denoted Q. Noting that
rotational degrees of freedom are not involved, then, from the discussion in Chapter 19,
C, =3R/2, C,= S5R/2,and y=5/3. We further note that since the working substance

is an ideal gas, process 2 (being isothermal) implies O, = W,. Finally, we note that the
volume ratio in process 2 is simply 8/3. Therefore,

Oy =010, =nC, (T'—T)+nRT'1n§

which yields (for 7= 300 K and 7" = 800 K) the result Oy = 25.5 X 10° J.

(b) The net work is the net heat (Q; + 0> + O3). We find O3 from nC, (T — T") = -20.8 X
10° J. Thus, W=4.73 x 10’ J.

(c) Using Eq. 20-11, we find that the efficiency is

_lag3xio?

£= = - =0.185 or 18.5%.
04| 25.5x10




60. (a) Starting from Z 0O =0 (for calorimetry problems) we can derive (when no phase

changes are involved)
_emT +e,m T,

T, =—-44.2°C,
’ cm, tc,m,
which is equivalent to 229 K.
(b) From Eq. 20-1, we have
229 emdT 229
AS g = |, =(134)(0.045)In (%j =-1.69 J/K.
(c) Also,
T 22
ASy = [ mdl _ (336)(0.0250)In[ 22 | = 2.38 JK.
>3 153

(d) The net result for the system is (2.38 — 1.69) J/K = 0.69 J/K. (Note: these calculations
are fairly sensitive to round-off errors. To arrive at this final answer, the value 273.15
was used to convert to Kelvins, and all intermediate steps were retained to full calculator
accuracy.)



61. From the formula for heat conduction, Eq. 19-32, using Table 19-6, we have

Ty- T
H = kA ="7=5 = (401) (n(0.02)%) 270/1.50

which yields H = 90.7 J/s. Using Eq. 20-2, this is associated with an entropy rate-of-
decrease of the high temperature reservoir (at 573 K) equal to

AS/t =-90.7/573 =—-0.158 (J/K)/s.

And it is associated with an entropy rate-of-increase of the low temperature reservoir (at
303 K) equal to

AS/t=+90.7/303 = 0.299 (J/K)/s.

The net result is (0.299 — 0.158) (J/K)/s = 0.141 (J/K)/s.



62. (a) Eq. 20-14 gives K = 560/150 = 3.73.

(b) Energy conservation requires the exhaust heat to be 560 + 150 = 710 J.



63. (a) Eq. 20-15 can be written as |Qgy| = |Or|(1 + 1/K¢) = (35)(1 + ﬁ) =42.6 kJ.

(b) Similarly, Eq. 20-14 leads to | W] = |Q;)/K = 35/4.6 = 7.61 kJ.



64. (a) A good way to (mathematically) think of this is: consider the terms when you
expand
(1+x)"=1+4x+6x> +4x° +x*.
The coefficients correspond to the multiplicities. Thus, the smallest coefficient is 1.
(b) The largest coefficient is 6.

(c) Since the logarithm of 1 is zero, then Eq. 20-21 gives S = 0 for the least case.

(d) S =k In(6) =2.47 x 107 J/K.



65. (a) Eq. 20-2 gives the entropy change for each reservoir (each of which, by definition,
is able to maintain constant temperature conditions within itself). The net entropy change
is therefore

40, -0
273+24 273 +130

AS = =445J/K

where we set |Q] = 5030 J.

(b) We have assumed that the conductive heat flow in the rod is “steady-state”; that is,
the situation described by the problem has existed and will exist for “long times.” Thus
there are no entropy change terms included in the calculation for elements of the rod
itself.



66. Eq. 20-10 gives




67. We adapt the discussion of §20-7 to 3 and 5 particles (as opposed to the 6 particle
situation treated in that section).

(a) The least multiplicity configuration is when all the particles are in the same half of the
box. In this case, using Eq. 20-20, we have

3!

310!
(b) Similarly for box B, W= 5!/(5!0!) =1 in the “least” case.

(c) The most likely configuration in the 3 particle case is to have 2 on one side and 1 on
the other. Thus,

(d) The most likely configuration in the 5 particle case is to have 3 on one side and 2 on
the other. Thus,

|
W:L:lo_
312!

(e) We use Eq. 20-21 with our result in part (c) to obtain
S=kInW =(1.38x107)In3=1.5x10" J/K.

(f) Similarly for the 5 particle case (using the result from part (d)), we find

S=kln10=3.2x10"% JJK.



68. A metric ton is 1000 kg, so that the heat generated by burning 380 metric tons during
one hour is(380000 kg)(28 MJ/kg) =10.6x10° MJ. The work done in one hour is

W = (750 MJ/s)(3600 s) =2.7x10° MJ

where we use the fact that a Watt is a Joule-per-second. By Eq. 20-11, the efficiency is

_2.7x10°MIJ

e=——-=0.253=25%.
10.6x10° MJ



69. Since the volume of the monatomic ideal gas is kept constant it does not do any work
in the heating process. Therefore the heat Q it absorbs is equal to the change in its inertial

energy: dQ =dE, = %n RdT . Thus,

3nR/2)dT T
as=[%- f’&=§nmn(—fj=3(1.oo mol)(8.31 ! ]m(“OOK)
T ; T 2 T 2 mol-K 300 K

=3.59 J/K.



70. With the pressure kept constant,

a’QZndeTZn(CV+R)a’T=[%nR+nRde=§anT,

so we need to replace the factor 3/2 in the last problem by 5/2. The rest is the same. Thus
the answer now is

T
AS =2 nR1n| -~ =§(1.00 mol)| 8.31 ! ln(400K =5.98 J/K.
2 T 2 mol- K 300 K

i



71. The change in entropy in transferring a certain amount of heat O from a heat reservoir
at 7' to another one at 75 is AS = AS) + AS, = Q(1/T, — 1/Ty).

(a) AS = (260 J)(1/100 K — 1/400 K) = 1.95 J/K.

(b) AS = (260 1)(1/200 K — 1/400 K) = 0.650 J/K.
(c) AS = (260 T)(1/300 K — 1/400 K) = 0.217 J/K.
(d) AS = (260 1)(1/360 K — 1/400 K) = 0.072 J/K.

(e) We see that as the temperature difference between the two reservoirs decreases, so
does the change in entropy.



72. The Carnot efficiency (Eq. 20-13) depends linearly on 77 so that we can take a
derivative

_, de _
T,  dT. T,

and quickly get to the result. With de — Ae =0.100 and Ty =400 K, we find d71. — ATL
=-40 K.



73. (a) We use Eq. 20-16. For configuration A4

B N! _ 50! _ 14
Wa= (N/2)I(N/2)!  (251)(25!) ~126x10°

(b) For configuration B

W, = V! = 0! =4.71x10".
(0.6N)!(0.4N)!  [0.6(50)]![0.4(50)]!

(c) Since all microstates are equally probable,

poWy 1265

W, 3393

We use these formulas for N = 100. The results are

N 1000 »
@, _(N/z)!(N/z)!_(50!)(50!)_1'01X10 '

(e) W, = N = 100: =1.37x10%,
(0.6N)!(0.4N)!  [0.6(100)]'[0.4(100)]!

(f)and f We/W, = 0.14.

Similarly, using the same formulas for N = 200, we obtain
(g) Wy =9.05x 10,

(h) Wp=1.64 x 10”7,

(1) and /= 0.018.

(j) We see from the calculation above that f decreases as N increases, as expected.



74. (a) From Eq. 20-1, we infer O = | T dS, which corresponds to the “area under the
curve” in a 7-S diagram. Thus, since the area of a rectangle is (height)x(width), we have
012 =(350)(2.00) = 700J.

(b) With no “area under the curve” for process 2 — 3, we conclude O, .3 = 0.

(c) For the cycle, the (net) heat should be the “area inside the figure,” so using the fact
that the area of a triangle is 'z (base) x (height), we find

Oui= 3 (2.00)(50) =501 .

(d) Since we are dealing with an ideal gas (so that AEj,; = 0 in an isothermal process),
then

Wi =012 =700] .

(e) Using Eq. 19-14 for the isothermal work, we have

v
W, ., = nRT1n7j .

where 7= 350 K. Thus, if ¥; = 0.200 m’, then we obtain
Vy= Vi exp (W/nRT) = (0.200) ™'? =0.226 m’

(f) Process 2 — 3 is adiabatic; Eq. 19-56 applies with y = 5/3 (since only translational
degrees of freedom are relevant, here).

LV, = Tyt
This yields V3 =0.284 m’.
(g) As remarked in part (d), AEiy = 0 for process 1 — 2.

(h) We find the change in internal energy from Eq. 19-45 (with Cy = %R):

AEiw = nCy(T5-Ty)=-125%x10°7 .

(1) Clearly, the net change of internal energy for the entire cycle is zero. This feature of a
closed cycle is as true for a 7-S diagram as for a p-} diagram.

(j) For the adiabatic (2 — 3) process, we have W = —AE;y. Therefore, W =1.25 X 10° J.
Its positive value indicates an expansion.



75. Since the inventor’s claim implies that less heat (typically from burning fuel) is
needed to operate his engine than, say, a Carnot engine (for the same magnitude of net
work), then Qr’< Qg (See Fig. 20-35(a)) which implies that the Carnot (ideal refrigerator)
unit is delivering more heat to the high temperature reservoir than engine X draws from it.
This (using also energy conservation) immediately implies Fig. 20-35(b) which violates
the second law.
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