Probability Distributions Cheat Sheet

Prepared by: Reza Bagheri

Bernoulli distribution (Univariate-Discrete)
Parameters: p (0<p<l) Denoted by: X ~Bern(p)

Story: A random variable X with a Bernoulli distribution with

parameter p has two possible outcomes labeled by 0 and 1 in which

X=1 (success) occurs with probability p and X=0 (failure) occurs with @

probability 1-p. For example, X can represent the outcome of a coin @ 1-p

toss where X=1 and X=0 represent obtaining a head and a tail

respectively, and p would be the probability of the coin landing on 0.80
heads. L0 B=>

PME:  p, (x) =P (1 =P forx=01 ‘
0 otherwise 2,
Mean: p
Variance: p(1-p) ‘
Related distributions: A Bernoulli distribution is a special -

case of the Binomial distribution when n=1.
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Binomial distribution (Univariate-Discrete)

Parameters: n, p (0<p<1, n=1,2,..) Denoted by: X ~Bin(n, p)

Xi~Bern =
Story: A random variable X with a binomial distribution with ' (P)  X=Number of 1s

the parameters n and p is equal to the sum of n random

variables that have a Bernoulli distribution with the @@@ see @ @

parameter p. . !
X=Xi+X,++X, X;,~Bern(p) !

X represents the total number of successes in n Bernoulli trials with the

parameter p. For example, it can represent the total number of heads in
n tosses of a coin where the probability of getting heads is p.

n=8, p=0.5

PMF: -

(n) p*(1—p)"* forx=0,1..,n >020
px(x) = \x S =

0 otherwise B0

Mean: np @ 010
Variance: np(1-p) . 005
Related distributions: A random variable with a binomial 000
distribution is the sum of n Bernoulli random variables. ’ x ) )
Negative binomial distribution (Univariate-Discrete)

Parameters: r, p (0<p<1, r=1,2,...) Denoted by: X ~ NBin(r, p) X-~Bern(p)

) X=Number of Os
Story: Suppose that we have a sequence of Bernoulli

trials with the parameter p. A random variable X with a @@
negative binomial distribution with the parameters r and @@@

p, represents the number of failures that occur before
the rth success.




r=5, p=0.5

Negative binomial distribution (Cont'd) 014
PMF: o
r+x—1\ | X _ g:::

Py (x) = < N )p (1-p)* forx=0,12,... igm
0 otherwise & 004

Mean: r(1-p)/p o

0.00
0 2 4 6 8 0 12 14 16 18

Variance: r(1-p)/p? X

Related distributions: A random variable with negative binomial distribution with parameters r
and p is the sum of r random variable that have a geometric distribution with the parameter p.

X=X,+X,+-+X, where X;~Geom(p) — X~NBin(r,p)

Geometric distribution (Univariate-Discrete)

Parameters: p (0<p<1) Denoted by: X ~ Geom(p) ~Bern(p)

o X=Number of Os
Story: Suppose that we have a sequence of Bernoulli trials

with the parameter p. A random variable X with geometric @@@ vee @ @
distribution with the parameter p, represents the number
L J
||

of failures that occur before the 1st success.

X+1

A random variable X which has a negative binomial distribution with parameters r and p can be
written as the sum of r random variables that have a geometric distribution with parameter p:

X=X;+X,+-+X, whereX~NBin(r,p), X;~Geom(p)

X1+ P +Xi+ eee +Xr=X
1 1
00000000 0@
l l | LJ
| — v
15t success ith success rth success

So, a random variable X with a geometric distribution with the parameter p gives the number
of failures between two consecutive successful trials in a sequence of Bernoulli trials with the
parameter p.

p=0.5
PMF: 0.5 1
_|pa=p)* forx=012,...

X) = 0.4 A
Px(®) { 0 otherwise 2
Mean: (1-p)/p E 0.3 4
Variance: (1-p)/p? £ o2
Properties: The geometric distribution is memoryless: *H

PX=2n+m|X>m)=PX =n) 00
0 2 4 6 8 10

And it is the only discrete distribution which is memoryless. X (number of failures)

Related distributions: Geometric distribution is a special
case of a negative binomial distribution where r=1.




Poisson distribution (Univariate-Discrete)

Parameters: A (A>0) Denoted by: X ~ Pois(A)

Story: The Poisson distribution is a limiting case of the binomial distribution when the number of
trials n tends to infinity and p tends to zero while the product np=A remains constant. The
parameter A is also the mean of the distribution, so it gives the average number of the successful
events. We can also write A=rt where r is the average rate and t is the time interval for that. Here
A gives the average number of events in the time interval t.

~Bern(p), p>0 X=Number of 1s

A

Intervalt ———»

T

X=Number of 1s
ininterval t (A = rt)

[ !
lim np = 2 @OOOOOOOOOOOO@OE@O@OOOEOO - @OO®O®
\ Y J
n—>o°
Axe—l 0.35
PMF: px(x) =1 Jorx=012.. -
0 otherwise z o
Mean: A 5020
@
Variance: A 'g 0.15
Related distributions: The Poisson distribution is a o
limiting case of the binomial distribution when the oo
number of trials n tends to infinity and p tends to zero oo

10 15 20 25 30

while the product np=A remains constant. >

\

v

Uniform distribution (Univariate-Discrete)

Parameters: a, b (a, b €7) Denoted by: X ~ DU(ag, b)

Story: A random variable X with a discrete uniform distribution with parameters a and b can
take each of the integers a, a+1..., b with equal probability. So, it is a probability distribution
where all outcomes have an equal chance of occurring.

PV 0.25 a=1, b=6
1

px(x)=4p a1 forx=aatl..b 5™
0 otherwise % 015

Mean: (a+b)/2 2.

. (b—a+1)?-1 £
Variance, ——————
12 0.00

Uniform distribution (Univariate-Continuous)

Parameters: g, b Denoted by: X ~ U(a, b)

Story: If the random variable X has a continuous unform distribution with the parameters a and
b, then for every subinterval of [a, b], the probability that X belongs to that subinterval is
proportional to the length of that subinterval, and all intervals of the same length are equally
probable.




Uniform distribution (Cont'd)

1

PDF: 1 b-a
i) =132 fora<x<bh <

0 otherwise WX
Mean: (a+b)/2

b—a)?
Variance: ( )

12 a b

X
Related distributions : The continuous uniform distribution is a limiting case of the discrete
uniform distribution when the number of values that the random variable X can take tends to
infinity.

Exponential distribution (Univariate-Continuous)
Parameters: A (A>0) Denoted by: X ~ Exp(A) X, ~Exp(A), T;= in’ T,~ Gammal(i, A)
Story: A random variable X with exponential X, X, ‘ X.

distribution with parameter A represents the ~ A A
waiting time until the first occurrence of a

Poisson event (an event in a Poisson process) | | | | |
with the average rate of A. It can also

represent the waiting time between any two 0T, T, Tiq T; t
s;:ccessnve eventsf;rc a Poisson process with T : Time until the ith Poisson l
the average rate of A. event (average rate of A) ith Poisson event
PDF:
5
e~ * orx >0 — A=l
fx(x) = forx > 4 —A=s
0 otherwise
Mean: 1/A =3
Variance: 1/A2 W,
Properties: The geometric distribution is memoryless: L
PX>t+s|X>t)=P(x>5s) fors,t >0
And it is the only continuous distribution that is

memoryless. X

Related distributions : The exponential distribution is a limiting form of the Geometric
distribution. Let X have a geometric distribution with parameter p and let p=Ah. If h=>0, the
random variable hX tends in distribution to an exponential random variable with parameter A.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0

\The exponential distribution is a special case of the gamma distribution: Exp(A)=Gamm(1, A). y
4 D
Gamma distribution (Univariate-Continuous)
Parameters: o, B (a, f>0) Denoted by: X ~ Gamma(a, B) X, ~Exp(B), T,~Gammal(i, )

Story: A random variable T with X X %
. . . . 1 2 I
gamma distribution with
parameters a and B represents Y \ f \
the waiting time until the ath T, = in | | | |
occurrence of a Poisson event ' ” ¢
with an average rate of B (please 0T, T, Tiq T;
note that this story is only valid X, : Time until the ith Poisson |
L when a is positive integer). event (average rate of B) ith Poisson event )

4
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Gamma distribution (Cont'd) 6
PDF:

i et > a=0.1,8=5
fr(t) = F(a)x e forx >0 . — a=58=5
0 otherwise
Mean: o/B iﬁ#

Variance: a/p?

Properties: If X; has the gamma distribution

with parameters a; and B then the sum 14
X;+...+X, has the gamma distribution with
parameters a, +...+a, and B. If X~“Exp(A), , , ' ,
0.0 0.5 1.0 15 2.0 2.5

then the sum X;+.+X, has the gamma t
distribution with parameters k and B.

Related distributions: The gamma distribution is a generalization of the exponential
distribution: Exp(A)=Gamma(1, A).

If a is a positive integer, the gamma distribution with this a is also called the Erlang distribution.
If a random variable X has the gamma distribution with parameters « = m/2 and B = % where
m>0, then X has a chi-square distribution with m degrees of freedom. )

( .. . .
Beta distribution (Univariate-Continuous)
Parameters: a, B (o, B >0) Denoted by: X ~ Beta(a, B)

Story: Let X have a binomial distribution with parameters n and p where p is unknown and is
represented by the random variable P. For example, let X give the number of head in n tosses of
a coin. Before observing the value of X, we assume that P has a Beta(a, b) distribution (prior
distribution). If we observe that X=k (in the case of a coin, k is the number of heads and in n
tosses), then the posterior distribution of P after this observation is Beta(a+k, b+n-k).

Prior ”Bern(p) Observation: Posterior

X (Number of 1s)=k
t t

P~ Beta(a, b) = @@@ @@ =P  P|X=k ~ Beta(a+k, b+n-k)

PDF:
1
————x%1(1 - x)F1 0<x<1
f@={Bap” TV fordsxst
0 otherwise o —a=2,=2
where B(a, B)=T(a + B)/ (F(a) F(,B)) Ll a=5pF=1
>
Mean: a /(o + B) =
Variance: apB ?
ariance: @t B2 (atB1) 1
Related distributions: Beta(1, 1) is equal to 0 ‘ |
the uniform distribution on the interval [0, 1]. 00 0.2 04 0-6 08 10
- X y,
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Beta distribution (Cont'd) N
X~ Gamma(a, A)
If X ~ Gamma(a, A) and Y ~ Gamma(B, Y~Gamma(B,1) ¥ +y ~Beta(a, )
A) are independent random variables
X
then m~Beta(a,ﬂ). We also have ath event (o+B)th event
X+Y ~ Gamma(a+pB, A). |
If a and B are integers, then X and X+Y represent
the waiting time until the ath and (a+B)th 0 X X+Y

occurrences of a I?onssgn event with a.n a.vera.lge Poisson process (average rate of A)
rate of A, and their ratio has a beta distribution

KWIth parameters o and B. )
N

>t

(
Normal distribution (Univariate-Continuous)

Parameters: y, 0° Denoted by: X ~ N(u, 0?) 1

Story: The normal N

distribution is the only Mean (u) and
distribution that allows us variance (0?) as fx(x)

to .choose the r_nez?n eTnd independent
variance of the distribution parameters
as the parameters of the
distribution. Hence, they
do not depend on each
other.

PDF:
1 1(x —p)?
fx(x) = — exp (- 57)

Mean: u —0<x<®

fx(x)

Variance: o2

Standard normal distribution: The normal
distribution with u=0 and ¢? =1 is called
the standard normal distribution.

Standard normal distribution

if X has a normal distribution with mean u 05
and variance o2, then the random variable — =0,02 =
(X-u)/o has the standard normal 0.4
distribution.
—~ 0.3
Properties: if X has a normal distribution x
with mean u and variance @2, the probability W 0.2
that its value falls within one standard
deviation of the mean is roughly 0.66 0.14
P(—0 <X < o) =0.66 0.0 . : : : ‘
-6 —4 -2 0 2 4 6

X
P(-o0 £ X< 0) is the area under the PDF curve between x=-0 and x=0.

Similarly, we have: P(—20 < X < 20) = 0.95, P(-30 <X < 30) = 0.997




[Normal distribution (Cont'd) \
Plo=x=0)=0.683 P(-20=x=20)=0.954 P(-30=x<=30)=0.997

fx(x)

—40-30-20 -0 0 o0 20 30 40-40-30-20 -0 0 o0 20 30 40-40-30-20 -0 O
X X X
Linear Combinations of Normally Distributed Variables: If the random variables X,...,X, are
independent and each X; has the normal distribution with mean y; and variance o?then the sum
a,X;+..+a, X, +b has the normal distribution with mean a,u; + -+ ayu, + b and variance
a?of + -+ a2 a2

o 20 30 4o

X = a1X1 +aan +b

— X ~ N(apy + -+ auity + b, a?of + -+ aZo2)
Xi~N (i, o)

Central limit theorem (Lindeberg and Levy): If a sufficiently large random sample of size n is
taken from any distribution (regardless of whether this distribution is discrete or continuous)
with mean u and variance 02, then the distribution of the sample mean (X) will be approximately
the normal distribution with mean p and variance ¢/n. In addition, the sum Y., X; will be
approximately the normal distribution with mean nu and variance no? As a rule, sample sizes
equal to or greater than 30 are usually considered sufficient for the CLT to hold.

n
Xi~Any disitrubtion (4, 0%) ey K~N(y, 02/n), Z X;~N(ny, no?)
i=1

n — oo
Original distribution (Exp) n=5 n=10 n=70

10 1.0 141 35
> ’ Normal Normal
= 12 dist 30 dist
v 08 0.8
c 4
% 10 25

06 0.6 1
> 0.8 2.0
=
E 0.4 04 0.6 15
©
2 ., 0.4 1.0
o 0z
a 02+ 0.5

0.0

0.0+ 0.0+ 0.0
=1.0 =05 0.0 0.5 1.0 15 2.0 -05 0.0 0.5 1.0 15 2.0 25 3.0 -0.5 0.0 05 1.0 15 2.0 25 3.0 =05 0.0 05 1.0 15 2.0 25 3.0
X X X X

Central limit theorem (Lyapunov): This is a more general version of the CLT. Suppose that X;,
Xa, ..., Xn, are independent but not necessarily identically distributed, so each of them can have
a different distribution. We also assume that the mean and variance of each X; are y; and o2
respectively. If these two equations are satisfied

T ENXy =l

=0
3/2
(2?=1 Uiz)

then for a sufficiently large value of n, the distribution of X;+Xa>+ ...+ X, will be approximately
the normal distribution with mean y;+ fip+...+ fi,, and variance g2+ g2+...+ 2.

E[IX; —w|]* <o fori=12,.. Jim

Related distributions : The normal distribution is related to all other distribution through the
central limit theorem. The sum of the square of n independent random variables with a
standard normal distribution has a chi-square distribution with n degrees of freedom. The t
distribution and F distribution are also defined based on random variables that have the
Kstandard normal and chi-square distributions. j




Chi-square distribution (Univariate-Continuous)

Parameters: m (m>0) Denoted by: X ~ y2(m) Z;~ N(0,1)
Story: Let the random variable X have a gamma distribution 1
with parameters a = m/2 and B = % where m>0, then X has X = Zz Zz Zz
a chi-square distribution with m degrees of freedom. In 1 T 2 T m
addition, If Z,, Z,, ..., Z,, are independent, standard normal l
random variables, then X = Z? + Z3 + ---Z2, has a chi- ,
square distribution with m degrees of freedom. X~ x*(m)
PDF: \ — m=1
1 m, X

——— N X 2 le72 forx >0 m=2

fx(x) = Zm/ZF(7) . —— m=5

0 otherwise

Mean: m

Variance: 2m

0.0

0 2 4 6 8 10 12

X
Properties: Let X;, X,, ..., X, be a random sample (i.i.d) from a normal distribution with mean u

and variance 02, and let $? be the sample variance of a sample of size n defined as:
1

§? = — 31 (X; — Xp). Then n0_—2152 has chi-square distribution with n-1 degrees of freedom.

Related distributions : A random variable with chi-square distribution with m degrees of
freedom is the sum of squares of m random variables with the standard normal distribution.

If Z~ N(0,1) and V ~ x?(n), then the random variable T=Z/,/V/n has a t distribution with n
degrees of freedom. We also have y?(2) = Exp(1/2).

If Y, ~x%(dy) and Y, ~ x2(d,), then (Y,/d,)/(Y,/d,) has the F distribution with d, and d,
\_ degrees of freedom.

J

N

r
Student’s t distribution (Univariate-Continuous)
Parameters: n (n>0) Denoted by: T~ t,

Story: Let the random variable Z have the standard normal distribution and the random variable

V have a chi-square distribution with n degrees of freedom, then the random variable 7=2/,/V /n
has a t distribution with n degrees of freedom.

A random sample of size n from a normal distribution is not a good representative of the original
distribution when the sample size is small. That is because the outliers have a smaller chance of
occurrence when n is small. Hence, there is big chance that the sample variance (5?) for one
specific sample be smaller than the variance of the original distribution.

n=>50

0.20
> Normal
3 —— distribution —— distribution
C 0.151
[}
he]
>
E 0.10 52 NO'Z
o
8 005 \
2 l \

0.00 A [J (XX . X . x 1 _JEN N ]

-4 -2 0 2 4 6 8 -4 -2 0 2 4 6 8
X X
. J




fStudent’s t distribution (Cont'd) )

Based on the central limit theorem, the distribution of the X —u
sample mean (X ) will be approximately a normal ~ N(O 1)
distribution with mean u and variance ¢2/n, so the ratio O'/\/ﬁ ’

(X — 1) /o /\/n has the standard normal distribution.

However, the ratio (X — p)/S/+/n doesn’t have the standard normal distribution. For each
sample, there is a big chance that S<o. So, in (X — u)/S/+/n the extreme values (outliers)
have a higher chance of occurrence. As a result, the distribution of (X — p)/S/+/n has heavier
tails compared to (X — u)/a/n.

o
'S
!

" 7 S/ oy Heavier tails Standard
e ratio (X — n hasa P —_— I
phe ratio (X = 1)/5/V 5os)  comparedto Getmution
Istribution with n-2 degrees ° STD normal ___ tndistribution
of freedom Z 02 distribution df=n-1
X—u B0
n-1 o
S/\n e
X—u
PDF; SWn
n+1
F( ) | == s Standard normal
fr(t) = (14 t2/n)~ (D2l di=1 (Cauchy)
nn’-l—‘ (7) 0s| ==t df=3

- t df=30

—OO<t<OO 0.25

Mean: O for n>1, otherwise undefined

Variance: n/(n-2) for n>2, oo for 1<n<2, o=
otherwise undefined

-4 -2 0 2 4

t

Related distributions: As n—><o, the PDF of the t distribution tends to the PDF of the standard

normal distribution.
If T has the t distribution with n degrees of freedom, then T2 has the F distribution with 1 and n

degrees of freedom.
\_ J
fF distribution (Univariate-Continuous)
Parameters: d,, d, (d,, d, are positive integers) Denoted by: X ~ F(d;, d,)
Story: Suppose that Y, and Y, are two 2
independent random variables such Yl X (d1)
that Y, has the chi-square distribution T
with d; degrees of freedom and Y, has
the chi-square distribution with d, Y. /d
1 1
degrees of freedom (d; and d, are X~F(d1,d2) —_— ==
positive integers). The random YZ/dZ
variable X=(Y,/ d,)/(Y,/ d,) has the F
distribution with d, and d, degrees of 1
freedom. 2
Y, ~ x“(dy)
\_ J




(e )
F distribution (Cont'd)
PDF: | = F distribution d1=1, d2=1
d 25 === F distribution d1=7, d2=2
T (M) dfl/zd‘ziz/zxf—l = F distribution d1=30, d2=30
fx(x) = d d x>0 =
@ Panrarer 7y
Mean: d,/(d,-2) for d,>2 =
. 2d3(d; +dy—2)
Variance: 40,202 (dy—2) ford,>4
Related distributions: A random variable with F
distribution is the ratio of two random variables * ™ &% (%=
with chi-square distribution.
J
(Multinomial distribution (Multivariate-Discrete) )
Parameters: n, p (0<p<1 (n=1,2,...), X;p; = 1) Denoted by: X ~ Mult(n, p)
Story 1: Suppose that we have n independent trials. 1 p P1
Each trial has k (k>2) different outcomes, and the —> 2 p, p= P.z
probability of the ith outcome is p;(}}; p; = 1). The :
vector p denotes these probabilities. Let the Pk
discrete random variable X; represent the number of
times the outcome number i is observed over the n k= pr Zpi =1
trials. The random vector X is defined as '
X, ), d Mult(n, p)
X
X = |42 X;=Number of 1s

i oot @ & @ & @

has the multinomial distribution b o
with parameters n and p. X,=Number of ks n

The multinomial distribution can be used to describe a k-sided die. Suppose that we have a k-

sided die, and the probability of getting side i is p,. If we roll it n times, and X; represents the total

number of times that side i is observed, then X has

a multinomial distribution with parameters n and p. . p;: proportion of the
Population items in category i

Story 2: We have a P, P, Pk

population of items of
k different categories

'd N 7 N 'd N
oy 9@ -9 000 009
of the items in the ~ ~

population that are in )
.. Random selection

category i is p, and
Y p_g_yl ch\;v we with replacement X,;=Number of @
nd ' X,=Number of @

randomly select n
items from the 0 o o 0 -

population with \ Y X,=Number of @
replacement, and we Y X ~ Mult(n, p))
n

10



[Multinomial distribution (Cont'd) \

assume that the discrete random variable X; represents the number of selected items that are in
category i. If we assume that X; and p; are the jth elements of the vectors X and p, then X has a

multinomial distribution with parameters n and p.

Joint PMF:
px(X) = Dx, x,,..x;, (X1, X2, +oe) Xpc) X1 0.5
= P(Xl = xl,XZ = xz, ...,Xk = .X'k)z X = X2 ~ Mult(S, 03 )
X 0.2
n! X1, X Xk . _ 3
mpllpzz WP ifxptx et x=n
0 otherwise
Mean: E[X;]=np;
X,~Bin(5, 0.3) X,~Bin(5, 0.5)

Variance: Var(X;) = np;(1 — p;)

Covariance: Cov(Xl-,Xj) = —np;p;
Px,(x2)

Properties: We can merge multiple
elements in a multinomial random

vector to get a new multinomial - E
random vector. For example, if: oo C>L<
Xl p1 0.10
_ XZ P2 0.05
X = X ~Mult(n, D ) o
Then X4 D4
X1+ X p1+ P2
X = X3 ~Mult(n,| p3 |)
X4 P4

A random vector X that has a multinomial distribution with parameters n and p can be written as

the sum of n random vectors that have a multinomial distribution with parameters 1 and p:
X~Mult(n,p) =—» X=Y,+Y,+:-.+Y, where Y;~Mult(l’ p)

Related distributions: The multinomial distribution is a generalization of the binomial distribution.

If k=2, the multinomial distribution reduces to a binomial distribution:

_[X1 _[DP1 X, ~ Bin(n, p,)
X= [X ]' P=lp] = X, ~ Bin(n, p,)
X1 P1
If X = X:Z ~Mult(n, pz ) and k>2 then the marginal distribution of each X; is a binomial
Xk Pk

distribution with parameters n and p;:  X; ~ Bin(n, p;).

The sum of some of the elements of multinomial random vector X has a binomial distribution.
If X;1, X;2 - X;, are m elements of the random vector X (m<k) and their corresponding
probabilities in vector p are p;,, p;,, .., P then the sum X;; + X;, + ..+ X, ,, has a binomial
distribution with parameters nand p;; + p;, + ...+ p; ,,. For example:

Xy P1
x = |%2| ~Muitcs, |72 i
= x, ult(s, [, 1) = Xy + X3 + X4,~Bin(5,py + p3 + p4)

K X, Pa /

11




Categorical or multinoulli distribution (Discrete)
Parameters: p (0<p<1(n=1,2,..), Y;p; = 1) Denoted by: X ~ Mu(p) or X ~ Cat(p)

Story 1: Suppose that the random variable X has k possible outcomes labeled by 1 to k, and the
probability of the ith outcome is p;. Then X is said to have a categorical distribution with the
parameter p, and it is univariate distribution. For example, X can represent the outcome of
rolling a k-sided die where X=j represents
obtaining side i and p; is the probability
of getting that side.

PMF:

fxx=ilp)=p; fori=1..k
fx(xlp) =0 otherwise

Story 2: The random vector X has a categorical or multinoulli distribution, if X has a multinomial

wistripetichence it is a special case of the multinomial 07
distribution: X~Mult(1,p) < X~Mu(p) Side i was 0

- N, . observed :
And it is a multivariate distribution in this case. Here X is X=\|
one-hot encoded vector in which only one element is one 1
and the other elements are zero. If we observe the ith :
outcome then X=1 and the other elements of X are zero. i

X X X . . . .
Joint PMF: 1 (x) = {P11P22 WP fa=Llg=0 =10k #i X, =1
0 otherwise

Mean: E[X]=p,
Variance: Var(X;) = p;(1 — p;)

Related distributions : Based on story 1, it is a generalization of Bernoulli distribution story 1,
and based on story 2, it is a special case of multinomial distribution for n=1.

J

\(

Dirichlet distribution (Multivariate-Continuous)

Parameters: a (>0, number of elements of @ 22) Denoted by: X ~ Dir(a)

Story: Let X have a binomial distribution with parameters n and p where p is unknown and is
represented by the random vector P. For example, let each element of X (X;) represent the
number of times that the side i is observed in n rolls of a k-sided die. Before observing the value
of X, we assume that P has a Dir(a) distribution (prior distribution). If we observe that X=m (in
the case of a die, m; is the number of times that side i is observed) then the posterior

distribution of P after this observation is Dir(a+m).
mq: Number of 1s

N 2
;(1 Observations: { "2 um:ber of 2s
=72 X|p ~Mul :
X : I WiE| 7 my: Number of ks
X
a, m; +ay
) a, m2 + (24))
»@@@ @@w n <o
ay my + ay
Prior n Posterior

N
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Dirichlet distribution (Cont’d)

1 a1—-1_ay-1 ak—1

— fFo<x;: < ko —1(i =
Joint PDF: py(x) =4{B@ 1 *2 % fosx;<land Yi;x;=1(0{=1..k)
0 otherwise

l 1F(al) I'(a)T(ay)..I'(ag) D T
where B(a) = rok (@it ttap) X3 X~Dir([1 1 1]")

Mean: E[X] = I ‘

where ay = 1 a;

. _ N _ @i(@o—ai)
Variance: Var(Xl) = 23(agD)

—aiQj
ag(ag+1)
Properties: If the k-dimensional random X3 X~Dir([1 3 1]")
vector X has a Dirichlet distribution then
the support of this distribution is a k-1
dimensional simplex. The Dirichlet
distribution Dir([1 1 .. 1]7) is the
same as the uniform distribution over its
k-1 dimensional simplex since the joint
PDF has the same value over the simplex. X1

Aggregation property: Let the random
vector X have the following Dirichlet X3 X~Dir([5 5 5]7)
distribution:

=X o Xi o X . X7

~Dir([@1 - & . @ . ag]T)
We drop the random variables X; and X;
from X and add X+X; to it at an arbitrary
place and call the resulting random
vector X’. The random vector X’ has the
following Dirichlet distribution:

=[X1 - Xi+X; . XT

. r —— 1-d Simplex
~D1r([051 ai+aj ak] ) —— Dir([5 1))7

Marginal distributions: Let X have a Dirichlet distribution: ~— Beta(5,1) (Margfnal d?Str?but?on of X;)
—— Beta(1,5) (Marginal distribution of X3)
X - [X1 XZ Xk]T~ Dlr([al az ak]T)

Then the marginal distribution of each X; is the following

beta distribution:
X; ~Beta(a;, ay — a;)

Covariance: Cov(X;, X;) =

fe(p)

X2

where ay = ¥F | a; fx(x)
Related distributions: The Dirichlet distribution is a
generalization of the beta distribution. If X has a o

Dirichlet distribution, the marginal distribution of e L
\ each random variable in X is a beta distribution. + 02 >

0.0 0.0 J

1.0
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Parameters: NA Denoted by: X ~ N(0, I)

Then the random vector

fz(2) = le (Z1)fz2 (z2) ---on(Zn)

21
22 L
= | ."| has the standard multivariate normal

standard normal distribution to a random vector.
The PDF of SMVN distribution can be also written as:

(Standard multivariate normal distribution

Story: Suppose that we have n independent random
variables Z;, Z,, ... Z,, and each of them has a standard
normal distribution, and the PDF of each Z; is f7,(z;).

0.35
0.30
0.25

—3

(SMVN) distribution. '35 020 6
N 015
0.10
Joint PDF: 000
1 1. -
f2(2) = le,zz,...,zn(ZpZz, wrZn) = n €XP _Ez z
(2m)2
Mean:
T® <z <o , Joint PDF 16
1 0 0 0.144
2
Covariance: 0 1 0 12 5
= 1 0.108 @
(:) 0 1 Qo 009013
0.072
Properties: SMVN distribution is a generalization of the -1 oosug
0.036 =
0.018
0.000

Related distributions: SMVN is a special case of MVN distribution when y=0 and 2=1.
If Z only has one element (n=1), then SMVN is equivalent to the standard normal distribution.

(Multivariate-Continuous)

2= (o[ 3

fz:(Z1)
fz,(22)

-
Multivariate normal distribution

Parameters: u, X (2 is positive semidefinite)

Story: Suppose the random vector

Then X is said to have a multivariate normal

Denoted by: X ~ N(u, Z)

Al
Zy e
Z =] | hasan SMVN distribution, and let X be
Zn
a random vector with n elements defined as
X=u+A4Z7
where u is the mean vector:
H1
2% . . .
u =1\ .1 and Ais a symmetric nxn matrix
HUn

(A=A"). In addition, we define the nxn matrix 2 as
X = AAT = AT A and call it the covariance matrix.

L (MVN) distribution with the parameters p and £.

\

(Multivariate-Continuous)

14



r

Multivariate normal distribution (Cont’d) Joint PDF

0.0360
MVN distribution is a generalization of the normal & 0.0315
distribution to a random vector. The standard , 0.0270
deviation (o) transforms a random variable Z with the , —
standard normal distribution to the random variable '
X with a normal distribution (X = u + oZ). x 0 00180,
-2 0.0135
Similarly, the matrix A transform the random vectorZ | 0,009
with an SMVN distribution to the random vector X
with an MVN distribution (X = u + AZ). Hence, it ~° 0:0045
plays the same role of standard deviation for random -8 0.0000

-75 -5.0 -2.5 0.0 2.5 5.0 7.5
vectors with the MVN distribution. X1

J

co

lity density

Probab

Joint PDF: If the random vector X (with n elements) has an MVN distribution with the
parameters u and X, where X is a positive definite matrix then its joint PDF is

1 1
fx(X) = fx, x,,..x, (X1, X2, o) Xp) = ——— exp <—§(x -wrE M (x - ﬂ)) —o00 < x; <
(2m)z|Z|2
Mean: M1
Uy
n=1:
Hn Var(X,)  Cov(Xy,X,) .. Cov(Xy,X,)
Covariance: y _ gaT — 4Tg = 42 = |Cov(X2, X)) Var(Xz) .. Cov(X3, Xp)
Cov(X,, X;) Cov(X,,X;) .. Var(X,)

Precision matrix: The inverse of the covariance matrix is called the precision matric and is
denoted by A. So, we can also denote the MVN distribution by X~N(u, A~1) where A=271,

Bivariate normal distribution: If n=2 (n is the number of the elements of X), the MVN
distribution is called a bivariate normal distribution.

Contours of joint PDF: The shape of the contours of an MVN
distribution is determined by the covariance matrix.

In the SMVN distribution, the mean
vector is zero and the covariance
matrix is the identity matrix, so for a n= [0
2-dimensional SMVN distribution, the
PDF contours are circles centered at
the origin. For an n-dimensional
SMVN distribution, they are n-
dimensional hyperspheres centered at

)
N/

2

the origin.
In a bivariate normal distribution, if
the covariance matrix is a multiple
of the identity matrix (X = cI), the m
joint PDF contours are circles _ [ y— € 0] «

E= 1wl == 1o x
centered at u (the mean vector). For 2 ¢ o
an n-dimensional MVN distribution,
if ¥ = cl,the contours of the joint
PDF are n-dimensional hyperspheres
centered at u.

\_ U X1 Yy,

15
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Multivariate normal distribution (Cont’d)

In a bivariate normal distribution, the joint PDF contours
are ellipses centered at u. More generally, in an n-
dimensional MVN distribution, the contours are n-
dimensional hyper-ellipsoids centered at u. The principal
axes of these ellipsoids are along the eigenvectors of the
covariance matrix (v; i=1..n). The eigenvectors and
eigenvalues of A and X are given by the following

equations: 5
Zvi = /11- Vi

Avl- = /1[171'

The semidiameter of each hyper-ellipsoid along each

principal axis represented by v; is equal to A,.

MVN with uncorrelated random variables: When

X2
=
x

=

~

The eigenvectors of both A and £
are v, and v,. The eigenvalues of A
are A, and A,. The eigenvalues of &
are 1% and 13

X
the random variables X, X,, ...X, are uncorrelated !
(Cov(X,, X;)=0), their covariance matrix becomes Uy 5 012 0 l
o, p=["]x=
diagonal: 62 0 .. 0 Us 0 o2
y—|0 oF .. 0
0 0 .. o2 €Oy
Each diagonal element (O'iz) is an eigenvalue of 2 and
its corresponding eigenvector is e; (the ith vector of ~ 1 co,
the standard basis). So, each eigenvector is along X H
one of the coordinate axes, and the principal axes of — -
the hyper-ellipsoid are also the coordinate axes.
When X is diagonal, the marginal distribution of
each X; has a normal distribution with a mean of y;
and variance of g?:
T X~ N(u,0f) X1
The PDF of such an MVN distribution is X, and X, are uncorrelated and independent
tr_le r_Jrod_uct of the PDF of these marginal 4,4 0 012 0
distributions: X~N [ ],
M2 0 022
x) = X X5) ... X
fe @) = fi, G i, (62 o fixy Cn) Xy iy, 07)
So, X,,X,,...X, are also independent. m
. . K2 I
By changing the coordinate system .
for an n-d MVN distribution, we i X
can convert the covariance matrix ) : {
mtg a diagonal matrlx. We can sz (x,) U1l
define a new coordinate system by : >
rotating the axes of the original I
coordinate system to be along the I
eigerTvectors of the . cfovariance Fie ) X1~N(uy1, 0%)
matrix and move the origin by pu. 1 )
v

16
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Multivariate normal distribution (Cont’d)

In this new coordinate system, the ellipsoids which are the contours of the joint PDF are
centered at the origin and their principal axes are along the coordinate axes. The original
correlated random variables X,,...X, turn into the uncorrelated and independent random
variables V,,...V, where each of them has the following normal distribution:

Vi~N(0, 4;)
The MVN distribution in this new coordinate has the following parameters:
Vi o4+ 0 .. O
A I T b
A ollo o .. a,
12 U1

T, (v1) = N(0,A;)

C?t1171 fr,(v2) =
N(0,A)
cA, v,
v\ Vi
fvl,vz (v, v2) =
fxl,xz (1, %2) fv1 (”1)fv2 (v2)

:xl

The effect of correlation coefficients on the joint PDF contours: In the MVN distribution, the
covariance between each pair of random variables Cov(X, X) is an indicator of the
dependence between them. By changing Cov(X, X)) , the covariance matrix and the contours
of the joint PDF change. When Cov(X;, X;)=0, the random variables X; and X;are independent,
and as it increases the dependence between them becomes stronger.
We can also write the covariance in terms of the correlation coefficient and standard
deviations of X, and X;: Cov(X;, X;) = p(Xi,Xj)O'XiO'Xj
So, in a bivariate normal distribution, the covariance matrix can be also written as
p(Xl'XZ)GXlaXZ
2
ox,

2
O-Xl

y =
P(XZ:X1)0X20X1

When the correlation coefficient is zero, X; and X, are independent, the principal axes of the
ellipses are along the coordinate axis. As the correlation between X; and X, increases, the
joint PDF in the plane of X; and X, tilts and becomes narrower which means that X, and X,
are more dependent on each other.

(X1,X2)=0 (X1, X2)=0.5 (X1, X3) =0.875

(X1, X2) =0.9999

~
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Multivariate normal distribution (Cont’d)

When |p(Xl-,Xj)| =1, the covariance of X; and X; is maximized, and there is a linear
relationship between them. Hence, knowing the value of one can determine the exact value of
the other. In that case, one of the random variables is a deterministic function of the other,

and we have a degenerate MVN distribution.

Degenerate MVN distribution: When the
covariance matrix is singular, the MVN
distribution is said to be degenerate. Such an
MVN distribution has no joint PDF since the
covariance matrix is not invertible. When the

w2 =5 =0

In this degenerate MVN distribution, x; and x,
lie in a 1-d space. You think of that as a
univariate normal distribution which lies in a 2-

random variables X;, X, .., X, have a
degenerate  MVN distribution, then their
values xi, X2 ..., X, lie in a space that has a
dimension less than n.

dspace

Degeneracy occurs when at least one of the
random variables is a deterministic function
of the others.

Probability density

In a degenerate MVN distribution with n
random variables, ¥ (and A) is not a full-rank
matrix, so rank X=m where m<n (also rank
A=m), and m random variables are a
deterministic function of the others.

This also means that n-m eigenvalues of ¥
(and A) are zero. Hence, X (and A) is not
positive definite anymore (but it is still
positive semidefinite). Finally, £ (and A) is a
singular matrix that is not invertible, and its
determinant is zero.

Properties: The univariate normal distribution is a
special case of an MVN distribution when the
random vector X has only one element. If X=[X],
u=[u], , £ =[c?] (all of them can be thought of as a
matrix with only one element), then X ~ N(u, 6?).

X1

Concatenating normal random variables: If the random variables X, X,,..X, are mutually
independent and each X; has a normal distribution with mean y; and variance o¢;? then
concatenating them results in a in a random vector with an MVN distribution.

X, w1 [62 0 0

X 2
X;~N(u;,0f) ——> I ;2 ~N #2 . 0 0:2 0

Xn Hnl 1O 0 o2

Linear transformation of an MVN random vector: Let X be a random vector with n elements
that has an MVN distribution with parameters u and 2. Let b be a vector with m elements and C
be an mxn matrix. Then the random vector Y (with m elements) defined as Y=b+CX has an MVN
distribution with mean b+Cu and covariance matrix CZC".

Y=b+CX Y~N(b+ Cu,CXECT)

\_

~
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Multivariate normal distribution (Cont’d)

Linear combinations of independent MVN random vectors: Suppose that X, X,,..X, are m
independent random vectors. Each X; has n; elements and an MVN distribution with parameters
M and Z;. Let C,,C,,...C,, be pxn; (i=1...m) matrices. Then the

random vector Y (with p elements) defined as

m
Y: b+ZCiXi
i=1

has an MVN distribution with the following parameters

m m
ﬂ=b+zciﬂi E=ZCLELCT
i=1 i=1

Concatenating MVN random vectors: Suppose that X;,X,,...X,, are m independent random
vectors, and
X1~ N(uy, 21),X; ~ N(pp, 22) oo, Xy ~ N(ptmn, Z1)

Then concatenating them results in a in a random vector with an MVN distribution.

X1 ”1 21 0 O
gl 11 e H
X el lo 0 .. x,

Marginal distributions: Let X be a random vector with an MVN distribution:
X~N(u X)
and X; be a subset vector of X. Then X; also has the following MVN distribution:
X~ N(ug, X)
which is called the marginal distribution of X.. Here the vector u_ is a subset of u that only

contains the corresponding means of the random variables in X, and the matrix Z_ is the
covariance matrix of the random variables in X. For example, suppose that

X4 pi] [211 212 213 21a
X2 ~N| |H2 221 232 2a3 2p4
X3 ps|'|231 232 233 234
X4 Hal 1241 Zap Zaz Zaa » X1~ N(@,1) 012 5
Then the marginal distribution of X, X; is: T §i§§ 5
X1] (ﬂ1] [211 213]) ~= s 3
~N , > 014 0036 S
X3 #3231 233 = oots 2
And the marginal distribution of X is: fx, (x2)
X1~N(py’ 211)
9
_[%1 oM 1 !
X = [XZ]NN([O]' 1 2]) ,E
Marginal distribution of X; and X, 5
are: X; ~N(0,1) and X, ~ N(0, 2)

19
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Multivariate normal distribution (Cont’d)

Partitioning an MVN random vector: Let X be a random vector with an MVN distribution:

X~NuZX)
We can partition X into m MVN random sub-vectors X,,...X,,, and partition u and £ accordingly:
Xy Bl [211 212 o Zim
Xa| _ Nl |H2 221 2y o Zop
Xm Hm z'ml z'2m Emm

Each u; contains the corresponding means of the random variables in X, and Z; is the
covariance matrix of the random variables in X;and X.. Now each sub-vector X; has an MVN
distribution:

Xi~N(u, Zy)
In addition, if in the partitioned covariance matrix, we have Z;=%;=0 then it follows that the
random vectors X; and X; are independent. For example, if we have:

Ell 2:'12

[X1] 07 1 1//0 0 0
X

X ol [ 3o o 0
X3~ N ([[T], 0 0[1 0 2
X1 Xa 1{{g, O O |0 7 0
X, ] 1. 0 0|2 0 5

Then we conclude that: 221 222

X1 ~NQuy, 211), Xz ~ N(pa, 222)
And since all the elements of £, and Z,, are zero, we conclude that X; and X, are independent.

Related distributions: SMVN is a special case of MVN distribution when u=0 and 2=I. If X has a
MVN distribution, the marginal distribution of each random variable in X is a normal
distribution. If X only has one element (n=1), then MVN is equivalent to the normal
\distribution. Y,

This cheat sheet was prepared by Reza Bagheri (https://www.linkedin.com/in/reza-bagheri-

71882a76/). It is a summary of the following Medium articles:

1. Understanding Probability Distributions using Python (https://medium.com/towards-data-
science/understanding-probability-distributions-using-python-9eca9c1d9d38)

2. Understanding Multinomial Distribution using Python (https://medium.com/towards-data-
science/understanding-multinomial-distribution-using-python-f48c89e1e29f)

3. Understanding Multivariate Normal Distribution (https://medium.com/@reza-
bagheri79/understanding-multivariate-normal-distribution-54089b5b106c)

4. Dirichlet Distribution: The Underlying Intuition and Python Implementation
(https://medium.com/towards-data-science/dirichlet-distribution-the-underlying-intuition-and-
python-implementation-59af3c5d3ca2)
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