
Bernoulli distribution                                                                        (Univariate-Discrete) 

Probability Distributions Cheat Sheet

Story: A random variable X with a Bernoulli distribution with
parameter p has two possible outcomes labeled by 0 and 1 in which
X=1 (success) occurs with probability p and X=0 (failure) occurs with
probability 1-p. For example, X can represent the outcome of a coin 
toss where X=1 and X=0 represent obtaining a head and a tail 
respectively, and p would be the probability of the coin landing on 
heads.

p

1-p

PMF: 

Mean: p

Variance: p(1-p)

Related distributions: A Bernoulli distribution is a special 
case of the Binomial distribution when n=1.

?

Binomial distribution                                                                        (Univariate-Discrete)

Parameters: n, p   (0≤p≤1, n=1,2,…) Denoted by: X ~ Bin(n, p)

Story: A random variable X with a binomial distribution with
the parameters n and p is equal to the sum of n random
variables that have a Bernoulli distribution with the
parameter p.

𝑋 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 𝑋𝑖~𝐵𝑒𝑟𝑛(𝑝)

PMF: 

𝑝𝑋 𝑥 = ቐ

𝑛

𝑥
𝑝𝑥 1 − 𝑝 𝑛−𝑥 𝑓𝑜𝑟 𝑥 = 0, 1 … , 𝑛

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
Mean: np

Variance: np(1-p)

Related distributions: A random variable with a binomial 
distribution is the sum of n Bernoulli random variables.

…
n

X=Number of 1s

Parameters: p   (0≤p≤1) Denoted by:  X ~ Bern(p)                                                                                                 
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Negative binomial distribution                                                       (Univariate-Discrete)

Parameters: r, p (0≤p≤1, r=1,2,…) Denoted by: X ~ NBin(r, p)       

Story: Suppose that we have a sequence of Bernoulli
trials with the parameter p. A random variable X with a
negative binomial distribution with the parameters r and
p, represents the number of failures that occur before
the rth success.

…
r

1 10 0 1

X=Number of 0s

X represents the total number of successes in n Bernoulli trials with the
parameter p. For example, it can represent the total number of heads in
n tosses of a coin where the probability of getting heads is p.

X

1

𝑝𝑋 𝑥 = ቊ𝑝𝑥 1 − 𝑝 1−𝑥  𝑓𝑜𝑟 𝑥 = 0,1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑋𝑖~𝐵𝑒𝑟𝑛(𝑝)

𝑋𝑖~𝐵𝑒𝑟𝑛(𝑝)



Negative binomial distribution (Cont'd)

PMF: 

𝑝𝑋 𝑥 = ൞

𝑟 + 𝑥 − 1

𝑥
𝑝𝑟 1 − 𝑝 𝑥 𝑓𝑜𝑟 𝑥 = 0,1,2, . . .

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Mean: r(1-p)/p

Variance: r(1-p)/p2

Geometric distribution                                                                     (Univariate-Discrete)

Parameters: p (0≤p≤1) Denoted by: X ~ Geom(p)       

Story: Suppose that we have a sequence of Bernoulli trials
with the parameter p. A random variable X with geometric
distribution with the parameter p, represents the number
of failures that occur before the 1st success.

PMF: 

𝑝𝑋 𝑥 = ቊ
𝑝 1 − 𝑝 𝑥 𝑓𝑜𝑟 𝑥 = 0,1,2, . . .

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Mean: (1-p)/p

Variance: (1-p)/p2

…
X+1

X=Number of 0s

0 00 0 1

Related distributions: Geometric distribution is a special 
case of a negative binomial distribution where r=1.

…

r

0 11 1 0 1 00 1… … 1…0

X1 + + Xi + + Xr = X… …

So, a random variable X with a geometric distribution with the parameter p gives the number 
of failures between two consecutive successful trials in a sequence of Bernoulli trials with the 
parameter p. 

A random variable X which has a negative binomial distribution with parameters r and p can be 
written as the sum of r random variables that have a geometric distribution with parameter p:

1st success ith success rth success

Properties: The geometric distribution is memoryless:
𝑃 𝑋 ≥ 𝑛 + 𝑚 𝑋 ≥ 𝑚 = 𝑃(𝑋 ≥ 𝑛)

And it is the only discrete distribution which is memoryless.

Related distributions: A random variable with negative binomial distribution with parameters r
and p is the sum of r random variable that have a geometric distribution with the parameter p.

𝑋 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑟 𝑤ℎ𝑒𝑟𝑒 𝑋~𝑁𝐵𝑖𝑛 𝑟, 𝑝 , 𝑋𝑖~𝐺𝑒𝑜𝑚(𝑝)

2

𝑋 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑟 𝑤ℎ𝑒𝑟𝑒 𝑋𝑖~𝐺𝑒𝑜𝑚 𝑝 → 𝑋~𝑁𝐵𝑖𝑛 𝑟, 𝑝

~Bern(𝑝)



Poisson distribution                                                                           (Univariate-Discrete)

Parameters: λ (λ>0) Denoted by: X ~ Pois(λ) 

Story: The Poisson distribution is a limiting case of the binomial distribution when the number of
trials n tends to infinity and p tends to zero while the product np=λ remains constant. The
parameter λ is also the mean of the distribution, so it gives the average number of the successful
events. We can also write λ=rt where r is the average rate and t is the time interval for that. Here
λ gives the average number of events in the time interval t.

𝑝𝑋 𝑥 = ቐ
𝜆𝑥𝑒−𝜆

𝑥!
 𝑓𝑜𝑟 𝑥 = 0,1,2, …

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
Mean: λ

Variance: λ

…

n→∞

~Bern(p), p→0

10 0 0 0 0 0 0 0 10 0 0 010 0 0 00 00 00 00 0

Interval t

lim
𝑛→∞

𝑛𝑝 = 𝜆

Related distributions: The Poisson distribution is a
limiting case of the binomial distribution when the
number of trials n tends to infinity and p tends to zero
while the product np=λ remains constant.

Uniform distribution                                                                         (Univariate-Discrete)

Parameters: a, b  (a, b ∈Z) Denoted by: X ~ DU(a, b)

Story: A random variable X with a discrete uniform distribution with parameters a and b can
take each of the integers a, a+1..., b with equal probability. So, it is a probability distribution
where all outcomes have an equal chance of occurring.

PMF: 

𝑝𝑋(𝑥) = ቐ
1

𝑏 − 𝑎 + 1
 𝑓𝑜𝑟 𝑥 = 𝑎, 𝑎 + 1, … 𝑏

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Mean: (a+b)/2

Variance: 
𝑏−𝑎+1 2−1

12

Uniform distribution                                                                    (Univariate-Continuous)

Parameters: a, b               Denoted by: X ~ U(a, b)

Story: If the random variable X has a continuous unform distribution with the parameters a and
b, then for every subinterval of [a, b], the probability that X belongs to that subinterval is
proportional to the length of that subinterval, and all intervals of the same length are equally
probable.

3

X=Number of 1s
in interval t (𝜆 = 𝑟𝑡)

PMF:

X=Number of 1s



Uniform distribution (Cont'd)

PDF: 

Mean: (a+b)/2

Variance: 
𝑏−𝑎 2

12

Related distributions : The continuous uniform distribution is a limiting case of the discrete
uniform distribution when the number of values that the random variable X can take tends to
infinity.

Exponential distribution                                                             (Univariate-Continuous)

Parameters: λ (λ>0) Denoted by: X ~ Exp(λ)

Story: A random variable X with exponential
distribution with parameter λ represents the
waiting time until the first occurrence of a
Poisson event (an event in a Poisson process)
with the average rate of λ. It can also
represent the waiting time between any two
successive events in a Poisson process with
the average rate of λ.

PDF: 

𝑓𝑋 𝑥 = ቊ 𝜆𝑒−𝜆𝑥 𝑓𝑜𝑟 𝑥 > 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Mean: 1/λ

Variance: 1/λ2

Related distributions : The exponential distribution is a limiting form of the Geometric
distribution. Let X have a geometric distribution with parameter p and let p=λh. If h→0, the
random variable hX tends in distribution to an exponential random variable with parameter λ.
The exponential distribution is a special case of the gamma distribution: Exp(λ)=Gamm(1, λ).

Properties: The geometric distribution is memoryless:
𝑃 𝑋 > 𝑡 + 𝑠 𝑋 > 𝑡 = 𝑃 𝑥 > 𝑠 𝑓𝑜𝑟 𝑠, 𝑡 > 0

And it is the only continuous distribution that is 
memoryless.

0 T1 T2 Ti-1 Ti
t

X1 X2                                           Xi

Xi ~ Exp(λ),                         Ti ~ Gamma(i, λ)

ith Poisson event
Ti : Time until the ith Poisson 
event (average rate of λ)

Gamma distribution                                                                    (Univariate-Continuous)

Parameters: α, β (α, β>0) Denoted by: X ~ Gamma(α, β)

Story: A random variable T with
gamma distribution with
parameters α and β represents
the waiting time until the αth
occurrence of a Poisson event
with an average rate of β (please
note that this story is only valid
when α is positive integer).

0 T1 T2 Ti-1 Ti
t

ith Poisson event

Xi : Time until the ith Poisson 
event (average rate of β)

𝑇𝑖 = ෍

𝑖

𝑋𝑖 ,

Xi ~ Exp(β),   Ti ~ Gamma(i, β)

𝑇𝑖 = ෍

𝑖

𝑋𝑖

X1 X2                                           Xi

𝑓𝑋(𝑥) = ቐ
1

𝑏 − 𝑎
 𝑓𝑜𝑟 𝑎 ≤ 𝑥 ≤ 𝑏

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

4



Gamma distribution (Cont'd)

Mean: α/β

Variance: α/β2

Related distributions: The gamma distribution is a generalization of the exponential
distribution: Exp(λ)=Gamma(1, λ).
If α is a positive integer, the gamma distribution with this α is also called the Erlang distribution.
If a random variable X has the gamma distribution with parameters α = m/2 and β = ½ where
m>0, then X has a chi-square distribution with m degrees of freedom.

PDF: 

𝑓𝑇 𝑡 = ቐ
𝛽𝛼

Γ 𝛼
𝑥𝛼−1𝑒−𝛽𝑥 𝑓𝑜𝑟 𝑥 > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Properties: If Xi has the gamma distribution
with parameters αi and β then the sum
X1+...+Xk has the gamma distribution with
parameters α1 +...+αk and β. If Xi~Exp(λ),
then the sum X1+...+Xk has the gamma
distribution with parameters k and β.

Beta distribution                                                                           (Univariate-Continuous)

Parameters: α, β  (α, β >0) Denoted by: X ~ Beta(α, β)

Story: Let X have a binomial distribution with parameters n and p where p is unknown and is
represented by the random variable P. For example, let X give the number of head in n tosses of
a coin. Before observing the value of X, we assume that P has a Beta(a, b) distribution (prior
distribution). If we observe that X=k (in the case of a coin, k is the number of heads and in n
tosses), then the posterior distribution of P after this observation is Beta(a+k, b+n-k).

PDF: 

𝑓𝑋 𝑥 = ቐ

1

B 𝛼, 𝛽
𝑥𝛼−1 1 − 𝑥 𝛽−1 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Mean: α /(α + β)

Variance: 
𝛼𝛽

𝛼+𝛽 2(𝛼+𝛽+1)

Related distributions: Beta(1, 1) is equal to 
the uniform distribution on the interval [0, 1]. 

…
~Bern(p) Observation: 

X (Number of 1s)=k

0 01 1 0P ~ Beta(a, b)

n

Prior Posterior

P|X=k ~ Beta(a+k, b+n-k)

5

where B 𝛼, 𝛽 = Γ 𝛼 + 𝛽 / Γ 𝛼  Γ 𝛽



Mean: µ 

Variance: σ2

PDF: 

𝑓𝑋 𝑥 =
1

2𝜋𝜎2
𝑒𝑥𝑝 −

1

2

𝑥 − 𝜇 2

𝜎2

Standard normal distribution: The normal
distribution with µ=0 and σ2 =1 is called
the standard normal distribution.

Normal distribution                                                                     (Univariate-Continuous)

Parameters: µ, σ2 Denoted by: X ~ N(µ, σ2)

Story: The normal
distribution is the only
distribution that allows us
to choose the mean and
variance of the distribution
as the parameters of the
distribution. Hence, they
do not depend on each
other.

Beta distribution (Cont'd)

If X ~ Gamma(α, λ) and Y ~ Gamma(β,
λ) are independent random variables

then
𝑋

𝑋+𝑌
~𝐵𝑒𝑡𝑎 𝛼, 𝛽 . We also have

X+Y ~ Gamma(α+β, λ).

0 X                           X+Y 
t

αth event (α+β)th event

X ~ Gamma(α, λ) 
Y ~ Gamma(β, λ) 

𝑋

𝑋 + 𝑌
~𝐵𝑒𝑡𝑎 𝛼, 𝛽

Poisson process (average rate of λ) 

If α and β are integers, then X and X+Y represent
the waiting time until the αth and (α+β)th
occurrences of a Poisson event with an average
rate of λ, and their ratio has a beta distribution
with parameters α and β.

𝑓𝑋 𝑥

𝜇−𝜎−2𝜎 𝜎 2𝜎

1

2𝜋𝜎2

6

−∞ < 𝑥 < ∞

Standard normal distribution
if X has a normal distribution with mean µ 
and variance σ2, then the random variable 
(X-µ)/σ has the standard normal 
distribution.

Properties: if X has a normal distribution 
with mean µ and variance σ2, the probability
that its value falls within one standard
deviation of the mean is roughly 0.66

𝑃 −𝜎 ≤ 𝑋 ≤ 𝜎 ≈ 0.66

P(-σ ≤ X ≤ σ) is the area under the PDF curve between x=-σ and x=σ.

Similarly, we have:  𝑃 −2𝜎 ≤ 𝑋 ≤  2𝜎 ≈ 0.95, 𝑃 −3𝜎 ≤ 𝑋 ≤  3𝜎 ≈ 0.997

Mean (μ) and 
variance (σ2) as 
independent
parameters



7

Normal distribution (Cont'd)

Central limit theorem (Lindeberg and Levy): If a sufficiently large random sample of size n is 
taken from any distribution (regardless of whether this distribution is discrete or continuous) 
with mean μ and variance σ2, then the distribution of the sample mean ( ത𝑋) will be approximately 
the normal distribution with mean μ and variance σ2/n. In addition, the sum  σ𝑖=1

𝑛 𝑋𝑖 will be 
approximately the normal distribution with mean nμ and variance nσ2. As a rule, sample sizes 
equal to or greater than 30 are usually considered sufficient for the CLT to hold. 

Related distributions : The normal distribution is related to all other distribution through the
central limit theorem. The sum of the square of n independent random variables with a
standard normal distribution has a chi-square distribution with n degrees of freedom. The t
distribution and F distribution are also defined based on random variables that have the
standard normal and chi-square distributions.

𝑋 ~ 𝑁(𝑎1𝜇1 + ⋯ + 𝑎𝑛𝜇𝑛 + 𝑏, 𝑎1
2 𝜎1

2 + ⋯ + 𝑎𝑛
2 𝜎𝑛

2)
𝑋 = 𝑎1𝑋1 + 𝑎𝑛𝑋𝑛 + 𝑏

𝑋𝑖~𝑁(𝜇𝑖 , 𝜎𝑖
2)

Linear Combinations of Normally Distributed Variables: If the random variables X1,...,Xk are
independent and each Xi has the normal distribution with mean μi and variance σ2 then the sum
a1X1+...+anXn+b has the normal distribution with mean 𝑎1𝜇1 + ⋯ + 𝑎𝑛𝜇𝑛 + 𝑏 and variance
𝑎1

2𝜎1
2 + ⋯ + 𝑎𝑛

2 𝜎𝑛
2.

Central limit theorem (Lyapunov): This is a more general version of the CLT. Suppose that X₁, 
X₂, …, Xₙ, are independent but not necessarily identically distributed, so each of them can have 
a different distribution. We also assume that the mean and variance of each Xi are μi and σi

2 
respectively. If these two equations are satisfied

𝐸 𝑋𝑖 − 𝜇𝑖
3 < ∞ 𝑓𝑜𝑟 𝑖 = 1,2, … lim

𝑛→∞

σ𝑖=1
𝑛 𝐸 𝑋𝑖 − 𝜇𝑖

3

σ𝑖=1
𝑛 𝜎𝑖

2 3/2
= 0

then for a sufficiently large value of n, the distribution of X₁+X₂+ …+Xₙ will be approximately 

the normal distribution with mean 𝜇1+ 𝜇2+…+ 𝜇𝑛 and variance 𝜎1
2+ 𝜎2

2+…+ 𝜎𝑛
2.

 

𝑋𝑖~𝐴𝑛𝑦 𝑑𝑖𝑠𝑖𝑡𝑟𝑢𝑏𝑡𝑖𝑜𝑛 (𝜇, 𝜎2) ത𝑋~𝑁 𝜇, 𝜎2/𝑛 , ෍

𝑖=1

𝑛

𝑋𝑖~𝑁 𝑛𝜇, 𝑛𝜎2

𝑛 → ∞



PDF: 

𝑓𝑋 𝑥 = ൞

1

2𝑚/2Γ
𝑚
2

𝑥
𝑚
2

−1𝑒−
𝑥
2 𝑓𝑜𝑟 𝑥 > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Mean: m

Variance: 2m

Related distributions : A random variable with chi-square distribution with m degrees of
freedom is the sum of squares of m random variables with the standard normal distribution.
If Z ~ N(0,1) and V ~ 𝜒2 𝑛 , then the random variable T=Z/ 𝑉/𝑛 has a t distribution with n
degrees of freedom. We also have 𝜒2 2 = Exp(1/2).
If Y1 ~ 𝜒2 𝑑1 and Y2 ~ 𝜒2 𝑑2 , then (Y1/d1)/(Y2/d2) has the F distribution with d1 and d2 
degrees of freedom.

Properties: Let X1, X2, ..., Xn be a random sample (i.i.d) from a normal distribution with mean μ 
and variance σ2, and let S2 be the sample variance of a sample of size n defined as:

𝑆2 =
1

𝑛−1
σ𝑖=1

𝑛 (𝑋𝑖 − ത𝑋𝑛). Then
𝑛−1

𝜎2 𝑆2 has chi-square distribution with n-1 degrees of freedom.

 

Student’s t distribution                                                               (Univariate-Continuous)

Parameters: n  (n>0) Denoted by: T ~ tn

Story: Let the random variable Z have the standard normal distribution and the random variable

V have a chi-square distribution with n degrees of freedom, then the random variable T=Z/ 𝑉/𝑛
has a t distribution with n degrees of freedom.
A random sample of size n from a normal distribution is not a good representative of the original
distribution when the sample size is small. That is because the outliers have a smaller chance of
occurrence when n is small. Hence, there is big chance that the sample variance (S2) for one
specific sample be smaller than the variance of the original distribution.

S2 ~σ2 S2 < σ2

Chi-square distribution                                                               (Univariate-Continuous)

Parameters: m  (m>0) Denoted by: 𝑋 ~ 𝜒2 𝑚

Story: Let the random variable X have a gamma distribution

with parameters α = m/2 and β = ½ where m>0, then X has

a chi-square distribution with m degrees of freedom. In

addition, If Z1, Z2, ..., Zm are independent, standard normal 

random variables, then 𝑋 = 𝑍1
2 + 𝑍2

2 + ⋯ 𝑍𝑚
2 has a chi-

square distribution with m degrees of freedom. 

𝑋 = 𝑍1
2 + 𝑍2

2 + ⋯ 𝑍𝑚
2

𝑍𝑖~ 𝑁(0, 1)

𝑋 ~ 𝜒2 𝑚

8



F distribution                                                                                 (Univariate-Continuous)

Parameters: d1, d2 (d1, d2 are positive integers) Denoted by: X ~ F(d1 , d2)

Story: Suppose that Y1 and Y2 are two 
independent random variables such 
that Y1 has the chi-square distribution 
with d1 degrees of freedom and Y2 has 
the chi-square distribution with d2 
degrees of freedom (d1 and d2 are 
positive integers). The random 
variable X=(Y1 / d1)/(Y2 / d2) has the F 
distribution with d1 and d2 degrees of 
freedom. 

𝑋 =
Τ𝑌1 𝑑1

Τ𝑌2 𝑑2

𝑌1 ~ 𝜒2 𝑑1

𝑌2 ~ 𝜒2 𝑑2

𝑋~𝐹 𝑑1, 𝑑2

Student’s t distribution (Cont'd)

Mean: 0 for n>1, otherwise undefined

Variance: n/(n-2) for n>2, ∞ for 1<n≤2, 
otherwise undefined 

Related distributions: As n→∞, the PDF of the t distribution tends to the PDF of the standard 
normal distribution.
If T has the t distribution with n degrees of freedom, then T2 has the F distribution with 1 and n
degrees of freedom.

PDF: 

𝑓𝑇 𝑡 =
Γ

𝑛 + 1
2

𝑛𝜋Γ
𝑛
2

(1 + 𝑡2/𝑛)−(𝑛+1)/2

 −∞ < 𝑡 < ∞

Heavier tails 
compared to 
STD normal 
distribution

The ratio ( ത𝑋 − 𝜇)/𝑆/ 𝑛 has a 
t distribution with n-1 degrees 
of freedom 

ത𝑋 − 𝜇

Τ𝑆 𝑛
~ tn-1

Based on the central limit theorem, the distribution of the 
sample mean ( ത𝑋 ) will be approximately a normal 
distribution with mean μ and variance σ2/n, so the ratio
( ത𝑋 − 𝜇)/𝜎/ 𝑛 has the standard normal distribution.

ത𝑋 − 𝜇

Τ𝜎 𝑛
~ N(0, 1)

However, the ratio ( ത𝑋 − 𝜇)/𝑆/ 𝑛 doesn’t have the standard normal distribution. For each
sample, there is a big chance that S<σ. So, in ( ത𝑋 − 𝜇)/𝑆/ 𝑛 the extreme values (outliers)
have a higher chance of occurrence. As a result, the distribution of ( ത𝑋 − 𝜇)/𝑆/ 𝑛 has heavier
tails compared to ( ത𝑋 − 𝜇)/𝜎/ 𝑛.

9



Multinomial distribution                                                              (Multivariate-Discrete)

Parameters: n, p (0≤pi≤1 (n=1,2,…), σ𝑖 𝑝𝑖 = 1) Denoted by: X ~ Mult(n, p)

Story 1: Suppose that we have n independent trials.
Each trial has k (k≥2) different outcomes, and the
probability of the ith outcome is pi (σ𝑖 𝑝𝑖 = 1). The
vector p denotes these probabilities. Let the
discrete random variable Xi represent the number of
times the outcome number i is observed over the n
trials. The random vector X is defined as

F distribution (Cont'd)

PDF: 

𝑓𝑋 𝑥 =
Γ

𝑑1 + 𝑑2
2 𝑑1

𝑑1/2
𝑑2

𝑑2/2
𝑥

𝑑1
2

−1

Γ
𝑑1
2 Γ

𝑑2
2 𝑑1𝑥 + 𝑑2

(𝑑1+𝑑2)/2
 𝑥 > 0

Mean: d2/(d2 -2) for d2 >2

Variance: 
2𝑑2

2(𝑑1+𝑑2−2)

𝑑1 𝑑2−2 2(𝑑2−4)
for d2 >4

Related distributions: A random variable with F
distribution is the ratio of two random variables
with chi-square distribution.

𝒑 =

𝑝1

𝑝2

⋮
𝑝𝑘

1    p1

2    p2

k pk

⋮

…

n

2 1 k 3 1𝑿 =

𝑋1

𝑋2

⋮
𝑋𝑘

X1=Number of 1s

X2=Number of 2s

Xk=Number of ks

X ~ Mult(n, p)

has the multinomial distribution 
with parameters n and p.

⋮

෍

𝑖

𝑝𝑖 = 1

… …… …

Population

p1 p2
pk

pi : proportion of the 
items in category i 

…

n

Random selection
with replacement

Story 2: We have a 
population of items of 
k different categories 
(k ≥ 2). The proportion 
of the items in the 
population that are in 
category i is pi, and 
σ𝑖 𝑝𝑖 = 1 . Now we 
randomly select n 
items from the 
population with 
replacement, and we X ~ Mult(n, p)

X1=Number of

X2=Number of 

⋮
Xk=Number of 

The multinomial distribution can be used to describe a k-sided die. Suppose that we have a k-

sided die, and the probability of getting side i is pi. If we roll it n times, and Xi represents the total 

number of times that side i is observed, then X has  

10

a multinomial distribution with parameters n and p.



Multinomial distribution (Cont'd)

Joint PMF: 
𝑝𝑿 𝒙 = 𝑝𝑋1,𝑋2,…,𝑋𝑘

𝑥1, 𝑥2, … , 𝑥𝑘

= 𝑃(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑘 = 𝑥𝑘)=

ቐ
𝑛!

𝑥1!𝑥2!…𝑥𝑘!
𝑝1

𝑥1𝑝2
𝑥2 … 𝑝𝑘

𝑥𝑘  𝑖𝑓 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑘 = 𝑛

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Mean: E[Xi]=npi

Variance: 𝑉𝑎𝑟 𝑋𝑖 = 𝑛𝑝𝑖(1 − 𝑝𝑖)

Related distributions: The multinomial distribution is a generalization of the binomial distribution. 
If k=2, the multinomial distribution reduces to a binomial distribution:

Covariance: 𝐶𝑜𝑣 𝑋𝑖 , 𝑋𝑗 = −𝑛𝑝𝑖𝑝𝑗

X1~Bin(5, 0.5)X2~Bin(5, 0.3)

𝑿 =

𝑋1

𝑋2

𝑋3

~ Mult(5,
0.5
0.3
0.2

)

X1 ~ Bin(n, p1)
X2 ~ Bin(n, p2)

If 𝑿 =

𝑋1

𝑋2

⋮
𝑋𝑘

~Mult(𝑛,

𝑝1

𝑝2

⋮
𝑝𝑘

) and k>2 then the marginal distribution of each Xi is a binomial

distribution with parameters n and pi: Xi ~ Bin(n, pi).

The sum of some of the elements of multinomial random vector X has a binomial distribution.
If Xi,1, Xi,2, …, Xi,m are m elements of the random vector X (m<k) and their corresponding
probabilities in vector p are pi,1, pi,2, …, pi,m, then the sum Xi,1 + Xi,2 + …+ Xi,m has a binomial
distribution with parameters n and pi,1 + pi,2 + …+ pi,m. For example:

Properties: We can merge multiple
elements in a multinomial random
vector to get a new multinomial
random vector. For example, if:

Then

A random vector X that has a multinomial distribution with parameters n and p can be written as 

the sum of n random vectors that have a multinomial distribution with parameters 1 and p:

𝑿~Mult 𝑛, 𝒑 𝑿 = 𝒀1 + 𝒀2 + ⋯ . +𝒀𝑛 𝑤ℎ𝑒𝑟𝑒 𝑌𝑖~Mult 1 𝒑

assume that the discrete random variable Xi represents the number of selected items that are in 
category i. If we assume that Xi and pi are the ith elements of the vectors X and p, then X has a 
multinomial distribution with parameters n and p.
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𝑿 =
𝑋1

𝑋2
,   𝒑 =

𝑝1

𝑝2

𝑿 =

𝑋1

𝑋2

𝑋3

𝑋4

~Mult(𝑛,

𝑝1

𝑝2

𝑝3

𝑝4

)

𝑿 =
𝑋1 + 𝑋2

𝑋3

𝑋4

~Mult(𝑛,

𝑝1 + 𝑝2

𝑝3

𝑝4

)

𝑿 =

𝑋1

𝑋2

𝑋3

𝑋4

~Mult(5,

𝑝1

𝑝2

𝑝3

𝑝4

) 𝑋1 + 𝑋3 + 𝑋4~Bin(5, 𝑝1 + 𝑝3 + 𝑝4)
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PMF: 

Related distributions : Based on story 1, it is a generalization of Bernoulli distribution story 1,
and based on story 2, it is a special case of multinomial distribution for n=1.

Categorical or multinoulli distribution                                                              (Discrete)

Parameters: p (0≤pi≤1 (n=1,2,…), σ𝑖 𝑝𝑖 = 1)  Denoted by: 𝑿 ~ Mu 𝒑 or 𝑋 ~ Cat 𝒑

Story 1: Suppose that the random variable X has k possible outcomes labeled by 1 to k, and the

probability of the ith outcome is pi. Then X is said to have a categorical distribution with the

parameter p, and it is univariate distribution. For example, X can represent the outcome of

rolling a k-sided die where X=i represents

Dirichlet distribution                                                                (Multivariate-Continuous)

Parameters: α (αi>0, number of elements of α ≥2) Denoted by: X ~ Dir(α)

𝒑 =

𝑝1

𝑝2

⋮
𝑝𝑘

1    p1

2    p2

k pk

⋮
෍

𝑖

𝑝𝑖 = 1
ቊ

𝑓𝑋 𝑥 = 𝑖|𝒑 = 𝑝𝑖 𝑓𝑜𝑟 𝑖 = 1 … 𝑘

𝑓𝑋 𝑥|𝒑 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

obtaining side i and pi is the probability
of getting that side.

Story 2: The random vector X has a categorical or multinoulli distribution, if X has a multinomial

distribution

Joint PMF: 

𝑿~Mult 1, 𝒑 ⟺ 𝑿~Mu(𝒑)

And it is a multivariate distribution in this case. Here X is
one-hot encoded vector in which only one element is one
and the other elements are zero. If we observe the ith
outcome then Xi=1 and the other elements of X are zero.

X

Mean: E[Xi]=pi

Variance: 𝑉𝑎𝑟 𝑋𝑖 = 𝑝𝑖(1 − 𝑝𝑖)

𝑝𝑿 𝒙 = ቊ
𝑝1

𝑥1𝑝2
𝑥2 … 𝑝𝑘

𝑥𝑘  𝑖𝑓 𝑥𝑖 = 1, 𝑥𝑗 = 0 𝑗 = 1 … 𝑘, 𝑗 ≠ 𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Side i was 
observed

𝑿 =

0
0
⋮
1
⋮
0

𝑋𝑖 = 1

with n=1. Hence it is a special case of the multinomial 
distribution:

Story: Let X have a binomial distribution with parameters n and p where p is unknown and is
represented by the random vector P. For example, let each element of X (Xi) represent the
number of times that the side i is observed in n rolls of a k-sided die. Before observing the value
of X, we assume that P has a Dir(α) distribution (prior distribution). If we observe that X=m (in
the case of a die, mi is the number of times that side i is observed) then the posterior
distribution of P after this observation is Dir(α+m).

Observations:

𝑚1: 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 1𝑠
𝑚2: 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 2𝑠

⋮
𝑚𝑘: 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑠

𝑿 =

𝑋1

𝑋2

⋮
𝑋𝑘
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Dirichlet distribution (Cont’d)

Joint PDF:   𝑝𝑿 𝒙 = ቐ
1

B(𝜶)
𝑥1

𝛼1−1
𝑥2

𝛼2−1
… 𝑥𝑘

𝛼𝑘−1
𝑖𝑓 0 ≤ 𝑥𝑖 ≤ 1 𝑎𝑛𝑑 σ𝑖=1

𝑘 𝑥𝑖 = 1 (𝑖 = 1 … 𝑘)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Mean: 𝐸 𝑿 =
1

𝛼0

𝛼1

𝛼2

⋮
𝛼𝑘

Variance: 𝑉𝑎𝑟 𝑋𝑖 =
𝛼𝑖(𝛼0−𝛼𝑖)

𝛼0
2(𝛼0+1)

Covariance: 𝐶𝑜𝑣 𝑋𝑖 , 𝑋𝑗 =
−𝛼𝑖𝛼𝑗

𝛼0
2(𝛼0+1)

Related distributions: The Dirichlet distribution is a
generalization of the beta distribution. If X has a
Dirichlet distribution, the marginal distribution of
each random variable in X is a beta distribution.

Properties: If the k-dimensional random

vector X has a Dirichlet distribution then

the support of this distribution is a k-1

dimensional simplex. The Dirichlet

distribution Dir 1 1 … 1 𝑇 is the

same as the uniform distribution over its

k-1 dimensional simplex since the joint

PDF has the same value over the simplex.

where B 𝛂 =
ς𝑖=1

𝑘 Γ 𝛼𝑖

Γ(σ𝑖=1
𝑘 𝛼𝑖)

=
Γ 𝛼1 Γ 𝛼2 …Γ 𝛼𝑘

Γ(𝛼1+𝛼2+⋯+𝛼𝑘)

where 𝛼0 = σ𝑖=1
𝑘 𝛼𝑖

𝑥1

𝑥1

𝑥2

𝑥2

𝑥3

𝑥3

𝑖 ≠ 𝑗

𝑥1

𝑥1

𝑥2

𝑥2

𝑥3

𝑥3

𝑿~Dir 1 1 1 𝑇

𝑿~Dir 5 5 5 𝑇

𝑿~Dir 1 3 1 𝑇

𝑥1 𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

𝑿 = 𝑋1 … 𝑋𝑖 … 𝑋𝑗 … 𝑋𝑘
𝑇

~ Dir 𝛼1 … 𝛼𝑖 … 𝛼𝑗 … 𝛼𝑘 𝑇

We drop the random variables Xi and Xj

from X and add Xi+Xj to it at an arbitrary

place and call the resulting random

vector X’. The random vector X’ has the

following Dirichlet distribution:

Marginal distributions: Let X have a Dirichlet distribution:

Then the marginal distribution of each Xi is the following 

beta distribution:
𝑋𝑖 ~Beta(𝛼𝑖 , 𝛼0 − 𝛼𝑖)

𝑿′ = 𝑋1 … 𝑋𝑖 + 𝑋𝑗 … 𝑋𝑘
𝑇

~ Dir 𝛼1 … 𝛼𝑖 + 𝛼𝑗 … 𝛼𝑘
𝑇

𝑿 = 𝑋1 𝑋2 … 𝑋𝑘
𝑇~ Dir 𝛼1 𝛼2 … 𝛼𝑘

𝑇

where 𝛼0 = σ𝑖=1
𝑘 𝛼𝑖

Aggregation property: Let the random

vector X have the following Dirichlet

distribution:



Standard multivariate normal distribution                        (Multivariate-Continuous)

Parameters: NA Denoted by: X ~ N(0, I)

Story: Suppose that we have n independent random
variables Z₁, Z₂, … Zₙ, and each of them has a standard
normal distribution, and the PDF of each Zi is 𝑓𝑍𝑖

𝑧𝑖 .

Then the random vector

𝒛 =

𝑧1

𝑧2

⋮
𝑧𝑛

has the standard multivariate normal

𝑓𝒁 𝒛 = 𝑓𝑍1
𝑧1 𝑓𝑍2

𝑧2 … 𝑓𝑍𝑛
𝑧𝑛

Joint PDF: 

𝑓𝒁 𝒛 = 𝑓𝑍1,𝑍2,…,𝑍𝑛
𝑧1, 𝑧2, … , 𝑧𝑛 =

1

2𝜋
𝑛
2

𝑒𝑥𝑝 −
1

2
𝒛𝑇𝒛

Mean:

Covariance:
              

Multivariate normal distribution                                          (Multivariate-Continuous)

Parameters: µ, Σ (Σ is positive semidefinite) Denoted by: X ~ N(µ, Σ)

Story: Suppose the random vector

 𝒁 =

𝑍1

𝑍2

⋮
𝑍𝑛

has an SMVN distribution, and let X be 

a random vector with n elements defined as

 𝑿 = 𝝁 + 𝑨𝒁

where µ is the mean vector:

𝝁 =

𝜇1

𝜇2

⋮
𝜇𝑛

and A is a symmetric n×n matrix 

(A=AT). In addition, we define the n×n matrix Σ as 

𝜮 = 𝑨𝑨𝑇 = 𝑨𝑻𝑨 and call it the covariance matrix. 

Then X is said to have a multivariate normal 

(MVN) distribution with the parameters µ and Σ.

𝑿 ~𝑵
1
1

,
6 4
4 6

Related distributions: SMVN is a special case of MVN distribution when µ=0 and Σ=I.
If Z only has one element (n=1), then SMVN is equivalent to the standard normal distribution. 

−∞ < 𝑧𝑖 < ∞
𝟎 =

0
0
⋮
0

𝑰 =

1 0 … 0
0 1 … 0
⋮ ⋮ … ⋮
0 0 … 1

Properties: SMVN distribution is a generalization of the 
standard normal distribution to a random vector. 
The PDF of SMVN distribution can be also written as:

14

(SMVN) distribution.

𝒁 = 𝑵(
0
0

,
1 0
0 1

)



Multivariate normal distribution (Cont’d)

MVN distribution is a generalization of the normal 
distribution to a random vector. The standard
deviation (σ) transforms a random variable Z with the
standard normal distribution to the random variable
X with a normal distribution (𝑋 = 𝜇 + 𝜎𝑍).

Similarly, the matrix A transform the random vector Z
with an SMVN distribution to the random vector X
with an MVN distribution (𝑿 = 𝝁 + 𝑨𝒁). Hence, it
plays the same role of standard deviation for random
vectors with the MVN distribution.

Joint PDF: If the random vector X (with n elements) has an MVN distribution with the
parameters μ and Σ, where Σ is a positive definite matrix then its joint PDF is

Mean:

Covariance:

=
1

2𝜋
𝑛
2|𝜮|

1
2

𝑒𝑥𝑝 −
1

2
𝒙 − 𝝁 𝑇𝜮−1 𝒙 − 𝝁  −∞ < 𝑥𝑖 < ∞𝑓𝑿 𝒙 = 𝑓𝑋1,𝑋2,…,𝑋𝑛

𝑥1, 𝑥2, … , 𝑥𝑛

𝜮 = 𝑨𝑨𝑇 = 𝑨𝑇𝑨 = 𝑨2 =

𝑉𝑎𝑟 𝑋1 𝐶𝑜𝑣 𝑋1, 𝑋2 … 𝐶𝑜𝑣 𝑋1, 𝑋𝑛

𝐶𝑜𝑣 𝑋2, 𝑋1 𝑉𝑎𝑟 𝑋2 … 𝐶𝑜𝑣 𝑋2, 𝑋𝑛

⋮ ⋮ … ⋮
𝐶𝑜𝑣 𝑋𝑛, 𝑋1 𝐶𝑜𝑣 𝑋𝑛, 𝑋2 … 𝑉𝑎𝑟 𝑋𝑛

𝝁 =

𝜇1

𝜇2

⋮
𝜇𝑛

Contours of joint PDF: The shape of the contours of an MVN
distribution is determined by the covariance matrix.

𝝁 =
0
0

, 𝜮 =
1 0
0 1

𝝁 =
𝜇1

𝜇2
, 𝜮 =

𝑐 0
0 c

Bivariate normal distribution: If n=2 (n is the number of the elements of X), the MVN 
distribution is called a bivariate normal distribution.

In the SMVN distribution, the mean
vector is zero and the covariance
matrix is the identity matrix, so for a
2-dimensional SMVN distribution, the
PDF contours are circles centered at
the origin. For an n-dimensional
SMVN distribution, they are n-
dimensional hyperspheres centered at
the origin.

In a bivariate normal distribution, if 

the covariance matrix is a multiple 

of the identity matrix 𝜮 = 𝑐𝑰 , the

joint PDF contours are circles

centered at µ (the mean vector). For

an n-dimensional MVN distribution,

if 𝜮 = 𝑐𝑰, the contours of the joint

PDF are n-dimensional hyperspheres

centered at µ.

Precision matrix: The inverse of the covariance matrix is called the precision matric and is
denoted by 𝜦. So, we can also denote the MVN distribution by 𝑿~𝑁(𝝁, 𝜦−𝟏) where 𝜦=𝜮−1.
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𝑐𝜎1

𝑐𝜎2

𝑐𝜆2𝒗2 𝑐𝜆1𝒗1

The eigenvectors of both A and Σ
are v1 and v2. The eigenvalues of A
are λ1 and λ2. The eigenvalues of Σ
are 𝜆1

2 and 𝜆2
2

When Σ is diagonal, the marginal distribution of
each Xi has a normal distribution with a mean of µi

and variance of 𝜎𝑖
2:

Multivariate normal distribution (Cont’d)

In a bivariate normal distribution, the joint PDF contours

are ellipses centered at µ. More generally, in an n-

dimensional MVN distribution, the contours are n-

dimensional hyper-ellipsoids centered at µ. The principal

axes of these ellipsoids are along the eigenvectors of the

covariance matrix (vi i=1…n). The eigenvectors and

eigenvalues of A and Σ are given by the following

equations:

MVN with uncorrelated random variables: When

the random variables X1, X2, …Xn are uncorrelated 

(Cov(Xi, Xj)=0), their covariance matrix becomes

diagonal:

Each diagonal element (𝜎𝑖
2) is an eigenvalue of Σ and

its corresponding eigenvector is ei (the ith vector of

the standard basis). So, each eigenvector is along

one of the coordinate axes, and the principal axes of

the hyper-ellipsoid are also the coordinate axes.

𝜮𝒗𝑖 = 𝜆𝑖
2𝒗𝑖

𝑨𝒗𝑖 = 𝜆𝑖𝒗𝑖

The semidiameter of each hyper-ellipsoid along each

principal axis represented by vi is equal to λi.

𝜮 =

𝜎1
2 0 … 0

0 𝜎2
2 … 0

⋮ ⋮ … ⋮
0 0 … 𝜎𝑛

2

𝝁 =
𝜇1

𝜇2
, 𝜮 =

𝜎1
2 0

0 𝜎2
2

𝑋𝑖 ~ 𝑁(𝜇𝑖 , 𝜎𝑖
2)

The PDF of such an MVN distribution is
the product of the PDF of these marginal
distributions: 𝑿 ~ 𝑁

𝜇1

𝜇2
,

𝜎1
2 0

0 𝜎2
2

𝑓𝑿 𝒙 = 𝑓𝑋1
𝑥1 𝑓𝑋2

𝑥2 … 𝑓𝑋𝑛
𝑥𝑛

So, X1,X2,…Xn are also independent. 
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𝜆1

𝜆2

By changing the coordinate system
for an n-d MVN distribution, we
can convert the covariance matrix
into a diagonal matrix. We can
define a new coordinate system by
rotating the axes of the original
coordinate system to be along the
eigenvectors of the covariance
matrix and move the origin by µ.

𝑥1

𝑥2

𝑓𝑋2
𝑥2

X1 and X2 are uncorrelated and independent



Multivariate normal distribution (Cont’d)

In this new coordinate system, the ellipsoids which are the contours of the joint PDF are
centered at the origin and their principal axes are along the coordinate axes. The original
correlated random variables X1,…Xn turn into the uncorrelated and independent random
variables V1,…Vn where each of them has the following normal distribution:

𝑽 =

𝑉1

𝑉2

⋮
𝑉𝑛

~𝑁

0
0
⋮
0

,

𝜆1 0 … 0
0 𝜆2 … 0
⋮ ⋮ … ⋮
0 0 … 𝜆𝑛

𝑉𝑖~𝑁 0, 𝜆𝑖
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The MVN distribution in this new coordinate has the following parameters:

The effect of correlation coefficients on the joint PDF contours: In the MVN distribution, the
covariance between each pair of random variables Cov(Xi, Xj) is an indicator of the
dependence between them. By changing Cov(Xi, Xj) , the covariance matrix and the contours
of the joint PDF change. When Cov(Xi, Xj)=0, the random variables Xi and Xj are independent,
and as it increases the dependence between them becomes stronger.
We can also write the covariance in terms of the correlation coefficient and standard
deviations of Xi and Xj :
So, in a bivariate normal distribution, the covariance matrix can be also written as

𝐶𝑜𝑣 𝑋𝑖 , 𝑋𝑗 = 𝜌 𝑋𝑖 , 𝑋𝑗 𝜎𝑋𝑖
𝜎𝑋𝑗

𝜮 =
𝜎𝑋1

2 𝜌 𝑋1, 𝑋2 𝜎𝑋1
𝜎𝑋2

𝜌 𝑋2, 𝑋1 𝜎𝑋2
𝜎𝑋1

𝜎𝑋2

2

When the correlation coefficient is zero, X1 and X2 are independent, the principal axes of the
ellipses are along the coordinate axis. As the correlation between X1 and X2 increases, the
joint PDF in the plane of X1 and X2 tilts and becomes narrower which means that X1 and X2

are more dependent on each other.



Degenerate MVN distribution: When the
covariance matrix is singular, the MVN
distribution is said to be degenerate. Such an
MVN distribution has no joint PDF since the
covariance matrix is not invertible. When the
random variables X₁, X₂ …, Xₙ have a
degenerate MVN distribution, then their
values x₁, x₂ …, xₙ lie in a space that has a
dimension less than n.

Degeneracy occurs when at least one of the
random variables is a deterministic function
of the others.

In a degenerate MVN distribution with n
random variables, 𝜮 (and A) is not a full-rank
matrix, so rank 𝜮=m where m<n (also rank
A=m), and m random variables are a
deterministic function of the others.

This also means that n-m eigenvalues of 𝜮
(and A) are zero. Hence, 𝜮 (and A) is not
positive definite anymore (but it is still
positive semidefinite). Finally, 𝜮 (and A) is a
singular matrix that is not invertible, and its
determinant is zero.

𝑿~𝑵
0
0

,
1 2
2 4

𝜆1 = 5, 𝜆2 = 0

Multivariate normal distribution (Cont’d)
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When 𝜌 𝑋𝑖 , 𝑋𝑗 = 1, the covariance of Xi and Xj is maximized, and there is a linear

relationship between them. Hence, knowing the value of one can determine the exact value of 
the other. In that case, one of the random variables is a deterministic function of the other, 
and we have a degenerate MVN distribution. 

In this degenerate MVN distribution, x1 and x2

lie in a 1-d space. You think of that as a
univariate normal distribution which lies in a 2-
dspace

Properties: The univariate normal distribution is a

special case of an MVN distribution when the

random vector X has only one element. If X=[X],

μ=[μ], , Σ =[σ2] (all of them can be thought of as a

matrix with only one element), then X ~ N(µ, σ2).

Concatenating normal random variables: If the random variables X1,X2,…Xn are mutually

independent and each Xᵢ has a normal distribution with mean μᵢ and variance σᵢ² then

concatenating them results in a in a random vector with an MVN distribution.

𝑋1

𝑋2

⋮
𝑋𝑛

~𝑁

𝜇1

𝜇2

⋮
𝜇𝑛

,

𝜎1
2 0 … 0

0 𝜎2
2 … 0

⋮ ⋮ … ⋮
0 0 … 𝜎𝑛

2

𝑋𝑖 ~ 𝑁(𝜇𝑖 , 𝜎𝑖
2)

Linear transformation of an MVN random vector: Let X be a random vector with n elements

that has an MVN distribution with parameters μ and Σ. Let b be a vector with m elements and C

be an m×n matrix. Then the random vector Y (with m elements) defined as Y=b+CX has an MVN

distribution with mean b+Cμ and covariance matrix CΣCᵀ.

𝒀~ 𝑁(𝒃 + 𝑪𝝁, 𝑪𝜮𝑪𝑇)𝒀 = 𝒃 + 𝑪𝑿



Multivariate normal distribution (Cont’d)

Linear combinations of independent MVN random vectors: Suppose that X1,X2,…Xm are m
independent random vectors. Each Xᵢ has nᵢ elements and an MVN distribution with parameters
μᵢ and Σᵢ. Let C1,C2,…Cm be p×nᵢ (i=1...m) matrices. Then the
random vector Y (with p elements) defined as

𝒀 = 𝒃 + ෍

𝑖=1

𝑚

𝑪𝑖𝑿𝑖

has an MVN distribution with the following parameters

𝝁 = 𝒃 + ෍

𝑖=1

𝑚

𝑪𝑖𝝁𝑖 𝜮 = ෍

𝑖=1

𝑚

𝑪𝑖𝜮𝑖𝑪𝑖
𝑇

Concatenating  MVN random vectors: Suppose that X1,X2,…Xm are m independent random 
vectors, and

𝑿1 ~ 𝑁 𝝁1, 𝜮1 , 𝑿2 ~ 𝑁 𝝁2, 𝜮2 … , 𝑿𝑚 ~ 𝑁 𝝁𝑚, 𝜮𝑚

Then concatenating them results in a in a random vector with an MVN distribution.

𝑿1

𝑿2

⋮
𝑿𝑚

~ 𝑁

𝝁1

𝝁2

⋮
𝝁𝑚

,

𝜮1 0 … 0
0 𝜮2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜮𝑚

Marginal distributions: Let X be a random vector with an MVN distribution:

and Xₛ be a subset vector of X. Then Xₛ also has the following MVN distribution:

𝑿 ~ 𝑁 𝝁, 𝜮

𝑿𝑠 ~ 𝑁 𝝁𝑠, 𝜮𝑠

which is called the marginal distribution of Xs. Here the vector µs is a subset of µ that only 
contains the corresponding means of the random variables in Xs, and the matrix Σs is the 
covariance matrix of the random variables in Xs. For example, suppose that 

𝑋1

𝑋2

𝑋3

𝑋4

~ 𝑁

𝜇1

𝜇2

𝜇3
𝜇4

,

𝛴11 𝛴12 𝛴13 𝛴14

𝛴21 𝛴22 𝛴23 𝛴24

𝛴31 𝛴32 𝛴33 𝛴34

𝛴41 𝛴42 𝛴43 𝛴44
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Then the marginal distribution of X1, X3 is:

𝑋1

𝑋3
~ 𝑁

𝜇1

𝜇3
,

𝛴11 𝛴13

𝛴31 𝛴33

And the marginal distribution of X1 is:

𝑋1~𝑁 𝜇1 𝛴11

𝑥1

𝑥2

𝑓 𝑋
1
(𝑥

1
)

𝑓𝑋2
(𝑥2)

𝑋1 ~ 𝑁 0, 1

𝑋
2

~
𝑁

0
,2

𝑿 =
𝑋1

𝑋2
~ 𝑁

0
0

,
1 1
1 2

Marginal distribution of X1 and X1 

are: 𝑋1 ~ 𝑁 0, 1 and 𝑋2 ~ 𝑁 0, 2



Multivariate normal distribution (Cont’d)

Partitioning an MVN random vector: Let X be a random vector with an MVN distribution:

𝑿 ~ 𝑁 𝝁, 𝜮

We can partition X into m MVN random sub-vectors X1,...Xm, and partition µ and Σ accordingly:

𝑿1

𝑿2

⋮
𝑿𝑚

~ 𝑁

𝝁1

𝝁2

⋮
𝝁𝑚

,

𝜮11 𝜮12 … 𝜮1𝑚

𝜮21 𝜮22 … 𝜮2𝑚

⋮ ⋮ ⋱ ⋮
𝜮𝑚1 𝜮2𝑚 … 𝜮𝑚𝑚

𝑿𝑖 ~ 𝑁 𝝁𝑖 , 𝜮𝑖𝑖

In addition, if in the partitioned covariance matrix, we have Σᵢⱼ=Σⱼᵢ=0 then it follows that the
random vectors Xᵢ and Xⱼ are independent. For example, if we have:

Each µi contains the corresponding means of the random variables in Xi, and Σij is the 
covariance matrix of the random variables in Xi and Xj. Now each sub-vector Xᵢ has an MVN
distribution: 

Then we conclude that:

𝑿1 ~ 𝑁 𝝁1, 𝜮11 ,  𝑿2 ~ 𝑁 𝝁2, 𝜮22

And since all the elements of  Σ12 and Σ21 are zero, we conclude that X1 and X2 are independent.
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Related distributions: SMVN is a special case of MVN distribution when µ=0 and Σ=I. If X has a 
MVN distribution, the marginal distribution of each random variable in X is a normal 
distribution. If X only has one element (n=1), then MVN is equivalent to the normal 
distribution.

This cheat sheet was prepared by Reza Bagheri (https://www.linkedin.com/in/reza-bagheri-
71882a76/). It is a summary of the following Medium articles:
1. Understanding Probability Distributions using Python (https://medium.com/towards-data-

science/understanding-probability-distributions-using-python-9eca9c1d9d38)
2. Understanding Multinomial Distribution using Python (https://medium.com/towards-data-

science/understanding-multinomial-distribution-using-python-f48c89e1e29f)
3. Understanding Multivariate Normal Distribution (https://medium.com/@reza-

bagheri79/understanding-multivariate-normal-distribution-54089b5b106c)
4. Dirichlet Distribution: The Underlying Intuition and Python Implementation 

(https://medium.com/towards-data-science/dirichlet-distribution-the-underlying-intuition-and-
python-implementation-59af3c5d3ca2)

https://medium.com/towards-data-science/understanding-probability-distributions-using-python-9eca9c1d9d38
https://medium.com/towards-data-science/understanding-probability-distributions-using-python-9eca9c1d9d38
https://medium.com/towards-data-science/understanding-multinomial-distribution-using-python-f48c89e1e29f
https://medium.com/towards-data-science/understanding-multinomial-distribution-using-python-f48c89e1e29f
https://medium.com/@reza-bagheri79/understanding-multivariate-normal-distribution-54089b5b106c
https://medium.com/@reza-bagheri79/understanding-multivariate-normal-distribution-54089b5b106c
https://medium.com/towards-data-science/dirichlet-distribution-the-underlying-intuition-and-python-implementation-59af3c5d3ca2
https://medium.com/towards-data-science/dirichlet-distribution-the-underlying-intuition-and-python-implementation-59af3c5d3ca2
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