
THREAD PROGRAMMING

1

Explicit Synchronization:
Creating and Initializing a Barrier

• To (dynamically) initialize a barrier, use code similar
to this (which sets the number of threads to 3):
pthread_barrier_t b;

pthread_barrier_init(&b,NULL,3);

• The second argument specifies an object attribute;
using NULL yields the default attributes.

• To wait at a barrier, a process executes:
pthread_barrier_wait(&b);

• This barrier could have been statically initialized by
assigning an initial value created using the macro
PTHREAD_BARRIER_INITIALIZER(3).

Slide source: Jim Demmel and Kathy Yelick

2

Calculating П

3

Serial code for calculating П

Parallel Version

4

Accuracy of Parallel and Serial on Dual
core

5

Why serial is more accurate?

Because the same variable sum is being updated in parallel!

One Solution: Busy waiting with turn flag

08/30/2012 CS4230 6

Mutexes (aka Locks) in Pthreads

• To create a mutex:

#include <pthread.h>

pthread_mutex_t amutex = PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_init(&amutex, NULL);

• To use it:

int pthread_mutex_lock(amutex);

int pthread_mutex_unlock(amutex);

• To deallocate a mutex

int pthread_mutex_destroy(pthread_mutex_t *mutex);

• Multiple mutexes may be held, but can lead to deadlock:
thread1 thread2

lock(a) lock(b)

lock(b) lock(a)

Slide source: Jim Demmel and Kathy Yelick
7

Another Solution: Using Mutex

8

Time Comparison

9

Conditional Wait/Signal

• Block the thread on a conditional variable

• The thread will wake up when a signal is raised.

10

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr);

Shared Memory

• Dynamic threads
- Master thread waits for work, forks new threads, and when

threads are done, they terminate

- Efficient use of resources, but thread creation and
termination is time consuming.

• Static threads
- Pool of threads created and are allocated work, but do not

terminate until cleanup.

- Better performance, but potential waste of system resources.

- Next page example:

- A static thread pool to execute simple calculation works

11

Example – Using Thread Pool

#include "queue.h"

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <pthread.h>

#define THREADS 3

/** Task queue. */

QUEUE queue;

/** Type of a calc work task. */

typedef struct {

int a;

int b;

int type;

QUEUE node;

} work_t;
12

Definitions

/** Our threads.*/

pthread_t threads[THREADS];

/**Our thread condition variable.*/

pthread_cond_t cond;

/**Our thread mutex lock.*/

pthread_mutex_t mutex;

/* function headers */

void * worker();

void submit_work(int a, int b, int type);

/** Should execute the submited work tasks through
thread pool. */

13

int main(void) {

QUEUE_INIT(&queue);

pthread_cond_init(&cond, NULL);

pthread_mutex_init(&mutex, NULL);

/* 3 + 3 = 6 */

submit_work(3, 3, 1);

/* 4 - 3 = 1 */

submit_work(4, 3, 2);

/* 7 * 8 = 56 */

submit_work(7, 8, 3);

/* 30 / 6 = 5 */

submit_work(30, 6, 4); 14

Starting threads

/* start all threads */

for (int i = 0; i < THREADS; i++)

pthread_create(&threads[i], NULL, worker, NULL);

/* wait all threads to finish */

for (int i = 0; i < THREADS; i++)

pthread_join(threads[i], NULL);

pthread_mutex_destroy(&mutex);

pthread_cond_destroy(&cond);

return EXIT_SUCCESS;

}

15

Work submission

void submit_work(int a, int b, int type) {

work_t * work = malloc(sizeof(work_t));

work->a = a;

work->b = b;

work->type = type;

pthread_mutex_lock(&mutex);

QUEUE_INIT(&work->node);

QUEUE_INSERT_TAIL(&queue, &work->node);

pthread_mutex_unlock(&mutex);

/* signal a thread that it should check for new work */

pthread_cond_signal(&cond);

} 16

Worker thread. Looks for new tasks to execute
void * worker() {

QUEUE * q;

int result;

bool spin = true;

work_t * work;

while (spin) {

pthread_mutex_lock(&mutex);

while (QUEUE_EMPTY(&queue)) {

pthread_cond_wait(&cond, &mutex);

}

q = QUEUE_HEAD(&queue);

QUEUE_REMOVE(q);

pthread_mutex_unlock(&mutex);

work = QUEUE_DATA(q, work_t, node);
17

switch (work->type) {

case 1:

result = work->a + work->b; break;

case 2:

result = work->a - work->b; break;

case 3:

result = work->a * work->b; break;

case 4:

result = work->a / work->b; break;

default: spin = false;

}

free(work);

}//while(spin)

pthread_exit(NULL);

}
18

Thread Safety

• Chapter 2 mentions thread safety of shared-memory
parallel functions or libraries.

- A function or library is thread-safe if it operates
“correctly” when called by multiple, simultaneously executing
threads.

- Since multiple threads communicate and coordinate through
shared memory, a thread-safe code modifies the state of
shared memory using appropriate synchronization.

- Some features of sequential code that may not be thread
safe?

19

Summary of Programming with Threads

• Pthreads are based on OS features
- Can be used from multiple languages (need appropriate header)

- Familiar language for most programmers

- Ability to shared data is convenient

• Pitfalls
- Data races are difficult to find because they can be

intermittent

- Deadlocks are usually easier, but can also be intermittent

• OpenMP is commonly used today as a simpler
alternative, but it is more restrictive

- OpenMP can parallelize many serial programs with relatively
few annotations that specify parallelism and independence

20

OPENMP PROGRAMMING

21

OpenMP:
Prevailing Shared Memory Programming Approach

• Model for shared-memory parallel programming

• Portable across shared-memory architectures

• Scalable (on shared-memory platforms)

• Incremental parallelization
- Parallelize individual computations in a program while leaving

the rest of the program sequential

• Compiler based
- Compiler generates thread program and synchronization

• Extensions to existing programming languages
(Fortran, C and C++)

- mainly by directives

- a few library routines

See http://www.openmp.org

22

A Programmer’s View of OpenMP

• OpenMP is a portable, threaded, shared-memory
programming specification with “light” syntax

- Exact behavior depends on OpenMP implementation!

- Requires compiler support (C/C++ or Fortran)

• OpenMP will:
- Allow a programmer to separate a program into serial regions

and parallel regions, rather than concurrently-executing
threads.

- Hide stack management

- Provide synchronization constructs

• OpenMP will not:
- Parallelize automatically

- Guarantee speedup

- Provide freedom from data races

23

OpenMP Execution Model

• Fork-join model of parallel execution

• Begin execution as a single process (master thread)

• Start of a parallel construct:

- Master thread creates team of threads (worker threads)

• Completion of a parallel construct:

- Threads in the team synchronize -- implicit barrier

• Only master thread continues execution

• Implementation optimization:

- Worker threads spin waiting on next fork
fork

join

24

OpenMP uses Pragmas

• Pragmas are special preprocessor instructions.

• Typically added to a system to allow behaviors that
aren’t part of the basic C specification.

• Compilers that don’t support the pragmas ignore them.

• The interpretation of OpenMP pragmas
- They modify the statement immediately following the pragma

- This could be a compound statement such as a loop

#pragma omp …

25

Programming Model – Data Sharing

• Parallel programs often employ
two types of data

- Shared data, visible to all
threads, similarly named

- Private data, visible to a single
thread (often stack-allocated)

• OpenMP:
• shared variables are shared

• private variables are private

• Default is shared

• Loop index is private

• PThreads:
• Global-scoped variables are

shared

• Stack-allocated variables are
private

// shared, globals

int bigdata[1024];

void* foo(void* bar) {

// private, stack

int tid;

/* Calculation goes

here */

}

int bigdata[1024];

void* foo(void* bar) {

int tid;

#pragma omp parallel \

shared (bigdata) \

private (tid)

{

/* Calc. here */

}

}

In case the compiler doesn’t support OpenMP

include <omp.h>

#ifdef _OPENMP

include <omp.h>

#endif

27

OpenMP directive format C
(also Fortran and C++ bindings)

• Pragmas, format

#pragma omp directive_name [clause [clause] ...] new-
line

• Conditional compilation

#ifdef _OPENMP

block,

e.g., printf(“%d avail.processors\n”,omp_get_num_procs());

#endif

• Case sensitive

• Include file for library routines

#ifdef _OPENMP

#include <omp.h>

#endif

28

OpenMP runtime library, Query Functions

omp_get_num_threads:

Returns the number of threads currently in the team executing the
parallel region from which it is called

int omp_get_num_threads(void);

omp_get_thread_num:

Returns the thread number, within the team, that lies between 0 and
omp_get_num_threads()-1, inclusive. The master thread of the
team is thread 0

int omp_get_thread_num(void);

29

OpenMP parallel region construct

• Block of code to be executed by multiple threads in
parallel

• Each thread executes the same code redundantly
(SPMD)

- Work within work-sharing constructs is distributed among
the threads in a team

• Example with C/C++ syntax

#pragma omp parallel [clause [clause] ...] new-line

structured-block

• clause can include the following:

private (list)

shared (list)

30

Hello World in OpenMP

• Let’s start with a parallel region construct

• Things to think about
- As before, number of threads is read from command line

- Code should be correct without the pragmas and library
calls

• Differences from Pthreads
- More of the required code is managed by the compiler and

runtime (so shorter)

- There is an implicit thread identifier

gcc −fopenmp …

31

32

In case the compiler doesn’t support OpenMP

ifdef _OPENMP

int my_rank = omp_get_thread_num ();

int thread_count = omp_get_num_threads ();

e l s e

int my_rank = 0;

int thread_count = 1;

endif

33

OpenMP Data Parallel Construct: Parallel Loop
• All pragmas begin: #pragma

• Compiler calculates loop bounds for each thread
directly from serial source (computation decomposition)

• Compiler also manages data partitioning of Res

• Synchronization also automatic (barrier)

34

Limitations and Semantics

• Not all “element-wise” loops can be parallelized

#pragma omp parallel for

for (i=0; i < numPixels; i++) {}

- Loop index: signed integer

- Termination Test: <,<=,>,=> with loop invariant int

- Incr/Decr by loop invariant int; change each iteration

- Count up for <,<=; count down for >,>=

- Basic block body: no control in/out except at top

• Threads are created and iterations divvied up;
requirements ensure iteration count is predictable

35

OpenMP Synchronization

• Implicit barrier
- At beginning and end of parallel constructs

- At end of all other control constructs

- Implicit synchronization can be removed with nowait
clause

• Explicit synchronization
-critical

-atomic

36

Programming Model – Loop Scheduling

•schedule clause determines how loop iterations are
divided among the thread team
-static([chunk]) divides iterations statically between

threads

- Each thread receives [chunk] iterations, rounding as
necessary to account for all iterations

- Default [chunk] is ceil(# iterations / # threads)

-dynamic([chunk]) allocates [chunk] iterations per
thread, allocating an additional [chunk] iterations when a
thread finishes

- Forms a logical work queue, consisting of all loop iterations

- Default [chunk] is 1

-guided([chunk]) allocates dynamically, but [chunk] is
exponentially reduced with each allocation

Loop scheduling

2(2)

More loop scheduling attributes

• RUNTIME The scheduling decision is deferred until
runtime by the environment variable
OMP_SCHEDULE. It is illegal to specify a chunk size
for this clause.

• AUTO The scheduling decision is delegated to the
compiler and/or runtime system.

• NO WAIT / nowait: If specified, then threads do
not synchronize at the end of the parallel loop.

• ORDERED: Specifies that the iterations of the loop
must be executed as they would be in a serial
program.

• COLLAPSE: Specifies how many loops in a nested loop
should be collapsed into one large iteration space and
divided according to the schedule clause (collapsed
order corresponds to original sequential order).

Impact of Scheduling Decision

• Load balance
- Same work in each iteration?

- Processors working at same speed?

• Scheduling overhead
- Static decisions are cheap because they require no run-time

coordination

- Dynamic decisions have overhead that is impacted by
complexity and frequency of decisions

• Data locality
- Particularly within cache lines for small chunk sizes

- Also impacts data reuse on same processor

Summary of Lecture

• OpenMP, data-parallel constructs only
- Task-parallel constructs later

• What’s good?
- Small changes are required to produce a parallel program from

sequential (parallel formulation)

- Avoid having to express low-level mapping details

- Portable and scalable, correct on 1 processor

• What is missing?
- Not completely natural if want to write a parallel code from

scratch

- Not always possible to express certain common parallel
constructs

- Locality management

- Control of performance

41

