
Numerical Analysis

L. Ridgway Scott

Numerical Analysis

Numerical Analysis

L. Ridgway Scott

PRINCETON UNIVERSITY PRESS

PRINCETON AND OXFORD

Copyright c© 2011 by Princeton University Press
Published by Princeton University Press, 41 William Street,
Princeton, New Jersey 08540
In the United Kingdom: Princeton University Press, 6 Oxford Street,
Woodstock, Oxfordshire OX20 1TW
press.princeton.edu

All Rights Reserved
Library of Congress Control Number: 2010943322

ISBN: 978-0-691-14686-7
British Library Cataloging-in-Publication Data is available

The publisher would like to acknowledge the author of this volume for type-
setting this book using LATEX and Dr. Janet Englund and Peter Scott for
providing the cover photograph

Printed on acid-free paper ∞

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Dedication

To the memory of Ed Conway1 who, along with his colleagues at Tulane
University, provided a stable, adaptive, and inspirational starting point for
my career.

1Edward Daire Conway, III (1937–1985) was a student of Eberhard Friedrich Ferdinand
Hopf at the University of Indiana. Hopf was a student of Erhard Schmidt and Issai Schur.

Contents

Preface xi

Chapter 1. Numerical Algorithms 1

1.1 Finding roots 2

1.2 Analyzing Heron’s algorithm 5

1.3 Where to start 6

1.4 An unstable algorithm 8

1.5 General roots: effects of floating-point 9

1.6 Exercises 11

1.7 Solutions 13

Chapter 2. Nonlinear Equations 15

2.1 Fixed-point iteration 16

2.2 Particular methods 20

2.3 Complex roots 25

2.4 Error propagation 26

2.5 More reading 27

2.6 Exercises 27

2.7 Solutions 30

Chapter 3. Linear Systems 35

3.1 Gaussian elimination 36

3.2 Factorization 38

3.3 Triangular matrices 42

3.4 Pivoting 44

3.5 More reading 47

3.6 Exercises 47

3.7 Solutions 50

Chapter 4. Direct Solvers 51

4.1 Direct factorization 51

4.2 Caution about factorization 56

4.3 Banded matrices 58

4.4 More reading 60

4.5 Exercises 60

4.6 Solutions 63

viii CONTENTS

Chapter 5. Vector Spaces 65

5.1 Normed vector spaces 66

5.2 Proving the triangle inequality 69

5.3 Relations between norms 71

5.4 Inner-product spaces 72

5.5 More reading 76

5.6 Exercises 77

5.7 Solutions 79

Chapter 6. Operators 81

6.1 Operators 82

6.2 Schur decomposition 84

6.3 Convergent matrices 89

6.4 Powers of matrices 89

6.5 Exercises 92

6.6 Solutions 95

Chapter 7. Nonlinear Systems 97

7.1 Functional iteration for systems 98

7.2 Newton’s method 103

7.3 Limiting behavior of Newton’s method 108

7.4 Mixing solvers 110

7.5 More reading 111

7.6 Exercises 111

7.7 Solutions 114

Chapter 8. Iterative Methods 115

8.1 Stationary iterative methods 116

8.2 General splittings 117

8.3 Necessary conditions for convergence 123

8.4 More reading 128

8.5 Exercises 128

8.6 Solutions 131

Chapter 9. Conjugate Gradients 133

9.1 Minimization methods 133

9.2 Conjugate Gradient iteration 137

9.3 Optimal approximation of CG 141

9.4 Comparing iterative solvers 147

9.5 More reading 147

9.6 Exercises 148

9.7 Solutions 149

CONTENTS ix

Chapter 10. Polynomial Interpolation 151

10.1 Local approximation: Taylor’s theorem 151

10.2 Distributed approximation: interpolation 152

10.3 Norms in infinite-dimensional spaces 157

10.4 More reading 160

10.5 Exercises 160

10.6 Solutions 163

Chapter 11. Chebyshev and Hermite Interpolation 167

11.1 Error term ω 167

11.2 Chebyshev basis functions 170

11.3 Lebesgue function 171

11.4 Generalized interpolation 173

11.5 More reading 177

11.6 Exercises 178

11.7 Solutions 180

Chapter 12. Approximation Theory 183

12.1 Best approximation by polynomials 183

12.2 Weierstrass and Bernstein 187

12.3 Least squares 191

12.4 Piecewise polynomial approximation 193

12.5 Adaptive approximation 195

12.6 More reading 196

12.7 Exercises 196

12.8 Solutions 199

Chapter 13. Numerical Quadrature 203

13.1 Interpolatory quadrature 203

13.2 Peano kernel theorem 209

13.3 Gregorie-Euler-Maclaurin formulas 212

13.4 Other quadrature rules 219

13.5 More reading 221

13.6 Exercises 221

13.7 Solutions 224

Chapter 14. Eigenvalue Problems 225

14.1 Eigenvalue examples 225

14.2 Gershgorin’s theorem 227

14.3 Solving separately 232

14.4 How not to eigen 233

14.5 Reduction to Hessenberg form 234

14.6 More reading 237

14.7 Exercises 238

14.8 Solutions 240

x CONTENTS

Chapter 15. Eigenvalue Algorithms 241

15.1 Power method 241

15.2 Inverse iteration 250

15.3 Singular value decomposition 252

15.4 Comparing factorizations 253

15.5 More reading 254

15.6 Exercises 254

15.7 Solutions 256

Chapter 16. Ordinary Differential Equations 257

16.1 Basic theory of ODEs 257

16.2 Existence and uniqueness of solutions 258

16.3 Basic discretization methods 262

16.4 Convergence of discretization methods 266

16.5 More reading 269

16.6 Exercises 269

16.7 Solutions 271

Chapter 17. Higher-order ODE Discretization Methods 275

17.1 Higher-order discretization 276

17.2 Convergence conditions 281

17.3 Backward differentiation formulas 287

17.4 More reading 288

17.5 Exercises 289

17.6 Solutions 291

Chapter 18. Floating Point 293

18.1 Floating-point arithmetic 293

18.2 Errors in solving systems 301

18.3 More reading 305

18.4 Exercises 305

18.5 Solutions 308

Chapter 19. Notation 309

Bibliography 311

Index 323

Preface

“...by faith and faith alone, embrace, believing where we
cannot prove,” from In Memoriam by Alfred Lord Ten-
nyson, a memorial to Arthur Hallum.

Numerical analysis provides the foundations for a major paradigm shift
in what we understand as an acceptable “answer” to a scientific or techni-
cal question. In classical calculus we look for answers like

√
sinx, that is,

answers composed of combinations of names of functions that are familiar.
This presumes we can evaluate such an expression as needed, and indeed
numerical analysis has enabled the development of pocket calculators and
computer software to make this routine. But numerical analysis has done
much more than this. We will see that far more complex functions, defined,
e.g., only implicitly, can be evaluated just as easily and with the same tech-
nology. This makes the search for answers in classical calculus obsolete in
many cases. This new paradigm comes at a cost: developing stable, con-
vergent algorithms to evaluate functions is often more difficult than more
classical analysis of these functions. For this reason, the subject is still be-
ing actively developed. However, it is possible to present many important
ideas at an elementary level, as is done here.

Today there are many good books on numerical analysis at the graduate
level, including general texts [47, 134] as well as more specialized texts. We
reference many of the latter at the ends of chapters where we suggest fur-
ther reading in particular areas. At a more introductory level, the recent
trend has been to provide texts accessible to a wide audience. The book
by Burden and Faires [28] has been extremely successful. It is a tribute to
the importance of the field of numerical analysis that such books and others
[131] are so popular. However, such books intentionally diminish the role
of advanced mathematics in the subject of numerical analysis. As a result,
numerical analysis is frequently presented as an elementary subject. As a
corollary, most students miss exposure to numerical analysis as a mathemat-
ical subject. We hope to provide an alternative.

Several books written some decades ago addressed specifically a mathe-
matical audience, e.g., [80, 84, 86]. These books remain valuable references,
but the subject has changed substantially in the meantime.

We have intentionally introduced concepts from various parts of mathe-
matics as they arise naturally. In this sense, this book is an invitation to
study more deeply advanced topics in mathematics. It may require a short
detour to understand completely what is being said regarding operator the-

xii PREFACE

ory in infinite-dimensional vector spaces or regarding algebraic concepts like
tensors and flags. Numerical analysis provides, in a way that is accessible to
advanced undergraduates, an introduction to many of the advanced concepts
of modern analysis.

We have assumed that the general style of a course using this book will
be to prove theorems. Indeed, we have attempted to facilitate a “Moore2

method” style of learning by providing a sequence of steps to be verified as
exercises. This has also guided the set of topics to some degree. We have
tried to hit the interesting points, and we have kept the list of topics covered
as short as possible. Completeness is left to graduate level courses using the
texts we mention at the end of many chapters.

The prerequisites for the course are not demanding. We assume a sophis-
ticated understanding of real numbers, including compactness arguments.
We also assume some familiarity with concepts of linear algebra, but we in-
clude derivations of most results as a review. We have attempted to make
the book self-contained. Solutions of many of the exercises are provided.

About the name: the term “numerical” analysis is fairly recent. A clas-
sic book [170] on the topic changed names between editions, adopting the
“numerical analysis” title in a later edition [171]. The origins of the part of
mathematics we now call analysis were all numerical, so for millennia the
name “numerical analysis” would have been redundant. But analysis later
developed conceptual (non-numerical) paradigms, and it became useful to
specify the different areas by names.

There are many areas of analysis in addition to numerical, including com-
plex, convex, functional, harmonic, and real. Some areas, which might have
been given such a name, have their own names (such as probability, instead
of random analysis). There is not a line of demarcation between the dif-
ferent areas of analysis. For example, much of harmonic analysis might be
characterized as real or complex analysis, with functional analysis playing a
role in modern theories. The same is true of numerical analysis, and it can
be viewed in part as providing motivation for further study in all areas of
analysis.

The subject of numerical analysis has ancient roots, and it has had periods
of intense development followed by long periods of consolidation. In many
cases, the new developments have coincided with the introduction of new
forms of computing machines. For example, many of the basic theorems
about computing solutions of ordinary differential equations were proved
soon after desktop adding machines became common at the turn of the 20th
century. The emergence of the digital computer in the mid-20th century
spurred interest in solving partial differential equations and large systems of
linear equations, as well as many other topics. The advent of parallel com-

2Robert Lee Moore (1882–1974) was born in Dallas, Texas, and did undergraduate
work at the University of Texas in Austin where he took courses from L. E. Dickson.
He got his Ph.D. in 1905 at the University of Chicago, studying with E. H. Moore and
Oswald Veblen, and eventually returned to Austin where he continued to teach until his
87th year.

PREFACE xiii

puters similarly stimulated research on new classes of algorithms. However,
many fundamental questions remain open, and the subject is an active area
of research today.

All of analysis is about evaluating limits. In this sense, it is about infinite
objects, unlike, say, some parts of algebra or discrete mathematics. Often a
key step is to provide uniform bounds on infinite objects, such as operators
on vector spaces. In numerical analysis, the infinite objects are often sets
of algorithms which are themselves finite in every instance. The objective is
often to show that the algorithms are well-behaved uniformly and provide,
in some limit, predictable results.

In numerical analysis there is sometimes a cultural divide between courses
that emphasize theory and ones that emphasize computation. Ideally, both
should be intertwined, as numerical analysis could well be called computa-
tional analysis because it is the analysis of computational algorithms involv-
ing real numbers. We present many computational algorithms and encourage
computational exploration. However, we do not address the subject of soft-
ware development (a.k.a., programming). Strictly speaking, programming is
not required to appreciate the material in the book. However, we encourage
mathematics students to develop some experience in this direction, as writ-
ing a computer program is quite similar to proving a theorem. Computer
systems are quite adept at finding flaws in one’s reasoning, and the organi-
zation required to make software readable provides a useful model to follow
in making complex mathematical arguments understandable to others.

There are several important groups this text can serve. It is very common
today for people in many fields to study mathematics through the beginning
of real analysis, as might be characterized by the extremely popular “little
Rudin” book [141]. Our book is intended to be at a comparable level of
difficulty with little Rudin and can provide valuable reinforcement of the
ideas and techniques covered there by applying them in a new domain. In
this way, it is easily accessible to advanced undergraduates. It provides an
option to study more analysis without raising the level of difficulty as occurs
in a graduate course on measure theory.

People who go on to graduate work with a substantial computational
component often need to progress further in analysis, including a study of
measure theory and the Lebesgue integral. This is often done in a course at
the “big Rudin” [142] level. Although the direct progression from little to
big Rudin is a natural one, this book provides a way to interpolate between
these levels while at the same time introducing ideas not found in [141] or
[142] (or comparable texts [108, 121]). Thus the book is also appropriate as
a course for graduate students interested in computational mathematics but
with a background in analysis only at the level of [141].

We have included quotes at the beginning of each chapter and frequent
footnotes giving historical information. These are intended to be entertain-
ing and perhaps provocative, but no attempt has been made to be histori-
cally complete. However, we give references to several works on the history
of mathematics that we recommend for a more complete picture. We indi-

xiv PREFACE

cate several connections among various mathematicians to give a sense of the
personal interactions of the era. We use the terms “student” and “advisor”
to describe general mentoring relationships which were sometimes different
from what the terms might connote today. Although this may not be histor-
ically accurate in some cases, it would be tedious to use more precise terms
to describe the relationships in each case in the various periods. We have
used the MacTutor History of Mathematics archive extensively as an initial
source of information but have also endeavored to refer to archival literature
whenever possible.

In practice, numerical computation remains as much an art as it is a sci-
ence. We focus on the part of the subject that is a science. A continuing
challenge of current research is to transform numerical art into numerical
analysis, as well as extending the power and reach of the art of numerical
computation. Recent decades have witnessed a dramatic improvement in our
understanding of many topics in numerical computation, and there is reason
to expect that this trend will continue. Techniques that are supported only
by heuristics tend to lose favor over time to ones that are understood rigor-
ously. One of the great joys of the subject is when a heuristic idea succumbs
to a rigorous analysis that reveals its secrets and extends its influence. It is
hoped that this book will attract some new participants in this process.

Acknowledgments

I have gotten suggestions from many people regarding topics in this book,
and my memory is not to be trusted to remember all of them. However,
above all, Todd Dupont provided the most input regarding the book, includ-
ing draft material, suggestions for additional topics, exercises, and overall
conceptual advice. He regularly attended the fall 2009 class at the Univer-
sity of Chicago in which the book was given a trial run. I also thank all the
students from that class for their influence on the final version.

Randy Bank, Carl de Boor and Nick Trefethen suggested novel approaches
to particular topics. Although I cannot claim that I did exactly what they
intended, their suggestions did influence what was presented in a substantial
way.

Numerical Analysis

Chapter One

Numerical Algorithms

The word “algorithm” derives from the name of the Per-
sian mathematician (Abu Ja’far Muhammad ibn Musa) Al-
Khwarizmi who lived from about 790 CE to about 840 CE.
He wrote a book, Hisab al-jabr w’al-muqabala, that also
named the subject “algebra.”

Numerical analysis is the subject which studies algorithms for computing
expressions defined with real numbers. The square-root

√
y is an example of

such an expression; we evaluate this today on a calculator or in a computer
program as if it were as simple as y2. It is numerical analysis that has
made this possible, and we will study how this is done. But in doing so,
we will see that the same approach applies broadly to include functions that
cannot be named, and it even changes the nature of fundamental questions
in mathematics, such as the impossibility of finding expressions for roots of
order higher than 4.

There are two different phases to address in numerical analysis:

• the development of algorithms and

• the analysis of algorithms.

These are in principle independent activities, but in reality the development
of an algorithm is often guided by the analysis of the algorithm, or of a
simpler algorithm that computes the same thing or something similar.

There are three characteristics of algorithms using real numbers that are
in conflict to some extent:

• the accuracy (or consistency) of the algorithm,

• the stability of the algorithm, and

• the effects of finite-precision arithmetic (a.k.a. round-off error).

The first of these just means that the algorithm approximates the desired
quantity to any required accuracy under suitable restrictions. The second
means that the behavior of the algorithm is continuous with respect to the
parameters of the algorithm. The third topic is still not well understood
at the most basic level, in the sense that there is not a well-established
mathematical model for finite-precision arithmetic. Instead, we are forced
to use crude upper bounds for the behavior of finite-precision arithmetic

2 CHAPTER 1

that often lead to overly pessimistic predictions about its effects in actual
computations.

We will see that in trying to improve the accuracy or efficiency of a sta-
ble algorithm, one is often led to consider algorithms that turn out to be
unstable and therefore of minimal (if any) value. These various aspects of
numerical analysis are often intertwined, as ultimately we want an algorithm
that we can analyze rigorously to ensure it is effective when using computer
arithmetic.

The efficiency of an algorithm is a more complicated concept but is often
the bottom line in choosing one algorithm over another. It can be related
to all of the above characteristics, as well as to the complexity of the algo-
rithm in terms of computational work or memory references required in its
implementation.

Another central theme in numerical analysis is adaptivity. This means
that the computational algorithm adapts itself to the data of the problem
being solved as a way to improve efficiency and/or stability. Some adap-
tive algorithms are quite remarkable in their ability to elicit information
automatically about a problem that is required for more efficient solution.

We begin with a problem from antiquity to illustrate each of these com-
ponents of numerical analysis in an elementary context. We will not always
disentangle the different issues, but we hope that the differing components
will be evident.

1.1 FINDING ROOTS

People have been computing roots for millennia. Evidence exists [64] that
the Babylonians, who used base-60 arithmetic, were able to approximate

√
2 ≈ 1 +

24

60
+

51

602
+

10

603
(1.1)

nearly 4000 years ago. By the time of Heron1 a method to compute square-
roots was established [26] that we recognize now as the Newton-Raphson-
Simpson method (see section 2.2.1) and takes the form of a repeated iteration

x← 1
2 (x+ y/x), (1.2)

where the backwards arrow ← means assignment in algorithms. That is,
once the computation of the expression on the right-hand side of the arrow
has been completed, a new value is assigned to the variable x. Once that
assignment is completed, the computation on the right-hand side can be
redone with the new x.

The algorithm (1.2) is an example of what is known as fixed-point iteration,
in which one hopes to find a fixed point, that is, an x where the iteration
quits changing. A fixed point is thus a point x where

x = 1
2 (x+ y/x). (1.3)

1A.k.a. Hero, of Alexandria, who lived in the 1st century CE.

NUMERICAL ALGORITHMS 3

More precisely, x is a fixed point x = f(x) of the function

f(x) = 1
2 (x+ y/x), (1.4)

defined, say, for x 6= 0. If we rearrange terms in (1.3), we find x = y/x, or
x2 = y. Thus a fixed point as defined in (1.3) is a solution of x2 = y, so that
x = ±√y.

To describe actual implementations of these algorithms, we choose the
scripting syntax implemented in the system octave. As a programming lan-
guage, this has some limitations, but its use is extremely widespread. In
addition to the public domain implementation of octave, a commercial in-
terpreter (which predates octave) called Matlab is available. However, all
computations presented here were done in octave.

We can implement (1.2) in octave in two steps as follows. First, we define
the function (1.4) via the code

function x=heron(x,y)

x=.5*(x+y/x);

To use this function, you need to start with some initial guess, say, x = 1,
which is written simply as

x=1

(Writing an expression with and without a semicolon at the end controls
whether the interpreter prints the result or not.) But then you simply iterate:

x=heron(x,y)

until x (or the part you care about) quits changing. The results of doing so
are given in table 1.1.

We can examine the accuracy by a simple code

function x=errheron(x,y)

for i=1:5

x=heron(x,y);

errheron=x-sqrt(y)

end

We show in table 1.1 the results of these computations in the case y = 2.
This algorithm seems to “home in” on the solution. We will see that the
accuracy doubles at each step.

1.1.1 Relative versus absolute error

We can require the accuracy of an algorithm to be based on the size of the
answer. For example, we might want the approximation x̂ of a root x to be
small relative to the size of x:

x̂

x
= 1 + δ, (1.5)

4 CHAPTER 1

√
2 approximation absolute error

1.50000000000000 8.5786e-02
1.41666666666667 2.4531e-03
1.41421568627451 2.1239e-06
1.41421356237469 1.5947e-12
1.41421356237309 -2.2204e-16

Table 1.1 Results of experiments with the Heron algorithm applied to approxi-
mate

√
2 using the algorithm (1.2) starting with x = 1. The boldface

indicates the leading incorrect digit. Note that the number of correct
digits essentially doubles at each step.

where δ satisfies some fixed tolerance, e.g., |δ| ≤ ε. Such a requirement is
in keeping with the model we will adopt for floating-point operations (see
(1.31) and section 18.1).

We can examine the relative accuracy by the simple code

function x=relerrher(x,y)

for i=1:6

x=heron(x,y);

errheron=(x/sqrt(y))-1

end

We leave as exercise 1.2 comparison of the results produced by the above
code relerrher with the absolute errors presented in table 1.1.

1.1.2 Scaling Heron’s algorithm

Before we analyze how Heron’s algorithm (1.2) works, let us enhance it by a
prescaling. To begin with, we can suppose that the number y whose square
root we seek lies in the interval [12 , 2]. If y < 1

2 or y > 2, then we make the
transformation

ỹ = 4ky (1.6)

to get ỹ ∈ [12 , 2], for some integer k. And of course
√
ỹ = 2k√y. By scaling y

in this way, we limit the range of inputs that the algorithm must deal with.
In table 1.1, we showed the absolute error for approximating

√
2, and in

exercise 1.2 the relative errors for approximating
√

2 and
√

1
2 are explored.

It turns out that the maximum errors for the interval [12 , 2] occur at the ends
of the interval (exercise 1.3). Thus five iterations of Heron, preceded by the
scaling (1.6), are sufficient to compute

√
y to 16 decimal places.

Scaling provides a simple example of adaptivity for algorithms for finding
roots. Without scaling, the global performance (section 1.2.2) would be quite
different.

NUMERICAL ALGORITHMS 5

1.2 ANALYZING HERON’S ALGORITHM

As the name implies, a major objective of numerical analysis is to analyze
the behavior of algorithms such as Heron’s iteration (1.2). There are two
questions one can ask in this regard. First, we may be interested in the local
behavior of the algorithm assuming that we have a reasonable start near
the desired root. We will see that this can be done quite completely, both
in the case of Heron’s iteration and in general for algorithms of this type
(in chapter 2). Second, we may wonder about the global behavior of the
algorithm, that is, how it will respond with arbitrary starting points. With
the Heron algorithm we can give a fairly complete answer, but in general
it is more complicated. Our point of view is that the global behavior is
really a different subject, e.g., a study in dynamical systems. We will see
that techniques like scaling (section 1.1.2) provide a basis to turn the local
analysis into a convergence theory.

1.2.1 Local error analysis

Since Heron’s iteration (1.2) is recursive in nature, it it natural to expect that
the errors can be expressed recursively as well. We can write an algebraic
expression for Heron’s iteration (1.2) linking the error at one iteration to the
error at the next. Thus define

xn+1 = 1
2 (xn + y/xn), (1.7)

and let en = xn − x = xn −√y. Then by (1.7) and (1.3),

en+1 =xn+1 − x = 1
2 (xn + y/xn)− 1

2 (x + y/x)

= 1
2 (en + y/xn − y/x) = 1

2

(
en +

y(x− xn)

xxn

)

= 1
2

(
en −

xen

xn

)
= 1

2en

(
1− x

xn

)
= 1

2

e2n
xn

.

(1.8)

If we are interested in the relative error,

ên =
en

x
=
xn − x
x

=
xn

x
− 1, (1.9)

then (1.8) becomes

ên+1 = 1
2

xê2n
xn

= 1
2 (1 + ên)

−1
ê2n. (1.10)

Thus we see that

the error at each step is proportional to
the square of the error at the previous step;

for the relative error, the constant of proportionality tends rapidly to 1
2 . In

(2.20), we will see that this same result can be derived by a general technique.

6 CHAPTER 1

1.2.2 Global error analysis

In addition, (1.10) implies a limited type of global convergence property, at
least for xn > x =

√
y. In that case, (1.10) gives

|ên+1| = 1
2

ê2n
|1 + ên|

= 1
2

ê2n
1 + ên

≤ 1
2 ên. (1.11)

Thus the relative error is reduced by a factor smaller than 1
2 at each iteration,

no matter how large the initial error may be. Unfortunately, this type of
global convergence property does not hold for many algorithms. We can
illustrate what can go wrong in the case of the Heron algorithm when xn <
x =
√
y.

Suppose for simplicity that y = 1, so that also x = 1, so that the relative
error is ên = xn − 1, and therefore (1.10) implies that

ên+1 = 1
2

(1− xn)2

xn
. (1.12)

As xn → 0, ên+1 →∞, even though |ên| < 1. Therefore, convergence is not
truly global for the Heron algorithm.

What happens if we start with x0 near zero? We obtain x1 near ∞.
From then on, the iterations satisfy xn >

√
y, so the iteration is ultimately

convergent. But the number of iterations required to reduce the error below
a fixed error tolerance can be arbitrarily large depending on how small x0 is.
By the same token, we cannot bound the number of required iterations for
arbitrarily large x0. Fortunately, we will see that it is possible to choose good
starting values for Heron’s method to avoid this potential bad behavior.

1.3 WHERE TO START

With any iterative algorithm, we have to start the iteration somewhere, and
this choice can be an interesting problem in its own right. Just like the
initial scaling described in section 1.1.2, this can affect the performance of
the overall algorithm substantially.

For the Heron algorithm, there are various possibilities. The simplest is
just to take x0 = 1, in which case

ê0 =
1

x
− 1 =

1√
y
− 1. (1.13)

This gives

ê1 = 1
2xê

2
0 = 1

2x

(
1

x
− 1

)2

= 1
2

(x− 1)
2

x
. (1.14)

We can use (1.14) as a formula for ê1 as a function of x (it is by definition
a function of y = x2); then we see that

ê1(x) = ê1(1/x) (1.15)

NUMERICAL ALGORITHMS 7

by comparing the rightmost two terms in (1.14). Note that the maximum
of ê1(x) on [2−1/2, 21/2] occurs at the ends of the interval, and

ê1(
√

2) = 1
2

(
√

2− 1)2√
2

= 3
4

√
2− 1 ≈ 0.060660 . (1.16)

Thus the simple starting value x0 = 1 is remarkably effective. Nevertheless,
let us see if we can do better.

1.3.1 Another start

Another idea to start the iteration is to make an approximation to the square-
root function given the fact that we always have y ∈ [12 , 2] (section 1.1.2).
Since this means that y is near 1, we can write y = 1 + t (i.e., t = y − 1),
and we have

x =
√
y =
√

1 + t = 1 + 1
2 t+O(t2)

=1 + 1
2 (y − 1) +O(t2) = 1

2 (y + 1) +O(t2).
(1.17)

Thus we get the approximation x ≈ 1
2 (y + 1) as a possible starting guess:

x0 = 1
2 (y + 1). (1.18)

But this is the same as x1 if we had started with x0 = 1. Thus we have not
really found anything new.

1.3.2 The best start

Our first attempt (1.18) based on a linear approximation to the square-root
did not produce a new concept since it gives the same result as starting with
a constant guess after one iteration. The approximation (1.18) corresponds
to the tangent line of the graph of

√
y at y = 1, but this may not be the

best affine approximation to a function on an interval. So let us ask the
question, What is the best approximation to

√
y on the interval [12 , 2] by

a linear polynomial? This problem is a miniature of the questions we will
address in chapter 12.

The general linear polynomial is of the form

f(y) = a+ by. (1.19)

If we take x0 = f(y), then the relative error ê0 = ê0(y) is

ê0(y) =
x0 −√y√

y
=
a+ by −√y
√
y

=
a√
y

+ b
√
y − 1. (1.20)

Let us write eab(y) = ê0(y) to be precise. We seek a and b such that the
maximum of |eab(y)| over y ∈ [12 , 2] is minimized.

Fortunately, the functions

eab(y) =
a√
y

+ b
√
y − 1 (1.21)

have a simple structure. As always, it is helpful to compute the derivative:

e′ab(y) = − 1
2ay

−3/2 + 1
2by

−1/2 = 1
2 (−a+ by)y−3/2. (1.22)

8 CHAPTER 1

Thus e′ab(y) = 0 for y = a/b; further, e′ab(y) > 0 for y > a/b, and e′ab(y) < 0
for y < a/b. Therefore, eab has a minimum at y = a/b and is strictly
increasing as we move away from that point in either direction. Thus we
have proved that

min eab = min eba = eab(a/b) = 2
√
ab− 1. (1.23)

Thus the maximum values of |eab| on [12 , 2] will be at the ends of the interval
or at y = a/b if a/b ∈ [12 , 2]. Moreover, the best value of eab(a/b) will be
negative (exercise 1.10). Thus we consider the three values

eab(2) =
a√
2

+ b
√

2− 1

eab(
1
2) = a

√
2 +

b√
2
− 1

−eab(a/b) =1− 2
√
ab.

(1.24)

Note that eab(2) = eba(1/2). Therefore, the optimal values of a and b must
be the same: a = b (exercise 1.11). Moreover, the minimum value of eab

must be minus the maximum value on the interval (exercise 1.12). Thus the
optimal value of a = b is characterized by

a 3
2

√
2− 1 = 1− 2a =⇒ a =

(
3
4

√
2 + 1

)−1

. (1.25)

Recall that the simple idea of starting the Heron algorithm with x0 = 1
yielded an error

|ê1| ≤ γ = 3
4

√
2− 1, (1.26)

and that this was equivalent to choosing a = 1
2 in the current scheme. Note

that the optimal a = 1/(γ + 2), only slightly less than 1
2 , and the resulting

minimum value of the maximum of |eaa| is

1− 2a = 1− 2

γ + 2
=

γ

γ + 2
. (1.27)

Thus the optimal value of a reduces the previous error of γ (for a = 1
2) by

nearly a factor of 1
2 , despite the fact that the change in a is quite small. The

benefit of using the better initial guess is of course squared at each iteration,

so the reduced error is nearly smaller by a factor of 2−2k

after k iterations
of Heron. We leave as exercise 1.13 the investigation of the effect of using
this optimal starting place in the Heron algorithm.

1.4 AN UNSTABLE ALGORITHM

Heron’s algorithm has one drawback in that it requires division. One can
imagine that a simpler algorithm might be possible such as

x← x+ x2 − y. (1.28)

NUMERICAL ALGORITHMS 9

n 0 1 2 3 4 5
xn 1.5 1.75 2.81 8.72 82.8 6937.9
n 6 7 8 9 10 11
xn 5×107 2×1015 5×1030 3×1061 8×10122 7×10245

Table 1.2 Unstable behavior of the iteration (1.28) for computing
√

2.

Before experimenting with this algorithm, we note that a fixed point

x = x+ x2 − y (1.29)

does have the property that x2 = y, as desired. Thus we can assert the
accuracy of the algorithm (1.28), in the sense that any fixed point will solve
the desired problem. However, it is easy to see that the algorithm is not
stable, in the sense that if we start with an initial guess with any sort of
error, the algorithm fails. table 1.2 shows the results of applying (1.28)
starting with x0 = 1.5. What we see is a rapid movement away from the
solution, followed by a catastrophic blowup (which eventually causes failure
in a fixed-precision arithmetic system, or causes the computer to run out of
memory in a variable-precision system). The error is again being squared, as
with the Heron algorithm, but since the error is getting bigger rather than
smaller, the algorithm is useless. In section 2.1 we will see how to diagnose
instability (or rather how to guarantee stability) for iterations like (1.28).

1.5 GENERAL ROOTS: EFFECTS OF FLOATING-POINT

So far, we have seen no adverse effects related to finite-precision arithmetic.
This is common for (stable) iterative methods like the Heron algorithm.
But now we consider a more complex problem in which rounding plays a
dominant role.

Suppose we want to compute the roots of a general quadratic equation
x2 + 2bx+ c = 0, where b < 0, and we chose the algorithm

x← −b+
√
b2 − c. (1.30)

Note that we have assumed that we can compute the square-root function
as part of this algorithm, say, by Heron’s method.

Unfortunately, the simple algorithm in (1.30) fails if we have c = ε2b2 (it
returns x = 0) as soon as ε2 = c/b2 is small enough that the floating-point
representation of 1 − ε2 is 1. For any (fixed) finite representation of real
numbers, this will occur for some ε > 0.

We will consider floating-point arithmetic in more detail in section 18.1,
but the simple model we adopt says that the result of computing a binary
operator ⊕ such as +, −, /, or ∗ has the property that

f`(a⊕ b) = (a⊕ b)(1 + δ), (1.31)

10 CHAPTER 1

where |δ| ≤ ε, where ε > 0 is a parameter of the model.2 However, this means
that a collection of operations could lead to catastrophic cancellation, e.g.,
f`(f`(1 + 1

2ε)− 1) = 0 and not 1
2ε.

We can see the behavior in some simple codes. But first, let us simplify the
problem further so that we have just one parameter to deal with. Suppose
that the equation to be solved is of the form

x2 − 2bx+ 1 = 0. (1.32)

That is, we switch b to −b and set c = 1. In this case, the two roots are
multiplicative inverses of each other. Define

x± = b±
√
b2 − 1. (1.33)

Then x− = 1/x+.
There are various possible algorithms. We could use one of the two formu-

las x± = b±
√
b2 − 1 directly. More precisely, let us write x̃± ≈ b±

√
b2 − 1

to indicate that we implement this in floating-point. Correspondingly, there
is another pair of algorithms that start by computing x̃∓ and then define,
say, x̂+ ≈ 1/x̃−. A similar algorithm could determine x̂− ≈ 1/x̃+.

All four of these algorithms will have different behaviors. We expect that
the behaviors of the algorithms for computing x̃− and x̂− will be dual in
some way to those for computing x̃+ and x̂+, so we consider only the first
pair.

First, the function minus implements the x̃− square-root algorithm:

function x=minus(b)

% solving = 1-2bx +x^2

x=b-sqrt(b^2-1);

To know if it is getting the right answer, we need another function to check

the answer:

function error=check(b,x)

error = 1-2*b*x +x^2;

To automate the process, we put the two together:

function error=chekminus(b)

x=minus(b);

error=check(b,x)

For example, when b = 106, we find the error is −7.6× 10−6. As b increases
further, the error increases, ultimately leading to complete nonsense. For
this reason, we consider an alternative algorithm suitable for large b.

The algorithm for x̂− is given by

2The notation f` is somewhat informal. It would be more precise to write a b⊕ b instead
of f`(a ⊕ b) since the operator is modified by the effect of rounding.

NUMERICAL ALGORITHMS 11

function x=plusinv(b)

% solving = 1-2bx +x^2

y=b+sqrt(b^2-1);

x=1/y;

Similarly, we can check the accuracy of this computation by the code

function error=chekplusinv(b)

x=plusinv(b);

error=check(b,x)

Now when b = 106, we find the error is −2.2 × 10−17. And the bigger b
becomes, the more accurate it becomes.

Here we have seen that algorithms can have data-dependent behavior with
regard to the effects of finite-precision arithmetic. We will see that there
are many algorithms in numerical analysis with this property, but suitable
analysis will establish conditions on the data that guarantee success.

1.6 EXERCISES

Exercise 1.1 How accurate is the approximation (1.1) if it is expressed as
a decimal approximation (how many digits are correct)?

Exercise 1.2 Run the code relerrher starting with x = 1 and y = 2 to
approximate

√
2. Compare the results with table 1.1. Also run the code with

x = 1 and y = 1
2 and compare the results with the previous case. Explain

what you find.

Exercise 1.3 Show that the maximum relative error in Heron’s algorithm
for approximating

√
y for y ∈ [1/M,M], for a fixed number of iterations

and starting with x0 = 1, occurs at the ends of the interval: y = 1/M and
y = M . (Hint: consider (1.10) and (1.14) and show that the function

φ(x) = 1
2 (1 + x)−1x2 (1.34)

plays a role in each. Show that φ is increasing on the interval [0,∞[.)

Exercise 1.4 It is sometimes easier to demonstrate the relative accuracy of
an approximation x̂ to x by showing that

|x− x̂| ≤ ε′|x̂| (1.35)

instead of verifying (1.5) directly. Show that if (1.35) holds, then (1.5) holds
with ε = ε′/(1− ε′).
Exercise 1.5 There is a simple generalization to Heron’s algorithm for find-
ing kth roots as follows:

x← 1

k
((k − 1)x+ y/xk−1). (1.36)

Show that, if this converges, it converges to a solution of xk = y. Examine
the speed of convergence both computationally and by estimating the error
algebraically.

12 CHAPTER 1

Exercise 1.6 Show that the error in Heron’s algorithm for approximating√
y satisfies

xn −√y
xn +

√
y

=

(
x0 −√y
x0 +

√
y

)2n

(1.37)

for n ≥ 1. Note that the denominator on the left-hand side of (1.37) con-
verges rapidly to 2

√
y.

Exercise 1.7 We have implicitly been assuming that we were attempting to
compute a positive square-root with Heron’s algorithm, and thus we always
started with a positive initial guess. If we give zero as an initial guess, there
is immediate failure because of division by zero. But what happens if we start
with a negative initial guess? (Hint: there are usually two roots to x2 = y,
one of which is negative.)

Exercise 1.8 Consider the iteration

x← 2x− yx2 (1.38)

and show that, if it converges, it converges to x = 1/y. Note that the algo-
rithm does not require a division. Determine the range of starting values x0

for which this will converge. What sort of scaling (cf. section 1.1.2) would
be appropriate for computing 1/y before starting the iteration?

Exercise 1.9 Consider the iteration

x← 3
2x− 1

2yx
3 (1.39)

and show that, if this converges, it converges to x = 1/
√
y. Note that this

algorithm does not require a division. The computation of 1/
√
y appears in

the Cholesky algorithm in (4.12).

Exercise 1.10 Suppose that a + by is the best linear approximation to
√
y

in terms of relative error on [12 , 2]. Prove that the error expression eab has
to be negative at its minimum. (Hint: if not, you can always decrease a to
make eab(2) and eab(

1
2) smaller without increasing the maximum value of

|eab|.)

Exercise 1.11 Suppose that a + by is the best linear approximation to
√
y

in terms of relative error on [12 , 2]. Prove that a = b.

Exercise 1.12 Suppose that a + ay is the best linear approximation to
√
y

in terms of relative error on [12 , 2]. Prove that the error expression

eaa(1) = −eaa(2). (1.40)

(Hint: if not, you can always decrease a to make eaa(2) and eaa(1
2) smaller

without increasing the maximum value of |eab|.)

Exercise 1.13 Consider the effect of the best starting value of a in (1.25)
on the Heron algorithm. How many iterations are required to get 16 digits
of accuracy? And to obtain 32 digits of accuracy?

NUMERICAL ALGORITHMS 13

Exercise 1.14 Change the function minus for computing x̃− and the func-
tion plusinv for computing x̂− to functions for computing x̃+ (call that
function plus) and x̂+ (call that function minusinv). Use the check func-
tion to see where they work well and where they fail. Compare that with the
corresponding behavior for minus and plusinv.

Exercise 1.15 The iteration (1.28) can be implemented via the function

function y =sosimpl(x,a)

y=x+x^2-a;

Use this to verify that sosimpl(1,1) is indeed 1, but if we start with

x=1.000000000001

and then repeatedly apply x=sosimpl(x,1), the result ultimately diverges.

1.7 SOLUTIONS

Solution of Exercise 1.3. The function φ(x) = 1
2 (1+x)−1x2 is increasing

on the interval [0,∞[since

φ′(x) = 1
2

2x(1 + x)− x2

(1 + x)2
= 1

2

2x+ x2

(1 + x)2
> 0 (1.41)

for x > 0. The expression (1.10) says that

ên+1 = φ(ên), (1.42)

and (1.14) says that

ê1 = φ(x− 1). (1.43)

Thus

ê2 = φ(φ(x − 1)). (1.44)

By induction, define

φ[n+1](t) = φ(φ[n](t)), (1.45)

where φ[1](t) = φ(t) for all t. Then, by induction,

ên = φ[n](x− 1) (1.46)

for all n ≥ 1. Since the composition of increasing functions is increasing, each
φ[n] is increasing, by induction. Thus ên is maximized when x is maximized,
at least for x > 1. Note that

φ(x − 1) = φ((1/x) − 1), (1.47)

so we may also write

ên = φ[n]((1/x)− 1). (1.48)

14 CHAPTER 1

Thus the error is symmetric via the relation

ên(x) = ên(1/x). (1.49)

Thus the maximal error on an interval [1/M,M] occurs simultaneously at
1/M and M .

Solution of Exercise 1.6. Define dn = xn +x. Then (1.37) in exercise 1.6
is equivalent to the statement that

en

dn
=

(
e0
d0

)2n

. (1.50)

Thus we compute

dn+1 = xn+1 + x = 1
2 (xn + y/xn) + 1

2 (x+ y/x) = 1
2 (dn + y/xn + y/x)

= 1
2

(
dn +

y(x+ xn)

xxn

)
= 1

2

(
dn +

ydn

xxn

)
= 1

2

(
dn +

xdn

xn

)

= 1
2dn

(
1 +

x

xn

)
= 1

2dn

(
xn + x

xn

)
= 1

2

d2
n

xn
.

(1.51)

Recall that (1.8) says that en+1 = 1
2e

2
n/xn, so dividing by (1.51) yields

en+1

dn+1
=

(
en

dn

)2

(1.52)

for any n ≥ 0. A simple induction on n yields (1.50), as required.

Chapter Two

Nonlinear Equations

“A method algebraically equivalent to Newton’s method
was known to the 12th century algebraist Sharaf al-Din al-
Tusi ... and the 15th century Arabic mathematician Al-
Kashi used a form of it in solving xp −N = 0 to find roots
of N” [174].

Kepler’s discovery that the orbits of the planets are elliptical introduced
a mathematical challenge via his equation

x− E sinx = τ, (2.1)

which defines a function φ(τ) = x. Here E =
√

1− b2/a2 is the eccentricity
of the elliptical orbit, where a and b are the major and minor axis lengths
of the ellipse and τ is proportional to time. See figure 2.1 regarding the
notation [148]. Much effort has been expended in trying to find a simple
representation of this function φ, but we will see that it can be viewed as
just like the square-root function from the numerical point of view. Newton1

proposed an iterative solution to Kepler’s equation [174]:

xn+1 = xn +
τ − xn + E sinxn

1− E cosxn
. (2.2)

We will see that this iteration can be viewed as a special case of a general
iterative technique now known as Newton’s method.

We will also see that the method introduced in (1.2) as Heron’s method,
namely,

xn+1 = 1
2

(
xn +

y

xn

)
, (2.3)

can be viewed as Newton’s method for computing
√
y. Newton’s method

provides a general paradigm for solving nonlinear equations iteratively and
changes qualitatively the notion of “solution” for a problem. Thus we see
that Kepler’s equation (2.1) is itself the solution, just as if it had turned
out that the function φ(τ) = x was a familiar function like square root or
logarithm. If we need a particular value of x for a given τ , then we know
there is a machine available to produce it, just as in computing

√
y on a

calculator.

1 Isaac Newton (1643–1727) was one of the greatest and best known scientists of all
time, to the point of being a central figure in popular literature [150].

16 CHAPTER 2

K

xS

P

Figure 2.1 The notation for Kepler’s equation. The sun is at S (one of the foci
of the elliptical orbit), the planet is at P , and the point K lies on the
indicated circle that encloses the ellipse of the orbit; the horizontal
coordinates of P and K are the same, by definition. The angle x is
between the principal axis of the ellipse and the point K.

First, we develop a general framework for iterative solution methods, and
then we show how this leads to Newton’s method and other iterative tech-
niques. We begin with one equation in one variable and later extend to
systems in chapter 7.

2.1 FIXED-POINT ITERATION

This goes by many names, including functional iteration, but we prefer the
term fixed-point iteration because it seeks to find a fixed point

α = g(α) (2.4)

for a continuous function g. Fixed-point iteration

xn+1 = g(xn) (2.5)

has the important property that, if it converges, it converges to a fixed point
(2.4) (assuming only that g is continuous). This result is so simple (see
exercise 2.1) that we hesitate to call it a theorem. But it is really the key
fact about fixed-point iteration.

We now see that Heron’s algorithm (2.3) may be written in this notation
with

g(x) = 1
2

(
x+

y

x

)
. (2.6)

Similarly, the method (2.2) proposed by Newton to solve Kepler’s equation
(2.1) can be written as

g(x) = x+
τ − x+ E sinx

1− E cosx
. (2.7)

NONLINEAR EQUATIONS 17

n xn from (2.8) xn from (2.2)
0 1.00 1.00
1 1.084147098480790 1.088953263837373
2 1.088390486229308 1.088597758269552
3 1.088588138978555 1.088597752397894
4 1.088597306592452 1.088597752397894
5 1.088597731724630 1.088597752397894
6 1.088597751439216 1.088597752397894
7 1.088597752353437 1.088597752397894
8 1.088597752395832 1.088597752397894
9 1.088597752397798 1.088597752397894

Table 2.1 Computations of solutions to Kepler’s equation (2.1) for E = 0.1 and
τ = 1 via Newton’s method (2.2) (third column) and by the fixed-point
iteration (2.8). The boldface indicates the leading incorrect digit. Note
that the number of correct digits essentially doubles at each step for
Newton’s method but increases only by about 1 at each step of the
fixed-point iteration (2.8).

The choice of g is not at all unique. One could as well approximate the
solution of Kepler’s equation (2.1) via

g(x) = τ + E sinx. (2.8)

In table 2.1, the methods (2.8) and (2.7) are compared. We find that New-
ton’s method converges much faster, comparable to the way that Heron’s
method does, in that the number of correct digits doubles at each step.

The rest of the story about fixed-point iteration is then to figure out when
and how fast it converges. For example, if g is Lipschitz2-continuous with
constant λ < 1, that is,

|g(x)− g(y)| ≤ λ|x− y|, (2.9)

then convergence will happen if we start close enough to α. This is easily
proved by defining, as we did for Heron’s method, en = xn−α and estimating

|en+1| = |g(xn)− g(α)| ≤ λ|en|, (2.10)

where the equality results from subtracting (2.4) from (2.5). Thus, by in-
duction,

|en| ≤ λn|e0| (2.11)

for all n ≥ 1. Thus we have proved the following.

Theorem 2.1 Suppose that α = g(α) and that the Lipschitz estimate (2.9)
holds with λ < 1 for all x, y ∈ [α − A,α + A] for some A > 0. Suppose
that |x0 − α| ≤ A. Then the fixed-point iteration defined in (2.5) converges
according to (2.11).

2Rudolf Otto Sigismund Lipschitz (1832–1903) had only one student, but that was
Felix Klein.

18 CHAPTER 2

Proof. The only small point to be sure about is that all the iterates stay in
the interval [α−A,α+A], but this follows from the estimate (2.11) once we
know that |e0| ≤ A, as we have assumed. QED

2.1.1 Verifying the Lipschitz condition

A Lipschitz-continuous function need not be C1, but when a function is C1,
its derivative gives a good estimate of the Lipschitz constant. We formalize
this simple result to highlight the idea.

Lemma 2.2 Suppose g ∈ C1 in an interval around an arbitrary point α.
Then for any ε > 0, there is an A > 0 such that g satisfies (2.9) in the
interval [α−A,α+A] with λ ≤ |g′(α)| + ε.

Proof. By the continuity of g′, we can pick A > 0 such that |g′(t)−g′(α)| < ε
for all t ∈ [α−A,α+A]. Therefore,

|g′(t)| ≤ |g′(α)| + |g′(t)− g′(α)| < |g′(α)| + ε (2.12)

for all t ∈ [α−A,α+A]. Let x, y ∈ [α−A,α +A], with x 6= y. Then
∣∣∣∣
g(x)− g(y)
x− y

∣∣∣∣ =
∣∣∣∣

1

x− y

∫ x

y

g′(t) dt

∣∣∣∣

≤ max
{
|g′(t)|

∣∣ t ∈ [α−A,α+A]
}

≤ |g′(α)|+ ε,

(2.13)

by using (2.12). QED

As a result, we conclude that the condition |g′(α)| < 1 is sufficient to guar-
antee convergence of fixed-point iteration, as long as we start close enough
to the root α = g(α) (cf. exercise 2.2).

On the other hand, the Lipschitz constant λ in (2.9) also gives an upper
bound for the derivative:

|g′(α)| ≤ λ (2.14)

(cf. exercise 2.3). Thus if |g′(α)| > 1, fixed-point iteration will likely not
converge since the Lipschitz constant for g will be greater than 1 in any such
interval. If we recall the iteration function g(x) = x + x2 − y in (1.28), we
see that g′(

√
y) = 1 + 2

√
y > 1. Thus the divergence of that algorithm is

not surprising.
It is not very useful to develop a general theory of divergence for fixed-point

iteration, but we can clarify this by example. It is instructive to consider
the simple case

g(x) := α+ λ(x − α), (2.15)

where for simplicity we take λ > 0. Then for all n we have

|xn − α| = |g(xn−1)− α| = λ|xn−1 − α|, (2.16)

NONLINEAR EQUATIONS 19

and by induction

|xn − α| = λn|x0 − α|, (2.17)

where x0 is our starting value. If λ < 1, this converges, but if λ > 1, this
diverges.

The affine example (2.15) not only gives an example of divergence when
|g′(α)| > 1 but also suggests the asymptotic behavior of fixed-point iteration.
When 0 < |g′(α)| < 1, the asymptotic behavior of fixed-point iteration is
(cf. exercise 2.4) given by

|xn − α| ≈ C|g′(α)|n (2.18)

as n→∞, where C is a constant that depends on g and the initial guess.

2.1.2 Second-order iterations

What happens if g′(α) = 0? By Taylor’s theorem,

g(x)− α = 1
2 (x− α)2g′′(ξ) (2.19)

for some ξ between x and α, and thus the error is squared at each iteration:

en = 1
2 (en−1)2g′′(ξn), (2.20)

where ξn → α if the iteration converges. Of course, squaring the error is not
a good thing if it is too large initially (with regard to the size of g′′).

We can now see why Heron’s method converges so rapidly. Recall that
g(x) = 1

2 (x+ y/x), so that g′(x) = 1
2 (1− y/x2) = 0 when x2 = y. Moreover,

g′′(x) = y/x3, so we could derive a result analogous to (1.8) from (2.20).

2.1.3 Higher-order iterations

It is possible to have even higher-order iterations. If g(α) = α and g′(α) =
g′′(α) = 0, then Taylor’s theorem implies that

g(x)− α = O((x − α)3). (2.21)

In principle, any order of convergence could be obtained [8]. However, while
there is a qualitative change from geometric convergence to quadratic conver-
gence, all higher-order methods behave essentially the same. For example,
given a second-order method, we can always create one that is fourth-order
just by taking two steps and calling them one. That is, we define

xn+1 = g(g(xn)). (2.22)

We could view this as introducing a “half-step”

xn+1/2 = g(xn) and xn+1 = g(xn+1/2). (2.23)

Applying (2.20) twice, we see that xn+1 − α = C(xn − α)4. We can also
verify this by defining G(x) = g(g(x)) and evaluating derivatives of G:

G′(x) = g′(g(x))g′(x)

G′′(x) = g′′(g(x))g′(x)2 + g′(g(x))g′′(x)

G′′′(x) = g′′′(g(x))g′(x)3 + 3g′′(g(x))g′(x)g′′(x) + g′(g(x))g′′′(x).

(2.24)

20 CHAPTER 2

x x xn+1 n

Figure 2.2 The geometric, or chord, method for approximating the solution of
nonlinear equations. The slope of the dashed line is s.

Using the facts that g(α) = α and g′(α) = 0, we see that G′(α) = G′′(α) =
G′′′(α) = 0. Thus, if ε is the initial error, then the sequence of errors in
a quadratic method (suitably scaled) is ε, ε2, ε4, ε8, ε16, . . . , whereas for a
fourth-order method the sequence of errors (suitably scaled) is ε, ε4, ε16,
That is, the sequence of errors for the fourth-order method is just a sim-
ple subsequence (omit every other term) of the sequence of errors for the
quadratic method.

What is not so clear at this point is that it is possible to have fractional
orders of convergence. In section 2.2.4 we will introduce a method with this
property to illustrate how this is possible.

2.2 PARTICULAR METHODS

Now we consider solving a general nonlinear equation of the form

f(α) = 0. (2.25)

Several methods use a geometric technique, known as the chord method,
designed to point to a good place to look for the root:

xn+1 = xn −
f(xn)

s
, (2.26)

where s is the slope of a line drawn from the point (xn, f(xn)) to the next
iterate xn+1, as depicted in figure 2.2. This line is intended to intersect the
x-axis at, or near, the root of f . This is based on the idea that the linear
function ` with slope s which is equal to f(xn) at xn vanishes at xn+1 (so
`(x) = s(xn+1 − x)).

The simplest fixed-point iteration might be to choose g(x) = x − f(x).
The geometric method can be viewed as a damped version of this, where
we take instead g(x) = x − f(x)/s. You can think of s as an adjustment
parameter to help with convergence of the standard fixed-point iteration.
The convergence of the geometric method is thus determined by the value

NONLINEAR EQUATIONS 21

of

g′(α) = 1− f ′(α)/s. (2.27)

Ideally, we would simply pick s = f ′(α) if we knew how to compute it. We
now consider various ways to approximate this value of s. These can all be
considered different adaptive techniques for approximating s ≈ f ′(α).

2.2.1 Newton’s method

The method in question was a joint effort of many people, including Newton
and his contemporary Joseph Raphson3 [32, 156]. In addition, Simpson4 was
the first (in 1740) to introduce it for systems of equations [99, 174]. Although
Newton presented solutions most commonly for polynomial equations, he did
suggest the method in (2.2). Newton’s method for polynomials is different
from what we describe here, but perhaps it should just be viewed as an
additional method, slightly different from the one suggested by Raphson.
Both because Newton is better known and because the full name is a bit
long, we tend to abbreviate it by dropping Raphson’s name, but for now let
us retain it. We also add Simpson’s name as suggested in [174].

The Newton-Raphson-Simpson method chooses the slope adaptively at
each stage:

s = f ′(xn). (2.28)

The geometric method can be viewed as a type of difference approximation
to this since we choose

s =
0− f(xn)

xn+1 − xn
, (2.29)

and we are making the approximation f(xn+1) ≈ 0 in defining the difference
quotient.

The Newton-Raphson-Simpson method is sufficiently important that we
should write out the iteration in detail:

xn+1 = xn −
f(xn)

f ′(xn)
. (2.30)

This is fixed-point iteration with the iteration function g = Nf defined by

g(x) = Nf(x) = x− f(x)

f ′(x)
. (2.31)

We can think of N as mapping the set of functions

V (I) =
{
f ∈ Ck+1(I)

∣∣ f ′(x) 6= 0 ∀x ∈ I
}

(2.32)

to Ck(I) for a given interval I and any integer k ≥ 0. More generally, we
can think of Newton’s method as mapping problems of the form “find a root

3According to the mathematical historian Florian Cajori [32], the approximate dates
for the life of Joseph Raphson are 1648–1715, but surprisingly little is known about his
personal life [156].

4Thomas Simpson (1710–1761); see the quote on page 97.

22 CHAPTER 2

of f(x) = 0” to algorithms using fixed-point iteration with g = Nf . We will
not try to formalize such a space of problems or the space of such algorithms,
but it is easy to see that Newton’s method operates at a high level to solve
a very general set of problems.

If xn → α, then f ′(xn) → f ′(α), and so (2.27) should imply that the
method is second-order convergent. Again, the second-order convergence of
Newton’s method is sufficiently important that it requires an independent
computation:

g′(x) = 1− f ′(x)2 − f(x)f ′′(x)

f ′(x)2

=
f(x)f ′′(x)

f ′(x)2
.

(2.33)

We conclude that f(α) = 0 implies g′(α) = 0, provided that f ′(α) 6= 0. Thus
Newton’s method is second-order convergent provided f ′(α) 6= 0 at the root
α of f(α) = 0.

To estimate the convergence rate, we simply need to calculate g′′:

g′′(x) =
d

dx

(
f(x)f ′′(x)

f ′(x)2

)

=
f ′(x)3f ′′(x) + f(x)f ′(x)2f (3)(x)− 2f(x)f ′(x)f ′′(x)2

f ′(x)4

=
f ′′(x)

f ′(x)
+

f(x)

f ′(x)3

(
f ′(x)f (3)(x) − 2f ′′(x)2

)
.

(2.34)

Assuming f ′(α) 6= 0, this simplifies for x = α:

g′′(α) =
f ′′(α)

f ′(α)
. (2.35)

From (2.20), we expect that Newton’s method converges asymptotically like

en+1 ≈ 1
2

f ′′(α)

f ′(α)
e2n, (2.36)

where we recall that en = xn − α.
We can see that Heron’s method is the same as Newton’s method if we

take f(x) = x2 − y. We have

g(x) = x− f(x)

f ′(x)
= x− x2 − y

2x
= 1

2x−
y

2x
. (2.37)

Recall that g′(x) = 1
2 (1−y/x2), so that g′′(x) = y/x3 = 1/

√
y when x =

√
y.

Thus we can assert that Heron’s method is precisely second-order.

2.2.2 Stability of Newton’s method

The mapping Nf(x) = x− f(x)
f ′(x) specified in (2.31) is not well-defined when

f ′(x) = 0. When this occurs at a root of f (f(x) = 0) it destroys the

NONLINEAR EQUATIONS 23

second-order convergence of Newton’s method (see exercise 2.5). But it can
cause a more serious defect if it occurs away from a root of f . For example,
consider f(x) = x − cosx (cf. exercise 2.6). The root where x = cosx does
not have f ′(x) = 0, but f ′(x) = 1 + sinx = 0 for an infinite number of
values. Just by drawing the graph corresponding to figure 2.2, we see that if
we start near one of these roots of f ′(x) = 0, then the next step of Newton’s
method can be arbitrarily large in magnitude (both negative and positive
values are possible). Contrast this behavior with that of fixed-point iteration
(cf. exercise 2.6).

2.2.3 Other second-order methods

The Steffensen iteration uses an adaptive difference:

s =
f(xn + f(xn))− f(xn)

f(xn)
(2.38)

in which the usual ∆x = f(xn) (which will go to zero: very clever). The
iteration thus takes the form

xn+1 = xn −
f(xn)2

f(xn + f(xn))− f(xn)
. (2.39)

We leave as exercise 2.10 verification that the iteration (2.39) is second-order
convergent.

Steffensen’s method is of the same order as Newton’s method, but it has
the advantage that it does not require evaluation of the derivative. If the
derivative of f is hard to evaluate, this can be an advantage. On the other
hand, it does require two function evaluations each iteration, which could
make it comparable to Newton’s method, depending on whether it is eas-
ier or harder to evaluate f ′ versus f . Unfortunately, Steffensen’s method
does not generalize to higher dimensions, whereas Newton’s method does
(section 7.1.4).

2.2.4 Secant method

The secant method approximates the slope by a difference method:

s =
f(xn)− f(xn−1)

xn − xn−1
. (2.40)

The error behavior is neither first- nor second-order but rather something in
between. Let us derive an expression for the sequence of errors.

First, consider the method in the usual fixed-point form:

xn+1 = xn −
(xn − xn−1) f(xn)

f(xn)− f(xn−1)
. (2.41)

Subtracting α from both sides and inserting α− α in the numerator on the

24 CHAPTER 2

right-hand side and expanding, we find

en+1 = en −
(en − en−1) f(xn)

f(xn)− f(xn−1)

=
−enf(xn−1) + en−1f(xn)

f(xn)− f(xn−1)

=
xn − xn−1

f(xn)− f(xn−1)

−enf(xn−1) + en−1f(xn)

xn − xn−1

=
xn − xn−1

f(xn)− f(xn−1)

en (f(α)− f(xn−1)) + en−1 (f(xn)− f(α))

xn − xn−1

=
xn − xn−1

f(xn)− f(xn−1)

enen−1

xn − xn−1

(
f(α)− f(xn−1)

en−1
− f(α)− f(xn)

en

)
.

(2.42)

By Taylor’s Theorem, we can estimate the expression (exercise 2.11)

f(xn)− f(xn−1)

xn − xn−1
≈ f ′(α). (2.43)

In section 10.2.3, we will formally define this approximation as the first
divided difference f [xn−1, xn], and we will also identify the expression

1

xn − xn−1

(
f(α)− f(xn−1)

en−1
− f(α)− f(xn)

en

)

=
1

xn − xn−1

(
−f(α)− f(xn−1)

α− xn−1
+
f(α)− f(xn)

α− xn

) (2.44)

as the second divided difference f [α, xn−1, xn] ≈ 1
2f

′′(α) (cf. (10.27)).
Rather than get involved in all the details, let us just use these approxi-

mations to see what is going on. Thus we find

en+1 ≈ 1
2

f ′′(α)

f ′(α)
enen−1. (2.45)

Thus the error is quadratic in the previous errors, but it is not exactly the
square of the previous error. Instead, it is a more complicated combination.

Let M be an upper bound for 1
2f

′′/f ′ in an interval containing all the
iterates. Then, analogous to (2.45), one can prove (see exercise 2.13) that

|en+1| ≤M |en| |en−1|. (2.46)

To understand how the error is behaving, define a scaled error by εn = M |en|.
Then (2.46) means that

εn+1 ≤ εnεn−1 (2.47)

for all n. If δ = max{ε0, ε1}, then (2.47) means that ε2 ≤ δ2, ε3 ≤ δ3,
ε4 ≤ δ5, and so forth. In general, εn ≤ δfn , where fn is the Fibonacci
sequence defined by

fn+1 = fn + fn−1, (2.48)

NONLINEAR EQUATIONS 25

with f0 = f1 = 1. Quadratic convergence would mean that εn ≤ δ2
n

, but
the Fibonacci sequence grows more slowly than 2n. However, it is possible
to determine the asymptotic growth exactly. In fact, we can write (exer-
cise 2.14)

fn−1 =
1√
5

(
rn
+ − rn

−
)
, r± =

1±
√

5

2
≈
{

1.6180 (+)

−0.6180 (−).
(2.49)

Since rn
− → 0 as n→ ∞, fn ≈ Crn

+. Thus the errors for the secant method
go to zero like (exercise 2.15)

en+1 ≈ Cer+
n . (2.50)

One iteration of the secant method requires only one function evaluation,
so it can be more efficient than second-order methods. Two iterations of the
secant method often require work comparable to one iteration of the Newton
method, and thus a method in which one iteration is two iterations of the
secant method has a faster convergence rate since 2r+ > 2.

2.3 COMPLEX ROOTS

Let us consider the situation when there are complex roots of equations. For
example, what happens when we apply Heron’s algorithm with y < 0? Let
us write y = −t (t > 0) to clarify things, so that

xn+1 = 1
2 (xn − t/xn). (2.51)

Unfortunately, for real values of x0, the sequence generated by (2.51) does
not converge to anything. On the other hand, if we take x0 = iρ, where
i =
√
−1 and ρ is real, then

x1 = 1
2 (x0 − t/x0) = 1

2 (iρ− t/(iρ)) = 1
2 i(ρ+ t/ρ) (2.52)

since 1/i = −i. By induction, if xn = iρn, where ρn is real, then xn+1 =
iρn+1, where ρn+1 is also real. More precisely,

xn+1 = 1
2 (xn − t/xn) = 1

2 (iρn − t/(iρn)) = 1
2 i(ρn + t/ρn), (2.53)

so that

ρn+1 = 1
2 (ρn + t/ρn). (2.54)

We see that (2.54) is just the Heron iteration for approximating ρ =
√
t.

Thus convergence is assured as long as we start with a nonzero value for ρ
(cf. exercise 1.7).

The fact that Heron’s method does not converge to an imaginary root
given a real starting value is not spurious. Indeed, it is easy to see that
Heron’s method for a real root also does not converge if we start with a pure
imaginary starting value. The set of values for which an iterative method
converges is a valid study in dynamics, but here we are mostly interested in
the local behavior, that is, convergence given a suitable starting guess. It

26 CHAPTER 2

is not hard to see that reasonable methods converge when starting within
some open neighborhood of the root.

For a general complex y and a general starting guess x0, it is not hard to
see how Heron’s algorithm will behave. Write zn = xn/

√
y. Then

zn+1 = xn+1/
√
y =

1

2
√
y
(xn + y/xn) = 1

2 (zn + 1/zn). (2.55)

Thus to study the behavior of Heron’s method for complex roots, it suffices
to study its behavior in approximating the square-root of one with a complex
initial guess (exercise 2.16).

2.4 ERROR PROPAGATION

Suppose that the function g is not computed exactly. What can happen to
the algorithm? Again, the affine function in (2.15) provides a good guide.
Let us suppose that our computed function ĝ satisfies

ĝ(x) = g(x) + δ(x) = α+ λ(x − α) + δ(x) (2.56)

for some error function δ(x). If, for example, we have δ(x) = δ > 0 for all x,
then ĝ(α̂) = α̂ implies that

α̂ = ĝ(α̂) = α+ λ(α̂ − α) + δ = α(1− λ) + λα̂ + δ, (2.57)

so that

α̂ = α+
δ

1− λ. (2.58)

Thus the accuracy can degrade if λ is very close to one, but for a second-
order method this is not an issue. A general theory can be found in [86] (see
Theorem 3 on page 92 and equation (18) there), and (2.58) shows that the
results there can be sharp.

The only problem with functional iteration in floating-point is that the
function may not really be continuous in floating-point. Therefore it may
be impossible to achieve true convergence in floating-point, in the sense that
f`(x) = ĝ(f`(x)), where by ĝ here we mean the computer implementation
of the true function g in floating-point. Thus iterations should be termi-
nated when the differences between successive iterates is on the order of the
floating-point accuracy.

The effect of this kind of error on Newton’s method is not so severe.
Suppose that what we really compute is f̂ = f + δ. Then Newton’s method
converges to a root f̂(α̂) = 0, and doing a Taylor expansion of f around α,
we find that

α− α̂ ≈ δ

f ′(α)
. (2.59)

NONLINEAR EQUATIONS 27

2.5 MORE READING

Techniques for iteratively computing functions have been essential for pro-
viding software (and firmware) to compute square-roots, reciprocals, and
other basic mathematical operations. For further reading, see the books
[36, 61, 78, 113]. The book [86] relates Steffensen’s method to a general
acceleration process due to Aitken5 to accelerate convergence of sequences.
The method of false position, or regula falsi, is a slight modification of the
secant method in which xν−1 is replaced by xk, where k is the last value
where f(xk) has a sign opposite f(xν) [52]. For other generalizations of the
secant method, see [22, 102].

2.6 EXERCISES

Exercise 2.1 Suppose that g is a continuous function. Prove that, if fixed-
point iteration (2.5) converges to some α, then α is a fixed point, i.e., it
satisfies (2.4).

Exercise 2.2 Suppose that g is a C1 function such that α = g(α) and with
the property that |g′(α)| < 1. Prove that fixed-point iteration (2.5) converges
if x0 is sufficiently close to α. (Hint: note by lemma 2.2 that g is Lipschitz-
continuous with a constant λ < 1 in an interval [α − A,α + A] for some
A > 0.)

Exercise 2.3 Suppose that g is a C1 function such that the Lipschitz es-
timate (2.9) holds an interval [α − A,α + A] for some A > 0. Prove that
|g′(α)| ≤ λ. (Hint: consider the difference quotients used to define g′(α).)

Exercise 2.4 Suppose that g is a C2 function such that α = g(α) and with
the property that |g′(α)| < 1. Prove that fixed-point iteration (2.5) converges
asymptotically according to (2.18), that is,

lim
n→∞

|xn − α|
|g′(α)|n = C, (2.60)

where C is a constant depending only on g and the initial guess x0.

Exercise 2.5 Consider Newton’s method for solving f(α) = 0 in the case
that f ′(α) = 0. Show that second-order convergence is lost. In particular,
if p is the smallest positive integer such that f (p)(α) 6= 0, show that the

5Alexander Craig Aitken (1895–1967) was born in New Zealand and studied at the
University of Edinburgh, where his thesis was considered so impressive that he was both
appointed to a faculty position there and elected a fellow of the Royal Society of Ed-
inburgh, in 1925, before being awarded a D.Sc. degree in 1926. He was elected to the
Royal Society of London in 1936 for his work on statistics, algebra, and numerical anal-
ysis. Aitken was reputedly one of the best mental calculators known [60, 85]. He was an
accomplished writer, being elected to the Royal Society of Literature in 1964 in response
to the publication of his war memoirs [4].

28 CHAPTER 2

convergence is geometric with rate 1− 1/p. (Hint: expand both f and f ′ in
Taylor series around α, which both start with the terms involving f (p)(α) as
the first nonzero term.)

Exercise 2.6 Consider fixed-point iteration to compute the solution of

cosα = α,

using g(x) = cosx. Prove that this converges for any starting guess. Com-
pute a few iterations to see what the approximate value of α is.

Exercise 2.7 A function f is said to be Hölder-continuous of exponent α >
0 provided that

|f(x)− f(y)| ≤ λ|x− y|α (2.61)

for all x and y in some interval. Show that the result (2.60) still holds as
long as g′ is Hölder-continuous of exponent α > 0.

Exercise 2.8 Consider fixed-point iteration x← y/x for computing

x =
√
y.

Explain its behavior. Why does it not contradict the result in exercise 2.2?
(Hint: define g(x) = y/x and verify that a fixed point x = g(x) must satisfy
x2 = y. Perform a few iterations of x ← y/x and describe what you see.
Evaluate g′ at the fixed point.)

Exercise 2.9 Prove that the iteration (2.2) is Newton’s method as defined
in (2.30) for approximating the solution of Kepler’s equation (2.1).

Exercise 2.10 Prove that Steffensen’s iteration (2.39) is second-order con-
vergent provided that f ′(α) 6= 0 at the root f(α) = 0 and f ∈ C2 near the
root. (Hint: write Steffensen’s iteration as a fixed-point iteration xν+1 =
g(xν) and show that g′(α) = 0 at the fixed point α = g(α)).

Exercise 2.11 Verify the approximation (2.43). (Hint: write two Taylor
expansions around α, one for f(xn) and one for f(xn−1), and subtract them.)

Exercise 2.12 Investigate the fixed point(s) of the function

g(x) =
1

e−x − 1
+

1

ex − 1
+ 1. (2.62)

What is the value of g′ at the fixed point(s)? (Hint: find a common denom-
inator and simplify; see the solution to exercise 13.16 for an application of
this important function.)

Exercise 2.13 Prove that (2.46) holds.

Exercise 2.14 Prove that the Fibonacci numbers satisfy (2.49). (Hint: see
section 17.2.4; relate (2.48) with (17.7).)

NONLINEAR EQUATIONS 29

Exercise 2.15 Prove that the error in the secant method behaves as pre-
dicted in (2.50). (Hint: first prove (2.45).)

Exercise 2.16 Investigate the behavior of the iteration (2.55) for various
starting values of z0. For what values of z0 does the iteration converge? For
what values of z0 does the iteration not converge?

Exercise 2.17 Develop algorithms to solve x5−x+b = 0 for arbitrary b ∈ R

(cf. (14.35)).

Exercise 2.18 The expression

f(x) =
√

1 + x− 1

arises in many computations. Unfortunately, for x small, round-off makes
the obvious algorithm inaccurate; note that f(x) ≈ 1

2x for x small. Develop
an algorithm to compute f that is accurate for |x| ≤ 1

2 . (Hint: write t =√
1 + x − 1 and observe that (1 + t)2 − 1 − x = 0. Try Newton’s method

starting with a good initial guess for t = f(x).)

Exercise 2.19 Consider the function

f(x) =
1

x

(√
x2 + 1− |x− 1|

)
. (2.63)

Develop an algorithm to compute f(x) with uniform accuracy for all 0 < x <
∞. You may make reasonable assumptions about the accuracy of computing√
y but be explicit about them. (Hint: show that f(1/x) = xf(x) and that

f(x) ≈ 1 + 1
2x+O(x3) for x small.)

Exercise 2.20 Consider fixed-point iteration xn+1 = g(xn) for finding a
fixed point α = g(α). Suppose that the initial starting point x0 > α and that
g′(x) > 0 for α < x < x0. Prove that xn > α for all n ≥ 0. (Hint: write

xn+1 − α = g(xn)− g(α) =

∫ xn

α

g′(t) dt

and use induction.)

Exercise 2.21 In many applications in which roots f(x) = 0 are sought,
the cost of computing f (and f ′) is very large. You can simulate this via a
loop

function y = f(x,n)

for i=1:n

t = exp(x);

y = log(t);

end

y=y*y-2;

This computes the function f(x) = x2− 2 but can take arbitrarily long to do
so. Use an example like this to compare the efficiency of the Steffensen and
secant methods for various values of n.

30 CHAPTER 2

2.7 SOLUTIONS

Solution of Exercise 2.4. We have

xn+1 − α = g(xn)− g(α) = g′(ξn)(xn − α) (2.64)

for some ξn between xn and α. By induction, we thus find that

xn+1 − α =

(
n∏

i=0

g′(ξi)

)
(x0 − α). (2.65)

Define ri = |g′(ξi)/g′(α)|. Then

|xn+1 − α|
|g′(α)|n =

(
n∏

i=0

ri

)
|x0 − α|. (2.66)

By (2.11), we know that |ξn − α| ≤ λn|e0|. Therefore,

|g′(ξn)− g′(α)| = |g′′(ξ̂n)(ξn − α)| ≤ |g′′(ξ̂n)|λn|e0|. (2.67)

for some ξ̂n between ξn and α, and therefore between xn and α. Therefore,
|rn − 1| ≤ Ĉλn, where Ĉ is chosen to be larger than |e0g′′(ξ̂n)/g′(α)| for all
n. Since rn → 1 as n→∞, we can be assured that rn > 0 for n sufficiently
large. If rn = 0 for some value of n, then we have xn+i = α for all i ≥ 1, so
we can take the constant Ĉ in (2.60) to be zero. If all rn > 0, then we can
take the logarithm of the product in (2.66) to get

log

(
n∏

i=0

ri

)
=

n∑

i=0

log ri. (2.68)

Thus it suffices to prove that the sum on the right-hand side of (2.68) con-
verges. Since we have an estimate on ri − 1, we write ri = 1 + εi, where
εi| ≤ Ĉλi. Note that log(1 + x) ≤ x for all x > 0. To get such a bound for
x < 0, set t = −x and write

| log(1− t)| = − log(1− t) =

∫ 1

1−t

dx

x
≤ t

1− t . (2.69)

Thus | log(1 + x)| ≤ 2|x| for |x| ≤ 1
2 . Therefore, | log ri| ≤ 2|1 − ri| ≤ Ĉλi

for i sufficiently large, and thus the sum on the right-hand side of (2.68)
converges to some value γ. Define C = eγ |x0 − α|.
Solution of Exercise 2.6. Define g(x) = cosx. Then a solution to x =
g(x) is what we are seeking, and we can apply fixed-point iteration xn+1 =
g(xn). This can be computed in octave by simply repeating the command
x=cos(x), having started with, say, x = 1. After about 40 iterations, it
converges to α = 0.73909. We have g′(α) = − sinα ≈ −0.67362. Thus it is
clear that fixed-point iteration is locally convergent.

The set of values xn generated by fixed-point iteration always lie in [−1, 1],
the range of g(·) = cos ·. But we cannot easily assert global convergence

NONLINEAR EQUATIONS 31

because the values of g′ also extend over [−1, 1]. However, g maps [−1, 0] to
[β, 1], where β = cos(−1) ≈ 0.54030. Similarly, g maps [0, 1] to [β, 1], but
with the order reversed. Thus, regardless of the starting value x0, x1 ∈ [β, 1].
Moreover, this argument shows further that all subsequent xn ∈ [β, 1] as
well. The maximum value of |g′(x)| = sinx on the interval [β, 1] occurs at
x = 1, since sin is strictly increasing on [β, 1], and sin 1 = 0.84147. Thus we
conclude that fixed-point iteration converges at least as fast as 0.84147n.

Solution of Exercise 2.18. We recall that

t = f(x) =
√

1 + x− 1. (2.70)

We seek an algorithm that outputs t̂ with the property that

|t− t̂| =
∣∣√1 + x− 1− t̂

∣∣ ≤ 1
2ε|t|, (2.71)

where ε > 0 is a prescribed accuracy that we require to be sufficiently small.
To begin with, we establish some inequalities of use later.

Adding 1 to both sides of (2.70) and squaring, we find that

(t+ 1)2 = 1 + x,

and thus

x = (t+ 1)2 − 1 = 2t+ t2 = t(2 + t). (2.72)

Therefore,

x

f(x)
=
x

t
= 2 + t = 1 +

√
1 + x (2.73)

is a strictly increasing function of x. In particular,

|x/t| = |x/f(x)| ≤ 1 +
√

3/2 < 2.3 (2.74)

for |x| ≤ 1
2 . Similarly, f(x)/x is a strictly decreasing function of x. We thus

have

|t| = |f(x)| ≤ 1

1 +
√

1/2
|x| < 0.6|x| (2.75)

for |x| ≤ 1
2 . Therefore,

|t| ≤ 0.3 (2.76)

for |x| ≤ 1
2 . Now let us define t̂. Taylor’s theorem shows that

∣∣√1 + x− 1− 1
2x+ 1

8x
2
∣∣ ≤ 0.1

∣∣x3
∣∣ (2.77)

for x ∈ [−0.1, 0.1]. This means that for |x| ≤ √ε and ε ≤ 1/100, we can
simply define

t̂ = 1
2x− 1

8x
2. (2.78)

Then (2.77) implies that
∣∣√1 + x− 1− t̂

∣∣ ≤ 0.1|x|ε ≤ 1
4 |t|ε, (2.79)

by (2.74). This proves (2.71) when |x| ≤ √ε.

32 CHAPTER 2

Thus we can turn our attention to the case where |x| > √ε. In view of
(2.72), the function

φ(τ) = (1 + τ)2 − 1− x = 2τ + τ2 − x = 0

when τ = t. Thus t = f(x) is the solution to φ(t) = 0, and we can consider
using Newton’s method to find t. Differentiating, we have φ′(τ) = 2 + 2τ .
Thus Newton’s method is

tν+1 = tν −
2tν + t2ν − x

2 + 2tν
=

t2ν + x

2 + 2tν
=: g(tν). (2.80)

Differentiating again, we find that

g′(τ) =
2τ + τ2 − x
2(1 + τ)2

=
φ(τ)

2(1 + τ)2
=

1

2
− x+ 1

2(1 + τ)2
. (2.81)

Therefore, φ(t) = 0 implies g′(t) = 0, and differentiating yet again, we have

g(2)(τ) = −(x+ 1)(1 + τ)−3. (2.82)

Now let us consider using t0 = f`
√
f`(1 + x)−1 as a starting guess. More

precisely, we define a = f`(1+x), b = f`
√
a, and t0 = f`(b−1). We assume

an estimate like (2.71) holds for all floating-point operations, namely, we
assume that a = (1 + x)(1 + δ1), b =

√
a(1 + δ2), and t0 = (b − 1)(1 + δ3),

where |δi| ≤ ε. For simplicity, we write 1 + δ1 = (1 + δ̂1)
2; that is,

δ̂1 =
√

1 + δ1 − 1 = f(δ) ≈ 1
2δ1.

In particular, |δ̂1| ≤ 0.6δ1 as long as ε ≤ 1
2 , by (2.76).

Therefore,
√
a =
√

1 + x(1 + δ̂1) and

b =
√

1 + x(1 + δ̂1)(1 + δ2) =
√

1 + x
(
1 + δ̂1 + δ2 + δ̂1δ2

)
. (2.83)

Since t =
√

1 + x− 1, we find

b− 1− t =
√

1 + x
(
δ̂1 + δ2 + δ̂1δ2

)
. (2.84)

Recall that t0 = (b − 1)(1 + δ3), so that t0 − (b − 1) = (b − 1)δ3, and thus

t0 − t = t0 − (b− 1) + (b − 1)− t
=(b− 1)δ3 +

√
1 + x

(
δ̂1 + δ2 + δ̂1δ2

)

= tδ3 +
√

1 + x
(
δ̂1 + δ2 + δ̂1δ2

)
(1 + δ3)

= tδ3 + (t+ 1)
(
δ̂1 + δ2 + δ̂1δ2

)
(1 + δ3).

(2.85)

In particular, (2.85) shows why t0 cannot be used as a uniform approximation
to t since the second term is multiplied by t + 1 and not t. However, if
ε ≤ 10−2 (as we assumed above), then (2.85) implies that

|t0 − t| ≤ 2.41ε. (2.86)

NONLINEAR EQUATIONS 33

If we define t1 by taking one Newton step (2.80), then (2.19) and (2.82)
imply that

|t1 − t| ≤ 3ε2(x+ 1)(1 + ξ)−3 = 3ε2(t+ 1)2(1 + ξ)−3, (2.87)

where ξ lies between t0 and t. By (2.75), t ≥ −0.3, and certainly t0 > −0.31.
Thus 1 + ξ ≥ 0.69, and applying (2.86) shows that

1 + t

1 + ξ
= 1 +

t− ξ
1 + ξ

≤ 1 +
2.41ε

1 + ξ
≤ 1 +

2.41ε

0.69
≤ 1 + 3.5ε. (2.88)

Therefore,

(1 + t)2

(1 + ξ)3
≤ (1 + 3.5ε)2

1

1 + ξ
≤ 1.08

0.69
< 1.57 . (2.89)

Applying this in (2.87) shows that (recall |x| > √ε)
|t1 − t| ≤ 4.72ε2 ≤ 4.72ε3/2|x| ≤ 11ε3/2|t|, (2.90)

by (2.73). This proves (2.71) provided ε ≤ 1/484, as we now require.
Note that for |x| ≈ √ε, (2.86) implies that t0 is accurate to about half of

the digits required, but only half. One Newton step then provides the other
half of the required digits. A similar statement can be made about (2.78).
The term 1

2x provides a substantial fraction of the required digits, and the
correction term − 1

8x
2 provides the rest.

Chapter Three

Linear Systems

“The Nine Chapters on the Mathematical Art has played
a central role in Oriental mathematics somewhat similar
to Euclid’s Elements of Geometry in the West. However,
the Nine Chapters has always been more involved in the
methods for finding an algorithm to solve a problem, so
that its influence has been both pedagogical and practical.
Instead of theorems ... the Nine Chapters provides algorith-
mic Rules.” [92]

Most interesting problems involve more than one variable, so we now move
to systems of equations. Before we turn to nonlinear systems, we look in
detail at algorithms for solving linear systems for two reasons. First, the
linear case is a prerequisite to the nonlinear case; we will reduce the solution
of nonlinear problems to an iteration involving the solution of linear systems
of equations. Second, this allows us to introduce ideas from linear algebra
that we need for subsequent developments.

This chapter formalizes the familiar method used to solve systems of equa-
tions by elimination. The basic elimination method is associated with the
name of Gauss1 [7], although the method was in use well before he lived. The
fangcheng methods were known in China hundreds of years before the birth
of Gauss [92]. The method is now found in the middle-school curriculum, so
we review it quickly with a view to establishing notation that will be useful
to derive its fundamental properties.

Gaussian elimination can be applied to equations involving entities in any
field F. Our focus here will be limited to the fields of real (R) and complex
(C) numbers. We might further limit our scope just to real numbers, but
later we will want to consider methods for finding eigenvalues and eigenvec-
tors of matrices. Matrices with real entries can have complex eigenvalues
and eigenvectors, so we are forced to consider complex numbers in working
with them.

Linear systems of n equations in n unknowns arise in many applications.
Problems of size n ≈ 105 occur [56] even when the matrices are dense (i.e,
have no substantial amount of entries known to be zero). We will see that
with n = 105, the amount of computation required to solve such a system is
near a petaflop (1015 floating-point operations). A typical (single) processor

1Johann Carl Friedrich Gauss (1777–1855) was one of the greatest scientists of all time
and is celebrated both in scientific and popular media [93].

36 CHAPTER 3

today can perform roughly one gigaflops (109 floating-point operations per
second). Thus problems of this size often require parallel computation [144].

3.1 GAUSSIAN ELIMINATION

A system of n linear equations in n unknowns can be written as

a11x1 + a12x2 + · · ·+ a1nxn = f1

a21x1 + a22x2 + · · ·+ a2nxn = f2

...
...

an1x1 + an2x2 + · · ·+ annxn = fn.

(3.1)

Here all entities aij , fi, and xi are in some field F, which we may assume for
simplicity is either R or C. The principle of elimination is to subtract suitable
multiples of the first equation from the remaining equations in such a way
as to eliminate x1 from the later equations. More precisely, we subtract

ai1

a11
(a11x1 + a12x2 + · · ·+ a1nxn = f1) (3.2)

from the ith equation for each i = 2, . . . , n. This converts the original tableau
of expressions to

a11x1 + a12x2 + · · ·+ a1nxn = f1

â22x2 + · · ·+ â2nxn = f̂2

...
...

ân2x2 + · · ·+ ânnxn = f̂n,

(3.3)

where the hatted coefficients result from the appropriate subtractions.
The key point is that the original system of n equations in n unknowns is

converted to one with only n− 1 equations in n− 1 unknowns. Continuing
in this way, we eventually arrive at a simple equation for xn, and then this
value can be used in the previous equation involving xn and xn−1 to solve
for xn−1, and so on. Let us now write down all this as concise algorithms.

3.1.1 Elimination algorithm

First, we can express the elimination algorithm as

ak+1
ij = ak

ij −mika
k
kj ∀i = k + 1, . . . , n, j = k + 1, . . . , n,

fk+1
i = fk

i −mikf
k
k ∀i = k + 1, . . . , n,

(3.4)

where the multipliers mik are defined by

mik =
ak

ik

ak
kk

∀i = k + 1, . . . , n, k = 1, . . . , n. (3.5)

LINEAR SYSTEMS 37

Here a1
ij = aij and f1

ij = fij . Note that we have defined ak
ij only for i ≥ k and

j ≥ k. More precisely, we have defined Âk to be this (n+1−k)× (n+1−k)
matrix. If we want to complete the n×n system, we set ak

ij = ak−1
ij for other

values of i and j and then set

ak+1
ik = 0 for i > k. (3.6)

The tableau (3.3) displays the case involving the terms a2
ij , which define

Â2 and A2. We have glossed over the possibility that ak
kk = 0, which can

certainly happen, but let us suppose for the moment that ak
kk does not

vanish.
We can formalize the algorithm of elimination by saying that the input

is an n × n matrix, A, and the output is an (n − 1) × (n − 1) matrix, Â,
together with a column vector m of length n− 1. We iteratively apply this
algorithm to Â until n = 1.

After applying (3.4) for k = 1, . . . , n − 1, we have a triangular system of
equations

a1
11x1 + a1

12x2 + · · ·+ a1
1nxn = f1

1

a2
22x2 + · · ·+ a2

2nxn = f2
2

...
...

an
nnxn = fn

n .

(3.7)

This can be proved rigorously by observing that the elimination algorithm
is applied inductively to the matrices Âk for k = 1, 2, . . . , n − 1, which are
of size (n + 1 − k) × (n + 1 − k), with Â1 = A. The induction step is
the combination of (3.4) and (3.5). This will be covered in more detail in
section 3.2.1.

It is helpful to use matrix notation at this point. The original set of
equations (3.1) can be written in matrix-vector form as AX = F , where A
is the matrix with entries (aij), X is the vector with entries (xj), and F is
the vector with entries (fi). Define the matrix U via

uij = ai
ij ∀i = 1, . . . , n and j = i, . . . , n (3.8)

(and zero elsewhere). Then (3.7) becomes UX = G, where G is the vector
with entries (f i

i). By construction, U is an upper-triangular matrix.

Definition 3.1 A matrix B = (bij) is upper-triangular (respectively, lower-
triangular) if bij = 0 for all j > i (respectively, i > j).

3.1.2 Backward substitution

The key reason for reducing AX = F to the triangular form UX = G is
that triangular systems are easier to solve. In particular, upper-triangular
systems can be solved by the backsubstitution algorithm, which we write in

38 CHAPTER 3

equational form as

xn = gn/unn

xn−i =
(
gn−i −

n∑

j=n−i+1

un−i,jxj

)/
un−i,n−i ∀i = 1, . . . , n− 1.

(3.9)

A similar algorithm can be used to solve lower-triangular systems (exer-
cise 3.9), which is called forward substitution.

Two corollaries of the algorithm (3.9) are as follows.

Corollary 3.2 A triangular matrix is singular if and only if one of its di-
agonal entries is zero.

Proof. If none of the diagonal entries of U is zero, then (3.9) provides a
way to determine a solution X for an arbitrary right-hand side G. Thus U
is invertible. The converse is left as exercise 3.1. QED

Corollary 3.3 The diagonal entries of a triangular matrix are its eigenval-
ues.

Proof. The eigenvalues of T are the values λ such that T − λI is singular.
But T − λI is also triangular and so is singular only if λ is equal to one of
the diagonal entries of T . QED

Corollary 3.4 The determinant of a triangular matrix is equal to the prod-
uct of the diagonal entries of the triangular matrix.

Proof. It is a result of linear algebra that the product of eigenvalues of a
matrix is equal to the determinant, so the result follows from corollary 3.4.
But this result from linear algebra need not be invoked. Instead, the fact
that detU =

∏n
i=1 uii may be derived by a direct proof using the fact that

U is upper-triangular (exercise 3.2). QED

We will explore triangular matrices in more detail in section 3.3.

3.2 FACTORIZATION

Let us form the lower-triangular matrix L via

L =




1 0 · · · 0 0
m21 1 · · · 0 0

...
mn1 mn2 · · · mn,n−1 1


 , (3.10)

where the multipliers mik are defined in (3.5).

Theorem 3.5 The matrices L and U defined via the elimination process
form a multiplicative factorization of A = LU .

LINEAR SYSTEMS 39

3.2.1 Proof of the factorization

The theorem can be proved by multiplying the factors (exercise 3.3), but we
prefer to give a more modern treatment that also can be used to generate
code automatically [164]. This approach also has the added benefit that it
can be easily modified to identify a permutation matrix that corresponds to
pivoting (section 3.4 and exercise 3.4).

We will prove this by induction on n. The case n = 1 being trivial and
not very instructive, we consider the case n = 2; in this case, the statement
is that

A =

(
a11 a12

a21 a22

)
=

(
1 0

a21/a11 1

)(
a11 a12

0 a22 − a12a21/a11

)
, (3.11)

which is easily verified by multiplying the factors on the right-hand side.
The induction step is very similar to this as well.

Suppose that A is an n× n matrix that we write in the form

A =

(
a11 a1

T

a1 B

)
, (3.12)

where a1 and a1 are (column) vectors of length n− 1, with (a1)j = a1j and
(a1)j = aj1, and B is an (n − 1) × (n − 1) matrix; we assume a11 6= 0.
Then the first step of Gaussian elimination may be interpreted as forming
the factorization

A =

(
1 0

a−1
11 a

1 In−1

)(
a11 a1

T

0 B − a−1
11 a

1 a1
T

)
, (3.13)

where In−1 denotes the (n − 1) × (n − 1) identity matrix and (a1)j = aj1.
That is, we first prove that the product of matrices on the right-hand side
of (3.13) equals A (exercise 3.6). This takes some care in interpretation
since the matrices have been represented in block form, but it is elementary
to verify that matrix multiplication follows these block rules (exercise 3.5).
Then by inspection we see that the second factor is the matrix we have
identified in the elimination process as A2:

A2 =

(
a11 a1

T

0 B − a−1
11 a

1 a1
T

)
=

(
a11 a1

T

0 Â2

)
. (3.14)

By induction, we can now assume that Â2 = L2U2, with L2 defined in terms
of the corresponding multipliers and U2 defined by the elimination process.
By induction in the definition of the elimination process, we know that the
multipliers (3.5) for Â2 are the same as the ones for A, and similarly for U2.
Thus we know that

A =

(
1 0

a−1
11 a

1 In−1

)(
a11 a1

T

0 L2U2

)

=

(
1 0

a−1
11 a

1 In−1

)(
1 0
0 L2

)(
a11 a1

T

0 U2

)

=

(
1 0

a−1
11 a

1 L2

)(
a11 a1

T

0 U2

)
,

(3.15)

40 CHAPTER 3

where the last two equalities are left as exercise 3.7. QED

The inductive nature of the proof also corresponds to a recursive definition
of the algorithm. The representation (3.12) provides the base case, and
(3.13) provides the reduction to a smaller problem. We leave as an exercise
the development of a factorization in this way (exercise 3.8).

The above argument directly establishes the existence of an LU factoriza-
tion by induction. The argument is complicated by the fact that we also want
to identify the entities generated in the elimination process as the ingredi-
ents in the factorization. If one were willing to forget about the elimination
process, the factorization could be derived more easily. We will see that
the factors are the proper focus and indeed that there are other algorithms
for determining factors that are more efficient than the elimination process
(section 4.1.1). The introduction of Gaussian elimination is mainly done to
connect the concept of the factorization with the approach that one uses by
hand to solve small systems of linear equations.

3.2.2 Using the factors

There are several uses for the factorization of a matrix as a product of
triangular matrices. For one thing, we can derive a simple formula for the
determinant:

detA = detL detU =

n∏

i=1

uii. (3.16)

Here we have used corollary 3.4 together with the fact from linear algebra
that the determinant of a product of matrices is the product of the determi-
nants of the two matrices separately.

The factorization can also provide an alternate way to solve equations.
The original equation AX = F can now be written as L(UX) = F , so if
we write G = UX , then G must solve the lower-triangular system LG = F .
Moreover, lower-triangular systems can be solved by an algorithm similar to
(3.9) (see exercise 3.9).

Suppose that we had already performed elimination and had kept a copy
of the multipliers. Then we can solve for X in two steps:

first solve LG = F ;

then solve UX = G.
(3.17)

3.2.3 Operation estimates

One reason that the algorithm (3.17) is of interest is that it allows us to
split the overall task of solving linear systems into parts that have different
operation estimates. Such estimates give upper bounds on the number of
floating-point operations and memory references, which in turn can be used
to model the performance of an algorithm. For this reason, such estimates
are often called work estimates.

LINEAR SYSTEMS 41

Operation estimates are done by counting the number of basic steps in an
algorithm. Let us write the first line of (3.4) in a more algorithmic form as

For k = 1, . . . , n− 1,

For i = k + 1, . . . , n and j = k + 1, . . . , n,

aij ← aij −mik ∗ akj .

(3.18)

Here the leftward-facing arrow← means assignment. That is, the expression
on the right side of← is computed and then deposited in the memory location
allocated for aij . Note that we are assuming that all the values ak

ij are stored
in the same location.

In the algorithm (3.18) for updating aij , there is one subtraction and one
multiplication. In addition, three items have to be read from memory, and
one written to memory at the end. We will discuss memory models in more
detail in section 4.1.2. For now we simply focus on floating-point operations.

The innermost loop in (3.18) involves repeating the aij computation (n−
k)2 times since it is done for i = k+1, . . . , n and j = k+1, . . . , n; this involves
n− k values of i and j, independently. Since this is done (in the outer loop)
n−1 times for different values of k, the total number of multiplications (and
subtractions) is

n−1∑

k=1

(n− k)2 =
n−1∑

j=1

j2 = 1
3n

3 − 1
2n

2 + 1
6n (3.19)

(see exercise 3.10).
The backsubstitution algorithm (3.9) can be analyzed similarly. For each

i, there are i product terms uijxj in the summation, and computing the sum
requires at least i − 1 additions. If we include the subtraction in the count
of additions (it is a reasonable assumption that the costs of additions and
subtractions are roughly the same), then we find a total of i multiplications
and additions in each case. Thus the total amount of multiplications and
additions is

n−1∑

i=1

i = 1
2n(n− 1) = 1

2n
2 − 1

2n. (3.20)

In addition, there are n divisions.
The main conclusion from this exercise is that the amount of work required

to factor an n × n matrix is O(n3), whereas the amount of work required
to perform backsubstitution is only O(n2). We leave as exercise 3.13 the
estimation of the work involved in computing the multipliers (3.13). It is
worth noting that in both the elimination and backsubstitution algorithms,
multiplications come paired with additions. This fact has been exploited in
some hardware systems which can perform a linked multiply-add pair faster
than the sum of times required to do each operation separately. For these
reasons, it is sometimes useful to think of the multiply-add pair as a single
type of operation.

42 CHAPTER 3

3.2.4 Multiple right-hand sides

Note that if we defined ak
i,n+1 = fk

i , then the two equations in (3.4) could
be written as one. Moreover, multiple right-hand sides fi,j could be treated
similarly by writing ak

i,n+j = fk
i,j , in which case (3.4) becomes

ak+1
ij = ak

ij −mika
k
kj ∀i = k + 1, . . . , n; j = k + 1, . . . , n+m; (3.21)

where m is the number of right-hand sides. Thus the elimination process
can be used to reduce multiple systems to triangular form. However, using
the algorithm (3.17), this can be presented more simply.

Let us write the multiple right-hand sides in vector form as F (j) and
suppose that we want to solve AX(j) = F (j) for j = 1, . . . ,m. We take
advantage of the factorization A = LU to factorize only once and solve
multiple times via

first solve LG(j) = F (j),

then solve UX(j) = G(j),
(3.22)

for j = 1, . . . ,m. See exercise 3.14 for an analysis of the operation counts.

3.2.5 Computing the inverse

One example with multiple right-hand sides arises in computation of the
inverse of a matrix. The columns X(j) of the inverse of A satisfy AX(j) =

E(j), where the E(j)’s are the standard basis vectors for Rn: e
(j)
i = δij , where

δij denotes the Kronecker δ. Applying the algorithm (3.22), we see that the
inverse can be computed in (5/6)n3 + O(n2) operations, i.e., multiply-add
pairs (exercise 3.14).

Thus, asymptotically, the amount of work required to compute the inverse
of a matrix is less than twice the work needed just to solve a single system of
equations. However, computing the inverse is not a good general approach to
solving equations. For example, the number of multiply-add pairs required
to multiply the inverse times the right-hand side is n2, whereas the back-
substitution algorithm requires about half this much work. With banded
matrices (section 4.3), the comparison can become much more dramatic.

3.3 TRIANGULAR MATRICES

The sets U and L of upper-triangular matrices and lower-triangular matrices,
respectively, have a ring2 structure, as follows. For the time being, let T
stand for one of these sets, i.e., either U or L. Then we can add any two
matrices in T componentwise, i.e, (T 1 +T 2)ij = T 1

ij +T 2
ij . The fact that the

sum is still triangular is obvious. What is somewhat surprising is that the
product of two triangular matrices is also triangular.

2A ring is a set in which addition and multiplication are defined.

LINEAR SYSTEMS 43

Suppose that A and B are upper-triangular matrices of the form

A =




a1 a12 a13 · · · a1n

0 a2 a23 · · · a2n

...
...

...
...

...
0 0 0 · · · an


 , B =




b1 b12 b13 · · · b1n

0 b2 b23 · · · b2n

...
...

...
...

...
0 0 0 · · · bn


 .

(3.23)
Then (exercise 3.15) the product AB is (a) also an upper-triangular matrix
with the property (b) that

AB =




a1b1 c12 c13 · · · c1n

0 a2b2 c23 · · · c2n

...
...

...
...

...
0 0 0 · · · anbn


 (3.24)

for some coefficients cij . That is,

the diagonal entries of the product are the products of the diagonal entries.

A similar formula holds for lower-triangular matrices.
It is natural to guess that, if none of the diagonal entries of a matrix A is

zero, then

A−1 =




a1 a12 a13 · · · a1n

0 a2 a23 · · · a2n

...
...

...
...

...
0 0 0 · · · an




−1

=




a−1
1 b12 b13 · · · b1n

0 a−1
2 b23 · · · b2n

...
...

...
...

...
0 0 0 · · · a−1

n


 ;

(3.25)
that is, A−1 is also upper-triangular.

Lemma 3.6 Suppose that A is an upper-triangular (respectively, a lower-
triangular) matrix with nonzero diagonal entries. Then A is invertible, and
A−1 is also upper-triangular (respectively, a lower-triangular) and (3.25)
holds.

Proof. The invertibility of a triangular matrix is determined by having
nonzero diagonal entries in view of corollary 3.2. Thus all we need to show
is that the inverse has the corresponding triangular structure. This is easily
seen by examining the backsubstitution algorithm applied to the equations
AX(k) = E(k) for the columns of the inverse (cf. section 3.2.5). Since the
diagonal entries of A are nonzero, the algorithm will produce solutions to

AX = F for all F . Since e
(k)
j = 0 for j > k, we have x

(k)
j = 0 for j > k.

Thus the kth column of A−1 is zero for j > k, and A−1 is upper-triangular;
that is, A−1 must be of the form

A−1 =




b1 b12 b13 · · · b1n

0 b2 b23 · · · b2n

...
...

...
...

...
0 0 0 · · · bn


 . (3.26)

44 CHAPTER 3

Using the product formula (3.24) completes the proof since A−1A = I. QED

3.4 PIVOTING

By pivoting, we mean reordering of the unknowns in the system (3.1). The
numbering scheme for the equations and unknowns does not affect the so-
lutions, but it can affect the outcome of the elimination algorithm. In par-
ticular, it may happen at a certain stage that ak

kk = 0, at which point the
elimination algorithm breaks down since the multipliers (3.5) become unde-
fined. At such a point, we can choose among the remaining rows and columns
(numbered i and j, respectively, such that i, j ≥ k) to find some value of i
and j such that ak

i,j 6= 0. We can either imagine moving the required row
and column into the right position or just keep track of a new numbering
scheme. The row and/or column exchanges in pivoting can be applied to the

original matrix, which we denote by Â, in which case Gaussian elimination
with pivoting is just the original elimination algorithm applied to Â (with
no pivoting).

The imagined movement of rows and columns can be thought of as piv-
oting them around an imaginary midpoint. For example, if we do only row
pivoting, we swap row k with row i, pivoting around the row position 1

2 (i+k)
(which might be in between two rows if this is not an integer). If we do only
row or column pivoting (but not both) then it is called partial pivoting.
Doing both is called full pivoting.

Pivoting is an adaptive algorithm that attempts to keep elimination going
when it might otherwise fail. More generally, it can improve the quality of
the solution process by minimizing the size of the multipliers mik in (3.5).
We will say more about this in section 18.2.3.

3.4.1 When no pivoting is needed

We now address the issue of what governs whether Gaussian elimination fails
by having ak

kk = 0 for some k ≥ 1. Define Ak to be the k × k upper-left
minor of A, that is,

Ak =



a11 · · · a1k

...
...

...
ak1 · · · akk


 . (3.27)

It is easy to see that (Ak)k = (Ak)k, that is, doing Gaussian elimination
on the k × k upper-left minor of A yields the same result as the k × k
upper-left minor of the result of Gaussian elimination on A. We can refer
to (Ak)k = (Ak)k simply as Ak

k. If Gaussian elimination has proceeded to
step k without producing a zero value ak

kk, then we know that Ak must be
invertible.

Suppose that k is the first index where ak
kk = 0. We have a factorization

Ak = LkUk, where Uk = Ak
k, since Gaussian elimination has proceeded

LINEAR SYSTEMS 45

successfully until this point. But the upper-triangular matrix Ak
k is singular

since there is a zero on the diagonal. Therefore, Ak is singular for either of
two reasons: (1) since Ak

k is obtained from Ak by elementary row operations,
or (2) picking X 6= 0 such that UkX = Ak

kX = 0 and noting that we must
have AkX = LkUkX = 0. Thus we have proved the following result.

Lemma 3.7 Gaussian elimination using no pivoting proceeds with nonzero
pivotal elements to produce nonsingular factors A = LU if and only if each
k × k upper-left minor Ak is nonsingular for k = 1, . . . , n.

One corollary of lemma 3.7 is that Gaussian elimination always succeeds
without pivoting for a positive definite matrix (exercise 3.16).

3.4.2 Partial pivoting

The following result shows that partial pivoting is sufficient to solve any
invertible system.

Theorem 3.8 Gaussian elimination with partial pivoting (either row or col-
umn) proceeds with nonzero pivotal elements to produce nonsingular factors

Ã = LU if and only if A is nonsingular.

theorem 3.8 refers to two algorithms involving partial pivoting: one in
which row pivoting is done and the other in which column pivoting is done.
It does not refer to some mixture of the two. The only issue in question is
whether or not there are nonzero pivotal elements available.

Proof. If Gaussian elimination succeeds, then A is invertible because it is a
permutation of LU , both of which are invertible, so we need to address only
the converse.

If we perform column pivoting and find at the kth stage that there are no
nonzero pivotal elements available in the kth row, then it means that the
entire kth row of Ak is zero, and hence A must have been singular to start
with. Similarly, if we perform row pivoting and fail at the kth stage to find
a nonzero pivotal element, then the kth column of Ak is zero on and below
the diagonal. We can write the upper part of the kth column as a linear
combination of the first k−1 columns by solving a (k−1)×(k−1) triangular
system using the upper (k − 1)× (k − 1) block of Ak, which we can assume
is nonsingular by induction. Thus again A must be singular. QED

3.4.3 Full pivoting and matrix rank

Since partial pivoting succeeds for any nonsingular matrix, we might wonder
about the role of full pivoting. We will see that there are two applications,
one algebraic, which we explore here, and the other analytic in nature, which
we discuss in section 18.2.3. So let us assume that full pivoting is done, and
at some point Gaussian elimination fails to find a nonzero pivotal element.

46 CHAPTER 3

If there is no element ak
i,j 6= 0, then this means that an entire (n− k + 1)×

(n − k + 1) subblock of Ak is zero. In particular, it means that Akx = 0
for all x such that xj = 0 for j ≥ k. Since we have performed only row
operations on A to define Ak, this means that the kernel of A is (at least)
(n−k+1)-dimensional. Assuming this is the first time this has happened in
the elimination algorithm, this shows that the rank of A is precisely n−k+1.
Moreover, there are solutions Ax = f if and only if fk

j = 0 for j ≥ k.
Although we will not make substantial use of these facts, we see that

Gaussian elimination allows us to find the rank of a matrix and to determine
whether f satisfies the compatibility conditions required to have a solution.
Compare this with research on computing the rank of a general tensor (e.g.,
SIAM News, Volume 37, Number 9, November 2004).

We will see later that there are other benefits to full pivoting (cf. sec-
tion 18.2.3) in addition to the fact that it allows solution of rank-deficient
systems (in exact arithmetic). Thus one might wonder why full pivoting is
not the default approach. One reason is the increased work, since it requires
a comparison of (n − k)2 floating-point numbers, for k = 1, . . . , n − 1, and
this essentially doubles the work. Partial pivoting reduces the extra work to
comparing only n−k floating-point numbers for each k, and this extra work
is asymptotically hidden for large n.

3.4.4 The one-dimensional case

Let us work out some of the details in the simple case when the dimension
of the null space of A is 1. Thus there is a solution x 6= 0 to Ax = 0, and
all solutions y of Ay = 0 satisfy y = αx for some scalar α. In this case, the
codimension of the range of A is also 1, and there is a vector g such that
there is a solution y to

Ay = f if and only if g?f = 0. (3.28)

Let us show how the LU factorization can be used to compute g.
We can characterize g as a solution to A?g = 0, as follows:

0 = g?Ay = y?(A?g) ∀y ∈ F
n (3.29)

if and only if A?g = 0. Thus we need to see how to compute a null solution,
something of interest in its own right.

If we do full pivoting, then Gaussian elimination proceeds to the end, with
the only oddity being that unn = 0. But the matrix factor L is computed
without incident; note that there is nothing to compute in the nth column
of L (the only nonzero entry is lnn = 1). Of course, A = LU implies that
A? = U?L?, although now it is the upper-triangular factor (L?) that is 1
on the diagonal. Transposing the algorithm (3.17), we first solve U?w = 0
and then L?g = w. Since L? is always invertible, there is no obstruction
to obtaining g from w. So the constraint in (3.28) has to involve w. The
null space of U? is easy to characterize: it is generated by the vector En =
(0, 0, · · · , 0, 1)T. Thus g is computed via

L?g = En. (3.30)

LINEAR SYSTEMS 47

In a similar way, we can compute a generator x for the null space of A.
Thus we seek x such that L(Ux) = 0, and since L is invertible, we must have
Ux = 0. We can take xn = 1 since we have unn = 0. Then the second line
in (3.9) can be used to generate the remaining values of xi, i = n− 1, . . . , 1;
cf. exercise 3.18.

3.4.5 Uniqueness of the factorization

Suppose we assume that the row and/or column exchanges have been in-
corporated into A, so that Gaussian elimination with no pivoting factors
A = LU . We now ask whether such a factorization is unique. Of course,
different row and/or column exchanges will give in general a different fac-
torization, but we assume that these exchanges are fixed for this discussion.

If L̃ and Ũ are two other triangular factors of A = L̃Ũ with the property
that the diagonal elements of L̃ are also all 1’s, then we claim that L = L̃ and
U = Ũ . To see this, write LU = L̃Ũ and multiply on the right by Ũ−1 and
on the left by L−1. We find UŨ−1 = L−1L̃. But UŨ−1 is upper-triangular
and L−1L̃ is lower-triangular (cf. section 3.3). To be equal, they both must

be diagonal. Since both L and L̃ have only 1’s on the diagonal, this must
also hold for L−1L̃; cf. (3.24) and (3.25). Thus UŨ−1 = L−1L̃ = I.

There are other possible factorizations with different diagonal assignments.
We see that A = LDU gives a description of the general case, where both L
and U have 1’s on the diagonal and D is a diagonal matrix. More precisely,
if A = LÛ is the factorization provided by Gaussian elimination, define D to
be the diagonal matrix whose entries are the diagonal elements of Û . Then
set U = D−1Û , yielding A = LDU . By (3.24), U has 1’s on the diagonal.

A corollary of the uniqueness of the factorization is that if A is symmetric,
then A = LDLT .

3.5 MORE READING

There are excellent texts on numerical linear algebra, e.g., by Demmel [45]
and by Trefethen and Bao [160]. The monograph by van de Geijn and
Quintana-Ort́ı [164] develops the approach given in section 3.2.1. Parallel
linear algebra is covered to a limited extent in [144], and references to further
work can be found there.

3.6 EXERCISES

Exercise 3.1 Show directly that a triangular matrix with a 0 diagonal en-
try must be singular. (Hint: suppose the ith diagonal entry of an lower-
triangular matrix is 0. Show that the vector that is 1 in the ith position
and 0 for indices less than i can be extended such that it is mapped to 0 by
multiplication by the triangular matrix.)

48 CHAPTER 3

Exercise 3.2 Prove that the product of the diagonal entries of a triangular
matrix is equal to its determinant. (Hint: show that the determinant of a
triangular matrix can be computed by a simple recursion.)

Exercise 3.3 Prove theorem 3.5 by multiplying the expressions for the fac-
tors L and U in terms of the individual coefficients.

Exercise 3.4 Prove that if A is invertible, then there is a permutation ma-
trix P such that PA can be factored as PA = LU . (Hint: modify the proof
of theorem 3.5 by introducing a permutation matrix at each step. Define
P (1) to be a permutation matrix such that P (1)A can be written in the form
(3.12) with a11 6= 0. Then use (3.13) and apply, by induction, the result
to the submatrix B − a−1

11 a
1a1

T. Show that P (1)A is invertible if and only
if B − a−1

11 a
1a1

T is invertible. First, prove that (3.13) is correct, by mul-
tiplying it out, and then compare the second factor with A(2). Note that
detP (1)A = a11 det(B − a−1

11 a
1a1

T).)

Exercise 3.5 Suppose that α and β are complex scalars, ã and b̃ are complex
column vectors of length n− 1, a? and b? are complex row vectors of length
n− 1, and A and B are (n− 1)× (n− 1) complex matrices. Prove that the
block matrix multiplication formula holds:

(
α a?

ã A

)(
β b?

b̃ B

)
=

(
αβ + a?b̃ αb̃? + a?B
βa+Ab ãb? +AB

)
. (3.31)

Note that a?b̃ is an inner product (resulting in a scalar) and ãb? is an outer
product (resulting in an (n− 1)× (n− 1) matrix).

Exercise 3.6 Prove (3.13) by multiplying out the factors in block form.
(Hint: use exercise 3.5.)

Exercise 3.7 Prove the last two equalities in (3.15) by multiplying out the
factors. (Hint: use exercise 3.5.)

Exercise 3.8 Using a programming language that supports recursion, de-
velop a code to perform an LU factorization in which the representation
(3.11) provides the base case and (3.13) provides the reduction to a smaller
problem.

Exercise 3.9 Derive an algorithm for forward solution for lower-triangular
systems LY = F . (Hint: the transpose of a lower-triangular matrix is upper-
triangular.)

Exercise 3.10 Prove that
∑n−1

j=1 j
2 = 1

3n
3 + an2 + bn and determine the

constants a and b. (Hint: summing is like integrating; compare
∑n−1

j=1 j
2

with
∫ n

1 x2 dx.)

LINEAR SYSTEMS 49

Exercise 3.11 Prove that, for p = 0, 1, 2, . . . , 8,
n−1∑

j=0

jp =

p∑

i=0

Bp−i

i+ 1

(
p
i

)
ni+1, (3.32)

where Bi is the ith Bernoulli 3 number, which are given by

[B0, B1, . . .] = [1,− 1
2 ,

1
6 , 0,− 1

30 , 0,
1
42 , 0,− 1

30 , . . .]. (3.33)

(Hint: see exercise 13.16.)

Exercise 3.12 The definition of matrix-vector multiplication is

(AV)i =

n∑

j=1

aijvj . (3.34)

If B is another matrix, then prove that B(AV) = (BA)V , where the matrix
BA is defined by

(BA)ij =

n∑

k=1

BikAkj . (3.35)

(Hint: just apply (3.34) twice.)

Exercise 3.13 Determine the number of floating-point operations required
to determine the multipliers defined in (3.5) as a function of n.

Exercise 3.14 Consider an n× n matrix A and equations AX i = F i with
m right-hand sides F i. Show that the number of floating-point operations
required to solve the m systems of equations with the same matrix but with
m different right-hand sides is 1

3n
3 + 1

2mn
2 to leading order. Show that the

inverse of A can be computed in (5/6)n3 operations to leading order.

Exercise 3.15 Verify the form (3.24) of the product of triangular matrices.

Exercise 3.16 Show that Gaussian elimination can proceed without pivoting
for positive definite matrices.

Exercise 3.17 Suppose that A is an n × n matrix and there is an α > 0
such that, for all X ∈ R

n,

XTAX ≥ αXTX. (3.36)

Prove that, without pivoting, the pivotal elements ak
kk are always at least as

big as α. Show that pivoting is not necessary if the symmetric part 1
2 (A+AT)

of A is positive definite.

Exercise 3.18 Modify the backsubstitution algorithm (3.9) to solve for a
nonzero solution to Ux = 0 in the case where unn = 0 but all other diagonal
entries of the upper-triangular matrix U are nonzero. Take xn = 1.

3Jakob Bernoulli (1654–1705) was the brother of Johann Bernoulli (1667–1748), who
was a tutor of Euler. Johann’s son David Bernoulli (1700–1782) also interacted with Euler,
as did his nephew Nicolaus Bernoulli (1687–1759). The Bernoulli family tree included as
well several other mathematicians active in the 18th century.

50 CHAPTER 3

3.7 SOLUTIONS

Solution of Exercise 3.3. We begin by using (3.8) and rewriting (3.4) as

mikukj = mika
k
kj = ak

ij − ak+1
ij ∀i = k + 1, . . . , n; j = k + 1, . . . , n. (3.37)

This is valid for all k as long as i > k and j > k, that is, for k < ν :=
min{i, j}. Summing (3.37), we find (for all i, j = 1, . . . , n)

ν−1∑

k=1

mikukj =

ν−1∑

k=1

(
ak

ij − ak+1
ij

)
= a1

ij − aν
ij (3.38)

because the sum on the right-hand side of (3.38) telescopes. Suppose that
i ≤ j, so that ν = i. Then (3.38) simplifies to

i−1∑

k=1

mikukj = a1
ij − ai

ij = aij − uij . (3.39)

Since `ii = 1, we can write (3.39) as
i∑

k=1

`ikukj = aij , (3.40)

which verifies the factorization for i ≤ j.
Now suppose that i > j, so that ν = j. Then (3.38) simplifies to

j−1∑

k=1

mikukj = a1
ij − aj

ij = aij −mija
j
jj = aij −mijujj (3.41)

in view of the definition of the multipliers (3.5) and U (3.8). Therefore,
j∑

k=1

`ikukj = aij , (3.42)

which verifies the factorization for i > j.

Solution of Exercise 3.10. We have∫ k+1

k

x2 dx = 1
3 ((k + 1)3 − k3) = 1

3 (3k2 + 3k + 1) = k2 + k + 1
3 . (3.43)

Summing, we find

1
3n

3 =

∫ n

0

x2 dx =

n−1∑

k=0

(k2 + k + 1
3). (3.44)

Thus
n−1∑

k=1

k2 =
n−1∑

k=0

k2 = 1
3n

3 −
n−1∑

k=0

(k + 1
3)

= 1
3n

3 − 1
2n(n− 1)− 1

3n = 1
3n

3 − 1
2n

2 + 1
6n.

(3.45)

Solution of Exercise 3.16. Let 0 6= x ∈ Rk be arbitrary and let

X = (x1, . . . , xk, 0, . . . , 0) ∈ R
n.

Then AX = (Akx, y)
T for some y = (yk+1, . . . , yn), and thus XTAX =

xTAkx. Therefore, if A is positive definite, then so is Ak for all k = 1, . . . , n,
and in particular, Ak is invertible.

Chapter Four

Direct Solvers

There are two Jordans who appear in numerical analysis.
Wilhelm Jordan (1842–1899) was German and is associated
with the variant of the elimination method known as Gauss-
Jordan [7]. Marie Ennemond Camille Jordan (1838–1922)
was French and is associated with the decomposition lead-
ing to the Jordan canonical form, as well as many other
important ideas in mathematics.

We now consider the problem of solving linear systems of equations more
extensively. This chapter is not required for reading subsequent chapters,
so it can be skipped without affecting the flow in later chapters. However,
it provides a more algorithmic view of linear algebra that can be of interest
in its own right. In particular, we will see that the Gaussian elimination
algorithm is not optimal on current computers. We will see that there are
other algorithms that can produce the same, or similar, factors that are more
efficient. Moreover, we will see that factorizations, and the algorithms that
produce them, can be tailored to particular properties of the linear system,
such as symmetry of the corresponding matrix. In addition, we will see that
these factorization methods preserve common patterns of sparsity, that is,
systematic occurrences of coefficients in the linear system that are known in
advance to be zero.

4.1 DIRECT FACTORIZATION

Now that we know that a factorization A = LDU exists (section 3.4.5), it is
reasonable to ask if there is a more direct way to derive the factors. There
are several algorithms that are quite similar but deal with the diagonal in dif-
ferent ways. These schemes are often called compact factorization schemes;
they can be written succinctly, and their memory reference patterns are more
controlled.

One might ask what the benefit of a different algorithm might be. We
will see that the number of floating-point operations is the same, and the
memory usage is the also the same (e.g., can be done using only the storage
allocated to A itself). However, the number of memory references is not
the same, and this is what distinguishes compact factorization schemes from
Gaussian elimination. Another advantage of compact schemes is that higher
precision can be used for the intermediary accumulations; see section 18.1.3
for ways to compute equation (4.4) more accurately.

52 CHAPTER 4

4.1.1 Doolittle factorization

Doolittle1 factorization [158] produces the same factors as Gaussian elim-
ination; that is, A = LU with L always having 1’s on the diagonal. We
can derive the algorithm by simply writing the equation for the product and
rearranging:

aij =

min{i,j}∑

k=1

`ikukj , (4.1)

where the summation is limited because we know that L is lower-triangular
and U is upper-triangular. If i ≤ j, then min{i, j} = i, and we can write
(4.1) as

uij = aij −
i−1∑

k=1

`ikukj (4.2)

since `ii = 1. If we use this with i = 1, we find u1j = a1j for j = 1, . . . , n, as
we expect from Gaussian elimination. If j ≤ i, then min{i, j} = j, and we
can write (4.1) as

`ij = u−1
jj

(
aij −

j−1∑

k=1

`ikukj

)
. (4.3)

If we use this with j = 1, we find `i1 = ai1/u11 for i = 2, . . . , n, as we also
expect from Gaussian elimination. Once we have the `i1’s, we see that we
can now use (4.2) for i = 2 since it involves only k = 1 if i = 2 and the u1j ’s
are already known.

Thus we can alternate between (4.2) and (4.3), computing what we need
for the next step. By reversing the index names in (4.3), we can collect these
steps as a single algorithm: for i = 1, . . . , n,

uij ←aij −
i−1∑

k=1

`ik ukj ∀j = i, . . . , n

`ji ← u−1
ii

(
aji −

i−1∑

k=1

`jk uki

)
∀j = i+ 1, . . . , n.

(4.4)

This computes the first row of U and then the first column of L, then the
second row of U and the second column of L, and so forth. The boxes around
terms in a given line indicate variables that get used multiple times for a
given value of i. We will now see how this can lead to an improvement in
performance.

1Myrick Hascall Doolittle (1830–1913) was a mathematician in the Computing Division
of the U.S. Coast and Geodetic Survey [24, 59]. Although the basic algorithm [51] was
known to Gauss, and Doolittle’s “contribution seems to have been to design a tableau in
which the terms were expeditiously recorded” [151], his work stands as one of the earliest
American algorithms. Doolittle studied briefly with Benjamin Peirce at Harvard [72].

DIRECT SOLVERS 53

Memory
cacheC P U

Main

Figure 4.1 A simple model for a computer with a cache. The shaded “pipes”
indicate the memory pathways; the larger and shorter pipe between
the CPU and cache is much faster than the narrower and longer pipe
to main memory.

There is some fine print relating to the initialization and finalization of
(4.4). For i = 1, the summation in the first line is empty, so it corresponds
to the simple assignment u1j ← a1j for j = 1, . . . , n. For i = n, there are
no valid values of j in the last line, and there is no work to be done. Thus
(4.4) really applies only for i = 2, . . . , n − 1, with slightly different work to
be done for i = 1 and i = n.

4.1.2 Memory references

To understand the impact of memory references, we need to have some model
of memory. Indeed, if memory access were very fast compared to floating-
point operations (as it was in early digital computers), we could ignore its
effect. But modern computer architectures have very complex memory sys-
tems, with multiple levels of memory including different levels of cache as
well as more conventional memory components. As computer designs have
progressed, processor speeds have increased exponentially, but the speed
of typical memory operations has not advanced as quickly as the speed of
floating-point operations. In current computers, only carefully chosen mem-
ory operations proceed quickly. The trend is toward even more complex
memory systems, with the ratio of the speed of a general memory operation
to that of a floating-point operation increasing in the process. We consider a
very simple model just to give the flavor of the issues and leave detailed anal-
yses of different algorithms for various memory systems to a text devoted to
computer architecture [126].

All computers today utilize the concept of a cache, which we depict in
figure 4.1 in a very simplified model. The cache duplicates a portion of the
main memory, and it typically does so using technology that allows faster
access by the central processing unit (CPU) where floating-point arithmetic
(and other operations) take place. If a certain variable is not available in
cache, it is retrieved from main memory (and stored as well in cache) but in
a less timely fashion. Moreover, the previous cache contents are overwritten
in the process and are no longer available. This action is called a cache
miss, and it can cost orders of magnitude more than a cache hit, which is a
memory reference to something already in cache. Thus algorithms that can
reuse the data stored in cache can perform much faster than ones that must
repeatedly access main memory.

54 CHAPTER 4

(a)

ik

Main Memorycache

kj ij ij
auul

(b)

l

Main Memorycache

jk ji ji
a

kiu l

Figure 4.2 Residence of variables in cache and main memory in the compact
scheme in the computation of line 1 (a) and line 2 (b) of (4.4).

With this model in mind, let us examine the memory reference pattern
of the compact scheme (4.4) and compare it with the memory reference
pattern of Gaussian elimination. For simplicity, we will count only memory
references to main memory, that is, cache misses, essentially assuming that
the cache is infinitely fast by comparison. Furthermore, we will assume n is
such that the cache cannot hold n2 numbers, but it can hold ρn floating-point
numbers, where ρ is a small but fixed integer. We explore in exercise 4.1 the
possibility of having ρ be a factor less than 1.

Let’s do the numbers for memory references for Gaussian elimination first.
For k = 1, . . . , n−1, we have to read a block of memory of size (n−k)×(n−k)
corresponding to the aij ’s in (3.18) and then write it back to memory. In
our model, at least for the beginning values of k, this requires two memory
references for each i, j and thus a total of

2

n−1∑

k=1

(n− k)2 = 2

n−1∑

m=1

m2 = 2
3n

3 +O(n2) (4.5)

memory references for Gaussian elimination. Since each step requires ac-
cessing (n − k)2 items, we assume that all these represent cache misses.
In addition, for each k, we need to read n − k akj ’s and mik’s. However,
this contribution to the overall memory reference count is of lower order,
contributing only to the O(n2) term, as the akj ’s and mik’s can be reused
effectively from cache.

Now let us examine the compact scheme (4.4). Fix i for the moment. We
need to read i− 1 values of `ik, that is,

`i1, `i2, . . . , `i,i−1 [i− 1 cache misses] (4.6)

to compute the first line of (4.4), but these are reused for different values of
j, so we may assume that they are stored in cache and that there is only one
cache miss involved in acquiring each of them for a given i. Note that these
variables are inside a box in (4.4), indicating that we assume they reside in
cache; also see figure 4.2(a). For each j (of which there are n+1− i values),
we further need to read i− 1 values of ukj , that is,

u1j, u2j , . . . , ui−1,j , ∀j = i, . . . , n [(n+1−i)×(i−1) cache misses] (4.7)

and one value of aij and to write uij to memory. All told, this amounts
to i+ 1 cache misses for each j = i, . . . , n, and adding the cache misses for
acquiring `ik at the beginning amounts to

i− 1 + (n+ 1− i)(i+ 1) (4.8)

DIRECT SOLVERS 55

cache misses for the first line of (4.4). When i = 1, there is no computation
to be done; all we do is read a1j and write u1j for j = 1, . . . , n, corresponding
to 2n cache misses, but this agrees with (4.8) for the case i = 1. If by design
the factors are being stored in the memory locations for the matrix aij , then
these memory references can be avoided. However, we will not make this
assumption for simplicity.

The second line is very similar but with the roles reversed. The variables
inside a box in line 2 of (4.4), indicate that they reside in cache; also see
figure 4.2(b). In particular, there is one more memory reference, to uii, but
one less value of j, for a total of

i+ (n− i)(i+ 1) (4.9)

cache misses for the second line of (4.4). Totaling the cache misses in both
lines in (4.4) by adding (4.8) and (4.9), we obtain at most

2i− 1 + (2n− 2i+ 1)(i+ 1) = 2(n− i+ 1)(i+ 1)− 3 (4.10)

cache misses. But recall that the second line is executed only for i < n.
Summing the leading term in (4.10) over all i < n gives (ι = i+ 1)

2

n−1∑

i=1

(n− i+ 1)(i+ 1) =2

n∑

ι=2

(n− ι+ 2)ι = 2(n+ 2)

n∑

ι=2

ι− 2

n∑

ι=2

ι2

=(n+ 2)(n2 + n− 2)− 2
n∑

ι=2

ι2

= 1
3n

3 +O(n2)

(4.11)

cache misses for the direct factorization method (see exercise 3.10 for the
last step).

The factor of 2 reduction in memory references of (4.11) for the compact
scheme over the number (4.5) for Gaussian elimination means a

factor of 2 improvement in overall performance
on contemporary computers.

We have not said how to ensure that the boxed variables remain in cache,
only that there is enough room to hold them. We leave the question of how
to program this algorithm to ensure that this happens to a more advanced
reference [126] on software implementation. The key requirement of the
computer system is that the cache be set associative with a replacement
policy such as least recently used (LRU) [126].

4.1.3 Cholesky factorization and algorithm

For simplicity, we restrict attention to linear systems with real entries; for the
complex case, see exercise 4.2. The Cholesky2 algorithm was not published

2André-Louis Cholesky (1875–1918) attended classes given by Camille Jordan (see page

51) at École Polytechnique [23].

56 CHAPTER 4

until after Cholesky’s death, but it was later examined by Turing3 [161]
and Wilkinson4 and others [65]. The Cholesky factorization is of the form
A = UTU , where U is upper-triangular. Thus by definition, A must be
symmetric. Cholesky’s algorithm is appropriate only for symmetric, positive
definite matrices, but it is quite important as it applies to such an important
subclass of matrices. The Cholesky algorithm can be written by looping the
following expression for j = 1, . . . , n:

uij =
1

uii

(
aij −

i−1∑

k=1

ukiukj

)
, i = 1, . . . , j − 1

ujj =

(
ajj −

j−1∑

k=1

u2
kj

)1/2

.

(4.12)

The first instance (j = 1) of this involves only the second equation: u11 =

(a11)
1/2

.
One use of this algorithm is to determine whether a symmetric matrix is

positive definite or not.

Theorem 4.1 Suppose that A is an n×n symmetric real matrix. Then the
Cholesky algorithm (4.12) determines the factorization A = UTU with the
quantities

ajj −
j−1∑

k=1

u2
kj > 0 (4.13)

for all j = 1, . . . , n if and only if A is positive definite.

Proof. First, if the algorithm (4.12) determines U with each ujj a positive
real number, then XTAX = (UX)TUX = 0 if and only if UX = 0. But
since U is triangular with nonzero diagonal entries, UX = 0 if and only
if X = 0. Now suppose that A is positive definite. Let A = LDLT be
the factorization provided by Gaussian elimination (cf. exercise 3.16). Then
XTAX = (LX)TDLX > 0 for any nonzero X . Let Y be arbitrary and solve
LX = Y . Then Y TDY > 0 for all nonzero Y . Thus D > 0 and the Cholesky
algorithm must correctly produce this factorization. QED

Cholesky factorization uses the symmetry of A to write A = L̂DL̂T and
then takes the square root of D, defining L = L̂

√
D.

4.2 CAUTION ABOUT FACTORIZATION

In our study of algorithms for solving linear systems, we have ignored the
effects of finite-precision arithmetic so far. In section 18.2, we will consider

3Alan Turing (1912–1954) is known for many things in addition to numerical analysis,
including his work on cryptography and the foundations of computer science, for which
he is memorialized by the Turing award.

4James Hardy Wilkinson (1919–1986) worked with Turing and received one of the first
Turing awards.

DIRECT SOLVERS 57

this in more detail, including the potential effect of the accumulation of
round-off errors in very large systems. Here we consider by example some-
thing simpler, just related to the limits of representation of real numbers in
finite precision. However, we will see that this places some severe limits on
what can be achieved using the factorization algorithms considered so far.
The Hilbert5 matrix

H =




1 1
2

1
3 · · · 1

n

1
2

1
3

1
4 · · · 1

n+1
...

...
... · · ·

...
1
n

1
n+1

1
n+2 · · · 1

2n−1




(4.14)

reveals limitations of even the best algorithms. More precisely,

hij =
1

i+ j − 1
for i, j = 1, . . . , n. (4.15)

The Hilbert matrix is clearly symmetric, and it can be verified (exercise 4.4)
that it is positive definite by exhibiting the Cholesky factor

uij =
√

2i− 1
((j − 1)!)2

(i+ j − 1)!(j − i)! for j = 1, . . . , n and i = 1, . . . , j, (4.16)

that is, H = UTU . Unfortunately, the diagonal terms

ujj =
√

2j − 1
((j − 1)!)2

(2j − 1)!
=
√

2j − 1
(j − 1)!

j(j + 1) · · · (2j − 1)
(4.17)

decrease exponentially as j increases (exercise 4.5), whereas u1,n = 1/n. For
example, u16,16 is less than 1.2× 10−9. Thus the terms

a16,16 =
1

31
and

15∑

k=1

u2
kj (4.18)

in (4.12) must differ by less than 2 × 10−18 (all the terms are positive).
Thus 16 digits are insufficient to resolve the difference. Indeed, the Cholesky
algorithm implemented to this accuracy can indicate that the Hilbert matrix
is not positive definite for n as small as 14. This is not an effect of the
accumulation of round-off error (chapter 18) but rather a simple failure of
representation. That is, without a way to represent more digits in the terms,
there is no way to determine whether the condition (4.13), that is,

hjj >

j−1∑

k=1

u2
kj , (4.19)

holds or not. The factorization can be computed using extended precision
arithmetic, but this allows the factorization to continue only for n propor-
tional to the number of digits used in the representation. This does not make

5David Hilbert (1862–1943) was one of the most influential mathematicians of the 20th
century, in part because of a set of 23 problems he posed at an international meeting in
1900, some of which remain unsolved, especially the sixth.

58 CHAPTER 4

the computation intractable, but an adaptive approach in which different en-
tries are represented to different levels of accuracy might be needed to be
efficient. Many systems allow computation with rational coefficients, and
this allows exact arithmetic. However, it does not eliminate the possibility
of growth of the size of the representation. The Hilbert matrix (4.14) and its
Cholesky factorization (4.17) have rational entries. We leave as exercise 4.6
the question of how large the denominator can become in the factors.

4.3 BANDED MATRICES

In many applications, most entries in a matrix are zero. Such a matrix is
called sparse. One structured matrix of this type is called a banded ma-
trix. We will see that the factorizations of a banded matrix retain the band
structure.

Define the bandwidth w of a matrix A to be the smallest integer such that
aij = 0 whenever |i− j| ≥ w. A full matrix is a matrix with no significant
zero structure and thus corresponds to w = n for an n×nmatrix. A diagonal
matrix has bandwidth 1. The main fact of interest about banded matrices
is the following.

Lemma 4.2 Suppose A is an n×n matrix of bandwidth w such that Gaus-
sian elimination can be performed on A without pivoting to produce the fac-
tors A = LU . Then the bandwidth of both L and U is at most w.

The proof of this fact is obtained by exhibiting algorithms that provide the
factorization and avoid involvement of terms above and below the nonzero
band. The banded Cholesky algorithm (section 4.3.1) provides one example,
and the general case is similar. For now, we give an example and illustrate
the value of working with banded structures.

The matrix A that results from discretizing the second derivative is a
tridiagonal (w = 2) matrix with 2 on the diagonal and −1 above and below
the diagonal:

A =




1 −1 0 0 · · · 0 0 0
−1 2 −1 0 · · · 0 0 0
0 −1 2 −1 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · −1 2 −1
0 0 0 0 · · · 0 −1 2




, (4.20)

where a slight modification has been done in the first row.
The LU factors of A take a simple form: U = LT with L given by

L =




1 0 0 · · · 0 0
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · −1 1



. (4.21)

DIRECT SOLVERS 59

Thus we see that we can solve linear systems involving the matrix A very
effectively by LU factorization and backsubstitution (exercise 4.10). On the
other hand, we can now see a real disadvantage to working with the inverse
of a matrix.

Define a matrix M , where mij = n+ 1− i for j ≤ i and mij = n+ 1 − j
for j ≥ i. We can visualize this matrix as

M =




n n− 1 n− 2 n− 3 · · · 3 2 1
n− 1 n− 1 n− 2 n− 3 · · · 3 2 1
n− 2 n− 2 n− 2 n− 3 · · · 3 2 1
n− 3 n− 3 n− 3 n− 3 · · · 3 2 1

...
...

...
...

...
...

...
...

3 3 3 3 · · · 3 2 1
2 2 2 2 · · · 2 2 1
1 1 1 1 · · · 1 1 1




. (4.22)

Then AM = I (exercise 4.11), so A−1 = M . Thus we see that the inverse
of a banded matrix can be full. Solving AX = F for A given by (4.20)
requires n2 (multiply and add) operations using the formula X = MF ,
whereas computing and using the LU factors (section 3.2.2) require only
O(n) operations (see section 4.3.2).

Pivoting increases the bandwidth, but bounds can clearly be made on how
much the bandwidth increases. We refer the reader to [39] and [67] for more
details.

4.3.1 Banded Cholesky

The Cholesky algorithm can then be written by looping the following ex-
pression for j = 1, . . . , n:

uij =
1

uii


aij −

i−1∑

k=max{1,i−w}
ukiukj


 , i = max{1, j − w}, . . . , j − 1 ,

ujj =


ajj −

j−1∑

k=max{1,j−w}
u2

kj




1/2

.

(4.23)

The Doolittle scheme, Gaussian elimination, and other algorithms can also
be written in banded form (see exercises 4.12 and 4.13).

4.3.2 Work estimates for banded algorithms

It is not hard to guess the leading terms in the work estimates for band
factorization algorithms such as Cholesky (4.23). The amount of floating-
point operations required to factor a matrix is cubic in n, and thus it is
reasonable to assume that the banded version would involve either w2n or
wn2 work (n3 would mean no gain, and w3 would be impossible because

60 CHAPTER 4

there are nw nonzero coefficients). Fortunately, the more optimistic w2n is
correct, as we can see specifically in the banded Cholesky algorithm (4.23),
as follows.

Consider the work done for each j = 1, . . . , n. Once i > w and j > w, the
first line in (4.23) takes the form

uij =
1

uii

(
aij −

i−1∑

k=i−w

ukiukj

)
, i = j − w, . . . , j − 1, (4.24)

and involves exactly w products in the sum, and there are exactly w values
of i for which it is computed. Thus the total work is 2w2 multiplies and
additions and w divisions. The second line in (4.23) has a similar structure
and for j > w involves 2w multiplies and additions and one square-root.
Ignoring the divisions and square-roots, we see that to leading order, the
primary work is 2nw2 multiplies and additions, with the remaining terms of
order nw and smaller.

Let us consider the implications of these results for banded matrices like
the one in (4.20), in whichw = 2. We can factor it using the banded Cholesky
algorithm (see exercise 4.14) in an amount of work proportional to nw2, and
we can further use banded forward and backward solution (exercise 4.10) in
O(wn) work. Thus the total amount of work needed to solve Ax = f is at
most O(w2n). On the other hand, even if we know explicitly the formula for
A−1 in (4.22), it would take O(n2) work to use it to determine x = A−1f .
Thus if w <<

√
n, it is much more efficient to use the factorization rather

than the inverse.

4.4 MORE READING

In [144], several algorithms for matrix factorization on parallel computers
are presented. This shows the diversity of algorithms available even for such
a basic problem.

4.5 EXERCISES

Exercise 4.1 Show that direct factorization methods can still be effective
for the situation where the cache cannot hold an entire row of the matrix.

Exercise 4.2 Describe the Cholesky factorization A = U?U for matrices
with complex entries, where now we must assume that A is Hermitian: A? =
A. How do the equations (4.12) change in this case? How is the condition
(4.13) different?

Exercise 4.3 Implement the Cholesky factorization (4.12) using arithmetic
with finite-precision and apply it to the Hilbert matrix (4.14). For what n
does it fail?

DIRECT SOLVERS 61

Exercise 4.4 Verify computationally that (4.16) defines the Cholesky fac-
torization of the Hilbert matrix (4.14), that is, H = UTU .

Exercise 4.5 Prove that the diagonal terms of the Cholesky factorization
(4.17) of the Hilbert matrix decay exponentially. (Hint: write (4.17) as

√
2j − 1

j

1

j + 1

2

j + 2
· · · j − 1

2j − 1
(4.25)

and show that all the factors are less than 1
2 for j > 7.)

Exercise 4.6 Both the entries of the Hilbert matrix (4.14) and the entries
of its Cholesky factorization (4.17) are rational numbers. Does this resolve
the issue of representing the computation with finite precision? How large
can the denominator of the diagonal entries in the factors become? How
many bits are required to represent them in a binary expansion?

Exercise 4.7 Develop an algorithm, and determine the operation count, for
the symmetric Gaussian elimination method. Compare it to the Cholesky
method and to the regular Gaussian elimination method. First, you need to
explain the algorithm in detail. (Hint: note the symmetry in the computation
aij − aikakj/akk when A is symmetric. Show that this allows you to work
with only the upper-triangular part of A.)

Exercise 4.8 Count the number of memory references for symmetric Gaus-
sian elimination (exercise 4.7) and compare it to the Cholesky method and
to the regular Gaussian elimination method.

Exercise 4.9 The Crout 6 factorization A = LU sets the diagonal of U to
be all 1’s [38], instead of having the diagonal of L all 1’s as in Gaussian
elimination. Derive an algorithm analogous to the Doolittle algorithm (4.4)
for computing the Crout factorization.

Exercise 4.10 Derive the algorithm for banded forward and backward so-
lution and estimate the number of arithmetic operations and memory refer-
ences.

Exercise 4.11 Prove that AM = I, where A is defined in (4.20) and M is
defined in (4.22).

Exercise 4.12 Derive the algorithm for banded Gaussian elimination and
estimate the number of arithmetic operations and memory references.

Exercise 4.13 Derive the banded version of the Doolittle algorithm for di-
rect factorization and estimate the number of arithmetic operations and
memory references.

6Prescott Durand Crout (1907–1984) was a professor of mathematics at MIT from 1934
to 1973 and a member of the Radiation Laboratory staff from 1941 to 1945.

62 CHAPTER 4

Exercise 4.14 Show that the banded matrix matrix A in (4.20) is positive
definite. (Hint: use the factor L.)

Exercise 4.15 Let A be an invertible n × n matrix with an existing fac-
torization A = LU . Let u and v be nonzero vectors of length n (that is,
matrices of size n× 1). The Sherman-Morrison formula states that

(A− uvT)
−1

= A−1 + αA−1uvTA−1, (4.26)

where α = (1−vTA−1u)−1, provided that r = vTA−1u 6= 1 as we now assume.
First, prove that this formula is correct. Second, show that if r = vTA−1u =
1, then A−uvT is not invertible. Finally, suppose that B = A−uvT and that
r 6= 1. Use the factorization A = LU to compute the solution to BX = F in
only O(n2) work. The matrix B is called a rank-one update of A since the
matrix uvT has rank one. (Hint: write X = B−1F = Y +αWvTY , where Y
solves AY = F and W solves AW = u. Don’t forget to check the value of
r = vTW before you compute α = (1− r)−1.)

Exercise 4.16 The first and last lines of the matrix A defined in (4.20)
depend on the boundary conditions being employed in the definition of the
difference operator. The top line corresponds to a Neumann, or derivative,
boundary condition in which the derivative of the function value is set to zero;
the bottom line corresponds to a Dirichlet7 boundary condition in which the
function value is set to zero. If we change the first line of A to

(
2 −1 0 0 · · · 0 0 0

)
, (4.27)

then we get a new matrix B = A − uvT corresponding to having Dirichlet
conditions at both ends. Use the Sherman-Morrison formula (exercise 4.15)
to prove that B is invertible. (Hint: figure out what u and v need to be. To
prove r 6= 1, you need to check only the sign of vTA−1u.) If we change the
last line of A to

(
0 0 0 0 · · · 0 −1 1

)
, (4.28)

then we get a new matrix B̃ = A − uvT corresponding to having Neumann
conditions at both ends. Show that this matrix is singular and examine what
goes wrong with the Sherman-Morrison formula in this case. (Hint: apply

B̃ to the vector of all 1’s.)

Exercise 4.17 Use the Sherman-Morrison formula (exercise 4.15) and the
factor L in (4.21) to define an algorithm to solve BX = F that avoids
factoring B, where B is defined in exercise 4.16. Give the explicit formulas,
including those for u and v.

7Gustav Peter Lejeune Dirichlet (1805–1859) studied at gymnasium with Georg Ohm
(of Ohm’s Law [129]) and then in Paris during 1823–1825 before returning to Germany,
where he obtained a position in Berlin with help from Humboldt [93]. After the death of
Gauss, Dirichlet succeeded him in Göttingen [40]. Dirichlet’s students included Leopold
Kronecker (of the δ symbol) and Rudolf Lipschitz (see page 17).

DIRECT SOLVERS 63

Exercise 4.18 Let A and B be any n× n matrices. Prove that

det

(
A B
0 I

)
= det

(
A 0
B I

)
= detA, (4.29)

where I denotes the n×n identity matrix (cf. the more general case in [146]).
(Hint: expand the determinant around the lower-right corner.)

Exercise 4.19 Let A, B, C, D, K, L, M , and N be any n × n matrices.
Prove the block multiplication formula

(
A B
C D

)(
K L
M N

)
=

(
AK +BM AL+BN
CK +DM CL+DN

)
. (4.30)

(Hint: compare (3.31).)

Exercise 4.20 Let A and B be any n× n matrices. Prove that det(AB −
λI) = det(BA − λI) for any λ ∈ C, where I denotes the n × n identity
matrix. Thus AB and BA have the same eigenvalues. (Hint: show that, for
λ 6= 0,
(
λI −AB A

0 I

)(
I 0
B λI

)
=

(
λI λA
B λI

)

=

(
I 0

(1/λ)B λI −BA

)(
λI λA
0 I

) (4.31)

using exercise 4.19 and then apply exercise 4.18. Use a continuation argu-
ment to include λ = 0.)

4.6 SOLUTIONS

Solution of Exercise 4.1. When i = 1 in (4.4), only assignment takes
place, so we can assume that 1 < i ≤ n in step 1. We segment the summation
over k using a subdivision 1 < k1 < · · · < kr = i − 1 such that, say,
km+1 − km ≤ (ρ/3)n. We write the first line of computation in (4.4) as

tj ←aij −
k1∑

k=1

`ik ukj ∀j = i, . . . , n

for m = 2, . . . , r − 1, tj ←tj −
km∑

k=km−1

`ik ukj ∀j = i, . . . , n.

uij ←tj −
i−1∑

k=kr−1

`ik ukj ∀j = i, . . . , n.

(4.32)

Here we introduced temporary variables tj to indicate more clearly how the
computation is blocked. There is no need for extra memory; the tj ’s could be

64 CHAPTER 4

stored in the storage locations for the uij ’s. The second line of computation
in (4.4) is blocked in an analogous way for i = 1, . . . , n− 1:

tj ← aji −
k1∑

k=1

`jk uki ∀j = i+ 1, . . . , n.

for m = 2, . . . , r − 1, tj ← tj −
km∑

k=km−1

`jk uki ∀j = i+ 1, . . . , n.

`ji ← u−1
ii



tj −
i−1∑

k=kr−1

`jk uki



 ∀j = i+ 1, . . . , n.

(4.33)

Again, we must assume that there is some way to ensure that the variables
in boxes are not removed from cache.

Now let us examine the memory references in (4.32). Fix i for the moment.
We read i−1 values of `ik in blocks that fit within cache and these are reused
for different values of j, so we assume there is only one cache miss involved
in acquiring each of them for a given i. For each j, we further need to read
i− 1 values of ukj and one value of aij , but now we also have to read uij to
memory r − 1 times and write uij to memory r times. This gives

i− 1 + (n− i+ 1)(i− 1 + 2r) (4.34)

cache misses for (4.32). Similarly, (4.33) requires

i+ (n− i)(i− 1 + 2r) (4.35)

cache misses for (4.33), for a total of

2i− 1 + 2(n− i+ 1
2)(i− 1 + 2r) (4.36)

cache misses. Summing the expression (4.36) over i still yields a total of at
most 1

3n
3 + 2rn2 + O(n2) cache misses. Thus as long as r is not too large,

the performance will be similar.

Solution of Exercise 4.15. Let C = uvTA−1 and r = vTAu. Then
(A− uvT)(A−1 + αA−1uvTA−1) = I − C + α(C − C2)

= I − C + α(C − u(vTA−1u)vTA−1) = I − C + α(C − rC)

= I − C(1− α(1 − r)) = I.

(4.37)

Now suppose that r = 1. Then (A − uvT)(A−1u) = u − ru = 0. Thus
A−1u is a null vector of A − uvT if r = 1. Note that A−1u = 0 if and only
if u = 0 since A is assumed to be invertible. Since A−1u 6= 0 is a null vector
of B = A− uvT, B cannot be invertible.

The hint explains most of the algorithm. Use LU factorization to solve
for W and compute the scalar product r = vTW . If r = 1, then stop,
noting that B is not invertible in this case. If r 6= 1, define α = (1 −
r)−1 and use LU factorization to solve for Y . Finally, compute X = Y +
αWvTY . Note that WvTY = (vTY)W requires the computation of only a
scalar product vTY and multiplication of this scalar times the vector W . If
you computed in the opposite order, i.e., (WvT)V , forming the matrix WvT

and then multiplying this matrix times the vector V , it would take much
more work (and temporary storage).

Chapter Five

Vector Spaces

In defending his thesis in 1913, S. N. Bernstein (see page
187) said, “Mathematicians for a long time have confined
themselves to the finite or algebraic integration of differ-
ential equations, but after the solution of many interesting
problems the equations that can be solved by these meth-
ods have to all intents and purposes been exhausted, and
one must either give up all further progress or abandon the
formal point of view and start on a new analytic path.” [6]

So far, we have dealt with simple functions of a single variable with values
that are also one-dimensional. But we want to consider multidimensional
objects, and we need to establish some basic ideas. The first is a way to
measure sizes of things. So far, the absolute value of a real number was
sufficient, or the modulus of a complex number. But in higher dimensions
the issue is more complicated. The concept of a norm on a vector space
provides such a measure.

Suppose we are at point A and need to see something at point B. We
imagine this takes place in a two-dimensional plane, as indicated in figure 5.1.
How long it takes us to complete the task is context-dependent.

If we are in a typical urban center, we have to move along a grid defined by
the streets and sidewalks. The time it takes is proportional to the so-called
Manhattan distance, which we will see corresponds to the norm ‖A − B‖1

p=2

B

A

p=1

Figure 5.1 Three ways to see what is at point B when starting at point A. The
norm ‖A−B‖∞ is the maximum of the length of the two solid arrows.
The dashed arrow corresponds to ‖A − B‖1, and the dotted arrow
corresponds to ‖A − B‖2.

66 CHAPTER 5

(see (5.5)). A typical path is indicated by the dashed line in figure 5.1, but
such a path is not unique.

On the other hand, if we are in an empty (flat) field, then we could walk
directly and the time it takes would be proportional to the Euclidean distance
‖A − B‖2 (see (5.5) again, or (5.4), and the dotted line in figure 5.1). We
will see that ‖A − B‖2 ≤ ‖A − B‖1, so the direct approach is faster when
feasible.

Finally, we might not really want to go to B but just see something there.
Suppose that A and B are at the corners of a rectangular forest. It is faster
to walk around the forest until we can get a clear view of B but we may not
know which way to go. The two possible paths are indicated as solid lines
in figure 5.1. However, we know that the worst case is the long side of the
rectangle, and this is ‖A − B‖∞ (see (5.6)). We will see that ‖A − B‖∞
is always smaller than the Euclidean distance ‖A− B‖2, so this strategy is
better than walking through the forest.

All these norms are relevant in certain contexts, and none is more impor-
tant than the others intrinsically. Other norms are of interest as well, and
we will explore the concept of norms in general. We have already seen how
three of them arise naturally in a context in which length relations among
them were of interest. One key result in the chapter (section 5.3.2) is that
all norms on a finite-dimensional vector space are equivalent in terms of es-
timating “distance” (for any two norms, there is a constant such that, for
any vector, the first norm of the vector is no larger than that constant times
the second norm of that vector).

Some norms (and vector spaces) support a geometric interpretation fa-
miliar in Euclidean spaces. Such inner-product spaces generalize R

n and C
n

and allow many operations to be carried out abstractly. One such operation
is the Gram-Schmidt orthonormalization process. We will see in section 12.3
that this can be used to construct orthogonal polynomials, which have many
applications both theoretical and practical. In this chapter, we show how
the Gram-Schmidt process leads to the important QR matrix factorization.

5.1 NORMED VECTOR SPACES

The main point of the section is to introduce ways to estimate accurately the
size of things which have complicated forms. This is a simple generalization
of Euclidean distance, but it can also apply to rather complicated objects
such as operators on vector spaces.

Suppose that V is a (finite-dimensional) vector space such as V = Rn.
Then a norm ‖ · ‖ is a mapping from V to nonnegative real numbers such
that three properties hold. First, it is nondegenerate: if v ∈ V satisfies

‖v‖ = 0, (5.1)

then v must be the zero element of the vector space V . Second, it is homo-

VECTOR SPACES 67

geneous with respect to scalar multiplication:

‖sv‖ = |s| ‖v‖ (5.2)

for all scalars s and all v ∈ V . Third, and most important, the triangle
inequality must hold:

‖v + w‖ ≤ ‖v‖+ ‖w‖ (5.3)

for v, w ∈ V .
We have not yet identified the set F of scalars for our vector spaces. In

general for a vector space, it can be any division ring,1 but for simplicity
we will restrict to the case where F is a field. Moreover, we further restrict
to the case where F is the real or complex numbers. In the latter case,
the expression |s| means the complex modulus of s. The reason for this
restriction is that normed linear spaces require F to have a norm itself,
together with the Archimedian property that |st| = |s| |t| for s, t ∈ F. There
are essentially only two such fields: R and C [5]. However, it should be
noted that the quaternions provide an example of a division ring having an
Archimedian norm.

5.1.1 Examples of norms

The Euclidean norm ‖ · ‖2 is defined on Rn by

‖x‖2 =

(n∑

i=1

x2
i

)1/2

. (5.4)

More generally, for any p in the interval 1 ≤ p <∞, we define

‖x‖p =

(n∑

i=1

|xi|p
)1/p

(5.5)

for x ∈ Fn, where F = R or C. Whenever our vector space is Fn, it is
understood that the field of scalars is F. That is, the field of scalars for Rn

is R, and for Cn is C. We use the notation Fn to avoid having to repeat
things for both Rn and Cn.

It is elementary to establish (5.1) and (5.2) for the p-norms (5.5) (see
exercise 5.1). The triangle inequality is elementary for p = 1 (exercise 5.2).
However, the triangle inequality is far less obvious for other values of p. We
postpone the proof until section 5.2.

We want to think of Fn endowed with different norms as different (normed,
linear) spaces. Thus the notation `p is used to denote Fn endowed with the
p-norm. More precisely, we should write this as `p(F) or even `p(F, n).

1A division ring is the same as a field, but the multiplication is not assumed to be
commutative [87]. The quaternions are an important example.

68 CHAPTER 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

–1.5 –1 –0.5 0 0.5 1 1.5

Figure 5.2 Unit “balls” for R
2 with the norms ‖ · ‖p for p = 1.01, 1.1, 2, 10, 100.

5.1.2 Unit balls

It is useful to visualize the unit ball for a given norm, that is, the set of
vectors of unit size with respect to the norm. Like sports balls, these sets
come in different shapes. In Rn, for the Euclidean norm, it is the unit sphere;
for p = 1, it is a union of (n − 1)-dimensional simplices. For example, for
n = 2, it is a diamond-shaped parallelogram with vertices at (0,±1) and
(±1, 0). The unit balls in R2 are depicted in figure 5.2 for various values of
p.

It is clear from figure 5.2 that the unit ball for ‖ ·‖p approaches the square
with corners ±(1,±1) as p → ∞. We have not characterized a norm yet
with such a unit ball, but it is not hard to see that this is the unit ball for
the max norm

‖x‖∞ =
n

max
i=1
|xi|. (5.6)

For any fixed x ∈ Fn,

‖x‖∞ = lim
p→∞

‖x‖p, (5.7)

which explains the ∞ subscript in the “max” norm. This is a consequence
of the following two inequalities.

Since the the set of points on, or inside, the unit ball for the max norm
contains all the points on the unit balls for the finite p-norms, we have

‖x‖∞ ≤ ‖x‖p (5.8)

(see exercise 5.3 for a less visual proof of (5.8)). All p-norms are dominated
by the max norm:

‖x‖p ≤ n1/p‖x‖∞ ∀x ∈ F
n (5.9)

because each term in the sum (5.5) is bounded by ‖x‖∞. The result (5.7)
now follows from exercise 5.4.

VECTOR SPACES 69

5.1.3 Seminorms

The first condition (5.1) on the norm can be relaxed to obtain what is called
a seminorm. By the other two properties, the set

K =
{
v ∈ V

∣∣ ‖v‖ = 0
}

(5.10)

(called the kernel) is a linear subspace of V (exercise 5.5). Thus one can
define a norm on the quotient space V/K in a natural way (exercise 5.6).
An example of a seminorm arises naturally in section 12.5.

5.2 PROVING THE TRIANGLE INEQUALITY

The key step in the proof is an inequality that is of interest in its own
right; its proof was published by Rogers in 1888 and in the following year
by Hölder2 [115].

5.2.1 The Rogers-Hölder inequality

Suppose that p and q are positive real numbers related by
1

p
+

1

q
= 1, (5.11)

where 1 < p, q < ∞. We augment these pairings with the cases p = 1 and
q =∞, or p =∞ and q = 1, which correspond to the limiting cases. Then

n∑

i=1

|xiyi| ≤ ‖x‖p‖y‖q ∀x, y ∈ F
n. (5.12)

The case p = 1 and q =∞ (or p =∞ and q = 1) is elementary to verify (see
exercise 5.11), so we focus on the case of finite p and q.

First, we prove (5.12) for all vectors satisfying

‖x‖p = 1 and ‖y‖q = 1, (5.13)

in which case (5.12) is just the statement that
∑n

i=1 |xiyi| ≤ 1. Then the
general case follows by a simple scaling, because of the homogeneity of (5.12)
(see exercise 5.12). One inequality due to Young3 states that

n∑

i=1

|xiyi| ≤
1

p

n∑

i=1

|xi|p +
1

q

n∑

i=1

|yi|q, (5.14)

2Otto Ludwig Hölder (1859–1937) was a student of Paul Du Bois-Reymond in Ger-
many. Both Du Bois-Reymond and K. H. A. Schwarz (page 73) were students of Ernst
Kummer, in Berlin, together with Cantor, Christoffel, and Fuchs. Although Hölder’s fa-
mous inequality arose from work in analysis, he also worked extensively in algebra and
was the advisor of Emil Artin.

3William Henry Young (1863–1942) was the husband of Grace Chisholm Young (1868–
1944) and the father of Laurence Chisholm Young (1905–2000), both also mathematicians.
L. C. Young is known for the concept of Young’s measure, which provides an extended
notion of solution for a partial differential equation, and he was also the father of a
mathematician. A different William Henry Young was the father of the mathematician
John Wesley Young (1879–1932), who was the brother-in-law of E. H. Moore.

70 CHAPTER 5

provided that (5.11) holds. Given (5.14) and our assumption (5.13), (5.12)
follows from Young’s inequality in view of (5.11).

Now let us prove Young’s inequality (5.14). It suffices to prove (5.14) for
n = 1, in which case we drop the subscripts. It also suffices to assume that
x and y are nonnegative. It is clear that 2xy ≤ x2 + y2 because this is just
the statement (y − x)2 ≥ 0. The general case is just a consequence of the
convexity of the exponential:

e(1/p)X+(1/q)Y ≤ (1/p)eX + (1/q)eY (5.15)

(exercise 5.13), provided that (5.11) holds. With X = log xp and Y = log yq,
we find

xy = e(1/p) log xp+(1/q) log yq ≤ (1/p)xp + (1/q)yq. (5.16)

This completes the proof of Young’s inequality and thus also of (5.12).

5.2.2 Minkowski’s inequality

The Minkowski4 inequality is just a name for the triangle inequality for
‖ · ‖p, and it follows from (5.12), as we now show. For p = 1, Minkowski’s
inequality is elementary (exercise 5.2), so let us assume that p > 1; we write

n∑

i=1

|xi + yi|p =

n∑

i=1

|xi + yi| |xi + yi|p−1

≤
n∑

i=1

(|xi|+ |yi|) |xi + yi|p−1.

(5.17)

Applying (5.12), we find
n∑

i=1

|xi||xi + yi|p−1 ≤‖x‖p
(n∑

i=1

|xi + yi|(p−1)q

)1/q

= ‖x‖p
(n∑

i=1

|xi + yi|p
)1−1/p

= ‖x‖p‖x+ y‖p−1
p ,

(5.18)

where q = (1− 1/p)−1 since

(p− 1)q = (p− 1)

(
1− 1

p

)−1

= (p− 1)

(
p− 1

p

)−1

= p. (5.19)

Applying (5.18) in (5.17), both as is and with the roles of x and y reversed,
yields

‖x+ y‖pp ≤ (‖x‖p + ‖y‖p) ‖x+ y‖p−1
p . (5.20)

Dividing by ‖x+y‖p−1
p completes the proof (if by chance ‖x+y‖p = 0, there

is nothing to prove).

4Hermann Minkowski (1864–1909) is also known for the concept of four-dimensional
space time that formed the basis for special relativity.

VECTOR SPACES 71

5.3 RELATIONS BETWEEN NORMS

We saw at the beginning of the chapter that relationships among norms can
provide valuable information, e.g., regarding optimal strategies for naviga-
tion. Here we consider such relationships for norms in general. In particular,
it is elementary that

‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞ (5.21)

for x ∈ Fn; moreover, these constants are sharp (exercise 5.14). Following
this approach, we can prove the following.

Lemma 5.1 Let N be any norm on Fn. Then there is a constant K < ∞
such that N(x) ≤ K‖x‖∞ for all x ∈ F

n.

Proof. Let e1, . . . , en be the standard basis for Fn and write x =
∑n

j=1 xje
j .

Applying the triangle inequality n− 1 times, we find that

N(x) ≤
n∑

j=1

|xj |N(ej) ≤ ‖x‖∞
n∑

j=1

N(ej). (5.22)

Define K =
∑n

j=1N(ej). QED

5.3.1 Continuity of norms

Norms are Lipschitz-continuous in the following sense. By the triangle in-
equality,

‖x‖ = ‖(x− y) + y‖ ≤ ‖x− y‖+ ‖y‖. (5.23)

Rearranging, we find

‖x‖ − ‖y‖ ≤ ‖x− y‖. (5.24)

Reversing the names of x and y and using the fact that ‖ − x‖ = ‖x‖, we
find

| ‖x‖ − ‖y‖ | ≤ ‖x− y‖ ≤ K‖x− y‖∞, (5.25)

where the last inequality is a consequence of lemma 5.1. In particular, this
provides a way to prove ordinary continuity of the norm. That is, if x→ y,
then x− y → 0, and hence ‖x‖ → ‖y‖.

5.3.2 Norm equivalence

Definition 5.2 Two norms N1 and N2 on a vector space V are said to be
equivalent if there are positive constants Ci such that N1(x) ≤ C1N2(x) and
N2(x) ≤ C2N1(x) for all x ∈ V .

Theorem 5.3 Any two norms on a finite-dimensional vector space are equiv-
alent.

72 CHAPTER 5

Proof. It is sufficient to prove this for V = Fn (exercise 5.15). In view of
lemma 5.1, it suffices to prove that there is a constant C <∞ such that

‖x‖∞ ≤ CN(x) ∀x ∈ F
n. (5.26)

This shows that any norm N is equivalent to ‖ · ‖∞, and hence all are
equivalent to each other.

To prove (5.26), let B =
{
x ∈ Fn

∣∣ ‖x‖∞ = 1
}

and define

ν = inf
{
N(x)

∣∣ x ∈ B
}
. (5.27)

If ν > 0, set C = 1/ν. Then we have proved (5.26) for all x ∈ B. For general
x 6= 0, apply this result to ‖x‖−1

∞ x and use the homogeneity of both norms
to prove (5.26) for x 6= 0. It is obvious for x = 0.

Thus it suffices to show that we cannot have ν = 0. But if ν = 0, then
there must be a point x ∈ B where N(x) = 0 since a continuous function
must attain its minimum on a compact set [141]. Since N is a norm, this
implies that x = 0. But this contradicts the fact that x ∈ B, so we must
have ν > 0. QED

The proof that ν > 0 is nonconstructive and relies on the compactness of a
closed, bounded set in Fn [141]. There are similar “compactness arguments”
in infinite dimensions, but a finite dimension (n < ∞) is essential in this
particular argument.

5.4 INNER-PRODUCT SPACES

Inner products on a vector space V are conjugate-symmetric, nonnegative,
bilinear forms; i.e., they satisfy the following conditions:

(u, v) = (v, u)

(u, u) > 0 for u 6= 0

(u + sv, w) = (u,w) + s(v, w)

(5.28)

for all u, v, w ∈ V and any scalar s. In addition, we assume that (u, u) = 0
implies u ≡ 0 for any u ∈ V . Note that the bilinearity implies that (u, v) = 0
if either u or v is zero. Also,

(u, v + sw) = (v + sw, u) = (v, u) + s(w, u)

= (u, v) + s(u,w).
(5.29)

The canonical example of an inner-product space is Fn, with

(x, y) = y?x =
n∑

i=1

xiyi for x, y ∈ F
n (5.30)

(recall Fn = Rn or Cn). Another example of an inner-product space is
any linear subspace V of Fn. The critical difference between a normed
linear space and an inner-product space is the Cartesian geometry that the

VECTOR SPACES 73

latter inherits from the inner product. All (finite-dimensional) inner-product
spaces can be viewed as copies of F

n. For any x and y in V , we can consider
the two-dimensional plane spanned by them, that is, the set

{
αx + βy

∣∣ (α, β) ∈ F
2
}
. (5.31)

The representation of this space on a blackboard is a faithful presentation of
the geometry of the space (at least for F = R). When (x, y) = 0, the vectors
are perpendicular (orthogonal) in that plane. This geometric interpretation
is valid for all inner-product spaces.

Define a norm associated with the inner product by

‖f‖2 =
√

(f, f). (5.32)

In the case V = Fn, we have already seen that this is indeed a norm, but
now we have to verify that it is in the case of a general inner product. The
key step in proving the triangle inequality for ‖f‖2 in the case of V = Fn

was the inequality (5.12) in the case p = q = 2:

|(x, y)| ≤
√

(x, x)
√

(y, y) ∀x, y ∈ V. (5.33)

This inequality is associated with the names of Cauchy,5 Schwarz,6 and
sometimes [58] Bunyakovsky.7 We leave the proof of (5.33) to exercise 5.18.
Given (5.33), the triangle inequality is immediate:

‖x+ y‖22 =(x+ y, x+ y) = (x, x) + (x, y) + (x, y) + (y, y)

= (x, x) + 2|(x, y)|+ (y, y)

≤ (x, x) + 2‖x‖2‖y‖2 + (y, y) = (‖x‖2 + ‖y‖2)2.
(5.34)

Having an orthonormal basis set for a vector space V allows a simple
correspondence between V and Fn. These vectors form the axes in a Carte-
sian representation. We now show how a set of orthonormal vectors can be
generated from an arbitrary linearly independent set.

5.4.1 Inductive orthonormalization

We construct orthonormal vectors inductively starting from an arbitrary
linearly independent set {v1, . . . , vk} that spans a subspace Vk ⊂ V . That
is, we construct a new set {p1, . . . , pk} ⊂ Vk such that

(pi, pj) = δij . (5.35)

More precisely, we will have

pi = tiv
i + wi, (5.36)

5Augustin Louis Cauchy (1789–1857) was mentored by Lagrange (see page 152) early
in life and “led what has been described as the first revolution of rigor in mathematics”
[88].

6Karl Hermann Amandus Schwarz (1843–1921) is also known for his alternating
method for approximating the solutions of partial differential equations [21], among many
other things. He was a student of both Ernst Kummer and Karl Weierstrass.

7Victor Yakovlevich Bunyakovsky (1804–1889) obtained a doctorate from Paris in 1825
after working with Cauchy.

74 CHAPTER 5

where ti 6= 0 and wi ∈ Vi−1 (and Vi−1 denotes the space spanned by
{v1, . . . , vi−1}).

Notice that these conditions imply (exercise 5.19) that the pi’s are linearly
independent. Thus the set {p1, . . . , pk} forms a basis for the space generated
by {v1, . . . , vk}. These conditions will be proved by induction. For i = 1, it
is trivial: p1 = ‖v1‖−1

2 v1 (and t1 = ‖v1‖−1
2).

5.4.2 Orthogonal projections

Suppose that we have constructed a system satisfying the above for i =
1, . . . , k. Then given any f ∈ V , define

LS
k f =

k∑

i=1

(f, pi)pi. (5.37)

The next result shows how simple the question of best approximation is in
this context.

Theorem 5.4 Given any f ∈ V ,

‖f − LS
k f‖2 = min

q∈Vk

‖f − q‖2. (5.38)

The key step in the proof of theorem 5.4 is an orthogonality condition that
we state separately.

Lemma 5.5 Given any f ∈ V ,

(f − LS
k f, q) = 0 (5.39)

for all q ∈ Vk.

Proof. To prove the lemma, note that (5.37) implies that

(LS
k f, p

j) =
(k∑

i=1

(f, pi)pi , pj
)

=

k∑

i=1

(f, pi)
(
pi, pj

)

=

k∑

i=1

(f, pi)δij = (f, pj),

(5.40)

where we used (5.28) to expand the inner product and the orthonormality
(5.35). This verifies the lemma for q = pj . The general result follows by
writing q as a linear combination of the pj’s and expanding via (5.28). QED

Proof. The proof of theorem 5.4 is rather elementary. Let p ∈ Vk. Then
expanding using the definition (5.32) of the norm and the properties (5.28),
we find

‖f − LS
kf + p‖22 = (f − LS

kf + p, f − LS
k f + p)

= (f − LS
k f, f − LS

kf) + (f − LS
kf, p) + (p, f − LS

kf) + (p, p)

= (f − LS
k f, f − LS

kf) + (f − LS
kf, p) + (f − LS

k f, p) + (p, p)

= (f − LS
k f, f − LS

kf) + (p, p),

(5.41)

VECTOR SPACES 75

using the orthogonality condition in lemma 5.5 in the last step. This says
that

‖f − LS
k f‖2 < ‖f − LS

kf − p‖2 ∀ 0 6= p ∈ Vk. (5.42)

Now let q ∈ Vk and write p = q − LS
kf . Then (5.42) implies that

‖f − LS
k f‖2 < ‖f − LS

kf − p‖2 = ‖f − q‖2 (5.43)

unless q = LS
k f . QED

There are some immediate corollaries. Suppose that q ∈ Vk. Then q = LS
k q

(LS
k is a projection) because we must have ‖q − LS

k q‖2 = 0. Moreover,

‖f − LS
k f‖2 = 0 (5.44)

if and only if f ∈ Vk.

5.4.3 Least squares

The basic idea of least squares is to find the best approximation in a given
subspace Vk of some larger space V . That is, we start with a set of vectors
{v1, . . . , vk} in V that span Vk, the approximation space. Given an arbitrary
vk+1 ∈ V , we construct the closest element of Vk to vk+1.

In general, we assume that we have v1, . . . , vk+1 that are linearly indepen-
dent. Thus vk+1 /∈ Vk. Then we define

pk+1 =
1

‖vk+1 − LS
k v

k+1‖2
(
vk+1 − LS

k v
k+1
)
. (5.45)

We assume that the vectors {p1, . . . , pk} have already been constructed, so
that allows use to define LS

k via (5.37). The coefficient

tk+1 = 1/‖vk+1 − LS
k v

k+1‖2 (5.46)

is well-defined (and nonzero) because we must have vk+1 − LS
kv

k+1 6= 0
since vk+1 /∈ Vk. The scaling ensures that (pk+1, pk+1) = 1, and the
orthogonality (pk+1, pj) = 0 is a consequence of lemma 5.5. Note that
wk+1 = −tk+1L

S
k v

k+1 in (5.36).
We can write (5.45) algorithmically as

ek+1 = vk+1 −
k∑

j=1

(vk+1, pj)pj = vk+1 −
k∑

j=1

rj,k+1p
j

tk+1 =1/‖ek+1‖2
pk+1 = tk+1e

k+1,

(5.47)

where

rj,k+1 = (vk+1, pj), j = 1, . . . , k. (5.48)

The algorithm (5.47) is known as the Gram8-Schmidt9 process. By analogy
with (5.48), we define

rk+1,k+1 = (vk+1, pk+1) = (ek+1, pk+1) = ‖ek+1‖2. (5.49)

For completeness, define rj,k+1 = 0 for j > k + 1.

8Jørgen Pedersen Gram (1850–1916) was a Danish mathematician, statistician, and
actuary [77].

9Erhard Schmidt (1876–1959) was a student of David Hilbert and, together with Issai
Schur, was an advisor of the Brauer brothers (see page 229).

76 CHAPTER 5

5.4.4 The QR decomposition

In the case where {v1, . . . , vk} ⊂ V = Fn, then we have generated orthonor-
mal vectors {p1, . . . , pk} ⊂ Fn with the property (5.36). Define a unitary
matrix Q whose columns are the vectors pi:

Q =
[
p1 · · · pk

]
, (5.50)

that is, Qli = (pi)l; and let A be the matrix with jth column vj :

A =
[
v1 · · · vk

]
, (5.51)

that is, alj = (vj)l. We can easily identify the upper-triangular matrix R,
defined in (5.48), (5.49), and following, as the matrix corresponding to the
change of basis from the pj ’s to the vj ’s:

vj =

k∑

i=1

(vj , pi)pi =

k∑

i=1

rijp
i, (5.52)

which is equivalent to

alj = (vj)l =

k∑

i=1

(pi)lrij =

k∑

i=1

(Q)lirij = (QR)lj . (5.53)

Thus we have shown that

A = QR. (5.54)

The equation (5.54) is known as the QR factorization (or decomposition) of
A. Note that we assume only that the columns of A are linearly independent.
It need not be that A is square.

We can connect the QR factorization to the factorizations studied earlier.
If you consider

A?A = R?Q?QR = R?R, (5.55)

we recognize that R is the Cholesky factor of A?A. The form A?A oc-
curs frequently, especially as normal equations in statistics [77], and the
QR decomposition provides a way to determine the Cholesky factor without
forming the product.

A formula of Aitken10 [3] provides an alternative way to solve Ax = f .
We can write formally that A−1 = (A?A)−1A?. Thus x = (R?R)−1A?f , or
equivalently,

(R?R)x = A?f, (5.56)

where A = QR. Solving (5.56) just requires forward and backward solution
with the triangular factors R? and R.

5.5 MORE READING

The convexity argument used to prove Young’s inequality (5.14) is just a
glimpse of convex analysis [139]. Convex analysis plays a major role in
optimization [17, 19]. The QR decomposition plays a central role in the
computation of eigenvalues and eigenvectors [152].

10See page 27.

VECTOR SPACES 77

5.6 EXERCISES

Exercise 5.1 Prove that p-norms (5.5) satisfy both (5.1) and (5.2).

Exercise 5.2 Prove that the 1-norm, that is, (5.5) for p = 1, satisfies the
triangle inequality. (Hint: use the fact that |a + b| ≤ |a| + |b| and apply
induction.)

Exercise 5.3 Prove that (5.8) holds for any fixed x. (Hint: pick i such that
|xi| = ‖x‖∞ and show that ‖x‖p ≥ |xi| for all p.)

Exercise 5.4 Prove that xa → 1 as a→ 0 for all x > 0.

Exercise 5.5 Show that the kernel K defined in (5.10) is a linear subspace
of V provided that the seminorm satisfies (5.2) and (5.3).

Exercise 5.6 Suppose that K is a linear subspace of V . Show that the
quotient space V/K consisting of equivalence classes of elements of V modulo
K is a vector space in a natural way. Show that a seminorm on V becomes
a norm on V/K in a natural way if K is the kernel of the seminorm defined
in (5.10).

Exercise 5.7 Prove that the p-norms are continuous with respect to p in
the sense that

‖x‖q = lim
p→q
‖x‖p (5.57)

for any 1 ≤ q <∞. Note that the case q =∞ is (5.7).

Exercise 5.8 Let a(x, y) be any nonnegative, symmetric bilinear form (i.e.,
a real-valued function) defined on a vector space V , that is, a(x, x) ≥ 0 for
all x ∈ V , a(x, y) = a(y, x) for all x, y ∈ V , and

a(x+ sy, w) = a(x,w) + sa(y, w) (5.58)

for all w, x, y ∈ V and scalar s. Prove that

a(x, y) ≤
√
a(x, x)

√
a(y, y) ∀x, y ∈ V (5.59)

holds even if a(·, ·) is degenerate, that is, a(x, x) = 0 for some x 6= 0.

Exercise 5.9 Use (5.59) to prove (5.12) for p = q = 2 in Rn. (Hint: define
the bilinear form

a(x, y) =

n∑

i=1

xiyi, (5.60)

a.k.a. the Euclidean inner product, for all x, y ∈ Rn, and apply exercise 5.8.)

Exercise 5.10 Let a(x, y) be any nonnegative, symmetric bilinear form on
a vector space V (see exercise 5.8). Prove the triangle inequality for ‖x‖ =√
a(x, x). Note that this may be only a seminorm. (Hint: expand the ex-

pression

‖x+ y‖2 = a(x+ y, x+ y) = a(x, x) + 2a(x, y) + a(y, y) (5.61)

and apply exercise 5.8.)

78 CHAPTER 5

Exercise 5.11 Prove (5.12) holds for p = 1 and q =∞.

Exercise 5.12 Prove (5.12) for general x and y given that it holds under
the condition (5.13). (Hint: scale x and y to have norm 1.)

Exercise 5.13 Prove that the exponential function is convex, i.e., verify
(5.15) provided that (5.11) holds.

Exercise 5.14 Prove (5.21) and prove that the constants cannot be im-
proved.

Exercise 5.15 Prove theorem 5.3 given that it is known for V = Fn. (Hint:
choose a basis for V and construct an isomorphism of V with F

n, where n
is the dimension of V . Show that a norm on V induces a norm on Fn in a
natural way.)

Exercise 5.16 Suppose that x and y are any vectors such that ‖x‖ > ‖y‖.
Prove that

‖x− y‖−1 ≤ 1

‖x‖ − ‖y‖ . (5.62)

(Hint: use the triangle inequality: ‖x‖ ≤ ‖x− y‖+ ‖y‖.)

Exercise 5.17 In the proof of theorem 5.3, prove directly that ν > 0 without
resorting to the fact that a continuous function takes on its minimum on a
compact set. (Hint: recall how that result is proved.)

Exercise 5.18 Prove (5.33). (Hint: show that it suffices to assume that
y 6= 0. Define α = (x, y)/(y, y) and set w = x−αy and expand 0 ≤ (w,w) =
(x− αy, x− αy).)

Exercise 5.19 Show that the orthogonal vectors Pi (cf. (5.35)) are linearly
independent.

Exercise 5.20 Prove (5.38) by an alternative calculation from the proof
given in the text (hint: let q be arbitrary and consider the quadratic function
of t defined by φ(t) := ‖f − LS

nf + tq‖22; use (5.39)).

Exercise 5.21 Suppose that P is a (complex) polynomial of degree n. Prove
that for any C > 0, there is an R > 0 such that |P (x)| ≥ C for all |z| ≥ R.
Use this to show that the minimum of |P (z)| occurs for some z satisfying
R = |z| <∞.

Exercise 5.22 Suppose that P is a (complex) polynomial of degree n and
that |P (z)| has a minimum at some z0 satisfying R = |z0| <∞. Prove that
P (z0) = 0. (Hint: if |P (z0)| > 0, then write P (z) = a(1 + Q(z)), where Q
is a polynomial of degree n such that Q(z0) = 0 and a = P (z0) ∈ C. Using
exercise 9.12, write Q(z) = reiθ(z − z0)k + q(z), where r > 0 and q is a
polynomial of degree n − 1 such that |q(z)| ≤ C|z − z0|k+1 for z near z0.
Show that Q(te−i(θ+π)/k + z0) < 0 for t > 0 sufficiently small.)

VECTOR SPACES 79

Exercise 5.23 Suppose that P is a (complex) polynomial of degree n. Prove
that there is a z ∈ C such that P (z) = 0. (Hint: use exercise 5.21 to pick z
at the global minimum of |P | and use exercise 5.22 to do the rest.)

5.7 SOLUTIONS

Solution of Exercise 5.8. The proof of (5.59) is begun by expanding the
quadratic function q(t) = a(x+ ty, x+ ty) as a function of t ∈ R:

0 ≤ a(x+ ty, x+ ty) = a(x, x) + t(a(x, y) + a(y, x)) + t2a(y, y)

= a(x, x) + 2ta(x, y) + t2a(y, y) = q(t).
(5.63)

If a(y, y) = 0, then q is linear. Since a (nontrivial) linear function has no min-
imum, it follows that a(x, y) = 0 as well, and (5.59) is satisfied trivially. So
now suppose that a(y, y) 6= 0. Since the expression q(t) has to be nonnega-
tive, we can investigate what it means to have q nonnegative at its minimum.
Since q′(t) = 2(a(x, y) + ta(y, y)), the minimum is at t = −a(x, y)/a(y, y).
But

0 ≤ q(−a(x, y)/a(y, y)) = a(x, x)− 2a(x, y)2/a(y, y) + a(x, y)2/a(y, y)

= a(x, x)− a(x, y)2/a(y, y)
(5.64)

implies that a(x, y)2 ≤ a(x, x)a(y, y).
Solution of Exercise 5.13. A function f is convex if for 0 < t < 1, we
have

f(tX + (1 − t)Y) ≤ tf(X) + (1 − t)f(Y) (5.65)

for all X and Y . Let M denote the point

M = tX + (1− t)Y = Y + t(X − Y). (5.66)

Then (5.65) is equivalent to

0 ≤ −t (f(M)− f(X)) + (1− t) (f(Y)− f(M)) (5.67)

(which is the statement that the second divided difference, cf. section 10.2.3,
of f is positive). If f is C1, we can write (5.67) as

0 ≤ −t
∫ M

X

f ′(s) ds+ (1− t)
∫ Y

M

f ′(s) ds. (5.68)

Thus we will show that (5.68) holds under suitable conditions on f that we
can verify for f(x) = ex.

One simple criterion for convexity is based on the sign of the second deriva-
tive of f . If f ′′ ≥ 0, then

f ′(x) − f ′(y) =

∫ x

y

f ′′(s) ds ≥ 0, (5.69)

80 CHAPTER 5

so f ′ is nondecreasing. Applying this to the integrals in (5.68), we find

−t
∫ M

X

f ′(s) ds+ (1− t)
∫ Y

M

f ′(s) ds ≥ −t(M −X)f ′(M)

+ (1− t)(Y −M)f ′(M)

= (−t(M −X) + (1− t)(Y −M)) f ′(M)

= ((Y −M)− t(Y −X)) f ′(M)

=0,

(5.70)

by (5.66).
When f(x) = ex, we have f = f ′ = f ′′ > 0, so ex is (strictly) convex.

Solution of Exercise 5.17. If ν = 0, there must be a sequence of points
xj ∈ B such that N(xj) < 1/j. Any infinite sequence of points in a bounded
set in Rn must have an accumulation point x∞, and thus there is a subse-
quence xjk

such that limk→∞ xjk
= x∞ [141]. In particular, we must have

x∞ ∈ B. But we also must have N(x∞) = 0 since N(xjk
) < 1/jk and

N(x∞ − xjk
) ≤ K‖x∞ − xjk

‖∞ → 0 as k →∞,
by lemma 5.1. Thus x∞ = 0. But this contradicts the fact that x∞ ∈ B, so
we must have ν > 0.

Solution of Exercise 5.18. If y = 0, then (x, y) = 0, and the result is
obvious. So we assume that y 6= 0. Define

s = (x, y)/(y, y) (5.71)

and w = x− sy. First, observe that

s(y, x) = s(x, y) = |(x, y)|2/(y, y) = s(x, y). (5.72)

Now expand

0 ≤ (w,w) = (x − sy, x− sy)
= (x, x) − s(y, x)− s(x, y) + |s|2(y, y)

= (x, x) − 2
|(x, y)|2
(y, y)

+ |s|2(y, y) [by (5.72)]

= (x, x) − |(x, y)|
2

(y, y)
[by (5.71)].

(5.73)

Therefore,

|(x, y)|2 ≤ (x, x)(y, y), (5.74)

as claimed.

Chapter Six

Operators

Issai Schur (1875–1941) studied and worked in Berlin much
of his life. He is known for his matrix decomposition and
factorization, as well as many other results in mathematics.
With the rise of Hitler and the acquiescence of colleagues,
Schur was forced to resign his various academic posts. Schur
emigrated to Palestine in 1939 [105].

We need to develop some further technology to measure the size of op-
erators on vector spaces through a naturally associated “operator” norm.
This is needed in several areas, in particular, in the study of iterative meth-
ods for approximation of the solution of both linear and nonlinear systems.
However, many of the results are of interest just as abstract theorems.

One result in this chapter (theorem 6.8) is that we can almost think of
the spectral radius of an operator (the size of the largest eigenvalue of the
operator) as a norm. That is, we can always find a vector norm such that
the corresponding operator norm is arbitrarily close to the spectral radius.
This allows us to give a precise condition (theorem 6.11) that governs the
convergence of many iterative processes, the result that can be viewed as the
endpoint for the chapter. But the ingredients of the proof are of interest in
their own right. In particular, we will show a rather surprising result, that
any matrix A is similar to a matrix arbitrarily close to a diagonal matrix
with the eigenvalues of A on the diagonal (theorem 6.7). That is, to any
desired accuracy, a matrix may be viewed as diagonalizable. The proof of
this result relies on the Schur decomposition (theorem 6.4) of a matrix. To
keep track of all these results, we provide a roadmap in figure 6.1.

��
HH

��
HH

��
HHtheorem 6.2

‖A‖ ≥ ρ(A)

theorem 6.8

‖A‖ ≈ ρ(A)

theorem 6.11

An → 0 ⇐⇒ ρ(A) < 1

theorem 6.4

Schur decomposition

theorem 6.7

P−1AP ≈ Λ

Figure 6.1 Roadmap of results in chapter 6.

82 CHAPTER 6

6.1 OPERATORS

An operator is a mapping from one vector space to another vector space.
These can be defined quite abstractly, as a machine, such as the mapping
that takes a function, f , as input and produces its derivative, f ′, as output.
To make this precise, we have to say what the linear space is. We leave
as exercise 6.1 to show that the set Pn of polynomials of degree n in one
variable can be viewed as a vector space; exercise 6.2 addresses the issue of
showing that the derivative operator is well-defined on this space.

There is a special class of vector spaces that we want to distinguish: the
linear space of operators on a vector space. Given any two operators A and
B that map V to W , we define A + B by setting (A + B)v = Av + Bv
for all v ∈ V , and we define scalar multiplication similarly: (sA)v = s(Av)
for v ∈ V and scalars s. We denote the vector space of such operators by
O(V,W). We can define norms on such vector spaces, but we will see that
there is a special type of induced norm that reflects the product structure
of operators.

6.1.1 Operator norms

There is a natural class of operator norms that come from duality. Given
norms ‖ ·‖V and ‖ ·‖W on vector spaces V and W , and an operator A : V →
W , define

‖A‖ = ‖A‖V →W = sup
06=v∈V

‖Av‖W
‖v‖V

. (6.1)

Then this forms a norm on the linear space of operators from V to W (see
exercise 6.3). We drop the subscript ‖A‖V →W and write ‖A‖ when there is
no confusion about the spaces in question. However, in some cases, there
are multiple spaces in the discussion.

What is significant about the operator norm is that it satisfies multiplica-
tive properties that other norms do not. First, there is a natural multi-
plicative property relating the norms on V and W and the induced operator
norm:

‖Av‖W ≤ ‖A‖ ‖v‖V . (6.2)

This is essentially a tautology since the operator norm was defined as an
infimum of quotients of the first and last terms in (6.2). But this has many
important applications, including the second multiplicative property of op-
erator norms. Suppose that B is a linear operator from a vector space U to
V . Then

‖AB‖U→W ≤ ‖A‖V →W ‖B‖U→V . (6.3)

The proof requires just two applications of (6.2) and is left as exercise 6.4.
As cumbersome as it is, the subscript notation ‖A‖V →V does not neces-

sarily provide complete information about the definition of the norm. For

OPERATORS 83

example, we will often be interested in the case V = Rn, but this does
not specify which norm on R

n we would be using. In section 5.1.1, we in-
troduced the short-hand notation `p for the complete specification, such as
(Rn, ‖ · ‖p), to indicate the norm defined in (5.5). Since this special case
occurs frequently, we define

‖A‖p = ‖A‖`p→`p
= sup

06=x∈Fn

‖Ax‖p
‖x‖p

(6.4)

for A : Fn → Fn with F = R or C. Note that this is quite different from the
p-norm of the matrix associated with A represented as a vector in Fn2

. To
highlight this point, we define the Frobenius1 norm by

‖A‖F =
(n∑

i,j=1

a2
ij

)1/2

, (6.5)

which is the 2-norm of the matrix associated with A represented as a vector
in Fn2

. To avoid confusion, we will try to avoid using the symbol F as a
vector space. In section 6.2.2, we will use the norm as a subscript, for a
general norm, similar to the usage in definition (6.4).

6.1.2 Operator norms and eigenvalues

Suppose A is an operator that maps a vector space V to itself. An eigenvalue
for A is a complex number λ such that Ax = λx for some x 6= 0. The
corresponding vector x is called the eigenvector associated with λ. We refer
to λ, x as an eigenpair. There is a relationship between the eigenvalues of
an operator and its norm:

‖Ax‖ = ‖λx‖ = |λ| ‖x‖, (6.6)

which implies that

‖A‖ ≥ ‖Ax‖‖x‖ = |λ| (6.7)

for any eigenvalue λ (and any norm).

Definition 6.1 Suppose A is an operator that maps a vector space V to
itself. The spectral radius of A, denoted ρ(A), is the maximum modulus of
all the eigenvalues:

ρ(A) = max
{
|λ|
∣∣ λ is an eigenvalue of A

}
. (6.8)

In (6.8), we wrote “max” instead of “sup” since the set of eigenvalues is
finite (assuming V is finite-dimensional). Thus there is always an eigenvalue
λ such that |λ| = ρ(A). The inequality (6.7) yields the following theorem.

1Ferdinand Georg Frobenius (1849–1917) was a student of Weierstrass and an advisor
of Issai Schur.

84 CHAPTER 6

Theorem 6.2 Suppose A is an operator that maps a vector space V to itself.
For any norm on V , the associated operator norm on A satisfies

ρ(A) ≤ ‖A‖, (6.9)

where ρ(A) is the spectral radius of A, defined in (6.8).

Since operators can be represented as matrices, one might think that it is
sufficient just to have norms on Euclidean spaces. However, some operator
norms cannot be written as a norm on a Euclidean space consisting of the
coefficients of the corresponding matrix. For example, one can show (exer-
cise 6.6) that for a Hermitian matrix A, the operator norm associated with
the Euclidean norm satisfies

‖A‖2 = ρ(A) = max
{
|λ|
∣∣ λ is an eigenvalue of A

}
. (6.10)

We explain why there cannot be a formula for the eigenvalues of a matrix in
section 14.4. Conversely, there are some norms on matrices that cannot be
written as operator norms (exercises 6.8 and 6.9).

The identity (6.10) provides the guiding motivation for the chapter. Al-
though it does not hold for general operators, we will see that it almost does
provided we are willing to change to a different norm on Rn. We will see
in exercise 8.2 that other operator norms on matrices can also be identified
quantitatively.

Note that operator norms have a special property not true for general
norms. Let ε > 0 be arbitrary. If ‖ · ‖V is a norm on V , then so is ‖ · ‖ε a
norm on V , where

‖x‖ε = ε‖x‖V ∀x ∈ V. (6.11)

Thus general norms can be scaled arbitrarily, whereas operator norms cannot
(since the spectral radius is independent of the choice of norm).

We will return to the comparison of norms of an operator and its spectral
radius in section 6.2.2, where we will provide a counterpoint to theorem 6.2.

6.2 SCHUR DECOMPOSITION

To understand norms of operators better, we need to develop some technol-
ogy. Fortunately, this technology is interesting in its own right as it provides
insight into fundamental properties of linear operators. The first result that
we need is the Schur decomposition, which says that any matrix is unitarily
equivalent to a triangular matrix.

Definition 6.3 A matrix U is unitary if U?U = I.

A unitary matrix corresponds to an operator that does not stretch coor-
dinates in any direction.

Theorem 6.4 For any square matrix A, there is a unitary matrix U such
that T = U−1AU = U?AU is upper-triangular.

OPERATORS 85

There are several applications of the Schur decomposition, but one of
them involves eigenvalues. In view of corollary 3.3, the diagonal entries of
a triangular matrix are its eigenvalues. Since a similarity transformation
does not change the eigenvalues (exercise 6.10), the eigenvalues of A are the
diagonal entries of the triangular factor T in the Schur decomposition. For
the special case of a Hermitian matrix A, we obtain the following well-known
result.

Corollary 6.5 For any Hermitian matrix A, there is a unitary matrix U
such that D = U−1AU = U?AU is diagonal.

The proof of this corollary is a simple application of the Schur decomposi-
tion and conjugation: T ? = (U?AU)? = U?A?U = U?AU = T . A Hermitian
triangular matrix must be diagonal. Similarly, we can prove the following.

Corollary 6.6 For any matrix A, there is a unitary matrix U such that
D = U−1AU = U?AU is diagonal if and only if A is normal, i.e., A?A =
AA?.

The “only if” is clear. The “if” is an interesting result itself: a triangular
matrix T is normal (T ?T = TT ?) iff it is diagonal (exercise 6.12).

It might appear then that the Schur decomposition provides a means to
compute eigenvalues. We will see that the converse is true: we use the
existence of eigenvectors to establish the Schur decomposition. We postpone
the proof of theorem 6.4 until section 6.2.3.

It is tempting to compare the QR factorization (5.54) with the Schur de-
composition (theorem 6.4). There is a superficial similarity in that both
involve unitary and triangular factors. But there are significant differences.
First, the QR factorization applies more generally in that A need not be
square. But more significantly, the Schur decomposition is a similarity trans-
formation, whereas the QR factorization is unbalanced. However, most sig-
nificant is the fact that we have a constructive algorithm that computes the
QR factorization in a finite number of steps. We will see in section 14.4 why
this is not possible in general for the Schur decomposition.

6.2.1 Nearly diagonal matrices

As a step toward the proof of our main theorem on the relationship between
the spectral radius and operator norms, there is an interesting intermediate
result, namely, that with a suitable similarity transformation, any matrix
can be transformed so that it is essentially diagonal.

Theorem 6.7 Suppose A is any square matrix and let ε > 0 be arbitrary.
Then there is an invertible matrix P such that

P−1AP = Λ + C, (6.12)

where Λ is a diagonal matrix (having the eigenvalues of A on the diagonal)
and C is a strictly upper-triangular matrix that satisfies |Cij | ≤ ε for all i, j
(and Cij = 0 for i ≥ j).

86 CHAPTER 6

This theorem says that we can make any matrix look as nearly diagonal
as we want (but we will see that this comes at the expense of making P very
large in general). What this means is that general similarity transformations
can be somewhat misleading, unlike the unitary transformations in the Schur
decomposition.

Proof. We begin with the Schur decomposition U?AU = T , where T = Λ+B
is an upper-triangular matrix and B is strictly upper-triangular (that is, B
has zero diagonal entries and Λ is diagonal). Define

µ = max
{
|bkl|

∣∣ k, l = 1, . . . , n
}
.

Let δ = ε/µ > 0 and define D to be the diagonal matrix with Dii = δ1−i for
i = 1, . . . , n. Define S = D−1TD = Λ + C, where C = D−1BD. Then C is
also strictly upper-triangular, and (see exercise 6.13)

cij = δi−1bijδ
1−j = δi−jbij . (6.13)

But since B is strictly upper-triangular, bij 6= 0 only if j ≥ i + 1, so we
have |cij | ≤ δµ = ε for all i and j. Define P = UD. Then P−1AP =
D−1U?AUD = D−1TD = Λ + C. QED

6.2.2 The spectral radius is nearly a norm

We now consider one of the main results in the chapter, the gist of which is
the title of this section.

Theorem 6.8 Suppose A is any n × n matrix and let δ > 0 be arbitrary.
Then there is a norm N on R

n such that the corresponding operator norm
‖ · ‖N satisfies

ρ(A) ≤ ‖A‖N ≤ ρ(A) + δ, (6.14)

where ρ(A) is the spectral radius.

We emphasize here that that the operator norm is defined by

‖A‖N = sup
x∈Rn, x 6=0

N(Ax)

N(x)
(6.15)

and depends on δ through the dependence of N on δ. In view of theorem 6.8,
we are free to think of the spectral radius ρ(A) as (essentially) a norm (recall
the reverse inequality (6.7) which holds for all norms).

Proof. The first inequality in (6.14) is theorem 6.2, so we need to prove only
the second. Let ε = δ/n and choose P according to theorem 6.7. Note that

ρ(A) = max
{
|Λii|

∣∣ i = 1, . . . , n
}
. (6.16)

OPERATORS 87

Define N(x) = ‖P−1x‖∞ (see exercise 6.14). Then (making the substitution
x = Py)

‖A‖N = sup
x∈Rn, x 6=0

‖P−1Ax‖∞
‖P−1x‖∞

= sup
y∈Rn, y 6=0

‖P−1APy‖∞
‖y‖∞

= sup
y∈Rn, y 6=0

‖(Λ + C)y‖∞
‖y‖∞

≤ sup
y∈Rn, y 6=0

‖Λy‖∞
‖y‖∞

+ sup
y∈Rn, y 6=0

‖Cy‖∞
‖y‖∞

≤ sup
y∈Rn, y 6=0

‖Λy‖∞
‖y‖∞

+ nε = ρ(A) + δ,

(6.17)

where we used exercise 6.15 in the penultimate step and exercise 6.16 in the
last. QED

6.2.3 Derivation of the Schur decomposition

The proof of the Schur decomposition is by induction on the matrix dimen-
sion. For n = 1, the theorem is trivial. So suppose it is true for n− 1, and
let us show that it holds for n.

To begin with, we simply pick an eigenpair for A: Ax = λx, normalized so
that x?x = 1. This is the only nontrivial fact that we use in the proof. The
property that every matrix has at least one eigenvector is worth reviewing;
it stems from the fundamental theorem of algebra [35], which says that a
polynomial always has a root (cf. exercise 5.23). In this case, the polynomial
in question is the characteristic polynomial pn(λ) = det(A−λI). The second
ingredient in this fact is that if the determinant of a matrix is zero, then the
matrix (A− λI in our case) has a nontrivial null vector.

Given the eigenvector x, we construct

U = [x B] (6.18)

by taking x to be the first column of U and filling in with the n × (n − 1)
matrix B as needed. We can see that U is unitary if we are willing to change
coordinates so that x = [1 0 · · · 0]; in this case, U = I. If we want to see this
more concretely, we can study what it means for U = [x B] to be unitary:

U?U =

(
x?x x?B
B?x B?B

)
=

(
1 x?B

B?x B?B

)
, (6.19)

where we have used a block-matrix multiplication formula (exercise 6.17)
similar to (3.31). Let b1, . . . , bn−1 be an orthonormal basis for the (n − 1)-
dimensional space

Y =
{
y ∈ C

n
∣∣ x?y = 0

}
. (6.20)

Such a basis could be generated by the Gram-Schmidt process as described
in section 5.4.1. Then B = [b1, . . . , bn−1] has the required properties.

88 CHAPTER 6

Now let us see what U does to A. By another block-matrix multiplication
formula (exercise 6.18), we find

U?AU =

(
x?Ax x?AB
B?Ax B?AB

)
=

(
λ x?AB
0 B?AB

)
=

(
λ z?

0 A(n−1)

)
, (6.21)

where z = B?A?x is some (column) vector of length n − 1 and A(n−1) =
B?AB is an (n−1)×(n−1) matrix. We now invoke the induction hypothesis

and let Ṽ be an (n − 1) × (n − 1) unitary matrix such that Ṽ ?A(n−1)Ṽ =
T (n−1) is upper-triangular. Define

V =

(
1 0

0 Ṽ

)
. (6.22)

Then the block-matrix multiplication formula (3.31) implies

V ?U?AUV =V ?

(
λ zT

0 A(n−1)

)
V =

(
λ zT

0 Ṽ ?A(n−1)

)
V

=

(
λ zTṼ

0 Ṽ ?A(n−1)Ṽ

)
=

(
λ zTṼ
0 T (n−1)

)
.

(6.23)

Thus UV is the required unitary matrix. QED

The Schur decomposition is not an algorithm for determining eigenvalues.
Unfortunately, its derivation is not constructive, in that it requires the pro-
vision of an eigenvector by some unspecified mechanism. Instead, we should
think of the Schur decomposition as a way to catalog the eigenvectors (and
eigenvalues) in a useful way.

6.2.4 Schur decomposition and flags

A flag is a nested sequence of subspaces V k of a vector space V [9]. More
precisely, a flag has the property that

{0} = V 0 ⊂ V 1 ⊂ V 2 ⊂ · · · ⊂ V k = V, (6.24)

where the dimensions di = dimV i satisfy di > di−1 for all i ≥ 1. A complete
flag is one in which di = i for all i.

An operator O : V → V supports a flag if O(V j) ⊂ V j for all j = 1, . . . , k.
For example,

V i =
{
(x1, . . . , xn) ∈ R

n
∣∣ xj = 0 ∀j > i

}
(6.25)

is a complete flag, and any upper-triangular matrix T supports the flag (6.25)
(exercise 6.19).

The Schur decomposition has an abstract representation in terms of flags
and operators as follows.

Theorem 6.9 Any operator on a finite-dimensional vector space V supports
a complete flag.

OPERATORS 89

In other words, for any operator O there exists some complete flag (6.24)
that it supports. Thus the Schur decomposition of an operator has a natural
expression independent of any basis chosen to represent it as a matrix. Other
matrix decompositions, such as the LU factorization (section 3.2), do not
enjoy this property.

The proof of theorem 6.9 is left as exercise 6.20.

6.3 CONVERGENT MATRICES

There are many situations in which the result of an algorithm can be written
as multiplication of a vector X by a fixed matrix A. Thus repeating the
algorithm n times is equivalent (by induction) to applying the matrix Ak.
Frequently, this represents the error in some iterative process. Thus we
are interested in precise conditions when A is a convergent matrix, that is,
Ak → 0 as k →∞. We start with the following simple criterion.

Lemma 6.10 If ‖A‖ < 1 for some operator norm, then ‖Ak‖ → 0 as k →
∞.

Proof. By induction, (6.3) implies that ‖Ak‖ ≤ ‖A‖k → 0 as k →∞. QED

Combining lemma 6.10 with theorem 6.8, we get the following precise
characterization.

Theorem 6.11 For any matrix A, Ak → 0 as k →∞ if and only if ρ(A) <
1.

Proof. If ρ(A) < 1, choose a norm so that ‖A‖ < 1 by theorem 6.8 and
apply lemma 6.10.

Conversely, suppose there is an eigenvalue λ of A such that |λ| ≥ 1. There
must be a vector x 6= 0 such that Ax = λx. Thus Akx = Ak−1Ax =
λAk−1x, so by induction we must have Akx = λkx. But if Ak → 0, we
conclude that λkx → 0. Since |λk| = |λ|k ≥ 1, we have a contradiction.
QED

theorem 6.11 provides the basis for the convergence theory for station-
ary iterative methods (section 8.1), for the stability theory of time-stepping
schemes for approximating the solutions to differential equations that will
be discussed in section 17.2), as well as for many other applications.

6.4 POWERS OF MATRICES

theorem 6.11 provides some information about powers of matrices. Here
we develop the theme in a bit more detail. Our objective is to prove the
following result.

90 CHAPTER 6

Theorem 6.12 For any n × n (real or complex) matrix A and any norm
‖ · ‖ (on R

n or C
n, respectively),

lim
k→∞

‖Ak‖1/k = ρ(A), (6.26)

where ρ(A) is the spectral radius of A and ‖Ak‖ denotes the corresponding
operator norm.

This again shows the close connection between the spectral radius and the
operator norm. To begin with, an analog of (6.9) is that

ρ(A) ≤ ‖Ar‖1/r (6.27)

for any norm and any positive integer r. This is proved in the same way:
ρ(A) = |λ| for some eigenvalue λ, with eigenvector x such that Ax = λx.
Multiplying by A, we have A2x = A(λx) = λAx = λ2x. By induction, we
have Arx = λrx for any r. Thus ρ(A)r = |λ|r = ‖Arx‖/‖x‖ ≤ ‖Ar‖, proving
(6.27). We now use this to prove theorem 6.12.

It seems remarkable at first that this would hold for any operator norm,
but the fact is that it is sufficient to prove (6.26) for just one norm. For
example, suppose that we know that

lim
k→∞

‖Ak‖1/k
∞ = ρ(A). (6.28)

Then by the equivalence of norms (lemma 5.1 or theorem 5.3), we have

lim
k→∞

‖Ak‖1/k ≤ lim
k→∞

(
K‖Ak‖∞

)1/k
= lim

k→∞
K1/kρ(A) = ρ(A). (6.29)

Thus the limiting process quashes any constant factor. In view of (6.27), the
theorem follows. Now let us verify (6.28).

The Schur decomposition shows that powers of a matrix tend to a very
simple form. Suppose that T = U?AU is the Schur decomposition, where U
is unitary and T is triangular. We can turn the decomposition around and
write A = UTU?. Then A2 = U?TUU?TU = U?T 2U . By induction,

Ak = U?T kU (6.30)

for any k. Write

T = D +N, (6.31)

where D = diag(T) is the diagonal matrix whose diagonal is the same as
that of T . Thus N = T −D. Since the entries of D are the eigenvalues of T
(and hence of A),

‖D‖∞ = ρ(T) = ρ(A) (6.32)

(see exercise 6.16). We need to calculate the norm of T k, and since this is a
somewhat lengthy step, we separate it as the following lemma.

Lemma 6.13 Suppose that T is an upper-triangular n×n matrix and N =
T −D, where D = diag(T). Then for any matrix norm ‖ · ‖ satisfying the
multiplicative property (6.3), we have

‖T k‖ = ‖(D +N)k‖ ≤ kn‖D‖k−n (‖N‖+ ‖D‖)n . (6.33)

OPERATORS 91

Proof. Note that N is nilpotent, that is, Nn = 0. More precisely, observe
that N is strictly upper-triangular, that is, it is 0 on and below the main
diagonal. Not all nilpotent matrices are strictly upper-triangular, but all
strictly upper-triangular matrices are nilpotent. To work with such matrices,
let us introduce some notation. We say that an upper-triangular matrix M
has shift index µ if Mij = 0 for i > j − µ. A diagonal matrix has shift index
0, and the matrix N = T −D has shift index 1.

The product MN of two upper-triangular matrices M and N , with shift
indices µ and ν, respectively, has shift index µ + ν (see exercise 6.23). In
particular, since N = T −D has shift index 1, (Nk)ij = 0 for i > j − k (see
exercise 6.24). Thus Nn ≡ 0. If D is a diagonal matrix, then the shift index
of DN and ND is no less than the shift index of N (see exercise 6.25).

We now want to expand the expression T k = (D + N)k. Since N and
D need not commute, such an expression can be quite complicated. In
particular, (D+N)2 = D2+DN+ND+N2. For (D+N)k, there are 2k such
expressions. Fortunately, there is a one-to-one relationship between each
such expressions and the binary representation of some integer j ∈ [0, 2k−1].
Define

P (j) =

k∏

i=1

DbiN1−bi , (6.34)

where bkbk−1 · · · b1 denotes the binary expansion of j, that is,

j =

k∑

i=1

bi2
i−1. (6.35)

Note that DbiN1−bi is D if bi = 1, and N if bi = 0. Then

(D +N)k =

2k−1∑

j=0

P (j). (6.36)

We can compute the shift index of P (j): it is at least ν(j), the number
of zeros in the binary expansion of j. Thus when ν(j) ≥ n, P (j) = 0
(exercise 6.26). Thus

(D +N)k =
∑

0≤j<2k,ν(j)≤n

P (j). (6.37)

Note that

‖P (j)‖ ≤ ‖D‖k−ν(j)‖N‖ν(j). (6.38)

From (6.38), we conclude

‖(D +N)k‖ ≤
∑

0≤j<2k,ν(j)≤n

‖D‖k−ν(j)‖N‖ν(j)

=
n∑

`=0

∑

0≤j<2k,ν(j)=`

‖D‖k−`‖N‖`

=
n∑

`=0

(
k
`

)
‖D‖k−`‖N‖`

(6.39)

92 CHAPTER 6

because the number of j ∈ [0, 2k − 1] such that ν(j) = ` is

(
k
`

)
. We use the

elementary estimate
(
k
`

)
=

(
n
`

)
k!(n− `)!
n!(k − `)! =

(
n
`

)
(k − `+ 1) · · ·k
(n− `+ 1) · · ·n ≤

(
n
`

)
k`. (6.40)

Therefore,

‖(D +N)k‖ ≤ kn‖D‖k−n
n∑

`=0

(
n
`

)
‖D‖n−`‖N‖`

= kn‖D‖k−n (‖D‖+ ‖N‖)n ,
(6.41)

which completes the proof of the lemma. QED

From (6.30), we have

‖Ak‖∞ = ‖U?T kU‖∞ ≤ ‖U?‖∞‖T k‖∞‖U‖∞ ≤ C‖T k‖∞, (6.42)

where C = ‖U?‖∞‖U‖∞. Therefore, (6.32) and lemma 6.13 imply

‖Ak‖∞ ≤ Ccnknρ(A)k−n, (6.43)

where cn = (‖D‖∞ + ‖N‖∞)n. But since both C and cn are positive con-
stants,

lim
k→∞

(Ccnk
n)

1/k
= 1. (6.44)

Therefore, (6.43) yields

lim
k→∞

‖Ak‖1/k
∞ ≤ lim

k→∞
(Ccnk

n)
1/k

ρ(A)1−n/k = ρ(A). (6.45)

Combined with (6.27), this proves (6.28) and completes the theorem.

6.5 EXERCISES

Exercise 6.1 Show that the set Pn of polynomials of degree n in one vari-
able can be viewed as a vector space of dimension n + 1. (Hint: define
(f + g)(x) = f(x)+ g(x) for all x and define (αf)(x) = αf(x) for all x. Use
the monomials as a basis to determine the dimension.)

Exercise 6.2 Show that the derivative operator is a well-defined mapping
from the set Pn of polynomials of degree n in one variable to itself (see
exercise 6.1). Compute its matrix representation in the basis given by the
monomials.

Exercise 6.3 Prove that the operator norm defined by (6.1) is a norm on
the linear space of operators from V to W .

Exercise 6.4 Prove the product expression (6.3). (Hint: consider (AB)u =
A(Bu) and apply (6.2) twice.)

OPERATORS 93

Exercise 6.5 Prove that ‖U‖2 = 1 for any unitary matrix. (Hint: just
compute ‖Ux‖22 = (Ux)?Ux = x?U?Ux = x?x.)

Exercise 6.6 Prove that

‖A‖2 =
√
ρ(A?A) (6.46)

for any matrix A. Use this to verify (6.10) for a Hermitian operator. (Hint:
apply corollary 6.5 and compute

‖Ax‖22 = (Ax)?Ax = x?A?Ax = x?U?DUx. (6.47)

Apply exercise 6.5, or at least its hint.)

Exercise 6.7 Suppose that A is a Hermitian, positive definite matrix. Show
that for the operator norm associated with the Euclidean norm

‖A−1‖−1
2 = min

{
|λ|
∣∣ λ is an eigenvalue of A

}
. (6.48)

(Hint: if λ is an eigenvalue of A, then λ−1 is an eigenvalue of A−1.)

Exercise 6.8 Show by example that the norm

‖A‖max := max
{
|Aij |

∣∣ i, j = 1, . . . , n
}

(6.49)

does not satisfy the inequality (6.3).

Exercise 6.9 Prove that the Frobenius norm (6.5) satisfies the property
(6.3) regarding the norm of the product of matrices, even though it is not an
operator norm in the sense of (6.1) for the case where V = W (demonstrate
that by example). What happens if we allow V 6= W? (Hint: use Cauchy
(5.33) for the product formula. To prove it is not an operator norm for
V = W , evaluate the Frobenius norm of the identity matrix. For the general
case, see [33, 50].)

Exercise 6.10 Recall that a similarity transformation is of the form B =
S−1AS, where S is assumed to be invertible. Show that A and B have the
same eigenvalues.

Exercise 6.11 Suppose that A and B are n × n matrices, and that A is
invertible. Prove that AB and BA are similar matrices. (Hint: we seek an
invertible matrix S such that AB = S−1BAS. What if we choose S = A−1?)

Exercise 6.12 Prove that if an upper-triangular matrix T commutes with
its conjugate transpose (T ?T = TT ?), then it must be diagonal. (Hint: use
the block-matrix multiplication formula (3.31), where

T =

(
α b?

0 S

)
(6.50)

and S is also upper-triangular.)

94 CHAPTER 6

Exercise 6.13 Suppose that D is a diagonal matrix with diagonal entries
d1, . . . , dn. Show that the matrices MD and DM are just M scaled by the
diagonal entries of D via (MD)ij = Mijdj and (DM)ij = diMij.

Exercise 6.14 Let P be an invertible matrix. Show that N(x) := ‖Px‖ is
a norm for any vector norm ‖ · ‖.

Exercise 6.15 Prove that

‖Cy‖∞ ≤ n‖y‖∞ max
{
|Cij |

∣∣ i, j = 1, . . . , n
}

(6.51)

for any n× n matrix C and y ∈ Rn.

Exercise 6.16 Suppose that D is a diagonal n × n matrix. Prove that
‖D‖∞ = max

{
|Dii|

∣∣ i = 1, . . . , n
}
.

Exercise 6.17 Verify the block-matrix multiplication formula expressed by
the first equality in (6.19). (Compare exercise 3.5.)

Exercise 6.18 Verify the block-matrix multiplication formula expressed by
the first equality in (6.21). (Compare exercise 3.5.)

Exercise 6.19 Show that (6.25) is a complete flag that supports any upper-
triangular matrix.

Exercise 6.20 Prove theorem 6.9. (Hint: first represent the operator as a
matrix using a basis of V and use the Schur decomposition to decompose this
matrix. Show that the operator can be represented as a triangular matrix in
some basis, and apply exercise 6.19.)

Exercise 6.21 Suppose that 1/p+ 1/q = 1 (q =∞ if p = 1, and p = ∞ if
q = 1). Prove that for any x ∈ Fn,

‖x‖p = sup
‖y‖q=1

|y?x|, (6.52)

where the supremum is over y ∈ Fn and F is either R or C. (Hint: first use
Hölder’s inequality (5.12). Then for p <∞, choose

yi = sign(xi)|xi|p−1. (6.53)

For p =∞, note that ‖x‖∞ = |xi| for some i; choose y accordingly.)

Exercise 6.22 Suppose that 1/p+ 1/q = 1 (q =∞ if p = 1, and p = ∞ if
q = 1). Prove that ‖A‖p = ‖A?‖q. (Hint: use exercise 6.21.)

Exercise 6.23 Suppose that M and N are n× n upper-triangular matrices
with shift indices µ and ν, respectively. Prove that MN has shift index µ+ν.
(Hint: observe that

(MN)ij =

j−ν∑

k=i+µ

NikMkj (6.54)

for all i, j.)

OPERATORS 95

Exercise 6.24 Suppose that N is an n × n matrix such that Nij = 0 for
i > j − 1. Prove that Nk

ij = 0 for i > j − k. (Hint: use induction and
exercise 6.23.)

Exercise 6.25 Suppose that N is an n × n matrix such that Nij = 0 for
i > j − ν, that is, the shift index of N is µ. Suppose that D is an n × n
diagonal matrix. Prove that DN and ND have a shift index of at least ν.
(Hint: see the hint for exercise 6.23.)

Exercise 6.26 Suppose that the binary expansion of j has at least n zeros,
that is, ν(j) ≥ n. Thus there are at least n factors N in P (j) defined in
(6.34). Prove that P (j) = 0. (Hint: use exercise 6.25 to prove that the shift
index of P (j) is at least n.)

6.6 SOLUTIONS

Solution of Exercise 6.10. First, note that by multiplying B = S−1AS
on the left by S, we get SB = AS. Multiplying this on the right by S−1,
we find SBS−1 = A. Thus the similarity relationship is transitive. Suppose
that AX = λX . Then

λX = AX = SBS−1X.

Multiplying this by S−1 on the left shows that

λS−1X = BS−1X.

Thus S−1X is an eigenvector of B with eigenvalue λ. Therefore, we have
proved that all the eigenvalues of A are eigenvalues of B. Since the similarity
relationship is reflexive, all the eigenvalues of B are thus eigenvalues of A,
and so they are the same. QED

Solution of Exercise 6.12. Using the block-matrix multiplication formula
(3.31), we find that

TT ? =

(
α b?

0 S

)(
α 0
b S?

)
=

(
|α|2 + b?b b?S?

Sb SS?

)
(6.55)

and

T ?T =

(
α 0
b S?

)(
α b?

0 S

)
=

(
|α|2 αb?

αb S?S

)
. (6.56)

Thus we see that TT ? = T ?T implies b = 0 (compare the upper-left entries)
and SS? = S?S. Thus the result is easily completed via induction on the
size of the matrix T .

Let us assume that T is n × n. If n = 2, then S is just a scalar, and
thus b = 0 implies T is diagonal. Now suppose that the result is known for
matrices of size (n−1)× (n−1), for some n ≥ 3. Then the equality of (6.55)

96 CHAPTER 6

and (6.56) implies that SS? = S?S. Since S is an upper-triangular matrix
of size (n − 1) × (n − 1), we conclude that S must be diagonal. Together
with the fact that b = 0 implies that T is diagonal.

Solution of Exercise 6.13. Just compute:

(MD)ij =

n∑

k=1

MikDkj = Mijdj

and

(DM)ij =

n∑

k=1

DikMkj = diMij .

QED

Solution of Exercise 6.14. It is clear that N(sx) = |s|N(x) for any scalar
s since P (sx) = sPx. The triangle inequality is equally easy: P (x + y) =
Px+ Py, so

N(x+ y) = ‖Px+ Py‖ ≤ ‖Px‖+ ‖Py‖ = N(x) +N(y).

Now suppose that N(x) = 0. Then Px = 0, and since P is invertible, we
have x = 0. QED

Chapter Seven

Nonlinear Systems

In 1740, Thomas Simpson published “Essays on several cu-
rious and useful subjects in speculative and mix’d mathe-
maticks, illustrated by a variety of examples,” in which he
presents Newton’s method essentially in the form (2.30),
together with a generalization to systems of two equations,
and shows that Newton’s method can solve optimization
problems by setting the gradient to zero [174].

We now turn to finding solutions of nonlinear systems of equations. There
are many ways in which nonlinear systems of equations arise. One common
one is in the minimization of a smooth, scalar-valued function φ, as antici-
pated already by Simpson [174]. Minima are characterized by the equation
∇φ(x) = 0, so this suggests applying the techniques of this chapter to the
function f(x) = ∇φ(x).

We will take as an example a simple form of a problem in geodesy, the sci-
ence of determining locations in space from distance data. This has occupied
many mathematicians, including Gauss [20, 93]; it is pursued on a very large
scale [98] and is the basis for location by global positioning systems (GPS)
[153]. In figure 7.1, we depict the problem of determining the position of a
boat near a shoreline based on the distance from the boat to two markers on
shore. The distance might be determined by measuring the time it takes for
sound to travel to the boat. A flash of light could indicate when the sound
was emitted. The mathematical problem can be described in two equations

c

(0, 0) (a, 0)

b

(x, y)

Figure 7.1 Determining position offshore. The unknown point (x, y) is to be de-
termined from the known distances b and c to points on the shore.

98 CHAPTER 7

for the distances:

b =
√
x2 + y2 c =

√
(x− a)2 + y2. (7.1)

We can turn this into a problem similar to what we studied in chapter 2 by
defining the function

f(x1, x2) =

(
x2

1 + x2
2

(x1 − a)2 + x2
2

)
. (7.2)

Our problem is thus reduced to finding a solution to f(x1, x2) = (b2, c2).
Now we consider such problems in general.

Thus we suppose that we have a function f : Rn → Rn and we want to find
points x ∈ Rn where f(x) = y for some y ∈ Rn. Without loss of generality,
we usually assume that y = 0 by simply subtracting y from f to create a new
function. Correspondingly, we may also cast this as a fixed-point problem:
g(x) = x. As we have seen in the one-dimensional case (chapter 2), there
may be several different g’s whose fixed points correspond to the solutions
of f(x) = 0. However, the setting of fixed-point iteration is still, as in the
one-dimensional case, the place to start.

7.1 FUNCTIONAL ITERATION FOR SYSTEMS

We just need to interpret the notation: g now maps Rn to itself, and fixed-
point iteration seeks to find a fixed point

ξ = g(ξ), (7.3)

where now ξ ∈ Rn. Fixed-point iteration

xν = g(xν−1) (7.4)

still has the property that, if it converges, it converges to a fixed point (7.3),
assuming only that g is continuous (exercise 7.1).

We emphasize now that g represents n functions g1, . . . , gn that each map
Rn to R (we will limit our discussions to real-valued functions for simplicity).
The basic behavior is the same as in the one-dimensional case, provided we
use norms to measure vectors where we used absolute values before. If g is
Lipschitz-continuous with constant λ < 1, that is,

‖g(x)− g(y)‖ ≤ λ‖x− y‖ (7.5)

for some norm ‖ · ‖ on Rn, then convergence will happen for all starting
points. More precisely, if we define eν = xν − ξ, then by induction

‖eν+1‖ = ‖g(xν)− g(ξ)‖ ≤ λ‖eν‖ ≤ λν‖e0‖. (7.6)

In fact, we have used (7.5) with only one x, namely, x = ξ.
The rest of the story is similar to the one-dimensional case, except that we

need some higher-dimensional calculus to figure out when and how fast it will
converge. We can discover the local behavior by using a Taylor expansion:

g(y) = g(x) + Jg(x)(x − y) +Rg(x, y), (7.7)

NONLINEAR SYSTEMS 99

where the remainder Rg(x, y) satisfies

‖Rg(x, y)‖ ≤ C‖x− y‖2 (7.8)

and Jg denotes the Jacobian of g, that is, the matrix with entries

(Jg(x))ij =
∂gi

∂xj
(x). (7.9)

We can present this visually as

Jg(x) =




∂g1

∂x1
(x) ∂g1

∂x2
(x) · · · ∂g1

∂xn
(x)

∂g2

∂x1
(x) ∂g2

∂x2
(x) · · · ∂g2

∂xn
(x)

...
...

...
...

∂gn

∂x1
(x) ∂g1

∂x2
(x) · · · ∂gn

∂xn
(x)



. (7.10)

For example, for f defined in (7.2), then

Jf (x) =

(
2x1 2x2

2(x1 − a) 2x2

)
. (7.11)

We recall that Jg may be thought of as a matrix-valued function, that is, a

map Rn → Rn2

. The expression Jg(x)(x− y) in (7.7) is just a matrix-vector
multiplication. Reviewing the expression (7.6), we have

‖eν+1‖ = ‖g(xν)− g(ξ)‖
= ‖Jg(ξ)e

ν +Rg(ξ, x
ν)‖

≤‖Jg(ξ)e
ν‖+ ‖Rg(ξ, x

ν)‖
≤‖Jg(ξ)‖ ‖eν‖+ C‖eν‖2,

(7.12)

where ‖Jg(ξ)‖ is the operator norm of Jg(ξ). Thus we see that the limiting
behavior of fixed-point iteration will be determined by the value of ‖Jg(ξ)‖.

There are several “theorems” that one could present based on the analysis
above, but the following local result is the most important.

Theorem 7.1 Suppose that the spectral radius ρ(Jg(ξ)) < 1 at a fixed point
ξ = g(ξ) and that the Taylor expansion (7.7) holds with the constant C in
(7.8) (in some norm) fixed for all y in a neighborhood of x = ξ. Then
fixed-point iteration (7.3) converges provided that x0 is close enough to ξ.

The main point of this result is that there is no reference to any particular
norm in the estimation of the size of Jg(ξ). We leave the proof of this
result as exercise 7.2. The trick is to pick a norm sufficiently close to the
spectral radius for the matrix Jg(ξ) using theorem 6.8. Note that if the
Taylor expansion (7.7) holds with the constant C in (7.8) fixed for all y in
a neighborhood of x = ξ, then it holds for any norm by the equivalence of
norms on Rn (section 5.3.2).

We need to justify the Taylor expansion (7.7) with the remainder term in
(7.8). But to do so, we need to develop some notation, which we will do in
section 7.1.2.

100 CHAPTER 7

7.1.1 Limiting behavior of fixed-point iteration

Fixed-point iteration in higher dimensions can have a more complicated set
of behaviors than in the one-dimensional case. Using the Taylor expansion
(7.7), we can write

eν+1 = xν+1 − ξ = g(xν)− g(ξ)
= Jg(ξ)(x

ν − ξ) +Rg(ξ, x
ν)

≈ Jg(ξ)e
ν +O

(
‖eν‖2

)

≈ Jg(ξ)e
ν .

(7.13)

Thus the errors evolve iteratively by multiplying the Jacobian matrix Jg(ξ).
These vectors are very similar to those generated by the power method for
solving eigenproblems in section 15.1. Thus we will see that the generic
behavior is that eν will tend to an eigenvector of Jg(ξ) corresponding to
an eigenvalue λ, where |λ| = ρ(Jg(ξ)), exactly in line with the statement
of theorem 7.1. However, a simple example shows that other behaviors are
possible. Define

g(x) = Ax+ ξ ‖x‖22, (7.14)

where A is a matrix such that Aξ = 0. The fixed point of interest is x = 0,
and it is easy to see that Jg(0) = A. Suppose that we take x0 = εξ. Then
by induction,

xν = ε2
ν

ξ. (7.15)

Thus we find quadratic convergence in this special case.

7.1.2 Multi-index notation

For the time being, we will focus on scalar-valued (real- or complex-valued)
functions. We will apply these ideas later to vector-valued functions. A
multi-index, α, is an n-tuple of nonnegative integers, αi. The length of α is
given by

|α| :=
n∑

i=1

αi. (7.16)

For a smooth function φ : Rn → R, the notations

Dαφ,

(
∂

∂x

)α

φ, φ(α), ∂α
xφ, and φ,α1α2···αn

(7.17)

are used interchangeably to denote the partial derivative
(
∂

∂x1

)α1

· · ·
(
∂

∂xn

)αn

φ. (7.18)

Given a vector x = (x1, . . . , xn) ∈ Rn, we define

xα := xα1

1 · xα2

2 · · ·xαn
n . (7.19)

NONLINEAR SYSTEMS 101

Note that if x is replaced formally by the symbol ∂
∂x :=

(
∂
∂x1

, . . . , ∂
∂xn

)
, then

this definition of xα is consistent with the previous definition of
(

∂
∂x

)α
. The

order of this derivative is given by |α|.
For the moment, let us focus on scalar-valued functions, e.g., u : Rn → R.

The Taylor polynomial of order m expanded at y is given by

Tm
y u(x) =

∑

|α|<m

1

α!
Dαu(y)(x− y)α, (7.20)

where

α! =
n∏

i=1

αi!. (7.21)

For ϕ ∈ Cm
(
[0, 1]

)
, we have (exercise 7.4)

ϕ(1) =

m−1∑

k=0

1

k!
ϕ(k)(0) +

∫ 1

0

1

(m− 1)!
sm−1ϕ(m)(1 − s) ds. (7.22)

Let u be a Cm function on Rn. For x ∈ Rn and y ∈ Rn, define

ϕ(s) = u
(
y + s(x− y)

)
. (7.23)

Then, by using the chain rule, we obtain

1

k!
ϕ(k)(s) =

∑

|α|=k

1

α!
Dαu

(
y + s(x− y)

)
(x− y)α. (7.24)

We will prove (7.24) shortly. Combining (7.22) and (7.24), we obtain

u(x) =
∑

|α|<m

1

α!
Dαu(y)(x− y)α

+
∑

|α|=m

(x − y)α

∫ 1

0

m

α!
sm−1Dαu

(
x+ s(y − x)

)
ds

= Tm
y u(x) +m

∑

|α|=m

(x− y)α

∫ 1

0

1

α!
sm−1Dαu

(
x+ s(y − x)

)
ds.

(7.25)

Applying (7.25) to each component of a function g : Rn → Rn for m = 2,
we obtain the following expression for the ith component of the error term
Rg(x, y) in (7.7):

Rg(x, y)i = 2
∑

|α|=2

(x− y)α

∫ 1

0

1

α!
sDαgi

(
x+ s(y − x)

)
ds. (7.26)

To prove (7.24), we start with the chain rule:

ϕ′(s) = (x− y) · ∇u
(
y + s(x− y)

)

=

n∑

i=1

(xi − yi)u,i

(
y + s(x− y)

)

=
∑

|α|=1

(x− y)αDαu(y).

(7.27)

102 CHAPTER 7

This covers the case k = 1. We apply the chain rule again to (7.27) to find

ϕ′′(s) =

n∑

i=1

(xi − yi)(x− y) · ∇u,i

(
y + s(x− y)

)

=
n∑

i,j=1

(xi − yi)(xj − yj)u,ij

(
y + s(x− y)

)

= (x− y)THu (y + s(x− y)) (x− y),

(7.28)

where the matrix Hu is called the Hessian1 of u. This allows a useful repre-
sentation of the Taylor approximation of order 2:

u(x) ≈ u(y) +∇u(y) · (x − y) + 1
2 (x− y)THu(y)(x− y). (7.29)

To establish the relationship with (7.24), we just count the terms in (7.28):

ϕ′′(s) =

n∑

i,j=1

(xi − yi)(xj − yj)u,ij

(
y + s(x − y)

)

=

n∑

i=1

(xi − yi)
2u,ii

(
y + s(x− y)

)

+ 2
n∑

i>j=1

(xi − yi)(xj − yj)u,ij

(
y + s(x− y)

)

=
∑

|α|=2

2

α!
(x− y)αDαu(y + s(x − y)).

(7.30)

This covers the case k = 2; since this is all we need to derive (7.26), we leave
the general case to exercise 7.5.

7.1.3 Higher-order convergence

Suppose that Jg(ξ) = 0 at a fixed point ξ = g(ξ). By analogy with the
one-dimensional case, we expect higher-order convergence in this case. Let
us examine this now formally. We have by (7.7),

g(y)− g(ξ) = Rg(ξ, y), (7.31)

where the remainder Rg(ξ, y) satisfies

‖Rg(ξ, y)‖ ≤ C‖ξ − y‖2 (7.32)

in view of (7.8), as can be verified by using (7.26). Therefore

‖eν+1‖ = ‖g(ξ)− g(xν)‖
= ‖Rg(ξ, x

ν)‖
≤C‖eν‖2,

(7.33)

and the convergence is second-order.

1Ludwig Otto Hesse (1811–1874) was a student of Jacobi (page 118) and was the
advisor of Lipschitz (page 17).

NONLINEAR SYSTEMS 103

7.1.4 Particular methods

Not all of the one-dimensional methods generalize to n dimensions. The
chord method becomes

xν+1 = xν −Af(xν), (7.34)

where A is a matrix. Thus g(x) = x−Af(x) and

Jg(x) = I −AJf (x) (7.35)

(see exercise 7.7). Thus we have Jg(ξ) small if A is close to Jf (ξ)−1. There-
fore, adaptive methods will attempt to approximate A ≈ Jf (ξ)−1.

7.2 NEWTON’S METHOD

Newton’s method takes A = Jf (xν)−1 in the chord method (7.35); that is,
we solve the linear system

Jf (xν)(xν+1 − xν) = −f(xν) . (7.36)

We can write this as a fixed-point iteration with

g(x) = x− Jf (x)−1f(x). (7.37)

To compute Jg in this case will require some work.
To begin with, let us rewrite the expression (7.37) as

Jf (x)g(x) = Jf (x)x − f(x). (7.38)

Thus we need to differentiate the product h(x) = Jf (x)g(x) for two different
functions g, so let us consider this separately. Formally, we can expect this
to be of the form

Jh(x) = Jf (x)Jg(x) +Hf (x)g(x), (7.39)

where Hf (x) (the Hessian of the vector function f) involves second-order
derivatives of f . The reasoning is just that the derivative of a product
satisfies the rule (uv)′ = uv′ + u′v. Note the similarity to (7.35). What is a
bit unusual about the expression (7.39) is that, as an equation for matrices,
the “type” of Hf (x) is new. It is an algebraic object that maps a vector to
a matrix.

7.2.1 Tensors

Let us consider a function of the form

u(x) = Jf (x)ξ, (7.40)

where ξ ∈ Rn is a fixed (constant) vector. Thus

uj(x) =
n∑

k=1

∂fj

∂xk
(x)ξk . (7.41)

104 CHAPTER 7

Differentiating, we find

∂uj

∂x`
(x) =

n∑

k=1

∂2fj

∂xkx`
(x)ξk. (7.42)

Let us define Hf (x) as a map of Rn → Rn2

via

(Hf (x)ξ)j,` =

n∑

k=1

∂2fj

∂xkx`
(x)ξk ∀ξ ∈ R

n. (7.43)

Thus (7.42) can be written as

Ju(x) = Hf (x)ξ. (7.44)

This allows us to justify (7.39) (see exercise 7.8).
The object Hf is called a tensor. We will not explore the algebraic proper-

ties of tensors in detail, but suffice it to say they are things with indices. The
number of indices is sometimes called the “rank” but we prefer to reserve
that word for another property, so we call the number of indices the arity of
the tensor. The arity of Hf is 3. Tensors of arity 2 are matrices, and tensors
of arity 1 are vectors (tensors of arity 0 are scalars).

The operation of multiplication of one tensor by another is often called
contraction, and it reduces the arity correspondingly. A contraction of a
tensor of arity k by one of arity ` produces a tensor of arity k− `, as we saw
in (7.44). Derivatives of tensor functions produce tensors of higher arity, as
we have seen.

The Hessian of a vector-valued function can be used to provide a Taylor
approximation analogous to (7.29):

u(x) ≈ u(y) + Ju(y)(x − y) + 1
2 (x − y)THu(y)(x− y), (7.45)

which we leave as exercise 7.11.

7.2.2 Quadratic convergence of Newton’s method

Convergence of Newton’s method is again quadratic, as we now show. Re-
turning to the expression (7.38), we differentiate it to get

Hf (x)g(x) + Jf (x)Jg(x) = Hf (x)x + Jf (x) − Jf (x) = Hf (x)x. (7.46)

Thus we can solve for Jg(x) to get

Jg(x) =Jf (x)−1 (Hf (x)x −Hf (x)g(x))

=Jf (x)−1 (Hf (x)(x − g(x)))
=Jf (x)−1

(
Hf (x)(Jf (x)−1f(x))

)
.

(7.47)

In the second step, we used the fact that tensors are linear operators (exer-
cise 7.13), and the last step is just the definition (7.37) of g. Thus we have
proved the following.

NONLINEAR SYSTEMS 105

Theorem 7.2 Suppose that g is the iteration function for Newton’s method
defined in (7.37). Then at a point x where f(x) = 0, we have Jg(x) = 0 pro-
vided that Jf (x) is invertible. In this case, Newton’s method is quadratically
convergent.

Most convergence results for Newton’s method are essentially local in na-
ture. In general, one expects chaotic behavior from Newton’s method glob-
ally [91]. The following result is just one example of the type of local result
that can be proved. See exercise 7.12 for a more sophisticated result of this
type in which the Jacobian of f is allowed to be singular at the root f(x) = 0.

Theorem 7.3 Suppose that y ∈ Rn is a root f(y) = 0. Suppose that R > 0
is chosen so that for the set

Ω =
{
x ∈ R

n
∣∣ |x− y| ≤ R

}
, (7.48)

the following conditions hold for some constants α, β:

sup
x∈Ω
‖J−1

f (x)f(x)‖ ≤α,

sup
x∈Ω
‖J−1

f (x)Hf (x)z‖ ≤ β‖z‖ ∀z ∈ R
n such that ‖z‖ ≤ α

(7.49)

for some norm ‖ · ‖ on Rn. Then if λ = αβ < 1, Newton’s method converges
in Ω. That is, for all starting points x0 ∈ Ω, all subsequent iterates remain
in Ω, and

‖xk − y‖∞ ≤ λkR. (7.50)

The gist of the theorem is that we can make α as small as we want by
choosing R small enough (exercise 7.17), provided the Jacobian Jf of f is
not too badly behaved (cf. exercise 7.12). Concrete bounds on β can be
made provided, e.g., we also assume that

sup
x∈Ω

max
j,k,`=1,...,n

∣∣∣∣
∂2fj

∂xkx`
(x)

∣∣∣∣ ≤ c, (7.51)

together with the assumption that Jf (x)−1 is bounded for x ∈ Ω. Note
that we have written the assumptions (7.49) in an invariant way. Newton’s
method is invariant with respect to multiplication on the left by a nonsingular
matrix A. That is, the iterates are the same for solving f(x) = 0 and
Af(x) = 0 for fixed A. Thus assumptions regarding convergence should
likewise be invariant [46].

The proof is just an application of (7.47): for x ∈ Ω, we have

‖Jg(x)‖ ≤‖Jf (x)−1Hf (x)(Jf (x)−1f(x))‖
≤β‖Jf (x)−1f(x)‖
≤βα = λ < 1.

(7.52)

Observe that the norm of the expression Jf (x)−1Hf (x)z is the operator norm
associated with ‖ · ‖. Applying (7.6) proves (7.50), which in turn guarantees
that all iterates remain in Ω.

106 CHAPTER 7

Note that if Jf (xν) is nearly singular at any point, then the change
xν+1 − xν can be huge. This occurs even in one dimension: consider
f(x) = cosx and start Newton’s method near x = 0. However, the be-
havior of Newton’s method in multiple dimensions with a singular Jacobian
is much more complex than in the one-dimensional case (exercise 2.5). We
give an example in section 7.2.4.

7.2.3 No other methods

Unfortunately, the other methods we studied in the one-dimensional case do
not generalize to multidimensions. For example, Steffensen’s method fails
for two reasons. At the simplest level, it is not clear how to “divide” by the
difference quotient in the vector case. But more fundamentally, the difference
approximation f(x+ f(x))− f(x) would provide differential information in
only one direction.

7.2.4 Eigen problems

The eigenvalue problem for an n × n matrix is really a system of nonlinear
equations in n+ 1 variables, which we can write as

Ax =λx

‖x‖2 = 1.
(7.53)

This is a good example to study as it is almost linear, being nonlinear only
in the last equation and in the simple product λx. Since we are talking
about eigenvalues, we allow everything to be complex. We have seen that
Newton’s method is generally effective at solving nonlinear problems, so it
is reasonable to ask how it would apply to this problem. The extension to
complex variables does not make a substantial change.

Let us write (7.53) formally as solving F (x, λ) = 0, where we can take F
to be defined by

F (x, λ) =

(
Ax− λx

1
2

(
1− ‖x‖22

)
)

=

(
Ax− λx

1
2 (1− x?x)

)
. (7.54)

The Jacobian of F is given by

JF (x, λ) =

(
A− λI −x
−x? 0

)
. (7.55)

Note that if A is Hermitian, so is JF for λ ∈ R.
Newton’s method for F is then

JF (xk, λk)

(
xk+1 − xk

λk+1 − λk

)
= −F (xk, λk), (7.56)

which translates componentwise to

(A− λkI)(xk+1 − xk)− (λk+1 − λk)xk = − (A− λkI)xk

−(xk)?(xk+1 − xk) = − 1
2 (1− ‖xk‖22).

(7.57)

NONLINEAR SYSTEMS 107

Simplifying, we find

(A− λkI)xk+1 =(λk+1 − λk)xk

−(xk)?xk+1 = − 1
2 − 1

2‖xk‖22.
(7.58)

We can unravel this system by observing that xk+1 = (λk+1 − λk)yk, where
yk solves

(A− λkI)yk = xk. (7.59)

Using the second equation in (7.58), we find that

λk+1 = λk +
1
2 + 1

2‖xk‖22
(xk)?yk

. (7.60)

We will see that Newton’s method for the eigenvalue problem is essentially
a version of what is known as inverse iteration (section 15.2).

Suppose that x, λ is an eigenpair for A. Then JF (x, λ) is singular if and
only if there is a nontrivial solution to

0 = JF (x, λ)

(
y
µ

)
=

(
Ay − λy − µx
−x?y

)
. (7.61)

There are two types of solutions. We could have µ = 0, in which case y
must be another eigenvector corresponding to λ, orthogonal to x in view
of the last component of (7.61). Or we could have µ 6= 0, in which case
(A − λI)2y = 0 and y is a generalized eigenvalue of A corresponding to λ
[11]. In either case, this implies that λ is not a simple eigenvalue. Thus for
simple eigenvalues, JF (x, λ) is nonsingular.

It is somewhat surprising that for simple eigenvalues, the system (7.59)
and (7.60), which is equivalent to (7.56), is not singular. We return to this
question at more length in section 15.2.

7.2.5 An example

The range of behaviors of Newton’s method for a singular Jacobian can best
be seen by an example [44]. Define

A =

(
0 1
0 0

)
, (7.62)

for which λ = 0 is an eigenvalue of multiplicity 2. There is one eigenvector
(1, 0)T. Then the Jacobian (7.55) satisfies

Jf (ν, µ, λ) =




−λ 1 −ν
0 −λ −µ
−ν −µ 0



 . (7.63)

If we start Newton’s method with x0 = (r, 0, λ)T, then the Newton step can

be computed explicitly to show that x1 = (r̂, 0, λ̂)T, where

r̂ = 1 +
(r − 1)2

2r
and λ̂ = λ

r2 − 1

2r2
. (7.64)

108 CHAPTER 7

Thus Newton’s method is essentially a two-dimensional iteration in this
case, with the second (middle) coordinate of the iterates always remaining

zero. Moreover, the iteration (r, λ) → (r̂, λ̂) converges to (1, 0) quadrati-
cally, whereas for general starting values, x0 = (ν, µ, λ) with µ 6= 0, the
convergence is only linear (exercise 7.20).

7.3 LIMITING BEHAVIOR OF NEWTON’S METHOD

We are primarily interested in the rapid convergence of Newton’s method
and perhaps do not care how it gets there. But it is an interesting question
in multiple dimensions as to whether the iterates wander around as they
approach the limit or perhaps instead approach the limit in a systematic
way. We can already get guidance from (2.36) in the one-dimensional case.
The sign of f ′′(α)/f ′(α) at a root f(α) = 0 determines the sign of the
error. Thus the iterates approach systematically from one side or the other
at the end of the iteration process. Moreover, there is a precise asymptotic
relationship between the errors that expresses the quadratic convergence.
But in multiple dimensions, a wider range of behaviors might be possible,
so we consider this here.

To simplify the notation, let us assume that the root of interest for the
function f : Rn → Rn is at the origin: f(0) = 0. Thus the errors ek = xk.
Denote the Newton iterates by

xk+1 = xk − Jf (xk)−1f(xk). (7.65)

We do not want to assume that the Jacobian Jf is always invertible, so we
interpret the notation in (7.65) to mean that there is a solution yk ∈ Rn to
the equation

Jf (xk)yk = f(xk), (7.66)

in which case xk+1 = xk − yk. If f(xk) is not in the range of the linear
operator Jf (xk), then no such solution is possible, and Newton’s method
fails. But we will simply ignore this situation.

Using the Taylor approximation (7.45), we have

f(xk+1) ≈ f(xk) + Jf (xk)(xk+1 − xk)

+ 1
2 (xk+1 − xk)THf (xk)(xk+1 − xk)

= 1
2 (xk+1 − xk)THf (xk)(xk+1 − xk),

(7.67)

where we have used the definition of the Newton step to cancel terms. On
the other hand, we can Taylor-expand around zero to find

f(xk+1) ≈ f(0) + Jf (0)xk+1 = Jf (0)xk+1. (7.68)

Combining (7.67) and (7.68) we find

Jf (0)xk+1 ≈ 1
2 (xk+1 − xk)THf (xk)(xk+1 − xk)

≈ 1
2 (xk)THf (0)xk

(7.69)

NONLINEAR SYSTEMS 109

since xk+1 = O
(
(xk)2

)
, cf. (2.36).

Suppose we are interested in tracking the direction of the approach to the
solution; since we have assumed that 0 = f(0), we can do this by defining

ξk = ‖xk‖−1
2 xk. (7.70)

Similarly, let

tk = ‖xk‖2. (7.71)

What we seek to understand is: do the vectors ξk on the unit sphere in R
n

tend to a limit, cycle systematically, or wander chaotically?
Let us write (7.69) in terms of ξ’s and t’s:

tk+1Jf (0)ξk+1 = Jf (0)xk+1 ≈ 1
2 (xk)THf (0)xk

= 1
2 t

2
k(ξk)THf (0)ξk.

(7.72)

Suppose there is a solution to the equation

λJf (0)ξ = ξTHf (0)ξ (7.73)

and that the vectors ξk → ξ as k → ∞. Then tk+1 ≈ (1/2λ)t2k and New-
ton’s method behaves asymptotically like a one-dimensional iteration in the
direction ξ. The problem (7.73) is a tensor eigenproblem, and the iteration
implicit in (7.72) is similar to the power method (section 15.1) [133, 132] for
ordinary eigenproblems.

Let us consider a simple example in two dimensions where f(x) = x+Q(x)
and

Q(x) =

(
xTAx
xTBx

)
, (7.74)

where A and B are 2×2 matrices. The limiting behavior of Newton’s method
is governed by the behavior of the iteration

x← ‖Q(x)‖−1
2 Q(x). (7.75)

Let us consider the following examples. First, define

A =

(
1 0
0 1

)
, B =

(
0 1
1 0

)
. (7.76)

Then there are four eigenpairs given by

Q

(
±1
0

)
= ±1

(
±1
0

)
and Q

(
±1
1

)
= ±2

(
±1
1

)
. (7.77)

Moreover, starting vectors x in (7.74) for which ±x1x2 > 0 tend rapidly to
the eigenvector with eigenvalue ±2. The four cases where the initial vector x
satisfies x1x2 = 0 go immediately to one of the eigenvectors with eigenvalue
±1 (see exercise 7.21). However, if we instead define Q in (7.74) using

A =

(
1 0
0 −1

)
, B =

(
0 1
1 0

)
, (7.78)

then the iterations (7.74) are chaotic (see exercise 7.22). Thus we see that
there can be quite complex ways in which Newton’s method can converge in
terms of the directions of approach, even though the rate of convergence is
quadratic. For more information, see [55].

110 CHAPTER 7

y
0x x

x
1

Figure 7.2 One step of Newton’s method goes from a starting point x0 to the next
iterate x1 as part of the process of converging to x. Instead of finding
x1 exactly, it may be useful to settle for the approximation y to x1.

7.4 MIXING SOLVERS

So far, we have viewed the problem of solving a nonlinear system f(x) = 0
as a two-level process. At the first level, we define a sequence of linear
problems to be solved, e.g., (7.36) for Newton’s method. The second level
is the solution of each of these linear systems, e.g., by one of the methods
studied earlier. But can we relax the separation barrier between these two
phases and potentially achieve the same result (f(x) ≈ 0) more efficiently?
Given the generality of this question, there can be many answers. Here we
will focus on only two to make it clear what some of the possibilities are.

7.4.1 Approximate linear solves

Since the steps in the nonlinear process are themselves only approximate, it is
not necessary to solve the linear systems exactly. As long as the approximate
solution is closer to the exact solution for the next nonlinear iteration than
the old one, we have made progress. We depict in figure 7.2 how this might
work.

As we progress toward the solution, it may be necessary to solve the inter-
mediate linear systems more and more accurately, and there may be other
restrictions along the way. But this suggests that we should be interested in
techniques that can approximate the solution of linear equations using less
work than the methods studied earlier. This will be the major subject of
chapters 8 and 9.

7.4.2 Approximate Jacobian

In section 2.2.4, we saw that the secant method can be more efficient than
Newton’s method depending on the relative cost of evaluating the function
f and its derivative f ′. In multidimensions, the dichotomy is even more
compelling. In the case of Newton’s method, the linear system to be solved
at each step involves the Jacobian. Evaluating all the entries in the Jacobian
matrix Jf (x) requires O

(
n2
)

work, whereas evaluating f(x) requires only
O (n) work. A more subtle approximation is thus to evaluate the Jacobian
operator only approximately, even if the resulting approximate linear system
is solved exactly. The class of quasi-Newton methods are of this form [120].
The mathematics surrounding these methods is very interesting, but lack of
time and space forces us to leave this for section 7.5.

We will see that many iterative methods require access only to the op-

NONLINEAR SYSTEMS 111

erator action corresponding to the matrix in the linear system and not to
the matrix itself. In the case of Newton’s method, the operator in question
is the Jacobian. There are iterative methods that utilize this fact and are
called matrix free methods. By Taylor’s theorem,

f(x0 + εx)− f(x0) ≈ Jf (x0)εx+O
(
ε2‖x‖2

)
. (7.79)

Thus we can use the approximation

Jf (x0)x ≈ ε−1
(
f(x0 + εx)− f(x0)

)
(7.80)

with a suitably chosen ε. Thus the action of the Jacobian operator Jf can
be approximated using only function evaluations of f [97].

7.5 MORE READING

The field of optimization is large and diverse, but the book [120] provides
a good place to start. Also see [94, 95]. Optimization on manifolds is the
subject of [1]. For more on how Newton’s method behaves for a singular
Jacobian, see [44].

7.6 EXERCISES

Exercise 7.1 Suppose that g is a continuous function. Prove that, if fixed-
point iteration (7.4) converges to some ξ, then ξ is a fixed point, i.e., it
satisfies (7.3).

Exercise 7.2 Prove theorem 7.1. (Hint: pick a norm ‖ · ‖ on R
n such that

the corresponding operator norm satisfies ‖Jg(ξ)‖ < 1. Now apply Taylor’s
theorem in this norm.)

Exercise 7.3 Suppose that g(x) = x+f(x)−y, where y ∈ Rn is fixed. Show
that Jg(x) = I + Jf (x), where I denotes the n× n identity matrix.

Exercise 7.4 Prove Taylor’s theorem with an integral remainder in one di-
mension:

f(x)−
m−1∑

k=0

f (k)(y)

k!
(x − y)k

=
(x− y)m

(m− 1)!

∫ 1

0

(1− s)m−1f (m)(y + s(x− y)) ds

=
1

(m− 1)!

∫ x

y

(t− y)m−1f (m)(t) dt .

(7.81)

(Hint: integrate by parts successively in the expression on the right-hand side
of (7.81) and keep track of the terms that appear. Show that they are the
same as on the left-hand side.)

112 CHAPTER 7

Exercise 7.5 Prove (7.24) for k ≥ 3. (Hint: use induction. Apply the
chain rule to the case k − 1 as in (7.28).)

Exercise 7.6 The Hessian Hφ of a scalar function φ is the matrix of second
derivatives

(Hφ(x))ij :=
∂2φ

∂xixj
(x). (7.82)

Prove that the Hessian of a scalar function is the Jacobian of its gradient.

Exercise 7.7 Verify (7.35). (Hint: write it out coordinatewise. That is,
consider each gj(x) = xj −

∑n
k=1 ajkfk(x) and just differentiate.)

Exercise 7.8 Verify (7.39). (Hint: use (7.44), or at least follow its deriva-
tion.)

Exercise 7.9 Apply Newton’s method to solve f(x) = (b2, c2), where f is
defined in (7.2).

Exercise 7.10 Determine the set of points x at which the Jacobian Jf (x)
is singular, where f is defined in (7.2).

Exercise 7.11 Prove (7.45). (Hint: apply (7.29) for each coordinate ui and
interpret the corresponding terms.)

Exercise 7.12 Weaken the α-condition in theorem 7.3 by the assumption
that

‖Jf (x0)−1f(x0)‖∞ = ‖x1 − x0‖∞ ≤ a, (7.83)

where x1 is the Newton iterate obtained starting with x0, and weaken the β-
condition in theorem 7.3 by the assumption that only ‖J−1

f (x0)‖∞ ≤ b. Note
that this allows Jf (y) to be singular. Let c be the constant in (7.51). As-
suming that abc ≤ 1

2 , prove that Newton’s method converges. (Hint: see
Theorem 3 in Chapter 3, Section 3.2 of [86]. Show that the Jacobians
‖J−1

f (xk)‖∞ ≤Mk for some M <∞ as k →∞. Also see exercise 8.15.)

Exercise 7.13 Consider the operator ξ → Hf (x)ξ defined in (7.43) which

maps Rn to Rn2

. Show that this is a linear operator. That is, show that

Hf (x)(ξ1 + sξ2) = (Hf (x)ξ1) + s(Hf (x)ξ2) (7.84)

for all ξ1, ξ2 ∈ Rn and all s ∈ R. (Hint: just apply the definition and use
associativity.)

Exercise 7.14 Let A be an n× n matrix. Prove that

‖A‖∞ ≤ n max
i,j=1,...,n

|aij |. (7.85)

NONLINEAR SYSTEMS 113

Exercise 7.15 Consider the Hessian operator defined in (7.43). Show that

max
j,`=1,...,n

|(Hf (x)ξ)j,`| ≤ max
j,k,`=1,...,n

∣∣∣∣
∂2fj

∂xkx`
(x)

∣∣∣∣ ‖ξ‖1. (7.86)

Exercise 7.16 Consider the Hessian operator defined in (7.43). Show that

‖Hf (x)ξ‖∞ ≤ n2 max
j,k,`=1,...,n

∣∣∣∣
∂2fj

∂xkx`
(x)

∣∣∣∣ ‖ξ‖∞. (7.87)

(Hint: apply exercises 7.14 and 7.15 and use (5.9).)

Exercise 7.17 Consider the set Ω defined in (7.48). Prove that the constant
α in (7.49) may be bounded by

α ≤ R sup
x∈Ω
‖Jf (x)−1‖2‖Jf(x)‖2. (7.88)

(Hint: apply (7.25) for m = 1.)

Exercise 7.18 Suppose that g : Rn → Rn is a C2 function such that α =
g(α) and with the property that ρ(Jg(α)) < 1. Prove that fixed-point iteration
(2.5) converges asymptotically according to

lim sup
n→∞

|xn − α|
ρ(Jg(α))n

<∞, (7.89)

at least for an initial guess x0 ∈ Rn sufficiently close to α. (Hint: compare
exercise 2.4.)

Exercise 7.19 Construct a smooth g : R
n → R

n with a fixed point α = g(α)
and with the property that ρ(Jg(α)) > 0 but such that

lim
n→∞

|xn − α|
ρ(Jg(α))n

= 0 (7.90)

for a suitable initial guess x0 ∈ Rn. (Hint: compare exercises 7.18 and 2.4.
Pick the starting guess so that all iterates lie in a lower-dimensional sub-
space orthogonal to the eigenvector corresponding to the largest eigenvalue
of Jg(α).)

Exercise 7.20 Prove that the iteration (r, λ) → (r̂, λ̂) defined in (7.64)
converges quadratically for r near 1 and λ near zero. Verify computationally
that for general starting values the convergence is only linear.

Exercise 7.21 Verify the tensor eigenrelations stated in (7.77) for Q de-
fined by (7.74) using the matrices (7.76). Verify computationally the subse-
quent statements regarding the limiting behavior of the iteration (7.75) for
various starting vectors.

Exercise 7.22 Consider the iteration (7.75) with Q defined by (7.74) using
the matrices (7.78). Show that the iterates appear to be chaotic for typical
starting vectors.

114 CHAPTER 7

7.7 SOLUTIONS

Solution of Exercise 7.4. Suppose that m = 1. Then the statement is

f(x)− f(y) = (x− y)
∫ 1

0

f (1)(y + s(x− y)) ds. (7.91)

If we let t = y + s(x− y), then dt = (x− y)ds. Then we see that

(x− y)
∫ 1

0

f (1)(y + s(x− y)) ds =

∫ x

y

f (1)(t) dt = f(x)− f(y). (7.92)

Note that s = (t− y)/(x− y) and 1− s = (x− t)/(x− y). This shows that
the two forms of the remainder are the same after a change of variables.

We will think of s = s(t) as a function of t. Observe that s(x) = 1 and
s(y) = 0. Using the same approach as in (7.92) for general m, we find by
integrating by parts that

(x− y)m

(m− 1)!

∫ 1

0

(1− s)m−1f (m)(y + s(x− y)) ds

=
(x− y)m−1

(m− 1)!

∫ x

y

(1 − s(t))m−1f (m)(t) dt

=
(x− y)m−1

(m− 1)!

∫ x

y

(m− 1)(1− s(t))m−2s′(t)f (m−1)(t) dt

− (x− y)m−1

(m− 1)!
f (m−1)(y)

=
(x− y)m−1

(m− 2)!

∫ 1

0

(1− s)m−2f (m−1)(y + s(x− y)) ds

− (x− y)m−1

(m− 1)!
f (m−1)(y).

(7.93)

That is, if we define

Rn =
(x − y)m

(m− 1)!

∫ 1

0

(1− s)(m−1)f (m)(y + s(x− y)) ds, (7.94)

then we have proved that

Rm−1 = Rm−2 −
(x− y)m−1

(m− 1)!
f (m−1)(y). (7.95)

Moreover, we also showed that R1 = f(x) − f(y). Thus iterating (7.95)
completes the proof.

Solution of Exercise 7.10. We have from (7.11) that

detJf (x) = 4 (x1x2 − (x1 − a)x2) = 4ax2. (7.96)

Thus Jf is singular only along the line joining the two stations along the
shore.

Chapter Eight

Iterative Methods

Niels Henrik Abel (1802–1829) achieved much in his short
life and is memorialized by the Abel prize, sometimes re-
ferred to as the Nobel prize of mathematics. His name
is used to denote commutativity in algebra, and he made
seminal contributions to the question of formulas for roots
of polynomials, which have implications for algorithms for
finding eigenvalues (section 14.4).

This chapter considers approximate solution techniques with potentially
fewer operations than the direct methods of chapters 3 and 4. Those methods
have the property of producing the exact answer (in exact arithmetic) in a
predictable (finite) number of operations. However, the number of operations
can approach astronomical proportions, and there is only limited benefit with
direct methods for sparse matrices (cf. section 4.3). Consider the family of
(2n− 1)× (2n− 1) matrices A which have

Aii = 2, Ai,i+1 = −1, Ai+n−1,i = −1 ∀i = 1, . . . , 2n− 1, (8.1)

with all other entries zero. Note that the bandwidth (section 4.3) of A is
n− 1. In the case n = 5, we have

A =




2 −1 0 0 0 0 0 0 0
0 2 −1 0 0 0 0 0 0
0 0 2 −1 0 0 0 0 0
0 0 0 2 −1 0 0 0 0
−1 0 0 0 2 −1 0 0 0
0 −1 0 0 0 2 −1 0 0
0 0 −1 0 0 0 2 −1 0
0 0 0 −1 0 0 0 2 −1
0 0 0 0 −1 0 0 0 2




. (8.2)

Since the bandwidth grows with n, even the banded direct methods in sec-
tion 4.3 would require O(n3) operations. We will see that iterative methods
can produce acceptable results in far fewer steps.

In many cases, we may be interested only in an approximate solution, say,
with a specified number of digits of accuracy. Moreover we saw in section 4.2,
and will see in section 18.2, that floating-point errors render direct methods
to be only approximate in practice. Thus it is reasonable to ask if there might
be other methods that would provide approximate answers in potentially
fewer operations. Iterative methods may be of interest because they allow

116 CHAPTER 8

one to stop when sufficient accuracy is reached, and they are self-correcting
in that round-off errors tend only to defer convergence not to deter it. In
some cases, one might be interested in a much lower level of accuracy from an
approximation, so iterative methods similar to those used to solve nonlinear
equations might be of interest if there is the possibility of monitoring the
progress of the approximation. In particular, if the linear equation solution
is the inner loop in an algorithm for solving a nonlinear system, a perfect
solution in the intervening linear problems may not be useful.

8.1 STATIONARY ITERATIVE METHODS

We begin with a simple example, although it is one that captures the essence
of stationary methods. Suppose M is a given matrix. If we multiply the
matrix I −M times the sum I +M +M2 +M3 + · · · , we get a telescoping
series:

(I −M)

n∑

k=0

Mk =

n∑

k=0

Mk −
n+1∑

k=1

Mk = I −Mn+1. (8.3)

If we are allowed to let n→∞, then this provides a formula for the inverse
of I −M :

(I −M)−1 =

∞∑

k=0

Mk. (8.4)

Fortunately, we have a criterion for the validity of (8.4) as follows.

Lemma 8.1 Suppose that the spectral radius ρ(M) < 1. Then I −M is an
invertible matrix and the series in (8.4) converges to (I −M)−1.

Proof. The invertibility of I−M follows directly from ρ(M) < 1; if I−M is
singular, then 0 is an eigenvalue, and thus 1 is an eigenvalue of M . We know
by theorem 6.11 that Mn → 0 as n → ∞ if and only if ρ(M) < 1. Using
(8.3) allows us to say that the partial sums of matrices B(n) =

∑n
k=0M

k

satisfy

B(n) = (I −M)−1(I −Mn+1). (8.5)

Therefore, the partial sums B(n) of the series in (8.4) tend to (I −M)−1 as
n→∞. QED

8.1.1 An algorithm

We can use the formula (8.4) as the basis for an iterative algorithm to solve
(I −M)x = f . We can write x = (I −M)−1f and approximate the result
by truncating the series (8.4). We will see that it is possible to compute
efficiently the result for n = 1, 2, . . . iteratively, and we can stop the process

ITERATIVE METHODS 117

once the approximation is sufficiently accurate. Thus suppose that we want
to compute successively, for increasing n,

xn =

(
n∑

k=0

Mk

)
f =

n∑

k=0

Mkf. (8.6)

To start with, we have x0 = f , and

xn+1 =

n+1∑

k=0

Mkf = f +

n+1∑

k=1

Mkf

= f +M

(
n∑

k=0

Mkf

)
= f +Mxn.

(8.7)

Thus the sequence xn defined in (8.6) can be computed by the simple itera-
tion

x← f +Mx, (8.8)

starting with x← f . We leave the proof of the following as exercise 8.1.

Lemma 8.2 Suppose that the spectral radius ρ(M) < 1. Then the iteration
(8.8) converges to the solution of (I −M)x = f .

Note that (8.8) is fixed-point iteration for solving the equation

x = f +Mx, (8.9)

i.e., (I −M)x = f . The error en = x− xn satisfies

en = Mne0, (8.10)

so the convergence again follows from ρ(M) < 1.

8.1.2 General matrices

The algorithm (8.8) provides a way to solve a very special system, namely,
(I −M)x = f . But what if we have a general matrix problem of the form
Ax = f to solve? Simply define M = I − A. Then A = I −M , and we are
in a position to apply the previous results. That is, if ρ(I −A) < 1, then A
is invertible, and the iteration

x← f + (I −A)x (8.11)

converges to a solution of Ax = f . We now consider more general algorithms
of this type.

8.2 GENERAL SPLITTINGS

The idea is to use a general splitting of the matrix A into A = N−P , whereN
is an invertible matrix for which we are “willing” to solve systems directly.

118 CHAPTER 8

The splitting in section 8.1.2 corresponds to the splitting A = I − M =
I − (I − A), so N = I. For example, N could be a diagonal matrix or a
triangular matrix, as systems with such matrices are easily solved directly.
The Jacobi1 method has N diagonal, and the Gauss-Seidel2 method has N
a triangular matrix.

Using the splitting, we convert the equation Ax = f to Nx = Px + f .
Mathematically, the sequence that is generated using this splitting is defined
by solving

Nxn+1 = f + Pxn. (8.12)

We can cast this as a fixed-point problem (by formally inverting N) as
x = N−1Px + g, where Ng = f . Thus (8.12) takes the same form as
(8.9), where M = N−1P (and f = g). The convergence theory for such
methods is simple iff M = N−1P = I −N−1A is convergent.

Theorem 8.3 Suppose that A = N − P with N invertible and that the
spectral radius ρ(N−1P) = ρ(I − N−1A) < 1. Then the iteration (8.12)
converges to the solution of Ax = f .

8.2.1 Jacobi method

The Jacobi method [63] has N diagonal: N = diag(A), where diag(A) de-
notes the diagonal matrix whose diagonal is the same as the diagonal of A.
Therefore, the iteration takes the special form

x← diag(A)−1f + (I − diag(A)−1A)x. (8.13)

The matrix MJ = (I − diag(A)−1A) for the Jacobi method is zero on the
diagonal and elsewhere involves just a simple scaling of A. We will see that
MJ also plays a role in the Gauss-Seidel method (section 8.2.2).

We show in figure 8.1 the spectral radius of the Jacobi iteration matrices
for the the family of matrices (8.1). Thus we see that in this example, the
Jacobi interaction can be very effective. We can show in certain cases that
the diagonal scaling used to produce MJ is a good idea, namely, when A is
diagonally dominant.

Definition 8.4 An n× n matrix A is said to be diagonally dominant if

|aii| >
∑

j 6=i

|aij | (8.14)

for all i = 1, . . . , n.

1Carl Gustav Jacob Jacobi (1804–1851) (a.k.a. Jacques Simon) was applauded by
Legendre as being “in the ranks of the best analysts of our era” together with Abel (page
115).

2Philipp Ludwig von Seidel (1821–1896) was closely associated with Jacobi and worked
on analysis as well as in areas outside mathematics, including astronomy. He is credited
with establishing, concurrently with Stokes, the notion of uniform convergence (cf. [103,
pp. 131–141] and also exercise 16.2).

ITERATIVE METHODS 119

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 20 40 60 80 100 120 140 160 180 200

Figure 8.1 The spectral radius of the Jacobi iteration matrix for the family of
matrices (8.1). The horizontal axis is the size (2n − 1) of the nth
matrix.

The convergence estimate of this section says that when A is diagonally
dominant, then Jacobi converges. If A is diagonally dominant, then the
Jacobi iteration matrix M = MJ has the property that

n
max
i=1

n∑

j=1

|mij | =
n

max
i=1

∑

j 6=i

|aij/aii| = µ < 1. (8.15)

The maximal absolute row (respectively, column) sum of M can be iden-
tified as a particular norm, ‖M‖∞ (respectively, ‖M‖1), as we describe in
exercise 8.2. Thus we have the following result.

Lemma 8.5 The matrix A is diagonally dominant if and only if

‖MJ‖∞ < 1, (8.16)

where MJ = I − diag(A)−1A denotes the Jacobi iteration matrix for A.

Corollary 8.6 If A is diagonally dominant, the Jacobi iteration (8.13) con-
verges to the solution of Ax = f .

Not only do we have a convergence condition, we also have a convergence
estimate based on the computable quantity µ = ‖MJ‖∞ (exercise 8.2). From
(8.10), we have

‖en‖∞ ≤ µn‖e0‖∞. (8.17)

Note that if we start with x0 = 0, then e0 = x, so that (8.17) can be viewed
as a relative-error estimate.

120 CHAPTER 8

Unfortunately, corollary 8.6 is far from sharp. Diagonal dominance is
not necessary for convergence of the Jacobi iteration. The matrices (8.1)
represented in figure 8.1 are not diagonally dominant, yet their spectral
radii are well below 1. We return to this issue in section 8.3.

8.2.2 Gauss-Seidel method

The easiest way to motivate the Gauss-Seidel algorithm3 is by considering
the Jacobi algorithm at the element-by-element level:

xn+1
i =

1

aii

(
fj −

∑

j 6=i

aijx
n
j

)
(8.18)

for i = 1, . . . , n. Note that precomputations could be done to avoid the
repeated divisions, but for n large, these do not add appreciably to the
overall work.

If we write this using the assignment notation, it reads

yi ←
1

aii

(
fj −

∑

j 6=i

aijxj

)
∀i = 1, . . . , n, (8.19)

and once y has been computed, we update x: x← y. Consider the modified
Jacobi algorithm defined by

xi ←
1

aii

(
fj −

∑

j 6=i

aijxj

)
∀i = 1, . . . , n. (8.20)

For one thing, (8.20) avoids the need to keep a separate temporary vector y
as needed in (8.19). Moreover, it has the heuristic benefit of using the most
recent values of xj as soon as they are available. But to understand how it
performs, we need to write it in different notation as

xn+1
i =

1

aii

(
fj −

i−1∑

j=1

aijx
n+1
j −

n∑

j=i+1

aijx
n
j

)
(8.21)

for i = 1, . . . , n. We can write this as a system of equations for xn+1 as
i∑

j=1

aijx
n+1
j = fj −

n∑

j=i+1

aijx
n
j (8.22)

for i = 1, . . . , n. Now we can explain the algorithm (8.20) in terms of split-
ting. The system (8.22) corresponds to solving Nxn+1 = f + Pxn, where
N is the lower-triangular part of A and −P is the strictly upper-triangular
part of A:

N =




a11 0 · · · 0
a21 a22 · · · 0
· · ·
an1 an2 · · · ann


 and − P =




0 a12 · · · a1n

0 0 · · · a2n

· · ·
0 0 · · · 0


 . (8.23)

3The relationship between the method described here and those considered by Gauss
and Seidel is tenuous [63], but Gauss definitely advocated iterative methods of this type
in a letter to a colleague in which he said the “procedure can be done while half asleep,
or while thinking about other things” [62].

ITERATIVE METHODS 121

The performance of Gauss-Seidel for the family of matrices in (8.1) is
very similar to that of Jacobi (exercise 8.5). On the other hand, for the
family of matrices indicated in (4.20), the spectral radii of Jacobi and of
Gauss-Seidel differ more substantially. In this case, ρ(MJ) ≈ 1− cJn−2 and
ρ(MGS) ≈ 1 − cGSn

−2, where CGS = 2CJ and CJ ≈ 1.234. Since the error
behaves like ρk after k iterations, as indicated in (8.17), we can estimate the
performance by considering the asymptotic behavior of

(1− ε)k = ek log(1−ε) ≈ e−εk. (8.24)

Thus we see that the error reduction with Jacobi for these matrices is about
e−cJk/n2

, and for Gauss-Seidel it is about e−2cJk/n2

= (e−cJk/n2

)2. This
means that it takes twice as many iterations for Jacobi to reduce the error
as much as Gauss-Seidel does. Thus Gauss-Seidel shows a substantial per-
formance improvement over Jacobi in this case, but both methods require
k = O(n2) to have substantial error reduction. In this case, the banded
direct methods are vastly superior.

A result analogous to corollary 8.6 can be proved (exercise 8.6). But we
now examine the convergence properties of general splittings.

8.2.3 Convergence of general splittings

There are simple calculations that give a general criterion for the convergence
of general splitting methods. This is useful in particular for establishing the
convergence of Gauss-Seidel and of Jacobi for an important class of matrices.
Although we are generally interested in only real matrices, we will consider
complex matrices for the moment to get a complete characterization.

To begin with, we establish a simple estimate that reveals a key matrix
that governs the success of general splittings.

Lemma 8.7 Suppose the matrix A is Hermitian and that the splitting ma-
trix N in (8.12) is nonsingular. Define the matrix

Q = N +N? −A. (8.25)

Then the subsequent iterations y = Mx = x−N−1Ax satisfy

y?Ay = x?Ax− (y − x)?Q(y − x). (8.26)

The expression
√
v?Bv forms a norm on v ∈ C

n under suitable conditions
(exercise 8.7). The interpretation of (8.26) is then that the norm of y is
less than the norm of x (unless y = x, in which case a fixed point has been
reached).

Proof (of Lemma 8.7). We haveNy = Nx−Ax, so thatN(y−x) = −Ax.
Define e = y−x. Then e?Ne = −e?Ax, and by conjugating this expression,
we also have

e?N?e = e?Ne = −e?Ax = −x?Ae.

122 CHAPTER 8

Therefore,

(y − x)?Q(y − x) = e?(N +N? −A)e = −e?Ax− x?Ae− e?Ae

= − e?Ax− (x + e)?Ae = −e?Ax− y?Ae

= − y?Ax+ x?Ax− y?Ay + y?Ax

=x?Ax− y?Ay. QED

(8.27)

Lemma 8.8 Suppose that A is a Hermitian matrix and that the splitting
matrix N in (8.12) is nonsingular. Suppose that the matrix Q defined in
(8.25) is positive definite. Then the matrix M = I−N−1A satisfies ρ(M) <
1 if and only if A is positive definite.

Before proving the result, let us see why it is useful. For Gauss-Seidel,
Q = diag(A), where diag(A) denotes the diagonal matrix whose diagonal is
the same as the diagonal of A. When A is positive definite, diag(A) is always
positive. Thus we have the following [136].

Corollary 8.9 Suppose that A is Hermitian with a positive diagonal. Then
Gauss-Seidel is convergent if and only if A is positive definite.

It appears that Gauss-Seidel provides a test for positive definiteness for a
certain class of matrices (Hermitian with a positive diagonal). This is not
surprising since iterations of this type are closely linked to the power method
for determining eigenvalues (section 15.1).

Proof (of Lemma 8.8). Suppose that Mx = λx. Then λx = x−N−1Ax,
and so (1− λ)Nx = Ax. Thus

(1− λ)x?Nx = x?Ax. (8.28)

We are mainly interested in the “if” part of the theorem, so we start with
that. So suppose that A is positive definite. Then x?Ax > 0 since x 6= 0.
In particular, this shows that x?Nx 6= 0 and λ 6= 1. Moreover,

1

1− λ =
x?Nx

x?Ax
. (8.29)

The complex conjugate of (8.29) is

1

1− λ̄ =
x?N?x

x?Ax
. (8.30)

Adding (8.29) and (8.30), we find

2Re 1

1− λ =
x?(N +N?)x

x?Ax
=
x?(A+Q)x

x?Ax
= 1 +

x?Qx

x?Ax
, (8.31)

where Re z is the real part of z. Because we have assumed Q is positive
definite, the last term in (8.31) is positive, so (8.31) implies that

2Re 1

1− λ > 1. (8.32)

ITERATIVE METHODS 123

Using the relation 1/z = z̄/|z|2 for any complex z, we reduce (8.32) to

2Re (1− λ̄) > |1− λ|2. (8.33)

Writing λ = µ+ iν, (8.33) expands to give

2(1− µ) > |1− µ|2 + ν2 = 1− 2µ+ µ2 + ν2. (8.34)

But (8.34) is precisely the condition 1 > µ2 + ν2, i.e., |λ| < 1.
For the “only if” case, we refer the reader to exercises 8.8 and 8.9. QED

For the Jacobi iteration, Q = 2 diag(A) − A, where diag(A) denotes the
diagonal matrix whose diagonal is the same as the diagonal of A. Suppose
that A = I +B for some matrix B. Then Q = I −B. Let the eigenvalues of
B be denoted by λB

i . Then the eigenvalues of A are 1 + λB
i , and those of Q

are 1− λB
i . Thus the condition for Jacobi to be convergent is that

min{λB
i } > −1 (A > 0) and max{λB

i } < 1 (Q > 0). (8.35)

The Q-condition is clearly quite restrictive and indicates that diagonal dom-
inance is quite important for the success of the Jacobi method.

To give a concrete example, consider the matrix

A =




6 −4 1
−4 6 −4
1 −4 6



 , (8.36)

which has positive eigenvalues (and is thus positive definite). The eigenvalues
of the corresponding Jacobi iteration matrix

MJ =
1

6




0 4 −1
4 0 4
−1 4 0


 (8.37)

are 1/6 and (−1±
√

129)/12. The eigenvalue (−1−
√

129)/12 ≈ −1.03, and
thus the Jacobi iteration is not convergent for the matrix A defined in (8.36).

8.3 NECESSARY CONDITIONS FOR CONVERGENCE

In section 8.2.3, we proved some theorems establishing necessary and suffi-
cient conditions for convergence of general splitting methods for a limited
class of matrices. For more general matrices, only limited results are avail-
able. However, it is possible to establish a result that provides a converse
to corollary 8.6. Moreover, it exposes some important structural features of
the Jacobi iteration.

The main weakness in using the concept of diagonal dominance to charac-
terize the Jacobi iteration is that it is not independent of scaling. Moreover,
the Jacobi iteration itself is invariant with respect to certain types of scaling.
We can write the iteration matrix for the Jacobi iteration for A as

MJ(A) = I − diag(A)−1A, (8.38)

124 CHAPTER 8

where diag(A) denotes the diagonal matrix that agrees with A on the diag-
onal. Suppose that B is a diagonal matrix. Then Ax = f iff BAx = Bf ,
and

MJ(BA) = I − diag(BA)−1BA = I − diag(A)−1B−1BA = MJ(A) (8.39)

since diag(BA) = B diag(A) (cf. exercise 8.11). Thus scaling by multiplica-
tion on the left by a diagonal matrix does not change the convergence prop-
erties of Jacobi, and indeed the two methods generate the same sequence of
iterates (exercise 8.13). And by lemma 8.5, A is diagonally dominant iff BA
is diagonally dominant. However, diagonal scaling by right-multiplication
changes the concept of diagonal dominance substantially.

8.3.1 Generalized diagonal dominance

The notion of generalized diagonal dominance [89] captures the effect of
scaling by right-multiplication. For any v ∈ Rn, define diag(v) to be the
diagonal matrix such that diag(v)ii = vi. Note that

(Adiag(v))ij = aijvj (8.40)

for all i, j. Let Rn
+ denote the subset of Rn consisting of vectors with positive

entries.

Definition 8.10 An n × n matrix A is said to satisfy generalized diag-
onal dominance (by rows) if, for some positive scaling vector v ∈ Rn

+,

Ã = Adiag(v) is diagonally dominant, that is,

vi|aii| >
∑

j 6=i

vj |aij | (8.41)

for all i = 1, . . . , n.

Analogous to lemma 8.5, we have the following result.

Lemma 8.11 The matrix A satisfies generalized diagonal dominance iff for
some positive scaling vector v ∈ Rn

+

‖I − diag(Ã)−1Ã‖∞ < 1, (8.42)

where Ã = Adiag(v).

We saw that diagonal scaling of A on the left did not change the Jacobi
iteration matrix. Scaling on the right changes it via a similarity transforma-
tion.

Lemma 8.12 Suppose that v ∈ Rn
+ and A is any n × n matrix. Define

Ã = Adiag(v). Then

MJ(Ã) = diag(v)−1MJ(A)diag(v). (8.43)

Thus the Jacobi iteration (8.13) converges to the solution of Ax = f iff the

Jacobi iteration converges to the solution of Ãy = g.

ITERATIVE METHODS 125

The proof of the latter statement could proceed by relating the iterates of
the Jacobi method for A and Ã. We leave this approach as exercise 8.14. In-
stead, we argue more abstractly by exploiting the relationship (8.43) between
their respective Jacobi iterations matrices.

Proof. By (8.40), we see that

diag(Adiag(v)) = diag(A)diag(v). (8.44)

Therefore,

MJ(Adiag(v)) = I − diag(Adiag(v))−1Adiag(v)

= I − diag(v)−1diag(A)−1Adiag(v)

= diag(v)−1
(
I − diag(A)−1A

)
diag(v)

= diag(v)−1MJ(A)diag(v).

(8.45)

Since (8.45) represents a similarity transformation,

ρ(MJ(Adiag(v))) = ρ(MJ(A)) (8.46)

(exercise 6.10). Thus the Jacobi iteration for A converges iff the Jacobi

iteration for Ã converges. QED

Analogous to corollary 8.6, we have the following result.

Corollary 8.13 If A satisfies generalized diagonal dominance, the Jacobi
iteration (8.13) converges to the solution of Ax = f .

Proof. By lemma 8.12, theorem 6.2, and lemma 8.11,

ρ(MJ(A)) = ρ(MJ(Adiag(v))) ≤ ‖MJ(Adiag(v))‖∞ < 1. (8.47)

QED

Under certain conditions [89], generalized diagonal dominance provides a
necessary condition for the convergence of Jacobi (and Gauss-Seidel). Rather
than deriving conditions on A that are necessary for convergence, we take
the point of view that the issue is to estimate the spectral radius of the
Jacobi iteration matrix more effectively. However, we will see that this leads
to the same results.

8.3.2 Estimating the spectral radius

We know that the convergence of Jacobi depends precisely on the size of
the spectral radius ρ(MJ). Thus what is needed is a better way to estimate
ρ(MJ). We will do this in the case where MJ is nonnegative, as is the case
with the families of matrices (4.20) and (8.1). But first we establish an
identity for a general matrix A.

For v ∈ Rn
+, define a new norm on Rn by

‖x‖v = ‖diag(v)x‖∞ (8.48)

126 CHAPTER 8

(cf. exercise 6.14). Note that
(
diag(v)Adiag(v)−1

)
ij

=
vi

vj
aij (8.49)

for any matrix A (exercise 8.16). Then the associated operator norm satisfies

‖A‖v = max
x 6=0

‖diag(v)Ax‖∞
‖diag(v)x‖∞

= max
y 6=0

‖diag(v)Adiag(v)−1y‖∞
‖y‖∞

[y = diag(v)x]

= ‖diag(v)Adiag(v)−1‖∞

= max
i=1,...,n

n∑

j=1

vi

vj
|aij |. [by (8.49) and exercise 8.2]

(8.50)

Note that by theorem 6.2,

ρ(A) ≤ inf
v∈Rn

+

‖A‖v. (8.51)

The following result says that we can effectively approximate the spectral
radius using the ∞-norm with the appropriate weight.

Lemma 8.14 Suppose that M is a nonnegative n×n matrix with a positive
eigenpair λ > 0 and x > 0, i.e., Mx = λx and x = (x1, . . . , xn) with xi > 0
for all i = 1, . . . , n. Then

ρ(M) = min
v∈Rn

+

‖M‖v = ‖M‖w, (8.52)

where wi = 1/xi for all i = 1, . . . , n.

Proof. In view of (8.51), we just need to verify that ρ(M) = ‖M‖w. But
by (8.50),

ρ(M) ≤ ‖M‖w = max
i=1,...,n

n∑

j=1

xj

xi
|mij | = max

i=1,...,n

1

xi

n∑

j=1

xjmij

= max
i=1,...,n

1

xi
λxi = λ ≤ ρ(M).

(8.53)

QED

For the matrix in (8.1) for n = 50, figure 8.2 depicts the eigenvector
corresponding to the eigenvalue λ = ρ(M) for the associated Jacobi iteration
matrix. This depicts the weighting vector w in lemma 8.14 for this matrix.

The proof of lemma 8.14, and more precisely (8.53), leads to the following
result, which says that the only positive eigenvalue associated with a positive
eigenvector for a nonnegative matrix M is λ = ρ(M).

Corollary 8.15 Suppose that M is a nonnegative n× n matrix with a pos-
itive eigenpair λ > 0 and x > 0. Then λ = ρ(M).

ITERATIVE METHODS 127

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 10 20 30 40 50 60 70 80 90 100

Figure 8.2 The eigenvector of the Jacobi iteration matrix for the family of matrices
(8.1) for n = 50. The horizontal axis is the index of the eigenvector.

8.3.3 Convergence conditions

If A is a matrix with positive diagonal and negative off-diagonal entries,
then the Jacobi iteration matrix MJ(A) = I − diag(A)−1A is nonnegative.
Thus if MJ(A) has a positive eigenpair λ > 0 and x > 0, we conclude from
lemma 8.14 that Jacobi converges only if ‖MJ(A)‖w < 1, where wi = 1/xi

for i = 1, . . . , n. We now show that this implies that A satisfies generalized
diagonal dominance. By (8.50), for all i = 1, . . . , n,

aiixi > aiixi

n∑

j=1

xj

xi
mij = aiixi

n∑

i6=j=1

xj

xi

|aij |
aii

=

n∑

i6=j=1

xj |aij |. (8.54)

Thus we have proved the following result.

Theorem 8.16 Suppose A is a matrix with positive diagonal and negative
off-diagonal entries and that the Jacobi iteration matrix

MJ(A) = I − diag(A)−1A

has a positive eigenpair λ > 0 and x > 0. If the Jacobi method for A
is convergent, then A satisfies generalized diagonal dominance (8.41) with
v = x.

Fortunately, simple additional conditions are known that guarantee the
existence of positive eigenpairs for positive matrices, as we describe in the
section 8.3.4. Thus theorem 8.16 provides a broadly applicable converse to
corollary 8.13.

128 CHAPTER 8

8.3.4 Perron-Frobenius theorem

The Perron4-Frobenius5 theorem provides a sufficient condition to guarantee
the existence of the positive eigenpair appearing in lemma 8.14. The result
holds for a nonnegative matrix provided that it cannot be decomposed in a
particular way.

Definition 8.17 An n × n matrix A is said to be reducible if the indices
can be partitioned into two sets

{1, 2, . . . , n} = {i1, . . . , ik} ∪ {j1, . . . , jl}, (8.55)

where n = k + l, with aiκ,jν
= 0 for all κ = 1, . . . , k and ν = 1, . . . l. If no

such partition exists, A is said to be irreducible.

Theorem 8.18 Suppose that M is a nonnegative n× n irreducible matrix.
Then it has a positive eigenpair λ > 0 and x > 0, i.e., Mx = λx and
x = (x1, . . . , xn) with xi > 0 for all i = 1, . . . , n. Moreover, λ = ρ(M).

This theorem can be proved by considering the power method for com-
puting eigenpairs, so we postpone it until chapter 14.

Note that the concept of reducibility relates only to off-diagonal elements
of a matrix. Since indices of the nonzero off-diagonals of A and the Jacobi
iteration matrix Mj(A) are the same, we conclude that A is reducible iff
MJ(A) is reducible. Thus we have the following theorem.

Theorem 8.19 Suppose that A is an n × n irreducible matrix that is pos-
itive on the diagonal and negative off-diagonal. Then the Jacobi iteration
converges iff A satisfies generalized diagonal dominance.

8.4 MORE READING

For further information, see [13, 73, 168]. There are many variants and
generalizations of Jacobi and Gauss-Seidel iterations. In particular, parallel
computation introduces new constraints and leads to novel algorithms [145].
Algorithms have been proposed [106] to determine whether a given matrix
satisfies general diagonal dominance.

8.5 EXERCISES

Exercise 8.1 Prove lemma 8.2. (Hint: see the proof of lemma 8.1; note
that xn = B(n)f .)

4Oskar Perron (1880–1975) was, like David Hilbert, Hermann Minkowski, Arnold
J. W. Sommerfeld, and Martin Kutta (see page 275), a student of Lindemann, who was
in turn a student of Felix Klein.

5See page 83.

ITERATIVE METHODS 129

Exercise 8.2 Let B be an n× n matrix. Prove that the maximum absolute
row sum can be identified as

n
max
i=1

n∑

j=1

|Bij | = ‖B‖∞ (8.56)

and that the maximum absolute column sum can be identified as

n
max
j=1

n∑

i=1

|Bij | = ‖B‖1. (8.57)

Exercise 8.3 Consider the iteration matrix for the general splitting method
M = I −N−1A, where N is any invertible matrix. Show that if λ = 1 is an
eigenvalue of M , then A cannot be invertible. (Hint: see the derivation of
(8.28).)

Exercise 8.4 Consider the iteration matrix for the general splitting method
M = I−N−1A, where N is any invertible matrix. Show that if λ = 1 is not
an eigenvalue of M , then successive iterations y = Mx must satisfy y 6= x.

Exercise 8.5 Compare the Jacobi iteration with the Gauss-Seidel iteration
for the family of matrices in (8.1). Take for the right-hand side a vector
F with all entries equal to 1, and take for starting vector X0 = 0 in both
cases. Compare the error for the two methods as a function of the number of
iterations. How does this change with the size of the matrices in (8.1) (that
is, for different n)?

Exercise 8.6 Suppose that the Jacobi iteration matrix MJ = I − D−1A,
where D = diag(A) is the diagonal matrix that agrees with A on the diagonal,
satisfies ‖MJ‖∞ < 1. Prove that Gauss-Seidel converges, in particular,
that ‖MGS‖∞ < 1. (Hint: at each iteration, where y = MGSx, proceed by
induction on i to show that |yi| ≤ ‖MJ‖∞‖x‖∞.)

Exercise 8.7 Prove that the expression ‖v‖B :=
√
v?Bv defines a norm on

Cn provided that B is Hermitian and positive definite. Compare this with
exercise 6.14 and explain how the two results relate to each other.

Exercise 8.8 Suppose A, M , and Q are as in lemma 8.8 and that ρ(M) <
1. Show that x?Ax ≥ 0 for all eigenvectors of M . (Hint: reverse the proof
of the “if” case in lemma 8.8.)

Exercise 8.9 Suppose A, M , and Q are as in lemma 8.8 and that ρ(M) <
1. Prove that A has to be positive definite. (Hint: Show that x?Ax ≤ 0
implies that y?Ay < 0, where y = Mx, by using exercise 8.4. Show that all
subsequent iterates w = Mnx for n > 1 satisfy w?Aw < y?Ay and hence
that the w’s cannot tend to zero, yielding a contradiction.)

130 CHAPTER 8

Exercise 8.10 Show that the matrix in (8.36) is positive definite. Com-
pute the corresponding Jacobi iteration matrix and determine its eigenval-
ues. Show that one of them exceeds 1 in absolute magnitude. Verify that
the corresponding matrix Q, in the condition in lemma 8.8, is not positive
definite.

Exercise 8.11 Suppose B is an n × n diagonal matrix. Show that for any
n× n matrix A,

diag(BA) = B diag(A). (8.58)

Exercise 8.12 Suppose that A = I −M , where M is nonnegative and ir-
reducible and satisfies diag(M) = 0. Prove that if the Jacobi iteration for
solving Ax = f converges for any f and initial guess, then A has to sat-
isfy generalized diagonal dominance. (Hint: use theorem 8.18 to guarantee
a positive eigenpair and see lemma 8.14 to define an appropriate weight as
needed in definition 8.10.)

Exercise 8.13 Suppose B is an n×n diagonal matrix. Show that the Jacobi
iterations for solving Ax = f and BAx = Bf generate the same sequence
of iterates xn.

Exercise 8.14 Suppose A is an n × n matrix and v ∈ Rn
+. Show that the

Jacobi iterations for solving Ax = f and Adiag(v)y = f generate sequences
of iterates xn and yn related by diag(A)yn = xn.

Exercise 8.15 Suppose that ‖M‖ < 1 for some norm. Prove that I −M is
invertible and

‖(I −M)−1‖ ≤ 1

1− ‖M‖ . (8.59)

(Hint: compare lemma 8.1.)

Exercise 8.16 Prove (8.49).

Exercise 8.17 Show that the mapping z → 1/(1 − z) maps the unit circle
(minus one point)

{
z = cos θ + i sin θ

∣∣ 0 < θ < 2π
}

to the line
{
z = 1

2 + it
∣∣ t ∈ R

}
. (8.60)

Exercise 8.18 Suppose that A is an n×n Hermitian matrix (A? = A) such
that diag(A) has all positive entries. Show that if A is diagonally dominant,
then A is positive definite. (Hint: apply exercise 8.6 and corollary 8.9.)

Exercise 8.19 Prove a converse to lemma 8.2. That is, suppose that the
iteration (8.8) converges for any f and any starting vector. Prove that the
spectral radius ρ(M) < 1.

ITERATIVE METHODS 131

8.6 SOLUTIONS

Solution of Exercise 8.2. Define

µ =
n

max
i=1

n∑

j=1

|Bij |. (8.61)

Then for any x ∈ Rn and any i = 1, . . . , n,

|(Bx)i| =
∣∣∣

n∑

j=1

Bijxj

∣∣∣

≤
n∑

j=1

|Bij | |xj |

≤µ‖x‖∞.

(8.62)

Therefore, ‖Bx‖∞ ≤ µ‖x‖∞. Since x ∈ Rn was arbitrary, ‖B‖∞ ≤ µ.
Pick i so that the ith absolute row sum equals µ, which we can assume

is positive (if µ = 0, the previous estimate shows that ‖B‖∞ = 0). Define
xj = sign(Bij) for j = 1, . . . , n, where sign(t) is +1 if t > 0, −1 if t < 0, and
0 for t = 0. Then

(Bx)i =
n∑

j=1

Bijxj =
n∑

j=1

|Bij | = µ. (8.63)

Therefore, ‖Bx‖∞ ≥ µ, which incidentally shows that x 6= 0. Since ‖x‖∞ =
1, we have ‖B‖∞ ≥ µ, as claimed.

Now define µ to be the maximum absolute column sum:

µ =
n

max
j=1

n∑

i=1

|Bij |. (8.64)

Then for any x ∈ Rn,

‖Bx‖1 =
n∑

i=1

|(Bx)i| =
n∑

i=1

∣∣∣
n∑

j=1

Bijxj

∣∣∣

≤
n∑

i,j=1

|Bij | |xj | ≤ µ‖x‖1.
(8.65)

Since x ∈ Rn was arbitrary, ‖B‖1 ≤ µ.
Pick j so that the jth absolute column sum equals µ, which we can assume

is positive (if µ = 0, the previous estimate shows that ‖B‖1 = 0). Define
xi = δij for i = 1, . . . , n, where δ is the Kronecker symbol. Then

(Bx)i =

n∑

k=1

Bikxk = Bij . (8.66)

Therefore, ‖Bx‖1 = µ. Since ‖x‖1 = 1, we have ‖B‖1 ≥ µ. Therefore,
‖B‖1 = µ, as claimed.

132 CHAPTER 8

Solution of Exercise 8.8. Much of the “if” case argument is reversible.
In particular, we showed that |λ| < 1 if and only if 2Re (1 − λ)−1 > 1.
Moreover, as long as x?Ax is not zero, (8.31) is still valid, and so |λ| < 1
implies that

x?Qx

x?Ax
= 2Re 1

1− λ − 1 > 0. (8.67)

This implies that x?Ax > 0.

Solution of Exercise 8.14. The sequence of iterates for the Jacobi method
for solving Ax = f is

xn+1 = (I − diag(A)−1A)xn + g, (8.68)

where g = diag(A)−1f . The sequence of iterates for the Jacobi method for

solving Ãy = f is

yn+1 = (I − diag(Ã)−1Ã)yn + g̃, (8.69)

where g̃ = diag(Ã)−1f . Then by (8.44),

diag(Ã)−1 = diag(v)−1 diag(A)−1,

so that

diag(v)yn+1 =
(
diag(v)− diag(A)−1Adiag(v)

)
yn + diag(v)g̃

=
(
I − diag(A)−1A

)
diag(v)yn + g,

(8.70)

which agrees with (8.68) with xn = diag(v)yn.

Chapter Nine

Conjugate Gradients

In a letter to a colleague in 1824, Abel (see page 115) wrote
“in analysis one is largely concerned with functions that can
be represented by power-series. As soon as other functions
enter—and this happens rarely—then [induction] does not
work any more and an infinite number of incorrect theorems
arise from false conclusions” [103].

The conjugate gradient (CG) method was perceived for some time as a
direct method for solving systems of linear equations. In exact arithmetic,
the method produces the exact solution in a finite number of steps. More
precisely, for an n × n matrix, CG “converges” in at most n steps. The
advantages of conjugate gradients as an iterative method were not widely
appreciated until much later. Not only does CG provide good approximate
solutions with fewer iterations than what is required to produce an exact re-
sult, it can also be seen to be a more adaptive procedure than the stationary
iterative methods studied previously in section 8.1.

We will develop the method in a sequence of steps to put it in context. It
can be applied to symmetric, positive definite matrices, so we will limit our
discussion to linear systems with such matrices.

9.1 MINIMIZATION METHODS

If A is an n×n symmetric, positive definite matrix, then there is a naturally
associated inner product

(u, v)A = uTAv (9.1)

defined for u, v ∈ Rn. As with any inner product, there is an associated
norm (cf. exercise 8.7)

‖u‖A =
√

(u, u)A . (9.2)

We will see that minimization algorithms can be viewed as an interplay
between the inner product (u, v)A and the natural Euclidean inner product,
which in this notation can be written

(u, v)I = uTv (9.3)

for u, v ∈ Rn. First, there is the obvious relationship (exercise 9.2)

(u, v)A = (Au, v)I = (u,Av)I . (9.4)

134 CHAPTER 9

There is also a naturally associated quadratic function of v ∈ Rn defined by

QA(v)A = 1
2 (v, v)A − (f, v)I (9.5)

defined for any f ∈ R
n. The relationship between these inner products is

expressed in the following lemma.

Lemma 9.1 The minimum of QA occurs at u ∈ Rn, which is the solution
of the equation

Au = f. (9.6)

Proof. The proof for n = 1 is elementary (exercise 9.3). In general, we
can reduce it to a one-dimensional problem by expanding, for u, v ∈ Rn and
t ∈ R,

QA(u + tv)A =QA(u) + t(u, v)A + 1
2 t

2(v, v)A − t(f, v)I

=QA(u) + t(uTA− fT)v + 1
2 t

2(v, v)A

=QA(u) + t(Au − f, v)I + 1
2 t

2(v, v)A,

(9.7)

where we used the symmetry of A in the last equality. Thus QA(u+ tv)A =
α + βt + γt2, where β = (Au − f)Tv = (Au − f, v)I . A quadratic q(t) =
α + βt + γt2 with γ > 0 has a minimum at t = 0 iff β = 0 (exercise 9.5).
Therefore, the minimum u of QA(u) is characterized by

(Au− f)Tv = 0 ∀v ∈ R
n. (9.8)

Setting v = Au− f , we conclude that (9.6) must hold if (9.8) holds, and the
converse is obvious. QED

Thus a natural strategy to approximate the solution of Au = f is to
minimize QA.

9.1.1 Descent methods

The geometry of the function (9.1) to be minimized is quite simple. When
f = 0, the graph of QA is a simple elliptical bowl. When f 6= 0, the picture
is tilted slightly. Thus a natural approach is to pick a search direction s 6= 0
in which QA is decreasing and proceed in that direction until you start to
go up again. Suppose that u0 is our starting point. We search for the
optimum along a line including the point u0 that is parallel to s; this part
of the algorithm is called a line search. This corresponds to minimizing the
problem

QA(u0 + ts)A =QA(u0) + t(Au0 − f, s)I + 1
2 t

2(s, s)A (9.9)

in view of (9.7), where t is a scalar that measures the distance we have gone.

Definition 9.2 If u0 is the current approximation of the solution u of the
equation Au− f , then the residual r is defined by

r = Au0 − f. (9.10)

CONJUGATE GRADIENTS 135

 e + t s

e

s

0

Figure 9.1 The ellipse indicates points in the plane determined by s and e that
have the same norm. The solid line indicates the set of points ts for
t ∈ R, and the dashed line indicates the set of points e + ts for t ∈ R.

The residual provides a way to monitor the approximation process. For
example, if r = 0 then Au0 = f , i.e., u0 = u. In general, we can define the
error by

e = u0 − u, (9.11)

and we find that the error satisfies an equation with the residual as the
right-hand side:

Ae = r. (9.12)

Thus e = A−1r is small if r is small (and A−1 is not too large).
The minimum in (9.9) occurs where the derivative with respect to t is

zero:

tmin = − (Au0 − f, s)I

(s, s)A
= − (r, s)I

(s, s)A
= − (Ae, s)I

(s, s)A
= − (e, s)A

(s, s)A
(9.13)

(cf. exercise 9.6 for the last step). Then the next position in our descent
process will be u0 + tmins.

There is a geometric interpretation of the value of t in (9.13) (see fig-
ure 9.1). The value of t is the length (in the norm ‖ ·‖A) of e in the direction
s, with the sign of t indicating whether e correlates with plus or minus s.
Note that we do not know u, and thus we do not know e. Nevertheless, we
can compute t (via the first or second equality) and find out the size of e in
the direction s. Consider minimizing

‖e+ ts‖2A = ‖e‖2A + 2t(e, s)A + t2‖s‖2A (9.14)

over all t. Differentiating with respect to t and setting the result to zero, we
find that t is given again by (9.13). Therefore, we have proved the following.

Lemma 9.3 Minimizing (9.9) is equivalent to minimizing (9.14). The min-
imum occurs at the value of t given in (9.13).

This can be visualized in figure 9.1. Remarkably, we are able to cause the
maximum decrease in the error (in the norm ‖ · ‖A) in the descent direc-
tion s by minimizing (9.9), even though we do not know e. An alternative

136 CHAPTER 9

interpretation is found in exercise 9.7, which shows that

2QA(v) = (u− v, u− v)A − (u, u)A (9.15)

for all v ∈ Rn. That is, QA(v) differs from 1
2‖u−v‖2A by a constant (1

2‖u‖2A),
so minimizing QA is equivalent to minimizing the error u− v in the A-norm.

At the minimum value given by (9.13), we find that (9.14) reduces to

‖e+ tmins‖2A = ‖e‖2A −
(e, s)2A
‖s‖2A

= ‖e‖2A − t2min‖s‖2A. (9.16)

Thus unless rTs = (r, s)I = (e, s)A = 0, the error is decreased at each step.
In fact, (9.13) implies that the largest step, and thus the largest decrease in
error, will occur if s = αr for some scalar α.

9.1.2 Descent directions

Now we turn to the question of finding good descent directions. The best
possible descent direction would be the error e, but we do not know how
to evaluate this. Instead, we can minimize QA; to do so, we compute the
gradient∇QA(u0) of the expression (9.5). This vector points in the direction
of the maximum increase of QA(u0), so

s = −∇QA(u0) (9.17)

points in the direction of the greatest decrease.
Computing the gradient of the quadratic QA is possible by calculus, but

we can also infer it from Taylor’s theorem:

QA(u0 + v) = QA(u0) +∇QA(u0) · v +O(v2). (9.18)

Comparing with the expansion (9.7), we find

∇QA(u0) = Au0 − f = r. (9.19)

Thus we see that (minus) the residual provides the direction of maximum
descent, in concert with the observation at the end of section 9.1.1 that
s = αr provides the greatest error reduction.

9.1.3 The gradient descent method

Suppose we decide to descend in the direction of the gradient at each step
(so s = −r) and to proceed as far as the minimum at each step (so t = tmin).
Since the notation gets denser at this point, we switch to denoting the scalar
tmin by α. This corresponds to taking

rk =Auk − f

αk =
(rk, rk)I

(rk, rk)A

uk+1 =uk − αkrk.

(9.20)

The error ek = uk − u at each step satisfies

ek+1 = uk+1 − u = uk − αkrk − u = ek − αkrk. (9.21)

CONJUGATE GRADIENTS 137

−r
0

e
k

k

Figure 9.2 The ellipse indicates points in the plane determined by rk and uk that
have the same norm.

The error ek = uk − u at each step is reduced, in view of (9.16), by

‖ek+1‖2A = ‖ek‖2A −
(rk, rk)2I
‖rk‖2A

= ‖ek‖2A −
(rk, ek)2A
‖rk‖2A

. (9.22)

Although the gradient descent method makes the maximal reduction in QA,
it is not the direction that minimizes the error ek; that direction would be
−ek. This sort of greedy algorithm can be improved by an algorithm with a
more global view. The difficulty can be seen in figure 9.2. When the norm
‖ · ‖A is not very isotropic, the direction of greatest descent for QA may not
be the best global strategy for reducing the error.

9.2 CONJUGATE GRADIENT ITERATION

The conjugate gradient method uses a more sophisticated choice for the
search directions sk. Instead of just using the current residual (sk = −rk),
the direction is chosen to be orthogonal (conjugate) to previous residuals.
This avoids repeating previous mistakes, or rather it avoids repeating direc-
tions already traversed.

9.2.1 The basic iteration

We switch notation temporarily and consider solving Cy = g, where C
is an n × n positive definite matrix. We define sequences {yk, rk, sk} ⊂
Rn × Rn × Rn and {αk, βk} ⊂ R× R as follows. We assume that an initial
approximation y0 is given, and we define

s0 = r0 = Cy0 − g. (9.23)

The main iteration steps proceed for k = 0, 1, 2, . . . by defining

αk = − (rk, sk)I

(sk, sk)C
= − (rk, sk)I

(sk, zk)I
(9.24)

yk+1 = yk + αksk, (9.25)

zk = Csk, (9.26)

rk+1 = Cyk+1 − g = rk + αkCsk = rk + αkzk, (9.27)

138 CHAPTER 9

βk = − (rk+1, sk)C

(sk, sk)C
= − (rk+1, zk)I

(sk, zk)I
(9.28)

sk+1 = rk+1 + βksk. (9.29)

We can interpret these definitions as follows.
Equations (9.24) and (9.25) represent the descent method with direction

sk.
Equation (9.26) can be viewed as just a definition, but it is also the only

time in the iteration where the matrix C is applied to a vector. Thus it is
the most computationally intense step.

The first equation in (9.27) defines the residual in the usual way, and the
second equation follows because (9.25) implies that

rk+1 = Cyk+1 − g = C(yk + αksk)− g = rk + αkCsk. (9.30)

The third equation in (9.27) follows from (9.26).
Equations (9.28) and (9.29) define the new descent direction. The second

equation in (9.28) follows from (9.26) and (9.4). Thus the conjugate gradient
method is just a descent method in which the descent direction is derived
from, but not equal to, the residual.

We have presented various forms for the coefficients αk and βk to indicate
more efficient ways to evaluate them. Note that only one matrix multiplica-
tion is required in (9.24)-(9.29), the evaluation of zk in (9.26). The different
forms also simplify subsequent derivations. We will also derive other forms
for these coefficients that can be used in alternate algorithms.

We will see that the convergence theory for the conjugate gradient method
is quite sophisticated, but the derivation of these results takes some work.
We begin with some basic orthogonality relations that are critical to the
success of the CG method.

9.2.2 Orthogonality relations

There are three immediate orthogonality relations among the residuals and
search directions for subsequent steps. Each of these has an important re-
sulting equality and/or inequality. We develop all these in this section. We
will ultimately see that other orthogonalities hold, but we will require a more
complex induction to establish them.

Equations (9.28) and (9.29) say that the new search direction is based on
the residual, modified so that it is orthogonal (with respect to the C-inner
product) to the previous search direction:

(sk+1, sk)C = (rk+1 + βksk, sk)C = (rk+1, sk)C + βk(sk, sk)C = 0. (9.31)

Note that (9.29) and (9.31) imply that

‖sk+1‖2C =(sk+1, sk+1)C = (rk+1 + βksk, sk+1)C

=(rk+1, sk+1)C + βk(sk, sk+1)C

=(rk+1, sk+1)C ≤ ‖rk+1‖C‖sk+1‖C ,
(9.32)

CONJUGATE GRADIENTS 139

so that dividing by ‖sk+1‖C yields

‖sk+1‖C ≤ ‖rk+1‖C (9.33)

(if ‖sk+1‖C = 0, (9.33) holds trivially). We will see that a reverse inequality
holds in a different norm.

The definition of αk ensures that the current residual is orthogonal in the
Euclidean inner product to the previous search direction:

(rk+1, sk)I =(rk + αkCsk, sk)I [by (9.27)]

= (rk, sk)I + αk(sk, sk)C = 0 [by (9.4) and (9.24)].
(9.34)

There is an immediate consequence of this orthogonality:

(rk, sk)I = ‖rk‖2I + (rk, sk − rk)I

= ‖rk‖2I + (rk, βk−1sk−1)I [by (9.29)]

= ‖rk‖2I [by (9.34)].

(9.35)

We should note that when k = 0, (9.35) holds trivially since r0 = s0 by
definition. Therefore, we get a reverse inequality to (9.33) (see its proof for
details):

‖sk‖I ≥ ‖rk‖I . (9.36)

The inequality (9.36) ensures that conjugate gradients can continue as long
as rk 6= 0 since this implies that sk 6= 0. Once we have rk = 0, we are done.

Using the definitions of αk, rk, sk, and yk, find that (for k ≥ 1)

(rk+1, rk)I = (rk + αkCsk, rk)I [by (9.27)]

= ‖rk‖2I + αk(sk, rk)C [by (9.4)]

= ‖rk‖2I + αk(sk, sk − βk−1sk−1)C [by (9.29)]

= ‖rk‖2I + αk(sk, sk)C [by (9.31)]

= ‖rk‖2I − (rk, sk)I [by (9.24)]

= ‖rk‖2I − (rk, rk + βk−1sk−1)I [by (9.29)]

= βk−1(rk, sk−1)I = 0 [by (9.34)].

(9.37)

From (9.34), we have 0 = (r1, s0)I = (r1, r0)I . Therefore,

(rk+1, rk)I = 0 ∀k ≥ 0. (9.38)

9.2.3 Further orthogonalities

Based on the three orthogonalities (9.31), (9.34), and (9.38) derived for
subsequent iterations, we now derive some further orthogonalities among all
iterates by induction.

Lemma 9.4 The conjugate gradient process (9.23)-(9.29) terminates at the
kth step only if rk = 0; i.e., if rk 6= 0, then sk 6= 0. Further, if rl 6= 0 for
l = 0, . . . , k, then

0 = (rk+1, sq)I = (rk+1, rq)I = (sk+1, sq)C (9.39)

for 0 ≤ q ≤ k. The conjugate gradient process will terminate in at most n
steps for an n× n matrix C.

140 CHAPTER 9

Proof. As we have noted, (9.36) ensures that the process will continue
while rk 6= 0. The fact that it will terminate after n steps is due to the
orthogonality relations (9.39), which can hold for at most n nonzero vectors
in Rn.

We have already verified the first three orthogonalities for k = 0. So we
assume that the lemma holds for some value of k ≥ 0 and prove by induction
that it also holds for k + 1.

We have already verified the three orthogonalities for q = k, so we may
assume that q < k. By (9.27),

(rk+1, sq)I = (rk, sq)I + αk(Csk, sq)I = 0, (9.40)

in view of (9.4) and the induction hypothesis. Also, by (9.27), (9.29), and
the induction hypothesis,

(rk+1, rq)I =(rk, rq)I + αk(Csk, rq)I

=(rk, rq)I + αk(Csk, sq

omit if q = 0
︷ ︸︸ ︷
−βq−1sq−1)I

=0 + αk(0− 0) = 0.

(9.41)

Similarly, by (9.29), (9.25), and (9.27),

(sk+1, Csq)I = (rk+1, Csq)I + βk

= 0︷ ︸︸ ︷
(sk, Csq)I

= (rk+1,
1

αq
(yq+1 − yq))I

= (rk+1,
1

αq
(rq+1 − rq))I

= 0.

(9.42)

QED

Corollary 9.5 The search directions and residuals for conjugate gradients
satisfy

0 = (sk+1, rq)C (9.43)

for 0 ≤ q ≤ k.

Proof. Again, by definition we have s0 = r0, so that

(s1, r0)C = (s1, s0)C = 0 (9.44)

since s0 = r0 by definition. So we assume that the lemma holds for some
value of k ≥ 0 and prove by induction that it also holds for k + 1. For
0 ≤ q ≤ k, (9.29) implies that

(sk+1, rq)C =(sk+1, sq

omit if q = 0
︷ ︸︸ ︷
−βq−1sq−1)C

=0,

(9.45)

by (9.39). QED

CONJUGATE GRADIENTS 141

9.2.4 New formulas for α and β

It is of interest to have different forms for the coefficients in CG as they
tend to have different behaviors in floating-point computations because can-
cellations related to the orthogonalities in CG are avoided. Equation (9.35)
implies that we can write αk as

αk = − ‖rk‖
2
I

‖sk‖2C
= − ‖rk‖2I

(sk, zk)I
. (9.46)

Using the orthogonality (9.38), we can derive a new formula for βk:

βk = − (rk+1, sk)C

(sk, sk)C
= − (rk+1, zk)I

(sk, sk)C
[by (9.24)]

= − (rk+1, α
−1
k (rk+1 − rk))I

(sk, sk)C
[by (9.27)]

= − (rk+1, rk+1)I

αk(sk, sk)C
[by (9.38)]

=
(rk+1, rk+1)I

(rk, sk)I
[by (9.24)]

=
‖rk+1‖2I
‖rk‖2I

[by (9.35)].

(9.47)

9.3 OPTIMAL APPROXIMATION OF CG

Originally, we motivated conjugate gradients as an iterative method based
on minimizing a quadratic form. We have seen that CG can also be viewed
as a direct method, in that it is guaranteed to reduce the residual to zero in
at most n steps for an n×n system. Now we change our point of view back
to our original presentation of CG: as an approximation algorithm. To do
so, we need to develop some technology.

9.3.1 Operator calculus

We have seen (exercise 6.1) that the set Pk of polynomials of degree k in
one variable can be viewed as a vector space of dimension k + 1. We will
now see that there is a way to map this space to the linear space O(Rn,Rn)
of operators on R

n (cf. section 6.1). Suppose we have an n × n matrix C
and consider the mapping v → Cv for all v ∈ Rn. Then this defines such an
operator in O(Rn,Rn), which we can also denote by C. Similarly, we can
define C2 by v → C(Cv) for all v ∈ Rn. In fact, for any integer k, Ck is
defined inductively by v → C(Ck−1v). Thus for any polynomial P ∈ Pk, we
can define P (C) by

P (C) =
k∑

i=0

aiC
i, where P (x) =

k∑

i=0

aix
i. (9.48)

142 CHAPTER 9

By convention, we define C0 = I, where I denotes the identity operator on
R

n, associated with the n × n identity matrix. Thus (exercise 9.8) (9.48)
defines a linear operator LC : Pk → O(Rn,Rn). Note that if P (x) ≡ 1 is the
constant polynomial, then P (C) = I for any C.

9.3.2 CG error representation

Recall that the residual rk = Cyk − g and the error ek = yk − y are related
by rk = Cek. The next lemma relates the errors and search directions in
CG to the initial error.

Lemma 9.6 For k ≥ 0, ek = Pk(C)e0 and sk = CQk(C)e0, where Pk and
Qk are polynomials of degree at most k and Pk(0) = 1.

Proof. The proof is by induction. It is clear that P0 ≡ 1 and Q0 ≡ 1 work
for k = 0 since s0 = r0 = Ce0 by (9.12). For k ≥ 0 we have

ek+1 = ek + yk+1 − yk

= ek + αksk [by (9.25)]

= (Pk(C) + αkCQk(C)) e0

=Pk+1(C)e0,

(9.49)

that is, Pk+1(x) := Pk(x)+αkxQk(x) (cf. exercise 9.9). Note that Pk+1(0) =
Pk(0); hence Pk+1(0) = 1. Similarly,

sk+1 =Cek+1 + βksk [by (9.29) and (9.12)]

= (CPk+1(C) + βkCQk(C)) e0

=CQk+1(C)e0,

(9.50)

that is, Qk+1(x) := Pk+1(x) + βkQk(x). QED

Lemma 9.7 Assuming that rk 6= 0, the set {s0, . . . , sk} of vectors defined
in (9.29) spans the Krylov1 subspace

Sk =
{
v ∈ R

n
∣∣ v = CT (C)e0, T ∈ Pk

}
. (9.51)

Proof. First, we need to show that Sk is a vector space and that its dimen-
sion is k + 1. By definition, Sk is a subset of Rn. If T1, T2 ∈ Pk, then set
vi = CTi(C)e0, i = 1, 2. Expanding, we find

v1 + v2 =CT1(C)e0 + CT2(C)e0 = C(T1(C) + T2(C))e0

=C(T1 + T2)(C)e0 ∈ Sk,
(9.52)

and similarly scalar multiples of v ∈ Sk are also in Sk. Thus Sk is a linear
subspace of Rn (cf. exercises 9.10 and 9.11).

1Alexei Nikolaevich Krylov (1863–1945) first used this subspace in 1931 to transform
characteristic polynomials [58]. He was very active in the theory and practice of ship-
building and is commemorated by the Krylov Shipbuilding Research Institute.

CONJUGATE GRADIENTS 143

We can view Sk as the image of Pk in Rn via the mapping B defined by
BT = CT (C)e0. We have just shown that this mapping is linear. The image
of a (k+ 1)-dimensional space can be no more than k+1, so we have shown
that dimSk ≤ k + 1.

By lemma 9.6, each sl is in Sk for l = 0, . . . , k, and by (9.31) they are
orthogonal (in the C-inner product). Hence they are a basis. QED

Lemma 9.8 Define

P0
k =

{
P ∈ Pk

∣∣ P (0) = 1
}
. (9.53)

The error ek is optimal in the sense that

‖ek‖C = min
{
‖P (C)e0‖C

∣∣ P ∈ P0
k

}
. (9.54)

Proof. Let Pk be the polynomial guaranteed by lemma 9.6. Since Pk ∈ P0
k ,

we have ‖ek‖C ≥ inf
{
‖P (C)e0‖C

∣∣ P ∈ P0
k

}
because lemma 9.6 tells us that

ek = Pk(C)e0. Now let us prove the reverse inequality.
Let P ∈ P0

k and define v = P (C)e0. Then

v = ek + (P − Pk)(C)e0. (9.55)

But since (P − Pk)(0) = 0, (P − Pk)(x) = xTk−1(x), where Tk−1 is a poly-
nomial of degree ≤ k − 1 (exercise 9.12). Hence

v = ek + δk, (9.56)

δk ∈ Sk−1. Now (ek, δk)C = (rk, δk)I = 0 since (rk, sq)I = 0 for all q < k.
Thus

‖v‖2C = ‖ek‖2C + 2(ek, δk)C + ‖δk‖2C
= ‖ek‖2C + ‖δk‖2C ≥ ‖ek‖2C ,

(9.57)

which proves that ‖ek‖C ≤ inf
{
‖P (C)e0‖C

∣∣ P ∈ P0
k

}
and confirms the

equality (9.54). QED

9.3.3 Spectral theory

We now introduce a bit more technology from operator theory. Since we
are working with a symmetric matrix C, we can expand in terms of its
eigenvectors Xj , where CXj = λjXj . That is, for any v ∈ Rn, we can write

v =
n∑

j=1

ajXj . (9.58)

Then Ckv =
∑n

j=1 ajλ
k
jXj , and indeed (exercise 9.13)

P (C)v =

n∑

j=1

ajP (λj)Xj (9.59)

144 CHAPTER 9

for all P ∈ Pk. Note that we can choose the eigenvectors to be orthonormal:

(Xj , Xk)I = δjk, (9.60)

where δjk is the Kronecker δ. This means they are also orthogonal in the
C-inner product:

(Xj , Xk)C = (CXj , Xk)I = (λjXj , Xk)I = λjδjk. (9.61)

Also, it follows for v of the form (9.58) that (exercise 9.14)

‖v‖2I =

n∑

j=1

a2
j and ‖v‖2C =

n∑

j=1

λja
2
j . (9.62)

Therefore, by (9.59),

‖P (C)v‖2I =

n∑

j=1

P (λj)
2a2

j and ‖P (C)v‖2C =

n∑

j=1

P (λj)
2λja

2
j . (9.63)

Let us introduce the notation

‖P (λ(·))‖∞ = max
{
|P (λj)|

∣∣ j = 1, . . . , n
}
. (9.64)

Then from (9.62), we see that

‖P (C)v‖2C ≤ ‖P (λ(·))‖2∞
n∑

j=1

λja
2
j = ‖P (λ(·))‖2∞‖v‖2C . (9.65)

The following result shows that error estimates for CG can be reduced to
a polynomial approximation result on the spectrum of C.

Theorem 9.9 Suppose that λ1, . . . , λn are the eigenvalues of C. Then

‖ek‖C ≤ inf
{
‖P (λ(·))‖∞

∣∣ P ∈ P0
k

}
‖e0‖C , (9.66)

where ‖P (λ(·))‖∞ is defined in (9.64) and P0
k was defined in (9.53).

Proof. Apply (9.65) to lemma 9.8. QED

9.3.4 CG error estimates

There are many results that can be derived from theorem 9.9. Here we are
able to give only a sample.

Corollary 9.10 Suppose that there are only k distinct eigenvalues for C.
Then the CG iteration terminates (in the absence of rounding error) in k
steps.

Proof. The proof is an application of Lagrange interpolation (chapter 10).
That is, we take P to be a polynomial of degree k that is 1 at 0 and 0 at all
eigenvalues:

P (0) = 1, P (λj) = 0, j = 1, . . . , k. (9.67)

CONJUGATE GRADIENTS 145

The existence of P will be proved in section 10.2.1. (For example, if k = 1,
we take P (x) = 1−x/λ1.) Then P ∈ P0

k , and we conclude from theorem 9.9
that ek = 0. QED

Let us see what theorem 9.9 implies in a concrete case. Suppose there are
only two eigenvalues, λ1 < λ2. Let P (x) = 1 − x/λ, where we will pick λ
subsequently. Then P ∈ P0

1 , and theorem 9.9 implies that

‖e1‖C ≤ max{|1− λ1/λ|, |1− λ2/λ|}‖e0‖C (9.68)

for all λ. Presumably, the minimum occurs when λ1 < λ < λ2, and

1− λ1/λ = −(1− λ2/λ), (9.69)

which implies that λ = 1
2 (λ1 + λ2). Thus (cf. exercise 9.15)

‖e1‖C ≤
(

1− 2λ1

λ1 + λ2

)
‖e0‖C =

(
λ2 − λ1

λ1 + λ2

)
‖e0‖C . (9.70)

In general, we will prove the following result.

Lemma 9.11 Suppose that 0 < λ1 < λ2. Then there is a polynomial qk of
degree k such that qk(0) = 1 and

‖qk‖∞,[λ1,λ2] ≤
(
Λ +

√
Λ2 − 1

)−k

, (9.71)

where Λ = (λ1 + λ2)/(λ2 − λ1).

We postpone the proof of the lemma until section 11.1.1. We can write
Λ = (κ+ 1)/(κ− 1), where κ = λ2/λ1. By exercise 9.16, we then have

Λ +
√

Λ2 − 1 =

√
κ+ 1√
κ− 1

. (9.72)

Thus we have the following result.

Corollary 9.12 Suppose that the eigenvalues of C lie in an interval [λ1, λ2],
where 0 < λ1 < λ2. Define κ = λ2/λ1. Then

‖ek‖C ≤
(√

κ− 1√
κ+ 1

)k

=

(
1− 2√

κ+ 1

)k

≤ e−2k/(
√

κ+1). (9.73)

In the last inequality in (9.73), we used the fact that 1−x ≤ e−x for x ≥ 0
(exercise 9.17). If we set

λ{1,2} = {min,max}
{
|λ|
∣∣ λ is an eigenvalue of A

}
,

then (6.10) and exercise 6.7 imply that (for A symmetric and positive defi-
nite)

κ = λ2/λ1 = ‖A‖2‖A−1‖2. (9.74)

The quantity κ is called the condition number of A with respect to the
Euclidean norm.

146 CHAPTER 9

9.3.5 Preconditioned Conjugate Gradient bteration

Suppose that we want to solve

Ax = b (9.75)

and that M−1 is an approximate inverse for A, that is, M is a symmetric
positive definite matrix such that M−1A is close to the identity in some
sense. Suppose there is a symmetric positive definite matrix B such that
B2 = M−1 (see exercise 9.18). We write B as M−1/2. Suppose that we
apply CG to

C = M−1/2AM−1/2

(at least in our heads). Then

Cy = g, (9.76)

where y = M1/2x and g = M−1/2b.
Let x0 be given and take y0 = M1/2x0. Let the sequences {yk}, {rk},
{αk}, and {βk} be defined by CG, as in (9.23)-(9.29). Let

xk =M−1/2yk,

σk =M−1/2sk,

ρk =M1/2rk.

(9.77)

Then the iteration can be cast in terms of these variables:
αk = − (M−1ρk, ρk)/(Aσk, σk),

xk+1 = xk + αkσk,

ρk+1 = ρk + αkAσk,

βk = (M−1ρk+1, ρk+1)/(M
−1ρk, ρk),

σk+1 =M−1ρk+1 + βkσk.

(9.78)

The verification of these formulas involves not only (9.23)-(9.29) but also
lemma 9.4.

Note that the only additional work caused by the preconditioning is one
application of M−1 per iteration.

If ek = yk − C−1g and εk = xk −A−1b, then

ek = M1/2xk −M1/2A−1M1/2b = M1/2εk

and

(Cek, ek)= ‖ek‖2C
= (M−1/2AM−1/2M1/2εk,M

1/2εk)

= ‖εk‖2A.
This observation and the previous results on CG give the following theorem.

Theorem 9.13 Suppose that

µ{1,2} = {min,max}
{
|λ|
∣∣ λ is an eigenvalue of M−1A

}

and define κ = µ2/µ1. Then the error for the algorithm (9.77) and (9.78)
satisfies

‖εk‖A ≤
(√

κ− 1√
κ+ 1

)k

=

(
1− 2√

κ+ 1

)k

≤ e−2k/(
√

κ+1).

CONJUGATE GRADIENTS 147

9.4 COMPARING ITERATIVE SOLVERS

It is possible to compare the behavior of stationary iterative methods with
that of conjugate gradients. To simplify the analysis, let us assume that A is
an n× n matrix with 1’s on the the diagonal: diag(A) = I. Let us compare
CG and Jacobi for A. First, note that the assumption diag(A) = I is not an
essential restriction. Jacobi is invariant with respect to scaling (on the left)
by a diagonal matrix, and we can then compare with the diagonally scaled
(preconditioned) CG.

We assume as well that A is symmetric and positive definite, so this means
we can expand in eigenvectors as in (9.58). Let us write the initial error as

e0 =

n∑

i=1

aiXi. (9.79)

Combining (9.54) and (9.63), we see that the resulting CG error ek
CG

after k
steps satisfies

‖ek
CG
‖2A ≤

n∑

i=1

a2
iPk(λi)

2λi. (9.80)

On the other hand, the error in Jacobi satisfies ek
J

= MJ(A)ke0, where
MJ(A) = I − A is the Jacobi iteration matrix for A. The eigenvalues µi of
MJ(A) are related to the eigenvalues λi of A by µi = (1 − λi). Moreover,
the eigenvectors of MJ(A) and A are the same. In particular, we have

ek
J

=

n∑

i=1

(1− λi)
kaiXi. (9.81)

Thus (9.62) implies that

‖ek
J
‖2A =

n∑

i=1

a2
i (1− λi)

2kλi. (9.82)

This corresponds to the choice P (λ) = (1 − λ)k in (9.80). Thus we see
that CG adapts the choice of polynomial to the data, whereas for Jacobi
it is fixed. Thus we see why the word “stationary” is appropriate for such
iterative methods.

9.5 MORE READING

The conjugate gradient method is attributed primarily to Hestenes2 and
Stiefel3 although there were additional influences [68], including Lanczos (see

2Magnus Rudolph Hestenes (1906–1991) obtained a Ph.D. at the University of Chicago
with Gilbert Bliss in 1932. Bliss was an early graduate of Chicago, receiving a B.Sc. in
1897 and a Ph.D. in 1900 under the direction of Oskar Bolza, who had studied with Felix
Klein in Göttingen. Hestenes was a professor at UCLA from 1947 to 1973.

3Eduard L. Stiefel (1909–1978) was a student of Heinz Hopf, who was in turn a student
of Erhard Schmidt. Stiefel was the advisor of Peter Henrici (page 288) as well as 63 other
students over a period of 37 years. He is known for his work on the Stiefel-Whitney
characteristic classes, and he was also an early user and developer of computers [154].

148 CHAPTER 9

page 234) who was at UCLA at the time [157]. There are several monographs
on conjugate gradients and related methods [71, 118, 165]. The theory of
convergence rates for CG has an intriguing relation to potential theory [53].
The CG algorithm applies as well to infinite-dimensional operators, and in
some cases CG for such operators can have surprising convergence rates
[173].

9.6 EXERCISES

Exercise 9.1 Suppose that A is an n×n symmetric, positive definite matrix.
Prove that the expression (9.1) defines an inner product on Rn. In particular,
verify that (u, v)A = (v, u)A.

Exercise 9.2 Suppose that A is an n×n symmetric, positive definite matrix.
Prove (9.4). (Hint: use the symmetry of A.)

Exercise 9.3 Use calculus to verify that the minimum of the expression
(9.5) occurs at the solution of Au = f in the case n = 1. (Hint: just write
out QA(u) and differentiate with respect to u and find where the derivative
is zero.)

Exercise 9.4 Verify all the steps in the derivation of the expression (9.7).
(Hint: expand the quadratic terms and use the symmetry of the inner prod-
uct; cf. exercise 9.1 or 9.6).

Exercise 9.5 Suppose q(t) = α+ βt+ γt2. Prove that q(t) has a minimum
at t = 0 iff β = 0.

Exercise 9.6 Suppose that A is an n×n symmetric, positive definite matrix.
Prove that (u, v)A = (Au)Tv for all u, v ∈ Rn. (Hint: use the symmetry of
A.)

Exercise 9.7 Suppose that Au = f and that v ∈ Rn. Let r = Av − f and
e = v − u (so that Ae = r). Prove that 2QA(v) = (e, e)A − (u, u)A.

Exercise 9.8 Prove that the operator LC : Pk → O(Rn,Rn) defined by

(9.48) is linear. That is, if P (x) =
∑k

i=0 aix
i, Q(x) =

∑k
i=0 bix

i, and
α ∈ R, then

LCP + αLCQ = LCR, (9.83)

where R is the polynomial given by R(x) =
∑k

i=0 α(ai + bi)x
i.

Exercise 9.9 Suppose that P is a polynomial given by P (x) =
∑k

i=0 aix
i

and that C is an n × n matrix. Prove that CP (C) = Q(C), where Q(x) =∑k
i=0 aix

i+1.

CONJUGATE GRADIENTS 149

Exercise 9.10 Suppose that M ⊂ O(Rn,Rn) is a linear subspace. Show
that the set

{
Av
∣∣ A ∈M

}
is a linear subspace of R

n for any v ∈ R
n.

Exercise 9.11 Suppose that M ⊂ O(Rn,Rn) is a linear subspace and that
B ∈ O(Rn,Rn). Prove that the set

{
BA

∣∣ A ∈M
}

is a linear subspace of
O(Rn,Rn).

Exercise 9.12 Suppose that p(x) is a polynomial that vanishes at 0: p(0) =
0. Prove that we can write p(x) = xq(x) for a polynomial q whose degree is
1 less than the degree of p.

Exercise 9.13 Verify (9.59). (Hint: Expand.)

Exercise 9.14 Verify (9.62). (Hint: Expand.)

Exercise 9.15 Suppose that λ1 > 0 and λ2 > 0. Prove that

argmin
{
max{|1− λ1/λ|, |1− λ2/λ|}

∣∣ λ > 0
}

= 1
2 (λ1 + λ2). (9.84)

(Hint: show that max{|a|, |b|} = 1
2 |a+ b|+ 1

2 |a− b| for a, b ∈ R.)

Exercise 9.16 Prove that (9.72) holds. (Hint: just expand and note that
(
√
κ+ 1)(

√
κ− 1) = κ− 1.)

Exercise 9.17 Prove that 1− x ≤ e−x for x ≥ 0. (Hint: expand e−x as an
alternating series and note that 1− x represents the first two terms.)

Exercise 9.18 Prove that for any symmetric, positive definite matrix A,
there is a symmetric, positive definite matrix B such that B2 = A. (Hint:
write A = UTDU , where U is orthogonal and D is diagonal with positive
entries; cf. corollary 6.5 and set B = UT

√
DU .)

Exercise 9.19 Prove theorem 9.13.

Exercise 9.20 Prove (9.36).

Exercise 9.21 Prove that a polynomial of degree n can have at most n roots,
counting multiplicity, unless it is identically zero. (Hint: use exercise 9.12
to represent the polynomial in terms of linear factors.)

9.7 SOLUTIONS

Solution of Exercise 9.7. Recall that Au = f and e = v − u. We expand
and use the fact that AT = A:

(e, e)A =(v − u, v − u)A = (v − u)TA(v − u)
= vTAv + uTAu− uTAv − vTAu

= vTAv + uTAu− uTAv − vTf

= vTAv + uTAu− (ATu)Tv − fTv

= vTAv + uTAu− (Au)Tv − fTv

= vTAv + uTAu− 2fTv

=2QA(v) + uTAu.

(9.85)

150 CHAPTER 9

Thus 2QA(v) = (e, e)A − uTAu.

Solution of Exercise 9.15. First, we show that

max{|a|, |b|} = 1
2 |a+ b|+ 1

2 |a− b| (9.86)

for a, b ∈ R. We can assume that |a| ≥ |b| without loss of generality since
we can just rename the variables if it is the other way around.

If a ≥ 0, then max{|a|, |b|} = a and a+ b ≥ 0 (since |b| ≤ a). Then

max{|a|, |b|} − 1
2 |a+ b| = a− 1

2 (a+ b) = 1
2 (a− b) = 1

2 |a− b|. (9.87)

The last equality also follows from the fact that |b| ≤ a.
If a ≤ 0, then max{|a|, |b|} = −a and a + b ≤ 0 and a − b ≤ 0 (since
|b| ≤ −a). Then

max{|a|, |b|} − 1
2 |a+ b| = −a+ 1

2 (a+ b) = − 1
2 (a− b) = 1

2 |a− b| (9.88)

as well. Thus we have completed the proof of (9.86).
Now suppose that λ1 > 0 and λ2 > 0. Then

max{|1− λ1/λ|, |1− λ2/λ|} = |1− 1
2 (λ1 + λ2)/λ|+ | 12 (λ1 − λ2)/λ|. (9.89)

Let us write r = 1
2 (λ1 + λ2)/λ, so that λ = 1

2 (λ1 + λ2)/r and

max{|1− λ1/λ|, |1− λ2/λ|} = |1− r| + r|λ1 − λ2|
λ1 + λ2

. (9.90)

Furthermore, our objective is now to show that

argmin

{
|1− r|+ r|λ1 − λ2|

λ1 + λ2

∣∣ r > 0

}
= 1. (9.91)

Define a function φ by

φ(r) = |1− r| + r|λ1 − λ2|
λ1 + λ2

. (9.92)

For r ≥ 1, φ(r) = r − 1 + r |λ1−λ2|
λ1+λ2

is strictly increasing. For r ≤ 1, φ(r) =

1− r + r |λ1−λ2|
λ1+λ2

is strictly decreasing since

|λ1 − λ2| = max{λ1, λ2} −min{λ1, λ2}
< max{λ1, λ2} ≤ λ1 + λ2

(9.93)

since both λi are positive. Thus

argminφ(r) = 1. (9.94)

Chapter Ten

Polynomial Interpolation

The web site http://www.blackphoto.com/glossary/i.asp

describes interpolation as “a technique used by digital cam-
eras, scanners and printers to increase the size of an image
in pixels by averaging the colour and brightness values of
surrounding pixels.”

The approximation of general functions by simple classes of functions has
many applications as well as theoretical implications. The uniform approx-
imation of a general continuous function on an interval by polynomials (a
theorem of Weierstrass1) is a fundamental result that casts light on the
nature of both polynomials and continuous functions. In the era of mod-
ern computers, approximation via interpolation has emerged as a general
paradigm for computing elementary functions as part of typical system soft-
ware on current computers [107]. Probably one of the earliest applications
of interpolation was simply to link scattered data to provide some sense of
what a continuum representation might look like. The phrase “connecting
the dots” has become a common metaphor for problem solving, but this is
precisely what polynomial interpolation does.

One feature of the subject is that it introduces infinite-dimensional vec-
tor spaces in a natural way. Dealing with such spaces in a complete (pun
intended) way is beyond the scope of this book, but we hope that the ideas
stimulate interest in further study of functional analysis. We start by con-
sidering approximation by polynomials in one dimension. Some of the tech-
nology we develop applies to other classes of approximating spaces, as well
as multivariate approximation.

10.1 LOCAL APPROXIMATION: TAYLOR’S THEOREM

Taylor’s theorem2 in calculus provides a polynomial approximation to a suf-
ficiently smooth function:

Pn(x) =

n∑

k=0

f (k)(x0)

k!
(x− x0)

k. (10.1)

1Karl Theodor Wilhelm Weierstrass (1815–1897) was the only student of Christoph
Gudermann, who was, along with Friedrich Bessel, J. W. Richard Dedekind, Sophie Ger-
main, and Georg Riemann, a student of Gauss.

2This theorem appears to have been first discovered by Gregorie (see page 212) [162].

152 CHAPTER 10

For x near x0, this yields an accurate approximation to the function f pro-
vided we have the required data. Moreover, we have (exercise 7.4) a repre-
sentation of the error:

f(x)− Pn(x) =
(x− x0)

n+1

n!

∫ 1

0

(1 − s)nf (n+1)(x0 + s(x− x0)) ds . (10.2)

Thus we can say that f −Pn = O((x− x0)
n+1) for x near x0, provided that

f is smooth enough.
This is a very powerful, but local, result. Moreover, it requires knowing

the values of high-order derivatives of f to construct Pn. We now consider
a more distributed approximation and one that does not require derivatives,
only the values of f .

10.2 DISTRIBUTED APPROXIMATION: INTERPOLATION

Suppose that we gather data fi associated with parameters xi and that
we want to depict these data as a function f(x) with the property that
f(xi) = fi. This is clearly not a well-defined problem since there are many
functions with this property. (To simplify the discussion, we assume here
that the xi’s are distinct, but also see exercise 12.12.) On the other hand,
if we are restricted to the appropriate finite-dimensional space of functions,
we can potentially make the process well-posed. One simple approach is to
interpolate the data, e.g., with polynomials.

The name of Lagrange3 is associated with the fact that a polynomial of
degree n can be determined uniquely to match arbitrary values fi at n+ 1
distinct points xi, e.g., with i = 0, . . . , n. At the risk of further inflaming
French-English relations, we point out that Newton (see page 15) had solved
this problem earlier in an adaptive way (section 10.2.3).

We begin by considering arbitrary (but distinct) interpolation points xi.
In many data-fitting problems, there is little control on the spacing of the
points, and in the application (9.67) the points are unknown. We will later
consider specifying the points in a systematic way, but we will see that
equally spaced points can be a bad choice. In chapter 11, we consider a
better choice.

10.2.1 Existence of interpolant

The existence of the Lagrange interpolant can be proved by constructing
polynomials φi such that

φi(xj) = δij . (10.3)

3Joseph-Louis Lagrange (1736–1813), born in Turin and baptized Giuseppe Lodovico
Lagrangia, became a dominant figure in his adopted country France. Best known for
his work in mechanics, essentially establishing the variational calculus [101], his students
included Poisson and Fourier. He is interred in the Pantheon in Paris.

POLYNOMIAL INTERPOLATION 153

Then the Lagrange interpolant is defined by

Lnf(x) =
n∑

i=0

fiφi. (10.4)

The magic perhaps is in the fact that one can write a formula for each φi:

φi(x) =

∏
j 6=i(x− xj)∏
j 6=i(xi − xj)

=

∏
j 6=i(xj − x)∏
j 6=i(xj − xi)

. (10.5)

Here the indices j in the products range over the set {0, 1, . . . , n}. Each φi is
a polynomial of degree n since it is presented as a product of n monomials.
Also φi(xk) = 0 for k 6= i since one of the factors is (x − xk). Finally,
φi(xi) = 1 because of the normalization. This completes the verification of
(10.3).

The operator Ln defined in (10.4) maps the linear space Rn+1 to the
space Pn of polynomials of degree n. The operator Ln is clearly linear, by
construction. That is, if f ∈ Rn+1 and g ∈ Rn+1 are two sets of data, then
Ln(f + g) = Lnf + Lng, and similarly Ln(sf) = sLnf for any scalar s.

The Lagrange interpolant can be extended to any continuous function f
by

Lnf(x) =
n∑

i=0

f(xi)φi. (10.6)

The operator Ln is a projection, i.e.,

Lnq = q for all q ∈ Pn. (10.7)

To prove this, consider p = Lnq − q, which is also a polynomial of degree
n such that p(xi) = 0 for n + 1 points. By the fundamental theorem of
algebra, a polynomial of degree n that vanishes at n+1 distinct points must
be identically zero (exercise 9.21). Therefore, Lnq = q. In fact, this approach
can be used to show (exercise 12.19) the existence of the φi’s.

10.2.2 Error expression

The error in Lagrange interpolation vanishes at all the interpolation points,
so we can assert that the error is divisible by the function ωk defined by

ωk(x) =
k−1∏

i=0

(x− xi). (10.8)

It is possible to prove (exercise 10.1) that

f(x)− Lnf(x) =
ωn+1(x)

(n+ 1)!
f (n+1)(ξ(x)), (10.9)

where ξ(x) is just like the magic point in the pointwise remainder expression
for Taylor’s theorem. This expression has limitations as a way to understand

154 CHAPTER 10

the error in Lagrange interpolation in general, but it is useful theoretically
and motivates certain things we will derive independently.

It is easy to see in one important case that (10.9) is valid, namely, when
p(x) = xn+1. Note that by expanding the expression (10.8), we find

ωn+1(x) = xn+1 + q(x) = p(x) + q(x), (10.10)

where the degree of q is at most n. Thus p = ωn+1 − q. Because p − Lnp
is a polynomial of degree n+ 1 that vanishes at the roots of ωn+1, we have
p− Lnp = αωn+1 for some constant α. Thus

αωn+1 = p− Lnp = ωn+1 − q − Lnp, (10.11)

so that (1−α)ωn+1 = q+Lnp is a polynomial of degree n. This can happen
only if α = 1 (and q = −Lnp). Thus we conclude that

p− Lnp = ωn+1, (10.12)

consistent with (10.9).

10.2.3 Newton’s divided differences

There is another approach to defining an interpolant that is associated with
Newton (see page 15) and thus predates Lagrange (see page 152). It proceeds
inductively based on the number of interpolation points, and it could be
viewed as an adaptive procedure in which the interpolant with n+ 1 points
is derived from the one with n points. This allows one to derive (and use) the
nth-order interpolation and assess whether further points need to be added.

Let f be fixed for the moment and let pn = Lnf . If n = 0, there is only one
point x0 and p0 is the constant function equal to f(x0). Now add another
point x1 6= x0. Then p1 = p0 + q1, where q1 is a linear polynomial. For p1 to
interpolate f at x0, we must have q1(x0) = 0, and thus q1(x) = a1(x − x0).
For p1 to interpolate f at x1, we must have

f(x1) = f(x0) + a1(x1 − x0), (10.13)

so that the coefficient a1 must be

a1 =
f(x1)− f(x0)

x1 − x0
=
f(x0)− f(x1)

x0 − x1
. (10.14)

The coefficient a1 is what is known as a divided difference, i.e., a differ-
ence quotient approximating the derivative of f near x0, x1. The standard
notation for divided differences is

f [x0, x1] =
f(x1)− f(x0)

x1 − x0
. (10.15)

With this notation, we have p1 = p0 + f [x0, x1](x− x0). If we define ω0 ≡ 1
and f [x0] = f(x0), then we can write

p1 = f [x0]ω0 + f [x0, x1]ω1(x), (10.16)

where ωk for k ≥ 0 is defined in (10.8).

POLYNOMIAL INTERPOLATION 155

Lagrange interpolation was defined by exhibiting particular basis functions
for polynomials. The Newton approach can be viewed as one in which a
different basis is chosen. It is not hard to see that the error polynomials
ωk defined in (10.8) form a basis for polynomials. The key observation is
that they are linearly independent (exercise 10.3). Thus we can write any
polynomial p ∈ Pn as

p(x) =

n∑

i=0

aiωi(x), (10.17)

for suitable coefficients ai. Thus for any continuous function f , we define
coefficients af

i by

Lnf(x) =

n∑

i=0

af
i ωi(x). (10.18)

Motivated by (10.16), we define

f [x0, x1, . . . , xi] = af
i (10.19)

for i ≥ 0. Thus by definition we have the Newton divided difference form of
(Lagrange) interpolation:

Lnf(x) =

n∑

k=0

f [x0, x1, . . . , xk]ωk(x). (10.20)

Divided differences are defined for any set of points x0, . . . , xn, and they
obey rules similar to those of calculus. First, it is evident from (10.15) that
f [x0, x1] = f [x1, x0]. But from the definition (10.19), we see that the order
of the xi’s does not matter in general, that is,

f [x0, x1, . . . , xn] = f [xσ(0), xσ(1), . . . , xσ(n)] (10.21)

for any permutation σ of {0, 1, . . . , n}, as we get the same interpolant inde-
pendently of what order we use to introduce the points xi into the interpo-
lation process.

It is useful to derive explicitly the expression of p2 in terms of second
divided differences, but we leave this as exercise 10.4 and proceed to the
general properties.

Theorem 10.1 For distinct points x0, . . . , xn, the nth coefficient of the
Newton interpolation (10.20) defined by (10.19) satisfies

f [x0, x1, . . . , xn] =

n∑

k=0

f(xk)∏
i6=k(xk − xi)

, (10.22)

where f [x0] = f(x0) in the case of n = 0.

Note that (10.15) and (10.22) are consistent when n = 1.

156 CHAPTER 10

Proof. We have two representations of the interpolant: (10.20) and (10.4).
If we differentiate these n times, we find

f [x0, x1, . . . , xn]ω(n)
n (x) =

n∑

i=0

f(xi)φ
(n)
i (x) (10.23)

since all the other terms in (10.20) vanish because ωk is a polynomial of
degree k. By inspection, we see that

φ
(n)
i (x) =

n!∏
j 6=i(xi − xj)

(10.24)

because the leading-order term in the numerator in (10.4) is xn. Similarly,

the leading-order term in ωn(x) is also xn, so that ω
(n)
n ≡ n!. Plugging these

values for the derivatives into (10.23) completes the proof of the theorem.
QED

Lemma 10.2 For distinct points x, x0, . . . , xn in an interval I,

f(x)− Lnf(x) = f [x0, x1, . . . , xn, x]ωn+1(x). (10.25)

Notice the similarity to Taylor’s theorem with a remainder. Both approx-
imations are written in terms of a sequence of basis functions ((x − x0)

k

versus ωk(x)), and the error terms are written in terms of the next basis
functions in the sequence.

Proof. We think of x as an additional interpolation point and use (10.20)
to write

Ln+1f(y) = Lnf(y) + f [x0, x1, . . . , xn, x]ωn+1(y). (10.26)

But since x is an interpolation point, we have Ln+1f(x) = f(x), so applying
(10.26) with y = x completes the proof. QED

Corollary 10.3 For distinct points x0, . . . , xn in an interval I, there is a
point ξ ∈ I satisfying

f [x0, x1, . . . , xn] =
f (n)(ξ)

n!
, (10.27)

provided that f ∈ C(n+1)(I).

Proof. Apply (10.9) and lemma 10.2. QED

Further manipulation (exercise 10.6) of the indices in (10.22) shows that
the nth divided difference is a divided difference of divided differences of
order n− 1, as described in the following result.

Corollary 10.4 For distinct points x0, . . . , xn, the nth divided difference
satisfies

f [x0,x1, . . . , xn]

=
f [x1, . . . , xi−1, xi+1, . . . , xn]− f [x0, . . . , xj−1, xj+1, . . . , xn]

xj − xi

(10.28)

for any indices i 6= j.

POLYNOMIAL INTERPOLATION 157

10.3 NORMS IN INFINITE-DIMENSIONAL SPACES

We need to formalize a statement made about the definition of the Lagrange
interpolation operator. Initially, in (10.4) it was defined for f ∈ Rn+1,
but then it was extended in (10.6) to be defined for f ∈ C0, the space of
continuous functions. This space is also a vector space. Addition in C0 is
defined by saying that

(f + g)(x) = f(x) + g(x) for all x, (10.29)

and scalar multiplication is defined by

(sf)(x) = sf(x) for all x, (10.30)

for any scalar s. But C0 is an infinite-dimensional vector space. However,
there is a natural norm defined on it, the maximum norm. To be more
precise, for any closed interval I, we can define

‖f‖∞ = sup
x∈I
|f(x)|. (10.31)

We leave as exercise 10.7 the verification that this is indeed a norm.

10.3.1 Instability of Lagrange interpolation

Lagrange interpolation is more robust than Taylor approximation, but it
has properties that make it sensitive to use in practice. In particular, the
placement of the interpolation points is extremely influential regarding its
performance. The main difficulty stems from a lack of stability of the inter-
polation operator in the maximum norm for many choices of interpolation
points.

For the moment, let us think of Lagrange interpolation as defining an
operator Ln : C0(I) → Pn. If we take ‖ · ‖∞ as the norm for both of these
spaces, we can define an operator norm in the same way as we did in (6.1)
in the finite-dimensional case:

‖Ln‖∞ = sup
f∈C0(I)

‖Lnf‖∞
‖f‖∞

. (10.32)

In view of (6.2), we can think of ‖Ln‖∞ as the smallest constant C such that
‖Lnf‖∞ ≤ C‖f‖∞. (See exercise 10.8 for a finite-dimensional interpretation
of the norm defined in (10.32).)

We will see that ‖Ln‖∞ can be very large for typical choices of interpo-
lation points. Suppose in this case that some small errors are made in the
specification of the interpolation data f . That is, suppose we apply inter-
polation to f + δ, where δ is small but somewhat arbitrary (e.g., due to
round-off error). Since Ln is linear, the result is

Ln(f + δ) = Lnf + Lnδ. (10.33)

We can then assert that the error, which is equal to Lnδ, must be no larger
than ‖Ln‖∞‖δ‖∞. But since we may have little control over δ, it could

158 CHAPTER 10

–7

–6

–5

–4

–3

–2

–1

 0

 1

 2

–1 –0.5 0 0.5 1

Figure 10.1 The Lagrange basis function φ5 for 11 equally spaced interpolation
points on the interval [−1, 1]. The circles indicate the interpolation
data.

possibly be as large as ‖Ln‖∞‖δ‖∞. Thus ‖Ln‖∞ represents the error am-
plification factor.

Let us estimate the size of ‖Ln‖∞. Since we can choose f in (10.32)
arbitrarily, we can pick f to be 1 at the ith interpolation point and 0 at the
others. In this case, Lnf = φi, the corresponding basis function. Thus we
conclude that

‖Ln‖∞ ≥ max
i=0,...,n

‖φi‖∞ . (10.34)

On the other hand, it is not hard (exercise 10.10) to show that

‖Ln‖∞ ≤
n∑

i=0

‖φi‖∞ . (10.35)

Thus we need to look carefully at the size of the Lagrange basis functions.
Since the Lagrange basis functions are chosen to be 1 at one point and

0 at the others, one might hope that the maximum of the basis functions
will not be too big. In particular, it might be the case that the maximum
occurs at the interpolation point where it is specified to be 1. But in general,
this does not happen. A typical Lagrange basis function for equally spaced
interpolation points

xi = −1 + (i− 1)/k, i = 1, . . . , 2k + 1, (10.36)

is depicted in figure 10.1. For n = 2k + 1 equally spaced interpolation
points on [−1, 1] as defined in (10.36), the largest norm appears to occur

POLYNOMIAL INTERPOLATION 159

γ n = 5 7 9 11 13 15 17 19 21√
2 0.07 0.04 0.02 0.01 0.007 0.004 0.003 0.002 0.001

2 0.16 0.12 0.10 0.09 0.080 0.075 0.072 0.070 0.068
3 0.30 0.32 0.38 0.50 0.67 0.94 1.3 1.9 2.7

Table 10.1 Errors ‖rγ −Lnrγ‖∞ in Lagrange interpolation Ln of the Runge func-
tion for various values of γ and polynomial order n.

for φk (which is associated with the interpolation point xk = −1/k), and its
maximum appears to occur in the first interval [x1, x2] (see exercise 10.15).
Computing the Lagrange basis functions for various values of k and the
maximum value φk in this interval yields lower bounds via (10.34), which
grow exponentially (see exercise 10.16). In particular, for k = 31, ‖L2k+1‖∞
exceeds 1016 (we explain in section 11.3 how this operator norm can be
computed with some confidence). This means that round-off errors in the
data f could lead to order one errors in computing Lnf for large n no matter
how well-behaved f may be.

10.3.2 Data-dependence of Lagrange interpolation

In addition to the inherent instability of Lagrange interpolation for large n,
there are also classes of functions that are not suitable for approximation
by certain types of interpolation. There is a celebrated example of Runge4

[86] based on interpolating the function 1/(1 + x2) on various intervals. For
simplicity, here we instead look at interpolating the function

rγ(x) = 1/(1 + (γx)2) (10.37)

on the fixed interval [−1, 1].
The special feature of the Runge function rγ is that it has a singularity

in the complex plane at z = ±i/γ despite the fact that it is infinitely differ-
entiable on the real line (where the interpolation is being done). As γ gets
large, the singularity encroaches upon the domain [−1, 1] of approximation.
For γ = 2, the maximum error

‖rγ − Lnrγ‖∞ (10.38)

slowly decreases as a function of n for uniformly spaced points (see ta-
ble 10.1). However, for γ = 3, the error (10.38) increases; figure 10.2 depicts
the error with n = 11. We again see that the maximum error occurs in the
first and last segments.

4Carl David Tolmé Runge (1856–1927) was a student of Weierstrass and Kummer, and
he married the niece of Paul Du Bois-Reymond (see page 69). He was a close friend of,
and student with, Max Planck, and he was a teacher and mentor of Max Born.

160 CHAPTER 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

–1 –0.5 0 0.5 1

Figure 10.2 The Runge function r3 (dashed line) and its Lagrange interpolant for
11 equally spaced interpolation points on the interval [−1, 1]. The
“+” signs indicate the interpolation data.

10.4 MORE READING

Polynomial interpolation has been motivated by a variety of factors. With
the advent of modern computing machines, the need to provide accurate
approximations of various sorts [78, 113] includes interpolation [107] as a
major technique.

The approach to the Newton form of interpolation was guided by [42],
which should be consulted for information about other types of interpolation
as well.

We have shown that Lagrange interpolation requires some thought if we
want to compute stable approximations. See [83] regarding the influence of
floating-point and stable ways of computing Lagrange interpolants.

10.5 EXERCISES

Exercise 10.1 Prove (10.9). (Hint: explain why

f(x)− Lnf(x) = Cxωn+1(x), (10.39)

where Cx depends on x but will be held fixed for the calculations. Use Rolle’s
theorem repeatedly to show that the function

χ(y) = f(y)− Lnf(y)− Cxωn+1(y) (10.40)

POLYNOMIAL INTERPOLATION 161

has the property that χ(k) vanishes at n+2− k distinct points in an interval
containing all the points x0, . . . , xn and x. Let ξ be the point where χ(n+1)

vanishes.)

Exercise 10.2 Show that the Lagrange interpolation problem may be re-
duced to a linear system of equations with a Vandermonde matrix




1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1

· · ·
1 xn x2

n · · · xn
n


 . (10.41)

Prove that a Vandermonde matrix is invertible if and only if the xi’s are
distinct. (Hint: represent polynomials in terms of the standard monomial
basis functions xi.)

Exercise 10.3 Prove that the error polynomials ωn defined in (10.8) are
linearly independent. (Hint: use induction. Note that you cannot have ωn =∑n−1

i=0 aiωi(x) because the right-hand side is a polynomial only of degree n.)

Exercise 10.4 Derive the expression

p2(x) = f [x0] + f [x0, x1](x − x0) + f [x0, x1, x2](x− x0)(x− x1) (10.42)

following the approach used to construct the representation for p1.

Exercise 10.5 Suppose that f [x0, x1, x2] is defined as a divided difference
of two first-order divided differences, e.g.,

f [x0, x1, x2] =
f [x0, x2]− f [x0, x1]

x2 − x1
. (10.43)

Show that

f [x0, x1, x2] = f [xσ(0), xσ(1), xσ(2)] (10.44)

for any permutation σ of {0, 1, 2}.

Exercise 10.6 Prove corollary 10.4. (Hint: use theorem 10.1 to show that

f [x0, x1, . . . , xn] =
f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0
(10.45)

and then apply (10.21).)

Exercise 10.7 Show that ‖ · ‖∞ defined in (10.31) is a norm, that is, sat-
isfies the properties (5.1)-(5.3).

Exercise 10.8 Show that the definition (10.32) yields the same number
‖Ln‖∞ if we replace C0(I) by Rn+1 as the domain of Ln:

‖Ln‖∞ = sup
f∈Rn+1

‖Lnf‖∞
‖f‖∞

, (10.46)

where we use the alternative interpretation Ln : Rn+1 → Pn defined in
(10.4).

162 CHAPTER 10

Exercise 10.9 Give an example of a function f such that Lnf = φi and
has the required properties that allow us to conclude the estimate (10.34).

Exercise 10.10 Prove (10.35).

Exercise 10.11 Prove that the determinant of a Vandermonde matrix as
described in (10.41) satisfies

det




1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1

· · ·
1 xn x2

n · · · xn
n


 =

∏

0≤i<j≤n

(xj − xi) (10.47)

and is thus invertible when all xi’s are distinct. (Hint: reduce this to a
problem involving Lagrange interpolation by expanding the determinant along
the last column.)

Exercise 10.12 Consider Lagrange interpolation Ln based on distinct in-
terpolation points xi. Prove that, for any continuous function f ,

(Ln(xf)− xLnf) (x) = (−1)n+1f [x0, x1, . . . , xn]ωn(x). (10.48)

Here the commutator Ln(xf) − xLnf is defined as follows. We let g(x) =
xf(x) and gn(x) = x(Lnf(x)). Then (Ln(xf)− xLnf) (x) = Lng(x)− gn.

Exercise 10.13 Determine a bound for the derivatives of the Runge func-
tion rγ defined in (10.37) as a function of n and γ. Use this in (10.9) to
give an estimate for the error in Lagrange interpolation.

Exercise 10.14 Suppose that f is a polynomial of degree n+ 1. Prove that

f [x0, x1, . . . , xn] =
f (n+1)

(n+ 1)!
, (10.49)

where we note that f (n+1) is a constant. (Hint: see corollary 10.3.)

Exercise 10.15 Let φi denote the ith basis function for Lagrange interpo-
lation for n = 2k+ 1 equally spaced interpolation points xi = −1 + (i− 1)/k
on [−1, 1], i = 1, . . . , 2k + 1. Verify computationally that the largest norm
occurs for φk associated with the interpolation point xk = −1/k and that its
maximum occurs in the first interval [x1, x2].

Exercise 10.16 Let φi denote the ith basis function for Lagrange interpo-
lation for n = 2k+ 1 equally spaced interpolation points xi = −1 + (i− 1)/k
on [−1, 1], i = 1, . . . , 2k + 1. Verify computationally that

Mk = max
i=1,...,2k+1

‖φi‖∞ (10.50)

grows exponentially with k. In particular, verify that M63 > 1016. (Hint:
plot (logMk)/k.)

POLYNOMIAL INTERPOLATION 163

Exercise 10.17 Verify table 10.1 computationally.

Exercise 10.18 Consider equally spaced points xi = i/n (i = 0, . . . , n) on
[0, 1] and consider ωn+1(x) =

∏n
i=0(x − xi). Verify computationally that,

for n odd, |ωn+1(1/2n)| ≈ e−an and |ωn+1(1/2)| ≈ e−bn, where a ≈ 1.0 and
b ≈ 1.7.

Exercise 10.19 Consider any distinct points x0, x1, . . . xn. Show that each
Lagrange basis functions φi defined in (10.5) can be written as

φi(x) =
ciωn+1(x)

x− xi
(10.51)

for some constant ci, where ωn+1(x) = (x − x0)(x − x1) · · · (x − xn). What
is ci?

10.6 SOLUTIONS

Solution of Exercise 10.4.
Suppose we add now x2 and try to determine p2 from p1 in the way that

we determined p1 from p0 and q1. Then we have p2 = p1 + q2, where q2 is
quadratic and must vanish at x0, x1 (to avoid spoiling the interpolation at
those points). Thus

q2(x) = a2(x− x0)(x − x1) = a2ω2, (10.52)

and the value of a2 will be determined by the requirement p2(x2) = f(x2):

f(x2) = f(x0) + f [x0, x1](x2 − x0) + a2(x2 − x0)(x2 − x1). (10.53)

Rearranging terms in (10.53), we find

f(x2)− f(x0) = (x2 − x0)(f [x0, x1] + a2(x2 − x1)), (10.54)

which says that

f [x2, x0] = f [x0, x1] + a2(x2 − x1). (10.55)

Thus we have found that

a2 =
f [x2, x0]− f [x0, x1]

x2 − x1
. (10.56)

The result then follows from theorem 10.1.

Solution of Exercise 10.7. In the derivation of the properties of the
norm, we have to calculate the supremum of the set

{
|f(x)|

∣∣ x ∈ I
}

for
various functions f . By definition, ‖f‖∞ ≥ 0 since it is the supremum of
nonnegative numbers.

If ‖f‖∞ = 0, then f must be identically zero, since in this case we must
have

{
|f(x)|

∣∣ x ∈ I
}

= {0}. (10.57)

164 CHAPTER 10

Now let f ∈ C0(I) be arbitrary, let s be any scalar, and let r = |s|. Note
that

|f(x)| ≤ ‖f‖∞ ∀x ∈ I. (10.58)

Then

|sf(x)| = r|f(x)| ≤ r‖f‖∞ (10.59)

for all x ∈ I. So r‖f‖∞ is an upper bound for
{
|sf(x)|

∣∣ x ∈ I
}
. Thus

‖sf‖∞ = sup
{
|sf(x)|

∣∣ x ∈ I
}
≤ r‖f‖∞. (10.60)

If r = 0, then (10.60) implies that

‖sf‖∞ = 0 = |s| ‖f‖∞. (10.61)

So now suppose r > 0. If b is an upper bound for
{
|sf(x)|

∣∣ x ∈ I
}
, then

r|f(x)| = |sf(x)| ≤ b (10.62)

for all x ∈ I. Then |f(x)| ≤ b/r for all x ∈ I. Hence

‖f‖∞ = sup
{
|f(x)|

∣∣ x ∈ I
}
≤ b/r. (10.63)

Since this holds for all b, we find

r‖f‖∞ ≤ sup
{
|sf(x)|

∣∣ x ∈ I
}

= ‖sf‖∞. (10.64)

Combining (10.64) and (10.60), we conclude that |s| ‖f‖∞ = ‖sf‖∞.
Now let us address the triangle inequality. By (10.58), we have

|(f + g)(x)| = |f(x) + g(x)|
≤ |f(x)|+ |g(x)| ≤ ‖f‖∞ + ‖g‖∞ ∀x ∈ I. (10.65)

That is, ‖f‖∞ + ‖g‖∞ is an upper bound for
{
|(f + g)(x)|

∣∣ x ∈ I
}
. Thus

‖f + g‖∞ = sup
{
|(f + g)(x)|

∣∣ x ∈ I
}
≤ ‖f‖∞ + ‖g‖∞. (10.66)

Solution of Exercise 10.11. For n = 1, we have

det

(
1 x0

1 x1

)
= x1 − x0 =

∏

0≤i<j≤1

(xj − xi), (10.67)

so we may proceed by induction. For x ∈ Rn+1, define dn(x) via

dn(x0, x1, . . . , xn) =
∏

0≤i<j≤n

(xj − xi). (10.68)

Expanding the Vandermonde determinant around the last column, we have
by induction that

(−1)n det




1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1
...

...
...

...
...

1 xn x2
n · · · xn

n


 =

{ xn
0dn−1(x1, x2, . . . , xn)−
xn

1dn−1(x0, x2, . . . , xn)+
...

(−1)nxn
ndn−1(x0, x1, . . . , xn−1)

=
n∑

k=0

(−1)kxn
kdn−1(x̂

(k)),

(10.69)

POLYNOMIAL INTERPOLATION 165

where x̂(k) denotes the point in Rn obtained by deleting the kth coordinate
of x. Expanding the expression (10.68), we find

dn(x0, x1, . . . , xn) = dn−1(x̂
(k))

∏

0≤j<k

(xk − xj)
∏

k<j≤n

(xj − xk). (10.70)

Therefore,

dn−1(x̂
(k)) =

dn(x0, x1, . . . , xn)

(−1)k
∏

0≤j≤n, j 6=k(xj − xk)
. (10.71)

Thus (10.69) becomes

(−1)n det




1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1

· · ·
1 xn x2

n · · · xn
n




= dn(x0, x1, . . . , xn)

n∑

k=0

xn
k∏

0≤j≤n, j 6=k(xj − xk)
.

(10.72)

Thus we have reduced the problem to prove the (unlikely looking) expression

(−1)n =
n∑

k=0

xn
k∏

0≤j≤n, j 6=k(xj − xk)
. (10.73)

The denominator of this expression is the same as in the Lagrange interpo-
lation basis functions, so we can write

n∑

k=0

xn
k∏

0≤j≤n, j 6=k(xj − xk)
=

n∑

k=0

xn
kφk(x)∏

0≤j≤n, j 6=k(xj − x)

= (−1)n
n∑

k=0

xn
kφk(x)∏

0≤j≤n, j 6=k(x− xj)

= (−1)n
n∑

k=0

xn
kφk(x)(x − xk)∏
0≤j≤n(x− xj)

= (−1)nωn+1(x)
−1

n∑

k=0

xn
kφk(x)(x − xk)

(10.74)

for any x 6= xj for all j = 0, . . . , n, by (10.8). Let p(x) = xn+1 and q(x) = xn.
Then

n∑

k=0

xn
kφk(x)(x − xk) =x

(
n∑

k=0

xn
kφk(x)

)
−
(

n∑

k=0

xn+1
k φk(x)

)

=xLnq(x)− Lnp(x) = xq(x) − Lnp(x)

= p(x) − Lnp(x) = ωn+1(x),

(10.75)

as required. Note that (10.73) implies that

(−1)n =
n∑

k=0

xn
k∏

0≤j≤n, j 6=k(xj − xk)
=

n∑

k=0

1
∏

0≤j≤n, j 6=k

(
xj

xk
− 1
)

=

n∑

k=0

∏

0≤j≤n, j 6=k

(
xj

xk
− 1

)−1

.

(10.76)

166 CHAPTER 10

Solution of Exercise 10.12. Using the definition of the Lagrange inter-
polation basis functions,

f [x0, x1, . . . , xn] =

n∑

k=0

f(xk)∏
j 6=k(xj − xk)

=
n∑

k=0

f(xk)φk(x)(xk − x)∏n
j=0(xj − x)

= (−1)n+1ωn+1(x)
−1

n∑

k=0

f(xk)φk(x)(xk − x)

= (−1)n+1ωn+1(x)
−1 (Ln(xf)− xLnf) (x)

(10.77)

for any x 6= xj for all j. This proves the result for x 6= xj ; for x = xj , the
result is true because

xjLnf(xj) = xjf(xj) = Ln(xf)(xj). (10.78)

Chapter Eleven

Chebyshev and Hermite Interpolation

“This is a mathematical textbook rather than a com-
pendium of computational rules. It is hoped that the ma-
terial included will provide a useful background for those
seeking to devise and evaluate routines for numerical com-
putation.” (Alston S. Householder in [84])

For equally spaced points, two examples have suggested that bad things
happen at the ends of the interpolation interval: the basis functions are large
there, and the approximation of the Runge function (10.37) can be as well.
Also, the size of the error function ωk defined in (10.8) is relatively larger
(exercises 10.18 and 11.1) at the ends of the interval. The Chebyshev1 points
are a special set of Lagrange interpolation points that cluster at the ends of
the interval:

xj = xj,n = − cos

(
π(2j + 1)

2(n+ 1)

)
= cos

(
π(2(n− j) + 1)

2(n+ 1)

)
(11.1)

for j = 0, 1, . . . , n (for interpolation on [−1, 1]). We include the extra sub-
script xj,n to be precise, as we will compare error terms for different values
of n. The key feature is that these points are clustered around the ends of
the interval: x1 − x0 = O(n−2), whereas in the middle of the interval, the
spacing is O(n−1).

We will also consider more general forms of interpolation involving deriva-
tive and other information in addition to function values.

11.1 ERROR TERM ω

There is a simple interpretation of the Chebyshev points in terms of the
error function ωn+1 defined in (10.8), as follows.

Theorem 11.1 With the Chebyshev interpolation points (11.1), the error
function ωn+1 defined in (10.8) for Lagrange interpolation satisfies

ωn+1(x) =

{
2−n cos((n+ 1) cos−1 x) ∀x ∈ [−1, 1]

2−n−1
((
x+
√
x2 − 1

)n+1
+
(
x−
√
x2 − 1

)n+1
)
∀x ∈ R.

(11.2)

1Pafnuty Lvovich Chebyshev (1821–1894) “was probably the first mathematician to
recognize the general concept of orthogonal polynomials” [140]. His students included
Andrei Andreyevich Markov and Aleksandr Mikhailovich Lyapunov.

168 CHAPTER 11

Moreover, the following three-term recursion relation holds:

ωn+1(x) = xωn(x) − 1
4ωn−1(x), (11.3)

where ωn+1−i(x) =
∏n−i

j=0(x − xj,n−i) for i = 0, 1, 2 and xj,n is defined in
(11.1).

Proof. The function cos((n+ 1) cos−1 x) has the right roots:

cos((n+ 1) cos−1 xj) = cos((π/2)(2(n− j) + 1)) = 0 (11.4)

since 2(n− j) + 1 = 1, 3, 5, It is somewhat remarkable that

cos((n+ 1) cos−1 x)

is a polynomial in x, of degree n+1, but let us suppose for the moment that
it is true (cf. exercise 11.2). Since cos((n+1) cos−1 x) and ωn+1(x) have the
same roots, they are a constant multiple of each other.

It is also surprising that square-roots appear in (11.2) in a representation
of a polynomial. But for n = 0, the two square-root terms cancel, giving
ω1(x) = x, as required. Also disconcerting is the fact that, for |x| < 1,
the square-roots are complex numbers. However, expanding the terms in
the second representation in (11.2) via the binomial theorem (exercise 11.3)
shows that all the square-root terms cancel, leaving only polynomial terms:
(
x+

√
x2 − 1

)k

+
(
x−

√
x2 − 1

)k

= 2
∑

0≤j≤k/2

(
k
2j

)
(x2−1)jxk−2j . (11.5)

Thus if we can identify the two expressions in (11.2), then we have shown
that the cosine expression is a polynomial in x.

We use some facts about complex variables, namely, that

(cos θ + i sin θ)
k

=
(
eiθ
)k

= eikθ = cos kθ + i sinkθ, (11.6)

where i =
√
−1. The equality of the leftmost and rightmost terms in (11.6)

is known as a theorem of De Moivre, which was used by Euler2 to prove the
equalities involving the complex exponential and trigonometric functions
[54]. For |x| ≤ 1, write x = cos t. Then

x±
√
x2 − 1 = cos t± i

√
1− x2 = cos t± i sin t = e±it. (11.7)

Combining (11.7) with (11.6), we find
(
x+

√
x2 − 1

)k

+
(
x−

√
x2 − 1

)k

= eikt + e−ikt = 2 cos kt, (11.8)

which confirms that the two expressions in (11.2) are the same for |x| ≤ 1.
The expression (11.2) shows that the leading term of cos((n + 1)t) is

2nxn+1, and since the leading term of ωn+1(x) is xn+1, we must have
cos((n+ 1)t) = 2nωn+1(x).

We leave the recursion relation (11.3) as exercise 11.4. QED

2Leonhard Euler (1707–1783) lived in the same period as Benjamin Franklin (1706–
1790) [125] and was said by Laplace to be “the master of us all” [54].

CHEBYSHEV AND HERMITE INTERPOLATION 169

11.1.1 Chebyshev asymptotics

The formula (11.2) provides a complete description of the error polynomial
ωn+1(x) for all x. Between −1 and 1, the first representation shows that it
just oscillates between ±2−n (cf. exercise 10.18). For x outside this interval,
ωn+1(x) increases in size dramatically. Fortunately, it is easy to describe its
behavior precisely for large n based on the second representation in (11.2).
Although the square-root terms cancel algebraically, they can be used to
obtain a precise estimate of the growth.

To simplify notation, we switch subscripts and consider

ωn(x) = (x − x0,n−1)(x − x1,n−1) · · · (x− xn−1,n−1) (11.9)

in the remainder of the section, where the Chebyshev points are given in
(11.1).

Theorem 11.2 Suppose that ωn is as in (11.9). For ±x > 1,

lim
n→∞

|ωn(x)|1/n = 1
2

(
±x+

√
x2 − 1

)
. (11.10)

Moreover,

|ωn(x)| >
(

1
2

(
±x+

√
x2 − 1

))n

. (11.11)

We leave the proof as exercise 11.6. figure 11.1 depicts the ratio

ωn(x)
(

1
2

(
x+
√
x2 − 1

))n (11.12)

for n = 10, 20, 40, 80 on the interval [1, 1.001].

11.1.2 Application to CG

One way to describe the error term ωn is to say that it is the polynomial
of degree n that deviates least from zero on the interval [−1, 1] among all
polynomials that are asymptotic to xn at infinity. We can make this precise
by turning (11.11) around. Suppose we want a polynomial pn of degree n
such that pn(Λ) = 1, for some fixed Λ > 1, and pn is small on [−1, 1]. Define

pn(x) = ωn(x)/ωn(Λ). (11.13)

Then

‖pn‖∞,[−1,1] = 2−n/ωn(Λ) <
(
Λ +

√
Λ2 − 1

)−n

. (11.14)

Thus we see that even though pn(Λ) = 1, pn is exponentially small on the
interval [−1, 1]. We now use this to prove lemma 9.11.

Recall that 0 < λ1 < λ2 and define b = 1
2 (λ2 − λ1) and

Λ =
λ1 + λ2

λ2 − λ1
=
λ1 + λ2

2b
. (11.15)

170 CHAPTER 11

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 1 1.0001 1.0002 1.0003 1.0004 1.0005 1.0006 1.0007 1.0008 1.0009 1.001

Figure 11.1 Plot of the ratio (11.12) for x ∈ [1, 1.001] and n = 10, 20, 40, 80 (top
to bottom).

Then we have

λ1 = (Λ− 1)b and λ2 = (Λ + 1)b. (11.16)

Define qn(x) = pn(Λ− x/b). Then qn(0) = 1, and

‖qn‖∞,[λ1,λ2] = ‖qn‖∞,[(Λ−1)b,(Λ+1)b] = ‖pn‖∞,[−1,1]. (11.17)

Thus (11.14) implies

‖qn‖∞,[λ1,λ2] ≤
(
Λ +

√
Λ2 − 1

)−n

, where Λ =
λ1 + λ2

λ2 − λ1
. (11.18)

This completes the proof of lemma 9.11.

11.2 CHEBYSHEV BASIS FUNCTIONS

We can identify the jth basis function for the Chebyshev interpolation points
(see exercise 10.19) as

φj(x) = φj(cos t) = c′j
ωn+1(x)

(x− xj)
=
cj cos((n+ 1)t)

cos t− cos tj
, (11.19)

where tj = π(2(n−j)+1)
2(n+1) and cj = c′j2

n is defined such that φj(xj) = 1. By

l’Hopital’s Rule, we have

cj = lim
t→tj

cos t− cos tj
cos((n+ 1)t)

=
sin tj

(n+ 1) sin((n+ 1)tj)
=

(−1)n−j sin tj
(n+ 1)

(11.20)

CHEBYSHEV AND HERMITE INTERPOLATION 171

because (n+ 1)tj = 1
2π(2(n− j) + 1) = (n+ 1

2)π, (n− 1
2)π, . . . , 1

2π.
Now let us develop some bounds for how big the Chebyshev basis functions

can get. For | cos t − cos tj | ≥ |cj |, we have |φj(t)| ≤ 1. Thus we need to
estimate |φj(t)| for t only near tj . For the numerator of |φj(t)|, we see

| cos((n+ 1)t)| = | cos((n+ 1)t)− cos((n+ 1)tj)|

=
∣∣∣
∫ (n+1)t

(n+1)tj

sinxdx
∣∣∣ ≤ (n+ 1)|tj − t|

(11.21)

for any t. Similarly, if tj < t ≤ 1
2π, then the denominator of |φj(t)| can be

estimated by

| cos(t)− cos(tj)| =
∫ t

tj

sinxdx ≥ |tj − t| sin tj . (11.22)

Combining (11.22) and (11.21), we see that |φi(x)| ≤ 1 for xj < x ≤ 0 by
(11.20).

Unfortunately, the maximum of φj does not occur at xj , so we have
|φi(x)| > 1 for x < xj . Thus the norm of the Chebyshev interpolation
operator is greater than 1. Rather than trying to estimate the basis func-
tions in more detail, we approach the problem more generally.

11.3 LEBESGUE FUNCTION

We have seen by examples that the norm of the Lagrange interpolation op-
erator can be challenging to compute and that its size is strongly dependent
on the choice of interpolation points. We now consider the issue in more
depth. The norm of the Lagrange interpolation operator is a double supre-
mum, and it is useful to take the suprema one at a time. The Lebesgue
function is defined to be

λn(x) = sup
{
|(Lnf)(x)|

∣∣ ‖f‖∞ = 1
}
. (11.23)

In figure 11.2, a typical case with Chebyshev points is presented (cf. exer-
cise 11.9). Note that the maximum value occurs at the ends of the interval
[147].

The Lebesgue constant is the name for the norm of the Lagrange interpo-
lation operator, and we see (exercise 11.8) that

‖Ln‖∞ = ‖λn‖∞. (11.24)

Fortunately, the Lebesgue function is easy to compute:

Theorem 11.3 For any set of interpolation points x0, . . . , xn and corre-
sponding Lagrange basis functions φj , the Lebesgue function (11.23) satisfies

λn(x) =

n∑

j=0

|φj(x)| (11.25)

for all x.

172 CHAPTER 11

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

–1 –0.5 0 0.5 1

Figure 11.2 The Lebesgue function for Chebyshev interpolation points on the in-
terval [−1, 1]. The circles indicate the interpolation points where the
Lebesgue function has the value 1.

As a result of (11.25), we see that λn(xj) = 1 for all interpolation points
xj ; cf. figure 11.2.

Proof. For any x ∈ I, there is an f ∈ C0(I) such that

|Lnf(x)| =
∣∣∣

n∑

j=0

f(xj)φj(x)
∣∣∣

=

n∑

j=0

|φj(x)| ,
(11.26)

by taking f(xj) = sign(φj(x)). For example, we can take f to be the piece-
wise linear function with these values at the interpolation points, and we
thus have ‖f‖∞ = 1. This proves that λ(x) ≥ ∑n

j=0 |φj(x)|. The reverse
inequality follows because

|Lnf(x)| =
∣∣∣

n∑

j=0

f(xj)φj(x)
∣∣∣

≤‖f‖∞
n∑

j=0

|φj(x)|
(11.27)

for any f ∈ C0(I). QED

It is beyond our scope to compute analytical expressions for the Lebesgue
constants, but for completeness we report on what is known. For equally

CHEBYSHEV AND HERMITE INTERPOLATION 173

spaced points, the behavior is exponential:

‖Ln‖∞ ≈
2n

en logn
, (11.28)

and for the Chebyshev points,

‖Ln‖∞ ≈ 1
2π logn (11.29)

(see [147] for references). We might think that the logarithmic growth in
the Lebesgue constant for Chebyshev points could be improved by a better
choice of interpolation points (cf. exercise 11.13). In fact, it was proved by
Erdös3 [57] that for all choices of n interpolation points on [−1, 1],

‖Ln‖∞ ≥ (1
2π logn)− E ∀n (11.30)

for some constant E (see exercise 11.14).

11.4 GENERALIZED INTERPOLATION

Suppose that we have data associated not just with function values but also
with other quantities, such as derivatives, that we want to use in an inter-
polation scheme. An example of this is the Hermite4 interpolation scheme
which involves the value and derivative at each end of an interval [a, b].
These four parameters determine uniquely a cubic polynomial, but it is less
simple to write down the basis functions than it was for Lagrange interpola-
tion. Moreover, we might be interested in other interpolation data, such as
the integral over the interval. We will show that quadratics are determined
uniquely to interpolate a function at a and b and to match the integral over
[a, b].

Rather than approaching each of these interpolation problems in an ad
hoc manner, we develop a systematic approach. The key concept that we
use is that of a linear functional (or linear form) defined on a vector space
V . Suppose that V is a vector space over the scalar field F. Then a linear
functional L is a function L : V → F such that

L(v + αw) = L(v) + αL(w) (11.31)

for all v, w ∈ V and α ∈ F. For example, if V = C0(I), we can define
Lx(v) = v(x) for a given x ∈ I. Note that we can write the conditions for
the Lagrange interpolant P of a given function f as Lxi

P = Lxi
f for all

interpolation points xi.
We assume in general that there are n linear functionals Lj for which we

want to enforce interpolation, that is, Ljp = Ljf to determine a polynomial

3Paul Erdös (1913–1996) was one of the most prolific mathematicians of all time and
a proponent of the importance of beauty in proofs. He was a student of Leopold Fejér
(see page 220).

4Charles Hermite (1822–1901) was, among many distinguished appointments, Mâıtre

de Conférence at École Polytechnique, despite having had a low score on the entrance exam
as a student and ultimately leaving before graduating. His name is also commemorated
in the name “Hermitian matrix.”

174 CHAPTER 11

p of degree n − 1. For Lagrange interpolation, Ljf = f(xj) for all j, but
with Hermite Ljf = f ′(xj) for some j. And similarly we can define

Lf =

∫ b

a

f(x) dx (11.32)

as well as an infinite variety of other functionals.

11.4.1 Existence of interpolant

The existence of the generalized interpolant can be proved by constructing
polynomials φi ∈ Pn such that

Ljφi = δij . (11.33)

Then the generalized interpolant is defined by

Gnf(x) =

n∑

i=0

(Lif)φi. (11.34)

We can again also think of Gn being defined on data f ∈ Rn by

Gnf(x) =
n∑

i=0

fiφi. (11.35)

As in the case of the Lagrange interpolant, Gn is a projection, and error
estimates can be determined once a bound for the operator norm ‖Gn‖ is
determined.

The key issue is to have a simple condition that is equivalent to (11.33).

Definition 11.4 A set of linear functionals {L0,L1, . . . ,Ln} uniquely de-
termines Pn if Ljp = 0 for all j = 0, . . . , n implies p ≡ 0 for any p ∈ Pn.

We recall that the kernel of a linear function is the set where it vanishes:

kerL =
{
p ∈ Pn

∣∣ Lp = 0
}

(11.36)

in our case. Then we can say that L0, . . . ,Ln uniquely determines Pn iff

∩n
i=0 kerLj = ∅. (11.37)

Another term often used is unisolvent; we say {L0, . . . ,Ln} is unisolvent on
Pn iff (11.37) holds.

Lemma 11.5 There is a basis of Pn satisfying (11.33) if and only if the set
of linear functionals {L0,L1, . . . ,Ln} uniquely determines Pn.

Proof. Define a matrix A by aij = Li(x
j). Then if p(x) =

∑n
i=0 cjx

j , we
have (AC)i = Lip. Thus Ljp = 0 for all j = 0, . . . , n if and only if AC = 0.
Therefore, L0, . . . ,Ln uniquely determines Pn if and only if AC = 0 implies
C = 0, which in turn is equivalent to A being invertible. The condition
(11.33) means that we need, for each i, a vector C of coefficients such that

CHEBYSHEV AND HERMITE INTERPOLATION 175

AC = D, whereDj = δij . But this is just another condition equivalent to the
invertibility of A. Thus we have shown that both conditions are equivalent
to the invertibility of A and hence are equivalent to each other. QED

We note that lemma 11.5 provides the basis for constructing multidimen-
sional approximations of a very general type [21]. The space Pn can be
essentially any space of functions of dimension n + 1 for which the linear
functionals Lj are defined.

11.4.2 Applications

We now see how the (easy half of the) fundamental theorem of algebra guar-
antees the existence of the Lagrange basis functions. In view of lemma 11.5,
all we need to show is that any polynomial of degree n that vanishes at n+1
distinct points is identically zero, and this is part of what the fundamental
theorem of algebra states (cf. exercise 9.21).

But now we can use the same idea with more complicated forms of interpo-
lation. In particular, we can again use the fundamental theorem of algebra to
guarantee the existence of the Hermite basis functions simply by observing
that we count zeros with multiplicity. That is, a cubic function that vanishes
to second-order at two distinct points must be identically zero. In view of

lemma 11.5, there are cubic polynomials φi such that φ
(k)
ij (`) = δikδj`. This

notation is suitable for the Hermite cubic basis on [0, 1], but the approach
is the same for any interval.

Finally, consider quadratic polynomials p that vanish at a, b and have
∫ b

a

p(x) dx = 0. (11.38)

We must have

p(x) = c(a− x)(b − x) (11.39)

because p vanishes at a and b. But since
∫ 1

0 x(1 − x) dx 6= 0, we must
have c = 0 (cf. exercise 11.16). Thus we have an interpolation scheme for
quadratics based on the values at the endpoints and the integral over the
interval.

Lemma 11.5 does not always produce a positive result. It can also be used
to show that a particular interpolation scheme will not work. For example,
it is easy to see that we cannot use both the integral over an interval and
the value at the midpoint to determine a linear interpolant. Both of these
linear functionals vanish on the linear function that is zero at the midpoint.

To demonstrate the power of the abstract approach, we consider an inter-
polation problem related to the Euler-Maclaurin formula (see section 13.3.4).
This is also a good example of the general Birkhoff 5 interpolation problem
[15, 112].

5George David Birkhoff (1884–1944) was born in Overisel Township, Michigan, and
was a graduate student at the University of Chicago where he worked with E. H. Moore.

176 CHAPTER 11

Lemma 11.6 Let k be a positive integer. Suppose that p is a polynomial
of degree 2k + 1 that vanishes at −1 and +1, together with its odd-order
derivatives up through order 2k − 1. That is, p(±1) = 0 and

p(2i−1)(±1) = 0 (11.40)

for i = 1, . . . , k. Then p ≡ 0.

Proof. For k = 1, this is just Hermite interpolation. But for larger k
we are missing even-order derivative information, so we cannot apply the
fundamental theorem of algebra. However, a simple application of Rolle’s
theorem provides the missing information. Since p(±1) = 0 as well, there is
a point −1 < ξ1 < 1 such that p(1)(ξ1) = 0. Since p(1)(±1) = 0, there must
be two points −1 < µ−

1 < µ+
1 < 1 such that p(2)(µ±

1) = 0 (in particular,
µ−

1 < ξ1 < µ+
1). Thus there is a point −1 < ξ2 < 1 such that p(3)(ξ2) = 0.

Since p(3)(±1) = 0, we conclude that there must be two points −1 < µ−
2 <

µ+
2 < 1 such that p(4)(µ±

2) = 0. Continuing in this way, we find ultimately
that there is a point −1 < ξk < 1 such that p(2k−1)(ξk) = 0. Also since
p(2k−1)(±1) = 0 and since p(2k−1) is a polynomial of degree at most 2,
p(2k−1) ≡ 0. It is sometimes useful to give a particular type of argument
a name so that we can refer to it without repeating all the steps as we do,
e.g., with a proof involving a “telescoping series.” Thus we suggest that the
previous argument is one in which we “Rolle up” the roots of derivatives of
the polynomial p.

Now let us argue by induction. We have already demonstrated the case
k = 1 since this is just Hermite interpolation. Thus suppose that we have
demonstrated the lemma for j = k−1 ≥ 1 and that we now want to verify it
for k. So consider a polynomial p of degree 2k+1 satisfying the conditions of
the lemma. Our argument in which we “Rolle up” the roots of derivatives of
p allows us to assert that the degree of p is at most 2k− 2 since p(2k−1) ≡ 0.
But the data for the lemma for k include the data for j = k − 1, and since
the degree of p is ≤ 2k− 2 < 2j+1, then p ≡ 0 by the induction hypothesis.
QED

11.4.3 Numerical differentiation

Suppose we are given data and we want to compute the derivative of a
function that the data represent. We can use interpolation as a general
paradigm to compute any linear operator defined on functions. Suppose
that D is a linear functional defined on Ck(I), that is, a linear mapping
D : Ck(I) → R (cf. (11.31)). Suppose as well that we have a favorite
interpolation scheme (Lagrange, Hermite, etc.) Ln that takes data f ∈ R

n

and produces a polynomial p = Lnf that represents the data f in some way.
Then for data f ∈ Rn, we define

Dnf = D(Lnf). (11.41)

Suppose now, by abuse of notation, we write Lnf for a function f ∈ Ck(I),
where we mean that the data f ∈ Rn used to define Ln are taken from the

CHEBYSHEV AND HERMITE INTERPOLATION 177

function f in (11.34). Then we can compare the resulting approximation
Dnf with the exact Df :

Df −Dnf = Df −D(Lnf) = D(f − Lnf). (11.42)

Thus the error D−Dn is just D applied to the error in interpolation. So far,
we have not considered the error in derivatives for interpolation, but this
can be done in a fashion similar to what we did for the function values for
interpolation error.

For Df = f (k)(x) for some x ∈ I, Dnf provides an approximation to
f (k)(x). Let us consider some examples. Suppose that k = 1 and I = [0, 1].
Suppose that Ln represents linear (Lagrange) interpolation at the points
x0 = 0 and x1 = 1. Then p = Lnf satisfies (cf. section 10.2.3)

p′ = f(x1)− f(x0) = f [x0, x1], (11.43)

and we note that p′ is constant. Thus if Df = f ′(x), we have Dnf =
f(x1) − f(x0) = f [x0, x1] no matter which x ∈ I we choose. On the other
hand, if we take Ln to represent quadratic interpolation at x0 = 0, x1/2 = 1

2 ,
and x1 = 1, then p = Lnf is quadratic and p′ is a linear function. We can
use the Newton divided difference representation (10.28) to determine the
form of p′:

p′ = f [x0, x1]ω
′
1 + f [x0, x1, x1/2]ω

′
2, (11.44)

where ω1(x) = (x− x0) = x and ω2(x) = (x− x0)(x− x1) = x(x− 1). Thus
if we define Df = f ′(1

2), then

f ′(1
2) ≈ Dnf = f [x0, x1] = f(x1)− f(x0) (11.45)

since ω′
2(

1
2) = 0. Thus we get the same approximation for f ′(1

2) using both
linear and quadratic interpolants.

On the other hand, if we define Df = f ′(0), then we get a more complex
expression for Dnf :

f ′(0) ≈ Dnf

= f [x0, x1]ω
′
1(0) + f [x0, x1, x1/2]ω

′
2(0) = f [x0, x1]− f [x0, x1, x1/2]

= f [x0, x1]− (f [x0, x1]− f [x0, x1/2])/(x1 − x1/2) [by (10.28)]

= f [x0, x1]− 2(f [x0, x1]− f [x0, x1/2]) = −f [x0, x1] + 2f [x0, x1/2]

= − (f(x1)− f(x0)) + 2(f(x1/2)− f(x0))

= − 3f(x0) + 4f(x1/2)− f(x1).

(11.46)

Correspondingly, we see (e.g., by antisymmetry) that

f ′(1) ≈ f(x0)− 4f(x1/2) + 3f(x1). (11.47)

11.5 MORE READING

Applications of Chebyshev polynomials to solving differential equations is
the topic of [18]. For information on the history and current research on
Chebyshev polynomials, see [135]. For more detailed information about
Lebesgue constants, see [147]. The Newton approach to interpolation can
be applied to Hermite and other types of interpolation [42].

178 CHAPTER 11

11.6 EXERCISES

Exercise 11.1 Plot the error function ωn defined in (10.8) for points that
are equally spaced (10.36) and for Chebyshev points.

Exercise 11.2 Prove the trigonometric identities

cos((n+ 1)t) = 2(cos t)(cosnt)− cos((n− 1)t). (11.48)

(Hint: use (11.6) to express cos kt = 1
2 (eikt + e−ikt) and then use this to

expand the product (cos t)(cosnt).)

Exercise 11.3 Use the binomial theorem to expand

(a+ b)k + (a− b)k =
(
x+

√
x2 − 1

)k
+
(
x−

√
x2 − 1

)k

and show that the square-roots disappear; then verify (11.5). (Hint: odd
powers of the square-root terms cancel.)

Exercise 11.4 Prove that the recursion relation (11.3) holds. (Hint: use
(11.48). Note that x = cos t and interpret the other expressions in terms of
the ω’s as functions of x.)

Exercise 11.5 The functions Tk(x) = 2k−1ωk(x) are called Chebyshev (of-
ten spelled Tchebyshev) polynomials when ωk is the error function corre-
sponding to the Chebyshev points. Prove that these functions satisfy the
following three-term recursion relation: Tk+1(x) = 2xTk(x)− Tk−1(x).

Exercise 11.6 Prove theorem 11.2. (Hint: use the second relation in (11.2)
and observe that ±(x ±

√
x2 − 1) > 1 and 1 > ±(x ∓

√
x2 − 1) > 0 for

±x > 1.)

Exercise 11.7 Prove that the functions ωk(x) (and Tk(x), cf. exercise 11.5)
are orthogonal in the sense that

∫ 1

−1

ωj(x)ωk(x)
√

1− x2 dx = 0 (11.49)

if j 6= k. (Hint: introduce the change of variables x = cos t.)

Exercise 11.8 Prove (11.24). (Hint: observe that

‖Ln‖∞ = sup
{
|(Lnf)(x)|

∣∣ x ∈ I, ‖f‖∞ = 1
}
, (11.50)

where I is the interval of interpolation.)

Exercise 11.9 Verify figure 11.2 computationally.

Exercise 11.10 Let x1, . . . , xn be the Chebyshev points for [−1, 1]. Con-
sider the stretched set of points defined by

x̂j =

(
λ+

1− λ
|x1|

)
xj ,

where λ ∈ [0, 1]. When λ = 1, these are the regular Chebyshev points, and
when λ = 0, we have x̂1 = −1 and x̂n = 1 [147]. Plot the Lebesgue function
for various values of n and λ. Does λ = 1

2 minimize the maximum norm of
the Lebesgue function?

CHEBYSHEV AND HERMITE INTERPOLATION 179

Exercise 11.11 Suppose that f ∈ C0(I). Prove that there is an x ∈ I such
that |f(x)| = ‖f‖∞,I.

Exercise 11.12 Consider mesh points where x1 = −1+h2 and xi−xi−1 =
h2(1 + h)i for i = 2, . . . n − 1, where n ≈ log(1 + 1/h)/ log(1 + h). Reflect
this set of points around the origin and add the origin as well. Compare
polynomial interpolation on this set of points with the Chebyshev points.

Exercise 11.13 The Chebyshev points are not the optimal points for reduc-
ing the size of the Lebesgue function. The optimal points have the property
that the Lebesgue function equi-oscillates in each subinterval [27, 43, 96], that
is, between each pair of interpolation points xi and xi+1, there is a point ξi
where λ(ξi) = ‖λ‖∞ (at the ends, λ(±1) = ‖λ‖∞ as well). Determine the
set of points xi which minimize ‖λ‖∞ for a given value of n.

Exercise 11.14 The estimate (11.30) implies that there is a constant E
such that

E ≥ (1
2π logn)− ‖Ln‖∞ ∀n (11.51)

so that we can define

E0 = sup
{
(1
2π logn)− ‖Ln‖∞

∣∣ n ≥ 1
}
. (11.52)

Investigate the value of E0. (By analogy with (18.6), we could call E0 the
Erdös number.)

Exercise 11.15 The error polynomial ωn+1 for Chebyshev interpolation os-
cillates between ±1, and in particular |ωn+1(±1)| = 1. What is the derivative
of ωn+1 at ±1?

Exercise 11.16 Explain why (11.38) implies that c = 0 for the polynomial
(11.39).

Exercise 11.17 Define Df = f ′′(0) for f ∈ C2([−1, 1]). Let L2 denote La-
grange interpolation by quadratics at −1, 0, 1. Determine the corresponding
formula for D2f = DL2f . (Hint: see section 11.4.3.)

Exercise 11.18 Consider the error in Chebyshev approximation on a gen-
eral interval [a, b]. Let x̂i denote the Chebyshev points for [−1, 1] defined in
(11.1) and define points xi in [a, b] by xi = a+ 1

2 (b− a)(1 + x̂i). Prove that

‖f − Lnf‖∞,[a,b] ≤
2

(n+ 1)!

(
b− a

4

)n+1

‖f (n+1)‖∞,[a,b], (11.53)

where Ln denotes Lagrange interpolation at the points xi. (Hint: set h =
1
2 (b−a) and define f̂(x̂) = f(a+h(1+ x̂)). Compare Lagrange interpolation

on [−1, 1] with points x̂i, and on [a, b] with points xi. Observe that f̂ (k)(x̂) =
hkf (k)(a+ h(1 + x̂)).)

180 CHAPTER 11

Exercise 11.19 The Chebyshev polynomials Tn as defined in exercise 11.5
satisfy

Tn(x) = 1
2

((
x+

√
x2 − 1

)n

+
(
x−

√
x2 − 1

)n)
, (11.54)

in view of theorem 11.1. The Chebyshev polynomials of the second kind are
denoted by Un(x) and can be defined by

Un(x) =
1

2
√
x2 − 1

((
x+

√
x2 − 1

)n+1

−
(
x−

√
x2 − 1

)n+1
)
. (11.55)

Prove that U0(x) = 1 and U1(x) = 2x and in general that

Un(x) =
∑

0≤j≤n/2

(
n+ 1
2j + 1

)
(x2 − 1)jxn−2j (11.56)

for all n ≥ 0.

Exercise 11.20 The Chebyshev polynomials of the second kind are defined
in exercise 11.19. Prove the recursion relation

Uk+1(x) = 2xUk(x)− Uk−1(x), k ≥ 1. (11.57)

Exercise 11.21 The Chebyshev polynomials of the second kind are defined
in exercise 11.54. Prove that T ′

n = nUn−1 for all n ≥ 1, where Tn denotes
the Chebyshev polynomial of the first kind defined in exercise 11.5.

11.7 SOLUTIONS

Solution of Exercise 11.2. For n = 0, we have (note that x0 = 0 in this
case)

cos((n+ 1) cos−1 x) = cos(cos−1 x) = x = x− x0 = ω1(x). (11.58)

Let t = cos−1 x. Then by a trigonometric identity,

cos 2t = (2 cos2 t)− 1 = 2x2 − 1. (11.59)

Thus we know that cos 2t = cos(2 cos−1 x) and ω2(x) are both polynomials
of degree 2 with the same roots. Matching the terms of order x2, we find
that cos 2t = 2ω2(x). This covers the case n = 1.

We can prove (11.48) by complex analysis; cf. (11.6):

cos((n± 1)t) =Re e(n±1)ti = Re (entie±ti)

= (cosnt) cos t∓ (sinnt) sin t,
(11.60)

where i =
√
−1 and Re z denotes the real part of z. Then (11.48) follows by

adding the plus and minus versions of (11.60). Similarly,

sin((n± 1)t) = Ime(n±1)ti = Im (entie±ti)

= (sinnt) cos t± (cosnt) sin t,
(11.61)

CHEBYSHEV AND HERMITE INTERPOLATION 181

where Imz denotes the imaginary part of z.
Using the induction hypothesis (11.48) translates to

cos((n+ 1)t) = 2nxωn(x)− 2n−2ωn−1(x). (11.62)

This proves that cos((n+ 1)t) = cos((n+ 1) cos−1 x) is a polynomial in x of
degree n+ 1.

Solution of Exercise 11.11. By definition, there is a sequence of points
xi ∈ I such that |f(xi)| > ‖f‖∞,I − 1/i. Since I is closed, there is an
accumulation point for the points xi; that is, there is a subsequence xi`

such
that xi`

→ x as ` → ∞. Since f is continuous, we have f(xi`
) → f(x). Of

course, we must have |f(x)| ≤ ‖f‖∞,I. Thus

0 ≤ ‖f‖∞,I − |f(x)| < |f(xi`
)| − |f(x)|+ 1/i`. (11.63)

Letting `→∞ completes the proof since the right-hand side of (11.63) goes
to zero.

Solution of Exercise 11.15. We can differentiate the expression (11.2) to
get

d

dx
ωn+1(x) = 2−n d

dx
cos((n+ 1) cos−1 x)

= − 2−n(n+ 1)

(
d

dx
cos−1 x

)
sin((n+ 1) cos−1 x)

= 2−n(n+ 1)
sin((n+ 1) cos−1 x)

sin(cos−1 x)
.

(11.64)

Writing x = cos t, we have

ω′
n+1(cos t) = 2−n(n+ 1)

sin((n+ 1)t)

sin(t)
. (11.65)

Therefore, l’Hôpital’s rule implies that

ω′
n+1(1) =2−n(n+ 1) lim

t→0

sin((n+ 1)t)

sin(t)

=2−n(n+ 1) lim
t→0

(n+ 1) cos((n+ 1)t)

cos(t)

=2−n(n+ 1)2.

(11.66)

By symmetry, ω′
n+1(−1) = (−1)n2−n(n+ 1)2.

Solution of Exercise 11.19. By definition, we have

Un(x) =
1

2w(x)

(
(x+ w(x))n+1 − (x− w(x))n+1

)
, (11.67)

where we have substituted w(x) =
√
x2 − 1 for simplicity. Using the bino-

182 CHAPTER 11

mial expansion, we have

Un(x) =
1

2w

(n+1∑

j=0

(
n+ 1
j

)
xn+1−jwj

−
n+1∑

j=0

(
n+ 1
j

)
xn+1−j(−w)j

)

=
1

2w

n+1∑

j=0

(
n+ 1
j

)
xn+1−jwj

(
1− (−1)j

)

=
1

w

(∑

0≤`≤n/2

(
n+ 1
2`+ 1

)
xn−2`w2`+1

)
,

(11.68)

where we used the fact that
(
1− (−1)j

)
is 0 for even j (and 2 for odd j) and

made the substitution j = 2` + 1 for odd j. The limits on the summation
are verified as follows: 0 ≤ j for j odd implies that j ≥ 1, and so ` ≥ 0; for
the upper limit, j ≤ n+ 1 iff 2`+ 1 ≤ n+ 1 iff ` ≤ n/2. Thus

Un(x) =
∑

0≤`≤n/2

(
n+ 1
2`+ 1

)
xn−2`w2`

=
∑

0≤`≤n/2

(
n+ 1
2`+ 1

)
xn−2`(x2 − 1)`,

(11.69)

as claimed.

Chapter Twelve

Approximation Theory

“The teaching of numerical analysis in a mathematics de-
partment poses a peculiar problem. At a time when the
prime objectives in the instruction of most mathematical
disciplines are rigor and logical coherence, many otherwise
excellent textbooks in numerical analysis still convey the
impression that computation is an art rather than a sci-
ence, and that every numerical problem requires its own
trick for its successful solution. It is thus understandable
that many analysts are reluctant to take much interest in
the teaching of numerical mathematics.” (Peter Henrici in
[80])

We now collect some important additional results about approximation
theory. Not only are these results interesting in their own right, but the
techniques of proof utilize novel concepts. We begin by considering the
problem of finding the best approximation in the maximum norm. This
is the problem that we addressed in section 1.3.2. We will see that the
best approximation may be viewed as an adaptive interpolation process.
Moreover, the mapping from a function to its best approximation is not
linear, so we are forced outside the comfortable realm of linear operators.

We also present Bernstein’s proof of Weierstrass’ approximation theorem.
The proof introduces a linear approximation operator, but unlike the La-
grange interpolant, this operator is not a projection. We contrast this type
of approximation with least squares, which generates orthogonal polynomi-
als. Finally, we compare all these with piecewise polynomial approximation
which forms the basis of the finite element method [21, 110].

12.1 BEST APPROXIMATION BY POLYNOMIALS

We have seen that polynomial interpolation (especially using Chebyshev
interpolation points) can be used to get good approximations of general
functions, but we have yet to characterize what the very best approximation
might be. It turns out that it is possible to do so, and it provides valuable
insight into the approximation process. We will see that best approximation
is necessarily adaptive in nature and that it is necessarily a nonlinear process
(see exercise 12.1).

184 CHAPTER 12

First, let us define what we mean by best approximation. For any f ∈
C0(I), define dn(f) by

dn(f) = inf
{
‖f − P‖∞,I

∣∣ P ∈ Pn

}
, (12.1)

where Pn denotes polynomials of degree n.

Definition 12.1 Let f ∈ C0(I). Then P ∈ Pn is a best approximation to
f provided that

‖f − P‖∞,I = dn(f). (12.2)

As always, when the interval I is clear, we drop this from the subscripts
on the norm. The existence of a best approximation is a simple matter of
compactness. We always have dn(f) ≤ ‖f‖∞ by taking P in (12.1) to be
the polynomial that is identically zero. If P is a best approximation, then it
must satisfy

‖P‖∞ ≤ ‖P − f‖∞ + ‖f‖∞ = dn(f) + ‖f‖∞ ≤ 2‖f‖∞. (12.3)

Therefore, it suffices to look for best approximation polynomials among the
set of polynomials that satisfy ‖P‖∞ ≤ 2‖f‖∞. Since this set is closed and
bounded, the continuous function φ(P) := ‖P − f‖∞ takes on its minimum
on this set (see exercises 12.2 and 12.3).

What is somewhat surprising is that the best polynomial approximation is
unique. For certain types of norms, this uniqueness is guaranteed, as we will
see when we switch to an integral-based norm in section 12.3. But for the
maximum norm, the uniqueness follows from a special alternation property
that holds because we are working in one space dimension. We will prove
the following result.

Theorem 12.2 Let f ∈ C0(I). Then any best approximation P ∈ Pn to f
satisfying (12.2) must also satisfy the alternation condition

±(f − P)(ξj) = (−1)jdn(f) ∀j = 0, . . . , n+ 1, (12.4)

where the points ξ0 < ξ1 < · · · < ξn+1 lie in the interval I. Moreover, only
one such polynomial can exist.

The expression ±(f − P)(ξj) = (−1)jdn(f) means that either

(f − P)(ξj) = (−1)jdn(f)

for all j, or

(P − f)(ξj) = (−1)jdn(f)

for all j. That is,

|f(ξj)− P (ξj)| = dn(f) (12.5)

for all j, and the signs of (f − P)(ξj) alternate as j goes from 0 to 1 to 2,
and so forth. The number of points ξj can be more than n+1. For example,
the best constant approximation (n = 0) to sinπkx on [−1, 1] is zero (see

APPROXIMATION THEORY 185

f

P

ξj ts jj−1 j+1j+1sξ j ξt j−1 xj−1 xj

Figure 12.1 Notation for the alternation proof.

exercise 12.4), and there are O(k) such points for k large. The set of such
points can even include open intervals.

The best polynomial approximation is quite different from the Lagrange
interpolant for a fixed set of interpolation points, in that the norm of the best-
approximation operator is uniformly bounded in the degree n of polynomials,
whereas the norm of the Lagrange interpolant cannot be bounded, cf. (11.30).
The inequality in (12.3) implies that the norm of the best-approximation
operator is not greater than 2.

On the other hand, the best approximation does interpolate. One corollary
of theorem 12.2 is that there exist points x0 < x1 < · · · < xn in the interval
I at which f(xj) = P (xj) (see exercise 12.5). In particular, we have

ξj < xj < ξj+1 (12.6)

for all j = 0, . . . , n. That is, the best approximation P ∈ Pn to an arbitrary
function f ∈ C0(I) interpolates f at n + 1 distinct points in the interval
I. However, we have no information about the set of points. In this sense,
the best approximation is an adaptive Lagrange interpolant. The specific
interpolation points are adapted to the function being interpolated. It is
easy to see as well that the mapping f → P cannot be a linear mapping
(exercise 12.1).

Before we begin to prove the alternation property (12.4), let us consider an
example, namely, the best approximation of xn+1 by polynomials of degree
at most n. If we let Pn be the Lagrange interpolant of xn+1 at the Chebyshev
points, then by (10.9) and (11.2) we know that

xn+1 − Pn(x) = ωn+1(x) = 2−n cos((n+ 1) cos−1 x). (12.7)

Thus we see explicitly that xn+1−Pn(x) has the claimed oscillation property
(12.4), and by theorem 12.2, the Chebyshev-point Lagrange interpolant of
xn+1 must be its best approximation.

Proof. To prove the property (12.4), we suppose that P ∈ Pn is any poly-
nomial that satisfies (12.2). Define ξ0 as

ξ0 = inf
{
x ∈ I

∣∣ |f − P |(x) = dn(f)
}
. (12.8)

The set on the right-hand side of (12.8) is not empty in view of exercise 11.11.
Since both f and P are continuous, |f − P |(ξ0) = dn(f). Define

σ0 = (f − P)(ξ0)/dn(f) (= ±1). (12.9)

186 CHAPTER 12

Now suppose that we have defined ξ0, . . . , ξk and σ0, . . . , σk for k ≥ 0. Then
we define

ξk+1 = inf
{
x ∈ I

∣∣ x > ξk and (f − P)(x) = −σkdn(f)
}
, (12.10)

provided that the set on the right-hand side is not empty. In such a case,
we define σk+1 = −σk. Thus

(f − P)(ξk+1) = −σkdn(f) = σk+1dn(f). (12.11)

With this choice of σ’s, we have

σj(f − P)(ξj) = dn(f) (12.12)

for all j.
If the set on the right-hand side of (12.10) is empty, we stop the process. If

we reach k = n+ 1 as required by theorem 12.2, we also stop. Now we must
show that if the process stops with k < n+1, we must have a contradiction.

Note that (12.12) implies that

σj(f − P)(x) > dn(f)− ε
for x near ξj . In particular, there must be points sj and tj satisfying

ξj−1 < sj < ξj < tj < ξj+1 (12.13)

such that

σj(f − P)(x) ≥ 1
2dn(f) for x ∈ [sj , tj] (12.14)

(see figure 12.1). Moreover, we have tj ≤ sj+1 because f −P switches signs.
In between, we can be assured that

Mj := sup
{
|(f − P)(x)|

∣∣ tj ≤ x ≤ sj+1

}
< dn(f). (12.15)

Let M = maxj Mj. Define

xj = 1
2 (tj + sj+1) (12.16)

and define a polynomial Q ∈ Pk by

Q(x) = σ0(x− x1)(x− x2) · · · (x− xk). (12.17)

Define β = ‖Q‖∞ and let ε > 0. Then there is a q > 0 such that for all j

σjQ(x) ≥ q (12.18)

for sj < x < tj , so that

1
2dn(f)− εβ ≤σj(f − P)(x)− εβ ≤ σj(f − P − εQ)(x)

≤σj(f − P)(x)− εq ≤ dn(f)− εq (12.19)

for sj < x < tj . Therefore,

‖f − P − εQ‖∞,[sj,tj] ≤ dn(f)− εq, (12.20)

provided that 0 < ε ≤ 3
2dn(f)/(β + q). In the remaining regions,

|(f − P)(x)| ≤M < dn(f), (12.21)

APPROXIMATION THEORY 187

so that

|(f − P − εQ)(x)| ≤ |(f − P)(x)| + εβ ≤M + εβ. (12.22)

Choosing 0 < ε < (dn(f) −M)/β, we find that P + εQ is a better approxi-
mation to f than P . If k = n+ 1, there is no contradiction since the degree
of P + εQ is n+ 1 in this case. But if k < n+ 1, then P + εQ ∈ Pn, and we
have a contradiction to the optimality of P .

To prove uniqueness of the best approximation, we suppose that there are
two polynomials P,Q ∈ Pn satisfying (12.2). Then so does the polynomial
R = 1

2 (P +Q) because, by the triangle inequality,

‖f −R‖∞,I = ‖f − 1
2 (P +Q)‖∞,I = ‖ 1

2 (f − P) + 1
2 (f −Q)‖∞,I

≤ 1
2‖f − P‖∞,I + 1

2‖f −Q‖∞,I = dn(f).
(12.23)

By the alternating condition (12.4), we conclude that there exist alternating
σj = ±1 such that

σj(f −R)(ξj) = dn(f) ∀j = 0, . . . , n+ 1, (12.24)

where the points ξ0 < ξ1 < · · · < ξn+1 lie in the interval I. Therefore, for
each j = 0, . . . , n+ 1,

1
2σj(f − P)(ξj) + 1

2σj(f −Q)(ξj) = dn(f). (12.25)

We claim then (cf. exercise 12.6) that both

σj(f − P)(ξj) = dn(f) and σj(f −Q)(ξj) = dn(f). (12.26)

Otherwise, if, say, σj(f − P)(ξj) < dn(f), then we would have to have

σj(f −Q)(ξj) > dn(f), (12.27)

contradicting the optimality of Q. But then

σj(f − P)(ξj) = σj(f −Q)(ξj), (12.28)

which implies that P (ξj) = Q(ξj) for each j = 0, . . . , n+1. Since P,Q ∈ Pn,
their equality at n+ 2 points implies they must be equal. QED

12.2 WEIERSTRASS AND BERNSTEIN

The theorem of Weierstrass (see page 151) on the approximability of contin-
uous functions by polynomials is often considered one of the main waypoints
of basic analysis. Bernstein1 developed an approximation scheme that can be
used to prove Weierstrass’ theorem constructively. Moreover, the Bernstein
approximation introduces techniques of independent interest.

1Sergei Natanovich Bernstein (1880–1968), see page 65, was a student in both Paris and
Göttingen and worked with both Picard (see page 258) and David Hilbert. Subsequently,
he returned to Russia where he was required to complete additional graduate work in
order to become qualified to be a professor “due to the conditions of life in tsarist Russia”
[6].

188 CHAPTER 12

12.2.1 Bernstein polynomials

The Bernstein polynomial Bnf is defined by

Bnf(x) =

n∑

i=0

f(i/n)βi,n(x), (12.29)

where the Bernstein basis functions are defined by

βi,n(x) =

(
n
i

)
xi(1− x)n−i. (12.30)

Note that the basis functions βi,n are always nonnegative, so the Bernstein
approximation Bn is monotone in the sense that Bnf ≥ 0 whenever f ≥ 0.
Bn is not an interpolation operator, but it does have certain special prop-

erties. For example, Bn1 = 1; in other words,

n∑

i=0

βi,n(x) = 1 ∀x ∈ [0, 1]. (12.31)

The verification of (12.31) is just the binomial expansion:

(X + Y)n =

n∑

i=0

(
n
i

)
X iY n−i, (12.32)

applied with X = x and Y = 1 − x. One consequence of (12.31) is a bound
for operator Bn:

Lemma 12.3 The Bernstein operator satisfies ‖Bn‖∞ = 1.

Proof. Since the basis functions are nonnegative,

|Bnf(x)| ≤
n∑

i=0

|f(i/n)|βi,n(x)

≤‖f‖∞
n∑

i=0

βi,n(x) = ‖f‖∞
(12.33)

for any x ∈ [0.1]. Therefore ‖Bn‖∞ ≤ 1. But since Bn1 = 1, we must have
equality. QED

It is also the case that Bnx = x, i.e.,

n∑

i=0

i

n
βi,n(x) = x ∀x ∈ [0, 1] (12.34)

(see exercise 12.7). However, Bn is not a projection in general. The Bernstein
approximation to x2 is x2 + x(1 − x)/n, that is,

n∑

i=0

i2

n2
βi,n(x) = x2 +

x(1 − x)
n

∀x ∈ [0, 1] (12.35)

APPROXIMATION THEORY 189

(see exercise 12.7).
Although the Bernstein basis functions do not separate points in a way

that allows Bn to be an interpolant, they are nevertheless quite local. The
maximum of βi,n occurs at i/n (exercise 12.8), and the integral of βi,n is
(n+1)−1 for all i. Thus the Bernstein basis functions play the role of scaled
approximate Dirac δ-functions. That is,

∫ 1

0

f(x)βi,n(x) dx ≈ 1

n+ 1
f(i/n). (12.36)

12.2.2 Modulus of continuity

We need a way to measure the smoothness of a function that is subtle enough
to be useful for any continuous function. The modulus of continuity ω(f ; δ)
is such a measure.

Definition 12.4 Let f ∈ C0(I) for some interval I. Then for all δ > 0,

ωI(f ; δ) = sup
{
|f(x)− f(y)|

∣∣ x, y ∈ I and |x− y| ≤ δ
}
. (12.37)

If the interval I is understood, we will drop the reference to it in the
notation for the modulus of continuity and write ωI(f ; δ) as ω(f ; δ). We
can relate the modulus of continuity to other smoothness measures. For
example, if f ∈ C1(I), then

ωI(f ; δ) ≤ δ‖f ′‖∞,I (12.38)

for any δ > 0 (exercise 12.13). But the modulus of continuity is a more
sensitive measure, as the following result shows.

Lemma 12.5 Suppose that I is a closed, bounded interval. Then

lim
δ→0

ωI(f ; δ) = 0 (12.39)

for any f ∈ C0(I).

Proof. Any continuous function on a closed, bounded interval is uniformly
continuous on that interval [141]. QED

The order of approximation for Bn is not optimal, but we do get conver-
gence for any continuous function.

Theorem 12.6 For any continuous function,

‖f −Bnf‖∞ ≤ Cω(f ; 1/
√
n). (12.40)

Proof. By (12.31), we have for any x ∈ [0, 1],

|f(x)−Bnf(x)| =
∣∣∣

n∑

i=0

(f(x)− f(i/n))βi,n(x)
∣∣∣

≤
n∑

i=0

|f(x)− f(i/n)|βi,n(x)

(12.41)

190 CHAPTER 12

since the Bernstein basis functions are nonnegative. We now break up the
sum into two parts: one over points near x, and the other over points that are
not close. Let δ > 0 and define Jx =

{
j
∣∣ |x− j/n| ≤ δ

}
. By the definition

of modulus of continuity and (12.31),∑

i∈Jx

|f(x)− f(i/n)|βi,n(x) ≤ω(f ; δ)
∑

i∈Jx

βi,n(x)

≤ω(f ; δ)

n∑

i=0

βi,n(x) = ω(f ; δ).

(12.42)

Now suppose that i is not in Jx, so that |x− i/n| > δ. For concreteness, let
us suppose that x > i/n. Let i/n = ξ0 < ξ1 < · · · < ξk = x be a set of points
such that ξi − ξi−1 ≤ δ and k is as small as possible. This means that k is
the smallest integer not less than |x− i/n|/δ, and thus k < 1 + |x− i/n|/δ.
In this case,

|f(x)− f(i/n)| =
∣∣∣

k∑

j=1

f(ξi)− f(ξi−1)
∣∣∣ ≤

k∑

j=1

|f(ξi)− f(ξi−1)|

≤ kω(f ; δ) ≤ (1 + |x− i/n|/δ)ω(f ; δ).

(12.43)

If instead x < i/n, let x = ξ0 < · · · < ξk = i/n and repeat the previous
argument, so that (12.43) still holds. Therefore,∑

i/∈Jx

|f(x)− f(i/n)|βi,n(x) ≤ω(f ; δ)
∑

i/∈Jx

(1 + |x− i/n|/δ)βi,n(x)

≤ω(f ; δ)
(
1 +

∑

i/∈Jx

(|x − i/n|/δ)βi,n(x)
) (12.44)

by (12.31). To estimate the last term, we note that for i /∈ Jx, 1 < |x−i/n|/δ,
so that |x− i/n|/δ < (|x− i/n|/δ)2. Therefore,∑

i/∈Jx

(|x− i/n|/δ)βi,n(x) ≤
∑

i/∈Jx

(|x− i/n|/δ)2βi,n(x)

≤
n∑

i=1

(|x− i/n|/δ)2βi,n(x).

= δ−2
n∑

i=1

(x− i/n)2βi,n(x).

(12.45)

Using (12.31), (12.34), and (12.35), we can evaluate
n∑

i=1

(x− i/n)2βi,n(x) =x2 − 2x

n∑

i=1

(i/n)βi,n(x) +

n∑

i=1

(i/n)2βi,n(x)

=x2 − 2x2 + x2 +
x(1 − x)

n
=
x(1 − x)

n
.

(12.46)

Thus we have proved that

|f(x)−Bnf(x)| ≤ ω(f ; δ)

(
2 +

x(1 − x)
nδ2

)
. (12.47)

Choosing δ = 1/
√
n completes the proof, with C = 9/4. QED

APPROXIMATION THEORY 191

12.3 LEAST SQUARES

Another way to define polynomial approximations is by least squares. This
process is equivalent to expansion in orthogonal polynomials. The definition
of such polynomials utilizes an inner-product structure on the linear space of
square-integrable functions on an interval I = [a, b]. The work has already
been done in section 5.4, so we just need to translate it into a new context.
For simplicity, we continue to consider real-valued polynomials.

12.3.1 Polynomials as inner-product spaces

Define an inner product

(f, g) =

∫ b

a

f(x)g(x)w(x)dx, (12.48)

where w > 0 is some weight function. Then the associated norm is

‖f‖2 =
√

(f, f) =

(∫ b

a

f(x)2 w(x)dx

)1/2

. (12.49)

The condition
∫ b

a

f(x)2 w(x)dx = 0

implies f = 0 under suitable integrability conditions on f , but we avoid full
consideration of these issues. It is not hard to show that this holds (exer-
cise 12.14) if f ∈ V = C0([a, b]), but issues such as this provide motivation
for studying the Lebesgue integral [142] in order to make these concepts rig-
orous for more general f . We have already seen the need to consider weights
that vanish at the ends of the interval of integration in exercise 11.7, which
shows that the Chebyshev polynomials ωn are orthogonal with respect to the
inner product (12.48) on the interval [−1, 1] with the weight w(x) =

√
1− x2.

12.3.2 Orthogonal polynomials

We will construct polynomials that are orthonormal:

(Pi, Pj) =

∫ b

a

Pi(x)Pj(x)w(x)dx = δij , (12.50)

where Pi is a polynomial of degree i of the form

Pi(x) = aix
i + qi(x), (12.51)

where ai 6= 0 and the degree of qi(x) is i − 1. Notice that these conditions
imply (exercise 12.15) that the Pi’s are linearly independent. Thus the set
{P0, . . . , Pn} forms a basis for the space Pn of polynomials of degree n. For
i = 0, it is trivial: P0 = 1/

√
b− a.

The construction of the orthogonal polynomials is immediate from the
results in section 5.4, where we take the starting vectors to be vk = vk(x) =

192 CHAPTER 12

xk−1. Renumbering as necessary (starting at 0 instead of 1), the least-
squares projection

LS
nf =

n∑

i=0

(f, Pi)Pi (12.52)

is defined for any f ∈ V . Combining theorem 5.4 and lemma 5.4, we obtain

Theorem 12.7 Given any f ∈ V ,

(f − LS
nf, q) = 0 (12.53)

for all polynomials q of degree n, and

‖f − LS
nf‖2 = min

q∈Pn

‖f − q‖2. (12.54)

It is not hard to see that LS
nf in (12.52) is defined for any integrable

function f and that theorem 12.7 holds for any square-integrable function
f . However, we will stay with the more limited space V = C0(I) for the
discussion here.

As before, there are some immediate corollaries. Suppose that q ∈ Pn.
Then q = LS

nq (LS
n is a projection) because we must have ‖q − LS

nq‖ = 0.
Moreover,

‖f − LS
nf‖2 = 0 (12.55)

if and only if f ∈ Pn.
Using the results above, the orthogonal polynomials can be defined by

Pn+1 =
1

‖xn+1 − LS
nx

n+1‖2
(
xn+1 − LS

nx
n+1
)
. (12.56)

The coefficient

an+1 = 1/‖xn+1 − LS
nx

n+1‖2 (12.57)

is well-defined (and nonzero) because we must have

xn+1 − LS
nx

n+1 6= 0

since xn+1 /∈ Pn. The scaling ensures that (Pn+1, Pn+1) = 1, and the
orthogonality (Pn+1, Pj) = 0 is a consequence of (12.54).

12.3.3 Roots of orthogonal polynomials

First, we claim that the real roots of Pn are all simple. Suppose that

Pn(x) = (x− x1)
2r(x), (12.58)

where r ∈ Pn−2. Then Pn(x)r(x) = (x − x1)
2r(x)2, and the orthogonality

of Pn implies that

0 = (Pn, r) =

∫ b

a

(x− x1)
2r(x)2w(x) dx. (12.59)

APPROXIMATION THEORY 193

But this cannot happen unless r ≡ 0, which is impossible, as this would
imply that Pn ≡ 0.

Second, all the real roots of Pn are within the interior of the interval [a, b].
To see this, enumerate all such roots in the interior of [a, b] as a < x0 < x1 <
· · · < xm < b and define

q(x) = ±(x− x0)(x− x1) · · · (x− xm). (12.60)

These must all be simple, as they are real roots. Then r = Pnq is of one sign
in [a, b]. To see this, start the sign of q at the beginning (just to the left of
x0) with the same sign as Pn by adjusting the sign of q as necessary. At the
next root, they both change sign, as both have simple roots there. So they
stay of the same sign. This continues for all the roots, by induction. Thus
(Pn, q) > 0. Since Pn is orthogonal to Pn−1, we must have m = n.

Thus we have proved the following result.

Theorem 12.8 The orthogonal polynomial Pn of degree n, defined equiv-
alently by (12.56) and (12.57)) or by (12.50), has n simple roots in the
interior of the interval [a, b].

Recall that the Chebyshev polynomials are orthogonal with respect to
the weight

√
1− x2 on [−1, 1]. Thus it is natural to consider the roots of

orthogonal polynomials as potential interpolation points, cf. exercise 12.16.

12.4 PIECEWISE POLYNOMIAL APPROXIMATION

The concept of piecewise approximation is simple. Suppose we have a sub-
division of an interval

a = x0 < x1 < · · · < xn = b. (12.61)

We can view each subinterval [xj−1, xj] as independent and construct a par-
ticular approximation on it. In principle, these approximations could all be
independent, but a common choice is to take them to be the same for each
interval. For example, we might take linear Lagrange interpolation at the
endpoints.

Once the local approximation is chosen, it may or may not be feasible (or of
interest) to link them together. If we don’t link them, we get a discontinuous
piecewise approximation. For example, if we consider piecewise constant
approximation, it necessarily must be discontinuous to be interesting. We
can define Π0

nf as a projection onto piecewise constants via

Π0
nf =

n−1∑

j=0

f(xj)φj , (12.62)

where φj is the characteristic function of the interval [xj−1, xj]. Then it
follows from the definition of the modulus of continuity (12.37) that

‖f −Π0
nf‖∞,I ≤ ωI(f ; δ), (12.63)

194 CHAPTER 12

j+1
x xx

j−1 j

Figure 12.2 A picture of a typical basis function φj for continuous, piecewise linear
interpolation; φj is zero outside the interval [xj−1, xj+1].

where δ is defined by

δ = max
{
xj − xj−1

∣∣ j = 1, . . . , n
}
. (12.64)

From (12.38), we also conclude that

‖f −Π0
nf‖∞,I ≤ δ‖f ′‖∞,I , (12.65)

provided that f ∈ C1(I).
It is also possible to define continuous piecewise linear approximation.

Define basis functions φj for i = 0, . . . , n by the requirements that (see
figure 12.1)

• φj ∈ C0([a, b]),

• φj is linear in each segment [xk−1, xk] for k = 1, . . . , n, and

• φj(xk) = δjk (Kronecker δ) for k = 1, . . . , n.

By definition, a continuous, piecewise linear function is any function satisfy-
ing the first two conditions. We leave it as an exercise to see that any such
function can be written as a linear combination of the φj ’s. Moreover, the
φj ’s are linearly independent in view of the third condition.

The corresponding continuous, piecewise linear interpolant is defined by

Π1
nf =

n∑

j=0

f(xj)φj (12.66)

for any f ∈ C0([a, b]).
The interpolant Π1

n is a composite of Lagrange interpolants, so Π1
n is a

projection since the Lagrange interpolant is a projection on each segment
[xj−1, xj] for j = 1, . . . , n. Like the Bernstein approximation operator,

‖Π1
n‖C0→C0 = 1 (12.67)

because the basis functions are positive and
n∑

j=0

φj(x) = 1 ∀x0 ≤ x ≤ xn (12.68)

(see exercise 12.17).

APPROXIMATION THEORY 195

Error estimates may be developed by considering the error on each seg-
ment separately. For example, it is elementary to show that for k = 0, 1, 2,

‖f −Π1
nf‖∞ ≤ ckδk‖f (k)‖∞, (12.69)

where δ is defined by (12.64) (the case k = 0 is (12.67), with c0 = 1; see
exercise 12.19 for k = 1 and exercise 12.20 for k = 2).

12.5 ADAPTIVE APPROXIMATION

We have seen that best approximation by polynomials can be viewed as
adaptive Lagrange interpolation. That is, the best approximant interpolates
at points that depend on the function being approximated. This raises the
question of whether adaptivity can be used to advantage with other types
of approximations. The answer is decidedly yes, but the general subject is
so large that we can give only a simple example based on piecewise constant
approximation.

Observe that in all the examples considered in section 12.4, the measure
of smoothness used for the function being approximated was always global.
For example, (12.69) is the maximum norm of a derivative of f . But the
modulus of continuity is also a global measure. Many functions of interest
may have a localized behavior that is different from the general behavior.
For example, consider f(x) =

√
x on the interval I = [0, 1]. The derivative of

f is not bounded, and its modulus of continuity is limited by its singularity
at zero. For these reasons, we will consider instead a measure of smoothness
that allows some localized singularities:

‖f‖1 =

∫ 1

0

|f ′(x)| dx. (12.70)

The subscript 1 denotes both that there is only one derivative and that only
its first power (cf. (12.49)) is being integrated.

The expression in (12.70) is only a seminorm (see section 5.1.3). More
seriously, it is not simple to express the right class of functions for which
(12.70) is well-defined [21]. To bypass these issues, we make the simplifying
assumption that f is differentiable on the open interval]0, 1[with (12.70)
finite. This allows functions of the form f(x) = xr for any r > 0. We can
clearly generalize this concept to arbitrary finite intervals.

We propose to prove the following theorem [21].

Theorem 12.9 Suppose that f is continuous on [0, 1], that f is differen-
tiable on the open interval]0, 1[, and that ‖f‖1 < ∞. Then there is a
subdivision 0 = x0 < x1 < · · · < xn = 1 such that

‖f −Π0
nf‖∞ ≤

1

n
‖f‖1, (12.71)

where Π0
n denotes the piecewise constant interpolation defined in (12.62).

196 CHAPTER 12

Proof. If ‖f‖1 = 0, then f is constant and Π0
nf = f for any n ≥ 1. So we

assume that ‖f‖1 > 0. We introduce the auxiliary (continuous) function

φ(t) =
1

‖f‖1

∫ t

0

|f ′(x)| dx. (12.72)

Then φ vanishes at x = 0 and is nondecreasing; moreover, φ(1) = 1. Thus
there are points xj where φ(xj) = j/n, by the intermediate value theorem.
If by chance xn < 1, so that φ(t) ≡ 1 for t ∈ [xn, 1], we simply redefine
xn = 1. By construction,

1

‖f‖1

∫ xj

xj−1

|f ′(x)| dx = φ(xj)− φ(xj−1) =
1

n
. (12.73)

Thus it suffices to prove that for all j,

‖f −Π0
nf‖∞,[xj−1,xj] ≤

∫ xj

xj−1

|f ′(x)| dx. (12.74)

But for x ∈ [xj−1, xj [,

f(x)−Π0
nf(x) = f(x)− f(xj−1) =

∫ x

xj−1

f ′(x) dx, (12.75)

so (12.74) follows (note that f(x)−Π0
nf(x) = 0 for all x = xj). QED

Similar results hold for arbitrary finite intervals and for higher-order ap-
proximation, e.g., for Π1

n instead of Π0
n [21].

12.6 MORE READING

We have now seen five distinct types of approximations involving polynomi-
als. The main features of these schemes are summarized in table 12.1. The
significant observation is that there is no linear projection onto polynomials
that has a norm uniformly bounded for all polynomial degrees n. This prop-
erty is satisfied by piecewise linear approximation, but it can be shown [130]
that indeed there can be no linear projection onto polynomials that has a
norm uniformly bounded for all polynomial degrees n.

Approximation theory has been stimulated by a variety of influences.
Polynomials are the most basic example of a function, so it is understandable
that people wanted to know whether such simple functions could approxi-
mate general functions, as well as answers to other fundamental questions
[34, 111, 137]. In addition to approximation problems from linear spaces, it
is also possible to explore nonlinear spaces of functions [138].

12.7 EXERCISES

Exercise 12.1 Let f± ∈ C0([−1, 1]) be defined by f±(x) = 1
2 − |x ± 1

2 | for
±x ≤ 0 and zero for ±x ≥ 0. Show that the best constant approximations to
f+, f−, and f++f− are all the same, and hence that the best approximations
are not additive. (Hint: use exercise 12.4.)

APPROXIMATION THEORY 197

Approximation type Operator norm Linear operator Projection

Lagrange/Chebyshev ≥ (1
2π logn)− E Yes Yes

Best approximation ≤ 2 No Yes
Bernstein 1 Yes No

Piecewise linear 1 Yes Yes
Least squares 1 Yes Yes

Table 12.1 Comparison of principal features of different approximation schemes.
The top four are compared in the maximum norm; the top three involve
polynomial approximation, whereas the fourth is piecewise polynomial.
The fifth relates to approximation in the L2-norm.

Exercise 12.2 Prove that we can write

dn(f) = inf
{
‖f − P‖∞

∣∣ P ∈ Pn, ‖P‖∞ ≤ 2‖f‖∞
}
, (12.76)

where dn is defined in (12.1). (Hint: use (12.3).)

Exercise 12.3 Fill in the remaining details of the existence proof for best-
approximation polynomials. This will include answers to questions such as
the following. Why can we view the set

{
P ∈ Pn

∣∣ ‖P‖∞ ≤ 2‖f‖∞
}

(12.77)

as a closed and bounded subset of Rn+1? Why is φ(P) = ‖f − P‖∞ con-
tinuous when viewed as a function on Rn+1? If you use a representation of
P ∈ Pn in terms of some vector of coefficients a ∈ Rn+1 (e.g., the coeffi-
cients of the representation of P as a sum of monomials), how do you relate
the fact that there is an â = minφ(a) to having a polynomial P with the
desired properties? That is, how do you make sure that the representation
P ↔ a is invertible?

Exercise 12.4 Show that the best approximation of f ∈ C0(I) by a constant
c is

c = 1
2

(
inf
{
f(x)

∣∣ x ∈ I
}

+ sup
{
f(x)

∣∣ x ∈ I
})
. (12.78)

Exercise 12.5 Show that the best approximation P ∈ Pn to f ∈ C0(I)
satisfies f(xj) = P (xj), where the points xj satisfy

ξ0 < x0 < ξ1 < x1 < · · · < xn < ξn+1. (12.79)

(Hint: apply the mean value theorem.)

Exercise 12.6 Suppose that x0 and x1 are two real numbers such that |xi| ≤
1
2 for i = 0, 1 and such that x0 + x1 = 1. Prove that x0 = x1 = 1

2 .

Exercise 12.7 Prove (12.34) and (12.35). (Hint: differentiate (12.32) once
for (12.34) and twice for (12.35) and rearrange terms.)

198 CHAPTER 12

Exercise 12.8 Prove that the maximum of the functions βi,n(x) defined in
(12.30) occurs at x = i/n and determine its maximum value. (Hint: use the
following formula due to Stirling 2:

enn!/nn ≈
√

2πn (12.80)

for large n.)

Exercise 12.9 Prove that the integral of βi,n defined in (12.30) is 1/(n+1)
for all i.

Exercise 12.10 For a Lipschitz function, show that the Bernstein approx-
imation error (12.40) is no bigger than

√
2λn−1/2, where λ is the Lipschitz

constant on [0, 1].

Exercise 12.11 Consider piecewise constant approximation on a uniform
mesh of points i/n on [0, 1]. For a Lipschitz function, what is the best error
estimate that you can give? Contrast this with exercise 12.10.

Exercise 12.12 (Discrete least squares.) Suppose that we gather data fn

associated with parameters xn and that we want to depict these data as a
function f(x) with the property that f(xn) ≈ fn. But now suppose that some
of the xn’s are the same (xn = xk for n 6= k) but the fn’s are not the same!
We can still construct a function that attempts to represent the data in a
reasonable way. Define a polynomial P that minimizes

∑

n

(P (xn)− fn)2. (12.81)

Show that this minimization problem has a unique solution.

Exercise 12.13 Suppose that f ∈ C1(I) for some interval I. Prove (12.38).

Exercise 12.14 Prove that if f ∈ C0(I) and f ≥ 0 on I, then
∫

I f(x) dx = 0
implies ≡ 0. (Hint: if f(x) > 0 for some, then f(y) ≥ ε > 0 for y ∈
[x− δ, x+ δ].)

Exercise 12.15 Show that the orthogonal polynomials (cf. (12.50)) are lin-
early independent.

Exercise 12.16 The Gauss points are the zeroes of orthogonal polynomials
for the weight w ≡ 1 (see section 12.3.3). Investigate the size of the Lebesgue
function (section 11.3) for the Gauss points for various values of n.

Exercise 12.17 Prove (12.68). (Hint: consider interpolating a constant
and see what happens.)

2James Stirling (1692–1770) was born in Scotland, near the town of Stirling, and
entered Balliol College Oxford in 1711. He was proposed for membership of the Royal
Society of London by Newton, to which he was elected in 1726.

APPROXIMATION THEORY 199

Exercise 12.18 Prove (12.67). (Hint: compare (12.33) and then use exer-
cise 12.17.)

Exercise 12.19 Suppose that f ∈ C0(I) and that δ is defined in (12.64).
Prove that

‖f − Π1
nf‖∞,I ≤ cωI(f ; δ) (12.82)

for some constant c. Use this to prove (12.69) for k = 1. (Hint: see the
piecewise constant case (12.63); use exercise 12.13.)

Exercise 12.20 Prove (12.69) for k = 2. (Hint: in each interval [xj−1, xj],
the error e = f−Π1

nf vanishes at the endpoints. Note that e(2) = f (2). There
must be some point ξ ∈ [xj−1, xj] where e′(ξ) = 0 at which |e| takes on its
maximum value. Do a Taylor expansion around ξ.)

Exercise 12.21 For any set of vectors v1, . . . , vn in an inner-product space,
the matrix with entries (vi, vj) is known as the Gram matrix (cf. the Gram-
Schmidt process in section 5.4.3). Consider the inner-product space consist-
ing of polynomials with inner product (12.48) on the interval [0, 1]. Prove
that the Gram matrix in this case is the Hilbert matrix (4.14).

12.8 SOLUTIONS

Solution of Exercise 12.7. The derivative of (12.32) with respect to X is

n(X + Y)n−1 =

n∑

i=1

(
n
i

)
iX i−1Y n−i. (12.83)

Multiply by X and divide by n to get

X(X + Y)n−1 =

n∑

i=1

(
n
i

)
i

n
X iY n−i =

n∑

i=0

(
n
i

)
i

n
X iY n−i. (12.84)

Now set X = x and Y = 1− x to obtain (12.34). Now differentiate (12.83)
to get

n(n− 1)(X + Y)n−2 =

n∑

i=2

(
n
i

)
i(i− 1)X i−2Y n−i. (12.85)

Multiply by X2 and divide by n2 to get

n− 1

n
X2(X + Y)n−2 =

n∑

i=2

(
n
i

)
i(i− 1)

n2
X iY n−i

=
n∑

i=0

(
n
i

)
i(i− 1)

n2
X iY n−i.

(12.86)

200 CHAPTER 12

Setting X = x and Y = 1− x and using (12.34), we have

n− 1

n
x2 =

n∑

i=0

(
n
i

)
i2

n2
xi(1− x)n−i − x

n
. (12.87)

Therefore,

n∑

i=0

(
n
i

)
i2

n2
xi(1− x)n−i =

n− 1

n
x2 +

x

n
= x2 +

x− x2

n
, (12.88)

which verifies (12.35).

Solution of Exercise 12.8. We have βi,n(x) = cxi(1− x)n−i, so

β′
i,n(x) = c

(
ixi−1(1− x)n−i − (n− 1)xi(1 − x)n−i−1

)

= cxi−1(1 − x)n−i−1 (i(1− x)− (n− i)x)
= cxi−1(1 − x)n−i−1 (i− nx) .

(12.89)

The maximum value is thus

βi,n(i/n) =
n!

i!(n− i)!
ii(n− i)n−i

nn

=
n!

nn

ii

i!

(n− i)n−i

(n− i)! =
φ(n)

φ(i)φ(n − i) ,
(12.90)

where φ(n) := enn!/nn. By Stirling’s formula (12.80), φ(n) ≈
√

2πn for
large n. Thus if 0 < ε ≤ i/n ≤ 1− ε, then

βi,n(i/n) ≈
√

2πn√
2πi
√

2π(n− i)
=

1√
2πn(i/n)(1− i/n)

. (12.91)

Note that β0,n(0) = βn,n(1) = 1, and it appears that these are the largest
values based on numerical computation (see figure 12.3).

Define bn to be the piecewise linear function with values βi,n(i/n) at the
mesh points i/n for i = 0, . . . , n. This is the function plotted in figure 12.3
for three values of n = 10, 100, 1000. It is easy to see from figure 12.3 and
the computations above that

lim
n→∞

√
nbn(x) = 1/

√
2πx(1− x)

for any 0 < x < 1. This can be expressed in terms of a limit

lim
n→∞

√
nβin,n(in/n) = 1/

√
2πx(1− x),

where xn = in/n satisfies limn→∞ xn = x with 0 < x < 1.

Solution of Exercise 12.9. The integral of the Bernstein polynomials can

APPROXIMATION THEORY 201

 0.01

 0.1

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 12.3 Values of βi,n as a function i for n = 10, 100, 1000. The horizontal
axis is the scaled variable i/n.

be computed as follows. Suppose that 0 ≤ i < n. Then
∫ 1

0

βi,n(x) dx =
n!

i!(n− i)!

∫ 1

0

xi(1− x)n−i dx

=
n!

(i+ 1)!(n− i)!

∫ 1

0

(
d

dx
xi+1

)
(1 − x)n−i dx

= − n!

(i+ 1)!(n− i)!

∫ 1

0

xi+1 d

dx
(1− x)n−i dx

=
n!

(i+ 1)!(n− i− 1)!

∫ 1

0

xi+1(1− x)n−i−1 dx

=

∫ 1

0

βi+1,n(x) dx.

(12.92)

Since for i = n we have
∫ 1

0

βn,n(x) dx =

∫ 1

0

xn dx =
1

n+ 1
, (12.93)

all the integrals must have this value as well.

Solution of Exercise 12.19. In each interval [xj−1, xj], f − Π1
nf may be

written as

f(x)−Π1
nf(x) = f(x)− (f(xj−1)ϕ0(x) + f(xj)ϕ1(x)) , (12.94)

where ϕi, i = 0, 1 denote the local basis functions. But since

ϕ0(x) + ϕ1(x) ≡ 1

202 CHAPTER 12

for all x ∈ [xj−1, xj], we have

f(x)−Π1
nf(x) = f(x) (ϕ0(x) + ϕ1(x))

− (f(xj−1)ϕ0(x) + f(xj)ϕ1(x))

=ϕ0(x)(f(x) − f(xj−1)) + ϕ1(x)(f(x) − f(xj)).

(12.95)

Since each ϕi has values only between 0 and 1,

|f(x)−Π1
nf(x)| ≤ϕ0(x)|f(x) − f(xj−1)|+ ϕ1(x)|f(x) − f(xj)|

≤ (ϕ0(x) + ϕ1(x))ωI(f ; δ)

=ωI(f ; δ).

(12.96)

Since this holds for any x ∈ [xj−1, xj] and for any j,

‖f −Π1
nf‖∞,I ≤ ωI(f ; δ). (12.97)

Applying exercise 12.13 completes the proof, with c = c1 = 1.

Solution of Exercise 12.21. Define polynomials vi(x) = xi−1. Then

(vi, vj) =

∫ 1

0

xi+j−2 dx =
1

i+ j − 1
, (12.98)

in accord with (4.15).

Chapter Thirteen

Numerical Quadrature

“We now recognize these schemes as examples of fixed-point
(or functional) iteration. Similar schemes were previously
proposed by James Gregory and communicated in letters
to John Collins to solve the equations bnc+ xn+1 = bnx (8
November 1672) and bnc + xn+1 = bn−1(b + c)x (2 April
1674)” [174].

The word quadrature is used in numerical analysis to denote approximate
integration. We will see that some of the ideas predate the formal notions
of the calculus. The most commonly used approaches involve polynomial
interpolation as the basis.

Numerical quadrature may appear superficially as one of the simplest sub-
jects covered so far. But we will also see that it introduces some of the
deepest notions in analysis.

13.1 INTERPOLATORY QUADRATURE

The idea behind interpolatory quadrature is to define the approximate inte-
gral as the integral of an interpolant (or other approximant):

Qf =

∫ b

a

Lf(x) dx =

n∑

i=0

f(xi)

∫ b

a

φi(x) dx =

n∑

i=0

αif(xi), (13.1)

where the quadrature coefficients αi are defined by

αi :=

∫ b

a

φi(x) dx. (13.2)

Here L denotes one of the operators we have constructed:

• Lagrange or Hermite interpolation (with the points chosen according
to various objectives),

• piecewise polynomial interpolant (this is called a composite rule), or

• Bernstein (this is an unusual choice, but we will explore its properties
briefly).

The basis functions φi are the basis functions for the Lagrange interpola-
tion given in (11.33). Least-squares approximation does not lead to such a

204 CHAPTER 13

quadrature rule directly because it is defined in terms of an integral, but
we will see that there is an intimate connection with Gaussian quadrature
(section 13.1.3).

The quadrature error is easy to estimate for interpolatory quadrature:

Qf −
∫ b

a

f(x) dx =

∫ b

a

Lf(x)− f(x) dx. (13.3)

Thus we have, for example,

|Qf −
∫ b

a

f(x) dx| ≤ (b − a)‖Lf − f‖∞,[a,b], (13.4)

so that we can apply estimates previously derived. For example, if L refers
to Lagrange interpolation, then (10.9) implies that

|Qf −
∫ b

a

f(x) dx| ≤ (b− a)
(n+ 1)!

‖f (n+1)‖∞,[a,b]‖ωn+1‖∞,[a,b], (13.5)

where ωk is defined in (10.8).

13.1.1 Newton-Cotes formulas

A Newton-Cotes1 formula is based on choosing Lagrange interpolation with
equally spaced points. There are two types of Newton-Cotes quadrature
rules: open and closed. With the closed rules, the endpoints of the interval of
integration are included as quadrature (interpolation) points. For example,
the closed rule with two points is called the trapezoidal rule,

∫ b

a

f(x) dx ≈ b− a
2

(f(a) + f(b)) =: QTRf, (13.6)

and the one with three points is called Simpson’s rule2

∫ b

a

f(x) dx ≈ b− a
6

(f(a) + 4f(1
2 (b+ a)) + f(b)) =: QSRf. (13.7)

The Newton-Cotes open rule with one point is known as the midpoint rule:
∫ b

a

f(x) dx ≈ (b− a)f(1
2 (b + a)) =: QMRf. (13.8)

Error estimates can be derived directly from (13.5). For example, with
the trapezoidal rule, n = 1 and ω2(x) = (x− a)(x − b) has its maximum at
x = 1

2 (a+ b), so that ‖ω2‖∞,[a,b] = 1
4 (b− a)2. Therefore,

|QTRf −
∫ b

a

f(x) dx| ≤ (b− a)3
8

‖f (2)‖∞,[a,b]. (13.9)

1Roger Cotes (1682–1716) was nearly 40 years younger than Newton but became a
close colleague and “is best known for his meticulous and creative editing of the second
edition of Newton’s Principia,” done jointly with Newton [69].

2See pages 21 and 97 for information on Simpson.

NUMERICAL QUADRATURE 205

Applying the same technique to Simpson’s rule would imply an error of or-
der (b− a)4. However, for Simpson’s rule, a better estimate can be obtained
(exercise 13.1). Similarly, the midpoint rule has a higher-order of accuracy
(the same as the trapezoidal rule) than would be implied by (13.5) (exer-
cise 13.2). In section 13.1.2, we show how these rules, and others, can be
treated in a uniform way. The key point is that a given quadrature rule can
be derived from different approximation schemes, and we are free to pick the
approximation scheme that produces the best error estimate. Not surpris-
ingly, we will then see that the error in a quadrature rule is related to the
problem of best approximation (section 12.1).

For all the Newton-Cotes rules, the quadrature coefficients (13.2) are pro-
portional to the interval length b − a and independent of the base point a
(exercise 13.3). It is of interest to know whether the coefficients (13.2) are
positive or not. For the open Newton-Cotes rules, they are not all posi-
tive, for example, for the rules with three, five, and six points. When the
coefficients are negative, they are not suitable for certain applications. For
example, it may be a requirement that the approximate integral of a non-
negative function be nonnegative.

13.1.2 Order of exactness

In general, one is interested in quadrature rules for weighted integrals of the
sort we considered in section 12.3.2:

Qf =

∫ b

a

Lf(x)w(x) dx =

n∑

i=0

f(xi)

∫ b

a

φi(x)w(x) dx =

n∑

i=0

αif(xi).

(13.10)
The determining factor for error estimates for quadrature rules is not esti-
mates for the interpolant as in (13.5) but rather is determined by their order
of exactness together with a stability estimate.

Definition 13.1 We say that a quadrature is exact for polynomials of degree
k if

Qp =

∫ b

a

p(x)w(x) dx (13.11)

for all p ∈ Pk.

Thus we see that (for w ≡ 1) Simpson’s rule is exact for cubic polyno-
mials (exercise 13.1), and the midpoint rule is exact for linear functions
(exercise 13.2), as is trapezoidal rule.

Any quadrature rule may be viewed as a linear functional (cf. (11.31)),
meaning a linear map from a vector space to the set of scalars, more specif-
ically (exercise 13.4),

Q(f + cg) = Qf + cQg (13.12)

206 CHAPTER 13

for any continuous functions f and g and any scalar c. If a quadrature rule
(13.10) is exact for polynomials of degree k, then for any p ∈ Pk,

∣∣∣Qf−
∫ b

a

f(x)w(x) dx
∣∣∣ =

∣∣∣Q(f − p)−
∫ b

a

(f(x)− p(x))w(x) dx
∣∣∣

≤ |Q(f − p)|+
∣∣∣
∫ b

a

(f(x)− p(x))w(x) dx
∣∣∣

≤
(n∑

i=1

|αi|
)
‖f − p‖∞ +

∫ b

a

w(x) dx ‖f − p‖∞ = C‖f − p‖∞.

(13.13)

Note that if all αi > 0, then

n∑

i=1

|αi| =
n∑

i=1

αi =

∫ b

a

w(x) dx, (13.14)

assuming that the quadrature rule is exact at least for constants. Thus we
have proved the following result, which reduces error estimates for quadra-
ture to the previously studied problem of best approximation.

Theorem 13.2 Suppose that w is a nonnegative, integrable weight function
and that the quadrature rule (13.10) is exact for polynomials of degree k.
Then there is a constant C such that for all f ∈ C0([a, b]),

∣∣∣Qf −
∫ b

a

f(x)w(x) dx
∣∣∣ ≤ C min

p∈Pk

‖f − p‖∞,[a,b]. (13.15)

If all quadrature weights αi are positive, then we may take

C = 2

∫ b

a

w(x) dx. (13.16)

13.1.3 Gaussian quadrature

In the Newton-Cotes formulas, the points are fixed at specified points. The
corresponding order of accuracy is approximately equal to the number of
points, with the proviso that the accuracy (cf. (13.9)) can increase by 1
because of symmetry, as occurs with Simpson’s rule. One can pose the
quadrature problem as finding xi’s and αi’s so that

∫ b

a

p(x)w(x) dx =
n∑

i=0

αip(xi) ∀p ∈ Pk (13.17)

for k as large as possible. With the xi’s fixed, the system (13.17) is linear,
and the αi’s are just the integrals of the corresponding interpolation basis
functions. But if we allow the xi’s to be variables, we have the possibility
of getting exactness in (13.17) for a larger k, but at the expense of having a
nonlinear system to solve for the xi’s.

Gaussian quadrature may be defined by taking the points xi such that we
get a formula exact for as high a degree as possible. Stated as a system of

NUMERICAL QUADRATURE 207

equations, it is highly nonlinear. With n values of xi’s and n values of αi’s,
we might expect to integrate a polynomial of degree 2n−1 exactly since the
dimension of P2n−1 is 2n.

By symmetry, the midpoint rule gives the optimal solution for n = 1 when
w ≡ 1. We propose in exercise 13.5 to solve this problem for n = 2. However,
proceeding in this way for higher degrees would be tedious. Fortunately, if
we take the xi’s to be the roots of the orthogonal polynomial Pn, all is well.
First, we know the roots are in the interval in question and that they are
distinct (see section 12.3.3). We will refer to these roots as the Gauss points
and let LG

n be Lagrange interpolation at these points. We denote by QG

n the
corresponding interpolatory quadrature rule.

Suppose that f ∈ P2n−1. Then f − LG

nf vanishes at the roots of Pn, so
we can write f − LG

nf = Pnq, where q ∈ Pn−1. Therefore,

QG

nf −
∫ b

a

f(x) dx =

∫ b

a

LG

nf(x)− f(x) dx =

∫ b

a

Pn(x)q(x) dx = 0 (13.18)

because Pn is orthogonal to Pn−1.
Fortuitously, the coefficients αi are positive. Let f(x) = Pn(x)2/(x−xi)

2.
By (13.18), since the degree of f is 2n− 2,

αif(xi) = QG

nf =

∫ b

a

f(x) dx > 0 (13.19)

since f is positive except at the xj ’s, where it vanishes for all j 6= i. We also
have f(xi) 6= 0 since Pn has only a simple zero there. But we also know that
f(x) > 0 for x near xi (f is the square of a function that is not zero near
xi), so we must have f(xi) > 0 as well. Since αi is the quotient of positive
terms, it must be positive.

Thus we have proved the following result.

Theorem 13.3 Let xi be the roots of the orthogonal polynomial Pn (the
Gauss points) and let the quadrature coefficients be defined by (13.2) for
the corresponding Lagrange interpolation basis functions. Then the resulting
Gaussian quadrature (13.10) is exact for polynomials of maximum degree
2n− 1.

13.1.4 Hermite quadrature

Any approximation scheme can be used to create a quadrature rule via the
recipe

Qgenf =

∫ b

a

Gnf(x)w(x) dx (13.20)

for a general approximation operator Gn of the form (11.34). Hermite in-
terpolation (section 11.4.2) is one example that introduces a new ingredient.
In this case we have

QHf =
b− a

2
(f(a) + f(b)) +

(b− a)2
12

(f ′(a)− f ′(b)), (13.21)

208 CHAPTER 13

where the coefficients can be verified by various means. One approach of
course is to evaluate the integrals of the basis functions in (13.2). For a = 0
and b = 1, the basis functions are φ0(x) = 1 − 3x2 + 2x3 and φ1(x) =
x(1 − x)2 for the value and derivative nodes at x = 0. The corresponding
basis functions at x = 1 are φ0(1− x) and −φ1(1− x). Note the QH is again
a linear functional, but now it is defined only on C1-functions.

Consider the interpolation scheme implied in lemma 11.6. This suggests
that there is a quadrature rule of the form

QEM

k f =
b − a

2
(f(a)+f(b))+

k∑

i=1

ci(b − a)2i(f (2i−1)(a)−f (2i−1)(b)) (13.22)

that is exact for polynomials of degree 2k+1 and defined on C2k−1-functions.
Here c1 = 1

12 , in keeping with the case k = 1 in which (13.22) is just the
Hermite quadrature. This is basis of the Euler-Maclaurin3 formula (13.25);
we will see that the coefficients ci can be identified in general (section 13.3).

13.1.5 Composite rules

There are two ways to think of deriving composite rules. First, we start
with a subdivision of the interval a = ξ0 < ξ1 < · · · < ξn = b. We then
apply one of the previously discussed methods to each interval [ξi−1, ξi] for
i = 1, . . . , n. For example, if we apply the trapezoidal rule to each interval,
we obtain the rule

1
2h1f(a) +

n−1∑

i=1

1
2 (hi + hi+1)f(ξi) + 1

2hnf(b), (13.23)

where hi = ξi − ξi−1 for i = 1, . . . , n. The same quadrature rule arises
from (13.1) if we define L to be continuous piecewise linear interpolation
(section 12.4) using the points ξi.

It is interesting to consider the composite trapezoidal rule on a regular
subdivision: ξj = a+ jh, where h = (b − a)/n. The quadrature rule then is

h

(
1
2f(a) +

n−1∑

i=1

f(ξi) + 1
2f(b)

)
. (13.24)

Except for the endpoints, this is a very simple rule, and yet it is very pow-
erful, as we will see shortly.

Suppose we consider the composite version of (13.22). The odd-order
derivative terms all cancel in the intermediate intervals, and we obtain the

3Colin Maclaurin (1698–1746) entered the University of Glasgow in 1709 at the age of
11 and was awarded an M.A. at age 14. By 1717 he was a professor. He was significant
for his clarification of the ideas of Newton, who supported the appointment of Maclaurin
to the University of Edinburgh in 1725 [163].

NUMERICAL QUADRATURE 209

quadrature rule

h

(
1
2f(a) +

n−1∑

i=1

f(ξi) + 1
2f(b)

)

+

k∑

i=1

cih
2i(f (2i−1)(a)− f (2i−1)(b))

(13.25)

that is exact for polynomials of degree 2k + 1. It is again defined only on
C2k−1 functions. We can think of this as the trapezoidal rule with end-
point corrections. This formula is attributed to Euler and Maclaurin. We
will provide an alternate derivation that identifies the coefficients ci (cf. sec-
tion 13.3).

We can make the composite trapezoidal rule even simpler for periodic
functions. For simplicity, let us assume that a = 0 and b = 1 and that f is
1-periodic. Then f(0) = f(1), and all the derivative corrections cancel, so
(13.25) simplifies further to

1

n

n∑

i=1

f(i/n). (13.26)

Theorem 13.4 Suppose that f is a 1-periodic function. Then the trape-
zoidal rule (13.26) is exact to any order; that is, if f ∈ C2k+1([0, 1]), then

∣∣∣
∫ 1

0

f(x) dx− 1

n

n∑

i=1

f(i/n)
∣∣∣ ≤ Ckn

−2k−1‖f (2k+1)‖∞ (13.27)

for any value of n ≥ 1, where Ck is a constant that depends only on k.

We postpone the proof of this theorem, as it is a simple corollary of the
Peano kernel theorem; cf. section 13.2. As an example of the use of the
trapezoidal rule for a periodic function, we consider the integral [41]

∫ 1

0

dt

1 + 1
2 sin(2πt)

. (13.28)

Computational results are shown for various values of n in table 13.1.

13.2 PEANO KERNEL THEOREM

There is a general abstract result due to Peano4 that gives a representation
of the error for a wide class of numerical approximations. The error in
quadrature is a typical example. Consider the setup in theorem 13.2 and
define

Ef = Qf −
∫ b

a

f(x)w(x) dx. (13.29)

4Giuseppe Peano (1858–1932) is best known for his contributions to the foundations
of mathematics. But he also did research on numerical analysis [127].

210 CHAPTER 13

n Integral Error
3 1.15384615384615 8.5× 10−4

5 1.15469613259669 4.4× 10−6

7 1.15470051566839 2.3× 10−8

9 1.15470053826218 1.2× 10−10

11 1.15470053837865 6.0× 10−13

Table 13.1 Errors in computing the integral (13.28) via the trapezoidal rule with n
points. The exact answer is 1.15470053837925, which is obtained with
n = 13 and does not change for larger n. The bold face digits are the
first incorrect digits for each n.

Note that EP = 0 for all polynomials of degree k, where k is the order of
exactness of Q, and that E is linear,

E(f + cg) = Ef + cEg, (13.30)

as long as the same is true ofQ, since this holds for the integral. In particular,
Ef = E(f − P) for any polynomial P of degree k.

Recall Taylor’s theorem with integral remainder (7.81):

f(x)− Pk(x) =
1

k!

∫ x

a

(x− t)kf (k+1)(t) dt , (13.31)

where Pk is the Taylor polynomial

Pk(x) =
k∑

j=0

f (j)(a)

j!
(x− a)j . (13.32)

Let us use the notation (X)+ to mean X if X ≥ 0 and 0 if X ≤ 0. Then we
can rewrite (13.31) as

f(x)− Pk(x) =
1

k!

∫ b

a

(x− t)k
+f

(k+1)(t) dt . (13.33)

Since E is linear, we have

Ef =E(f − P) =
1

k!
E

[∫ b

a

(x− t)k
+f

(k+1)(t) dt

]

=
1

k!

∫ b

a

E
[
(x− t)k

+

]
f (k+1)(t) dt.

(13.34)

The last equality may seem like a leap of faith, and in any case the notation
needs to be made more precise. Define

φ(x) =

∫ b

a

(x− t)k
+f

(k+1)(t) dt (13.35)

for x ∈ [a, b]. Then (13.33) says that f − Pk = (k!)−1φ, so Ef = (k!)−1Eφ.
Similarly, define a one-parameter family of functions ψk

t (x) = (x − t)k
+ for

x ∈ [a, b] and let

K(t) = Eψk
t . (13.36)

NUMERICAL QUADRATURE 211

Then we claim that

Eφ =

∫ b

a

K(t)f (k+1)(t) dt. (13.37)

The proof of (13.37) relies on the linearity of E and the linearity of the
integration process. For example, this can be verified by approximating
the integral by Riemann sums (exercise 13.6). Thus we have proved the
following.

Theorem 13.5 Suppose that the quadrature Q is linear, exact of order k,
and defined on Ck+1([a, b]). Then the error E defined by (13.29) satisfies

Ef =
1

k!

∫ b

a

K(t)f (k+1)(t) dt, (13.38)

where K is defined by (13.36).

The function K is called the Peano kernel for this error relation. We can
provide an error estimate using the Peano kernel:

|Ef | ≤ 1

k!

∫ b

a

|K(t)| dt ‖f (k+1)‖∞,[a,b], (13.39)

which can be compared with (13.5) (see exercise 13.7).
There is a not so small missing detail here, namely, whether the function

defined in (13.36) is integrable in an appropriate sense (exercise 13.6). Nev-
ertheless, let us try to develop some general rules about the Peano kernels.
It may not be clear why K is well-defined at all since it involves the appli-
cation of Q to the function ψk

t , which is not so smooth. For t ≤ x, ψk
t ≡ 0,

and so the kth derivative of ψk
t is discontinuous at x = t. However, it is easy

to see that ψk
t ∈ Ck−1(R) and

K ′(t) = lim
h→0

h−1 (K(t+ h)−K(t)) = lim
h→0

h−1
(
Eψk

t+h − Eψk
t

)

= lim
h→0

h−1E
(
ψk

t+h − ψk
t

)
= E lim

h→0
h−1

(
ψk

t+h − ψk
t

)

= − kE
[
(x− t)k−1

+

]
= −kEψk−1

t ,

(13.40)

provided that E is well-defined for functions in Ck−2. By definition, ψ0
t (x)

is the Heavyside function that is 0 for x < t and 1 for x > t.
When t = a, ψk

a(x) = xk on [a, b], so we have K(a) = 0 because Q is
exact of order k. Similarly, when t = b, ψk

b ≡ 0 on [a, b], so again K(b) = 0.
Therefore, (13.38) implies that

K(i)(a) = K(i)(b) = 0 (13.41)

for i = 0, 1, . . . , k−1−m, provided that Qf is well-defined for f ∈ Cm([a, b]).
In the case of the Hermite quadrature rule (13.21), we have m = 1.

Now let us see if we can figure out what K might look like in examples.
Let us start with Q = midpoint rule on [0, 1], which is exact for polynomials
of degree k = 1. In this case, the statement is

Ef = f(1
2)−

∫ 1

0

f(t) dt =

∫ 1

0

KMR(t)f (2)(t) dt. (13.42)

212 CHAPTER 13

The quadrature rule Qf = f(1
2) is well-defined for f ∈ C0, so we conclude

from (13.40) that KMR ∈ C0 and that K ′
MR

is defined for x 6= 1
2 and bounded.

Thus we can integrate by parts to find

Ef = f(1
2)−

∫ 1

0

f(t) dt = −
∫ 1

0

K
(1)
MR(t)f (1)(t) dt. (13.43)

We can integrate by parts again, but we have to be careful since KMR is not
C1. However, the only point where KMR fails to be smooth is x = 1

2 , and so
we can break the integral into two parts and integrate by parts again. To
make a long story short, we find that

KMR(t) = −
{

1
2 t

2 t ≤ 1
2

1
2 (t− 1)2 t ≥ 1

2 .
(13.44)

We leave as exercise 13.8 verification that this KMR satisfies (13.42) for all
f ∈ C2. Similarly, it is not hard to see (exercise 13.7) that the kernel for the
trapezoidal rule is

KTR(t) = 1
2 t(1− t) (13.45)

and the kernel for Hermite quadrature (13.21) is

KH(x) = − 1
24x

2(1− x)2. (13.46)

We will consider the form of the general kernelsKEM

k for the Euler-Maclaurin
quadrature subsequently.

If we make a simple change of variables in the integration, the Peano kernel
changes in a predictable way. Suppose that K̂ denotes the Peano kernel for
the interval [0, 1]. Then the kernel for the interval [a, a+ h] is

K(a+ ht) = hkK̂(t), (13.47)

where k is the order of exactness.
For the Euler-Maclaurin formula (13.25), we have

h

(
1
2f(a) +

n−1∑

i=1

f(ξi) + 1
2f(b)

)
+

k∑

i=1

cih
2i(f (2i−1)(a)− f (2i−1)(b))

=

∫ b

a

f(x) dx + h2k+1
n−1∑

i=0

∫ 1

0

KEM

k (x)f (2k+1)(a+ h(i+ x)) dx.

(13.48)

This completes the proof of theorem 13.4. The kernels KEM

k are related to
the Bernoulli polynomials [41, 100].

13.3 GREGORIE-EULER-MACLAURIN FORMULAS

Gregorie5 developed a formula for numerical integration that predated, or
at least was contemporary with, the work of Newton on calculus. This

5James Gregorie (1638–1675), a.k.a. James Gregory, a Scottish mathematician and
astronomer, was successively professor at the University of St. Andrews and the University
of Edinburgh. He had “a reputation among his peers second only to that of Newton” [162].

NUMERICAL QUADRATURE 213

formula is also related to the formula (13.25) attributed later to Euler and
Maclaurin. The Gregorie formula has been utilized in codes for solving
partial differential equations [16]. The following derivation of these formulas
provides an application of operator calculus.

13.3.1 More operator calculus

In order to compute the coefficients arising in the Euler-Maclaurin formula
(13.25), we make a small detour to develop further the technology regarding
operators on function spaces that we began in section 9.3.1. We have seen
many such operators so far, but we now treat them as abstractions in which
we will view them much like a point in the complex plane. We make a
formal analogy between functions of a complex variable and corresponding
functions of operators. We begin with an example.

Let h > 0 be fixed. We define the difference operator ∆ by

∆f(x) = f(x+ h)− f(x). (13.49)

This operator makes sense for any f ∈ C0(R), but we will often restrict the
operators in this discussion to the set of polynomials (a dense subset of C0

at least on finite intervals; cf. section 12.2). We have also used the notation
D for the derivative operator (7.17), i.e.,

Df(x) = f ′(x) (13.50)

in the one-dimensional case. This operator is no longer defined on all of C0,
so we restrict it always to polynomials. More precisely, we define the vector
space (exercise 13.11) P∞ by

P∞ = ∪∞k=0Pk. (13.51)

Then both ∆ and D map P∞ → P∞. Note that although P∞ is infinite-
dimensional, each P ∈ P∞ has a finite degree.

It is not surprising that we could find a formal relationship between D
and ∆. The Taylor expansion (see exercise 7.4)

f(x+ h) =
∞∑

k=0

hkf (k)(x)

k!
=

∞∑

k=0

(hD)kf(x)

k!
(13.52)

(valid for any polynomial f) leads to the relationship

∆f(x) =

∞∑

k=1

(hD)kf(x)

k!
=

∞∑

k=1

(hD)k

k!
f(x) ∀f ∈ P∞. (13.53)

For any polynomial f , the sum in (13.53) is finite, so there are no convergence
issues. The function represented by the series in (13.53) is familiar since we
can write

ζ(z) =
∞∑

k=1

zk

k!
= ez − 1. (13.54)

214 CHAPTER 13

Replacing z by hD formally, we obtain

∆f(x) = ζ(hD)f(x). (13.55)

We now explain how to make this rigorous.
We now generalize the operator calculus derived in section 9.3.1 for ma-

trices, especially (9.48), to operators on polynomials. Of course, this is not
exactly a generalization since any operator on a finite-dimensional vector
space can be written as a matrix. But we want to use the calculus for op-
erators on P∞ which is infinite-dimensional, so it makes sense to approach
the theory more abstractly.

We know that for any linear operator T , it makes sense to talk about pow-
ers of T , e.g., T 2f = T (Tf), and T kf = T (T k−1f) is defined by induction.
We again define T 0 = I, where I denotes the identity operator If = f for
all f . Thus any polynomial p(z) =

∑n
k=1 ciz

i can be applied to T to get
p(T) by summing all the monomials T k with appropriate scalar coefficients:

p(T)f =
n∑

k=1

ciT
if. (13.56)

It also makes sense to talk about the infinite sum ζ(D)f for any polynomial
f since it involves only finitely many terms in the sum in (13.54). Thus we
have proved the following result.

Lemma 13.6 For any polynomial f ∈ P∞, we have

∆f(x) = ζ(hD)f(x) = ehDf(x)− f(x) ∀x ∈ R, (13.57)

where ζ(z) = ez − 1.

lemma 13.6 provides an explicit relationship between ∆ and D:

∆ = ehD − I, (13.58)

where I is the identity operator (and h is the parameter in the definition of
∆). This uses the following fact that we leave as exercise 13.12:

∞∑

k=0

(ck + bk)T kf =

∞∑

k=0

ckT
kf +

∞∑

k=0

bkT
kf ∀f ∈ P∞. (13.59)

To make this a bit more formal, we need to say what operators T are allowed
and show at least that T = hD is one of them. Note that both T = D and
T = ∆ have the property that the degree of Tf is 1 less than the degree
of f for any polynomial f . Thus both D and ∆ are in the following set of
operators:

T =
{
T : P∞ → P∞

∣∣ ∀f ∈ P∞ ∃k̂ <∞ such that T k̂f ≡ 0
}
. (13.60)

Note that if T k̂f ≡ 0, then T kf ≡ 0 for all k > k̂ as well. Thus the set
T comprises the operators for which infinite expressions like (13.59) always
reduce to finite expressions for any given f ∈ P∞. Restricting to this set
greatly simplifies convergence arguments.

NUMERICAL QUADRATURE 215

13.3.2 Product formula

The summation rule (13.59) for functions of operators is elementary, but
the corresponding rule for products is more subtle. Suppose that µ(z) =∑∞

k=0 ckz
k and ν(z) =

∑∞
k=0 bkz

k are power series that converge for |z| < ε
for some ε > 0. Define υ(z) = µ(z)ν(z), which has the power series υ(z) =∑∞

k=0 akz
k, where

ak =

k∑

i=0

cibk−i (13.61)

(see exercise 13.13).

Lemma 13.7 Let T ∈ T . If µ and ν are power series as above and υ(z) =
µ(z)ν(z), then υ(T)f = µ(T)(ν(T)f) for any polynomial f .

Proof. Let g = ν(T)f =
∑k̂

k=0 bkT
kf , where k̂ is chosen depending on

f ∈ P∞ according to the defining property of (13.60). In particular, we
conclude that g ∈ P∞, and we can then write

µ(T)g =

k̂∑

k=0

ckT
kg, (13.62)

where we have increased the value of k̂ using (13.60) as necessary. Multiply-
ing the two expressions gives the desired result. QED

13.3.3 Inverse operators

Now we consider finding inverses in the operator calculus. There is a new
ingredient in that in addition to power series, we need to add the symbol
1/z to the set of functions that we can apply to an operator T ∈ T . Since 1
is the symbol for the identity operator and z is the symbol for the operator
itself, then 1/z should be the symbol for the inverse since z(1/z) = 1, which
is consistent with our calculus for products of power series. We already saw
this when we applied the expression

(1− z)−1 =

∞∑

k=0

zk (13.63)

to write the inverse of the matrix I −M as

(I −M)−1 =

∞∑

k=0

Mk (13.64)

for a convergent matrix M (section 8.1). We now apply this idea to compute
an expansion for η(z) = 1/ζ(z), where ζ was defined in (13.54).

First, note that (see exercise 13.14)

η(z) = 1/ζ(z) = 1
2 (−1 + coth 1

2z) (13.65)

216 CHAPTER 13

and recall that the hyperbolic cotangent has the expansion

1
2 coth 1

2z =

∞∑

k=0

B2k

(2k)!
z2k−1

= (1/z) + 1
12z − 1

720z
3 + · · · ,

(13.66)

where Bn is the nth Bernoulli6 number (cf. exercises 3.11 and 13.16). We will
show that η(hD) is the inverse of ζ(hD), in the sense that for any polynomial
f , we have f = ζ(hD)η(hD)f .

Lemma 13.8 Suppose that ζ(z) =
∑∞

k=1 ckz
k and that

ζ(z)−1 = 1/z +

∞∑

k=0

bkz
k,

in the sense that both series converge for |z| < ε and

ζ(z)
(
1/z +

∞∑

k=0

bkz
k
)

= 1 (13.67)

for all z in 0 < |z| < ε. Suppose that T ∈ T has a right inverse R: TRf = f
for all f ∈ P∞. Then the operator U defined by U = R+

∑∞
k=0 bkT

k satisfies
ζ(T)Uf = f for any polynomial f .

Note that we require that the operator R : P∞ → P∞, but we do not
require that R ∈ T .

Proof. The expression ζ(z)
(
1/z +

∑∞
k=0 bkz

k
)

= 1 means that

ζ(z)ν(z) = 1− µ(z), (13.68)

where µ(z) =
∑∞

k=1 ckz
k−1 and ν(z) =

∑∞
k=0 bkz

k. In particular, Uf =
Rf + ν(T)f .

We have ζ(z) = µ(z)z, so that

ζ(T)(Uf) = µ(T)(TUf) = µ(T)(f + Tν(T)f) (13.69)

for any f ∈ P∞. But rewriting (13.68) gives 1−µ(z) = ζ(z)ν(z) = µ(z)zν(z),
so that 1 = µ(z)(1 + zν(z)), as required. QED

Combining lemmas 13.6 and 13.8 shows that the following holds.

Corollary 13.9 For any polynomial f ∈ P∞, we have

f(x) = ∆η(hD)f(x), (13.70)

where η(z) = 1/ζ(z) = (ez − 1)−1 = 1
2 (−1 + coth 1

2z).

6See page 49.

NUMERICAL QUADRATURE 217

13.3.4 The Euler-Maclaurin formula

To understand corollary 13.9, we need to interpret the meaning of the term
1/z when D is substituted for z. The inverse of differentiation is integration:

D−1f(x) =

∫ x

f(s) ds, (13.71)

but the inverse is not uniquely defined. That is, define

Icf(x) =

∫ x

c

f(s) ds (13.72)

for any constant c, and then we have DIcf = f for any polynomial f . What
this means is that Ic is a right inverse for D for any c, and thus we can
write I = ζ(D)η(D), but the interpretation of η(D)ζ(D) is problematic.
The formal interpretation of η(hD) is then

η(hD) = h−1Ic − 1
2I + 1

12hD − 1
720 (hD)3 + · · · . (13.73)

Fortunately,

∆Icf(x) =

∫ x+h

x

f(s) ds, (13.74)

which is independent of the value of c, so we have

f(x) = h−1

∫ x+h

x

f(s) ds− 1
2∆f(x) + 1

12h∆Df(x)− 1
720h

3∆D3f(x) + · · · .
(13.75)

Reorganizing (13.75), we find
∫ x+h

x

f(s) ds = 1
2h(f(x+h)+ f(x))− 1

12h
2∆Df(x)+ 1

720h
4∆D3f(x)+ · · · .

(13.76)
Summing this as we do for a composite quadrature rule, we find

∫ b

a

f(s) ds = h

n−1∑

i=1

f(a+ ih) + 1
2h(f(a) + f(b))

− 1
12h

2 (f ′(b)− f ′(a)) + 1
720h

4
(
f (3)(b)− f (3)(a)

)
+ · · · .

(13.77)

where b = a+ nh. Note the appearance of the trapezoidal rule (cf. (13.27))
in the middle of (13.77), which is the Euler-Maclaurin formula (13.25). The
coefficients ci in (13.25) are those in the power series expansion of zη(z) =
z/(ez − 1), i.e.,

z

ez − 1
=
z

2
(−1 + coth 1

2z) = 1− 1
2z −

∞∑

i=1

ciz
2i. (13.78)

The numbers B2i = (2i)!ci are known as the Bernoulli numbers (cf. (13.66)):
c1 = 1/12, c2 = −1/720, c3 = 1/30240, c4 = −1/1209600, and so forth.

218 CHAPTER 13

13.3.5 Euler’s constant γ

Let us derive the result that

An =

n∑

i=1

1

i
≈ γ + logn, (13.79)

where γ = 0.57721 · · · is Euler’s constant. We see that An is very close to
the trapezoidal rule for the integral

logn =

∫ n

1

dx

x
≈ 1

2
+

1

2n
+

n−1∑

i=2

1

i
. (13.80)

Set f(x) = 1/x. Then (by induction) f (k)(x) = (−1)kk!x−k−1. In particular,
f (2i−1)(x) = −(2i− 1)!x−2i. Therefore, the Euler-Maclaurin formula gives

log(n/m) =

∫ n

m

dx

x
≈

n∑

i=m

1

i
− 1

2m
− 1

2n

−
k∑

i=1

B2i

2i
(m−2i − n−2i) +O

(
m−2k−2

)
,

(13.81)

where the numbers B2i are the Bernoulli numbers (exercises 3.11 and 13.16).
Thus we can write

n∑

i=1

1

i
=

m−1∑

i=1

1

i
+

n∑

i=m

1

i
=

m−1∑

i=1

1

i
+ log(n/m)

+
1

2m
+

1

2n
+

k∑

i=1

B2i

2i
(m−2i − n−2i) +O

(
m−2k−2

)
.

(13.82)

Thus we find (e.g., by letting n→∞) that

γ =

m−1∑

i=1

1

i
− logm+

1

2m
+

k∑

i=1

B2i

2i
m−2i +O

(
m−2k−2

)
. (13.83)

In table 13.2, we give the results of applying this algorithm for various values
of k and m computed using floating-point arithmetic. Note the effect of
round-off error for m = 1000 and k = 4 (see section 18.1.1).

13.3.6 Gregorie’s quadrature

The quadrature rule of Gregorie can now be realized as a simple application
of the Euler-Maclaurin formula [169]. The derivatives at the ends of the
intervals are replaced by suitable difference quotients that approximate the
derivatives [66]; cf. section 11.4.3. Because the first few Bernoulli numbers
are quite small, and the trapezoidal rule is very efficient to compute (since
the coefficients are all the same), the Gregorie rules can be quite useful in
applications [16].

NUMERICAL QUADRATURE 219

m k = 0 k = 2 k = 4
10 0.576383160974208 0.577215660974208 0.577215664900795
20 0.577007383589691 0.577215664839691 0.577215664901532
100 0.577207331651528 0.577215664901528 0.577215664901532
1000 0.577215581568205 0.577215664901530 0.577215664901530

Table 13.2 Computation of the Euler constant γ using (13.83) for various values
of k and m. The first incorrect digit is shown in boldface. The cases
k = 4 and m = 20, 100 agree with the exact value to the digits shown.

For example, if we take the approximation (11.46) (which we have to scale
by a factor of 2 to account for the interval size), for the derivative in (13.22)
for k = 1, we get

∫ b

a

p(s) ds ≈ QGEM =h

n−1∑

i=1

p(a+ ih) + 1
2h(p(a) + p(b))

+ 1
12h
(
− 3

2p(a) + 2p(a+ h)− 1
2p(a+ 2h)

−
(

3
2p(b)− 2p(b− h) + 1

2p(b− 2h)
))
.

(13.84)

For n = 1, we obtain Simpson’s rule. Thus the quadrature rule is exact
for cubics in this case. For larger n, it is clear that the quadrature rule is
exact for quadratics because the difference approximation (11.46) is exact
for quadratics. The symmetry of the quadrature rule around the midpoint
m = 1

2 (a+b) implies thatQGEM(x−m)3 = 0, the exact result for the integral.
Thus QGEM is exact for cubics for all n.

In figure 13.1, the use of (13.84) to approximate the integral of x4 on [0, 1]
is depicted. The slope of the error curve confirms that the approximation
error is proportional to n−4, as would be expected from the Peano kernel
theorem, cf. the error expression for the Euler-Maclaurin formula (13.48).
For the periodic function in (13.28), the errors for QGEM are similar and
therefore much larger than would be obtained using the trapezoidal rule
QTR given in (13.36) without any endpoint corrections, as is reflected in
table 13.1. Thus for periodic functions, the simple trapezoidal rule QTR

given in (13.36) is more accurate than the formally more accurate rule QGEM

defined in (13.84).

13.4 OTHER QUADRATURE RULES

Any type of approximation naturally leads to a quadrature rule. Here we
briefly discuss two that are related to approximation techniques studied ear-
lier.

220 CHAPTER 13

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1 10 100 1000 10000

Figure 13.1 Errors (vertical axis) in computing the integral of x4 on [0, 1] via the
Gregorie rule (13.84) with n points (horizontal axis).

13.4.1 Chebyshev quadrature

A natural quadrature rule can be associated with interpolation at the Cheby-
shev points (11.1). This quadrature is called the “first rule” of Fejér7 whereas
Fejér’s “second rule” uses instead the interior extrema of the Chebyshev
polynomials,

xj = cos(jπ/n), 0 < j < n. (13.85)

The closely related rule, which includes the points in (13.85) for j = 0 and
j = n (that is, x = ±1), is known as the Clenshaw-Curtis rule. The latter
rule is popular for several reasons, including the fact that it is often as
accurate as Gaussian quadrature with the same number of points as well
as the availability of an algorithm that, in effect, computes the quadrature
weights very efficiently [159].

13.4.2 Bernstein quadrature

We have seen that any linear approximation scheme can generate an inter-
esting quadrature rule. The same holds for the Bernstein approximation.
However, this does not yield a new quadrature rule but rather an inter-
pretation of a variant of the trapezoidal rule. In particular, the Bernstein

7Leopold (Lipót) Fejér (1880–1959) was a student of Schwarz (see page 73) and had
a remarkable list of advisees including Paul Erdös, George Pólya, Marcel Riesz, Gabor
Szegö, and John von Neumann.

NUMERICAL QUADRATURE 221

quadrature is of the form

QB

nf :=

n∑

j=0

(∫ 1

0

Bj,n(x) dx

)
f(j/n) =

1

n+ 1

n∑

j=0

f(j/n). (13.86)

What is striking is that theorem 12.6 implies that

lim
n→∞

QB

nf =

∫ 1

0

f(x) dx, (13.87)

for any f ∈ C0([0, 1]). It is easy to compare the quadrature rule (13.86) with
the trapezoidal rule: the coefficients at the end differ by O

(
n−1

)
and the

coefficients in the middle differ by O
(
n−2

)
, but the quadrature points are the

same. In particular, this allows us to show that the (composite) trapezoidal
rule also converges to the integral, as in (13.87) for any f ∈ C0([0, 1]) (see
exercise 13.19).

13.5 MORE READING

The book [41] provides a comprehensive introduction to numerical quadra-
ture. See [100] as well for information on the Bernoulli polynomials which
play the role of Peano kernels in the Euler-Maclaurin formula, as well as
other applications.

13.6 EXERCISES

Exercise 13.1 Prove that Simpson’s rule is exact for cubics (hint: use
symmetry). Explain how to modify (13.3) to reflect the extra accuracy of
Simpson’s rule. (Hint: consider a Hermite-type interpolation involving the
derivative at the midpoint and show that the corresponding basis function
has integral zero, so that there is no corresponding α.)

Exercise 13.2 Prove that the midpoint rule is exact for linear polynomials
(hint: use symmetry). Explain how to modify (13.3) to reflect the extra
accuracy of the midpoint rule. (Hint: consider a Hermite-type interpolation
involving the derivative at the midpoint and show that the corresponding basis
function has integral zero, so that there is no corresponding α.)

Exercise 13.3 Show that the coefficients αi in (13.2) for the Newton-Cotes
quadrature are linearly proportional to the interval length b− a:

αi = (b − a)α1
i , (13.88)

where the the coefficients α1
i correspond to the integration rules with a = 0

and b = 1. (Hint: show that the corresponding Lagrange basis functions
satisfy a similar type of scaling when you map [a, b]→ [0, 1].)

222 CHAPTER 13

Exercise 13.4 Prove that any quadrature rule Qf of the form (13.10), i.e.,
Qf =

∑n
i=0 αif(xi), is a linear functional on continuous functions.

Exercise 13.5 Suppose that a = −1 and b = 1. Consider the problem
(13.17) for n = 2. Determine the optimal points xi = ±ξ by solving the 4×4
system of equations. (Hint: use symmetry, the representation (13.2), and
the observation in exercise 13.1 to eliminate as many variables as possible.)

Exercise 13.6 Give conditions on K such that (13.37) is valid. (Hint:
write the integral as a limit of finite sums, e.g., (13.87), and show how E
applied to the sum is the sum of E applied to the individual terms.)

Exercise 13.7 Prove that the error for the trapezoidal rule on [−1, 1] sat-
isfies

∫ 1

−1

f(t) dt− 1
2 (f(−1) + f(1)) =

∫ 1

0

1
2 (t2 − 1)f (2)(t) dt. (13.89)

Use this to determine if the error estimate (13.9) is sharp.

Exercise 13.8 Verify that the K defined in (13.44) satisfies (13.42) for all
f ∈ C2.

Exercise 13.9 Verify that the rule (13.23) arises as an example of inter-
polatory quadrature (13.1) if we define L to be continuous piecewise linear
interpolation (section 12.4) using the points ξi.

Exercise 13.10 Derive the composite midpoint rule by summing the mid-
point rule for each interval and show that it corresponds to interpolatory
quadrature (13.1) if we define L to be piecewise constant interpolation (sec-
tion 12.4) at the midpoints of each interval [ξi−1, ξi] for i = 1, . . . , n.

Exercise 13.11 Show that P∞ defined in (13.51) is a vector space. Show
that it also has a ring structure defined by pointwise multiplication.

Exercise 13.12 Prove that (13.59) is valid for any T ∈ T (see (13.60)).
Apply (13.59) to justify the expression (13.58) by showing that the additive
decomposition rule is valid:

ζ(hD) = ehD − hD. (13.90)

Verify that the operator ehD is well-defined on P∞. (Hint: use Taylor’s
theorem; cf. exercise 7.4.)

Exercise 13.13 Prove that (13.61) defines a power series υ that is conver-
gent for |z| < ε provided this holds for µ and ν.

Exercise 13.14 Prove (13.65). (Hint: write the definition of the hyperbolic
cotangent and simplify.)

NUMERICAL QUADRATURE 223

Exercise 13.15 Prove that the power series in (13.78) converges for |z| <
2π. (Hint: ignoring the removable singularity z = 0, the smallest zeros of
the denominator ez − 1 are z = ±2πi.)

Exercise 13.16 The generating function for the Bernoulli numbers is the
function

χ(z) = z/(ez − 1), (13.91)

in the sense that

χ(z) =

∞∑

k=0

Bk

k!
zk. (13.92)

Show that the power series (13.92) has no odd-order terms of degree 3 and
higher. (Hint: consider the function

φ(z) = (z/(ez − 1))− 1 + 1
2z (13.93)

and show that φ(−z) = φ(z) for all z.)

Exercise 13.17 Prove the following analog of the Euler-Maclaurin formula
in which the trapezoidal rule is replaced by the midpoint rule: for any poly-
nomial p,

∫ b

a

p(s) ds = h

n−1∑

i=0

p(a+ (i+ 1
2)h)

+
∞∑

i=1

ĉih
2i
(
p(2i−1)(b)− p(2i−1)(a)

)
,

(13.94)

where h = (b − a)/n and the coefficients ĉi are also related to the Bernoulli
numbers [163].

Exercise 13.18 Determine the Peano kernel K2 for the Euler-Maclaurin
quadrature formula for k = 2 on the interval [−1, 1]. (Hint: write

K2(x) = (6!)−1(1 + x)3(1− x)3 + α(1 + x)2(1 − x)2

and determine the value of α that ensures that K
(3)
2 (±1) = 0. Integrate by

parts to verify the required formula.)

Exercise 13.19 Prove that the trapezoidal rule

1

n

(
1
2f(0) + 1

2f(1) +

n−1∑

j=1

f(j/n)

)
(13.95)

converges to
∫ 1

0
f(x) dx as n→∞ for any f ∈ C0([0, 1]). Determine the rate

of convergence in terms of the modulus of continuity of f . (Hint: compare
exercise 12.19).

224 CHAPTER 13

13.7 SOLUTIONS

Solution of Exercise 13.1. In view of exercise 13.3, it suffices to take
a = 0 and b = 1. By symmetry,

φ0(x) = φ2(1− x) = 2(x− 1
2)(x− 1) = 2x2 − 3x+ 1, (13.96)

and thus

α2 = α0 =

∫ 1

0

2(x− 1
2)(x − 1) dx = 2

3 − 3
2 + 1 = 1

6 . (13.97)

Similarly, φ1(x) = 4x(1− x) = −4x2 + 4x, and

α1 =

∫ 1

0

−4x2 + 4xdx = − 4
3 + 2 = 2

3 . (13.98)

To see that this rule is exact for cubics, observe that the cubic

φ3(x) = x(x − 1
2)(x− 1) (13.99)

is antisymmetric around x = 1
2 , and thus

∫ 1

0
φ3(x) dx = 0.

Since any cubic may be written as βφ3+q, where q is quadratic, Simpson’s
rule computes its integral exactly. If we define a Hermite-type interpolation
involving Lagrange interpolation at 0, 1

2 , 1 and derivative interpolation at 1
2 ,

then the corresponding basis functions will just involve simple additions of
φ3 and not change the quadrature coefficients α. However, the interpolation
error (13.3) will involve an interpolant that is exact for cubics.

Solution of Exercise 13.16. Consider the difference

φ(−z)− φ(z) =
−z

e−z − 1
− 1− 1

2z −
z

ez − 1
+ 1− 1

2z

=
−z

e−z − 1
− z

ez − 1
− z

= − z
(

1

e−z − 1
+

1

ez − 1
+ 1

)
.

(13.100)

But a common denominator yields (cf. exercise 2.12)

1

e−z − 1
+

1

ez − 1
=
ez − 1 + e−z − 1

(e−z − 1)(ez − 1)

=
ez + e−z − 2

1− e−z − ez + 1
= −1.

(13.101)

Therefore, φ(−z)− φ(z) = 0 for all z.

Chapter Fourteen

Eigenvalue Problems

“For his work on acceleration of the PageRank algorithm
Gene [Golub] received Google stock; he donated most of
these funds to found the Paul and Cindy Saylor Chair at
the University of Illinois”–from Gene H. Golub Biography by
Chen Greif. Gene Howard Golub (1932–2007) passed away
shortly before his 19th (leap year) birthday, 29 February
2008, which was celebrated as the Gene Golub Around the
World Day.

Eigenvalues and eigenvectors arise in many situations. We have seen the
fundamental role of the spectral radius (6.8) in determining the convergence
rate of iterative methods (chapter 8). Similarly, the convergence proper-
ties of the conjugate gradient method (cf. theorem 9.9) are encoded in the
eigenvalues. These give only two hints of the crucial role of eigenvalues and
why it is natural to seek efficient algorithms to compute the eigenvalues of
matrices.

We begin by giving some further examples of eigenproblems for motiva-
tion. Then we present results that allow estimation of the location of eigen-
values by simple computations. We then explain fundamental limitations
of the eigenvalue problem which show that, in general, only approximate
algorithms are feasible, unlike the problem of solution of linear systems for
which “exact” algorithms like Gaussian elimination and conjugate gradients
are available. Finally, we discuss the Hessenberg factorization, which sim-
plifies the eigenproblem substantially.

14.1 EIGENVALUE EXAMPLES

We have seen several examples of families of matrices, e.g., (4.20) and (8.2),
for which the eigenvalues may be of interest. We explain in one case why this
is so. We also give other examples to provide some additional motivation.

14.1.1 Mechanical resonance

Many physical models are described by differential equations. For a two-
point boundary value problem, a finite difference approximation produces a
linear system of the form (4.20). The model (4.20) is a reasonable approxima-
tion to the deflection of a string under modest loading. Thus the frequency

226 CHAPTER 14

of sounds can be determined as the eigenvalues of mechanical systems [123].
But far more complex physical systems, approximated by either finite

difference or finite element methods, are modeled by matrices with structures
very similar to (4.20), with the matrix size n limited only by the size of
computer memory. Finding the deflection x of a bridge subject to a force f
would require solving Ax = f for such a system. But finding the frequencies
of vibration [14] require the eigenvalues of A.

14.1.2 Quality rankings

Suppose you want to quantify connectivity of related objects based on the
quality of the relationships among the objects. For example, we might want
to measure personal connections so that we can target advertising to people
who influence influential people. To see how this might be done, suppose we
had access to all cell phone data. We can rank people based on whether their
numbers are kept in another person’s cell phones for “one-touch” dialing.

It is reasonable to say that you are more connected if the people who keep
your number are also highly connected. One way to implement this is to
define your connectivity rating to be a fixed multiple of the sum of all the
ratings of the people who list you. Since this definition is circular, we have
to write an equation.

Let µ > 0 denote a parameter to be picked later. Let A = (aij) denote
the matrix with the property that aij = 1 if and only if the jth person keeps
the ith person’s phone number, and zero otherwise. Then the connectivity
ratings xi of the ith person can be determined from other connectivity ratings
(xj) by the relationship

xi = µ
∑

{j|aij 6=0}
xj . (14.1)

This just says that the ith rating is proportional to the sum of the ratings of
the people that connect to the ith person, with a constant of proportionality
given by µ. By the definition of the matrix A = (aij), we find for all i that

λxi =
∑

{j|aij 6=0}
xj =

∑

j

aijxj = (AX)i , (14.2)

where λ = 1/µ. This says that x and λ form an eigenpair: Ax = λx.
If A is irreducible (section 8.3.4), then there is a nonnegative eigenpair

(theorem 8.18), so that the ratings are all of the same sign. In many cases,
only relative, not absolute, ratings are of interest. In this case ratings, like
eigenvectors, can be subjected to arbitrary scalings by a constant factor.

The above example is similar to the problem of determining link relevance
for search engines for the World Wide Web. Instead of phone numbers, links
between web pages generate A, and a similar model can be derived. Current
web search engines1 compute the corresponding eigenvalue problem for the
entire web periodically, with several billions of web pages ranked currently.

1The PageRank algorithm of Google is similar but more involved, cf. [25, 90, 117].

EIGENVALUE PROBLEMS 227

For such a matrix size, it is significant that the matrices are quite sparse. A
typical web page might link to only a few dozen other web pages. However,
the location of the nonzero entries is quite arbitrary in this case, not leading
to an obvious banded structure.

14.1.3 Not so sparse eigenvalue problems

So far, all the examples given have sparse matrices. To avoid the impression
that this is the main application area, we note that iterative eigenvalue
methods are often employed with success on nonsparse matrices as well.
For example, the Lanczos algorithm has been used to solve the eigenvalue
problem associated with electronic structure prediction for large atoms [49].

14.2 GERSHGORIN’S THEOREM

Although computing eigenvalues of a matrix is quite difficult, getting useful
bounds on their location is sometimes quite easy. As we have seen (corol-
lary 3.3), the eigenvalues of a triangular matrix are displayed on the diag-
onal. A theorem of Gershgorin2 extends this observation using a type of
perturbation argument known as a homotopy method.

To start the discussion, let us imagine describing where eigenvalues are not
to be found. The set of λ that are not eigenvalues of a matrix A are those
for which A − λI is invertible. We know that a matrix that is diagonally
dominant is invertible, by corollary 8.9. Thus if

|aii − λ| >
n∑

i6=j=1

|aij | (14.3)

for all j = 1, . . . , n, then λ is not an eigenvalue of A. In other words, each
eigenvalue λ of A must satisfy

|aii − λ| ≤
n∑

i6=j=1

|aij | (14.4)

for some j ∈ {1, . . . , n}. This says that each eigenvalue must be in a disk of
radius

ri =

n∑

i6=j=1

|aij | (14.5)

in the complex plane that is centered at the diagonal entry aii. We can call
such a disk D(aii, ri). Therefore, all the eigenvalues are in ∪n

i=1D(aii, ri).
This is the main gist of Gershgorin’s theorem, but if the disks do not all
overlap, we can say something more.

2Semyon Aranovich Gershgorin (1901–1933) is credited with being the first to state the
theorem in print, but it is said that the result, and its connection to diagonal dominance,
was known earlier: “It seems that the circles theorem was known to Schur” [143] (see page
81 for more on Schur).

228 CHAPTER 14

Theorem 14.1 Suppose that ∪n
i=1D(aii, ri) consists of k distinct connected

components Cj, where Cj ∩Cj′ = ∅ if j 6= j′ and

∪n
i=1D(aii, ri) = C1 ∪ · · · ∪ Ck, (14.6)

where each Cj is the union of lj disks. Then there are exactly lj eigenvalues
(counting multiplicity) in each connected component Cj.

Proof. We just need to establish the number of eigenvalues in each compo-
nent. Define a one-parameter family of matrices

As = (1− s) diag(A) + sA, (14.7)

where s ∈ [0, 1] and diag(A) denotes the diagonal matrix with diagonal
entries matching those of A. When s = 0, As = diag(A) and the eigenvalues
are aii; when s = 1, As = A. Note that diag(As) = diag(A) for all s. By
the first part of the theorem, the eigenvalues of As lie in the disks

∪n
i=1D(aii, sri) = Cs

1 ∪ · · · ∪ Cs
ks . (14.8)

When s = 0, the number of components k0 is the number of distinct coef-
ficients aii, and each C0

i = {ajj} for some j since the centers of the disks
do not change with s. The number of distinct components can decrease as
disks merge, but it cannot increase.

The matrix coefficients of As are continuous in s, and this means that the
eigenvalues λs

i depend continuously on s, because of the following lemma.

Lemma 14.2 The eigenvalues of a matrix depend continuously on the co-
efficients.

We will prove this result in section 14.2.2.
There is a set of discrete points 0 = s0 < s1 < · · · < sr ≤ 1 with the

property that the number ks of components in (14.8) does not vary in the
intervals si−1 ≤ s < si for i = 1, . . . , r. That is, the values si denote the
merge points of the monotonically growing components. Fix i for the mo-
ment. Suppose that for some s < si, an eigenvalue that started in one of
the components C

si−1

j reaches the exterior of the component. Reducing the
value of s if necessary, we can ensure that the eigenvalue is in the comple-
ment of all the components since they are separated by a finite distance,
in contradiction to the first part of Gershgorin’s theorem. So if there are
mj eigenvalues in C

si−1

j , then there must be mj eigenvalues in Cs
j for all

s < si. If two components merge at si, all we can say is that the eigenvalues
in each separate component for s < si are in the union at s = si, again by
continuity. QED

Since we use the notion of diagonal dominance to define the Gershgorin
disks, we could also use the notion of generalized diagonal dominance (sec-
tion 8.3.1) and obtain more general results [167]. Instead, we leave such
ideas to exercise 14.1, and we consider more complex geometric estimates.

EIGENVALUE PROBLEMS 229

14.2.1 Ovals of Cassini

It is possible to locate eigenvalues even more precisely than by using the
Gershgorin disks. Define the Cassini ovals

Cij =
{
λ ∈ C

∣∣ |λ− aii||λ− ajj | ≤ rirj
}

(14.9)

for i, j = 1, . . . , n, where the ri’s are defined by (14.5). The following is a
theorem of A. Brauer.3

Theorem 14.3 The eigenvalues of A are contained in ∪n
i,j=1Cij.

Proof. Consider an eigenpair Ax = λx with x 6= 0. For any index j, we
find

(λ− ajj)xj =
∑

l 6=j

ajlxl. (14.10)

Let i be an index such that

|xi| = ‖x‖∞, (14.11)

so that applying (14.10) for any j we have

|λ− ajj ||xj | =
∣∣∑

l 6=j

ajlxl

∣∣ ≤
∑

l 6=j

|ajl||xi| = rj |xi|, (14.12)

by using (14.11). Then (14.12) yields for all j,

|λ− ajj | ≤ rj |xi|/|xj |. (14.13)

Now let j 6= i be an index such that

|xj | ≥ |xk| for all k 6= i. (14.14)

There are two cases to consider. It might be that xj = 0, which means that
xk = 0 for all k 6= i. Computing, we find for k 6= i that

0 = λxk = (Ax)k =
n∑

l=1

aklxl = akixi. (14.15)

Thus aki = 0 for all k 6= i, so a repeat of the calculation (14.15) with k = i
says that λ = aii. This trivially implies that λ ∈ Cik for all k.

Now suppose that xj 6= 0. Estimating (14.10) using (14.14), we find

|λ− aii||xi| ≤
∑

l 6=i

|ail||xj | = ri|xj |, (14.16)

yielding the inequality

|λ− aii| ≤ ri|xj |/|xi|. (14.17)

Multiplying (14.13) and (14.17), we conclude that λ ∈ Cij . QED

3Alfred Theodor Brauer (1894–1985) was a student of Issai Schur and Erhard Schmidt,
as was his younger brother Richard Dagobert Brauer (1901–1977).

230 CHAPTER 14

The location of eigenvalues via Cassini ovals is at least as precise as using
the Gershgorin disks, that is,

∪n
i,j=1Cij ⊂ ∪n

i=1D(aii, ri). (14.18)

To prove this, suppose that λ 6∈ D(aii, ri) ∪D(ajj , rj). Then

|λ− aii| > ri and |λ− ajj | > rj , (14.19)

so that |λ−aii| |λ−ajj | > rirj and λ 6∈ Cij . Thus if λ 6∈ ∪n
i=1D(aii, ri), then

λ 6∈ ∪n
i,j=1Cij , which is just the set-theoretic complement of (14.18).

To compare the two predictions of Cassini and Gershgorin, consider the
family of matrices

(
1 −t
t −1

)
(14.20)

whose eigenvalues are λ± = ±
√

1− t2 ≈ ±(1 − 1
2 t

2). The Gershgorin esti-
mate would predict only that |λ± ∓ 1| ≤ t, whereas the Cassini estimate is
more accurate:

|1∓ λ±| ≤ t2/|1± λ±|, (14.21)

which can be used to show that the Cassini ovals have a diameter that is
O(t2) (exercise 14.2).

The Cassini ovals are known to be optimal in the sense that for a given
set of numbers aii and ri, there is a matrix A with these diagonals and off-
diagonal absolute row sums having an eigenvalue λ for any λ ∈ ∪n

i,j=1Cij
[167, 168].

Locating eigenvalues is related to proving invertibility, in the sense that
the latter is equivalent to λ = 0 not being an eigenvalue. Thus the following
corollary holds.

Corollary 14.4 An n× n matrix A is invertible if

|aiiajj | > rirj (14.22)

for all i, j = 1, . . . , n, where the ri’s are defined by (14.5).

14.2.2 Eigenvalue continuity

The continuity of the eigenvalues of a matrix, as a function of the entries,
can be proved by brute force. First, we can write the characteristic polyno-
mial in terms of the coefficients (exercise 14.3), and this polynomial is clearly
continuous with respect to the coefficients. Then we can show that the zeros
of a polynomial are continuous functions of the coefficients of the polyno-
mial. This is the content of appendices A, B, and K in [122]. However, this
dependence is not very smooth. Consider the roots of p(x) = xn +a. One of
them is the real root x = n

√
a (for a > 0), which is only Hölder-continuous

of order 1/n at a = 0; see exercise 14.5 and appendix K in [122].
Instead of reproducing the proof in [122], we take a completely different

approach advocated recently [116]. It relies on the Schur decomposition and

EIGENVALUE PROBLEMS 231

the fact that unitary matrices form a compact set. This is easy to see since
‖U‖2 = 1 for any unitary matrix (exercise 6.5). Thus, in whatever norm you

like (theorem 5.3), the unitary matrices form a bounded set in Cn2

. The
limit of unitary matrices is also unitary (exercise 14.6), so that the unitary

matrices form a compact set in Cn2

.
When we identify the eigenvalues of a matrix with the diagonal entries

of the triangular factor in the Schur decomposition, there is a great deal of
possible ambiguity due to simple permutations of indices since a permutation
is itself a unitary matrix (exercise 14.7). We need a way to talk about
eigenvalues that reflects their basic properties. The diagonal of a matrix is
naturally a vector, but since the order of the eigenvalues does not matter, the
concept of vector is not right. On the other hand, a discrete set correctly
eliminates the ambiguity of permutations of indices, but it eliminates too
much, namely, the multiplicity of the eigenvalues. So we introduce a new
space Ln to encapsulate the right properties. First, we define a relation R
on Cn as follows:

xRy iff x = Πy for some permutation Π. (14.23)

Define Ln to be the set of equivalence classes (exercise 14.8) of R in Cn.
We also need a way to measure closeness for sets of eigenvalues to deal

with this ambiguity.

Definition 14.5 Define a nonnegative function D(x, y) on C
n × C

n by

D(x, y) = min
{
‖x−Πy‖∞

∣∣ Π is a permutation matrix
}
. (14.24)

Note that, for any n, there is a finite set of permutations, so we can assert
that the minimum is attained in (14.24); that is, there is a permutation
matrix Π such that D(x, y) = ‖x − Πy‖∞. The function d is symmetric
(D(x, y) = D(y, x)) and satisfies a triangle inequality

D(x, y) ≤ D(x,w) +D(w, y) (14.25)

for all w, x, y ∈ Cn (exercise 14.9). But for [x] ∈ Ln, D(x, y) = 0 for all
y ∈ [x]. In fact, xRy iff D(x, y) = 0.

There is a natural extension of the function D to the space Ln:

D([x], [y]) = D(x, y) (14.26)

(but you have to check that this is well-defined, exercise 14.10). Thus (Ln,D)
forms a metric space [141]. The following result makes lemma 14.2 precise.

Lemma 14.6 Suppose that Ak → A as k →∞. Apply the Schur decompo-
sition to each matrix:

(Uk)?AkUk = T k and U?AU = T, (14.27)

where T and each T k are upper-triangular. Then

D(diag(T k), diag(T))→ 0 as k→∞,
where diag(M) denotes the vector corresponding to the diagonal of M .

232 CHAPTER 14

Proof. Since the unitary matrices are compact, we can pick a subset of the
indices k such that (after renaming this subsequence k again) Uk → Û as
k →∞, where Û is unitary. With this subsequence, we have

T k = (Uk)?AkUk → Û?AÛ. (14.28)

The limit of upper-triangular matrices is necessarily upper-triangular; thus
we can write

T k → T̂ = Û?AÛ, (14.29)

where T̂ is upper-triangular. Since the eigenvalues of Ak are the diagonal
entries of T k, (14.29) implies that the eigenvalues of Ak converge to the
diagonal entries of T̂ . But since T̂ = Û?AÛ , these are eigenvalues of A
(with some ordering). That is, D(diag(T̂), diag(T)) = 0.

This would be the end of the proof of continuity, except for the fact that we
have established this only for a subsequence of the original sequence. How-
ever, we can also establish this more generally. If we take any subsequence
of the original sequence Ak, we can pick a subsequence of this subsequence
for which convergence of eigenvalues occurs. In each case, the ordering of
the eigenvalues on the diagonal of the limiting triangular matrix may be
different, but the set of values must be the same: the eigenvalues of A. As a
result, we have proved convergence of the original sequence (exercise 14.11).

QED

14.3 SOLVING SEPARATELY

We have viewed the eigenproblem as a nonlinear system (section 7.2.4) in
the variables (x, λ). But it is a special one, in that the expression Ax−λx is
bilinear. Thus, if we know the eigenvalue λ, we just have to solve the linear
system (A − λI)x = 0 for some nonzero x. We showed in section 3.4.4 that
this can be carried out with LU factorization using appropriate pivoting,
at least when the kernel of A − λI is one-dimensional. (The case when the
dimension is higher can be handled similarly; cf. section 3.4.3.)

On the other hand, if by chance we have an eigenvector x, we can also
determine the eigenvalue easily. There are several ways to do this, but a
convenient one is based on the Rayleigh4 quotient

λR(x) =
x?Ax

x?x
, (14.30)

defined for any 0 6= x ∈ C
n. Thus if Ax = λx, then

λR(x) =
x?Ax

x?x
=
x?λx

x?x
= λ. (14.31)

We will look at the Rayleigh quotient in more detail in section 15.1.1.

4John William Strutt, 3rd Baron Rayleigh (1842–1919) received the Nobel prize in
physics in 1904 for his study of gases and the discovery of argon. He was a student of
Stokes (page 118).

EIGENVALUE PROBLEMS 233

14.4 HOW NOT TO EIGEN

The eigenproblem sounds simple, at least for small matrix sizes: just find
the roots of the characteristic equation. For the 2× 2 case, we have

p2(λ) = det (A− λI)

= det

(
a11 − λ a12

a21 a22 − λ

)

= (a11 − λ)(a22 − λ)− a12a21

=λ2 − λ(a11 + a22) + a11a22 − a12a21.

(14.32)

The roots of a quadratic are also easy to determine:

λ = 1
2

(
a11 + a22 ±

√
(a11 + a22)2 − 4(a11a22 − a12a21)

)

= 1
2

(
a11 + a22 ±

√
a2
11 + a2

22 − 2a11a22 + 4a12a21

)

= 1
2

(
a11 + a22 ±

√
(a11 − a22)2 + 4a12a21

)
.

(14.33)

It is a bit more cumbersome to write down the characteristic polynomial of
a 3× 3 matrix and then the equation for the roots of a cubic. Similarly, we
can still imagine writing the characteristic polynomial of a 4× 4 matrix and
then the equations for the roots of a quartic, but only in a smaller font.

But there the process stops, not just because the formulas get too messy
or unstable. For some polynomials of degree 5 and higher, there is no general
formula for their roots in terms of a finite sequence of steps involving radicals
and ordinary algebraic operations. This result, due originally to Abel,5 can
be seen [149] by considering the equation

λ5 − aλ+ b = 0. (14.34)

Some polynomial roots can be written in terms of such formulas (e.g., if
they can be factored into lower-order polynomials whose roots would be
determined by simple formulas), but Galois6 characterized the polynomials
whose roots cannot be written in terms of such formulas.

On the other hand, one has to temper this discussion by what it means
to compute a “radical” since this is still a complicated computational issue.
We saw in (1.2) an effective way to compute square roots, but it requires
some attention. Similarly, a solution to

λ5 − λ+ b = 0 (14.35)

is called a Bring radical 7 (or ultraradical), and one could easily develop
algorithms to solve for λ = λ(b) (exercise 2.17). If the ultraradical is allowed

5See the beginning of chapter 8.
6The short life of Évariste Galois (1811–1832) “stands as a symbol of precocious math-

ematical genius, misunderstood, disturbed, an object of persecution by the authorities of
the time and particularly by the principal French mathematicians, who did not appreci-
ate the depth and value of his work” [155]. The work leading to what we now call Galois
theory was repeatedly rejected for publication in his lifetime.

7Erland Samuel Bring (1736–1798) was a Swedish mathematician who discovered a
way to reduce a general quintic to the form (14.34).

234 CHAPTER 14

as a basic step, then there is a formula for quintic roots in general [2]. We
leave as exercise 14.12 verification in the case that the quintic takes the form
(14.34).

However, in addition to the difficulty of finding a formula for the roots
of a polynomial, there is also the complexity of determining the coefficients
of pn(λ) = det(A − λI), which can be factorial in n if we choose the wrong
approach (exercise 14.3). So we cannot simply form the characteristic poly-
nomial in a näıve way and then find its roots, at least for large n.

One solution to this problem is to first reduce the matrix via algebraic op-
erations similar to Gaussian elimination to a form where the determinant can
be evaluated efficiently. Such a form is the Hessenberg8 form (section 14.5).

14.5 REDUCTION TO HESSENBERG FORM

We know from the work of Abel and Galois (section 14.4) that we cannot
expect to find an algorithm that can, by a finite sequence of operations,
reduce a matrix to triangular form via similarity transformations. Likewise,
we know that every matrix cannot be diagonalized. If we take the Jordan
canonical form as guide, we might guess that it would be possible to achieve
a relaxed goal, to reduce a matrix to nearly triangular form, with, say, just
one extra subdiagonal. Such a form is called the Hessenberg form. More
precisely, consider the following definition analogous to definition 3.1.

Definition 14.7 A matrix B = (bij) is called upper-Hessenberg (respec-
tively, lower-Hessenberg) if bij = 0 for all j > i+ 1 (respectively, i > j + 1).

We have seen before how to perform matrix decompositions to produce
zeros in required places. Both the Schur decomposition and the triangu-
lar factorization produced by Gaussian elimination are of this type. In this
case, we will see that an algorithm can be applied that is very similar to
the Gram-Schmidt process (5.45). The original algorithm was proposed by
Lanczos9 for Hermitian matrices and then generalized by Arnoldi10 to arbi-
trary matrices. Since the general algorithm applies as well to the special case

8Karl Hessenberg (1904–1959) demonstrated the decomposition in his thesis [124] and
worked for most of his career as an engineer for A.E.G., the German “general electric”
company. He applied for a U.S. patent on “electric valve circuits” on 1 July 1939 (just
two months before the invasion of Poland), which was issued (#2,356,589) on 22 August
1944 during the liberation of Paris.

9Cornelius Lanczos (1893–1974) studied with Fejér (page 220) in Budapest but then
wrote a thesis in mathematical physics and later was Einstein’s assistant in Berlin. Lanc-
zos moved to Purdue University in 1932, and in the United States his interests turned
computational. Prompted by McCarthy’s investigations of political sympathies, Lanczos
moved to Ireland in 1954 [118].

10Walter Edwin Arnoldi (1917–1995) was employed throughout his career at United
Aircraft Corporation (later United Technologies) where he obtained several patents in-
cluding U.S. Patent #3,144,317 for a freezing process to remove carbon dioxide from the
air.

EIGENVALUE PROBLEMS 235

and gives the same result, we prefer to refer to the two cases as the Lanczos-
Arnoldi algorithm. Note, however, that a Hermitian Hessenberg matrix is
tridiagonal, so there can be a substantial computational simplification in the
Hermitian case.

14.5.1 Lanczos-Arnoldi algorithm

The full Hessenberg decomposition takes the form

Q?AQ = H, (14.36)

where Q is unitary and H is upper-Hessenberg. We derive the Hessenberg
form iteratively as follows:

AQk = Qk+1Hk, (14.37)

where Qi is an n× i matrix and Hk is a k + 1× k matrix. Let us write

Qk =
(
q1 · · · qk

)
. (14.38)

For Q to be unitary, we need the q’s to be orthonormal:

‖qi‖2 = 1 for all i and (qi)?qj = 0 for i 6= j. (14.39)

The kth column of (14.37) can be written

Aqk =

k+1∑

j=1

hjkq
j . (14.40)

The Lanczos-Arnoldi algorithm allows an arbitrary (normalized) initial vec-
tor q1 satisfying ‖q1‖2 = 1. We will see later how this choice affects the
quality of the decomposition. For k = 1, we need to construct q2 and scalars
h11 and h21 such that

Aq1 = h11q
1 + h21q

2. (14.41)

If by chance q1 is an eigenvector (the choice in the Schur decomposition;
cf. section 6.2.3), then we choose h11 to be the eigenvalue (e.g., take h11 =
λR(q1) using the Rayleigh quotient (14.30)) and set h12 = 0 and choose q2

arbitrarily such that ‖q2‖2 = 1. In this case, the algorithm essentially starts
over.

If Aq1 and q1 are not collinear, we define h21 = ‖Aq1−h11q
1‖2 (necessarily,

h21 > 0, cf. exercise 14.15) and

q2 = h−1
21 (Aq1 − h11q

1), (14.42)

which satisfies ‖q2‖2 = 1. Note that, so far, we have not specified h11. To
create a unitary matrix, we need (q1)?q2 = 0, and if we multiply (14.42) by
(q1)?, we see that this means h11 = (q1)?Aq1.

In general, (14.40) provides an algorithm to generate the q’s and h’s in-
ductively. Suppose we have defined orthonormal vectors q1, . . . , qk. Define

hjk = (qj)?Aqk, j = 1, . . . , k. (14.43)

236 CHAPTER 14

Rewrite (14.40) as

r = Aqk −
k∑

j=1

hjkq
j = hk,k+1q

k+1. (14.44)

In view of (14.43), (qi)?r = 0 for i = 1, . . . , k. With r defined in this way,
we define

hk,k+1 = ‖r‖2 and qk+1 = h−1
k,k+1r. (14.45)

If by chance r = 0, then we have AQk = ĤkQk, where Ĥk is the k×k matrix
where we omit the last row of Hk. In this case, we can restart the process
by choosing qk+1 to be an arbitrary vector of norm 1 that is orthogonal to
q1, . . . , qk. Of course, when we reach k = n, we must have r = 0 because the
q’s form an orthonormal basis.

14.5.2 Optimality of Lanczos-Arnoldi

The quality of the Hessenberg matrix H in (14.36) depends on how small the
off-diagonal terms hk,k+1 are. We show that the Lanczos-Arnoldi algorithm
minimizes these values among certain choices.

Suppose (as is the generic case) that q1 is not an eigenvector of A and that
the residual r in (14.44) does not vanish. Then by (14.42) and (14.44) (and
induction), qk+1 is a linear combination of the first k+1 Krylov vectors (see
exercise 14.16)

q1, Aq1, . . . Akq1. (14.46)

That is, we can write qk+1 = Pk(A)q1 for some polynomial Pk of degree k.
More precisely, provided that hk,k+1 6= 0, we can write

hk,k+1q
k+1 = Pk(A)q1 = Akq1 + P̂k−1(A)q1, (14.47)

where P̂k−1 is a polynomial of degree k − 1 or less. Thus Pk is a monic
polynomial (i.e., the coefficient of the term of order k is 1). Define PM

k to
be the set of monic polynomials of degree k.

Lemma 14.8 Suppose that q1 is not an eigenvector of A and that the resid-
ual r in (14.44) does not vanish. Let Pk be the monic polynomial (14.47)
generated by the Lanczos-Arnoldi process. Then

(Pk(A)q1, Q(A)q1)I = 0 (14.48)

for all polynomials Q of degree k − 1. Thus

hk,k+1 = ‖Pk(A)q1‖2 = min
{
‖Q(A)q1‖2

∣∣ Q ∈ PM
k

}
(14.49)

for k = 1, . . . , n.

Proof. From (14.47), we see that 0 = (qj)?Pk(A)q1 for all j = 1, . . . , k. But
since q1, . . . , qk+1 are orthonormal, it must also be the case that the k + 1

EIGENVALUE PROBLEMS 237

Krylov vectors (14.46) can be expressed in terms of q1, . . . , qk+1. That is, the
k + 1 Krylov vectors (14.46) have to span a (k + 1)-dimensional space, that
is, the one spanned by q1, . . . , qk+1 (exercise 14.17). Therefore, we conclude
that (Ajq1)?Pk(A)q1 = 0 for all j = 1, . . . , k. This proves (14.48). To prove
(14.49), expand the expression ‖ (Pk(A) + tQ(A)) q1‖22 for any scalar t and
polynomial Q of degree k−1; cf. section 12.3 and in particular (12.54). QED

Suppose that A has a complete set of eigenvectors X1, . . . , Xn. Write
q1 =

∑n
j=1 ajX

j, where X1, . . . , Xn. Then by (9.63), the orthogonality
(14.48) becomes

0 = (Pn(A)q1, Q(A)q1)I =

n∑

j=1

Pn(λj)Q(λj)a
2
j (14.50)

for any polynomial Q of degree less than n. Choosing Qi such that Qi(λj) =
δij for i, j = 1, . . . , n, we see that Pn(λj) = 0 for all j provided that none of
the coefficients aj vanish. Thus Pn is a constant multiple of the characteristic
polynomial of A. Since Pn is monic, they must be equal.

Similarly, (9.63) implies that

h2
k,k+1 =

n∑

j=1

P (λj)
2a2

j = ‖Pk(A)q1‖22

= min
{
‖Q(A)q1‖22

∣∣ Q ∈ PM
k

}

= min

{ n∑

j=1

Q(λj)
2a2

j

∣∣ Q ∈ PM
k

}
.

(14.51)

In the case where A is Hermitian, the eigenvalues lie in an interval

I = [λmin, λmin + 2Λ]

for some Λ > 0. Thus (14.51) implies

h2
k,k+1 ≤ ‖Q‖2∞,I

n∑

j=1

a2
j = ‖Q‖2∞,I‖q1‖22 (14.52)

for any Q ∈ PM
k . For example, we can take Q(x) = xn − Ln−1(x

n), and
Ln−1 denotes Chebyshev interpolation on I. Thus (exercise 11.18) we have

hk,k+1 ≤ 2

(
Λ

2

)n

. (14.53)

We leave as exercise 14.18 formulation and proof of a version of lemma 14.8
that covers the case where the residual r in (14.44) vanishes and the algo-
rithm is restarted.

14.6 MORE READING

The classic text [122] was referenced in section 14.2.2 but is also of general
interest, as is the monograph [172]. There are several more recent texts as
well, cf. [118].

238 CHAPTER 14

14.7 EXERCISES

Exercise 14.1 Use the notion of generalized diagonal dominance (see sec-
tion 8.3.1) to define generalized Gershgorin disks of the form [167] D(aii, r

x
i),

where rx
i is the weighted sum

rx
i =

n∑

i6=j=1

|aij |xj/xi (14.54)

for any vector x with nonzero entries.

Exercise 14.2 Prove that the Cassini ovals have a diameter that is O(t2)
for the matrices (14.20). (Hint: first use Gershgorin’s theorem to get the
bound |λ± ∓ 1| ≤ t and use this to bound the denominator in (14.21) from
below via the triangle inequality.)

Exercise 14.3 Write a code to determine the values of the characteristic
polynomial of a general n×n matrix A for a given value of λ using induction
on n. That is, define p(A, n, λ) = A11 − λ for n = 1 and for n ≥ 2,

p(A, n, λ) =

n∑

i=1

(Aii − λ)p(e(A, i), n− 1, λ), (14.55)

where the matrix function e(A, i) eliminates the ith row and column of A.
Test this code for various matrices A for which the characteristic polynomial
is known and study its performance as a function of n.

Exercise 14.4 Write a code to determine the coefficients of the character-
istic polynomial of a general n × n matrix as a polynomial in the variable
λ using induction on n. That is, define c(a, n, λ) = [a,−1] for n = 1,
corresponding to the representation of p1(λ) = a − λ. Determine the data
structures needed to form the required iteration. Test this code for various
matrices a for which the characteristic polynomial is known and study its
performance as a function of n.

Exercise 14.5 The notion of Hölder continuity of order α > 0 generalizes
Lipschitz continuity (2.9):

|g(x) − g(y)| ≤ λ|x − y|α. (14.56)

In particular, Hölder continuity of order α = 1 is the same as Lipschitz
continuity. Prove that the zeros of a polynomial of degree n are Hölder-
continuous of order α = 1/n.

Exercise 14.6 Prove that the limit of unitary matrices is also unitary.
(Hint: just prove that U?U = lim(Uk)?Uk if U = limUk.)

Exercise 14.7 A permutation matrix Π is a matrix such that Πσ(i),σ(j) =
δi,j (Kronecker δ) for a permutation σ of {1, . . . , n}. Prove that a permuta-
tion matrix Π is unitary and that ‖Π‖∞ = 1.

EIGENVALUE PROBLEMS 239

Exercise 14.8 Show that the relation R in (14.23) is reflexive, symmet-
ric, and transitive. (Hint: use the facts that a product of permutations is a
permutation and that the inverse of a permutation is a permutation; cf. ex-
ercise 14.7).

Exercise 14.9 Prove that the function D defined in (14.24) is symmet-
ric (D(x, y) = D(y, x)) and satisfies the triangle inequality (14.25) for all
w, x, y ∈ C

n.

Exercise 14.10 Consider the equivalence relation R in (14.23), with the
corresponding equivalence classes denoted by [x]. Suppose that x1, x2 ∈ [x].
Prove that D(x1, y) = D(x2, y) for any y ∈ Cn. (Hint: write x2 = Πx1

and explain and exploit the expression D(x2, y) ≤ ‖x2 − ΠPy‖∞ for any
permutation P to show that D(x2, y) ≤ D(x1, y).)

Exercise 14.11 Suppose that there is a real number x and a sequence of
real numbers xn with the property that for any subsequence xnj

, there is a
further subsequence xnjk

that converges to x. Prove that the full sequence
must converge to x. (Hint: lack of convergence of the full sequence would
imply that there is a subsequence that avoids an open ball around x. But if
this subsequence has a subsequence converging to x, we have a contradiction.)

Exercise 14.12 Suppose that λ = β(b) denotes a solution to (14.35). Show
that the roots of equation (14.34) can be written in the form

λ = a1/4β
(
a−5/4b

)
. (14.57)

For simplicity, assume that a > 0.

Exercise 14.13 Write a code to determine the values of the characteristic
polynomial of an n × n Hessenberg matrix A for a given value of λ using
induction on n. That is, define p(A, n, λ) = A11 − λ for n = 1 and for
n ≥ 2,

p(A, n, λ) =

n∑

i=1

(Aii − λ)p(e(A, i), n− 1, λ), (14.58)

where the matrix function e(A, i) eliminates the ith row and column of A.
Test this code for various matrices A for which the characteristic polynomial
is known and study its performance as a function of n.

Exercise 14.14 Write a code to determine the coefficients of the charac-
teristic polynomial of an n × n Hessenberg matrix as a polynomial in the
variable λ using induction on n. That is, define c(a, n, λ) = [a,−1] for
n = 1, corresponding to the representation of p1(λ) = a− λ. Determine the
data structures needed to form the required iteration. Test this code for var-
ious matrices a for which the characteristic polynomial is known and study
its performance as a function of n.

240 CHAPTER 14

Exercise 14.15 Suppose that x is a nonzero vector that is not an eigenvec-
tor of A. Show that ‖Ax− tx‖2 6= 0 for any scalar t.

Exercise 14.16 Prove by induction on k that qk+1 can be written in terms
of the vectors in (14.46).

Exercise 14.17 Suppose that n vectors x1, . . . , xn are orthonormal and are
spanned by the n vectors y1, . . . , yn. Prove that the vectors y1, . . . , yn have
to be linearly independent.

Exercise 14.18 Formulate and prove a version of lemma 14.8 that cov-
ers the case where the residual r in (14.44) vanishes and the algorithm is
restarted. (Hint: write H in block form and show that lemma 14.8 holds for
each block.)

14.8 SOLUTIONS

Solution of Exercise 14.9. To prove symmetry, write D(y, x) = ‖y −
Πx‖∞ and define a new permutation P = Π−1, which is well-defined because
permutations are unitary (exercise 14.7). Then by the definition (14.24),

D(x, y) ≤ ‖x− Py‖∞ = ‖P (Πx− y)‖∞ ≤ ‖Πx− y‖∞ = D(y, x) (14.59)

since the norm of a permutation matrix is 1 (exercise 14.7). Reversing the
roles of x and y yields the reverse inequality, so they must be equal.

To prove (14.25), write D(x,w) = ‖x−Πw‖∞ and D(w, y) = ‖w−Qy‖∞.
Define a new permutation P = ΠQ. By definition,

D(x, y) ≤‖x− Py‖∞ ≤ ‖x−Πw‖∞ + ‖Πw − Py‖∞
=D(x,w) + ‖Π(w −Qy)‖∞
≤D(x,w) + ‖w −Qy‖∞ = D(x,w) +D(w, y)

(14.60)

since the norm of a permutation matrix is 1 (exercise 14.7).

Solution of Exercise 14.12. Let B = a−5/4b. If λ is defined by (14.57),
we have λ = a1/4β (B), and thus

λ5 − aλ+ b = a5/4β (B)
5 − aa1/4β (B) + b

= a5/4
(
β(B)5 − β (B)

)
+ b

= a5/4 (−B) + b = 0

(14.61)

because (14.35) implies that β(B)5 − β(B) = −B.

Chapter Fifteen

Eigenvalue Algorithms

“Perhaps situations exist where highly sensitive eigenvalues
of nonnormal operators are of genuine physical significance,
but they are outnumbered by situations where eigenvalues
are mistakenly investigated when a deeper analysis is prop-
erly called for.” [160]

The number of different algorithms for computing eigenvalues and eigen-
vectors is extensive [81]. Here we will focus on one technique that is at once
simple and fundamental, the power method. We will see that the power
method is primarily a method for approximating eigenvectors, with vari-
ous ways of generating associated eigenvalue approximations. One of these,
using the Rayleigh quotient, has special properties. We also consider an
important variant of the power method, called inverse iteration. Combining
inverse iteration with the Rayleigh quotient for computing the eigenvalue
approximation gives an algorithm called Rayleigh quotient iteration. This
has a surprising (third-order) rate of convergence.

We also consider the singular value decomposition in this chapter, and we
compare it with other factorizations we have seen before.

15.1 POWER METHOD

The power method approximates a single eigenpair by an iterative technique
similar to fixed-point iteration. The basic idea is already encoded in theo-
rem 6.11, which states that An → 0 iff the eigenvalues of A are less than 1
in modulus. Thus we already have a way to test the size of the eigenvalues.
Suppose that Ax = λx and that we scale A by a fixed factor: B = αA.
Then

Bx = αAx = αλx, (15.1)

so that αλ is an eigenvalue of the scaled matrix. So if Bn → 0, then |αλ| < 1.
By scaling in the right way, we could obtain an algorithm for determining
the size of the largest eigenvalue of A; cf. exercise 15.1. Note that an additive
shift B = A+ αI also has a simple effect on the eigenvalues (exercise 15.2).

What is not obvious from theorem 6.11 is that the basic iterations in
chapter 8 also provide information on an eigenvector as well as an eigenvalue.
We modify (8.8) by dropping f , and we consider an iterative process of the

242 CHAPTER 15

form

x(k+1) = Ax(k), (15.2)

where we will discuss later the effect of the choice of the starting vector x(0).
We know that x(k) may blow up if ρ(A) > 1, and it will tend to zero if
ρ(A) < 1.

More generally, we can predict the expected behavior of the iteration (15.2)
by starting with x(0) = x, where x 6= 0 is an eigenvector with eigenvalue
λ = reiθ . Then (by induction)

x(k) = λkx = rkeikθx. (15.3)

Thus the iterates grow (or decay) like rk, and they change direction because
of the multiplication by eikθ. Thus there are two types of scaling we need to
do. One of them is to moderate the growth (or decay) of the vector sizes, but
in addition, we need to be attentive to the directional change. For example,
if θ = π and r = 1, then the vectors satisfy x(k) = (−1)kx. Only if θ = 0
can we ignore the direction.

Fortunately, we will see that we need to worry only about the “size” scaling
as an integral part of the algorithm. The directional scaling can be added
later. Thus we modify (15.2) by introducing a scaling:

y(k) =Ax(k),

x(k+1) =
1

‖y(k)‖2
y(k).

(15.4)

The choice of the norm in the definition of xk+1 is somewhat arbitrary, but
we have made a convenient choice that both simplifies the discussion and is
computationally beneficial. The main point is that the normalization ensures
that ‖x(k+1)‖2 = 1. Note that since we have not included any directional
information about the vectors, we do not expect the vectors x(k) themselves
to converge in general. However, we can use the vectors x(k) and y(k) to
generate convergent eigenvalues. There are different ways to do this, but a
convenient one is based on the Rayleigh quotient (14.30):

λk = λR(x(k)). (15.5)

15.1.1 Rayleigh quotient

To begin with, let us investigate some properties of the Rayleigh quotient
(14.30), namely,

λR(x) =
x?Ax

x?x
, (15.6)

defined for any 0 6= x ∈ Cn.
First, (14.31) says that the Rayleigh quotient is a fixed-point operator, in

the sense that if Ax = αx for x 6= 0, then λR(x) = α. Second, the Rayleigh
quotient is independent of scaling,

λR(αx) =
(αx)?A(αx)

(αx)?(αx)
=
|α|2x?Ax

|α|2x?x
= λR(x), (15.7)

EIGENVALUE ALGORITHMS 243

for any complex number α 6= 0. Third, the Rayleigh quotient is bounded.
If we define α = max

{
|aij |

∣∣ i, j = 1, . . . , n
}
, then we see that |λR(x)| ≤ α.

Therefore, all the iterates λk defined in (15.5) are also bounded: |λk| ≤ α.
Thus at least a subsequence of the λ’s will converge. Finally, let us establish
the continuity of the Rayleigh quotient.

Lemma 15.1 Suppose that x and ε are two vectors in Cn such that ‖x‖2 >
‖ε‖2. Then

|λR(x+ ε)− λR(x)| ≤ 6‖A‖2‖x‖2‖ε‖2
(‖x‖2 − ‖ε‖2)2

. (15.8)

In particular, λR is Lipschitz-continuous on
{
x ∈ Cn

∣∣ ‖x‖2 > 0
}
.

Proof. We write

λR(x+ ε)− λR(x) =
1

‖x+ ε‖22

(
(x + ε)?A(x + ε)− ‖x+ ε‖22

‖x‖22
x?Ax

)

=
1

‖x+ ε‖22

(
ε?Ax+ x?Aε+ ε?Aε+

(
1− ‖x+ ε‖22

‖x‖22

)
x?Ax

)

=
1

‖x+ ε‖22

(
ε?Ax+ x?Aε+ ε?Aε−

(
x?ε+ ε?x+ ε?ε

‖x‖22

)
x?Ax

)
.

(15.9)

Observe that for all y, w ∈ Cn,

|y?Aw| ≤ ‖y‖2‖Aw‖2 ≤ ‖y‖2‖w‖2‖A‖2, (15.10)

by (5.12) and (6.2). Therefore,

|λR(x+ ε)− λR(x)| ≤ ‖A‖2
(
4‖x‖2‖ε‖2 + 2‖ε‖22

)

‖x+ ε‖22
≤ 6‖A‖2‖x‖2‖ε‖2

‖x+ ε‖22

(15.11)

since ‖ε‖2 < ‖x‖2. But by exercise 5.16, we have

1

‖x+ ε‖2
≤ 1

‖x‖2 − ‖ε‖2
. (15.12)

Combining (15.12) with (15.11) completes the proof. QED

15.1.2 Back to the power method

In the power method, we defined xk and yk by (15.4) and λk by (15.5). Thus

λk = λR(xk) =
(xk)?Axk

(xk)?xk
=

(xk)?yk

(xk)?xk
= (xk)?yk, (15.13)

where λR(x) denotes the Rayleigh quotient (15.6). Here we have dropped
the parentheses around the iteration indices (superscripts) on the x’s and y’s

244 CHAPTER 15

to simplify the notation. Note that we have allowed for the possibility that
the vectors xk may be complex, and we must check that xk 6= 0, or rather
that yk−1 6= 0. Of course, this algorithm continues only if yk−1 6= 0. If by
chance we find yk−1 = 0 at some point, we have found a null vector (xk−1)
for A and thus an eigenpair with λ = 0. On the other hand, it may happen
that λk = 0 at some stage, i.e., that (xk)?Axk = 0. If A is symmetric and
positive definite, this cannot happen at all (exercise 15.3), and if xk is close
to an eigenvector x whose eigenvalue λ is not zero, it also will not happen
since λR(xk) ≈ λR(x) = λ, as we will see.

15.1.3 Eigenvector convergence

Regarding convergence of the xk’s, we return to (15.3). We can see that at
best we would expect convergence of the sequence (λ/|λ|)kxk. Let us state
a basic convergence result analogous to exercise 2.1.

Lemma 15.2 Suppose that the power method iteration (15.4) proceeds, with
Axk 6= 0 and λk 6= 0, and converges, that is,

λk → λ 6= 0, (λ/|λ|)kxk → x, (15.14)

as k →∞. Then Ax = λx.

Proof. First, we see by using (15.7) that

λ = lim
k→∞

λk = lim
k→∞

λR(xk) = lim
k→∞

λR((λ/|λ|)kxk) = λR(x) (15.15)

because the Rayleigh quotient (15.6) is continuous (lemma 15.1) on the unit
sphere {

y ∈ C
n
∣∣ ‖y‖2 = 1

}
. (15.16)

Since ‖xk‖2 = 1 for each k, ‖x‖2 = 1 (cf. exercise 15.5). It suffices to
show that Ax = αx for some complex α because (14.31) then implies that
λ = λR(x) = α.

Note that the scaled convergence of xk implies scaled convergence of yk:

lim
k→∞

(λ/|λ|)kyk = lim
k→∞

(λ/|λ|)kAxk = A lim
k→∞

(λ/|λ|)kxk = Ax. (15.17)

In particular, we find that (cf. exercise 15.5)

lim
k→∞

‖yk‖2 = lim
k→∞

‖(λ/|λ|)kyk‖2 = ‖Ax‖2. (15.18)

But now recalling the definition of xk+1 in terms of yk, we find

Ax = lim
k→∞

(λ/|λ|)kyk = lim
k→∞

(λ/|λ|)k‖yk‖2xk+1

= lim
k→∞

‖yk‖2
(
|λ|/λ

) (
λ/|λ|

)k+1
xk+1

= ‖Ax‖2
(
|λ|/λ

)
x = ‖Ax‖2 (λ/|λ|)x = αx,

(15.19)

where we used exercise 15.5 regarding the limit of products. QED

This result says that it is always a reasonable idea to apply the power
method because if it converges, it converges to an eigenpair. This also leads
us to a special case of the Perron-Frobenius theorem (section 8.3.4).

EIGENVALUE ALGORITHMS 245

Theorem 15.3 Suppose that M is a nonnegative matrix and that the power
method converges to an eigenpair (x, λ) satisfying Mx = λx, starting with a
nonnegative initial vector x0. Then λ ≥ 0 and x ≥ 0.

The result is obvious because all the iterates xk are nonnegative. Since x
is nonnegative, so is Mx, and thus λ must be also. We address convergence
of the power method in section 15.1.4, and those results combined with
theorem 15.3 give a proof of theorem 8.18 under certain conditions. We leave
the proof of the general form of theorem 8.18 to further reading [13, 168].

15.1.4 Power method convergence

We now turn to the question of when we can anticipate that the power
method will converge. Suppose that A is diagonalizable, that is, A =
B−1MB, where M is diagonal with diagonal entries µ1, . . . , µn. Suppose,
moreover, that there is an eigenvalue that is largest in modulus and renumber
the indices so that it is µn:

|µn| > |µi| ∀i 6= n. (15.20)

Define

x = B−1En, (15.21)

where En is the unit vector with zeros in each entry except the nth. Note
that MEn = µnEn and

Ax = (B−1MB)(B−1En) = B−1MEn

=B−1µnEn = µnB
−1En = µnx.

(15.22)

To see how the power method converges, we return to the original concept
(15.2) and define

Xk = AXk−1 ∀k ≥ 1, (15.23)

where we take X0 = x0. Then by induction we have

Xk = Akx0 ∀k ≥ 0. (15.24)

We claim that we can write

xk = ‖Xk‖−1
2 Xk (15.25)

for all k, where xk is generated by the algorithm (15.4). It is true for k = 0,
so we proceed by induction:

xk+1 = ‖Axk‖−1
2 Axk [by (15.4)]

= ‖A(‖Xk‖−1
2 Xk)‖−1

2 A(‖Xk‖−1
2 Xk) [by (15.25) for k]

= ‖Xk‖2‖A(Xk)‖−1
2 ‖Xk‖−1

2 A(Xk)

= ‖AXk‖−1
2 AXk = ‖Xk+1‖−1

2 Xk+1,

(15.26)

which verifies (15.25) for k + 1. Therefore, by (15.7), we conclude that

λk = λR(xk) = λR(Xk). (15.27)

246 CHAPTER 15

Now we consider the asymptotics of the sequence Xk. First, we note the
fact that

Ak = B−1MkB, (15.28)

which can be proved by induction, see (6.30) and exercise 15.6. Because of
our assumption (15.20) about the eigenvalues of A (which are the diagonal
entries of M) we see that

lim
k→∞

(µn)−kMk = lim
k→∞




(µ1/µn)k 0 · · · 0 0
...

0 0 · · · (µn−1/µn)k 0
0 0 · · · 0 1




=




0 0 · · · 0 0
...

0 0 · · · 0 0
0 0 · · · 0 1


 = EnEn

?.

(15.29)

But (15.24), (15.28), and (15.21) imply that

(µn)−kXk = (µn)−kAkx0 = B−1(µn)−kMkBx0

→ B−1EnEn
?Bx0 = (En

?Bx0)x = ((Bx)?Bx0)x = αx
(15.30)

as k →∞, where α = (Bx)?Bx0 = x?B?Bx0 = (x, x0)B?B.
In addition to convergence, we can also establish a rate. Define

ρ̂ = max
{
|µi|/|µn|

∣∣ i 6= n
}
< 1. (15.31)

Then

‖(µn)−kMk − EnEn
?‖∞ ≤ ρ̂k, (15.32)

where ‖D‖∞ denotes the operator norm associated with the maximum norm,
which happens to be the same as the maximum absolute entry for a diagonal
matrix D (see exercise 8.2). Therefore,

‖(µn)−kXk − αx‖∞ ≤ ‖B−1‖∞‖B‖∞‖x0‖∞ρ̂k. (15.33)

The product κ∞(B) := ‖B−1‖∞‖B‖∞ is often called the condition number
of the matrix B (with respect to the maximum norm); cf. (9.74).

Suppose that α = x?B?Bx0 = (x, x0)B?B. By (15.6), (15.7), and (15.27),
we know that

λk = λR(µ−k
n Xk)→ λR(αx) = λR(x) = µn. (15.34)

Applying (15.33) and (15.8), we find that

|λk − µn| ≤ Cρ̂k, (15.35)

provided that k is sufficiently large. More precisely, there are constants k0

and C such that (15.35) holds for all k ≥ k0. First, pick k0 large enough
that

‖B−1‖∞‖B‖∞‖x0‖∞ρ̂k0 ≤ 1
2‖αx‖∞. (15.36)

EIGENVALUE ALGORITHMS 247

This allows us to erase the denominator on the right-hand side of (15.8),
replacing the factor 6 in the numerator by 24. Determining the remaining
ingredients in C is left as an exercise.

Write µn = Reiθ with R > 0. Then

lim
k→∞

R−k‖Xk‖2 = lim
k→∞

‖µ−k
n Xk‖2 = ‖αx‖2. (15.37)

Therefore, by (15.25),

e−ikθxk = e−ikθ‖Xk‖−1
2 Xk

=µ−k
n (Rk/‖Xk‖2)Xk → ‖αx‖−1

2 αx.
(15.38)

Therefore, we have proved the following result.

Theorem 15.4 Suppose that A = B−1MB is a diagonalizable n×n matrix
whose eigenvalues µi satisfy (15.20). Suppose that the starting vector x0

satisfies

α = x?B?Bx0 = (x, x0)B?B 6= 0, (15.39)

where x is the eigenvector (15.21) of A corresponding to µn. Then (15.35)
holds for the eigenvalue convergence, where ρ̂ is defined in (15.31), and

∥∥(|µn|/µn)kxk − ‖αx‖−1
2 αx

∥∥ ≤ Cρ̂k (15.40)

for k sufficiently large, where x is the eigenvector of A corresponding to µn.

15.1.5 Power method limitations

Unfortunately, the power method does not work universally. If the eigenval-
ues largest in complex modulus occur as a conjugate pair, which happens
frequently for a real matrix, then the power method will oscillate, as seen
by considering the matrix

A =

(
0 1
−1 0

)
, (15.41)

which has the property that A4n+j = Aj for j = 1, 2, 3, 4 and n any positive
integer. In particular, A2 = −I, A3 = −A, A4 = I, A5 = A, etc. If we define
X(n) = AkX(0), we have X(4n+2) = −X(0) for all n, whereas X(4n) = X(0).
Note that if X(0) is normalized, then so are all the subsequent vectors. Thus
convergence does not occur. We leave as exercise 15.7 characterization of
what happens when we apply the Rayleigh quotient to the vectors X(n).

15.1.6 Defective matrices

When A is defective, the behavior is more complex, but the power method
still converges when there is a single largest eigenvalue. This is easily seen
by considering the fact that

(
λ 1
0 λ

)k

= λk−1

(
λ k
0 λ

)
(15.42)

248 CHAPTER 15

for any positive integer k. Thus if we apply the power method starting with
the vector

x0 =

(
0
1

)
, (15.43)

we get the sequence of vectors

X(k) = λk−1

(
k
λ

)
= kλk−1

(
1
λ
k

)
. (15.44)

Thus we get convergence of the normalized xk to the eigenvector

(
1
0

)
at a

rate of λ/k. On the other hand
(
λ 1
0 λ

)k (
1
0

)
= λk

(
1
0

)
(15.45)

for all k. Thus it is easy to see that the power method converges to the correct
eigenvector for any starting vector (exercise 15.8), but the convergence is no
longer exponential in general.

The matrix in (15.42) is an example of what we might call a Jordan matrix
A which is equal to λ on the diagonal, equal to 1 on the superdiagonal
(ai,i+1 = 1), and 0 elsewhere:



λ 1 0 · · · 0 0 0
0 λ 1 · · · 0 0 0
· · · · · · · · ·
0 0 0 · · · 0 λ 1
0 0 0 · · · 0 0 λ



. (15.46)

The general form of the powers of a Jordan matrix A of order n has the form

(Ak)i,i+j = λk−j

(
k
j

)
(15.47)

for all i = 1, . . . , n and j = 0, . . . ,min{n− i, k} (exercise 15.11). Thus Akx
can be computed as follows. Let m be the smallest index such that xj = 0
for all j > m. If xn 6= 0, then set m = n.

If m = 1, then x is an eigenvector of A, so Akx = λkx for all k. So suppose
that m ≥ 2. Then for k > 2n,

(Akx)1 =

m−1∑

j=0

λk−j

(
k
j

)
xj+1

=λk−m+1

(
k

m− 1

)
xm +

m−2∑

j=0

ε
(k)
j xj+1


 ,

(15.48)

where the error terms ε
(k)
j are given by

ε
(k)
j =λm−j−1

(
k
j

)/(
k

m− 1

)
= λm−j−1 (m− 1)!(k −m+ 1)!

j!(k − j)!

=λm−j−1 (m− 1) · · · (j + 1)

(k − j) · · · (k −m+ 2)
=

m−j−1∏

i=1

λ
j + i

k + 1− j − i .
(15.49)

EIGENVALUE ALGORITHMS 249

Estimating the terms in the fractions, we find

|ε(k)
j | ≤

(
λ(m− 1)

k −m+ 2

)m−1−j

→ 0 (15.50)

as k →∞ since m− 1− j ≥ 1. Therefore,

λm−j−1

(
k

m− 1

)−1

(Akx)1 → xm as k →∞. (15.51)

Similarly, for i ≥ 2,

(Akx)i =

m−i∑

j=0

λk−j

(
k
j

)
xj+i

=λ−k+m−1

(
k

m− 1

)


m−i∑

j=0

ε
(k)
j xj+1


 .

(15.52)

Therefore, for i ≥ 2,

λ−k+m−1

(
k

m− 1

)−1

(Akx)i → 0 as k →∞. (15.53)

Lemma 15.5 Suppose that A is the n× n Jordan matrix shown in (15.46)
and let x 6= 0 be an arbitrary initial vector. Let m be the smallest index
such that xj = 0 for all j > m. If xn 6= 0, then set m = n. If m = 1,
then Akx = λkx for all k. If m ≥ 2, the power method starting with the
initial vector x converges to the eigenvector E = (1, 0, . . . , 0)T, and the error
satisfies
∣∣∣∣∣λ

−k+m−1

(
k

m− 1

)−1

Akx− xmE

∣∣∣∣∣ ≤ ‖x‖∞
m−2∑

j=0

(|λ|(m − 1)

k −m+ 2

)m−1−j

(15.54)
for k > 2n. If also k > (1 + |λ|)n, then

∣∣∣∣∣λ
−k+m−1

(
k

m− 1

)−1

Akx− xmE

∣∣∣∣∣ ≤ ‖x‖∞Ck
−1, (15.55)

where C is a constant that depends only on n and λ.

A general matrix resulting from the Jordan decomposition has several Jordan
blocks, but the analysis is similar. As long as there is a single µr with largest
complex modulus, that is, the eigenvalues satisfy the following analog of
(15.20),

|µr| > |µi| ∀i 6= r, (15.56)

then the power method converges provided there is a suitable starting vector
(exercise 15.14). The convergence behavior is determined by the Jordan
block having the eigenvalue largest in magnitude.

250 CHAPTER 15

15.2 INVERSE ITERATION

The power method is effective in determining the largest eigenvalue of a
matrix, but with a slight variation it can be used to find any eigenvalue. If we
want to find an eigenvalue close to some value µ ∈ C, we can apply the power
method to B = (A − µI)−1. If Bx = λx, then (A − µI)x = λ−1x, so that
µ+λ−1 is an eigenvalue of A (see exercise 15.2). If λ is the largest eigenvalue
of (A−µI)−1, then µ+λ−1 is the eigenvalue of A closest to µ. In particular,
if µ = 0 then λ will be the eigenvalue with the smallest modulus. Of course,
applying the power method to B requires solving systems (A − µI)x = y
successively. For this reason, the algorithm is called inverse iteration, and is
defined as follows:

(A− µI)yk =xk,

xk+1 =
1

‖yk‖2
yk, and

λk+1 =λR(xk+1).

(15.57)

We can imagine applying inverse iteration at any stage in the process of
approximating eigenvalues. Even if we seek the largest eigenvalue of A, if we
have found a good guess µ = λk, then we can apply inverse iteration, that
is, the power method for B = (A − λkI)

−1, to refine our estimate. We will
pursue this idea in detail in section 15.2.2. But what is disconcerting about
this process is that, as λk becomes a better approximation to an eigenvalue,
A− λkI becomes more nearly singular.

We have seen that the eigenvalue problem for an n × n matrix can be
viewed as a system of nonlinear equations in n+ 1 variables (7.53). In that
case, we saw that the system was equivalent to (7.59) and (7.60), with a
different scaling relating xk and yk. These equations are very similar to
those in inverse iteration (15.57), and we saw that the linear system was
nonsingular provided the eigenvalue was simple. But we can look at inverse
iteration more directly, as follows.

15.2.1 The nearly singular system

Suppose for simplicity that the eigenvalue of interest is λ = 0, so that the
eigenvector x is a null vector of A. Inverse iteration involves solving an
equation of the form

(A+ εI)xε = f, (15.58)

where we take f ≈ x and hope that xε is an even better approximation to
x. It may seem a strange choice to take f ≈ x to look for a null vector, but
in fact xε = ε−1x is an exact solution to

(A+ εI)xε = x (15.59)

since Ax = 0. Thus inverse iteration tends to amplify the null vector. It
would be reasonable to expect that for f = x+e, where x?e = 0, the solution

EIGENVALUE ALGORITHMS 251

to (15.58) would satisfy

xε = ε−1x+ w +O (ε) (15.60)

for some w. We can prove (15.60) in the case where A = A? as follows.
Let V =

{
y ∈ Cn

∣∣ x?y = 0
}
. Then A maps V → V and is invertible when

restricted to V . The reason that the range of A is again V corresponds to
the fact that A?x = Ax = 0 (see section 3.4.4). Note that A+ εI also maps
V → V invertibly for ε small. Define

wε = (A+ εI)−1e. (15.61)

Then set xε = ε−1x+ wε and compute

(A+ εI)xε = x+ (A+ εI)wε = x+ e. (15.62)

Thus (15.60) holds, with w ∈ V determined uniquely by Aw = e.

15.2.2 Rayleigh quotient iteration

Rayleigh quotient iteration (RQI) is simply inverse iteration together with
the choice (15.5) to define the eigenvalue approximation. Thus

(A− λkI)y
k = xk

xk+1 = ‖yk‖−1
2 yk

λk+1 = λR(xk+1).

(15.63)

This is very similar to Newton’s method applied to the eigensystem as de-
scribed in section 7.2.4, except for the use of the Rayleigh quotient instead
of (7.60). We know that Newton’s method is quadratically convergent, so we
might wonder why we would use (15.63) instead. It turns out that Rayleigh
quotient iteration is even faster: it converges cubicly (at least for normal
matrices [123]).

We will not attempt to prove the cubic convergence in full detail but
instead give a simple example that demonstrates this. Suppose that x and
y are normalized eigenvectors of A with eigenvalues λ and µ, respectively,
with x?y = 0. By normalized, we mean that x?x = y?y = 1. Suppose that
for some k, the iterate in (15.63) satisfies

xk = αkx+ βky, (15.64)

with |αk|2 + |βk|2 = 1, so that xk?xk = 1. We also assume that

λk =λR(xk) = xk?Axk = (αkx+ βky)
?A(αkx+ βky)

= (αkx+ βky)
?(αkλx+ βkµy) = |αk|2λ+ |βk|2µ.

(15.65)

Note that

λ− λk = (1− |αk|2)λ− |βk|2µ = |βk|2(λ− µ) (15.66)

and

µ− λk = −|αk|2λ+ (1− |βk|2)µ = |αk|2(µ− λ). (15.67)

252 CHAPTER 15

If 0 < |αk| < 1 and λ 6= µ, as we now assume, then λk 6= λ and λk 6= µ.
Then yk is defined by solving

(A− λkI)y
k = xk = αkx+ βky. (15.68)

But the solution satisfies yk = α̂kx+ β̂ky, where

(λ− λk)α̂k = αk and (µ− λk)β̂k = βk. (15.69)

In particular, yk 6= 0. Therefore,

α̂k =
αk

λ− λk
=

αk

|βk|2(λ − µ)
and

β̂k =
βk

µ− λk
=

βk

|αk|2(µ− λ)
.

(15.70)

Finally, xk+1 = syk, where s = 1/‖yk‖2 > 0. Thus (αk+1, βk+1) = s(α̂k, β̂k).
The value of s can be determined via

s−2 = ‖yk‖22 = |α̂k|2 + |β̂k|2 =
1

|λ− µ|2
(|αk|2
|βk|4

+
|βk|2
|αk|4

)

=
|αk|6 + |βk|6

|λ− µ|2|αk|4|βk|4
=

(1− |βk|2)3 + |βk|6
|λ− µ|2|αk|4|βk|4

=
1− 3|βk|2 + 3|βk|4
|λ− µ|2|αk|4|βk|4

=
1− 3|βk|2 + 3|βk|4

|λ− µ|2(1− |βk|2)2|βk|4
.

(15.71)

Now let us think about the component of the eigenvector y as the error.
Thus we assume that βk is small, and we can approximate (15.71) to give

s =
|λ− µ|(1 − |βk|2)|βk|2√

1− 3|βk|2 + 3|βk|4
≈ |λ− µ||βk|2. (15.72)

Thus we find that

|βk+1| = s|β̂k| =
s|βk|

|αk|2|λ− µ|
≈ |βk|3. (15.73)

Thus the error is decreasing cubicly.
Note the symmetry between α and β in (15.70). Thus if we start closer

to y than to x, RQI converges to (µ, y) instead of (λ, x). Moreover, if we
start exactly in the middle, that is, α0 = β0 = 1/

√
2, then xk = x0 and

λk = 1
2 (λ+ µ) (and s = 1

2 |λ− µ|) for all k.

15.3 SINGULAR VALUE DECOMPOSITION

The singular value decomposition of a matrix A is closely related to the
eigenvalue decomposition of B = A?A. Since B is Hermitian and positive
semidefinite, we have B = U?ΛU , where U is unitary and Λ is a diagonal
matrix with nonnegative entries. Thus we can define

Σ =
√

Λ, (15.74)

EIGENVALUE ALGORITHMS 253

that is, Σ is the diagonal matrix with diagonal entries given by the (nonneg-
ative) square roots of the diagonal entries of Λ. Note that this holds even if
A is not square. The diagonal entries of Σ are called the singular values of
A.

The singular value decomposition is the representation

A = V ΣU?, (15.75)

where V is also unitary. Suppose that A is an m×n matrix. Then B = A?A
is n×n and thus so are U and Σ, as we have defined them above. However,
in (15.75) the matrix Σ is m × n, and V is m × m. Thus we need a new
way to see what Σ is since (15.74) does not suffice in the case where m 6= n.
Since we do not need this case for further developments, we will leave the
details to further reading [160].

So we now suppose that m = n, and then assume that all the singular
values are positive. Then Σ is unambiguously defined by (15.74) and is
invertible, and the representation (15.75) is equivalent to

V = AUΣ−1. (15.76)

Let us take (15.76) as the definition of V . We just need to check that it is
unitary:

V ?V = (Σ−1U?A?)AUΣ−1 = Σ−1U?A?AUΣ−1

= Σ−1U?BUΣ−1 = Σ−1ΛΣ−1 = I.
(15.77)

Let us ask the question of how the singular values relate to eigenvalues of
A in the case where A is diagonalizable. Suppose that A = W−1DW , where
D is a diagonal matrix (whose diagonal elements are thus the eigenvalues of
A). Then

B =A?A = (W−1DW)?W−1DW = (W ?D(W−1)?)W ?DW

=W ?DDW = W ?|D|2W,
(15.78)

where |D| is the diagonal matrix whose entries are the complex modulus
of the entries of D. Therefore, the eigenvalues of B are the same as the
entries of |D|2 (up to some ordering), and hence the singular values of A are
just the complex modulus of the eigenvalues of A. Thus the singular values
provide a natural generalization of eigenvalues, provided we are interested
only in magnitude and not in phase. But they are also well-defined in the
case where A is not diagonalizable and even when A is not square [160].

15.4 COMPARING FACTORIZATIONS

We have seen three factorizations involving unitary matrix factors, and it
may be useful to see how they are related. The factorization A = QR (5.54)
gives the Cholesky factor of A?A = R?R, as noted in (5.55). Similarly, we
have seen that the singular value decomposition (15.75) of A can be related
to the eigen decomposition of A?A. On the other hand, we contrasted the
Schur decomposition with QR in section 6.2. Of course, for Hermitian A,
the Schur decomposition is the eigen decomposition.

254 CHAPTER 15

15.5 MORE READING

We have left the full proof of the general form of the Perron-Frobenius the-
orem 8.18 to further reading [13, 168]. The text [160] was mentioned in
section 15.3 and should be consulted more generally. The classic monograph
[172] is still of primary interest. For the interpretation of inverse iteration
as Newton’s method, see [128]. The QR decomposition is commonly used to
solve eigenproblems [152]. See [123] for more on Rayleigh quotient iteration.

15.6 EXERCISES

Exercise 15.1 Use (6.26) to compute ρ(A) via

ρ(A) = lim
k→∞

‖Ak‖1/k
∞ . (15.79)

Prove that this works for diagonal A.

Exercise 15.2 Suppose that Ax = λx and B = A + αI. Show that Bx =
(λ+ α)x.

Exercise 15.3 Prove that the Rayleigh quotient (15.6) cannot vanish for
x 6= 0 for a symmetric, positive definite matrix A. (Hint: if xTAx = 0, then
(Ux)TΛ(Ux) = 0, where A = UTΛU and U is orthogonal.)

Exercise 15.4 Prove that the Rayleigh quotient (15.6) is continuous on the
unit sphere

{
y ∈ Cn

∣∣ ‖y‖ = 1
}

for any norm.

Exercise 15.5 Suppose that xk is a sequence of vectors in Cn such that
limk→∞ xk = x and that αk is a sequence of scalars such that limk→∞ αk =
α. Prove that limk→∞ αkx

k = αx. Prove also that limk→∞ ‖xk‖ = ‖x‖. If
yk is another sequence of vectors in Cn such that limk→∞ yk = y, prove that
limk→∞(xk)?yk = x?y.

Exercise 15.6 Suppose that A = B−1CB. Prove that for any integer k ≥ 1,
Ak = B−1CkB. What are the minimal assumptions required of the matrix
C for this to be true? (Hint: use induction on k.)

Exercise 15.7 Consider the matrix A defined in (15.41) and the vectors
X(n) generated by the power method. Characterize what happens when the
Rayleigh quotient is applied to the vectors X(n).

Exercise 15.8 Prove that the power method for the matrix

(
1 1
0 1

)
will

converge for any starting vector to the eigenvector

(
1
0

)
for any starting

vector. (Hint: compute(
1 1
0 1

)n(
a
b

)
=

(
a+ nb
b

)
= n

(
a
n + b

b
n

)
(15.80)

and let n→∞.)

EIGENVALUE ALGORITHMS 255

Exercise 15.9 Suppose that A is Hermitian (A? = A). Show that the
Rayleigh quotient (15.6) is a real number. Define

λ = sup
06=x∈Cn

λR(x) = sup
06=x∈Cn

x?Ax

x?x
. (15.81)

Prove that λ is an eigenvalue of A. Do the same for sup replaced by inf.

Exercise 15.10 Prove (15.42).

Exercise 15.11 Prove (15.47). (Hint: write A = λI + J and use the bino-
mial theorem to expand Ak. Here J is the matrix with 1’s on the superdiag-
onal and 0’s elsewhere.)

Exercise 15.12 Consider the matrix

A =




0 1 0 0
−1 0 0 0
0 0 1 1
0 0 0 1


 . (15.82)

Show that this matrix has three eigenvalues which all have complex modulus
equal to 1. Describe how the power method for this matrix behaves for dif-
ferent starting vectors. (Hint: consider what happens with starting vectors
x, where (1) x1 = x2 = 0, (2) x3 = x4 = 0, and (3) x1 = x2 = x3 = 0.
What is the special role of having x4 nonzero?)

Exercise 15.13 An alternate definition of the power method is sometimes
given as

yk = Axk, xk+1 = ‖yk‖−1
2 yk. (15.83)

Note that by definition, ‖xk‖2 = 1. Prove that if xk → x, then x is an
eigenvector with eigenvalue λ = ‖y‖2, where y = limk→∞ yk. In particular,
λ > 0. Compare this algorithm with (15.4) for the matrix

A =

(
−3 1
2 1

)
. (15.84)

Exercise 15.14 Suppose that A is any matrix whose eigenvalues satisfy
(15.20). Prove that the power method will converge to the largest eigen-
value for a suitable starting vector. Give a characterization of the condi-
tions required for the starting vector to guarantee convergence. (Hint: use
the Jordan decomposition for A and apply lemma 15.5.)

Exercise 15.15 Let A be a real, symmetric matrix and number its eigen-
values λ1 ≤ λ2 ≤ · · · ≤ λn. Let G denote the set of all subspaces of Rn. For
S ∈ G, we say x ⊥ S if xTy = 0 for all y ∈ S. Prove that

λi = sup
S∈G,dim S=i−1

(
inf

06=x⊥S
λR(x)

)
= inf

S∈G,dim S=n−i

(
sup

06=x⊥S
λR(x)

)
,

(15.85)
where λR(x) denotes the Rayleigh quotient (15.6). This is known as the
Courant-Fischer theorem. (Hint: see exercise 15.9.)

256 CHAPTER 15

Exercise 15.16 Show that RQI (15.63) can be written as fixed-point itera-
tion yk+1 = g(yk), where

g(y) =
1

‖y‖2
(
A− λR(y)I

)−1
y. (15.86)

Would you expect this to converge to a fixed-point y = g(y). Why or why
not?

Exercise 15.17 Let A be an arbitrary complex matrix and define B = 1
2 (A+

A?), the Hermitian part of A. Prove that the Rayleigh quotient for B is
the real part of the Rayleigh quotient for A. (Hint: show that x?Bx =
Re (x?Ax).)

Exercise 15.18 Prove that any matrix A can be written as the limit of
diagonalizable matrices, i.e., that the set of diagonalizable matrices is dense.
(Hint: write A = U?TU using the Schur decomposition and perturb the
diagonal entries of T to make the eigenvalues unique.)

15.7 SOLUTIONS

Solution of Exercise 15.11. We have

Ak = (λI + J)k =
k∑

j=0

(
k
j

)
λk−jJj . (15.87)

But Jj is 1 on the jth superdiagonal (indices kl such that l = k + j) and 0
elsewhere.

Solution of Exercise 15.13. First, if xk → x, then yk = Axk → Ax := y.
Since yk = ‖yk‖2xk+1, we have

Ax = y = lim
k→∞

yk = lim
k→∞

‖yk‖2xk+1 = ‖y‖2x (15.88)

(see exercise 15.5 for the last step).

Chapter Sixteen

Ordinary Differential Equations

Bode’s Law of planetary distances says that the distance dn

of the nth planet from its star behaves like dn = a + bcn

for n = 1, 2, For our solar system, a = 0.4, b = 0.3,
and c = 2, and the model is remarkably accurate for all the
major planets except Neptune and with the addition of the
asteroid Ceres [129].

Ordinary differential equations (ODEs) can be used to model a remark-
able range of natural phenomena [91]. For example, they can be used to
predict the movement of celestial bodies [166]. They are used to model the
evolution of our planetary system [70] and potentially could shed light on
the validity of Bode’s Law (see the introductory comment above). However,
there are significant mathematical challenges to performing simulations of
such systems on the required time scales. We provide a brief introduction
to these issues in this and the following chapter.

An indefinite integral is the simplest form of ordinary differential equa-
tion. If u(x) =

∫ x

a
f(y) dy, then u′(x) = f(x) for all x where the integral

makes sense. Differential equations become more complex when f is allowed
to depend on u as well as x (cf. (16.3)). In this case, a simple integral no
longer suffices, but it is not surprising that techniques developed for nu-
merical quadrature play a role in numerical methods for solving differential
equations.

We develop the basic theory of ordinary differential equations here for two
reasons. For one, it keeps the book self-contained. But the more important
reason is that the techniques used are constructive and similar to ones we
have used for numerical algorithms.

16.1 BASIC THEORY OF ODES

The simplest differential equation to solve is an ordinary differential equation

du

dt
= f(u, t) (16.1)

with initial value

u(0) = u0, (16.2)

258 CHAPTER 16

where we are interested in solving on some interval [0, T]. Equations (16.1)
and (16.2) can be cast as a single integral equation

u(x) = u0 +

∫ x

0

f(u(t), t) dt. (16.3)

Most of what we develop will be insensitive to the “type” of u, so we could
think of this as having vector values in general, i.e., u : [0, T]→ Rn, in which
case f : Rn+1 → Rn. We could let | · | be a fixed norm on Rn, so that |u| and
|f(u, t)| indicate norms of the quantities u ∈ R

n and f(u, t) ∈ R
n. However,

nothing of what we pursue here changes in this case, and it requires some
additional care in the notation (e.g., in integrating vector functions and the
definitions of function spaces), so we prefer to stick with the case n = 1.

The theory for the existence and uniqueness of solutions for systems (16.1)
is still a subject of research, but the basic results are classical. Suppose that
the function f ∈ C0(R× [0, T]) satisfies a Lipschitz condition

|f(u, t)− f(v, t)| ≤ L|u− v| for all u, v ∈ R and t ∈ [0, T]. (16.4)

Then (16.1) has a unique solution u whose first derivative is continuous. We
will derive this result as theorem 16.2 for completeness.

Let us consider a simple example that provides some insight into the range
of behaviors to expect. Let f(u, t) = −u2, so that f is independent of t. Then
by differentiation, we can verify that the corresponding solution to (16.1) is

u(t) =
1

u−1
0 + t

=
u0

1 + tu0
(16.5)

since u′(t) = −(u−1
0 + t)−2 = −u2. There are two distinct regimes of behav-

ior. If u0 > 0, then u decreases algebraically to zero as t→∞, but if u0 < 0,
then u blows up in finite time, at t = −1/u0. These two different behaviors
are depicted in figure 16.1. Thus in general, solutions to (nonlinear) ordinary
differential equations may not exist for all time.

16.2 EXISTENCE AND UNIQUENESS OF SOLUTIONS

There are several ways to prove the existence of smooth solutions to (16.1).
We will present the Picard1 method, which uses (16.3) as the basis for a fixed-
point iteration to define a sequence of functions that converge to a solution
u. The function for which the fixed-point is being sought is a mapping Φ
from the function space C0([0, T]) to itself, defined by

Φ(v)(x) = u0 +

∫ x

0

f(v(t), t) dt. (16.6)

Thus u is a solution to (16.3), and, equivalently, to (16.1) if and only if
u = Φ(u).

1Charles Emile Picard (1856–1941) was a mentor of Bernstein (see page 187), as well
as Jacques Hadamard, Paul Painlevé (who, like Lagrange, is interred in the Pantheon),
and André Weil, among others.

ORDINARY DIFFERENTIAL EQUATIONS 259

–1

–0.8

–0.6

–0.4

–0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

Figure 16.1 Two solutions to (16.5) for different initial values.

Lemma 16.1 Suppose that f ∈ C0(R× [0, T]) satisfies the Lipschitz condi-
tion (16.4) with Lipschitz constant L. Then the expression (16.6) defines a
Lipschitz mapping Φ from the function space C0([0, T]) to itself where

‖Φ(v)− Φ(w)‖∞,[0,T] ≤ LT ‖v − w‖∞,[0,T]. (16.7)

An immediate corollary of lemma 16.1 is the uniqueness of solutions of
(16.3) and (equivalently) (16.1). If there were two solutions u = Φ(u) and
v = Φ(v), then we conclude that

‖u− v‖∞,[0,T] = ‖Φ(u)− Φ(v)‖∞,[0,T] ≤ LT ‖u− v‖∞,[0,T] (16.8)

for any T . But (16.8) implies that ‖u− v‖∞,[0,T] = 0 if LT < 1. Of course,
this shows uniqueness only on the interval [0, 1/L], but we can iterate this
process to obtain uniqueness on the intervals [kL, (k + 1)L] for any k ≥ 0
by induction. That is, we can view u and v as solutions of a new problem
starting at t = kL with initial values u(kL) = v(kL). This is often called the
semigroup property of (16.1). Thus uniqueness holds on any interval [0, T].

Proof. A result slightly stronger than (16.7) is true, as follows. For all
x ∈ [0, T],

|Φ(v)(x) − Φ(w)(x)| =
∣∣∣∣
∫ x

0

f(v(t), t) − f(w(t), t) dt

∣∣∣∣

≤
∫ x

0

|f(v(t), t)− f(w(t), t)| dt

≤L
∫ x

0

|v(t) − w(t)| dt.

(16.9)

260 CHAPTER 16

This says that Φ is a Lipschitz mapping from L1 to C0. Bounding the last
integrand in (16.9), we find

|Φ(v)(x) − Φ(w)(x)| ≤ Lx‖v − w‖∞,[0,x] ≤ Lx‖v − w‖∞,[0,T] (16.10)

for all x ∈ [0, T]. Taking the supremum of (16.10) over x ∈ [0, T] completes
the proof. QED

The inequality (16.8) shows that Φ is a contraction for T < 1/L. This
property can be used to establish the existence of solutions (exercise 16.1)
as well. However, we use a slightly different approach to establish existence.

Suppose that we have an initial function u0, e.g., u0(t) = u0 for all t ≥ 0.
Given un, define un+1 = Φ(un), that is,

un+1(x) = u0 +

∫ x

0

f(un(t), t) dt. (16.11)

For n = 0, (16.11) implies that

|u1(x)− u0(x)| =
∣∣∣∣
∫ x

0

f(u0, t) dt

∣∣∣∣ ≤Mx ∀x ∈ [0, T], (16.12)

where the constant M is defined by

M = sup
{
|f(u0, t)|

∣∣ t ∈ [0, T]
}
. (16.13)

Applying (16.9), we find

|un+1(x) − un(x)| ≤L
∫ x

0

∣∣un(t)− un−1(t)
∣∣ dt (16.14)

for n ≥ 1. Using (16.12) and (16.14), we conclude that

|u2(x) − u1(x)| ≤
∫ x

0

LMt dt = 1
2LMx2 ∀x ∈ [0, T]. (16.15)

Proceeding by induction, (16.14) implies that

|un(x)− un−1(x)| ≤ MLn−1xn

n!
∀x ∈ [0, T] (16.16)

for all n ≥ 1. Using a telescoping sum, we can write

|un(x)− u0| =
∣∣∣∣∣

n∑

i=1

ui(x) − ui−1(x)

∣∣∣∣∣

≤
n∑

i=1

MLi−1xi

i!
≤ M

L

(
eLx − 1

)
.

(16.17)

Thus the infinite series

u(x) = u0 +

∞∑

i=1

ui(x)− ui−1(x) (16.18)

converges absolutely for all x ∈ [0, T] and satisfies

|u(x)− u0| ≤
M

L

(
eLx − 1

)
. (16.19)

ORDINARY DIFFERENTIAL EQUATIONS 261

Each ui is a C1-function by definition (16.11) (and by induction). The
uniform convergence of (16.18) implies that u is continuous (exercise 16.2).
The differentiability of u is more complex to establish. We could establish
bounds on the derivatives of the ui’s and show that they converge. Or we
could simply show that u solves (16.3), which we need to do in any case.

We can use (16.16) to establish a rate of convergence:

|u(x)− un(x)| =
∣∣∣∣∣

∞∑

i=n+1

ui(x)− ui−1(x)

∣∣∣∣∣ ≤
M

L

∞∑

i=n+1

(Lx)i

i!

≤ M

L

(Lx)n+1

(n+ 1)!

∞∑

i=0

(Lx)i

i!
≤ M

L
εn+1e

Lx

(16.20)

for any x ∈ [0, T], where

εn =
(LT)n

n!
. (16.21)

For any γ > 0, there is a Cγ <∞ such that

εn ≤ Cγγ
n (16.22)

(see exercise 16.3). Therefore, by the Lipschitz condition (16.4),
∣∣∣∣u(x)− u0−

∫ x

0

f(u(t), t) dt

∣∣∣∣=
∣∣∣∣u(x)− un+1(x)

+

∫ x

0

f(un(t), t) dt−
∫ x

0

f(u(t), t) dt

∣∣∣∣

≤
∣∣u(x)− un+1(x)

∣∣+ L

∫ x

0

∣∣un(t)− u(t)
∣∣ dt

≤Cγ(M/L)eLx
(
γn+2 + LTγn+1

)

(16.23)

for all x ∈ [0, T]. Choosing γ < 1 and letting n → ∞ proves that u solves
(16.3). Thus we have proved the following.

Theorem 16.2 Suppose that f ∈ C0([0, T]×R) satisfies the Lipschitz con-
dition (16.4). Then there is a unique solution u ∈ C1([0, T]) to (16.1) (and
equivalently to (16.3)) that satisfies the bound

|u(x)− u0| ≤
M

L

(
eLx − 1

)
∀x ∈ [0, T], (16.24)

where M is defined by (16.13): M = sup
{
|f(u0, t)|

∣∣ t ∈ [0, T]
}
.

Theorem 16.2 is the best possible in a sense, in that non-Lipschitz func-
tions f yield pathological situations. For example, the equation u′ =

√
u has

two solutions with the initial data u(0) = 0, namely, u ≡ 0 and u(x) = 1
4x

2.
Moreover, we know from the example u′ = −u2 that solutions need not
remain bounded for all T , as indicated in (16.5); here f(u) = −u2 is only
locally Lipschitz (cf. exercise 16.4).

262 CHAPTER 16

 0.001

 0.01

 0.1

 1

 10

 0.001 0.01 0.1 1

Figure 16.2 Relative errors in computing eπ by the explicit Euler method (16.26)
(×’s) and the implicit Euler method (16.27) (+’s). The horizontal
axis is ∆t, and the vertical axis is the relative error at T = 1.

16.3 BASIC DISCRETIZATION METHODS

The definition of the derivative as a limit of difference quotients suggests a
method of discretization:

du

dt
(t) ≈ u(t+ ∆t)− u(t)

∆t
, (16.25)

where ∆t is a small, positive parameter. This suggests algorithms for gen-
erating a sequence of values un ≈ u(n∆t) given by (for example)

un = un−1 + ∆tf(un−1, tn−1) (16.26)

or by

un = un−1 + ∆tf(un, tn), (16.27)

where tn = n∆t.
The algorithm (16.26) is called the explicit Euler method, and the algo-

rithm (16.27) is called the implicit Euler method. It can be shown (see
section 16.4) that both generate a sequence with the property that

|u(tn)− un| ≤ Cf,T ∆t ∀tn ≤ T (16.28)

(at least provided that we solve the implicit equation (16.27) for un exactly).
This is illustrated in figure 16.2, which plots the relative errors as a function
of ∆t for the simple case f(u, x) = πu and T = 1 for both schemes. The
errors for the explicit Euler scheme (16.26) are represented by ×’s.

ORDINARY DIFFERENTIAL EQUATIONS 263

Although both methods (16.26) and (16.27) appear to be equally success-
ful for our simple test problem, they are not so accurate. In chapter 17,
we consider methods that produce much more accuracy with a compara-
ble amount of work. However, we will see that it is not easy to find such
methods.

The issue of solving the nonlinear equation in the implicit Euler method
(16.27) at each step is important but not a show stopper; one uses the
methods we have studied in chapter 2 (or chapter 7 in higher dimensions)
for solving nonlinear equations. Moreover, we are in a situation where we
have a very accurate approximation to the solution, e.g., one given by the
explicit Euler method (16.26). More precisely, (16.27) is written in the form
of a fixed-point iteration, so as long as ∆t|f,u| remains small, fixed-point
iteration will converge.

On the other hand, we might want to use a method that converges more
rapidly than fixed-point iteration, or we might want to take a larger time
step than the size of |f,u| would allow. Thus we consider an example to see
what issues may arise.

16.3.1 Nonuniqueness of the time step

If we consider the implicit Euler approximation (16.27) for (16.1) with f =
−κu2, we have to solve the quadratic equation

un + τu2
n = un−1 (16.29)

at each time step, where

τ = κ∆t (16.30)

and ∆t is the size of the time step. Thus we find (cf. (2.77))

u±n =
−1±√1 + 4τun−1

2τ

≈ −1±
(
1 + 2τun−1 − 2(τun−1)

2 +O
(
(τun−1)

3
))

2τ

=

{
un−1(1− τun−1) +O

(
τ2u3

n−1

)
(+)

un−1

(
−1− τun−1 + (τun−1)

2
)
/(τun−1) +O

(
τ2u3

n−1

)
(−)

≈
{
un−1(1− ξ) (+)

un−1(−ξ−1 − 1 + ξ) (−),

(16.31)

where ξ = τun−1 = κ∆tun−1.
If ξ is small, it is not hard to identify the appropriate solution

u+
n ≈ un−1(1− ξ) = un−1 − κ∆tu2

n−1. (16.32)

This solution is much closer to un−1 than the other solution. In particular,

u+
n (∆t)→ un−1 (16.33)

264 CHAPTER 16

–0.12

–0.1

–0.08

–0.06

–0.04

–0.02

 0

 0.02

 0 100 200 300 400 500 600 700 800 900 1000

Figure 16.3 The two solutions to (16.29) as a function of τ , defined in (16.30), for
un−1 = 0.01. The horizontal axis is τ .

as ∆t→ 0, whereas u−n (∆t) diverges as ∆t→ 0. However, there is always a
second solution, as depicted in figure 16.3, and as un gets small, the solution
(16.5) does not change very quickly. We may then become greedy and want
to take τ larger. If by mistake we pick un negative, there is the danger
that subsequent steps will remain negative, and the computation will blow
up in finite time. In other problems, the unwanted behavior may be less
spectacular [48] and thus more unlikely to be detected.

We might hope that a simple criterion would eliminate spurious solutions
to (16.29). We can write (exercise 16.5)

un−1 − u±n
un−1

= 1− −1±√1 + 4ξ

2ξ
→ 1 as ξ →∞. (16.34)

In figure 16.4, we depict the values of the expressions in (16.34) for various
values of ξ. A natural constraint on the solution process might be to require

∣∣∣∣
un − un−1

un−1

∣∣∣∣ ≤ K (16.35)

for some constant K. As indicated in figure 16.4, this is satisfied for both
solutions u±n for reasonable values of K and ξ; cf. exercise 16.6.

16.3.2 Near uniqueness of the time step

The time-stepping equation for the implicit Euler method applied to the
equation (16.1) takes the general form

g(u, τ) = u− τf(u, τ)− v = 0. (16.36)

ORDINARY DIFFERENTIAL EQUATIONS 265

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 16.4 The expressions (16.34) as a function of ξ.

We can think of this as defining a curve in R2 given by solving for un = u(τ)
as a function of τ , where v = un−1. In section 16.3.1, the solution u+

n

corresponds to u(τ), in view of (16.33).
The derivative of u with respect to τ gives a sense of where u lies with

respect to v. Differentiating (16.36) gives

0 = u′(τ)− f(u(τ), τ) − τ
(
u′(τ)f,u(u(τ), τ) + f,t(u(τ), τ)

)
. (16.37)

Rewriting, this becomes

(1− τf,u(u(τ), τ)) u′(τ) = f(u(τ), τ) − τf,t(u(τ), τ). (16.38)

In particular,

u′(0) = f(v, 0). (16.39)

On the other hand, Newton’s method for solving (16.36), starting with v
as an initial guess, generates as the first step (here τ is fixed)

g,u(v, τ)(u − v) = −g(v, τ). (16.40)

Rewriting, (16.40) becomes

(1− τf,u(v, τ)) (u− v) = τf(v, τ). (16.41)

For simplicity, suppose that f is independent of t. Then (16.38) simplifies
to

(1− τf,u(u(τ))) u′(τ) = f(u(τ)), (16.42)

and (16.41) becomes

(1− τf,u(v)) (u− v) = τf(v). (16.43)

266 CHAPTER 16

Define w = τ−1(u− v). Then

(1− τf,u(v))w = f(v). (16.44)

Thus we conclude that Newton’s method moves in the direction tangent to
the solution curve (16.36). If the steps are taken small enough, then it is
reasonable to hope that we will stay close to this curve and not jump to
another branch as described in section 16.3.1.

16.4 CONVERGENCE OF DISCRETIZATION METHODS

We now prove the convergence result (16.28) for the explicit Euler discretiza-
tion (16.26). We make a slight generalization to allow variable time steps in
the spirit of the adaptive approximation in section 12.5:

un = un−1 + ∆tnf(un−1, tn−1), (16.45)

where now the nth time point is

tn =

n∑

i=1

∆ti. (16.46)

Let us write g(t) = f(u(t), t) and set

Mn = ‖g′‖∞,[tn−1,tn]. (16.47)

We will see that the local error is bounded by

εn = ∆t2nMn (16.48)

for all n ≥ 1. We now show how this local error is related to global error.

16.4.1 Global error estimates

The main objective of the section will be to prove the following result.

Theorem 16.3 Suppose that the Lipschitz estimate (16.4) holds. Then

|u(tn)− un| ≤
n∑

j=1

εje
L(tn−tj) (16.49)

for all n ≥ 1, where εn is defined in (16.48) and Mn is defined in (16.47).

Proof. We can write

u(tn) =u(tn−1) +

∫ tn

tn−1

f(u(t), t) dt

=u(tn−1) + ∆tnf(u(tn−1), tn−1) + qn,

(16.50)

where qn is the quadrature error

qn =

∫ tn

tn−1

f(u(t), t) dt−∆tf(u(tn−1), tn−1). (16.51)

ORDINARY DIFFERENTIAL EQUATIONS 267

The techniques of chapter 13 can be applied to prove that

|qn| ≤ c∆t2nMn (16.52)

for some constant c < 1 (exercise 16.7). Define en = u(tn)−un. Subtracting
(16.45) from (16.50), we have

en = en−1 + ∆tn (f(u(tn−1), tn−1)− f(un−1, tn−1)) + qn. (16.53)

Using the Lipschitz estimate (16.4), we find

|en| ≤ |en−1|(1 + ∆tnL) + εn. (16.54)

Note that u0 = u(0), so

|e1| ≤ |q1| ≤ ∆t21M = ε1. (16.55)

We apply the elementary inequality

1 + µ ≤ eµ (16.56)

(see exercise 16.10) to (16.54) to get

|en| ≤ |en−1|e∆tnL + εn (16.57)

for all n ≥ 1. By induction, we will show that this implies

|en| ≤
n∑

j=1

εje
L(tn−tj) (16.58)

for all n ≥ 1, which is the same as (16.49). Note that (16.55) implies (16.58)
for n = 1. So assume (16.58) holds for some n ≥ 1. Applying (16.57) to
(16.58), we find

|en+1| ≤ |en|e∆tn+1L + εn+1

≤ e∆tn+1L
n∑

j=1

εje
L(tn−tj) + εn+1

=

n∑

j=1

εje
L(tn+∆tn+1−tj) + εn+1

=

n∑

j=1

εje
L(tn+1−tj) + εn+1

=

n+1∑

j=1

εje
L(tn+1−tj),

(16.59)

which verifies the induction step, completing the proof of (16.58) and thus
the theorem. QED

268 CHAPTER 16

16.4.2 Interpretation of error estimates

We interpret the right-hand side of (16.49) as follows. It says that the error
at time tn is influenced by all the discretization errors εj = ∆t2jMj. But the
recent errors are less important than the earlier errors. This is because the
earlier errors can be amplified over time. We can make this more precise as
follows. Suppose we assume that

∆tnMn ≤ φ(tn) (16.60)

for all n for some function φ. Thus the error terms εn defined in (16.48)
satisfy εn ≤ φ(tn)∆tn. Then we may view the right-hand side of (16.49) as
bounded by a quadrature rule applied to an integral:

n∑

j=1

εje
L(tn−tj) ≤

n∑

j=1

φ(tn)∆tje
L(tn−tj) ≤

∫ tn

0

φ(t)eL(tn−t) dt. (16.61)

In fact, if φ is nonincreasing, we can prove (exercise 16.11) that
n∑

j=1

φ(tj)∆tje
L(tn−tj) ≤

n∑

j=1

∫ tj

tj−1

φ(t)eL(tn−t) dt

= eLtn

∫ tn

0

φ(t)e−Lt dt

(16.62)

for all n ≥ 1. Thus we could define

φ(t) = sup
{
∆tnMn

∣∣ tn ≥ t
}
. (16.63)

However, the case of interest is when φ is increasing. If φ is a smooth
function, then the approximation

|u(tn)− un| ≤
n∑

j=1

φ(tj)∆tje
L(tn−tj) ≈ eLtn

∫ tn

0

φ(t)e−Lt dt (16.64)

remains a good guide. We see that φ could be exponentially increasing
without having any serious impact. For example, suppose we take φ(t) =
δeLt for some δ > 0. As long as

∆tnMn ≤ φ(tn) = δeLtn ,

(16.64) implies

|u(tn)− un| ≤ δtneLtn . (16.65)

16.4.3 Discretization error example

Let us consider an example. Suppose f(u, t) = u, so the equation is u′ = u
and u(t) = et (we take u(0) = 1). Then the discrete solution is given by

un = un−1 + ∆tun−1 = (1 + ∆t)un−1 = (1 + ∆t)n (16.66)

for all n ≥ 0. Similarly, Mn ≈ et, so we take φ(t) = ∆tet (note that L = 1
here). Thus (16.65) predicts that

un − u(tn) ≈ tnetn∆t.

ORDINARY DIFFERENTIAL EQUATIONS 269

This is easily verified (exercise 16.14). Note that this says that the relative
error in the approximation

en =
|u(tn)− un|
|u(tn)| =

|u(tn)− un|
etn

(16.67)

is bounded by tn∆t and thus grows only linearly in time.

16.5 MORE READING

There are many books on the theory of ordinary differential equations, but
two more recent ones which cover modern ideas of dynamical systems are
[10, 104].

16.6 EXERCISES

Exercise 16.1 The contraction mapping principle says that any Lipschitz
function Φ with Lipschitz constant less than 1 must have a fixed point. Ver-
ify this by using (16.8) to construct a fixed point for Φ defined by (16.6).
(Hint: show that for any x, the sequence un(x) defined by fixed-point itera-
tion (16.11) forms a Cauchy sequence.) Prove that the limit function u(x)
forms a C0([0, T]) function.

Exercise 16.2 Suppose that the infinite sum

v(x) =

∞∑

i=1

vi(x)

converges uniformly for x ∈ [0, T] and that each vi ∈ C0([0, T]). Prove that
v ∈ C0([0, T]). (See the footnote on Seidel on page 118.)

Exercise 16.3 Show that εn as defined in (16.21) satisfies εn ≤ Cγγ
n for

any γ > 0.

Exercise 16.4 Show that there is a unique solution to (16.1) for some T > 0
for a locally Lipschitz function f . Use this to prove existence and uniqueness
for f(u) = u2 + sinu. (Hint: f is locally Lipschitz if it is Lipschitz on any
bounded set of u’s.)

Exercise 16.5 Prove the equality in (16.34).

Exercise 16.6 Suppose that K > 2 and (K−2)−1 ≤ ξ = τun−1, cf. (16.34).
Prove that (16.35) holds for both solutions in (16.31).

Exercise 16.7 Consider the quadrature rule
∫ b

a

f(x) dx ≈ Qf = (b − a)f(a). (16.68)

270 CHAPTER 16

Prove that∣∣∣∣
∫ b

a

f(x) dx− (b − a)f(a)

∣∣∣∣ ≤ c(b − a)2‖f ′‖∞,[a,b] (16.69)

for some constant c < 1. (Hint: apply the Peano kernel theorem 13.5.)

Exercise 16.8 Prove that
n−1∑

k=0

(1 + µ)k = ((1 + µ)n − 1)/µ

for any µ > 0 and any n. (Hint: this looks more familiar if you write
r = 1 + µ.)

Exercise 16.9 Prove that the estimate (16.28) holds for the implicit Euler
method. (Hint: repeat the argument in section 16.4 but with the quadrature
rule

∫ b

a

f(x) dx ≈ Qf = (b− a)f(b) (16.70)

instead of (16.68).)

Exercise 16.10 Prove that 1+x ≤ ex for x ≥ 0. (Hint: see exercise 9.17.)

Exercise 16.11 Suppose that φ is an integrable, nonincreasing function,
e.g., the step function as defined in (16.63). Prove that

∆tjφ(tj)e
L(tn−tj) ≤

∫ tj

tj−1

φ(t)eL(tn−t) dt (16.71)

for all j = 1, . . . , n.

Exercise 16.12 Consider the function

φ(x) =
1

x2

(
ex

1 + x
− 1

)
. (16.72)

Prove that φ(0) = 1
2 and that φ is decreasing for x ∈ [0, 1]. (Hint: consider

the Taylor expansion of ex around zero.)

Exercise 16.13 Plot the function φ defined in (16.72) for x ∈ [0, 4]. For
what interval is it true that φ ≤ 1

2?

Exercise 16.14 Suppose that 1 > ∆t > 0 and that n ≤ C∆t−1 for some
constant C. Prove that

etn − (1 + ∆t)n ≈ tnetn∆t, (16.73)

where tn = n∆t. (Hint: note that (16.73) is equivalent to
(

1 + ∆t

e∆t

)n

≈ 1− cn∆t2 (16.74)

for some constant c and that (1 + ∆t)/e∆t ≈ 1− 1
2∆t2. Use (16.72).)

ORDINARY DIFFERENTIAL EQUATIONS 271

Exercise 16.15 Experiment with graded meshes of the form

∆tn = δectn−1 ,

for a fixed parameter δ > 0, in solving u′ = u on [0, 1] with initial data
u(0) = 1. Work with the constant c as a small parameter and consider both
positive and negative values. What is the best choice to make the relative
error (16.67) smallest? Suppose that we define the cost-benefit factor to be
nen; what strategy (choice of c) minimizes this factor?

Exercise 16.16 Experiment with graded meshes of the form ∆tn = δectn−1 ,
for a fixed parameter δ > 0, in solving u′ = u on [0, 1] with initial data
u(0) = 1. Work with the constant c as a small parameter and consider both
positive and negative values. What is the best choice to make the absolute
error en = |u(tn) − un| smallest? Suppose that we define the cost-benefit
factor to be nen; what strategy (choice of c) minimizes this factor?

Exercise 16.17 Consider using Newton’s method for solving (16.29), start-
ing the iteration with v0 = un−1. More precisely, define f(v) = v+τv2−un−1

and apply Newton’s method to solve f(v) = 0 (this determines un = v).
Show that Newton’s method converges for all τ > 0 in this case and that the
solution is v = u+

n , assuming that un−1 > 0. (Hint: apply exercise 2.20.)

16.7 SOLUTIONS

Solution of Exercise 16.3. Let K be the smallest integer such that K ≥
LT/γ. By definition (16.21), we have

γ−nεn =
(LT/γ)n

n!
≤ Kn

n!
. (16.75)

We will show that the function φK(n) = Kn/n! is increasing for n < K and
decreasing for n > K and that φK(K − 1) = φK(K). Therefore,

γ−nεn ≤
KK

K!
= Cγ , (16.76)

where the last equality is our definition of Cγ .
To prove the asserted monotonicity properties of φK(n), observe that

φK(n)

φK(n− 1)
=
K

n





> 1 if n < K

= 1 if n = K

< 1 if n > K.

(16.77)

Solution of Exercise 16.12. We write

φ(x) =
1

x2

(
ex

1 + x
− 1

)
=
ex − 1− x
x2(1 + x)

. (16.78)

272 CHAPTER 16

Write ψ(x) = ex − 1− x so that

φ(x) =
ψ(x)

x2(1 + x)
. (16.79)

Differentiating, we find

φ′(x) =
ψ′(x)x2(1 + x)− ψ(x)(2x + 3x2)

x4(1 + x)2
. (16.80)

Since ψ′(x) = ψ(x) + x, we can simplify to get

φ′(x) =
(ψ(x) + x)x2(1 + x)− ψ(x)(2x + 3x2)

x4(1 + x)2

=
ψ(x)(x2(1 + x)− (2x+ 3x2)) + x3(1 + x)

x4(1 + x)2

=
ψ(x)(−2 − 2x+ x2) + x2(1 + x)

x3(1 + x)2

=
(ψ(x) − 1

2x
2)(−2− 2x+ x2) + 1

2x
4

x3(1 + x)2

=
(ψ(x) − 1

2x
2 − 1

6x
3)(−2− 2x+ x2)− 1

6x
3(2 − x− x2)

x3(1 + x)2
.

(16.81)

Using the Taylor expansion of the exponential at zero, we find

ψ(x)− 1
2x

2 − 1
6x

3 = x4
∞∑

k=0

xk

(k + 4)!
. (16.82)

If we define η(x) =
∑∞

k=0
xk

(k+4)! , then (16.81) simplifies to

φ′(x) =
xη(x)(−2 − 2x+ x2)− 1

6 (2 − x− x2)

(1 + x)2
, (16.83)

so we see that φ′(0) = − 1
3 . Moreover, since η(x) > 0 for x ≥ 0,

φ′(x) ≤ −
1
6 (2− x− x2)

(1 + x)2
< 0 (16.84)

for 0 ≤ x < 1. We can extend this to x = 1 since

φ′(1) = −3η(1)/4 < 0.

Thus φ is strictly decreasing on [0, 1].

Solution of Exercise 16.14. We know that

e∆t = 1 + ∆t+ 1
2∆t2 +O

(
∆t3

)
.

Using (16.72), let us write

e∆t

1 + ∆t
= 1 + φ(∆t)∆t2, (16.85)

ORDINARY DIFFERENTIAL EQUATIONS 273

where φ(0) = 1
2 and φ is decreasing as a function of ∆t. We need now to

estimate the nth power of the left-hand side of (16.85), and so we use the
estimate

|(1 + ε)n − 1− nε| ≤ 1
2ε

2n2e(n−2)ε, (16.86)

which we prove subsequently. We now take ε = φ(∆t)∆t2. Thus
∣∣∣∣

en∆t

(1 + ∆t)
n − 1− nφ(∆t)∆t2

∣∣∣∣ ≤
C2

8
eC∆t/2∆t2 ≤ K∆t2, (16.87)

since n∆t ≤ C and φ(∆t) ≤ 1
2 , where we can take

K =
C2

8
eC/2.

Multiplying (16.89) by (1 + ∆t)n, we find

|etn − (1 + ∆t)n − φ(∆t)tn (1 + ∆t)
n
∆t| ≤ K∆t2 (1 + ∆t)

n

≤K∆t2en∆t ≤ K∆t2eC ,
(16.88)

where tn = n∆t, since e∆t > 1 + ∆t for ∆t > 0, cf. (16.56). In particular,

0 <etn − (1 + ∆t)n ≤ (1 + ∆t)n (1
2 tn∆t+K∆t2

)

≤ etn
(

1
2 tn∆t+K∆t2

)
≤ eC

(
1
2 tn∆t+K∆t2

)
.

(16.89)

Applying (16.89) in (16.88), we get

|etn − (1 + ∆t)n − φ(∆t)tne
tn∆t| ≤ K̃∆t2, (16.90)

where K̃ is a constant. Since φ(∆t) ≈ 1
2 +O (∆t), this completes the proof.

The proof of (16.86) is as follows. Using the binomial expansion,

(1 + ε)n − 1− nε =

n∑

j=2

(
n
j

)
εj = ε2

n∑

j=2

(
n− 2
j − 2

)
n(n− 1)

j(j − 1)
εj−2

= ε2
n−2∑

k=0

(
n− 2
k

)
n(n− 1)

(k + 2)(k + 1)
εk

≤ 1
2n

2ε2
n−2∑

k=0

(
n− 2
k

)
εk = 1

2n
2ε2(1 + ε)n−2.

(16.91)

The proof of (16.86) is completed by using (16.56) (see exercise 16.10).

Chapter Seventeen

Higher-order ODE Discretization Methods

The internal title page of the book [12] reads (essentially) as follows:

An Attempt
to Test

The Theories of Capillary Action
by comparing

the theoretical and measured forms
of drops of fluid

by Francis Bashforth, B.D.
with an explanation of the method of integration

employed in constructing the tables which give the theoretical
forms of such drops

by J. C. Adams, M.A., F.R.S.

In section 16.3, we considered two simple, low-accuracy methods and
proved in section 16.4 (and exercise 16.9) that they converge to the solu-
tions of the corresponding ordinary differential equations (ODEs). There
are many reasons for wanting higher accuracy methods. The most obvious
ones are that we want a more accurate solution or a method that requires less
work or both. In some cases, it is essential to have a higher-order method to
obtain an acceptable answer. We discuss one aspect of this in section 18.1.4.

Major advances in the understanding of numerical techniques for solving
ordinary differential equations occurred at the end of the 19th century and
in the beginning years of the 20th century. The Adams-Bashforth1 [12] and
Runge-Heun-Kutta2 [30] methods were established at a time when desktop

1John Couch Adams (1819–1892) was best known for his mathematical study of plan-
etary motion. In 1843, Adams won the Cambridge mathematical Tripos and was thus
named Senior Wrangler; Second Wrangler that year was Francis Bashforth. Other top
Wranglers include Stokes (page 118) in 1841 and Rayleigh (page 232) in 1865.

2Martin Wilhelm Kutta (1867–1944) is known both for his difference method and for
his work in aerodynamics. Karl L. W. M. Heun (1859–1929) is known as well for his
equation related to the hypergeometric equation [114]. For information about Runge, see
page 159.

276 CHAPTER 17

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.0001 0.001 0.01 0.1 1

Figure 17.1 Absolute error in computing eπ ≈ 23.141 by the explicit Euler method
(16.26) (×’s) and by the centered scheme (17.1) (+’s). The horizontal
axis is ∆t, and the vertical axis is the absolute error at T = 1.

computing devices3 were becoming common, allowing much more extensive
computations than had been possible previously.

17.1 HIGHER-ORDER DISCRETIZATION

The main way to achieve more accuracy is to choose a more accurate approx-
imation to the derivative (or quadrature rule, if we think of this as solving
an integral equation). The simplest higher-order method is the centered
difference

un+1 = un−1 + 2∆tf(un, tn). (17.1)

It requires extra work to get started because we need u−1, but let us ignore
this difficulty for the moment. The application of (17.1) to the case where
f(x, u) = πu is illustrated in figure 17.1 by the +’s, which indicate the error
as a function of ∆t, for T = 1. The situation is much improved over the first-
order scheme (16.26) illustrated by the ×’s. For example, it takes ∆t ≈ 10−6

to get an error of 10−4 for explicit Euler (16.26), whereas with the centered
scheme (17.1) we get an error of 10−6 with ∆t ≈ 10−4.

3In 1886, the American Arithmometer Company was founded to manufacture and sell
an “adding” machine invented by William Seward Burroughs. The company was later
named the Burroughs Adding Machine Company in 1905, and it shipped its one-millionth
adding machine in 1928. Burroughs and Sperry Corporation merged in 1986 to form

HIGHER-ORDER ODE DISCRETIZATION METHODS 277

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

Figure 17.2 Comparison of values un computed via the centered scheme (17.1)
(×’s) with those computed via the explicit Euler scheme (16.26) (+’s)
for solving u′ = −u2. The dotted line is the exact solution (16.5).

Let us apply a cost-benefit analysis (cf. exercise 16.15) where the cost is the
number of time steps, the benefit is the size of the error, and the product of
the two is the cost-benefit factor of interest. Then the centered scheme is 104

times more effective than the explicit Euler scheme. Of course, this number
is not universal; it depends on the interval of interest and the absolute level
of accuracy required, and it will be different for different problems (different
f). But this shows that the benefit of using a high-order scheme can be
astronomical.

Although the centered scheme is much more accurate for a fixed T , it has
some disturbing qualities as T increases for fixed ∆t. In figure 17.2, the
centered scheme (17.1) is compared to the explicit Euler scheme (16.26) for
the problem

u′ = −u2.

Initially, the centered scheme is more accurate, as indicated in figure 17.3,
but at later times, the error begins to increase (and “bounce”). The data in
figure 17.3 are the relative absolute errors en defined by

en =
|un − u(tn)|
|u(tn)| , (17.2)

which are worse for tn ≥ 3 for the scheme (17.1). Note that for tn ≥ 3, the

Unisys. Sperry was descended from the Sperry Gyroscope Company, which produced
optical products connected to the secret NOSMO device at the end of World War II.

278 CHAPTER 17

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5

Figure 17.3 Comparison of relative absolute errors (17.2) for the centered scheme
(17.1) (×’s) and the explicit Euler scheme (16.26) (+’s) for solving
u′ = −u2.

absolute value masks the bounce in the error (alternation between positive
and negative signs) seen in figure 17.2.

As we integrate longer (see figure 17.4), the centered scheme becomes
much less accurate, and eventually the approximate solution becomes nega-
tive, at which point the character of the equation changes dramatically The
discretization scheme locks onto a solution that blows up in finite time.

The success of a discretization method for a nonlinear problem depends
on ∆t being small enough. For our model problem u′ = −u2 and the explicit
Euler scheme, we see that u1 = u0−∆t(u0)2 < 0 if ∆t > 1/u0. Thus in one
step we cross from a region where the solution tends to zero into one where
it blows up in finite time (see section 16.3.1).

17.1.1 An unstable scheme

We have seen that the centered scheme provides a more accurate method as
∆t is decreased for fixed T , but at a cost. Our first reaction may be to seek
a more accurate scheme, but we will see that things can actually get worse.

The book [86, chapter 8, section 1.4] derives what might be called a for-
ward differentiation formula

du

dt
(tn−1) ≈ P ′(tn−1) =

1

∆t

k∑

i=0

ak
i un−i, (17.3)

where P is a polynomial interpolating the values uj at tj = j∆t and the
coefficients ak

i are just the derivatives of the Lagrange basis functions for

HIGHER-ORDER ODE DISCRETIZATION METHODS 279

–1.2

–1

–0.8

–0.6

–0.4

–0.2

 0

 0.2

 5 10 15 20 25 30 35

Figure 17.4 Comparison of values un computed via the centered scheme (17.1)
(×’s) with those computed via the explicit Euler scheme (16.26) (+’s)
for solving u′ = −u2, integrated until T = 32.

this interpolation process, scaled by ∆t. (The ak
i thus correspond to the

derivatives at −1 of the Lagrange basis functions for the points

−k, 1− k, . . . ,−1, 0;

cf. exercise 17.2). This leads to the scheme

ak
0un = −

k∑

i=1

ak
i un−i + ∆tf(un−1, tn−1). (17.4)

We could choose a different interpolation scheme involving k+ 1 points, but
if we choose P to be of degree k, we provide maximum accuracy ∆tk. For
low values of k, we do not get anything new. For k = 1, this is the explicit
Euler scheme, and for k = 2, this is the centered difference scheme (17.1)
(exercise 17.3). However, for k = 3, the scheme is new and takes the form

1
3un = − 1

2un−1 + un−2 − 1
6un−3 + ∆tf(un−1, tn−1). (17.5)

Unfortunately, we will see that this scheme is unconditionally unstable. In
figure 17.5, we see what happens when (17.5) is applied to the solve the
equation u′ = u on [0, 1]. Shown are the results of two time steps, ∆t = 0.1
and ∆t = 0.05. Unfortunately, the results are worse for the smaller value of
∆t, at least near t = 1. One might suspect that round-off error is the cause
of the problem, but the same behavior is found if rational arithmetic is used
(exercise 17.5).

280 CHAPTER 17

–2

 0

 2

 4

 6

 8

 10

 12

 0 0.2 0.4 0.6 0.8 1

Figure 17.5 Result of using (17.5) to solve u′ = u on [0, 1] with two different values
for the time step ∆t = 0.1 (×’s) and ∆t = 0.05 (+’s). The horizontal
axis is t, and the vertical axis is the value of u.

17.1.2 Improved Euler

So far we have seen some obstacles in deriving high-order schemes. We now
consider a scheme that is second-order accurate and does not exhibit the
oscillation problem of the centered scheme:

ũn =un−1 + ∆tf(un−1, tn−1)

un =un−1 + 1
2∆t (f(un−1, tn−1) + f(ũn, tn)) .

(17.6)

The algorithm (17.6) is often called the improved Euler scheme. We see that
the explicit Euler scheme is embedded in it, in the sense that the formula
for ũn comes directly from that method. But this value is then used in what
appears to be the trapezoidal rule applied to (16.3), except that ũn is used
in the evaluation to make the computation explicit.

In figure 17.6, we compare the improved Euler scheme to the explicit Euler
scheme. We see that the latter is much more accurate, and it does not suffer
the error degradation in time that the centered scheme does.

It is not immediately obvious why (17.6) should be second-order accurate
since it is based on using a first-order scheme to define the important ingre-
dient ũn. Thus a careful examination is required to establish the order of
accuracy rigorously.

The improved Euler scheme (17.6) may be viewed as an elementary ex-
ample of various classes of schemes. We can view it as a simple type of
predictor-corrector scheme; the first equation in (17.6) computes the (lower-
order, in general) predictor ũn, and the second, corrector equation in (17.6)

HIGHER-ORDER ODE DISCRETIZATION METHODS 281

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.01 0.1 1 10 100

Figure 17.6 Relative absolute errors (17.2) for the explicit Euler scheme (16.26)
(upper curve) and the improved Euler scheme (17.6) (lower curve) for
solving u′ = −u2, using ∆t = 0.01. The horizontal axis is time.

uses the predictor to compute the final value un. On the other hand, the
improved Euler scheme (17.6) was one of the original schemes analyzed by
Runge [30] and forms a basic example of the Runge-Kutta schemes.

17.2 CONVERGENCE CONDITIONS

We have seen several different schemes for solving ODEs with different be-
haviors. We now try to understand how to predict these behaviors based on
abstract properties of the scheme. We will see that two conditions that arise
naturally are required for a convergent difference approximation: stability
and consistency. We derive these by considering a very simple situation.

17.2.1 Constant solutions

If we have an ODE of the form (16.1) with f(u, t) = 0, then we find u is
constant. This could happen at any time; u(t) could enter a regime where
f(u, t) = 0, and it would stay there forever. Although we might not expect
the numerical approximation to be constant in such a situation, we might
be interested in knowing whether or not the approximate solution is growing
or not.

Having f = 0 simplifies analysis of the numerical schemes. In this case

282 CHAPTER 17

Scheme a0 a1 a2 a3

Euler 1 −1
Centered 1 0 −1
Unstable 1

3
1
2 −1 1

6

Table 17.1 Coefficients ai for various discretization schemes. The coefficients are
the same for all three (explicit, implicit, improved) Euler schemes.

they all take the form

k∑

i=0

aiun−i = 0, (17.7)

where a0 6= 0 and ak 6= 0. For the explicit Euler scheme (16.26), k = 1;
for the schemes (17.1) and (17.5), k = 2 and 3, respectively. The improved
Euler scheme (17.6) is a bit more complex in appearance, but when f = 0,
it reduces to the explicit Euler scheme (16.26). When f = 0, the implicit
Euler scheme (16.27) also matches the explicit Euler scheme (16.26). We
collect these values of ai for the various schemes in table 17.1.

For the explicit Euler scheme, we find that un = un−1 when f = 0, so we
have a constant approximate solution which matches perfectly the behavior
of the exact solution. But for the higher-order schemes, we need a more
subtle analysis to see what is going on. There are several ways to do this,
but the most direct is to observe that there are solutions to (17.7) of the
form un = ξn if and only if

0 =

k∑

i=0

aiξ
n−i = ξn−k

k∑

i=0

aiξ
k−i = ξn−kp(ξ), (17.8)

where the characteristic polynomial p for the difference stencil (17.8) is de-
fined by

p(ξ) =

k∑

i=0

aiξ
k−i. (17.9)

Since we assume that ak 6= 0, then ξ = 0 is not a root. Thus we have proved
the following result.

Lemma 17.1 There is a solution to the equation (17.7) of the form un = ξn

if and only if p(ξ) = 0, where p is the characteristic polynomial p as defined
by (17.9).

If all roots satisfy |ξ| < 1, then all solutions un = ξn will decay exponen-
tially to zero. But this is too strong a design criterion; it turns out that at
least one root must not lead to decaying solutions.

HIGHER-ORDER ODE DISCRETIZATION METHODS 283

17.2.2 Consistency

To be convergent, it is natural to assume that the difference approximation
applied to a constant approximation gets the right answer, namely, zero.
That is, since u′ = 0 for constant u, we may expect this as well for the
discrete approximation. Thus we expect that all schemes must have p(1) = 0,
i.e.,

k∑

i=0

ai = 0 (17.10)

(cf. exercise 17.7). Thus we are forced to consider schemes whose character-
istic polynomials have a root ξ for which ξ = 1.

For the explicit Euler scheme this is the only root. With the centered
scheme (17.1), p(ξ) = ξ2 − 1 and the roots are ξ = ±1. The root ξ = −1 is
the cause of the oscillations we see in figures 17.2, 17.3, and 17.4.

17.2.3 Unbounded discrete solutions

It is clear that if there is a solution of p(ξ) = 0 with |ξ| > 1, then an explosion
can result even with no driving force (i.e., f = 0). We find a solution to
p(ξ) = 0 for (17.5) where

−ξ =
5 +
√

29

4
≈ 2.5963 . (17.11)

This explains the extreme blowup shown in figure 17.5.
There is a more subtle way in which schemes can be unbounded when

they should be constant. Suppose that there is a root ξ of p in (17.9) such
that |ξ| = 1. Suppose further that this is a double root of p, so that also
p′(ξ) = 0. Then

0 = p′(ξ) =

k∑

i=0

ai(k − 1)ξk−i−1. (17.12)

Thus a sequence of the form un = nξn is also a solution to (17.7), and
unfortunately it is not bounded. Thus we are led to define a root condition
as follows.

Definition 17.2 We say that a difference stencil of the form (17.7) satisfies
the root condition if

• none of the roots p(ξ) = 0 satisfy |ξ| > 1

• all the roots p(ξ) = 0 satisfying |ξ| = 1 are simple.

We have shown that whenever the root condition is violated, there are
unbounded solutions of (17.7).

284 CHAPTER 17

17.2.4 Zero stability

The first stability concept we will consider is zero stability, or 0-stability.
Informally, this condition states that there are no unbounded solutions of
(17.7). Thus it is natural to define zero stability just in terms of defini-
tion 17.2. But to know that this is a sufficient condition for boundedness,
we must prove the following.

Theorem 17.3 The difference method (17.7) has bounded solutions if and
only if the root condition definition 17.2 is satisfied.

Proof. We have already seen that a root p(ξ) = 0 with |ξ| > 1 leads to
unbounded solutions, as well as to multiple roots for which |ξ| = 1.

Now we need to show that if the root condition (definition 17.2) is satisfied,
then the solutions must remain bounded. Let us start by noting that un

depends linearly on un−1, . . . , un−k. Think of v(n) ∈ Rk as the vector v =
(un, . . . , un−k+1). Then v(n) = Av(n−1) = Anv(0), where the matrix A is
defined by

A =




−a1/a0 −a2/a0 · · · −ak−1/a0 −ak/a0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0



. (17.13)

By exercise 17.8, we have

(−1)k−1det(A− λI) = (−a1/a0 − λ)λk−1 +

k∑

i=2

(−ai/a0)λ
k−i

= − λk −
k∑

i=1

(ai/a0)λ
k−i

= − p(λ)/a0 .

(17.14)

Therefore, the roots of p are the eigenvalues of A. Thus we see that the term
“characteristic polynomial” for the difference stencil is consistent with the
usual notion of the characteristic polynomial of the matrix A.

Let λ1, . . . , λk be the eigenvalues ofA that satisfy |λj | = 1. By assumption,
these are simple eigenvalues, so there are eigenvectors xj such that Axj =
λjx

j , j = 1, . . . , k.
Let λ1, . . . , λk denote the eigenvalues of A such that |λj | = 1. Using the

Jordan decomposition, we can write

A = S−1

(
D 0
0 T

)
S, (17.15)

where S is nonsingular, D is the diagonal matrix with entries λj , and T
is upper-triangular, with the remaining eigenvalues of A on the diagonal of

HIGHER-ORDER ODE DISCRETIZATION METHODS 285

T . Thus the diagonal entries of T are all less than 1 in complex modulus.
Therefore (exercise 17.12),

v(n) = Anv(0) = S−1

(
Dn 0
0 T n

)
Sv(0). (17.16)

By lemma 6.13, we find that ‖T n‖∞ → 0 as n→∞ (see exercise 17.13).
QED

17.2.5 Absolute stability regions

For reasons we will explain subsequently, we now consider complex-valued
solutions to ODEs. Solutions to the model problem

u′ = λu (17.17)

are bounded for all complex λ with nonpositive real part, that is, Re λ ≤ 0.
It is thus of interest to ask for what λ a particular scheme generates bounded
solutions. This is similar to the question we asked for λ = 0 in section 17.2.4,
so we might call this λ-stability. Since we have a linear f in our test problem
(f(u, t) = λu), we can easily work with implicit schemes as well as explicit
ones.

Definition 17.4 The region of absolute stability (or λ-stability) is the set of
values of λ and ∆t for which a numerical scheme for solving (17.17) has the
property that un can be bounded in terms of un−1, un−2, . . . , un−k for some
fixed k.

Although in general the absolute stability regions could describe compli-
cated relations between ∆t and λ, in all the cases we will consider, the
regions take the form of a set S in the complex plane such that the product
λ∆t resides in S.

We should explain why complex values of λ might be of interest. Consider
a system of equations such as

(
u1

u2

)′
= B

(
u1

u2

)
, where B =

(
0 1
−1 0

)
, (17.18)

which corresponds to the second-order equation u′′1 = −u1. We can diagonal-
ize the system using a similarity transformation that converts the matrix B
to diagonal form. If we call vj the transformed variables, then the equations
become v′j = (−1)jivj since the eigenvalues of B are ±i (where i is the imag-
inary unit). In many cases, the behavior of a linear system reduces to that
of a diagonal system with the (complex, in general) eigenvalues on the diag-
onal. Thus even if we are interested only in systems with real coefficients,
we need to consider the behavior of schemes for (17.17) for complex λ for
essentially the same reason we are forced to consider complex eigenproblems
for real matrices.

For the explicit Euler scheme (16.26), the sequence of approximates sat-
isfies un = un−1 + λ∆tun−1 = (1 + λ∆t)un−1. Thus |un| ≤ |un−1| iff

286 CHAPTER 17

(a) � � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

(b) � � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

(c) �
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Figure 17.7 Absolute stability regions for the (a) explicit Euler scheme (16.26), (b)
implicit Euler scheme (16.27), and (c) centered scheme (17.1). The
region for the implicit Euler scheme is the complement of the hashed
disk.

|1 + λ∆t| ≤ 1. The set of values of the product λ∆t satisfying this con-
dition is the unit disk in the complex plane centered at −1, as shown in
figure 17.7(a).

The region of absolute stability for the implicit Euler scheme (16.27) is
similar. The approximates are defined by un = un−1 + λ∆tun, so that
absolute stability (i.e., |un| ≤ |un−1|) holds iff |1 − λ∆t|−1 ≤ 1. Thus the
region of absolute stability is the set of λ∆t in the complement of the unit
disk in the complex plane centered at +1, as depicted in figure 17.7(b) (it is
the complement of the hashed region). Note that this includes values of λ
for which solutions to the model problem u′ = λu would not be bounded.

The centered scheme (17.1) applied to the model problem (17.17) yields
un = un−2 + 2λ∆tun−1. Now we cannot express un simply in terms of un−1

but rather must form a matrix equation similar to (17.13). We can thus
write (

un

un−1

)
= A

(
un−1

un−2

)
, where A =

(
2λ∆t 1

1 0

)
. (17.19)

The eigenvalues µ of A satisfy

0 = det(A− µI) = −µ(2λ∆t− µ)− 1 = µ2 − (2λ∆t)µ− 1, (17.20)

so that

µ± = z ±
√
z2 + 1, (17.21)

where z = λ∆t. We are interested in the set of z such that both

|µ+(z)| ≤ 1 and |µ−(z)| ≤ 1. (17.22)

Let us start by observing that for purely imaginary z = it, we find

|µ±(it)| =
∣∣∣it±

√
−t2 + 1

∣∣∣ = 1 as long as |t| ≤ 1, (17.23)

since
√
−t2 + 1 is real in this case. In general, we have

µ+µ− = −1, (17.24)

either by multiplying out the expressions in (17.21) or by observing that the
determinant of A in (17.19), which is −1, must be the same as the product
of its eigenvalues. But then

|µ+| = 1/|µ−|, (17.25)

HIGHER-ORDER ODE DISCRETIZATION METHODS 287

k a0 a1 2a2 3a3 4a4 5a5 6a6 ρ′

1 1 −1 NA
2 3/2 −2 1 0.33333
3 11/6 −3 3 −1 0.42640
4 25/12 −4 6 −4 1 0.56086
5 137/60 −5 10 −10 5 −1 0.70871
6 147/60 −6 15 −20 15 −6 1 0.86338

Table 17.2 Coefficients of the 0-stable BDF schemes of degree k. The number ρ′ is
the largest modulus of the roots of the characteristic polynomial (17.9)
(and equivalently, the eigenvalues of the matrix (17.13)) excluding the
common root (eigenvalue) ξ = 1.

and the only way to satisfy max{|µ+|, |µ−|} ≤ 1 is to have both |µ+| = 1 and
|µ−| = 1, as we found for z = it and t ∈ [−1, 1] in (17.23). But the equations
|µ+| = |µ−| = 1 and µ+µ− = −1 imply we can write (exercise 17.14)

µ± = ± cos θ + i sin θ. (17.26)

Adding the plus and minus terms in (17.21), we have

2z = µ+ + µ− = 2i sin θ. (17.27)

That is, we find that max{|µ+|, |µ−|} ≤ 1 implies that z = it for t ∈ [−1, 1],
as we found in (17.23). Thus the absolute stability region contains only an in-
terval on the imaginary axis: the set

{
it
∣∣ |t| ≤ 1

}
, depicted in figure 17.7(c)

as the dark interval on the vertical axis.

17.3 BACKWARD DIFFERENTIATION FORMULAS

Another way to increase the accuracy in (16.28) is to use a backward differ-
entiation formula (BDF)

du

dt
(tn) ≈ P ′(tn) =

1

∆t

k∑

i=0

anun−i = f(un, tn), (17.28)

where the coefficients
{
ai

∣∣ i = 0, . . . k
}

are chosen so that (17.28) is exact
for polynomials of degree k. The BDF for k = 1 is the same as the implicit
Euler scheme. BDF methods arise by inverting the relation (13.58) to get

hD = log(I + ∆) (17.29)

and then expanding via the Taylor series log(1 + x) = −∑∞
j=1(−x)j/j:

hD =

∞∑

j=1

(−1)j+1

j
∆j , (17.30)

288 CHAPTER 17

which is valid as an expression for operators on polynomials (exercise 17.15).
By truncating the infinite series (17.30) at a finite point, we get BDF for-
mulas:

k∑

i=0

aiun−i =

k∑

j=1

(−1)j

j
∆jun, (17.31)

where we define ∆un to be the sequence whose nth entry is un− un−1. The
higher powers are defined by induction: ∆j+1un = ∆(∆jun). (There is
multiple notation abuse here: ∆un really means the nth element of the se-
quence ∆{u ·}, where {u ·} denotes the full sequence.) For example, ∆2un =
un − 2un−1 + un−2, and in general ∆j has coefficients given by Pascal’s
triangle. We thus see that a0 6= 0 for all k ≥ 1.

In table 17.2 we give the coefficients for the first few instances of the BDF
formulas. We see that a0 =

∑k
i=1 1/i, a1 = −k, and for j ≥ 2, jaj is an

integer conforming to Pascal’s triangle.
Given this simple definition of the general case of a BDF, it is hard to

imagine what could go wrong regarding stability. Unfortunately, the condi-
tion that |ξ| ≤ 1 for roots of pk(ξ) = 0 restricts k to be 6 or less for the BDF
formulas. Presumably, the same feature that makes the forward difference
formula fail at k = 3 is at work. We simply cannot compute such accurate
approximations to the derivative by looking so exclusively in one direction
in a stable way.

One can compute the roots of pk(ξ) = 0 by forming the matrix (17.13)
and computing its eigenvalues. We find they are all simple up to order k = 7
(and higher), but there is a complex pair with |ξ| ≈ 1.0222 for k = 7. For
smaller values of k, all the eigenvalues other than the required ξ = 1 satisfy
|ξ| < 1.

17.4 MORE READING

The careful reader will notice that we have not proved that a stable, consis-
tent numerical method converges to the solution of an ordinary differential
equation when the mesh is refined. This is our stopping point; we leave to
further study the general formulation of such results for different classes of
difference methods. There are many basic books on the numerical solution
of ordinary differential equations, such as the classic by Henrici4 [79] and
the more recent [29, 75], as well as advanced books such as [31, 74, 76].

4Peter Henrici (1923–1987) was a student of Eduard Stiefel and spent most of his career
at ETH in Switzerland, but he was at UCLA for several years where he was a colleague
of Hestenes and the thesis advisor of Gilbert Strang, his first student and recipient of the
first Henrici prize in 2007.

HIGHER-ORDER ODE DISCRETIZATION METHODS 289

17.5 EXERCISES

Exercise 17.1 Consider the ODE u′(t) = f(t) with u(0) = 0. Then u(T) =∫ T

0
f(t) dt. Consider the explicit Euler scheme (16.26) for solving the ODE.

Interpret this as a quadrature rule for computing the integral. What rule is
it?

Exercise 17.2 Show that the coefficients ak
i in (17.3) are the derivatives of

the basis functions for Lagrange interpolation for the points

−k∆t, (1− k)∆t, . . . ,−∆t, 0.

Show that the scaling with respect to ∆t is correct. (Hint: first you need to
show that the coefficients are independent of n. Then just do a scaling of the
t variable by ∆t.)

Exercise 17.3 Show that the coefficients ak
i in (17.3) for k = 1 correspond

to the explicit Euler scheme, and for k = 2 to the centered scheme (17.1).

Exercise 17.4 Show that the coefficient ak
0 in (17.3) is never zero. (Hint:

show that the basis function φ0 has a nonzero derivative at −1. Observe that
φ0(−1) = 0 is a simple zero.)

Exercise 17.5 Show that round-off error is not the cause of the instability
observed for (17.5). (Hint: try writing the equations in terms of rational
numbers.)

Exercise 17.6 Examine the behavior of the improved Euler scheme (17.6)
on the test problem u′ = −u2 and compare its accuracy with that of the
explicit Euler scheme (16.26). (Hint: the values ũn are not the same as
in (16.26) because they restart at each step with the result of (17.6) at the
previous time step.)

Exercise 17.7 Show that any scheme of the form (17.4) must satisfy

k∑

i=0

ai = 0 (17.32)

in order that un → u(n∆t) as ∆t→ 0 uniformly for n∆t ≤ T , where u is the

solution to (16.1). (Hint: show that we must have lim∆t→0

∑k
i=0 aiun−i =

u′(n∆t). Apply this to the special case in which u is constant.)

Exercise 17.8 Prove that

det




α1 α2 · · · αk−1 αk

1 −λ · · · 0 0
· · · · · · ·
0 0 · · · 1 −λ


 = (−1)k−1

k∑

i=1

αiλ
k−i. (17.33)

(Hint: by induction.)

290 CHAPTER 17

Exercise 17.9 Verify the values claimed for the BDF coefficients, namely,
that a0 =

∑k
i=1 1/i, a1 = −k, and for j ≥ 2, jaj is an integer conforming

to Pascal’s triangle.

Exercise 17.10 Verify directly that the roots µ± in (17.21) satisfy

|µ±(it)| > 1

for one of the choices of roots provided that |t| > 1. Also show that for r
real, then ±µ±(r) > 1.

Exercise 17.11 Suppose that λ1 6= λ2 are two eigenvalues of a symmetric
matrix A with corresponding eigenvectors xj, j = 1, 2. Prove that (x1)?x2 =
0. (Hint: suppose that λ1 6= 0 and write (x1)?x2 = (1/λ1)(Ax

1)?x2.)

Exercise 17.12 Suppose that an m×m matrix A can be written in the block
form

A =

(
V 0
0 W

)
, (17.34)

where V is a k × k matrix and W is an (m − k) × (m − k) matrix. Prove
that

An =

(
V n 0
0 Wn

)
(17.35)

for any integer n ≥ 1.

Exercise 17.13 Suppose that an m×m matrix A can be written in the block
form

A =

(
V 0
0 W

)
, (17.36)

where V is a k × k matrix and W is an (m − k) × (m − k) matrix. Prove
that

‖A‖∞ ≤ max{‖V ‖∞, ‖W‖∞}. (17.37)

(Hint: write m-vectors x in block form: x = (y, z)T, where y is a k-vector.)

Exercise 17.14 Suppose that µ± are complex numbers such that |µ+| =
|µ−| = 1 and µ+µ− = −1. Prove that µ± = ± cos θ + i sin θ for some value
of θ ∈ R. (Hint: start by writing µ± = cos θ± + i sin θ±.)

Exercise 17.15 Verify that (17.30) is valid as an expression for operators
on polynomials, i.e., for any polynomial P and any x,

hP ′(x) =
∞∑

j=1

(−1)j+1

j
∆jP (x) =

k∑

j=1

(−1)j+1

j
∆jP (x),

where k is the degree of P . (Hint: show that ∆jP ≡ 0 for j > k.)

HIGHER-ORDER ODE DISCRETIZATION METHODS 291

Exercise 17.16 Prove that there are eigenvectors of the form

(ξk−1, ξk−2, . . . , ξ, 1) (17.38)

for the matrix (17.13) when ξ is a root of (17.9).

Exercise 17.17 Suppose that the polynomial (17.9) has multiple roots ξ
satisfying |ξ| = ρ(A), the spectral radius of the matrix (17.13). Prove that
A is defective (not diagonalizable). (Hint: if A were diagonalizable, could
there be solutions like (17.12) that grow faster than ρ(A)n?)

Exercise 17.18 Consider the polynomial p(ξ) = (ξ − 1)2. Determine the
matrix B corresponding to (17.13) for this polynomial. Show that the only
eigenvalue of B is ξ = 1 and that B has only one eigenvector. Prove that

Bk =

(
k + 2 −(k + 1)
k + 1 −k

)
=

(
1 0
0 1

)
+ k

(
1 −1
1 −1

)
(17.39)

for all integers k ≥ 1.

17.6 SOLUTIONS

Solution of Exercise 17.5. If we multiply (17.5) by 24 and write it ex-
pressly for the case f(u, t) = u, we find

8un = (−12 + 24∆t)un−1 + 24un−2 − 4un−3. (17.40)

Thus for ∆t = 1/12 or 1/24 we have an expression with integer coefficients.
Take, e.g., ∆t = 1/24. Then (17.40) becomes

8un = −11un−1 + 24un−2 − 4un−3 . (17.41)

Writing un = pn/qn, we find

pi = − 11pi−1qi−2qi−3 + 24qi−1pi−2qi−3 − 4qi−1qi−2pi−3

qi =8qi−1qi−2qi−3 .
(17.42)

To begin the algorithm, we can use the approximation ex ≈ 1+x+x2/2+x3/6
with x = ∆t, 2∆t to provide rational starting data for u1 and u2. To reduce
the growth in coefficients, we can divide both pn and qn by their greatest
common divisor (GCD). Using octavewith this code produces integer results
for pn and qn (use “format bank” to verify this), and by plotting pn/qn we see
the same results (to graphical accuracy) as for the corresponding algorithm
(17.5) performed in floating-point. The main loop in the octave code to
verify this looks like

pp=-11*p(i-1)*q(i-2)*q(i-3)

+24*q(i-1)*p(i-2)*q(i-3)

-4*q(i-1)*q(i-2)*p(i-3);

qq=8*q(i-1)*q(i-2)*q(i-3);

g=gcd(pp,qq);

p(i)=pp/g;

q(i)=qq/g;

u(i)=-(3/2)*u(i-1)+3*u(i-2)-0.5*u(i-3)+3*dt*u(i-1);

292 CHAPTER 17

where dt = ∆t.

Solution of Exercise 17.8. For k = 2, this is evident. For general k, we
expand along the first column and use induction:

det




α1 α2 α3 · · · αk−1 αk

1 −λ 0 · · · 0 0
0 1 −λ · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 −λ




= α1 det




−λ 0 · · · 0 0
1 −λ · · · 0 0
...

...
...

...
...

0 0 · · · 1 −λ




− det




α2 α3 · · · αk−1 αk

1 −λ · · · 0 0
...

...
...

...
...

0 0 · · · 1 −λ




= α1(−λ)k−1 − (−1)k−2
k−1∑

i=1

αi+1λ
k−1−i

= α1(−λ)k−1 − (−1)k−2
k∑

j=2

αjλ
k−j = (−1)k−1

k∑

j=1

αjλ
k−j .

(17.43)

Solution of Exercise 17.10. For |t| > 1,

µ±(it) = i
(
t±

√
t2 − 1

)
, (17.44)

and thus |µ±(it)| > 1 for one of the choices of roots (e.g.,

µ− = t−
√
t2 − 1 (17.45)

if t < −1). On the other hand, if z = r is purely real, then

µ±(r) = r ±
√
r2 + 1 (17.46)

is also real. For r > 0, then

µ2
+ =

(
r +

√
r2 + 1

)2

> 1 + r > 1; (17.47)

if r < 0, then

µ2
− =

(
r −

√
r2 + 1

)2

< −1 + r < −1. (17.48)

Chapter Eighteen

Floating Point

“To summarize, although there are practically occurring
matrices for which partial pivoting yields a moderately
large, or even exponentially large, growth factor, the growth
factor is almost invariably found to be small. Explaining
this fact remains one of the major unsolved problems in
numerical analysis.” N. Higham in [82].

It is beyond the scope of this book to consider the effect of floating-point
in detail. We have noted its effect in certain areas where some rigorous
estimates can be given. In this chapter we look at some central topics and
point out areas where further research is needed.

One recurring concern in numerical computation has been the accumula-
tion of floating-point errors when a very large number of steps are involved.
One of the simplest computations of this type is the summation of n num-
bers with n large. We will analyze this computation in great detail and show
that the floating-point error can be bounded rigorously by a reasonable up-
per bound. However, we will also see that in typical computations, these
upper bounds are too pessimistic and fall short of predicting the observed
floating-point error.

Another topic is perturbation theory for systems of linear equations. We
derive the standard theory and show how it can motivate the iterative im-
provement algorithm. But we also point out limitations of the standard the-
ory in predicting actual errors in solving systems of linear equations, which
are again very pessimistic compared to observed computational errors.

18.1 FLOATING-POINT ARITHMETIC

In section 1.5, we introduced a simple model of floating-point arithmetic.
This provides a way to analyze algorithms which are executed in floating-
point arithmetic on a digital computer. The algorithms we have considered
involve real numbers at an abstract level, but we are forced to work with a
finite approximation of them in actual computations. Including an analysis
of the effect of floating-point allows us to prove theorems about the actual
computations, not just about their theoretical counterparts executed using
real numbers. The latter is of interest but not sufficient to guarantee success
of the approximated computations done using floating-point arithmetic.

294 CHAPTER 18

Cancellation is a major source of error. Note that f`(a−b) = (a−b)(1+δ)
does not mean that f`(f`(a+e)−b) is at all close to a+e−b. Floating-point
arithmetic is not associative. Cancellation amplifies errors that have already
occurred. It can easily be that f`(a + e) = a, and if b = a, we get zero for
the result instead of e. However, we will see that in other cases, the effect
of floating-point arithmetic is much more subtle.

Floating-point arithmetic is quite complicated and does not lend itself to a
simple representation. A floating-point hardware standard has been adopted
by the Institute of Electrical and Electronics Engineers (IEEE), and most
hardware follows this at the moment. However, these specifications simply
provide bounds on the behavior of floating-point. But it is possible to use
such a model to guarantee the success of computations using this standard
[82].

We should note that there is no absolute guarantee that on every occasion
a computer will not make a mistake, say, because of some external force.
Indeed, it used to be common that parity errors occurred in computers,
that is, a piece of memory would be corrupted by a 1-bit error. Current
technology typically can correct such errors and detect 2-bit errors (which
are far more unlikely). We ignore such unlikely errors; they would be even
more unlikely to recur.

The model of floating-point arithmetic used in this book is a standard
way of representing an upper bound of the inaccuracies of floating-point.
We emphasize that it is just a model and that other more accurate models
are possible. One flaw of this model is that, even if some error bound is
shown to be the worst case for the model, it may not be the worst case
for floating-point arithmetic for any set of data. And even if there is the
possibility of a worst-case scenario, it is in many cases extremely unlikely to
occur.

18.1.1 Summation

A common subproblem in many algorithms is the computation of a sum of
n numbers for large n. This appears in the computation of inner products in
the conjugate gradients algorithm (chapter 9), and in all the iterative meth-
ods the computation of a matrix-vector product is of this type. Even in
Gaussian elimination (chapter 3) or in a direct method such as the Cholesky
method, computation of inner products is a central issue. Consider comput-
ing the sum

An =

n∑

i=1

ai. (18.1)

Let Ãn denote the result obtained by floating-point arithmetic. The equation
(1.31) implies that we can write

Ãk = (1 + δk)(Ãk−1 + ak), (18.2)

FLOATING POINT 295

where |δk| ≤ ε (see section 1.5) and where we define Ã1 = A1 = a1. Define
ek = Ãk −Ak. Subtracting Ak from (18.2), we have

ek = Ãk −Ak = Ãk−1 −Ak−1 + δk(Ãk−1 + ak)

= (1 + δk)(Ãk−1 −Ak−1) + δkAk = (1 + δk)ek−1 + δkAk.
(18.3)

Subtracting ek−1 from both sides of (18.3) gives

ek − ek−1 = δkek−1 + δkAk. (18.4)

Then by summing (18.4), we have (since e1 = 0)

An − Ãn = en =
n∑

i=2

Aiδi +
n∑

i=2

ei−1δi =
n∑

i=2

Aiδi +O(ε2) (18.5)

for n ≥ 2. We postpone for a moment making this a rigorous estimate for
|An − Ãn|. It provides a useful guide in practice, but even if we ignore the
O(ε2) term, it can still be hard to interpret. The individual errors δi are
likely to be distributed around zero, not biased in predictable ways, so if the
partial sums Ai are slowly varying in i, there can be substantial cancellation.

One prediction that (18.5) makes is that the error will be smaller if we
add the numbers starting with the smallest a’s first and moving to the larger
a’s at the end since this makes the partial sums Ai smaller. Let us consider
an example, the slowly diverging series

An =

n∑

i=1

1

i
≈ γ + logn, (18.6)

where γ = 0.57721 · · · is Euler’s constant; cf. (13.79). A thought experiment
explains why the order of summation might matter. If we start with the
largest numbers, then we eventually (for n large enough) get to the point
where 1/i is below the level of round-off error for the sum Ai accumulated
so far, i.e., i−1 < εAi. Thus the result of the summation process An will
quit changing for some finite n and give the false impression that this is a
convergent series. On the other hand, if we start with the smallest terms,
the results do not stabilize (exercise 18.1) for any n, although they might
eventually overflow.

The errors for these two orders of summation are shown in table 18.1. We
see that the errors are often smaller if we sum the smallest terms first, but
both errors are smaller than (18.5) predicts, as we explore in section 18.5.
Moreover, the errors are not uniformly smaller for the “smallest first” ap-
proach. The error difference for the two methods as a function of n is
depicted in figure 18.1, and we see that it looks somewhat like a random
process. In these computations, ε ≈ 2.2× 10−16 (exercise 18.2). We explain
in section 18.1.3 how we were able to compute the errors for these sums.

In exercise 18.3, a more complicated behavior is examined with the slowly
converging series

π

4
≈ An =

n∑

i=1

(−1)i+1

2i− 1
. (18.7)

296 CHAPTER 18

n (An − Ã>
n)/An (An − Ã<

n)/An

103 +2.4× 10−16 +5.9× 10−16

104 +3.4× 10−15 −3.6× 10−15

105 +7.6× 10−15 +1.6× 10−15

106 +5.1× 10−14 −3.3× 10−15

107 +1.5× 10−13 −6.8× 10−15

108 +7.1× 10−14 +2.4× 10−14

109 −2.8× 10−14 +8.4× 10−14

Table 18.1 Normalized errors for two methods for summing the series (18.6),
largest-first (Ã>

n) versus smallest-first (Ã<
n), are shown for various val-

ues of n.

Now we see a new behavior that is order-dependent. If we add the odd
and even terms separately, we get two diverging sums whose difference is
the quantity of interest. Eventually, the answer will be smaller than ε times
these two diverging sums, and it will have no significant digits. Thus we can
see that the order of computation could provide a variety of results for a
single problem. On the other hand, the estimate (18.5) says that as long as
the partial sums Ai/An remain of reasonable relative size, the computation
of a sum of numbers will not produce a very large error.

Lemma 18.1 The error in the expression (18.5) satisfies

∣∣∣An − Ãn −
n∑

i=2

Aiδi

∣∣∣ ≤ 2nε2
n∑

i=1

(n+ 1− i)|Ai|, (18.8)

provided that n ≤ 1/2ε.

Proof. Define σk =
∑k

i=2Aiδi for k ≥ 2 and set σ1 = 0 and βk = ek − σk.
Note that e1 = 0. Then (18.5) says that

en = σn +

n∑

i=2

ei−1δi, (18.9)

and thus

βk =

k∑

i=2

(βi−1 + σi−1)δi. (18.10)

Define S =
∑n

i=2 |σi|. Then we claim that for all k,

|βk| ≤ ((1 + ε)k − 1)S. (18.11)

FLOATING POINT 297

–4e-15

–2e-15

 0

 2e-15

 4e-15

 6e-15

 8e-15

 1e-14

 0 200 400 600 800 1000 1200 1400 1600

Figure 18.1 The vertical axis is the difference Ã>
n − Ã<

n between two methods
(largest-first minus smallest-first) for summing the series (18.6) for
various values of n. The horizontal axis is n.

The proof is by induction using (18.10) (see exercise 18.6),

|βk+1| ≤ ε
(
S +

k+1∑

i=2

|βi−1|
)

≤ εS
(
1 +

k+1∑

i=2

((1 + ε)i−1 − 1)
)

= εS + S
(
(1 + ε)k+1 − 1− ε

)
− kS

≤S
(
(1 + ε)k+1 − 1

)
.

(18.12)

Applying exercise 18.7 shows that

|βk| ≤ 2kεS. (18.13)

From the definition of S and the σi’s, we see that

S =

n∑

i=2

|σi| ≤
n∑

i=2

i∑

k=2

ε|Ak| = ε

n∑

k=2

(n+ 1− k)|Ak|, (18.14)

where we have used an elementary form of Fubini’s theorem to reverse the
order of the summations. QED

18.1.2 Summation application

The most general application of the estimates in lemma 18.1 is to say that

∣∣An − Ãn

∣∣ ≈ ε
n∑

i=2

|Ai| (18.15)

298 CHAPTER 18

since we do not know anything a priori about the distribution of the δi’s.
Here we are implicitly assuming that the term that is quadratic in ε is much
smaller than the right-hand side of (18.15). Let us apply this idea to some
examples.

We can apply the estimates in lemma 18.1 to the summation problem
(18.6). Let A<

k denote the partial sums progressing from the smallest to the
largest terms. Then using estimate in (18.6), we have

A<
k =

n∑

i=n+1−k

1

i
≈ log

n

n− k . (18.16)

Since all the partial sums are positive, we thus find
n∑

k=1

|A<
k | =

n∑

k=1

A<
k ≈

n∑

k=1

log
n

n− k = log

(
n∏

k=1

n

n− k

)

= log

(
nn

n!

)
≈ log

en

√
2πn

= n− 1
2 log(2πn) ≈ n,

(18.17)

by Stirling’s formula (see page 198). Similarly, if we let A>
k denote the

partial sums progressing from the largest to the smallest terms, we find
(exercise 18.8) that

n∑

k=1

|A>
k | =

n∑

k=1

A>
k ≈

n∑

k=1

γ + log k = γn+ log(n!)

≈ γn+ 1
2 log(2πn) + n log

n

e
≈ n logn.

(18.18)

Thus we see that the partial sums for the smallest-to-largest algorithm for
computing (18.6) are smaller than those for the largest-to-smallest algorithm,
but only by a factor of logn. We compare the results of the two algorithms
computed using octave in table 18.1 and figure 18.1. The errors are smaller
for A<

n , but neither grows like n as (18.17) and (18.18) would predict.
Now let us consider a more rapidly converging sum where there is a more

distinct difference in the way that the sums are done:
n∑

k=1

1

k2
≈ π2

6
= 1.644934 · · · . (18.19)

Now the partial sums are quite order-dependent. First,

A<
k =

n∑

i=n+1−k

1

i2
≤
∫ n

n−k

dx

x2
=

1

n− k −
1

n
=

k

n(n− k) . (18.20)

For k < n, this estimate is quite tight since we also have

A<
k ≥

∫ n+1

n+1−k

dx

x2
=

1

n+ 1− k −
1

n+ 1
=

k

(n+ 1)(n+ 1− k) . (18.21)

However, for k = n, the estimate (18.20) fails, and we need to substitute

A<
n = An ≤

π2

6
.

FLOATING POINT 299

Summing (18.20), we find

n∑

k=1

|A<
k | =

n∑

k=1

A<
k ≤

π2

6
+

n−1∑

k=1

k

n(n− k) =
π2

6
+

1

n

n−1∑

k=1

k

n− k

=
π2

6
+

1

n

n−1∑

i=1

n− i
i

=
π2

6
+

n−1∑

i=1

1

i
− n− 1

n
≤ 2 + logn

(18.22)

(see exercise 18.10). From lemma 18.1,

|An −A<
n | ≤ (2 + logn)ε+O

(
ε2
)
. (18.23)

On the other hand, A>
k ≥ 1 for all k, so that

n∑

k=1

A>
k ≥ n. (18.24)

Thus the errors for the two methods could be quite different. In particular,
(18.23) says that we can take A<

n as an estimate for An in evaluating the
errors in A>

n computationally. In table 18.2 we give the differences in the
results of the two algorithms, together with a more precise estimate of the
individual errors. To estimate these errors, we need a formula for An, which
we do not have explicitly. However, it is easy to see that

An =
n∑

k=1

1

k2
=
π2

6
−

∞∑

k=n+1

1

k2
. (18.25)

With a small correction, we can recognize the latter sum as the trapezoidal
rule approximating the integral

∞∑

k=n+1

1

k2
+

1

2n2
≈
∫ ∞

n

dx

x2
=

1

n
. (18.26)

But we can also invoke the Euler-Maclaurin formula (13.77) to get an even
more accurate approximation:

∞∑

k=n+1

1

k2
≈ 1

n
− 1

2n2
+

1

6n3
. (18.27)

The next term in the Euler-Maclaurin expansion (13.77) would contribute
a term of order n−5. For simplicity, in table 18.2 we have just listed the
estimates

Ãn −
π2

6
+

1

n
− 1

2n2
+

1

6n3
, (18.28)

where by Ãn we mean one of the methods computed in floating-point. We
refer to these as Ã>

n and Ã<
n in table 18.2.

We see that the algorithm starting with the smallest summands appears
to have at most a 1-bit error for the values of n listed, whereas the algorithm
starting with the largest entries has an error that grows with n. However, the

300 CHAPTER 18

n Ã>
n − Ã<

n (18.28) for Ã>
n (18.28) for Ã<

n

103 +1.7764× 10−15 +1.5543× 10−15 −2.2204× 10−16

104 +5.5511× 10−15 +5.5511× 10−15 0.0
105 +1.5987× 10−14 +1.6209× 10−14 +2.2204× 10−16

106 +4.3743× 10−14 +4.3521× 10−14 −2.2204× 10−16

107 −9.7189× 10−13 −9.7189× 10−13 0.0
108 +9.8635× 10−10 +9.8635× 10−10 0.0
109 −8.0137× 10−9 −8.0137× 10−9 0.0

Table 18.2 The difference between two methods for summing the series (18.19),
largest-first (Ã>

n) minus smallest-first (Ã<
n), for various values of n.

error does not grow linearly with n as might have been expected from (18.24).
The unpredictable nature of the distribution of the δi’s leads to a slower
growth rate due to cancellations in the floating-point error. Unfortunately,
we do not have a more precise model to predict this behavior in more detail.

We have seen that it is possible to derive rigorous error expressions for the
summation problem but that these still fall short of predicting the error be-
havior in several cases. Moreover, the error behavior is quite data-dependent.
Doing the same level of analysis for more complex algorithms remains a topic
of research.

18.1.3 Better summation algorithms

There are also simple techniques [82] to reduce the errors in large sums.
Probably the simplest is called double precision accumulation which simply
stores the current accumulated value as a double-precision variable, essen-
tially reducing the value of ε substantially. However, there is a much more
sophisticated technique due to Kahan,1 which can be viewed as a type of
residual correction algorithm (cf. section 18.2.2).

The gist of the Kahan summation algorithm is to keep an error estimate
ek in addition to the running sum sk. Then the error estimate is added to
the next summand before adding it to the running sum:

yk = ak + ek−1

sk = sk−1 + yk

dk = sk−1 − sk

ek = dk + yk.

(18.29)

The terms dk and yk are temporaries and do not need to be stored from
one iteration to the next, and only one storage location for the e’s is needed
as well. But there need to be two locations for the s’s, the old and the

1William Morton (a.k.a. Velvel) Kahan (1933-) was a primary architect of the IEEE
floating-point standard and won the Turing award in 1989.

FLOATING POINT 301

new values. Moreover, the computations of dk and ek can be collapsed into
one line, eliminating dk completely. But it is critical that the difference,
sk−1 − sk, be computed (in floating-point) before adding yk.

It is possible to show that the errors using (18.29) satisfy

An − Ãn =

n∑

i=1

δiai, (18.30)

where |δi| ≤ 2ε+O
(
nε2
)

[82]. The algorithm (18.29) was used to estimate
the exact sum in table 18.1. The algorithm was applied with both orders,
and the results were identical in all cases reported.

18.1.4 Solving ODEs

Algorithms for solving ordinary differential equations compute quantities
very closely related to the simple sums (18.1). The requirement of using
finite-precision arithmetic means that the best error behavior we could ex-
pect for the algorithm (16.26) is

|u(tn)− un| ≤ Cf,T ∆t+ nε ∀tn ≤ T, (18.31)

where ε measures the precision error that occurs at each step in (16.27).
Let us suppose that tn = T . It is useful to rewrite (18.31) using the fact

that n = T/∆t as

|u(T)− un| ≤ Cf,T ∆t+
T ε

∆t
, (18.32)

which shows that the error reaches a minimum and cannot be reduced by
reducing ∆t. This occurs when Cf,T ∆t = T ε/∆t, that is, ∆t =

√
T ε/Cf,T ,

and the best accuracy is
√
Cf,TT ε. We can turn this around to say that it

occurs at the time T = Cf,T ∆t2/ε.
Choosing a more accurate difference method helps avoid the onset of

round-off error since we can use a larger ∆t to get the desired accuracy.
The centered difference method (17.1) instead satisfies an error estimate of
the form

|u(tn)− un| ≤ Ĉf,T ∆t2 + nε = Ĉf,T ∆t2 +
tnε

∆t
(18.33)

for all tn ≤ T . Of course, the constant Ĉf,T may be different, but it is
typically not different by an order of magnitude. The critical value for

∆t occurs at the much smaller level 3

√
tnε/Ĉf,T . However, there is still a

limitation in theory. In practice, very high-order schemes are used [70, 109,
166] primarily to achieve sufficient accuracy for longtime integration, but
this also has the side effect of diminishing round-off error.

18.2 ERRORS IN SOLVING SYSTEMS

Iterative methods for solving linear and nonlinear systems are inherently
self-correcting with regard to floating-point error. However, direct methods

302 CHAPTER 18

for solving linear systems do not have such a self-correction aspect, and it
was an early concern whether it would be possible to accurately compute
with such methods. We address some of these questions here.

There are various issues to analyze for direct methods. The central point is
that we compute only approximate factorizations. It would be of interest to
understand in detail how floating-point errors affect the resulting factors, but
this issue is not yet well understood. It appears that the triangular factors
are far better behaved than current analytical techniques would predict [160].

18.2.1 Condition number

The condition number of a matrix A has appeared in different contexts
previously (cf. sections 9.3.4 and 15.1.4). For a given norm, it is defined by

κ(A) = ‖A‖‖A−1‖. (18.34)

It is defined only for invertible matrices A. We show here how it quantifies
the stability of solving a system of equations. Note that κ(I) = 1 for the
identity matrix I, and indeed κ(A) ≥ 1 for any matrix A (exercise 18.11).
Moreover, κ(A) is invariant under a simple scaling A → tA for any scalar t
(exercise 18.12).

One characterization of a matrix factorization in floating-point is that it
produces the exact factors of a perturbed system Ã = L̃Ũ , where L̃ and
Ũ are the computed factors including round-off. We will examine how this
might affect the resulting solution of a perturbed system. However, the best-
known rigorous bounds are quite pessimistic, and a more involved analysis
like (18.5) for summation might be more revealing. However, such results
are lacking.

Suppose we write X(t) for the solution of

A(t)X(t) = F (t), (18.35)

where we think of t as a perturbation parameter as might arise from floating-
point or other errors. Here we imagine that there can be independent errors
in A and F , and we want to see how this causes changes in X . We are
interested in what happens for small t, so we differentiate (18.35) to find

A(t)X ′(t) + A′(t)X(t) = F ′(t), (18.36)

or equivalently,

X ′(t) = A−1(t)F ′(t)−A−1(t)A′(t)X(t). (18.37)

This equation says that the change in X has two parts. The first part says
something obvious: if you make an error in F , it will cause an error in X , and
the relationship involves the operator A in the obvious way. The second part
is more complicated; it depends on the interaction between the perturbation
in A and the solution vector X , all multiplied by the inverse of A. We begin
by giving a standard estimate for both terms and then return to point out
why this may be pessimistic for the second term.

FLOATING POINT 303

We take norms in (18.37) to find

‖X ′(t)‖ ≤ ‖A−1F ′‖+ ‖A−1A′X(t)‖, (18.38)

which we simplify to get

‖X ′(t)‖
‖X(t)‖ ≤

‖A−1F ′‖
‖X(t)‖ +

‖A−1A′X(t)‖
‖X(t)‖ ≤ ‖A

−1F ′‖
‖X(t)‖ + ‖A−1A′‖

≤ ‖A−1‖
(‖F ′‖
‖X(t)‖ + ‖A′‖

)
= κ(A)

(‖F ′‖
‖A‖‖X(t)‖ +

‖A′‖
‖A‖

)

≤ κ(A)

(‖F ′‖
‖F (t)‖ +

‖A′‖
‖A‖

)
,

(18.39)

where we used the estimate ‖F (t)‖ = ‖A(t)X(t)‖ ≤ ‖A(t)‖‖X(t)‖ in the last
step. The estimate (18.39) has a simple interpretation: the relative error in
X is bounded by the sum of the relative errors in A and F , multiplied by
the condition number of A.

Although this does provide a rigorous upper bound (see exercise 18.14), it
shows that the interaction between perturbations in A and X is complicated.
It could well be that for certain solutions X , the term A−1(A′)X would be
quite a bit smaller than in others. For example, if X is slowly varying
(nearly constant) and if A−1 tends to smooth things out (cf. the matrix M
in (4.22) which is the inverse of the matrix A in (4.20)), then both A−1F ′

and A−1(A′)X could be much smaller than in other situations. Using norms
to bound things gives a worst-case estimate (see exercise 18.16).

On the other hand, solving equations HX = F with the Hilbert matrix
(4.15) can be quite different. The inverse of the Hilbert matrix (4.15) grows
exponentially with n (exercise 18.17), and since the errors A′ and F ′ in
(18.37) are not naturally correlated, we expect the errorX ′ to be quite large,
as experiments show (exercise 18.18). In this case, the estimate (18.39) is
unfortunately not overly pessimistic.

18.2.2 A posteriori estimates and corrections

The residual error R = F−AX left after applying some algorithm to “solve”
AX = F can (1) give an estimate of the error and (2) be used to correct
it. More precisely, let the function f denote the solution process, so that
Y = f(A,F) is the result of such an algorithm, for which we know (e.g.,
from (18.39)) that, for some parameter µ,

‖f(A,Aw)− w‖ ≤ µ‖w‖ (18.40)

for any vector w. In particular, this implies that

‖Y −X‖ ≤ µ‖X‖. (18.41)

Define the residual R = F − AY . (There is a small point in that there
will be some floating-point error in computing R by this formula, but we
are interested in the case where this is much smaller than the overall error

304 CHAPTER 18

parameter µ; thus we ignore this error here.) Then we “solve” AE = R, or
more precisely, define Ê = f(A,R). Then, by (18.40),

‖Ê − E‖ = ‖f(A,R)− E‖ ≤ µ‖E‖. (18.42)

We expect that Y + Ê is a better approximation to X since

Y + E = X. (18.43)

(To prove (18.43), multiply by A: AY + AE = F − R + R = F = AX .)
Therefore,

Y + Ê = Y + E − (E − Ê) = X − (E − Ê). (18.44)

To quantify this, we just estimate:

‖(Y + Ê)−X‖ = ‖E − Ê‖ [by (18.44)]

≤µ‖E‖ [by (18.42)]

=µ‖X − Y ‖ [by (18.43)]

≤µ2‖X‖ [by (18.41)].

(18.45)

If µ < 1, (18.45) implies that Y + Ê is a more accurate approximation to X
than Y is. This algorithm is known as iterative improvement. If the level of
accuracy in (18.45) is not enough, the process can be repeated by making
the assignment Y ← Y +Ê and repeating the calculations (R = F−AY and
Ê = f(A,R)) and estimates. After k applications of the solution algorithm
f(A, ·), the error satisfies

‖Y −X‖ ≤ µk‖X‖. (18.46)

This implies that the error would eventually go to zero, which does not
necessarily happen in floating-point. This is true for all the iterative methods
considered so far. Once the change in the iteration is the size of round-off
error, it can bounce around unpredictably.

18.2.3 Pivoting

The intent of pivoting in Gaussian elimination is to reduce the error in the
resulting Ã = L̃Ũ . One cause of error is simply the size of the factors.
Pivoting can reduce the size of the factors substantially. However, there is
a well-known example that shows that partial pivoting is not sufficient to
control the growth of factors [82]. Consider the n× n matrix A given by

A =




1 0 0 · · · 0 0 1
−1 1 0 · · · 0 0 1
−1 −1 1 · · · 0 0 1
...

...
...

...
...

...
−1 −1 −1 · · · −1 1 1
−1 −1 −1 · · · −1 −1 1




. (18.47)

That is, A has entries equal to −1 below the diagonal, 1’s on the diagonal
and in the rightmost column, and 0 elsewhere. For this matrix, the stan-
dard partial pivoting algorithm will do no pivoting, as the diagonal term in

FLOATING POINT 305

the standard order is at each step at least as large as the entries below it.
However, the entries in the right-hand column grow exponentially, so that if
A = LU , then ‖U‖∞ = 2n−1. In particular, it is easy to see that L and A
agree on and below the diagonal and that U has 1’s on the diagonal except
for the nth entry, the last column is uin = 2i−1, and there are 0’s elsewhere.
If for example (see page 36), n = 105, then ‖U‖∞ ≈ 103010, even though
there are entries in U of order unity. On the other hand, experience shows
that such catastrophic growth is very uncommon [82, 160].

18.3 MORE READING

The book by Trefethen and Bao [160] reports interesting experiments re-
garding the effect (or lack thereof) of floating-point computation on matrix
factorization. The comprehensive text by Higham [82] should be consulted
for a more detailed understanding of the effects of floating-point arithmetic.
There is a recent handbook on floating-point arithmetic [119].

18.4 EXERCISES

Exercise 18.1 Write a code to compute the slowly diverging series

An =

n∑

i=1

1

i

and compare with (18.5), which estimates the error in terms of the partial
sums. What is the worst order? The best order? See if the results “converge”
for one order and diverge for the other. (Hint: you may need to work in a
programming system that allows you to specify “single” precision, such as
“float” in C.)

Exercise 18.2 You can estimate the size of ε in our floating-point model by
ε = inf

{
x > 0

∣∣ f`(f`(1 + x) − 1) > 0
}
. On a computer with binary-based

arithmetic, you can estimate ε by replacing x in the set above by xk = 2−k.
For the first k such that f`(f`(1 + xk)− 1) = 0, ε ≈ xk−1.

Exercise 18.3 Write a code to compute the slowly converging series

π

4
≈

n∑

i=1

(−1)i+1

2i− 1

and compare with the estimate (18.5), which estimates the error in terms of
the partial sums. What is the worst order? The best order? What if you
sum the odd and even terms separately?

Exercise 18.4 Analyze the algorithms in section 1.5 for computing solu-
tions to (1.32) for various values of b. Establish conditions on b that guar-
antee the success of each of the four algorithms.

306 CHAPTER 18

Exercise 18.5 Perform some computational experiments with the numeri-
cal methods discussed in chapter 17 to see whether the effects of round-off
error can be easily discerned.

Exercise 18.6 Prove that

ε

k∑

i=1

(1 + ε)i = (1 + ε)k+1 − 1− ε. (18.48)

(Hint: multiply the sum by ((1 + ε)− 1) and see how it telescopes.)

Exercise 18.7 Prove that

(1 + ε)n − 1 ≤ 2nε, (18.49)

provided that n ≤ 1/2ε. (Hint: expand the left-hand side in a binomial series
and bound the terms, or use the fact that log(1 + ε) ≤ ε for ε > 0.)

Exercise 18.8 Justify all the steps in (18.18).

Exercise 18.9 Backward error analysis expresses

Ãn =
n∑

i=1

ai(1 + γi). (18.50)

This represents the computed sum as the exact sum with modified summands.
Develop an analysis of the size of the γi’s in terms of the δi’s in (18.2).

Exercise 18.10 Prove that

π2

6
+

n−1∑

i=1

1

i
− n− 1

n
≤ 2 + logn. (18.51)

(Hint: see (13.81) for an estimate of the sum when n > 3. For n = 1, 2
make a direct evaluation.)

Exercise 18.11 Prove that κ(A) ≥ 1 for any matrix A, where κ(A) =
‖A‖‖A−1‖ is the condition number of A. Show that this holds for any choice
of norm. (Hint: note that 1 = ‖AA−1‖ and apply (6.3).)

Exercise 18.12 Prove that κ(tA) = κ(A) for any matrix A and scalar t,
where κ(A) = ‖A‖‖A−1‖ is the condition number of A. Show that this holds
for any choice of norm. Here tA is the matrix with entries taij if A = (aij).
(Hint: note that 1 = ‖AA−1‖ and apply (6.3).)

Exercise 18.13 Estimate the term of order ε2 in (18.23) and determine
how it affects the subsequent statements regarding using A<

k as an “exact”
sum.

FLOATING POINT 307

Exercise 18.14 The following is a more conventional version of (18.39).
Suppose that AX = F and ÃX̃ = F̃ . Prove that

‖X − X̃‖
‖X‖ ≤ κ(A)

(
1− κ(A)

‖A− Ã‖
‖A‖

)−1(
‖F − F̃‖
‖F‖ +

‖A− Ã‖
‖A‖

)
,

(18.52)
where κ(A) = ‖A‖‖A−1‖ is the condition number of A.

Exercise 18.15 Experiment with different ways of computing Stirling’s for-
mula (12.80). Find a way to control the size of the numerator and denom-
inator. (Hint: write each as a product of n terms and write the quotient of
the product as the product of the quotients.)

Exercise 18.16 Experiment computationally with solving Ax = f , where
A is the n × n matrix (4.20). Start with a given x and compute f = Ax
by matrix-vector multiplication. Then use a standard routine (e.g., y=A\f
in octave) to “solve” Ay = f and compare x to y (e.g., monitor the value
of ‖x− y‖/‖x‖) for different x and different values of n). Also compute the
size of the condition number κ(A) = ‖A‖‖A−1‖ and monitor the value of
‖x − y‖/κ(A)‖x‖. Compare the choices where x is all 1’s (xi = 1 for all
i = 1, . . . , n) and x is random (e.g., x=rand(n,1) in octave).

Exercise 18.17 Show that the inverse of the n × n Hilbert matrix H in
(4.14) and (4.15) has entries of order one and exponentially large. In par-
ticular, show that

(H−1)11 =

n∑

i=1

1

j2
≈ π√

6

(H−1)nn =u−2
nn > 22n (for n > 2),

(18.53)

where H = U?U is the Cholesky factorization of H given by (4.16). (Hint:
to estimate the size of unn, see exercise 4.5.)

Exercise 18.18 Experiment computationally with solving Hx = f , where
H is the n × n Hilbert matrix in (4.14) and (4.15). Start with a given x
and compute f = Hx by matrix multiplication. Then use a standard routine
(e.g., y=H\f in octave) to “solve” Hy = f and compare x to y (e.g., monitor
the value of ‖x − y‖/‖x‖) for different x and different values of n). Also
compute the size of the condition number κ(H) = ‖H‖‖H−1‖ and monitor
the value of ‖x−y‖/κ(H)‖x‖. Compare the choices where x is all 1’s (xi = 1
for all i = 1, . . . , n) and x is random (e.g., x=rand(n,1) in octave).

308 CHAPTER 18

18.5 SOLUTIONS

Solution of Exercise 18.7. Let r = nε. Recall that r ≤ 1
2 . Write

(1 + ε)n − 1 =

n∑

i=1

(
n
i

)
εi =

n∑

i=1

n!

(n− i)!i!ε
i

=

n∑

i=1

i−1∏

k=0

n− k
i− k ε ≤

n∑

i=1

(nε)k

=

n∑

i=1

rk =
r − rn+1

1− r ≤ r

1− r ≤ 2r.

(18.54)

Alternatively, since log(1 + ε) ≤ ε for ε > 0,

(1 + ε)n = en log(1+ε) ≤ enε.

For x ≤ 1, ex ≤ 1 + 2x since e1 = e = 2.718 · · · < 3 and the exponential
function is strictly increasing. Therefore, (1+ε)n ≤ 1+2εn, provided εn ≤ 1.

Solution of Exercise 18.14. Subtract AX = F and ÃX̃ = F̃ to get

A(X − X̃) = F −AX̃ = F − F̃ + (Ã−A)X̃. (18.55)

Multiplying by A−1 and taking norms gives

‖X − X̃‖ ≤ ‖A−1‖
(
‖F − F̃‖+ ‖Ã−A‖‖X̃‖

)
. (18.56)

We have ‖F‖ ≤ ‖A‖‖X‖, so that ‖X‖−1 ≤ ‖A‖/‖F‖. Therefore

‖X − X̃‖
‖X‖ ≤κ(A)

(
‖F − F̃‖
‖F‖ +

‖A− Ã‖
‖A‖

‖X̃‖
‖X‖

)

≤κ(A)

(
‖F − F̃‖
‖F‖ +

‖A− Ã‖
‖A‖

(
1 +
‖X − X̃‖
‖X‖

))
.

(18.57)

Therefore,

‖X − X̃‖
‖X‖

(
1− κ(A)

‖A− Ã‖
‖A‖

)
≤ κ(A)

(
‖F − F̃‖
‖F‖ +

‖A− Ã‖
‖A‖

)
. (18.58)

Chapter Nineteen

Notation

“During the years 1831-80 the strange figure of Benjamin
Peirce (A.B. 1829) completely dominated the situation.
His great natural mathematical talent and originality of
thought, combined with a total inability to put anything
clearly, produced upon his contemporaries a feeling of awe
that amounted almost to dread.” [37]

We follow standard notation in general, but we use some notation that is
different from what is sometimes used.

We will use the notation]a, b[to denote the open interval a < x < b.
Similarly,]a, b] (a < x ≤ b) and [a, b[(a ≤ x < b) denote the corresponding
half-open intervals.

We use a tall vertical line as the separator in our notation for a set. Thus
]a, b] =

{
x
∣∣ a < x ≤ b

}
.

When the infimum of a set is known to be attained, we will often write
min{· · · } for inf{· · · }, and similarly for max and sup.

We use the notation “argmin” to denote the point at which a minimum
takes place. Thus argminφ(r) is the value of r0 (if it exists), where φ(r0) =
min φ(r), where the minimum is taken over some set S. We can similarly
define argmin

{
φ(r)

∣∣ r ∈ S
}

in the same way.

We use the notation f := g to mean “f is defined to be g.” Sometimes
the definition comes first, so we write g =: f in that case.

We use the notation x ← y in an algorithm to mean that (the value of)
y is assigned to (the value of) x. This notation is used instead of an equal
sign (=), which is used in many programming languages.

We generally use capital letters for matrices but frequently denote their
entries by lowercase. Thus the entries in A are denoted by aij , and those
of B by bij . We use the notation B = A? for the conjugate transpose:
bij = aji, where z denotes the complex conjugate of z. The same notation
applies to vectors as well: v? performs the complex conjugate and switches
from a column vector to a row vector (or conversely).

We write the transpose as AT or vT for a matrix or vector, respectively. In
particular, we often write a (column) vector as v = (a, b, c, d, e, f, g)T to save
space. Of course, for real matrices, AT = A?, and similarly for real vectors.

310 CHAPTER 19

An expression of the form g(x) = O (f(x)) means that |g(x)| ≤ C|f(x)|
for some constant C <∞.

For a function f , we use the expression f ≡ 0 to mean that f is “identically
zero.” That is, we mean that f(x) = 0 for all x in the domain of f .

We use R to denote the field of real numbers, and C to denote the field
of complex numbers. For a complex number z = r + it, we write r = Re z
and t = Imz. The notation `p is introduced in section 5.1.1 to denote Fn

endowed with the p-norm, where Fn denotes either Rn or Cn.

We define sign(t) to be 1 when t ≥ 0 and −1 when t < 0.

We use the notation “logx” for the natural logarithm (elog x = x).

We use the notation Pn to denote the space of polynomials of degree n in
one variable; P∞ denotes the space of all such polynomials, cf. (13.51).

We use the notation ρ(A) for the spectral radius of A, the modulus of the
largest eigenvalue of A, cf. (6.8).

We use the notation κ(A) for the condition number of A, cf. (9.74), sec-
tion 15.1.4 and exercise 18.11. The condition number depends on the par-
ticular norm being used.

Bibliography

[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms
on Matrix Manifolds. Princeton University Press, 2007.

[2] Victor S. Adamchik and David J. Jeffrey. Polynomial transformations
of Tschirnhaus, Bring and Jerrard. SIGSAM Bulletin, 37(3):90–94,
2003.

[3] A. C. Aitken. Studies in practical mathematics. I. the evaluation, with
application, of a certain triple product matrix. Proceedings of the Royal
Society of Edinburgh, 57:172–181, 1937.

[4] A. C. Aitken. Gallipoli to the Somme: Recollections of a New Zealand
Infantryman. Oxford, 1963.

[5] Adrian Albert. Modern Higher Algebra. University of Chicago Press,
1937.

[6] P. S. Aleksandrov, N. I. Akhiezer, B. V. Gnedenko, and A. N. Kol-
mogorov. Sergei Natanovich Bernstein (obituary). Russian Mathe-
matical Surveys, 24(3):169–176, 1969.

[7] Steven C. Althoen and Renate McLaughlin. Gauss-Jordan reduction:
A brief history. American Mathematical Monthly, 94(2):130–142, 1987.

[8] Ned Anderson and Åke Björck. A new high order method of regula falsi
type for computing a root of an equation. BIT Numerical Mathematics,
13:253–264, Sept. 1973. 10.1007/BF01951936.

[9] V. I. Arnold. Remarks on eigenvalues and eigenvectors of Hermitian
matrices, Berry phase, adiabatic connections and quantum Hall effect.
Selecta Mathematica, New Series, 1(1):1–19, 1995.

[10] Vladimir I. Arnold. Ordinary Differential Equations. Springer Verlag,
2006.

[11] Sheldon J. Axler. Linear Algebra Done Right. Springer Verlag, 1997.

[12] Francis Bashforth and John Couch Adams. An Attempt to Test the
Theories of Capillary Action. Cambridge University Press, 1883.

312 BIBLIOGRAPHY

[13] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Math-
ematical Sciences. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1994.

[14] K. Yusuf Billah and Robert H. Scanlan. Resonance, Tacoma Narrows
Bridge failure, and undergraduate physics textbooks. American Jour-
nal of Physics, 59(2):118–124, 1991.

[15] George David Birkhoff. General mean value and remainder theorems
with applications to mechanical differentiation and quadrature. Trans-
actions of the American Mathematical Society, 7(1):107–136, 1906.

[16] J. L. Bona, W. G. Pritchard, and L. R. Scott. Solitary-wave interac-
tion. Physics of Fluids, 23:438–441, 1980.

[17] Jonathan Borwein and Adrian S. Lewis. Convex Analysis and Nonlin-
ear Optimization: Theory and Examples. Springer, 2nd edition, 2005.

[18] John Boyd. Chebyshev and Fourier Spectral Methods. Dover, 2nd
edition, 2001.

[19] Stephen P. Boyd. Convex Optimization. Cambridge University Press,
2004.

[20] Ernst Breitenberger. Gauss’s geodesy and the axiom of paral-
lels. Archive for History of Exact Sciences, 31:273–289, Sept. 1984.
10.1007/BF00327704.

[21] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite
Element Methods. Springer-Verlag, 3rd edition, 2008.

[22] Richard Brent. Algorithms for Minimization Without Derivatives.
Dover Publications, 2002.

[23] C. Brezinski. The life and work of André Cholesky. Numerical Algo-
rithms, 43:279–288, Nov. 2006. 10.1007/s11075-006-9059-x.

[24] C. Brezinski and M. Gross-Cholesky. La vie et les travaux d’André
Cholesky. Bulletin de la Société des Amis de la Bibliothèque de l’Éc.
Polytechnique, 39:7–32, 2005.

[25] Sergey Brin and Lawrence Page. The anatomy of a large-scale hyper-
textual web search engine. Computer Networks and ISDN Systems,
30(1-7):107–117, 1998.

[26] Ezra Brown. Square roots from 1; 24, 51, 10 to Dan Shanks. College
Mathematics Journal, 30(2):82–95, Mar. 1999.

[27] L. Brutman. On the Lebesgue function for polynomial interpolation.
SIAM Journal on Numerical Analysis, 15(4):694–704, 1978.

BIBLIOGRAPHY 313

[28] Richard L. Burden and J. Douglas Faires. Elementary Numerical Anal-
ysis. Brooks/Cole, 8th edition, 2005.

[29] J. C. Butcher. The Numerical Analysis of Ordinary Differential Equa-
tions: Runge-Kutta and General Linear Methods. John Wiley & Sons,
1987.

[30] J. C. Butcher. A history of Runge-Kutta methods. Applied Numerical
Mathematics, 20:247–260, March 1996.

[31] J. C. Butcher. Numerical Methods for Ordinary Differential Equations.
John Wiley & Sons, 2nd edition, 2008.

[32] Florian Cajori. Historical note on the Newton-Raphson method of
approximation. American Mathematical Monthly, 18(2):29–32, 1911.

[33] V. Chellaboina and W. M. Haddad. Is the Frobenius matrix norm
induced? IEEE Transactions on Automatic Control, 40(12):2137–
2139, 1995.

[34] E. W. Cheney. Introduction to Approximation Theory. American
Mathematical Society, Providence, RI, 2nd edition, 2000.

[35] Lindsay N. Childs. A Concrete Introduction to Higher Algebra.
Springer Verlag, 3rd edition, 2009.

[36] William James Cody, Jr. and William Waite. Software Manual for the
Elementary Functions. Prentice-Hall, 1980.

[37] Julian Coolidge. Mathematics 1870–1928. In Samuel Eliot Morison,
editor, The Tercentennial History of Harvard College and University
1636–1936, pages 248–257. Harvard University Press, 1930.

[38] P. D. Crout. A short method for evaluating determinants and solving
systems of linear equations with real or complex coefficients. Transac-
tions of the American Institute of Electrical Engineers, 60:1235–1240,
1941.

[39] Germund Dahlquist and Åke Björck. Numerical Methods. Dover, 2003.

[40] Harold Davenport. Dirichlet. Mathematical Gazette, 43(346):268–269,
1959.

[41] Philip J. Davis and Philip Rabinowitz. Methods of Numerical Integra-
tion. Academic Press, 2nd edition, 1984.

[42] Carl de Boor. Divided differences. Surveys in Approximation Theory,
1:46–69, 2005.

[43] Carl de Boor and Allan Pinkus. Proof of the conjectures of Bernstein
and Erdös concerning the optimal nodes for polynomial interpolation.
Journal of Approximation Theory, 24:289–303, Dec. 1978.

314 BIBLIOGRAPHY

[44] D. W. Decker, H. B. Keller, and C. T. Kelley. Convergence rates
for Newton’s method at singular points. SIAM Journal on Numerical
Analysis, 20(2):296–314, 1983.

[45] James W. Demmel. Applied Numerical Linear Algebra. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 1997.

[46] P. Deuflhard and G. Heindl. Affine invariant convergence theorems for
Newton’s method and extensions to related methods. SIAM Journal
on Numerical Analysis, 16(1):1–10, 1979.

[47] Peter Deuflhard and Andreas Hohmann. Numerical Analysis: A
First Course in Scientific Computation. Walter de Gruyter & Co.,
Hawthorne, NJ, USA, 1995.

[48] Luca Dieci and Donald Estep. Some stability aspects of schemes for
the adaptive integration of stiff initial value problems. SIAM Journal
on Scientific and Statistical Computing, 12:1284–1303, 1991.

[49] E. Dikmen, A. Novoselsky, and M. Vallieres. Shell model calculations
of 108Sb in the sdgh shell. Physical Review C, 66(5):057302, Nov 2002.

[50] S. M. Djouadi. Comments on “Is the Frobenius Matrix Norm In-
duced?”. IEEE Transactions on Automatic Control, 48(3):518–518,
2003.

[51] M. H. Doolittle. Method employed in the solution of normal equations
and the adjustment of a triangulation. U.S. Coast and Geodetic Survey
Report, pages 115–120, 1878.

[52] M. Dowell and P. Jarratt. A modified regula falsi method for computing
the root of an equation. BIT Numerical Mathematics, 11:168–174,
June 1971. 10.1007/BF01934364.

[53] Tobin A. Driscoll, Kim-Chuan Toh, and Lloyd N. Trefethen. From
potential theory to matrix iterations in six steps. SIAM Review,
40(3):547–578, 1998.

[54] William Dunham. Euler: The Master of Us All. Mathematics Associ-
ation of America, Washington, D.C., 1999.

[55] Todd F. Dupont and L. Ridgway Scott. The end-game for Newton
iteration. Research Report UC/CS TR-2010-10, University of Chicago,
Department of Computer Science, 2010.

[56] Alan Edelman. Large dense numerical linear algebra in 1993: the par-
allel computing influence. International Journal of High Performance
Computing Applications, 7(2):113–128, 1993.

[57] Paul Erdös. Problems and results on the theory of interpolation. II.
Journal Acta Mathematica Hungarica, 12(1-2):235–244, 1961.

BIBLIOGRAPHY 315

[58] D. K. Fadeev and V. N. Fadeeva. Computational Methods of Linear
Algebra. W. H. Freeman, 1963.

[59] Richard William Farebrother. A memoir of the life of M. H. Doolit-
tle. Bulletin of the Institute of Mathematics and Its Application,
23(6/7):102, 1987.

[60] P. C. Fenton. A. C. Aitken (1895–1967). Gazette of the Australian
Mathematical Society, Mar. 1995.

[61] C. T. Fike. Computer evaluation of mathematical functions. Prentice-
Hall, 1968.

[62] George Forsythe. Notes, 128. Mathematical Tables and Other Aids to
Computation, 5(36):255–258, 1951.

[63] George E. Forsythe. Solving linear algebraic equations can be inter-
esting. Bulletin of the American Mathematical Society, 59:299–329,
1953.

[64] David Fowler and Eleanor Robson. Square root approximations in old
Babylonian mathematics: YBC 7289 in context. Historia Mathemat-
ica, 25:366–378, Nov. 1998.

[65] L. Fox, H. D. Huskey, and J. H. Wilkinson. Notes on the solution of
algebraic linear simultaneous equations. Quarterly Journal Mechanics
and Applied Mathematics, 1(1):149–173, 1948.

[66] Herman H. Goldstine. A History of Numerical Analysis from the 16th
through the 19th century. Springer, 1977.

[67] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Dover,
3rd edition, 1996.

[68] Gene H. Golub and Dianne P. O’Leary. Some history of the conjugate
gradient and Lanczos algorithms: 1948–1976. SIAM Review, 31(1):50–
102, 1989.

[69] Ronald Gowing. Roger Cotes–Natural Philosopher. Cambridge Uni-
versity Press, 1983.

[70] K. R. Grazier, W. I. Newman, W. M. Kaula, and J. M. Hyman. Dy-
namical evolution of planetesimals in the outer solar system. Icarus,
140:341–352, 1999.

[71] Anne Greenbaum. Iterative methods for solving linear systems. Society
for Industrial and Applied Mathematics, Philadelphia, PA, 1997.

[72] David Alan Grier. When Computers Were Human. Princeton Univer-
sity Press, 2005.

316 BIBLIOGRAPHY

[73] Wolfgang Hackbusch. Iterative Solution of Large Sparse Systems of
Equations. Springer, 1993.

[74] E. Hairer, Christian Lubich, and G. Wanner. Geometric Numerical
Integration: Structure-Preserving Algorithms for Ordinary Differential
Equations. Springer, 2nd edition, 2006.

[75] E. Hairer, Syvert P. Nørsett, and G. Wanner. Solving Ordinary Dif-
ferential Equations I: Nonstiff Problems. Springer, 2002.

[76] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II:
Stiff and Differential-Algebraic Problems. Springer, 2004.

[77] Anders Hald. A History of Mathematical Statistics. John Wiley &
Sons, 1998.

[78] John Fraser Hart et al. Computer Approximations. Krieger, 1978.

[79] Peter Henrici. Discrete Variable Methods in Ordinary Differential
Equations. John Wiley & Sons, 1962.

[80] Peter Henrici. Elements of Numerical Analysis. John Wiley & Sons,
1964.

[81] V. Hernández, J. E. Román, A. Tomás, and V. Vidal. A sur-
vey of software for sparse eigenvalue problems. Technical Report
SLEPc Technical Report STR-6, Universidad Politecnica de Valencia,
http://www.grycap.upv.es/slepc, 2005.

[82] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms.
Society for Industrial and Applied Mathematics, Philadelphia, PA, 2nd
edition, 2002.

[83] Nicholas J. Higham. The numerical stability of barycentric Lagrange
interpolation. IMA Journal of Numerical Analysis, 24(4):547–556,
2004.

[84] Alston S. Householder. Principles of Numerical Analysis. McGraw-
Hill, 1953.

[85] I. M. L. Hunter. An exceptional talent for calculative thinking. British
Journal of Psychology, 53(3):243–258, 1962.

[86] E. Isaacson and H. B. Keller. Analysis of Numerical Methods. Dover,
1994.

[87] Nathan Jacobson. Lectures in Abstract Algebra II. Linear algebra.
Springer Verlag, 1953.

[88] Ioan James. Remarkable Mathematicians: From Euler to von Neu-
mann. Cambridge University Press, 2003.

BIBLIOGRAPHY 317

[89] K. R. James and W. Riha. Convergence criteria for successive overre-
laxation. SIAM Journal on Numerical Analysis, 12(2):137–143, 1975.

[90] Glen Jeh and Jennifer Widom. Scaling personalized web search. In
WWW ’03: Proceedings of the 12th international conference on World
Wide Web, pages 271–279, New York, NY, USA, 2003. Association for
Computing Machinery, New York, NY.

[91] D. Kalman. Uncommon Mathematical Excursions: Polynomia and
Related Realms. Mathematical Association of America, 2008.

[92] Shen Kangshen, John N. Crossley, and Anthony W.-C. Lun. The Nine
Chapters of the Mathematical Art. Oxford, 1999.

[93] Daniel Kehlmann. Measuring the World. Vintage, 2007.

[94] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
1995.

[95] C. T. Kelley. Iterative Methods for Optimization. Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1995.

[96] Theodore A. Kilgore. A characterization of the Lagrange interpolating
projection with minimal Tchebycheff norm. Journal of Approximation
Theory, 24:273–288, Dec. 1978.

[97] D. A. Knoll and D. E. Keyes. Jacobian-free Newton-Krylov methods:
A survey of approaches and applications. Journal of Computational
Physics, 193(2):357–397, 2004.

[98] Gina Bari Kolata. Geodesy: Dealing with an enormous computer task.
Science, 200(4340):421–466, 1978.

[99] Nick Kollerstrom. Thomas Simpson and “Newton’s method of ap-
proximation:” an enduring myth. British Journal for the History of
Science, 25(3):347–354, 1992.

[100] Vladimir Ivanovich Krylov. Approximate Calculation of Integrals.
Macmillan Press, 1962.

[101] J. L. Lagrange. Analytical Mechanics. Springer, 2001.

[102] F. M. Larkin. Root-finding by fitting rational functions. Mathematics
of Computation, 35(151):803–816, 1980.

[103] Imre Latakos. Proofs and Refutations. Cambridge University Press,
1976.

[104] Norman Lebovitz. Ordinary Differential Equations. Brooks/Cole,
2002.

318 BIBLIOGRAPHY

[105] W. Ledermann. Issai Schur and his school in Berlin. Bulletin of the
London Mathematical Society, 15(2):97–106, 1983.

[106] Hou-Biao Li and Ting-Zhu Huang. On a new criterion for the H-matrix
property. Applied Mathematics Letters, 19:1134–1142, 2006.

[107] Ren-Cang Li. Near optimality of Chebyshev interpolation for ele-
mentary function computations. IEEE Transactions on Computers,
53(6):678–687, 2004.

[108] Elliott H. Lieb and Michael Loss. Analysis. American Mathematical
Society, Providence, RI, 2nd edition, 2001.

[109] A. Logg. Multi-adaptive Galerkin methods for ODEs I. SIAM Journal
on Scientific Computing, 24(6):1879–1902, 2003.

[110] A. Logg. Automating the finite element method. Archives of Compu-
tational Methods in Engineering, 14(2):93–138, 2007.

[111] G. G. Lorentz. Approximation of Functions. Chelsea, New York, 2nd
edition, 1986.

[112] G. G. Lorentz and K. L. Zeller. Birkhoff interpolation. SIAM Journal
on Numerical Analysis, 8(1):43–48, 1971.

[113] L. A. Lyusternik, O. A. Chervonenkis, and A. R. Yanpol’skii. Handbook
for Computing Elementary Functions. Pergamon Press, 1965.

[114] Robert S. Maier. On reducing the Heun equation to the hypergeometric
equation. Journal of Differential Equations, 213:171–203, 2005.

[115] L. Maligranda. Why Hölder’s inequality should be called Rogers’ in-
equality. Mathematical Inequalities and Applications, 1(1):69–83, 1998.

[116] Roy Mathias. Proof of two matrix theorems via triangular factoriza-
tions. Technical report, University of Birmingham.

[117] Frank McSherry. A uniform approach to accelerated PageRank compu-
tation. In WWW ’05: Proceedings of the 14th International Conference
on the World Wide Web, pages 575–582, New York, NY, USA, 2005.
Association for Computing Machinery, New York, NY.

[118] Gérard Meurant. The Lanczos and Conjugate Gradient Algorithms.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
Philadelphia, PA, 2006.

[119] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-
Pierre Jeannerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie
Revol, Damien Stehlé, and Serge Torres. Handbook of Floating-Point
Arithmetic. Birkhäuser Boston, 2010. ACM G.1.0; G.1.2; G.4; B.2.0;
B.2.4; F.2.1., ISBN 978-0-8176-4704-9.

BIBLIOGRAPHY 319

[120] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer,
2nd edition, 2006.

[121] J. Tinsley Oden and Leszek F. Demkowicz. Applied Functional Anal-
ysis. CRC Press, 1996.

[122] A. M. Ostrowski. Solution of Equations and Systems of Equations.
Academic Press, 1966.

[123] B. N. Parlett. The Rayleigh quotient iteration and some gener-
alizations for nonnormal matrices. Mathematics of Computation,
28(127):679–693, 1974.

[124] Beresford Parlett. Very early days of matrix computations. SIAM
News, 36(9), 2003.

[125] Paul C. Pasles. Benjamin Franklin’s Numbers: An Unsung Mathemat-
ical Odyssey. Princeton University Press, 2008.

[126] David A. Patterson and John L. Hennessy. Computer Organization
and Design: The Hardware/Software Interface. Morgan Kaufmann,
3rd edition, 2007.

[127] Giuseppe Peano. Resto nelle formule di quadratura, espresso con un
integrale definito. ATTI della Reale Accademia Dei Lincei-Rendiconti,
22:562–569, 1913.

[128] G. Peters and J. H. Wilkinson. Inverse iteration, ill-conditioned equa-
tions and Newton’s method. SIAM Review, 21(3):339–360, 1979.

[129] Clifford A. Pickover. Archimedes to Hawking. Oxford, 2008.

[130] M. J. D. Powell. Approximation Theory and Methods. Cambridge
University Press, 1981.

[131] William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery. Numerical Recipes. Cambridge University Press,
3rd edition, 2007.

[132] Liqun Qi. Eigenvalues and invariants of tensors. Journal of Mathe-
matical Analysis and Applications, 325(2):1363 – 1377, 2007.

[133] Liqun Qi, W. Sun, and Y. Wang. Numerical multilinear algebra and its
applications. Frontiers of Mathematics in China, 2(4):501–526, 2007.

[134] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical Math-
ematics. Springer, 2nd edition, 2007.

[135] Th. M. Rassias, H. M. Srivastava, and A. Yanushauskas. Topics in
Polynomials of One and Several Variables and Their Applications.
River Edge, 1993.

320 BIBLIOGRAPHY

[136] Edgar Reich. On the convergence of the classical iterative method of
solving linear simultaneous equations. Annals of Mathematical Statis-
tics, 20(3):448–451, 1949.

[137] J. R. Rice. The Approximation of Functions, volume 1. Addison-
Wesley, 1969.

[138] J. R. Rice. The Approximation of Functions, volume 2. Addison-
Wesley, 1969.

[139] Ralph Tyrell Rockafellar. Convex Analysis. Princeton University
Press, 1996.

[140] R. Roy. The work of Chebyshev on orthogonal polynomials. In Th. M.
Rassias, H. M. Srivastava, and A. Yanushauskas, editors, Topics in
Polynomials of One and Several Variables and Their Applications,
pages 495–512. River Edge, 1993.

[141] Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, 3rd
edition, 1976.

[142] Walter Rudin. Real and Complex Analysis. McGraw-Hill, 3rd edition,
1986.

[143] Hans Schneider. Olga Taussky-Todd’s influence on matrix theory and
matrix theorists. Linear & Multilinear Alg., 5:197–224, 1977.

[144] L. R. Scott, T. W. Clark, and B. Bagheri. Scientific Parlallel Com-
puting. Princeton University Press, 2005.

[145] L. R. Scott and Xie Dexuan. Parallel linear stationary iterative meth-
ods. In Petter Bjørstad and Mitchell Luskin, editors, Parallel solution
of partial differential equations, pages 31–55. Springer–Verlag, 2000.

[146] J. R. Silvester. Determinants of block matrices. Mathematical Gazette,
84(501):460–467, 2000.

[147] Simon J. Smith. Lebesgue constants in polynomial interpolation. An-
nales Mathematicae et Informaticae, 33:109–123, 2006.

[148] Arnold Sommerfeld. Mechanics. Academic Press, 1952.

[149] Blair K. Spearman and Kenneth S. Williams. Characterization of
solvable quintics x5 + ax + b. American Mathematical Monthly,
101(10):986–992, 1994.

[150] Neal Stephenson. The Baroque Cycle, Volume 1: Quicksilver. Harper
Perennial, 2004.

[151] G. W. Stewart. Matrix Algorithms, Volume I: Basic Decompositions.
Philadelphia : Society for Industrial and Applied Mathematics, 1998.

BIBLIOGRAPHY 321

[152] G. W. Stewart. Matrix Algorithms, Volume II: Eigenvalue Problems.
Philadelphia : Society for Industrial and Applied Mathematics, 2001.

[153] G. Strang and K. Borre. Linear Algebra, Geodesy, and GPS. Wellesley
Cambridge Press, 1997.

[154] V. Szebehely, D. Saari, J. Waldvogel, and U. Kirchgraber. Eduard
L. Stiefel (1909–1978). Celestial Mechanics and Dynamical Astronomy,
21:2–4, Jan. 1980. 10.1007/BF01230237.

[155] René Taton. Evariste Galois and his contemporaries. Bulletin of the
London Mathematical Society, 15(2):107–118, 1983.

[156] David J. Thomas and Judith M. Smith. Joseph Raphson, F.R.S. Notes
and Records of the Royal Society of London, 44(2):151–167, 1990.

[157] John Todd. Numerical analysis at the National Bureau of Standards.
SIAM Review, 17(2):361–370, 1975.

[158] H. R. Tolley and Mordecai Ezekiel. The Doolittle method for solving
multiple correlation equations versus the Kelley-Salisbury “iteration”
method. Journal of the American Statistical Association, 22(160):497–
500, 1927.

[159] Lloyd N. Trefethen. Is Gauss quadrature better than Clenshaw-Curtis?
SIAM Review, 50(1):67–87, 2008.

[160] Lloyd N. Trefethen and David Bau, III. Numerical Linear Algebra.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
1997.

[161] A. M. Turing. Rounding-off errors in matrix processes. Quarterly
Journal of Mechanics and Applied Mathematics, 1(1):287–308, 1948.

[162] Herbert Westren Turnbull. University of St. Andrews James Gregory
Tercentenary. St. Andrews: The University, 1939.

[163] Ian Tweddle. The prickly genius–Colin Maclaurin (1698–1746). Math-
ematical Gazette, 82(495):373–378, 1998.

[164] Robert A. van de Geijn and Enrique S. Quintana-Ort́ı. The Science
of Programming Matrix Computations. www.lulu.com, 2008.

[165] Henk A. van der Vorst. Iterative Krylov Methods for Large Linear
Systems. Cambridge University Press, 2003.

[166] F. Varadi, B. Runnegar, and M. Ghil. Successive refinements in long-
term integrations of planetary orbits. Astrophysical Journal, 592:620–
630, 2003.

[167] Richard S. Varga. Gershgorin and His Circles. Springer, 2000.

322 BIBLIOGRAPHY

[168] Richard S. Varga. Matrix Iterative Analysis. Springer, 2nd edition,
2000.

[169] John H. Welsch. Algorithm 280: Abscissas and weights for Gregory
quadrature. Communincations of the ACM, 9(4):271, 1966.

[170] E. T. Whittaker and G. Robinson. The Calculus of Observations: A
Treatise on Numerical Mathematics. Blackie, 1942.

[171] E. T. Whittaker and G. Robinson. The Calculus of Observations: An
Introduction to Numerical Analysis. Dover, 4th edition, 1967.

[172] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford, 1965.

[173] Ragnar Winther. Some superlinear convergence results for the conju-
gate gradient method. SIAM Journal on Numerical Analysis, 17(1):14–
17, 1980.

[174] Tjalling J. Ypma. Historical development of the Newton-Raphson
method. SIAM Review, 37(4):531–551, 1995.

Index

0-stability, 284

accuracy, 1
adaptivity, 2
Aitken, Alexander Craig, 27
arity, 104
assignment, 2

backsubstitution, 37
backward differentiation formula,

287
band structure, 58
banded matrix, 58
bandwidth, 58
BDF, 287
Bernoulli number, 49
Bernoulli, Jakob, 49
Bernstein, Sergei Natanovich, 187
best approximation, 184
Birkhoff, George David, 175
Bring radical, 233

cache, 53
cache hit, 53
cache miss, 53
Cauchy, Augustin Louis, 73
central processing unit, 53
CG: conjugate gradients, 133
characteristic polynomial, 282
Chebyshev, Pafnuty Lvovich, 167
Cholesky factorization, 56
chord method, 20
compact factorization, 51
complete flag, 88
complexity, 2
composite rules, 208
condition number, 145, 246

conjugate gradient method, 133
consistency, 1
contraction, 260
contraction mapping principle, 269
convergent matrix, 89
CPU, 53

diagonally dominant, 118
divided difference, 154
Doolittle, Myrick Hascall, 52
double precision accumulation, 300

efficiency, 2
Euler, Leonhard, 168
Euler-Maclaurin formula, 217
explicit Euler, 262

fangcheng, 35
fixed point, 2
fixed-point iteration, 2
flag, 88
forward substitution, 38
Frobenius, Ferdinand Georg, 83
full pivoting, 44
functional iteration, 16

Gauss points, 207
Gauss, Johann Carl Friedrich, 35
generalized diagonal dominance, 124
generating function, 223
global convergence, 6
Gram-Schmidt, 75
greedy algorithm, 137

Henrici, Peter, 288
Hessenberg form, 234
Hessenberg matrix, 234
Hestenes, Magnus Rudolph, 147

324 INDEX

Hilbert matrix, 57
Hilbert, David, 57
homotopy method, 227
Hölder, Otto Ludwig, 69

implicit Euler, 262
improved Euler, 280
inner-product spaces, 66
interpolate, 152
inverse iteration, 250
irreducible, 128
iterative improvement, 304

Jordan matrix, 248

Kahan, W. M. (a.k.a. Velvel), 300
kernel, 69
Klein, Felix, 128
Kummer, Ernst, 69

Lagrange, Joseph-Louis, 152
Lanczos, Cornelius, 234
Lebesgue constant, 171
Lebesgue function, 171
line search, 134
linear form, 173
linear functional, 173
link relevance, 226
Lipschitz, Rudolf Otto Sigismund, 17
lower-Hessenberg matrix, 234
lower-triangular matrix, 37
LU factorization, 38

matrix free methods, 111
matrix splitting, 117
maximum norm, 157
memory references, 51
midpoint rule, 204
Minkowski, Hermann, 70
modulus of continuity, 189
Moore, E. H., xii
multipliers, 36

Newton, Isaac, 15
nilpotent, 91
norm, 65

normal equations, 76

octave, 3
ODE: ordinary differential equation,

257
operation estimates, 40
order of exactness, 205
orthogonality condition, 74

partial pivoting, 44
Peano kernel, 211
Peirce, Benjamin, 309
petaflop, 35
Picard, Charles Emile, 258
pivoting, 44
predictor-corrector, 280
projection, 153

QR factorization/decomposition, 76
quadrature, 203
quadrature coefficients, 203

Raphson, Joseph, 21
Rayleigh a.k.a. John William Strutt,

232
reducible, 128
residual, 134
root condition, 283

Schmidt, Erhard, 75
Schur decomposition, 84
Schur, Issai, 81
Schwarz, Karl Hermann Amandus,

73
search direction, 134
secant method, 23
Seidel, Philipp Ludwig, 118
semigroup property, 259
Sherman-Morrison formula, 62
shift index, 91
Simpson’s rule, 204
Simpson, Thomas, 21
singular value decomposition, 253
singular values, 253
sparse, 58
sparsity, 51

INDEX 325

spectral radius, 83
splitting, 117
stability, 1
stable, 9
Stiefel, Eduard, 147
Stokes, George, 118
Strang, Gilbert, 288
supports a flag, 88

Taylor polynomial, 101
tensor, 104
tensor eigenproblem, 109
trapezoidal rule, 204
triangular matrix, 37

Turing, Alan, 56

ultraradical, 233
uniquely determines, 174
unisolvent, 174
unit ball, 68
upper-Hessenberg matrix, 234
upper-triangular matrix, 37

Weierstrass, Karl Theodor Wilhelm,
151

work estimates, 40

zero stability, 284

	Contents
	Preface
	Chapter 1. Numerical Algorithms
	Chapter 2. Nonlinear Equations
	Chapter 3. Linear Systems
	Chapter 4. Direct Solvers
	Chapter 5. Vector Spaces
	Chapter 6. Operators
	Chapter 7. Nonlinear Systems
	Chapter 8. Iterative Methods
	Chapter 9. Conjugate Gradients
	Chapter 10. Polynomial Interpolation
	Chapter 11. Chebyshev and Hermite Interpolation
	Chapter 12. Approximation Theory
	Chapter 13. Numerical Quadrature
	Chapter 14. Eigenvalue Problems
	Chapter 15. Eigenvalue Algorithms
	Chapter 16. Ordinary Differential Equations
	Chapter 17. Higher-order ODE Discretization Methods
	Chapter 18. Floating Point
	Chapter 19. Notation
	Bibliography
	Index

