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Abstract

In this paper, we consider the design of a system in which

1 Introduction
As smartphones proliferate, their sensors are generating a

Internet-connected mobile users contribute sensor data asleluge of data. One tool for handling this data deluge is sta-
training samples, and collaborate on building a model for tistical machine classification; classifiers can autonadltic
classification tasks such as activity or context recognitio distinguish activity, context, people, objects, and sdhfor
Constructing the model can naturally be performed by a ser- We envision classifiers being used extensively in the future
vice running in the cloud, but users may be more inclined mobile computing applications; already, many pieces of re-
to contribute training samples if the privacy of these data search have used standard machine learning classifiers (Sec

could be ensured. Thus, in this paper, we focupvacy-

preserving collaborative learnindor the mobile setting,

tion5).
One way to build robust classifiers is througtllabora-

which addresses several competing challenges not previtive learning[42, 8, 5], in which mobile users contribute sen-
ously considered in the literature: supporting comples<la sor data as training samples. For example, mobile users may
sification methods like support vector machines, respgctin submit statistical summaries (features) extracted frodicau
mobile computing and communication constraints, and en- recordings of their ambient environment, which can be used

abling user-determined privacy levels. Our approach,|Bjck

to train a model to robustly recognize the environment that a

ensures classification accuracy even in the presence of siguser is in: a mall, an office, riding public transit, and satfor
nificantly perturbed training samples, is robust to methods Collaborative learning can leverage user diversity fousib
that attempt to infer the original data or poison the model, ness, since multiple users can more easily cover a wider va-
and imposes minimal costs. We validate these claims usingriety of scenarios than a single user.

a user study, many real-world datasets and two different im-

plementations of Pickle.
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We envision that collaborative learning will be enabled
by a software system that efficiently collects training sam-
ples from contributors, generates statistical classijfiansl
makes these classifiers available to mobile users, or saftwa
vendors. In this paper, we address the challenges invaived i
designing a system for collaborative learning. Such a syste
must support the popular classifiers (such as Support-Kecto
Machines or SVMs and k-Nearest Neighbors or kNNs), must
scale to hundred or more contributors, and must incentivize
user contribution (Sectio). To our knowledge, no prior
work has discussed the design of a collaborative learnisg sy
tem with these capabilities.

An impediment to scaling collaborative learning is the
computational cost of constructing the classifier fromrirai
ing data. With the advent of cloud computing, a natural way
to address this cost is to let mobile users submit their senso
data to a cloud service which performs the classifier con-
struction. In such a design, however, to incentivize users
to participate in collaborative learning it is essentiaketo
sure the privacy of the submitted samples. Training sam-
ples might accidentally contain sensitive informationa-fe
tures extracted from audio clips can be used to approximatel
reconstruct the original sound1, 18], and may reveal over
70% of the words in spoken sentences (Secddidih

In this paper, we present Pickle, a novel approach to
privacy-preserving collaborative learning. Pickle is dxhs



on the following observation: the popular classifiers rely Collaborative learning results in classifiers of activity,

on computing mathematical relationships such as the innerof environmental or physiological conditions etc. Many
products and the Euclidean distances between pairs of subproposed systems in the mobile sensing literature (e.g.,
mitted training samples. Pickle perturbs the training data [35, 8, 10, 43, 4]) have used machine-learning classifiers, of-
on the mobile device using lightweight transformations to ten generated by using training samples frosirgle user.
preserve the privacy of the individual training sampleg, bu Due to the diversity of environments or human physiology,
regresses these mathematical relationships betweemtrain classifiers that use data from a single user may not be robust
samples in a unique way, thereby preserving the accuracy ofto a wide range of inputs. Collaborative learning overcomes
classification. Beyond addressing the challenges disdusse this limitation by exploiting the diversity in training saies
above, Pickle has many desirable properties: it requires noprovided by multiple users. More generally, collaborative
coordination among users and all communication is betweenlearning is applicable in cases, such as human activitygreco

a user and the cloud; it allows users to independently tunenition or SMS spam filtering, where a single user’s data is far
the level of privacy for perturbing their submitted traigin  from being representative.

samples; finally, it can be made robust to poisoning attacks  Designing a system for collaborative learning sounds con-
and is collusion-resistant. Pickle’s design is heavilyunfl  ceptually straightforward, but has many underlying chal-
enced by the requirements of mobile sensing applications,lenges. Before we describe these challenges, we give the
and occupies a unique niche in the body of work on privacy- reader a brief introduction to machine-learning classifier
preserving methods for classifier construction (Sechjpn The Basics of Classification. The first step in many

A user study demonstrates that Pickle preserves privacymachine-learning algorithms #ature extraction In this
effectively when building a speaker recognition classifier step, the raw sensor data (an image, an audio clip, or other
(Section4.1); less than 2% of words in sentences recon- sensor data) are transformed into a vector of features that
structed by attacking Pickle transformations were reacngni  are most likely to be relevant to the classification task at
able, and most of these were stop words. Results fromhand. Examples of features in images include edges, con-
a prototype (Sectiod.2) show that Pickle communication  tours, and blobs. For audio clips, the fundamental frequenc
and storage costs are small, classification decisions can behe spreads and the peaks of the spectrum, and the number
made quickly on modern smartphones, and model train- of harmonics are all examples of features.
ing can be made to scale using parallelism. Finally, using  cjassifiers are first trained on a set of training samples
several datasets, we demonstrate (Secti@nthat Pickle’s denoted byD = {(x1,y1), (X2,¥2), ..., (Xn,Yn) } Wherex; €
privacy-preserving perturbation is robust to regressitn a RP js thei-th training feature vector, any is a categorical
tacks in which the cloud attempts to reconstruct the origi- yariable representing the class to whigtbelongs. For ex-
nal training samples. The reconstructed samples are signif ample,x; may be a list of spectral features of an audio clip,
Despite this, Pickle achieves classification accuracyithat ¢lip was recorded in a bus). In what follows, we Jédo
within 5%, in many cases, of the accuracy obtained without genote the data matrix witk as column vectors, and or

any privacy transformation. 1/ to refer to users.
The goal of classification is to construct a classifier using
2 Motivation and Challenges D such that when presented with a new test feature vector
Modern phones are equipped with a wide variety of sen- X the classifier outputs a labglthat approximatex's true
sors. An emerging use of this sensing capabilitgaabo- class membership.
rative learning where multiple users contribute individually One popular, yet simple and powerful, classifier is the k-

collected training samples (usually extracted from raw-sen Nearest-Neighbor (kNN) classifier. Given a feature vextor
sor data) so as to collaboratively construct statisticallel®  and a training seD, kNN finds thek training feature vectors
for tasks in pattern recognition. In this paper, we exploee t ~ Which are the closest tq in terms of the Euclidean distance
design of a system for collaborative learning. between them:

What is Collaborative Learning? As an example of col- X —xi[|3 = X"x— 2x"%; + x"x;. (1)
laborative learning, consider individual users who cdlec

dio clips from their ambient environments. These users may | N€ classifier then outputs the majority of all the nearest
be part of a social network. Alternatively, they may have neighbors’ labels as the label fri(ties broken arbitrarily).

no knowledge of each other and may have volunteered to  SUppOrt Vector Machine (SVM) is another popular and
provide samples, in much the same way as volunteers signmore sophlstlc_ated classme_r. It I_everages a non-linegr-ma
up for distributed computing efforts like SETI@HOME; in  PiNg to mapx into a very high-dimensional feature space.
this sense, we focus aspencollaborative learning. Train- In th!s feature space, it then seeks a linear decision boqnd-
ing samples extracted from these clips are collected ardi use & (i-€., @ hyperplane) that partitions the feature spate i

to build a classifier that can determine characteristichef t ~ different classes1fg]. For the purposes of this paper, two
environment: e.g., determine whether a user is at home, ontomputational aspects of this classifier are most relevant:

a bus, in a mall, or dining at a restaurant, etc. As anothew The training process of SVMs rely on computing either the
example, consider a mobile health application that cadlect  inner produck!x; or the Euclidean distandg; — X;||3 be-
patient vital signs to build a model for classifying disease tween pairs of training feature vectors.



e The resulting classifier is composed of one or more of the
submitted training samples — support vectors.
Design Goals and ChallengesA system for open collabo-
rative learning must support three desirable goals.
First, it mustsupport the most commonly-used classifiers

such as the Support Vector Machine (SVM) classifier and the

claim: to conveniently scale open collaborative learnany,
Internet-connected clusterngcessaryand the cloud infras-
tructure has the right pay-as-you-go economic model since
different collaborative learning tasks will have diffetenm-
putational requirements.

However, using the cloud makes it harder to achieve an

k-Nearest Neighbor (kNN) classifier described above. Theseimportant design goal discussed abqwevacy.
popular classifiers are used often in the mobile sensing lit- priyacy and the Threat Model. In cloud-enabled open col-

erature for logical localization7], collaborative video sens-
ing [8], behavioral detection of malward ()], device iden-
tification [40] and so on. Other pieces of work, such as
CenceMe 43, EEMSS {], and Nericell B4] could have
used SVM to get better classification performance.
Second, the system mustaleto classifiers constructed

using training samples from 100 or more users. At this scale,

it is possible to get significant diversity in the trainingrsa
ples in order to enable robust classifiers. A major hurdle for
scaling is computational complexity. Especially for SVM,
the complexity of constructing the classifier is the domtnan
computational task, and using the classifier against test fe

laborative learning, users contribute several trainingdas
to the cloud. Each sample consists of a feature vectord
the associated labgl Both of these may potentially leak
private information to the cloud (as we discuss below, in our
approach we assume the cloud is untrusted), and we consider
each in turn. Before doing so, we note thiatngthe classi-
fier itself poses no privacy thréatsince smartphones have
enough compute power to perform the classification locally
(Sectior4.2).

Depending upon the kind of classifier that the user is con-
tributing to, the labey may leak information. For example,
if the model is being used for activity recognition, a label

ture vectors (i.ex above) is much less expensive. Aswe dis- may indicate that the user was walking or running at a given
cuss later, it takes a few hours on a modern PC to constructjme | this paper, we do not consider label privacy because
a classifier using data from over 100 users; as such, this isihe ysemillingly contributes the labeled feature vectors and
a task well beyond the capabilities of smartphones today. A spoyld have no expectation of privacy with regard to labels.

less crucial, but nevertheless important, scaling contern
network bandwidth usage.

Third, the system must have the rigtdoption incentives
to enable disparate users to contribute training samplgs: (
The system must ensure tpevacy of the submitted sam-
ples, as we discuss below; (2) It must be robust&ba
poisoning a legitimate concern in open collaborative learn-
ing; (3) It must enable users who have not contributed to
the model to use the classifier, but must dis-incentifrize-
riderswho use classifiers directly obtained from other users.
Of these, addressing the privacy goal is most intellectuall
challenging, since the construction of many popular classi
fiers, like SVM or kNN, requires calculations using accurate
feature vectors which may reveal privacy (Sect®n

Consideration of economic incentives for collaborative

crowd sourcing frameworks like Amazon Mechanical Turk

can be adapted to provide appropriate economic incentives.

Cloud-Enabled, Privacy-Preserving Classification. We

However, users may (or should, for reasons discussed be-
low) have an expectation of privacy with respect to infor-
mation that may be leaked by the feature vectors. Feature
vectorsx often consist of a collection of statistical or spec-
tral features of a signal (e.g., the mean, standard dewiatio
the fundamental frequency).

Some features can leak private information. Consider fea-
tures commonly used to distinguish speech from music or
noise B9: the Energy Entropy, Zero-Crossing Rate, Spec-
tral Rolloff, or Spectral Centroid etc. These statisticghaf
speech signals may, unintentionally, reveal informatfuat t
can be used to extract, for example, age, gender or speaker
identity. In experiments we have conducted on audio clips
from the TIMIT dataset20] (details omitted for brevity),
female voices tend to have higher average spectral rolloff
bind average spectral centroid than male voices, while soice
of younger individuals have higher average energy entropy
and lower average zero-crossing rate than voices of the aged
Similar age-related differences in measures of repeated ac

propose to use an approach in which mobile users submittivity have also been observed elsewheie |

training samples (with associated labels) to a cloud, pbssi
at different times over a period of hours or days; the cloud

computes the classifier; the classifier is then sent to mobilethe original raw sensor data.

phones and used for local classification tasks.

Worse yet, a relatively recent finding has shown that,
in some cases, feature vectors can be used to reconstruct
Specifically, a commonly
used feature vector in speech and music classification is

Using the cloud addresses the computational scaling chal-the Mel-frequency cepstrum coefficients (MFCC), which

lenge, since classifier construction can be paralleliz¢aki®
advantage of the cloud’s elastic computing capability. The
cloud provides a rendezvous point for convenient training

data collection from Internet-connected smartphones. Fi-

nally, the cloud provides a platform on which it is possible
to develop a service that provides collaborative learnihg o
different kinds of models (activity/context recognitiam-

age classification, etc.). Indeed, we can make the following

https:/iwww.mturk.com/mturk/welcome

are computed by a sequence of mathematical operations on
the frequency spectrum of the audio signals. A couple of
works [41, 18] have shown that it is possible to approxi-
mately reconstruct the original audio clips, given the MFCC
feature vectors. In Sectiohl, we present the results of an
experiment that quantifies information leakage by MFCC re-
construction.

2Assuming the user can trust the phone software; methods\farieg
this are beyond the scope of this paper.


https://www.mturk.com/mturk/welcome

In the context of collaborative learning, this is an alargnin CLOUD SIDE
finding. When a user submits a set of feature vectors and S -
labels them as being in a cafe (for example), the cloud may P
be able to infer far more information than the user intended ﬂ
'@ L ©)

&
&,

to convey. When the original audio clips are reconstructed,
they may reveal background conversations, the identity of
patrons, and possibly even the location of the specific cafe. user sipe

Statistics
510309 21|qNnd
Perturbed Data
I9PO pagJniiad

A recent, equally alarming, finding is that original images @ @ || @

may be reconstructed from their feature vect&e.[ <Training Data> <Training Data) <Training Data>
Given these findings, we believe it is prudentto ensure the % + *

privacy of feature vectors. The alternative approach,dvoi —— - —a- —

ing feature vectors that are known or might be suspected to B B E

reveal private information, can affect classificatonaeacy e e .o

and may not therefore be desirable. (1) Regression Phase = f..-':. +
One way to preserve the privacyxfs to generaté from (2) Training Phase & .l @

x and send onl the cloud, with the property that, with high o

likelihood, the cloud cannot reconstrucfrom X. Our ap- Figure 1—lllustrating Pickle.

proach randomly perturbs the feature vectors to genérate

but is able to reconstruct some of 'ghe essential_properties 031 Pickle Overview

these feature vectors that are required for classifier nast . . , .

tion, without significantly sacrificing classifier accuraéys In Pickle (Figurel), each users mobile phone takis
we show later, approaches that use other methods like ho-r&ining feature vectors, where each vector Raslements,
momorphic encryption, secure multi-party communication 21d pre-multiplies the resulting x N matrix by aprivate,

or differential privacy make restrictive assumptions that ~ 'a@ndommatrixR, whose dimensionality i x P. This mul-
not apply to our setting. tiplication randomly perturbsthe training feature vectors.

Wi ke the followi . b he th Moreover, we seQ < P, so thisreduces the dimensional-

del T_ﬁ e the fo OW'rr]'g a?t?ltljmptlonsh a ou;_lt cej threat ity of each feature vector. A dimensionality-reducing trans-
model. The user trusts the software on the mobile device 10, 5ti0n js more resilient to reconstruction attacks than
compute and perturb feature vectors correctly, and to &rans e nsjonality preserving on&3l. In Pickle, Ris private to
mit only the perturbed feature vectors and the associated la a participant, so is not known to the cloud, nor to other par-
bels. The user does not trust other users who participate Niicipants (each participant generates his/her own priate
tk:cehcollallbo(rjatwe 'eat:“'_”@]{' nor does shei tr]fJSt any Componen 4, m matrix). This multiplicative perturbation by a private
of the cloud (e.g., t e Inlrastructure, platforms or S&@SK  andom matrix is the key to achieving privacy in Pickle.
The cloud has probabilistic polynomial-time bounded com-

puting resources and may attempt to reconstruct the ofigina A dimensionality-reducing transformation does not pre-
feature vectors. Servers on the cloud may collude with eachS€TvVe important relationships between the feature vectors
other, if necessary, to recontruct the original featureiorsc such as Euclidean distances and inner products. For irestanc

Moreover, the cloud may collude with uskto attempttore- e inneTr pTroduct between two data poi)thandxj now be-
construct useB’s original feature vectors by directly sending  comesx; R'Rx;. This is not identical ta¢ x; unlessR is

B's perturbed feature vectors fa Also, userB’s perturbed an orthonormal matrix which necessarily preserves dimen-
feature vectors may be included in the classifiers sedt to ~ sionality. A dimensionality-reducing transformation cm
andA may try to reconstruds’s original feature vectors. proximatelypreserve Euclidean distanced], but even this

Given that the cloud is untrusted, what incentive is there property is lost Wh_en O!'ffere!“ participants use dlfferpn{
for the cloud to build the classifier correctly (i.e., why st vate random matrices; in this case, the Euclidean distances

users trust the cloud for developing accurate classifiéi®? and inner products for perturbed feature vectors fifn

believe market pressures will force providers of the cellab Iieorre]r;a liﬁg;ses rg(lja:%mgsiri aspgg?]x;rinitﬁilélarr)]rﬂes(ejrgeg d(lajlijg)sré
orative learning “service” to provide accurate resultpees P 9 y deg

cially if there is a revenue opportunity in collaborativarte- fication accuracy when used directly as inputs to classifiers

ing. Exploring these revenue opportunities is beyond the (Sectlo_n4.3). ) S
scope of this work, but we believe thesdll be revenue op- In this paper, our focus is on methods that maintain high
portunities, since a service provider can sell accurate-cla classification accuracy while preserving privacy. The nt
sifers (of, for example, context) to a large population (e.g contribution of this paper is the design of a novel approacht
all Facebook users who may be interested in automatically @pproximately reconstruct those relationships using esgr

updating their status based on context). sion, without cor_npro_mising th(_a privacy of the _original fea-
ture vectors, while still respecting the processing and com

. ) ) ) munication constraints of mobile devices.
3 Privacy-Preserving Collaborative Learning To do this, Pickle learns a statistical model to compen-

In this section, we discuss a novel approach to preservingsate for distortions in those relationships, then appraxaty
the privacy of collaborative learning, called Pickle. reconstructs distance or inner-product relationships&en



the users’ perturbed feature vectors, before finally constr ~ although the cloud knows the mean and the covariance, this
ing the classifier. Conceptually, here is how Pickle works.  information is far from sufficient to generate accurate indi

1. Users generate labeled raw data at their convenience: forvidual samples since two random draws from the same con-
example, Pickle software on the phone may collect audio tinuous distribution have zero probability of being ideati
clips, then prompt the user to label the clips. Despite this, it is possible that sample statistics of ttee fe

2. Once a piece of raw data is labeled, the software will ex- ture vectors may leak some private information; to limisthi
tract feature vectors, perturb them usiRgand upload Pickle generates sample statistics from a very small number
them, along with the corresponding label, to the cloud; (4P) of data samples. Finally, in this step, the public feature
as an optimization, the software may batch the extraction Vectors need not be labeled.
and upload. (In what follows, we use the teuser, for Step 2: Perturb the Public Feature Vectors. The high-
brevity, to mean the Pickle software running on a user’s level idea in this step is to pertud in exactly the same
mobile device. Similarly, we use the terctoudto mean way as users would perturb the actual training feature vec-
the instance of Pickle software running on one or more tors. Concretely, a usell generates a private random matrix
servers on a public cloud.) R.3, computes the perturbed public feature vecRyZ, and

3. When the cloud receives a sufficient number of labeled sendsR.Z to the cloud. . N
perturbed feature vectors from contributors (the number _ However, this approach has the following vulnerability. If
may depend on the classification task), it constructs the Z is invertible, the privatdR, can be recovered by the cloud

classifier and sends a copy to each user. when it receives the perturbed vect®gZ: the cloud simply
Before the classifier is generated, the cloud learns a mode|comput_esRuZZ*1. _ _
to compensate for the distortion introduced by perturlpatio Toraise the bar higher, Pickle computes and s&dZ +
Specifically, in thisregression phase €,) to the cloud, where, is an additive noise matrix. The

1. The cloud sends to each participating user a collection of ¢loud would then need to knof,y in order to apply the
public feature vectors. inversion to obtain an accuraly. Unlike the public feature

2. The user perturbs the cloud-generated feature vecters usV?CtorSZ' gowever,ea IS Em;/ate to_tthhe usgr. The elements
ing its private transformation matrix and returns the resul ©f Ru aré drawn randomly from either a Gaussian or a uni-
to the cloud. form distribution.€, has the distribution of\((€,;0,0,Z7),

3. The cloud employs regression methods to learn approx-WherezZ is the (sample) covariance matrix 2f ay IS tun-

imate functions for computing the desired mathematical %@es’h%%‘ﬁflgggt}gan??ﬁ'tzg thr?vggd'ggﬁ Ezlsoeb]g]ihéds b
relationships between feature vectors. - Mnher p Y Y

The key intuition behind our approach is as follows. Pat- USing smaller values a2 (i.e., greater reductions in dimen-
tern classifiers can effectivetiiscriminatebetween different ~ Sionality) or bigger values afy.

classes by leveraging the most important covariance struc-Step 3: Regress. The regression step is executed on the
tures in the underlying training data. Our regression phasecloud. We describe it for two users; extending it to multiple
learns these structures from the transformed represemsati  users is straightforward. Assume userand?’ have chosen
on public data. However, our privacy transformation suffi- random matrice®,, &, andR,, &, respectively. The cloud
ciently masks the less important components that would bereceivesZ, = R,(Z +€,) andZ, = R/(Z +&,). The key
required tageneratehe original feature vectors. Thisis why idea is to us&, andZ, to approximate quantities which are
we are able to build accurate classifiers even without being pertinent to classification.

able to regenerate the original feature vectors. Concretely, letu andv be two indicator variables that
3.2 The Regression Phase wv € {u,v}. Also, letz stand for thei-th public feature

_ , vector andz,; thei-th transformed feature vector . In
Step 1: Randomly Generate Public Feature Vectorsin other wordsz andz,; are thei-th columns oZ andZ,.

this step, the cloud randomly generakéin our paper, we Intuitively, we would like the cloud to be able to recover
setM to 3P) public feature vectors asfix M matrixZand e original relationships from the perturbed feature oesct
sen;js tu's m?grlx to ea(;:_h USer. T?f rantdomfputbllc feattureFor this, we learn four functions{,, fuy, fvu andfy) in the
vectors have the same dimensionality as true feature \&ector o ; ;
In Pickle, the cloud synthesizes rangl/om public feature vec- ;mr(r;ﬂc())fnf?v(_zw,_zw,ew) that can approximate wella certain

; o ) i (z,2;) of (particularly, the distances or the inner
tors using summary statistics provided byusers. In this products betweery} andz;. 8,y is the parameter vector of
%he function. Once these functions are learnt, they are ap-
plied to actual training data sent by users (Sec8@).

The parameter vectoB, are thus of critical importance.
To identify the optimal set of parameters, we have used lin-
ear regression (LR). We now show how to approximately re-
cover the concatenation of public feature vecimrandz;

Jie. f(z,2)= 2],2]]7) using LR. The models then can be

variance matrix of its private training data, derived from a
fixed number (in our paper,P} of its feature vectors. The
cloud generates A thatapproximates the statistical charac-
teristics of the training feature vectors afl theU users this
matrix, generated using an equally-weighted Gaussian mix-
ture model that simulates the true distribution of user data
used in the next two steps to learn relationships between th
feature vectors and aret used.to build clas§|f|ers. 3The user can choose a task-specRg¢ However, once chosen, the
This method never transmits actual private feature vec- matix is fixed, though private to the user. A dynamicallyyiag R, will
tors to the cloud, so preserves our privacy goal. Moreover, incur high computational cost, due to the Regress phaseinekt step.




used to compute inner products and distarmggsoximately

on transformed actual training feature vectors from users
The approximated quantities will then be supplied to learn-
ing algorithms to construct classifiers (Sect®B).

For each pair oft andv, let Q,, be the matrix whose
columns are concatenateg andz,; with M? columns (the
number of total possible concatenationsv$, since there
areM public feature vectors). Also, I&c denote the matrix
whose columns are concatenazedndz;. Note thaQ,,, has
2Q rows, whereQ is the row-dimensionality of each user’s
private transformation matriR, or R, (for simplicity of de-

scription, we assume the dimensionality is the same for the

two users; Pickle allows different users to choose differen
Q). Zc has 2 rows, whereP is the row-dimensionality of
the public or original feature vectors.

For linear regression, we use this equation to ob8in

for f
Zc=6,Q, 2)

where the parametd, is a matrix with the size of2P x
2Q). The optimal parameter set is thus found in closed form
asly = ZCQ:[V, where' denotes the pseudo-inverse.

Our implementation of Pickle uses one optimization,
called iPoD. In iPoD, the cloud can avoid calculating the
regression function$,, and f,y (i.e., wheny = v) by ask-
ing users directly for the corresponding inner products cal
culated from their own feature vectors. These inner praduct
do not reveal the individual feature vectors. This tradés of
litle communication overhead (quantified in SectibB) for
improved accuracy.

Instead of linear regression, we could have used Gaussia
Process Regression (GPR). We have found in preliminary ex-

periments that GPR marginally improves accuracy over LR
but is significantly more compute-intensive, so we omit a de-
tailed description of GPR.

Finally, all the schemes described above extend to mul-

tiple users naturally: Pickle simply computes 4 (or 2 when
usingiPoD) regression functions for every pair of users.

3.3 Model Generation and Return

Building the Classifier. After the cloud learns the functions
fv with the procedure in the previous section, it is ready
to construct pattern classifiers using training samples con
tributed by users. In this step of Pickle, each ugecol-
lects its training feature vectol§, (in which each column is
one feature vector), then perturbs these feature vectdis wi

tempts to reconstruct the concatenatioxgfandxy;,
. v - I

Xui ~ fUV(inaij;eUV) = Oy Z(UI £ -
XVJ rvj

ij
wherer; andry; areP-dimensional vectors. The cloud then
approximates the inner product with the reconstructed fea-
ture vectorsx|ix,j ~ rliryj. Similarly, to approximate the
distance between two feature vectors, weluse

[1%ui — Xvjl|5 = FiFui — 205ivj + 13iFyj

(4)

Once inner products or distances are approximated, the
cloud can build SVM or kNN classifiers using the follow-
ing simple substitution: whenever these algorithms need th
distances or inner products of two feature vectors, the ap-
proximated values are used.

Model Return. In this step, the cloud returns the model to
users, so that classification may be performed on individual
phones; for the details of the classification algorithms, we
refer the interested reader tbg. The information returned
depends upon the specific classifier (e.g., when using SVM,
the support vectors must be returned), but must include all
functionsf,y and associate@,, parameters for every pair of
users. These are required because the classification step in
many classifiers also computes distances or inner products
between the test feature vectors and training feature rgecto
presented in the model (e.g., the support vectors in SVM);
all of these vectors are perturbed so their distances armd inn
products must be estimated using fiyefunctions.

3.4 Privacy Analysis

Recall that the privacy goal in Pickle is to ensure the com-
putational hardness of de-noising user contributions ley th
cloud (either by itself, or in collaboration with other usgr
and thereby inferring. We now show a useti who fol-
lows the steps of the protocol does not leak vital infornratio
which can be used to de-noise user contributions. In the pro-
tocol, U sends data to the cloud in Steps 1, 2 aruh}.

In Step 1,U sends the mean and covariance matrix of a
small number of its private training samples. Using this, th
cloud can construct synthetic vectors whose first and second
order statistics match that dfl’s private data, but clearly
cannot reconstructy.

In Step 2,U sendsR(Z + €) to the cloud. One might as-
sume that the cloud can filter out the additive ndRgeand

its privateR,. Each perturbed feature vector, together with {han recoveR by using the knowrZ 1. However, exist-
its label, is then sent to the cloud. Using perturbed feature ing additive noise filtering techniques (such as spectrakan

vectors from each user, the cloud generates the classificati
model.

Let x,i denote the unperturbeaeth feature vector from
user?l and likewisexy; for the user’’. Moreover, let

Xui = RuXui, Xvj = RuXyj

3)

denote the perturbed feature vectors. Using the regression

parameters obtained from Equatia?),(the cloud first at-

41t is also possible to directly regress inner products astadces us-
ing the functions but we have experimentally found thatdiyeregressing
these quantities does not result in improved accuracy tvemethods de-
scribed.

ysis [26], principal component analysis, and Bayes estima-
tion [22]) need to know at least the approximate mean and
the approximate covariance of the additive noise. In Pjckle
the cloud cannot know, or estimate with any accuracy, the co-
variance ofRg, since that depends up&,a quantity private

to the user.

Finally, in Step 4, sendsRX to the cloud. The pri-
vacy properties of this dimensionality-reducing transfor
are proven in32], which shows thaX cannot be recovered

5 In theiPoD optimization, the first and last terms of the RHS4) ¢an
be obtained directly from the users.



without knowingR — that is because there are infinite fac-
torizations ofX in the form of RX. In fact, even ifR is

known, because the resulting system of equations is under-

determined, we can only reconstr€in the sense of mini-
mum norm.

Given this, usinge, provides an additional layer of pri-
vacy. g, is a random matrix with real-valued elements, so

or inner products with approximations derived by applying
Pickle’s regression functions.

Finally, Pickle can banade robust to poisoning attacks
in which afewmalicious users attempt to inject bogus data
in order to render the model unusaBleFor classification
algorithms which build robust statistical models, attaske
must inject distributionally different feature vectorsarder

it is highly infeasible for an adversary to guess its values to succeed. Prior work has examined these kinds of attacks
successfully using brute force. The adversary may attemptand have proposed a distance-based approach, called Orca,

to find approximate values fay, but would still be faced

with the challenge of determining whether the resulting ap-

proximate value foRy, is correct; the only way to do this is
to attempt to reconstruct the original feature vectors aed s

to detecting poisoning attack8][ Because Pickle can ap-
proximately preserve distances, the cloud can run Orca even
though it receives only perturbed data, as shown in Sec-
tion 4.3

if they reveal (say) meaningful human speech or other rec- 4 Evaluation of Pickle

ognizable sounds, and this is also computationally hard, as

described above.

However, it may be possible for an attackeraygproxi-
mate X using areconstruction attacksIn Section4.3, we
show that Pickle is robust to these attacks as well.

Finally, Pickle is robust to collusion between the cloud
and users. Since each us@rindependentlgelects a secret

R, and since its feature vectors are encoded using this secre

another user cannot directly compute anyt original fea-
ture vectors from perturbed feature vectors it receivesfro

t

In this section, we perform three qualitatively different
kinds of evaluation: aiser-studywhich brings out the bene-
fits of Pickle, especially for applications like speakeragc
nition where the un-perturbed feature vectors are known to
leak privacy;measurements on a prototyfigt quantify the
resource cost of Pickle; and an extensive characterization
of the privacy-accuracy tradeoffs in Pickle, together vath
comparison of alternatives, using awaluation on public
data-sets

the cloud (for the same reason that the cloud itself cannot4.1  Pickle Privacy: A User Study

compute these). A similar robustness claim holds for collu-
sion between cloud servers.

3.5 Other Properties of Pickle

Besides ensuring the privacy of its training feature vec-
tors, Pickle has several other properties.

Pickle iscomputationally-efficierin mobile devices, and
incurs minimal communication cost. It requires two matrix

In a previous section, we asserted that a commonly used
feature vector for acoustic applications, MFCC, could be
used to approximately reconstruct original audio clips. In
this section, we demonstrate this using a small-scale user-
study on acoustic data, and show that: a) a scheme like Pickle
is necessary, since without it, almost the entire audio clip
can be reverse-engineered from unperturbed MFCC feature
vectors; b) Pickle can mitigate this privacy leakage withou

multiplications (one for the regression stage and the other sjgnificant loss in classification accuracy.

during training); classification steps require computiigs d

MFCC is widely used in acoustic mobile applications,

tances or inner products. It transmits a few matrices, and ajike [35, 8, 34, 36, 42]. In particular, MFCC can be used

classification model over the network. All of these, as we

to recognize speakerdZ, 34] or their genders36); collab-

shall validate, require minimal resources on modern phones grative learning can be used to build models for both these

and modest resources on the cloud infrastructure.
Pickle requires no coordinatioamong participants and

provides flexible levels of privacy. Each user can indepen-

dently choose the privacy transformation maRiand com-

applications. To quantify the efficacy of Pickle in MFCC
for speaker recognition, we used spoken sentences from four
volunteers (two men and two women) in the TIMIT dataset
[20], and trained SVM (with RBF) models by extracting the

municates only with the cloud. Users can also independently standard 13-dimensional MFCC feature vectors from the au-
set the level of desired privacy by selecting the dimensions dio clips, with and without Pickle. For Pickle feature vesto

of R or the intensity of the additive noise matiéx In Sec-
tion 4.3 we explore the implications of these choices.
Pickledisincentivizes free-ridingA user who does not

with a 50% dimensionality reduction and a 0.3 intensity of
additive noise (denoted 0% 0.3)), recognition accuracy
is degraded only by 4.32%! We leave a more detailed discus-

contribute training samples, can get the model from other sion of Pickle’s impact on accuracy for a later section, but
users, but, to use it, must also participate in at least the re now demonstrate how, with minimal accuracy loss, Pickle

gression phase so that the cloud can compytand f,,, for
all other userg’ whose vectors are included in the classifier.
Although we have discussed Pickle in the context of clas-
sification, it extends easily to other tasks like non-linesar
gression and estimating distributions; these tasks ariteei
context of participatory sensing,[12, 23,17, 5, 46].
Beyond SVM and kNN, Pickle can be applied to all ker-
nel based classification and regression methods that use di
tances or inner-products to establish relationships batwe

S

can greatly reduce privacy leakage.

To this end, we conducted a user study which used eight
testing sentences (81 words) from the training set used to
construct the classifier. For each sentence, users werd aske

6 Attacks in which a majority of contributors poison the modsuire
other mechanisms. Such attacks can render a model corgplstless for
the corresponding classification task. In that case, a coynipat sells these
collaboratively-designed models may offer monetary itiges to contrib-
utors, but only if the resulting model is shown to be accurBiscussion of

training samples. One can simply replace these distancesuch mechanisms is beyond the scope of the paper.



to listen to three versions of this sentence in the follovang
der: (i) aPickle-MFCCaudio clip generated by first applying
a reconstruction attack (Sectidni3.3 to (50% 0.3) Pickle-
transformed MFCC feature vectdrsaind then applyingl[g]

to reverse-engineer the audio clip from the estimated featu
vector; (i) anMFCC audio clip generated directly from the
MFCC feature vectors using the method describedLB}; [
and (iii) theoriginal audio clip. Users were asked to write
down all the words they recognized in each of the clips. Sev-
enteen users participated in the study, having varyingdeve
of proficiency in English.

For each participant, we calculated tR&cognition Ra-
tios (RRsYor each sentence: Pickle-MFCC RR, is the ratio
of the number of words recognized from tR&kle-MFCC
clip divided by the number of words recognized in the origi-
nal clip; and MFCC RR, is the ratio of the number of words
recognized in théIFCC clip to that recognized in the orig-
inal clip. As Figure4.1shows, Pickle offers very good pri-
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160 users each of whom submits, on average, 100 training
samples. As shown in Figur& when each feature vec-
tor has 16 dimensions, the resulting classifier has an accu-
racy of over 97% even when feature vectors are perturbed by
(50%0.3). A more detailed analysis of classifier accuracy
is discussed in Sectioh.3. Our data set is adversarially
chosen; prior work on mobile-phone based sound classifi-

20 40 60 80 100 120 140 160

vacy protection; averaged across all sentences, Pickle hagation B has used half the number of dimensions and an
an RR of only 1.75%, while the MFCC-reconstructed clips order of magnitude smaller training data set. Thus, frorp our
have an RR of 73.88%. Of the words recognized in Pickle- €xperiments, we hope to understand how high Pickle’s re-
ed clips, most were articles, prepositions or linking verbs SOUrce costs can be in practice.

but three users recognized the phrase “below expectations” We reporton experiments conducted on both a Nexus One
in one sentence, and one user recognized the words “infor-and an HTC Pure phone and our “cloud” is emulated by a

mative prospective buyer” in another sentence. These wordscluster of four Intel(R) Core(TM)2 Duo 2.53 GHz PCs, with

provide minimal information about the original sentences, 3

since they lack vital context information.

While a more extensive user study is the subject of future
work, our study shows that, without Pickle, a collaborative
learning task for speaker recognition can leak a majority of

words in audio clips when MFCC is used as a feature vector;

using Pickle, a negligible minority is leaked.
4.2 Pickle Resource Costs: Prototype Evalua-
tion
Prototype System. We have implemented a prototype of
Pickle (Figure4) which consists of two components: soft-
ware forAndroid 2.3.4(about 8K lines of Java code, about
half of which is the Pickle-SVM engine) andfindows Mo-
bile 6.5(about 11K lines of C# code, about 40% of which is
the Pickle-SVM engine), and software ftire cloud writ-
ten with .Net 4.0 framework (about 8K lines of code in
C#, of which the Pickle-SVM engine is shared with the

phone code). The prototype supports all functions required

by Pickle, including regression parameter constructioth an
interaction, raw data collection, feature vector genergti
transformation, upload and classification, user labelbudy

lier detection, model training, and model return. The phone
software supports the collection and processing of acceler
ation and acoustic data, and the cloud component builds
Pickle-SVM classifier with four optional kernels. Support
for other sensors and other classifiers is left to future work

Experimental Methodology. Using this prototype, we have
collected 16,000 accelerometer-based feature vectots, co

lected using smartphones, for the purpose of evaluating the

resource costs for collaborative learning. For evaluativlg
laborative training, we cluster these feature vectors gmon

"The MFCC feature vectors were generated using 25ms ovémgpp
frames with an inter-frame “hop” length of 10ms

a,

GB RAM, running Windows 7.

Communication Overhead. In Pickle, each user needs to
send the perturbed daf,X,, and inner products calculated
from her own feature vectoré{ﬂxu to the cloud, which
incurs communication overhead. (The overhead of send-
ing the public feature vecto and having each user return
Ry(Z + &) to the cloud is relatively small since the num-
ber of feature vectors is small (Secti@r?), so we do not
report the cost of this operation). Since our privacy transf
mation reduces dimensionality, the communication cost of
sending the perturbed data is actually lower than the cost of
the original data. In our experiment, we use a privacy trans-
formation, with relatively higher communication cost, whi
reduces dimensionality by only 25%, and adds 0.3 intensity
additive noise. In our implementation, each user’s pegdrb
training samples only requires 15KB for the transformed fea
ture vectors with labels and 94KB for the inner products. For
comparison, the original training samples without peradrb
tion require 21KB.

The final component of the communication cost is the
size of the returned model. This cost has two components
for Pickle-SVM: the set of model parameters and perturbed
support vectors, and the collection of regression coefftsie
(each user needs to download only her own regression coef-
ficients, not the entire set of coefficients). For 160 usées, t
former is 222 KB (Figurés(a)), and the latter is 585 KB per
user. For comparison, the model size for 160 users without
Pickle is 264 KB. Pickle’s dimensionality-reduction resul
in a smaller model size.

Overall, these numbers are well within the realm of practi-
cality, especially because our evaluation setting is axhréal
and our implementation is un-optimized. For example, sim-
ply compressing the data, a factor of 2-3 reduction in transf
overhead can be obtained.
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4.3.1 Methodology

Computational Cost. On the mobile phone, it takes on av- Data Sets. We use four datasets to validate Pickleis,
erage (over 50 runs) of less than 1 ms on both the NexusPima Indians DiabetesNing andVehicle SilhouettesThe
One and the HTC Pure to multiplicatively transform a feature datasets are from the UCI Machine Learning Reposftory
vector. Classifying a test vector on large model constaicte and are some of the most widely-used datasets in the
from 160 users takes on average 266.7 ms and 477.6 ms ormachine-learning community. All the feature values in each
the two phones respectively. For comparison, classifying o dataset are scaled between 0 and 1.
a model generated from pure SVM (without perturbation) Users.We partition each data set into several parts to simu-
takes on average 128.1 ms and 231.6 ms on the two phonesate multiple users with private data. To do this, we cluster
The main overhead of Pickle comes from using the regres-the feature vectors in each data set using the standard K-
sion coefficients to estimate distances from the vector to bemeans clustering algorithm and assigned each cluster to one
classified to the support vectors. Both of these numbers are‘yser”. (Random partitions would not have been adversarial
reasonable, especially since our dataset is large. enough as our main goal is to collaboratively learn from data
On the cloud, the processing of outlier detection is very with disparatestatistics.) Using this method, the number of
fast — only 10.55 ms on average (all numbers averaged ovewsersis 2, 5, 2, 5 for the four datasets respectively.
10 runs). Computing regression coefficients for pairs of  Although these numbers of users are small relative to our
users is shown in FigurB(b), the average cost increasing targeted scale, we note that the level of privacy and the clas
from 0.55 s to 723s as the number of users increases from Ssification accuracy ameotlikely to become worse with more
to 160. However, the cost of model generation on the cloud users. If anything, classification accuracy will improvetwi
is significantly higher, on average about 2.13 hours on a sin-more users since one has more and diverse training data.
gle core. Without Pickle, model generation is a factor of 2 In our experiments, we use all four datasets to evaluate
faster (Figureb(b)). Again, Pickle’s overhead mainly comes the performance with 2 users, and also use the Diabetes and
from the regression calculations. Vehicle datasets to test the performance with 5 users. After
However, a major component of model generation, per- partitioning the data across users, we randomly select 80%
forming a grid search to estimate optimal parameters for of the labeled feature vectors from each user agrtising
Pickle-SVM, can be parallelized, and we have implemented data and use the remaining feesting
this. As shown in Figuré(b), as the number of cores in-  Classifiers. We evaluate the effectiveness of Pickle using
creases, an almost linear speed-up can be obtained; with §yo common pattern classifiers: Support Vector Machine
cores, model generation time was reduced to 0.26 hours. De{SVM) and k-Nearest Neighbor (kNN). We experiment SVM
vising more efficient parallel algorithms for model genera- with the most widely-used RBF kernel as well as the Lin-
tion is left to future work. ear kernel and tune SVM parameters using standard tech-
Finally, as discussed in SectiBna user who has not con-  niques like cross-validation and grid-search. We use a more
tributed feature vectors can use the generated model, dut th accurate variant of KNN called LMNN5B] which uses Ma-
cloud needs to compute regression coefficients for this newhalonobis distances instead of Euclidean distances.
user, relative to other users whose vectors are includéwint 4 3 5  Eyaluation Metrics

classifier model. This computation can be performed incre- \ye ;56 two metrics to evaluate the effectiveness of Pickle.
mentally, requiring only 8.71s in our 160 users experiment, .o firt assesses how much privacy is preserved and how
and adding 160 regression coefficient entries (222 KB) that likely users’ private data are to be compromised. The sec-
need to be downloaded only by the new user. ond measures how much Pickle’s accuracy is affected by its

43 A /P Tradeoff dc privacy transformations.
) cCuracy/Frivacy [radeotts an ompar- The Privacy Metric. Pickle distorts feature vectors to

I_SOHSZ_ Dataset Evaluatlon N ) “hide” them. One way to measure privacy is to quantify the
In this section, we evaluate Pickle’s ability to presernie pr  extent of this distortion. We use a slightly more adversar-

vacy without sacrificing classification accuracy by anaigzi  jal privacy metric from prior work 2, 49|, which measures
public datasets. We also explore the sensitivity of ourltesu

to the different design choices presented in Secion 8http://archive.ics.uci.edu/ml
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Figure 6—Effect of reconstruction attack on privacy

the “distance” between the original feature vector and an es
timate for that vector derived by mountingeconstruction
attack Specifically, letxd stand for thed-th dimension of

the feature vectox,, and hﬂ be the corresponding dimen-
sion in the reconstructed vector. Then, we can defipe
(0< 4yq < 1) to be the difference in thdistributionsof these
two quantities, and the privacy metd¢0 < ¢ < 1) asl,q av-
eraged over all users and dimensions.

Intuitively, the larger the, the more confident we are that
privacy is preserved. Whehis zero, we are less confident.
Note that we cannot infer directly that privacy is violated
when/ = 0, as the metric only measurdgferencein ex-
pectation. Furthermore, the metric is not perfect, sintledf
original and reconstructed vectors are distributionaitfed
ent then, regardless of the magnitude of this differefiés,
1. Finally, we emphasize thétis defined with respect to a
specific attack on the perturbed feature vectors.

Classification Accuracy. A privacy transformation can ad-
versely affect the classification accuracy, so we are istede
in measuring classification accuracy under different gsiva

levels. We compute the accuracy in a standard way, as the

percentage of correctly classified test feature vectorsxgmo
all test feature vectors. All reported results are averayed
20 random splits of training, validation and testing data.se

4.3.3 Attack models and Privacy

In Section3, we had already discussed a few attack strate-

gies, to which Pickle is resilient. We now discuss some-

adding noise with intensities (Secti@m) ranging from 0.1

to 0.5 in steps of 0.1. The figure shows the resulting privacy-
level metric for each combination of additive and multiphc
tive transforms under the attack; the resulting privacglev
range from 0.1-0.7. Thus, depending on the degree to which
the training data have been transformed, Pickle can be sig-
nificantly robust to this attack.

The intuition for why Pickle is robust to this reconstruc-
tion attack is as follows. Pickle’s regression phase learns
about relationships between users enougldiszriminate
amongst them. However, the regression is not powerful
enough togeneratethe original samples; intuitively, much
more information is necessary for generation than for dis-
crimination.

Followup ICA Attack. The cloud can also improve its es-
timateH with a followup strategy. For example, ICA can
be used for this purpos&2, 15. However, we have ex-
perimentally verified that this strategy is unsuccessfahwi
Pickle — the ICA algorithm fails to converge to meaningful
solutions.
4.3.4 Classifier Accuracy

In this section, we discuss results for the classification ac
curacy of SVM (with RBF and Linear kernels) and LMNN,
using Pickle for 2 users from each dataset. Results for Di-
abetes and Vehicle with 5 users are omitted but are qual-
itatively similar except that they have higher classificati
accuracy because they have a larger training set. These ex-
periments on each of our four data sets udmseline con-
figurationwhich uses synthesized public feature vectors and
iPoD. In subsequent sections, we deviate from this baseline
configuration to examine different design choices.
Figure 7 plots the classification accuracy for each data
set as a function of the privacy-level, for the SVM classifier
with the RBF kernel. In this plot, the horizontal line shows
the classification accuracy without Pickle. For this cliesi
across all four data sets, the loss in classification acgusac
less than 6% for privacy levels up to 0.5; in the worst case
(Wine) classification accuracy drops by 15% for a privacy-

what more sophisticated attacks that are based on an ietimat |evel of 0.65. This is an important result of the papeven

knowledge of how Pickle works.

The Reconstruction Attack. Dimensionality-reduction
techniques can be attacked agproximatereconstruction.
By reconstructing original data to the extent possibles¢he

when Pickle transforms data so that reconstructed feature
vectors are distributionally different from the originahes
classification accuracy is only modestly affected.

Other features are evident from this figure. In general,

attacks function as a preprocessing step to other types of atclassification accuracy drops with privacy-level, but tee r

tacks. In Pickle, the cloud sends the public dat a user
U and receives transformed ongg = Ry(Z +&,). While
the cloud cannot deciph&®, andg,, can the cloud use its
knowledge to infer important statistical properties ofshe
variables to approximatekgconstructthe user’'s data when
she sends actual training vectors for building classifi€s@

lationship is non-monotonic: for example, for the Diabetes
dataset, 50% reduction with 0.1 intensity of additive noise
has higher privacy, but also higher accuracy than 25% with
0.5 intensity. Second, the RBF kernel outperforms the Lin-
ear kernel (graphs are omitted to save space) for which a 0.5
privacy-level results in a 10% reduction in classificatian a

possible approach is to build a regression model such thatcuracy over all datasets, and nearly 20% in the worst case.

Z ~ hy(Zy; B). When the user send®, Xy, the cloud applies
the regression model and tries to recoder~ h,(R,Xy; B).

Finally, Pickle performs well even for nearest neighbor
classification (figures omitted for space reasons). For LMNN

Figure6 shows that, even when this attack uses Gaussianwith k = 5, Pickle is within 5% of the actual classification

Process Regression, Pickle still provides significantgmv
To generate the plot, we comput#or this attack, for various
combinations of multiplicative and additive transfornoais:
reducing the dimensionality for the multiplicative tramish

by 25%, 50% and 75% of the original dimensionality, and

accuracy for each data set for privacy levels to 0.5, and in
the worst case incurs a degradation of about 15%. Moreover,
for LMNN, in some cases Pickle is even more accurate than
without any privacy transformations. This is likely due to
the regularization effect caused by noise (either addiive
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the privacy of feature vectors. As we show below, compared = 8: ez o5 o1 o5 o5 o7 o "B 0w om ok o5 om on

to Pickle, these approaches either do not preserve privacy

adequately, or are significantly inaccurate.
The first algorithm only adds additive noiskEl] and uses Figure 8—Comparison of Pickle to several alternatives

Bayes estimatiord2] to attack the perturbed feature vectors.

For this alternative, we compute the privacy-level based on This drop is unacceptable for most applications, and moti-

the Bayesian reconstruction. This alternative is chosento  vates the importance of our approach.

derstand the performance of a simpler additive perturbatio  other Design Choices. Disabling theiPoD extension can
The second algorithm uses the Random Projection (BB) [  reduce accuracy up to 7% for SVM and up to 6% for LMNN,
in which each user transforms feature vectors using the samesq it is beneficial for Pickle to us®oD. As we have dis-
multiplicative noise matri>R. To be robust to inversion, the  ¢yssed, the bandwidth cost of transmitting this matrix is've
dimensionality o is reduced by more than 50% relative to  gmall. We have also experimented with other public feature
the dimensions of the original feature vectors. For thi®cas yector generation methodsHRECT method in which the
we derive the privacy-levels by using a pseudo-inversetase c|oud obtains a few unperturbed feature vectors from users;
attack 2. Our third algorithm is a KDE-based method 4 NOISYmethod which adds additive noise to the vectors of
([49), in which users never send true data, but only send the DIRECT method; and amRBITRAR¥nethod in which
synthetic data drawn from the estimated feature vector dis-the cloud arbitrarily generates public vectors. We find that
tributions. For this case, we compute the privacy-levelsgis oy SYNTHESISnethod occupies a sweet spot: it is signif-
the transformed feature vectors. icantly more accurate, but not much less private, tA&3

As Figure8 shows, on the Diabetes and Vehicle datasets BITRARY and provides higher privacy, without sacrificing
with 5 users, Pickle outperforms all alternatives. The addi accuracy, than the other two methods.
tive noise based approdproduces acceptable accuracy, . .
but almost no privacy. The KDE-based method offers a little 4-3-7  lllustrating Other Features of Pickle
bit more privacy than the additive noise method, but with a User Diversity. Pickle allows users to independently tune
significantly degraded accuracy. Finally, the RP method pro their own privacy transformations. Using SVM with RBF
vides, in general, lower privacy than Pickle, and also lower kernel (results for Linear kernel and LMNN are omitted but
accuracy for data points with comparable privacy. The same are qualitatively similar), Figur@ considers the case of two
results are true for all the four datasets with 2 users, so wedifferent privacy settings: a 25% dimensionality reduetio
have omitted these for lack of space. with 0.1 intensity additive noise and a 75% dimensionality
4.3.6 Impact of Design Choices rgduc;ion with 0.5 intensity additi\{e noise. It plots thass! _

! ] S sification accuracy for three cases: when all users use #te fir

Is Regression Necessary®ur main contribution is the use  setting, when all users use the second setting, and whes user
of regression to learn function relationships. For all our yse a mixture of those two settings. The resulting classifica
datasets and classifiers, turning off regression and ub®g t  tion accuracy is intermediate for the mixture setting, tre¢a
transformed feature vectors directly for computing dis& g the other settings. This is encouraging: a less encawgagi
and inner products, leads to 15-35% accuracy degradationytcome would have been if the accuracy of the mixture set-
compared to Pickle (graphs are omitted for space reasons)ting was closer to the second setting, since this would mean

. _ N that users with high privacy requirements could dictate the
Simigfsults for Linear kernel and LMNN are omitted but are gatliely performance of Pickle.

10For this approach and each dimensionality setting of Pjskéechanges RObUStneSS_ to Poi_SQning. We have_ implem_ented th?
the additive noise intensity from 0.1 to 0.5 in steps of 0.2. Orca P] outlier (malicious user) detection algorithm as dis-

(a) Diabetes dataset (b) Vehicle dataset




m25%+0.1 mMixture m75%+0.5 m25%+0.1 W Mixture m75%+0.5 ture vectors whose statistics match the original featuce ve

10 1.0 tors [49]; we have compared Pickle against this and shown
> g~§ 509 that it can result in poor accuracy.
©
§0:7 523 Differential Privacy: Beyond perturbing the input featurg
<06 <06 vectors, some approaches have explored the use of the differ
0.5 0.5 ential privacy framework for privacy-preserving SVM con-
Iris Wine Diabetes Vehicle struction. In these approachet8[ 13|, the classifier con-
(a) 2 users (b) 5 users struction assumes all thariginal feature vectors are avail-
able (unlike Pickle, which perturbs the original feature-ve
Figure 9—Effect of user diversity on accuracy tors) and the outputs of the classifiers are perturbed siath th
g Ot muser2 Outier2) xuser3 muserd B sers Gserd (Ouierl) BUser2 Ouird) B userd g serd Busers individual features are not exposed as a result of small dif-

80% 80%

ferences in two databases (such as two different versions of
training samples). This is achieved by adding noise either
to the classifier's parameter vector after optimizationar t
M R L B L R th_el objective function itself, thus prior to optjmi;a}tiom- _
. _ tuitively, these approaches attempt to make it difficultrto i
(2) Diabetes (b) Vehicle fer who might have contributed feature vectors, while Rickl
Figure 10—Outlier detection against model poisoning hides the content of the feature vector itself. Thus, the two
approaches are complementary, and exploring a combination
cussed in SectioB.5), and use our estimates of Euclidean of these two methods is left to future work.

distance in that algorithm. Orca essentially ranks suspgi Other Cryptographic Methods:Other methods have at-

feature vectors, so we conduct three experiments in which : ; ;
' X tempted to use cryptographic techniques to preserve pri-
there are 5 users and 0, 1 and 2 of them (respectively) at'vacy in SVM construction. A few use homomorphic en-

tempt to poison the model generation process by injecting oy tion, but either discuss only SVM construction for two
completely random.d.ata. In Figuf®, we plot the fraction participants 28] or would require peer-to-peer communica-
of the top-100 suspicious feature vectors that belong th eac i, (59, 37), whereas Pickle permits multiple users and does
user. When there are no outliers, the distribution is unifor . require them to communicate with each other. Finally.
across all five users. However, in the presence of outliers, o arg pieces of worksB, 27, 51] use a form of éecure '

tﬂew fe:;tur((ej V((EthOI‘S .°9CUp]¥ a dlspropomor_\raht_e number of . inarty communication, but assume that participants do
the top hundred suspicious feature vectors. This expetimen . ¢o||yde, an assumption that Pickle does not make. (Of

shows that Pickle can be easily retrofitted into an existing course, not all secure multi-party communication methods

p0||son|ng detector. ol discard all outliers be. 255Ume participants do not collude, but, when applied to the
h our experiments, we simply discard all outliers be- pjcyje setting, these methods have the drawback that all par

fore building the classifie_r. However, it [s also poss_iblle ticipants must be online wheamy participant wishes tose
that a small amount of noisy data (e.g., mislabeled training ,q c|assifier. an unwieldy assumption at best.)

samples) is contained in the user’s training data, but does : . .
In summary, in the space of prior work on privacy-

not affect the data’s overall distribution. In this caseg th reserving SVM. Pickle ocoupies a unique niche largel
classifier construction process can finally filter these non- pr 9 - P g gely
driven by the requirements and constraints of collabogativ

representative samples by only selecting the most useful fe learning using sensor data generated from mobile bhones
ture vectors for classification. g g _9 p_ .
5 Related Work Other Related Work. Navia-Vasquez et al4p] consider

] ) . distributed SVM classifier construction, but do not conside
Privacy-preserving SVM. There have been several pieces privacy. Many pieces of research in the mobile sensing liter
of work on privacy-preserving SVM classifier construction, ature have used machine-learning classifiers for various ap
but each lacks support for a design dimension that is crucial plications (e.g., 35, 8, 10, 43, 4], and SVM is often a pop-
for collaborative SVM classifier construction using mobile yjar choice. A few have examined collaborative learning.
sensing. Closest to our work is that of Ahmaei al. [5] who con-
Feature-perturbation: Closest to our work is the body of sider the problem of accurately estimating a linear regres-
work that perturbs feature vectors before transmittingrthe  sion model from user contributed sensor data, while stil en
to a server/cloud. The work of Lin and Che30[ 29, 31] only suring the privacy of the contributions. While this is an in-
considers privacy-preserving classifier training for aglgn  stance of privacy-preserving collaborative learnings itin-
user, but Pickle explicitly supports multiple users. Soipe a clear how to extend the approach to nonlinear classifiers; as
proaches require that all participants share a common per-we have discussed above, for such classifiers it is necessary
turbation matrix B8, 47], while Pickle does not. Other ap- to carefully design privacy transforms that preserve aerta
proaches %7, 39, 21] focus on vertically partitioned data, relationships between contributed feature vectors. M8Vi [
where elements of the feature vector are spread among paris an application in which users within a social group col-
ticipants; by contrast, in our setting, the data is horiabnt laboratively, using the cloud, sense their environment and
partitioned. An approach that could have been plausibly recognize interesting events. However, MoVi assumes that
used for collaborative learning9] generates synthetic fea- users within a group trust each other, and that the cloud can

60%
40%
20%

0%



be trusted not to reveal data from one group to third parties. sensing, a more extensive and refined design of user study,
Finally, Darwin [42] directly addresses collaborative learn- and a cryptanalysis of our dimensionality-reduction.

ing, but does not address privacy and assumes a trUStworthYA\cknowIedgements.We thank the anonymous referees and
clouq. _ _ _ our shepherd Srdjan Capkun for their comments. We are
Privacy-preservation has, in general, received much moregrateful to members of the Embedded Networks Laboratory

attention in the data mining community which has consid- who participated in the user study.

ered cryptographic methods (e.g.50[ 24]) for clustering

and other mining operations. In general, these methods
do not scale to many users and require computationally-7
intensive encoding and decoding operations. That commu-
nity has also considered anonymization of structured data
(such as relational tables) to ensure privacy of individunal
tries without significantly compromising query results. By
now, it is well known that anonymization is vulnerable to
composition attacks using side informatidrg].

Preserving privacy throughperturbationor randomiza-
tionis most relevant to our work. One body of work has con-
sidered data perturbation techniques for datasets usiitg va
ous methodsg6, 52, 55, 33] for dataset exchange between
two parties; it is unclear how to extend this body of work to
Pickle’s multi-party setting where the parties are assutned
be able to collude. Additive-noise based randomization per
turbs the original data with additive noise (e.g3, 2]), but
is susceptible t@econstruction attacksin which the spec-
tral properties of the perturbed data can be used to filter the [g)
additive noise and recover the original de28][ Multiplica-
tive noise based perturbation (e.gl4] 32]) can be robust
to these reconstruction attacks. In some approaches (e.g.,[”]
[14]), the multiplicative noise is dimensionality-presenyin
while in others B2, it is not. Dimensionality-preserving
transformations can preserve inner products and Euclidean [g]
distances. Unfortunately, a dimensionality-preservindg-m
tiplicative transformation is susceptible &pproximate re-
construction32]. Furthermore, if this method is applied to
collaborative learning, then participants must agree upen
matrix R, and collusion attacks may succeed. It is for this
reason that Pickle uses a dimensionality-reducing transfo
mation using per-user private matrices, and then uses a rel10l
gression phase to recover inter-user relationships saitthat
can approximately infer Euclidean distances and inner{prod
ucts.

(1]

(2]

(3]

(4]

(5]

9]

(11]

[12]
6 Conclusions

In this paper, we have described Pickle, an approach to[13!
preserving privacy in mobile collaborative learning. RBéck
perturbs training feature vectors submitted by users, e u
a novel regression technique to learn relationships betwee
training data that are required to maintain classifier aaxyur
Pickle is robust, by design, to many kinds of attacks includ- [°!
ing direct inversion, collusion, reconstruction, and pois
ing. Despite this, Pickle shows remarkable classification a
curacy for the most commonly used classifiers, SVM and
kNN. Finally, Pickle requires minimal computing resources [17]
on the mobile device, and modest resources on the cloud.
Many avenues for future work remain, including an explo-
ration of more sophisticated regression methods and otherg)
classifiers, an extension of applying Pickle to participato

(14]

[16
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