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Motivation

 Many types of questions - queries - about data in a
database can be interpreted geometrically

 To this end we transform records in a database into
points in a multi-dimensional space, and we
transform the queries about the records into queries
on this set of points
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Example

 Database for personnel administration

 In such database the name, address, date of birth,
salary, and so on, of each employee are stored

 A typical query one may want to performe is to
report all employees born between 1950 and 1955
who earn between $3,000 and $4,000 a month

 To formulate this as a geometric problem we
represent each employee by a point in the plane

 The first coordinate of the point is the date of birth,
represented by the integer

 the second coordinate is the monthly salary

 With the point we store the other information 3
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Interpreting a database query gmetrically
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Other Query

 If we have information about the number of
children, to ask queries like“ report all employees
born between 1950 and 1955 who earn between
$3,000 and $4,000 a month and have between two
and four children “

 Represent each employee by a point in 3-
dimensional space. The first coordinate represents
the date of birth, the second coordinate the salary,
the third coordinate the number of children
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Interpreting of query
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Such a query is called a rectangular  range  query  or an orthogonal  range  
query 



1-Dimensional Range Searching

 is set of point on the rial line 

 Data structure : a balanced binary search tree

 Leaves store a point 

 internal nodes store splitting values to guide the 
search 

 Denote the splitting  value stored at a node     by
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1-Dimensional Range Searching

To report the points in a query range              : 

 Search with     and      in  

 and      be the two leaves where the search end , 
respectively 

 point in the interval             are the onse stored in 
the leaves in between     and      plus, possibly the 
point store at     and  
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A 1-dimensional range query in a binary 
search tree
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1-Dimensional Range Searching 

How can we find the leaves in between     and      ? 

 They are the leaves of certain subtrees in between 
the search paths to     and  

 The subtrees that we select are rooted at nodes ν
in between  the two search paths whose parents 
are on the search path 

To find these nodes : 

 search for the node           where the paths to      
and           split 

and            denote the left and right child of 
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Find split node
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The selected subtree
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The selected subtree
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Prove Correctness Of The Algorithm

lemma 5.1 

 Algorithm 1DRANGEQUERY reports exactly those 
point that lie in the query range 

proof 

 Any reported point      lies in the query range 

 Any point       in the range is reported
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Summarizes the results for 1-dimensional range 
searching

Theorem 5.2 
 Let be a set of n point in 1-dimensional space.

The set can be stored in a balanced binery
search tree , which uses storage and has

construction time, such that the pionts a
query range can be reported in time ,
where is the number of reported points.
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Kd-Trees
2-dimensional rectangular range searching problem

 In this section we assume that no two points in p have the
same x-coordinate, and no two points have the same y-
coordinate

 A 2-dimensional rectangular range query on p asks for
the point from p lying inside a query rectangle

 A point lise inside

this rectangle if and only if
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Kd-Trees
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How can we generalize structure for 1-dimensional ? 

 First split on x-coordinate, next on y-coordinate, then
again on x-coordinate, and so on

 The splitting line is stored at the root

 the subset of point to the left or on the slitting
line, is stored in the left subtree, and , the
subset to the right of it,is stored in the right subtree

leftP
rightP



A kd-tree
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 A tree like this is called a  kd -tree 



Construct a kd-tree
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1 4 2 3 5 7 9 10 6 8
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6 3 8 1 7 2 10 5 9 4

3 1 2 5 4 6 8 7 10 9

3 1 2 5 4 10 96 8 7

Sorted list  x-coordinate

Sorted list y-coordinate
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Storage And Building Time A kd-tree

which solves to О (nlogn) 

lemma 5.3 

 A kd-tree for a set of  points uses О (n) storage 
and can be constructed in О (nlogn) time
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The buiding time T(n) : 






















1n    if       ),

2

n
2T(O(n)

1n   if           ),1(

)(

O

nT



Corresponding Between Nodes In A KD-
tree And Regions In The Plane

 The region corresponding to a node ν is a rectangle

 It is bounded by spliting lines stored at ancestors of ν
which  denote by   

 We have to search the subtree rooted at ν only if the 
query rectangle intersects 
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Corresponding Between Nodes In A KD-tree And 
Regions In The Plane
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A query on a kd-tree
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