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ABSTRACT

Mobile sensing systems carried by individuals or machines make

it possible to measure position- and time-dependent environmental

conditions, such as air quality and radiation. The low-cost, minia-

ture sensors commonly used in these systems are prone to measure-

ment drift, requiring occasional re-calibration to provide accurate

data. Requiring end users to periodically do manual calibration

work would make many mobile sensing systems impractical. We

therefore argue for the use of collaborative, automatic calibration

among nearby mobile sensors, and provide solutions to the drift

estimation and placement problems posed by such a system.

Collaborative calibration opportunistically uses interactions

among sensors to adjust their calibration functions and error es-

timates. We use measured sensor drift data to determine proper-

ties of time-varying drift error. We then develop (1) both optimal

and heuristic algorithms that use information from multiple col-

laborative calibration events for error compensation and (2) algo-

rithms for stationary sensor placement, which can further decrease

system-wide drift error in a mobile, personal sensing system. We

evaluated the proposed techniques using real-world and synthe-

sized human motion traces. The most advanced existing work has

23.2% average sensing error, while our collaborative calibration

technique reduces the error to 2.2%. The appropriate placement

of accurate stationary sensors can further reduce this error.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks ]: Network Archi-
tecture and Design

General Terms

Algorithms, design
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1. INTRODUCTION
Mobile sensing applications are increasingly popular. The fast

development of smartphones and sensor technology makes many
such applications possible, e.g., mobile noise pollution sensing net-
works [14] and mobile personalized air quality sensor networks [10].
Compact, light, and energy-efficient sensors are now becoming avail-
able at prices that permit widespread use by non-scientists (and sci-
entists). In the future, individuals will carry multiple unobtrusive
sensors with them, within or networked with their smartphones,
forming dense and interconnected sensor networks. Mobile sens-
ing applications will soon become mainstream.

Mobile sensing systems have many advantages over conventional
systems composed of a few accurate, low-drift, stationary, and ex-
pensive sensing stations. For example, in the personal air quality
sensing application, many pollutants have nonuniform spatial dis-
tributions [22]. As a result, personal exposure is poorly estimated
by using sparsely distributed stationary sensors. If each participant
in a sensing system were to carry a sensor, we would be able to
better understand human exposure and provide more relevant in-
formation to users.

Temporal drift is generally not a concern for expensive stationary
sensors, since they are regularly calibrated by experts. However,
low cost and compact sensors can accumulate substantial errors in
short time spans [8, 17]. Our own measurements of 15 volatile or-
ganic compound (VOC) sensors kept in a controlled environment
showed up to 20% drift in a single day. Erroneous measurements
caused by sensor drift can result in incorrect scientific conclusions,
false alarms, and bad decisions. Therefore, low cost sensors require
frequent re-calibration.

Manually calibrating sensors to compensate for drift is time-
consuming and burdensome; it can annoy users and limit their de-
sire to use the sensors, which will result in an ineffective system.
Automatic calibration (which requires no explicit user intervention)
has the potential to solve these problems, thereby increasing mobile
sensing opportunities.

We propose a system supporting automatic, opportunistic, and
collaborative calibration among mobile sensors. Our solution takes
into account the gradual increase in sensor drift error with time,
and appropriately weights different calibration events based on the



time-dependent estimated errors of the other sensors, i.e., we con-
sider the temporal and spatial properties of the graph formed by
(transitive) calibration events. Although we do not require the pres-
ence of stationary sensors, we support their inclusion in the system,
and also provide algorithms for determining their best locations.
Our evaluation makes use of controlled sensor drift studies as well
as measured human motion patterns.

The proposed collaborative calibration approach is appropriate
for applications with the following characteristics.

1. Spatial variation of sensor readings are low within certain
physical distance.

2. Sensor nodes are able to communicate with each other and
detect when they are within calibration distance, e.g., either
by tracking their own locations or by measuring signal atten-
uation between nodes.

3. Sensor drift can be compensated for using a drift predictor.
The residual error of this predictor has a Gaussian distribu-
tion with variance that increases as a function of time, as
explained in Section 4.2 and demonstrated in Section 6.1.

Our technique can potentially be used in many mobile sensing ap-
plications, such as radiation sensing applications in which sensors
are carried by individuals and unmanned aerial vehicles, remote
sensing applications in which detailed data are available from in-
field sensors and sparse data are available from satellites, and per-
sonal environmental sensing. Although the concepts we develop
apply to a broader range of mobile sensing systems susceptible to
drift error, in the rest of paper, we focus our discussion on a per-
sonal air quality sensing application.

It should be noted that collaborative calibration minimizes the
increase in the rate of uncompensable drift error, but does not elim-
inate error. Without the stationary accurate sensors, the mobile
sensor network’s overall accuracy degrades over time. The use of
a few stationary accurate sensors to augment mobile collaborative
calibration is beneficial; it allows the drift error to be bounded.

Our work makes the following main contributions.

1. We formulate and solve the opportunistic collaborative mo-
bile sensor calibration problem.

2. We formulate and solve the mobility aware stationary sensor
placement problem to augment collaborative calibration.

3. We propose a sensor drift model built using experimental
data from 15 VOC sensors.

To better understand and characterize the effects of real-world hu-
man motion on calibration, we also carried out an indoor human
motion pattern study on a university campus. Compared with our
collaborative calibration scheme, the most advanced existing auto-
calibration technique has an average error of 23.2%, while our effi-
cient heuristic has an error of 2.2%. We also present two algorithms
for placing stationary sensors to further improve mobile collabora-
tive calibration. The use of well-placed stationary sensors within
the collaborative calibration system techniques reduces sensing er-
ror significantly, e.g., by about 40% for a density of 1 stationary
sensors per 25 mobile sensors. The approximation algorithm based
placement technique results in only 6.2% more error than an MILP
based technique.

The rest of this paper is organized as follows. Section 2 gives a
motivating example. Section 3 summarizes the related work on col-
laborative calibration and stationary sensor placement. Section 4
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Figure 1: (a) Human motion traces and calibration events and

(b) drift errors for three sensors.

describes the sensor random drift model and our collaborative cal-
ibration method. Section 5 generalizes the human mobility model,
and provides an MILP based solution for the human motion aware
stationary sensor placement problem as well as an approximation
algorithm. Section 6 describes our controlled-environment experi-
ments for sensor drift and the data analysis results. It also evaluates
the performance of our techniques using simulations based on real-
world and synthesized human motion traces. Section 7 concludes
the paper.

2. MOTIVATING EXAMPLE
Consider a mobile sensor network formed by sensing devices

carried by individuals to monitor their air pollution exposures. Each
device houses small, energy efficient, and inexpensive metal oxide
gas sensors that measure various air pollutants. The sensor mea-
surements gradually drift over time. Drift rates can vary greatly;
to minimize error, the sensors must be re-calibrated frequently. In
many cases, accurate stationary sensors are not readily accessible
for users, and the occasional calibration opportunities they provide
are insufficient to cover all the participants in the sensing system.
By using collaborative calibration together with optimized place-
ment of stationary sensors, accuracy can be significantly improved.

Figure 1 illustrates an example of our mobile sensor network cal-
ibration technique. Figure 1(a) shows the trajectories of three mo-
bile sensors (A, B, and C). Figure 1(b) shows their uncompensable
drift errors over time. Each vertical drop in Figure 1(b) corresponds
to one calibration event. Between calibration events, the drift error



increases with time as a result of reduced drift prediction accuracy.
Given the mobile sensor motion traces, our sensor placement ap-
proach decides where to put accurate stationary sensors to maxi-
mize the probabilities of mobile sensors being calibrated against
the stationary sensor. In this example, the stationary sensor is lo-
cated at a position both sensor A and B visit, thus providing ground
truth calibration for two sensors. When sensor A and B get close to
the accurate stationary sensor, their errors drop due to calibration
(refer to Figure 1(b)). Our problem formulation and solution also
consider a realistic human mobility model that considers individ-
ual motion traces able to represent day-to-day variation. With our
collaborative calibration technique, even though sensor C never di-
rectly calibrates with any (accurate) stationary sensor, its drift error
still reduces in the third day by calibrating with sensor A, which has
a smaller error due to recent calibration with an accurate stationary
sensor.

3. RELATED WORK
This section summarizes prior work on auto-calibration and place-

ment for distributed sensor networks.
Bychkovskiy et al. [3] proposed a two-phase post-deployment

calibration technique for dense stationary sensor networks. In the
first phase, linear relative calibration relations are derived for pairs
of co-located sensors. In the second phase, the consistency of the
pair-wise calibration functions among groups of sensor nodes is
maximized. Their technique requires a dense deployment of sta-
tionary sensors. In contrast, our work focuses on mobile sensor
networks.

Miluzzo et al. [15] proposed an auto-calibration algorithm for
mobile sensor networks, called CaliBree. In their approach, uncal-
ibrated mobile nodes opportunistically calibrate themselves when
interacting with stationary sensors. In their work, calibration events
always involve stationary sensors. Our work supports calibration
with stationary sensors, but in contrast also supports calibration
among mobile sensors, allowing either higher accuracy or a reduc-
tion in the number (and therefore cost) of stationary sensors.

Tsujita et al. [21, 22] studied calibration for air pollution moni-
toring networks. They [22] observed that at a certain time of day,
the nitrous oxide pollutant concentration becomes low and uniform
in certain areas. They use these opportunities to calibrate mobile
sensors using the pollutant concentration reported from nearby en-
vironment monitoring stations. In their other work [21], when mul-
tiple sensors are close to each other, the average of their readings
is used as ground truth to estimate sensor drift. In contrast, we ac-
count for the gradual increase in drift error as a function of time,
allowing an optimal weighting for each of the many calibration
events used to determine drift compensation parameters. Our ex-
perimental results show that the technique proposed by Tsujita et
al. technique has 23.2% error relative to the optimal result; our pro-
posed heuristic only has 2.2% error.

Berry et al. [2] used an MILP based method to solve the NP-
hard problem of placing sensors in water networks for optimal con-
tamination detection. Chakrabarty et al. [4] tried to find an optimal
sensor placement scheme to minimize the cost of sensors while
meeting coverage constraints. Our problem formulation differs in
that mobile sensors are carried by individuals. A realistic human
mobility model is therefore necessary to solve our placement prob-
lem. We build our human mobility model based on previous re-
search and our indoor human motion study, and solve the station-
ary sensor placement problem using a high quality but potentially
slow MILP method and an efficient approximation algorithm based
technique.

4. COLLABORATIVE CALIBRATION
This section describes our collaborative calibration technique.

We present the problem definition, mathematical analysis, and our
algorithm to solve this problem optimally.

4.1 Overview
Our collaborative calibration technique uses drift modeling and

sensor fusion to reduce drift-related sensor measurement error. Sen-
sor drift models, or drift predictors, are built based on past mea-
sured or estimated drift errors. They are used to estimate sensor
drift at any point of time and (partially) compensate for drift er-
rors in sensor measurements. In addition, the drift model allows
the residual error of the drift predictor to be predicted as a func-
tion of time. Sensor fusion uses measurements from co-located
sensors to improve the accuracy of the combined results. The fu-
sion algorithm determines how to combine multiple sensor mea-
surements based on their residual errors in order to maximize the
combined accuracy. In implicit mobile calibration, sensor fusion
happens whenever sensors happen to be close to each other; our
calibration technique is opportunistic and collaborative.

Actual sensor drifts are only known when sensor measurements
are compared with a highly accurate sensor (ground truth). Such
opportunities are rare in most personal sensing applications. At
most times, drifts must be estimated using models based on prior
calibration events with other sensors having varying accuracies.
The temporal correlation in sensor drift decreases with temporal
distance. Therefore, all other things being equal, the uncertainty of
the model (i.e., the residual error of the predictor) increases with
the elapsed time since the last drift measurement.

Since nearby sensors are exposed to similar physical conditions,
readings from co-located sensors can be combined to statistically
improve accuracy. As mentioned before, each sensor has a resid-
ual error associated with its post-drift-compensation measurement.
Each calibration event allows this error to be reevaluated and po-
tentially reduced. If the two residual errors are independent, the
measurement with the smaller residual error should be given more
weight during combination. Calibration relationships introduce cor-
relations in sensors’ residual errors that the calibration algorithm
must account for. Section 4.3 describes our correlation-aware fu-
sion algorithm in detail.

4.2 Collaborative Calibration Problem
Definition

Our analytical framework can handle classes of mobile and sta-
tionary sensors with arbitrary drift rates. However, we will focus
our discussions on systems composed of inexpensive, high drift rate
mobile sensors, and expensive but accurate stationary sensors with
low drift rates. Although our collaborative calibration technique
does not rely on accurate (and most likely stationary) sensors, the
use of a few stationary sensors will allow network-wide drift error
to be reduced. We assume that these stationary sensors provide ac-
curate readings, either because they are inherently resistant to error
or because they are maintained by experts.

Mobile sensors are generally calibrated before deployment but
they drift over time. Drift is a function of various factors such as
sensing material, exposure to sulfur compounds or acids, aging,
or condensate on the sensor surface [1, 8]. It is reported that short-
term sensor drift can be modeled accurately with simple models but
long-term drift is less predictable [5]. We assume only that (1) there
exists an unbiased drift predictor whose residual error has Gaussian
distribution and that (2) we have knowledge of how its variance in-
creases over elapsed time since the most recent calibration event.



Sensor A

Sensor B

Sensor C

t1 t2 t3

Na1

Nb1

Nc3

Na3

Nb2

0

Nc2

Figure 2: An example of sensor error correlation as a result of

previous calibration events.

As explained in Section 6.1, we observed that high-quality predic-
tors for our sensors have this property.

Our goal is to develop a distributed technique that automatically
compensates for sensor drift error; there is no notion of a central
controller that has access to data from all sensors. Avoiding de-
pendence on a central controller can reduce sensing system energy
consumption, cost, and security problems.

We now present the formal problem definition. Given N mo-
bile sensors and M accurate stationary sensors, the location of a
mobile sensor i at time t is Li(t), i ∈ N . The location of ac-
curate stationary sensor j is Lj , j ∈ M . Sensor i’s raw reading
(including drift error) at time t is ri(t). Its drift prediction func-
tion is fi(t, k1, k2, ..., kn). The parameters of this function may
be different for each sensor and may change over time. The er-
ror associated with the drift predictor e(t) changes over time. The
drift-compensated sensor reading is Ri(t) = ri(t) − fi(t). The
accurate value of the monitored parameter at location l and time
t is Gt

l . Let Ci(t) be the post-calibration sensor reading. In other
words, Ci(t) is the sensor reading after drift compensation and sen-
sor fusion. The goal is to determine k1, k2, ..., kn for each sensor
to minimize its total mean squared error, i.e.,

P

t
(Gt

l − Ci(t))
2.

Each sensor i at time t, only has access to Rj(t) of sensor j when
|Li(t)− Lj(t)| < Dc (Dc is the calibration range).

Our measurements in several rooms suggest that in well-ventilated
rooms with no obvious pollution sources, the pollutant mixture is
spatially homogeneous within 2 m distance. We will use this dis-
tance as calibration range Dc in simulations. Note that the spatial
distributions of air pollutant concentrations vary based on nearby
pollution sources and ventilation conditions, thus the calibration
range depends on circumstances.

4.3 Error Estimation and Error Propagation
As we mentioned before, each sensor has a residual error that

is adjusted after each calibration event. In this section, we describe
how this residual drift error is calculated and minimized via calibra-
tion and prediction. We address the problem of predictor design for
one particular type of sensor in this paper. In general, the predictor
should be provided by the sensor manufacturer or determined by
pre-deployment lab calibration.

We start with a simple scenario where errors of two sensors are
independent. Assume two co-located sensors A and B. Sensor A’s
current error estimate is na and sensor B’s current error estimate
is nb, where na and nb are random numbers with Gaussian distri-
butions Na and Nb and standard deviations Ea and Eb (in the rest
of the paper, we use N to represent a Gaussian distribution, n to
represent a random number following distribution N , and E to rep-
resent its standard deviation). Assume this is the first time sensors
A and B calibrate with other sensors. Na and Nb are independent
and their standard deviations, Ea and Eb, are determined by how
long the sensors remain uncalibrated. Let G be the ground truth

value of the physical condition measured by the sensors. Read-
ings from these two sensors can be represented as Ra = G + na

and Rb = G + nb. The weighted sum of Ra and Rb is Rab =
α ·Ra + (1− α) ·Rb = G + N(0,

p

α2 · E2
a + (1− α)2 · E2

b ).
It is easy to prove that when

α = E2
b /(E2

a + E2
b ), (1)

the weighted sum has minimal standard deviation for both cali-
brated sensors, i.e., G+N(0, EaEb/

p

E2
a + E2

b ). A reading from
the sensor with smaller error is given more weight. After calibra-
tion, both sensors should adjust their readings to Rab and use Rab

to estimate their current ground truth readings as well as to predict
future drifts.

Now we consider the scenario in which Na and Nb are corre-
lated. This may happen as a result of both sensors directly or
transitively calibrating with the same mobile sensor prior to their
calibration with each other. In this case, we need to know the cor-
relation between Na and Nb to compute the optimal combination
of their readings. Let us consider the example shown in Figure 2.
Assume three sensors A, B, and C all start operating at time 0. At
time t1, sensors A and B calibrate. Their calibration parameters are
independent of each other at that time and thus the analysis in the
previous paragraph for independent errors can be applied. Assume
weights of 0.2 and 0.8 are used, thus the error after calibration is
0.2na1 + 0.8nb1. At time t2, sensors B and C calibrate. Assume
sensor B’s drift prediction error increased by nb12 from time t1 to
t2. The errors of B and C are still independent. Assume the optimal
weight is 0.5 in this case. After calibration, B’s and C’s errors are
0.1na1 + 0.4nb1 + 0.5nb12 + 0.5nc2. At time t3, sensors A and
C calibrate. A’s error is now na3 = 0.2na1 + 0.8nb1 + na13 and
C’s error is nc3 = 0.1na1 + 0.4nb1 + 0.5nb12 + 0.5nc2 + nc23.
Note that at that moment, these two sensors contain the same errors
generated from the previous calibration, which are na1 and nb1.
Now Na and Nc are correlated and Equation 1 cannot be directly
applied. However, it is still possible to use the weight assignment
technique to find an optimal solution. To do that, we can remem-
ber all the independent distributions and weight assignments from
previous calibration events.

Now we present the general approach that accounts for correla-
tion introduced by transient calibration events among sensors. Each
sensor’s error distribution is represented as a weighted sum of mul-
tiple independent error distributions. Each independent distribution
is from the other sensor’s or its own increased prediction error over
the uncalibrated time interval. Label the two calibrating sensors
as sensor 1 and 2. Let S1 and S2 be the sets of independent error
distributions for sensors 1 and 2. Let C be the intersection of S1

and S2, i.e., C = S1 ∩ S2. Let C1 and C2 be S1 and S2’s non-
overlapping regions, i.e., C1 = S1 − C, C2 = S2 − C. Let W1i

and W2i be the weights associated with the error distributions for
sensors 1 and 2, δi be the standard deviation of each distribution,
and G be the ground truth value of measured object. Sensor 1’s
reading after drift compensation is

R1 = G +
X

i∈C

W1iN(0, δi) +
X

j∈C1

W1jN(0, δj). (2)

Sensor 2’s reading is

R2 = G +
X

i∈C

W2iN(0, δi) +
X

k∈C2

W2kN(0, δk). (3)

In order to generate more accurate results by combining the read-
ings of sensor 1 and 2, we use a linear weighted sum function
to combine their drift-compensated measurements. Assuming the



weights are α and 1 − α for sensor 1 and 2 respectively, the com-
bined result is

R12 = αR1 + (1− α)R2

= G +
X

i∈C

[αW1i + (1− α)W2i]N(0, δi)

+
X

j∈C1

αW1jN(0, δj) +
X

k∈C2

(1− α)W2kN(0, δk). (4)

The variance of the error for the combined reading is

V ar =
X

i∈C

[αW1i + (1− α)W2i]
2δ2

i +
X

j∈C1

W 2
1jα

2δ2
j

+
X

k∈C2

W 2
2k(1− α)2δ2

k. (5)

The derivative of the variance is

dV ar

dα
= 2α

X

i∈C

(W1i −W2i)
2δ2

i + 2
X

i∈C

W2i(W1i −W2i)δ
2
i

+ 2α
X

j∈C1

W 2
1jδ

2
j + 2α

X

k∈C2

W 2
2kδ2

k − 2
X

k∈C2

W 2
2kδ2

k.

(6)

To minimize the variance, we have dV ar
dα

= 0, therefore

α =
P

i∈C
W2i(W2i −W1i)δ

2
i +

P

k∈C2
W 2

2kδ2
k

P

i∈C
(W1i −W2i)2δ2

i +
P

j∈C1
W 2

1jδ
2
j +

P

k∈C2
W 2

2kδ2
k

.

(7)

Equation 7 gives the general expression for weight assignment.
In the case of two independent sensors (C is empty), we have

α =

P

k∈C2
W2kδ2

k
P

j∈C1
W 2

1jδ
2
j +

P

k∈C2
W 2

2kδ2
k

=
E2

2

E2
1 + E2

2

, (8)

which is consistent with Equation 1.
Note that the above analysis applies only to the scenario where

collaborative calibration involves two sensors. It is possible to ex-
tend the evaluation to an arbitrary number of co-located sensors,
although this would increase the complexity of the weight assign-
ment expression.

4.4 Collaborative Calibration Algorithm
We have presented the key concept allowing the optimal cal-

ibration algorithm to combine readings from co-located sensors.
Now we present the complete algorithm for collaborative calibra-
tion, which includes drift compensation, weight assignment, and
drift reevaluation. Note that calibration opportunity detection is
not part of our algorithm. There are multiple existing approaches
to discover calibration opportunities, including radio communica-
tion (e.g., Bluetooth), ultrasound, and passive audio environment
based proximity detection schemes [10, 16, 20].

The key data structure used is a table that stores all the indepen-
dent error distributions and their corresponding weight assignments
for each sensor. Each entry is a tuple of name, weight, and standard
deviation. The names are used to distinguish independent error dis-
tributions. The calibration algorithm for a mobile sensor labeled i
that calibrates with sensor j is shown in Algorithm 1.

Mobile sensors participating in the collaborative calibration sys-
tem carry out three actions every time a calibration event happens:
(1) estimate its current drift with its drift predictor and use the re-
sult to compensate its raw reading, (2) estimate the ground truth

value and update its error table, and (3) use the estimated ground
truth value to recompute its drift, residual error, and drift predictor.
The type of co-located sensor determines the details of step (2). If
the co-located sensor is an accurate stationary sensor, its reading
can be directly used as ground truth to estimate the mobile sensor’s
drift. The mobile sensor ignores its own reading and directly over-
writes its own reading with the reading from the stationary sensor
and its current error immediately drops to zero. As a consequence,
it can forget all previous calibration errors as they become irrele-
vant (clear the table). Otherwise, if the co-located sensor is also a
mobile sensor with a non-zero error, its drift-compensated reading
is combined with the mobile sensor’s drift-compensated reading ac-
cording to Equation 7 to generate an estimate of ground truth and
the error distribution table will be updated accordingly.

Algorithm 1 Collaborative calibration algorithm for mobile sensor

i
Require: ri // i’s raw reading

Require: Rj // j’s calibrated reading

Require: Ti // i’s error table

Require: Tj // j’s error table

Require: t // current time

if j is accurate stationary sensor then

Ri ← Rj

Di′(t)← ri −Ri

Update drift model

Ti.clear()

else

Predict current drift Di

Ri ← ri −Di

Ti.insert(i.t, g(t− last_cali_t), 1))
C ← Ti

T

Tj

C1 ← Ti − C
C2 ← Tj − C
Compute α using Equation 7

Rij ← αRi + (1− α)Rj

Update current drift D′
i(t)← ri −Rij

Update drift model

for k ∈ C do

Ti[k].weight← Ti[k].weight ×α + Tj[k].weight × (1-α)

end for

for k ∈ C1 do

Ti[k].weight← Ti[k].weight ×α
end for

for k ∈ C2 do

Ti[k]← (Tj[k].name, Tj[k].var, Tj[k].weight ×(1− α))
end for

end if

last_cali_t← t

5. STATIONARY SENSOR PLACEMENT
In this section, we consider placement of stationary sensors to

further assist the collaborative calibration of mobile sensors. Our
discussion will focus on human-carried sensors.

5.1 Overview
Adding stationary sensors to a system composed of collabora-

tively calibrating mobile sensors can further improve accuracy. The
number of stationary sensors is constrained by cost; they must be
carefully positioned to enable frequent calibration opportunities with
mobile sensors. Fortunately, humans move with patterns that can
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be used to our benefit; some locations are more frequently visited
than others [13].

Recent research has shown that most people’s daily motion pat-
terns are predictable [7, 18, 19]. We present a stochastic human
mobility model capable of capturing the most relevant motion pat-
terns for the stationary sensor placement problem. The field for sta-
tionary sensor deployment is modeled as a grid in which implicit
calibration may occur among sensors in the same grid element. It
is possible to eliminate discretization problems by making grid ele-
ments arbitrarily small and permitting calibration between nodes in
multiple grid elements within the calibration distance. We define a
motion pattern as a set of locations (grid elements) that a person is
likely to visit on a particular day. An individual’s mobility model
is a probability-weighted collection of possible motion patterns.
Extreme sensor drift typically occurs on a timescale of days, not
hours, enabling a simplified model that neglects the order of visited
locations within a single day. In our evaluation, these models are
extracted from measured motion traces as well as those generated
by software provided by human motion pattern researchers [13].

Daily motion patterns are weighted with probabilities. For exam-
ple, as shown in Figure 3, there are three distinct patterns: r1, r2,
and r3. A value ranging from 0 to 1 is associated with each pattern
to indicate its probability. It is possible for multiple stationary sen-
sors to be encountered by a person in a day. However, encountering
one is sufficient for calibration.

5.2 Sensor Placement Problem Definition and
MILP-Based Solution

We now define the problem of stationary sensor placement to
assist calibration of mobile sensors.

Problem Definition: The field for stationary sensor deployment
can be represented by a grid G. A set of people S move within
the grid. Each person s ∈ S carries a mobile sensor. A person’s
motion pattern for a particular day, rs, is a set of locations. R is
the set of all motion patterns, and the motion patterns associated
with a particular person s are represented with Rs. Each motion
pattern r is associated with a value psr , which is the probability of
person s having pattern r. The sum of the calibration probabilities
of all patterns of person s is Ps. A total number of k sensors are
deployed in the field. The optimization objective is to find a set of
grid elements in which stationary sensors should be placed to maxi-
mize the average daily probability of mobile sensor calibration, i.e.,
P

s∈S
Ps

k
.

This problem is NP-hard. Let each pattern be represented by
an element associated with a probability weight and each possible
stationary sensor placement location be represented by a subset. An
element belongs to a subset if and only if the corresponding pattern
contains the placement location. Given a resource constraint, k, the
original problem can be stated as selecting at most k subsets such
that the covered elements have maximum total weight. This is the

weighted maximum coverage problem [11]. We will now describe
an MILP formulation for the problem.

Maximize

P

Ps

k
, ∀s ∈ S,

subject to

X

(i,j)∈G

xij ≤ k, (9)

∀r ∈ R,
X

(i,j)∈r

xij −Mdr ≤ 0, (10)

∀r ∈ R,
X

(i,j)∈r

xij −mdr ≥ 0, (11)

Ps −
X

r∈Rs

dr ∗ psr = 0, (12)

1 ≥ xij , and dr ≥ 0. (13)

xij , dr are integers. M and m are constants and are set to k + 1
and 0.5. The probabilities psr are known. The properties of binary
indicators xij and dr are described below.

xij =

(

1 if a sensor is placed at grid element (i, j)

0 otherwise,
(14)

and

dr =

(

1 if pattern r is covered by at least one sensor

0 otherwise.
(15)

M is greater than the largest possible value of
P

(i,j)∈r
xij (which

is satisfied by setting M to be k + 1) and m is less than the small-
est possible non-zero value of

P

(i,j)∈r
xij (which is satisfied by

setting m to be 0.5).

5.3 Approximation Algorithm Based Placement
Technique

Algorithm 2 Approximation based placement technique

Require: G // deployment field grid

Require: R // set of all patterns

Require: P // probabilities

Require: k // stationary sensor count constraint

C ← {} // output set

while size(C) ≤ k do

Select g ∈ G s.t.
P

r∈g
Pr is maximized

Remove the covered patterns from R
C ← C ∪ g

end while

Normally MILP-based solutions are not tractable for large in-
stances of hard problems. Fortunately, the number of patterns per
person is limited: it is possible to directly use the MILP formula-
tion for substantial problem instances. The solver performance is
further improved because human motion traces tend to be spatially
clustered [13]. We will show in Section 6.3 that our algorithm can
be applied to deployment cases with up to 840 km2 area or 200 pat-
terns. It is conceivable that some problem instances will exceed



Figure 4: Calibration chamber used for sensor drift experi-

ments.

the size tractable for MILP solvers. Therefore, we also present an
approximation algorithm based polynomial time heuristic.

The maximum coverage problem can be solved with the polyno-
mial time (1− 1

e
)-approximation algorithm shown in Algorithm 2.

This is minimum achievable bound [11]. However, the (1 − 1
e
)-

approximation bound only applies for the average calibration prob-
ability between stationary and mobile sensors. There are many
other factors influencing the network sensing accuracies, such as
collaborative calibration events, calibration time, and calibration
order. Section 6.3 evaluates the approximation algorithm based
technique in detail.

6. EXPERIMENTAL RESULTS
In this section, we first describe our controlled drift experiments

(Section 6.1), which support the hypothesis in Section 4.2. Sec-
tion 6.2 presents simulation results for our optimal and efficient
collaborative calibration techniques and compares them with two
existing works that are most related. Section 6.3 reports on the
performance of our MILP based stationary sensor placement algo-
rithm and compares it with the efficient approximation algorithm
we propose.

6.1 Calibration Procedure and
Drift Experiments

Section 4.2 describes our sensor drift model. We assume that
drift can be (partially) compensated for by an unbiased predictor,
and the residual error can be modeled using a Gaussian distribution
with a variance that predictably increases with time. To test this
hypothesis, we have conducted a drift experiment in our controlled
chamber.

Before the drift experiment, we manually calibrated all sensors.
Calibrations were performed using de-humidified zero grade air
(i.e., air with less than 1 ppm total hydrocarbons) and controlled-
concentration iso-butylene (a VOC unlikely to damage graduate
students when used at low concentration). The purpose of this cal-
ibration is to compensate for initial measurement offsets, possibly
due to variation in the manufacturing process. During calibration
and drift experiments, sensors are mounted on a custom printed
circuit board enclosed in the 250 cm3 polycarbonate chamber as
shown in Figure 4. A fan is mounted inside the chamber to improve
mixing and make convection heat loss from the sensors uniform.
The temperature and humidity inside the chamber are stabilized at

43.8±1.3 ◦C, and 7.8±1.7% respectively. A LabVIEW interface
controls the gas mixture using mass flow controllers. During cali-
bration runs, the sensors are held at concentrations of 0, 0.25, and
1.0 ppm (parts per million by volume) of iso-butylene in a total vol-
ume flow of 4 liters per minute, for 20 minutes each. The sensors
are powered continuously throughout the experiment period, and
were warmed up for two weeks prior to starting the experiments to
allow the sensors to reach an initial equilibrium, as recommended
by the manufacturer.

During the drift experiment, 15 pre-calibrated Figaro TGS 2602
VOC sensors are placed in the controlled gas chamber and exposed
to 4 liters per minute air. These exposure tests last 120 minutes and
are performed daily. Since the sensors are powered continuously,
they should drift constantly during the experiment. The drift data
are calculated by averaging the last 30 minutes of readings from
each test to avoid any warm-up effects from changes in the air flow
rate.

We use the analog to digital converter on Labjack U3 data ac-
quisition modules to measure the voltage output of the TGS sen-
sors, at a sampling frequency of 0.5 Hz. We use log-based transfer
function to convert the voltages to VOC concentrations, based on
calibrations performed before the experiment. The concentration
readings after conversion are shown in Figure 5. Since the ground
truth reading should be 0 ppm, the readings after the conversion al-
ready represent drift. Seven of the 48 measurements were discarded
due to inconsistent air flow rate or relative humidity levels due to
transient problems with the testing chamber air supply.

We now evaluate a simple drift predictor based on linear extrap-
olation of two consecutive drift errors to predict future errors. The
difference between the predicted drift value and the measured drift
is the portion of the drift error that is not captured by the drift
model. We have also evaluated higher-order non-linear predictors
but they did not have higher prediction accuracies than the linear
predictor. The linear predictor compensated for 94.1% and 87.7%
of the drift on average when predicting one day and two days ahead.
We therefore consider it to be a good predictor for this kind of sen-
sor. Note that for different sensor types, the forms of the predictor
function may be different. In some cases, a higher order non-linear
fitting function might be necessary.

We applied the Lillie normality test to the residual error of the
linear predictor. The residual error has a Gaussian distribution, with
an exception for predictions eight days in advance. For most cases,
the linear predictor meets Gaussian residual requirement posed in
Section 4.2. For specific sensors and time offsets passing the nor-
mality test, we perform t-tests to assess whether the distributions
have means of 0 ppm. The significance levels used in the Lillie
test and t-test are both 0.05 and the test results are shown in Fig-
ure 6(a). Figure 6(b) shows the standard deviation of the remaining
drift error after applying the linear predictor for up to 10 days in
the future. The results clearly show an increasing trend for all the
sensors, consistent with our hypothesis in Section 4.2 that the vari-
ance increases over time. The standard deviations of the short-term
drift errors can be well predicted using simple linear functions.

With one possible anomaly at an eight-day offset, the drift ex-
periment results confirm our hypothesis that the residual error after
drift prediction has a Gaussian distribution with mean 0 and pre-
dictable variance that increases over time.

6.2 Evaluation of Collaborative Calibration
To evaluate our collaborative calibration algorithm, we compare

it with two other approaches proposed in relevant and recent work.
In the first approach, Calibree [15], all mobile sensors calibrate
with stationary accurate sensors. In contrast, our calibration tech-
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Figure 5: Measured drift error as a function of time for Figaro TGS2602 VOC sensors.

2 4 6 8 10
0

20

40

60

80

100

Number of future days for prediction (day)

P
e
rc

e
n

ta
g

e
 o

f 
s
e
n

s
o

rs
 p

a
s
s
e
d

 t
e
s
ts

 (
%

)

 

 

Lillie test

T−test

(a)

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Number of future days for prediction (day)

S
ta

n
d

a
rd

 d
e
v
ia

ti
o

n
 (

p
p

m
)

 

 

(b)

Figure 6: (a) The normality test results and (b) the standard deviations of prediction errors using the 2-day linear predictor to

compensate for 1 to 10 days of future drift.

Table 1: Aggregated Sensor Error with Synthesized Human Motion Traces

Trace
Num. of cali. events Total aggregated mean squared error

Total Uncorrelated Stationary CaliBree Averaging Heuristic Optimal

1 44,290 5,072 21,818 964.6 393.6 321.9 312.1

2 43,378 3,368 20,144 1,716.6 559.0 454.9 434.8

3 9,701 1,722 4,429 3,059.0 1,461.1 1,244.3 1,229.8

4 5,659 1,048 2,589 6,805.8 2,359.6 1,984.0 1,966.3

5 14,308 2,496 4,398 8,610.6 3,234.7 2,681.8 2,643.6

Average overhead (%) 224.8 23.2 2.2 0
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Figure 8: Memory use of the optimal collaborative calibration

scheme.

nique allows sensors to calibrate with each other as well as station-
ary sensors. In the second approach [21], readings from co-located
sensors are averaged to estimate the ground truth value. In contrast,
our technique enables more accurate drift compensation by consid-
ering the differing drift prediction errors of calibration events, i.e.,
sensors. We also propose and evaluate a calibration heuristic that
reduces computation complexity and memory use at the cost of a
very slight reduction in calibration accuracy. This heuristic ignores
correlations between prediction errors. Instead tracking indepen-
dent error distributions from previous calibration events and tem-
poral error growth, this algorithm only stores an aggregated error
for each sensor. During calibration, it uses Equation 1 to assign
weights to readings from co-located sensors. We evaluate the four
approaches with the same set of motion traces and sensor place-
ments, and compare the resulting accumulated mean squared error.
For this experiment, we use 10 stationary accurate sensors placed at
the most frequently visited locations and use a random walk model
for sensor drift.

Table 1 shows the results for the four approaches with five syn-
thesized motion traces generated using the SLAW human mobility
model [13]. The second to the fourth columns present statistics for
calibration events for the optimal algorithm. The second column
shows the total number of calibration events. A pair-wise calibra-
tion between two sensors is considered to be two calibration events.
The third column shows the number of calibration events in which

Table 2: Statistics for Human Mobility Case Study

Participant
Duration On campus # of # of

(days) prob. (%) patterns locations

1 30 90.0 12 11

2 30 86.7 5 5

3 22 77.3 4 4

4 23 100.0 5 4

5 21 76.2 7 6

Average 25.3 85.2 6.6 6

the errors from two sensors are independent. The fourth column
shows the number of calibrations with stationary accurate sensors.
The last four columns show the aggregated mean squared errors of
all sensors during the entire experiment.

On average, CaliBree [15] has 224.8% more error than optimal.
This is because it only considers calibration events between sta-
tionary and mobile sensors, and thus misses opportunities for cali-
bration between mobile sensors. 43.6% of calibration events occur
between mobile and stationary sensors; the rest occur between pairs
of mobile sensors.

Tsujita’s technique (averaging) has 23.2% more error than opti-
mal result. Figure 7 shows the distribution of the weights generated
with the optimal algorithm for Trace 5. The weights are widely dis-
tributed from 0 to 1. Only 25.4% are in the range from 0.4 to 0.6.
The structure of this histogram has implications for the effective-
ness of Tsujita’s approach: the closer weights are to 0.5, the more
effective Tsujita’s approach.

Our heuristic produces results with accuracy that deviates from
optimal by only 2.2%. Even though the percentage of correlated
events is fairly large (41.8%), ignoring the correlation does not sig-
nificantly degrade accuracy. However, this algorithm greatly re-
duces required memory compared with the optimal algorithm. With
the optimal algorithm, the memory use increases linearly with time
for most sensors. Figure 8 shows the memory use over time for
all sensor nodes in our experiment with trace 1. Each point corre-
sponds to a sensor node involved in a calibration event. We there-
fore conclude that the heuristic is more efficient and likely to be
appropriate for most practical applications.

The optimal algorithm allows us to evaluate the quality of vari-
ous calibration approaches. In summary, utilizing the interactions
among mobile sensors improves the accuracy by 224.8% compared
to only permitting mobile sensors to calibrate with stationary sen-
sors. The accuracy is improved by 23.2% by considering the het-
erogeneity of drift estimation parameters among different sensors.
Considering correlations among sensors due to calibration imposes
large computation complexity and memory use with a relatively
small gain (2.2%). In summary, a technique using collaborative
calibration among mobile sensors that considers heterogeneity in
drift estimation parameters but ignores calibration event induced
inter-sensor correlations represents a good trade off between accu-
racy and run-time overhead/complexity.

6.3 Evaluation of Stationary Sensor Placement
This section introduces our human motion pattern case study

and evaluates our stationary sensor placement algorithms with both
measured and synthesized human mobility traces.

6.3.1 Measured Human Mobility Case Study

Much human mobility modeling research is based on outdoor
GPS data [7, 13, 19]. However, GPS is inaccurate indoors, where
humans spend 90% of their time [6]. According to a survey-based
model, office worker indoor activities can be modeled using a few



Table 3: Statistics for Measured and Synthesized Human Mo-

tion Traces and Solver Performance

Trace
Area Total Sensor Cand. Runtime

(km2) pat. no. loc. (s)

Case study N/A 33 5 17 0.01

KAIST 840.1 92 92 41,270 1.2

NCSU 142.3 35 35 10,691 0.13

New York 618.8 39 39 12,180 0.05

Orlando 122.0 41 41 26,662 0.07

State fair 1.2 19 19 4,422 0.03

1 0.01 200 50 1,225 0.13

2 0.01 200 50 1,001 0.24

3 1.0 200 50 26,448 2.44

4 1.0 200 50 39,695 5816.10

5 4.0 400 100 101,891 > 6 h

patterns [12]. In our evaluation, we use mobility traces gener-
ated using algorithms proposed by other researchers as well as data
gathered in our real-world human mobility study, which was con-
ducted on the campus of University of Colorado Boulder.

In our study, five graduate students, undergraduate students, and
professors used their mobile phones to record their daily motion
patterns. Participants manually entered locations and times into
their smart phones as they moved and these data were sent to a
server via the Internet. Locations in which users spent fewer than
five minutes were omitted from the motion patterns. The study was
conducted between August 3rd, 2011 and September 12th, 2011.
Statistics from the study are shown in Table 2. Motion patterns
contain 1.94 locations on average, which implies that the indoor
activities of the participants were spatially concentrated, which is
consistent with the findings of other human motion studies [12,19].

6.3.2 Experiment on Measured and Synthesized Hu-
man Motion Traces

To solve the MILP problem, we use the CPLEX v.12.2 solver [9]
on an Intel 4-core Xeon E31230 CPU running at 3.2 GHz with 8 GB
of memory. The evaluation is performed on both real-world and
mobility model generated [13] human motion traces.

The statistics of the real-world and synthesized human motion
traces [13], as well as our case study trace, and their MILP solver
performances are shown in Table 3. The case study trace does not
contain detailed location information, but lasts for multiple days.
The rest of the real-world traces contain detailed location informa-
tion, but are finished within a day each, i.e., each person has one
motion pattern. The duration for each trace is 4 days, i.e., each per-
son has 4 patterns. According to our real-world case study, the av-
erage probabilities of the top 4 patterns are 0.48, 0.2, 0.1, and 0.08.
The same probability values are used in the synthesized traces. The
fourth column of the table shows the total number of mobile sensors
in each trace. The fifth column shows the total number of candidate
locations where stationary sensors may be placed. Grid elements
visited by one or more person are considered as placement location
candidates. The total number of the candidate locations is equal to
the number of variables xij in Equation 9.

The MILP placement algorithm quickly solves all the problem
instances, except for synthesized trace 5. For this trace, the solver
terminated after six hours without producing a solution. This trace
contains 400 patterns and 101,891 candidate placement locations.
We conclude that the MILP solution is suitable for many useful-
scale problem instances, but there may be some real-world cases for
which a more efficient solution is required, e.g., that in Section 5.3.

The results of the MILP placement algorithm are shown in Fig-
ure 9. For most of the solutions, the number of sensors is far less
than the number of patterns. This is consistent with the hypothesis
that people’s motion traces tend to be clustered, repetitive, and fre-
quently overlap each other. The synthesized human motion traces
typically required fewer sensors despite having more motion pat-
terns because a relatively small geographical area was considered
in these traces. In summary, although personal mobile sensors are
needed to monitor the conditions experienced by many individu-
als, the accuracy of these sensors can be improved substantially
by using a few accurate stationary sensors to assist a collaborative
calibration technique.

The results of evaluating the algorithms on both real-world and
synthesized human motion traces are shown in Table 4. We as-
sume that repeated calibration with a stationary sensor during the
same day does not further reduce error. The aggregated network
error (the sum of mean square errors of all the sensors in the net-
work for readings taken every 30 seconds) is measured when both
placement algorithms are permitted to use the number of station-
ary sensor listed in the second column of Table 4. For the synthe-
sized traces, we assume that all the patterns occur with the same
probability. The fifth column of Table 4 shows the aggregated net-
work error using our optimal collaborative calibration technique,
assuming there are no stationary sensors. The results show that
the approximation algorithm based technique increases aggregated
network error by 6.2% compared to the MILP placement algorithm.
Note that for Trace 4, the approximation algorithm based technique
outperforms the MILP solution. In that case, the approximation
algorithm had already reached 99% average calibration probabil-
ity, making its solution essentially equivalent to the MILP solution.
Note that in our placement problem formulation, the error caused
by calibration order is neglected. However, since the uncompens-
able drift error within a day is small (less than 0.1 ppm as shown in
6(b)), this simplification has very little impact on solution quality.

7. CONCLUSIONS
We have presented a collaborative calibration and sensor place-

ment framework for mobile sensor networks. We developed a ran-
dom sensor drift model based on controlled experiments and devel-
oped a collaborative calibration technique to compensate for drift
error. We also describes placement techniques for stationary sen-
sors used to augment collaborative calibration among mobile sen-
sors. We conducted a human motion study on a university cam-
pus to build these models and evaluate our placement algorithms.
Experimental results indicate that, compared with our collabora-
tive calibration algorithm, the most advanced existing work has an
average sensor error of 23.2%. Our stationary sensor placement
algorithms further reduce the effects of drift error.
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