

SAS/STAT[®] 9.2 User's Guide The SURVEYSELECT Procedure (Book Excerpt)

This document is an individual chapter from SAS/STAT[®] 9.2 User's Guide.

The correct bibliographic citation for the complete manual is as follows: SAS Institute Inc. 2008. SAS/STAT[®] 9.2 User's Guide. Cary, NC: SAS Institute Inc.

Copyright © 2008, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a Web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this publication.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st electronic book, March 2008

2nd electronic book, February 2009

SAS[®] Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at **support.sas.com/publishing** or call 1-800-727-3228.

SAS[®] and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Chapter 87

The SURVEYSELECT Procedure

Contents

Overview: SURVEYSELECT Procedure	6606					
Getting Started: SURVEYSELECT Procedure	6607					
Simple Random Sampling	6608					
Stratified Sampling	6610					
Stratified Sampling with Control Sorting	6614					
Syntax: SURVEYSELECT Procedure	6615					
PROC SURVEYSELECT Statement	6615					
CONTROL Statement	6631					
ID Statement	6631					
SIZE Statement	6631					
STRATA Statement	6632					
Details: SURVEYSELECT Procedure	6636					
Missing Values	6636					
Sorting by CONTROL Variables	6636					
Sample Selection Methods	6637					
Simple Random Sampling	6638					
Unrestricted Random Sampling	6638					
Systematic Random Sampling	6639					
Sequential Random Sampling	6639					
PPS Sampling without Replacement	6640					
PPS Sampling with Replacement	6642					
PPS Systematic Sampling	6642					
PPS Sequential Sampling	6643					
Brewer's PPS Method	6644					
Murthy's PPS Method	6645					
Sampford's PPS Method	6645					
Sample Size Allocation	6646					
Proportional Allocation	6646					
Optimal Allocation	6647					
Neyman Allocation	6648					
Secondary Input Data Set	6648					
Sample Output Data Set						
Allocation Output Data Set	6652					
Displayed Output	6653					

ODS Table Names	6655
Examples: SURVEYSELECT Procedure	6656
Example 87.1: Replicated Sampling	6656
Example 87.2: PPS Selection of Two Units per Stratum	6659
Example 87.3: PPS (Dollar-Unit) Sampling	6662
Example 87.4: Proportional Allocation	6665
References	6668

Overview: SURVEYSELECT Procedure

The SURVEYSELECT procedure provides a variety of methods for selecting probability-based random samples. The procedure can select a simple random sample or can sample according to a complex multistage sample design that includes stratification, clustering, and unequal probabilities of selection. With probability sampling, each unit in the survey population has a known, positive probability of selection. This property of probability sampling avoids selection bias and enables you to use statistical theory to make valid inferences from the sample to the survey population.

To select a sample with PROC SURVEYSELECT, you input a SAS data set that contains the sampling frame or list of units from which the sample is to be selected. You also specify the selection method, the desired sample size or sampling rate, and other selection parameters. PROC SURVEYSELECT selects the sample and produces an output data set that contains the selected units, their selection probabilities, and their sampling weights. When you select a sample in multiple stages, you invoke the procedure separately for each stage of selection, inputting the frame and selection parameters for each current stage.

PROC SURVEYSELECT provides methods for both equal probability sampling and probability proportional to size (PPS) sampling. In equal probability sampling, each unit in the sampling frame, or in a stratum, has the same probability of being selected for the sample. In PPS sampling, a unit's selection probability is proportional to its size measure. For details about probability sampling methods, see Lohr (1999), Kish (1965, 1987), Kalton (1983), and Cochran (1977).

PROC SURVEYSELECT provides the following equal probability sampling methods:

- simple random sampling
- unrestricted random sampling (with replacement)
- systematic random sampling
- sequential random sampling

This procedure also provides the following probability proportional to size (PPS) methods:

- PPS sampling without replacement
- PPS sampling with replacement
- PPS systematic sampling
- PPS algorithms for selecting two units per stratum
- sequential PPS sampling with minimum replacement

The procedure uses fast, efficient algorithms for these sample selection methods. Thus, it performs well even for large input data sets or sampling frames, which might occur in practice for large-scale sample surveys.

PROC SURVEYSELECT can perform stratified sampling by selecting samples independently within the specified strata, or nonoverlapping subgroups of the survey population. Stratification controls the distribution of the sample size in the strata. It is widely used in practice toward meeting a variety of survey objectives. For example, with stratification you can ensure adequate sample sizes for subgroups of interest, including small subgroups, or you can use stratification toward improving the precision of the overall estimates. When you use a systematic or sequential selection method, PROC SURVEYSELECT can also sort by control variables within strata for the additional control of implicit stratification.

For stratified sampling, PROC SURVEYSELECT provides survey design methods to allocate the total sample size among the strata. Available allocation methods include proportional, Neyman, and optimal allocation. Optimal allocation maximizes the estimation precision within the available resources, taking into account stratum sizes, costs, and variances.

PROC SURVEYSELECT provides replicated sampling, where the total sample is composed of a set of replicates, and each replicate is selected in the same way. You can use replicated sampling to study variable nonsampling errors, such as variability in the results obtained by different interviewers. You can also use replication to compute standard errors for the combined sample estimates.

Getting Started: SURVEYSELECT Procedure

In this example, an Internet service provider conducts a customer satisfaction survey. The survey population consists of the company's current subscribers. The company plans to select a sample of customers from this population, interview the selected customers, and then make inferences about the entire survey population from the sample data.

The SAS data set Customers contains the sampling frame, which is the list of units in the survey population. The sample of customers will be selected from this sampling frame. The data set Customers is constructed from the company's customer database. It contains one observation for each customer, with a total of 13,471 observations.

The following PROC PRINT statements display the first 10 observations of the data set Customers and produce Figure 87.1:

```
title1 'Customer Satisfaction Survey';
title2 'First 10 Observations';
proc print data=Customers(obs=10);
run;
```

Figure 87.1 Customers Data Set (First 10 Observations)

		Customer Sat	isfaction	Survey	
First 10 Observations					
	Obs	CustomerID	State	Туре	Usage
	1	416-87-4322	AL	New	839
	2	288-13-9763	GA	Old	224
	3	339-00-8654	GA	Old	2451
	4	118-98-0542	GA	New	349
	5	421-67-0342	FL	New	562
	6	623-18-9201	SC	New	68
	7	324-55-0324	FL	Old	137
	8	832-90-2397	AL	Old	1563
	9	586-45-0178	GA	New	615
	10	801-24-5317	SC	New	728

In the SAS data set Customers, the variable CustomerID uniquely identifies each customer. The variable State contains the state of the customer's address. The company has customers in four states: Georgia (GA), Alabama (AL), Florida (FL), and South Carolina (SC). The variable Type equals 'Old' if the customer has subscribed to the service for more than one year; otherwise, the variable Type equals 'New'. The variable Usage contains the customer's average monthly service usage, in minutes.

The following sections illustrate the use of PROC SURVEYSELECT for probability sampling with three different designs for the customer satisfaction survey. All three designs are one-stage, with customers as the sampling units. The first design is simple random sampling without stratification. In the second design, customers are stratified by state and type, and the sample is selected by simple random sampling within strata. In the third design, customers are sorted within strata by usage, and the sample is selected by systematic random sampling within strata.

Simple Random Sampling

The following PROC SURVEYSELECT statements select a probability sample of customers from the Customers data set by using simple random sampling:

```
title1 'Customer Satisfaction Survey';
title2 'Simple Random Sampling';
proc surveyselect data=Customers
   method=srs n=100 out=SampleSRS;
run;
```

The PROC SURVEYSELECT statement invokes the procedure. The DATA= option names the SAS data set Customers as the input data set from which to select the sample. The METHOD=SRS option specifies simple random sampling as the sample selection method. In simple random sampling, each unit has an equal probability of selection, and sampling is without replacement. Without-replacement sampling means that a unit cannot be selected more than once. The N=100 option specifies a sample size of 100 customers. The OUT= option stores the sample in the SAS data set named SampleSRS.

Figure 87.2 displays the output from PROC SURVEYSELECT, which summarizes the sample selection. A sample of 100 customers is selected from the data set Customers by simple random sampling. With simple random sampling and no stratification in the sample design, the selection probability is the same for all units in the sample. In this sample, the selection probability for each customer equals 0.007423, which is the sample size (100) divided by the population size (13,471). The sampling weight equals 134.71 for each customer in the sample, where the weight is the inverse of the selection probability. If you specify the STATS option, PROC SURVEYSELECT includes the selection probabilities and sampling weights in the output data set. (This information is always included in the output data set for more complex designs.)

The random number seed is 39647. PROC SURVEYSELECT uses this number as the initial seed for random number generation. Because the SEED= option is not specified in the PROC SURVEYSELECT statement, the seed value is obtained by using the time of day from the computer's clock. You can specify SEED=39647 to reproduce this sample.

Figure 87.2 Sample Selection Summary

Customer Satisfaction Survey Simple Random Sampling					
The SURVEYS	The SURVEYSELECT Procedure				
Selection Method	Simple Random Sampling				
Input Data Set	CUSTOMERS				
Random Number Se	ed 39647				
Sample Size	100				
Selection Probab	ility 0.007423				
Sampling Weight	134.71				
Output Data Set	SAMPLESRS				

The sample of 100 customers is stored in the SAS data set SampleSRS. PROC SURVEYSELECT does not display this output data set. The following PROC PRINT statements display the first 20 observations of SampleSRS:

```
title1 'Customer Satisfaction Survey';
title2 'Sample of 100 Customers, Selected by SRS';
title3 '(First 20 Observations)';
proc print data=SampleSRS(obs=20);
run;
```

Figure 87.3 displays the first 20 observations of the output data set SampleSRS, which contains the sample of customers. This data set includes all the variables from the DATA= input data set Customers. If you do not want to include all variables, you can use the ID statement to specify which variables to copy from the input data set to the output (sample) data set.

		Customer Sa	tisfactio	n Survey		
Sample of 100 Customers, Selected by SRS						
(First 20 Observations)						
	Obs	CustomerID	State	Type	Usage	
					-	
	1	036-89-0212	FL	New	74	
	2	045-53-3676	AL	New	411	
	3	050-99-2380	GA	Old	167	
	4	066-93-5368	AL	Old	1232	
	5	082-99-9234	FL	New	90	
	6	097-17-4766	FL	Old	131	
	7	110-73-1051	FL	Old	102	
	8	111-91-6424	GA	New	247	
	9	127-39-4594	GA	New	61	
	10	162-50-3866	FL	New	100	
	11	162-56-1370	FL	New	224	
	12	167-21-6808	SC	New	60	
	13	168-02-5189	AL	Old	7553	
	14	174-07-8711	FL	New	284	
	15	187-03-7510	SC	New	21	
	16	190-78-5019	GA	New	185	
	17	200-75-0054	GA	New	224	
	18	201-14-1003	GA	Old	3437	
	19	207-15-7701	GA	Old	24	
	20	211-14-1373	AL	Old	88	

Figure 87.3 Customer Sample (First 20 Observations)

Stratified Sampling

In this section, stratification is added to the sample design for the customer satisfaction survey. The sampling frame, or list of all customers, is stratified by State and Type. This divides the sampling frame into nonoverlapping subgroups formed from the values of the State and Type variables. Samples are then selected independently within the strata.

PROC SURVEYSELECT requires that the input data set be sorted by the STRATA variables. The following PROC SORT statements sort the Customers data set by the stratification variables State and Type:

```
proc sort data=Customers;
    by State Type;
run;
```

The following PROC FREQ statements display the crosstabulation of the Customers data set by State and Type:

```
title1 'Customer Satisfaction Survey';
title2 'Strata of Customers';
proc freq data=Customers;
   tables State*Type;
run;
```

Figure 87.4 presents the table of State by Type for the 13,471 customers. There are four states and two levels of Type, forming a total of eight strata.

Customer Satisfaction Survey Strata of Customers The FREQ Procedure Table of State by Type State Туре Frequency | Percent | Row Pct T Col Pct |New |01d | Total ----+ | 1238 | 706 | AL 1944 9.19 | 5.24 | 14.43 | 63.68 | 36.32 | | 14.43 | 14.43 | --+---+ | 2170 | 1370 | 3540 FL | 16.11 | 10.17 | 26.28 | 61.30 | 38.70 | | 25.29 | 28.01 | ----+ GA T 3488 | 1940 | 5428 1 25.89 | 14.40 | 40.29 | 64.26 | 35.74 | | 40.65 | 39.66 | __+_-____+ 1684 | 875 | 2559 SC 1 | 12.50 | 6.50 | 19.00 | 65.81 | 34.19 | | 19.63 | 17.89 | ____+ --+-8580 4891 13471 Total 63.69 36.31 100.00

Figure 87.4 Stratification of Customers by State and Type

The following PROC SURVEYSELECT statements select a probability sample of customers from the Customers data set according to the stratified sample design:

```
title1 'Customer Satisfaction Survey';
title2 'Stratified Sampling';
proc surveyselect data=Customers
    method=srs n=15
    seed=1953 out=SampleStrata;
    strata State Type;
run;
```

The STRATA statement names the stratification variables State and Type. In the PROC SURVEYSELECT statement, the METHOD=SRS option specifies simple random sampling. The N=15 option specifies a sample size of 15 customers for each stratum. If you want to specify different sample sizes for different strata, you can use the N=SAS-data-set option to name a secondary data set that contains the stratum sample sizes. The SEED=1953 option specifies '1953' as the initial seed for random number generation.

Figure 87.5 displays the output from PROC SURVEYSELECT, which summarizes the sample selection. A total of 120 customers are selected.

Figure 87.5 Sample Selection Summary

```
Customer Satisfaction Survey
          Stratified Sampling
       The SURVEYSELECT Procedure
Selection Method
                   Simple Random Sampling
Strata Variables
                   State
                   Type
                            CUSTOMERS
  Input Data Set
                                 1953
  Random Number Seed
  Stratum Sample Size
                                   15
  Number of Strata
                                    8
  Total Sample Size
                                  120
  Output Data Set
                         SAMPLESTRATA
```

The following PROC PRINT statements display the first 30 observations of the output data set SampleStrata:

```
title1 'Customer Satisfaction Survey';
title2 'Sample Selected by Stratified Design';
title3 '(First 30 Observations)';
proc print data=SampleStrata(obs=30);
run;
```

Figure 87.6 displays the first 30 observations of the output data set SampleStrata, which contains the sample of 120 customers, 15 customers from each of the eight strata. The variable SelectionProb contains the selection probability for each customer in the sample. Because customers are selected with equal probability within strata in this design, the selection probability equals the stratum sample size (15) divided by the stratum population size. The selection probability for each customer in the first stratum (State='AL' and Type='New') is 0.012116, and the selection probability for customers in the second stratum is 0.021246. The variable SamplingWeight contains the sampling weights, which are computed as inverse selection probabilities.

Customer Satisfaction Survey						
(First 30 Observations)						
					Selection	Sampling
Obs	State	Туре	CustomerID	Usage	Prob	Weight
1	AL	New	002-26-1498	1189	0.012116	82.5333
2	AL	New	070-86-8494	106	0.012116	82.5333
3	AL	New	121-28-6895	76	0.012116	82.5333
4	AL	New	131-79-7630	265	0.012116	82.5333
5	AL	New	211-88-4991	108	0.012116	82.5333
6	AL	New	222-81-3742	83	0.012116	82.5333
7	AL	New	238-46-3776	278	0.012116	82.5333
8	AL	New	370-01-0671	123	0.012116	82.5333
9	AL	New	407-07-5479	1580	0.012116	82.5333
10	AL	New	550-90-3188	177	0.012116	82.5333
11	AL	New	582-40-9610	46	0.012116	82.5333
12	AL	New	672-59-9114	66	0.012116	82.5333
13	AL	New	848-60-3119	28	0.012116	82.5333
14	AL	New	886-83-4909	170	0.012116	82.5333
15	AL	New	993-31-7677	64	0.012116	82.5333
16	AL	Old	124-60-0495	80	0.021246	47.0667
17	AL	Old	128-54-9590	56	0.021246	47.0667
18	AL	Old	204-05-4017	17	0.021246	47.0667
19	AL	Old	210-68-8704	4363	0.021246	47.0667
20	AL	Old	239-75-4343	430	0.021246	47.0667
21	AL	Old	317-70-6496	452	0.021246	47.0667
22	AL	Old	365-37-1340	21	0.021246	47.0667
23	AL	Old	399-78-7900	108	0.021246	47.0667
24	AL	Old	404-90-6273	824	0.021246	47.0667
25	AL	Old	421-04-8548	1332	0.021246	47.0667
26	AL	Old	604-48-0587	16	0.021246	47.0667
27	AL	Old	774-04-0162	318	0.021246	47.0667
28	AL	Old	849-66-4156	79	0.021246	47.0667
29	AL	Old	937-69-9106	182	0.021246	47.0667
30	AL	Old	985-09-8691	24	0.021246	47.0667

Figure 87.6 Customer Sample (First 30 Observations)

Stratified Sampling with Control Sorting

The next sample design for the customer satisfaction survey uses stratification by State, as well as control sorting by Type and Usage within State. After stratification and control sorting, customers are selected by systematic random sampling within strata. Selection by systematic sampling, together with control sorting before selection, spreads the sample uniformly over the range of type and usage values within each stratum or state. The following PROC SURVEYSELECT statements select a probability sample of customers from the Customers data set according to this design:

```
title1 'Customer Satisfaction Survey';
title2 'Stratified Sampling with Control Sorting';
proc surveyselect data=Customers
    method=sys rate=.02
    seed=1234 out=SampleControl;
    strata State;
    control Type Usage;
run;
```

The STRATA statement names the stratification variable State. The CONTROL statement names the control variables Type and Usage. In the PROC SURVEYSELECT statement, the METHOD=SYS option requests systematic random sampling. The RATE=.02 option specifies a sampling rate of 2% for each stratum. The SEED=1234 option specifies the initial seed for random number generation.

Figure 87.7 displays the output from PROC SURVEYSELECT, which summarizes the sample selection. A sample of 271 customers is selected by using systematic random sampling within strata determined by State. The sampling frame Customers is sorted by control variables Type and Usage within strata. The type of sorting is serpentine, which is the default when SORT=NEST is not specified. See the section "Sorting by CONTROL Variables" on page 6636 for a description of serpentine sorting. The sorted data set replaces the input data set. (To leave the input data set unsorted and store the sorted input data in another data set, use the OUTSORT= option.) The output data set SampleControl contains the sample of customers.

Figure 87.7 Sample Selection Summary

Customer S	atisfaction Survey						
Stratified Sampling with Control Sorting							
The SURVE	YSELECT Procedure						
Selection Method	Systematic Random Sampling						
Strata Variable	State						
Control Variables	Туре						
	Usage						
Control Sorting	Serpentine						
Input Data Set	CUSTOMERS						
Random Number S	eed 1234						
Stratum Samplin	g Rate 0.02						
Number of Strat	a 4						
Total Sample Si	ze 271						
Output Data Set	SAMPLECONTROL						

Syntax: SURVEYSELECT Procedure

The following statements are available in PROC SURVEYSELECT:

PROC SURVEYSELECT options ; STRATA variables < / options > ; CONTROL variables ; SIZE variable ; ID variables ;

The PROC SURVEYSELECT statement invokes the procedure and optionally identifies input and output data sets. It also specifies the selection method, the sample size, and other sample design parameters. The SURVEYSELECT statement is required.

The SIZE statement identifies the variable that contains the size measures of the sampling units. It is required for any selection method that is probability proportional to size (PPS).

The remaining statements are optional. The STRATA statement identifies a variable or set of variables that stratify the input data set. When you specify a STRATA statement, PROC SURVEYSELECT selects samples independently from the strata formed by the STRATA variables. The STRATA statement also provides options to allocate the total sample size among the strata.

The CONTROL statement identifies variables for ordering units within strata. It can be used for systematic and sequential sampling methods. The ID statement identifies variables to copy from the input data set to the output data set of selected units.

The rest of this section gives detailed syntax information about the CONTROL, ID, SIZE, and STRATA statements in alphabetical order after the description of the PROC SURVEYSELECT statement.

PROC SURVEYSELECT Statement

PROC SURVEYSELECT options;

The PROC SURVEYSELECT statement invokes the procedure and optionally identifies input and output data sets. If you do not name a DATA= input data set, the procedure selects the sample from the most recently created SAS data set. If you do not name an OUT= output data set to contain the sample of selected units, the procedure still creates an output data set and names it according to the DATA*n* convention.

The PROC SURVEYSELECT statement also specifies the sample selection method, the sample size, and other sample design parameters. If you do not specify a selection method, PROC SURVEYSELECT uses simple random sampling (METHOD=SRS) if there is no SIZE statement. If you do specify a SIZE statement and do not specify a selection method, PROC SURVEYSELECT uses probability proportional to size selection without replacement (METHOD=PPS). You must specify the sample size or sampling rate unless you request a method that selects two units from each stratum (METHOD=PPS_BREWER or METHOD=PPS_MURTHY).

You can use the SAMPSIZE=*n* option to specify the sample size, or you can use the SAMPSIZE=*SAS-data-set* option to name a secondary input data set that contains stratum sample sizes. You can also specify stratum sampling rates, minimum size measures, maximum size measures, and certainty size measures in the secondary input data set. See the descriptions of the SAMPSIZE=, SAMPRATE=, MINSIZE=, MAXSIZE=, CERTSIZE=, and CERTSIZE=P= options for more information. You can name only one secondary input data set in each invocation of the procedure. See the section "Secondary Input Data Set" on page 6648 for details.

Table 87.1 lists the options available with the PROC SURVEYSELECT statement. Descriptions follow in alphabetical order.

Task	Ontions
Specify the input data set	DATA=
Specify output data sets	OUT=
	OUTSORT=
Suppress displayed output	NOPRINT
Specify selection method	METHOD=
Specify sample size	SAMPSIZE=
	SELECTALL
Specify sampling rate	SAMPRATE=
	NMIN=
	NMAX=
Specify number of replicates	REPS=
Adjust size measures	MINSIZE=
	MAXSIZE=
Specify certainty size measures	CERTSIZE=
	CERTSIZE=P=
Specify sorting type	SORT=
Specify random number seed	SEED=
Control OUT= contents	JTPROBS
	OUTALL
	OUTHITS
	OUTSEED
	OUTSIZE
	STATS

Table 87.1 PROC SURVEYSELECT Statement Options

You can specify the following options in the PROC SURVEYSELECT statement.

CERTSIZE

requests certainty selection, where the certainty size values are provided in the secondary input data set. Use the CERTSIZE option when you have already named the secondary data set in another option, such as the SAMPSIZE=SAS-data-set option. See the section "Secondary Input Data Set" on page 6648 for details. In certainty selection, PROC SURVEYSELECT automatically selects all sampling units with size measures greater than or equal to the stratum certainty size values. After identifying the certainty units, PROC SURVEYSELECT selects the remainder of the sample according to the method specified in the METHOD= option. The CERTSIZE option is available for METHOD=PPS and METHOD=PPS_SAMPFORD.

You provide the stratum certainty size values in the secondary input data set variable _CERTSIZE_. Each certainty size value must be a positive number. The variable Certain in the OUT= data set identifies the certainty selections, which have selection probabilities equal to 1.

If you want to specify a single certainty size value for all strata, you can use the CERTSIZE=*certain* option.

CERTSIZE=certain

specifies the certainty size value. PROC SURVEYSELECT automatically selects all sampling units with size measures greater than or equal to the value *certain*. After identifying the certainty units, PROC SURVEYSELECT selects the remainder of the sample according to the method specified in the METHOD= option. The CERTSIZE= option is available for METHOD=PPS and METHOD=PPS_SAMPFORD.

The value of *certain* must be a positive number. The variable Certain in the OUT= data set identifies the certainty selections, which have selection probabilities equal to 1.

If you request a stratified sample design with the STRATA statement and specify the CERTSIZE=*certain* option, PROC SURVEYSELECT uses the value *certain* for all strata. If you do not want to use the same certainty size for all strata, use the CERTSIZE=*SAS-data-set* option to specify a certainty size value for each stratum.

CERTSIZE=SAS-data-set

names a SAS data set that contains certainty size values for the strata. PROC SURVEYSELECT automatically selects all sampling units with size measures greater than or equal to the stratum certainty size values. After identifying the certainty units, PROC SURVEYSELECT selects the remainder of the sample according to the method specified in the METHOD= option. The CERTSIZE= option is available for METHOD=PPS and METHOD=PPS_SAMPFORD.

You provide the stratum certainty size values in the CERTSIZE= data set variable _CERTSIZE_. Each certainty size value must be a positive number. The variable Certain in the OUT= data set identifies the certainty selections, which have selection probabilities equal to 1.

The CERTSIZE= input data set should contain all the STRATA variables, with the same type and length as in the DATA= data set. The STRATA groups should appear in the same order in the CERTSIZE= data set as in the DATA= data set. The CERTSIZE= data set must include a variable named _CERTSIZE_ that contains the certainty size value for each stratum. The CERTSIZE= data set is a secondary input data set. See the section "Secondary Input Data Set" on page 6648 for details. You can name only one secondary input data set in each invocation of the procedure.

If you want to specify a single certainty size value for all strata, you can use the CERTSIZE=*certain* option.

CERTSIZE=P

requests certainty proportion selection, where the stratum certainty proportions are provided in the secondary input data set. Use the CERTSIZE=P option when you have already named the secondary data set in another option, such as the SAMPSIZE=SAS-data-set option. See the section "Secondary Input Data Set" on page 6648 for details.

In certainty proportion selection, PROC SURVEYSELECT automatically selects all sampling units with size measures greater than or equal to the stratum certainty proportion of the total stratum size. The procedure repeats this process with the remaining units until no more certainty units are selected. After identifying the certainty units, PROC SURVEYSELECT selects the remainder of the sample according to the method specified in the METHOD= option. The CERTSIZE=P option is available for METHOD=PPS and METHOD=PPS_SAMPFORD.

You provide the stratum certainty proportions in the secondary input data set variable _CERTP_. Each certainty proportion must be a positive number. You can specify a proportion value as a number between 0 and 1. Or you can specify a proportion value in percentage form as a number between 1 and 100, and PROC SURVEYSELECT converts that number to a proportion. The procedure treats the value 1 as 100%, and not the percentage form 1%.

The variable Certain in the OUT= data set identifies the certainty selections, which have selection probabilities equal to 1.

If you want to specify a single certainty proportion for all strata, you can use the CERTSIZE=P=p option.

CERTSIZE=P=p

specifies the certainty proportion. PROC SURVEYSELECT automatically selects all sampling units with size measures greater than or equal to the proportion *p* of the total stratum size. The procedure repeats this process with the remaining units until no more certainty units are selected. After identifying the certainty units, PROC SURVEYSELECT selects the remainder of the sample according to the method specified in the METHOD= option. The CERTSIZE=P= option is available for METHOD=PPS and METHOD=PPS_SAMPFORD.

The value of p must be a positive number. You can specify p as a number between 0 and 1. Or you can specify p in percentage form as a number between 1 and 100, and PROC SURVEYSELECT converts that number to a proportion. The procedure treats the value 1 as 100%, and not the percentage form 1%.

The variable Certain in the OUT= data set identifies the certainty selections, which have selection probabilities equal to 1.

If you request a stratified sample design with the STRATA statement and specify the CERTSIZE=P=p option, PROC SURVEYSELECT uses the certainty proportion p for all strata. If you do not want to use the same certainty proportion for all strata, use the CERTSIZE=P=*SAS*-*data-set* option to specify a certainty proportion for each stratum.

CERTSIZE=P=SAS-data-set

names a SAS data set that contains the certainty proportions for the strata. PROC SURVEYSELECT automatically selects all sampling units with size measures greater than

or equal to the certainty proportion of the total stratum size. The procedure repeats this process with the remaining units until no more certainty units are selected. After identifying the certainty units, PROC SURVEYSELECT selects the remainder of the sample according to the method specified in the METHOD= option. The CERTSIZE=P= option is available for METHOD=PPS and METHOD=PPS_SAMPFORD.

You provide the stratum certainty proportions in the CERTSIZE=P= data set variable _CERTP_. Each certainty proportion must be a positive number. You can specify a proportion value as a number between 0 and 1. Or you can specify a proportion value in percentage form as a number between 1 and 100, and PROC SURVEYSELECT converts that number to a proportion. The procedure treats the value 1 as 100%, and not the percentage form 1%.

The variable Certain in the OUT= data set identifies the certainty selections, which have selection probabilities equal to 1.

The CERTSIZE=P= input data set should contain all the STRATA variables, with the same type and length as in the DATA= data set. The STRATA groups should appear in the same order in the CERTSIZE=P= data set as in the DATA= data set. The CERTSIZE=P= data set must include a variable named _CERTP_ that contains the certainty proportion for each stratum. The CERTSIZE=P= data set is a secondary input data set. See the section "Secondary Input Data Set" on page 6648 for details. You can name only one secondary input data set in each invocation of the procedure.

If you want to specify a single certainty proportion for all strata, you can use the CERTSIZE=P=p option.

DATA=SAS-data-set

names the SAS data set from which PROC SURVEYSELECT selects the sample. If you omit the DATA= option, the procedure uses the most recently created SAS data set. In sampling terminology, the input data set is the *sampling frame*, or list of units from which the sample is selected.

JTPROBS

includes joint probabilities of selection in the OUT= output data set. This option is available for the following probability proportional to size selection methods: METHOD=PPS, METHOD=PPS_SAMPFORD, and METHOD=PPS_WR. By default, PROC SURVEYSELECT outputs joint selection probabilities for METHOD=PPS_BREWER and METHOD=PPS_MURTHY, which select two units per stratum.

For details about computation of joint selection probabilities for a particular sampling method, see the method description in the section "Sample Selection Methods" on page 6637. For more information about the contents of the output data set, see the section "Sample Output Data Set" on page 6649.

MAXSIZE

requests adjustment of size measures according to the stratum maximum size values provided in the secondary input data set. Use the MAXSIZE option when you have already named the secondary input data set in another option, such as the SAMPSIZE=SAS-data-set option. See the section "Secondary Input Data Set" on page 6648 for details. You provide the stratum maximum size values in the secondary input data set variable _MAXSIZE_. Each maximum size value must be a positive number.

When a size measure exceeds the specified maximum value for its stratum, PROC SURVEYSELECT adjusts the size measure downward to equal the maximum size value. The variable AdjustedSize in the OUT= data set contains the adjusted size measures.

The MAXSIZE option is available when you use a SIZE statement for probability proportional to size selection and a STRATA statement.

If you want to specify a single maximum size value for all strata, you can use the MAXSIZE=max option.

MAXSIZE=max

specifies the maximum size value. The value of max must be a positive number.

When any size measure exceeds the value *max*, PROC SURVEYSELECT adjusts the size measure downward to equal *max*. The variable AdjustedSize in the OUT= data set contains the adjusted size measures.

The MAXSIZE=*max* option is available when you use a SIZE statement for selection with probability proportional to size.

If you request a stratified sample design with the STRATA statement and specify the MAXSIZE=*max* option, PROC SURVEYSELECT uses the maximum size *max* for all strata. If you do not want to use the same maximum size for all strata, use the MAXSIZE=*SAS-data-set* option to specify a maximum size value for each stratum.

MAXSIZE=SAS-data-set

names a SAS data set that contains the maximum size values for the strata. You provide the stratum maximum size values in the MAXSIZE= data set variable _MAXSIZE_. Each maximum size value must be a positive number.

When any size measure exceeds the maximum size value for its stratum, PROC SURVEYSELECT adjusts the size measure downward to equal the maximum size value. The variable AdjustedSize in the OUT= data set contains the adjusted size measures.

The MAXSIZE=*SAS-data-set* option is available when you use a SIZE statement for probability proportional to size selection and a STRATA statement for stratified selection.

The MAXSIZE= input data set should contain all the STRATA variables, with the same type and length as in the DATA= data set. The STRATA groups should appear in the same order in the MAXSIZE= data set as in the DATA= data set. The MAXSIZE= data set must include a variable named _MAXSIZE_ that contains the maximum size value for each stratum. The MAXSIZE= data set is a secondary input data set. See the section "Secondary Input Data Set" on page 6648 for details. You can name only one secondary input data set in each invocation of the procedure.

If you want to specify a single maximum size value for all strata, you can use the MAXSIZE=max option.

METHOD=name

M=name

specifies the method for sample selection. If you do not specify the METHOD= option, by default, PROC SURVEYSELECT uses simple random sampling (METHOD=SRS) if there is no SIZE statement. If you specify a SIZE statement, the default selection method is probability proportional to size without replacement (METHOD=PPS).

Valid values for *name* are as follows:

PPS

requests selection with probability proportional to size and without replacement. See the section "PPS Sampling without Replacement" on page 6640 for details. If you specify METHOD=PPS, you must name the size measure variable in the SIZE statement.

PPS_BREWER

BREWER

requests selection according to Brewer's method. Brewer's method selects two units from each stratum with probability proportional to size and without replacement. See the section "Brewer's PPS Method" on page 6644 for details. If you specify METHOD=PPS_BREWER, you must name the size measure variable in the SIZE statement. You do not need to specify the sample size with the SAMPSIZE= option, because Brewer's method selects two units from each stratum.

PPS_MURTHY

MURTHY

requests selection according to Murthy's method. Murthy's method selects two units from each stratum with probability proportional to size and without replacement. See the section "Murthy's PPS Method" on page 6645 for details. If you specify METHOD=PPS_MURTHY, you must name the size measure variable in the SIZE statement. You do not need to specify the sample size with the SAMPSIZE= option, because Murthy's method selects two units from each stratum.

PPS_SAMPFORD

SAMPFORD

requests selection according to Sampford's method. Sampford's method selects units with probability proportional to size and without replacement. See the section "Sampford's PPS Method" on page 6645 for details. If you specify METHOD=PPS_SAMPFORD, you must name the size measure variable in the SIZE statement.

PPS_SEQ

CHROMY

requests sequential selection with probability proportional to size and with minimum replacement. This method is also known as Chromy's method. See the section "PPS Sequential Sampling" on page 6643 for details. If you specify METHOD=PPS_SEQ, you must name the size measure variable in the SIZE statement.

PPS_SYS

requests systematic selection with probability proportional to size. See the section "PPS Systematic Sampling" on page 6642 for details. If you specify METHOD=PPS_SYS, you must name the size measure variable in the SIZE statement.

PPS_WR

requests selection with probability proportional to size and with replacement. See the section "PPS Sampling with Replacement" on page 6642 for details. If you specify METHOD=PPS_WR, you must name the size measure variable in the SIZE statement.

SEQ

requests sequential selection according to Chromy's method. If you specify METHOD=SEQ and do not specify a size measure variable with the SIZE statement, PROC SURVEYSELECT uses sequential zoned selection with equal probability and without replacement. See the section "Sequential Random Sampling" on page 6639 for details. If you specify METHOD=SEQ and also name a size measure variable in the SIZE statement, PROC SURVEYSELECT uses METHOD=PPS_SEQ, which is sequential selection with probability proportional to size and with minimum replacement. See the section "PPS Sequential Sampling" on page 6643 for more information.

SRS

requests simple random sampling, which is selection with equal probability and without replacement. See the section "Simple Random Sampling" on page 6638 for details. METHOD=SRS is the default if you do not specify the METHOD= option and also do not specify a SIZE statement.

SYS

requests systematic random sampling. If you specify METHOD=SYS and do not specify a size measure variable with the SIZE statement, PROC SURVEYSELECT uses systematic selection with equal probability. See the section "Systematic Random Sampling" on page 6639 for more information. If you specify METHOD=SYS and also name a size measure variable in the SIZE statement, PROC SURVEYSELECT uses METHOD=PPS_SYS, which is systematic selection with probability proportional to size. See the section "PPS Systematic Sampling" on page 6642 for details.

URS

requests unrestricted random sampling, which is selection with equal probability and with replacement. See the section "Unrestricted Random Sampling" on page 6638 for details.

MINSIZE

requests adjustment of size measures according to the stratum minimum size values provided in the secondary input data set. Use the MINSIZE option when you have already named the secondary input data set in another option, such as the SAMPSIZE=SAS-data-set option. See the section "Secondary Input Data Set" on page 6648 for details.

You provide the stratum minimum size values in the secondary input data set variable _MINSIZE_. Each minimum size value must be a positive number.

When a size measure is less than the specified minimum value for its stratum, PROC SURVEYSELECT adjusts the size measure upward to equal the minimum size value. The variable AdjustedSize in the OUT= data set contains the adjusted size measures.

The MINSIZE option is available when you specify a SIZE statement for probability proportional to size selection and a STRATA statement.

If you want to specify a single minimum size value for all strata, you can use the MINSIZE=*min* option.

MINSIZE=min

specifies the minimum size value. The value of *min* must be a positive number.

When any size measure is less than the value *min*, PROC SURVEYSELECT adjusts the size measure upward to equal *min*. The variable AdjustedSize in the OUT= data set contains the adjusted size measures.

The MINSIZE=*min* option is available when you specify a SIZE statement for selection with probability proportional to size.

If you request a stratified sample design with the STRATA statement and specify the MINSIZE=*min* option, PROC SURVEYSELECT uses the minimum size *min* for all strata. If you do not want to use the same minimum size for all strata, use the MINSIZE=*SAS-data-set* option to specify a minimum size value for each stratum.

MINSIZE=SAS-data-set

names a SAS data set that contains the minimum size values for the strata. You provide the stratum minimum size values in the MINSIZE= data set variable _MINSIZE_. Each minimum size value must be a positive number.

When any size measure is less than the minimum size value for its stratum, PROC SURVEYSELECT adjusts the size measure upward to equal the minimum size measure. The variable AdjustedSize in the OUT= data set contains the adjusted size measures.

The MINSIZE=*SAS-data-set* option is available when you specify a SIZE statement for probability proportional to size selection and a STRATA statement.

The MINSIZE= input data set should contain all the STRATA variables, with the same type and length as in the DATA= data set. The STRATA groups should appear in the same order in the MINSIZE= data set as in the DATA= data set. The MINSIZE= data set must include a variable named _MINSIZE_ that contains the minimum size measure for each stratum. The MINSIZE= data set is a secondary input data set. See the section "Secondary Input Data Set" on page 6648 for details. You can name only one secondary input data set in each invocation of the procedure.

If you want to specify a single minimum size measure for all strata, you can use the MINSIZE=*min* option.

NMAX=n

specifies the maximum stratum sample size n for the SAMPRATE= option. When you specify the SAMPRATE= option, PROC SURVEYSELECT calculates the stratum sample size by multiplying the total number of units in the stratum by the specified sampling rate. If this sample size is greater than the value NMAX=n, then PROC SURVEYSELECT selects only n units.

The maximum sample size *n* must be a positive integer. The NMAX= option is available only with the SAMPRATE= option, which can be used with equal probability selection methods (METHOD=SRS, METHOD=URS, METHOD=SYS, and METHOD=SEQ).

NMIN=n

specifies the minimum stratum sample size n for the SAMPRATE= option. When you specify the SAMPRATE= option, PROC SURVEYSELECT calculates the stratum sample size by multiplying the total number of units in the stratum by the specified sampling rate. If this sample size is less than the value NMIN=n, then PROC SURVEYSELECT selects n units.

The minimum sample size *n* must be a positive integer. The NMIN= option is available only with the SAMPRATE= option, which can be used with equal probability selection methods (METHOD=SRS, METHOD=URS, METHOD=SYS, and METHOD=SEQ).

NOPRINT

suppresses the display of all output. You can use the NOPRINT option when you want only to create an output data set. Note that this option temporarily disables the Output Delivery System (ODS). For more information, see Chapter 20, "Using the Output Delivery System."

OUT=SAS-data-set

names the output data set that contains the sample. If you omit the OUT= option, the data set is named DATAn, where n is the smallest integer that makes the name unique.

The output data set contains the units selected for the sample, as well as design information and selection statistics, depending on the selection method and output options you specify. See descriptions of the options JTPROBS, OUTHITS, OUTSEED, OUTSIZE, and STATS, which specify information to include in the output data set. See the section "Sample Output Data Set" on page 6649 for details about the contents of the output data set.

By default, the output data set contains only those units selected for the sample. To include all observations from the input data set in the output data set, use the OUTALL option.

By default, the output data set includes one observation for each unit selected. When the unit is selected multiple times, which can occur when you use with-replacement or with-minimum-replacement selection methods, the OUT= data set variable NumberHits contains the number of hits or selections for each unit. To produce a separate observation for each hit or selection, specify the OUTHITS option.

If you specify the NOSAMPLE option in the STRATA statement, PROC SURVEYFREQ allocates the total sample size among the strata but does not select the sample. In this case, the OUT= data set contains the allocated sample sizes. See the section "Allocation Output Data Set" on page 6652 for details.

OUTALL

includes all observations from the input data set in the output data set. By default, the output data set includes only those observations selected for the sample. When you specify the OUTALL option, the output data set includes all observations from DATA= and also contains a variable to indicate each observation's selection status. The variable Selected equals 1 for an observation selected for the sample, and equals 0 for an observation not selected. For information about the contents of the output data set, see the section "Sample Output Data Set" on page 6649.

The OUTALL option is available only for equal probability selection methods (METHOD=SRS, METHOD=URS, METHOD=SYS, and METHOD=SEQ).

OUTHITS

includes a separate observation in the output data set for each selection when the same unit is selected more than once. A unit can be selected more than once only by methods that select with replacement or with minimum replacement, which include METHOD=URS, METHOD=PPS_WR, METHOD=PPS_SYS, and METHOD=PPS_SEQ.

By default, the output data set contains one observation for each selected unit, even if it is selected more than once, and the variable NumberHits contains the number of hits or selections for that unit. See the section "Sample Output Data Set" on page 6649 for details about the contents of the output data set.

The OUTHITS option is available for selection methods that select with replacement or with minimum replacement (METHOD=URS, METHOD=PPS_WR, METHOD=PPS_SYS, and METHOD=PPS_SEQ).

OUTSEED

includes the initial seed for each stratum in the output data set. The variable InitialSeed contains the stratum initial seeds. See the section "Sample Output Data Set" on page 6649 for details about the contents of the output data set.

To reproduce the same sample for any stratum in a subsequent execution of PROC SURVEYSELECT, you can specify the same stratum initial seed with the SEED=*SAS-data-set* option, along with the same sample selection parameters. See the section "Sample Selection Methods" on page 6637 for information about initial seeds and random number generation in PROC SURVEYSELECT.

The "Sample Selection Summary" table displays the initial random number seed for the entire sample selection, which is the same as the initial seed for the first stratum when the design is stratified. To reproduce the entire sample, you can specify this same seed value in the SEED= option, along with the same sample selection parameters.

OUTSIZE

includes additional design and sampling frame parameters in the output data set. If you specify the OUTSIZE option, PROC SURVEYSELECT includes the sample size or sampling rate in the output data set. When you specify the OUTSIZE option and also specify the SIZE statement, the procedure outputs the size measure total for the sampling frame. If you do not specify the SIZE statement, the procedure outputs the total number of sampling units in the frame. Also, PROC SURVEYSELECT includes the minimum size measure if you specify

the MINSIZE= option, the maximum size measure if you specify the MAXSIZE= option, and the certainty size measure if you specify the CERTSIZE= option.

If you have a stratified design, the output data set includes the stratum-level values of these parameters. Otherwise, the output data set includes the overall population-level values.

For information about the contents of the output data set, see the section "Sample Output Data Set" on page 6649.

OUTSORT=SAS-data-set

names an output data set that contains the sorted input data set. This option is available when you specify a CONTROL statement for systematic or sequential selection methods (METHOD=SYS, METHOD=PPS_SYS, METHOD=SEQ, and METHOD=PPS_SEQ). PROC SURVEYSELECT sorts the input data set by the CONTROL variables within strata before selecting the sample.

If you specify CONTROL variables but do not name an output data set with the OUTSORT= option, then the sorted data set replaces the input data set.

REPS=nreps

specifies the number of sample replicates. The value of nreps must be a positive integer.

When you specify the REPS= option, PROC SURVEYSELECT selects *nreps* independent samples, each with the same specified sample size or sampling rate and the same sample design. The variable Replicate in the OUT= data set contains the sample replicate number.

You can use replicated sampling to provide a simple method of variance estimation for any form of statistic, as well as to evaluate variable nonsampling errors such as interviewer differences. See Lohr (1999), Wolter (1985), Kish (1965, 1987), and Kalton (1983) for information about replicated sampling.

SAMPRATE=r

RATE=r

specifies the sampling rate, which is the proportion of units to select for the sample. The sampling rate r must be a positive number. You can specify r as a number between 0 and 1. Or you can specify r in percentage form as a number between 1 and 100, and PROC SURVEYSELECT converts that number to a proportion. The procedure treats the value 1 as 100%, and not the percentage form 1%.

The SAMPRATE= option is available only for equal probability selection methods (METHOD=SRS, METHOD=URS, METHOD=SYS, and METHOD=SEQ). For systematic random sampling (METHOD=SYS), PROC SURVEYSELECT uses the inverse of the sampling rate r as the interval. See the section "Systematic Random Sampling" on page 6639 for details. For other selection methods, PROC SURVEYSELECT converts the sampling rate r to the sample size before selection by multiplying the total number of units in the stratum or frame by the sampling rate and rounding up to the nearest integer.

If you request a stratified sample design with the STRATA statement and specify the SAMPRATE=r option, PROC SURVEYSELECT uses the sampling rate r for each stratum. If you do not want to use the same sampling rate for each stratum, use the SAMPRATE=(values) option or the SAMPRATE=SAS-data-set option to specify a sampling rate for each stratum.

SAMPRATE=(values)

RATE=(values)

specifies stratum sampling rates. You can separate *values* with blanks or commas. The number of SAMPRATE= values must equal the number of strata in the input data set.

List the stratum sampling rate values in the order in which the strata appear in the input data set. When you use the SAMPRATE=(*values*) option, the input data set must be sorted by the STRATA variables in ascending order. You cannot use the DESCENDING or NOTSORTED option in the STRATA statement.

Each stratum sampling rate value must be a positive number. You can specify a rate value as a number between 0 and 1. Or you can specify a rate value in percentage form as a number between 1 and 100, and PROC SURVEYSELECT converts that number to a proportion. The procedure treats the value 1 as 100%, and not the percentage form 1%.

The SAMPRATE= option is available only for equal probability selection methods (METHOD=SRS, METHOD=URS, METHOD=SYS, and METHOD=SEQ). For systematic random sampling (METHOD=SYS), PROC SURVEYSELECT uses the inverse of the stratum sampling rate as the interval for the stratum. See the section "Systematic Random Sampling" on page 6639 for details about systematic sampling. For other selection methods, PROC SURVEYSELECT converts the stratum sampling rate to a stratum sample size before selection by multiplying the total number of units in the stratum by the sampling rate and rounding up to the nearest integer.

SAMPRATE=SAS-data-set

RATE=SAS-data-set

names a SAS data set that contains stratum sampling rates. The SAMPRATE= data set should have a variable _RATE_ that contains the sampling rate for each stratum.

Each sampling rate value must be a positive number. You can specify each value as a number between 0 and 1. Or you can specify a value in percentage form as a number between 1 and 100, and PROC SURVEYSELECT converts that number to a proportion. The procedure treats the value 1 as 100%, and not the percentage form 1%.

The SAMPRATE= input data set should contain all the STRATA variables, with the same type and length as in the DATA= data set. The STRATA groups should appear in the same order in the SAMPRATE= data set as in the DATA= data set.

The SAMPRATE= option is available only for equal probability selection methods (METHOD=SRS, METHOD=URS, METHOD=SYS, and METHOD=SEQ). For systematic random sampling (METHOD=SYS), PROC SURVEYSELECT uses the inverse of the stratum sampling rate as the interval for the stratum. See the section "Systematic Random Sampling" on page 6639 for details. For other selection methods, PROC SURVEYSELECT converts the stratum sampling rate to the stratum sample size before selection by multiplying the total number of units in the stratum by the sampling rate and rounding up to the nearest integer.

SAMPSIZE=n

N=*n*

specifies the sample size, which is the number of units to select for the sample. The sample size n must be a positive integer. For selection methods that select without replacement, the sample size n must not exceed the number of units in the input data set.

If you specify the ALLOC= option in the STRATA statement, PROC SURVEYSELECT allocates the total sample size among the strata according to the allocation method you request in the ALLOC= option. In this case, SAMPSIZE=n specifies the total sample size to be allocated among the strata.

Otherwise, if you specify the SAMPSIZE=n option and request a stratified sample design with the STRATA statement, PROC SURVEYSELECT selects n units from each stratum. For methods that select without replacement, the sample size n must not exceed the number of units in any stratum. If you do not want to select the same number of units from each stratum, use the SAMPSIZE=(values) option or the SAMPSIZE=SAS-data-set option to specify a sample size for each stratum.

For without-replacement selection methods, by default, PROC SURVEYSELECT does not allow you to specify a stratum sample size that is greater than the total number of units available in the stratum. If you specify the SELECTALL option, PROC SURVEYSELECT selects all stratum units when the stratum sample size exceeds the number of units in the stratum.

SAMPSIZE=(values)

N=(values)

specifies sample sizes for the strata. You can separate *values* with blanks or commas. The number of SAMPSIZE= values must equal the number of strata in the input data set.

List the stratum sample size values in the order in which the strata appear in the input data set. When you use the SAMPSIZE=(*values*) option, the input data set must be sorted by the STRATA variables in ascending order. You cannot use the DESCENDING or NOTSORTED option in the STRATA statement.

Each stratum sample size value must be a positive integer. For without-replacement selection methods, by default, PROC SURVEYSELECT does not allow you to specify a stratum sample size that is greater than the total number of units available in the stratum. If you specify the SELECTALL option, PROC SURVEYSELECT selects all stratum units when the stratum sample size exceeds the number of units in the stratum.

SAMPSIZE=SAS-data-set

N=SAS-data-set

names a SAS data set that contains the sample sizes for the strata.

You provide the stratum sample sizes in the SAMPSIZE= input data set variable named _NSIZE_ or SampleSize. Each stratum sample size value must be a positive integer.

The SAMPSIZE= input data set should contain all the STRATA variables, with the same type and length as in the DATA= data set. The STRATA groups should appear in the same order in the SAMPSIZE= data set as in the DATA= data set. The SAMPSIZE= data set is a secondary

input data set. See the section "Secondary Input Data Set" on page 6648 for details. You can name only one secondary input data set in each invocation of the procedure.

For without-replacement selection methods, by default, PROC SURVEYSELECT does not allow you to specify a stratum sample size that is greater than the total number of units available in the stratum. If you specify the SELECTALL option, PROC SURVEYSELECT selects all stratum units when the stratum sample size exceeds the number of units in the stratum.

SEED=number

specifies the initial seed for random number generation. The SEED= value must be a positive integer. If you do not specify the SEED= option, or if the SEED= value is negative or zero, PROC SURVEYSELECT uses the time of day from the computer's clock to obtain the initial seed. See the section "Sample Selection Methods" on page 6637 for more information.

Whether or not you specify the SEED= option, PROC SURVEYSELECT displays the value of the initial seed in the "Sample Selection Summary" table. If you need to reproduce the same sample in a subsequent execution of PROC SURVEYSELECT, you can specify this same seed value in the SEED= option, along with the same sample selection parameters, and PROC SURVEYSELECT will reproduce the sample.

If you request a stratified sample design with the STRATA statement, you can use the SEED=SAS-data-set option to specify an initial seed for each stratum. Otherwise, PROC SURVEYSELECT generates random numbers continuously across strata from the random number stream initialized by the SEED= value, as described in the section "Sample Selection Methods" on page 6637.

You can use the OUTSEED option to include the stratum initial seeds in the output data set.

SEED=SAS-data-set

names a SAS data set that contains initial seeds for the strata. You provide the stratum seeds in the SEED= input data set variable _SEED_ or InitialSeed.

The initial seed values must be positive integers. If the initial seed value for the first stratum is not a positive integer, PROC SURVEYSELECT uses the time of day from the computer's clock to obtain the initial seed. If the initial seed value for a subsequent stratum is not a positive integer, PROC SURVEYSELECT continues to use the random number stream already initialized by the seed for the previous stratum. See the section "Sample Selection Methods" on page 6637 for more information.

The SEED= input data set should contain all the STRATA variables, with the same type and length as in the DATA= data set. The STRATA groups should appear in the same order in the SEED= data set as in the DATA= data set. The SEED= data set is a secondary input data set. See the section "Secondary Input Data Set" on page 6648 for details. You can name only one secondary input data set in each invocation of the procedure.

You can use the OUTSEED option to include the stratum initial seeds in the output data set.

Whether or not you specify the SEED= option, PROC SURVEYSELECT displays the value of the initial seed in the "Sample Selection Summary" table. If you need to reproduce the same sample in a subsequent execution of PROC SURVEYSELECT, you can specify this

same seed value in the SEED= option, along with the same sample selection parameters, and PROC SURVEYSELECT will reproduce the sample.

If you specify initial seeds by strata with the SEED=SAS-data-set option, you can reproduce the same sample in a subsequent execution of PROC SURVEYSELECT by specifying these same stratum initial seeds, along with the same sample selection parameters. If you need to reproduce the same sample for only a subset of the strata, you can use the same initial seeds for those strata in the subset.

SELECTALL

requests that PROC SURVEYSELECT select all stratum units when the stratum sample size exceeds the total number of units in the stratum. By default, PROC SURVEYSELECT does not allow you to specify a stratum sample size that is greater than the total number of units in the stratum, unless you are using a with-replacement selection method.

The SELECTALL option is available for the following without-replacement selection methods: METHOD=SRS, METHOD=SYS, METHOD=SEQ, METHOD=PPS, and METHOD=PPS_SAMPFORD.

The SELECTALL option is not available for with-replacement selection methods, withminimum-replacement methods, or those PPS methods that select two units per stratum.

SORT=NEST | SERP

specifies the type of sorting by CONTROL variables. The option SORT=NEST requests nested sorting, and SORT=SERP requests hierarchic serpentine sorting. The default is SORT=SERP. See the section "Sorting by CONTROL Variables" on page 6636 for descriptions of serpentine and nested sorting. Where there is only one CONTROL variable, the two types of sorting are equivalent.

This option is available when you specify a CONTROL statement for systematic or sequential selection methods (METHOD=SYS, METHOD=PPS_SYS, METHOD=SEQ, and METHOD=PPS_SEQ). When you specify a CONTROL statement, PROC SURVEYSELECT sorts the input data set by the CONTROL variables within strata before selecting the sample.

When you specify a CONTROL statement, you can also use the OUTSORT= option to name an output data set that contains the sorted input data set. Otherwise, if you do not specify the OUTSORT= option, then the sorted data set replaces the input data set.

STATS

includes selection probabilities and sampling weights in the OUT= output data set for equal probability selection methods when you do not specify a STRATA statement. This option is available for the following equal probability selection methods: METHOD=SRS, METHOD=URS, METHOD=SYS, and METHOD=SEQ. For PPS selection methods and stratified designs, the output data set contains selection probabilities and sampling weights by default. For more information about the contents of the output data set, see the section "Sample Output Data Set" on page 6649.

CONTROL Statement

CONTROL variables ;

The CONTROL statement names variables for sorting the input data set. The CONTROL variables can be character or numeric.

PROC SURVEYSELECT sorts the input data set by the CONTROL variables before selecting the sample. If you also specify a STRATA statement, PROC SURVEYSELECT sorts by CONTROL variables within strata. Control sorting is available for systematic and sequential selection methods (METHOD=SYS, METHOD=PPS_SYS, METHOD=SEQ, and METHOD=PPS_SEQ).

By default (or if you specify the SORT=SERP option), PROC SURVEYSELECT uses hierarchic serpentine sorting by the CONTROL variables. If you specify the SORT=NEST option, the procedure uses nested sorting. For more information about serpentine and nested sorting, see the section "Sorting by CONTROL Variables" on page 6636.

You can use the OUTSORT= option to name an output data set that contains the sorted input data set. If you do not specify the OUTSORT= option when you use the CONTROL statement, then the sorted data set replaces the input data set.

ID Statement

ID variables;

The ID statement names variables from the DATA= input data set to be included in the OUT= data set of selected units. If there is no ID statement, PROC SURVEYSELECT includes all variables from the DATA= data set in the OUT= data set. The ID variables can be character or numeric.

SIZE Statement

SIZE variable;

The SIZE statement names one and only one size measure variable, which contains the sampling unit size measures that are used for selection with probability proportional to size. The SIZE variable must be numeric. When the value of an observation's SIZE variable is missing or nonpositive, that observation is excluded from the sample selection.

The SIZE statement is required for all PPS selection methods, which include METHOD=PPS, METHOD=PPS_BREWER, METHOD=PPS_MURTHY, METHOD=PPS_SAMPFORD, METHOD=PPS_SEQ, METHOD=PPS_SYS, and METHOD=PPS_WR. For details about how size measures are used, see the descriptions of PPS methods in the section "Sample Selection Methods" on page 6637.

Note that an observation's size measure, specified in the SIZE statement and used for PPS selection, is not the same as the sample size. The sample size is the number of units to select for the sample, and you can specify the sample size with the SAMPSIZE= option.

STRATA Statement

STRATA variables < / options > ;

You can specify a STRATA statement to partition the input data set into nonoverlapping groups defined by the STRATA variables. PROC SURVEYSELECT then selects independent samples from these strata, according to the selection method and design parameters specified in the PROC SURVEYSELECT statement. For information about the use of stratification in sample design, see Lohr (1999), Kalton (1983), Kish (1965, 1987), and Cochran (1977).

The *variables* are one or more variables in the input data set. The STRATA variables function much like BY variables, and PROC SURVEYSELECT expects the input data set to be sorted in order of the STRATA variables.

If you specify a CONTROL statement, or if you specify METHOD=PPS, the input data set must be sorted in ascending order of the STRATA variables. This means you cannot use the STRATA option NOTSORTED or DESCENDING when you specify a CONTROL statement or METHOD=PPS.

If your input data set is not sorted by the STRATA variables in ascending order, use one of the following alternatives:

- Sort the data by using the SORT procedure with the STRATA variables in a BY statement.
- Specify the option NOTSORTED or DESCENDING in the STRATA statement for the SURVEYSELECT procedure (when you do not specify a CONTROL statement or METHOD=PPS). The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged in groups (according to values of the STRATA variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the STRATA variables by using the DATASETS procedure.

For more information about the BY statement, see SAS Language Reference: Concepts. For more information about the DATASETS procedure, see the Base SAS Procedures Guide.

Allocation Options

The STRATA options request allocation of the total sample size among the strata. You can specify the total sample size in the SAMPSIZE= option in the PROC SURVEYSELECT statement. When you request allocation with the ALLOC= option in the STRATA statement, PROC SURVEYSELECT allocates the total sample size among the strata according to the allocation method you name. You can request proportional allocation (ALLOC=PROP), optimal allocation

(ALLOC=OPTIMAL), or Neyman allocation (ALLOC=NEYMAN). See the section "Sample Size Allocation" on page 6646 for details about these methods.

Instead of requesting that PROC SURVEYSELECT compute the sample allocation, you can directly specify the allocation proportions by using the ALLOC=(*values*) option or the ALLOC=*SAS-data-set* option. Then PROC SURVEYSELECT allocates the total sample size among the strata according to the proportions you specify.

By default, PROC SURVEYSELECT computes the allocation of the total sample size among the strata and then selects the sample by using the allocated sample sizes. If you specify the NOSAMPLE option, PROC SURVEYSELECT computes the allocation but does not select the sample. In this case the OUT= output data set contains the stratum sample sizes computed according to the specified allocation method. See the section "Allocation Output Data Set" on page 6652 for details.

You can specify the following options in the STRATA statement.

ALLOC=name

specifies the method for allocating the total sample size among the strata. The following values for *name* are available:

PROPORTIONAL

PROP

requests proportional allocation, which allocates the total sample size in proportion to the stratum sizes, where the stratum size is the number of sampling units in the stratum. See the section "Sample Size Allocation" on page 6646 for details.

OPTIMAL

OPT

requests optimal allocation, which allocates the total sample size among the strata in proportion to stratum sizes, stratum variances, and stratum costs. See the section "Sample Size Allocation" on page 6646 for more information. If you specify ALLOC=OPTIMAL, you must provide the stratum variances with the VAR, VAR=(values), or VAR=SAS-data-set option. You must provide the stratum costs with the COST, COST=(values), or COST=SAS-data-set option.

NEYMAN

requests Neyman allocation, which allocates the total sample size among the strata in proportion to the stratum sizes and variances. See the section "Sample Size Allocation" on page 6646 for more information. If you specify ALLOC=NEYMAN, you must provide the stratum variances with the VAR, VAR=(*values*), or VAR=*SAS-data-set* option.

ALLOC=(values)

lists stratum allocation proportions. You can separate values with blanks or commas.

Each allocation proportion specifies the percent of the total sample size to allocate to the corresponding stratum. The number of ALLOC= values must equal the number of strata in the input data set. The sum of the allocation proportions must equal 1.

Each allocation proportion must be a positive number. You can specify each value as a number between 0 and 1. Or you can specify a value in percentage form as a number between 1 and

100, and PROC SURVEYSELECT converts that number to a proportion. The procedure treats the value 1 as 100%, and not the percentage form 1%.

List the allocation proportions in the order in which the strata appear in the input data set. If you use the ALLOC=(*values*) option, the input data set must be sorted by the STRATA variables in ascending order. You cannot use the DESCENDING or NOTSORTED option in the STRATA statement.

ALLOC=SAS-data-set

names a SAS data set that contains stratum allocation proportions. You provide the stratum allocation proportions in the ALLOC= data set variable _ALLOC_.

Each allocation proportion specifies the percent of the total sample size to allocate to the corresponding stratum. The sum of the allocation proportions must equal 1.

Each allocation proportion must be a positive number. You can specify the value as a number between 0 and 1. Or you can specify the value in percentage form as a number between 1 and 100, and PROC SURVEYSELECT converts that number to a proportion. The procedure treats the value 1 as 100%, and not the percentage form 1%.

The ALLOC= data set should contain all the STRATA variables, with the same type and length as in the DATA= input data set. The STRATA groups should appear in the same order in the ALLOC= data set as in the DATA= data set. The ALLOC= data set is a secondary input data set. See the section "Secondary Input Data Set" on page 6648 for details. You can name only one secondary data set in each invocation of the procedure.

COST

indicates that stratum costs are included in the secondary input data set. Use the COST option when you have already named the secondary input data set in another option, such as the VAR=*SAS*-data-set option. You provide the stratum costs in the secondary input data set variable _COST_.

A stratum cost represents the per-unit cost, or the survey cost of a single unit in the stratum. Each stratum cost must be a positive number. Cost values are required if you specify the ALLOC=OPTIMAL option.

COST=(values)

specifies stratum costs, which are required if you specify the ALLOC=OPTIMAL option. You can separate *values* with blanks or commas.

A stratum cost represents the per-unit cost, or the survey cost of a single unit in the stratum. Each stratum cost must be a positive number.

The number of COST= values must equal the number of strata in the input data set. List the stratum costs in the order in which the strata appear in the input data set. If you use the COST=*values* option, the input data set must be sorted by the STRATA variables in ascending order. You cannot use the DESCENDING or NOTSORTED option in the STRATA statement.

COST=SAS-data-set

names a SAS data set that contains the stratum costs. You provide the stratum costs in the COST= data set variable _COST_.

A stratum cost represents the per-unit cost, or the survey cost of a single unit in the stratum. Each stratum cost must be a positive number. Stratum costs are required if you specify the ALLOC=OPTIMAL option.

The COST= data set should contain all the STRATA variables, with the same type and length as in the DATA= input data set. The STRATA groups should appear in the same order in the COST= data set as in the DATA= data set. The COST= data set is a secondary input data set. See the section "Secondary Input Data Set" on page 6648 for details. You can name only one secondary input data set in each invocation of the procedure.

NOSAMPLE

requests that SURVEYSELECT allocate the total sample size among the strata but not select the sample. When you specify the NOSAMPLE option, the OUT= output data set contains the stratum sample sizes that PROC SURVEYSELECT computes. See the section "Allocation Output Data Set" on page 6652 for details.

VAR

indicates that stratum variances are included in the secondary input data set. Use the VAR option when you have already named the secondary input data set in another option, such as the COST=*SAS*-*data-set* option. You provide the stratum variances in the secondary input data set variable _VAR_.

Each stratum variance must be a positive number. Stratum variances are required if you specify ALLOC=OPTIMAL or ALLOC=NEYMAN.

VAR=(values)

lists stratum variances, which are required if you specify ALLOC=OPTIMAL or ALLOC=NEYMAN. You can separate *values* with blanks or commas.

Each stratum variance must be a positive number. The number of VAR= values must equal the number of strata in the input data set. List the stratum variances in the order in which the strata appear in the input data set. If you use the VAR=(*values*) option, the input data set must be sorted by the STRATA variables in ascending order. You cannot use the DESCENDING or NOTSORTED option in the STRATA statement.

VAR=SAS-data-set

names a SAS data set that contains the stratum variances. You provide the stratum variances in the VAR= data set variable _VAR_.

Each stratum variance must be a positive number. Stratum variances are required if you specify ALLOC=OPTIMAL or ALLOC=NEYMAN.

The VAR= data set should contain all the STRATA variables, with the same type and length as in the DATA= input data set. The STRATA groups should appear in the same order in the VAR= data set as in the DATA= data set. The VAR= data set is a secondary input data set. See the section "Secondary Input Data Set" on page 6648 for details. You can name only one secondary input data set in each invocation of the procedure.

Details: SURVEYSELECT Procedure

Missing Values

If an observation has a missing or nonpositive value for the SIZE variable, PROC SURVEYSELECT excludes that observation from the sample selection. The procedure provides a log note that gives the number of observations omitted due to missing or nonpositive size measures.

PROC SURVEYSELECT treats missing STRATA variable values like any other STRATA variable value. The missing values form a separate stratum.

If a value of _NSIZE_ (or SampleSize) is missing in the SAMPSIZE= secondary input data set, then PROC SURVEYSELECT cannot select a sample from that stratum. Similarly, if other secondary data set variables have missing values for a stratum, a sample cannot be selected from that stratum. These variables include _NRATE_, _MINSIZE_, _MAXSIZE_, _CERTSIZE_, and _CERTP_. See the section "Secondary Input Data Set" on page 6648 for details.

If a value of _ALLOC_, _VAR_, or _COST_ is missing in the secondary input data set, PROC SURVEYSELECT cannot compute the sample allocation.

Sorting by CONTROL Variables

If you specify a CONTROL statement, PROC SURVEYSELECT sorts the input data set by the CONTROL variables before selecting the sample. If you also specify a STRATA statement, the procedure sorts by CONTROL variables within strata. Sorting by CONTROL variables is available for systematic and sequential selection methods, which include METHOD=SYS, METHOD=PPS_SYS, METHOD=SEQ, and METHOD=PPS_SEQ. Sorting provides additional control over the distribution of the sample, giving some benefits of proportionate stratification.

By default, the sorted data set replaces the input data set. Or you can use the OUTSORT= option to name an output data set that contains the sorted input data set.

PROC SURVEYSELECT provides two types of sorting: hierarchic serpentine sorting and nested sorting. By default (or if you specify the SORT=SERP option), the procedure uses serpentine sorting. If you specify the SORT=NEST option, then the procedure sorts by the CONTROL variables according to nested sorting. These two types of sorting are equivalent when there is only one CONTROL variable.

If you request nested sorting, PROC SURVEYSELECT sorts observations in the same order as PROC SORT does for an ascending sort by the CONTROL variables. See the chapter "The SORT Procedure" in the *Base SAS Procedures Guide* for more information. PROC SURVEYSELECT sorts within strata if you also specify a STRATA statement. The procedure first arranges the input observations in ascending order of the first CONTROL variable. Then within each level of the

first control variable, the procedure arranges the observations in ascending order of the second CONTROL variable. This continues for all CONTROL variables specified.

In hierarchic serpentine sorting, PROC SURVEYSELECT sorts by the first CONTROL variable in ascending order. Then within the first level of the first CONTROL variable, the procedure sorts by the second CONTROL variable in ascending order. Within the second level of the first CONTROL variable, the procedure sorts by the second CONTROL variable in descending order. Sorting by the second CONTROL variable continues to alternate between ascending and descending sorting throughout all levels of the first CONTROL variable. If there is a third CONTROL variable, the procedure sorts by that variable within levels formed from the first two CONTROL variables, again alternating between ascending and descending sorting. This continues for all CONTROL variables specified. This sorting algorithm minimizes the change from one observation to the next with respect to the CONTROL variable values, thus making nearby observations more similar. For more information about serpentine sorting, see Chromy (1979) and Williams and Chromy (1980).

Sample Selection Methods

PROC SURVEYSELECT provides a variety of methods for selecting probability-based random samples. With probability sampling, each unit in the survey population has a known, positive probability of selection. This property of probability sampling avoids selection bias and enables you to use statistical theory to make valid inferences from the sample to the survey population. See Lohr (1999), Kish (1965, 1987), Kalton (1983), and Cochran (1977) for more information about probability sampling.

In equal probability sampling, each unit in the sampling frame, or in a stratum, has the same probability of being selected for the sample. PROC SURVEYSELECT provides the following methods that select units with equal probability: simple random sampling, unrestricted random sampling, systematic random sampling, and sequential random sampling. In simple random sampling, units are selected *without replacement*, which means that a unit cannot be selected more than once. Both systematic and sequential equal probability sampling are also without replacement. In unrestricted random sampling, units are selected *with replacement*, which means that a unit can be selected more than once. In with-replacement sampling, the *number of hits* refers to the number of times a unit is selected.

In probability proportional to size (PPS) sampling, a unit's selection probability is proportional to its size measure. PROC SURVEYSELECT provides the following methods that select units with probability proportional to size (PPS): PPS sampling without replacement, PPS sampling with replacement, PPS systematic sampling, PPS sequential sampling, Brewer's method, Murthy's method, and Sampford's method. PPS sampling is often used in cluster sampling, where you select clusters (or groups of sampling units) of varying size in the first stage of selection. For example, clusters might be schools, hospitals, or geographical areas, and the final sampling units might be students, patients, or citizens. Cluster sampling can provide efficiencies in frame construction and other survey operations. See Lohr (1999), Kalton (1983), Kish (1965), and the other references cited in the following sections for more information.

All the probability sampling methods provided by PROC SURVEYSELECT use random numbers in their selection algorithms, as described in the following sections and in the references cited. PROC

SURVEYSELECT uses a uniform random number function to generate streams of pseudo-random numbers from an initial starting point, or *seed*. You can use the SEED= option to specify the initial seed. If you do not specify the SEED= option, PROC SURVEYSELECT uses the time of day from the computer's clock to obtain the initial seed. PROC SURVEYSELECT generates uniform random numbers according to the method of Fishman and Moore (1982), which uses a prime modulus multiplicative generator with modulus 2^{31} and multiplier 397204094. PROC SURVEYSELECT uses the same uniform random number generator as the RANUNI function. For more information about the RANUNI function, see *SAS Language Reference: Dictionary*.

The following sections give detailed descriptions of the sample selection methods available in PROC SURVEYSELECT. In these sections, n_h denotes the sample size (the number of units in the sample) for stratum h, and N_h denotes the population size (number of units in the population) for stratum h, for h = 1, 2, ..., H. When the sample design is not stratified, n denotes the sample size, and N denotes the population size. For PPS sampling, M_{hi} represents the size measure for unit i in stratum h, M_h . is the total of all size measures for the population of stratum h, and $Z_{hi} = M_{hi}/M_h$. is the relative size of unit i in stratum h.

Simple Random Sampling

The method of simple random sampling (METHOD=SRS) selects units with equal probability and without replacement. Each possible sample of *n* different units out of *N* has the same probability of being selected. The selection probability for each individual unit equals n/N. When you request stratified sampling with a STRATA statement, PROC SURVEYSELECT selects samples independently within strata. The selection probability for a unit in stratum *h* equals n_h/N_h for stratified simple random sampling.

By default, PROC SURVEYSELECT uses Floyd's ordered hash table algorithm for simple random sampling. This algorithm is fast, efficient, and appropriate for large data sets. See Bentley and Floyd (1987) and Bentley and Knuth (1986) for details.

If there is not enough memory available for Floyd's algorithm, PROC SURVEYSELECT switches to the sequential algorithm of Fan, Muller, and Rezucha (1962), which requires less memory but might require more time to select the sample. When PROC SURVEYSELECT uses the alternative sequential algorithm, it writes a note to the log. To request the sequential algorithm, even if enough memory is available for Floyd's algorithm, you can specify METHOD=SRS2 in the PROC SURVEYSELECT statement.

Unrestricted Random Sampling

The method of unrestricted random sampling (METHOD=URS) selects units with equal probability and with replacement. Because units are selected with replacement, a unit can be selected for the sample more than once. The expected number of selections or hits for each unit equals n/N when sampling without stratification. For stratified sampling, the expected number of hits for a unit in stratum *h* equals n_h/N_h . Note that the expected number of hits exceeds one when the sample size *n* is greater than the population size *N*.
For unrestricted random sampling, by default, the output data set contains one observation for each distinct unit selected for the sample, together with a variable NumberHits that gives the number of times the observation was selected. But if you specify the OUTHITS option, then the output data set contains a separate observation for each selection, so that a unit selected three times, for example, is represented by three observations in the output data set. For information about the contents of the output data set, see the section "Sample Output Data Set" on page 6649.

Systematic Random Sampling

The method of systematic random sampling (METHOD=SYS) selects units at a fixed interval throughout the sampling frame or stratum after a random start. If you specify the sample size (or the stratum sample sizes) with the SAMPSIZE= option, PROC SURVEYSELECT uses a fractional interval to provide exactly the specified sample size. The interval equals N/n, or N_h/n_h for stratified sampling. The selection probability for each unit equals n/N, or n_h/N_h for stratified sampling. If you specify the sampling rate (or the stratum sampling rates) with the SAMPRATE= option, PROC SURVEYSELECT uses the inverse of the rate as the interval for systematic selection. The selection probability for each unit equals the specified rate.

Systematic random sampling controls the distribution of the sample by spreading it throughout the sampling frame or stratum at equal intervals, thus providing implicit stratification. You can use the CONTROL statement to order the input data set by the CONTROL variables before sample selection. If you also use a STRATA statement, PROC SURVEYSELECT sorts by the CONTROL variables within strata. If you do not specify a CONTROL statement, PROC SURVEYSELECT applies systematic selection to the observations in the order in which they appear in the input data set.

Sequential Random Sampling

If you specify the option METHOD=SEQ and do not include a SIZE statement, PROC SURVEYSELECT uses the equal probability version of Chromy's method for sequential random sampling. This method selects units sequentially with equal probability and without replacement. See Chromy (1979) and Williams and Chromy (1980) for details. See the section "PPS Sequential Sampling" on page 6643 for a description of Chromy's PPS selection method.

Sequential random sampling controls the distribution of the sample by spreading it throughout the sampling frame or stratum, thus providing implicit stratification according to the order of units in the frame or stratum. You can use the CONTROL statement to sort the input data set by the CONTROL variables before sample selection. If you also use a STRATA statement, PROC SURVEYSELECT sorts by the CONTROL variables within strata. By default (or if you specify the SORT=SERP option), the procedure uses hierarchic serpentine ordering for sorting. If you specify the SORT=NEST option, the procedure uses nested sorting. See the section "Sorting by CONTROL Variables" on page 6636 for descriptions of serpentine and nested sorting. If you do not specify a CONTROL statement, PROC SURVEYSELECT applies sequential selection to the observations in the order in which they appear in the input data set.

Following Chromy's method of sequential selection, PROC SURVEYSELECT randomly chooses a starting unit from the entire stratum (or frame, if the design is not stratified). With this unit as the

first one, the procedure treats the stratum units as a closed loop. This is done so that all pairwise (joint) selection probabilities are positive and an unbiased variance estimator can be obtained. The procedure numbers units sequentially from the random start to the end of the stratum and then continues from the beginning of the stratum until all units are numbered.

Beginning with the randomly chosen starting unit, PROC SURVEYSELECT accumulates the expected number of selections or hits, where the expected number of selections $E[S_{hi}]$ equals n_h/N_h for all units *i* in stratum *h*. The procedure computes

$$I_{hi} = \operatorname{Int}\left(\sum_{j=1}^{i} \operatorname{E}[S_{hj}]\right) = \operatorname{Int}(in_h/N_h)$$
$$F_{hi} = \operatorname{Frac}\left(\sum_{j=1}^{i} \operatorname{E}[S_{hj}]\right) = \operatorname{Frac}(in_h/N_h)$$

where Int denotes the integer part of the number, and Frac denotes the fractional part.

Considering each unit sequentially, Chromy's method determines whether unit i is selected by comparing the total number of selections for the first i - 1 units,

$$T_{h(i-1)} = \sum_{j=1}^{i-1} S_{hj}$$

with the value of $I_{h(i-1)}$.

If $T_{h(i-1)} = I_{h(i-1)}$, Chromy's method determines whether or not unit *i* is selected as follows. If $F_{hi} = 0$ or $F_{h(i-1)} > F_{hi}$, then unit *i* is selected with certainty. Otherwise, unit *i* is selected with probability

$$(F_{hi} - F_{h(i-1)})/(1 - F_{h(i-1)})$$

If $T_{h(i-1)} = I_{h(i-1)} + 1$, Chromy's method determines whether or not unit *i* is selected as follows. If $F_{hi} = 0$ or $F_{hi} > F_{h(i-1)}$, then the unit is not selected. Otherwise, unit *i* is selected with probability

$$F_{hi}/F_{h(i-1)}$$

PPS Sampling without Replacement

If you specify the option METHOD=PPS, PROC SURVEYSELECT selects units with probability proportional to size and without replacement. The selection probability for unit *i* in stratum *h* equals $n_h Z_{hi}$, where n_h is the sample size for stratum *h*, and Z_{hi} is the relative size of unit *i* in stratum *h*. The relative size equals $M_{hi}/M_{h.}$, which is the ratio of the size measure for unit *i* in stratum *h* (M_{hi}) to the total of all size measures for stratum *h* (M_h) .

Because selection probabilities cannot exceed 1, the relative size for each unit must not exceed $1/n_h$ for METHOD=PPS. This requirement can be expressed as $Z_{hi} <= 1/n_h$, or equivalently, $M_{hi} <= M_{h.}/n_h$. If your size measures do not meet this requirement, you can adjust the size

measures by using the MAXSIZE= or MINSIZE= option. Or you can request certainty selection for the larger units by using the CERTSIZE= or CERTSIZE=P= option. Alternatively, you can use a selection method that does not have this relative size restriction, such as PPS with minimum replacement (METHOD=PPS_SEQ).

PROC SURVEYSELECT uses the Hanurav-Vijayan algorithm for PPS selection without replacement. Hanurav (1967) introduced this algorithm for the selection of two units per stratum, and Vijayan (1968) generalized it for the selection of more than two units. The algorithm enables computation of joint selection probabilities and provides joint selection probability values that usually ensure nonnegativity and stability of the Sen-Yates-Grundy variance estimator. See Fox (1989), Golmant (1990), and Watts (1991) for details.

Notation in the remainder of this section drops the stratum subscript h for simplicity, but selection is still done independently within strata if you specify a stratified design. For a stratified design, nnow denotes the sample size for the current stratum, N denotes the stratum population size, and M_i denotes the size measure for unit i in the stratum. If the design is not stratified, this notation applies to the entire sampling frame.

According to the Hanurav-Vijayan algorithm, PROC SURVEYSELECT first orders units within the stratum in ascending order by size measure, so that $M_1 \le M_2 \le \ldots \le M_N$. Then the procedure selects the PPS sample of *n* observations as follows:

1. The procedure randomly chooses one of the integers 1, 2, ..., n with probability $\theta_1, \theta_2, ..., \theta_n$, where

$$\theta_i = n(Z_{N-n+i+1} - Z_{N-n+i})(T + iZ_{N-n+1})/T$$

where $Z_i = M_i / M$ and

$$T = \sum_{j=1}^{N-n} Z_j$$

By definition, $Z_{N+1} = 1/n$ to ensure that $\sum_{i=1}^{n} \theta_i = 1$.

- 2. If *i* is the integer selected in step 1, the procedure includes the last (n i) units of the stratum in the sample, where the units are ordered by size measure as described previously. The procedure then selects the remaining *i* units according to steps 3 through 6.
- 3. The procedure defines new normed size measures for the remaining (N n + i) stratum units that were not selected in steps 1 and 2:

$$Z_j^* = \begin{cases} Z_j / (T + i Z_{N-n+1}) & \text{for } j = 1, \dots, N-n+1 \\ Z_{N-n+1} / (T + i Z_{N-n+1}) & \text{for } j = N-n+2, \dots, N-n+i \end{cases}$$

4. The procedure selects the next unit from the first (N - n + 1) stratum units with probability proportional to $a_i(1)$, where

$$a_1(1) = iZ_1^*$$

$$a_j(1) = iZ_j^* \prod_{k=1}^{j-1} (1 - (i-1)P_k) \text{ for } j = 2, \dots, N - n + 1$$

and

$$P_k = M_k / (M_{k+1} + M_{k+2} + \dots + M_{N-n+i})$$

5. If stratum unit j_1 is the unit selected in step 4, then the procedure selects the next unit from units $(j_1 + 1)$ through (N - n + 2) with probability proportional to $a_j(2, j_1)$, where

$$a_{j_1+1}(2, j_1) = (i-1)Z_{j_1+1}^*$$

$$a_j(2, j_1) = (i-1)Z_j^* \prod_{k=j_1+1}^{j-1} (1-(i-2)P_k) \text{ for } j = j_1+2, \dots, N-n+2$$

6. The procedure repeats step 5 until all *n* sample units are selected.

If you specify the JTPROBS option, PROC SURVEYSELECT computes the joint selection probabilities for all pairs of selected units in each stratum. The joint selection probability for units i and j in the stratum equals

$$P_{(ij)} = \sum_{r=1}^{n} \theta_r K_{ij}^{(r)}$$

where

$$K_{ij} = \begin{cases} 1 & N-n+r < i \le N-1 \\ rZ_{N-n+1}/(T+rZ_{N-n+1}) & N-n < i \le N-n+r, \quad j > N-n+r \\ rZ_i/(T+rZ_{N-n+1}) & 1 \le i \le N-n, \quad j > N-n+r \\ \pi_{ij}^{(r)} & j \le N-n+r \end{cases}$$
$$\pi_{ij}^{(r)} = \frac{r(r-1)}{2} P_i Z_j \prod_{k=1}^{i-1} (1-P_k) \\ P_k = M_k/(M_{k+1} + M_{k+2} + \dots + M_{N-n+r})$$

PPS Sampling with Replacement

If you specify the option METHOD=PPS_WR, PROC SURVEYSELECT selects units with probability proportional to size and with replacement. The procedure makes n_h independent random selections from the stratum of N_h units, selecting with probability $Z_{hi} = M_{hi}/M_h$. Because units are selected with replacement, a unit can be selected for the sample more than once. The expected number of selections or hits for unit *i* in stratum *h* equals $n_h Z_{hi}$. If you specify the JTPROBS option, PROC SURVEYSELECT computes the joint expected number of hits for all pairs of selected units in each stratum. The joint expected number of hits for units *i* and *j* in stratum *h* equals

$$P_{h(ij)} = \begin{cases} n_h(n_h - 1)Z_{hi}Z_{hj} & \text{for } j \neq i \\ n_h(n_h - 1)Z_{hi}Z_{hi}/2 & \text{for } j = i \end{cases}$$

PPS Systematic Sampling

If you specify the option METHOD=PPS_SYS, PROC SURVEYSELECT selects units by systematic random sampling with probability proportional to size. Systematic sampling selects

units at a fixed interval throughout the stratum or sampling frame after a random start. PROC SURVEYSELECT uses a fractional interval to provide exactly the specified sample size. The interval equals $M_{h.}/n_h$ for stratified sampling and M/n for sampling without stratification. Depending on the sample size and the values of the size measures, it might be possible for a unit to be selected more than once. The expected number of selections or hits for unit *i* in stratum *h* equals $n_h M_{hi}/M_{h.} = n_h Z_{hi}$. See Cochran (1977, pp. 265–266) and Madow (1949) for details.

Systematic random sampling controls the distribution of the sample by spreading it throughout the sampling frame or stratum at equal intervals, thus providing implicit stratification. You can use the CONTROL statement to order the input data set by the CONTROL variables before sample selection. If you also use a STRATA statement, PROC SURVEYSELECT sorts by the CONTROL variables within strata. If you do not specify a CONTROL statement, PROC SURVEYSELECT applies systematic selection to the observations in the order in which they appear in the input data set.

PPS Sequential Sampling

If you specify the option METHOD=PPS_SEQ, PROC SURVEYSELECT uses Chromy's method of sequential random sampling. See Chromy (1979) and Williams and Chromy (1980) for details. Chromy's method selects units sequentially with probability proportional to size and with minimum replacement. Selection with minimum replacement means that the actual number of hits for a unit can equal the integer part of the expected number of hits for that unit, or the next largest integer. This can be compared to selection without replacement, where each unit can be selected only once, so the number of hits can equal 0 or 1. The other alternative is selection with replacement, where there is no restriction on the number of hits for each unit, so the number of hits can equal $0, 1, \dots, n_h$, where n_h is the stratum sample size.

Sequential random sampling controls the distribution of the sample by spreading it throughout the sampling frame or stratum, thus providing implicit stratification according to the order of units in the frame or stratum. You can use the CONTROL statement to sort the input data set by the CONTROL variables before sample selection. If you also use a STRATA statement, PROC SURVEYSELECT sorts by the CONTROL variables within strata. By default (or if you specify the SORT=SERP option), the procedure uses hierarchic serpentine ordering to sort the sampling frame by the CONTROL variables within strata. If you specify the SORT=NEST option, the procedure uses nested sorting. See the section "Sorting by CONTROL Variables" on page 6636 for descriptions of serpentine and nested sorting. If you do not specify a CONTROL statement, PROC SURVEYSELECT applies sequential selection to the observations in the order in which they appear in the input data set.

According to Chromy's method of sequential selection, PROC SURVEYSELECT first chooses a starting unit randomly from the entire stratum, with probability proportional to size. The procedure uses this unit as the first one and treats the stratum observations as a closed loop. This is done so that all pairwise (joint) expected number of hits are positive and an unbiased variance estimator can be obtained. The procedure numbers observations sequentially from the random start to the end of the stratum and then continues from the beginning of the stratum until all units are numbered.

Beginning with the randomly chosen starting unit, Chromy's method partitions the ordered stratum sampling frame into n_h zones of equal size. There is one selection from each zone and a total of

 n_h selections or hits, although fewer than n_h distinct units might be selected. Beginning with the random start, the procedure accumulates the expected number of hits and computes

$$E[S_{hi}] = n_h Z_{hi}$$

$$I_{hi} = Int\left(\sum_{j=1}^{i} E[S_{hj}]\right)$$

$$F_{hi} = Frac\left(\sum_{j=1}^{i} E[S_{hj}]\right)$$

where $E[S_{hi}]$ represents the expected number of hits for unit *i* in stratum *h*, Int denotes the integer part of the number, and Frac denotes the fractional part.

Considering each unit sequentially, Chromy's method determines the actual number of hits for unit i by comparing the total number of hits for the first i - 1 units,

$$T_{h(i-1)} = \sum_{j=1}^{i-1} S_{hj}$$

with the value of $I_{h(i-1)}$.

If $T_{h(i-1)} = I_{h(i-1)}$, Chromy's method determines the total number of hits for the first *i* units as follows. If $F_{hi} = 0$ or $F_{h(i-1)} > F_{hi}$, then $T_{hi} = I_{hi}$. Otherwise, $T_{hi} = I_{hi} + 1$ with probability

$$(F_{hi} - F_{h(i-1)})/(1 - F_{h(i-1)})$$

And the number of hits for unit *i* equals $T_{hi} - T_{h(i-1)}$.

If $T_{h(i-1)} = I_{h(i-1)} + 1$, Chromy's method determines the total number of hits for the first *i* units as follows. If $F_{hi} = 0$, then $T_{hi} = I_{hi}$. If $F_{hi} > F_{h(i-1)}$, then $T_{hi} = I_{hi} + 1$. Otherwise, $T_{hi} = I_{hi} + 1$ with probability

$$F_{hi}/F_{h(i-1)}$$

Brewer's PPS Method

Brewer's method (METHOD=PPS_BREWER) selects two units from each stratum, with probability proportional to size and without replacement. The selection probability for unit *i* in stratum *h* equals $2M_{hi}/M_{h.} = 2Z_{hi}$.

Brewer's algorithm first selects a unit with probability

$$\frac{Z_{hi}(1-Z_{hi})}{D_h(1-2Z_{hi})}$$

where

$$D_h = \sum_{i=1}^{N_h} \frac{Z_{hi}(1 - Z_{hi})}{1 - 2Z_{hi}}$$

Then a second unit is selected from the remaining units with probability

$$\frac{Z_{hj}}{1 - Z_{hi}}$$

where unit i is the first unit selected. The joint selection probability for units i and j in stratum h equals

$$P_{h(ij)} = \frac{2Z_{hi}Z_{hj}}{D_h} \left(\frac{1 - Z_{hi} - Z_{hj}}{(1 - 2Z_{hi})(1 - 2Z_{hj})}\right)$$

Brewer's method requires that the relative size Z_{hi} be less than 0.5 for all units. See Cochran (1977, pp. 261–263) and Brewer (1963) for details. Brewer's method yields the same selection probabilities and joint selection probabilities as Durbin's method. See Cochran (1977) and Durbin (1967) for details.

Murthy's PPS Method

Murthy's method (METHOD=PPS_MURTHY) selects two units from each stratum, with probability proportional to size and without replacement. The selection probability for unit i in stratum hequals

$$P_{hi} = Z_{hi} \left(1 + K - (Z_{hi}/(1 - Z_{hi})) \right)$$

where $Z_{hi} = M_{hi}/M_h$. and

$$K = \sum_{j=1}^{N} (Z_{hj} / (1 - Z_{hj}))$$

Murthy's algorithm first selects a unit with probability Z_{hi} . Then a second unit is selected from the remaining units with probability $Z_{hj}/(1 - Z_{hi})$, where unit *i* is the first unit selected. The joint selection probability for units *i* and *j* in stratum *h* equals

$$P_{h(ij)} = Z_{hi} Z_{hj} \left(\frac{2 - Z_{hi} - Z_{hj}}{(1 - Z_{hi})(1 - Z_{hj})} \right)$$

See Cochran (1977, pp. 263–265) and Murthy (1957) for details.

Sampford's PPS Method

Sampford's method (METHOD=PPS_SAMPFORD) is an extension of Brewer's method that selects more than two units from each stratum, with probability proportional to size and without replacement. The selection probability for unit *i* in stratum *h* equals $n_h M_{hi}/M_h = n_h Z_{hi}$.

Sampford's method first selects a unit from stratum h with probability Z_{hi} . Then subsequent units are selected with probability proportional to

$$\lambda_i = \frac{Z_{hi}}{1 - n_h \, Z_{hi}}$$

and with replacement. If the same unit appears more than once in the sample of size n_h , then Sampford's algorithm rejects that sample and selects a new sample. The sample is accepted if it contains n_h distinct units.

If you specify the JTPROBS option, PROC SURVEYSELECT computes the joint selection probabilities for all pairs of selected units in each stratum. The joint selection probability for units i and j in stratum h equals

$$P_{h(ij)} = K_h \lambda_i \lambda_j \sum_{t=2}^{n_h} \left(t - n_h \left(P_{hi} + P_{hj} \right) L_{n_h - t}(ij) \right) / n_h^{t-2}$$

where

$$L_m = \sum_{S(m)} \lambda_{i_1} \lambda_{i_2} \cdots \lambda_{i_m}$$

and S(m) denotes all possible samples of size m, for $m = 1, 2, ..., N_h$. The sum $L_m(ij)$ is defined similarly to L_m but sums over all possible samples of size m that do not include units i and j, and

$$K_h = \left(\sum_{t=1}^{n_h} t \ L_{n_h-t} / n_h^t\right)^{-1}$$

Sampford's method requires that the relative size Z_{hi} be less than $1/n_h$ for all units. See Cochran (1977, pp. 262–263) and Sampford (1967) for details.

Sample Size Allocation

If you specify the ALLOC= option in the STRATA statement, PROC SURVEYSELECT allocates the total sample size among the strata according to the method you request. You specify the total sample size in the SAMPSIZE=*n* option in the PROC SURVEYSELECT statement.

PROC SURVEYSELECT provides proportional allocation (ALLOC=PROP), optimal allocation (ALLOC=OPTIMAL), and Neyman allocation (ALLOC=NEYMAN). See Lohr (1999), Kish (1965), and Cochran (1977) for more information about these allocation methods. Alternatively, you can directly specify the allocation proportions by using the ALLOC=(values) option or the ALLOC=SAS-data-set option. Then PROC SURVEYSELECT allocates the total sample size among the strata according to the proportions that you specify.

Proportional Allocation

When you specify the ALLOC=PROP option, PROC SURVEYSELECT allocates the total sample size among the strata in proportion to the stratum sizes, where the stratum size is the number of sampling units in the stratum. The allocation proportion of the total sample size for stratum h equals

$$f_h^* = N_h/N$$

where N_h is the number of sampling units in stratum h and N is the total number of sampling units for all strata. Based on this allocation proportion, the target sample size for stratum h is

$$n_h^* = f_h^* \times n$$

where *n* is the total sample size that you specify in the SAMPSIZE= option.

The target sample size values, n_h^* , might not be integers, but the stratum sample sizes must be integers. PROC SURVEYSELECT uses a rounding algorithm to convert the n_h^* to integer values n_h and maintain the requested total sample size n. The rounding algorithm includes the restriction that all values of n_h must be at least 1, so that at least one unit will be selected from each stratum. For without-replacement selection methods, PROC SURVEYSELECT also requires that each stratum sample size must not exceed the total number of sampling units in the stratum, $n_h <= N_h$. If a target stratum sample size exceeds the number of units in the stratum, PROC SURVEYSELECT allocates the remaining total sample size proportionally among the remaining strata.

PROC SURVEYSELECT provides the target allocation proportions f_h^* in the output data set variable AllocProportion. The variable ActualProportion contains the actual proportions for the allocated sample sizes n_h . For stratum h, the actual proportion is computed as

$$f_h = n_h/n$$

where n_h is the allocated sample size for stratum h, and n is the total sample size. The actual proportions f_h can differ from the target allocation proportions f_h^* due to rounding and the restrictions that $n_h \ge 1$ and $n_h \le N_h$.

Optimal Allocation

When you specify the ALLOC=OPTIMAL option, PROC SURVEYSELECT allocates the total sample size among the strata in proportion to stratum sizes, stratum costs, and stratum variances. Optimal allocation minimizes the overall variance for a specified cost, or equivalently minimizes the overall cost for a specified variance. See Lohr (1999), Cochran (1977) and Kish (1965) for details. For optimal allocation, the proportion of the total sample size for stratum *h* is computed as

$$f_h^* = \frac{N_h S_h}{\sqrt{C_h}} / \sum_{i=1}^H \frac{N_i S_i}{\sqrt{C_i}}$$

where N_h is the number of sampling units in stratum h, S_h is the standard deviation within stratum h, C_h is the unit cost within stratum h, and H is the total number of strata. The target sample size for stratum h is $n_h^* = f_h^* \times n$, where n is the total sample size. As for proportional allocation, the values of n_h^* are converted to integer sample sizes n_h by using a rounding algorithm that requires the sum of the stratum sample sizes to equal n. The final sample sizes n_h are also required to be at least 1, and the final sample sizes must not exceed the stratum sizes for without-replacement selection methods.

Neyman Allocation

When you specify the ALLOC=NEYMAN option, PROC SURVEYSELECT allocates the total sample size among the strata in proportion to stratum sizes and stratum variances. Neyman allocation is a special case of optimal allocation, where the costs per unit are the same for all strata. For Neyman allocation, the proportion of the total sample size for stratum h is computed as

$$f_h^* = N_h S_h / \sum_{i=1}^H N_i S_i$$

The target sample size for stratum h is $n_h^* = f_h^* \times n$. The n_h^* are converted to integer sample sizes n_h by using a rounding algorithm that requires the sum of the stratum sizes to equal n. The final sample sizes n_h are required to be at least 1, and the final sample sizes must not exceed the stratum sizes for without-replacement selection methods.

Secondary Input Data Set

The primary input data set for PROC SURVEYSELECT is the DATA= data set, which contains the list of units from which the sample is selected. You can use a secondary input data set to provide stratum-level design and selection information, such as sample sizes or rates, certainty size values, or stratum costs. This secondary input data set is sometimes called the SAMPSIZE= input data set. You can provide stratum sample sizes in the _NSIZE_ (or SampleSize) variable in the SAMPSIZE= data set.

The secondary input data set must contain all the STRATA variables, with the same type and length as in the DATA= data set. The STRATA groups should appear in the same order in the secondary data set as in the DATA= data set. You can name only one secondary data set in each invocation of the procedure.

You must name the secondary input data set in the appropriate PROC SURVEYSELECT or STRATA option, and use the designated variable name to provide the stratum-level values. For example, if you want to provide stratum-level costs for sample allocation, you name the secondary data set in the COST=*SAS*-*data-set* option in the STRATA statment. The data set must include the stratum costs in a variable named _COST_. You can use the secondary input data set for more than one option if it is appropriate for your design. For example, the secondary data set can include both stratum costs and stratum variances, which are required for optimal allocation (ALLOC=OPTIMAL).

Instead of using a separate secondary input data set, you can include secondary information in the DATA= data set along with the sampling frame. When you include secondary information in the DATA= data set, name the DATA= data set in the appropriate options, and include the required variables in the DATA= data set.

Table 87.2 lists the available secondary data set variables, together with their descriptions and the corresponding options.

Variable	Description	Statement	Option
ALLOC	Allocation proportion	STRATA	ALLOC=
CERTP	Certainty proportion	PROC	CERTSIZE=P=
CERTSIZE	Certainty size	PROC	CERTSIZE=
COST	Cost	STRATA	COST=
MAXSIZE	Maximum size	PROC	MAXSIZE=
MINSIZE	Minimum size	PROC	MINSIZE=
NSIZE	Sample size	PROC	SAMPSIZE=
RATE	Sampling rate	PROC	SAMPRATE=
SEED	Random number seed	PROC	SEED=
VAR	Variance	STRATA	VAR=

Table 87.2 PROC SURVEYSELECT Secondary Data Set Variables

Sample Output Data Set

Unless you specify the NOSAMPLE option in the STRATA statement, PROC SURVEYSELECT selects a sample and creates a SAS data set that contains the sample of selected units. If you specify the NOSAMPLE option, PROC SURVEYSELECT allocates the total sample size among the strata but does not select the sample. When you specify the NOSAMPLE option, the output data set contains the allocated sample sizes. See the section "Allocation Output Data Set" on page 6652 for details.

You can specify the name of the sample output data set in the OUT= option in the PROC SURVEYSELECT statement. If you omit the OUT= option, the data set is named DATAn, where n is the smallest integer that makes the name unique.

By default, the output data set contains one observation for each unit selected for the sample. But if you specify the OUTALL option, the output data set includes all observations from the input data set. With OUTALL, the output data set also contains a variable to indicate each observation's selection status. The variable Selected equals 1 for an observation selected for the sample, and equals 0 for an observation not selected. The OUTALL option is available only for equal probability selection methods.

By default, the output data set contains one observation for each selected unit, even if the unit is selected more than once, and the variable NumberHits contains the number of hits or selections for that unit. A unit might be selected more than once if you use a with-replacement or with-minimum-replacement selection method (METHOD=URS, METHOD=PPS_WR, METHOD=PPS_SYS, or METHOD=PPS_SEQ). If you specify the OUTHITS option, the output data set contains a separate observation for each hit or selection.

The output data set contains design information and selection statistics, depending on the selection method and output options you specify. The output data set can include the following variables:

• Selected, which indicates whether or not the observation is selected for the sample. This variable is included if you specify the OUTALL option. Selected equals 1 for an observation selected for the sample or 0 for an observation not selected.

- STRATA variables, which you specify in the STRATA statement
- Replicate, which is the sample replicate number. This variable is included when you request replicated sampling with the REPS= option.
- ID variables, which you name in the ID statement
- CONTROL variables, which you specify in the CONTROL statement
- Zone, which is the selection zone. This variable is included for METHOD=PPS_SEQ.
- SIZE variable, which you specify in the SIZE statement
- AdjustedSize, which is the adjusted size measure. This variable is included if you request adjusted sizes with the MINSIZE= or MAXSIZE= option.
- Certain, which indicates certainty selection. This variable is included if you specify the CERTSIZE= or CERTSIZE=P= option. Certain equals 1 for units included with certainty because their size measures exceed the certainty size value or the certainty proportion; otherwise, Certain equals 0.
- NumberHits, which is the number of hits or selections. This variable is included for selection methods that are with replacement or with minimum replacement (METHOD=URS, METHOD=PPS_WR, METHOD=PPS_SYS, and METHOD=PPS_SEQ).

The output data set includes the following variables if you request a PPS selection method or if you specify the **STATS** option for other methods:

- ExpectedHits, which is the expected number of hits or selections. This variable is included for selection methods that are with replacement or with minimum replacement, and so might select the same unit more than once (METHOD=URS, METHOD=PPS_WR, METHOD=PPS_SYS, and METHOD=PPS_SEQ).
- SelectionProb, which is the probability of selection. This variable is included for selection methods that are without replacement.
- SamplingWeight, which is the sampling weight. This variable equals the inverse of ExpectedHits or SelectionProb.

For METHOD=PPS_BREWER and METHOD=PPS_MURTHY, which select two units from each stratum with probability proportional to size, the output data set contains the following variable:

• JtSelectionProb, which is the joint probability of selection for the two units selected from the stratum

If you specify the JTPROBS option to compute joint probabilities of selection for METHOD=PPS or METHOD=PPS_SAMPFORD, then the output data set contains the following variables:

• Unit, which is an identification variable that numbers the selected units sequentially within each stratum

• JtProb_1, JtProb_2, JtProb_3, ..., where the variable JtProb_1 contains the joint probability of selection for the current unit and unit 1. Similarly, JtProb_2 contains the joint probability of selection for the current unit and unit 2, and so on.

If you specify the JTPROBS option for METHOD=PPS_WR, then the output data set contains the following variables:

- Unit, which is an identification variable that numbers the selected units sequentially within each stratum
- JtHits_1, JtHits_2, JtHits_3, ..., where the variable JtHits_1 contains the joint expected number of hits for the current unit and unit 1. Similarly, JtHits_2 contains the joint expected number of hits for the current unit and unit 2, and so on.

If you specify the OUTSIZE option, the output data set contains the following variables. If you specify a STRATA statement, the output data set includes stratum-level values of these variables. Otherwise, the output data set contains population-level values of these variables.

- MinimumSize, which is the minimum size measure specified with the MINSIZE= option. This variable is included if you specify the MINSIZE= option.
- MaximumSize, which is the maximum size measure specified with the MAXSIZE= option. This variable is included if you specify the MAXSIZE= option.
- CertaintySize, which is the certainty size measure specified with the CERTSIZE= option. This variable is included if you specify the CERTSIZE= option.
- CertaintyProp, which is the certainty proportion specified with the CERTSIZE=P= option. This variable is included if you specify the CERTSIZE=P= option.
- Total, which is the total number of sampling units in the stratum. This variable is included if there is no SIZE statement.
- TotalSize, which is the total of size measures in the stratum. This variable is included if there is a SIZE statement.
- TotalAdjSize, which is the total of adjusted size measures in the stratum. This variable is included if you specify a SIZE statement and if you request adjusted sizes with the MAXSIZE= or MINSIZE= option.
- SamplingRate, which is the sampling rate. This variable is included if you specify the SAMPRATE= option.
- SampleSize, which is the sample size. This variable is included if you specify the SAMPSIZE= option, or if you specify METHOD=PPS_BREWER or METHOD=PPS_MURTHY, which selects two units from each stratum.

If you specify the OUTSEED option, the output data set contains the following variable:

• InitialSeed, which is the initial seed for the stratum.

If you specify the ALLOC= option in the STRATA statement, the output data set contains the following variables:

- Total, which is the total number of sampling units in the stratum
- Variance, which is the stratum variance. This variable is included if you specify the VAR, VAR=(*values*), or VAR=*SAS-data-set* option for ALLOC=OPTIMAL or ALLOC=NEYMAN.
- Cost, which is the stratum cost. This variable is included if you specify the COST, COST=(*values*), or COST=*SAS-data-set* option for ALLOC=OPTIMAL.
- AllocProportion, which is the target allocation proportion, or the proportion of the total sample size to allocate to the stratum. PROC SURVEYSELECT computes this proportion by using the specified allocation method.
- SampleSize, which is the sample size allocated to the stratum
- ActualProportion, which is the actual proportion allocated to the stratum. The value of ActualProportion equals the allocated stratum sample size divided by the total sample size. This value can differ from the target AllocProportion due to rounding and other restrictions. See the section "Sample Size Allocation" on page 6646 for details.

Allocation Output Data Set

When you specify the NOSAMPLE option in the STRATA statement, PROC SURVEYSELECT allocates the total sample size among the strata but does not select the sample. In this case, the OUT= data set contains the allocated sample sizes.

You can specify the name of the allocation output data set with the OUT= option in the PROC SURVEYSELECT statement. If you omit the OUT= option, the data set is named DATAn, where n is the smallest integer that makes the name unique.

The allocation output data set can include the following variables:

- STRATA variables, which you specify in the STRATA statement
- Total, which is the total number of sampling units in the stratum
- Variance, which is the stratum variance. This variable is included if you specify the VAR, VAR=(*values*), or VAR=*SAS-data-set* option for ALLOC=OPTIMAL or ALLOC=NEYMAN.

- Cost, which is the stratum cost. This variable is included if you specify the COST, COST=(*values*), or COST=*SAS-data-set* option for ALLOC=OPTIMAL.
- AllocProportion, which is the target allocation proportion, or the proportion of the total sample size to allocate to the stratum. PROC SURVEYSELECT computes this proportion by using the specified allocation method.
- SampleSize, which is the sample size allocated to the stratum
- ActualProportion, which is the actual proportion allocated to the stratum. The value of ActualProportion equals the allocated stratum sample size divided by the total sample size. This value can differ from the target AllocProportion due to rounding and other restrictions. See the section "Sample Size Allocation" on page 6646 for details.

Displayed Output

By default, PROC SURVEYSELECT displays two tables that summarize the sample selection, the "Sample Selection Method" table and the "Sample Selection Summary" table.

If you request sample allocation but no sample selection, PROC SURVEYSELECT displays two tables that summarize the allocation, the "Sample Allocation Method" table and the "Sample Allocation Summary" table.

You can suppress display of these tables by specifying the NOPRINT option.

PROC SURVEYSELECT creates an output data set that contains the units selected for the sample. Or if you request sample allocation but no sample selection, PROC SURVEYSELECT creates an output data set that contains the sample size allocation results. (See the sections "Sample Output Data Set" on page 6649 and "Allocation Output Data Set" on page 6652 for information about these output data sets.) The procedure does not display the output data set that it creates. Use PROC PRINT, PROC REPORT, or any other SAS reporting tool to display the output data set.

PROC SURVEYSELECT displays the following information in the "Sample Selection Method" table:

- Selection Method
- Size Measure variable, if you specify a SIZE statement
- Minimum Size Measure, if you specify the MINSIZE= option
- Maximum Size Measure, if you specify the MAXSIZE= option
- Certainty Size Measure, if you specify the CERTSIZE= option
- Certainty Proportion, if you specify the CERTSIZE=P= option
- Strata Variables, if you specify a STRATA statement
- Control Variables, if you specify a CONTROL statement

- type of Control Sorting, Serpentine or Nested, if you specify a CONTROL statement
- type of Allocation, if you specify the ALLOC= option in the STRATA statement

PROC SURVEYSELECT displays the following information in the "Sample Selection Summary" table:

- Input Data Set name
- Sorted Data Set name, if you specify the OUTSORT= option
- Random Number Seed
- Sample Size or Stratum Sample Size, if you specify the SAMPSIZE=*n* option
- Sample Size Data Set, if you specify the SAMPSIZE=SAS-data-set option
- Sampling Rate or Stratum Sampling Rate, if you specify the SAMPRATE=r option
- Sampling Rate Data Set, if you specify the SAMPRATE=SAS-data-set option
- Minimum Sample Size or Stratum Minimum Sample Size, if you specify the NMIN= option with the SAMPRATE= option
- Maximum Sample Size or Stratum Maximum Sample Size, if you specify the NMAX= option with the SAMPRATE= option
- Allocation Input Data Set name, if you specify the ALLOC=*SAS-data-set* option in the STRATA statement
- Variance Input Data Set name, if you specify the VAR=SAS-data-set option in the STRATA statement.
- Cost Input Data Set name, if you specify the COST=*SAS-data-set* option in the STRATA statement.
- Selection Probability, if you specify METHOD=SRS, METHOD=SYS, or METHOD=SEQ and do not specify a STRATA statement
- Expected Number of Hits, if you specify METHOD=URS and do not specify a STRATA statement
- Sampling Weight for equal probability selection methods (METHOD=SRS, METHOD=URS, METHOD=SYS, METHOD=SEQ) if you do not specify a STRATA statement
- Number of Strata, if you specify a STRATA statement
- Number of Replicates, if you specify the REPS= option
- Total Sample Size, if you specify a STRATA statement or the REPS= option
- Output Data Set name

If you specify the NOSAMPLE option in the STRATA statement, PROC SURVEYSELECT allocates the total sample among the strata but does not select the sample. When you specify the NOSAMPLE option, PROC SURVEYSELECT displays the "Sample Allocation Method" table, which includes the following information:

- Allocation method
- Strata Variables

When you specify the NOSAMPLE option in the STRATA statement, PROC SURVEYSELECT also displays the "Sample Allocation Summary" table, which includes the following information:

- Input Data Set name
- Allocation Input Data Set name, if you specify the ALLOC=SAS-data-set option in the STRATA statement
- Variance Input Data Set name, if you specify the VAR=SAS-data-set option in the STRATA statement
- Cost Input Data Set name, if you specify the COST=SAS-data-set option in the STRATA statement
- Number of Strata
- Total Sample Size
- Allocation Output Data Set name

ODS Table Names

PROC SURVEYSELECT assigns a name to each table it creates. You can use these names to reference tables when using the Output Delivery System (ODS) to select tables and create output data sets. For more information about ODS, see Chapter 20, "Using the Output Delivery System." Table 87.3 lists the table names.

Table 87.3	ODS Tables Produced by PROC SURVEYSELECT
------------	--

ODS Table Name	Description	Statement	Option
Method	Sample selection method	PROC	default
Summary	Sample selection summary	PROC	default

Examples: SURVEYSELECT Procedure

Example 87.1: Replicated Sampling

This example uses the Customers data set from the section "Getting Started: SURVEYSELECT Procedure" on page 6607. The data set Customers contains an Internet service provider's current subscribers, and the service provider wants to select a sample from this population for a customer satisfaction survey.

This example illustrates replicated sampling, which selects multiple samples from the survey population according to the same design. You can use replicated sampling to provide a simple method of variance estimation, or to evaluate variable nonsampling errors such as interviewer differences. See Lohr (1999), Wolter (1985), Kish (1965, 1987), and Kalton (1983) for information about replicated sampling.

This design includes four replicates, each with a sample size of 50 customers. The sampling frame is stratified by State and sorted by Type and Usage within strata. Customers are selected by sequential random sampling with equal probability within strata. The following PROC SURVEYSELECT statements select a probability sample of customers from the Customers data set by using this design:

```
title1 'Customer Satisfaction Survey';
title2 'Replicated Sampling';
proc surveyselect data=Customers
    method=seq n=(8 12 20 10)
    reps=4
    seed=40070 out=SampleRep;
    strata State;
    control Type Usage;
run;
```

The STRATA statement names the stratification variable State. The CONTROL statement names the control variables Type and Usage. In the PROC SURVEYSELECT statement, the METHOD=SEQ option requests sequential random sampling. The REPS=4 option specifies four replicates of this sample. The N=(8 12 20 10) option lists the stratum sample sizes for each replicate. The N= option lists the stratum sample sizes in the same order as the strata appear in the Customers data set, which has been sorted by State. The sample size of eight customers corresponds to the first stratum, State = 'AL'. The sample size 12 corresponds to the next stratum, State = 'FL', and so on. The SEED=40070 option specifies '40070' as the initial seed for random number generation.

Output 87.1.1 displays the output from PROC SURVEYSELECT, which summarizes the sample selection. A total of 200 customers is selected in four replicates. PROC SURVEYSELECT selects each replicate by using sequential random sampling within strata determined by State. The sampling frame Customers is sorted by the control variables Type and Usage within strata, according to hierarchic serpentine sorting. The output data set SampleRep contains the sample.

Output 87.1.1 Sample Selection Summary

```
Customer Satisfaction Survey
             Replicated Sampling
          The SURVEYSELECT Procedure
Selection Method
                    Sequential Random Sampling
                    With Equal Probability
Strata Variable
                    State
Control Variables
                    Type
                    Usage
Control Sorting
                    Serpentine
                               CUSTOMERS
      Input Data Set
      Random Number Seed
                                   40070
      Number of Strata
                                       4
      Number of Replicates
                                       4
      Total Sample Size
                                     200
                               SAMPLEREP
      Output Data Set
```

The following PROC PRINT statements display the selected customers for the first stratum, State = 'AL', from the output data set SampleRep:

```
title1 'Customer Satisfaction Survey';
title2 'Sample Selected by Replicated Design';
title3 '(First Stratum)';
proc print data=SampleRep;
  where State = 'AL';
run;
```

Output 87.1.2 displays the 32 sample customers of the first stratum (State = 'AL') from the output data set SampleRep, which includes the entire sample of 200 customers. The variable SelectionProb contains the selection probability, and SamplingWeight contains the sampling weight. Because customers are selected with equal probability within strata in this design, all customers in the same stratum have the same selection probability. These selection probabilities and sampling weights apply to a single replicate, and the variable Replicate contains the sample replicate number.

		Customer Satisfaction Survey Sample Selected by Replicated Design (First Stratum)					
						Selection	Sampling
Obs	State	Replicate	CustomerID	Туре	Usage	Prob	Weight
1	AL	1	882-37-7496	New	572	.004115226	243
2	AL	1	581-32-5534	New	863	.004115226	243
3	AL	1	980-29-2898	Old	571	.004115226	243
4	AL	1	172-56-4743	Old	128	.004115226	243
5	AL	1	998-55-5227	Old	35	.004115226	243
6	AL	1	625-44-3396	New	60	.004115226	243
7	AL	1	627-48-2509	New	114	.004115226	243
8	AL	1	257-66-6558	New	172	.004115226	243
9	AL	2	622-83-1680	New	22	.004115226	243
10	AL	2	343-57-1186	New	53	.004115226	243
11	AL	2	976-05-3796	New	110	.004115226	243
12	AL	2	859-74-0652	New	303	.004115226	243
13	AL	2	476-48-1066	New	839	.004115226	243
14	AL	2	109-27-8914	Old	2102	.004115226	243
15	AL	2	743-25-0298	Old	376	.004115226	243
16	AL	2	722-08-2215	Old	105	.004115226	243
17	AL	3	668-57-7696	New	200	.004115226	243
18	AL	3	300-72-0129	New	471	.004115226	243
19	AL	3	073-60-0765	New	656	.004115226	243
20	AL	3	526-87-0258	Old	672	.004115226	243
21	AL	3	726-61-0387	Old	150	.004115226	243
22	AL	3	632-29-9020	Old	51	.004115226	243
23	AL	3	417-17-8378	New	56	.004115226	243
24	AL	3	091-26-2366	New	93	.004115226	243
25	AL	4	336-04-1288	New	419	.004115226	243
26	AL	4	827-04-7407	New	650	.004115226	243
27	AL	4	317-70-6496	Old	452	.004115226	243
28	AL	4	002-38-4582	Old	206	.004115226	243
29	AL	4	181-83-3990	Old	33	.004115226	243
30	AL	4	675-34-7393	New	47	.004115226	243
31	AL	4	228-07-6671	New	65	.004115226	243
32	AL	4	298-46-2434	New	161	.004115226	243
-							-

Output 87.1.2 Customer Sample (First Stratum)

Example 87.2: PPS Selection of Two Units per Stratum

This example describes hospital selection for a survey by using PROC SURVEYSELECT. A state health agency plans to conduct a statewide survey of a variety of different hospital services. The agency plans to select a probability sample of individual discharge records within hospitals by using a two-stage sample design. First-stage units are hospitals, and second-stage units are patient discharges during the study period. Hospitals are stratified first according to geographic region and then by rural/urban type and size of hospital. Two hospitals are selected from each stratum with probability proportional to size.

The data set HospitalFrame contains all hospitals in the first geographical region of the state:

```
data HospitalFrame;
   input Hospital$ Type$ SizeMeasure @@;
   if (SizeMeasure < 20) then Size='Small ';
     else if (SizeMeasure < 50) then Size='Medium';
     else Size='Large ';
   datalines;
034 Rural 0.870 107 Rural 1.316
079 Rural 2.127 223 Rural 3.960
236 Rural 5.279 165 Rural 5.893
086 Rural 0.501
                 141 Rural 11.528
042 Urban 3.104 124 Urban 4.033
006 Urban 4.249 261 Urban 4.376
195 Urban 5.024 190 Urban 10.373
038 Urban 17.125
                083 Urban 40.382
259 Urban 44.942 129 Urban 46.702
133 Urban 46.992 218 Urban 48.231
026 Urban 61.460
                  058 Urban 65.931
119 Urban 66.352
;
```

In the SAS data set HospitalFrame, the variable Hospital identifies the hospital. The variable Type equals 'Urban' if the hospital is located in an urban area, and 'Rural' otherwise. The variable SizeMeasure contains the hospital's size measure, which is constructed from past data on service utilization for the hospital together with the desired sampling rates for each service. This size measure reflects the amount of relevant survey information expected from the hospital. See Drummond et al. (1982) for details about this type of size measure. The variable Size equals 'Small', 'Medium', or 'Large', depending on the value of the hospital's size measure.

The following PROC PRINT statements display the data set Hospital Frame and produce Output 87.2.1:

```
title1 'Hospital Utilization Survey';
title2 'Sampling Frame, Region 1';
proc print data=HospitalFrame;
run;
```

Hospital Utilization Survey Sampling Frame, Region 1										
				Size						
	Obs	Hospital	Туре	Measure	Size					
	1	034	Rural	0.870	Small					
	2	107	Rural	1.316	Small					
	3	079	Rural	2.127	Small					
	4	223	Rural	3.960	Small					
	5	236	Rural	5.279	Small					
	6	165	Rural	5.893	Small					
	7	086	Rural	0.501	Small					
	8	141	Rural	11.528	Small					
	9	042	Urban	3.104	Small					
	10	124	Urban	4.033	Small					
	11	006	Urban	4.249	Small					
	12	261	Urban	4.376	Small					
	13	195	Urban	5.024	Small					
	14	190	Urban	10.373	Small					
	15	038	Urban	17.125	Small					
	16	083	Urban	40.382	Medium					
	17	259	Urban	44.942	Medium					
	18	129	Urban	46.702	Medium					
	19	133	Urban	46.992	Medium					
	20	218	Urban	48.231	Medium					
	21	026	Urban	61.460	Large					
	22	058	Urban	65.931	Large					
	23	119	Urban	66.352	Large					

Output 87.2.1 Sampling Frame

The following PROC SURVEYSELECT statements select a probability sample of hospitals from the HospitalFrame data set by using a stratified design with PPS selection of two units from each stratum:

```
title1 'Hospital Utilization Survey';
title2 'Stratified PPS Sampling';
proc surveyselect data=HospitalFrame
    method=pps_brewer
    seed=48702 out=SampleHospitals;
size SizeMeasure;
strata Type Size notsorted;
run;
```

The STRATA statement names the stratification variables Type and Size. The NOTSORTED option specifies that observations with the same STRATA variable values are grouped together but are not necessarily sorted in alphabetical or increasing numerical order. In the HospitalFrame data set, Size = 'Small' precedes Size = 'Medium'.

In the PROC SURVEYSELECT statement, the METHOD=PPS_BREWER option requests sample selection by Brewer's method, which selects two units per stratum with probability proportional to size. The SEED=48702 option specifies '48702' as the initial seed for random number generation.

The SIZE statement names SizeMeasure as the size measure variable. It is not necessary to specify the sample size with the N= option, because Brewer's method always selects two units from each stratum.

Output 87.2.2 displays the output from PROC SURVEYSELECT. A total of eight hospitals were selected from the four strata. The data set SampleHospitals contains the selected hospitals.

Output 87.2.2 Sample Selection Summary

Hospital Util: Stratified I	ization Survey PPS Sampling	
The SURVEYSE	LECT Procedure	
Selection Method	Brewer's PPS Method	
Size Measure	SizeMeasure	
Strata Variables	Туре	
	Size	
Input Data Set	HOSPITALFRAME	
Random Number Seed	48702	
Stratum Sample Size	e 2	
Number of Strata	4	
Total Sample Size	8	
Output Data Set	SAMPLEHOSPITALS	

The following PROC PRINT statements display the sample hospitals and produce Output 87.2.3:

```
title1 'Hospital Utilization Survey';
title2 'Sample Selected by Stratified PPS Design';
proc print data=SampleHospitals;
run;
```

```
Output 87.2.3 Sample Hospitals
```

Hospital Utilization Survey Sample Selected by Stratified PPS Design									
Obs	Туре	Size	Hospital	Size Measure	Selection Prob	Sampling Weight	Jt Selection Prob		
1	Rural	Small	079	2.127	0.13516	7.39868	0.01851		
2	Rural	Small	236	5.279	0.33545	2.98106	0.01851		
3	Urban	Small	006	4.249	0.17600	5.68181	0.01454		
4	Urban	Small	195	5.024	0.20810	4.80533	0.01454		
5	Urban	Medium	133	46.992	0.41357	2.41795	0.11305		
6	Urban	Medium	218	48.231	0.42448	2.35584	0.11305		
7	Urban	Large	026	61.460	0.63445	1.57617	0.31505		
8	Urban	Large	058	65.931	0.68060	1.46929	0.31505		

The variable SelectionProb contains the selection probability for each hospital in the sample. The variable JtSelectionProb contains the joint probability of selection for the two sample hospitals in the same stratum. The variable SamplingWeight contains the sampling weight component for this first stage of the design. The final-stage weight components, which correspond to patient record selection within hospitals, can be multiplied by the hospital weight components to obtain the overall sampling weights.

Example 87.3: PPS (Dollar-Unit) Sampling

A small company wants to audit employee travel expenses in an effort to improve the expense reporting procedure and possibly reduce expenses. The company does not have resources to examine all expense reports and wants to use statistical sampling to objectively select expense reports for audit.

The data set TravelExpense contains the dollar amount of all employee travel expense transactions during the past month:

```
data TravelExpense;
  input ID$ Amount @@;
  if (Amount < 500) then Level='1_Low ';
     else if (Amount > 1500) then Level='3_High';
     else Level='2_Avg ';
  datalines;
110 237.18
            002 567.89
                        234 118.50
743
     74.38 411 1287.23
                         782 258.10
216 325.36
            174 218.38
                         568 1670.80
302 134.71 285 2020.70 314
                             47.80
139 1183.45 775 330.54
                        425 780.10
506 895.80 239 620.10
                         011 420.18
            142 810.25
   979.66
672
                         738 670.85
192 314.58 243
                87.50
                         263 1893.40
496 753.30
           332 540.65
                         486 2580.35
614 230.56
            654 185.60
                         308 688.43
784
   505.14
           017 205.48
                         162 650.42
289 1348.34
            691
                30.50
                         545 2214.80
517 940.35
            382 217.85
                         024 142.90
478 806.90
            107 560.72
;
```

In the SAS data set TravelExpense, the variable ID identifies the travel expense report. The variable Amount contains the dollar amount of the reported expense. The variable Level equals '1_Low', '2_Avg', or '3_High', depending on the value of Amount.

In the sample design for this audit, expense reports are stratified by Level. This ensures that each of these expense levels is included in the sample and also permits a disproportionate allocation of the sample, selecting proportionately more of the expense reports from the higher levels. Within strata, the sample of expense reports is selected with probability proportional to the amount of the expense, thus giving a greater chance of selection to larger expenses. In auditing terms, this is known as monetary-unit sampling. See Wilburn (1984) for details.

PROC SURVEYSELECT requires that the input data set be sorted by the STRATA variables. The following PROC SORT statements sort the TravelExpense data set by the stratification variable Level.

```
proc sort data=TravelExpense;
    by Level;
run;
```

Output 87.3.1 displays the sampling frame data set TravelExpense, which contains 41 observations.

Output 87.3.1 Sampling Frame

	Travel	Expense Au	dit
Obs	ID	Amount	Level
1	110	237.18	1 Low
2	234	118.50	1_Low
3	743	74.38	1_Low
4	782	258.10	1_Low
5	216	325.36	1_Low
6	174	218.38	1_Low
7	302	134.71	1_Low
8	314	47.80	1_Low
9	775	330.54	1_Low
10	011	420.18	1_Low
11	192	314.58	1_Low
12	243	87.50	1_Low
13	614	230.56	1_Low
14	654	185.60	1_Low
15	017	205.48	1_Low
16	691	30.50	1_Low
17	382	217.85	1_Low
18	024	142.90	1_Low
19	002	567.89	2_Avg
20	411	1287.23	2_Avg
21	139	1183.45	2_Avg
22	425	780.10	2_Avg
23	506	895.80	2_Avg
24	239	620.10	2_Avg
25	672	979.66	2_Avg
26	142	810.25	2_Avg
27	738	670.85	2_Avg
28	496	753.30	2_Avg
29	332	540.65	2_Avg
30	308	688.43	2_Avg
31	784	505.14	2_Avg
32	162	650.42	2_Avg
33	289	1348.34	2_Avg
34	517	940.35	2_Avg
35	478	806.90	2_Avg
36	107	560.72	2_Avg
37	568	1670.80	3_High
38	285	2020.70	3_High
39	263	1893.40	3_High
40	486	2580.35	3_High
41	545	2214.80	3_High
			-

The following PROC SURVEYSELECT statements select a probability sample of expense reports from the TravelExpense data set by using the stratified design with PPS selection within strata:

```
title1 'Travel Expense Audit';
title2 'Stratified PPS (Dollar-Unit) Sampling';
proc surveyselect data=TravelExpense
    method=pps n=(6 10 4)
    seed=47279 out=AuditSample;
    size Amount;
    strata Level;
run;
```

The STRATA statement names the stratification variable Level. The SIZE statement specifies the size measure variable Amount. In the PROC SURVEYSELECT statement, the METHOD=PPS option requests sample selection with probability proportional to size and without replacement. The N=(6 10 4) option specifies the stratum sample sizes, listing the sample sizes in the same order as the strata appear in the TravelExpense data set. The sample size of 6 corresponds to the first stratum, Level = '1_Low'; the sample size of 10 corresponds to the second stratum, Level = '2_Avg'; and 4 corresponds to the last stratum, Level = '3_High'. The SEED=47279 option specifies '47279' as the initial seed for random number generation.

Output 87.3.2 displays the output from PROC SURVEYSELECT. A total of 20 expense reports are selected for audit. The data set AuditSample contains the sample of travel expense reports.

Output 87.3.2 Sample Selection Summary

Travel Expense Audit Stratified PPS (Dollar-Unit) Sampling The SURVEYSELECT Procedure Selection Method PPS, Without Replacement Size Measure Amount Strata Variable Level Input Data Set TRAVELEXPENSE Random Number Seed 47279 Number of Strata 3 Total Sample Size 20 Output Data Set AUDITSAMPLE

The following PROC PRINT statements display the audit sample, which is shown in Output 87.3.3:

```
title1 'Travel Expense Audit';
title2 'Sample Selected by Stratified PPS Design';
proc print data=AuditSample;
run;
```

Travel Expense Audit Sample Selected by Stratified PPS Design									
Obs	Level	ID	Amount	Selection Prob	Sampling Weight				
1	1_Low	654	185.60	0.31105	3.21489				
2	1_Low	017	205.48	0.34437	2.90385				
3	1_Low	382	217.85	0.36510	2.73896				
4	1_Low	614	230.56	0.38640	2.58797				
5	1_Low	782	258.10	0.43256	2.31183				
6	1_Low	775	330.54	0.55396	1.80518				
7	2_Avq	784	505.14	0.34623	2.88823				
8	2_Avg	332	540.65	0.37057	2.69853				
9	2_Avg	002	567.89	0.38924	2.56909				
10	2_Avg	239	620.10	0.42503	2.35278				
11	2_Avg	738	670.85	0.45981	2.17479				
12	2_Avg	496	753.30	0.51633	1.93676				
13	2_Avg	425	780.10	0.53470	1.87022				
14	2_Avg	478	806.90	0.55307	1.80810				
15	2_Avg	672	979.66	0.67148	1.48925				
16	2_Avg	139	1183.45	0.81116	1.23280				
17	3_High	568	1670.80	0.64385	1.55316				
18	3_High	263	1893.40	0.72963	1.37056				
19	3_High	285	2020.70	0.77869	1.28421				
20	3_High	486	2580.35	0.99435	1.00568				

Output 87.3.3 Audit Sample

Example 87.4: Proportional Allocation

This example uses the Customers data set from the section "Getting Started: SURVEYSELECT Procedure" on page 6607. The data set Customers contains an Internet service provider's current subscribers, and the service provider wants to select a sample from this population for a customer satisfaction survey. This example illustrates proportional allocation, which allocates the total sample size among the strata in proportion to the strata sizes.

The section "Getting Started: SURVEYSELECT Procedure" on page 6607 gives an example of stratified sampling, where the list of customers is stratified by State and Type. Figure 87.4 displays the strata in a table of State by Type for the 13,471 customers. There are four states and two levels of Type, forming a total of eight strata. A sample of 15 customers was selected from each stratum by using the following PROC SURVEYSELECT statements:

```
title1 'Customer Satisfaction Survey';
title2 'Stratified Sampling';
proc surveyselect data=Customers
    method=srs n=15
    seed=1953 out=SampleStrata;
    strata State Type;
run;
```

The STRATA statement names the stratification variables State and Type. In the PROC SURVEYSELECT statement, the N=15 option specifies a sample size of 15 customers for each stratum.

Instead of specifying the number of customers to select from each stratum, you can specify the total sample size and request allocation of the total sample size among the strata. The following PROC SURVEYSELECT statements request proportional allocation, which allocates the total sample size in proportion to the stratum sizes:

```
title1 'Customer Satisfaction Survey';
title2 'Proportional Allocation';
proc surveyselect data=Customers
    n=1000 out=SampleSizes;
   strata State Type / alloc=prop nosample;
run;
```

The STRATA statement names the stratification variables State and Type. In the STRATA statement, the ALLOC=PROP option requests proportional allocation. The NOSAMPLE option requests that no sample be selected after the procedure computes the sample size allocation. In the PROC SURVEYSELECT statement, the N=1000 option specifies a total sample size of 1000 customers to be allocated among the strata.

Output 87.4.1 displays the output from PROC SURVEYSELECT, which summarizes the sample allocation. The total sample size of 1000 is allocated among the eight strata by using proportional allocation. The allocated sample sizes are stored in the SAS data set SampleSizes.

Output 87.4.1 Proportional Allocation Summary

```
Customer Satisfaction Survey
         Proportional Allocation
        The SURVEYSELECT Procedure
     Allocation
                         Proportional
     Strata Variables
                         State
                         Type
Input Data Set
                                CUSTOMERS
Number of Strata
                                        8
Total Sample Size
                                     1000
Allocation Output Data Set
                              SAMPLESIZES
```

The following PROC PRINT statements display the allocation output data set SampleSizes, which is shown in Output 87.4.2:

```
title1 'Customer Satisfaction Survey';
title2 'Proportional Allocation';
proc print data=SampleSizes;
run;
```

Customer Satisfaction Survey Proportional Allocation							
				Alloc	Sample	Actual	
Obs	State	Туре	Total	Proportion	Size	Proportion	
1	AL	New	1238	0.09190	92	0.092	
2	AL	Old	706	0.05241	52	0.052	
3	FL	New	2170	0.16109	161	0.161	
4	FL	Old	1370	0.10170	102	0.102	
5	GA	New	3488	0.25893	259	0.259	
6	GA	Old	1940	0.14401	144	0.144	
7	SC	New	1684	0.12501	125	0.125	
8	SC	Old	875	0.06495	65	0.065	

Output 87.4.2 Stratum Sample Sizes

The output data set SampleSizes includes one observation for each of the eight strata, which are identified by the stratification variables State and Type. The variable Total contains the number of sampling units in the stratum, and the variable AllocProportion contains the proportion of the total sample size to allocate to the stratum. The variable SampleSize contains the allocated stratum sample size. For the first stratum (State='AL' and Type='New'), the total number of sampling units is 1238 customers, the allocated sample size equals the requested total sample size of 1000 customers.

The output data set also includes the variable ActualProportion, which contains actual stratum proportions of the total sample size. The actual proportion for a stratum equals the stratum sample size divided by the total sample size. For the first stratum (State='AL' and Type='New'), the actual proportion is 0.092, while the allocation proportion is 0.09190. The target sample sizes computed from the allocation proportions are often not integers, and PROC SURVEYSELECT uses a rounding algorithm to obtain integer sample sizes and maintain the requested total sample size. Due to rounding and other restrictions, the actual proportions can differ from the target allocation proportions. See the section "Sample Size Allocation" on page 6646 for details.

If you want to use the allocated sample sizes in a later invocation of PROC SURVEYSELECT, you can name the allocation data set in the N=SAS-data-set option, as shown in the following PROC SURVEYSELECT statements:

```
title1 'Customer Satisfaction Survey';
title2 'Stratified Sampling';
proc surveyselect data=Customers
    method=srs n=SampleSizes
    seed=1953 out=SampleStrata;
    strata State Type;
run;
```

References

Bentley, J. L. and Floyd, R. (1987), "A Sample of Brilliance," *Communications of the Association for Computing Machinery*, 30, 754–757.

Bentley, J. L. and Knuth, D. (1986), "Literate Programming," *Communications of the Association for Computing Machinery*, 29, 364–369.

Brewer, K. W. R. (1963), "A Model of Systematic Sampling with Unequal Probabilities," *Australian Journal of Statistics*, 5, 93–105.

Chromy, J. R. (1979), "Sequential Sample Selection Methods," *Proceedings of the American Statistical Association, Survey Research Methods Section*, 401–406.

Cochran, W. G. (1977), Sampling Techniques, Third Edition, New York: John Wiley & Sons.

Drummond, D., Lessler, J., Watts, D., and Williams, S. (1982), "A Design for Achieving Prespecified Levels of Representation for Multiple Domains in Health Record Samples," *Proceedings of the Fourth Conference on Health Survey Research Methods*, DHHS Publication No. (PHS) 84-3346, Washington, DC: National Center for Health Services Research, 233–248.

Durbin, J. (1967), "Design of Multi-stage Surveys for the Estimation of Sampling Errors," *Applied Statistics*, 16, 152–164.

Fan, C. T., Muller, M. E., and Rezucha, I. (1962), "Development of Sampling Plans by Using Sequential (Item by Item) Selection Techniques and Digital Computers," *Journal of the American Statistical Association*, 57, 387–402.

Fishman, G. S. and Moore, L. R. (1982), "A Statistical Evaluation of Multiplicative Congruential Generators with Modulus $(2^{31} - 1)$," *Journal of the American Statistical Association*, 77, 129–136.

Fox, D. R. (1989), "Computer Selection of Size-Biased Samples," *The American Statistician*, 43(3), 168–171.

Golmant, J. (1990), "Correction: Computer Selection of Size-Biased Samples," *The American Statistician*, 44(2), 194.

Hanurav, T. V. (1967), "Optimum Utilization of Auxiliary Information: π_{ps} Sampling of Two Units from a Stratum," *Journal of the Royal Statistical Society, Series B*, 29, 374–391.

Kalton, G. (1983), *Introduction to Survey Sampling*, Sage University Paper series on Quantitative Applications in the Social Sciences, series no. 07-035, Beverly Hills, CA and London: Sage Publications.

Kish, L. (1965), Survey Sampling, New York: John Wiley & Sons.

Kish, L. (1987), Statistical Design for Research, New York: John Wiley & Sons.

Lohr, S. L. (1999), Sampling: Design and Analysis, Pacific Grove, CA: Duxbury Press.

Madow, W. G. (1949), "On the Theory of Systematic Sampling, II," Annals of Mathematical Statistics, 20, 333–354.

McLeod, A. I. and Bellhouse, D. R. (1983), "A Convenient Algorithm for Drawing a Simple Random Sample," *Applied Statistics*, 32, 182–183.

Murthy, M. N. (1957), "Ordered and Unordered Estimators in Sampling without Replacement," *Sankhyā*, 18, 379–390.

Murthy, M. N. (1967), Sampling Theory and Methods, Calcutta: Statistical Publishing Society.

Sampford, M. R. (1967), "On Sampling without Replacement with Unequal Probabilities of Selection," *Biometrika*, 54, 499–513.

Vijayan, K. (1968), "An Exact π_{ps} Sampling Scheme: Generalization of a Method of Hanurav," *Journal of the Royal Statistical Society, Series B*, 30, 556–566.

Watts, D. L. (1991), "Correction: Computer Selection of Size-Biased Samples," *The American Statistician*, 45(2), 172.

Wilburn, A. J. (1984), Practical Statistical Sampling for Auditors, New York: Marcel Dekker.

Williams, R. L. and Chromy, J. R. (1980), "SAS Sample Selection Macros," *Proceedings of the Fifth Annual SAS Users Group International Conference*, 5, 392–396.

Wolter, K. M. (1985), Introduction to Variance Estimation, New York: Springer-Verlag.

Subject Index

allocation SURVEYSELECT procedure, 6632, 6646 Brewer's method SURVEYSELECT procedure, 6644, 6659 Chromy's method SURVEYSELECT procedure, 6639, 6643 cluster sampling SURVEYSELECT procedure, 6637 clustering, see also cluster sampling control sorting SURVEYSELECT procedure, 6614, 6631, 6636,6656 dollar-unit sampling SURVEYSELECT procedure, 6662 Hanurav-Vijayan method SURVEYSELECT procedure, 6640 initial seed SURVEYSELECT procedure, 6629 joint selection probabilities SURVEYSELECT procedure, 6619 missing values SURVEYSELECT procedure, 6636 multistage sampling SURVEYSELECT procedure, 6606 Murthy's method SURVEYSELECT procedure, 6645 Neyman allocation SURVEYSELECT procedure, 6633, 6648 optimal allocation SURVEYSELECT procedure, 6633, 6647 population SURVEYSELECT procedure, 6606 **PPS** sampling SURVEYSELECT procedure, 6606, 6637 PPS sampling, with replacement SURVEYSELECT procedure, 6642 PPS sampling, without replacement SURVEYSELECT procedure, 6640 PPS sequential sampling SURVEYSELECT procedure, 6643

probability sampling SURVEYSELECT procedure, 6606 proportional allocation SURVEYSELECT procedure, 6633, 6646, 6665 random sampling SURVEYSELECT procedure, 6606 replicated sampling SURVEYSELECT procedure, 6626, 6656 replication, see replicated sampling Sampford's method SURVEYSELECT procedure, 6645 sample SURVEYSELECT procedure, 6606 sample design SURVEYSELECT procedure, 6606 sample selection SURVEYSELECT procedure, 6606 sample selection methods SURVEYSELECT procedure, 6637 sample size SURVEYSELECT procedure, 6628 sample size allocation SURVEYSELECT procedure, 6632, 6646 sampling SURVEYSELECT procedure, 6606 sampling frame SURVEYSELECT procedure, 6606, 6619 sampling rate SURVEYSELECT procedure, 6626 sampling units SURVEYSELECT procedure, 6608, 6637 sampling weights SURVEYSELECT procedure, 6609 seed initial (SURVEYSELECT), 6629 sequential random sampling SURVEYSELECT procedure, 6639, 6656 serpentine sorting SURVEYSELECT procedure, 6636 simple random sampling SURVEYSELECT procedure, 6608, 6638 size measure PPS sampling (SURVEYSELECT), 6631

PPS systematic sampling

SURVEYSELECT procedure, 6642

stratification, see also stratified sampling

stratified sampling SURVEYSELECT procedure, 6610, 6632 survey sampling sample selection (SURVEYSELECT), 6606 SURVEYSELECT procedure, 6606 survey weights, see sampling weights SURVEYSELECT procedure, 6606 Brewer's method, 6644, 6659 certainty size measure, 6617 certainty size proportion, 6618 Chromy's method, 6639, 6643 control sorting, 6614, 6631, 6636, 6656 displayed output, 6653 dollar-unit sampling, 6662 Hanurav-Vijayan method, 6640 initial seed, 6629 introductory example, 6607 joint selection probabilities, 6619 maximum size measure, 6620 minimum size measure, 6623 missing values, 6636 Murthy's method, 6645 nested sorting, 6636 Neyman allocation, 6633, 6648 ODS table names, 6655 optimal allocation, 6633, 6647 output data sets, 6649 PPS sampling, with replacement, 6642 PPS sampling, without replacement, 6640 PPS sequential sampling, 6643 PPS systematic sampling, 6642 proportional allocation, 6633, 6646, 6665 replicated sampling, 6626, 6656 Sampford's method, 6645 sample selection methods, 6637 sample size, 6628 sample size allocation, 6632, 6646 sampling rate, 6626 secondary input data set, 6648 sequential random sampling, 6639, 6656 serpentine sorting, 6636 simple random sampling, 6608, 6638 size measure, 6631 stratified sampling, 6610, 6632 systematic random sampling, 6639 unrestricted random sampling, 6638 with-replacement sampling, 6637 without-replacement sampling, 6637 systematic random sampling SURVEYSELECT procedure, 6639 unrestricted random sampling SURVEYSELECT procedure, 6638

with-replacement sampling SURVEYSELECT procedure, 6637 without-replacement sampling SURVEYSELECT procedure, 6637

weighting, see also sampling weights

Syntax Index

ALLOC= option STRATA statement (SURVEYSELECT), 6633 CERTSIZE= option PROC SURVEYSELECT statement, 6617 CERTSIZE=P= option PROC SURVEYSELECT statement, 6618 CONTROL statement SURVEYSELECT procedure, 6631 COST = optionSTRATA statement (SURVEYSELECT), 6634 DATA= option PROC SURVEYSELECT statement, 6619 **ID** statement SURVEYSELECT procedure, 6631 JTPROBS option PROC SURVEYSELECT statement, 6619 MAXSIZE= option PROC SURVEYSELECT statement, 6620 METHOD= option PROC SURVEYSELECT statement, 6621 MINSIZE= option PROC SURVEYSELECT statement, 6623 NMAX= option PROC SURVEYSELECT statement, 6624 NMIN= option PROC SURVEYSELECT statement, 6624 NOPRINT option PROC SURVEYSELECT statement, 6624 NOSAMPLE option STRATA statement (SURVEYSELECT), 6635 OUT= option PROC SURVEYSELECT statement, 6624 OUTALL option PROC SURVEYSELECT statement, 6625 **OUTHITS** option PROC SURVEYSELECT statement, 6625 **OUTSEED** option PROC SURVEYSELECT statement, 6625 **OUTSIZE** option PROC SURVEYSELECT statement, 6625

OUTSORT= option PROC SURVEYSELECT statement, 6626 PROC SURVEYSELECT statement, 6615, see SURVEYSELECT procedure REPS= option PROC SURVEYSELECT statement, 6626 SAMPRATE= option PROC SURVEYSELECT statement, 6626 SAMPSIZE= option PROC SURVEYSELECT statement, 6628 SEED= option PROC SURVEYSELECT statement, 6629 **SELECTALL** option PROC SURVEYSELECT statement, 6630 SIZE statement SURVEYSELECT procedure, 6631 SORT= option PROC SURVEYSELECT statement, 6630 STATS option PROC SURVEYSELECT statement, 6630 STRATA statement SURVEYSELECT procedure, 6632 SURVEYSELECT procedure syntax, 6615 SURVEYSELECT procedure, CONTROL statement, 6631 SURVEYSELECT procedure, ID statement, 6631 SURVEYSELECT procedure, PROC SURVEYSELECT statement, 6615 CERTSIZE= option, 6617 CERTSIZE=P= option, 6618 DATA= option, 6619 JTPROBS option, 6619 MAXSIZE= option, 6620 METHOD= option, 6621 MINSIZE= option, 6623 NMAX= option, 6624 NMIN= option, 6624 NOPRINT option, 6624 OUT= option, 6624 OUTALL option, 6625 **OUTHITS** option, 6625 OUTSEED option, 6625 OUTSIZE option, 6625 OUTSORT= option, 6626 REPS= option, 6626

```
SAMPRATE= option, 6626
SAMPSIZE= option, 6628
SEED= option, 6629
SELECTALL option, 6630
SORT= option, 6630
SURVEYSELECT procedure, SIZE statement, 6631
SURVEYSELECT procedure, STRATA
statement, 6632
ALLOC= option, 6633
COST= option, 6634
NOSAMPLE option, 6635
VAR= option, 6635
```

VAR= option STRATA statement (SURVEYSELECT), 6635
We welcome your feedback.

- If you have comments about this book, please send them to **yourturn@sas.com**. Include the full title and page numbers (if applicable).
- If you have comments about the software, please send them to suggest@sas.com.

SAS[®] Publishing Delivers!

Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly changing and competitive job market. SAS[®] Publishing provides you with a wide range of resources to help you set yourself apart. Visit us online at support.sas.com/bookstore.

SAS[®] Press

Need to learn the basics? Struggling with a programming problem? You'll find the expert answers that you need in example-rich books from SAS Press. Written by experienced SAS professionals from around the world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

support.sas.com/saspress

SAS® Documentation

To successfully implement applications using SAS software, companies in every industry and on every continent all turn to the one source for accurate, timely, and reliable information: SAS documentation. We currently produce the following types of reference documentation to improve your work experience:

- Online help that is built into the software.
- Tutorials that are integrated into the product.
- Reference documentation delivered in HTML and PDF free on the Web.
- Hard-copy books.

support.sas.com/publishing

SAS® Publishing News

Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as access to past issues, are available at our Web site.

support.sas.com/spn

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. (a) indicates USA registration. Other brand and product names are trademarks of their respective companies. (c) 2009 SAS Institute Inc. All rights reserved. 518177_1US.0109