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The shortest path between two truths in the real
domain passes through the complex domain.

Jacques Hadamard
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Preface

Solving algebraic equations has been historically one of the favorite topics of mathe-
maticians. While linear equations are always solvable in real numbers, not all quadratic
equations have this property. The simplest such equation is x> + 1 = 0. Until the 18th
century, mathematicians avoided quadratic equations that were not solvable over R.
Leonhard Euler broke the ice introducing the “number” +/—1 in his famous book Ele-
ments of Algebra as “ . .. neither nothing, nor greater than nothing, nor less than noth-

ing ... " and observed “. .. notwithstanding this, these numbers present themselves to

in calculation”. Euler denoted the number o/—1 by i and called it the imaginary unit.
This became one of the most useful symbols in mathematics. Using this symbol one
defines complex numbers as z = a + bi, where a and b are real numbers. The study of
complex numbers continues and has been enhanced in the last two and a half centuries;
in fact, it is impossible to imagine modern mathematics without complex numbers. All
mathematical domains make use of them in some way. This is true of other disciplines
as well: for example, mechanics, theoretical physics, hydrodynamics, and chemistry.
Our main goal is to introduce the reader to this fascinating subject. The book runs
smoothly between key concepts and elementary results concerning complex numbers.
The reader has the opportunity to learn how complex numbers can be employed in

solving algebraic equations, and to understand the geometric interpretation of com-
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plex numbers and the operations involving them. The theoretical part of the book is
augmented by rich exercises and problems of various levels of difficulty. In Chap-
ters 3 and 4 we cover important applications in Euclidean geometry. Many geometry
problems may be solved efficiently and elegantly using complex numbers. The wealth
of examples we provide, the presentation of many topics in a personal manner, the
presence of numerous original problems, and the attention to detail in the solutions to
selected exercises and problems are only some of the key features of this book.

Among the techniques presented, for example, are those for the real and the complex
product of complex numbers. In complex number language, these are the analogues of
the scalar and cross products, respectively. Employing these two products turns out to
be efficient in solving numerous problems involving complex numbers. After covering
this part, the reader will appreciate the use of these techniques.

A special feature of the book is Chapter 5, an outstanding selection of genuine
Olympiad and other important mathematical contest problems solved using the meth-
ods already presented.

This work does not cover all aspects pertaining to complex numbers. It is not a

expansions.

The book reflects the unique experience of the authors. It distills a vast mathematical
literature, most of which is unknown to the western public, capturing the essence of an
abundant problem-solving culture.

Our work is partly based on a Romanian version, Numere complexe delaAla ... Z,
authored by D. Andrica and N. Bisboacd and published by Millennium in 2001 (see our
reference [10]). We are preserving the title of the Romanian edition and about 35% of
the text. Even this 35% has been significantly improved and enhanced with up-to-date
material.

The targeted audience includes high school students and their teachers, undergrad-
uates, mathematics contestants such as those training for Olympiads or the W. L. Put-
interested in essential
mathematics.

This book might spawn courses such as Complex Numbers and Euclidean Geom-
etry for prospective high school teachers, giving future educators ideas about things
they could do with their brighter students or with a math club. This would be quite a
welcome development.

Special thanks are given to Daniel Viacéretu, Nicolae Bigsboacd, Gabriel Dospinescu,
and Toan Serdean for the careful proofreading of the final version of the manuscript. We
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would also like to thank the referees who provided pertinent suggestions that directly
contributed to the improvement of the text.
Titu Andreescu

Dorin Andrica
October 2004



Notation

B O Z N

@

C*
[a, b]
(a,b)

4

AB
(AB)
[AB]
(AB
area[ I']

C(P;n)

the set of integers

the set of positive integers

the set of rational numbers

the set of real numbers

the set of nonzero real numbers

the set of pairs of real numbers

the set of complex numbers

the set of nonzero complex numbers

the set of real numbers x such thata <x <b
the set of real numbers x such thata < x < b
the conjugate of the complex number z

the modulus or absolute value of complex number z
the vector AB

the open segment determined by A and B

the closed segment determined by A and B
the open ray of origin A that contains B

the area of figure F

the set of n'® roots of unity

the circle centered at point P with radius n



Complex Numbers in Algebraic Form

1.1 Algebraic Representation of Complex Numbers

1.1.1  Definition of complex numbers

In what follows we assume that the definition and basic properties of the set of real
numbers R are known.
Let us consider the set RZ2 = R x R = {(x, )| x, y € R}. Two elements (x1, y1)
and (x2, y2) of R? are equal if and only if x; = x and y; = y,. The operations of
f

cation are defined on the set R? as

addition and multiplication ar ed or 3 ollows
71 4+ 779 = (x1.v1) + (x5, V) = (x1 + Xy, v1 + V) € Rz
<1+ <2 W1, Y172 T RA2, Y2 W1 2, Y1 T Y2) &

®
=3
(o8

21-22 = (¥1, ¥1) - (X2, ¥2) = (¥1%2 — Y1Y2, ¥1y2 + x¥2y1) € R?,

for all z; = (x1, v1) € R? and z5 = (x2, y») € R2.
The element z; + zo € R? is called the sum of 71, z» and the element z; - zo € R? is
called the product of z1, z2.
Remarks. 1) If z; = (x1,0) € R?2 and 7o = (x2, 0) € R2, then z; - z2 = (x1x2, 0).
(2)If z1 = (0, y1) € R? and 25 = (0, y2) € R?, then z1 - 22 = (—y1y2, 0).
Examples. 1) Let z; = (=5, 6) and zo = (1, —2). Then

21+22=0-560+{,-2)=(—4,4)



2 1. Complex Numbers in Algebraic Form

and
2122 =(=5,6)-(1,-2) = (=54 12,104+ 6) = (7, 16).

1 11
2)Letz; = (—5, 1) and 7o = (—g, 5).Then

AR S S A
<1 2= 2 35 2 - 6’2

)
and

)

/

Definition. The set R2

10Ne N,

with the s,
called the set of complex numbers, denoted by C. Any element z = (x, y) € Cis called
a complex number.

The notation C* is used to indicate the set C \ {(0, 0)}.
1.1.2 Properties concerning addition
The addition of complex numbers satisfies the following properties:

(a) Commutative law

21+ =z+zforallzy,z2 € C.

(b) Associative law

(z1+22)+23 =21+ (29 4+ z3) for all zy, 23, 23 € C.

and
21+ (22 + 23) = (x1, y1) + [(x2, y2) + (x3, y3)]
= (x1, y1) + (2 +x3, Yo + y3) = (X1 + (X2 + x3), y1 + (V2 + ¥3)-
The claim holds due to the associativity of the addition of real numbers.
(c) Additive identity  There is a unique complex number O = (0, 0) such that
z4+0=0+z=zforallz = (x,y) e C.

(d) Additive inverse For any complex number z = (x, y) there is a unique —z =

(—x, —y) € C such that
2+ () =(-2)+z=0.
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The reader can easily prove the claims (a), (¢) and (d).

The number z; — z2 = z1 + (—z2) is called the difference of the numbers z; and
z2. The operation that assigns to the numbers z; and z the number z; — z3 is called
subtraction and is defined by

721 —22=(x1,y1) — (x2,y2) = (x1 —x2, y1 — y2) € C.

7122 =22-z1 forall z1,zp € C.

(b) Associative law

(z1-22)-z3=21-(22-23) forall 71, z2, 23 € C.

(c) Multiplicative identity = There is a unique complex number 1 = (1,0) € C
such that

z:-1=1.-z=zforallzeC.

A simple algebraic manipulation is all that is needed to verify these equalities:
z:1=xy)-1,0)=x-1-y-0,x-04+y-H)=(x,y) =2

and
l-z=1,0)-x,»)=1-x=0-y,1-y4+0-x)=(x,y) =z

(d) Muitiplicative inverse For any complex number z = (x, y) € C* there is a
unique number z~! = (x’, ¥') € C such that

To find z~! = (x/, /), observe that (x,y) # (0,0) implies x % 0 or y # 0 and
consequently x? + y? # 0.

1

The relation z - z74 = 1 gives (x, y) - (x/, ¥) = (1, 0), or equivalently

xx —yy' =1
yx' +xy =0.
Solving this system with respect to x” and y’, one obtains

2
X2+ y2’

!

¥ =———andy =
xZ 4 y2 Y
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hence the multiplicative inverse of the complex number z = (x, y) € C* is

1 X y
1 *
=—-= , = e C".
¢ z (x2+y2 x2+y2>

1

By the commutative law we also have z7* - z = 1.
Two complex numbers z; = (z1, ¥1) € C and z = (x, y) € C* uniquely determine

a third number called their quotient, denoted by 4 and defined by
z

21 _ X y
—211-212(361,)71)-(ﬁ =, — =5 a\
z \xs+ys x2+ye)
(xX1x +y1y —xiy+yix\
= e C.

X2 + y2 ’ x2 + yZ
Examples. 1) If z = (1, 2), then

A 2\ (1 22
ST\ r21r22) T\ s )

DIz = (1,2) and zp = (3, 4), then
G _(3+8 446N (11 2
» \ox169+16) " \35°25)

An integer power of a complex number z € C* is defined by

O
Lo o — L L = 4y L — &L "4,
7" =z-z---z forall integers n > 0
N— —
n times

and 7" = (z~1)™" for all integers n < 0.

The following properties hold for all complex numbers z, z1, z2 € C* and for all
integers m, n:

1\ M . 0 mtn.

1% Z >
m

25 =
3) (Zm)ﬂ — Zmn;
(-2 =275

n n

b4 z

(-1
When z = 0, we define 0” = 0 for all integers n > 0.
e) Distributive law

&

21 (2+z3)=z1-2+2z1-23forallzy, 23,23 € C.
The above properties of addition and multiplication show that the set € of all com-

plex numbers, together with these operations, forms a field.
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1.1.4 Complex numbers in algebraic form

For algebraic manipulation it is not convenient to represent a complex number as an
ordered pair. For this reason another form of writing is preferred.
To introduce this new algebraic representation, consider the set R x {0}, together

with the addition and multiplication operations defined on R?. The function

fR—=Rx{0}, f(x)=(x,0)

iq hitaptiva an d maoreaver
15 OLCCUVe aiil murCUver,

x, 0+, 0 =x+y 0 and x,0)-(y,0) = (xy,0).

The reader will not fail to notice that the algebraic operations on R x {0} are sim-
ilar to the operations on R; therefore we can identify the ordered pair (x, 0) with the
number x for all x € R. Hence we can use, by the above bijection f, the notation
(x,0) = x.

Setting i = (0, 1) we obtain
=@ =x0+0,»=x0+y0- 0D

—x+yi=@0+ 0.0 (.0 =x+iy.

In this way we obtain

Proposition. Any complex number z = (x, y) can be uniquely represented in the

form

vohoro v v 7
WitCic A, y i€ ich

The formula i = —1 follows directly from the definition of multiplication: i? =
i-i=(0,1)-(0,1)=(-1,0) = —-1.

The expression x + yi is called the algebraic representation (form) of the complex
number 7 = (x, y), so we can write C = {x + yi| x e R, y € R, i? = —1}. From
now on we will denote the complex number z = (x, y) by x + iy. The real number
x = Re(z) is called the real part of the complex number z and similarly, y = Im(z)
is called the imaginary part of z. Complex numbers of the form iy, y € R — in other
words, complex numbers whose real part is 0 — are called imaginary. On the other
hand, complex numbers of the form iy, y € R* are called purely imaginary and the
complex number i is called the imaginary unit.

The following relations are easy to verify:



6 1. Complex Numbers in Algebraic Form

a) z1 = zo if and only if Re(z); = Re(z)2 and Im(z); = Im(z)».

b) z € Rif and only if Im(z) = 0.

¢) z € C\ Rif and only if Im(z) # 0.

Using the algebraic representation, the usual operations with complex numbers can
be performed as follows:

1. Addition
Z1+ 22 = (X1 + y1i) + (X2 + y2i) = (x1 +x2) + (y1 + y2)i € C.

It is easy to observe that the sum of two complex numbers is a complex number

whose real (imaginary) part is the sum of the real (imaginary) parts of the given num-

bers:
Re(z; + z2) = Re(z)1 + Re(2)2;
Im(z1 + z2) = Im(z)1 + Im(2)>.
2. Multiplication
71+ 22 = (X1 + y1i)(x2 + y2i) = (x1x2 — y1y2) + (x1y2 + x02y1)i € C.
In other words,
Re(z1z2) = Re(2)1 - Re(z)2 — Im(z); - Im(z)2

and
Im(z122) = Im(2); - Re(z)z + Im(2)2 - Re(2)1.

For a real number A and a complex number z = x + yi,
Aez=Alx+yi)=tx+Ayi €C

is the product of a real number with a complex number. The following properties are
obviou
D) Alz1 + 22) = Az + Az2;
2) 2M(x22) = (AM1A2)z;
31+ Az =rz+ Axzforallz, 71,220 € Cand A, A1, A2 € R.
Actually, relations 1) and 3) are special cases of the distributive law and relation 2)

7]

comes from the associative law of multiplication for complex numbers.

3. Subtraction

21— 22 = (X1 +y1i) — (2 + y2i) = (x1 —x2) + (y1 — y2)i € C.
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That is,

Re(z1 — z2) = Re(z)1 — Re(z);

Im(z; — z2) = Im(z); — Im(2)s.

1.1.5 Powers of the number i

The formulas for the powers of a complex number with integer exponents are preserved

for the algebraic form z = x + iy. Setting z = i, we obtain

iozl, l1=l, izz—l, 13:i2-l:—l,
it =3 i=1; 15:i4-l:l, iszzs i=-1; iT=i%i=
One can prove by induction that for any positive integer n,
i — 1; pAntl — g pAnt2 1 i3

b

Hence i” € {—1, 1, —i, i} for all integers n > 0. If n is a negative integer, we have

1 —n
in — (i—l)—n — <7> — (_i)—n'

Examples. 1) We have

105 4 ;23 4 ;20 34 _ 42641 | A543 4 4S5 ASH2 414 = 2.

—1

2) Let us solve the equation z> = 18 4 26, where z = x + yi and x, y are integers.

We can write
(+ ¥ =+ )+ yi) = (2 — y? + 2xpi)(x + yi)
= (x> = 3xy?) + Bx%y — y))i = 18 + 26i.
Using the definition of equality of complex numbers, we obtain
(.32 A, .2

x7=3xy- =1
i 3x%y — y3 =26.

Setting y = tx in the equality 18(3x%y — y?) = 26(x* — 3xy?), let us observe that
x # 0and y # 0 1implies 18(3¢ — £3) = 26(1 — 3¢2). The last relation is equivalent to
(3t — )3t — 121 — 13) = 0.

The only rational solution of this equation is # = —; hence,

W] =

x=3, y=landz=3+1.
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1.1.6  Conjugate of a complex number

For a complex number z = x 4 yi the number 7 = x — yi is called the complex

conjugate or the conjugate complex of z.

Proposition. 1) The relation z = 7 holds if and only if z € R.

2) For any complex number z the relation 7 = Z holds.

3) For any complex number z the number z - 7 € R is a nonnegative real number.
4) Z1 + 22 = 71 + 22 (the conjugate of a sum is the sum of the conjugates).

5) 71 - 22 = 71 - 22 (the conjugate of a product is the product of the conjugates).
6) For any nonzero complex number z the relation F = @~ ! holds.

77\ =

7) (i) = =, 2 # 0 (the conjugate of a quotient is the quotient of the conju-
22 22

gates).
8) The formulas

Re(z) = *° and Im(r) = =5

~ ~

are valid for all z € C.

Proof. 1) If z = x + yi, then the relation z = 7 is equivalent to x 4+ yi = x — yi.
Hence 2yi = 0,s0y = 0 and finally z = x e R.

2)WehaveZ7=x —yiandZ =x — (—=y)i = x + yi = z.

3) Observe that z - 7 = (x + yi)(x — yi) = x2 + y? > 0.

4) Note that

- l 7 o N 1oas NS g [P 7oy oA Yt
L1 T 22 = (A T A2) T WY1 T Y2)t = A1 1T A2) — (V1 1+ Y20

= (x1 — y11) + (x2 — y2i) = 21 + 22-

71 - 22 = (X1x2 — y1y2) +i(x1y2 +x2¥1)

= (x1x2 — y1y2) —i(xX1y2 +x2y1) = (x1 —iy1)(x2 —iy2) =71 - 22

1 -
6) Because z- — = 1, we have <z . —) = 1, and consequently Z- (
z

@hHh=@ "

1 1 1 71
7) Observe that (z_1> = <Zl . —) =71 <_) =71 == Z:1
22 22 22 2

8) From the relations

—_

= 1, yielding

N | o=
SN—

N

24+Z7= @+ yi)+ (x — yi) = 2x,
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z—2=(x+yi) — (x — yi) =2yi

it follows that

Re(z) = % and Im(z) = <

as desired. O

The properties 4) and 5) can be easily extended to give

4" (ZZk) => 7
k=1 k=1

) (HZk) =[]z forallzx e Cok=1.2,....n.

- 1
\K=1 / K=

As a consequence of 5’) and 6) we have
5" (") = (Z)" for any integers n and for any z € C.
Comments. a) To obtain the multiplication inverse of a complex number z € C*

one can use the following approach:

z xX—=yi X y

27 X2+ 21y 2ty

1
<

b) The complex conjugate allows us to obtain the quotient of two complex numbers
as follows:

2 u-n Ay —wi) ity | X+,

n 2 X3+ 3 x4 y? x5+ y;
5+5i 20

E les. (1 tez = .
xamples. (1) Compute z 3—417_'_4—&-317

Solution. We can write

B+5)B3+4i) n 204 —3i) —5435i n 80 — 60i
z= =
9 — 16i2 16 — 9i2 25 25
75 — 25i
= =3
I8

(2) Let z1, z2 € C. Prove that the number £ = z1 - 72 + 71 - 22 is a real number.

Solution. We have

E=721+71- =212+ -22=E, soE el

1.1.7 Modulus of a complex number

The number |z| = /x2 + y2 is called the modulus or the absolute value of the complex
number z = x + yi. For example, the complex numbers

z21=443i, z=-3i, z3=2
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have the moduli
lziIl=vV424+32 =5, |0=v0?2+(=3)2=3 |5i|=v2?2=2

Proposition. The following properties are satisfied:

(1) —|z] <Re(z) < |z| and —|z| < Im(z) < |z|.

(2) |z| = 0 for all z € C. Moreover, we have |z| = 0 if and only if z = 0.

(3)lzl =1 -zl =1zl

(4)z-7=|z°

(5) 121 - 22| = |21l - |z2| (the modulus of a product is the product of the moduli).
(6)|z1] — |z2] < |z1 + 22| < |z1] + |22].

(7) ]z = lzI7 z #0.

(8) S2h @, 22 # 0 (the modulus of a quotient is the quotient of the moduli).
22

|z2]

9)1z1] — |z2l < lz1 — 22| = |21l + |22l
Proof. One can easily check that (1)-(4) hold.

2 = = 2 2
(5) We have |z1 - 22|° = (21 - 22)(@Z1-22) = (21 - Z1)(22 - Z2) = |z1]° - |22/ and
consequently |z - zo| = |z1] - |z2], since |z] > O for all z € C.

(6) Observe that

lz1 42 =@ +2)@ F2) = @ +2)@ +2) = P +21 2 +71 -2+ 2
Because 7] - 22 = 71 - 22 = 71 - 22 it follows that
2122+ 71 - 22 = 2 Re(z1 - 22) <221 - 22| = 2|z1] - |z2],
hence
and consequently, |z1 + z2| < |z1] + |z2], as desired.
In order to obtain inequality on the left-hand side note that

[z1l = lz1 + 22 + (=22)| = |z1 + 221 + | — 22] = |21 + 221 + |22,

hence
lz1] — Iz2| < |21 + 22].
. 1 L 1 1
(7) Note that the relation z - — = 1 implies |z| - |[-| = 1, or |—| = —. Hence
z z z |z|
Iz~ =17
(8) We have
{1 1 -1 -1 -1 |Z1]
—| = 21-—‘=IZ1-22 [ =lz1l -1z | =la1l - |z2]” = —.
22 22| |z2]
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(9) We can write |z1] = |21 — 22 + 22| < |21 — 22| + |22], 80 |21 — 22| = |z1] — |z2].
On the other hand,
lz1 — 22l = |z1 + (=22)| < |1l + | — 22| = |z1] + |z2]- O

Remarks. (1) The inequality |z; + 22| < |z1] + |z2| becomes an equality if and only
if Re(z1Z2) = |z1llz2|. This is equivalent to z; = 7z, where ¢ is a nonnegative real
number.

(2) The properties 5) and 6) can be easily extended to give
| [ "
) =[]zl
k=1

e

k=1 |

6) Yz <D lel forall g € C, k=T, n.
k=1 k=1

As a consequence of(5') and (7) we have

(5") |2"| = |z|" for any integer n and any complex number z.
Problem 1. Prove the i

21 + 2217 + |21 — 22 = 221 > + |22 %)

for all complex numbers z1, 7o.

Solution. Using property 4 in the proposition above, we obtain

lz1+ 22 + 121 — 2217 = (21 + 22) @1 +72) + (21 — 22)(@Z1 — Z2)

2 - - 2 2 - - 2

=lal"+a-2+2- T+ 2" Flalf -2 -2 — 2271 + |22]
2 2
=2(lz11" + Iz29)-

. 21+22 .
Problem 2. Prove that if |z1| = |z2| = 1 and 27122 # —1, then ——— is a real
1+ z122
number.
Solution. Using again property 4 in the above proposition, we have
~ o o r r J r r i
T = 112 = 1 and 7r — i
<i - <i €11 1 ana i
4

1
Likewise, 7 = —. Hence denoting by A the number in the problem we have

22
1 1
- —+—
i 21+ 22 __u 2 221+zz _
1+71-22 1+i.i l+z122
i 2

so A is a real number.
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Problem 3. Let a be a positive real number and let

~a}.

Find the minimum and maximum value of |z| when z € M,.

, 1
MazizeC*: 74—
z

Solution. Squaring both sides of the equality a = , we get

1
2+ -
z

12 1 1 Z2+ 22 1
oo (o) e Do 2 1
I 2| \ 2/ \ zZ) 2 5
lzl* + 2 +2)% —2Jz)2 + 1
|z|?

Hence
lzl* = 2 @ +2)+1=—-(+D* <0

and consequently

2 [a2+2—«/a4+4a2 a2+2+\/a4—|—4a2—|
L < “ J
—a++a2+4 a+\/a2+4—‘
, , 50
2

|z

It follows that |z] € ’V

2
L d
a+~a?+ —a++a?+4
max |z| = ,  min|z| =
2 2
and thae avtrarme vraliiee arae nbtatnad far the roarrrdlay nirmrleare 11 AF caliotrnoeg = —
1U UIC CALUCILIIC VAlLucld dalC vvuLdllcd 101 uU1c &UIIIPLCA JULIIOCLES 1L Ve D lelyl lg L = —

1
lz4+ 1] > —or |22+ 1] > L.
V2

Solution. Suppose by way of contradiction that

1
1+z] < —and |1 + 22| < 1.

NG

Setting z = a + bi, with a, b € R yields 72 = a® — b? + 2abi. We obtain
1
A +a? -2 +4a%? < 1and (1 +a)? + b? < >

and consequently

@+ +2@®—1») <0and2(@® +bH) +4a+1 < 0.
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Summing these inequalities implies

@+ +Qa+1)? <0,

which is a contradiction.
Problem 5. Prove that

\/7<|1+ |+ 11 —z+ 2|<3\/7
5= Z T 7= 3

for all complex numbers with |z] = 1.

Solution. Let 7 = |1 + z| € [0, 2]. We have
) 2 -2
t*=(04+2)-(14+2) =2+2Re(2), so Re(z) = .

Then |1 — z + z%| = /|7 — 2¢2|. It suffices to find the extreme values of the function

Fi00,21 > R, f@)=1+44/|7—2¢2.

f(\/;) z\/;§t+,/|7—2t2| §f<\/z\) :3\@

as we can see from the figure below.

‘We obtain

T
6 Y2

Figure 1.1.

Problem 6. Consider the set
H={z€C: z=x—-14xi, xeR}L

Prove that there is a unique number z € H such that |z| < |w| for all w € H.



14 1. Complex Numbers in Algebraic Form

Solution. Letw =y — 1 + yi, with y € R.

It suffices to prove that there is a unique number x € R such that

x—D2 422 < (y— 124y

forally e R.
In other words, x is the minimum point of the function
2., .2 2 ( 1\2 1
FRR f=0-D"+y =2y"=-2y+1=2{y—=] +=,
\ </ <
h 1 d 1 1.
ence x = Ean 7= —54-5;.

Problem 7. Let x, y, z be distinct complex numbers such that

y=tx+ ({1 -0z, te(,1).

Bl A e el O N Bl B

lz — vl = lz—xl = lv—xl
[Id J =~ 1 (4 I

Solution. The relation y = tx + (1 — #)z is equivalent to
z—y=1t(z—x).

The inequality iyl el —
L il P B 4 il B

e =yl = |z —x]

lz| = Iyl = t(|z] = xD),

lasl — 71 AN 1 sl

Y1 = (L — )z T {x].

This is the triangle i
y=(1—-t)z+1tx.

The second inequality can be proved similarly, writing the equality

y=tx+1-1)z

jonl
w

y—x={1-1)(z—x).
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1.1.8  Solving quadratic equations
We are now able to solve the quadratic equation with real coefficients
ax’> +bx+¢c=0, a#0

in the case when its discriminant A = b? — 4ac is negative.

By completing the square, we easily get the equivalent form

a’—/»—r—i\z—ri—| =0.
L\ 2a) 4a2J

o) ()

—b+iv—A —— i/ =
b - ~,, .
LU

Therefore

and so x1 = =
P
Observe that the roots are conjugate complex numbers and the factorization formula

ax’> +bx+c= a(x —x)x —x2)

holds even in the case A < 0.
Let us consider now the general quadratic equation with complex coefficients

azz—i—bz—i—c:O, a #0.
Using the same algebraic manipulation as in the case of real coefficients, we get

‘T 442

L ’ -

(+2) -2
z+ :A—Z
/ ta

N
(az +b)? = A,

a

This is equivalent to

R o

or

where A = b? — 4ac is also called the discriminant of the quadratic equation. Setting
y = 2az + b, the equation is reduced to

yzzA:u—l—vi,

where u and v are real numbers.
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This equation has the solutions

ip==% ,/ﬂ+(sgnv),/r_ui ,
’ 2 2

where r = |A| and signv is the sign of the real number v.

The roots of the initial equation are

1
212 = — (=D +y12).
2a

Observe that the relations between roots and coefficients

b c
21+22=——, Z1Z2 = —,
a a

as well as the factorization formula

az? +bz+c=a(z—z21)(z —22)

—_

are also preserved when the coefficients of th uation are elements of t

q
11C Cqu 1 ar el

¢

complex numbers C.

Problem 1. Solve, in complex numbers, the quadratic equation
2 —8(1 —i)z+ 63— 16i =0.
Solution. We have

A = (4 —4i)? — (63 —16i) = —63 — 16i

r=|A|=+v632+162 = 65,

b\ 2
where A’ = 5) —ac.
=/

AN
The equation

Z1,2 =4 —4i = (1 — 8). Hence
z1=5—12i and zp = 3 + 4i.

Problem 2. Let p and q be complex numbers with g # 0. Prove that if the roots of the

quadratic equation x> 4+ px + q* = 0 have the same absolute value, then P is a real

number.

(1999 Romanian Mathematical Olympiad — Final Round)
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Solution. Let x; and x, be the roots of the equation and let 7 = |x;| = |x2|. Then
2 2 == -
X1+ x X X XX XX 2
. W B R )
q X1x2 X2 X1 r r r

is a real number. Moreover,

2
— — p
Re(x133) = —|x1x2] = —r2, 50 — > 0.
q
Th arafAra p a a anl virmaha ac nlatmwad
1HCICIOIC — 1S d ICdl NUINDCL, ds Cldlcud
q
Problem 3. et a, b, ¢ be distinct nonzero complex numbers with |a| = |b| = |c]|.

a) Prove that if a root of the equation az® + bz + ¢ = 0 has modulus equal to 1,
then b* = ac.
b) If each of the equations

az?+bz4+c=0 and bz>+cz+a=0

has a root having modulus 1, then |a — b| = |b —c| = |c — al.
c 1
Solution. a) Let z1, z» be the roots of the equation with |z1] = 1. Fromzp = — - —
a zj
. c 1 b
it follows that |z2| = ‘—‘ " = 1. Because z1 + 2o = —— and |a| = |b|, we have
a 1711 a
|z1 + z2|? = 1. This is equivalent to
o . 1 1
i+ +z)=1ie, (@1+22)|—+—) =1
21 22,
We find that
5 . . b\ 2 ¢
(z1+22)° = 2122, 1€, (——) = -,
a a
which reduces to b2 = ac, as desired.
b) As we have already seen, we have b = ac and ¢’ = ab. Multiplying these
relations yields »%c? = a?bc, hence a? = bc. Therefore
a?+b>+c? =ab+ be+ ca. (D

Relation (1) is equivalent to
(@—b*+®-c’+—a’=0,
ie.,

(a—bP+b-0+2(a—b)b—0c)+(c—a)’ =2a—b)b—c).
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It follows that (¢ — ¢)? = (a — b)(b — ¢). Taking absolute values we find ,32 = ya,

where o = |b—c|, B = |c —al|, y = |a — b|. In an analogous way we obtain a? = By
and y? = af. Adding these relations yields o 4+ 82 + y? = af + By + ya, ie.,
(0 =PBP+B—y)P?+( —a)=0.Hencea =8 =y.

1.
1.

1.9 Problems

Consider the complex numbers z; = (1,2), zo = (-2, 3) and z3 = (1, —1). Com-

pute the following complex numbers:

a)z1+22+2z3; b)zizo + 2223 + 23215 ©) 212223;

2. 2. 2 7 2 3 z%—.#z%
dDzy+z3+25 ©—+—+—; —-
22 3 5 +23

. Solve the equations:

D24 (=57 =2 —1); b)2,3)+z= (=5 —1):
Oz-(23) =45):; d)——=(@3.2).

/1 2y
\—1,9)

. Solve in C the equations:

A +z4+1=0; bF+1=0.

n
.Letz = (0, 1) € C. Express Z X in terms of the positive integer n.

k=0

. Solve the equations:

az-(1,2)=(-1,3); b, 1) -22=(1,7).

6.1et z = (a, b) € C. Compute z2, 7% and z%.

7.1Let zo = (a, b) € C. Find z € C such that 22 = zo

8. Let z = (1, —1). Compute z”, where n is a positive integer.
9. Find real numbers x and y in each of the following cases:

D2t 42y =14i mE=3, 273 _,
— 21 1 = [ P - =1,
Y 34i  3—i

1
©) (4 = 30)a7 + (3 4+ 20)xy = 4y% — 237 + Gy — 2.

10. Compute:

) 2 — ) (=3 +2i)(5 —4i);  b) 2 —4i)(5+2i) + (B +4) (=6 — i)
L+ 1-i\® —1+0v3\° (1-iv7\°

C)<1—z> +<1+i>’ d)< 2 T\ )¢

347 5-8i

243 2-30

e
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11. Compute:
a) §2000 4 ;1999 4 ;201 | ;82 4 ;47,
WE,=1+i+i2+i+.--+i"forn>1;
C) il . l'2 . i3 .. i2000'
i+ (=) T+ (=) 710 ()

12. Solve in C the equations:

=i, bZ=-i; oz

1
13. Find all complex numbers z # O such that z + — € R.
z

14. Prove that:
A E=Q+iv/5 +2—-iv/57 eR;
19+ 7i\" 204+ 5i\"
b)Ezz( 9J:i ) +(7—:—6i> <R
15. Prove the following identities:
a) |z + 2>+l + P +la+al? =lal + el + sl +la + 2+l
b) 1+ z21221* + |21 — 22 = (1 + [a1) (1 + |22%);
ol —anl —la —2f = 1 —|al»Hd - |2

d) |z1 +ZQ+Z3|2+ | — 21 +22+Z3|2+ |Z1 —22+Z3|2+ |z1 +22—Z3|2
=4(|z11* + z21* + |z31).

1
z+ -] <2

Z

16. Let z € C* such that < 2. Prove that

1
3
&+ =

Z3

17. Find all complex numbers z such that
lz = 1and |22 +Z7| = 1.
18. Find all complex numbers z such that
) o2 o
4z° + 8|z|* = 8.
19. Find ali complex numbers z such that 7> = Z.

20. Consider z € C with Re(z) > 1. Prove that
1 1

1
< —=.
z 2 2

3
21.Let a, b, c be real numbers and w = ) + iT. Compute

(a + bo + co?)(a + b + cw).
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22. Solve the equations:
a) |z] — 2z =3 —4i;
b) |z| +z=3+4i;
=2+ 11i, where z =x + yi and x, y € Z;
diz2+ (1+2i)z+1=0;
e) 2t +6(1 +i)z? + 5+ 6i = 0;
DA +i)2+2+411i =0.

23. Find all real numbers m for which the equation
S+ @+ =3z~ (m+i)=0
has at least a real root.
24. Find all complex numbers z such that
=@ -2@+1)
is areal number.

1
25. Find all complex numbers z such that |z| = ‘—‘
z

26.Let z1, 2z € C be complex numbers such that |z1 4+ z2| = V3 and
lz1] = |z2| = 1. Compute |21 — 22
27. Find all positive integers n such that

/ \ 7 / \ 7

(—1+i\/3) +(—1—i\/3) .,

2 2
28. Let n > 2 be an integer. Find the number of solutions to the equation
=iz
29. Let z1, 22, z3 be complex numbers with
lz1] = |z2] = |z3] = R > 0.
Prove that

2
|21 — 22| - |22 — 23| + |23 — 21| - |21 — 22| + |22 — 23] - |23 — 21] < 9R”.

30. Let u, v, w, z be complex numbers such that |u| < 1, |[v]| =1 and
’l) [—
w = _(u—zl) Prove that |w| < 1 if and only if |z| < 1.
I/L . Z f—
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31. Let z1, 22, 23 be complex numbers such that
z21+22+23=0 and |z1] = |z2] = |z3| = L.

Prove that
g+ +5=0.

32. Consider the complex numbers z1, z2, ..., 2, with
21l = |z2| = -+ = |zn| =7 > 0.
Prove that the number

po &1t 2)@tzs) @1+ 2@+ 20)

2122+ Zn

is real.

33. Let z1, 22, z3 be distinct complex numbers such that
lz1] = |za] = |za] > 0.

If z1 + 2223, 22 + 2123 and z3 + 2122 are real numbers, prove that 712223 = 1.
34. Let x1 and x, be the roots of the equation x? — x 4+ 1 = 0. Compute:

a) x%OOO + x22000; b) 3611999 + x21999; o) xf + x5, forn € N.
35. Factorize (in linear polynomials) the following polynomials:

Axt+16; BxP—27, XX +8 Dxt+xZ+1

36. Find all quadratic equations with real coefficients that have one of the following

roots:

S+i.
2—i’
37. (Hlawka’s inequality) Prove that the following inequality

YR o) 91 1 9;80 4 2;45 4 4,38
a) (24 ¢) P 42480 4 3445 4 4438,
|21 + 22| + |22 + z3| + |23 + 21| < |21] + |z22] + |z3] + |21 + 22 + 23]

holds for all complex numbers z1, 22, 23.

1.2 Geometric Interpretation of the Algebraic
Operations

1.2.1 Geometric interpretation of a complex number
We have defined a complex number z = (x,y) = x + yi to be an ordered pair of
real numbers (x, y) € R x R, so il is natural to let a complex number z = x + yi

correspond to a point M (x, y) in the plane R x R.
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For a formal introduction, let us consider P to be the set of points of a given plane I1
equipped with a coordinate system x Oy. Consider the bijective function ¢ : C — P,
@(z) =M(x, y).

Definition. The point M (x, y) is called the geometric image of the complex number
z=x+yi.

The complex number z = x 4+ yi is called the complex coordinate of the point
M (x, y). We will use the notation M (z) to indicate that the complex coordinate of M
is the complex number z.

M(x,y)
[ ]

e

o x M'(x,-y)

M(x, y)
B 2

M"(—x,y)

Figure 1.2.

The geometric image of the complex conjugate 7 of a complex number z = x + yi
is the reflection point M’ (x, —y) across the x-axis of the point M (x, y) (see Fig. 1.2).

The geometric image of the additive inverse —z of a complex number z = x + yi is
the reflection M”(—x, —y) across the origin of the point M (x, y) (see Fig. 1.2).

The bijective function ¢ maps the set R onto the x-axis, which is called the real axis.
On the other hand, the imaginary complex numbers correspond to the y-axis, which
is called the imaginary axis. The plane I1, whose points are identified with complex
numbers, is called the complex plane.

On the other hand, we can also identify a complex number z = x + yi with the

vector U = 0_1\)/1, where M (x, y) is the geometric image of the complex number z.
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M(x,y)
N . y
b d
J
o| 7 x

Let V be the set of vectors whose initial points are the origin O. Then we can define

the bijective function
0 :Co>Vy, ¢@=0M=7T=x7 +yJ,

where i , j are the vectors of the x-axis and y-axis, respectively.

1.2.2  Geometric interpretation of the modulus

Let us consider a complex number z = x + yi and the geometric image M (x, y) in the
complex plane. The Euclidean distance O M is given by the formula

OM = \/(XM —x0)* + (ym — yo)*,

hence OM = ‘v/m = |z| = |?|. In other words, the absolute value |z| of a
complex number z = x + yi is the length of the segment O M or the magnitude of the
vector U =x17 +y .

Remarks. a) For a positive real number r, the set of complex numbers with moduli
r corresponds in the complex plane to C(O; r), our notation for the circle C with center
O and radius r.

b) The complex numbers z with |z| < r correspond to the interior points of circle C;
on the other hand, the complex numbers z with |z| > r correspond to the points in the
exterior of circle C.

1. 43

Example. The numbers zz = +— &+ —i, k = 1,2, 3,4, are represented in the

complex plane by four points on the unit circle centered on the origin, since

|z1] = |z2| = |z3| = |z4] = L.
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1.2.3  Geometric interpretation of the algebraic operations

a) Addition and subtraction. Consider the complex numbers z; = x; + y;i and z, =
x2+ yoi and the corresponding vectors U1 = xq il +y1 ? and 7o = xz? + yz?.
Observe that the sum of the complex numbers is

z1 + 22 = (x1 +x2) + (y1 + ¥2)i,

and the sum of the vectors is

— = . . NTT L . Naxe
Vit vo2=W+Xx2)t +(1+y2) ) -

M ncan £ e
11CICIUIC,

F P P,
ulc sulil 1 +

My(x2, y2)

vl

PPN PN
2 COLIGsponud to

11C

. —> rd
sum v+ Vo

ot

M(x1+x2, y1+ ¥2)

/

Mi(x1, y1)

S

Examples. 1) We have (3 + 5/)
the sum is given in Fig. 1.5.

=)}

Figure 1.4.

+ (6 + i) = 9 + 6i; hence the geometric image of

M©O,6) My(-2,5)

\

5+

My(6, 1) 2 0 4 6
3 6 9 ol
My(6,-2)
Figure 1.5. Figure 1.6.
2) Observe that (6 — 2i) + (—2 + 5i) = 4 + 3i. Therefore the geometric image of

the sum of these two complex numbers is the point M (4, 3) (see Fig. 1.6).
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On the other hand, the difference of the complex numbers z; and z3 is
71 — 22 = (X1 —x2) + (V1 — V2)i,
and the difference of the vectors vy and vy is
Ti—Ta=01—x)7 +1 )7 -

Hence, the difference z1 — z; corresponds to the difference v — ¥ 5.

3)yWehave (-3 +i) — (2+3i) = (=3+i)+ (-2 — 3i) = —5 — 2i; hence the
geomeltric image of difference of these two complex numbers is the point M (=5, —2)
given in Fig. 1.7.
M2, 4)

M,(2,3)

/ M(5,2)
M,(-3,1)

Mi(3,-2)
M(5,-2)
i _2 2
M=) M2
Figure 1.7. Figure 1.8.
4) Note that 3 — 2i) — (=2 —4i) = (3 — 2i) + 2 + 4i) = 5 + 2i, and obtain
the point M(—2, —4) as the geometric image of the difference of these two complex

numbers (see Fig. 1.8).
Remark. The distance M (x1, y1) and M2(x2, y2) is equal to the modulus of the
complex number z; — z; or to the length of the vector v ; — ¥ 5. Indeed,

IMiMs| =21 — 22| = | 01— Vol = «v/(xz —x1)?+ (2 — y)%

b) Real multiples of a complex number. Consider a complex number z = x + iy
and the corresponding vector ¥ = X7+ y7. If A is a real number, then the real
multiple Az = Ax + i1y corresponds to the vector

AT =Ax T +Ay .
Note that if & > 0 then the vectors A and ¥ have the same orientation and

AT = A7
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When A < 0, the vector AU changes to the opposite orientation and |A ¥ | = —A| 7V |.
Of course, if & = 0, then A7 = 0 .

M'(Ax, Ay)

o / A<0
M(x, y)
ﬂ(x, y) /

M'(x, Ay)

Figure 1.9.

Examples. 1) We have 3(1 + 2i) = 3 + 6i; therefore M’(3, 6) is the geometric
image of the product of 3 and z = 1 + 2i.

2) Observe that —2(—3 + 2i) = 6 — 4, and obtain the point M'(6, —4) as the

geometric image of the product of —2 and z = —3 4 2i.
Y M@3,6)
of /

[\*]
.
|

-4 M'(6,-4)

Figure 1.10.
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1.2.4 Problems

1. Represent the geometric images of the following complex numbers:
21=34i; n=—4+2; nB=-5-4i; u=5-1i
s=1; zg=-3i; z7=2; zg=—4

2. Find the geometric interpretation for the following equalities:
a)(—54+4i)+Q2—-3i)=-3+1;
b) (4 —i) + (=6 +4i) = -2 4 3i;
) (3 -2)—(-5+i)=2-3i;
DE—-i)—-54+3)=3-4;
e)2(—4+2i)=-8+4i;
f) =3(—1+2i) =3 — 6i.

3. Find the geometric image of the complex number z in each of the following cases:
a)lz—2=3; b)lz+il<1l; ¢)|z—14+2i]>3;
dlz=2]=lz+2]<2; e0<Reiz)<l; 0H-1<Im@@ <l;
g)Re(Z_2 1+Z€R‘

> =0; h)
z—1 z
4. Find the set of points P (x, y) in the complex plane such that

[VxZ+44+iy—4|=+10.

S.letzy = 1+iand zop = —1 —i. Find z3 € C such that triangle z1, 22, 23 18

equilateral.

£ T et S 0 e
V. 'ind uic geoinctric 1dges ol uIc Col
vertices at z, zZ and z° is right-angled.

7. Find the geometric images of the complex numbers z such that




2
Complex Numbers

in Trigonometric Form

2.1 Polar Representation of Complex Numbers

2.1.1 Polar coordinates in the plane

Let us consider a coordinate plane and a point M (x, y) that is not the origin.

The real number r = \/m is called the polar radius of the point M. The direct
angle * € [0, 27) between the vector OM and the positive x-axis is called the polar
argument of the point M. The pair (r, t*) is called the polar coordinates of the point M.
We will write M (r, 1*). Note that the function 7 : R x R\ {(0, 0)} — (0, c0) x [0, 27),
h((x,y)) = (r, t*) is bijective.

The origin O is the unique point such that r = 0; the argument ¢* of the origin is
not defined.

x =rcost®and y = rsint*.

Therefore, it is easy to obtain the cartesian coordinates of a point from its polar coor-
dinates.

—~ 101 . L] LI ' 4 N 1 k K /.2 0 .2 ™
Conversely, let us consider a point M (x, y). The polar radius is r = /x= 4 y=. To

determine the polar argument we study the following cases:
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M(x,y)

P(1,1%)
t*

Figure 2.1.

a)If x #£ 0, from tant* = U we deduce that
X

hY
t* = arctan = + k7,
X

where
, for x>0andy >0

k= , for x <Oandanyy

o o~ O

for x>0andy <0.

s

U
b)If x =0and y # 0, then

f*_[ w/2, for y>0
_l 37/2, for y<O.

Examples. 1. Let us find the polar coordinates of the points M1 (2, —2), M>(—1,0),
M3(—2+/3, =2), My(+/3. 1), M5(3.0), Ms(—2.2), M7(0. 1) and Mg(0, —4).
T
In this case we have r; = /22 + (=2)2 = 24/2; tf = arctan(—1) 4+ 27 = -7 +
T ’ I
2 = —,s0 M1 | 24/2, — ).
4 ! ( V2 4 )

Observe thatrp = 1, t; =arctan0 + 7w = 7, so M(1, ).

3 7 7
Wehaver3:4,t3*:arctan£+n:z—l—n’:—n,soMg 4,—77 .
3 6 6 6
3
Note that r4 = 2, 1} = arctan % = %, S0 My <2, %)

We have rs = 3,1 = arctan0 4 0 = 0, so M5(3, 0).
b4 37 3
We have rg = 2+/2, tg‘ = arctan(—1) + 7 = Y + 7= —» 80 Mg [ 272, - )

w 11
Note that 77 = 1, t¥ = > so M7 (1, 5)
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Observe thatrg = 4, 15 = '%T so Mg (1, %T)
2. Let us find the cartesian coordinates of the points M (2, 2?”), M, (3, 7777) and
M3(1, 1).
We have x1 = 20052?77 = 2(—l> = -1,y = 251112?” = 2? = \/§ SO

2
Mi(—1,/3).
T 3«/5 T 3\/5

Note that xp, = 3COST = —, » = 351117 = ———, s0
(3ﬁ 3\/5\

M2 s T .
\2 2

Observe that x3 = cos 1, yo = sin 1, so M3(cos 1, sin 1).

2.1.2  Polar representation of a complex number

For a complex number z = x + yi we can write the polar representation
z =r(cost™ +isint™),

where r € [0, c0) and t* € [0, 27) are the polar coordinates of the geometric image
of z.

The polar argument ¢* of the geometric image of z is called the argument of z,
denoted by arg z. The polar radius r of the geometric image of z is equal to the modulus
of z. For z # 0, the modulus and argument of z are uniquely determined.

Consider z = r(cost* + i sinz*) and let # = ¢* + 2k for an integer k. Then
z =r[cos(t — 2km) +isin(t — 2km)] = r(cost +isint),

i.e., any complex number z can be represented as z = r(cost 4 i sint), where r > 0
and 7 € R. The set Argz = {r : t* + 2k, k € Z} is called the extended argument of
the complex number z.

Therefore, two complex numbers z1, z2 7 O represented as

[oN

e — rlongf 1L 7gint) and -5 — qin *
1 = 71\WO05 ] T & 51 alih {7 = Sl e

are equal if and only if r1 = rp and #1 — o = 2k, for an integer k.

Example 1. Let us find the polar representation of the numbers:

a)z1=-1-1,
b)zo =2+ 2i,
c)z3:—l+i\/§,

1~ 1 Y
djzg=1—iv3

and determine their extended argument.
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a) As in the figure below the geometric image P;(—1, —1) lies in the third quadrant.

Then r1 = /(=1)2 + (=1)2 = /2 and
S5

tf:arctanz—l—n':arctanl—l—n:z—f—n': —.
x 4 4

V2
.......... -1
P(-1,-1)
Figure 2.2.
Hence 5 s

: b4 b4

71 :\/2(005- <+ +isin- \
\ 4 4/

and

5w
Argzy = A +2kn|keZy.
b) The point P>(2, 2) lies in the first quadrant, so we can write

Hence
2'/0057r —|—isinn\
\ 4 4)

€.

[

Argz = {Z —|—2k7r|keZ}.

¢) The point P3(—1, W4 3') lies in the second quadrant, so

* . b 2
r3 =2 and 13 :arctan(—\/f%)—{—n':—-g- +T=-.-

3
2( 27r+,, 271)
=2(cos .- +isin---
o 3 3

Therefore,
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P3(-1,+/3)
N V3
: r3
é \t;
-2
Figure 2.3.

and
2w
Argzz = {3 + 2km| k € Z}.

d) The point P4(1, —+/3) lies in the fourth quadrant (Fig. 2.4), so

rg=2andty = arctan(—\/3) + 27 = —-;-[ + 2 = 5;

N
. !
\

1\

............ %
V3 Pi(1, =+/3)
Figure 2.4.
Hence
z4=2<c055—n —l—isins—n),
3 3
and

5
Argz4={?ﬂ+2kn|kez}.

33
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Example 2. Let us find the polar representation of the numbers

a)z) = 2,
b)zx = —1,
¢)z3 =2,

d)zq = -3i

and determine their extended argument.
a) The point P;(0, 2) lies on the positive y-axis, so

ry=2
1 b

(o8

&

Argz; = [%+2kn’|k eZ

[S——

b) The point P>(—1, 0) lies on the negative x-axis, so

rn=1 1t=m z=cosw+isinmw

and
Argzy = {m + 2km| k € Zj.
¢) The point P3(2, 0) lies on the positive x-axis, so
PR 72— Yeos O L sinO)
r3 =2 73 = 2(cos 0+ i sin0)

2 _ N0
’ 13 Vs

and
Argzz = {2km| k € Z}.
d) The point P4(0, —3) lies on the negative y-axis, so

37 3 . 37
r4 =3, IZ:T, =2 cosT—l-ismT
- N = = 7/

and . .
3
Argzy = {7 +2km| k € Z}

Remark. The following formulas should be memorized:
L A
1=cosO+isin0; i :COSE+lSIHE’
—1=cosw +isinmw; —i :cos3—n —l—isin—n.
2 2
Problem 1. Find the polar representation of the complex number

z=1+cosa+isina, acec 0,2nr).
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Solution. The modulus is

|z] :\/(1 +cosa)? +sin’a = /2(1 + cosa) = /4C052% :2‘003E .

2

The argument of z is determined as follows:
a b4
a)Ifa € (0, ), then 5 S <0, 3> and the point P(1 4 cosa, sina) lies on the first
quadrant. Hence
sina

a
t* = arctan ———— = arctan ( tan f\ =
\ 2/

a
1+cosa

2

5 a( a tisi a>
=2cos — (cos — sin— ) .
¢ 2 WP TS
b) If a € (=, 2m7), then % € <%, n’) and the point P(1 4 cosa, sina) lies on the
fourth quadrant. Hence
t* = arctan (tan = ) + 27 =
arctan ( an 2) + 2

—n4+2n==+nm

N &
NN I

and

2¢0s 5 (cos (5 +) +isin (5 +7))
= —ZCOS—|COS| — T sin | — b4 .
¢ 2 2 O

c)Ifa =m, then z =0.

Problem 2. Find all complex numbers z such that |z| = 1 and

+i=1

& e

SIS

Solution. Let z = cosx + i sinx, x € [0, 27). Then

z 2472

2

1==+

& | )

= |~1
|« | 1<

= |cos2x + i sin 2x 4 cos 2x — i sin 2x]|

= 2|cos2x|
hence
2 L 2 !
COS2X = — Or COS2x = ——.
2 2
1
If cos2x = —, then
2
o _ 5 _ 7 _ 117
xl—g7 xz—?, x3—T, x4—T~
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1
If cos2x = 5 then

T 27 47 S5
Xs=—, X¢=—, X7=—, Ag=—.
3’ 37 37 3
Hence there are eight solutions
Zr =cosxr +isinxg, k=1,2,...,8.
A 17 Vo YL UL TR [ AL S TP S
Z2.1.5 Uperations with COmpliex nuinoers in poiar representation

Proposition. Suppose that
z1 = r1(costy +isinty) and zp = ra(costy +isinty).

Then
2122 = rirp(cos(ty + tp) + i sin(ty + £2)). (D)

Proof. Indeed,

7122 = r1ra(costy; + i sinty)(costy + i sinty)

= r1ra((costy costyp — sinty sinty) + i (sinty costy + sin#p costy))

=rira(cos(t; + o) +isin(t; + 5)). O

Remarks. a) We find again that |z1z2| = |z1] - |z2].

1N YW A lnsra cwey = = oy | nwoy Ve wx;haea
0) W€ Nave argi122) = arg J1 +— arg 7y — <K, Wiicre
( ~ e R A
= 0, for argzy)+ argzy < 2m,
1, for argz;+ argzy > 2m.

¢) Also we can write Arg (z1z2) = {argzy + argzy + 2k @ k € Z}.
d) Formula (1) can be extended to n > 2 complex numbers. If zx = rr(cost; +

isintg),k=1,...,n,then
21227+ Zp =112 Tp(Cos(ty +lp + -+ 1p) Hisin(t + 12 + - - +1,)).

The proof by induction is immediate. This formula can be written as

n / n no\

ﬁzk=l_[rk (CosZtk—i—isinZtk). 2)
k=1 k=1

k=1 k=1



2.1. Polar Representation of Complex Numbers 37

Example.letz; =1 —i and z, = /3 +i. Then
6 6

=242 | cos 7—71—}—2 + i sin 7—77—{—1
“ae= 46 4%

2 2
zzﬁ(cosl—l—ising\.
12 iz

T o I 14 .. T
z1=x/§<cosT+zsmT>, zg=2<cos—+zsm—>

and

2. The power of a complex number

Proposition. (De Moivre!) For z = r(cost +isint) and n € N, we have
7" =r"(cosnt + i sinnt). 3)
Proof. Apply formula (2) for z = z; =z = .- - = gz, to obtain

"=r-r--or(cos(t+t -+ +isint+t+---+1))
—— —— ———— — ——

n times n times n times
= r"(cosnt + i sinnt). O

Remarks. a) We find again that |7"| = |z|".
b)If r = 1, then (cost + i sin?)” = cosnt + i sin nt.
c) We can write Argz" = {nargz + 2km : k € Z}.

Example. Let us compute (1 4 7)10%,

The polar representation of 1 + 7 is

A
v

formula we obtain

(14 §)1000 — (/21000 (cos 1000% + isin 1000%)

390 (008 2507 + i $in2507) = 2

\! 1

Il
)

I

Problem. Prove that
sin5¢t = 16sin® ¢ — 20sin’ 7 + 5 sin¢;
cos5t = 16cos> 1 — 20 ¢cos> t + 5cost.

L Abraham de Moivre (1667—1754), French mathematician, a pioneer in probability theory and trigonom-
etry.
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Solution. Using de Moivre’s theorem to expand (cos? + isin7)’, then using the

binomial theorem, we have

cos 5t +isinSt = cos’ t +5icos*¢sint + 10i2 cos’ ¢ sin? ¢

5

+10i3 cos?¢sin’ ¢ + 5i* cos ¢ sin 7 + idsin’ 7.

Hence
cos 5t + i sin 5¢ = cos’ ¢ — 10 cos® (1l — cos? t)+5cost(l — cos? t)2
+i(sint(1 —sin® )% sint — 10(1 — sin? ) sin’ 7 + sin’ 7).
Simple algebraic manipulation leads to the desired result.
3. Division
Proposition. Suppose that
z1 =ri(costy +isintp), zp =r(costy +isinty) # 0.

Then
71 n ..
— = —[cos(t; —tp) +isin(y — )].
2 1

21 ri(cost; +isinty)

/g ra(costy + i sinfp)
ri(costy +isinfy)(costy —isinfp)

1AEYS SAES

72(cos2 1 + sin? 1)

= 1[(cos 11 COSty + sinty sin#y) + i(sinty costy — sin#p cos#y)]

2
g .
= —(cos(t] — ) +isin(t; — 1)). O
2
.|z r z
Remarks. a) We have again ‘—1‘ =1= Q,
[<2] 12 22|

b) We can write Arg (Z—l> ={argz; —argzy +2kmw : ke Z};
22

¢)Forzi=1and 2o =z,

A l(cos(—t) + i sin(—1));
Vd r

d) De Moivre’s formula also holds for negative integer exponents #, i.e., we have

7" = r"(cosnt + i sinnt).
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Problem. Compute
(1 -3+
7= .
(=1 —i4/3)10

Solution. We can write

10
7 7 5
(«/5)10 <cos Tn’ +isin Tn’) .05 (cos% + i sin %)

= 0
210 cos4—n+isin4—ﬂ
3 3
210( 357 . 3571)( St . 571)
cosT—l—zsmT CosT—{—zsmT
— \ “~ “~ / N\ d v/
40 40
210 cos—ﬂ—l—isin—n
3 3
557 . . 55w
cosT—i-zsmT .
= Mn4077 . ;n"4077 =cosS5m +isinSw = —1.
“UD 3 T ¢ o1l 3

Consider the complex numbers
z1 =ri(costy +isintf), zp =r(cost) +isint})

and their geometric images Mj(ry, ti‘), My (ra, t;‘). Let Pj, P> be the intersection
points of the circle C(O; 1) with the rays (OM; and (OM;. Construct the point
P3 € C(0; 1) with the polar argument ¢{ + ¢} and choose the point M3 € (OP;
such that OMz = OMj - O M. Let z3 be the complex coordinate of M3. The point
M3 (rira, tf + 13) is the geometric image of the product z1 - 5.

Let A be the geometric image of the complex number 1. Because

O M3 OM> . O M3 OM,
= ,  le., =

oM, 1 OM, OA

and M/25M3 = AOM 1, it follows that triangles O AM and O M, M3 are similar.
In order to construct the geometric image of the quotient, note that the image of s

) 22
s Mj.

2.1.5 Problems

1. Find the polar coordinates for the following points, given their cartesian coordinates:
@ Mi(=3,3); ) My(=4v/3, =4 ©) M3(0, =5);
d) My(=2,-1); ) M5(4, —2).
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M3 M,
P P
M
i
t; P
*
4
o A

~_|

Figure 2.5.

2. Find the cartesian coordinates for the following points, given their polar coordinates:

3

. Express arg(z) and arg(—z) in terms of arg(z).

4. Find the geometric images for the complex numbers z in each of the following cases:

a)lz|=2; b)lz+il=2; ol|z—il <3

T T
drw <argz < —; e)argzZT; Dargz <

. Find polar representations for the following complex numbers:

. 1 3 1 3
a)Z1—6+6z\/§, b)Zz——Z-l-lT, c)z3——§—17,

Ay =9—93; e)zs=3-2i; f)zg=—4i.

. Find poiar representations for the following compiex numbers:

a)zy =cosa —isina, a € [0,2n);

b)zo =sina +i(1 +cosa), a € [0,2n);

¢)z3 =cosa+sina 4+ i(sina —cosa), a € [0,2mn);
d)zg=1—-cosa+isina, a€]l0,2n).

. Compute the following products using the polar representation of a complex num-

ber:

a) (% —iﬁ\ (=343)@2V3+2i); by (1 +i)(—2—2i)- i
\© =/
) —2i - (—4+44/3i)- 3+3i); d)3-(1—i)(=5+50).
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Verify your results using the algebraic form.
8. Find |z|, arg z, Arg z, arg 7, arg(—z) for
Az=(1—i)6+6i); b)z=(7—"7/3)(—=1—1i).
9. Find |z| and arg z for
V34208 | (140
a)z= —— + —;
1= (243 = 2i)8
(-1 +i)* 1
b)z = + ;
W3=D10 2342
Oz=14iv3)"+ 1 —iv3)"

10. Prove that de Moivre’s formula holds for negative integer exponents.

11. Compute:
a) (1 —cosa +isina)” fora € [0,27) andn € N;

1 1
b) 2"+ —,if z + — = /3.
< Z

7% Mha 2th Dante AP TTnies

L ¢ et 111 1t NUULd U1 Ul

A1 TMafining the 3ot i o T e o
Z.2.1 penning tne n roots Of a CoOmpIeX Numoer

Consider a positive integer n > 2 and a complex number zg # 0. As in the field of real
numbers, the equation

Z"—z20=0 1)
is used for defining the n'® roots of number zo. Hence we call any solution Z of the

equation (1) an n'* root of the complex number zo.

Theorem. Let zg = r(cost™ + i sint™*) be a complex number withr > 0 and t* €
[0, 27).

The number zq has n distinct n'* roots, given by the formulas
Zr = Yr (cos

k=0,1,....,n -1

4+ 2%k t*—i—Zkrr)
——— +isin—— |,
n

Proof. We use the polar representation of the complex number Z with the extended
argument

Z = p(cosp +ising).

By definition, we have Z" = zg or equivalently

p"(cosng +isinng) = r(cost™ +isint™).

o 2

We obtain p” = r and ng = i*+2km fork € Z;hence p = /r and o = —+k-—
n n
fork € Z.
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So far the roots of equation (1) are

Zp = Yr(cosgy +isingy) fork € Z.

Now observe that 0 < ¢p < ¢1 < -+ < @u—1 < 27, so the numbers @i, k €
{0, 1, ..., n — 1}, are reduced arguments, i.e., ¢} = ¢x. Until now we had n distinct
roots of zp:

Zo, 21, ..., 2y 1.

Consider some integer k and letr € {0, 1, ..., n — 1} be the residue of £ moduio #.
Then k = ng +r for g € Z, and
* *

t Tt 2w
ok =—+0g+r)—=—+r—+2qn = ¢ +2q7.
n n n n

It is clear that Z; = Z,. Hence

(7. « L ~7\ _ (7. 7 lrd 1

4k « R© iy — 140, &5 -0 -5 Lpn—17]-
Tl g oqe e, th o, o R S —
11 OU1er wOords, tere dre €xactly n disunct 1= roots ol gop, ds cldauned. L1

The geometric images of the n' roots of a complex number zq # 0 are the vertices
of a regular n-gon inscribed in a circle with center at the origin and radius /7.

MA cmcemera lic dain b AL .Y 2 .Y 2 A S Y P ] PP PIUIY [ S NPy DI 7

10 PIOVC ULLS, UCLOLWC VI, M1, ..., Mp—] UIC POLLHL WIUL COLLIPICA Coolulnates 2.9,

X COO
Z1, ..., Zy—1.Because OMy = |Zy| = ¥r fork € {0,1,...,n — 1}, it follows that
the points M, lie on the circle C(O; /7). On the other hand, the measure of the arc

i Il/;h .1 18 egual to
MMy .1 is equal to
_ _ t**+ 2k + D — @¢* 4+ 2kw) 27
arg Zy+1 — arg Zy = =—,
n n
forallk € {0, 1, ..., n — 2} and the remaining arc Mn_Al My is
2 2
— =21 —(n—1)—.

Because all of the arcs MOAMl, MlAMz, R Mn_AlMo are equal, the polygon
MoM; --- M,_ is regular.

Example. Let us find the third roots of the number z = 1 4 i and represent them in
the complex plane.

The polar representation of z = 1 4 i is

z:«/z(cos%—l—isinz).

4
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The cube roots of the number z are

Zi = 3 (cos (Z ok Y wisin (= +x2Z)) . k=0.1.2
= —_— — 1 —_— —_— =
k 23 2" "3 )) e

or, in explicit form,

T R 1
ZOZ\G/E(COSE—FLSHIE>,

3 3
Z1 :%(cos%—i—isin%)

and 17 17

b4 T
Zzzw(COST—FiSiHT .
\ 12 i2 /

Using polar coordinates, the geometric images of the numbers Zy, Z;, Z, are

M,

11w 1

27299 The 1
o ¢ ot ¢ it 1 1
The roots of the equation Z” — 1 = 0 are called the n™* roots of unity. Since 1 =

cos 0 + i sin 0, from the formulas for the n' roots of a complex number we derive that

the n roots of unity are

2k o 2km
& =cos— +isin—, ke{0,1,2,...,n—1}
n n

Explicitly, we have
gy =cos0+isin0 = 1;
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2 L. 2w
&1 =C0s — +1i8ln — = ¢&;
n n

dz . 4= 5
£9) = COS — +18SIn — = £7;
n n

£y,—1 = COS M 4 isin M gl
n

The set {1, ¢, &2 ..., s”_l} is denoted by U, . Observe that the set U,, is generated
by the element ¢, i.e., the elements of U, are the powers of .

As stated before, the geometric images of the n'? roots of unity are the vertices of a
regular polygon with n sides inscribed in the unit circle with one of the vertices at 1.

We take a brief look at some particular values of n.

i) For n = 2, the equation Z2 — 1 = 0 has the roots —1 and 1, which are the square

roots of unity.
ii) For n = 3, the cube roots of unity, i.e., the roots of equation Z3—1=0are given

YV Ve
i y”

[
KTT

& = COS 3 + i sin 3 fork € {0, 1, 2}.

Hence
g =1, slzcosz—n+isin2—n=fi+i\/§=s
3 3 2 2
and
1 V3

dz . 4=
82—cosT+zs1nT_—

They form an equilateral triangle inscribed in the circle C(O; 1) as in the figure

below.

3< —
/NN
[ ~

N

Figure 2.7.
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iii) For n = 4, the fourth roots of unity are

2k . 2km
&k :COST —l—ismTfork:O, 1,2,3.

In explicit form, we have

. T .. T .
go=cosO+isin0=1; & =cos—+isin— =i;
2 2
. 37 .. 3w .
82:cosn—|—zsmn’:—land8320057—|—zsm7: —i.

Observe that Uy = {1, 1, i i3} = {1,i, —1, —i}. The geometric images of the
fourth roots of unity are the vertices of a square inscribed in the circle C(O; 1).

-1 1

RN
v AN
N

Figure 2.8.

The root e € U, is called primitive if for all positive integer m < n we have
el # 1.

Proposition 1. a) If n|q, then any root of Z* — 1 =0isaroot of Z9 — 1 = 0.

b) The common roots of Z™ — 1 = 0 and Z" — 1 = 0 are the roots of Z% — 1 = 0,

where d = ged(m, n), i.e., Uy, N U, = Uy.

2k T
¢) The primitive roots of Z™ — 1 = 0 are g = cos — +i sin —, where 0 <k <
m m

m and gcd(k,m) = 1.

Proof. a)If g = pn,then Z9 — 1 = (ZMP —1 = (Z" = 1)(ZP~ V4.4 7"+ 1)
and the conclusion follows.

2 2
il +isin Ll arootonm—1=Oand8;=cos ar

n
L] L] H3

b) Consider &, = cos

2gm
i sin 2% 4 root of Z% — 1 = 0. Since lep| = leg| = 1, we have &), = ¢ if and only
n

+
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. , . 2pm 2qm . .
if arge, = argey, i.e., —— = —— + 2rx for some integer 7. The last relation is
n

equivalent to P_4_ r, that is, pn — gm = rmn.
m n

On the other hand we have m = m'd and n = n’d, where ged(m’, n’) = 1. From the
relation pn — gm = rmn we find n'p — m'q = rm’n’d. Hence m'|n’ p, so m’| p. That
is, p = p’m’ for some positive integer p’ and

2 2// 2/
pn:pmn:pnandsdzl.
m m'd d p

arge, =

Conversely, since d|m and d|n (from property a), any root of Z¢ — 1 = 0 is a root
of Z" —1=0and Z" —1=0.
¢) First we will find the smallest positive integer p such that s,f = 1. From the

. » . 2kpm , e , )
relation ¢, = 1 it follows that = 2k’ for some positive integer k’. That is,
m
k
P_ k' € Z.Consider d = gcd(k, m) and k = k'd, m = m'd, where ged(k’, m') = 1.
o Kpd Kp . o
We obtain — = — € Z. Since k' and m’ are relatively primes, we get m’'|p.

Therefore, the smallest positive integer p with s,f = 1 is p = m’. Substituting in the
m
relation m = m’d, it follows that p = R where d = ged(k, m).

P:1 _ m

If & is a primitive root of unity, then from relation &; ,p = ——— it
ged(k, m)
O

follows that p = m, i.e., ged(k, m) = 1.

Remark. From Proposition 1.b) one obtains that the equations Z” — 1 = 0 and
7% _ 1 — () have the niniane commaon roont 1 if and onlv if ocd(m n) — 1
V4 1 = 0 have the unique commen root 1 if and only if ged(m, »n) 1

Proposition 2. If ¢ € U, is a primitive root of unity, then the roots of the equation
" —1=0aree”, e ... &1 wherer isan arbitrary positive integer.

Proof. Letr
(e th =1, ie., e isarootof Z" — 1 =0.

We need only prove that &”, &”t1, ..., "7~ are distinct. Assume by way of con-
tradiction that for r + hy # r + ho and Ay > ho, we have e/ t#1 = g"tP2 Then
g th(eh=h _ 1) = 0. But &% +£ 0 implies " ~#2 = 1. Taking into account that
h1 — hy < n and ¢ is a primitive root of Z" — 1 = 0, we get a contradiction. O

Proposition 3. Let eg, €1, ..., &,—1 be the n' roots of unity. For any positive integer
k the following relation holds:

52

=0 l

=

(=R

El

“~
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2 2
Proof. Consider ¢ = cos — + i sin —. Then ¢ € U, is a primitive root of unity,
n n
hence ¢” = 1 if and only if n|m. Assume that n does not divides k. We have

n—1 n—1 n—1 kyn nyk
Z Z - Z 1= 1)
6‘];. = ({;‘J )k = (gk)J = — 7 = — 7 = 0.
: : ¢ 1—¢ 1—¢
j=0 j=0 J=0

If n|k, then k = gn for some positive integer g, and we obtain

n—1 n—1 n—1 n—1
AN N
Zs]._ ef'=) (=) l=n. O
=0 j=0 j=0 j=0
. s , . . . 2z . 2w
Proposition 4. Let p be a prime number and let ¢ = cos — + isin—. [f
ap, ai, - .., ap_1 are nonzero integers, the relation
p—1 _
ao+ajg+---+ap_q€ =0
holds if and only if ay = a1 = -+ - = ap_;.
Proof. If ap = a1 = - -+ = ap_1, then the above relation is clearly true.
Conversely, define the polynomials £, ¢ € ZIX1by f — gy +a; X+ -+q,_; XP!
>~ M J ryrJ Jr S = L2131 vY) g 1747 T Tép—1

and g = 1 + X + --- + XP~L If the polynomials f, g have common zeros, then
ged(f, g) divides g. But it is well known (for example by Eisenstein’s irreducibility
criterion) that g is irreducible over Z. Hence ged(f, g) = g, so g|f and we obtain
g = kf for some nonzero integer k, i.e.,ap = a1 =-++ = ap—1. O
Problem 1. Find the number of ordered pairs (a, b) of real numbers such that (a +
bi)?"2 = q — bi.

(American Mathematics Contest 12A, 2002, Problem 24)

B) ')

~ . - L. = L. PR VG e . P
Solution. Let z = a + b1,z = a — b, and || = ~a“ + b“. 'The given relation
becomes z2%2 = 7. Note that

12?7 = 122%%| = 7] = ],
from which it follows that
2112 = 1) = 0.
Hence |z] = 0, and (a,b) = (0,0), or |z|] = 1. In the case |z] = 1, we have
7202 — 7, which is equivalent to z2°* = 7.z = |z]> = 1. Since the equation
72093 — 1 has 2003 distinct solutions, there are altogether 1 4 2003 = 2004 ordered

pairs that meet the required conditions.

Problem 2. Two regular polygons are inscribed in the same circle. The first polygon

has 1982 sides and the second has 2973 sides. If the polygons have any common ver-
tices, how many such vertices will there be?
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Solution. The number of common vertices is given by the number of common roots

of 21982 — 1 = 0 and z%73 — 1 = 0. Applying Proposition 1.b), the desired number is
d = gcd(1982,2973) = 991.

Problem 3. Let ¢ € U, be a primitive root of unity and let 7 be a complex number such

that |z — sk| <lforallk=0,1,...,n — 1. Prove that z = (.
Solution. From the given condition it follows that (z — sk)(z — k) < 1, yielding
lz|> < z(e¥) +Z- &5,k =0,1,...,n — 1. By summing these relations we obtain
‘n—1 n—1
e = oY ok) 473 sk =0
\k=0 / k=0
Thus z = 0.
Problem 4. Let PyP --- P,_1 be a regular polygon inscribed in a circle of radius 1.
Prove that:
a) PoPy- PoPy--- PoPy—1 = n;

.o 2m . (mn—Dm n

b) sin — sin — - - - sin —— = pvny 1
n n n 2n=

. m . 3m . @2n -1 1

¢) sin — sin — - - - sin = T
2n 2n 2n 2n=

Solution. a) Without loss of generality we may assume that the vertices of the poly-

gon are the geometric images of the n't roots of unity, and Pp = 1. Consider the
21 27
polynomial f =z" —1=(z—1)(z—€)--- (z—&""1), where &8 = cos = +i sin —.
n n
Then it is clear that
n=f(0=>0-e1—-g)---(1—&".
Taking the modulus of each side, the desired result follows.
b) We have
k T . 2km .o km . km km
1—¢&"=1-—cos— —isin—— = 2sin“ — — 2/ sin — cos —
n n n n n
L km (. km km
=2sin— | sin— —icos — ),
n n n
k . km . . .. .
hence |1 —&*| =2sin—, k=1,2,...,n — 1, and the desired trigonometric identity
n

follows from a).

¢) Consider the regular polygon Qo Qg - - - Q2,—1 inscribed in the same circle whose
vertices are the geometric images of the (22)™ roots of unity. According to a),

QoQ1- QoQ2--- Qo021 =2n.
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Now taking into account that Qo Q2 - - - Q-2 is also a regular polygon, we deduce
from a) that

Q002 QoQ4---QoQ2n—2=n.

Combining the last two relations yields

Q001 Qo003+ Q0Q2wm-1=2.

A similar computation to the one in b) leads to

2k — Dm

Q0Qox%—1 = 2sin
2n

and the desired result follows.
Let n be a positive integer and let &, = cos 2—77 + isin 2—7[ The n'-cyclotomic
polynomial is defined by " "
sn)= ] =&
11 v

1<k=n—1
ged(k,n)=1

Clearly the degree of ¢, is ¢(n), where ¢ is the Euler “totient” function. ¢, is a
monic polynomial with integer coefficients and is irreducible over Q. The first sixteen
cyclotomic polynomials are given below:

px)=x—1

$r(x) =x+1

p(@) =x2+x+1

dalx) =x2+1

¢5(x) =3+ 3+ x24x+1

p(x) = x> —x +1

pr) =x+ 0+t 241

ps(x) = x* + 1

P9 (x) =x0+i%+1

¢10(x) =xt -3 4+x2-x+1

¢11(x) =x0 4 x4t

pr2(x) = 2t —x? + 1

dr3@) =x2 x40 x 41

$14(x) =x0 x4t -l —x+1

drsx)=x8 =T+ —xt 4P —x 41

pr6(x) = x% + 1

~

The following properties of cyclotomic polynomials are well known:
1) If g > 11is an odd integer, then ¢4 (x) = ¢g(—x).
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2)Ifn > 1, then

p, whenn is a power of a prime p,

1, otherwise.

$u(l) = {

The next problem extends the trigonometric identity in Problem 4.b).

Problem 5. The following identities hold:
km 1

a) 1_[ sin whenever n is not a power of a prime;

n)’
1<k=n—1 2(ﬂ(
ged(k,n)=1
e(n)
km -
D CO8S — = or atl o posifive infegers n
by T1 U= o all odd positis 5
7 11 n Zw(n) ’J ¥ <}
1<k=n—1
ged(k,n)=1

Solution. a) As we have seen in Problem 4.b),

P Dk (. km km 2 km kn . kmw
1 —¢,=2sin—|sin— —icos— ) = —-sin— | cos — +isin— J.
n n n i n n n

‘We have

2 k k k
I =¢u(l) = 1_[ (1—8];)2 1_[ 7sin%(cos%+isin7ﬂ)

l<k<n—1 I<k=n-1
ged(k,n)=1 ged(k,n)=1

20 (1) T s kr p(n) . . e
= sin — COS —m 41 sin ——7;
n 2 2

1)

1<k=n—1
ged(k,n)=1
2(0(”) { n . kﬂ'\ ( 1)@(2”)
= — sm — — s
(- k 1<k=<n—1 n )
ged(k,n)=1 y

where we have used the fact that ¢ (n) is even, and also the well-known relation

1
M ok= ).

L<k=n—1
ged(k,n)=1
The conclusion follows.
b) We have
P 2k o 2km 5 km o km km
1+¢,=1+cos — +isin— =2cos” — + 2i sin — cos —
n n n n n

k k k
:2cos—ﬂ<cos—ﬂ+isin—ﬂ), k=0,1,...,n—1.
n n n
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Because n is odd, from the relation ¢p,(x) = ¢,(—1) it follows that ¢,(—1) =
¢2,(1) = 1. Then

l=¢o(-D= [] A=eb=0™ [] +eb

1<k=n-—1 1<k<n—1
ged(k,n)=1 ged(k,n)=1
km km .k
= (=¥ ]_[ 2cos — | cos — + i sin —
1<k=n—1 n n n
ged(k,m)=1

\
k
= (=1)#moe) [ [T cos % (cos _90(2'1)” + i sin _(p(zn)ﬂ)

i<k=n—1

ged(k,n)=1
o) km
=(D7T2¢® J] cos—,
1<k=n—1 n
ged(k,n)=1

yielding the desired identity.

2.2.3 Binomial equations

A binomial equation is an equation of the form Z” + a = 0, where« € C* and n > 2
is an integer.

Solving for Z means finding the n'™ roots of the complex number —a. This is in fact
a simple polynomial equation of degree n with complex coefficients. From the well-
known fundamental theorem of algebra it follows that it has exactly n complex roots,
and it is obvious that the roots are distinct.

Exampie. 1) Let us find the roots of Z> + 8 = 0.

We have —8 = 8(cos & + i sin ), so the roots are

2% 2%
Ze =2 (cos T L ian TEHTY ke 0,12
\ 3 3

2) Let us solve the equation Z® — Z3(1 4+ i) +i = 0.

Observe that the equation is equivalent to
(Z*-1)(Z°-i)=0.

Solving for Z the binomial equations Z* — 1 = 0 and Z> — i = 0, we obtain the
solutions
2k . 2km
& = cosT —|—zsmT fork € {0, 1,2}

and

T
2 + 2k + 2k

+isin _fork € {0, 1,2).

Zr = cos
g 3 3
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2.2.4 Problems

1. Find the square roots of the following complex numbers:
1 i
— + —=;
V2 V2
dz=-2(14iv3); e z=7-—24i.
2. Find the cube roots of the following complex numbers:

a)z=—i; b)z=-27, c)z=2+42i;

1 V3
d)z=;—i£; ¢)z = 18 + 26i.
Z Z

a)z=1+1i; b)z=i; ¢c)z=

3. Find the fourth roots of the following complex numbers:
a)z=2—i\/ﬁ; b)z=\/§+i; c)z =1,
d)z=-2i; e)z=-—T7+24i.

4. Find the fifth, sixth, seventh, eighth, and twefth roots of the complex numbers given

above.

S.Let U, = {&0, €1, &2, ..., &n—1}. Prove that:
a)ej- g € Uy, forall jke{0,1,...,n—1}
10\ n_l —~T7 Frww 11 3~ O 1 2 11
U)&; € Up,I0raij ey, 1,..., 7 —1j.

6. Solve the equations:
a)z? —125=0; bt +16=0;

AL 64i =0 d)
’ 7

;< T U

7. Solve the equations:
a7 =2zt —iz? —2=0; BLE+id+i-1=0;
QQR-3)0+14+5=0; A0+ (24 -2 =0.
8. Solve the equation
=5 -DE—z+D.
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Complex Numbers and Geometry

3.1 Some Simple Geometric Notions and Properties

3.1.1 The distance between two points

Suppose that the complex numbers z; and z, have the geomeltric images M; and M».
Then the distance between the points M7 and M> is given by

a) (positiveness and nondegeneration):
d(z1,z2) = Oforall z1, z2 € C;

d(z1,z2) = 0if and only if z1 = z».

b) (symmetry):
d(z1,22) = d(z2,z1) forall 71,z € C.

¢) (triangle inequality):

d(z1, 22) <d(z1,73) +d(z3, z2) for all z1, 72, 23 € C.
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To justify c) let us observe that
lz1 — 22| = [(21 — 23) + (23 — 22)| < |21 — 23| + |23 — 22l

from the modulus property. Equality holds if and only if there is a positive real number
k such that
23 — 21 = k(z2 — 23).

3.1.2  Segments, rays and lines

Let A and B be two distinct points with complex coordinates @ and b. We say that the
point M with complex coordinate z is between the points A and B if z # @, z # b and
the following relation holds:

la —z|+ |z —b| = |a — b|.

We use the notation A — M — B.
he cet (ARY — M + A — M — Rlic called the nnen seomoent determined hv the
The set (AB) (M : A — M — B}is called the open segment determined by the
points A and B. The set [AB] = (AB)U{A, B} represents the closed segment defined

by the points A and B.

Theorem 1. Suppose A(a) and B(b) are two distinct points. The following state-
ments are equivalent:

i)M € (AB);

2) there is a positive real number k such that 7 —a = k(b — 7);

3) there is a real number t € (0, 1) such that 7 = (1 — t)a + tb, where 7 is the

Proof. We first prove that 1) and 2) are equivalent. Indeed, we have M € (AB) if and
onlyif |a —z|+ |z —b| = |a — b|. Thatis, d(a, z) +d(z, b) = d(a, b), or equivalently
thereis areal kK > QO such thatz —a = k(b — z2).

k t
To prove that 2) < 3), sett = T € (0,1)ork = 13 > (. Then we have

1 k
z—a=k(b —z) ifand only if z = ma—l— mb.ThatiS,z = —1t)a+1tband
we are done. O

The set (AB = {M| A— M — B or A— B — M} is called the open ray with endpoint
A that contains B.

Theorem 2. Suppose A(a) and B(b) are two distinct points. The following state-
ments are equivalent:

1) M € (AB;

2) there is a positive real number ¢ such that 7 = (1 — t)a + tb, where z is the

complex coordinate of M ;
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3) arg(z — a) = arg(b — a);

979 crH.
b_

Proof. It suffices to prove that 1) = 2) = 3) = 4) = 1).
1) = 2).Since M € (AB wehave A — M — B or A — B — M. There are numbers

t,1 € (0, 1) such that

z=(0-ta+tborb=(1-Da+lz

In the first case we are done; for the second case set# = —, hence
14

2=th— (@ —1Da=(—0)a-+1b,

as claimed.
2) = 3).Fromz= (1 —t)a+1th,t > 0 we obtain

z—a=tb-—-a), t>0.

Hence
arg(z —a) = arg(b — a).

3) = 4). The relation

t—d = arg(z —a) — arg(b — a) + 2kxn for some k € Z

arg
bh—a
Z—a . Z—a
mnliag aros — Vo I =7 CQinpo argy ~IN Y=\ it fallawwg that I — ) and
llllyllbb Cl.ls — LNJL N T dde O 1ING cus TV, &t }, 1L 1VILIVUYWD uldl A0 — U alu
b—a b—a
z—a z—a
arg = (0. Thus e RT, as desired.
o >
b—a b—a
z—a .
4) = 1).Lett = - € R*. Hence
b—a
= 1L t(h AN — (1 _ A\ 1 th <~ N
L= Tie\Ww d) = 1 Ll T U, ¢ > U

Ifr € (0,1),then M € (AB) C (AB.
Ift =1,thenz = band M = B € (AB. Finally, if # > 1 then, setting / = n IS

(0, 1), we have
b=Ilz+ (1 —-Da.

It follows that A — B — M and M € (AB.

The proof is now complete.



56 3. Complex Numbers and Geometry

Theorem 3. Suppose A(a) and B(b) are two distinct points. The following state-

ments are equivalent:

1) M(z) lies on the line AB.
z—a

Z)b_aeR.
3) There is a real number t such that z = (1 — t)a + tb.
H| T7@ TTT Iy,
b—a b-—a
|z 7 1]
5)la a 1|=0.
b b 1‘

Proof. To obtain the equivalences 1) < 2) <& 3) observe that for a point C such
that C — A — B the line AB is the union (AB U {A} U (AC. Then apply Theorem 2.
Next we prove the equivalences 2) < 4) & 5).

Z—a . . Z—a Z—a
Indeed, we have — € R if and only if — =7 .
U —da o —da \J —da,
i-a Z-a . | z-a z-7|
That is, == , or, equivalently, —  _ | =0, so we obtain that
b—a b-a b—a b-a |

2) is equivalent to 4).

Moreover, we have

z 1 z—a Z—a 0
a a 1 |=0if and only if a a 1 =0
b b 1 b—a b-a 0

The last relation is equivalent to

z—a Z—a
- = — = 0’
| b—a b—a |
so we obtain that 4) is equivalent to 5), and we are done. [
Problem 1. Let 71, 72, 23 be complex numbers such that |z1| = |z2| = |zzal = R and

22 # z3. Prove that
inlazz + (1 —a) | . | [ |
min |azy —a)zz — 21| = — 121 — 22|+ 1271 — 23|-
acR 2R

(Romanian Mathematical Olympiad — Final Round, 1984)

Solution. I.et z = azy + (1 —a)z3, @ € R and consider the points Ay, Ay, Az, A of

complex coordinates z1, 22, 23, Z, respectively. From the hypothesis it follows that the
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circumcenter of triangle A1 A2 Az is the origin of the complex plane. Notice that point
A lies on the line Ay A3, so AjA = |z — z1] is greater than or equal to the altitude A B
of the triangle A1AzA3.

\\)/<
Sy
T

/ As

Figure 3.1.

It suffices to prove that

1 1
AB=—|z — — 23l = — A1 Az - A As.
1 2R|Zl 22||z1 — 23] FpA142- A1ds

Indeed, since R is the circumradius of the triangle A;A2A3, we have
A1Ay - ArAz - AzAq
2area[A1A2A3z] 4R _ A1Ar- AsAy
ArAz B ArAz N 2R ’

AB =

as ciaimed.

[—
(%]
)
.
<
.
[N
=
=

6)=}
I
7]
O

[V}
3
o
=
—
—
=
—
]
)

0y}
—
<
(@]
=]
s
=.
o

(

( i
} if the following vectorial relation holds:
MA =k -MB.

In terms of complex numbers this relation can be written as
a—z=k(b—z2)or(1 —k)z=a —kb.

Hence, we obtain
a—kb
z= .
1 -k
Observe that for k& < 0 the point M lies on the line segment joining the points A and

B.Ifk € (0, 1), then M € (AB \ [AB]. Finally, ifk > 1, then M € (BA \ [AB].
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As a consequence, note that for k = —1 we obtain that the coordinate of the mid-
a+b

2
Example. Let A(a), B(b), C(c) be noncollinear points in the complex plane. Then

. . +b
the midpoint M of segment [A B] has the complex coordinate z3y = a—. The cen-

troid G of triangle ABC divides the median [CM] into 2 : 1 internally, hence its
complex coordinate is given by k = -2, i.e.,

point of segment [AB] is given by zy =

c+2zy a+b+c
1+2 3

G =

3.1.4 Measure of an angle

Recall that a triangle is oriented if an ordering of its vertices is specified. It is posi-
tively or directly oriented if the vertices are oriented counterclockwise. Otherwise, we
say that the triangle is negatively oriented. Consider two distinct points M1(z1) and
M>3(z2), other than the origin of a complex plane. The angle MI/OTWZ is oriented if the

points M7 and M are ordered counterclockwise (Fig. 3.2 below).

Proposition. The measure of the directly oriented angle
e — 72
M1 0M; equals arg —.
2]

Proof. We consider the following two cases.

¥ M,

M,

[

Figure 3.2.

a) If the triangle M; O M; is negatively oriented (Fig. 3.2), then
MyOM, = xOM> — xOM; = arg 2, — argz; = arg —2.
21
b) If the triangle M; O M> is positively oriented (Fig. 3.3), then

Ml/O\M2:277 —Mml =2 —argz—z,
21
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since the triangle M> O M is negatively oriented. Thus

M/l/O\A\/12=2n'—argZ—1=2n—(

22 22
27 —arg — | = arg —,
22 <1

21
as claimed.

M,
[T
/—
%
Figure 3.3.

7h = —] 4§ hen (see Figo. 3.4)
and 7z 1 1. 10en (see rig. 2.4)
o —l4i (14D —i)
—_= — = =1
71 1+ 2 ’
SO

My (-1+i) M, (1+3)
\

N

Figure 3.4.

59
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* M@

AN,

L/ »wo

Figure 3.5.

~ | =

b) Suppose that z; =i and zo = 1. Then 2 _

= —i, so (see Fig. 3.5)
4

e 3 —
My OM, = arg(—i) = 7” and My OM; = arg(i) = %

Theorem. Consider three distinct points M1(z1), M2 (z2) and M3(z3).
The measure of the oriented angle Mmg is arg s-d
23— 1

noints O. M. M’ with comp T — 73 74
ponts O, My, Hy, Wi COmp.es rdinat , 22 Zi, 23 Z1-

Mz/l\;ll\Mg = M), 0 M}. By the previous result, we obtain

Ovel,

e —
M,OM;, = arg
Z

as claimed.

Example. Suppose that z; =4 + 3i, zo =4 + 7i, z3 = 8 + 7i. Then

2 -1 4i _i(l—i)_1—|—i

z—z1 4+4i 2 27
SO
— 1+ T
M3M1M2=arg — = —
2 4
and
Mo M 2 d—iy= T
— ar = ar: —1) = —"
2M1 M3 g1+i g 7

Remark. Using polar representation, from the above result we have

3 — 21 3 — 1 3 — 21 . 3 — 21
= cos | arg + i sin | arg
2 —121 2—1 2—121 2 —11
lz3 — 21 | e T
= (cos MoM M3 + i sin Mo M1 M3).
22— 21

regver, we ]’\a‘]e
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3.1.5 Angle between two lines

Consider four distinct points M;(z;), i € {1, 2, 3, 4}. The measure of the angle deter-
73 — 11 4 — 22

or arg

. . . . 4 —22 . 3 — <1

obtained following the same ideas as in the previous subsection.

mined by the lines M; M3 and M, M4 equals arg

. The proof is

3.1.6 Rotation of a point

Consider an angle o and the complex number given by
& =cosa +isina.

Let z = r(cost + i sint) be a complex number and M its geometric image.
Form the product ze = r(cos(t + «) + i sin(f 4+ «)) and let us observe that |ze| = r
and
arg(ze) = argz + .
It follows that the geometric image M’ of ze is the rotation of M with respect to the
origin by the angle .

y
M '(ZE)(—w M
Z

[0) X

Figure 3.6.

8
Proposition. Suppose that the point C is the rotation of B with respect to A by the
angle o.
If a, b, c are the coordinates of the points A, B, C, respectively, then

c=a+ (b—a)e, wheree =cosa +isina.

Proof. The translation with vector —a maps the points A, B, C into the points
0, B', C', with complex coordinates O, b — a, ¢ — a, respectively (see Fig. 3.7). The
point C’ is the image of B’ under rotation about the origin through the angle «, so

c—a=((b—-a),orc=a+ (b— a)e, as desired. O
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Figure 3.7.

will call the formula in the above proposition the rotation formula.
Problem 1. Let ABC D and BNMK be two nonoverlapping squares and let E be the

midpoint of AN. If point F is the foot of the perpendicula
prove that points E, I, B are collinear.

‘
\
S
s
3
=
N
s
S
a
=

Solution. Consider the complex plane with origin at F and the axis CK and FB,
where F B is the imaginary axis.

Let ¢, k, bi be the complex coordinates of points C, K, B with ¢, k,» € R. The
rotation with center B through the angle 6 = r maps point C to A, so A has the
complex coordinate a = b(1 —i) +ci. Slmﬂarly, point N is obtained by rotating point
K around B through the an

o
ounad GITOUuZil Ut 2

|,

.

SO E lle on e llllC [' D as quL[CLl
Problem 2. On the sides AB, BC, CD, DA of quadrilateral ABC D, and exterior
to the quadrilateral, we construct squares of centers O, O2, O3, Oy, respectively.
Prove that
0103 L 0204 and 0103 = 0204.

naraxl nﬂl‘rl‘r/ A D/ “Af\f\li

Soiution. Let ABM M, DUNN ,CDFF and Ay DE the constructed squares

with centers 01, Oz, 03, O4, respectively.
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Denote by a lowercase letter the coordinate of each of the points denoted by an
uppercase letter, i.e., 01 is the coordinate of O1, etc.

Point M is obtained from point A by a rotation about B through the angle 6 = %;
hence m = b + (a — b)i. Likewise,

n=c+®b-c)i, p=d+(c—d)i and g=a+ (d — a)i.

It follows that

a+m a+b+(a—>b)i b+c+ (b —c)i
o1 = = , op=—
2 2 2
c+d+{c—dji d+a—+{d—aji
03 = — s and o4 = —

Then )
03 — 01 c+d—a—-b+i(c—d—a+Db) C s
= - = —i € IR",
o4—0y a+d-b—c+i(d—a—-—b+c)

so 0103 L 0,04. Moreover,

03 — 01 .
—‘ =|-il=1
[04 — 02|

hence 0103 = 0,04, as desired.

Problem 3. In the exterior of the triangle ABC we construct triangles ABR, BCP,
and C AQ such that

m(PBC) = m(CAQ) = 45°,
m(BCP) = m(QCA) = 30°,

and
m(ABR) = m(RAB) = 15°.

”

B
A E
Figure 3.8.
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P
PI
’ O3
2 D N
C
O4
0 %2 Sy
A B
01
M’ M
Figure 3.9.

Prove that
m(QRP) =90° and RQ = RP.

Solution. Consider the complex plane with origin at point R and let M be the foot
of the perpendicular from P to the line BC.

A 0

72N
(AN

Figure 3.10.

Denote by a lowercase letter the coordinate of a point denoted by an uppercase letter.
MC
From M P = M B and —— = +/3 it follows that
MP
p—m c—m

—— = and :i\/g,
b—m p—m
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hence
c+/3b b—c .

+ 1.
1443 1443

c+«/§a+ a—c .
l.
1443 1443

Point B is obtained from point A by a rotation about R through an angle 6 = 150°,

Likewise,

SO

Simple algebraic manipulations show that L-ie iR* hence QR 1 PR.Moreover,

q
|pl = lig] = |q|,so RP = RQ and we are done.

3.2 Conditions for Collinearity, Orthogonality and

N iell. 2.3 41
) € 11, 4 2,57,

Proposition 1. The points M1, M, M3 are collinear if and only if

Proof. The collinearity of the points M, My, M3 is equivalent to Mm3 S

3 — 11 . 3 — 11
{0, m}. It follows that arg € {0, 7} or equivalently e R* as
) 22— 21 22—
claimed. O
ronagition 2 ho linee M+ M-~ and Ma A are orthooonal if ond onlvy if
Proposition 2. The lines M1 M, and M3M, are orthogonal if and only if
11— 22 c iR*
73— 4
. . (7 3=} .
Proof. We have M1M> 1 M3My if and only if (M1 My, M3My) € ia, 7} This
f i) A
. . i1 — X2 TOT . 41 — 22 .
is equivalent to arg ——= € { —, — . We obtain ——= € iR". a
73— 24 22 3 —24
1 — 22

Remark. Suppose that My = My. Then M1 M, L M3M, if and only if
iR*.

Examples. 1) Consider the points M1(2—i), Ma(—1+2i), M3(—2—1i), M4(1+2i).
Simple algebraic manipulation shows that

i3 — 22

i1 — 22
i3 — 24

=i, hence MM, | M3Mjy.
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2) Consider the points M1(2 — i), Ma(—142i), M3(1 + 2i), M4(—2 —i). Then we
have a72 —i hence M1 My 1 M3M,.
73 — 24
Problem 1. Let 71, 22, 23 be the coordinates of vertices A, B, C of a triangle. If w; =

71 — 29 and wy = 73 — 21, prove that A =90° if and only if Re(w; - wy) = 0.

-~ 2 —2
Solution. We have A = 90° if and only if 2l ¢ iR, which is equivalent to
73— 21
w1 S w1 .. . wy - Wy
— € iR, ie., Re —) = 0. The last relation is equivalent to Re( 2) =
) ) —|wa|

0,1i.e., Re(wy - wy) = 0, as desired.
Proposition 3. The distinct points M1(z1), M2(z2), M3(z3), Ma(z4) are concyclic
or collinear if and only if

23— 23 23— 74

k e R*.

21—z 21—
Proof. Assume that the points are collinear. We can arrange four points on a circle in
(4 — 1)! = 3! = 6 different ways. Consider the case when My, Mo, M3, My are given
in this order. Then M1, M>, M3, M4 are concyclic if and only if

MiMaMs + MiMaMs € {37, 7).

That is,
i3 — 22 i1 — 24
arg + arg € {3m, w}.
7t — 22 73 — 24
We obtain
3 — 22 i3 — 74
—arg € {3n, },
71— 22 71 — 24
te., k < 0.

For any other arrangements of the four points the proof is similar. Note that £ > 0
in three cases and k£ < O in the other three. O

The number & is called the cross ratio of the four points M;(z1), M2(z2), M3(z3)
and M4 (z4).

Remarks. 1) The points M1, M>, M3, M4 are collinear if and only if

3 — 4

23— 22 ~ % ..
€ N ail

~ ¥
a .
1 — 22 1 — 24

c N

2) The points M1, M2, M3, M4 are concyclic if and only if

3 —22 13— 3 —22 i3 — 74

k= : € R*, but ¢ R and Z R.
i1 —22 21 —Z4 i1 —22 21 — 24
Examples. 1) The geometric images of the complex numbers 1,4, —1, —i are con-
cyclic. Indeed, we have the cross ratio k = _11—_1', : _11:_; = —1 € R* and clearly
—1—i ¢ R and -1+ 4R,
1—i 1+
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2) The points M1(2 —i), M2(3 — 2i), M3(—1 + 2i) and M4(—2 + 3i) are collinear.
—44+4 1—i N —4 +4i N
Indeed, k = ———— -=]leR"and —— =4 € R".
—14+i 4-—4i —14i

Problem 2. Find all complex numbers z such that the points of complex coordinates

7,22, 23, 2% — in this order — are the vertices of a cyclic quadrilateral.

Solution. If the points of complex coordinates z, 72,73, 7% — in this order — are the

vertices of a cyclic quadrilateral, then

2 -z _ 2 -zt
2 7]

— cR"
72—z

— 7

_1+z+z2

1
e R* ie., —1— <z+—> e R*.
z z

We obtain z + % eR, ie., z+ % =74+ % Hence (z —Z)(|z|2 —1)=0,hencez e R
or jzj = 1.

4 are collinear, hence it

If z € R, then the points of complex coordinates z, 2,23,z
is left to consider the case |z] = 1.

Let t = argz € [0,27). We prove that the points of complex coordinates
7,72, 23, z* lie in this order on the unit circle if and onlyift € (0, ZTJT) U 4777, 271) .
Indeed, ST ’

a)lfr e <0, %),then0< t <2t <3t <4t <2mor

- bl 2 A -
0 <argz <argz” <argz < argz' < 2m.

r

7 [

b)Ifz €

E)

w|

N\
),then0§4t—2n<t<2t<3t<2n’or

| s

Ogargz4 <argz < argz2 < argz3 < 2m.
2
olfr e IVT,n ,then) <3f —2m <t <4t —2m <2t <2mor
L2/

0 <argz’ <argz < argz? < argz°.

In the same manner we can analyze the case t € [7, 27).

To conclude, the complex numbers satisfying the desired property are

z =cost +isint, withz € (0, 2—”\ U (4—7[71\
\ 3/ \3 J
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3.3 Similar Triangles

Consider six points Aj(ay), Ax(az), Az(az), B1(b1), Ba(b2), B3(b3) in the complex
plane. We say that the triangles A1 Ay Az and B By Bz are similar if the angle at Ay is
equal to the angle at By, k € {1, 2, 3}.

Proposition 1. The triangles A1A2Az and By By B3 are similar, having the same

orientation, if and only if
ay —dy b2 — b]

= . 1
az — ay bz — by S
. . AlA B1B
Proof. We have ANA1A»A3 ~ AB;ByBs if and only if .1 ,2 = “1 “2 and
. . A143 b1b3
— - . lag —ai] _ |by — by az —ay
A3zA1A> = B3B; B. This is equivalent to = and arg —— =
b b ) blaa—all |3 — D] a3 — a1
_ a —a _
arg 2~ 1 We obtain - L2 L O
bz — by az — aj bz — by
Remarks. 1) The condition (1) is equivalent to
1 1 1|
ay dy das =0.
by Dby b3
2) The triangles A;(0), A>(1), A3(2i) and B1(0), By(—i), B3(—2) are similar, but

ay) —aj 1-0 1 bz—b] —i—0 l
ﬂ - = " N = N ;é 1 1 = ) n = 5
a3 — daj l — YU Zi U3 — U] —4Z— VU Z
Proposition 2. The triangles A;A> Az and By By By are similar, having opposite
) ol (e} 1 Z J 1 P J > o rr

Proof. Reflection across the x-axis maps the points Bj, B2, B3 into the points
M1(B1), Ma(by), M3(b3). The triangles BBy B3z and MM, M3 are similar and have
opposite orientation, hence triangles A; A2 A3 and My M, M3 are similar with the same
orientation. The conclusion follows from the previous proposition. |

Problem 1. On sides AB, BC, CA of a triangle ABC we draw similar triangles ADB,
BEC, CFA, having the same orientation. Prove that triangles ABC and DEF have
the same centroid.

Solution. Denote by a lowercase letter the coordinate of a point denoted by an up-

percase letter.
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Triangles ADB, BEC, CF A are similar with the same orientation, hence

d—a e—-b [f-c
b—a c¢—b a-—c

= Z’
and consequently
d=a+b—-a)z, e=b+(c—-b)z, f=c+(@—-o)z

Then
d+c+f a+b+c
3 B 3 ’
so triangles ABC and D EF have the same centroid.
Problem 2. Let M, N, P be the midpoints of sides AB, BC, CA of triangle ABC.
On the perpendicular bisectors of segments [AB], [BC], [CA] points C’, A’, B’ are

chosen inside the triangle such that
McC’ _ NA’ _ PB
AB  BC CA’

Prove that ABC and A’ B'C’ have the same centroid.

Solution. Note that from

MC' NA" PP
AB ~ BC CA

it follows that tan(m) = tan(A/’B\C) = tan(B/’C\A). Hence triangles AC’B, BA'C,
CB’A are similar and we can proceed as in the previous problem.
Problem 3. Let ABO be an equilateral triangle with center S and let A’B’O be an-
other equilateral triangle with the same orientation and S # A’, S # B’. Consider M
and N the midpoints of the segments A'B and AB'.

Prove that triangles SB'M and SA'N are similar.

(30'h IMO — Shortlist)
Solution. Let R be the circumradius of the triangle AB O and let
2 tisi T
& =cos — +isin —.
3 3

Consider the complex plane with origin at point . such that point O lies on the positive
real axis. Then the coordinates of points O, A, B are R, Re, R &2, respectively.

Let R + z be the coordinate of point B/, so R — z¢ is the coordinate of point A’. It
follows that the midpoints M, N have the coordinates

_ptza Re>+ R —z¢ _R(sz—l—l)—ze

2 2 2

<M
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._B'

Figure 3.11.

and

Now we have

R+z
..... A
—&un
2
The last relation is equivalent to & - &
and QAIAT cwa aimilar with Annagite ceiantati an
SULV NS Ve SV A Jaye il SLiiiitadl, Wil UPPUDLLU vlicutauuvln

3.4 Equilateral Triangles

Proposition 1. Suppose z1, 72, 23 are the coordinates of the vertices of the triangle
A1A2A3. The following statements are equivalent:

a) A1A2A3 is an equilateral triangle;

b)|z1 — 22l = |22 — 23l = |23 — 1]y

€) 23+ 25+ 25 = 2122 + 2223 + 23215
-2 23—
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i i i Z1+22+2

e) + + =0, where z = #;
Z—41 -2 -3 3
) 5 2 . 2m

) (z1 +ez2+¢e°23)(21 + 8722 + £23) = 0, where & = cos 5 +isin ?

1 1 1
glz z2 z3|=0

2 3 1

Proof. The triangle A1AyA3 is equilateral if and only if AjAAz is similar with

same orientation with Ay A3z A, or

‘ 1 1 1 ‘
21 22 z3 | =0,
72 723 21

thus a) & g).
Computing the determinant we obtain

i i i
O=|z21 22 z3
| 72 73 71 |

= 2122 + 2223 + 2321 — (z% + z% + z%)

—(z1 4+ e22 + €223) (21 + €222 + €23),

hence g) & ¢) & o).

Simple algebraic manipulation shows that d) < c). Since a) < b) is obvious, we

a2} & o) [
a) & €. [

The next results bring some refinements to this issue.
Proposition 2. Let 71, 72, 23 be the coordinates of the vertices A1, A2, A3z of a pos-
itively oriented triangle. The following statements are equivalent.
a) A1Ay A3 is an equilateral triangle;
)

3 o T .7
b) 23 — 721 = &(22 — 21), where &€ = ¢os g +isin—;

3
& K
ITT .. DT
c)zp — 21 = (23 — 21), where & = cos + i sin ?;
2

T
d) 71 + 670 + €223 = 0, where & = cos R + i sin 3

Proof. A1A2A3 is equilateral and positively oriented if and only if Az is obtained
T
from Aj by rotation about A; through an angle of 3 That is,

T . x
Z3=Zl+(0057+15m7) (z2 — z1)s
\ 3 3/

hence a) < b).
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A)

Al

Figure 3.12.

Sm
The rotation about Aj through an angle of 3 maps A3z into Ap. Similar considera-

tions show that a) < c¢).
'To prove that b) < d), observe that b) is equivalent to

b,)23—21+<l+i\/§)(22—2,1)—/l—iﬁ)zl—i-(l—i—iﬁ)zz.ﬂcncc
2 2 2 2 2 2
e (el (4-8)
untenten=ut|—s+ti|ot+t|-5-i5 )z
\ ~ -/ \ - =/

:Zl+(—%+i?>22
B2 R A D A EA T
2 2)\2 2 227
7/ —\ 7/ —_—

=Zl+(\—%—I—i%/)zz—mﬁ-(\%—i%)zgzo,

O

orb) & d).
Proposition 3. Let 71, 22, 23 be the coordinates of the vertices Ay, Aa, Az of a neg-

atively oriented triangle.
The following statements are equivalent:
a) A1AzA3 is an equilateral triangle;

S .. 5w

b) z3 — z1 = &(z2 — 71), where & = cos BN + i sin T,’
n . .

c)zp —z1 = €(z3 — 21), where & = cos = + i sin =

3 20 .. 27w

d)z1 +¢&°z70+ez3 =0, wheres:cosT—}—zsmT.
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Proof. Equilateral triangle A1 A A3 is negatively oriented if and only if AjAzAzisa
positively oriented equilateral triangle. The rest follows from the previous proposition.
O

Proposition 4. Let 71, z2, 23 be the coordinates of the vertices of equilateral triangle
A1ArAs. Consider the statements:

1) A1A>2Az is an equilateral triangle;

2z y=- 3 =232/

Jd=n nadd=z- 2z
Then2) = 1),3) = I)and2) < 3).

Proof. 2) = 1). Taking the modulus of the terms in the given
J g4 4 e > o
lz1] - [Z2| = 22| - [z3] = |z3] - |z11,
or equivalently

|z1] - |z2] = lz2| - |z3] = Iz3] - |z1]-

This implies

r=|z1] = |z2| = |z3]
and
I S
i1=—-— 2=—, I3=—.
71 o) 73

Returning to the given relation we have
a_n_a
@
or
Z% = 2213, Z% = 2311, Z% = <122-

Summing up these relations yields

2 2 2
1+ 25+ 5 = ntp + 2223 + 32,

=

cm tiiamala AL A A te ot o
SO U1allgle A]A2A3 15 culldlcrdl.

Observe that we have also proved that 2) = 3) and that the arguments are re-
versible; hence 2) < 3). As a consequence, 3) = 1) and we are done. O
Problem 1. Let 71, 72, 23 be nonzero complex coordinates of the vertices of the triangle
A1A2A3. Ifz% = 7273 and Z% = 7123, Show that triangle A1A2As3 is equilateral.

Solution. Multiplying the relations z% = 7373 and z% = 7123 yields z%z% = Z]ZQZ%,
and consequently 7122 = z%. Thus

2
z% + z% + 253 = 2122 + 2223 + 2321,

so triangle Aj Ay A3z is equilateral, by Proposition 1 in this section.
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Problem 2. Let z1, 22, 23 be the coordinates of the vertices of triangle AjA2Az. If
|z1] = |z2] = |z3| and z1 + z2 + z3 = O, prove that triangle Ay A A3z is equilateral.

Solution. The following identity holds for any complex numbers z; and z; (see
Problem 1 in Subsection 1.1.7):

2 2 2 2
lz1 — 221” + |21 + 221 = 2(|z1|” + |22[9). (D
From z1 4 z3 + z3 = 0 it follows that z; 4+ z2 = —z3, s0 |21 + z2| = |z3]. Using
the relations 1zi] = lzo] = lzzl and (1) we cet 171 — 7512 = 317112, Analogously. we
|(,1| | zl |(,j| aliu \L} ywuo s\/l, | 1 (,Zl Jl(,ll . nucuuguusl_y, ywo

find the relations |z — z3|2 = 3|zl|2 and |z3 — zl|2 = 3|zl|2. Therefore |71 — 72| =
lzo — z3| = |z3 — z1], L.e., triangle A; A, A3z is equilateral.
1

Alternative solution 1. If we pass to conjugates, then we obtain — + —+ — = 0.
<1 2 23

Combining this with the hypothesis yields z% + z% + Z% = 7122 + 2223 + 2321 = 0,
from which the desired conclusion follows by Proposition 1.

Alternative solution 2. Taking into account the hypotheses |z1] = |z2] = [z3] it
follows that we can consider the complex plane with its origin at the circumcenter of
triangle A1A2Az. Then, the coordinate of orthocenter Hiszg =21+ 22+ 23 =0 =
zo. Hence H = O, and triangle A1 A A3 is equilateral.

Problem 3. In the exterior of triangle ABC three positively oriented equilateral
triangles AC'B, BA'C and CB’A are constructed. Prove that the centroids of these
triangles are the vertices of an equilateral triangle.

(Napoleon’s problem)

Solution.
R’

/\
S\

B

Figure 3.13.

Let a, b, ¢ be the coordinates of vertices A, B, C, respectively.
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Using Proposition 2, we have
a+ce+be?=0, b+de+ce?=0, c+be+ae’?=0, (D
where @', b', ¢’ are the coordinates of points A’, B/, C’.

The centroids of triangles A’BC, AB’C, ABC’ have the coordinates

//_1 / //_1 7 //_1 ’
a —g(a +b+c), b _§(a+b +c¢), ¢ —g(a-l—b—i—c),

respectively. We have to check that ¢” + a”& + b”e? = 0. Indeed,

3 +d"e+ b =(a+b+)+ @ +b+ e+ (a+b +)e?
=(b+de+ce®)+ (c+be+ac®e+ (a+ e+ beH)e? = 0.
Problem 4. On the sides of the triangle ABC we draw three regular n-gons, external
to the triangle. Find all values of n for which the centers of the n-gons are the vertices

of an equilateral triangle.
(Balkan Mathematical Olympiad 1990 — Shortlist)

Solution. I.et Ag, By, Cp be the centers of the regular n-gons constructed externally
on the sides BC, CA, AB, respectively.

P
27/n
A
Co
27/n

AV ~J

B\ /C

N/

\/

Ap
Figure 3.14.

e 2
The angles ACyB, BAqC, AByC have the measures of _7r Let
n

2
£ = C0S — +181n —
n n

and denote by a, b, ¢, ag, b, co the coordinates of the points A, B, C, Ag, By, Co, re-

spectively.
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Using the rotation formula, we obtain
a=co+ (b —coe;

b =ayp+ (c —ap)e;
¢ =bog+ (a — bo)e.
Thus

b— - —b
ce b C age a &

aop = s 0= , Co=

l—¢ l—¢ l—¢

Triangle Ao BoCy is equilateral if and only if
a(z) + bg + cg = agpbo + boco + coap.
Substituting the above values of ag, bo, cop we obtain
(b — ce)* + (¢ —ae)? + (a — be)?

= (b —ce)(c—ae)+ (c —ae)(a —be)+ (a — be)(c — as).

This is equivalent to

A+e+eD)[@—02+® -2+ (C—a)=0.

o 27

It follows that 1 + & + &2 = 0, i.e., — = % and we get n = 3. Therefore n = 3 is
n
the only value with the desired property.

3.5 Some Analytic Geometry in the Compiex Piane
3.5.1 Equation of a line
P

position 1. The equation of a line in the complex pl

Ax +By+C =0,
z+7z

where A, B, C € R and A? + B2 # 0. If wesetz = x + iy, then x = >

z—2
y:

and

—. Thus,
i
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or equivalently

_{A+ Bi A — Bi
Z +z +C=0.

2 2
A — Bi "
Leta = € C" and B = C € R. Then
o-7+az+ B =0,
as claimed. O

If « = @, then B = 0 and we have a vertical line. If « # @, then we define the

angular coefficient of the line as

gl
gl

A o+ o+a,
m=—-——= = i.
B o — o —

i

gl
gl

Proposition 2. Consider the lines dy and dy with equations

1°24+o1-z+p1 =0

R

and
Wy Z4oax-z24+ P =0,

respectively.
Then the lines di and d» are:

. Lo 0
1) parallel if and only if — = —;
aq %]
2) perpendicular if and only if ] + 22 _ 0;
oy Az
. )
3) concurrent if and only if — # —.
ar oo

Proof. 1) We have dj ||d> if and only if m; = m». Therefore il B gli -2 + a2i

o] — o oy — 0y ’
— —_ o] @
S0 ar0] = 1o and we get — = —.
aq o
2) We have di L dy if and only if mimy = —1. That is, apor; + ooy = 0, or
o] %)
—+ —=0.
1o %)

3) The lines d; and d, are concurrent if and only if m; # m,. This condition yields
CIC)
o %) ’

The results for angular coefficient correspond to the properties of slope. O

The ratio mg = ~ 2 is called the complex angular coefficient of the line d of equa-
) o

a-Z4+a-z+p=0.
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3.5.2 Equation of a line determined by two points

Proposition. The equation of a line determined by the points P1(z1) and Py(zp) is

z1 71 1
2 72 1 |=0.
z z 1

Proof. The equation of a line determined by the points Pj(x1, y1) and Pa(x2, y2) in
the cartesian plane is

xp oy 1 ‘
X2 W 1 :0>
‘ x y 1 ‘
Using complex numbers we have
21+ -7 |
2 2i
2+ 22 zz—.zz 1 l=0
2 2i
71 +72 2—2 ]
2 2i
if and only if
a4+ u-—-71 1
n 22+7 -7 1 |=0.
| o247 z-7 1
That is,
‘ z1 71 1 ‘
2 72 1 |=0,
z 7 1
as desired. O

Remarks. 1) The points M1(z1), M2(z2), M3(z3) are collinear if and only if

z1 71 1
7 2 1 [=0.
73 73 1

2) The complex angular coefficient of a line determined by the points with coordi-

ates z; and z, is
~1 L

22—
m = .
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Indeed, the equation is

z1 71 1
72 72 1|=0C un+ni+zi—i2—uz—2221=0
7z 73 1

& W —z2) —z@ -7+ a2 — 20 =0.
Using the definition of the complex angular coefficient we obtain

2 — 21
m=—_——:
{2 — K1

3.5.3 The area of a triangle

Theorem. The area of triangle Aj Ay Az whose vertices have coordinates 71, 72, 23 IS
equal to the absolute value of the number

a7z 1‘
o omot o)
4 2

7z 73 1

Proof. Using cartesian coordinates, the area of a triangle with vertices (x1, y1),

(x2, ¥2), (x3, ¥3) is equal to the absolute value of the determinant

1‘361 o1 ‘
A=z1x y 11
2
x3 y3 1
Since
%+ Tk — Zk k=123
Xk = s = — =1,2,
k B Yk 2
we obtain
! a+7 zi—z1 1] 1|21Z:11I
A=—|2004+7 22— 1 |=—— |20 T3 1
8i - - 4i
n+73 3-23 1 zz 3 1
S 71 1
==z 73 1|,
g4 2 =2
73 3 1

as claimed. O
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It is easy to see that for positively oriented triangle AjAzA3 with vertices with

coordinates z1, z2, z3 the following inequality holds:

; 71 71 1
- 2 1 0.
Z 2 22 >

73 73 1

Corollary. The area of a directly oriented triangle A1AyAz whose vertices have

coordinates 71, 72, 73 18
1 _ _ _
arealA1A2A3] = 5 Im(z1z2 + 7223 + Z321)- 2

Proof. The determinant in the above theorem is

<] <] 1
72 72 1 |=(Z2+ 2273 + 2371 — 7223 — 2123 — 2221)
P

=2iIm(21Z22 + 2273 + 2377) = —2i Im(Z722 + 2223 + Z321)-

Replacing this value in (1), the desired formula follows. a

We will see that formula (2) can be extended to a convex directly oriented polygon
A1A;--- A, (see Section 4.3).

Problem 1. Consider the triangle A1 Ay Az and the points M1, My, M3 situated on lines
A Az, A1A3, A1Ay, respectively. Assume that M1, M, M3 divide segments [AAz],
[A3A1], [A1A2] into ratios A1, A2, A3, respectively. Then

area[M1M2M3] N 1-— )\1)\.2)\3
area[A1A2A3] (1 — A1 —A)(1 —A3)

3)

Solution. The coordinates of the points My, M>, M3 are

ay — A1a3 asz — )Lza] al — )L3a2
m=—————- m; = —m—m—, mi3 = ————
1— X 1—2 1 —23
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Applying formula (2) we find that

1
area[M1 My M3] = 5 Im(mymy + mams3 + mamy)

(@3 — Aqay)(ar — Azap)
(I =2ap(1 =22 (I =22)(1 = A3)

(a1 — Azaz)(az —11a3)-‘
(1 =231 —=2p)

1 1 — AiAoA
:—Im|_ 17243

(@raz + aaaz +@a1)—|
2 LA =A== 23) ]

2

1 [(a_z — Aaz)(az — Aqay)
Im

1 — XiA2A3
= area[A1 Ay As].
1 =ADA =22)A — A3)

Remark. From formula (3) we derive the well-known theorem of Menelaus: The
points M1, My, M3 are collinear if and only if Ahad3 = 1, i.e.,

MiAy M>Aj 1VI3A]_1
MiA3s M)Ay M3A;

Problem 2. Let a, b, ¢ be the coordinates of the vertices A, B, C of a triangle. It is

b4
known that |a| = |b| = |c| = 1 and that there exists o € <0, —> such that a +
bcosa + csina = 0. Prove that

I+

<
1

1 < areal[ABC] <

(Romanian Mathematical Olympiad — Final Round, 2003)
Solution. Observe that

. N o) - . o)
l=|a|”=|bcosa + csmua|”
= (bcosa + csina)(bcosa + Csinw)

= |b|20052(x + |c|2 sin® o + (b€ +be) sinw cos o

2 C2

cos o sina.

It follows that % 4 ¢ = 0, hence b = =ic. Applying formula (2) we obtain
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1 —
area| ABC] = E' Im@ab + bc +ca)|
1 - — . - .
= §| Im[(—bcosa —Csina)b + bc —¢(bcosa + csinw)]|
1 . _ . — -
= §| Im(—cosa — sina — besina — bccos o + b))
1 — . o 1 _ . -
= §| Im[bc — (sin o + cos @)bT]| = §| Im[(1 4 sin« + cos a)bc]|
1 — 1
= 5(1 + sina + cos )| Im(bc)| = 5(1 + sina 4 cos &) | Im(£ic?)|

1 1
= E(l + sina + cos )| Im(%i)| = 5(1 + sina + cos o)

:%|:1+«/§(gsina+\/7§cosa>:| :%<1+\/§sin<a+%>).

L. T T 37 2 . T
Taking into account that — < o + — < — we get that — < sin (oz + 7) <land
4 4 2 \ 4/

the conclusion follows.

3.5.4 Equation of a line determined by a point and a direction

Proposition 1. Let d : wz + o - z + B = 0 be a line and let Py(zo) be a point. The
equation of a line parallel to d and passing through point Py is

Ol/_ _
z—z0=——(7 —20).
o

Proof. Using cartesian coordinates, the line parallel to d and passing through point

Py(x0, yo) has the equation

This is equivalent to (¢ —®)(z — 20 —Z +20) = (@ +@)(z +7 — 20 — Z0), or

o
a(z—zg):—E(E—E).Weobtainz—z()z—;(Z—E). O
Proposition 2. et d : oz +a -7+ B = 0 be a line and let Py(zp) be a point. The line

passing through point Py and perpendicular to d has the equation 7 —zo = g(E —Z0)-
o
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Proof. Using cartesian coordinates, the line passing through point Py and perpen-

dicular to d has the equation

—
)’—J’O——l—.'a_'_a(X—xo)‘

Then we obtain

z2—7 20—720 .a—&(z+2 ZO+%)
— —t _— .

2i 2 a4a@\ 2 2
Thatis, (0 +@)(c —20 —Z+7Z0) = —(@ —@) (g — 20 +Z —20) or
= P N - -\ __ /= =/ e LT L e T
=)\ T+ U —0) =\~ )\~ 1T UTA).
We obtain a(z — z0) = @(Z — 7o) and z — z0 = 5 (Z — 20)- O

3.5.5 The foot of a perpendicular from a point to a line

Proposition. Let Py(zo) be a point and let d : oz + az + B = 0 be a line. The foot of
the perpendicular from Py to d has the coordinate
azo —aZp — f

2a ’

Proof. The point z is the solution of the system

d-7+a-z4+ =0,
a(z —z0) = (7 — 20)-

- —az—p
7= —-".
Substituting in the second equation yields
a7 —az0 = —o7 — B —a-20-
Hence o
. azp—az0— P
=",
20
as claimed. O

3.5.6 Distance from a point to a line

Proposition. The distance from a point Py(zp) to alined : @ -7+ o -2+ p =0,

a € C* is equal to
lazo + @ - 20 + B

24/ a -

EaY
1J =
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Proof. Using the previous result, we can write

azp —a-70 — P
200

D= —20

_|—azo—ozo — B
2a

_la-zo+ozo+ Bl |azo +azo + B

2o LT
3.6 The Circle

W
(@)
[o—
T

e
c
1)
=,
o
=
o
=
jav)
o
.
=
[¢]
—
(¢]

wherea € Cand B € R.

Proof. The equation of a circle in the cartesian plane is

x>+ y 4 mx4ny+p=0,

m? + n?
m,n,pelR, p<
4
Setting x = Z_‘_Zandyzz_‘zwe obtain
2 2i
z2+72 z2—Z
|z|2+mT+n —+p=0
or
_ m—ni _m+ni
z-72+72 +z p=0
2 2

Then the equation is equivalent to

@T+oa)z+a) =r’

3
3

y:—&:————i

o}
\S]
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the equation of the circle with center at y and radius r is
@-Pe—y)=r’

Problem. Let z1, 22, 23 be the coordinates of the vertices of triangle A1AyAsz. The

coordinate 7o of the circumcenter of triangle A1 A2A3 is

1 1 1
2 @
| 121 |z |z |
o = . (D
1 1 1
Z1 2 23
71 22 3

Solution. The equation of the line passing through P (zo) which is perpendicular to
the line A; A, can be written in the form

2(Z1 —72) + 2(z1 — 22) = z0(z1 — Z22) + Z0(21 — 22)- 2

Applying this formula for the midpoints of the sides [A;A3z], [A;A3] and for the lines
Az A3z, A1 Az, we find the equations

_ — — 2 2
2(22 — 73) + 222 — 23) = |z22|” — |z3|

— = 2 2
2(z3 —71) +2(z3 — 21) = |3]° — |z1]”

By eliminating 7 from these two equations, it follows that

z[(Z2 — 73) + (T3 — Z1)(22 — z3)]

= (21 — 2) (22 — |z317) + (22 — ) (3 — 211,

hence
0 T T T A U T B

<1

71
[

Z

Nl [Gl

[\»)

Nl al

N

and the desired formula follows.

Remark. We can write this formula in the following equivalent form:

o = 21Z1(22 — 23) + 2222(23 — 21) + 2323(21 — 22)
1 1 1
71 22 73

3)

| 21 22 23 |
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3.6.2 The power of a point with respect to a circle

Proposition. Consider a point Py(zo) and a circle with equation
2 Z+a-z4+a-7+p =0,

fora e Cand B € R
The power of Py with respect to the circle is

p(z0) = z0-20 +azo+x - 20 + B.

Proof. Let O(—w) be the center of the circle. The power of Py with respect to the
circle of radius r is defined by p(zp) = OPO2 — 72, In this case we obtain

p(zo) = OP} —1* = |20 +@|* —r? = 20+ %0 + azo + a%0 + a@ — a@ + B

=z0-20+azo+a-70+ B,

[
1723
«
[N
>
=
=
(4]
(o N
d

Z.E+al.z+a_].2—|—ﬂ1:0 and Z-E+0(2-Z+05_2'3+/32:0’

where a1, 02 € C, f1, B2 € R, their radical axis is the locus of points having equal

£

powers with respect to the circles. If P(z) is a point of this locus, then

2 Z24+oiz+or-z2+ =27+ az+ 0224 Pa,

<
z
=.
o
=
-
w2
c
=
(¢
[¢]
£
[
&

3.6.3 Angle between two circles
The angle between two circles with equations
z-Z+a1-z+01-7+p1=0
and
z:Z+ap-z+a2- 72+ B2 =0, oa,ap€C, B1,peR,
is the angle 6 determined by the tangents to the circles at a common point.

Proposition. The following formula

B1+ B2 — (ajaz + aqaep)

21’ 1

cosf =

holds.
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(@
N

Figure 3.15.

Proof. Let T be a common point and let O1(—ay), O2(—a3) be the centers of the
circles.
The angle 6 is equal to OTT\OQ orw — OTT\OZ, hence

{473 - 0105

27‘1 r

@1 — i + o — B — [a] — @

1B+ B2 — (10 + @)
2?’172 ’

as claimed. O

Note that the circles are orthogonal if and only if

B1+ B2 = a1 + @rn.
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Problem 1. Let a, b be real numbers such that |b| < 2a®. Prove that the set of points

with coordinates z such that
122 — a?| = |2az + b

is the union of two orthogonal circles.
Solution. The relation
122 — a?| = 2az + b
is equivalent to
122 — a®? = |2az + b)?, ie.,
(22 —aH (@ - @) = Qaz +b)(2a7T + b).

We can rewrite the last relation as

lz[* —a®(2? + 75 + a* = 4a?|2)? + 2ab(z +7) + b2, ie.,

2

lzl* — 1z + 2% — 2271+ a* = 4a%|2? + 2ab(z +7) + b

N

Hence
lz|* = 2d%|z* + a* = a®(z +D)? + 2ab(z +2) + b2, e,

(z]* = a®? = (a(z +7) + b)~.

It follows that

z-E—azza(z—i—E)—i—borz-Z—az: —a(z+7) —b.
This is equivalent to

z—a)T—a)=2a’+bor(z+a)T+a)="2a>—b.

Finally
lz —al> =2a’ + bor|z+a|* =24 — b. (1
Since 5| < 24, it follows that 24’ + b > 0 and 2a” — b > 0. Hence the relations
(1) are equivalent to

|z —a| =+v2a? +bor|z+a|l=+2a% —b.

Therefore, the points with coordinates z that satisfy |22 — a?| = |2az + b lie on

two circles of centers C; and Cy, whose coordinates ¢ and —a, and with radii Ry =

/2a? 4+ b and Ry = +/2a? — b. Furthermore,

C1C? = 4a® = (/242 + b’ + (V2% — b)* = R} + R3,

hence the circles are orthogonal, as claimed.
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More on Complex Numbers

and Geometry

4.1 The Real Product of Two Complex Numbers

The concept of the scalar product of two vectors is well known. In what follows we
will introduce this concept for complex numbers. We will see that in many situations
use of this product simplifies the solution to the problem considerably.

Let a and b be two complex numbers.
Definition. We call the real product of complex numbers ¢ and b the number given

by

1 —
a-b= —(ab+ab).
Z

It is easy to see that
- 1 -
a-b=—=(ab+ab)=a-b;
L

hence a - b is a real number, which justifies the name of this product.

The following properties are easy to verify.

Proposition 1. For all complex numbers a, b, c, z the following relations hold:
Da-a=|a

2)a-b=0>b-a; (the real product is commutative).

3ja-(b+c)=ua-b+a-c; (the real product is distributive with respect to addition).
4) (xa)-b=ala-b)=a- (ab)forall o € R.
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5)a-b = 0ifand only if OA L OB, where A has coordinate a and B has
coordinate b.

6) (az) - (bz) = |z[*(a - b).

Remark. Suppose that A and B are points with coordinates a and b. Then the real

product a - b is equal to the power of the origin with respect to the circle of diameter
AB.

a+b . . .
Indeed, let M (T) be the midpoint of [AB], hence the center of this circle, and
: | T e R
fletr = —AB = §|a — b be the radius of this circle. The power of the origin with

respect to the circle is

OM?— 2 — a+b 2_ a—bl?
2 2
(a+by@+b (a—b)a—b) ab+ba
B 4 N 4 I

as claimed.

Proposition 2. Suppose that A(a), B(b), C(c) and D(d) are four distinct points.
The following statements are equivalent:

1)AB 1 CD;

2)b—a) - (c—d)=0;

— b _
3) 4 cir* (o1, equivalently, Re( a> =0).
d—c d—

Proof. Take points M(b — a) and N(d — c¢) such that OABM and OCDN are
parallelograms. Then we have AB 1 CD if and only if OM 1L ON. Thatis,m - n =

(b —a)-(d —c) =0, using property 5) of the real product.

~

The equivalence 2) < 3) follows immediately from the definition of the real

product. O

mla;mos I 4+ hh A e ~
PLMILC. IJ LL, U, C ur C
the coordinate h = a + b + c.

Proof. Using the real product of the complex numbers, the equations of the altitudes
AA’, BB', C(’ of the triangle are

AA :(z—a)-(b—c)=0, BB : (z—b)-(c—a)=0, CC': (z—c)-(a—bh)=0.

We will show that the point with coordinate # = a + b + ¢ lies on all three altitudes.
Indeed, we have (h —a) - (b —c¢) = O if and only if (b + ¢) - (b — ¢) = 0. The last

1, . . . 1 P 7 1 ~ v RN A L B T _ 1
relation is equivalent to b - b — ¢ - ¢ = 0, or [b|* = |c|*. Similarly, H € BB’ and
H € C(’, and we are done. O
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Remark. If the numbers a, b, ¢, 0, h are the coordinates of the vertices of triangle
ABC, the circumcenter O and the orthocenter H of the triangle, then 7 = a+b+c—2o0.

Indeed, taking A’ diametrically opposite A in the circumcircle of triangle ABC, the
quadrilateral H BA’C is a parallelogram. If {M} = HA’ N BC, then

_b+c zp+zy zmt20-—a
22 2
Problem 1. Let ABC D be a convex quadrilateral. Prove that

,le,zg=a+b+c—2o.

iM

AB?> + CD? = AD? + B(C?

ifand only if AC L BD.

Solution. Using the properties of the real product of complex numbers, we have

AB? + CD? = BC? + DA?

b bt (d—0V(d—c)=(c—b)elc—P+ila—dD.(a—d
& WA WA YA S v RN v T AW Wt AW .
That is,
a-b+c-d=b-c+d-a
and finally

(¢c—a)-(d—b)=0,
or, equivalently, AC L BD, as required.

Problem 2. Let M, N, P, O, R, S be the midpoints of the sides AB, BC, CD, DE,
EF, FA of a hexagon. Prove that

RN?=MQ*+ P§?

ifandonlyif MQ L PS.
(Romanian Mathematical Olympiad — Final Round, 1994)

Solution. Let a, b, ¢, d, e, f be the coordinates of the vertices of the hexagon. The
points M, N, P, Q, R, S have the coordinates

2 ’ n 2 k) P= 2 k)
d+e r_e—l—f s_f—l—a
20 2 T2

a+b b+c c+d
m = =

q:

respectively.
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Figure 4.1.

Using the properties of the real product of complex numbers, we have
RN’ =MQ*+ PS°

if and only if
e+f—-b—-c)-(e+f—-b—-0)
=d4+e—a-b)y-d+e—a-b)+(f+a—c—-d)-(f+a—c—d).
That is,
d+e—a—b)-(f+a—c—d) =0;
hence MQ L PS, as claimed.
Problem 3. Let A1A;- -+ Ay be a regular polygon inscribed in a circle of center O

and radius R. Prove that for all points M in the plane the following relation holds:

n
N Vas a2 oS Ve
Z 11Ak=n(U11
k=1

Solution. Consider the complex plane with origin at point O and let Reg be the
coordinate of vertex Ay, where &; are the nM-roots of unity, kK = 1,...,n. Let m be
the coordinate of M.

Using the properties of the real product of the complex numbers, we have

n n
> MA} = (m— Rex) - (m — Rey)
k=1 k=1

(m-m—2Rsk-m+R28k-8k)

n
k=1

n n
— njm? —2R(ng) cmA R Jer?
k=1

k=1
=n-0OM?+nR?> =n(OM?+ R?),
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12
since Zsk =0.
k=1

Remark. If M lies on the circumcircle of the polygon, then

n
> MA} =2nR’.
k=1
Problem 4. Let O be the circumcenter of the triangle ABC, let D be the midpoint of
the segment AB, and let E is the centroid of triangle AC D. Prove that lines CD and
OE are perpendicular if and only if AB = AC.
(Balkan Mathematical Olympiad, 1985)

Solution. Let O be the origin of the complex plane and let a, b, ¢, d, e be the coor-
dinates of points A, B, C, D, E, respectively. Then

_a+b _a+c+d 3a+b+2c
B B 3 B 6 '
Using the real product of complex numbers, if R is the circumradius of triangle

ABC, then

d and e

a-a=b-b=c-c=R%
Lines CD and DE are perpendicular if and only if (d — ¢) - ¢ = 0 That is,
(a+b—2¢)-Ba+b+2c)=0.
The last relation is equivalent to
3a-a+a-b+2a-c+3a-b+b-b+2b-c—6a-c—2b-c—4c-c=0,

that is,
a-b=a-c. (D)

On the other hand, AB = AC is equivalent to

b—al>=|c—al’
That is,
b-—a)-b-—a)=(c—a) (c—a)
or
b-b—-2a-b+a-a=c-c—2a-c+a-a,
hence

a-b=a-c. 2)
The relations (1) and (2) show that CD L OF if and only if AB = AC.
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Problem 5. Let a, b, ¢ be distinct complex numbers such that |a| = |b| = |c| and
|b+c—al=]lal
Prove that b 4+ ¢ = 0.

Solution. Let A, B, C be the geometric images of the complex numbers a, b, c,
respectively. Choose the circumcenter of triangle ABC as the origin of the complex

plane and denote by R the circumradius of triangle ABC. Then
aﬁ:bE:cE:Rz,
and using the real product of the complex numbers, we have
|b+c—a|=|a|if and only if |b 4+ ¢ — a|2 = |a|2.

That is,
b+c—a)-b+c—a)=|al, ie.,

2 2 a2 A - o2
@l +b1"+cI"+2b-c—2a-c—2a-b=|al".

2R*+b-c—a-c—a-b)=0, ie.,
a-a+b-c—a-c—a-b=0.
It follows that (@ — b) - (@ — c¢) = 0, hence AB L AC,ie., ﬂ\c = 90°. Therefore,

[BC] is the diameter of the circumcircle of triangle ABC,sob + ¢ = 0.

Problem 6. Let E, F, G, H be the midpoints of sides AB, BC, CD, DA of the convex
quadrilateral ABC D. Prove that lines AB and C D are perpendicular if and only if

BC? + AD? = 2(EG? + FH?).

Solution. Denote by a lowercase letter the coordinate of a point denoted by an up-
percase letter. Then

a+b b+c c+d d+a
e =

L f=2rC g, drd
o e 8T 2

Using the real product of the complex numbers, the relation
BC? + AD? =2(EG* + FH?)

becomes

(c=b)y-(c—=b)y+d—-a)-d—a)
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1 1
:z(c+d—a—b)-(c+d—a—b)+§(a+d—b—c)-(a+d—b—c).

This is equivalent to

c-c+b-b+d-d+a-a—2b-c—2a-d
=a-a+b-b+c-c+d-d—2a-c—2b-d,
or
a-d+b.-c=a-c+b-d.

The last relation shows that (¢ — b) - (d —¢) = O if and only if AB L CD, as
desired.
Problem 7. Let G be the centroid of triangle ABC and let A1, By, C; be the midpoints
of sides BC, CA, AB, respectively. Prove that

MA? + MB? + MC? + 9MG? = 4(MA3 + MB} + MC?)

for all points M in the plane.
oW _as ™ e L e e e e [ L,
Solution. Denote by a lowercase letter the coordinate of a point denoted by an up-

percase letter. Then

a+b+c b+c c+a a+b
:fa 1= ~ s blz ~ s C1: Y .
o L Z Vs

Using the real product of the complex numbers, we have

MA? + MB? + MC? + 9MG?
=m-a)- m—a)+m—Db)-(m—-Db)+m—c)-(m—rc)

a+b+c a+b+c

=12/m? —8a+b+c)-m+2(a+ b+ |c|)+2a-b+2b-c+2c-a.
On the other hand,
4MAT + MB} + MC?)
b+c b+c c+a
(=) (= 5) + (- 5)
c+a a+b a+b
Am— +|\m— |\m—
2 2 2

=12/m? =8a+b+c)-m+2(al*+ B>+ |c|?)+2a-b+2b-c+2c-a,

so we are done.
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Remark. The following generalization can be proved similarly.
Let AjA3 - - A, be apolygon with the centroid G and let A;; be the midpoint of the
segment [A;A;],i < j,i,j€{l,2,...,n}
Then
(n—2) ZMAk +n’MG? = 42 M A7,
k=1 i<y
for all points M in the plane. A nice generalization is given in Theorem 5, Section 4.11.

A N rme. . o 1 We___ A__ 4 _LOLrT___ o _____ T __ ANT_____T__ ___
4.4 11C LOMPpICX rroauct oI 1woO Lompicx Numbers
Tha ~arage nrodiiet of two veetore ig a cantral canecont in veetor alcoahra with niimaronig
11C CIOSS ProGuct 01 tws VECIOTS 15 a Cliiirdr CONCCP il VECIOT d1glord, wiul NUiiicrous

applications in various branches of mathematics and science. In what follows we adapt
this product to complex numbers. The reader will see that this new interpretation has
multiple advantages in solving problems involving area or collinearity.

Let a and b be two complex numbers.

Definition. The complex number
1 _ —
axb= E(ab—ab)

is called the complex product of the numbers a and b.
Note that . .
axb+axb= %(ﬁb—a@)—f—%(a@—ﬁb) =0,
so Re(a x b) = 0, which justifies the definition of this product.
The following properties are easy to verify:

Proposition 1. Suppose that a, b, ¢ are complex numbers. Then:

L —Nifamdaanluifa —Naonrh — DN aera — Yh vohore ) 70 7 vord mimmbor
1/ a X o= v LJ (224272 UILL‘/V LJ U —vuvurv —vuuvuru — N, VVILCI AN U reur rnwrnuct
2)a x b = —b x a; (the complex product is anticommutative).

3)ax (b+c)=axb+a x c(the complex product is distributive with respect to
addition).
4)a(a x b) = (aa) x b =a x (ab), for all real numbers a.

.)} 1f A\U,) ana p\p) dre Ulbllﬂ(,l pUH’Ltb other than the UILg”’L thena x b = O lfai’ld

only if O, A, B are collinear.

Remarks. a) Suppose A(a) and B(b) are distinct points in the complex plane, dif-
ferent from the origin.

The complex product of the numbers @ and b has the following useful geometric
interpretation:

T

b { 2i - areal AOB], if triangie O A B is positively oriented;
axb=
i —2i -areal AOB], if triangle O AB is negatively oriented.
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Figure 4.2.
Indeed, if triangle O AB is positively (directly) oriented, then

2 -arealOAB] =i - OA- OB -sin(AOB)

. . b , b\ lal
=ila|-|b|-sin{larg— ) =i-|a|-|b|-Im|—)-—
a a |b]

1 2(b E)_l_ _
—§|a| \E_: —Z(ab—ab)—axb.

In the other case, note that triangle O BA is positively oriented, hence
2i -arealOBA]l =b xa = —a x b.

b) Suppose A(a), B(b), C(c) are three points in the complex plane.
The complex product allows us to obtain the following useful formula for the area

1
T(QXb_i_b X c+cxXa),
1
if triangle ABC is positively oriented;

arealABC]| =

Moreover, simple algebraic manipulation shows that
1 -
areal AB(C] = 3 Im(ab + bc + ca)

if triangle ABC is directly (positively) oriented.

To prove the above formula, translate points A, B, C with vector —c. The images
of A, B, C are points A’, B’, O with coordinates a¢ — ¢, b — ¢, 0, respectively. Trian-
gles ABC and A’B’ O are congruent with the same orientation. If ABC is positively
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oriented, then

area[ABC] = area| OA'B'] = %((a —c)x (b—c¢)
:i‘((a—c)xb—(a—c)xc):l,(cx(a—c)—bx(a—c))
2i 2i

1 1
=T(cxa—cxc—bxa+b><0)=T(aXb"'bXC"'Cxa)’
i 1

as claimed.

The other situation can be similarly solved.

Proposition 2. Suppose A(a), B(b) and C(c) are distinct points. The following
statements are equivalent:

1) Points A, B, C are collinear.

2)(b—a)x(c—a)=0.

3Jaxb+bxc+cxa=0.

Proof. Points A, B, C are collinear if and only if areal ABC] =0, 1ie,a x b+ b x
¢ + ¢ x a = 0. The last equation can be written in the form (b —a) x (c —a) =0.0

Proposition 3. Let A(a), B(b), C(c), D(d) be four points, no three of which are
collinear. Then AB||CD if and only if (b —a) x (d —c¢) = 0.
Proof. Choose the points M (m) and N (n) such that OABM and OCDN are paral-

lelograms; thenm = b —a andn =d — c.
Lines AB and CD are parallel if and only if points O, M, N are collinear. Using

property 5, this is equivalenttoO =m xn = (b —a) x (d — ¢). a
W bV on 4 Dot TY o I T 12 e o2 T AT cocn T ALY o Lile ot e o ADLY T 4de s
IITODICHL L. FOWS L7 arid LUe O Siiey AD dand AC Uf tne iridngie ADC SUcr tridi

AT AL 2

{317 Ve ¥ J

AB  AC 4

Consider points E' and D' on the rays (BE and (CD such that EE' = 3BE and
DD’ = 3CD. Prove that:
1) points D', A, E' are collinear;
2) AD' = AE'.
a+3b  a+3c
4 ¢T3

El

Solution. The points D, E, D', E’ have the coordinates: d =
¢ =4¢—-3b=a+3—3bandd =4d —3c=a+3b -3¢,

respectively.
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D’ A E’

Figure 4.3.

1) Since
(@a—d)x( —d)=Bc—3b) x (6c —6b) =18(c —b) x (c —b) =0,

using Proposition 2 it follows that the points D', A, E’ are collinear.
2) Note that

so A is the midpoint of segment D' E’.

Problem 2. Let ABC DE be a convex pentagon and let M, N, P, Q. X, Y be the mid-
points of the segments BC, CD, DE, EA, M P, N Q, respectively.
Prove that XY || AB.

Solution. Let a, b, ¢, d, e be the coordinates of vertices A, B, C, D, E, respectively.

E
S~

LI
T

X
M

Figure 4.4.

N

Points M, N, P, Q, X, Y have the coordinates

b+c c+d d+e
m = k] n= k] p: k]
2 2 2
q_e—i—a x_b—i—c—i—d—i—e _c—i—a’—i—e—i—a

2 El 4 ) y 4 s
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respectively. Then

y—X 4
b—a b—a 4

hence

4.3 The Area of a Convex Polygon

We say that the convex polygon A1A,--- A, is directly (or positively) oriented if
for any point M situated in the interior of the polygon the triangles M AxAr+1,

k=1,2,...,n,are directly oriented, where A,4+1 = Aj.

Theorem. Consider a directly oriented convex polygon A1A; -+ A, with vertices

TL

wiin cooraindaies ay, ay, . .., dy. 1€

1
area[A1Ay -+ - Ayl = 3 Im(aiaz +azaz + - - - + ap—1an + apay).

Proof. We use induction on n. The base case n = 3 was proved above using the
complex product. Suppose that the claim holds for n = k and note that
nwanl A A A A T giasl A A A T 1 neenT A A A1
a[A1Ag - - ApAg1] = arealA1 Ay - - - A + area|Ag Ag+1A41]

1 1
=3 Im(aiaz +azaz + - - - + G —1ax + aray) + > Im(arax+1 + axv1a1 + arax)
= Elm(a_laz +azaz + -+ -+ ag_1ar + arar+1 + arr1a1)

1 1
+ 3 Im(a@xay + ayar) = 3 Im(@ray + azaz + - - - + @Grag+1 + Gr1a1),

since Im(ara; + ajar) = 0.
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Alternative proof. Choose a point M in the interior of the polygon. Applying the

formula (2) in Subsection 3.5.3 we have

n
area[A1Ay--- Ayl = Z area|M A Ax+1]
k=1

1 n
=5 Z ImZax + axak+1 + ax+12)

k=1
1 & 1<
= — va(Tm 1)+ — Y‘Im(Za.z, +Tr17)
5 2 k1) T 5 ) AL T 1 2)
k=1 k=1
1 / n \ 1 / n n \ 1 / n \
:Elm (;akdk.’_])"_zlm (Zk lak+Z : a]) :EKZakak-l—l)a
= = j=1 k=1
since for any complex numbers z, w the relation Im(Zw + zw) = 0 holds. a

Remark. From the above formula it follows that the points Aj(ay), A2(az), .

(a1
S Y

Problem 1. Let PyP;--- P,_1 be the polygon whose vertices have coordinates

le,....e" Vandlet QoQ1--- Qn_1 be the polygon whose vertices have coordinates
2 2

Ll4e....,14+e4---+&"1 wheree = cos — + i sin —. Find the ratio of the

n n

areas of these polygons.

Solution. Consideray =1 +¢& +---+ ek, k=0,1,...,n—1, and observe that

R \ 1 ("‘1 Bkl 1 1\
area[QoQ1-+- Qn-11= - Im Vababm —Im Z ( )_ .
2 \Z 2\m -1 e — 1
1 rn 1 k —l
k+1 k42
bR Im {Z(s @) + 1)J

k=

1
= — Im(ns +n) = ———nsin —
|2 2le n

n 1 T n T
= —nZ sin — cos — = —cotan—,
Ssin2 = n n 4 n
n

o
7?
—_

n—1
since Z‘k“ =0 and Zsk+2 =0.
k=0

On the other hand, it is clear that

n . 2w 1 T
area|PoP; ++- P,—1] = narea[ PO P1] = = sin — = n sin — cos —.
2 n n n
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‘We obtain
B
area[ PoPy -+ Pp_1] nsm;cos; — 45 2 1
= — —TL = 4sin® —. (D
area[ Qo Q1+ -+ On—1] —cotan— n
4 n

Remark. We have Q; Q11 = |axy1 — ax| = |51 = 1, and P Pryy = |eFF1 —

7
=1k - =|ef|l —e| =1 —¢| =2sin—, k =0,1,...,n — 1. It follows
n
that
Py Peyi . T
——— =2sin—, k=0,1,...,n—1.
Ok Ok+1 n

That is, the polygons Po Py -+ P,—1 and QoQ1--- Qn—1 are similar and the result
in (1) follows.

Problem 2. Let A1Ay--- A, (n > 5) be a convex polygon and let By be the midpoint
of the segment [AxAr+1], k = 1,2,...,n, where A,y1 = Ai1. Then the following
inequality holds:

area[B1By--- B,] > —area[AjAy--- A,].

o] =

Solution. Let a; and by be the coordinates of points Ay and By, k = 1,2,...,n. 1t
is clear that the polygon B1Bj - -- By, is convex and if we assume that AjAs--- A, is
positively oriented, then By B> - - - By, also has this property. Choose as the origin O of
the complex plane a point situated in the interior of polygon Aj Ay - .- A,.

We have by = —(ax +apy1), k=1,2,...,n,and
L

I N S
areal B1By - Bl = S 1Im | Y " hibyr | = S 1m Y (@ + T @i + i)
2 k=1 8 k=1

= %Im (i a_kakH\ + lIm /Yn‘ Maprz\ + lIm (Yn\ a_kak+2\
\i= /) 8\ YA S Vo /
/ \

1 1 n
= zarea[AlAg e Anl + g Im K]; @akﬂ)
1 1< _
= Jareal A1y Apl+ 2 ];Im(akaku)

1 1 & i
= sarea[Aj Ay -+ Agl+ < Y OAr - OApyosin ArO Ay
2 8 k=1

> —area[A1Ay--- Ayl

o e
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We have used the relations

n n
Im <Za_kak+1> =Im <Z ak+lak+2> = area[A1 Az - - - Ay,
k=1 k=1
and sin Ag OAgs2 > 0,k = 1,2, ..., n, where Apyr = Ay.

4.4 Intersecting Cevians and Some Important Points
in a Triangle
Proposition 1. Consider the points A’, B, C' on the sides BC, CA, AB of the triangle
ABC suchthat AA’, BB, CC intersect at point () and let
BA” p CB" m AC' n

AC n BA p CB m

If a, b, ¢ are the coordinates of points A, B, C, respectively, then the coordinate of

k]

point Q is
__ma+nb+ pc
m+nt+p
. nb+ pc ma + pc
Proof. The coordinates of A’, B’, C' are @’ = P b = marpe and ¢/ =
n+p m+ p
ma + nb . . . . ma + nb + pc
——, respectively. Let Q be the point with coordinate ¢ = ——— . We
m+n m+n—+p

prove that AA’, BB’, CC’ meet at Q.
The points A, Q, A" are collinear if and only if (g — @) x (¢’ — a) = 0. This is
equivalent to

‘ma + nb + pc " ‘nb+ pc
(——a) X (——a) =0
m+n+p n+p

or (nb+ pc— (n+ p)a) x (nb+ pc — (n+ p)a) =0, which is clear by definition of
the complex product.

Likewise, Q lies on lines BB’ and C(’, so the proof is complete. (|

Some important points in a triangle. 1) If Q0 = G, the centroid of the triangle
ABC,wehave m = n = p = 1. Then we obtain again that the coordinate of G is
a+b+c
—

2) Suppose that the lengths of the sides of triangle ABC are BC = o, CA = 8,
AB = y.If Q = I, the incenter of triangle ABC, then, using the known result

G =

concerning the angle bisector, it follows that m = «, n = B, p = y. Therefore the
coordinate of [ is
ad+pb+yc 1

=— = — b ,
Z] P 2s[aa+5 + yc]
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1
where s = —(¢ + B8+ v).
3)If Q = H, the orthocenter of the triangle A BC, we easily obtain the relations

BA’ _tanC CB’ _ tanA AC’ _ tanB
A'C  tanB’ B'A tanC’ C'B  tanA’

It follows that m = tan A, n = tan B, p = tan C, and the coordinate of H is given
by
_ (tan A)a + (tan B)b + (tan C)c
- tan A +tan B + tan C ’

<H

Remark. The above formula can also be extended to the limiting case when the
b4
triangle ABC is a right triangle. Indeed, assume that A — R Then tan A — +o0

tan B)b tan C tan B +tan C
and (tan B)b + (tan C)e — 0, u — 0. In this case zg = a, i.e., the
tan A tan A

orthocenter of triangle ABC is the vertex A.

4) The Gergonne! point J is the intersection of the cevians AA’, BB’, CC’, where
A7 YAl ral n

A’, B, C' are the poinis of tangency of the incircle to the sides BC, CA, AB, respec-

tively. Then

1 1 1
BA’_s—y CB/_S—O( AC'_s—IB
ACc 1 A 1 B 1

s—p S—y S —a

and the coordinate z; is obtained from the same proposition, where

Here ry, rg, 1y, denote the radii of the three excircles of triangle. It is not difficult to
show that the following formulas hold:

K K K

Fo=——, Frg=——" Iy=—",
s —o p s—p 4 s—y

1
where K = areal ABC] and s = E(ot + B8+ v).
5) The Lemoine? point X is the intersection of the symmedians of the triangle (the
symmedian is the reflection of the bisector across the median). Using the notation from

1y oseph-Diaz Gergonne (1771-1859), French mathematician, founded the journal Annales de Mathéma-
tiques Pures et Appliquées in 1810.
2Emile Michel Hyacinthe Lemoine (1840-1912), French mathematician, made important contributions

to geometry.
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the proposition we obtain

BA  y

CB o AC' p?

2
A'C B2 BA 2 (C'B  a?

It follows that
o?a + B%b + y2¢

a2 +/32 + y2

6) The Nagel® point N is the intersection of the cevians AA’, BB’, CC’, where
A’, B', C’ are the points of tangency of the excircles with the sides BC, CA, AB,

K =

respectively. Then

BA" s—y CB  s—a AC' s-8

AC s—B BA s—y C(CB s—a

and the proposition mentioned before gives the coordinate zy of the Nagel point N,

_s—aa+(s—pb+(s—y)c
G- +G—P+6—p)

1
N =<l —aats=pb+(s -yl
—(1=Dar(1-EY o (1= L)0
U=yl g)eri=g)e
Problem. Let «, 8, y be the lengths of sides BC, CA, AB of triangle ABC and

suppose o < B < y. If points O, 1, H are the circumcenter, the incenter and the

orthocenter of the triangle ABC, respectively. Prove that

1
arealOIH] = S—r(oz - BB —yIly —a),

where r is the inradius of ABC.
Solution. Consider triangle ABC, directly oriented in the complex plane centered
at point O.
Using the complex product and the coordinates of I and H, we have
1

1
IH = —( h:—[
area|OI H] 2i( X h) %

aa—+ Bb+yc

T Bty x(a—i—b—i—c)]

1
:E[(“_ﬁ)aXb‘*‘(ﬂ_V)bXC+(y—oe)cxa]

= %[((x —p)-areal OAB] + (B — y) - area[ O BC] + (y — ) - areal OCA]]

1 RZsin2C RZsin2A R?sin2B
= —[(a -t B-—y)—+ - a)—]
28 2 2 2

3Christian Heinrich von Nagel (1803-1882), German mathematician. His contributions to triangle ge-

ometry were included in the book The Development of Modern Triangle Geometry [13].
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- f_z[(d —B)sin2C + (B —y)sin2A + (y —a)sin2B]
s

1
= 8—(06 -BB—y)y —a),
r

as desired.

4.5 The Nine-Point Circle of Euler

Given a triangle ABC, choose its circumcenter O to be the origin of the complex plane
and let @, b, c be the coordinates of the vertices A, B, C. We have seen in Section 2.22,
Proposition 3, that the coordinate of the orthocenter H is zg =a + b + c.

Let us denote by Ay, By, C; the midpoints of sides BC, CA, AB, by A, B’,C’
the feet of the altitudes and by A”, B”, C” the midpoints of segments AH, BH, CH,

respectively.
A
e
C' /A"
B/
H]
C B;
BI Cl‘i
B Ay A/ C
Figure 4.5.
It is clear that for the points Ay, By, C1, A”, B”, C" we have the following coordi-

L. 1 . Lo
a4 = E(D-H‘), 7B, = 5(04—0), ¢, = E(G-H?),

1 1 1
tr=at+ob+o), zp=b+slcta), zor=ctslath)

It is not so easy to find the coordinates of A’, B’, C'.

Proposition 1. Consider the point X (x) in the plane of triangle ABC. Let P be the
projection of X onto line BC. Then the coordinate of P is given by

1 be _
p:i x—ﬁx—l-b—l—c

AN /

where R is the circumradius of triangle ABC.
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Proof. Using the complex product and the real product we can write the equations
of lines BC and X P as follows:

BC:(z—b)x(c—b)=0,
XP:(z—x)-(c—b)=0.
The coordinate p of P satisfies both equations; hence we have
(p—b)yx(c—=b)=0 and (p—x)-(c—>b)=0.
These equations are equivalent to
(P —0)CT—b)—F—b)c—b) =0
and
(P =0C =)+ F —F)(c—b)=0.
Adding the above relations we find

Qp—b—x)T—=Db)+ (B -%)(c—b)=0.

It follows that

L D e Y I PSP Sl . S
== x — (X — == X4+ —=—-->F-
p 2 r 2 R2  R2
L b J
_1rb+ bc(_ E)-l— 1/ bc_+b+ \ 0
_ZL X sz J_zkx R2x c).

From the above Proposition 1, the coordinates of A’, B’, C’ are

1/ b4 bca
r==\a c—

e torvne- )
1 tba cab
r=—=|a c——1,
) R
1 tb4 abc
r==1{a c——|.
=3 R2

Theorem 2. (The nine-point circle.) In any triangle ABC the points A1, By, C1, A/,

B, C', A”, BY, C" are all on the same circle, whose center is at the midpoint of the

segment O H, and the radius is one-half of the circumcircle.
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Proof. Denote by Og the midpoint of the segment O H. Using our initial assumption,
it follows that zp, = z(a + b+ ¢). Also we have |a| = |b| = |c| = R, where R is the
circumradius of triangle ABC.

1 1 1
Observe that OgA; = |24, — 20,| = §|a| = ER’ and also O9gB1 = O9Cy = ER.

1 1
We can write O9A” = |z47 — 20,| = §|a| = ER’ and also OgB” = 0yC" = ER.
The distance Qg A’ is also not difficult to compute:

[1 bca 1 |
09A/:|ZA/_ZOQ|:‘z(d"’b"‘C—F)—z((l—i-b—FC)
S |bcal = 1|_Ib||— . R
= g2 P = APl = 75 =5

1
Similarly, we get O9gB’ = 09C’' = ER‘ Therefore OgA; = OgB1 = 09C; =

ey Al N N/ aYall Y All Vaye Y4 VaYwalll n 1.1 1 3 1 "
O9A" = Ogb" = UgC" = 9A” = U9b" = OgU" = EK and ihe desired property
follows. O

Theorem 3. 1) (Euler* line of a triangle.) In any triangle ABC the points O, G, H
are collinear.
2) (Nagel line of a triangle.) In any triangle ABC the points I, G, N are collinear.

Proof. 1) If the circumcenter O is the origin of the complex plane, we have zp = 0,

6 = g(a + b+ ¢), zg = a + b 4 c¢. Hence these points are collinear by Proposition

in Section 2.22

o

o B Y

28 28 2s

(1 — é)b—l— 1- Z) ¢ and we can write zy = 3zg — 27;.
S S

* Applying the result mentioned above and properties of the complex product we

1
C,ZG:g(a+b+6),andzN:<1_g)a+
S

obtain (zg — z7) X (zy — z1) = (2 — z1) X [3(z¢ — z7)] = 0; hence the points
I, H, N are collinear. O

Remark. Note that NG = 2G1, hence the triangles OGI and HGN are similar.
It follows that the lines O and NH are parallel and we have the following basic
configuration of triangle ABC (in Figure 4.6):

41eonhard Euler (1707-1783), one of the most important mathematicians, created a good deal of anal-
ysis, and revised almost all the branches of pure mathematics which were then known, adding proofs, and
arranging the whole in a consistent form. Euler wrote an immense number of memoirs on all kinds of math-
ematical subjects. We recommend William Dunham’s book Euler. The Master of Us All (The Mathematical

Association of America, 1999) for more details concerning Euler’s contributions to mathematics.
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Figure 4.6.

If G, is the midpoint of segment [/ N], then its coordinate is

1 {
\

ZGS::(ZI + ) = a+ b+ c.
2 s

The point Gy is called the Spiecker point of triangle ABC and it is easy to verify
that it is the incenter of the medial triangle A1 B;C]j.

Problem 1. Consider a point M on the circumcircle of the triangle ABC. Prove that
the nine-point centers of the triangles MBC, MCA, M AB are the vertices of a trian-
gle similar to triangle ABC.

Solution. Let A’, B’, C’ be the nine-point centers of the triangles M BC, MCD,
M AB, respectively. Take the origin of the complex plane to be at the circumcenter of
triangle ABC. Denote by a lowercase letter the coordinate of the point denoted by an

uppercase letter. Then

, m+b+c b,_m+c+a o m+ta+b

2 ’ 2 ’ 2 ’

since M lies on the circumcircle of triangle ABC. Then

b—a a-b b-a

c—a  a—-c c—a’
and hence triangles A’B’C’ and ABC are similar.

Problem 2. Show that triangle ABC is a right triangle if and only if its circumcircle
and its nine-point circle are tangent.
Solution. Take the origin of the complex plane to be at circumcenter O of triangle

ABC and denote by a, b, c the coordinates of vertices A, B, C, respectively. Then the
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circumcircle of triangle ABC is tangent to the nine-point circle of triangle ABC if and
2

R R
only if 009 = ok This is equivalent to 002 = i thatis, |a + b + c|2 = R2.

Using properties of the real product, we have

|a—|—b—|—c|2:(a+b+c)-(a+b+c):a2+b2+02+2(a-b+b-c+c-a)
=3R*4+2a-b+b-c+c-a)=3R>+ QR> —a? +2R* - B2+ 2R*> —?)
=9R> — (& + B* + 7).

where «, B, y are the lengths of the sides of triangle ABC. We have used the formulas
2 2 2
Y o B

a-b=R2_—‘_ b.c=R?—_ _—_ ¢.0=R?— —, which can be easily derived

from the definition of the real product of complex numbers (see also the lemma in
Subsection 4.6.2).

Therefore, «? + 2+ y2 = 8R?, which is the same as sin® A + sin® B +sin® C = 2.
We can write the last relation as 1 —cos2A + 1 —cos2B + 1 — cos2C = 4. This is

wivalant to 2 cosf A L BYcos{iA — BY L2 cac2 (7 — () coc Acos Beog (" — O
ilyvaiviit v AMUD\AITU}\/UD\AI U}TL:\;UD v — Vv LUD £ VUD 17 VUD O —U,

1o
s L.Toy

[¢]

qu
and the desired conclusion follows.

Problem 3. Let ABCD be a cyclic quadrilateral and let E,, Ep, E., Eg be the nine-
point centers of triangles BCD, CDA, DAB, ABC, respectively. Prove that the lines
AE,, BEy,, CE., DE; are concurrent.

Solution. Take the origin of the complex plane to be the center O of the circumcircle

of ABCD. Then the coordinates of the nine-point centers are

1
eqg=—=(a+b+c)
2

We have AE, : z = ka + (1 — k)es, k € R, and the analogous equations for the

1
lines BEp, CE., DE;. Observe that the point with coordinate ;(a + b+ c+d)lies

on all of the four lines <k = %) and we are done.

4.6 Some Important Distances in a Triangle
4.6.1 Fundamental invariants of a triangle

1
Consider the triangle ABC with sides «, B, y, the semiperimeter s = 3 (x+ B8+ v),

the inradius r and the circumradius R. The numbers s, r, R are called the fundamental

invariants of triangle ABC.

Theorem 1. The sides «, B, y are the roots of the cubic equation

=28t + (52 +r2+ 4Rr)t —4sRr = 0.
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Proof. Let us prove that « satisfies the equation. We have

A
A A cos —
o =2RsinA =4Rsin—cos — and s — o = rcotan— =r 2,
2 2 2 . A
sin —
2
hence
A — A
cos? = = M and sin? — = L.
2 4Rr 2 4R(s — o)

A A
From the formula cos? 5 + sin? 5= 1, it follows that

a(s —a) ar _1
4Rr 4R(s —a)

That is, &® — 2sa? + (s2 42 +4Rr)a — 4sRr = 0. We can show analogously that

B and y are roots of the above equation. O

1
From the above theorem, by using the relations between the roots and the coeffi-
cients, it follows that

a+p+y=2s,
af + By + ya = s> +r2 +4Rr,
afy =4sRr.

Corollary 2. In any triangle ABC, the following formulas hold:

o>+ B+ 97 =257 —3r2 — 6Rr).
Proof. We have
Py =@+ B+ 1)’ —20B+ By +ya) =457 —2(s> +r? +4Rr)
=252 —2r2 — 8Rr = 2(s* — r* — 4Rr).
In order to prove the second identity, we can write

CHB Y =@+ By + B+ y? —af — By — ya) + 3afy

=2s(2s> —2r* — 8Rr — s> — 1> —4Rr) + 12sRr = 2s(s* — 3r> —6Rr). O
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4.6.2 The distance OI

Assume that the circumcenter O of the triangle ABC is the origin of the complex plane
and let a, b, c be the coordinates of the vertices A, B, C, respectively.

Lemma. The real productsa - b, b - c, ¢ - a are given by

2 2 2
I T G S e S
a-b=R > b-c=R 7 c-a=R >

Proof. Using the properties of the real product we have
v2=la—bP=@—-b)-a—b)y=a®>—2a-b—b*>=2R*>—-2a-b,

and the first formula follows. O

Theorem 4. (Euler) The following formula holds:
OI? = R* - 2Rr.

Proof. The coordinate of the incenter is given by

o B Y
= — —b —_—
o 25a+25 +ZSC

SO We can write
o B Y o B Y
0P =P =(=—a+—b+c)-[—a+—b+c
fer] (2s 2s 2s 2s 2s 2s
1

1
= 4—s2(a2 + 82+ yHR* + 23 > @pra-b.
cyc

Using the lemma above we find that
1 2 Y2
2 Lo a2 aip2 & 2 ¥V
OF = =@+ + )R +432§;(xﬁ(R 2)

1
1

1 1
- 2R2 _ 2_R2_
—452(05—0—,3—{—)/)13 4s2§ afy” =R 4szaﬁy(a+ﬁ+y)

cyc

1 K
:RZ——aﬁysz—zaﬂ-—:Rz—er,

28 4K s

where the well-known formulas

K

R = a/’l’ = _—,

4K s

are used. Here K is the area of triangle ABC. a
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Corollary 5. (Euler’s inequality.) In any triangle ABC the following inequality
holds:
R > 2r.
We have equality if and only if the triangle ABC is equilateral.

Proof. From Theorem 4 we have OI? = R(R = 2r) > 0, hence R > 2r. The
equality R — 27 = 0 holds if and only if OI? = 0, i.e., O = I. Therefore triangle
ABC is equilateral. O

4.6.3 The distance ON

g 2} PO 4 ¥OOANT LT AT e
1neorem 0. ff IV IS e iNagetl potnt of lrldngl (/

=

ON =R —2r.

Proof. The coordinate of the Nagel point of the triangle is given by

ZN=/1—(¥\ +{1-= ERAP
1 }LL \ S}U"‘\l s}(,.
Therefore
=levl> =2n - ZN_R2§C:< —;) +2;<1——><1—§>a b
=R2;<l—%> 2R (-5)(-4) (#-5)

(oz+/5’)y += s T(xﬁy

cyc cyc

DI D Y W P
cye

cyc cyc cyc S
2 3
=—) a°+- o~ + 8Rr.
Z s Z

cyc cyc

g

Applying the formula in Corollary 2, we conclude that

E = —2(s> —r?> —4Rr) + 2(s*> — 3r?> — 6Rr) + 8Rr = —4r” + 4Rr.
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Hence ON? = R? — E = R? — 4Rr + 4r? = (R — 2r)? and the desired formula is
proved by Euler’s inequality. O

Theorem 7. (Feuerbach®) In any triangle the incircle and the nine-point circle of
Euler are tangent.

Proof. Using the configuration in Section 4.5 we observe that

1 GI GOy
2 GN GO’

Therefore triangles GI Og and GN O are similar. It follows that the lines 7 Qg9 and

1 1
ON are parallel and 7 Qg = EON. Applying Theorem 6 we get 1 Og = E(R —2r)=
5~ r = Rg — r, hence the incircle is tangent to the nine-point circle. O

The point of tangency of these two circles is denoted by ¢ and is called the Feuer-
bach point of triangle.

4.6.4 The distance OH

Theorem 8. If H is the orthocenter of triangle ABC, then
OH? = 9R? +2r? + 8Rr — 2s°.

Proof. Assuming that the circumcenter O is the origin of the complex plane, the
coordinate of H is

zg=a+b+ec.

SKarl Wilhelm Feuerbach (1800-1834), German geometer, published the result of Theorem 7 in 1822.
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Using the real product we can write
OH? = |zgl’=zg-zg = (@+b+c)-(@+b+c)

=Y la?+2) ab=3R>+2) a-b.

cyc cyc
Applying the formulas in the lemma (p. 112) and then the first formula in Corol-
lary 2, we obtain

O =38 + 25 (82— 10) =9R> — (@®+ B+ D)
- %CJK 2)_ Y
=9R%? —2(s> = r?> —4Rr) = 9R? + 2r? + 8Rr — 25°. O

Corollary 9. The following formulas hold:

2 8 2
1) 0G? = R2 + Z¢? + —Rr — =s%;
) 9 9 9
9 5, 1, ) 1,
-R — Rr — =s~.
2 +2r + 2Rr 25

Coroilary 1. in any iriangie ABC ihe inequality

2) 002 =

o+ p2+y? <9R?

1.7 LYy A

is true. Equality holds if and only if the triangle is equilateral.

4.7 Distance between Two Points in the Plane of a
Triangie

7.1 Barycentric coordinates

C
le ARC and let

Proposition 1. Let a, b, ¢ be the coordinates of vertices A, B, C and let P be a
point in the plane of triangle. If z p is the coordinate of P, then there exist unique real

numbers g, (b, Ko Such that
Zp = fa@ + pupb + pec and pg + pp + pre = 1.

Proof. Assume that P is in the interior of triangle ABC and consider the point A’

, PA A’'B
suchthat APNBC ={A'}. Letk1 = —, k2 = and observe that
PA A'C
a+kiza b+ koc
ZP = -, ZA/ = .

14k 14k



116 4. More on Complex Numbers and Geometry

Hence in this case we can write
1 k kik
= a+ ! b+ 172 c.
14k 14k +kp) 1+ k) +kp)

p

Moreover, if we consider

_ 1 _ k] - k]kz
Ma =Tk "7 Utk k) T Uk + k)
we have
1 kq kiko
Ha + ey + fe = 1+ ki + (1 L LT 1 s + (1 LT 1 Ba)
1T Rj LT Rijit T R2) L TR T R2)

1tk +ky+kik
(1 4+k)A + k)

We proceed in an analogous way in the case when the point P is situated in the

exterior of triangle ABC.
If the point P is situated on the support line of a side of triangle ABC (i.e., the line
determined by two vertices)

! b+ k 0 + ! b+ k
=—>b+——c=0-a+——>b+——c0,
PETTR T Tk T+% " 1+k

PB
here k = —. O
where PO

The real numbers pg, up, po are called the absolute barycentric coordinates of P
with respect to the triangle ABC.

The signs of numbers 144, tp, e depend on the regions of the plane where the point

P is situated. Triangle A BC determines seven such regions.

v/

vl

Figure 4.8.

In the next table we give the signs of pg, e, fe:
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t{afufv|v]vi]vi
pa | = |+ |+ |+ ]| - | +
e |+ =+ |- |+] - | +
pe [+ +] - = |- +]| +

4.7.2 Distance between two points in barycentric coordinates

In what follows, in order to simplify the formulas, we will use the symbol called “cyclic

sum.” That is, > f(x1, X2, ..., X,), the sum of terms considered in the cyclic order.
cyc
The most important example for our purposes is

D Fnx2,x3) = (01,32, %3) + [ (X2, 33, X1) + f(x3, %1, X2).

cyc

Theorem 2. In the plane of triangle ABC consider the points P1 and P> with coor-

dinates 7o, and 7o, respectively, If 7o — ora + Birh + vie, where o Br v are real
SertliiCo L Wikl L ph, FOSpClee Vel 55 Ly MKW T PRY T RS RIS Ky PRy R TS Tt
numbers such that ax + P +yr = 1, k =1, 2, then

PP} =~ Z((xz —a1)(B2 — BV

cyc

Proof. Choose the origin of the complex plane at the circumcenter O of the triangle
ABC. Using properties of the real product, we have

PP} =|zp, —zp | = (@2 —an)a+ (Ba — )b + (2 — yi)c?

=Y (e —a)?a-a+2) (0 —a)(By—poa-b
cyc cyc
I Y 2p2 , AN, NS ol p
=2 (=o' R"+2) (e —a){fr— UK
cyc cyc

2_)’_2\
2 )

=R @+ prt+y—a—pi—y) =) (@ —a)(Br— p)y’

cyce
== (2 —a(Br— By’
cyc
sincea; +p1+y1=a+pf+ym=1 O

Theorem 3. The points Ay, Aa, By, By, C1, Cy are situated on the sides BC, CA,
AB of triangle ABC such that lines AA1, BBy, CC1 meet at point Py and lines
AAj, BBy, CCy meet at point Py. If

BA Pk C By, g ACy L

, = , — = , k=12
A C Ny B A Dk CrB mp
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where my, ng, px are nonzero real numbers, k = 1,2, and Sy = my+ni+pr, k =1,2,
then

1
Py P22 = g9 |:S1 S> Z(nlpz + plnz)ozz—Sl2 Z nngozz—SQ2 Zn1p1a2:| .
1~2 cyc cyc cyc
Proof. The coordinates of points P; and P, are

mra + ngb + prc

p = k=1,2.
: mi + ng + pk
It follows that in this case the absolute barycentric coordinates of points Py and P,
are given by
mi mp ng g
dk:—:—, ﬂk:—:—,
mr + ng + pr St myr + ng + pr Sk

L. 2
S

= 52532 LDIQZ > (mipy+ pinga® — 57> napra’ — 53 anplozzJ

cyc cyc cyc

and the desired formula follows. O

nwwnllawsy A Lhe oy vroal v owro 2. as vt e | . | — 1 L — 1 9 thas

LOronary «. 107 ity réd nuinoers Gy, Pk, Yk wWiiit &g — P T Yk = 1, K = 1, 4, 1€
following inequality holds:

D (o —a)(Br— By’ <0,
cyc
with equality if and only if o1 = a2, f1 = B2, v1 = y2.
Corollary 5. For any nonzero real numbers my, ng, pr, k = 1,2, with S = my +
Nk + pr, k = 1,2, the lengths ofsides a, B, v of triangle ABC satisfy the inequality

A3
Z(nlpz + ping)® = = anpza T3 2:”1171052

cyc cyc I cye

m my n n
with equality if and only ifﬂ = &, —1_ —2, a2
ny np p1 py mp My
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Applications. 1) Let us use the formula in Theorem 3 to compute the distance G1,
where G is the centroid and I is the incenter of the triangle.

Wehavem; =n; = py =1 and my = o, np = B, po = y; hence

S1:Zm1:3; SQZZWLQZQ—F,B-I-)/:ZS;
cyc cyc

Y mpa+napne’ =B+ )’ + (v +0p’ + (@ + By
cyc

=@+ B+ y)af+ By +ya) —3afy =2s(s> +r?> +4rR) — 12sRr

On the other hand,

inngoz2 =a’By + plya+ylap = afy(a + p+y) = 8s’Rr

cyc
and
anp]oi2 =o? —|—,Bz + yz =252 —2r? — 8Rr.
cyc
Then
GI? = é(s2 +5r% — 16Rr).

2) Let us prove that in any triangle ABC with sides «, B, y, the following inequality

holds:
2
E Qa—-B—=—v)2p—a—-y)y =0
cyc
Tin tlan 2 A1ality it Carallaruy A wwe concidar tha (wninte D, . £
111 uIC quucuu_y 11 bUlUlldly “+ WO CUIDIUCT UIC PUlulb Il =9

B

04
a1 = f1 =y = zand ay = = B = = V2 = ,‘l and the above inequality

wA DT JEory
na 7 — £. 11c1

3. 25 . 25 25 . .
follows. We have equality if and only if P; = P,; thatis, G = I, so the triangle is

4.8 The Area of a Triangie in Barycentric Coordinates
Consider the triangle ABC with a, b, ¢ the coordinates of its vertices, respectively. Let
a, B, v be the lengths of sides BC, CA and AB.

Theorem 1. Let Pj(zp,), j = 1,2, 3, be three points in the plane of triangle ABC
with zp, = aja + Bjb + y;c, where aj, Bj, y; are the barycentric coordinates of P;.
If the triangles ABC and P1 P, P3 have the same orientation, then

‘ a1 B1 n
ay B v
as B3 w3

area[P1 P2P3] _
areal[ABC]
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Proof. Suppose that the triangles ABC and PP, P3 are positively oriented. If O

denotes the origin of the complex plane, then using the complex product we can write
2iarea P10 Py] = zp, x zp, = (1a + B1b + y1¢) x (a2a + Bab + y20)

= (182 —aafr)a x b+ (B1y2 — B2y1)b X ¢ + (Y100 — y2a1)C X @

axb bxc cxa axb bxc 2iareal]ABC]
=| " a] B |=| n o] 1
A/n A ARn Asn A 1
| L wi ML | | ' 4 wZ i

Analogously, we find

axb bxc 2iarealABC]
2i area| P, O P3] = %3 %3 1 ,
V3 o3 1
~ s h ~ ~ N avrnal A DM
(22 v v (& P2 Iva| o v |
2iarea[ ;0P =| 3 o3 1
71 o] 1

Assuming that the origin O is situated in the interior of triangle P P> P3, it follows
that
areal[ Py P, P3] = area[ P; O P,] + area[ P, O P3] + area[ P3O P;]

1 1
=E((x1—(x2+(x2—(x3 + a3 _dl)aXb_Z(Vl - Y+r—-vityi—yobxc

2V N T . Ve i i N paeanT A D
+ (V102 — o1 + Yooz — Y30 + 301 — yie3)area|l Ao
= (V102 — V201 + Y203 — Y302 + Y30y — y3)areal ABC]
|1 n o« o B1on |
=area[ABC]| 1 y» oy ‘ = area[ABC]‘ ay B2 v ‘
1 v on» oy Br
| §o J | | 2 ro 7o |
and the desired formula is obtained. O

Corollary 2. Consider the triangle ABC and the points Ay, By, C situated on the
lines BC, CA, AB, respectively, such that
A1B B, C CiA
;:kl, l_zkz’ ;=k3.
Al c By A C] B

IfAA1N BBy ={P1}, BBINCC1 ={P}and CC1 N AA| = {P3}, then

area[ P1 P P3] _ (1 —k1k2k3)2
areal ABC1 (1 +ki 4+ kiko)(1 + ky + kok3) (1 + k3 + ksky)
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i
3

Ay
Figure 4.9,

Proof. Applying Menelaus’s well-known theorem in triangle AA ;B we find that

Ci1A CB  P3Ay
C1B CA PA

Hence

PsA 1A OB
P2A, T C1B CA

The coordinate of P; is given by

= k3(l + ky).

b+ ke
o | +ky  a+kb+kskic
1 4 ks(l +ky) - |+ ks + sk - |+ ky + kaky

ka(l +k
oy o Gk kD2, @ttt
L N

In an analogous way we find that

kikza +b+ ke

kaa + kaksb + ¢
T T K+ bk

d zp, = .
MEn = T ks

The triangles ABC and Py P> P; have the same orientation; hence by applying the

formula in Theorem 1 we find that

area| Py P> P3)
arcal ABC
kika | ky
= l k Kok |
T Utk + bk (L4 ka + kaoka) (L + ka + kakp) | 2 2%
| ks kaky

(1 — kykaks)?

=1 . D
(1 4 ky + kka) (1 + ko + kaoka) (1 + k3 + kakp)

Remark, When k) = ky = k3 = £, [rom Corollary 2 we oblain Problem 3 [rom the
2374 putnam Mathematical Competition.
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Let Aj, B, C; be points on the lines BC, CA, AB, respectively, such that
A;C  nj B;jA  p; CiB  m;
Corollary 3. If P; is the intersection point of lines AAj, BB;, CCj, j = 1,2,3,
and the triangles ABC, Py P, P3 have the same orientation, then

mpy n1 p1
my nz p2
mz Nz D2

i s 3 3

area[P1 P2P3] o 1
areal ABC] o 5185283

where Sj=mj;+nj+pj, j=1273.

Proof. In terms of the coordinates of the triangle, the coordinates of the points P;

are
mja+nib+ pjc 1 .
p, =———————=—(mja+n;b+ pjo), =123
B m;+n;+pj Sj( J J Pi®) J
The formula above follows directly from Theorem 1. O

Corollary 4. In triangle ABC let us consider the cevians AA’, BB" and CC’ such
that

A'B B'C C’A
= m’ = n’ = p.
A'C B’A C'B
Then the following formula holds:
areal A’ B'C’] 1 +mnp

arealABC1 (A +m)1+m(1+p)
Proof. Observe that the coordinates of A’, B/, C' are given by

1 n 1 p
)= ——b 5 /= s r= - b.
A 14+m +1+mc B 1+nc+1+na « 1+pa+l+p
Applying the formula in Corollary 3 we obtain
lo 1 m|
area[A’B'C’] 1 ‘ 0 1 ‘
— n
area[ABC] I+m)yA+m(A+p)| )
|tp U
I +mnp
O

S A+mA+m+p)
Applications. 1) (Steinhaus6) Let A, B;, C; be points on lines BC, CA, AB, re-
spectively, j = 1, 2, 3. Assume that
BA; 2 CB; 1 AC; 4

AC 4 BA 2 B 1

6Hugo Dyonizy Steinhaus (1887-1972), Polish mathematician, made important contributions in func-

tional analysis and other branches of modern mathematics.
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BA, 4 ChBy 2 ACy Iy
T BmATT GED
BA; 1 Cb; 4 AC; 2
AC 2 BA 1 (3B 4

If P; is the intersection point of lines AA;, BB;, CCy, j = 1,2,3, and triangles
ABC, PP Ps are of the same orientation, then from Corollary 3 we obtain

[Py Py Ps] 1 4 2‘ 9 1

areal 142173

T Anr1 4 4 4 2 1 4 :¥:;

ICaiADU | R N 7 7
4 2 1|

2) If the cevians AA’, BB’, CC’ are concurrent at point P, let us denote by K p the
area of triangle A’B’C’. We can use the formula in Corollary 4 to compute the areas
of some triangles determined by the feet of the cevians of some remarkable points in a
triangle.

(i) If 1 is the incenter of triangle A BC we have

AV
K; = p o v areal ABC]
<1+Z) (1+é> <1+3)
B o Y
= 2apy areal ABC] = 20py st .
(@ +B)B+y)y+a (@a+BB+y)y +a)

(i) For the orthocenter H of the acute triangle ABC we obtain

+tanC tanB tan A
Ko — tanB tanA tanC

oA (1+tanC) (1+tanB> (1+tanA)m
\ tan B tan A tan C

= (2cos Acos Beos C)areal ABC] = (2cos Acos Bcos C)sr.

(iii) For the Nagel point of triangle ABC we can write

s—y sS—a s—8
s—pB s—y s—«

Ky = area| ABC]
(=) (=) (=)
s — '3 s—y S —a
B B 3 2
_ s S=B—y) o apey = CIABC B
2

r St
= —area[ABC] = —.
2R 2R
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If we proceed in the same way for the Gergonne point J we find the relation

2
r St
Kj = —area[ ABC] = —.
/= qpirelABCl =5
Remark. Two cevians AA” and AA” are isotomic if the points A" and A” are sym-
metric with respect to the midpoint of the segment BC. Assuming that

Applying the formula in Corollary 4, it follows that

area[A’B'C'] B 1+ mnp
areal[ ABC] (1 +m(A+n){1+p)
1

mnp area[A//B//C//]

(1 + i) (1 + l) <1 + l) areal ABC]
m n p

Therefore area[ A’ B'C’] = area[A” B”C”]. A special case of this relation is Ky =

K, since the points N and J are isotomic (i.e., these points are intersections of iso-
tomic cevians).

3) Consider the excenters Iy, Ig, I, of triangle ABC. It is not difficult to see that

the coordinates of these points are

I+

= ———a+t P [ —,
“ 2(s —a) 2(s = pB) 2(s —y)
o B Y
= — b s
L Tranr S Ty L TR o
o B Y
2]

= b — .
G TTE S Tr s M Tr R
From the formula in Theorem 1, it follows that
__« B Y
2(s —a)  2(s —B) 2(s —y)

areall,Igl, ] = oz — p Y areal ABC]
viPly 2As—a)  25—-B) 25—y)

o B Y
2(s — o) 2(s — B) 2(s —v)




4.9. Orthopolar Triangles 125

| -1 1 1
_ apy B
T8 @6 - A6 ) Lol |ealand]
1 1 -1
sapfy areal ABC] safy areal ABC]  2saBy

- = = = 2sR.
25(s —a)(s — B)(s —v) 2 area?[ABC] 4area[ABC]

4) (Nagel line.) Using the formula in Theorem 1, we give a different proof for the so-
called Nagel line: the points I, G, N are collinear. We have seen that the coordinates

of these points are
o p 4
7] = —a+ —b+ —c,
2s 2s 2s
1 n lb—{— 1
g =-a+ - —c
3 3 37

o (1= %) (1) (1-2)c

Then
« B ¥
2s 28 25
I 1 1 1 o
areal/IGN| = — — — -arealABC] = 0,
3 3 3
1_3 1_é 1_Z

hence the points 7, G, N are collinear.

4.9 Orthopolar Triangles
4.9.1 The Simson—Wallance line and the pedal triangle

AL 1 PN itira
U

-
S

A 1ok
, ana ict

, Q. R be the projections of M onto lines BC, CA, AB, respectively.
Theorem 1. (The Simson’ line®) The points P, Q, R are collinear if and only if M

is on the circumcircle of triangle ABC.

7Robert Simson (1687-1768), Scottish mathematician.
8This line was attributed to Simson by Poncelet, but is now frequently known as the Simson—Wallance

line since it does not actually appear in any work of Simson. William Wallance (1768-1843) was also a

Scottish mathematician, who possibly published the theorem above concerning the Simson line in 1799.
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Figure 4.10.

Proof. We will give a standard geometric argument.
Suppose that M lies on the circumcircle of triangle ABC. Without loss of generality

on the are Df"

we mav agenime that ig
sonie arc 5L . M Oréer o p

cQiiMme
WU llldy assuliic tiatr v

[
o
)
D
&)
-
ol
3

Lw]

fans
>

>

it suffices to show that the angles BPR and CP Q are congruent. The quadrilaterals
PRBM and PC(QM are cyclic (since BRM = BPM and W + AjQ\C = 180°),
hencewehaveﬁ = mand@ = (@.Butm = 90° _ABM =
90° — Aﬁ’\Q since the quadrilateral ABM C is cyclic too. Finally, we obtain BMR =
90° — ATC\Q = C/M\Q so the angles BPR and @ are congruent.

To prove the converse, we note that if the pomts P, Q R are collinear, then the
angles BPR and CPQ are congruent, hence ABM + ACM = 180°, i.e., the quadri-
lateral ABMC is cyclic. Therefore the point M is situated on the circumcircle of tri-
angles ABC. a

When M lies on the circumcircie of triangie ABC, the line in the above theorem is
called the Simson—Wallance line of M with respect to triangle ABC.

We continue with a nice generalization of the property contained in Theorem 1. For

33

n the lines BC, CA and AB, respectively.
The triangle POR is called the pedal triangle of point X with respect to the triangle

arbitrary point X in the plane of triangle

ABC. Let us choose the circumcenter O of triangle ABC as the origin of the complex
plane.

Theorem 2. The area of the pedal triangle of X with respect to the triangle ABC is
given by
arealABC]

area|PQR] = 172

XX — R?| ey
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-

AN ¥

where R isthe circumradius of triangle ABC.
Proof. Applying the formula in Proposition 1, Section 4.5, we obtain the coordinates

p. g, rof the points P, Q, R, respectively:

1 be _
p=E .r—ﬁx+b+(- .

_I ca_
q—i(.x—ﬁa + ¢ +a).

1 ab _ a
r==lx——=Y4+a+b).
2 R?

Taking into account the formula in Section 2.5.3 we have

e
arcalPQRl:j—l q
I

~ D
|
= B |
~ 9
|
=l =

For the coordinates p, ¢, r we obtain

|
I
to] —

N
=5 K2 ‘
_ V(_ ab 3
1—5 A—R.T+Cf+)

It follows that
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_ i 2 - - i 2
gq—pP=—@—b)(x—c)R® and 7—-p= (@a—c)(x —b)R".

2abc 2abc
Therefore
areal PQR] =~ | 177 17P
4| r—p T-7
-2 (x—OR?
_ila—b)a—o) R
16abc bE -
L—F kx—D)I('|
ita —bya—¢)| R?—cx x—c |
a 16abe RZ—_bx x-—b
_i(a—b)(a—c) b—-—0cx b-c
B 16abc RZ_bx x—b
Lila-bb-oaw-o| x 1|
o 16abc RZ_b% x—b ‘
i(a —b)(b — -
_ila=b)—c)a C)(xf—Rz).
16abc

Proceeding to moduli we find that

area[PQR] = =2 “0 785 R = 2 xR
16]al|b||c| 16R3
areal ABC
- #Mf — R?|,
4ID\2
where o, B, y are the length of sides of triangle ABC. a

Remarks. 1) The formula in Theorem 2 contains the Simson—Wallance line prop-
erty. Indeed, points P, Q, R are collinear if and only if area| PQR] = 0. That is,
|x¥ — R?| =0, i.e., xX = RZ2. It follows that |x| = R, so X lies on the circumcircle of
trianala A DY
ulauslc A DC .

2) If X lies on acircle of radius R; and center O (the circumcenter of triangle ABC),
then xX = R f, and from Theorem 2 we obtain

area[ABC]
4R?
It follows that the area of triangle P Q R does not depend on the point X.

area[PQR)] = |R? — R?|.

The converse is also true. The locus of all points X in the plane of triangle ABC
such that area[ P Q R] = k (constant) is defined by
4R’k

T—R}=———.
¥z ! areal ABC]
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This is equivalent to

N 4R%k ) 4k
x2P=R’+ ————  =R*(1+———— ).
area| ABC] area| ABC]

1
Ifk > Zarea[ABC], then the locus is a circle of center O and radius R; =

4 4k
area[ ABC]’

o1 o
Ik < Zarea[Ab’LJ, then the locus consists of two circles of center O and radii

/— 1
R \/ arcal ABC] one of which degenerated to O when k = Zarea[ABC 1.

Theorem 3. For any point X in the plane of triangle ABC, we can construct a
triangle with sides AX - BC, BX - CA, CX - AB. This triangle is then similar to the

pedal triangle of point X with respect to the triangle ABC.
Proof. Let P QR be the pedal triangle of X with respect to triangle ABC. From
~riiila (N wwa ~Ahtas

£, 1 n
10I11iula \ &) wie Uualiii

2

1 R —cx
—p==@—-b(x —¢c)——. 3
4= p=50 b= 3)
Proceeding to moduli in (3), it follows that
g pl= =t~ bl — ol | =E @)
—pl= a—>bl|lx—c .
9-r 2R? | x—c |
On the other hand,
2
|R2—CT| _Rz—cx Rz—Ex_Rz—cx RZ —Tx
‘x—c ‘ - x—c xX-¢  x—c _ R?
x__
c
R2_x RZ%(c—x) s
- R ~ = R?,
xX—c cx — R?
hence from (4) we derive the relation
1
lg — pl= —Ia—bllx—C|~ )
Therefore
PQ QR  RP 1 6)
CX-AB AX-BC BX-CA 2R’ o

and the conclusion follows. O
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Corollary 4. In the plane of triangle ABC consider the point X and denote by
A'B’C’ the triangle with sides AX - BC, BX - CA, CX - AB. Then

area| A’B'C’] = area ABC]|xT — R?|. (7

Proof. From formula (6) it follows that area[A’B’'C’'] = 4RZarea[ P QR], where
P QR is the pedal triangle of X with respect to triangle ABC. Replacing this result in

(1), we find the desired formula. O
Corollary 5. (Ptolemy’s inequality) For any quadrilateral ABCD the following

inequality holds:
AC-BD <AB.CD+ BC-AD. )

Corollary 6. (Ptolemy’s theorem) The convex quadrilateral ABC D is cyclic if and
only if

AC-BD=AB-CD+ BC-AD. )

Proof. Tf the relation (9) holds, then triangle A’B’C’ in Corollary 4 is degenerate;

i.e., area[A’B’C’] = 0. From formula (7) it follows that d - d = RZ, where d is the

coordinat £ and R igtha civonimradinig of tri

ata oy o ancla A R Haneo tha naint 7)) liac on
COUT 1diC U1 £7 dilG oIS ule CHTUiiiralius O1 uidiigic Ao

the circumcircle of triangle ABC.
If quadrilateral ABCD is cyclic, then the pedal triangle of point D with respect to
triangle A BC is degenerate. From (6) we obtain the relation (9). O
Corollary 7. (Pompeiu’s Theorem?) For any point X in the plane of the equilateral
triangle ABC, three segments with lengths XA, X B, X C can be taken as the sides of

a triangle.
Proof. In Theorem 3 we have BC = CA = AB and the desired conclusion fol-
Iows. ]

The triangle in Corollary 7 is called the Pompeiu triangle of X with respect to the
equilateral triangle ABC. This triangle is degenerate if and only if X lies on the cir-
cumcircle of ABC. Using the second part of Theorem 3 we find that Pompeit

o
(1138181 L ACOrCin v Baitegiaesl npell s Ilallg

of point X is similar to the pedal triangle of X with respect to triangle ABC and

CX AX BX 2R 243
PQ QR RP o 3 °

(10)
Problem 1. Let A, B and C be equidistant points on the circumference of a circle of
unit radius centered at O, and let X be any point in the circle’s interior. Let d4, dp, dc
be the distances from X to A, B, C, respectively. Show that there is a triangle with

9Dimitrie Pompeiu (1873—-1954), Romanian mathematician, made important contributions in the fields

of mathematical analysis, functions of a complex variable, and rational mechanics.
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sides da,dp,dc, and the area of this triangle depends only on the distance from X
to O.
(2003 Putnam Mathematical Competition)

Solution. The first assertion is just the property contained in Corollary 7. Taking into
account the relations (10), it follows that the area of Pompeiu’s triangle of point X is
%area[P QR]. From Theorem 2 we get that area[ P Q R] depends only on the distance
from P to O, as desired.

Problem 2. Let X be a point in the plane of the equilateral triangle ABC such that X
does not lie on the circumcircle of triangle ABC, and let XA = u, XB = v, XC = w.
Express the length side o of triangle ABC in terms of real numbers u, v, w.

(1978 GDR Mathematical Olympiad)

Solution. The segments [X A], [X B], [X (] are the sides of Pompeiu’s triangle of
point X with respect to equilateral triangle ABC. Denote this triangle by A’B’'C’.

From relations (10) and from Theorem 2 it follows that

/ —\ 2
2 1
area[A'B'C'] = (%) areal PQR] = pzareal ABC]|x - — R?|
1 0[2\/3_ _ 52 \/g_‘_ ~2 =2 PUIIN

On the other hand, using the well-known formula of Hero we obtain, after a few
simple computations:

1
area[A’B'C'] = 7\/(u2 + 02+ w2 — 2ut + v+ wh).

Substituting in (11) we find

1
IX0% — R?| = ﬁ\/(uz—l—vz—l—wz)z—2(u4+v4+w4). (12)

Case 1. If X lies in the interior of the circumcircle of triangle ABC, then X 0? <
R?. Using the relation (see also formula (4) in Section 4.11)

1
X0? = g(u2 + v +w? —3R?),

from (12) we find that

1 1
2R = 2+ 07+ 0P+ =y (0 07+ w?)? =2t ot ),
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hence

1 3
o’ = 5(”2 + v+ w?) + %J(uz + 02+ w?2)2 = 2(u* + vt + wh).

Case 2. If X lies in the exterior of circumcircle of triangle ABC, then X 0% > R?

and after some similar computations we find

1 3
o? = E(u2 +v? +w?) — g\/(u2 + 02+ w?)? = 2(ut + vt + wh).

4.9.2 Necessary and sufficient conditions for orthopolarity

Consider a triangle ABC and points X, Y, Z situated on its circumcircle. Triangles
ABC and XY Z are called orthopolar triangles (or S-triangles)'” if the Simson—
Wallance line of point X with respect to triangle ABC is perpendicular (orthogonal)
toline Y Z.

Let us choose the circumcenter O of triangle ABC at the origin of the complex

plane. Points A, B, C, X, Y, Z have the coordinates a, b, c, x, y, z with
lal = 10| = [c| = |x| = |y| = |z| = R,

where R is the circumradius of the triangle ABC.

Theorem 3. Triangles ABC and XY Z are orthopolar triangles if and only if abc =
Xyz.

Proof. Let P, Q, R be the feet of the orthogonal lines from the point X to the lines
DY A AD wagi~an tieraley
DU, LA, AD, TCSPCCUVCLY.

Points P, O, R are on the same line; that is, the Simson—Wallance line of point X
with respect to triangle ABC.

The coordinates of P, 0, R are denoted by p, gq. r, respectively. Using the formula

in Proposition 1, Section 4.5, we have

p ,
1 a_

q:z(x——zx—l—c—l-a),
1 ab _

r:z(x—sz—i—a—l—b)

We study two cases.

10Thjs definition was given in 1915 by Romanian mathematician Traian Lalescu (1882-1929). He is
famous for his book La géometrie du triangle published by Librairie Vuibert, Paris, 1937.
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Case 1. Point X is not a vertex of triangle ABC.
Then P Q is orthogonal to Y Z if and only if (p — g) - (y — z) = 0. That is,

[(b—a)(l—%)](y—@:o

or
G -D(R*—x)y —2)+ (b — )R — BT -2 =0.
‘We obtain
R2 R2 R2 R2 R2 R2
(TT_'T\(RZ_'Tx\@‘%)+@'”ﬂ(RZ_“T\(TT"T\ZO’
\ 7 “/J\ “/ \ VAN “/
hence

1
—@-b)(c—x)(y—2)——@—-bc—x)y—2)=0.
abc xXyz

The last relation is equivalent to
(abc —xyz)(@a —b)(c —x)(y —2)=0

and finally we get abc = xyz, as desired.

Case 2. Point X is a vertex of triangle ABC. Without loss of generality, assume that
X =B.
Then the Simson—Wallance line of point X = B is the orthogonal line from B to
AC. It follows that B Q is orthogonal to Y Z if and only if lines AC and Y Z are parallel.

This is equivalent to ac = yz. Because b = x, we obtain abc = xyz, as desired. [

Remark. Due to the symmetry of the relation abc = xyz, we observe that the
Simson—Wallance line of any vertex of triangle XY Z with respect to ABC is orthog-
onal to the opposite side of the triangle XY Z. Moreover, the same property holds for

the vertices of triangle ABC.
Hence ABC and XY Z are orthonolar tria

o
0CHNCC AL and A arc oraepo:ar ang

les if and only if XY Z and ABC

orthopolar triangles. Therefore the orthopolarity relation is symmetric.
Problem 1. The median and the orthic triangles of a triangle ABC are orthopolar in
the nine-point circle.

Solution. Consider the origin of the complex plane at the circumcenter O of triangle
ABC.let M, N, P be the midpoints of AB, BC, CA and let A’, B/, C’ be the feet of
the altitudes of triangles ABC from A, B, C, respectively.

Ifm,n, p,a’,b’, ¢ are coordinates of M, N, P, A’, B, C’ then we have

1 1 1
m=s@+b)., n=sG+c. p=scta)
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- +b+ ea) =1 +b+ be
a =—-\a C——a)l=—-—1a CcC— —
2 R? 2 a)’

b’=l<a—|—b—|—c—2), c’=l a—i—b—}—c—% .
2 2 2

The nine-point center Oy is the midpoint of the segment O H, where H(a + b + ¢)

and

1
is the orthocenter of triangle ABC. The coordinate of Og is @ = E(a + b+ c).
Now observe that

@—o)yb-—-w)c—w)=m—v)h —o)(p—o)= éabc,

and the claim is proved.

Problem 2. The altitudes of triangle ABC meet its circumcircle at points Ay, By, Cj,
respectively. If A}, By, C| are the antipodal points of A1, By, C1 on the circumcircle
ABC, then ABC and A B{C are orthopolar triangles.

he ab
o¢

on
Ch o

Solution. The coordinates of A;, By, C; are ——, ——, ——, respectively. Indeed,

the equation of line AH in terms of the real procﬁlct isAH : (z—a)- (b —c) = 0.

b
It suffices to show that the point with coordinate 2 lies both on AH and on the

Ibllc] _ R-R
= = —_——= R,
| R

hence this point is situated on the circumcircle of tri'angle ABC. Now, we show that

a
be

circumcircle of triangle ABC. First, let us note that

be
the complex number —— satisfies the equation of the line AH . This is equivalent to
a

or

abt  _ ) be R? R? _o

Finally, this comes down to

b -0 aZE+_ R? 4R? 0
-)|\l—+a————] =0,
R? a be

\ /

a relation that is clearly true.
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A Af
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~d_

Ay

Figure 4.12.

bc ca ab
It follows that A}, B}, C} have coordinates —, —, —, respectively. Because

we obtain that the triangles ABC and A B{C] are orthopolar.

Problem 3. Let P and P’ be distinct points on the circumcircle of triangle ABC such
that lines AP and AP’ are symmetric with respect to the bisector of angle BAC. Then
triangles ABC and AP P’ are orthopolar.

Figure 4.13.

Solution. Let us consider p and p’ the coordinates of points P and P’, respectively.

It is clear that the lines P P” and BC are parallel. Using the complex product, it follows
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that (p — p’) x (b — ¢) = 0. This relation is equivalent to
PP~ F-pHb-0)=0.

Considering the origin of the complex plane at the circumcenter O of triangle ABC,

we have

, [R*? R? R?> R?

-7 -—)-|= -7 )e-oa=0
¢ p p

S0

Rp-po-of - LY=o

\bc  pp')
Therefore be = pp/, i.e., abc = app’. From Theorem 3 it follows that ABC and

AP P’ are orthopolar triangles.

4.10 Area of the Antipedal Triangle

Consider a triangle ABC and a point M. The perpendicular lines from A, B, C to
MA, MB, MC, respectively, determine a triangle; we call this triangle the antipedal
triangle of M with respectto ABC.

Recall that M is the isogonal point of M if the pairs of lines AM, AM’; BM, BM’;
CM, CM’ are isogonal, i.e., the following relations hold: W = 1@, AjB\C =
M'BA, MCA = M'CB.

Bl/

Figure 4.14.

Theorem. Consider M a point in the plane of triangle ABC, M’ the isogonal point
of M and A” B"C" the antipedal triangle of M with respect to ABC. Then

araal AV RO AR2 AR2
areal A" B"(C'"]

iv in

areal ABC] IR2 — OM"%| _ lp)]

where p(M') is the power of M’ with respect to the circumcircle of triangle ABC.
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Proof. Consider point O the origin of the complex plane and let m, a, b, ¢ be the
coordinates of M, A, B, C. Then

R? = a@ = bb = ¢Z and p(M) = R?> — mm. )

Let Oy, O3, O3 be the circumcenters of triangles BMC, CM A, AM B, respectively.
It is easy to verify that O1, O, O3 are the midpoints of segments M A”, MB"”, MC",

respectively, and so
area[ 01 0,03] 1 @)
arealA”B"C"] 4

The coordinate of the circumcenter of the triangle with vertices with coordinates
21, 22, 23 is given by the following formula (see formula (1) in Subsection 3.6.1):

2 —3) + 2023 — 1) + 3730 — 22)

zZ0 —
21 71 1
72 7o 1
3 7z 1

The bisector line of the segment [z7, z2] has the following equation in terms of real
- 1 -
product: |z — E(Zl + z2) |- (z1 —z2) = 0. Itis sufficient to check that z satisfies this

equation as this implies, by symmetry, that zo belongs to the perpendicular bisectors
of segments [z2, z3] and [z3, z1].
The coordinate of O is

mii(b — ¢) + bb(c —m) + cc(m — b)

o, =
' |lm m 1|
‘b b 1‘
| ¢ c 1|
(P2 _ T\ B PYS Y AV IR AN
_ \1\ et L}\L U} _ /J\lVl}\L L/}
‘m m 1‘ ‘m m 1‘
‘b ) 1‘ ‘b b 1‘
c ¢ 1 c ¢ 1
i | i |
Let
a a 1
A=|b b 1
c ¢ 1
and consider
m m 1 m m 1
Ly — o1 _ .
ao=—|b b 1], = — I,
A . P=%x]¢ ¢
c ¢ 1 a a 1
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and
mo 1
N
b b 1

With this notation we obtain

(@a+Bb+yc)- A
= Zm(az—af) — ZW(ab—ac)—l—Za(bE—Ec)

cyc cyc cyc

:mA—ﬁ-O—l—Za(bR—Z—R—za\

e ¢ c

ab ac
:mA+W§:C———):mA
c b
cyc

and consequently

aa+ Bb+ yc=m,
gince it is clear that A 4 0
since it is clear that A # 0.

We note that «, 8, y are real numbers and ¢« + 8 + ¥y = 1, so «, 8, y are the
barycentric coordinates of point M.

Since
o = (c—=Db)-p(M) o = (c—a)-p(M) o — (@a—D>b) - p(M)
0, oA 0, —,BA ) 03 —y-A )
we have
| 2o 70 1‘
7|0 o 1
area[010203]_ ‘203 m 1‘
arealABC] L-A
4
b—c b—¢
1AMy 1 coTee
B P vl
a—b a->b y
_ ,oz(M) 1 c—a ¢—a
T A3 wBy |a—-b @a-D
RO Aﬂ_b%y) 1| &
_" AP oy ‘_" A2 aﬁy"
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Relations (2) and (3) imply that

arca[ABC]  |A2aBy|

arca[A"B"C"]  4p2(M) @)

Because «, B, y are the barycentric coordinates of M, it follows that
M =aza + Bp +yzc.
Using the real product we find that
OM? = 231 - 2p = (aza + Bz + vze) - (@za + Bzp + y2c)

= (oz2 + ,32 + )/2)R2 + ZZaﬂZA - ZB

cyc
AB?
=@+ 2+ yHR* +2) op <R2 - —)
2
cyc
=(@+B+y)’R* =) apAB’ = R* - apAB’.
cyc cyc

Therefore the power of M’ with respect to the circumcircle of triangle ABC can be
expressed in the form

p(M)=R?>— OM*> = " apAB”.

cyc

On the other hand, if «, B, y are the barycentric coordinates of the point M, then its
isogonal point M’ has the barycentric coordinates given by

/ By BC? , yaCA?
C ByBCZ4+ayCAZ+aBAB2” 7 ByBC?4+ayCA? +aBAB?’
2 A D2
y/ _ (LIJDU

ByBC?2 4+ ayCA? +aBAB?’
Therefore
oMY= o' AB?

pa—

cyc
_ afyAB? - BC?. CA? _ aBfyAB*BC?CA? )
~ (ByBC?2+ayCA2+aBAB2)? 02(M) '
On the other hand, we have
4 i \*| |4 2 AB?.BC?.CA?
A2=|(Z.LA) | = |2 arealaBC)| = 222 =2 (6)
i 4 i R?

The desired conclusion follows from the relations (4), (5), and (6). O
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Applications. 1) If M is the orthocenter H, then M’ is the circumcenter O and

area[ ABC] R? 1

arca|A"B'C"] _ 4RZ 4

2) If M is the circumcenter O, then M’ is the orthocenter H and we obtain

areal ABC]  |R? — OH?|
area[A”B"C"] ~ 4R?2
Using the formula in Theorem 8, Subsection 4.6.4, it follows that

areal ABC] _ |2R + 1) — 5|
area[A”B"C"] 2R2 )

3) If M is the Lemoine point K, then M’ is the centroid G and

area[ ABC] IRZ — 0G?|

area[A"B"C"]  4R2

Applying the formula in Corollary 9, Subsection 4.6.4, then the first formula in
Corollary 2, Subsection 4.6.1, it follows that

area[ABC] 2> —r?—4Rr)  o?+ B2 +y?
area[A”B"C"] 36R2 -~ 36R?

where «, B, y are the sides of triangle ABC.
From the inequality o + 82 4y 2 < 9R? (Corollary 10, Subsection 4.6.4) we obtain

araal A R

divd| /AT | 1

area[ A” B"C"]

/\12_ "D PR | T — R N S B e I . Pu IS, e

Ui - — LT (JCC 1IICVICIIL 4 111 SUDSCCUVIL 4.0.4) W 111U Uldl
areal ARC] IRZ—0I% 2Rr r

arealA” B C"] 4R2 4R?2 4R’

Applying Euler’s inequality R > 2r (Corollary 5 in Subsection 4.6.2) it follows that

area|ABC] - 1
area[A”B"C"] ~— 4~

4.11 Lagrange’s Theorem and Applications

Consider the distinct points A1(z1), ..., A,(2,) in the complex plane. Letmy, ..., m,

be nonzero real numbers such that m; 4 --- +m, 0. Letm =m; + -+ + my,.



