بالتعا*لي*

« دوازدهم متوسطه »

یاضی (۳) تجربی

كد 12-4

عنوان

غهر ست

-5555	
F - YO	درسنامه (خلاصه درسهای اول تا هفتم)
78 – TY	آزمون ۱- سؤالات امتحان دبيرستان نمونه دولتي شهيد صفوي (دي ماه ۹۷)
ra - r9	آزمون ۲- سؤالات امتحان هماهنگ کشوری (دی ماه ۹۷)
٣٠	آزمون ۳- سؤالات امتحان پیشنهادی پایان سال
٣١	آزمون ۴- سؤالات امتحان پیشنهادی پایان سال
	آزمون ۵- سؤالات امتحان پیشنهادی پایان سال
	آزمون ۶- سؤالات امتحان پیشنهادی پایان سال
	آزمون ۷- سؤالات امتحان پیشنهادی پایان سال
	آزمون ۸- سؤالات امتحان پیشنهادی پایان سال
	آزمون ۹- کارآزمون (پاسخ در سایت انتشارات بنیهاشمی خامنه)
TY - TX - T9	پاسخ آزمون شماره ۱
F• - F1 - FT	پاسخ آزمون شماره ۲
fr - ff - fa	پاسخ آزمون شماره ۳
f9 - fy	پاسخ آزمون شماره ۴
FA - F9	پاسخ آزمون شماره ۵
» - Δ1	با سخ آزمون شعاره ۶
۲ - ۵۳	پاسخ آزمون شماره ۷
f - ۵۵	پاسخ آزمون شماره ۸
	پاسخ ازمون شماره ۸
	یادداشت (دو آزمون برای نیمسال اول)

هديه شَكَفَاتَ الكِيرُ اين كَتَابِ بِهِ شَمَا

بانی کدهای این کتاب شامل ۲ آزمون نیمسال اول میباشد.

سرشناسه : صفرپور، فرزاد، ۱۳۶۰ - عنوان و نام پدیدآور : ریاضی (۳) تجربی دوازدهم متوسطه شامل درسنامه.../ تشریح از فرزاد صفرپور : ریاض (۳) تجربی دوازدهم متوسطه شامل درسنامه.../ تشریح از مشخصات نشر : تهران : انتشارات بنی هاشمی خامنه، ۱۳۹۷. مشخصات ظاهری : ۵۵ ص.: ۲۲ × ۲۹ س م. شابک : 1-175-600-487 وضعیت فهرستنویسی : فیبای مختصر وضعیت فهرستنویسی : فیبای مختصر یادداشت : فیرستنویسی کامل این اثر در نشانی: http://opac.nlai.ir قابل دسترسی است. شماره کتابشناسی ملی : ۵۵۲۷۶۸۹

کد ۱۲۰۵=

نام الر : مجموعه کمک آموزشی و درسی ریاضی (۳) تجربی دوازدهم متوسطه شامل درسنامه، کار آزمون و نمونه سؤالات امتحانات با پاسخ تشریحی

ناشر: انتشارات بنیهاشمی خامنه

تشریح : فرزاد صفرپور

تنظیم و نظارت : گروههای آموزشی انتشارات بنیهاشمی خامنه

دروف چینی : واحد کامپیوتر انتشارات بنیهاشمی خامنه

: اوّل - سال تحصیلی (۹۸ - ۹۷)

تعداد : ۱۰۰۰۰ جلد

نوبت چاپ

ناظر چاپ : مهدی رحمانی

دفتر مرکزی: تهران - م انقلاب - خ کارگر شمالی - خ فرصت شیرازی - شماره ۴۲ تلفن -۶۶۹۰٤۹۶ نمابر ۶۶۵۹۲۵٤۳

حق چاپ محفوظ و متعلق به انتشارات بنی هاشمی خامنه می باشد.

بدون عنوان

بچه ها پشت جلد نوشته کسی حق چاپ و تکثیرش نداره

اگر هرکی خواست مقداری (قیمت پشت جلد ۸۰۰۰ تومنه) به خیریه بده بابت استفاده از این جزوه

بالتحالي

ترکیب توابع

فصل اول

ترکیب دو تابع

 $(\mathrm{fog})(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))$ دو تابع f_{g} و D_{g} در نظر می گیریم. اگر x متغیر g_{g} متغیر f باشد ترکیب آنها به صورت D_{g} در نظر می گیریم. اگر x متغیر g_{g} متغیر g_{g} باشد ترکیب آنها به صورت

و اگر x متغیر f و f(x) متغیر g باشد ترکیب آنها را به صورت g(x) نشان می دهیم.

 $R_g \cap D_f \neq \emptyset$ نکته ۱:برای این که ترکیب f(x) وجود داشته باشد باید اشتراک برد تابع g(x) با دامنه g(x) مخالف تهی باشد یعنی g(x) وجود داشته باشد باید اشتراک برد تابع g(x) با دامنه g(x) با دامنه

: ورید gof و باشد آنگاه ترکیب $g = \{(1,7)(7,7)(7,7)(7,7)\}$ و $g = \{(1,7)(7,7)(7,7)(7,7)(7,7)\}$

 $R_f = \{\text{$\texttt{T}$, $\texttt{$\texttt{F}}$}\} \qquad \qquad R_f \cap D_g = \{\text{\texttt{T} , $\texttt{$\texttt{F}}$}\}$

 $D_g = \{1\ ,\ 7\ ,\ 7\ ,\ 8\}$

 $D_f = \{1, 7, 7\}$ حال برای تشکیل gof دامنه f را در نظر گرفته یعنی

 $(gof)(1) = g(f(1)) = g(7) = 7 \rightarrow (1, 7)$

 $(gof)(\Upsilon) = g(f(\Upsilon)) = g(\Upsilon) = \Upsilon \rightarrow (\Upsilon, \Upsilon)$

 $(gof)(\Upsilon) = g(f(\Upsilon)) = g(\Upsilon) = \Upsilon \rightarrow (\Upsilon, \Upsilon)$

 $gof = \{(1, \Upsilon)(\Upsilon, Y)(\Upsilon, Y)\}$ $D_{gof} = \{1, \Upsilon, \Upsilon\}$

ید: و تابع $\mathbf{g}(\mathbf{x}) = - |\mathbf{x}|$ و $\mathbf{g}(\mathbf{x}) = - |\mathbf{x}|$ و ادر نظر گرفته، توابع زیر را به دست آورید

ب) fog

gof (الف

 $D_f = [\cdot, +\infty)$

 $\mathbf{D_g} = \mathbf{R}$ (حل :الف

 $R_f \cap D_g = [\cdot, +\infty)$

 $R_f = [\cdot, +\infty)$

 $R_g = (-\infty, \cdot]$

 $(gof)(x) = g(f(x)) = g(\sqrt{x}) = -|\sqrt{x}| = -\sqrt{x}$

پس.

 $R_g \cap D_f = \{\cdot\}$

 $(fog)(x) = f(-|x|) = \sqrt{-|x|} = \cdot \implies fog = \{(\cdot, \cdot)\} \ (\downarrow, \downarrow)$

دامنه تابع مرکب

دامنه تابع gof مجموعه xهای است که همزمان در دو شرط زیر صدق کند.

f (x) (۲ در دامنه g قرار داشته باشد.

x (۱ در دامنه f قرار داشته باشد.

 $D_{gof} = \{x \in D_f \mid f(x) \in D_g\}$

پس:

و دامنه $D_{fog} = \{x \in Dg \mid g(x) \in D_f\}$ است.

بالتمالي

مثال :اگر $\mathbf{f}(\mathbf{x}) = \mathbf{x} - \mathbf{y}$ و $\mathbf{g}(\mathbf{x}) = \mathbf{g}(\mathbf{x})$ باشند آنگاه دامنهها و ضابطههای (الف) $\mathbf{g}(\mathbf{g}(\mathbf{x}) = \mathbf{y} - \mathbf{y}$ را به دست آورید.

$$\mathbf{D_f} = \mathbb{R}$$
 $\mathbf{D_g} = [-1, +\infty)$ حل :الف

$$D_{gof} = \{x \in D_f \mid f(x) \in D_g\} \rightarrow \{x \in \mathbb{R} \mid x - 7 \in [-1, +\infty)\}$$

$$x-7 \ge -1 \rightarrow x \ge 1 \rightarrow D_{gof} = [1, +\infty)$$

$$(gof)(x) = g(f(x)) = \sqrt{x-7+1} = \sqrt{x-1}$$

ضابطه gof به صورت روبهرو است:

$$D_{\text{fog}} = \{x \in D_g \mid g(x) \in D_f\} \rightarrow \{x \in [-1, \infty) \mid \sqrt{x+1} \in R\}$$

ب)

$$\mathbf{D_{fog}} = [-1, +\infty)$$
 : همواره برقرار است. بنابراین $\sqrt{x+1} \in \mathbf{R}$

$$(fog)(x) = f(g(x)) = \sqrt{x+1} - Y$$

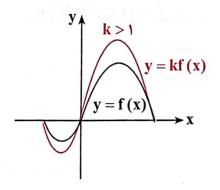
ضابطه fog به صورت روبهرو است:

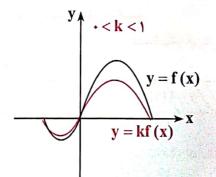
مثال : اگر f(x) و f(x) و $g(x) = x - \pi$ و $g(x) = \pi x + \Delta$ را حساب کنید.

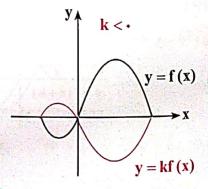
$$(f \circ g)(x) = r \circ x + \Delta \rightarrow f(g(x)) = r \circ x + \Delta \rightarrow f(x - r) = r \circ x + \Delta$$

$$x-r=t \rightarrow x=t+r$$

$$f(t) = \Upsilon(t+\Upsilon) + \Delta = \Upsilon t + 9 + \Delta = \Upsilon t + 17 \rightarrow f(x) = \Upsilon x + 17$$

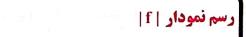

$$g(x) = \sqrt[r]{x}$$
, $f(x) = \frac{x^{\gamma} - 1}{x^{\gamma} + 1}$


مثال : تابع $h(x) = \sqrt[3]{\frac{x^{7}-1}{x^{7}+1}}$ را به صورت ترکیب دو تابع بنویسید


f(x) با استفاده از نمودار kf(x) با استفاده از نمودار

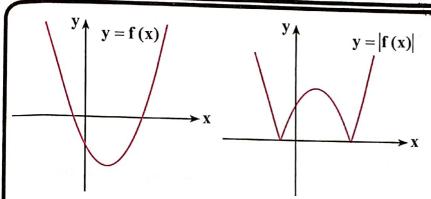
 \mathbf{k} برای رسم نمودار تابع با ضابطه $\mathbf{y} = \mathbf{k} \mathbf{f}(\mathbf{x})$ کافی است عرض هر نقطه از نمودار تابع با ضابطه $\mathbf{x} = \mathbf{f}(\mathbf{x})$ را با حفظ طول آن نقطه، $\mathbf{y} = \mathbf{k} \mathbf{f}(\mathbf{x})$ برابر کنیم.

از آن جایی که ریشه های معادله f(x) = f(x) = f(x) یکسان است. بنابراین محل تلاقی نمودار تابع f(x) = f(x) با محور f(x) = f(x)



نمودار f(x) ور امتداد محور yها با ضریب kکشیده میشود که در این حالت می گوییم نمودار انبساط عمودی یافته است. نمودار (x) f در امتداد محور yها با ضریب kفشرده می شود که در این حالت می گوییم نمودار انقباض عمودی یافته است. ابتدانمودار f نسبت به محور xها قرینه می شود، سپس با ضریب $|\mathbf{k}|$ به طور عمودی منبسط یا منقبض می شود.

دامنه تابع با ضابطه تابع y = kf(x) همان دامنه تابع y = kf(x) است، اما برد آنها لزوماً یکسان نیست.


بالتملي

خلاصه فصل اول (یاضی (3) تجربی دوازدهم

 $y = f\left(x\right)$ برای رسم نمودار $y = |f\left(x\right)|$ کافی است نمودار $y = |f\left(x\right)|$ را رسم کنید و در قسمتهایی که نمودار $y = |f\left(x\right)|$ زیر محور

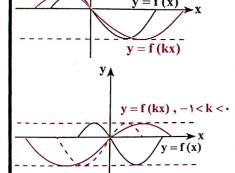
قرینه نمودار ${f f}$ را نسبت به محور ${f x}$ ها رسم کنیم.

رسم نمودار (f(kx با استفاده از نمودار

برای رسم نمودار تابع y=f(kx) کافی است طول نقاط نمودار تابع y=f(x) را در $\frac{1}{k}$ ضرب کنیم.

اگر k>1 ، نمودار $f\left(x
ight)$ در امتداد محور x ها با ضریب $\dfrac{1}{k}$ فشرده می شود که در این

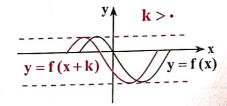
حالت مى گوييم نمودار انقباض افقى يافته است.

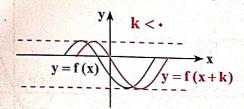

اگر k < k < 1 ، نمودار $f\left(x
ight)$ در امتداد محور x ها با ضریب k کشیده می شود که در

این حالت می گوییم نمودار انبساط افق<mark>ی یافته است.</mark>

اگر $k < \epsilon$ ، ابتدا نمودار f نسبت به محور gها قرینه می شود، سپس با ضریب $k < \epsilon$ اگر $k < \epsilon$ ، ابتدا نمودار k نسبت به محور و افقی منبسط یا منقبض می شود.

دامنه تابع y = f(x) با دامنه تابع y = f(kx) با دامنه تابع


است. y = f(x) همان برد تابع y = f(kx)



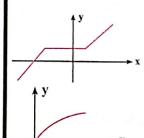
f(x) با استفاده از نمودار f(x+k) با استفاده ا

اگر $k > \epsilon$ ، نمودار f(x) را در امتداد محور x ها به اندازه k به چپ منتقل می کنیم.

اگر k < 0 ، نمودار f(x) را در امتداد محور x ها به راست منتقل می کنیم.

توابع چندجملهای

هر تابع به صورت a_1,\dots,a_{n-1},a_n و $f(x)=a_nx^n+a_{n-1}x^{n-1}+\dots+a_1x+a_1$ اعداد حقیقی و a_1,\dots,a_{n-1}

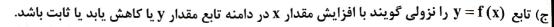

صحیح نامنفی و $lpha_{
m n}
eq a_{
m n}$ یک تابع چندجملهای از درجه n مینامیم.

نکته ۱: هر تابع با ضابطه f(x) = ax + b را یک تابع خطی مینامیم.

نکته a = 0 و a = 0 یک تابع ثابت است.

بالتعالي

توابع صعودي و توابع نزولي



الف) تابع y=f(x) را صعودی گویند با افزایش مقدار x در دامنه تابع مقدار y یا افزایش یابد یا ثابت باشد.

$$x_1, x_7 \in D_f \rightarrow x_1 < x_7 \rightarrow f(x_1) \le f(x_7)$$

ب) تابع y = f(x) را اکیداً صعودی گویند مقدار x در دامنه تابع افزایش یابد مقدار y = f(x)

$$x_1, x_{\gamma} \in D_f \rightarrow x_1 < x_{\gamma} \rightarrow f(x_1) < f(x_{\gamma})$$

$$x_1, x_{\gamma} \in D_f \rightarrow x_1 < x_{\gamma} \rightarrow f(x_1) \ge f(x_{\gamma})$$

د) تابع $y=f\left(x
ight)$ را اکیداً نزولی گویند با افزایش مقدار x در دامنه تابع مقدار y کاهش یابد.

$$x_1, x_7 \in D_f \rightarrow x_1 < x_7 \rightarrow f(x_1) > f(x_7)$$

نکته :

- ۱) ممکن است تابعی نه صعودی باشد و نه نزولی
- ۲) ممکن است تابعی در بازهای صعودی اکید و در بازه دیگر نزولی اکید باشد.
- ۳) اگر تابع در [a , b] اکیداً صعودی یا اکیداً نزولی باشد می گوییم تابع اکیداً یکنواست.

تابع یک به یک

تابع $y=f\left(x
ight)$ را یک به یک گویند اگر برای هر y متعلق به برد اگر و فقط اگر یک x از دامنه وجود داشته باشد.

مثال: توابع زیر یک به یک هستند:

$$f_1: \{(Y, Y)(Y, 11)(Y, -Y)\}$$

$$f_{\gamma}:\{(1, \Upsilon)(\Upsilon, 1)(\Delta, \Upsilon)\}$$

$$\forall x_1, x_1 \in D_f : y_1 = y_7 \implies x_1 = x_7$$

تعریف ریاضی :

مثال : آیا تابع $\mathbf{y} = \mathsf{Tx}^\mathsf{T} - \mathbf{0}$ از $\mathbf{y} \to \mathbb{R}$ یک به یک است.

$$x_1, x_7 \in D_f$$

$$y_1 = y_Y \rightarrow x_1 = x_Y$$

$$\frac{\mathbf{y_1} = \mathbf{x_1^r} - \Delta}{\mathbf{y_r} = \mathbf{x_r^r} - \Delta} \rightarrow \mathbf{y_1} = \mathbf{y_r} \implies \mathbf{x_1^r} - \Delta = \mathbf{x_r^r} - \Delta \implies \mathbf{x_1^r} - \Delta = \mathbf{x_r^r} - \Delta \implies \mathbf{x_1} = \mathbf{x_r}$$

مثال : آیا تابع $y=x^{7}-7x$ از $y=x^{2}-7x$ یک به یک است؟ دامنه تابع را محدود کنید تا یک به یک شود.

$$\begin{array}{c} y_1 = x_1^{\intercal} - \tau x_1 \\ y_{\intercal} = x_{\intercal}^{\intercal} - \tau x_{\intercal} \end{array} \rightarrow \begin{array}{c} y_1 = y_{\intercal} \implies x_1^{\intercal} - \tau x_1 = x_{\intercal}^{\intercal} - \tau x_{\intercal} \end{array}$$

$$x_{1}^{r} - x_{1}^{r} = -rx_{1} + rx_{1} \rightarrow (x_{1} - x_{1})(x_{1} + x_{1}) = +r(x_{1} - x_{1})$$

$$(x_{1} - x_{1})(x_{1} + x_{1}) - r(x_{1} - x_{1}) = \cdot \rightarrow (x_{1} - x_{1})(x_{1} + x_{1} - r) = \cdot$$

$$x_1-x_7=$$
 $\rightarrow x_1=x_7$, $x_1+x_7-7=$ $\rightarrow x_1+x_7=$ $\rightarrow x_1+x_7=$ یک به یک نیست

 $(x \le 1)$ اگر دامنه آن $x \ge 1$ باشد آنگاه یک به یک است. (یا

بالتعالي

مثال : آیا تابع $y=x^{r}-rx^{r}+rx-r$ از $y=x^{r}-rx^{r}+rx-r$ یک به یک است.

$$y = x^{r} - rx^{r} + rx - r \rightarrow y = (x - 1)^{r} - 1$$

$$y_1 = (x_1 - 1)^{r} - 1$$
 $y_r = (x_r - 1)^{r} - 1$
 $y_r = (x_r - 1)^{r} - 1$

 $: \mathbb{R} o \mathbb{R}$ نکته: در توابع چندجملهای از

۱) اگر n زوج باشد تابع یک به یک نیست.

۲) اگر x داخل قدرمطلق یا [] باشد یک به یک نیست.

وارون تابع و تابع وارون: 1⁻¹

وارون تابع، با جابهجا کردن مولفههای زوج مرتب به دست می آید و ممکن است تابع هم نباشد.

مثال : وارون تابع $f = \{(1, 7)(7, 7), (7, 7)\}$ را بنویسید.

. که تابع نیست. $f^{-1} = \{(\Upsilon, 1)(\Upsilon, \Upsilon)(\Upsilon, \Upsilon)\}$

تابع وارون: اگر تابع یک به یک باشد با جابهجا کردن مولفهها، تابع جدیدی به دست می آید که آن را تابع وارون گویند.

قضیه : شرط لازم و کافی برای این که تابع وارون پذیر باشد آن است که f یک به یک باشد.

نکته : اگر خطی موازی محور طولها رسم کنیم و نمودار تابع را حداکثر در یک نقطه قطع کند تابع یک به یک است و وارون دارد.

نکته : اگر ${f f}$ تابعی وارون پذیر و ${f f}^{-1}$ وارون آن باشد در این صورت :

$$(fof^{-1})(x) = x$$
 داریم: D_f^{-1} متعلق x متعلق (الف) برای هر

$$(f^{-1}of)(x) = x$$
: داریم D_f متعلق به D_f داریم

یا شرط این که f و f^{-1} وارون هم باشند باید $f^{-1}(x) = x$ و $f^{-1}(x) = x$ برقرار باشد.

مثال: نشان دهید تابع f(x) و g(x) وارون یکدیگرند.

$$f(x) = (x+1)^{\gamma} - 1$$

$$g(x) = \sqrt[n]{x+1} - 1$$

1)
$$(fog)(x) = f(g(x)) = (\sqrt[m]{x+1} - 1 + 1)^m - 1 \implies (\sqrt[m]{x+1})^m - 1 = x + 1 - 1 = x$$

حل:

Y)
$$(gof)(x) = g(f(x)) = \sqrt[m]{(x+1)^m - 1 + 1} - 1 = x + 1 - 1 = x$$

پس وارون هم هستند.

نکته ۱: نمودار تابع f و نمودار تابع f^{-1} نسبت به خط y=x قرینهاند.

نکته ۲: اگر نمودار تابع و وارون آن متقاطع باشند نقطه تقاطع روی نیمساز ربع اول و سوم قرار دارد.

نکته : با محدود کردن دامنه تابعی که یک به یک نیست، می توان تابعی یک به یک به دست آورد.

مثال : اگر $\mathbf{h}(\mathbf{x}) = \mathbf{x}^\mathsf{T} - \mathsf{T}\mathbf{x} + \mathsf{T}$ و از $\mathbb{R} \; o \; \mathbb{R}$ باشد با محدود کردن دامنه آن وارون آن را بنویسید.

$$h(x) = x^{7} - 7x + 7$$

حل:

$$y = (x-1)^{7} + 1$$

$$(x-1)^{\Upsilon} = y-1 \rightarrow |x-1| = \sqrt{y-1}$$

اگر ۱≥x یا ۱≤x ، آنگاه تابع h(x) یک به یک است.

$$x-1 = \sqrt{y-1} \rightarrow x = \sqrt{y-1} + 1 \rightarrow f^{-1}(x) = \sqrt{x-1} + 1$$

فرض مىكنيم 1≤x:

$$(fog)^{-1} = g^{-1}of^{-1}$$

: اگر f و g دو تابع وارون پذیر باشند آن گاه

 $(fog)^{-1} = g^{-1}of^{-1}$: مثال : اگر f(x) = x + 1 و g(x) = 7x - 4 و g(x) = 7x - 4 و مثال : اگر

$$(f \circ g)(x) = f(g(x)) = \Upsilon x - \Upsilon + Y = \Upsilon x - \Upsilon \xrightarrow{f \circ g = h} h(x) = \Upsilon x - \Upsilon$$

$$h = \Upsilon x - \Upsilon \rightarrow h + \Upsilon = \Upsilon x \rightarrow x = \frac{h + \Upsilon}{\Upsilon} \rightarrow (fog)^{-1}(x) = \frac{x + \Upsilon}{\Upsilon}$$

حال معكوس آن:

$$f(x) = x + 1 \rightarrow y = x + 1 \rightarrow x = y - 1 \rightarrow f^{-1}(x) = x - 1$$

$$g(x) = \Upsilon x - \Upsilon \rightarrow y = \Upsilon x - \Upsilon \rightarrow x = \frac{y + \Upsilon}{\Upsilon} \rightarrow g^{-1}(x) = \frac{x + \Upsilon}{\Upsilon}$$

$$(g^{-1}of^{-1})(x) = g^{-1}(f^{-1}(x)) = g^{-1}(x-1) = \frac{x-1+f}{f} = \frac{x+f}{f}$$

$$(f \circ g)^{-1}(x) = (g^{-1} \circ f^{-1})(x)$$

بالتحالي

مثلثات

فصل دوم

مثلثات

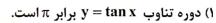
تابع f را متناوب مینامیم هرگاه یک عدد حقیقی مثبت مانند T موجود باشد، به طوری که برای هر $x\in D_f$ داشته باشیم. $f(x\pm T)=f(x)$, $x\pm T\in D_f$

کوچک ترین عدد مثبت T با این خاصیت را دوره تناوب f مینامیم.

به طور کلی توابع $y = a \sin bx + c$ و $y = a \cos bx + c$ متناوب هستند.

مقدار ماکزیمم آنها |a|+c ، مقدار مینیمم -|a|+c ، مقدار ماکزیمم آنها مقدار ماکزیمم آنها ،

تانژانت


در دایره مثلثاتی زیر خط TAT' در نقطه A بر محور کسینوس، عمود است.

شعاع دایره مثلثاتی برابر با یک است.

این خط را محور تانژانت مینامیم. نقطه A مبدأ این محور است و جهت مثبت محور از پایین $an \alpha = AM' = b$

با توجه به شکل بالا وقتی $lpha=rac{\pi}{7}$ ، امتداد lpha=0 محور تانژانت را قطع نمی کند. بنابراین دامنه

 $\mathbf{D}=\{\mathbf{x}\in\mathbb{R}\mid\mathbf{x}
eq\mathbf{k}\pi+rac{\pi}{7}\;,\;\mathbf{k}\in\mathbf{z}\}$ تابع $\mathbf{y}= anlpha$ و نمودار آن به صورت زیر است.

رابر
$$\frac{\pi}{|\mathbf{a}|}$$
 است. $\mathbf{y} = \tan \mathbf{a}\mathbf{x}$ است.

معادله مثلثاتي

 $.k\in z$ به صورت $x=7k\pi+lpha$ و $x=7k\pi+lpha-lpha$ میباشد که $x=\sinlpha$

 $\mathbf{k} \in \mathbf{z}$ میباشد که $\mathbf{x} = \mathsf{T}\mathbf{k}\pi \pm \mathbf{\alpha}$ به صورت $\mathbf{x} = \mathsf{T}\mathbf{k}\pi \pm \mathbf{\alpha}$ میباشد که

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$
, $\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$, $\tan \alpha \times \cot \alpha = 1$

یادآوری و تکمیل :

$$1 + \tan^{\gamma} \alpha = \frac{1}{\cos^{\gamma} \alpha}$$
, $1 + \cot^{\gamma} \alpha = \frac{1}{\sin^{\gamma} \alpha}$

M′(۱،b)

$$\sin^{\gamma} \alpha + \cos^{\gamma} \alpha = 1$$
, $\sin \gamma \alpha = \gamma \sin \alpha \cos \alpha$

$$\cos \tau \alpha = \cos^{\tau} \alpha - \sin^{\tau} \alpha \quad , \quad \cos \tau \alpha = 1 - \tau \sin^{\tau} \alpha \quad , \quad \cos \tau \alpha = \tau \cos^{\tau} \alpha - 1$$

بالقمالي

مد بینهایت

فصل سوم

بخش پذیری چندجملهای ها بر (x-a)

قضیه : در تقسیم چندجملهای f(x) بر دوجملهای درجه اول (x-a) ، باقیمانده تقسیم برابر f(x) است.

نتیجه : اگر f(a) برابر صفر باشد آنگاه f(x) برابر صفر باشد آنگاه است.

حد توابع کسری

، $\mathbf{m} \neq \mathbf{0}$ قضیه : اگر دو تابع \mathbf{f} و \mathbf{g} در نقطهای به طول \mathbf{a} حد داشته باشند و حد آنها در این نقطه به ترتیب \mathbf{f} و \mathbf{g} باشد به طوری که

آنگاه تابع
$$\frac{1}{m}$$
 نیز در a حد دارد و این حد برابر $\frac{f}{g}$ است.

 $\frac{f}{g}$ تذکر : گاهی صورت یا مخرج تابع $\frac{f}{g}$ شامل یک عبارت رادیکالی است و $\frac{f}{g}$ در این حالت برای محاسبه حد $\frac{f}{g}$

g و f یا عبارتی که موجب صفر شدن f و f یا عبارت و مخرج را در یک عبارت رادیکالی ضرب کنیم تا عامل f و

شده است، در صورت و مخرج ظاهر شود تا با ساده کردن آن از صورت و مخرج بتوانیم مقدار حد را در صورت وجود به دست آوریم.

مثال : حد تابع
$$x = x$$
 به دست آورید. $f(x) = \frac{x - \sqrt{x - 7}}{x^x - 2x - 5}$ به دست آورید.

$$\lim_{x \to Y} (x - \sqrt{\Upsilon x - Y}) = \lim_{x \to Y} (\Upsilon x^{\Upsilon} - \Delta x - \theta) = \bullet$$

$$\lim_{x \to \tau} \frac{x - \sqrt{\tau x - \tau}}{(x - \tau)(\tau x^{\tau} + \tau x + \tau)} \times \frac{x + \sqrt{\tau x - \tau}}{x + \sqrt{\tau x - \tau}}$$

$$\lim_{x \to \tau} \frac{x^{\tau} - \tau x + \tau}{(x - \tau) \times 19 \times \tau} = \lim_{x \to \tau} \frac{(x - \tau)(x - 1)}{(x - \tau) \times 99} = \frac{1}{99}$$

همسایگی

هر بازه باز شامل عدد حقیقی .x را یک همسایگی .X مینامیم.

به عبارت دیگر اگر $x_* \in (a,b)$. آنگاه بازه (a,b) یک همسایگی x_* میباشد. برای مثال بازه $x_* \in (a,b)$ یک همسایگی ۲ است.

همسایگی محذوف : اگر بازه $(a\,,b)$ یک همسایگی عدد حقیقی x باشد، آنگاه مجموعه $(a\,,b)$ یک همسایگی محذوف

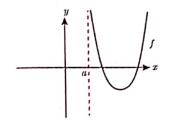
.X نامیده می شود.

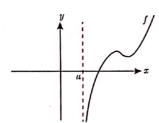
همسایگی چپ و راست : اگر r عددی مثبت باشد آنگاه (x. , x. +r) یک همسایگی راست .x نامیده میشود. همچنین را یک همسایگی چپ $x_{ au}$ مینامیم. $(x_{ au}-r\ ,\,x_{ au})$

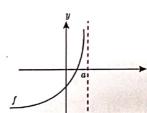
حد نامتناهی یا حد بینهایت

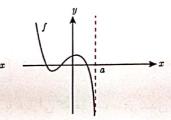
هرگاه x را خیلی به صفر نزدیک کنیم مقادیر $\dfrac{1}{x^7}$ خیلی بزرگ میشود و به هیچ عدد خاصی میل نمی کند. در نتیجه $\dfrac{1}{x^7}$ موجود

$$\lim_{x \to \infty} \frac{1}{x^{\gamma}} = +\infty$$

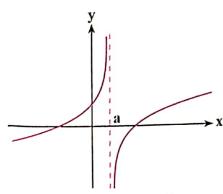

نیست. با این حال در چنین مواقعی برای توصیف بهتر رفتار تابع در همسایگی محذوف صفر مینویسیم:

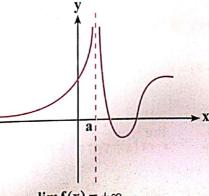

میدانیم که ∞ + یک عدد حقیقی نیست.

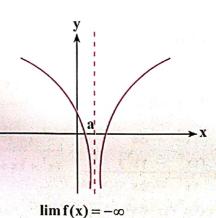

یعنی x با مقادیر بزرگ تر از a (از سمت راست) به قدر کافی به a نزدیک اختیار شود. $x \!
ightarrow \! a^+$


یعنی x با مقادیر کوچک تر از a (از سمت چپ) به قدر کافی به a نزدیک اختیار شود. x
ightarrow a

به نمودارهای زیر و حدود نامتناهی دقت فرمایید:




$$\lim_{x \to a^+} f(x) = +\infty$$


$$\lim_{x \to a^+} f(x) = -\infty$$

$$\lim_{x \to a^{-}} f(x) = +\infty$$

$$\lim_{x \to a^{-}} f(x) = -\infty$$

$$\lim_{x\to a^{-}} f(x) = +\infty \quad \lim_{x\to a^{+}} f(x) = -\infty$$

$$\lim f(x) = +\infty$$

. $\lim_{x\to 1} \frac{-x+1}{x^7+ax+b} = -\infty$ مثال : $a \in b$ و $a \in b$ مثال : $a \in b$

حل: $\infty = -\frac{-x+1}{x \to 1}$ یعنی وقتی x از سمت راست یا چپ به ۲ نزدیک شود، حاصل از هر عدد منفی دلخواه کوچک تر

می شود. بنابراین x = Y ریشه مضاعف مخرج است.

$$f(x) = \frac{-x+1}{Y(x-Y)^{Y}} \rightarrow Yx^{Y} + ax + b = Y(x-Y)^{Y}$$

$$^{\dagger}x^{\dagger} + ax + b = ^{\dagger}x^{\dagger} - 1^{\dagger}x + 1^{\dagger} \rightarrow a = -1^{\dagger}$$
, $b = 1^{\dagger}$

بالتمالي

حد در بینهایت

یعنی x از هر عدد مثبت دلخواهی بزرگ تر است. $x \to +\infty$

یعنی x از هر عدد منفی دلخواهی کوچک تر است. $x \to -\infty$

$$\lim_{x \to +\infty} \frac{1}{x^n} = \lim_{x \to -\infty} \frac{1}{x^n} = \cdot$$

قضیه : فرض کنیم n عددی طبیعی باشد، در این صورت :

فرض کنیم f یک تابع چندجملهای از درجه n به صورت $f(x)=ax^n+bx^{n-1}+\cdots+k$ باشد که در آن n عددی طبیعی و a یک

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} ax^{n}, \quad \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} ax^{n}$$

عدد حقیقی غیرصفر است. در این صورت:

به عبارت دیگر برای محاسبه حد توابع گویا زمانی که $x o -\infty$ یا $x o -\infty$ ، فقط جملهای را در نظر می گیریم که بیشترین توان را دارد.

$$\lim_{x \to +\infty} \frac{7x-1}{x^7 + \Delta x} , \lim_{x \to -\infty} \frac{7x^7 - 1\Delta x + 7}{7x^7 - 5x - 1}$$

مثال: حدهای روبهرو را به دست آورید:

$$\lim_{x \to +\infty} \frac{7x - 1}{x^7 + \Delta x} = \lim_{x \to +\infty} \frac{7x}{x^7} = \lim_{x \to +\infty} \frac{7}{x} = \cdot$$

حل:

$$\lim_{x\to-\infty}\frac{\tau x^{\gamma}-1\Delta x+\tau}{\gamma x^{\gamma}-9x-1}=\lim_{x\to-\infty}\frac{\tau x^{\gamma}}{\gamma x^{\gamma}}=\frac{\tau}{\gamma}$$

حد نامتناهی در بینهایت

به این معناست که مقدارهای f(x) را می توان از هر عدد مثبت دلخواهی بزرگ تر کرد، مشروط بر آن که x به قدر $x \to +\infty$

کافی بزرگ اختیار شود.

رابطههای
$$-\infty$$
 , $\lim_{x\to +\infty} f(x) = -\infty$, $\lim_{x\to +\infty} f(x) = +\infty$, $\lim_{x\to +\infty} f(x) = -\infty$, $\lim_{x\to +\infty} f(x) = -\infty$, $\lim_{x\to +\infty} f(x) = -\infty$, $\lim_{x\to +\infty} f(x) = -\infty$

$$\lim_{x\to +\infty} \mathsf{Tx}^\mathsf{T} = +\infty$$
 , $\lim_{x\to +\infty} -\Delta x^\mathsf{F} = -\infty$, $\lim_{x\to -\infty} \mathsf{Tx} = -\infty$, $\lim_{x\to -\infty} -\Delta x^\mathsf{T} = +\infty$: برای مثال

بالتحالي

خلاصه فصل چهارم ریاضی (3) تجربی دوازدهم

آهنگ تغییر

[فصل چهارم

مشتق

تعریف حدی مشتق : تابع f را در بازه باز $(a\,,b)$ در نظر گرفته که حول نقطه x, و $(a\,,b)$ تعریف شده باشد حد نسبت $f'(x,t) = \lim_{x \to x} \frac{f(x) - f(x,t)}{x - x,t}$ موجود باشد، آن را مشتق تابع در نقطه x گویند و به صورت $\frac{f(x,t) - f(x,t)}{x - x,t}$ نشان می دهیم.

مثال : مشتق تابع $f(x) = x^{2} + x^{2} + x$ را با استفاده از تعریف به دست آورید.

$$f'(x_{\star}) = \lim_{x \to x_{\star}} \frac{f(x) - f(x_{\star})}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{(x^{t} + tx + 1) - (x^{t} + tx_{\star} + 1)}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star} + 1}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star}}{x - x_{\star}} = \lim_{x \to x_{\star}} \frac{x^{t} - x^{t} + tx_{\star}}$$

$$f'(x_{\cdot}) = \lim_{x \to x_{\cdot}} \frac{(x-x_{\cdot})[\Upsilon(x+x_{\cdot})+\Upsilon]}{(x-x_{\cdot})} \Rightarrow \lim_{x \to x_{\cdot}} = \Upsilon x + \Upsilon x_{\cdot} + \Upsilon = \beta x_{\cdot} + \Upsilon$$

مثال : مشتق تابع $f(x) = \sqrt[7]{x-1}$ را در x = 9 با استفاده از تعریف به دست آورید.

$$a^{\mathsf{r}} - b^{\mathsf{r}} = (a - b)(a^{\mathsf{r}} + ab + b^{\mathsf{r}})$$

یاد آوری :

$$f'(9) = \lim_{x \to 9} \frac{\sqrt[m]{x-1} - \sqrt[m]{9-1}}{x-9} = \lim_{x \to 9} \frac{(\sqrt[m]{x-1} - \sqrt[m]{\Lambda})(\sqrt[m]{(x-1)^{\Upsilon}} + 7\sqrt[m]{(x-1)} + 7^{\Upsilon})}{(x-9)(\sqrt[m]{(x-1)^{\Upsilon}} + 7\sqrt[m]{(x-1)} + 7^{\Upsilon})}$$

$$= \lim_{x \to 9} \frac{(x-1) - \lambda}{(x-9)(\sqrt[7]{(x-1)^7} + 7\sqrt[7]{(x-1)} + 9)}$$

$$\lim_{x\to 9} \frac{1}{\sqrt[r]{(x-1)^r} + 7\sqrt[r]{(x-1)} + \varepsilon} = \frac{1}{\varepsilon + \varepsilon + \varepsilon} = \frac{1}{17}$$

نیز به دست آورد. $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ نیز به دست آورد.

قضاياي مشتق

نکته : مشتق تابع را با استفاده قضایای مشتق می توان به دست آورد.

$$y = ax^n \rightarrow y' = nax^{n-1}$$

$$f) y = uv \rightarrow y' = u'v + v'u$$

$$(\beta) y = ku^n \rightarrow y' = nku'u^{n-1}$$

A)
$$y = \sqrt{f(x)} \rightarrow y' = \frac{f'(x)}{\gamma \sqrt{f(x)}}$$

۱۰)
$$y = \sqrt[m]{u^n} \rightarrow y' = \frac{nu'}{m\sqrt[m]{u^{m-n}}}$$
 به طور کلی

1) $y = c \rightarrow v' = \cdot$

$$\forall y = u + v \rightarrow y' = u' + v'$$

$$\Delta$$
) $y = ku \rightarrow y' = ku'$

$$\forall y = \frac{\mathbf{u}}{\mathbf{v}} \rightarrow \mathbf{y}' = \frac{\mathbf{u}'\mathbf{v} - \mathbf{v}'\mathbf{u}}{\mathbf{v}'}$$

$$^{9)} y = \sqrt[7]{f(x)} \rightarrow y' = \frac{f'(x)}{\sqrt[7]{f(x)^{7}}}$$

$$^{(1)} y = f(u) \rightarrow y' = u'f'(u)$$

نکته: مشتق پذیری تابع را با توجه به تعریف مشتق بررسی می کنیم.

مشتق راست:

$$\lim_{x \to x_{\star}^{+}} \frac{f(x) - f(x_{\star})}{x - x_{\star}}$$
 مشتق راست دارد اگر حد کسر $y = f(x)$ موجود باشد.

مشتق چپ :

تابع
$$y = f(x)$$
 مشتق چپ دارد اگر حد کسر $y = f(x)$ موجود باشد. $y = f(x)$ تابع $y = f(x)$ موجود باشد.

نکته : اگر مشتق چپ و راست موجود و با هم برابر باشند تابع در $\mathbf{x} = \mathbf{x}_{\bullet}$ مشتق دارد.

مثال: مشتق پذیری تابع $\mathbf{x} = \mathbf{v} = \mathbf{v}$ را در $\mathbf{x} = \mathbf{v}$ بررسی کنید.

$$\lim_{x \to x_{\star}} \frac{f(x) - f(x_{\star})}{x - x_{\star}} = \lim_{x \to \star} \frac{\sqrt[r]{x} - \cdot}{x - \cdot} = \lim_{x \to \star} \frac{\sqrt[r]{x}}{\sqrt[r]{x^{r}}} = \sqrt[r]{\frac{x}{x^{r}}} = \lim_{x \to \star} \frac{1}{\sqrt[r]{x^{r}}} = +\infty$$

مشتق پذیر نیست چون حاصل عدد حقیقی نشده است.

مثال: الف) نشأن دهيد تابع $|x^{T}-Tx|=|x^{T}-Tx|$ مشتق پذير نيست.

ب) معادله هر یک از نیم مماسها را در این نقطه بنویسید.

$$\lim_{x \to x_{\cdot}} \frac{f(x) - f(x_{\cdot})}{x - x_{\cdot}} = \lim_{x \to Y} \frac{|x^{Y} - Yx| - \cdot}{x - Y} = \begin{cases} \lim_{x \to Y^{+}} \frac{x(x - Y)}{x - Y} = Y \\ \lim_{x \to Y^{-}} \frac{-(x - Y)x}{x - Y} = -Y \end{cases}$$

مشتق راست با مشتق چپ برابر نیستند پس تابع در x = x مشتق ندارد.

راست (ب
$$f'_+(\Upsilon) = \Upsilon$$
 , $f(\Upsilon) = \bullet \to y - \bullet = \Upsilon(x - \Upsilon) \to y = \Upsilon x - F; x \ge \Upsilon$

شیب نیم مماس چپ
$$\mathbf{f}_-'(\mathsf{T}) = -\mathsf{T} \to \mathbf{y} - \cdot = -\mathsf{T}(\mathbf{x} - \mathsf{T}) \to \mathbf{y} = -\mathsf{T}\mathbf{x} + \mathsf{F}; \mathbf{x} < \mathsf{T}$$

مشتقپذیری و پیوستگی

قضیه : اگر تابع f در نقطه x=a مشتق پذیر باشد آن گاه در آن نقطه پیوسته است. عکس قضیه ممکن است برقرار نباشد.

$$f(\cdot) = \cdot$$
 مقدار تابع

مثال: تابع |x| = f(x) = f(x) را در نظر گرفته و پیوستگی و مشتق پذیری آن را در x = 0 بررسی کنید.

$$\lim_{x\to 0} |x| = 0$$
 پیوسته است \leftarrow مقدار تابع = حد تابع

$$\lim_{x \to x, \frac{1}{x} \to x} \frac{f(x) - f(x,)}{x - x,} = \frac{|x| - \cdot}{x - \cdot} = \lim_{x \to \cdot} \frac{|x|}{x} = \begin{cases} \lim_{x \to \cdot^{+}} \frac{x}{x} = 1 & ; & x > \cdot \\ \lim_{x \to \cdot^{-}} \frac{-x}{x} = -1 & ; & x < \cdot \end{cases}$$

مشتق چپ \neq مشتق راست، پس تابع در $\mathbf{x} = \mathbf{0}$ مشتق پذیر نیست.

بالقما*لي*

مثال : مقدار
$$f(x) = \begin{cases} x^{7} + ax + b & x \ge 1 \\ x^{7} + 7ax & x < 1 \end{cases}$$
 در $x = 1$ مشتق پذیر باشد.

 $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^-} f(x) = f(1)$: حل : چون مشتق پذیر است پس پیوسته نیز است :

$$1+a+b=1+7a \rightarrow 7a-a-b= \rightarrow a-b= \rightarrow$$

$$f'(x) = \begin{cases} 7x + a & x > 1 \\ 7x^7 + 7a & x < 1 \end{cases} \xrightarrow{x=1} x=1$$
مشتق راست = مشتق چپ

$$r+a=r+ra \rightarrow a=-1$$

$$a = -1 \rightarrow a - b = \cdot \rightarrow b = -1$$

آهنگ تغیب

نقاط (x_1,y_1) و (x_7,y_7) را روی تابع y=f(x) در نظر گرفته $x_7-x_1=\Delta x$ را نمو متغیر و $y_7-y_1=\Delta y$ را نمو تابع گویند.

$$\frac{\Delta y}{\Delta x} = \frac{y_{\gamma} - y_{1}}{x_{\gamma} - x_{1}} = \frac{f(x_{\gamma}) - f(x_{1})}{x_{\gamma} - x_{1}}$$

نسبت نمو تابع به نمو متغیر را آهنگ متوسط گویند.

$$\lim_{x\to x_{\bullet}}\frac{f(x)-f(x_{\bullet})}{x-x_{\bullet}}$$

حد نسبت نمو تابع و نمو متغیر را آهنگ لحظهای یا مشتق گویند.

مثال : جسمی روی یک خط راست به گونهای حرکت میکند که مکان آن در لحظه t به صورت t + t است.

الف) سرعت متوسط متحرک در فاصله زمانی $r \leq t \leq r$

 $extbf{Y} \leq extbf{t} \leq extbf{T}/1$ ب سرعت متوسط در فاصله زمانی

t = 1 را حساب کنید. t = 1 را حساب کنید.

$$\overline{v} = \frac{s(r) - s(r)}{t_r - t_1} = \frac{r \cdot - 1 \cdot}{r - r} = 1 \cdot m/s$$

$$\overline{v} = \frac{s(\Upsilon/1) - s(\Upsilon)}{t_{\Upsilon} - t_{1}} = \frac{1 \cdot / \Lambda \Upsilon - 1 \cdot}{\Upsilon/1 - \Upsilon} = \frac{\cdot / \Lambda \Upsilon}{\cdot / 1} = \Lambda / \Upsilon \text{ m/s}$$

$$V = \lim_{t \to T} \frac{s(t) - s(T)}{t - T} = \lim_{t \to T} \frac{Tt^{T} + T - 1}{t - T} = \lim_{t \to T} \frac{T(t^{T} - F)}{t - T} = \lim_{t \to T} \frac{T(t - T)(t + T)}{t - T} = \lim_{t \to T} T(t + T) = \lambda m/s$$

بالتعالي

کاربرد مشتق

فصل ينجم

آزمون يكنوايي تابع

الف) در یک بازه از دامنه f اگر مقدار f موجود و مثبت باشد، آنگاه f در آن بازه اکیداً صعودی است. g موجود و منفی باشد، آنگاه g در آن بازه اکیداً نزولی است. g در یک بازه از دامنه g اگر مقدار g موجود و برابر صفر باشد، آنگاه g در آن بازه تابعی ثابت است.

مثال : تابع $f(x) = -x^{\pi} + \pi x$ در چه بازههایی اکیداً صعودی و در کدام بازهها اکیداً نزولی است.

-ل : \mathbf{f}' را به دست آورده و آن را تعیین علامت می کنیم.

$$f'(x) = -rx^r + r$$
, $f'(x) = \cdot \rightarrow -rx^r + r = \cdot$, $x = -1$

X	$-\infty$		-1		١		$+\infty$
علامت 'f		_	•,	+	•	_	
یکنوایی f	+∞	اكيداً نزولي	-۲	داً صعودی	۲ اکی	اكيداً نزولي	$-\infty$
	The State of	7		7		- V	

اكسترممهاي نسبى تابع

 $f(c) \ge f(x)$ در نقطهای به طول c ماکزیمم نسبی دارد، هرگاه یک همسایگی از c مانند c باشد که برای هر c داشته باشیم c در نقطهای به طول c ماکزیمم نسبی تابع c مینامیم.

تابع f در نقطهای به طول c مینیمم نسبی دارد، هرگاه یک همسایگی از c مانند c باشد که برای هر c داشته باشیم c داشته باشیم c در نقطهای به طول c مینیمم نسبی تابع d مینامیم.

نكته: نقاط ماكزيمم و مينيمم يك تابع را نقاط اكسترمم آن تابع هم مى گوييم.

نقطه بحرانی :نقطه $\mathbf{f}'(\mathbf{c})$ را نقطه بحرانی گویند هرگاه $\mathbf{f}'(\mathbf{c})=\mathbf{0}$ یا $\mathbf{c}\in\mathbf{D}_{\mathbf{f}}$ موجود نباشد.

نکته : هر نقطه max و min نسبی بحرانی است چون مشتق در آن صفر است، ولی عکس آن همیشه برقرار نیست.

$$D_f = R - \{ {\boldsymbol{\cdot}} \}$$

مثال: نقاط بحراني تابع روبهرو را حساب كنيد.

$$f(x) = \frac{x + r}{x^r}$$

$$f'(x) = \frac{-x^r - r}{x^r} = \frac{-x - r}{x^r} \to -x - r = r$$
 نقطه بحرانی است $f'(x) = r \to x = -r$

مثال : تابع $y=x^{\mathsf{T}}-\mathbf{T}x+\mathbf{T}$ را در فاصله $y=x^{\mathsf{T}}-\mathbf{T}x+\mathbf{T}$ در نظر گرفته و max مثال و باید باید و ست آورید.

$$y' = rx^{r} - r \Rightarrow y' = \cdot \rightarrow rx^{r} - r = \cdot \rightarrow x = \pm 1$$

بالتمالي

 $\gamma(\cdot) = \gamma$ مینیمم مطلق

در دامنه نیست. x = -1

 $y(\Upsilon) = \varphi$ ماکزیمم مطلق

$$y(1) = \cdot$$

مثال : معادله مماس بر منحنی $y=x^{\Upsilon}-\gamma x$ را در نقطهای به طول ۲ واقع بر منحنی را به دست آورید.

$$y = Y \rightarrow y = Y^{T} - V \times Y \rightarrow y = -1 \rightarrow \begin{vmatrix} Y \\ -1 \end{vmatrix}$$

$$y' = YX - V \xrightarrow{X=Y} m = y'(Y) = Y \times Y - V \rightarrow m = -Y'$$

$$y-y_1=m(x-x_1)$$
 معادله خط مماس $y=-\pi x-\gamma$ معادله خط مماس $y=-\pi x-\gamma$

هینهسازی

هرگاه بخواهیم بیشترین یا کمترین مقدار یک کمیت را حساب کنیم، ابتدا آن را برحسب یک مجهول مینویسیم سپس مشتق آن را برابر با صفر قرار میدهیم.

مثال : نقطهای روی منحنی $\mathbf{f}(\mathbf{x}) = \sqrt{\mathbf{x}}$ پیدا کنید که از نقطه $\mathbf{f}(\mathbf{x}) = \mathbf{x}$

 $\mathbf{A} \begin{vmatrix} \mathbf{r} & \mathbf{B} \end{vmatrix} \mathbf{x}$

مقا

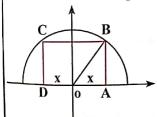
اين

در ه

نقط

پاره

پاره.


حل : نقطه مورد نظر را B مىناميم :

$$d = \sqrt{(x-\xi)^{\Upsilon} + (\sqrt{x} - \cdot)^{\Upsilon}} = \sqrt{x^{\Upsilon} - \forall x + 1}$$

$$AB = \sqrt{(x_A - x_B)^7 + (y_A - y_B)^7}$$
 یادآوری :

$$d' = \cdot \rightarrow \frac{\forall x - \forall}{\forall \sqrt{x^{\Upsilon} - \forall x + 1\%}} = \cdot \rightarrow \forall x - \forall = \cdot \rightarrow x = \frac{\forall}{\forall} \rightarrow B(\frac{\forall}{\forall}, \sqrt{\frac{\forall}{\forall}})$$

مثال: مستطیلی داخل نیمدایره به شعاع ۱ محاط شده است حداکثر مساحت ممکن برای این مستطیل چقدر است؟

$$DA = Yx$$
 , $OB = math{math{a}} = N$

$$OAB \Rightarrow OB^{\Upsilon} = OA^{\Upsilon} + AB^{\Upsilon} \Rightarrow 1 = x^{\Upsilon} + AB^{\Upsilon} \rightarrow AB = \sqrt{1 - x^{\Upsilon}}$$

$$OAB \Rightarrow OB$$
 $OAB \Rightarrow OB$ $OAB \Rightarrow OAB$ OAB $OAB \Rightarrow OAB$ OAB OAB

$$S' = \frac{\Upsilon(1 - x^{\Upsilon}) - \Upsilon x^{\Upsilon}}{\sqrt{1 - x^{\Upsilon}}} \implies S' = \cdot \rightarrow \Upsilon - \Upsilon x^{\Upsilon} - \Upsilon x^{\Upsilon} = \cdot \rightarrow \Upsilon - \Upsilon x^{\Upsilon} = \cdot$$

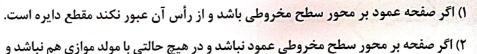
$$x = \pm \frac{\sqrt{\gamma}}{\gamma} \rightarrow x = \frac{\sqrt{\gamma}}{\gamma}$$

$$S = \gamma \times \frac{\sqrt{\gamma}}{\gamma} \sqrt{1 - (\frac{\sqrt{\gamma}}{\gamma})^{\gamma}} = 1$$

(11)

بالتعالي

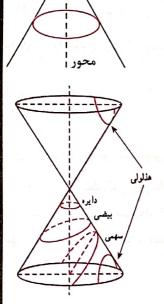
خلاصه فصل ششم ریاضی (3) تجربی دوازدهم


فصل ششم

هندسه

سطح مقطع: شکلی است که از برخورد یک صفحه با یک جسم هندسی حاصل می شود.

سطح مخروطی: دو خط \mathbf{d}_{7} , \mathbf{d}_{1} دوران کامل مخروطی: دو خط \mathbf{d}_{7} , \mathbf{d}_{1} دوران کامل دهیم سطح ایجاد شده سطح مخروطی نامیده می شود. خط \mathbf{d}_{1} مولد، خط \mathbf{d}_{7} محور و نقطه تلاقی \mathbf{d}_{7} رأس سطح مخروطی است.


مقاطع مخروطی: اگر سطح مخروطی توسط یک صفحه برش داده شود مقطع حاصل یک منحنی است از آنجایی که این منحنیها حاصل تقاطع یک صفحه با یک سطح مخروطی هستند مقاطع مخروطی گویند و چهار حالت دارد:

از رأس نگذرد، شکل حاصل بیضی است.

٣) اگر صفحه با مولد موازی باشد و از رأس آن عبور نکند شکل حاصل یک سهمی است.

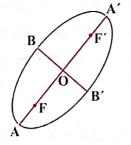
۴) اگر صفحه سطح مخروطی را هم در قسمت بالایی و هم در قسمت پایینی قطع کند و از
 رأس آن عبور نکند شکل حاصل را هذلولی مینامیم.

يىنى

بیضی، مجموعه نقاطی از صفحه است که مجموع فواصل آنها از دو نقطه ثابت واقع در صفحه، برابر با مقداری ثابت است. \mathbf{F}' و با \mathbf{F}' بشان میدهیم.

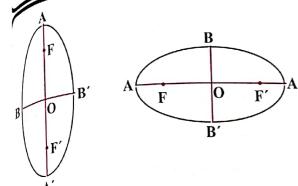
اگر مقدار ثابت را f L بنامیم، با توجه به این که نقطه دلخواه f M روی بیضی، داخل و یا بیرون بیضی باشد، خواهیم داشت :

بیضی روبهرو را در نظر بگیرید.


در هر بیضی اندازه 'FF ، فاصله کانونی بیضی نامیده میشود.

نقطه میانی پاره خط 'FF' ، مرکز بیضی است که آن را نقطه O نامیده ایم.

باره خطی که از کانون های بیضی می گذرد یعنی 'AA ، قطر بزرگ یا قطر کانونی بیضی است.


^{پاره خطی که در مرکز بیضی بر قطر بزرگ عمود است، یعنی 'BB ، <mark>قطر کوچک بیضی نامیده می</mark>شود. ^{اگر قطر بزرگ افقی باشد بیضی را بیضی افقی و اگر عمودی باشد، بیضی را بیضی **قائم** مینامیم.}}

بالتحالي

یک بیضی چه افقی باشد و چه قائم، قراردادها و روابط زیر همواره برقرارند:

$$OA = OA' = a$$
, $AA' = Ya$

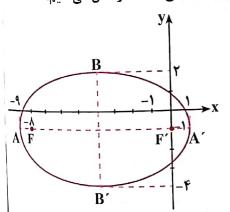
$$OB = OB' = b$$
, $BB' = 7b$

$$OF = OF' = c$$
, $FF' = \gamma c$

$$a^{\Upsilon} = b^{\Upsilon} + c^{\Upsilon}$$

خروج از مرکز

اندازههای c,b,a بر شکل بیضی تأثیرگذار است و همواره $\frac{c}{a} < 1$ و یرا $\frac{c}{a} < 1$. هر چه نسبت $\frac{c}{a}$ ، بزرگ تر و به یک نزدیک تر باشد می دو د می دو د و هر چه مقدار $\frac{c}{a}$ کوچک تر و به صفر نزدیک تر باشد، شکل بیضی به شکل دایره نزدیک خواهد شد. مقدار $\frac{c}{a}$ مقدار $\frac{c}{a}$ را خروج از مرکز بیضی مینامند و معمولاً آن را با حرف $\frac{c}{a}$ نمایش میدهند.


e=-/f

مثال : خروج از مرکز یک بیضی افقی $\frac{4}{3}$ ، مرکز آن (-7, -7) و طول قطر کوچک این بیضی 8 واحد است. (الف) طول قطر کانونی و فاصله کانونی را محاسبه کنید.

ب) مختصات دو سر قطر کوچک و قطر بزرگ و کانونهای بیضی را پیدا کنید.

حل : با توجه به این که مرکز بیضی، وسط AA' ، BB' و FF' است، شکل می کشیم و به سادگی مسئله را حل می کنیم.

$$7b = 9 \rightarrow b = 7$$
 (فا)
$$e = \frac{c}{a} \rightarrow \frac{9}{a} = \frac{c}{a} \rightarrow a = \frac{3}{9}c$$

$$a^{7} = b^{7} + c^{7} \rightarrow (\frac{\Delta}{r}c)^{7} = r^{7} + c^{7} \rightarrow c = r$$

فاصله کانونی $\mathbf{FF}' = \mathbf{C} = \mathbf{T} \times \mathbf{F} = \mathbf{A}$

$$a = \frac{\Delta}{\epsilon} \times \epsilon = \Delta$$
 قطر کانونی $a = 7 \times \epsilon = 7 \times \Delta = 1$

ب) چون بیضی افقی است، از مرکز بیضی ۵ واحد (به اندازه a) به چپ و نیز ۵ واحد به راست میرویم تا طول نقاط A', A به دست آید.

$$x_{A} = -\varphi - \Delta = -\varphi$$
, $x_{A'} = -\varphi + \Delta = 1$

$$A(-9,-1), A'(1,-1)$$

بدیهی است که عرض نقاط
$$A$$
 و A' ، ۱- میباشد. بنابراین :

از مرکز بیضی ۴ واحد (به اندازه \mathbf{F}') به چپ و نیز ۴ واحد به راست میرویم تا طول نقاط \mathbf{F}' و \mathbf{F}' به دست آید.

از مرکز بیضی ۳ واحد (به اندزاه b) به بالا و نیز ۳ واحد به پایین میرویم تا عرض نقاط B', B به دست آید.

$$y_{B} = -1 + T = T$$
, $y_{B'} = -1 - T = -F$

B(- au, T) , B'(- au, - au) : میباشد. بنابراین B(- au, T) , B'(- au, - au) هی است که طول نقاط B

دايره

دایره مجموعه نقاطی از صفحه است که فاصله آنها از یک نقطه ثابت در همان صفحه مقداری ثابت و مثبت باشد. نقطه ثابت را مرکز و مقدار ثابت را شعاع دایره مینامند.

 $|\operatorname{CM}|$ = r مرکز، r شعاع و $\operatorname{M}(x\,,y)$ نقطهای روی دایره باشد، در این صورت $\operatorname{C}(lpha\,,eta)$

$$CM = \sqrt{(x-lpha)^{\Upsilon} + (y-eta)^{\Upsilon}}
ightarrow r^{\Upsilon} = (x-lpha)^{\Upsilon} + (y-eta)^{\Upsilon}$$
 معادله دایره است

مثال: معادله دایرهای را بنویسید که نقاط $A(\pi, -\Delta)$ و $B(-\Delta, 1)$ دو سر قطر آن باشد.

$$\frac{r + (-\Delta)}{r} = -1$$

$$\frac{-\Delta + 1}{r} = -r$$

$$\Rightarrow C \begin{vmatrix} -1 \\ -r \end{vmatrix} \Rightarrow C \begin{vmatrix} -1 \\ -r \end{vmatrix} = \Delta$$

$$CA = r = \sqrt{(-1 - r)^{r} + (-r + \Delta)^{r}} = \Delta$$

$$(x-\alpha)^{\mathsf{T}} + (y-\beta)^{\mathsf{T}} = r^{\mathsf{T}} \rightarrow (x+1)^{\mathsf{T}} + (y+\mathsf{T})^{\mathsf{T}} = \mathsf{T}\Delta$$

مثال: مکان هندسی نقاطی از صفحه مانند P(x,y) را پیدا کنید که فاصله آن از نقطه $\sqrt{1}$ ، A(7,5) برابر فاصله آنها از نقطه B(1,7) باشد.

$$|AP| = \sqrt{r} |BP| \rightarrow \sqrt{(x-r)^r + (y-r)^r} = \sqrt{r} (\sqrt{(x-r)^r + (y-r)^r})$$

$$(x-7)^{7} + (y-7)^{7} = 7[(x-1)^{7} + (y-7)^{7}]$$

$$x^{T} - fx + f + y^{T} - \lambda y + 19 - Tx^{T} + fx - T - Ty^{T} + \lambda y - \lambda = \bullet$$

$$x^{r} + y^{r} = 1$$

 $\sqrt{10}$ دایرهای به مرکز مبدأ مختصات و شعاع

نکته

$$|\alpha| = |\beta| = r$$

$$|\alpha| = r$$

$$|\beta| = r$$

مماس باشد. \mathbf{C} و بر محور \mathbf{y} مماس باشد. \mathbf{C} معادله دایرهای را بنویسید که مرکز آن

$$|\alpha| = r \rightarrow r = |-r| = r \tag{9}$$

$$(x+Y)^{\Upsilon}+(y-\Delta)^{\Upsilon}=F$$

$$x^{7} + y^{7} + ax + by + c = \cdot$$

$$fx^{\Upsilon} + fy^{\Upsilon} - fx + \lambda y - 11 = \bullet$$

$$x^{r} + y^{r} - x + ry - \frac{11}{r} = \cdot \rightarrow x^{r} - x + y^{r} + ry - \frac{11}{r} = \cdot$$

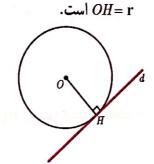
$$(x-\frac{1}{r})^{r}-\frac{1}{r}+(y+1)^{r}-1-\frac{11}{r}=\cdot \Rightarrow (x-\frac{1}{r})^{r}+(y+1)^{r}-\frac{\Delta}{r}-\frac{11}{r}=\cdot$$

$$(x-\frac{1}{r})^{r}+(y+1)^{r}=r \rightarrow x$$
مرکز : (1) مرکز : ($(\frac{1}{r}, -1)$)

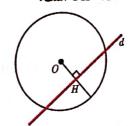
مرکز
$$\left(-\frac{a}{r},-\frac{b}{r}\right) \rightarrow \left(\frac{1}{r},-1\right), r=\frac{1}{r}\sqrt{a^{\gamma}+b^{\gamma}-\epsilon c}=\frac{1}{r}\sqrt{1+\epsilon-\epsilon(-\frac{11}{\epsilon})}=r$$

مثال: اگر شعاع دایره $\mathbf{m} = \mathbf{v} - \mathbf{v} + \mathbf{v}^{\mathsf{T}} + \mathbf{v}^{\mathsf{T}} + \mathbf{v}^{\mathsf{T}} + \mathbf{v}$ برابر ۵ باشد، \mathbf{m} را حساب کنید.

$$r = \frac{\sqrt{a^{7} + b^{7} - rc}}{r} \rightarrow \Delta = \frac{\sqrt{r + r + rm}}{r} \rightarrow 1 = \sqrt{rm + \lambda} \rightarrow 1 = rm + \lambda \rightarrow m = rr$$



c = -m


اوضاع نسبي خط و دايره

اگر خطd با دایره متقاطع باشد،

OH < r است.

اگر خط d بر دایره مماس باشد،

یادآوری:

- ۱) خط مماس در نقطه تماس با دایره بر شعاع دایره عمود است.
- از خط به معادله ax + by + c = 0 از خط به معادله $A(x_{.}, y_{.})$ از خط به معادله

 $d = \frac{|ax_{\bullet} + by_{\bullet} + c|}{\sqrt{a^{\Upsilon} + b^{\Upsilon}}}$

- ۱) فاصله مرکز دایره از خط مماس بر آن برابر است با شعاع دایره
- ۲) اندازه شعاع دایرهای که بر دو خط موازی مماس باشد برابر است با:

 $r = \frac{|c - c'|}{\sqrt{a^7 + b^7}}$

مثال: معادله دایرهای که مرکزش محل تلاقی دو خط y=0 ۲x+y=0 و ۲x-y=1 بوده و بر خط x=0 + x+1 مماس باشد را بنویسید.

$$(x-\alpha)^{\gamma} + (y-\beta)^{\gamma} = r^{\gamma} \rightarrow (x-r)^{\gamma} + (y+1)^{\gamma} = \frac{9}{r}$$

اگر خط d، دایره را قطع نکند.

OH > r است.

مثال : الف) ثابت کنید خط $y = x + y = x^T + y^T - 7x - 7x - 7x$ متقاطع است.

ب) مختصات نقاط تلاقی را به دست آورید.

$$(\frac{-a}{r}, \frac{-b}{r}) = (1, 0)$$
 مرکز

$$r = \frac{1}{7}\sqrt{a^7 + b^7 - \epsilon c} = \gamma$$
 شعاع $r = \frac{1}{7}\sqrt{a^7 + b^7 - \epsilon c}$

$$\mathbf{d} = \frac{|1 \times 1 + 1 \times \cdot - r|}{\sqrt{r}} = \frac{r}{\sqrt{r}} = \sqrt{r}$$

_{فاصله} مرکز از خط داده شده را حساب م*ی کنی*م.

 $\mathrm{OH} = \sqrt{\mathrm{T}}$, $\mathrm{r} = \mathrm{T} \, o \, \sqrt{\mathrm{T}} < \mathrm{T}$ خط با دایرہ متقاطع است

$$y = r - x$$
, $x^r + y^r - rx - r =$.

$$x^{r} + (r - x)^{r} - rx - r = \cdot \rightarrow x^{r} - rx + r = \cdot \rightarrow (x - t)(x - r) = \cdot \rightarrow x = t$$

بهتر است طولهای به دست آمده را در معادله خط قرار دهیم تا عرض نقاط به دست آید.

$$y = r - 1 = r$$
, $y = r - r = \cdot \rightarrow A \begin{vmatrix} 1 \\ r \end{vmatrix}$, $B \begin{vmatrix} r \\ \cdot \end{vmatrix}$

اوضاع نسبی دو دایره

 $C_{\gamma}(O_{\gamma}\,,\,r_{\gamma})$ و $C_{\gamma}(O_{\gamma}\,,\,r_{\gamma})$ نسبت به هم شش حالت دارند.

نکته : فاصله بین <mark>دو مرکز دایرهها را خطالمر</mark>کزین مینامیم و با حرف d نشان میدهیم.

$$\mathbf{d} = \mathbf{r_1} + \mathbf{r_7}$$
 مماس خارج) مماس

d > r₁ + r₇) متخارج ۱

$$\mathbf{d} = |\mathbf{r}_1 - \mathbf{r}_7|$$
 مماس داخل (۴

 $\left| \mathbf{r}_{1} - \mathbf{r}_{\gamma} \right| < \mathbf{d} < \mathbf{r}_{1} + \mathbf{r}_{\gamma}$ متقاطع (۳

 $d < |r_1 - r_1|$ متداخل (۵

 $x^7+y^7-9x+\lambda y+19=0$ مثال: دو دایره $x^7+y^7-9x+\lambda y+19=0$ و $x^7+y^7=9$ نسبت به هم چه وضعی دارند؟

$$x^{\Upsilon} + y^{\Upsilon} = \mathfrak{S}^{\Upsilon}$$

$$(x-r)^r + (v+r)^r = q$$

$$0_1 \begin{vmatrix} \cdot \\ \cdot \end{vmatrix}$$
 $r_1 = \lambda$

$$\mathbf{o}_{\mathsf{Y}} \begin{vmatrix} \mathsf{r} \\ -\mathsf{f} \end{vmatrix} \mathbf{o}_{\mathsf{Y}} = \mathsf{r}$$

$$\mathbf{d} = \mathbf{o}_1 \mathbf{o}_Y = \sqrt{9 + 19} = \Delta$$

شال: دو دایره $(x+1)^{7}+(y+1)^{7}=m+1$ و $(x+1)^{7}+(y+1)^{7}=m+1$ مماس خارج هستند مقدار $(x+1)^{7}+(y-1)^{7}=m+1$

$$o_1 o_Y = d = \sqrt{q + 18} = 0$$

$$r_{\text{1}}=\text{4}$$

$$r_{\Upsilon} = \sqrt{m+1}$$

$$d = r_1 + r_7$$
 مماس خارج

$$\Delta = \Psi + \sqrt{m+1} \rightarrow \Upsilon = \sqrt{m+1}$$

$$f = m + 1 \rightarrow m = f$$

خلاصه <mark>فصل هفتم ریاضی (3) تجربی دوازدهم</mark>

احتمال

فصل هفتم

پیشامدهای ناسازگار : دو پیشامد A و B را ناسازگار می گوییم هرگاه A و B با هم رخ ندهند. $A \cap B = \emptyset$ در این α

 $P(A \bigcup B) = P(A) + P(B)$: خواهیم داشت

تعميم پيشامدهاي ناسازگار

پیشامدهای A_{r} , A_{r} , A_{r} , A_{n} را دو به دو ناسازگار گوییم هرگاه هیچ دو تایی از آنها نتوانند با هم رخ دهند در این A_{n} پیشامدهای $(A_1 \cup A_7 \cup \cdots \cup A_n) = p(A_1) + p(A_7) + \cdots + p(A_n)$

دو پیشامد A و B را مستقل گویند، هرگاه احتمال وقوع هر یک بر احتمال وقوع دیگری تأثیری نداشته باشد. مستقل بودن دو پیشام $P(A \cap B) = P(A) \cdot P(B)$ B و A معادل است با این که:

مثال :اگر P(B-A) و P(B)=0 و P(B)=0 و P(B)=0 مشتقل باشند آنگاه و P(B-A) را حساب کنید.

$$P(A \cap B) = P(A) \cdot P(B) = \cdot / \Upsilon \times \cdot / \Upsilon = \cdot / \cdot \varphi$$

$$P(B-A) = P(B) - P(A \cap B) = \cdot / \Upsilon - \cdot / \cdot \varphi = \cdot / \Upsilon \gamma \gamma$$

احتمال شرطی :اگر S فضای نمونهای یک آزمایش تصادفی و B و A دو پیشامد از S و $B \neq \emptyset$ (سازگار) باشند به طوری که احتمال وقوع پیشامد A به شرط آن *ک*ه پیشامد B رخ داده باشد از رابطه زیر به دست می آید: $P(B) > \cdot$

$$P(A | B) = \frac{P(A \cap B)}{P(B)} \qquad P(B) \neq \cdot$$

$$P(A \cap B) = P(A \mid B) \cdot P(B)$$

مثال: دو تاس را پرتاب می کنیم اگر مجموع ۷ آمده باشد احتمال آن را پیدا کنید که یکی از اعداد تاس ۵ باشد.

$$S = \{(1, 1)(1, T), \dots, (\beta, \beta)\}, n(S) = \beta \times \beta = T\beta$$

$$\left|A = \{(1, \beta), (7, \Delta), (7, \beta), (6, 7), (6, 7), (6, 1)\}\right|$$

A: پیشامد آنکه مجموع ۷ باشد:

B: پیشامد آنکه یکی از اعداد ۵ باشد:

$$B = \{(1, \Delta), (\Upsilon, \Delta), (\Upsilon, \Delta), (\Upsilon, \Delta), (\Upsilon, \Delta), (\Delta, \Delta), (\Upsilon, \Delta), (\Delta, \Lambda), (\Delta, \Lambda),$$

$$A \cap B = \{(\Upsilon, \Delta), (\Delta, \Upsilon)\}$$

$$P(B) = \frac{n(B)}{n(S)} = \frac{9}{79}$$
, $P(A \cap B) = \frac{n(A \cap B)}{n(S)} = \frac{7}{79}$

$$\frac{P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{Y}{YS}}{\frac{S}{YS}} = \frac{Y}{S} = \frac{1}{Y}$$

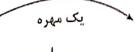
آنجا که دلی بود به میخانه نشستیم ان توبه صد ساله به پیمانه شکستیم از آتش دوزخ نهراسیم که آن شب اما توبه شکستیم ولی دل نشکستیم ولی دل نشکستیم به این کستیم از آتش دوزخ نهراسیم که آن شب اما توبه شکستیم ولی دل نشکستیم

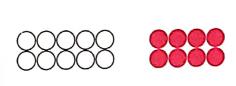
التعالي

خلاصه فصل هفتم ریاضی (3) تجربی دوازدهم

قانون احتمال كلي

 ${f B}$ اگر فرش کنیم در حالت کلی ${f A}_1$, ${f A}_2$, ${f A}_3$ پیشامدهایی باشند که بر روی فضای نمونهای ${f S}$ یک افراز تشکیل داده باشند و ${f B}$ پی پیشامد دلخواه باشد، رابطه زیر حاصل خواهد شد که به آن قانون احتمال کل می گوییم.


$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(A_i) P(B \mid A_i)$$


مثال؛ دو ظرف داریم اولی شامل ۱۰ مهره سفید و ۸ مهره قرمز و دومی شامل ۱۲ مهره سفید و ۹ مهره قرمز است از ظرف اولی به تصادف مهرهای درمی آوریم و در ظرف دوم قرار می دهیم آن گاه از ظرف دوم به تصادف مهرهای درمی آوریم احتمال این که این مهره سفید باشد

 $P(A) = P(B_1)P(A|B_1) + P(A_7)P(A|B_7) = \frac{1 \cdot \lambda}{1 \lambda} \times \frac{1 \gamma}{\gamma \gamma} + \frac{\lambda}{1 \lambda} \times \frac{1 \gamma}{\gamma \gamma} = \frac{11 \gamma}{19 \lambda}$

چقدر است :

یک مهره

ظرف دوم

مهره ۱۸ = ۸ + ۱۰

ظرف اول

مهره ۲۲ = ۱+ ۹ + ۱۲

مثال: احتمال به دنیا آمدن یک نوزاد پسر مبتلا به نوعی بیماری خاص برابر ۰/۰۸ و برای یک نوزاد دختر برابر ۰/۰۳ است. خانوادهای قصد بچهدار شدن را دارند. با چه احتمالی نوزاد آنها به بیماری مذکور مبتلا خواهد بود؟

 $\frac{\Lambda}{2}$ برابر بیمار به کل نوزادان پسر برابر برابر دلت نسبت نوزادان پسر بیمار به کل نوزادان پسر برابر

نسبت نوزادان دختر بیمار به کل نوزادان دختر برابر

احتمال پسر یا دختر بودن نوزاد برابر 🕆 است.

P (پسر بودن | بیمار بودن) P (پسر بودن | بیمار بودن | بیمار بودن) P (پسر بودن) P (پسر بودن)

$$P(R) = P(B)P(R|B) + P(G)P(R|G) = \frac{1}{r} \times \frac{\Lambda}{1 \cdot \cdot \cdot} + \frac{1}{r} \times \frac{r}{1 \cdot \cdot \cdot} = \frac{11}{r \cdot \cdot \cdot}$$

۱- درستی یا نادرستی عبارات زیر را مشخص کنید:

الف) تابع
$$y = -x^{7} - 1$$
 تابعی نزولی است.

ب) اگر برای هر دو نقطه $x_1 = x_1$ از دامنه تابع $x_1 < x_2$ که $x_1 < x_3$ داشته باشیم $x_1 < x_4$ آنگاه تابع x_1 اکیداً صعودی است.

 $y=f\left(x
ight)$ در امتداد محور $y=f\left(kx
ight)$ با انبساط و انقباض نمودار $y=f\left(x
ight)$ در امتداد محور xها به دست می آید.

$$\sin 1\Delta^{\circ} = \frac{\sqrt{\Upsilon + \sqrt{\Upsilon}}}{\Upsilon}$$
 ($\ddot{\Box}$

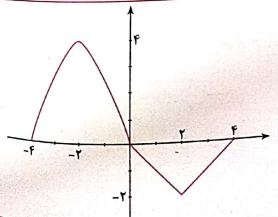
۲- جاهای خالی را با عبارتی مناسب پر کنید:

الف) باقیمانده تقسیم چندجملهای ۱۰ – x + x بر $f(x) = x^{x} + \Delta x^{x} - x^{x} - x$ برابراست.

ب) مجموعه $\{ \mathbb{T} \} - \{ \mathbb{T} \}$ یک همسایگی محذوفاست. است.

 $\lim_{x\to-\infty} (-7x^{\mathsf{T}} + \mathsf{f} x^{\mathsf{T}} - \Delta x - \mathsf{q})$ برابراست.

ت) ترکیب دو تابع $g(x) = \frac{x+f}{\pi}$, $f(x) = \pi x - f$ تابعی


۳- نمودار تابع زیر را رسم کنید و بازههایی که در آنها تابع صعودی، نزولی یا ثابت است را مشخص کنید :

$$f(x) = \begin{cases} -7x - 7 & x < -7 \\ 7 & -7 \le x < 7 \\ 7x - 7 & x \ge 7 \end{cases}$$

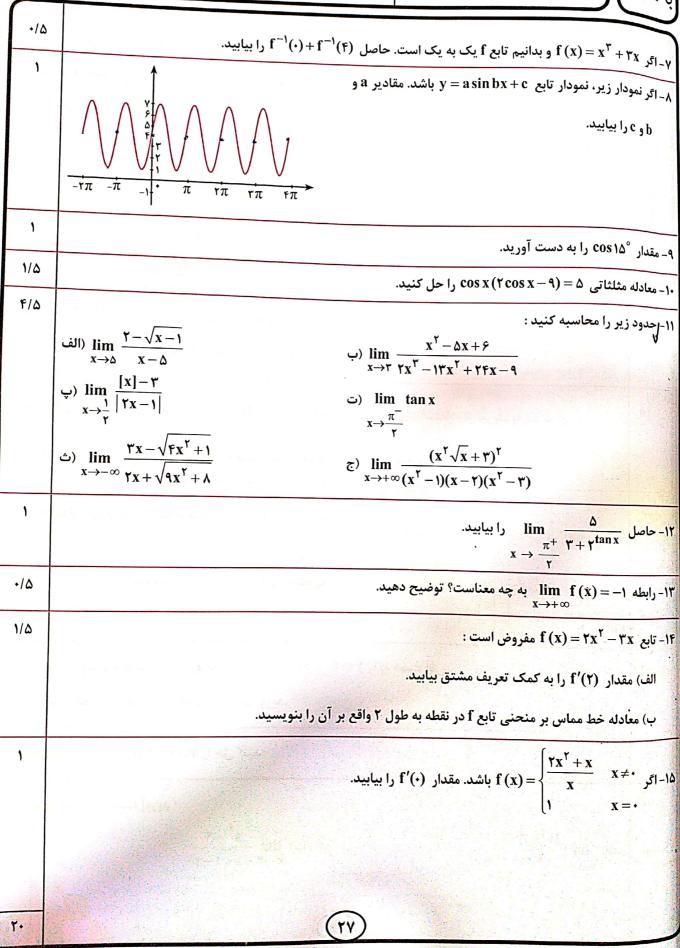
۵

و ضابطه تابع $g(x) = 7x^7 - 1$ را بیابید. $g(x) = 7x^7 - 1$ و خابطه تابع $g(x) = 7x^7 - 1$ دامنه $g(x) = 7x^7 - 1$

را y = 1 - f(x) ، y = f(Tx) المودار توابع y = 1 - f(x) ، y = f(Tx) را رسم کنید.

f- ضابطه تابع وارون تابع $f(x)=1+\sqrt{x-7}$ را بیابید. دامنه و برد تابع f و تابع f^{-1} را بنویسید. نمودار f و f^{-1} را روی

یک دستگاه محورهای مختصات رسم کنید.



تاریخ امتحان : ۹۷/۱۰/۸ مدت امتحان : ۹۰ دقیقه

درس: ریاضی (3) تجربی

سؤالات امتحان کلاسهای دواز دهم دبیرستان نمونه دولتی شهید صفوی (دی ماه ۹۷)

	مون شمار	: ۹۷/۱۰/۸ ۱۲۰ دقیقه
١		
\	.10	
٩ م	1) g است.
•		
=		
	1/40	۵ دست آورید.
7 4 0 4	.140	y
And the control of the second	1 .10	
	110	
		$\lim_{x \to \tau^{-}} \frac{[x] - \tau}{x - \tau}$

درس: ریاضی (3) تجربی

تاریخ امتحان : ۹۷/۱۰/۸

مدت امتحان : ۱۲۰ دقیقه

سؤالات امتحان كلاسهاى دوازدهم امتحان هماهنگ کشوری (دی ماه ۹۷)

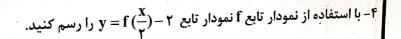
۱- درستی یا نادرستی عبارات زیر را مشخص کنید :

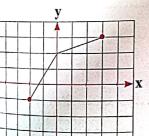
الف) تابع ثابت در یک بازه، هم صعودی و هم نزولی محسوب میشود.

ب) تابع $f(x) = \sqrt{x}$ در نقطه $x = \epsilon$ مشتق پذیر است.

۲- در جاهای خالی عبارت مناسب بنویسید:

 $g(x)=\cdots=f(x)=7x^{7}-\Delta x+1$ است. $h(x)=(7x^{7}-\Delta x+1)^{7}$ و $h(x)=(7x^{7}-\Delta x+1)^{7}$ است.


ب) حد تابع
$$\mathbf{g}(\mathbf{x}) = \begin{cases} \dfrac{1}{\mathbf{x}} & \mathbf{x} > \cdot \\ \frac{\Delta \mathbf{x}^\mathsf{T} - \mathbf{y} \mathbf{x}}{-\mathbf{x}^\mathsf{T} + 1} & \mathbf{x} \leq \cdot \end{cases}$$
 برابراست.


پ) اگر $g'(\tau) = f'(\tau)$ و $g'(\tau) = g'(\tau)$ باشد، آنگاه حاصل عبارت $g'(\tau) = g'(\tau) = g'(\tau)$ برابر

ت) شکل حاصل از دوران یک دایره حول یکی از قطرهای آناست.

۳- الف) توابع $\frac{x+y}{y} = f(x) = \frac{x-y}{y}$ و g(x) = y را در نظر بگیرید. دامنه g(x) = y و g(x) = y

ب) اگر $x - x = \frac{1}{\lambda} x - y$ را به دست آورید. $g(x) = x^{r}$ و $f(x) = \frac{1}{\lambda} x - y$ را به دست آورید.

ه- الف) دوره تناوب و مقادیر ماکزیمم و مینیمم تابع $y = r - r \sin \epsilon x$ را به دست آورید.

ب) دامنه تابع f(x) = tan(Yx) را به دست آورید.

را حل کنید. $\sin x - \cos Tx = 0$ را حل کنید.

٧- حد توابع زير را به دست آوريد :

اب
$$\lim_{x \to r} \frac{x^{r} - 9}{\sqrt{x+1-r}}$$

تاریخ امتحان : ۹۷/۱۰/۸ مدت امتحان : ۱۲۰ دقیقه

درس: ریاضی (3) تجربی

سؤالات امتحان کلاسهای دوازدهم امتحان هماهنگ کشوری (دی ماه ۹۷) بالتحالي

-	
٠/٧۵	را بیابید. f در شکل روبهرو داریم $f'(\mathfrak{f})=1/4$ و $f'(\mathfrak{f})=1/4$ با توجه به شکل، مختصات نقاط f و f و f را بیابید.
	Dis C A B T F A
-/٧۵	و۔ اگر $f(x) = 1 - 7x^{Y}$ باشد. $f'(-1)$ را با استفادہ از تعریف مشتق به دست آورید.
۲	۱۰- مشتق توابع زیر را به دست آورید : (ساده کردن مشتق الزامی نیست)
	(الف $f(x) = (\frac{x}{(x-1)})^{\Delta}$ (الف $g(x) = x^{(x-1)}$
١	۱۱- یک توده باکتری پس از t ساعت دارای جرم $x(t) = \sqrt{t} + 7t^{\intercal}$ گرم است. آهنگ تغییر متوسط جرم این توده در بازه زمانی $[7,7]$ چقدر است؟
۲	الف) جدول تغییرات تابع $f(x) = f(x) = f(x) = f(x)$ را رسم و نقاط ماکزیمم و مینیمم نسبی آن را مشخص کنید.
	ب) نقاط بحرانی تابع f و اکسترمم مطلق این تابع را در بازه [۱٫۳] مشخص کنید.
1	1 <mark>7</mark> - اگر محیط یک مستطیل ۲۴ سانتیمتر باشد. طول و عرض مستطیل را طوری حساب کنید که مساحت آن ماکزیمم شود.
١	۱۴- در یک بیضی قطر بزرگ ۸ و قطر کوچک آن ۶ واحد است. خروج از مرکز این بیضی چقدر است؟
۱/۲۵	معادله گسترده دایرهای به صورت $x^{Y} + y^{Y} - 9x + Yy^{Y} - 9x + Yy + S = 0$ میباشد. مرکز و شعاع دایره را بنویسید.
1/4	۱۶- یک سکه را پرتاب می کنیم و اگر پشت بیاید ۳ سکه دیگر را با هم پرتاب می کنیم. در این آزمایش احتمال این که دقیقاً
	یک سکه رو ظاهر شود، چقدر است؟
۲٠	(19)

1	.1
1	11 7.
ı	ונאור.
ı	راسم والح
ı	الم المالي
1	

سؤالات امتحان كلاسهاى دوازدهم سؤالات پیشنهادی پایان سال

درس: ریاضی (۳) تجربی

تاريخ امتحان : نوبت دوم مدت امتحان : ۱۰۰ دقیقه

١

١

1/0

1/0

1

١

1

1/0

: داده شده $f(x) = \begin{cases} 1-x^{7} & x \geq 0 \\ -x+7 & x < 0 \end{cases}$ داده شده ب) مقدار (f (-۲)) را محاسبه کنید. الف) نمودار تابع را رسم كنيد.

 $\overline{y}=f\left(x- au
ight)$ است با استفاده از انتقال ابتدا نمودار تابع $y=f\left(x- au
ight)$ - $y=f\left(x- au
ight)$ و سپس نمودار تابع $y = -\Upsilon f(x-\tau)$ را رسم کنید.

 $\mathbf{y} = \cos \mathbf{x}$ را در بازه $\mathbf{y} = [\cdot \, , \, \pi]$ با استفاده از نمودار تابع $\mathbf{y} = |\cos \mathbf{x}|$ رسم کنید.

۴- یک به یک بودن تابع $y=rac{1}{y}$ با دامنه $\{-\}-R$ را بررسی کنید سپس وارون تابع را به دست آورید.

را به گونهای به دست آورید که $f(x) = x^\intercal - rx + \Delta$ را به گونهای به دست آورید که $g(x) = x^\intercal + rx + \gamma$ را به گونهای به دست آورید که

: داده شده است $g(x) = \sqrt{x+1}$ و f(x) = x-7 داده شده است

الف) دامنه تابع gof را با استفاده از تعریف به دست آورید. ب) ضابطه تابع (fof)(x) را بنویسید.

۷- معادله مثلثاتی $-\sin^{7} \Delta x - \sin \Delta x - \sin \Delta x$ را حل کنید و جوابهای کلی را به دست آورید.

۹- مثلثی با مساحت ۳ سانتیمتر مربع مفروض است. اگر اندازه دو ضلع آن به ترتیب ۲ و ۶ سانتیمتر باشد، آنگاه چند مثلث 1/0 با این خاصیتها می توان ساخت؟

را رسم کنید. سپس حد چپ و حد راست آن را در $\mathbf{x} = \mathbf{x}$ بررسی کنید. $\mathbf{x} = \mathbf{x}$ بررسی کنید. $\mathbf{x} = \mathbf{x}$ بررسی کنید.

۱۱- حدهای زیر را حساب کنید: الف $\lim_{x \to 1} \frac{x^{\xi} - 7x + 1}{7x^{\xi} - 7x + 1}$ ب) $\lim_{x \to 0^+} \frac{x-y}{\sqrt{x}}$

 $\psi \lim_{X \to +\infty} \frac{\gamma x^{Y} + \Delta x - Y}{Y - \Psi x^{Y}}$ ت $\lim_{x \to \Upsilon} \frac{[x]-1}{x-\Upsilon}$

 $\mathbf{f}(\mathbf{x}) = \begin{cases} \mathsf{f}(\mathbf{x} + \Delta & \mathbf{x} \leq \mathsf{f} \\ \mathsf{f}(\mathbf{x}) = \mathsf{f}(\mathbf{x} + \Delta & \mathbf{x} \leq \mathsf{f} \end{cases}$ را بررسی کنید.

۱۳- با استفاده از تعریف مشتق، مشتق تابع $f(x) = \sqrt{x} - 1$ را در نقطه x = 1 به دست آورید.

 $h(x) = \frac{x-7}{4x+1}$ (الف $f(x) = x^{r}(rx - \Delta)$

(٣٠

معادله خط مماس بر نمودار $y=x^T+xx-1$ را در نقطهای x=x واقع بر منحنی تابع را بنویسید.

تاریخ امتحان : نوبت دوم مدت امتحان : ۱۰۰ دقیقه

درس: ریاضی (2) تجربی

سؤالات امتحان کلاسهای دوازدهم سؤالات پیشنهادی پایان سال

و تابع $f(x) = Tx^T + Fx$ باشند تابع $g(x)$ و محاسبه کنید. $f(g(x)) = Tx^T + Fx$ و تابع $f(x) = f(x)$ باشند تابع $f(x) = f(x)$ و تابع $f(x) = f(x)$ باشند تابع $f(x) = f(x)$ و تابع $f(x) = f(x)$ باشند تابع $f(x) = f(x)$ و تابع $f(x) = f(x)$ باشند تابع $f(x) = f(x)$ و تابع $f(x) = f(x)$ باشند تابع $f(x) = f(x)$ و تابع $f(x) = f(x)$ باشند تابع $f(x) = f(x)$ و تابع $f(x) = f(x)$ باشند تابع $f(x) = f(x)$ و تابع $f(x) = f(x)$ باشند تابع $f(x) = f(x)$ و تابع $f(x) = f(x)$ باشند تابع $f(x) = f(x)$ و تابع $f(x) = f$	
cos را به دست آورید.	۲-معادله ۰=۳
	۳-مقدار ۵۷۵
حساب کنید:	ع۔ حد توابع را
الف $\lim_{x \to 1} \frac{\sqrt{x} - 1}{7x - 7}$ (ب $\lim_{x \to +\infty} \frac{7x^7 - \sqrt{x^7 + 7x}}{1 - x}$	
$\Delta x = 0$ و $\Delta x = 0$ به دست آورید. $y = x^T + y$ و $\Delta x = 0$ به دست آورید.	۵- تابع با ضابط
ا را چنان تعیین کنید تا $f(x) = \begin{cases} ax^7 + bx + 7 & x < 1 \\ x^7 & x \ge 1 \end{cases}$ در $x = x$ مشتق پذیر باشد.	۶_مقادیر ۵ و ۱
سبی باشد و $y=x^T+ax^T+ax^T+ax^T+ax^T+ax^T+ax^T+ax^T+a$	The state of the s
ن از نقطه (۱ - , ۱) بگذرد. ن از نقطه (۱ - , ۱) بگذرد.	- 23
را در بازه $y = xx^T - x^T$ در صورت وجود تعیین کنید. $y = xx^T - x^T$ مطلق تابع	۸- مقدار max
حرانی را تعریف کنید.	٩- الف) نقطه ب
حرانی تابع $f(x) = \sqrt{r-x^7}$ را در صورت وجود تعیین کنید.	ب) نقاط ب
عدد مثبت برابر ۸ است. بزرگ ترین مقدار ممکن برای حاصل ضرب آنها را پیدا کنید.	۱۰- مجموع دو
$x^{7} + (y-1)^{7} = (x-7)^{7} + (y+1)^{7} = x^{7}$ نسبت به هم چه وضعی دارند.	اا- دو دايره ۴
یک بیضی نقاط (۱, ۳), (۱, ۳) است. فاصله کانونی، مختصات مرکز بیضی و معادله قطرهای بزرگ و	۱۲- کانونهای
ضی را بنویسید.	
رهای را بنویسید که مرکز آن $(1, 1)$ بوده و بر خطی به معادله $+ x + y + y + y + y + z$ مماس باشد.	1.3
، کارمندان ادارهای را زنان و بقیه را مردان تشکیل میدهند. اگر ۵۶ درصد زنان و ۴۴ درصد مردان دارای	۱۶ - ۶۵ درصد
، دانشگاهی باشند چند درصد افراد این اداره دارای تحصیلات دانشگاهی هستند.	
یی بیماری ارثی از والدین به فرزند پسر ۱۲/۰ و به فرزند دختر ۱۰۹۰ میباشد والدینی که حاصل این نوع بیماری	AND THE RESERVE
مظار فرزندی را دارند مطلوب است احتمال آن که این فرزند سالم باشد.	هستند ان
	•
جمع (۳۱)	

64	ا تاریخ امتحان: نوبت دوم مدت امتحان.	درس:ریاضی (3) تجربی	نحان کلاسهای دوازدهم	سةالات امن	
مون در مون در	مدت امتحان: ۱۰۰ دقیقه		، پیشنهادی پایان سال	سر سمٔالات	بالقمالي
ون نر	كا دفيقه			, m	- W.
1		دیگ ند؟ بررسی کنید.	ا دیارہ مردن یک	1)
/		0 33. 7	وارون یک $g(x) = \frac{1}{x-y}$	$f(x) = \frac{1}{x} + \gamma$	۱- آیا دو تابع
526 10 1		.11.	۲ نے ایک ایک	<u> </u>	
_			را به دست آو $\sin^{7} x = \cos$	معادله X+۱	۲- جواب کلی
-1			Ψ		
-'		- y = ۱ را به دست آورید.	یمم و مینیمم تابع ۳۲ cos ۲٪ ایمم و مینیمم	ب و مقادیر ماکز	۳- دوره تناور
-1/0			.د.	را به دست آوری	۴- حد توابع
		, T. Y		-	
1/0	1-x ^r	$\lim_{x\to -\infty} \frac{\sqrt{x^{7}-7x}}{7x+7}$	+ 1		
	$\lim_{x \to -1} \frac{1 - x^{\Upsilon}}{x^{\Upsilon} + \beta x + \Delta}$ (الف	$x \rightarrow -\infty$ $\forall x + \forall y$			
	x->=1X	۲/۱ تغییر میکند، حساب کنید	ر ا هقته ۲ پار ۲ په ۲ - f (x) = -	بیرات تابع x ^۲	۵- آهنگ تغ
-1					
		a را چنان بیابید که f در x = ۱		$ax^{7} + bx x$	(≤1 set = 6
1/4	د مشتق بذر راش ۱	$\mathfrak{c}=\mathfrak{l}$ را چنان بیابید که \mathfrak{f} در $\mathfrak{c}=\mathfrak{l}$	∫ = f (x) مفروض است b و ۱	Y vv v	/- ابع
-"-					
ı.		ممكن براى حاصل ضرب آنها	ابر ۱۶ است. بزرگ ترین مقدار	و عدد مثبت بر	۷- مجموع د
-1/0	را پیدا کنید.	مستن برای محاصل صرب آنها	J. 22.	1. 100	
.;			<u> </u>	u min . m!	۸- مقدا، ۲۰
	. :< 1	زه [۲ , ۱] در صورت وجود پ	ق تابع ۱(x+۱) و را در باز	۱۱۱۰ و ۱۱۱۱۱۱ مطله	ix yiuu
1/۵	عيد.				
	یک max یا min نسبی داشته باشد.	T Lay	ین کنید که تابع با ضابطه h	و a را چنان تعی	۹- ضرایب b
1/4	یک max یا min نسبی داشته باشد.	f(x) = x + ax			41210-10
1	. 0.	ست آه.ده.	دایره به معادلههای زیر را به در	الر مشترک دو ۱	ا سادنه و
1/4	یک max یا min نسبی داشته باشد. ز معادله و تر مشترک مختصات نقاط	و سپس با استفاده ا	د.	را به دست آوری	تقاطع
1					
_	$x^{T} + y^{T} + fx + Ty - T = 0$ بین و خروج از مرکز بیضی را پیداکنید.	9	ط (۱, ۳) , (۱, ۳) است اگ	ی یک بیضی نقا	٠٠٠ وونها
- 1/0	ف و خروج از مرک بیضی را بیداکنید	المسلم اندازه قطر کوچک	91.0	ناد داد ۱	١٢ - معادله
_		بر خط ۴× ۷ مماس ۳x + ۴y مماس	سید که مرکزش (۱٫۰) باشد م	د یرهای را بنویس ــــــ	
1.1/0	ی باشد.	بر خط ۳x+۴y+۷=۰ مماس		(A B	۱۳-اگر A ه
110	Productive public to a second	W	سعت به طوري که <u>-</u> - ۱		A 12
	p مطلوب است محاسبه: (P(B A) مطلوب است محاسبه: وف دوم ۳ مهره سفید، ۲ مهره سیاه و	$(A \cup B) = \frac{1}{2} g p(B) = \frac{1}{2}$	9 p(A) 0	ف همانند دل	ا 14- سه ظر
_			در ظرف اول ۳ مهره سفید، ۲ ه	،	د, ظ
	ف دوم ۳ مه و سفید، ۲ مهره سیاه و	الميان و المهره سيد د خا	مرهده بررخ ،	وم مندادي	The second second
74		دف یکی از سه ظرف ۱۱: دن	رجون است به تصا ۱۹۵۶ خار - ۸	حتمال این که مه	الف) ١.
Y TANK	کرده مهرهای خارج می کنیم	مهره سیاه و ۴ مهره سبز. در ظر دف یکی از سه ظرف را انتخاب در است؟	۴٫۰۰ سفید موجود است به تصا ۱۹٫۰ خارج شده سفید باشد چق شده سفید باشد.	: مرد ه انتخار	ب) اگر
	The Bullion College within the		شده سفيد باشد با چه احتمال	د ۱۷۰۰ عندان د	
f		در است؟ از جعبه اول انتخاب شده است	٠ حساني		
	Y.	٠ اسر			
	1			Scanned	by ComS

درس:ریاضی (۳) تجربی مدت امتحان: ۱۰۰ دقیقه

سؤالات امتحان کلاسهای دوازدهم سؤالات پیشنهادی پایان سال

	$g(x) = 7x^7 + 1$ و $f(x) = \sqrt{x+7}$ باشند دامنه $f(x)$ را با استفاده از تعریف به دست آورید.	_
•/۵	۱ یک همسایگی ۲ باشد مجموع مقادیر x را به دست آورید. $(x-1, x+r)$ یک همسایگی ۲ باشد مجموع مقادیر x	
٢	۱/ _{۳- حد} توابع را حساب کنید :	5
	$\lim_{x \to \tau} \frac{x^{\tau} - q}{\sqrt{\tau_x - \delta} - \tau}$ (الف $\lim_{x \to -1} \frac{x^{\tau} - x - \tau}{\tau_x^{\tau} + \tau_x}$	5
	$\lim_{x \to 1^+} \frac{r x - 1}{[r x]} \qquad \qquad \lim_{x \to -\infty} \frac{-\Delta x^{f} + r x^{f} - 1}{x(x - f)}$	_
1/۵	از لحظه $x = t^{7} - \Delta t + 9$ میباشد اولاً سرعت متوسط این متحرکی به صورت $x = t^{7} - \Delta t + 9$ میاشد اولاً سرعت متوسط این متحرکی به صورت	1
	ا تا $t_{\gamma} = 0$ به دست آورید. ثانیاً آهنگ آنی تغییرات x را در $t = 1$ به دست آورید. $t_{\gamma} = 0$	10
1/۵	است و معادلات نیممماسها را در این نقطه برای تابع $ x^{T} - Tx = x^{T} - Tx $ است و معادلات نیممماسها را در این نقطه بنویسید.	il in
1/۵	: مطلوب است $y = Tx^1 - Tx^1 - Tx^1 - Tx^1 - Tx^1$	1/4
	الف) نقاط بحراني تابع در فاصله [۱ , ۱−] با max و min مطلق تابع در فاصله [-۱ , ۱−]	1/0
1/۵	باشد. $y=ax^{7}+bx^{7}$ را چنان تعیین کنید که نقطه $(1,7)$ ، نقطه اکسترمم نسبی تابع با ضابطه a , b باشد.	1/4
1/4	- A- در شکل روبهرو می خواهیم ذوزنقه را حول محور دوران دهیم :	110
1/۵	دایرهای به شعاع ۲ باشد. $\mathbf{x}^T + \mathbf{y}^T - T \mathbf{x} + f \mathbf{y} + \mathbf{k} = f$ دایرهای به شعاع ۲ باشد. $\mathbf{x}^T + \mathbf{y}^T - T \mathbf{x} + f \mathbf{y} + \mathbf{k} = f$	N.
1	۱۰- معادله sin ۲x + sin x = ۰ را حل کنید و جواب کلی را به دست آورید.	1/
1/4	۱۱- دو سر قطر بزرگ و قطر کوچک یک بیضی نقاط (۴ , ۱) , (۶ – , ۱) و (۱ , ۳ –) , (۱ , ۵) هستند. خروج از مرکز بیضی را پیدا کنید.	No.
1/0	۱۲- معادله دایرهای را بنویسید که مرکز آن مبدأ مختصات باشد و بر خط $-1 = xx - y$ مماس باشد.	
1/4	$P(A \mid B')$ را به دست آورید. $P(A \mid B')$ و $P(A \mid B) = \frac{\delta}{\gamma}$ و $P(B) = \frac{1}{\gamma}$ را به دست آورید.	
۲	۱۴- جعبهای حاوی ۴ مهره سفید و ۳ مهره سیاه است. متوالیاً دو مهره به تصادف و بدون جایگذاری از جعبه بیرون می آوریم.	
Gard.	احتمال آن که مهره دوم همرنگ مهره اول باشد را حساب کنید.	The Later Section
۲٠.	(۳۳)	
The second of the	The Court of the C	4.

زمون (سؤالات امتحان کلاسهای دوازدهم درس: ریاضی (۳) تجربی مدت امتحان : نوبت دوم از تعالی از تعالی سؤالات استعان : ۱۰۰ دقیقه باستان سال سؤالات پیشنهادی پایان سال
	واشند: $g(x) = \frac{x+y}{x-1}$ و $f(x) = \frac{1}{x}$ باشند: $g(x) = \frac{x+y}{x-1}$ و $f(x) = \frac{1}{x}$ باشند:
1	$-x \sin^{4} x - \sin x = 0$ را حل کنید.
3	$\sin lpha$ و $\sin lpha$ را با هم مقایسه کنید : $-\pi$ با توجه به محورهای سینوس و تانژانت، در موارد زیر مقادیر $\sin lpha$ و $\sin lpha$ الف π $-\infty$ $-\infty$ الف π $-\infty$
3	النه النه دست آورید: $ \frac{x^{r} + rx + r}{rx^{r} - r} \text{im} \frac{\sin^{r} rx}{x \rightarrow \cdot 1 - \cos x} \text{im} \frac{rx + q}{rx + \sqrt{x^{r} - r}} $ $ \frac{1}{rx^{r} + rx + r} \text{(Iii)} \frac{\sin^{r} rx}{rx + \sqrt{x^{r} - r}} $
5	د مشتق پذیری تابع $f(x) = \sqrt{x-1}$ را به کمک تعریف در نقطه $x = 1$ بررسی کنید.
۵	و min مطلق تابع $y=x^{4}-\lambda x^{7}+1$ را در بازه $[-1, 7]$ را محاسبه کنید. $y=x^{4}-\lambda x^{7}+1$
۵	۲- نقاط بحرانی تابع $f(x) = x\sqrt{\mathfrak{r} - x^{Y}}$ را در دامنهاش به دست آورید.
۵	۸- مجموع دو عدد مثبت برابر ۱۸ است بزرگ ترین مقدار ممکن برای حاصل ضرب آنها را پیدا کنید.
۵	است: $x^T + y^T - T x - F y + f = F$ است:
	الف) مرکز دایره را به دست آورید.
	ب) مقدار f را طوری تعیین کنید که شعاع دایره برابر ۲ باشد.
110	۱۰- اگر یک لوزی با طول قطرهای ۶ و ۴ حول قطر بزرگ دوران داده شود، حجم شکل حاصل چقدر است؟
1/0	۱۱- معادله دایرهای به قطر ۸ را بنویسید که در ناحیه چهارم بر محورهای مختصات مماس باشد.
110	$P(A B)$ و $\frac{\pi}{4} = P(A - B)$ باشند مقدار $P(A B)$ را حساب کند.
1	الموزان سال چهارم در یک شهر ۱۲۰۰ نفر میباشد که از آن تعداد موع نفر د ند ند اگر و در صد پسران و ۳۰
	رای در منگور سراسری پذیرفته شده باشند و یک زفر این تری در می
	الف) احتمال این که دانش آموز انتخاب شده در کنکور قبول شده باشد چقدر است؟ ب) اگر دانش آموز انتخاب شده در کنکور قبول شده باشد با چه احتمال پسر است؟
1:	ور حبول سده باشد با چه احتمال پسر است؟
1	(At)

تاریخ امتحان : نوبت دوم مدت امتحان : ۱۰۰ دقیقه

درس:ریاضی (۳) تجربی

سؤالات امتحان كلاسهاي دوازدهم سؤالات پیشنهادی پایان سال

,	یک به یک است ضابطه تابع وارون آن را به دست آورید. $x \ge \Delta$ ، $f(x) = (x-\Delta)^{\Upsilon}$ یک به یک است ضابطه تابع وارون آن را به دست آورید.
2, - 1	$\sin Tx - \sqrt{\pi}\cos x = 0$ د دست آورید:
1	$f(x) = x^{1} - 4x + 3$ ، یک تابع یک به یک به دست آورده و دامنه و برد $f(x) = x^{1} - 4x + 3$ ، یک تابع یک به یک به دست آورده و دامنه و برد $f(x) = x^{1} - 4x + 3$ ، یک تابع یک به یک به دست آورده و دامنه و برد $f(x) = x^{1} - 4x + 3$
1/۵	الف $\lim_{x\to f} \frac{x^{7}-\pi x-f}{\sqrt{x-7}}$ (ب $\lim_{x\to f} \frac{x^{7}-\pi x-f}{\sqrt{x-7}}$ (ب $\lim_{x\to +\infty} \frac{x^{7}-\pi x-f}{\sqrt{x-7}}$
1/0	و a تابع زیر در نقطه $x=0$ مشتق پذیر است؟ $x=0$ مشتق پذیر است $x=0$ می مشتق پذیر است $x=0$
1/۵	وابتدا نقطه بحرانی را تعریف کنید سپس طول نقاط بحرانی تابع $y = \frac{x^7 + 1}{x}$ را به دست آورید.
1/۵	را در بازه $[-1, \frac{1}{7}]$ در صورت وجود تعیین کنید. $f(x) = \frac{1}{1+x^7}$ را در بازه $[-1, \frac{1}{7}]$ در صورت وجود تعیین کنید.
1/4	ه و a و a را چنان تعیین کنید که تابع با ضابطه $y = \tan^{\pi} - bx^{7}$ در نقطه $(-1, \pi)$ یک نقطه اکسترمم نسبی $y = \tan^{\pi} - bx^{7}$ داشته باشد.
1/4	۹- میخواهیم محوطهای مستطیل شکل برای کاشت نهال ایجاد کنیم که از یک طرف رو به دریاست. چگونه می توان با ۱۲۰ متر نرده محوطه را ایجاد کرد تا بیشترین مساحت را داشته باشیم؟
1/4	$x^{T} + y^{T} + 7x + 7y - 1 = 0$ دایره روبهرو را پیدا کنید:
1/0	ا- دو سر قطر کوچک یک بیضی نقاط $(-1, -1)$ و $(-1, -1)$ است. اگر خروج از مرکز بضی -1 باشد، مختصات دو سر قطر بزرگ و کانونهای بیضی را بنویسید.
1/۵	(1,0) و $(-1,0)$ و $(-1,0)$ معادله دایره یا نقاطی از صفحه را پیدا کنید که مجموع مربعات فواصل هر کدام از آنها از دو نقطه $(-1,0)$ و $(-1,0)$ برابر ۴ باشد.
1/0	۱۳- اگر A و B دو پیشامد غیر تهی از فضای نمونهای S باشند ثابت کنید:
,,,,,,	P(A' B) = 1 - P(A B)
۲	ا - ۵۶ درصد از شرکت کنندگان کنکور را دختران تشکیل میدهند ۷۵ درصد دختران و ۶۵ درصد پسران در کنکور قبول
7	می شوند اگر شرکت کنندهای را به تصادف انتخاب کنیم:
	الف) احتمال این که در کنکور قبول شود چقدر است؟
	ب) اگر شرکت کننده انتخابی در کنکور قبول شده باشد احتمال این که دختر باشد چقدر است؟
۲٠	جمع (۳۵)

ه شما	تاریخ امتحان: نوبت دوم تاریخ امتحان: نوبت دوم درس: ریاضی (۳) تجربی مدت امتحان: ۱۰۰ دقیقه
1	را حساب کنید. $g(x) = x\sqrt{x}$ و $g(x) = x\sqrt{x}$ باشند دامنه تابع $g(x) = x\sqrt{x}$ را حساب کنید.
1	را حل و جواب کلی را به دست آورید. $\cos x + \sin^7 x + \cos 7x = 7$
1/0	الف $\lim_{x \to r} \frac{rx^{r} - vx - s}{x^{r} - q}$ (الف $\lim_{x \to r} \frac{\sin rx}{x^{r} - q}$ (بالف $\lim_{x \to r} \frac{\sin rx}{x^{r} - q}$ (بالف $\lim_{x \to r} \frac{\sin rx}{x^{r} + \sqrt{x^{r} - 1}}$
٢	۴- اگر $f(t) = m+1$ نمایش جمعیت یک نوع باکتری باشد آهنگ متوسط افزایش جمعیت را در ۵ ساعت اول پس از زمان $t = m+1$ را به دست آورید.
10	مفروض است مقادیر a و b را چنان بیابید که a در a مشتق پذیر باشد. a مشتق پذیر باشد. a مشتق پذیر باشد. a
۵	مطلق آن را در صورت وجود بیابید $y=x^{\pi}-x^{\pi}$ مفروض است. اولاً مقادیر $y=x^{\pi}-x^{\pi}$ مطلق آن را در صورت وجود بیابید ثانیاً طول نقاط بحرانی را پیدا کنید.
۵	۷ – ضرایب a و a را چنان تعیین کنید که تابع $y = ax^7 + b + x^8$ نقطه در $(7,7)$ یک a یا a نسبی داشته باشد.
	۸- معادله دایرهای را بنویسید که از نقطه $O(\cdot,\cdot)$ گذشته و $C(\tau,-1)$ مرکز آن باشد.
5	۹- معادله دایرهای را بنویسید که نقاط $\mathbf{A}(1,-1)$ و $\mathbf{B}(7,7)$ دو سر یک قطر آن باشد.
۵	۱۰- خروج از مرکز یک بیضی قائم $\frac{4}{3}$ ، مرکز آن $(-7, -1)$ و طول فاصله کانونی این بیضی ۸ واحد است. مطلوب است : مختصات نقاط دو سر قطر کوچک و قطر بزرگ و کانونهای این بیضی.
	$x^{T} + y^{T} - 7x - 7x - 7 = 0$ را نسبت به دایره $x^{T} + y^{T} - 7x - 7x - 7 = 0$ را مشخص کنید.
۵	سعل خاصل از دوران این مربع حول محور داده شده را رسم و حجم آن را محاسبه کنید.
۵	$P(A \mid B)$ و $P(A \mid B) = \frac{r}{r}$ و $P(B) = \frac{r}{r}$ و $P(B) = \frac{r}{r}$ و $P(A \mid B)$ باشد مطلوب است محاسبه $P(A \mid B) = \frac{r}{r}$ و $P(A \mid B)$ باشد مطلوب است محاسبه $P(A \mid B) = \frac{r}{r}$ و مهره متوالیاً و بدون جایگذاری از جعبهای که شامل ۴ مهره سفید و ۶ مهره سیاه است خارج می کنیم. مطلوب است $P(A \mid B) = \frac{r}{r}$ مهره اول سفید و مهره دوم سیاه باشد.
	ب) احتمال آن که مهره اول سیاه و مهره دوم سیاه باشد. باشد. باشد.

49

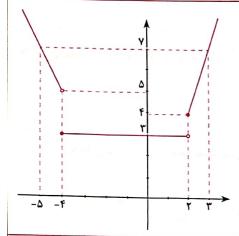
درس: ریاضی (۳) تجربی دبیرستان نمونه دولتی شهید نواب صفوی (دی ماه ۹۷)

$$(\sin 1\Delta^{\circ} = \frac{\sqrt{\Upsilon - \sqrt{\Upsilon}}}{\Upsilon})$$
 ت) نادرست

پ) درست

ب) درست

راك) درست


$$x+r= \cdot \rightarrow x=-r \rightarrow f(-r)=r(-r)^r+\Delta(-r)^r-r(-r)-1\cdot = \cdot$$

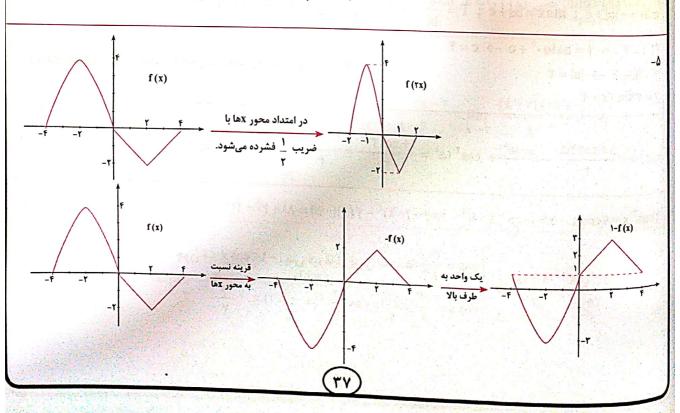
٧- الف) صفر

$$\lim_{x \to -\infty} -7x^{r} = +\infty$$

$$(f \circ g)(x) = f(g(x)) = f(\frac{x+f}{r}) = r(\frac{x+f}{r}) - f = x$$

ن) همانی

$$(7,+\infty)$$
 نزولی، در بازه $(-\infty,-1)$ ثابت و در بازه $(-\infty,-1)$ ثابت و در بازه $(-\infty,-1)$


$$\begin{array}{c|cccc} x & -\Delta & -\mathfrak{r} \\ \hline y & \mathsf{V} & \Delta \end{array}$$

$$f(x) = \sqrt{x-1} \implies x-1 \ge x \implies x \ge 1 \implies D_f = [1, +\infty)$$

$$g(x) = \gamma x^{\gamma} - 1$$
; $D_g = \mathbb{R}$

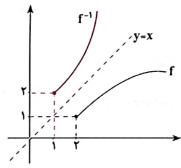
$$D_{gof} = \left\{ x \in D_f \mid f(x) \in D_g \right\} = \left\{ x \ge 1 \mid \sqrt{x - 1} \in \mathbb{R} \right\} = \left[1, +\infty \right]$$

$$(fog)(x) = f(g(x)) = f(rx^{r} - 1) = \sqrt{rx^{r} - 1 - 1} = \sqrt{rx^{r} - r}$$

کلاسهای دوازدهم

درس: ریاضی (۳) تجربی

دبیرستان نمونه دولتی شهید نواب صفوی (دی ماه ۹۷)


پاسخ آزمون شماره 🔰

x مییابیم، سپس جای x و y را برحسب x مییابیم، سپس جای x و y را با هم عوض می کنیم.

$$y=1+\sqrt{x-7} \implies y-1=\sqrt{x-7} \implies (y-1)^7=x-7 \implies x=7+(y-1)^7 \implies f^{-1}(x)=7+(x-1)^7$$

$$y=1+\sqrt{x-1} \implies x-1 \ge x \implies x \ge x \implies D_f = R_{f^{-1}} = [x, +\infty)$$

$$\sqrt{x-r} \ge \cdot \implies 1 + \sqrt{x-r} \ge 1 \implies y \ge 1 \implies R_f = D_{r-1} = [1, +\infty)$$

 $f^{-1}(b) = a$ می دانیم اگر f(a) = b آنگاه –۷

$$f(x) = x^{r} + rx \xrightarrow{f^{-1}(\cdot)} \cdot = x^{r} + rx \rightarrow \cdot = x(x^{r} + r) \implies x = \cdot \implies f^{-1}(\cdot) = \cdot$$

 $f^{-1}(\mathfrak{f}) \longrightarrow \mathfrak{f} = \mathfrak{x}^{\mathfrak{T}} + \mathfrak{T} \mathfrak{x} \implies \mathfrak{x}^{\mathfrak{T}} + \mathfrak{T} \mathfrak{x} - \mathfrak{f} = \bullet \implies \mathfrak{x}$ مجموع ضرایب برابر صفر است پس یکی از ریشه ها برابر ۱ است.

$$\Rightarrow (x-1)(x^7+x+7)=\cdot \Rightarrow \begin{cases} x=1\\ x^7+x+7=\cdot & \xrightarrow{\Delta<\cdot} \end{cases}$$
ریشه ندارد.

$$\Rightarrow \mathbf{f}^{-1}(\mathbf{f}) = \mathbf{1}$$

: داریم $y = a \sin bx + c$ داریم $y = a \sin bx + c$

$$min = -|a| + c \; ; \; max = |a| + c \; ; \; T = \frac{\tau\pi}{|b|} \; \rightarrow \; |b| = \frac{\tau\pi}{T} = \frac{\tau\pi}{\pi} = \tau \xrightarrow{b> \cdot} \; b = \tau$$

$$f(\cdot) = \varphi \rightarrow \varphi = a \sin \cdot \varphi + c \rightarrow c = \varphi$$

$$V = |a| + F \rightarrow |a| = F$$

 $a = \pi$: سینوس بعد از صفر، به صورت صعودی است. پس

 $y = r \sin rx + \epsilon$

$$\frac{\cos^{7}\alpha = \frac{1 + \cos 7\alpha}{r} \quad \xrightarrow{\alpha = 1\Delta^{\circ}} \quad \cos^{7}1\Delta^{\circ} = \frac{1 + \cos 7^{\circ}}{r} = \frac{1 + \frac{\sqrt{r}}{r}}{r} = \frac{r + \sqrt{r}}{r} \Rightarrow \cos 1\Delta^{\circ} = \frac{\sqrt{r + \sqrt{r}}}{r}$$

$$^{7}cos^{7}x - 9cosx - \Delta = + \implies \Delta = b^{7} - 4ac = (-9)^{7} - 4c(7)(-\Delta) = \lambda 1 + 4 = 171$$

$$cos_{X} = \frac{-b \pm \sqrt{\Delta}}{ra} = \frac{9 \pm 11}{r}$$

$$\Rightarrow \begin{cases}
\cos = \frac{r}{r} = \Delta \cdot \text{min diagraph}, -1 \le \cos x \le 1 \\
\cos x = \frac{-r}{r} = \frac{-1}{r} = \cos \frac{r\pi}{r} \Rightarrow x = rk\pi \pm \frac{r\pi}{r}
\end{cases}$$

تشریح از: مختار منصوری

درس: ریاضی (۳) تجربی

کلاسهای دوازدهم دبیرستان نمونه دولتی شهید نواب صفوی (دی ماه ۹۷)

$$\lim_{x\to \Delta} \frac{\mathsf{r}-\sqrt{\mathsf{x}-\mathsf{1}}}{\mathsf{x}-\Delta} \times \frac{\mathsf{r}+\sqrt{\mathsf{x}-\mathsf{1}}}{\mathsf{r}+\sqrt{\mathsf{x}-\mathsf{1}}} = \lim_{x\to \Delta} \frac{\mathsf{r}-\mathsf{x}+\mathsf{1}}{(\mathsf{x}-\Delta)\times\mathsf{r}} = \lim_{x\to \Delta} \frac{-(\mathsf{x}-\Delta)}{(\mathsf{x}-\Delta)\times\mathsf{r}} = -\frac{\mathsf{1}}{\mathsf{r}}$$

-11

$$\lim_{x\to \tau} \frac{x^{\tau} - \Delta x + \beta}{\tau x^{\tau} - 1\tau x^{\tau} + \tau \xi x - q} = \lim_{x\to \tau} \frac{(x-\tau)(x-\tau)}{(x-\tau)(\tau x^{\tau} - \gamma x + \tau)} = \frac{1}{\tau} = \infty$$

$$\lim_{x \to \frac{1}{r}} \frac{[x] - r}{|rx - 1|} = \frac{\left[\frac{1}{r}\right] - r}{\left|r\left(\frac{1}{r}\right) - 1\right|} = \frac{\cdot - r}{\cdot +} = \frac{-r}{\cdot +} = -\infty$$

$$\lim_{x \to \frac{\pi^{-}}{r}} \tan x = \tan \frac{\pi^{-}}{r} = +\infty$$

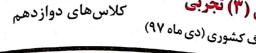
$$\lim_{x \to -\infty} \frac{rx - \sqrt{rx^{7} + 1}}{rx + \sqrt{qx^{7} + \lambda}} = \lim_{x \to -\infty} \frac{rx - r|x|}{rx + r|x|} = \lim_{x \to -\infty} \frac{rx + rx}{rx - rx} = \lim_{x \to -\infty} \frac{\Delta x}{-x} = -\Delta$$

$$\Xi \lim_{x \to +\infty} \frac{(x^{\mathsf{T}} \sqrt{x} + \mathsf{Y})^{\mathsf{T}}}{(x^{\mathsf{T}} - \mathsf{I})(x - \mathsf{T})(x^{\mathsf{T}} - \mathsf{Y})} = \lim_{x \to +\infty} \frac{(x^{\mathsf{T}} \cdot \sqrt{x})^{\mathsf{T}}}{(x^{\mathsf{T}})(x)(x^{\mathsf{T}})} \lim_{x \to +\infty} \frac{x^{\mathsf{\Delta}}}{x^{\mathsf{\Delta}}} = \mathsf{I}$$

$$\lim_{x \to \frac{\pi^{+}}{r}} \frac{\Delta}{r + r^{\tan x}} = \frac{\Delta}{r + r^{-\infty}} = \frac{\Delta}{r + r^{-\infty}} = \frac{\Delta}{r} = \frac{\Delta}{r}$$

انکه x به قدر کافی بزرگ اختیار شود. f(x) = -1 را به هر مقدار دلخواه می توان به ۱ – نزدیک کرد، مشروط بر آنکه x به قدر کافی بزرگ اختیار شود.

$$f(x) = \forall x^{\mathsf{T}} - \forall x$$
 (ف)


$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \Rightarrow f'(t) = \lim_{x \to t} \frac{f(x) - f(t)}{x - t} = \lim_{x \to t} \frac{f(x) - f(t)}{t} = \lim_{x \to t} \frac{f(x) - f(t)}{x - t} = \lim_{x \to t} \frac{f(x) - f(t)}{t$$

$$(Y, Y), m_{\omega \omega} = f'(Y) = \Delta \Rightarrow y - y = m(x - x)$$

$$y - Y = \Delta(x - Y)$$

$$y = \Delta x - A$$

$$\mathbf{f}'(\cdot) = \lim_{\mathbf{x} \to \cdot} \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\cdot)}{\mathbf{x} - \cdot} = \lim_{\mathbf{x} \to \cdot} \frac{\frac{\mathbf{f} \mathbf{x}^{\mathsf{T}} + \mathbf{x}}{\mathbf{x}} - 1}{\mathbf{x}} = \lim_{\mathbf{x} \to \cdot} \frac{\mathbf{f} \mathbf{x} + \mathbf{x}}{\mathbf{x}} = \mathbf{f}$$

_{درس:} ریاضی (۳) **بجربی** سوالات امتحان هماهنگ کشوری (دی ماه ۹۷)

$$D_{\mathbf{f}'} = (\cdot, +\infty)$$

$$D_{\mathbf{f}'} = (\cdot, +\infty)$$

$$\frac{\Delta x^{r} - rx}{\sum_{x \to -\infty}^{g(x)} - x^{r} + 1} = \sum_{x \to -\infty} \frac{\Delta x^{r}}{-x^{r}} = -\Delta$$

$$\frac{\Delta x^{r} - rx}{x \to -\infty} = x^{r} = x$$

$$\frac{\Delta x^{r}}{-x^{r}} = -\Delta$$

$$\frac{\Delta x^{r}}{-x^{r}} = -\Delta$$

$$g(x) = x^{\pi}$$
 : بنابراین $h(x) = (f(x))^{\pi}$ بنابراین $f(x) = (f(x))^{\pi}$

$$\int_{\mathbf{r}\to\infty}^{\mathbf{g}(\mathbf{r})} \int_{\mathbf{r}\to-\infty}^{\mathbf{r}\to-\infty} -\mathbf{r}$$

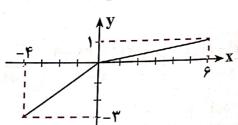
$$\int_{\mathbf{r}\to\infty}^{\mathbf{g}(\mathbf{r})} \int_{\mathbf{r}\to-\infty}^{\mathbf{r}\to-\infty} -\mathbf{r}$$

$$\int_{\mathbf{r}\to-\infty}^{\mathbf{g}(\mathbf{r})} \int_{\mathbf{r}\to-\infty}^{\mathbf{r}\to-\infty} -\mathbf{r}$$

$$D_g = R$$
 , $D_f = R - \{ \cdot \}$

تشريح از: محمود بيرواول

$$D_{f \circ g} = \{ a \in D_g \mid g(x) \in D_f \} = \{ x \in R \mid rx - 1 \neq \bullet \}$$


$$|_{Y_{\lambda}-1=\cdot \to X} = \frac{1}{r} \to \mathbf{D_{fog}} = \mathbf{R} - \left\{ \frac{1}{r} \right\}$$

$$0 = \frac{1}{4}x - v \rightarrow x = 9v$$

ب) ابتدا باید
$$f^{-1}(\Delta)$$
 را به دست آوریم:

$$(g^{-1}of^{-1})(\Delta) = g^{-1}(f^{-1}(\Delta)) = g^{-1}(\mathcal{F}^{F}), \ \mathcal{F}^{F} = x^{F} \ \rightarrow \ x = F \ \rightarrow \ (g^{-1}of^{-1})(\Delta) = F$$

: دامنه $f(rac{x}{r})$ به صورت زیر مشخص می شود $D_f = [-7\,,\,7]$ به صورت زیر مشخص می شود -۴

$$|\mathbf{r}|_{b}^{T_{\mathbf{x}}}$$
 الف) دوره تناوب، ماکزیمم و مینیمم تابع $\mathbf{y} = a \sin b \mathbf{x} + \mathbf{c}$ برابر است با $\mathbf{y} = a \sin b \mathbf{x} + \mathbf{c}$ برابر است با

$$\lim_{|x| \to \infty} \frac{\pi}{y}, \max_{y = |-Y| + Y = \Delta}, \min_{y = -|-Y| + Y = -1}$$

$$\mathbf{P}_{\mathbf{r}} = \mathbf{P}_{\mathbf{r}} + \mathbf{P}_{\mathbf{r}} +$$

ب) با توجه به این
$$rac{\pi}{\mathsf{Y}}$$
 tan تعریف نشده است :

تشريح از: محمود پيرواوليا

کلاسهای دوازدهم

درس: ریاضی (۳) تجربی

سوالات امتحان هماهنگ کشوری (دی ماه ۹۷)

 $\sin x - (1 - 7\sin^7 x) = \cdot \rightarrow 7\sin^7 x + \sin x - 1 = \cdot$

_{ع- رو}ش اول :

معادله فوق را به معادله درجه دوم t = t + t - 1 تبدیل میکنیم. $\sin x = t$

$$a = \Upsilon$$
, $b = 1$, $c = -1 \rightarrow \Delta = b^{\Upsilon} - Fac = 1^{\Upsilon} - F(\Upsilon)(-1) = \P$

$$t = \frac{-b \pm \sqrt{\Delta}}{ra} = \frac{-1 \pm \sqrt{q}}{r \times r} \rightarrow t = -1$$
, $t = \frac{1}{r}$

$$\sin x = -1 = \sin(-\frac{\pi}{Y}) \rightarrow x = Yk\pi - \frac{\pi}{Y}, x = (Yk + 1)\pi + \frac{\pi}{Y}$$
 $k \in \mathbb{Z}$

$$\sin x = \frac{1}{r} = \sin \frac{\pi}{s} \rightarrow x = rk\pi + \frac{\pi}{s}, x = (rk + 1)\pi - \frac{\pi}{s} \quad k \in \mathbb{Z}$$

 $\cos 7x = \sin x \rightarrow \cos 7x = \cos(\frac{\pi}{7} - x) \rightarrow 7x = 7k\pi \pm (\frac{\pi}{7} - x)$

روش دوم :

$$\forall x = \forall k\pi + \frac{\pi}{\gamma} - x \rightarrow x = \frac{\forall k\pi}{\gamma} + \frac{\pi}{\gamma}$$
 $\forall x = \forall k\pi - (\frac{\pi}{\gamma} - x) \rightarrow x = \forall k\pi - \frac{\pi}{\gamma}$

$$\lim_{x \to \gamma^-} \frac{[x] - \gamma}{x - \gamma} = \frac{\gamma - \gamma}{1 - \gamma} = \frac{-1}{1 - \gamma} = +\infty$$

ب) صورت و مخرج کسر به ازای $\mathbf{x} = \mathbf{x}$ برابر صفرند. بنابراین صورت و مخرج را در عبارت $\sqrt{\mathbf{x}+1}+1$ ضرب میکنیم تا مخرج

کسر عبارتی گویا شود.

$$\lim_{x\to r} \frac{x^{r}-q}{\sqrt{x+1}-r} \times \frac{\sqrt{x+1}+r}{\sqrt{x+1}+r} = \lim_{x\to r} \frac{(x-r)(x+r)(\sqrt{x+1}+r)}{x+r-r} = s\times r = rr$$

. وش اول : ابتدا معادله خط مماس را مینویسیم. سپس طول نقاط B و C را در آن قرار داده و عرض آنها را به دست می آوریم. $- \lambda$ $- \lambda$ $+ \alpha$ وش اول : ابتدا معادله خط مماس را مینویسیم. سپس طول نقاط $- \alpha$ $+ \alpha$

$$x = \Delta \rightarrow y - YF = 1/\Delta(\Delta - F) \rightarrow y = Y\Delta/\Delta \rightarrow B(\Delta, Y\Delta/\Delta)$$

$$x = r \rightarrow y - r = 1/\Delta(r - r) \rightarrow y = r r/\Delta \rightarrow C(r, r r/\Delta)$$

روش دوم :

$$1/\Delta = \frac{y_B - \gamma_F}{\Delta - F} \rightarrow y_B = \gamma \Delta / \Delta , 1/\Delta = \frac{y_C - \gamma_F}{\gamma_C - F} \rightarrow y_C = \gamma \gamma / \Delta$$

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \to f'(-1) = \lim_{x \to -1} \frac{(1 - 7x^{7}) - (1 - 7(-1)^{7})}{x - (-1)} = \lim_{x \to -1} \frac{7 - 7x^{7}}{x + 1}$$

 $\lim_{x \to -1} \frac{\tau - \tau x^{\tau}}{x + 1}$

$$\lim_{x \to -1} \frac{\Upsilon(1-x)(1+x)}{x+1} = \Upsilon(1-(-1)) = \varphi$$

الف
$$f'(x) = \Delta \left(\frac{x}{(x-1)}\right)' \left(\frac{x}{(x-1)}\right)^{\Delta-1} = \Delta \times \frac{(x-1)-(x)}{((x-1))^{\gamma}} \left(\frac{x}{(x-1)}\right)^{\gamma}$$

-1.

$$(x) = r_X \sqrt{x+1} - \frac{1}{r \sqrt{x+1}} \times x^r$$

تشریح از: محمود پیرواولیا

کلاسهای دوازدهم

درس: ریاضی (۳) تجربی سوالات امتحان هماهنگ کشوری (دی ماه ۹۷)

$$\frac{\Delta x}{\Delta t} = \frac{x(f) - x(f')}{f - f'} = \frac{(\sqrt{f} + f' \times f'') - (\sqrt{f'} + f' \times f''')}{1} = \forall f - \sqrt{f'}$$

$$\frac{\Delta t}{\Delta t} = \frac{f'(x) = \cdot}{f'(x) = \cdot} \quad f'(x) = \cdot \quad$$

$$f(1) = -\gamma, f(-\gamma) = \gamma$$

$$f(1) = -\gamma, f(-\gamma) = \gamma$$

$$f(x) \mid -\infty$$
 نقطه بحرانی $f(x) \mid -\infty$ نقطه بحرانی $f(x$

$$f(-1) = -T + T + 1T = 1T, f(T) = T \times T^{T} + T \times T^{T} - 1T \times T = F\Delta$$

17 - X

$$S(x) = x$$
 عرض $S(x) = x$ عصطیل $S(x) = x$ عصاحت مستطیل $S(x) = x$ عصاحت مستطیل $S(x) = x$

در واقع باید مربع باشد
$$ho =
ho =
ho = 3$$

$$\gamma_a = \lambda \rightarrow a = \beta$$
, $\gamma_b = \beta \rightarrow b = \gamma$

$$a^{\dagger} = b^{\dagger} + c^{\dagger} \rightarrow f^{\dagger} = f^{\dagger} + c^{\dagger} \rightarrow c = \sqrt{V}$$

$$e = \frac{c}{a} = \frac{\sqrt{Y}}{F}$$

$$x^{7}+y^{7}+ax+by+c=$$
 $\rightarrow a=-9$, $b=7$, $c=9$

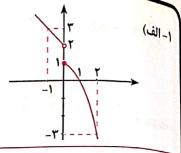
$$x^{\gamma} + y^{\gamma} - \beta x + \gamma y + \beta = \bullet$$

$$x^{r}+y^{r}-\epsilon x+ry+\epsilon=\epsilon$$
 $(r,-1)$ مرکز $(r$

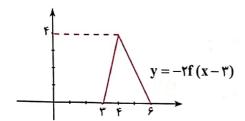
در پرتاب سه سکه احتمال اینکه دقیقاً یک رو رخ دهد،
$$\frac{T}{\Lambda} = \frac{T}{Y} \times \frac{1}{Y} \times \frac{1}{Y}$$
 است.

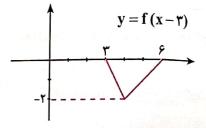
$$\frac{\gamma}{16}$$
 $\frac{\gamma}{16}$ $\frac{\gamma}{16}$

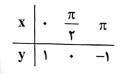
کلاسهای دوازدهم

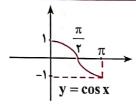

درس: ریاضی (۳) تجربی

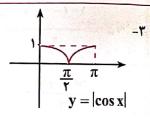
سؤالات امتحان پیشنهادی پایان سال




$$-7 < \cdot \rightarrow f(-7) = -(-7) + 7 = 6$$


$$f(f(-r)) = f(r) \xrightarrow{r>r} 1-(r)^r = 1-19 = -10$$




٢- الف) نمودار را سه واحد به سمت راست انتقال مىدهيم. ﴿ بِ) عرض نقاط نمودار الف را در ٢- ضرب مىكنيم.

$$y_1 = y_7 \rightarrow \frac{1}{x_1^r} = \frac{1}{x_1^r} \rightarrow x_1^r = x_1^r \rightarrow x_1 = x_2$$
یک به یک است $x_1 = x_2 \rightarrow x_1 = x_2 \rightarrow x_1 = x_2 \rightarrow x_2 \rightarrow x_2 \rightarrow x_1 = x_2 \rightarrow x_2 \rightarrow x_2 \rightarrow x_1 = x_2 \rightarrow x_2 \rightarrow x_2 \rightarrow x_1 \rightarrow x_2 \rightarrow x_2 \rightarrow x_2 \rightarrow x_2 \rightarrow x_2 \rightarrow x_1 \rightarrow x_2 \rightarrow x$

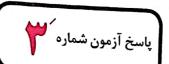
$$y = \frac{1}{x^r} \rightarrow x^r = \frac{1}{y} \rightarrow x = \frac{1}{\sqrt[r]{y}} \rightarrow f^{-1}(x) = \frac{1}{\sqrt[r]{x}}$$

$$(f \circ g)(x) = f(g(x)) \rightarrow x^{7} - f x + \Delta = (g(x))^{7} + f g(x) + f , x^{7} - f x + \Delta = (g(x))^{7} + f g(x) + f + f$$

$$x^{\Upsilon} - fx + f = (g(x) + 1)^{\Upsilon} \rightarrow (x - f)^{\Upsilon} = (g(x) + 1)^{\Upsilon} \rightarrow$$

$$|g(x)+1|=|x-7| \rightarrow g(x)+1=\pm |x-7| \rightarrow g(x)=-1\pm |x-7|$$

$$\mathbf{D_f} = \mathbf{R}$$


$$x+1 \ge \cdot \rightarrow x \ge -1 \rightarrow D_g = [-1, +\infty)$$

$$x - 7 \ge -1 \ \to \ x \ge 1 \ \to \ D_{gof} = \{x \in D_f \mid f(x) \in D_g\} = \{x \in R \mid x - 7 \in [-1 \ , +\infty]\} \ \to \ D_{gof} = [1 \ , +\infty]$$

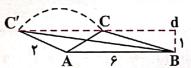
$$(fof)(x) = f(f(x)) = f(x-7) = (x-7)-7 = x-7$$

کلاسهای دوازدهم

درس: ریاضی (۳) تجربی سؤالات امتحان پیشنهادی پایان سال

 $\gamma \sin^{\gamma} \Delta x - \sin \Delta x - 1 = \bullet$

$$\sin \Delta x = 1 \rightarrow \Delta x = 7k\pi + \frac{\pi}{\gamma} \rightarrow x = \frac{7k\pi}{\Delta} + \frac{\pi}{1}$$

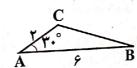

$$\sin \Delta x = -\frac{1}{\gamma} = \sin(-\frac{\pi}{\beta}) \rightarrow \Delta x = 7k\pi - \frac{\pi}{\beta} \rightarrow x = \frac{7k\pi}{\Delta} - \frac{\pi}{\gamma}$$

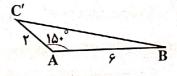
$$\Delta x = 7k\pi + \pi + \frac{\pi}{\beta} \rightarrow x = \frac{7k\pi}{\Delta} + \frac{7\pi}{\gamma}$$

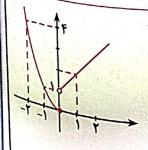
$$\gamma \times \gamma \Delta = 1\Delta \cdot , \cos 1\Delta \cdot \circ = \cos (1\Delta \cdot \circ - \Upsilon \cdot \circ) = -\cos \Upsilon \cdot \circ = -\frac{\sqrt{\Upsilon}}{\Upsilon}$$

$$\cos 7\alpha = 1 - 7\sin^7 \alpha \rightarrow \sin^7 \alpha = \frac{1 - \cos 7\alpha}{7} \rightarrow \sin^7 7\Delta^\circ = \frac{1 - \cos 1\Delta^\circ}{7}$$

$$\sin^{7} V \Delta^{\circ} = \frac{1 - (-\frac{\sqrt{r}}{Y})}{Y} = \frac{Y + \sqrt{r}}{Y} \rightarrow \sin V \Delta^{\circ} = \frac{\sqrt{Y + \sqrt{r}}}{Y}$$




ارتفاع
$$\leftrightarrow \frac{1}{7}$$
 ارتفاع $\leftrightarrow \theta = 0$


به مرکز A و به شعاع ۲ کمان میزنیم تا خط d را در دو نقطه C', C قطع کند دو مثلث ACB و AC'B جواباند.

$$\int_{0}^{s=\frac{1}{r}bc\sin A} \rightarrow r = \frac{1}{r} \times r \times s\sin A \rightarrow \sin A = \frac{1}{r}$$

$$\begin{array}{c|cccc} x & \cdot & 1 \\ \hline y & 1 & 7 \\ \hline x & -7 & -1 & \cdot \\ \hline y & 7 & 1 & \cdot \\ \end{array}$$

$$\lim_{x\to 0^+} f(x) = 1, \lim_{x\to 0^+} f(x) = 0$$

$$\lim_{x\to 0^+} f(x) = 1, \lim_{x\to 0^+} f(x) = 0$$

كلاسهاي دوازدهم

درس: ریاضی (3) تجربی

سؤالات امتحان پیشنهادی پایان سال

$$\lim_{x\to 1} \frac{(x-1)(x^{r}+x^{r}+x-1)}{(x-1)(rx-1)} = \frac{r}{1} = r$$

$$\frac{x^{f} - fx + 1}{-(x^{f} - x^{f})} \frac{x-1}{x^{f} + x^{f} + x-1}$$

$$\lim_{x\to \bullet^+} \frac{x-y}{\sqrt{x}} = \frac{-y}{\bullet^+} = -\infty$$

$$\frac{-(x^{r}-x^{r})}{x^{r}-rx+1}$$

$$\lim_{x \to +\infty} \frac{rx^r}{-rx^r} = \frac{-r}{r}$$

$$\frac{-(x^{\gamma}-x)}{-(-x+1)}$$

$$\lim_{x\to \gamma^-}\frac{\cdot}{x-\gamma}=\cdot$$

مشتق می گیریم
$$\mathbf{f}'(\mathbf{x}) = egin{cases} \mathsf{Y} & \mathbf{x} < \mathsf{Y} \ \mathsf{w} & \mathbf{x} > \mathsf{Y} \end{cases}$$

$$\mathbf{f}'_{-}(\mathtt{T})\!
eq\!\mathbf{f}'_{+}(\mathtt{T})$$
 مشتق پذیر نیست

$$\lim_{x \to x^{-}} \frac{f(x) - f(x)}{x - x} = \lim_{x \to r^{-}} \frac{(rx + \Delta) - 11}{x - r} = \lim_{x \to r^{-}} \frac{rx - \beta}{x - r} = \lim_{x \to r^{-}} \frac{r(x - r)}{x - r} = r$$

$$\lim_{x \to x^{+}} \frac{f(x) - f(x)}{x - x} = \lim_{x \to r^{+}} \frac{rx + r - 11}{x - r} = \lim_{x \to r^{+}} \frac{rx - q}{x - r} = \lim_{x \to r^{+}} \frac{r(x - r)}{x - r} = r$$

$$\lim_{x \to x_{+}} \frac{f(x) - f(x_{+})}{x - x_{+}} = \lim_{x \to 1} \frac{\sqrt{x} - 1 - 1}{x - 1} = \lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} \times \frac{\sqrt{x} + 1}{\sqrt{x} + 1} = \lim_{x \to 1} \frac{x - 1}{(x - 1)(\sqrt{x} + 1)} = \frac{1}{7}$$

الف
$$f' = r_X^{\dagger}(r_X - \Delta) + r_X^{\dagger}$$

$$h' = \frac{1((x+1) - x(x-1))}{(x+1)^{r}} = \frac{y}{(x+1)^{r}}$$

$$x = Y \rightarrow y = Y^{T} + y \times Y - 1 = q \rightarrow (Y, q)$$

$$y' = Yx + y \xrightarrow{x=Y} m_{onloo} = y$$

$$y-y_1=m(x-x_1) \rightarrow y-q=v(x-r) \rightarrow y=v_X-\Delta$$

كلاسهاي دوازدهم

_{درس:} ریاضی (3) تجربی سؤالات امتحان پیشنهادی پایان سال

$$\int_{f(g(x))=\Upsilon(g(x))^{\Upsilon}-\Upsilon} f(g(x))^{\Upsilon} = \Upsilon(g(x))^{\Upsilon} = \Upsilon(g(x))^{\Upsilon} = \Upsilon(g(x))^{\Upsilon}$$

$$f(g(x)) = f(x)$$

$$f(g(x))^{r} - f = f(x)^{r} + f(x) \rightarrow f(g(x))^{r} = f(x)^{r} + f(x) + f \rightarrow g(x)$$

$$f(g(x))^{r} - f = f(x)^{r} + f(x) \rightarrow f(g(x))^{r} = f(x)^{r} + f(x) + f \rightarrow g(x) \rightarrow g(x) \rightarrow g(x)$$

$$\frac{f(g(x))}{(g(x))^{r} = (x+1)^{r}} \to |g(x)| = |x+1| \to g(x) = |x+1|, g(x) = -|x+1|$$

$$r(1-\cos^{r}x)+4\cos x+r=\cdot \rightarrow r\cos^{r}x-4\cos x-\Delta=\cdot$$

$$\cos x = \frac{-b \pm \sqrt{b^{\Upsilon} - \alpha c}}{\gamma a} \rightarrow \cos x = \frac{+9 \pm \sqrt{\lambda 1 - \alpha + \lambda - \alpha}}{\gamma + \gamma} = \frac{+9 \pm 11}{\alpha}$$

$$\gamma \times \gamma \Delta = 1 \Delta \cdot , \cos 1 \Delta \cdot \circ = \cos (1 \lambda \cdot \circ - \Psi \cdot \circ) = -\cos \Psi \cdot \circ = -\frac{\sqrt{\Psi}}{\Upsilon}$$

$$\cos r\alpha = r\cos^r \alpha - 1 \rightarrow \cos^r \alpha = \frac{1 + \cos r\alpha}{r} \rightarrow \cos^r v\Delta^\circ = \frac{1 + \cos r\Delta^\circ}{r}$$

$$\cos^{r} V \Delta^{\circ} = \frac{1 - \frac{\sqrt{r}}{r}}{r} = \frac{r - \sqrt{r}}{r} \rightarrow \cos V \Delta^{\circ} = \frac{\sqrt{r - \sqrt{r}}}{r}$$

$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{7x - 7} \times \frac{\sqrt{x} + 1}{\sqrt{x} + 1} = \lim_{x \to 1} \frac{(x - 1)}{7(x - 1)(\sqrt{x} + 1)} = \frac{1}{7} \qquad (1) \lim_{x \to +\infty} \frac{7x^{7}}{-x} = \lim_{x \to +\infty} (-7x) = -\infty$$

ب
$$\lim_{x \to +\infty} \frac{\mathbf{r} \mathbf{x}^{\mathsf{T}}}{-\mathbf{x}} = \lim_{x \to +\infty} (-\mathbf{r} \mathbf{x}) = -\infty$$
 (ب

$$\frac{\Delta y}{\Delta x} = \frac{f(x_1 + \Delta x) - f(x_1)}{\Delta x} = \frac{(Y/Y)^Y + Y - (Y^Y + Y)}{\cdot / Y} = \frac{\lambda / Y - V}{\cdot / Y} = \frac{Y/Y}{\cdot / Y}$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} x^7 = 1$$
, $f(1) = 1$, $\lim_{x \to 1^-} (ax^7 + bx + 7) = a + b + 7$ تابع باید پیوسته باشد $\lim_{x \to 1^+} (x) = \lim_{x \to 1^+} x^7 = 1$, $\lim_{x \to 1^-} (ax^7 + bx + 7) = a + b + 7$

$$a+b+7=1 \rightarrow a+b=-1$$

$$f'(x) = \begin{cases} f'(x) = \begin{cases} f'(x) + b & x < 1 \\ f'(x) = x \end{cases}$$

$$f'_{-}(1) = f'_{+}(1) \rightarrow \forall a + b = \forall$$

$$\begin{cases} a+b=-1 \\ \gamma_{a+b-w} \rightarrow \gamma_{a-1} \end{cases}$$

$$(r_{a+b=\gamma} \rightarrow r_{a-a=\gamma}$$

$$a = r$$
, $b = -\Delta$

کلاسهای دوازدهم

درس: ریاضی (۳) تحریی

$$y' = rx^{r} + rax \xrightarrow{x=r} rrange range ra$$

$$(1,-1) \rightarrow y = x^{r} + ax^{r} + b \rightarrow -1 = 1 + a + b \rightarrow a + b = -r \rightarrow -r + b = -r \rightarrow b = 1$$

$$y' = \beta x - \gamma x^{\gamma} \xrightarrow{y' = \cdot} \beta x - \gamma x^{\gamma} = \cdot \rightarrow \gamma x (\gamma - x) = \cdot \rightarrow x = \cdot, \gamma$$

$$f(-1) = \pi(-1)^{7} - (-1)^{7} = \pi$$
, $f(\cdot) = \cdot$, $f(\tau) = \pi \times \tau^{7} - \tau^{7} = \pi$ مطلق تابع در این بازه ۴ میباشد.

مینامیم $c \in D_f$ و $c \in D_f$ در یک همسایگی از c تعریف شده باشد. نقطه به طول c را یک نقطه بحرانی برای تابع ه گاه f'(c) برابر صفر باشد یا f'(c) موجود نباشد.

$$D_{f} = [-7, 7] \quad f'(x) = \frac{-x}{\sqrt{r-x^{7}}} \quad \frac{f'(x)=\cdot}{x=\cdot} \quad f'(7), \quad f'(7), \quad f'(7) \quad f'(7) = f'(7)$$

$$x + y = \lambda \rightarrow y = \lambda - x$$

$$p = xy \rightarrow p = x(\lambda - x) = -x^{\gamma} + \lambda x \rightarrow p' = -\gamma x + \lambda \rightarrow -\gamma x + \lambda = \cdot \rightarrow x = \gamma$$

$$p_{max} = f(\lambda - f) = 16$$

$$o_1(\cdot, 1), R_1 = r$$
 $d = o_1 o_r = \sqrt{(\cdot - r)^r + (1 + 1)^r} = r\sqrt{r}$

$$o_{\gamma}(\Upsilon,-1)$$
 , $R_{\gamma}=\Upsilon$ $\left|R_{1}-R_{\gamma}\right|< d < R_{1}+R_{\gamma}$ دو دایره متقاطع هستند

فاصله کانونی = $\mathbf{FF'} = \sqrt{(1-1)^{\mathsf{T}} + (-\Delta - \mathtt{T})^{\mathsf{T}}} = \lambda$

مرکز بیضی $au = (rac{-\Delta + r}{r}, rac{-\Delta + r}{r})$ مرکز بیضی (۱, –۱)

با توجه به این که قطر بزرگ در امتداد \mathbf{F}' و قطر کوچک در مرکز بیضی بر قطر بزرگ عمود است :

معادله قطر کوچک ، x=1: معادله قطر بزرگ: y=-1

$$\mathbf{r} = \mathbf{d} = \frac{\left|\mathbf{a}\mathbf{x}_{\cdot} + \mathbf{b}\mathbf{y}_{\cdot} + \mathbf{c}\right|}{\sqrt{\mathbf{a}^{7} + \mathbf{b}^{7}}} = \frac{\left|\mathbf{r} \times \mathbf{1} + \mathbf{f} \times \mathbf{r} + \mathbf{f}\right|}{\sqrt{\mathbf{q} + \mathbf{1}\mathbf{f}}} = \frac{\mathbf{1}\Delta}{\Delta} = \mathbf{r}$$
 مماس بر آن برابر است با شعاع دایره $\mathbf{r} = \mathbf{d} = \mathbf{r}$ عاصله مرکز دایره از خط مماس بر آن برابر است با شعاع دایره $\mathbf{r} = \mathbf{d} = \mathbf{r}$ $\mathbf{r} = \mathbf{d} = \mathbf{r}$

$$P(B) = P(A_1) \times P(B \mid A_1) + P(A_{\gamma}) \times P(B \mid A_{\gamma}) = \frac{\beta \Delta}{1 + \gamma} \times \frac{\Delta \beta}{1 + \gamma} + \frac{\gamma \Delta}{1 + \gamma} \times \frac{\beta \beta}{1 + \gamma} = \frac{\gamma}{1 + \gamma} \times \frac{\beta}{1 + \gamma} = \frac{\gamma}{1 + \gamma} \times \frac{\gamma}{1 + \gamma} = \frac{\gamma}{1 + \gamma} \times \frac{\gamma}{1$$

$$P(B) = P(A_1) \times P(B \mid A_1) + P(A_{\gamma}) \times P(B \mid A_{\gamma}) = \frac{1}{\gamma} (1 - \epsilon/1\gamma) + \frac{1}{\gamma} (1 - \epsilon/2\gamma) = \epsilon/12\gamma$$

کلاسهای دوازدهم

درس: ریاضی (۳) تجربی

سؤالات امتحان پیشنهادی پایان سال

پاسخ آزمون شماره 🔝

$$(f \circ g)(x) = f(g(x)) = f(\frac{1}{x - y}) = \frac{1}{x - y} + y = x - y + y = x \to (f \circ g)(x) = x$$

$$(g_0f)(x) = g(f(x)) = \frac{1}{(\frac{1}{x} + r) - r} = \frac{1}{x} = x \rightarrow (g_0f)(x) = x$$

این دو تابع وارون یکدیگرند.

$$\int_{1-\cos^{7} x = \cos^{7} x + 1} \rightarrow r \cos^{7} x = \cdot \rightarrow \cos x = \cdot \rightarrow x = k\pi + \frac{\pi}{r}$$

$$T = \frac{Y\pi}{|b|} \rightarrow T = \frac{Y\pi}{\Psi}$$

الما
$$\left| \frac{\pi}{\epsilon} \right| = \left| -\frac{\pi}{\epsilon} \right| + 1 = \frac{7}{\epsilon}$$
 مینیمم تابع $\left| \frac{\pi}{\epsilon} \right| = -\left| -\frac{\pi}{\epsilon} \right| + 1 = \frac{1}{\epsilon}$

$$\lim_{x \to -1} \frac{(1-x)(1+x)}{(1+x)(x+\Delta)} = \lim_{x \to -1} \frac{1-x}{x+\Delta} = \frac{1}{r}$$

$$\lim_{x \to -\infty} \frac{\sqrt{x^{\gamma} - \gamma x + 1}}{\gamma x + \gamma} = \lim_{x \to -\infty} \frac{\sqrt{x^{\gamma} (1 - \frac{\gamma}{x} + \frac{1}{x^{\gamma}})}}{x (\gamma + \frac{\gamma}{x})} = \lim_{x \to -\infty} \frac{|x|}{\gamma x} = \lim_{x \to -\infty} \frac{-x}{\gamma x} = -\frac{1}{\gamma}$$

$$\frac{\Delta y}{\Delta x} = \frac{f(Y/Y) - f(Y)}{Y/Y - Y} = \frac{\frac{1}{Y}(Y/Y)^{Y} - \frac{1}{Y}(Y)^{Y}}{\frac{1}{Y}(Y)^{Y}} = \frac{\frac{1}{Y}(Y/Y)^{Y}}{\frac{1}{Y}(Y)^{Y}} = \frac{\frac{1}{Y}(Y/Y)^{Y}}{\frac{1}{Y}(Y/Y)^{Y}} = \frac{\frac{1}{Y}(Y/Y)^{Y}}{\frac{1}{Y}}$$

$$\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = f(1) \to (-1)^{Y} - Y(-1) = a(-1)^{Y} + b(-1) \to -1 = a + b$$
 : السرط پیوستگی تابع:

$$f'(x) = \begin{cases} \gamma ax + b & x < 1 \\ \gamma x - \gamma & x > 1 \end{cases} \rightarrow \begin{cases} f'_{-}(1) = \gamma a + b \\ \gamma x + b = \gamma \end{cases} \rightarrow \gamma a + b = \gamma \qquad \begin{cases} a + b = -1 \\ \gamma a + b = \gamma \end{cases} \rightarrow \gamma a - a = 1 \rightarrow a = 1, b = -\gamma$$

۷- هرگاه بخواهیم بیشترین یا کمترین مقدار یک کمیت را حساب کنیم، ابتدا آن کمیت را برحسب یک مجهول مینویسیم سپس مشتق آن را برابر با صفر قرار می دهیم.

$$y = 19 \rightarrow y = 19 - x$$

$$p = xy \rightarrow p = 19 - x \rightarrow y = 19 - 7x \rightarrow 19 - 7x = 0 \rightarrow x = 0$$

$$\begin{array}{l}
p = xy \rightarrow y = 19 - x \\
p = xy \rightarrow p = x(19 - x) \rightarrow p = 19x - x^{T} \rightarrow p' = 19 - 7x \rightarrow 19 - 7x = 0 \rightarrow x = 0
\end{array}$$

$$p = \gamma(18 - \gamma) = 88$$

$$f(-r) = (-r+1)^{\frac{r}{r}} = \frac{r}{r\sqrt[r]{x+1}}$$

$$f(-r) = (-r+1)^{\frac{r}{r}} = 1, f(1) = (1+1)^{\frac{r}{r}} = \sqrt[r]{r}$$

$$y = (x+1)^{\frac{r}{r}} \rightarrow y = \sqrt[r]{(x+1)^{\frac{r}{r}}} \xrightarrow{(x+1)^{\frac{r}{r}} \rightarrow \min_{y} = \cdot, \max_{y} = \sqrt[r]{r}}$$

كلاسهاي دوازدهم

درس: ریاضی (۳) تجربی

سؤالات امتحان پیشنهادی پایان سال

يخ آزمون شماره

$$(1, \Upsilon) \rightarrow y = x^{\Upsilon} + ax^{\Upsilon} + b \rightarrow \Upsilon = 1^{\Upsilon} + a + b \rightarrow a + b = 1$$

$$y' = \Upsilon x^{\Upsilon} + \Upsilon ax \rightarrow y' = \cdot \rightarrow \Upsilon x^{\Upsilon} + \Upsilon ax = \cdot \xrightarrow{x=1} \Upsilon + \Upsilon a = \cdot \rightarrow a = \frac{-\Upsilon}{\Upsilon}$$

$$a + b = 1 \rightarrow -\frac{\Upsilon}{\Upsilon} + b = 1 \rightarrow b = \frac{\Delta}{\Upsilon}$$

$$x^{r} + y^{r} + rx + ry - r \cdot - (x^{r} + y^{r} + rx + ry - rr) = \cdot \rightarrow rx + r = \cdot \rightarrow x = -r$$
 $x = -r \rightarrow x^{r} + y^{r} + rx + ry - rr = \cdot \rightarrow y^{r} + ry - rr = \cdot \rightarrow (y - r)(y + r) = \cdot \rightarrow y = r, y = -r$
 $(-r, r), (-r, -r)$ نقاط تقاطح

واصله کانونی
$$= FF' = \sqrt{(1-1)^{\gamma} + (-\Delta - \tau)^{\gamma}} = \lambda \rightarrow \gamma c = \lambda \rightarrow c = \gamma$$

$$e = \frac{c}{a} = \frac{r}{\beta} = \frac{\gamma}{\tau}, \ a^{\gamma} = b^{\gamma} + c^{\gamma} \rightarrow \beta^{\gamma} = b^{\gamma} + r^{\gamma} \rightarrow b = \gamma \sqrt{\Delta} \rightarrow r \sqrt{\Delta}$$
قطر کوچک $= \frac{c}{a} + \frac{r}{b} + \frac{r}$

$$r = \frac{\left|ax + by + c\right|}{\sqrt{a^7 + b^7}} = \frac{\left|r \times 1 + (-f) \times \cdot + V\right|}{\sqrt{9 + 16}} = \frac{1 \cdot a}{\delta} = 7$$

$$(x - \alpha)^7 + (y - \beta)^7 = r^7 \rightarrow (x - 1)^7 + y^7 = 6$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \rightarrow \frac{\gamma}{\gamma} = \frac{\gamma}{\Delta} + \frac{\gamma}{\Delta} - P(A \cap B) \rightarrow P(A \cap B) = \frac{1}{\gamma}$$

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{1}{\gamma}}{\gamma} = \frac{\Delta}{\beta}$$

$$P(B) = P(A_1)P(B|A_1) + P(A_{\gamma})P(B|A_{\gamma}) + P(A_{\gamma})P(B|A_{\gamma})$$

۱۴ - الف)

$$P(A) = \frac{1}{r} \times \frac{r}{q} + \frac{1}{r} \times \frac{r}{\Delta} + \frac{1}{r} \times 1 = \frac{rq}{r\Delta}$$

B: پیشامد آن که مهره خارج شده سفید باشد.

A₁: پیشامد آن که ظرف اول انتخاب شود.

A_۲ : پیشامد آن که ظرف دوم انتخاب شود.

A: پیشامد آن که ظرف سوم انتخاب شود.

$$P(B|A_1) = \frac{\frac{1}{r} \times \frac{r}{q}}{\frac{rq}{f\Delta}} = \frac{\Delta}{rq}$$

(ب

كلاسهاي دوازدهم

درس: ریاضی (3) تجربی

سؤالات امتحان پیشنهادی پایان سال

پاسخ آزمون شماره 🦻

$$D_g = R$$

$$D_{\text{fog}} = \{x \in D_g \mid g(x) \in D_f\} = \{x \in R \mid \forall x^{\intercal} + 1 \ge -\tau\} \xrightarrow{ \forall x^{\intercal} + 1 \ge -\tau \text{ or } } D_{\text{fog}} = R$$

$$\lim_{\substack{x \to r \\ x \to r}} \frac{x^{\gamma} - q}{\sqrt{r_{x} - \Delta} - \gamma} \times \frac{\sqrt{r_{x} - \Delta} + \gamma}{\sqrt{r_{x} - \Delta} + \gamma} = \lim_{\substack{x \to r \\ x \to r}} \frac{(x^{\gamma} - q) \times (\sqrt{r_{x} - \Delta} + \gamma)}{r_{x} - \Delta - r}$$

$$\lim_{\substack{x \to r \\ x \to r}} \frac{(x - r)(x + r)(\sqrt{r_{x} - \Delta} + \gamma)}{r_{x} - \Delta + \gamma} = \lim_{\substack{x \to r \\ r}} \frac{(x + r)(\sqrt{r_{x} - \Delta} + \gamma)}{r_{x} - \Delta + \gamma} = A$$

$$\lim_{x \to r} \frac{r}{r(x-r)} = \lim_{x \to r} \frac{r}{r(x-r)} = \lim_{x \to -1} \frac{r}{r(x-r)} = \lim_{x \to -1} \frac{r}{r(-1)} = 1$$

$$\lim_{x \to 1^{+}} \frac{r \times 1 - 1}{r} = \frac{1}{r}$$

ن)
$$\lim_{x \to -\infty} \frac{-\Delta x^{f}}{x^{f}} = \lim_{x \to -\infty} (-\Delta x^{f}) = -\infty$$

$$\bar{\mathbf{V}} = \frac{\Delta \mathbf{x}}{\Delta t} = \frac{\mathbf{x}_{\mathsf{Y}} - \mathbf{x}_{\mathsf{I}}}{\mathbf{t}_{\mathsf{Y}} - \mathbf{t}_{\mathsf{I}}} = \frac{\mathsf{S} - \mathsf{I}}{\Delta - \mathsf{W}} = \mathsf{W} \quad \mathsf{Ig}$$

$$t_1 = T \rightarrow x_1 = q - 1\Delta + S \implies x_1 = +$$
 $t_1 = T \rightarrow x_2 = q - 1\Delta + S \implies x_2 = +$
 $t_3 = T \rightarrow x_4 = q \rightarrow x_4 =$

$$\lim_{x \to x} \frac{f(x) - f(x_{\cdot})}{x - x_{\cdot}} = \lim_{x \to Y} \frac{\left| x^{\Upsilon} - \Upsilon x \right| - \cdot}{x - \Upsilon} = \begin{cases} \lim_{x \to Y^{+}} \frac{x^{\Upsilon} - \Upsilon x}{x - \Upsilon} = \frac{x(x - \Upsilon)}{x - \Upsilon} = \Upsilon \\ \lim_{x \to Y^{-}} \frac{-(x^{\Upsilon} - \Upsilon x)}{x - \Upsilon} = \frac{-x(x - \Upsilon)}{x - \Upsilon} = -\Upsilon \end{cases}$$

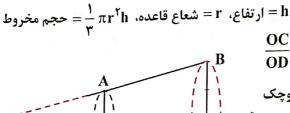
$$y-\cdot=-Y(x-Y) \rightarrow y=-Yx+Y$$

$$y'=g_X^Y-g_X \rightarrow y'= \cdots \rightarrow x=0$$
 نقاط بحرانی $y'=g_X^Y-g_X \rightarrow y'= \cdots \rightarrow x=0$ نقاط بحرانی $y'=g_X^Y-g_X \rightarrow y'=0$ نقاط بحرانی $y'=g_X^Y-g_X \rightarrow y'=0$

$$f(-1) = -9 \qquad f(1) = -\Delta, f(\cdot) = -F$$

$$f(1) = -\Delta, f(\cdot) = -F$$

$$y' = r_{ax}^{r} + r_{bx} \xrightarrow{y' = \cdot} r_{a+1}^{r} + r_{b} \times 1 = \cdot \rightarrow r_{a+r_{b}} = \cdot$$


$$\begin{cases} a + b = r \\ r_{a+r_{b}} = \cdot \end{cases} \rightarrow r_{a-r_{a}} = -r \rightarrow a = -r, b = r$$

كلاسهاي دوازدهم

درس: ریاضی (۳) تحریی

سؤالات امتحان پیشنهادی پایان سال

$$=$$
h النه) شکل حاصل یک مخروط ناقص است. $\frac{OC}{OD} = \frac{AC}{BD}
ightarrow \frac{OC}{OC + \mathfrak{f}} = \frac{1}{\mathfrak{f}}
ightarrow OC = \mathfrak{f}$

عجم مخروط کوچک =
$$\frac{1}{\pi}\pi \times 1^7 \times F = \frac{F\pi}{\pi}$$

$$\frac{\longrightarrow}{\pi}$$
 حجم مخروط بزرگ = $\frac{1}{\pi}\pi \times \Upsilon^{\mathsf{T}} \times \Lambda = \frac{\mathsf{T}\mathsf{T}\pi}{\pi}$

عجم مخروط ناقص
$$= \frac{\mathsf{W}\mathsf{Y}\pi}{\mathsf{W}} - \frac{\mathsf{F}\pi}{\mathsf{W}} = \frac{\mathsf{Y}\mathsf{A}\pi}{\mathsf{W}}$$

ب) ذوزنقه
$$ABB'A'$$
 ارتفاع $imes$ مجموع دو قاعده $\frac{1}{r}$ مساحت ذوزنقه $=\frac{1}{r}(7+4)$

$$r = \frac{1}{r} \sqrt{a^r + b^r - rc} \rightarrow r = \frac{1}{r} \sqrt{1 + 1r - rk} \rightarrow k = \frac{1}{r}$$

$$\sin \Upsilon x = -\sin x = \sin (-x)$$

$$\forall x = \forall k \pi + (-x) \rightarrow x = \frac{\forall k \pi}{\forall}$$

$$\Upsilon x = \Upsilon k \pi + \pi - (-x) \rightarrow x = \Upsilon k \pi + \pi$$

قطر بزرگ =
$$AA' = \sqrt{(1-1)^{\Upsilon} + (-9-7)^{\Upsilon}} = 1 \leftrightarrow Ta = 1 \leftrightarrow a = \Delta$$

قط کوچک = BB' =
$$\sqrt{(-\Upsilon - \Delta)^{\Upsilon} + (1-1)^{\Upsilon}} = A \rightarrow \Upsilon b = A \rightarrow b = \Upsilon$$

$$\mathbf{a}^{\mathsf{T}} = \mathbf{b}^{\mathsf{T}} + \mathbf{c}^{\mathsf{T}} \rightarrow \Delta^{\mathsf{T}} = \mathbf{f}^{\mathsf{T}} + \mathbf{c}^{\mathsf{T}} \rightarrow \mathbf{c} = \mathbf{f} \rightarrow \mathbf{e} = \frac{\mathbf{c}}{\mathbf{a}} = \frac{\mathbf{f}}{\Delta}$$

$$r = d = \frac{|ax + by + c|}{\sqrt{a^{\gamma} + b^{\gamma}}} \rightarrow \frac{|\gamma \times - \gamma \times + 1|}{\sqrt{9 + 19}} = \frac{1}{\Delta}$$

$$(x-\alpha)^{r}+(y-\beta)^{r}=r^{r} \rightarrow x^{r}+y^{r}=\frac{1}{r\Delta}$$

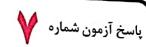
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cap B) = \frac{1}{r} + \frac{1}{r} - \frac{\Delta}{4r} = \frac{1}{r}$$

-1.

$$P(A \cap B') = P(A - B) = P(A) - P(A \cap B) = \frac{1}{r} - \frac{1}{r} = \frac{1}{17} \qquad P(A \mid B') = \frac{P(A \cap B')}{P(B)} = \frac{1}{\frac{1}{r}} = \frac{1}{r}$$

$$P(A | B') = \frac{P(A \cap B')}{P(B)} = \frac{\frac{1}{17}}{\frac{1}{7}} = \frac{1}{7}$$


$$P(B) = P(A_1)P(B|A_1) + P(A_7)P(B|A_7)$$

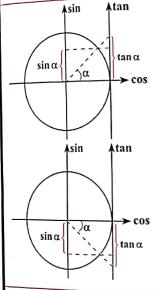
$$= \frac{r}{v} \times \frac{r}{s} + \frac{r}{v} \times \frac{r}{s} = \frac{r}{v}$$

كلاسهاي دوازدهم

درس: ریاضی (۳) تجربی

سؤالات امتحان پیشنهادی پایان سال

$$D_{fog} = \left\{ x \in R - \{1\} \middle| \frac{x + 7}{x - 1} \neq \cdot \right\} \rightarrow x + 7 = \cdot \rightarrow x = -7 \rightarrow D_{fog} = R - \{1, -7\}$$


$$D_{f} = R - \{\cdot\} \text{ (id) } - 1$$

$$D_{g} = R - \{1\}$$

$$D_{g} = R - \{1\}$$

$$D_{g} = R - \{1\}$$

$$\sin x (\Upsilon \sin x - 1) = \cdot \rightarrow \begin{cases}
\sin x = \cdot \rightarrow x = k\pi \\
\Upsilon \sin x - 1 = \cdot \rightarrow \sin x = \frac{1}{\Upsilon} = \sin \frac{\pi}{\varphi} \rightarrow \begin{cases}
x = \Upsilon k\pi + \frac{\pi}{\varphi} \\
x = \Upsilon k\pi + \pi - \frac{\pi}{\varphi}
\end{cases}$$

 $\sin \alpha < \tan \alpha$ (الف –۳

 $\tan \alpha < \sin \alpha$.ب) هر دو منفی اند.

$$\lim_{x \to -1} \frac{(x^{r} - x + r)(x + r)}{r(x + r)(x - r)} = \frac{-r}{r}$$

$$\frac{x^{r} + rx + r}{-(x^{r} + x^{r})} = \frac{-r}{x^{r} - x + r}$$

$$\frac{-(x^{r} + x^{r})}{-x^{r} + rx} = \frac{-r}{x^{r} - x + r}$$

$$\frac{-(-x^{r} - x)}{-(rx + r)}$$

$$\frac{-(-x^{r} - x)}{-(rx + r)}$$

$$\frac{-(rx + r)}{-(rx + r)}$$

$$\lim_{x \to \infty} \frac{(Y \sin x \cos x)^{\Upsilon}}{Y \sin^{\Upsilon} \frac{x}{Y}} = \lim_{x \to \infty} \frac{F \cos^{\Upsilon} x (Y \sin \frac{x}{Y} \cos \frac{x}{Y})^{\Upsilon}}{Y \sin^{\Upsilon} \frac{x}{Y}} = \lim_{x \to \infty} \frac{Y \cos^{\Upsilon} x \times F \sin^{\Upsilon} \frac{x}{Y} \times \cos^{\Upsilon} \frac{x}{Y}}{\sin^{\Upsilon} \frac{x}{Y}} = A$$

$$\frac{(x) \lim_{x \to +\infty} \frac{y_x}{y_{x+|x|}} = \lim_{x \to +\infty} \frac{y_x}{y_x} = 1$$

$$D_{f}:[1,+\infty)$$

$$\lim_{x\to 1^{+}} \frac{f(x)-f(1)}{x-1} = \frac{\sqrt{x-1}-\cdot}{x-1} = \lim_{x\to \cdot} \frac{\sqrt{x-1}}{(\sqrt{x-1})^{7}} = \lim_{x\to 1^{+}} \frac{1}{\sqrt{x-1}} = +\infty$$
 مشتق پذیر نیست $-\Delta$

كلاسهاي دوازدهم

درس: ر**یا**ضی (۳) تجربی سؤالات امتحان پیشنهادی پایان سال

$$y = x^{r} - \lambda x^{r} + 16$$
 $y' = rx^{r} - 16x \rightarrow y' = r \rightarrow rx(x^{r} - r) = r \rightarrow x = r, r, -r$

$$f(-1) = 9$$
, $f(f) = 18F$, $f(\cdot) = 18$, $f(T) = \cdot$, $-7 \notin [-1, F]$

$$x = -1 \rightarrow y = 9$$

$$x = F \rightarrow y = 1FF$$

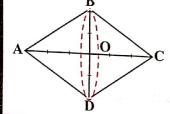
سنترین مقدار تابع ۱۴۴ و کمترین آن ۹ است.

$$F - x^{r} \ge \cdot \rightarrow x^{r} \le F \rightarrow -r \le x \le r \rightarrow D_{f} = [-r, r]$$

$$\sqrt{\xi - x^{\Upsilon}} = \cdot \rightarrow x = \pm \Upsilon$$
 نقاط بحرانی

$$y' = 1 \times \sqrt{r - x^{\tau}} + x \times \frac{-rx}{r\sqrt{r - x^{\tau}}} = \frac{r - rx^{\tau}}{\sqrt{r - x^{\tau}}} \rightarrow y' = r \rightarrow r - rx^{\tau} = r \rightarrow x^{\tau} = r \rightarrow x = \pm \sqrt{r}$$
 نقاط بحرانی

$$x + y = 1\lambda \rightarrow y = 1\lambda - x$$

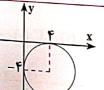

$$P' = -7x + 1\lambda \rightarrow P' = \cdot \rightarrow x = 9 \rightarrow p = 9(1\lambda - 9) = 1$$

$$P = x \cdot y \rightarrow p = x(1 \wedge - x) = -x^{7} + 1 \wedge x$$

$$O(\frac{-a}{r},\frac{-b}{r}) \to (\frac{r}{r},\frac{s}{r}) = (1,r)$$

$$r = \frac{1}{r} \sqrt{a^r + b^r - rc} \rightarrow r = \frac{1}{r} \sqrt{(-r)^r + (-r)^r - rf}$$

$$f = \sqrt{f \cdot - ff} \rightarrow 19 = f \cdot - ff \rightarrow f = g$$



۱- شکل حاصل دو مخروط است که در قاعده به هم چسب

مخروط است که در فاعده به هم چسبیده ده.
$$\frac{7}{r} = \frac{1}{r} \pi r^{7}h$$
 فاعده، $\frac{9}{r} = \frac{1}{r} = r$ حجم مخروط $h = \frac{9}{r} = r$

مکل
$$\mathbf{r} = \mathbf{r} \times \frac{1}{\mathbf{r}} \pi \times \mathbf{r}^{\mathsf{r}} \times \mathbf{r} = \mathbf{A} \pi$$

$$r = \frac{\lambda}{r} = r$$
 مرکز $(r, -r)$ $(x-\alpha)^{r} + (y-\beta)^{r} = r^{r} \rightarrow (x-r)^{r} + (y+r)^{r} = 1$

١١- با توجه به شكل:

$$P(A-B) = P(A) - P(A \cap B) \rightarrow \frac{1}{r} = \frac{r}{r} - p(A \cap B) \rightarrow P(A \cap B) = \frac{r}{r} - \frac{1}{r} = \frac{1}{r}$$

-17

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{1}{\gamma}}{\frac{\gamma}{\epsilon}} = \frac{\gamma}{\gamma}$$

 $P(B|A_1) = \frac{\frac{h \cdot h}{1 \cdot h \cdot h} \times \frac{h \cdot h}{1 \cdot h}}{\frac{h}{1 \cdot h}} = \frac{h}{11}$

$$P(B) = P(A_1)P(B|A_1) + P(A_7)P(B|A_7) = \frac{\lambda \cdots}{1 \gamma \cdots} \times \frac{\beta \cdots}{1 \cdots} + \frac{\beta \cdots}{1 \gamma \cdots} \times \frac{\beta \cdots}{1 \cdots} = \frac{11}{\gamma \cdots}$$

11- الف)

B: پیشامد آن که دانش آموز انتخاب شده در کنکور قبول شود.

A₁: پیشامد آن که دانش آموز پسر انتخاب شود.

A_۲ : پیشامد آن که دانش آموز دختر انتخاب شود.

ب)

كلاسهاي دوازدهم

درس: ریاضی (۳) تجربی

سؤالات امتحان پیشنهادی پایان سال

پاسخ آزمون شماره

$$y = (x - \Delta)^{\Upsilon} \rightarrow \sqrt{y} = |x - \Delta| \xrightarrow{x \ge \Delta} \sqrt{y} = x - \Delta \rightarrow x = \sqrt{y} + \Delta \rightarrow f^{-1}(x) = \sqrt{x} + \Delta$$

$$\frac{1}{\gamma \sin x \cos x - \sqrt{\gamma} \cos x} = \cdot \rightarrow \cos x (\gamma \sin x - \sqrt{\gamma}) = \cdot \rightarrow \cos x = \cdot \rightarrow x = k\pi + \frac{\pi}{\gamma}$$

$$\sin x = \frac{\sqrt{r}}{r} = \sin \frac{\pi}{r} \rightarrow x_1 = rk\pi + \frac{\pi}{r}, x_r = rk\pi + \frac{r\pi}{r}$$

$$y = x^{r} - fx + \Delta \rightarrow y = (x - r)^{r} - f + \Delta = (x - r)^{r} + 1 \xrightarrow{(x - r)^{r} \ge \cdot} R_{f} = [1, +\infty)$$

$$y = x$$

$$y - 1 = (x - Y)^{Y} \rightarrow \sqrt{y - 1} = |x - Y|$$

$$\begin{array}{c} y - 1 = (x \\ x - Y \ge \cdot \rightarrow x \ge Y \rightarrow D_f = \underline{\left[Y, +\infty\right)} \end{array}$$

(می توانستیم $x \le x$ را نیز انتخاب کنیم.)

$$\lim_{x \to F} \frac{(x-F)(x+1)}{\sqrt{x}-Y} \times \frac{\sqrt{x}+Y}{\sqrt{x}+Y} = \lim_{x \to F} \frac{(x-F)(x+1)(\sqrt{x}+Y)}{x-F} = Y$$

$$\lim_{x \to \pi^{-}} \frac{\sqrt{\tau \sin^{7} x}}{\tau \sin x} = \lim_{x \to \pi^{-}} \frac{\sqrt{\tau |\sin x|}}{-\tau \sin x} \xrightarrow{-\tau \sin x} \frac{\sqrt{\tau |\sin x|}}{\tau \sin x} = \frac{\sqrt{\tau \sin x}}{\tau \sin x} = \frac{\sqrt{\tau \sin x}}{\tau \sin x} = \frac{\sqrt{\tau \sin x}}{\tau \sin x}$$

$$\lim_{x \to +\infty} \frac{\mathbf{r} \mathbf{x}^{\mathsf{r}}}{\mathbf{x}^{\mathsf{r}}} = \mathsf{r}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty}$$

تابع باید پیوسته باشد :

$$f'(x) = \begin{cases} 7x + 7 & x > \cdot \\ a & x < \cdot \end{cases} \rightarrow f'_{+}(\cdot) = f'_{-}(\cdot) \rightarrow \cdot + 7 = a \rightarrow a = 7$$

$$y=rac{x^{7}+1}{x}$$
 را نقطه بحرانی گویند هرگاه $f'(c)$ برابر صفر باشد یا $f'(c)$ موجود نباشد.

$$y' = \frac{x}{x^{r} - (x^{r} + 1)} = \frac{x^{r} - 1}{x^{r}} \rightarrow y' = x \rightarrow x^{r} - 1 = x \rightarrow x = \pm 1$$

$$y = \frac{1}{1+x^{\gamma}} \rightarrow y' = \frac{-\gamma x}{(1+x^{\gamma})^{\gamma}} \xrightarrow{y'=\cdot} x = \cdot f(-1) = \frac{1}{\gamma}$$
 مطلق $f(\cdot) = 1$ مطلق $f(\cdot) = 1$ مطلق $f(\cdot) = 1$ مطلق $f(\cdot) = 1$

$$(-1, T) \rightarrow y = Tax^{T} - bx^{T} \rightarrow T = Ta(-1)^{T} - b(-1)^{T} \rightarrow Ta + b = -T$$

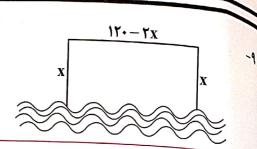
$$y' = \beta a x^{T} - \gamma b x$$

$$y'' = 17ax - 7bx$$

$$y'' = 17ax - 7b \rightarrow 17a(-1) - 7b = \cdot \rightarrow -17a - 7b = \cdot$$

كلاسهاي دوازدهم

درس: ریاضی (۳) تحریی سؤالات امتحان ييشنهادي يايان سال


-11

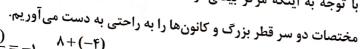
طول = ۱۲۰ – ۲
$$x$$

$$s = x(17 \cdot - 7x) = -7x^7 + 17 \cdot x$$

$$s' = -\epsilon_X + 17 \cdot \rightarrow s' = \cdot \rightarrow -\epsilon_X + 17 \cdot = \cdot \rightarrow x = 7 \cdot$$

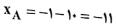
$$s = r \cdot (1r \cdot - r \times r \cdot) = 1 \wedge \cdot \cdot m^r$$

$$x^{\dagger} + y^{\dagger} + \gamma x + \gamma y - 1 = .$$


$$C(\frac{-a}{r},\frac{-b}{r}) \Rightarrow C(\frac{-r}{r},\frac{-r}{r}) = (-1,-1)$$

$$\mathbf{r} = \frac{1}{r} \sqrt{\mathbf{a}^r + \mathbf{b}^r - \mathbf{c}} \rightarrow \mathbf{r} = \frac{1}{r} \sqrt{\mathbf{r}^r + \mathbf{r}^r - \mathbf{c}(-1)} \rightarrow \mathbf{r} = \frac{1}{r} \sqrt{17} = \sqrt{r}$$

$$BB' = \sqrt{(-1 - (-1))^{\gamma} + (\lambda - (-\gamma))^{\gamma}} = 17 \rightarrow 7b = 17 \rightarrow b = \beta$$


$$e = \frac{c}{\lambda} \rightarrow \frac{\lambda}{\lambda} \quad c \qquad \beta$$

با توجه به اینکه مرکز بیضی، وسط قطرها و کانونها است، شکل میکشیم و

$$\frac{-1+(-1)}{7}=-1$$
 , $\frac{\Lambda+(-1)}{7}=7$ \to $O'(-1,7)$ مرکز بیضی: (A') , (A') , (A') , (A') , (A')

 ${f A}'$ از نقطه ${f O}'$ ۱۰ واحد به چپ و ۱۰ واحد به راست میرویم تا طول نقاط

$$X_{\mathbf{A'}} = -1 + 1 \cdot = 9$$

$$x_F = -1 - \lambda = -9$$

$$x_{F'} = -1 + \lambda = \gamma$$

مشخص شود.

همچنین
$$\Lambda$$
 واحد به چپ و راست می رویم تا طول نقاط F و F' به دست آید.

$$A(-11, 7), A'(9, 7), F(-9, 7), F'(7, 7)$$

با توجه به شکل بدیهی است که عرض این نقاط ۲ است. بنابراین:

$$M \begin{vmatrix} x \\ y \end{vmatrix}$$

$$A \begin{vmatrix} -1 \\ \cdot \end{vmatrix}, B \begin{vmatrix} 1 \\ \cdot \end{vmatrix}$$

$$MA^{\gamma} + MB^{\gamma} = \gamma$$

$$(x+1)^{r} + y^{r} + (x-1)^{r} + y^{r} = r \rightarrow rx^{r} + ry^{r} + r = r$$

$$x^{r} + y^{r} = 1 \qquad 1 \text{ sin for } r$$

$$x^{T}+y^{T}=1$$
 ا $x^{T}+y^{T}=1$ دایره به مرکز مبدأ مختصات و شعاع ۱

$$P(A'|B) = \frac{P(A'\cap B)}{P(B)} = \frac{P(B\cap A')}{P(B)} = \frac{P(B-A)}{P(B)} = \frac{P(B)-P(A\cap B)}{P(B)} = \frac{P(B)}{P(B)} - \frac{P(A\cap B)}{P(B)} = 1 - P(A|B)$$

$$P(B) = P(A_1)P(B|A_1) + P(A_2)P(B|A_3) \qquad P(A) = 1 - P(A|B)$$

$$P(B) = P(A_1)P(B|A_1) + P(A_2)P(B|A_2)$$

$$\frac{P(B)}{P(A) = \sqrt{A}} = \frac{P(B)}{P(B)} = 1 - P(A \mid B)$$

$$P(A) = \frac{1}{6}$$
 (۱۲) $P(A) = \frac{1}{6}$ (۱۲) $P(A) = \frac{1}{6}$

$$P(B|A_1) = \frac{\cdot/\Delta \rho \times \cdot/\gamma \Delta}{\cdot/\gamma \cdot \rho} = \cdot/\rho$$

يادداشت

آزمون شماره (۲)

آزمون شماره (۱)

پاسخ آزمون شماره (2)

پاسخ آزمون شماره (۱)

