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ABSTRACT

The paper presents a smartphone-based shooter localization
system. As muzzle blasts are difficult to detect at longer dis-
tances and consequently present higher false detection rates,
the system relies on shockwaves only. Each sensor uses four
microphones to detect the Angle of Arrival and the length
of the shockwave. This information, along with the sen-
sor’s own GPS coordinates, are shared among nearby smart-
phones. Assuming a known weapon type, it then proceeds
to estimate the two possible projectile trajectory candidates
for each sensor that are consistent with the observations in
the horizontal plane of the sensors. A simple clustering algo-
rithm identifies the correct projectile trajectory relying on
as few as two sensors. The trajectory is then used to es-
timate the bearing to the shooter relative to each sensor.
The paper presents the overall system architecture, the de-
sign of the sensor node that interfaces with the smartphone,
the trajectory and bearing estimation algorithms, and the
evaluation of the system based on a field experiment.
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1. INTRODUCTION

A decade after the first prototype wireless sensor network-
based acoustic shooter localization system was reported in
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the technical literature [14], there is still no deployed or com-
mercially available system that utilizes a network of sensors.
The state-of-the-art is still a standalone unit. The reluctance
of the military to embrace a wireless solution is understand-
able since they require any deployed networking technology
to be certified and secure. The current communications in-
frastructure simply does not lend itself to supporting low
cost wearable networked sensors. However, a recent devel-
opment promises to alleviate this problem. The DARPA
Transformative Apps program is built around the idea that
every soldier will carry a military certified smartphone in
the near future. In addition to a number of innovative mil-
itary apps, a common middleware platform, called AMMO
for Android Mobile Middleware Objects, is being developed
that will support a variety of communication protocols [19].
The communication needs of a networked shooter localiza-
tion system will be easily supported by AMMO. The caveat
is that the system will have to be based on smartphones.
The typical smartphone has all the components required
by acoustic shooter localization: an audio channel, process-
ing capabilities, wireless communications, GPS, and a dis-
play. In fact, it would be possible to build a shooter lo-
calization app, but the design tradeoffs and the closed na-
ture of the hardware platform would result in subpar per-
formance. First, the maximum sampling rate of the audio
channel (48 kHz) would be satisfactory, but the audio stream
is typically preprocessed by the on-board codec chip (noise
reduction, filtering, etc.), erasing and distorting important
signal features, especially the sharp rising edge of the shock
wave. Also, most people carry their phones in their pock-
ets or bags making acoustic event detection nearly impossi-
ble. Second, the low-cost GPS solutions in phones contain
too large of positioning errors for shooter localization where
sensor positions need to be known with about a meter ac-
curacy [8]. Third, time synchronization is typically a must
for networked source localization. However, application pro-
grams running on top of smartphone OSs do not have access
to precise global time in spite of the availability of GPS.
Also, the exact sampling times of individual audio samples
are unavailable, as well, because of the unknown delays and
jitter associated with the hardware (ADC, codec, I/O bus)
and the software (kernel drivers, I/O and task scheduling,
etc.). The solution is to build a sensor that offloads the
detection, self-localization, and time synchronization tasks
from the phone. (Note that our system ended up not need-
ing time synchronization, but this was unknown at the time
of hardware design, and a precise GPS was needed in any
case.) Such a sensor can have its own microphone(s), sample



at a higher rate, and run the shot event detection algorithm.
It only needs to notify the phone when an event detection
was made. The event can be tagged with its relevant fea-
tures, such as Time of Arrival (TOA), length, etc., as well as
the corresponding sensor location. The sensor-phone inter-
face can be either Bluetooth or USB. The rest of the paper
presents the design, implementation and evaluation of such
a system.

2. RELATED WORK

Acoustic shooter localization has a long and rich history.
Here we only summarize the results that are most relevant
to our work.

When the typical rifle is fired, two acoustic events are gen-
erated: the muzzle blast and shockwave. The muzzle blast
is associated with the explosion that occurs in the barrel of
the gun that ejects the projectile through the muzzle at a
high speed. When this speed is supersonic — true for the
vast majority of rifles — the projectile generates an acoustic
wavefront called a shockwave. This wavefront has a conical
shape. The axis of the cone is the trajectory of the bul-
let. The angle is determined by the ratio of the speed of
the bullet to the speed of sound (also called the Mach num-
ber). Being an acoustic phenomenon, the wavefront itself
propagates at the speed of sound.

Figure 1 illustrates the shockwave propagation. Shooter
S fires a bullet along the trajectory SA. Microphone M
detects the shockwave front after a certain amount of time.
This is the sum of the time the projectile needed to cover the
distance SA at its supersonic speed and the time it takes for
the shockwave to cover the AM distance, also called slant
range, at the speed of sound. The distance BM is called
the closest point of approach (CPA) or miss distance. It is
worthwhile to note that in reality, the projectile constantly
decelerates, so the section of the shockwave front shown in
the figure is not a straight line, but slowly curves with the
angle « continuously increasing. Finally, the muzzle blast
travels the SM distance at the speed of sound (not shown in
the figure).

ishockwave front M ey

Figure 1: The geometry of a shockwave generated
by a supersonic projectile originating at point S and
observed at point M.

The signal shape of a shockwave is highly characteristic.
It resembles the letter N with sub microsecond rise times
and typical lengths of 100 to 600 microseconds. An empiri-
cal formula called the Whitham’s equation [18], relates the
shockwave length T' to the CPA b, the Mach number M, the
speed of sound ¢, and the projectile diameter (caliber) d and
length [:
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Recently, Sallai et al. rearranged Whitham’s equation by
grouping together most parameters into a scaling factor k
[12]:

b kT (2)

They observed that multiple sensors detecting the same
shot will necessarily have to have the same k (assuming a
constant bullet speed near the sensors). They showed that
measuring the shockwave length at multiple sensors is suffi-
cient to estimate the trajectory of the projectile [12]. Inter-
estingly, k also falls out of the solution providing accurate
caliber estimation and weapon classification.

Previously, Duckworth et al. described an approach where
shockwave TOAs measured by at least six sensors (either
six widely distributed omnidirectional microphones or two
small arrays of three microphones each) is sufficient to ac-
curately determine the trajectory of the projectile and an
approximate range to the shooter [6]. If muzzle blasts are
also available, the range accuracy greatly improves. They
developed a very precise ballistic model to achieve remark-
able accuracy. However, the method relies on empirically
derived caliber- and sensor-specific parameters for sensitiv-
ity and frequency response, making calibration necessary.
Accurate measurement of the peak amplitude of the shock-
wave is also needed. Since nearby trajectories generate high
energy shocks, microphones are often overdriven by them.
Barger et al. overcomes some of these problems by intro-
ducing an accelerometer-based sensor replacing microphones
altogether [2]. However, it is not clear how sensitive these
methods are to sensor location and time synchronization er-
TOrs.

Damarla et al. and Lindgren et al. demonstrated an in-
novative technique that relies on TDOA of the shockwave
and muzzle blast on the same nodes only. That means that
time synchronization is no longer required in the network [5,
9]. The main disadvantage of the method is that the muzzle
blast needs to be detected on each node. Sensors that only
detect either the shockwave or the muzzle blast cannot par-
ticipate in the fusion at all. Also, the technique requires a
known projectile speed along the trajectory and is compu-
tationally expensive. Recently, Ash et al. quantified what
effect a constant bullet speed assumption has on the accu-
racy in [1].

Volgyesi et al. presented a wireless sensor network-based
system in [17]. It relies on measuring both muzzle blast
and shockwave AOAs on each sensor and TDOAs across the
sensors. A single sensor alone can locate the shooter if it
detects both events on at least three microphones each. The
network fusion localizes the trajectory and shooter position,
estimates the weapon caliber, and classifies the weapon at a
remarkable accuracy. The main disadvantage of the system
is that it cannot handle longer range shots that pass on one
side of the sensor field. The problem is that if only one side
of the shockwave is measured, a large number of various
trajectories could explain the TDOA observations. If there
are not enough muzzle blast detections in the network, the
trajectory and the shooter cannot be localized with their
approach.



3. DESIGN MOTIVATORS

As we have seen in the previous section, most acoustic
shooter localization systems rely on both the shockwave and
the muzzle blast. Unfortunately, the muzzle blast is not
nearly as characteristic an acoustic event as the shockwave.
Moreover, the shockwave typically originates near the sen-
sors as they are usually placed near the protected area, since
this is presumably where the shot is targeted. Muzzle blasts,
on the other hand, travel much longer distances. Conse-
quently, their energy dissipates and the signal shape gets
distorted. Muzzle blast detection beyond a hundred meters
quickly becomes unreliable and makes the system prone to
false detections. Finally, the muzzle blasts of friendly return
fire would be picked up by the sensors and would make it
impossible for the sensor fusion to sort through the numer-
ous detections. The shockwave of a soldier’s shot, on the
other hand, does not even reach its own sensor because of
the geometry.

Hence, the most important design decision was to make
the system rely on shockwaves alone. While the numerous
advantages of this were described above, it comes at a steep
price. Most significantly, without the muzzle blast, the range
to the shooter is impossible to estimate accurately. (More
precisely, it is possible to estimate by measuring the curva-
ture of the shockwave due to the deceleration of the projec-
tile, but it would require larger microphone spacing than is
practical in a wearable sensor.) Fortunately, the bearing to
the shooter is considered far more valuable information for
the warfighters than the range.

The second design motivator of the system was the re-
quirement to provide useful information relying on as few
sensors as possible. The obvious consequence of this was to
opt for multi-channel sensors. Having a mini microphone ar-
ray provides AOA information. Having the shockwave AOA
and its length makes it possible to estimate the miss dis-
tance and characterize the wavefront (see Section 5). This
is almost enough to determine the trajectory of the bullet.
Consider Figure 2.

Assume for a second that the speed of the projectile is
known. As we have seen in Section 2, the bullet speed de-
termines the angle of the shockwave cone and hence, the
trajectory angle can be estimated from the shockwave AOA.
Unfortunately, a second trajectory, called image trajectory,
can generate the same shockwave observations, as shown in
the figure. Therefore, a single sensor cannot determine the
trajectory unambiguously. However, two sensors are enough
to disambiguate the situation. See Section 5. Note that this
discussion was restricted to 2D; the situation is more com-
plicated in 3D, but the solution can be generalized. Never-

Figure 2: The trajectory ambiguity problem.

theless, the consequence of the design decisions is that the
minimum number of sensors required is two.

4. SYSTEM ARCHITECTURE

The intended application and concept of operation re-
quires a truly distributed architecture, which is a signifi-
cant departure from previous shooter localization systems
[13, 3, 14, 17], in which a dedicated base station collects low-
level measurements, computes the solution, and displays the
results. Due to the low-bandwidth requirements—a single
message per node when a shot is fired with sporadic status
updates for tracking the position of other team members—
and due to a low practical bound on the number of nodes
within audible range of the trajectory, we could implement
a simple and robust distributed model. In this model, all
detection events with time and node orientation and posi-
tion information are broadcast to all other nodes. Based on
these broadcasted events and the local detections, each node
independently calculates its own solution. Unless messages
are lost, these independent results will be identical.

The conceptual system architecture is shown in Figure 3.
An Android smartphone at each mobile node (soldier) pro-
vides three high-level services: it receives and broadcasts
event detection messages, executes the localization algorithm,
and displays the results. The smartphone provides multi-
ple options for message distribution. Previously, we used
IP/UDP multicast with dedicated WiF1i access points, UDP
message broker servers where 3G services are available, and
a more sophisticated middleware layer providing broadcast
services over traditional and custom radio interfaces. Such
a custom RF interface might be the only viable option in
remote locations with no reliable cellular coverage or where
the service provider cannot be trusted.

Note that these tasks require significant CPU, memory
and user interface resources, thus delegating these to the
smartphone seems natural. Also, the more productive and
refined developer ecosystem around the Android platform
significantly shortens the time and effort for refining the
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Figure 3: Conceptual system architecture.



most complex parts of our application. On the other hand,
none of these tasks require real-time guarantees, an area
where smartphone apps do not excel.

A custom sensorboard provides all real-time services of
the application. First, it needs to sample and monitor mul-
tiple (four) audio channels for detecting potential shock-
wave signatures. Shockwave length and AOA (based on
TDOA) measurements are more accurate using higher sam-
pling rates than are typical in audio applications. This
multi-channel, high-bandwidth, real-time signal processing
task requires significant computational resources, which can
be met with parallel architectures while staying within the
limited power budget. Systems with similar requirements
have used SRAM and Flash-based FPGA devices [14, 7,
15]. Alternately, the PSoC mixed-signal platform [4] is also
a possible candidate for such tasks. The stream processing
is easily handled by mainstream midrange FPGAs running
at low (10 MHz) clock speeds, but the development time and
effort is sometimes prohibitive to try out radically new ideas.
The PSoC platform provides limited (re)configurable logic
resources (Universal Digital Blocks) along with on-chip ana-
log components for signal conditioning and sampling and an
industry standard ARM Cortex-M3 processor core. While
software development on this platform is significantly faster
and more convenient, the PSoC platform does not scale well
with the number of channels. Beyond two channels, the
scheduling of the shockwave detection and other tasks and
satisfying latency requirements becomes non-trivial.

These other tasks include communication with an onboard
GPS and a 3D compass module for accurately tracking the
current time, position, and orientation of the microphone ar-
ray. Although our current localization algorithm does not re-
quire highly accurate timestamps of the events across nodes
(only used for separating different shots), a timepulse signal
provided by most GPS modules is a simple and reliable way
of generating such timestamps. The position accuracy of the
GPS module is more important and affects the overall accu-
racy of the solution. The 3D compass module uses MEMS
accelerometers and magnetometers for calculating the actual
heading, pitch, and roll angles of the array. Accuracy and
refresh rate were the two critical parameters in selecting the
compass module.

Building the connection between the sensor array and the
smartphone is surprisingly challenging in this application.
Although the communication channel does not have to pro-
vide real-time guarantees—all time critical information is
captured and registered by the sensor node—the commu-
nication interface needs to provide a reliable yet physically
flexible bridge between the endpoints. The potential tech-
nologies are limited by the built-in capabilities of the smart-
phone platform to USB, Bluetooth, or WiFi. The wireless
interfaces provide the most flexible deployment models; how-
ever, these are also more vulnerable to eavesdropping or
jamming. The USB interface requires a wired connection
between the array and phone and may also enable a shared
power supply solution. Unfortunately, the standard smart-
phone USB interface requires a host implementation on the
other side, unnecessarily increasing the design complexity of
the sensor node.

In typical deployment configurations, the sensor node is
required to run from an independent power source for sev-
eral hours during the entire length of a mission. The current
architecture and detection logic offer only limited energy
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Figure 4: Current prototype system architecture.

saving opportunities via duty cycling. The channel detec-
tors are enabled continuously—these need to find the first
acoustic transient event with no advanced trigger. The GPS
receiver needs to track the position and time of the node
also. Here, energy saving measures can be implemented with
a low-power MEMS accelerometer for detecting stationary
periods when the GPS module can be powered off and falling
back to internal timekeeping. Nonetheless, the sensor node
requires a high energy density Li-Ion battery with a rated
capacity comparable to ones in current smartphones (1000-
2000 mAh).

Our current prototype implementation shown in Figure 4
follows the conceptual architecture described above. How-
ever, as it happens with most research prototypes, we had
to make changes to and diverge from the ideal setup. The
main factors affecting the proof-of-concept prototype were
very limited time and the financial budget. To be able to
build a working and deployable system, we decided to lever-
age an existing acoustic sensor board (Octopus) [16] and
design an add-on circuit board with the components needed
for the system concept. The original sensor board supports
eight (8) independent channels, a high-speed USB interface,
and a large PSRAM memory for instrumentation purposes,
which results in a significantly higher power budget and
larger physical size than is needed by the current applica-
tion. Also, the two stacked circuit boards and the necessary
wiring between these made the profile of the node signifi-
cantly higher. Finally, to decouple the early development
phases from the communication concerns of the smartphone
network, we decided to use the existing IEEE 802.15.4-based
RF solution readily available on the Octopus board. In this
modified architecture, the smartphone still runs the sensor
fusion and provides the user interface.

On the existing Octopus sensor board, we use only four (4)
of the audio channels that have variable gain (44-65 dB) and
1 MSPS/12 bit sampling. The independent channels are pro-
cessed by a Xilinx Spartan3 FPGA (XC3S1000) using cus-
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Figure 5: The prototype sensor node assembly (a) and packaging (b).

tom IP cores developed for detecting acoustic shockwave sig-
natures. The high-speed USB interface (FTDI FT2232H) on
the Octopus board provides a real-time streaming interface
to the audio channels. The ZigBit OEM module provides
communication, system management, and limited computa-
tional resources. It includes an Atmel AVR (ATmegal281)
microcontroller, an Atmel RF230 RF transceiver chip oper-
ating in the 2.4 GHz ISM band, and an integrated power
amplifier (20 dBm) for increased communication range and
noise immunity. Each smartphone (Dell Streak) is connected
to a TelosB [11] node using a custom USB cable to use the
non-standard USB host capability built into the Streak. The
TelosB acts as a wireless gateway and forwards all packets
to the phone.

Mobile and autonomous operation is supported by sev-
eral key components on the support board. First, we inte-
grated a u-blox LEA-6T GPS receiver, which provides ac-
curate position estimates in standalone mode with satellite
augmentation, an extremely accurate global time reference,
and access to raw measurement data. Node orientation is
tracked by a Honeywell HMC6343 3D compass module at
10 Hz and 0.1° resolution. This compass module combines
a 3-axis magnetometer and a 3-axis accelerometer MEMS
sensor with digital/analog support circuitry and software
IP for calculating heading, pitch, and roll results from raw
sensor measurements. These sensitive measurements are af-
fected by bias and noise as soon as the compass module
becomes a part of a real board assembly. The module pro-
vides a self calibration process, which we used successfully
for compensating the bias of the magnetometers caused by
close metallic/magnetic objects (PCB traces and planes, RF
shields, and antennae). We also experienced significant mea-
surement noise, which was caused by an inductor coil of a
switching-mode DC/DC converter on the board. By chang-
ing the layout of this circuitry we managed to mitigate the
interference and the noise.

Acoustic shockwave detection is not the intended appli-
cation of the low-cost low-power miniature electret micro-
phones we used in our prior work. These sensors typically
lack in responsiveness and dynamic range to handle such
short high energy transients. The high sound pressure level
(SPL>150dB) of close trajectories is especially problematic
due to the long recovery time of the mic (the JFET pream-
plifier inside the capsule) from overload. During this re-

covery interval the microphone is practically deaf, which
prevents accurate shockwave length estimation and hinders
the detection of simultaneous shots. For the current system
we selected a more robust, water resistant microphone as-
sembly from Knowles Acoustics (VEK-H-30108). This is a
low-sensitivity model designed for gunshot or other impulse
sensing, thus can handle more extreme SPL (124dB at 1%
THD, 154dB at 10%) and have a flat frequency response be-
tween 100 Hz to 10 kHz. Our field experiments show that
even these special sensors are easily overloaded by AK-47
(7.62 mm) bullets if the trajectory is within 5 meters. We
experimented with using rubberized paint and custom de-
signed plastic caps on top of the capsules for protecting the
microphone element from overload, but these efforts resulted
in markedly distorted signal shapes even with safe (distant)
trajectories.

The support board also contains a Bluetooth transceiver
module (BlueGiga WT32), which provides a high-level UART
based interface to the FPGA for communicating with Blue-
tooth enabled devices. This alternative wireless interface
was not used in our experiments, but can easily replace the
TelosB gateway in the architecture in future deployments.

The power source of the sensor assembly is a 2000 mAh
Li-Ion battery, enabling continuous operation for approxi-
mately 6 hours. The current drain (typically 300 mA) de-
pends significantly on the state of the GPS module (acquir-
ing, tracking, sleeping), the state of the Bluetooth transceiver,
and the communication burden on the ZigBit radio (packet
transmission rate). The support board integrates a USB-
based Li-Ion charger and step-up/step-down regulators for
supplying the power rails needed by the Octopus board.

The twin board architecture, required interconnects, bat-
tery, antennae, and microphones (Knowles Acoustics VEK-
H-30108)) needed to be packaged for supporting mobile field
deployments. We used a rapid 3D printing process to design
and build a custom ABS plastic enclosure. This allowed for
maximum flexibility in arranging the microphones and other
layout sensitive elements (connectors, antennae). The inter-
nal board assembly and the final packaged node are shown
in Figure 5. Note that the existing Octopus board and the
2-board assembly drove the physical dimensions of the pack-
age. We will be able to cut each dimension in half in a future
revision with a single newly designed board. This will result



in a smaller microphone array, but in our estimation, it will
have only a minor effect on AOA detection accuracy.

S. SENSOR FUSION

The sensor fusion computes the trajectory estimate and
bearing to the shooter from the following inputs: a) a set of
at least two shockwave detections, each including TDOAs
and durations from four microphones; b) sensor positions
and 3D orientations; ¢) speed of sound (assumed to be a
known constant); d) microphone geometry; and e) assumed
weapon parameters: a weapon specific parameter k that is
used to map shockwave length to miss distance (see Equa-
tion 2), which includes the projectile muzzle speed and a
deceleration parameter.

The sensor fusion algorithm consists of six steps:

1. Calculate the shockwave AOA for each sensor;
2. Compute the miss distances for each sensor;
Attempt to compute the speed of projectile;

Compute the trajectory estimates for each sensor;

AR B

Estimate trajectory by fusion of per-node trajectory
estimates;

6. Compute bearing estimates.

Steps 1 and 2 are fairly trivial. First, the AOA of the
shockwave at each sensor is computed from the TDOAs
at the microphones, using the known microphone geome-
try and a given speed of sound. The AOA is represented
as a 3-dimensional vector of unit length. Since this AOA
is initially computed in the node’s local coordinate system,
we rotate this vector using the corresponding 3D compass
readings to convert them to an absolute (East-North-Up)
coordinate system. For simplicity, we convert the AOAs to
2D by discarding the z (Up) coordinates. Then, in Step 2,
the miss distances are computed using Equation 2, with a
predefined weapon-specific constant k.

If the projectile passes the sensors on one side, the AOAs
reported by all the sensors are close to parallel. However, if
there are sensors on both sides of the trajectory, the sen-
sors on the two sides detect different AOAs. Their dif-
ference is directly related to the cone angle of the shock-
wave front, and, in turn, to the speed of the bullet over
the sensor network. We check for this condition in Step 3,
and compute the bullet speed as follows. Assuming £1 and
B2 are the two distinct shockwave angles of arrival, such
that 0 < (B1 — B2) < m, the cone angle « is computed as
7 —(B1—B2)/2. From here, the bullet speed estimate is com-
puted as vpuier = ¢/sin(a), where c is the speed of sound.
If the bullet speed could not be computed this way—that is,
for one-sided shots—we rely on the assumed weapon-specific
muzzle speed, deceleration, and assumed shooter range to
compute a rough bullet speed estimate.

If the trajectory passes between the sensors, the direction
of the trajectory can also be computed as 27 — (81 + 52)/2.
Note that the image trajectories for these sensors are com-
pletely different and only the real trajectory estimates align.

In Step 4, for each sensor, we compute the two trajec-
tory estimates using the miss distance, shockwave AOA, and
bullet speed values. Consider Figure 6. Notice that the tra-
jectory is tangent to the circle whose center is the sensor

Figure 6: Computation of the two trajectory esti-
mates.

position M and has a radius equaling the miss distance.
The trajectory touches the circle at point B; therefore, the
vector M B is normal to the trajectory. Also notice that the
angle between the shockwave AOA vector and MB equals
the cone angle a. From here, we can compute the position
of point B by rotating the shockwave AOA vector clockwise
by the angle «, and making its length equal to the miss dis-
tance. To get the direction of the trajectory, we need to
rotate the vector by 7/2 further clockwise. The trajectory
solution is defined by point B and the trajectory’s direc-
tion. Point B’ and the second trajectory solution can be
computed similarly, but with counterclockwise rotations.

If it was possible to compute the direction of the trajectory
in Step 3, then the correct trajectory can be easily identified.
We simply choose the one whose direction is close to the
previously computed value.

If the trajectory angle is not available, we have to do some
more work to eliminate the image trajectories. After com-
pleting Step 4 for all n number of sensors, we have 2n tra-
jectory solutions available, of which n are incorrect.

We need to search for a consistent subset of trajectory
solutions that line up with each other. Naturally, if a set of
sensors detect the exact same shockwave direction of arrival,
their respective true trajectory solutions will all be parallel.
However, this is true for the image trajectory solutions, as
well. This means that just by looking at the angles of the
trajectory solutions it is not possible to identify the consis-
tent subset. To further complicate things, we cannot assume
that the trajectory solutions in a consistent subset are par-
allel: errors in the compass readings, as well as detection
errors will result in slightly diverging trajectory solutions,
which makes it hard to define a distance metric between
them.

We observe that the even though the trajectory solutions
in the correct subset may diverge far from the sensor field,
they pass close to each other in the proximity of the sensors.
This is not surprising, since, by construction, the the dis-
tance between a sensor M and point T on a corresponding
trajectory is exactly the miss distance. Therefore, the metric
we chose to score a subset of trajectories with similar angles
is as follows. For all sensor-trajectory pairs in the subset,
we compute the variance of the sensor-trajectory distances.
The trajectory solution subset with the lowest variance is
chosen as the correct one.

Once the correct subset of trajectory solutions is avail-
able, in Step 5 we compute the final trajectory solution by
averaging the trajectories in the subset.

In general, two nodes are sufficient to identify the correct
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Figure 7: Degenerate geometry where it is not pos-
sible to distinguish between the true and the image
trajectories.

trajectory. However, there is a degenerate geometry where
not just the two correct trajectory solutions line up with
each other, but also the two image solutions. Consider Fig-
ure 7, where the shockwave front is perpendicular to the line
defined by the two sensor locations and both sensors detect
the same shockwave AOA. In this case, the miss distance
estimates are not sufficient to differentiate between the cor-
rect and the image trajectory: the geometry is symmetric
to the My M, axis. To avoid such situations, at least three
non-collinear sensors are required for unambiguous trajec-
tory estimation.

The bearing estimates are computed in Step 6 for all
sensors that reported shockwave detections. For two-sided
shots, we compute the approximate range of the shooter us-
ing the previously estimated bullet speed and the weapon-
specific parameters (speed at muzzle and deceleration). Us-
ing this approximate range, we find the estimated position
of the shooter on the trajectory.

For one-sided shots, where the range cannot be approxi-
mated, we use a predefined value instead. Using the trajec-
tory estimate and this assumed range, we find the estimated
position S of the shooter on the trajectory. The angle of the
MS vector is reported as the bearing estimate for sensor M.

It is important to note that, for one-sided shots, we do
not have enough information to compute where exactly the
shooter is on the line of trajectory. The assumed shooter-
sensor distance is just an assumption that corresponds to a
typical case identified by the user requirements. How can
the bearing estimation still be accurate then? Clearly, if
the true range is close to the assumed one, the estimated
bearing will be close to the true one. More importantly, the
bearing estimation error will still be low if the miss distance
is much smaller than the true range and the assumed range
(see Figure 8 as an example). Considering that the max-
imum shockwave detection range of our sensors are about
30 m (but the important shots are much closer) and the
typical range that the users are interested in is 100-200 m,
this assumption holds.

This leaves us with only one bad case: when the shooter
is very close to the sensor, the reported bearing may have
a large error. From a practical point of view, this is not a
critical issue. When the shooter is that close to the sensors,
the users can identify the source location without any tech-
nology and have no time to use their smartphones in any
case.

Figure 8: Bearing estimation. Although the actual
range and the assumed range are quite different, the
bearing estimation error v stays low if the miss dis-
tance is much smaller than the true and the assumed
ranges.

6. IMPLEMENTATION

The software that enables networked trajectory and bear-
ing estimation consists of three distinct components: a) the
microcontroller code running on the ZigBit module; b) the
Android code that collects detections from the network, dis-
patches the sensor fusion algorithm, and displays the result;
and c) the sensor fusion algorithm that computes the bear-
ing to the shooter from a set of shockwave detections.

6.1 MCU implementation

The ZigBit microcontroller is programmed in TinyOS 2.1.
It handles mesh networking, location awareness and com-
munication with the FPGA subsystem. For positioning, we
rely on the u-blox GPS module, as well as on the digital
compass. When the FPGA subsystem signals through an
interrupt line that a shockwave detection is available, the
shockwave time of arrival (TOA) and shockwave duration
measurements for each microphone, as well as the compass
heading, are placed in a radio packet and broadcast to the
network.

For mesh networking, we rely on the Directed Flood Rout-
ing Framework (DFRF) [10], a policy-driven, configurable
routing middleware, to achieve restricted network-wide broad-
cast. The routing framework is configured as follows. Each
packet has a unique sequence number and a hop count field.
The hop count field specifies how many times a particular
packet can be forwarded, and is initially set to 10. On re-
ception of a new packet, it is placed in the node’s routing
buffer, its hop count value is decremented and is rebroad-
cast. After forwarding the packet, it is kept in the routing
buffer for a while. This way, the node can remember the
recently forwarded packets, so that subsequent receptions of
the same detection packet can be ignored. This mesh net-
working configuration ensures that all detections are avail-
able at every node of a fairly small mobile sensor network,
and saves bandwidth by avoiding unnecessary rebroadcast
of previously forwarded detections.

6.2 Android implementation

The Android code running on the Dell Streak is responsi-
ble for collecting shockwave detections from the sensor net-
work, dispatching the sensor fusion algorithm, and display-
ing the result. Since Android is built on top of a Linux
system and is programmed in Java, it was straightforward
to port the TinyOS Java SDK to Android. This way, we can
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Figure 9: Shooting range with the four sensors on
tripods in the distance. The green bucket in the
foreground holds a repeater, as the TelosB we used
for our remote user interface had trouble picking up
the messages from the distant sensors.

use the TelosB mote, connected to the Streak directly via
USB, as a TinyOS base station that collects the shockwave
detections coming from the sensor network.

When at least two detections of the same shot are avail-
able (and a timeout comparable to the routing delay has
passed since receiving the last detection), the sensor fusion
algorithm is invoked with the detection set as its input data.
The computed trajectory estimate, as well as the bearing es-
timate to the shooter is displayed on-screen.

6.3 Sensor fusion implementation

The sensor fusion is implemented in MATLAB. We rely
on MATLAB Coder to generate C code from the MATLAB
source files. SWIG is used to generate JNI wrappers around
the generated C code so that it can be compiled to an ARM
Linux shared object file that can be loaded and used by the
Dalvik virtual machine running the Android code. The sen-
sor fusion procedure takes less than 100msec on the smart-
phone.

7. EVALUATION

We built four prototype sensor nodes and evaluated the
system on a shooting range. The four sensors were placed
approximately at the corners of a 6x8m rectangle as shown
in Figure 9. Originally, the four nodes had the same ori-
entation, but they were changed randomly during the test
multiple times. We took 44 shots with an AK-47. Most of
the shots were approximately 35 —40m from the closest sen-
sor. 12 shots were taken from farther away at about 80m

Figure 10: Map of sensor positions (squares) and
shot trajectories (arrows).
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Figure 11: Map of reported GPS positions (dots)
vs. the groundtruth (squares).

from the sensors. While the system is designed for longer
range shots, we were constrained by the limitations of this
particular shooting range.

We supplied the sensor fusion algorithm with the follow-
ing parameters. We assumed that the weapon is an AK-47
and that the range is 150m. Accordingly, the bullet speed
at the muzzle was set to 720m/s, and the projectile decel-
eration was assumed to be —555m/s?. The weapon-specific
coefficient k was set to 0.00625. The speed of sound was set
to 335m/s.

Figure 10 shows all 44 shots relative to the four sensor
positions (note that we typically took 2 shots from the same
position at the same target). Each arrow represents at least
one shot starting at the shooter location and indicating the
target with an arrowhead. As you can see, less than one
third of the shots pass in-between any sensors. This is in-
tentional; we wanted to push the limits of the technology
since estimating the trajectory is much more difficult when
only one side of the shockwave is detected.
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Figure 12: Histogram of trajectory angle errors in degrees derived from measurements from all sensor
detections when a) the GPS-reported locations and b) the manually surveyed locations are used.
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Figure 13: Histogram of bearing errors in degrees derived from measurements from all sensor detections
when a) the GPS-reported locations and b) the manually surveyed locations are used.

7.1 Sensor positioning errors

Unfortunately, our sensor positioning approach displayed
much larger errors than anticipated. We had used the given
GPS receiver on a couple of different designs before and
experienced only 1 — 2m errors in stationary setups un-
der relatively benign environments. This is in line with
the datasheet; however, during our field test, the GPS on
this design behaved somewhat erratically showing up to 5m
errors. Figure 11 shows the ground truth sensor positions
(small squares) and the GPS reported locations (dots) cor-
responding to the times of the 44 shots. The average GPS
error was 2.5m which is significantly worse than expected.
We suspect that the new sensor node has some kind of noise
source that proved to be too close to the GPS antenna.

Similarly, the compass was affected by the sensor node
hardware as described in Section 4. We manually calibrated
each compass according to the procedure described in the

datasheet. This improved the accuracy significantly. Still,
turning the sensor nodes 360° and comparing the reported
orientation with the ground truth at multiple angles resulted
in up to 8 of error. Again, this is much worse than the
expected 1° error.

Previous WSN-based shooter localization systems used
many sensors [14, 17]. Such systems are less sensitive to
sensor location errors because the many random positioning
errors have a tendency to average out. (Also, these systems
were evaluated using surveyed positions.) Here we only have
two or three sensors, yet sensor location errors have a small
impact as we’ll see.

7.2 All sensors

One of the sensors had a very low detection rate compared
to the others. We suspect some kind of hardware issue with
the acoustic channels on that particular node. Thus, about



half of the shots were detected by three or fewer sensors. One
shot was picked up by a single sensor only, so the following
evaluation is based on 43 shots.

First, we use all available sensors to estimate the trajec-
tory. The trajectory angle errors are shown in Figure 12(a).
Two shots were incorrectly localized: the disambiguation al-
gorithm picked the wrong trajectory from the possible two.
All of the remaining 41 shots had trajectory angle errors of
less than 10° with the average error of 3.1°. To evaluate the
effect of the relatively large sensor position errors, we reran
the localization algorithm for all the shots using the ground
truth sensor positions. Not surprisingly, only a single trajec-
tory was incorrectly localized in this case (see Figure 12(b)).
This was caused by multiple factors. The AOA angle esti-
mates had a larger than usual error on one node (either due
to detection error or the compass). The geometry of the
other two nodes were close to the degenerate case. That
means that effectively, we only had the minimally required
two measurements and they did not agree on the shockwave
angle. Interestingly, the extra shot whose trajectory was se-
lected correctly using the precise sensor locations increased
the average trajectory angle error to 3.4°.

When you plot the trajectory using a map as the user
interface, it is the trajectory accuracy that matters. How-
ever, the primary user interface for soldiers is a simple visual
and/or audio indication of the bearing to the shooter. This
could be as simple as a recorded audio played in the headset:
“Shooter at 5 o’clock.” In this case, it is the bearing to the
shooter from the sensor node that matters. With this kind
of feedback, the resolution of the bearing effectively becomes
30°. That is, a bearing error of £15° is still considered per-
fect.

Fixing the shooter range at 150m (even though the real
range varied between 35 and 85m only) and computing the
individual bearing estimates from each sensor’s point of view
for the 41 shots that were correctly localized results in an
average bearing error of 7°. The histogram of bearing esti-
mation errors is shown in Figure 13(a). This result is much
better than we anticipated considering that it includes all
error sources: sensor position and orientation errors and the
trajectory estimation errors (angle and displacement). If we
remove just one source and use the ground truth sensor po-
sitions, the average error becomes 6.5° and the histogram
of bearing estimation errors (Figure 13(b).) shows only a
slight improvement. This means that the positioning errors
of a consumer-grade GPS receiver does not contribute heav-
ily to the overall bearing estimation error, which is affected
predominantly by the fixed range assumption and the errors
already present in the trajectory estimation. Also, this find-
ing supports our hardware choice of the u-blox LEA-6T, a
consumer-grade GPS receiver for sensor node localization.

These results indicate that the system is surprisingly in-
sensitive to sensor position errors. Their main effect is po-
tentially throwing off the disambiguation algorithm, but the
trajectory angle and bearing errors if the correct trajectory
option is picked remain very low. Why is that? The individ-
ual trajectory angle estimates do not depend on the sensor
position at all. The wrong position shifts the trajectory, but
it does not rotate it. If the correct trajectory option is se-
lected by the disambiguation algorithm, it averages the two
or more individual estimates. Its angle might have a few de-
grees of error and it may be shifted by a few meters. But the
shooter is far away compared to the potential trajectory dis-

placement, so its effect is minor. This is a huge advantage
of not relying on shockwave TDOAs across sensors where
sensor location errors have a significant impact!

7.3 Sensor pairs

As we have shown before, the minimum number of sen-
sors required for trajectory estimation in the general case
is 2. Therefore, we took the 43 shots that were detected
by at least 2 sensors and selected all possible sensor pairs
for each shot and ran the trajectory and bearing estimation
algorithm on the resulting 193 cases. There were 5 cases
where the measurements proved inconsistent and the algo-
rithm did not return a solution. The system picked the right
trajectory for 164 cases (87% of remaining 188 shots). The
average trajectory estimation error for these were 3.3°. Of
the resulting 376 individual bearing estimates 307 had under
15° error. The mean error of the bearing estimates when the
right trajectory was picked came to 5.8°. Figure 14 shows
the histogram of bearing errors including the cases when the
wrong trajectory was selected.
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Figure 14: Histogram of bearing errors in degrees
derived from measurements from pairs of sensors.
The bars above 70° correspond to cases when the
wrong trajectory was selected. The figure illustrates
the worst possible case for the system since it only
uses the absolute minimum number of sensors, the
majority of the cases are one-sided shots, it includes
all cases with degenerate geometry, and suffers from
relatively large sensor localization and orientation
errors.

If we use the correct sensor positions, the number of cor-
rectly selected trajectories improves significantly: while the
same 188 out of 193 cases were localized, 175 (11 more) were
correctly estimated. Most of the remaining 13 incorrect ones
were close to the degenerate geometry. The trajectory angle
and bearing accuracies were basically the same as the case
using the GPS supplied locations.

7.4 Shot library

We utilized the same shot library from Aberdeen Proving
Grounds as in [17]. It contains 33 AK-47 shots measured us-
ing ten sensors. The sensor field was approximately 30x30m
and the shots were taken from ranges between 50 and 300m.



The sensor nodes were placed on surveyed locations and had
known orientation. The sensor data includes the shockwave
length and AOA that our system needs. Since the setup
used many sensors and our objective is to use as few as pos-
sible, we first looked at all possible pairs of sensors per shot
and compared it to all possible sensor triplets per shot. The
former resulted in over 1300 data points, while the latter
came to well over 3000 cases.

For sensor pairs, only 87% of the cases were localized.
Out of these, the system identified the trajectories correctly
94% of the time. These are somewhat lower rates than we
expected considering that the sensor positions and orienta-
tion were precise. There are two reasons for this. First,
the shooter range and consequently, the speed of the pro-
jectile near the sensors varied significantly, hence, the fixed
projectile speed assumption for one-sided shots had a more
significant impact. Second, there were many cases when the
bullet passed directly over the sensors. Our current 2D so-
lution is unable to handle such cases well (however, it will
not be difficult to generalize the solution to 3D).

The mean bearing error of the correctly localized shots
from each individual sensor’s perspective was 4.6°. As ex-
pected, using three sensors instead of two improves the sit-
uation. About 99% of the 3348 cases were detected, that
is, the system reported a trajectory and bearing estimate.
The correct trajectory was selected 91% of the time. In
other words, 3002 cases were correctly localized. The mean
trajectory angle error for these cases came to 3.3°, while
the corresponding bearing error was 4.1°. Figure 15 shows
the histogram of bearing errors for sensor pairs and triplets
including those corresponding to image trajectories.

7.5 Summary

The evaluation of the system allows us to draw some clear
conclusions. The most important lesson is that we need to
improve the system’s ability to resolve the trajectory ambi-
guity problem for one-sided shots. When the bullet passed
in-between two sensors, not a single trajectory was missed.
It is the easy case that most other systems have focused
on. Sensor location and orientation errors have an impact,
so improvement in those areas will help. But even with no
measurement errors of any kind, in the case of a degenerate
geometry as described in Section 5, no system can find the
correct trajectory. To lessen the probability of this bad case,
at least three sensors should be used.

If and when the system identifies the correct trajectory,
the bearing estimation is remarkably accurate. The errors
remained under 7° in all the setups we tested. This is better
than what is required in most deployment scenarios. An-
other distinguishing characteristic of the system as opposed
to TDOA-based methods is that this error is very insensitive
to sensor location errors.

8. CONCLUSIONS

The presented paper has multiple novel contributions. To
the best of our knowledge, it is the first shooter localization
system that relies on shockwave length and shockwave AOA
only. In contrast to the state-of-the-art, it does not use the
TDOA of the shockwaves across multiple sensors. As such,
it does not require time synchronization of the sensors. In-
stead, it utilizes the shockwave length and AOA at each sen-
sor to identify the two possible trajectories in the horizontal
plane of the nodes and use one or more nearby sensors to
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Figure 15: Histogram of bearing errors in degrees
derived from measurements from all sensor pairs (a)
and triplets (b) in the shot library.

disambiguate the two. Relying on shockwaves only means
that the sensors do not even need to have line of sight to
the shooter as the muzzle blast is not used. An additional
attribute is that the system is more responsive as it does
not have to wait for the muzzle blast which may arrive a full
second after the shockwave for longer range shots. More-
over, it is the first reported networked system that is truly
distributed. It does not require a central high-performance
computer to run the sensor fusion and it still has lower la-
tency. Each and every node calculates the solution from
the information available from the network. Finally, this is
the first reported implementation and field evaluation of a
smartphone-based shooter localization system.

There are three tradeoffs for not utilizing muzzle blasts.
First, the system assumes a known weapon type. We have
focused on AK-47s, the most widely used rifle in the world.
Second, the system is unable to estimate the range to the
shooter for one-sided shots. However, bearing information
is far more valuable than range as the latter can be usually



determined by the trained eye based on the terrain given
an accurate bearing estimate. In contrast, humans are not
very good at determining the direction to the source of a
shot especially in urban or mountainous terrain. Finally,
the system becomes susceptible to the trajectory ambiguity
problem for one-sided shots when only two sensors are avail-
able. However, our system is the first that we are aware of
that specifically addresses one-sided shots using shockwaves
only and these initial results are highly encouraging.

Our future work will include testing the system with var-
ious different weapons to try to relax the known weapon
assumption. We will also generalize the trajectory estima-
tion to 3D. Finally, we will investigate using the shockwave
TDOAs for eliminating the errors in the disambiguation of
the candidate trajectories.
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