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BORGHEIM, an engineer:

Herregud, en kan da ikke gjgre noe bedre enn leke i denne
velsignede verden. Jeg synes hele livet er som en lek, jeg!

Good heavens, one can’'t do anything better than play in this
blessed world. The whole of life seems like playing to me!

Act one, LUTTLE EYOLF, Henrik Ibsen.
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PREFACE

This is a book on practical feedback control and not on system theory generally.
Feedback is used in control systems to change the dynamics of the system (usually
to make the response stable and sufficiently fast), and to reduce the sensitivity of the
system to signal uncertainty (disturbances) and model uncertainty. Important topics
covered in the book, include

¢ classical frequency-domain methods

analysis of directions in multivariable systems using the singular value
decomposition

input-output controllability (inherent control limitations in the plant)

model uncertainty and robustness

performance requirements

methods for controller design and model reduction

control structure selection and decentralized control

The treatment is for linear systems. The theory is then much simpler and more well
developed, and a large amount of practical experience tells us that in many cases
linear controllers designed using linear methods provide satisfactory performance
when applied to real nonlinear plants.

We have attempted to keep the mathematics at a reasonably simple level, and we
emphasize results that enhanesightandintuition. The design methods currently
available for linear systems are well developed, and with associated software it
is relatively straightforward to design controllers for most multivariable plants.
However, without insight and intuition it is difficult to judge a solution, and to know
how to proceed (e.g. how to change weights) in order to improve a design.

The book is appropriate for use as a text for an introductory graduate course
in multivariable control or for an advanced undergraduate course. We also think
it will be useful for engineers who want to understand multivariable control, its
limitations, and how it can be applied in practice. There are numerous worked
examples, exercises and case studies which make frequent use of MAM!AB

T MATLAB is a registered trademark of The MathWorks, Inc.
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The prerequisites for reading this book are an introductory course in classical
single-input single-output (SISO) control and some elementary knowledge of
matrices and linear algebra. Parts of the book can be studied alone, and provide an
appropriate background for a number of linear control courses at both undergraduate
and graduate levels: classical loop-shaping control, an introduction to multivariable
control, advanced multivariable control, robust control, controller design, control
structure design and controllability analysis.

The book is partly based on a graduate multivariable control course given by the
first author in the Cybernetics Department at the Norwegian University of Science
and Technology in Trondheim. About 10 students from Electrical, Chemical and
Mechanical Engineering have taken the course each year since 1989. The course
has usually consisted of 3 lectures a week for 12 weeks. In addition to regular
assignments, the students have been required to complete a 50 hour design project
using MATLAB. In Appendix B, a project outline is given together with a sample
exam.

Examples and internet

Most of the numerical examples have been solved using MATLAB. Some sample
files are included in the text to illustrate the steps involved. Most of these files use
the u-toolbox, and some the Robust Control toolbox, but in most cases the problems
could have been solved easily using other software packages.

The following are available over the internet:

e MATLAB files for examples and figures

e Solutions to selected exercises

e Linear state-space models for plants used in the case studies

e Corrections, comments to chapters, extra exercises and exam sets

This information can be accessed from the authors’ home pages:

e http://ww. chenbi 0. nt nu. no/ user s/ skoge
e http://ww. | e.ac. uk/engi neering/staff/Postlethwaite

Comments and questions
Please send questions, errors and any comments you may have to the authors. Their
email addresses are:

e Si gurd. Skogest ad@henbi o. nt nu. no
e i Xxp@e. ac. uk
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INTRODUCTION

In this chapter, we begin with a brief outline of the design process for control systems. We
then discuss linear models and transfer functions which are the basic building blocks for the
analysis and design techniques presented in this book. The scaling of variables is critical in
applications and so we provide a simple procedure for this. An example is given to show how
to derive a linear model in terms of deviation variables for a practical application. Finally, we
summarize the most important notation used in the book.

1.1 Theprocessof control system design

The process of designing a control system usually makes many demands of the
engineer or engineering team. These demands often emerge in a step by step design
procedure as follows:

1. Study the system (plant) to be controlled and obtain initial information about the
control objectives.

. Model the system and simplify the model, if necessary.

. Scale the variables and analyze the resulting model; determine its properties.

. Decide which variables are to be controlled (controlled outputs).

. Decide on the measurements and manipulated variables: what sensors and
actuators will be used and where will they be placed?

. Select the control configuration.

. Decide on the type of controller to be used.

. Decide on performance specifications, based on the overall control objectives.

. Design a controller.

10. Analyze the resulting controlled system to see if the specifications are satisfied,;

and if they are not satisfied modify the specifications or the type of controller.

11. Simulate the resulting controlled system, either on a computer or a pilot plant.

12. Repeat from step 2, if necessary.

13. Choose hardware and software and implement the controller.

14. Test and validate the control system, and tune the controller on-line, if necessary.

ab owN
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Control courses and text books usually focus on steps 9 and 10 in the above
procedure; that is, on methods for controller design and control system analysis.
Interestingly, many real control systems are designed without any consideration
of these two steps. For example, even for complex systems with many inputs and
outputs, it may be possible to design workable control systems, often based on a
hierarchy of cascaded control loops, using only on-line tuning (involving steps 1, 4
5, 6, 7, 13 and 14). However, in this case a suitable control structure may not be
known at the outset, and there is a need for systematic tools and insights to assist
the designer with steps 4, 5 and 6. A special feature of this book is the provision
of tools for input-output controllability analysigstep 3) and forcontrol structure
design(steps 4, 5, 6 and 7).

Input-output controllability is the ability to achieve acceptable control perfor-
mance. It is affected by the location of sensors and actuators, but otherwise it cannot
be changed by the control engineer. Simply stated, “even the best control system can-
not make a Ferrari out of a Volkswagen”. Therefore, the process of control system
design should in some cases also include a step 0, involving the design of the pro-
cess equipment itself. The idea of looking at process equipment design and control
system design as an integrated whole is not new, as is clear from the following quote
taken from a paper by Ziegler and Nichols (1943):

In the application of automatic controllers, it is important to realize that
controller and process form a unit; credit or discredit for results obtained
are attributable to one as much as the other. A poor controller is often
able to perform acceptably on a process which is easily controlled. The
finest controller made, when applied to a miserably designed process,
may not deliver the desired performance. True, on badly designed
processes, advanced controllers are able to eke out better results than
older models, but on these processes, there is a definite end point which
can be approached by instrumentation and it falls short of perfection.

Ziegler and Nichols then proceed to observe that there is a factor in equipment design
that is neglected, and state that

...the missing characteristic can be called the “controllability”, the
ability of the process to achieve and maintain the desired equilibrium
value.

To derive simple tools with which to quantify the inherent input-output
controllability of a plant is the goal of Chapters 5 and 6.

1.2 Thecontrol problem

The objective of a control system is to make the outpbehave in a desired way
by manipulating the plant input. The regulator problemis to manipulateu to
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counteract the effect of a disturbanéeThe servo problems to manipulates to
keep the output close to a given reference inpukhus, in both cases we want the
control errore = y — r to be small. The algorithm for adjustingbased on the
available information is the controlldt’. To arrive at a good design fdf we need
a priori information about the expected disturbances and reference inputs, and of the
plant model () and disturbance modefz(;). In this book we make use of linear
models of the form

y=Gu+ Gud (1.1)

A major source of difficulty is that the model&/( G ;) may be inaccurate or may
change with time. In particular, inaccuracy@may cause problems because the
plant will be part of a feedback loop. To deal with such a problem we will make
use of the concept of model uncertainty. For example, instead of a single Godel
we may study the behaviour of a class of modélg, = G + E, where the model
“uncertainty” or “perturbation’E is bounded, but otherwise unknown. In most cases
weighting functionsw(s), are used to expreds = wA in terms of normalized
perturbationsA, where the magnitude (norm) & is less than or equal tb. The
following terms are useful:

Nominal stability (NS). The system is stable with no model uncertainty.

Nominal Performance (NP). The system satisfies the performance specifications
with no model uncertainty.

Robust stability (RS). The system is stable for all perturbed plants about the
nominal model up to the worst-case model uncertainty.

Robust performance (RP). The system satisfies the performance specifications for
all perturbed plants about the nominal model up to the worst-case model
uncertainty.

1.3 Transfer functions

The book makes extensive use of transfer functighg;), and of the frequency
domain, which are very useful in applications for the following reasons:

¢ Invaluable insights are obtained from simple frequency-dependent plots.

e Important concepts for feedback such as bandwidth and peaks of closed-loop
transfer functions may be defined.

e G(jw) gives the response to a sinusoidal input of frequency

e A series interconnection of systems corresponds in the frequency domain to
multiplication of the individual system transfer functions, whereas in the time
domain the evaluation of complicated convolution integrals is required.

e Poles and zeros appear explicitly in factorized scalar transfer functions.
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e Uncertainty is more easily handled in the frequency domain. This is related to the
fact that two systems can be described as close (i.e. have similar behaviour) if their
frequency responses are similar. On the other hand, a small change in a parameter
in a state-space description can result in an entirely different system response.

We consider linear, time-invariant systems whose input-output responses are
governed by linear ordinary differential equations with constant coefficients. An
example of such a system is

.’,i’l (t) = —a12 (t) + 2o (t) + 61u(t)
j?Q (t) = —apx1 (t) + ﬂou(t) (12)
y(t) = =i(t)

wherei(t) = dxz/dt. ’ Here u(t) represents the input signal; (¢) andz.(t) the
states, ang(t) the output signal. The system is time-invariant since the coefficients
a1, ag, /1 andgy are independent of time. If we apply the Laplace transform to (1.2)
we obtain

st1(s) —z1(t=0) = —a1Z1(s) + T2(s) + Bru(s)
sTy(s) —x2(t =0) = —aoZ1(s) + Bot(s) (1.3)
yls) = Tu(s)

where g(s) denotes the Laplace transform gft), and so on. To simplify our
presentation we will make the usual abuse of notation and replageby y(s),
etc.. In addition, we will omit the independent variabdeendt when the meaning is
clear.

If u(t),z(¢),z2(t) andy(t) represent deviation variables away from a nominal
operating point or trajectory, then we can assumé = 0) = z»(t = 0) = 0. The
elimination ofz, (s) andz,(s) from (1.3) then yields the transfer function

y(s) Bis + Bo
u(s) s$2 4+ a1s + ag

Importantly, for linear systems, the transfer function is independent of the input
signal (forcing function). Notice that the transfer function in (1.4) may also represent
the following system

=G(s) = (1.4)

§(t) + ary(t) + aoy(t) = Bri(t) + Pou(t) (1.5)

with inputw«(t) and outpuly(¢).

Transfer functions, such as(s) in (1.4), will be used throughout the book to
model systems and their components. More generally, we consider rational transfer
functions of the form

Gls) = Bn.s" +---+ Bis+ Bo (1.6)

S+ ap_18" L4+ +ay1s+ag
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For multivariable systems7(s) is a matrix of transfer functions. In (1.6) is the
order of the denominator (or pole polynomial) and is also calledotder of the
systemandn, is the order of the numerator (or zero polynomial). Ther n . is
referred to as the pole excesselative ordet

Definition 1.1

A systenG(s
A systenG(s
A systenG(s
A systen((s

is strictly propelif G(jw) — 0 asw — oo.

is semi-propeor bi-properif G(jw) = D # 0 asw — oo.
which is strictly proper or semi-proper {opet

is improperif G(jw) — oo asw — oo.

~— — — ~—

For a proper system, with > n ., we may realize (1.6) by a state-space description,
& = Az + Bu, y = Cz + Du, similar to (1.2). The transfer function may then be
written as

G(s)=C(sI —A)~'B+D (1.7)

Remark. All practical systems will have zero gain at a sufficiently high frequency, and are
therefore strictly proper. It is often convenient, however, to model high frequency effects by
a non-zeraD-term, and hence semi-proper models are frequently used. Furthermore, certain
derived transfer functions, such 8s= (I + GK)’l, are semi-proper.

Usually we usé7(s) to represent the effect of the input®n the outputg, whereas
G4(s) represents the effect gnof the disturbances. We then have the following
linear process model in terms of deviation variables

y(s) = G(s)u(s) + Ga(s)d(s) (1.8)

We have made use of the superposition principle for linear systems, which implies
that a change in a dependent variable (hg@n simply be found by adding together
the separate effects resulting from changes in the independent variables érete
d) considered one at a time.

All the signalsu(s), d(s) andy(s) are deviation variables. This is sometimes
shown explicitly, for example, by use of the notatia(s), but since we always use
deviation variables when we consider Laplace transforms) th@ormally omitted.

1.4 Scaling

Scaling is very important in practical applications as it makes model analysis and
controller design (weight selection) much simpler. It requires the engineer to make
a judgement at the start of the design process about the required performance of the
system. To do this, decisions are made on the expected magnitudes of disturbances
and reference changes, on the allowed magnitude of each input signal, and on the
allowed deviation of each output.
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Let the unscaled (or originally scaled) linear model of the process in deviation
variables be R o
y=Gu+Gud; e=y—7 (2.9)
where a hat () is used to show that the variables are in their unscaled units. A
useful approach for scaling is to make the variables less than one in magnitude. This
is done bydividing each variable by its maximum expected or allowed charhge.
disturbances and manipulated inputs, we use the scaled variables

d=d/dmax, U =70/lmax (1.10)
where:
S A— largest expected change in disturbance
e Una. — largest allowed input change

The maximum deviation from a nominal value should be chosen by thinking of the
maximum value one can expect, or allow, as a function of time.

The variableg, € and7 are in the same units, so the same scaling factor should be
applied to each. Two alternatives are possible:

e en..x — largest allowed control error
e T.ax — largest expected change in reference value

Since a major objective of control is to minimize the control egi,awe here usually
choose to scale with respect to the maximum control error:

Yy = :Z/\//e\max, r= ?//e\maxa €= /e\/é\max (111)
To formalize the scaling procedure, introduce the scaling factors
De - é\max; Du = amax; Dd = dmax; Dr = ;'\max (112)

For MIMO systems each variable in the vectals’, % ande may have a different
maximum value, in which cas®., D,, D; and D, become diagonal scaling
matrices This ensures, for example, that all errors (outputs) are of about equal
importance in terms of their magnitude.
The corresponding scaled variables to use for control purposes are then
d=Dy;'d, u=D;'U, y=D;'y, e=D;'€ r=D;'F (1.13)

On substituting (1.13) into (1.9) we get
Doy = GDyu+ GyDud; D.e = D,y — D.r

and introducing the scaled transfer functions

G =D,;'GD,, Gq=D,'G4Dy (1.14)
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then yields the following model in terms of scaled variables
y:Gu+Gdd; e=y—r (115)

Hereu andd should be less than 1 in magnitude, and it is useful in some cases to
introduce a scaled referenéewhich is less than 1 in magnitude. This is done by
dividing the reference by the maximum expected reference change

F=T7/Fmax = D, 'T (1.16)
We then have that
r=RF where R 2 D,'D, = Tmax/Cmax (1.17)
Here R is the largest expected change in reference relative to the allowed control
d T

Ga R
T
+ oy Y .
—* G rs T

Figure 1.1: Model in terms of scaled variables

error (typically,R > 1). The block diagram for the system in scaled variables may
then be written as in Figure 1.1, for which the following control objective is relevant:

¢ Interms of scaled variables we have th#t)| < 1 and|r(¢)| < 1, and our control
objective is to manipulate with |u(t)| < 1 such thate(t)| = |y(t) — r(t)| < 1
(at least most of the time).

Remark 1 A number of the interpretations used in the book depend critically on a correct
scaling. In particular, this applies to the input-output controllability analysis presented in
Chapters 5 and 6. Furthermore, for a MIMO system one cannot correctly make use of the
sensitivity functionS = (I + GK) ™" unless the output errors are of comparable magnitude.

Remark 2 With the above scalings, the worst-case behaviour of a system is analyzed by
considering disturbancesof magnitudel, and references of magnitudel.

Remark 3 The control error is
e=y—r=Gu+ Gqd — RT (1.18)

and we see that a normalized reference chahgeay be viewed as a special case of a
disturbance withG; = —R, where R is usually a constant diagonal matrix. We will
sometimes use this to unify our treatment of disturbances and references.
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Remark 4 The scaling of the outputs in (1.11) in terms of the control error is used when
analyzing a given plant. However, if the issue isgelectwhich outputs to control, see
Section 10.3, then one may choose to scale the outputs with respect to their expected variation
(which is usually similar t@max).

Remark 5 If the expected or allowed variation of a variable ab@(its nominal value) is not
symmetrlc then the largest variation should be usedl,tgg( and the smallest variation for
Umax anNdeémax. FOr example if the disturbanceiss < d <10 theNdmax = 10, and if the
manipulated input is-5 < @ < 10 thenumax = 5. This approach may be conservative (in
terms of allowing too large disturbances etc.) when the variationsefegralvariables are not
symmetric.

A further discussion on scaling and performance is given in Chapter 5 on page 161.

1.5 Deriving linear models

Linear models may be obtained from physical “first-principle” models, from
analyzing input-output data, or from a combination of these two approaches.
Although modelling and system identification are not covered in this book, it is
always important for a control engineer to have a good understanding of a model's
origin. The following steps are usually taken when deriving a linear model for
controller design based on a first-principle approach:

1. Formulate a nonlinear state-space model based on physical knowledge.

2. Determine the steady-state operating point (or trajectory) about which to linearize.

3. Introduce deviation variables and linearize the model. There are essentially three
parts to this step:

(a) Linearize the equations using a Taylor expansion where second and higher
order terms are omitted.
(b) Introduce the deviation variables, ejg(t) defined by

where the superscript denotes the steady-state operating point or trajectory
along which we are linearizing.

(c) Subtract the steady-state to eliminate the terms involving only steady-state
quantities.

These parts are usually accomplished together. For example, for a nonlinear state-
space model of the form

= = fau) (1.19)
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the linearized model in deviation variablés:(du) is

do of\* of\"
- () ()0 e
T/ T/

Herexz andu may be vectors, in which case the Jacobidremd B are matrices.

4. Scale the variables to obtain scaled models which are more suitable for control
purposes.

In most cases steps 2 and 3 are performed numerically based on the model obtained
in step 1. Also, since (1.20) is in terms of deviation variables, its Laplace transform
becomesdz(s) = Adx(s) + Bdu(s), or

dx(s) = (sI — A) "' Bou(s) (1.22)

Example 1.1 Physical model of a room heating process.

T,[K]
a[W/K]
T[K]
Cv[J/K]
/NVVVVVVA

[ am N\

Figure 1.2: Room heating process

The above steps for deriving a linear model will be illustrated on the simple example
depicted in Figure 1.2, where the control problem is to adjust the heat i@ptd maintain
constant room temperatur@ (within +1 K). The outdoor temperaturd;, is the main
disturbance. Units are shown in square brackets.

1. Physical model. An energy balance for the room requires that the change in energy in
the room must equal the net inflow of energy to the room (per unit of time). This yields the
following state-space model

(V) =Q+a(T, - T) (1.22)
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whereT [K] is the room temperatureCy [J/K] is the heat capacity of the roond) [W] is the
heat input (from some heat source), and the tes(#, — T") [W] represents the net heat loss
due to exchange of air and heat conduction through the walls.

2. Operating point. Consider a case where the heat inggit is 2000 W and the difference
between indoor and outdoor temperatutEs — T, is 20 K. Then the steady-state energy
balance yieldsx* = 2000/20 = 100 W/K. We assume the room heat capacity is constant,
Cv = 100 kJ/K. (This value corresponds approximately to the heat capacity of air in a room
of about100 m?; thus we neglect heat accumulation in the walls.)

3. Linear model in deviation variables. If we assumex is constant the model in (1.22) is
already linear. Then introducing deviation variables

ST() = T(t) — T"(1), 5Q(H) = Q) — Q" (1), ST, (1) = To(t) — T (1)
yields
cy %JT(t) — 5Q() + a(5To(t) — 5T (1)) (1.23)

Remark. If « depended on the state variab(E i this example), or on one of the independent
variables of interest@ or T;, in this example), then one would have to include an extra term
(T — T, )da(t) on the right hand side of Equation (1.23).

On taking Laplace transforms in (1.23), assum#®(t) = 0 at¢ = 0, and rearranging we
get

s (Gsew+on@)s -

The time constant for this example7s= 100 - 10°/100 = 1000 s = 17 min which is
reasonable. It means that for a step increase in heat input it will take abouitn for the
temperature to reaci3% of its steady-state increase.
4. Linear model in scaled variables. Introduce the following scaled variables
0T (s) . _0Q(s) . 0To(s)

y(s) = T u(s) = 30mar d(s) = FTA (1.25)

In our case the acceptable variations in room temperafigge +1 K, i.€.0Tmax = 0€max =

1 K. Furthermore, the heat input can vary betweedV and6000 W, and since its nominal
value is2000 W we haveiQmax = 2000 W (see Remark 5 on page 8). Finally, the expected
variations in outdoor temperature ar10 K, i.e. 075, mez = 10 K. The model in terms of
scaled variables then becomes

_cv
_a

5T (s) = (1.24)

1 0Qual 20
G() = 13T o~ 1000s 71
Ga(s) 1 Tomae _ 10 (1.26)

78+ 1 0Tmax  1000s + 1

Note that the static gain for the inputis= 20, whereas the static gain for the disturbance is

kq = 10. The fact thatk,;| > 1 means that we need some control (feedback or feedforward)
to keep the output within its allowed bounjd|(< 1) when there is a disturbance of magnitude

|d| = 1. The fact thatk| > |kq| means that we have enough “power” in the inputs to reject the
disturbance at steady state, that is, we can, using an input of magniijigé 1, have perfect
disturbance rejectione( = 0) for the maximum disturbancéd( = 1). We will return with a
detailed discussion of this in Section 5.16.2 where we analyze the input-output controllability
of the room heating process.
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1.6 Notation

There is no standard notation to cover all of the topics covered in this book. We
have tried to use the most familiar notation from the literature whenever possible,
but an overriding concern has been to be consistent within the book, to ensure that
the reader can follow the ideas and techniques through from one chapter to another.

The most important notation is summarized in Figure 1.3, which shows a one
degree-of-freedom control configuration with negative feedback, a two degrees-of-
freedom control configuratidnand a general control configuration. The latter can
be used to represent a wide class of controllers, including the one and two degrees-
of-freedom configurations, as well as feedforward and estimation schemes and many
others; and, as we will see, it can also be used to formulate optimization problems
for controller design. The symbols used in Figure 1.3 are defined in Table 1.1. Apart
from the use of to represent the controller inputs for the general configuration, this
notation is reasonably standard.

Lower-case letters are used for vectors and signalsieygn), and capital letters
for matrices, transfer functions and systems (€.gK). Matrix elements are usually
denoted by lower-case letters, g9 is the<j’th element in the matrixG. However,
sometimes we use upper-case lettggs, for example ifG is partitioned so thatr ;;
is itself a matrix, or to avoid conflicts in notation. The Laplace variabig often
omitted for simplicity, so we often writé' when we meai:(s).

For state-space realizations we use the standard, C, D)-notation. That is,
a systemG with a state-space realizatiod, B, C, D) has a transfer function
G(s) = C(sI — A)"'B + D. We sometimes write

G(s) 2 [%’%] (1.27)

to mean that the transfer functi@i(s) has a state-space realization given by the
quadruplg 4, B,C, D).

For closed-loop transfer functions we uSéo denote the sensitivity at the plant
output, and" = I — S to denote the complementary sensitivity. With negative
feedbackS = (I + L)~' andT = L(I + L)™', whereL is the transfer function
around the loop as seen from the output. In most cdses GK, but if we
also include measurement dynamigs,(= G,y + n) thenL = GKG,,. The
corresponding transfer functions as seen from the input of the pladt are KG
(orL; = KG,,G),S; = (I + L[)_l andT; = L[(I + L[)_l.

To represent uncertainty we use perturbatiBr(®ot normalized) or perturbations
A (normalized such that their magnitude (norm) is less than or equal to one).
The nominal plant model i/, whereas the perturbed model with uncertainty is
denotedG,, (usually for a set of possible perturbed plants)@r (usually for a

T"A one-degree of freedom controller has only the control errer i, as its input, whereas the two
degrees-of-freedom controller has two inputs, nameiyndyy, .
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(a) One degree-of-freedom control configuration
ld
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r__ l + Y
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(b) Two degrees-of-freedom control configuration

P

Y

K |«

(c) General control configuration

Figure 1.3: Control configurations
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Table 1.1: Nomenclature

controller, in whatever configuration. Sometimes the controller is broken
down into its constituent parts. For example, in the two degrees-of-

freedom controller in Figure 1.3(b)y = {?} where K. is a prefilter
Yy
andK, is the feedback controller.

For the conventional control configurations (Figure 1.3(a) and (b)):

G
Gq

r

d
n
Yy

Ym
u

plant model

disturbance model

reference inputs (commands, setpoints)

disturbances (process noise)

measurement noise

plant outputs. These signals include the variables to be controlled
(“primary” outputs with reference value$ and possibly some additional
“secondary” measurements to improve control. Usually the signate
measurable.

measureg

control signals (manipulated plant inputs)

For the general control configuration (Figure 1.3(c)):

P

I

generalized plant model. It will includ& andG 4 and the interconnection
structure between the plant and the controller. In additio®, i§ being

used to formulate a design problem, then it will also include weighting
functions.

exogenous inputs: commands, disturbances and noise

exogenous outputs; “error” signals to be minimized, g¢.g.r

controller inputs for the general configuration, e.g. commands, measured
plant outputs, measured disturbances, etc. For the special case of a one
degree-of-freedom controller with perfect measurements we hawe
r—1y.

control signals
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particular perturbed plant). For example, with additive uncertainty we may have
G, =G+ Ejs =G +walA 4, wherewy is a weight representing the magnitude of
the uncertainty.

By the right-half plane (RHP) we mean the closed right half of the complex plane,
including the imaginary axigj-axis). The left-half plane (LHP) is the open left half
of the complex plane, excluding the imaginary axis. A RHP-pole (unstable pole) is
a pole located in the right-half plane, and thus includes poles on the imaginary axis.
Similarly, a RHP-zero (“unstable” zero) is a zero located in the right-half plane.

We used” to denote the transpose of a matdxandA 7 to represent its complex
conjugate transpose.

Mathematical terminology

The symbol is used to denotequal by definitiorf(l:)ef is used to denote equivalent
by definition, and4 = B means tha#l is identically equal taB.

Let A and B be logic statements. Then the following expressions are equivalent:
A<B
Aif B, or: If Bthen A

A is necessary for B

B = A, or: Bimplies A
B is sufficient for A

B only if A
not A= notB

The remaining notation, special terminology and abbreviations will be defined in the
text.
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CLASSICAL FEEDBACK
CONTROL

In this chapter, we review the classical frequency-response techniques for the analysis and
design of single-loop (single-input single-output, SISO) feedback control systems. These
loop-shaping techniques have been successfully used by industrial control engineers for
decades, and have proved to be indispensable when it comes to providing insight into the
benefits, limitations and problems of feedback control. During the 1980's the classical methods
were extended to a more formal method based on shaping closed-loop transfer functions, for
example, by considering tl#., norm of the weighted sensitivity function. We introduce this
method at the end of the chapter.

The same underlying ideas and techniques will recur throughout the book as we present
practical procedures for the analysis and design of multivariable (multi-input multi-output,
MIMO) control systems.

2.1 Frequency response

On replacings by jw in a transfer function modef7(s) we get the so-called
frequency response description. Frequency responses can be used to describe:

1. A system’s response to sinusoids of varying frequency,

2. The frequency content of a deterministic signal via the Fourier transform, and

3. the frequency distribution of a stochastic signal via the power spectral density
function.

In this book we use the first interpretation, namely that of frequency-by-frequency
sinusoidal response. This interpretation has the advantage of being directly linked to
the time domain, and at each frequencthe complex numbef (jw) (or complex
matrix for a MIMO system) has a clear physical interpretation. It gives the response
to an input sinusoid of frequency: This will be explained in more detail below. For

the other two interpretations we cannot assign a clear physical mearG(gag or

y(jw) at a particular frequency — it is the distribution relative to other frequencies
which matters then.
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One important advantage of a frequency response analysis of a system is that
it provides insight into the benefits and trade-offs of feedback control. Although
this insight may be obtained by viewing the frequency response in terms of its
relationship between power spectral densities, as is evident from the excellent
treatment by Kwakernaak and Sivan (1972), we believe that the frequency-by-
frequency sinusoidal response interpretation is the most transparent and useful.

Frequency-by-frequency sinusoids

We now want to give a physical picture of frequency response in terms of a system’s
response to persistent sinusoids. It is important that the reader has this picture in
mind when reading the rest of the book. For example, it is needed to understand
the response of a multivariable system in terms of its singular value decomposition.
A physical interpretation of the frequency response for a stable linear system
G(s)u is as follows. Apply a sinusoidal input signal with frequengyrad/s] and
magnitudeu, such that

u(t) = ug sin(wt + «)

This input signal is persistent, that is, it has been applied gince—oco. Then the
output signal is also a persistent sinusoid of the same frequency, namely

y(t) = yo sin(wt + B)

Hereuy andy, represent magnitudes and are therefore both non-negative. Note that
the output sinusoid has a different amplitudeand is also shifted in phase from the
input by

920 -«
Importantly, it can be shown that, /u, and ¢ can be obtained directly from the
Laplace transforni/(s) after inserting the imaginary number= jw and evaluating
the magnitude and phase of the resulting complex nui@gr). We have

Yo/uo = |G(jw)l; ¢ = £G(jw) [rad] (2.1)

For example, leG (jw) = a + jb, with real parta = Re G(jw) and imaginary part
b =Im G(jw), then

|G(jw)| = Va? +b% LG(jw) = arctan(b/a) (2.2)

In words, (2.1) says thaifter sending a sinusoidal signal through a systéifs),

the signal’s magnitude is amplified by a fac{é#(jw)| and its phase is shifted by
ZG(jw). In Figure 2.1, this statement is illustrated for the following first-order delay
system (time in seconds),

G(s) = . k=50=27=10 (2.3)
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Time [sec]

Figure 2.1: Sinusoidal response for system G(s) = 5e~2°/(10s + 1) at frequency w =
0.2 rad/s

At frequency w = 0.2 rad/s, we see that the output y lags behind the input by about
aquarter of a period and that the amplitude of the output is approximately twice that
of the input. More accurately, the amplification is

|G(jw)| =k//(tw)?2 +1=5//(10w)? + 1 =2.24
and the phase shift is
¢ = LG(jw) = — arctan(tw)—bw = — arctan(10w)—2w = —1.51rad = —86.5°

G(jw) is caled the frequency responsef the system G(s). It describes how the
system respondsto persistent sinusoidal inputs of frequency w. The magnitude of the
frequency response, |G(jw)|, being equa to |yo(w)|/|uo(w)|, is also referred to as
the system gainSometimes the gain is given in units of dB (decibel) defined as

A [dB] = 20log;, A (2.4)

For example, A = 2 correspondsto A = 6.02 dB, and A = /2 corresponds to
A =3.01dB,and A = 1 correspondsto A = 0 dB.

Both |G(jw)| and £ZG(jw) depend on the frequency w. This dependency may
be plotted explicitly in Bode plots (with w as independent variable) or somewhat
implicitly in a Nyquist plot (phase plane plot). In Bode plots we usually employ a
log-scale for frequency and gain, and alinear scale for the phase.

In Figure 2.2, the Bode plots are shown for the system in (2.3). We note that in
this case both the gain and phase fall monotonically with frequency. This is quite
common for process control applications. The delay 6 only shifts the sinusoid in
time, and thus affects the phase but not the gain. The system gain |G (jw)| is equa
to k£ at low frequencies; thisis the steady-state gain and is obtained by setting s = 0
(or w = 0). The gain remains relatively constant up to the break frequency 1/7
whereit starts falling sharply. Physically, the system respondstoo slowly to let high-
frequency (“fast”) inputs have much effect on the outputs, and sinusoidal inputs with
w > 1/ are attenuated by the system dynamics.
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Figure 2.2: Frequency response (Bode plots) of G(s) = 5e2*/(10s + 1)

The frequency response is also useful for an unstable plantG(s), which by
itself has no steady-state response. Let G(s) be stabilized by feedback control, and
consider applying a sinusoidal forcing signal to the stabilized system. In this case
al signalswithin the system are persistent sinusoids with the same frequency w, and
G (jw) yields as before the sinusoidal response from the input to the output of G(s).

Phasor notation. From Euler’s formulafor complex numberswe have that e 72 =
cosz + jsinz. It then follows that sin(wt) is equal to the imaginary part of the
complex function e7“*, and we can write the time domain sinusoidal response in
complex form asfollows:

u(t) = uelm 7“1 gives ast — 0o y(t) = yoIm e “1H0) (2.5)

where
Yo = |G(jw)lug, B =~LG(jw)+a (2.6)
and |G(jw)| and ZG (jw) are defined in (2.2). Now introduce the complex numbers
u(w) £ uge’®,  y(w) £ yoe'” (2.7)

where we have used w as an argument because i, and 3 depend on frequency, and in
some cases so may ug and «.. Note that u(w) isnotequal to u(s) evaluated at s = w
nor is it equal to u(t) evaluated at t = w. Since G(jw) = |G(jw)| /%) the
sinusoidal responsein (2.5) and (2.6) can then be written in complex form asfollows

y(w)e! = Gjw)u(w)e™! (2.8)
or because the term e« appears on both sides

[y(w) = G(w)uw)| (29
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which we refer to as the phasor notation. At each frequency, u(w), y(w) and G(jw)

are complex numbers, and the usual rules for multiplying complex numbers apply.

We will usethis phasor notation throughout the book. Thuswhenever we use notation
such asu(w) (with w and notjw as an argument), the reader should interpret this as
a (complex) sinusoidal signak(w)e’«t. (2.9) also appliesto MIMO systems where
u(w) and y(w) are complex vectorsrepresenting the sinusoidal signal in each channel

and G(jw) is acomplex matrix.

Minimum phase systems. For stable systems which are minimum phase (no time
delays or right-half plane (RHP) zeros) there is a unique relationship between the
gain and phase of the frequency response. This may be quantified by the Bode gain-
phase relationship which gives the phase of G' (normalized? such that G(0) > 0) at
agiven frequency wo asafunction of |G (jw)| over the entire frequency range:

4G(ju;o):l/ dln|G(J”)|1n‘“’+w° (e (2.10)
TJ) . dnw w—wy| w

N(w)

The name minimum phaseefers to the fact that such a system has the minimum
possible phase lag for the given magnitude response |G (jw)|. Theterm N (w) isthe
slope of the magnitude in log-variables at frequency w. In particular, the local slope

at frequency wy is
_ (dIn|G(jw)]|
N (wo) = ( dlnw w=wo

The term In ij—zg in (2.10) is infinite & w = wy, S0 it follows that ZG(jwy) is
primarily determined by thelocal slope N (wo). Also =7 In |#deo . do — ”;which

justifies the commonly used approximation for stable minimum phase systems
£G(jwo) ~ gN(wO) [rad] = 90° - N (wp) (2.11)

The approximation is exact for the system G(s) = 1/s™ (where N(w) = —n), and
it is good for stable minimum phase systems except at frequencies close to those of
resonance (complex) poles or zeros.

RHP-zeros and time delays contribute additional phase lag to a system when
compared to that of a minimum phase system with the same gain (hence the term
non-minimum phassystem). For example, the system G(s) = =2t with a RHP-
zeroat s = a hasaconstant gain of 1, butits phaseis —2 arctan(w/a) [rad] (and not
0 [rad] as it would be for the minimum phase system G(s) = 1 of the same gain).
Similarly, the time delay system e —?* has a constant gain of 1, but its phase is —wf
[rad].

1 The normalization of G(s) is necessary to handle systems such asﬁ and “Fo which have equal
gain, are stable and minimum phase, but their phases differ by 18(0°. Systems with integrators may be

treated by replacing < by S—}FE where e isasmall positive number.

1
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Figure 2.3: Bode plots of transfer function L; = SOW. The asymptotes are

given by dotted lines. The vertical dotted lines on the upper plot indicate the break frequencies
w1, W2 and ws.

Straight-line approximations (asymptotes). For the design methods used in
this book it is useful to be able to sketch Bode plots quickly, and in particular the
magnitude (gain) diagram. The reader is therefore advised to become familiar with
asymptotic Bode plots (straight-line approximations). For example, for a transfer
function
(s+21)(s+ 22) -
(s+p)(s+p2)

the asymptotic Bode plots of G(jw) are obtained by using for each term (s + a)
the approximation jw + a ~ a for w < a and by jw + a =~ jw for w >
a. These approximations yield straight lines on a log-log plot which meet at
the so-called break point frequencw = a. In (2.12) therefore, the freguencies
21, 29,-.-,D1, D2, - - . arethe break points where the asymptotes meet. For complex
polesor zeros, theterm s2 + 2¢swp + w3 (where|(| < 1) is approximated by w2 for
w < wp and by s? = (jw)? = —w? forw > wy. The magnitude of atransfer function
is usualy close to its asymptotic value, and the only case when there is significant
deviation is around the resonance frequency w, for complex poles or zeros with a
damping |¢| of about 0.3 or less. In Figure 2.3, the Bode plots are shown for

G(s) =k (2.12)

(s+1)
(s +0.01)2(s + 10)

Li(s) =30 (2.13)

The asymptotes (straight-line approximations) are shown by dotted lines. In this
example the asymptotic slope of | L] is O up to the first bresk frequency at w, =
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0.01 rad/s where we have two poles and then the slope changesto N = —2. Then
a w, = 1 rad/sthere is a zero and the slope changesto V = —1. Findly, there
is a break frequency corresponding to a pole at w3 = 10 rad/s and so the slope is
N = —2 a this and higher frequencies. We note that the magnitude follows the
asymptotes closely, whereas the phase does not. The asymptotic phase jumps at the
break frequency by —90° (LHP-pole or RHP-zero) or +90° (LHP-zero or RHP-
pole),

Remark. An improved phase approximation of a term s + a is obtained by, instead of
jumping, connecting the phase asymptotes by a straight line (on a Bode plot with logarithmic
frequency) which starts 1 decade before the before the break frequency (at w = a/10),
passes through the correct phase change of +45° at the break frequency a, and ends 1 decade
after the break frequency (at w = 10a). For the example in Figure 2.3, this much improved
phase approximation drops from 0 to —180° between frequencies 0.001 (= w1 /10) and 0.1,
increases up to —135° at frequency 1, remains at —135° up to frequency 10, before it drops
down to —180° at frequency 100 (= 10ws).

2.2 Feedback control

Ga
+ )
r + K [ . G )
_ +
Ym
+
+
n

Figure 2.4: Block diagram of one degree-of-freedom feedback control system

2.2.1 Onedegree-of-freedom controller

In most of this chapter, we examine the simple one degree-of-freedom negative
feedback structure shown in Figure 2.4. The input to the controller K (s) isT — y
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wherey,, = y + n isthe measured output and . is the measurement noise. Thus, the
input to the plant is
u=K(s)(r—y—n) (2.149)

The objective of control isto manipulate v (design K) such that the control error e
remains small in spite of disturbancesd. The control error e is defined as

e=y—r (2.15)
where r denotes the reference value (setpoint) for the output.

Remark. In the literature, the control error isfrequently defined as r — y,,, which is often the
controller input. However, thisis not a good definition of an error variable. First, the error is
normally defined as the actual value (here y) minus the desired value (here r). Second, the
error should involve the actual value (y) and not the measured value (y, ).

2.2.2 Closed-loop transfer functions

The plant model iswritten as
y=G(s)u+ Gq(s)d (2.16)

and for a one degree-of-freedom controller the substitution of (2.14) into (2.16)
yields
y=GK(r—y—n)+Gqd

or
(I + GK)y = GKr + Gad — GKn (2.17)

and hence the closed-loop responseis

y=T+GK)"'GKr+ (I+GK)™'Ggd— (I +GK)"'GKn (2.18)
N g PN . ,
T S T

The control error is
e=y—r=-Sr+SGyd—Tn (2.19)

where we have used thefact T' — I = —S. The corresponding plant input signal is
u=KSr— KSGid— KSn (2.20)
The following notation and terminology are used
L =GK looptransfer function

S=({I+GK)™'=(I+L)~! sendtivity function
T=(+GK)"'GK = (I + L)~'L complementary sensitivity function
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We seethat S isthe closed-loop transfer function from the output disturbancesto the
outputs, while T" is the closed-1oop transfer function from the reference signalsto the
outputs. The term complementary sensitivity for 7" follows from the identity:

S+T=1I (2.21)

To derive (2.21), write S + T = (I + L)™' + (I + L)~'L and factor out the term
(I + L)~!. The term sensitivity function is natural because S gives the sensitivity
reduction afforded by feedback. To see this, consider the “open-loop” casei.e. with
no feedback. Then

y=GKr+Gqd+0-n (2.22)

and a comparison with (2.18) shows that, with the exception of noise, the response
with feedback is obtained by premultiplying the right hand side by S.

Remark 1 Actually, the aboveis not the original reason for the name “ sensitivity”. Bode first
called S sensitivity because it gives the relative sensitivity of the closed-loop transfer function
T to the relative plant model error. In particular, at a given frequency w we have for a SISO
plant, by straightforward differentiation of T', that

ar/T
m =5 (2.23)
Remark 2 Equations (2.14)-(2.22) are written in matrix form because they also apply to
MIMO systems. Of course, for SISO systemswe may writeS+7 =1,5 = T=5
and so on.

1+L’ L

Remark 3 In general, closed-loop transfer functions for SISO systems with negative
feedback may be obtained from the rule

OUTPUT = e’ 1 pyT (2.24)
1_+_ “lOOp”

where “direct” represents the transfer function for the direct effect of the input on the output
(with the feedback path open) and “loop” is the transfer function around the loop (denoted
L(s)). Inthe above case L = GK. If thereis also ameasurement device, G, (s), in the loop,
then L(s) = GKG,,. Therulein (2.24) is easily derived by generalizing (2.17). In Section
3.2, we present amore general form of this rule which also applies to multivariable systems.

2.2.3 Why feedback?

At this point it is pertinent to ask why we should use feedback control at all —
rather than simply using feedforward control. A “perfect” feedforward controller is
obtained by removing the feedback signal and using the controller

K.(s) =G (s) (2.25)

(weassumefor now that it is possibleto obtain and physically realize such aninverse,
although this may of course not be true). We assume that the plant and controller are
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both stable and that all the disturbances are known, that is, we know G 4d, the effect
of the disturbances on the outputs. Then with » — G ;4d as the controller input, this
feedforward controller would yield perfect control:

y=Gu+ Gud= GKT(T‘ —Gdd) +Gad=r

Unfortunately, G is never an exact model, and the disturbances are never known
exactly. The fundamental reasons for using feedback control are therefore the
presence of

1. Signal uncertainty — unknown disturbance (d)
2. Model uncertainty (A)
3. Anunstable plant

The third reason follows because unstable plants can only be stabilized by feedback
(see internal stability in Chapter 4). The ability of feedback to reduce the effect of
model uncertainty is of crucial importancein controller design.

2.3 Closed-loop stability

One of the main issues in designing feedback controllersis stability. If the feedback
gain is too large, then the controller may “overreact” and the closed-loop system
becomes unstable. Thisisillustrated next by asimple example.

Time[sec]

Figure 2.5: Effect of proportional gain K. on the closed-loop response y(t) of the inverse
reSpONSe Process

Example 2.1 Inverseresponse process. Consider the plant (time in seconds)

3(—2s+1)

¢ = Gy (05 + 1)

(2.26)

This is one of two main example processes used in this chapter to illustrate the techniques
of classical control. The model has a right-half plane (RHP) zera at 0.5 rad/s. This
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imposes a fundamental limitation on control, and high controller gains will induce closed-
loop instability.

This is illustrated for a proportional (P) controllek (s) = K. in Figure 2.5, where the
responsey = Tr = GK.(1 + GK.) 'r to a step change in the referencg() = 1 for
t > 0) is shown for four different values & .. The system is seen to be stable &r < 2.5,
and unstable forK, > 2.5. The controller gain at the limit of instabilityk’, = 2.5, is
sometimes called the ultimate gain and for this value the system is seen to cycle continuously
with a periodP, = 15.2 s, corresponding to the frequeney £ 27/P, = 0.42 rad/s.

Two methods are commonly used to determine closed-loop stability:

1. Thepolesof the closed-loop system are evaluated. That is, therootsof 1+ L(s) =
0 arefound, where L isthe transfer function around the loop. The systemis stable
if and only ifall the closed-loop polesare in the open left-half plane (LHP) (that is,
poles on the imaginary axis are considered “unstable”’). The poles are also equal
to the eigenvalues of the state-space A-matrix, and this is usually how the poles
are computed numerically.

2. The frequency response (including negative frequencies) of L(jw) is plotted in

the complex plane and the number of encirclements it makes of the critical point
—1 is counted. By Nyquist’s stability criterion (for which a detailed statement is
given in Theorem 4.7) closed-loop stability is inferred by equating the number of
encirclements to the number of open-loop unstable poles (RHP-poles).
For open-loop stable systems where ZL(jw) fals with frequency such that
ZL(jw) crosses —180° only once (from above at frequency wiso), one may
equivaently use Bode’s stability conditiomvhich saysthat the closed-loop system
isstableif and only if theloop gain | L| islessthan 1 at this frequency, that is

Stability < |L(jwiso)| <1 (2.27)
where w g isthe phase crossover frequency defined by ZL(jw1s9) = —180°.

Method 1, which involves computing the poles, is best suited for numerical
calculations. However, time delays must first be approximated as rational transfer
functions, e.g. Padé approximations. Method 2, which is based on the frequency
response, has a nice graphical interpretation, and may also be used for systems with
time delays. Furthermore, it provides useful measures of relative stability and forms
the basis for several of the robustness tests used later in this book.

Example 2.2 Stability of inverse response process with proportional control. Let us
determine the condition for closed-loop stability of the pléhtn (2.26) with proportional
control, that is, withK'(s) = K. (a constant) and loop transfer functidi(s) = K.G(s).

1. The system is stable if and only if all the closed-loop poles are in the LHP. The poles are
solutions tol + L(s) = 0 or equivalently the roots of

(5s+1)(10s +1) + K.3(—2s+1) =0
& 50s% 4 (15 — 6K.)s + (1 + 3K,.) =0 (2.28)
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But since we are only interested in the half pldoeation of the poles, it is not necessary

to solve (2.28). Rather, one may consider the coefficignté the characteristic equation
ans"+---a1s+ao = 0in (2.28), and use the Routh-Hurwitz test to check for stability. For
second order systems, this test says that we have stability if and only if all the coefficients
have the same sign. This yields the following stability conditions

(15— 6K.) > 0; (1+3K.)>0

or equivalently—1/3 < K. < 2.5. With negative feedbackikl > 0) only the upper
bound is of practical interest, and we find that the maximum allowed gain (“ultimate
gain”) is K, = 2.5 which agrees with the simulation in Figure 2.5. The poles at the
onset of instability may be found by substitutihy = K, = 2.5 into (2.28) to get

5052 4 8.5 = 0, i.e.s = *51/8.5/50 = £;0.412. Thus, at the onset of instability

we have two poles on the imaginary axis, and the system will be continuously cycling with
afrequencyw = 0.412 rad/s corresponding to a perioB, = 27 /w = 15.2 s. This agrees

with the simulation results in Figure 2.5.

Magnitude
5

w180

270" = 5
10 10 10
Frequency [rad/s]

Figure 2.6: Bode plots for L(s) = Kcﬁ with K, =1

2. Stability may also be evaluated from the frequency responsgspfA graphical evaluation
is most enlightening. The Bode plots of the plant (Lés) with K. = 1) are shown in
Figure 2.6. From these one finds the frequengy, whereZL is —180° and then reads
off the corresponding gain. This yielflB(jwiso)| = K.|G (jwiso)| = 0.4K,, and we get
from (2.27) that the system is stable if and onlpfifjwiso)| < 1 & K. < 2.5 (as found
above). Alternatively, the phase crossover frequency may be obtained analytically from:

ZL(jwigo) = — arctan(2wiso) — arctan(dwiso) — arctan(10wige) = —180°

which givesvigo = 0.412 rad/s as found in the pole calculation above. The loop gain at

this frequency is
- 2 241
3-+/(2wis0)? + — 04K,

\/(5w180)2 +1- \/(10&1180)2 +1

|L(jwiso)| = K-
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which is the same as found from the graph in Figure 2.6. The stability condition
|L(jwiso)| < 1then yieldsK. < 2.5 as expected.

2.4 Evaluating closed-loop performance

Although closed-loop stability is an important issue, the real objective of control is
to improve performance, that is, to make the output y(¢) behave in amore desirable
manner. Actually, the possibility of inducinginstability is one of the disadvantages of
feedback control which has to be traded off against performance improvement. The
objective of this section is to discuss ways of evaluating closed-loop performance.

24.1 Typical closed-loop responses

Thefollowing examplewhich considers proportional plusintegral (PI) control of the
inverse response processin (2.26), illustrates what type of closed-loop performance
one might expect.

Time[sec]

Figure2.7: Closed-loop responseto astep changein reference for theinverse response process
with Pl-control

Example 2.3 Pl-control of the inverse response process. We have already studied the

use of a proportional controller for the process in (2.26). We found that a controller gain of
K. = 1.5 gave a reasonably good response, except for a steady-state offset (see Figure 2.5).
The reason for this offset is the non-zero steady-state sensitivity fungtion= m =

0.18 (whereG(0) = 3 is the steady-state gain of the plant). Frere= —Sr it follows that for

r = 1 the steady-state control error is0.18 (as is confirmed by the simulation in Figure 2.5).

To remove the steady-state offset we add integral action in the form of a Pl-controller

K(s) = K. <1 + i) (2.29)

TIS
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The settings fof<. and 7; can be determined from the classical tuning rules of Ziegler and
Nichols (1942):
K.=K,/22, 71=P,/12 (2.30)

where K, is the maximum (ultimate) P-controller gain ad¢} is the corresponding period
of oscillations. In our casé<, = 2.5 and P, = 15.2 s (as observed from the simulation
in Figure 2.5), and we gek(. = 1.14 andr; = 12.7 s. Alternatively,K, and P, can be
obtained from the model(s),

K., =1/|G(jwu)|, Pu=2m/wy (2.31)

wherew, is defined by G (jw, ) = —180°.

The closed-loop response, with Pl-control, to a step change in reference is shown in
Figure 2.7. The outpuy(t) has an initial inverse response due to the RHP-zero, but it then
rises quickly and;(¢t) = 0.9 att = 8.0 s (the rise time). The response is quite oscillatory and
it does not settle to withid-5% of the final value until aftet = 65 s (the settling time). The
overshoot (height of peak relative to the final value) is at§®% which is much larger than
one would normally like for reference tracking. The decay ratio, which is the ratio between
subsequent peaks, is abdu5 which is also a bit large.

Magnitude

—210 1 = X 1

10 10
Frequency [rad/s]

Figure 2.8: Bode magnitude and phase plotsof L = GK, S and T when

G(s) = o ad K(s) = 1.136(1 + 57 (aZiegler-Nichols Pl controller)

The corresponding Bode plots fdt, S and T are shown in Figure 2.8. Later, in
Section 2.4.3, we define stability margins, and from the plét{g&), repeated in Figure 2.11,
we find that the phase margin (PM) (s34 rad = 19.4° and the gain margin (GM) i4.63.
These margins are too small according to common rules of thumb. The peak vahjef

Ms = 3.92, and the peak value df"| is My = 3.35 which again are high according to
normal design rules.

Exercise 2.1 Use (2.31) to comput&’,, and P, for the process in (2.26).
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In summary, for this example, the Ziegler-Nichols' PI-tunings are somewhat
“aggressive’ and give aclosed-loop system with smaller stability marginsand amore
oscillatory response than would normally be regarded as acceptable. For disturbance
rejection the controller settings may be more reasonable, and one can add a prefilter
toimprovethe responsefor referencetracking, resulting in atwo degrees-of-freedom
controller. However, thiswill not change the stability robustness of the system.

24.2 Timedomain performance

15- Overshoot = A i
’ Decay ratio =B/A

Time

Figure 2.9: Characteristics of closed-loop response to step in reference

Step response analysis. The above example illustrates the approach often taken
by engineers when evaluating the performance of a control system. That is, one
simulates the response to a step in the reference input, and considers the following
characteristics (see Figure 2.9):

¢ Rise time{(t,) thetime it takes for the output to first reach 90% of its final value,
which is usualy required to be small.

e Settling time{(t;) the time after which the output remains within +5% of its final
value, which is usually required to be small.

e Overshoot:the peak value divided by the final value, which should typically be
1.2 (20%) or less.

e Decay ratio:the ratio of the second and first peaks, which should typically be 0.3
or less.

e Steady-state offsethe difference between the fina value and the desired final
value, which is usually required to be small.

The rise time and settling time are measures of the speed of the responsehereas
the overshoot, decay ratio and steady-state offset are related to the quality of the
responseAnother measure of the quality of the responseis:

e Excess variation: the total variation (TV) divided by the overall change at steady
state, which should be as close to 1 as possible.
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Time

Figure 2.10: Total variationisTV = }_°°, v;, and Excess variation is TV /g

The total variation is the total movement of the output as illustrated in Figure 2.10.
For the cases considered here the overall changeis 1, so the excess variation is equal
to the total variation.

The above measures address the output response, y(t). In addition, one should
consider the magnitude of the manipulated input (control signal, u), which usually
should be as small and smooth as possible. If there are important disturbances, then
the response to these should aso be considered. Finally, one may investigate in
simulation how the controller worksiif the plant model parameters are different from
their nominal values.

Remark 1 Another way of quantifying time domain performance isin terms of some norm
of the error signal e(t) = y(t) — r(t). For example, one might use the integral squared error
(ISE), or its square root which is the 2-norm of the error signal, [le(t)[|> = 1/ [;~ le(7)[dT.

Note that in this case the various objectives related to both the speed and quality of response
are combined into one number. Actually, in most cases minimizing the 2-norm seems to give
a reasonable trade-off between the various objectives listed above. Another advantage of the
2-norm is that the resulting optimization problems (such as minimizing |1SE) are numerically
easy to solve. One can also take input magnitudes into account by considering, for example,
J = \/fo (Qle(t)]? + R|u(t)|?)dt where Q and R are positive constants. Thisis similar to

linear quadratic (LQ) optimal control, but in LQ-control one normally considers an impulse
rather than a step change in r(t).

Remark 2 The step response is equal to the integral of the corresponding impul se response,
eg. setu(r) = 1in(4.11). Some thought then reveals that one can compute the total variation
as the integrated absolute area (1-norm) of the corresponding impulse response (Boyd and
Barratt, 1991, p. 98). That is, let y = T'r, then the total variation in y for astep changeinr is

TV = / " lgr(@)ldr 2 lgr(t)s (232)

where gr(t) istheimpulse response of T', i.e. y(t) resulting from an impulse change in r(t).
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2.4.3 Frequency domain performance

The frequency-response of the loop transfer function, L(jw), or of various closed-
loop transfer functions, may also be used to characterize closed-loop performance.
Typical Bode plots of L, T" and S are shown in Figure 2.8. One advantage of the
frequency domain compared to a step response analysis, isthat it considers a broader
class of signals (sinusoids of any frequency). This makes it easier to characterize
feedback properties, and in particular system behaviour in the crossover (bandwidth)
region. We will now describe some of the important frequency-domain measures
used to assess performance e.g. gain and phase margins, the maximum peaks of S
and T, and the various definitions of crossover and bandwidth frequencies used to
characterize speed of response.

Gain and phase margins

Let L(s) denote the loop transfer function of a system which is closed-loop stable
under negative feedback. A typical Bode plot and a typical Nyquist plot of L(jw)
illustrating the gain margin (GM) and phase margin (PM) are given in Figures 2.11
and 2.12, respectively.

N

=
o

Magnitude
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107 10" 10
We W180

10°
Frequency [rad/s]
Figure 2.11: Typical Bode plot of L(jw) with PM and GM indicated

The gain marginis defined as
GM = 1/|L(jw180)| (233)

where the phase crossover frequencyis, is where the Nyquist curve of L(jw)
crosses the negative real axis between —1 and O, that is

ZL(jwlg()) = —180° (234)
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Figure 2.12: Typical Nyquist plot of L(jw) for stable plant with PM and GM indicated.
Closed-loop instability occursif L(jw) encircles the critical point —1

If there is more than one crossing the largest value of |L(jwiso)| IS taken. On a
Bode plot with a logarithmic axis for | L|, we have that GM (in logarithms, e.g. in
dB) is the vertica distance from the unit magnitude line down to |L(jw1g0)|, See
Figure 2.11. The GM is the factor by which the loop gain | L(jw)| may be increased
before the closed-1oop system becomes unstable. The GM is thus a direct safeguard
against steady-state gain uncertainty (error). Typicaly we require GM > 2. If the
Nyquist plot of L crosses the negative rea axis between —1 and —co then a gain
reduction margincan be similarly defined from the smallest value of | L (jw1so)| of
such crossings.
The phase margirs defined as

PM = /L(jw,) + 180° (2.35)

where the gain crossover frequeney. iswhere |L(jw)]| first crosses 1 from above,
that is
|L(jwe)] =1 (2.36)

The phase margin tells how much negative phase (phase lag) we can add to L(s) at
frequency w. before the phase at this frequency becomes —180° which corresponds
to closed-loop instability (see Figure 2.12). Typically, we require PM larger than 30 °
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or more. The PM is a direct safeguard against time delay uncertainty; the system
becomes unstable if we add atime delay of

Binax = PM/w, (2.37)

Note that the units must be consistent, and so if w. isin [rad/s] then PM must bein
radians. It is also important to note that by decreasing the value of w . (lowering the
closed-loop bandwidth, resulting in a slower response) the system can tolerate larger
time delay errors.

Example 2.4 For the PI-controlled inverse response process example we Rade =
19.4° = 19.4/57.3 rad = 0.34 rad andw. = 0.236 rad/s. The allowed time delay error
is thenfmax = 0.34 rad/0.236 rad/s= 1.44 s.

From the above arguments we see that gain and phase margins provide stability
marginsfor gain and delay uncertainty. However, as we show below the gain and
phase margins are closely related to the peak values of |S(jw)| and |T'(jw)| and are
therefore also useful in terms of performanceln short, the gain and phase margins
are used to provide the appropriate trade-off between performance and stability.

Exercise 2.2 Prove that the maximum additional delay for which closed-loop stability is
maintained is given by (2.37).

Exercise 2.3 Derive the approximation foK, = 1/|G(jw..)| given in (5.73) for a first-
order delay system.

Maximum peak criteria

The maximum peaks of the sensitivity and complementary sensitivity functions are
defined as
Mg = max |S(jw)|; Mr = max|T (jw)| (2.38)

(Note that Mg = ||S|| and Mr = ||T||o in terms of the H o, norm introduced
later.) Typically, it is required that Mg is less than about 2 (6 dB) and M is less
than about 1.25 (2 dB). A large value of M g or My (larger than about 4) indicates
poor performance as well as poor robustness. Since S + 7' = 1 it follows that at any
frequency
S| =T <|S+T|=1

s0 Mg and M differ at most by 1. A large value of M g therefore occursif and only
if Mr islarge. For stable plantswe usually have M ¢ > M, but thisis not ageneral
rule. An upper bound on M7 has been a common design specification in classical
control and the reader may be familiar with the use of M -circles on a Nyquist plot
or aNichols chart used to determine M ¢ from L(jw).

We now give some justification for why we may want to bound the value of M .
Without control (u = 0), we havee = y —r = Ggd — r, and with feedback
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control e = S(G4d — r). Thus, feedback control improves performance in terms
of reducing |e| at all frequencies where |S| < 1. Usually, |S| is small at low
frequencies, for example, |S(0)| = 0 for systems with integral action. But because
all real systems are strictly proper we must at high frequencies have that L — 0 or
equivalently S — 1. At intermediate frequencies one cannot avoid in practice a peak
value, Mg, larger than 1 (e.g. see the remark below). Thus, there is an intermediate
frequency range where feedback control degrades performance, and the value of M g
is a measure of the worst-case performance degradation. One may also view M g
as a robustness measure, as is how explained. To maintain closed-loop stability the
number of encirclements of the critical point —1 by L(jw) must not change; so we
want L to stay away from this point. The smallest distance between L(jw) and the-1
pointis M !, and therefore for robustness, the smaller M g, the better. In summary,
both for stability and performancewe want M s closeto 1.

Thereisaclose relationship between these maximum peaks and the gain and phase
margins. Specifically, for agiven M g we are guaranteed

Ms . 1 1
M > ; PM > 2 —— ) > —[rad 2.39
GM > Mo 1 > arc51n<2MS> > s [rad] (2.39)

For example, with Mg = 2 weare guaranteed GM > 2 and PM > 29.0°. Similarly,
for agiven value of Mt we are guaranteed

1 1
GM21+M—; PMZZarcsin(QM

) > L [rad] (2.40)
T T

Z My
and thereforewith M = 2wehave GM > 1.5 and PM > 29.0°.

Proof of (2.39) and (2.40)To derive the GM-inequdlities notice that L(jwis0) = —1/GM

(since GM = 1/|L(jwiso)| and L isreal and negative at w1so), from which we get
-1 . 1

_GM_17 S(JWISO)_i]_—GLM

and the GM-results follow. To derive the PM-inequalities in (2.39) and (2.40) consider

Figure 2.13 where we have |S(jw.)| = 1/|1 + L(jw.)| = 1/| = 1 — L(jw.)| and we

obtain

T (jwiso) (2.41)

1SGwol = TG0 = by

and the inequalities follow. Alternative formulas, which are sometimes used, follow from the

identity 2sin(PM/2) = 1/2(1 — cos(PM)). |

Remark. We note with interest that (2.41) requires |.S| to be larger than 1 at frequency wiso.
This means that provided wiso exists, that is, L(jw) has more than —180° phase lag at some
frequency (which isthe case for any real system), then the peak of |S(jw)| must exceed 1.

(2.42)

In conclusion, we see that specifications on the peaks of |S(jw)| or |T(jw)| (M s
or M), can make specifications on the gain and phase margins unnecessary. For
instance, requiring Ms < 2 implies the common rules of thumb GM > 2 and
PM > 30°.
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Figure 2.13: At frequency w. we see from thefigurethat |1 + L(jw.)| = 2sin(PM/2)

2.4.4 Relationship between time and frequency domain peaks

For achangein referencer, the output isy(s) = T'(s)r(s). Isthere any relationship
between the frequency domain peak of T'(jw), My, and any characteristic of
the time domain step response, for example the overshoot or the total variation?
To answer this consider a prototype second-order system with complementary
sensitivity function

1

T(s)= ——
(5) 7252 +27(s + 1

(2.43)

For underdamped systems with { < 1 the poles are complex and yield oscillatory
step responses.

With r(¢) = 1 (aunit step change) the values of the overshoot and total variation
for y(t) are given, together with M, and Mg, asafunction of ¢ in Table2.1. From
Table 2.1, we see that the total variation TV correlates quite well with M . Thisis
further confirmed by (A.136) and (2.32) which together yield the following general
bounds

My <TV < (2n+ 1)My (2.44)

Here n is the order of T'(s), which is 2 for our prototype system in (2.43). Given
that the response of many systems can be crudely approximated by fairly low-
order systems, the bound in (2.44) suggests that M may provide a reasonable
approximation to the total variation. This provides some justification for the use of
My inclassical control to evaluate the quality of the response.
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Table 2.1: Peak values and total variation of prototype second-order system

Time domain Freguency domain

¢ Overshoot | Total variation | My Mg
20 1 1 1 1.05
15 1 1 1 1.08
10 1 1 1 1.15
0.8 1.02 1.03 1 122
0.6 1.09 121 1.04 1.35
0.4 1.25 1.68 1.36 1.66
0.2 153 3.22 2.55 2.73
0.1 1.73 6.39 5.03 5.12
0.01 197 63.7 50.0 50.0

% MATLAB code (M tool box) to generate Tabl e:

tau=1; zeta=0. 1; t=0: 0. 01: 100;

T = nd2sys(1,[tau*tau 2*tau*zeta 1]); S = nsub(1,T);
[A B, C D =unpck(T); yl1 = step(A B,C/ D 1,t);

over shoot =max(y1), tv=sun(abs(diff(yl)))

M =hi nfnorn(T, 1. e-4), Ms=hi nfnorn(S, 1. e- 4)

245 Bandwidth and crossover frequency

The concept of bandwidth is very important in understanding the benefits and trade-
offsinvolved when applying feedback control. Abovewe considered pesks of closed-
loop transfer functions, M s and M, which arerelated to the quality of the response.
However, for performance we must also consider the speed of the response, and
this leads to considering the bandwidth frequency of the system. In general, alarge
bandwidth corresponds to a faster rise time, since high frequency signals are more
easily passed on to the outputs. A high bandwidth also indicates a system which is
sensitive to noise and to parameter variations. Conversely, if the bandwidthis small,
the time response will generally be slow, and the system will usually be more robust.

Loosely speaking, bandwidthmay be defined as the frequency range [w 1, w-] over
which control is effective. In most cases we require tight control at steady-state so
w1 = 0, and we then simply call ws = wp the bandwidth.

The word “effective” may be interpreted in different ways, and this may giverise
to different definitions of bandwidth. The interpretation we use is that control is
effectivaf we obtain some benefiin terms of performance. For tracking performance
theerrorise = y — r = —Sr and we get that feedback is effective (in terms of
improving performance) as long as the relative error e/r = — S is reasonably small,
which we may define to be less than 0.707 in magnitude. > We then get the following

2 The reason for choosing the value 0.707 when defining the bandwith is that, for the simplest case with
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definition:

Definition 2.1 The (closed-loop) bandwidth; s, is the frequency whergs (jw)|
first crossed /v/2 = 0.707(~ —3 dB) from below.

Remark. Another interpretation isto say that control is effectivef it significantly changeghe
output response. For tracking performance, the output is y = T'r and since without control

y = 0, we may say that control is effective as long as T' is reasonably large, which we
may define to be larger than 0.707. This leads to an alternative definition which has been
traditionally used to define the bandwidth of a control system: The bandwidth in terms of
T, wsT, is the highest frequency at whi¢H (jw)| crossesl /v/2 = 0.707(x= —3 dB) from
above. However, we would argue that this alternative definition, although being closer to how
theterm isused in some other fields, isless useful for feedback control.

The gain crossover frequency .., defined as the frequency where |L(jw.)| first
crosses 1 from above, is aso sometimes used to define closed-loop bandwidth. It has
the advantage of being simpleto compute and usually gives avalue betweenw g and
wpTr. Specifically, for systemswith PM < 90° (most practical systems) we have

wp < W, < WBT (245)

Proof of (2.45):Note that | L(jw.)| = 1 s0 |S(jwe)| = |T(jwe)|. Thus, when PM = 90°
we get |S(jwe)| = |T(jwe)| = 0.707 (see (2.42)), and we have wp = w. = wapr. For
PM < 90° we get |S(jwe)| = |T(jwe)| > 0.707, and since wp is the frequency where
|S(jw)| crosses 0.707 from below we must have wp < w.. Similarly, since wpr is the
frequency where |T'(jw)| crosses 0.707 from above, we must have wpr > we. |

From this we have that the situation is generally as follows: Up to the frequency
wpg, |S|islessthan 0.7, and control is effectivein terms of improving performance. In
the frequency rangew g, wp] contral still affectsthe response, but does not improve
performance — in most cases we find that in this frequency range |:S| is larger than
1 and control degrades performance. Finally, at frequencies higher than w g we
have S ~ 1 and control has no significant effect on the response. The situation just
described isillustrated in Example 2.5 below (see Figure 2.15).

Example. Consider the simplest case with a first-order closed-loop response,

k s k

(=7 SO =g Te) =74
In this ideal case the above bandwidth and crossover frequencies are identicalwg =
wBT = k. Furthermore, the phase df remains constant at+90°, so PM=90°, wigo = oo

(or really undefined) and GM=o.

Example 2.1 continue. The plant has a RHP-zero and the PI-tunings are quite agressive
so GM=1.63 and PM#9.4°. The bandwidth and crossover frequencieswage= 0.14, w. =
0.24, wBT = 0.44 (confirming 2.45).

afirst-order closed-loop response with S = s/(s + a), the low-frequency asymptote s/a crosses 1 at
the frequency w = a where |S(jw)| = w/vVw? + a2 =12 = 0.707.
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Example 2.5 Comparison of wp and wpr as indicators of performance. An example
wherewpr is a poor indicator of performance is the following (we @@ suggesting this as
a good controller design!):

- —sFEr opozstE L o121 (2.46)
s(rs+712+2) s+z ts+1

For this system, botl. and T have a RHP-zero at = 0.1, and we haveGM = 2.1,

PM = 60.1°, Ms = 1.93 and Mt = 1. We find thatvg = 0.036 andw. = 0.054 are both

less tharz = 0.1 (as one should expect because speed of response is limited by the presence of
RHP-zeros), whereasgr = 1/7 = 1.0 is ten times larger thar. The closed-loop response

to a unit step change in the reference is shown in Figure 2.14. The rise ti#iedis, which

is close tol /wp = 28.0 s, but very different front /wgr = 1.0 s, illustrating thatws is a

better indicator of closed-loop performance thagr.

0 5 10 15 20 25 30 35 40 45 50
Time [sec]

-1 1 1 1 1

—s40.1 1

Figure 2.14: Step response for system T’ = =% —=

k
10° wB w180 WBT

|7

|
N

Magnitude
5

10_2 1 1

10 10 10°
Frequency [rad/g]

10

Figure2.15: Plotsof |S] and |T'| for system T’ = Z%2 =

The magnitude Bode plots §fand T" are shown in Figure 2.15. We see th@ ~ 1 up to
aboutwpr. However, in the frequency range frank to wpr the phase of” (not shown)
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drops from about-40° to about—220°, so in practice tracking is out of phase and thus poor
in this frequency range.

In conclusion, wp (which is defined in terms of |S|) and also w. (in terms of |L|)
are good indicators of closed-loop performance, whilew g7 (intermsof | T'|) may be
misleading in some cases. The reason is that we want 7' ~ 1 in order to have good
performance, and it is not sufficient that |7'| ~ 1; we must also consider its phase.
On the other hand, for for good performance we want S close to 0, and this will be
the caseif |.S| = 0 irrespective of the phase of S.

2.5 Controller design

We have considered ways of evaluating performance, but one also needs methods
for controller design. The Ziegler-Nichols' method used earlier is well suited for
on-line tuning, but most other methods involve minimizing some cost function. The
overall design process is iterative between controller design and performance (or
cost) evaluation. If performance is not satisfactory then one must either adjust the
controller parametersdirectly (for example, by reducing K . from the value obtained
by the Ziegler-Nichols' rules) or adjust some weighting factor in an objective
function used to synthesize the controller.

There exist alarge number of methodsfor controller design and some of these will
be discussed in Chapter 9. In addition to heuristic rules and on-line tuning we can
distinguish between three main approachesto controller design:

1. Shaping of transfer functions. In this approach the designer specifies the
magnitudeof some transfer function(s) as a function of frequency, and then finds
acontroller which gives the desired shape(s).

(a) Loop shaping. This is the classical approach in which the magnitude of the
open-loop transfer function, L(jw), is shaped. Usually no optimization is
involved and the designer aims to obtain |L(jw)| with desired bandwidth,
slopes etc. We will look at this approach in detail later in this chapter.
However, classical loop shaping is difficult to apply for complicated systems,
and one may then instead use the Glover-McFarlane H ., loop-shaping
design presented in Chapter 9. The method consists of a second step where
optimization is used to make an initial loop-shaping design more robust.

(b) Shaping of closed-loop transfer functions, such as S, T and KS.
Optimization is usually used, resulting in various H ., optima control
problems such as mixed weighted sensitivity; more on thislater.

2. The signal-based approach. This involves time domain problem formulations
resulting in the minimization of anorm of atransfer function. Here one considers
a particular disturbance or reference change and then one tries to optimize the
closed-loop response. The “modern” state-space methods from the 1960's, such
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as Linear Quadratic Gaussian (LQG) control, are based on this signal-oriented
approach. In LQG the input signals are assumed to be stochastic (or aternatively
impulses in adeterministic setting) and the expected value of the output variance
(or the 2-norm) is minimized. These methods may be generalized to include
frequency dependent weights on the signals leading to what is called the Wiener-
Hopf (or H»-norm) design method.

By considering sinusoidal signals, frequency-by-frequency, a signal-based #H
optimal control methodology can be derived in which the H ., norm of a
combination of closed-loop transfer functions is minimized. This approach has
attracted significant interest, and may be combined with model uncertainty
representations, to yield quite complex robust performance problems requiring
pu-Synthesis; an important topic which will be addressed in later chapters.

3. Numerical optimization. This often involves multi-objective optimization where
one attempts to optimize directly the true objectives, such as rise times, stability
margins, etc. Computationally, such optimization problems may be difficult to
solve, especially if one does not have convexity in the controller parameters. Also,
by effectively including performance evaluation and controller designin asingle
step procedure, the problem formulation is far more critical than in iterative two-
step approaches. The numerical optimization approach may also be performed on-
line, which might be useful when dealing with cases with constraints on the inputs
and outputs. On-line optimization approaches such as model predictive control are
likely to become more popular as faster computers and more efficient and reliable
computational algorithms are devel oped.

2.6 Loop shaping

In the classical loop-shaping approach to controller design, “loop shape’ refers to
the magnitude of the loop transfer function L = G K as afunction of frequency. An
understanding of how K can be selected to shape this loop gain providesinvaluable
insight into the multivariable techniques and concepts which will be presented later
in the book, and so we will discuss loop shaping in some detail in the next two
sections.

2.6.1 Trade-offsintermsof L

Recall equation (2.19), which yields the closed-loop response in terms of the control
erore =y —r:

e=—(I+L)'r+(I+L)y " 'Ged—(I+L) " Ln (2.47)
—— —— —————
S S T



CLASSICAL CONTROL 41

For “perfect control” wewant e = y — r = 0; that is, we would like
ex~0:-d+0-7r+0-n

The first two requirements in this equation, namely disturbance rejection and
command tracking, are obtained with S =~ 0, or equivalently, T ~ 1. Since
S = (I + L)7%, this implies that the loop transfer function Z must be large in
magnitude. On the other hand, the requirement for zero noise transmission implies
that T ~ 0, or equivalently, S ~ I, whichisobtainedwith L ~ 0. Thisillustratesthe
fundamental nature of feedback design which always involves a trade-off between
conflicting objectives; in this case between large loop gainsfor disturbance rejection
and tracking, and small loop gains to reduce the effect of noise.

It isalso important to consider the magnitude of the control action u (which isthe
input to the plant). We want « small because this causes less wear and saves input
energy, and also because u is often a disturbance to other parts of the system (e.g.
consider opening awindow in your office to adjust your comfort and the undesirable
disturbance this will impose on the air conditioning system for the building). In
particular, we usualy want to avoid fast changes in u. The control action is given
by u = K(r — y.,) and we find as expected that a small u corresponds to small
controller gainsand asmall L = GK.

The most important design objectives which necessitate trade-offs in feedback
control are summarized below:

Performance, good disturbancerejection: needslarge controller gains, i.e. L large.
Performance, good command following: L large.

Stabilization of unstable plant: L large.

Mitigation of measurement noise on plant outputs. L small.

Small magnitude of input signals: K small and L small.

Physical controller must be strictly proper: K — 0 and L — 0 at highfrequencies.
Nominal stability (stable plant): L small (because of RHP-zeros and time delays).
Robust stability (stable plant): L small (because of uncertain or neglected
dynamics).

NN E

Fortunately, the conflicting design objectives mentioned above are generally in
different frequency ranges, and we can meet most of the objectives by using alarge
loop gain (|L| > 1) at low frequencies below crossover, and asmall gain (|[L| < 1)
at high frequencies above crossover.

2.6.2 Fundamentals of loop-shaping design

By loop shapingwe mean a design procedure that involves explicitly shaping the
magnitude of the loop transfer function, |L(jw)|. Here L(s) = G(s)K(s) where
K(s) is the feedback controller to be designed and G(s) is the product of all
other transfer functions around the loop, including the plant, the actuator and the
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measurement device. Essentialy, to get the benefits of feedback control we want
the loop gain, |L(jw)|, to be as large as possible within the bandwidth region.
However, due to time delays, RHP-zeros, unmodelled high-frequency dynamics and
limitations on the allowed manipulated inputs, the loop gain has to drop below
one at and above some frequency which we call the crossover frequency w .. Thus,
disregarding stability for the moment, it is desirable that |L(jw)| falls sharply with
frequency. To measure how |L| falls with frequency we consider the logarithmic
dope N = dln|L|/dlnw. For example, aslope N = —1 implies that | L| drops by
afactor of 10 when w increases by afactor of 10. If the gain is measured in decibels
(dB) then adlope of N = —1 correspondsto —20 dB/ decade. The value of — N at
high frequenciesis often called the roll-off rate.

The design of L(s) is most crucial and difficult in the crossover region between
w, (Where|L| = 1) and w5 (Where ZL = —180°). For stability, we at least need
the loop gain to be less than 1 at frequency w1so, i.€. |L(jwiso)| < 1. Thus, to get a
high bandwidth (fast response) we want w . and thereforewgg large, that is, we want
the phase lag in L to be small. Unfortunately, this is not consistent with the desire
that |L(jw)| should fall sharply. For example, the loop transfer function L = 1/s™
(which hasaslope N = —n on alog-log plot) has aphase /L = —n - 90°. Thus,
to have a phase margin of 45° we need ZL > —135°, and the slope of |L| cannot
exceed N = —1.5.

In addition, if the slope is made steeper at lower or higher frequencies, then this
will add unwanted phase lag at intermediate frequencies. As an example, consider
L, (s) given in (2.13) with the Bode plot shown in Figure 2.3. Here the slope of the
asymptoteof |L| is—1 at the gain crossover frequency (where|L 1 (jw.)| = 1), which
by itself gives —90° phase lag. However, due to the influence of the steeper slopes of
—2 at lower and higher frequencies, thereis a“ penalty” of about —35 ° at crossover,
so the actual phase of L, at w,. isapproximately —125°.

The situation becomes even worse for cases with delays or RHP-zeros in L(s)
which add undesirable phase lag to L without contributing to a desirable negative
slopein L. At the gain crossover frequency w .., the additional phase lag from delays
and RHP-zeros may in practice be —30° or more.

In summary, a desired loop shape for |L(jw)| typicaly has a slope of about —1
in the crossover region, and a slope of —2 or higher beyond this frequency, that
is, the roll-off is 2 or larger. Also, with a proper controller, which is required for
any real system, we must havethat L = GK rolls off at least as fast as GG. At low
frequencies, the desired shape of | L| depends on what disturbances and referenceswe
are designing for. For example, if we are considering step changes in the references
or disturbances which affect the outputs as steps, then a slope for |L| of —1 at low
frequencies is acceptable. If the references or disturbances require the outputs to
changein aramp-like fashion then a slope of —2 isrequired. In practice, integrators
are included in the controller to get the desired low-frequency performance, and for
offset-free reference tracking the rule is that
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e L(s) must contain at least one integrator for each integrator {s).

Proof: Let L(s) = f(s)/s’” where E(O) is non-zero and finite and n; is the number of
integratorsin L(s) — sometimes n; is called the system typeConsider areference signal of
theform r(s) = 1/s"". For example, if r(¢) isaunit step, then r(s) = 1/s (n, = 1), and if
r(t) isaramp then r(s) = 1/s> (n, = 2). Thefinal value theorem for Laplace transformsis

lim e(¢) = lim se(s) (2.48)
t— o0 s—0
In our case, the control error is
1 gnI—nr
e(s)=————r(§) = ——— 2.49
)=~ = " I (249)

and to get zero offset (i.e. e(t — co) = 0) we must from (2.48) require n; > n,, and therule
follows. m|

In conclusion, one can define the desired loop transfer function in terms of the
following specifications:

1. Thegain crossover frequency, w., where | L(jw.)| = 1.

2. The shape of L(jw), eg. in terms of the slope of |L(jw)]| in certain frequency
ranges. Typically, we desire a slope of about N = —1 around crossover, and
a larger roll-off at higher frequencies. The desired slope at lower frequencies
depends on the nature of the disturbance or reference signal.

3. The system type, defined as the number of pureintegratorsin L(s).

In Section 2.6.4, we discuss how to specify the loop shape when disturbancerejection
is the primary objective of control. Loop-shaping design is typicaly an iterative
procedurewhere the designer shapes and reshapes | L (jw)| after computing the phase
and gain margins, the peaks of closed-loop frequency responses (M 1 and Mg),
selected closed-loop time responses, the magnitude of the input signal, etc. The
procedureisillustrated next by an example.

Example 2.6 L oop-shaping design for the inver se response process.

We will now design a loop-shaping controller for the example process in (2.26) which has a
RHP-zero ats = 0.5. The RHP-zero limits the achievable bandwidth and so the crossover
region (defined as the frequencies betwegandwiso) will be at about0.5 rad/s. We require

the system to have one integrator (tybsystem), and therefore a reasonable approach is to
let the loop transfer function have a slope-ef at low frequencies, and then to roll off with a
higher slope at frequencies beyodd rad/s. The plant and our choice for the loop-shape is

3(—2s+1)

) (—2s+1)
(58 +1)(10s + 1)’

s(2s+1)(0.33s + 1)

G(s) = L(s) =3K. (2.50)
The frequency response (Bode plots) Iofis shown in Figure 2.16 forK. = 0.05.

The controller gainK,. was selected to get reasonable stability margins (PM and GM).
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Figure 2.16: Frequency response of L(s) in (2.50) for loop-shaping design with K. = 0.05
(GM = 2.92, PM = 54°, w, = 0.15, wiso = 0.43, Ms = 1.75, My = 1.11)
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Figure 2.17: Response to step in reference for loop-shaping design

The asymptotic slope df| is —1 up to 3 rad/s where it changes te-2. The controller
corresponding to the loop-shape in (2.50) is

K(s) = K (10s +1)(5bs + 1)

c , Kc.=0. 251
s(25s +1)(0.33s + 1) 0.05 (2:51)

The controller has zeros at the locations of the plant poles. This is desired in this case because
we do not want the slope of the loop shape to drop at the break frequer/diés= 0.1 rad/s
and1/5 = 0.2 rad/s just before crossover. The phaselofs —90° at low frequency, and

at w = 0.5 rad/s the additional contribution from the ter@i—ﬁl in (2.50) is—90°, so

for stability we needv, < 0.5 rad/s. The choicek, = 0.05 yieldsw. = 0.15 rad/s
corresponding tadGM = 2.92 and PM=54°. The corresponding time response is shown in
Figure 2.17. Itis seen to be much better than the responses with either the simple Pl-controller
in Figure 2.7 or with the P-controller in Figure 2.5. Figure 2.17 also shows that the magnitude
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of the input signal remains less than abauh magnitude. This means that the controller gain

is not too large at high frequencies. The magnitude Bode plot for the controller (2.51) is shown
in Figure 2.18. It is interesting to note that in the crossover region araung 0.5 rad/s the
controller gain is quite constant, arouridin magnitude, which is similar to the “best” gain
found using a P-controller (see Figure 2.5).

10"

| K (jw)

Magnitude
5

1 1 1
10 -2 -1 0 1

10 10 10
Frequency [rad/g]

Figure 2.18: Magnitude Bode plot of controller (2.51) for loop-shaping design

Limitationsimposed by RHP-zerosand time delays

Based on the above |oop-shaping arguments we can now examine how the presence
of delays and RHP-zeros limit the achievable control performance. We have aready
argued that if we want the loop shape to have a slope of —1 around crossover (w ),
with preferably a steeper slope before and after crossover, then the phaselag of L at
w,. Will necessarily be at least —90°, even when there are no RHP-zeros or delays.
Therefore, if we assume that for performance and robustness we want a phase margin
of about 35° or more, then the additional phase contribution from any delays and
RHP-zeros at frequency w,. cannot exceed about —55°.

First consider a time delay 6. It yields an additional phase contribution of —fw,
which at frequency w = 1/6 is—1rad = —57° (whichismore than —55°). Thus, for
acceptable control performancewe need w . < 1/6, approximately.

Next consider areal RHP-zero at s = z. To avoid an increase in slope caused by
this zero we place apole at s = —z such that the loop transfer function contains the
term % the form of which is referred to as all-pass since its magnitude equals
1 at al frequencies. The phase contribution from the al-pass term at w = z/2
is —2arctan(0.5) = —53° (which is close to —55°), so for acceptable control
performancewe need w. < z/2, approximately.
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2.6.3 Inverse-based controller design

In Example 2.6, we made sure that L(s) contained the RHP-zero of G(s), but
otherwise the specified L(s) was independent of G(s). This suggests the following
possible approach for a minimum-phase plant (i.e. one with no RHP-zeros or time
delays). Select aloop shape which has aslope of —1 throughout the frequency range,
namely
We
where w, is the desired gain crossover frequency. This loop shape yields a phase
margin of 90° and an infinite gain margin since the phase of L(jw) never reaches
—180°. The controller corresponding to (2.52) is
We ~—
K(s) = ?G L(s) (2.53)
That is, the controller inverts the plant and adds an integrator (1/s). This is
an old idea, and is aso the essential part of the internal model control (IMC)
design procedure (Morari and Zafiriou, 1989) which has proved successful in many
applications. However, there are at least two good reasons for why this inverse-based
controller may not be a good choice:

1. The controller will not be realizable if G(s) has a pole excess of two or larger,
and may in any caseyield largeinput signals. These problems may be partly fixed
by adding high-frequency dynamicsto the controller.

2. Theloop shape resulting from (2.52) and (2.53) is not generally desirable, unless
the references and disturbances affect the outputs as steps. This is illustrated by
the following example.

Example 2.7 Disturbance process. We now introduce our second SISO example control

problem in which disturbance rejection is an important objective in addition to command

tracking. We assume that the plant has been appropriately scaled as outlined in Section 1.4.
Problem formulation. Consider the disturbance process described by

200 1 Gals) = 100
T10s+1(005s+1)20 Y T T0s+1

G(s) (2.54)

with time in seconds (a block diagram is shown in Figure 2.20). The control objectives are:

1. Command tracking: The rise time (to rea@?b of the final value) should be less thaB s
and the overshoot should be less tt#&na.

2. Disturbance rejection: The output in response to a unit step disturbance should remain
within the rangg—1, 1] at all times, and it should return t® as quickly as possibley(t)|
should at least be less thanl after3 s).

3. Input constraintsu(t) should remain within the range-1, 1] at all times to avoid input
saturation (this is easily satisfied for most designs).



CLASSICAL CONTROL 47

Analysis. SinceG4(0) = 100 we have that without control the output response to a
unit disturbance 4 = 1) will be 100 times larger than what is deemed to be acceptable.
The magnitudeGq(jw)| is lower at higher frequencies, but it remains larger thamp to
wq = 10 rad/s (where|Gq(jwa)| = 1). Thus, feedback control is needed up to frequency
wgq, SO We needv. to be approximately equal to0 rad/s for disturbance rejection. On the
other hand, we do not wani. to be larger than necessary because of sensitivity to noise
and stability problems associated with high gain feedback. We will thus aim at a design with
we &= 10 rad/s

Inverse-based controller design. We will consider the inverse-based design as given
by (2.52) and (2.53) withv. = 10. SinceG(s) has a pole excess of three this yields an
unrealizable controller, and therefore we choose to approximate the plant(teffis + 1)
by (0.1s + 1) and then in the controller we let this term be effective over one decade, i.e. we
use(0.1s + 1)/(0.01s + 1) to give the realizable design

we 10s+1 0.1s+1 We 0.1s+1
K = — —_ = — . =10 (2.55
o8) = 500 vots+1’ X = S Dossr 20015 £ 1) e 10 @9
15 15
1 1
= =
0.5 0.5
0 0
0 1 2 3 0 1 2 3
Time[sec] Time [sec]
(a) Tracking response (b) Disturbance response

Figure 2.19: Responses with “inverse-based” controller Ko (s) for the disturbance process

The response to a step reference is excellent as shown in Figure 2.19(a). The rise time is
about0.16 s and there is no overshoot so the specifications are more than satisfied. However,
the response to a step disturbance (Figure 2.19(b)) is much too sluggish. Although the output
stays within the rang¢-—1, 1], it is still 0.75 at¢ = 3 s (whereas it should be less thar).
Because of the integral action the output does eventually return to zero, but it does not drop
below0.1 until after23 s.

The above exampleillustrates that the simple inverse-based design method where L
has a slope of about N = —1 at all frequencies, does not always yield satisfactory
designs. In the example, reference tracking was excellent, but disturbance rejection
was poor. The objective of the next section is to understand why the disturbance
response was so poor, and to propose a more desirable loop shape for disturbance
rejection.
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2.6.4 Loop shaping for disturbancerejection

At the outset we assume that the disturbance has been scaled such that at each
frequency |d(w)| < 1, and the main control objectiveis to achieve |e(w)| < 1. With
feedback control we havee = y = SG4d, so to achieve |e(w)| < 1 for [d(w)| =1
(the worst-case disturbance) we require | SG 4(jw)| < 1, Vw, or equivalently,

11+ L] > |Ga| Vw (2.56)

At frequencies where |G4| > 1, this is approximately the same as requiring
|L| > |Gq|. However, in order to minimize the input signals, thereby reducing the
sensitivity to noise and avoiding stability problems, we do not want to uselarger loop
gains than necessary (at least at frequencies around crossover). A reasonable initial
loop shape Lmin(s) isthen onethat just satisfies the condition

| Linin| ~ |Gl (2.57)

where the subscript min signifies that L,;, is the smallest loop gain to satisfy
le(w)| < 1. Since L = GK the corresponding controller with the minimum gain
satisfies

| Kmin ~ |G~ Gl (2.58)
In addition, to improve low-frequency performance (e.g. to get zero steady-state
offset), we often add integral action at low frequencies, and use

S+ wr
s

K| = | IG™1 G4l (2.59)

This can be summarized as follows:

e For disturbance rejection a good choice for the controller is one which contains
the dynamics (G ) of the disturbance and inverts the dynamics (G) of the inputs
(at least at frequenciesjust before crossover).

e For disturbances entering directly at the plant output, G4 = 1, we get | K pin| =
|G|, so aninverse-based design providesthe best trade-off between performance
(disturbance rejection) and minimum use of feedback.

e For disturbances entering directly at the plant input (which is acommon situation
in practice — often referred to as a load disturbance), we have G ; = G and we
get |Kmin| = 1, S0 asimple proportional controller with unit gain yields a good
trade-off between output performance and input usage.

¢ Notice that a reference change may be viewed as a disturbance directly affecting
the output. Thisfollowsfrom (1.18), from which we get that a maximum reference
changer = R may be viewed as a disturbance d = 1 with G 4(s) = —R where
Risusually aconstant. This explainswhy selecting K to belike G ~! (aninverse-
based controller) yields good responses to step changes in the reference.

In addition to satisfying |L| ~ |G 4| (eg. 2.57) at frequencies around crossover, the
desired loop-shape L(s) may be modified as follows:
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1. Around crossover maketheslope N of |L| to beabout —1. Thisisto achieve good
transient behaviour with acceptable gain and phase margins.

2. Increase the loop gain at low frequencies as illustrated in (2.59) to improve the
settling time and to reduce the steady-state offset. Adding an integrator yields
zero steady-state offset to a step disturbance.

3. Let L(s) roll off faster at higher frequencies (beyond the bandwidth) in order to
reduce the use of manipulated inputs, to make the controller reaizable and to
reduce the effects of noise.

The above requirements are concerned with the magnitude, |L(jw)|. In addition,
the dynamics (phase) of L(s) must be selected such that the closed-loop system
is stable. When selecting L(s) to satisfy |L| = |Gq4| one should replace G 4(s)
by the corresponding minimum-phase transfer function with the same magnitude,
that is, time delays and RHP-zeros in G4(s) should not be included in L(s) as
this will impose undesirable limitations on feedback. On the other hand, any time
delays or RHP-zerosin G(s) must beincludedin L = GK because RHP pole-zero
cancellations between G(s) and K (s) yield internal instability; see Chapter 4.

Remark. The idea of including a disturbance model in the controller is well known and is
more rigorously presented in, for example, research on the internal model principle (Wonham,
1974), or the internal model control design for disturbances (Morari and Zafiriou, 1989).
However, our development is simple, and sufficient for gaining the insight needed for later
chapters.

Example 2.8 L oop-shapingdesign for thedisturbance process. Consider again the plant
described by (2.54). The plant can be represented by the block diagram in Figure 2.20, and we
see that the disturbance enters at the plant input in the sensetlzaid G; share the same
dominating dynamics as represented by the t206y (10s + 1).

ld

0.5
r__+ u__ 1 li-’- | 200 Y
- K(s) ™ [0.05s11)2 " ™ T0s+1 >

Figure 2.20: Block diagram representation of the disturbance processin (2.54)

Step 1. Initial design. From (2.57) we know that a good initial loop shape looks like

|Lmin| = |G4| = ‘10134(:1‘ at frequencies up to crossover. The corresponding controller is
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K(s) = G™'Lmin = 0.5(0.05s 4+ 1)2. This controller is not proper (i.e. it has more zeros
than poles), but since the ter.05s + 1)? only comes into effect &t/0.05 = 20 rad/s,
which is beyond the desired gain crossover frequency 10 rad/s, we may replace it by a
constant gain of resulting in a proportional controller

Ki(s) =05 (2.60)

The magnitude of the corresponding loop transfer functibn(jw)|, and the response{(t))

to a step change in the disturbance are shown in Figure 2.21. This simple controller works
surprisingly well, and fot < 3 s the response to a step change in the disturbance is not much
different from that with the more complicated inverse-based contrdtlgfs) of (2.55) as
shown earlier in Figure 2.19. However, there is no integral action gnd) — 1 ast — co.

10 15
L, L
[} 2 o 1 yl
10
2 Ly
g
> 10’ 0.5 s
L3 Y2
=) Ly,L» 0
10 -2 0 2
10 10 10 0 1 2 3
Frequency [rad/s] Time [sec]
(a) Loop gains (b) Disturbance responses

Figure 2.21: Loop shapes and disturbance responses for controllers K;, K» and K3 for the
disturbance process

Step 2. Moregain at low frequency. To get integral action we multiply the controller by
the term”%, see (2.59), where; is the frequency up to which the term is effective (the
asymptotic value of the term is 1 far > w;). For performance we want large gains at
low frequencies, so we waat; to be large, but in order to maintain an acceptable phase
margin (which ist4.7° for controller K) the term should not add too much negative phase at
frequencyw., sowr should not be too large. A reasonable valuevis = 0.2w. for which

the phase contribution frorﬁ% is arctan(1/0.2) — 90° = —11° at w.. In our case
we =~ 10 rad/s, so we select the following controller
2
Ko(s) = 0.5°F (2.61)

S

The resulting disturbance respongg)(shown in Figure 2.21(b) satisfies the requirement that
ly(t)] < 0.1 attimet = 3 s, buty(¢) exceedd for a short time. Also, the response is slightly
oscillatory as might be expected since the phase margin is3ifiland the peak values for
|S| and|T'| are Ms = 2.28 and M7 = 1.89.

Step 3. High-frequency correction. To increase the phase margin and improve the
transient response we supplement the controller with “derivative action” by multiplying
K> (s) by a lead-lag term which is effective over one decade startir2 aad/s:

s+2 0.05s+1
s 0.005s +1

Ks(s) = 0.5 (2.62)
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This gives a phase margin 6f°, and peak valued/s = 1.43 and Mr = 1.23. From
Figure 2.21(b), it is seen that the controlldks(s) reacts quicker thanK>(s) and the
disturbance responsg (t) stays belowl.

Table 2.2: Alternative loop-shaping designs for the disturbance process

Reference Disturbance
GM PM We MS MT tr Ymax Ymax y(t = 3)
Spec.— ~ 10 <3|<105| <1 <0.1

Ky 995 | 729° | 114 | 1.34 1 0.16 1.00 0.95 0.75
K, 404 | 447° | 848 | 1.83 | 1.33 || 0.21 124 1.35 0.99
K> 324 | 309° | 865 | 228 | 1.89 || 0.19 151 1.27 0.001
K3 19.7 | 50.9° | 927 | 143 | 1.23 || 0.16 124 0.99 0.001

Table 2.2 summarizes the results for the four loop-shaping designs; the inverse-based
design K, for reference tracking and the three desighs, K» and K3 for disturbance
rejection. Although controlleik’s satisfies the requirements for disturbance rejection, it is
not satisfactory for reference tracking; the overshoa2486 which is significantly higher than
the maximum value df%. On the other hand, the inverse-based control&r inverts the
term1/(10s + 1) which is also in the disturbance model, and therefore yields a very sluggish
response to disturbances (the output is till5 at¢ = 3 s whereas it should be less théui).

In summary, for this process none of the controller designs meet al the objectives
for both reference tracking and disturbance rejection. The solution is to use a two
degrees-of-freedom controller asis discussed next.

2.6.5 Two degrees-of-freedom design

For referencetracking we typically want the controller to ook like %G —1 see(2.53),
whereas for disturbance rejection we want the controller to look like %G—lGd, see
(2.59). We cannot achieve both of these simultaneously with a single (feedback)

controller.

Thesolutionisto use atwo degrees-of-freedom controller where the reference signal

r and output measurement y ,,, are independently treated by the controller, rather than
operating on their differencer — y,,, asin aone degree-of-freedom controller. There
exist severa alternativeimplementationsof atwo degrees-of-freedom controller. The
most general formis shown in Figure 1.3(b) on page 12 where the controller has two

inputs (r and y,,,) and one output (u). However, the controller is often split into two
separate blocks as shown in Figure 2.22 where K, denotes the feedback part of the
controller and K, areference prefilter. The feedback controller K, is used to reduce
the effect of uncertainty (disturbances and model error) whereas the prefilter K .
shapes the commands r to improve tracking performance. In general, it is optimal to

design the combined two degrees-of-freedom controller K in one step. However, in

practice K, is often designed first for disturbance rejection, and then K. is designed
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:

Ga

Ym|

Figure 2.22: Two degrees-of-freedom controller

to improve reference tracking. This s the approach taken here.

LetT = L(1 + L)' (with L = GK,) denote the complementary sensitivity
function for the feedback system. Then for a one degree-of-freedom controller
y = T'r, whereas for a two degrees-of-freedom controller y = T K ,.r. If the desired
transfer function for reference tracking (often denoted the reference model) is 7T ..,
then the corresponding ideal reference prefilter K ,. satisfiesT K. = T}.¢, OF

Ky (s) = T (8) et (5) (2.63)

Thus, in theory we may design K ,.(s) to get any desired tracking response T'vet(s).
However, in practiceit is not so simple because the resulting K ,.(s) may be unstable
(if G(s) has RHP-zeros) or unrealizable, and also T K, # Tyt if T'(s) isnot known
exactly.

Remark. A convenient practical choice of prefilter isthe lead-lag network

TleadS + 1

K =
T(S) Tlag$S + 1

(2.64)
Here we select Tiead > Tiag If We want to speed up the response, and 7ieaq < Tiag if We want
to slow down the response. |f one does not require fast reference tracking, which isthe casein
many process control applications, asimple lag is often used (with 71eaq = 0).

Example 2.9 Two degrees-of-freedom design for the disturbance process. In Example

2.8 we designed a loop-shaping controll&g (s) for the plant in (2.54) which gave good
performance with respect to disturbances. However, the command tracking performance was
not quite acceptable as is shown By in Figure 2.23. The rise time i6.16 s which is

better than the required value 6f3s, but the overshoot 4% which is significantly higher

than the maximum value 6%. To improve upon this we can use a two degrees-of-freedom
controller with K, = K3, and we designk, (s) based on (2.63) with reference model
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Figure 2.23: Tracking responses with the one degree-of-freedom controller (K3) and the two
degrees-of-freedom controller (K3, K,3) for the disturbance process

Tref = 1/(0.1s+ 1) (a first-order response with no overshoot). To get a low-ollgts), we

may either use the actudl(s) and then use a low-order approximation &f (s), or we may

start with a low-order approximation d&F (s). We will do the latter. From the step responge

in Figure 2.23 we approximate the response by two parts; a fast response with time constant
0.1 s and gainl.5, and a slower response with time constérit s and gain—0.5 (the sum of

the gains is 1). Thus we udg(s) = 5755 — 5307 = (0.18(4217)3(315)#1) , from which (2.63)

yields K, (s) = g2+ . Following closed-loop simulations we modified this slightly to arrive
at the design

_05s+1 1

T 065541 0.03s+1
where the tern1/(0.03s + 1) was included to avoid the initial peaking of the input signal
u(t) abovel. The tracking response with this two degrees-of-freedom controller is shown in
Figure 2.23. The rise time i8.25 s which is better than the requirement®8 s, and the
overshoot is onl2.3% which is better than the requirementi®. The disturbance response

is the same as curvg in Figure 2.21. In conclusion, we are able to satisfy all specifications
using a two degrees-of-freedom controller.

K, 3(s) (2.65)

L oop shaping applied to a flexible structure

The following example shows how the loop-shaping procedure for disturbance
rejection, can be used to design a one degree-of-freedom controller for a very
different kind of plant.

Example 2.10 Loop shaping for a flexible structure. Consider the following model of a
flexible structure with a disturbance occurring at the plant input

2.55(s> + 1)
(s2+0.52)(s2 + 22)
From the Bode magnitude plot in Figure 2.24(a) we see {iat(jw)| > 1 around the

resonance frequencies @b and2 rad/s, so control is needed at these frequencies. The dashed
line in Figure 2.24(b) shows the open-loop response to a unit step disturbance. The output is

G(s) = Ga(s) = (2.66)
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Figure 2.24: Flexible structure in (2.66)

seen to cycle between2 and 2 (outside the allowed range-1 to 1), which confirms that
control is needed. From (2.58) a controller which meets the specificdtion)| < 1 for
|d(w)] = 1is given by Kumin(jw)| = |G~'G4| = 1. Indeed the controller

K(s)=1 (2.67)

turns out to be a good choice as is verified by the closed-loop disturbance response (solid line)
in Figure 2.24(b); the output goes up to abdus and then returns to zero. The fact that the
choice L(s) = G(s) gives closed-loop stability is not immediately obvious siii¢ehas4

gain crossover frequencies. However, instability cannot occur because the plant is “passive”
with ZG > —180° at all frequencies.

2.6.6 Conclusionson loop shaping

The loop-shaping procedure outlined and illustrated by the examples above is well
suited for relatively simple problems, as might arise for stable plants where L(s)
crosses the negative real axis only once. Although the procedure may be extended to
more complicated systemsthe effort required by the engineer is considerably greater.
In particular, it may be very difficult to achieve stability.

Fortunately, there exist alternative methods where the burden on the engineer is
much less. One such approach is the Glover-McFarlane H ., |00p-shaping procedure
whichisdiscussedin detail in Chapter 9. It is essentially atwo-step procedure, where
in the first step the engineer, as outlined in this section, decides on aloop shape, | L|
(denoted the “ shaped plant” G ), and in the second step an optimization providesthe
necessary phase correctionsto get a stable and robust design. The method is applied
to the disturbance process in Example 9.3 on page 387.

Another design philosophy which deals directly with shaping both the gain and
phase of L(s) isthe quantitative feedback theory (QFT) of Horowitz (1991).
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2.7 Shaping closed-loop transfer functions

In this section, we introduce the reader to the shaping of the magnitudes of closed-
loop transfer functions, where we synthesize a controller by minimizing an H -
performance objective. The topic is discussed further in Section 3.4.6 and in more
detail in Chapter 9.

Specifications directly on the open-loop transfer functio. = GK, asin the
loop-shaping design procedures of the previous section, make the design process
transparent as it is clear how changes in L(s) affect the controller K (s) and vice
versa An apparent problem with this approach, however, is that it does not consider
directly the closed-loop transfer functionsuch as S and 7', which determine the
final response. The following approximations apply

IL(jw)|>1 = S=~L'Y Tw1
IL(jw)| <1 = S=1,; T=L

but in the crossover region where | L(jw)| is close to 1, one cannot infer anything
about S and T" from the magnitude of the loop shape, | L(jw)|. For example, |.S| and
|T'| may experience large pesks if L(jw) is closeto —1, i.e. the phase of L(jw) is
crucia in this frequency range.

An aternative design strategy is to directly shape the magnitudes of closed-loop
transfer functions, such as.S(s) and T'(s). Such a design strategy can be formulated
asan H ., optimal control problem, thus automating the actual controller design and
leaving the engineer with the task of selecting reasonable bounds (“weights’) on the
desired closed-loop transfer functions. Before explaining how this may be done in
practice, we discuss the terms ., and ..

271 Theterms#H,, and H,

The H o, norm of a stable scalar transfer function f(s) is simply the peak value of
| f(jw)| asafunction of frequency, that is,

17(8)llo = max|f (jw)| (2.68)

Remark. Strictly speaking, we should herereplace“ max” (the maximum value) by “sup” (the
supremum, the least upper bound). This is because the maximum may only be approached as
w — oo and may therefore not actually be achieved. However, for engineering purposes there
is no difference between “sup” and “max”.

ThetermsH ., norm and # ., control are intimidating at first, and aname conveying
the engineering significance of H ., would have been better. After al, we are
simply talking about a design method which aims to press down the peak(s) of
one or more selected transfer functions. However, the term H ., which is purely
mathematical, has now established itself in the control community. To make the term
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less forbidding, an explanation of its background may help. First, the symbol oo
comes from the fact that the maximum magnitude over frequency may be written as

max )| = tim ([

Essentially, by raising | f| to an infinite power we pick out its peak vaue. Next, the
symbol H stands for “Hardy space”, and # o, in the context of this book is the set
of transfer functions with bounded co-norm, which is simply the set of stable and
propertransfer functions.

Similarly, the symbol #- stands for the Hardy space of transfer functions with
bounded 2-norm, which is the set of stable and strictly propetransfer functions.
The H» norm of astrictly proper stable scalar transfer function is defined as

1/p
If(jw)lpdw>

oo

sk (5 [ If(jw)|2dw>1/2 (2:69)

2 J_ o

The factor 1/v/27 is introduced to get consistency with the 2-norm of the
corresponding impulse response; see (4.117). Note that the H > norm of a semi-
proper (or bi-proper) transfer function (where lim _, o, f(s) iS anon-zero constant)
is infinite, whereas its ., norm is finite. An example of a semi-proper transfer
function (with an infinite 7 norm) is the senditivity function S = (I + GK)~!.

2.7.2 Weighted sensitivity

As aready discussed, the sensitivity function S is a very good indicator of closed-
loop performance, both for SISO and MIMO systems. The main advantage of
considering S isthat because we ideally want S small, it is sufficient to consider just
its magnitude | S|; that is, we need not worry about its phase. Typical specifications
intermsof S include:

1. Minimum bandwidth frequency wj (defined as the frequency where |S(jw)|
crosses 0.707 from bel ow).

2. Maximum tracking error at selected frequencies.

3. System type, or aternatively the maximum steady-state tracking error, A.

4. Shapeof S over selected frequency ranges.

5. Maximum peak magnitude of S, ||S(jw)l|co < M.

The peak specification prevents amplification of noise at high frequencies, and aso
introducesa margin of robustness; typically we select M = 2. Mathematically, these
specifications may be captured by an upper bound, 1/|w p(s)|, on the magnitude of
S, where wp(s) is a weight selected by the designer. The subscript P stands for
performancesince S is mainly used as a performanceindicator, and the performance
requirement becomes
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Figure 2.25: Case where | S| exceedsits bound 1/|wp|, resulting in [|wp S||eo > 1

1S(jw)| < 1/|wp(jw)l, Yw (2.70)

& |wpS|<L,Vw & ||lwpS|l <1 (2.71)

The last equivalence follows from the definition of the H ., norm, and in words the
performance requirement is that the ., norm of the weighted sensitivity, wpS,
must be less than one. In Figure 2.25(a), an example is shown where the sensitivity,
|S|, exceeds its upper bound, 1/|w p|, & some frequencies. The resulting weighted
sensitivity, |wpS| therefore exceeds 1 at the same frequencies as is illustrated in
Figure 2.25(b). Note that we usually do not use a log-scale for the magnitude when
plotting weightedransfer functions, such as |w p.S|.
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Figure 2.26: Inverse of performance weight. Exact and asymptotic plot of 1/|wp (jw)| in
(2.72)

Weight selection. Anasymptotic plot of atypical upper bound, 1/|w p|, is shown
in Figure 2.26. The weight illustrated may be represented by

s/M + w3
wp(s) = ﬁ (2.72)
B

and we see that 1/|wp(jw)| (the upper bound on |S|) isequal to A < 1 at low
frequencies, isequal to M > 1 at high frequencies, and the asymptote crosses 1 at
the frequency w;, which is approximately the bandwidth requirement.

Remark. For this weight the loop shape L = wg /s yields an S which exactly matches the
bound (2.71) at frequencies bel ow the bandwidth and easily satisfies (by afactor A1) the bound
at higher frequencies.

In some cases, in order to improve performance, we may want a steeper slope for
L (and S) below the bandwidth, and then a higher-order weight may be selected. A
weight which asks for aslope of —2 for L in arange of frequencies below crossover
is

(/M2 + wjy)?

(s + wi A1/2)2 @73

wp(s) =

Exercise 2.4 Make an asymptotic plot df/ |wp| in (2.73) and compare with the asymptotic
plot of1/|wp| in (2.72).

The insights gained in the previous section on loop-shaping design are very
useful for selecting weights. For example, for disturbance rejection we must satisfy
|SGa(jw)| < 1 at al frequencies (assuming the variables have been scaled to be less
than 1 in magnitude). It then follows that a good initial choice for the performance
weightistolet jwp(jw)| look like |G 4(jw)| at frequencieswhere |G 4| > 1.
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2.7.3 Stacked requirements: mixed sensitivity

The specification ||lwpS|lec < 1 puts a lower bound on the bandwidth, but not
an upper one, and nor does it alow us to specify the roll-off of L(s) above the
bandwidth. To do this one can make demands on another closed-loop transfer
function, for example, on the complementary sensitivity 7' = I — S = GKS.
For instance, one might specify an upper bound 1/|w | on the magnitude of T
to make sure that L rolls off sufficiently fast at high frequencies. Also, to achieve
robustness or to restrict the magnitude of the input signals, u = KS(r — G 4d),
one may place an upper bound, 1/|w,,|, on the magnitude of K S. To combine these
“mixed sensitivity” specifications, a“stacking approach” is usually used, resulting in
the following overall specification:

el

[|[N||oo = maxa(N(jw)) <1; N=| wrT (2.74)
¢ [quSJ

We here use the maximum singular value, (N (jw)), to measure the size of the

meatrix N at each frequency. For SISO systems, N isavector and 5 (V) isthe usua
Euclidean vector norm:

5(N) = /|wpS|* + |[wrT|? + [w,KSJ? (2.75)

After selecting theform of NV and theweights, the H ., optimal controller is obtained
by solving the problem
min ||V (K)o (2.76)

where K is a stabilizing controller. A good tutorial introduction to H ., control is
given by Kwakernaak (1993).

Remark 1 The stacking procedure is selected for mathematical convenience as it does not
allow usto exactly specify the bounds on the individual transfer functions as described above.
For example, assume that ¢1 (K') and ¢»(K) are two functions of K (which might represent
$1(K) = wpS and ¢2(K) = wrT) and that we want to achieve

1] <1 and |¢p2| <1 (2.77)

Thisissimilar to, but not quite the same as the stacked requirement

a {zi] = VI]$1]* + g2 <1 (2.78)

Objectives (2.77) and (2.78) are very similar when either |¢1| or |¢2| is small, but in the
“worst” case when |1 | = |¢p2|, we get from (2.78) that |¢1| < 0.707 and |¢2| < 0.707. That
is, there is a possible “error” in each specification equal to at most a factor v/2 ~ 3 dB. In
general, with n stacked requirements the resulting error is at most /. Thisinaccuracy in the
specifications is something we are probably willing to sacrifice in the interests of mathematical
convenience. In any case, the specifications are in general rather rough, and are effectively
knobs for the engineer to select and adjust until a satisfactory design is reached.
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Remark 2 Let~y = mink || N(K)||« denote the optimal H, norm. Animportant property
of H . optimal controllersisthat they yield aflat frequency response, that is, (N (jw)) = Yo
at all frequencies. The practical implication isthat, except for at most afactor /n, the transfer
functions resulting from a solution to (2.76) will be close to o times the bounds selected
by the designer. This gives the designer a mechanism for directly shaping the magnitudes of
a(S),a(T),a(KS),and soon.

Example 2.11 ., mixed sensitivity design for the disturbance process. Consider
again the plant in (2.54), and consider &, mixed sensitivitys/ K S design in which

(2.79)

(2

w, KS

Appropriate scaling of the plant has been performed so that the inputs should belabout
less in magnitude, and we therefore select a simple input weaight 1. The performance
weight is chosen, in the form of (2.72), as

wpi(s) = %; M=15 wy=10, A=10"" (2.80)
B

A value ofA = 0 would ask for integral action in the controller, but to get a stable weight
and to prevent numerical problems in the algorithm used to synthesize the controller, we have
moved the integrator slightly by using a small non-zero valueAoiThis has no practical
significance in terms of control performance. The valge= 10 has been selected to achieve
approximately the desired crossover frequetgyf 10 rad/s. TheH -, problem is solved with

the p-toolbox in MATLAB using the commands in Table 2.3.

Table2.3: MATLAB program to synthesize an ‘H .., controller
% Uses the M-t ool box
G=nd2sys(1, conv([10 1], conv([0.05 1],[0.05 1])), 200); % Plant is G
ME1. 5; wb=10; A=1l.e-4; W = nd2sys([1/Mwb], [1 wb*A]); Wi = 1; % Wi ght s.
%
% General i zed plant P is found with function sysic:
% (see Section 3.8 for nore details)
%
systemanes = 'G W W' ;
inputvar = '[ r(1); u(1)]’;
outputvar ='[W; Wi; r-G"’;
inputto.G="[u]’
input towWw ="
input toW =
sysout name =
cl eanupsysic = ’'yes’;
sysic;
%
% Find Hinfinity optimal controller:
%
nmeas=1; nu=1; gmm=0.5; gnx=20; tol =0.001;
[ khi nf, ghi nf, gopt] = hinfsyn(P, nnmeas, nu, gnm, gnx, tol);

For this problem, we achieved an optim#&l., norm of 1.37, so the weighted sensitivity
requirements are not quite satisfied (see design 1 in Figure 2.27 where the curj& [for
is slightly above that fot /|wp1 |). Nevertheless, the design seems good fth, = Ms =
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Figure 2.27: Inverse of performance weight (dashed line) and resulting sensitivity function
(solid line) for two H«. designs (1 and 2) for the disturbance process
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(a) Tracking response (b) Disturbance response
Figure 2.28: Closed-loop step responses for two aternative Ho, designs (1 and 2) for the
disturbance process

1.30, [|T)|oc = M7 = 1.0, GM = 8.04, PM = 71.2° andw. = 7.22 rad/s, and the tracking
response is very good as shown by cugven Figure 2.28(a). (The design is actually very
similar to the loop-shaping design for referencé&®, which was an inverse-based controller.)

However, we see from curyg in Figure 2.28(b) that the disturbance response is very
sluggish. If disturbance rejection is the main concern, then from our earlier discussion in
Section 2.6.4 this motivates the need for a performance weight that specifies higher gains at
low frequencies. We therefore try

(s/ M + )’
v = Ay

M =15ws=10,A=10"" (2.81)

The inverse of this weight is shown in Figure 2.27, and is seen from the dashed line tbioross
magnitude at about the same frequency as weight, but it specifies tighter control at lower
frequencies. With the weightp, we get a design with an optimal., horm of2.21, yielding



62 MULTIVARIABLE FEEDBACK CONTROL

Ms = 1.63, Mr = 1.43, GM = 4.76, PM = 43.3° andw. = 11.34 rad/s. (The design
is actually very similar to the loop-shaping design for disturband€s,) The disturbance
response is very good, whereas the tracking response has a somewhat high overshoot; see
curvey in Figure 2.28(a).

In conclusion, designl is best for reference tracking whereas designs best for
disturbance rejection. To get a design with both good tracking and good disturbance rejection
we need a two degrees-of-freedom controller, as was discussed in Example 2.9.

2.8 Conclusion

The main purpose of this chapter has been to present the classical ideas and
techniques of feedback control. We have concentrated on SISO systems so that
insightsinto the necessary design trade-offs, and the design approachesavailable, can
be properly devel oped before MIM O systems are considered. We also introduced the
H ., problem based on weighted sensitivity, for which typical performance weights
aregivenin (2.72) and (2.73).



3

INTRODUCTION TO
MULTIVARIABLE CONTROL

In this chapter, we introduce the reader to multi-input multi-output (MIMO) systems. We
discuss the singular value decomposition (SVD), multivariable control, and multivariable
right-half plane (RHP) zeros. The need for a careful analysis of the effect of uncertainty
in MIMO systems is motivated by two examples. Finally we describe a general control
configuration that can be used to formulate control problems. Many of these important topics
are considered again in greater detail later in the book. The chapter should be accessible to
readers who have attended a classical SISO control course.

3.1 Introduction

We consider a multi-input multi-output (MIMO) plant with m inputs and [ outputs.
Thus, the basic transfer function model is y(s) = G(s)u(s), wherey isanl x 1
vector, u isanm x 1 vector and G(s) isan! x m transfer function matrix.

If we make a change in the first input, w1, then this will generally affect all the
outputs, y1, yo, -- -, Y1, that is, there is interactionbetween the inputs and outputs.
A non-interacting plant would result if «; only affectsyy, us only affectsy», and so
on.

The main difference between a scalar (SISO) system and a MIMO system is the
presence of directionsin the latter. Directions are relevant for vectors and matrices,
but not for scalars. However, despite the complicating factor of directions, most
of the ideas and techniques presented in the previous chapter on SISO systems
may be extended to MIMO systems. The singular value decomposition (SVD)
provides a useful way of quantifying multivariable directionality, and we will see
that most SISO results involving the absol ute value (magnitude) may be generalized
to multivariable systems by considering the maximum singular value. An exception
to thisis Bode's stability condition which has no generalization in terms of singular
values. Thisis related to the fact that it is difficult to find a good measure of phase
for MIMO transfer functions.
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The chapter is organized as follows. We start by presenting some rules for
determining multivariable transfer functions from block diagrams. Although most
of the formulas for scalar systems apply, we must exercise some care since matrix
multiplication is not commutative, that is, in general GK # KG. Thenwe introduce
the singular value decomposition and show how it may be used to study directions
in multivariable systems. We aso give a brief introduction to multivariable control
and decoupling. We then consider a simple plant with a multivariable RHP-zero and
show how the effect of this zero may be shifted from one output channel to ancther.
After this we discuss robustness, and study two example plants, each 2 x 2, which
demonstrate that the simple gain and phase margins used for SISO systems do not
generaize easily to MIMO systems. Finally, we consider a general control problem
formulation.

At this point, you may find it useful to browse through Appendix A where some
important mathematical tools are described. Exercises to test your understanding of
this mathematics are given at the end of this chapter.

3.2 Transfer functionsfor MIMO systems

G Lol G Y
L G > Gy = T ’
H H z
: G

(a) Cascade system (b) Positive feedback system

Figure 3.1: Block diagrams for the cascade rule and the feedback rule

The following three rules are useful when evaluating transfer functionsfor MIMO
systems.

1. Cascade rule. For the cascade (series) interconnection @f, and G, in
Figure 3.1(a), the overall transfer function matrix@= GG

Remark. The order of the transfer function matrices in G = G2G: (from l€ft to right) is
the reverse of the order in which they appear in the block diagram of Figure 3.1(a) (from left
to right). This has led some authors to use block diagrams in which the inputs enter at the
right hand side. However, in this case the order of the transfer function blocks in a feedback
path will be reversed compared with their order in the formula, so no fundamental benefit is
obtained.

2. Feedback rule. With reference to the positive feedback system in Figure 3.1(b),
we havev = (I — L) 'u whereL = GG is the transfer function around the
loop.
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3. Push-through rule. For matrices of appropriate dimensions
Gi(I -GGy = (I —-G1Gy)™'Gy (3.1

Proof: Equation (3.1) is verified by pre-multiplying both sides by (I — G1G») and post-
multiplying both sidesby (I — G2G). a

Exercise 3.1 Derive the cascade and feedback rules.

The cascade and feedback rules can be combined into the following MIMO rule for
evaluating closed-loop transfer functions from block diagrams.

MIMO Rule: Start from the output and write down the blocks as you meet
them when moving backwards (against the signal flow), taking the most direct
path towards the input. If you exit from a feedback loop then include a term
(I — L)~ for positive feedback (of + L) ! for negative feedback) where
L is the transfer function around that loop (evaluated against the signal flow
starting at the point of exit from the loop).

Care should be taken when applying this rule to systems with nested loops. For
such systems it is probably safer to write down the signal equations and eliminate
interna variables to get the transfer function of interest. The rule is best understood
by considering an example.

+ S J
+
w z
P11 \9 >

Figure 3.2: Block diagram corresponding to (3.2)

\ 4
o
=

y
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Example 3.1 The transfer function for the block diagram in Figure 3.2 is given by
2= (P11 + PaK(I — PosK) ' Po1)w (3.2

To derive this from the MIMO rule above we start at the outpahd move backwards towards
w. There are two branches, one of which gives the t&mdirectly. In the other branch we
move backwards and meBt, and thenK . We then exit from a feedback loop and get a term
(I — L)™* (positive feedback) with = P, K, and finally we meePs; .
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Exercise 3.2 Use the MIMO rule to derive the transfer functions frano y and fromu to
z in Figure 3.1(b). Use the push-through rule to rewrite the two transfer functions.

Exercise 3.3 Use the MIMO rule to show that (2.18) corresponds to the negative feedback
system in Figure 2.4.

Negative feedback control systems

+ +
r + K u+ a + )

Figure 3.3: Conventional negative feedback control system

For the negative feedback system in Figure 3.3, we define L to be the loop transfer
function as seen when breaking the loop at the outputof the plant. Thus, for the case
where the loop consists of aplant G and a feedback controller K we have

L=GK (3.3
The sensitivity and complementary sensitivity are then defined as
SE(I+L)7™", TAI-S=L(I+L)"! (34)

In Figure 3.3, T is the transfer function from r to y, and S is the transfer function
from d; to y; also see equations (2.16) to (2.20) which apply to MIMO systems.

S and T are sometimes called the output sensitivityand output complementary
sensitivity respectively, and to make this explicit one may use the notation L o = L,
So = SandTp = T. Thisis to distinguish them from the corresponding transfer
functions evaluated at the input to the plant.

We define L to be the loop transfer function as seen when breaking the loop at
theinputto the plant with negative feedback assumed. In Figure 3.3

L; = KG (35)

The input sensitivity and input complementary sensitivity functions are then defined
as

S;2(I+Lp)Y Tr21-S=Li(I+L)™" (3.6)

InFigure 3.3, —T'r isthe transfer function from d to u. Of course, for SISO systems
Li=L,S;=S,andT; =T.

Exercise 3.4 In Figure 3.3, what transfer function do&s represent? Evaluate the transfer
functions fromd, andd, tor — y.
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The following relationships are useful:

I+L)y '+ L(I+L)y ' =S+T=1I (3.7)
GI+KG) ™' =(1+GK)'q (3.8)
GK(I+GK)'=GI+KG) 'K = (I + GK) 'GK (3.9)
T=LI+L)y'=I+ (@) H! (3.10)

Note that the matrices G and K in (3.7)-(3.10) need not be squarewhereas L = GK
is square. (3.7) follows trivially by factorizing out the term (I + L) ~! from the
right. (3.8) says that GS; = SG and follows from the push-through rule. (3.9)
aso follows from the push-through rule. (3.10) can be derived from the identity
MMy = (Mo M)~

Similar relationships, but with G and K interchanged, apply for the transfer
functionsevaluated at the plant input. To assist in remembering (3.7)-(3.10) note that
G comes first (because the transfer function is evaluated at the output) and then G
and K alternatein sequence. A given transfer matrix never occurstwice in sequence.
For example, the closed-loop transfer function G(I + GK) —! does notexist (unless
G isrepeated in the block diagram, but then these G’s would actually represent two
different physical entities).

Remark 1 The above identities are clearly useful when deriving transfer functions
analytically, but they are aso useful for numerical calculations involving state-space
redizations, eg. L(s) = C(sI — A)™'B + D. For example, assume we have been given
a state-space redlization for L = GK with n states (so A isan x n matrix) and we want to
find the state space realization of T'. Then we can first form S = (I + L)™! with n states, and
then multiply it by L to obtain T = SL with 2n states. However, aminimal realization of T
has only n states. Thismay be obtained numerically using model reduction, but it is preferable
tofind it directly usingT = I — S, see (3.7).

Remark 2 Note also that the right identity in (3.10) can only be used to compute the state-
space realization of T if that of L™ exists, so I must be semi-proper with D # 0 (which is
rarely the case in practice). On the other hand, since L is square, we can always compute the
frequency response of L(jw) ! (except at frequencies where L(s) has jw-axis poles), and
then obtain T'(jw) from (3.10).

Remark 3 In Appendix A.6 we present some factorizations of the sensitivity function which

will be useful in later applications. For example, (A.139) relates the sensitivity of a perturbed

plant, S’ = (I + G'K) ™}, to that of the nominal plant, S = (I + GK)™*. We have
S'=SI+EoT) "', Eo2 (G -&)G* (3.12)

where Eo is an output multiplicative perturbation representing the difference between G' and
G', and T isthe nominal complementary sensitivity function.
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3.3 Multivariable frequency response analysis

The transfer function G(s) is a function of the Laplace variable s and can be used
to represent a dynamic system. However, if wefix s = s then we may view G (sg)
simply as a complex matrix, which can be analyzed using standard tools in matrix
algebra. In particular, the choice sg = jw is of interest since G(jw) represents the
response to asinusoidal signal of frequency w.

3.3.1 Obtaining thefrequency response from G(s)

G(s) ——

Figure 3.4: System G(s) with input d and output y

The frequency domain isideal for studying directionsin multivariable systems at
any given frequency. Consider the system G(s) in Figure 3.4 with input d(s) and
output y(s):

y(s) = G(s)d(s) (3.12)
(We here denote the input by d rather than by « to avoid confusion with the matrix
U used below in the singular value decomposition). In Section 2.1 we considered the
sinusoidal response of scalar systems. These results may be directly generalized to
multivariable systems by considering the elements g;; of the matrix G. We have

e g;;i(jw) representsthe sinusoidal response from input j to output i.
To be more specific, apply to input channel j ascalar sinusoidal signal given by
d]' (t) = djo sin(wt + aj) (313)

Thisinput signal is persistent, that is, it has been applied since t = —oo. Then the
corresponding persistent output signal in channel 7 is also a sinusoid with the same
frequency
yi(t) = yio sin(wt + 3;) (3.14)

where the amplification (gain) and phase shift may be obtained from the complex
number g;; (jw) asfollows
% =1gi;(Jw)l, Bi — aj = £gij(jw) (3.15)

J
In phasor notation, see (2.7) and (2.9), we may compactly represent the sinusoidal
time response described in (3.13)-(3.15) by

yi(w) = gij(jw)d;(w) (3.16)
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where . '
dj(w) = djoe?™,  yi(w) = yioe’” (3.17)

Herethe use of w (and not jw) asthe argument of d ; (w) and y;(w) implies that these
are complex humbers, representing at each frequency w the magnitude and phase of
the sinusoidal signalsin (3.13) and (3.14).

The overall response to simultaneous input signals of the same frequency in
severa input channels is, by the superposition principle for linear systems, equal
to the sum of the individual responses, and we have from (3.16)

yi(w) = gi (jw)di (W) + gia(jw)dz(w) + -+ = Zgij (jw)d;(w) (3.18)

or in matrix form

|y(w) = G(jw)d(w)| (3.19)
where
43 13
dw) = 2, and y(w) = yZ: (3.20)
i () (@)

represent the vectors of sinusoidal input and output signals.

Example 3.2 Consider a2 x 2 multivariable system where we simultaneously apply
sinusoidal signals of the same frequencyo the two input channels:

dy(t dip sin(wt + «
at = |30 | = [t o] (321

The corresponding output signal is

= t)| _ in(wt + 8
y(£) = B;Et” - [Ziﬁ :ingwtiﬁ;” (3.22)

which can be computed by multiplying the complex mai(yw) by the complex vectal{w):

vw) = GUMW) yw) = [10os ] dw = [0 ] a2

3.3.2 Directionsin multivariable systems
For a SISO system, y = Gd, the gain at a given frequency is simply

ly)| _ |GUw)dw)]
|d(w)] |d(w)]

=G (jw)

The gain depends on the frequency w, but since the system islinear it isindependent
of the input magnitude |d(w)|.
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Things are not quite as simple for MIMO systems where the input and output
signals are both vectors, and we need to “sum up” the magnitudes of the elements
in each vector by use of some norm, as discussed in Appendix A.5.1. If we select
the vector 2-norm, the usual measure of length, then at a given frequency w the
magnitude of the vector input signal is

ld(w)ll2 = /Z|dj(w)|2 =\/dlg +d3 + - (3.24)
J

and the magnitude of the vector output signal is

ly(@)ll2 = /Z lyi ()2 = \/ylo + Y30 + - (3.25)

The gain of the system G(s) for aparticular input signal d(w) is then given by the
ratio

ly@llz _ IGG)d@)ll2 _ Vyio +y30 + - (3.26)

[l [ldw)ll2 VB + By + -
Again the gain depends on the frequency w, and again it is independent of the input
magnitude ||d(w)||2. However, for a MIMO system there are additional degrees of
freedom and the gain depends also on the direction of the input d. The maximum
gain asthe direction of the input is varied is the maximum singular value of G,

|Gl _
ax = max ||Gd|; =d(G 3.27
Il Hd”FlII |2 =(G) (3.27)

whereas the minimum gain is the minimum singular value of G,

. IGd||»
B Gdll> = (G 3.28
a0 ||d||> (min (|Gd]l, = e(G) (3.28)

Thefirst identitiesin (3.27) and (3.28) follow because the gain is independent of the
input magnitude for a linear system.

d1o

Example 3.3 For a system with two inputg, = {dm

the following five inputs:

_[1 _To _ [o.707 _ [ o707 _[os
di = {0}’ dz = {1}’ ds = {0.707]’ di = {70.707}’ ds = {70.8}

(which all have the same magnituflé||> = 1 but are in different directions). For example,
for the2 x 2 system

}, the gain is in general different for

Gy = [g ;‘] (3.29)
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Figure3.5: Gain ||G1d||2/||d||2 asafunction of dao/d1o for G in (3.29)

(a constant matrix) we compute for the five inpditshe following output vectors

_[5] .. _[4 _ [6.36 _ [o.707 _[-o02
VL= 3] 27 |2 Y37 (354 Y47 o707 Y57 | 02

and the 2-norms of these five outputs (i.e. the gains for the five inputs) are
llysll2 = 5.83, [lyzll2 = 4.47, [lys|l> = 7.30, [[yall> = 1.00, [lys||> = 0.28

This dependency of the gain on the input direction is illustrated graphically in Figure 3.5
where we have used the ratibo/dio as an independent variable to represent the input
direction. We see that, depending on the rafig/d.o, the gain varies betwee®.27 and
7.34. These are the minimum and maximum singular valu€s, pfespectively.

3.3.3 Eigenvaluesarea poor measure of gain

Before discussing in more detail the singular value decomposition we want to
demonstrate that the magnitudes of the eigenvalues of atransfer function matrix, e.g.
|Ai(G(jw)|, do not provide a useful means of generalizing the SISO gain, |G(jw)|.
First of al, eigenvalues can only be computed for square systems, and even then they
can be very misleading. To see this, consider the system y = G'd with
1

G = {g 30} (3.30)
which has both eigenvalues \; equa to zero. However, to conclude from the
eigenvalues that the system gain is zero is clearly misleading. For example, with
aninput vector d = [0 1]7 we get an output vector y = [100 0]7.

The “problem” is that the eigenvalues measure the gain for the special case when
the inputs and the outputs are in the same direction, namely in the direction of the
eigenvectors. To see this let ¢; be an eigenvector of G and consider an input d = ¢;.
Thentheoutputisy = G't; = A;t; where \; isthe corresponding eigenval ue. We get

lyll/Nldll = Ixatall/lltsll = |Aql
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S0 |A;| measuresthe gainin thedirection ¢ ;. Thismay be useful for stability analysis,
but not for performance.

To find useful generalizations of |G| for the case when G is amatrix, we need the
concept of a matrix norm denoted ||G||. Two important properties which must be
satisfied for amatrix norm are the triangle inequality

IG1 + Ga|| < [|G1 | + (|G| (3.31)
and the multiplicative property
IG1Ga|| < [|GAl - |G-l (332

(see Appendix A.5 for more details). Aswe may expect, the magnitude of the largest
eigenvalue, p(G) £ |\ nae(G)| (the spectral radius), does not satisfy the properties
of amatrix norm; also see (A.115).

In Appendix A.5.2 weintroduce several matrix norms, such asthe Frobeniusnorm
|G|l F, the sum norm ||G||sum, the maximum column sum ||G|| ;1. the maximum row
sum || G|} i, and the maximum singular value ||G|| .2 = 5(G) (thelatter three norms
areinduced by avector norm, e.g. see(3.27); thisisthe reason for the subscript 7). We
will use al of these normsin this book, each depending on the situation. However, in
this chapter we will mainly use the induced 2-norm, 5(G). Notice that (G) = 100
for the matrix in (3.30).

Exercise 3.5 Compute the spectral radius and the five matrix norms mentioned above for
the matrices in (3.29) and (3.30).

3.3.4 Singular value decomposition

The singular value decomposition (SVD) is defined in Appendix A.3. Here we are
interested in its physical interpretation when applied to the frequency response of a
MIMO system G(s) with m inputsand ! outputs.

Consider a fixed frequency w where G(jw) is a constant [ x m complex matrix,
and denote G(jw) by G for simplicity. Any matrix G may be decomposed into its
singular value decomposition, and we write

G=UxVvH (3.33)
where

Yisanlxm matrix with & = min{l, m} non-negativesingular values, ¢ ;, arranged
in descending order along its main diagonal; the other entries are zero. The
singular values are the positive square roots of the eigenvaluesof G 7 G, where
GH isthe complex conjugate transpose of G.

0i(G) =/ Xi(GHG) (3.34)
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Uisanl x [ unitary matrix of output singular vectors, u;,
V isanm x m unitary matrix of input singular vectors, v,

Thisisillustrated by the SVD of areal 2 x 2 matrix which can always be writtenin
theform

. . T
_ |cosfy —sinb, op O cosfly *Esinfo
G = sinf,  cosf; } { 0 o2 } { —sinfy 4 cosfs (3.35)
U s e

where the angles #; and 8, depend on the given matrix. From (3.35) we see that the
matrices U and V' involve rotations and that their columns are orthonormal .

The singular values are sometimes called the principal values or principal gains,
and the associated directions are called principal directions. In general, the singular
values must be computed numericaly. For 2 x 2 matrices however, anaytic
expressions for the singular values are given in (A.36).

Caution. It is standard notation to use the symbol U to denote the matrix of outputsingular
vectors. Thisisunfortunate asit is al so standard notation to use u (lower case) to represent the
inputsignal. The reader should be careful not to confuse these two.

Input and output directions. The column vectorsof U, denoted u ;, represent the
output direction®f the plant. They are orthogonal and of unit length (orthonormal),
that is

luilla = Vw2 + Jui? + ...+ [ug? =1 (3.36)
uf{ui =1, uf{uj =0, i#j (3.37)

Likewise, the column vectorsof V', denoted v ;, are orthogonal and of unit length, and
represent the input directions These input and output directions are related through
the singular values. To see this, note that since V' is unitary wehave V7V = I, so
(3.33) may bewritten as GV = UX, which for column ¢ becomes

G’Ui = OiUu; (338)

wherev; and u; are vectors, whereaso; isascalar. That is, if we consider aninputin
the direction v;, then the outputisin the direction u ;. Furthermore, since ||v;]]2 = 1
and ||u;|l2 = 1 we see that the ¢'th singular value o ; gives directly the gain of the
matrix G in this direction. In other words

|Gvi |2

UZ(G) = ||G’Uz||2 = ||’U||2

(3.39)

Some advantages of the SV D over the eigenvalue decomposition for analyzing gains
and directionality of multivariable plants are:

1. Thesingular values give better information about the gains of the plant.
2. The plant directions obtained from the SVD are orthogonal.
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3. The SVD also applies directly to non-square plants.

Maximum and minimum singular values. As aready stated, it can be shown
that the largest gain for anyinput direction is equal to the maximum singular value

_ IGdll> _ |Gl

0(G) = 01(G) = max = 3.40

(=D =08 = ol (340

and that the smallest gain for any input direction (excluding the “wasted” in the

nullspace of G' when there are more inputs than outputs? ) is equal to the minimum
singular value

_ i Il _ (Gl

(@) =0, (G) = = 341
o(G) = ok =8 [l = Toell (340
where k = min{l, m}. Thus, for any vector d we have that
dll-
o(G) < 194l ;) (3.42)
lldl[2
Defineuy = @, v, = 0, ur = u and v, = v. Thenit follows that
Gv = ou, Guv=cou (3.43)

Thevector @ correspondsto theinput direction with largest amplification, and z isthe
corresponding output direction in which the inputs are most effective. The directions
involving v and u are sometimes referred to as the “ strongest”, “high-gain” or “most
important” directions. The next most important directions are associated with v, and
us, and so on (see Appendix A.3.5) until the“least important”, “weak” or “low-gain”

directions which are associated with v and u.

Example 3.3 continue. Consider again the system (3.29) with

G = {g ‘2‘} (3.44)

The singular value decomposition Gf is

G = 0.872  0.490 7.343 0 0.794 —0.608]"
1= |0.490 —0.872 0 0.272 0.608 0.794

~ ~ AN
'e v~

~~
U z vVH

0.794

The largest gain of 7.343 is for an input in the direction= {0 608

]. The smallest gain of
—0.608
0.794

Notethat the directions as given by the singular vectorsare not unique, in the sense
that the elements in each pair of vectors (u;, v;) may be multiplied by a complex

0.272 is for an input in the direction = . This confirms findings on page 70.

T For a“fat” matrix G' with more inputs than outputs (m > 1), we can always choose a nonzero input d
in the nullspace of G such that Gd = 0.
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scalar ¢ of magnitude 1 (|¢| = 1). Thisis easily seen from (3.39). For example, we
may change the sign of the vector & (multiply by ¢ = —1) provided we aso change
the sign of the vector @. For example, if you use Matlab to compute the SVD of
the matrix in (3.44) (91=[5 4; 3 2 ]; [u,s,v]=svd(gl)), thenyou will
probably find that the signs are different from those given above.

Since in (3.44) both inputs affect both outputs, we say that the system is
interactive This follows from the relatively large off-diagonal elements in G ;.
Furthermore, the system is ill-conditioned that is, some combinations of the inputs
have a strong effect on the outputs, whereas other combinations have a weak effect
on the outputs. This may be quantified by the condition numberthe ratio between
the gains in the strong and weak directions; which for the system in (3.44) is
7)o = 7.343/0.272 = 27.0.

Example 3.4 Shopping cart. Consider a shopping cart (supermarket trolley) with fixed
wheels which we may want to move in three directions; forwards, sideways and upwards.
This is a simple illustrative example where we can easily figure out the principal directions
from experience. The strongest direction, corresponding to the largest singular value, will
clearly be in the forwards direction. The next direction, corresponding to the second singular
value, will be sideways. Finally, the most “difficult” or “weak” direction, corresponding to
the smallest singular value, will be upwards (lifting up the cart).

For the shopping cart the gain depends strongly on the input direction, i.e. the plant is ill-
conditioned. Control of ill-conditioned plants is sometimes difficult, and the control problem
associated with the shopping cart can be described as follows: Assume we want to push the
shopping cart sideways (maybe we are blocking someone). This is rather difficult (the plant
has low gain in this direction) so a strong force is needed. However, if there is any uncertainty
in our knowledge about the direction the cart is pointing, then some of our applied force will
be directed forwards (where the plant gain is large) and the cart will suddenly move forward
with an undesired large speed. We thus see that the control of an ill-conditioned plant may be
especially difficult if there is input uncertainty which can cause the input signal to “spread”
from one input direction to another. We will discuss this in more detail later.

Example 3.5 Digtillation process. Consider the following steady-state model of a

distillation column
_ [ 878 864
G= {108.2 7109.6} (3.45)
The variables have been scaled as discussed in Section 1.4. Thus, since the elements are much
larger than1 in magnitude this suggests that there will be no problems with input constraints.
However, this is somewhat misleading as the gain in the low-gain direction (corresponding to
the smallest singular value) is actually only just abdv@o see this consider the SVD@f

H
_ 10625 —0.781 1972 0 0.707  —0.708
G= {0.781 0.625 } { 0 1.39] {—0.708 —0.707 (3.46)

~ AN AN
v~ 'e

~
U h3} VH

From the first input singular vectof; = [0.707 —0.708]7, we see that the gain 597.2
when we increase one input and decrease the other input by a similar amount. On the other
hand, from the second input singular vector,= [—0.708 —0.707]", we see that if we
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increase both inputs by the same amount then the gain isloBf The reason for this is

that the plant is such that the two inputs counteract each other. Thus, the distillation process
is ill-conditioned, at least at steady-state, and the condition numb&y72/1.39 = 141.7.

The physics of this example is discussed in more detail below, and later in this chapter we
will consider a simple controller design (see Motivating robustness example No. 2 in Section
3.7.2).

Example 3.6 Physics of the distillation process. The model in (3.45) represents two-
point (dual) composition control of a distillation column, where the top composition is to
be controlled atyp = 0.99 (outputy:) and the bottom composition &z = 0.01 (output

y2), using reflux L (input:;) and boilup V (inputuz) as manipulated inputs (see Figure 10.8
on page 434). Note that we have here returned to the convention ofwséarg u, to denote

the manipulated inputs; the output singular vectors will be denoted &ryd v.

Thel, 1-element of the gain matrix is87.8. Thus an increase in; by 1 (with u» constant)
yields a large steady-state change yn of 87.8, that is, the outputs are very sensitive to
changes inu; . Similarly, an increase im» by 1 (with «; constant) yieldg, = —86.4. Again,
this is a very large change, but in the opposite direction of that for the increase. iive
therefore see that changesqn andu counteract each other, and if we increaseand u»
simultaneously by, then the overall steady-state changejiris only87.8 — 86.4 = 1.4.

Physically, the reason for this small change is that the compositions in the distillation
column are only weakly dependent on changes inriteenal flows (i.e. simultaneous changes

in the internal flowsL and V). This can also be seen from the smallest singular value,
—0.708

o(G) = 1.39, which is obtained for inputs in the directian= {_0.707

}. From the output

singular vectoru = {*0'781

0.625
directions, that is, to changg: — y». Therefore, it takes a large control action to move the
compositions in different directions, that is, to make both products purer simultaneously. This
makes sense from a physical point of view.

On the other hand, the distillation column is very sensitive to changedeémal flows(i.e.

0.707
—0.708

associated with the largest singular value, and is a general property of distillation columns
where both products are of high purity. The reason for this is that the external distillate flow
(which varies a8/ — L) has to be about equal to the amount of light component in the feed,
and even a small imbalance leads to large changes in the product compositions.

} we see that the effect is to move the outputs in different

increaseu; — us = L — V). This can be seen from the input singular veaice {

For dynamic systems the singular values and their associated directions vary with
frequency, and for control purposesit isusually the frequency range corresponding to
the closed-loop bandwidth which is of main interest. The singular values are usualy
plotted as a function of frequency in a Bode magnitude plot with a log-scale for
frequency and magnitude. Typical plots are shown in Figure 3.6.

Non-Square plants

The SVD is aso useful for non-square plants. For example, consider a plant with 2
inputs and 3 outputs. In this case the third output singular vector, u 3, tellsusin which
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Figure 3.6: Typical plots of singular values

output direction the plant cannot be controlled. Similarly, for aplant with moreinputs
than outputs, the additional input singular vectorstell usin which directionstheinput
will have no effect.

Example 3.7 Consider a non-square system with 3 inputs and 2 outputs,

_[5 4 1
G2_{3 2 —1}

with singular value decomposition

0.792 —0.161 0.588 17

Go = {gig _0(-)488717} {7'%54 |y g} {0.608 0.124 —0.785
: : : | Lo.osa 0979 0.196

~ AN
~ ~ N ,
~~

vH

U z

From the definition of the minimum singular value we hay€’,) = 1.387, but note that an
0.588

inputd in the direction{ —0.785} is in the nullspace off and yields an outpuy = Gd = 0.
0.196

Exercise 3.6 For a system withn inputs and1 output, what is the interpretation of the
singular values and the associated input directioi3?q What isU in this case?

3.3.5 Singular valuesfor performance

So far we have used the SVD primarily to gain insight into the directionality of
MIMO systems. But the maximum singular value is also very useful in terms of
frequency-domain performance and robustness. We here consider performance.

For SISO systems we earlier found that |S(jw)| evaluated as a function of
frequency gives useful information about the effectiveness of feedback control. For
example, it is the gain from a sinusoidal reference input (or output disturbance) to
the control error, |e(w)|/|r(w)| = |S(jw)|.
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For MIMO systems a useful generalization results if we consider the ratio
le(w)]]2/]]r(w)]]2, wherer isthe vector of referenceinputs, e isthe vector of control
errors, and || - ||2 isthe vector 2-norm. As explained above, this gain depends on the
direction of (w) and we have from (3.42) that it is bounded by the maximum and
minimum singular value of S,

lle(@)ll2
I (@)l]2

In terms of performanceit is reasonable to require that the gain |le(w)|| 2/]|7(w)]|2
remains small for any direction of r(w), including the “worst-case” direction which
givesagain of 7(S(jw)). Let 1/|wp(jw)| (the inverse of the performance weight)
represent the maximum allowed magnitude of ||e||2/||r||]> a each frequency. This
resultsin the following performance requirement:

a(S(jw)) <

< (S(jw)) (3.47)

7(S(jw)) < 1/|lwp(jw)|, Vw & F(wpS) <1, Yw
& JlwpS|ls <1 (3.48)

where the H ., norm (see aso page 55) is defined as the peak of the maximum
singular value of the frequency response

1M (5)[lo & max5(M (jw)) (3.49)

Typical performance weights w p(s) are given in Section 2.7.2, which should be
studied carefully.

The singular values of S(jw) may be plotted as functions of frequency, as
illustrated later in Figure 3.10(a). Typically, they are small at low frequencieswhere
feedback is effective, and they approach 1 at high frequencies because any real
system is strictly proper:

w—o0o: Ljw)—=0 = S(w) =1 (3.50)

The maximum singular value, 5(S(jw)), usualy has a peak larger than 1 around
the crossover frequencies. This peak is undesirable, but it is unavoidable for real
systems.

As for SISO systems we define the bandwidth as the frequency up to which
feedback is effective. For MIMO systems the bandwidth will depend on directions,
and we have a bandwidth regiorbetween a lower frequency where the maximum
singular value, 5(S), reaches 0.7 (the low-gain or worst-case direction), and a
higher frequency where the minimum singular value, ¢(.S), reaches 0.7 (the high-
gain or best direction). If we want to associate a single bandwidth frequency for
a multivariable system, then we consider the worst-case (low-gain) direction, and
define

e Bandwidthwpg: Frequency where 5(S) crosses % = 0.7 from below.
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It is then understood that the bandwidth is at least w g for any direction of the input
(reference or disturbance) signal. Since S = (I + L) 1, (A.52) yields

o(I)-1< - <o(D)+1 (3.50)
(S)

Thus at frequencies where feedback is effective (namely where g(L) > 1) we have

7(S) ~ 1/a(L), and at the bandwidth frequency (where 1/5(S(jwg)) = V2 =

1.41) we have that o(L(jwp)) is between 0.41 and 2.41. Thus, the bandwidth is

approximately where ¢ (L) crosses 1. Finaly, at higher frequencies where for any

real system g (L) (and (L)) issmall we havethat 5(S) =~ 1.

3.4 Control of multivariable plants

Gq
+ )
r + K [ . G )
_ +
Ym
+
+
n

Figure 3.7: One degree-of-freedom feedback control configuration

Consider the simple feedback system in Figure 3.7. A conceptualy simple
approach to multivariable control is given by a two-step procedure in which we
first design a “compensator” to dea with the interactions in GG, and then design a
diagonalcontroller using methods similar to those for SISO systems. This approach
is discussed below.

The most common approach is to use a pre-compensator, W (s), which
counteracts the interactionsin the plant and resultsin a“new” shaped plant:

G4(s) = G(s)W1(s) (3.52)

which is more diagona and easier to control than the origina plant G(s). After
finding a suitable W (s) we can design a diagonalcontroller K ;(s) for the shaped
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plant G(s). The overal controller isthen
K(s) = Wi(s)K(s) (3.53)

In many cases effective compensators may be derived on physical grounds and may
include nonlinear elements such asratios.

Remark 1 Some design approaches in this spirit are the Nyquist Array technique of
Rosenbrock (1974) and the characteristic loci technique of MacFarlane and Kouvaritakis
(1977).

Remark 2 The H, loop-shaping design procedure, described in detail in Section 9.4, is
similar in that a pre-compensator is first chosen to yield a shaped plant, Gs = GW1, with
desirable properties, and then a controller K;(s) is designed. The main difference is that in
"H oo loop shaping, K (s) isafull multivariable controller, designed based on optimization (to
optimize H ., robust stability).

3.4.1 Decoupling

Decoupling control resultswhen the compensator 17, ischosensuchthat G = GW;
in (3.52) is diagonal at a selected frequency. The following different cases are
possible:

1. Dynamic decoupling: G(s) is diagonal at al frequencies. For example, with
Gs(s) = I and asquare plant, we get W, = G~(s) (disregarding the possible
problems involved in realizing G ' (s)). If we then select K(s) = I(s)I (eg.
with(s) = k/s), the overall contraller is

K(8) = Kiny(s) 21(5)G1(s) (3.54)
Wewill later refer to (3.54) asan inverse-basedontroller. It resultsin adecoupled
nominal system with identical loops, i.e. L(s) = I(s)I, S(s) = ﬁ(s)l and
T(s) = rip5 1.

Remark. In some cases we may want to keep the diagonal elements in the shaped plant
unchanged by selecting Wi = G~ 'G4iag. In oOther cases we may want the diagonal
elements in 1 to be 1. This may be obtained by selecting W1 = G~ (G~ diag) ™"
and the off-diagonal elements of TV, are then called “decoupling elements”.

2. Steady-statedecoupling: G4(0) isdiagonal. This may be obtained by selecting a
constant pre-compensator W; = G~1(0) (and for anon-square plant we may use
the pseudo-inverse provided G(0) hasfull row (output) rank).

3. Approximate decoupling at frequency w,: Gs(jw,) is as diagonal as possible.
This is usually obtained by choosing a constant pre-compensator W; = G;!
where G, is area approximation of G(jw,). G, may be obtained, for example,
using the align algorithm of Kouvaritakis (1974). The bandwidth frequency is a
good selection for w,, because the effect on performance of reducing interaction
isnormally greatest at this frequency.
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Theideaof decoupling control is appealing, but there are several difficulties:

1. Asone might expect, decoupling may be very sensitive to modelling errors and
uncertainties. Thisisillustrated below in Section 3.7.2, page 93.)

2. Therequirement of decoupling and the use of an inverse-based controller may not
be desirable for disturbance rejection. The reasons are similar to those given for
SISO systemsin Section 2.6.4, and are discussed further below; see (3.58).

3. If the plant has RHP-zeros then the requirement of decoupling generally
introduces extra RHP-zeros into the closed-loop system (see Section 6.5.1,

page 221).

Even though decoupling controllers may not aways be desirable in practice, they
are of interest from a theoretical point of view. They also yield insights into the
limitations imposed by the multivariable interactions on achievable performance.
One popular design method, which essentially yields a decoupling controller, is the
internal model control (IMC) approach (Morari and Zafiriou, 1989).

Another common strategy, which avoids most of the problemsjust mentioned, isto
use partial (one-way) decouplingshere G ;(s) in (3.52) is upper or lower triangular.

3.4.2 Pre- and post-compensator s and the SVD-controller

The above pre-compensator approach may be extended by introducing a post-
compensator 1, (s), as shown in Figure 3.8. One then designs adiagonalcontroller

____________________________________

Y
5
Y
s
Y
=
Y

____________________________________

Figure 3.8: Pre- and post-compensators, W7 and Wa. K is diagonal
K, for the shaped plant W, GW; . The overal controller is then
K(s) = Wi K, W, (3.55)
The SVD-controlleris aspecial case of a pre- and post-compensator design. Here
Wy =V, and W,y =U! (3.56)
where V,, and U, are obtained from a singular value decomposition of G, =
U,%,V.E, where G, is area approximation of G(jw,) a a given frequency w,

(often around the bandwidth). SV D-controllers are studied by Hung and MacFarlane
(1982), and by Hovd et al. (1994) who found that the SVD controller structure is
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optimal in some cases, e.g. for plants consisting of symmetrically interconnected
subsystems.

In summary, the SVD-controller provides a useful class of controllers. By
sdlecting K5 = 1(s)X;! a decoupling design is achieved, and by selecting a
diagonal K ; with alow condition number (v(K s) small) generally resultsin arobust
controller (see Section 6.10).

3.4.3 Diagonal controller (decentralized control)

Ancther simple approach to multivariable controller design is to use a diagonal or
block-diagonal controller K (s). This is often referred to as decentralized control.
Clearly, this works well if G(s) is close to diagonal, because then the plant to be
controlled is essentially a collection of independent sub-plants, and each element in
K (s) may be designed independently. However, if off-diagonal elementsin G(s) are
large, then the performancewith decentralized diagonal control may be poor because
no attempt is made to counteract the interactions. Decentralized control is discussed
in more detail in Chapter 10.

3.4.4 What isthe shape of the“ best” feedback controller?

Consider the problem of disturbancerejection. The closed-1oop disturbance response
isy = SG4d. Suppose we have scaled the system (see Section 1.4) such that at each
frequency the disturbances are of magnitude 1, ||d||» < 1, and our performance
requirement is that ||y|| < 1. This is equivaent to requiring 5(SG4) < 1.1In
many cases there is a trade-off between input usage and performance, such that the
controller that minimizesthe input magnitudeis onethat yields al singular values of
SGaequa tol,i.e 0;(SG4) = 1,Vw. This correspondsto

SminGd = Ul (357)

where U, (s) is some all-pass transfer function (which at each frequency has al its
singular values equal to 1). The subscript min refers to the use of the smallest loop
gain that satisfies the performance objective. For simplicity, we assume that G 4 is
square so U (jw) isaunitary matrix. At frequencies where feedback is effective we
have S = (I + L)™' ~ L', and (3.57) yieldS Lpin = GKuin = GaU; ' In
conclusion, the controller and loop shape with the minimum gain will often look like

Kmin ® GT'GqUsz,  Luin ~ GqU> (3.58)

where Us = U; ' is some al-pass transfer function matrix. This provides a
generaization of | K in| &~ |G~ G 4| which was derived in (2.58) for SISO systems,
and the summary following (2.58) on page 48 therefore also applies to MIMO
systems. For example, we see that for disturbances entering at the plant inputs,
G4 = G,weget K, = Us, so asimple constant unit gain controller yields agood
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trade-off between output performanceand input usage. We al so note with interest that
it is generally not possible to select a unitary matrix U, such that L,,;, = G4U; is
diagonal, so a decoupling design is generally not optimal for disturbance rejection.
These insights can be used as a basis for a loop-shaping design; see more on H
loop-shaping in Chapter 9.

small

3.4.5 Multivariable controller synthesis

The above design methods are based on atwo-step procedurein which wefirst design
a pre-compensator (for decoupling control) or we make an input-output pairing
selection (for decentralized control) and then we design adiagonal controller K ;(s).
Invariably this two-step procedure resultsin a suboptimal design.

The alternative is to synthesize directly a multivariable controller K (s) based
on minimizing some objective function (norm). We here use the word synthesize
rather than designto stress that this is a more formalized approach. Optimization
in controller design became prominent in the 1960’s with “optimal control theory”
based on minimizing the expected value of the output variance in the face of
stochastic disturbances. Later, other approaches and norms were introduced, such
as H ., optimal control.

3.4.6 Summary of mixed-sensitivity H, synthesis (S/KS)

We here provide a brief summary of one multivariable synthesis approach, namely
the S/ K S (mixed-sensitivity) H ., design method which isused in later examplesin
this Chapter. Inthe S/ K S problem, the objectiveis to minimize the H o, norm of

WpS
N = {W,ﬁ( s} (3.59)

This problem was discussed earlier for SISO systems, and another look at
Section 2.7.3 would be useful now. A sample MATLAB file is provided in
Example 2.11, page 60.

The following issues and guidelines are relevant when selecting the weights W p
and W,:

1. K S isthetransfer function from r to u in Figure 3.7, so for a system which has
been scaled as in Section 1.4, a reasonable initial choice for the input weight is
w, =1I.

2. S is the transfer function from r to —e = r — y. A common choice for the
performanceweight is Wp = diag{wp;} with

wp; = T8, 4«1 (3.60)
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(seealso Figure 2.26 on page 58). Selecting A; < 1 ensures approximate integral
action with S(0) ~ 0. Often we select A/; about 2 for all outputs, wheress wij;
may be different for each output. A large value of w 5, yields afaster response for
output 4.

3. To find a reasonable initial choice for the weight 1 p, one can first obtain a
controller with some other design method, plot the magnitude of the resulting
diagonal elements of .S as afunction of frequency, and select w p;(s) asarationa
approximation of 1/|.S;;].

4. For disturbancerejection, we may in some cases want asteeper slopefor w p; (s) a
low frequenciesthan that givenin (3.60), e.g. as seetheweight in (2.73). However,
it may be better to consider the disturbances explicitly by considering the H
norm of

| WpS  WpSGy
N= {WuKS WUKSGd] (361)
or equivaently
| WpSWy . B
N = [WUKSWJ withW, =[I Gy (3.62)

where N represents the transfer function from H to the weighted e and u. In

some situations we may want to adjust Wp or G4 in order to satisfy better our
original objectives. The helicopter case study in Section 12.2 illustrates this by
introducing a scalar parameter « to adjust the magnitude of G 4.

5. T is the transfer function from —n to y. To reduce sensitivity to noise and
uncertainty, we want 7' small at high frequencies, and so we may want additional
roll-off in L. This can be achieved in several ways. One approach isto add W T
to the stack for V in (3.59), where W1 = diag{wy;} and |w| is smaller than 1
at low frequenciesand large at high frequencies. A more direct approach is to add
high-frequency dynamics, 1 (s), to the plant model to ensure that the resulting
shaped plant, G; = GWq, rolls off with the desired slope. We then obtain an
H oo optimal controller K for this shaped plant, and finally include W, (s) in the
controller, K = W1 K.

More details about # ., design are given in Chapter 9.

3.5 Introduction to multivariable RHP-zeros

By means of an example, we now give the reader an appreciation of the fact that
MIMO systems have zeros even though their presence may not be obvious from the
elementsof G(s). Asfor SISO systems, we find that RHP-zerosimpose fundamental
limitations on control.
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The zeros z of MIMO systems are defined as the values s = z where G(s) loses
rank, and we can find the direction of a zero by looking at the direction in which
the matrix G(z) has zero gain. For square systems we essentially have that the poles
and zeros of G(s) are the poles and zeros of det G(s). However, this crude method
may fail in some cases, as it may incorrectly cancel poles and zeros with the same
location but different directions (see Sections 4.5 and 4.5.3 for more details).

Example 3.8 Consider the following plant

1 1 1
Gls) = (0.2s +1)(s + 1) [1 + 2s 2] (3.63)

The responses to a step in each individual input are shown in Figure 3.9(a) and (b). We see

2 2 15
15 15 Y2 1 Yo
Y2 05
1 1
Y1
Y1 Y1 0
0.5 0.5 -05
% 5 10 % 5 10 o 5 10
Time [sec] Time [sec] _Time[sec]
@ Step in w;, u = (b) Step in w2, u = (c) Combined step inu; and
[1 0]F [o 17 uz,u=[1 —1]T

Figure 3.9: Open-loop response for G(s) in (3.63)

that the plant is interactive, but for these two inputs there is no inverse response to indicate
the presence of a RHP-zero. Nevertheless, the plant does have a multivariable RHP-zero at
z = 0.5, that is, G(s) loses rank ats = 0.5, and det G(0.5) = 0. The singular value
decomposition of7(0.5) is

111 0.45 0.89 192 0] [o71 o071 1"
G(05) = 745 [2 2] = {0.89 —0.45] { 0 0] [0.71 —0.71] (3.64)

—_——,————
U b3} vH

and we have as expecte€iG(0.5)) = 0. The input and output directions corresponding to the

36?711 70(')5.;25 . Thus, the RHP-zero is associated with both
inputs and with both outputs. The presence of the multivariable RHP-zero is also observed
from the time response in Figure 3.9(c), which is for a simultaneous input change in opposite

—11 . We see that» displays an inverse response whergashappens to

RHP-zero arev = andu =

directions,u =

remain at zero for this particular input change.
To see how the RHP-zero affects the closed-loop response, we design a controller which
minimizes thé{., norm of the weighted/ K .S matrix

WpS ]

W.KS (3.65)

|
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with weights

Wu:I, I/Vp:|:u)P1 0 :|7’wpi:7$/Mi_thi
s+ wp,; A

L —4
0 . A =10 (3.66)

The MATLAB file for the design is the same as in Table 2.3 on page 60, except that we now
have a2 x 2 system. Since there is a RHP-zerazat 0.5 we expect that this will somehow
limit the bandwidth of the closed-loop system.

Design 1. We weight the two outputs equally and select

Design1: Mi =M, =15; wp; =wpy, =2/2=0.25

This yields ar{, norm for IV of 2.80 and the resulting singular values Sfare shown by the

solid lines in Figure 3.10(a). The closed-loop response to a reference chaagel —1 ]T

is shown by the solid lines in Figure 3.10(b). We note that both outputs behave rather poorly
and both display an inverse response.

[«3]
Ee]
=2
i<
&
=

P Design 1. —

L Design2: - - -

= - _2
10° 10° 10° 0 1 2 3 4 5
Frequency [rad/s] Time [sec]

. (b) Response to change in reference,
(&) Singular values of S r=[1 71}T

Figure 3.10: Alternative designs for 2 x 2 plant (3.63) with RHP-zero

Design 2. For MIMO plants, one can often move most of the deteriorating effect (e.g.
inverse response) of a RHP-zero to a particular output channel. To illustrate this, we change
the weightwp» so that more emphasis is placed on outpuiVe do this by increasing the
bandwidth requirement in output chanriby a factor of100:

Design2: M; = M> =15; wp; =0.25, wp, =25

This yields anH. norm for N of 2.92. In this case we see from the dashed line in
Figure 3.10(b) that the response for outpit(y:) is excellent with no inverse response.
However, this comes at the expense of outp(t;) where the response is somewhat poorer
than for Designl.

Design 3. We can also interchange the weight$, and wp» to stress outputl rather
than output2. In this case (not shown) we get an excellent response in odtpuith no
inverse response, but outgutesponds very poorly (much poorer than outpdior Design2).
Furthermore, theH ., norm for NV is 6.73, whereas it was onlg.92 for Design2.
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Thus, we see that it is easier, for this example, to get tight control of o2tjnatn of output
0.89

—0.45 |’
mostly in the direction of output We will discuss this in more detail in Section 6.5.1.

1. This may be expected from the output direction of the RHP-zeto, which is

Remark 1 We find from this example that we can direct the effect of the RHP-zero to either
of the two outputs. Thisistypical of multivariable RHP-zeros, but there are cases where the
RHP-zero is associated with aparticular output channel and it isnotpossible to moveits effect
to another channel. The zero is then called a“pinned zero” (see Section 4.6).

Remark 2 It isobserved from the plot of the singular values in Figure 3.10(a), that we were
able to obtain by Design 2 a very large improvement in the “good” direction (corresponding
to o(.9)) at the expense of only aminor deterioration in the “bad” direction (corresponding to
7(S)). Thus Design 1 demonstrates a shortcoming of the H., norm: only the worst direction
(maximum singular value) contributes to the ., horm and it may not always be easy to get a
good trade-off between the various directions.

3.6 Condition number and RGA

Two measures which are used to quantify the degree of directionality and the level of
(two-way) interactionsin MIMO systems, are the condition number and the relative
gain array (RGA), respectively. We here define the two measures and present an
overview of their practical use We do not give detailed proofs, but refer to other
places in the book for further details.

3.6.1 Condition number

We define the condition numbepf a matrix as the ratio between the maximum and
minimum singular values,

(@) £ 0(G)/e(@) (367)
A matrix with a large condition number is said to be ill-conditioned For a non-
singular (square) matrix o(G) = 1/6(G 1), 0 y(G) = 5(G)a(G™1). It then
follows from (A.119) that the condition number is large if both G and G ! have
large elements.

The condition number depends strongly on the scaling of the inputs and outputs.
To be more specific, if D, and D- are diagonal scaling matrices, then the condition
numbers of the matrices G and DG D, may be arbitrarily far apart. In general, the
matrix G should be scaled on physical grounds, for example, by dividing each input
and output by its largest expected or desired value as discussed in Section 1.4.

One might also consider minimizing the condition number over all possible
scalings. Thisresultsin the minimized or optimal condition numbeshich is defined
by

7(G) = 5111}82 Y(D1GD>) (3.68)
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and can be computed using (A.73).

The condition number has been used as an input-output controllability measure,
and in particular it has been postulated that a large condition number indicates
sensitivity to uncertainty. This is not true in general, but the reverse holds; if the
condition number is small, then the multivariable effects of uncertainty are not likely
to be serious (see (6.72)).

If the condition number islarge (say, larger than 10), then thismay indicatecontrol
problems:

1. A large condition number v(G) = 6(G)/a(G) may be caused by a small value
of o(G), whichis generally undesirable (on the other hand, alarge value of 5 (G)
need not necessarily be a problem).

2. A largecondition number may mean that the plant hasalarge minimized condition
number, or equivalently, it has large RGA-elements which indicate fundamental
control problems; see below.

3. A largecondition number doesmply that the system is sensitiveto “ unstructured”
(full-block) input uncertainty (e.g. with an inverse-based controller, see (8.135)),
but this kind of uncertainty often does not occur in practice. We therefore cannot
generaly conclude that a plant with a large condition number is sensitive to
uncertainty, e.g. see the diagonal plant in Example 3.9.

3.6.2 Relative Gain Array (RGA)

Therelative gain array (RGA) of a non-singular square matrix G is a square matrix
defined as
RGA(G) = A(G) 2G x (G HT (3.69)

where x denotes element-by-element multiplication (the Hadamard or Schur
product). For a2 x 2 matrix with elements g;; the RGA is

Al A A1 1— A 1
= ;ML= T 3.70
v PR R B —mm G0

A(G) =

Bristol (1966) originaly introduced the RGA as a steady-state measure of
interactionsfor decentralized control. Unfortunately, based on the original definition,
many people have dismissed the RGA as being “only meaningful at w = 0”. To the
contrary, in most cases it is the value of the RGA at frequencies close to crossover
which is most important.

The RGA has a number of interesting algebraic propertiesof which the most
important are (see Appendix A.4 for more details):

1. Itisindependent of input and output scaling.

2. Itsrows and columns sum to one.

3. The sum-norm of the RGA, ||A||sum, IS very close to the minimized condition
number v*; see (A.78). This means that plants with large RGA-elements are
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always ill-conditioned (with alarge value of v(G)), but the reverse may not hold
(i.e. aplant with alarge v(G) may have small RGA-elements).

4. A relative change in an element of G equa to the negative inverse of its
corresponding RGA-element yields singul arity.

5. The RGA istheidentity matrix if G isupper or lower triangular.

From the last property it follows that the RGA (or more precisely A — I) providesa
measure of two-way interaction

Example 3.9 Consider a diagonal plant and compute the RGA and condition number,
5(G) _ 100 _
oG 1
Here the condition number is 100 which means that the plant gain depends strongly on the

input direction. However, since the plant is diagonal there are no interactions(69 = I
and the minimized condition numbgt(G) = 1.

0 1

Example 3.10 Consider a triangular plan& for which we get

(121 01 -2 _ _ 241 _ e
G_{O 1],@* _[0 1],A(G)—I,'y(G)—O.ZH_5.83,7(G)_l(3.72)

Note that for a triangular matrix, the RGA is always the identity matrix ah@7) is always
1.

In addition to the algebraic properties listed above, the RGA has a surprising
number of useful control properties

1. The RGA isagood indicator of sensitivity to uncertainty:

() Uncertainty in the input channels (diagonal input uncertain®pnts with
large RGA-elements around the crossover frequency are fundamentally
difficult to control because of sensitivity to input uncertainty (e.g. caused
by uncertain or neglected actuator dynamics). In particular, decouplers or
other inverse-based controllers should not be used for plants with large RGA-
elements (see page 243).

(b) Element uncertaintyAs implied by algebraic property no. 4 above, large
RGA-elements imply sensitivity to element-by-element uncertainty. However,
this kind of uncertainty may not occur in practice due to physical couplings
between the transfer function elements. Therefore, diagonal input uncertainty
(whichisaways present) isusually of more concernfor plantswithlarge RGA-
elements.

Example 3.11 Consider again the distillation process for which we have at steady-state

_[878 —864] -1 _ [0399 —0.315 [ 351 —341
¢= [108.2 —109.6] G = [0.394 —0.320]  MG) = [—34.1 35.1 ]
373
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In this casey(G) = 197.2/1.391 = 141.7 is only slightly larger thany* (G) = 138.268.

The magnitude sum of the elements in the RGA-matrifAi$um = 138.275. This
confirms (A.79) which states that, ix 2 systems||A(G)||sum ~ 7" (G) wheny*(G) is

large. The condition number is large, but since the minimum singular valG§ = 1.391

is larger than1 this does not by itself imply a control problem. However, the large RGA-
elements indicate control problems, and fundamental control problems are expected if
analysis shows tha#(jw) has large RGA-elements also in the crossover frequency range.
(Indeed, the idealized dynamic model (3.81) used below has large RGA-elements at all
frequencies, and we will confirm in simulations that there is a strong sensitivity to input
channel uncertainty with an inverse-based controller).

2. RGA and RHP-zerodf the sign of an RGA-element changes from s = 0
to s = oo, then there is a RHP-zero in G or in some subsystem of G (see
Theorem 10.5), page 449).

3. Non-square plantsThe definition of the RGA may be generalized to non-square
matrices by using the pseudo inverse; see Appendix A.4.2. Extrainputs: If the
sum of the elements in a column of RGA is small (« 1), then one may consider
deleting the corresponding input. Extra outputs: If al elements in a row of
RGA are small (<« 1), then the corresponding output cannot be controlled (see
Section 10.4).

4. Pairing and diagonal dominanc&he RGA can be used asameasure of diagonal
dominance (or more precicely, of whether the inputs or outputs can be scaled to
obtain diagonal dominance), by the simple quantity

RGA'nUmber - ||A(G) - I||su1n (374)

For decentralized control we prefer pairings for which the RGA-number at
crossover frequenciesis close to O (see pairing rule 1 on page 445). Similarly, for
certain multivariabledesign methods, it issimpler to choose the wei ghts and shape
the plant if we first rearrange the inputs and outputs to make the plant diagonally
dominant with a small RGA-number.

5. RGA and decentralized control.

(a) Integrity: For stable plants avoid input-output pairing on negative steady-state
RGA-elements. Otherwise, if the sub-controllers are designed independently
eachwithintegral action, thentheinteractionswill causeinstability either when
all of the loops are closed, or when the loop corresponding to the negative
relative gain becomes inactive (e.g. because of saturation) (see Theorem 10.4,
page 447).

(b) Stability: Prefer pairings corresponding to an RGA-number close to 0 at
crossover frequencies (see page 445).

Example 3.12 Consider a plant

s+1 s+4>

G(s) = 5y ( j , (3.75)
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We find that\11 (co) = 2 and A11(0) = —1 have different signs. Since none of the diagonal
elements have RHP-zeros we conclude from Theorem 10.&/{Batmust have a RHP-zero.
This is indeed true and/(s) has a zero at = 2.

For a detailed analysis of achievable performance of the plant (input-output
controllability analysis), one must also consider the singular values, RGA and
condition number as functions of frequency. In particular, the crossover frequency
range is important. In addition, disturbances and the presence of unstable (RHP)
plant poles and zeros must be considered. All these issues are discussed in much
more detail in Chapters 5 and 6 where we discuss achievabl e performance and input-
output controllability analysis for SISO and MIMO plants, respectively.

3.7 Introductionto MIMO robustness

To motivate the need for a deeper understanding of robustness, we present two
exampleswhichillustrate that MIM O systems can display a sensitivity to uncertainty
not found in SISO systems. We focus our attention on diagonal input uncertainty,
which ispresent in any real system and often limits achievabl e performance because
it enters between the controller and the plant.

3.7.1 Moaotivating robustness example no. 1: Spinning Satellite

Consider the following plant (Doyle, 1986; Packard et al., 1993) which can itself be
motivated by considering the angular velocity control of a satellite spinning about
one of its principal axes:

1 —a? 1
OO = iz | aoin) s | a0 @

A minimal, state-space redlization, G = C(sI — A)"!B + D, is
0

a
A|B | —a 0
{C|D]_ 1 a
1

The plant has a pair of jw-axispolesat s = +ja S0 it needsto be stabilized. Let us
apply negative feedback and try the simple diagonal constant controller

(3.77)

K=1

The complementary sensitivity functionis

T(s) = GK(I + GK) ™! = 34%1 {_1a ﬂ (3.78)
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Nominal stability (NS). The closed-loop system hastwo polesat s = —1 and so
it isstable. This can be verified by evaluating the closed-loop state matrix

0 a 1 a -1 0
ACl_A_BKC_[—a 0}_{—(1 1}_[0 —1}

(Toderive A used = Az + Bu,y = Cz andu = —Ky).

Nominal performance (NP). Thesingular valuesof L = GK = G areshownin
Figure 3.6(a), page 77. We see that o (L) = 1 at low frequencies and starts dropping
off at about w = 10. Since ¢ (L) never exceeds 1, we do not have tight control in
the low-gain direction for this plant (recall the discussion following (3.51)), so we
expect poor closed-loop performance. This is confirmed by considering S and T'.
For example, at steady-state 5(7") = 10.05 and 5(S) = 10. Furthermore, the large
off-diagonal elementsin 7'(s) in (3.78) show that we have strong interactionsin the
closed-loop system. (For reference tracking, however, this may be counteracted by
use of atwo degrees-of-freedom controller).

Robust stability (RS). Now let us consider stability robustness. In order to
determine stability margins with respect to perturbationsin each input channel, one
may consider Figure 3.11 where we have broken the loop at the first input. The loop
transfer function at this point (the transfer function from w, t0 z;) is L1 (s) = 1/s

(which can be derived from t1,(s) = 3 = ; flL(ls()s) ). This corresponds to an
infinite gain margin and a phase margin of 90°. On breaking the loop at the second
input we get the same result. This suggests good robustness properties irrespective
of the value of a. However, the design is far from robust as a further analysis shows.

Consider input gain uncertainty, and let €, and e, denote therelative error inthegain

21 w1

|

Y+
2
Y

Q

D)

Y+

>l
\
Y
Y

>
]

A

A

Figure 3.11: Checking stability margins “ one-loop-at-a-time”

in each input channel. Then

uy = (1+e)ur, uy=(1+e)us (3.79)
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wherew) and !, aretheactual changesin the manipulatedinputs, whilew ; andu» are
the desired changes as computed by the controller. It isimportant to stress that this

diagonal input uncertainty, which stems from our inability to know the exact values
of the manipulated inputs, is alwayspresent. In terms of a state-space description,
(3.79) may be represented by replacing B by

1 1+€1 0
B_[ 0 1+62}

The corresponding closed-loop state matrix is

' 4 _pipe_ |0 al |14+e 0 1 a
a=A BKC_{—a 0] { 0 1+€2:| {—a 1]

which has a characteristic polynomial given by

det(s[ — A,cl) = 82 + (2 + €1 + 62) s + 1 + €1 + €9 + ((l2 + 1)6162 (380)

ay ao

The perturbed system is stable if and only if both the coefficients ay and a; are
positive. We therefore see that the system is always stable if we consider uncertainty
in only one channel at a timgt least as long as the channel gain is positive). More
precisely, we have stability for (=1 < €; < 00,ea = 0)and (e; = 0,—-1 < €3 <
00). Thisconfirmstheinfinite gain margin seen earlier. However, the system can only
tolerate small simultaneous changasthe two channels. For example, let €1 = —ea,
then the system is unstable (ay < 0) for

lex] > LI 0.1

€1 \/m ~ U.
In summary, we have found that checking single-loop margins is inadequate for
MIMO problems. We have also observed that large values of 7(T°) or 5(S) indicate
robustness problems. We will return to this in Chapter 8, where we show that with
input uncertainty of magnitude |e;| < 1/a(T"), we are guaranteed robust stability
(even for “full-block complex perturbations’).

In the next example we find that there can be sensitivity to diagonal input
uncertainty even in cases where 6 (7") and (S) have no large peaks. This can not
happen for a diagonal controller, see (6.77), but it will happen if we use an inverse-
based controller for a plant with large RGA-elements, see (6.78).

3.7.2 Moaotivating robustness example no. 2: Distillation Process

Thefollowing is an idealized dynamic model of a distillation column,

1 { 87.8 —86.4 }

G(s) (3.81)

T 7hs+ 11082 —109.6
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(timeisin minutes). The physics of this example was discussed in Example 3.6. The
plant is ill-conditioned with condition number (G) = 141.7 at all frequencies. The
plant is aso strongly two-way interactive and the RGA-matrix at all frequenciesis

351 =341
-34.1 35.1

The large elements in this matrix indicate that this processis fundamentally difficult
to control.

RGA(G) = { (3.82)

Remark. (3.81) is admittedly a very crude model of areal distillation column; there should
be a high-order lag in the transfer function from input 1 to output 2 to represent the liquid
flow down to the column, and higher-order composition dynamics should also be included.
Nevertheless, the model is simple and displays important features of distillation column
behaviour. It should be noted that with a more detailed model, the RGA-elements would
approach 1 at frequencies around 1 rad/min, indicating less of a control problem.

2.5¢ «/// \\\\\ Nominal plant: —
oL /” W Perturbed plant: -
I \ N
I NN
15p 1 AN i
I ~
b N ~—_____ W
ﬂ’ N
0.5n N i
ok R L
0 10 20 30 40 50 60
Time [min]

Figure 3.12: Response with decoupling controller to filtered referenceinput ri = 1/(5s+1).
The perturbed plant has 20% gain uncertainty as given by (3.85).

We consider the following inverse-based controller, which may also be looked
upon as a steady-state decoupler with a Pl controller:

1 —
_ EG_l(s) _ ki(1+475s) [0.3994 —0.3149

s — 5 |03043 032000 M =07 (383

Kinv(s)

Nominal performance (NP). We have GK,y = KinvG = %I. With no model
error this controller should counteract al the interactions in the plant and give rise
to two decoupled first-order responses each with a time constant of 1/0.7 = 1.43
min. Thisis confirmed by the solid line in Figure 3.12 which shows the simulated
response to a reference change in y,. The responses are clearly acceptable, and we
concludethat nominal performance (NP) is achieved with the decoupling controller

Robust stability (RS). The resulting sensitivity and complementary sensitivity
functions with this controller are

1
S =Sr=- L T=Ty=—— ] (3.84)

+0.7" 143s+1




INTRODUCTION TO MULTIVARIABLE CONTROL 95

Thus, 5(S) and 5(T") are both less than 1 at all frequencies, so there are no pesks
which would indicate robustness problems. We also find that this controller gives an
infinite gain margin (GM) and a phase margin (PM) of 90° in each channel. Thus,
use of the traditional margins and the peak values of .S and 7" indicate no robustness
problems. However, from the large RGA-elements there is cause for concern, and
thisis confirmed in the following.

We consider again the input gain uncertainty (3.79) as in the previous example,
and we select e; = 0.2 and e; = —0.2. We then have

wy = 1.2u1, ub = 0.8u (3.85)

Note that the uncertainty is on the changein the inputs (flow rates), and not on their
absolutevalues. A 20% error istypical for process control applications (see Remark 2
on page 302). The uncertainty in (3.85) does not by itself yield instability. This is
verified by computing the closed-loop poles, which, assuming no cancellations, are
solutionsto det(I + L(s)) = det(I + L;(s)) = 0 (see (4.102) and (A.12)). In our
case
/ / 1+e 0 0.7 [14¢ 0
LI(S):KinVG:KinVG|: 0 1+€2:|__|: 0 1+€2:|

so the perturbed closed-loop poles are
S1 = —07(1 + 61), Sy = —07(1 + 62) (386)

and we have closed-loop stability aslong astheinput gains1 + ¢, and 1 + e remain
positive, so we can have up to 100% error in each input channel. We thus conclude

that we have robust stability (RS) with respect to input gain errors for the decoupling
controller.

Robust performance (RP). For SISO systems we generaly have that nominal
performance (NP) and robust stability (RS) imply robust performance (RP), but this
is not the case for MIMO systems. This is clearly seen from the dotted lines in
Figure 3.12 which show the closed-loop response of the perturbed system. It differs
drastically from the nominal response represented by the solid line, and even though
itisstable, theresponseis clearly not acceptable; it isno longer decoupled, and y 1 ()
and y(t) reach avalue of about 2.5 before settling at their desired values of 1 and 0.
Thus RP is not achieved by the decoupling controller.

Remark 1 Thereisasimple reason for the observed poor response to the reference change
in y1. To accomplish this change, which occurs mostly in the direction corresponding to the
low plant gain, the inverse-based controller generates relatively large inputs u; and us, while
trying to keep u1 — u2 very small However, the input uncertainty makes thisimpossible —the
result is an undesired large change in the actual value of «; — w5, which subsequently results
in large changesin y; and y» because of the large plant gain (6(G) = 197.2) in thisdirection,
as seen from (3.46).
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Remark 2 Thesystem remains stablefor gain uncertainty up to 100% because the uncertainty
occurs only at one side of the plant (at the input). If we also consider uncertainty at the output
then we find that the decoupling controller yields instability for relatively small errors in the
input and output gains. Thisisillustrated in Exercise 3.8 below.

Remark 3 It isalso difficult to get a robust controller with other standard design techniques
for this model. For example, an S/K S-design asin (3.59) with Wp = wpI (using M = 2
and wp = 0.05 in the performance weight (3.60)) and W,, = I, yields a good nominal
response (although not decoupled), but the system is very sensitive to input uncertainty, and
the outputs go up to about 3.4 and settle very slowly when there is 20% input gain error.

Remark 4 Attempts to make the inverse-based controller robust using the second step of
the Glover-McFarlane H -, loop-shaping procedure are also unhelpful; see Exercise 3.9. This
shows that robustness with respect to coprime factor uncertainty does not necessarily imply
robustness with respect to input uncertainty. In any case, the solution isto avoid inverse-based
controllers for aplant with large RGA-elements.

Exercise 3.7 Design a SVD-controllek = W, K, W- for the distillation process in (3.81),
i.e. selectV; = V andW, = UT whereU andV are given in (3.46). Seledt in the form

75541 0
K,=|"" = 75541
0 C2 —
and try the following values:

(a) c1 = ca = 0.005;
(b) 1 = 0.005, cs = 0.05;
() c1 =0.7/197 = 0.0036, c2 = 0.7/1.39 = 0.504.

Simulate the closed-loop reference response with and without uncertainty. Designs (a) and
(b) should be robust. Which has the best performance? Design (c) should give the response
in Figure 3.12. In the simulations, include high-order plant dynamics by repla€liig by

o Ost 00355195 G(s). What is the condition number of the controller in the three cases? Discuss
i1e results. (See also the conclusion on page 243).

Exercise 3.8 Consider again the distillation process (3.81) with the decoupling controller,
but also include output gain uncertairdy That is, let the perturbed loop transfer function be

’ e 077149 0 1+ €1 0 -1
L(s)_GKmv_?[ - 1+€2}G{ 5 HEJG (3.87)

Lo
whereL, is a constant matrix for the distillation model (3.81), since all elements share
the same dynamic€7(s) = g(s)Go. The closed-loop poles of the perturbed system are
solutions todet(I + L' (s)) = det(I + (k1/s)Lo) = 0, or equivalently

det( lI+L0) (s/k1)® 4 tr(Lo)(s/k1) + det(Lo) = 0 (3.88)

k

For k1 > 0 we have from the Routh-Hurwitz stability condition indexRouth-Hurwitz stability
test that instability occurs if and only if the trace and/or the determinari,ofre negative.
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Sincedet(Lo) > 0 for any gain error less than00%, instability can only occur ifr(Lo) <

0. Evaluatetr(Lo) and show that with gain errors of equal magnitude the combination of
errors which most easily yields instability is wigh = —¢> = —e1 = €2 = €. Use this to
show that the perturbed system is unstable if

/ 1

whereli1 = gi11922/ det G is thel, 1-element of the RGA @F. In our case\;; = 35.1 and
we get instability fofe| > 0.120. Check this numerically, e.g. using MATLAB.

Remark. The instability condition in (3.89) for simultaneous input and output gain
uncertainty, applies to the very specia case of a2 x 2 plant, in which all elements share the
same dynamics, G(s) = g(s)Go, and an inverse-based controller, K (s) = (k1/s)G~(s).

Exercise 3.9 Consider again the distillation process(s) in (3.81). The response using

the inverse-based controlleKi,, in (3.83) was found to be sensitive to input gain errors.

We want to see if the controller can be modified to yield a more robust system by using
the Glover-McFarlaneH., loop-shaping procedure. To this effect, let the shaped plant be

Gs = GKiny, i.e. W1 = Kiny, and design arf{,, controller K, for the shaped plant

(see page 389 and Chapter 9), such that the overall controller becdmes Kin, K. (You

will find that v,,,;», = 1.414 which indicates good robustness with respect to coprime factor
uncertainty, but the loop shape is almost unchanged and the system remains sensitive to input
uncertainty.)

3.7.3 Robusthess conclusions

From the two motivating examples above we found that multivariable plants
can display a sensitivity to uncertainty (in this case input uncertainty) which is
fundamentally different from what is possiblein SISO systems.

In the first example (spinning satellite), we had excellent stability margins (PM
and GM) when considering one loop at a time, but small simultaneous input gain
errors gave instability. This might have been expected from the peak values (H o
norms) of .S and 7', defined as

1Tl = max (T (jw)),  [|S]lec = maxa(S(jw)) (3.90)

which were both large (about 10) for this example.

In the second example (distillation process), we again had excellent stability
margins (PM and GM), and the system was also robustly stable to errors (even
simultaneous) of up to 100% in the input gains. However, in this case small input
gain errors gave very poor output performance, so robust performance was not
satisfied, and adding simultaneous output gain uncertainty resulted in instability
(see Exercise 3.8). These problems with the decoupling controller might have been
expected because the plant has large RGA-elements. For this second example the
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H~ norms of S and T' were both about 1, so the absence of peaksin .S and T' does
not guarantee robustness.

Although sensitivity peaks, RGA-elements, etc. are useful indicators of robustness
problems, they provide no exact answer to whether a given source of uncertainty
will yield instability or poor performance. This motivates the need for better tools
for analyzing the effects of model uncertainty. We want to avoid a trial-and-error
procedure based on checking stability and performance for a large number of
candidate plants. This is very time consuming, and in the end one does not know
whether those plants are the limiting ones. What is desired, is a simple tool whichis
abletoidentify the worst-case plant. Thiswill be the focusof Chapters 7 and 8 where
we show how to represent model uncertainty in the # ., framework, and introduce
the structured singular value 1 as our tool. The two motivating examples are studied
in more detail in Example 8.10 and Section 8.11.3 where a p-analysis predicts the
robustness problems found above.

3.8 General control problem formulation

(weighted) (weighted)
exogenous inputs exogenous outputs
w P 4

. u v
control signals sensed outputs
K |«

Figure 3.13: Genera control configuration for the case with no model uncertainty

In this section we consider a general method of formulating control problems
introduced by Doyle (1983; 1984). The formulation makes use of the genera
control configuration in Figure 3.13, where P is the generalized plant and K is
the generalized controller as explained in Table 1.1 on page 13. Note that positive
feedback is used.

The overall control objective is to minimize some norm of the transfer function
from w to z, for example, the H ., norm. The controller design problem is then:

e Find acontroller K which based on theinformationin v, generatesa control signal
u which counteracts the influence of w on z, thereby minimizing the closed-loop
norm from w to z.

Themost important point of this sectionisto appreciate that almost any linear control
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problem can be formulated using the block diagram in Figure 3.13 (for the nominal
case) or in Figure 3.21 (with model uncertainty).

Remark 1 The configuration in Figure 3.13 may at first glance seem restrictive. However,
thisis not the case, and we will demonstrate the generality of the setup with afew examples,
including the design of observers (the estimation problem) and feedforward controllers.

Remark 2 We may generalize the control configuration still further by including diagnostics
as additional outputs from the controller giving the 4-parameter controlleintroduced by Nett
(1986), but thisis not considered in this book.

3.8.1 Obtaining the generalized plant P

The routinesin MATLAB for synthesizing H ., and H optimal controllers assume
that the problem is in the general form of Figure 3.13, that is, they assume that P
is given. To derive P (and K) for a specific case we must first find a block diagram
representation and identify the signalsw, z, v and v. To construct P one should note
that it is an open-loopsystem and remember to break all “loops’ entering and exiting
the controller K. Some examples are given below and further examples are givenin
Section 9.3 (Figures 9.9, 9.10, 9.11 and 9.12).

Ym

Figure 3.14: One degree-of-freedom control configuration

Example 3.13 One degree-of-freedom feedback control configuration. We want to find
P for the conventional one degree-of-freedom control configuration in Figure 3.14. The first
step is to identify the signals for the generalized plant:

w3 n
With this choice ob, the controller only has information about the deviatior- y,,. Also
note thatz = y — r, which means that performance is specified in terms of the actual output
y andnot in terms of the measured outpyt, . The block diagram in Figure 3.14 then yields

w1 d
w=|w|=|r|; z=e=y—r; v=r—ym=r—y—n (3.91)

z = y—r=Gu+d—r=Iw —Iws +0ws + Gu

v = r—ym=r—Gu—d—-—n=—Iwi + ITws — ITws — Gu
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Figure 3.15: Equivalent representation of Figure 3.14 where the error signal to be minimized
isz = y — r and the input to the controller isv = r — y,

and P which represents the transfer function matrix from «]" to[z v]” is

I —-I 0 G
P= I I -I -G (3.92)
Note thatP doesnot contain the controller. Alternatively? can be obtained by inspection
from the representation in Figure 3.15.

Remark. Obtaining the generalized plant P may seem tedious. However, when performing
numerical calculations P can be generated using software. For example, in MATLAB we may
use the si mul i nk program, or we may usethe sysi ¢ program in the u-toolbox. The code
in Table 3.1 generates the generalized plant P in (3.92) for Figure 3.14.

Table3.1: MATLAB program to generate P in (3.92)
% Uses the M-t ool box

systemanes = 'G ; % Gis the SISO plant.
inputvar = ' [d(1);r(1);n(1);u(l)]’; % Consi sts of vectors w and u.
input to.G = "[u]";

outputvar = '[Gtd-r; r-Gd-n]’; % Consi sts of vectors z and v.
sysoutnane = ' P';

sysi c;

3.8.2 Controller design: Including weightsin P

To get a meaningful controller synthesis problem, for example, in terms of the H
or H, norms, we generally have to include weights W, and W, in the generalized
plant P, see Figure 3.16. That is, we consider the weighted or normalized exogenous
inputs w (Wherew = W, w consists of the “physical” signals entering the system;
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......................................

......................................

Figure 3.16: General control configuration for the case with no model uncertainty

disturbances, references and noise), and the weighted or normalized controlled
outputs z = W,z (where z often consists of the control error y — r and the
manipulated input ). The weighting matrices are usually frequency dependent and
typically selected such that weighted signals w and z are of magnitude 1, that is, the
norm fromw to z should belessthan 1. Thus, in most cases only the magnitude of the
weights matter, and we may without loss of generality assumethat 1 ,,(s) and TV, (s)
are stable and minimum phase (they need not even be rational transfer functions but
if not they will be unsuitable for controller synthesis using current software).

Example 3.14 Stacked S/T/K S problem. Consider anH, problem where we want to
bounda(S) (for performance)s(T') (for robustness and to avoid sensitivity to noise) and
(K S) (to penalize large inputs). These requirements may be combined into a stcked
problem

W.KS
} (3.93)

min[|N(K) |, N=| WrT
WpS

where K is a stabilizing controller. In other words, we hage= Nw and the objective is to
minimize theH . norm fromw to z. Except for some negative signs which have no effect when
evaluating|| V||, the N in (3.93) may be represented by the block diagram in Figure 3.17
(convince yourself that this is true). Hetierepresents a reference command £ —r, where

the negative sign does not really matter) or a disturbance entering at the outpstd, ), and

z consists of the weighted inpait = W, u, the weighted output, = Wy, and the weighted
control error z3 = Wp(y — r). We get from Figure 3.17 the following set of equations

z1 = Wyuu
z2 = WrGu
z3 = Wpw+ WpGu

v = —w-—Gu



102 MULTIVARIABLE FEEDBACK CONTROL

=

=

O

WP_|—>-

Y

1
+yY

Figure 3.17: Block diagram corresponding to z = Nw in (3.93)

so the generalized plart from[w «]" to[z v]"is
0 Wyl
0 WrG

Wpl WpG
1 -G

P= (3.94)

3.8.3 Partitioning the generalized plant P

We often partition P as

Py Py
P = 3.95
[Pm P22] (395)

such that its parts are compatible with the signals w, z, v and v in the generalized
control configuration,

z = P11’LU + P12u (396)
v o= P21w + P22u (397)

The reader should become familiar with this notation. In Example 3.14 we get

0 Wl

P = [ 0 :|, Py = |:WTG:| (398)
Wpl WpQG

Py = —I, Py = -G (399)

Note that P», has dimensions compatible with the controller, i.e. if K isann, X n,
matrix, then Py, isann,, x n,, matrix. For cases with one degree-of-freedomnegative
feedback control we have Pyy = —G.
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3.8.4 Analyss: Closingtheloop to get N

—> N [—

Figure 3.18: General block diagram for analysis with no uncertainty

The general feedback configurationsin Figures 3.13 and 3.16 have the controller
K asaseparate block. Thisis useful when synthesizing the controller. However, for
analysisof closed-loop performance the controller is given, and we may absorb K
into the interconnection structure and obtain the system NV as shown in Figure 3.18
where

z=Nuw (3.100)

where N is afunction of K. To find IV, first partition the generalized plant P as
givenin (3.95)-(3.97), combine this with the controller equation

u=Kv (3.101)

and eiminate v and v from equations (3.96), (3.97) and (3.101) to yield z = Nw
where N isgiven by

N = Pi1 + PoK(I — PpoK) ' Py £ F(P,K) (3.102)

Here F; (P, K) denotes alower linear fractional transformation (LFTdf P with K
as the parameter. Some properties of LFTs are given in Appendix A.7. In words, N
is obtained from Figure 3.13 by using K to close a lower feedback loop around P.
Since positive feedback is used in the genera configuration in Figure 3.13 the term
(I — Py, K)~! hasanegativesign.

Remark. To assist in remembering the sequence of P> and P»; in (3.102), notice that the
first (last) index in Py is the same as the first (last) index in Pio K (I — Py K) ' Py;. The
lower LFT in (3.102) is also represented by the block diagram in Figure 3.2.

Thereader is advised to become comfortable with the above manipulations before
progressing much further.

Example 3.15 We want to deriveV for the partitionedP in (3.98) and (3.99) using the
LFT-formula in (3.102). We get

0 W.I -W.KS
N=| 0 |+ |WrG|K(I+GK) (=)= | —WrT
Wel WpG WpS

where we have made use of the identities= (I + GK) ', T = GKSandI - T = S.
With the exception of the two negative signs, this is identic& given in (3.93). Of course,
the negative signs have no effect on the noridvof
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Again, it should be noted that deriving IV from P is much simpler using available
software. For example in the MATLAB p-Toolbox we can evaluate N = F(P, K)
using the command N=st ar p( P, K) . Here st ar p denotes the matrix star product
which generalizes the use of LFTs (see Appendix A.7.5).

Exercise 3.10 Consider the two degrees-of-freedom feedback configuration in Figure 1.3(b).

(i) Find P when
w:|:;l:|; z:{y;’"]; u:{y’;] (3.103)

n
(ii) Let = = Nw and deriveN in two different ways; directly from the block diagram and
usingN = F;(P, K).

3.85 Generalized plant P: Further examples

To illustrate the generality of the configuration in Figure 3.13, we now present two
further examples: one in which we derive P for a problem involving feedforward
control, and one for a problem involving estimation.

d
¥
K,
L K ol K :_“ e Pt 6 4
K,

Figure 3.19: System with feedforward, local feedback and two degrees-of-freedom control

Example 3.16 Consider the control system in Figure 3.19, whgrés the output we want to
control, - is a secondary output (extra measurement), and we also measure the disturbance
d. By secondary we mean thgt is of secondary importance for control, that is, there is

no control objective associated with it. The control configuration includes a two degrees-
of-freedom controller, a feedforward controller and a local feedback controller based on the
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extra measurement. To recast this into our standard configuration of Figure 3.13 we define
w:[d]; z=y1—r; v= yi (3.104)

Note thatd and r are both inputs and outputs t® and we have assumed a perfect
measurement of the disturbandeSince the controller has explicit information abautve
have a two degrees-of-freedom controller. The generalized contrallenay be written in
terms of the individual controller blocks in Figure 3.19 as follows:

K=[K.K, —-K -K5 Kl (3.105)

By writing down the equations or by inspection from Figure 3.19 we get

Gi1 —-I G:iG:
0 I 0
P=|G:1 0 G:iG: (3.106)
0 0 G»
I 0 0

Then partitioningP as in (3.96) and (3.97) yield&> = [07 (G:1G2)" GT 0" ]".

Exercise 3.11 Cascade implementation. Consider further Example 3.16. The local
feedback based o is often implemented in a cascade manner; see also Figure 10.5. In
this case the output frofi(; enters intoK» and it may be viewed as a reference signalgar
Derive the generalized controlldl” and the generalized plaif in this case.

Remark. From Example 3.16 and Exercise 3.11, we see that a cascade implementatiordoes
not usually limit the achievable performance since, unless the optimal K> or K; have RHP-
zeros, we can obtain from the optimal overall K the subcontrollers K> and K, (although
we may have to add a small D-term to K to make the controllers proper). However, if we
impose restrictions on the designsuch that, for example K, or K; are designed “locally”
(without considering the whole problem), then this will limit the achievable performance.
For example, for atwo degrees-of-freedom controllarcommon approach is to first design
the feedback controller K, for disturbance rejection (without considering reference tracking)
and then design K, for reference tracking. This will generally give some performance loss
compared to a simultaneous design of K, and K, .

Example 3.17 Output estimator. Consider a situation where we have no measurement of
the outputy which we want to control. However, we do have a measurement of another output
variabley,. Letd denote the unknown external inputs (including noise and disturbances) and
ue the known plant inputs (a subscriptis used because in this case the outptditom K is

not the plant input). Let the model be

y = Gug + Gad; y2 = Fug + Fad
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The objective is to design an estimathl:, such that the estimated outppit= Kest {52}

is as close as possible in some sense to the true oytmae Figure 3.20. This problem may
be written in the general framework of Figure 3.13 with

d ~ ~
w:|:uG:|au:yaZZy_y7U: |:gé:|

Note thatu = 7, that is, the outpui from the generalized controller is the estimate of the
plant output. Furthermorel’ = K, and

Gy G —I
P=|F, F 0 (3.107)
0 I 0

We see thaPs, = {8} since the estimator problem does not involve feedback.

Figure 3.20: Output estimation problem. One particular estimator K., isaKalman Filter

Exercise 3.12 State estimator (observer). In the Kalman filter problem studied in

Section 9.2 the objective is to minimize- z (whereas in Example 3.17 the objective was
to minimizey — ). Show how the Kalman filter problem can be represented in the general
configuration of Figure 3.13 and finB.
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3.8.6 Deriving P from N

For caseswhere NV is given and we wish to find a P such that
N =F(P,K)=Pi1 + PsK(I — P»K) ' Py

it is usually best to work from a block diagram representation. This was illustrated
above for the stacked IV in (3.93). Alternatively, the following procedure may be
useful:

1. Set K = 0in N toobtain Py;.

2. Define Q = N — Py; and rewrite () such that each term has a common factor
R = K(I — PZQK)il (thlsglveSPzz)

3. Since ) = P12 RP»;1, we can now usually obtain P> and P»; by inspection.

Example 3.18 Weighted sensitivity. We will use the above procedure to deriFewhen
N =wpS = wp(I + GK)™ !, wherewp is a scalar weight.
1. P11 :N(KZO) :wpI.
2.Q = N—wpl = wp(S—1I) = —wpT = —wpGK(I + GK)™', and we have
R=K({I+GK) 'soPsy» = —G.
3. @ = —wpGR so we haveP; = —wpG and P>; = I, and we get
I —wpG

= [’”f wr, ] (3.108)
Remark. When obtaining P from a given N, we have that P;; and P»» are unique, whereas
from Step 3 in the above procedure we see that Py» and P»; are not unique. For instance, let

o be areal scalar then we may instead choose P2 = aPyy and Py = (1/a)Psy. For Pin
(3.108) this means that we may move the negative sign of the scalar wp from Py to Ps;.

Exercise 3.13 Mixed sensitivity. Use the above procedure to derive the generalized plant
P for the stackedV in (3.93).

3.8.7 Problemsnot covered by the general formulation

The above examples have demonstrated the generality of the control configuration
in Figure 3.13. Nevertheless, there are some controller design problems which are
not covered. Let NV be some closed-loop transfer function whose norm we want to
minimize. To use the general form we must first obtaina P suchthat N = F;(P, K).
However, this is not always possible, since there may not exist a block diagram
representation for V. As asimple example, consider the stacked transfer function

[+ GK)™
N = [(I+KG)1] (3.109)

The transfer function (I + GK) ! may be represented on a block diagram with the
input and output signals after the plant, whereas (I + KG)~! may be represented
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by another block diagram with input and output signals beforethe plant. However,
in NV there are no cross coupling terms between an input before the plant and an
output after the plant (correspondingto G(I + KG) 1), or between an input after
the plant and an output before the plant (correspondingto —K (I + GK) ') so N
cannot be represented in block diagram form. Equivalently, if we apply the procedure
in Section 3.8.6to IV in (3.109), we are not able to find solutionsto P15 and P»; in
Step 3.

Another stacked transfer function which cannotin general be represented in block
diagramformis

WpS
N = [ Sgd} (3.110)

Remark. The case where N cannot be written as an LFT of K, is a specia case of the
Hadamard weighted 7. problem studied by van Diggelen and Glover (1994a). Although the
solution to this H, problem remains intractable, van Diggelen and Glover (1994b) present a
solution for a similar problem where the Frobenius norm is used instead of the singular value
to “sum up the channels”.

Exercise 3.14 Show thatV in (3.110) can be represented in block diagram fori#if =
wpI wherewp is a scalar.

3.8.8 A general control configuration including model
uncertainty

The genera control configuration in Figure 3.13 may be extended to include model
uncertainty as shown by the block diagram in Figure 3.21. Here the matrix A
is a block-diagonalmatrix that includes all possible perturbations (representing
uncertainty) to the system. It is usually normalized in such away that ||Al] oo < 1.

A <
UA YA
w g F1
—_— P —
Uu v
K <

Figure 3.21: Genera control configuration for the case with model uncertainty
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Figure 3.23: Rearranging a system with multiple perturbations into the N A-structure

Theblock diagramin Figure 3.21intermsof P (for synthesis) may betransformed
into theblock diagramin Figure 3.22 intermsof N (for analysis) by using K to close
alower loop around P. If we partition P to be compatible with the controller K, then
the same lower LFT as found in (3.102) applies, and

N = F/(P,K) = P + PLK(I — P»K)™'Py, (3.111)

To evaluate the perturbed (uncertain) transfer function from external inputs w to
external outputs z, we use A to close the upper loop around N (see Figure 3.22),
resulting in an upper LFT(see Appendix A.7):

2z =F,(N,Aw; F,(N,A) % Noy + NoyA(I - N;A)7'Niy  (3.112)

Remark 1 Controller synthesis based on Figure 3.21 is still an unsolved problem, although
good practical approaches like D K -iteration to find the “ u-optimal” controller arein use (see
Section 8.12). For analysis (with a given controller), the situation is better and with the H
norm an assessment of robust performance involves computing the structured singular value,
. Thisisdiscussed in more detail in Chapter 8.

Remark 2 In (3.112) N has been partitioned to be compatible with A, that is N1 has
dimensions compatible with A. Usually, A is square in which case Ny, is a square matrix
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of the same dimension as A. For the nominal case with no uncertainty we have F;, (N, A) =
F.,(N,0) = N33, S0 N isthe nominal transfer function from w to z.

Remark 3 Notethat P and IV here a so include information about how the uncertainty affects
the system, so they are notthe same P and NV as used earlier, for examplein (3.102). Actualy,
the parts P»>; and N»» of P and NV in (3.111) (with uncertainty) are equal to the P and IV in
(3.102) (without uncertainty). Strictly speaking, we should have used another symbol for N
and P in (3.111), but for notational simplicity we did not.

Remark 4 The fact that amost any control problem with uncertainty can be represented by
Figure 3.21 may seem surprising, so some explanation isin order. First represent each source
of uncertainty by a perturbation block, A;, which is normalized such that ||A;|| < 1. These
perturbations may result from parametric uncertainty, neglected dynamics, etc. as will be
discussed in more detail in Chapters 7 and 8. Then “pull out” each of these blocks from
the system so that an input and an output can be associated with each A; as shown in
Figure 3.23(a). Finaly, collect these perturbation blocks into a large block-diagonal matrix
having perturbation inputs and outputs as shown in Figure 3.23(b). In Chapter 8 we discussin
detail how to obtain V and A.

3.9 Additional exercises

Most of these exercisesare based on material presented in Appendix A. The exercises
illustrate material which the reader should know before reading the subsequent
chapters.

Exercise 3.15 Consider the performance specificatidmr S|l < 1. Suggest a rational
transfer function weightvp (s) and sketch it as a function of frequency for the following two
cases:

1. We desire no steady-state offset, a bandwidth better thad/s and a resonance peak
(worst amplification caused by feedback) lower thah

2. We desire less that?s steady-state offset, less thabfo error up to frequency rad/s, a
bandwidth better than0 rad/s, and a resonance peak lower tharHint: See (2.72) and
(2.73).

Exercise 3.16 By ||M||- one can mean either a spatial or temporal norm. Explain the
difference between the two and illustrate by computing the appropriate infinity norm for

3 4 s—1 3
M = M‘ =
! {—2 6]’ 8= 51553
Exercise 3.17 What is the relationship between the RGA-matrix and uncertainty in the
individual elements? Illustrate this for perturbations in thel -element of the matrix

A= [190 g] (3.113)
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Exercise 3.18 Assume thatd is non-singular. (i) Formulate a condition in terms of the
maximum singular value aoF for the matrixA + E to remain non-singular. Apply this to
A'in (3.113) and (ii) find anE’ of minimum magnitude which makds+ E singular.

Exercise 3.19 Computd|A||i1, 7(A4) = [|A]li2, | Allicos [|All 7 | Allmax and || Alsum for
the following matrices and tabulate your results:

10 11 11 10
Av=1 Az‘{o 0]”43_[1 1]’A4_[0 0]’A5_[1 0]

Show using the above matrices that the following bounds are tight (i.e. we may have equality)
for 2 x 2 matrices (n = 2):

a(4) < |l Allr < Vma(4)
[Allmax < &(A) < m||Allmax
[Allir/v/m < 6(A) < Vml|Allia

[[A]lise /v/m < 5(A) < Vml|Alliso
[All7 < | Allsum

(A
(A

Exercise 3.20 Find example matrices to illustrate that the above bounds are also tight when
Ais a squarem x m matrix withm > 2.

Exercise 3.21 Do the extreme singular values bound the magnitudes of the elements of a
matrix? That is, iss(A) greater than the largest element (in magnitude), ang(id) smaller

than the smallest element? For a non-singular matrix, how (igl) related to the largest
element inA=*?

Exercise 3.22 Consider a lower triangulaim x m matrix A with a;; = —1, a;; = 1 for
all ¢ > j, anda;; = 0forall i < j. (@) What isdet A ? (b) What are the eigenvalues 4f?
(c) What is the RGA aofl? (d) Letm = 4 and find anE with the smallest value @f(E) such
that A + F is singular.

Exercise 3.23 Find two matricesA and B such thatp(A + B) > p(A) + p(B) which
proves that the spectral radius does not satisfy the triangle inequality and is thus not a norm.

Exercise3.24 Writte T = GK(I + GK)™!' as an LFT ofK, i.e. find P such that
T = F/(P,K).

Exercise3.25 Write K as an LFT ofT = GK(I + GK)™', i.e. find J such that
K = F/(J,T).

Exercise 3.26 State-space descriptions may be represented as LFTs. To demonstrate this
find H for
F/(H,1/s)=C(sI —A) 'B+D

Exercise 3.27 Show that the set of all stabilizing controllers in (4.91) can be written as
K = Fi(J,Q) and findJ.
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Exercise 3.28 In (3.11) we stated that the sensitivity of a perturbed plafit,= (I +
G'K)™!, is related to that of the nominal plan, = (I + GK)™* by

S =8(I+EoT) !

where Eo = (G' — G)G™'. This exercise deals with how the above result may be
derived in a systematic (though cumbersome) manner using LFTs (see kdgegtad and
Morari, 1988a)).

a) First find F such thatS’ = (I + G'K)™' = F/(F,K), and find J such that
K = Fi(J,T) (see Exercise 3.25).

b) Combine these LFTs to firfl = F;(N, T'). What isN in terms ofG andG'?. Note that
sinceJ11 = 0 we have from (A.156)

N = Fn, FiaJ12
Jo1Fo1 Ja2 + Jo1 FaoJi2

c) EvaluateS’ = F;(N,T) and show that
S=I-GG'TI-(I-G6G"Hr)™!

d) Finally, show that this may be rewritten & = S(I + EoT) .

3.10 Conclusion

The main purpose of this chapter has been to give an overview of methods for
analysis and design of multivariable control systems.

In terms of analysis, we have shown how to evaluate MIMO transfer functions
and how to use the singular value decomposition of the frequency-dependent plant
transfer function matrix to provide insight into multivariable directionality. Other
useful tools for analyzing directionality and interactions are the condition number
and the RGA. Closed-loop performance may be analyzed in the frequency domain
by evaluating the maximum singular value of the sensitivity function as a function
of frequency. Multivariable RHP-zeros impose fundamental limitations on closed-
loop performance, but for MIMO systems we can often direct the undesired effect
of a RHP-zero to a subset of the outputs. MIMO systems are often more sensitive to
uncertainty than SISO systems, and we demonstrated in two examples the possible
sensitivity to input gain uncertainty.

In terms of controller design, we discusssed some simple approaches such
as decoupling and decentralized control. We also introduced a genera control
configuration in terms of the generalized plant P, which can be used as a basis for
synthesizing multivariable controllers using a number of methods, including LQG,
Ho, Hoo and p-optimal control. These methods are discussed in much more detail in
Chapters8 and 9. In this chapter we have only discussed the ., weighted sensitivity
method.



4

ELEMENTS OF LINEAR
SYSTEM THEORY

The main objective of this chapter isto summarize important results from linear system theory
The treatment is thorough, but readers are encouraged to consult other books, such as Kailath
(1980) or Zhou et al. (1996), for more details and background information if these results are
new to them.

4.1 System descriptions

The most important property of a linear system (operator) is that it satisfies the
superposition principle Let f(u) be a linear operator, let w; and us be two
independent variables (e.g. input signals), and let a.; and as be two rea scalars,
then

flaruy + azuz) = aq fur) + oo f(us2) 4.1)

We use in this book various representations of time-invariant linear systems, all of
which are equivalent for systemsthat can be described by linear ordinary differential
equations with constant coefficients and which do not involve differentiation of
the inputs (independent variables). The most important of these representations are
discussed in this section.

4.1.1 State-spacerepresentation

Consider a system with m inputs (vector u) and [ outputs (vector y) which has an
internal description of n states (vector ). A natural way to represent many physical
systemsis by nonlinear state-space models of the form

&= f(z,u); y=g(z,u) (4.2

where & = dz/dt and f and g are nonlinear functions. Linear state-space models
may then be derived from the linearization of such models. In terms of deviation
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variables (where x represents a deviation from some nominal value or tragjectory,
etc.) we have
z(t) = Az(t) + Bu(t) 4.3

y(t) = Cz(t) + Du(t) (4.9

where A, B, C' and D are real matrices. If (4.3) is derived by linearizing (4.2) then
A =0f/0xand B = Jf/0u (see Section 1.5 for an example of such a derivation).
A is sometimes called the state matrix. These equations provide a convenient means
of describing the dynamic behaviour of proper, rational, linear systems. They may

be rewritten as )
| |A B||x
y| |C D] |u

which givesrise to the short-hand notation

s[ A|B |

which is frequently used to describe a state-space model of a system . Note that
the representation in (4.3)—(4.4) is not a unique description of the input-output
behaviour of alinear system. First, there exist realizations with the same input-output
behaviour, but with additional unobservable and/or uncontrollable states (modes).
Second, even for aminimal realization (arealization with the fewest number of states
and consequently no unobservable or uncontrollable modes) there are an infinite
number of possibilities. To see this, let S be an invertible constant matrix, and
introduce the new states 7 = Sz, i.e. x = S~'Z. Then an equivalent state-space
realization (i.e. one with the same input-output behaviour) in terms of these new
states (“coordinates’) is

A=SAS"', B=SB, C=CS"', tildeD=D

Themost common realizations are given by afew canonical forms, such asthe Jordan

(diagonalized) canonical form, the observability canonical form, etc.
Giventhelinear dynamical systemin (4.3) with aninitial state condition x(¢,) and

aninput u(t), the dynamical system response z(t) for ¢ > to can be determined from

t
z(t) = et (1) + / eA=7) Bu(r)dr (4.6)

to
where the matrix exponential is

eM =T+ Z(At)k/k! = z:ti(a>‘it(11H 4.7
k=1 k=1

The latter dyadic expansion, involving the right (¢;) and left (¢;) eigenvectors of A,
applies for cases with distinct eigenvalues (\;(A4)), see (A.22). We will refer to the
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term e (D? as the modeassociated with the eigenvalue \;(A). For a diagonalized
realization (whereweselect S = T'suchthat A = SAS~! = Aisadiagonal matrix)
we havethat et = diag{e*i(4)t},

Remark. For a system with disturbances d and measurement noise n. the state-space-model is

written as
T = Az + Bu + Bgd

y=Czx+Du+ Dgd+n
Note that the symbol n is used to represent both the noise signal and the number of states.

(4.8

Remark. The more general descriptorrepresentation
Ei(t) = Az(t) + Bu(t) 4.9

inludes, for cases where the matrix E issingular, eg. E = [I 0], implicit algebraic relations
between the states . If E isnonsingular then (4.9) is a special case of (4.3).

4.1.2 Impulseresponse representation

The impul se response matrix is

(o0 t<0
9(t) = { CeA'B 4+ DS(t) ¢>0 (4.10)

where 4(t) isthe unit impulse (delta) function which satisfieslim_,¢ f(f o(t)dt = 1.
The ij'th element of the impulse response matrix, g;;(t), represents the response
y;(t) toanimpulsew;(t) = é(t) for asystem with azeroinitial state.

Withinitial state z(0) = 0, the dynamic responseto an arbitrary input «(¢) (which
iszerofor ¢t < 0) may from (4.6) be written as

y(t) = g(t) xu(t) = /0 g(t — m)u(r)dr (4.11)

where x denotes the convol ution operator.

4.1.3 Transfer function representation - L aplace transforms

Thetransfer function representationisuniqueandisvery useful for directly obtaining
insight into the properties of a system. It is defined as the Laplace transform of the
impulse response

G(s) = /000 g(t)e stdt (4.12)

Alternatively, we may start from the state-space description. With the assumption of
azeroinitial state, z(t = 0) = 0, the Laplace transforms of (4.3) and (4.4) become?

sz(s) = Ax(s) + Bu(s) = x(s) = (sI — A) ' Bu(s) (4.13)

T'We make the usual abuse of notation and let f(s) denote the Laplace transform of f(t).
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y(s) = Cx(s) + Du(s) = y(s)=(C(s[ —A) B+ D)u(s) (414

~ v
e

G(s)

where G(s) isthetransfer function matrix. Equivalently, from (A.1),

wheredet (sl — A) =[]}, (s — A\i(A)) isthe pole polynomial. For cases where the
eigenvaluesof A aredistinct, we may use the dyadic expansion of A givenin (A.22),
and derive
- CtquB
= —*t—+D 4.1
G(s) ; P (4.16)
When disturbances are treated separately, see (4.8), the corresponding disturbance
transfer functionis
Ga(s) =C(sI — A)"'By + Dy (4.17)

Note that any system written in the state-space form of (4.3) and (4.4) has a
transfer function, but the oppositeis not true. For example, time delays and improper
systems can be represented by Laplace transforms, but do not have a state-space
representation. On the other hand, the state-space representation yields an internal
description of the system which may be useful if the model is derived from physical
principles. It is also more suitable for numerical calculations.

4.1.4 Frequency response

An important advantage of transfer functionsis that the frequency response (Fourier
transform) is directly obtained from the Laplace transform by setting s = jw in
G(s). For more details on the frequency response, the reader is referred to Sections
21and 3.3.

4.1.5 Coprimefactorization

Another useful way of representing systems is the coprime factorization which may
be used both in state-space and transfer function form. In the latter case a right
coprime factorizatiorof G is

G(s) = N.(s)M ' (s) (4.18)

where N,.(s) and M,.(s) are stable coprime transfer functions. The stability implies
that N,-(s) should contain all the RHP-zeros of G(s), and M ,.(s) should contain as
RHP-zeros al the RHP-poles of G(s). The coprimenessimplies that there should be
no common RHP-zeros in N,. and M, which result in pole-zero cancellations when
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forming N,.M,t. Mathematically, coprimeness means that there exist stable U ()
and V,.(s) such that the following Bezout identity is satisfied

UN, +V, M, =1 (4.19)
Similarly, aleft coprime factorizationf G is
G(s) = M, (s)Ni(s) (4.20)

Here N; and M; are stable and coprime, that is, there exist stable U;(s) and V;(s)
such that the following Bezout identity is satisfied

NU + MV, =1 (4.21)

For a scalar system, the left and right coprime factorizations are identical, G =
NM~'=M~'N.

Remark. Two stable scalar transfer functions, N(s) and M (s), are coprime if and only if
they have no common RHP-zeros. In this case we can always find stable U and V' such that
NU+ MV =1.

Example4.1 Consider the scalar system

(s—1)(s+2)

Gls) = (s —3)(s +4)

(4.22)
To obtain a coprime factorization, we first make all the RHP-pole& akros ofM, and all
the RHP-zeros off zeros of V. We then allocate the poles 8f and M so thatN and M are
both proper and the identitf = NM ! holds. Thus

s—1 s—3

N = M) =15

is a coprime factorization. Usually, we sel€€tand M to have the same poles as each other
and the same order a&/(s). This gives the most degrees of freedom subject to having a
realization of[ M (s) N(s)]” with the lowest order. We then have that

(s—=1)(s+2)

N(s)=k——2222 0 M(s) = kw

= = 4.23
s2 4+ kis+ k' 82+ kis+ ko (423

is a coprime factorization of (4.22) for alyand for anyk:, k> > 0.

From the above example, we see that the coprime factorization is not unique. Now
introduce the operator M * defined as M *(s) = M T (—s) (which for s = jw isthe
same as the complex conjugatetranspose M # = M7T). Then G(s) = N,.(s) M, *(s)
is called anormalizedright coprime factorization if

M*M, + N*N, =1 (4.24)
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T
In this case X ,.(s) = H\{’"] satisfies XX, = I and is called an inner transfer
r

function. The normalized left coprimefactorization G(s) = M, *(s)N;(s) isdefined
similarly, requiring that
M;M; + N\N; =1 (4.25)

In this case X;(s) = [M; N;] is co-inner which means X;X;* = I. The
normalized coprime factorizations are unique to within a right (left) multiplication
by aunitary matrix.

Exercise4.1 We want to find the normalized coprime factorization for the scalar system in
(4.22). LetN and M be as given in (4.23), and substitute them into (4.24). Show that after
some algebra and comparing of terms one obtains: +0.71, k; = 5.67 andk» = 8.6.

To derive normalized coprime factorizations by hand, as in the above exercise, isin
general difficult. Numerically, however, one can easily find a state-space realization.
If G hasaminimal state-space realization

o1[244]

then a minimal state-space realization of a normalized left coprime factorization is
given (Vidyasagar, 1988) by

A+HC| B+HD H

Rfl 20 | R—l 2D R—l 2 (426)

[ Ni(s) Mi(s) | 2 [

where
H% - (BD" +zC"R™', R271+DD?

and the matrix Z is the unique positive definite solution to the algebraic Riccati
equation
(A-BS'DT'C)Z+Z(A-BS'DTC)' - ZCT"R'CZ+BS'BT =0
where
S&£I1+D'D.

Notice that the formulas simplify considerably for a strictly proper plant, i.e. when
D = 0. The MATLAB commandsin Table 4.1 can be used to find the normalized
coprime factorization for G(s) using (4.26).

Exercise 4.2 Verify numerically (e.g. using thd ATLAB file in Table 4.1 or the:-toolbox
commandsncf bal ) that the normalized coprime factors 6f(s) in (4.22) are as given in
Exercise 4.1.
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Table4.1: MATLAB commands to gener ate a normalized coprime factorization
% Uses the M tool box
%
% Find Normalized Coprine factors of system[a,b,c,d] using (4.26)
%
S=eye(size(d *d))+d *d;
R=eye(size(d*d’))+d*d’;
Al a-b*inv(S)*d *c;
¢’ *inv(R) *c;
QL = b*inv(S)*b’;
[z1,z2,fail,reigmn] =ricschr([Al" -Rl; -QL -Al]); Z = z2/z1;
% Alternative: aresolv in Robust control tool box:
%[ z1,z2,eig,zerr,zwel | posed, Z] = aresol v(Al', QL, R1);
H = -(b*d + Z*c’)*inv(R);
A =a + Hc;
Bn = b + Hd; Bm=H,

= inv(sqrtm R))*c;
inv(sgrtm R))*d; Dm= inv(sqrtmR));
ck(A, Bn, C Dn);
ck(A, Bm C, Dm;

R1

£z90
Inn

1]
T o

4.1.6 Moreon state-space realizations

I nverse system. In some cases we may want to find a state-space description of the
inverse of asystem. For asquare G(s) we have

s [ A-BD"'C | BD™!
¢ == T 420

where D is assumed to be non-singular. For a non-square G(s) in which D has full
row (or column) rank, aright (or left) inverse of G(s) can befound by replacing D —!
by D', the pseudo-inverse of D.

For a strictly proper system with D = 0, one may obtain an approximate inverse
by including a small additional feed-throughterm D, preferably chosen on physical
grounds. One should be careful, however, to select the signs of the terms in D
such that one does not introduce RHP-zeros in G/(s) because this will make G'(s) !
unstable.

Improper systems. Improper transfer functions, where the order of the s-
polynomial in the numerator exceeds that of the denominator, cannot be represented
in standard state-space form. To approximate improper systems by state-space
models, we can include some high-frequency dynamics which we know from
physical considerationswill have little significance.

Realization of SISO transfer functions. Transfer functions are a good way
of representing systems because they give more immediate insight into a systems
behaviour. However, for numerical calculations a state-space realization is usually
desired. Oneway of obtaining a state-space realization from a SISO transfer function
is given next. Consider a strictly proper transfer function (D = 0) of the form

Bnas" T+ + Bis+ o
s"+ap_18" L+ -+ ars+ao

G(s) =

(4.29)
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Then, since multiplication by s corresponds to differentiation in the time domain,
(4.28) andtherelationshipy(s) = G(s)u(s) correspondsto thefollowing differential
eguation
Y () Fan—1y" T O+ Fary' (t)+aoy(t) = Baou” T () + -+ Bru (8)+Boult)
wherey™~1(t) and u™~(t) represent n — 1'th order derivatives, etc. We can further
writethis as

Y = (—an—1y™ '+ Bporu ) + o+ (—ary’ + Buu!) + (—aoy + Bou)

————

!
Th

P,

~~

n
1

where we have introduced new variables x 1, z, . .. , and we havey = z;. Note
that «} isthen’th derivativeof z, (). With thenotation & = «'(t) = dz/dt, we have
the following state-space equations

T, = —aoT1 + Pou
Tpo1 = —ax1+ Ty + fiu
T = —p_1T1 + T2+ Bn_iu

corresponding to the realization

—Gp_1 1 0 -~ 0 O Bn—1
—Gn_2 0 1 0 0 Br—2
A=| - = |, B=| : (4.29)
—az 0 0 10 B2
—a; 00 --- 0 1 B1
—ao 00 --- 00 Bo
c=[1 0 0 -- 0 0]

Thisis caled the observer canonical formlwo advantages of this realization are
that one can obtain the elements of the matrices directly from the transfer function,
and that the output y is ssimply equal to the first state. Notice that if the transfer
function is not strictly proper, then we must first bring out the constant term, i.e.
write G(s) = G1(s) + D, and then find the realization of G (s) using (4.29).

Example 4.2 To obtain the state-space realization, in observer canonical form, of the SISO
transfer functionG(s) = 22, we first bring out a constant term by division to get

sta’
s—a —2a
G(s) = = 1
(s) s+a s+a +
ThusD = 1. For the term;fg we get from (4.28) thatly = —2a andao = a, and therefore

(4.29) yieldsA = —a, B = —2q andC' = 1.
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Example 4.3 Consider an ideal PID-controller

1 ? 1
K(s) = Ko(1+ — + mps) = K, 22 T T8+ 1 (4.30)
TIS TIS
Since this involves differentiation of the input, it is an improper transfer function and cannot be
written in state-space form. A proper PID controller may be obtained by letting the derivative
action be effective over a limited frequency range. For example
DS

K(s) = Ko(1+ —

s 1+ ETDS) (4-31)

wheree is typically 0.1 or less. This can now be realized in state-space form in an infinite
number of ways. Four common forms are given below. In all casesDtheatrix, which
represents the controller gain at high frequencies+£ o), is a scalar given by

1+e€

D=K. (4.32)
1. Diagonalized form (Jordan canonical form)
— 0 0 _ KC/TI —
A_{O 7%}, B_|:K¢/(62TD):|7 C=[1 -1] (4.33)
2. Observability canonical form
A=10 L |, B=[7|, c=11 0 (4.34)
0 —=5 1/ Y2 |’ :
1 1 K.
h =K.(— — = , Ve = -
where (TI 627_D) Yo 72
3. Controllability canonical form
0 0
A:{l 9 } B:m, C=lm ] (4.35)
ETD
wherev; and~. are as given above.
4. Observer canonical form in (4.29)
_[-=+ 1 _ | B _
A_{ = 0}, B_[ﬂo], C=[1 0] (4.36)
2 —
where [y = K. . B :Kce?iﬁ
ETITD €E“TITD

On comparing these four realizations with the transfer function model in (4.31), it is
clear that the transfer function offers more immediate insight. One can at least see
that itisaPID controller.

Time delay. A time delay (or dead time) is an infinite-dimensional system and
not representable as a rational transfer function. For a state-space realization it must
therefore be approximated. An n’th order approximation of atime delay # may be
obtained by putting n first-order Padé approximations in series

—0s (1 — %S)n

~ (5 ey (4.37)
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Alternative (and possibly better) approximations are in use, but the above
approximation is often preferred because of its simplicity.

4.2 State controllability and state observability

For the case when A has distinct eigenvalues, we have from (4.16) the following
dyadic expansion of the transfer function matrix from inputs to outputs,

" Ct;q' B TR T
=N 2 p=Y ey p 4.38
G(s) Z;S—N *D=) N (4.38)

From this we see that the i’ the input pole vectofHavre, 1998)
up; £ q;' B (4.39)

isan indication of how much the i’th modeis excited (and thus may be “ controlled”)
by the inputs. Similarly, the i’ the output pole vector

Yp: = Ct; (4.40)

indicates how much the i’ th mode is observed in the outputs. Thus, the pole vectors
may be used for checking the state controllability and observability of asystem. This
isexplained in more detail below, but let us start by defining statecontrollability.

Definition 4.1 State controllability. The dynamical systemlh = Ax + Bu, or
equivalently the paif A, B), is said to be state controllable if, for any initial state
z(0) = xo, any timet; > 0 and any final state:, there exists an inpui(t) such
thatz(t;) = x;. Otherwise the system is said to be state uncontrollable.

A mode is called uncontrollable if none of the inputs can excite the mode. From
(4.38) we have that the i’th mode is uncontrollableif and only if the i’th input pole
vector is zero — otherwise the mode is controllable. The system is (state) controllable
if al its modes are controllable. Thus we have: Let \; be thei'th eigenvalue of4,
q; the corresponding left eigenvectgf! A = X\;q¢, andu,, = B¢, thei’'th input
pole vector. Then the systdm, B) is state controllable if and only if

up; # 0,0

In words, a system is state controllable if and only if al its input pole vectors are
nonzero.

Remark. There exists many other tests for state controllability. Two of these are
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1. Thesystem (A, B) is state controllable if and only if the controllability matrix
C2£[B AB A2B ... A"~1B] (4.42)

has rank n (full row rank). Here n is the number of states.
2. From (4.6) one can verify that a particular input which achieves z (1) = z1 is

u(t) = —BTeAT(t17t>Wc(t1)7l(eAtlxo — 1) (4.42)

where W, (t) is the Gramian matrix at timet¢,
¢ T
We(t) & / e*"BBTet Tdr
0

Therefore, the system (A, B) is state controllable if and only if the Gramian matrix W (t)
has full rank (and thus is positive definite) for any ¢ > 0. For a stable system (A is stable)
we only need to consider P £ W, (o), that is, the pair (A, B) is state controllable if and
only if the controllability Gramian

pa / A" BB A Tdr (4.43)
0

ispositive definite (P > 0) and thus hasfull rank n. P may also be obtained as the solution
to the Lyapunov equation
AP+ PA" =-BB" (4.49)

Example 4.4 Consider a scalar system with twstates and the following state-space
realization

A:[BQ ;ﬂ,B:m,czu 0], D=0

The transfer function (minimal realization) is

G(s) = C(sT — 4) "B = - i :

which has only onstate. In fact, the first state corresponding to the eigenvalue at -2 is not
controllable. This is verified by considering state controllability.

1. The eigenvalues of are \; = —2 and\» = —4, and the corresponding left eigenvectors
areq; =[0.707 —0.707]7 andgs = [0 1]T. The two input pole vectors are

Y =Bq1 =0, yp, =BT =1
and sincey,, is zero we have that the first mode (eigenvalue) is not state controllable.

2. The controllability matrix has rank since it has two linearly dependent rows:

C=[B AB]= E :ﬂ
3. The controllability Gramian is also singular

pP= 0.125 0.125
~10.125 0.125
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In words, if a system is state controllable we can by use of itsinputs« bring it from
any initial state to any final state within any given finite time. State controllability
would therefore seem to be an important property for practical control, but it rarely
isfor the following four reasons:

1. It says nothing about how the states behave at earlier and later times, e.g. it does
not imply that one can hold (ast — oo) the states at a given value.

2. Therequired inputs may be very large with sudden changes.

3. Some of the states may be of no practical importance.

4. The definition is an existence result which provides no degree of controllability
(see Hankel singular valuesfor this).

Thefirst two objections are illustrated in the following example.

Example 4.5 State controllability of tanksin series.

150

Control: u(t

Il Il Il Il
0 100 200 300 400 500
Time [sec]

() Input trgjectory to give desired state at ¢ = 400 s

Il Il Il Il Il
50 100 150 200 250 300 350 400 450 500
Time [sec]

-20 L L L I
0

(b) Response of states (tank temperatures)

Figure 4.1: State controllability of four first-order systemsin series

Consider a system with one input and four states arising from four first-order systems in series,

G(s) =1/(rs+1)*

A physical example could be four identical tanks (e.g. bath tubs) in series where water flows

from one tank to the next. Energy balances, assuming no heat IosSIMe{dTSlﬁTg, T5 =
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5T, To = 25T, Ty = 5 Tp where the states = [71 7 T3 T4]" are the

four tank temperatures, the input = T is the inlet temperature, and = 100 s is the
residence time in each tank. A state-space realization is

—0.01 0 0 0 0.01
| 001 —001 o0 0 | o
A=1" 001 —001 o |B=] o (4.45)
0 0 0.01 —0.01 0

In practice, we know that it is very difficult to control the four temperatures independently,
since at steady-state all temperatures must be equal. However, the controllability @atrix
in (4.41) has full rank, so the system is state controllable and it must be possible to achieve
at any given time any desired temperature in each of the four tanks simply by adjusting the
inlet temperature. This sounds almost too good to be true, so let us consider a specific case.
Assume that the system is initially at steady-state (all temperatures are zero), and that we
want to achieve at = 400 s the following temperatures; (400) = 1, T>(400) = —1,
T5(400) = 1 andT4(400) = —1. The change in inlet temperatufé;(¢), to achieve this was
computed from (4.42) and is shown as a function of time in Figure 4.1(a). The corresponding
tank temperatures are shown in Figure 4.1(b). Two things are worth noting:
1. The required change in inlet temperature is more tthaf times larger than the desired
temperature changes in the tanks and it also varies widely with time.
2. Although the states (tank temperatufE3 are indeed at their desired values &fl at
t = 400 s, itis not possible to hold them at these values, since at steady-state all the states
must be equal (all states approach 0 in this case, sineeT; is reset to 0 at = 400 S).
It is quite easy to explain the shape of the infiitt): The fourth tank is furthest away and
we want its temperature to decreadg (400) = —1) and therefore the inlet temperatuf@®
is initially decreased to about40. Then, sincél3(400) = 1 is positive,T; is increased to
about30 at¢ = 220 s; it is subsequently decreased to abeut0, since7>(400) = —1, and
finally increased to more that0 to achiever; (400) = 1.

From the above example, we see clearly that the property of state controllability
may not imply that the system is*“controllable” in apractical sense 2. Thisis because
state controllability is concerned only with the value of the states at discreteval ues of
time (target hitting), while in most cases we want the outputs to remain close to some
desired value (or trgjectory) for al values of time, and without using inappropriate
control signals.

So now we know that state controllability does not imply that the system is
controllable from a practical point of view. But what about the reverse: If we do
not have state controllability, is this an indication that the system is not controllable
in apractical sense? In other words, should we be concerned if a system is not state
controllable? In many cases the answer is“no”, since we may not be concerned with
the behaviour of the uncontrollabl e states which may be outside our system boundary
or of no practical importance. If we areindeed concerned about these states then they
should be included in the output set y. State uncontrollability will then appear as a
rank deficiency in the transfer function matrix G(s) (see functional controllability).

2 In Chapter 5, we introduce a more practical concept of controllability which we call “input-output
controllability”.
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So is the issue of state controllability of any value at all? Yes, because it tells
us whether we have included some states in our model which we have no means
of affecting. It aso tells us when we can save on computer time by deleting
uncontrollable states which have no effect on the output for azero initial state.

In summary, state controllability is a system theoretical concept which is
important when it comes to computations and realizations. However, its name is
somewhat misleading, and most of the above discussion might have been avoided
if only Kalman, who originally defined state controllability, had used a different
terminology. For example, better terms might have been “ point-wise controllability”
or “state affect-ability” from which it would have been understood that although
all the states could be individually affected, we might not be able to control them
independently over a period of time.

Definition 4.2 State observability. The dynamical system = Az + Bu,y =

Cz + Du (or the pair (A, C)) is said to be state observable if, for any time> 0,

the initial statex:(0) = x, can be determined from the time history of the inp{)

and the outpuy(¢) in the intervall0, ¢1]. Otherwise the system, ¢A, C), is said to
be state unobservable.

From (4.38) we have: Let \; be thei’th eigenvalue of4, ¢; be the corresponding
eigenvectordt; = \;t;, andy,, = Ct; the'th output pole vector. Then the system
(A, C) is state observable if and only if

ypi # 07 VZ

In words, a system is state observable if and only if al its output pole vectors are
nonzero.

Remark. Two other tests for state observability are:

1. The system (A, C) is state observable if and only if we have full colum rank (rank n) of
the observability matrix
C

CA
02 : (4.46)

CA.n— 1
2. For astable system we may consider the observability Gramian

Q2 / A TCTCeA dr (4.47)
0

which must have full rank n (and thus be positive definite) for the system to be state
observable. () can also be found as the solution to the following Lyapunov equation

ATQ+QA=-C"C (4.48)
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A system is state observableif we can obtain the value of all individual states by
measuring the output y(¢) over some time period. However, even if asystem is state
observableit may not be observablein apractical sense. For example, obtaining z(0)
may requiretaking high-order derivativesof y () which may be numerically poor and
sensitive to noise. Thisisillustrated in the following example.

Example 4.5 (tanksin series) continued. If we definey = T4 (the temperature of the last
tank),therC' =[0 0 0 1]andwe find thatthe observability matiXhas full column rank

so all states are observable frogn However, consider a case where the initial temperatures
in the tanks,T;3(0),¢ = 1,...,4, are non-zero (and unknown), and the inlet temperature
To(t) = wu(t) is zero fort > 0. Then, from a practical point of view, it is clear that it is
numerically very difficult to back-calculate, for examflg(0) based on measurements of
y(t) = T4(t) over some intervdl, ¢1], although in theory all states are observable from the
output.

Definition 4.3 Minimal realization, McMillan degreeand hidden mode. A state-

space realizatio 4, B, C, D) of G(s) is said to be a minimal realization ¢f(s) if

A has the smallest possible dimension (i.e. the fewest number of states). The smallest
dimension is called th&cMillan degree of G(s). A mode is hidden if it is not state
controllable or observable and thus does not appear in the minimal realization.

Since only controllable and observable states contribute to the input-output
behaviour from u to y, it follows that a state-space realization is minimal if and
only if (A, B) is state controllableand (A, C) is state observable.

Remark 1 Note that uncontrollable states will contribute to the output response y(¢) if the
initia state is nonzero, z(¢ = 0) # 0, but this effect will die out if the uncontrollable states
are stable.

Remark 2 Unobservable states have no effect on the outputs whatsoever, and may be viewed
as outside the system boundary, and thus of no direct interest from a control point of view
(unless the unobservable state is unstable, because we want to avoid the system “blowing
up”). However, observability isimportant for measurement selection and when designing state
estimators (observers).

4.3 Stability

There are a number of ways in which stability may be defined, e.g. see Willems
(1970). Fortunately, for linear time-invariant systems these differences have no
practical significance, and we use the following definition:

Definition 4.4 A system iqinternally) stable if none of its components contain
hidden unstable modes and the injection of bounded external signals at any place
in the system result in bounded output signals measured anywhere in the system.
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We here define a signal u(t) to be “bounded” if there exists a constant ¢ such that
lu(t)| < ¢ for @l t. The word internally is included in the definition to stress that
we do not only require the response from one particular input to another particular
output to be stable, but require stability for signalsinjected or measured at any point
of the system. This is discussed in more detail for feedback systems in Section
4.7. Similarly, the components must contain no hidden unstable modes, that is, any
instability in the components must be contained in their input-output behaviour.

Definition 4.5 Stabilizable, detectable and hidden unstable modes. A system is
(state) stabilizable if all unstable modes are state controllable. A system is (state)
detectable if all unstable modes are state observable. A system with unstabilizable
or undetectable modes is said to contain hidden unstable modes.

A linear system (A, B) is stabilizable if and only if all input pole vectors u ;i
associated with the unstable modes are nonzero. A linear system (A4, C) isdetectable
if and only if &l output pole vectors y,,, associated with the unstable modes are
nonzero. If a system is not detectable, then there is a state within the system which
will eventually grow out of bounds, but we have no way of observing this from the
outputs y(t).

Remark 1 Any unstable linear system can be stabilized by feedback control (at least in
theory) provided the system contains no hidden unstable mode(s). However, this may require
an unstable controller, see also the remark on page 185.

Remark 2 Systems with hidden unstable modes must be avoided both in practice and in
computations (since variables will eventually blow up on our computer if not on the factory
floor). In the book we always assume, unless otherwise stated, that our systems contain no
hidden unstable modes.

4.4 Poles

For simplicity, we here define the poles of a system in terms of the eigenvalues of the
state-space A-matrix. More generally, the poles of G(s) may be somewhat loosely
defined as the finite values s = p where G(p) has a singularity (“is infinite”), see
also Theorem 4.2 below.

Definition 4.6 Poles. The poleg; of a system with state-space description (4.3)—
(4.4) are the eigenvaluea;(A),i = 1,...,n of the matrix A. The pole or
n

characteristic polynomiad(s) is defined a(s) £ det(sI — A) = [[i—,(s — p;).
Thus the poles are the roots of the characteristic equation

B(s) 2 det(sI —A) =0 (4.49)

To see that this definition is reasonable, recall (4.15) and Appendix A.2.1. Note that
if A doesnot correspond to aminimal realization then the poles by this definition will
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include the poles (eigenval ues) corresponding to uncontrollable and/or unobservable
states.

4.4.1 Polesand stability
For linear systems, the poles determine stability:

Theorem 4.1 A linear dynamic systemh = Az + Bu is stable if and only if all the
poles are in the open left-half plane (LHP), thatis{;(A4)} < 0,Vi. A matrix A
with such a property is said to be “stable” or Hurwitz.

Proof: From (4.7) we see that the time response (4.6) can be written as a sum of terms each
containing amodee™: (!, Eigenvaluesinthe RHPwith Re{\;(A4)} > 0 giveriseto unstable
modessince in this case ¢ (D¢ is unbounded as ¢ — oco. Eigenvalues in the open LHP give
rise to stable modes where ¢*i (Yt — (0 ast — oo. Systems with poles on the jw-axis,
including integrators, are unstable from our Definition 4.4 of stability. For example, consider
y = Gu and assume G(s) has imaginary poles s = +jw,. Then with a bounded sinusoidal
input, u(t) = sin w,t, the output y(¢) grows unbounded ast — oo. O

4.4.2 Polesfrom state-space realizations

Poles are usually obtained numerically by computing the eigenvalues of the A-
matrix. To get the fewest number of poles we should use a minimal redization of
the system.

4.4.3 Polesfrom transfer functions

The following theorem from MacFarlane and Karcanias (1976) alows us to obtain
the poles directly from the transfer function matrix G(s) and is also useful for hand
calculations. It aso has the advantage of yielding only the poles corresponding to a
minimal realization of the system.

Theorem 4.2 The pole polynomiap(s) corresponding to a minimal realization of
a system with transfer functiaf(s), is the least common denominator of all non-
identically-zero minors of all orders @¥(s).

A minor of a matrix is the determinant of the matrix obtained by deleting certain
rows and/or columns of the matrix. We will use the notation 1/ to denote the minor
corresponding to the deletion of rows r and columns ¢ in G(s). In the procedure
defined by the theorem we cancel common factorsin the numerator and denominator
of each minor. It then follows that only observable and controllable poles will appear
in the pole polynomial.

Example 4.6 Consider the plant:G(s) = %e"’s which has no state-space

realization as it contains a delay and is also improper. Thus we can not compute the poles
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from (4.49). However from Theorem 4.2 we have that the denominateris1) and as
expected7(s) has a pole a = —1.

Example 4.7 Consider the square transfer function matrix

1 s—1 s
) = TG D612 { 6 s— 2} (450

The minors of ordei are the four elements all hae + 1)(s + 2) in the denominator. The
minor of order2 is the determinant

_(s—=1)(s—2)+6s 1
det G(s) = 1.252(s + 1)2(s + 2)2 _ 1.25%(s + 1)(s + 2) (451)

Note the pole-zero cancellation when evaluating the determinant. The least common
denominator of all the minors is then

o(s) =(s+1)(s+2) (4.52)

so a minimal realization of the system has two poles: one-at—1 and one ats = —2.

Example 4.8 Consider the x 3 system, witt3 inputs and2 outputs,

_ 1 (s = 1)(s +2) 0 (s —1)2
) = DG+ DG DL -(+D6+2) -0+ -+ @

The minors of ordet are the five non-zero elements (i 3 = g11(s)):

1 s—1 -1 1 1
4.
s+1 (s+1)(s+2) s—1"s5+2" s+2 (4.54)
The minor of ordeR corresponding to the deletion of colurdris
— _ _1)\2
My = (s —1)(s+2)(s 1)(s+1)+(s+1)‘(s+2)(s D” _ 2 (4.55)
((s+1D)(s+2)(s—1))2 (s+1)(s+2)
The other two minors of order two are
—(s—1) 1
M= =" 4.56
L ernero BT EEDeTY (4.56)
By considering all minors we find their least common denominator to be
B(s)=(s+1)(s+2)(s—1) (4.57)
The system therefore has four poles: one at —1, one ats = 1 and two ats = —2.

From the above exampleswe see that the MIM O-poles are essentially the poles of the
elements. However, by looking at only the elementsit is not possibleto determinethe
multiplicity of the poles. For instance, let G (s) be asquare m x m transfer function
matrix with no poleat s = —a, and consider

G(s) = oy aGO(S) (4.58)
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How many polesat s = —a doesaminimal realization of G(s) have? From (A.10),

1 1
det (G(s)) = det <s n aGg(S)) “Gram det (Go(s)) (4.59)
so if Gy hasno zeros at s = —a, then G(s) hasm polesat s = —a. However, G

may havezerosat s = —a. Asan example, consider a2 x 2 plant in theform given by
(4.58). It may havetwo polesat s = —a (asfor G(s) in (3.81)), onepoleat s = —a
(asin (4.50) where det G (s) hasazeroat s = —a) or nopoleat s = —a (if al the
elements of G (s) haveazeroat s = —a).

As noted above, the poles are obtained numerically by computing the eigenvalues
of the A-matrix. Thus, to compute the poles of atransfer function G(s), we must first
obtain a state-space realization of the system. Preferably this should be a minimal
realization. For example, if we make individual realizations of the five non-zero
elementsin Example 4.8 and then simply combine them to get an overall state space
realization, we will get a system with 15 states, where each of the three poles (in
the common denominator) are repeated five times. A model reduction to obtain a
minimal realization will subsequently yield a system with four poles as given in
(4.57).

444 Polevectorsand directions

In multivariable system poles have directions associated with them. To quantify this
we use the input and output pole vectorsntroduced in (4.39) and (4.40):

yp; = Cty,  up, = BHqi (4.60)

The pole directionsare the directions of the pole vectors and have unit length.
Specifically, mypi where y,,, is computed from (4.60) is the 4’th output pole
direction. '

The pole directions may also be defined in terms of the transfer function matrix
by evaluating G(s) at the pole p; and considering the directions of the resulting
complex matrix G(p;). Thematrix isinfinite in the direction of the pole, and we may
somewhat crudely write

G(pi)up;, = 00 - yp, (4.61)

where u,, is the input pole direction, and y,,, is the output pole direction. The pole
directions may in principle be obtained from an SVD of G(p;) = USVH. Thenu,,
isthefirst columnin V' (corresponding to theinfinite singular value), and y ,,, thefirst
columninU.

Remark 1 Asalready mentioned, if u, = B ¢ = 0 then the corresponding poleis not state
controllable, and if y, = Ct = 0 the corresponding pole is not state observable (see also
Zhou et al. (1996, p.52)).
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Remark 2 The pole vectors provide a very useful tool for selecting inputs and outputs for
stabilization. For a single unstable mode, selecting the input corresponding to the largest
element in u, and the output corresponding to the largest element in y,, minimizes the input
usage required for stabilization. More precisely, this choice minimizes the lower bound on
both the 7> and H..-norms of the transfer function XS from measurement (output) noise to
input (Havre, 1998)(Havre and Skogestad, 1998b).

45 Zeros

Zeros of asystem arise when competing effects, internal to the system, are such that the output
is zero even when the inputs (and the states) are not themselves identically zero. For a SISO
system the zeros z; are the solutions to G(z;) = 0. In general, it can be argued that zeros
are values of s at which G(s) loses rank (from rank 1 to rank O for a SISO system). This
is the basis for the following definition of zeros for a multivariable system (MacFarlane and
Karcanias, 1976).

Definition 4.7 Zeros. z; is a zero ofG(s) if the rank of G(z;) is less than the normal rank
of G(s). The zero polynomial is defined aés) = []}>, (s — z;) wheren. is the number of
finite zeros of7(s).

In thisbook we do not consider zeros at infinity; werequirethat z; isfinite. The normal rank of
G(s) isdefined as the rank of G(s) at all values of s except at afinite number of singularities
(which are the zeros).

This definition of zeros is based on the transfer function matrix, corresponding to a minimal
realization of a system. These zeros are sometimes called “transmission zeros’, but we will
simply call them “zeros’. We may sometimes use the term “multivariable zeros” to distinguish
them from the zeros of the elements of the transfer function matrix.

45.1 Zerosfrom state-spacerealizations

Zeros are usually computed from a state-space description of the system. First note that the
state-space equations of a system may be written as

0 I-A —-B
P(s)m - M P(s) = {S A } (4.62)
The zeros are then the values s = z for which the polynomial system matrix, P(s), loses
rank, resulting in zero output for some non-zero input. Numerically, the zeros are found as
non-trivial solutions (with u, # 0 and z, # 0) to the following problem

Uz

(21, — M) {‘”} =0 (4.63)

-4 8 =[5 o9
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Thisis solved as ageneralized eigenvalue problem —in the conventional eigenvalue problem
we have I, = I. Note that we usually get additional zeros if the realization is not minimal.

452 Zerosfrom transfer functions

The following theorem from MacFarlane and Karcanias (1976) is useful for hand calculating
the zeros of atransfer function matrix G(s).

Theorem 4.3 The zero polynomial(s), corresponding to a minimal realization of the system,

is the greatest common divisor of all the numerators of all orderinors ofG(s), wherer is

the normal rank of7(s), provided that these minors have been adjusted in such a way as to
have the pole polynomial(s) as their denominators.

Example 4.9 Consider the x 2 transfer function matrix

G(s) = - i 2 s4f51 2(34— 1) (4.65)

The normal rank ofG(s) is 2, and the minor of ordee is the determinantdet G(s) =
2s=1)° 18 _ 954 From Theorem 4.2, the pole polynomiakiés) = s + 2 and therefore

(s+2)2 s+2°
the zero polynomial is(s) = s — 4. Thus,G(s) has a single RHP-zero at= 4.

This illustrates that in general multivariable zeros have no relationship with the zeros of the
transfer function elements. Thisis also shown by the following example where the system has
No Zeros.

Example 4.7 continued. Consider again the x 2 system in (4.50) wheréet G(s) in (4.51)
already hasp(s) as its denominator. Thus the zero polynomial is given by the numerator of
(4.51), which isl, and we find that the system has no multivariable zeros.

The next two examples consider non-sguare systems.

Example4.10 Consider thel x 2 system

Gls) = [ (4.66)

s—1 572:|
s+1 s+2

The normal rank o7 (s) is 1, and since there is no value efor which both elements become
zero,G(s) has no zeros.

In general, non-square systems are less likely to have zeros than square systems. For instance,
for asguare 2 x 2 system to have azero, there must be avalue of s for which the two columns
in G(s) arelinearly dependent. On the other hand, for a2 x 3 system to have azero, we need
all three columnsin G(s) to be linearly dependent.

The following is an example of anon-sgquare system which does have a zero.
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Example 4.8 continued. Consider again th@ x 3 system in (4.53), and adjust the minors of
order 2 in (4.55) and (4.56) so that their denominators @) = (s + 1)(s + 2)*(s — 1).
We get

—(s—1)2 2(s —1)(s+2) 5y = (s —1)(s+2)
e ORI e

The common factor for these minors is the zero polynos{i@l = (s — 1). Thus, the system
has a single RHP-zero located at= 1.

M1 (S) = 5 M2(S) = (467)

We also see from the last example that a minimal realization of a MIMO system can have
poles and zeros at the same value of s, provided their directions are different.

453 Zerodirections

In the following let s be a fixed complex scalar and consider G(s) as a complex matrix. For
example, given a state-space redization, we can evaluate G(s) = C(sI — A)"'B + D. Let
G(s) haveazero at s = z. Then G(s) losesrank at s = z, and there will exist non-zero
vectors u, and y, such that

G(2)u, =0-y, (4.68)
Here u is defined as the input zero direction, and vy, is defined as the output zero direction.
We usually normalize the direction vectors to have unit length,

wlu. =1 yly. =1

From a practical point of view, the output zero direction, y., is usualy of more interest than
u,, because y. gives information about which output (or combination of outputs) may be
difficult to control.

Remark. Taking the Hermitian (conjugate transpose) of (4.68) yidds uZ G (z) = 0 - yZ.
Premultiplying by «. and postmuliplying by y. noting that v u, = 1 and yy. = 1 yields
Goy,=0-u.,or

y7G(z) =0-u (4.69)

In principle, we may obtain u, and y. from an SVD of G(z) = ULV, and we have that
u isthelast column in V' (corresponding to the zero singular value of G(z)) and y. isthe
last column of U. An example was given earlier in (3.64). A better approach numerically, isto
obtain u. from a state-space description using the generalized eigenvalue problem in (4.63).
Similarly, y. may be obtained from the transposed state-space description, see (4.69), using
M7 in(4.63).

Example4.11 Zero and pole directions. Consider the2 x 2 plant in (4.65), which has a
RHP-zero at: = 4 and a LHP-pole app = —2. We will use an SVD of/(z) and G(p)

to determine the zero and pole directions (but we stress that this is not a reliable method
numerically). To find the zero direction consider

JRei R bt e |l

G(Z)ZG(4):5 45 6| §|0.83 0.55 0 0/[[08 06

6
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The zero input and output directions are associated with the zero singular vatsigzofand

we getu, = {B%%O} andy. = {505853} . We see frongy.. that the zero has a slightly larger
component in the first output. Next, to determine the pole directions consider
1[-3+¢ 4
Glp+e)=G(-2+¢€) = = [ 45 2A-3+ 6)} (4.70)

The SVD ag — 0 yields

G(=2+6) = 1 {_055 —083}{901 o}{ 0.6 _os}y

2| 083 —0.55 0 0||—-0.8 —06

The pole input and output directions are associated with the largest singular value,

9.01/¢, and we getr, = {_0(')65?0} andy, = {B%%ﬂ . We note fromy, that the pole has a

slightly larger component in the second output.

Remark. It is important to note that although the locations of the poles and zeros are
independent of input and output scalings, their directions are not. Thus, the inputs and outputs
need to be scaled properly before making any interpretations based on pole and zero directions.

4.6 Someremarkson polesand zeros

1. The zeros resulting from a minimal realization are sometimes caled the transmission
zeros If one does not have aminimal realization, then numerical computations (e.g. using
MATLAB) may yield additional invariant zerosThese invariant zeros plusthe transmission
zeros are sometimes called the system zero§ he invariant zeros can be further subdivided
into input and output decoupling zeroBhese cancel poles associated with uncontrollable
or unobservable states and hence have limited practical significance. We recommend that a
minimal realization is found before computing the zeros.

2. Rosenbrock (1966; 1970) first defined multivariable zeros using something similar to the
Smith-McMillan form. Poles and zeros are defined in terms of the McMillan form in Zhou
et al. (1996).

3. The presence of zerosimpliesblocking of certain input signals (MacFarlane and Karcanias,
1976). If z isazero of G(s), then there existsaninput signal of theform u,e**1. (¢), where
u, isa(complex) vector and 14 (t) isaunit step, and a set of initial conditions (states) z.,
such that y(¢) = 0 for ¢ > 0.

4. For square systems we essentially have that the poles and zeros of G(s) are the poles and
zeros of det G(s). However, this crude definition may fail in a few cases. For instance,
when thereis a zero and pole in different parts of the system which happen to cancel when
forming det G(s). For example, the system

_ | (s+2)/(s+1) 0
G(s) = 0 (s +1)/(s +2) (4.71)
has det G(s) = 1, dthough the system obviously has poles at —1 and —2 and

(multivariable) zerosat —1 and —2.
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10.

11.

G(s) in (4.71) provides a good example for illustrating the importance of directionswhen
discussing poles and zeros of multivariable systems. We note that although the system has
poles and zeros at the same locations (at —1 and —2), their directions are different and
so they do not cancel or otherwise interact with each other. In (4.71) the pole at —1 has
directionsu, =y, = [1 0]7, whereasthe zero at —1 hasdirectionsu, = y. = [0 1]7.
For sguare systems with a non-singular D-matrix, the number of poles is the same as the
number of zeros, and the zeros of G(s) are equal to the poles G™'(s), and vice versa

Furthermore, if the inverse of G(p) exists then it follows from the SVD that

G p)yp =0-u, (4.72)

. There are no zeros if the outputs contain direct information about all the states; that is, if

from y we can directly obtain z (e.9. C = I and D = 0); see Example 4.13. This probably
explains why zeros were given very little attention in the optimal control theory of the
1960's which was based on state feedback.

Zeros usually appear when there are fewer inputs or outputs than states, or when D # 0.
Consider asquare m x m plant G(s) = C(sI — A)~' B + D with n states. We then have
for the number of (finite) zeros of G(s) (Maciejowski, 1989, p.55)

D#0: At most n — m + rank(D) zeros
D=0: At most n — 2m + rank(C B) zeros (4.73)
D =0andrank(CB) =m: Exactly n — m zeros

Moving poles. How are the poles affected by (a) feedback (G(I + KG)™'), (b) series
compensation (GK, feedforward control) and (c) parallel compensation (G + K)? The
answer isthat (a) feedback control moves the poles (e.g. G = S}ra,K = —2a moves the
pole from —a to +a), (b) series compensation cannot move the poles, but we may cancel

polesin G by placing zerosin K (e9. G = -, K = ££¢), and (c) parallel compensation

cannot move the poles, but we may cancel their effect by subtracting identical polesin K
(eg.G = S}FQ,K = —S}ra).

For a strictly proper plant G(s) = C(sI — A)™'B, the open-loop poles are determined
by the characteristic polynomia ¢o;(s) = det(sI — A). If we apply constant gain
negative feedback u = — Koy, the poles are determined by the corresponding closed-loop
characteristic polynomia ¢.;(s) = det(sI — A + BK,C'). Thus, unstable plants may be
stabilized by use of feedback control. See also Example 4.12.

Moving zeros. Consider next the effect of feedback, series and parallel compensation on
the zeros. (@) With feedback, the zeros of G(I + KG) ™' arethe zeros of G plus the poles
of K. This means that the zeros in G, including their output directions y., are unaffected
by feedback. However, even though v. isfixed it is still possible with feedback control to
move the deteriorating effect of a RHP-zero to a given output channel, provided y. has a
non-zero element for this output. Thiswasillustrated by the example in Section 3.5, and is
discussed in more detail in Section 6.5.1.

(b) Series compensation can counter the effect of zerosin G by placing polesin K to cancel
them, but cancellations are not possible for RHP-zeros due to internal stability (see Section
4.7).

(c) The only way to move zerosis by parallel compensation, y = (G + K)u, which, if y is
aphysical output, can only be accomplished by adding an extrainput (actuator).
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12. Pinned zeros. A zerois pinned to a subset of the outputs if 3. has one or more elements
equal to zero. In most cases, pinned zeros have a scalar origin. Pinned zeros are quite
common in practice, and their effect cannot be moved freely to any output. For example,
the effect of a measurement delay for output i cannot be moved to output 3. Similarly, a
zero is pinned to certain inputs if u. has one or more elements equal to zero. An example
isG(s) in (4.71), where the zero at —2 ispinned to input u; and to output v .

13. Zeros of non-sguare systems. The existence of zeros for non-square systems is common
in practice in spite of what is sometimes claimed in the literature. In particular, they
appear if we have a zero pinned to the side of the plant with the fewest number of
channels. As an example consider a plant with three inputs and two outputs Gi(s) =

hi1 hi2 his
ho1(s —2) haa(s—2z) has(s—z
y2,i.e y, = [0 1]7. Thisfollows because the second row of G (z) is equal to zero, so
the rank of G1(z) is 1, which is less than the normal rank of G (s), which is2. On the

_ | h1i(s—2) hiz his oG
other hand, Gz(s) = {hm(s —2) ha h23} doesnothave azero at s = z since Ga(z)

has rank 2 which isequal to the normal rank of G- (s) (assuming that the last two columns
of G2(s) haverank 2).

14. The concept of functional controllability, see page 218, is related to zeros. Loosely
speaking, one can say that a system which is functionally uncontrollable has in a certain
output direction “azero for all values of s”.

) } which hasazero at s = z whichispinned to output

The control implications of RHP-zeros and RHP-poles are discussed for SISO systems on
pages 173-187 and for MIMO systems on pages 220-223.

Example 4.12 Effect of feedback on poles and zeros. Consider a SISO negative feedback
system with plan€(s) = z(s)/¢(s) and a constant gain controllef((s) = k. The closed-
loop response from referenedo outputy is

L(s)  kG(s) kz(s) . Zel(s)

1+ L(s)  1+kG(s)  ¢(s)+kz(s) k¢cl(s) (4.74)

T(s)
Note the following:

1. The zero polynomial i&;(s) = z(s), so the zero locations are unchanged by feedback.
2. The pole locations are changed by feedback. For example,

E—=0 = ¢u(s) = ¢(s) (4.75)

k=00 = o¢uls) > kz(s) (4.76)

That is, as we increase the feedback gain, the closed-loop poles move from open-loop poles
to the open-loop zeros. RHP-zeros therefore imply high gain instability. These results are
well known from a classical root locus analysis.

Example 4.13 We want to prove thaf(s) = C(sI — A)"'B + D has no zeros iD = 0
and rank(C') = n, wheren is the number of stateSolution: Consider the polynomial system
matrix P(s) in (4.62). The firstn columns ofP are independent becausg has rankn.
The lastm columns are independent ef Furthermore, the firsk and lastm columns are
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independent of each other, sinfe= 0 andC has full column rank and thus cannot have any
columns equal to zero. In conclusioR(s) always has rank: + m and there are no zeros.
(We needD = 0 because ifD is non-zero then the first columns ofP may depend on the
lastm columns for some value 6.

Exercise 4.3 (a) Consider a SISO syste@(s) = C(sI — A)~'B + D with just one state,
i.e. A is a scalar. Find the zeros. Do&g(s) have any zeros fab = 0? (b) DOGK and KG
have the same poles an zeros for a SISO system? For a MIMO system?

Exercise 4.4 Determine the poles and zeros of

1153 —18s%2—70s—50 (s+2)
_ s(s+10)(s+1)(s—5 s+1)(s—5
G(s) = ( 5)((S+2>)( )« 5(S)J(r2> )
(s+1)(s—5) (s+1)(s—5)
given that
4 3 2 2
—s°—1 —23s—1 1 2)(s —
det G(s) = 50(s" — s 5s 35 —10)  50(s+1)*(s+2)(s — 5)

s(s+1)2(s+10)(s —5)2  s(s+1)2(s + 10)(s — 5)2

How many poles do&S(s) have?

Exercise 4.5 Giveny(s) = G(s)u(s), withG(s) = }*Tj determine a state-space realization
of G(s) and then find the zeros 6f(s) using the generalized eigenvalue problem. What is the
transfer function fromu(s) to z(s), the single state of?(s), and what are the zeros of this

transfer function?

Exercise 4.6 Find the zeros for @ x 2 plant with

A:{““ “12}, B:{1 1}, C=1I, D=0

a21 a22 b21 b22
Exercise 4.7 For what values o; does the following plant have RHP-zeros?

10 o0 _ 10 _[o o
A_[O 71], B=1, c_[m 0}, D_[O 1} @477)

Exercise 4.8 Consider the plantin (4.77), but assume that both states are measured and used
for feedback control, i.ey,, = =z (but the controlled output is stily = Cz + Du). Can

a RHP-zero inG(s) give problems with stability in the feedback system? Can we achieve
“perfect” control of y in this case? (Answers: No and no).
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4.7 Internal stability of feedback systems

To test for closed-loop stability of a feedback system, it is usually enough to check just one
closed-loop transfer function, e.g. S = (I + GK)’I. However, this assumes that there are no
internal RHP pole-zero cancellations between the controller and the plant. The point is best
illustrated by an example.

Example 4.14 Consider the feedback system shown in Figure 4.2 wGge) = jjr} and
K(s) = %2£ In forming the loop transfer functioh = GK we cancel the terris — 1), a

RHP pole-zero cancellation, to obtain

S
s+k

L:GK:E, andS=(+L) "= (4.78)

S
S(s) is stable, that is, the transfer function frody to y is stable. However, the transfer
function fromd,, to u is unstable:

k(s +1)

u=-K(I+GK) 'd, = _mdy

(4.79)

Consequently, although the system appears to be stable when considering the output, signal
it is unstable when considering the “internal” signal so the system is (internally) unstable.

Figure 4.2: Internally unstable system

Remark. In practice, it is not possible to cancel exactly a plant zero or pole because of
modelling errors. In the above example, therefore, L and S will in practice also be unstable.
However, it is important to stress that even in the ideal case with a perfect RHP pole-zero
cancellation, asin the above example, we would still get an internally unstable system. Thisis
asubtle but important point. In thisideal case the state-space descriptions of L and .S contain
an unstable hidden mode corresponding to an unstabilizable or undetectabl e state.

From the above example, it is clear that to be rigorous we must consider internal stability of
the feedback system, see Definition 4.4. To this effect consider the system in Figure 4.3 where
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+f G B
dy yu

Figure 4.3: Block diagram used to check internal stability of feedback system

we inject and measure signals at both |ocations between the two components, G and K. We
get
w=T+KG) 'd, — K(I+GK) 'd, (4.80)

y=G(I+KG) 'd, + (I + GK)™'d, (4.81)
The theorem below follows immediately:

Theorem 4.4 Assume that the componefitsand K contain no unstable hidden modes. Then
the feedback system in Figure 4.3riger nally stableif and only if all four closed-loop transfer
matrices in (4.80) and (4.81) are stable.

The following can be proved using the above theorem (recall Example 4.14): If there are RHP
pole-zero cancellations betweéf(s) and K (s), i.e. if GK and K G do not both contain all
the RHP-poles iy and K, then the system in Figure 4.3 is internally unstable

If we disallow RHP pole-zero cancellations between system components, such as G and K,
then stability of oneclosed-loop transfer function implies stability of the others. Thisis stated
in the following theorem.

Theorem 4.5 Assume there are no RHP pole-zero cancellations betwi#en and K (s),
that is, all RHP-poles iG(s) and K (s) are contained in the minimal realizations @K and
KG. Then the feedback system in Figure 4.3 is internally stable if and only ibbtie four
closed-loop transfer function matrices in (4.80) and (4.81) is stable.

Proof: A proof isgiven by Zhou et al. (1996, p.125). |

Note how we define pole-zero cancellations in the above theorem. In this way, RHP pole-
zero cancellations resulting from G or K not having full normal rank are also disallowed. For
example, with G(s) = 1/(s —a) and K = 0 we get GK = 0 so the RHP-poleat s = a
has disappeared and there is effectively a RHP pole-zero cancellation. In this case, we get
S(s) = 1 whichisstable, but internal stability isclearly not possible.



ELEMENTS OF LINEAR SYSTEM THEORY 141

Exercise 4.9 Use (A.7) to show that the signal relationship (4.80) and (4.81) also may be
written )
du I K|
m = M(s){dy}; M(s) = {_G 1} (4.82)
From this we get that the system in Figure 4.3, is internally stable if and oM(i) is stable.

4.7.1 Implicationsof the internal stability requirement

The requirement of internal stability in a feedback system leads to a number of interesting
results, some of which are investigated below. Note in particular Exercise 4.12, where we
discuss alternative ways of implementing a two degrees-of-freedom controller.

We first prove the following statements which apply when the overall feedback system is
internally stable (Youlaet a., 1974):

1. IfG(s) has aRHP-zero at, thenL = GK,T = GK(I+GK)™ ', SG = (I+GK)™'G,
L; = KG andT; = KG(I + KG)~! will each have a RHP-zero at

2. If G(s) has a RHP-pole ap, then. = GK andL; = KG also have a RHP-polet p,
whileS = (I+GK) ', KS = K(I + GK)™ ! andSr = (I+ KG)™* have a RHP-zero
atp.

Proof of 1: To achieve internal stability, RHP pole-zero cancellations between system
components, such as G and K, are not allowed. Thus L = GK must have a RHP-zero when
G hasaRHP-zero. Now S is stable and thus has no RHP-pole which can cancel the RHP-zero
inL,andso T = LS must have aRHP-zero at 2. Similarly, SG = (I + GK)™'G must have
a RHP-zero, etc. O

Proof of 2: Clearly, L hasa RHP-pole a p. Since T is stable, it follows from T = LS that S
must have a RHP-zero which exactly cancels the RHP-polein L, etc. a

We notice from this that a RHP pole-zero cancellation between two transfer functions, such
asbetween L and S = (I + L)~ ", does not necessarily imply internal instability. It is only
between separate physical components (e.g. controller, plant) that RHP pole-zero cancellations
are not allowed.

Exercise4.10 Interpolation constraints. Prove the following interpolation constraints
which apply for SISO feedback systems when the fgl{r} has a RHP-zere: or a RHP-

polep:

G(z)=0 = L(z)=0 & T(2)=0,5%) =1 (4.83)
G'p)=0 = Llp)=o & TP =1,5p)=0 (4.84)
Exercise4.11 Given the complementary sensitivity functions
25 +1 —2s+1
DO = Fs 1 PO g 11

what can you say about possible RHP-poles or RHP-zeros in the corresponding loop transfer
functions,L: (s) and L2 (s)?
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Remark. A discussion of the significance of these interpolation constraints is relevant. Recall
that for “perfect control” we want S ~ 0 and T = 1. We note from (4.83) that a RHP-
zero z puts constraints on .S and 7' which are incompatible with perfect control. On the other
hand, the constraints imposed by the RHP-pole are consistent with what we would like for
perfect control. Thus the presence of RHP-poles mainly impose problems when tight (high
gain) control is not possible. We discuss thisin more detail in Chapters 5 and 6.

The following exercise demonstrates another application of theinternal stability requirement.

r

N kY r_,l K, S - K, | U
‘ Ym Ym
@ (b)
T'_» K r '+$_ X > L > K r '+$_ > K 1 U’
K, K,
Tym Tym
(c) (d)

Figure 4.4: Different forms of two degrees-of-freedom controller
(a) Genera form
(b) Suitable when K (s) has no RHP-zeros
(c) Suitable when K y(s)is stable(no RHP-poles)
(d) Suitable when K y(s) = K1(s)K2(s) where K (s) contains no
RHP-zeros and Kz( ) no RHP poles

Exercise 4.12 Internal stability of two degrees-of-freedom control configurations. A two
degrees-of-freedom controller allows one to improve performance by treating disturbance
rejection and command tracking separately (at least to some degree). The general form shown
in Figure 4.4(a) is usually preferred both for implementation and design. However, in some
cases one may want to first design the pure feedback part of the controller, here d&poied

for disturbance rejection, and then to add a simple precompensaidqs), for command
tracking. This approach is in general not optimal, and may also yield problems when it comes
to implementation, in particular, if the feedback controll€y (s) contains RHP poles or zeros,
which can happen. This implementation issue is dealt with in this exercise by considering the
three possible schemes in Figure 4.4(b)-4.4(d). In all these schEmesist clearly be stable.

1) Explain why the configuration in Figure 4.4(b) should not be uség} i€ontains RHP-zeros
(Hint: Avoid a RHP-zero betweenandy).
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2) Explain why the configuration in Figure 4.4(c) should not be usedd,iftontains RHP-
poles. This implies that this configuration should not be used if we want integral actigp in
(Hint: Avoid a RHP-zero betweenandy).

3) Show that for a feedback controlléf, the configuration in Figure 4.4(d) may be used,
provided the RHP-poles (including integrators)i6f are contained irk; and the RHP-zeros
in K». Discuss why one may often g€t = I in this case (to give a fourth possibility).

The requirement of internal stability also dictates that we must exercise care when we use
a separate unstable disturbance model Gy4(s). To avoid this problem one should for state-
space computations use a combined model for inputs and disturbances, i.e. write the model
y = Gu + Gg4d intheform

y=16 G}

where G and G4 share the same states, see (4.14) and (4.17).

4.8 Stabilizing controllers

In this section, we introduce a parameterization, known as the @Q-parameterization or Youla-
parameterization (Youlaet al., 1976) of all stabilizing controllersfor aplant. By al stabilizing
controllers we mean all controllers that yield internal stability of the closed-loop system. We
first consider stable plants, for which the parameterization is easily derived, and then unstable
plants where we make use of the coprime factorization.

4.8.1 Stableplants

The following lemma forms the basis.

Lemma 4.6 For a stable planiG(s) the negative feedback system in Figure 4.3 is internally
stable if and only il = K (I + GK)™* is stable.

Proof: The four transfer functions in (4.80) and (4.81) are easily shown to be

K(I+GK)'=Q (4.85)
(I+GK)™"'=I-GQ (4.86)
(I+KG) '=I-QG (4.87)

GI+KG®)™'=GI-QG) (4.88)

which are clearly all stableif G and ) are stable. Thus, with G stable the system isinternally
stableif and only if @ is stable. a
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As proposed by Zames (1981), by solving (4.85) with respect to the controller K, we find that
aparameterization of all stabilizing negative feedback controllers for the stable plags) is
given by

KE=(I-QG)'Q=QU~-GQ)" (4.89)

where the “parameter” @ isany stable transfer function matrix

Remark 1 If only proper controllers are alowed then @ must be proper since the term
(I — QG)~" issemi-proper.

Remark 2 We have shown that by varying @ freely (but stably) we will always have internal
stability, and thus avoid internal RHP pole-zero cancellations between K and G. This means
that although Q may generate unstable controllers K, thereis no danger of getting aRHP-pole
in K that cancelsaRHP-zeroin G.

The parameterization in (4.89) is identica to the internal model control (IMC)
parameterization (Morari and Zafiriou, 1989) of stabilizing controllers. It may be derived
directly from the IMC structure given in Figure 4.5. The idea behind the IMC-structure is
that the “ controller” @ can be designed in an open-loop fashion since the feedback signal only
contains information about the difference between the actual output and the output predicted
from the model.

Y

r==-==----

Y

Figure 4.5: Theinternal model control (IMC) structure

Exercise 4.13 Show that the IMC-structure in Figure 4.5 is internally unstable if eitfyeor
G is unstable.

Exercise 4.14 Show that testing internal stability of the IMC-structure is equivalent to testing
for stability of the four closed-loop transfer functions in (4.85)-(4.88).

Exercise4.15 Given a stable controlletx. What set of plants can be stabilized by this
controller? (Hint: interchange the roles of plant and controller.)
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4.8.2 Unstableplants
For an unstable plant G(s), consider its |eft coprime factorization
G(s) = M, 'N, (4.90)

A parameterization of all stabilizing negative feedback controllers for the pl@#fs) is then
(Vidyasagar, 1985)

K(s) = (V» = QN) ™' (Ur + QM) (4.91)
where V. and U, sdatisfy the Bezout identity (4.19) for the right coprime factorization,
and Q(s) is any stable transfer functiosetisfying the technical condition det(V;(c0) —
Q(00)Ni(0)) # 0.

Remark 1 With Q = 0 we have Ky, = V,~'U,, s0 V, and U, can aternatively be obtained
from aleft coprime factorization of some initial stabilizing controller K.

Remark 2 For astable plant, we may write G(s) = N;(s) corresponding to M; = I. Inthis
case Ko = 0 isastabilizing controller, so we may from (4.19) select U, = 0 and V,. = I, and
(4.91) yidds K = (I — QG)~'Q asfound before in (4.89).

Remark 3 We can also formulate the parameterization of all stabilizing controllers in state-
space form, e.g. see page 312 in Zhou et al. (1996) for details.

The Q-parameterization may be very useful for controller synthesis. First, the search over all

stabilizing K's (e.9. S = (I + GK)™! must be stable) is replaced by a search over stable
Q’s. Second, al closed-loopransfer functions (S, T, etc.) will beintheform H; + H2QH,

so they are affine® in Q. This further simplifies the optimization problem.

4.9 Stability analysisin the frequency domain

As noted above the stability of a linear system is equivalent to the system having no poles
in the closed right-half plane (RHP). This test may be used for any system, be it open-
loop or closed-loop. In this section we will study the use of frequency-domain techniques
to derive information about closed-loopstability from the open-looptransfer matrix L(jw).
This provides a direct generalization of Nyquist's stability test for SISO systems.

Note that when we talk about eigenvalues in this section, we refer to the eigenvalues of a
complex matrix, usually of L(jw) = GK (jw), and not those of the state matrix A.

4.9.1 Open and closed-loop characteristic polynomials

We first derive some preliminary results involving the determinant of the return difference
operator I + L. Consider the feedback system shown in Figure 4.6, where L(s) is the loop

3 Afunction f(z) isaffineinz if f(z) = az + b, andislinear inz if f(z) = az.
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r_J L 4

Figure 4.6: Negative feedback system

transfer function matrix. Stability of the open-loop system is determined by the poles of L(s).

If L(s) has a state-space realization [ Aot | Bo ],thatis
Col Dol
L(S) = Col(SI - Aol)_lBol + Dol (492)

then the poles of L(s) are the roots of the open-loopcharacteristic polynomia
do1(s) = det(sI — Ayr) (4.93)

Assume there are no RHP pole-zero cancellations between G(s) and K(s). Then from
Theorem 4.5 internal stability of the closed-loopsystem is equivalent to the stability of
S(s) = (I + L(s))~". The state matrix of S(s) is given (assuming L(s) is well-posed,
i.e. D, + I isinvertible) by

Acl = Aol - Bol (I + Dol)_lcol (494)

This equation may be derived by writing down the state-space equations for the transfer
function from r to y in Figure 4.6

T = Aoz + Bo(r — y) (4.95)

y=Cox+ Do(r—y) (4.96)

and using (4.96) to eliminate y from (4.95). The closed-loop characteristic polynomial isthus
given by

ber(s) £ det(sI — Ay) = det(sI — Aor + Boy(I 4+ Do) ' Cot) (4.97)

Relationship between characteristic polynomials

The above identities may be used to express the determinant of the return difference operator,
I+ L,intermsof ¢¢;(s) and ¢oi(s). From (4.92) we get

det(I 4+ L(s)) = det(I + Coi(sI — Ap)) "By + Dyp) (4.98)

Schur’'s formula (A.14) then yields (with Ayn = I + Dy, Aia = —Cppy Az = sI —
Ao, A21 = Boi) )
¢cl S

det(I + L(s)) = -c 4.99

(I+L(s) = 5205 (499

where ¢ = det(I + D,;) is a constant which is of no significance when evaluating the
poles. Note that ¢.;(s) and ¢.;(s) are polynomials in s which have zeros only, whereas
det(I + L(s)) isatransfer function with both poles and zeros.
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Example 4.15 We will rederive expression (4.99) for SISO systemsLie} = k=% The
sensitivity function is given by

_ 1 _ Poi(s)
S(s) = TTL(G) ~ F2(3) £ 6ar(s) (4.100)

and the denominator is
¢ol(5)

which is the same ag;(s) in (4.99) (except for the constantvhich is necessary to make the
leading coefficient of.; (s) equal tol, as required by its definition).

d(s) = kz(s) + ¢o1(s) = bor(s)(1 + ) = dor(s)(1 + L(s)) (4.101)

Remark 1 One may be surprised to see from (4.100) that the zero polynomial of S(s) is
equa to the open-loop pole polynomial, ¢.;(s), but thisisindeed correct. On the other hand,
note from (4.74) that the zero polynomial of T'(s) = L(s)/(1 + L(s)) isequal to z(s), the
open-loop zero polynomial.

Remark 2 From (4.99), for the case when there are no cancellations between ¢,;(s) and
¢c1(s), we have that the closed-loop poles are solutions to

det(I + L(s)) = 0 (4.102)

4.9.2 MIMO Nyquist stability criteria

Wewill consider the negative feedback system of Figure 4.6, and assume there are no internal
RHP pole-zero cancellations in the loop transfer function matrix L(s), i.e. L(s) contains no
unstable hidden modes. Expression (4.99) for det(I + L(s)) then enables a straightforward
generalization of Nyquist's stability condition to multivariable systems.

Theorem 4.7 Generalized (MIMO) Nyquist theorem. Let P,; denote the number of open-
loop unstable poles id.(s). The closed-loop system with loop transfer functiofs) and
negative feedback is stable if and only if the Nyquist pletea{ + L(s))

i) makesP,; anti-clockwise encirclements of the origin, and
i) does not pass through the origin.

The theorem is proved below, but let us first make some important remarks.

Remark 1 By “Nyquist plot of det(I + L(s))” we mean “the image of det(I + L(s))
as s goes clockwise around the Nyquist D-contour”. The Nyquist D-contour includes the
entire jw-axis (s = jw) and an infinite semi-circle into the right-half plane as illustrated in
Figure 4.7. The D-contour must also avoid locations where L(s) has jw-axis poles by making
small indentations (semi-circles) around these points.

Remark 2 In the following we define for practical reasons unstable polesr RHP-polesas
polesin the openRHP, excluding the jw-axis. In this case the Nyquist D-contour should make
a small semicircular indentation into the RHP at locations where L(s) has jw-axis poles,
thereby avoiding the extra count of encirclements due to jw-axis poles.
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Alm

Figure 4.7: Nyquist D-contour for system with no open-loop jw-axis poles

Remark 3 Another practical way of avoiding the indentation isto shift all jw-axispolesinto
the LHP, for example, by replacing the integrator 1/s by 1/(s + €) where e isasmall positive
number.

Remark 4 We see that for stability det(I + L(jw)) should make no encirclements of the
originif L(s) is open-loop stable, and should make P,; anti-clockwise encirclementsif L(s)
isunstable. If this condition is not satisfied then the number of closed-loop unstable poles of
(I + L(s))"'is P, = N + P,;, where NV isthe number of clockwise encirclements of the
origin by the Nyquist plot of det(I + L(jw)).

Remark 5 For any rea system, L(s) is proper and so to plot det( + L(s)) as s traverses
the D-contour we need only consider s = jw aong the imaginary axis. This follows since
lims_oo L(s) = D,; isfinite, and therefore for s = oo the Nyquist plot of det(I + L(s))
convergesto det (I 4+ D,;) which ison the real axis.

Remark 6 Inmany cases L(s) containsintegrators so for w = 0 the plot of det(I + L(jw))
may “start” from %joo. A typical plot for positive frequencies is shown in Figure 4.8 for the
e ( )
3(—2s+1 12.7s + 1

(55 +1)(10s + 1)’ K=l (4.103)
Note that the solid and dashed curves (positive and negative frequencies) need to be connected
as w approaches 0, so there is also a large (infinite) semi-circle (not shown) corresponding
to the indentation of the D-contour into the RHP at s = 0 (the indentation is to avoid the
integrator in L(s)). To find which way the large semi-circle goes, one can use the rule (based
on conformal mapping arguments) that a right-angled turn in the D-contour will result in a
right-angled turn in the Nyquist plot. It then follows for the example in (4.103) that there will
be an infinite semi-circle into the RHP. There are therefore no encirclements of the origin.
Since there are no open-loop unstable poles (jw-axis poles are excluded in the counting),
P,; = 0, and we conclude that the closed-loop system is stable.

L=GK, G=

Proof of Theorem 4.7The proof makes use of the following result from complex variable
theory (Churchill et al., 1974):
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| Alm

Figure 4.8: Typical Nyquist plot of 1 + det L(jw)

Lemma 4.8 Argument Principle. Consider a (transfer) functiorf(s) and letC denote a
closed contour in the complex plane. Assume that:

1. f(s) is analytic alongC, that s, f(s) has no poles od.
2. f(s) hasZ zeros inside”'.
3. f(s) hasP poles insideC.

Then the imag¢ (s) as the complex argumesttraverses the contouf’ once in a clockwise
direction will makeZ — P clockwise encirclements of the origin.

Let V'(A, f(s), C) denote the number of clockwise encirclements of the point A by theimage
f(s) as s traverses the contour C' clockwise. Then arestatement of Lemma 4.8 is

N(, f(s),C)=Z - P (4.104)

We now recall (4.99) and apply Lemma 4.8 to the function f(s) = det(I + L(s)) = %c
selecting C' to be the Nyquist D-contour. We assume ¢ = det(I + D,;) # 0 since otherwise
the feedback system would be ill-posed. The contour D goes along the jw-axis and around
the entire RHP, but avoids open-loop poles of L(s) on the jw-axis (where ¢o;(jw) = 0) by
making small semi-circles into the RHP. Thisis needed to make f(s) anaytic along D. We
then have that f(s) has P = P,; polesand Z = P.; zeros inside D. Here P,; denotes the
number of unstable closed-loop poles (in the open RHP). (4.104) then gives

N(0,det(I + L(s)),D) = P — Py, (4.105)

Sincethesystemisstableif and only if P,; = 0, condition i) of Theorem 4.7 follows. However,
we have not yet considered the possibility that f(s) = det(I + L(s)), and hence ¢.;(s) has
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zeros on the D-contour itself, which will also correspond to a closed-loop unstable pole. To
avoid this, det(I + L(jw)) must not be zero for any value of w and condition ii) in Theorem
4.7 follows. a

Example 4.16 SISO stability conditions. Consider an open-loop stable SISO system. In this
case, the Nyquist stability condition states that for closed-loop stability the Nyquist plot of
1 + L(s) should not encircle the origin. This is equivalent to the Nyquist plat(gtv) not
encircling the point-1 in the complex plane

4.9.3 Eigenvalueloci

The eigenvalue loci (sometimes called characteristic loci) are defined as the eigenvalues of
the frequency response of the open-loop transfer function, A;(L(jw)). They partly provide a
generalization of the Nyquist plot of L(jw) from SISO to MIMO systems, and with them gain
and phase margins can be defined as in the classical sense. However, these margins are not
too useful as they only indicate stability with respect to a simultaneous parameter change
all of the loops. Therefore, athough characteristic loci were well researched in the 70's and
greatly influenced the British developments in multivariable control, e.g. see Postlethwaite and
MacFarlane (1979), they will not be considered further in this book.

4.9.4 Small gain theorem

The Small Gain Theorem is a very general result which we will find useful in the book. We
present first ageneralized version of it in terms of the spectral radius, p(L(jw)), which at each
frequency is defined as the maximum eigenval ue magnitude

p(L(jw)) £ max | (L(jw))] (4.106)

Theorem 4.9 Spectral radius stability condition. Consider a system with a stable loop
transfer functionL(s). Then the closed-loop system is stable if

p(L(jw)) <1 Vw (4.107)

Proof: The generalized Nyquist theorem (Theorem 4.7) says that if L(s) is stable, then the
closed-loop system is stableif and only if the Nyquist plot of det(I + L(s)) does not encircle
the origin. To prove condition (4.107) we will prove the “reverse’, that is, if the system is
unstable and therefore det(I + L(s)) does encircle the origin, then there is an eigenvalue,
i (L(jw)) whichislarger than 1 at some frequency. If det(I + L(s)) does encirclethe origin,
then there must existsagain e € (0, 1] and afrequency «' such that

det(I + eL(jw')) = 0 (4.108)
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Thisis easily seen by geometric arguments since det(I + eL(jw')) = 1 for e = 0. (4.108) is
equivalent to (see eigenvalue propertiesin Appendix A.2.1)

[[x( +eL(iw)) =0 (4.109)

< 1l+ eXi(L(jw')) =0 for some i (4.110)
< Xi(L(jw")) = —% for some ¢ (4.111)
= [Xi(L(jw"))| > 1 for some i (4.112)
& p(L(w)) 21 (4.113)
O

Theorem 4.9 is quite intuitive, as it simply says that if the system gain is less than 1 in
all directions (all eigenvalues) and for all frequencies (Vw), then all signal deviations will
eventually die out, and the system is stable.

In general, the spectral radius theorem is conservative because phase information is not
considered. For SISO systems p(L(jw)) = |L(jw)|, and consequently the above stability
condition requires that |L(jw)| < 1 for al frequencies. This is clearly conservative, since
from the Nyquist stability condition for a stable L(s), we need only require |L(jw)| < 1 at
frequencies where the phase of L(jw) is—180° £ n-360°. Asanexample, let L = k/(s+e¢).
Since the phase never reaches —180° the system is closed-loop stable for any value of k& > 0.
However, to satisfy (4.107) we need k < ¢, which for asmall value of ¢ is very conservative
indeed.

Remark. Later we will consider cases where the phase of L is allowed to vary freely, and in
which case Theorem 4.9 is not conservative. Actualy, aclever use of the above theorem isthe
main idea behind most of the conditions for robust stability and robust performance presented
later in this book.

The small gain theorem below follows directly from Theorem 4.9 if we consider a matrix
norm satisfying || AB|| < ||A]| - || B||, since at any frequency we then have p(L) < ||L]| (see
(A.116)).

Theorem 4.10 Small Gain Theorem. Consider a system with a stable loop transfer function
L(s). Then the closed-loop system is stable if

ILGWII <1 Vw (4.114)

where||L|| denotes any matrix norm satisfyifjgtB|| < ||A]| - || B]|.

Remark 1 Thisresultisonly aspecial case of amore general small gain theorem which also
applies to many nonlinear systems (Desoer and Vidyasagar, 1975).

Remark 2 The small gain theorem does not consider phase information, and is therefore
independent of the sign of the feedback.
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Remark 3 Any induced norm can be used, for example, the singular value, 5(L).

Remark 4 The small gain theorem can be extended to include more than one block in
the loop, eg. L = Li L. In this case we get from (A.97) that the system is stable if
(L1l - | L2l < 1, V.

Remark 5 The small gain theorem is generally more conservative than the spectral radius

condition in Theorem 4.9. Therefore, the arguments on conservatism made following
Theorem 4.9 also apply to Theorem 4.10.

4.10 System norms

Figure4.9: System G

Consider the system in Figure 4.9, with a stable transfer function matrix G(s) and impulse
response matrix g(t). To evaluate the performance we ask the question: given information
about the alowed input signals w(t), how large can the outputs z(t) become? To answer this,
we must evaluate the relevant system norm.

We will here evaluate the output signal in terms of the usual 2-norm,

2@l = \/Z / Y () Par (4.115)

and consider three different choices for the inputs:

=

w(t) isaseries of unit impulses.

w(t) isany signa satisfying ||w(t)]|2 = 1.

3. w(t) isany signal satisfying ||w(t)||2 = 1, but w(t) = 0 for ¢ > 0, and we only measure
z(t) fort > 0.

N

Therelevant system normsin the three cases are the 2, H ., and Hankel norms, respectively.
The H» and H~, norms also have other interpretations as are discussed below. We introduced
the #> and H ., norms in Section 2.7, where we also discussed the terminology. In Appendix
A.5.7 we present amore detailed interpretation and comparison of these and other norms.
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4.10.1 Hynorm

Consider a strictly proper system G(s), i.e. D = 0 in a state-space realization. For the H»
norm we use the Frobenius norm spatially (for the matrix) and integrate over frequency, i.e.

o)l 2 | o= /_°° (G ()" Gljw)  dw (4.116)

IGG)NE=5; 1G5 (G2

We seethat G(s) must be strictly proper, otherwise the H» norm isinfinite. The %> norm can
also be given another interpretation. By Parseval’s theorem, (4.116) is equal to the > norm
of the impulse response

1G(s)ll2 = llg(®)]l> £ / tr(g" (r)g(r)) dr (4.117)
0 _/_/
lg(MI%=%;; l9i5 (T)I2
Remark 1 Notethat G(s) and g(t) are dynamic systemsvhile G(jw) and g(7) are constant
matrices(for agiven value of w or 7).

Remark 2 We can change the order of integration and summation in (4.117) to get

1G(s)ll> = llg@)ll = \/Z /Ooo |gs; (T)|2dr (4.118)

where g;; (t) isthei;’th element of the impulse response matrix, g(¢). From this we see that
the H» norm can be interpreted as the 2-norm output resulting from applying unit impulses
d; () to each input, one after another (allowing the output to settle to zero before applying an
impulse to the next input). Thisis more clearly seen by writing ||G(s)||> = />, Tz ()3
where z; (¢) is the output vector resulting from applying a unit impulse d; (¢) to the 7’th input.

In summary, we have the following deterministic performance interpretation of the 7> norm:

Gl =  max =)l (4119)

w(t)= unit impulses

The H2 norm can also be given a stochastic interpretation (see page 371) in terms of the
quadratic criterion in optimal control (LQG) where we measure the expected root mean square
(rms) value of the output in response to white noise excitation.

For numerical computations of the #, norm, consider the state-space redlization G(s) =
C(sI — A)™' B. By substituting (4.10) into (4.117) we find

IG(s)|l2 = Vtr(BTQB) or [|G(s)|2 = /tr(CPCT) (4.120)

where (Q and P are the observability and controllability Gramians, respectively, obtained as
solutions to the Lyapunov equations (4.48) and (4.44).
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4.10.2 H, nhorm

Consider a proper linear stable system G(s) (i.e. D # 0 is alowed). For the Ho, norm we
use the singular value (induced 2-norm) spatially (for the matrix) and pick out the peak value
as afunction of frequency

IG(5)lloe & max 5 (G(jw)) (4.121)

In terms of performancewe see from (4.121) that the Ho, norm is the peak of the transfer
function “magnitude”’, and by introducing weights, the H., norm can be interpreted as the
magnitude of some closed-loop transfer function relative to a specified upper bound. This
leads to specifying performance in terms of weighted sensitivity, mixed sensitivity, and so on.

However, the ‘H ., norm also has several time domain performance interpretations. First, as
discussed in Section 3.3.5, it is the worst-case steady-state gain for sinusoidal inputs at any
frequency. Furthermore, from Tables A.1and A.2 in the Appendix we see that the 7., norm
isegual to the induced (worst-case) 2-norm in the time domain:

[z()]l2

G 00 = max ———— = a )| 4122
16l = max (= = | max_ 1=z (4122
Thisis afortunate fact from functional analysis which is proved, for example, in Desoer and
Vidyasagar (1975). In essence, (4.122) arises because the worst input signal w(t) isasinusoid
with frequency w* and adirection which gives7 (G (jw*)) as the maximum gain.

The Hoo norm is also equal to the induced power (rms) norm, and also has an interpretation
as an induced norm in terms of the expected values of stochastic signals. All these various
interpretations make the ., norm useful in engineering applications.

The H s norm isusually computed numerically from a state-space reslization as the smallest
value of ~ such that the Hamiltonian matrix H has no eigenvalues on the imaginary axis,
where

_ A+BR 'D"C BR'B”

~ | -CT(I+DR'DT)C —(A+BR'DTO)T

and R = ~*I — DT D, see Zhou et a. (1996, p.115). Thisis an iterative procedure, where one
may start with alarge value of « and reduce it until imaginary eigenvalues for H appear.

H (4.123)

4.10.3 Difference between the H, and H., norms

To understand the difference between the H» and H~, norms, note that from (A.126) we can
write the Frobenius norm in terms of singular values. We then have

66l = \/i [ Y oGt (2,120

From this we see that minimizing the ., norm corresponds to minimizing the peak of the
largest singular value (“worst direction, worst frequency”), whereas minimizing the H. norm
corresponds to minimizing the sum of the square of all the singular values over all frequencies
(“average direction, average frequency”). In summary, we have
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o Hoo: “push down peak of largest singular value”.
e H,: “push down whole thing” (all singular values over all frequencies).

Example 4.17 We will compute th&{., andH» norms for the following SISO plant

1
= 4.125
G(s) = (4.125)
The#H, norm is
— (L [T eGP dw)t = (< ean ()] ) = /L
16 = (5= [ |GG d)? = (g [ran '] )F =[5 @12)
STiat
To check Parseval’s theorem we consider the impulse response
_ 1 _
ty=L"" =e *t> 4127
o) =07 (s ) =e o (@.127)

and we get

lg@ll> = \//000(6*“)2dt = \/g (4.128)

as expected. THH .. norm is

1 1
[IG(5)||lc =max|G(jw)| = max ——— = — (4.129)
w w (w2 + a2)§ a
For interest, we also compute thenorm of the impulse response (which is equal to the
inducedoo-norm in the time domain):

ol = [~ lg@lar =1 (4.130)

e—at

In general, it can be shown th#{iG(s)|lcc < ||g(t)]|1, and this example illustrates that we
may have equality.

Example 4.18 There exists no general relationship betweeniyeand H., norms. As an
example consider the two systems

1 €S

fi(s) = fz(S)Zm

= (4.131)

and lete — 0. Then we have fof; that the?{., norm is1 and the#, norm is infinite. For
f2 theH~, norm is againl, but now the}H» norm is zero.

Why isthe H ., norm so popular? In robust control we use the H~, norm mainly because
it is convenient for representing unstructured model uncertainty, and because it satisfies the
multiplicative property (A.97):

1A(s) B(s)lloo < [|A(s)loo - [|B(s)lloo (4.132)
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This follows from (4.122) which shows that the H., norm is an induced norm.

What is wrong with the 7> norm? The #> norm has a number of good mathematical and
numerical properties, and its minimization has important engineering implications. However,
the #> norm is not an induced norm and does not satisfy the multiplicative property. This
implies that we cannoy by evaluating the > norm of theindividual components say anything
avout how their series (cascade) interconnection will behave.

Example 4.19 Consider agairG(s) = 1/(s +a) in (4.125), for which we founiG(s)||> =
v/1/2a. Now consider thé{, norm ofG(s)G(s):

el = | [ 161Gk = E k= Fise
—_———

te—at

and we find, fom < 1, that
IG()G(s)ll2 > (IG(s)|l2 - |G (s)]]2 (4.133)

which does not satisfy the multiplicative property (A.97). On the other handi{therorm
does satisfy the multiplicative property, and for the specific example we have equality with
1G()G(5)lloo = 7z = 1G(5)lloo - |G ()l]o-

4104 Hankd norm

In the following discussion, we aim at developing an understanding of the Hankel norm. The
Hankel norm of a stable system G(s) is obtained when one applies an input w(t) uptot = 0
and measures the output z(¢) for ¢ > 0, and selects w(t) to maximize the ratio of the 2-norms
of these two signals:
Nz ()||2dr
G ()|l 2 max Vo IOl (4.134)
eI () l3dr

The Hankel norm isakind of induced norm from past inputs to future outputs. Its definition is
analogous to trying to pump aswing with limited input energy such that the subsequent length
of jJump is maximized asillustrated in Figure 4.10.

It may be shown that the Hankel normis equal to
IG()lz =V p(PQ) (4.135)

where p isthe spectral radius (maximum eigenvalue), P isthe controllability Gramian defined
in (4.43) and Q the observability Gramian defined in (4.47). The name “Hankel” is used
because the matrix PQ has the special structure of a Hankel matrix (which has identical
elements along the “wrong-way” diagonals). The corresponding Hankel singular valuesre
the positive square roots of the eigenvalues of P(Q,

oi = /N (PQ) (4.136)



Figure 4.10: Pumping a swing: illustration of Hankel norm. The input is applied for ¢ < 0
and the jump startsat ¢t = 0.

The Hankel and ‘H., norms are closely related and we have (Zhou et al., 1996, p.111)
1G()lr =01 <N|G(s)llo <2 0 (4.137)
i=1

Thus, the Hankel norm is always smaller than (or equal to) the H., norm, which is also
reasonable by comparing the definitionsin (4.122) and (4.134).

Model reduction. Consider the following problem: given a state-space description G(s) of a
system, find amodel G, (s) with fewer states such that the input-output behaviour (from w to
z) ischanged as little as possible. Based on the discussion above it seems reasonable to make
use of the Hankel norm, since the inputs only affect the outputs through the statesat ¢ = 0. For
model reduction, we usually start with arealization of G which isinternally balanced, that is,
such that Q = P = X, where X isthe matrix of Hankel singular values. We may then discard
states (or rather combinations of states corresponding to certain subspaces) corresponding to
the smallest Hankel singular values. The change in Hs norm caused by deleting states in
G(s) islessthan twice the sum of the discarded Hankel singular values, i.e.

1G(5) = Gu(9)llso < 20rs1 + sz + ) (4.139)

where G, (s) denotes a truncated or residualized balanced redlization with k states; see
Chapter 11. The method of Hankel norm minimization gives a somewhat improved error
bound, where we are guaranteed that ||G(s) — G4 (s)]||e iSlessthan the sum of the discarded
Hankel singular values. This and other methods for model reduction are discussed in detail in
Chapter 11 where a number of examples can be found.

Example4.20 We want to compute analytically the various system normsGiey) =
1/(s + a) using state-space methods. A state-space realizatiodA iss —a, B = 1,
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C = 1andD = 0. The controllability GramianP is obtained from the Lyapunov equation
AP 4+ PAT = -BBT & —aP —aP = —1, S0P = 1/2a. Similarly, the observability
Gramian is@ = 1/2a. From (4.120) the&/{, norm is then

IG(s)]l> = V/&er(BTQB) = /1/2a
The eigenvalues of the Hamiltonian matfkin (4.123) are
NH) = )\[:‘11 1/(]2} Sy
We find thatd has no imaginary eigenvalues for> 1/a, so
1G($)lloo = 1/a
The Hankel matrix is?Q = 1/4a” and from (4.135) the Hankel norm is

Gl = Vp(PQ) =1/2a

These results agree with the frequency-domain calculations in Example 4.17.

Exercise4.16 Leta = 0.5 ande = 0.0001 and check numerically the results in Examples
4.17, 4.18, 4.19 and 4.20 using, for example, the MATABolbox commandbs2nor m
hi nf nor m and for the Hankel nornf,sysb, hsi g] =sysbal (sys); max(hsig).

411 Conclusion

This chapter has covered the following important elements of linear system theory: system
descriptions, state controllability and observability, poles and zeros, stability and stabilization,
and system norms. The topics are standard and the treatment is complete for the purposes of
this book.



5]

LIMITATIONS ON
PERFORMANCE IN SISO
SYSTEMS

In this chapter, we discuss the fundamental limitations on performance in SISO systems.
We summarize these limitations in the form of a procedure for input-output controllability
analysis, which is then applied to a series of examples. |nput-output controllability of a plant
is the ability to achieve acceptable control performance. Proper scaling of the input, output
and disturbance variables prior to this analysisis critical.

5.1 Input-Output Controllability

In university courses on control, methods for controller design and stability anaysis are
usually emphasized. However, in practice the following three questions are often more
important:

I. How well can the plant be controlled? Before starting any controller design one should
first determine how easy the plant actually is to control. Is it a difficult control problem?
Indeed, does there even exist a controller which meets the required performance objectives?

Il. What control structure should be used? By this we mean what variables should we
measure and control, which variables should we manipulate, and how are these variables
best paired together? In other textbooks one can find qualitative rules for these problems. For
example, in Seborg et a. (1989) in a chapter called “ The art of process control”, the following
rules are given:

1. Control the outputs that are not self-regulating.

2. Control the outputs that have favourable dynamic and static characteristics, i.e. for each
output, there should exist an input which has a significant, direct and rapid effect on it.

3. Select the inputs that have large effects on the outputs.

4. Select theinputs that rapidly affect the controlled variables



160 MULTIVARIABLE FEEDBACK CONTROL

These rules are reasonable, but what is “self-regulating”, “large”, “rapid” and “direct”. A
major objective of this chapter isto quantify these terms.

I11. How might the process be changed to improve control? For example, to reduce the
effects of a disturbance one may in process control consider changing the size of a buffer
tank, or in automotive control one might decide to change the properties of a spring. In other
situations, the speed of response of a measurement device might be an important factor in
achieving acceptable control.

The above three questions are each related to the inherent control characteristics of the process
itself. We will introduce the term input-output controllabilityto capture these characteristics
as described in the following definition.

Definition 5.1 (Input-output) controllability is the ability to achieve acceptable control
performance; that is, to keep the outputd (ithin specified bounds or displacements from
their referencesr(), in spite of unknown but bounded variations, such as disturbamrfen(
plant changes (including uncertainty), using available inpufsand available measurements
(ym OF d).

In summary, aplant is controllable if there existsa controller (connecting plant measurements

and plant inputs) that yields acceptable performance for all expected plant variations. Thus,
controllability is independent of the controller, and is a property of the plant (or process)
alone It can only be affected by changing the plant itself, that is, by (plant) design changes.
These may include:

changing the apparatus itself, e.g. type, size, etc.

relocating sensors and actuators

adding new equipment to dampen disturbances

adding extra sensors

adding extra actuators

changing the control objectives

changing the configuration of the lower layers of control already in place

Whether or not the last two actions are design modifications is arguable, but at least they
address important issues which are relevant before the controller is designed.

Early work on input-output controllability analysis includes that of Ziegler and Nichols
(1943), Rosenbrock (1970), and Morari (1983) who made use of the concept of “perfect
control”. Important ideas on performance limitations are a so found in Bode (1945), Horowitz
(1963), Frank (1968a; 1968b), Kwakernaak and Sivan (1972) Horowitz and Shaked (1975),
Zames (1981), Doyle and Stein (1981), Francis and Zames (1984), Boyd and Desoer (1985),
Kwakernaak (1985), Freudenberg and L ooze (1985; 1988), Engell (1988), Morari and Zafiriou
(1989), Boyd and Barratt (1991), and Chen (1995). We also refer the reader to two IFAC
workshops on Interactions between process design and process cofBakins, 1992;
Zdfiriou, 1994).
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5.1.1 Input-output controllability analysis

Input-output controllability analysisis applied to a plant to find out what control performance
can be expected. Another term for input-output controllability analysis is performance
targeting

Surprisingly, given the plethora of mathematical methods available for control system design,
the methods available for controllability analysis are largely qualitative. In most cases
the “simulation approach” is used i.e. performance is assessed by exhaustive simulations.
However, this requires a specific controller design and specific values of disturbances and
setpoint changes. Consequently, with this approach, one can never know if the result is a
fundamental property of the plant, or if it depends on the specific controller designed, the
disturbances or the setpoints.

A rigorous approach to controllability analysis would be to formulate mathematicaly the
control objectives, the class of disturbances, the model uncertainty, etc., and then to synthesize
controllers to see whether the objectives can be met. With model uncertainty this involves
designing a p-optimal controller (see Chapter 8). However, in practice such an approach is
difficult and time consuming, especially if there are alarge number of candidate measurements
or actuators; see Chapter 10. More desirable, isto have afew simple tools which can be used
to get arough idea of how easy the plant isto control, i.e. to determine whether or not a plant
is controllable, without performing a detailed controller design. The main objective of this
chapter is to derive such controllability tools based on appropriately scaled models of G(s)
and Gd(s).

An apparent shortcoming of the controllability analysis presented in this book is that all the
tools are linear. This may seem restrictive, but usualy it is not. In fact, one of the most
important nonlinearities, namely that associated with input constraints, can be handled quite
well with a linear analysis. Also, to deal with slowly varying changes one may perform a
controllability analysis at several selected operating points. Nonlinear simulations to validate
the linear controllability analysis are of course still recommended. Experience from a large
number of case studies confirms that the linear measures are often very good.

5.1.2 Scaling and performance

The above definition of controllability does not specify the alowed bounds for the
displacements or the expected variations in the disturbance; that is, no definition of the
desired performance is included. Throughout this chapter and the next, when we discuss
controllability, we will assume that the variables and models have been scaled as outlined
in Section 1.4, so that the requirement for acceptable performanceis:

e For any reference r(t) between —R and R and any disturbance d(t) between —1 and 1, to
keep the output y(¢) withintherange r(¢) — 1 tor(¢) + 1 (at least most of the time), using
an input »(t) within therange —1 to 1.

We will interpret this definition from a frequency-by-frequency sinusoidal point of view, i.e.
d(t) = sinwt, and so on. With e = y — r we then have:
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For any disturbance|d(w)] < 1 and any referencdr(w)| < R(w), the
performance requirement is to keep at each frequeney the control error
le(w)| < 1, using an inpuju(w)| < 1.

Itisimpossibleto track very fast reference changes, so wewill assumethat R(w) isfrequency-
dependent; for simplicity we assume that R(w) is R (a constant) up to the frequency w, and
is 0 above that frequency.

It could also be argued that the magnitude of the sinusoidal disturbances should approach zero
at high frequencies. While this may be true, we really only care about frequencies within the
bandwidth of the system, and in most casesit is reasonabl e to assume that the plant experiences
sinusoidal disturbances of constant magnitude up to this frequency. Similarly, it might also be
argued that the allowed control error should be frequency dependent. For example, we may
require no steady-state offset, i.e. e should be zero at low frequencies. However, including
frequency variations is not recommended when doing a preliminary analysis (however, one
may take such considerations into account when interpreting the results).

Recall that with » = R7 (see Section 1.4) the control error may be written as
e=y—r=Gu+ Gqd— RT (5.1

where R is the magnitude of the reference and |r(w)| < 1 and |d(w)| < 1 are unknown
signals. We will use (5.1) to unify our treatment of disturbances and references. Specificaly,
we will derive resultsfor disturbances, which can then be applied directly to the references by
replacing G, by —R, see (5.1) .

5.1.3 Remarkson theterm controllability

The above definition of (input-output) controllability isin tune with most engineers' intuitive
feeling about what the term means, and was also how the term was used historically in the
control literature. For example, Ziegler and Nichols (1943) defined controllability as “the
ability of the process to achieve and maintain the desired equilibrium valusfortunately,
in the 60's “controllability” became synonymous with the rather narrow concept of “state
controllability” introduced by Kaman, and the term is still used in this restrictive manner
by the system theory community. State controllabilityis the ability to bring a system from a
given initial state to any fina state within afinite time. However, as shown in Example 4.5
this gives no regard to the quality of the response between and after these two states and
the required inputs may be excessive. The concept of state controllabilityis important for
realizations and numerical calculations, but as long as we know that al the unstable modes
are both controllable and observable, it usually has little practical significance. For example,
Rosenbrock (1970, p. 177) notes that “most industrial plants are controlled quite satisfactorily
though they are not [state] controllable’. And conversely, there are many systems, like the
tanks in series Example 4.5, which are state controllable, but which are not input-output
controllable. To avoid any confusion between practical controllability and Kalman's state
controllability, Morari (1983) introduced the term dynamic resilienceHowever, this term
does not capture the fact that it is related to control, so instead we prefer the term input-
output controllability or simply controllability when it is clear we are not referring to state
controllability.
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Where are we heading? In this chapter we will discuss a number of results related to
achievable performance. Many of the results can be formulated as upper and lower bounds
on the bandwidth of the system. As noted in Section 2.4.5, there are several definitions of
bandwidth (ws, w. and wpr) in terms of the transfer functions S, L and 7', but since we
are looking for approximate bounds we will not be too concerned with these differences. The
main results are summarized at end of the chapter in terms of eight controllability rules.

5.2 Perfect control and plant inversion

A good way of obtaining insight into the inherent limitations on performance originating in
the plant itself, is to consider the inputs needed to achieve perfect controMorari, 1983). Let
the plant model be

y=Gu+ Gqd (5.2

“Perfect control” (which, of course, cannot be realized in practice) is achieved when the output
isidentically equal to the reference, i.e. y = r. Tofind the corresponding plant input sety = r
and solvefor w in (5.2):

wu=G'r—G 'Gad (5.3)

(5.3) represents a perfect feedforward controller, assuming d is measurable. When feedback
control w = K (r — y) isused, we have from (2.20) that
u=KSr—KSGud
or since the complementary sensitivity functionis7T = GK S,
w=G '"Tr — G 'TGqd (5.4)

We see that at frequencies where feedback is effective and T' = I (these arguments also apply
to MIMO systems and this is the reason why we here choose to use matrix notation), the input
generated by feedback in (5.4) is the same as the perfect control input in (5.3). That is, high
gain feedback generates an inverse of G even though the controller K may be very simple.

An important lesson therefore is that perfect control requires the controller to somehow
generate an inverse of G. From this we get that perfect control cannotbe achieved if

e G contains RHP-zeros (since then G~ is unstable)
e G containstime delay (sincethen G~ contains a non-causal prediction)
e G has more poles than zeros (since then G~ is unredizable)

In addition, for feedforward control we have that perfect control cannotbe achieved if
e G isuncertain (since then G~! cannot be obtained exactly)

The last restriction may be overcome by high gain feedback, but we know that we cannot have
high gain feedback at all frequencies.

Therequired input in (5.3) must not exceed the maximum physically allowed value. Therefore,
perfect control cannotbe achieved if
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o |GGyl islarge
e |G7'R|islarge

where “large” with our scaled models means larger than 1. There are also other situations
which make control difficult such as

e (Gisunstable
e |Gyl islarge

If the plant is unstable, the outputs will “take off”, and eventually hit physical constraints,
unless feedback control is applied to stabilize the system. Similarly, if |Gq4| is large, then
without control a disturbance will cause the outputs to move far away from their desired
values. So in both cases control is required, and problems occur if this demand for control
is somehow in conflict with the other factors mentioned above which also make control
difficult. We have assumed perfect measurementsin the discussion so far, but in practice, noise
and uncertainty associated with the measurements of disturbances and outputs will present
additional problems for feedforward and feedback control, respectively.

5.3 Constraintson Sand T

In this section, we present some fundamental algebraic and analytic constraints which apply
to the sensitivity S and complementary sensitivity 7.

531 SplusTisone

From the definitions S = (I + L)™' and T = L(I + L)™' we derive
S+T =1 (5.5)

(or S+ T = 1for aSISO system). Ideally, we want S small to obtain the benefits of feedback
(small control error for commands and disturbances), and 7" small to avoid sensitivity to
noise which is one of the disadvantages of feedback. Unfortunately, these requirements are
not simultaneously possible at any frequency asis clear from (5.5). Specificaly, (5.5) implies
that at any frequency either |S(jw)| or |T'(jw)| must be larger than or equal to 0.5.

5.3.2 Thewaterbed effects (sensitivity integrals)

A typica sensitivity function is shown by the solid linein Figure 5.1. We note that |.S| has a
peak value greater than 1; we will show that this peak is unavoidablein practice. Two formulas
are given, in the form of theorems, which essentially say that if we push the sensitivity down
at some frequencies then it will have to increase at others. The effect is similar to sitting on
a waterbed: pushing it down at one point, which reduces the water level locally will result
in an increased level somewhere else on the bed. In general, a trade-off between sensitivity
reduction and sensitivity increase must be performed whenever:
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Magnitude

10"

Frequency [rad/s]

Figure5.1: Plot of typical sensitivity, | S|, with upper bound 1/|wp |

1. L(s) hasat |least two more poles than zeros (first waterbed formula), or
2. L(s) has a RHP-zero (second waterbed formula).

Pole excess of two: First waterbed formula

To motivate the first waterbed formula consider the open-loop transfer function L(s) =
s,(s—1+1)- As shown in Figure 5.2, there exists a frequency range over which the Nyquist plot of
L(jw) isinside the unit circle centred on the point —1, such that |1 + L|, which isthe distance
between L and —1, islessthan one, and thus | S| = |1 + L|~" isgreater than one. In practice,
L(s) will have at leasttwo more poles than zeros (at least at sufficiently high frequency, e.g.
due to actuator and measurement dynamics), so there will always exist afrequency range over
which | S| is greater than one. This behaviour may be quantified by the following theorem, of

which the stable case is a classical result due to Bode.

Theorem 5.1 Bode Sensitivity Integral (First waterbed formula). Suppose that the open-
loop transfer functionL(s) is rational and has at least two more poles than zeros (relative
degree of two or more). Suppose also thét) has N, RHP-poles at locationg;. Then for
closed-loop stability the sensitivity function must satisfy
o] NP
/ In |S(jw)|dw = 7> Re(p:) (5.6)
0

i=1

whereRe(p;) denotes the real part gf;.

Proof: See Doyle et al. (1992, p. 100) or Zhou et a. (1996). The generalization of Bode's
criterion to unstable plants is due to Freudenberg and L ooze (1985; 1988). a

For agraphical interpretation of (5.6) note that the magnitude scale is logarithmic whereas the
frequency-scaleislinear.
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L(jw)

Figure5.2: |S| > 1 whenever the Nyquist plot of L isinside the circle

Stable plant. For a stable plant we must have
/ In|S(jw)|dw = 0 (5.7)
0

and thearea of sensitivity reduction (In |.S| negative) must equalthe areaof sensitivity increase
(In |S| positive). In this respect, the benefits and costs of feedback are balanced exactly, asin
the waterbed analogy. From this we expect that an increase in the bandwidth (S smaller than
1 over alarger frequency range) must come at the expense of alarger peak in |S|.

Remark. Although this is true in most practical cases, the effect may not be so striking in
some cases, and it is not strictly implied by (5.6) anyway. This is because the increase in
areamay come over an infinite frequency range; imagine awaterbed of infinite size. Consider
|S(jw)| = 1+4d forw € [wi,ws], whered isarbitrarily small (small peak), then we can choose
w arbitrary large (high bandwidth) simply by selecting the interval [w, w»] to be sufficiently
large. However, in practice the frequency response of L hasto roll off at high frequencies so w»
islimited, and (5.6) and (5.7) impose real design limitations. Thisisillustrated in Figure 5.5.

Unstable plant. The presence of unstable poles usually increases the peak of the sensitivity,
as seen from the positive contribution 7 - Zf\;”l Re(p;) in (5.6). Specificaly, the area of
sensitivity increase (|S| > 1) exceedshat of sensitivity reduction by an amount proportional
to the sum of the distance from the unstable poles to the |l eft-half plane. Thisis plausible since
we might expect to have to pay a price for stabilizing the system.
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Figure5.3: Additional phase lag contributed by RHP-zero causes |S| > 1

RHP-zeros: Second water bed formula

For plants with RHP-zeros the sensitivity function must satisfy an additional integral
relationship, which has stronger implications for the peak of S. Before stating the result,
let us illustrate why the presence of a RHP-zero implies that the peak of S must exceed
one. First, consider the non-minimum phase loop transfer function L(s) = 5 132 and its
minimum phase counterpart L, (s) = 1. From Figure 5.3 we see that the additional phase
lag contributed by the RHP-zero and the extra pole causes the Nyquist plot to penetrate the
unit circle and hence causes the sensitivity function to be larger than one.

As a further example, consider Figure 5.4 which shows the magnitude of the sensitivity
function for the following loop transfer function

k2—s
L(S):g2+s

k=0.1,0.5,1.0,2.0 (5.8)

The plant has a RHP-zero z = 2, and we see that an increase in the controller gain k,
corresponding to a higher bandwidth, results in a larger peak for S. For k& = 2 the closed-
loop system becomes unstable with two poles on the imaginary axis, and the peak of S is
infinite.

Theorem 5.2 Weighted sensitivity integral (Second waterbed formula). Suppose that
L(s) has a single real RHP-zeroor a complex conjugate pair of zeres= x + jy, and has
N, RHP-polesp;. Letp; denote the complex conjugatef Then for closed-loop stability
the sensitivity function must satisfy

pi+z
pi — %

NP
/ In |S(jw)| ~w(z,w)dw=7r-lnH (5.9
0

i=1
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Magnitude |S]|

107 107 10’ 10"
Frequency

Figure 5.4: Effect of increased controller gain on |S| for system with RHP-zero at z = 2,

Ls) = b3z

where if the zero is real

2z 2 1
w) = == 5.10
’lU(Z, ) 22 2 2 1 ( /Z)2 ( )

and if the zero pair is complex (= z + jy)

xr T
= 5.11
w(zw) 22+ (y —w)? + z2 + (y +w)? (611
Proof: See Freudenberg and L ooze (1985; 1988). a

Note that when there is a RHP-pole close to the RHP-zero (p; — z) then ;;—ff — oo. Thisis
not surprising as such plants are in practice impossible to stabilize.

Theweight w(z, w) effectively “cutsoff” the contribution from In|.S| to the sensitivity integral
at frequencies w > z. Thus, for a stable plant where |S| is reasonably close to 1 at high
frequencies we have approximately

/ In|S(jew)|dw = 0 (5.12)
0

This is similar to Bode's sensitivity integral relationship in (5.7), except that the trade-off
between S less than 1 and S larger than 1, is done over alimited frequency range. Thus, in
this case the waterbed isfinite, and alarge peak for | S| is unavoidable if we try to push down
|S| at low frequencies. This is illustrated by the example in Figure 5.4 and further by the
examplein Figure 5.5.

Exercise5.1 Kalman inequality The Kalman inequality for optimal state feedback, which
also applies to unstable plants, says théf < 1 Vw, see Example 9.2. Explain why this
does not conflict with the above sensitivity integrals. (Solution: 1. Optimal control with state
feedback yields a loop transfer function with a pole-zero excess of one so (5.6) does not apply.
2. There are no RHP-zeros when all states are measured so (5.9) does not apply).
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Nagnitude

10~ I I I I I

0 1 2 3. 4 5 6
Frequency (linear scale)
Figure 5.5 Sensitivity S = 7 corresponding to L1 = ;% (solid ling) and L> =
Ly =2E5 (with RHP-zero at z = 5) (dashed line).

s+5
In both cases the areas of 1n S below and above 1 (dotted line) are equal, see (5.7), but for I this must

happen at frequencies below z = 5, see (5.12), and the peak of .S must be higher

The two sensitivity integrals (waterbed formulas) presented above are interesting and provide
vauableinsights, but for aquantitative analysis of achievable performance they areless useful.
Fortunately, however, we can derive lower bounds on the weighted sensitivity and weighted
complementary sensitivity, see (5.21), which are more useful for analyzing the effects of RHP-
zeros and RHP-poles. The basis for these bounds is the interpolation constraints which we
discussfirst.

5.3.3 Interpolation constraints

If p isa RHP-pole of the loop transfer function L(s) then

[T(w) =1, S(p) =0 (513)

Similarly, if z isa RHP-zero of L(s) then

(T(2)=0, S()=1] (5.14)

These interpolation constraint$ollow from the requirement of internal stability as shown in
(4.83) and (4.84). The conditions clearly restrict the allowable S and T' and prove very useful
in the next subsection.

534 Senditivity peaks

In Theorem 5.2, we found that a RHP-zero impliesthat a peak in | S| isinevitable, and that the
peak will increase if we reduce | S| at other frequencies. Here we derive explicit bounds on the
weighted pesk of S, which are more useful in applications than the integral relationship. The
bound for S was originally derived by Zames (1981). Theresults are based on theinterpol ation
constraints S(z) = 1 and T'(p) = 1 given above. In addition, we make use of the maximum
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modulus principle for complex analytic functions (e.g. see maximum principle in Churchill
et a., 1974) which for our purposes can be stated as follows:

Maximum modulus principle. Supposef(s) is stable (i.e.f(s) is analytic in the complex
RHP). Then the maximum value gf(s)| for s in the right-half plane is attained on the
region’s boundary, i.e. somewhere along fheaxis. Hence, we have for a stabfés)

1f(w)llee = max|f(jw)| > [f(s0)] Vso € RHP (615

Remark. (5.15) can be understood by imagining a 3-D plot of |f(s)| as a function of the
complex variable s. In such a plot | f(s)| has “pesks’ at its poles and “valleys” at its zeros.
Thus, if f(s) hasno poles (peaks) in the RHP, and wefind that | f(s)| slopes downwards from
the LHP and into the RHP.

To derive the results below we first consider f(s) = wp(s)S(s) (weighted sensitivity), and
then f(s) = wr(s)T(s) (weighted complementary sensitivity). The weights are included
to make the results more general, but if required we may of course select wp(s) = 1 and
wr(s) =1.

For a plant with a RHP-zero z, applying (5.15) to f(s) = wp(s)S(s) and using the
interpolation constraint S(z) = 1, gives ||lwpS||ec > |wp(2)S(2)| = |wp(2)|. If the plant
also has RHP-poles then the bound islarger, as given in the following theorem:

Theorem 5.3 Weighted sensitivity peaks. For closed-loop stability the weighted sensitivity
function must satisfy faeach RHP-zeroz

Z+ 7
lwpS|lso > Jwp(z H IZ _Z (5.16)

wherep; denote theV, RHP-poles of7. If G has no RHP-poles then the bound is simply
lwp Sl 2 lwe(2)] (6.17)

Similarly, the weighted complementary sensitivity function must satiséaébiRHP-polep

lwrTlloe > Jwr(p H B (5.18)

|z —
wherez; denote theV, RHP-zeros of5. If G has no RHP-zeros then the bound is simply

lwrT|leo > |wr(p)] (5.19)

These bounds may be generalized to MIMO systems if the directions of poles and zeros are
taken into account, see Chapter 6.
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Proof of (5.16): The basis for the proof isa“trick” where wefirst factor out the RHP-zerosin
S into an all-pass part (with magnitude 1 at all pointson the jw-axis). Since G have RHP-poles
at p;, S(s) has RHP-zeros at p; and we may write

S=S5uSm, Sa(s)=]] z;—? (5.20)

Here S, is the “minimum-phase version” of .S with all RHP-zeros mirrored into the LHP.
Sa(s) isal-passwith |S, (jw)| = 1 at al frequencies. (Remark: Thereisatechnical problem
here with jw-axis poles; these must first be moved dightly into the RHP). The weight wp (s)
is as usua assumed to be stable and minimum phase. Consider a RHP-zero located at z,
for which we get from the maximum modulus principle [|wpS||cc = max, |wpS(jw)| =
max,, |wpSm (jw)| > |wp(2)Sm ()|, where S, (2) = S(2)S.(2) ™" = ledotSy(z) —1 =
c1. This proves (5.16).

The proof of (5.18) issimilar; see the proof of the generalized bound (5.44).

If weselect wp = wr = 1, we derive the following bounds on the peaks of .S and T':

zZi + 7 + 7
S]] > maXH| ) zl T > maXH 1% zl (521)

This showsthat large peaks for S and T" are unavoidable if we have a RHP-zero and RHP-pole
located close to each other. Thisisillustrated by examplesin Section 5.9.

5.4 ldeal | SE optimal control

Another good way of obtaining insight into performance limitations, isto consider an “ideal”
controller which is integral square error (ISE) optimal. That is, for a given command r(t)
(which iszero for ¢ < 0), the “ideal” controller is the one that generates the plant input «(¢)
(zero for t < 0) which minimizes

ISE = /0 ” ly(t) —r(t)|>dt (5.22)

This controller is“ideal” in the sense that it may not be realizable in practice because the cost
function includes no penalty on the input «(¢). This particular problem is considered in detail
by Frank (1968a; 1968b) and Morari and Zafiriou (1989), and also Qiu and Davison (1993)
who study “cheap” LQR control. Morari and Zafiriou show that for stable plants with RHP-
zeros at z; (real or complex) and atime delay 6, the “idea” response y = T'r when r(¢) isa

unit stepis given by
“II555 " (523
s+ zj



172 MULTIVARIABLE FEEDBACK CONTROL

where zZ; isthe complex conjugate of z;. The optimal |SE-values for three simple stable plants
are:

1. with a delay 6 : ISE=190

2. with a RHP —zero z : ISE =2/z

3. with complex RHP —zeros z = ¢ &+ jy : ISE = da/(z* + 4°)

This quantifies nicely the limitations imposed by non-minimum phase behaviour, and the
implications in terms of the achievable bandwidth are considered bel ow.

Remark 1 The result in (5.23) is derived by considering an “open-loop” optimization
problem, and applies to feedforward as well as feedback control.

Remark 2 Theidea T'(s) is“all-pass’ with |T'(jw)| = 1 at &l frequencies. In the feedback
case the ideal sensitivity function is |S(jw)| = |L7'(jw)T(jw)| = 1/|L(jw)| at 4l
frequencies.

Remark 3 If r(¢) is not a step then other expressions for T' rather than that in (5.23) are
derived; see Morari and Zafiriou (1989) for details.

5.5 Limitationsimposed by time delays

Magnitude | S|

w=1/6

102 10" 10° 10" 10°

Frequency x Delay

Figure5.6: “Ideal” senditivity function (5.24) for a plant with delay

Consider aplant G(s) that contains a time delay ¢~%* (and no RHP-zeros). Even the “ideal”
controller cannot remove this delay. For a step change in the reference r(t), we have to wait a
time 6 until perfect control is achieved. Thus, as shown in (5.23), the “idea” complementary
sensitivity function will be T = ¢ =%, The corresponding “ideal” sensitivity function is

S=1-T=1-¢"% (5.24)

The magnitude | S| is plotted in Figure 5.6. At low frequencies, wf < 1, wehave1 — e™% =
fs (by a Taylor series expansion of the exponential) and the low-frequency asymptote of
|S(jw)| crosses 1 at a frequency of about 1/6 (the exact frequency where |S(jw)| crosses
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1in Figure 5.6 is £+ = 1.05/6). Since in this case |S| = 1/|L|, we also have that 1/6
is equal to the gain crossover frequency for L. In practice, the “ideal” controller cannot be
realized, so we expect this value to provide an approximate upper bound on w., nhamely

we < 1/ (5.25)

This approximate bound is the same as derived in Section 2.6.2 by considering the limitations
imposed on aloop-shaping design by atime delay 6.

5.6 Limitationsimposed by RHP-zeros

We will here consider plants with a zero z in the closed right-half plane (and no pure time
delay). In the following we attempt to build up insight into the performance limitations
imposed by RHP-zeros using a number of different results in both the time and frequency
domains.

RHP-zeros typically appear when we have competing effects of slow and fast dynamics. For

example, the plant . 0 L8
—S

s+1 s+10 (s+1)(s+10)
has areal RHP-zero at z = 8. We may also have complex zeros, and since these always occur
in complex conjugate pairswe have z = x + jy where x > 0 for RHP-zeros.

G(s) =

5.6.1 Inverseresponse

For a stable plant with n. real RHP-zeros, it may be proven (Holt and Morari, 1985b;
Rosenbrock, 1970) that the output in response to a step change in the input will cross zero (its
original value) n, times, that is, we have inverse responsbehaviour. A typical response for
the case with one RHP-zero is shown in Figure 2.14, page 38. We see that the output initially
decreases before increasing to its positive steady-state value. With two real RHP-zeros the
output will initially increase, then decrease below itsoriginal value, and finaly increase to its
positive steady-state value.

5.6.2 High-gain instability
Itiswell-known from classical root-locus analysis that as the feedback gain increases towards

infinity, the closed-loop poles migrate to the positions of the open-loop zeros; also see (4.76).
Thus, the presence of RHP-zeros implies high-gain instability.

5.6.3 Bandwidth limitation |

For a step change in the reference we have from (5.23) that the “ideal” |SE-optimal
complementary sensitivity function 7' is dl-pass, and for a single real RHP-zerathe “ideal”
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sensitivity function is
S=1-T=1-_5F2__2 (5.26)
z2+z s+ z
The Bode magnitude plot of |S| (= 1/|L|) is shown in Figure 5.7(a). The low-frequency
asymptote of |S(jw)| crosses 1 at the frequency z/2. In practice, the “ideal” ISE optimal
controller cannot berealized, and we derive (for areal RHP-zero) the approximate requirement

WB R we < g (5.27)
which we also derived on 45 using loop-shaping arguments. The bound w. < z/2 is aso
consistent with the bound w. < 1/6 in (5.25) for atime delay. Thisis seen from the Padé
approximation of adelay, e ?* = (1 — £s)/(1 + £s), which hasaRHP-zero at 2/6.
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(b) Complex pair of RHP-zeros, z = = + jy

Figure5.7: “Ideal” sensitivity functions for plants with RHP-zeros

For a complex pair of RHP-zerpgs = x + jy, we get from (5.23) the “ideal” sensitivity
function

dxs

Sl P | pE— (5:28)
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In Figure 5.7(b) we plot |S| for y/z equal to 0.1, 1, 10 and 50. An analysis of (5.28) and the
figure yields the following approximate bounds

|z|[/4  Re(z) >»Im(z) (y/z<K1)
wB Xwe < [2//2.8 Re(z) =Im(z) (y/z=1) (5.29)
|| Re(z) <Im(z) (y/z>1)
In summary, RHP-zeros located close to the origin (with |z| small) are bad for control, and it
isworse for them to be |located closer to the real axis than the imaginary axis.

Remark. For a complex pair of zeros, z = x %+ jy, we notice from (5.28) and Figure 5.7
that the resonance peak of S at w ~ y becomes increasingly “thin” as the zero approaches
the imaginary axis (x — 0). Thus, for a zero located on the imaginary axis (z = 0) the
ideal sensitivity function is zero at all frequencies, except for a single “spike” at w = y
where it jumps up to 2. The integral under the curve for |S(jw)|* thus approaches zero, as
does the ideal ISE-value in response to a step in the reference, ISE = 4x/(2® + y?); see
Section 5.4. Thisindicates that purely imaginary zeros do not always impose limitations. This
is aso confirmed by the flexible structure in Example 2.10, for which the response to an input
disturbance is satisfactory, even though the plant has a pair of imaginary zeros. However,
the flexible structure is a rather specia case where the plant also has imaginary poles which
counteracts most of the effect of theimaginary zeros. Therefore, in other cases, the presence of
imaginary zeros may limit achievable performance, for example, in the presence of uncertainty
which makes it difficult to place polesin the controller to counteract the zeros.

5.6.4 Bandwidth limitation |1

Another way of deriving a bandwidth limitation is to use the interpolation constraint
W and consider the bound (5.17) on weighted sensitivity in Theorem 5.3. The idea
is to select a form for the performance weight wp (s), and then to derive a bound for the
“bandwidth parameter” in the weight.

As usual, we select 1/|wp| as an upper bound on the sensitivity function (see Figure 5.1 on
page 165), that is, we require
IS(jw)| < 1/|wp(jw)] Vw & |lwpSlle <1 (5.30)

However, from (5.17) we have that ||wpS||ec > |wp(2)S(2)| = |wp(z)|, SO to be able to
satisfy (5.30) we must at leastrequire that the weight satisfies

lwp(2)] < 1 (5.31)

(We say “at least” because condition (5.17) is not an equality). We will now use (5.31) to
gain insight into the limitations imposed by RHP-zeros; first by considering (A) a weight
that requires good performance at low frequencies, and then by (B) considering a weight that
requires good performance at high frequencies.
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A. Performance at low frequencies

Consider the following performance weight

s/M + wp

StwhA (532)

wp(s) =

From (5.30) it specifies a minimum bandwidth wg (actudly, wj is the frequency where the
straight-line approximation of the weight crosses 1), a maximum peak of |S| lessthan M, a
steady-state offset lessthan A < 1, and at frequencies lower than the bandwidth the sensitivity
isrequired to improve by at least 20 dB/decade (i.e. |:S| has slope 1 or larger on alog-log plot).
If the plant has a RHP-zero at s = z, then from (5.31) we must require

2/M 4+ wp

1 .
twnA | © (533

lwp(2)] =

Real zero. Consider the case when z isreal. Then all variables arereal and positive and (5.33)
is equivalent to

. 1—1/M

wp <z T—A (5.34)

For example, with A = 0 (no steady-state offset) and M = 2 (||S||c < 2) we must at least
requirewn < 0.5z, which isconsistent with the requirement wp < 0.5z in (5.27).

Imaginary zero. For a RHP-zero on the imaginary axis, z = j|z|, asimilar derivation yields
with A = 0:

. 1

For example, with M = 2 werequirewp < 0.86|z|, which isvery similar to the requirement
wp < |z| givenin (5.29). The next two exercises show that the bound on wp does not depend
much on the slope of the weight at low frequencies, or on how the weight behaves at high
frequencies.

Exercise 5.2 Consider the weight

s+ Mwg s+ fMwy

Ty (5.36)

wp(s) =

with f > 1. This is the same weight as (5.32) with= 0 except that it approachekat high
frequencies, ang gives the frequency range over which we allow a peak. Plot the weight for
f =10 and M = 2. Derive an upper bound anj; for the case withf = 10 and M = 2.

Exercise 5.3 Consider the weightop (s) = L + (%)” which requires S| to have a slope
of n at low frequencies and requires its low-frequency asymptote to trasa frequencyy.
Note thatn = 1 yields the weight (5.32) witd = 0. Derive an upper bound anj; when the

plant has a RHP-zero at. Show that the bound becomes < |z| asn — oc.
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Remark. The result for n — oo in exercise 5.3 is a bit surprising. It says that the bound
wp < |z|, isindependent of the required slope (n) at low frequency and is also independent of
M . Thisissurprising since from Bode'sintegral relationship (5.6) we expect to pay something
for having the sensitivity smaller at low frequencies, so we would expect wp to be smaller for
larger n. Thisillustratesthat |wp (2)| < 1in(5.31) isanecessary condition on the weight (i.e.
it must at least satisfy this condition), but since it is not sufficient it can be optimistic. For the
simple weight (5.32), withn = 1, condition (5.31) is not very optimistic (as is confirmed by
other results), but apparently it is optimistic for n large.

Important. We have so far implicitly assumed that we want tight control at low frequencies,
and we have shown that the presence of a RHP-zero then imposes an upper bound on the
achievable bandwidth. However, if we instead want tight control at high frequencies, then a
RHP-zero imposes a lower bound on the bandwidth. Thisis discussed next.

B. Performanceat high frequencies

Here, we consider a case where we want tight control at high frequencies, by use of the

performance weight
1 S
we(s) = M + wp
This reguires tight control (|S(jw)| < 1) a frequencies higher than wy, whereas the only
requirement at low frequencies is that the peak of | S| islessthan M. Admittedly, the weight
in (5.37) isunredlistic in that it requires S — 0 at high frequencies, but this does not affect
theresult asis confirmed in Exercise 5.5 where amore realistic weight is studied. In any case,
to satisfy ||lwpS|lec < 1 wemust at least require that the weight satisfies jwp(z)| < 1, and
with areal RHP-zerave derive for the weight in (5.37)

(5.37)

wp >z (5.38)

1—1/M

For example, with M = 2 the requirement iswy > 2z, S0 we can only achieve tight control
at frequencies beyondthe frequency of the RHP-zero.

Exercise 5.4 Draw an asymptotic magnitude Bode-plotua# (s) in (5.37).
Exercise 5.5 Consider the case of a plant with a RHP-zero where we want to limit the
sensitivity function over some frequency range. To this effect let

(1000s/wp + +)(s/(Mwy) + 1)

(10s/wp + 1)(100s/wy, + 1) (5.39)

wp(s) =

This weight is equal td/M at low and high frequencies, has a maximum value of ab@ut/
at intermediate frequencies, and the asymptote crossesfrequenciesvy /1000 and wjp.
Thus we require “tight” control,|S| < 1, in the frequency range betweet}; = wp /1000
andwpy = wp.
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a) Make a sketch df/|wp| (which provides an upper bound ¢f|).

b) Show that the RHP-zero cannot be in the frequency range where we require tight control,
and that we can achieve tight control either at frequencies below aty@uthe usual case) or
above abou®z. To see this sele@/ = 2 and evaluatevp (z) for various values aby; = kz,

e.g.k = .1,.5,1,10,100, 1000, 2000, 10000. (You will find thatwp(z) = 0.95 (= 1) for

k = 0.5 (corresponding to the requirement;;; < z/2) and fork = 2000 (corresponding

to the requiremenb;;, > 2z2))

5.6.5 RHP-zero: Limitationsat low or high frequencies

Based on (5.34) and (5.38) we see that a RHP-zero will pose control limitations eitherat low
or high frequencies. In most cases we desire tight control at low frequencies, and with a RHP-
zero this may be achieved at frequencies lower than about z/2. However, if we do not need
tight control at low frequencies, then we may usually reverse the sign of the controller gain,
and instead achieve tight control at frequencies higher than about 2.

Remark. The reversal of the sign in the controller is probably best understood by considering
the inverse response behaviour of a plant with a RHP-zero. Normally, we want tight control at
low frequencies, and the sign of the controller is based on the steady-state gain of the plant.
However, if we instead want tight control at high frequencies (and have no requirements at
low freguencies) then we base the controller design on the plants initial response where the
gain isreversed because of the inverse response.

Setpoint

Magnitude | S|

107 10° 10° 0o 1 2 3 4
Frequency [rad/s] Time
() Sensitivity function (b) Response to step in reference

Figure5.8: Control of plant with RHP-zero at z = 1 using negative feedback

G(s) = =, Ki(s) = K. ol

Example 5.1 Toillustrate this, consider in Figures 5.8 and 5.9 the use of negative and positive

feedback for the plant
—s+z

Gls) = s+ z

L z=1 (5.40)
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Note thatG(s) ~ 1 at low frequenciesy{ < z), whereasG(s) ~ —1 at high frequencies
(w > z). The negative plant gain in the latter case explains why we then use positive feedback
in order to achieve tight control at high frequencies.

More precisely, we show in the figures the sensitivity function and the time response to a step
change in the reference using

1. Pl-control with negative feedback (Figure 5.8)
2. Derivative control with positive feedback (Figure 5.9).

Note that the time scales for the simulations are different. For positive feedback the step change
in reference only has a duration 6f1 s. This is because we cannot track references over
longer times than this since the RHP-zero then causes the output to start drifting away (as can
be seen in Figure 5.9(b)).

Setpoint

Magnitude | S|

-2 0 2

10 10 10 0 0.05 0.1
Frequency [rad/s] Time
(a) Sensgitivity function (b) Response to step in reference

Figure5.9: Control of plant with RHP-zero at z = 1 using positive feedback.

_ s+l _
G(s) = S50 Ka(s) = —Ke (0.:05571) (0.0255D)

An important case, where we can only achieve tight control at high frequencies, is
characterized by plants with a zero at the origin, for example G(s) = s/(5s + 1). In this
case, good transient control is possible, but the control has no effect at steady-state. The only
way to achieve tight control at low frequencies is to use an additional actuator (input) asis
often done in practice.

Short-term control. In this book, we generally assume that the system behaviour ast — co
is important. However, this is not true in some cases because the system may only be under
closed-loop control for a finite time ¢;. In which case, the presence of a“sow” RHP-zero
(with | z| small), may not be significant provided ¢t; < 1/|z|. For example, in Figure 5.9(b) if
thetotal control timeis¢; = 0.01 [g], then the RHP-zero at =z = 1 [rad/s] isinsignificant.

Remark. As an example of short-term control, consider treating a patient with some
medication. Let « be the dosage of medication and y the condition of the patient. With most
medications we find that in the short-term the treatment has a positive effect, whereas in the
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long-term the treatment has a negative effect (due to side effects which may eventually lead to
death). However, this inverse-response behaviour (characteristic of a plant with a RHP-zero)
may be largely neglected during limited treatment, although one may find that the dosage has
to be increased during the treatment to have the desired effect. Interestingly, the last point
is illustrated by the upper left curve in Figure 5.10, which shows the input «(t) using an
internally unstable controller which over some finite time may eliminate the effect of the
RHP-zero.

Exercise 5.6 (a) Plot the plant input(t) corresponding to Figure 5.9 and discuss in light of
the above remark.

(b) In the simulations in Figures 5.8 and 5.9, we use simple PI- and derivative controllers.
As an alternative use th€/K S method in (3.59) to synthesi2é,, controllers for both the
negative and positive feedback cases. Use performance weights in the form given by (5.32) and
(5.37), respectively. With; = 1000 and M = 2 in (5.37) andw, = 1 (for the weight on

K S) you will find that the time response is quite similar to that in Figure 5.9 \liith= 0.5.

Try to improve the response, for example, by letting the weight have a steeper slope at the
crossover near the RHP-zero.

56.6 LHP-zeros

Zerosin theleft-half plane, usually corresponding to “overshoots’ in the time response, do not
present a fundamentalimitation on control, but in practice a LHP-zero located close to the
origin may cause problems. First, one may encounter problems with input constraints at low
frequencies (because the steady-state gain is small). Second, a simple controller can probably
not then be used. For example, a simple PID controller as in (5.66) contains no adjustable
poles that can be used to counteract the effect of a LHP-zero.

For uncertain plants, zeros can cross from the LHP into the RHP both through zero (which
isworst if we want tight control at low frequencies) or through infinity. We discuss this in
Chapter 7.

5.7 RHP-zerosamd non-causal controllers

Perfect control can actually be achieved for a plant with atime delay or RHP-zero if we use a
non-causal controllér, i.e. a controller which uses information about the future. This may be
relevant for certain servo problems, e.g. in robotics and for product changeovers in chemical
plants. A brief discussion is given here, but non-causal controllers are not considered in the
rest of the book since our focus is on feedback control.

Time delay. For adelay e~%° we may achieve perfect control with a non-causal feedforward

controller K, = ¢%° (aprediction). Such acontroller may be used if we have knowledge about
future changesin r(t) or d(¢).

T'A system is causdl if its outputs depend only on past inputs, and non-causal if its outputs also depend
on future inputs.
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For example, if we know that we should be at work at 8:00, and we know that it takes 30 min
to get to work, then we make a prediction and leave home at 7:30 (We don’t wait until 8:00
when we suddenly are told, by the appearance of a step change in our reference position, that
we should be at work).

RHP-zero. Future knowledge can also be used to give perfect control in the presence of a
RHP-zero. As an example, consider a plant with areal RHP-zero given by

—stE s (5.41)
s+ z

0 t<0
r(t) = { 1 t>0
With a feedforward controller K. the response from r to y isy = G(s) K, (s)r. In theory

we may achieve perfect control (y(t)=r(t)) with the following two controllers (e.g. Eaton and
Rawlings (1992)).

G(s) =

and adesired reference change

Input: unstable controller Output: unstable controller
0 1 4,—
-5 0
-10 -1
-5 0 5 -5 0 5
Input: non-causal controller Output: non-causal controller
2 1 —‘—
1 0
0 -1
-5 0 5 -5 0 5
Input: stable causal controller Output: stable causal controller
2 1
1 0
0 -1
-5 0 5 -5 0 5
Time [sec] Time [sec]

Figure 5.10: Feedforward control of plant with RHP-zero

1. A causal unstable feedback controller

s+ z
—s+z

Forastepinr fromOtolatt = 0, this controller generates the following input signal

_fo t<0
“(t)_{ 1-2e >0

K.(s) =
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However, since the controller cancels the RHP-zero in the plant it yields an internaly
unstable system.

2. A stable non-causal (feedforward) controlléhat assumes that the future setpoint change
is known. This controller cannot be represented in the usual transfer function form, but it
will generate the following input

2e*t t<0
“(t):{1 £>0

These input signals u(t) and the corresponding outputs y(¢) are shown in Figure 5.10 for
a plant with z = 1. Note that for perfect control the non-causal controller needs to start
changing theinput at t = —oo, but for practical reasons we started the simulation at ¢t = —5
whereu(t) = 2¢7° = 0.013.

The first option, the unstable controller, is not acceptable as it yields an internally unstable
system in which u(t) goesto infinity as¢ increases (an exception may be if we want to control
the system only over alimited time ¢y, see page 179).

The second option, the non-causal controller, is usually not possible because future setpoint
changes are unknown. However, if we have such information, it is certainly beneficial for
plants with RHP-zeros.

3. In most cases we have to accept the poor performance resulting from the RHP-zero and
use a stable causal controllerThe ideal causal feedforward controller in terms of
minimizing the ISE (#H» norm) of y(¢) for the plant in (5.41) isto use K, = 1, and
the corresponding plant input and output responses are shown in the lower plots in
Figure 5.10.

5.8 Limitationsimposed by unstable (RHP) poles

We here consider the limitations imposed when the plant has a unstable (RHP) pole at s = p.
For example, the plant G(s) = 1/(s — 3) hasaRHP-polewith p = 3.

For unstable plants we needfeedback for stabilization. More precicely, the presence of an
ustable pole p requires for internal stability m which again imposes the following
two limitations:

RHP-pole Limitation 1 (input usage). Most importantly, we need to manipulate the plant
inputs u, and the transfer function K'S from plant outputs to plant inputs must always
satisfy (Havre and Skogestad, 1997)(Havre and Skogestad, 2001)

IS > G ()] (5.42)

where G isthe “stable version” of G with its RHP-poles mirrored into the LHP,

G = Guls) [ 2

;g SThi
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For example, for the plant G(s) = 1/(s — 3) wehave Gs = 1/(s + 3) and the lower
bound on the pesk of K'S is|Gs(p) ™| =3 + 3 = 6.

Sinceu = —K S(Gqd + n), the bounds (5.42) and (5.43) imply that stabilization may
be impossible in presence of disturbances d or measurement noise n, since the required
inputs w may be outside the saturation limit. When the inputs saturate, the system is
practically open-loop and stabilization isimpossible; see Section 5.11.3 page 191.

Example5.2 Consider a plant withG(s) = 5/(10s + 1)(s — 3) andGq = 0.5/(s —
3)(0.2s 4+ 1). Using (5.44) we may easily generalize (5.42),

IKSGallo > |Gs(p) ™" Ga,ms(p)| (543
This gives
10s + 1)(s + 3) 0.5 31-0.5
KSGalloo > = =1.04
1S Galloo = 5 (s+3)(025 + 1) == 315

RHP-pole Limitation 2 (bandwidth). We need to react sufficiently fast, and for areal RHP-
pole p we must require that the closed-loop bandwidth islarger than 2p, approximately.
We derive thos from the bound ||wrT||cc > |wr(p)| in (5.19). Thus, whereas the
presence of RHP-zeros usually places an upper bound on the alowed bandwidth, the
presence of RHP-poles generally imposes alower bound.

In summary, whereas RHP-zeros imposes limitation on the plant outputs, RHP-poles mainly
impose limitations on the plant inputs.

Proof of Limitation 1 (input usageWewill first prove the following generalized bound (Havre
and Skogestad, 1997)(Havre and Skogestad, 2001)

Theorem5.4 Let VT be a (weighted) closed-loop transfer function where is
complementary sensitivity. Then for closed-loop stability we must require for each RHP-pole
pin G,

N
+
IVTlleo > [Vins (p H p' (5.44)

wherez; denote the (possibley. RHP-zeros of7, and wheréel/, s is the “minimum-phase
and stable version” ot with its (possible) RHP-poles and RHP-zeros mirrored into the LHP.
(If G has no RHP-zeros the the bound is SIMPWT'||«c > |Vins(p)|.) The bound (5.44) is
tight (equality) for the case whe@ has only one RHP-pole.

G has RHP-zeros at z;, and therefore T must have RHP-zeros at z;, so write T = ToTh,

with Tu(s) = [I; 7755 Next, note that [[VT]lc = [[VinsTinslloo = [VinsTmlloo-
“J

Consider a RHP-pole located at p, and use the maximum modulus principle, [|VT||s >

Vs ()T ()] = [Vins (D)T (p)Ta(p) ™" | == |Vims (p) - 1 - TI; =% | which proves (5.44).

To prove (5.42) we make use of the identity KS = G"'GKS = G'T. Use of (5.44) with
V = G~ then gives

|ZJ +p| _ -1
KS %) > Gms
K-S | | | - Gs(p)™ |
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which proves (5.42). Here the latter equality follows since

Gs(s) = Gms(s) - H

S$—Zj
s+ z;

Proof of Limitation 2 (bandwidth):

Magnitude

10

Frequency [rad/s]

Figure5.11: Typical complementary sensitivity, |T'|, with upper bound 1/|wr|

We start by selecting a weight wr(s) such that 1/|wr| is a reasonable upper bound on the
complementary sensitivity function.

ITGw)l < wr(jw)| Vo & flwrT|le <1

To satisfy this we must, since from (5.19) ||wrT|| > |wr(p)|, at leastrequire that the

weight satisfies| |wr(p)| < 1 |Now consider the following weight

s 1
wr(s) = oo + (5.45)

which requires T' (like |L|) to have aroll-off rate of at least 1 at high frequencies (which must
be satisfied for any real system), that | 7’| islessthan M at low frequencies, and that | 7’| drops
below 1 at frequency wx+. The requirements on |T'| are shown graphically in Figure 5.11.

For areal RHP-pole at s = p condition wr(p) < 1 yields

Mt

Real RHP — pole. wpp > P =1

(5.46)
With Mr = 2 (reasonable robustness) this gives wpr > 2p which proves the above
bandwidth requirement. Thus, the presence of the RHP-pole puts a lower limit on the
bandwidth in terms of T'; that is, we cannot let the system roll-off at frequencies lower than
about 2p, and we have approximately

we > 2p (5.47)
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For a purely imaginary polelocated at p = j|p| a similar analysis of the weight (5.45) with
My = 2, shows that we must at least require wp > 1.15|p|.

O

Exercise 5.7 Derive the boundz > 1.15|p| for a purely complex pole.

5.9 Combined unstable (RHP) polesand zeros

Stabilization. In theory, any linear plant may be stabilized irrespective of the location of
its RHP-poles and RHP-zeros, provided the plant does not contain unstable hidden modes.
However, this may require an unstable controller, and for practical purposes it is sometimes
desirable that the controller is stable. If such acontroller exists the plant is said to be strongly
stabilizable It has been proved by Youla et a. (1974) that a strictly proper SISO plant is
strongly stabilizable by a proper controller if and only if every real RHP-zero in G(s) liesto
the left of an even number (including zero) of real RHP-polesin G(s). Note that the presence
of any complex RHP-poles or complex RHP-zeros does not affect this result. We then have:

o A strictly proper plant with a single real RHP-zeroand a single real RHP-polg, e.g.
G(s) = T can be stabilized by a stable proper controller if and only i p.
Note the requirement that G(s) is strictly proper. For example, the plant G(s) = (s —
1)/(s —2) withz = 1 < p = 2 is stabilized with a stable constant gain controller with
—2 < K < —1, but this plant is not strictly proper.

In summary, the presence of RHP-zeros (or time delays) make stabilzation more difficult. In
words, “the system may go unstable before we have time to react”. For a plant with a single
RHP-pole and RHP-zero, the strong stabilizability requirement isz > p.

However, in order to achieve acceptable performance and robustness, the RHP-zero must be
located a bit further away from the RHP-pole. Above we derived for a real RHP-zero the
approximate bound wp < z/2 (with Ms = 2), and for area RHP-pole the approximate
bound w. > 2p (with Mr = 2). Thisindicates that for a system with a single real RHP-pole
and aRHP-zero we must approximately require z > 4p in order to get acceptable performance
and robustness. The following example for a plant with z = 4p shows that we can indeed get
acceptable performance when the RHP-pole and zero are located this close.

Example 5.3 Ho, design for plant with RHP-pole and RHP-zero. We want to design an
H o controller for a plant withz = 4 andp = 1,

s—4

)= o1+

(5.48)

We use theS/K S design method as in Example 2.11 with input weight = 1 and
performance weight (5.32) witd=0, M = 2, wp = 1. The software gives a stable and
minimum phase controller with af{., norm of 1.89. The corresponding sensitivity and
complementary sensitivity functions, and the time response to a unit step reference change
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Magnitude

o p 2
10 -2 0 2 -2t
10 10 10 0 1 2 3 4
Frequency [rad/s] Time [sec]
@ |S]and |T| (b) Response to step in reference

Figure5.12: H., design for aplant with RHP-zero at z = 4 and RHP-poleatp = 1

are shown in Figure 5.12. The time response is good, taking into account the closeness of the
RHP-pole and zero.

Sensitivity peaks. In Theorem 5.3 we derived lower bounds on the weighted sensitivity and
complementary sensitivity. For example, for aplant with asingle real RHP-pole p and asingle
real RHP-zero z, we aways have

_ |lz+pl

1Slloe > ¢, IT]loo > ¢, c=
|z — pl

(5.49)

Example 5.4 Consider the plant in (5.48). With = 4p, (5.49) givess = 5/3 = 1.67 and it
follows that for any controller we must at least hg#||.. > 1.67 and ||T'||- > 1.67. The
actual peak values for the abo K S-design are2.40 and 2.43, respectively.

Example 5.5 Balancing arod. This example is taken from Doyle et al. (1992) Consider the
problem of balancing a rod in the palm of one’s hand. The objective is to keep the rod upright,
by small hand movements, based on observing the rod either at its far end (gytputhe

end in one’s hand (outpuk). The linearized transfer functions for the two cases are

_ Is>—g
T 52 (Mls2 — (M +m)g)

_ -9 .
GI(S)_ 52 (MlSQ—(M—f-m)g)’ GQ(S)

Herel [m] is the length of the rod aneh [kg] its mass.M [kg] is the mass of your hand and
g [= 10 m/s'] is the acceleration due to gravity. In both cases, the plant has three unstable

poles: two at the origin and one pt= 4/ % A short rod with a large mass gives a large
value ofp, and this in turn means that the system is more difficult to stabilize. For example,
with M = m andl = 1 [m] we getp = 4.5 [rad/s] and from (5.47) we desire a bandwidth of
about9 [rad/s] (corresponding to a response time of abéit [s]).
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If one is measuring: (looking at the far end of the rod) then achieving this bandwidth is the
main requirement. However, if one tries to balance the rod by looking at one’s hanthére

is also a RHP-zero at = ﬂ If the mass of the rod is smal{/} is small), therp is close

to z and stabilization is in practice impossible with any controller. However, even with a large
mass, stabilization is very difficult becayse> z whereas we would normally prefer to have
the RHP-zero far from the origin and the RHP-pole close to the origit-(p). So although

in theory the rod may be stabilized by looking at one’s hagig) (it seems doubtful that this

is possible for a human. To quantify these problems use (5.49). We get

_z+pl 144 Y= M+m
o—pl = =] M

Consider a light weight rod witin /M = 0.1, for which we expect stabilization to be difficult.
We obtainc = 42, and we must havéS|l > 42 and ||T||.c > 42, so poor control
performance is inevitable if we try to balance the rod by looking at our hagsd (

The difference between the two cases, measugingnd measuringy., highlights the
importance of sensor location on the achievable performance of control.

5.10 Performance requirementsimposed by
disturbances and commands

The question we here want to answer is: how fast must the control system be in order to
reject disturbances and track commands of a given magnitude? We find that some plants have
better “built-in" disturbance rejection capabilities than others. This may be analyzed directly
by considering the appropriately scaled disturbance model, G;(s). Similarly, for tracking we
may consider the magnitude R of the reference change.

Disturbance rejection. Consider a single disturbance d and assume that the reference is
constant, i.e. r = 0. Without control the steady-state sinusoidal response is e(w) =
Ga(jw)d(w); recal (2.9). If the variables have been scaled as outlined in Section 1.4 then
the worst-case disturbance at any frequency isd(t) = sinwt, i.e. |[d(w)| = 1, and the control
objective is that at each frequency |e(t)| < 1,i.e. |e(w)| < 1. From this we can immediately
conclude that

e no control is needed {iG4(jw)| < 1 at all frequencies (in which case the plant is said to
be “self-regulated”).

If |Ga(jw)| > 1 a some frequency, then we need control (feedforward or feedback). In the
following, we consider feedback control, in which case we have

e(s) = S(s)Ga(s)d(s) (5.50)

The performance requirement |e(w)| < 1 for any |d(w)| < 1 at any frequency, is satisfied if
and only if
[SGa(jw)| <1 Yw <& [|SGulleo <1 (5.52)
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& [1S(w)| < 1/|Ga(jw)] Ve (552

A typical plot of 1/|G4(jw)| isshownin Figure 5.13 (dotted lin€). If the plant hasa RHP-zero
a s = z, which fixes S(z) = 1, then using (5.17) we have the following necessary condition
for satisfying || SGalleo < 1:

1Ga(2)| < 1 (5.53)

From (5.52) we also get that the frequency wq where |G 4| crosses 1 from above yields alower
bound on the bandwidth:

where w, is defined by |G (jwa)| = 1 (5.54)

A plant withasmall |G4| or asmall wy is preferable since the need for feedback control isthen
less, or alternatively, given afeedback controller (which fixes S) the effect of disturbances on
the output isless.

wd _ - -
10° b o
o -
e] -
= -
= I -
4l 1/|G -
glolg,/,',{t - B
i |S]
10°
Frequency [rad/s]

Figure 5.13: Typical performance reguirement on S imposed by disturbance rejection

Example 5.6 Assume that the disturbance modeGig(s) = ka/(1 + 74s) wherekq = 10
andr; = 100 [seconds]. Scaling has been applieddg so this means that without feedback,
the effect of disturbances on the outputs at low frequencigs s 10 times larger than we
desire. Thus feedback is required, and sif@g| crossed at a frequency; ~ kq/7q¢ = 0.1
rad/s, the minimum bandwidth requirement for disturbance rejectiais> 0.1 [rad/s].

Remark. G4 is of high order. The actua bandwidth requirement imposed by disturbances
may be higher than wq if |G4(jw)| drops with a slope steeper than —1 (on alog-log plot) just
before the frequency wq. The reason for thisis that we must, in addition to satisfying (5.52),
also ensure stability with reasonable margins; so as discussed in Section 2.6.2 we cannot let
the slope of | L(jw)| around crossover be much larger than —1.

An example, in which G4(s) is of high order, is given later in Section 5.16.3 for a
neutralization process. There we actually overcome the limitation on the slope of |L(jw)|
around crossover by using local feedback loopsin series. We find that, although each loop has
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aslope —1 around crossover, the overall loop transfer function L(s) = Ly (s)L2(s) - - - Ln(s)
has a slope of about —n; see the example for more details. Thisis a case where stability is
determined by each I+ L; separately, but the benefits of feedback are determined by 1+, L;
(also see Horowitz (1991, p. 284) who refersto lectures by Bode).

Command tracking. Assume there are no disturbances, i.e. d = 0, and consider a reference
change r(t) = R7r(t) = Rsin(wt). Sincee = Gu + Gqd — Rr, the same performance
requirement as found for disturbances, see (5.51), applies to command tracking with G4
replaced by —R. Thus for acceptable control (Je(w)| < 1) we must have

|SGjw)R| <1 Vw < w, (5.55)

where w, isthe frequency up to which performance tracking is required.

Remark. The bandwidth requirement imposed by (5.55) depends on on how sharply |S(jw)|
increases in the frequency range from w, (where |S| < 1/R) to wp (Where |S| =~ 1). If | S|
increaseswith aslope of 1 then the approximate bandwidth requirement becomeswg > Rw:,
and if | S| increases with aslope of 2 it becomes wp > v Rw;.

5.11 Limitationsimposed by input constraints

In al physical systems there are limits to the changes that can be made to the manipulated
variables. In this section, we assume that the model has been scaled as outlined in Section 1.4,
so that at any time we must have |u(t)| < 1. The question we want to answer is: can the
expected disturbances be rejected and can we track the reference changes while maintaining
lu(t)] < 1? We will consider separately the two cases of perfect control (e = 0) and
acceptable control (Je| < 1). These results apply to both feedback and feedforward control.

At the end of the section we consider the additional problems encountered for unstable plants
(where feedback control is required).

Remark 1 We use a frequency-by-frequency analysis and assume that at each frequency
|d(w)| < 1 (or |F(w)| < 1). The worst-case disturbance at each frequency is |d(w)| = 1
and the worst-case reference isr = R7 with |[F(w)| = 1.

Remark 2 Notethat rate limitations, |[du/dt| < 1, may aso be handled by our analysis. This
is done by considering du/dt as the plant input by including aterm 1/s in the plant model
G(s).

Remark 3 Below we require |u| < 1 rather than |u| < 1. Thishasno practical effect, and is
used to simplify the presentation.
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5.11.1 Inputsfor perfect control

From (5.3) the input required to achieve perfect control (e = 0) is
wu=G'r—G 'Gad (5.56)

Disturbancergjection. Withr = 0 and |d(w)| = 1 the requirement |u(w)| < 1 isequivalent
to

|G (jw)Ga(jw) <1 Yw (557)
In other words, to achieve perfect control and avoid input saturation we need |G| > |Gq| a
all frequencies. (However, as is discussed below, we do not really need control at frequencies
where |G4| < 1.)

Command tracking. Next let d = 0 and consider the worst-case reference command which
is|r(w)] = R at al frequencies up to w,. To keep the inputs within their constraints we must
then require from (5.56) that

|IGT'(jw)R| <1 VYw < w, (5.58)

In other words, to avoid input saturation we need |G| > R at all frequencies where perfect
command tracking is required.

Example 5.7 Consider a process with

40 50s + 1

0= Gness . “Y 3w e

From Figure 5.14 we see thaff| < |G4| for w > wq, and|Gy| < 1 for w > wy. Thus,
condition (5.57) isnot satisfied forw > w:. However, for frequencies > wys we do not

really need control. Thus, in practice, we expect that disturbances in the frequency range
betweenv; andw, may cause input saturation.

10°
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Figure5.14: Input saturation is expected for disturbances at intermediate frequencies from w;
to wy
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5.11.2 Inputsfor acceptable control

For simplicity above, we assumed perfect control. However, perfect control is never really
required, especially not at high frequencies, and the input magnitude required for acceptable
control (namely |e(jw)| < 1) is somewhat smaller. For disturbance rejectionve must then
require

|G| > |G4| — 1| at frequencies where |Gq4| > 1 (5.59)

Proof: Consider a “worst-case” disturbance with |d(w)| = 1. The control errorise = y =
Gu + Gqd. Thus at frequencies where |G (jw)| > 1 the smallest input needed to reduce
the error to |e(w)| = 1 isfound when u(w) is chosen such that the complex vectors Gu and
Gad have opposite directions. That is, |e] = 1 = |Gqd| — |Gu|, and with |d| = 1 we get
|u| = |G!(|Gq| — 1), and the result follows by requiring |u| < 1. O

Similarly, to achieve acceptable control for command trackingve must require

‘|G|>|R|—1<1‘ Yo < w, (5.60)

In summary, if we want “acceptable control” (Je| < 1) rather than “perfect control” (e = 0),
then |G4| in (5.57) should be replaced by |G4| — 1, and similarly, R in (5.58) should be
replaced by R — 1. The differences are clearly small at frequencies where |G| and |R| are
much larger than 1.

The reguirements given by (5.59) and (5.60) are restrictions imposed on the plant designin
order to avoid input constraints and they apply to any controller (feedback or feedforward
control). If these bounds are violated at some frequency then performance will not be
satisfactory (i.e, le(w)| > 1) for a worst-case disturbance or reference occurring at this

frequency.

5.11.3 Unstable plant and input constraints

Feedback control is required to stabilize an unstable plant. However, input constraints
combined with large disturbances may make stabilization difficult. Specially, from (5.43) we
must for an unstable plant with areal RHP-pole at s = p require

[1Gs(0)] > |Gams(0)] (5.61)

Otherwise, the input will saturate when there is a sinusoidal disturbance d(t) = sinwt, and
we may hot be able to stabilize the plant. Note that this bound must be satisfied also when
|Gd,msi S 1.

Example 5.8 Consider

5 3 ka
(10s + 1)(s — 1)’ Gals) = (s+1)(0.2s +1)°

Sinceky < 1 and the performance objective i§ < 1, we do not really need control for
disturbance rejection, but feedback control is required for stabilization, since the plant has

G(s) = kg <1 (5.62)
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a RHP-pole app = 1. We haveG| > |G4| (i.e. |G~'G4| < 1) for frequencies lower than
0.5/kq, see Figure 5.15(a). so fron?T) we do not expect problems with input constraints at
low frequencies. However, at frequencies higher than we haye< |G;| and from @?) we
may must requird.5/ks > p, i.e.kq < 0.5 to avoid problems with input saturation. This
value is confirmed by the exact bound in (5.61). We get

5 kq

Gs(1) = m|s:1= 0.227, Gams(1) = mh:

1= 0.417k4

and the requiremenitG:(p)| > |Ga,ms(p)| giveskqs < 0.54 to avoid input saturation of
sinusoidal disturbances of unit magnitude.

10
s u(t)
1 —
0 |G| ™\ Unconstrained: -
-qg" 10 05 » _ Constrained: -]
£ o
g |Gl 0 -
=10 -05
107 ! -
107 10° 1% 5 10
Frequency [rad/s] Time [sec]
(@ G and G with ky = 0.5 E)b)5;?esponseto step in disturbance (kg =

Figure 5.15: Instability caused by input saturation for unstable plant

To check this for a particular case we selégt= 0.5 and use the controller

_0.04 (10s +1)°
K(s) = Tm (5.63)

which without constraints yields a stable closed-loop system with a gain crossover frequency,
we, of aboutl.7. The closed-loop response to a unit step disturbance occurring hfecond

is shown in Figure 5.15(b). The stable closed-loop respons when there is no input constraint
is shown by the dashed line. However, we note that the input signal exceeds 1 for a short time,
and whenu is constrained to be within the intervph-1, 1] we find indeed that the system is
unstable (solid lines).

For unstable plants, reference changes can also drive the system into input saturation and
instability. But in contrast to disturbance changes and measurement noise, one then has the
option to use atwo degrees-of-freedom controller to filter the reference signal and thus reduce
the magnitude of the manipulated input.
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5.12 Limitationsimposed by phase lag

We already know that phase lag from RHP-zeros and time delays is a fundamental problem,
but are there any limitations imposed by the phase lag resulting from minimum-phase
elements? The answer is both no and yes: No, there are no fundamental limitations, but Yes
there are often limitations on practical designs.

As an example, consider a minimum-phase plant of the form

k k
A e RPN ety ol (O G (5.64)

where n is three or larger. At high frequencies the gain drops sharply with frequency,
|G(jw)| = (k/ [ 7i)w™™. From condition (5.57), it is therefore likely (at least if & is small)
that we encounter problems with input saturation Otherwise, the presence of high-order lags
does not present any fundamental limitations

However, in practice a large phase lagat high frequencies, e.g. ZG(jw) — —n - 90° for
the plant in (5.64), poses a problem (independent of K') even when input saturation is not an
issue. Thisis because for stability we need a positive phase margin, i.e. thephaseof L = GK
must be larger than —180° at the gain crossover frequency w.. That is, for stability we need
we < W180; %(227)

In principle, wiso (the frequency at which the phase lag around the loop is —180°) is not
directly related to phase lag in the plant, but in most practical casesthereisacloserelationship.
Define w,, asthe frequency where the phase lag in the plant G is —180°, i.e.

£G(jwy) & —180°

Note that w,, depends only on the plant model. Then, with a proportional controller we have
that wigo = wy, and with a Pl-controller wigg < wy. Thuswith these two simple controllers
aphase lag in the plant doespose afundamental limitation:

Stahility bound for P- or Pl-control: (5.65)

Note that thisis a strict bound to get stability, and for performance (phase and gain margin)
we typically need w. less than bout 0.5w,, .

If we want to extend the gain crossover frequency w. beyond w,,, we must place zerosin the
controller (e.g. “derivative action™) to provide phase lead which counteracts the negative phase
in the plant. A commonly used controller is the PID controller which has a maximum phase
lead of 90° at high frequencies. In practice, the maximum phase lead is smaller than 90°. For
example, an industrial cascade PID controlletypically has derivative action over only one
decade,
1s+1 7ps+1
71s  0.1tps+1

and the maximum phase lead is55° (which isthe maximum phase lead of the term o.Tﬁ;JLlrl )-

This is aso a reasonable value for the phase margin, so for performance we approximately
require

K(s) =K.

(5.66)

Practical performance bound (PID control):  w. < wy, (5.67)
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We stress again that plant phase lag does not pose a fundamentalimitation if amore complex
controller is used. Specifically, if the model is known exactly and there are no RHP-zeros or
time delays, then one may in theory extend w. to infinite frequency. For example, one may
simply invert the plant model by placing zeros in the controller at the plant poles, and then let
the controller roll off at high frequencies beyond the dynamics of the plant. However, in many
practical cases the bound in (5.67) applies because we may want to use a simple controller,
and also because uncertainty about the plant model often makesit difficult to place controller
zeros which counteract the plant poles at high frequencies.

Remark. Therelative order(relative degree) of the plant is sometimes used as an input-output
controllability measure (e.g. Daoutidis and Kravaris, 1992). The relative order may be defined
also for nonlinear plants, and it corresponds for linear plants to the pole excess of G(s). For
a minimum-phase plant the phase lag at infinite frequency is the relative order times —90°.
Of course, we want the inputs to directly affect the outputs, so we want the relative order
to be small. However, the practical usefulness of the relative order is rather limited since it
only givesinformation at infinite frequency. The phase lag of G(s) asafunction of frequency,
including the value of w,,, provides much more information.

5.13 Limitationsimposed by uncertainty

The presence of uncertainty requires us to use feedback control rather than just feedforward
control. The main objective of this section isto gain moreinsight into this statement. A further
discussion is given in Section 6.10, where we consider MIMO systems.

5.13.1 Feedforward control

Consider a plant with the nominal model y = Gu + Gqd. Assume that G(s) is minimum
phase and stable and assume there are no problems with input saturation. Then perfect contro|
e = y—r = 0, isobtained using a perfect feedforward controller which generates the
following control inputs

u=G 'r—G 'Gud (5.68)

Now consider applying this perfect controller to the actual plant with model
y =G u+Gyd (5.69)

After substituting (5.68) into (5.69), we find that the actual control error with the “perfect”
feedforward controller is

o4 leyles
"=y —r=(Z-1)r- 4 _1)Gud 5.70
=y = (G-1) - (Gt 1) 6 (570)
S—— ——
rel. error in G rel. error in G/Gy

Thus, we find for feedforward control that the model error propagates directly to the control
error. From (5.70) we see that to achieve |e’| < 1 for |d| = 1 we must require that the relative
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model error in G /Gy islessthan 1/|Gy|. This requirement is clearly very difficult to satisfy
at frequencies where |GY| is much larger than 1, and this motivates the need for feedback
control.

Example5.9 Consider a case with

300 100
T10s+1 YT 10s+1

Nominally, the perfect feedfeedforward controllee= —G~'d gives perfect contra) = 0.
Now apply this feedforward controller to the actual process where the gains have changed by

10
330 90

T10s+1 YT 10s+1
From (5.70) the response in this case is

o (GG N\ , 20

Thus, for a step disturbanaé of magnitude 1, the output will approach 20 (much larger

than 1), and feedback control is required to keep the output less than 1. (Feedback will hardly
be affected by the above error as is discussed next The minimum bandwidth requirement with
feedback only is); ~ 100/10 = 10, and with also feedforward abo@y10 = 2).

Note that if the uncertainty is sufficiently large, such that the relative error in G /Gy islarger
than 1, then feedforward control may actually make control worse. This may quite easily
happen in practice, for example, if the gain in G in increased by 50% and the gain in G; is
reduced by 50%.

5.13.2 Feedback control

With feedback control the closed-loop response with no model errorisy — r = S(Gad — r)
where S = (I + GK)™' isthe sensitivity function. With mode! error we get

y —r=58(Gyd—r) (5.71)
where 8’ = (I + G'K)~" can be written (see (A.139)) as

, 1

Here E = (G' — G)/G isthe relative error for G, and T is the complementary sensitivity
function.

From (5.71) we see that the control error isonly weakly affected by model error at frequencies
where feedback is effective (where | S| << 1 and T =~ 1). For example, if we have integral
action in the feedback loop and if the feedback system with model error is stable, then
S(0) = S’(0) = 0 and the steady-state control error is zero even with model error.
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Uncertainty at crossover. Although feedback control counteracts the effect of uncertainty
at frequencies where the loop gain is large, uncertainty in the crossover frequency region
can result in poor performance and even instability. This may be analyzed by considering the
effect of the uncertainty on the gain margin, GM = 1/|L(jw1sgo)|, wherew:so isthe frequency
where ZL is —180°; see (2.33). Most practical controllers behave as a constant gain K, in
the crossover region, so | L(jwiso)| = Ko|G(jwiso| Where wiso ~ w, (since the phase lag
of the controller is approximately zero at this frequency; see also Section 5.12). Here w,, is
the frequency where ZG (jw.) = —180°. This observation yields the following approximate
rule:

¢ Uncertainty which keep&: (jw. )| approximately constant will not change the gain margin.
Uncertainty which increasd& (jw., )| may yield instability.

Thisruleis useful, for example, when evaluating the effect of parametric uncertainty. Thisis
illustrated in the following example.

Example5.10 Consider a stable first-order delay proceé¥(s) = ke /(1 + rs), where
the parameterst, = and 6 are uncertain in the sense that they may vary with operating
conditions. If we assume > 6 thenw, = (7/2)/6 and we derive

|G(jwu)| = —k— (5.73)

We see that to kedpr(jw. )| constant we Wam‘:§ constant. From (5.73) we see, for example,
that an increase i increase§G(jw. )|, and may yield instability. However, the uncertainty
in the parameters is ofteroupled. For example, the ratie /6 may be approximately constant,

in which case an increase thmay not affect stability. In another case the steady-state gain
k may change with operating point, but this may not affect stability if the ratie, which
determines the high-frequency gain, is unchanged.

The above example illustrates the importance of taking into account the structure of the
uncertainty for example, the coupling between the uncertain parameters. A robustness

analysis which assumes the uncertain parameters to be uncorrelated is generally conservative.

Thisisfurther discussed in Chapters 7 and 8.

5.14 Summary: Controllability analysiswith
feedback control

We will now summarize the results of this chapter by a set of “controllability rules’. We use
the term “ (input-output) controllability” since the bounds depend on the plant only, that is, are
independent of the specific controller. Except for Rule 7, all requirements are fundamental,
although some of the expressions, as seen from the derivations, are approximate (i.e, they may
be off by afactor of 2 or thereabout). However, for practical designs the bounds will need to
be satisfied to get acceptable performance.
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Gq
r + l"' Y
- K > G Iy >

A

Gm

Figure 5.16: Feedback control system

Consider the control system in Figure 5.16, for the case when all blocks are scalar. The model
is

y=G(s)u+Ga(s)d; ym = Gm(s)y (5.74)

Here G, (s) denotes the measurement transfer function and we assume G, (0) = 1 (perfect
steady-state measurement). The variables d, u, y and r are assumed to have been scaled as
outlined in Section 1.4, and therefore G(s) and G4 (s) are the scaled transfer functions. Let
w. denote the gain crossover frequency; defined as the frequency where | L(jw)| crosses 1
from above. Let w, denote the frequency at which |G (jwq)| first crosses 1 from above. The
following rules apply(Skogestad, 1996):

Rule 1. Speed of responsetoreject disturbances. We approximately require. > wq. More
specifically, with feedback control we requig(jw)| < |1/Gq(jw)| Yw. (See (5.51)
and (5.54)).

Rule2. Speed of response to track reference changes. We require|S(jw)| < 1/R up to
the frequencw, where tracking is requiredSee (5.55)).

Rule 3. Input constraints arising from disturbances. For acceptable control|¢| < 1) we
require |G(jw)| > |Ga(jw)| — 1 at frequencies wheréG,(jw)| > 1. For perfect
control (e = 0) the requirement i$G (jw)| > |Ga(jw)|. (See (5.57) and (5.59)).

Rule4. Input constraints arising from setpoints. We require|G(jw)| > R — 1 up to the
frequencyw, where tracking is requiredSee (5.60)).

Rule5. Timedelay 6 in G(s)Gn(s). We approximately require. < 1/6. (See (5.25)).

Rule6. Tight control at low frequencies with a RHP-zero z in G(s)G 1, (s). For a real
RHP-zero we requirev. < z/2 and for an imaginary RHP-zero we approximately
requirew. < |z|. (See(5.27) and (5.29)).

Remark. Strictly spesking, a RHP-zero only makes it impossible to have tight control
in the frequency range close to the location of the RHP-zero. If we do not need tight
control at low frequencies, then we may reverse the sign of the controller gain, and
instead achieve tight control at higher frequencies. In this case we must for a RHP-zero
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z approximately require w. > 2z. A specia caseis for plants with a zero at the origin;
here we can achieve good transient control even though the control has no effect at

steady-state.

Rule7. Phase lag constraint. We require in most practical cases (e.g. with PID control):
we < wy. Here theultimate frequency w, is where /GG, (jw,) = —180°. (See
(5.67)).

Since time delays (Rule 5) and RHP-zeros (Rule 6) also contribute to the phase lag, one
may in in most practical cases combine Rules 5, 6 and 7 into the single rule: we < wy,
(Rule 7).

Rule 8. Real open-loop unstable polein G(s) at s = p. We need high feedback gains to
stabilize the system and we approximately require> 2p. (See(5.47)).

In addition, for unstable plants we ne¢@;(p)| > |Ga,ms(p)|- Otherwise, the input
may saturate when there are disturbances, and the plant cannot be stabilized; see (5.61).

1 -
|
|
|
Control needed to .
reject disturbances I
| |
‘ L ‘
2p Wi we z[2 wu 1/6
| L
| - | |
f Ms < Ms
| M6 |
I ]

M al(]c[)i ns for stability and performance;
1 : Margin to Stay within constraints, |u| < 1.
M, : Margin for pérformance, |e| < 1.
Ms : Margin because of RHP-pole, p.
M4 : Margin because of RHP-zero, z.
M5 : Margin because of phase lag, ZG (jw.) = —180°.
Ms : Margin because of delay, 6.

Figure5.17: Illustration of controllability requirements

Most of the rules areillustrated graphically in Figure 5.17.
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We have not formulated a rule to guard against model uncertainty. This is because, as given
in (5.71) and (5.72), uncertainty has only a minor effect on feedback performance for SISO
systems, except at frequencies where the relative uncertainty E approaches 100%, and we
obviously have to detune the system. Also, since 100% uncertainty at a given frequency allows
for the presence of a RHP-zero on the imaginary axis at this frequency (G(jw) = 0), it is
aready covered by Rule 6.

The rules are necessary conditions (“minimum requirements’) to achieve acceptable control
performance. They are not sufficient since among other things we have only considered one
effect at atime.

The rules quantify the qualitative rules given in the introduction. For example, the rule
“Control outputs that are not self-regulating” may be quantified as: “Control outputs y for
which |G4(jw)| > 1 a some frequency” (Rule 1). The rule “ Select inputs that have a large
effect on the outputs’ may be quantified as: “In terms of scaled variables we must have
|G| > |G4| — 1 at frequencies where |G4| > 1 (Rule 3), and we must have |G| > R — 1 a
frequencies where setpoint tracking is desired (Rule 4)”. Another important insight from the
aboverulesisthat alarger disturbance or a smaller specification on the control error requires
faster response (higher bandwidth).

In summary, Rules 1, 2 and 8 tell us that we need high feedback gain (“fast control”) in order
to reject disturbances, to track setpoints and to stabilize the plant. On the other hand, Rules
5, 6 and 7 tell us that we must use low feedback gains in the frequency range where there
are RHP-zeros or delays or where the plant has alot of phase lag. We have formulated these
requirements for high and low gain as bandwidth requirements. If they somehow arein conflict
then the plant is not controllable and the only remedy is to introduce design modifications to
the plant.

Sometimes the problem is that the disturbances are so large that we hit input saturation, or the
required bandwidth is not achievable. To avoid the | atter problem, we must at least require that
the effect of the disturbance islessthan 1 (in terms of scaled variables) at frequencies beyond
the bandwidth, (Rule 1)

|Ga(jw)| <1 VYw > we (5.75)

where as found above we approximately requirew. < 1/6 (Rule5), w. < z/2 (Rule 6) and
we < wy (Rule 7). Condition (5.75) may be used, as in the example of Section 5.16.3 below,
to determine the size of equipment.

5.15 Summary: Controllability analysiswith
feedforward control

The above controllability rules apply to feedback control, but we find that essentially the same
conclusions apply to feedforward control when relevant. That is, if aplant is not controllable
using feedback contral, it is usualy not controllable with feedforward control. A major
difference, as shown below, isthat a delay in G4(s) is an advantage for feedforward control
(“it gives the feedforward controller more time to make the right action”). Also, a RHP-zero
in G4(s) is aso an advantage for feedforward control if G(s) has a RHP-zero at the same
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location. Rules 3 and 4 on input constraints apply directly to feedforward control, but Rule 8
does not apply since unstable plants can only be stabilized by feedback control. The remaining
rulesin terms of performance and “bandwidth” do not apply directly to feedforward control.

Controllability can be analyzed by considering the feasibility of achieving perfect control. The
feedforward controller is

u=Kgy(s)dm

where d,, = Gna(s)d isthe measured disturbance. The disturbance response with » = 0
becomes

e = Gu+ Gad = (GKqGma + Ga)d (5.76)
(Reference tracking can be analyzed similarly by setting G, =1 and G4 = —R.)

Perfect control. From (5.76), e = 0 is achieved with the controller
KRt = G GuG; ) (5.77)

This assumes that K3°"** is stable and causal (no prediction), and so GG ' G/ should
have no RHP-zeros and no (positive) delay. From this we find that a delay (or RHP-zero) in
Ga(s) isan advantage if it cancels a delay (or RHP-zero) in GGq.

Ideal control. If perfect control is not possible, then one may analyze controllability by
considering an “ideal” feedforward controller, K28, which is (5.77) modified to be stable
and causal (no prediction). The controller isidea in that it assumes we have a perfect model.
ideal ;

Controllability isthen analyzed by using K;*°* in (5.76). An example isgiven below in (5.86)
and (5.87) for afirst-order delay process.

Model uncertainty. As discussed in Section 5.13, model uncertainty is a more serious
problem for feedforward than for feedback control because there is no correction from the
output measurement. For disturbance rejection, we have from (5.70) that the plant is not
controllable with feedforward contral if the relative model error for G /G4 at any frequency
exceeds 1/|G4|. Here G is the scaled disturbance model. For example, if |Gq(jw)| = 10
then the error in G/G4 must not exceed 10% at this frequency. In practice, this means that
feedforward control has to be combined with feedback control if the output is sensitive to the
disturbance (i.e. if |G4| is much larger than 1 at some frequency).

Combined feedback and feedforward control. To analyze controllability in this case we may
assume that the feedforward controller K; has already been designed. Then from (5.76) the
controllability of the remaining feedback problem can be analyzed using the rules in Section
5.14if G4(s) isreplaced by

Ga(s) = GK4Gma + G4 (5.78)

However, one must beware that the feedforward control may be very sensitive to model error,
s0 the benefits of feedforward may be lessin practice.

Conclusion. From (5.78) we see that the primary potential benefit of feedforward control is
to reduce the effect of the disturbance and make G4 lessthan 1 at frequencies where feedback
control is not effective due to, for example, adelay or alarge phaselag in GGy, ().
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5.16 Applicationsof controllability analysis

5.16.1 First-order delay process

Problem statement. Consider disturbance rejection for the following process

—fs —0gs

Ga(s) = kg—

e
=k
d1+7'd5

G(s) :kl—l—rs;

(5.79)

In addition there are measurement delays 6,,, for the output and 6,,,4 for the disturbance. All
parameters have been appropriately scaled such that at each frequency |u| < 1,|d| < 1 and
wewant |e| < 1. Assume |kq| > 1. Treat separately the two cases of i) feedback control only,
and ii) feedforward control only, and carry out the following:

a) For each of the eight parameters in this model explain qualitatively what value you would
choose from a controllability point of view (with descriptions such as large, small, value has
no effect).

b) Give quantitative relationships between the parameters which should be satisfied to achieve
controllability. Assume that appropriate scaling has been applied in such a way that the
disturbance is less than 1 in magnitude, and that the input and the output are required to
be lessthan 1 in magnitude.

Solution. (a) Qualitative We want the input to have a “large, direct and fast effect” on the
output, while we want the disturbance to have a“small, indirect and slow effect”. By “direct”
we mean without any delay or inverse response. This leads to the following conclusion. For
both feedback and feedforward control we want k& and 7, large, and 7, 6 and k, small. For
feedforward control we also want 6, large (we then have more time to react), but for feedback
the value of 6, does not matter; it trandates time, but otherwise has no effect. Clearly, we
want 6,,, small for feedback control (it is not used for feedforward), and we want 6,,,, small
for feedforward control (it is not used for feedback).

(b) Quantitative.To stay within the input constraints (|u| < 1) we must from Rule 4 require
|G(jw)| > |Ga(jw)| for frequenciesw < wq. Specifically, for both feedback and feedforward
control

\ k> ks, k/7>ka/Ta \ (5.80)

Now consider performance where the results for feedback and feedforward control differ. (i)
First consider feedback controlFrom Rule 1 we need for acceptable performance (Je| < 1)
with disturbances

Wy ~ kd/Td < We (581)

On the other hand, from Rule 5 we require for stability and performance
we < I/GM (582)

where 6;,: = 0 + 0,, isthetotal delay around the loop. The combination of (5.81) and (5.82)
yields the following requirement for controllability

Feedback: 6 + 6., < 74/ka \ (5.83)
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(ii) For feedforward contrglany delay for the disturbance itself yields a smaller “net delay”,
and to have |e| < 1 we need “only” require

| Feedforward: 6+ 6y — 84 < 7a/kd (5.84)

Proof of (5.84):Introduce 8 = 6 + 0,4 — 04, and consider first the case with § <0(s0(5.84)
is clearly satisfied). In this case perfect control is possible using the controller (5.77),

ka 14+7s g
e

ngrfect _ _G_lGdG:n}i _ _? T
TdS

(5.85)

so we can even achieve e = 0. Next, consider § > 0. Perfect contrgl isnot possible, so instead
we use the “ideal” controller obtained by deleting the prediction ¢,

; kq 14+ 71s
Kldeal _ _Nd ]
4 k 1+ 74s (586
From (5.76) the response with this controller is
_ ideal _ kge%as _8s
e=(GKy " Gna + Ga)d = T+ 1—-e"")d (5.87)

and to achieve |e|/|d] < 1 we must require ’j—:@ < 1 (using asymptotic values and
1 —e™® =~ z for small ) whichisequivalent to (5.84). a

5.16.2 Application: Room heating

Consider the problem of maintaining a room at constant temperature, as discussed in
Section 1.5, see Figure 1.2. Let y be the room temperature, « the heat input and d the outdoor
temperature. Feedback control should be used. L et the measurement delay for temperature (y)
be6,, = 100 s.

1. Isthe plant controllable with respect to disturbances?
2. Isthe plant controllable with respect to setpoint changes of magnitude R = 3 (+3 K) when
the desired response time for setpoint changesis 7. = 1000 s (17 min) ?

Solution. A critical part of controllability analysis is scaling. A model in terms of scaled
variables was derived in (1.26)

20 10

)= To0s 710 “®) = To00s 71

(5.88)

The frequency responses of |G| and |G| are shown in Figure 5.18.

1. Disturbances From Rule 1 feedback control is necessary up to the frequency wy; =
10/1000 = 0.01 rad/s, where |G4| crosses 1 in magnitude (w. > wq). Thisis exactly the
same frequency as the upper bound given by the delay, 1/6 = 0.01 rad/s (w. < 1/6). We
therefore conclude that the system is barely controllable for this disturbance. From Rule 3
no problems with input constraints are expected since |G| > |G| at all frequencies. These
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Figure 5.18: Frequency responses for room heating example
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Figure5.19: PID feedback control of room heating example
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conclusions are supported by the closed-loop simulation in Figure 5.19(a) for a unit step
disturbance (corresponding to a sudden 10 K increase in the outdoor temperature) using aPID-
controller of the form in (5.66) with K. = 0.4 (scaled variables), 71 = 200 sand 7p = 60
s. The output error exceeds its allowed value of 1 for a very short time after about 100 s, but
then returns quite quickly to zero. The input goes down to about -0.8 and thus remains within
its allowed bound of +1.

2. SetpointsThe plant is controllable with respect to the desired setpoint changes. First, the
delay is 100 swhich is much smaller than the desired response time of 1000 s, and thus poses
no problem. Second, |G (jw)| > R = 3 up to about w; = 0.007 [rad/s] which is seven times
higher than the required w, = 1/ = 0.001 [rad/s]. This means that input constraints pose
no problem. In fact, we should be able to achieve response times of about 1/w; = 150 s
without reaching the input constraints. Thisis confirmed by the simulation in Figure 5.19(b)
for adesired setpoint change 3/(150s + 1) using the same PID controller as above.

5.16.3 Application: Neutralization process

ACID BASE
qA | B a aB
CA CB
Vo 4
q
c

Figure 5.20: Neutralization process with one mixing tank

The following application isinteresting in that it shows how the controllability analysis tools
may assist the engineer in redesigning the process to make it controllable.

Problem statement. Consider the process in Figure 5.20, where a strong acid with pH= —1
(yes, anegative pH is possible— it corresponds to c;;+ = 10 mol/l) is neutralized by a strong
base (pH=15) in a mixing tank with volume V= 10m®. We want to use feedback control to
keep the pH in the product stream (output y) intherange 7 & 1 (“salt water”) by manipulating
the amount of base, g (input w) in spite of variations in the flow of acid, g4 (disturbance d).
The delay in the pH-measurement is6,,, = 10 s.

To achieve the desired product with pH=7 one must exactly balance the inflow of acid (the
disturbance) by addition of base (the manipulated input). Intuitively, one might expect that
the main control problem isto adjust the base accurately by means of a very accurate valve.
However, aswe will seethis“feedforward” way of thinking ismisleading, and the main hurdle
to good control is the need for very fast response times.
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We take the controlled output to be the excess of acid, ¢ [mol/l], defined asc = ¢+ —cop--
In terms of this variable the control objective is to keep |c| < cmax = 1075 mol/l, and the
plant is asimple mixing process modelled by

d

1 (Ve) = aaca +gpes —qe (5.89)
The nominal values for the acid and base flows are ¢y = ¢} = 0.005 [ m®/g] resulting in a
product flow ¢* = 0.01 [m3/s]= 10 [I/s]. Here superscript * denotes the steady-state value.
Divide each variable by its maximum deviation to get the following scaled variables

c qB qgA
. — - d= 5.90
105 a5’ 0.5¢% (5.90)

Then the appropriately scaled linear model for one tank becomes

(s) = —2d

— kd
Gd(s) - 1+ms

_ . -k, =925.10° 5.91
1+T}LS, ; d 5 0 ( )

where 7, = V/q = 1000 s is the residence time for the liquid in the tank. Note that the
steady-state gain in terms of scaled variables is more than a million so the output is extremely
sengitive to both the input and the disturbance. The reason for this high gain is the much
higher concentration in the two feed streams, compared to that desired in the product stream.
The question is: Can acceptable control be achieved?

Magnitude

—4 -2

10 10 ? !

10° 10
Frequency [rad/s]
Figure5.21: Frequency responses for the neutralization process with one mixing tank

Controllability analysis. The frequency responses of G4 (s) and G(s) are shown graphically
in Figure 5.21. From Rule 2, input constraints do not pose a problem since |G| = 2|Gq| at
all frequencies. The main control problem is the high disturbance sensitivity, and from (5.81)
(Rule 1) we find the frequency up to which feedback is needed

wgq = kq/T = 2500 rad/s (5.92)

This requires aresponse time of 1/2500 = 0.4 milliseconds which is clearly impossiblein a
process control application, and isin any case much less than the measurement delay of 10 s.
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ACID

Figure 5.22: Neutralization process with two tanks and one controller

Design change: Multipletanks. The only way to improve controllability is to modify the
process. Thisisdone in practice by performing the neutralization in several stepsasillustrated
in Figure 5.22 for the case of two tanks. This is similar to playing golf where it is often
necessary to use several strokes to get to the hole. With n equal mixing tanks in series the
transfer function for the effect of the disturbance becomes

1

Ga(s) = kahn(s); hn(s) =

where kg = 2.5 - 10° isthe gain for the mixing process, h., (s) isthe transfer function of the
mixing tanks, and 7, isthe total residence time, V;,./q. The magnitude of h,, (s) asafunction
of frequency is shown in Figure 5.23 for one to four equal tanksin series.

10°

|

Magnitude

-5 )

10" 10°

10

Frequency x 7,

Figure5.23: Frequency responses for n tanks in series with the same total residence time 7, ;
ho(s) =1/(s+1)", n=1,2,3,4

From controllability Rules 1 and 5, we must at least require for acceptable disturbance
rejection that
|Ga(jwe)| < 1| wp £1/6 (5.94)
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where 6 is the delay in the feedback loop. Thus, one purpose of the mixing tanks A, (s) isto
reduce the effect of the disturbance by a factor k;(= 2.5 - 10°) a the frequency wp (= 0.1
[rad/q)), i.e. |hn (jwe)| < 1/kq. With 7, = Vior/q We obtain the following minimum value
for the total volume for n equal tanksin series

Viot = qfny/ (kq)?/™ — 1 (5.95)

where ¢ = 0.01 m®/s. With 8 = 10 s we then find that the following designs have the same
controllability with respect to disturbance rejection:

No. of Total Volume
tanks volume | eachtank
n Vrtot [m3] [m3]

1 250000 250000
2 316 158
3 40.7 13.6
4 15.9 3.98
5 9.51 1.90
6 6.96 1.16
7 5.70 0.81

With one tank we need a volume corresponding to that of a supertanker to get acceptable
controllability. The minimum total volume is obtained with 18 tanks of about 203 litres each
— giving a total volume of 3.662 m?. However, taking into account the additional cost for
extra equipment such as piping, mixing, measurements and control, we would probably select
adesign with 3 or 4 tanks for this example.

Control system design. We arenot quite finished yet. The condition |G4(jwe)| < 1in(5.94),
which formed the basis for redesigning the process, may be optimistic because it only ensures
that we have | S| < 1/|G4| at the crossover frequency wp = w. = wy. However, from Rule
1wealsorequirethat | S| < 1/|G4l, or approximately |L| > |Gq4|, at frequencies lower than
w,, and this may be difficult to achieve since G4 (s) = kqh(s) is of high order. The problem
isthat this requires | L| to drop steeply with frequency, which resultsin alarge negative phase
for L, whereasfor stability and performance the slope of | L| at crossover should not be steeper
than —1, approximately (see Section 2.6.2).

Thus, the control system in Figure 5.22 with a single feedback controller will not achieve the
desired performance. The solution is to install a local feedbaclkcontrol system on each tank
and to add base in each tank as shown in Figure 5.24. This is another plant design change
since it requires an additional measurement and actuator for each tank. Consider the case of
n tanks in series. With n controllers the overall closed-loop response from a disturbance into
the first tank to the pH in the last tank becomes

1 NGd A -
y=Ga]]( )d ~ =4, L_llei (5.96)
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BASE

ACID

BASE

Figure 5.24: Neutralization process with two tanks and two controllers.

where G4 =[], G; and L; = G;K;, and the approximation applies at low frequencies
where feedback is effective.

In this case, we can design each loop L;(s) with a slope of —1 and bandwidth w. ~ w,
such that the overall loop transfer function L has slope —n and achieves |L| > |Gy at all
frequencies lower than w, (the size of the tanks are selected as before such that wq =~ ws).
Thus, our analysis confirms the usual recommendation of adding base gradually and having
one pH-controller for each tank (McMillan, 1984, p. 208). It seems unlikely that any other
control strategy can achieve a sufficiently high roll-off for |L|.

In summary, this application has shown how a simple controllability analysis may be used to
make decisions on both the appropriate size of the equipment, and the selection of actuators
and measurements for control. Our conclusions are in agreement with what isused in industry.
Importantly, we arrived at these conclusions, without having to design any controllers or
perform any simulations. Of course, as a final test, the conclusions from the controllability
analysis should be verified by simulations using a nonlinear model.

Exercise 5.8 Comparison of local feedback and cascade control. Explain why a cascade
control system with two measurements (pH in each tank) andooelgnanipulated input (the
base flow into the first tank) will not achieve as good performance as the control system in
Figure 5.24 where we use local feedback viitlo manipulated inputs (one for each tank).

The following exercise further considers the use of buffer tanks for reducing quality
(concentration, temperature) disturbances in chemical processes.

Exercise 5.9 (a) The effect of a concentration disturbance must be reduced by a fadtoe of

at the frequency).5 rad/min. The disturbances should be dampened by use of buffer tanks
and the objective is to minimize the total volume. How many tanks in series should one have?
What is the total residence time?

(b) The feed to a distillation column has large variations in concentration and the use of one
buffer tank is suggested to dampen these. The effect of the feed concemtatitime product
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compositiony is given by (scaled variables, time in minutes)
Gai(s) =e % /3s

Thatis, after a step id the outputy will, after an initial delay ofl min, increase in a ramp-like
fashion and reach its maximum allowed value (which)iafter another3 minutes. Feedback
control should be used and there is an additional measurement delaynmohutes. What
should be the residence time in the tank?

(c) Show that in terms of minimizing the total volume for buffer tanks in series, it is optimal to
have buffer tanks of equal size.

(d) Is there any reason to have buffer tanks in parallel (they must not be of equal size because
then one may simply combine them)?

(e) What about parallel pipes in series (pure delay). Is this a good idea?

Buffer tanks are also used in chemical processes to dampen liquid flowrate disturbances (or
gas pressure disturbances). Thisisthe topic of the following exercise.

Exercise5.10 Letd, = ¢i. [Mm®/s] denote a flowrate which acts as a disturbance to the
process. We add a buffer tank (with liquid volufigm®]), and use a “slow” level controller

K such that the outflowls = gous (the “new” disturbance) is smoother than the inflaw

(the “original” disturbance). The idea is to temporarily increase or decrease the liquid volume
in the tank to avoid sudden changes;in:. Note that the steady-state valuggf; must equal
that Ofl]in-

A material balance yield¥ (s) = (gin(s) — gout(s))/s and with a level controllefou¢ (s) =
K(s)V(s) we find that
K(s)
s+ K(s)
——
h(s)

dz(S) = dl(S) (597)

The design of a buffer tank for a flowrate disturbance then consists of two steps:

1. Design the levedontroller K (s) such thati(s) has the desired shape (e.g. determined by a
controllability analysis of howd, affects the remaining process; note that we must always
haveh(0) = 1).

2. Design thesize of the tank (determine its volumé/,.x) such that the tanks does not
overflow or go empty for the expected disturbance$ ig gin.

Problem statement. (a) Assume the inflow varies in the range + 100% whereg;, is the
nominal value, and apply this stepwise procedure to two cases:
i) The desired transfer function ig(s) = 1/(rs + lf.2
i) The desired transfer function Is(s) = 1/(m2s + 1)°.
(b) Explain why it is usually not recommended to have integral actid (g).

(c) In case (ii) one could alternatively use two tanks in series with controllers designed as in
(). Explain why this is most likely not a good solution. (Solution: The required total volume is
the same, but the cost of two smaller tanks is larger than one large tank).
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5.16.4 Additional exercises

Exercise 5.11 What information about a plant is important for controller design, and in
particular, in which frequency range is it important to know the model well? To answer this
problem you may think about the following sub-problems:

(a) Explain what information about the plant is used for Ziegler-Nichols tuning of a SISO
PID-controller.

(b) Is the steady-state plant gai@(0) important for controller design? (As an example
consider the plantG(s) = ﬁ with |a| < 1 and design a P-controlleK (s) = K. such
thatw. = 100. How does the controller design and the closed-loop response depend on the
steady-state gair(0) = 1/a?)

Exercise5.12 Let H(s) = Kie *, G(s) = Kze *% gopimmrn, and Ga(s) =
G(s)H(s). The measurement device for the output has transfer fun@igfs) = e 2¢.

The unit for time is seconds. The nominal parameter values Ere= 0.24, 6, = 1 [g],

K, =38,0,=5][s],andT = 2 [s].

(@) Assume all variables have been appropriately scaled. Is the plant input-output
controllable?

(b) What is the effect on controllability of changing one model parameter at a time in the
following ways:

. 01 is reduced td).1 [s].

. B2 is reduced t@ [s].

. K, is reduced td).024.
. K> is reduced ta.

. Tis increased t®&0 [s].

abswnN -

Exercise 5.13 A heat exchanger is used to exchange heat between two streams; a coolant with
flowrateq (1 £ 1 kg/s) is used to cool a hot stream with inlet temperatliyg100 + 10°C)

to the outlet temperatur@ (which should b&0 + 10°C). The measurement delay fBris 3s.

The main disturbance is dfy. The following model in terms of deviation variables is derived
from heat balances

8 0.6(20s + 1)
605+ 0270 T Gos Dz 1)

whereT and Ty are in °C, ¢ is in kg/s, and the unit for time is seconds. Derive the scaled
model. Is the plant controllable with feedback control? (Solution: The delay poses no problem
(performance), but the effect of the disturbance is a bit too large at high frequencies (input
saturation), so the plant is not controllable).

T(s) =

To(s) (5.99)

5.17 Conclusion

The chapter has presented a frequency domain controllability analysis for scalar systems
applicable to both feedback and feedforward control. We summarized our findings in terms
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of eight controllability rules; see page 197. These rules are necessary conditions (*“minimum
requirements’) to achieve acceptable control performance. They are not sufficient since
among other things they only consider one effect at a time. The rules may be used to
determine whether or not a given plant is controllable. The method has been applied to a
pH neutralization process, and it is found that the heuristic design rules given in the literature
follow directly. The key steps in the analysis are to consider disturbances and to scale the
variables properly.

The tools presented in this chapter may also be used to study the effectiveness of
adding extra manipulated inputs or extra measurements (cascade control). They may
also be generalized to multivariable plants where directionality becomes a further crucia
consideration. Interestingly, a direct generalization to decentralized control of multivariable
plants is rather straightforward and involves the CLDG and the PRGA; see page 453 in
Chapter 10.
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6

LIMITATIONS ON
PERFORMANCE IN MIMO
SYSTEMS

In this chapter, we generalize the results of Chapter 5 to MIMO systems. We first discuss
fundamental limitations on the sensitivity and complementary sensitivity functions imposed
by the presence of RHP-zeros. We then consider separately the issues of functiona
controllability, RHP-zeros, RHP-poles, disturbances, input constraints and uncertainty.
Finally, we summarize the main steps in a procedure for analyzing the input-output
controllability of MIMO plants.

6.1 Introduction

In a MIMO system, disturbances, the plant, RHP-zeros, delays, RHP-poles and disturbances
each have directionsassociated with them. This makes it more difficult to consider their effects
separately, as we did in the SISO case, but we will nevertheless see that most of the SISO
results may be generalized.

Wewill quantify thedirectionality of the various effectsin G and G by their outputdirections:

e y.: output direction of a RHP-zero, G(z)u. = 0 - y., see (4.68)

e y,: output direction of a RHP-pole, G(p;)up;, = oo - yp,, See (4.61)

e y,: output direction of adisturbance, y; = mgd, see (6.30)

e w;: i'th output direction (singular vector) of the plant, Gv; = o u;, see (3.38)*

All these are I x 1 vectors where [ is the number of outputs. y. and y,, are fixed complex
vectors, while y4(s) and u;(s) are frequency-dependent (s may here be viewed as a

T
Note that u; hereisthe ¢'th output singular vector, and notthe ¢’ th input.



214 MULTIVARIABLE FEEDBACK CONTROL

generalized complex frequency; in most cases s = jw). The vectors are here normalized
such that they have Euclidean length 1,

ly=llz =1, lypll2 =1, llya(s)llo=1, [lui(s)ll2 =1
We may also consider the associated input directions of G. However, these directions are

usually of lessinterest since we are primarily concerned with the performance at the output of
the plant.

The angles between the various output directions can be quantified using their inner products:
lvZ yp|, [y yal, etc. Theinner product gives a number between 0 and 1, and from this we can
define the angle in the first quadrant, see (A.113). For example, the output angle between a
poleand azerois
-1y, H

_ cos|y: ypl
¢ =

=l llyoll2
We assume throughout this chapter that the model s have been scaled asoutlined in Section 1.4.
The scaling procedure isthe same as that for SISO systems, except that the scaling factors D,,,
Dy, D, and D, are diagonal matricesvith elements equal to the maximum change in each
variable u;, d;, r; and e;. The control error in terms of scaled variables isthen

e=y—r=Gu+ Gqd — RT

where at each frequency we have ||u(w)||lmax < 1, ||d(w)||max < 1 and ||7(w)]||max < 1, and
the control objective isto achieve ||e||max(w) < 1

_ —1, H
=cos™ " |y. Yyl

Remark 1 Here|| - ||max iSthe vector infinity-norm, that is, the largest element in the vector.
Thisnorm is sometimes denoted || - ||, but thisis not used here to avoid confusing it with the
‘Hoo norm of the transfer function (where the co denotes the maximum over frequency rather
than the maximum over the elements of the vector).

Remark 2 Asfor SISO systems, we see that reference changes may be analyzed as a special
case of disturbances by replacing G4 by —R.

Remark 3 Whether various disturbances and reference changes should be considered
separately or simultaneously is a matter of design philosophy. In this chapter, we mainly
consider their effects separately, on the grounds that it is unlikely for severa disturbances
to attain their worst values simultaneously. This leads to necessary conditions for acceptable
performance, which involve the elements of different matrices rather than matrix norms.

6.2 Constraintson Sand T

6.2.1 S plusT istheidentity matrix

From theidentity S + 7' = I and (A.49), we get
11— 5(S)| < (T) < 1+5(S) (6.1)
11— a(T)| < 5(S) < 1+6(T) (62)

This shows that we cannot have both S and T' small simultaneously and that 5 (.S) is large if
and only if &(T') islarge.
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6.2.2 Sensitivity integrals

For SISO systems we presented severa integral constraints on sensitivity (the waterbed
effects). These may be generalized to MIMO systems by using the determinant or the singular
values of S, see Boyd and Barratt (1991) and Freudenberg and Looze (1988). For example,
the generalization of the Bode sensitivity integral in (5.6) may be written

Np

/000 In | det S(jw)|dw = Z /000 Ino;(S(jw))dw = 7 - Z Re(p;) (6.3

i=1

For a stable L(s), the integrals are zero. Other generalizations are also available, see Zhou
et al. (1996). However, although these relationships are interesting, it seems difficult to derive
any concrete bounds on achievable performance from them.

6.2.3 Interpolation constraints

RHP-zero. If G(s) has a RHP-zero at z with output direction y., then for internal stability of
the feedback system the following interpolation constraints must apply:

yIT(2)=0; yI'S(z)=y! (6.4)

In words, (6.4) says that T must have a RHP-zero in the same direction as G, and that S(z)
has an eigenvalue of 1 corresponding to the left eigenvector y. .

Proof of (6.4): From (4.68) there exists an output direction ¢, such that y” G(z) = 0. For
internal stability, the controller cannot cancel the RHP-zero and it followsthat L = GK has
aRHP-zero in the same direction, i.e. y 2 L(z) = 0.Now S = (I + L)™' isstable and has no
RHP-poleat s = z. It then followsfrom T = LS that yZT(z) = 0 and yZ (I — ) = 0. O

RHP-pole. If G(s) hasaRHPpole at p with output direction y,, then for internal stability the
following interpolation constraints apply

Sy =05 T(p)yo = vs | (6.5)

Proof of (6.5):The square matrix L(p) has aRHP-poleat s = p, and if we assume that L(s)
has no RHP-zeros at s = p then L™ !(p) exists and from (4.72) there exists an output pole
direction y, such that

L™ (p)yp =0 (6.6)
Since T is stable, it has no RHP-pole & s = p, so T'(p) is finite. It then follows, from
S=TL ' that S(p)yp, = T(p)L " (p)yp = 0. 0

Similar constraints apply to Ly, S and T, but these are in terms of the input zero and pole
directions, u. and u,.
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6.2.4 Sensitivity peaks

Based on the above interpolation constraints we here derive lower bounds on the weighted
sensitivity functions. The results show that a peak on &(S) larger than 1 is unavoidable if the
plant has a RHP-zero, and that apesk on & (T') larger 1 isunavoidable if the plant has a RHP-
pole. In particular, the peaks may be large if the plant has both RHP-zeros and RHP-poles.

The bounds are direct generalizations of those found for SISO systems. The bound on
weighted sensitivity with no RHP-poles was first derived by Zames (1981). The generalized
result below was derived by Havre and Skogestad (1998a).

We first need to introduce some notation. Consider a plant G(s) with RHP-poles p; and RHP-
zeros z;, and factorize G/(s) in terms of (output) Blaschke productas follows?

G(s) = B, '(5)Gs(s), G(s) = B.(5)Gm(s) (6.7)

where G isthe stable and G, the minimum-phase version of G. B, (s) and B, (s) are stable
all-pass transfer matrices (all singular values are 1 for s = jw) containing the RHP-poles and
HP-zeros, respectively. Note that we here only use the output factorizations. B, (s) isobtained
by factorizing to the output one RHP-pole at a time, starting with G(s) = Bil( )Gp1(s)
where By ' (s) = I + 325,151 where g1 = y,1 is the output pole direction for p:.
This procedure may be continued to factor out p2 from Gp1(s) where 7,2 is the output pole
direction of G,,1 (which need not coincide with y,2, the pole direction of G), and so on. A
similar procedure may be used for the RHP-zeros.

Np

By o) =TT+ 55,50, o0 =[Ju+ 22554 69

P
i=1 =1

Remark. State-space realizations are provided by Zhou et a. (1996, p.145). Note that these
realizations may be complex.

With this factorization we have the following theorem.

Theorem 6.1 MIMO sensitivity peaks. Suppose thaG(s) has N. RHP-zerosz; with
output directionsy.;, and N, RHP-polesp; with output directionsy,;. Define the all-pass
transfer matrices given in (6.8) and compute the real constants

c1j = lyiBp(zi)ll2 > 15 coi = || B (pi)ypill2 > 1 (6.9

Letwp(s) be a stable weight. Then for closed-loop stability the weighted sensitivity function
must satisfy for each RHP-zetp

lwpSlles > c1j |wp(z;)] (6.10)

Herec;; = 1if G has no RHP-poles.

2 Note that the Blaschke notation is reversed compared to that given in the first edition (1996), that is, B
replaces B; !, and By, replaces B;l. Thisisto get consistency with the literature in general.
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Let wr(s) be a stable weight. Then for closed-loop stability the weighted complementary
sensitivity function must satisfy for each RHP-pale

lwrT|leo > c2i |wr (pi)| (6.12)

Herecs; = 1 if G has no RHP-zeros.

Proof of ¢1; in (6.9): Consider here a RHP-zero z with direction y. (the subscript j is
omitted). Since G has RHP-poles at p;, S must have RHP-zeros at p;, such that T = SGK
is stable. We may factorize S = TL™' = S,,B,(s) and introduce the scalar function
f(s) = yTwp(s)Sm(s)y which is analytic (stable) in the RHP. y is a vector of unit length
which can be chosen freely. We then have

lwrS(s)llso = llwpSmllso > 1 (5)lleo > |£(2)] = lwp(2)] - |y B, ' (2)y]  (6.12)

The final equality follows since wp is a scaar and yS1(2) = yZS(z)B,'(z) =
y B, (2). We finally select y such that the lower bound is as large as possible and derive
c1. Toprovethat ¢; > 1, wefollow Chen (1995) and introduce the matrix V; whose columns
together with gj,; form an orthonormal basis for C'**. Then, I = g,y + V;Vi#,and

2Re(Pi) ~ ~u _ S+ Di~ ~m H ~ s+pi o[ y2
Bpi(s) =1+ s —p; Uil = s_p:ypiypi""/i‘/i = [Upi Vi}{s—opi I:||:VZJH:|
(6.13)

and we see that all singular values of B,;(z) are equal to 1, except for one which is
|z + pil/|z — pi] > 1 (since z and p; are both in the RHP). Thus all singular values of
B, '(z) are 1 or larger, so By(z)~" is greater than or equal to 1 in all directions and hence
c1 > 1. The proof of ca; issimilar. a

Lower bound on ||S]|c and ||T’||s . From Theorem 6.1 we get by selecting wp (s) = 1 and
wr(s) =1
[|S|loc > max c1j; ||T||eo > max c; (6.14)
Zeros zj poles p;

One RHP-pole and one RHP-zero. For the case with one RHP-zero z and one RHP-pole p
we derive from (6.9)

== fsin? g+ EEEE oo g (6.15)

|z —p|?
where ¢ = cos™ |y y,| is the angle between the output directions of the pole and zero.
We then get that if the pole and zero are aigned in the same direction such that y. = y,
and ¢ = 0, then (6.15) simplifies to give the SISO-conditions in (5.16) and (5.18) with
1 = ¢z = 22 > 1. Conversdly, if the pole and zero are orthogonal to each other, then
¢ = 90° and c; = c» = 1 and there is no additiona penalty for having both a RHP-pole and
a RHP-zero.

Proof of (6.15):From (6.9) c1 = |lyY B, ' (z)||>. From (6.13) the projection of . in the
direction of the largest singular value of B, ! (z) has magnitude |z + p|/|z — p| cos¢, and
the projection onto the remaining subspace is 1 - sin ¢, and (6.15) follows. A weaker version
of this result was first proved by Boyd and Desoer (1985). An aternative proof of (6.15) is
given by Chen (1995) who presents a slightly improved bound (but his additional factor Q(z)
israther difficult to evaluate). a
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Later in this chapter we discuss the implications of these results and provide some examples.

6.3 Functional controllability

Consider a plant G(s) with [ outputs and let r denote the normal rank of G(s). In order to
control all outputs independently we must require r = [, that is, the plant must be functionally
controllable. This term was introduced by Rosenbrock (1970, p. 70) for square systems, and
related concepts are “right invertibility” and “output realizability”. We will use the following
definition:

Definition 6.1 Functional controllability. Anm-input-output systend7(s) is functionally
controllable if the normal rank of#(s), denotedr, is equal to the number of outputs £ [),
that is, ifG(s) has full row rank. A system is functionally uncontrollable i .

The normal rank of G(s) isthe rank of G(s) at al values of s except at a finite number of
singularities (which are the zeros of G(s)).

Remark 1 The only example of a SISO system which is functionally uncontrollable is the
system G(s) = 0. A sguare MIMO system is functional uncontrollable if and only if
det G(s) = 0,Vs.

Remark 2 A plant is functionally uncontrollable if and only if o;(G(jw)) = 0,Vw. Asa
measure of how close aplant isto being functionally uncontrollable we may therefore consider
a1(G(jw)), which for the interesting case when there is at least as many inputs as outputs,
m > [, isthe minimum singular vaue, o(G(jw)).

Remark 3 In most cases functional uncontrollability is a structural property of the system,
that is, it does not depend on specific parameter values, and it may often be evaluated from
cause-and-effect graphs. A typical example of this is when none of the inputs u; affect a
particular output y; which would be the case if one of the rowsin G(s) was identically zero.
Another example is when there are fewer inputs than outputs.

Remark 4 For strictly proper systems, G(s) = C(sI — A)~'B, we have that G(s) is
functionally uncontrollabléf rank(B) < [ (the system isinput deficient), or if rank(C) < [
(the system is output deficient), or if rank(sI — A) < [ (fewer states than outputs). This
follows since the rank of a product of matrices is less than or equal to the minimum rank of
theindividual matrices, see (A.35).

If the plant is not functionally controllable, i.e. » < [, then there are I — r output directions,
denoted yo, which cannot be affected. These directions will vary with frequency, and we have
(analogous to the concept of a zero direction)

Yo (jw)G(jw) =0 (6.16)

From an SVD of G(jw) = USVH, the uncontrollable output directiong (jw) are the last
[—r columnsof U(jw). By analyzing these directions, an engineer can then decide on whether
it is acceptable to keep certain output combinations uncontrolled, or if additional actuators are
needed to increase the rank of G(s).
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Example 6.1 The following plant is singular and thus not functionally controllable

1 2
G(S) — |:s-%-l Sjl_l :|
s+2 stz
This is easily seen since colurrof G(s) is two times columi. The uncontrollable output
directions at low and high frequencies are, respectively

w0 =5 1] wiee) =22 [ 2]

6.4 Limitationsimposed by time delays

Time delays pose limitations also in MIMO systems. Specifically, let 8;; denote the time delay
in the 45'th element of G(s). Then alower bound on the time delay for output 7 is given by
the smallest delay in row i of G(s), that is,

min .
07" = minf;;

This bound is obvious since 6™ js the minimum time for any input to affect output 7, and
6;"'" can be regarded as a delay pinned to output 4.

Holt and Morari (1985a) have derived additional bounds, but their usefulness is sometimes
limited since they assume adecoupled:losed-loop response (which isusually not desirablein
terms of overall performance) and also assume infinite power in the inputs.

For MIMO systems we have the surprising result that an increased time delay may sometimes
improve the achievable performance. As asimple example, consider the plant

G(s) = {e}es ” 6.17)

With § = 0, the plant is singular (not functionally controllable), and controlling the two
outputs independently is clearly impossible. On the other hand, for 8 > 0, effective feedback
control is possible, provided the bandwidth islarger than about 1/6. That is, for this example,
control iseasier the larger 6 is. In words, the presence of the delay decouples theinitia (high-
frequency) response, so we can obtain tight control if the controller reacts within this initial
time period. To illustrate this, we may compute the magnitude of the RGA (or the condition
number) of G as a function of frequency, and note that it is infinite at low frequencies, but
dropsto 1 at about frequency 1/6.

Exercise 6.1 To further illustrate the above arguments, compute the sensitivity funstion
for the plant (6.17) using a simple diagonal controll&f = f[. Use the approximation

e %" ~ 1 — fs to show that at low frequencies the elementsS¢§) are of magnitude
1/(k6 +2). How large musk be to have acceptable performance (less than 10% offset at low
frequencies)? What is the corresponding bandwidth? (Answer: Need /6. Bandwidth is
equal tok.)
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Remark 1 The observant reader may have noticed that G(s) in (6.17) issingular at s = 0
(even with 6 non-zero) and thus has a zero at s = 0. Therefore, a controller with integral
action which cancels this zero, yields an internally unstable system, (e.g. the transfer function
K S contains an integrator). This means that although the conclusion that the time delay helps
is correct, the derivations given in Exercise 6.1 are not strictly correct. To “fix” the resultswe
may assume that the plant is only going to be controlled over alimited time so that internal
instability is not an issue. Alternatively, we may assume, for example, that e~?° is replaced
by 0.99e ~%* so that the plant is not singular at steady-state (but it is close to singular).

Exercise 6.2 Repeat Exercise 6.1 numerically, with’* replaced by0.99(1 — )" /(1 +
%s)" (wheren = 5 is the order of the Paglapproximation), and plot the elementsSifjw)
as functions of frequency fér=0.1/6, k = 1/6 andk = 8/6.

6.5 Limitationsimposed by RHP-zeros

RHP-zeros are common in many practical multivariable problems. The limitationsthey impose
are similar to those for SISO systems, although often not quite so serious as they only apply
in particular directions.

For ideal ISE optimal control (the “cheap” LQR problem), the SISO result ISE = 2/z from
Section 5.4 can be generalized, see Qiu and Davison (1993). They show for a MIMO plant
with RHP-zeros at z; that the ideal |SE-value (the “cheap” LQR cost function) for a step
disturbance or reference is directly related to 3. 2/z;. Thus, as for SISO systems, RHP-
zeros close to the origin imply poor control performance.

The limitations of a RHP-zero located at z may also be derived from the bound
[wpS(s)llee = max |wp (jw)|a(S(jw)) = [wr ()] (6.18)

in (6.10) where wp(s) is a scalar weight. All the results derived in Section 5.6.4 for SISO
systems, therefore generalize if we consider the “worst” direction corresponding to the
maximum singular value, 7(.S). For instance, by selecting the weight wp (s) such that we
require tight control at low frequencies and a peak for (S lessthan 2, we derive from (5.34)
that the bandwidth (in the “worst” direction) must for a real RHP-zero satisfy wp < z/2.
Alternatively, if we require tight control at high frequencies, then we must from (5.38) satisfy
wp > 2z.

Remark 1 The use of ascalar weight wp(s) in (6.18) is somewhat restrictive. However, the
assumption is less restrictive if one follows the scaling procedure in Section 1.4 and scales
all outputs by their allowed variations such that their magnitudes are of approximately equal
importance.

Remark 2 Note that condition (6.18) involves the maximum singular vaue (which is
associated with the “worst” direction), and therefore the RHP-zero may not be a limitation
in other directions. Furthermore, we may to some extent choose the worst direction. Thisis
discussed next.
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6.5.1 Movingthe effect of a RHP-zero to a specific output

In MIMO systems one can often move the deteriorating effect of a RHP-zero to a given
output, which may be less important to control well. This is possible because, athough the
interpolation constraint 4 T'(z) = 0 imposes a certain relationship between the elements
within each column of T'(s), the columns of T'(s) may still be selected independently. Let us
first consider an example to motivate the results that follow. Most of the results in this section
are from Holt and Morari (1985b) where further extensions can also be found.

Example 3.8 continued. Consider the plant

1 1 1
G = 0 DG T D) {1 +2s 2}

which has a RHP-zero at = z = 0.5. This is the same plant considered on page 85 where
we performed som#l., controller designs. The output zero direction satisfif<(z) = 0
and we find
_ 1727 _7To0s89
Y= = ﬁ{q] = {—0.45}
Any allowableT'(s) must satisfy the interpolation constraipf T'(z) = 0 in (6.4), and this
imposes the following relationships between the column elememnts bf

2t11(2) —_ tzl(z) = 0; 2t12(z) - tgg(z) =0 (619)

We will consider reference tracking = T'r and examine three possible choices Tar T
diagonal (a decoupled desigr}; with outputl perfectly controlled, and’ with output2
perfectly controlled. Of course, we cannot achieve perfect control in practice, but we make
the assumption to simplify our argument. In all three cases, we require perfect tracking at
steady-state, i.d'(0) = I.

A decoupled design hads;(s) = t21(s) = 0, and to satisfy (6.19) we then ne&d(z) = 0
andt»»(z) = 0, so the RHP-zero must be contained in both diagonal elements. One possible
choice, which also satisfi&s(0) = I, is

—s+z 0
To(s) = { 6 otz ] (6.20)
s+z

For the two designs with one output perfectly controlled we choose

1 0 —stz fas
Ti(s) = | prs  —sxe | Te(s) =1 *F7 °7
sS4z sS4z

The basis for the last two selections is as follows. For the output which is not perfectly
controlled, the diagonal element must have a RHP-zero to satisfy (6.19), and the off-diagonal
element must have anterm in the numerator to giv&(0) = 1. To satisfy (6.19), we must
then require for the two designs

Br=4, B2=1
The RHP-zero has no effect on outgufor design7i(s), and no effect on output for
designT>(s). We therefore see that it is indeed possible to move the effect of the RHP-zero
to a particular output. However, we must pay for this by having to accept some interaction.
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We note that the magnitude of the interaction, as expresse. bis largest for the case
where outputl is perfectly controlled. This is reasonable since the zero output direction
y. = [0.89 —0.45]T is mainly in the direction of output, so we have to “pay more”

to push its effect to outp@t This was also observed in the controller designs in Section 3.5,
see Figure 3.10 on page 86.

We see from the above example that by requiring a decoupled response from r to y, as
in design To(s) in (6.20), we have to accept that the multivariable RHP-zero appears as a
RHP-zero in each of the diagonal elements of T'(s), i.e., whereas G(s) has one RHP-zero at
s = z, To(s) hastwo. In other words, requiring a decoupled response generally leads to the
introduction of additional RHP-zerosin T'(s) which are not present in the plant G(s).

We also see that we can move the effect of the RHP-zero to a particular output, but we then
have to accept some interaction. Thisis stated more exactly in the following Theorem.

Theorem 6.2 Assume thati(s) is square, functionally controllable and stable and has a
single RHP-zero at = z and no RHP-pole at = z. Then if thek'th element of the output
zero direction is non-zero, i.g., # 0, itis possible to obtain “perfect” control on all outputs

j # k with the remaining output exhibiting no steady-state offset. Specifi@algan be
chosen of the form

r1 0 0 0 0 0 7
0 1 0 0 0 0
T(S) = | B1s Ba2s Brk—15 —st+z Br+1S . Pns (6.21)
s+z s+z s+z s+z s+z s+z
L 0 0 0 0 0 1 |
where
L Yzj :
Bi=—-2L forj £k (6.22)
Yk

Proof: It is clear that (6.21) satisfies the interpolation constraint 7 T'(z) = 0; see also Holt
and Morari (1985h). a

The effect of moving completely the effect of a RHP-zero to output & is quantified by (6.22).
We see that if the zero is not “naturally” aligned with this output, i.e. if |y.x| is much smaller
than 1, then the interactions will be significant, in terms of yielding some 3; = —2y.; /y.&
much larger than 1 in magnitude. In particular, we cannotmove the effect of a RHP-zero to an
output corresponding to azero element in y., which occurs frequently if we have a RHP-zero
pinned to a subset of the outputs.

Exercise 6.3 Consider the plant

G(s):{ ¢ 1] 6.23)
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(a) Find the zero and its output direction. (Answer= ﬁ —landy, =[-a 1]7).

(b) Which values of yield a RHP-zero, and which of these values is best/worst in terms of
achievable performance? (Answer: We have a RHP-zer@fox. 1. Best fora = 0 with zero

at infinity; if control at steady-state is required then worst foe= 1 with zero ats = 0.)

(c) Supposex = 0.1. Which output is the most difficult to control? Illustrate your conclusion
using Theorem 6.2. (Answer: Outpitis the most difficult since the zero is mainly in that
direction; we get strong interaction with = 20 if we want to controly, perfectly.)

Exercise 6.4 Repeat the above exercise for the plant

G(S)=SJ1r1 (o 1 292 Sia} (6.24)

6.6 Limitationsimposed by unstable (RHP) poles

For unstable plants we needfeedback for stabilization. More precicely, the presence of an

ustable pole p requires for interna stability | T'(p)y, = yp |, Where y, is the output pole
direction. Asfor SISO systems this imposes the following two limitations:

RHP-pole Limitation 1 (input usage). Thetransfer function K'S from plant outputsto plant
inputs must satisfy for any RHP-pole p (Havre and Skogestad, 1997)(Havre and
Skogestad, 2001)

IEKS|ls0 > [luy Gs(p) |2 (6.25)

where u,, is the input pole direction, and G, is the “stable version” of G with its
RHP-poles mirrored into the LHP, see (6.7). This bound is tight in the sense that there
always exists a controller (possibly improper) which achives the bound. (6.25) directly
generalises the bound (5.42) for SISO systems.

RHP-pole Limitation 2 (bandwidth). From the bound ||wr(s)T(s)|lc > |wr(p)| in
(6.11) we find that a RHP-pole p imposes restrictions on a(7") which are identica to
those derived on |T'| for SISO systemsin Section 5.8. Thus, we need to react sufficiently
fast and we must require that (7' (jw)) is about 1 or larger up to the frequency 2|p|,
approximately.

Example 6.2 Consider the following multivariable plai,

8—z _0.1s+1
G(s):[ 5P 5=Pp }, with z=-2.5 and p=2 (6.26)
AFEE) 1

The plantG has a RHP-pole = 2 (plus a LHP-zero at -2.5 which poses no limitation). The
corresponding input and output pole directions are

[ 0.966 N
Up =1 _0.258 |0 Yr= o
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The RHP-polg can be factorized a&'(s) = B, ' (G)G(s) where

s=p g s+2.5  0.ls+1
B,(G) = {s#{;p 1} and G(s) = [ S0 Sl+p }
0.1s4+1

Consider input usage in terms &fS. From (6.25) we must have that

= 0.859

2

1
_ 1.125 —-0.3
RS > 1 Gt = (006 0285120 0]

Havre (1998) presents more details including state-space realizations for controllers that
achieve the bound.

6.7 RHP-poles combined with RHP-zeros

For SISO systems we found that performance is poor if the plant has a RHP-pole located close
to a RHP-zero. Thisis aso the case in MIMO systems provided that the directions coincide.
This was quantified in Theorem 6.1. For example, for aMIMO plant with single RHP-zero z
and single RHP-pole p we derive from (6.15) and (6.14)

|z + p|
|z — pl

j cos? ¢ (6.27)

[Sllee 2 ¢ NITllec 2 ¢; = \/sin2</’>+

where ¢ = cos™* |y y,| isthe angle between the RHP-zero and RHP-pole. We next consider
an example which demonstrates the importance of the directions as expressed by the angle ¢.

Example 6.3 Consider the plant

L 0 . s—z 0
_ s—p cosax —Ssino 0.1s+1 . — —
Ga(s) - |: 0 Sip |:Sina cos a :| 0 Oleerl 3 zZ = 2,p =3 (628)
.18
Ua

which has for all values ok a RHP-zero at = 2 and a RHP-pole ap = 3.
For a = 0° the rotation matrixU, = I, and the plant consists of two decoupled subsystems

s—z 0
GO(S) = |: (0-1S+[1))(3—P) stz :|
(0.1s+1)(s+p)

Here the subsystem; has both a RHP-pole and a RHP-zero, and closed-loop performance
is expected to be poor. On the other hand, there are no particular control problems related to
the subsystenp,. Next, considery = 90° for which we have

-~ 0 s+z
Uy = |:[1) 01:|7 and  Goo(s) = |: . (0.1s+(1))(s—p) :|
" (0.1s+1)(s+p)
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and we again have two decoupled subsystems, but this time in the off-diagonal elements. The
main difference, however, is that there is no interaction between the RHP-pole and RHP-zero
in this case, so we expect this plant to be easier to control. For intermediate valaesetio

not have decoupled subsystems, and there will be some interaction between the RHP-pole and
RHP-zero.

Since in (6.28) the RHP-pole is located at the output of the plant, its output direction is fixed
and we findy, = [1 0]T for all values ofa. On the other hand, the RHP-zero output
direction changes from1 0]7 for « = 0° to [0 1]¥ for « = 90°. Thus, the angle
between the pole and zero direction also varies betw®eand 90°, but ¢ and o are not
equal. This is seen from the follwoing Table below, where we alsoging6.27), for four
rotation anglesp = 0°,30°,60° and90°:

| lo' | 0° | 30° | 60° | 90° |
1 0.33 0.11 0
Y= 0 —0.94 ~0.99 1
o= cos™! |yZHyp| 0° 70.9° 83.4° 90°
c 5.0 1.89 1.15 1.0
[1Sl0o 7.00 2.60 1.59 1.98
17|00 7.40 2.76 1.60 1.31
'y(S/KS) 9.55 3.53 2.01 1.59
¢ =0°
2
1
0 Tt -
-1 It
-2 -2
0 1 2 3 4 5 0 1 2 3 4 5
Time Time
¢ = 83.4° ¢ = 90°
2 2
1 1[\
of T of "\
-1 - -1 \\\*~—7 ,,,,,,,,,,,
-2 -2
0 1 2 3 4 5 0 1 2 3 4 5
Time Time

Figure 6.1: MIMO plant with angle ¢ between RHP-pole and RHP-zero. Response to step
in reference r = [1 — 1]7 with H, controller for four different values of ¢. Solid line: yi;
Dashed line: ys.

The Table also shows the values||df||.. and ||T'||- obtained by arf{., optimal S/K S
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design using the following weights
W.=1, Wp= (@) I M =2,uj5 =05 (6.29)

The weightVp indicates that we requirgS||- less tharg, and require tight control up to a
frequency of abouty = 0.5rad/s. The minimunt{., norm for the overallS/K S problem

is given by the value of in Table 6.3. The corresponding responses to a step change in the
referencer = [1 —1], are shown in Figure 6.1.

Several things about the example are worth noting:

1. We see from the simulation for= « = 0° in Figure 6.1 that the response fgi is very
poor. This is as expected because of the closeness of the RHP-pole and=ze2oy = 3).

2. For¢ = a = 90° the RHP-pole and RHP-zero do not interact. From the simulation we see
thaty; (solid line) has on overshoot due to the RHP-pole, wheggddashed line) has an
inverse response due to the RHP-zero.

3. The bounds in (6.27) are tight since there is only one RHP-zero and one RHP-pole. This
can be confirmed numerically by selectifig, = 0.017, wy = 0.0l and M = 1 (W,
andwp are small so the main objective is to minimize the peak)oMWe find with these
weights that thé., designs for the four angles yielb||.. = 5.04,1.905,1.155,1.005,
which are very close te.

4. The anglep between the pole and zero, is quite different from the rotation angte
intermediate values betweéh and90°. This is because of the influence of the RHP-pole
in output1, which yields a strong gain in this direction, and thus tends to push the zero
direction towards outpu?.

5. Fora = 0° we havec = 5 50||S||sc > 5 and||T||« > 5 and it is clearly impossible to
get||S||~ less thare, as required by the performance weighi.

6. The# ., optimal controller is unstable forr = 0° and 30°. This is not altogether
surprising, because fax = 0° the plant becomes two SISO systems one of which needs an
unstable controller to stabilize it singe> z (see Section 5.9).

Exercise 6.5 Consider the plant in (6.26), but with= 2.5 so that the plant now also has a
RHP-zero. Compute the lower bounds|{#1|o. and || K S||oo-

In conclusion, pole and zero directions provide useful information about a plant, as does the
values of ¢ in (6.27). However, the output pole and zero directions do depend on the relative
scaling of the outputs, which must therefore be done appropriately prior to any anaysis.

6.8 Performancerequirementsimposed by
disturbances
For SISO systems we found that large and “fast” disturbances require tight control and alarge

bandwidth. The same results apply to MIMO systems, but again the issue of directions is
important.
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Definition 6.2 Disturbance direction. Consider a single (scalar) disturbance and let the
vectorgy represent its effect on the outpuis+£ gqd), The disturbance direction is defined as

1
Yo = ——gd (6.30)
llgall2

The associated disturbance condition number is defined as

74(G) = 7(G) 7(G'ya) (6.31)
Here G' isthe pseudo-inverse which is G~ for anon-singular G.

Remark. We here use g, (rather than G ;) to show that we consider a single disturbance, i.e.
ga isavector. For aplant with many disturbances g4 isacolumn of the matrix G.

The disturbance condition number provides a measure of how a disturbance is aligned with
the plant. It may vary between 1 (for y; = u) if the disturbanceisin the“good” direction, and
the condition number 4(G) = &(G)a(G") (for y4 = w) if itisinthe “bad” direction. Here @
and v arethe output directionsin which the plant hasitslargest and smallest gain; see Chapter
3.

In the following, let » = 0 and assume that the disturbance has been scaled such that at each
frequency the worst-case disturbance may be selected as |d(w)| = 1. Also assume that the
outputs have been scaled such that the performance objective is that at each frequency the
2-norm of the error should belessthan 1, i.e. ||e(w)|]2 < 1. With feedback control e = Sgqd
and the performance objective is then satisfied if

ISgallz = 3(Sga) <1Vw <= [|Sgalle <1 (6.32)

For SISO systems, we used this to derive tight bounds on the sensitivity function and the loop
gain; |S| < 1/|Gq| and |1 + L| > |Gq4|. A similar derivation is complicated for MIMO
systems because of directions. To see this, we can use (6.30) to get the following requirement,
which is equivalent to (6.32),

1Syall> < 1/[lgall2 Ve (6.33)

which shows that the S must be less than 1/||gq4||> only in the direction of y4. We can also
derive bounds in terms of the singular values of S. Since g, is a vector we have from (3.42)

a(9)llgallz < |Sgall> < a(S)llgall2 (6:34)
Now o(S) =1/6(I + L) anda(S) = 1/a(I + L), and we therefore have:

o For acceptable performance (|| Sgq||2 < 1) we must at leastrequire that (I + L) islarger
than ||g«||2 and we mayhave to require that o (I + L) islarger than ||gq]|2-

Plant with RHP-zero. If G(s) hasaRHP-zero at s = z then the performance may be poor if
the disturbance is aigned with the output direction of this zero. To see thisuse y S(z) = y*
and apply the maximum modulus principleto f(s) = y SG to get

Sgalloe > ly2" 9a(2)] = ly="yal - llga(2)|l2 (6:35)
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To satisfy ||Sgalls < 1, we must then for agiven disturbance d at least require

vt ga(2)| < 1 (6.36)

where y. is the direction of the RHP-zero. This provides a generalization of the SISO-
condition |G4(z)| < 1 in (5.53). For combined disturbances the condition is ||y Ga(2)|]» <
1.

Remark. In the above development we consider at each frequency performance in terms of
lell= (the 2-norm). However, the scaling procedure presented in Section 1.4 leads naturally
to the vector max-norm as the way to measure signals and performance. Fortunately, this
difference is not too important, and we will neglect it in the following. The reason is that for
anm x 1 vector a we have [|a|lmax < [lallz < /M ||a|lmax (See (A.94)), so the values of
max- and 2-norms are at most a factor \/m apart.

Example 6.4 Consider the following plant and disturbance models

1 [s-1 4 6 {k

G(S): s+2]| 45 2(s —1) |” gd(s): s+2]1

}, k<1  (6.37)

It is assumed that the disturbance and outputs have been appropriately scaled, and the
question is whether the plant is input-output controllable, i.e. whether we can achieve
|Sgalls= < 1, for any value ofk| < 1. G(s) has a RHP-zera = 4 and in Example 4.11 on

page 134 we have already computed the zero direction. From this we get

lyZ ga(z)| = |[0.83 —0.55] - m| = 10.83k — 0.55|

and from (6.36) we conclude that the planhdt input-output controllable if0.83k — 0.55| >

1, i.e.ifk < —0.54. We cannot really conclude that the plastcontrollable fork > —0.54

since (6.36) is only a necessary (and not sufficient) condition for acceptable performance, and
there may also be other factors that determine controllability, such as input constraints which
are discussed next.

Exercise. Show that the disturbance condition number may be interpreted as the ratio between
the actual input for disturbance rejection and the input that would be needed if the same
disturbance was aligned with the “best” plant direction.

6.9 Limitationsimposed by input constraints

Constraints on the manipulated variables can limit the ability to reject disturbances and track
references. As was done for SISO plants in Chapter 5, we will consider the case of perfect
control (¢ = 0) and then of acceptable control (|le|| < 1). We derive the results for
disturbances, and the corresponding results for reference tracking are obtained by replacing
G4 by —R. Theresultsin this section apply to both feedback and feedforward control.
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Remark. For MIMO systems the choice of vector norm, || - ||, to measure the vector signa
magnitudes at each frequency makes some difference. The vector max-norm (largest element)
is the most natural choice when considering input saturation and is also the most natural in
terms of our scaling procedure. However, for mathematical convenience we will also consider
the vector 2-norm (Euclidean norm). In most cases the difference between these two normsis
of little practical significance.

6.9.1 Inputsfor perfect control

We here consider the question: can the disturbances be rejected perfectly while maintaining
[lul]| < 1? To answer this, we must quantify the set of possible disturbances and the set of
alowed input signals. We will consider both the max-norm and 2-norm.

Max-norm and sguare plant. For a square plant the input needed for perfect disturbance
rejection isu = —G~'Gqd (as for SISO systems). Consider a single disturbancegy is a
vector). Then the worst-case disturbance is |d(w)| = 1, and we get that input saturation is
avoided (||u]|max < 1) if al elementsin the vector G~ g4 are less than 1 in magnitude, that
is,

1G™" gallmax < 1,Vw

For simultaneous disturbancgé&; isamatrix) the corresponding requirement is
G Gallico < 1,Vw (6.39)

where || - ||ieo isthe induced max-norm (induced co-norm, maximum row sum, see (A.105)).
However, it is usually recommended in a preliminary analysisto consider one disturbance at a
time, for example, by plotting as afunction of frequency the individual elements of the matrix
G~'G4. Thisyields more information about which particular input is most likely to saturate
and which disturbance is the most problematic.

Two-norm. We here measure both the disturbance and the input in terms of the 2-norm.
Assume that G has full row rank so that the outputs can be perfectly controlled. Then the
smallest inputs (in terms of the 2-norm) needed for perfect disturbance rejection are

w=—G'Gyd (6.39)

where G = G (GG~ isthe pseudo-inverse from (A.63). Then with asingle disturbance
we must require ||G* g4 ||z < 1. With combined disturbances we must require 5(GTGy) < 1,
that is, the induced 2-norm isless than 1, see (A.106).

For combined reference changeg§(w)|l < 1, the corresponding condition for perfect
control with ||ul|> < 1 becomesa(G'R) < 1, or equivalently (see (A.61))

o(R7'G) > 1, Yw < wr (6.40)

where w, is the frequency up to which reference tracking is reguired. Usually R is diagonal
with all elements larger than 1, and we must at least require

o(G(jw)) > 1,Vw < w, (6.41)

or, more generally, we want ¢ (G (jw)) large.
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6.9.2 Inputsfor acceptable control

Let r = 0 and consider the response e = Gu + Gqd to adisturbance d. The question we want
to answer in this subsection is: isit possible to achieve ||e|| < 1 for any ||d|| < 1 using inputs
with [|u|| < 1? We use here the max-norm, || - ||max (the vector infinity-norm), for the vector
signals.

We consider this problem frequency-by-frequency. This means that we neglect the issue
of causality which is important for plants with RHP-zeros and time delays. The resulting
conditions are therefore only necessary (i.e. minimum requirements) for achieving ||e||max <
1.

Exact conditions

Mathematically, the problem can be formulated in severa different ways, by considering
the maximum allowed disturbance, the minimum achievable control error or the minimum
required input; e.g. see Skogestad and Wolff (1992). We here use the latter approach. To
simplify the problem, and also to provide more insight, we consider one disturbance at atime,
i.e. d isascalar and g4 avector. The worst-case disturbance is then |d| = 1 and the problem
is at each frequency isto compute

Umin 2 min ||u||max such that ||Gu 4 gad|lmax < 1, |d| = 1 (6.42)

A necessary condition for avoiding input saturation (for each disturbance) isthen
Unin < 1,Vw (643)
If G and g4 arereal (i.e. at steady-state) then (6.42) can be formulated asalinear programming

(LP) problem, and in the general case as a convex optimization problem.

For SISO systems we have an analytical solution of (6.42); from the proof of (5.59) we
get Umin = (Jga| — 1)/|G|. A necessary condition for avoiding input saturation (for each
disturbance) is then

‘ SISO : |G| > |ga| — 1, at frequencies where |gq| > 1 ‘ (6.44)

We would like to generalize this result to MIMO systems. Unfortunately, we do not have an
exact analytical result, but by making the approximation in (6.46) below, a nice approximate
generdlization (6.47) is available.

Approximate conditionsin termsof the SVD

At each frequency the singular value decomposition of the plant (possibly non-square) is
G = UV Introduce the rotated control error and rotated input

e=U"%, u=Vv"u (6.45)
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and assume that the max-norm is approximately unchanged by these rotations
€l max = llellmaxs  [|@]lmax = [|t]lmax (6.46)

From (A.124) this would be an equality for the 2-norm, so from (A.94) the error by using the
approximation for the max-norm is at most a factor /m where m is the number of elements
in the vector. We then find that each singular value of G, o; (G), must approximately satisfy

MIMO :  0:(G) > |ui’ ga| — 1, at frequencies where |u/ g4 > 1 (6.47)

where u; isthe’th output singular vector of GG, and g, iS a vector since we consider asingle
disturbance. More precisely, (6.47) is a necessary condition for achieving acceptable control
(llellmax < 1) for asingle disturbance (|d| = 1) with [Ju|lmax < 1, assuming that (6.46)
holds.

Condition (6.47) provides a nice generalization of (6.44). v g, may be interpreted as the
projection of g, onto the 7’ th output singular vector of the plant.

Proof of (6.47):Let r = 0 and consider the response e = Gu + gqd to asingle disturbance d.
We have
e=U"e=U"(Gu+ god) = L0 + U" g4d (6.48)

wherethe last equality followssince U G = XV ¥ . For the worst-case disturbance (|d| = 1),
we want to find the smallest possible input such that ||e||max = ||€]|max iSl€ssthan 1. This
is equivalent to requiring |é;| < 1, Vi, where from (6.48) é; = ¢:(G)t; + U gad. Note: u;
(avector) isthe’'th column of U, whereas u; (ascalar) isthe 'th rotated plant input. Thisis
ascalar problem similar to that for the SISO-case in (5.59), and if we assume |ul” ggad| > 1
(otherwise we may simply set u; = 0 and achieve |e;| < 1) then the smallest |u;| is achieved
when theright hand side is “lined up” to make |¢;| = 1. Thus, the minimum input is

i) = (Jui” gal = 1)/0:(@) (6.49)

and (6.47) follows by requiring that ||u||max = ||%]|max iSlessthan 1. O

Based on (6.47) we can find out:

1. For which disturbances and at which frequencies input constraints may cause problems.
This may give ideas on which disturbances should be reduced, for example by redesign.

2. In which direction i the plant gain is too small. By looking at the corresponding input
singular vector, v;, one can determine which actuators should be redesigned (to get more
power in certain directions) and by looking at the corresponding output singular vector, v;,
one can determine on which outputs we may have to reduce our performance requirements.

Several disturbances. For combined disturbances, one requires the i’ th row sum of U2G,to
be less than o, (G) (at frequencies where the 7’th row sum is larger than 1). However, usualy
we derive more insight by considering one disturbance at atime.

Reference commands. Asusual, similar results are derived for references by replacing G4 by
—R.
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Example 6.5 Digtillation process Consider a2 x 2 plant with two disturbances. The
appropriately scaled steady-state model is

_ 87.8 —86.4 _[788 881
G_0'5[108.2 7109.6}’ Ga = {11.72 11.19} (6.50)

This is a model of a distillation column with product compositions as outputs, reflux and boilup
as inputs, and feed rate{% change) and feed compositio20¢6 change) as disturbances.
The elements G are scaled by a factod.5 compared to (3.45) because the allowed input
changes are a factdt smaller. From an SVD off we haves (G) = 98.6 andg(G) = 0.70.
Some immediate observations:

1. The elements of the matii¥; are larger thanl so control is needed to reject disturbances.

2. Sinceo(G) = 0.7 we are able to perfectly track reference changes of magnifut€in
terms of the 2-norm) without reaching input constraints.

3. The elements iGF are about5 times larger than those i%;, which suggests that there
should be no problems with input constraints. On the other hat@) = 0.7 is much less
than the elements iG'4, SO input constraints may be an issue after all.

4. The disturbance condition numbetg(G), for the two disturbances, arel.75 and1.48,
respectively. This indicates that the direction of disturbahée less favourable than that
of disturbance2.

5. The condition numbey(G) = 6(G)/a(G) = 141.7 is large, but this doesot by itself
imply control problems. In this case, the large value of the condition number is not caused
by a smalle(G) (which would be a problem), but rather by a largéG).

We will now analyze whether the disturbance rejection requirements will cause input
saturation by considering separately the two cases of perfect conmtrsl §) and acceptable
control (|e||max < 1).

1. Perfect control. The inputs needed for perfect disturbance rejectionare G~ G4 where

—1,~ _ [-1.09 —0.009
G Ga=|_199 _0213
We note that perfect rejection of disturbane= 1 requires an inputs = [—1.09 —1.29]7

which is larger thanl in magnitude. Thus, perfect control of disturbaricés not possible
without violating input constraints. However, perfect rejection of disturbatéice= 1 is
possible as it requires a much smaller input [—0.009 —0.213]7.

2. Approximate result for acceptable control. We will use the approximate requirement
(6.47) to evaluate the inputs needed for acceptable control. We have

Uiq, — [ 14-08 14.24 o1(G) = 98.6
d .17 0.11 02(G) = 0.70

and the magnitude of each element in it row of U7 G4 should be less tham; (G) + 1
to avoid input constraints. In the high-gain direction this is easily satisfied sidd@ and
14.24 are both much less thasm (G) + 1 = 99.6, and from (6.49) the required input in this
direction is thus only abouliz;| = (14 — 1)/98.6 = 0.13 for both disturbances which is
much less thari. The requirement is also satisfied in the low-gain direction sihd¢& and
0.11 are both less thaw,(G) + 1 = 1.7, but we note that the margin is relatively small
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for disturbancel. More precisely, in the low-gain direction disturbanteequires an input
magnitude of approximatelyiz| = (1.17 — 1)/0.7 = 0.24, whereas disturbanc requires
no control (as its effect i8.11 which is less than).

In conclusion, we find thahe results based on perfect control are misleading, as acceptable

control is indeed possible. Again we find disturbatide be more difficult, but the difference
is much smaller than with perfect control. The reason is that we only need to rejectE86ut
(1.13 — 1/1.13) of disturbancel in the low-gain direction.

However, this changes drastically if disturbantés larger, since then a much larger fraction
of it must be rejected. The fact that disturbaride more difficult is confirmed in Section 10.10
on page 455 where we also present closed-loop responses.

3. Exact numerical result for acceptable control. The exact values of the minimum inputs
needed to achieve acceptable control §1€|m.. = 0.098 for disturbancel and ||u||max =
0.095 for disturbance2, which confirms that input saturation is not a problem.

However, the values ofu|lmax = 0.10 indicate that the two disturbances are about
equally difficult. This seems inconsistent with the above approximate results, where we found
disturbancel to be more difficult. However, the results are consistent if for both disturbances
control is only needed in the high-gain direction, for which the approximate results gave the
same value di.13 for both disturbances. (The approximate results indicated that some control
was needed for disturbanckein the low-gain direction, sincd.17 was just abovel, but
apparently this is inaccurate).

Thediscussion at the end of the exampleillustrates an advantage of the approximate analytical
method in (6.47); namely that we can easily see whether we are close to a borderline value
where control may be needed in some direction. On the other hand, no such “warning” is
provided by the exact numerical method.

From the example we conclude that it is difficult to judge, simply by looking at the magnitude
of theelementsin G4, whether adisturbance is difficult to reject or not. In the above example,
it would appear from the column vectors of G in (6.50) that the two disturbances have almost
identical effects. However, we found that disturbance 1 may be much more difficult to reject
because it has a component of 1.17 in the low-gain direction of G which is about 10 times
larger than the value of 0.11 for disturbance 2. This can be seen from the second row of
UG,

Exercise 6.6 Consider again the plant in (6.37). L& = 1 and compute, as a function

of frequency, the required inputs™'g,(jw) for perfect control. You will find that both
inputs are about in magnitude at low frequency, so if the inputs and disturbances have
been appropriately scaled, we conclude that perfect control is not possible. Next, evaluate
G(jw) = UV, and computd/™ g4(jw) as a function of frequency and compare with the
elements oE(jw) + I to see whether “acceptable controlld; (jw)| < 1) is possible.

6.9.3 Unstable plant and input constraints

Active use of inputs are needed to stabilize and unstable plant and from (6.25) we must
require K S||s > |lu} Gs(p) ' |2 where K S isthe transfer function from outputs to inputs,
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u = —KS(Gqad + n). If the required inputs exceed the constraints then stabilization is most
likely not possible.

6.10 Limitationsimposed by uncertainty

The presence of uncertainty requires the use of feedback, rather than simply feedforward
control, to get acceptable performance. Sensitivity reduction with respect to uncertainty is
achieved with high-gain feedback, but for any real system we have acrossover frequency range
where the loop gain has to drop below 1, and the presence of uncertainty in this frequency
range may result in poor performance or even instability. These issues are the same for SISO
and MIMO systems.

However, with MIMO systems there is an additional problem in that there is also uncertainty
associated with the plant directionality. The main objective of this section isto introduce some
simple tools, like the RGA and the condition number, which are useful in picking out plants
for which one might expect sensitivity to directional uncertainty.

Remark. In Chapter 8, we discuss more exact methods for analyzing performance with almost
any kind of uncertainty and a given controller. This involves analyzing robust performance by
use of the structured singular value. However, in this section the treatment is kept at a more
elementary level and we are looking for results which depend on the plant only.

6.10.1 Input and output uncertainty

In practice the difference between the true perturbed plant G' and the plant model G is caused
by a number of different sources. In this section, we focus on input uncertainty and output
uncertainty. In amultiplicative (relative) form, the output and input uncertainties (asin Figure
6.2) are given by

Output uncertainty: G' =(I+Eo)G o Eo=(G -GG (651
Input uncertainty: G =G(I+E;) o E=GYG&-G) (652

These forms of uncertainty may seem similar, but we will show that their implications for
control may be very different. If all the elements in the matrices E; or Ep are non-zero,
then we have full block (“unstructured”) uncertainty. However, in many cases the source of
uncertainty is in the individual input or output channels, and we have that E; or Eo are
diagonal matrices, for example,

E] = diag{el,EQ,...} (653)

where ¢; isthe relative uncertainty in input channel 4. Typically, the magnitude of ¢; is0.1 or
larger. It is important to stress that this diagonal input uncertaintys alwayspresent in real
systems.
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Figure 6.2: Plant with multiplicative input and output uncertainty

6.10.2 Effect of uncertainty on feedforward control

Consider a feedforward controller w = K, r for the case with no disturbances (d = 0). We
assume that the plant G isinvertible so that we can select

K.=G!

and achieve perfectcontrol, e = y —r = Gu—r = GK,r —r = 0, for the nominal case with
no uncertainty. However, for the actual plant G’ (with uncertainty) the actual control error
becomese’ =y —r = G'G~*r — r. We then get for the two sources of uncertainty

Output uncertainty: e = Eor (6.54)
Input uncertainty: ¢ = GEG 'r (6.55)

For output uncertainty, we see that (6.54) isidentical to the result in (5.70) for SISO systems.
That is, the worst-case relative control error ||e'||2/||r||2 is equa to the magnitude of the
relative output uncertainty & (Eo ). However, for input uncertainty the sensitivity may be much
larger because the elements in the matrix GE;G™~! can be much larger than the elements in
E;. In particular, for diagonal input uncertainty the elements of GE; G~ are directly related
to the RGA, see (A.80):

Diagonal input uncertainty: [GE/G™'], = Z)\ij(G)ﬁj (6.56)
j=1

The RGA-matrix is scaling independent, which makes the use of condition (6.56) attractive.
Since diagonal input uncertainty is alwayspresent we can conclude that

¢ if the plant has large RGA elements within the frequency range where effective control is
desired, then it is not possible to achieve good reference tracking with feedforward control
because of strong sensitivity to diagonal input uncertainty.

The reverse statement is not true, that is, if the RGA has small elements we cannotconclude
that the sensitivity to input uncertainty is small. Thisis seen from the following expression for
the2 x 2 case

Al1€r + Ai2€2 —‘g;—;/\n(ﬁl —€2)

%/\11(61 —€2) A21€1 + A22€n

GE;G™' = (6.57)
For example, consider a triangular plant with g1 = 0. In thiscase the RGA isA = I s0
the diagonal elements of GE;G ! are e; and e». Still, the system may be sensitive to input
uncertainty, since from (6.57) the 2, 1-element of GE;G~* may be largeif g»1/g11 islarge.
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6.10.3 Uncertainty and the benefits of feedback

To illustrate the benefits of feedback control in reducing the sensitivity to uncertainty, we
consider the effect of output uncertainty on reference tracking. As a basis for comparison we
first consider feedforward control.

Feedforward control. Let the nominal transfer function with feedforward control bey = T,.r
where T, = GK, and K, denotes the feedforward controller. Idealy, T, = I. With model
error Ty = G' K., and the change in responseisy’ — y = (T, — T}.)r where

T, —T, = (G' —G)G™'T» = EoT, (6.58)

Thus,y' —y = EoT,r = Eoy, and with feedforward control the relative control error caused
by the uncertainty is equal to the relative output uncertainty.

Feedback control. With one degree-of-freedom feedback control the nominal transfer
function isy = Tr where T = L(I + L)™' is the complementary sensitivity function.
Ideally, T = I. The change in response with model error isy’ — y = (T — T')r where from
(A.144)

T —T=SEoT (6.59)

Thus, v —y = S"EoTr = S’ Eoy, and we see that

o with feedback control the effect of the uncertainty is reduced by a factor S’ compared to
that with feedforward control.

Thus, feedback control is much less sensitive to uncertainty than feedforward control at
frequencies where feedback is effective and the elements in S’ are small. However, the
opposite may be true in the crossover frequency range where S’ may have elements larger
than 1; see Section 6.10.4.

Remark 1 For square plants, Eo = (G’ — G)G~* and (6.59) becomes
AT - T™' =58 AG-G™! (6.60)

where AT = T' —T and AG = G’ — G. Equation (6.60) provides ageneralization of Bode's
differential relationship (2.23) for SISO systems. To see this, consider a SISO system and let
AG — 0.Then 8" — S and we have from (6.60)

dT dG

2= —g— .61

T S e (6.61)
Remark 2 Alternative expressions showing the benefits of feedback control are derived by
introducing the inverse output multiplicative uncertainty G' = (I — Eio) ™' G. We then get
(Horowitz and Shaked, 1975).

Feedforward control: T, — T, = EioT, (6.62)
Feedback control: T —T = SE;oT' (6.63)

(Simple proof for sguare plants: switch G and G’ in (6.58) and (6.59) and use E;o =
(G- @)G™h).
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Remark 3 Another form of (6.59) is (Zames, 1981)
T -T=5(L-L)S (6.64)

Conclusion. From (6.59), (6.63) and (6.64) we see that with feedback control 7/ — T is small
at frequencies where feedback is effective (i.e. S and S are small). This is usualy at low
frequencies. At higher frequencies we have for real systems that L is small, so T is small,
and again T' — T issmall. Thus with feedback, uncertainty only has a significant effect in the
crossover region where .S and T both have norms around 1.

6.10.4 Uncertainty and the sensitivity peak

We demonstrated above how feedback may reduce the effect of uncertainty, but we also
pointed out that uncertainty may pose limitations on achievable performance, especially at
crossover frequencies. The objective in the following is to investigate how the magnitude of
the senditivity, 7 (S"), is affected by the multiplicative output uncertainty and input uncertainty
given as (6.51) and (6.52). We will derive upper bound®n &(.S') which involve the plant and
controller condition humbers

_ o(@) _ oK)
and the following minimized condition numbers of the plant and the controller
71(G) = min ¥(GDr),  75(K) = min y(DoK) (6.66)
Dy Do

where D; and Do are diagonal scaling matrices. These minimized condition numbers may
be computed using (A.74) and (A.75). Similarly, we state a lower boundon &(S') for an
inverse-based controller in terms of the RGA-matrix of the plant.

The following factorizations of S’ in terms of the nominal sensitivity S (see Appendix A.6)
form the basis for the development:

Output uncertainty: S'=S(I+EoT)™! (6.67)

Input uncertainty: S =S(I+GEG™'T)"' =SG(I + ETr)"'G™" (6.68)

S'=T+TK'E;K)™'S=K '(I+T:/E;)""KS (6.69)

We assume that G and G’ are stable. We al so assume closed-loop stability, so that both S and

S’ are stable. We then get that (I + EoT) ™" and (I + E;T;)~" are stable. In most cases we

assume that the magnitude of the multiplicative (relative) uncertainty at each frequency can be
bounded in terms of its singular value

o(Er) < |wi|,  &(Eo) < |wol (6.70)

where wr (s) and wo (s) are scalar weights. Typically the uncertainty bound, |wr| or |wol, is
0.2 at low frequencies and exceeds 1 at higher frequencies.

We first state some upper bounds on 7(.S"). These are based on identities (6.67)-(6.69) and
singular value inequalities (see Appendix A.3.4) of thekind

o((I+ ErTr)~)

_ 1 1 1 1
= sOFETD S 1T S T S e BT
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Of course these inequalities only apply if we assume 6(ErTr) < 1, a(Er)a(Tr) < 1 and
|wr|a(Tr) < 1. For simplicity, we will not state these assumptions each time.

Upper bound on 5(S") for output uncertainty

From (6.67) we derive
_ ! _ _ -1 5’(5)
a(S") < a(S)a((I+EoT)™ ") < T Twolo@)

From (6.71) we see that output uncertainty, be it diagonal or full block, poses no particular
problem when performance is measured at the plant output. That is, if we have a reasonable
margin to stability (||( + EoT) || iS not too much larger than 1), then the nominal and
perturbed sensitivities do not differ very much.

(6.71)

Upper boundson &(S’) for input uncertainty

The sensitivity function can be much more sensitive to input uncertainty than output
uncertainty.

1. General case (full block or diagonal input uncertainty and any controller). From (6.68) and
(6.69) we derive

5(5) < AOHFU +ET) ) < 1O (672
o(5) < ARSI +TENT) < (K {rls (67

From (6.73) we have the important result that if we use a “round” controller, meaning that
~v(K) is close to 1, then the sensitivity function is not sensitive to input uncertainty. In
many cases (6.72) and (6.73) are not very useful because they yield unnecessarily large upper
bounds. To improve on this conservativeness we present below some bounds for special cases,
where we either restrict the uncertainty to be diagonal or restrict the controller to be of a
particular form.

2. Diagonal uncertainty and decoupling controller. Consider a decoupling controller in the
form K (s) = D(s)G ™" (s) where D(s) isadiagona matrix. Inthis case, KG isdiagonal so
Tr = KG(I + KG)~ " isdiagonal, and E; T isdiagonal. The second identity in (6.68) may
then be written S' = S(GD;)(I + ErT:)"(GDr)™* where Dy is freely chosen, and we
get

o(8) <7 @IS+ BTN ) i (O ks (679
#(S') <5 (K)a(S)a((I+ TiEr) ) < va(K)% (6.75)

The bounds (6.74) and (6.75) apply to any decoupling controller in the foom K = DG,
In particular, they apply to inverse-based control, D = I(s)I, which yields input-output

decoupling with Ty = T =t - I wheret = 4.
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Remark. A diagonal controller has v (K) = 1, so from (6.77) below we see that (6.75)
applies to both a diagonal and decoupling controller. Another bound which does apply to any
controller isgivenin (6.77).

3. Diagonal uncertainty (Any controller). From the first identity in (6.68) we get S’ =
S(I + (GDr)Er(GDr)™'T) ™! and we derive by singular value inequalities
a(S)
1 =77 (@)|wr|a(T)
a(5)
1 =75 (K)|wr|e(T)

(6.76)

(6.77)

Notethat v5, (K) = 1 for adiagonal controller so (6.77) shows that diagonal uncertainty does
not pose much of a problem when we use decentralized control.

L ower bound on (S”) for input uncertainty

Above we derived upper bounds on 5 (S"); we will next derive alower bound. A lower bound
is more useful because it allows us to make definite conclusions about when the plant is not
input-output controllable.

Theorem 6.3 Input uncertainty and inver se-based control. Consider a controllerk (s) =
1(s)G~(s) which results in a nominally decoupled response with sensitfity s - T and
complementary sensitivif = ¢ - I wheret(s) = 1 — s(s). Suppose the plant has diagonal
input uncertainty of relative magnitudevr (jw)| in each input channel. Then there exists a
combination of input uncertainties such that at each frequency

|wit|

5’(5,) > 5’(5) (1+ m

IIA(G)IIioo> (6.78)
where||A(G)||i is the maximum row sum of the RGA an@b) = |s|.

The proof is given below. From (6.78) we see that with an inverse based controller the worst
case sengitivity will be much larger than the nominal at frequencies where the plant has large
RGA-elements. At frequencies where contral is effective (|s| issmall and |¢| = 1) thisimplies
that control is not as good as expected, but it may still be acceptable. However, at crossover
frequencies where |s| and |t| = |1 — s| are both close to 1, we find that 7(5') in (6.78)
may become much larger than 1 if the plant has large RGA-elements at these frequencies.
The bound (6.78) applies to diagonal input uncertainty and therefore aso to full-block input
uncertainty (sinceit isalower bound).

Wor st-case uncertainty. It is useful to know which combinations of input errors give poor
performance. For an inverse-based controller agood indicator resultsif we consider GE;G ™1,
where E; = diag{ex}. If al €, have the same magnitude |w;|, then the largest possible
magnitude of any diagonal element in GE;G ™! isgiven by |wr| - ||A(G)||ic - TO Obtain this
value one may select the phase of each ¢, such that Ze, = —Z\;;, where ¢ denotes the row
of A(G) with the largest elements. Also, if A(G) isreal (e.g. at steady-state), the signs of the
ex’s should be the same as those in the row of A(G) with the largest elements.
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Proof of Theorem 6.3(From Skogestad and Havre (1996) and Gjasader (1995)). Write the
sengitivity function as
S =IT+GK)'=SG(I+ET;) G, Er = diag{ex}, S =sI (6.79)
N—_————
D
Since D is adiagonal matrix, we have from (6.56) that the diagonal elements of S’ are given
in terms of the RGA of the plant G as

! = 1 —1\T
- indy: = : A= .
sii =5y Ardr;  di T G x (G™) (6.80)
(Note that s here is a scalar sensitivity function and not the Laplace variable.) The singular
value of amatrix islarger than any of its elements, so 5(S’) > max; |sj;|, and the objective
in the following is to choose a combination of input errors ¢, such that the worst-case |s};| is
as large as possible. Consider a given output ¢ and write each term in the sum in (6.80) as
Aik Aikter

Aindy = = Aijp — DikPCR 6.81
ROk = Y Y ter T 1 Y ter (6.81)

We choose dl €, to have the same magnitude |w; (jw)|, S0 we have ey, (jw) = |wy|e? <+ . We
aso assume that [te,| < 1 at al frequencies®, such that the phase of 1 + te;, lies between
—90° and 90°. It isthen always possible to select Ze;, (the phase of ¢ ) such that the last term
in (6.81) isreal and negative, and we have at each frequency, with these choices for ¢,

Sii _ i,\, de — 1+Z |Aik] - [ter]
s kR |1+ tex|
|Aik] - Jwrt] |wrt|
> 1 = i 6.82
= +Z 1+ |wrt| 1+|wIt|ZI d (682)

where the first equality makes use of the fact that the row-elements of the RGA sum to 1,
(3"r—i Air = 1). Theinequality follows since |ex| = |wr| and |1 + tex| < 1+ |tex| =
1 + |wrt|. This derivation holds for any 7 (but only for one at atime), and (6.78) follows by
selecting ¢ to maximize >~} _, |Aix| (the maximum row-sum of the RGA of G). O

We next consider three examples. In the first two, we consider feedforward and
feedback control of a plant with large RGA-elements. In the third, we consider
feedback control of a plant with a large condition number, but with small RGA-
elements. Thefirst two are sensitive to diagonal input uncertainty, whereas the third
is not.

Example 6.6 Feedforward control of digtillation process. Consider the distillation
process in (3.81).

1 87.8 —86.4 [ 351 —341
G(S)_755+1{108.2 —109.6]’ A(G)_{—34.1 35.1} (6:83)

3 The assumption [te;| < 1 isnot included in the theorem since it is actually needed for robust stability,
soif it does not hold we may have & (.5") infinite for some allowed uncertainty, and (6.78) clearly holds.
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With E; = diag{e1, €2} we get for all frequencies

~1_ [35.1er =341y —27.7e1 +27.7€
GE/G™" = |:43.2€1 —43.2e5 —34.1e1 + 35.162:| (6.84)

We note as expected from (6.57) that the RGA-elements appear on the diagonal elements in
the matrixGE;G~*. The elements in the matri®E; G~ " are largest wher; ande; have
opposite signs. With20% error in each input channel we may select= 0.2 ande; = —0.2

and find

~1_ [13.8 —11.1
GE/G _{17.2 —13.8} (6.:85)

Thus with an “ideal” feedforward controller an@0% input uncertainty, we get from (6.55)

that the relative tracking error at all frequencies, including steady-state, may eXx€@ééo.

This demonstrates the need for feedback control. However, applying feedback control is also
difficult for this plant as seen in Example 6.7.

Example 6.7 Feedback control of distillation process. Consider again the distillation
processG(s) in (6.83) for which we havffA(G(jw))|lico = 69.1 and~(G) = 77 (G) ~
141.7 at all frequencies.

1. Inverse based feedback controller. Consider the controllerK'(s) = (0.7/s)G™'(s)
corresponding to the nominal sensitivity function

S(s) =

s
s+ 0.7

The nominal response is excellent, but we found from simulations in Figure 3.12 that the
closed-loop response wi#9% input gain uncertainty was extremely poor (we usgee: 0.2

ande, = —0.2). The poor response is easily explained from the lower RGA-bourd 81

in (6.78). With the inverse-based controller we hdi® = k/s which has a nominal phase
margin of PM= 90° so from (2.42) we have, at frequeney, that |s(jw.)| = |t(jw.)| =

1/+/2 = 0.707. With|wr| = 0.2, we then get from (6.78) that

0.707-0.2 - 69.1

— !y o R > .
(S (jwe)) > 0.707 (1 + 114

> =0.707-9.56 = 6.76 (6.86)
(This is close to the peak value in (6.78)6081 at frequency0.79 rad/min.) Thus, we have
that with 20% input uncertainty we may haye’ || > 6.81 and this explains the observed
poor closed-loop performance. For comparison, the actual worst-case peak vai(e of
with the inverse-based controller is 14.5 (computed numerically using skewasdliscussed
below). This is close to the value obtained with the uncertaiity = diag{ei,e2} =

diag{0.2, —0.2},
0.7 1.2 -
. . -1
(1+ ?G{ O.S}G )

for which the peak occurs @& 69 rad/min. The difference between the valGesl and14.5
illustrates that the bound in terms of the RGA is generally not tight, but it is nevertheless very
useful.

15" l|oo :‘ —14.2
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Next, we look at the upper bounds. Unfortunately, in this cgg€&’) = 75 (K) ~ 141.7,
so the upper bounds an($") in (6.74) and (6.75) are not very tight (they are of magnitude
141.7 at high frequencies).

2. Diagonal (decentralized) feedback controller. Consider the controller

Kaiag(s) = M{é 01}, ky = 2.4-10 2 [min ']
s _
The peak value for the upper bound 61(S') in (6.77) is1.26, so we are guaranteed
ISl < 1.26, even with20% gain uncerainty. For comparison, the actual peak in the
perturbed sensitivity function with; = diag{0.2, —0.2} is |||l = 1.05. Of course, the
problem with the simple diagonal controller is that (although it is robust) even the nominal
response is poor.

Thefollowing example demonstrates that alarge plant condition number, y(G), does
not necessarily imply sensitivity to uncertainty even with an inverse-based controller.

Example 6.8 Feedback control of distillation process, DV-model. In this example we
consider the following distillation model given bkdgestad et al. (1988) (it is the same system
as studied above but with the DV- rather than the LV-configuration for the lower control levels,
see Example 10.5):

_ 1 878 1.4 _ [0.448 0.552
G_755+1{—108.2 _1.4}7 A(G)—{Q552 0.448} (6.87)

We have thaf|A(G(jw))|lie = 1, v(G) =~ 70.76 and~;(G) ~ 1.11 at all frequencies.
Since both the RGA-elements amf{G) are small we do not expect problems with input
uncertainty and an inverse based controller. Consider an inverse-based confi@llds) =
(0.7/5)G~*(s) which yieldsy(K) = v(G) and~5(K) = ~;(G). In Figure 6.3, we show

the lower bound (6.78) given in terms|pk||;cc and the two upper bounds (6.74) and (6.76)
given in terms ofy; (G) for two different uncertainty weights;. From these curves we see
that the bounds are close, and we conclude that the plant in (6.87) is robust against input
uncertainty even with a decoupling controller.

Remark. Relationship with the structured singular value: skewed-u. To analyze exactly
the worst-case sensitivity with agiven uncertainty |wr | we may compute skewed-z (1°). With
reference to Section 8.11, this involves computing px (IV) with A = diag(As, Ap) and
N = U)]T[ ’LU[KS
SG/p* S/p
given frequency isthen a(S') = u® (V).

and varying p° until u(N) = 1. The worst-case performance at a

Example 6.9 Consider the plant
1 100
G(s) = {0 0 }

for which at all frequencies\(G) = I, v(G) = 10*, y*(G) = 1.00 andv; (G) = 200.
The RGA-matrix is the identity, but singe:/g11 = 100 we expect from (6.57) that this
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2 2 Ui
8 8
2 2 L
B i 7 .
=1 i =1

107 10° 10" 10° 107 10° 10" 10°

Frequency [rad/min] Frequency [rad/min]
(@ wi(s) =0.21 (b) Wr(s) =0.2 0?;;5:1 I

Figure 6.3: Bounds on the sensitivity function for the distillation column with the DV
configuration: lower bound L, from (6.78), upper bounds U from (6.76) and U from (6.74)

plant will be sensitive to diagonal input uncertainty if we use inverse-based feedback control,
K = gG‘l. This is confirmed if we compute the worst-case sensitivity fundiofor

G’ = G(I + w;Ar) whereA; is diagonal andw;| = 0.2. We find by computing skewegg-
1®(N1), that the peak of (S') is ||.S'||ec = 20.43.

Note that the peak is independent of the controller gaimthis case sincé&(s) is a constant

matrix. Also note that with full-block (“unstructured”) input uncertaintx{ is a full matrix)
the worst-case sensitivity |55’ ||c = 1021.7

Conclusions on input uncertainty and feedback control

Thefollowing statements apply to the frequency range around crossover. By “small’,
we mean about 2 or smaller. By “large” we mean about 10 or larger.

1. Condition number (G) or y(K) small: robust performanceto both diagonal and
full-block input uncertainty; see (6.72) and (6.73).

2. Minimized condition humbers v (G) or v5(K) small: robust performance to
diagonal input uncertainty; see (6.76) and (6.77). Note that a diagonal controller
awayshas~} (K) = 1.

3. RGA(G) has large elements: inverse-based controller is not robust to diagonal
input uncertainty; see (6.78). Since diagonal input uncertainty is unavoidable in
practice, the rule is never to use a decoupling controller for a plant with large
RGA-elements. Furthermore, a diagonal controller will most likely yield poor
nominal performance for a plant with large RGA-elements, so we conclude that
plants with large RGA-elements are fundamentally difficult to control

4. v;7(G) islarge while at the same time the RGA has small elements: cannot make
any definite conclusion about the sensitivity to input uncertainty based on the
boundsin this section. However, as found in Example 6.9 we may expect thereto
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be problems.

6.10.5 Element-by-element uncertainty

Consider any complex matrix G and let \;; denote the ij’'th element in the
RGA-matrix of G. The following result holds (Yu and Luyben, 1987; Hovd and
Skogestad, 1992):

Theorem 6.4 The (complex) matrixG becomes singular if we make a relative
change—1/X;; in its ij-th element, that is, if a single element@his perturbed
from gi; t0 gpi; = gi;(1 — ﬁ)

The theorem is proved in Appendix A.4. Thus, the RGA-matrix is a direct measure

of sensitivity to element-by-element uncertai nty and matrices with large RGA-values
become singular for small relative errorsin the elements.

Example 6.10 The matrixG in (6.83) is non-singular. Thé, 2-element of the RGA is
A12(G) = —34.1. Thus, the matrixG becomes singular 1> = —86.4 is perturbed to

gp12 = —86.4(1 — 1/(—34.1)) = —88.9 (6.88)

The above result is an important algebraic property of the RGA, but it also has
important implications for improved control:

1) ldentification. Models of multivariable plants, G(s), are often obtained by
identifying one element at a time, for example, using step responses. From
Theorem 6.4 it is clear that this simple identification procedure will most likely give
meaningless results (e.g. the wrong sign of the steady-state RGA) if there are large
RGA-elements within the bandwidth where the model is intended to be used.

2) RHP-zeros. Consider a plant with transfer function matrix G (s). If the relative
uncertainty in an element at a given frequency is larger than |1/ ;;(jw)| then the
plant may be singular at this frequency, implying that the uncertainty allows for a
RHP-zero on the jw-axis. Thisis of course detrimental to performanceboth in terms
of feedforward and feedback control.

Remark. Theorem 6.4 seems to “prove” that plants with large RGA-elements are
fundamentally difficult to control. However, although the statement may be true (see the
conclusions on page 243), we cannot draw this conclusion from Theorem 6.4. Thisis because
the assumption of element-by-element uncertainty is often unrealistic from aphysical point of
view, since the elements are usually coupledin some way. For example, thisisthe case for the
distillation column process where we know that the elements are coupled due to an underlying
physical constraint in such away that the model (6.83) never becomes singular even for large
changes in the transfer function matrix elements.
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6.10.6 Steady-state condition for integral control

Feedback control reduces the sensitivity to model uncertainty at frequencies where
the loop gains are large. With integral action in the controller we can achieve zero
steady-state control error, even with large model errors, provided the sign of the
plant, as expressed by det G(0), does not change. The statement applies for stable
plants, or more generally for cases where the number of unstable polesin the plant
does not change. The conditions are stated more exactly in the following theorem.

Theorem 6.5 Let the number of open-loop unstable poles (excluding poles-a)

of G(s)K(s) andG'(s)K (s) be P and P’, respectively. Assume that the controller
K is such that? K has integral action in all channels, and that the transfer functions
GK andG'K are strictly proper. Then if

<0 for P — P'even, including zero

>0 for P — P odd (6.89)

det G'(0)/ det G(0) {

at least one of the following instabilities will occur: a) The negative feedback closed-
loop system with loop gai&' K is unstable. b) The negative feedback closed-loop
system with loop gait’' K is unstable.

Proof: For stability of both (I + GK)™! and (I + G'K)~! we have from Lemma A.5
in Appendix A.6.3 that det(I + EoT'(s)) needs to encircle the origin P — P’ times as s
traverses the Nyquist D-contour. Here 7'(0) = I because of the requirement for integral
action in al channels of GK. Also, since GK and G' K are strictly proper, EoT is strictly
proper, and hence Eo (s)T(s) — 0 ass — oo. Thus, the map of det(I + EoT(s)) starts at
det G’ (0)/ det G(0) (for s = 0) and ends at 1 (for s = co). A more careful analysis of the
Nyaquist plot of det(I + EoT'(s)) reveals that the number of encirclements of the origin will
be even for det G'(0)/ det G(0) > 0, and odd for det G'(0)/ det G(0) < 0. Thus, if this
parity (odd or even) does not match that of P — P’ we will get instability, and the theorem
follows. m|

Example 6.11 Suppose the true model of a plant is given@®gs), and that by careful
identification we obtain a modé¥ (s),

1 87.8 —86.4 Gi(s) = 1 87 —88
T 75s+1[108.2 —109.6 |’ W)= 755 £1[109 —108

At first glance, the identified model seems very good, but it is actually useless for control
purposes sincéet G1(0) has the wrong signdet G(0) = —274.4 and det G1(0) = 196

(also the RGA-elements have the wrong sign;itheelement in the RGA is-47.9 instead

of +35.1). From Theorem 6.5 we then get that any controller with integral action designed
based on the modé¥;, will yield instability when applied to the plai.
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6.11 MIMO Input-output controllability

We now summarize the main findings of this chapter in an analysis procedure for
input-output controllability of a MIMO plant. The presence of directionsin MIMO
systems makesit more difficult to give a precise description of the procedurein terms
of aset of rules aswas donein the SISO case.

6.11.1 Controllability analysis procedure

The following procedure assumes that we have made a decision on the plant inputs
and plant outputs (manipulations and measurements), and we want to analyze the
model G to find out what control performance can be expected.

The procedure can also be used to assist in control structure design (the selection
of inputs, outputs and control configuration), but it must then be repeated for each
G corresponding to each candidate set of inputs and outputs. In some cases the
number of possibilities is so large that such an approach becomes prohibitive. In
this case some pre-screening is required, for example, based on physical insight or by
analyzingthe“large’ model, G .11, with al the candidate inputs and outputsincluded.
Thisis briefly discussed in Section 10.4.

A typical MIMO controllability analysis may proceed as follows:

1. Scaleall variables (inputs u, outputs ¥, disturbances d, references, r) to obtain a
scaled model, y = G(s)u + G4(s)d, r = RT; see Section 1.4.

2. Obtain aminimal realization.

3. Check functional controllability. To be able to control the outputs independently,
we first need at least as many inputs u as outputs y. Second, we need the rank of
G(s) to be equal to the number of outputs, /, i.e. the minimum singular value of
G(jw), a(G) = 0;(G), should be non-zero (except at possible jw-axis zeros). If
the plant is not functionally controllable then compute the output direction where
the plant has no gain, see (6.16), to obtain insight into the source of the problem.

4. Computethe poles. For RHP (unstable) poles obtain their locations and associated
directions; see (6.5). “Fast” RHP-poles far from the origin are bad.

5. Compute the zeros. For RHP-zeros obtain their locations and associated
directions. Look for zeros pinned into certain outputs. “Small” RHP-zeros (close
to the origin) are bad if tight performance at low frequenciesis desired.

6. Obtain the frequency response G(jw) and compute the RGA matrix, A = G x
(GHT. Plants with large RGA-elements at crossover frequencies are difficult to
control and should be avoided. For more details about the use of the RGA see
Section 3.6, page 87.

7. From now on scaling is critical. Compute the singular values of G(jw) and plot
them as a function of frequency. Also consider the associated input and output
singular vectors.
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8.

10.

11.

12.

13.

14.

The minimum singular value, o(G(jw)), is a particularly useful controllability
measure. It should generally be as large as possible at frequencies where control

is needed. If ¢(G(jw)) < 1 then we cannot at frequency w make independent
output changes of unit magnitude by using inputs of unit magnitude.

For disturbances, consider the elements of the matrix G 4. At frequencies where
one or more elementsis larger than 1, we need control. We get more information
by considering one disturbance at atime (the columns g 4 of G ;). We must require
for each disturbancethat S islessthan1/]|g4||» inthedisturbancedirectiony 4, i.e.
1Syall2 < 1/|gall2; see (6.33). Thus, we must at least require g (S) < 1/|gal|:
and we may haveto requirea(S) < 1/|gql|2; see (6.34).

Remark. If feedforward control is aready used, then one may instead analyze @d(s) =
GK4Gnma + Gq where K; denotes the feedforward controller, see (5.78).

Disturbances and input saturation:

First step. Consider the input magnitudes needed for perfect control by
computing the elements in the matrix G1G,. If al eements are less than
1 at al frequencies then input saturation is not expected to be a problem. If
some elements of GG ; arelarger than 1, then perfect control (e = 0) cannot
be achieved at this frequency, but “acceptable” control (|le||2 < 1) may be
possible, and this may be tested in the second step.

Second stepCheck condition (6.47), that is, consider the elementsof U # G ; and
make sure that the elementsin the i’th row are smaller than o ;(G) + 1, at all
frequencies.

Are the requirements compatible? Look at disturbances, RHP-poles and RHP-
zeros and their associated locations and directions. For example, we must require
for each disturbance and each RHP-zero that |y g4(2)] < 1; see (6.35). For
combined RHP-zeros and RHP-poles see (6.10) and (6.11).

Uncertainty. If the condition number v(G) is small then we expect no particular
problems with uncertainty. If the RGA-elements are large, we expect strong
sensitivity to uncertainty. For a more detailed analysis see the conclusion on
page 243.

If decentralized control (diagona controller) is of interest see the summary on
page 453.

The use of the condition number and RGA are summarized separately in
Section 3.6, page 87.

A controllability analysis may also be used to obtain initial performance weights
for controller design. After a controller design one may analyze the controller by
plotting, for example, its elements, singular values, RGA and condition number as a
function of frequency.
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6.11.2 Plant design changes

If aplant is not input-output controllable, then it must somehow be modified. Some
possible modifications are listed below.

Controlled outputs. Identify the output(s) which cannot be controlled satisfactorily.
Can the specifications for these be relaxed?

Manipulated inputs. If input constraints are encountered then consider replacing
or moving actuators. For example, this could mean replacing a control valve with a
larger one, or moving it closer to the controlled output.

If there are RHP-zeros which cause control problems then the zeros may often be
eliminated by adding another input (possibly resulting in a non-square plant). This
may not be possibleif the zero is pinned to a particular output.

Extra Measurements. If the effect of disturbances, or uncertainty, is large, and
the dynamics of the plant are such that acceptable control cannot be achieved, then
consider adding “fast local loops’ based on extra measurements which are located
closeto the inputs and disturbances; see Section 10.8.3 and the exampl e on page 207.

Disturbances. If the effect of disturbances is too large, then see whether the
disturbance itself may be reduced. This may involve adding extra equipment to
dampen the disturbances, such as a buffer tank in a chemical process or a spring
in a mechanical system. In other cases this may involve improving or changing
the control of another part of the system, e.g. we may have a disturbance which
is actually the manipulated input for another part of the system.

Plant dynamics and time delays. In most cases, controllability is improved by
making the plant dynamics faster and by reducing time delays. An exception to this
is a strongly interactive plant, where an increased dynamic lag or time delay, may
be helpful if it somehow “delays’ the effect of the interactions; see (6.17). Another
more obvious exception is for feedforward control of a measured disturbance, where
adelay for the disturbance’s effect on the outputs is an advantage.

Example 6.12 Removing zeros by adding inputs. Consider a stabl@ x 2 plant

GI(S):ﬁ{STI 5;3}

which has a RHP-zero at = 1 which limits achievable performance. The zero is not pinned
to a particular output, so it will most likely disappear if we add a third manipulated input.
Suppose the new plant is

_ 1 s+1 s+3 s+6
G2 = g1 T3S

which indeed has no zeros. It is interesting to note that each of the 2hre@ sub-plants of
G2(s) has a RHP-zero (located at= 1, s = 1.5 and s = 3, respectively).
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Remark. Adding outputs. It has also been argued that it is possible to remove multivariable
zeros by adding extra outputs. To some extent this is correct. For example, it is well-known
that there are no zerosif we use al the states as outputs, see Example 4.13. However, to control
all the statesindependently we need as many inputs asthere are states. Thus, by adding outputs
to remove the zeros, we generally get a plant which is not functionally controllable, so it does
not really help.

6.11.3 Additional exercises

The reader will be better prepared for some of these exercises following an initial
reading of Chapter 10 on decentralized control. In all casesthe variables are assumed
to be scaled as outlined in Section 1.4.

Exercise 6.7 Analyze input-output controllability for

1 0 011 1 1
— 01s+
G = 5100 [ o401 1}

Compute the zeros and poles, plot the RGA as a function of frequency, etc.

Exercise 6.8 Analyze input-output controllability for

(): 1 {Ts+1+o¢ « }
(rs+1)(rs+ 1+ 2a) a Ts+1+a

wherer = 100; consider two cases: (&} = 20, and (b)a = 2.

Remark. This is a simple “two-mixing-tank” model of a heat exchanger whete [%n } ,

y= Thout | anda is the number of heat transfer units.
T20ut

Exercise 6.9 Let

_[-10 o0 o~ _J10 111 5 _TJ0 0
A= Ll m=re=[ W ]o= [0

(a) Perform a controllability analysis af(s).

(b) Letz = Az + Bu + d and consider a unit disturbaneé= [z1 z2]”. Which direction
(value ofz1 /z2) gives a disturbance that is most difficult to reject (consider both RHP-zeros
and input saturation)?

(c) Discuss decentralized control of the plant. How would you pair the variables?

Exercise 6.10 Consider the following two plants. Do you expect any control problems?
Could decentralized or inverse-based control be used? What pairing would you use for
decentralized control?

1 s—1 s
Gal8) = 1350 ¥ (s 1 20) { —42 s - 20}



250 MULTIVARIABLE FEEDBACK CONTROL

1 1 0.1(s—1
Go(s) = (s> +0.1) [10(5 +0.1)/s (s +( 0-1)/)5}

Exercise 6.11 Order the following three plants in terms of their expected ease of
controllability

_ [100 95 _ [100e=¢ 95¢=* _ [100 95¢=*
Gils) = {100 100}’6'2(5)_{ 100 100 ]’G3(s)_ {100 100 }

Remember to also consider the sensitivity to input gain uncertainty.

Exercise 6.12 Analyze input-output controllability for

5000s 2(—5s+1)
G(s) = (50003+§)(23+1) 100s+1
5s+1 5s+1

Exercise 6.13 Analyze input-output controllability for

10 1

100 102 5
Gls) = {100 100]7 gar(s) = [ ﬁ)l}; gaz = [Sfl ]
s+1 +

8

—-

—-

Which disturbance is the worst?

Exercise 6.14 (a) Analyze input-output controllability for the following three plants each of
which has2 inputs andl output: G(s) = (g1(s) g2(s))

M 91(s) = g2(s) = 3.

@) g1(s) = 553, o2(s) = 5531

(i) g1(5) = 53, 92(s) = &35
(b) Design controllers and perform closed-loop simulations of reference tracking to
complement your analysis. Consider also the input magnitudes.

Exercise 6.15 Find the poles and zeros and analyze input-output controllability for
_ e+ (1)s) 1/s
Ge)=1"(1)5) " ex1/s

Herec is a constant, e.g: = 1. Remark. A similar model form is encountered for distillation
columns controlled with thé B-configuration. In which case the physical reason for the
model being singular at steady-state is that the sum of the two manipulated inputs is fixed at
steady-stateD + B = F.

Exercise 6.16 Controllability of an FCC process. Consider the following x 3 plant

y1 “ L
{Zi] =G(s) {Zi], fls) = (18.85 + 1)(75.85 + 1)

16.8(920s2 + 32.45 + 1) 30.5(52.1s + 1) 4.30(7.28s + 1)
G(s) = f(s) —16.7(75.55 + 1) 31.0(75.85 +1)(1.58s + 1) —1.41(74.65 + 1)
1.27(—939s + 1) 54.1(57.3s + 1) 5.40
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Acceptable control of thi8 x 3 plant can be achieved with partial control of two outputs with
input3 in manual (not used). That is, we have & 2 control problem. Consider three options
for the controlled outputs:

— |yl v, — |¥2]. — Y1
Yl_{yz}’ e [w}’ e {y2—y3}
In all three cases the inputs are, and u2. Assume that the third input is a disturbance
(d = U3).

(a) Based on the zeros of the thieex 2 plants, G (s), Gz(s) and G3(s), which choice of
outputs do you prefer? Which seems to be the worst?

It may be useful to know that the zero polynomials:

a | 5.75-107s% +3.92-107s° + 3.85 - 10552 +1.22 - 10°s + 1.03 - 103
b 4.44-10%s3 —1.05-10%s2 — 8.61 - 10%s — 9.43 - 102
c | 5.75-107s* — 8.75- 10653 — 5.66 - 10°s2 + 6.35 - 103s + 1.60 - 102

have the following roots:

a | —0.570 | —0.0529 [ —0.0451 | —0.0132
b 0.303 | —0.0532 | —0.0132
c 0.199 | —0.0532 0.0200 | —0.0132
(b) For the preferred choice of outputs in (a) do a more detailed analysis of the expected
control performance (compute poles and zeros, sketchR@dmment on possible problems
with input constraints (assume the inputs and outputs have been properly scaled), discuss the
effect of the disturbance, etc.). What type of controller would you use? What pairing would
you use for decentralized control?

(c) Discuss why th8 x 3 plant may be difficult to control.

Remark. This is actually a model of a fluid catalytic cracking (FCC) reactor where=
(Fs F, k)T represents the circulation, airflow and feed composition, grd (T Tey Trg) ™
represents three temperatureS,;(s) is called the Hicks control structure an@s(s) the
conventional structure. More details are found in Hovd akddgstad (1993).

6.12 Conclusion

We have found that most of the insights into the performance limitations of SISO
systems developed in Chapter 5 carry over to MIMO systems. For RHP-zeros, RHP-
poles and disturbances, the issue of directions usually makes the limitations less
severe for MIMO than for SISO systems. However, the situation is usualy the
oppositewith model uncertainty because for MIMO systemsthereis also uncertainty
associated with plant directionality. This is an issue which is unique to MIMO
systems.

We summarized on page 246 the main steps involved in an analysis of input-output
controllability of MIMO plants.
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7

UNCERTAINTY AND
ROBUSTNESS FOR SISO
SYSTEMS

In this chapter, we show how to represent uncertainty by real or complex perturbations and we
analyze robust stahility (RS) and robust performance (RP) for SISO systems using elementary
methods. Chapter 8 is devoted to a more general treatment.

7.1 Introduction to robustness

A control system is robust if it is insensitive to differences between the actual
system and the model of the system which was used to design the controller. These
differencesare referred to asmodel/plant mismatch or simply model uncertainty. The
key ideain the H ., robust control paradigm we use is to check whether the design
specifications are satisfied even for the “worst-case” uncertainty.

Our approach is then as follows:

1. Determine the uncertainty set: find a mathematical representation of the model
uncertainty (“clarify what we know about what we don’t know”).

2. Check Robust stability (RS): determine whether the system remains stable for all
plantsin the uncertainty set.

3. Check Robust performance (RP): if RS is sdtisfied, determine whether the
performance specifications are met for all plantsin the uncertainty set.

This approach may not always achieve optima performance. In particular, if the
worst-case plant rarely or never occurs, other approaches, such as optimizing some
average performance or using adaptive control, may yield better performance.
Nevertheless, the linear uncertainty descriptions presented in this book are very
useful in many practical situations.
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It should also be appreciated that model uncertainty is not the only concern when
it comes to robustness. Other considerations include sensor and actuator failures,
physical constraints, changes in control objectives, the opening and closing of
loops, etc. Furthermore, if a control design is based on an optimization, then
robustness problems may also be caused by the mathematical objective function not
properly describing the real control problem. Also, the numerical design algorithms
themselves may not be robust. However, when we refer to robustnessin thisbook, we
mean robustness with respect to model uncertainty, and assume that a fixed (linear)
controller is used.

To account for model uncertainty we will assume that the dynamic behaviour of a
plant isdescribed not by asinglelinear timeinvariant model but by aset I1 of possible
linear time invariant models, sometimes denoted the “ uncertainty set”. We adopt the
following notation:

IT — a set of possible perturbed plant models.
G(s) € IT —nomina plant model (with no uncertainty).
G,(s) € Tand G'(s) € II — particular perturbed plant models.

Sometimes G, is used rather than II to denote the uncertainty set, whereas G’ always
refers to a specific uncertain plant. The subscript p stands for perturbedor possible
or IT (pick your choice). This should not be confused with the subscript capital P,
e.g0. inwp, which denotes performance

We will use a*“norm-bounded uncertainty description” where the set I1 is generated
by allowing 7 ., norm-bounded stable perturbationsto the nominal plant G(s). This
corresponds to a continuous description of the model uncertainty, and there will be
an infinite number of possible plants G, in the set I1. We let E denote a perturbation
whichisnot normalized, and let A denote a normalized perturbation with # ., norm
lessthan 1.

Remark. Another strategy for dealing with model uncertainty is to approximate its effect on
the feedback system by adding fictitious disturbances or noise. For example, this is the only
way of handling model uncertainty within the so-called LQG approach to optimal control (see
Chapter 9). Isthis an acceptable strategy? In general, the answer isno. Thisiseasily illustrated
for linear systems where the addition of disturbances does not affect system stability, whereas
model uncertainty combined with feedback may easily create instability.

For example, consider a plant with a nominal model y = Gu + Gqd, and let the perturbed
plant model be G, = G + E where E represents additive model uncertainty. Then the output
of the perturbed plant is

Yy = Gpu + Gdd =Gu+d, +d> (71)

where y is different from what we ideally expect (namely Gu) for two reasons:

1. Uncertainty inthe model (d; = Eu)
2. Signal uncertainty (d2 = Gad)
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In LQG control we set wqg = d1 + d2 where wg isassumed to be an independent variable such
as white noise. Then in the design problem we may make wy large by selecting appropriate
weighting functions, but its presence will never cause instability. However, in reality wq =
Eu + d2, S0 wg depends on the signal « and this may cause instability in the presence of
feedback when u depends on y. Specifically, the closed-loop system (I + (G + E)K)™* may
be unstable for some E # 0. In conclusion, it may be important to explicitly take into account
model uncertainty when studying feedback control.

We will next discuss some sources of model uncertainty and outline how to represent
these mathematically.

7.2 Representing uncertainty

Uncertainty in the plant model may have severa origins:

1. There are always parameters in the linear model which are only known
approximately or are simply in error.

2. The parametersin the linear model may vary due to nonlinearities or changesin
the operating conditions.

3. Measurement devices have imperfections. This may even give rise to uncertainty
on the manipulated inputs, since the actual input is often measured and adjusted
in a cascade manner. For example, thisis often the case with valves where a flow
controller is often used. In other cases limited valve resolution may cause input
uncertainty.

4. At high frequencies even the structure and the model order is unknown, and the
uncertainty will always exceed 100% at some frequency.

5. Even when a very detailed model is available we may choose to work with
a simpler (low-order) nominal model and represent the neglected dynamics as
“uncertainty”.

6. Finally, the controller implemented may differ from the one obtained by solving
the synthesis problem. In this case one may include uncertainty to alow for
controller order reduction and implementation inaccuracies.

The various sources of model uncertainty mentioned above may be grouped into two
main classes:

1. Parametric uncertainty. Here the structure of the model (including the order) is
known, but some of the parameters are uncertain.

2. Neglected and unmodelled dynamics uncertainty. Here the model is in
error because of missing dynamics, usualy at high frequencies, either through
deliberate neglect or because of alack of understanding of the physical process.
Any model of areal system will contain this source of uncertainty.
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Parametric uncertainty will be quantified by assuming that each uncertain parameter
is bounded within some region [a imin, @max]- That is, we have parameter sets of the
form

ap = a(l+r,A)

where & is the mean parameter value, 7, = (max — @min)/(@max + @min) iSthe
relative uncertainty in the parameter, and A isany real scalar satisfying |A| < 1.

Neglected and unmodelled dynamics uncertainty is somewhat less precise and thus
more difficult to quantify, but it appearsthat the frequency domainis particularly well
suited for this class. This leads to complex perturbations which we normalize such
that | Al|e < 1. Inthis chapter, we will deal mainly with this class of perturbations.

For completeness one may consider a third class of uncertainty (which is really a
combination of the other two):

3. Lumped uncertainty. Here the uncertainty description represents one or several
sources of parametric and/or unmodelled dynamics uncertainty combined into a
single lumped perturbation of a chosen structure.

L l
: Gp
1 1
: > Wy > Af :
: '
1 1
1 1
: yt :
: i()—» G (=
: '
1 1
b e e e e e e e e e e e e e e e e e e e e e e 4

Figure 7.1: Plant with multiplicative uncertainty

The frequency domain is also well suited for describing lumped uncertainty. In most
cases we prefer to lump the uncertainty into amultiplicative uncertaintyf the form

Mr: Gyls) = Gs)(1+wr(s)Ar(s));  |Ar(jw) <1V (72)
N————
lAr]leo <1
which may be represented by the block diagram in Figure 7.1. Here A ;(s) is any
stable transfer function which at each frequency is less than or equal to one in

magnitude. Some examples of alowable A(s)’s with H., norm less than one,
lArll <1, are

s—z 1 1 0.1
s+2z° 71s+1 (5s+1)37 s2+0.1s+1




UNCERTAINTY AND ROBUSTNESS 257

Remark 1 The stability requirement on A;(s) may be removed if one instead assumes that
the number of RHP poles in G(s) and G, (s) remains unchanged. However, in order to
simplify the stability proofs we will in this book assume that the perturbations are stable.

Remark 2 The subscript I denotes “input”, but for SISO systems it doesn’t matter whether
we consider the perturbation at the input or output of the plant, since

G(1+wrAr) = (1+wolAo)G with A;(s) = Ap(s) and wr(s) = wo(s)

Another uncertainty form, which is better suited for representing pole uncertainty, is
the inverse multiplicative uncertainty

IL; : Gp(s) = G(S)(]. + wil(s)A“(s))fl; |AZ[(]W)| <1Vw (7.3)

Even with a stable A;;(s) this form alows for uncertainty in the location of an
unstable pole, and it also allows for poles crossing between the left- and right-half
planes.

Parametric uncertainty is sometimes called structured uncertaintys it models the
uncertainty in a structured manner. Analogously, lumped dynamics uncertainty is
sometimes called unstructured uncertaintyHowever, one should be careful about
using these terms because there can be severa levels of structure, especially for
MIMO systems.

Remark. Alternative approaches for describing uncertainty and the resulting performance
may be considered. One approach for parametric uncertainty isto assume a probabilistic (e.g.
normal) distribution of the parameters, and to consider the “average” response. This stochastic
uncertainty is, however, difficult to analyze exactly.

Another approach isthe multi-model approach in which one considers afinite set of alternative
models. This approach is well suited for parametric uncertainty as it eases the burden of the
engineer in representing the uncertainty. Performance may be measured in terms of the worst-
case or some average of these models' responses. The multi-model approach can also be used
when there is unmodelled dynamics uncertainty. A problem with the multi-model approach is
that it is not clear how to pick the set of models such that they represent the limiting (“worst-
case’) plants.

To summarize, there are many waysto define uncertainty, from stochastic uncertainty
to differential sensitivity (local robustness) and multi-models. Weinmann (1991)
gives a good overview. In particular, there are several ways to handle parametric
uncertainty, and of these the # ., frequency-domain approach, used in this book,
may not be the best or the simplest, but it can handle most situations as we will see.
In addition, the frequency-domainis excellent for describing neglected or unknown
dynamics, and it is very well suited when it comes to making simple yet redlistic
lumped uncertainty descriptions.
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7.3 Parametric uncertainty

In spite of what is sometimes claimed, parametric uncertainty may also be
represented in the H ., framework, at least if we restrict the perturbations A to be
real. Thisisdiscussed in more detail in Section 7.7. Here we providejust two simple
examples.

Example 7.1 Gain uncertainty. Let the set of possible plants be
Gp(s) = kpGo(s);  kmin < kp < Kmax (7.4)
wherek, is an uncertain gain and(s) is a transfer function with no uncertainty. By writing
k

min + kmax é (kmax - kmln)/2

Tk (7.5)

]_f )
wherer;, is the relative magnitude of the gain uncertainty arid the averageain, (7.4) may
be rewritten as multiplicative uncertainty

Gp(s) = KGo(s)(1 +7:A), [A] <1 (7.6)
——

G(s)

whereA is areal scalar andG(s) is the nominal plant. We see that the uncertainty in (7.6)
is in the form of (7.2) with a constant multiplicative weight(s) = rx. The uncertainty
description in (7.6) can also handle cases where the gain changes &ign € 0 and
kmax > 0) corresponding ta, > 1. The usefulness of this is rather limited, however, since it
is impossible to get any benefit from control for a plant where we can Ggve 0, at least
with a linear controller.

Example 7.2 Time constant uncertainty. Consider a set of plants, with an uncertain time
constant, given by

1
s T lGO(S), Tmin S Tp S Tmax (77)

Gp(s) =

By writing 7, = 7(1 + r-A), similar to (7.5) with|A| < 1, the model set (7.7) can be
rewritten as

Go Go 1 T TS
= = ; i = 7.8
Gp(s) 1+ 7s+r-7sA 1+7s 1+wir(s)A’ wir(s) 1+ 7s (7.8)
——
G(s)

which is in theinverse multiplicative form of (7.3). Note that it does not make physical sense
for 7, to change sign, because a valge= 0~ corresponds to a pole at infinity in the RHP,

and the corresponding plant would be impossible to stabilize. To represent cases in which a
pole may cross between the half planes, one should instead consider parametric uncertainty
in the pole itselfl/(s + p), as described in (7.85).
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As shown by the above examples one can represent parametric uncertainty in the
H~ framework. However, parametric uncertainty is often avoided for the following
reasons:

=

It usually requires alarge effort to model parametric uncertainty.

2. A parametric uncertainty model is somewhat deceiving in the sense that it
provides a very detailed and accurate description, even though the underlying
assumptions about the model and the parameters may be much less exact.

3. Theexact model structureisrequired and so unmodelled dynamics cannot be dealt
with.

4. Real perturbations are required, which are more difficult to dea with

mathematically and numerically, especially when it comesto controller synthesis.

Therefore, parametric uncertainty is often represented by complex perturbations.
For example, we may simply replace the rea perturbation, —1 < A < 1 by
a complex perturbation with |A(jw)| < 1. Thisis of course conservative as it
introducespossible plantsthat are not present in the original set. However, if thereare
several real perturbations, then the conservatism is often reduced by lumpingthese
perturbationsinto a singlecomplex perturbation. Typically, acomplex multiplicative
perturbationisused, eg. G, = G(I +wrA).

How isit possible that we can reduce conservatism by lumping together several real
perturbations? This will become clearer from the examples in the next section, but
simply stated the answer is that with several uncertain parametersthetrue uncertainty
region is often quite “disk-shaped”, and may be more accurately represented by a
single complex perturbation.

7.4 Representing uncertainty in the frequency
domain

In terms of quantifying unmodelled dynamics uncertainty the frequency-domain
approach (# .. ) does not seem to have much competition (when compared with other
norms). In fact, Owen and Zames (1992) make the following observation:

The design of feedback controllersin the presence of non-parametric and
unstructured uncertainty ... is the raison d'&tre for ‘H., feedback opti-
mization, for if disturbances and plant models are clearly parameterized
then ‘H . methods seem to offer no clear advantages over more conven-
tional state-space and parametric methods.
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7.4.1 Uncertainty regions

To illustrate how parametric uncertainty translates into frequency domain
uncertainty, consider in Figure 7.2 the Nyquist plots (or regions) generated by the
following set of plants

k —0s

Gp(s) - Ts+16

Step 1. At each frequency, a region of complex numbers G ,(jw) is generated by
varying the three parameters in the ranges given by (7.9), see Figure 7.2.
In general, these uncertainty regionshave complicated shapes and complex
mathematical descriptions, and are cumbersome to deal with in the context of
control system design.

Step 2. We therefore approximate such complex regions as discs (circles) as shown

in Figure 7.3, resulting in a (complex) additive uncertainty description as
discussed next.

, 2<k,0,71<3 (7.9

Figure 7.2: Uncertainty regions of the Nyquist plot at given frequencies. Datafrom (7.9)

Remark 1 Thereisno conservatism introduced in thefirst step when we go from aparametric
uncertainty description asin (7.9) to an uncertainty region description as in Figure 7.2. This
is somewhat surprising since the uncertainty regions in Figure 7.2 seem to allow for more
uncertainty. For example, they alow for “jumps’ in G,(jw) from one frequency to the
next (e.g. from one corner of a region to another). Nevertheless, we derive in this and the
next chapter necessary and sufficient frequency-by-frequency conditions for robust stability
based on uncertainty regions. Thus, the only conservatism is in the second step where we
approximate the original uncertainty region by a larger disc-shaped region as shown in
Figure 7.3.

Remark 2 Exact methods do exist (using complex region mapping, e.g. see Laughlin et al.
(1986)) which avoid the second conservative step. However, as already mentioned these
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-1

Figure 7.3: Disc approximation (solid line) of the origina uncertainty region (dashed line).
Plot correspondstow = 0.2 in Figure 7.2

methods are rather complex, and athough they may be used in analysis, at least for simple
systems, they are not really suitable for controller synthesis and will not be pursued further in
this book.

Remark 3 From Figure 7.3 we see that the radius of the disc may be reduced by moving the
center (selecting another nominal model). Thisis discussed in Section 7.4.4.

7.4.2 Representing uncertainty regions by complex
perturbations

We will use disc-shaped regionsto represent uncertainty regions asillustrated by the
Nyquist plots in Figures 7.3 and 7.4. These disc-shaped regions may be generated
by additive complex norm-bounded perturbations (additive uncertainty) around a
nominal plant G

Ma: Gp(s) =G(s) +wa(s)Aa(s); |Aa(jw)| <1Vw (7.10)

where A 4(s) is any stable transfer function which at each frequency is no larger
than one in magnitude. How is this possible? If we consider al possible A 4's, then
at each frequency A 4 (jw) “generates’ a disc-shaped region with radius 1 centred at
0,50 G(jw) + wa(jw)A 4(jw) generates at each frequency a disc-shaped region of
radius |w 4 (jw)| centred at G(jw) as shown in Figure 7.4.

In most cases w 4 (s) isarational transfer function (although this need not always be
the case).
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Im

A

»> Re
G(jw)

Figure 7.4: Disc-shaped uncertainty regions generated by complex additive uncertainty,
Gy =G+ waA

One may also view w4 (s) as a weight which is introduced in order to normalize
the perturbation to be less than 1 in magnitude at each frequency. Thus only the
magnitude of the weight matters, and in order to avoid unnecessary problems we
always choose w 4 (s) to be stable and minimum phase (this applies to all weights
used in this book).

A

G (centre)

iy
A
¥

Figure 7.5: The set of possible plants includes the origin at frequencies where |wa (jw)| >
|G (jw)|, or equivalently |w; (jw)| > 1

The disk-shaped regions may dternatively be represented by a multiplicative
uncertaintydescription asin (7.2),

I Gpls) =G(s) (1 +wr(s)Ar(s));  [Ar(jw)] < 1,Vw (7.11)

By comparing (7.10) and (7.11) we see that for SISO systems the additive and
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multiplicative uncertainty descriptions are equivalent if at each frequency
lwr (jw)| = [wa(jw)|/|G(jw)] (7.12)

However, multiplicative (relative) weights are often preferred because their
numerical value is more informative. At frequencies where |w(jw)| > 1 the
uncertainty exceeds 100% and the Nyquist curve may pass through the origin. This
follows since, asillustrated in Figure 7.5, the radius of the discs in the Nyquist plot,
|lwa(jw)| = |G(jw)wr(jw)|, then exceeds the distance from G(jw) to the origin.
At these frequencies we do not know the phase of the plant, and we allow for zeros
crossing from the left to the right-half plane. To see this, consider a frequency w
where |wr(jwo)| > 1. Then there exists a |A;| < 1 such that G, (jwo) = 0 in
(7.112), that is, there exists a possible plant with zeros at s = +jwg. For this plant at
frequency w the input has no effect on the output, so control has no effect. It then
follows that tight control is not possible at frequencies whéue (jw)| > 1 (this
condition is derived morerigorously in (7.33)).

7.4.3 Obtaining the weight for complex uncertainty

Consider a set TI of possible plants resulting, for example, from parametric
uncertainty as in (7.9). We now want to describe this set of plants by a single
(lumped) complex perturbation, A 4 or A ;. This complex (disk-shaped) uncertainty
description may be generated as follows:;

1. Select anomina model G(s).
2. Additive uncertaintyAt each frequency find the smallest radius [ 4(w) which
includes all the possible plants II:

La(w) = max Gy(jw) = Gjw) (7.13)

If we want arational transfer function weight, w 4 (s) (which may not be the case
if we only want to do analysis), then it must be chosen to cover the set, so

|lwa(jw)| > la(w) Yw (7.19)

Usually w 4 (s) is of low order to simplify the controller design. Furthermore, an
objective of frequency-domain uncertainty is usualy to represent uncertainty in a
simple straightforward manner.
3. Multiplicative (relative) uncertaintyThisis often the preferred uncertainty form,
and we have G ot
I1(w) = (I;r,l,%)r([ W (7.15)

and with arational weight

lwr (jw)| > Ir(w), Yw (7.16)
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Example 7.3 Multiplicative weight for parametric uncertainty. Consider again the set
of plants with parametric uncertainty given in (7.9)

2<k6,7<3 (7.17)

We want to represent this set using multiplicative uncertainty with a rational weig(sf). To

simplify subsequent controller design we select a delay-free nominal model
k25

7s+1 25s+1

G(s) = (7.18)

To obtaini;(w) in (7.15) we consider three valueg, (2.5 and 3) for each of the three
parametersk, 6, 7). (This is not, in general, guaranteed to yield the worst case as the worst
case may be at the interior of the intervals.) The corresponding relative €if@fs— G)/G]|

are shown as functions of frequency for 8fe= 27 resultingG,,’s in Figure 7.6. The curve

Magnitude

107 . RIS ‘V‘H\ . i . ET
107 10" 10° 10"
Freguency

Figure 7.6: Relative errors for 27 combinations of k, 7 and 6 with delay-free nominal plant
(dotted lines). Solid line: First-order weight |w;1]| in (7.19). Dashed line: Third-order weight
|wr| in (7.20)

for I; (w) must at each frequency lie above all the dotted lines, and we find:tagtis 0.2 at
low frequencies and.5 at high frequencies. To derive; (s) we first try a simple first-order
weight that matches this limiting behaviour:

Ts+0.2

Tss+1 |0 (719

wri(s) =

As seen from the solid line in Figure 7.6, this weight gives a good fit(ef), except around

w = 1 where|wri (jw)]| is slightly too small, and so this weight does not include all possible
plants. To change this so that; (jw)| > I;(w) at all frequencies, we can multipty;; by a
correction factor to lift the gain slightly ab = 1. The following works well

s24+1.6s+1

- - 7.2
s2+4+1.4s+1 (7.20)

wr(s) = wri(s)
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as is seen from the dashed line in Figure 7.6. The magnitude of the weight closges
aboutw = 0.26. This seems reasonable since we have neglected the delay in our nominal
model, which by itself yieldB00% uncertainty at a frequency of aboutfm.x = 0.33 (see
Figure 7.8(a) below).

An uncertainty description for the same parametric uncertainty, but with a mean-
valuenominal model (with delay), isgivenin Exercise 7.8. Parametric gain and delay
uncertainty (without time constant uncertainty) is discussed further on page 268.

Remark. Pole uncertainty. In the example we represented pole (time constant) uncertainty
by a multiplicative perturbation, A;. We may even do this for unstable plants, provided the
poles do not shift between the half planes and one allows Ay (s) to be unstable. However, if
the pole uncertainty islarge, and in particular if poles can cross form the LHP to the RHP, then
one should use an inverse (“feedback”) uncertainty representation asin (7.3).

7.4.4 Choice of nominal model

With parametric uncertainty represented as complex perturbations there are three
main options for the choice of nominal model:

1. A simplified model, e.g. alow-order, delay-free model.
2. A model of mean parameter values, G(s) = G(s).
3. The central plant obtained from a Nyquist plot (yielding the smallest discs).

Option 1 usualy yields the largest uncertainty region, but the model is simple
and this facilitates controller design in later stages. Option 2 is probably the most
straightforward choice. Option 3 yields the smallest region, but in this case a
significant effort may be required to obtain the nominal model, which is usually
not a rational transfer function and a rational approximation could be of very high
order.

Example 7.4 Consider again the uncertainty set (7.17) used in Example 7.3. The nominal
models selected for options 1 and 2 are
__k _ kg
Gis) = s+ 1’ Gals) = s+ 1€

For option 3 the nominal model is not rational. The Nyquist plot of the three resulting discs at
frequencyw = 0.5 are shown in Figure 7.7.

Remark. A similar example was studied by Wang et a. (1994), who obtained the best
controller designs with option 1, athough the uncertainty region is clearly much larger in
this case. The reason for thisis that the “worst-case region” in the Nyquist plot in Figure 7.7
corresponds quite closely to those plants with the most negative phase (at coordinates about
(—1.5,—1.5)). Thus, the additiona plants included in the largest region (option 1) are
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Figure 7.7: Nyquist plot of G, (jw) at frequency w = 0.5 (dashed region) showing complex
disc approximations using three options for the nominal model:

1. Simplified nominal model with no time delay

2. Mean parameter values

3. Nominal model corresponding to the smallest radius

generally easier to control and do not really matter when evaluating the worst-case plant with
respect to stability or performance. In conclusion, at least for SISO plants, we find that for
plants with an uncertain time delay, it is simplest and sometimes best (!) to use a delay-free
nominal model, and to represent the nominal delay as additional uncertainty.

The choice of nominal model is only an issue since we are lumping several sources
of parametric uncertainty into a single complex perturbation. Of course, if we use
a parametric uncertainty description, based on multiple real perturbations, then we
should always use the mean parameter values in the nominal model.

7.4.5 Neglected dynamicsrepresented asuncertainty

We saw above that one advantage of frequency domain uncertainty descriptionsis
that one can choose to work with a simple nominal model, and represent neglected
dynamics as uncertainty. We will now consider thisin alittle more detail. Consider
aset of plants

Gy(s) = Go(s)f(s)

where G (s) isfixed (and certain). We want to neglect theterm f(s) (which may be
fixed or may be an uncertain set I1 ), and represent G, by multiplicative uncertainty
with anomina moddl G = G. From (7.15) we get that the magnitude of the relative



UNCERTAINTY AND ROBUSTNESS 267

uncertainty caused by neglecting the dynamicsin f(s) is

G, -G
G

= max |f(jw)—1| (7.21)

l;(w) = max
f(s)elly

Gy

Three examplesillustrate the procedure.

1. Neglected delay. Let f(s) = e =%, where 0 < 0, < Omax. We want to represent
G, = Go(s)e % by adelay-free plant G,(s) and multiplicative uncertainty. Let
us first consider the maximum delay, for which the relative error |1 — e ~7«%max| is
shown as a function of frequency in Figure 7.8(a). The relative uncertainty crosses
1 in magnitude at about frequency 1/6max, reaches 2 at frequency /0 max (Since at
this frequency e/«?m=x = —1), and oscillates between 0 and 2 at higher frequencies
(which corresponds to the Nyquist plot of e ~/«?max going around and around the
unit circle). Similar curves are generated for smaller values of the delay, and they
also oscillate between 0 and 2 but at higher frequencies. It then follows that if we
consider al 6 € [0, Omax] then the relative error bound is 2 at frequencies above
T /Omax, and we have

[ 1 —emiwmax| < T /Bmax
lr(w) = { 5 © > /O (7.22)

Rational approximationsof (7.22) are givenin (7.26) and (7.27) with r ,, = 0.

10" 10"
o _
510° 3 10°
i< =
g g
S .41 =
10 =10
10'2 1/9max 10_2 1/T111ax
10° 10° 10° 10° 10° 10°
Frequency Frequency
(8 Time delay (b) First-order lag

Figure 7.8: Multiplicative uncertainty resulting from neglected dynamics

2. Neglected lag. Let f(s) = 1/(rps + 1), where 0 < 7, < Tmax. In this case the
resulting /7 (w), which is shown in Figure 7.8(b), can be represented by a rational
transfer function with |w; (jw)| = I;(w) where

1 _ Tmax$
TmaxS + 1 B TmaxS + 1

This weight approaches 1 at high frequency, and the low-frequency asymptote
crosses 1 at frequency 1/Tmax.

wr(s) =1-
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3. Multiplicative weight for gain and delay uncertainty. Consider the following
set of plants

GP(S) = kp@iepsao (8); kp S [kminy kmax]; 91) S [amin,amax] (723)

which we want to represent by multiplicative uncertainty and a delay-free nominal
model, G(s) = kGo(s) where k = kminthmax and py = mex Fmin)2 ) ynstrom

(1994) derived the following exact expression for the relative uncertainty weight

— \/’f’% + 2(1 + ’f’k)(l — CO8 (amaxw)) forw < 7r/9max
l(w) = { 2+ rp, for w > 7/0max (7.24)

where ry, is the relative uncertainty in the gain. This bound isirrational. To derivea
rational weight wefirst approximatethe delay by afirst-order Padé approximationto
get

o 1—fmaxg (14 I8) Oaxs + 75
kmaxe_om"s—kwk(l+rk)+—k:k ( 02) 2 b (7.25)
1+ mexg Tmaxg ]

Since only the magnitude mattersthis may be represented by thefollowing first-order
weight
(14 5)0maxs + 1k
= 7.26
wr(s) 9,3ax s+l (7.26)

However, as seen from Figure 7.9 by comparing the dotted line (representing w r)

1

10
(]
3 lr =
3 —
E < wr
8’10 g A - i
=
-1
10 L L L
107 10" 10° 10" 10°
Frequency

Figure 7.9: Multiplicative weight for gain and delay uncertainty in (7.23)

with the solid line (representing (1), this weight wr is somewhat optimistic (too
small), especially around frequencies 1/6,,ax. To make sure that |w; (jw)| > 17 (w)
at all frequencies we apply a correction factor and get a third-order weight

2.363

Omax 2
x5+ 1 (Lmax)™ 52 +2-0.685 - fmaxs 41

(14 5)0maxs + 71 (Sm6)" 5> +2-0.838 - fawes 41 727

wy(s) =
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The improved weight w(s) in (7.27) is not shown in Figure 7.9, but it would be
amost indistinguishable from the exact bound given by the solid curve. In practical
applications, it is suggested that one starts with a simple weight as in (7.26), and
if it later appears important to eke out a little extra performance then one can try a
higher-order weight asin (7.27).

Example 7.5 Consider the sefi, (s) = kye »*Go(s) with2 < k, < 3and2 < 6, < 3.
We approximate this with a nominal delay-free plait= kG, = 2.5G, and relative

uncertainty. The simple first-order weight in (7.26),(s) = %222, is somewhat optimistic.
3.3540.2 | 1.61282+2.1283+1

1.55+1 1.612524+1.739s+1 "

To cover all the uncertainty we may use (7.2#)(s) =

7.4.6 Unmodelled dynamics uncertainty

Although we have spent a considerable amount of time on modelling uncertainty
and deriving weights, we have not yet addressed the most important reason for
using frequency domain (H ..) uncertainty descriptions and complex perturbations,
namely the incorporation of unmodelled dynamics. Of course, unmodelled dynamics
is close to neglected dynamioshich we have just discussed, but it is not quite the
same. In unmodelled dynamics we also include unknown dynamics of unknown
or even infinite order. To represent unmodelled dynamics we usually use a simple
multiplicative weight of the form

wi(s) = ¢ 75+ 7o (7.28)

T/Too)s + 1

where 7 is the relative uncertainty at steady-state, 1/7 is (approximately) the
frequency at which the relative uncertainty reaches 100%, and r ., is the magnitude
of the weight at high frequency (typicaly, r o, > 2). Based on the above examples
and discussionsit is hoped that the reader has now accumulated the necessary insight
to select reasonable values for the parametersr, r~, and 7 for a specific application.
The following exercise provides further support and gives a good review of the main
ideas.

Exercise 7.1 Suppose that the nominal model of a plant is

1

G(S):s+1

and the uncertainty in the model is parameterized by multiplicative uncertainty with the weight

0.125s5 +0.25

wi(%) = Oi25/0)s + 1

Call the resulting sefl. Now find the extreme parameter values in each of the plants (a)-(g)
below so that each plant belongs to the HetAll parameters are assumed to be positive. One
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approach is to plof; (w) = |GG’ — 1] in (7.15) for eachG’ (G., G, etc.) and adjust the
parameter in question untl} just touchegw; (jw)|.

(a) Neglected delay: Find the largegtor G, = Ge™%® (Answer:0.13).

(b) Neglected lag: Find the largestfor G, = G”}Jrl (Answer:0.15).

(c) Uncertain pole: Find the range affor G. = - (Answer:0.8 to 1.33).

(d) Uncertain pole (time constant form): Find the rang€elofor Gy = ﬁ (Answer:0.7 to
1.5).

(e) Neglected resonance: Find the rangeldbr G. = G
t0 0.8).

1 .
VDL EIES (Answer:0.02

(f) Neglected dynamics: Find the largest integerfor Gy = G ( )m (Answer:13).

1
0.0Ls+1

(9) Neglected RHP-zero: Find the largestfor G4 = G%fll (Answer:0.07). These results
imply that a control system which meets given stability and performance requirements for all
plants inTI, is also guaranteed to satisfy the same requirements for the above [fants

Go, ..., G,.

(h) Repeat the above with a new nominal pléht= 1/(s — 1) (and with everything else the
same excepFy = 1/(T's — 1)). (Answer: Same as above).

Exercise 7.2 Repeat Exercise 7.1 with a new weight,

s+ 0.3

W) = Ap)s 41

We end this section with a couple of remarks on uncertainty modelling:

1. We can usually get away with just one source of complex uncertainty for SISO
systems.

2. With an H, uncertainty description, it is possible to represent time delays
(corresponding to an infinite-dimensional plant) and unmodelled dynamics of
infinite order , using a nominal model and associated weights with finite order.

7.5 SISO Robust stability

We have so far discussed how to represent the uncertainty mathematically. In this
section, we derive conditions which will ensure that the system remains stable for
al perturbationsin the uncertainty set, and then in the subsequent section we study
robust performance.
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Figure 7.10: Feedback system with multiplicative uncertainty

7.5.1 RSwith multiplicative uncertainty

We want to determine the stability of the uncertain feedback system in Figure 7.10
when there is multiplicative (relative) uncertainty of magnitude |w r(jw)|. With
uncertainty the loop transfer function becomes

Lp = GpK = GK(]. + ’lU[A[) =L+ w;LAy, |A[(]w)| <1,Vw (7.29)

As aways, we assume (by design) stability of the nominal closed-loop system (i.e.
with A; = 0). For simplicity, we also assume that the loop transfer function L, is
stable. We now use the Nyquist stability condition to test for robust stability of the
closed-loop system. We have

RS & System stable VL,

& Ly, should not encirclethepoint — 1, VL, (7.30)
Im
-1 _
0 Re
[T+ L(jw)l
— L(jw)
—
lwr L]

Figure 7.11: Nyquist plot of L,, for robust stability
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1. Graphical derivation of RS-condition. Consider the Nyquist plot of L ,, as shown
in Figure 7.11. Convinceyourself that | — 1 — L| = |1 + L| isthe distance from the
point —1 to the centre of the disc representing L ,,, and that |w; L| is the radius of
the disc. Encirclements are avoided if none of the discs cover —1, and we get from
Figure 7.11

RS & |wiL|<|1+L|, Y (7.31)
w]L

1 T 1 7.32

‘1+L‘<,Vw & |wiT| <1, Yw (7.32)

YW |lw Tl < 1 (7.33)

Note that for SISO systems w; = wo and T = T = GK(1 + GK) !, s0
the condition could equivalently be written in terms of w ;T or woT'. Thus, the
reguirement of robust stability for the case with multiplicative uncertainty gives an
upper bound on the complementary sensitivity:

RS & |T| < 1/jwi|, Vo) (7.34)

We see that we have to detune the system (i.e. fiiadaall) at frequencies where
the relative uncertaintyw;| exceedsl in magnitude. Condition (7.34) is exact
(necessary and sufficient) provided there exist uncertain plants such that at each
frequency all perturbations satisfying |A(jw)| < 1 are possible. If this is not the
case, then (7.34) is only sufficientfor RS, e.g. thisis the case if the perturbation is
restricted to be real, as for the parametric gain uncertainty in (7.6).

Example 7.6 Consider the following nominal plant and PI-controller

3(—2s+1)
(5bs+1)(10s + 1)

Recall that this is the inverse response process from Chapter 2. Initially, we g€leet

K. = 1.13 as suggested by the Ziegler-Nichols’ tuning rule. It results in a nominally stable
closed-loop system. Suppose that one “extreme” uncertain pl&#{iy = 4(—3s+1)/(4s+

1)2. For this plant the relative errof(G’ — G)/G| is 0.33 at low frequencies; it id at about

0.1 rad/s, and itis5.25 at high frequencies. Based on this and (7.28) we choose the following
uncertainty weight

12.7s +1

Gs) = 12.7s

K(s) =K,

10s 4+ 0.33
(10/5.25)s + 1
which closely matches this relative error. We now want to evaluate whether the system remains
stable for all possible plants as given &% = G(1+wrAr) whereA;(s) is any perturbation
satisfying||A||cc < 1. This isnot the case as seen from Figure 7.12 where we see that the
magnitude of the nominal complementary sensitivity fundios GK1/(1+ GK) exceeds
the boundL/|w; | from about0.1 to 1 rad/s, so (7.34) is not satisfied. To achieve robust stability
we need to reduce the controller gain. By trial and error we find that reducing the gain to
K., = 0.31 just achieves RS, as is seen from the curvelfor= GK>/(1 + GK>) in
Figure 7.12.

wr(s) =
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Figure 7.12: Checking robust stability with multiplicative uncertainty

Remark. For the “extreme” plantG’(s) we find as expected that the closed-loop system is
unstable withK.; = 1.13. However, withK.» = 0.31 the system is stable with reasonable
margins (and not at the limit of instability as one might have expected); we can increase the
gain by almost a factor of two t&. = 0.58 before we get instability. This illustrates that
condition (7.34) is only aufficient condition for stability, and a violation of this bound does
not imply instability for a specific plar® . However, withK.» = 0.31 there exists an allowed
complexA; and a corresponding, = G(1 + w;As) that yieldsT,, = —<252_ on the

limit of instability.

2. Algebraic derivation of RS-condition. Since L, is assumed stable, and the
nominal closed-loop is stable, the nominal loop transfer function L(jw) does not
encircle —1. Therefore, since the set of plants is norm-bounded, it then follows that
if some L,; in the uncertainty set encircles —1, then there must be another L 2 in
the uncertainty set which goes exactly through —1 at some frequency. Thus,

RS & |1+ L,|#0, VL, Vw (7.35)
& |14+ Ly >0, VL, Vw (7.36)
< |1+ L+wrLAf >0, VYA <1,Vw (7.37)

At each frequency thelast condition is most easily violated (the worst case) when the
complex number A (jw) is selected with |A(jw)| = 1 and with phase such that
theterms (1 + L) and wy LA have opposite signs (point in the opposite direction).
Thus

RSe 1+ L|—|wiL| >0, Yw <& |wT|<l, Yw (7.38)

and we have rederived (7.33).

Remark. Unstable plants. The stability condition (7.33) also applies to the case when L and
L, are unstable as long as the number of RHP-poles remains the same for each plant in the
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uncertainty set. This follows since the nominal closed-loop system is assumed stable, so we
must make sure that the perturbation does not change the number of encirclements, and (7.33)
is the condition which guarantees this.

UA Yya

S

Figure 7.13: M A-structure

3. M A-structure derivation of RS-condition. This derivation is a preview of
a genera analysis presented in the next chapter. The reader should not be too
concerned if he or she does not fully understand the details at this point. The
derivation is based on applying the Nyquist stability condition to an alternative “loop
transfer function” A/ A rather than L ,,. The argument goes as follows. Notice that the
only source of instability in Figure 7.10 is the new feedback loop created by A ;. If
the nomina (A; = 0) feedback system is stable then the stability of the system in
Figure 7.10 is equivalent to stability of the system in Figure 7.13, where A = A
and

M =wiK(14+GK)™'G = w;T (7.39)

is the transfer function from the output of A ; to the input of A;. We now apply
the Nyquist stability condition to the system in Figure 7.13. We assume that A and
M = w;T arestable; the former impliesthat G' and G, must have the same unstable
poles, thelatter is equivalent to assuming nominal stability of the closed-loop system.
The Nyquist stability condition then determines RS if and only if the “loop transfer
function” M A does not encircle —1 for all A. Thus,

RS & [1+MA|>0, Vw, VA< (7.40)

Thelast conditionis most easily violated (the worst case) when A is selected at each
frequency such that |A| = 1 and the terms M A and 1 have opposite signs (point in
the opposite direction). We therefore get

RS & 1—|M(jw)| >0, Yw (7.41)
& |M(jw)| <1, Yw (7.42)

whichisthe sameas (7.33) and (7.38) since M = w T'. The M A-structure provides
avery general way of handling robust stability, and we will discuss this at length in
the next chapter where we will see that (7.42) is essentialy a clever application of
the small gain theorem where we avoid the usual conservatism since any phase in
MA isallowed.
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7.5.2 Comparison with gain margin

By what factor, knax, can we multiply the loop gain, Lo = Go K, before we get
instability? In other words, given

Lp = ka(); kp € []-, kmax] (743)

find the largest value of k.« such that the closed-loop system is stable.

1. Real perturbation. The exact value of k.., whichis obtained with A real, isthe
gain margin (GM) from classical control. We have (recall (2.33))

1

km x,1 = GM = ————
ot |Lo(jwiso)]

(7.44)

where w1 gg is the frequency where /Lo = —180°.

2. Complex perturbation. Alternatively, represent the gain uncertainty as complex
multiplicative uncertainty,

L, = kyLo = kLo(1 + r,A) (7.45)
where " 1 L )
I — max T & — Dmax 7 - 7.4
b 2 T ke 1 (7.40)

Notethat thenominal L = kL isnot fixed, but dependson k... Therobust stability
condition ||w;T ||« < 1 (whichis derived for complex A) with w; = r;, then gives

Here both r;, and & depend on k.., and (7.47) must be solved iteratively to find
kmax,2. Condition (7.47) would be exact if A were complex, but since it is not we
eXpect kmax,2 to be somewhat smaller than GM.

kLo
Tk —
1+ EkLg

(7.47)

o0

Example 7.7 To check this numerically consider a system with = =242, We find
wigo = 2 [rad/s] and |Lo(jwiso)| = 0.5, and the exact factor by which we can increase
the loop gain is, from (7.44%max,1 = GM = 2. On the other hand, use of (7.47) yields
kmax,2 = 1.78, which as expected is less than GM=This illustrates the conservatism

involved in replacing a real perturbation by a complex one.

Exercise 7.3 Represent the gain uncertainty in (7.43) as multiplicative complex uncertainty
with nominal modeG = Gy (rather thanG = kG, used above).

(a) Find wr and use the RS-conditidhw;T||c < 1 to find kmax,3. Note that no iteration is
needed in this case since the nominal model and ThesT; is independent fmax.

(b) One expectgmax,3 10 be even more conservative th&Rr.x,> since this uncertainty
description is not even tight whef is real. Show that this is indeed the case using the
numerical values from Example 7.7.
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7.5.3 RSwith inverse multiplicative uncertainty

Y

Figure 7.14: Feedback system with inverse multiplicative uncertainty

We will derive a corresponding RS-condition for a feedback system with inverse
multiplicative uncertainty (see Figure 7.14) in which

Gp =G +wir(s)Air) (7.48)

Algebraic derivation. Assume for simplicity that the loop transfer function L, is
stable, and assume stability of the nominal closed-loop system. Robust stability is
then guaranteed if encirclementsby L, (jw) of the point —1 are avoided, and since
L, isin anorm-bounded set we have

RS & |1+Ly >0, VL, Yw (7.49)
& 1+ LA +wirdi) >0, V]Ay<1,Vw (7.50)
=4 |1 + wir A + L| > 0, V|Az]| <1,Vw (7.51)

The last condition is most easily violated (the worst case) when A ;5 is selected at
each frequency such that |A;;| = 1 and theterms 1 + L and w;; A;; have opposite
signs (point in the opposite direction). Thus

RS & [1+4L|—|wi]>0, Vw (7.52)
[== |w215| <1, Yw (753)

Remark. In this derivation we have assumed that L, is stable, but this is not necessary as
one may show by deriving the condition using the M A-structure. Actually, the RS-condition
(7.53) applies even when the number of RHP-poles of G, can change.

Control implications. From (7.53) we find that the requirement of robust stability
for the case with inverse multiplicative uncertainty gives an upper bound on the
sensitivity,

RS & |S|<1/jwil, Ww) (7.54)
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We see that we need tight control and have to malamall at frequencies where
the uncertainty is large anflv;;| exceedd in magnitude. This may be somewhat
surprising since weintuitively expect to have to detune the system (and make S = 1)
when we have uncertainty, while this condition tells usto do the opposite. The reason

is that this uncertainty represents pole uncertainty, and at frequencies where |w ;7|
exceeds 1 we alow for poles crossing from the left to the right-haf plane (G,
becoming unstable), and we then know that we need feedback (|S| < 1) in order
to stabilize the system.

However, |S| < 1 may not always be possible. In particular, assume that the plant
has a RHP-zero at s = z. Then we have the interpolation constraint S(z) = 1 and
we must as a prerequisite for RS, ||wir S|~ < 1, requirethat w;;(2) < 1 (recal the
maximum modulustheorem, see (5.15)). Thus, we cannot havelarge pol e uncertainty
with |w;r (jw)| > 1 (and hence the possibility of instability) at frequencieswhere the
plant has a RHP-zero. Thisis consistent with the results we obtained in Section 5.9.

7.6 SISO Robust performance

7.6.1 SISO nominal performancein the Nyquist plot

Consider performance in terms of the weighted sensitivity function as discussed in
Section 2.7.2. The condition for nominal performance (NP) isthen

NP & |wpS|<1 Vw & |wp|<|1+L] Vw (7.55)

Now |1 + L| represents at each frequency the distance of L(jw) from the point —1
in the Nyquist plot, so L(jw) must be at least adistance of |w p(jw)| from —1. This
isillustrated graphically in Figure 7.15, where we see that for NP, L(jw) must stay
outside adisc of radius |w p(jw)| centred on —1.

7.6.2 Robust performance
For robust performance we require the performance condition (7.55) to be satisfied
for all possible plants, that is, including the worst-case uncertainty.

RP € |wpS, <1 VS,,Vw (7.56)

& |wp| < |1+ Ly| VLp,Vw (7.57)

This corresponds to requiring |y/d| < 1 YA in Figure 7.16, where we consider
multiplicative uncertainty, and the set of possible loop transfer functionsis

L, = GpK = L(l + ’u}]A]) =L+ wrLAj (7.58)
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Figure 7.15: Nyquist plot illustration of nominal performance condition |wp| < |1 + L|

1. Graphical derivation of RP-condition. Condition (7.57) isillustrated graphically
by the Nyquist plot in Figure 7.17. For RP we must require that all possible L ,,(jw)
stay outside a disc of radius |wp(jw)| centred on —1. Since L,, at each frequency
stays within a disc of radius wr L centred on L, we see from Figure 7.17 that the
condition for RP is that the two discs, with radii |wp| and |w;L|, do not overlap.
Sincetheir centres are located a distance |1 + L| apart, the RP-condition becomes

RP & |wp|+|wil| <[1+L|, Yw (7.59)
& |wp(l+L) Y+ |wL(1+L) <1, Vw (7.60)

or in other words

|RP & max, (jwpS|+ |wT]) < 1] (7.61)

2. Algebraic derivation of RP-condition. From the definitionin (7.56) we have that
RP is satisfied if the worst-case (maximum) weighted sensitivity at each frequency
islessthan 1, that is,

RP < r%ax|wp5p| <1, VYw (7.62)
Wy —» A] d
r j“L—» A.LL L
) K y » G > > Wp —

Figure 7.16: Diagram for robust performance with multiplicative uncertainty
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Figure 7.17: Nyquist plot illustration of robust performance condition |wp| < |1 + Lp|

(strictly speaking, max should be replaced by sup, the supremum). The perturbed
sensitivity is S, = (I+L,) ™" = 1/(14+L+w;LA ), and the worst-case (maximum)
is obtained at each frequency by selecting |A r|=1 such that the terms (1 + L) and
wy LA (which are complex numbers) point in opposite directions. We get

lwp| lwpS|
S| = _ 7.63
max [wpSy| 1+ L|—|wiL]  1— |wT] (7.63)

and by substituting (7.63) into (7.62) we rederive the RP-condition in (7.61).

Remarks on RP-condition (7.61).

1. The RP-condition (7.61) for this problem is closely approximated by the following mixed
sensitivity Hoo condition:

H 5113%9 HOO = max v/Jwp S + [wr TP < 1 (7.64)
To be more precise, we find from (A.95) that condition (7.64) is within a factor of at most
V/2 to condition (7.61). This means that for SISO systems we can closely approximate
the RP-condition in terms of an H, problem, so there is little need to make use of the
structured singular value. However, we will see in the next chapter that the situation can be
very different for MIMO systems.

2. The RP-condition (7.61) can be used to derive bounds on the loop shape |L|. At a given
frequency we have that jwp S| + |wiT| < 1 (RP) issatisfied if (see Exercise 7.4)

1+ |wp|

L R Bl
1> T,

(at frequencies where |wr| < 1) (7.65)
orif
1-— |u)p|

L < ——1
L < T

(at frequencies where |wp| < 1) (7.66)
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Conditions (7.65) and (7.66) may be combined over different frequency ranges. Condition
(7.65) is most useful at low frequencies where generally |w;| < 1 and |wp| > 1 (tight
performance requirement) and we need |L| large. Conversely, condition (7.66) is most
useful at high frequencies where generally |w;| > 1, (more than 100% uncertainty),
|wp| < 1 and we need L small. The loop-shaping conditions (7.65) and (7.66) may in
the general case be obtained numerically from pu-conditions as outlined in Remark 13 on
page 320. Thisis discussed by Braatz et al. (1996) who derive bounds also in terms of S
and T', and furthermore derive necessary bounds for RP in addition to the sufficient bounds
in (7.65) and (7.66); see also Exercise 7.5.

3. Theterm u(Nrp) = |wpS| + |wrT| in (7.61) isthe structured singular valugy) for RP
for this particular problem; see (8.128). We will discuss p in much more detail in the next
chapter.

4. The structured singular value p is not equal to the worst-case weighted sensitivity,
maxs, |wpSp|, givenin (7.63) (although many people seem to think it is). The worst-case
weighted sensitivity is equal to skewed-p (1*) with fixed uncertainty; see Section 8.10.3.
Thus, in summary we have for this particular robust performance problem:

s _ |’LUPS|

= T = —_—
w=lwpS|+ lwiT|, p T [wiT]

(7.67)
Notethat p and p® are closely related since p < 1 if and only if p® < 1.

Exercise 7.4 Derive the loop-shaping bounds in (7.65) and (7.66) which are sufficient for

|lwpS| + |wrT| < 1 (RP).Hint: Start from the RP-condition in the forfjwp| + |w;L| <

|1 + L| and use the facts that + L| > 1 — |L|and|1 + L| > |L| — 1.

Exercise 7.5 Also derive, fromjwp S|+ |w:T| < 1, the following necessary bounds for RP
(whichmust be satisfied)

—1
|L| > %, (for jlwp| > 1 and|wr| < 1)
1—|u)p|
|L| < W, (for |UJP| < 1 and|w1| > 1)
7| —

Hint: Use|1+ L| <1+ |L|.

Example 7.8 Robust performance problem. Consider robust performance of the SISO
system in Figure 7.18, for which we have

0.1 s

RP & <1, V|Ay| £1, Vw; wp(s):0.25+?; wu(s)zrus+1

y
d

(7.69)

(a) Derive a condition for robust performance (RP).
(b) For what values of, is it impossible to satisfy the robust performance condition?

(c) Letr, = 0.5. Consider two cases for the nominal loop transfer functionGH; (s) =

0.5/s and 2) GKa(s) = 25 }jrj. For each system, sketch the magnitudes of S and its

performance bound as a function of frequency. Does each system satisfy robust performance?
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Figure 7.18: Diagram for robust performance in Example 7.8

Solution. (a) The requirement for RP jopS,| < 1, VS, Vw, where the possible sensitivities
are given by

1 S
Sp = 1+ GK +wyAy ~ 14+ w,AuS (7.69)
The condition for RP then becomes
wpS
RP <« ‘m <1, VAM, Yw (770)

A simple analysis shows that the worst case corresponds to selestivgth magnitude 1
such that the ternw,, A, S is purely real and negative, and hence we have

RP & lwpS| < 1—|w.S|, Yw (7.71)
& |lwpS| + |w. S| <1, Yw (7.72)
o IS(w)| < L Ve (7.73)

lwp (jw)| + |wu (jw)|’

(b) Since any real system is strictly proper we ha§e= 1 at high frequencies and therefore
we must requirdw, (jw)| + |wp(jw)| < 1 asw — oco. With the weights in (7.68) this is
equivalent tor, + 0.25 < 1. Therefore, we must at least requirg < 0.75 for RP, so RP
cannot be satisfied if, > 0.75.

(c) Designs$; yields RP, whileS, does not. This is seen by checking the RP-condition (7.73)
graphically as shown in Figure 7.195: | has a peak of while |S2| has a peak of aboit 45.

7.6.3 Thereationship between NP, RS and RP

Consider a SISO system with multiplicative uncertainty, and assume that the closed-
loop is nominally stable (NS). The conditions for nominal performance (NP), robust
stability (RS) and robust performance (RP) can then be summarized as follows
NP & |lwpS| < 1,Vw (7.74)
RS & |lwrT| < 1,Vw (7.75)
RP & lwpS| + |wiT| < 1,Vw (7.76)
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Figure 7.19: Robust performance test

Fromthiswe seethat aprerequisite for RP isthat we satisfy NP and RS. This applies
in general, both for SISO and MIMO systems and for any uncertainty. In addition,
for SISO systems, if we satisfy both RS and NP, then we have at each frequency

lwpS| + |wiT| < 2max{|wpS|, |wiT|} < 2 (7.77)

It then follows that, within afactor of at most 2, we will automatically get RP when
the subobjectives of NP and RS are satisfied. Thus, RPis not a“bigissue’ for SISO
systems, and this is probably the main reason why there is little discussion about
robust performance in the classical control literature. On the other hand, as we will
see in the next chapter, for MIMO systems we may get very poor RP even though
the subobjectives of NP and RS areindividually satisfied.

To satisfy RS we generally want 7" small, whereasto satisfy NP we generally want S
small. However, we cannot make both,S and 7" small at the same frequency because
of theidentity S + 7' = 1. This hasimplicationsfor RP, since |w p||S| + |w; ||T| >
min{|wp|, [wr|}(|S| + |T'|), where |S| + |T'| > |S + T'| = 1, and we derive at each
frequency

|lwpS| + |wrT| > min{|wp|, |wr|} (7.78)
We conclude that we cannot have bothwp| > 1 (i.e. good performance) and
|wr| > 1 (i.e. more thanl00% uncertainty) at the same frequen®ne explanation
for this is that at frequencies where |wy| > 1 the uncertainty will allow for RHP-
zeros, and we know that we cannot have tight performance in the presence of RHP-
Zeros.

7.6.4 Thesmilarity between RSand RP

Robust performance may be viewed as a special case of robust stability (with
mulptiple perturbations). To see this consider the following two cases as illustrated
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Figure 7.20: (a) Robust performance with multiplicative uncertainty
(b) Robust stability with combined multiplicative and inverse multiplicative uncertainty

in Figure 7.20:

(@) RP with multiplicative uncertainty
(b) RS with combined multiplicative and inverse multiplicative uncertainty

As usual the uncertain perturbations are normalized such that ||[A4]lc < 1 and
[|Az|lso < 1. Sincewe usethe H ., norm to define both uncertainty and performance
and sincetheweightsin Figures 7.20(a) and (b) are the same, thetestsfor RP and RS
in cases (@) and (b), respectively, are identical. This may be argued from the block
diagrams, or by simply evaluating the conditionsfor the two cases as shown below.

(a8) Theconditionfor RP with multiplicative uncertainty was derived in (7.61), but
with w; replaced by wp and with w- replaced by wr. We found

RP & |uS|+|wT|<1, Yw (7.79)

(b) We will now derive the RS-condition for the case where L, is stable (this
assumption may be relaxed if the more general M A-structure is used, see
(8.127)). We want the system to be closed-loop stable for all possible A ; and
As. RSis equivalent to avoiding encirclements of —1 by the Nyquist plot of
L,. That is, the distance between L, and —1 must be larger than zero, i.e.
|1 4+ L,| > 0, and therefore

RS & [14L,|>0 VL, Vw (7.80)
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& 14+ LA +wsly)(1 —wiAy) 7Y >0, VA, VA,, Vw (7.81)

=4 |1+L+Lw2A2 —w1A1| >0, VAl,VAQ,Vw (782)

Here the worst case is obtained when we choose A ; and A, with magnitudes 1

such that the terms Lw, A and wy A, arein the opposite direction of the term
1+ L. Weget

RS = |1+ L| — |Lws| — Jwi]| >0, Yw (7.83)

== |IU15| + |IU2T| < ]., Yw (784)

which is the same condition as found for RP.

7.7 Examplesof parametric uncertainty

We now provide some further examples of how to represent parametric uncertainty.
The perturbations A must be real to exactly represent parametric uncertainty.

7.7.1 Parametric pole uncertainty

Consider uncertainty in the parameter a in a state space model, y = ay + bu,
corresponding to theuncertaintransfer function G ,(s) = b/(s—a,). Moregeneraly,
consider the following set of plants
1
Gp(s) = GO(S); Amin S [¢7 S Amax (785)

s —ap

If amin and amax have different signs then this means that the plant can change from
stable to unstable with the pole crossing through the origin (which happensin some
applications). This set of plants can be written as

Go(s)

— —1<AKI1 7.
s—a(l+r,A)’ - - (7.86)

G, =

which can be exactly described by inverse multiplicative uncertainty asin (7.48) with
nominal model G = G(s)/(s — a) and

wir(s) = (7.87)

The magnitude of the weight w;;(s) isequal to r, at low frequencies. If r, islarger
than 1 then the plant can be both stable and unstable. As seen from the RS-condition
in (7.53), avaue of |w;z| larger than 1 means that |.S| must be less than 1 at the



UNCERTAINTY AND ROBUSTNESS 285

same frequency, which is consistent with the fact that we need feedback (S small) to
stabilize an unstable plant.

Time constant form. It is aso interesting to consider another form of pole
uncertainty, namely that associated with the time constant:

1
s + 1G0 (3)7 Tmin < Tp < Tmax (788)
This results in uncertainty in the pole location, but the set of plants is entirely
different from that in (7.85). The reason is that in (7.85) the uncertainty affects the
model at low frequency, whereas in (7.88) the uncertainty affects the model at high
frequency. The corresponding uncertainty weight as derived in (7.8) is

Gp(s) =

T, TS
1+ 7s
This weight is zero at w = 0 and approaches r, at high frequency, whereas the
weight w;y in (7.87) isr, a w = 0 and approaches zero at high frequencies.

(7.89)

wir(s)

7.7.2 Parametric zero uncertainty

Consider zero uncertainty in the “time constant” form, asin
Gp(s) = (1 4+ 155)Go(5);  Tmin < Tp < Tmax (7.90)

where the remaining dynamics G (s) are as usual assumed to have no uncertainty.
For example, let —1 < 7, < 3. Then the possible zeros z, = —1/7, cross from the
LHP to the RHP through infinity: z, < —1/3 (in LHP) and z,, > 1 (in RHP). The
set of plantsin (7.90) may be written as multiplicative (relative) uncertainty with

wr(s) =r;7s/(1+Ts) (7.91)

The magnitude |wr(jw)| issmall at low frequencies, and approachesr - (the relative
uncertainty in 7) at high frequencies. For cases with r, > 1 we alow the zero to
cross from the LHP to the RHP (through infinity).

Exercise 7.6 Parametric zero uncertainty in zero form. Consider the following
alternative form of parametric zero uncertainty

Gp(S) = (S + ZP)GO (5)7 Zmin S Zp S Zmax (792)

which caters for zeros crossing from the LHP to the RHP through the origin (corresponding
to a sign change in the steady-state gain). Show that the resulting multiplicative weight is
wr(s) = r.z/(s+z) and explain why the set of plants given by (7.92) is entirely different from
that with the zero uncertainty in “time constant” form in (7.90). Explain what the implications
are for control ifr, > 1.

Remark. Both of the two zero uncertainty forms, (7.90) and (7.92), can occur in practice. An
example of the zero uncertainty form in (7.92), which alows for changes in the steady-state
gain, isgiven in Example 7.10.



286 MULTIVARIABLE FEEDBACK CONTROL

7.7.3 Parametric state-space uncertainty

The above parametric uncertainty descriptions are mainly included to gain insight.
A general procedure for handling parametric uncertainty, more suited for numerical
calculations, is given by Packard (1988). Consider an uncertain state-space model

= A,z + Byu (7.93)
= Cpz+ Dpu (7.94)

or equivalently
Gy(s) =Cy(sI —Ay)) " 'B, + D, (7.95)

Assume that the underlying cause for the uncertainty is uncertainty in some real
parameters é1, d, - . . (these could be temperature, mass, volume, etc.), and assume
in the simplest case that the state-space matrices depend linearly on these parameters
i.e

Ap :A+Z§1Al, Bp =B+25iBi Cp :C+Zél01, Dp :D+251Dz (796)

where A, B,C and D model the nominal system. This description has multiple
perturbations, so it cannot be represented by a single perturbation, but it should be
fairly clear that we can separate out the perturbations affecting A, B, C and D, and
then collect them in alarge diagonal matrix A with thereal §;’s along its diagonal.
Some of the §;’s may have to be repeated. For example, we may write

Ay =A+ 5iAi = A+ WA, (7.97)

where A is diagonal with the §;’s along its diagonal. Introduce ®(s) = (sI — A) ™!,
and we get
(sI —Ay)) = (sI — A=W AW;) !t = (I — ®(s)WoAW,) 1 ®(s) (7.98)

Thisis illustrated in the block diagram of Figure 7.21, which is in the form of an
inverse additive perturbation (see Figure 8.5(d)).

Example 7.9 Supposed,, is a function of two parameters, = 1 + wid; (=1 < §; < 1)
anda, = 3 + w2d2 (—1 < 62 < 1) as follows:

| -2-k kp — «
no= [ ] 7
Then
_ -3 -2 —wq w1 0 —wa
A, = { ; _1] 4oy { w _wl} +6 [mz : } (7.100)
N L - L - L
A Ay Az
wy 0 wo 601 0 O 1 -1
= A+{_ - ‘Ho 52 0}[1 0] (7.101)
Lwe 2w 0 15 o 5] o0 1
h —_—
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Figure 7.21: Uncertainty in state space A-matrix

Note that§; appears only once il\, whereas)> needs to be repeated. This is related to the
ranks of the matrices!; (which has ranki) and A, (which has rank2).

Additional repetitions of the parameters §; may be necessary if we also have
uncertainty in B, C' and D. It can be shown that the minimum number of repetitions
of each §; in the overall A-matrix is equal to the rank of each matrix {é‘f Bi}

3 3

(Packard, 1988; Zhou et a., 1996). Also, note that seemingly nonlinear parameter
dependencies may be rewritten in our standard linear block diagram form, for
example, we can handle 67 (which would need 4, repested), %2802 etc. This
isillustrated next by an example.

Example 7.10 Parametric uncertainty and repeated perturbations. This example
illustrates how most forms of parametric uncertainty can be represented in terms Afthe
representation using linear fractional transformations (LFTs). Consider the following state
space description of a SISO plant

T = Apx + Bpu, y=Cx (7.102)

T Thisis actually a simple model of a chemical reactor (CSTR) where u is the feed flowrate, iy is the
concentration of reactant A, y = x» is the concentration of intermediate product B and £ = ¢* isthe
steady-state value of the feed flowrate. Component balances yield

Véa =qecap —qea — kicaV [mol A/s|

Vép = —qep + kicaV — kacgV  [mol B/s]
where V' isthe reactor volume. Linearization and introduction of deviation variables, ;3 = Aca,x2 =
Acg,andu = Agq,yidds, withk; = 1,ko =1,V =1 andcjl = c}; =1,
&1 =—(L+¢")z1 + (chy — Du

To=z1—(1+q¢")z2 —u
where the superscript * signifies a steady-state value. The values of ¢* and ¢’ f depend on the operating
point, and it is given that at steady-state we aways have ¢*c% ;= 1 (physicaly, we may have an
upstream mixing tank where a fixed amount of A isfed in). By introducing k£ = ¢* we get the model
in (7.103).
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= | (L +k) 0 _[izk _

The constank > 0 may vary during operation, so the above description generates a set of
possible plants. Assume that= 0.5 £ 0.1, which may be written as

k=05+015, [5|<1 (7.104)

Note that the parametdr enters into the plant model in several places, and we will need to
use repeated perturbations in order to rearrange the model to fit our standard formulation
with the uncertainty represented as a block-diagofaimatrix.

Let us first consider the input gain uncertainty for statethat is, the variations irb,1 =
(1—k)/k. Even thouglb,: is a nonlinear function of, it has a block-diagram representation
and may thus be written as a linear fractional transformation (LFT). We have

11—k _05-015 1-025

b10) = 5~ = 057010 11020 (7.105)
which may be written as a scalar LFT
bp1(0) = Fu(N,8) = n2o + n120(1 — n118) " 'nan (7.106)
withnas = 1, n11 = —0.2, ni12n21 = —0.4. Next consider the pole uncertainty caused by
variations in theA-matrix, which may be written as
= 0 Y w01

For our specific example with uncertainty in balh and A, the plant uncertainty may be
represented as shown in Figure 7.22 whdfés) is a scalar controller. Consequently, we
may pull out the perturbations and collect them i8 & 3 diagonal A-block with the scalar
perturbationd repeated three times,

5
5 (7.108)
s

and we may then obtain the interconnection maffby rearranging the block diagram of
Figure 7.22 to fit Figure 3.21. It is rather tedious to do this by hand, but it is relatively
straightforward with the appropriate software tools.

Remark. The above example is included in order to show that quite complex uncertainty
representations can be captured by the general framework of block-diagonal perturbations. It
is not suggested, however, that such a complicated description should be used in practice for
this example. A little more analysis will show why. The transfer function for thisplant is

(7.109)
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Figure 7.22: Block diagram of parametric uncertainty

and we note that it has a RHP-zero for k < 0.414, and that the steady state gain is zero for
k = 0.414. The three plants corresponding to £ = 0.5, 0.4 and 0.6 are

Gls) =~ Gnl) =~

(s +1.5)%’
From a practical point of view the pole uncertainty therefore seems to be of very little
importance and we may use a simplified uncertainty description with zero uncertainty only,

eg.

(s +0.93)

Gp2(s) = L2

(7.110)

_ (s + 2p) .
90(s) = (s +1.5)2’
In any case, we know that because of the RHP-zero crossing through the origin, the
performance at low frequencies will be very poor for this plant.

—0.1< 2, <0.93 (7.111)

7.8 Additional exercises

Exercise 7.7 Consider a “true” plant
36—0.15

G'(s) = (25 + 1)(0.1s + 1)2

(a) Derive and sketch the additive uncertainty weight when the nominal mod#lsis =
3/(2s +1).

(b) Derive the corresponding robust stability condition.

(c) Apply this test for the controlleK (s) = k/s and find the values df that yield stability.
Is this condition tight?

Exercise 7.8 Uncertainty weight for a first-order model with delay. Laughlin et al.
(1987) considered the following parametric uncertainty description

k —Ops
GP(S) = T:_le O ; k'p S [kll)il)y kmax]y Tp € [Tmin,Tmax]; 91) € [ell)il)y emax]
p
(7.112)
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where all parameters are assumed positive. They chose the mean parameter vatuésmas (
giving the nominal model

s ke
G(s) =G(s) = L (7.113)
and suggested use of the following multiplicative uncertainty weight

kmax . Ts+1 . Ts +1 —1: T = ell)ax — emin
k' Tmins+1 —Ts+1 7 B 4

wrr (S) = (7114)

(a) Show that the resulting stable and minimum phase weight corresponding to the uncertainty
description in (7.17) is

wrr(s) = (1.255 + 1.555 + 0.2) /(25 + 1)(0.255 + 1) (7.115)
Note that this weight cannot be compared with (7.19) or (7.20) since the nominal plant is
different.

(b) Plot the magnitude af; 1, as a function of frequency. Find the frequency where the weight
crossed in magnitude, and compare this withfmax. Comment on your answer.

(c) Find I;(jw) using (7.15) and compare withw;z|. Does the weight (7.115) and the
uncertainty model (7.2) include all possible plants? (Answer: No, not quite around frequency
w =5).

Exercise 7.9 Consider again the system in Figure 7.18. What kind of uncertainty might
and A, represent?
Exercise 7.10 Neglected dynamics. Assume we have derived the following detailed model

3(—0.55 + 1)
(25 + 1)(0.1s + 1)2

Gaetait(s) = (7.116)

and we want to use the simplified nominal mo@&k) = 3/(2s + 1) with multiplicative
uncertainty. Plot; (w) and approximate it by a rational transfer functiam (s).

Exercise 7.11 Parametric gain uncertainty. We showed in Example 7.1 how to represent
scalar parametric gain uncertaint§, (s) = k,Go(s) where
kmin S kp S kmax (7117)

as multiplicative uncertainty@, = G(1 4+ wrAr) with nominal modeG (s) = kGo(s) and
uncertainty weightv; = 7, = (kmax — kmin)/(kmax + kmin). A7 is here a real scalar,
—1 < Ar < 1. Alternatively, we can represent gain uncertaintyiagerse multiplicative
uncertainty:

IL;7 : Gp(s) = G(S)(l =+ wu(s)Au)_l; —1 < Ai] < 1 (7118)

with w;; = r, andG(s) = k;G where

kminkmax
ki=2——7— 7.119
kmax + kmin ( )
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(a) Derive (7.118) and (7.119). (Hint: The gain variation in (7.117) can be written exactly as
k'p = kl/(]. — T'kA))

(b) Show that the form in (7.118) does not allow kgr= 0.

(c) Discuss why (b) may be a possible adeget

Exercise 7.12 The model of an industrial robot arm is as follows

250(as® 4+ 0.0001s + 100)
s(as? + 0.0001(500a + 1)s + 100(500a + 1))

G(s) =

wherea € [0.0002, 0.002]. Sketch the Bode plot for the two extreme values W¥hat kind of
control performance do you expect? Discuss how you may best represent this uncertainty.

7.9 Conclusion

In this chapter we have shown how model uncertainty for SISO systems can be
represented in the frequency domain using complex norm-bounded perturbations,
[|Alloo < 1. At the end of the chapter we also discussed how to represent parametric
uncertainty using real perturbations.

We showed that the requirement of robust stability for the case of multiplicative
complex uncertainty imposes an upper bound on the allowed complementary
sensitivity, |w;T| < 1, Vw. Similarly, the inverse multiplicative uncertainty imposes
an upper bound on the sensitivity, |w;; S| < 1,Vw. We aso derived a condition for
robust performance with multiplicative uncertainty, |w pS| + |wiT| < 1, Vw.

The approach in this chapter was rather elementary, and to extend the results to
MIMO systems and to more complex uncertainty descriptions we need to make use
of the structured singular value, pi.. This is the theme of the next chapter, where we
find that |w;T'| and |w;r S| are the structured singular values for evaluating robust
stability for the two sources of uncertainty in question, whereas |w pS| + |wiT| is
the structured singular value for evaluating robust performance with multiplicative
uncertainty.
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8

ROBUST STABILITY AND
PERFORMANCE ANALYSIS

The objective of this chapter isto present a general method for analyzing robust stability and
robust performance of MIMO systems with multiple perturbations. Our main analysis tool
will be the structured singular valugu. We also show how the “optimal” robust controller, in
terms of minimizing , can be designed using D K -iteration. Thisinvolves solving a sequence
of scaled H ., problems.

8.1 General control configuration with uncertainty

For useful notation and an introduction to model uncertainty the reader is referred
to Sections 7.1 and 7.2. The starting point for our robustness analysis is a system
representation in which the uncertain perturbations are “pulled out” into a block-
diagonal matrix,

Ay

A = diag{A;} = (8.1)

A

where each A ; represents a specific source of uncertainty, e.g. input uncertainty, A r,
or parametric uncertainty, §;, where §; isreal. If we also pull out the controller K,
we get the generalized plant P, as shown in Figure 8.1. This form is useful for
controller synthesis. Alternatively, if the controller is given and we want to analyze
the uncertain system, we use the N A-structurein Figure 8.2.

In Section 3.8.8, we discussed how to find P and N for cases without uncertainty.
The procedure with uncertainty is similar and is demonstrated by examples below;
see Section 8.3. To illustrate the main idea, consider Figure 8.4 where it is shown
how to pull out the perturbation blocks to form A and the nomina system N. As
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Figure 8.1: Genera control configuration (for controller synthesis)
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Figure 8.2: N A-structure for robust performance analysis

shownin (3.111), NV isrelated to P and K by alower LFT

N =E(P,K) 2 Py + Py K(I — Py K) ' Py (8.2

Similarly, the uncertain closed-loop transfer functionfromw to z, z = Fw, isrelated
to NV and A by an upper LFT (see(3.112)),

F = FU(N, A) £ Ny + NQlA([ — NllA)71N12 (83)

To analyze robust stability of F', we can then rearrange the system into the M A-

ua

A

Y

M

A

ya

Figure 8.3: M A-structure for robust stability analysis
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(a) Original system with multiple perturbations

N

(b) Pulling out the perturbations

Figure 8.4: Rearranging an uncertain system into the NV A-structure
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structure of Figure 8.3 where M = Ny, is the transfer function from the output to
the input of the perturbations.

8.2 Representing uncertainty

Asusual, each individual perturbation is assumed to be stable and is normalized,
5(Ai(jw)) < 1Vw (8.4)

For a complex scalar perturbation we have |6;(jw)| < 1, Yw, and for area scalar
perturbation —1 < §; < 1. Since from (A.47) the maximum singular value of a
block diagonal matrix is equal to the largest of the maximum singular values of the
individual blocks, it then follows for A = diag{A;} that

F(Ai(jw) <1Vw, ¥i & [Allo <1 (85)

Note that A has structure and therefore in the robustness analysis we do not want
to alow al A such that (8.5) is satisfied. Only the subset which has the block-
diagonal structure in (8.1) should be considered. In some cases the blocksin A may
be repeated or may be readl, that is, we have additional structure. For example, as
shown in Section 7.7.3, repetition is often needed to handle parametric uncertainty.

Remark. The assumption of a stable A may be relaxed, but then the resulting robust stability
and performance conditions will be harder to derive and more complex to state. Furthermore,
if we use a suitable form for the uncertainty and allow for multiple perturbations, then we can
always generate the desired class of plants with stable perturbations, so assuming A stableis
not really arestriction.

8.2.1 Differencesbetween SISO and MIMO systems

The main difference between SISO and MIMO systems is the concept of directions
whichisonly relevant in thelatter. Asaconsequence MIMO systems may experience
much larger sensitivity to uncertainty than SISO systems. The following example
illustrates that for MIMO systems it is sometimes critical to represent the coupling
between uncertainty in different transfer function elements.

Example 8.1 Coupling between transfer function elements. Consider a distillation
process where at steady-state

_[87.8 —86.4 _ 351 —34.1
G= [108.2 —109.6}’ A =RGA(G) = {_34.1 35.1} (8.6)
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From the large RGA-elements we know tliabecomes singular for small relative changes

in the individual elements. For example, from (6.88) we know that perturbing, thelement

from —86.4 to —88.9 makesG singular. Since variations in the steady-state gaing-60%

or more may occur during operation of the distillation process, this seems to indicate that
independent control of both outputs is impossible. However, this conclusion is incorrect since,
for a distillation process(z never becomes singular. The reason is that the transfer function
elements are coupled due to underlying physical constraints (e.g. the material balance).
Specifically, for the distillation process a more reasonable description of the gain uncertainty
is (Skogestad et al., 1988)

6 =9
R U ®7)

G, =G+ w[
where w in this case is a real constant, e.q: = 50. For the numerical data above
det G, = det G irrespective ofd, so G, is never singular for this uncertainty. (Note that
det G, = det G is not generally true for the uncertainty description given in (8.7)).

Exercise 8.1 The uncertain plant in (8.7) may be represented in the additive uncertainty
formG, = G+ W>A AW, whereA 4 = § is a single scalar perturbation. Find’; and W5.

8.2.2 Parametric uncertainty

The representation of parametric uncertainty, as discussed in Chapter 7 for SISO
systems, carries straight over to MIMO systems. However, the inclusion of
parametric uncertainty may be more significant for MIMO plants because it offers
a simple method of representing the coupling between uncertain transfer function
elements. For example, the simple uncertainty description used in (8.7) originated
from a parametric uncertainty description of the distillation process.

8.2.3 Unstructured uncertainty

Unstructured perturbations are often used to get a simple uncertainty model. We here
define unstructureduncertainty as the use of a“full” complex perturbation matrix A,
usually with dimensions compatible with those of the plant, where at each frequency
any A(jw) satisfying g (A(jw)) < 1isalowed.

Six common forms of unstructured uncertainty are shown in Figure 8.5. In
Figure 8.5(a), (b) and (c) are shown three feedforwardforms; additive uncertainty,
multiplicative input uncertainty and multiplicative output uncertainty:

II4: GPZG+EA; E, =wsA, (8.8)
Iy : Gp = G(I + E]); Er =wrAy (89)
Ip : Gp = (I + Eo)G; Eo = wolAo (8.10)
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Figure 8.5: (a) Additive uncertainty, (b) Multiplicative input uncertainty, (c) Multiplicative
output uncertainty, (d) Inverse additive uncertainty, (€) Inverse multiplicative input uncertainty,
() Inver