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BORGHEIM, an engineer:

Herregud, en kan da ikke gjøre noe bedre enn leke i denne
velsignede verden. Jeg synes hele livet er som en lek, jeg!

Good heavens, one can’t do anything better than play in this
blessed world. The whole of life seems like playing to me!

Act one, LITTLE EYOLF, Henrik Ibsen.
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PREFACE

This is a book on practical feedback control and not on system theory generally.
Feedback is used in control systems to change the dynamics of the system (usually
to make the response stable and sufficiently fast), and to reduce the sensitivity of the
system to signal uncertainty (disturbances) and model uncertainty. Important topics
covered in the book, include

� classical frequency-domain methods
� analysis of directions in multivariable systems using the singular value

decomposition
� input-output controllability (inherent control limitations in the plant)
� model uncertainty and robustness
� performance requirements
� methods for controller design and model reduction
� control structure selection and decentralized control

The treatment is for linear systems. The theory is then much simpler and more well
developed, and a large amount of practical experience tells us that in many cases
linear controllers designed using linear methods provide satisfactory performance
when applied to real nonlinear plants.

We have attempted to keep the mathematics at a reasonably simple level, and we
emphasize results that enhanceinsightandintuition. The design methods currently
available for linear systems are well developed, and with associated software it
is relatively straightforward to design controllers for most multivariable plants.
However, without insight and intuition it is difficult to judge a solution, and to know
how to proceed (e.g. how to change weights) in order to improve a design.

The book is appropriate for use as a text for an introductory graduate course
in multivariable control or for an advanced undergraduate course. We also think
it will be useful for engineers who want to understand multivariable control, its
limitations, and how it can be applied in practice. There are numerous worked
examples, exercises and case studies which make frequent use of MATLABTM 1.

1 MATLAB is a registered trademark of The MathWorks, Inc.
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The prerequisites for reading this book are an introductory course in classical
single-input single-output (SISO) control and some elementary knowledge of
matrices and linear algebra. Parts of the book can be studied alone, and provide an
appropriate background for a number of linear control courses at both undergraduate
and graduate levels: classical loop-shaping control, an introduction to multivariable
control, advanced multivariable control, robust control, controller design, control
structure design and controllability analysis.

The book is partly based on a graduate multivariable control course given by the
first author in the Cybernetics Department at the Norwegian University of Science
and Technology in Trondheim. About 10 students from Electrical, Chemical and
Mechanical Engineering have taken the course each year since 1989. The course
has usually consisted of 3 lectures a week for 12 weeks. In addition to regular
assignments, the students have been required to complete a 50 hour design project
using MATLAB. In Appendix B, a project outline is given together with a sample
exam.

Examples and internet

Most of the numerical examples have been solved using MATLAB. Some sample
files are included in the text to illustrate the steps involved. Most of these files use
the�-toolbox, and some the Robust Control toolbox, but in most cases the problems
could have been solved easily using other software packages.

The following are available over the internet:

� MATLAB files for examples and figures
� Solutions to selected exercises
� Linear state-space models for plants used in the case studies
� Corrections, comments to chapters, extra exercises and exam sets

This information can be accessed from the authors’ home pages:

� http://www.chembio.ntnu.no/users/skoge
� http://www.le.ac.uk/engineering/staff/Postlethwaite

Comments and questions

Please send questions, errors and any comments you may have to the authors. Their
email addresses are:

� Sigurd.Skogestad@chembio.ntnu.no
� ixp@le.ac.uk
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1

INTRODUCTION

In this chapter, we begin with a brief outline of the design process for control systems. We
then discuss linear models and transfer functions which are the basic building blocks for the
analysis and design techniques presented in this book. The scaling of variables is critical in
applications and so we provide a simple procedure for this. An example is given to show how
to derive a linear model in terms of deviation variables for a practical application. Finally, we
summarize the most important notation used in the book.

1.1 The process of control system design

The process of designing a control system usually makes many demands of the
engineer or engineering team. These demands often emerge in a step by step design
procedure as follows:

1. Study the system (plant) to be controlled and obtain initial information about the
control objectives.

2. Model the system and simplify the model, if necessary.
3. Scale the variables and analyze the resulting model; determine its properties.
4. Decide which variables are to be controlled (controlled outputs).
5. Decide on the measurements and manipulated variables: what sensors and

actuators will be used and where will they be placed?
6. Select the control configuration.
7. Decide on the type of controller to be used.
8. Decide on performance specifications, based on the overall control objectives.
9. Design a controller.

10. Analyze the resulting controlled system to see if the specifications are satisfied;
and if they are not satisfied modify the specifications or the type of controller.

11. Simulate the resulting controlled system, either on a computer or a pilot plant.
12. Repeat from step 2, if necessary.
13. Choose hardware and software and implement the controller.
14. Test and validate the control system, and tune the controller on-line, if necessary.
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Control courses and text books usually focus on steps 9 and 10 in the above
procedure; that is, on methods for controller design and control system analysis.
Interestingly, many real control systems are designed without any consideration
of these two steps. For example, even for complex systems with many inputs and
outputs, it may be possible to design workable control systems, often based on a
hierarchy of cascaded control loops, using only on-line tuning (involving steps 1, 4
5, 6, 7, 13 and 14). However, in this case a suitable control structure may not be
known at the outset, and there is a need for systematic tools and insights to assist
the designer with steps 4, 5 and 6. A special feature of this book is the provision
of tools for input-output controllability analysis(step 3) and forcontrol structure
design(steps 4, 5, 6 and 7).

Input-output controllability is the ability to achieve acceptable control perfor-
mance. It is affected by the location of sensors and actuators, but otherwise it cannot
be changed by the control engineer. Simply stated, “even the best control system can-
not make a Ferrari out of a Volkswagen”. Therefore, the process of control system
design should in some cases also include a step 0, involving the design of the pro-
cess equipment itself. The idea of looking at process equipment design and control
system design as an integrated whole is not new, as is clear from the following quote
taken from a paper by Ziegler and Nichols (1943):

In the application of automatic controllers, it is important to realize that
controller and process form a unit; credit or discredit for results obtained
are attributable to one as much as the other. A poor controller is often
able to perform acceptably on a process which is easily controlled. The
finest controller made, when applied to a miserably designed process,
may not deliver the desired performance. True, on badly designed
processes, advanced controllers are able to eke out better results than
older models, but on these processes, there is a definite end point which
can be approached by instrumentation and it falls short of perfection.

Ziegler and Nichols then proceed to observe that there is a factor in equipment design
that is neglected, and state that

. . . the missing characteristic can be called the “controllability”, the
ability of the process to achieve and maintain the desired equilibrium
value.

To derive simple tools with which to quantify the inherent input-output
controllability of a plant is the goal of Chapters 5 and 6.

1.2 The control problem

The objective of a control system is to make the outputy behave in a desired way
by manipulating the plant inputu. The regulator problemis to manipulateu to
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counteract the effect of a disturbanced. The servo problemis to manipulateu to
keep the output close to a given reference inputr. Thus, in both cases we want the
control error e = y � r to be small. The algorithm for adjustingu based on the
available information is the controllerK. To arrive at a good design forK we need
a priori information about the expected disturbances and reference inputs, and of the
plant model (G) and disturbance model (Gd). In this book we make use of linear
models of the form

y = Gu+Gdd (1.1)

A major source of difficulty is that the models (G, Gd) may be inaccurate or may
change with time. In particular, inaccuracy inG may cause problems because the
plant will be part of a feedback loop. To deal with such a problem we will make
use of the concept of model uncertainty. For example, instead of a single modelG
we may study the behaviour of a class of models,Gp = G + E, where the model
“uncertainty” or “perturbation”E is bounded, but otherwise unknown. In most cases
weighting functions,w(s), are used to expressE = w� in terms of normalized
perturbations,�, where the magnitude (norm) of� is less than or equal to1. The
following terms are useful:

Nominal stability (NS). The system is stable with no model uncertainty.

Nominal Performance (NP). The system satisfies the performance specifications
with no model uncertainty.

Robust stability (RS). The system is stable for all perturbed plants about the
nominal model up to the worst-case model uncertainty.

Robust performance (RP). The system satisfies the performance specifications for
all perturbed plants about the nominal model up to the worst-case model
uncertainty.

1.3 Transfer functions

The book makes extensive use of transfer functions,G(s), and of the frequency
domain, which are very useful in applications for the following reasons:

� Invaluable insights are obtained from simple frequency-dependent plots.
� Important concepts for feedback such as bandwidth and peaks of closed-loop

transfer functions may be defined.
� G(j!) gives the response to a sinusoidal input of frequency!.
� A series interconnection of systems corresponds in the frequency domain to

multiplication of the individual system transfer functions, whereas in the time
domain the evaluation of complicated convolution integrals is required.

� Poles and zeros appear explicitly in factorized scalar transfer functions.
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� Uncertainty is more easily handled in the frequency domain. This is related to the
fact that two systems can be described as close (i.e. have similar behaviour) if their
frequency responses are similar. On the other hand, a small change in a parameter
in a state-space description can result in an entirely different system response.

We consider linear, time-invariant systems whose input-output responses are
governed by linear ordinary differential equations with constant coefficients. An
example of such a system is

_x1(t) = �a1x1(t) + x2(t) + �1u(t)
_x2(t) = �a0x1(t) + �0u(t)
y(t) = x1(t)

(1.2)

where _x(t) � dx=dt. ’ Here u(t) represents the input signal,x1(t) andx2(t) the
states, andy(t) the output signal. The system is time-invariant since the coefficients
a1; a0; �1 and�0 are independent of time. If we apply the Laplace transform to (1.2)
we obtain

s�x1(s)� x1(t = 0) = �a1�x1(s) + �x2(s) + �1�u(s)
s�x2(s)� x2(t = 0) = �a0�x1(s) + �0�u(s)

�y(s) = �x1(s)
(1.3)

where �y(s) denotes the Laplace transform ofy(t), and so on. To simplify our
presentation we will make the usual abuse of notation and replace�y(s) by y(s),
etc.. In addition, we will omit the independent variabless andt when the meaning is
clear.

If u(t); x1(t); x2(t) andy(t) represent deviation variables away from a nominal
operating point or trajectory, then we can assumex1(t = 0) = x2(t = 0) = 0. The
elimination ofx1(s) andx2(s) from (1.3) then yields the transfer function

y(s)

u(s)
= G(s) =

�1s+ �0
s2 + a1s+ a0

(1.4)

Importantly, for linear systems, the transfer function is independent of the input
signal (forcing function). Notice that the transfer function in (1.4) may also represent
the following system

�y(t) + a1 _y(t) + a0y(t) = �1 _u(t) + �0u(t) (1.5)

with inputu(t) and outputy(t).
Transfer functions, such asG(s) in (1.4), will be used throughout the book to

model systems and their components. More generally, we consider rational transfer
functions of the form

G(s) =
�nzs

nz + � � �+ �1s+ �0
sn + an�1sn�1 + � � �+ a1s+ a0

(1.6)
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For multivariable systems,G(s) is a matrix of transfer functions. In (1.6)n is the
order of the denominator (or pole polynomial) and is also called theorder of the
system, andnz is the order of the numerator (or zero polynomial). Thenn � n z is
referred to as the pole excess orrelative order.

Definition 1.1

� A systemG(s) is strictly properif G(j!)! 0 as! !1.
� A systemG(s) is semi-properor bi-properif G(j!)! D 6= 0 as! !1.
� A systemG(s) which is strictly proper or semi-proper isproper.
� A systemG(s) is improperif G(j!)!1 as! !1.

For a proper system, withn � nz, we may realize (1.6) by a state-space description,
_x = Ax + Bu; y = Cx +Du, similar to (1.2). The transfer function may then be
written as

G(s) = C(sI �A)�1B +D (1.7)

Remark. All practical systems will have zero gain at a sufficiently high frequency, and are
therefore strictly proper. It is often convenient, however, to model high frequency effects by
a non-zeroD-term, and hence semi-proper models are frequently used. Furthermore, certain
derived transfer functions, such asS = (I +GK)�1, are semi-proper.

Usually we useG(s) to represent the effect of the inputsu on the outputsy, whereas
Gd(s) represents the effect ony of the disturbancesd. We then have the following
linear process model in terms of deviation variables

y(s) = G(s)u(s) +Gd(s)d(s) (1.8)

We have made use of the superposition principle for linear systems, which implies
that a change in a dependent variable (herey) can simply be found by adding together
the separate effects resulting from changes in the independent variables (hereu and
d) considered one at a time.

All the signalsu(s), d(s) and y(s) are deviation variables. This is sometimes
shown explicitly, for example, by use of the notationÆu(s), but since we always use
deviation variables when we consider Laplace transforms, theÆ is normally omitted.

1.4 Scaling

Scaling is very important in practical applications as it makes model analysis and
controller design (weight selection) much simpler. It requires the engineer to make
a judgement at the start of the design process about the required performance of the
system. To do this, decisions are made on the expected magnitudes of disturbances
and reference changes, on the allowed magnitude of each input signal, and on the
allowed deviation of each output.
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Let the unscaled (or originally scaled) linear model of the process in deviation
variables be by = bGbu+ bGd

bd; be = by � br (1.9)

where a hat (b ) is used to show that the variables are in their unscaled units. A
useful approach for scaling is to make the variables less than one in magnitude. This
is done bydividing each variable by its maximum expected or allowed change.For
disturbances and manipulated inputs, we use the scaled variables

d = bd=bdmax; u = bu=bumax (1.10)

where:

� bdmax — largest expected change in disturbance
� bumax — largest allowed input change

The maximum deviation from a nominal value should be chosen by thinking of the
maximum value one can expect, or allow, as a function of time.

The variablesby, be andbr are in the same units, so the same scaling factor should be
applied to each. Two alternatives are possible:

� bemax — largest allowed control error
� brmax — largest expected change in reference value

Since a major objective of control is to minimize the control errorbe, we here usually
choose to scale with respect to the maximum control error:

y = by=bemax; r = br=bemax; e = be=bemax (1.11)

To formalize the scaling procedure, introduce the scaling factors

De = bemax; Du = bumax; Dd = bdmax; Dr = brmax (1.12)

For MIMO systems each variable in the vectorsbd, br, bu andbe may have a different
maximum value, in which caseDe, Du, Dd and Dr become diagonal scaling
matrices. This ensures, for example, that all errors (outputs) are of about equal
importance in terms of their magnitude.

The corresponding scaled variables to use for control purposes are then

d = D�1
d
bd; u = D�1

u bu; y = D�1
e by; e = D�1

e be; r = D�1
e br (1.13)

On substituting (1.13) into (1.9) we get

Dey = bGDuu+ bGdDdd; Dee = Dey �Der

and introducing the scaled transfer functions

G = D�1
e
bGDu; Gd = D�1

e
bGdDd (1.14)
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then yields the following model in terms of scaled variables

y = Gu+Gdd; e = y � r (1.15)

Hereu andd should be less than 1 in magnitude, and it is useful in some cases to
introduce a scaled referenceer, which is less than 1 in magnitude. This is done by
dividing the reference by the maximum expected reference change

er = br=brmax = D�1
r br (1.16)

We then have that

r = Rer where R , D�1
e Dr = brmax=bemax (1.17)

HereR is the largest expected change in reference relative to the allowed control

e e- - -? ?

? ?

-u
G

Gd

d

y
r
-

+

+

+

er

e

R

Figure 1.1: Model in terms of scaled variables

error (typically,R � 1). The block diagram for the system in scaled variables may
then be written as in Figure 1.1, for which the following control objective is relevant:

� In terms of scaled variables we have thatjd(t)j � 1 andjer(t)j � 1, and our control
objective is to manipulateu with ju(t)j � 1 such thatje(t)j = jy(t) � r(t)j � 1
(at least most of the time).

Remark 1 A number of the interpretations used in the book depend critically on a correct
scaling. In particular, this applies to the input-output controllability analysis presented in
Chapters 5 and 6. Furthermore, for a MIMO system one cannot correctly make use of the
sensitivity functionS = (I +GK)�1 unless the output errors are of comparable magnitude.

Remark 2 With the above scalings, the worst-case behaviour of a system is analyzed by
considering disturbancesd of magnitude1, and referenceser of magnitude1.

Remark 3 The control error is

e = y � r = Gu+Gdd�Rer (1.18)

and we see that a normalized reference changeer may be viewed as a special case of a
disturbance withGd = �R, whereR is usually a constant diagonal matrix. We will
sometimes use this to unify our treatment of disturbances and references.
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Remark 4 The scaling of the outputs in (1.11) in terms of the control error is used when
analyzing a given plant. However, if the issue is toselectwhich outputs to control, see
Section 10.3, then one may choose to scale the outputs with respect to their expected variation
(which is usually similar tobrmax).

Remark 5 If the expected or allowed variation of a variable about0 (its nominal value) is not
symmetric, then the largest variation should be used forbdmax and the smallest variation forbumax andbemax. For example, if the disturbance is�5 � bd � 10 then bdmax = 10, and if the
manipulated input is�5 � bu � 10 thenbumax = 5. This approach may be conservative (in
terms of allowing too large disturbances etc.) when the variations forseveralvariables are not
symmetric.

A further discussion on scaling and performance is given in Chapter 5 on page 161.

1.5 Deriving linear models

Linear models may be obtained from physical “first-principle” models, from
analyzing input-output data, or from a combination of these two approaches.
Although modelling and system identification are not covered in this book, it is
always important for a control engineer to have a good understanding of a model’s
origin. The following steps are usually taken when deriving a linear model for
controller design based on a first-principle approach:

1. Formulate a nonlinear state-space model based on physical knowledge.
2. Determine the steady-state operating point (or trajectory) about which to linearize.
3. Introduce deviation variables and linearize the model. There are essentially three

parts to this step:

(a) Linearize the equations using a Taylor expansion where second and higher
order terms are omitted.

(b) Introduce the deviation variables, e.g.Æx(t) defined by

Æx(t) = x(t) � x�

where the superscript� denotes the steady-state operating point or trajectory
along which we are linearizing.

(c) Subtract the steady-state to eliminate the terms involving only steady-state
quantities.

These parts are usually accomplished together. For example, for a nonlinear state-
space model of the form

dx

dt
= f(x; u) (1.19)
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the linearized model in deviation variables (Æx; Æu) is

dÆx(t)

dt
=

�
@f

@x

��
| {z }

A

Æx(t) +

�
@f

@u

��
| {z }

B

Æu(t) (1.20)

Herex andu may be vectors, in which case the JacobiansA andB are matrices.
4. Scale the variables to obtain scaled models which are more suitable for control

purposes.

In most cases steps 2 and 3 are performed numerically based on the model obtained
in step 1. Also, since (1.20) is in terms of deviation variables, its Laplace transform
becomessÆx(s) = AÆx(s) +BÆu(s), or

Æx(s) = (sI � A)�1BÆu(s) (1.21)

Example 1.1 Physical model of a room heating process.

A
AAK

A
A
A
A��

�
�
�
�AA��AA��AA��AA��AA��AA

To[K]

�[W=K]
T [K]

CV [J=K]

Q[W ]

Figure 1.2: Room heating process

The above steps for deriving a linear model will be illustrated on the simple example
depicted in Figure 1.2, where the control problem is to adjust the heat inputQ to maintain
constant room temperatureT (within �1 K). The outdoor temperatureTo is the main
disturbance. Units are shown in square brackets.

1. Physical model. An energy balance for the room requires that the change in energy in
the room must equal the net inflow of energy to the room (per unit of time). This yields the
following state-space model

d

dt
(CV T ) = Q+ �(To � T ) (1.22)
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whereT [K] is the room temperature,CV [J/K] is the heat capacity of the room,Q [W] is the
heat input (from some heat source), and the term�(To � T ) [W] represents the net heat loss
due to exchange of air and heat conduction through the walls.

2. Operating point. Consider a case where the heat inputQ� is 2000 W and the difference
between indoor and outdoor temperaturesT� � T �o is 20 K. Then the steady-state energy
balance yields�� = 2000=20 = 100 W/K. We assume the room heat capacity is constant,
CV = 100 kJ/K. (This value corresponds approximately to the heat capacity of air in a room
of about100 m3; thus we neglect heat accumulation in the walls.)

3. Linear model in deviation variables. If we assume� is constant the model in (1.22) is
already linear. Then introducing deviation variables

ÆT (t) = T (t)� T �(t); ÆQ(t) = Q(t)�Q�(t); ÆTo(t) = To(t)� T �o (t)

yields

CV
d

dt
ÆT (t) = ÆQ(t) + �(ÆTo(t)� ÆT (t)) (1.23)

Remark. If � depended on the state variable (T in this example), or on one of the independent
variables of interest (Q or To in this example), then one would have to include an extra term
(T � � T �o )Æ�(t) on the right hand side of Equation (1.23).

On taking Laplace transforms in (1.23), assumingÆT (t) = 0 at t = 0, and rearranging we
get

ÆT (s) =
1

�s+ 1

�
1

�
ÆQ(s) + ÆTo(s)

�
; � =

CV
�

(1.24)

The time constant for this example is� = 100 � 103=100 = 1000 s � 17 min which is
reasonable. It means that for a step increase in heat input it will take about17min for the
temperature to reach63% of its steady-state increase.

4. Linear model in scaled variables. Introduce the following scaled variables

y(s) =
ÆT (s)

ÆTmax
; u(s) =

ÆQ(s)

ÆQmax
; d(s) =

ÆTo(s)

ÆTo;max
(1.25)

In our case the acceptable variations in room temperatureT are�1 K, i.e.ÆTmax = Æemax =
1 K. Furthermore, the heat input can vary between0 W and6000 W, and since its nominal
value is2000 W we haveÆQmax = 2000 W (see Remark 5 on page 8). Finally, the expected
variations in outdoor temperature are�10 K, i.e. ÆTo;max = 10 K. The model in terms of
scaled variables then becomes

G(s) =
1

�s+ 1

ÆQmax

ÆTmax

1

�
=

20

1000s+ 1

Gd(s) =
1

�s+ 1

ÆTo;max

ÆTmax
=

10

1000s+ 1
(1.26)

Note that the static gain for the input isk = 20, whereas the static gain for the disturbance is
kd = 10. The fact thatjkdj > 1 means that we need some control (feedback or feedforward)
to keep the output within its allowed bound (jej � 1)when there is a disturbance of magnitude
jdj = 1. The fact thatjkj > jkdjmeans that we have enough “power” in the inputs to reject the
disturbance at steady state, that is, we can, using an input of magnitudejuj � 1, have perfect
disturbance rejection (e = 0) for the maximum disturbance (jdj = 1). We will return with a
detailed discussion of this in Section 5.16.2 where we analyze the input-output controllability
of the room heating process.
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1.6 Notation

There is no standard notation to cover all of the topics covered in this book. We
have tried to use the most familiar notation from the literature whenever possible,
but an overriding concern has been to be consistent within the book, to ensure that
the reader can follow the ideas and techniques through from one chapter to another.

The most important notation is summarized in Figure 1.3, which shows a one
degree-of-freedom control configuration with negative feedback, a two degrees-of-
freedom control configuration1, and a general control configuration. The latter can
be used to represent a wide class of controllers, including the one and two degrees-
of-freedom configurations, as well as feedforward and estimation schemes and many
others; and, as we will see, it can also be used to formulate optimization problems
for controller design. The symbols used in Figure 1.3 are defined in Table 1.1. Apart
from the use ofv to represent the controller inputs for the general configuration, this
notation is reasonably standard.

Lower-case letters are used for vectors and signals (e.g.u, y, n), and capital letters
for matrices, transfer functions and systems (e.g.G,K). Matrix elements are usually
denoted by lower-case letters, sogij is theij’th element in the matrixG. However,
sometimes we use upper-case lettersGij , for example ifG is partitioned so thatGij

is itself a matrix, or to avoid conflicts in notation. The Laplace variables is often
omitted for simplicity, so we often writeG when we meanG(s).

For state-space realizations we use the standard(A;B;C;D)-notation. That is,
a systemG with a state-space realization(A;B;C;D) has a transfer function
G(s) = C(sI �A)�1B +D. We sometimes write

G(s)
s
=

�
A B
C D

�
(1.27)

to mean that the transfer functionG(s) has a state-space realization given by the
quadruple(A;B;C;D).

For closed-loop transfer functions we useS to denote the sensitivity at the plant
output, andT = I � S to denote the complementary sensitivity. With negative
feedback,S = (I + L)�1 andT = L(I + L)�1, whereL is the transfer function
around the loop as seen from the output. In most casesL = GK, but if we
also include measurement dynamics (ym = Gmy + n) thenL = GKGm. The
corresponding transfer functions as seen from the input of the plant areL I = KG
(orLI = KGmG), SI = (I + LI)

�1 andTI = LI(I + LI)
�1.

To represent uncertainty we use perturbationsE (not normalized) or perturbations
� (normalized such that their magnitude (norm) is less than or equal to one).
The nominal plant model isG, whereas the perturbed model with uncertainty is
denotedGp (usually for a set of possible perturbed plants) orG 0 (usually for a

1 A one-degree of freedom controller has only the control errorr � ym as its input, whereas the two
degrees-of-freedom controller has two inputs, namelyr andym.
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Table 1.1: Nomenclature

K controller, in whatever configuration. Sometimes the controller is broken
down into its constituent parts. For example, in the two degrees-of-

freedom controller in Figure 1.3(b),K =
�
Kr

Ky

�
whereKr is a prefilter

andKy is the feedback controller.

For the conventional control configurations (Figure 1.3(a) and (b)):
G plant model
Gd disturbance model
r reference inputs (commands, setpoints)
d disturbances (process noise)
n measurement noise
y plant outputs. These signals include the variables to be controlled

(“primary” outputs with reference valuesr) and possibly some additional
“secondary” measurements to improve control. Usually the signalsy are
measurable.

ym measuredy
u control signals (manipulated plant inputs)

For the general control configuration (Figure 1.3(c)):
P generalized plant model. It will includeG andGd and the interconnection

structure between the plant and the controller. In addition, ifP is being
used to formulate a design problem, then it will also include weighting
functions.

w exogenous inputs: commands, disturbances and noise
z exogenous outputs; “error” signals to be minimized, e.g.y � r
v controller inputs for the general configuration, e.g. commands, measured

plant outputs, measured disturbances, etc. For the special case of a one
degree-of-freedom controller with perfect measurements we havev =
r � y.

u control signals
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particular perturbed plant). For example, with additive uncertainty we may have
Gp = G+EA = G+ wA�A, wherewA is a weight representing the magnitude of
the uncertainty.

By the right-half plane (RHP) we mean the closed right half of the complex plane,
including the imaginary axis (j!-axis). The left-half plane (LHP) is the open left half
of the complex plane, excluding the imaginary axis. A RHP-pole (unstable pole) is
a pole located in the right-half plane, and thus includes poles on the imaginary axis.
Similarly, a RHP-zero (“unstable” zero) is a zero located in the right-half plane.

We useAT to denote the transpose of a matrixA, andAH to represent its complex
conjugate transpose.

Mathematical terminology

The symbol, is used to denoteequal by definition,
def, is used to denote equivalent

by definition, andA � B means thatA is identically equal toB.

Let A and B be logic statements. Then the following expressions are equivalent:
A ( B

A if B, or: If B then A
A is necessary for B

B ) A, or: B implies A
B is sufficient for A

B only if A
not A) not B

The remaining notation, special terminology and abbreviations will be defined in the
text.



2

CLASSICAL FEEDBACK

CONTROL

In this chapter, we review the classical frequency-response techniques for the analysis and
design of single-loop (single-input single-output, SISO) feedback control systems. These
loop-shaping techniques have been successfully used by industrial control engineers for
decades, and have proved to be indispensable when it comes to providing insight into the
benefits, limitations and problems of feedback control. During the 1980’s the classical methods
were extended to a more formal method based on shaping closed-loop transfer functions, for
example, by considering theH1 norm of the weighted sensitivity function. We introduce this
method at the end of the chapter.

The same underlying ideas and techniques will recur throughout the book as we present
practical procedures for the analysis and design of multivariable (multi-input multi-output,
MIMO) control systems.

2.1 Frequency response

On replacings by j! in a transfer function modelG(s) we get the so-called
frequency response description. Frequency responses can be used to describe:

1. A system’s response to sinusoids of varying frequency,
2. The frequency content of a deterministic signal via the Fourier transform, and
3. the frequency distribution of a stochastic signal via the power spectral density

function.

In this book we use the first interpretation, namely that of frequency-by-frequency
sinusoidal response. This interpretation has the advantage of being directly linked to
the time domain, and at each frequency! the complex numberG(j!) (or complex
matrix for a MIMO system) has a clear physical interpretation. It gives the response
to an input sinusoid of frequency!. This will be explained in more detail below. For
the other two interpretations we cannot assign a clear physical meaning toG(j!) or
y(j!) at a particular frequency – it is the distribution relative to other frequencies
which matters then.
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One important advantage of a frequency response analysis of a system is that
it provides insight into the benefits and trade-offs of feedback control. Although
this insight may be obtained by viewing the frequency response in terms of its
relationship between power spectral densities, as is evident from the excellent
treatment by Kwakernaak and Sivan (1972), we believe that the frequency-by-
frequency sinusoidal response interpretation is the most transparent and useful.

Frequency-by-frequency sinusoids

We now want to give a physical picture of frequency response in terms of a system’s
response to persistent sinusoids. It is important that the reader has this picture in
mind when reading the rest of the book. For example, it is needed to understand
the response of a multivariable system in terms of its singular value decomposition.
A physical interpretation of the frequency response for a stable linear systemy =
G(s)u is as follows. Apply a sinusoidal input signal with frequency! [rad/s] and
magnitudeu0, such that

u(t) = u0 sin(!t+ �)

This input signal is persistent, that is, it has been applied sincet = �1. Then the
output signal is also a persistent sinusoid of the same frequency, namely

y(t) = y0 sin(!t+ �)

Hereu0 andy0 represent magnitudes and are therefore both non-negative. Note that
the output sinusoid has a different amplitudey0 and is also shifted in phase from the
input by

� , � � �

Importantly, it can be shown thaty0=u0 and� can be obtained directly from the
Laplace transformG(s) after inserting the imaginary numbers = j! and evaluating
the magnitude and phase of the resulting complex numberG(j!). We have

y0=u0 = jG(j!)j; � = \G(j!) [rad] (2.1)

For example, letG(j!) = a+ jb, with real parta = Re G(j!) and imaginary part
b = Im G(j!), then

jG(j!)j =
p
a2 + b2; \G(j!) = arctan(b=a) (2.2)

In words, (2.1) says thatafter sending a sinusoidal signal through a systemG(s),
the signal’s magnitude is amplified by a factorjG(j!)j and its phase is shifted by
\G(j!). In Figure 2.1, this statement is illustrated for the following first-order delay
system (time in seconds),

G(s) =
ke��s

�s+ 1
; k = 5; � = 2; � = 10 (2.3)
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Figure 2.1: Sinusoidal response for system G(s) = 5e�2s=(10s + 1) at frequency ! =
0:2 rad/s

At frequency ! = 0:2 rad/s, we see that the output y lags behind the input by about
a quarter of a period and that the amplitude of the output is approximately twice that
of the input. More accurately, the amplification is

jG(j!)j = k=
p
(�!)2 + 1 = 5=

p
(10!)2 + 1 = 2:24

and the phase shift is

� = \G(j!) = � arctan(�!)��! = � arctan(10!)�2! = �1:51 rad = �86:5Æ

G(j!) is called the frequency responseof the system G(s). It describes how the
system responds to persistent sinusoidal inputs of frequency!. The magnitude of the
frequency response, jG(j!)j, being equal to jy0(!)j=ju0(!)j, is also referred to as
the system gain. Sometimes the gain is given in units of dB (decibel) defined as

A [dB] = 20 log10A (2.4)

For example, A = 2 corresponds to A = 6:02 dB, and A =
p
2 corresponds to

A = 3:01 dB, and A = 1 corresponds to A = 0 dB.
Both jG(j!)j and \G(j!) depend on the frequency !. This dependency may

be plotted explicitly in Bode plots (with ! as independent variable) or somewhat
implicitly in a Nyquist plot (phase plane plot). In Bode plots we usually employ a
log-scale for frequency and gain, and a linear scale for the phase.

In Figure 2.2, the Bode plots are shown for the system in (2.3). We note that in
this case both the gain and phase fall monotonically with frequency. This is quite
common for process control applications. The delay � only shifts the sinusoid in
time, and thus affects the phase but not the gain. The system gain jG(j!)j is equal
to k at low frequencies; this is the steady-state gain and is obtained by setting s = 0
(or ! = 0). The gain remains relatively constant up to the break frequency 1=�
where it starts falling sharply. Physically, the system responds too slowly to let high-
frequency (“ fast” ) inputs have much effect on the outputs, and sinusoidal inputs with
! > 1=� are attenuated by the system dynamics.
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Figure 2.2: Frequency response (Bode plots) of G(s) = 5e�2s=(10s+ 1)

The frequency response is also useful for an unstable plantG(s), which by
itself has no steady-state response. Let G(s) be stabilized by feedback control, and
consider applying a sinusoidal forcing signal to the stabilized system. In this case
all signals within the system are persistent sinusoids with the same frequency !, and
G(j!) yields as before the sinusoidal response from the input to the output of G(s).

Phasor notation. From Euler’s formula for complex numbers we have that e jz =
cos z + j sin z. It then follows that sin(!t) is equal to the imaginary part of the
complex function ej!t, and we can write the time domain sinusoidal response in
complex form as follows:

u(t) = u0Im ej(!t+�) gives as t!1 y(t) = y0Im ej(!t+�) (2.5)

where
y0 = jG(j!)ju0; � = \G(j!) + � (2.6)

and jG(j!)j and \G(j!) are defined in (2.2). Now introduce the complex numbers

u(!) , u0e
j�; y(!) , y0e

j� (2.7)

where we have used ! as an argument because y0 and � depend on frequency, and in
some cases so may u0 and �. Note that u(!) is notequal to u(s) evaluated at s = !
nor is it equal to u(t) evaluated at t = !. Since G(j!) = jG(j!)j ej\G(j!) the
sinusoidal response in (2.5) and (2.6) can then be written in complex form as follows

y(!)ej!t = G(j!)u(!)ej!t (2.8)

or because the term ej!t appears on both sides

y(!) = G(j!)u(!) (2.9)
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which we refer to as the phasor notation. At each frequency, u(!), y(!) and G(j!)
are complex numbers, and the usual rules for multiplying complex numbers apply.
We will use this phasor notation throughout the book. Thus whenever we use notation
such asu(!) (with! and notj! as an argument), the reader should interpret this as
a (complex) sinusoidal signal,u(!)ej!t. (2.9) also applies to MIMO systems where
u(!) and y(!) are complex vectors representing the sinusoidal signal in each channel
and G(j!) is a complex matrix.

Minimum phase systems. For stable systems which are minimum phase (no time
delays or right-half plane (RHP) zeros) there is a unique relationship between the
gain and phase of the frequency response. This may be quantified by the Bode gain-
phase relationship which gives the phase of G (normalized 1 such that G(0) > 0) at
a given frequency !0 as a function of jG(j!)j over the entire frequency range:

\G(j!0) =
1

�

Z 1

�1

d ln jG(j!)j
d ln!| {z }
N(!)

ln

����! + !0
! � !0

���� � d!! (2.10)

The name minimum phaserefers to the fact that such a system has the minimum
possible phase lag for the given magnitude response jG(j!)j. The term N(!) is the
slope of the magnitude in log-variables at frequency !. In particular, the local slope
at frequency !0 is

N(!0) =

�
d ln jG(j!)j
d ln!

�
!=!0

The term ln
���!+!0!�!0

��� in (2.10) is infinite at ! = !0, so it follows that \G(j!0) is

primarily determined by the local slopeN(!0). Also
R1
�1 ln

���!+!0!�!0

���� d!! = �2

2 which

justifies the commonly used approximation for stable minimum phase systems

\G(j!0) � �

2
N(!0) [rad] = 90Æ �N(!0) (2.11)

The approximation is exact for the system G(s) = 1=sn (where N(!) = �n), and
it is good for stable minimum phase systems except at frequencies close to those of
resonance (complex) poles or zeros.

RHP-zeros and time delays contribute additional phase lag to a system when
compared to that of a minimum phase system with the same gain (hence the term
non-minimum phasesystem). For example, the system G(s) = �s+a

s+a with a RHP-
zero at s = a has a constant gain of 1, but its phase is�2 arctan(!=a) [rad] (and not
0 [rad] as it would be for the minimum phase system G(s) = 1 of the same gain).
Similarly, the time delay system e��s has a constant gain of 1, but its phase is �!�
[rad].

1 The normalization of G(s) is necessary to handle systems such as 1
s+2

and �1
s+2

, which have equal
gain, are stable and minimum phase, but their phases differ by 180Æ . Systems with integrators may be
treated by replacing 1

s
by 1

s+�
where � is a small positive number.
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Figure 2.3: Bode plots of transfer function L1 = 30 s+1
(s+0:01)2(s+10)

. The asymptotes are
given by dotted lines. The vertical dotted lines on the upper plot indicate the break frequencies
!1, !2 and !3.

Straight-line approximations (asymptotes). For the design methods used in
this book it is useful to be able to sketch Bode plots quickly, and in particular the
magnitude (gain) diagram. The reader is therefore advised to become familiar with
asymptotic Bode plots (straight-line approximations). For example, for a transfer
function

G(s) = k
(s+ z1)(s+ z2) � � �
(s+ p1)(s+ p2) � � � (2.12)

the asymptotic Bode plots of G(j!) are obtained by using for each term (s + a)
the approximation j! + a � a for ! < a and by j! + a � j! for ! >
a. These approximations yield straight lines on a log-log plot which meet at
the so-called break point frequency! = a. In (2.12) therefore, the frequencies
z1; z2; : : : ; p1; p2; : : : are the break points where the asymptotes meet. For complex
poles or zeros, the term s2 +2�s!0+ !20 (where j�j < 1) is approximated by !2

0 for
! < !0 and by s2 = (j!)2 = �!2 for ! > !0. The magnitude of a transfer function
is usually close to its asymptotic value, and the only case when there is significant
deviation is around the resonance frequency !0 for complex poles or zeros with a
damping j�j of about 0.3 or less. In Figure 2.3, the Bode plots are shown for

L1(s) = 30
(s+ 1)

(s+ 0:01)2(s+ 10)
(2.13)

The asymptotes (straight-line approximations) are shown by dotted lines. In this
example the asymptotic slope of jL1j is 0 up to the first break frequency at !1 =
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0:01 rad/s where we have two poles and then the slope changes to N = �2. Then
at !2 = 1 rad/s there is a zero and the slope changes to N = �1. Finally, there
is a break frequency corresponding to a pole at ! 3 = 10 rad/s and so the slope is
N = �2 at this and higher frequencies. We note that the magnitude follows the
asymptotes closely, whereas the phase does not. The asymptotic phase jumps at the
break frequency by �90o (LHP-pole or RHP-zero) or +90o (LHP-zero or RHP-
pole),

Remark. An improved phase approximation of a term s + a is obtained by, instead of
jumping, connecting the phase asymptotes by a straight line (on a Bode plot with logarithmic
frequency) which starts 1 decade before the before the break frequency (at ! = a=10),
passes through the correct phase change of�45o at the break frequency a, and ends 1 decade
after the break frequency (at ! = 10a). For the example in Figure 2.3, this much improved
phase approximation drops from 0 to �180o between frequencies 0:001 (= !1=10) and 0:1,
increases up to �135o at frequency 1, remains at �135o up to frequency 10, before it drops
down to �180o at frequency 100 (= 10!3).

2.2 Feedback control
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Figure 2.4: Block diagram of one degree-of-freedom feedback control system

2.2.1 One degree-of-freedom controller

In most of this chapter, we examine the simple one degree-of-freedom negative
feedback structure shown in Figure 2.4. The input to the controller K(s) is r � ym



22 MULTIVARIABLE FEEDBACK CONTROL

where ym = y+n is the measured output and n is the measurement noise. Thus, the
input to the plant is

u = K(s)(r � y � n) (2.14)

The objective of control is to manipulate u (design K) such that the control error e
remains small in spite of disturbances d. The control error e is defined as

e = y � r (2.15)

where r denotes the reference value (setpoint) for the output.

Remark. In the literature, the control error is frequently defined as r� ym which is often the
controller input. However, this is not a good definition of an error variable. First, the error is
normally defined as the actual value (here y) minus the desired value (here r). Second, the
error should involve the actual value (y) and not the measured value (ym).

2.2.2 Closed-loop transfer functions

The plant model is written as

y = G(s)u+Gd(s)d (2.16)

and for a one degree-of-freedom controller the substitution of (2.14) into (2.16)
yields

y = GK(r � y � n) +Gdd

or
(I +GK)y = GKr +Gdd�GKn (2.17)

and hence the closed-loop response is

y = (I +GK)�1GK| {z }
T

r + (I +GK)�1| {z }
S

Gdd� (I +GK)�1GK| {z }
T

n (2.18)

The control error is
e = y � r = �Sr + SGdd� Tn (2.19)

where we have used the fact T � I = �S. The corresponding plant input signal is

u = KSr �KSGdd�KSn (2.20)

The following notation and terminology are used

L = GK loop transfer function
S = (I +GK)�1 = (I + L)�1 sensitivity function

T = (I +GK)�1GK = (I + L)�1L complementary sensitivity function
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We see that S is the closed-loop transfer function from the output disturbances to the
outputs, while T is the closed-loop transfer function from the reference signals to the
outputs. The term complementary sensitivity for T follows from the identity:

S + T = I (2.21)

To derive (2.21), write S + T = (I + L)�1 + (I + L)�1L and factor out the term
(I + L)�1. The term sensitivity function is natural because S gives the sensitivity
reduction afforded by feedback. To see this, consider the “open-loop” case i.e. with
no feedback. Then

y = GKr +Gdd+ 0 � n (2.22)

and a comparison with (2.18) shows that, with the exception of noise, the response
with feedback is obtained by premultiplying the right hand side by S.

Remark 1 Actually, the above is not the original reason for the name “sensitivity” . Bode first
called S sensitivity because it gives the relative sensitivity of the closed-loop transfer function
T to the relative plant model error. In particular, at a given frequency ! we have for a SISO
plant, by straightforward differentiation of T , that

dT=T

dG=G
= S (2.23)

Remark 2 Equations (2.14)-(2.22) are written in matrix form because they also apply to
MIMO systems. Of course, for SISO systems we may write S+ T = 1, S = 1

1+L
, T = L

1+L

and so on.

Remark 3 In general, closed-loop transfer functions for SISO systems with negative
feedback may be obtained from the rule

OUTPUT =
\direct"

1 + \loop"
� INPUT (2.24)

where “direct” represents the transfer function for the direct effect of the input on the output
(with the feedback path open) and “ loop” is the transfer function around the loop (denoted
L(s)). In the above case L = GK. If there is also a measurement device, Gm(s), in the loop,
then L(s) = GKGm. The rule in (2.24) is easily derived by generalizing (2.17). In Section
3.2, we present a more general form of this rule which also applies to multivariable systems.

2.2.3 Why feedback?

At this point it is pertinent to ask why we should use feedback control at all —
rather than simply using feedforward control. A “perfect” feedforward controller is
obtained by removing the feedback signal and using the controller

Kr(s) = G�1(s) (2.25)

(we assume for now that it is possible to obtain and physically realize such an inverse,
although this may of course not be true). We assume that the plant and controller are
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both stable and that all the disturbances are known, that is, we know G dd, the effect
of the disturbances on the outputs. Then with r � Gdd as the controller input, this
feedforward controller would yield perfect control:

y = Gu+Gdd = GKr(r �Gdd) +Gdd = r

Unfortunately, G is never an exact model, and the disturbances are never known
exactly. The fundamental reasons for using feedback control are therefore the
presence of

1. Signal uncertainty – unknown disturbance (d)
2. Model uncertainty (�)
3. An unstable plant

The third reason follows because unstable plants can only be stabilized by feedback
(see internal stability in Chapter 4). The ability of feedback to reduce the effect of
model uncertainty is of crucial importance in controller design.

2.3 Closed-loop stability

One of the main issues in designing feedback controllers is stability. If the feedback
gain is too large, then the controller may “overreact” and the closed-loop system
becomes unstable. This is illustrated next by a simple example.
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Figure 2.5: Effect of proportional gain Kc on the closed-loop response y(t) of the inverse
response process

Example 2.1 Inverse response process. Consider the plant (time in seconds)

G(s) =
3(�2s+ 1)

(5s+ 1)(10s+ 1)
(2.26)

This is one of two main example processes used in this chapter to illustrate the techniques
of classical control. The model has a right-half plane (RHP) zero ats = 0:5 rad/s. This
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imposes a fundamental limitation on control, and high controller gains will induce closed-
loop instability.

This is illustrated for a proportional (P) controllerK(s) = Kc in Figure 2.5, where the
responsey = Tr = GKc(1 + GKc)

�1r to a step change in the reference (r(t) = 1 for
t > 0) is shown for four different values ofKc. The system is seen to be stable forKc < 2:5,
and unstable forKc > 2:5. The controller gain at the limit of instability,Ku = 2:5, is
sometimes called the ultimate gain and for this value the system is seen to cycle continuously
with a periodPu = 15:2 s, corresponding to the frequency!u , 2�=Pu = 0:42 rad/s.

Two methods are commonly used to determine closed-loop stability:

1. The poles of the closed-loop system are evaluated. That is, the roots of 1+L(s) =
0 are found, where L is the transfer function around the loop. The system is stable
if and only ifall the closed-loop poles are in the open left-half plane (LHP) (that is,
poles on the imaginary axis are considered “unstable” ). The poles are also equal
to the eigenvalues of the state-space A-matrix, and this is usually how the poles
are computed numerically.

2. The frequency response (including negative frequencies) of L(j!) is plotted in
the complex plane and the number of encirclements it makes of the critical point
�1 is counted. By Nyquist’s stability criterion (for which a detailed statement is
given in Theorem 4.7) closed-loop stability is inferred by equating the number of
encirclements to the number of open-loop unstable poles (RHP-poles).
For open-loop stable systems where \L(j!) falls with frequency such that
\L(j!) crosses �180Æ only once (from above at frequency !180), one may
equivalently use Bode’s stability conditionwhich says that the closed-loop system
is stable if and only if the loop gain jLj is less than 1 at this frequency, that is

Stability , jL(j!180)j < 1 (2.27)

where !180 is the phase crossover frequency defined by \L(j!180) = �180Æ.
Method 1, which involves computing the poles, is best suited for numerical
calculations. However, time delays must first be approximated as rational transfer
functions, e.g. Padé approximations. Method 2, which is based on the frequency
response, has a nice graphical interpretation, and may also be used for systems with
time delays. Furthermore, it provides useful measures of relative stability and forms
the basis for several of the robustness tests used later in this book.

Example 2.2 Stability of inverse response process with proportional control. Let us
determine the condition for closed-loop stability of the plantG in (2.26) with proportional
control, that is, withK(s) = Kc (a constant) and loop transfer functionL(s) = KcG(s).

1. The system is stable if and only if all the closed-loop poles are in the LHP. The poles are
solutions to1 + L(s) = 0 or equivalently the roots of

(5s+ 1)(10s + 1) +Kc3(�2s+ 1) = 0

, 50s2 + (15� 6Kc)s+ (1 + 3Kc) = 0 (2.28)
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But since we are only interested in the half planelocation of the poles, it is not necessary
to solve (2.28). Rather, one may consider the coefficientsai of the characteristic equation
ans

n+� � � a1s+a0 = 0 in (2.28), and use the Routh-Hurwitz test to check for stability. For
second order systems, this test says that we have stability if and only if all the coefficients
have the same sign. This yields the following stability conditions

(15� 6Kc) > 0; (1 + 3Kc) > 0

or equivalently�1=3 < Kc < 2:5. With negative feedback (Kc � 0) only the upper
bound is of practical interest, and we find that the maximum allowed gain (“ultimate
gain”) is Ku = 2:5 which agrees with the simulation in Figure 2.5. The poles at the
onset of instability may be found by substitutingKc = Ku = 2:5 into (2.28) to get
50s2 + 8:5 = 0, i.e. s = �jp8:5=50 = �j0:412. Thus, at the onset of instability
we have two poles on the imaginary axis, and the system will be continuously cycling with
a frequency! = 0:412 rad/s corresponding to a periodPu = 2�=! = 15:2 s. This agrees
with the simulation results in Figure 2.5.
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Figure 2.6: Bode plots for L(s) = Kc
3(�2s+1)

(10s+1)(5s+1)
with Kc = 1

2. Stability may also be evaluated from the frequency response ofL(s). A graphical evaluation
is most enlightening. The Bode plots of the plant (i.e.L(s) with Kc = 1) are shown in
Figure 2.6. From these one finds the frequency!180 where\L is �180Æ and then reads
off the corresponding gain. This yieldsjL(j!180)j = KcjG(j!180)j = 0:4Kc, and we get
from (2.27) that the system is stable if and only ifjL(j!180)j < 1 , Kc < 2:5 (as found
above). Alternatively, the phase crossover frequency may be obtained analytically from:

\L(j!180) = � arctan(2!180)� arctan(5!180)� arctan(10!180) = �180Æ

which gives!180 = 0:412 rad/s as found in the pole calculation above. The loop gain at
this frequency is

jL(j!180)j = Kc
3 �p(2!180)2 + 1p

(5!180)2 + 1 �p(10!180)2 + 1
= 0:4Kc
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which is the same as found from the graph in Figure 2.6. The stability condition
jL(j!180)j < 1 then yieldsKc < 2:5 as expected.

2.4 Evaluating closed-loop performance

Although closed-loop stability is an important issue, the real objective of control is
to improve performance, that is, to make the output y(t) behave in a more desirable
manner. Actually, the possibility of inducing instability is one of the disadvantages of
feedback control which has to be traded off against performance improvement. The
objective of this section is to discuss ways of evaluating closed-loop performance.

2.4.1 Typical closed-loop responses

The following example which considers proportional plus integral (PI) control of the
inverse response process in (2.26), illustrates what type of closed-loop performance
one might expect.
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Figure 2.7: Closed-loop response to a step change in reference for the inverse response process
with PI-control

Example 2.3 PI-control of the inverse response process. We have already studied the
use of a proportional controller for the process in (2.26). We found that a controller gain of
Kc = 1:5 gave a reasonably good response, except for a steady-state offset (see Figure 2.5).
The reason for this offset is the non-zero steady-state sensitivity function,S(0) = 1

1+KcG(0)
=

0:18 (whereG(0) = 3 is the steady-state gain of the plant). Frome = �Sr it follows that for
r = 1 the steady-state control error is�0:18 (as is confirmed by the simulation in Figure 2.5).
To remove the steady-state offset we add integral action in the form of a PI-controller

K(s) = Kc

�
1 +

1

�Is

�
(2.29)
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The settings forKc and �I can be determined from the classical tuning rules of Ziegler and
Nichols (1942):

Kc = Ku=2:2; �I = Pu=1:2 (2.30)

whereKu is the maximum (ultimate) P-controller gain andPu is the corresponding period
of oscillations. In our caseKu = 2:5 andPu = 15:2 s (as observed from the simulation
in Figure 2.5), and we getKc = 1:14 and �I = 12:7 s. Alternatively,Ku andPu can be
obtained from the modelG(s),

Ku = 1=jG(j!u)j; Pu = 2�=!u (2.31)

where!u is defined by\G(j!u) = �180Æ.
The closed-loop response, with PI-control, to a step change in reference is shown in

Figure 2.7. The outputy(t) has an initial inverse response due to the RHP-zero, but it then
rises quickly andy(t) = 0:9 at t = 8:0 s (the rise time). The response is quite oscillatory and
it does not settle to within�5% of the final value until aftert = 65 s (the settling time). The
overshoot (height of peak relative to the final value) is about62% which is much larger than
one would normally like for reference tracking. The decay ratio, which is the ratio between
subsequent peaks, is about0:35 which is also a bit large.
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Figure 2.8: Bode magnitude and phase plots of L = GK, S and T when
G(s) = 3(�2s+1)

(5s+1)(10s+1)
, and K(s) = 1:136(1 + 1

12:7s
) (a Ziegler-Nichols PI controller)

The corresponding Bode plots forL, S and T are shown in Figure 2.8. Later, in
Section 2.4.3, we define stability margins, and from the plot ofL(j!), repeated in Figure 2.11,
we find that the phase margin (PM) is0:34 rad = 19:4Æ and the gain margin (GM) is1:63.
These margins are too small according to common rules of thumb. The peak value ofjSj is
MS = 3:92, and the peak value ofjT j is MT = 3:35 which again are high according to
normal design rules.

Exercise 2.1 Use (2.31) to computeKu andPu for the process in (2.26).
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In summary, for this example, the Ziegler-Nichols’ PI-tunings are somewhat
“aggressive” and give a closed-loop system with smaller stability margins and a more
oscillatory response than would normally be regarded as acceptable. For disturbance
rejection the controller settings may be more reasonable, and one can add a prefilter
to improve the response for reference tracking, resulting in a two degrees-of-freedom
controller. However, this will not change the stability robustness of the system.

2.4.2 Time domain performance
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Figure 2.9: Characteristics of closed-loop response to step in reference

Step response analysis. The above example illustrates the approach often taken
by engineers when evaluating the performance of a control system. That is, one
simulates the response to a step in the reference input, and considers the following
characteristics (see Figure 2.9):

� Rise time:(tr) the time it takes for the output to first reach 90% of its final value,
which is usually required to be small.

� Settling time:(ts) the time after which the output remains within �5% of its final
value, which is usually required to be small.

� Overshoot:the peak value divided by the final value, which should typically be
1.2 (20%) or less.

� Decay ratio:the ratio of the second and first peaks, which should typically be 0.3
or less.

� Steady-state offset:the difference between the final value and the desired final
value, which is usually required to be small.

The rise time and settling time are measures of the speed of the response, whereas
the overshoot, decay ratio and steady-state offset are related to the quality of the
response.Another measure of the quality of the response is:

� Excess variation: the total variation (TV) divided by the overall change at steady
state, which should be as close to 1 as possible.
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Figure 2.10: Total variation is TV =
P1

i=1 vi, and Excess variation is TV=v0

The total variation is the total movement of the output as illustrated in Figure 2.10.
For the cases considered here the overall change is 1, so the excess variation is equal
to the total variation.

The above measures address the output response, y(t). In addition, one should
consider the magnitude of the manipulated input (control signal, u), which usually
should be as small and smooth as possible. If there are important disturbances, then
the response to these should also be considered. Finally, one may investigate in
simulation how the controller works if the plant model parameters are different from
their nominal values.

Remark 1 Another way of quantifying time domain performance is in terms of some norm
of the error signal e(t) = y(t)� r(t). For example, one might use the integral squared error

(ISE), or its square root which is the 2-norm of the error signal, ke(t)k2 =
qR1

0
je(�)j2d� .

Note that in this case the various objectives related to both the speed and quality of response
are combined into one number. Actually, in most cases minimizing the 2-norm seems to give
a reasonable trade-off between the various objectives listed above. Another advantage of the
2-norm is that the resulting optimization problems (such as minimizing ISE) are numerically
easy to solve. One can also take input magnitudes into account by considering, for example,

J =
qR1

0
(Qje(t)j2 +Rju(t)j2)dt where Q and R are positive constants. This is similar to

linear quadratic (LQ) optimal control, but in LQ-control one normally considers an impulse
rather than a step change in r(t).

Remark 2 The step response is equal to the integral of the corresponding impulse response,
e.g. set u(�) = 1 in (4.11). Some thought then reveals that one can compute the total variation
as the integrated absolute area (1-norm) of the corresponding impulse response (Boyd and
Barratt, 1991, p. 98). That is, let y = Tr, then the total variation in y for a step change in r is

TV =

Z 1

0

jgT (�)jd� , kgT (t)k1 (2.32)

where gT (t) is the impulse response of T , i.e. y(t) resulting from an impulse change in r(t).
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2.4.3 Frequency domain performance

The frequency-response of the loop transfer function, L(j!), or of various closed-
loop transfer functions, may also be used to characterize closed-loop performance.
Typical Bode plots of L, T and S are shown in Figure 2.8. One advantage of the
frequency domain compared to a step response analysis, is that it considers a broader
class of signals (sinusoids of any frequency). This makes it easier to characterize
feedback properties, and in particular system behaviour in the crossover (bandwidth)
region. We will now describe some of the important frequency-domain measures
used to assess performance e.g. gain and phase margins, the maximum peaks of S
and T , and the various definitions of crossover and bandwidth frequencies used to
characterize speed of response.

Gain and phase margins

Let L(s) denote the loop transfer function of a system which is closed-loop stable
under negative feedback. A typical Bode plot and a typical Nyquist plot of L(j!)
illustrating the gain margin (GM) and phase margin (PM) are given in Figures 2.11
and 2.12, respectively.
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Figure 2.11: Typical Bode plot of L(j!) with PM and GM indicated

The gain marginis defined as

GM = 1=jL(j!180)j (2.33)

where the phase crossover frequency!180 is where the Nyquist curve of L(j!)
crosses the negative real axis between �1 and 0, that is

\L(j!180) = �180Æ (2.34)
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Figure 2.12: Typical Nyquist plot of L(j!) for stable plant with PM and GM indicated.
Closed-loop instability occurs if L(j!) encircles the critical point �1

If there is more than one crossing the largest value of jL(j!180)j is taken. On a
Bode plot with a logarithmic axis for jLj, we have that GM (in logarithms, e.g. in
dB) is the vertical distance from the unit magnitude line down to jL(j! 180)j, see
Figure 2.11. The GM is the factor by which the loop gain jL(j!)j may be increased
before the closed-loop system becomes unstable. The GM is thus a direct safeguard
against steady-state gain uncertainty (error). Typically we require GM > 2. If the
Nyquist plot of L crosses the negative real axis between �1 and �1 then a gain
reduction margincan be similarly defined from the smallest value of jL(j! 180)j of
such crossings.

The phase marginis defined as

PM = \L(j!c) + 180Æ (2.35)

where the gain crossover frequency!c is where jL(j!)j first crosses 1 from above,
that is

jL(j!c)j = 1 (2.36)

The phase margin tells how much negative phase (phase lag) we can add to L(s) at
frequency !c before the phase at this frequency becomes �180Æ which corresponds
to closed-loop instability (see Figure 2.12). Typically, we require PM larger than 30 Æ
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or more. The PM is a direct safeguard against time delay uncertainty; the system
becomes unstable if we add a time delay of

�max = PM=!c (2.37)

Note that the units must be consistent, and so if wc is in [rad/s] then PM must be in
radians. It is also important to note that by decreasing the value of ! c (lowering the
closed-loop bandwidth, resulting in a slower response) the system can tolerate larger
time delay errors.

Example 2.4 For the PI-controlled inverse response process example we havePM =
19:4Æ = 19:4=57:3 rad = 0:34 rad and!c = 0:236 rad/s. The allowed time delay error
is then�max = 0:34 rad=0:236 rad/s= 1:44 s.

From the above arguments we see that gain and phase margins provide stability
marginsfor gain and delay uncertainty. However, as we show below the gain and
phase margins are closely related to the peak values of jS(j!)j and jT (j!)j and are
therefore also useful in terms of performance. In short, the gain and phase margins
are used to provide the appropriate trade-off between performance and stability.

Exercise 2.2 Prove that the maximum additional delay for which closed-loop stability is
maintained is given by (2.37).

Exercise 2.3 Derive the approximation forKu = 1=jG(j!u)j given in (5.73) for a first-
order delay system.

Maximum peak criteria

The maximum peaks of the sensitivity and complementary sensitivity functions are
defined as

MS = max
!
jS(j!)j; MT = max

!
jT (j!)j (2.38)

(Note that MS = kSk1 and MT = kTk1 in terms of the H1 norm introduced
later.) Typically, it is required that MS is less than about 2 (6 dB) and MT is less
than about 1:25 (2 dB). A large value of MS or MT (larger than about 4) indicates
poor performance as well as poor robustness. Since S + T = 1 it follows that at any
frequency

j jSj � jT j j � jS + T j = 1

so MS and MT differ at most by 1. A large value of MS therefore occurs if and only
if MT is large. For stable plants we usually haveMS > MT , but this is not a general
rule. An upper bound on MT has been a common design specification in classical
control and the reader may be familiar with the use of M -circles on a Nyquist plot
or a Nichols chart used to determineMT from L(j!).

We now give some justification for why we may want to bound the value of M S .
Without control (u = 0), we have e = y � r = Gdd � r, and with feedback
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control e = S(Gdd � r). Thus, feedback control improves performance in terms
of reducing jej at all frequencies where jSj < 1. Usually, jSj is small at low
frequencies, for example, jS(0)j = 0 for systems with integral action. But because
all real systems are strictly proper we must at high frequencies have that L ! 0 or
equivalently S ! 1. At intermediate frequencies one cannot avoid in practice a peak
value, MS, larger than 1 (e.g. see the remark below). Thus, there is an intermediate
frequency range where feedback control degrades performance, and the value ofM S

is a measure of the worst-case performance degradation. One may also view M S

as a robustness measure, as is now explained. To maintain closed-loop stability the
number of encirclements of the critical point �1 by L(j!) must not change; so we
want L to stay away from this point. The smallest distance betweenL(j!) and the -1
point is M�1

S , and therefore for robustness, the smaller MS , the better. In summary,
both for stability and performance we want MS close to 1.

There is a close relationship between these maximum peaks and the gain and phase
margins. Specifically, for a givenMS we are guaranteed

GM � MS

MS � 1
; PM � 2 arcsin

�
1

2MS

�
� 1

MS
[rad] (2.39)

For example, with MS = 2 we are guaranteed GM � 2 and PM � 29:0Æ. Similarly,
for a given value of MT we are guaranteed

GM � 1 +
1

MT
; PM � 2 arcsin

�
1

2MT

�
� 1

MT
[rad] (2.40)

and therefore with MT = 2 we have GM � 1:5 and PM � 29:0Æ.

Proof of (2.39) and (2.40):To derive the GM-inequalities notice that L(j!180) = �1=GM
(since GM = 1=jL(j!180)j and L is real and negative at !180), from which we get

T (j!180) =
�1

GM� 1
; S(j!180) =

1

1� 1
GM

(2.41)

and the GM-results follow. To derive the PM-inequalities in (2.39) and (2.40) consider
Figure 2.13 where we have jS(j!c)j = 1=j1 + L(j!c)j = 1=j � 1 � L(j!c)j and we
obtain

jS(j!c)j = jT (j!c)j = 1

2 sin(PM=2)
(2.42)

and the inequalities follow. Alternative formulas, which are sometimes used, follow from the
identity 2 sin(PM=2) =

p
2(1� cos(PM)). 2

Remark. We note with interest that (2.41) requires jSj to be larger than 1 at frequency !180.
This means that provided !180 exists, that is, L(j!) has more than �180Æ phase lag at some
frequency (which is the case for any real system), then the peak of jS(j!)j must exceed 1.

In conclusion, we see that specifications on the peaks of jS(j!)j or jT (j!)j (MS

or MT ), can make specifications on the gain and phase margins unnecessary. For
instance, requiring MS < 2 implies the common rules of thumb GM > 2 and
PM > 30Æ.
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Figure 2.13: At frequency !c we see from the figure that j1 + L(j!c)j = 2 sin(PM=2)

2.4.4 Relationship between time and frequency domain peaks

For a change in reference r, the output is y(s) = T (s)r(s). Is there any relationship
between the frequency domain peak of T (j!), MT , and any characteristic of
the time domain step response, for example the overshoot or the total variation?
To answer this consider a prototype second-order system with complementary
sensitivity function

T (s) =
1

�2s2 + 2��s+ 1
(2.43)

For underdamped systems with � < 1 the poles are complex and yield oscillatory
step responses.

With r(t) = 1 (a unit step change) the values of the overshoot and total variation
for y(t) are given, together with MT and MS , as a function of � in Table 2.1. From
Table 2.1, we see that the total variation TV correlates quite well with MT . This is
further confirmed by (A.136) and (2.32) which together yield the following general
bounds

MT � TV � (2n+ 1)MT (2.44)

Here n is the order of T (s), which is 2 for our prototype system in (2.43). Given
that the response of many systems can be crudely approximated by fairly low-
order systems, the bound in (2.44) suggests that MT may provide a reasonable
approximation to the total variation. This provides some justification for the use of
MT in classical control to evaluate the quality of the response.
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Table 2.1: Peak values and total variation of prototype second-order system
Time domain Frequency domain

� Overshoot Total variation MT MS

2.0 1 1 1 1.05
1.5 1 1 1 1.08
1.0 1 1 1 1.15
0.8 1.02 1.03 1 1.22
0.6 1.09 1.21 1.04 1.35
0.4 1.25 1.68 1.36 1.66
0.2 1.53 3.22 2.55 2.73
0.1 1.73 6.39 5.03 5.12
0.01 1.97 63.7 50.0 50.0

% MATLAB code (Mu toolbox) to generate Table:
tau=1;zeta=0.1;t=0:0.01:100;
T = nd2sys(1,[tau*tau 2*tau*zeta 1]); S = msub(1,T);
[A,B,C,D]=unpck(T); y1 = step(A,B,C,D,1,t);
overshoot=max(y1),tv=sum(abs(diff(y1)))
Mt=hinfnorm(T,1.e-4),Ms=hinfnorm(S,1.e-4)

2.4.5 Bandwidth and crossover frequency

The concept of bandwidth is very important in understanding the benefits and trade-
offs involved when applying feedback control. Above we considered peaks of closed-
loop transfer functions,MS andMT , which are related to the quality of the response.
However, for performance we must also consider the speed of the response, and
this leads to considering the bandwidth frequency of the system. In general, a large
bandwidth corresponds to a faster rise time, since high frequency signals are more
easily passed on to the outputs. A high bandwidth also indicates a system which is
sensitive to noise and to parameter variations. Conversely, if the bandwidth is small,
the time response will generally be slow, and the system will usually be more robust.

Loosely speaking, bandwidthmay be defined as the frequency range [! 1; !2] over
which control is effective. In most cases we require tight control at steady-state so
!1 = 0, and we then simply call !2 = !B the bandwidth.

The word “effective” may be interpreted in different ways, and this may give rise
to different definitions of bandwidth. The interpretation we use is that control is
effectiveif we obtain some benefitin terms of performance. For tracking performance
the error is e = y � r = �Sr and we get that feedback is effective (in terms of
improving performance) as long as the relative error e=r = �S is reasonably small,
which we may define to be less than 0.707 in magnitude. 2 We then get the following

2 The reason for choosing the value 0.707 when defining the bandwith is that, for the simplest case with
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definition:

Definition 2.1 The (closed-loop) bandwidth,!B , is the frequency wherejS(j!)j
first crosses1=

p
2 = 0:707(� �3 dB) from below.

Remark. Another interpretation is to say that control is effectiveif it significantly changesthe
output response. For tracking performance, the output is y = Tr and since without control
y = 0, we may say that control is effective as long as T is reasonably large, which we
may define to be larger than 0.707. This leads to an alternative definition which has been
traditionally used to define the bandwidth of a control system: The bandwidth in terms of
T , !BT , is the highest frequency at whichjT (j!)j crosses1=

p
2 = 0:707(� �3 dB) from

above.However, we would argue that this alternative definition, although being closer to how
the term is used in some other fields, is less useful for feedback control.

The gain crossover frequency, !c, defined as the frequency where jL(j!c)j first
crosses 1 from above, is also sometimes used to define closed-loop bandwidth. It has
the advantage of being simple to compute and usually gives a value between !B and
!BT . Specifically, for systems with PM < 90Æ (most practical systems) we have

!B < !c < !BT (2.45)

Proof of (2.45):Note that jL(j!c)j = 1 so jS(j!c)j = jT (j!c)j. Thus, when PM = 90Æ

we get jS(j!c)j = jT (j!c)j = 0:707 (see (2.42)), and we have !B = !c = !BT . For
PM < 90Æ we get jS(j!c)j = jT (j!c)j > 0:707, and since !B is the frequency where
jS(j!)j crosses 0.707 from below we must have !B < !c. Similarly, since !BT is the
frequency where jT (j!)j crosses 0.707 from above, we must have !BT > !c. 2

From this we have that the situation is generally as follows: Up to the frequency
!B , jSj is less than 0.7, and control is effective in terms of improving performance. In
the frequency range [!B ; !BT ] control still affects the response, but does not improve
performance — in most cases we find that in this frequency range jSj is larger than
1 and control degrades performance. Finally, at frequencies higher than ! BT we
have S � 1 and control has no significant effect on the response. The situation just
described is illustrated in Example 2.5 below (see Figure 2.15).

Example. Consider the simplest case with a first-order closed-loop response,

L(s) =
k

s
; S(s) =

s

s+ k
; T (s) =

k

s+ k

In this ideal case the above bandwidth and crossover frequencies are identical:!c = !B =

!BT = k. Furthermore, the phase ofL remains constant at�90o, so PM=90o, !180 = 1
(or really undefined) and GM=1.

Example 2.1 continue. The plant has a RHP-zero and the PI-tunings are quite agressive
so GM=1.63 and PM=19:4o. The bandwidth and crossover frequencies are!B = 0:14; !c =

0:24; !BT = 0:44 (confirming 2.45).

a first-order closed-loop response with S = s=(s + a), the low-frequency asymptote s=a crosses 1 at
the frequency ! = a where jS(j!)j = !=

p
!2 + a2 = 1

p
2 = 0:707.
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Example 2.5 Comparison of !B and !BT as indicators of performance. An example
where!BT is a poor indicator of performance is the following (we arenot suggesting this as
a good controller design!):

L =
�s+ z

s(�s+ �z + 2)
; T =

�s+ z

s+ z

1

�s+ 1
; z = 0:1; � = 1 (2.46)

For this system, bothL and T have a RHP-zero atz = 0:1, and we haveGM = 2:1,
PM = 60:1Æ, MS = 1:93 andMT = 1. We find that!B = 0:036 and!c = 0:054 are both
less thanz = 0:1 (as one should expect because speed of response is limited by the presence of
RHP-zeros), whereas!BT = 1=� = 1:0 is ten times larger thanz. The closed-loop response
to a unit step change in the reference is shown in Figure 2.14. The rise time is31:0 s, which
is close to1=!B = 28:0 s, but very different from1=!BT = 1:0 s, illustrating that!B is a
better indicator of closed-loop performance than!BT .
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Figure 2.14: Step response for system T = �s+0:1
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The magnitude Bode plots ofS andT are shown in Figure 2.15. We see thatjT j � 1 up to
about!BT . However, in the frequency range from!B to !BT the phase ofT (not shown)
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drops from about�40Æ to about�220Æ, so in practice tracking is out of phase and thus poor
in this frequency range.

In conclusion, !B (which is defined in terms of jSj) and also !c (in terms of jLj)
are good indicators of closed-loop performance, while !BT (in terms of jT j) may be
misleading in some cases. The reason is that we want T � 1 in order to have good
performance, and it is not sufficient that jT j � 1; we must also consider its phase.
On the other hand, for for good performance we want S close to 0, and this will be
the case if jSj � 0 irrespective of the phase of S.

2.5 Controller design

We have considered ways of evaluating performance, but one also needs methods
for controller design. The Ziegler-Nichols’ method used earlier is well suited for
on-line tuning, but most other methods involve minimizing some cost function. The
overall design process is iterative between controller design and performance (or
cost) evaluation. If performance is not satisfactory then one must either adjust the
controller parameters directly (for example, by reducingK c from the value obtained
by the Ziegler-Nichols’ rules) or adjust some weighting factor in an objective
function used to synthesize the controller.

There exist a large number of methods for controller design and some of these will
be discussed in Chapter 9. In addition to heuristic rules and on-line tuning we can
distinguish between three main approaches to controller design:

1. Shaping of transfer functions. In this approach the designer specifies the
magnitudeof some transfer function(s) as a function of frequency, and then finds
a controller which gives the desired shape(s).

(a) Loop shaping. This is the classical approach in which the magnitude of the
open-loop transfer function, L(j!), is shaped. Usually no optimization is
involved and the designer aims to obtain jL(j!)j with desired bandwidth,
slopes etc. We will look at this approach in detail later in this chapter.
However, classical loop shaping is difficult to apply for complicated systems,
and one may then instead use the Glover-McFarlane H1 loop-shaping
design presented in Chapter 9. The method consists of a second step where
optimization is used to make an initial loop-shaping design more robust.

(b) Shaping of closed-loop transfer functions, such as S, T and KS.
Optimization is usually used, resulting in various H1 optimal control
problems such as mixed weighted sensitivity; more on this later.

2. The signal-based approach. This involves time domain problem formulations
resulting in the minimization of a norm of a transfer function. Here one considers
a particular disturbance or reference change and then one tries to optimize the
closed-loop response. The “modern” state-space methods from the 1960’s, such
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as Linear Quadratic Gaussian (LQG) control, are based on this signal-oriented
approach. In LQG the input signals are assumed to be stochastic (or alternatively
impulses in a deterministic setting) and the expected value of the output variance
(or the 2-norm) is minimized. These methods may be generalized to include
frequency dependent weights on the signals leading to what is called the Wiener-
Hopf (orH2-norm) design method.
By considering sinusoidal signals, frequency-by-frequency, a signal-based H1
optimal control methodology can be derived in which the H1 norm of a
combination of closed-loop transfer functions is minimized. This approach has
attracted significant interest, and may be combined with model uncertainty
representations, to yield quite complex robust performance problems requiring
�-synthesis; an important topic which will be addressed in later chapters.

3. Numerical optimization. This often involves multi-objective optimization where
one attempts to optimize directly the true objectives, such as rise times, stability
margins, etc. Computationally, such optimization problems may be difficult to
solve, especially if one does not have convexity in the controller parameters. Also,
by effectively including performance evaluation and controller design in a single
step procedure, the problem formulation is far more critical than in iterative two-
step approaches. The numerical optimization approach may also be performed on-
line, which might be useful when dealing with cases with constraints on the inputs
and outputs. On-line optimization approaches such as model predictive control are
likely to become more popular as faster computers and more efficient and reliable
computational algorithms are developed.

2.6 Loop shaping

In the classical loop-shaping approach to controller design, “ loop shape” refers to
the magnitude of the loop transfer function L = GK as a function of frequency. An
understanding of how K can be selected to shape this loop gain provides invaluable
insight into the multivariable techniques and concepts which will be presented later
in the book, and so we will discuss loop shaping in some detail in the next two
sections.

2.6.1 Trade-offs in terms of L

Recall equation (2.19), which yields the closed-loop response in terms of the control
error e = y � r:

e = � (I + L)�1| {z }
S

r + (I + L)�1| {z }
S

Gdd� (I + L)�1L| {z }
T

n (2.47)
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For “perfect control” we want e = y � r = 0; that is, we would like

e � 0 � d+ 0 � r + 0 � n

The first two requirements in this equation, namely disturbance rejection and
command tracking, are obtained with S � 0, or equivalently, T � I . Since
S = (I + L)�1, this implies that the loop transfer function L must be large in
magnitude. On the other hand, the requirement for zero noise transmission implies
that T � 0, or equivalently,S � I , which is obtained with L � 0. This illustrates the
fundamental nature of feedback design which always involves a trade-off between
conflicting objectives; in this case between large loop gains for disturbance rejection
and tracking, and small loop gains to reduce the effect of noise.

It is also important to consider the magnitude of the control action u (which is the
input to the plant). We want u small because this causes less wear and saves input
energy, and also because u is often a disturbance to other parts of the system (e.g.
consider opening a window in your office to adjust your comfort and the undesirable
disturbance this will impose on the air conditioning system for the building). In
particular, we usually want to avoid fast changes in u. The control action is given
by u = K(r � ym) and we find as expected that a small u corresponds to small
controller gains and a small L = GK.

The most important design objectives which necessitate trade-offs in feedback
control are summarized below:

1. Performance, good disturbance rejection: needs large controller gains, i.e.L large.
2. Performance, good command following: L large.
3. Stabilization of unstable plant: L large.
4. Mitigation of measurement noise on plant outputs: L small.
5. Small magnitude of input signals: K small and L small.
6. Physical controller must be strictly proper:K ! 0 andL! 0 at high frequencies.
7. Nominal stability (stable plant): L small (because of RHP-zeros and time delays).
8. Robust stability (stable plant): L small (because of uncertain or neglected

dynamics).

Fortunately, the conflicting design objectives mentioned above are generally in
different frequency ranges, and we can meet most of the objectives by using a large
loop gain (jLj > 1) at low frequencies below crossover, and a small gain (jLj < 1)
at high frequencies above crossover.

2.6.2 Fundamentals of loop-shaping design

By loop shapingwe mean a design procedure that involves explicitly shaping the
magnitude of the loop transfer function, jL(j!)j. Here L(s) = G(s)K(s) where
K(s) is the feedback controller to be designed and G(s) is the product of all
other transfer functions around the loop, including the plant, the actuator and the
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measurement device. Essentially, to get the benefits of feedback control we want
the loop gain, jL(j!)j, to be as large as possible within the bandwidth region.
However, due to time delays, RHP-zeros, unmodelled high-frequency dynamics and
limitations on the allowed manipulated inputs, the loop gain has to drop below
one at and above some frequency which we call the crossover frequency ! c. Thus,
disregarding stability for the moment, it is desirable that jL(j!)j falls sharply with
frequency. To measure how jLj falls with frequency we consider the logarithmic
slope N = d ln jLj=d ln!. For example, a slope N = �1 implies that jLj drops by
a factor of 10 when ! increases by a factor of 10. If the gain is measured in decibels
(dB) then a slope of N = �1 corresponds to �20 dB/ decade. The value of �N at
high frequencies is often called the roll-off rate.

The design of L(s) is most crucial and difficult in the crossover region between
!c (where jLj = 1) and !180 (where \L = �180Æ). For stability, we at least need
the loop gain to be less than 1 at frequency !180, i.e. jL(j!180)j < 1. Thus, to get a
high bandwidth (fast response) we want !c and therefore !180 large, that is, we want
the phase lag in L to be small. Unfortunately, this is not consistent with the desire
that jL(j!)j should fall sharply. For example, the loop transfer function L = 1=s n

(which has a slope N = �n on a log-log plot) has a phase \L = �n � 90Æ. Thus,
to have a phase margin of 45Æ we need \L > �135Æ, and the slope of jLj cannot
exceed N = �1:5.

In addition, if the slope is made steeper at lower or higher frequencies, then this
will add unwanted phase lag at intermediate frequencies. As an example, consider
L1(s) given in (2.13) with the Bode plot shown in Figure 2.3. Here the slope of the
asymptote of jLj is�1 at the gain crossover frequency (where jL 1(j!c)j = 1), which
by itself gives�90Æ phase lag. However, due to the influence of the steeper slopes of
�2 at lower and higher frequencies, there is a “penalty” of about�35 Æ at crossover,
so the actual phase of L1 at !c is approximately�125Æ.

The situation becomes even worse for cases with delays or RHP-zeros in L(s)
which add undesirable phase lag to L without contributing to a desirable negative
slope in L. At the gain crossover frequency !c, the additional phase lag from delays
and RHP-zeros may in practice be �30Æ or more.

In summary, a desired loop shape for jL(j!)j typically has a slope of about �1
in the crossover region, and a slope of �2 or higher beyond this frequency, that
is, the roll-off is 2 or larger. Also, with a proper controller, which is required for
any real system, we must have that L = GK rolls off at least as fast as G. At low
frequencies, the desired shape of jLj depends on what disturbances and references we
are designing for. For example, if we are considering step changes in the references
or disturbances which affect the outputs as steps, then a slope for jLj of �1 at low
frequencies is acceptable. If the references or disturbances require the outputs to
change in a ramp-like fashion then a slope of �2 is required. In practice, integrators
are included in the controller to get the desired low-frequency performance, and for
offset-free reference tracking the rule is that
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� L(s) must contain at least one integrator for each integrator inr(s).

Proof: Let L(s) = bL(s)=snI where bL(0) is non-zero and finite and nI is the number of
integrators in L(s) — sometimes nI is called the system type. Consider a reference signal of
the form r(s) = 1=snr . For example, if r(t) is a unit step, then r(s) = 1=s (nr = 1), and if
r(t) is a ramp then r(s) = 1=s2 (nr = 2). The final value theorem for Laplace transforms is

lim
t!1

e(t) = lim
s!0

se(s) (2.48)

In our case, the control error is

e(s) = � 1

1 + L(s)
r(s) = � snI�nr

snI + bL(s) (2.49)

and to get zero offset (i.e. e(t!1) = 0) we must from (2.48) require nI � nr , and the rule
follows. 2

In conclusion, one can define the desired loop transfer function in terms of the
following specifications:

1. The gain crossover frequency, !c, where jL(j!c)j = 1.
2. The shape of L(j!), e.g. in terms of the slope of jL(j!)j in certain frequency

ranges. Typically, we desire a slope of about N = �1 around crossover, and
a larger roll-off at higher frequencies. The desired slope at lower frequencies
depends on the nature of the disturbance or reference signal.

3. The system type, defined as the number of pure integrators in L(s).

In Section 2.6.4, we discuss how to specify the loop shape when disturbance rejection
is the primary objective of control. Loop-shaping design is typically an iterative
procedure where the designer shapes and reshapes jL(j!)j after computing the phase
and gain margins, the peaks of closed-loop frequency responses (M T and MS),
selected closed-loop time responses, the magnitude of the input signal, etc. The
procedure is illustrated next by an example.

Example 2.6 Loop-shaping design for the inverse response process.
We will now design a loop-shaping controller for the example process in (2.26) which has a
RHP-zero ats = 0:5. The RHP-zero limits the achievable bandwidth and so the crossover
region (defined as the frequencies between!c and!180) will be at about0:5 rad/s. We require
the system to have one integrator (type1 system), and therefore a reasonable approach is to
let the loop transfer function have a slope of�1 at low frequencies, and then to roll off with a
higher slope at frequencies beyond0:5 rad/s. The plant and our choice for the loop-shape is

G(s) =
3(�2s+ 1)

(5s+ 1)(10s+ 1)
; L(s) = 3Kc

(�2s+ 1)

s(2s+ 1)(0:33s+ 1)
(2.50)

The frequency response (Bode plots) ofL is shown in Figure 2.16 forKc = 0:05.
The controller gainKc was selected to get reasonable stability margins (PM and GM).
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Figure 2.17: Response to step in reference for loop-shaping design

The asymptotic slope ofjLj is �1 up to 3 rad/s where it changes to�2. The controller
corresponding to the loop-shape in (2.50) is

K(s) = Kc
(10s+ 1)(5s+ 1)

s(2s+ 1)(0:33s+ 1)
; Kc = 0:05 (2.51)

The controller has zeros at the locations of the plant poles. This is desired in this case because
we do not want the slope of the loop shape to drop at the break frequencies1=10 = 0:1 rad/s
and 1=5 = 0:2 rad/s just before crossover. The phase ofL is �90Æ at low frequency, and
at ! = 0:5 rad/s the additional contribution from the term�2s+1

2s+1
in (2.50) is�90Æ, so

for stability we need!c < 0:5 rad/s. The choiceKc = 0:05 yields !c = 0:15 rad/s
corresponding toGM = 2:92 and PM=54Æ. The corresponding time response is shown in
Figure 2.17. It is seen to be much better than the responses with either the simple PI-controller
in Figure 2.7 or with the P-controller in Figure 2.5. Figure 2.17 also shows that the magnitude
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of the input signal remains less than about1 in magnitude. This means that the controller gain
is not too large at high frequencies. The magnitude Bode plot for the controller (2.51) is shown
in Figure 2.18. It is interesting to note that in the crossover region around! = 0:5 rad/s the
controller gain is quite constant, around1 in magnitude, which is similar to the “best” gain
found using a P-controller (see Figure 2.5).

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

M
ag

ni
tu

de

Frequency [rad/s]

jK(j!)j

Figure 2.18: Magnitude Bode plot of controller (2.51) for loop-shaping design

Limitations imposed by RHP-zeros and time delays

Based on the above loop-shaping arguments we can now examine how the presence
of delays and RHP-zeros limit the achievable control performance. We have already
argued that if we want the loop shape to have a slope of �1 around crossover (! c),
with preferably a steeper slope before and after crossover, then the phase lag of L at
!c will necessarily be at least �90Æ, even when there are no RHP-zeros or delays.
Therefore, if we assume that for performance and robustness we want a phase margin
of about 35Æ or more, then the additional phase contribution from any delays and
RHP-zeros at frequency !c cannot exceed about�55Æ.

First consider a time delay �. It yields an additional phase contribution of ��!,
which at frequency ! = 1=� is �1 rad =�57Æ (which is more than�55Æ). Thus, for
acceptable control performance we need !c < 1=�, approximately.

Next consider a real RHP-zero at s = z. To avoid an increase in slope caused by
this zero we place a pole at s = �z such that the loop transfer function contains the
term �s+z

s+z , the form of which is referred to as all-pass since its magnitude equals
1 at all frequencies. The phase contribution from the all-pass term at ! = z=2
is �2 arctan(0:5) = �53Æ (which is close to �55Æ), so for acceptable control
performance we need !c < z=2, approximately.
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2.6.3 Inverse-based controller design

In Example 2.6, we made sure that L(s) contained the RHP-zero of G(s), but
otherwise the specified L(s) was independent of G(s). This suggests the following
possible approach for a minimum-phase plant (i.e. one with no RHP-zeros or time
delays). Select a loop shape which has a slope of�1 throughout the frequency range,
namely

L(s) =
!c
s

(2.52)

where !c is the desired gain crossover frequency. This loop shape yields a phase
margin of 90Æ and an infinite gain margin since the phase of L(j!) never reaches
�180Æ. The controller corresponding to (2.52) is

K(s) =
!c
s
G�1(s) (2.53)

That is, the controller inverts the plant and adds an integrator (1=s). This is
an old idea, and is also the essential part of the internal model control (IMC)
design procedure (Morari and Zafiriou, 1989) which has proved successful in many
applications. However, there are at least two good reasons for why this inverse-based
controller may not be a good choice:

1. The controller will not be realizable if G(s) has a pole excess of two or larger,
and may in any case yield large input signals. These problems may be partly fixed
by adding high-frequency dynamics to the controller.

2. The loop shape resulting from (2.52) and (2.53) is notgenerally desirable, unless
the references and disturbances affect the outputs as steps. This is illustrated by
the following example.

Example 2.7 Disturbance process. We now introduce our second SISO example control
problem in which disturbance rejection is an important objective in addition to command
tracking. We assume that the plant has been appropriately scaled as outlined in Section 1.4.

Problem formulation. Consider the disturbance process described by

G(s) =
200

10s+ 1

1

(0:05s+ 1)2
; Gd(s) =

100

10s+ 1
(2.54)

with time in seconds (a block diagram is shown in Figure 2.20). The control objectives are:

1. Command tracking: The rise time (to reach90% of the final value) should be less than0:3 s
and the overshoot should be less than5%.

2. Disturbance rejection: The output in response to a unit step disturbance should remain
within the range[�1; 1] at all times, and it should return to0 as quickly as possible (jy(t)j
should at least be less than0:1 after3 s).

3. Input constraints:u(t) should remain within the range[�1; 1] at all times to avoid input
saturation (this is easily satisfied for most designs).
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Analysis. SinceGd(0) = 100 we have that without control the output response to a
unit disturbance (d = 1) will be 100 times larger than what is deemed to be acceptable.
The magnitudejGd(j!)j is lower at higher frequencies, but it remains larger than1 up to
!d � 10 rad/s (wherejGd(j!d)j = 1). Thus, feedback control is needed up to frequency
!d, so we need!c to be approximately equal to10 rad/s for disturbance rejection. On the
other hand, we do not want!c to be larger than necessary because of sensitivity to noise
and stability problems associated with high gain feedback. We will thus aim at a design with
!c � 10 rad/s.

Inverse-based controller design. We will consider the inverse-based design as given
by (2.52) and (2.53) with!c = 10. SinceG(s) has a pole excess of three this yields an
unrealizable controller, and therefore we choose to approximate the plant term(0:05s + 1)2

by (0:1s + 1) and then in the controller we let this term be effective over one decade, i.e. we
use(0:1s+ 1)=(0:01s + 1) to give the realizable design

K0(s) =
!c
s

10s+ 1

200

0:1s+ 1

0:01s + 1
; L0(s) =

!c
s

0:1s+ 1

(0:05s+ 1)2(0:01s+ 1)
; !c = 10 (2.55)
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Figure 2.19: Responses with “ inverse-based” controller K0(s) for the disturbance process

The response to a step reference is excellent as shown in Figure 2.19(a). The rise time is
about0:16 s and there is no overshoot so the specifications are more than satisfied. However,
the response to a step disturbance (Figure 2.19(b)) is much too sluggish. Although the output
stays within the range[�1; 1], it is still 0:75 at t = 3 s (whereas it should be less than0:1).
Because of the integral action the output does eventually return to zero, but it does not drop
below0:1 until after23 s.

The above example illustrates that the simple inverse-based design method where L
has a slope of about N = �1 at all frequencies, does not always yield satisfactory
designs. In the example, reference tracking was excellent, but disturbance rejection
was poor. The objective of the next section is to understand why the disturbance
response was so poor, and to propose a more desirable loop shape for disturbance
rejection.
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2.6.4 Loop shaping for disturbance rejection

At the outset we assume that the disturbance has been scaled such that at each
frequency jd(!)j � 1, and the main control objective is to achieve je(!)j < 1. With
feedback control we have e = y = SGdd, so to achieve je(!)j � 1 for jd(!)j = 1
(the worst-case disturbance) we require jSGd(j!)j < 1;8!, or equivalently,

j1 + Lj � jGdj 8! (2.56)

At frequencies where jGdj > 1, this is approximately the same as requiring
jLj > jGdj. However, in order to minimize the input signals, thereby reducing the
sensitivity to noise and avoiding stability problems, we do not want to use larger loop
gains than necessary (at least at frequencies around crossover). A reasonable initial
loop shape Lmin(s) is then one that just satisfies the condition

jLminj � jGdj (2.57)

where the subscript min signifies that Lmin is the smallest loop gain to satisfy
je(!)j � 1. Since L = GK the corresponding controller with the minimum gain
satisfies

jKminj � jG�1Gdj (2.58)

In addition, to improve low-frequency performance (e.g. to get zero steady-state
offset), we often add integral action at low frequencies, and use

jKj = js+ !I
s

jjG�1Gdj (2.59)

This can be summarized as follows:

� For disturbance rejection a good choice for the controller is one which contains
the dynamics (Gd) of the disturbance and inverts the dynamics (G) of the inputs
(at least at frequencies just before crossover).

� For disturbances entering directly at the plant output, Gd = 1, we get jKminj =
jG�1j, so an inverse-based design provides the best trade-off between performance
(disturbance rejection) and minimum use of feedback.

� For disturbances entering directly at the plant input (which is a common situation
in practice – often referred to as a load disturbance), we have G d = G and we
get jKminj = 1, so a simple proportional controller with unit gain yields a good
trade-off between output performance and input usage.

� Notice that a reference change may be viewed as a disturbance directly affecting
the output. This follows from (1.18), from which we get that a maximum reference
change r = R may be viewed as a disturbance d = 1 with Gd(s) = �R where
R is usually a constant. This explains why selecting K to be like G�1 (an inverse-
based controller) yields good responses to step changes in the reference.

In addition to satisfying jLj � jGdj (eq. 2.57) at frequencies around crossover, the
desired loop-shape L(s) may be modified as follows:
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1. Around crossover make the slopeN of jLj to be about�1. This is to achieve good
transient behaviour with acceptable gain and phase margins.

2. Increase the loop gain at low frequencies as illustrated in (2.59) to improve the
settling time and to reduce the steady-state offset. Adding an integrator yields
zero steady-state offset to a step disturbance.

3. Let L(s) roll off faster at higher frequencies (beyond the bandwidth) in order to
reduce the use of manipulated inputs, to make the controller realizable and to
reduce the effects of noise.

The above requirements are concerned with the magnitude, jL(j!)j. In addition,
the dynamics (phase) of L(s) must be selected such that the closed-loop system
is stable. When selecting L(s) to satisfy jLj � jGdj one should replace Gd(s)
by the corresponding minimum-phase transfer function with the same magnitude,
that is, time delays and RHP-zeros in Gd(s) should not be included in L(s) as
this will impose undesirable limitations on feedback. On the other hand, any time
delays or RHP-zeros in G(s) must be included in L = GK because RHP pole-zero
cancellations between G(s) and K(s) yield internal instability; see Chapter 4.

Remark. The idea of including a disturbance model in the controller is well known and is
more rigorously presented in, for example, research on the internal model principle (Wonham,
1974), or the internal model control design for disturbances (Morari and Zafiriou, 1989).
However, our development is simple, and sufficient for gaining the insight needed for later
chapters.

Example 2.8 Loop-shaping design for the disturbance process. Consider again the plant
described by (2.54). The plant can be represented by the block diagram in Figure 2.20, and we
see that the disturbance enters at the plant input in the sense thatG andGd share the same
dominating dynamics as represented by the term200=(10s + 1).

ee q
6

-?

?

-----
+

+
200

10s+1

y

d

0:5

1
(0:05s+1)2

u

-

+r
K(s)

Figure 2.20: Block diagram representation of the disturbance process in (2.54)

Step 1. Initial design. From (2.57) we know that a good initial loop shape looks like

jLminj = jGdj =
��� 100
10s+1

��� at frequencies up to crossover. The corresponding controller is
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K(s) = G�1Lmin = 0:5(0:05s + 1)2. This controller is not proper (i.e. it has more zeros
than poles), but since the term(0:05s + 1)2 only comes into effect at1=0:05 = 20 rad/s,
which is beyond the desired gain crossover frequency!c = 10 rad/s, we may replace it by a
constant gain of1 resulting in a proportional controller

K1(s) = 0:5 (2.60)

The magnitude of the corresponding loop transfer function,jL1(j!)j, and the response (y1(t))
to a step change in the disturbance are shown in Figure 2.21. This simple controller works
surprisingly well, and fort < 3 s the response to a step change in the disturbance is not much
different from that with the more complicated inverse-based controllerK0(s) of (2.55) as
shown earlier in Figure 2.19. However, there is no integral action andy1(t)! 1 ast!1.
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Figure 2.21: Loop shapes and disturbance responses for controllers K1, K2 and K3 for the
disturbance process

Step 2. More gain at low frequency. To get integral action we multiply the controller by
the term s+!I

s
, see (2.59), where!I is the frequency up to which the term is effective (the

asymptotic value of the term is 1 for! > !I ). For performance we want large gains at
low frequencies, so we want!I to be large, but in order to maintain an acceptable phase
margin (which is44:7Æ for controllerK1) the term should not add too much negative phase at
frequency!c, so!I should not be too large. A reasonable value is!I = 0:2!c for which
the phase contribution froms+!I

s
is arctan(1=0:2) � 90Æ = �11Æ at !c. In our case

!c � 10 rad/s, so we select the following controller

K2(s) = 0:5
s+ 2

s
(2.61)

The resulting disturbance response (y2) shown in Figure 2.21(b) satisfies the requirement that
jy(t)j < 0:1 at timet = 3 s, buty(t) exceeds1 for a short time. Also, the response is slightly
oscillatory as might be expected since the phase margin is only31Æ and the peak values for
jSj and jT j areMS = 2:28 andMT = 1:89.

Step 3. High-frequency correction. To increase the phase margin and improve the
transient response we supplement the controller with “derivative action” by multiplying
K2(s) by a lead-lag term which is effective over one decade starting at20 rad/s:

K3(s) = 0:5
s+ 2

s

0:05s+ 1

0:005s + 1
(2.62)
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This gives a phase margin of51Æ, and peak valuesMS = 1:43 and MT = 1:23. From
Figure 2.21(b), it is seen that the controllerK3(s) reacts quicker thanK2(s) and the
disturbance responsey3(t) stays below1.

Table 2.2: Alternative loop-shaping designs for the disturbance process
Reference Disturbance

GM PM !c MS MT tr ymax ymax y(t = 3)

Spec.! � 10 � :3 � 1:05 � 1 � 0:1

K0 9.95 72.9Æ 11.4 1.34 1 0.16 1.00 0.95 0.75
K1 4.04 44.7Æ 8.48 1.83 1.33 0.21 1.24 1.35 0.99
K2 3.24 30.9Æ 8.65 2.28 1.89 0.19 1.51 1.27 0.001
K3 19.7 50.9Æ 9.27 1.43 1.23 0.16 1.24 0.99 0.001

Table 2.2 summarizes the results for the four loop-shaping designs; the inverse-based
designK0 for reference tracking and the three designsK1; K2 and K3 for disturbance
rejection. Although controllerK3 satisfies the requirements for disturbance rejection, it is
not satisfactory for reference tracking; the overshoot is24% which is significantly higher than
the maximum value of5%. On the other hand, the inverse-based controllerK0 inverts the
term1=(10s+1) which is also in the disturbance model, and therefore yields a very sluggish
response to disturbances (the output is still0:75 at t = 3 s whereas it should be less than0:1).

In summary, for this process none of the controller designs meet all the objectives
for both reference tracking and disturbance rejection. The solution is to use a two
degrees-of-freedom controller as is discussed next.

2.6.5 Two degrees-of-freedom design

For reference tracking we typically want the controller to look like 1
sG

�1, see (2.53),
whereas for disturbance rejection we want the controller to look like 1

sG
�1Gd, see

(2.59). We cannot achieve both of these simultaneously with a single (feedback)
controller.
The solution is to use a two degrees-of-freedom controller where the reference signal
r and output measurement ym are independently treated by the controller, rather than
operating on their difference r� ym as in a one degree-of-freedom controller. There
exist several alternative implementations of a two degrees-of-freedom controller. The
most general form is shown in Figure 1.3(b) on page 12 where the controller has two
inputs (r and ym) and one output (u). However, the controller is often split into two
separate blocks as shown in Figure 2.22 where Ky denotes the feedback part of the
controller and Kr a reference prefilter. The feedback controllerKy is used to reduce
the effect of uncertainty (disturbances and model error) whereas the prefilter K r

shapes the commands r to improve tracking performance. In general, it is optimal to
design the combined two degrees-of-freedom controller K in one step. However, in
practiceKy is often designed first for disturbance rejection, and then K r is designed
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Figure 2.22: Two degrees-of-freedom controller

to improve reference tracking. This is the approach taken here.
Let T = L(1 + L)�1 (with L = GKy) denote the complementary sensitivity

function for the feedback system. Then for a one degree-of-freedom controller
y = Tr, whereas for a two degrees-of-freedom controller y = TK rr. If the desired
transfer function for reference tracking (often denoted the reference model) is T ref ,
then the corresponding ideal reference prefilter K r satisfies TKr = Tref , or

Kr(s) = T�1(s)Tref(s) (2.63)

Thus, in theory we may design Kr(s) to get any desired tracking response Tref(s).
However, in practice it is not so simple because the resulting Kr(s) may be unstable
(if G(s) has RHP-zeros) or unrealizable, and also TKr 6= Tref if T (s) is not known
exactly.

Remark. A convenient practical choice of prefilter is the lead-lag network

Kr(s) =
�leads+ 1

�lags+ 1
(2.64)

Here we select �lead > �lag if we want to speed up the response, and �lead < �lag if we want
to slow down the response. If one does not require fast reference tracking, which is the case in
many process control applications, a simple lag is often used (with �lead = 0).

Example 2.9 Two degrees-of-freedom design for the disturbance process. In Example
2.8 we designed a loop-shaping controllerK3(s) for the plant in (2.54) which gave good
performance with respect to disturbances. However, the command tracking performance was
not quite acceptable as is shown byy3 in Figure 2.23. The rise time is0:16 s which is
better than the required value of0:3s, but the overshoot is24% which is significantly higher
than the maximum value of5%. To improve upon this we can use a two degrees-of-freedom
controller with Ky = K3, and we designKr(s) based on (2.63) with reference model
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Figure 2.23: Tracking responses with the one degree-of-freedom controller (K3) and the two
degrees-of-freedom controller (K3; Kr3) for the disturbance process

Tref = 1=(0:1s+1) (a first-order response with no overshoot). To get a low-orderKr(s), we
may either use the actualT (s) and then use a low-order approximation ofKr(s), or we may
start with a low-order approximation ofT (s). We will do the latter. From the step responsey3
in Figure 2.23 we approximate the response by two parts; a fast response with time constant
0:1 s and gain1:5, and a slower response with time constant0:5 s and gain�0:5 (the sum of
the gains is 1). Thus we useT (s) � 1:5

0:1s+1
� 0:5

0:5s+1
= (0:7s+1)

(0:1s+1)(0:5s+1)
, from which (2.63)

yieldsKr(s) =
0:5s+1
0:7s+1

. Following closed-loop simulations we modified this slightly to arrive
at the design

Kr3(s) =
0:5s+ 1

0:65s+ 1
� 1

0:03s + 1
(2.65)

where the term1=(0:03s + 1) was included to avoid the initial peaking of the input signal
u(t) above1. The tracking response with this two degrees-of-freedom controller is shown in
Figure 2.23. The rise time is0:25 s which is better than the requirement of0:3 s, and the
overshoot is only2:3% which is better than the requirement of5%. The disturbance response
is the same as curvey3 in Figure 2.21. In conclusion, we are able to satisfy all specifications
using a two degrees-of-freedom controller.

Loop shaping applied to a flexible structure

The following example shows how the loop-shaping procedure for disturbance
rejection, can be used to design a one degree-of-freedom controller for a very
different kind of plant.

Example 2.10 Loop shaping for a flexible structure. Consider the following model of a
flexible structure with a disturbance occurring at the plant input

G(s) = Gd(s) =
2:5s(s2 + 1)

(s2 + 0:52)(s2 + 22)
(2.66)

From the Bode magnitude plot in Figure 2.24(a) we see thatjGd(j!)j � 1 around the
resonance frequencies of0:5 and2 rad/s, so control is needed at these frequencies. The dashed
line in Figure 2.24(b) shows the open-loop response to a unit step disturbance. The output is
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Figure 2.24: Flexible structure in (2.66)

seen to cycle between�2 and 2 (outside the allowed range�1 to 1), which confirms that
control is needed. From (2.58) a controller which meets the specificationjy(!)j � 1 for
jd(!)j = 1 is given byjKmin(j!)j = jG�1Gdj = 1. Indeed the controller

K(s) = 1 (2.67)

turns out to be a good choice as is verified by the closed-loop disturbance response (solid line)
in Figure 2.24(b); the output goes up to about0:5 and then returns to zero. The fact that the
choiceL(s) = G(s) gives closed-loop stability is not immediately obvious sincejGj has4
gain crossover frequencies. However, instability cannot occur because the plant is “passive”
with\G > �180Æ at all frequencies.

2.6.6 Conclusions on loop shaping

The loop-shaping procedure outlined and illustrated by the examples above is well
suited for relatively simple problems, as might arise for stable plants where L(s)
crosses the negative real axis only once. Although the procedure may be extended to
more complicated systems the effort required by the engineer is considerably greater.
In particular, it may be very difficult to achieve stability.

Fortunately, there exist alternative methods where the burden on the engineer is
much less. One such approach is the Glover-McFarlaneH1 loop-shaping procedure
which is discussed in detail in Chapter 9. It is essentially a two-step procedure, where
in the first step the engineer, as outlined in this section, decides on a loop shape, jLj
(denoted the “shaped plant” Gs), and in the second step an optimization provides the
necessary phase corrections to get a stable and robust design. The method is applied
to the disturbance process in Example 9.3 on page 387.

Another design philosophy which deals directly with shaping both the gain and
phase of L(s) is the quantitative feedback theory (QFT) of Horowitz (1991).
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2.7 Shaping closed-loop transfer functions

In this section, we introduce the reader to the shaping of the magnitudes of closed-
loop transfer functions, where we synthesize a controller by minimizing an H1
performance objective. The topic is discussed further in Section 3.4.6 and in more
detail in Chapter 9.

Specifications directly on the open-loop transfer functionL = GK, as in the
loop-shaping design procedures of the previous section, make the design process
transparent as it is clear how changes in L(s) affect the controller K(s) and vice
versa. An apparent problem with this approach, however, is that it does not consider
directly the closed-loop transfer functions, such as S and T , which determine the
final response. The following approximations apply

jL(j!)j � 1 ) S � L�1; T � 1
jL(j!)j � 1 ) S � 1; T � L

but in the crossover region where jL(j!)j is close to 1, one cannot infer anything
about S and T from the magnitude of the loop shape, jL(j!)j. For example, jSj and
jT j may experience large peaks if L(j!) is close to �1, i.e. the phase of L(j!) is
crucial in this frequency range.

An alternative design strategy is to directly shape the magnitudes of closed-loop
transfer functions, such as S(s) and T (s). Such a design strategy can be formulated
as anH1 optimal control problem, thus automating the actual controller design and
leaving the engineer with the task of selecting reasonable bounds (“weights” ) on the
desired closed-loop transfer functions. Before explaining how this may be done in
practice, we discuss the termsH1 andH2.

2.7.1 The termsH1 andH2

The H1 norm of a stable scalar transfer function f(s) is simply the peak value of
jf(j!)j as a function of frequency, that is,

kf(s)k1 , max
!
jf(j!)j (2.68)

Remark. Strictly speaking, we should here replace “max” (the maximum value) by “sup” (the
supremum, the least upper bound). This is because the maximum may only be approached as
w!1 and may therefore not actually be achieved. However, for engineering purposes there
is no difference between “sup” and “max” .

The termsH1 norm andH1 control are intimidating at first, and a name conveying
the engineering significance of H1 would have been better. After all, we are
simply talking about a design method which aims to press down the peak(s) of
one or more selected transfer functions. However, the term H1, which is purely
mathematical, has now established itself in the control community. To make the term
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less forbidding, an explanation of its background may help. First, the symbol 1
comes from the fact that the maximum magnitude over frequency may be written as

max
!
jf(j!)j = lim

p!1

�Z 1

�1
jf(j!)jpd!

�1=p
Essentially, by raising jf j to an infinite power we pick out its peak value. Next, the
symbol H stands for “Hardy space” , and H1 in the context of this book is the set
of transfer functions with bounded 1-norm, which is simply the set of stable and
propertransfer functions.

Similarly, the symbol H2 stands for the Hardy space of transfer functions with
bounded 2-norm, which is the set of stable and strictly propertransfer functions.
TheH2 norm of a strictly proper stable scalar transfer function is defined as

kf(s)k2 ,
�

1

2�

Z 1

�1
jf(j!)j2d!

�1=2
(2.69)

The factor 1=
p
2� is introduced to get consistency with the 2-norm of the

corresponding impulse response; see (4.117). Note that the H 2 norm of a semi-
proper (or bi-proper) transfer function (where lim s!1 f(s) is a non-zero constant)
is infinite, whereas its H1 norm is finite. An example of a semi-proper transfer
function (with an infiniteH2 norm) is the sensitivity function S = (I +GK)�1.

2.7.2 Weighted sensitivity

As already discussed, the sensitivity function S is a very good indicator of closed-
loop performance, both for SISO and MIMO systems. The main advantage of
considering S is that because we ideally want S small, it is sufficient to consider just
its magnitude jSj; that is, we need not worry about its phase. Typical specifications
in terms of S include:

1. Minimum bandwidth frequency ! �B (defined as the frequency where jS(j!)j
crosses 0.707 from below).

2. Maximum tracking error at selected frequencies.
3. System type, or alternatively the maximum steady-state tracking error, A.
4. Shape of S over selected frequency ranges.
5. Maximum peak magnitude of S, kS(j!)k1 �M .

The peak specification prevents amplification of noise at high frequencies, and also
introduces a margin of robustness; typically we select M = 2. Mathematically, these
specifications may be captured by an upper bound, 1=jwP (s)j, on the magnitude of
S, where wP (s) is a weight selected by the designer. The subscript P stands for
performancesince S is mainly used as a performance indicator, and the performance
requirement becomes
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Figure 2.25: Case where jSj exceeds its bound 1=jwP j, resulting in kwPSk1 > 1

jS(j!)j < 1=jwP (j!)j; 8! (2.70)

, jwPSj < 1; 8! , kwPSk1 < 1 (2.71)

The last equivalence follows from the definition of the H1 norm, and in words the
performance requirement is that the H1 norm of the weighted sensitivity, wPS,
must be less than one. In Figure 2.25(a), an example is shown where the sensitivity,
jSj, exceeds its upper bound, 1=jwP j, at some frequencies. The resulting weighted
sensitivity, jwPSj therefore exceeds 1 at the same frequencies as is illustrated in
Figure 2.25(b). Note that we usually do not use a log-scale for the magnitude when
plotting weightedtransfer functions, such as jwPSj.
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Figure 2.26: Inverse of performance weight. Exact and asymptotic plot of 1=jwP (j!)j in
(2.72)

Weight selection. An asymptotic plot of a typical upper bound, 1=jwP j, is shown
in Figure 2.26. The weight illustrated may be represented by

wP (s) =
s=M + !�B
s+ !�BA

(2.72)

and we see that 1=jwP (j!)j (the upper bound on jSj) is equal to A � 1 at low
frequencies, is equal to M � 1 at high frequencies, and the asymptote crosses 1 at
the frequency !�B, which is approximately the bandwidth requirement.

Remark. For this weight the loop shape L = !�B=s yields an S which exactly matches the
bound (2.71) at frequencies below the bandwidth and easily satisfies (by a factorM ) the bound
at higher frequencies.

In some cases, in order to improve performance, we may want a steeper slope for
L (and S) below the bandwidth, and then a higher-order weight may be selected. A
weight which asks for a slope of �2 for L in a range of frequencies below crossover
is

wP (s) =
(s=M1=2 + !�B)

2

(s+ !�BA1=2)2
(2.73)

Exercise 2.4 Make an asymptotic plot of1=jwP j in (2.73) and compare with the asymptotic
plot of1=jwP j in (2.72).

The insights gained in the previous section on loop-shaping design are very
useful for selecting weights. For example, for disturbance rejection we must satisfy
jSGd(j!)j < 1 at all frequencies (assuming the variables have been scaled to be less
than 1 in magnitude). It then follows that a good initial choice for the performance
weight is to let jwP (j!)j look like jGd(j!)j at frequencies where jGdj > 1.
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2.7.3 Stacked requirements: mixed sensitivity

The specification kwPSk1 < 1 puts a lower bound on the bandwidth, but not
an upper one, and nor does it allow us to specify the roll-off of L(s) above the
bandwidth. To do this one can make demands on another closed-loop transfer
function, for example, on the complementary sensitivity T = I � S = GKS.
For instance, one might specify an upper bound 1=jwT j on the magnitude of T
to make sure that L rolls off sufficiently fast at high frequencies. Also, to achieve
robustness or to restrict the magnitude of the input signals, u = KS(r � Gdd),
one may place an upper bound, 1=jwuj, on the magnitude of KS. To combine these
“mixed sensitivity” specifications, a “stacking approach” is usually used, resulting in
the following overall specification:

kNk1 = max
!

��(N(j!)) < 1; N =

24 wPS
wTT
wuKS

35 (2.74)

We here use the maximum singular value, ��(N(j!)), to measure the size of the
matrix N at each frequency. For SISO systems, N is a vector and ��(N) is the usual
Euclidean vector norm:

��(N) =
p
jwPSj2 + jwTT j2 + jwuKSj2 (2.75)

After selecting the form ofN and the weights, theH1 optimal controller is obtained
by solving the problem

min
K
kN(K)k1 (2.76)

where K is a stabilizing controller. A good tutorial introduction to H1 control is
given by Kwakernaak (1993).

Remark 1 The stacking procedure is selected for mathematical convenience as it does not
allow us to exactly specify the bounds on the individual transfer functions as described above.
For example, assume that �1(K) and �2(K) are two functions of K (which might represent
�1(K) = wPS and �2(K) = wTT ) and that we want to achieve

j�1j < 1 and j�2j < 1 (2.77)

This is similar to, but not quite the same as the stacked requirement

��

�
�1
�2

�
=
p
j�1j2 + j�2j2 < 1 (2.78)

Objectives (2.77) and (2.78) are very similar when either j�1j or j�2j is small, but in the
“worst” case when j�1j = j�2j, we get from (2.78) that j�1j � 0:707 and j�2j � 0:707. That
is, there is a possible “error” in each specification equal to at most a factor

p
2 � 3 dB. In

general, with n stacked requirements the resulting error is at most
p
n. This inaccuracy in the

specifications is something we are probably willing to sacrifice in the interests of mathematical
convenience. In any case, the specifications are in general rather rough, and are effectively
knobs for the engineer to select and adjust until a satisfactory design is reached.
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Remark 2 Let 
0 = minK kN(K)k1 denote the optimalH1 norm. An important property
ofH1 optimal controllers is that they yield a flat frequency response, that is, ��(N(j!)) = 
0
at all frequencies. The practical implication is that, except for at most a factor

p
n, the transfer

functions resulting from a solution to (2.76) will be close to 
0 times the bounds selected
by the designer. This gives the designer a mechanism for directly shaping the magnitudes of
��(S), ��(T ), ��(KS), and so on.

Example 2.11 H1 mixed sensitivity design for the disturbance process. Consider
again the plant in (2.54), and consider anH1 mixed sensitivityS=KS design in which

N =

�
wPS
wuKS

�
(2.79)

Appropriate scaling of the plant has been performed so that the inputs should be about1 or
less in magnitude, and we therefore select a simple input weightwu = 1. The performance
weight is chosen, in the form of (2.72), as

wP1(s) =
s=M + !�B
s+ !�BA

; M = 1:5; !�B = 10; A = 10�4 (2.80)

A value ofA = 0 would ask for integral action in the controller, but to get a stable weight
and to prevent numerical problems in the algorithm used to synthesize the controller, we have
moved the integrator slightly by using a small non-zero value forA. This has no practical
significance in terms of control performance. The value!�B = 10 has been selected to achieve
approximately the desired crossover frequency!c of 10 rad/s. TheH1 problem is solved with
the�-toolbox in MATLAB using the commands in Table 2.3.

Table 2.3: MATLAB program to synthesize anH1 controller
% Uses the Mu-toolbox
G=nd2sys(1,conv([10 1],conv([0.05 1],[0.05 1])),200); % Plant is G.
M=1.5; wb=10; A=1.e-4; Wp = nd2sys([1/M wb], [1 wb*A]); Wu = 1; % Weights.
%
% Generalized plant P is found with function sysic:
% (see Section 3.8 for more details)
%
systemnames = ’G Wp Wu’;
inputvar = ’[ r(1); u(1)]’;
outputvar = ’[Wp; Wu; r-G]’;
input to G = ’[u]’;
input to Wp = ’[r-G]’;
input to Wu = ’[u]’;
sysoutname = ’P’;
cleanupsysic = ’yes’;
sysic;
%
% Find H-infinity optimal controller:
%
nmeas=1; nu=1; gmn=0.5; gmx=20; tol=0.001;
[khinf,ghinf,gopt] = hinfsyn(P,nmeas,nu,gmn,gmx,tol);

For this problem, we achieved an optimalH1 norm of 1:37, so the weighted sensitivity
requirements are not quite satisfied (see design 1 in Figure 2.27 where the curve forjS1j
is slightly above that for1=jwP1j). Nevertheless, the design seems good withkSk1 =MS =
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Figure 2.28: Closed-loop step responses for two alternative H1 designs (1 and 2) for the
disturbance process

1:30, kTk1 =MT = 1:0,GM = 8:04, PM = 71:2Æ and!c = 7:22 rad/s, and the tracking
response is very good as shown by curvey1 in Figure 2.28(a). (The design is actually very
similar to the loop-shaping design for references,K0, which was an inverse-based controller.)

However, we see from curvey1 in Figure 2.28(b) that the disturbance response is very
sluggish. If disturbance rejection is the main concern, then from our earlier discussion in
Section 2.6.4 this motivates the need for a performance weight that specifies higher gains at
low frequencies. We therefore try

wP2(s) =
(s=M1=2 + !�B)

2

(s+ !�BA
1=2)2

; M = 1:5; !�B = 10; A = 10�4 (2.81)

The inverse of this weight is shown in Figure 2.27, and is seen from the dashed line to cross1 in
magnitude at about the same frequency as weightwP1, but it specifies tighter control at lower
frequencies. With the weightwP2, we get a design with an optimalH1 norm of2:21, yielding
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MS = 1:63, MT = 1:43, GM = 4:76, PM = 43:3Æ and!c = 11:34 rad/s. (The design
is actually very similar to the loop-shaping design for disturbances,K3.) The disturbance
response is very good, whereas the tracking response has a somewhat high overshoot; see
curvey2 in Figure 2.28(a).

In conclusion, design1 is best for reference tracking whereas design2 is best for
disturbance rejection. To get a design with both good tracking and good disturbance rejection
we need a two degrees-of-freedom controller, as was discussed in Example 2.9.

2.8 Conclusion

The main purpose of this chapter has been to present the classical ideas and
techniques of feedback control. We have concentrated on SISO systems so that
insights into the necessary design trade-offs, and the design approaches available, can
be properly developed before MIMO systems are considered. We also introduced the
H1 problem based on weighted sensitivity, for which typical performance weights
are given in (2.72) and (2.73).



3

INTRODUCTION TO

MULTIVARIABLE CONTROL

In this chapter, we introduce the reader to multi-input multi-output (MIMO) systems. We
discuss the singular value decomposition (SVD), multivariable control, and multivariable
right-half plane (RHP) zeros. The need for a careful analysis of the effect of uncertainty
in MIMO systems is motivated by two examples. Finally we describe a general control
configuration that can be used to formulate control problems. Many of these important topics
are considered again in greater detail later in the book. The chapter should be accessible to
readers who have attended a classical SISO control course.

3.1 Introduction

We consider a multi-input multi-output (MIMO) plant with m inputs and l outputs.
Thus, the basic transfer function model is y(s) = G(s)u(s), where y is an l � 1
vector, u is an m� 1 vector and G(s) is an l �m transfer function matrix.

If we make a change in the first input, u1, then this will generally affect all the
outputs, y1; y2; : : : ; yl, that is, there is interactionbetween the inputs and outputs.
A non-interacting plant would result if u1 only affects y1, u2 only affects y2, and so
on.

The main difference between a scalar (SISO) system and a MIMO system is the
presence of directionsin the latter. Directions are relevant for vectors and matrices,
but not for scalars. However, despite the complicating factor of directions, most
of the ideas and techniques presented in the previous chapter on SISO systems
may be extended to MIMO systems. The singular value decomposition (SVD)
provides a useful way of quantifying multivariable directionality, and we will see
that most SISO results involving the absolute value (magnitude) may be generalized
to multivariable systems by considering the maximum singular value. An exception
to this is Bode’s stability condition which has no generalization in terms of singular
values. This is related to the fact that it is difficult to find a good measure of phase
for MIMO transfer functions.
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The chapter is organized as follows. We start by presenting some rules for
determining multivariable transfer functions from block diagrams. Although most
of the formulas for scalar systems apply, we must exercise some care since matrix
multiplication is not commutative, that is, in generalGK 6= KG. Then we introduce
the singular value decomposition and show how it may be used to study directions
in multivariable systems. We also give a brief introduction to multivariable control
and decoupling. We then consider a simple plant with a multivariable RHP-zero and
show how the effect of this zero may be shifted from one output channel to another.
After this we discuss robustness, and study two example plants, each 2 � 2, which
demonstrate that the simple gain and phase margins used for SISO systems do not
generalize easily to MIMO systems. Finally, we consider a general control problem
formulation.

At this point, you may find it useful to browse through Appendix A where some
important mathematical tools are described. Exercises to test your understanding of
this mathematics are given at the end of this chapter.

3.2 Transfer functions for MIMO systems

- G1
- G2

-
G

u z

(a) Cascade system

- c -+
+

G1
-q

�G2

6
u yv

z

(b) Positive feedback system

Figure 3.1: Block diagrams for the cascade rule and the feedback rule

The following three rules are useful when evaluating transfer functions for MIMO
systems.

1. Cascade rule. For the cascade (series) interconnection ofG1 and G2 in
Figure 3.1(a), the overall transfer function matrix isG = G2G1.

Remark. The order of the transfer function matrices in G = G2G1 (from left to right) is
the reverse of the order in which they appear in the block diagram of Figure 3.1(a) (from left
to right). This has led some authors to use block diagrams in which the inputs enter at the
right hand side. However, in this case the order of the transfer function blocks in a feedback
path will be reversed compared with their order in the formula, so no fundamental benefit is
obtained.

2. Feedback rule. With reference to the positive feedback system in Figure 3.1(b),
we havev = (I � L)�1u whereL = G2G1 is the transfer function around the
loop.
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3. Push-through rule. For matrices of appropriate dimensions

G1(I �G2G1)
�1 = (I �G1G2)

�1G1 (3.1)

Proof: Equation (3.1) is verified by pre-multiplying both sides by (I � G1G2) and post-
multiplying both sides by (I �G2G1). 2

Exercise 3.1 Derive the cascade and feedback rules.

The cascade and feedback rules can be combined into the following MIMO rule for
evaluating closed-loop transfer functions from block diagrams.

MIMO Rule: Start from the output and write down the blocks as you meet
them when moving backwards (against the signal flow), taking the most direct
path towards the input. If you exit from a feedback loop then include a term
(I � L)�1 for positive feedback (or(I + L)�1 for negative feedback) where
L is the transfer function around that loop (evaluated against the signal flow
starting at the point of exit from the loop).

Care should be taken when applying this rule to systems with nested loops. For
such systems it is probably safer to write down the signal equations and eliminate
internal variables to get the transfer function of interest. The rule is best understood
by considering an example.

e

e q

-?-
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-? ---

-
+

+

+

+
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P12

P11

P22

KP21

w

Figure 3.2: Block diagram corresponding to (3.2)

Example 3.1 The transfer function for the block diagram in Figure 3.2 is given by

z = (P11 + P12K(I � P22K)�1P21)w (3.2)

To derive this from the MIMO rule above we start at the outputz and move backwards towards
w. There are two branches, one of which gives the termP11 directly. In the other branch we
move backwards and meetP12 and thenK. We then exit from a feedback loop and get a term
(I � L)�1 (positive feedback) withL = P22K, and finally we meetP21.
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Exercise 3.2 Use the MIMO rule to derive the transfer functions fromu to y and fromu to
z in Figure 3.1(b). Use the push-through rule to rewrite the two transfer functions.

Exercise 3.3 Use the MIMO rule to show that (2.18) corresponds to the negative feedback
system in Figure 2.4.

Negative feedback control systems

- e -+
- K - e+ +? - G - e+ +? -q
6

r yu
d2 d1

Figure 3.3: Conventional negative feedback control system

For the negative feedback system in Figure 3.3, we defineL to be the loop transfer
function as seen when breaking the loop at the outputof the plant. Thus, for the case
where the loop consists of a plant G and a feedback controllerK we have

L = GK (3.3)

The sensitivity and complementary sensitivity are then defined as

S , (I + L)�1; T , I � S = L(I + L)�1 (3.4)

In Figure 3.3, T is the transfer function from r to y, and S is the transfer function
from d1 to y; also see equations (2.16) to (2.20) which apply to MIMO systems.
S and T are sometimes called the output sensitivityand output complementary

sensitivity, respectively, and to make this explicit one may use the notation LO � L,
SO � S and TO � T . This is to distinguish them from the corresponding transfer
functions evaluated at the input to the plant.

We define LI to be the loop transfer function as seen when breaking the loop at
the input to the plant with negative feedback assumed. In Figure 3.3

LI = KG (3.5)

The inputsensitivity and inputcomplementary sensitivity functions are then defined
as

SI , (I + LI)
�1; TI , I � SI = LI(I + LI)

�1 (3.6)

In Figure 3.3,�TI is the transfer function from d2 to u. Of course, for SISO systems
LI = L, SI = S, and TI = T .

Exercise 3.4 In Figure 3.3, what transfer function doesSI represent? Evaluate the transfer
functions fromd1 andd2 to r � y.
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The following relationships are useful:

(I + L)�1 + L(I + L)�1 = S + T = I (3.7)

G(I +KG)�1 = (I +GK)�1G (3.8)

GK(I +GK)�1 = G(I +KG)�1K = (I +GK)�1GK (3.9)

T = L(I + L)�1 = (I + (L)�1)�1 (3.10)

Note that the matricesG andK in (3.7)-(3.10) need not be square whereas L = GK
is square. (3.7) follows trivially by factorizing out the term (I + L)�1 from the
right. (3.8) says that GSI = SG and follows from the push-through rule. (3.9)
also follows from the push-through rule. (3.10) can be derived from the identity
M�1

1 M�1
2 = (M2M1)

�1.
Similar relationships, but with G and K interchanged, apply for the transfer

functions evaluated at the plant input. To assist in remembering (3.7)-(3.10) note that
G comes first (because the transfer function is evaluated at the output) and then G
andK alternate in sequence. A given transfer matrix never occurs twice in sequence.
For example, the closed-loop transfer functionG(I +GK)�1 does notexist (unless
G is repeated in the block diagram, but then these G’s would actually represent two
different physical entities).

Remark 1 The above identities are clearly useful when deriving transfer functions
analytically, but they are also useful for numerical calculations involving state-space
realizations, e.g. L(s) = C(sI � A)�1B + D. For example, assume we have been given
a state-space realization for L = GK with n states (so A is a n � n matrix) and we want to
find the state space realization of T . Then we can first form S = (I+L)�1 with n states, and
then multiply it by L to obtain T = SL with 2n states. However, a minimal realization of T
has only n states. This may be obtained numerically using model reduction, but it is preferable
to find it directly using T = I � S, see (3.7).

Remark 2 Note also that the right identity in (3.10) can only be used to compute the state-
space realization of T if that of L�1 exists, so L must be semi-proper with D 6= 0 (which is
rarely the case in practice). On the other hand, since L is square, we can always compute the
frequency response of L(j!)�1 (except at frequencies where L(s) has j!-axis poles), and
then obtain T (j!) from (3.10).

Remark 3 In Appendix A.6 we present some factorizations of the sensitivity function which
will be useful in later applications. For example, (A.139) relates the sensitivity of a perturbed
plant, S0 = (I +G0K)�1, to that of the nominal plant, S = (I +GK)�1. We have

S0 = S(I +EOT )
�1; EO , (G0 �G)G�1 (3.11)

where EO is an output multiplicative perturbation representing the difference between G and
G0, and T is the nominal complementary sensitivity function.
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3.3 Multivariable frequency response analysis

The transfer function G(s) is a function of the Laplace variable s and can be used
to represent a dynamic system. However, if we fix s = s0 then we may view G(s0)
simply as a complex matrix, which can be analyzed using standard tools in matrix
algebra. In particular, the choice s0 = j! is of interest since G(j!) represents the
response to a sinusoidal signal of frequency !.

3.3.1 Obtaining the frequency response from G(s)

-- y
G(s)

d

Figure 3.4: System G(s) with input d and output y

The frequency domain is ideal for studying directions in multivariable systems at
any given frequency. Consider the system G(s) in Figure 3.4 with input d(s) and
output y(s):

y(s) = G(s)d(s) (3.12)

(We here denote the input by d rather than by u to avoid confusion with the matrix
U used below in the singular value decomposition). In Section 2.1 we considered the
sinusoidal response of scalar systems. These results may be directly generalized to
multivariable systems by considering the elements g ij of the matrix G. We have

� gij(j!) represents the sinusoidal response from input j to output i.

To be more specific, apply to input channel j a scalar sinusoidal signal given by

dj(t) = dj0 sin(!t+ �j) (3.13)

This input signal is persistent, that is, it has been applied since t = �1. Then the
corresponding persistent output signal in channel i is also a sinusoid with the same
frequency

yi(t) = yi0 sin(!t+ �i) (3.14)

where the amplification (gain) and phase shift may be obtained from the complex
number gij(j!) as follows

yio
djo

= jgij(j!)j; �i � �j = \gij(j!) (3.15)

In phasor notation, see (2.7) and (2.9), we may compactly represent the sinusoidal
time response described in (3.13)-(3.15) by

yi(!) = gij(j!)dj(!) (3.16)
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where
dj(!) = djoe

j�j ; yi(!) = yioe
j�i (3.17)

Here the use of ! (and not j!) as the argument of d j(!) and yi(!) implies that these
are complex numbers, representing at each frequency ! the magnitude and phase of
the sinusoidal signals in (3.13) and (3.14).

The overall response to simultaneous input signals of the same frequency in
several input channels is, by the superposition principle for linear systems, equal
to the sum of the individual responses, and we have from (3.16)

yi(!) = gi1(j!)d1(!) + gi2(j!)d2(!) + � � � =
X
j

gij(j!)dj(!) (3.18)

or in matrix form
y(!) = G(j!)d(!) (3.19)

where

d(!) =

26664
d1(!)
d2(!)

...
dm(!)

37775 and y(!) =

26664
y1(!)
y2(!)

...
yl(!)

37775 (3.20)

represent the vectors of sinusoidal input and output signals.

Example 3.2 Consider a2 � 2 multivariable system where we simultaneously apply
sinusoidal signals of the same frequency! to the two input channels:

d(t) =
�
d1(t)
d2(t)

�
=
�
d10 sin(!t + �1)
d20 sin(!t + �2)

�
(3.21)

The corresponding output signal is

y(t) =
�
y1(t)
y2(t)

�
=
�
y10 sin(!t + �1)
y20 sin(!t + �2)

�
(3.22)

which can be computed by multiplying the complex matrixG(j!) by the complex vectord(!):

y(!) = G(j!)d(!); y(!) =
�
y10ej�1

y20ej�2

�
; d(!) =

�
d10ej�1

d20ej�2

�
(3.23)

3.3.2 Directions in multivariable systems

For a SISO system, y = Gd, the gain at a given frequency is simply

jy(!)j
jd(!)j =

jG(j!)d(!)j
jd(!)j = jG(j!)j

The gain depends on the frequency !, but since the system is linear it is independent
of the input magnitude jd(!)j.
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Things are not quite as simple for MIMO systems where the input and output
signals are both vectors, and we need to “sum up” the magnitudes of the elements
in each vector by use of some norm, as discussed in Appendix A.5.1. If we select
the vector 2-norm, the usual measure of length, then at a given frequency ! the
magnitude of the vector input signal is

kd(!)k2 =
sX

j

jdj(!)j2 =
q
d210 + d220 + � � � (3.24)

and the magnitude of the vector output signal is

ky(!)k2 =
sX

i

jyi(!)j2 =
q
y210 + y220 + � � � (3.25)

The gain of the system G(s) for a particular input signal d(!) is then given by the
ratio

ky(!)k2
kd(!)k2 =

kG(j!)d(!)k2
kd(!)k2 =

p
y210 + y220 + � � �p
d210 + d220 + � � �

(3.26)

Again the gain depends on the frequency !, and again it is independent of the input
magnitude kd(!)k2. However, for a MIMO system there are additional degrees of
freedom and the gain depends also on the direction of the input d. The maximum
gain as the direction of the input is varied is the maximum singular value of G,

max
d6=0

kGdk2
kdk2 = max

kdk2=1
kGdk2 = ��(G) (3.27)

whereas the minimum gain is the minimum singular value of G,

min
d6=0

kGdk2
kdk2 = min

kdk2=1
kGdk2 = �(G) (3.28)

The first identities in (3.27) and (3.28) follow because the gain is independent of the
input magnitude for a linear system.

Example 3.3 For a system with two inputs,d =
�
d10
d20

�
, the gain is in general different for

the following five inputs:

d1 =

�
1
0

�
; d2 =

�
0
1

�
; d3 =

�
0:707
0:707

�
; d4 =

�
0:707
�0:707

�
; d5 =

�
0:6
�0:8

�
(which all have the same magnitudekdk2 = 1 but are in different directions). For example,
for the2� 2 system

G1 =
�
5 4
3 2

�
(3.29)
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Figure 3.5: Gain kG1dk2=kdk2 as a function of d20=d10 for G1 in (3.29)

(a constant matrix) we compute for the five inputsdj the following output vectors

y1 =
�
5
3

�
; y2 =

�
4
2

�
; y3 =

�
6:36
3:54

�
; y4 =

�
0:707
0:707

�
; y5 =

��0:2
0:2

�
and the 2-norms of these five outputs (i.e. the gains for the five inputs) are

ky1k2 = 5:83; ky2k2 = 4:47; ky3k2 = 7:30; ky4k2 = 1:00; ky5k2 = 0:28

This dependency of the gain on the input direction is illustrated graphically in Figure 3.5
where we have used the ratiod20=d10 as an independent variable to represent the input
direction. We see that, depending on the ratiod20=d10, the gain varies between0:27 and
7:34. These are the minimum and maximum singular values ofG1, respectively.

3.3.3 Eigenvalues are a poor measure of gain

Before discussing in more detail the singular value decomposition we want to
demonstrate that the magnitudes of the eigenvalues of a transfer function matrix, e.g.
j�i(G(j!)j, do not provide a useful means of generalizing the SISO gain, jG(j!)j.
First of all, eigenvalues can only be computed for square systems, and even then they
can be very misleading. To see this, consider the system y = Gd with

G =
�
0 100
0 0

�
(3.30)

which has both eigenvalues �i equal to zero. However, to conclude from the
eigenvalues that the system gain is zero is clearly misleading. For example, with
an input vector d = [0 1]T we get an output vector y = [100 0]T .

The “problem” is that the eigenvalues measure the gain for the special case when
the inputs and the outputs are in the same direction, namely in the direction of the
eigenvectors. To see this let ti be an eigenvector of G and consider an input d = t i.
Then the output is y = Gti = �iti where �i is the corresponding eigenvalue. We get

kyk=kdk = k�itik=ktik = j�ij
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so j�ijmeasures the gain in the direction ti. This may be useful for stability analysis,
but not for performance.

To find useful generalizations of jGj for the case when G is a matrix, we need the
concept of a matrix norm, denoted kGk. Two important properties which must be
satisfied for a matrix norm are the triangle inequality

kG1 +G2k � kG1k+ kG2k (3.31)

and the multiplicative property

kG1G2k � kG1k � kG2k (3.32)

(see Appendix A.5 for more details). As we may expect, the magnitude of the largest
eigenvalue, �(G) , j�max(G)j (the spectral radius), does not satisfy the properties
of a matrix norm; also see (A.115).

In Appendix A.5.2 we introduce several matrix norms, such as the Frobenius norm
kGkF , the sum norm kGksum, the maximum column sum kGki1, the maximum row
sum kGki1, and the maximum singular value kGki2 = ��(G) (the latter three norms
are induced by a vector norm, e.g. see (3.27); this is the reason for the subscript i). We
will use all of these norms in this book, each depending on the situation. However, in
this chapter we will mainly use the induced 2-norm, ��(G). Notice that ��(G) = 100
for the matrix in (3.30).

Exercise 3.5 Compute the spectral radius and the five matrix norms mentioned above for
the matrices in (3.29) and (3.30).

3.3.4 Singular value decomposition

The singular value decomposition (SVD) is defined in Appendix A.3. Here we are
interested in its physical interpretation when applied to the frequency response of a
MIMO system G(s) with m inputs and l outputs.

Consider a fixed frequency ! where G(j!) is a constant l �m complex matrix,
and denote G(j!) by G for simplicity. Any matrix G may be decomposed into its
singular value decomposition, and we write

G = U�V H (3.33)

where

� is an l�mmatrix with k = minfl;mg non-negative singular values, � i, arranged
in descending order along its main diagonal; the other entries are zero. The
singular values are the positive square roots of the eigenvalues ofGHG, where
GH is the complex conjugate transpose of G.

�i(G) =
q
�i(GHG) (3.34)
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U is an l � l unitary matrix of output singular vectors, u i,

V is an m�m unitary matrix of input singular vectors, v i,

This is illustrated by the SVD of a real 2� 2 matrix which can always be written in
the form

G =
�
cos �1 � sin �1
sin �1 cos �1

�
| {z }

U

�
�1 0
0 �2

�
| {z }

�

�
cos �2 � sin �2
� sin �2 � cos �2

�T
| {z }

V T

(3.35)

where the angles �1 and �2 depend on the given matrix. From (3.35) we see that the
matrices U and V involve rotations and that their columns are orthonormal.

The singular values are sometimes called the principal values or principal gains,
and the associated directions are called principal directions. In general, the singular
values must be computed numerically. For 2 � 2 matrices however, analytic
expressions for the singular values are given in (A.36).

Caution. It is standard notation to use the symbol U to denote the matrix of outputsingular
vectors. This is unfortunate as it is also standard notation to use u (lower case) to represent the
input signal. The reader should be careful not to confuse these two.

Input and output directions. The column vectors ofU , denoted u i, represent the
output directionsof the plant. They are orthogonal and of unit length (orthonormal),
that is

kuik2 =
p
jui1j2 + jui2j2 + : : :+ juilj2 = 1 (3.36)

uHi ui = 1; uHi uj = 0; i 6= j (3.37)

Likewise, the column vectors of V , denoted v i, are orthogonal and of unit length, and
represent the input directions. These input and output directions are related through
the singular values. To see this, note that since V is unitary we have V HV = I , so
(3.33) may be written as GV = U�, which for column i becomes

Gvi = �iui (3.38)

where vi and ui are vectors, whereas �i is a scalar. That is, if we consider an input in
the direction vi, then the outputis in the direction ui. Furthermore, since kvik2 = 1
and kuik2 = 1 we see that the i’ th singular value �i gives directly the gain of the
matrix G in this direction. In other words

�i(G) = kGvik2 = kGvik2
kvik2 (3.39)

Some advantages of the SVD over the eigenvalue decomposition for analyzing gains
and directionality of multivariable plants are:

1. The singular values give better information about the gains of the plant.
2. The plant directions obtained from the SVD are orthogonal.
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3. The SVD also applies directly to non-square plants.

Maximum and minimum singular values. As already stated, it can be shown
that the largest gain for anyinput direction is equal to the maximum singular value

��(G) � �1(G) = max
d6=0

kGdk2
kdk2 =

kGv1k2
kv1k2 (3.40)

and that the smallest gain for any input direction (excluding the “wasted” in the
nullspace of G when there are more inputs than outputs 1 ) is equal to the minimum
singular value

�(G) � �k(G) = min
d6=0

kGdk2
kdk2 =

kGvkk2
kvkk2 (3.41)

where k = minfl;mg. Thus, for any vector d we have that

�(G) � kGdk2
kdk2 � ��(G) (3.42)

Define u1 = �u; v1 = �v; uk = u and vk = v. Then it follows that

G�v = ���u; Gv = � u (3.43)

The vector �v corresponds to the input direction with largest amplification, and �u is the
corresponding output direction in which the inputs are most effective. The directions
involving �v and �u are sometimes referred to as the “strongest” , “high-gain” or “most
important” directions. The next most important directions are associated with v 2 and
u2, and so on (see Appendix A.3.5) until the “ least important” , “weak” or “ low-gain”
directions which are associated with v and u.
Example 3.3 continue. Consider again the system (3.29) with

G1 =
�
5 4
3 2

�
(3.44)

The singular value decomposition ofG1 is

G1 =

�
0:872 0:490
0:490 �0:872

�
| {z }

U

�
7:343 0
0 0:272

�
| {z }

�

�
0:794 �0:608
0:608 0:794

�H
| {z }

VH

The largest gain of 7.343 is for an input in the direction�v =

�
0:794
0:608

�
. The smallest gain of

0.272 is for an input in the directionv =
��0:608
0:794

�
. This confirms findings on page 70.

Note that the directions as given by the singular vectors are not unique, in the sense
that the elements in each pair of vectors (ui, vi) may be multiplied by a complex

1 For a “ fat” matrix G with more inputs than outputs (m > l), we can always choose a nonzero input d
in the nullspace of G such that Gd = 0.
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scalar c of magnitude 1 (jcj = 1). This is easily seen from (3.39). For example, we
may change the sign of the vector �v (multiply by c = �1) provided we also change
the sign of the vector �u. For example, if you use Matlab to compute the SVD of
the matrix in (3.44) (g1=[5 4; 3 2 ]; [u,s,v]=svd(g1)), then you will
probably find that the signs are different from those given above.

Since in (3.44) both inputs affect both outputs, we say that the system is
interactive. This follows from the relatively large off-diagonal elements in G 1.
Furthermore, the system is ill-conditioned, that is, some combinations of the inputs
have a strong effect on the outputs, whereas other combinations have a weak effect
on the outputs. This may be quantified by the condition number; the ratio between
the gains in the strong and weak directions; which for the system in (3.44) is
��=� = 7:343=0:272 = 27:0.

Example 3.4 Shopping cart. Consider a shopping cart (supermarket trolley) with fixed
wheels which we may want to move in three directions; forwards, sideways and upwards.
This is a simple illustrative example where we can easily figure out the principal directions
from experience. The strongest direction, corresponding to the largest singular value, will
clearly be in the forwards direction. The next direction, corresponding to the second singular
value, will be sideways. Finally, the most “difficult” or “weak” direction, corresponding to
the smallest singular value, will be upwards (lifting up the cart).

For the shopping cart the gain depends strongly on the input direction, i.e. the plant is ill-
conditioned. Control of ill-conditioned plants is sometimes difficult, and the control problem
associated with the shopping cart can be described as follows: Assume we want to push the
shopping cart sideways (maybe we are blocking someone). This is rather difficult (the plant
has low gain in this direction) so a strong force is needed. However, if there is any uncertainty
in our knowledge about the direction the cart is pointing, then some of our applied force will
be directed forwards (where the plant gain is large) and the cart will suddenly move forward
with an undesired large speed. We thus see that the control of an ill-conditioned plant may be
especially difficult if there is input uncertainty which can cause the input signal to “spread”
from one input direction to another. We will discuss this in more detail later.

Example 3.5 Distillation process. Consider the following steady-state model of a
distillation column

G =
�
87:8 �86:4
108:2 �109:6

�
(3.45)

The variables have been scaled as discussed in Section 1.4. Thus, since the elements are much
larger than1 in magnitude this suggests that there will be no problems with input constraints.
However, this is somewhat misleading as the gain in the low-gain direction (corresponding to
the smallest singular value) is actually only just above1. To see this consider the SVD ofG:

G =
�
0:625 �0:781
0:781 0:625

�
| {z }

U

�
197:2 0
0 1:39

�
| {z }

�

�
0:707 �0:708
�0:708 �0:707

�H
| {z }

VH

(3.46)

From the first input singular vector,�v = [ 0:707 �0:708 ]T , we see that the gain is197:2
when we increase one input and decrease the other input by a similar amount. On the other
hand, from the second input singular vector,v = [�0:708 �0:707 ]T , we see that if we
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increase both inputs by the same amount then the gain is only1:39. The reason for this is
that the plant is such that the two inputs counteract each other. Thus, the distillation process
is ill-conditioned, at least at steady-state, and the condition number is197:2=1:39 = 141:7.
The physics of this example is discussed in more detail below, and later in this chapter we
will consider a simple controller design (see Motivating robustness example No. 2 in Section
3.7.2).

Example 3.6 Physics of the distillation process. The model in (3.45) represents two-
point (dual) composition control of a distillation column, where the top composition is to
be controlled atyD = 0:99 (outputy1) and the bottom composition atxB = 0:01 (output
y2), using reflux L (inputu1) and boilup V (inputu2) as manipulated inputs (see Figure 10.8
on page 434). Note that we have here returned to the convention of usingu1 andu2 to denote
the manipulated inputs; the output singular vectors will be denoted by�u andu.

The1; 1-element of the gain matrixG is87:8. Thus an increase inu1 by1 (withu2 constant)
yields a large steady-state change iny1 of 87:8, that is, the outputs are very sensitive to
changes inu1. Similarly, an increase inu2 by1 (withu1 constant) yieldsy1 = �86:4. Again,
this is a very large change, but in the opposite direction of that for the increase inu1. We
therefore see that changes inu1 andu2 counteract each other, and if we increaseu1 andu2
simultaneously by1, then the overall steady-state change iny1 is only87:8� 86:4 = 1:4.

Physically, the reason for this small change is that the compositions in the distillation
column are only weakly dependent on changes in theinternal flows (i.e. simultaneous changes
in the internal flowsL and V ). This can also be seen from the smallest singular value,

�(G) = 1:39, which is obtained for inputs in the directionv =

��0:708
�0:707

�
. From the output

singular vectoru =
��0:781
0:625

�
we see that the effect is to move the outputs in different

directions, that is, to changey1 � y2. Therefore, it takes a large control action to move the
compositions in different directions, that is, to make both products purer simultaneously. This
makes sense from a physical point of view.

On the other hand, the distillation column is very sensitive to changes inexternal flows (i.e.

increaseu1 � u2 = L� V ). This can be seen from the input singular vector�v =
�
0:707
�0:708

�
associated with the largest singular value, and is a general property of distillation columns
where both products are of high purity. The reason for this is that the external distillate flow
(which varies asV � L) has to be about equal to the amount of light component in the feed,
and even a small imbalance leads to large changes in the product compositions.

For dynamic systems the singular values and their associated directions vary with
frequency, and for control purposes it is usually the frequency range corresponding to
the closed-loop bandwidth which is of main interest. The singular values are usually
plotted as a function of frequency in a Bode magnitude plot with a log-scale for
frequency and magnitude. Typical plots are shown in Figure 3.6.

Non-Square plants

The SVD is also useful for non-square plants. For example, consider a plant with 2
inputs and 3 outputs. In this case the third output singular vector, u 3, tells us in which
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Figure 3.6: Typical plots of singular values

output direction the plant cannot be controlled. Similarly, for a plant with more inputs
than outputs, the additional input singular vectors tell us in which directions the input
will have no effect.

Example 3.7 Consider a non-square system with 3 inputs and 2 outputs,

G2 =
�
5 4 1
3 2 �1

�
with singular value decomposition

G2 =
�
0:877 0:481
0:481 �0:877

�
| {z }

U

�
7:354 0 0
0 1:387 0

�
| {z }

�

"
0:792 �0:161 0:588
0:608 0:124 �0:785
0:054 0:979 0:196

#H
| {z }

VH

From the definition of the minimum singular value we have�(G2) = 1:387, but note that an

inputd in the direction

"
0:588
�0:785
0:196

#
is in the nullspace ofG and yields an outputy = Gd = 0.

Exercise 3.6 For a system withm inputs and1 output, what is the interpretation of the
singular values and the associated input directions (V )? What isU in this case?

3.3.5 Singular values for performance

So far we have used the SVD primarily to gain insight into the directionality of
MIMO systems. But the maximum singular value is also very useful in terms of
frequency-domain performance and robustness. We here consider performance.

For SISO systems we earlier found that jS(j!)j evaluated as a function of
frequency gives useful information about the effectiveness of feedback control. For
example, it is the gain from a sinusoidal reference input (or output disturbance) to
the control error, je(!)j=jr(!)j = jS(j!)j.
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For MIMO systems a useful generalization results if we consider the ratio
ke(!)k2=kr(!)k2, where r is the vector of reference inputs, e is the vector of control
errors, and k � k2 is the vector 2-norm. As explained above, this gain depends on the
directionof r(!) and we have from (3.42) that it is bounded by the maximum and
minimum singular value of S,

�(S(j!)) � ke(!)k2
kr(!)k2 � ��(S(j!)) (3.47)

In terms of performance, it is reasonable to require that the gain ke(!)k 2=kr(!)k2
remains small for any direction of r(!), including the “worst-case” direction which
gives a gain of ��(S(j!)). Let 1=jwP (j!)j (the inverse of the performance weight)
represent the maximum allowed magnitude of kek2=krk2 at each frequency. This
results in the following performance requirement:

��(S(j!)) < 1=jwP (j!)j; 8! , ��(wPS) < 1; 8!
, kwPSk1 < 1 (3.48)

where the H1 norm (see also page 55) is defined as the peak of the maximum
singular value of the frequency response

kM(s)k1 , max
!

��(M(j!)) (3.49)

Typical performance weights wP (s) are given in Section 2.7.2, which should be
studied carefully.

The singular values of S(j!) may be plotted as functions of frequency, as
illustrated later in Figure 3.10(a). Typically, they are small at low frequencies where
feedback is effective, and they approach 1 at high frequencies because any real
system is strictly proper:

! !1 : L(j!)! 0 ) S(j!)! I (3.50)

The maximum singular value, ��(S(j!)), usually has a peak larger than 1 around
the crossover frequencies. This peak is undesirable, but it is unavoidable for real
systems.

As for SISO systems we define the bandwidth as the frequency up to which
feedback is effective. For MIMO systems the bandwidth will depend on directions,
and we have a bandwidth regionbetween a lower frequency where the maximum
singular value, ��(S), reaches 0.7 (the low-gain or worst-case direction), and a
higher frequency where the minimum singular value, �(S), reaches 0.7 (the high-
gain or best direction). If we want to associate a single bandwidth frequency for
a multivariable system, then we consider the worst-case (low-gain) direction, and
define

� Bandwidth, !B : Frequency where ��(S) crosses 1p
2
= 0:7 from below.
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It is then understood that the bandwidth is at least !B for any direction of the input
(reference or disturbance) signal. Since S = (I + L)�1, (A.52) yields

�(L)� 1 � 1

��(S)
� �(L) + 1 (3.51)

Thus at frequencies where feedback is effective (namely where �(L) � 1) we have
��(S) � 1=�(L), and at the bandwidth frequency (where 1=��(S(j!B)) =

p
2 =

1:41) we have that �(L(j!B)) is between 0.41 and 2.41. Thus, the bandwidth is
approximately where �(L) crosses 1. Finally, at higher frequencies where for any
real system �(L) (and ��(L)) is small we have that ��(S) � 1.

3.4 Control of multivariable plants
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Figure 3.7: One degree-of-freedom feedback control configuration

Consider the simple feedback system in Figure 3.7. A conceptually simple
approach to multivariable control is given by a two-step procedure in which we
first design a “compensator” to deal with the interactions in G, and then design a
diagonalcontroller using methods similar to those for SISO systems. This approach
is discussed below.

The most common approach is to use a pre-compensator, W 1(s), which
counteracts the interactions in the plant and results in a “new” shaped plant:

Gs(s) = G(s)W1(s) (3.52)

which is more diagonal and easier to control than the original plant G(s). After
finding a suitable W1(s) we can design a diagonalcontroller Ks(s) for the shaped
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plant Gs(s). The overall controller is then

K(s) =W1(s)Ks(s) (3.53)

In many cases effective compensators may be derived on physical grounds and may
include nonlinear elements such as ratios.

Remark 1 Some design approaches in this spirit are the Nyquist Array technique of
Rosenbrock (1974) and the characteristic loci technique of MacFarlane and Kouvaritakis
(1977).

Remark 2 The H1 loop-shaping design procedure, described in detail in Section 9.4, is
similar in that a pre-compensator is first chosen to yield a shaped plant, Gs = GW1, with
desirable properties, and then a controller Ks(s) is designed. The main difference is that in
H1 loop shaping, Ks(s) is a full multivariable controller, designed based on optimization (to
optimizeH1 robust stability).

3.4.1 Decoupling

Decoupling control results when the compensatorW1 is chosen such thatGs = GW1

in (3.52) is diagonal at a selected frequency. The following different cases are
possible:

1. Dynamic decoupling: Gs(s) is diagonal at all frequencies. For example, with
Gs(s) = I and a square plant, we get W1 = G�1(s) (disregarding the possible
problems involved in realizing G�1(s)). If we then select Ks(s) = l(s)I (e.g.
with l(s) = k=s), the overall controller is

K(s) = Kinv(s) , l(s)G�1(s) (3.54)

We will later refer to (3.54) as an inverse-basedcontroller. It results in a decoupled
nominal system with identical loops, i.e. L(s) = l(s)I , S(s) = 1

1+l(s) I and

T (s) = l(s)
1+l(s) I .

Remark. In some cases we may want to keep the diagonal elements in the shaped plant
unchanged by selecting W1 = G�1Gdiag . In other cases we may want the diagonal
elements in W1 to be 1. This may be obtained by selecting W1 = G�1((G�1)diag)

�1,
and the off-diagonal elements of W1 are then called “decoupling elements” .

2. Steady-state decoupling:Gs(0) is diagonal. This may be obtained by selecting a
constant pre-compensatorW1 = G�1(0) (and for a non-square plant we may use
the pseudo-inverse providedG(0) has full row (output) rank).

3. Approximate decoupling at frequency wo: Gs(j!o) is as diagonal as possible.
This is usually obtained by choosing a constant pre-compensator W 1 = G�1o
where Go is a real approximation of G(j!o). Go may be obtained, for example,
using the align algorithm of Kouvaritakis (1974). The bandwidth frequency is a
good selection for !o because the effect on performance of reducing interaction
is normally greatest at this frequency.
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The idea of decoupling control is appealing, but there are several difficulties:

1. As one might expect, decoupling may be very sensitive to modelling errors and
uncertainties. This is illustrated below in Section 3.7.2, page 93.)

2. The requirement of decoupling and the use of an inverse-based controller may not
be desirable for disturbance rejection. The reasons are similar to those given for
SISO systems in Section 2.6.4, and are discussed further below; see (3.58).

3. If the plant has RHP-zeros then the requirement of decoupling generally
introduces extra RHP-zeros into the closed-loop system (see Section 6.5.1,
page 221).

Even though decoupling controllers may not always be desirable in practice, they
are of interest from a theoretical point of view. They also yield insights into the
limitations imposed by the multivariable interactions on achievable performance.
One popular design method, which essentially yields a decoupling controller, is the
internal model control (IMC) approach (Morari and Zafiriou, 1989).

Another common strategy, which avoids most of the problems just mentioned, is to
use partial (one-way) decouplingwhereGs(s) in (3.52) is upper or lower triangular.

3.4.2 Pre- and post-compensators and the SVD-controller

The above pre-compensator approach may be extended by introducing a post-
compensatorW2(s), as shown in Figure 3.8. One then designs a diagonalcontroller

- - - -W2 Ks W1

K

Figure 3.8: Pre- and post-compensators, W1 and W2. Ks is diagonal

Ks for the shaped plant W2GW1. The overall controller is then

K(s) =W1KsW2 (3.55)

The SVD-controlleris a special case of a pre- and post-compensator design. Here

W1 = Vo and W2 = UT
o (3.56)

where Vo and Uo are obtained from a singular value decomposition of G o =
Uo�oV

T
o , where Go is a real approximation of G(j!o) at a given frequency wo

(often around the bandwidth). SVD-controllers are studied by Hung and MacFarlane
(1982), and by Hovd et al. (1994) who found that the SVD controller structure is
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optimal in some cases, e.g. for plants consisting of symmetrically interconnected
subsystems.

In summary, the SVD-controller provides a useful class of controllers. By
selecting Ks = l(s)��1o a decoupling design is achieved, and by selecting a
diagonalKs with a low condition number (
(Ks) small) generally results in a robust
controller (see Section 6.10).

3.4.3 Diagonal controller (decentralized control)

Another simple approach to multivariable controller design is to use a diagonal or
block-diagonal controller K(s). This is often referred to as decentralized control.
Clearly, this works well if G(s) is close to diagonal, because then the plant to be
controlled is essentially a collection of independent sub-plants, and each element in
K(s) may be designed independently. However, if off-diagonal elements inG(s) are
large, then the performance with decentralized diagonal control may be poor because
no attempt is made to counteract the interactions. Decentralized control is discussed
in more detail in Chapter 10.

3.4.4 What is the shape of the “best” feedback controller?

Consider the problem of disturbance rejection. The closed-loop disturbance response
is y = SGdd. Suppose we have scaled the system (see Section 1.4) such that at each
frequency the disturbances are of magnitude 1, kdk 2 � 1, and our performance
requirement is that kyk2 � 1. This is equivalent to requiring ��(SGd) � 1. In
many cases there is a trade-off between input usage and performance, such that the
controller that minimizes the input magnitude is one that yields all singular values of
SGd equal to 1, i.e. �i(SGd) = 1;8!. This corresponds to

SminGd = U1 (3.57)

where U1(s) is some all-pass transfer function (which at each frequency has all its
singular values equal to 1). The subscript min refers to the use of the smallest loop
gain that satisfies the performance objective. For simplicity, we assume that Gd is
square so U1(j!) is a unitary matrix. At frequencies where feedback is effective we
have S = (I + L)�1 � L�1, and (3.57) yields Lmin = GKmin � GdU

�1
1 . In

conclusion, the controller and loop shape with the minimum gain will often look like

Kmin � G�1GdU2; Lmin � GdU2 (3.58)

where U2 = U�11 is some all-pass transfer function matrix. This provides a
generalization of jKminj � jG�1Gdj which was derived in (2.58) for SISO systems,
and the summary following (2.58) on page 48 therefore also applies to MIMO
systems. For example, we see that for disturbances entering at the plant inputs,
Gd = G, we get Kmin = U2, so a simple constant unit gain controller yields a good
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trade-off between output performance and input usage. We also note with interest that
it is generally not possible to select a unitary matrix U2 such that Lmin = GdU2 is
diagonal, so a decoupling design is generally not optimal for disturbance rejection.
These insights can be used as a basis for a loop-shaping design; see more on H1
loop-shaping in Chapter 9.

small

3.4.5 Multivariable controller synthesis

The above design methods are based on a two-step procedure in which we first design
a pre-compensator (for decoupling control) or we make an input-output pairing
selection (for decentralized control) and then we design a diagonal controllerK s(s).
Invariably this two-step procedure results in a suboptimal design.

The alternative is to synthesize directly a multivariable controller K(s) based
on minimizing some objective function (norm). We here use the word synthesize
rather than designto stress that this is a more formalized approach. Optimization
in controller design became prominent in the 1960’s with “optimal control theory”
based on minimizing the expected value of the output variance in the face of
stochastic disturbances. Later, other approaches and norms were introduced, such
as H1 optimal control.

3.4.6 Summary of mixed-sensitivityH1 synthesis (S=KS)

We here provide a brief summary of one multivariable synthesis approach, namely
the S=KS (mixed-sensitivity)H1 design method which is used in later examples in
this Chapter. In the S=KS problem, the objective is to minimize theH1 norm of

N =

�
WPS
WuKS

�
(3.59)

This problem was discussed earlier for SISO systems, and another look at
Section 2.7.3 would be useful now. A sample MATLAB file is provided in
Example 2.11, page 60.

The following issues and guidelines are relevant when selecting the weights WP

and Wu:

1. KS is the transfer function from r to u in Figure 3.7, so for a system which has
been scaled as in Section 1.4, a reasonable initial choice for the input weight is
Wu = I .

2. S is the transfer function from r to �e = r � y. A common choice for the
performance weight is WP = diagfwPig with

wPi =
s=Mi + !�Bi
s+ !�BiAi

; Ai � 1 (3.60)
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(see also Figure 2.26 on page 58). SelectingA i � 1 ensures approximate integral
action with S(0) � 0. Often we select Mi about 2 for all outputs, whereas !�Bi
may be different for each output. A large value of ! �Bi yields a faster response for
output i.

3. To find a reasonable initial choice for the weight WP , one can first obtain a
controller with some other design method, plot the magnitude of the resulting
diagonal elements of S as a function of frequency, and select wPi(s) as a rational
approximation of 1=jSiij.

4. For disturbance rejection, we may in some cases want a steeper slope forwPi(s) at
low frequencies than that given in (3.60), e.g. as see the weight in (2.73). However,
it may be better to consider the disturbances explicitly by considering the H1
norm of

N =

�
WPS WPSGd

WuKS WuKSGd

�
(3.61)

or equivalently

N =

�
WPSWd

WuKSWd

�
with Wd = [ I Gd ] (3.62)

where N represents the transfer function from
�
r
d

�
to the weighted e and u. In

some situations we may want to adjust WP or Gd in order to satisfy better our
original objectives. The helicopter case study in Section 12.2 illustrates this by
introducing a scalar parameter � to adjust the magnitude of G d.

5. T is the transfer function from �n to y. To reduce sensitivity to noise and
uncertainty, we want T small at high frequencies, and so we may want additional
roll-off in L. This can be achieved in several ways. One approach is to add W TT
to the stack for N in (3.59), where WT = diagfwTig and jwTij is smaller than 1
at low frequencies and large at high frequencies. A more direct approach is to add
high-frequency dynamics, W1(s), to the plant model to ensure that the resulting
shaped plant, Gs = GW1, rolls off with the desired slope. We then obtain an
H1 optimal controller Ks for this shaped plant, and finally include W1(s) in the
controller,K =W1Ks.

More details aboutH1 design are given in Chapter 9.

3.5 Introduction to multivariable RHP-zeros

By means of an example, we now give the reader an appreciation of the fact that
MIMO systems have zeros even though their presence may not be obvious from the
elements ofG(s). As for SISO systems, we find that RHP-zeros impose fundamental
limitations on control.
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The zeros z of MIMO systems are defined as the values s = z where G(s) loses
rank, and we can find the direction of a zero by looking at the direction in which
the matrix G(z) has zero gain. For square systems we essentially have that the poles
and zeros of G(s) are the poles and zeros of detG(s). However, this crude method
may fail in some cases, as it may incorrectly cancel poles and zeros with the same
location but different directions (see Sections 4.5 and 4.5.3 for more details).

Example 3.8 Consider the following plant

G(s) =
1

(0:2s+ 1)(s+ 1)

�
1 1

1 + 2s 2

�
(3.63)

The responses to a step in each individual input are shown in Figure 3.9(a) and (b). We see
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Figure 3.9: Open-loop response for G(s) in (3.63)

that the plant is interactive, but for these two inputs there is no inverse response to indicate
the presence of a RHP-zero. Nevertheless, the plant does have a multivariable RHP-zero at
z = 0:5, that is,G(s) loses rank ats = 0:5, and detG(0:5) = 0. The singular value
decomposition ofG(0:5) is

G(0:5) =
1

1:65

�
1 1
2 2

�
=

�
0:45 0:89
0:89 �0:45

�
| {z }

U

�
1:92 0
0 0

�
| {z }

�

�
0:71 0:71
0:71 �0:71

�H
| {z }

VH

(3.64)

and we have as expected�(G(0:5)) = 0. The input and output directions corresponding to the

RHP-zero arev =
�
0:71
�0:71

�
andu =

�
0:89
�0:45

�
. Thus, the RHP-zero is associated with both

inputs and with both outputs. The presence of the multivariable RHP-zero is also observed
from the time response in Figure 3.9(c), which is for a simultaneous input change in opposite

directions,u =
�
1
�1

�
. We see thaty2 displays an inverse response whereasy1 happens to

remain at zero for this particular input change.
To see how the RHP-zero affects the closed-loop response, we design a controller which

minimizes theH1 norm of the weightedS=KS matrix

N =

�
WPS
WuKS

�
(3.65)
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with weights

Wu = I; WP =

�
wP1 0
0 wP2

�
; wPi =

s=Mi + !�Bi
s+ w�BiAi

; Ai = 10�4 (3.66)

The MATLAB file for the design is the same as in Table 2.3 on page 60, except that we now
have a2 � 2 system. Since there is a RHP-zero atz = 0:5 we expect that this will somehow
limit the bandwidth of the closed-loop system.

Design 1. We weight the two outputs equally and select

Design 1 : M1 =M2 = 1:5; !�B1 = !�B2 = z=2 = 0:25

This yields anH1 norm forN of 2:80 and the resulting singular values ofS are shown by the
solid lines in Figure 3.10(a). The closed-loop response to a reference changer = [ 1 �1 ]T
is shown by the solid lines in Figure 3.10(b). We note that both outputs behave rather poorly
and both display an inverse response.
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Figure 3.10: Alternative designs for 2� 2 plant (3.63) with RHP-zero

Design 2. For MIMO plants, one can often move most of the deteriorating effect (e.g.
inverse response) of a RHP-zero to a particular output channel. To illustrate this, we change
the weightwP2 so that more emphasis is placed on output2. We do this by increasing the
bandwidth requirement in output channel2 by a factor of100:

Design 2 : M1 =M2 = 1:5; !�B1 = 0:25; !�B2 = 25

This yields anH1 norm for N of 2:92. In this case we see from the dashed line in
Figure 3.10(b) that the response for output2 (y2) is excellent with no inverse response.
However, this comes at the expense of output1 (y1) where the response is somewhat poorer
than for Design1.

Design 3. We can also interchange the weightswP1 and wP2 to stress output1 rather
than output2. In this case (not shown) we get an excellent response in output1 with no
inverse response, but output2 responds very poorly (much poorer than output1 for Design2).
Furthermore, theH1 norm forN is 6:73, whereas it was only2:92 for Design2.
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Thus, we see that it is easier, for this example, to get tight control of output2 than of output

1. This may be expected from the output direction of the RHP-zero,u =

�
0:89
�0:45

�
, which is

mostly in the direction of output1. We will discuss this in more detail in Section 6.5.1.

Remark 1 We find from this example that we can direct the effect of the RHP-zero to either
of the two outputs. This is typical of multivariable RHP-zeros, but there are cases where the
RHP-zero is associated with a particular output channel and it is notpossible to move its effect
to another channel. The zero is then called a “pinned zero” (see Section 4.6).

Remark 2 It is observed from the plot of the singular values in Figure 3.10(a), that we were
able to obtain by Design 2 a very large improvement in the “good” direction (corresponding
to �(S)) at the expense of only a minor deterioration in the “bad” direction (corresponding to
��(S)). Thus Design 1 demonstrates a shortcoming of the H1 norm: only the worst direction
(maximum singular value) contributes to theH1 norm and it may not always be easy to get a
good trade-off between the various directions.

3.6 Condition number and RGA

Two measures which are used to quantify the degree of directionality and the level of
(two-way) interactions in MIMO systems, are the condition number and the relative
gain array (RGA), respectively. We here define the two measures and present an
overview of their practical use. We do not give detailed proofs, but refer to other
places in the book for further details.

3.6.1 Condition number

We define the condition numberof a matrix as the ratio between the maximum and
minimum singular values,


(G)
4
= ��(G)=�(G) (3.67)

A matrix with a large condition number is said to be ill-conditioned. For a non-
singular (square) matrix �(G) = 1=��(G�1), so 
(G) = ��(G)��(G�1). It then
follows from (A.119) that the condition number is large if both G and G�1 have
large elements.

The condition number depends strongly on the scaling of the inputs and outputs.
To be more specific, if D1 and D2 are diagonal scaling matrices, then the condition
numbers of the matrices G and D1GD2 may be arbitrarily far apart. In general, the
matrix G should be scaled on physical grounds, for example, by dividing each input
and output by its largest expected or desired value as discussed in Section 1.4.

One might also consider minimizing the condition number over all possible
scalings. This results in the minimized or optimal condition numberwhich is defined
by


�(G) = min
D1;D2


(D1GD2) (3.68)
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and can be computed using (A.73).
The condition number has been used as an input-output controllability measure,

and in particular it has been postulated that a large condition number indicates
sensitivity to uncertainty. This is not true in general, but the reverse holds; if the
condition number is small, then the multivariable effects of uncertainty are not likely
to be serious (see (6.72)).

If the condition number is large (say, larger than 10), then this may indicatecontrol
problems:

1. A large condition number 
(G) = ��(G)=�(G) may be caused by a small value
of �(G), which is generally undesirable (on the other hand, a large value of ��(G)
need not necessarily be a problem).

2. A large condition number may mean that the plant has a large minimized condition
number, or equivalently, it has large RGA-elements which indicate fundamental
control problems; see below.

3. A large condition number doesimply that the system is sensitive to “unstructured”
(full-block) input uncertainty (e.g. with an inverse-based controller, see (8.135)),
but this kind of uncertainty often does not occur in practice. We therefore cannot
generally conclude that a plant with a large condition number is sensitive to
uncertainty, e.g. see the diagonal plant in Example 3.9.

3.6.2 Relative Gain Array (RGA)

The relative gain array (RGA) of a non-singular square matrix G is a square matrix
defined as

RGA(G) = �(G) , G� (G�1)T (3.69)

where � denotes element-by-element multiplication (the Hadamard or Schur
product). For a 2� 2 matrix with elements gij the RGA is

�(G) =

�
�11 �12
�21 �22

�
=

�
�11 1� �11

1� �11 �11

�
; �11 =

1

1� g12g21
g11g22

(3.70)

Bristol (1966) originally introduced the RGA as a steady-state measure of
interactions for decentralized control. Unfortunately, based on the original definition,
many people have dismissed the RGA as being “only meaningful at ! = 0” . To the
contrary, in most cases it is the value of the RGA at frequencies close to crossover
which is most important.

The RGA has a number of interesting algebraic properties, of which the most
important are (see Appendix A.4 for more details):

1. It is independent of input and output scaling.
2. Its rows and columns sum to one.
3. The sum-norm of the RGA, k�ksum, is very close to the minimized condition

number 
�; see (A.78). This means that plants with large RGA-elements are
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always ill-conditioned (with a large value of 
(G)), but the reverse may not hold
(i.e. a plant with a large 
(G) may have small RGA-elements).

4. A relative change in an element of G equal to the negative inverse of its
corresponding RGA-element yields singularity.

5. The RGA is the identity matrix if G is upper or lower triangular.

From the last property it follows that the RGA (or more precisely �� I) provides a
measure of two-way interaction.

Example 3.9 Consider a diagonal plant and compute the RGA and condition number,

G =

�
100 0
0 1

�
; �(G) = I; 
(G) =

��(G)

�(G)
=

100

1
= 100; 
�(G) = 1 (3.71)

Here the condition number is 100 which means that the plant gain depends strongly on the
input direction. However, since the plant is diagonal there are no interactions so�(G) = I
and the minimized condition number
�(G) = 1.

Example 3.10 Consider a triangular plantG for which we get

G =

�
1 2
0 1

�
; G�1 =

�
1 �2
0 1

�
; �(G) = I; 
(G) =

2:41

0:41
= 5:83; 
�(G) = 1 (3.72)

Note that for a triangular matrix, the RGA is always the identity matrix and
�(G) is always
1.

In addition to the algebraic properties listed above, the RGA has a surprising
number of useful control properties:

1. The RGA is a good indicator of sensitivity to uncertainty:

(a) Uncertainty in the input channels (diagonal input uncertainty). Plants with
large RGA-elements around the crossover frequency are fundamentally
difficult to control because of sensitivity to input uncertainty (e.g. caused
by uncertain or neglected actuator dynamics). In particular, decouplers or
other inverse-based controllers should not be used for plants with large RGA-
elements (see page 243).

(b) Element uncertainty.As implied by algebraic property no. 4 above, large
RGA-elements imply sensitivity to element-by-element uncertainty. However,
this kind of uncertainty may not occur in practice due to physical couplings
between the transfer function elements. Therefore, diagonal input uncertainty
(which is always present) is usually of more concern for plants with large RGA-
elements.

Example 3.11 Consider again the distillation process for which we have at steady-state

G =

�
87:8 �86:4
108:2 �109:6

�
; G�1 =

�
0:399 �0:315
0:394 �0:320

�
; �(G) =

�
35:1 �34:1
�34:1 35:1

�
(3.73)
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In this case
(G) = 197:2=1:391 = 141:7 is only slightly larger than
�(G) = 138:268.
The magnitude sum of the elements in the RGA-matrix isk�ksum = 138:275. This
confirms (A.79) which states that, for2� 2 systems,k�(G)ksum � 
�(G) when
�(G) is
large. The condition number is large, but since the minimum singular value�(G) = 1:391
is larger than1 this does not by itself imply a control problem. However, the large RGA-
elements indicate control problems, and fundamental control problems are expected if
analysis shows thatG(j!) has large RGA-elements also in the crossover frequency range.
(Indeed, the idealized dynamic model (3.81) used below has large RGA-elements at all
frequencies, and we will confirm in simulations that there is a strong sensitivity to input
channel uncertainty with an inverse-based controller).

2. RGA and RHP-zeros.If the sign of an RGA-element changes from s = 0
to s = 1, then there is a RHP-zero in G or in some subsystem of G (see
Theorem 10.5), page 449).

3. Non-square plants. The definition of the RGA may be generalized to non-square
matrices by using the pseudo inverse; see Appendix A.4.2. Extra inputs: If the
sum of the elements in a column of RGA is small (� 1), then one may consider
deleting the corresponding input. Extra outputs: If all elements in a row of
RGA are small (� 1), then the corresponding output cannot be controlled (see
Section 10.4).

4. Pairing and diagonal dominance.The RGA can be used as a measure of diagonal
dominance (or more precicely, of whether the inputs or outputs can be scaled to
obtain diagonal dominance), by the simple quantity

RGA-number = k�(G)� Iksum (3.74)

For decentralized control we prefer pairings for which the RGA-number at
crossover frequencies is close to 0 (see pairing rule 1 on page 445). Similarly, for
certain multivariable design methods, it is simpler to choose the weights and shape
the plant if we first rearrange the inputs and outputs to make the plant diagonally
dominant with a small RGA-number.

5. RGA and decentralized control.

(a) Integrity: For stable plants avoid input-output pairing on negative steady-state
RGA-elements. Otherwise, if the sub-controllers are designed independently
each with integral action, then the interactions will cause instability either when
all of the loops are closed, or when the loop corresponding to the negative
relative gain becomes inactive (e.g. because of saturation) (see Theorem 10.4,
page 447).

(b) Stability: Prefer pairings corresponding to an RGA-number close to 0 at
crossover frequencies (see page 445).

Example 3.12 Consider a plant

G(s) =
1

5s+ 1

�
s+ 1 s+ 4
1 2

�
(3.75)
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We find that�11(1) = 2 and�11(0) = �1 have different signs. Since none of the diagonal
elements have RHP-zeros we conclude from Theorem 10.5 thatG(s) must have a RHP-zero.
This is indeed true andG(s) has a zero ats = 2.

For a detailed analysis of achievable performance of the plant (input-output
controllability analysis), one must also consider the singular values, RGA and
condition number as functions of frequency. In particular, the crossover frequency
range is important. In addition, disturbances and the presence of unstable (RHP)
plant poles and zeros must be considered. All these issues are discussed in much
more detail in Chapters 5 and 6 where we discuss achievable performance and input-
output controllability analysis for SISO and MIMO plants, respectively.

3.7 Introduction to MIMO robustness

To motivate the need for a deeper understanding of robustness, we present two
examples which illustrate that MIMO systems can display a sensitivity to uncertainty
not found in SISO systems. We focus our attention on diagonal input uncertainty,
which is present in any real system and often limits achievable performance because
it enters between the controller and the plant.

3.7.1 Motivating robustness example no. 1: Spinning Satellite

Consider the following plant (Doyle, 1986; Packard et al., 1993) which can itself be
motivated by considering the angular velocity control of a satellite spinning about
one of its principal axes:

G(s) =
1

s2 + a2

�
s� a2 a(s+ 1)

�a(s+ 1) s� a2

�
; a = 10 (3.76)

A minimal, state-space realization, G = C(sI �A)�1B +D, is

�
A B
C D

�
=

2664
0 a 1 0
�a 0 0 1
1 a 0 0
�a 1 0 0

3775 (3.77)

The plant has a pair of j!-axis poles at s = �ja so it needs to be stabilized. Let us
apply negative feedback and try the simple diagonal constant controller

K = I

The complementary sensitivity function is

T (s) = GK(I +GK)�1 =
1

s+ 1

�
1 a
�a 1

�
(3.78)
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Nominal stability (NS). The closed-loop system has two poles at s = �1 and so
it is stable. This can be verified by evaluating the closed-loop state matrix

Acl = A�BKC =

�
0 a
�a 0

�
�
�
1 a
�a 1

�
=

��1 0
0 �1

�
(To derive Acl use _x = Ax+Bu, y = Cx and u = �Ky).

Nominal performance (NP). The singular values of L = GK = G are shown in
Figure 3.6(a), page 77. We see that �(L) = 1 at low frequencies and starts dropping
off at about ! = 10. Since �(L) never exceeds 1, we do not have tight control in
the low-gain direction for this plant (recall the discussion following (3.51)), so we
expect poor closed-loop performance. This is confirmed by considering S and T .
For example, at steady-state ��(T ) = 10:05 and ��(S) = 10. Furthermore, the large
off-diagonal elements in T (s) in (3.78) show that we have strong interactions in the
closed-loop system. (For reference tracking, however, this may be counteracted by
use of a two degrees-of-freedom controller).

Robust stability (RS). Now let us consider stability robustness. In order to
determine stability margins with respect to perturbations in each input channel, one
may consider Figure 3.11 where we have broken the loop at the first input. The loop
transfer function at this point (the transfer function from w 1 to z1) is L1(s) = 1=s

(which can be derived from t11(s) = 1
1+s = L1(s)

1+L1(s)
). This corresponds to an

infinite gain margin and a phase margin of 90Æ. On breaking the loop at the second
input we get the same result. This suggests good robustness properties irrespective
of the value of a. However, the design is far from robust as a further analysis shows.
Consider input gain uncertainty, and let �1 and �2 denote the relative error in the gain

e
e

q
q-

-

6

-

-
6

-

-

�

�

6
+

+

-

-

z1 w1

G

K

Figure 3.11: Checking stability margins “one-loop-at-a-time”

in each input channel. Then

u01 = (1 + �1)u1; u02 = (1 + �2)u2 (3.79)
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where u01 and u02 are the actual changes in the manipulated inputs, while u1 and u2 are
the desired changes as computed by the controller. It is important to stress that this
diagonal input uncertainty, which stems from our inability to know the exact values
of the manipulated inputs, is alwayspresent. In terms of a state-space description,
(3.79) may be represented by replacing B by

B0 =
�
1 + �1 0
0 1 + �2

�
The corresponding closed-loop state matrix is

A0cl = A�B0KC =

�
0 a
�a 0

�
�
�
1 + �1 0
0 1 + �2

� �
1 a
�a 1

�
which has a characteristic polynomial given by

det(sI �A0cl) = s2 + (2 + �1 + �2)| {z }
a1

s+ 1 + �1 + �2 + (a2 + 1)�1�2| {z }
a0

(3.80)

The perturbed system is stable if and only if both the coefficients a 0 and a1 are
positive. We therefore see that the system is always stable if we consider uncertainty
in only one channel at a time(at least as long as the channel gain is positive). More
precisely, we have stability for (�1 < �1 < 1; �2 = 0) and (�1 = 0;�1 < �2 <
1). This confirms the infinite gain margin seen earlier. However, the system can only
tolerate small simultaneous changesin the two channels. For example, let � 1 = ��2,
then the system is unstable (a0 < 0) for

j�1j > 1p
a2 + 1

� 0:1

In summary, we have found that checking single-loop margins is inadequate for
MIMO problems. We have also observed that large values of ��(T ) or ��(S) indicate
robustness problems. We will return to this in Chapter 8, where we show that with
input uncertainty of magnitude j� ij < 1=��(T ), we are guaranteed robust stability
(even for “ full-block complex perturbations” ).

In the next example we find that there can be sensitivity to diagonal input
uncertainty even in cases where ��(T ) and ��(S) have no large peaks. This can not
happen for a diagonal controller, see (6.77), but it will happen if we use an inverse-
based controller for a plant with large RGA-elements, see (6.78).

3.7.2 Motivating robustness example no. 2: Distillation Process

The following is an idealized dynamic model of a distillation column,

G(s) =
1

75s+ 1

�
87:8 �86:4
108:2 �109:6

�
(3.81)
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(time is in minutes). The physics of this example was discussed in Example 3.6. The
plant is ill-conditioned with condition number 
(G) = 141:7 at all frequencies. The
plant is also strongly two-way interactive and the RGA-matrix at all frequencies is

RGA(G) =

�
35:1 �34:1
�34:1 35:1

�
(3.82)

The large elements in this matrix indicate that this process is fundamentally difficult
to control.

Remark. (3.81) is admittedly a very crude model of a real distillation column; there should
be a high-order lag in the transfer function from input 1 to output 2 to represent the liquid
flow down to the column, and higher-order composition dynamics should also be included.
Nevertheless, the model is simple and displays important features of distillation column
behaviour. It should be noted that with a more detailed model, the RGA-elements would
approach 1 at frequencies around 1 rad/min, indicating less of a control problem.

0 10 20 30 40 50 60

0

0.5

1

1.5

2

2.5

Time [min]

Nominal plant:
Perturbed plant:

y1

y2

Figure 3.12: Response with decoupling controller to filtered reference input r1 = 1=(5s+1).
The perturbed plant has 20% gain uncertainty as given by (3.85).

We consider the following inverse-based controller, which may also be looked
upon as a steady-state decoupler with a PI controller:

Kinv(s) =
k1
s
G�1(s) =

k1(1 + 75s)

s

�
0:3994 �0:3149
0:3943 �0:3200

�
; k1 = 0:7 (3.83)

Nominal performance (NP). We have GKinv = KinvG = 0:7
s I . With no model

error this controller should counteract all the interactions in the plant and give rise
to two decoupled first-order responses each with a time constant of 1=0:7 = 1:43
min. This is confirmed by the solid line in Figure 3.12 which shows the simulated
response to a reference change in y1. The responses are clearly acceptable, and we
conclude that nominal performance (NP) is achieved with the decoupling controller.

Robust stability (RS). The resulting sensitivity and complementary sensitivity
functions with this controller are

S = SI =
s

s+ 0:7
I ; T = TI =

1

1:43s+ 1
I (3.84)
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Thus, ��(S) and ��(T ) are both less than 1 at all frequencies, so there are no peaks
which would indicate robustness problems. We also find that this controller gives an
infinite gain margin (GM) and a phase margin (PM) of 90Æ in each channel. Thus,
use of the traditional margins and the peak values of S and T indicate no robustness
problems. However, from the large RGA-elements there is cause for concern, and
this is confirmed in the following.

We consider again the input gain uncertainty (3.79) as in the previous example,
and we select �1 = 0:2 and �2 = �0:2. We then have

u01 = 1:2u1; u02 = 0:8u2 (3.85)

Note that the uncertainty is on the changein the inputs (flow rates), and not on their
absolute values. A 20% error is typical for process control applications (see Remark 2
on page 302). The uncertainty in (3.85) does not by itself yield instability. This is
verified by computing the closed-loop poles, which, assuming no cancellations, are
solutions to det(I + L(s)) = det(I + LI(s)) = 0 (see (4.102) and (A.12)). In our
case

L0I(s) = KinvG
0 = KinvG

�
1 + �1 0
0 1 + �2

�
=

0:7

s

�
1 + �1 0
0 1 + �2

�
so the perturbed closed-loop poles are

s1 = �0:7(1 + �1); s2 = �0:7(1 + �2) (3.86)

and we have closed-loop stability as long as the input gains 1+ �1 and 1+ �2 remain
positive, so we can have up to 100% error in each input channel. We thus conclude
that we have robust stability (RS) with respect to input gain errors for the decoupling
controller.

Robust performance (RP). For SISO systems we generally have that nominal
performance (NP) and robust stability (RS) imply robust performance (RP), but this
is not the case for MIMO systems. This is clearly seen from the dotted lines in
Figure 3.12 which show the closed-loop response of the perturbed system. It differs
drastically from the nominal response represented by the solid line, and even though
it is stable, the response is clearly not acceptable; it is no longer decoupled, and y 1(t)
and y2(t) reach a value of about 2.5 before settling at their desired values of 1 and 0.
Thus RP is not achieved by the decoupling controller.

Remark 1 There is a simple reason for the observed poor response to the reference change
in y1. To accomplish this change, which occurs mostly in the direction corresponding to the
low plant gain, the inverse-based controller generates relatively large inputs u1 and u2, while
trying to keep u1�u2 very small. However, the input uncertainty makes this impossible – the
result is an undesired large change in the actual value of u01 � u02, which subsequently results
in large changes in y1 and y2 because of the large plant gain (��(G) = 197:2) in this direction,
as seen from (3.46).



96 MULTIVARIABLE FEEDBACK CONTROL

Remark 2 The system remains stable for gain uncertainty up to 100% because the uncertainty
occurs only at one side of the plant (at the input). If we also consider uncertainty at the output
then we find that the decoupling controller yields instability for relatively small errors in the
input and output gains. This is illustrated in Exercise 3.8 below.

Remark 3 It is also difficult to get a robust controller with other standard design techniques
for this model. For example, an S=KS-design as in (3.59) with WP = wP I (using M = 2
and !B = 0:05 in the performance weight (3.60)) and Wu = I , yields a good nominal
response (although not decoupled), but the system is very sensitive to input uncertainty, and
the outputs go up to about 3.4 and settle very slowly when there is 20% input gain error.

Remark 4 Attempts to make the inverse-based controller robust using the second step of
the Glover-McFarlaneH1 loop-shaping procedure are also unhelpful; see Exercise 3.9. This
shows that robustness with respect to coprime factor uncertainty does not necessarily imply
robustness with respect to input uncertainty. In any case, the solution is to avoid inverse-based
controllers for a plant with large RGA-elements.

Exercise 3.7 Design a SVD-controllerK =W1KsW2 for the distillation process in (3.81),
i.e. selectW1 = V andW2 = UT whereU andV are given in (3.46). SelectKs in the form

Ks =

�
c1

75s+1
s

0
0 c2

75s+1
s

�
and try the following values:

(a) c1 = c2 = 0:005;
(b) c1 = 0:005, c2 = 0:05;
(c) c1 = 0:7=197 = 0:0036, c2 = 0:7=1:39 = 0:504.

Simulate the closed-loop reference response with and without uncertainty. Designs (a) and
(b) should be robust. Which has the best performance? Design (c) should give the response
in Figure 3.12. In the simulations, include high-order plant dynamics by replacingG(s) by

1
(0:02s+1)5

G(s). What is the condition number of the controller in the three cases? Discuss
the results. (See also the conclusion on page 243).

Exercise 3.8 Consider again the distillation process (3.81) with the decoupling controller,
but also include output gain uncertaintyb�i. That is, let the perturbed loop transfer function be

L0(s) = G0Kinv =
0:7

s

�
1 + b�1 0
0 1 + b�2

�
G

�
1 + �1 0
0 1 + �2

�
G�1| {z }

L0

(3.87)

whereL0 is a constant matrix for the distillation model (3.81), since all elements inG share
the same dynamics,G(s) = g(s)G0. The closed-loop poles of the perturbed system are
solutions todet(I + L0(s)) = det(I + (k1=s)L0) = 0, or equivalently

det(
s

k1
I + L0) = (s=k1)

2 + tr(L0)(s=k1) + det(L0) = 0 (3.88)

For k1 > 0 we have from the Routh-Hurwitz stability condition indexRouth-Hurwitz stability
test that instability occurs if and only if the trace and/or the determinant ofL0 are negative.
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Sincedet(L0) > 0 for any gain error less than100%, instability can only occur iftr(L0) <
0. Evaluatetr(L0) and show that with gain errors of equal magnitude the combination of
errors which most easily yields instability is withb�1 = �b�2 = ��1 = �2 = �. Use this to
show that the perturbed system is unstable if

j�j >
r

1

2�11 � 1
(3.89)

where�11 = g11g22= detG is the1; 1-element of the RGA ofG. In our case�11 = 35:1 and
we get instability forj�j > 0:120. Check this numerically, e.g. using MATLAB.

Remark. The instability condition in (3.89) for simultaneous input and output gain
uncertainty, applies to the very special case of a 2 � 2 plant, in which all elements share the
same dynamics, G(s) = g(s)G0, and an inverse-based controller, K(s) = (k1=s)G

�1(s).

Exercise 3.9 Consider again the distillation processG(s) in (3.81). The response using
the inverse-based controllerKinv in (3.83) was found to be sensitive to input gain errors.
We want to see if the controller can be modified to yield a more robust system by using
the Glover-McFarlaneH1 loop-shaping procedure. To this effect, let the shaped plant be
Gs = GKinv, i.e. W1 = Kinv, and design anH1 controller Ks for the shaped plant
(see page 389 and Chapter 9), such that the overall controller becomesK = KinvKs. (You
will find that 
min = 1:414 which indicates good robustness with respect to coprime factor
uncertainty, but the loop shape is almost unchanged and the system remains sensitive to input
uncertainty.)

3.7.3 Robustness conclusions

From the two motivating examples above we found that multivariable plants
can display a sensitivity to uncertainty (in this case input uncertainty) which is
fundamentally different from what is possible in SISO systems.

In the first example (spinning satellite), we had excellent stability margins (PM
and GM) when considering one loop at a time, but small simultaneous input gain
errors gave instability. This might have been expected from the peak values (H1
norms) of S and T , defined as

kTk1 = max
!

��(T (j!)); kSk1 = max
!

��(S(j!)) (3.90)

which were both large (about 10) for this example.
In the second example (distillation process), we again had excellent stability

margins (PM and GM), and the system was also robustly stable to errors (even
simultaneous) of up to 100% in the input gains. However, in this case small input
gain errors gave very poor output performance, so robust performance was not
satisfied, and adding simultaneous output gain uncertainty resulted in instability
(see Exercise 3.8). These problems with the decoupling controller might have been
expected because the plant has large RGA-elements. For this second example the
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H1 norms of S and T were both about 1, so the absence of peaks in S and T does
not guarantee robustness.

Although sensitivity peaks, RGA-elements, etc. are useful indicators of robustness
problems, they provide no exact answer to whether a given source of uncertainty
will yield instability or poor performance. This motivates the need for better tools
for analyzing the effects of model uncertainty. We want to avoid a trial-and-error
procedure based on checking stability and performance for a large number of
candidate plants. This is very time consuming, and in the end one does not know
whether those plants are the limiting ones. What is desired, is a simple tool which is
able to identify the worst-case plant. This will be the focus of Chapters 7 and 8 where
we show how to represent model uncertainty in the H1 framework, and introduce
the structured singular value � as our tool. The two motivating examples are studied
in more detail in Example 8.10 and Section 8.11.3 where a �-analysis predicts the
robustness problems found above.

3.8 General control problem formulation

�

-

--

K

P

sensed outputscontrol signals

exogenous inputs
(weighted)

exogenous outputs
(weighted)

u v

zw

Figure 3.13: General control configuration for the case with no model uncertainty

In this section we consider a general method of formulating control problems
introduced by Doyle (1983; 1984). The formulation makes use of the general
control configuration in Figure 3.13, where P is the generalized plant and K is
the generalized controller as explained in Table 1.1 on page 13. Note that positive
feedback is used.

The overall control objective is to minimize some norm of the transfer function
from w to z, for example, theH1 norm. The controller design problem is then:

� Find a controllerK which based on the information in v, generates a control signal
u which counteracts the influence of w on z, thereby minimizing the closed-loop
norm from w to z.

The most important point of this section is to appreciate that almost any linear control
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problem can be formulated using the block diagram in Figure 3.13 (for the nominal
case) or in Figure 3.21 (with model uncertainty).

Remark 1 The configuration in Figure 3.13 may at first glance seem restrictive. However,
this is not the case, and we will demonstrate the generality of the setup with a few examples,
including the design of observers (the estimation problem) and feedforward controllers.

Remark 2 We may generalize the control configuration still further by including diagnostics
as additional outputs from the controller giving the 4-parameter controllerintroduced by Nett
(1986), but this is not considered in this book.

3.8.1 Obtaining the generalized plant P

The routines in MATLAB for synthesizing H1 and H2 optimal controllers assume
that the problem is in the general form of Figure 3.13, that is, they assume that P
is given. To derive P (and K) for a specific case we must first find a block diagram
representation and identify the signals w, z, u and v. To construct P one should note
that it is an open-loopsystem and remember to break all “ loops” entering and exiting
the controller K. Some examples are given below and further examples are given in
Section 9.3 (Figures 9.9, 9.10, 9.11 and 9.12).

e
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Figure 3.14: One degree-of-freedom control configuration

Example 3.13 One degree-of-freedom feedback control configuration. We want to find
P for the conventional one degree-of-freedom control configuration in Figure 3.14. The first
step is to identify the signals for the generalized plant:

w =

24w1

w2

w3

35 =

24 dr
n

35 ; z = e = y � r; v = r � ym = r � y � n (3.91)

With this choice ofv, the controller only has information about the deviationr � ym. Also
note thatz = y � r, which means that performance is specified in terms of the actual output
y andnot in terms of the measured outputym. The block diagram in Figure 3.14 then yields

z = y � r = Gu+ d� r = Iw1 � Iw2 + 0w3 +Gu

v = r � ym = r �Gu� d� n = �Iw1 + Iw2 � Iw3 �Gu
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Figure 3.15: Equivalent representation of Figure 3.14 where the error signal to be minimized
is z = y � r and the input to the controller is v = r � ym

andP which represents the transfer function matrix from[w u ]T to [ z v ]T is

P =

�
I �I 0 G
�I I �I �G

�
(3.92)

Note thatP doesnot contain the controller. Alternatively,P can be obtained by inspection
from the representation in Figure 3.15.

Remark. Obtaining the generalized plant P may seem tedious. However, when performing
numerical calculations P can be generated using software. For example, in MATLAB we may
use the simulink program, or we may use the sysic program in the �-toolbox. The code
in Table 3.1 generates the generalized plant P in (3.92) for Figure 3.14.

Table 3.1: MATLAB program to generate P in (3.92)
% Uses the Mu-toolbox
systemnames = ’G’; % G is the SISO plant.
inputvar = ’[d(1);r(1);n(1);u(1)]’; % Consists of vectors w and u.
input to G = ’[u]’;
outputvar = ’[G+d-r; r-G-d-n]’; % Consists of vectors z and v.
sysoutname = ’P’;
sysic;

3.8.2 Controller design: Including weights in P

To get a meaningful controller synthesis problem, for example, in terms of the H1
or H2 norms, we generally have to include weights Wz and Ww in the generalized
plant P , see Figure 3.16. That is, we consider the weighted or normalized exogenous
inputs w (where ew = Www consists of the “physical” signals entering the system;
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Figure 3.16: General control configuration for the case with no model uncertainty

disturbances, references and noise), and the weighted or normalized controlled
outputs z = Wzez (where ez often consists of the control error y � r and the
manipulated input u). The weighting matrices are usually frequency dependent and
typically selected such that weighted signals w and z are of magnitude 1, that is, the
norm fromw to z should be less than 1. Thus, in most cases only the magnitude of the
weights matter, and we may without loss of generality assume thatWw(s) andWz(s)
are stable and minimum phase (they need not even be rational transfer functions but
if not they will be unsuitable for controller synthesis using current software).

Example 3.14 Stacked S=T=KS problem. Consider anH1 problem where we want to
bound��(S) (for performance),��(T ) (for robustness and to avoid sensitivity to noise) and
��(KS) (to penalize large inputs). These requirements may be combined into a stackedH1
problem

min
K
kN(K)k1; N =

24WuKS
WTT
WPS

35 (3.93)

whereK is a stabilizing controller. In other words, we havez = Nw and the objective is to
minimize theH1 norm fromw to z. Except for some negative signs which have no effect when
evaluatingkNk1, theN in (3.93) may be represented by the block diagram in Figure 3.17
(convince yourself that this is true). Herew represents a reference command (w = �r, where
the negative sign does not really matter) or a disturbance entering at the output (w = dy), and
z consists of the weighted inputz1 =Wuu, the weighted outputz2 =WT y, and the weighted
control errorz3 =WP (y � r). We get from Figure 3.17 the following set of equations

z1 = Wuu

z2 = WTGu

z3 = WPw +WPGu

v = �w�Gu
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Figure 3.17: Block diagram corresponding to z = Nw in (3.93)

so the generalized plantP from [w u ]T to [ z v ]T is

P =

2664
0 WuI
0 WTG

WP I WPG
�I �G

3775 (3.94)

3.8.3 Partitioning the generalized plant P

We often partition P as

P =

�
P11 P12
P21 P22

�
(3.95)

such that its parts are compatible with the signals w, z, u and v in the generalized
control configuration,

z = P11w + P12u (3.96)

v = P21w + P22u (3.97)

The reader should become familiar with this notation. In Example 3.14 we get

P11 =

"
0
0

WP I

#
; P12 =

"
WuI
WTG
WPG

#
(3.98)

P21 = �I; P22 = �G (3.99)

Note that P22 has dimensions compatible with the controller, i.e. if K is an nu � nv
matrix, thenP22 is an nv�nu matrix. For cases with one degree-of-freedom negative
feedback control we have P22 = �G.
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3.8.4 Analysis: Closing the loop to get N

-- z
N

w

Figure 3.18: General block diagram for analysis with no uncertainty

The general feedback configurations in Figures 3.13 and 3.16 have the controller
K as a separate block. This is useful when synthesizing the controller. However, for
analysisof closed-loop performance the controller is given, and we may absorb K
into the interconnection structure and obtain the system N as shown in Figure 3.18
where

z = Nw (3.100)

where N is a function of K. To find N , first partition the generalized plant P as
given in (3.95)-(3.97), combine this with the controller equation

u = Kv (3.101)

and eliminate u and v from equations (3.96), (3.97) and (3.101) to yield z = Nw
where N is given by

N = P11 + P12K(I � P22K)�1P21 , Fl(P;K) (3.102)

Here Fl(P;K) denotes a lower linear fractional transformation (LFT)of P with K
as the parameter. Some properties of LFTs are given in Appendix A.7. In words, N
is obtained from Figure 3.13 by using K to close a lower feedback loop around P .
Since positive feedback is used in the general configuration in Figure 3.13 the term
(I � P22K)�1 has a negative sign.

Remark. To assist in remembering the sequence of P12 and P21 in (3.102), notice that the
first (last) index in P11 is the same as the first (last) index in P12K(I � P22K)�1P21. The
lower LFT in (3.102) is also represented by the block diagram in Figure 3.2.

The reader is advised to become comfortable with the above manipulations before
progressing much further.

Example 3.15 We want to deriveN for the partitionedP in (3.98) and (3.99) using the
LFT-formula in (3.102). We get

N =

24 0
0

WP I

35+
24 WuI
WTG
WPG

35K(I +GK)�1(�I) =
24�WuKS
�WTT
WPS

35
where we have made use of the identitiesS = (I + GK)�1, T = GKS and I � T = S.
With the exception of the two negative signs, this is identical toN given in (3.93). Of course,
the negative signs have no effect on the norm ofN .
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Again, it should be noted that deriving N from P is much simpler using available
software. For example in the MATLAB �-Toolbox we can evaluate N = F l(P;K)
using the command N=starp(P,K). Here starp denotes the matrix star product
which generalizes the use of LFTs (see Appendix A.7.5).

Exercise 3.10 Consider the two degrees-of-freedom feedback configuration in Figure 1.3(b).
(i) Find P when

w =

24 dr
n

35 ; z =

�
y � r
u

�
; v =

�
r
ym

�
(3.103)

(ii) Let z = Nw and deriveN in two different ways; directly from the block diagram and
usingN = Fl(P;K).

3.8.5 Generalized plant P : Further examples

To illustrate the generality of the configuration in Figure 3.13, we now present two
further examples: one in which we derive P for a problem involving feedforward
control, and one for a problem involving estimation.

ddd

q

q q
6

-
6

�

?

?

?------- y1y2 +

+

+

+ -
u

d

G1

K2

G2

Kd

K1Kr
+

-

r

Figure 3.19: System with feedforward, local feedback and two degrees-of-freedom control

Example 3.16 Consider the control system in Figure 3.19, wherey1 is the output we want to
control,y2 is a secondary output (extra measurement), and we also measure the disturbance
d. By secondary we mean thaty2 is of secondary importance for control, that is, there is
no control objective associated with it. The control configuration includes a two degrees-
of-freedom controller, a feedforward controller and a local feedback controller based on the
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extra measurementy2. To recast this into our standard configuration of Figure 3.13 we define

w =

�
d
r

�
; z = y1 � r; v =

2664
r
y1
y2
d

3775 (3.104)

Note that d and r are both inputs and outputs toP and we have assumed a perfect
measurement of the disturbanced. Since the controller has explicit information aboutr we
have a two degrees-of-freedom controller. The generalized controllerK may be written in
terms of the individual controller blocks in Figure 3.19 as follows:

K = [K1Kr �K1 �K2 Kd ] (3.105)

By writing down the equations or by inspection from Figure 3.19 we get

P =

26664
G1 �I G1G2

0 I 0
G1 0 G1G2

0 0 G2

I 0 0

37775 (3.106)

Then partitioningP as in (3.96) and (3.97) yieldsP22 = [ 0T (G1G2)
T GT

2 0T ]T .

Exercise 3.11 Cascade implementation. Consider further Example 3.16. The local
feedback based ony2 is often implemented in a cascade manner; see also Figure 10.5. In
this case the output fromK1 enters intoK2 and it may be viewed as a reference signal fory2.
Derive the generalized controllerK and the generalized plantP in this case.

Remark. From Example 3.16 and Exercise 3.11, we see that a cascade implementationdoes
not usually limit the achievable performance since, unless the optimal K2 or K1 have RHP-
zeros, we can obtain from the optimal overall K the subcontrollers K2 and K1 (although
we may have to add a small D-term to K to make the controllers proper). However, if we
impose restrictions on the designsuch that, for example K2 or K1 are designed “ locally”
(without considering the whole problem), then this will limit the achievable performance.
For example, for a two degrees-of-freedom controllera common approach is to first design
the feedback controller Ky for disturbance rejection (without considering reference tracking)
and then design Kr for reference tracking. This will generally give some performance loss
compared to a simultaneous design of Ky and Kr .

Example 3.17 Output estimator. Consider a situation where we have no measurement of
the outputy which we want to control. However, we do have a measurement of another output
variabley2. Letd denote the unknown external inputs (including noise and disturbances) and
uG the known plant inputs (a subscriptG is used because in this case the outputu fromK is
not the plant input). Let the model be

y = GuG +Gdd; y2 = FuG + Fdd
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The objective is to design an estimator,Kest, such that the estimated outputby = Kest

�
y2
uG

�
is as close as possible in some sense to the true outputy; see Figure 3.20. This problem may
be written in the general framework of Figure 3.13 with

w =

�
d
uG

�
; u = by; z = y � by; v = �

y2
uG

�
Note thatu = by, that is, the outputu from the generalized controller is the estimate of the
plant output. Furthermore,K = Kest and

P =

24Gd G �I
Fd F 0
0 I 0

35 (3.107)

We see thatP22 =
�
0
0

�
since the estimator problem does not involve feedback.
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Figure 3.20: Output estimation problem. One particular estimator Kest is a Kalman Filter

Exercise 3.12 State estimator (observer). In the Kalman filter problem studied in
Section 9.2 the objective is to minimizex � bx (whereas in Example 3.17 the objective was
to minimizey � by). Show how the Kalman filter problem can be represented in the general
configuration of Figure 3.13 and findP .
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3.8.6 Deriving P from N

For cases where N is given and we wish to find a P such that

N = Fl(P;K) = P11 + P12K(I � P22K)�1P21

it is usually best to work from a block diagram representation. This was illustrated
above for the stacked N in (3.93). Alternatively, the following procedure may be
useful:

1. Set K = 0 in N to obtain P11.
2. Define Q = N � P11 and rewrite Q such that each term has a common factor
R = K(I � P22K)�1 (this gives P22).

3. Since Q = P12RP21, we can now usually obtain P12 and P21 by inspection.

Example 3.18 Weighted sensitivity. We will use the above procedure to deriveP when
N = wPS = wP (I +GK)�1, wherewP is a scalar weight.

1. P11 = N(K = 0) = wP I.
2. Q = N � wP I = wP (S � I) = �wPT = �wPGK(I + GK)�1, and we have

R = K(I +GK)�1 soP22 = �G.
3. Q = �wPGR so we haveP12 = �wPG andP21 = I, and we get

P =
�
wP I �wPG
I �G

�
(3.108)

Remark. When obtaining P from a given N , we have that P11 and P22 are unique, whereas
from Step 3 in the above procedure we see that P12 and P21 are not unique. For instance, let
� be a real scalar then we may instead choose eP12 = �P12 and eP21 = (1=�)P21 . For P in
(3.108) this means that we may move the negative sign of the scalar wP from P12 to P21.

Exercise 3.13 Mixed sensitivity. Use the above procedure to derive the generalized plant
P for the stackedN in (3.93).

3.8.7 Problems not covered by the general formulation

The above examples have demonstrated the generality of the control configuration
in Figure 3.13. Nevertheless, there are some controller design problems which are
not covered. Let N be some closed-loop transfer function whose norm we want to
minimize. To use the general form we must first obtain a P such thatN = F l(P;K).
However, this is not always possible, since there may not exist a block diagram
representation for N . As a simple example, consider the stacked transfer function

N =

�
(I +GK)�1

(I +KG)�1

�
(3.109)

The transfer function (I +GK)�1 may be represented on a block diagram with the
input and output signals after the plant, whereas (I + KG)�1 may be represented
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by another block diagram with input and output signals beforethe plant. However,
in N there are no cross coupling terms between an input before the plant and an
output after the plant (corresponding to G(I + KG)�1), or between an input after
the plant and an output before the plant (corresponding to �K(I + GK)�1) so N
cannot be represented in block diagram form. Equivalently, if we apply the procedure
in Section 3.8.6 to N in (3.109), we are not able to find solutions to P 12 and P21 in
Step 3.

Another stacked transfer function which cannotin general be represented in block
diagram form is

N =

�
WPS
SGd

�
(3.110)

Remark. The case where N cannot be written as an LFT of K, is a special case of the
Hadamard weightedH1 problem studied by van Diggelen and Glover (1994a). Although the
solution to this H1 problem remains intractable, van Diggelen and Glover (1994b) present a
solution for a similar problem where the Frobenius norm is used instead of the singular value
to “sum up the channels” .

Exercise 3.14 Show thatN in (3.110) can be represented in block diagram form ifWP =
wP I wherewP is a scalar.

3.8.8 A general control configuration including model
uncertainty

The general control configuration in Figure 3.13 may be extended to include model
uncertainty as shown by the block diagram in Figure 3.21. Here the matrix �
is a block-diagonalmatrix that includes all possible perturbations (representing
uncertainty) to the system. It is usually normalized in such a way that k�k1 � 1.

-

�

- -
-

�

u v

zw

K

P

�

u� y�

Figure 3.21: General control configuration for the case with model uncertainty
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Figure 3.23: Rearranging a system with multiple perturbations into the N�-structure

The block diagram in Figure 3.21 in terms of P (for synthesis) may be transformed
into the block diagram in Figure 3.22 in terms ofN (for analysis) by usingK to close
a lower loop aroundP . If we partition P to be compatible with the controllerK, then
the same lower LFTas found in (3.102) applies, and

N = Fl(P;K) = P11 + P12K(I � P22K)�1P21 (3.111)

To evaluate the perturbed (uncertain) transfer function from external inputs w to
external outputs z, we use � to close the upper loop around N (see Figure 3.22),
resulting in an upper LFT(see Appendix A.7):

z = Fu(N;�)w; Fu(N;�) , N22 +N21�(I �N11�)�1N12 (3.112)

Remark 1 Controller synthesis based on Figure 3.21 is still an unsolved problem, although
good practical approaches like DK-iteration to find the “�-optimal” controller are in use (see
Section 8.12). For analysis (with a given controller), the situation is better and with the H1
norm an assessment of robust performance involves computing the structured singular value,
�. This is discussed in more detail in Chapter 8.

Remark 2 In (3.112) N has been partitioned to be compatible with �, that is N11 has
dimensions compatible with �. Usually, � is square in which case N11 is a square matrix



110 MULTIVARIABLE FEEDBACK CONTROL

of the same dimension as �. For the nominal case with no uncertainty we have Fu(N;�) =
Fu(N; 0) = N22, so N22 is the nominal transfer function from w to z.

Remark 3 Note that P and N here also include information about how the uncertainty affects
the system, so they are not the same P and N as used earlier, for example in (3.102). Actually,
the parts P22 and N22 of P and N in (3.111) (with uncertainty) are equal to the P and N in
(3.102) (without uncertainty). Strictly speaking, we should have used another symbol for N
and P in (3.111), but for notational simplicity we did not.

Remark 4 The fact that almost any control problem with uncertainty can be represented by
Figure 3.21 may seem surprising, so some explanation is in order. First represent each source
of uncertainty by a perturbation block, �i, which is normalized such that k�ik � 1. These
perturbations may result from parametric uncertainty, neglected dynamics, etc. as will be
discussed in more detail in Chapters 7 and 8. Then “pull out” each of these blocks from
the system so that an input and an output can be associated with each �i as shown in
Figure 3.23(a). Finally, collect these perturbation blocks into a large block-diagonal matrix
having perturbation inputs and outputs as shown in Figure 3.23(b). In Chapter 8 we discuss in
detail how to obtain N and �.

3.9 Additional exercises

Most of these exercises are based on material presented in Appendix A. The exercises
illustrate material which the reader should know before reading the subsequent
chapters.

Exercise 3.15 Consider the performance specificationkwPSk1 < 1. Suggest a rational
transfer function weightwP (s) and sketch it as a function of frequency for the following two
cases:

1. We desire no steady-state offset, a bandwidth better than1 rad/s and a resonance peak
(worst amplification caused by feedback) lower than1:5.

2. We desire less than1% steady-state offset, less than10% error up to frequency3 rad/s, a
bandwidth better than10 rad/s, and a resonance peak lower than2. Hint: See (2.72) and
(2.73).

Exercise 3.16 By kMk1 one can mean either a spatial or temporal norm. Explain the
difference between the two and illustrate by computing the appropriate infinity norm for

M1 =

�
3 4
�2 6

�
; M2(s) =

s� 1

s+ 1

3

s+ 2

Exercise 3.17 What is the relationship between the RGA-matrix and uncertainty in the
individual elements? Illustrate this for perturbations in the1; 1-element of the matrix

A =

�
10 9
9 8

�
(3.113)
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Exercise 3.18 Assume thatA is non-singular. (i) Formulate a condition in terms of the
maximum singular value ofE for the matrixA + E to remain non-singular. Apply this to
A in (3.113) and (ii) find anE of minimum magnitude which makesA+E singular.

Exercise 3.19 ComputekAki1, ��(A) = kAki2, kAki1, kAkF , kAkmax andkAksum for
the following matrices and tabulate your results:

A1 = I; A2 =

�
1 0
0 0

�
;A3 =

�
1 1
1 1

�
;A4 =

�
1 1
0 0

�
; A5 =

�
1 0
1 0

�
Show using the above matrices that the following bounds are tight (i.e. we may have equality)
for 2� 2 matrices (m = 2):

��(A) � kAkF �
p
m ��(A)

kAkmax � ��(A) � mkAkmax

kAki1=
p
m � ��(A) � pmkAki1

kAki1=
p
m � ��(A) � pmkAki1
kAkF � kAksum

Exercise 3.20 Find example matrices to illustrate that the above bounds are also tight when
A is a squarem�m matrix withm > 2.

Exercise 3.21 Do the extreme singular values bound the magnitudes of the elements of a
matrix? That is, is��(A) greater than the largest element (in magnitude), and is�(A) smaller
than the smallest element? For a non-singular matrix, how is�(A) related to the largest
element inA�1?

Exercise 3.22 Consider a lower triangularm �m matrixA with aii = �1, aij = 1 for
all i > j, andaij = 0 for all i < j. (a) What isdetA ? (b) What are the eigenvalues ofA ?
(c) What is the RGA ofA? (d) Letm = 4 and find anE with the smallest value of��(E) such
thatA+E is singular.

Exercise 3.23 Find two matricesA andB such that�(A + B) > �(A) + �(B) which
proves that the spectral radius does not satisfy the triangle inequality and is thus not a norm.

Exercise 3.24 Write T = GK(I + GK)�1 as an LFT ofK, i.e. find P such that
T = Fl(P;K).

Exercise 3.25 Write K as an LFT ofT = GK(I + GK)�1, i.e. find J such that
K = Fl(J; T ).

Exercise 3.26 State-space descriptions may be represented as LFTs. To demonstrate this
findH for

Fl(H; 1=s) = C(sI �A)�1B +D

Exercise 3.27 Show that the set of all stabilizing controllers in (4.91) can be written as
K = Fl(J;Q) and findJ .
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Exercise 3.28 In (3.11) we stated that the sensitivity of a perturbed plant,S0 = (I +
G0K)�1, is related to that of the nominal plant,S = (I +GK)�1 by

S0 = S(I +EOT )
�1

where EO = (G0 � G)G�1. This exercise deals with how the above result may be
derived in a systematic (though cumbersome) manner using LFTs (see also (Skogestad and
Morari, 1988a)).

a) First find F such thatS0 = (I + G0K)�1 = Fl(F;K), and find J such that
K = Fl(J; T ) (see Exercise 3.25).

b) Combine these LFTs to findS0 = Fl(N; T ). What isN in terms ofG andG0?. Note that
sinceJ11 = 0 we have from (A.156)

N =

�
F11 F12J12

J21F21 J22 + J21F22J12

�
c) EvaluateS0 = Fl(N; T ) and show that

S0 = I �G0G�1T (I � (I �G0G�1)T )�1

d) Finally, show that this may be rewritten asS0 = S(I +EOT )
�1.

3.10 Conclusion

The main purpose of this chapter has been to give an overview of methods for
analysis and design of multivariable control systems.

In terms of analysis, we have shown how to evaluate MIMO transfer functions
and how to use the singular value decomposition of the frequency-dependent plant
transfer function matrix to provide insight into multivariable directionality. Other
useful tools for analyzing directionality and interactions are the condition number
and the RGA. Closed-loop performance may be analyzed in the frequency domain
by evaluating the maximum singular value of the sensitivity function as a function
of frequency. Multivariable RHP-zeros impose fundamental limitations on closed-
loop performance, but for MIMO systems we can often direct the undesired effect
of a RHP-zero to a subset of the outputs. MIMO systems are often more sensitive to
uncertainty than SISO systems, and we demonstrated in two examples the possible
sensitivity to input gain uncertainty.

In terms of controller design, we discusssed some simple approaches such
as decoupling and decentralized control. We also introduced a general control
configuration in terms of the generalized plant P , which can be used as a basis for
synthesizing multivariable controllers using a number of methods, including LQG,
H2,H1 and �-optimal control. These methods are discussed in much more detail in
Chapters 8 and 9. In this chapter we have only discussed theH1 weighted sensitivity
method.



4

ELEMENTS OF LINEAR

SYSTEM THEORY

The main objective of this chapter is to summarize important results from linear system theory
The treatment is thorough, but readers are encouraged to consult other books, such as Kailath
(1980) or Zhou et al. (1996), for more details and background information if these results are
new to them.

4.1 System descriptions

The most important property of a linear system (operator) is that it satisfies the
superposition principle: Let f(u) be a linear operator, let u1 and u2 be two
independent variables (e.g. input signals), and let �1 and �2 be two real scalars,
then

f(�1u1 + �2u2) = �1f(u1) + �2f(u2) (4.1)

We use in this book various representations of time-invariant linear systems, all of
which are equivalent for systems that can be described by linear ordinary differential
equations with constant coefficients and which do not involve differentiation of
the inputs (independent variables). The most important of these representations are
discussed in this section.

4.1.1 State-space representation

Consider a system with m inputs (vector u) and l outputs (vector y) which has an
internal description of n states (vector x). A natural way to represent many physical
systems is by nonlinear state-space models of the form

_x = f(x; u); y = g(x; u) (4.2)

where _x � dx=dt and f and g are nonlinear functions. Linear state-space models
may then be derived from the linearization of such models. In terms of deviation
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variables (where x represents a deviation from some nominal value or trajectory,
etc.) we have

_x(t) = Ax(t) +Bu(t) (4.3)

y(t) = Cx(t) +Du(t) (4.4)

where A, B, C and D are real matrices. If (4.3) is derived by linearizing (4.2) then
A = @f=@x and B = @f=@u (see Section 1.5 for an example of such a derivation).
A is sometimes called the state matrix. These equations provide a convenient means
of describing the dynamic behaviour of proper, rational, linear systems. They may
be rewritten as �

_x
y

�
=

�
A B
C D

��
x
u

�
which gives rise to the short-hand notation

G
s
=

�
A B
C D

�
(4.5)

which is frequently used to describe a state-space model of a system G. Note that
the representation in (4.3)–(4.4) is not a unique description of the input-output
behaviour of a linear system. First, there exist realizations with the same input-output
behaviour, but with additional unobservable and/or uncontrollable states (modes).
Second, even for a minimal realization (a realization with the fewest number of states
and consequently no unobservable or uncontrollable modes) there are an infinite
number of possibilities. To see this, let S be an invertible constant matrix, and
introduce the new states ex = Sx, i.e. x = S�1ex. Then an equivalent state-space
realization (i.e. one with the same input-output behaviour) in terms of these new
states (“coordinates” ) iseA = SAS�1; eB = SB; eC = CS�1; tildeD = D

The most common realizations are given by a few canonical forms, such as the Jordan
(diagonalized) canonical form, the observability canonical form, etc.

Given the linear dynamical system in (4.3) with an initial state condition x(t 0) and
an input u(t), the dynamical system response x(t) for t � t0 can be determined from

x(t) = eA(t�t0)x(t0) +
Z t

t0

eA(t��)Bu(�)d� (4.6)

where the matrix exponential is

eAt = I +

1X
k=1

(At)k=k! =

nX
k=1

tie
�itqHi (4.7)

The latter dyadic expansion, involving the right (t i) and left (qi) eigenvectors of A,
applies for cases with distinct eigenvalues (�i(A)), see (A.22). We will refer to the
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term e�i(A)t as the modeassociated with the eigenvalue �i(A). For a diagonalized
realization (where we select S = T such that eA = SAS�1 = � is a diagonal matrix)
we have that e eAt = diagfe�i(A)tg,

Remark. For a system with disturbances d and measurement noise n the state-space-model is
written as

_x = Ax+Bu+Bdd
y = Cx+Du+Ddd+ n

(4.8)

Note that the symbol n is used to represent both the noise signal and the number of states.

Remark. The more general descriptorrepresentation

E _x(t) = Ax(t) +Bu(t) (4.9)

inludes, for cases where the matrix E is singular, e.g. E = [ I 0 ], implicit algebraic relations
between the states x. If E is nonsingular then (4.9) is a special case of (4.3).

4.1.2 Impulse response representation

The impulse response matrix is

g(t) =

�
0 t < 0
CeAtB +DÆ(t) t � 0

(4.10)

where Æ(t) is the unit impulse (delta) function which satisfies lim�!0

R �
0
Æ(t)dt = 1.

The ij’ th element of the impulse response matrix, g ij(t), represents the response
yi(t) to an impulse uj(t) = Æ(t) for a system with a zero initial state.

With initial state x(0) = 0, the dynamic response to an arbitrary input u(t) (which
is zero for t < 0) may from (4.6) be written as

y(t) = g(t) � u(t) =
Z t

0

g(t� �)u(�)d� (4.11)

where � denotes the convolution operator.

4.1.3 Transfer function representation - Laplace transforms

The transfer function representation is unique and is very useful for directly obtaining
insight into the properties of a system. It is defined as the Laplace transform of the
impulse response

G(s) =

Z 1

0

g(t)e�stdt (4.12)

Alternatively, we may start from the state-space description. With the assumption of
a zero initial state, x(t = 0) = 0, the Laplace transforms of (4.3) and (4.4) become 1

sx(s) = Ax(s) +Bu(s) ) x(s) = (sI � A)�1Bu(s) (4.13)

1 We make the usual abuse of notation and let f(s) denote the Laplace transform of f(t).
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y(s) = Cx(s) +Du(s) ) y(s) = (C(sI �A)�1B +D)| {z }
G(s)

u(s) (4.14)

where G(s) is the transfer function matrix. Equivalently, from (A.1),

G(s) =
1

det(sI �A)
[Cadj(sI �A)B +D det(sI �A)] (4.15)

where det(sI �A) =Qn
i=1(s��i(A)) is the pole polynomial. For cases where the

eigenvalues ofA are distinct, we may use the dyadic expansion ofA given in (A.22),
and derive

G(s) =
nX
i=1

Ctiq
H
i B

s� �i
+D (4.16)

When disturbances are treated separately, see (4.8), the corresponding disturbance
transfer function is

Gd(s) = C(sI �A)�1Bd +Dd (4.17)

Note that any system written in the state-space form of (4.3) and (4.4) has a
transfer function, but the opposite is not true. For example, time delays and improper
systems can be represented by Laplace transforms, but do not have a state-space
representation. On the other hand, the state-space representation yields an internal
description of the system which may be useful if the model is derived from physical
principles. It is also more suitable for numerical calculations.

4.1.4 Frequency response

An important advantage of transfer functions is that the frequency response (Fourier
transform) is directly obtained from the Laplace transform by setting s = j! in
G(s). For more details on the frequency response, the reader is referred to Sections
2.1 and 3.3.

4.1.5 Coprime factorization

Another useful way of representing systems is the coprime factorization which may
be used both in state-space and transfer function form. In the latter case a right
coprime factorizationof G is

G(s) = Nr(s)M
�1
r (s) (4.18)

where Nr(s) and Mr(s) are stable coprime transfer functions. The stability implies
that Nr(s) should contain all the RHP-zeros of G(s), and Mr(s) should contain as
RHP-zeros all the RHP-poles of G(s). The coprimeness implies that there should be
no common RHP-zeros in Nr and Mr which result in pole-zero cancellations when
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forming NrM
�1
r . Mathematically, coprimeness means that there exist stable Ur(s)

and Vr(s) such that the following Bezout identity is satisfied

UrNr + VrMr = I (4.19)

Similarly, a left coprime factorizationof G is

G(s) =M�1
l (s)Nl(s) (4.20)

Here Nl and Ml are stable and coprime, that is, there exist stable Ul(s) and Vl(s)
such that the following Bezout identity is satisfied

NlUl +MlVl = I (4.21)

For a scalar system, the left and right coprime factorizations are identical, G =
NM�1 =M�1N .

Remark. Two stable scalar transfer functions, N(s) and M(s), are coprime if and only if
they have no common RHP-zeros. In this case we can always find stable U and V such that
NU +MV = 1.

Example 4.1 Consider the scalar system

G(s) =
(s� 1)(s+ 2)

(s� 3)(s+ 4)
(4.22)

To obtain a coprime factorization, we first make all the RHP-poles ofG zeros ofM , and all
the RHP-zeros ofG zeros ofN . We then allocate the poles ofN andM so thatN andM are
both proper and the identityG = NM�1 holds. Thus

N(s) =
s� 1

s+ 4
; M(s) =

s� 3

s+ 2

is a coprime factorization. Usually, we selectN andM to have the same poles as each other
and the same order asG(s). This gives the most degrees of freedom subject to having a
realization of[M(s) N(s) ]T with the lowest order. We then have that

N(s) = k
(s� 1)(s+ 2)

s2 + k1s+ k2
; M(s) = k

(s� 3)(s+ 4)

s2 + k1s+ k2
(4.23)

is a coprime factorization of (4.22) for anyk and for anyk1; k2 > 0.

From the above example, we see that the coprime factorization is not unique. Now
introduce the operator M � defined as M �(s) = MT (�s) (which for s = j! is the
same as the complex conjugate transposeMH = �MT ). ThenG(s) = Nr(s)M

�1
r (s)

is called a normalizedright coprime factorization if

M�
rMr +N�

rNr = I (4.24)
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In this case Xr(s) =

�
Mr

Nr

�T
satisfies X�

rXr = I and is called an inner transfer

function. The normalized left coprime factorizationG(s) =M �1
l (s)Nl(s) is defined

similarly, requiring that
MlM

�
l +NlN

�
l = I (4.25)

In this case Xl(s) = [Ml Nl ] is co-inner which means XlX
�
l = I . The

normalized coprime factorizations are unique to within a right (left) multiplication
by a unitary matrix.

Exercise 4.1 We want to find the normalized coprime factorization for the scalar system in
(4.22). LetN andM be as given in (4.23), and substitute them into (4.24). Show that after
some algebra and comparing of terms one obtains:k = �0:71, k1 = 5:67 andk2 = 8:6.

To derive normalized coprime factorizations by hand, as in the above exercise, is in
general difficult. Numerically, however, one can easily find a state-space realization.
If G has a minimal state-space realization

G
s
=

�
A B
C D

�
then a minimal state-space realization of a normalized left coprime factorization is
given (Vidyasagar, 1988) by

�
Nl(s) Ml(s)

� s
=

�
A+HC B +HD H

R�1=2C R�1=2D R�1=2

�
(4.26)

where
H , �(BDT + ZCT )R�1; R , I +DDT

and the matrix Z is the unique positive definite solution to the algebraic Riccati
equation

(A�BS�1DTC)Z + Z(A�BS�1DTC)T � ZCTR�1CZ +BS�1BT = 0

where
S , I +DTD:

Notice that the formulas simplify considerably for a strictly proper plant, i.e. when
D = 0. The MATLAB commands in Table 4.1 can be used to find the normalized
coprime factorization for G(s) using (4.26).

Exercise 4.2 Verify numerically (e.g. using theMATLAB file in Table 4.1 or the�-toolbox
commandsncfbal) that the normalized coprime factors ofG(s) in (4.22) are as given in
Exercise 4.1.



ELEMENTS OF LINEAR SYSTEM THEORY 119

Table 4.1: MATLAB commands to generate a normalized coprime factorization
% Uses the Mu toolbox
%
% Find Normalized Coprime factors of system [a,b,c,d] using (4.26)
%
S=eye(size(d’*d))+d’*d;
R=eye(size(d*d’))+d*d’;
A1 = a-b*inv(S)*d’*c;
R1 = c’*inv(R)*c;
Q1 = b*inv(S)*b’;
[z1,z2,fail,reig min] = ric schr([A1’ -R1; -Q1 -A1]); Z = z2/z1;
% Alternative: aresolv in Robust control toolbox:
% [z1,z2,eig,zerr,zwellposed,Z] = aresolv(A1’,Q1,R1);
H = -(b*d’ + Z*c’)*inv(R);
A = a + H*c;
Bn = b + H*d; Bm = H;
C = inv(sqrtm(R))*c;
Dn = inv(sqrtm(R))*d; Dm = inv(sqrtm(R));
N = pck(A,Bn,C,Dn);
M = pck(A,Bm,C,Dm);

4.1.6 More on state-space realizations

Inverse system. In some cases we may want to find a state-space description of the
inverse of a system. For a square G(s) we have

G�1 s
=

�
A�BD�1C BD�1

�D�1C D�1

�
(4.27)

where D is assumed to be non-singular. For a non-square G(s) in which D has full
row (or column) rank, a right (or left) inverse ofG(s) can be found by replacingD �1

by Dy, the pseudo-inverse of D.
For a strictly proper system with D = 0, one may obtain an approximate inverse

by including a small additional feed-through term D, preferably chosen on physical
grounds. One should be careful, however, to select the signs of the terms in D
such that one does not introduce RHP-zeros in G(s) because this will make G(s)�1

unstable.
Improper systems. Improper transfer functions, where the order of the s-

polynomial in the numerator exceeds that of the denominator, cannot be represented
in standard state-space form. To approximate improper systems by state-space
models, we can include some high-frequency dynamics which we know from
physical considerations will have little significance.

Realization of SISO transfer functions. Transfer functions are a good way
of representing systems because they give more immediate insight into a systems
behaviour. However, for numerical calculations a state-space realization is usually
desired. One way of obtaining a state-space realization from a SISO transfer function
is given next. Consider a strictly proper transfer function (D = 0) of the form

G(s) =
�n�1sn�1 + � � �+ �1s+ �0

sn + an�1sn�1 + � � �+ a1s+ a0
(4.28)



120 MULTIVARIABLE FEEDBACK CONTROL

Then, since multiplication by s corresponds to differentiation in the time domain,
(4.28) and the relationship y(s) = G(s)u(s) corresponds to the following differential
equation

yn(t)+an�1yn�1(t)+� � �+a1y0(t)+a0y(t) = �n�1un�1(t)+� � �+�1u0(t)+�0u(t)
where yn�1(t) and un�1(t) represent n� 1’ th order derivatives, etc. We can further
write this as

yn = (�an�1yn�1 + �n�1un�1) + � � �+ (�a1y0 + �1u
0) + (�a0y + �0u)| {z }

x0n| {z }
x2
n�1| {z }

xn1

where we have introduced new variables x1; x2; : : : xn and we have y = x1. Note
that xn1 is the n’ th derivative of x1(t). With the notation _x � x0(t) = dx=dt, we have
the following state-space equations

_xn = �a0x1 + �0u

_xn�1 = �a1x1 + xn + �1u

...

_x1 = �an�1x1 + x2 + �n�1u

corresponding to the realization

A =

26666664

�an�1 1 0 � � � 0 0
�an�2 0 1 0 0

...
...

. . .
...

�a2 0 0 1 0
�a1 0 0 � � � 0 1
�a0 0 0 � � � 0 0

37777775; B =

26666664

�n�1
�n�2

...
�2
�1
�0

37777775 (4.29)

C = [ 1 0 0 � � � 0 0 ]

This is called the observer canonical form. Two advantages of this realization are
that one can obtain the elements of the matrices directly from the transfer function,
and that the output y is simply equal to the first state. Notice that if the transfer
function is not strictly proper, then we must first bring out the constant term, i.e.
write G(s) = G1(s) +D, and then find the realization of G1(s) using (4.29).

Example 4.2 To obtain the state-space realization, in observer canonical form, of the SISO
transfer functionG(s) = s�a

s+a
, we first bring out a constant term by division to get

G(s) =
s� a

s+ a
=
�2a
s+ a

+ 1

ThusD = 1. For the term�2a
s+a

we get from (4.28) that�0 = �2a anda0 = a, and therefore
(4.29) yieldsA = �a;B = �2a andC = 1.
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Example 4.3 Consider an ideal PID-controller

K(s) = Kc(1 +
1

�Is
+ �Ds) = Kc

�I�Ds
2 + �Is+ 1

�Is
(4.30)

Since this involves differentiation of the input, it is an improper transfer function and cannot be
written in state-space form. A proper PID controller may be obtained by letting the derivative
action be effective over a limited frequency range. For example

K(s) = Kc(1 +
1

�Is
+

�Ds

1 + ��Ds
) (4.31)

where� is typically 0.1 or less. This can now be realized in state-space form in an infinite
number of ways. Four common forms are given below. In all cases, theD-matrix, which
represents the controller gain at high frequencies (s!1), is a scalar given by

D = Kc
1 + �

�
(4.32)

1. Diagonalized form (Jordan canonical form)

A =

�
0 0
0 � 1

��D

�
; B =

�
Kc=�I

Kc=(�2�D)

�
; C = [ 1 �1 ] (4.33)

2. Observability canonical form

A =
�
0 1
0 � 1

��D

�
; B =

�

1

2

�
; C = [ 1 0 ] (4.34)

where 
1 = Kc(
1

�I
� 1

�2�D
); 
2 =

Kc

�3� 2D
3. Controllability canonical form

A =

�
0 0
1 � 1

��D

�
; B =

�
1
0

�
; C = [ 
1 
2 ] (4.35)

where
1 and
2 are as given above.
4. Observer canonical form in (4.29)

A =
�� 1

��D
1

0 0

�
; B =

�
�1
�0

�
; C = [ 1 0 ] (4.36)

where �0 =
Kc

��I�D
; �1 = Kc

�2�D � �I
�2�I�D

On comparing these four realizations with the transfer function model in (4.31), it is
clear that the transfer function offers more immediate insight. One can at least see
that it is a PID controller.

Time delay. A time delay (or dead time) is an infinite-dimensional system and
not representable as a rational transfer function. For a state-space realization it must
therefore be approximated. An n’ th order approximation of a time delay � may be
obtained by putting n first-order Padé approximations in series

e��s � (1� �
2ns)

n

(1 + �
2ns)

n
(4.37)
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Alternative (and possibly better) approximations are in use, but the above
approximation is often preferred because of its simplicity.

4.2 State controllability and state observability

For the case when A has distinct eigenvalues, we have from (4.16) the following
dyadic expansion of the transfer function matrix from inputs to outputs,

G(s) =

nX
i=1

Ctiq
H
i B

s� �i
+D =

nX
i=1

ypiupi
s� �i

+D (4.38)

From this we see that the i’ the input pole vector(Havre, 1998)

upi , qHi B (4.39)

is an indication of how much the i’ th mode is excited (and thus may be “controlled” )
by the inputs. Similarly, the i’ the output pole vector

ypi , Cti (4.40)

indicates how much the i’ th mode is observed in the outputs. Thus, the pole vectors
may be used for checking the state controllability and observability of a system. This
is explained in more detail below, but let us start by defining statecontrollability.

Definition 4.1 State controllability. The dynamical system_x = Ax + Bu, or
equivalently the pair(A;B), is said to be state controllable if, for any initial state
x(0) = x0, any timet1 > 0 and any final statex1, there exists an inputu(t) such
thatx(t1) = x1. Otherwise the system is said to be state uncontrollable.

A mode is called uncontrollable if none of the inputs can excite the mode. From
(4.38) we have that the i’ th mode is uncontrollable if and only if the i’ th input pole
vector is zero – otherwise the mode is controllable. The system is (state) controllable
if all its modes are controllable. Thus we have: Let �i be thei’th eigenvalue ofA,
qi the corresponding left eigenvector,qHi A = �iq

H
i , andupi = BHqi thei’th input

pole vector. Then the system(A;B) is state controllable if and only if

upi 6= 0;8i

In words, a system is state controllable if and only if all its input pole vectors are
nonzero.

Remark. There exists many other tests for state controllability. Two of these are
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1. The system (A;B) is state controllable if and only if the controllability matrix

C , [B AB A2B � � � An�1B ] (4.41)

has rank n (full row rank). Here n is the number of states.
2. From (4.6) one can verify that a particular input which achieves x(t1) = x1 is

u(t) = �BT eA
T (t1�t)Wc(t1)

�1(eAt1x0 � x1) (4.42)

where Wc(t) is the Gramian matrix at time t,

Wc(t) ,

Z t

0

eA�BBT eA
T �d�

Therefore, the system (A;B) is state controllable if and only if the Gramian matrix Wc(t)
has full rank (and thus is positive definite) for any t > 0. For a stable system (A is stable)
we only need to consider P , Wc(1), that is, the pair (A;B) is state controllable if and
only if the controllability Gramian

P ,

Z 1

0

eA�BBT eA
T �d� (4.43)

is positive definite (P > 0) and thus has full rank n. P may also be obtained as the solution
to the Lyapunov equation

AP + PAT = �BBT (4.44)

Example 4.4 Consider a scalar system with twostates and the following state-space
realization

A =
��2 �2
0 �4

�
; B =

�
1
1

�
; C = [ 1 0 ]; D = 0

The transfer function (minimal realization) is

G(s) = C(sI �A)�1B =
1

s+ 4

which has only onestate. In fact, the first state corresponding to the eigenvalue at -2 is not
controllable. This is verified by considering state controllability.

1. The eigenvalues ofA are�1 = �2 and�2 = �4, and the corresponding left eigenvectors
are q1 = [ 0:707 �0:707 ]T andq2 = [ 0 1 ]T . The two input pole vectors are

yp1 = BHq1 = 0; yp2 = BHq2 = 1

and sinceyp1 is zero we have that the first mode (eigenvalue) is not state controllable.
2. The controllability matrix has rank1 since it has two linearly dependent rows:

C = [B AB ] =

�
1 �4
1 �4

�
:

3. The controllability Gramian is also singular

P =
�
0:125 0:125
0:125 0:125

�
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In words, if a system is state controllable we can by use of its inputs u bring it from
any initial state to any final state within any given finite time. State controllability
would therefore seem to be an important property for practical control, but it rarely
is for the following four reasons:

1. It says nothing about how the states behave at earlier and later times, e.g. it does
not imply that one can hold (as t!1) the states at a given value.

2. The required inputs may be very large with sudden changes.
3. Some of the states may be of no practical importance.
4. The definition is an existence result which provides no degree of controllability

(see Hankel singular values for this).

The first two objections are illustrated in the following example.

Example 4.5 State controllability of tanks in series.
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Figure 4.1: State controllability of four first-order systems in series

Consider a system with one input and four states arising from four first-order systems in series,

G(s) = 1=(�s+ 1)4

A physical example could be four identical tanks (e.g. bath tubs) in series where water flows
from one tank to the next. Energy balances, assuming no heat loss, yieldT4 =

1
�s+1

T3; T3 =
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1
�s+1

T2; T2 = 1
�s+1

T1; T1 = 1
�s+1

T0 where the statesx = [T1 T2 T3 T4 ]
T are the

four tank temperatures, the inputu = T0 is the inlet temperature, and� = 100 s is the
residence time in each tank. A state-space realization is

A =

264�0:01 0 0 0
0:01 �0:01 0 0
0 0:01 �0:01 0
0 0 0:01 �0:01

375B =

264 0:0100
0

375 (4.45)

In practice, we know that it is very difficult to control the four temperatures independently,
since at steady-state all temperatures must be equal. However, the controllability matrixC
in (4.41) has full rank, so the system is state controllable and it must be possible to achieve
at any given time any desired temperature in each of the four tanks simply by adjusting the
inlet temperature. This sounds almost too good to be true, so let us consider a specific case.
Assume that the system is initially at steady-state (all temperatures are zero), and that we
want to achieve att = 400 s the following temperatures:T1(400) = 1, T2(400) = �1,
T3(400) = 1 andT4(400) = �1. The change in inlet temperature,T0(t), to achieve this was
computed from (4.42) and is shown as a function of time in Figure 4.1(a). The corresponding
tank temperatures are shown in Figure 4.1(b). Two things are worth noting:

1. The required change in inlet temperature is more than100 times larger than the desired
temperature changes in the tanks and it also varies widely with time.

2. Although the states (tank temperaturesTi) are indeed at their desired values of�1 at
t = 400 s, it is not possible to hold them at these values, since at steady-state all the states
must be equal (all states approach 0 in this case, sinceu = T0 is reset to 0 att = 400 s).

It is quite easy to explain the shape of the inputT0(t): The fourth tank is furthest away and
we want its temperature to decrease (T4(400) = �1) and therefore the inlet temperatureT0
is initially decreased to about�40. Then, sinceT3(400) = 1 is positive,T0 is increased to
about30 at t = 220 s; it is subsequently decreased to about�40, sinceT2(400) = �1, and
finally increased to more than100 to achieveT1(400) = 1.

From the above example, we see clearly that the property of state controllability
may not imply that the system is “controllable” in a practical sense 2. This is because
state controllability is concerned only with the value of the states at discretevalues of
time (target hitting), while in most cases we want the outputs to remain close to some
desired value (or trajectory) for all values of time, and without using inappropriate
control signals.

So now we know that state controllability does not imply that the system is
controllable from a practical point of view. But what about the reverse: If we do
not have state controllability, is this an indication that the system is not controllable
in a practical sense? In other words, should we be concerned if a system is not state
controllable? In many cases the answer is “no” , since we may not be concerned with
the behaviour of the uncontrollable states which may be outside our system boundary
or of no practical importance. If we are indeed concerned about these states then they
should be included in the output set y. State uncontrollability will then appear as a
rank deficiency in the transfer function matrix G(s) (see functional controllability).

2 In Chapter 5, we introduce a more practical concept of controllability which we call “ input-output
controllability” .
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So is the issue of state controllability of any value at all? Yes, because it tells
us whether we have included some states in our model which we have no means
of affecting. It also tells us when we can save on computer time by deleting
uncontrollable states which have no effect on the output for a zero initial state.

In summary, state controllability is a system theoretical concept which is
important when it comes to computations and realizations. However, its name is
somewhat misleading, and most of the above discussion might have been avoided
if only Kalman, who originally defined state controllability, had used a different
terminology. For example, better terms might have been “point-wise controllability”
or “state affect-ability” from which it would have been understood that although
all the states could be individually affected, we might not be able to control them
independently over a period of time.

Definition 4.2 State observability. The dynamical system_x = Ax + Bu, y =
Cx +Du (or the pair(A;C)) is said to be state observable if, for any timet1 > 0,
the initial statex(0) = x0 can be determined from the time history of the inputu(t)
and the outputy(t) in the interval[0; t1]. Otherwise the system, or(A;C), is said to
be state unobservable.

From (4.38) we have: Let�i be thei’th eigenvalue ofA, ti be the corresponding
eigenvector,Ati = �iti, andypi = Cti thei’th output pole vector. Then the system
(A;C) is state observable if and only if

ypi 6= 0;8i

In words, a system is state observable if and only if all its output pole vectors are
nonzero.

Remark. Two other tests for state observability are:

1. The system (A;C) is state observable if and only if we have full colum rank (rank n) of
the observability matrix

O ,

2664
C
CA

...
CAn�1

3775 (4.46)

2. For a stable system we may consider the observability Gramian

Q ,

Z 1

0

eA
T �CTCeA�d� (4.47)

which must have full rank n (and thus be positive definite) for the system to be state
observable. Q can also be found as the solution to the following Lyapunov equation

ATQ+QA = �CTC (4.48)
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A system is state observable if we can obtain the value of all individual states by
measuring the output y(t) over some time period. However, even if a system is state
observable it may not be observable in a practical sense. For example, obtaining x(0)
may require taking high-order derivatives of y(t) which may be numerically poor and
sensitive to noise. This is illustrated in the following example.

Example 4.5 (tanks in series) continued. If we definey = T4 (the temperature of the last
tank), thenC = [ 0 0 0 1 ] and we find that the observability matrixO has full column rank
so all states are observable fromy. However, consider a case where the initial temperatures
in the tanks,Ti(0); i = 1; : : : ; 4, are non-zero (and unknown), and the inlet temperature
T0(t) = u(t) is zero fort � 0. Then, from a practical point of view, it is clear that it is
numerically very difficult to back-calculate, for exampleT1(0) based on measurements of
y(t) = T4(t) over some interval[0; t1], although in theory all states are observable from the
output.

Definition 4.3 Minimal realization, McMillan degree and hidden mode. A state-
space realization(A;B;C;D) ofG(s) is said to be a minimal realization ofG(s) if
A has the smallest possible dimension (i.e. the fewest number of states). The smallest
dimension is called theMcMillan degree ofG(s). A mode is hidden if it is not state
controllable or observable and thus does not appear in the minimal realization.

Since only controllable and observable states contribute to the input-output
behaviour from u to y, it follows that a state-space realization is minimal if and
only if (A;B) is state controllable and (A;C) is state observable.

Remark 1 Note that uncontrollable states will contribute to the output response y(t) if the
initial state is nonzero, x(t = 0) 6= 0, but this effect will die out if the uncontrollable states
are stable.

Remark 2 Unobservable states have no effect on the outputs whatsoever, and may be viewed
as outside the system boundary, and thus of no direct interest from a control point of view
(unless the unobservable state is unstable, because we want to avoid the system “blowing
up”). However, observability is important for measurement selection and when designing state
estimators (observers).

4.3 Stability

There are a number of ways in which stability may be defined, e.g. see Willems
(1970). Fortunately, for linear time-invariant systems these differences have no
practical significance, and we use the following definition:

Definition 4.4 A system is(internally) stable if none of its components contain
hidden unstable modes and the injection of bounded external signals at any place
in the system result in bounded output signals measured anywhere in the system.
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We here define a signal u(t) to be “bounded” if there exists a constant c such that
ju(t)j < c for all t. The word internally is included in the definition to stress that
we do not only require the response from one particular input to another particular
output to be stable, but require stability for signals injected or measured at any point
of the system. This is discussed in more detail for feedback systems in Section
4.7. Similarly, the components must contain no hidden unstable modes, that is, any
instability in the components must be contained in their input-output behaviour.

Definition 4.5 Stabilizable, detectable and hidden unstable modes. A system is
(state) stabilizable if all unstable modes are state controllable. A system is (state)
detectable if all unstable modes are state observable. A system with unstabilizable
or undetectable modes is said to contain hidden unstable modes.

A linear system (A;B) is stabilizable if and only if all input pole vectors upii
associated with the unstable modes are nonzero. A linear system (A;C) is detectable
if and only if all output pole vectors ypi associated with the unstable modes are
nonzero. If a system is not detectable, then there is a state within the system which
will eventually grow out of bounds, but we have no way of observing this from the
outputs y(t).

Remark 1 Any unstable linear system can be stabilized by feedback control (at least in
theory) provided the system contains no hidden unstable mode(s). However, this may require
an unstable controller, see also the remark on page 185.

Remark 2 Systems with hidden unstable modes must be avoided both in practice and in
computations (since variables will eventually blow up on our computer if not on the factory
floor). In the book we always assume, unless otherwise stated, that our systems contain no
hidden unstable modes.

4.4 Poles

For simplicity, we here define the poles of a system in terms of the eigenvalues of the
state-space A-matrix. More generally, the poles of G(s) may be somewhat loosely
defined as the finite values s = p where G(p) has a singularity (“ is infinite” ), see
also Theorem 4.2 below.

Definition 4.6 Poles. The polespi of a system with state-space description (4.3)–
(4.4) are the eigenvalues�i(A); i = 1; : : : ; n of the matrixA. The pole or
characteristic polynomial�(s) is defined as�(s) , det(sI � A) =

Qn
i=1(s � pi).

Thus the poles are the roots of the characteristic equation

�(s) , det(sI �A) = 0 (4.49)

To see that this definition is reasonable, recall (4.15) and Appendix A.2.1. Note that
ifA does not correspond to a minimal realization then the poles by this definition will



ELEMENTS OF LINEAR SYSTEM THEORY 129

include the poles (eigenvalues) corresponding to uncontrollable and/or unobservable
states.

4.4.1 Poles and stability

For linear systems, the poles determine stability:

Theorem 4.1 A linear dynamic system_x = Ax +Bu is stable if and only if all the
poles are in the open left-half plane (LHP), that is,Ref� i(A)g < 0;8i. A matrixA
with such a property is said to be “stable” or Hurwitz.

Proof: From (4.7) we see that the time response (4.6) can be written as a sum of terms each
containing a modee�i(A)t. Eigenvalues in the RHP with Ref�i(A)g > 0 give rise to unstable
modessince in this case e�i(A)t is unbounded as t ! 1. Eigenvalues in the open LHP give
rise to stable modes where e�i(A)t ! 0 as t ! 1. Systems with poles on the j!-axis,
including integrators, are unstable from our Definition 4.4 of stability. For example, consider
y = Gu and assume G(s) has imaginary poles s = �j!o. Then with a bounded sinusoidal
input, u(t) = sin!ot, the output y(t) grows unbounded as t!1. 2

4.4.2 Poles from state-space realizations

Poles are usually obtained numerically by computing the eigenvalues of the A-
matrix. To get the fewest number of poles we should use a minimal realization of
the system.

4.4.3 Poles from transfer functions

The following theorem from MacFarlane and Karcanias (1976) allows us to obtain
the poles directly from the transfer function matrix G(s) and is also useful for hand
calculations. It also has the advantage of yielding only the poles corresponding to a
minimal realization of the system.

Theorem 4.2 The pole polynomial�(s) corresponding to a minimal realization of
a system with transfer functionG(s), is the least common denominator of all non-
identically-zero minors of all orders ofG(s).

A minor of a matrix is the determinant of the matrix obtained by deleting certain
rows and/or columns of the matrix. We will use the notationM r

c to denote the minor
corresponding to the deletion of rows r and columns c in G(s). In the procedure
defined by the theorem we cancel common factors in the numerator and denominator
of each minor. It then follows that only observable and controllable poles will appear
in the pole polynomial.

Example 4.6 Consider the plant:G(s) = (3s+1)2

(s+1)
e��s which has no state-space

realization as it contains a delay and is also improper. Thus we can not compute the poles
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from (4.49). However from Theorem 4.2 we have that the denominator is(s + 1) and as
expectedG(s) has a pole ats = �1.

Example 4.7 Consider the square transfer function matrix

G(s) =
1

1:25(s + 1)(s+ 2)

�
s� 1 s
�6 s� 2

�
(4.50)

The minors of order1 are the four elements all have(s+ 1)(s+ 2) in the denominator. The
minor of order2 is the determinant

detG(s) =
(s� 1)(s� 2) + 6s

1:252(s+ 1)2(s+ 2)2
=

1

1:252(s+ 1)(s+ 2)
(4.51)

Note the pole-zero cancellation when evaluating the determinant. The least common
denominator of all the minors is then

�(s) = (s+ 1)(s+ 2) (4.52)

so a minimal realization of the system has two poles: one ats = �1 and one ats = �2.

Example 4.8 Consider the2� 3 system, with3 inputs and2 outputs,

G(s) =
1

(s+ 1)(s+ 2)(s� 1)

�
(s� 1)(s+ 2) 0 (s� 1)2

�(s+ 1)(s + 2) (s� 1)(s+ 1) (s� 1)(s + 1)

�
(4.53)

The minors of order1 are the five non-zero elements (e.g.M2
2;3 = g11(s)):

1

s+ 1
;

s� 1

(s+ 1)(s+ 2)
;
�1
s� 1

;
1

s+ 2
;

1

s+ 2
(4.54)

The minor of order2 corresponding to the deletion of column2 is

M2 =
(s� 1)(s+ 2)(s� 1)(s+ 1) + (s+ 1)(s+ 2)(s� 1)2

((s+ 1)(s+ 2)(s� 1))2
=

2

(s+ 1)(s+ 2)
(4.55)

The other two minors of order two are

M1 =
�(s� 1)

(s+ 1)(s+ 2)2
; M3 =

1

(s+ 1)(s+ 2)
(4.56)

By considering all minors we find their least common denominator to be

�(s) = (s+ 1)(s+ 2)2(s� 1) (4.57)

The system therefore has four poles: one ats = �1, one ats = 1 and two ats = �2.

From the above examples we see that the MIMO-poles are essentially the poles of the
elements. However, by looking at only the elements it is not possible to determine the
multiplicity of the poles. For instance, let G0(s) be a squarem�m transfer function
matrix with no pole at s = �a, and consider

G(s) =
1

s+ a
G0(s) (4.58)
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How many poles at s = �a does a minimal realization of G(s) have? From (A.10),

det (G(s)) = det

�
1

s+ a
G0(s)

�
=

1

(s+ a)m
det (G0(s)) (4.59)

so if G0 has no zeros at s = �a, then G(s) has m poles at s = �a. However, G0

may have zeros at s = �a. As an example, consider a 2�2 plant in the form given by
(4.58). It may have two poles at s = �a (as for G(s) in (3.81)), one pole at s = �a
(as in (4.50) where detG0(s) has a zero at s = �a) or no pole at s = �a (if all the
elements of G0(s) have a zero at s = �a).

As noted above, the poles are obtained numerically by computing the eigenvalues
of theA-matrix. Thus, to compute the poles of a transfer functionG(s), we must first
obtain a state-space realization of the system. Preferably this should be a minimal
realization. For example, if we make individual realizations of the five non-zero
elements in Example 4.8 and then simply combine them to get an overall state space
realization, we will get a system with 15 states, where each of the three poles (in
the common denominator) are repeated five times. A model reduction to obtain a
minimal realization will subsequently yield a system with four poles as given in
(4.57).

4.4.4 Pole vectors and directions

In multivariable system poles have directions associated with them. To quantify this
we use the input and output pole vectorsintroduced in (4.39) and (4.40):

ypi = Cti; upi = BHqi (4.60)

The pole directionsare the directions of the pole vectors and have unit length.
Specifically, 1

kypik2
ypi where ypi is computed from (4.60) is the i’ th output pole

direction.
The pole directions may also be defined in terms of the transfer function matrix

by evaluating G(s) at the pole pi and considering the directions of the resulting
complex matrixG(pi). The matrix is infinite in the direction of the pole, and we may
somewhat crudely write

G(pi)upi =1 � ypi (4.61)

where upi is the input pole direction, and ypi is the output pole direction. The pole
directions may in principle be obtained from an SVD of G(p i) = U�V H . Then upi
is the first column in V (corresponding to the infinite singular value), and y pi the first
column in U .

Remark 1 As already mentioned, if up = BHq = 0 then the corresponding pole is not state
controllable, and if yp = Ct = 0 the corresponding pole is not state observable (see also
Zhou et al. (1996, p.52)).
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Remark 2 The pole vectors provide a very useful tool for selecting inputs and outputs for
stabilization. For a single unstable mode, selecting the input corresponding to the largest
element in up and the output corresponding to the largest element in yp, minimizes the input
usage required for stabilization. More precisely, this choice minimizes the lower bound on
both theH2 and H1-norms of the transfer function KS from measurement (output) noise to
input (Havre, 1998)(Havre and Skogestad, 1998b).

4.5 Zeros

Zeros of a system arise when competing effects, internal to the system, are such that the output
is zero even when the inputs (and the states) are not themselves identically zero. For a SISO
system the zeros zi are the solutions to G(zi) = 0. In general, it can be argued that zeros
are values of s at which G(s) loses rank (from rank 1 to rank 0 for a SISO system). This
is the basis for the following definition of zeros for a multivariable system (MacFarlane and
Karcanias, 1976).

Definition 4.7 Zeros. zi is a zero ofG(s) if the rank ofG(zi) is less than the normal rank
of G(s). The zero polynomial is defined asz(s) =

Qnz
i=1(s � zi) wherenz is the number of

finite zeros ofG(s).

In this book we do not consider zeros at infinity; we require that zi is finite. The normal rank of
G(s) is defined as the rank of G(s) at all values of s except at a finite number of singularities
(which are the zeros).

This definition of zeros is based on the transfer function matrix, corresponding to a minimal
realization of a system. These zeros are sometimes called “ transmission zeros” , but we will
simply call them “zeros” . We may sometimes use the term “multivariable zeros” to distinguish
them from the zeros of the elements of the transfer function matrix.

4.5.1 Zeros from state-space realizations

Zeros are usually computed from a state-space description of the system. First note that the
state-space equations of a system may be written as

P (s)

�
x
u

�
=

�
0
y

�
; P (s) =

�
sI � A �B
C D

�
(4.62)

The zeros are then the values s = z for which the polynomial system matrix, P (s), loses
rank, resulting in zero output for some non-zero input. Numerically, the zeros are found as
non-trivial solutions (with uz 6= 0 and xz 6= 0) to the following problem

(zIg �M)
�
xz
uz

�
= 0 (4.63)

M =
�
A B
C D

�
; Ig =

�
I 0
0 0

�
(4.64)
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This is solved as a generalized eigenvalue problem – in the conventional eigenvalue problem
we have Ig = I . Note that we usually get additional zeros if the realization is not minimal.

4.5.2 Zeros from transfer functions

The following theorem from MacFarlane and Karcanias (1976) is useful for hand calculating
the zeros of a transfer function matrix G(s).

Theorem 4.3 The zero polynomialz(s), corresponding to a minimal realization of the system,
is the greatest common divisor of all the numerators of all order-r minors ofG(s), wherer is
the normal rank ofG(s), provided that these minors have been adjusted in such a way as to
have the pole polynomial�(s) as their denominators.

Example 4.9 Consider the2� 2 transfer function matrix

G(s) =
1

s+ 2

�
s� 1 4
4:5 2(s� 1)

�
(4.65)

The normal rank ofG(s) is 2, and the minor of order2 is the determinant,detG(s) =
2(s�1)2�18

(s+2)2
= 2 s�4

s+2
. From Theorem 4.2, the pole polynomial is�(s) = s+ 2 and therefore

the zero polynomial isz(s) = s� 4. Thus,G(s) has a single RHP-zero ats = 4.

This illustrates that in general multivariable zeros have no relationship with the zeros of the
transfer function elements. This is also shown by the following example where the system has
no zeros.

Example 4.7 continued. Consider again the2� 2 system in (4.50) wheredetG(s) in (4.51)
already has�(s) as its denominator. Thus the zero polynomial is given by the numerator of
(4.51), which is1, and we find that the system has no multivariable zeros.

The next two examples consider non-square systems.

Example 4.10 Consider the1� 2 system

G(s) =

�
s� 1

s+ 1

s� 2

s+ 2

�
(4.66)

The normal rank ofG(s) is 1, and since there is no value ofs for which both elements become
zero,G(s) has no zeros.

In general, non-square systems are less likely to have zeros than square systems. For instance,
for a square 2� 2 system to have a zero, there must be a value of s for which the two columns
in G(s) are linearly dependent. On the other hand, for a 2� 3 system to have a zero, we need
all three columns in G(s) to be linearly dependent.

The following is an example of a non-square system which does have a zero.
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Example 4.8 continued. Consider again the2� 3 system in (4.53), and adjust the minors of
order 2 in (4.55) and (4.56) so that their denominators are�(s) = (s+ 1)(s + 2)2(s� 1).
We get

M1(s) =
�(s� 1)2

�(s)
; M2(s) =

2(s� 1)(s+ 2)

�(s)
; M3(s) =

(s� 1)(s+ 2)

�(s)
(4.67)

The common factor for these minors is the zero polynomialz(s) = (s� 1). Thus, the system
has a single RHP-zero located ats = 1.

We also see from the last example that a minimal realization of a MIMO system can have
poles and zeros at the same value of s, provided their directions are different.

4.5.3 Zero directions

In the following let s be a fixed complex scalar and consider G(s) as a complex matrix. For
example, given a state-space realization, we can evaluate G(s) = C(sI � A)�1B +D. Let
G(s) have a zero at s = z. Then G(s) loses rank at s = z, and there will exist non-zero
vectors uz and yz such that

G(z)uz = 0 � yz (4.68)

Here uz is defined as the input zero direction, and yz is defined as the output zero direction.
We usually normalize the direction vectors to have unit length,

uHz uz = 1; yHz yz = 1

From a practical point of view, the output zero direction, yz , is usually of more interest than
uz , because yz gives information about which output (or combination of outputs) may be
difficult to control.

Remark. Taking the Hermitian (conjugate transpose) of (4.68) yields uHz G
H(z) = 0 � yHz .

Premultiplying by uz and postmuliplying by yz noting that uHz uz = 1 and yHz yz = 1 yields
GHyz = 0 � uz , or

yHz G(z) = 0 � uHz (4.69)

In principle, we may obtain uz and yz from an SVD of G(z) = U�V H ; and we have that
uz is the last column in V (corresponding to the zero singular value of G(z)) and yz is the
last column of U . An example was given earlier in (3.64). A better approach numerically, is to
obtain uz from a state-space description using the generalized eigenvalue problem in (4.63).
Similarly, yz may be obtained from the transposed state-space description, see (4.69), using
MT in (4.63).

Example 4.11 Zero and pole directions. Consider the2 � 2 plant in (4.65), which has a
RHP-zero atz = 4 and a LHP-pole atp = �2. We will use an SVD ofG(z) andG(p)
to determine the zero and pole directions (but we stress that this is not a reliable method
numerically). To find the zero direction consider

G(z) = G(4) =
1

6

�
3 4
4:5 6

�
=

1

6

�
0:55 �0:83
0:83 0:55

��
9:01 0
0 0

��
0:6 �0:8
0:8 0:6

�H
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The zero input and output directions are associated with the zero singular value ofG(z) and

we getuz =
��0:80
0:60

�
andyz =

��0:83
0:55

�
. We see fromyz that the zero has a slightly larger

component in the first output. Next, to determine the pole directions consider

G(p+ �) = G(�2 + �) =
1

�2

��3 + � 4
4:5 2(�3 + �)

�
(4.70)

The SVD as�! 0 yields

G(�2 + �) =
1

�2

��0:55 �0:83
0:83 �0:55

��
9:01 0
0 0

��
0:6 �0:8
�0:8 �0:6

�H
The pole input and output directions are associated with the largest singular value,�1 =

9:01=�2 , and we getup =
�
0:60
�0:80

�
andyp =

��0:55
0:83

�
. We note fromyp that the pole has a

slightly larger component in the second output.

Remark. It is important to note that although the locations of the poles and zeros are
independent of input and output scalings, their directions are not. Thus, the inputs and outputs
need to be scaled properly before making any interpretations based on pole and zero directions.

4.6 Some remarks on poles and zeros

1. The zeros resulting from a minimal realization are sometimes called the transmission
zeros. If one does not have a minimal realization, then numerical computations (e.g. using
MATLAB) may yield additional invariant zeros. These invariant zeros plus the transmission
zeros are sometimes called the system zeros. The invariant zeros can be further subdivided
into input and output decoupling zeros. These cancel poles associated with uncontrollable
or unobservable states and hence have limited practical significance. We recommend that a
minimal realization is found before computing the zeros.

2. Rosenbrock (1966; 1970) first defined multivariable zeros using something similar to the
Smith-McMillan form. Poles and zeros are defined in terms of the McMillan form in Zhou
et al. (1996).

3. The presence of zeros implies blocking of certain input signals (MacFarlane and Karcanias,
1976). If z is a zero ofG(s), then there exists an input signal of the form uze

zt1+(t), where
uz is a (complex) vector and 1+(t) is a unit step, and a set of initial conditions (states) xz,
such that y(t) = 0 for t > 0.

4. For square systems we essentially have that the poles and zeros of G(s) are the poles and
zeros of detG(s). However, this crude definition may fail in a few cases. For instance,
when there is a zero and pole in different parts of the system which happen to cancel when
forming detG(s). For example, the system

G(s) =

�
(s+ 2)=(s + 1) 0

0 (s+ 1)=(s + 2)

�
(4.71)

has detG(s) = 1, although the system obviously has poles at �1 and �2 and
(multivariable) zeros at �1 and �2.
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5. G(s) in (4.71) provides a good example for illustrating the importance of directionswhen
discussing poles and zeros of multivariable systems. We note that although the system has
poles and zeros at the same locations (at �1 and �2), their directions are different and
so they do not cancel or otherwise interact with each other. In (4.71) the pole at �1 has
directions up = yp = [ 1 0 ]T , whereas the zero at�1 has directions uz = yz = [ 0 1 ]T .

6. For square systems with a non-singular D-matrix, the number of poles is the same as the
number of zeros, and the zeros of G(s) are equal to the poles G�1(s), and vice versa.
Furthermore, if the inverse of G(p) exists then it follows from the SVD that

G�1(p)yp = 0 � up (4.72)

7. There are no zeros if the outputs contain direct information about all the states; that is, if
from y we can directly obtain x (e.g. C = I and D = 0); see Example 4.13. This probably
explains why zeros were given very little attention in the optimal control theory of the
1960’s which was based on state feedback.

8. Zeros usually appear when there are fewer inputs or outputs than states, or when D 6= 0.
Consider a square m�m plant G(s) = C(sI �A)�1B +D with n states. We then have
for the number of (finite) zeros of G(s) (Maciejowski, 1989, p.55)

D 6= 0 : At most n�m+ rank(D) zeros
D = 0 : At most n� 2m+ rank(CB) zeros
D = 0 and rank(CB) = m : Exactly n�m zeros

(4.73)

9. Moving poles. How are the poles affected by (a) feedback (G(I + KG)�1), (b) series
compensation (GK, feedforward control) and (c) parallel compensation (G + K)? The
answer is that (a) feedback control moves the poles (e.g. G = 1

s+a
; K = �2a moves the

pole from �a to +a), (b) series compensation cannot move the poles, but we may cancel
poles in G by placing zeros in K (e.g. G = 1

s+a
; K = s+a

s+k
), and (c) parallel compensation

cannot move the poles, but we may cancel their effect by subtracting identical poles in K
(e.g. G = 1

s+a
; K = � 1

s+a
).

10. For a strictly proper plant G(s) = C(sI � A)�1B, the open-loop poles are determined
by the characteristic polynomial �ol(s) = det(sI � A). If we apply constant gain
negative feedback u = �K0y, the poles are determined by the corresponding closed-loop
characteristic polynomial �cl(s) = det(sI � A+ BK0C). Thus, unstable plants may be
stabilized by use of feedback control. See also Example 4.12.

11. Moving zeros. Consider next the effect of feedback, series and parallel compensation on
the zeros. (a) With feedback, the zeros of G(I +KG)�1 are the zeros of G plus the poles
of K. This means that the zeros in G, including their output directions yz , are unaffected
by feedback. However, even though yz is fixed it is still possible with feedback control to
move the deteriorating effect of a RHP-zero to a given output channel, provided yz has a
non-zero element for this output. This was illustrated by the example in Section 3.5, and is
discussed in more detail in Section 6.5.1.
(b) Series compensation can counter the effect of zeros in G by placing poles inK to cancel
them, but cancellations are not possible for RHP-zeros due to internal stability (see Section
4.7).
(c) The only way to move zeros is by parallel compensation, y = (G+K)u, which, if y is
a physical output, can only be accomplished by adding an extra input (actuator).
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12. Pinned zeros. A zero is pinned to a subset of the outputs if yz has one or more elements
equal to zero. In most cases, pinned zeros have a scalar origin. Pinned zeros are quite
common in practice, and their effect cannot be moved freely to any output. For example,
the effect of a measurement delay for output y1 cannot be moved to output y2. Similarly, a
zero is pinned to certain inputs if uz has one or more elements equal to zero. An example
is G(s) in (4.71), where the zero at �2 is pinned to input u1 and to output y1.

13. Zeros of non-square systems. The existence of zeros for non-square systems is common
in practice in spite of what is sometimes claimed in the literature. In particular, they
appear if we have a zero pinned to the side of the plant with the fewest number of
channels. As an example consider a plant with three inputs and two outputs G1(s) =�

h11 h12 h13
h21(s� z) h22(s� z) h23(s� z)

�
which has a zero at s = z which is pinned to output

y2, i.e. yz = [ 0 1 ]T . This follows because the second row of G1(z) is equal to zero, so
the rank of G1(z) is 1, which is less than the normal rank of G1(s), which is 2. On the

other hand, G2(s) =

�
h11(s� z) h12 h13
h21(s� z) h22 h23

�
does not have a zero at s = z since G2(z)

has rank 2 which is equal to the normal rank of G2(s) (assuming that the last two columns
of G2(s) have rank 2).

14. The concept of functional controllability, see page 218, is related to zeros. Loosely
speaking, one can say that a system which is functionally uncontrollable has in a certain
output direction “a zero for all values of s” .

The control implications of RHP-zeros and RHP-poles are discussed for SISO systems on
pages 173-187 and for MIMO systems on pages 220-223.

Example 4.12 Effect of feedback on poles and zeros. Consider a SISO negative feedback
system with plantG(s) = z(s)=�(s) and a constant gain controller,K(s) = k. The closed-
loop response from referencer to outputy is

T (s) =
L(s)

1 + L(s)
=

kG(s)

1 + kG(s)
=

kz(s)

�(s) + kz(s)
= k

zcl(s)

�cl(s)
(4.74)

Note the following:

1. The zero polynomial iszcl(s) = z(s), so the zero locations are unchanged by feedback.
2. The pole locations are changed by feedback. For example,

k! 0 ) �cl(s)! �(s) (4.75)

k !1 ) �cl(s)! kz(s) (4.76)

That is, as we increase the feedback gain, the closed-loop poles move from open-loop poles
to the open-loop zeros. RHP-zeros therefore imply high gain instability. These results are
well known from a classical root locus analysis.

Example 4.13 We want to prove thatG(s) = C(sI � A)�1B + D has no zeros ifD = 0
and rank(C) = n, wheren is the number of states.Solution: Consider the polynomial system
matrix P (s) in (4.62). The firstn columns ofP are independent becauseC has rankn.
The lastm columns are independent ofs. Furthermore, the firstn and lastm columns are
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independent of each other, sinceD = 0 andC has full column rank and thus cannot have any
columns equal to zero. In conclusion,P (s) always has rankn +m and there are no zeros.
(We needD = 0 because ifD is non-zero then the firstn columns ofP may depend on the
lastm columns for some value ofs).

Exercise 4.3 (a) Consider a SISO systemG(s) = C(sI � A)�1B + D with just one state,
i.e.A is a scalar. Find the zeros. DoesG(s) have any zeros forD = 0? (b) DoGK andKG
have the same poles an zeros for a SISO system? For a MIMO system?

Exercise 4.4 Determine the poles and zeros of

G(s) =

24 11s3�18s2�70s�50
s(s+10)(s+1)(s�5)

(s+2)
(s+1)(s�5)

5(s+2)
(s+1)(s�5)

5(s+2)
(s+1)(s�5)

35
given that

detG(s) =
50(s4 � s3 � 15s2 � 23s� 10)

s(s+ 1)2(s+ 10)(s� 5)2
=

50(s+ 1)2(s+ 2)(s� 5)

s(s+ 1)2(s+ 10)(s� 5)2

How many poles doesG(s) have?

Exercise 4.5 Giveny(s) = G(s)u(s), withG(s) = 1�s
1+s

, determine a state-space realization
ofG(s) and then find the zeros ofG(s) using the generalized eigenvalue problem. What is the
transfer function fromu(s) to x(s), the single state ofG(s), and what are the zeros of this
transfer function?

Exercise 4.6 Find the zeros for a2� 2 plant with

A =

�
a11 a12
a21 a22

�
; B =

�
1 1
b21 b22

�
; C = I; D = 0

Exercise 4.7 For what values ofc1 does the following plant have RHP-zeros?

A =
�
10 0
0 �1

�
; B = I; C =

�
10 c1
10 0

�
; D =

�
0 0
0 1

�
(4.77)

Exercise 4.8 Consider the plant in (4.77), but assume that both states are measured and used
for feedback control, i.e.ym = x (but the controlled output is stilly = Cx + Du). Can
a RHP-zero inG(s) give problems with stability in the feedback system? Can we achieve
“perfect” control of y in this case? (Answers: No and no).



ELEMENTS OF LINEAR SYSTEM THEORY 139

4.7 Internal stability of feedback systems

To test for closed-loop stability of a feedback system, it is usually enough to check just one
closed-loop transfer function, e.g. S = (I +GK)�1. However, this assumes that there are no
internal RHP pole-zero cancellations between the controller and the plant. The point is best
illustrated by an example.

Example 4.14 Consider the feedback system shown in Figure 4.2 whereG(s) = s�1
s+1

and

K(s) = k
s
s+1
s�1

. In forming the loop transfer functionL = GK we cancel the term(s� 1), a
RHP pole-zero cancellation, to obtain

L = GK =
k

s
; and S = (I + L)�1 =

s

s+ k
(4.78)

S(s) is stable, that is, the transfer function fromdy to y is stable. However, the transfer
function fromdy to u is unstable:

u = �K(I +GK)�1dy = � k(s+ 1)

(s� 1)(s+ k)
dy (4.79)

Consequently, although the system appears to be stable when considering the output signaly,
it is unstable when considering the “internal” signalu, so the system is (internally) unstable.

eee q
6

-?? ----- +

+

+

+
+

-

yu

dydu
G

s�1
s+1

k(s+1)
s(s�1)

K

r

Figure 4.2: Internally unstable system

Remark. In practice, it is not possible to cancel exactly a plant zero or pole because of
modelling errors. In the above example, therefore, L and S will in practice also be unstable.
However, it is important to stress that even in the ideal case with a perfect RHP pole-zero
cancellation, as in the above example, we would still get an internally unstable system. This is
a subtle but important point. In this ideal case the state-space descriptions of L and S contain
an unstable hidden mode corresponding to an unstabilizable or undetectable state.

From the above example, it is clear that to be rigorous we must consider internal stability of
the feedback system, see Definition 4.4. To this effect consider the system in Figure 4.3 where
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Figure 4.3: Block diagram used to check internal stability of feedback system

we inject and measure signals at both locations between the two components, G and K. We
get

u = (I +KG)�1du �K(I +GK)�1dy (4.80)

y = G(I +KG)�1du + (I +GK)�1dy (4.81)

The theorem below follows immediately:

Theorem 4.4 Assume that the componentsG andK contain no unstable hidden modes. Then
the feedback system in Figure 4.3 isinternally stable if and only if all four closed-loop transfer
matrices in (4.80) and (4.81) are stable.

The following can be proved using the above theorem (recall Example 4.14): If there are RHP
pole-zero cancellations betweenG(s) andK(s), i.e. ifGK andKG do not both contain all
the RHP-poles inG andK, then the system in Figure 4.3 is internally unstable.

If we disallow RHP pole-zero cancellations between system components, such as G and K,
then stability of oneclosed-loop transfer function implies stability of the others. This is stated
in the following theorem.

Theorem 4.5 Assume there are no RHP pole-zero cancellations betweenG(s) andK(s),
that is, all RHP-poles inG(s) andK(s) are contained in the minimal realizations ofGK and
KG. Then the feedback system in Figure 4.3 is internally stable if and only if oneof the four
closed-loop transfer function matrices in (4.80) and (4.81) is stable.

Proof: A proof is given by Zhou et al. (1996, p.125). 2

Note how we define pole-zero cancellations in the above theorem. In this way, RHP pole-
zero cancellations resulting from G or K not having full normal rank are also disallowed. For
example, with G(s) = 1=(s � a) and K = 0 we get GK = 0 so the RHP-pole at s = a
has disappeared and there is effectively a RHP pole-zero cancellation. In this case, we get
S(s) = 1 which is stable, but internal stability is clearly not possible.
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Exercise 4.9 Use (A.7) to show that the signal relationship (4.80) and (4.81) also may be
written �

u
y

�
=M(s)

�
du
dy

�
; M(s) =

�
I K
�G I

��1
(4.82)

From this we get that the system in Figure 4.3, is internally stable if and only ifM(s) is stable.

4.7.1 Implications of the internal stability requirement

The requirement of internal stability in a feedback system leads to a number of interesting
results, some of which are investigated below. Note in particular Exercise 4.12, where we
discuss alternative ways of implementing a two degrees-of-freedom controller.

We first prove the following statements which apply when the overall feedback system is
internally stable (Youla et al., 1974):

1. IfG(s) has a RHP-zero atz, thenL = GK,T = GK(I+GK)�1,SG = (I+GK)�1G,
LI = KG andTI = KG(I +KG)�1 will each have a RHP-zero atz.

2. If G(s) has a RHP-pole atp, thenL = GK andLI = KG also have a RHP-poleat p,

whileS = (I+GK)�1; KS = K(I+GK)�1 andSI = (I+KG)�1 have a RHP-zero
at p.

Proof of 1: To achieve internal stability, RHP pole-zero cancellations between system
components, such as G and K, are not allowed. Thus L = GK must have a RHP-zero when
G has a RHP-zero. Now S is stable and thus has no RHP-pole which can cancel the RHP-zero
in L, and so T = LS must have a RHP-zero at z. Similarly, SG = (I +GK)�1G must have
a RHP-zero, etc. 2

Proof of 2:Clearly, L has a RHP-pole at p. Since T is stable, it follows from T = LS that S
must have a RHP-zero which exactly cancels the RHP-pole in L, etc. 2

We notice from this that a RHP pole-zero cancellation between two transfer functions, such
as between L and S = (I + L)�1, does not necessarily imply internal instability. It is only
between separate physical components (e.g. controller, plant) that RHP pole-zero cancellations
are not allowed.

Exercise 4.10 Interpolation constraints. Prove the following interpolation constraints
which apply for SISO feedback systems when the plantG(s) has a RHP-zeroz or a RHP-
polep:

G(z) = 0 ) L(z) = 0 , T (z) = 0; S(z) = 1 (4.83)

G�1(p) = 0 ) L(p) =1 , T (p) = 1; S(p) = 0 (4.84)

Exercise 4.11 Given the complementary sensitivity functions

T1(s) =
2s+ 1

s2 + 0:8s + 1
T2(s) =

�2s+ 1

s2 + 0:8s+ 1

what can you say about possible RHP-poles or RHP-zeros in the corresponding loop transfer
functions,L1(s) andL2(s)?
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Remark. A discussion of the significance of these interpolation constraints is relevant. Recall
that for “perfect control” we want S � 0 and T � 1. We note from (4.83) that a RHP-
zero z puts constraints on S and T which are incompatible with perfect control. On the other
hand, the constraints imposed by the RHP-pole are consistent with what we would like for
perfect control. Thus the presence of RHP-poles mainly impose problems when tight (high
gain) control is not possible. We discuss this in more detail in Chapters 5 and 6.

The following exercise demonstrates another application of the internal stability requirement.
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Figure 4.4: Different forms of two degrees-of-freedom controller
(a) General form
(b) Suitable when Ky(s) has no RHP-zeros
(c) Suitable when Ky(s) is stable (no RHP-poles)
(d) Suitable when Ky(s) = K1(s)K2(s) where K1(s) contains no

RHP-zeros and K2(s) no RHP poles

Exercise 4.12 Internal stability of two degrees-of-freedom control configurations. A two
degrees-of-freedom controller allows one to improve performance by treating disturbance
rejection and command tracking separately (at least to some degree). The general form shown
in Figure 4.4(a) is usually preferred both for implementation and design. However, in some
cases one may want to first design the pure feedback part of the controller, here denotedKy(s),
for disturbance rejection, and then to add a simple precompensator,Kr(s), for command
tracking. This approach is in general not optimal, and may also yield problems when it comes
to implementation, in particular, if the feedback controllerKy(s) contains RHP poles or zeros,
which can happen. This implementation issue is dealt with in this exercise by considering the
three possible schemes in Figure 4.4(b)–4.4(d). In all these schemesKr must clearly be stable.

1) Explain why the configuration in Figure 4.4(b) should not be used ifKy contains RHP-zeros
(Hint: Avoid a RHP-zero betweenr andy).
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2) Explain why the configuration in Figure 4.4(c) should not be used ifKy contains RHP-
poles. This implies that this configuration should not be used if we want integral action inKy

(Hint: Avoid a RHP-zero betweenr andy).

3) Show that for a feedback controllerKy the configuration in Figure 4.4(d) may be used,
provided the RHP-poles (including integrators) ofKy are contained inK1 and the RHP-zeros
in K2. Discuss why one may often setKr = I in this case (to give a fourth possibility).

The requirement of internal stability also dictates that we must exercise care when we use
a separate unstable disturbance model Gd(s). To avoid this problem one should for state-
space computations use a combined model for inputs and disturbances, i.e. write the model
y = Gu+Gdd in the form

y = [G Gd ]

�
u
d

�
where G and Gd share the same states, see (4.14) and (4.17).

4.8 Stabilizing controllers

In this section, we introduce a parameterization, known as the Q-parameterization or Youla-
parameterization (Youla et al., 1976) of all stabilizing controllers for a plant. By all stabilizing
controllers we mean all controllers that yield internal stability of the closed-loop system. We
first consider stable plants, for which the parameterization is easily derived, and then unstable
plants where we make use of the coprime factorization.

4.8.1 Stable plants

The following lemma forms the basis.

Lemma 4.6 For a stable plantG(s) the negative feedback system in Figure 4.3 is internally
stable if and only ifQ = K(I +GK)�1 is stable.

Proof: The four transfer functions in (4.80) and (4.81) are easily shown to be

K(I +GK)�1 = Q (4.85)

(I +GK)�1 = I �GQ (4.86)

(I +KG)�1 = I �QG (4.87)

G(I +KG)�1 = G(I �QG) (4.88)

which are clearly all stable if G and Q are stable. Thus, with G stable the system is internally
stable if and only if Q is stable. 2
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As proposed by Zames (1981), by solving (4.85) with respect to the controller K, we find that
a parameterization of all stabilizing negative feedback controllers for the stable plantG(s) is
given by

K = (I �QG)�1Q = Q(I �GQ)�1 (4.89)

where the “parameter” Q is any stable transfer function matrix.

Remark 1 If only proper controllers are allowed then Q must be proper since the term
(I �QG)�1 is semi-proper.

Remark 2 We have shown that by varying Q freely (but stably) we will always have internal
stability, and thus avoid internal RHP pole-zero cancellations between K and G. This means
that although Q may generate unstable controllers K, there is no danger of getting a RHP-pole
in K that cancels a RHP-zero in G.

The parameterization in (4.89) is identical to the internal model control (IMC)
parameterization (Morari and Zafiriou, 1989) of stabilizing controllers. It may be derived
directly from the IMC structure given in Figure 4.5. The idea behind the IMC-structure is
that the “controller” Q can be designed in an open-loop fashion since the feedback signal only
contains information about the difference between the actual output and the output predicted
from the model.
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Figure 4.5: The internal model control (IMC) structure

Exercise 4.13 Show that the IMC-structure in Figure 4.5 is internally unstable if eitherQ or
G is unstable.

Exercise 4.14 Show that testing internal stability of the IMC-structure is equivalent to testing
for stability of the four closed-loop transfer functions in (4.85)-(4.88).

Exercise 4.15 Given a stable controllerK. What set of plants can be stabilized by this
controller? (Hint: interchange the roles of plant and controller.)
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4.8.2 Unstable plants

For an unstable plant G(s), consider its left coprime factorization

G(s) =M�1
l Nl (4.90)

A parameterization of all stabilizing negative feedback controllers for the plantG(s) is then
(Vidyasagar, 1985)

K(s) = (Vr �QNl)
�1(Ur +QMl) (4.91)

where Vr and Ur satisfy the Bezout identity (4.19) for the right coprime factorization,
and Q(s) is any stable transfer functionsatisfying the technical condition det(Vr(1) �
Q(1)Nl(1)) 6= 0.

Remark 1 With Q = 0 we have K0 = V �1r Ur , so Vr and Ur can alternatively be obtained
from a left coprime factorization of some initial stabilizing controller K0.

Remark 2 For a stable plant, we may write G(s) = Nl(s) corresponding to Ml = I . In this
case K0 = 0 is a stabilizing controller, so we may from (4.19) select Ur = 0 and Vr = I , and
(4.91) yields K = (I �QG)�1Q as found before in (4.89).

Remark 3 We can also formulate the parameterization of all stabilizing controllers in state-
space form, e.g. see page 312 in Zhou et al. (1996) for details.

The Q-parameterization may be very useful for controller synthesis. First, the search over all
stabilizingK ’s (e.g. S = (I + GK)�1 must be stable) is replaced by a search over stable
Q’s. Second, all closed-looptransfer functions (S, T , etc.) will be in the form H1+H2QH3,
so they are affine3 in Q. This further simplifies the optimization problem.

4.9 Stability analysis in the frequency domain

As noted above the stability of a linear system is equivalent to the system having no poles
in the closed right-half plane (RHP). This test may be used for any system, be it open-
loop or closed-loop. In this section we will study the use of frequency-domain techniques
to derive information about closed-loopstability from the open-looptransfer matrix L(j!).
This provides a direct generalization of Nyquist’s stability test for SISO systems.

Note that when we talk about eigenvalues in this section, we refer to the eigenvalues of a
complex matrix, usually of L(j!) = GK(j!), and not those of the state matrix A.

4.9.1 Open and closed-loop characteristic polynomials

We first derive some preliminary results involving the determinant of the return difference
operator I + L. Consider the feedback system shown in Figure 4.6, where L(s) is the loop

3 A function f(x) is affine in x if f(x) = ax+ b, and is linear in x if f(x) = ax.
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Figure 4.6: Negative feedback system

transfer function matrix. Stability of the open-loop system is determined by the poles of L(s).

If L(s) has a state-space realization

�
Aol Bol

Col Dol

�
, that is

L(s) = Col(sI �Aol)
�1Bol +Dol (4.92)

then the poles of L(s) are the roots of the open-loopcharacteristic polynomial

�ol(s) = det(sI �Aol) (4.93)

Assume there are no RHP pole-zero cancellations between G(s) and K(s). Then from
Theorem 4.5 internal stability of the closed-loopsystem is equivalent to the stability of
S(s) = (I + L(s))�1. The state matrix of S(s) is given (assuming L(s) is well-posed,
i.e. Dol + I is invertible) by

Acl = Aol �Bol(I +Dol)
�1Col (4.94)

This equation may be derived by writing down the state-space equations for the transfer
function from r to y in Figure 4.6

_x = Aolx+Bol(r� y) (4.95)

y = Colx+Dol(r � y) (4.96)

and using (4.96) to eliminate y from (4.95). The closed-loop characteristic polynomial is thus
given by

�cl(s) , det(sI �Acl) = det(sI �Aol +Bol(I +Dol)
�1Col) (4.97)

Relationship between characteristic polynomials

The above identities may be used to express the determinant of the return difference operator,
I + L, in terms of �cl(s) and �ol(s). From (4.92) we get

det(I + L(s)) = det(I + Col(sI �Aol)
�1Bol +Dol) (4.98)

Schur’s formula (A.14) then yields (with A11 = I + Dol; A12 = �Col; A22 = sI �
Aol; A21 = Bol)

det(I + L(s)) =
�cl(s)

�ol(s)
� c (4.99)

where c = det(I + Dol) is a constant which is of no significance when evaluating the
poles. Note that �cl(s) and �ol(s) are polynomials in s which have zeros only, whereas
det(I + L(s)) is a transfer function with both poles and zeros.



ELEMENTS OF LINEAR SYSTEM THEORY 147

Example 4.15 We will rederive expression (4.99) for SISO systems. LetL(s) = k z(s)
�ol(s)

The
sensitivity function is given by

S(s) =
1

1 + L(s)
=

�ol(s)

kz(s) + �ol(s)
(4.100)

and the denominator is

d(s) = kz(s) + �ol(s) = �ol(s)(1 +
kz(s)

�ol(s)
) = �ol(s)(1 + L(s)) (4.101)

which is the same as�cl(s) in (4.99) (except for the constantc which is necessary to make the
leading coefficient of�cl(s) equal to1, as required by its definition).

Remark 1 One may be surprised to see from (4.100) that the zero polynomial of S(s) is
equal to the open-loop pole polynomial, �ol(s), but this is indeed correct. On the other hand,
note from (4.74) that the zero polynomial of T (s) = L(s)=(1 + L(s)) is equal to z(s), the
open-loop zero polynomial.

Remark 2 From (4.99), for the case when there are no cancellations between �ol(s) and
�cl(s), we have that the closed-loop poles are solutions to

det(I + L(s)) = 0 (4.102)

4.9.2 MIMO Nyquist stability criteria

We will consider the negative feedback system of Figure 4.6, and assume there are no internal
RHP pole-zero cancellations in the loop transfer function matrix L(s), i.e. L(s) contains no
unstable hidden modes. Expression (4.99) for det(I + L(s)) then enables a straightforward
generalization of Nyquist’s stability condition to multivariable systems.

Theorem 4.7 Generalized (MIMO) Nyquist theorem. LetPol denote the number of open-
loop unstable poles inL(s). The closed-loop system with loop transfer functionL(s) and
negative feedback is stable if and only if the Nyquist plot ofdet(I + L(s))

i) makesPol anti-clockwise encirclements of the origin, and

ii) does not pass through the origin.

The theorem is proved below, but let us first make some important remarks.

Remark 1 By “Nyquist plot of det(I + L(s))” we mean “ the image of det(I + L(s))
as s goes clockwise around the Nyquist D-contour” . The Nyquist D-contour includes the
entire j!-axis (s = j!) and an infinite semi-circle into the right-half plane as illustrated in
Figure 4.7. The D-contour must also avoid locations where L(s) has j!-axis poles by making
small indentations (semi-circles) around these points.

Remark 2 In the following we define for practical reasons unstable polesor RHP-polesas
poles in the openRHP, excluding the j!-axis. In this case the Nyquist D-contour should make
a small semicircular indentation into the RHP at locations where L(s) has j!-axis poles,
thereby avoiding the extra count of encirclements due to j!-axis poles.
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Figure 4.7: Nyquist D-contour for system with no open-loop j!-axis poles

Remark 3 Another practical way of avoiding the indentation is to shift all j!-axis poles into
the LHP, for example, by replacing the integrator 1=s by 1=(s+ �) where � is a small positive
number.

Remark 4 We see that for stability det(I + L(j!)) should make no encirclements of the
origin if L(s) is open-loop stable, and should make Pol anti-clockwise encirclements if L(s)
is unstable. If this condition is not satisfied then the number of closed-loop unstable poles of
(I + L(s))�1 is Pcl = N + Pol, where N is the number of clockwise encirclements of the
origin by the Nyquist plot of det(I + L(j!)).

Remark 5 For any real system, L(s) is proper and so to plot det(I + L(s)) as s traverses
the D-contour we need only consider s = j! along the imaginary axis. This follows since
lims!1 L(s) = Dol is finite, and therefore for s = 1 the Nyquist plot of det(I + L(s))
converges to det(I +Dol) which is on the real axis.

Remark 6 In many cases L(s) contains integrators so for ! = 0 the plot of det(I + L(j!))
may “start” from �j1. A typical plot for positive frequencies is shown in Figure 4.8 for the
system

L = GK; G =
3(�2s + 1)

(5s+ 1)(10s+ 1)
; K = 1:14

12:7s + 1

12:7s
(4.103)

Note that the solid and dashed curves (positive and negative frequencies) need to be connected
as ! approaches 0, so there is also a large (infinite) semi-circle (not shown) corresponding
to the indentation of the D-contour into the RHP at s = 0 (the indentation is to avoid the
integrator in L(s)). To find which way the large semi-circle goes, one can use the rule (based
on conformal mapping arguments) that a right-angled turn in the D-contour will result in a
right-angled turn in the Nyquist plot. It then follows for the example in (4.103) that there will
be an infinite semi-circle into the RHP. There are therefore no encirclements of the origin.
Since there are no open-loop unstable poles (j!-axis poles are excluded in the counting),
Pol = 0, and we conclude that the closed-loop system is stable.

Proof of Theorem 4.7:The proof makes use of the following result from complex variable
theory (Churchill et al., 1974):
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Figure 4.8: Typical Nyquist plot of 1 + detL(j!)

Lemma 4.8 Argument Principle. Consider a (transfer) functionf(s) and letC denote a
closed contour in the complex plane. Assume that:

1. f(s) is analytic alongC, that is,f(s) has no poles onC.
2. f(s) hasZ zeros insideC.
3. f(s) hasP poles insideC.

Then the imagef(s) as the complex arguments traverses the contourC once in a clockwise
direction will makeZ � P clockwise encirclements of the origin.

LetN (A; f(s); C) denote the number of clockwise encirclements of the point A by the image
f(s) as s traverses the contour C clockwise. Then a restatement of Lemma 4.8 is

N (0; f(s); C) = Z � P (4.104)

We now recall (4.99) and apply Lemma 4.8 to the function f(s) = det(I + L(s)) = �cl(s)
�ol(s)

c

selecting C to be the Nyquist D-contour. We assume c = det(I +Dol) 6= 0 since otherwise
the feedback system would be ill-posed. The contour D goes along the j!-axis and around
the entire RHP, but avoids open-loop poles of L(s) on the j!-axis (where �ol(j!) = 0) by
making small semi-circles into the RHP. This is needed to make f(s) analytic along D. We
then have that f(s) has P = Pol poles and Z = Pcl zeros inside D. Here Pcl denotes the
number of unstable closed-loop poles (in the open RHP). (4.104) then gives

N (0; det(I + L(s)); D) = Pcl � Pol (4.105)

Since the system is stable if and only ifPcl = 0, condition i) of Theorem 4.7 follows. However,
we have not yet considered the possibility that f(s) = det(I + L(s)), and hence �cl(s) has
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zeros on the D-contour itself, which will also correspond to a closed-loop unstable pole. To
avoid this, det(I + L(j!)) must not be zero for any value of ! and condition ii) in Theorem
4.7 follows. 2

Example 4.16 SISO stability conditions. Consider an open-loop stable SISO system. In this
case, the Nyquist stability condition states that for closed-loop stability the Nyquist plot of
1 + L(s) should not encircle the origin. This is equivalent to the Nyquist plot ofL(j!) not
encircling the point�1 in the complex plane

4.9.3 Eigenvalue loci

The eigenvalue loci (sometimes called characteristic loci) are defined as the eigenvalues of
the frequency response of the open-loop transfer function, �i(L(j!)). They partly provide a
generalization of the Nyquist plot of L(j!) from SISO to MIMO systems, and with them gain
and phase margins can be defined as in the classical sense. However, these margins are not
too useful as they only indicate stability with respect to a simultaneous parameter changein
all of the loops. Therefore, although characteristic loci were well researched in the 70’s and
greatly influenced the British developments in multivariable control, e.g. see Postlethwaite and
MacFarlane (1979), they will not be considered further in this book.

4.9.4 Small gain theorem

The Small Gain Theorem is a very general result which we will find useful in the book. We
present first a generalized version of it in terms of the spectral radius, �(L(j!)), which at each
frequency is defined as the maximum eigenvalue magnitude

�(L(j!)) , max
i
j�i(L(j!))j (4.106)

Theorem 4.9 Spectral radius stability condition. Consider a system with a stable loop
transfer functionL(s). Then the closed-loop system is stable if

�(L(j!)) < 1 8! (4.107)

Proof: The generalized Nyquist theorem (Theorem 4.7) says that if L(s) is stable, then the
closed-loop system is stable if and only if the Nyquist plot of det(I+L(s)) does not encircle
the origin. To prove condition (4.107) we will prove the “ reverse” , that is, if the system is
unstable and therefore det(I + L(s)) does encircle the origin, then there is an eigenvalue,
�i(L(j!)) which is larger than 1 at some frequency. If det(I+L(s)) does encircle the origin,
then there must exists a gain � 2 (0; 1] and a frequency !0 such that

det(I + �L(j!0)) = 0 (4.108)
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This is easily seen by geometric arguments since det(I + �L(j!0)) = 1 for � = 0. (4.108) is
equivalent to (see eigenvalue properties in Appendix A.2.1)Y

i

�i(I + �L(j!0)) = 0 (4.109)

, 1 + ��i(L(j!
0)) = 0 for some i (4.110)

, �i(L(j!
0)) = �1

�
for some i (4.111)

) j�i(L(j!0))j � 1 for some i (4.112)

, �(L(j!0)) � 1 (4.113)

2

Theorem 4.9 is quite intuitive, as it simply says that if the system gain is less than 1 in
all directions (all eigenvalues) and for all frequencies (8!), then all signal deviations will
eventually die out, and the system is stable.

In general, the spectral radius theorem is conservative because phase information is not
considered. For SISO systems �(L(j!)) = jL(j!)j, and consequently the above stability
condition requires that jL(j!)j < 1 for all frequencies. This is clearly conservative, since
from the Nyquist stability condition for a stable L(s), we need only require jL(j!)j < 1 at
frequencies where the phase of L(j!) is�180Æ�n �360Æ. As an example, let L = k=(s+�).
Since the phase never reaches �180Æ the system is closed-loop stable for any value of k > 0.
However, to satisfy (4.107) we need k � �, which for a small value of � is very conservative
indeed.

Remark. Later we will consider cases where the phase of L is allowed to vary freely, and in
which case Theorem 4.9 is not conservative. Actually, a clever use of the above theorem is the
main idea behind most of the conditions for robust stability and robust performance presented
later in this book.

The small gain theorem below follows directly from Theorem 4.9 if we consider a matrix
norm satisfying kABk � kAk � kBk, since at any frequency we then have �(L) � kLk (see
(A.116)).

Theorem 4.10 Small Gain Theorem. Consider a system with a stable loop transfer function
L(s). Then the closed-loop system is stable if

kL(j!)k < 1 8! (4.114)

wherekLk denotes any matrix norm satisfyingkABk � kAk � kBk.

Remark 1 This result is only a special case of a more general small gain theorem which also
applies to many nonlinear systems (Desoer and Vidyasagar, 1975).

Remark 2 The small gain theorem does not consider phase information, and is therefore
independent of the sign of the feedback.
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Remark 3 Any induced norm can be used, for example, the singular value, ��(L).

Remark 4 The small gain theorem can be extended to include more than one block in
the loop, e.g. L = L1L2. In this case we get from (A.97) that the system is stable if
kL1k � kL2k < 1; 8!.

Remark 5 The small gain theorem is generally more conservative than the spectral radius
condition in Theorem 4.9. Therefore, the arguments on conservatism made following
Theorem 4.9 also apply to Theorem 4.10.

4.10 System norms

-- zw
G

Figure 4.9: System G

Consider the system in Figure 4.9, with a stable transfer function matrix G(s) and impulse
response matrix g(t). To evaluate the performance we ask the question: given information
about the allowed input signals w(t), how large can the outputs z(t) become? To answer this,
we must evaluate the relevant system norm.

We will here evaluate the output signal in terms of the usual 2-norm,

kz(t)k2 =
sX

i

Z 1

�1

jzi(� )j2d� (4.115)

and consider three different choices for the inputs:

1. w(t) is a series of unit impulses.
2. w(t) is any signal satisfying kw(t)k2 = 1.
3. w(t) is any signal satisfying kw(t)k2 = 1, but w(t) = 0 for t � 0, and we only measure

z(t) for t � 0.

The relevant system norms in the three cases are theH2,H1, and Hankel norms, respectively.
TheH2 andH1 norms also have other interpretations as are discussed below. We introduced
theH2 andH1 norms in Section 2.7, where we also discussed the terminology. In Appendix
A.5.7 we present a more detailed interpretation and comparison of these and other norms.
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4.10.1 H2 norm

Consider a strictly proper system G(s), i.e. D = 0 in a state-space realization. For the H2

norm we use the Frobenius norm spatially (for the matrix) and integrate over frequency, i.e.

kG(s)k2 ,
vuuut 1

2�

Z 1

�1

tr(G(j!)HG(j!))| {z }
kG(j!)k2

F
=
P
ij jGij (j!)j

2

d! (4.116)

We see that G(s) must be strictly proper, otherwise theH2 norm is infinite. TheH2 norm can
also be given another interpretation. By Parseval’s theorem, (4.116) is equal to the H2 norm
of the impulse response

kG(s)k2 = kg(t)k2 ,
vuuut
Z 1

0

tr(gT (� )g(� ))| {z }
kg(�)k2

F
=
P
ij jgij(�)j

2

d� (4.117)

Remark 1 Note that G(s) and g(t) are dynamic systemswhile G(j!) and g(�) are constant
matrices(for a given value of ! or � ).

Remark 2 We can change the order of integration and summation in (4.117) to get

kG(s)k2 = kg(t)k2 =
sX

ij

Z 1

0

jgij(� )j2d� (4.118)

where gij(t) is the ij’ th element of the impulse response matrix, g(t). From this we see that
the H2 norm can be interpreted as the 2-norm output resulting from applying unit impulses
Æj(t) to each input, one after another (allowing the output to settle to zero before applying an
impulse to the next input). This is more clearly seen by writing kG(s)k2 =pPm

i=1 kzi(t)k22
where zi(t) is the output vector resulting from applying a unit impulse Æi(t) to the i’ th input.

In summary, we have the following deterministic performance interpretation of theH2 norm:

kG(s)k2 = max
w(t)= unit impulses

kz(t)k2 (4.119)

The H2 norm can also be given a stochastic interpretation (see page 371) in terms of the
quadratic criterion in optimal control (LQG) where we measure the expected root mean square
(rms) value of the output in response to white noise excitation.

For numerical computations of the H2 norm, consider the state-space realization G(s) =
C(sI �A)�1B. By substituting (4.10) into (4.117) we find

kG(s)k2 =
p
tr(BTQB) or kG(s)k2 =

p
tr(CPCT ) (4.120)

where Q and P are the observability and controllability Gramians, respectively, obtained as
solutions to the Lyapunov equations (4.48) and (4.44).
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4.10.2 H1 norm

Consider a proper linear stable system G(s) (i.e. D 6= 0 is allowed). For the H1 norm we
use the singular value (induced 2-norm) spatially (for the matrix) and pick out the peak value
as a function of frequency

kG(s)k1 , max
!

��(G(j!)) (4.121)

In terms of performancewe see from (4.121) that the H1 norm is the peak of the transfer
function “magnitude” , and by introducing weights, the H1 norm can be interpreted as the
magnitude of some closed-loop transfer function relative to a specified upper bound. This
leads to specifying performance in terms of weighted sensitivity, mixed sensitivity, and so on.

However, the H1 norm also has several time domain performance interpretations. First, as
discussed in Section 3.3.5, it is the worst-case steady-state gain for sinusoidal inputs at any
frequency. Furthermore, from Tables A.1 and A.2 in the Appendix we see that theH1 norm
is equal to the induced (worst-case) 2-norm in the time domain:

kG(s)k1 = max
w(t)6=0

kz(t)k2
kw(t)k2 = max

kw(t)k2=1
kz(t)k2 (4.122)

This is a fortunate fact from functional analysis which is proved, for example, in Desoer and
Vidyasagar (1975). In essence, (4.122) arises because the worst input signal w(t) is a sinusoid
with frequency !� and a direction which gives �(G(j!�)) as the maximum gain.

The H1 norm is also equal to the induced power (rms) norm, and also has an interpretation
as an induced norm in terms of the expected values of stochastic signals. All these various
interpretations make theH1 norm useful in engineering applications.

TheH1 norm is usually computed numerically from a state-space realization as the smallest
value of 
 such that the Hamiltonian matrix H has no eigenvalues on the imaginary axis,
where

H =

�
A+BR�1DTC BR�1BT

�CT (I +DR�1DT )C �(A+BR�1DTC)T

�
(4.123)

and R = 
2I�DTD, see Zhou et al. (1996, p.115). This is an iterative procedure, where one
may start with a large value of 
 and reduce it until imaginary eigenvalues for H appear.

4.10.3 Difference between the H2 and H1 norms

To understand the difference between the H2 and H1 norms, note that from (A.126) we can
write the Frobenius norm in terms of singular values. We then have

kG(s)k2 =
s

1

2�

Z 1

�1

X
i

�2i (G(j!))d! (4.124)

From this we see that minimizing the H1 norm corresponds to minimizing the peak of the
largest singular value (“worst direction, worst frequency” ), whereas minimizing theH2 norm
corresponds to minimizing the sum of the square of all the singular values over all frequencies
(“average direction, average frequency”). In summary, we have
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� H1: “push down peak of largest singular value” .
� H2: “push down whole thing” (all singular values over all frequencies).

Example 4.17 We will compute theH1 andH2 norms for the following SISO plant

G(s) =
1

s+ a
(4.125)

TheH2 norm is

kG(s)k2 = (
1

2�

Z 1

�1

jG(j!)j2| {z }
1

!2+a2

d!)
1
2 = (

1

2�a

h
tan�1(

!

a
)
i1
�1

)
1
2 =

r
1

2a
(4.126)

To check Parseval’s theorem we consider the impulse response

g(t) = L�1
�

1

s+ a

�
= e�at; t � 0 (4.127)

and we get

kg(t)k2 =
sZ 1

0

(e�at)2dt =

r
1

2a
(4.128)

as expected. TheH1 norm is

jjG(s)jj1 = max
!
jG(j!)j = max

!

1

(!2 + a2)
1
2

=
1

a
(4.129)

For interest, we also compute the1-norm of the impulse response (which is equal to the
induced1-norm in the time domain):

kg(t)k1 =
Z 1

0

j g(t)|{z}
e�at

jdt = 1

a
(4.130)

In general, it can be shown thatkG(s)k1 � kg(t)k1, and this example illustrates that we
may have equality.

Example 4.18 There exists no general relationship between theH2 andH1 norms. As an
example consider the two systems

f1(s) =
1

�s+ 1
; f2(s) =

�s

s2 + �s+ 1
(4.131)

and let� ! 0. Then we have forf1 that theH1 norm is1 and theH2 norm is infinite. For
f2 theH1 norm is again1, but now theH2 norm is zero.

Why is the H1 norm so popular? In robust control we use the H1 norm mainly because
it is convenient for representing unstructured model uncertainty, and because it satisfies the
multiplicative property (A.97):

kA(s)B(s)k1 � kA(s)k1 � kB(s)k1 (4.132)
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This follows from (4.122) which shows that theH1 norm is an induced norm.

What is wrong with the H2 norm? The H2 norm has a number of good mathematical and
numerical properties, and its minimization has important engineering implications. However,
the H2 norm is not an induced norm and does not satisfy the multiplicative property. This
implies that we cannoy by evaluating theH2 norm of the individual components say anything
avout how their series (cascade) interconnection will behave.

Example 4.19 Consider againG(s) = 1=(s+a) in (4.125), for which we foundkG(s)k2 =p
1=2a. Now consider theH2 norm ofG(s)G(s):

kG(s)G(s)k2 =
vuuut
Z 1

0

j L�1[( 1

s+ a
)2]| {z }

te�at

j2 =
r
1

a

1

2a
=

r
1

a
kG(s)k22

and we find, fora < 1, that

kG(s)G(s)k2 > kG(s)k2 � kG(s)k2 (4.133)

which does not satisfy the multiplicative property (A.97). On the other hand, theH1 norm
does satisfy the multiplicative property, and for the specific example we have equality with
kG(s)G(s)k1 = 1

a2
= kG(s)k1 � kG(s)k1.

4.10.4 Hankel norm

In the following discussion, we aim at developing an understanding of the Hankel norm. The
Hankel norm of a stable system G(s) is obtained when one applies an input w(t) up to t = 0
and measures the output z(t) for t > 0, and selects w(t) to maximize the ratio of the 2-norms
of these two signals:

kG(s)kH , max
w(t)

qR1
0
kz(� )k22d�qR 0

�1
kw(� )k22d�

(4.134)

The Hankel norm is a kind of induced norm from past inputs to future outputs. Its definition is
analogous to trying to pump a swing with limited input energy such that the subsequent length
of jump is maximized as illustrated in Figure 4.10.

It may be shown that the Hankel normis equal to

kG(s)kH =
p
�(PQ) (4.135)

where � is the spectral radius (maximum eigenvalue), P is the controllability Gramian defined
in (4.43) and Q the observability Gramian defined in (4.47). The name “Hankel” is used
because the matrix PQ has the special structure of a Hankel matrix (which has identical
elements along the “wrong-way” diagonals). The corresponding Hankel singular valuesare
the positive square roots of the eigenvalues of PQ,

�i =
p
�i(PQ) (4.136)



Figure 4.10: Pumping a swing: illustration of Hankel norm. The input is applied for t � 0
and the jump starts at t = 0.

The Hankel andH1 norms are closely related and we have (Zhou et al., 1996, p.111)

kG(s)kH � �1 � kG(s)k1 � 2

nX
i=1

�i (4.137)

Thus, the Hankel norm is always smaller than (or equal to) the H1 norm, which is also
reasonable by comparing the definitions in (4.122) and (4.134).

Model reduction. Consider the following problem: given a state-space description G(s) of a
system, find a model Ga(s) with fewer states such that the input-output behaviour (from w to
z) is changed as little as possible. Based on the discussion above it seems reasonable to make
use of the Hankel norm, since the inputs only affect the outputs through the states at t = 0. For
model reduction, we usually start with a realization of G which is internally balanced, that is,
such that Q = P = �, where � is the matrix of Hankel singular values. We may then discard
states (or rather combinations of states corresponding to certain subspaces) corresponding to
the smallest Hankel singular values. The change in H1 norm caused by deleting states in
G(s) is less than twice the sum of the discarded Hankel singular values, i.e.

kG(s)�Ga(s)k1 � 2(�k+1 + �k+2 + � � �) (4.138)

where Ga(s) denotes a truncated or residualized balanced realization with k states; see
Chapter 11. The method of Hankel norm minimization gives a somewhat improved error
bound, where we are guaranteed that kG(s)�Ga(s)k1 is less than the sum of the discarded
Hankel singular values. This and other methods for model reduction are discussed in detail in
Chapter 11 where a number of examples can be found.

Example 4.20 We want to compute analytically the various system norms forG(s) =
1=(s + a) using state-space methods. A state-space realization isA = �a, B = 1,
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C = 1 andD = 0. The controllability GramianP is obtained from the Lyapunov equation
AP + PAT = �BBT , �aP � aP = �1, soP = 1=2a. Similarly, the observability
Gramian isQ = 1=2a. From (4.120) theH2 norm is then

kG(s)k2 =
p
tr(BTQB) =

p
1=2a

The eigenvalues of the Hamiltonian matrixH in (4.123) are

�(H) = �
��a 1=
2

�1 a

�
= �

p
a2 � 1=
2

We find thatH has no imaginary eigenvalues for
 > 1=a, so

kG(s)k1 = 1=a

The Hankel matrix isPQ = 1=4a2 and from (4.135) the Hankel norm is

kG(s)kH =
p
�(PQ) = 1=2a

These results agree with the frequency-domain calculations in Example 4.17.

Exercise 4.16 Let a = 0:5 and � = 0:0001 and check numerically the results in Examples
4.17, 4.18, 4.19 and 4.20 using, for example, the MATLAB�-toolbox commandsh2norm,
hinfnorm, and for the Hankel norm,[sysb,hsig]=sysbal(sys); max(hsig).

4.11 Conclusion

This chapter has covered the following important elements of linear system theory: system
descriptions, state controllability and observability, poles and zeros, stability and stabilization,
and system norms. The topics are standard and the treatment is complete for the purposes of
this book.



5

LIMITATIONS ON

PERFORMANCE IN SISO

SYSTEMS

In this chapter, we discuss the fundamental limitations on performance in SISO systems.
We summarize these limitations in the form of a procedure for input-output controllability
analysis, which is then applied to a series of examples. Input-output controllability of a plant
is the ability to achieve acceptable control performance. Proper scaling of the input, output
and disturbance variables prior to this analysis is critical.

5.1 Input-Output Controllability

In university courses on control, methods for controller design and stability analysis are
usually emphasized. However, in practice the following three questions are often more
important:

I. How well can the plant be controlled? Before starting any controller design one should
first determine how easy the plant actually is to control. Is it a difficult control problem?
Indeed, does there even exist a controller which meets the required performance objectives?

II. What control structure should be used? By this we mean what variables should we
measure and control, which variables should we manipulate, and how are these variables
best paired together? In other textbooks one can find qualitative rules for these problems. For
example, in Seborg et al. (1989) in a chapter called “The art of process control” , the following
rules are given:

1. Control the outputs that are not self-regulating.
2. Control the outputs that have favourable dynamic and static characteristics, i.e. for each

output, there should exist an input which has a significant, direct and rapid effect on it.
3. Select the inputs that have large effects on the outputs.
4. Select the inputs that rapidly affect the controlled variables
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These rules are reasonable, but what is “ self-regulating” , “ large” , “ rapid” and “direct” . A
major objective of this chapter is to quantify these terms.

III. How might the process be changed to improve control? For example, to reduce the
effects of a disturbance one may in process control consider changing the size of a buffer
tank, or in automotive control one might decide to change the properties of a spring. In other
situations, the speed of response of a measurement device might be an important factor in
achieving acceptable control.

The above three questions are each related to the inherent control characteristics of the process
itself. We will introduce the term input-output controllabilityto capture these characteristics
as described in the following definition.

Definition 5.1 (Input-output) controllability is the ability to achieve acceptable control
performance; that is, to keep the outputs (y) within specified bounds or displacements from
their references (r), in spite of unknown but bounded variations, such as disturbances (d) and
plant changes (including uncertainty), using available inputs (u) and available measurements
(ym or dm).

In summary, a plant is controllable if there existsa controller (connecting plant measurements
and plant inputs) that yields acceptable performance for all expected plant variations. Thus,
controllability is independent of the controller, and is a property of the plant (or process)
alone. It can only be affected by changing the plant itself, that is, by (plant) design changes.
These may include:

� changing the apparatus itself, e.g. type, size, etc.
� relocating sensors and actuators
� adding new equipment to dampen disturbances
� adding extra sensors
� adding extra actuators
� changing the control objectives
� changing the configuration of the lower layers of control already in place

Whether or not the last two actions are design modifications is arguable, but at least they
address important issues which are relevant before the controller is designed.

Early work on input-output controllability analysis includes that of Ziegler and Nichols
(1943), Rosenbrock (1970), and Morari (1983) who made use of the concept of “perfect
control” . Important ideas on performance limitations are also found in Bode (1945), Horowitz
(1963), Frank (1968a; 1968b), Kwakernaak and Sivan (1972) Horowitz and Shaked (1975),
Zames (1981), Doyle and Stein (1981), Francis and Zames (1984), Boyd and Desoer (1985),
Kwakernaak (1985), Freudenberg and Looze (1985; 1988), Engell (1988), Morari and Zafiriou
(1989), Boyd and Barratt (1991), and Chen (1995). We also refer the reader to two IFAC
workshops on Interactions between process design and process control(Perkins, 1992;
Zafiriou, 1994).
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5.1.1 Input-output controllability analysis

Input-output controllability analysis is applied to a plant to find out what control performance
can be expected. Another term for input-output controllability analysis is performance
targeting.

Surprisingly, given the plethora of mathematical methods available for control system design,
the methods available for controllability analysis are largely qualitative. In most cases
the “simulation approach” is used i.e. performance is assessed by exhaustive simulations.
However, this requires a specific controller design and specific values of disturbances and
setpoint changes. Consequently, with this approach, one can never know if the result is a
fundamental property of the plant, or if it depends on the specific controller designed, the
disturbances or the setpoints.

A rigorous approach to controllability analysis would be to formulate mathematically the
control objectives, the class of disturbances, the model uncertainty, etc., and then to synthesize
controllers to see whether the objectives can be met. With model uncertainty this involves
designing a �-optimal controller (see Chapter 8). However, in practice such an approach is
difficult and time consuming, especially if there are a large number of candidate measurements
or actuators; see Chapter 10. More desirable, is to have a few simple tools which can be used
to get a rough idea of how easy the plant is to control, i.e. to determine whether or not a plant
is controllable, without performing a detailed controller design. The main objective of this
chapter is to derive such controllability tools based on appropriately scaled models of G(s)
and Gd(s).

An apparent shortcoming of the controllability analysis presented in this book is that all the
tools are linear. This may seem restrictive, but usually it is not. In fact, one of the most
important nonlinearities, namely that associated with input constraints, can be handled quite
well with a linear analysis. Also, to deal with slowly varying changes one may perform a
controllability analysis at several selected operating points. Nonlinear simulations to validate
the linear controllability analysis are of course still recommended. Experience from a large
number of case studies confirms that the linear measures are often very good.

5.1.2 Scaling and performance

The above definition of controllability does not specify the allowed bounds for the
displacements or the expected variations in the disturbance; that is, no definition of the
desired performance is included. Throughout this chapter and the next, when we discuss
controllability, we will assume that the variables and models have been scaled as outlined
in Section 1.4, so that the requirement for acceptable performance is:

� For any reference r(t) between �R and R and any disturbance d(t) between �1 and 1, to
keep the output y(t) within the range r(t)� 1 to r(t) + 1 (at least most of the time), using
an input u(t) within the range �1 to 1.

We will interpret this definition from a frequency-by-frequency sinusoidal point of view, i.e.
d(t) = sin!t, and so on. With e = y � r we then have:
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For any disturbancejd(!)j � 1 and any referencejr(!)j � R(!), the
performance requirement is to keep at each frequency! the control error
je(!)j � 1, using an inputju(!)j � 1.

It is impossible to track very fast reference changes, so we will assume thatR(!) is frequency-
dependent; for simplicity we assume that R(!) is R (a constant) up to the frequency !r and
is 0 above that frequency.

It could also be argued that the magnitude of the sinusoidal disturbances should approach zero
at high frequencies. While this may be true, we really only care about frequencies within the
bandwidth of the system, and in most cases it is reasonable to assume that the plant experiences
sinusoidal disturbances of constant magnitude up to this frequency. Similarly, it might also be
argued that the allowed control error should be frequency dependent. For example, we may
require no steady-state offset, i.e. e should be zero at low frequencies. However, including
frequency variations is not recommended when doing a preliminary analysis (however, one
may take such considerations into account when interpreting the results).

Recall that with r = Rer (see Section 1.4) the control error may be written as

e = y � r = Gu+Gdd�Rer (5.1)

where R is the magnitude of the reference and jer(!)j � 1 and jd(!)j � 1 are unknown
signals. We will use (5.1) to unify our treatment of disturbances and references. Specifically,
we will derive results for disturbances, which can then be applied directly to the references by
replacing Gd by �R, see (5.1) .

5.1.3 Remarks on the term controllability

The above definition of (input-output) controllability is in tune with most engineers’ intuitive
feeling about what the term means, and was also how the term was used historically in the
control literature. For example, Ziegler and Nichols (1943) defined controllability as “the
ability of the process to achieve and maintain the desired equilibrium value”. Unfortunately,
in the 60’s “controllability” became synonymous with the rather narrow concept of “state
controllability” introduced by Kalman, and the term is still used in this restrictive manner
by the system theory community. State controllabilityis the ability to bring a system from a
given initial state to any final state within a finite time. However, as shown in Example 4.5
this gives no regard to the quality of the response between and after these two states and
the required inputs may be excessive. The concept of state controllabilityis important for
realizations and numerical calculations, but as long as we know that all the unstable modes
are both controllable and observable, it usually has little practical significance. For example,
Rosenbrock (1970, p. 177) notes that “most industrial plants are controlled quite satisfactorily
though they are not [state] controllable” . And conversely, there are many systems, like the
tanks in series Example 4.5, which are state controllable, but which are not input-output
controllable. To avoid any confusion between practical controllability and Kalman’s state
controllability, Morari (1983) introduced the term dynamic resilience. However, this term
does not capture the fact that it is related to control, so instead we prefer the term input-
output controllability, or simply controllability when it is clear we are not referring to state
controllability.
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Where are we heading? In this chapter we will discuss a number of results related to
achievable performance. Many of the results can be formulated as upper and lower bounds
on the bandwidth of the system. As noted in Section 2.4.5, there are several definitions of
bandwidth (!B , !c and !BT ) in terms of the transfer functions S, L and T , but since we
are looking for approximate bounds we will not be too concerned with these differences. The
main results are summarized at end of the chapter in terms of eight controllability rules.

5.2 Perfect control and plant inversion

A good way of obtaining insight into the inherent limitations on performance originating in
the plant itself, is to consider the inputs needed to achieve perfect control(Morari, 1983). Let
the plant model be

y = Gu+Gdd (5.2)

“Perfect control” (which, of course, cannot be realized in practice) is achieved when the output
is identically equal to the reference, i.e. y = r. To find the corresponding plant input set y = r
and solve for u in (5.2):

u = G�1r �G�1Gdd (5.3)

(5.3) represents a perfect feedforward controller, assuming d is measurable. When feedback
control u = K(r � y) is used, we have from (2.20) that

u = KSr �KSGdd

or since the complementary sensitivity function is T = GKS,

u = G�1Tr �G�1TGdd (5.4)

We see that at frequencies where feedback is effective and T � I (these arguments also apply
to MIMO systems and this is the reason why we here choose to use matrix notation), the input
generated by feedback in (5.4) is the same as the perfect control input in (5.3). That is, high
gain feedback generates an inverse of G even though the controller K may be very simple.

An important lesson therefore is that perfect control requires the controller to somehow
generate an inverse of G. From this we get that perfect control cannotbe achieved if

� G contains RHP-zeros (since then G�1 is unstable)
� G contains time delay (since then G�1 contains a non-causal prediction)
� G has more poles than zeros (since then G�1 is unrealizable)

In addition, for feedforward control we have that perfect control cannotbe achieved if

� G is uncertain (since then G�1 cannot be obtained exactly)

The last restriction may be overcome by high gain feedback, but we know that we cannot have
high gain feedback at all frequencies.

The required input in (5.3) must not exceed the maximum physically allowed value. Therefore,
perfect control cannotbe achieved if
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� jG�1Gdj is large
� jG�1Rj is large

where “ large” with our scaled models means larger than 1. There are also other situations
which make control difficult such as

� G is unstable
� jGdj is large

If the plant is unstable, the outputs will “ take off” , and eventually hit physical constraints,
unless feedback control is applied to stabilize the system. Similarly, if jGdj is large, then
without control a disturbance will cause the outputs to move far away from their desired
values. So in both cases control is required, and problems occur if this demand for control
is somehow in conflict with the other factors mentioned above which also make control
difficult. We have assumed perfect measurements in the discussion so far, but in practice, noise
and uncertainty associated with the measurements of disturbances and outputs will present
additional problems for feedforward and feedback control, respectively.

5.3 Constraints on S and T

In this section, we present some fundamental algebraic and analytic constraints which apply
to the sensitivity S and complementary sensitivity T .

5.3.1 S plus T is one

From the definitions S = (I + L)�1 and T = L(I + L)�1 we derive

S + T = I (5.5)

(or S+T = 1 for a SISO system). Ideally, we want S small to obtain the benefits of feedback
(small control error for commands and disturbances), and T small to avoid sensitivity to
noise which is one of the disadvantages of feedback. Unfortunately, these requirements are
not simultaneously possible at any frequency as is clear from (5.5). Specifically, (5.5) implies
that at any frequency either jS(j!)j or jT (j!)j must be larger than or equal to 0.5.

5.3.2 The waterbed effects (sensitivity integrals)

A typical sensitivity function is shown by the solid line in Figure 5.1. We note that jSj has a
peak value greater than 1; we will show that this peak is unavoidable in practice. Two formulas
are given, in the form of theorems, which essentially say that if we push the sensitivity down
at some frequencies then it will have to increase at others. The effect is similar to sitting on
a waterbed: pushing it down at one point, which reduces the water level locally will result
in an increased level somewhere else on the bed. In general, a trade-off between sensitivity
reduction and sensitivity increase must be performed whenever:
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Figure 5.1: Plot of typical sensitivity, jSj, with upper bound 1=jwP j

1. L(s) has at least two more poles than zeros (first waterbed formula), or
2. L(s) has a RHP-zero (second waterbed formula).

Pole excess of two: First waterbed formula

To motivate the first waterbed formula consider the open-loop transfer function L(s) =
1

s(s+1)
. As shown in Figure 5.2, there exists a frequency range over which the Nyquist plot of

L(j!) is inside the unit circle centred on the point�1, such that j1+Lj, which is the distance
between L and �1, is less than one, and thus jSj = j1+Lj�1 is greater than one. In practice,
L(s) will have at leasttwo more poles than zeros (at least at sufficiently high frequency, e.g.
due to actuator and measurement dynamics), so there will always exist a frequency range over
which jSj is greater than one. This behaviour may be quantified by the following theorem, of
which the stable case is a classical result due to Bode.

Theorem 5.1 Bode Sensitivity Integral (First waterbed formula). Suppose that the open-
loop transfer functionL(s) is rational and has at least two more poles than zeros (relative
degree of two or more). Suppose also thatL(s) hasNp RHP-poles at locationspi. Then for
closed-loop stability the sensitivity function must satisfy

Z 1

0

ln jS(j!)jdw = � �
NpX
i=1

Re(pi) (5.6)

whereRe(pi) denotes the real part ofpi.

Proof: See Doyle et al. (1992, p. 100) or Zhou et al. (1996). The generalization of Bode’s
criterion to unstable plants is due to Freudenberg and Looze (1985; 1988). 2

For a graphical interpretation of (5.6) note that the magnitude scale is logarithmic whereas the
frequency-scale is linear.
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Figure 5.2: jSj > 1 whenever the Nyquist plot of L is inside the circle

Stable plant. For a stable plant we must have

Z 1

0

ln jS(j!)jdw = 0 (5.7)

and the area of sensitivity reduction (ln jSj negative) must equalthe area of sensitivity increase
(ln jSj positive). In this respect, the benefits and costs of feedback are balanced exactly, as in
the waterbed analogy. From this we expect that an increase in the bandwidth (S smaller than
1 over a larger frequency range) must come at the expense of a larger peak in jSj.

Remark. Although this is true in most practical cases, the effect may not be so striking in
some cases, and it is not strictly implied by (5.6) anyway. This is because the increase in
area may come over an infinite frequency range; imagine a waterbed of infinite size. Consider
jS(j!)j = 1+Æ for! 2 [!1; !2], where Æ is arbitrarily small (small peak), then we can choose
!1 arbitrary large (high bandwidth) simply by selecting the interval [!1; !2] to be sufficiently
large. However, in practice the frequency response ofL has to roll off at high frequencies so !2
is limited, and (5.6) and (5.7) impose real design limitations. This is illustrated in Figure 5.5.

Unstable plant. The presence of unstable poles usually increases the peak of the sensitivity,
as seen from the positive contribution � �PNp

i=1Re(pi) in (5.6). Specifically, the area of
sensitivity increase (jSj > 1) exceedsthat of sensitivity reduction by an amount proportional
to the sum of the distance from the unstable poles to the left-half plane. This is plausible since
we might expect to have to pay a price for stabilizing the system.
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Figure 5.3: Additional phase lag contributed by RHP-zero causes jSj > 1

RHP-zeros: Second waterbed formula

For plants with RHP-zeros the sensitivity function must satisfy an additional integral
relationship, which has stronger implications for the peak of S. Before stating the result,
let us illustrate why the presence of a RHP-zero implies that the peak of S must exceed
one. First, consider the non-minimum phase loop transfer function L(s) = 1

1+s
1�s
1+s

and its
minimum phase counterpart Lm(s) = 1

1+s
. From Figure 5.3 we see that the additional phase

lag contributed by the RHP-zero and the extra pole causes the Nyquist plot to penetrate the
unit circle and hence causes the sensitivity function to be larger than one.

As a further example, consider Figure 5.4 which shows the magnitude of the sensitivity
function for the following loop transfer function

L(s) =
k

s

2� s

2 + s
k = 0:1; 0:5; 1:0; 2:0 (5.8)

The plant has a RHP-zero z = 2, and we see that an increase in the controller gain k,
corresponding to a higher bandwidth, results in a larger peak for S. For k = 2 the closed-
loop system becomes unstable with two poles on the imaginary axis, and the peak of S is
infinite.

Theorem 5.2 Weighted sensitivity integral (Second waterbed formula). Suppose that
L(s) has a single real RHP-zeroz or a complex conjugate pair of zerosz = x� jy, and has
Np RHP-poles,pi. Let �pi denote the complex conjugate ofpi. Then for closed-loop stability
the sensitivity function must satisfy

Z 1

0

ln jS(j!)j � w(z; !)d! = � � ln
NpY
i=1

����pi + z

�pi � z

���� (5.9)
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where if the zero is real

w(z; !) =
2z

z2 + !2
=

2

z

1

1 + (!=z)2
(5.10)

and if the zero pair is complex (z = x� jy)

w(z; !) =
x

x2 + (y � !)2
+

x

x2 + (y + !)2
(5.11)

Proof: See Freudenberg and Looze (1985; 1988). 2

Note that when there is a RHP-pole close to the RHP-zero (pi ! z) then pi+z
pi�z

!1. This is
not surprising as such plants are in practice impossible to stabilize.

The weightw(z; !) effectively “cuts off” the contribution from lnjSj to the sensitivity integral
at frequencies ! > z. Thus, for a stable plant where jSj is reasonably close to 1 at high
frequencies we have approximatelyZ z

0

ln jS(j!)jd! � 0 (5.12)

This is similar to Bode’s sensitivity integral relationship in (5.7), except that the trade-off
between S less than 1 and S larger than 1, is done over a limited frequency range. Thus, in
this case the waterbed is finite, and a large peak for jSj is unavoidable if we try to push down
jSj at low frequencies. This is illustrated by the example in Figure 5.4 and further by the
example in Figure 5.5.

Exercise 5.1 Kalman inequality The Kalman inequality for optimal state feedback, which
also applies to unstable plants, says thatjSj � 1 8!, see Example 9.2. Explain why this
does not conflict with the above sensitivity integrals. (Solution: 1. Optimal control with state
feedback yields a loop transfer function with a pole-zero excess of one so (5.6) does not apply.
2. There are no RHP-zeros when all states are measured so (5.9) does not apply).
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In both cases the areas of lnS below and above 1 (dotted line) are equal, see (5.7), but for L2 this must
happen at frequencies below z = 5, see (5.12), and the peak of S must be higher

The two sensitivity integrals (waterbed formulas) presented above are interesting and provide
valuable insights, but for a quantitative analysis of achievable performance they are less useful.
Fortunately, however, we can derive lower bounds on the weighted sensitivity and weighted
complementary sensitivity, see (5.21), which are more useful for analyzing the effects of RHP-
zeros and RHP-poles. The basis for these bounds is the interpolation constraints which we
discuss first.

5.3.3 Interpolation constraints

If p is a RHP-pole of the loop transfer function L(s) then

T (p) = 1; S(p) = 0 (5.13)

Similarly, if z is a RHP-zero of L(s) then

T (z) = 0; S(z) = 1 (5.14)

These interpolation constraintsfollow from the requirement of internal stability as shown in
(4.83) and (4.84). The conditions clearly restrict the allowable S and T and prove very useful
in the next subsection.

5.3.4 Sensitivity peaks

In Theorem 5.2, we found that a RHP-zero implies that a peak in jSj is inevitable, and that the
peak will increase if we reduce jSj at other frequencies. Here we derive explicit bounds on the
weighted peak of S, which are more useful in applications than the integral relationship. The
bound for S was originally derived by Zames (1981). The results are based on the interpolation
constraints S(z) = 1 and T (p) = 1 given above. In addition, we make use of the maximum
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modulus principle for complex analytic functions (e.g. see maximum principle in Churchill
et al., 1974) which for our purposes can be stated as follows:

Maximum modulus principle. Supposef(s) is stable (i.e.f(s) is analytic in the complex
RHP). Then the maximum value ofjf(s)j for s in the right-half plane is attained on the
region’s boundary, i.e. somewhere along thej!-axis. Hence, we have for a stablef(s)

kf(j!)k1 = max
!
jf(j!)j � jf(s0)j 8s0 2RHP (5.15)

Remark. (5.15) can be understood by imagining a 3-D plot of jf(s)j as a function of the
complex variable s. In such a plot jf(s)j has “peaks” at its poles and “valleys” at its zeros.
Thus, if f(s) has no poles (peaks) in the RHP, and we find that jf(s)j slopes downwards from
the LHP and into the RHP.

To derive the results below we first consider f(s) = wP (s)S(s) (weighted sensitivity), and
then f(s) = wT (s)T (s) (weighted complementary sensitivity). The weights are included
to make the results more general, but if required we may of course select wP (s) = 1 and
wT (s) = 1.

For a plant with a RHP-zero z, applying (5.15) to f(s) = wP (s)S(s) and using the
interpolation constraint S(z) = 1, gives kwPSk1 � jwP (z)S(z)j = jwP (z)j. If the plant
also has RHP-poles then the bound is larger, as given in the following theorem:

Theorem 5.3 Weighted sensitivity peaks. For closed-loop stability the weighted sensitivity
function must satisfy foreach RHP-zeroz

kwPSk1 � jwP (z)j �
NpY
i=1

jz + �pij
jz � pij (5.16)

wherepi denote theNp RHP-poles ofG. If G has no RHP-poles then the bound is simply

kwPSk1 � jwP (z)j (5.17)

Similarly, the weighted complementary sensitivity function must satisfy foreach RHP-polep

kwTTk1 � jwT (p)j �
NzY
j=1

j�zj + pj
jzj � pj (5.18)

wherezj denote theNz RHP-zeros ofG. If G has no RHP-zeros then the bound is simply

kwTTk1 � jwT (p)j (5.19)

These bounds may be generalized to MIMO systems if the directions of poles and zeros are
taken into account, see Chapter 6.
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Proof of (5.16):. The basis for the proof is a “ trick” where we first factor out the RHP-zeros in
S into an all-pass part (with magnitude 1 at all points on the j!-axis). SinceG have RHP-poles
at pi, S(s) has RHP-zeros at pi and we may write

S = SaSm; Sa(s) =
Y
i

s� pi
s+ �pi

(5.20)

Here Sm is the “minimum-phase version” of S with all RHP-zeros mirrored into the LHP.
Sa(s) is all-pass with jSa(j!)j = 1 at all frequencies. (Remark: There is a technical problem
here with j!-axis poles; these must first be moved slightly into the RHP). The weight wP (s)
is as usual assumed to be stable and minimum phase. Consider a RHP-zero located at z,
for which we get from the maximum modulus principle kwPSk1 = max! jwPS(j!)j =
max! jwPSm(j!)j � jwP (z)Sm(z)j, where Sm(z) = S(z)Sa(z)

�1 = 1cdotSa(z) �1 =
c1. This proves (5.16).

The proof of (5.18) is similar; see the proof of the generalized bound (5.44).

2

If we select wP = wT = 1, we derive the following bounds on the peaks of S and T :

kSk1 � max
j

NpY
i=1

jzj + �pij
jzj � pij kTk1 � max

i

NzY
j=1

j�zj + pij
jzj � pij (5.21)

This shows that large peaks for S and T are unavoidable if we have a RHP-zero and RHP-pole
located close to each other. This is illustrated by examples in Section 5.9.

5.4 Ideal ISE optimal control

Another good way of obtaining insight into performance limitations, is to consider an “ ideal”
controller which is integral square error (ISE) optimal. That is, for a given command r(t)
(which is zero for t < 0), the “ ideal” controller is the one that generates the plant input u(t)
(zero for t < 0) which minimizes

ISE =

Z 1

0

jy(t)� r(t)j2dt (5.22)

This controller is “ ideal” in the sense that it may not be realizable in practice because the cost
function includes no penalty on the input u(t). This particular problem is considered in detail
by Frank (1968a; 1968b) and Morari and Zafiriou (1989), and also Qiu and Davison (1993)
who study “cheap” LQR control. Morari and Zafiriou show that for stable plants with RHP-
zeros at zj (real or complex) and a time delay �, the “ ideal” response y = Tr when r(t) is a
unit stepis given by

T (s) =
Y
i

�s+ zj
s+ �zj

e��s (5.23)
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where �zj is the complex conjugate of zj . The optimal ISE-values for three simple stable plants
are:

1: with a delay � : ISE = �
2: with a RHP�zero z : ISE = 2=z
3: with complex RHP�zeros z = x� jy : ISE = 4x=(x2 + y2)

This quantifies nicely the limitations imposed by non-minimum phase behaviour, and the
implications in terms of the achievable bandwidth are considered below.

Remark 1 The result in (5.23) is derived by considering an “open-loop” optimization
problem, and applies to feedforward as well as feedback control.

Remark 2 The ideal T (s) is “all-pass” with jT (j!)j = 1 at all frequencies. In the feedback
case the ideal sensitivity function is jS(j!)j = jL�1(j!)T (j!)j = 1=jL(j!)j at all
frequencies.

Remark 3 If r(t) is not a step then other expressions for T rather than that in (5.23) are
derived; see Morari and Zafiriou (1989) for details.

5.5 Limitations imposed by time delays
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Figure 5.6: “ Ideal” sensitivity function (5.24) for a plant with delay

Consider a plant G(s) that contains a time delay e��s (and no RHP-zeros). Even the “ ideal”
controller cannot remove this delay. For a step change in the reference r(t), we have to wait a
time � until perfect control is achieved. Thus, as shown in (5.23), the “ ideal” complementary
sensitivity function will be T = e��s. The corresponding “ ideal” sensitivity function is

S = 1� T = 1 � e��s (5.24)

The magnitude jSj is plotted in Figure 5.6. At low frequencies, !� < 1, we have 1� e��s �
�s (by a Taylor series expansion of the exponential) and the low-frequency asymptote of
jS(j!)j crosses 1 at a frequency of about 1=� (the exact frequency where jS(j!)j crosses
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1 in Figure 5.6 is �
3
1
�
= 1:05=�). Since in this case jSj = 1=jLj, we also have that 1=�

is equal to the gain crossover frequency for L. In practice, the “ ideal” controller cannot be
realized, so we expect this value to provide an approximate upper bound on wc, namely

!c < 1=� (5.25)

This approximate bound is the same as derived in Section 2.6.2 by considering the limitations
imposed on a loop-shaping design by a time delay �.

5.6 Limitations imposed by RHP-zeros

We will here consider plants with a zero z in the closed right-half plane (and no pure time
delay). In the following we attempt to build up insight into the performance limitations
imposed by RHP-zeros using a number of different results in both the time and frequency
domains.

RHP-zeros typically appear when we have competing effects of slow and fast dynamics. For
example, the plant

G(s) =
1

s+ 1
� 2

s+ 10
=

�s+ 8

(s+ 1)(s+ 10)

has a real RHP-zero at z = 8. We may also have complex zeros, and since these always occur
in complex conjugate pairs we have z = x� jy where x � 0 for RHP-zeros.

5.6.1 Inverse response

For a stable plant with nz real RHP-zeros, it may be proven (Holt and Morari, 1985b;
Rosenbrock, 1970) that the output in response to a step change in the input will cross zero (its
original value) nz times, that is, we have inverse responsebehaviour. A typical response for
the case with one RHP-zero is shown in Figure 2.14, page 38. We see that the output initially
decreases before increasing to its positive steady-state value. With two real RHP-zeros the
output will initially increase, then decrease below its original value, and finally increase to its
positive steady-state value.

5.6.2 High-gain instability

It is well-known from classical root-locus analysis that as the feedback gain increases towards
infinity, the closed-loop poles migrate to the positions of the open-loop zeros; also see (4.76).
Thus, the presence of RHP-zeros implies high-gain instability.

5.6.3 Bandwidth limitation I

For a step change in the reference we have from (5.23) that the “ ideal” ISE-optimal
complementary sensitivity function T is all-pass, and for a single real RHP-zerothe “ ideal”
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sensitivity function is

S = 1� T = 1� �s+ z

z + z
=

2s

s+ z
(5.26)

The Bode magnitude plot of jSj (= 1=jLj) is shown in Figure 5.7(a). The low-frequency
asymptote of jS(j!)j crosses 1 at the frequency z=2. In practice, the “ ideal” ISE optimal
controller cannot be realized, and we derive (for a real RHP-zero) the approximate requirement

!B � !c <
z

2
(5.27)

which we also derived on 45 using loop-shaping arguments. The bound !c < z=2 is also
consistent with the bound !c < 1=� in (5.25) for a time delay. This is seen from the Padé
approximation of a delay, e��s � (1� �

2
s)=(1 + �

2
s), which has a RHP-zero at 2=�.
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Figure 5.7: “ Ideal” sensitivity functions for plants with RHP-zeros

For a complex pair of RHP-zeros, z = x � jy, we get from (5.23) the “ ideal” sensitivity
function

S =
4xs

(s+ x+ jy)(s+ x� jy)
(5.28)
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In Figure 5.7(b) we plot jSj for y=x equal to 0.1, 1, 10 and 50. An analysis of (5.28) and the
figure yields the following approximate bounds

!B � !c <

8<:
jzj=4 Re(z)� Im(z) (y=x� 1)
jzj=2:8 Re(z) = Im(z) (y=x = 1)
jzj Re(z)� Im(z) (y=x� 1)

(5.29)

In summary, RHP-zeros located close to the origin (with jzj small) are bad for control, and it
is worse for them to be located closer to the real axis than the imaginary axis.

Remark. For a complex pair of zeros, z = x � jy, we notice from (5.28) and Figure 5.7
that the resonance peak of S at ! � y becomes increasingly “ thin” as the zero approaches
the imaginary axis (x ! 0). Thus, for a zero located on the imaginary axis (x = 0) the
ideal sensitivity function is zero at all frequencies, except for a single “spike” at ! = y
where it jumps up to 2. The integral under the curve for jS(j!)j2 thus approaches zero, as
does the ideal ISE-value in response to a step in the reference, ISE = 4x=(x2 + y2); see
Section 5.4. This indicates that purely imaginary zeros do not always impose limitations. This
is also confirmed by the flexible structure in Example 2.10, for which the response to an input
disturbance is satisfactory, even though the plant has a pair of imaginary zeros. However,
the flexible structure is a rather special case where the plant also has imaginary poles which
counteracts most of the effect of the imaginary zeros. Therefore, in other cases, the presence of
imaginary zeros may limit achievable performance, for example, in the presence of uncertainty
which makes it difficult to place poles in the controller to counteract the zeros.

5.6.4 Bandwidth limitation II

Another way of deriving a bandwidth limitation is to use the interpolation constraint

S(z) = 1 and consider the bound (5.17) on weighted sensitivity in Theorem 5.3. The idea

is to select a form for the performance weight wP (s), and then to derive a bound for the
“bandwidth parameter” in the weight.

As usual, we select 1=jwP j as an upper bound on the sensitivity function (see Figure 5.1 on
page 165), that is, we require

jS(j!)j < 1=jwP (j!)j 8! , kwPSk1 < 1 (5.30)

However, from (5.17) we have that kwPSk1 � jwP (z)S(z)j = jwP (z)j, so to be able to
satisfy (5.30) we must at leastrequire that the weight satisfies

jwP (z)j < 1 (5.31)

(We say “at least” because condition (5.17) is not an equality). We will now use (5.31) to
gain insight into the limitations imposed by RHP-zeros; first by considering (A) a weight
that requires good performance at low frequencies, and then by (B) considering a weight that
requires good performance at high frequencies.
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A. Performance at low frequencies

Consider the following performance weight

wP (s) =
s=M + !�B
s+ !�BA

(5.32)

From (5.30) it specifies a minimum bandwidth !�B (actually, !�B is the frequency where the
straight-line approximation of the weight crosses 1), a maximum peak of jSj less than M , a
steady-state offset less than A < 1, and at frequencies lower than the bandwidth the sensitivity
is required to improve by at least 20 dB/decade (i.e. jSj has slope 1 or larger on a log-log plot).
If the plant has a RHP-zero at s = z, then from (5.31) we must require

jwP (z)j =
����z=M + !�B
z + !�BA

���� < 1 (5.33)

Real zero. Consider the case when z is real. Then all variables are real and positive and (5.33)
is equivalent to

!�B < z
1 � 1=M

1�A
(5.34)

For example, with A = 0 (no steady-state offset) and M = 2 (kSk1 < 2) we must at least
require !�B < 0:5z, which is consistent with the requirement !B < 0:5z in (5.27).

Imaginary zero. For a RHP-zero on the imaginary axis, z = jjzj, a similar derivation yields
with A = 0:

!�B < jzj
r
1� 1

M2
(5.35)

For example, with M = 2 we require !�B < 0:86jzj, which is very similar to the requirement
!B < jzj given in (5.29). The next two exercises show that the bound on !�B does not depend
much on the slope of the weight at low frequencies, or on how the weight behaves at high
frequencies.

Exercise 5.2 Consider the weight

wP (s) =
s+M!�B

s

s+ fM!�B
s+ fM2!�B

(5.36)

with f > 1. This is the same weight as (5.32) withA = 0 except that it approaches1 at high
frequencies, andf gives the frequency range over which we allow a peak. Plot the weight for
f = 10 andM = 2. Derive an upper bound on!�B for the case withf = 10 andM = 2.

Exercise 5.3 Consider the weightwP (s) = 1
M

+ (
!�B
s
)n which requiresjSj to have a slope

ofn at low frequencies and requires its low-frequency asymptote to cross1 at a frequency!�B .
Note thatn = 1 yields the weight (5.32) withA = 0. Derive an upper bound on!�B when the
plant has a RHP-zero atz. Show that the bound becomes!�B � jzj asn!1.
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Remark. The result for n ! 1 in exercise 5.3 is a bit surprising. It says that the bound
!�B < jzj, is independent of the required slope (n) at low frequency and is also independent of
M . This is surprising since from Bode’s integral relationship (5.6) we expect to pay something
for having the sensitivity smaller at low frequencies, so we would expect !�B to be smaller for
larger n. This illustrates that jwP (z)j � 1 in (5.31) is a necessary condition on the weight (i.e.
it must at least satisfy this condition), but since it is not sufficient it can be optimistic. For the
simple weight (5.32), with n = 1, condition (5.31) is not very optimistic (as is confirmed by
other results), but apparently it is optimistic for n large.

Important. We have so far implicitly assumed that we want tight control at low frequencies,
and we have shown that the presence of a RHP-zero then imposes an upper bound on the
achievable bandwidth. However, if we instead want tight control at high frequencies, then a
RHP-zero imposes a lower bound on the bandwidth. This is discussed next.

B. Performance at high frequencies

Here, we consider a case where we want tight control at high frequencies, by use of the
performance weight

wP (s) =
1

M
+

s

!�B
(5.37)

This requires tight control (jS(j!)j < 1) at frequencies higher than !�B , whereas the only
requirement at low frequencies is that the peak of jSj is less than M . Admittedly, the weight
in (5.37) is unrealistic in that it requires S ! 0 at high frequencies, but this does not affect
the result as is confirmed in Exercise 5.5 where a more realistic weight is studied. In any case,
to satisfy kwPSk1 < 1 we must at least require that the weight satisfies jwP (z)j < 1, and
with a real RHP-zerowe derive for the weight in (5.37)

!�B > z
1

1� 1=M
(5.38)

For example, with M = 2 the requirement is !�B > 2z, so we can only achieve tight control
at frequencies beyondthe frequency of the RHP-zero.

Exercise 5.4 Draw an asymptotic magnitude Bode-plot ofwP (s) in (5.37).

Exercise 5.5 Consider the case of a plant with a RHP-zero where we want to limit the
sensitivity function over some frequency range. To this effect let

wP (s) =
(1000s=!�B + 1

M
)(s=(M!�B) + 1)

(10s=!�B + 1)(100s=!�B + 1)
(5.39)

This weight is equal to1=M at low and high frequencies, has a maximum value of about10=M
at intermediate frequencies, and the asymptote crosses1 at frequencies!�B=1000 and!�B .
Thus we require “tight” control,jSj < 1, in the frequency range between!�BL = !�B=1000
and!�BH = !�B .
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a) Make a sketch of1=jwP j (which provides an upper bound onjSj).
b) Show that the RHP-zero cannot be in the frequency range where we require tight control,
and that we can achieve tight control either at frequencies below aboutz=2 (the usual case) or
above about2z. To see this selectM = 2 and evaluatewP (z) for various values of!�B = kz,
e.g.k = :1; :5; 1; 10; 100; 1000; 2000; 10000. (You will find thatwP (z) = 0:95 (� 1) for
k = 0:5 (corresponding to the requirement!�BH < z=2) and fork = 2000 (corresponding
to the requirement!�BL > 2z))

5.6.5 RHP-zero: Limitations at low or high frequencies

Based on (5.34) and (5.38) we see that a RHP-zero will pose control limitations eitherat low
or high frequencies. In most cases we desire tight control at low frequencies, and with a RHP-
zero this may be achieved at frequencies lower than about z=2. However, if we do not need
tight control at low frequencies, then we may usually reverse the sign of the controller gain,
and instead achieve tight control at frequencies higher than about 2z.

Remark. The reversal of the sign in the controller is probably best understood by considering
the inverse response behaviour of a plant with a RHP-zero. Normally, we want tight control at
low frequencies, and the sign of the controller is based on the steady-state gain of the plant.
However, if we instead want tight control at high frequencies (and have no requirements at
low frequencies) then we base the controller design on the plants initial response where the
gain is reversed because of the inverse response.
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Example 5.1 To illustrate this, consider in Figures 5.8 and 5.9 the use of negative and positive
feedback for the plant

G(s) =
�s+ z

s+ z
; z = 1 (5.40)
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Note thatG(s) � 1 at low frequencies (! � z), whereasG(s) � �1 at high frequencies
(! � z). The negative plant gain in the latter case explains why we then use positive feedback
in order to achieve tight control at high frequencies.

More precisely, we show in the figures the sensitivity function and the time response to a step
change in the reference using

1. PI-control with negative feedback (Figure 5.8)
2. Derivative control with positive feedback (Figure 5.9).

Note that the time scales for the simulations are different. For positive feedback the step change
in reference only has a duration of0:1 s. This is because we cannot track references over
longer times than this since the RHP-zero then causes the output to start drifting away (as can
be seen in Figure 5.9(b)).
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An important case, where we can only achieve tight control at high frequencies, is
characterized by plants with a zero at the origin, for example G(s) = s=(5s + 1). In this
case, good transient control is possible, but the control has no effect at steady-state. The only
way to achieve tight control at low frequencies is to use an additional actuator (input) as is
often done in practice.

Short-term control. In this book, we generally assume that the system behaviour as t ! 1
is important. However, this is not true in some cases because the system may only be under
closed-loop control for a finite time tf . In which case, the presence of a “slow” RHP-zero
(with jzj small), may not be significant provided tf � 1=jzj. For example, in Figure 5.9(b) if
the total control time is tf = 0:01 [s], then the RHP-zero at z = 1 [rad/s] is insignificant.

Remark. As an example of short-term control, consider treating a patient with some
medication. Let u be the dosage of medication and y the condition of the patient. With most
medications we find that in the short-term the treatment has a positive effect, whereas in the
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long-term the treatment has a negative effect (due to side effects which may eventually lead to
death). However, this inverse-response behaviour (characteristic of a plant with a RHP-zero)
may be largely neglected during limited treatment, although one may find that the dosage has
to be increased during the treatment to have the desired effect. Interestingly, the last point
is illustrated by the upper left curve in Figure 5.10, which shows the input u(t) using an
internally unstable controller which over some finite time may eliminate the effect of the
RHP-zero.

Exercise 5.6 (a) Plot the plant inputu(t) corresponding to Figure 5.9 and discuss in light of
the above remark.

(b) In the simulations in Figures 5.8 and 5.9, we use simple PI- and derivative controllers.
As an alternative use theS=KS method in (3.59) to synthesizeH1 controllers for both the
negative and positive feedback cases. Use performance weights in the form given by (5.32) and
(5.37), respectively. With!�B = 1000 andM = 2 in (5.37) andwu = 1 (for the weight on
KS) you will find that the time response is quite similar to that in Figure 5.9 withKc = 0:5.
Try to improve the response, for example, by letting the weight have a steeper slope at the
crossover near the RHP-zero.

5.6.6 LHP-zeros

Zeros in the left-half plane, usually corresponding to “overshoots” in the time response, do not
present a fundamentallimitation on control, but in practicea LHP-zero located close to the
origin may cause problems. First, one may encounter problems with input constraints at low
frequencies (because the steady-state gain is small). Second, a simple controller can probably
not then be used. For example, a simple PID controller as in (5.66) contains no adjustable
poles that can be used to counteract the effect of a LHP-zero.

For uncertain plants, zeros can cross from the LHP into the RHP both through zero (which
is worst if we want tight control at low frequencies) or through infinity. We discuss this in
Chapter 7.

5.7 RHP-zeros amd non-causal controllers

Perfect control can actually be achieved for a plant with a time delay or RHP-zero if we use a
non-causal controller1, i.e. a controller which uses information about the future. This may be
relevant for certain servo problems, e.g. in robotics and for product changeovers in chemical
plants. A brief discussion is given here, but non-causal controllers are not considered in the
rest of the book since our focus is on feedback control.

Time delay. For a delay e��s we may achieve perfect control with a non-causal feedforward
controller Kr = e�s (a prediction). Such a controller may be used if we have knowledge about
future changes in r(t) or d(t).

1 A system is causal if its outputs depend only on past inputs, and non-causal if its outputs also depend
on future inputs.
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For example, if we know that we should be at work at 8:00, and we know that it takes 30 min
to get to work, then we make a prediction and leave home at 7:30 (We don’t wait until 8:00
when we suddenly are told, by the appearance of a step change in our reference position, that
we should be at work).

RHP-zero. Future knowledge can also be used to give perfect control in the presence of a
RHP-zero. As an example, consider a plant with a real RHP-zero given by

G(s) =
�s+ z

s+ z
; z > 0 (5.41)

and a desired reference change

r(t) =

�
0 t < 0
1 t � 0

With a feedforward controller Kr the response from r to y is y = G(s)Kr(s)r. In theory
we may achieve perfect control (y(t)=r(t)) with the following two controllers (e.g. Eaton and
Rawlings (1992)).
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1. A causal unstable feedback controller

Kr(s) =
s+ z

�s+ z

For a step in r from 0 to 1 at t = 0, this controller generates the following input signal

u(t) =

�
0 t < 0
1� 2ezt t � 0
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However, since the controller cancels the RHP-zero in the plant it yields an internally
unstable system.

2. A stable non-causal (feedforward) controllerthat assumes that the future setpoint change
is known. This controller cannot be represented in the usual transfer function form, but it
will generate the following input

u(t) =

�
2ezt t < 0
1 t � 0

These input signals u(t) and the corresponding outputs y(t) are shown in Figure 5.10 for
a plant with z = 1. Note that for perfect control the non-causal controller needs to start
changing the input at t = �1, but for practical reasons we started the simulation at t = �5
where u(t) = 2e�5 = 0:013.

The first option, the unstable controller, is not acceptable as it yields an internally unstable
system in which u(t) goes to infinity as t increases (an exception may be if we want to control
the system only over a limited time tf ; see page 179).

The second option, the non-causal controller, is usually not possible because future setpoint
changes are unknown. However, if we have such information, it is certainly beneficial for
plants with RHP-zeros.

3. In most cases we have to accept the poor performance resulting from the RHP-zero and
use a stable causal controller. The ideal causal feedforward controller in terms of
minimizing the ISE (H2 norm) of y(t) for the plant in (5.41) is to use Kr = 1, and
the corresponding plant input and output responses are shown in the lower plots in
Figure 5.10.

5.8 Limitations imposed by unstable (RHP) poles

We here consider the limitations imposed when the plant has a unstable (RHP) pole at s = p.
For example, the plant G(s) = 1=(s� 3) has a RHP-pole with p = 3.

For unstable plants we needfeedback for stabilization. More precicely, the presence of an

ustable pole p requires for internal stability T (p) = 1 , which again imposes the following

two limitations:

RHP-pole Limitation 1 (input usage). Most importantly, we need to manipulate the plant
inputs u, and the transfer function KS from plant outputs to plant inputs must always
satisfy (Havre and Skogestad, 1997)(Havre and Skogestad, 2001)

kKSk1 � jGs(p)
�1j (5.42)

where Gs is the “stable version” of G with its RHP-poles mirrored into the LHP,

G(s) = Gs(s) �
Y
i

s+ �pi
s� pi
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For example, for the plant G(s) = 1=(s � 3) we have Gs = 1=(s + 3) and the lower
bound on the peak of KS is jGs(p)�1j = 3 + 3 = 6.
Since u = �KS(Gdd+ n), the bounds (5.42) and (5.43) imply that stabilization may
be impossible in presence of disturbances d or measurement noise n, since the required
inputs u may be outside the saturation limit. When the inputs saturate, the system is
practically open-loop and stabilization is impossible; see Section 5.11.3 page 191.

Example 5.2 Consider a plant withG(s) = 5=(10s+ 1)(s� 3) andGd = 0:5=(s �
3)(0:2s + 1). Using (5.44) we may easily generalize (5.42),

kKSGdk1 � jGs(p)
�1Gd;ms(p)j (5.43)

This gives

kKSGdk1 � 10s+ 1)(s+ 3)

5

0:5

(s+ 3)(0:2s+ 1)
js=3=

31 � 0:5
5 � 1:6 = 1:94

RHP-pole Limitation 2 (bandwidth). We need to react sufficiently fast, and for a real RHP-
pole p we must require that the closed-loop bandwidth is larger than 2p, approximately.
We derive thos from the bound kwTTk1 � jwT (p)j in (5.19). Thus, whereas the
presence of RHP-zeros usually places an upper bound on the allowed bandwidth, the
presence of RHP-poles generally imposes a lower bound.

In summary, whereas RHP-zeros imposes limitation on the plant outputs, RHP-poles mainly
impose limitations on the plant inputs.

Proof of Limitation 1 (input usage):We will first prove the following generalized bound (Havre
and Skogestad, 1997)(Havre and Skogestad, 2001)

Theorem 5.4 Let V T be a (weighted) closed-loop transfer function whereT is
complementary sensitivity. Then for closed-loop stability we must require for each RHP-pole
p in G,

kV Tk1 � jVms(p)j �
NzY
j=1

j�zj + pj
jzj � pj (5.44)

wherezj denote the (possible)Nz RHP-zeros ofG, and whereVms is the “minimum-phase
and stable version” ofV with its (possible) RHP-poles and RHP-zeros mirrored into the LHP.
(If G has no RHP-zeros the the bound is simplykV Tk1 � jVms(p)j.) The bound (5.44) is
tight (equality) for the case whenG has only one RHP-pole.

G has RHP-zeros at zj , and therefore T must have RHP-zeros at zj , so write T = TaTm
with Ta(s) =

Q
j

s�zj
s+�zj

. Next, note that kV Tk1 = kVmsTmsk1 = kVmsTmk1.

Consider a RHP-pole located at p, and use the maximum modulus principle, kV Tk1 �
jVms(p)Tm(p)j = jVms(p)T (p)Ta(p)

�1j == jVms(p) � 1 �Qj

p+�zj
p�zj

j which proves (5.44).

To prove (5.42) we make use of the identity KS = G�1GKS = G�1T . Use of (5.44) with
V = G�1 then gives

kKSk1 � jGms(p)
�1j �

Y
j

j�zj + pj
jzj � pj = jGs(p)

�1j
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which proves (5.42). Here the latter equality follows since

Gs(s) = Gms(s) �
Y
j

s� zj
s+ �zj

2

Proof of Limitation 2 (bandwidth):
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We start by selecting a weight wT (s) such that 1=jwT j is a reasonable upper bound on the
complementary sensitivity function.

jT (j!)j < 1=jwT (j!)j 8! , kwTTk1 < 1

To satisfy this we must, since from (5.19) kwTTk1 � jwT (p)j, at leastrequire that the

weight satisfies jwT (p)j < 1 Now consider the following weight

wT (s) =
s

!�BT
+

1

MT
(5.45)

which requires T (like jLj) to have a roll-off rate of at least 1 at high frequencies (which must
be satisfied for any real system), that jT j is less than MT at low frequencies, and that jT j drops
below 1 at frequency !�BT . The requirements on jT j are shown graphically in Figure 5.11.

For a real RHP-pole at s = p condition wT (p) < 1 yields

Real RHP� pole: !�BT > p
MT

MT � 1
(5.46)

With MT = 2 (reasonable robustness) this gives !�BT > 2p which proves the above
bandwidth requirement. Thus, the presence of the RHP-pole puts a lower limit on the
bandwidth in terms of T ; that is, we cannot let the system roll-off at frequencies lower than
about 2p, and we have approximately

!c > 2p (5.47)
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For a purely imaginary polelocated at p = jjpj a similar analysis of the weight (5.45) with
MT = 2, shows that we must at least require !�BT > 1:15jpj.

2

Exercise 5.7 Derive the bound!�BT > 1:15jpj for a purely complex pole.

5.9 Combined unstable (RHP) poles and zeros

Stabilization. In theory, any linear plant may be stabilized irrespective of the location of
its RHP-poles and RHP-zeros, provided the plant does not contain unstable hidden modes.
However, this may require an unstable controller, and for practical purposes it is sometimes
desirable that the controller is stable. If such a controller exists the plant is said to be strongly
stabilizable. It has been proved by Youla et al. (1974) that a strictly proper SISO plant is
strongly stabilizable by a proper controller if and only if every real RHP-zero in G(s) lies to
the left of an even number (including zero) of real RHP-poles in G(s). Note that the presence
of any complex RHP-poles or complex RHP-zeros does not affect this result. We then have:

� A strictly proper plant with a single real RHP-zeroz and a single real RHP-polep, e.g.
G(s) = s�z

(s�p)(�s+1)
, can be stabilized by a stable proper controller if and only ifz > p.

Note the requirement that G(s) is strictly proper. For example, the plant G(s) = (s �
1)=(s � 2) with z = 1 < p = 2 is stabilized with a stable constant gain controller with
�2 < K < �1, but this plant is not strictly proper.

In summary, the presence of RHP-zeros (or time delays) make stabilzation more difficult. In
words, “ the system may go unstable before we have time to react” . For a plant with a single
RHP-pole and RHP-zero, the strong stabilizability requirement is z > p.

However, in order to achieve acceptable performance and robustness, the RHP-zero must be
located a bit further away from the RHP-pole. Above we derived for a real RHP-zero the
approximate bound !B < z=2 (with MS = 2), and for a real RHP-pole the approximate
bound !c > 2p (with MT = 2). This indicates that for a system with a single real RHP-pole
and a RHP-zero we must approximately require z > 4p in order to get acceptable performance
and robustness. The following example for a plant with z = 4p shows that we can indeed get
acceptable performance when the RHP-pole and zero are located this close.

Example 5.3 H1 design for plant with RHP-pole and RHP-zero. We want to design an
H1 controller for a plant withz = 4 andp = 1,

G(s) =
s� 4

(s� 1)(0:1s + 1)
(5.48)

We use theS=KS design method as in Example 2.11 with input weightWu = 1 and
performance weight (5.32) withA=0, M = 2, !�B = 1. The software gives a stable and
minimum phase controller with anH1 norm of 1:89. The corresponding sensitivity and
complementary sensitivity functions, and the time response to a unit step reference change
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Figure 5.12:H1 design for a plant with RHP-zero at z = 4 and RHP-pole at p = 1

are shown in Figure 5.12. The time response is good, taking into account the closeness of the
RHP-pole and zero.

Sensitivity peaks. In Theorem 5.3 we derived lower bounds on the weighted sensitivity and
complementary sensitivity. For example, for a plant with a single real RHP-pole p and a single
real RHP-zero z, we always have

kSk1 � c; kTk1 � c; c =
jz + pj
jz � pj (5.49)

Example 5.4 Consider the plant in (5.48). Withz = 4p, (5.49) givesc = 5=3 = 1:67 and it
follows that for any controller we must at least havekSk1 > 1:67 andkTk1 > 1:67. The
actual peak values for the aboveS=KS-design are2:40 and2:43, respectively.

Example 5.5 Balancing a rod. This example is taken from Doyle et al. (1992) Consider the
problem of balancing a rod in the palm of one’s hand. The objective is to keep the rod upright,
by small hand movements, based on observing the rod either at its far end (outputy1) or the
end in one’s hand (outputy2). The linearized transfer functions for the two cases are

G1(s) =
�g

s2 (Mls2 � (M +m)g)
; G2(s) =

ls2 � g

s2 (Mls2 � (M +m)g)

Here l [m] is the length of the rod andm [kg] its mass.M [kg] is the mass of your hand and
g [� 10 m/s2] is the acceleration due to gravity. In both cases, the plant has three unstable

poles: two at the origin and one atp =
q

(M+m)g
Ml

. A short rod with a large mass gives a large
value ofp, and this in turn means that the system is more difficult to stabilize. For example,
withM = m andl = 1 [m] we getp = 4:5 [rad/s] and from (5.47) we desire a bandwidth of
about9 [rad/s] (corresponding to a response time of about0:1 [s]).
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If one is measuringy1 (looking at the far end of the rod) then achieving this bandwidth is the
main requirement. However, if one tries to balance the rod by looking at one’s hand (y2) there
is also a RHP-zero atz =

p
g
l
. If the mass of the rod is small (m=M is small), thenp is close

to z and stabilization is in practice impossible with any controller. However, even with a large
mass, stabilization is very difficult becausep > z whereas we would normally prefer to have
the RHP-zero far from the origin and the RHP-pole close to the origin (z > p). So although
in theory the rod may be stabilized by looking at one’s hand (G2), it seems doubtful that this
is possible for a human. To quantify these problems use (5.49). We get

c =
jz + pj
jz � pj =

j1 + 
j
j1� 
j ; 
 =

r
M +m

M

Consider a light weight rod withm=M = 0:1, for which we expect stabilization to be difficult.
We obtainc = 42, and we must havekSk1 � 42 and kTk1 � 42, so poor control
performance is inevitable if we try to balance the rod by looking at our hand (y2).

The difference between the two cases, measuringy1 and measuringy2, highlights the
importance of sensor location on the achievable performance of control.

5.10 Performance requirements imposed by
disturbances and commands

The question we here want to answer is: how fast must the control system be in order to
reject disturbances and track commands of a given magnitude? We find that some plants have
better “built-in” disturbance rejection capabilities than others. This may be analyzed directly
by considering the appropriately scaled disturbance model, Gd(s). Similarly, for tracking we
may consider the magnitude R of the reference change.

Disturbance rejection. Consider a single disturbance d and assume that the reference is
constant, i.e. r = 0. Without control the steady-state sinusoidal response is e(!) =
Gd(j!)d(!); recall (2.9). If the variables have been scaled as outlined in Section 1.4 then
the worst-case disturbance at any frequency is d(t) = sin!t, i.e. jd(!)j = 1, and the control
objective is that at each frequency je(t)j < 1, i.e. je(!)j < 1. From this we can immediately
conclude that

� no control is needed ifjGd(j!)j < 1 at all frequencies (in which case the plant is said to
be “self-regulated”).

If jGd(j!)j > 1 at some frequency, then we need control (feedforward or feedback). In the
following, we consider feedback control, in which case we have

e(s) = S(s)Gd(s)d(s) (5.50)

The performance requirement je(!)j < 1 for any jd(!)j � 1 at any frequency, is satisfied if
and only if

jSGd(j!)j < 1 8! , kSGdk1 < 1 (5.51)
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, jS(j!)j < 1=jGd(j!)j 8! (5.52)

A typical plot of 1=jGd(j!)j is shown in Figure 5.13 (dotted line). If the plant has a RHP-zero
at s = z, which fixes S(z) = 1, then using (5.17) we have the following necessary condition
for satisfying kSGdk1 < 1:

jGd(z)j < 1 (5.53)

From (5.52) we also get that the frequency !d where jGdj crosses 1 from above yields a lower
bound on the bandwidth:

!B > !d where !d is de�ned by jGd(j!d)j = 1 (5.54)

A plant with a small jGdj or a small !d is preferable since the need for feedback control is then
less, or alternatively, given a feedback controller (which fixes S) the effect of disturbances on
the output is less.
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Figure 5.13: Typical performance requirement on S imposed by disturbance rejection

Example 5.6 Assume that the disturbance model isGd(s) = kd=(1 + �ds) wherekd = 10
and�d = 100 [seconds]. Scaling has been applied toGd so this means that without feedback,
the effect of disturbances on the outputs at low frequencies iskd = 10 times larger than we
desire. Thus feedback is required, and sincejGdj crosses1 at a frequency!d � kd=�d = 0:1
rad/s, the minimum bandwidth requirement for disturbance rejection is!B > 0:1 [rad/s].

Remark. Gd is of high order. The actual bandwidth requirement imposed by disturbances
may be higher than !d if jGd(j!)j drops with a slope steeper than �1 (on a log-log plot) just
before the frequency !d. The reason for this is that we must, in addition to satisfying (5.52),
also ensure stability with reasonable margins; so as discussed in Section 2.6.2 we cannot let
the slope of jL(j!)j around crossover be much larger than �1.

An example, in which Gd(s) is of high order, is given later in Section 5.16.3 for a
neutralization process. There we actually overcome the limitation on the slope of jL(j!)j
around crossover by using local feedback loops in series. We find that, although each loop has
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a slope�1 around crossover, the overall loop transfer function L(s) = L1(s)L2(s) � � �Ln(s)
has a slope of about �n; see the example for more details. This is a case where stability is
determined by each I+Li separately, but the benefits of feedback are determined by 1+

Q
i Li

(also see Horowitz (1991, p. 284) who refers to lectures by Bode).

Command tracking. Assume there are no disturbances, i.e. d = 0, and consider a reference
change r(t) = Rer(t) = R sin(!t). Since e = Gu + Gdd � Rer, the same performance
requirement as found for disturbances, see (5.51), applies to command tracking with Gd
replaced by �R. Thus for acceptable control (je(!)j < 1) we must have

jS(j!)Rj < 1 8! � !r (5.55)

where !r is the frequency up to which performance tracking is required.

Remark. The bandwidth requirement imposed by (5.55) depends on on how sharply jS(j!)j
increases in the frequency range from !r (where jSj < 1=R) to !B (where jSj � 1). If jSj
increases with a slope of 1 then the approximate bandwidth requirement becomes !B > R!r,
and if jSj increases with a slope of 2 it becomes !B >

p
R!r.

5.11 Limitations imposed by input constraints

In all physical systems there are limits to the changes that can be made to the manipulated
variables. In this section, we assume that the model has been scaled as outlined in Section 1.4,
so that at any time we must have ju(t)j � 1. The question we want to answer is: can the
expected disturbances be rejected and can we track the reference changes while maintaining
ju(t)j � 1? We will consider separately the two cases of perfect control (e = 0) and
acceptable control (jej < 1). These results apply to both feedback and feedforward control.

At the end of the section we consider the additional problems encountered for unstable plants
(where feedback control is required).

Remark 1 We use a frequency-by-frequency analysis and assume that at each frequency
jd(!)j � 1 (or jer(!)j � 1). The worst-case disturbance at each frequency is jd(!)j = 1
and the worst-case reference is r = Rer with jer(!)j = 1.

Remark 2 Note that rate limitations, jdu=dtj � 1, may also be handled by our analysis. This
is done by considering du=dt as the plant input by including a term 1=s in the plant model
G(s).

Remark 3 Below we require juj < 1 rather than juj � 1. This has no practical effect, and is
used to simplify the presentation.
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5.11.1 Inputs for perfect control

From (5.3) the input required to achieve perfect control (e = 0) is

u = G�1r �G�1Gdd (5.56)

Disturbance rejection. With r = 0 and jd(!)j = 1 the requirement ju(!)j < 1 is equivalent
to

jG�1(j!)Gd(j!)j < 1 8! (5.57)

In other words, to achieve perfect control and avoid input saturation we need jGj > jGdj at
all frequencies. (However, as is discussed below, we do not really need control at frequencies
where jGdj < 1.)

Command tracking. Next let d = 0 and consider the worst-case reference command which
is jr(!)j = R at all frequencies up to !r . To keep the inputs within their constraints we must
then require from (5.56) that

jG�1(j!)Rj < 1 8! � !r (5.58)

In other words, to avoid input saturation we need jGj > R at all frequencies where perfect
command tracking is required.

Example 5.7 Consider a process with

G(s) =
40

(5s+ 1)(2:5s+ 1)
; Gd(s) = 3

50s+ 1

(10 + 1)(s+ 1)

From Figure 5.14 we see thatjGj < jGdj for ! > !1, and jGdj < 1 for ! > !d. Thus,
condition (5.57) isnot satisfied for! > !1. However, for frequencies! > !d we do not
really need control. Thus, in practice, we expect that disturbances in the frequency range
between!1 and!d may cause input saturation.

10
−1

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

M
ag

ni
tu

de

Frequency [rad/s]

jGj

jGdj

!d!1

Figure 5.14: Input saturation is expected for disturbances at intermediate frequencies from !1
to !d
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5.11.2 Inputs for acceptable control

For simplicity above, we assumed perfect control. However, perfect control is never really
required, especially not at high frequencies, and the input magnitude required for acceptable
control (namely je(j!)j < 1) is somewhat smaller. For disturbance rejectionwe must then
require

jGj > jGdj � 1 at frequencies where jGdj > 1 (5.59)

Proof: Consider a “worst-case” disturbance with jd(!)j = 1: The control error is e = y =
Gu + Gdd. Thus at frequencies where jGd(j!)j > 1 the smallest input needed to reduce
the error to je(!)j = 1 is found when u(!) is chosen such that the complex vectors Gu and
Gdd have opposite directions. That is, jej = 1 = jGddj � jGuj, and with jdj = 1 we get
juj = jG�1j(jGdj � 1), and the result follows by requiring juj < 1. 2

Similarly, to achieve acceptable control for command trackingwe must require

jGj > jRj � 1 < 1 8! � !r (5.60)

In summary, if we want “acceptable control” (jej < 1) rather than “perfect control” (e = 0),
then jGdj in (5.57) should be replaced by jGdj � 1, and similarly, R in (5.58) should be
replaced by R � 1. The differences are clearly small at frequencies where jGdj and jRj are
much larger than 1.

The requirements given by (5.59) and (5.60) are restrictions imposed on the plant designin
order to avoid input constraints and they apply to any controller (feedback or feedforward
control). If these bounds are violated at some frequency then performance will not be
satisfactory (i.e, je(!)j > 1) for a worst-case disturbance or reference occurring at this
frequency.

5.11.3 Unstable plant and input constraints

Feedback control is required to stabilize an unstable plant. However, input constraints
combined with large disturbances may make stabilization difficult. Specially, from (5.43) we
must for an unstable plant with a real RHP-pole at s = p require

jGs(p)j > jGd;ms(p)j (5.61)

Otherwise, the input will saturate when there is a sinusoidal disturbance d(t) = sin!t, and
we may not be able to stabilize the plant. Note that this bound must be satisfied also when
jGd;msi � 1.

Example 5.8 Consider

G(s) =
5

(10s+ 1)(s� 1)
; Gd(s) =

kd
(s+ 1)(0:2s+ 1)

; kd < 1 (5.62)

Sincekd < 1 and the performance objective isjej < 1, we do not really need control for
disturbance rejection, but feedback control is required for stabilization, since the plant has
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a RHP-pole atp = 1. We havejGj > jGdj (i.e. jG�1Gdj < 1) for frequencies lower than
0:5=kd, see Figure 5.15(a). so from (??) we do not expect problems with input constraints at
low frequencies. However, at frequencies higher than we havejGj < jGdj and from (??) we
may must require0:5=kd > p, i.e. kd < 0:5 to avoid problems with input saturation. This
value is confirmed by the exact bound in (5.61). We get

Gs(1) =
5

(10s+ 1)(s+ 1)
js=1= 0:227; Gd;ms(1) =

kd
(s+ 1)(0:2s+ 1)

js=1= 0:417kd

and the requirementjGs(p)j > jGd;ms(p)j giveskd < 0:54 to avoid input saturation of
sinusoidal disturbances of unit magnitude.
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Figure 5.15: Instability caused by input saturation for unstable plant

To check this for a particular case we selectkd = 0:5 and use the controller

K(s) =
0:04

s

(10s+ 1)2

(0:1s+ 1)2
(5.63)

which without constraints yields a stable closed-loop system with a gain crossover frequency,
!c, of about1:7. The closed-loop response to a unit step disturbance occurring after1 second
is shown in Figure 5.15(b). The stable closed-loop respons when there is no input constraint
is shown by the dashed line. However, we note that the input signal exceeds 1 for a short time,
and whenu is constrained to be within the interval[�1; 1] we find indeed that the system is
unstable (solid lines).

For unstable plants, reference changes can also drive the system into input saturation and
instability. But in contrast to disturbance changes and measurement noise, one then has the
option to use a two degrees-of-freedom controller to filter the reference signal and thus reduce
the magnitude of the manipulated input.
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5.12 Limitations imposed by phase lag

We already know that phase lag from RHP-zeros and time delays is a fundamental problem,
but are there any limitations imposed by the phase lag resulting from minimum-phase
elements? The answer is both no and yes: No, there are no fundamental limitations, but Yes,
there are often limitations on practical designs.

As an example, consider a minimum-phase plant of the form

G(s) =
k

(1 + �1s)(1 + �2s)(1 + �3s) � � � =
kQn

i=1(1 + �is)
(5.64)

where n is three or larger. At high frequencies the gain drops sharply with frequency,
jG(j!)j � (k=

Q
�i)!

�n. From condition (5.57), it is therefore likely (at least if k is small)
that we encounter problems with input saturation. Otherwise, the presence of high-order lags
does not present any fundamental limitations.

However, in practice a large phase lagat high frequencies, e.g. \G(j!) ! �n � 90Æ for
the plant in (5.64), poses a problem (independent of K) even when input saturation is not an
issue. This is because for stability we need a positive phase margin, i.e. the phase of L = GK
must be larger than �180Æ at the gain crossover frequency !c. That is, for stability we need
!c < !180; see (2.27).

In principle, !180 (the frequency at which the phase lag around the loop is �180Æ) is not
directly related to phase lag in the plant, but in most practical cases there is a close relationship.
Define !u as the frequency where the phase lag in the plant G is �180Æ, i.e.

\G(j!u) , �180Æ

Note that !u depends only on the plant model. Then, with a proportional controller we have
that !180 = !u, and with a PI-controller !180 < !u. Thus with these two simple controllers
a phase lag in the plant doespose a fundamental limitation:

Stability bound for P- or PI-control: !c < !u (5.65)

Note that this is a strict bound to get stability, and for performance (phase and gain margin)
we typically need !c less than bout 0:5!u.

If we want to extend the gain crossover frequency !c beyond !u, we must place zeros in the
controller (e.g. “derivative action” ) to provide phase lead which counteracts the negative phase
in the plant. A commonly used controller is the PID controller which has a maximum phase
lead of 90Æ at high frequencies. In practice, the maximum phase lead is smaller than 90Æ. For
example, an industrial cascade PID controllertypically has derivative action over only one
decade,

K(s) = Kc
�Is+ 1

�Is

�Ds+ 1

0:1�Ds+ 1
(5.66)

and the maximum phase lead is 55Æ (which is the maximum phase lead of the term �Ds+1
0:1�Ds+1

).
This is also a reasonable value for the phase margin, so for performance we approximately
require

Practical performance bound (PID control): !c < !u (5.67)
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We stress again that plant phase lag does notpose a fundamentallimitation if a more complex
controller is used. Specifically, if the model is known exactly and there are no RHP-zeros or
time delays, then one may in theory extend !c to infinite frequency. For example, one may
simply invert the plant model by placing zeros in the controller at the plant poles, and then let
the controller roll off at high frequencies beyond the dynamics of the plant. However, in many
practical cases the bound in (5.67) applies because we may want to use a simple controller,
and also because uncertainty about the plant model often makes it difficult to place controller
zeros which counteract the plant poles at high frequencies.

Remark. The relative order(relative degree) of the plant is sometimes used as an input-output
controllability measure (e.g. Daoutidis and Kravaris, 1992). The relative order may be defined
also for nonlinear plants, and it corresponds for linear plants to the pole excess of G(s). For
a minimum-phase plant the phase lag at infinite frequency is the relative order times �90Æ.
Of course, we want the inputs to directly affect the outputs, so we want the relative order
to be small. However, the practical usefulness of the relative order is rather limited since it
only gives information at infinite frequency. The phase lag of G(s) as a function of frequency,
including the value of !u, provides much more information.

5.13 Limitations imposed by uncertainty

The presence of uncertainty requires us to use feedback control rather than just feedforward
control. The main objective of this section is to gain more insight into this statement. A further
discussion is given in Section 6.10, where we consider MIMO systems.

5.13.1 Feedforward control

Consider a plant with the nominal model y = Gu + Gdd. Assume that G(s) is minimum
phase and stable and assume there are no problems with input saturation. Then perfect control,
e = y � r = 0, is obtained using a perfect feedforward controller which generates the
following control inputs

u = G�1r �G�1Gdd (5.68)

Now consider applying this perfect controller to the actual plant with model

y0 = G0u+G0dd (5.69)

After substituting (5.68) into (5.69), we find that the actual control error with the “perfect”
feedforward controller is

e0 = y0 � r =

�
G0

G
� 1

�
| {z }
rel: error in G

r �
�
G0=G0d
G=Gd

� 1

�
| {z }
rel: error in G=Gd

G0dd (5.70)

Thus, we find for feedforward control that the model error propagates directly to the control
error. From (5.70) we see that to achieve je0j < 1 for jdj = 1 we must require that the relative
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model error in G=Gd is less than 1=jG0dj. This requirement is clearly very difficult to satisfy
at frequencies where jG0dj is much larger than 1, and this motivates the need for feedback
control.

Example 5.9 Consider a case with

G =
300

10s+ 1
; Gd =

100

10s+ 1

Nominally, the perfect feedfeedforward controlleru = �G�1d gives perfect controly = 0.
Now apply this feedforward controller to the actual process where the gains have changed by
10

G =
330

10s+ 1
; Gd =

90

10s+ 1

From (5.70) the response in this case is

y0 =

�
G0=G0d
G=Gd

� 1

�
G0dd = 0:22G0d =

20

10s+ 1
d

Thus, for a step disturbanced of magnitude 1, the outputy will approach 20 (much larger
than 1), and feedback control is required to keep the output less than 1. (Feedback will hardly
be affected by the above error as is discussed next The minimum bandwidth requirement with
feedback only is!d � 100=10 = 10, and with also feedforward about2=10 = 2).

Note that if the uncertainty is sufficiently large, such that the relative error in G=Gd is larger
than 1, then feedforward control may actually make control worse. This may quite easily
happen in practice, for example, if the gain in G in increased by 50% and the gain in Gd is
reduced by 50%.

5.13.2 Feedback control

With feedback control the closed-loop response with no model error is y � r = S(Gdd� r)
where S = (I +GK)�1 is the sensitivity function. With model error we get

y0 � r = S0(G0dd� r) (5.71)

where S0 = (I +G0K)�1 can be written (see (A.139)) as

S0 = S
1

1 +ET
(5.72)

Here E = (G0 � G)=G is the relative error for G, and T is the complementary sensitivity
function.

From (5.71) we see that the control error is only weakly affected by model error at frequencies
where feedback is effective (where jSj << 1 and T � 1). For example, if we have integral
action in the feedback loop and if the feedback system with model error is stable, then
S(0) = S0(0) = 0 and the steady-state control error is zero even with model error.
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Uncertainty at crossover. Although feedback control counteracts the effect of uncertainty
at frequencies where the loop gain is large, uncertainty in the crossover frequency region
can result in poor performance and even instability. This may be analyzed by considering the
effect of the uncertainty on the gain margin, GM = 1=jL(j!180)j, where !180 is the frequency
where \L is �180Æ; see (2.33). Most practical controllers behave as a constant gain Ko in
the crossover region, so jL(j!180)j � KojG(j!180j where !180 � !u (since the phase lag
of the controller is approximately zero at this frequency; see also Section 5.12). Here !u is
the frequency where \G(j!u) = �180Æ. This observation yields the following approximate
rule:

� Uncertainty which keepsjG(j!u)j approximately constant will not change the gain margin.
Uncertainty which increasesjG(j!u)j may yield instability.

This rule is useful, for example, when evaluating the effect of parametric uncertainty. This is
illustrated in the following example.

Example 5.10 Consider a stable first-order delay process,G(s) = ke��s=(1 + �s), where
the parametersk, � and � are uncertain in the sense that they may vary with operating
conditions. If we assume� > � then!u � (�=2)=� and we derive

jG(j!u)j � 2

�
k
�

�
(5.73)

We see that to keepjG(j!u)j constant we wantk �
�

constant. From (5.73) we see, for example,
that an increase in� increasesjG(j!u)j, and may yield instability. However, the uncertainty
in the parameters is oftencoupled. For example, the ratio�=� may be approximately constant,
in which case an increase in� may not affect stability. In another case the steady-state gain
k may change with operating point, but this may not affect stability if the ratiok=� , which
determines the high-frequency gain, is unchanged.

The above example illustrates the importance of taking into account the structure of the
uncertainty, for example, the coupling between the uncertain parameters. A robustness
analysis which assumes the uncertain parameters to be uncorrelated is generally conservative.
This is further discussed in Chapters 7 and 8.

5.14 Summary: Controllability analysis with
feedback control

We will now summarize the results of this chapter by a set of “controllability rules” . We use
the term “(input-output) controllability” since the bounds depend on the plant only, that is, are
independent of the specific controller. Except for Rule 7, all requirements are fundamental,
although some of the expressions, as seen from the derivations, are approximate (i.e, they may
be off by a factor of 2 or thereabout). However, for practical designs the bounds will need to
be satisfied to get acceptable performance.
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Figure 5.16: Feedback control system

Consider the control system in Figure 5.16, for the case when all blocks are scalar. The model
is

y = G(s)u+Gd(s)d; ym = Gm(s)y (5.74)

Here Gm(s) denotes the measurement transfer function and we assume Gm(0) = 1 (perfect
steady-state measurement). The variables d, u, y and r are assumed to have been scaled as
outlined in Section 1.4, and therefore G(s) and Gd(s) are the scaled transfer functions. Let
!c denote the gain crossover frequency; defined as the frequency where jL(j!)j crosses 1
from above. Let !d denote the frequency at which jGd(j!d)j first crosses 1 from above. The
following rules apply(Skogestad, 1996):

Rule 1. Speed of response to reject disturbances. We approximately require!c > !d. More
specifically, with feedback control we requirejS(j!)j � j1=Gd(j!)j 8!. (See (5.51)
and (5.54)).

Rule 2. Speed of response to track reference changes. We requirejS(j!)j � 1=R up to
the frequency!r where tracking is required.(See (5.55)).

Rule 3. Input constraints arising from disturbances. For acceptable control (jej < 1) we
require jG(j!)j > jGd(j!)j � 1 at frequencies wherejGd(j!)j > 1. For perfect
control (e = 0) the requirement isjG(j!)j > jGd(j!)j. (See (5.57) and (5.59)).

Rule 4. Input constraints arising from setpoints. We requirejG(j!)j > R � 1 up to the
frequency!r where tracking is required.(See (5.60)).

Rule 5. Time delay � in G(s)Gm(s). We approximately require!c < 1=�. (See (5.25)).

Rule 6. Tight control at low frequencies with a RHP-zero z in G(s)Gm(s). For a real
RHP-zero we require!c < z=2 and for an imaginary RHP-zero we approximately
require!c < jzj. (See (5.27) and (5.29)).

Remark. Strictly speaking, a RHP-zero only makes it impossible to have tight control
in the frequency range close to the location of the RHP-zero. If we do not need tight
control at low frequencies, then we may reverse the sign of the controller gain, and
instead achieve tight control at higher frequencies. In this case we must for a RHP-zero
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z approximately require !c > 2z. A special case is for plants with a zero at the origin;
here we can achieve good transient control even though the control has no effect at
steady-state.

Rule 7. Phase lag constraint. We require in most practical cases (e.g. with PID control):
!c < !u. Here theultimate frequency !u is where\GGm(j!u) = �180Æ. (See
(5.67)).

Since time delays (Rule 5) and RHP-zeros (Rule 6) also contribute to the phase lag, one
may in in most practical cases combine Rules 5, 6 and 7 into the single rule: !c < !u
(Rule 7).

Rule 8. Real open-loop unstable pole in G(s) at s = p. We need high feedback gains to
stabilize the system and we approximately require!c > 2p. (See (5.47)).

In addition, for unstable plants we needjGs(p)j > jGd;ms(p)j. Otherwise, the input
may saturate when there are disturbances, and the plant cannot be stabilized; see (5.61).

jGj
jLj

jGdj

1

M1

M2

M3

M4

M5

M6

2p !d !c z=2 !u 1=�

Control needed to
reject disturbances

Margins for stability and performance:
M1 : Margin to stay within constraints, juj < 1.
M2 : Margin for performance, jej < 1.
M3 : Margin because of RHP-pole, p.
M4 : Margin because of RHP-zero, z.
M5 : Margin because of phase lag, \G(j!u) = �180Æ.
M6 : Margin because of delay, �.

Figure 5.17: Illustration of controllability requirements

Most of the rules are illustrated graphically in Figure 5.17.
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We have not formulated a rule to guard against model uncertainty. This is because, as given
in (5.71) and (5.72), uncertainty has only a minor effect on feedback performance for SISO
systems, except at frequencies where the relative uncertainty E approaches 100%, and we
obviously have to detune the system. Also, since 100% uncertainty at a given frequency allows
for the presence of a RHP-zero on the imaginary axis at this frequency (G(j!) = 0), it is
already covered by Rule 6.

The rules are necessary conditions (“minimum requirements” ) to achieve acceptable control
performance. They are not sufficient since among other things we have only considered one
effect at a time.

The rules quantify the qualitative rules given in the introduction. For example, the rule
“Control outputs that are not self-regulating” may be quantified as: “Control outputs y for
which jGd(j!)j > 1 at some frequency” (Rule 1). The rule “Select inputs that have a large
effect on the outputs” may be quantified as: “ In terms of scaled variables we must have
jGj > jGdj � 1 at frequencies where jGdj > 1 (Rule 3), and we must have jGj > R � 1 at
frequencies where setpoint tracking is desired (Rule 4)” . Another important insight from the
above rules is that a larger disturbance or a smaller specification on the control error requires
faster response (higher bandwidth).

In summary, Rules 1, 2 and 8 tell us that we need high feedback gain (“ fast control” ) in order
to reject disturbances, to track setpoints and to stabilize the plant. On the other hand, Rules
5, 6 and 7 tell us that we must use low feedback gains in the frequency range where there
are RHP-zeros or delays or where the plant has a lot of phase lag. We have formulated these
requirements for high and low gain as bandwidth requirements. If they somehow are in conflict
then the plant is not controllable and the only remedy is to introduce design modifications to
the plant.

Sometimes the problem is that the disturbances are so large that we hit input saturation, or the
required bandwidth is not achievable. To avoid the latter problem, we must at least require that
the effect of the disturbance is less than 1 (in terms of scaled variables) at frequencies beyond
the bandwidth, (Rule 1)

jGd(j!)j < 1 8! � !c (5.75)

where as found above we approximately require !c < 1=� (Rule 5), !c < z=2 (Rule 6) and
!c < !u (Rule 7). Condition (5.75) may be used, as in the example of Section 5.16.3 below,
to determine the size of equipment.

5.15 Summary: Controllability analysis with
feedforward control

The above controllability rules apply to feedback control, but we find that essentially the same
conclusions apply to feedforward control when relevant. That is, if a plant is not controllable
using feedback control, it is usually not controllable with feedforward control. A major
difference, as shown below, is that a delay in Gd(s) is an advantage for feedforward control
(“ it gives the feedforward controller more time to make the right action” ). Also, a RHP-zero
in Gd(s) is also an advantage for feedforward control if G(s) has a RHP-zero at the same
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location. Rules 3 and 4 on input constraints apply directly to feedforward control, but Rule 8
does not apply since unstable plants can only be stabilized by feedback control. The remaining
rules in terms of performance and “bandwidth” do not apply directly to feedforward control.

Controllability can be analyzed by considering the feasibility of achieving perfect control. The
feedforward controller is

u = Kd(s)dm

where dm = Gmd(s)d is the measured disturbance. The disturbance response with r = 0
becomes

e = Gu+Gdd = (GKdGmd +Gd)d (5.76)

(Reference tracking can be analyzed similarly by setting Gmd = 1 and Gd = �R.)

Perfect control. From (5.76), e = 0 is achieved with the controller

Kperfect
d = �G�1GdG

�1
md (5.77)

This assumes that Kperfect
d is stable and causal (no prediction), and so GG�1d Gmd should

have no RHP-zeros and no (positive) delay. From this we find that a delay (or RHP-zero) in
Gd(s) is an advantage if it cancels a delay (or RHP-zero) in GGmd.

Ideal control. If perfect control is not possible, then one may analyze controllability by
considering an “ ideal” feedforward controller, Kideal

d , which is (5.77) modified to be stable
and causal (no prediction). The controller is ideal in that it assumes we have a perfect model.
Controllability is then analyzed by using Kideal

d in (5.76). An example is given below in (5.86)
and (5.87) for a first-order delay process.

Model uncertainty. As discussed in Section 5.13, model uncertainty is a more serious
problem for feedforward than for feedback control because there is no correction from the
output measurement. For disturbance rejection, we have from (5.70) that the plant is not
controllable with feedforward control if the relative model error for G=Gd at any frequency
exceeds 1=jGdj. Here Gd is the scaled disturbance model. For example, if jGd(j!)j = 10
then the error in G=Gd must not exceed 10% at this frequency. In practice, this means that
feedforward control has to be combined with feedback control if the output is sensitive to the
disturbance (i.e. if jGdj is much larger than 1 at some frequency).

Combined feedback and feedforward control. To analyze controllability in this case we may
assume that the feedforward controller Kd has already been designed. Then from (5.76) the
controllability of the remaining feedback problem can be analyzed using the rules in Section
5.14 if Gd(s) is replaced by bGd(s) = GKdGmd +Gd (5.78)

However, one must beware that the feedforward control may be very sensitive to model error,
so the benefits of feedforward may be less in practice.

Conclusion. From (5.78) we see that the primary potential benefit of feedforward control is
to reduce the effect of the disturbance and make bGd less than 1 at frequencies where feedback
control is not effective due to, for example, a delay or a large phase lag in GGm(s).
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5.16 Applications of controllability analysis

5.16.1 First-order delay process

Problem statement. Consider disturbance rejection for the following process

G(s) = k
e��s

1 + �s
; Gd(s) = kd

e��ds

1 + �ds
(5.79)

In addition there are measurement delays �m for the output and �md for the disturbance. All
parameters have been appropriately scaled such that at each frequency juj < 1; jdj < 1 and
we want jej < 1. Assume jkdj > 1. Treat separately the two cases of i) feedback control only,
and ii) feedforward control only, and carry out the following:

a) For each of the eight parameters in this model explain qualitatively what value you would
choose from a controllability point of view (with descriptions such as large, small, value has
no effect).

b) Give quantitative relationships between the parameters which should be satisfied to achieve
controllability. Assume that appropriate scaling has been applied in such a way that the
disturbance is less than 1 in magnitude, and that the input and the output are required to
be less than 1 in magnitude.

Solution. (a) Qualitative. We want the input to have a “ large, direct and fast effect” on the
output, while we want the disturbance to have a “small, indirect and slow effect” . By “direct”
we mean without any delay or inverse response. This leads to the following conclusion. For
both feedback and feedforward control we want k and �d large, and � , � and kd small. For
feedforward control we also want �d large (we then have more time to react), but for feedback
the value of �d does not matter; it translates time, but otherwise has no effect. Clearly, we
want �m small for feedback control (it is not used for feedforward), and we want �md small
for feedforward control (it is not used for feedback).

(b) Quantitative.To stay within the input constraints (juj < 1) we must from Rule 4 require
jG(j!)j > jGd(j!)j for frequencies ! < !d. Specifically, for both feedback and feedforward
control

k > kd; k=� > kd=�d (5.80)

Now consider performance where the results for feedback and feedforward control differ. (i)
First consider feedback control. From Rule 1 we need for acceptable performance (jej < 1)
with disturbances

!d � kd=�d < !c (5.81)

On the other hand, from Rule 5 we require for stability and performance

!c < 1=�tot (5.82)

where �tot = � + �m is the total delay around the loop. The combination of (5.81) and (5.82)
yields the following requirement for controllability

Feedback: � + �m < �d=kd (5.83)
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(ii) For feedforward control, any delay for the disturbance itself yields a smaller “net delay” ,
and to have jej < 1 we need “only” require

Feedforward: � + �md � �d < �d=kd (5.84)

Proof of (5.84):Introduce b� = �+ �md� �d, and consider first the case with b� � 0 (so (5.84)
is clearly satisfied). In this case perfect control is possible using the controller (5.77),

Kperfect
d = �G�1GdG

�1
md = �

kd
k

1 + �s

1 + �ds
e
b�s (5.85)

so we can even achieve e = 0. Next, consider b� > 0. Perfect control is not possible, so instead

we use the “ ideal” controller obtained by deleting the prediction e
b�s,

Kideal
d = �kd

k

1 + �s

1 + �ds
(5.86)

From (5.76) the response with this controller is

e = (GKideal
d Gmd +Gd)d =

kde
��ds

1 + �ds
(1� e�

b�s)d (5.87)

and to achieve jej=jdj < 1 we must require kd
�d
b� < 1 (using asymptotic values and

1� e�x � x for small x) which is equivalent to (5.84). 2

5.16.2 Application: Room heating

Consider the problem of maintaining a room at constant temperature, as discussed in
Section 1.5, see Figure 1.2. Let y be the room temperature, u the heat input and d the outdoor
temperature. Feedback control should be used. Let the measurement delay for temperature (y)
be �m = 100 s.

1. Is the plant controllable with respect to disturbances?
2. Is the plant controllable with respect to setpoint changes of magnitude R = 3 (�3 K) when

the desired response time for setpoint changes is �r = 1000 s (17 min) ?

Solution. A critical part of controllability analysis is scaling. A model in terms of scaled
variables was derived in (1.26)

G(s) =
20

1000s+ 1
; Gd(s) =

10

1000s + 1
(5.88)

The frequency responses of jGj and jGdj are shown in Figure 5.18.

1. Disturbances. From Rule 1 feedback control is necessary up to the frequency !d =
10=1000 = 0:01 rad/s, where jGdj crosses 1 in magnitude (!c > !d). This is exactly the
same frequency as the upper bound given by the delay, 1=� = 0:01 rad/s (!c < 1=�). We
therefore conclude that the system is barely controllable for this disturbance. From Rule 3
no problems with input constraints are expected since jGj > jGdj at all frequencies. These
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Figure 5.18: Frequency responses for room heating example
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conclusions are supported by the closed-loop simulation in Figure 5.19(a) for a unit step
disturbance (corresponding to a sudden 10 K increase in the outdoor temperature) using a PID-
controller of the form in (5.66) with Kc = 0:4 (scaled variables), �I = 200 s and �D = 60
s. The output error exceeds its allowed value of 1 for a very short time after about 100 s, but
then returns quite quickly to zero. The input goes down to about -0.8 and thus remains within
its allowed bound of �1.

2. Setpoints.The plant is controllable with respect to the desired setpoint changes. First, the
delay is 100 s which is much smaller than the desired response time of 1000 s, and thus poses
no problem. Second, jG(j!)j � R = 3 up to about !1 = 0:007 [rad/s] which is seven times
higher than the required !r = 1=�r = 0:001 [rad/s]. This means that input constraints pose
no problem. In fact, we should be able to achieve response times of about 1=!1 = 150 s
without reaching the input constraints. This is confirmed by the simulation in Figure 5.19(b)
for a desired setpoint change 3=(150s+ 1) using the same PID controller as above.

5.16.3 Application: Neutralization process

? ?

��@@
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ACID BASE

qB
cB

qA
cA

V
q
c

Figure 5.20: Neutralization process with one mixing tank

The following application is interesting in that it shows how the controllability analysis tools
may assist the engineer in redesigning the process to make it controllable.

Problem statement. Consider the process in Figure 5.20, where a strong acid with pH= �1
(yes, a negative pH is possible — it corresponds to cH+ = 10 mol/l) is neutralized by a strong
base (pH=15) in a mixing tank with volume V = 10m3. We want to use feedback control to
keep the pH in the product stream (output y) in the range 7� 1 (“ salt water” ) by manipulating
the amount of base, qB (input u) in spite of variations in the flow of acid, qA (disturbance d).
The delay in the pH-measurement is �m = 10 s.

To achieve the desired product with pH=7 one must exactly balance the inflow of acid (the
disturbance) by addition of base (the manipulated input). Intuitively, one might expect that
the main control problem is to adjust the base accurately by means of a very accurate valve.
However, as we will see this “ feedforward” way of thinking is misleading, and the main hurdle
to good control is the need for very fast response times.
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We take the controlled output to be the excess of acid, c [mol/l], defined as c = cH+ � cOH� .
In terms of this variable the control objective is to keep jcj � cmax = 10�6 mol/l, and the
plant is a simple mixing process modelled by

d

dt
(V c) = qAcA + qBcB � qc (5.89)

The nominal values for the acid and base flows are q�A = q�B = 0:005 [ m3/s] resulting in a
product flow q� = 0:01 [m3/s]= 10 [l/s]. Here superscript � denotes the steady-state value.
Divide each variable by its maximum deviation to get the following scaled variables

y =
c

10�6
; u =

qB
q�B

; d =
qA

0:5q�A
(5.90)

Then the appropriately scaled linear model for one tank becomes

Gd(s) =
kd

1 + �hs
; G(s) =

�2kd
1 + �hs

; kd = 2:5 � 106 (5.91)

where �h = V=q = 1000 s is the residence time for the liquid in the tank. Note that the
steady-state gain in terms of scaled variables is more than a million so the output is extremely
sensitive to both the input and the disturbance. The reason for this high gain is the much
higher concentration in the two feed streams, compared to that desired in the product stream.
The question is: Can acceptable control be achieved?
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Figure 5.21: Frequency responses for the neutralization process with one mixing tank

Controllability analysis. The frequency responses of Gd(s) and G(s) are shown graphically
in Figure 5.21. From Rule 2, input constraints do not pose a problem since jGj = 2jGdj at
all frequencies. The main control problem is the high disturbance sensitivity, and from (5.81)
(Rule 1) we find the frequency up to which feedback is needed

!d � kd=� = 2500 rad=s (5.92)

This requires a response time of 1=2500 = 0:4 milliseconds which is clearly impossible in a
process control application, and is in any case much less than the measurement delay of 10 s.
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Figure 5.22: Neutralization process with two tanks and one controller

Design change: Multiple tanks. The only way to improve controllability is to modify the
process. This is done in practice by performing the neutralization in several steps as illustrated
in Figure 5.22 for the case of two tanks. This is similar to playing golf where it is often
necessary to use several strokes to get to the hole. With n equal mixing tanks in series the
transfer function for the effect of the disturbance becomes

Gd(s) = kdhn(s); hn(s) =
1

( �h
n
s+ 1)n

(5.93)

where kd = 2:5 � 106 is the gain for the mixing process, hn(s) is the transfer function of the
mixing tanks, and �h is the total residence time, Vtot=q. The magnitude of hn(s) as a function
of frequency is shown in Figure 5.23 for one to four equal tanks in series.
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Figure 5.23: Frequency responses for n tanks in series with the same total residence time �h;
hn(s) = 1=( �h

n
s+ 1)n; n = 1; 2; 3; 4

From controllability Rules 1 and 5, we must at least require for acceptable disturbance
rejection that

jGd(j!�)j � 1 !� , 1=� (5.94)
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where � is the delay in the feedback loop. Thus, one purpose of the mixing tanks hn(s) is to
reduce the effect of the disturbance by a factor kd(= 2:5 � 106) at the frequency !�(= 0:1
[rad/s]), i.e. jhn(j!�)j � 1=kd. With �h = Vtot=q we obtain the following minimum value
for the total volume for n equal tanks in series

Vtot = q�n
q
(kd)2=n � 1 (5.95)

where q = 0:01 m3/s. With � = 10 s we then find that the following designs have the same
controllability with respect to disturbance rejection:

No. of Total Volume
tanks volume each tank
n Vtot [m3] [m3]

1 250000 250000
2 316 158
3 40.7 13.6
4 15.9 3.98
5 9.51 1.90
6 6.96 1.16
7 5.70 0.81

With one tank we need a volume corresponding to that of a supertanker to get acceptable
controllability. The minimum total volume is obtained with 18 tanks of about 203 litres each
— giving a total volume of 3.662 m3. However, taking into account the additional cost for
extra equipment such as piping, mixing, measurements and control, we would probably select
a design with 3 or 4 tanks for this example.

Control system design. We are not quite finished yet. The condition jGd(j!�)j � 1 in (5.94),
which formed the basis for redesigning the process, may be optimistic because it only ensures
that we have jSj < 1=jGdj at the crossover frequency !B � !c � !� . However, from Rule
1 we also require that jSj < 1=jGdj, or approximately jLj > jGdj, at frequencies lower than
wc, and this may be difficult to achieve since Gd(s) = kdh(s) is of high order. The problem
is that this requires jLj to drop steeply with frequency, which results in a large negative phase
for L, whereas for stability and performance the slope of jLj at crossover should not be steeper
than �1, approximately (see Section 2.6.2).

Thus, the control system in Figure 5.22 with a single feedback controller will not achieve the
desired performance. The solution is to install a local feedbackcontrol system on each tank
and to add base in each tank as shown in Figure 5.24. This is another plant design change
since it requires an additional measurement and actuator for each tank. Consider the case of
n tanks in series. With n controllers the overall closed-loop response from a disturbance into
the first tank to the pH in the last tank becomes

y = Gd

nY
i=1

(
1

1 + Li
)d � Gd

L
d; L ,

nY
i=1

Li (5.96)
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Figure 5.24: Neutralization process with two tanks and two controllers.

where Gd =
Qn

i=1Gi and Li = GiKi, and the approximation applies at low frequencies
where feedback is effective.

In this case, we can design each loop Li(s) with a slope of �1 and bandwidth !c � !� ,
such that the overall loop transfer function L has slope �n and achieves jLj > jGdj at all
frequencies lower than !d (the size of the tanks are selected as before such that !d � !�).
Thus, our analysis confirms the usual recommendation of adding base gradually and having
one pH-controller for each tank (McMillan, 1984, p. 208). It seems unlikely that any other
control strategy can achieve a sufficiently high roll-off for jLj.
In summary, this application has shown how a simple controllability analysis may be used to
make decisions on both the appropriate size of the equipment, and the selection of actuators
and measurements for control. Our conclusions are in agreement with what is used in industry.
Importantly, we arrived at these conclusions, without having to design any controllers or
perform any simulations. Of course, as a final test, the conclusions from the controllability
analysis should be verified by simulations using a nonlinear model.

Exercise 5.8 Comparison of local feedback and cascade control. Explain why a cascade
control system with two measurements (pH in each tank) and onlyone manipulated input (the
base flow into the first tank) will not achieve as good performance as the control system in
Figure 5.24 where we use local feedback withtwo manipulated inputs (one for each tank).

The following exercise further considers the use of buffer tanks for reducing quality
(concentration, temperature) disturbances in chemical processes.

Exercise 5.9 (a) The effect of a concentration disturbance must be reduced by a factor of100
at the frequency0:5 rad/min. The disturbances should be dampened by use of buffer tanks
and the objective is to minimize the total volume. How many tanks in series should one have?
What is the total residence time?

(b) The feed to a distillation column has large variations in concentration and the use of one
buffer tank is suggested to dampen these. The effect of the feed concentrationd on the product
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compositiony is given by (scaled variables, time in minutes)

Gd(s) = e�s=3s

That is, after a step ind the outputy will, after an initial delay of1min, increase in a ramp-like
fashion and reach its maximum allowed value (which is1) after another3 minutes. Feedback
control should be used and there is an additional measurement delay of5 minutes. What
should be the residence time in the tank?

(c) Show that in terms of minimizing the total volume for buffer tanks in series, it is optimal to
have buffer tanks of equal size.

(d) Is there any reason to have buffer tanks in parallel (they must not be of equal size because
then one may simply combine them)?

(e) What about parallel pipes in series (pure delay). Is this a good idea?

Buffer tanks are also used in chemical processes to dampen liquid flowrate disturbances (or
gas pressure disturbances). This is the topic of the following exercise.

Exercise 5.10 Let d1 = qin [m3/s] denote a flowrate which acts as a disturbance to the
process. We add a buffer tank (with liquid volumeV [m3]), and use a “slow” level controller
K such that the outflowd2 = qout (the “new” disturbance) is smoother than the inflowqin
(the “original” disturbance). The idea is to temporarily increase or decrease the liquid volume
in the tank to avoid sudden changes inqout. Note that the steady-state value ofqout must equal
that ofqin.

A material balance yieldsV (s) = (qin(s)� qout(s))=s and with a level controllerqout(s) =
K(s)V (s) we find that

d2(s) =
K(s)

s+K(s)| {z }
h(s)

d1(s) (5.97)

The design of a buffer tank for a flowrate disturbance then consists of two steps:

1. Design the levelcontroller K(s) such thath(s) has the desired shape (e.g. determined by a
controllability analysis of howd2 affects the remaining process; note that we must always
haveh(0) = 1).

2. Design thesize of the tank (determine its volumeVmax) such that the tanks does not
overflow or go empty for the expected disturbances ind1 = qin.

Problem statement. (a) Assume the inflow varies in the rangeq�in � 100% whereq�in is the
nominal value, and apply this stepwise procedure to two cases:

(i) The desired transfer function ish(s) = 1=(�s+ 1).
(ii) The desired transfer function ish(s) = 1=(�2s+ 1)2.

(b) Explain why it is usually not recommended to have integral action inK(s).

(c) In case (ii) one could alternatively use two tanks in series with controllers designed as in
(i). Explain why this is most likely not a good solution. (Solution: The required total volume is
the same, but the cost of two smaller tanks is larger than one large tank).
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5.16.4 Additional exercises

Exercise 5.11 What information about a plant is important for controller design, and in
particular, in which frequency range is it important to know the model well? To answer this
problem you may think about the following sub-problems:

(a) Explain what information about the plant is used for Ziegler-Nichols tuning of a SISO
PID-controller.

(b) Is the steady-state plant gainG(0) important for controller design? (As an example
consider the plantG(s) = 1

s+a
with jaj � 1 and design a P-controllerK(s) = Kc such

that!c = 100. How does the controller design and the closed-loop response depend on the
steady-state gainG(0) = 1=a?)

Exercise 5.12 Let H(s) = K1e
��1s, G(s) = K2e

�0:5s 1
(30s+1)(Ts+1)

, and Gd(s) =

G(s)H(s). The measurement device for the output has transfer functionGm(s) = e��2s.
The unit for time is seconds. The nominal parameter values are:K1 = 0:24, �1 = 1 [s],
K2 = 38, �2 = 5 [s], andT = 2 [s].

(a) Assume all variables have been appropriately scaled. Is the plant input-output
controllable?

(b) What is the effect on controllability of changing one model parameter at a time in the
following ways:

1. �1 is reduced to0:1 [s].
2. �2 is reduced to2 [s].
3. K1 is reduced to0:024.
4. K2 is reduced to8.
5. T is increased to30 [s].

Exercise 5.13 A heat exchanger is used to exchange heat between two streams; a coolant with
flowrateq (1 � 1 kg/s) is used to cool a hot stream with inlet temperatureT0 (100 � 10ÆC)
to the outlet temperatureT (which should be60� 10ÆC). The measurement delay forT is 3s.
The main disturbance is onT0. The following model in terms of deviation variables is derived
from heat balances

T (s) =
8

(60s+ 1)(12s+ 1)
q(s) +

0:6(20s + 1)

(60s+ 1)(12s+ 1)
T0(s) (5.98)

whereT andT0 are in ÆC, q is in kg/s, and the unit for time is seconds. Derive the scaled
model. Is the plant controllable with feedback control? (Solution: The delay poses no problem
(performance), but the effect of the disturbance is a bit too large at high frequencies (input
saturation), so the plant is not controllable).

5.17 Conclusion

The chapter has presented a frequency domain controllability analysis for scalar systems
applicable to both feedback and feedforward control. We summarized our findings in terms
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of eight controllability rules; see page 197. These rules are necessary conditions (“minimum
requirements” ) to achieve acceptable control performance. They are not sufficient since
among other things they only consider one effect at a time. The rules may be used to
determine whether or not a given plant is controllable. The method has been applied to a
pH neutralization process, and it is found that the heuristic design rules given in the literature
follow directly. The key steps in the analysis are to consider disturbances and to scale the
variables properly.

The tools presented in this chapter may also be used to study the effectiveness of
adding extra manipulated inputs or extra measurements (cascade control). They may
also be generalized to multivariable plants where directionality becomes a further crucial
consideration. Interestingly, a direct generalization to decentralized control of multivariable
plants is rather straightforward and involves the CLDG and the PRGA; see page 453 in
Chapter 10.
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6

LIMITATIONS ON

PERFORMANCE IN MIMO

SYSTEMS

In this chapter, we generalize the results of Chapter 5 to MIMO systems. We first discuss
fundamental limitations on the sensitivity and complementary sensitivity functions imposed
by the presence of RHP-zeros. We then consider separately the issues of functional
controllability, RHP-zeros, RHP-poles, disturbances, input constraints and uncertainty.
Finally, we summarize the main steps in a procedure for analyzing the input-output
controllability of MIMO plants.

6.1 Introduction

In a MIMO system, disturbances, the plant, RHP-zeros, delays, RHP-poles and disturbances
each have directionsassociated with them. This makes it more difficult to consider their effects
separately, as we did in the SISO case, but we will nevertheless see that most of the SISO
results may be generalized.

We will quantify the directionality of the various effects inG andGd by their outputdirections:

� yz: output direction of a RHP-zero, G(z)uz = 0 � yz, see (4.68)
� yp: output direction of a RHP-pole, G(pi)upi =1 � ypi , see (4.61)
� yd: output direction of a disturbance, yd = 1

kgdk2
gd, see (6.30)

� ui: i’ th output direction (singular vector) of the plant, Gvi = �iui, see (3.38)1

All these are l � 1 vectors where l is the number of outputs. yz and yp are fixed complex
vectors, while yd(s) and ui(s) are frequency-dependent (s may here be viewed as a

1

Note that ui here is the i’ th output singular vector, and not the i’ th input.
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generalized complex frequency; in most cases s = j!). The vectors are here normalized
such that they have Euclidean length 1,

kyzk2 = 1; kypk2 = 1; kyd(s)k2 = 1; kui(s)k2 = 1

We may also consider the associated input directions of G. However, these directions are
usually of less interest since we are primarily concerned with the performance at the output of
the plant.

The angles between the various output directions can be quantified using their inner products:
jyHz ypj, jyHz ydj, etc. The inner product gives a number between 0 and 1, and from this we can
define the angle in the first quadrant, see (A.113). For example, the output angle between a
pole and a zero is

� =
cos�1jyHz ypj
kyzk2 kypk2 = cos�1jyHz ypj

We assume throughout this chapter that the models have been scaled as outlined in Section 1.4.
The scaling procedure is the same as that for SISO systems, except that the scaling factors Du,
Dd, Dr and De are diagonal matriceswith elements equal to the maximum change in each
variable ui, di, ri and ei. The control error in terms of scaled variables is then

e = y � r = Gu+Gdd�Rer
where at each frequency we have ku(!)kmax � 1, kd(!)kmax � 1 and ker(!)kmax � 1, and
the control objective is to achieve kekmax(!) < 1.

Remark 1 Here k � kmax is the vector infinity-norm, that is, the largest element in the vector.
This norm is sometimes denoted k � k1, but this is not used here to avoid confusing it with the
H1 norm of the transfer function (where the 1 denotes the maximum over frequency rather
than the maximum over the elements of the vector).

Remark 2 As for SISO systems, we see that reference changes may be analyzed as a special
case of disturbances by replacing Gd by �R.

Remark 3 Whether various disturbances and reference changes should be considered
separately or simultaneously is a matter of design philosophy. In this chapter, we mainly
consider their effects separately, on the grounds that it is unlikely for several disturbances
to attain their worst values simultaneously. This leads to necessary conditions for acceptable
performance, which involve the elements of different matrices rather than matrix norms.

6.2 Constraints on S and T

6.2.1 S plus T is the identity matrix

From the identity S + T = I and (A.49), we get

j1� ��(S)j � ��(T ) � 1 + ��(S) (6.1)

j1 � ��(T )j � ��(S) � 1 + ��(T ) (6.2)

This shows that we cannot have both S and T small simultaneously and that ��(S) is large if
and only if ��(T ) is large.
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6.2.2 Sensitivity integrals

For SISO systems we presented several integral constraints on sensitivity (the waterbed
effects). These may be generalized to MIMO systems by using the determinant or the singular
values of S, see Boyd and Barratt (1991) and Freudenberg and Looze (1988). For example,
the generalization of the Bode sensitivity integral in (5.6) may be written

Z 1

0

ln j detS(j!)jd! =
X
j

Z 1

0

ln�j(S(j!))d! = � �
NpX
i=1

Re(pi) (6.3)

For a stable L(s), the integrals are zero. Other generalizations are also available, see Zhou
et al. (1996). However, although these relationships are interesting, it seems difficult to derive
any concrete bounds on achievable performance from them.

6.2.3 Interpolation constraints

RHP-zero. If G(s) has a RHP-zero at z with output direction yz , then for internal stability of
the feedback system the following interpolation constraints must apply:

yHz T (z) = 0; yHz S(z) = yHz (6.4)

In words, (6.4) says that T must have a RHP-zero in the same direction as G, and that S(z)
has an eigenvalue of 1 corresponding to the left eigenvector yz .

Proof of (6.4):From (4.68) there exists an output direction yz such that yHz G(z) = 0. For
internal stability, the controller cannot cancel the RHP-zero and it follows that L = GK has
a RHP-zero in the same direction, i.e. yHz L(z) = 0. Now S = (I +L)�1 is stable and has no
RHP-pole at s = z. It then follows from T = LS that yHz T (z) = 0 and yHz (I � S) = 0. 2

RHP-pole. If G(s) has a RHPpole at p with output direction yp, then for internal stability the
following interpolation constraints apply

S(p)yp = 0; T (p)yp = yp (6.5)

Proof of (6.5):The square matrix L(p) has a RHP-pole at s = p, and if we assume that L(s)
has no RHP-zeros at s = p then L�1(p) exists and from (4.72) there exists an output pole
direction yp such that

L�1(p)yp = 0 (6.6)

Since T is stable, it has no RHP-pole at s = p, so T (p) is finite. It then follows, from
S = TL�1, that S(p)yp = T (p)L�1(p)yp = 0. 2

Similar constraints apply to LI , SI and TI , but these are in terms of the input zero and pole
directions, uz and up.
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6.2.4 Sensitivity peaks

Based on the above interpolation constraints we here derive lower bounds on the weighted
sensitivity functions. The results show that a peak on ��(S) larger than 1 is unavoidable if the
plant has a RHP-zero, and that a peak on ��(T ) larger 1 is unavoidable if the plant has a RHP-
pole. In particular, the peaks may be large if the plant has both RHP-zeros and RHP-poles.

The bounds are direct generalizations of those found for SISO systems. The bound on
weighted sensitivity with no RHP-poles was first derived by Zames (1981). The generalized
result below was derived by Havre and Skogestad (1998a).

We first need to introduce some notation. Consider a plant G(s) with RHP-poles pi and RHP-
zeros zj , and factorize G(s) in terms of (output) Blaschke productsas follows2

G(s) = B�1p (s)Gs(s); G(s) = Bz(s)Gm(s) (6.7)

where Gs is the stable and Gm the minimum-phase version of G. Bp(s) and Bz(s) are stable
all-pass transfer matrices (all singular values are 1 for s = j!) containing the RHP-poles and
HP-zeros, respectively. Note that we here only use the output factorizations. Bp(s) is obtained
by factorizing to the output one RHP-pole at a time, starting with G(s) = B�1p1 (s)Gp1(s)

where B�1p1 (s) = I + 2Rep1
s�p1

byp1byHp1 where byp1 = yp1 is the output pole direction for p1.
This procedure may be continued to factor out p2 from Gp1(s) where byp2 is the output pole
direction of Gp1 (which need not coincide with yp2, the pole direction of G), and so on. A
similar procedure may be used for the RHP-zeros.

B�1p (s) =

NpY
i=1

(I +
2Re(pi)

s� pi
bypibyHpi); B�1z (s) =

NzY
j=1

(I +
2Re(zj)

s� zj
byzjbyHzj) (6.8)

Remark. State-space realizations are provided by Zhou et al. (1996, p.145). Note that these
realizations may be complex.

With this factorization we have the following theorem.

Theorem 6.1 MIMO sensitivity peaks. Suppose thatG(s) hasNz RHP-zeroszj with
output directionsyzj , andNp RHP-polespi with output directionsypi. Define the all-pass
transfer matrices given in (6.8) and compute the real constants

c1j = kyHzjBp(zj)k2 � 1; c2i = kB�1z (pi)ypik2 � 1 (6.9)

LetwP (s) be a stable weight. Then for closed-loop stability the weighted sensitivity function
must satisfy for each RHP-zerozj

kwPSk1 � c1j jwP (zj)j (6.10)

Herec1j = 1 if G has no RHP-poles.

2 Note that the Blaschke notation is reversed compared to that given in the first edition (1996), that is, Bz
replaces B�1z , and Bp replaces B�1p . This is to get consistency with the literature in general.
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Let wT (s) be a stable weight. Then for closed-loop stability the weighted complementary
sensitivity function must satisfy for each RHP-polepi

kwTTk1 � c2i jwT (pi)j (6.11)

Herec2i = 1 if G has no RHP-zeros.

Proof of c1j in (6.9): Consider here a RHP-zero z with direction yz (the subscript j is
omitted). Since G has RHP-poles at pi, S must have RHP-zeros at pi, such that T = SGK
is stable. We may factorize S = TL�1 = SmBp(s) and introduce the scalar function
f(s) = yHz wP (s)Sm(s)y which is analytic (stable) in the RHP. y is a vector of unit length
which can be chosen freely. We then have

kwPS(s)k1 = kwPSmk1 � kf(s)k1 � jf(z)j = jwP (z)j � jyHz B�1p (z)yj (6.12)

The final equality follows since wP is a scalar and yHz S1(z) = yHz S(z)B
�1
p (z) =

yHz B
�1
p (z). We finally select y such that the lower bound is as large as possible and derive

c1. To prove that c1 � 1, we follow Chen (1995) and introduce the matrix Vi whose columns
together with bypi form an orthonormal basis for Cl�l. Then, I = bypibyHpi + ViV

H
i , and

Bpi(s) = I +
2Re(pi)

s� pi
bypibyHpi = s+ �pi

s� pi
bypibyHpi + ViV

H
i = [ bypi Vi ]

� s+�pi
s�pi

0

0 I

�� byHpi
V H
i

�
(6.13)

and we see that all singular values of Bpi(z) are equal to 1, except for one which is
jz + �pij=jz � pij � 1 (since z and pi are both in the RHP). Thus all singular values of
B�1p (z) are 1 or larger, so Bp(z)

�1 is greater than or equal to 1 in all directions and hence
c1 � 1. The proof of c2i is similar. 2

Lower bound on kSk1 and kTk1. From Theorem 6.1 we get by selecting wP (s) = 1 and
wT (s) = 1

kSk1 � max
zeros zj

c1j ; kTk1 � max
poles pi

c2i (6.14)

One RHP-pole and one RHP-zero. For the case with one RHP-zero z and one RHP-pole p
we derive from (6.9)

c1 = c2 =

s
sin2 �+

jz + �pj2
jz � pj2 cos

2 � (6.15)

where � = cos�1jyHz ypj is the angle between the output directions of the pole and zero.
We then get that if the pole and zero are aligned in the same direction such that yz = yp
and � = 0, then (6.15) simplifies to give the SISO-conditions in (5.16) and (5.18) with
c1 = c2 = jz+�pj

jz�pj
� 1. Conversely, if the pole and zero are orthogonal to each other, then

� = 90Æ and c1 = c2 = 1 and there is no additional penalty for having both a RHP-pole and
a RHP-zero.

Proof of (6.15):From (6.9) c1 = kyHz B�1p (z)k2. From (6.13) the projection of yz in the
direction of the largest singular value of B�1p (z) has magnitude jz + �pj=jz � pj cos�, and
the projection onto the remaining subspace is 1 � sin�, and (6.15) follows. A weaker version
of this result was first proved by Boyd and Desoer (1985). An alternative proof of (6.15) is
given by Chen (1995) who presents a slightly improved bound (but his additional factor Q(z)
is rather difficult to evaluate). 2
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Later in this chapter we discuss the implications of these results and provide some examples.

6.3 Functional controllability

Consider a plant G(s) with l outputs and let r denote the normal rank of G(s). In order to
control all outputs independently we must require r = l, that is, the plant must be functionally
controllable. This term was introduced by Rosenbrock (1970, p. 70) for square systems, and
related concepts are “ right invertibility” and “output realizability” . We will use the following
definition:

Definition 6.1 Functional controllability. Anm-input l-output systemG(s) is functionally
controllable if the normal rank ofG(s), denotedr, is equal to the number of outputs (r = l),
that is, ifG(s) has full row rank. A system is functionally uncontrollable ifr < l.

The normal rank of G(s) is the rank of G(s) at all values of s except at a finite number of
singularities (which are the zeros of G(s)).

Remark 1 The only example of a SISO system which is functionally uncontrollable is the
system G(s) = 0. A square MIMO system is functional uncontrollable if and only if
detG(s) = 0; 8s.

Remark 2 A plant is functionally uncontrollable if and only if �l(G(j!)) = 0; 8!. As a
measure of how close a plant is to being functionally uncontrollable we may therefore consider
�l(G(j!)), which for the interesting case when there is at least as many inputs as outputs,
m � l, is the minimum singular value, �(G(j!)).

Remark 3 In most cases functional uncontrollability is a structural property of the system,
that is, it does not depend on specific parameter values, and it may often be evaluated from
cause-and-effect graphs. A typical example of this is when none of the inputs ui affect a
particular output yj which would be the case if one of the rows in G(s) was identically zero.
Another example is when there are fewer inputs than outputs.

Remark 4 For strictly proper systems, G(s) = C(sI � A)�1B, we have that G(s) is
functionally uncontrollableif rank(B) < l (the system is input deficient), or if rank(C) < l
(the system is output deficient), or if rank(sI � A) < l (fewer states than outputs). This
follows since the rank of a product of matrices is less than or equal to the minimum rank of
the individual matrices, see (A.35).

If the plant is not functionally controllable, i.e. r < l, then there are l � r output directions,
denoted y0, which cannot be affected. These directions will vary with frequency, and we have
(analogous to the concept of a zero direction)

yH0 (j!)G(j!) = 0 (6.16)

From an SVD of G(j!) = U�V H , the uncontrollable output directionsy0(j!) are the last
l�r columns ofU(j!). By analyzing these directions, an engineer can then decide on whether
it is acceptable to keep certain output combinations uncontrolled, or if additional actuators are
needed to increase the rank of G(s).
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Example 6.1 The following plant is singular and thus not functionally controllable

G(s) =

"
1

s+1
2

s+1
2

s+2
4

s+2

#

This is easily seen since column2 of G(s) is two times column1. The uncontrollable output
directions at low and high frequencies are, respectively

y0(0) =
1p
2

�
1
�1

�
y0(1) =

1p
5

�
2
�1

�

6.4 Limitations imposed by time delays

Time delays pose limitations also in MIMO systems. Specifically, let �ij denote the time delay
in the ij’ th element of G(s). Then a lower bound on the time delay for output i is given by
the smallest delay in row i of G(s), that is,

�min
i = min

j
�ij

This bound is obvious since �min
i is the minimum time for any input to affect output i, and

�min
i can be regarded as a delay pinned to output i.

Holt and Morari (1985a) have derived additional bounds, but their usefulness is sometimes
limited since they assume a decoupledclosed-loop response (which is usually not desirable in
terms of overall performance) and also assume infinite power in the inputs.

For MIMO systems we have the surprising result that an increased time delay may sometimes
improve the achievable performance. As a simple example, consider the plant

G(s) =

�
1 1

e��s 1

�
(6.17)

With � = 0, the plant is singular (not functionally controllable), and controlling the two
outputs independently is clearly impossible. On the other hand, for � > 0, effective feedback
control is possible, provided the bandwidth is larger than about 1=�. That is, for this example,
control is easier the larger � is. In words, the presence of the delay decouples the initial (high-
frequency) response, so we can obtain tight control if the controller reacts within this initial
time period. To illustrate this, we may compute the magnitude of the RGA (or the condition
number) of G as a function of frequency, and note that it is infinite at low frequencies, but
drops to 1 at about frequency 1=�.

Exercise 6.1 To further illustrate the above arguments, compute the sensitivity functionS
for the plant (6.17) using a simple diagonal controllerK = k

s
I. Use the approximation

e��s � 1 � �s to show that at low frequencies the elements ofS(s) are of magnitude
1=(k�+2). How large mustk be to have acceptable performance (less than 10% offset at low
frequencies)? What is the corresponding bandwidth? (Answer: Needk > 8=�. Bandwidth is
equal tok.)
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Remark 1 The observant reader may have noticed that G(s) in (6.17) is singular at s = 0
(even with � non-zero) and thus has a zero at s = 0. Therefore, a controller with integral
action which cancels this zero, yields an internally unstable system, (e.g. the transfer function
KS contains an integrator). This means that although the conclusion that the time delay helps
is correct, the derivations given in Exercise 6.1 are not strictly correct. To “fi x” the results we
may assume that the plant is only going to be controlled over a limited time so that internal
instability is not an issue. Alternatively, we may assume, for example, that e��s is replaced
by 0:99e��s so that the plant is not singular at steady-state (but it is close to singular).

Exercise 6.2 Repeat Exercise 6.1 numerically, withe��s replaced by0:99(1 � �
2n
s)n=(1 +

�
2n
s)n (wheren = 5 is the order of the Pad´e approximation), and plot the elements ofS(j!)

as functions of frequency fork = 0:1=�, k = 1=� andk = 8=�.

6.5 Limitations imposed by RHP-zeros

RHP-zeros are common in many practical multivariable problems. The limitations they impose
are similar to those for SISO systems, although often not quite so serious as they only apply
in particular directions.

For ideal ISE optimal control (the “cheap” LQR problem), the SISO result ISE = 2=z from
Section 5.4 can be generalized, see Qiu and Davison (1993). They show for a MIMO plant
with RHP-zeros at zi that the ideal ISE-value (the “cheap” LQR cost function) for a step
disturbance or reference is directly related to

P
i 2=zi. Thus, as for SISO systems, RHP-

zeros close to the origin imply poor control performance.

The limitations of a RHP-zero located at z may also be derived from the bound

kwPS(s)k1 = max
!
jwP (j!)j��(S(j!)) � jwP (z)j (6.18)

in (6.10) where wP (s) is a scalar weight. All the results derived in Section 5.6.4 for SISO
systems, therefore generalize if we consider the “worst” direction corresponding to the
maximum singular value, ��(S). For instance, by selecting the weight wP (s) such that we
require tight control at low frequencies and a peak for ��(S) less than 2, we derive from (5.34)
that the bandwidth (in the “worst” direction) must for a real RHP-zero satisfy !�B < z=2.
Alternatively, if we require tight control at high frequencies, then we must from (5.38) satisfy
!�B > 2z.

Remark 1 The use of a scalar weight wP (s) in (6.18) is somewhat restrictive. However, the
assumption is less restrictive if one follows the scaling procedure in Section 1.4 and scales
all outputs by their allowed variations such that their magnitudes are of approximately equal
importance.

Remark 2 Note that condition (6.18) involves the maximum singular value (which is
associated with the “worst” direction), and therefore the RHP-zero may not be a limitation
in other directions. Furthermore, we may to some extent choose the worst direction. This is
discussed next.
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6.5.1 Moving the effect of a RHP-zero to a specific output

In MIMO systems one can often move the deteriorating effect of a RHP-zero to a given
output, which may be less important to control well. This is possible because, although the
interpolation constraint yHz T (z) = 0 imposes a certain relationship between the elements
within each column of T (s), the columns of T (s) may still be selected independently. Let us
first consider an example to motivate the results that follow. Most of the results in this section
are from Holt and Morari (1985b) where further extensions can also be found.

Example 3.8 continued. Consider the plant

G(s) =
1

(0:2s+ 1)(s+ 1)

�
1 1

1 + 2s 2

�
which has a RHP-zero ats = z = 0:5. This is the same plant considered on page 85 where
we performed someH1 controller designs. The output zero direction satisfiesyHz G(z) = 0
and we find

yz =
1p
5

�
2
�1

�
=

�
0:89
�0:45

�
Any allowableT (s) must satisfy the interpolation constraintyHz T (z) = 0 in (6.4), and this
imposes the following relationships between the column elements ofT (s):

2t11(z)� t21(z) = 0; 2t12(z)� t22(z) = 0 (6.19)

We will consider reference trackingy = Tr and examine three possible choices forT : T0
diagonal (a decoupled design),T1 with output1 perfectly controlled, andT2 with output2
perfectly controlled. Of course, we cannot achieve perfect control in practice, but we make
the assumption to simplify our argument. In all three cases, we require perfect tracking at
steady-state, i.e.T (0) = I.

A decoupled design hast12(s) = t21(s) = 0, and to satisfy (6.19) we then needt11(z) = 0
and t22(z) = 0, so the RHP-zero must be contained in both diagonal elements. One possible
choice, which also satisfiesT (0) = I, is

T0(s) =

� �s+z
s+z

0

0 �s+z
s+z

�
(6.20)

For the two designs with one output perfectly controlled we choose

T1(s) =

�
1 0
�1s
s+z

�s+z
s+z

�
T2(s) =

�
�s+z
s+z

�2s
s+z

0 1

�
The basis for the last two selections is as follows. For the output which is not perfectly
controlled, the diagonal element must have a RHP-zero to satisfy (6.19), and the off-diagonal
element must have ans term in the numerator to giveT (0) = I. To satisfy (6.19), we must
then require for the two designs

�1 = 4; �2 = 1

The RHP-zero has no effect on output1 for designT1(s), and no effect on output2 for
designT2(s). We therefore see that it is indeed possible to move the effect of the RHP-zero
to a particular output. However, we must pay for this by having to accept some interaction.
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We note that the magnitude of the interaction, as expressed by�k, is largest for the case
where output1 is perfectly controlled. This is reasonable since the zero output direction
yz = [ 0:89 �0:45 ]T is mainly in the direction of output1, so we have to “pay more”
to push its effect to output2. This was also observed in the controller designs in Section 3.5,
see Figure 3.10 on page 86.

We see from the above example that by requiring a decoupled response from r to y, as
in design T0(s) in (6.20), we have to accept that the multivariable RHP-zero appears as a
RHP-zero in each of the diagonal elements of T (s), i.e., whereas G(s) has one RHP-zero at
s = z, T0(s) has two. In other words, requiring a decoupled response generally leads to the
introduction of additional RHP-zeros in T (s) which are not present in the plant G(s).

We also see that we can move the effect of the RHP-zero to a particular output, but we then
have to accept some interaction. This is stated more exactly in the following Theorem.

Theorem 6.2 Assume thatG(s) is square, functionally controllable and stable and has a
single RHP-zero ats = z and no RHP-pole ats = z. Then if thek’th element of the output
zero direction is non-zero, i.e.yzk 6= 0, it is possible to obtain “perfect” control on all outputs
j 6= k with the remaining output exhibiting no steady-state offset. Specifically,T can be
chosen of the form

T (s) =

2666666666664

1 0 � � � 0 0 0 � � � 0
0 1 � � � 0 0 0 � � � 0
...

...

�1s
s+z

�2s
s+z

� � � �k�1s

s+z
�s+z
s+z

�k+1s

s+z
� � � �ns

s+z

...
. . .

...
0 0 � � � 0 0 0 � � � 1

3777777777775
(6.21)

where
�j = �2 yzj

yzk
for j 6= k (6.22)

Proof: It is clear that (6.21) satisfies the interpolation constraint yHz T (z) = 0; see also Holt
and Morari (1985b). 2

The effect of moving completely the effect of a RHP-zero to output k is quantified by (6.22).
We see that if the zero is not “naturally” aligned with this output, i.e. if jyzkj is much smaller
than 1, then the interactions will be significant, in terms of yielding some �j = �2yzj=yzk
much larger than 1 in magnitude. In particular, we cannotmove the effect of a RHP-zero to an
output corresponding to a zero element in yz , which occurs frequently if we have a RHP-zero
pinned to a subset of the outputs.

Exercise 6.3 Consider the plant

G(s) =
�

� 1
1

s+1
�

�
(6.23)
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(a) Find the zero and its output direction. (Answer:z = 1
�2
� 1 andyz = [�� 1 ]T ).

(b) Which values of� yield a RHP-zero, and which of these values is best/worst in terms of
achievable performance? (Answer: We have a RHP-zero forj�j < 1. Best for� = 0 with zero
at infinity; if control at steady-state is required then worst for� = 1 with zero ats = 0.)
(c) Suppose� = 0:1. Which output is the most difficult to control? Illustrate your conclusion
using Theorem 6.2. (Answer: Output2 is the most difficult since the zero is mainly in that
direction; we get strong interaction with� = 20 if we want to controly2 perfectly.)

Exercise 6.4 Repeat the above exercise for the plant

G(s) =
1

s+ 1

�
s� � 1

(� + 2)2 s� �

�
(6.24)

6.6 Limitations imposed by unstable (RHP) poles

For unstable plants we needfeedback for stabilization. More precicely, the presence of an

ustable pole p requires for internal stability T (p)yp = yp , where yp is the output pole

direction. As for SISO systems this imposes the following two limitations:

RHP-pole Limitation 1 (input usage). The transfer function KS from plant outputs to plant
inputs must satisfy for any RHP-pole p (Havre and Skogestad, 1997)(Havre and
Skogestad, 2001)

kKSk1 � kuHp Gs(p)
�1k2 (6.25)

where up is the input pole direction, and Gs is the “stable version” of G with its
RHP-poles mirrored into the LHP, see (6.7). This bound is tight in the sense that there
always exists a controller (possibly improper) which achives the bound. (6.25) directly
generalises the bound (5.42) for SISO systems.

RHP-pole Limitation 2 (bandwidth). From the bound kwT (s)T (s)k1 � jwT (p)j in
(6.11) we find that a RHP-pole p imposes restrictions on ��(T ) which are identical to
those derived on jT j for SISO systems in Section 5.8. Thus, we need to react sufficiently
fast and we must require that ��(T (j!)) is about 1 or larger up to the frequency 2jpj,
approximately.

Example 6.2 Consider the following multivariable plantG,

G(s) =

"
s�z
s�p

� 0:1s+1
s�p

s�z
0:1s+1

1

#
; with z = �2:5 and p = 2 (6.26)

The plantG has a RHP-polep = 2 (plus a LHP-zero at -2.5 which poses no limitation). The
corresponding input and output pole directions are

up =
�
0:966
�0:258

�
; yp =

�
1
0

�
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The RHP-polep can be factorized asG(s) = B�1p (G)Gs(s) where

Bp(G) =

�
s�p
s+p

0

0 1

�
and Gs(s) =

"
s+2:5
s+p

� 0:1s+1
s+p

s+2:5
0:1s+1

1

#

Consider input usage in terms ofKS. From (6.25) we must have that

kKSk1 � kuHp Gs(p)
�1k2 =





[ 0:966 �0:258 ]
�
1:125 �0:3
3:75 1

��1




2

= 0:859

Havre (1998) presents more details including state-space realizations for controllers that
achieve the bound.

6.7 RHP-poles combined with RHP-zeros

For SISO systems we found that performance is poor if the plant has a RHP-pole located close
to a RHP-zero. This is also the case in MIMO systems provided that the directions coincide.
This was quantified in Theorem 6.1. For example, for a MIMO plant with single RHP-zero z
and single RHP-pole p we derive from (6.15) and (6.14)

kSk1 � c; kTk1 � c; c =

s
sin2 �+

jz + pj2
jz � pj2 cos

2 � (6.27)

where � = cos�1 jyHz ypj is the angle between the RHP-zero and RHP-pole. We next consider
an example which demonstrates the importance of the directions as expressed by the angle �.

Example 6.3 Consider the plant

G�(s) =

"
1

s�p
0

0 1
s+p

# �
cos� � sin�
sin� cos�

�
| {z }

U�

"
s�z

0:1s+1
0

0 s+z
0:1s+1

#
; z = 2; p = 3 (6.28)

which has for all values of� a RHP-zero atz = 2 and a RHP-pole atp = 3.

For � = 0Æ the rotation matrixU� = I, and the plant consists of two decoupled subsystems

G0(s) =

"
s�z

(0:1s+1)(s�p)
0

0 s+z
(0:1s+1)(s+p)

#

Here the subsystemg11 has both a RHP-pole and a RHP-zero, and closed-loop performance
is expected to be poor. On the other hand, there are no particular control problems related to
the subsystemg22. Next, consider� = 90Æ for which we have

U� =
�
0 �1
1 0

�
; and G90(s) =

"
0 s+z

(0:1s+1)(s�p)

� s�z
(0:1s+1)(s+p)

0

#
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and we again have two decoupled subsystems, but this time in the off-diagonal elements. The
main difference, however, is that there is no interaction between the RHP-pole and RHP-zero
in this case, so we expect this plant to be easier to control. For intermediate values of� we do
not have decoupled subsystems, and there will be some interaction between the RHP-pole and
RHP-zero.

Since in (6.28) the RHP-pole is located at the output of the plant, its output direction is fixed
and we findyp = [ 1 0 ]T for all values of�. On the other hand, the RHP-zero output
direction changes from[ 1 0 ]T for � = 0Æ to [ 0 1 ]T for � = 90Æ. Thus, the angle�
between the pole and zero direction also varies between0Æ and 90Æ, but � and � are not
equal. This is seen from the follwoing Table below, where we also givec in (6.27), for four
rotation angles,� = 0Æ; 30Æ; 60Æ and90Æ:

� 0Æ 30Æ 60Æ 90Æ

yz

�
1
0

� �
0:33
�0:94

� �
0:11
�0:99

� �
0
1

�
� = cos�1 jyHz ypj 0Æ 70:9Æ 83:4Æ 90Æ

c 5.0 1.89 1.15 1.0
kSk1 7.00 2.60 1.59 1.98
kTk1 7.40 2.76 1.60 1.31


(S=KS) 9.55 3.53 2.01 1.59

0 1 2 3 4 5
−2

−1

0

1

2

0 1 2 3 4 5
−2

−1

0

1

2

0 1 2 3 4 5
−2

−1

0

1

2

0 1 2 3 4 5
−2

−1

0

1

2

� = 0Æ � = 70:9Æ

� = 83:4Æ � = 90Æ

TimeTime

TimeTime

Figure 6.1: MIMO plant with angle � between RHP-pole and RHP-zero. Response to step
in reference r = [1 � 1]T with H1 controller for four different values of �. Solid line: y1;
Dashed line: y2.

The Table also shows the values ofkSk1 and kTk1 obtained by anH1 optimal S=KS
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design using the following weights

Wu = I; WP =

�
s=M + !�B

s

�
I; M = 2; !�B = 0:5 (6.29)

The weightWP indicates that we requirekSk1 less than2, and require tight control up to a
frequency of about!�B = 0:5rad=s. The minimumH1 norm for the overallS=KS problem
is given by the value of
 in Table 6.3. The corresponding responses to a step change in the
reference,r = [ 1 �1 ], are shown in Figure 6.1.

Several things about the example are worth noting:

1. We see from the simulation for� = � = 0Æ in Figure 6.1 that the response fory1 is very
poor. This is as expected because of the closeness of the RHP-pole and zero (z = 2; p = 3).

2. For� = � = 90o the RHP-pole and RHP-zero do not interact. From the simulation we see
thaty1 (solid line) has on overshoot due to the RHP-pole, whereasy2 (dashed line) has an
inverse response due to the RHP-zero.

3. The bounds in (6.27) are tight since there is only one RHP-zero and one RHP-pole. This
can be confirmed numerically by selectingWu = 0:01I, !�B = 0:01 andM = 1 (Wu

and!B are small so the main objective is to minimize the peak ofS). We find with these
weights that theH1 designs for the four angles yieldkSk1 = 5:04; 1:905; 1:155; 1:005,
which are very close toc.

4. The angle� between the pole and zero, is quite different from the rotation angle� at
intermediate values between0Æ and90Æ. This is because of the influence of the RHP-pole
in output1, which yields a strong gain in this direction, and thus tends to push the zero
direction towards output2.

5. For � = 0Æ we havec = 5 sokSk1 � 5 andkTk1 � 5 and it is clearly impossible to
getkSk1 less than2, as required by the performance weightWP .

6. TheH1 optimal controller is unstable for� = 0Æ and 30Æ. This is not altogether
surprising, because for� = 0Æ the plant becomes two SISO systems one of which needs an
unstable controller to stabilize it sincep > z (see Section 5.9).

Exercise 6.5 Consider the plant in (6.26), but withz = 2:5 so that the plant now also has a
RHP-zero. Compute the lower bounds onkSk1 andkKSk1.

In conclusion, pole and zero directions provide useful information about a plant, as does the
values of c in (6.27). However, the output pole and zero directions do depend on the relative
scaling of the outputs, which must therefore be done appropriately prior to any analysis.

6.8 Performance requirements imposed by
disturbances

For SISO systems we found that large and “fast” disturbances require tight control and a large
bandwidth. The same results apply to MIMO systems, but again the issue of directions is
important.
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Definition 6.2 Disturbance direction. Consider a single (scalar) disturbance and let the
vectorgd represent its effect on the outputs (y = gdd), The disturbance direction is defined as

yd =
1

kgdk2 gd (6.30)

The associated disturbance condition number is defined as


d(G) = ��(G) ��(Gyyd) (6.31)

Here Gy is the pseudo-inverse which is G�1 for a non-singular G.

Remark. We here use gd (rather than Gd) to show that we consider a single disturbance, i.e.
gd is a vector. For a plant with many disturbances gd is a column of the matrix Gd.

The disturbance condition number provides a measure of how a disturbance is aligned with
the plant. It may vary between 1 (for yd = �u) if the disturbance is in the “good” direction, and
the condition number 
(G) = ��(G)��(Gy) (for yd = u) if it is in the “bad” direction. Here �u
and u are the output directions in which the plant has its largest and smallest gain; see Chapter
3.

In the following, let r = 0 and assume that the disturbance has been scaled such that at each
frequency the worst-case disturbance may be selected as jd(!)j = 1. Also assume that the
outputs have been scaled such that the performance objective is that at each frequency the
2-norm of the error should be less than 1, i.e. ke(!)k2 < 1. With feedback control e = Sgdd
and the performance objective is then satisfied if

kSgdk2 = ��(Sgd) < 1 8! , kSgdk1 < 1 (6.32)

For SISO systems, we used this to derive tight bounds on the sensitivity function and the loop
gain; jSj < 1=jGdj and j1 + Lj > jGdj. A similar derivation is complicated for MIMO
systems because of directions. To see this, we can use (6.30) to get the following requirement,
which is equivalent to (6.32),

kSydk2 < 1=kgdk2 8! (6.33)

which shows that the S must be less than 1=kgdk2 only in the direction of yd. We can also
derive bounds in terms of the singular values of S. Since gd is a vector we have from (3.42)

�(S)kgdk2 � kSgdk2 � ��(S)kgdk2 (6.34)

Now �(S) = 1=��(I + L) and ��(S) = 1=�(I + L), and we therefore have:

� For acceptable performance (kSgdk2 < 1) we must at leastrequire that ��(I + L) is larger
than kgdk2 and we mayhave to require that �(I + L) is larger than kgdk2.

Plant with RHP-zero. If G(s) has a RHP-zero at s = z then the performance may be poor if
the disturbance is aligned with the output direction of this zero. To see this use yHz S(z) = yhz
and apply the maximum modulus principle to f(s) = yHz SGd to get

kSgdk1 � jyHz gd(z)j = jyHz ydj � kgd(z)k2 (6.35)
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To satisfy kSgdk1 < 1, we must then for a given disturbance d at least require

jyHz gd(z)j < 1 (6.36)

where yz is the direction of the RHP-zero. This provides a generalization of the SISO-
condition jGd(z)j < 1 in (5.53). For combined disturbances the condition is kyHz Gd(z)k2 <
1.

Remark. In the above development we consider at each frequency performance in terms of
kek2 (the 2-norm). However, the scaling procedure presented in Section 1.4 leads naturally
to the vector max-norm as the way to measure signals and performance. Fortunately, this
difference is not too important, and we will neglect it in the following. The reason is that for
an m � 1 vector a we have kakmax � kak2 � p

m kakmax (see (A.94)), so the values of
max- and 2-norms are at most a factor

p
m apart.

Example 6.4 Consider the following plant and disturbance models

G(s) =
1

s+ 2

�
s� 1 4
4:5 2(s� 1)

�
; gd(s) =

6

s+ 2

�
k
1

�
; jkj � 1 (6.37)

It is assumed that the disturbance and outputs have been appropriately scaled, and the
question is whether the plant is input-output controllable, i.e. whether we can achieve
kSgdk1 < 1, for any value ofjkj � 1. G(s) has a RHP-zeroz = 4 and in Example 4.11 on
page 134 we have already computed the zero direction. From this we get

jyHz gd(z)j = j[ 0:83 �0:55 ] �
�
k
1

�
j = j0:83k � 0:55j

and from (6.36) we conclude that the plant isnot input-output controllable ifj0:83k�0:55j >
1, i.e. if k < �0:54. We cannot really conclude that the plantis controllable fork > �0:54
since (6.36) is only a necessary (and not sufficient) condition for acceptable performance, and
there may also be other factors that determine controllability, such as input constraints which
are discussed next.

Exercise. Show that the disturbance condition number may be interpreted as the ratio between
the actual input for disturbance rejection and the input that would be needed if the same
disturbance was aligned with the “best” plant direction.

6.9 Limitations imposed by input constraints

Constraints on the manipulated variables can limit the ability to reject disturbances and track
references. As was done for SISO plants in Chapter 5, we will consider the case of perfect
control (e = 0) and then of acceptable control (kek � 1). We derive the results for
disturbances, and the corresponding results for reference tracking are obtained by replacing
Gd by �R. The results in this section apply to both feedback and feedforward control.
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Remark. For MIMO systems the choice of vector norm, k � k, to measure the vector signal
magnitudes at each frequency makes some difference. The vector max-norm (largest element)
is the most natural choice when considering input saturation and is also the most natural in
terms of our scaling procedure. However, for mathematical convenience we will also consider
the vector 2-norm (Euclidean norm). In most cases the difference between these two norms is
of little practical significance.

6.9.1 Inputs for perfect control

We here consider the question: can the disturbances be rejected perfectly while maintaining
kuk � 1? To answer this, we must quantify the set of possible disturbances and the set of
allowed input signals. We will consider both the max-norm and 2-norm.

Max-norm and square plant. For a square plant the input needed for perfect disturbance
rejection is u = �G�1Gdd (as for SISO systems). Consider a single disturbance(gd is a
vector). Then the worst-case disturbance is jd(!)j = 1, and we get that input saturation is
avoided (kukmax � 1) if all elements in the vector G�1gd are less than 1 in magnitude, that
is,

kG�1gdkmax � 1; 8!
For simultaneous disturbances(Gd is a matrix) the corresponding requirement is

kG�1Gdki1 � 1; 8! (6.38)

where k � ki1 is the induced max-norm (induced1-norm, maximum row sum, see (A.105)).
However, it is usually recommended in a preliminary analysis to consider one disturbance at a
time, for example, by plotting as a function of frequency the individual elements of the matrix
G�1Gd. This yields more information about which particular input is most likely to saturate
and which disturbance is the most problematic.

Two-norm. We here measure both the disturbance and the input in terms of the 2-norm.
Assume that G has full row rank so that the outputs can be perfectly controlled. Then the
smallest inputs (in terms of the 2-norm) needed for perfect disturbance rejection are

u = �GyGdd (6.39)

where Gy = GH(GGH)�1 is the pseudo-inverse from (A.63). Then with a single disturbance
we must require kGygdk2 � 1. With combined disturbances we must require ��(GyGd) � 1,
that is, the induced 2-norm is less than 1, see (A.106).

For combined reference changes, ker(!)k2 � 1, the corresponding condition for perfect
control with kuk2 � 1 becomes ��(GyR) � 1, or equivalently (see (A.61))

�(R�1G) � 1; 8! � !r (6.40)

where !r is the frequency up to which reference tracking is required. Usually R is diagonal
with all elements larger than 1, and we must at least require

�(G(j!)) � 1; 8! � !r (6.41)

or, more generally, we want �(G(j!)) large.
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6.9.2 Inputs for acceptable control

Let r = 0 and consider the response e = Gu+Gdd to a disturbance d. The question we want
to answer in this subsection is: is it possible to achieve kek < 1 for any kdk � 1 using inputs
with kuk � 1? We use here the max-norm, k � kmax (the vector infinity-norm), for the vector
signals.

We consider this problem frequency-by-frequency. This means that we neglect the issue
of causality which is important for plants with RHP-zeros and time delays. The resulting
conditions are therefore only necessary (i.e. minimum requirements) for achieving kekmax <
1.

Exact conditions

Mathematically, the problem can be formulated in several different ways; by considering
the maximum allowed disturbance, the minimum achievable control error or the minimum
required input; e.g. see Skogestad and Wolff (1992). We here use the latter approach. To
simplify the problem, and also to provide more insight, we consider one disturbance at a time,
i.e. d is a scalar and gd a vector. The worst-case disturbance is then jdj = 1 and the problem
is at each frequency is to compute

Umin , min
u
kukmax such that kGu+ gddkmax � 1; jdj = 1 (6.42)

A necessary condition for avoiding input saturation (for each disturbance) is then

Umin < 1; 8! (6.43)

IfG and gd are real (i.e. at steady-state) then (6.42) can be formulated as a linear programming
(LP) problem, and in the general case as a convex optimization problem.

For SISO systems we have an analytical solution of (6.42); from the proof of (5.59) we
get Umin = (jgdj � 1)=jGj. A necessary condition for avoiding input saturation (for each
disturbance) is then

SISO : jGj > jgdj � 1; at frequencies where jgdj > 1 (6.44)

We would like to generalize this result to MIMO systems. Unfortunately, we do not have an
exact analytical result, but by making the approximation in (6.46) below, a nice approximate
generalization (6.47) is available.

Approximate conditions in terms of the SVD

At each frequency the singular value decomposition of the plant (possibly non-square) is
G = U�V H . Introduce the rotated control error and rotated input

be = UHe; bu = V Hu (6.45)
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and assume that the max-norm is approximately unchanged by these rotations

kbekmax � kekmax; kbukmax � kukmax (6.46)

From (A.124) this would be an equality for the 2-norm, so from (A.94) the error by using the
approximation for the max-norm is at most a factor

p
m where m is the number of elements

in the vector. We then find that each singular value of G, �i(G), must approximately satisfy

MIMO : �i(G) � juHi gdj � 1; at frequencies where juHi gdj > 1 (6.47)

where ui is the i’ th output singular vector of G, and gd is a vector since we consider a single
disturbance. More precisely, (6.47) is a necessary condition for achieving acceptable control
(kekmax < 1) for a single disturbance (jdj = 1) with kukmax � 1, assuming that (6.46)
holds.

Condition (6.47) provides a nice generalization of (6.44). uHi gd may be interpreted as the
projection of gd onto the i’ th output singular vector of the plant.

Proof of (6.47):Let r = 0 and consider the response e = Gu+ gdd to a single disturbance d.
We have be = UHe = UH(Gu+ gdd) = �bu+ UHgdd (6.48)

where the last equality follows since UHG = �V H . For the worst-case disturbance (jdj = 1),
we want to find the smallest possible input such that kekmax � kbekmax is less than 1. This
is equivalent to requiring jbeij � 1; 8i, where from (6.48) bei = �i(G)bui + UH

i gdd. Note: ui
(a vector) is the i’ th column of U , whereas bui (a scalar) is the i’ th rotated plant input. This is
a scalar problem similar to that for the SISO-case in (5.59), and if we assume juHi gddj > 1
(otherwise we may simply set bui = 0 and achieve jbeij < 1) then the smallest jbuij is achieved
when the right hand side is “ lined up” to make jbeij = 1. Thus, the minimum input is

jbuij = (juHi gdj � 1)=�i(G) (6.49)

and (6.47) follows by requiring that kukmax � kbukmax is less than 1. 2

Based on (6.47) we can find out:

1. For which disturbances and at which frequencies input constraints may cause problems.
This may give ideas on which disturbances should be reduced, for example by redesign.

2. In which direction i the plant gain is too small. By looking at the corresponding input
singular vector, vi, one can determine which actuators should be redesigned (to get more
power in certain directions) and by looking at the corresponding output singular vector, ui,
one can determine on which outputs we may have to reduce our performance requirements.

Several disturbances. For combined disturbances, one requires the i’ th row sum of UHGd to
be less than �i(G) (at frequencies where the i’ th row sum is larger than 1). However, usually
we derive more insight by considering one disturbance at a time.

Reference commands. As usual, similar results are derived for references by replacing Gd by
�R.
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Example 6.5 Distillation process Consider a2 � 2 plant with two disturbances. The
appropriately scaled steady-state model is

G = 0:5
�
87:8 �86:4
108:2 �109:6

�
; Gd =

�
7:88 8:81
11:72 11:19

�
(6.50)

This is a model of a distillation column with product compositions as outputs, reflux and boilup
as inputs, and feed rate (20% change) and feed composition (20% change) as disturbances.
The elements inG are scaled by a factor0:5 compared to (3.45) because the allowed input
changes are a factor2 smaller. From an SVD ofG we have��(G) = 98:6 and�(G) = 0:70.
Some immediate observations:

1. The elements of the matrixGd are larger than1 so control is needed to reject disturbances.
2. Since�(G) = 0:7 we are able to perfectly track reference changes of magnitude0:7 (in

terms of the 2-norm) without reaching input constraints.
3. The elements inG are about5 times larger than those inGd, which suggests that there

should be no problems with input constraints. On the other hand,�(G) = 0:7 is much less
than the elements inGd, so input constraints may be an issue after all.

4. The disturbance condition numbers,
d(G), for the two disturbances, are11:75 and1:48,
respectively. This indicates that the direction of disturbance1 is less favourable than that
of disturbance2.

5. The condition number
(G) = ��(G)=�(G) = 141:7 is large, but this doesnot by itself
imply control problems. In this case, the large value of the condition number is not caused
by a small�(G) (which would be a problem), but rather by a large��(G).

We will now analyze whether the disturbance rejection requirements will cause input
saturation by considering separately the two cases of perfect control (e = 0) and acceptable
control (kekmax � 1).

1. Perfect control. The inputs needed for perfect disturbance rejection areu = G�1Gd where

G�1Gd =
��1:09 �0:009
�1:29 �0:213

�
We note that perfect rejection of disturbanced1 = 1 requires an inputu = [�1:09 �1:29 ]T
which is larger than1 in magnitude. Thus, perfect control of disturbance1 is not possible
without violating input constraints. However, perfect rejection of disturbanced2 = 1 is
possible as it requires a much smaller inputu = [�0:009 �0:213 ]T .

2. Approximate result for acceptable control. We will use the approximate requirement
(6.47) to evaluate the inputs needed for acceptable control. We have

UHGd =
�
14:08 14:24
1:17 0:11

�
�1(G) = 98:6
�2(G) = 0:70

and the magnitude of each element in thei’th row of UHGd should be less than�i(G) + 1
to avoid input constraints. In the high-gain direction this is easily satisfied since14:08 and
14:24 are both much less than�1(G) + 1 = 99:6, and from (6.49) the required input in this
direction is thus only aboutjbu1j = (14 � 1)=98:6 = 0:13 for both disturbances which is
much less than1. The requirement is also satisfied in the low-gain direction since1:17 and
0:11 are both less than�2(G) + 1 = 1:7, but we note that the margin is relatively small
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for disturbance1. More precisely, in the low-gain direction disturbance1 requires an input
magnitude of approximatelyjeu2j = (1:17 � 1)=0:7 = 0:24, whereas disturbance2 requires
no control (as its effect is0:11 which is less than1).

In conclusion, we find thatthe results based on perfect control are misleading, as acceptable
control is indeed possible. Again we find disturbance1 to be more difficult, but the difference
is much smaller than with perfect control. The reason is that we only need to reject about12%
(1:13 � 1=1:13) of disturbance1 in the low-gain direction.

However, this changes drastically if disturbance1 is larger, since then a much larger fraction
of it must be rejected. The fact that disturbance1 is more difficult is confirmed in Section 10.10
on page 455 where we also present closed-loop responses.

3. Exact numerical result for acceptable control. The exact values of the minimum inputs
needed to achieve acceptable control arekukmax = 0:098 for disturbance1 andkukmax =
0:095 for disturbance2, which confirms that input saturation is not a problem.

However, the values ofkukmax � 0:10 indicate that the two disturbances are about
equally difficult. This seems inconsistent with the above approximate results, where we found
disturbance1 to be more difficult. However, the results are consistent if for both disturbances
control is only needed in the high-gain direction, for which the approximate results gave the
same value of0:13 for both disturbances. (The approximate results indicated that some control
was needed for disturbance1 in the low-gain direction, since1:17 was just above1, but
apparently this is inaccurate).

The discussion at the end of the example illustrates an advantage of the approximate analytical
method in (6.47); namely that we can easily see whether we are close to a borderline value
where control may be needed in some direction. On the other hand, no such “warning” is
provided by the exact numerical method.

From the example we conclude that it is difficult to judge, simply by looking at the magnitude
of the elements in Gd, whether a disturbance is difficult to reject or not. In the above example,
it would appear from the column vectors of Gd in (6.50) that the two disturbances have almost
identical effects. However, we found that disturbance 1 may be much more difficult to reject
because it has a component of 1.17 in the low-gain direction of G which is about 10 times
larger than the value of 0.11 for disturbance 2. This can be seen from the second row of
UHGd.

Exercise 6.6 Consider again the plant in (6.37). Letk = 1 and compute, as a function
of frequency, the required inputsG�1gd(j!) for perfect control. You will find that both
inputs are about2 in magnitude at low frequency, so if the inputs and disturbances have
been appropriately scaled, we conclude that perfect control is not possible. Next, evaluate
G(j!) = U�V H , and computeUHgd(j!) as a function of frequency and compare with the
elements of�(j!) + I to see whether “acceptable control” (jei(j!)j < 1) is possible.

6.9.3 Unstable plant and input constraints

Active use of inputs are needed to stabilize and unstable plant and from (6.25) we must
require KSk1 � kuHp Gs(p)

�1k2 where KS is the transfer function from outputs to inputs,
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u = �KS(Gdd+ n). If the required inputs exceed the constraints then stabilization is most
likely not possible.

6.10 Limitations imposed by uncertainty

The presence of uncertainty requires the use of feedback, rather than simply feedforward
control, to get acceptable performance. Sensitivity reduction with respect to uncertainty is
achieved with high-gain feedback, but for any real system we have a crossover frequency range
where the loop gain has to drop below 1, and the presence of uncertainty in this frequency
range may result in poor performance or even instability. These issues are the same for SISO
and MIMO systems.

However, with MIMO systems there is an additional problem in that there is also uncertainty
associated with the plant directionality. The main objective of this section is to introduce some
simple tools, like the RGA and the condition number, which are useful in picking out plants
for which one might expect sensitivity to directional uncertainty.

Remark. In Chapter 8, we discuss more exact methods for analyzing performance with almost
any kind of uncertainty and a given controller. This involves analyzing robust performance by
use of the structured singular value. However, in this section the treatment is kept at a more
elementary level and we are looking for results which depend on the plant only.

6.10.1 Input and output uncertainty

In practice the difference between the true perturbed plant G0 and the plant model G is caused
by a number of different sources. In this section, we focus on input uncertainty and output
uncertainty. In a multiplicative (relative) form, the output and input uncertainties (as in Figure
6.2) are given by

Output uncertainty: G0 = (I +EO)G or EO = (G0 �G)G�1 (6.51)

Input uncertainty: G0 = G(I +EI) or EI = G�1(G0 �G) (6.52)

These forms of uncertainty may seem similar, but we will show that their implications for
control may be very different. If all the elements in the matrices EI or EO are non-zero,
then we have full block (“unstructured” ) uncertainty. However, in many cases the source of
uncertainty is in the individual input or output channels, and we have that EI or EO are
diagonal matrices, for example,

EI = diagf�1; �2; : : :g (6.53)

where �i is the relative uncertainty in input channel i. Typically, the magnitude of �i is 0.1 or
larger. It is important to stress that this diagonal input uncertaintyis alwayspresent in real
systems.
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Figure 6.2: Plant with multiplicative input and output uncertainty

6.10.2 Effect of uncertainty on feedforward control

Consider a feedforward controller u = Krr for the case with no disturbances (d = 0). We
assume that the plant G is invertible so that we can select

Kr = G�1

and achieve perfectcontrol, e = y�r = Gu�r = GKrr�r = 0, for the nominal case with
no uncertainty. However, for the actual plant G0 (with uncertainty) the actual control error
becomes e0 = y0 � r = G0G�1r � r. We then get for the two sources of uncertainty

Output uncertainty: e0 = EOr (6.54)

Input uncertainty: e0 = GEIG
�1r (6.55)

For output uncertainty, we see that (6.54) is identical to the result in (5.70) for SISO systems.
That is, the worst-case relative control error ke0k2=krk2 is equal to the magnitude of the
relative output uncertainty ��(EO). However, for input uncertainty the sensitivity may be much
larger because the elements in the matrix GEIG�1 can be much larger than the elements in
EI . In particular, for diagonal input uncertainty the elements of GEIG�1 are directly related
to the RGA, see (A.80):

Diagonal input uncertainty: [GEIG
�1 ]ii =

nX
j=1

�ij(G)�j (6.56)

The RGA-matrix is scaling independent, which makes the use of condition (6.56) attractive.
Since diagonal input uncertainty is alwayspresent we can conclude that

� if the plant has large RGA elements within the frequency range where effective control is
desired, then it is not possible to achieve good reference tracking with feedforward control
because of strong sensitivity to diagonal input uncertainty.

The reverse statement is not true, that is, if the RGA has small elements we cannotconclude
that the sensitivity to input uncertainty is small. This is seen from the following expression for
the 2� 2 case

GEIG
�1 =

�
�11�1 + �12�2 � g12

g22
�11(�1 � �2)

g21
g11

�11(�1 � �2) �21�1 + �22�2

�
(6.57)

For example, consider a triangular plant with g12 = 0. In this case the RGA is � = I so
the diagonal elements of GEIG�1 are �1 and �2. Still, the system may be sensitive to input
uncertainty, since from (6.57) the 2; 1-element of GEIG�1 may be large if g21=g11 is large.



236 MULTIVARIABLE FEEDBACK CONTROL

6.10.3 Uncertainty and the benefits of feedback

To illustrate the benefits of feedback control in reducing the sensitivity to uncertainty, we
consider the effect of output uncertainty on reference tracking. As a basis for comparison we
first consider feedforward control.

Feedforward control. Let the nominal transfer function with feedforward control be y = Trr
where Tr = GKr and Kr denotes the feedforward controller. Ideally, Tr = I . With model
error T 0r = G0Kr , and the change in response is y0 � y = (T 0r � Tr)r where

T 0r � Tr = (G0 �G)G�1Tr = EOTr (6.58)

Thus, y0�y = EOTrr = EOy, and with feedforward control the relative control error caused
by the uncertainty is equal to the relative output uncertainty.

Feedback control. With one degree-of-freedom feedback control the nominal transfer
function is y = Tr where T = L(I + L)�1 is the complementary sensitivity function.
Ideally, T = I . The change in response with model error is y0 � y = (T 0 � T )r where from
(A.144)

T 0 � T = S0EOT (6.59)

Thus, y0 � y = S0EOTr = S0EOy, and we see that

� with feedback control the effect of the uncertainty is reduced by a factor S0 compared to
that with feedforward control.

Thus, feedback control is much less sensitive to uncertainty than feedforward control at
frequencies where feedback is effective and the elements in S0 are small. However, the
opposite may be true in the crossover frequency range where S0 may have elements larger
than 1; see Section 6.10.4.

Remark 1 For square plants, EO = (G0 �G)G�1 and (6.59) becomes

�T � T�1 = S0 ��G �G�1 (6.60)

where �T = T 0�T and �G = G0�G. Equation (6.60) provides a generalization of Bode’s
differential relationship (2.23) for SISO systems. To see this, consider a SISO system and let
�G! 0. Then S0 ! S and we have from (6.60)

dT

T
= S

dG

G
(6.61)

Remark 2 Alternative expressions showing the benefits of feedback control are derived by
introducing the inverse output multiplicative uncertainty G0 = (I � EiO)

�1G. We then get
(Horowitz and Shaked, 1975).

Feedforward control: T 0r � Tr = EiOT
0
r (6.62)

Feedback control: T 0 � T = SEiOT
0 (6.63)

(Simple proof for square plants: switch G and G0 in (6.58) and (6.59) and use EiO =
(G0 �G)G0�1).
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Remark 3 Another form of (6.59) is (Zames, 1981)

T 0 � T = S0(L0 � L)S (6.64)

Conclusion. From (6.59), (6.63) and (6.64) we see that with feedback control T 0�T is small
at frequencies where feedback is effective (i.e. S and S0 are small). This is usually at low
frequencies. At higher frequencies we have for real systems that L is small, so T is small,
and again T 0 �T is small. Thus with feedback, uncertainty only has a significant effect in the
crossover region where S and T both have norms around 1.

6.10.4 Uncertainty and the sensitivity peak

We demonstrated above how feedback may reduce the effect of uncertainty, but we also
pointed out that uncertainty may pose limitations on achievable performance, especially at
crossover frequencies. The objective in the following is to investigate how the magnitude of
the sensitivity, ��(S0), is affected by the multiplicative output uncertainty and input uncertainty
given as (6.51) and (6.52). We will derive upper boundson ��(S0) which involve the plant and
controller condition numbers


(G) =
��(G)

�(G)
; 
(K) =

��(K)

�(K)
(6.65)

and the following minimized condition numbers of the plant and the controller


�I (G) = min
DI


(GDI); 
�O(K) = min
DO


(DOK) (6.66)

where DI and DO are diagonal scaling matrices. These minimized condition numbers may
be computed using (A.74) and (A.75). Similarly, we state a lower boundon ��(S0) for an
inverse-based controller in terms of the RGA-matrix of the plant.

The following factorizations of S0 in terms of the nominal sensitivity S (see Appendix A.6)
form the basis for the development:

Output uncertainty: S0 = S(I +EOT )
�1 (6.67)

Input uncertainty: S0 = S(I +GEIG
�1T )�1 = SG(I +EITI)

�1G�1 (6.68)

S0 = (I + TK�1EIK)�1S = K�1(I + TIEI)
�1KS (6.69)

We assume that G and G0 are stable. We also assume closed-loop stability, so that both S and
S0 are stable. We then get that (I +EOT )

�1 and (I +EITI)
�1 are stable. In most cases we

assume that the magnitude of the multiplicative (relative) uncertainty at each frequency can be
bounded in terms of its singular value

��(EI) � jwI j; ��(EO) � jwOj (6.70)

where wI(s) and wO(s) are scalar weights. Typically the uncertainty bound, jwI j or jwOj, is
0:2 at low frequencies and exceeds 1 at higher frequencies.

We first state some upper bounds on ��(S0). These are based on identities (6.67)-(6.69) and
singular value inequalities (see Appendix A.3.4) of the kind

��((I +EITI)
�1) = 1

�(I+EITI )
� 1

1���(EITI )
� 1

1���(EI)��(TI)
� 1

1�jwI j��(TI )
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Of course these inequalities only apply if we assume ��(EITI) < 1, ��(EI)��(TI) < 1 and
jwI j��(TI) < 1. For simplicity, we will not state these assumptions each time.

Upper bound on ��(S0) for output uncertainty

From (6.67) we derive

��(S0) � ��(S)��((I +EOT )
�1) � ��(S)

1� jwOj��(T ) (6.71)

From (6.71) we see that output uncertainty, be it diagonal or full block, poses no particular
problem when performance is measured at the plant output. That is, if we have a reasonable
margin to stability (k(I + EOT )

�1k1 is not too much larger than 1), then the nominal and
perturbed sensitivities do not differ very much.

Upper bounds on ��(S0) for input uncertainty

The sensitivity function can be much more sensitive to input uncertainty than output
uncertainty.

1. General case (full block or diagonal input uncertainty and any controller). From (6.68) and
(6.69) we derive

��(S0) � 
(G)��(S)��((I +EITI)
�1) � 
(G)

��(S)

1� jwI j��(TI) (6.72)

��(S0) � 
(K)��(S)��((I + TIEI)
�1) � 
(K)

��(S)

1� jwI j��(TI) (6.73)

From (6.73) we have the important result that if we use a “ round” controller, meaning that

(K) is close to 1, then the sensitivity function is not sensitive to input uncertainty. In
many cases (6.72) and (6.73) are not very useful because they yield unnecessarily large upper
bounds. To improve on this conservativeness we present below some bounds for special cases,
where we either restrict the uncertainty to be diagonal or restrict the controller to be of a
particular form.

2. Diagonal uncertainty and decoupling controller. Consider a decoupling controller in the
form K(s) = D(s)G�1(s) where D(s) is a diagonal matrix. In this case, KG is diagonal so
TI = KG(I +KG)�1 is diagonal, and EITI is diagonal. The second identity in (6.68) may
then be written S0 = S(GDI)(I + EITI)

�1(GDI)
�1 where DI is freely chosen, and we

get

��(S0) � 
�I (G)��(S)��((I +EITI)
�1) � 
�I (G)

��(S)

1� jwI j��(TI) (6.74)

��(S0) � 
�O(K)��(S)��((I + TIEI)
�1) � 
�O(K)

��(S)

1� jwI j��(TI) (6.75)

The bounds (6.74) and (6.75) apply to any decoupling controller in the form K = DG�1.
In particular, they apply to inverse-based control, D = l(s)I , which yields input-output
decoupling with TI = T = t � I where t = l

1+l
.
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Remark. A diagonal controller has 
�O(K) = 1, so from (6.77) below we see that (6.75)
applies to both a diagonal and decoupling controller. Another bound which does apply to any
controller is given in (6.77).

3. Diagonal uncertainty (Any controller). From the first identity in (6.68) we get S0 =
S(I + (GDI)EI(GDI)

�1T )�1 and we derive by singular value inequalities

��(S0) � ��(S)

1� 
�I (G)jwI j��(T )
(6.76)

��(S0) � ��(S)

1� 
�O(K)jwI j��(T ) (6.77)

Note that 
�O(K) = 1 for a diagonal controller so (6.77) shows that diagonal uncertainty does
not pose much of a problem when we use decentralized control.

Lower bound on ��(S0) for input uncertainty

Above we derived upper bounds on ��(S0); we will next derive a lower bound. A lower bound
is more useful because it allows us to make definite conclusions about when the plant is not
input-output controllable.

Theorem 6.3 Input uncertainty and inverse-based control. Consider a controllerK(s) =
l(s)G�1(s) which results in a nominally decoupled response with sensitivityS = s � I and
complementary sensitivityT = t � I wheret(s) = 1 � s(s). Suppose the plant has diagonal
input uncertainty of relative magnitudejwI(j!)j in each input channel. Then there exists a
combination of input uncertainties such that at each frequency

��(S0) � ��(S)

�
1 +

jwI tj
1 + jwI tj k�(G)ki1

�
(6.78)

wherek�(G)ki1 is the maximum row sum of the RGA and��(S) = jsj.

The proof is given below. From (6.78) we see that with an inverse based controller the worst
case sensitivity will be much larger than the nominal at frequencies where the plant has large
RGA-elements. At frequencies where control is effective (jsj is small and jtj � 1) this implies
that control is not as good as expected, but it may still be acceptable. However, at crossover
frequencies where jsj and jtj = j1 � sj are both close to 1, we find that ��(S0) in (6.78)
may become much larger than 1 if the plant has large RGA-elements at these frequencies.
The bound (6.78) applies to diagonal input uncertainty and therefore also to full-block input
uncertainty (since it is a lower bound).

Worst-case uncertainty. It is useful to know which combinations of input errors give poor
performance. For an inverse-based controller a good indicator results if we consider GEIG�1,
where EI = diagf�kg. If all �k have the same magnitude jwI j, then the largest possible
magnitude of any diagonal element in GEIG�1 is given by jwI j � k�(G)ki1 . To obtain this
value one may select the phase of each �k such that \�k = �\�ik where i denotes the row
of �(G) with the largest elements. Also, if �(G) is real (e.g. at steady-state), the signs of the
�k ’s should be the same as those in the row of �(G) with the largest elements.
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Proof of Theorem 6.3:(From Skogestad and Havre (1996) and Gjøsæter (1995)). Write the
sensitivity function as

S0 = (I +G0K)�1 = SG (I +EITI)
�1| {z }

D

G�1; EI = diagf�kg; S = sI (6.79)

Since D is a diagonal matrix, we have from (6.56) that the diagonal elements of S0 are given
in terms of the RGA of the plant G as

s0ii = s
nX

k=1

�ikdk; dk =
1

1 + t�k
; � = G� (G�1)T (6.80)

(Note that s here is a scalar sensitivity function and not the Laplace variable.) The singular
value of a matrix is larger than any of its elements, so ��(S0) � maxi js0iij, and the objective
in the following is to choose a combination of input errors �k such that the worst-case js0iij is
as large as possible. Consider a given output i and write each term in the sum in (6.80) as

�ikdk =
�ik

1 + t�k
= �ik � �ikt�k

1 + t�k
(6.81)

We choose all �k to have the same magnitude jwI(j!)j, so we have �k(j!) = jwI jej\�k . We
also assume that jt�kj < 1 at all frequencies3, such that the phase of 1 + t�k lies between
�90Æ and 90Æ. It is then always possible to select \�k (the phase of �k) such that the last term
in (6.81) is real and negative, and we have at each frequency, with these choices for �k,

s0ii
s

=
nX

k=1

�ikdk = 1 +
nX

k=1

j�ikj � jt�kj
j1 + t�kj

� 1 +

nX
k=1

j�ikj � jwI tj
1 + jwI tj = 1 +

jwI tj
1 + jwI tj

nX
k=1

j�ikj (6.82)

where the first equality makes use of the fact that the row-elements of the RGA sum to 1,
(
Pn

k=1 �ik = 1). The inequality follows since j�kj = jwI j and j1 + t�kj � 1 + jt�kj =
1 + jwI tj. This derivation holds for any i (but only for one at a time), and (6.78) follows by
selecting i to maximize

Pn
k=1 j�ikj (the maximum row-sum of the RGA of G). 2

We next consider three examples. In the first two, we consider feedforward and
feedback control of a plant with large RGA-elements. In the third, we consider
feedback control of a plant with a large condition number, but with small RGA-
elements. The first two are sensitive to diagonal input uncertainty, whereas the third
is not.

Example 6.6 Feedforward control of distillation process. Consider the distillation
process in (3.81).

G(s) =
1

75s+ 1

�
87:8 �86:4
108:2 �109:6

�
; �(G) =

�
35:1 �34:1
�34:1 35:1

�
(6.83)

3 The assumption jt�kj < 1 is not included in the theorem since it is actually needed for robust stability,
so if it does not hold we may have ��(S0) infinite for some allowed uncertainty, and (6.78) clearly holds.
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WithEI = diagf�1; �2g we get for all frequencies

GEIG
�1 =

�
35:1�1 � 34:1�2 �27:7�1 + 27:7�2
43:2�1 � 43:2�2 �34:1�1 + 35:1�2

�
(6.84)

We note as expected from (6.57) that the RGA-elements appear on the diagonal elements in
the matrixGEIG

�1. The elements in the matrixGEIG
�1 are largest when�1 and �2 have

opposite signs. With a20% error in each input channel we may select�1 = 0:2 and�2 = �0:2
and find

GEIG
�1 =

�
13:8 �11:1
17:2 �13:8

�
(6.85)

Thus with an “ideal” feedforward controller and20% input uncertainty, we get from (6.55)
that the relative tracking error at all frequencies, including steady-state, may exceed1000%.
This demonstrates the need for feedback control. However, applying feedback control is also
difficult for this plant as seen in Example 6.7.

Example 6.7 Feedback control of distillation process. Consider again the distillation
processG(s) in (6.83) for which we havek�(G(j!))ki1 = 69:1 and 
(G) � 
�I (G) �
141:7 at all frequencies.

1. Inverse based feedback controller. Consider the controllerK(s) = (0:7=s)G�1(s)
corresponding to the nominal sensitivity function

S(s) =
s

s+ 0:7
I

The nominal response is excellent, but we found from simulations in Figure 3.12 that the
closed-loop response with20% input gain uncertainty was extremely poor (we used�1 = 0:2
and�2 = �0:2). The poor response is easily explained from the lower RGA-bound on��(S0)
in (6.78). With the inverse-based controller we havel(s) = k=s which has a nominal phase
margin of PM= 90Æ so from (2.42) we have, at frequency!c, that js(j!c)j = jt(j!c)j =
1=
p
2 = 0:707. With jwI j = 0:2, we then get from (6.78) that

��(S0(j!c)) � 0:707

�
1 +

0:707 � 0:2 � 69:1
1:14

�
= 0:707 � 9:56 = 6:76 (6.86)

(This is close to the peak value in (6.78) of6:81 at frequency0:79 rad/min.) Thus, we have
that with20% input uncertainty we may havekS0k1 � 6:81 and this explains the observed
poor closed-loop performance. For comparison, the actual worst-case peak value of��(S0),
with the inverse-based controller is 14.5 (computed numerically using skewed-� as discussed
below). This is close to the value obtained with the uncertaintyEI = diagf�1; �2g =
diagf0:2;�0:2g,

kS0k1 =







�
I +

0:7

s
G
�
1:2

0:8

�
G�1

��1





1

= 14:2

for which the peak occurs at0:69 rad/min. The difference between the values6:81 and14:5
illustrates that the bound in terms of the RGA is generally not tight, but it is nevertheless very
useful.
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Next, we look at the upper bounds. Unfortunately, in this case
�I (G) = 
�O(K) � 141:7,
so the upper bounds on��(S0) in (6.74) and (6.75) are not very tight (they are of magnitude
141:7 at high frequencies).

2. Diagonal (decentralized) feedback controller. Consider the controller

Kdiag(s) =
k2(�s+ 1)

s

�
1 0
0 �1

�
; k2 = 2:4 � 10�2 [min�1]

The peak value for the upper bound on��(S0) in (6.77) is 1:26, so we are guaranteed
kS0k1 � 1:26, even with20% gain uncerainty. For comparison, the actual peak in the
perturbed sensitivity function withEI = diagf0:2;�0:2g is kS0k1 = 1:05. Of course, the
problem with the simple diagonal controller is that (although it is robust) even the nominal
response is poor.

The following example demonstrates that a large plant condition number, 
(G), does
not necessarily imply sensitivity to uncertainty even with an inverse-based controller.

Example 6.8 Feedback control of distillation process, DV-model. In this example we
consider the following distillation model given by Skogestad et al. (1988) (it is the same system
as studied above but with the DV- rather than the LV-configuration for the lower control levels,
see Example 10.5):

G =
1

75s+ 1

� �87:8 1:4
�108:2 �1:4

�
; �(G) =

�
0:448 0:552
0:552 0:448

�
(6.87)

We have thatk�(G(j!))ki1 = 1, 
(G) � 70:76 and 
�I (G) � 1:11 at all frequencies.
Since both the RGA-elements and
�I (G) are small we do not expect problems with input
uncertainty and an inverse based controller. Consider an inverse-based controllerKinv(s) =
(0:7=s)G�1(s) which yields
(K) = 
(G) and
�O(K) = 
�I (G). In Figure 6.3, we show
the lower bound (6.78) given in terms ofk�ki1 and the two upper bounds (6.74) and (6.76)
given in terms of
�I (G) for two different uncertainty weightswI . From these curves we see
that the bounds are close, and we conclude that the plant in (6.87) is robust against input
uncertainty even with a decoupling controller.

Remark. Relationship with the structured singular value: skewed-�. To analyze exactly
the worst-case sensitivity with a given uncertainty jwI j we may compute skewed-� (�s). With
reference to Section 8.11, this involves computing �e�(N) with e� = diag(�I ;�P ) and

N =

�
wITI wIKS
SG=�s S=�s

�
and varying �s until �(N) = 1. The worst-case performance at a

given frequency is then ��(S0) = �s(N).

Example 6.9 Consider the plant

G(s) =
�
1 100
0 1

�
for which at all frequencies�(G) = I, 
(G) = 104, 
�(G) = 1:00 and 
�I (G) = 200.
The RGA-matrix is the identity, but sinceg12=g11 = 100 we expect from (6.57) that this
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Figure 6.3: Bounds on the sensitivity function for the distillation column with the DV
configuration: lower bound L1 from (6.78), upper bounds U1 from (6.76) and U2 from (6.74)

plant will be sensitive to diagonal input uncertainty if we use inverse-based feedback control,
K = c

s
G�1. This is confirmed if we compute the worst-case sensitivity functionS0 for

G0 = G(I + wI�I) where�I is diagonal andjwI j = 0:2. We find by computing skewed-�,
�s(N1), that the peak of��(S0) is kS0k1 = 20:43:

Note that the peak is independent of the controller gainc in this case sinceG(s) is a constant
matrix. Also note that with full-block (“unstructured”) input uncertainty (�I is a full matrix)
the worst-case sensitivity iskS0k1 = 1021:7

Conclusions on input uncertainty and feedback control

The following statements apply to the frequency range around crossover. By “small’ ,
we mean about 2 or smaller. By “ large” we mean about 10 or larger.

1. Condition number 
(G) or 
(K) small: robust performance to both diagonal and
full-block input uncertainty; see (6.72) and (6.73).

2. Minimized condition numbers 
 �I (G) or 
�O(K) small: robust performance to
diagonal input uncertainty; see (6.76) and (6.77). Note that a diagonal controller
always has 
�O(K) = 1.

3. RGA(G) has large elements: inverse-based controller is not robust to diagonal
input uncertainty; see (6.78). Since diagonal input uncertainty is unavoidable in
practice, the rule is never to use a decoupling controller for a plant with large
RGA-elements. Furthermore, a diagonal controller will most likely yield poor
nominal performance for a plant with large RGA-elements, so we conclude that
plants with large RGA-elements are fundamentally difficult to control.

4. 
�I (G) is large while at the same time the RGA has small elements: cannot make
any definite conclusion about the sensitivity to input uncertainty based on the
bounds in this section. However, as found in Example 6.9 we may expect there to
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be problems.

6.10.5 Element-by-element uncertainty

Consider any complex matrix G and let �ij denote the ij’ th element in the
RGA-matrix of G. The following result holds (Yu and Luyben, 1987; Hovd and
Skogestad, 1992):

Theorem 6.4 The (complex) matrixG becomes singular if we make a relative
change�1=�ij in its ij-th element, that is, if a single element inG is perturbed
fromgij to gpij = gij(1� 1

�ij
).

The theorem is proved in Appendix A.4. Thus, the RGA-matrix is a direct measure
of sensitivity to element-by-element uncertainty and matrices with large RGA-values
become singular for small relative errors in the elements.

Example 6.10 The matrixG in (6.83) is non-singular. The1; 2-element of the RGA is
�12(G) = �34:1. Thus, the matrixG becomes singular ifg12 = �86:4 is perturbed to

gp12 = �86:4(1 � 1=(�34:1)) = �88:9 (6.88)

The above result is an important algebraic property of the RGA, but it also has
important implications for improved control:

1) Identification. Models of multivariable plants, G(s), are often obtained by
identifying one element at a time, for example, using step responses. From
Theorem 6.4 it is clear that this simple identification procedure will most likely give
meaningless results (e.g. the wrong sign of the steady-state RGA) if there are large
RGA-elements within the bandwidth where the model is intended to be used.

2) RHP-zeros. Consider a plant with transfer function matrix G(s). If the relative
uncertainty in an element at a given frequency is larger than j1=� ij(j!)j then the
plant may be singular at this frequency, implying that the uncertainty allows for a
RHP-zero on the j!-axis. This is of course detrimental to performance both in terms
of feedforward and feedback control.

Remark. Theorem 6.4 seems to “prove” that plants with large RGA-elements are
fundamentally difficult to control. However, although the statement may be true (see the
conclusions on page 243), we cannot draw this conclusion from Theorem 6.4. This is because
the assumption of element-by-element uncertainty is often unrealistic from a physical point of
view, since the elements are usually coupledin some way. For example, this is the case for the
distillation column process where we know that the elements are coupled due to an underlying
physical constraint in such a way that the model (6.83) never becomes singular even for large
changes in the transfer function matrix elements.
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6.10.6 Steady-state condition for integral control

Feedback control reduces the sensitivity to model uncertainty at frequencies where
the loop gains are large. With integral action in the controller we can achieve zero
steady-state control error, even with large model errors, provided the sign of the
plant, as expressed by detG(0), does not change. The statement applies for stable
plants, or more generally for cases where the number of unstable poles in the plant
does not change. The conditions are stated more exactly in the following theorem.

Theorem 6.5 Let the number of open-loop unstable poles (excluding poles ats = 0)
ofG(s)K(s) andG0(s)K(s) beP andP 0, respectively. Assume that the controller
K is such thatGK has integral action in all channels, and that the transfer functions
GK andG0K are strictly proper. Then if

detG0(0)= detG(0)
�
< 0 for P � P 0 even; including zero
> 0 for P � P 0 odd (6.89)

at least one of the following instabilities will occur: a) The negative feedback closed-
loop system with loop gainGK is unstable. b) The negative feedback closed-loop
system with loop gainG0K is unstable.

Proof: For stability of both (I + GK)�1 and (I + G0K)�1 we have from Lemma A.5
in Appendix A.6.3 that det(I + EOT (s)) needs to encircle the origin P � P 0 times as s
traverses the Nyquist D-contour. Here T (0) = I because of the requirement for integral
action in all channels of GK. Also, since GK and G0K are strictly proper, EOT is strictly
proper, and hence EO(s)T (s) ! 0 as s ! 1. Thus, the map of det(I + EOT (s)) starts at
detG0(0)= detG(0) (for s = 0) and ends at 1 (for s = 1). A more careful analysis of the
Nyquist plot of det(I + EOT (s)) reveals that the number of encirclements of the origin will
be even for detG0(0)= detG(0) > 0, and odd for detG0(0)= detG(0) < 0. Thus, if this
parity (odd or even) does not match that of P � P 0 we will get instability, and the theorem
follows. 2

Example 6.11 Suppose the true model of a plant is given byG(s), and that by careful
identification we obtain a modelG1(s),

G =
1

75s+ 1

�
87:8 �86:4
108:2 �109:6

�
; G1(s) =

1

75s+ 1

�
87 �88
109 �108

�
At first glance, the identified model seems very good, but it is actually useless for control
purposes sincedetG1(0) has the wrong sign;detG(0) = �274:4 anddetG1(0) = 196
(also the RGA-elements have the wrong sign; the1; 1-element in the RGA is�47:9 instead
of +35:1). From Theorem 6.5 we then get that any controller with integral action designed
based on the modelG1, will yield instability when applied to the plantG.



246 MULTIVARIABLE FEEDBACK CONTROL

6.11 MIMO Input-output controllability

We now summarize the main findings of this chapter in an analysis procedure for
input-output controllability of a MIMO plant. The presence of directions in MIMO
systems makes it more difficult to give a precise description of the procedure in terms
of a set of rules as was done in the SISO case.

6.11.1 Controllability analysis procedure

The following procedure assumes that we have made a decision on the plant inputs
and plant outputs (manipulations and measurements), and we want to analyze the
model G to find out what control performance can be expected.

The procedure can also be used to assist in control structure design (the selection
of inputs, outputs and control configuration), but it must then be repeated for each
G corresponding to each candidate set of inputs and outputs. In some cases the
number of possibilities is so large that such an approach becomes prohibitive. In
this case some pre-screening is required, for example, based on physical insight or by
analyzing the “ large” model,Gall, with all the candidate inputs and outputs included.
This is briefly discussed in Section 10.4.

A typical MIMO controllability analysis may proceed as follows:

1. Scale all variables (inputs u, outputs y, disturbances d, references, r) to obtain a
scaled model, y = G(s)u+Gd(s)d; r = Rer; see Section 1.4.

2. Obtain a minimal realization.
3. Check functional controllability. To be able to control the outputs independently,

we first need at least as many inputs u as outputs y. Second, we need the rank of
G(s) to be equal to the number of outputs, l, i.e. the minimum singular value of
G(j!), �(G) = �l(G), should be non-zero (except at possible j!-axis zeros). If
the plant is not functionally controllable then compute the output direction where
the plant has no gain, see (6.16), to obtain insight into the source of the problem.

4. Compute the poles. For RHP (unstable) poles obtain their locations and associated
directions; see (6.5). “Fast” RHP-poles far from the origin are bad.

5. Compute the zeros. For RHP-zeros obtain their locations and associated
directions. Look for zeros pinned into certain outputs. “Small” RHP-zeros (close
to the origin) are bad if tight performance at low frequencies is desired.

6. Obtain the frequency response G(j!) and compute the RGA matrix, � = G �
(Gy)T . Plants with large RGA-elements at crossover frequencies are difficult to
control and should be avoided. For more details about the use of the RGA see
Section 3.6, page 87.

7. From now on scaling is critical. Compute the singular values of G(j!) and plot
them as a function of frequency. Also consider the associated input and output
singular vectors.
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8. The minimum singular value, �(G(j!)), is a particularly useful controllability
measure. It should generally be as large as possible at frequencies where control
is needed. If �(G(j!)) < 1 then we cannot at frequency ! make independent
output changes of unit magnitude by using inputs of unit magnitude.

9. For disturbances, consider the elements of the matrix Gd. At frequencies where
one or more elements is larger than 1, we need control. We get more information
by considering one disturbance at a time (the columns gd ofGd). We must require
for each disturbance that S is less than 1=kgdk2 in the disturbance direction yd, i.e.
kSydk2 � 1=kgdk2; see (6.33). Thus, we must at least require �(S) � 1=kgdk2
and we may have to require ��(S) � 1=kgdk2; see (6.34).

Remark. If feedforward control is already used, then one may instead analyze bGd(s) =
GKdGmd +Gd where Kd denotes the feedforward controller, see (5.78).

10. Disturbances and input saturation:

First step. Consider the input magnitudes needed for perfect control by
computing the elements in the matrix GyGd. If all elements are less than
1 at all frequencies then input saturation is not expected to be a problem. If
some elements ofGyGd are larger than 1, then perfect control (e = 0) cannot
be achieved at this frequency, but “acceptable” control (kek 2 < 1) may be
possible, and this may be tested in the second step.

Second step.Check condition (6.47), that is, consider the elements of U HGd and
make sure that the elements in the i’ th row are smaller than � i(G) + 1, at all
frequencies.

11. Are the requirements compatible? Look at disturbances, RHP-poles and RHP-
zeros and their associated locations and directions. For example, we must require
for each disturbance and each RHP-zero that jyHz gd(z)j � 1; see (6.35). For
combined RHP-zeros and RHP-poles see (6.10) and (6.11).

12. Uncertainty. If the condition number 
(G) is small then we expect no particular
problems with uncertainty. If the RGA-elements are large, we expect strong
sensitivity to uncertainty. For a more detailed analysis see the conclusion on
page 243.

13. If decentralized control (diagonal controller) is of interest see the summary on
page 453.

14. The use of the condition number and RGA are summarized separately in
Section 3.6, page 87.

A controllability analysis may also be used to obtain initial performance weights
for controller design. After a controller design one may analyze the controller by
plotting, for example, its elements, singular values, RGA and condition number as a
function of frequency.
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6.11.2 Plant design changes

If a plant is not input-output controllable, then it must somehow be modified. Some
possible modifications are listed below.

Controlled outputs. Identify the output(s) which cannot be controlled satisfactorily.
Can the specifications for these be relaxed?

Manipulated inputs. If input constraints are encountered then consider replacing
or moving actuators. For example, this could mean replacing a control valve with a
larger one, or moving it closer to the controlled output.

If there are RHP-zeros which cause control problems then the zeros may often be
eliminated by adding another input (possibly resulting in a non-square plant). This
may not be possible if the zero is pinned to a particular output.

Extra Measurements. If the effect of disturbances, or uncertainty, is large, and
the dynamics of the plant are such that acceptable control cannot be achieved, then
consider adding “ fast local loops” based on extra measurements which are located
close to the inputs and disturbances; see Section 10.8.3 and the example on page 207.

Disturbances. If the effect of disturbances is too large, then see whether the
disturbance itself may be reduced. This may involve adding extra equipment to
dampen the disturbances, such as a buffer tank in a chemical process or a spring
in a mechanical system. In other cases this may involve improving or changing
the control of another part of the system, e.g. we may have a disturbance which
is actually the manipulated input for another part of the system.

Plant dynamics and time delays. In most cases, controllability is improved by
making the plant dynamics faster and by reducing time delays. An exception to this
is a strongly interactive plant, where an increased dynamic lag or time delay, may
be helpful if it somehow “delays” the effect of the interactions; see (6.17). Another
more obvious exception is for feedforward control of a measured disturbance, where
a delay for the disturbance’s effect on the outputs is an advantage.

Example 6.12 Removing zeros by adding inputs. Consider a stable2� 2 plant

G1(s) =
1

(s+ 2)2

�
s+ 1 s+ 3
1 2

�
which has a RHP-zero ats = 1 which limits achievable performance. The zero is not pinned
to a particular output, so it will most likely disappear if we add a third manipulated input.
Suppose the new plant is

G2(s) =
1

(s+ 2)2

�
s+ 1 s+ 3 s+ 6
1 2 3

�
which indeed has no zeros. It is interesting to note that each of the three2 � 2 sub-plants of
G2(s) has a RHP-zero (located ats = 1, s = 1:5 ands = 3, respectively).
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Remark. Adding outputs. It has also been argued that it is possible to remove multivariable
zeros by adding extra outputs. To some extent this is correct. For example, it is well-known
that there are no zeros if we use all the states as outputs, see Example 4.13. However, to control
all the states independently we need as many inputs as there are states. Thus, by adding outputs
to remove the zeros, we generally get a plant which is not functionally controllable, so it does
not really help.

6.11.3 Additional exercises

The reader will be better prepared for some of these exercises following an initial
reading of Chapter 10 on decentralized control. In all cases the variables are assumed
to be scaled as outlined in Section 1.4.

Exercise 6.7 Analyze input-output controllability for

G(s) =
1

s2 + 100

"
1

0:01s+1
1

s+0:1
s+1

1

#

Compute the zeros and poles, plot the RGA as a function of frequency, etc.

Exercise 6.8 Analyze input-output controllability for

G(s) =
1

(�s+ 1)(�s+ 1 + 2�)

�
�s+ 1 + � �

� �s+ 1 + �

�
where� = 100; consider two cases: (a)� = 20, and (b)� = 2.

Remark. This is a simple “two-mixing-tank” model of a heat exchanger whereu =
�
T1in
T2in

�
,

y =
�
T1out
T2out

�
and� is the number of heat transfer units.

Exercise 6.9 Let

A =

��10 0
0 �1

�
; B = I;C =

�
10 1:1
10 0

�
; D =

�
0 0
0 1

�

(a) Perform a controllability analysis ofG(s).
(b) Let _x = Ax+ Bu+ d and consider a unit disturbanced = [ z1 z2 ]

T . Which direction
(value ofz1=z2) gives a disturbance that is most difficult to reject (consider both RHP-zeros
and input saturation)?
(c) Discuss decentralized control of the plant. How would you pair the variables?

Exercise 6.10 Consider the following two plants. Do you expect any control problems?
Could decentralized or inverse-based control be used? What pairing would you use for
decentralized control?

Ga(s) =
1

1:25(s + 1)(s+ 20)

�
s� 1 s
�42 s� 20

�
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Gb(s) =
1

(s2 + 0:1)

�
1 0:1(s� 1)

10(s+ 0:1)=s (s+ 0:1)=s

�

Exercise 6.11 Order the following three plants in terms of their expected ease of
controllability

G1(s) =
�
100 95
100 100

�
; G2(s) =

�
100e�s 95e�s

100 100

�
; G3(s) =

�
100 95e�s

100 100

�
Remember to also consider the sensitivity to input gain uncertainty.

Exercise 6.12 Analyze input-output controllability for

G(s) =

"
5000s

(5000s+1)(2s+1)
2(�5s+1)
100s+1

3
5s+1

3
5s+1

#

Exercise 6.13 Analyze input-output controllability for

G(s) =
�
100 102
100 100

�
; gd1(s) =

"
10
s+1
10
s+1

#
; gd2 =

"
1

s+1
�1
s+1

#

Which disturbance is the worst?

Exercise 6.14 (a) Analyze input-output controllability for the following three plants each of
which has2 inputs and1 output:G(s) = (g1(s) g2(s))

(i) g1(s) = g2(s) =
s�2
s+2

.

(ii) g1(s) =
s�2
s+2

; g2(s) =
s�2:1
s+2:1

.

(iii) g1(s) =
s�2
s+2

; g2(s) =
s�20
s+20

.

(b) Design controllers and perform closed-loop simulations of reference tracking to
complement your analysis. Consider also the input magnitudes.

Exercise 6.15 Find the poles and zeros and analyze input-output controllability for

G(s) =
�
c+ (1=s) 1=s
(1=s) c+ 1=s

�
Herec is a constant, e.g.c = 1. Remark. A similar model form is encountered for distillation
columns controlled with theDB-configuration. In which case the physical reason for the
model being singular at steady-state is that the sum of the two manipulated inputs is fixed at
steady-state,D +B = F .

Exercise 6.16 Controllability of an FCC process. Consider the following3� 3 plant"
y1
y2
y3

#
= G(s)

"
u1
u2
u3

#
; f(s) =

1

(18:8s+ 1)(75:8s+ 1)

G(s) = f(s)

"
16:8(920s2 + 32:4s+ 1) 30:5(52:1s + 1) 4:30(7:28s+ 1)
�16:7(75:5s+ 1) 31:0(75:8s + 1)(1:58s + 1) �1:41(74:6s + 1)
1:27(�939s+ 1) 54:1(57:3s + 1) 5:40

#
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Acceptable control of this3� 3 plant can be achieved with partial control of two outputs with
input3 in manual (not used). That is, we have a2�2 control problem. Consider three options
for the controlled outputs:

Y1 =
�
y1
y2

�
; Y2 =

�
y2
y3

�
; Y3 =

�
y1

y2 � y3

�
In all three cases the inputs areu1 and u2. Assume that the third input is a disturbance
(d = u3).

(a) Based on the zeros of the three2 � 2 plants,G1(s), G2(s) andG3(s), which choice of
outputs do you prefer? Which seems to be the worst?

It may be useful to know that the zero polynomials:

a 5:75 � 107s4 + 3:92 � 107s3 + 3:85 � 106s2 + 1:22 � 105s+ 1:03 � 103
b 4:44 � 106s3 � 1:05 � 106s2 � 8:61 � 104s� 9:43 � 102
c 5:75 � 107s4 � 8:75 � 106s3 � 5:66 � 105s2 + 6:35 � 103s+ 1:60 � 102

have the following roots:

a �0:570 �0:0529 �0:0451 �0:0132
b 0:303 �0:0532 �0:0132
c 0:199 �0:0532 0:0200 �0:0132

(b) For the preferred choice of outputs in (a) do a more detailed analysis of the expected
control performance (compute poles and zeros, sketch RGA11, comment on possible problems
with input constraints (assume the inputs and outputs have been properly scaled), discuss the
effect of the disturbance, etc.). What type of controller would you use? What pairing would
you use for decentralized control?

(c) Discuss why the3� 3 plant may be difficult to control.

Remark. This is actually a model of a fluid catalytic cracking (FCC) reactor whereu =
(Fs Fa kc)

T represents the circulation, airflow and feed composition, andy = (T1 Tcy Trg)
T

represents three temperatures.G1(s) is called the Hicks control structure andG3(s) the
conventional structure. More details are found in Hovd and Skogestad (1993).

6.12 Conclusion

We have found that most of the insights into the performance limitations of SISO
systems developed in Chapter 5 carry over to MIMO systems. For RHP-zeros, RHP-
poles and disturbances, the issue of directions usually makes the limitations less
severe for MIMO than for SISO systems. However, the situation is usually the
opposite with model uncertainty because for MIMO systems there is also uncertainty
associated with plant directionality. This is an issue which is unique to MIMO
systems.

We summarized on page 246 the main steps involved in an analysis of input-output
controllability of MIMO plants.
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7

UNCERTAINTY AND

ROBUSTNESS FOR SISO

SYSTEMS

In this chapter, we show how to represent uncertainty by real or complex perturbations and we
analyze robust stability (RS) and robust performance (RP) for SISO systems using elementary
methods. Chapter 8 is devoted to a more general treatment.

7.1 Introduction to robustness

A control system is robust if it is insensitive to differences between the actual
system and the model of the system which was used to design the controller. These
differences are referred to as model/plant mismatch or simply model uncertainty. The
key idea in the H1 robust control paradigm we use is to check whether the design
specifications are satisfied even for the “worst-case” uncertainty.

Our approach is then as follows:

1. Determine the uncertainty set: find a mathematical representation of the model
uncertainty (“clarify what we know about what we don’ t know”).

2. Check Robust stability (RS): determine whether the system remains stable for all
plants in the uncertainty set.

3. Check Robust performance (RP): if RS is satisfied, determine whether the
performance specifications are met for all plants in the uncertainty set.

This approach may not always achieve optimal performance. In particular, if the
worst-case plant rarely or never occurs, other approaches, such as optimizing some
average performance or using adaptive control, may yield better performance.
Nevertheless, the linear uncertainty descriptions presented in this book are very
useful in many practical situations.
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It should also be appreciated that model uncertainty is not the only concern when
it comes to robustness. Other considerations include sensor and actuator failures,
physical constraints, changes in control objectives, the opening and closing of
loops, etc. Furthermore, if a control design is based on an optimization, then
robustness problems may also be caused by the mathematical objective function not
properly describing the real control problem. Also, the numerical design algorithms
themselves may not be robust. However, when we refer to robustness in this book, we
mean robustness with respect to model uncertainty, and assume that a fixed (linear)
controller is used.

To account for model uncertainty we will assume that the dynamic behaviour of a
plant is described not by a single linear time invariant model but by a set� of possible
linear time invariant models, sometimes denoted the “uncertainty set” . We adopt the
following notation:

� – a set of possible perturbed plant models.

G(s) 2 � – nominal plant model (with no uncertainty).

Gp(s) 2 � and G0(s) 2 � – particular perturbed plant models.

SometimesGp is used rather than � to denote the uncertainty set, whereasG 0 always
refers to a specific uncertain plant. The subscript p stands for perturbedor possible
or � (pick your choice). This should not be confused with the subscript capital P ,
e.g. in wP , which denotes performance.

We will use a “norm-bounded uncertainty description” where the set � is generated
by allowingH1 norm-bounded stable perturbations to the nominal plant G(s). This
corresponds to a continuous description of the model uncertainty, and there will be
an infinite number of possible plants Gp in the set �. We let E denote a perturbation
which is not normalized, and let � denote a normalized perturbation withH1 norm
less than 1.

Remark. Another strategy for dealing with model uncertainty is to approximate its effect on
the feedback system by adding fictitious disturbances or noise. For example, this is the only
way of handling model uncertainty within the so-called LQG approach to optimal control (see
Chapter 9). Is this an acceptable strategy? In general, the answer is no. This is easily illustrated
for linear systems where the addition of disturbances does notaffect system stability, whereas
model uncertainty combined with feedback may easily create instability.

For example, consider a plant with a nominal model y = Gu + Gdd, and let the perturbed
plant model be Gp = G+E where E represents additive model uncertainty. Then the output
of the perturbed plant is

y = Gpu+Gdd = Gu+ d1 + d2 (7.1)

where y is different from what we ideally expect (namely Gu) for two reasons:

1. Uncertainty in the model (d1 = Eu)
2. Signal uncertainty (d2 = Gdd)
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In LQG control we set wd = d1+d2 where wd is assumed to be an independent variable such
as white noise. Then in the design problem we may make wd large by selecting appropriate
weighting functions, but its presence will never cause instability. However, in reality wd =
Eu + d2, so wd depends on the signal u and this may cause instability in the presence of
feedback when u depends on y. Specifically, the closed-loop system (I+(G+E)K)�1 may
be unstable for some E 6= 0. In conclusion, it may be important to explicitly take into account
model uncertainty when studying feedback control.

We will next discuss some sources of model uncertainty and outline how to represent
these mathematically.

7.2 Representing uncertainty

Uncertainty in the plant model may have several origins:

1. There are always parameters in the linear model which are only known
approximately or are simply in error.

2. The parameters in the linear model may vary due to nonlinearities or changes in
the operating conditions.

3. Measurement devices have imperfections. This may even give rise to uncertainty
on the manipulated inputs, since the actual input is often measured and adjusted
in a cascade manner. For example, this is often the case with valves where a flow
controller is often used. In other cases limited valve resolution may cause input
uncertainty.

4. At high frequencies even the structure and the model order is unknown, and the
uncertainty will always exceed 100% at some frequency.

5. Even when a very detailed model is available we may choose to work with
a simpler (low-order) nominal model and represent the neglected dynamics as
“uncertainty” .

6. Finally, the controller implemented may differ from the one obtained by solving
the synthesis problem. In this case one may include uncertainty to allow for
controller order reduction and implementation inaccuracies.

The various sources of model uncertainty mentioned above may be grouped into two
main classes:

1. Parametric uncertainty. Here the structure of the model (including the order) is
known, but some of the parameters are uncertain.

2. Neglected and unmodelled dynamics uncertainty. Here the model is in
error because of missing dynamics, usually at high frequencies, either through
deliberate neglect or because of a lack of understanding of the physical process.
Any model of a real system will contain this source of uncertainty.
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Parametric uncertainty will be quantified by assuming that each uncertain parameter
is bounded within some region [�min; �max]. That is, we have parameter sets of the
form

�p = ��(1 + r��)

where �� is the mean parameter value, r� = (�max � �min)=(�max + �min) is the
relative uncertainty in the parameter, and � is any real scalar satisfying j�j � 1.

Neglected and unmodelled dynamics uncertainty is somewhat less precise and thus
more difficult to quantify, but it appears that the frequency domain is particularly well
suited for this class. This leads to complex perturbations which we normalize such
that k�k1 � 1. In this chapter, we will deal mainly with this class of perturbations.

For completeness one may consider a third class of uncertainty (which is really a
combination of the other two):

3. Lumped uncertainty. Here the uncertainty description represents one or several
sources of parametric and/or unmodelled dynamics uncertainty combined into a
single lumped perturbation of a chosen structure.

eq

- -

? - --

wI �I

G

Gp

+

+

Figure 7.1: Plant with multiplicative uncertainty

The frequency domain is also well suited for describing lumped uncertainty. In most
cases we prefer to lump the uncertainty into a multiplicative uncertaintyof the form

�I : Gp(s) = G(s)(1 + wI (s)�I (s)); j�I (j!)j � 1 8!| {z }
k�Ik1�1

(7.2)

which may be represented by the block diagram in Figure 7.1. Here � I(s) is any
stable transfer function which at each frequency is less than or equal to one in
magnitude. Some examples of allowable �I(s)’s with H1 norm less than one,
k�Ik1 � 1, are

s� z

s+ z
;

1

�s+ 1
;

1

(5s+ 1)3
;

0:1

s2 + 0:1s+ 1
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Remark 1 The stability requirement on �I(s) may be removed if one instead assumes that
the number of RHP poles in G(s) and Gp(s) remains unchanged. However, in order to
simplify the stability proofs we will in this book assume that the perturbations are stable.

Remark 2 The subscript I denotes “ input” , but for SISO systems it doesn’ t matter whether
we consider the perturbation at the input or output of the plant, since

G(1 + wI�I) = (1 + wO�O)G with �I(s) = �O(s) and wI(s) = wO(s)

Another uncertainty form, which is better suited for representing pole uncertainty, is
the inverse multiplicative uncertainty

�iI : Gp(s) = G(s)(1 + wiI (s)�iI (s))
�1; j�iI (j!)j � 1 8! (7.3)

Even with a stable �iI (s) this form allows for uncertainty in the location of an
unstable pole, and it also allows for poles crossing between the left- and right-half
planes.

Parametric uncertainty is sometimes called structured uncertaintyas it models the
uncertainty in a structured manner. Analogously, lumped dynamics uncertainty is
sometimes called unstructured uncertainty. However, one should be careful about
using these terms because there can be several levels of structure, especially for
MIMO systems.

Remark. Alternative approaches for describing uncertainty and the resulting performance
may be considered. One approach for parametric uncertainty is to assume a probabilistic (e.g.
normal) distribution of the parameters, and to consider the “average” response. This stochastic
uncertainty is, however, difficult to analyze exactly.

Another approach is the multi-model approach in which one considers a finite set of alternative
models. This approach is well suited for parametric uncertainty as it eases the burden of the
engineer in representing the uncertainty. Performance may be measured in terms of the worst-
case or some average of these models’ responses. The multi-model approach can also be used
when there is unmodelled dynamics uncertainty. A problem with the multi-model approach is
that it is not clear how to pick the set of models such that they represent the limiting (“worst-
case” ) plants.

To summarize, there are many ways to define uncertainty, from stochastic uncertainty
to differential sensitivity (local robustness) and multi-models. Weinmann (1991)
gives a good overview. In particular, there are several ways to handle parametric
uncertainty, and of these the H1 frequency-domain approach, used in this book,
may not be the best or the simplest, but it can handle most situations as we will see.
In addition, the frequency-domain is excellent for describing neglected or unknown
dynamics, and it is very well suited when it comes to making simple yet realistic
lumped uncertainty descriptions.



258 MULTIVARIABLE FEEDBACK CONTROL

7.3 Parametric uncertainty

In spite of what is sometimes claimed, parametric uncertainty may also be
represented in the H1 framework, at least if we restrict the perturbations � to be
real. This is discussed in more detail in Section 7.7. Here we provide just two simple
examples.

Example 7.1 Gain uncertainty. Let the set of possible plants be

Gp(s) = kpG0(s); kmin � kp � kmax (7.4)

wherekp is an uncertain gain andG0(s) is a transfer function with no uncertainty. By writing

kp = �k(1 + rk�); �k ,
kmin + kmax

2
; rk ,

(kmax � kmin)=2
�k

; (7.5)

whererk is the relative magnitude of the gain uncertainty and�k is the averagegain, (7.4) may
be rewritten as multiplicative uncertainty

Gp(s) = �kG0(s)| {z }
G(s)

(1 + rk�); j�j � 1 (7.6)

where� is a real scalar andG(s) is the nominal plant. We see that the uncertainty in (7.6)
is in the form of (7.2) with a constant multiplicative weightwI(s) = rk. The uncertainty
description in (7.6) can also handle cases where the gain changes sign (kmin < 0 and
kmax > 0) corresponding tork > 1. The usefulness of this is rather limited, however, since it
is impossible to get any benefit from control for a plant where we can haveGp = 0, at least
with a linear controller.

Example 7.2 Time constant uncertainty. Consider a set of plants, with an uncertain time
constant, given by

Gp(s) =
1

�ps+ 1
G0(s); �min � �p � �max (7.7)

By writing �p = ��(1 + r��), similar to (7.5) withj�j < 1, the model set (7.7) can be
rewritten as

Gp(s) =
G0

1 + ��s+ r� ��s�
=

G0

1 + ��s| {z }
G(s)

1

1 +wiI (s)�
; wiI(s) =

r� ��s

1 + ��s
(7.8)

which is in theinverse multiplicative form of (7.3). Note that it does not make physical sense
for �p to change sign, because a value�p = 0� corresponds to a pole at infinity in the RHP,
and the corresponding plant would be impossible to stabilize. To represent cases in which a
pole may cross between the half planes, one should instead consider parametric uncertainty
in the pole itself,1=(s + p), as described in (7.85).
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As shown by the above examples one can represent parametric uncertainty in the
H1 framework. However, parametric uncertainty is often avoided for the following
reasons:

1. It usually requires a large effort to model parametric uncertainty.
2. A parametric uncertainty model is somewhat deceiving in the sense that it

provides a very detailed and accurate description, even though the underlying
assumptions about the model and the parameters may be much less exact.

3. The exact model structure is required and so unmodelled dynamics cannot be dealt
with.

4. Real perturbations are required, which are more difficult to deal with
mathematically and numerically, especially when it comes to controller synthesis.

Therefore, parametric uncertainty is often represented by complex perturbations.
For example, we may simply replace the real perturbation, �1 � � � 1 by
a complex perturbation with j�(j!)j � 1. This is of course conservative as it
introduces possible plants that are not present in the original set. However, if there are
several real perturbations, then the conservatism is often reduced by lumpingthese
perturbations into a singlecomplex perturbation. Typically, a complex multiplicative
perturbation is used, e.g. Gp = G(I + wI�).

How is it possible that we can reduce conservatism by lumping together several real
perturbations? This will become clearer from the examples in the next section, but
simply stated the answer is that with several uncertain parameters the true uncertainty
region is often quite “disk-shaped” , and may be more accurately represented by a
single complex perturbation.

7.4 Representing uncertainty in the frequency
domain

In terms of quantifying unmodelled dynamics uncertainty the frequency-domain
approach (H1) does not seem to have much competition (when compared with other
norms). In fact, Owen and Zames (1992) make the following observation:

The design of feedback controllers in the presence of non-parametric and
unstructured uncertainty ... is the raison d’être for H1 feedback opti-
mization, for if disturbances and plant models are clearly parameterized
then H1 methods seem to offer no clear advantages over more conven-
tional state-space and parametric methods.
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7.4.1 Uncertainty regions

To illustrate how parametric uncertainty translates into frequency domain
uncertainty, consider in Figure 7.2 the Nyquist plots (or regions) generated by the
following set of plants

Gp(s) =
k

�s+ 1
e��s; 2 � k; �; � � 3 (7.9)

Step 1. At each frequency, a region of complex numbers G p(j!) is generated by
varying the three parameters in the ranges given by (7.9), see Figure 7.2.
In general, these uncertainty regionshave complicated shapes and complex
mathematical descriptions, and are cumbersome to deal with in the context of
control system design.

Step 2. We therefore approximate such complex regions as discs (circles) as shown
in Figure 7.3, resulting in a (complex) additive uncertainty description as
discussed next.

Im

Re

! = 0:01

! = 0:05

! = 0:5

! = 0:2

! = 1
! = 2

! = 7

Figure 7.2: Uncertainty regions of the Nyquist plot at given frequencies. Data from (7.9)

Remark 1 There is no conservatism introduced in the first step when we go from a parametric
uncertainty description as in (7.9) to an uncertainty region description as in Figure 7.2. This
is somewhat surprising since the uncertainty regions in Figure 7.2 seem to allow for more
uncertainty. For example, they allow for “ jumps” in Gp(j!) from one frequency to the
next (e.g. from one corner of a region to another). Nevertheless, we derive in this and the
next chapter necessary and sufficient frequency-by-frequency conditions for robust stability
based on uncertainty regions. Thus, the only conservatism is in the second step where we
approximate the original uncertainty region by a larger disc-shaped region as shown in
Figure 7.3.

Remark 2 Exact methods do exist (using complex region mapping, e.g. see Laughlin et al.
(1986)) which avoid the second conservative step. However, as already mentioned these
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�2

�1

1 2

Figure 7.3: Disc approximation (solid line) of the original uncertainty region (dashed line).
Plot corresponds to ! = 0:2 in Figure 7.2

methods are rather complex, and although they may be used in analysis, at least for simple
systems, they are not really suitable for controller synthesis and will not be pursued further in
this book.

Remark 3 From Figure 7.3 we see that the radius of the disc may be reduced by moving the
center (selecting another nominal model). This is discussed in Section 7.4.4.

7.4.2 Representing uncertainty regions by complex
perturbations

We will use disc-shaped regions to represent uncertainty regions as illustrated by the
Nyquist plots in Figures 7.3 and 7.4. These disc-shaped regions may be generated
by additive complex norm-bounded perturbations (additive uncertainty) around a
nominal plant G

�A : Gp(s) = G(s) + wA(s)�A(s); j�A(j!)j � 1 8! (7.10)

where �A(s) is any stable transfer function which at each frequency is no larger
than one in magnitude. How is this possible? If we consider all possible �A’s, then
at each frequency �A(j!) “generates” a disc-shaped region with radius 1 centred at
0, so G(j!) + wA(j!)�A(j!) generates at each frequency a disc-shaped region of
radius jwA(j!)j centred at G(j!) as shown in Figure 7.4.

In most cases wA(s) is a rational transfer function (although this need not always be
the case).
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+
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G(j!)

jwA(j!)j

Im

Re�

Figure 7.4: Disc-shaped uncertainty regions generated by complex additive uncertainty,
Gp = G+ wA�

One may also view wA(s) as a weight which is introduced in order to normalize
the perturbation to be less than 1 in magnitude at each frequency. Thus only the
magnitude of the weight matters, and in order to avoid unnecessary problems we
always choose wA(s) to be stable and minimum phase (this applies to all weights
used in this book).

G (centre)

jwAj

Im

Re

+

Figure 7.5: The set of possible plants includes the origin at frequencies where jwA(j!)j �
jG(j!)j, or equivalently jwI(j!)j � 1

The disk-shaped regions may alternatively be represented by a multiplicative
uncertaintydescription as in (7.2),

�I : Gp(s) = G(s)(1 + wI (s)�I(s)); j�I(j!)j � 1;8! (7.11)

By comparing (7.10) and (7.11) we see that for SISO systems the additive and
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multiplicative uncertainty descriptions are equivalent if at each frequency

jwI (j!)j = jwA(j!)j=jG(j!)j (7.12)

However, multiplicative (relative) weights are often preferred because their
numerical value is more informative. At frequencies where jw I (j!)j > 1 the
uncertainty exceeds 100% and the Nyquist curve may pass through the origin. This
follows since, as illustrated in Figure 7.5, the radius of the discs in the Nyquist plot,
jwA(j!)j = jG(j!)wI (j!)j, then exceeds the distance from G(j!) to the origin.
At these frequencies we do not know the phase of the plant, and we allow for zeros
crossing from the left to the right-half plane. To see this, consider a frequency ! 0

where jwI(j!0)j � 1. Then there exists a j�I j � 1 such that Gp(j!0) = 0 in
(7.11), that is, there exists a possible plant with zeros at s = �j!0. For this plant at
frequency !0 the input has no effect on the output, so control has no effect. It then
follows that tight control is not possible at frequencies wherejwI (j!)j � 1 (this
condition is derived more rigorously in (7.33)).

7.4.3 Obtaining the weight for complex uncertainty

Consider a set � of possible plants resulting, for example, from parametric
uncertainty as in (7.9). We now want to describe this set of plants by a single
(lumped) complex perturbation, �A or �I . This complex (disk-shaped) uncertainty
description may be generated as follows:

1. Select a nominal model G(s).
2. Additive uncertainty.At each frequency find the smallest radius lA(!) which

includes all the possible plants �:

lA(!) = max
GP2�

jGp(j!)�G(j!)j (7.13)

If we want a rational transfer function weight, wA(s) (which may not be the case
if we only want to do analysis), then it must be chosen to cover the set, so

jwA(j!)j � lA(!) 8! (7.14)

Usually wA(s) is of low order to simplify the controller design. Furthermore, an
objective of frequency-domain uncertainty is usually to represent uncertainty in a
simple straightforward manner.

3. Multiplicative (relative) uncertainty.This is often the preferred uncertainty form,
and we have

lI(!) = max
Gp2�

����Gp(j!)�G(j!)

G(j!)

���� (7.15)

and with a rational weight

jwI (j!)j � lI(!);8! (7.16)
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Example 7.3 Multiplicative weight for parametric uncertainty. Consider again the set
of plants with parametric uncertainty given in (7.9)

� : Gp(s) =
k

�s+ 1
e��s; 2 � k; �; � � 3 (7.17)

We want to represent this set using multiplicative uncertainty with a rational weightwI (s). To
simplify subsequent controller design we select a delay-free nominal model

G(s) =
�k

��s+ 1
=

2:5

2:5s+ 1
(7.18)

To obtain lI(!) in (7.15) we consider three values (2, 2:5 and 3) for each of the three
parameters (k; �; � ). (This is not, in general, guaranteed to yield the worst case as the worst
case may be at the interior of the intervals.) The corresponding relative errorsj(Gp�G)=Gj
are shown as functions of frequency for the33 = 27 resultingGp ’s in Figure 7.6. The curve
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Figure 7.6: Relative errors for 27 combinations of k; � and � with delay-free nominal plant
(dotted lines). Solid line: First-order weight jwI1j in (7.19). Dashed line: Third-order weight
jwI j in (7.20)

for lI(!) must at each frequency lie above all the dotted lines, and we find thatlI(!) is 0:2 at
low frequencies and2:5 at high frequencies. To derivewI(s) we first try a simple first-order
weight that matches this limiting behaviour:

wI1(s) =
Ts+ 0:2

(T=2:5)s+ 1
; T = 4 (7.19)

As seen from the solid line in Figure 7.6, this weight gives a good fit oflI(!), except around
! = 1 wherejwI1(j!)j is slightly too small, and so this weight does not include all possible
plants. To change this so thatjwI(j!)j � lI(!) at all frequencies, we can multiplywI1 by a
correction factor to lift the gain slightly at! = 1. The following works well

wI(s) = !I1(s)
s2 + 1:6s+ 1

s2 + 1:4s+ 1
(7.20)
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as is seen from the dashed line in Figure 7.6. The magnitude of the weight crosses1 at
about! = 0:26. This seems reasonable since we have neglected the delay in our nominal
model, which by itself yields100% uncertainty at a frequency of about1=�max = 0:33 (see
Figure 7.8(a) below).

An uncertainty description for the same parametric uncertainty, but with a mean-
value nominal model (with delay), is given in Exercise 7.8. Parametric gain and delay
uncertainty (without time constant uncertainty) is discussed further on page 268.

Remark. Pole uncertainty. In the example we represented pole (time constant) uncertainty
by a multiplicative perturbation, �I . We mayeven do this for unstable plants, provided the
poles do not shift between the half planes and one allows �I(s) to be unstable. However, if
the pole uncertainty is large, and in particular if poles can cross form the LHP to the RHP, then
one should use an inverse (“ feedback” ) uncertainty representation as in (7.3).

7.4.4 Choice of nominal model

With parametric uncertainty represented as complex perturbations there are three
main options for the choice of nominal model:

1. A simplified model, e.g. a low-order, delay-free model.
2. A model of mean parameter values, G(s) = �G(s).
3. The central plant obtained from a Nyquist plot (yielding the smallest discs).

Option 1 usually yields the largest uncertainty region, but the model is simple
and this facilitates controller design in later stages. Option 2 is probably the most
straightforward choice. Option 3 yields the smallest region, but in this case a
significant effort may be required to obtain the nominal model, which is usually
not a rational transfer function and a rational approximation could be of very high
order.

Example 7.4 Consider again the uncertainty set (7.17) used in Example 7.3. The nominal
models selected for options 1 and 2 are

G1(s) =
�k

��s+ 1
; G2(s) =

�k

��s+ 1
e�

��s

For option 3 the nominal model is not rational. The Nyquist plot of the three resulting discs at
frequency! = 0:5 are shown in Figure 7.7.

Remark. A similar example was studied by Wang et al. (1994), who obtained the best
controller designs with option 1, although the uncertainty region is clearly much larger in
this case. The reason for this is that the “worst-case region” in the Nyquist plot in Figure 7.7
corresponds quite closely to those plants with the most negative phase (at coordinates about
(�1:5;�1:5)). Thus, the additional plants included in the largest region (option 1) are
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Figure 7.7: Nyquist plot of Gp(j!) at frequency ! = 0:5 (dashed region) showing complex
disc approximations using three options for the nominal model:
1. Simplified nominal model with no time delay
2. Mean parameter values
3. Nominal model corresponding to the smallest radius

generally easier to control and do not really matter when evaluating the worst-case plant with
respect to stability or performance. In conclusion, at least for SISO plants, we find that for
plants with an uncertain time delay, it is simplest and sometimes best (!) to use a delay-free
nominal model, and to represent the nominal delay as additional uncertainty.

The choice of nominal model is only an issue since we are lumping several sources
of parametric uncertainty into a single complex perturbation. Of course, if we use
a parametric uncertainty description, based on multiple real perturbations, then we
should always use the mean parameter values in the nominal model.

7.4.5 Neglected dynamics represented as uncertainty

We saw above that one advantage of frequency domain uncertainty descriptions is
that one can choose to work with a simple nominal model, and represent neglected
dynamics as uncertainty. We will now consider this in a little more detail. Consider
a set of plants

Gp(s) = G0(s)f(s)

where G0(s) is fixed (and certain). We want to neglect the term f(s) (which may be
fixed or may be an uncertain set �f ), and representGp by multiplicative uncertainty
with a nominal modelG = G0. From (7.15) we get that the magnitude of the relative
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uncertainty caused by neglecting the dynamics in f(s) is

lI(!) = max
Gp

����Gp �G

G

���� = max
f(s)2�f

jf(j!)� 1j (7.21)

Three examples illustrate the procedure.

1. Neglected delay. Let f(s) = e��ps, where 0 � �p � �max. We want to represent
Gp = G0(s)e

��ps by a delay-free plant G0(s) and multiplicative uncertainty. Let
us first consider the maximum delay, for which the relative error j1 � e�j!�max j is
shown as a function of frequency in Figure 7.8(a). The relative uncertainty crosses
1 in magnitude at about frequency 1=�max, reaches 2 at frequency �=�max (since at
this frequency ej!�max = �1), and oscillates between 0 and 2 at higher frequencies
(which corresponds to the Nyquist plot of e�j!�max going around and around the
unit circle). Similar curves are generated for smaller values of the delay, and they
also oscillate between 0 and 2 but at higher frequencies. It then follows that if we
consider all � 2 [0; �max] then the relative error bound is 2 at frequencies above
�=�max, and we have

lI(!) =

� j1� e�j!�maxj ! < �=�max
2 ! � �=�max

(7.22)

Rational approximations of (7.22) are given in (7.26) and (7.27) with r k = 0.

10
−2

10
0

10
2

10
−2

10
−1

10
0

10
1

1=�max

Frequency

M
ag

ni
tu

de

(a) Time delay

10
−2

10
0

10
2

10
−2

10
−1

10
0

10
1

1=�max

Frequency

M
ag

ni
tu

de

(b) First-order lag

Figure 7.8: Multiplicative uncertainty resulting from neglected dynamics

2. Neglected lag. Let f(s) = 1=(�ps + 1), where 0 � �p � �max. In this case the
resulting lI(!), which is shown in Figure 7.8(b), can be represented by a rational
transfer function with jwI (j!)j = lI(!) where

wI (s) = 1� 1

�maxs+ 1
=

�maxs

�maxs+ 1

This weight approaches 1 at high frequency, and the low-frequency asymptote
crosses 1 at frequency 1=�max.
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3. Multiplicative weight for gain and delay uncertainty. Consider the following
set of plants

Gp(s) = kpe
��psG0(s); kp 2 [kmin; kmax]; �p 2 [�min; �max] (7.23)

which we want to represent by multiplicative uncertainty and a delay-free nominal
model, G(s) = �kG0(s) where �k = kmin+kmax

2 and rk = (kmax�kmin)=2
�k

. Lundström
(1994) derived the following exact expression for the relative uncertainty weight

lI(!) =

� p
r2k + 2(1 + rk)(1� cos (�max!)) for ! < �=�max

2 + rk for ! � �=�max
(7.24)

where rk is the relative uncertainty in the gain. This bound is irrational. To derive a
rational weight we first approximate the delay by a first-order Padé approximation to
get

kmaxe
��maxs � �k � �k(1 + rk)

1� �max
2 s

1 + �max
2 s

� �k = �k
� �1 + rk

2

�
�maxs+ rk

�max
2 s+ 1

(7.25)

Since only the magnitude matters this may be represented by the following first-order
weight

wI (s) =
(1 + rk

2 )�maxs+ rk
�max
2 s+ 1

(7.26)

However, as seen from Figure 7.9 by comparing the dotted line (representing w I )
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Figure 7.9: Multiplicative weight for gain and delay uncertainty in (7.23)

with the solid line (representing lI ), this weight wI is somewhat optimistic (too
small), especially around frequencies 1=�max. To make sure that jwI (j!)j � lI(!)
at all frequencies we apply a correction factor and get a third-order weight

wI(s) =
(1 + rk

2 )�maxs+ rk
�max
2 s+ 1

�
�
�max
2:363

�2
s2 + 2 � 0:838 � �max2:363s+ 1�

�max
2:363

�2
s2 + 2 � 0:685 � �max2:363s+ 1

(7.27)
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The improved weight wI(s) in (7.27) is not shown in Figure 7.9, but it would be
almost indistinguishable from the exact bound given by the solid curve. In practical
applications, it is suggested that one starts with a simple weight as in (7.26), and
if it later appears important to eke out a little extra performance then one can try a
higher-order weight as in (7.27).

Example 7.5 Consider the setGp(s) = kpe
��psG0(s) with 2 � kp � 3 and2 � �p � 3.

We approximate this with a nominal delay-free plantG = �kG0 = 2:5G0 and relative
uncertainty. The simple first-order weight in (7.26),wI(s) =

3:3s+0:2
1:5s+1

, is somewhat optimistic.

To cover all the uncertainty we may use (7.27),wI (s) =
3:3s+0:2
1:5s+1

� 1:612s2+2:128s+1
1:612s2+1:739s+1

.

7.4.6 Unmodelled dynamics uncertainty

Although we have spent a considerable amount of time on modelling uncertainty
and deriving weights, we have not yet addressed the most important reason for
using frequency domain (H1) uncertainty descriptions and complex perturbations,
namely the incorporation of unmodelled dynamics. Of course, unmodelled dynamics
is close to neglected dynamicswhich we have just discussed, but it is not quite the
same. In unmodelled dynamics we also include unknown dynamics of unknown
or even infinite order. To represent unmodelled dynamics we usually use a simple
multiplicative weight of the form

wI (s) =
�s+ r0

(�=r1)s+ 1
(7.28)

where r0 is the relative uncertainty at steady-state, 1=� is (approximately) the
frequency at which the relative uncertainty reaches 100%, and r1 is the magnitude
of the weight at high frequency (typically, r1 � 2). Based on the above examples
and discussions it is hoped that the reader has now accumulated the necessary insight
to select reasonable values for the parameters r0; r1 and � for a specific application.
The following exercise provides further support and gives a good review of the main
ideas.

Exercise 7.1 Suppose that the nominal model of a plant is

G(s) =
1

s+ 1

and the uncertainty in the model is parameterized by multiplicative uncertainty with the weight

wI(s) =
0:125s + 0:25

(0:125=4)s + 1

Call the resulting set�. Now find the extreme parameter values in each of the plants (a)-(g)
below so that each plant belongs to the set�. All parameters are assumed to be positive. One
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approach is to plotlI(!) = jG�1G0 � 1j in (7.15) for eachG0 (Ga; Gb, etc.) and adjust the
parameter in question untillI just touchesjwI(j!)j.
(a) Neglected delay: Find the largest� for Ga = Ge��s (Answer:0:13).

(b) Neglected lag: Find the largest� for Gb = G 1
�s+1

(Answer:0:15).

(c) Uncertain pole: Find the range ofa for Gc =
1

s+a
(Answer:0:8 to 1:33).

(d) Uncertain pole (time constant form): Find the range ofT for Gd = 1
Ts+1

(Answer:0:7 to
1:5).

(e) Neglected resonance: Find the range of� for Ge = G 1
(s=70)2+2�(s=70)+1

(Answer:0:02
to 0:8).

(f) Neglected dynamics: Find the largest integerm for Gf = G
�

1
0:01s+1

�m
(Answer:13).

(g) Neglected RHP-zero: Find the largest�z forGg = G��zs+1
�zs+1

(Answer:0:07). These results
imply that a control system which meets given stability and performance requirements for all
plants in�, is also guaranteed to satisfy the same requirements for the above plantsGa,
Gb; : : : ; Gg .

(h) Repeat the above with a new nominal plantG = 1=(s � 1) (and with everything else the
same exceptGd = 1=(Ts� 1)). (Answer: Same as above).

Exercise 7.2 Repeat Exercise 7.1 with a new weight,

wI(s) =
s+ 0:3

(1=3)s+ 1

We end this section with a couple of remarks on uncertainty modelling:

1. We can usually get away with just one source of complex uncertainty for SISO
systems.

2. With an H1 uncertainty description, it is possible to represent time delays
(corresponding to an infinite-dimensional plant) and unmodelled dynamics of
infinite order , using a nominal model and associated weights with finite order.

7.5 SISO Robust stability

We have so far discussed how to represent the uncertainty mathematically. In this
section, we derive conditions which will ensure that the system remains stable for
all perturbations in the uncertainty set, and then in the subsequent section we study
robust performance.



UNCERTAINTY AND ROBUSTNESS 271

d dq q- -

- -

? - -
6-

K

wI �I

G

Gp

+

+

Figure 7.10: Feedback system with multiplicative uncertainty

7.5.1 RS with multiplicative uncertainty

We want to determine the stability of the uncertain feedback system in Figure 7.10
when there is multiplicative (relative) uncertainty of magnitude jw I (j!)j. With
uncertainty the loop transfer function becomes

Lp = GpK = GK(1 + wI�I ) = L+ wIL�I ; j�I(j!)j � 1;8! (7.29)

As always, we assume (by design) stability of the nominal closed-loop system (i.e.
with �I = 0). For simplicity, we also assume that the loop transfer function Lp is
stable. We now use the Nyquist stability condition to test for robust stability of the
closed-loop system. We have

RS
def, System stable 8Lp

, Lp should not encircle the point � 1; 8Lp (7.30)

L(j!)

Re

Im

0

�1

j1 + L(j!)j

jwILj

Figure 7.11: Nyquist plot of Lp for robust stability
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1. Graphical derivation of RS-condition. Consider the Nyquist plot ofLp as shown
in Figure 7.11. Convince yourself that j � 1� Lj = j1 + Lj is the distance from the
point �1 to the centre of the disc representing Lp, and that jwILj is the radius of
the disc. Encirclements are avoided if none of the discs cover �1, and we get from
Figure 7.11

RS , jwILj < j1 + Lj; 8! (7.31)

,
���� wIL1 + L

���� < 1; 8! , jwIT j < 1; 8! (7.32)

def, kwITk1 < 1 (7.33)

Note that for SISO systems wI = wO and T = TI = GK(1 + GK)�1, so
the condition could equivalently be written in terms of w ITI or wOT . Thus, the
requirement of robust stability for the case with multiplicative uncertainty gives an
upper bound on the complementary sensitivity:

RS, jT j < 1=jwI j; 8! (7.34)

We see that we have to detune the system (i.e. makeT small) at frequencies where
the relative uncertaintyjwI j exceeds1 in magnitude. Condition (7.34) is exact
(necessary and sufficient) provided there exist uncertain plants such that at each
frequency all perturbations satisfying j�(j!)j � 1 are possible. If this is not the
case, then (7.34) is only sufficientfor RS, e.g. this is the case if the perturbation is
restricted to be real, as for the parametric gain uncertainty in (7.6).

Example 7.6 Consider the following nominal plant and PI-controller

G(s) =
3(�2s+ 1)

(5s+ 1)(10s + 1)
K(s) = Kc

12:7s+ 1

12:7s

Recall that this is the inverse response process from Chapter 2. Initially, we selectKc =
Kc1 = 1:13 as suggested by the Ziegler-Nichols’ tuning rule. It results in a nominally stable
closed-loop system. Suppose that one “extreme” uncertain plant isG0(s) = 4(�3s+1)=(4s+
1)2. For this plant the relative errorj(G0 �G)=Gj is 0:33 at low frequencies; it is1 at about
0:1 rad/s, and it is5:25 at high frequencies. Based on this and (7.28) we choose the following
uncertainty weight

wI(s) =
10s+ 0:33

(10=5:25)s + 1

which closely matches this relative error. We now want to evaluate whether the system remains
stable for all possible plants as given byGp = G(1+wI�I)where�I(s) is any perturbation
satisfyingk�k1 � 1. This isnot the case as seen from Figure 7.12 where we see that the
magnitude of the nominal complementary sensitivity functionT1 = GK1=(1+GK1) exceeds
the bound1=jwI j from about0:1 to1 rad/s, so (7.34) is not satisfied. To achieve robust stability
we need to reduce the controller gain. By trial and error we find that reducing the gain to
Kc2 = 0:31 just achieves RS, as is seen from the curve forT2 = GK2=(1 + GK2) in
Figure 7.12.
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Figure 7.12: Checking robust stability with multiplicative uncertainty

Remark. For the “extreme” plantG0(s) we find as expected that the closed-loop system is
unstable withKc1 = 1:13. However, withKc2 = 0:31 the system is stable with reasonable
margins (and not at the limit of instability as one might have expected); we can increase the
gain by almost a factor of two toKc = 0:58 before we get instability. This illustrates that
condition (7.34) is only asufficient condition for stability, and a violation of this bound does
not imply instability for a specific plantG0. However, withKc2 = 0:31 there exists an allowed
complex�I and a correspondingGp = G(1 + wI�I) that yieldsT2p =

GpK2

1+GpK2
on the

limit of instability.

2. Algebraic derivation of RS-condition. Since Lp is assumed stable, and the
nominal closed-loop is stable, the nominal loop transfer function L(j!) does not
encircle �1. Therefore, since the set of plants is norm-bounded, it then follows that
if some Lp1 in the uncertainty set encircles �1, then there must be another Lp2 in
the uncertainty set which goes exactly through�1 at some frequency. Thus,

RS , j1 + Lpj 6= 0; 8Lp;8! (7.35)

, j1 + Lpj > 0; 8Lp;8! (7.36)

, j1 + L+ wIL�I j > 0; 8j�I j � 1;8! (7.37)

At each frequency the last condition is most easily violated (the worst case) when the
complex number �I(j!) is selected with j�I (j!)j = 1 and with phase such that
the terms (1 + L) and wIL�I have opposite signs (point in the opposite direction).
Thus

RS, j1 + Lj � jwILj > 0; 8! , jwIT j < 1; 8! (7.38)

and we have rederived (7.33).

Remark. Unstable plants. The stability condition (7.33) also applies to the case when L and
Lp are unstable as long as the number of RHP-poles remains the same for each plant in the
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uncertainty set. This follows since the nominal closed-loop system is assumed stable, so we
must make sure that the perturbation does not change the number of encirclements, and (7.33)
is the condition which guarantees this.

�

-

�

M

y�u�

Figure 7.13: M�-structure

3. M�-structure derivation of RS-condition. This derivation is a preview of
a general analysis presented in the next chapter. The reader should not be too
concerned if he or she does not fully understand the details at this point. The
derivation is based on applying the Nyquist stability condition to an alternative “ loop
transfer function” M� rather thanLp. The argument goes as follows. Notice that the
only source of instability in Figure 7.10 is the new feedback loop created by � I . If
the nominal (�I = 0) feedback system is stable then the stability of the system in
Figure 7.10 is equivalent to stability of the system in Figure 7.13, where � = � I

and
M = wIK(1 +GK)�1G = wIT (7.39)

is the transfer function from the output of � I to the input of �I . We now apply
the Nyquist stability condition to the system in Figure 7.13. We assume that � and
M = wIT are stable; the former implies that G andGp must have the same unstable
poles, the latter is equivalent to assuming nominal stability of the closed-loop system.
The Nyquist stability condition then determines RS if and only if the “ loop transfer
function” M� does not encircle�1 for all �. Thus,

RS , j1 +M�j > 0; 8!;8j�j � 1 (7.40)

The last condition is most easily violated (the worst case) when � is selected at each
frequency such that j�j = 1 and the terms M� and 1 have opposite signs (point in
the opposite direction). We therefore get

RS , 1� jM(j!)j > 0; 8! (7.41)

, jM(j!)j < 1; 8! (7.42)

which is the same as (7.33) and (7.38) since M = wIT . TheM�-structure provides
a very general way of handling robust stability, and we will discuss this at length in
the next chapter where we will see that (7.42) is essentially a clever application of
the small gain theorem where we avoid the usual conservatism since any phase in
M� is allowed.
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7.5.2 Comparison with gain margin

By what factor, kmax, can we multiply the loop gain, L0 = G0K, before we get
instability? In other words, given

Lp = kpL0; kp 2 [1; kmax] (7.43)

find the largest value of kmax such that the closed-loop system is stable.

1. Real perturbation. The exact value of kmax, which is obtained with � real, is the
gain margin (GM) from classical control. We have (recall (2.33))

kmax;1 = GM =
1

jL0(j!180)j (7.44)

where !180 is the frequency where \L0 = �180Æ.
2. Complex perturbation. Alternatively, represent the gain uncertainty as complex
multiplicative uncertainty,

Lp = kpL0 = �kL0(1 + rk�) (7.45)

where
�k =

kmax + 1

2
; rk =

kmax � 1

kmax + 1
(7.46)

Note that the nominalL = �kL0 is not fixed, but depends on kmax. The robust stability
condition kwITk1 < 1 (which is derived for complex �) with wI = rk then gives



rk �kL0

1 + �kL0






1
< 1 (7.47)

Here both rk and �k depend on kmax, and (7.47) must be solved iteratively to find
kmax;2. Condition (7.47) would be exact if � were complex, but since it is not we
expect kmax;2 to be somewhat smaller than GM.

Example 7.7 To check this numerically consider a system withL0 = 1
s
�s+2
s+2

. We find
!180 = 2 [rad/s] and jL0(j!180)j = 0:5, and the exact factor by which we can increase
the loop gain is, from (7.44),kmax;1 = GM = 2. On the other hand, use of (7.47) yields
kmax;2 = 1:78, which as expected is less than GM=2. This illustrates the conservatism
involved in replacing a real perturbation by a complex one.

Exercise 7.3 Represent the gain uncertainty in (7.43) as multiplicative complex uncertainty
with nominal modelG = G0 (rather thanG = �kG0 used above).

(a) FindwI and use the RS-conditionkwITk1 < 1 to findkmax;3. Note that no iteration is
needed in this case since the nominal model and thusT = T0 is independent ofkmax.

(b) One expectskmax;3 to be even more conservative thankmax;2 since this uncertainty
description is not even tight when� is real. Show that this is indeed the case using the
numerical values from Example 7.7.
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7.5.3 RS with inverse multiplicative uncertainty
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Figure 7.14: Feedback system with inverse multiplicative uncertainty

We will derive a corresponding RS-condition for a feedback system with inverse
multiplicative uncertainty (see Figure 7.14) in which

Gp = G(1 + wiI (s)�iI )
�1 (7.48)

Algebraic derivation. Assume for simplicity that the loop transfer function L p is
stable, and assume stability of the nominal closed-loop system. Robust stability is
then guaranteed if encirclements by Lp(j!) of the point �1 are avoided, and since
Lp is in a norm-bounded set we have

RS , j1 + Lpj > 0; 8Lp;8! (7.49)

, j1 + L(1 + wiI�iI )
�1j > 0; 8j�iI j � 1;8! (7.50)

, j1 + wiI�iI + Lj > 0; 8j�iI j � 1;8! (7.51)

The last condition is most easily violated (the worst case) when � iI is selected at
each frequency such that j�iI j = 1 and the terms 1 + L and wiI�iI have opposite
signs (point in the opposite direction). Thus

RS , j1 + Lj � jwiI j > 0; 8! (7.52)

, jwiISj < 1; 8! (7.53)

Remark. In this derivation we have assumed that Lp is stable, but this is not necessary as
one may show by deriving the condition using the M�-structure. Actually, the RS-condition
(7.53) applies even when the number of RHP-poles of Gp can change.

Control implications. From (7.53) we find that the requirement of robust stability
for the case with inverse multiplicative uncertainty gives an upper bound on the
sensitivity,

RS , jSj < 1=jwiI j; 8! (7.54)
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We see that we need tight control and have to makeS small at frequencies where
the uncertainty is large andjwiI j exceeds1 in magnitude.This may be somewhat
surprising since we intuitively expect to have to detune the system (and make S � 1)
when we have uncertainty, while this condition tells us to do the opposite. The reason
is that this uncertainty represents pole uncertainty, and at frequencies where jw iI j
exceeds 1 we allow for poles crossing from the left to the right-half plane (G p

becoming unstable), and we then know that we need feedback (jSj < 1) in order
to stabilize the system.

However, jSj < 1 may not always be possible. In particular, assume that the plant
has a RHP-zero at s = z. Then we have the interpolation constraint S(z) = 1 and
we must as a prerequisite for RS, kwiISk1 < 1, require that wiI (z) � 1 (recall the
maximum modulus theorem, see (5.15)). Thus, we cannot have large pole uncertainty
with jwiI (j!)j > 1 (and hence the possibility of instability) at frequencies where the
plant has a RHP-zero. This is consistent with the results we obtained in Section 5.9.

7.6 SISO Robust performance

7.6.1 SISO nominal performance in the Nyquist plot

Consider performance in terms of the weighted sensitivity function as discussed in
Section 2.7.2. The condition for nominal performance (NP) is then

NP , jwPSj < 1 8! , jwP j < j1 + Lj 8! (7.55)

Now j1 + Lj represents at each frequency the distance of L(j!) from the point �1
in the Nyquist plot, so L(j!) must be at least a distance of jwP (j!)j from�1. This
is illustrated graphically in Figure 7.15, where we see that for NP, L(j!) must stay
outside a disc of radius jwP (j!)j centred on �1.

7.6.2 Robust performance

For robust performance we require the performance condition (7.55) to be satisfied
for all possible plants, that is, including the worst-case uncertainty.

RP
def, jwPSpj < 1 8Sp;8! (7.56)

, jwP j < j1 + Lpj 8Lp;8! (7.57)

This corresponds to requiring jby=dj < 1 8�I in Figure 7.16, where we consider
multiplicative uncertainty, and the set of possible loop transfer functions is

Lp = GpK = L(1 + wI�I) = L+ wIL�I (7.58)
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Figure 7.15: Nyquist plot illustration of nominal performance condition jwP j < j1 + Lj

1. Graphical derivation of RP-condition. Condition (7.57) is illustrated graphically
by the Nyquist plot in Figure 7.17. For RP we must require that all possible L p(j!)
stay outside a disc of radius jwP (j!)j centred on �1. Since Lp at each frequency
stays within a disc of radius wIL centred on L, we see from Figure 7.17 that the
condition for RP is that the two discs, with radii jwP j and jwILj, do not overlap.
Since their centres are located a distance j1 + Lj apart, the RP-condition becomes

RP , jwP j+ jwILj < j1 + Lj; 8! (7.59)

, jwP (1 + L)�1j+ jwIL(1 + L)�1j < 1; 8! (7.60)

or in other words
RP , max! (jwPSj+ jwIT j) < 1 (7.61)

2. Algebraic derivation of RP-condition. From the definition in (7.56) we have that
RP is satisfied if the worst-case (maximum) weighted sensitivity at each frequency
is less than 1, that is,

RP , max
Sp

jwPSpj < 1; 8! (7.62)
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Figure 7.16: Diagram for robust performance with multiplicative uncertainty
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Figure 7.17: Nyquist plot illustration of robust performance condition jwP j < j1 + Lpj

(strictly speaking, max should be replaced by sup, the supremum). The perturbed
sensitivity is Sp = (I+Lp)

�1 = 1=(1+L+wIL�I), and the worst-case (maximum)
is obtained at each frequency by selecting j�I j=1 such that the terms (1 + L) and
wIL�I (which are complex numbers) point in opposite directions. We get

max
Sp

jwPSpj = jwP j
j1 + Lj � jwILj =

jwPSj
1� jwIT j (7.63)

and by substituting (7.63) into (7.62) we rederive the RP-condition in (7.61).

Remarks on RP-condition (7.61).

1. The RP-condition (7.61) for this problem is closely approximated by the following mixed
sensitivity H1 condition:



wPSwIT






1

= max
!

p
jwPSj2 + jwIT j2 < 1 (7.64)

To be more precise, we find from (A.95) that condition (7.64) is within a factor of at mostp
2 to condition (7.61). This means that for SISO systems we can closely approximate

the RP-condition in terms of an H1 problem, so there is little need to make use of the
structured singular value. However, we will see in the next chapter that the situation can be
very different for MIMO systems.

2. The RP-condition (7.61) can be used to derive bounds on the loop shape jLj. At a given
frequency we have that jwPSj+ jwIT j < 1 (RP) is satisfied if (see Exercise 7.4)

jLj > 1 + jwP j
1� jwI j ; (at frequencies where jwI j < 1) (7.65)

or if

jLj < 1� jwP j
1 + jwI j ; (at frequencies where jwP j < 1) (7.66)
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Conditions (7.65) and (7.66) may be combined over different frequency ranges. Condition
(7.65) is most useful at low frequencies where generally jwI j < 1 and jwP j > 1 (tight
performance requirement) and we need jLj large. Conversely, condition (7.66) is most
useful at high frequencies where generally jwI j > 1, (more than 100% uncertainty),
jwP j < 1 and we need L small. The loop-shaping conditions (7.65) and (7.66) may in
the general case be obtained numerically from �-conditions as outlined in Remark 13 on
page 320. This is discussed by Braatz et al. (1996) who derive bounds also in terms of S
and T , and furthermore derive necessary bounds for RP in addition to the sufficient bounds
in (7.65) and (7.66); see also Exercise 7.5.

3. The term �(NRP) = jwPSj+ jwIT j in (7.61) is the structured singular value(�) for RP
for this particular problem; see (8.128). We will discuss � in much more detail in the next
chapter.

4. The structured singular value � is not equal to the worst-case weighted sensitivity,
maxSp jwPSpj, given in (7.63) (although many people seem to think it is). The worst-case
weighted sensitivity is equal to skewed-� (�s) with fixed uncertainty; see Section 8.10.3.
Thus, in summary we have for this particular robust performance problem:

� = jwPSj+ jwIT j; �s =
jwPSj

1� jwIT j (7.67)

Note that � and �s are closely related since � � 1 if and only if �s � 1.

Exercise 7.4 Derive the loop-shaping bounds in (7.65) and (7.66) which are sufficient for
jwPSj + jwIT j < 1 (RP).Hint: Start from the RP-condition in the formjwP j + jwILj <
j1 + Lj and use the facts thatj1 + Lj � 1� jLj and j1 + Lj � jLj � 1.

Exercise 7.5 Also derive, fromjwPSj+ jwIT j < 1, the following necessary bounds for RP
(whichmust be satisfied)

jLj > jwP j � 1

1� jwI j ; (for jwP j > 1 and jwI j < 1)

jLj < 1� jwP j
jwI j � 1

; (for jwP j < 1 and jwI j > 1)

Hint: Usej1 + Lj � 1 + jLj.

Example 7.8 Robust performance problem. Consider robust performance of the SISO
system in Figure 7.18, for which we have

RP
def,
���� byd
���� < 1; 8j�uj � 1; 8!; wP (s) = 0:25 +

0:1

s
; wu(s) = ru

s

s+ 1
(7.68)

(a) Derive a condition for robust performance (RP).

(b) For what values ofru is it impossible to satisfy the robust performance condition?

(c) Letru = 0:5. Consider two cases for the nominal loop transfer function: 1)GK1(s) =
0:5=s and 2)GK2(s) = 0:5

s
1�s
1+s

. For each system, sketch the magnitudes of S and its
performance bound as a function of frequency. Does each system satisfy robust performance?
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Figure 7.18: Diagram for robust performance in Example 7.8

Solution. (a) The requirement for RP isjwPSpj < 1; 8Sp; 8!, where the possible sensitivities
are given by

Sp =
1

1 +GK + wu�u
=

S

1 + wu�uS
(7.69)

The condition for RP then becomes

RP ,
���� wPS

1 + wu�uS

���� < 1; 8�u; 8! (7.70)

A simple analysis shows that the worst case corresponds to selecting�u with magnitude 1
such that the termwu�uS is purely real and negative, and hence we have

RP , jwPSj < 1� jwuSj; 8! (7.71)

, jwPSj+ jwuSj < 1; 8! (7.72)

, jS(jw)j < 1

jwP (jw)j+ jwu(jw)j ; 8! (7.73)

(b) Since any real system is strictly proper we havejSj = 1 at high frequencies and therefore
we must requirejwu(j!)j + jwP (j!)j < 1 as! ! 1. With the weights in (7.68) this is
equivalent toru + 0:25 < 1. Therefore, we must at least requireru < 0:75 for RP, so RP
cannot be satisfied ifru � 0:75.

(c) DesignS1 yields RP, whileS2 does not. This is seen by checking the RP-condition (7.73)
graphically as shown in Figure 7.19;jS1j has a peak of1 while jS2j has a peak of about2:45.

7.6.3 The relationship between NP, RS and RP

Consider a SISO system with multiplicative uncertainty, and assume that the closed-
loop is nominally stable (NS). The conditions for nominal performance (NP), robust
stability (RS) and robust performance (RP) can then be summarized as follows

NP , jwPSj < 1;8! (7.74)

RS , jwIT j < 1;8! (7.75)

RP , jwPSj+ jwIT j < 1;8! (7.76)
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Figure 7.19: Robust performance test

From this we see that a prerequisite for RP is that we satisfy NP and RS. This applies
in general, both for SISO and MIMO systems and for any uncertainty. In addition,
for SISO systems, if we satisfy both RS and NP, then we have at each frequency

jwPSj+ jwIT j � 2maxfjwPSj; jwIT jg < 2 (7.77)

It then follows that, within a factor of at most 2, we will automatically get RP when
the subobjectives of NP and RS are satisfied. Thus, RP is not a “big issue” for SISO
systems, and this is probably the main reason why there is little discussion about
robust performance in the classical control literature. On the other hand, as we will
see in the next chapter, for MIMO systems we may get very poor RP even though
the subobjectives of NP and RS are individually satisfied.

To satisfy RS we generally want T small, whereas to satisfy NP we generally want S
small. However, we cannot make bothS and T small at the same frequency because
of the identity S + T = 1. This has implications for RP, since jwP jjSj+ jwI jjT j �
minfjwP j; jwI jg(jSj+ jT j), where jSj+ jT j � jS + T j = 1, and we derive at each
frequency

jwPSj+ jwIT j � minfjwP j; jwI jg (7.78)

We conclude that we cannot have bothjwP j > 1 (i.e. good performance) and
jwI j > 1 (i.e. more than100% uncertainty) at the same frequency.One explanation
for this is that at frequencies where jwI j > 1 the uncertainty will allow for RHP-
zeros, and we know that we cannot have tight performance in the presence of RHP-
zeros.

7.6.4 The similarity between RS and RP

Robust performance may be viewed as a special case of robust stability (with
mulptiple perturbations). To see this consider the following two cases as illustrated
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Figure 7.20: (a) Robust performance with multiplicative uncertainty
(b) Robust stability with combined multiplicative and inverse multiplicative uncertainty

in Figure 7.20:

(a) RP with multiplicative uncertainty
(b) RS with combined multiplicative and inverse multiplicative uncertainty

As usual the uncertain perturbations are normalized such that k� 1k1 � 1 and
k�2k1 � 1. Since we use theH1 norm to define both uncertainty and performance
and since the weights in Figures 7.20(a) and (b) are the same, the tests for RP and RS
in cases (a) and (b), respectively, are identical. This may be argued from the block
diagrams, or by simply evaluating the conditions for the two cases as shown below.

(a) The condition for RP with multiplicative uncertainty was derived in (7.61), but
with w1 replaced by wP and with w2 replaced by wI . We found

RP , jw1Sj+ jw2T j < 1; 8! (7.79)

(b) We will now derive the RS-condition for the case where Lp is stable (this
assumption may be relaxed if the more general M�-structure is used, see
(8.127)). We want the system to be closed-loop stable for all possible � 1 and
�2. RS is equivalent to avoiding encirclements of �1 by the Nyquist plot of
Lp. That is, the distance between Lp and �1 must be larger than zero, i.e.
j1 + Lpj > 0, and therefore

RS , j1 + Lpj > 0 8Lp;8! (7.80)
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, j1 + L(1 + w2�2)(1� w1�1)
�1j > 0; 8�1;8�2;8! (7.81)

, j1 + L+ Lw2�2 � w1�1j > 0; 8�1;8�2;8! (7.82)

Here the worst case is obtained when we choose�1 and �2 with magnitudes 1
such that the terms Lw2�2 and w1�1 are in the opposite direction of the term
1 + L. We get

RS , j1 + Lj � jLw2j � jw1j > 0; 8! (7.83)

, jw1Sj+ jw2T j < 1; 8! (7.84)

which is the same condition as found for RP.

7.7 Examples of parametric uncertainty

We now provide some further examples of how to represent parametric uncertainty.
The perturbations � must be real to exactly represent parametric uncertainty.

7.7.1 Parametric pole uncertainty

Consider uncertainty in the parameter a in a state space model, _y = ay + bu,
corresponding to the uncertain transfer functionG p(s) = b=(s�ap). More generally,
consider the following set of plants

Gp(s) =
1

s� ap
G0(s); amin � ap � amax (7.85)

If amin and amax have different signs then this means that the plant can change from
stable to unstable with the pole crossing through the origin (which happens in some
applications). This set of plants can be written as

Gp =
G0(s)

s� �a(1 + ra�)
; �1 � � � 1 (7.86)

which can be exactly described by inverse multiplicative uncertainty as in (7.48) with
nominal model G = G0(s)=(s� �a) and

wiI (s) =
ra�a

s� �a
(7.87)

The magnitude of the weight wiI (s) is equal to ra at low frequencies. If ra is larger
than 1 then the plant can be both stable and unstable. As seen from the RS-condition
in (7.53), a value of jwiI j larger than 1 means that jSj must be less than 1 at the
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same frequency, which is consistent with the fact that we need feedback (S small) to
stabilize an unstable plant.

Time constant form. It is also interesting to consider another form of pole
uncertainty, namely that associated with the time constant:

Gp(s) =
1

�ps+ 1
G0(s); �min � �p � �max (7.88)

This results in uncertainty in the pole location, but the set of plants is entirely
different from that in (7.85). The reason is that in (7.85) the uncertainty affects the
model at low frequency, whereas in (7.88) the uncertainty affects the model at high
frequency. The corresponding uncertainty weight as derived in (7.8) is

wiI (s) =
r� ��s

1 + ��s
(7.89)

This weight is zero at ! = 0 and approaches r� at high frequency, whereas the
weight wiI in (7.87) is ra at ! = 0 and approaches zero at high frequencies.

7.7.2 Parametric zero uncertainty

Consider zero uncertainty in the “ time constant” form, as in

Gp(s) = (1 + �ps)G0(s); �min � �p � �max (7.90)

where the remaining dynamics G0(s) are as usual assumed to have no uncertainty.
For example, let �1 � �p � 3. Then the possible zeros zp = �1=�p cross from the
LHP to the RHP through infinity: zp � �1=3 (in LHP) and zp � 1 (in RHP). The
set of plants in (7.90) may be written as multiplicative (relative) uncertainty with

wI (s) = r� ��s=(1 + ��s) (7.91)

The magnitude jwI(j!)j is small at low frequencies, and approaches r� (the relative
uncertainty in � ) at high frequencies. For cases with r� > 1 we allow the zero to
cross from the LHP to the RHP (through infinity).

Exercise 7.6 Parametric zero uncertainty in zero form. Consider the following
alternative form of parametric zero uncertainty

Gp(s) = (s+ zp)G0(s); zmin � zp � zmax (7.92)

which caters for zeros crossing from the LHP to the RHP through the origin (corresponding
to a sign change in the steady-state gain). Show that the resulting multiplicative weight is
wI(s) = rz�z=(s+�z) and explain why the set of plants given by (7.92) is entirely different from
that with the zero uncertainty in “time constant” form in (7.90). Explain what the implications
are for control ifrz > 1.

Remark. Both of the two zero uncertainty forms, (7.90) and (7.92), can occur in practice. An
example of the zero uncertainty form in (7.92), which allows for changes in the steady-state
gain, is given in Example 7.10.
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7.7.3 Parametric state-space uncertainty

The above parametric uncertainty descriptions are mainly included to gain insight.
A general procedure for handling parametric uncertainty, more suited for numerical
calculations, is given by Packard (1988). Consider an uncertain state-space model

_x = Apx+Bpu (7.93)

y = Cpx+Dpu (7.94)

or equivalently
Gp(s) = Cp(sI �Ap)

�1Bp +Dp (7.95)

Assume that the underlying cause for the uncertainty is uncertainty in some real
parameters Æ1; Æ2; : : : (these could be temperature, mass, volume, etc.), and assume
in the simplest case that the state-space matrices depend linearly on these parameters
i.e.

Ap = A+
P

ÆiAi; Bp = B +
P

ÆiBi Cp = C +
P

ÆiCi; Dp = D +
P

ÆiDi (7.96)

where A;B;C and D model the nominal system. This description has multiple
perturbations, so it cannot be represented by a single perturbation, but it should be
fairly clear that we can separate out the perturbations affecting A;B;C and D, and
then collect them in a large diagonal matrix � with the real Æ i’s along its diagonal.
Some of the Æi’s may have to be repeated. For example, we may write

Ap = A+
X

ÆiAi = A+W2�W1 (7.97)

where � is diagonal with the Æi’s along its diagonal. Introduce �(s) , (sI �A)�1,
and we get

(sI �Ap)
�1 = (sI �A�W2�W1)

�1 = (I ��(s)W2�W1)
�1�(s) (7.98)

This is illustrated in the block diagram of Figure 7.21, which is in the form of an
inverse additive perturbation (see Figure 8.5(d)).

Example 7.9 SupposeAp is a function of two parameterskp = 1 + w1Æ1 (�1 � Æ1 � 1)
and�p = 3 + w2Æ2 (�1 � Æ2 � 1) as follows:

Ap =
� �2� kp kp � �p
kp + 2�p �kp

�
(7.99)

Then

Ap =
��3 �2
7 �1

�
| {z }

A

+Æ1

��w1 w1
w1 �w1

�
| {z }

A1

+Æ2

�
0 �w2

2w2 0

�
| {z }

A2

(7.100)

= A+
��w1 0 �w2
w1 2w2 0

�
| {z }

W2

"
Æ1 0 0
0 Æ2 0
0 0 Æ2

#
| {z }

�

"
1 �1
1 0
0 1

#
| {z }

W1

(7.101)
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Figure 7.21: Uncertainty in state space A-matrix

Note thatÆ1 appears only once in�, whereasÆ2 needs to be repeated. This is related to the
ranks of the matricesA1 (which has rank1) andA2 (which has rank2).

Additional repetitions of the parameters Æi may be necessary if we also have
uncertainty in B;C and D. It can be shown that the minimum number of repetitions

of each Æi in the overall �-matrix is equal to the rank of each matrix
�
Ai Bi
Ci Di

�
(Packard, 1988; Zhou et al., 1996). Also, note that seemingly nonlinear parameter
dependencies may be rewritten in our standard linear block diagram form, for
example, we can handle Æ21 (which would need Æ1 repeated), �+w1Æ1Æ2

1+w2Æ2
, etc. This

is illustrated next by an example.

Example 7.10 Parametric uncertainty and repeated perturbations. This example
illustrates how most forms of parametric uncertainty can be represented in terms of the�-
representation using linear fractional transformations (LFTs). Consider the following state
space description of a SISO plant1

_x = Apx+Bpu; y = Cx (7.102)

1 This is actually a simple model of a chemical reactor (CSTR) where u is the feed flowrate, x1 is the
concentration of reactant A, y = x2 is the concentration of intermediate product B and k = q� is the
steady-state value of the feed flowrate. Component balances yield

V _cA = qcAf � qcA � k1cAV [mol A=s]

V _cB = �qcB + k1cAV � k2cBV [mol B=s]

where V is the reactor volume. Linearization and introduction of deviation variables, x1 = �cA; x2 =
�cB , and u = �q, yields, with k1 = 1; k2 = 1; V = 1 and c�A = c�B = 1,

_x1 = �(1 + q�)x1 + (c�Af � 1)u

_x2 = x1 � (1 + q�)x2 � u

where the superscript � signifies a steady-state value. The values of q� and c�Af depend on the operating
point, and it is given that at steady-state we always have q�c�Af = 1 (physically, we may have an
upstream mixing tank where a fixed amount of A is fed in). By introducing k = q� we get the model
in (7.103).
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Ap =

��(1 + k) 0
1 �(1 + k)

�
; Bp =

�
1�k
k�1

�
; C = [ 0 1 ] (7.103)

The constantk > 0 may vary during operation, so the above description generates a set of
possible plants. Assume thatk = 0:5 � 0:1, which may be written as

k = 0:5 + 0:1Æ; jÆj � 1 (7.104)

Note that the parameterk enters into the plant model in several places, and we will need to
use repeated perturbations in order to rearrange the model to fit our standard formulation
with the uncertainty represented as a block-diagonal�-matrix.

Let us first consider the input gain uncertainty for state1, that is, the variations inbp1 =
(1�k)=k. Even thoughbp1 is a nonlinear function ofÆ, it has a block-diagram representation
and may thus be written as a linear fractional transformation (LFT). We have

bp1(Æ) =
1� k

k
=

0:5� 0:1Æ

0:5 + 0:1Æ
=

1� 0:2Æ

1 + 0:2Æ
(7.105)

which may be written as a scalar LFT

bp1(Æ) = Fu(N; Æ) = n22 + n12Æ(1� n11Æ)
�1n21 (7.106)

with n22 = 1; n11 = �0:2; n12n21 = �0:4. Next consider the pole uncertainty caused by
variations in theA-matrix, which may be written as

Ap =
��1:5 0

1 �1:5
�
+
��0:1 0

0 �0:1
��

Æ 0
0 Æ

�
(7.107)

For our specific example with uncertainty in bothB andA, the plant uncertainty may be
represented as shown in Figure 7.22 whereK(s) is a scalar controller. Consequently, we
may pull out the perturbations and collect them in a3 � 3 diagonal�-block with the scalar
perturbationÆ repeated three times,

� =

24 Æ Æ
Æ

35 (7.108)

and we may then obtain the interconnection matrixP by rearranging the block diagram of
Figure 7.22 to fit Figure 3.21. It is rather tedious to do this by hand, but it is relatively
straightforward with the appropriate software tools.

Remark. The above example is included in order to show that quite complex uncertainty
representations can be captured by the general framework of block-diagonal perturbations. It
is not suggested, however, that such a complicated description should be used in practice for
this example. A little more analysis will show why. The transfer function for this plant is

Gp(s) =
�(s+ (k+2:414)(k�0:414)

k
)

(s+ 1 + k)2
(7.109)
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Figure 7.22: Block diagram of parametric uncertainty

and we note that it has a RHP-zero for k < 0:414, and that the steady state gain is zero for
k = 0:414. The three plants corresponding to k = 0:5; 0:4 and 0.6 are

G(s) = � (s+ 0:5)

(s+ 1:5)2
; Gp1(s) = � (s� 0:1)

(s+ 1:4)2
; Gp2(s) = � (s+ 0:93)

(s+ 1:6)2
(7.110)

From a practical point of view the pole uncertainty therefore seems to be of very little
importance and we may use a simplified uncertainty description with zero uncertainty only,
e.g.

gp(s) = � (s+ zp)

(s+ 1:5)2
; �0:1 � zp � 0:93 (7.111)

In any case, we know that because of the RHP-zero crossing through the origin, the
performance at low frequencies will be very poor for this plant.

7.8 Additional exercises

Exercise 7.7 Consider a “true” plant

G0(s) =
3e�0:1s

(2s+ 1)(0:1s+ 1)2

(a) Derive and sketch the additive uncertainty weight when the nominal model isG(s) =
3=(2s + 1).

(b) Derive the corresponding robust stability condition.

(c) Apply this test for the controllerK(s) = k=s and find the values ofk that yield stability.
Is this condition tight?

Exercise 7.8 Uncertainty weight for a first-order model with delay. Laughlin et al.
(1987) considered the following parametric uncertainty description

Gp(s) =
kp

�ps+ 1
e��ps; kp 2 [kmin; kmax]; �p 2 [�min; �max]; �p 2 [�min; �max]

(7.112)
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where all parameters are assumed positive. They chose the mean parameter values as (�k; ��; �� )
giving the nominal model

G(s) = �G(s) ,
�k

��s+ 1
e�

��s (7.113)

and suggested use of the following multiplicative uncertainty weight

wIL(s) =
kmax

�k
� ��s+ 1

�mins+ 1
� Ts+ 1

�Ts+ 1
� 1; T =

�max � �min

4
(7.114)

(a) Show that the resulting stable and minimum phase weight corresponding to the uncertainty
description in (7.17) is

wIL(s) = (1:25s2 + 1:55s+ 0:2)=(2s+ 1)(0:25s + 1) (7.115)

Note that this weight cannot be compared with (7.19) or (7.20) since the nominal plant is
different.

(b) Plot the magnitude ofwIL as a function of frequency. Find the frequency where the weight
crosses1 in magnitude, and compare this with1=�max. Comment on your answer.

(c) Find lI(j!) using (7.15) and compare withjwILj. Does the weight (7.115) and the
uncertainty model (7.2) include all possible plants? (Answer: No, not quite around frequency
! = 5).

Exercise 7.9 Consider again the system in Figure 7.18. What kind of uncertainty mightwu
and�u represent?

Exercise 7.10 Neglected dynamics. Assume we have derived the following detailed model

Gdetail(s) =
3(�0:5s+ 1)

(2s+ 1)(0:1s+ 1)2
(7.116)

and we want to use the simplified nominal modelG(s) = 3=(2s + 1) with multiplicative
uncertainty. PlotlI(!) and approximate it by a rational transfer functionwI (s).

Exercise 7.11 Parametric gain uncertainty. We showed in Example 7.1 how to represent
scalar parametric gain uncertaintyGp(s) = kpG0(s) where

kmin � kp � kmax (7.117)

as multiplicative uncertaintyGp = G(1 + wI�I) with nominal modelG(s) = �kG0(s) and
uncertainty weightwI = rk = (kmax � kmin)=(kmax + kmin). �I is here a real scalar,
�1 � �I � 1. Alternatively, we can represent gain uncertainty asinverse multiplicative
uncertainty:

�iI : Gp(s) = G(s)(1 + wiI(s)�iI)
�1; �1 � �iI � 1 (7.118)

withwiI = rk andG(s) = kiG where

ki = 2
kminkmax

kmax + kmin
(7.119)
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(a) Derive (7.118) and (7.119). (Hint: The gain variation in (7.117) can be written exactly as
kp = ki=(1 � rk�).)

(b) Show that the form in (7.118) does not allow forkp = 0.

(c) Discuss why (b) may be a possible advantage.

Exercise 7.12 The model of an industrial robot arm is as follows

G(s) =
250(as2 + 0:0001s + 100)

s(as2 + 0:0001(500a + 1)s+ 100(500a + 1))

wherea 2 [0:0002; 0:002]. Sketch the Bode plot for the two extreme values ofa. What kind of
control performance do you expect? Discuss how you may best represent this uncertainty.

7.9 Conclusion

In this chapter we have shown how model uncertainty for SISO systems can be
represented in the frequency domain using complex norm-bounded perturbations,
k�k1 � 1. At the end of the chapter we also discussed how to represent parametric
uncertainty using real perturbations.

We showed that the requirement of robust stability for the case of multiplicative
complex uncertainty imposes an upper bound on the allowed complementary
sensitivity, jwIT j < 1;8!: Similarly, the inverse multiplicative uncertainty imposes
an upper bound on the sensitivity, jw iISj < 1;8!. We also derived a condition for
robust performance with multiplicative uncertainty, jwPSj+ jwIT j < 1;8!.

The approach in this chapter was rather elementary, and to extend the results to
MIMO systems and to more complex uncertainty descriptions we need to make use
of the structured singular value, �. This is the theme of the next chapter, where we
find that jwIT j and jwiISj are the structured singular values for evaluating robust
stability for the two sources of uncertainty in question, whereas jwPSj + jwIT j is
the structured singular value for evaluating robust performance with multiplicative
uncertainty.
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8

ROBUST STABILITY AND

PERFORMANCE ANALYSIS

The objective of this chapter is to present a general method for analyzing robust stability and
robust performance of MIMO systems with multiple perturbations. Our main analysis tool
will be the structured singular value, �. We also show how the “optimal” robust controller, in
terms of minimizing �, can be designed using DK-iteration. This involves solving a sequence
of scaledH1 problems.

8.1 General control configuration with uncertainty

For useful notation and an introduction to model uncertainty the reader is referred
to Sections 7.1 and 7.2. The starting point for our robustness analysis is a system
representation in which the uncertain perturbations are “pulled out” into a block-
diagonal matrix,

� = diagf�ig =

266664
�1

. . .
�i

. . .

377775 (8.1)

where each �i represents a specific source of uncertainty, e.g. input uncertainty,� I ,
or parametric uncertainty, Æi, where Æi is real. If we also pull out the controller K,
we get the generalized plant P , as shown in Figure 8.1. This form is useful for
controller synthesis. Alternatively, if the controller is given and we want to analyze
the uncertain system, we use the N�-structure in Figure 8.2.

In Section 3.8.8, we discussed how to find P and N for cases without uncertainty.
The procedure with uncertainty is similar and is demonstrated by examples below;
see Section 8.3. To illustrate the main idea, consider Figure 8.4 where it is shown
how to pull out the perturbation blocks to form � and the nominal system N . As
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�

-
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�

-
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�

y�u�

P

K

zw

vu

Figure 8.1: General control configuration (for controller synthesis)

�

-
- -

�

y�u�

N zw

Figure 8.2: N�-structure for robust performance analysis

shown in (3.111),N is related to P and K by a lower LFT

N = Fl(P;K) , P11 + P12K(I � P22K)�1P21 (8.2)

Similarly, the uncertain closed-loop transfer function fromw to z, z = Fw, is related
to N and � by an upper LFT (see (3.112)),

F = Fu(N;�) , N22 +N21�(I �N11�)�1N12 (8.3)

To analyze robust stability of F , we can then rearrange the system into the M�-

�

-

�

M

y�u�

Figure 8.3: M�-structure for robust stability analysis
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(a) Original system with multiple perturbations

+

�
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�3
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-w -z

�
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�
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�

(b) Pulling out the perturbations

Figure 8.4: Rearranging an uncertain system into the N�-structure
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structure of Figure 8.3 where M = N11 is the transfer function from the output to
the input of the perturbations.

8.2 Representing uncertainty

As usual, each individual perturbation is assumed to be stable and is normalized,

��(�i(j!)) � 1 8! (8.4)

For a complex scalar perturbation we have jÆ i(j!)j � 1; 8!, and for a real scalar
perturbation �1 � Æi � 1. Since from (A.47) the maximum singular value of a
block diagonal matrix is equal to the largest of the maximum singular values of the
individual blocks, it then follows for � = diagf�ig that

��(�i(j!)) � 1 8!; 8i , k�k1 � 1 (8.5)

Note that � has structure, and therefore in the robustness analysis we do not want
to allow all � such that (8.5) is satisfied. Only the subset which has the block-
diagonal structure in (8.1) should be considered. In some cases the blocks in � may
be repeated or may be real, that is, we have additional structure. For example, as
shown in Section 7.7.3, repetition is often needed to handle parametric uncertainty.

Remark. The assumption of a stable � may be relaxed, but then the resulting robust stability
and performance conditions will be harder to derive and more complex to state. Furthermore,
if we use a suitable form for the uncertainty and allow for multiple perturbations, then we can
always generate the desired class of plants with stable perturbations, so assuming � stable is
not really a restriction.

8.2.1 Differences between SISO and MIMO systems

The main difference between SISO and MIMO systems is the concept of directions
which is only relevant in the latter. As a consequence MIMO systems may experience
much larger sensitivity to uncertainty than SISO systems. The following example
illustrates that for MIMO systems it is sometimes critical to represent the coupling
between uncertainty in different transfer function elements.

Example 8.1 Coupling between transfer function elements. Consider a distillation
process where at steady-state

G =
�
87:8 �86:4
108:2 �109:6

�
; � = RGA(G) =

�
35:1 �34:1
�34:1 35:1

�
(8.6)
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From the large RGA-elements we know thatG becomes singular for small relative changes
in the individual elements. For example, from (6.88) we know that perturbing the1; 2-element
from�86:4 to�88:9 makesG singular. Since variations in the steady-state gains of�50%
or more may occur during operation of the distillation process, this seems to indicate that
independent control of both outputs is impossible. However, this conclusion is incorrect since,
for a distillation process,G never becomes singular. The reason is that the transfer function
elements are coupled due to underlying physical constraints (e.g. the material balance).
Specifically, for the distillation process a more reasonable description of the gain uncertainty
is (Skogestad et al., 1988)

Gp = G+ w
�
Æ �Æ
�Æ Æ

�
; jÆj � 1 (8.7)

wherew in this case is a real constant, e.g.w = 50. For the numerical data above
detGp = detG irrespective ofÆ, soGp is never singular for this uncertainty. (Note that
detGp = detG is not generally true for the uncertainty description given in (8.7)).

Exercise 8.1 The uncertain plant in (8.7) may be represented in the additive uncertainty
formGp = G+W2�AW1 where�A = Æ is a single scalar perturbation. FindW1 andW2.

8.2.2 Parametric uncertainty

The representation of parametric uncertainty, as discussed in Chapter 7 for SISO
systems, carries straight over to MIMO systems. However, the inclusion of
parametric uncertainty may be more significant for MIMO plants because it offers
a simple method of representing the coupling between uncertain transfer function
elements. For example, the simple uncertainty description used in (8.7) originated
from a parametric uncertainty description of the distillation process.

8.2.3 Unstructured uncertainty

Unstructured perturbations are often used to get a simple uncertainty model. We here
define unstructureduncertainty as the use of a “ full” complex perturbation matrix �,
usually with dimensions compatible with those of the plant, where at each frequency
any �(j!) satisfying ��(�(j!)) � 1 is allowed.

Six common forms of unstructured uncertainty are shown in Figure 8.5. In
Figure 8.5(a), (b) and (c) are shown three feedforwardforms; additive uncertainty,
multiplicative input uncertainty and multiplicative output uncertainty:

�A : Gp = G+EA; Ea = wA�a (8.8)

�I : Gp = G(I +EI); EI = wI�I (8.9)

�O : Gp = (I +EO)G; EO = wO�O (8.10)
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Figure 8.5: (a) Additive uncertainty, (b) Multiplicative input uncertainty, (c) Multiplicative
output uncertainty, (d) Inverse additive uncertainty, (e) Inverse multiplicative input uncertainty,
(f) Inverse multiplicative output uncertainty

In Figure 8.5(d), (e) and (f) are shown three feedback or inverse forms;
inverse additive uncertainty, inverse multiplicative input uncertainty and inverse
multiplicative output uncertainty:

�iA : Gp = G(I �EiAG)
�1; EiA = wiA�iA (8.11)

�iI : Gp = G(I �EiI )
�1; EiI = wiI�iI (8.12)

�iO : Gp = (I �EiO)
�1G; EiO = wiO�iO (8.13)

The negative sign in front of the E’s does not really matter here since we assume
that � can have any sign. � denotes the normalized perturbation and E the “actual”
perturbation. We have here used scalar weights w, so E = w� = �w, but
sometimes one may want to use matrix weights, E = W2�W1 where W1 and W2

are given transfer function matrices.

Another common form of unstructured uncertainty is coprime factor uncertainty
discussed later in Section 8.6.2.

Remark. In practice, one can have several perturbations which themselves are unstructured.
For example, we may have �I at the input and �O at the output, which may be combined
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into a larger perturbation, � = diagf�I ;�Og. However, this � is a block-diagonal matrix
and is therefore no longer truly unstructured.

Lumping uncertainty into a single perturbation

For SISO systems we usually lump multiple sources of uncertainty into a single
complex perturbation; often in multiplicative form. This may also be done for MIMO
systems, but then it makes a difference whether the perturbation is at the input or the
output.

Since output uncertainty is frequently less restrictive than input uncertainty in terms
of control performance (see Section 6.10.4), we first attempt to lump the uncertainty
at the output. For example, a set of plants � may be represented by multiplicative
output uncertaintywith a scalar weight wO(s) using

Gp = (I + wO�O)G; k�Ok1 � 1 (8.14)

where, similar to (7.15),

lO(!) = max
Gp2�

��
�
(Gp �G)G�1(j!)

�
; jwO(j!)j � lO(!) 8! (8.15)

(we can use the pseudo-inverse ifG is singular). If the resulting uncertainty weight is
reasonable (i.e. it must at least be less than 1 in the frequency range where we want
control), and the subsequent analysis shows that robust stability and performance
may be achieved, then this lumping of uncertainty at the output is fine. If this is
not the case, then one may try to lump the uncertainty at the input instead, using
multiplicative input uncertaintywith a scalar weight,

Gp = G(I + wI�I); k�Ik1 � 1 (8.16)

where, similar to (7.15),

lI(!) = max
Gp2�

��
�
G�1(Gp �G)(j!)

�
; jwI(j!)j � lI(!) 8! (8.17)

However, in many cases this approach of lumping uncertainty either at the output
or the input does not work well. This is because one cannot in general shift a
perturbation from one location in the plant (say at the input) to another location
(say the output) without introducing candidate plants which were not present in the
original set. In particular, one should be careful when the plant is ill-conditioned.
This is discussed next.

Moving uncertainty from the input to the output

For a scalar plant, we have Gp = G(1 + wI�I) = (1 + wO�O)G and we may
simply “move” the multiplicative uncertainty from the input to the output without
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changing the value of the weight, i.e. wI = wO . However, for multivariable plants
we usually need to multiply by the condition number 
(G) as is shown next.

Suppose the true uncertainty is represented as unstructured input uncertainty (E I is
a full matrix) on the form

Gp = G(I +EI ) (8.18)

Then from (8.17) the magnitude of multiplicative input uncertainty is

lI(!) = max
EI

��(G�1(Gp �G)) = max
EI

��(EI ) (8.19)

On the other hand, if we want to represent (8.18) as multiplicative output uncertainty,
then from (8.15)

lO(!) = max
EI

��((Gp �G)G�1) = max
EI

��(GEIG
�1) (8.20)

which is much larger than lI(!) if the condition number of the plant is large. To see
this, write EI = wI�I where we allow any �I (j!) satisfying ��(�I(j!)) � 1;8!.
Then at a given frequency

lO(!) = jwI jmax
�I

��(G�IG
�1) = jwI (j!)j 
(G(j!)) (8.21)

Proof of (8.21):Write at each frequency G = U�V H and G�1 = eU e�eV H . Select �I =
V eUH (which is a unitary matrix with all singular values equal to 1). Then ��(G�IG

�1) =

��(U�e�V H) = ��(�e�) = ��(G)��(G�1) = 
(G). 2

Example 8.2 Assume the relative input uncertainty is10%, that is,wI = 0:1, and the
condition number of the plant is141:7. Then we must selectl0 = wO = 0:1�141:7 = 14:2 in
order to represent this as multiplicative output uncertainty (this is larger than 1 and therefore
not useful for controller design).

Also for diagonal uncertainty (EI diagonal) we may have a similar situation. For
example, if the plant has large RGA-elements then the elements in GE IG

�1 will
be much larger than those of EI , see (A.80), making it impractical to move the
uncertainty from the input to the output.

Example 8.3 Let� be the set of plants generated by the additive uncertainty in (8.7) with
w = 10 (corresponding to about10% uncertainty in each element). Then from (8.7) one plant
G0 in this set (corresponding toÆ = 1) has

G0 = G+
�
10 �10
�10 10

�
(8.22)

for which we havelI = ��(G�1(G0�G)) = 14:3. Therefore, to representG0 in terms ofinput
uncertainty we would need a relative uncertainty of more than1400%. This would imply that
the plant could become singular at steady-state and thus impossible to control, which we know
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is incorrect. Fortunately, we can instead represent this additive uncertainty as multiplicative
output uncertainty (which is also generally preferable for a subsequent controller design) with
lO = ��((G0 � G)G�1) = 0:10. Therefore output uncertainty works well for this particular
example.

Conclusion. Ideally, we would like to lump several sources of uncertainty into a
single perturbation to get a simple uncertainty description. Often an unstructured
multiplicative output perturbations is used. However, from the above discussion we
have learnt that we should be careful about doing this, at least for plants with a
large condition number. In such cases we may have to represent the uncertainty as
it occurs physically (at the input, in the elements, etc.) thereby generating several
perturbations. For uncertainty associated with unstable plant poles, we should use
one of the inverseforms in Figure 8.5.

�

-

- -

H11 H12

H21 H22

�

yu

Figure 8.6: Uncertain plant, y = Gpu, represented by LFT, see (8.23)

Exercise 8.2 A fairly general way of representing an uncertain plantGp is in terms of a
linear fractional transformation (LFT) of� as shown in Figure 8.6. Here

Gp = Fu

��
H11 H12

H21 H22

�
;�

�
= H22 +H21�(I �H11�)

�1H12 (8.23)

whereG = H22 is the nominal plant model. ObtainH for each of the six uncertainty
forms in (8.8)-(8.13) usingE = W2�W1 (Hint for the inverse forms:(I �W1�W2)

�1 =
I +W1�(I �W2W1�)

�1W2, see (3.7)–(3.9)).

Exercise 8.3 ObtainH in Figure 8.6 for the uncertain plant in Figure 7.20(b).

Exercise 8.4 ObtainH in Figure 8.6 for the uncertain plant in Figure 7.22.

8.2.4 Diagonal uncertainty

By “diagonal uncertainty” we mean that the perturbation is a complex diagonal
matrix

�(s) = diagfÆi(s)g; jÆi(j!)j � 1;8!;8i (8.24)
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(usually of the same size as the plant). For example, this is the case if � is diagonal
in any of the six uncertainty forms in Figure 8.5. Diagonal uncertainty usually arises
from a consideration of uncertainty or neglected dynamics in the individual input
channels (actuators) or in the individual output channels (sensors). This type of
diagonal uncertainty is alwayspresent, and since it has a scalar origin it may be
represented using the methods presented in Chapter 7.

To make this clearer, let us consider uncertainty in the input channels. With each
input ui there is associated a separate physical system (amplifier, signal converter,
actuator, valve, etc.) which based on the controller outputsignal, u i, generates a
physical plant inputmi

mi = hi(s)ui (8.25)

The scalar transfer function hi(s) is often absorbed into the plant modelG(s), but for
representing the uncertainty it is important to notice that it originates at the input. We
can represent this actuator uncertainty as multiplicative (relative) uncertainty given
by

hpi(s) = hi(s)(1 + wIi(s)Æi(s)); jÆi(j!)j � 1;8! (8.26)

which after combining all input channels results in diagonal input uncertaintyfor the
plant

Gp(s) = G(1 +WI�I); �I = diagfÆig;WI = diagfwIig (8.27)

Normally we would represent the uncertainty in each input or output channel using
a simple weight in the form given in (7.28), namely

w(s) =
�s+ r0

(�=r1)s+ 1
(8.28)

where r0 is the relative uncertainty at steady-state, 1=� is (approximately) the
frequency where the relative uncertainty reaches 100%, and r1 is the magnitude of
the weight at higher frequencies. Typically, the uncertainty jwj, associated with each
input, is at least 10% at steady-state (r0 � 0:1), and it increases at higher frequencies
to account for neglected or uncertain dynamics (typically, r1 � 2).

Remark 1 The diagonal uncertainty in (8.27) originates from independent scalar uncertainty
in each input channel. If we choose to represent this as unstructuredinput uncertainty (�I is
a full matrix) then we must realize that this will introduce non-physical couplings at the input
to the plant, resulting in a set of plants which is too large, and the resulting robustness analysis
may be conservative (meaning that we may incorrectly conclude that the system may not meet
its specifications).

Remark 2 The claim is often made that one can easily reduce the static input gain uncertainty
to significantly less than 10%, but this is probably not true in most cases. Consider again
(8.25). A commonly suggested method to reduce the uncertainty is to measure the actual
input (mi) and employ local feedback (cascade control) to readjust ui. As a simple example,
consider a bathroom shower, in which the input variables are the flows of hot and cold water.
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One can then imagine measuring these flows and using cascade control so that each flow can
be adjusted more accurately. However, even in this case there will be uncertainty related to the
accuracy of each measurement. Note that it is not the absolute measurement error that yields
problems, but rather the error in the sensitivity of the measurement with respect to changes
(i.e. the “gain” of the sensor). For example, assume that the nominal flow in our shower is 1
l/min and we want to increase it to 1.1 l/min, that is, in terms of deviation variables we want
u = 0:1 [l/min]. Suppose the vendor guarantees that the measurement error is less than 1%.
But, even with this small absolute error, the actual flow rate may have increased from 0.99
l/min (measured value of 1 l/min is 1% too high) to 1.11 l/min (measured value of 1.1 l/min
is 1% too low), corresponding to a change u0 = 0:12 [l/min], and an input gain uncertainty of
20%.

In conclusion, diagonal input uncertainty, as given in (8.27), should always be
considered because:

1. It is alwayspresent and a system which is sensitive to this uncertainty will not
work in practice.

2. It often restricts achievable performance with multivariable control.

8.3 Obtaining P , N and M

We will now illustrate, by way of an example, how to obtain the interconnection
matrices P , N and M in a given situation.

ddd qq
6

? ----?

--

--
+

+

+

+
WP

z

w

G

u�
�I

y�
WI

K uv
-

Figure 8.7: System with multiplicative input uncertainty and performance measured at the
output

Example 8.4 System with input uncertainty. Consider a feedback system with
multiplicative input uncertainty�I as shown in Figure 8.7. HereWI is a normalization weight
for the uncertainty andWP is a performance weight. We want to derive the generalized plant
P in Figure 8.1 which has inputs[u� w u ]T and outputs[ y� z v ]T . By writing down
the equations (e.g. see Example 3.13) or simply by inspecting Figure 8.7 (remember to break
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the loop before and afterK) we get

P =

"
0 0 WI

WPG WP WPG
�G �I �G

#
(8.29)

It is recommended that the reader carefully derivesP (as instructed in Exercise 8.5). Note
that the transfer function fromu� to y� (upper left element inP ) is 0 becauseu� has no
direct effect ony� (except throughK). Next, we want to derive the matrixN corresponding
to Figure 8.2. First, partitionP to be compatible withK, i.e.

P11 =
�

0 0
WPG WP

�
; P12 =

�
WI

WPG

�
(8.30)

P21 = [�G �I ]; P22 = �G (8.31)

and then findN = Fl(P;K) using (8.2). We get (see Exercise 8.7)

N =

��WIKG(I +KG)�1 �WIK(I +GK)�1

WPG(I +KG)�1 WP (I +GK)�1

�
(8.32)

Alternatively, we can deriveN directly from Figure 8.7 by evaluating the closed-loop transfer

function from inputs
�
u�
w

�
to outputs

�
y�
z

�
(without breaking the loop before and afterK).

For example, to deriveN12, which is the transfer function fromw to y�, we start at the output
(y�) and move backwards to the input (w) using the MIMO Rule in Section 3.2 (we first meet
WI , then�K and we then exit the feedback loop and get the term(I +GK)�1).

The upper left block,N11, in (8.32) is the transfer function fromu� to y�. This is the
transfer functionM needed in Figure 8.3 for evaluating robust stability. Thus, we have
M = �WIKG(I +KG)�1 = �WITI .

Remark. Of course, deriving N from P is straightforward using available software. For
example, in the MATLAB �-toolbox we can evaluate N = Fl(P;K) using the command
N=starp(P,K) , and with a specific � the perturbed transfer function Fu(N;�) from w
to z is obtained with the command F=starp(delta,N).

Exercise 8.5 Show in detail howP in (8.29) is derived.

Exercise 8.6 For the system in Figure 8.7 we see easily from the block diagram that the
uncertain transfer function fromw to z isF =WP (I +G(I +WI�I)K)�1. Show that this
is identical toFu(N;�) evaluated using (8.35) where from (8.32) we haveN11 = �WITI ,
N12 = �WIKS, N21 =WPSG andN22 =WPS.

Exercise 8.7 DeriveN in (8.32) fromP in (8.29) using the lower LFT in (8.2). You will
note that the algebra is quite tedious, and that it is much simpler to deriveN directly from the
block diagram as described above.

Exercise 8.8 Derive P and N for the case when the multiplicative uncertainty is at the
output rather than the input.
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Exercise 8.9 Find P for the uncertain system in Figure 7.18.

Exercise 8.10 FindP for the uncertain plantGp in (8.23) whenw = r andz = y � r.

Exercise 8.11 Find the interconnection matrixN for the uncertain system in Figure 7.18.
What isM?

Exercise 8.12 Find the transfer functionM = N11 for studying robust stability for the
uncertain plantGp in (8.23).

c c cq qK G

W1I �I W2I W1O �O W2O

- - - -

- - -

?

- - -

?
6-

+

+

+

+

Figure 8.8: System with input and output multiplicative uncertainty

Exercise 8.13 M�-structure for combined input and output uncertainties. Consider
the block diagram in Figure 8.8 where we have both input and output multiplicative
uncertainty blocks. The set of possible plants is given by

Gp = (I +W2O�OW1O)G(I +W2I�IW1I ) (8.33)

wherek�Ik1 � 1 and k�Ok1 � 1. Collect the perturbations into� = diagf�I ;�Og
and rearrange Figure 8.8 into theM�-structure in Figure 8.3 Show that

M =
�
W1I 0
0 W1O

���TI �KS
SG �T

��
W2I 0
0 W2O

�
(8.34)

Exercise 8.14 Find� for the uncertain system in Figure 7.20(b).

8.4 Definitions of robust stability and robust
performance

We have discussed how to represent an uncertain set of plants in terms of the N�-
structure in Figure 8.2. The next step is to check whether we have stability and
acceptable performance for all plants in the set:
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1. Robust stability (RS) analysis: with a given controller K we determine whether
the system remains stable for all plants in the uncertainty set.

2. Robust performance (RP) analysis: if RS is satisfied, we determine how “large”
the transfer function from exogenous inputs w to outputs z may be for all plants
in the uncertainty set.

Before proceeding, we need to define performance more precisely. In Figure 8.2, w
represents the exogenous inputs (normalized disturbances and references), and z the
exogenous outputs (normalized errors). We have z = F (�)w, where from (8.3)

F = Fu(N;�) , N22 +N21�(I �N11�)�1N12 (8.35)

We here use the H1 norm to define performance and require for RP that
kF (�)k1 � 1 for all allowed �’s. A typical choice is F = wPSp (the
weighted sensitivity function), where wP is the performance weight (capital P for
performance) and Sp represents the set of perturbed sensitivity functions (lower-case
p for perturbed).

In terms of the N�-structure in Figure 8.2 our requirements for stability and
performance can then be summarized as follows

NS
def, N is internally stable (8.36)

NP
def, kN22k1 < 1; and NS (8.37)

RS
def, F = Fu(N;�) is stable 8�; k�k1 � 1; and NS (8.38)

RP
def, kFk1 < 1; 8�; k�k1 � 1; and NS (8.39)

These definitions of RS and RP are useful only if we can test them in an efficient
manner, that is, without having to search through the infinite set of allowable
perturbations �. We will show how this can be done by introducing the structured
singular value, �, as our analysis tool. At the end of the chapter we also discuss
how to synthesize controllers such that we have “optimal robust performance” by
minimizing � over the set of stabilizing controllers.

Remark 1 Important. As a prerequisite for nominal performance (NP), robust stability (RS)
and robust performance (RP), we must first satisfy nominal stability (NS). This is because
the frequency-by-frequency conditions can also be satisfied for unstable systems.

Remark 2 Convention for inequalities. In this book we use the convention that the
perturbations are bounded such that they are less than or equalto one. This results in a stability
condition with a strict inequality, for example, RS 8k�k1 � 1 if kMk1 < 1. (We could
alternatively have bounded the uncertainty with a strict inequality, yielding the equivalent
condition RS 8k�k1 < 1 if kMk1 � 1.)

Remark 3 Allowed perturbations. For simplicity below we will use the shorthand notation

8� and max
�

(8.40)
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to mean “for all �’s in the set of allowed perturbations” , and “maximizing over all �’s in
the set of allowed perturbations” . By allowed perturbationswe mean that theH1 norm of �
is less or equal to 1, k�k1 � 1, and that � has a specified block-diagonal structure where
certain blocks may be restricted to be real. To be mathematically exact, we should replace �
in (8.40) by � 2 B�, where

B� = f� 2� : k�k1 � 1g

is the set of unity norm-bounded perturbations with a given structure�. The allowed structure
should also be defined, for example by

� = fdiag [Æ1Ir1; : : : ; ÆSIrS ;�1; : : : ;�F ] : Æi 2 R;�j 2 Cmj�mj g

where in this case S denotes the number of real scalars (some of which may be repeated), and
F the number of complex blocks. This gets rather involved. Fortunately, this amount of detail
is rarely required as it is usually clear what we mean by “for all allowed perturbations” or
“ 8�” .

8.5 Robust stability of the M�-structure

Consider the uncertainN�-system in Figure 8.2 for which the transfer function from
w to z is, as in (8.35), given by

Fu(N;�) = N22 +N21�(I �N11�)�1N12 (8.41)

Suppose that the system is nominally stable (with � = 0), that is, N is stable (which
means that the whole ofN , and not onlyN22 must be stable ). We also assume that�
is stable. We then see directly from (8.41) that the only possible source of instability
is the feedback term (I�N11�)�1. Thus, when we have nominal stability (NS), the
stability of the system in Figure 8.2 is equivalent to the stability of theM�-structure
in Figure 8.3 where M = N11.

We thus need to derive conditions for checking the stability of the M�-structure.
The next theorem follows from the generalized Nyquist Theorem 4.7. It applies to
H1 norm-bounded �-perturbations, but as can be seen from the statement it also
applies to any other convexset of perturbations (e.g. sets with other structures or sets
bounded by different norms).

Theorem 8.1 Determinant stability condition (Real or complex perturbations).
Assume that the nominal systemM(s) and the perturbations�(s) are stable.

Consider the convex set of perturbations�, such that if� 0 is an allowed
perturbation then so isc�0 wherec is any realscalar such thatjcj � 1. Then the
M�-system in Figure 8.3 is stable for all allowed perturbations (we have RS) if and
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only if

Nyquist plot ofdet (I �M�(s)) does not encircle the origin,8� (8.42)

, det (I �M�(j!)) 6= 0; 8!;8� (8.43)

, �i(M�) 6= 1; 8i;8!;8� (8.44)

Proof: Condition (8.42) is simply the generalized Nyquist Theorem (page 147) applied to a
positive feedback system with a stable loop transfer function M�.

(8.42) ) (8.43): This is obvious since by “encirclement of the origin” we also include the
origin itself.

(8.42) ( (8.43) is proved by proving not(8.42) ) not(8.43): First note that with � = 0,
det(I �M�) = 1 at all frequencies. Assume there exists a perturbation �0 such that the
image of det(I�M�0(s)) encircles the origin as s traverses the Nyquist D-contour. Because
the Nyquist contour and its map is closed, there then exists another perturbation in the set,
�00 = ��0 with � 2 [0; 1], and an !0 such that det(I �M�00(j!0)) = 0.

(8.44) is equivalent to (8.43) since det(I �A) =
Q

i �i(I �A) and �i(I �A) = 1��i(A)
(see Appendix A.2.1). 2

The following is a special case of Theorem 8.1 which applies to complex
perturbations.

Theorem 8.2 Spectral radius condition for complex perturbations. Assume that
the nominal systemM(s) and the perturbations�(s) are stable. Consider the class
of perturbations,�, such that if�0 is an allowed perturbation then so isc�0 where
c is any complexscalar such thatjcj � 1. Then theM�- system in Figure 8.3 is
stable for all allowed perturbations (we have RS) if and only if

�(M�(j!)) < 1; 8!;8� (8.45)

or equivalently
RS , max

�
�(M�(j!)) < 1; 8! (8.46)

Proof: (8.45) ) (8.43) (, RS) is “obvious” : It follows from the definition of the spectral
radius �, and applies also to real �’s.

(8.43) ) (8.45) is proved by proving not(8.45) ) not(8.43): Assume there exists a
perturbation �0 such that �(M�0) = 1 at some frequency. Then j�i(M�0)j = 1 for some
eigenvalue i, and there always exists another perturbation in the set, �00 = c�0 where c is
a complexscalar with jcj = 1, such that �i(M�00) = +1 (real and positive) and therefore
det(I �M�00) =

Q
i �i(I �M�00) =

Q
i(1 � �i(M�00)) = 0. Finally, the equivalence

between (8.45) and (8.46) is simply the definition of max�. 2

Remark 1 The proof of (8.45) relies on adjusting the phase of �i(Mc�0) using the complex
scalar c and thus requires the perturbation to be complex.
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Remark 2 In words, Theorem 8.2 tells us that we have stability if and only if the spectral
radius of M� is less than 1 at all frequencies and for all allowed perturbations, �. The main
problem here is of course that we have to test the condition for an infinite set of �’s, and this
is difficult to check numerically.

Remark 3 Theorem 8.1, which applies to both real and complex perturbations, forms the
basis for the general definition of the structured singular value in (8.76).

8.6 RS for complex unstructured uncertainty

In this section, we consider the special case where �(s) is allowed to be any (full)
complex transfer function matrix satisfying k�k1 � 1. This is often referred to as
unstructured uncertaintyor as full-block complex perturbation uncertainty.

Lemma 8.3 Let� be the set ofall complex matrices such that��(�) � 1. Then the
following holds

max
�

�(M�) = max
�

��(M�) = max
�

��(�)��(M) = ��(M) (8.47)

Proof: In general, the spectral radius (�) provides a lower bound on the spectral norm (��) (see
(A.116)), and we have

max
�

�(M�) � max
�

��(M�) � max
�

��(�)��(M) = ��(M) (8.48)

where the second inequality in (8.48) follows since ��(AB) � ��(A)��(B). Now, we need
to show that we actually have equality. This will be the case if for any M there exists an
allowed �0 such that �(M�0) = ��(M). Such a �0 does indeed exist if we allow �0 to be
a full matrix such that all directions in �0 are allowed: Select �0 = V UH where U and V
are matrices of the left and right singular vectors of M = U�VH . Then ��(�0) = 1 and
�(M�0) = �(U�V HV UH) = �(U�UH) = �(�) = ��(M). The second to last equality
follows since UH = U�1 and the eigenvalues are invariant under similarity transformations.
2

Lemma 8.3 together with Theorem 8.2 directly yield the following theorem:

Theorem 8.4 RS for unstructured (“full”) perturbations. Assume that the
nominal systemM(s) is stable (NS) and that the perturbations�(s) are stable. Then
theM�-system in Figure 8.3 is stable for all perturbations� satisfyingk�k1 � 1
(i.e. we have RS) if and only if

��(M(j!)) < 1 8w , kMk1 < 1 (8.49)
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Remark 1 Condition (8.49) may be rewritten as

RS, ��(M(j!)) ��(�(j!)) < 1; 8!;8�; (8.50)

The sufficiency of (8.50) ()) also follows directly from the small gain theorem by choosing
L = M�. The small gain theorem applies to any operator norm satisfying kABk �
kAk � kBk.

Remark 2 An important reason for using theH1 norm to describe model uncertainty, is that
the stability condition in (8.50) is both necessary and sufficient. In contrast, use of the H2

norm yields neither necessary nor sufficient conditions for stability. We do not get sufficiency
since theH2 norm does not in general satisfy kABk � kAk � kBk.

8.6.1 Application of the unstructured RS-condition

We will now present necessary and sufficient conditions for robust stability (RS) for
each of the six single unstructured perturbations in Figure 8.5. with

E =W2�W1; k�k1 � 1 (8.51)

To derive the matrix M we simply “ isolate” the perturbation, and determine the
transfer function matrix

M =W1M0W2 (8.52)

from the output to the input of the perturbation, where M 0 for each of the six
cases becomes (disregarding some negative signs which do not affect the subsequent
robustness condition) is given by

Gp = G+EA : M0 = K(I +GK)�1 = KS (8.53)

Gp = G(I +EI ) : M0 = K(I +GK)�1G = TI (8.54)

Gp = (I +EO)G : M0 = GK(I +GK)�1 = T (8.55)

Gp = G(I �EiAG)
�1 : M0 = (I +GK)�1G = SG (8.56)

Gp = G(I �EiI )
�1 : M0 = (I +KG)�1 = SI (8.57)

Gp = (I �EiO)
�1G : M0 = (I +GK)�1 = S (8.58)

For example, (8.54) and (8.55) follow from the diagonal elements in the M -matrix
in (8.34), and the others are derived in a similar fashion. Note that the sign of M 0

does not matter as it may be absorbed into �. Theorem 8.4 then yields

RS , kW1M0W2(j!)k1 < 1;8 w (8.59)

For instance, from (8.54) and (8.59) we get for multiplicative input uncertainty with
a scalar weight:

RS 8Gp = G(I + wI�I ); k�Ik1 � 1 , kwITIk1 < 1 (8.60)



ROBUST STABILITY AND PERFORMANCE 311

Note that the SISO-condition (7.33) follows as a special case of (8.60) Similarly,
(7.53) follows as a special case of the inverse multiplicative output uncertainty in
(8.58):

RS 8Gp = (I � wiO�iO)
�1G; k�iOk1 � 1 , kwiOSk1 < 1 (8.61)

In general, the unstructured uncertainty descriptions in terms of a single perturbation
are not “ tight” (in the sense that at each frequency all complex perturbations
satisfying ��(�(j!)) � 1 may not be possible in practice). Thus, the above RS-
conditions are often conservative. In order to get tighter conditions we must use a
tighter uncertainty description in terms of a block-diagonal�.

8.6.2 RS for coprime factor uncertainty

e

e

q q- -?

- �-

-

�

�

+

+

-+�N �M

M�1
lNl

�K

Figure 8.9: Coprime uncertainty

Robust stability bounds in terms of theH1 norm (RS, kMk1 < 1) are in general
only tight when there is a single full perturbation block. An “exception” to this
is when the uncertainty blocks enter or exit from the same location in the block
diagram, because they can then be stacked on top of each other or side-by-side, in
an overall � which is then a full matrix. If we norm-bound the combined (stacked)
uncertainty, we then get a tight condition for RS in terms of kMk1.

One important uncertainty description that falls into this category is the coprime
uncertainty description shown in Figure 8.9, for which the set of plants is

Gp = (Ml +�M )�1(Nl +�N ); k [ �N �M ] k1 � � (8.62)

where G = M�1
l Nl is a left coprime factorization of the nominal plant, see (4.20).

This uncertainty description is surprisingly general, it allows both zeros and poles
to cross into the right-half plane, and has proved to be very useful in applications
(McFarlane and Glover, 1990). Since we have no weights on the perturbations, it
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is reasonable to use a normalized coprime factorization of the nominal plant; see
(4.25). In any case, to test for RS we can rearrange the block diagram to match the
M�-structure in Figure 8.3 with

� = [�N �M ] ; M = �
�
K
I

�
(I +GK)�1M�1

l (8.63)

We then get from Theorem 8.4

RS 8k�N �M k1 � � , kMk1 < 1=� (8.64)

The above robust stability result is central to theH1 loop-shaping design procedure
discussed in Chapter 9.

The comprime uncertainty description provides a good “generic” uncertainty
description for cases where we do not use any specific a priori uncertainty
information. Note that the uncertainty magnitude is �, so it is not normalized to be
less than 1 in this case. This is because this uncertainty description is most often used
in a controller design procedure where the objective is to maximize the magnitude of
the uncertainty (�) such that RS is maintained.

Remark. In (8.62) we bound the combined (stacked) uncertainty, k[ �N �M ]k1 � �,
which is notquite the same as bounding the individual blocks, k�Nk1 � � and k�Mk1 � �.
However, from (A.45) we see that these two approaches differ at most by a factor of

p
2, so it

is not an important issue from a practical point of view.

Exercise 8.15 Consider combined multiplicative and inverse multiplicative uncertainty at
the output,Gp = (I � �iOWiO)

�1(I + �OWO)G, where we choose to norm-bound the
combined uncertainty,k[ �iO �O ]k1 � 1. Make a block diagram of the uncertain plant,
and derive a necessary and sufficient condition for robust stability of the closed-loop system.

8.7 RS with structured uncertainty: Motivation

Consider now the presence of structured uncertainty, where � = diagf� ig is block-
diagonal. To test for robust stability we rearrange the system into the M�-structure
and we have from (8.49)

RS if ��(M(j!)) < 1;8! (8.65)

We have here written “ if” rather than “ if and only if” since this condition is only
sufficient for RS when � has “no structure” (full-block uncertainty). The question is
whether we can take advantage of the fact that � = diagf� ig is structured to obtain
an RS-condition which is tighter than (8.65). One idea is to make use of the fact that
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Figure 8.10: Use of block-diagonal scalings, �D = D�

stability must be independent of scaling. To this effect, introduce the block-diagonal
scaling matrix

D = diagfdiIig (8.66)

where di is a scalar and Ii is an identity matrix of the same dimension as the i’ th
perturbation block, �i. Now rescale the inputs and outputs to M and � by inserting
the matrices D and D�1 on both sides as shown in Figure 8.10. This clearly has no
effect on stability. Next, note that with the chosen form for the scalings we have for
each perturbation block �i = di�id

�1
i , that is, we have � = D�D�1. This means

that (8.65) must also apply if we replace M by DMD�1 (see Figure 8.10), and we
have

RS if ��(DMD�1) < 1;8! (8.67)

This applies for any D in (8.66), and therefore the “most improved” (least
conservative) RS-condition is obtained by minimizing at each frequency the scaled
singular value, and we have

RS if minD(!)2D ��(D(!)M(j!)D(!)�1) < 1;8! (8.68)

where D is the set of block-diagonal matrices whose structure is compatible to that
of �, i.e, �D = D�. We will return with more examples of this compatibility
later. Note that when � is a full matrix, we must select D = dI and we have
��(DMD�1) = ��(M), and so as expected (8.68) is identical to (8.65). However,
when � has structure, we get more degrees of freedom in D, and ��(DMD�1) may
be significantly smaller than ��(M).

Remark 1 Historically, the RS-condition in (8.68) directly motivated the introduction of the
structured singular value, �(M), discussed in detail in the next section. As one might guess,
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we have that �(M) � minD ��(DMD�1). In fact, for block-diagonal complex perturbations
we generally have that �(M) is very close to minD ��(DMD�1).

Remark 2 Other norms. Condition (8.68) is essentially a scaled version of the small gain
theorem. Thus, a similar condition applies when we use other matrix norms. The M�-
structure in Figure 8.3 is stable for all block-diagonal �’s which satisfy k�(j!)k � 1; 8w
if

min
D(!)2D

kD(!)M(j!)D(!)�1k < 1; 8! (8.69)

where D as before is compatible with the block-structure of �. Any matrix norm may be
used; for example, the Frobenius norm, kMkF , or any induced matrix norm such as kMki1
(maximum column sum), kMki1 (maximum row sum), or kMki2 = ��(M), which is the
one we will use. Although in some cases it may be convenient to use other norms, we usually
prefer �� because for this norm we get a necessary and sufficient RS-condition.

8.8 The structured singular value

The structured singular value (denoted Mu, mu, SSV or �) is a function which
provides a generalization of the singular value, ��, and the spectral radius, �. We
will use � to get necessary and sufficient conditions for robust stability and also for
robust performance. How is � defined? A simple statement is:

Find the smallest structured� (measured in terms of��(�)) which makes the
matrixI �M� singular; then�(M) = 1=��(�).

Mathematically,

�(M)�1 , min
�
f��(�)j det(I �M�) = 0 for structured �g (8.70)

Clearly, �(M) depends not only on M but also on the allowed structure for �. This
is sometimes shown explicitly by using the notation ��(M).

Remark. For the case where � is “unstructured” (a full matrix), the smallest � which yields
singularity has ��(�) = 1=��(M), and we have �(M) = ��(M). A particular smallest �
which achieves this is � = 1

�1
v1u

H
1 .

Example 8.5 Full perturbation (� is unstructured). Consider

M =
�
2 2
�1 �1

�
=
�
0:894 0:447
�0:447 0:894

��
3:162 0
0 0

��
0:707 �0:707
0:707 0:707

�H
(8.71)

The perturbation

� =
1

�1
v1u

H
1 =

1

3:162

�
0:707
0:707

�
[ 0:894 �0:447 ] =

�
0:200 �0:100
0:200 �0:100

�
(8.72)

with ��(�) = 1=��(M) = 1=3:162 = 0:316 makesdet(I �M�) = 0. Thus�(M) = 3:162
when� is a full matrix.
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Note that the perturbation� in (8.72) is a full matrix. If we restrict � to be diagonal
then we need a larger perturbation to make det(I �M�) = 0. This is illustrated
next.

Example 8.5 continued. Diagonal perturbation (� is structured). For the matrixM in
(8.71), the smallest diagonal� which makesdet(I �M�) = 0 is

� =
1

3

�
1 0
0 �1

�
(8.73)

with ��(�) = 0:333. Thus�(M) = 3 when� is a diagonal matrix.

The above example shows that � depends on the structure of �. The following
example demonstrates that � also depends on whether the perturbation is real or
complex.

Example 8.6 � of a scalar. If M is a scalar then in most cases�(M) = jM j. This follows
from (8.70) by selectingj�j = 1=jM j such that(1�M�) = 0. However, this requires that
we can select the phase of� such thatM� is real, which is impossible when� is real and
M has an imaginary component, so in this case�(M) = 0. In summary, we have for a scalar
M ,

� complex : �(M) = jM j (8.74)

� real : �(M) =

� jM j for realM
0 otherwise

(8.75)

The definition of � in (8.70) involves varying ��(�). However, we prefer to normalize
� such that ��(�) � 1. We can do this by scaling � by a factor km, and looking
for the smallestkm which makes the matrix I � kmM� singular, and � is then the
reciprocal of this smallest km, i.e. � = 1=km. This results in the following alternative
definition of �.

Definition 8.1 Structured Singular Value. LetM be a given complex matrix and
let� = diagf�ig denote a set of complex matrices with��(�) � 1 and with a given
block-diagonal structure (in which some of the blocks may be repeated and some may
be restricted to be real). The real non-negative function�(M), called the structured
singular value, is defined by

�(M) ,
1

minfkmj det(I � kmM�) = 0 for structured �; ��(�) � 1g (8.76)

If no such structured� exists then�(M) = 0.

A value of � = 1 means that there exists a perturbation with ��(�) = 1 which is
just large enough to make I �M� singular. A larger value of � is “bad” as it means
that a smaller perturbation makes I �M� singular, whereas a smaller value of � is
“good” .
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8.8.1 Remarks on the definition of �

1. The structured singular value was introduced by Doyle (1982). At the same time (in fact, in
the same issue of the same journal) Safonov (1982) introduced the Multivariable Stability
Margin km for a diagonally perturbed system as the inverse of �, that is, km(M) =
�(M)�1. In many respects, this is a more natural definition of a robustness margin.
However, �(M) has a number of other advantages, such as providing a generalization
of the spectral radius, �(M), and the spectral norm, ��(M).

2. The � corresponding to the smallest km in (8.76) will always have ��(�) = 1, since if
det(I � k0mM�0) = 0 for some �0 with ��(�0) = c < 1, then 1=k0m cannot be the
structured singular value of M , since there exists a smaller scalar km = k0mc such that
det(I � kmM�) = 0 where � = 1

c
�0 and ��(�) = 1.

3. Note that with km = 0 we obtain I � kmM� = I which is clearly non-singular. Thus,
one possible way to obtain � numerically, is to start with km = 0 , and gradually increase
km until we first find an allowed � with ��(�) = 1 such that (I � kmM�) is singular
(this value of km is then 1=�). By “allowed” we mean that � must have the specified
block-diagonal structure and that some of the blocks may have to be real.

4. The sequence of M and � in the definition of � does not matter. This follows from the
identity (A.12) which yields

det(I � kmM�) = det(I � km�M) (8.77)

5. In most cases M and � are square, but this need not be the case. If they are non-square,
then we make use of (8.77) and work with either M� or �M (whichever has the lowest
dimension).

The remainder of this section deals with the properties and computation of �. Readers
who are primarily interested in the practical use of � may skip most of this material.

8.8.2 Properties of � for real and complex �

Two properties of � which hold for both real and complex perturbations are:

1. �(�M) = j�j�(M) for any real scalar �.
2. Let � = diagf�1;�2g be a block-diagonal perturbation (in which �1 and �2

may have additional structure) and let M be partitioned accordingly. Then

��(M) � maxf��1
(M11); ��2

(M22)g (8.78)

Proof: Consider det(I � 1
�
M�) where � = ��(M) and use Schur’s formula in (A.14)

with A11 = I � 1
�
M11�1 and A12 = I � 1

�
M22�2. 2

In words, (8.78) simply says that robustness with respect to two perturbations
taken together is at least as bad as for the worst perturbation considered alone.
This agrees with our intuition that we cannot improve robust stability by including
another uncertain perturbation.
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In addition, the upper boundsgiven below for complex perturbations, e.g.
��(M) � minD2D ��(DMD�1) in (8.87), also hold for real or mixed
real/complex perturbations �. This follows because complex perturbations include
real perturbations as a special case. However, the lower bounds, e.g. �(M) � �(M)
in (8.82), generally hold only for complex perturbations.

8.8.3 � for complex �

When all the blocks in � are complex, � may be computed relatively easily. This
is discussed below and in more detail in the survey paper by Packard and Doyle
(1993). The results are mainly based on the following result, which may be viewed
as another definition of � that applies for complex � only.

Lemma 8.5 For complex perturbations� with ��(�) � 1:

�(M) = max�;��(�)�1 �(M�) (8.79)

Proof: The lemma follows directly from the definition of � and the equivalence between (8.43)
and (8.46). 2

Properties of � for complex perturbations

Most of the properties below follow easily from (8.79).

1. �(�M) = j�j�(M) for any (complex) scalar �.
2. For a repeated scalar complex perturbation we have

� = ÆI (Æ is a complex scalar) : �(M) = �(M) (8.80)

Proof: Follows directly from (8.79) since there are no degrees-of-freedom for the
maximization. 2

3. For a full block complex perturbation we have from (8.79) and (8.47):

� full matrix : �(M) = ��(M) (8.81)

4. � for complex perturbations is bounded by the spectral radius and the singular
value (spectral norm):

�(M) � �(M) � ��(M) (8.82)

This follows from (8.80) and (8.81), since selecting � = ÆI gives the fewest
degrees-of-freedom for the optimization in (8.79), whereas selecting � full gives
the most degrees-of-freedom.
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5. Consider any unitary matrix U with the same structure as �. Then

�(MU) = �(M) = �(UM) (8.83)

Proof: Follows from (8.79) by writing MU� = M�0 where ��(�0) = ��(U�) = ��(�),
and so U may always be absorbed into �. 2

6. Consider any matrix D which commutes with �, that is, �D = D�. Then

�(DM) = �(MD) and �(DMD�1) = �(M) (8.84)

Proof:�(DM) = �(MD) follows from

��(DM) = max
�

�(DM�) = max
�

�(M�D) = max
�

�(MD�) = ��(MD) (8.85)

The first equality is (8.79). The second equality applies since �(AB) = �(BA) (by the
eigenvalue properties in the Appendix). The key step is the third equality which applies
only when D� = �D. The fourth equality again follows from (8.79). 2

7. Improved lower bound. Define U as the set of all unitary matrices U with the
same block-diagonal structure as �. Then for complex �

�(M) = maxU2U �(MU) (8.86)

Proof: The proof of this important result is given by Doyle (1982) and Packard and Doyle
(1993). It follows from a generalization of the maximum modulus theorem for rational
functions. 2

The result (8.86) is motivated by combining (8.83) and (8.82) to yield

�(M) � max
U2U

�(MU)

The surprise is that this is always an equality. Unfortunately, the optimization in
(8.86) is not convex and so it may be difficult to use in calculating � numerically.

8. Improved upper bound. Define D to be the set of matrices D which commute
with � (i.e. satisfy D� = �D). Then it follows from (8.84) and (8.82) that

�(M) � minD2D ��(DMD�1) (8.87)

This optimization is convex in D (i.e. has only one minimum, the global
minimum) and it may be shown (Doyle, 1982) that the inequality is in fact an
equality if there are 3 or fewer blocks in �. Furthermore, numerical evidence
suggests that the bound is tight (within a few percent) for 4 blocks or more; the
worst known example has an upper bound which is about 15% larger than � (Balas
et al., 1993).
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Some examples of D’s which commute with � are

� = ÆI : D = full matrix (8.88)

� = full matrix : D = dI (8.89)

� =

�
�1(full) 0

0 �2(full)

�
: D =

�
d1I 0
0 d2I

�
(8.90)

� = diagf�1(full); Æ2I; Æ3; Æ4g : D = diagfd1I;D2(full); d3; d4g (8.91)

In short, we see that the structures of � and D are “opposites” .
9. Without affecting the optimization in (8.87), we may assume the blocks inD to be

Hermitian positive definite, i.e. Di = DH
i > 0, and for scalars di > 0 (Packard

and Doyle, 1993).
10. One can always simplify the optimization in (8.87) by fixing one of the scalar

blocks inD equal to 1. For example, letD = diagfd1; d2; : : : ; dng, then one may
without loss of generality set dn = 1.

Proof: Let D0 = 1
dn
D and note that ��(DMD�1) = ��(D0MD0�1). 2

Similarly, for cases where � has one or more scalar blocks, one may simplify
the optimization in (8.86) by fixing one of the corresponding unitary scalars in U
equal to 1. This follows from Property 1 with jcj = 1.

11. The following property is useful for finding�(AB) when� has a structure similar
to that of A or B:

��(AB) � ��(A)��A(B) (8.92)

��(AB) � ��(B)�B�(A) (8.93)

Here the subscript “�A” denotes the structure of the matrix �A, and “B�”
denotes the structure of B�.

Proof: The proof is from (Skogestad and Morari, 1988a). Use the fact that �(AB) =
max� �(�AB) = max� �(V B)��(A) where V = �A=��(A). When we maximize over
� then V generates a certain set of matrices with ��(V ) � 1. Let us extendthis set by
maximizing over all matrices V with ��(V ) � 1 and with the same structure as �A. We
then get �(AB) � maxV �(V B)��(A) = �V (B)��(A). 2

Some special cases of (8.92):

(a) If A is a full matrix then the structure of �A is a full matrix, and we simply
get �(AB) � ��(A)��(B) (which is not a very exciting result since we always
have �(AB) � ��(AB) � ��(A)��(B)).

(b) If � has the same structure as A (e.g. they are both diagonal) then

��(AB) � ��(A)��(B) (8.94)

Note: (8.94) is stated incorrectly in Doyle (1982) since it is not specified that � must
have the same structure as A; see also Exercise 8.20.



320 MULTIVARIABLE FEEDBACK CONTROL

(c) If � = ÆI (i.e. � consists of repeated scalars), we get the spectral radius
inequality �(AB) � ��(A)�A(B). A useful special case of this is

�(M�) � ��(�)��(M) (8.95)

12. A generalization of (8.92) and (8.93) is:

��(ARB) � ��(R)�2
e�

�
0 A
B 0

�
(8.96)

where e� = diagf�; Rg. The result is proved by (Skogestad and Morari, 1988a).
13. The following is a further generalization of these bounds. Assume that M is an

LFT ofR: M = N11+N12R(I �N22R)
�1N21. The problem is to find an upper

bound on R, ��(R) � c, which guarantees that ��(M) < 1 when ��(N11) < 1.
Skogestad and Morari (1988a) show that the best upper bound is the c which
solves

�
e�

�
N11 N12

cN21 cN22

�
= 1 (8.97)

where e� = diagf�; Rg, and c is easily computed using skewed-�. Given the
�-condition ��(M) < 1 (for RS or RP), (8.97) may be used to derive a sufficient
loop-shaping bound on a transfer function of interest, e.g.R may be S, T , L, L �1

or K.

Remark. Above we have used minD. To be mathematically correct, we should have used
infD because the set of allowed D’s is not bounded and therefore the exact minimum may not
be achieved (although we may be get arbitrarily close). The use of max� (rather than sup�)
is mathematically correct since the set � is closed (with ��(�) � 1).

Example 8.7 LetM and� be complex2� 2 matrices. Then

M =
�
a a
b b

�
; �(M) =

8<:
�(M) = ja+ bj for � = ÆI
jaj+ jbj for � = diagfÆ1; Æ2g
��(M) =

p
2jaj2 + 2jbj2 for � a full matrix

(8.98)

Proof: For � = ÆI, �(M) = �(M) and�(M) = ja + bj sinceM is singular and its non-
zero eigenvalue is�1(M) = tr(M) = a + b. For � full, �(M) = ��(M) and ��(M) =p
2jaj2 + 2jbj2 sinceM is singular and its non-zero singular value is��(M) = kMkF , see

(A.126). For a diagonal�, it is interesting to consider three different proofs of the result
�(M) = jaj+ jbj:

(a) A direct calculation based on the definition of�.
(b) Use of the lower “bound” in (8.86) (which is always exact).
(c) Use of the upper bound in (8.87) (which is exact here since we have only two blocks).
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We will use approach (a) here and leave (b) and (c) for Exercise 8.16. We have

M� =

�
a a
b b

��
Æ1

Æ2

�
=

�
a
b

�
[ Æ1 Æ2 ] = fM e�

From (8.77) we then get

det(I �M�) = det(I � e�fM) = 1 � [ Æ1 Æ2 ]

�
a
b

�
= 1� aÆ1 � bÆ2

The smallestÆ1 and Æ2 which make this matrix singular, i.e.1 � aÆ1 � bÆ2 = 0, are
obtained whenjÆ1j = jÆ2j = jÆj and the phases ofÆ1 and Æ2 are adjusted such that
1 � jaj � jÆj � jbj � jÆj = 0. We getjÆj = 1=(jaj + jbj), and from (8.70) we have that
� = 1=jÆj = jaj+ jbj. 2

Exercise 8.16 (b) For M in (8.98) and a diagonal� show that�(M) = jaj + jbj
using the lower “bound”�(M) = maxU �(MU) (which is always exact). Hint: Use
U = diagfej�; 1g (the blocks inU are unitary scalars, and we may fix one of them equal
to 1).

(c) For M in (8.98) and a diagonal� show that�(M) = jaj + jbj using the upper bound
�(M) � minD ��(DMD�1) (which is exact in this case sinceD has two “blocks”).

Solution: UseD = diagfd; 1g. SinceDMD�1 is a singular matrix we have from (A.36) that

��(DMD�1) = ��
�
a da
1
d
b b

�
=
p
jaj2 + jdaj2 + jb=dj2 + jbj2 (8.99)

which we want to minimize with respect tod. The solution isd =
pjbj=jaj which gives

�(M) =
pjaj2 + 2jabj+ jbj2 = jaj+ jbj.

Exercise 8.17 Letc be a complex scalar. Show that for

� = diagf�1;�2g : �
�
M11 M12

M21 M22

�
= �

�
M11 cM12
1
c
M21 M22

�
(8.100)

Example 8.8 LetM be a partitioned matrix with both diagonal blocks equal to zero. Then

�

�
0 A
B 0

�
| {z }

M

=

8<:
�(M) =

p
�(AB) for � = ÆIp

��(A)��(B) for � = diagf�1;�2g;�i full
��(M) = maxf��(A); ��(B)g for � a full matrix

(8.101)

Proof: From the definition of eigenvalues and Schur’s formula (A.14) we get�i(M) =p
�i(AB) and �(M) =

p
�(AB) follows. For block-diagonal�, �(M) =

p
��(A)��(B)

follows in a similar way using�(M) = max� �(M�) = max�1;�2 �(A�2B�1), and
then realizing that we can always select�1 and�2 such that�(A�2B�1) = ��(A)��(B)
(recall (8.47)). ��(M) = maxf��(A); ��(B)g follows since��(M) =

p
�(MHM) where

MHM = diagfBHB;AHAg. 2
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Exercise 8.18 LetM be a complex3� 3 matrix and� = diagfÆ1; Æ2 Æ3g. Prove that

M =

"
a a a
b b b
c c c

#
; �(M) = jaj+ jbj+ jcj

Exercise 8.19 Leta; b; c andd be complex scalars. Show that for

� = diagfÆ1; Æ2g : �

�
ab ad
bc cd

�
= �

�
ab ab
cd cd

�
= jabj+ jcdj (8.102)

Does this hold when� is scalar times identity, or when� is full? (Answers: Yes and No).

Exercise 8.20 AssumeA and B are square matrices. Show by a counterexample that
��(AB) is not in general equal to��(BA). Under what conditions is�(AB) = �(BA)?
(Hint: Recall (8.84)).

Exercise 8.21 If (8.94) were true for any structure of� then it would imply�(AB) �
��(A)�(B). Show by a counterexample that this is not true.

8.9 Robust stability with structured uncertainty

Consider stability of the M�-structure in Figure 8.3 for the case where � is a
set of norm-bounded block-diagonal perturbations. From the determinant stability
condition in (8.43) which applies to both complex and real perturbations we get

RS , det(I �M�(j!)) 6= 0; 8!;8�; ��(�(j!)) � 1 8! (8.103)

A problem with (8.103) is that it is only a “yes/no” condition. To find the factor km
by which the system is robustly stable, we scale the uncertainty � by km, and look
for the smallest km which yields “borderline instability” , namely

det(I � kmM�) = 0 (8.104)

From the definition of � in (8.76) this value is km = 1=�(M), and we obtain the
following necessary and sufficient condition for robust stability.

Theorem 8.6 RS for block-diagonal perturbations (real or complex). Assume
that the nominal systemM and the perturbations� are stable. Then theM�-system
in Figure 8.3 is stable for all allowed perturbations with��(�) � 1;8!, if and only if

�(M(j!)) < 1; 8! (8.105)
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Proof: �(M) < 1 , km > 1, so if �(M) < 1 at all frequencies the required perturbation
� to make det(I �M�) = 0 is larger than 1, and the system is stable. On the other hand,
�(M) = 1 , km = 1, so if �(M) = 1 at some frequency there does exist a perturbation
with ��(�) = 1 such that det(I �M�) = 0 at this frequency, and the system is unstable. 2

Condition (8.105) for robust stability may be rewritten as

RS , �(M(j!)) ��(�(j!)) < 1; 8! (8.106)

which may be interpreted as a “generalized small gain theorem” that also takes into
account the structureof �.

One may argue whether Theorem 8.6 is really a theorem, or a restatement of the
definition of �. In either case, we see from (8.105) that it is trivial to check for robust
stability provided we can compute �.

Let us consider two examples that illustrate how we use � to check for robust stability
with structured uncertainty. In the first example, the structure of the uncertainty is
important, and an analysis based on the H1 norm leads to the incorrect conclusion
that the system is not robustly stable. In the second example the structure makes no
difference.

Example 8.9 RS with diagonal input uncertainty Consider robust stability of the
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Figure 8.11: Robust stability for diagonal input uncertainty is guaranteed since ��I (TI) <
1=jwI j; 8!. The use of unstructured uncertainty and ��(TI) is conservative

feedback system in Figure 8.7 for the case when the multiplicative input uncertainty is
diagonal. A nominal2�2 plant and the controller (which represents PI-control of a distillation
process using the DV-configuration) is given by

G(s) =
1

�s+ 1

� �87:8 1:4
�108:2 �1:4

�
; K(s) =

1 + �s

s

��0:0015 0
0 �0:075

�
(8.107)



324 MULTIVARIABLE FEEDBACK CONTROL

(time in minutes). The controller results in a nominally stable system with acceptable
performance. Assume there is complex multiplicative uncertainty ineach manipulated input of
magnitude

wI(s) =
s+ 0:2

0:5s+ 1
(8.108)

This implies a relative uncertainty of up to20% in the low frequency range, which increases at
high frequencies, reaching a value of1 (100% uncertainty) at about1 rad/min. The increase
with frequency allows for various neglected dynamics associated with the actuator and valve.
The uncertainty may be represented as multiplicative input uncertainty as shown in Figure 8.7
where�I is a diagonal complex matrix and the weight isWI = wII wherewI(s) is a
scalar. On rearranging the block diagram to match theM�-structure in Figure 8.3 we get
M = wIKG(I + KG)�1 = wITI (recall (8.32)), and the RS-condition�(M) < 1 in
Theorem 8.6 yields

RS, ��I (TI) <
1

jwI(j!)j 8!; �I =
�
Æ1

Æ2

�
(8.109)

This condition is shown graphically in Figure 8.11 and is seen to be satisfied at all frequencies,
so the system is robustly stable. Also in Figure 8.11,��(TI) can be seen to be larger than
1=jwI (j!)j over a wide frequency range. This shows that the system would be unstable for
full-block input uncertainty (�I full). However, full-block uncertainty is not reasonable for
this plant, and therefore we conclude that the use of the singular value is conservative in this
case. This demonstrates the need for the structured singular value.

Exercise 8.22 Consider the same example and check for robust stability with full-block
multiplicative output uncertainty of the same magnitude. (Solution: RS is satisfied).

Example 8.10 RS of spinning satellite. Recall Motivating Example No. 1 from Section
3.7.1 with the plantG(s) given in (3.76) and the controllerK = I. We want to study how
sensitive this design is to multiplicative input uncertainty.

In this caseTI = T , so for RS there is no difference between multiplicative input and
multiplicative output uncertainty. In Figure 8.12, we plot�(T ) as a function of frequency. We
find for this case that�(T ) = ��(T ) irrespective of the structure of the complex multiplicative
perturbation (full-block, diagonal or repeated complex scalar). Since�(T ) crosses1 at about
10 rad/s, we can tolerate more than100% uncertainty at frequencies above10 rad/s. At low
frequencies�(T ) is about10, so to guarantee RS we can at most tolerate10% (complex)
uncertainty at low frequencies. This confirms the results from Section 3.7.1, where we found
that real perturbationsÆ1 = 0:1 and Æ2 = �0:1 yield instability. Thus, the use of complex
rather than real perturbations is not conservative in this case, at least for�I diagonal.

However, withrepeated scalar perturbations (i.e. the uncertainty in each channel is identical)
there is a difference between real and complex perturbations. With repeated real perturbations,
available software (e.g. using the commandmu with blk = [-2 0] in the �-toolbox in
MATLAB) yields a peak�-value of1, so we can tolerate a perturbationÆ1 = Æ2 of magnitude
1 before getting instability (This is confirmed by considering the characteristic polynomial in
(3.80), from which we see thatÆ1 = Æ2 = �1 yields instability.) On the other hand, with
complex repeated perturbations, we have that�(T ) = �(T ) is 10 at low frequencies, so
instability may occur with a (non-physical) complexÆ1 = Æ2 of magnitude0:1. (Indeed, from
(3.80) we see that the non-physical constant perturbationÆ1 = Æ2 = j0:1 yields instability.)
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Figure 8.12: �-plot for robust stability of spinning satellite

8.9.1 What do � 6= 1 and skewed-� mean?

A value of � = 1:1 for robust stability means that all the uncertainty blocks must be
decreased in magnitude by a factor 1.1 in order to guarantee stability.

But if we want to keep some of the uncertainty blocks fixed, how large can one
particular source of uncertainty be before we get instability? We define this value
as 1=�s, where �s is called skewed-�. We may view �s(M) as a generalization of
�(M).

For example, let � = diagf�1;�2g and assume we have fixed k�1k � 1 and we
want to find how large �2 can be before we get instability. The solution is to select

Km =

�
I 0
0 kmI

�
(8.110)

and look at each frequency for the smallest value of km which makes det(I �
KmM�) = 0, and we have that skewed-� is

�s(M) , 1=km

Note that to compute skewed-�we must first define which part of the perturbations is
to be constant. �s(M) is always further from 1 than �(M) is, i.e. �s � � for � > 1,
�s = � for � = 1, and �s � � for � < 1. In practice, with available software to
compute �, we obtain �s by iterating on km until �(KmM) = 1 where Km may be
as in (8.110). This iteration is straightforward since � increases uniformly with km.
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8.10 Robust performance

Robust performance (RP) means that the performance objective is satisfied for all
possible plants in the uncertainty set, even the worst-case plant. We showed in
Chapter 7 that for a SISO system with an H1 performance objective, the RP-
condition is identical to a RS-condition with an additional perturbation block.

This also holds for MIMO systems, as illustrated by the step-wise derivation in
Figure 8.13. Step B is the key step and the reader is advised to study this carefully in
the treatment below. Note that the block �P (where capital P denotes Performance)
is always a full matrix. It is a fictitious uncertainty block representing the H1
performance specification.

8.10.1 Testing RP using �

To test for RP, we first “pull out” the uncertain perturbations and rearrange the
uncertain system into the N�-form of Figure 8.2. Our RP-requirement, as given
in (8.39), is that the H1 norm of the transfer function F = Fu(N;�) remains less
than 1 for all allowed perturbations. This may be tested exactly by computing �(N)
as stated in the following theorem.

Theorem 8.7 Robust performance. Rearrange the uncertain system into theN�-
structure of Figure 8.13. Assume nominal stability such thatN is (internally) stable.
Then

RP
def, kFk1 = kFu(N;�)k1 < 1; 8k�k1 � 1 (8.111)

, �
b�(N(j!)) < 1; 8w (8.112)

where� is computed with respect to the structure

b� =

�
� 0
0 �P

�
(8.113)

and�P is a full complex perturbation with the same dimensions asF T .

Below we prove the theorem in two alternative ways, but first a few remarks:

1. Condition (8.112) allows us to test if kFk1 < 1 for all possible �’s without having to test
each � individually. Essentially, � is defined such that it directly addresses the worst case.

2. The �-condition for RP involves the enlarged perturbation b� = diagf�;�P g. Here
�, which itself may be a block-diagonal matrix, represents the true uncertainty, whereas
�P is a full complex matrixstemming from the H1 norm performance specification.
For example, for the nominal system (with � = 0) we get from (8.81) that ��(N22) =
��P (N22), and we see that �P must be a full matrix.
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3. Since b� always has structure, the use of the H1 norm, kNk1 < 1, is generally
conservative for robust performance.

4. From (8.78) we have that

�b�(N)| {z }
RP

� maxf��(N11)| {z }
RS

; ��P (N22)| {z }
NP

g (8.114)

where as just noted ��P (N22) = ��(N22). (8.114) implies that RS (��(N11) < 1) and
NP (��(N22) < 1) are automatically satisfied when RP (�(N) < 1) is satisfied. However,
note that NS (stability of N ) is not guaranteed by (8.112) and must be tested separately
(Beware! It is a common mistake to get a design with apparently great RP, but which is not
nominally stable and thus is actually robustly unstable).

5. For a generalization of Theorem 8.7 see the main loop theoremof Packard and Doyle
(1993); see also Zhou et al. (1996).

Block diagram proof of Theorem 8.7

In the following, let F = Fu(N;�) denote the perturbed closed-loop system for
which we want to test RP. The theorem is proved by the equivalence between the
various block diagrams in Figure 8.13.

Step A. This is simply the definition of RP; kFk1 < 1.

Step B (the key step). Recall first from Theorem 8.4 that stability of the M�-
structure in Figure 8.3, where � is a full complex matrix, is equivalent to kMk1 <
1. From this theorem, we get that the RP-condition kFk1 < 1 is equivalent to RS
of the F�P -structure, where �P is a full complex matrix.

Step C. Introduce F = Fu(N;�) from Figure 8.2.

Step D. Collect � and �P into the block-diagonal matrix b�. We then have that
the original RP-problem is equivalent to RS of the N b�-structure which from
Theorem 8.6 is equivalent to �

b�(N) < 1. 2

Algebraic proof of Theorem 8.7

The definition of � gives at each frequency

�b�(N(j!)) < 1, det(I �N(j!)b�(j!)) 6= 0; 8b�; ��(b�(j!)) � 1

By Schur’s formula in (A.14) we have

det(I �N b�) = det

�
I �N11� �N12�P

�N21� I �N22�p

�
=

det(I �N11�) � det [I �N22�P �N21�(I �N11�)
�1N12�P ] =

det(I �N11�) � det[I � (N22 +N21�(I �N11�)
�1N12)�P ] =
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Figure 8.13: RP as a special case of structured RS. F = Fu(N;�)



ROBUST STABILITY AND PERFORMANCE 329

det(I �N11�) � det(I � Fu(N;�)�P )

Since this expression should not be zero, both terms must be non-zero at each frequency, i.e.

det(I �N11�) 6= 0 8� , ��(N11) < 1; 8! (RS)

and for all �

det(I � F�P ) 6= 0 8�P , ��P (F ) < 1, ��(F ) < 1; 8! (RP definition)

Theorem 8.7 is proved by reading the above lines in the opposite direction. Note that it is not
necessary to test for RS separately as it follows as a special case of the RP requirement. 2

8.10.2 Summary of �-conditions for NP, RS and RP

Rearrange the uncertain system into the N�-structure of Figure 8.2, where the
block-diagonal perturbations satisfy k�k1 � 1. Introduce

F = Fu(N;�) = N22 +N21�(I �N11�)�1N12

and let the performance requirement (RP) be kFk1 � 1 for all allowable
perturbations. Then we have:

NS , N (internally) stable (8.115)

NP , ��(N22) = ��P
< 1; 8!; and NS (8.116)

RS , ��(N11) < 1; 8!; and NS (8.117)

RP , �
e�(N) < 1; 8!; e� =

�
� 0
0 �P

�
; and NS (8.118)

Here � is a block-diagonal matrix (its detailed structure depends on the uncertainty
we are representing), whereas�P always is a full complex matrix. Note that nominal
stability (NS) must be tested separately in all cases.

Although the structured singular value is not a norm, it is sometimes convenient to
refer to the peak �-value as the “�-norm” . For a stable rational transfer matrixH(s),
with an associated block structure �, we therefore define

kH(s)k� , max
!

��(H(j!))

For a nominally stable system we then have

NP, kN22k1 < 1; RS, kN11k� < 1; RP, kNk
e� < 1
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8.10.3 Worst-case performance and skewed-�

Assume we have a system for which the peak �-value for RP is 1:1. What does this
mean? The definition of � tells us that our RP-requirement would be satisfied exactly
if we reduced both the performance requirement and the uncertainty by a factor of
1.1. So, � does notdirectly give us the worst-case performance, i.e. max� ��(F (�)),
as one might have expected.

To find the worst-case weighted performance for a given uncertainty, one needs to
keep the magnitude of the perturbations fixed (��(�) � 1), that is, we must compute
skewed-� of N as discussed in Section 8.9.1. We have, in this case,

max
��(�)�1

��(Fl(N;�)(j!)) = �s(N(j!)) (8.119)

To find �s numerically, we scale the performance part of N by a factor km = 1=�s

and iterate on km until � = 1. That is, at each frequency skewed-� is the value
�s(N) which solves

�(KmN) = 1; Km =

�
I 0
0 1=�s

�
(8.120)

Note that � underestimates how bad or good the actual worst-case performance is.
This follows because �s(N) is always further from 1 than �(N).

Remark. The corresponding worst-case perturbation may be obtained as follows: First
compute the worst-case performance at each frequency using skewed-�. At the frequency
where �s(N) has its peak, we may extract the corresponding worst-case perturbation
generated by the software, and then find a stable, all-pass transfer function that matches
this. In the MATLAB �-toolbox, the single command wcperf combines these three steps:
[delwc,mulow,muup] = wcperf(N,blk,1);.

8.11 Application: RP with input uncertainty

We will now consider in some detail the case of multiplicative input uncertainty with
performance defined in terms of weighted sensitivity, as illustrated in Figure 8.14.
The performance requirement is then

RP
def, kwP (I +GpK)�1k1 < 1; 8Gp (8.121)

where the set of plants is given by

Gp = G(I + wI�I); k�Ik1 � 1 (8.122)
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Here wP (s) and wI(s) are scalar weights, so the performance objective is the same
for all the outputs, and the uncertainty is the same for all inputs. We will mostly
assume that �I is diagonal, but we will also consider the case when �I is a full
matrix. This problem is excellent for illustrating the robustness analysis of uncertain

d d dq q-
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Figure 8.14: Robust performance of system with input uncertainty

multivariable systems. It should be noted, however, that although the problem set-up
in (8.121) and (8.122) is fine for analyzing a given controller, it is less suitable for
controller synthesis. For example, the problem formulation does not penalize directly
the outputs from the controller.

In this section, we will:

1. Find the interconnection matrix N for this problem.
2. Consider the SISO case, so that useful connections can be made with results from

the previous chapter.
3. Consider a multivariable distillation process for which we have already seen from

simulations in Chapter 3 that a decoupling controller is sensitive to small errors
in the input gains. We will find that � for RP is indeed much larger than 1 for this
decoupling controller.

4. Find some simple bounds on � for this problem and discuss the role of the
condition number.

5. Make comparisons with the case where the uncertainty is located at the output.
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8.11.1 Interconnection matrix

On rearranging the system into the N�-structure, as shown in Figure 8.14, we get,
as in (8.32),

N =

�
wITI wIKS
wPSG wPS

�
(8.123)

where TI = KG(I+KG)�1, S = (I+GK)�1 and for simplicity we have omitted
the negative signs in the 1,1 and 1,2 blocks ofN , since �(N) = �(UN) with unitary

U =
��I 0
0 I

�
; see (8.83).

For a given controller K we can now test for NS, NP, RS and RP using (8.115)-
(8.118). Here � = �I may be a full or diagonal matrix (depending on the physical
situation).

8.11.2 RP with input uncertainty for SISO system

For a SISO system, conditions (8.115)-(8.118) with N as in (8.123) become

NS , S, SG, KS and TI are stable (8.124)

NP , jwPSj < 1; 8! (8.125)

RS , jwITI j < 1; 8! (8.126)

RP , jwPSj+ jwITI j < 1; 8! (8.127)

The RP-condition (8.127) follows from (8.102); that is

�(N) = �

�
wITI wIKS
wPSG wPS

�
= �

�
wITI wITI
wPS wPS

�
= jwITI j+ jwPSj (8.128)

where we have used TI = KSG. For SISO systems TI = T , and we see that
(8.127) is identical to (7.61), which was derived in Chapter 7 using a simple graphical
argument based on the Nyquist plot of L = GK.

Robust performance optimization, in terms of weighted sensitivity with multiplica-
tive uncertainty for a SISO system, thus involves minimizing the peak value of
�(N) = jwIT j+ jwPSj. This may be solved usingDK-iteration as outlined later in
Section 8.12. A closely related problem, which is easier to solve both mathematically
and numerically, is to minimize the peak value (H1 norm) of the mixed sensitivity
matrix

Nmix =

�
wPS
wIT

�
(8.129)

From (A.95) we get that at each frequency �(N) = jwIT j + jwPSj differs from
��(Nmix) =

pjwIT j2 + jwPSj2 by at most a factor
p
2; recall (7.64). Thus,

minimizing kNmixk1 is close to optimizing robust performance in terms of �(N).
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8.11.3 Robust performance for 2� 2 distillation process

Consider again the distillation process example from Chapter 3 (Motivating Example
No. 2) and the corresponding inverse-based controller:

G(s) =
1

75s+ 1

�
87:8 �86:4
108:2 �109:6

�
; K(s) =

0:7

s
G(s)�1 (8.130)

The controller provides a nominally decoupled system with

L = l I; S = �I and T = tI (8.131)

where

l =
0:7

s
; � =

1

1 + l
=

s

s+ 0:7
; t = 1� � =

0:7

s+ 0:7
=

1

1:43s+ 1

We have used � for the nominal sensitivity in each loop to distinguish it from the
Laplace variable s. Recall from Figure 3.12 that this controller gave an excellent
nominal response, but that the response with 20% gain uncertainty in each input
channel was extremely poor. We will now confirm these findings by a �-analysis. To
this effect we use the following weights for uncertainty and performance:

wI (s) =
s+ 0:2

0:5s+ 1
; wP (s) =

s=2 + 0:05

s
(8.132)

With reference to (7.26) we see the weight wI(s) may approximately represent a
20% gain error and a neglected time delay of 0.9 min. jw I (j!)j levels off at 2
(200% uncertainty) at high frequencies. With reference to (2.72) we see that the
performance weight wP (s) specifies integral action, a closed-loop bandwidth of
about 0.05 [rad/min] (which is relatively slow in the presence of an allowed time
delay of 0.9 min) and a maximum peak for ��(S) of M s = 2.

We now test for NS, NP, NS and RP. Note that �I is a diagonal matrix in this
example.

NS With G and K as given in (8.130) we find that S, SG, KS and T I are stable, so
the system is nominally stable.

NP With the decoupling controller we have

��(N22) = ��(wPS) =

����s=2 + 0:05

s+ 0:7

����
and we see from the dashed-dot line in Figure 8.15 that the NP-condition
is easily satisfied: ��(wPS) is small at low frequencies (0:05=0:7 = 0:07 at
! = 0) and approaches 1=2 = 0:5 at high frequencies.
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Figure 8.15: �-plots for distillation process with decoupling controller

RS Since in this case wITI = wIT is a scalar times the identity matrix, we have,
independent of the structure of �I , that

��I
(wITI) = jwItj =

����0:2 5s+ 1

(0:5s+ 1)(1:43s+ 1)

����
and we see from the dashed line in Figure 8.15 that RS is easily satisfied.
The peak value of ��I

(M) over frequency is kMk�I
= 0:53. This means

that we may increase the uncertainty by a factor of 1=0:53 = 1:89 before the
worst-case uncertainty yields instability, that is, we can tolerate about 38% gain
uncertainty and a time delay of about 1.7 min before we get instability.

RP Although our system has good robustness margins (RS easily satisfied) and
excellent nominal performance we know from the simulations in Figure 3.12
that the robust performance is poor. This is confirmed by the �-curve for RP
in Figure 8.15 which was computed numerically using �

b�(N) with N as in

(8.123), b� = diagf�I ;�P g and �I = diagfÆ1; Æ2g. The peak value is close
to 6, meaning that even with 6 times less uncertainty, the weighted sensitivity
will be about 6 times larger than what we require. The peak of the actual worst-
case weighted sensitivity with uncertainty blocks of magnitude 1, which may
be computed using skewed-�, is for comparison 44.93.

The MATLAB �-toolbox commands to generate Figure 8.15 are given in Table 8.1.

In general, � with unstructured uncertainty (� I full) is larger than � with structured
uncertainty (�I diagonal). However, for our particular plant and controller in (8.130)
it appears from numerical calculations and by use of (8.135) below, that they are the
same. Of course, this is not generally true, as is confirmed in the following exercise.

Exercise 8.23 Consider the plantG(s) in (8.107) which is ill-conditioned with
(G) =
70:8 at all frequencies (but note that the RGA-elements ofG are all about0:5). With an
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Table 8.1: MATLAB program for �-analysis (generates Figure 8.15)
% Uses the Mu toolbox
G0 = [87.8 -86.4; 108.2 -109.6];
dyn = nd2sys(1,[75 1]);
Dyn=daug(dyn,dyn); G=mmult(Dyn,G0);
%
% Inverse-based control.
%
dynk=nd2sys([75 1],[1 1.e-5],0.7);
Dynk=daug(dynk,dynk); Kinv=mmult(Dynk,minv(G0));
%
% Weights.
%
wp=nd2sys([10 1],[10 1.e-5],0.5); Wp=daug(wp,wp);
wi=nd2sys([1 0.2],[0.5 1]); Wi=daug(wi,wi);
%
% Generalized plant P.
%
systemnames = ’G Wp Wi’;
inputvar = ’[ydel(2); w(2) ; u(2)]’;
outputvar = ’[Wi; Wp; -G-w]’;
input to G = ’[u+ydel]’;
input to Wp = ’[G+w]’; input to Wi = ’[u]’;
sysoutname = ’P’;
cleanupsysic = ’yes’; sysic;
%
N = starp(P,Kinv); omega = logspace(-3,3,61);
Nf = frsp(N,omega);
%
% mu for RP.
%
blk = [1 1; 1 1; 2 2];
[mubnds,rowd,sens,rowp,rowg] = mu(Nf,blk,’c’);
muRP = sel(mubnds,’:’,1); pkvnorm(muRP) % (ans = 5.7726).
%
% Worst-case weighted sensitivity
%
[delworst,muslow,musup] = wcperf(Nf,blk,1); musup % (musup = 44.93 for
% % delta=1).
% mu for RS.
%
Nrs=sel(Nf,1:2,1:2);
[mubnds,rowd,sens,rowp,rowg]=mu(Nrs,[1 1; 1 1],’c’);
muRS = sel(mubnds,’:’,1); pkvnorm(muRS) % (ans = 0.5242).
%
% mu for NP (= max. singular value of Nnp).
%
Nnp=sel(Nf,3:4,3:4);
[mubnds,rowd,sens,rowp,rowg]=mu(Nnp,[2 2],’c’);
muNP = sel(mubnds,’:’,1); pkvnorm(muNP) % (ans = 0.5000).
vplot(’liv,m’,muRP,muRS,muNP);
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inverse-based controllerK(s) = 0:7
s
G(s)�1, compute� for RP with both diagonal and full-

block input uncertainty using the weights in (8.132). The value of� is much smaller in the
former case.

8.11.4 Robust performance and the condition number

In this subsection we consider the relationship between � for RP and the condition
number of the plant or of the controller. We consider unstructuredmultiplicative
input uncertainty (i.e. �I is a full matrix) and performance measured in terms of
weighted sensitivity.

Any controller. Let N be given as in (8.123). Then

RPz }| {
�
e�(N) � [

RSz }| {
��(wITI)+

NPz }| {
��(wPS)](1 +

p
k) (8.133)

where k is either the condition number of the plant or the controller (the smallest one
should be used):

k = 
(G) or k = 
(K) (8.134)

Proof of (8.133):Since �I is a full matrix, (8.87) yields

�(N) = min
d

��

�
N11 dN12

d�1N21 N22

�
where from (A.46)

��

�
wITI dwIKS

d�1wPSG wPS

�
� ��(wITI

�
I dG�1

�
) + ��(wPS

�
d�1G I

�
)

� ��(wITI) ��(I dG�1)| {z }
�1+jdj��(G�1)

+��(wPS) ��(d
�1G I)| {z }

�1+jd�1j��(G)

and selecting d =
q

��(G)

��(G�1)
=
p

(G) gives

�(N) � [��(wITI) + ��(wPS)] (1 +
p

(G))

A similar derivation may be performed using SG = K�1TI to derive the same expression
but with 
(K) instead of 
(G). 2

From (8.133) we see that with a “ round” controller, i.e. one with 
(K) = 1, there
is less sensitivity to uncertainty (but it may be difficult to achieve NP in this case).
On the other hand, we would expect � for RP to be large if we used an inverse-based
controller for a plant with a large condition number, since then 
(K) = 
(G) is
large. This is confirmed by (8.135) below.



ROBUST STABILITY AND PERFORMANCE 337

Example 8.11 For the distillation process studied above, we have
(G) = 
(K) = 141:7
at all frequencies, and at frequencyw = 1 rad/min the upper bound given by (8.133) becomes
(0:52 + 0:41)(1 +

p
141:7) = 13:1. This is higher than the actual value of�(N) which is

5:56, which illustrates that the bound in (8.133) is generally not tight.

Inverse-based controller. With an inverse-based controller (resulting in the nominal
decoupled system (8.131)) and unstructured input uncertainty, it is possible to derive
an analytic expression for � for RP with N as in (8.123):

�
e�(N) =

s
jwP �j2 + jwI tj2 + jwP �j � jwI tj

�

(G) +

1


(G)

�
(8.135)

where � is the nominal sensitivity and 
(G) is the condition number of the plant. We
see that for plants with a large condition number, � for RP increases approximately
in proportion to

p

(G).

Proof of (8.135):The proof originates from Stein and Doyle (1991). The upper �-bound in
(8.87) with D = diagfdI; Ig yields

�(N) = min
d

��
�

wI tI wI t(dG)
�1

wP �(dG) wP �I

�
= min

d
��
�

wI tI wI t(d�)
�1

wP �(d�) wP �I

�
= min

d
max
i

��
�

wI t wI t(d�i)
�1

wP �(d�i) wP �

�
= min

d
max
i

p
jwP �j2 + jwI tj2 + jwP �d�ij2 + jwI t(d�i)�1j2

We have here used the SVD of G = U�VH at each frequency, and have used the fact that ��
is unitary invariant. �i denotes the i’ th singular value of G. The expression is minimized by
selecting at each frequency d = jwI tj=(jwP �j��(G)�(G)), see (8.99), and hence the desired
result. For more details see Zhou et al. (1996) pp. 293-295. 2

Example 8.12 For the distillation column example studied above, we have at frequency
! = 1 rad/min, jwP �j = 0:41 and jwItj = 0:52, and since
(G) = 141:7 at all
frequencies, (8.135) yields�(N) =

p
0:17 + 0:27 + 30:51 = 5:56 which agrees with the

plot in Figure 8.15.

Worst-case performance (any controller)

We next derive relationships between worst-case performance and the condition
number. Suppose that at each frequency the worst-case sensitivity is ��(S 0). We then
have that the worst-case weighted sensitivity is equal to skewed-�:

max
Sp

��(wPSp) = ��(wPS
0) = �s(N)
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Now, recall that in Section 6.10.4 we derived a number of upper bounds on ��(S 0),
and referring back to (6.72) we find

��(S0) � 
(G)
��(S)

1� ��(wITI)
(8.136)

A similar bound involving 
(K) applies. We then have

�s(N) = ��(wPS
0) � k

��(wPS)

1� ��(wITI)
(8.137)

where k as before denotes either the condition number of the plant or the controller
(preferably the smallest). Equation (8.137) holds for any controller and for any
structure of the uncertainty (including �I unstructured).

Remark 1 In Section 6.10.4 we derived tighter upper bounds for cases when �I is restricted
to be diagonal and when we have a decoupling controller. In (6.78) we also derived a lower
bound in terms of the RGA.

Remark 2 Since �s = � when � = 1, we may, from (8.133), (8.137) and expressions similar
to (6.76) and (6.77), derive the following sufficient(conservative) tests for RP (�(N) < 1)
with unstructured input uncertainty (any controller):

RP ( [��(wPS) + ��(wITI)](1 +
p
k) < 1; 8!

RP ( k��(wPS) + ��(wITI) < 1; 8!
RP ( ��(wPS) + k��(wIT ) < 1; 8!

where k denotes the condition number of the plant or the controller (the smallest being the
most useful).

Example 8.13 For the distillation process the upper bound given by (8.137) at! = 1
rad/min is 141:7 � 0:41=(1 � 0:52) = 121. This is higher than the actual peak value of
�s = maxSp ��(wPSp) which as found earlier is44:9 (at frequency1:2 rad/min), and
demonstrates that these bounds are not generally tight.

8.11.5 Comparison with output uncertainty

Consider output multiplicative uncertainty of magnitudewO(j!). In this case we get
the interconnection matrix

N =

�
wOT wOT
wPS wPS

�
(8.138)

and for any structure of the uncertainty �(N) is bounded as follows:

��

�
wOT
wPS

�
�

RPz }| {
�(N) � p2 ��

RSz }| {�
wOT
wPS

�
| {z }

NP

(8.139)
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This follows since the uncertainty and performance blocks both enter at the output
(see Section 8.6.2) and from (A.45) the difference between bounding the combined
perturbations, �� [ �O �P ] and individual perturbations, ��(�O) and ��(�P ), is at
most a factor of

p
2. Thus, in this case we “automatically” achieve RP (at least withinp

2) if we have satisfied separately the subobjectives of NP and RS. This confirms
our findings from Section 6.10.4 that multiplicative output uncertainty poses no
particular problem for performance. It also implies that for practical purposes we
may optimize robust performance with output uncertainty by minimizing the H1
norm of the stacked matrix

�
wOT
wPS

�
.

Exercise 8.24 Consider the RP-problem with weighted sensitivity and multiplicative output
uncertainty. Derive the interconnection matrixN for, 1) the conventional case withb� =
diagf�;�P g, and 2) the stacked case whenb� = [� �P ]. Use this to prove (8.139).

8.12 �-synthesis and DK-iteration

The structured singular value � is a very powerful tool for the analysis of robust
performance with a given controller. However, one may also seek to find the
controller that minimizes a given �-condition: this is the �-synthesis problem.

8.12.1 DK-iteration

At present there is no direct method to synthesize a �-optimal controller. However,
for complex perturbations a method known as DK-iteration is available. It combines
H1-synthesis and �-analysis, and often yields good results. The starting point is the
upper bound (8.87) on � in terms of the scaled singular value

�(N) � min
D2D

��(DND�1)

The idea is to find the controller that minimizes the peak value over frequency of this
upper bound, namely

min
K

(min
D2D

kDN(K)D�1k1) (8.140)

by alternating between minimizing kDN(K)D�1k1 with respect to either K or D
(while holding the other fixed). To start the iterations, one selects an initial stable
rational transfer matrix D(s) with appropriate structure. The identity matrix is often
a good initial choice for D provided the system has been reasonably scaled for
performance. The DK-iteration then proceeds as follows:
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1. K-step. Synthesize anH1 controller for the scaled problem,
minK kDN(K)D�1k1 with fixed D(s).

2. D-step. Find D(j!) to minimize at each frequency ��(DND�1(j!)) with fixed
N .

3. Fit the magnitude of each element of D(j!) to a stable and minimum phase
transfer function D(s) and go to Step 1.

The iteration may continue until satisfactory performance is achieved, kDND�1k1 <
1, or until the H1 norm no longer decreases. One fundamental problem with this
approach is that although each of the minimization steps (K-step and D-step) are
convex, joint convexity is not guaranteed. Therefore, the iterations may converge to
a local optimum. However, practical experience suggests that the method works well
in most cases.

The order of the controller resulting from each iteration is equal to the number
of states in the plant G(s) plus the number of states in the weights plus twice
the number of states in D(s). For most cases, the true �-optimal controller is not
rational, and will thus be of infinite order, but because we use a finite-order D(s) to
approximate theD-scales, we get a controller of finite (but often high) order. The true
�-optimal controller would have a flat �-curve (as a function of frequency), except
at infinite frequency where � generally has to approach a fixed value independent of
the controller (because L(j1) = 0 for real systems). However, with a finite-order
controller we will generally not be able (and it may not be desirable) to extend the
flatness to infinite frequencies.

The DK-iteration depends heavily on optimal solutions for Steps 1 and 2, and also
on good fits in Step 3, preferably by a transfer function of low order. One reason
for preferring a low-order fit is that this reduces the order of the H1 problem,
which usually improves the numerical properties of the H1 optimization (Step 1)
and also yields a controller of lower order. In some cases the iterations converge
slowly, and it may be difficult to judge whether the iterations are converging or not.
One may even experience the �-value increasing. This may be caused by numerical
problems or inaccuracies (e.g. the upper bound �-value in Step 2 being higher than
theH1 norm obtained in Step 1), or by a poor fit of the D-scales. In any case, if the
iterations converge slowly, then one may consider going back to the initial problem
and rescaling the inputs and outputs.

In theK-step (Step 1) where theH1 controller is synthesized, it is often desirable to
use a slightly sub-optimal controller (e.g. with an H1 norm, 
, which is 5% higher
than the optimal value, 
min). This yields a blend of H1 and H2 optimality with a
controller which usually has a steeper high-frequency roll-off than the H1 optimal
controller.
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8.12.2 Adjusting the performance weight

Recall that if � at a given frequency is different from 1, then the interpretation is
that at this frequency we can tolerate 1=�-times more uncertainty and still satisfy our
performance objective with a margin of 1=�. In �-synthesis, the designer will usually
adjust some parameter(s) in the performance or uncertainty weights until the peak �-
value is close to 1. Sometimes the uncertainty is fixed, and we effectively optimize
worst-case performance by adjusting a parameter in the performance weight. For
example, consider the performance weight

wP (s) =
s=M + !�B
s+ !�BA

(8.141)

where we want to keep M constant and find the highest achievable bandwidth
frequency !�B . The optimization problem becomes

max j!�B j such that �(N) < 1;8! (8.142)

where N , the interconnection matrix for the RP-problem, depends on ! �B . This may
be implemented as an outer loop around the DK-iteration.

8.12.3 Fixed structure controller

Sometimes it is desirable to find a low-order controller with a given structure. This
may be achieved by numerical optimization where � is minimized with respect to
the controller parameters The problem here is that the optimization is not generally
convex in the parameters. Sometimes it helps to switch the optimization between
minimizing the peak of � (i.e. k�k1) and minimizing the integral square deviation
of � away from k (i.e. k�(j!)� kk2) where k usually is close to 1. The latter is an
attempt to “fl atten out” �.

8.12.4 Example: �-synthesis with DK-iteration

We will consider again the case of multiplicative input uncertainty and performance
defined in terms of weighted sensitivity, as discussed in detail in Section 8.11.
We noted there that this set-up is fine for analysis, but less suitable for controller
synthesis, as it does not explicitly penalize the outputs from the controller.
Nevertheless we will use it here as an example of �-synthesis because of its
simplicity. The resulting controller will have very large gains at high frequencies and
should not be used directly for implementation. In practice, one can add extra roll-
off to the controller (which should work well because the system should be robust
with respect to uncertain high-frequency dynamics), or one may consider a more
complicated problem set-up (see Section 12.4).
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With this caution in mind, we proceed with the problem description. Again, we use
the model of the simplified distillation process

G(s) =
1

75s+ 1

�
87:8 �86:4
108:2 �109:6

�
(8.143)

The uncertainty weight wII and performance weight wP I are given in (8.132), and
are shown graphically in Figure 8.16. The objective is to minimize the peak value
of �

e�(N), where N is given in (8.123) and e� = diagf�I ;�P g. We will consider
diagonal input uncertainty (which is always present in any real problem), so � I is
a 2 � 2 diagonal matrix. �P is a full 2 � 2 matrix representing the performance
specification. Note that we have only three complex uncertainty blocks, so �(N) is
equal to the upper bound minD ��(DND�1) in this case.

We will now use DK-iteration in attempt to obtain the �-optimal controller for
this example. The appropriate commands for the MATLAB �-toolbox are listed in
Table 8.2.
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Figure 8.16: Uncertainty and performance weights. Notice that there is a frequency range
(“window”) where both weights are less than one in magnitude.

First the generalized plant P as given in (8.29) is constructed. It includes the plant
model, the uncertainty weight and the performance weight, but not the controller
which is to be designed (note that N = Fl(P;K)). Then the block-structure is
defined; it consists of two 1 � 1 blocks to represent �I and a 2 � 2 block to
represent �P . The scaling matrix D for DND�1 then has the structure D =
diagfd1; d2; d3I2g where I2 is a 2 � 2 identity matrix, and we may set d3 = 1. As
initial scalings we select d01 = d02 = 1. P is then scaled with the matrix diagfD; I2g
where I2 is associated with the inputs and outputs from the controller (we do not
want to scale the controller).

Iteration No. 1.Step 1: With the initial scalings,D0 = I , theH1 software produced
a 6 state controller (2 states from the plant model and 2 from each of the weights)
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Table 8.2: MATLAB program to perform DK-iteration
% Uses the Mu toolbox
G0 = [87.8 -86.4; 108.2 -109.6]; % Distillation
dyn = nd2sys(1,[75 1]); Dyn = daug(dyn,dyn); % process.
G = mmult(Dyn,G0);
%
% Weights.
%
wp = nd2sys([10 1],[10 1.e-5],0.5); % Approximated
wi = nd2sys([1 0.2],[0.5 1]); % integrator.
Wp = daug(wp,wp); Wi = daug(wi,wi);
%
% Generalized plant P. %
systemnames = ’G Wp Wi’;
inputvar = ’[ydel(2); w(2) ; u(2)]’;
outputvar = ’[Wi; Wp; -G-w]’;
input to G = ’[u+ydel]’;
input to Wp = ’[G+w]’; input to Wi = ’[u]’;
sysoutname = ’P’; cleanupsysic = ’yes’;
sysic;
%
% Initialize.
%
omega = logspace(-3,3,61);
blk = [1 1; 1 1; 2 2];
nmeas=2; nu=2; gmin=0.9; gamma=2; tol=0.01; d0 = 1;
dsysl = daug(d0,d0,eye(2),eye(2)); dsysr=dsysl;
%
% START ITERATION.
%
% STEP 1: Find H-infinity optimal controller
% with given scalings:
%
DPD = mmult(dsysl,P,minv(dsysr)); gmax=1.05*gamma;
[K,Nsc,gamma] = hinfsyn(DPD,nmeas,nu,gmin,gmax,tol);
Nf=frsp(Nsc,omega); % (Remark:
% % Without scaling:
% % N=starp(P,K);).
% STEP 2: Compute mu using upper bound:
%
[mubnds,rowd,sens,rowp,rowg] = mu(Nf,blk,’c’);
vplot(’liv,m’,mubnds); murp=pkvnorm(mubnds,inf)
%
% STEP 3: Fit resulting D-scales:
%
[dsysl,dsysr]=musynflp(dsysl,rowd,sens,blk,nmeas,nu); % choose 4th order.
%
% New Version:
% [dsysL,dsysR]=msf(Nf,mubnds,rowd,sens,blk); % order: 4, 4, 0.
% dsysl=daug(dsysL,eye(2)); dsysr=daug(dsysR,eye(2));
%
% GOTO STEP 1 (unless satisfied with murp).
%
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with an H1 norm of 
 = 1:1823. Step 2: The upper �-bound gave the �-curve
shown as curve “ Iter. 1” in Figure 8.17, corresponding to a peak value of �=1.1818.
Step 3: The frequency-dependentd1(!) and d2(!) from Step 2 were each fitted using
a 4th order transfer function. d1(w) and the fitted 4th-order transfer function (dotted
line) are shown in Figure 8.18 and labelled “ Iter. 1” . The fit is very good so it is hard
to distinguish the two curves. d2 is not shown because it was found that d1 � d2
(indicating that the worst-case full-block �I is in fact diagonal).

Iteration No. 2.Step 1: With the 8 state scaling D1(s) the H1 software gave a 22
state controller and kD1N(D1)�1k1 = 1:0238. Step 2: This controller gave a peak
value of � of 1.0238. Step 3: The resulting scalings D 2 were only slightly changed
from the previous iteration as can be seen from d21(!) labelled “ Iter. 2” in Figure 8.18.

Iteration No. 3.Step 1: With the scalings D2(s) the H1 norm was only slightly
reduced from 1.024 to 1.019. Since the improvement was very small and since the
value was very close to the desired value of 1, it was decided to stop the iterations.
The resulting controller with 22 states (denoted K3 in the following) gives a peak
�-value of 1.019.
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Figure 8.17: Change in � during DK-iteration

Analysis of �-“optimal” controller K3

The final �-curves for NP, RS and RP with controller K3 are shown in Figure 8.19.
The objectives of RS and NP are easily satisfied. Furthermore, the peak �-value of
1.019 with controller K3 is only slightly above 1, so the performance specification
��(wPSp) < 1 is almost satisfied for all possible plants. To confirm this we
considered the nominal plant and six perturbed plants

G0i(s) = G(s)EIi(s)
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Figure 8.18: Change in D-scale d1 during DK-iteration
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Figure 8.19: �-plots with �-“optimal” controller K3

where EIi = I + wI�I is a diagonal transfer function matrix representing input
uncertainty (with nominal EI0 = I). Recall that the uncertainty weight is

wI(s) =
s+ 0:2

0:5s+ 1

which is 0.2 in magnitude at low frequencies. Thus, the following input gain
perturbations are allowable

EI1 =
�
1:2 0
0 1:2

�
; EI2 =

�
0:8 0
0 1:2

�
; EI3 =

�
1:2 0
0 0:8

�
; EI4 =

�
0:8 0
0 0:8

�
These perturbations do not make use of the fact that w I (s) increases with frequency.
Two allowed dynamic perturbations for the diagonal elements in w I�I are

�1(s) =
�s+ 0:2

0:5s+ 1
; �2(s) = � s+ 0:2

0:5s+ 1
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Figure 8.20: Perturbed sensitivity functions ��(S0) using �-“optimal” controller K3. Dotted
lines: Plants G0i; i = 1; 6. Lower solid line: Nominal plant G. Upper solid line: Worst-case
plant G0wc.
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Figure 8.21: Setpoint response for �-“optimal” controller K3. Solid line: nominal plant.
Dashed line: uncertain plant G03

corresponding to elements in EIi of

f1(s) = 1 + �1(s) = 1:2
�0:417s+ 1

0:5s+ 1
; f2(s) = 1 + �2(s) = 0:8

�0:633s+ 1

0:5s+ 1

so let us also consider

EI5 =
�
f1(s) 0
0 f1(s)

�
; EI6 =

�
f2(s) 0
0 f1(s)

�
The maximum singular value of the sensitivity, ��(S 0i), is shown in Figure 8.20 for
the nominal and six perturbed plants, and is seen to be almost below the bound
1=jwI(j!)j for all seven cases (i = 0; 6) illustrating that RP is almost satisfied. The
sensitivity for the nominal plant is shown by the lower solid line, and the others with
dotted lines. At low frequencies the worst-case corresponds closely to a plant with
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gains 1.2 and 0.8, such as G0
2, G03 or G06. Overall, the worst-case of these six plants

seems to be G06 = GEI6, which has ��(S 0) close to the bound at low frequencies,
and has a peak of about 2.02 (above the allowed bound of 2) at 1.6 rad/min.

To find the “ true” worst-case performance and plant we used the MATLAB �-tools
command wcperf as explained in Section 8.10.3 on page 330. This gives a worst-
case performance of maxSp kwPSpk1 = 1:037, and the sensitivity function for the
corresponding worst-case plant G 0

wc(s) = G(s)(I + wI (s)�wc(s)) found with the
software is shown by the upper solid line in Figure 8.20. It has a peak value of ��(S 0)
of about 2.05 at 0.79 rad/min.

Remark. The “worst-case” plant is not unique, and there are many plants which yield a worst-
case performance of maxSp kwPSpk1 = 1:037. For example, it is likely that we could find
plants which were more consistently “worse” at all frequencies than the one shown by the
upper solid line in Figure 8.20.

The time response of y1 and y2 to a filtered setpoint change in y1, r1 = 1=(5s+ 1),
is shown in Figure 8.21 both for the nominal case (solid line) and for 20% input
gain uncertainty (dashed line) using the plant G 0

3 = GF3 (which we know is one of
the worst plants). The response is interactive, but shows no strong sensitivity to the
uncertainty. The response with uncertainty is seen to be much better than that with
the inverse-based controller studied earlier and shown in Figure 3.12.

Remarks on the �-synthesis example.

1. By trial and error, and many long nights, Petter Lundström was able to reduce the peak
�-value for robust performance for this problem down to about �opt = 0:974 (Lundström,
1994). The resulting design produces the curves labelled optimalin Figures 8.17 and 8.18.
The corresponding controller, Kopt, may be synthesized using H1-synthesis with the
following third-order D-scales

d1(s) = d2(s) = 2
(0:001s + 1)(s+ 0:25)(s + 0:054)

((s+ 0:67)2 + 0:562)(s+ 0:013)
; d3 = 1 (8.144)

2. Note that the optimal controller Kopt for this problem has a SVD-form. That is, let
G = U�V H , then Kopt = V KsU

H where Ks is a diagonal matrix. This arises because
in this example U and V are constant matrices. For more details see Hovd (1992) and Hovd
et al. (1994).

3. For this particular plant it appears that the worst-case full-block input uncertainty is a
diagonal perturbation, so we might as well have used a full matrix for �I . But this does
not hold in general.

4. The H1 software may encounter numerical problems if P (s) has poles on the j!-axis.
This is the reason why in the MATLAB code we have moved the integrators (in the
performance weights) slightly into the left-half plane.

5. The initial choice of scaling D = I gave a good design for this plant with an H1 norm
of about 1.18. This scaling worked well because the inputs and outputs had been scaled
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to be of unit magnitude. For a comparison, consider the original model in Skogestad et al.
(1988) which was in terms of unscaledphysical variables.

Gunscaled(s) =
1

75s+ 1

�
0:878 �0:864
1:082 �1:096

�
(8.145)

(8.145) has all its elements 100 times smaller than in the scaled model (8.143). Therefore,
using this model should give the same optimal �-value but with controller gains 100 times
larger. However, starting the DK-iteration with D = I works very poorly in this case. The
first iteration yields an H1 norm of 14.9 (Step 1) resulting in a peak �-value of 5.2 (Step
2). Subsequent iterations yield with 3rd and 4th order fits of the D-scales the following
peak �-values: 2.92, 2.22, 1.87, 1.67, 1.58, 1.53, 1.49, 1.46, 1.44, 1.42. At this point (after
11 iterations) the �-plot is fairly flat up to 10 [rad/min] and one may be tempted to stop
the iterations. However, we are still far away from the optimal value which we know is
less than 1. This demonstrates the importance of good initial D-scales, which is related to
scaling the plant model properly.

Exercise 8.25 Explain why the optimal�-value would be the same if in the model (8.143)
we changed the time constant of75 [min] to another value. Note that the�-iteration itself
would be affected.

8.13 Further remarks on �

8.13.1 Further justification for the upper bound on �

For complex perturbations, the scaled singular value ��(DND�1) is a tight upper
bound on �(N) in most cases, and minimizing the upper bound kDND�1k1 forms
the basis for the DK-iteration. However, kDND�1k1 is also of interest in its own
right. The reason for this, is that when all uncertainty blocks are full and complex,
the upper bound provides a necessary and sufficient condition for robustness to
arbitrary-slow time-varying linear uncertainty(Poolla and Tikku, 1995). On the
other hand, the use of � assumes the uncertain perturbations to be time-invariant.
In some cases, it can be argued that slowly time-varying uncertainty is more useful
than constant perturbations, and therefore that it is better to minimize kDND�1k1
instead of �(N). In addition, by considering how D(!) varies with frequency, one
can find bounds on the allowed time variations in the perturbations.

Another interesting fact is that the use of constantD-scales (D is not allowed to
vary with frequency), provides a necessary and sufficient condition for robustness
to arbitrary-fast time-varying linear uncertainty(Shamma, 1994). It may be argued
that such perturbations are unlikely in a practical situation. Nevertheless, we see
that if we can get an acceptable controller design using constant D-scales, then we
know that this controller will work very well even for rapid changes in the plant
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model. Another advantage of constant D-scales is that the computation of � is then
straightforward and may be solved using LMIs, see (8.151) below.

8.13.2 Real perturbations and the mixed � problem

We have not discussed in any detail the analysis and design problems which arise
with real or, more importantly, mixed real and complex perturbations.

The current algorithms, implemented in the MATLAB �-toolbox, employ a
generalization of the upper bound ��(DMD�1), where in addition to D-matrices,
which exploit the block-diagonal structure of the perturbations, there areG-matrices,
which exploit the structure of the real perturbations. The G-matrices (which should
not be confused with the plant transfer functionG(s)) have real diagonal elements at
locations where � is real and have zeros elsewhere. The algorithm in the �-toolbox
makes use of the following result from Young et al. (1992): if there exists a � > 0, a
D and a G with the appropriate block-diagonal structure such that

��

�
(I +G2)�

1
4 (
1

�
DMD�1 � jG)(I +G2)�

1
4

�
� 1 (8.146)

then �(M) � �. For more details, the reader is referred to Young (1993).

There is also a correspondingDGK-iteration procedure for synthesis (Young, 1994).
The practical implementation of this algorithm is however difficult, and a very high
order fit may be required for the G-scales. An alternative approach which involves
solving a series of scaled DK-iterations is given by Tøffner-Clausen et al. (1995).

8.13.3 Computational complexity

It has been established that the computational complexity of computing � has a
combinatoric (non-polynomial, “NP-hard” ) growth with the number of parameters
involved even for purely complex perturbations (Toker and Ozbay, 1995).

This does not mean, however, that practical algorithms are not possible, and we
have described practical algorithms for computing upper bounds of � for cases with
complex, real or mixed real/complex perturbations.

As mentioned, the upper bound ��(DMD�1) for complex perturbations is generally
tight, whereas the present upper bounds for mixed perturbations (see (8.146)) may
be arbitrarily conservative.

There also exists a number of lower bounds for computing �. Most of these involve
generating a perturbation which makes I �M� singular.
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8.13.4 Discrete case

It is also possible to use � for analyzing robust performance of discrete-time systems
(Packard and Doyle, 1993). Consider a discrete time system

xk+1 = Axk +Buk; yk = Cxk +Duk

The corresponding discrete transfer function matrix from u to y is N(z) = C(zI �
A)�1B +D. First, note that theH1 norm of a discrete transfer function is

kNk1 , max
jzj�1

��(C(zI �A)�1B +D)

This follows since evaluation on the j!-axis in the continuous case is equivalent to
the unit circle (jzj = 1) in the discrete case. Second, note that N(z) may be written
as an LFT in terms of 1=z,

N(z) = C(zI �A)�1B +D = Fu(H;
1

z
I); H =

�
A B
C D

�
(8.147)

Thus, by introducing Æz = 1=z and �z = ÆzI we have from the main loop theorem
of Packard and Doyle (1993) (which generalizes Theorem 8.7) that kNk1 < 1 (NP)
if and only if

�
b�(H) < 1; b� = diagf�z;�P g (8.148)

where �z is a matrix of repeated complex scalars, representing the discrete
“ frequencies” , and �P is a full complex matrix, representing the singular value
performance specification. Thus, we see that the search over frequencies in the
frequency domain is avoided, but at the expense of a complicated �-calculation. The
condition in (8.148) is also referred to as the state-space� test.

Condition (8.148) only considers nominal performance (NP). However, note that in
this case nominal stability (NS) follows as a special case (and thus does not need
to be tested separately), since when �

b�(H) � 1 (NP) we have from (8.78) that
��z

(A) = �(A) < 1, which is the well-known stability condition for discrete
systems.

We can also generalize the treatment to consider RS and RP. In particular, since
the state-space matrices are contained explicitly in H in (8.147), it follows that the
discrete time formulation is convenient if we want to consider parametric uncertainty
in the state-space matrices. This is discussed by Packard and Doyle (1993). However,
this results in real perturbations, and the resulting �-problem which involves repeated
complex perturbations (from the evaluation of z on the unit circle), a full-block
complex perturbation (from the performance specification), and real perturbations
(from the uncertainty), is difficult to solve numerically both for analysis and in
particular for synthesis. For this reason the discrete-time formulation is little used
in practical applications.
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8.13.5 Relationship to linear matrix inequalities (LMIs)

An example of an LMI problem is the following. For given matrices P;Q;R and S,
does there exist an X = XH (where X may have a block-diagonal structure) such
that

PHXP �QHXQ+XR+RHX + S < 0 ? (8.149)

Depending on the particular problem, the < may be replaced by�. These inequality
conditions produce a set of solutions which are convex, which make LMIs attractive
computationally. Sometimes, the matrices P;Q;R and S are functions of a real
parameter �, and we want to know, for example, what is the largest � for which
there is no solution.

The upper bound for � can be rewritten as an LMI:

��(DMD�1) < � , �(D�1MHDDMD�1) < �2 (8.150)

, D�1MHDDMD�1 � �2I < 0,MHD2M � �2D
2 < 0 (8.151)

which is an LMI in X = D2 > 0. To compute the upper bound for � based on this
LMI we need to iterate on �. It has been shown that a number of other problems,
including H2 and H1 optimal control problems, can be reduced to solving LMIs.
The reader is referred to Boyd et al. (1994) for more details.

8.14 Conclusion

In this chapter and the last we have discussed how to represent uncertainty and how
to analyze its effect on stability (RS) and performance (RP) using the structured
singular value � as our main tool.

To analyze robust stability (RS) of an uncertain system we make use of the M�-
structure (Figure 8.3) where M represents the transfer function for the “new”
feedback part generated by the uncertainty. From the small gain theorem,

RS ( ��(M) < 1 8! (8.152)

which is tight (necessary and sufficient) for the special case where at each frequency
anycomplex � satisfying ��(�) � 1 is allowed. More generally, the tight condition
is

RS , �(M) < 1 8! (8.153)

where �(M) is the structured singular value �(M). The calculation of � makes use
of the fact that � has a given block-diagonal structure, where certain blocks may
also be real (e.g. to handle parametric uncertainty).
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We defined robust performance (RP) as kFl(N;�)k1 < 1 for all allowed�’s. Since
we used theH1 norm in both the representation of uncertainty and the definition of
performance, we found that RP could be viewed as a special case of RS, and we
derived

RP , �(N) < 1 8! (8.154)

where � is computed with respect to the block-diagonal structure diagf�;�P g.
Here � represents the uncertainty and �P is a fictitious full uncertainty block
representing theH1 performance bound.

It should be noted that there are two main approaches to getting a robust design:

1. We aim to make the system robust to some “general” class of uncertainty which
we do not explicitly model. For SISO systems the classical gain and phase margins
and the peaks of S and T provide useful general robustness measures. For MIMO
systems, normalized coprime factor uncertainty provides a good general class
of uncertainty, and the associated Glover-McFarlane H1 loop-shaping design
procedure, see Chapter 10, has proved itself very useful in applications.

2. We explicitly model and quantify the uncertainty in the plant and aim to make
the system robust to this specific uncertainty. This second approach has been the
focus of the preceding two chapters. Potentially, it yields better designs, but it
may require a much larger effort in terms of uncertainty modelling, especially if
parametric uncertainty is considered. Analysis and, in particular, synthesis using
� can be very involved.

In applications, it is therefore recommended to start with the first approach, at least
for design. The robust stability and performance is then analyzed in simulations and
using the structured singular value, for example, by considering first simple sources
of uncertainty such as multiplicative input uncertainty. One then iterates between
design and analysis until a satisfactory solution is obtained.

Practical �-analysis

We end the chapter by providing a few recommendations on how to use the structured
singular value � in practice.

1. Because of the effort involved in deriving detailed uncertainty descriptions, and
the subsequent complexity in synthesizing controllers, the rule is to “start simple”
with a crude uncertainty description, and then to see whether the performance
specifications can be met. Only if they can’ t, should one consider more detailed
uncertainty descriptions such as parametric uncertainty (with real perturbations).

2. The use of � implies a worst-case analysis, so one should be careful about
including too many sources of uncertainty, noise and disturbances – otherwise
it becomes very unlikely for the worst case to occur, and the resulting analysis
and design may be unnecessarily conservative.
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3. There is always uncertainty with respect to the inputs and outputs, so it is
generally “safe” to include diagonal input and output uncertainty. The relative
(multiplicative) form is very convenient in this case.

4. � is most commonly used for analysis. If � is used for synthesis, then we
recommend that you keep the uncertainty fixed and adjust the parameters in the
performance weight until � is close to 1.
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9

CONTROLLER DESIGN

In this chapter, we present practical procedures for multivariable controller design which are
relatively straightforward to apply and which, in our opinion, have an important role to play
in industrial control.

For industrial systems which are either SISO or loosely coupled, the classical loop-shaping
approach to control system design as described in Section 2.6 has been successfully applied.
But for truly multivariable systems it has only been in the last decade, or so, that reliable
generalizations of this classical approach have emerged.

9.1 Trade-offs in MIMO feedback design

The shaping of multivariable transfer functions is based on the idea that a satisfactory
definition of gain (range of gain) for a matrix transfer function is given by the
singular values of the transfer function. By multivariable transfer function shaping,
therefore, we mean the shaping of singular values of appropriately specified transfer
functions such as the loop transfer function or possibly one or more closed-loop
transfer functions. This methodology for controller design is central to the practical
procedures described in this chapter.

In February 1981, the IEEE Transactions on Automatic Control published a Special
Issue on Linear Multivariable Control Systems, the first six papers of which were
on the use of singular values in the analysis and design of multivariable feedback
systems. The paper by Doyle and Stein (1981) was particularly influential: it was
primarily concerned with the fundamental question of how to achieve the benefits of
feedback in the presence of unstructured uncertainty, and through the use of singular
values it showed how the classical loop-shaping ideas of feedback design could be
generalized to multivariable systems. To see how this was done, consider the one
degree-of-freedom configuration shown in Figure 9.1. The plant G and controller
K interconnection is driven by reference commands r, output disturbances d, and
measurement noise n. y are the outputs to be controlled, and u are the control



356 MULTIVARIABLE FEEDBACK CONTROL

signals. In terms of the sensitivity function S = (I + GK)�1 and the closed-loop
transfer function T = GK(I +GK)�1 = I � S, we have the following important
relationships:

e e

e

q- - - -? -

�
6

6
r +

-
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+

d

y

+
+

n

u

Figure 9.1: One degree-of-freedom feedback configuration

y(s) = T (s)r(s) + S(s)d(s)� T (s)n(s) (9.1)

u(s) = K(s)S(s) [r(s) � n(s)� d(s)] (9.2)

These relationships determine several closed-loop objectives, in addition to the
requirement that K stabilizes G, namely:

1. For disturbance rejectionmake ��(S) small.
2. For noise attenuationmake ��(T ) small.
3. For reference trackingmake ��(T ) � �(T ) � 1.
4. For control energy reductionmake ��(KS) small.

If the unstructured uncertainty in the plant model G is represented by an additive
perturbation, i.e. Gp = G+�, then a further closed-loop objective is

5. For robust stabilityin the presence of an additive perturbation make ��(KS) small.

Alternatively, if the uncertainty is modelled by a multiplicative output perturbation
such that Gp = (I +�)G, then we have:

6. For robust stabilityin the presence of a multiplicative output perturbation make
��(T ) small.

The closed-loop requirements 1 to 6 cannot all be satisfied simultaneously. Feedback
design is therefore a trade-off over frequency of conflicting objectives. This is
not always as difficult as it sounds because the frequency ranges over which the
objectives are important can be quite different. For example, disturbance rejection is
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typically a low frequency requirement, while noise mitigation is often only relevant
at higher frequencies.

In classical loop shaping, it is the magnitude of the open-loop transfer function
L = GK which is shaped, whereas the above design requirements are all in terms of
closed-loop transfer functions. However, recall from (3.51) that

�(L)� 1 � 1

��(S)
� �(L) + 1 (9.3)

from which we see that ��(S) � 1=�(L) at frequencies where �(L) is much larger
than 1. It also follows that at the bandwidth frequency (where 1=��(S(j!B)) =p
2 = 1:41) we have �(L(j!B)) between 0.41 and 2.41. Furthermore, from T =

L(I + L)�1 it follows that ��(T ) � ��(L) at frequencies where ��(L) is small. Thus,
over specified frequency ranges, it is relatively easy to approximate the closed-loop
requirements by the following open-loop objectives:

1. For disturbance rejectionmake �(GK) large; valid for frequencies at which
�(GK)� 1.

2. For noise attenuationmake ��(GK) small; valid for frequencies at which
��(GK)� 1.

3. For reference trackingmake �(GK) large; valid for frequencies at which
�(GK)� 1.

4. For control energy reductionmake ��(K) small; valid for frequencies at which
��(GK)� 1.

5. For robust stability to an additive perturbationmake ��(K) small; valid for
frequencies at which ��(GK)� 1.

6. For robust stability to a multiplicative output perturbationmake ��(GK) small;
valid for frequencies at which ��(GK)� 1.

Typically, the open-loop requirements 1 and 3 are valid and important at low
frequencies, 0 � ! � !l � !B, while 2, 4, 5 and 6 are conditions which are valid
and important at high frequencies, !B � !h � ! � 1, as illustrated in Figure 9.2.
From this we see that at frequencies where we want high gains (at low frequencies)
the “worst-case” direction is related to �(GK), whereas at frequencies where we
want low gains (at high frequencies) the “worst-case” direction is related to ��(GK).

Exercise 9.1 Show that the closed-loop objectives 1 to 6 can be approximated by the open-
loop objectives 1 to 6 at the specified frequency ranges.

From Figure 9.2, it follows that the control engineer must design K so that ��(GK)
and �(GK) avoid the shaded regions. That is, for good performance, �(GK) must
be made to lie above a performance boundary for all ! up to ! l, and for robust
stability ��(GK) must be forced below a robustness boundary for all ! above ! h.
To shape the singular values of GK by selecting K is a relatively easy task, but to
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Figure 9.2: Design trade-offs for the multivariable loop transfer function GK

do this in a way which also guarantees closed-loop stability is in general difficult.
Closed-loop stability cannot be determined from open-loop singular values.

For SISO systems, it is clear from Bode’s work (1945) that closed-loop stability is
closely related to open-loop gain and phase near the crossover frequency ! c, where
jGK(j!c)j = 1. In particular, the roll-off rate from high to low gain at crossover
is limited by phase requirements for stability, and in practice this corresponds to a
roll-off rate less than 40 dB=decade; see Section 2.6.2. An immediate consequence
of this is that there is a lower limit to the difference between !h and !l in Figure 9.2.

For MIMO systems a similar gain-phase relationship holds in the crossover
frequency region, but this is in terms of the eigenvalues of GK and results in a limit
on the roll-off rate of the magnitude of the eigenvalues ofGK, not the singular values
(Doyle and Stein, 1981). The stability constraint is therefore even more difficult to
handle in multivariable loop-shaping than it is in classical loop-shaping. To overcome
this difficulty Doyle and Stein (1981) proposed that the loop-shaping should be done
with a controller that was already known to guarantee stability. They suggested that
an LQG controller could be used in which the regulator part is designed using a
“sensitivity recovery” procedure of Kwakernaak (1969) to give desirable properties
(gain and phase margins) in GK. They also gave a dual “ robustness recovery”
procedure for designing the filter in an LQG controller to give desirable properties
in KG. Recall that KG is not in general equal to GK, which implies that stability
margins vary from one break point to another in a multivariable system. Both of these
loop transfer recovery (LTR) procedures are discussed below after first describing
traditional LQG control.
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9.2 LQG control

Optimal control, building on the optimal filtering work of Wiener in the 1940’s,
reached maturity in the 1960’s with what we now call linear quadratic gaussian
or LQG Control. Its development coincided with large research programs and
considerable funding in the United States and the former Soviet Union on
space related problems. These were problems, such as rocket manoeuvering with
minimum fuel consumption, which could be well defined and easily formulated as
optimizations. Aerospace engineers were particularly successful at applying LQG,
but when other control engineers attempted to use LQG on everyday industrial
problems a different story emerged. Accurate plant models were frequently not
available and the assumption of white noise disturbances was not always relevant or
meaningful to practising control engineers. As a result LQG designs were sometimes
not robust enough to be used in practice. In this section, we will describe the LQG
problem and its solution, we will discuss its robustness properties, and we will
describe procedures for improving robustness. Many text books consider this topic
in far greater detail; we recommend Anderson and Moore (1989) and Kwakernaak
and Sivan (1972).

9.2.1 Traditional LQG and LQR problems

In traditional LQG Control, it is assumed that the plant dynamics are linear and
known, and that the measurement noise and disturbance signals (process noise) are
stochastic with known statistical properties. That is, we have a plant model

_x = Ax +Bu+ wd (9.4)

y = Cx +Du+ wn (9.5)

where we for simplicity set D = 0 (see the remark below). wd and wn are the
disturbance (process noise) and measurement noise inputs respectively, which are
usually assumed to be uncorrelated zero-mean Gaussian stochastic processes with
constant power spectral density matrices W and V respectively. That is, wd and wn
are white noise processes with covariances

E
�
wd(t)wd(�)

T
	

= WÆ(t� �) (9.6)

E
�
wn(t)wn(�)

T
	

= V Æ(t� �) (9.7)

and

E
�
wd(t)wn(�)

T
	
= 0; E

�
wn(t)wd(�)

T
	
= 0 (9.8)

where E is the expectation operator and Æ(t� �) is a delta function.
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The LQG control problem is to find the optimal control u(t) which minimizes

J = E

(
lim
T!1

1

T

Z T

0

�
xTQx+ uTRu

�
dt

)
(9.9)

where Q and R are appropriately chosen constant weighting matrices (design
parameters) such that Q = QT � 0 and R = RT > 0. The name LQG arises
from the use of a linear model, an integral Quadratic cost function, and Gaussian
white noise processes to model disturbance signals and noise.

The solution to the LQG problem, known as the Separation Theorem or Certainty
Equivalence Principle, is surprisingly simple and elegant. It consists of first
determining the optimal control to a deterministic linear quadratic regulator (LQR)
problem: namely, the above LQG problem without wd and wn. It happens that the
solution to this problem can be written in terms of the simple state feedback law

u(t) = �Krx(t) (9.10)

where Kr is a constant matrix which is easy to compute and is clearly independent
of W and V , the statistical properties of the plant noise. The next step is to find an

optimal estimate bx of the state x, so that E
n
[x� bx]T [x� bx]o is minimized. The

optimal state estimate is given by a Kalman filter and is independent of Q and R.
The required solution to the LQG problem is then found by replacing x by bx, to give
u(t) = �Krbx(t). We therefore see that the LQG problem and its solution can be
separated into two distinct parts, as illustrated in Figure 9.3.

r
? ?

-

�

?

�
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linear quadratic
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dynamic system
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wd wn

u y
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Figure 9.3: The Separation Theorem
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Figure 9.4: The LQG controller and noisy plant

We will now give the equations necessary to find the optimal state-feedback matrix
Kr and the Kalman filter.

Optimal state feedback. The LQR problem, where all the states are known, is the
deterministic initial value problem: given the system _x = Ax+Bu with a non-zero
initial state x(0), find the input signal u(t) which takes the system to the zero state
(x = 0) in an optimal manner, i.e. by minimizing the deterministic cost

Jr =

Z 1

0

(x(t)TQx(t) + u(t)TRu(t))dt (9.11)

The optimal solution (for any initial state) is u(t) = �Krx(t), where

Kr = R�1BTX (9.12)

and X = XT � 0 is the unique positive-semidefinite solution of the algebraic
Riccati equation

ATX +XA�XBR�1BTX +Q = 0 (9.13)

Kalman filter. The Kalman filter has the structure of an ordinary state-estimator or
observer, as shown in Figure 9.4, with

_bx = Abx+Bu+Kf (y � Cbx) (9.14)
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The optimal choice of Kf , which minimizes E
n
[x� bx]T [x� bx]o, is given by

Kf = Y CTV �1 (9.15)

where Y = Y T � 0 is the unique positive-semidefinite solution of the algebraic
Riccati equation

Y AT +AY � Y CTV �1CY +W = 0 (9.16)

LQG: Combined optimal state estimation and optimal state feedback. The LQG
control problem is to minimize J in (9.9). The structure of the LQG controller is
illustrated in Figure 9.4; its transfer function, from y to u (i.e. assuming positive
feedback), is easily shown to be given by

KLQG(s)
s
=

�
A�BKr �KfC Kf

�Kr 0

�
=

�
A�BR�1BTX � Y CTV �1C Y CTV �1

�R�1BTX 0

�
(9.17)

It has the same degree (number of poles) as the plant.

Remark 1 The optimal gain matrices Kf and Kr exist, and the LQG-controlled system

is internally stable, provided the systems with state-space realizations (A;B;Q
1
2 ) and

(A;W
1
2 ; C) are stabilizable and detectable.

Remark 2 If the plant model is bi-proper, with a nonzero D-term in (9.5), then the Kalman
filter equation (9.14) has the extra term �KfDu on the right-hand side, and the A-matrix of
the LQG-controller in (9.17) has the extra term +KfDKr .

Exercise 9.2 For the plant and LQG controller arrangement of Figure 9.4, show that the
closed-loop dynamics are described by

d

dt

�
x

x� bx
�

=

�
A�BKr BKr

0 A�KfC

� �
x

x� bx
�
+

�
I 0
I �Kf

��
wd
wn

�
This shows that the closed-loop poles are simply the union of the poles of the deterministic
LQR system (eigenvalues ofA � BKr) and the poles of the Kalman filter (eigenvalues of
A�KfC). It is exactly as we would have expected from the Separation Theorem.

For the LQG-controller, as shown in Figure 9.4, ut is not easy to see where to position
the reference input r, and how integral action may be included, if desired. One
strategy is illustrated Figure 9.5. Here the control error r � y is integrated and the
regulatorKr is designed for the plant augmented with these integrated states.

Example 9.1 LQG design for inverse response process. We here design an LQG-
controller with integral action (see Figure 9.5) for the SISO inverse response process
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Figure 9.5: LQG controller with integral action and reference input
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Figure 9.6: LQG design for inverse response process.
Closed-loop response to unit step in reference.

introduced in Chapter 2. Recall from (2.26) that the plant model has a RHP-zero and is given
byG(s) = 3(�2s+1)

(5s+1)(10s+1)
.

The standard LQG design procedure does not give a controller with integral action, so we
augment the plantG(s) with an integrator before designing the state feedback regulator. For
the objective functionJ =

R
(xTQx+ uTRu)dt we chooseQ such that only the integrated

statesy � r are weighted and we choose the input weightR = 1. (Only the ratio betweenQ
andR matters and reducingR yields a faster response). The Kalman filter is set up so that
we do not estimate the integrated states. For the noise weights we selectW = wI (process
noise directly on the states) withw = 1, and be chooseV = 1 (measurement noise). (Only
the ratio betweenw andV matter and reducingV yields a faster response). The MATLAB
file in Table 9.1 was used to design the LQG controller. The resulting closed-loop response is
shown in Figure 9.6. The reponse is good and compares nicely with the loop-shaping design
in Figure 2.17.

Exercise 9.3 Derive the equations used in the MATLAB file in Table 9.1.
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Table 9.1: MATLAB commands to generate LQG controller in Example 9.1
% Uses the Control toolbox
num=3*[-2 1]; den=conv([5 1],[10 1]); % original plant
[a,b,c,d] = tf2ss(num,den); % plant is (a,b,c,d)
% Model dimensions:
p = size(c,1); % no. of outputs (y)
[n,m] = size(b); % no. of states and inputs (u)
0nm=zeros(nm); 0mm=zeros(mm);
0nn=zeros(nn); 0mn=zeros(mn);
% 1) Design state feedback regulator
A = [a 0nm;-c 0mm]; B = [b;-d]; % augment plant with integrators
Q=[0nn 0nm;0mn eye(m,m)]; % weight on integrated error
R=eye(m); % input weight
Kr=lqr(A,B,Q,R); % optimal state-feedback regulator
Krp=Kr(1:m,1:n);Kri=Kr(1:m,n+1:n+m); % extract integrator and state feedbacks
% 2) Design Kalman filter % don’t estimate integrator states
Bnoise = eye(n); % process noise model (Gd)
W = eye(n); % process noise weight
V = 1*eye(m); % measurement noise weight
Ke = lqe(a,Bnoise,c,W,V); % Kalman filter gain
% 3) Form controller from [r y]’ to u
Ac=[0mm 0mn;-b*Kri a-b*Krp-Ke*c]; % integrators included
Bc = [eye(m) -eye(m);0nm +Ke];
Cc = [-Kri -Krp]; Dc = [0mm 0mm];
Klqg = ss(Ac,Bc,Cc,Dc); % Final 2-DOF controller. Includes

% integrators, Kr and Kalman filter

9.2.2 Robustness properties

For an LQG-controlled system with a combined Kalman filter and LQR control law
there are no guaranteed stability margins. This was brought starkly to the attention
of the control community by Doyle (1978) (in a paper entitled “Guaranteed Margins
for LQG Regulators” with a very compact abstract which simply states “There are
none” ). He showed, by example, that there exist LQG combinations with arbitrarily
small gain margins.

However, for an LQR-controlled system (i.e. assuming all the states are available and
no stochastic inputs) it is well known (Kalman, 1964; Safonov and Athans, 1977)
that, if the weight R is chosen to be diagonal, the sensitivity function S = (I +

Kr (sI �A)
�1
B)�1 satisfies the Kalman inequality

�� (S(j!)) � 1; 8w (9.18)

From this it can be shown that the system will have a gain margin equal to infinity,
a gain reduction margin equal to 0.5, and a (minimum) phase margin of 60 Æ in
each plant input control channel. This means that in the LQR-controlled system
u = �Krx, a complex perturbation diag

�
kie

j�i
	

can be introduced at the plant
inputs without causing instability providing

(i) �i = 0 and 0:5 � ki �1, i = 1; 2; : : : ;m

or
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(ii) ki = 1 and j�ij � 60Æ, i = 1; 2; : : : ;m

wherem is the number of plant inputs. For a single-input plant, the above shows that
the Nyquist diagram of the open-loop regulator transfer function K r(sI � A)�1B
will always lie outside the unit circle with centre�1. This was first shown by Kalman
(1964), and is illustrated in Example 9.2 below.

Example 9.2 LQR design of a first order process. Consider a first order processG(s) =
1=(s� a) with the state-space realization

_x(t) = ax(t) + u(t); y(t) = x(t)

so that the state is directly measured. For a non-zero initial state the cost function to be
minimized is

Jr =

Z 1

0

(x2 +Ru2)dt

The algebraic Riccati equation (9.13) becomes (A = a,B = 1, Q = 1)

aX +Xa�XR�1X + 1 = 0 , X2 � 2aRX �R = 0

which, sinceX � 0, givesX = aR +
p
(aR)2 +R. The optimal control is given by

u = �Krx where from (9.12)

Kr = X=R = a+
p
a2 + 1=R

and we get the closed-loop system

_x = ax+ u = �
p
a2 + 1=R x

The closed-loop pole is located ats = �pa2 + 1=R < 0. Thus, the root locus for the
optimal closed-loop pole with respect toR starts ats = �jaj for R = 1 (infinite weight
on the input) and moves to�1 along the real axis asR approaches zero. Note that the root
locus is identical for stable (a < 0) and unstable (a > 0) plantsG(s) with the same value
of jaj. In particular, for a > 0 we see that the minimum input energy needed to stabilize the
plant (corresponding toR = 1) is obtained with the inputu = �2jajx, which moves the
pole froms = a to its mirror image ats = �a.

For R small (“cheap control”) the gain crossover frequency of the loop transfer function
L = GKr = Kr=(s� a) is given approximately by!c �

p
1=R. Note also thatL(j!) has

a roll-off of -1 at high frequencies, which is a general property of LQR designs. Furthermore,
the Nyquist plot ofL(j!) avoids the unit disc centred on the critical point�1, that is
jS(j!)j = 1=j1 + L(j!)j � 1 at all frequencies. This is obvious for the stable plant with
a < 0 sinceKr > 0 and then the phase ofL(j!) varies from0Æ (at zero frequency) to�90Æ
(at infinite frequency). The surprise is that it is also true for the unstable plant witha > 0
even though the phase ofL(j!) varies from�180Æ to�90Æ.

Consider now the Kalman filter shown earlier in Figure 9.4. Notice that it is itself a
feedback system. Arguments dual to those employed for the LQR-controlled system
can then be used to show that, if the power spectral density matrix V is chosen to
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be diagonal, then at the input to the Kalman gain matrix K f there will be an infinite
gain margin, a gain reduction margin of 0.5 and a minimum phase margin of 60 Æ.
Consequently, for a single-output plant, the Nyquist diagram of the open-loop filter
transfer function C(sI �A)�1Kf will lie outside the unit circle with centre at �1.

An LQR-controlled system has good stability margins at the plant inputs, and a
Kalman filter has good stability margins at the inputs to Kf , so why are there
no guarantees for LQG control? To answer this, consider the LQG controller
arrangement shown in Figure 9.7. The loop transfer functions associated with the

d dq

q

? ?

?�� � �
6

6

-

?

-

� �

�

�

wd wn

u y
Plant, G(s)

4

21

3

+
+

+
-

C

B

Kf�(s)

�Kr

Controller, KLQG(s)

Figure 9.7: LQG-controlled plant

labelled points 1 to 4 are respectively

L1(s) = Kr

�
�(s)�1 +BKr +KfC

��1
KfC�(s)B

= �KLQG(s)G(s) (9.19)

L2(s) = �G(s)KLQG(s) (9.20)

L3(s) = Kr�(s)B (regulator transfer function) (9.21)

L4(s) = C�(s)Kf (filter transfer function) (9.22)

where
�(s)

4
= (sI �A)�1 (9.23)

KLQG(s) is as in (9.17) and G(s) = C�(s)B is the plant model.
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Remark. L3(s) and L4(s) are surprisingly simple. For L3(s) the reason is that after opening
the loop at point 3 the error dynamics (point 4) of the Kalman filter are not excited by the plant
inputs; in fact they are uncontrollable from u.

Exercise 9.4 Derive the expressions forL1(s), L2(s), L3(s) andL4(s), and explain why
L4(s) (likeL3(s)) has such a simple form.

At points 3 and 4 we have the guaranteed robustness properties of the LQR system
and the Kalman filter respectively. But at the actual input and output of the plant
(points 1 and 2) where we are most interested in achieving good stability margins, we
have complex transfer functions which in general give no guarantees of satisfactory
robustness properties. Notice also that points 3 and 4 are effectively inside the LQG
controller which has to be implemented, most likely as software, and so we have
good stability margins where they are not really needed and no guarantees where
they are.

Fortunately, for a minimum phase plant procedures developed by Kwakernaak
(1969) and Doyle and Stein (1979; 1981) show how, by a suitable choice of
parameters, either L1(s) can be made to tend asymptotically to L3(s) or L2(s) can
be made to approach L4(s). These procedures are considered next.

9.2.3 Loop transfer recovery (LTR) procedures

For full details of the recovery procedures, we refer the reader to the original
communications (Kwakernaak, 1969; Doyle and Stein, 1979; Doyle and Stein, 1981)
or to the tutorial paper by Stein and Athans (1987). We will only give an outline of
the major steps here, since we will argue later that the procedures are somewhat
limited for practical control system design. For a more recent appraisal of LTR, we
recommend a Special Issue of the International Journal of Robust and Nonlinear
Control, edited by Niemann and Stoustrup (1995).

The LQG loop transfer function L2(s) can be made to approach C�(s)Kf , with its
guaranteed stability margins, ifKr in the LQR problem is designed to be large using
the sensitivity recovery procedure of Kwakernaak (1969). It is necessary to assume
that the plant model G(s) is minimum phase and that it has at least as many inputs
as outputs.

Alternatively, the LQG loop transfer function L1(s) can be made to approach
Kr�(s)B by designing Kf in the Kalman filter to be large using the robustness
recovery procedure of Doyle and Stein (1979). Again, it is necessary to assume that
the plant model G(s) is minimum phase, but this time it must have at least as many
outputs as inputs.

The procedures are dual and therefore we will only consider recovering robustness
at the plant output. That is, we aim to make L2(s) = G(s)KLQG(s) approximately
equal to the Kalman filter transfer function C�(s)Kf .
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First, we design a Kalman filter whose transfer functionC�(s)Kf is desirable. This
is done, in an iterative fashion, by choosing the power spectral density matrices
W and V so that the minimum singular value of C�(s)Kf is large enough at low
frequencies for good performance and its maximum singular value is small enough
at high frequencies for robust stability, as discussed in section 9.1. Notice thatW and
V are being used here as design parameters and their associated stochastic processes
are considered to be fictitious. In tuning W and V we should be careful to choose V
as diagonal andW = (BS)(BS)T , where S is a scaling matrix which can be used to
balance, raise, or lower the singular values. When the singular values of C�(s)K f

are thought to be satisfactory, loop transfer recovery is achieved by designing K r in
an LQR problem with Q = CTC and R = �I , where � is a scalar. As � tends to
zero G(s)KLQG tends to the desired loop transfer function C�(s)Kf .

Much has been written on the use of LTR procedures in multivariable control system
design. But as methods for multivariable loop-shaping they are limited in their
applicability and sometimes difficult to use. Their main limitation is to minimum
phase plants. This is because the recovery procedures work by cancelling the plant
zeros, and a cancelled non-minimum phase zero would lead to instability. The
cancellation of lightly damped zeros is also of concern because of undesirable
oscillations at these modes during transients. A further disadvantage is that the
limiting process (� ! 0) which brings about full recovery also introduces high
gains which may cause problems with unmodelled dynamics. Because of the above
disadvantages, the recovery procedures are not usually taken to their limits (� !
0) to achieve full recovery, but rather a set of designs is obtained (for small �)
and an acceptable design is selected. The result is a somewhat ad-hoc design
procedure in which the singular values of a loop transfer function,G(s)K LQG(s) or
KLQG(s)G(s), are indirectly shaped. A more direct and intuitively appealing method
for multivariable loop-shaping will be given in Section 9.4.

9.3 H2 andH1 control

Motivated by the shortcomings of LQG control there was in the 1980’s a significant
shift towardsH1 optimization for robust control. This development originated from
the influential work of Zames (1981), although an earlier use ofH1 optimization in
an engineering context can be found in Helton (1976). Zames argued that the poor
robustness properties of LQG could be attributed to the integral criterion in terms of
the H2 norm, and he also criticized the representation of uncertain disturbances by
white noise processes as often unrealistic. As the H1 theory developed, however,
the two approaches ofH2 andH1 control were seen to be more closely related than
originally thought, particularly in the solution process; see for example Glover and
Doyle (1988) and Doyle et al. (1989). In this section, we will begin with a general
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control problem formulation into which we can cast all H2 and H1 optimizations
of practical interest. The generalH2 andH1 problems will be described along with
some specific and typical control problems. It is not our intention to describe in detail
the mathematical solutions, since efficient, commercial software for solving such
problems is now so easily available. Rather we seek to provide an understanding
of some useful problem formulations which might then be used by the reader, or
modified to suit his or her application.

9.3.1 General control problem formulation

There are many ways in which feedback design problems can be cast as H 2 and
H1 optimization problems. It is very useful therefore to have a standard problem
formulation into which any particular problem may be manipulated. Such a general
formulation is afforded by the general configuration shown in Figure 9.8 and
discussed earlier in Chapter 3. The system of Figure 9.8 is described by

- -

�

-
w z

vu

P

K

Figure 9.8: General control configuration

�
z
v

�
= P (s)

�
w
u

�
=

�
P11(s) P12(s)
P21(s) P22(s)

��
w
u

�
(9.24)

u = K(s)v (9.25)

with a state-space realization of the generalized plant P given by

P
s
=

24 A B1 B2

C1 D11 D12

C2 D21 D22

35 (9.26)

The signals are: u the control variables, v the measured variables, w the exogenous
signals such as disturbances wd and commands r, and z the so-called “error” signals
which are to be minimized in some sense to meet the control objectives. As shown in
(3.102) the closed-loop transfer function fromw to z is given by the linear fractional
transformation

z = Fl(P;K)w (9.27)
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where
Fl(P;K) = P11 + P12K(I � P22K)�1P21 (9.28)

H2 andH1 control involve the minimization of theH2 andH1 norms of Fl(P;K)
respectively. We will consider each of them in turn.

First some remarks about the algorithms used to solve such problems. The most
general, widely available and widely used algorithms for H 2 and H1 control
problems are based on the state-space solutions in Glover and Doyle (1988) and
Doyle et al. (1989). It is worth mentioning again that the similarities betweenH 2 and
H1 theory are most clearly evident in the aforementioned algorithms. For example,
both H2 and H1 require the solutions to two Riccati equations, they both give
controllers of state-dimension equal to that of the generalized plant P , and they
both exhibit a separation structure in the controller already seen in LQG control.
An algorithm forH1 control problems is summarized in Section 9.3.4.

The following assumptions are typically made inH2 andH1 problems:

(A1) (A;B2; C2) is stabilizable and detectable.

(A2) D12 and D21 have full rank.

(A3)

�
A� j!I B2

C1 D12

�
has full column rank for all !.

(A4)

�
A� j!I B1

C2 D21

�
has full row rank for all !.

(A5) D11 = 0 and D22 = 0.

Assumption (A1) is required for the existence of stabilizing controllers K, and
assumption (A2) is sufficient to ensure the controllers are proper and hence
realizable. Assumptions (A3) and (A4) ensure that the optimal controller does not
try to cancel poles or zeros on the imaginary axis which would result in closed-loop
instability. Assumption (A5) is conventional in H2 control. D11 = 0 makes P11
strictly proper. Recall that H2 is the set of strictly proper stable transfer functions.
D22 = 0 makes P22 strictly proper and simplifies the formulas in theH2 algorithms.
In H1, neither D11 = 0, nor D22 = 0, is required but they do significantly
simplify the algorithm formulas. If they are not zero, an equivalent H1 problem
can be constructed in which they are; see (Safonov et al., 1989) and (Green and
Limebeer, 1995). For simplicity, it is also sometimes assumed that D12 and D21 are
given by

(A6) D12 =

�
0
I

�
and D21 =

�
0 I

�
.

This can be achieved, without loss of generality, by a scaling of u and v and a unitary
transformation of w and z; see for example Maciejowski (1989). In addition, for
simplicity of exposition, the following additional assumptions are sometimes made
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(A7) DT
12C1 = 0 and B1D

T
21 = 0.

(A8) (A;B1) is stabilizable and (A;C1) is detectable.

Assumption (A7) is common in H2 control e.g. in LQG where there are no cross
terms in the cost function (DT

12C1 = 0), and the process noise and measurement
noise are uncorrelated (B1D

T
21 = 0). Notice that if (A7) holds then (A3) and (A4)

may be replaced by (A8).

Whilst the above assumptions may appear daunting, most sensibly posed control
problems will meet them. Therefore, if the software (e.g. �-tools or the Robust
Control toolbox of MATLAB) complains, then it probably means that your control
problem is not well formulated and you should think again.

Lastly, it should be said thatH1 algorithms, in general, find a sub-optimal controller.
That is, for a specified 
 a stabilizing controller is found for which kF l(P;K)k1 <

. If an optimal controller is required then the algorithm can be used iteratively,
reducing 
 until the minimum is reached within a given tolerance. In general, to
find an optimal H1 controller is numerically and theoretically complicated. This
contrasts significantly with H2 theory, in which the optimal controller is unique and
can be found from the solution of just two Riccati equations.

9.3.2 H2 optimal control

The standardH2 optimal control problem is to find a stabilizing controllerK which
minimizes

k F (s)k2 =
s

1

2�

Z 1

�1
tr [F (j!)F (j!)H ] d!; F

4
= Fl(P;K) (9.29)

For a particular problem the generalized plant P will include the plant model, the
interconnection structure, and the designer specified weighting functions. This is
illustrated for the LQG problem in the next subsection.

As discussed in Section 4.10.1 and noted in Tables A.1 and A.2 on page 538,
the H2 norm can be given different deterministic interpretations. It also has the
following stochastic interpretation. Suppose in the general control configuration that
the exogenous input w is white noise of unit intensity. That is

E
�
w(t)w(�)T

	
= IÆ(t� �) (9.30)

The expected power in the error signal z is then given by

E

(
lim
T!1

1

2T

Z T

�T
z(t)T z(t)dt

)
(9.31)
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= tr E
�
z(t)z(t)H

	
=

1

2�

Z 1

�1
tr
�
F (j!)F (j!)H

�
d!

(by Parseval’s Theorem)

= kFk22 = kFl(P;K)k22 (9.32)

Thus, by minimizing the H2 norm, the output (or error) power of the generalized
system, due to a unit intensity white noise input, is minimized; we are minimizing
the root-mean-square (rms) value of z.

9.3.3 LQG: a specialH2 optimal controller

An important special case of H2 optimal control is the LQG problem described in
subsection 9.2.1. For the stochastic system

_x = Ax+Bu+ wd (9.33)

y = Cx+ wn (9.34)

where

E

��
wd(t)
wn(t)

�
[wd(�)

T wn(�)
T ]

�
=

�
W 0
0 V

�
Æ(t� �) (9.35)

The LQG problem is to find u = K(s)y such that

J = E

(
lim
T!1

1

T

Z T

0

�
xTQx+ uTRu

�
dt

)
(9.36)

is minimized with Q = QT � 0 and R = RT > 0.

This problem can be cast as an H2 optimization in the general framework in the
following manner. Define an error signal z as

z =

�
Q

1
2 0
0 R

1
2

� �
x
u

�
(9.37)

and represent the stochastic inputs wd, wn as�
wd
wn

�
=

�
W

1
2 0

0 V
1
2

�
w (9.38)

where w is a white noise process of unit intensity. Then the LQG cost function is

J = E

(
lim
T!1

1

T

Z T

0

z(t)T z(t)dt

)
= kFl(P;K)k22 (9.39)
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where
z(s) = Fl(P;K)w(s) (9.40)

and the generalized plant P is given by

P =

�
P11 P12
P21 P22

�
s
=

26664
A W

1
2 0 B

Q
1
2 0 0 0

0 0 0 R
1
2

C 0
- - - - - - - - - - - - - - - - -

V
1
2 0

37775 (9.41)

The above formulation of the LQG problem is illustrated in the general setting in
Figure 9.9. With the standard assumptions for the LQG problem, application of the
generalH2 formulas (Doyle et al., 1989) to this formulation gives the familiar LQG
optimal controller as in (9.17).
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Figure 9.9: The LQG problem formulated in the general control configuration

9.3.4 H1 optimal control

With reference to the general control configuration of Figure 9.8, the standard H1
optimal control problem is to find all stabilizing controllers K which minimize

kFl(P;K)k1 = max
!

��(Fl(P;K)(j!)) (9.42)

As discussed in Section 4.10.2 the H1 norm has several interpretations in terms of
performance. One is that it minimizes the peak of the maximum singular value of
Fl(P (j!);K(j!)). It also has a time domain interpretation as the induced (worst-
case) 2-norm. Let z = Fl(P;K)w, then

kFl(P;K)k1 = max
w(t)6=0

kz(t)k2
kw(t)k2 (9.43)
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where kz(t)k2 =
qR1

0

P
i jzi(t)j2dt is the 2-norm of the vector signal.

In practice, it is usually not necessary to obtain an optimal controller for the H1
problem, and it is often computationally (and theoretically) simpler to design a sub-
optimal one (i.e. one close to the optimal ones in the sense of theH1 norm). Let 
min
be the minimum value of kFl(P;K)k1 over all stabilizing controllers K. Then the
H1 sub-optimal control problem is: given a 
 > 
min, find all stabilizing controllers
K such that

kFl(P;K)k1 < 


This can be solved efficiently using the algorithm of Doyle et al. (1989), and
by reducing 
 iteratively, an optimal solution is approached. The algorithm is
summarized below with all the simplifying assumptions.

General H1 algorithm. For the general control configuration of Figure 9.8
described by equations (9.24)-(9.26), with assumptions (A1) to (A8) in Section 9.3.1,
there exists a stabilizing controllerK(s) such that kFl(P;K)k1 < 
 if and only if

(i) X1 � 0 is a solution to the algebraic Riccati equation

ATX1 +X1A+ CT
1 C1 +X1(
�2B1B

T
1 �B2B

T
2 )X1 = 0 (9.44)

such that Re �i
�
A+ (
�2B1B

T
1 �B2B

T
2 )X1

�
< 0, 8i; and

(ii) Y1 � 0 is a solution to the algebraic Riccati equation

AY1 + Y1AT +B1B
T
1 + Y1(
�2CT

1 C1 � CT
2 C2)Y1 = 0 (9.45)

such that Re �i
�
A+ Y1(
�2CT

1 C1 � CT
2 C2)

�
< 0, 8i; and

(iii) �(X1Y1) < 
2

All such controllers are then given by K = F l(Kc; Q) where

Kc(s)
s
=

24 A1 �Z1L1 Z1B2

F1 0 I
�C2 I 0

35 (9.46)

F1 = �BT
2 X1; L1 = �Y1CT

2 ; Z1 = (I � 
�2Y1X1)�1 (9.47)

A1 = A+ 
�2B1B
T
1 X1 +B2F1 + Z1L1C2 (9.48)

and Q(s) is any stable proper transfer function such that kQk1 < 
. For Q(s) = 0,
we get

K(s) = Kc11(s) = �Z1L1(sI �A1)�1F1 (9.49)

This is called the “central” controller and has the same number of states as the
generalized plant P (s). The central controller can be separated into a state estimator
(observer) of the form

_bx = Abx+B1 

�2BT

1 X1bx| {z }
bwworst

+B2u+ Z1L1(C2bx� y) (9.50)
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and a state feedback
u = F1bx (9.51)

Upon comparing the observer in (9.50) with the Kalman filter in (9.14) we see that it
contains an additional termB1 bwworst, where bwworst can be interpreted as an estimate
of the worst-case disturbance (exogenous input). Note that for the special case ofH1
loop shaping this extra term is not present. This is discussed in Section 9.4.4.


-iteration. If we desire a controller that achieves 
min, to within a specified
tolerance, then we can perform a bisection on 
 until its value is sufficiently accurate.
The above result provides a test for each value of 
 to determine whether it is less
than 
min or greater than 
min.

Given all the assumptions (A1) to (A8) the above is the most simple form of
the general H1 algorithm. For the more general situation, where some of the
assumptions are relaxed, the reader is referred to the original source (Glover and
Doyle, 1988). In practice, we would expect a user to have access to commercial
software such as MATLAB and its toolboxes.

In Section 2.7, we distinguished between two methodologies for H1 controller
design: the transfer function shaping approach and the signal-based approach. In
the former, H1 optimization is used to shape the singular values of specified
transfer functions over frequency. The maximum singular values are relatively easy
to shape by forcing them to lie below user defined bounds, thereby ensuring desirable
bandwidths and roll-off rates. In the signal-based approach, we seek to minimize the
energy in certain error signals given a set of exogenous input signals. The latter
might include the outputs of perturbations representing uncertainty, as well as the
usual disturbances, noise, and command signals. Both of these two approaches will
be considered again in the remainder of this section. In each case we will examine a
particular problem and formulate it in the general control configuration.

A difficulty that sometimes arises with H1 control is the selection of weights
such that the H1 optimal controller provides a good trade-off between conflicting
objectives in various frequency ranges. Thus, for practical designs it is sometimes
recommended to perform only a few iterations of theH1 algorithm. The justification
for this is that the initial design, after one iteration, is similar to an H2 design which
does trade-off over various frequency ranges. Therefore stopping the iterations before
the optimal value is achieved gives the design anH2 flavour which may be desirable.

9.3.5 Mixed-sensitivityH1 control

Mixed-sensitivity is the name given to transfer function shaping problems in which
the sensitivity function S = (I + GK)�1 is shaped along with one or more other
closed-loop transfer functions such as KS or the complementary sensitivity function
T = I � S. Earlier in this chapter, by examining a typical one degree-of-freedom
configuration, Figure 9.1, we saw quite clearly the importance of S, KS, and T .
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Suppose, therefore, that we have a regulation problem in which we want to reject a
disturbance d entering at the plant output and it is assumed that the measurement
noise is relatively insignificant. Tracking is not an issue and therefore for this
problem it makes sense to shape the closed-loop transfer functions S and KS in
a one degree-of-freedom setting. Recall that S is the transfer function between d
and the output, and KS the transfer function between d and the control signals. It is
important to include KS as a mechanism for limiting the size and bandwidth of the
controller, and hence the control energy used. The size of KS is also important for
robust stability with respect to uncertainty modelled as additive plant perturbations.

The disturbance d is typically a low frequency signal, and therefore it will be
successfully rejected if the maximum singular value of S is made small over the
same low frequencies. To do this we could select a scalar low pass filter w1(s) with a
bandwidth equal to that of the disturbance, and then find a stabilizing controller that
minimizes kw1Sk1. This cost function alone is not very practical. It focuses on just
one closed-loop transfer function and for plants without right-half plane zeros the
optimal controller has infinite gains. In the presence of a nonminimum phase zero,
the stability requirement will indirectly limit the controller gains, but it is far more
useful in practice to minimize 



� w1S

w2KS

�




1

(9.52)

where w2(s) is a scalar high pass filter with a crossover frequency approximately
equal to that of the desired closed-loop bandwidth.

In general, the scalar weighting functions w1(s) and w2(s) can be replaced by
matrices W1(s) and W2(s). This can be useful for systems with channels of quite
different bandwidths when diagonal weights are recommended, but anything more
complicated is usually not worth the effort.

Remark. Note we have here outlined an alternative way of selecting the weights from that in
Example 2.11 and Section 3.4.6. There W1 = WP was selected with a crossover frequency
equal to that of the desired closed-loop bandwidth and W2 = Wu was selected as a constant,
usually Wu = I .

To see how this mixed-sensitivity problem can be formulated in the general setting,
we can imagine the disturbance d as a single exogenous input and define an error

signal z =
�
zT1 zT2

�T
, where z1 = W1y and z2 = �W2u, as illustrated in

Figure 9.10. It is not difficult from Figure 9.10 to show that z 1 = W1Sw and
z2 =W2KSw as required, and to determine the elements of the generalized plant P
as

P11 =

�
W1

0

�
P12 =

�
W1G
�W2

�
P21 = �I P22 = �G

(9.53)
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Figure 9.10: S=KS mixed-sensitivity optimization in standard form (regulation)

where the partitioning is such that24 z1
z2- - -
v

35 =

�
P11 P12
P21 P22

� �
w
u

�
(9.54)

and

Fl(P;K) =

�
W1S
W2KS

�
(9.55)

Another interpretation can be put on the S=KS mixed-sensitivity optimization as
shown in the standard control configuration of Figure 9.11. Here we consider a
tracking problem. The exogenous input is a reference command r, and the error
signals are z1 = �W1e = W1(r � y) and z2 = W2u. As in the regulation problem
of Figure 9.10, we have in this tracking problem z 1 = W1Sw and z2 = W2KSw.
An example of the use of S=KS mixed sensitivity minimization is given in Chapter
12, where it is used to design a rotorcraft control law. In this helicopter problem,
you will see that the exogenous input w is passed through a weight W 3 before it
impinges on the system. W3 is chosen to weight the input signal and not directly to
shape S or KS. This signal-based approach to weight selection is the topic of the
next sub-section.

Another useful mixed sensitivity optimization problem, again in a one degree-of-
freedom setting, is to find a stabilizing controller which minimizes



� W1S

W2T

�




1

(9.56)
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Figure 9.11: S=KS mixed-sensitivity minimization in standard form (tracking)

The ability to shape T is desirable for tracking problems and noise attenuation. It
is also important for robust stability with respect to multiplicative perturbations at
the plant output. The S=T mixed-sensitivity minimization problem can be put into
the standard control configuration as shown in Figure 9.12. The elements of the
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Figure 9.12: S=T mixed-sensitivity optimization in standard form

corresponding generalized plant P are

P11 =

�
W1

0

�
P12 =

� �W1G
W2G

�
P21 = I P22 = �G

(9.57)
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Exercise 9.5 For the cost function






24 W1S

W2T
W3KS

35






1

(9.58)

formulate a standard problem, draw the corresponding control configuration and give
expressions for the generalized plantP .

The shaping of closed-loop transfer functions as described above with the “stacked”
cost functions becomes difficult with more than two functions. With two, the process
is relatively easy. The bandwidth requirements on each are usually complementary
and simple, stable, low-pass and high-pass filters are sufficient to carry out the
required shaping and trade-offs. We stress that the weights W i in mixed-sensitivity
H1 optimal control must all be stable. If they are not, assumption (A1) in Section
9.3.1 is not satisfied, and the general H1 algorithm is not applicable. Therefore if
we wish, for example, to emphasize the minimization of S at low frequencies by
weighting with a term including integral action, we would have to approximate 1

s
by 1

s+� , where � << 1. This is exactly what was done in Example 2.11. Similarly
one might be interested in weighting KS with a non-proper weight to ensure that
K is small outside the system bandwidth. But the standard assumptions preclude
such a weight. The trick here is to replace a non-proper term such as (1 + � 1s) by
(1 + �1s)=(1 + �2s) where �2 << �1. A useful discussion of the tricks involved in
using “unstable” and “non-proper” weights inH1 control can be found in Meinsma
(1995).

For more complex problems, information might be given about several exogenous
signals in addition to a variety of signals to be minimized and classes of plant
perturbations to be robust against. In which case, the mixed-sensitivity approach is
not general enough and we are forced to look at more advanced techniques such as
the signal-based approach considered next.

9.3.6 Signal-basedH1 control

The signal-based approach to controller design is very general and is appropriate
for multivariable problems in which several objectives must be taken into account
simultaneously. In this approach, we define the plant and possibly the model
uncertainty, we define the class of external signals affecting the system and we define
the norm of the error signals we want to keep small. The focus of attention has moved
to the size of signals and away from the size and bandwidth of selected closed-loop
transfer functions.

Weights are used to describe the expected or known frequency content of exogenous
signals and the desired frequency content of error signals. Weights are also used
if a perturbation is used to model uncertainty, as in Figure 9.13, where G is the
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nominal model, W is a weighting function that captures the relative model fidelity
over frequency, and� represents unmodelled dynamics usually normalized viaW so
that k�k1 < 1; see Chapter 8 for more details. As in mixed-sensitivityH1 control,
the weights in signal-basedH1 control need to be stable and proper for the general
H1 algorithm to be applicable.

dq -

- -

? - -

W �

+

+
G

Figure 9.13: Multiplicative dynamic uncertainty model

LQG control is a simple example of the signal-based approach, in which the
exogenous signals are assumed to be stochastic (or alternatively impulses in a
deterministic setting) and the error signals are measured in terms of the 2-norm. As
we have already seen, the weightsQ andR are constant, but LQG can be generalized
to include frequency dependent weights on the signals leading to what is sometimes
called Wiener-Hopf design, or simplyH2 control.

When we consider a system’s response to persistent sinusoidal signals of varying
frequency, or when we consider the induced 2-norm between the exogenous input
signals and the error signals, we are required to minimize the H1 norm. In the
absence of model uncertainty, there does not appear to be an overwhelming case
for using the H1 norm rather than the more traditional H2 norm. However, when
uncertainty is addressed, as it always should be, H1 is clearly the more natural
approach using component uncertainty models as in Figure 9.13.
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Figure 9.14: A signal-based H1 control problem

A typical problem using the signal-based approach toH1 control is illustrated in the
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interconnection diagram of Figure 9.14. G and G d are nominal models of the plant
and disturbance dynamics, and K is the controller to be designed. The weights W d,
Wi and Wn may be constant or dynamic and describe the relative importance and/or
frequency content of the disturbances, set points, and noise signals. The weightW ref

is a desired closed-loop transfer function between the weighted set point r s and the
actual output y. The weights We and Wu reflect the desired frequency content of the
error (y � yref) and the control signals u, respectively. The problem can be cast as a
standardH1 optimization in the general control configuration by defining

w =

24 d
r
n

35 z =

�
z1
z2

�

v =

�
rs
ym

�
u = u

(9.59)

in the general setting of Figure 9.8.

Suppose we now introduce a multiplicative dynamic uncertainty model at the input
to the plant as shown in Figure 9.15. The problem we now want to solve is: find a
stabilizing controller K such that the H1 norm of the transfer function between w
and z is less than 1 for all �, where k�k1 < 1. We have assumed in this statement
that the signal weights have normalized the 2-norm of the exogenous input signals to
unity. This problem is a non-standard H1 optimization. It is a robust performance
problem for which the �-synthesis procedure, outlined in Chapter 8, can be applied.
Mathematically, we require the structured singular value
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Figure 9.15: AnH1 robust performance problem

�(M(j!)) < 1;8! (9.60)
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where M is the transfer function matrix between2664
d
r
n
Æ

3775 and

24 z1
z2
�

35 (9.61)

and the associated block diagonal perturbation has 2 blocks: a fictitious performance
block between [ dT rT nT ]

T and [ zT1 zT2 ]
T , and an uncertainty block �

between u� and y�. Whilst the structured singular value is a useful analysis tool for
assessing designs, �-synthesis is sometimes difficult to use and often too complex for
the practical problem at hand. In its full generality, the �-synthesis problem is not yet
solved mathematically; where solutions exist the controllers tend to be of very high
order; the algorithms may not always converge and design problems are sometimes
difficult to formulate directly.

For many industrial control problems, a design procedure is required which offers
more flexibility than mixed-sensitivity H1 control, but is not as complicated as �-
synthesis. For simplicity, it should be based on classical loop-shaping ideas and it
should not be limited in its applications like LTR procedures. In the next section, we
present such a controller design procedure.

9.4 H1 loop-shaping design

The loop-shaping design procedure described in this section is based on H1 robust
stabilization combined with classical loop shaping, as proposed by McFarlane and
Glover (1990). It is essentially a two stage design process. First, the open-loop
plant is augmented by pre and post-compensators to give a desired shape to the
singular values of the open-loop frequency response. Then the resulting shaped
plant is robustly stabilized with respect to coprime factor uncertainty using H1
optimization. An important advantage is that no problem-dependent uncertainty
modelling, or weight selection, is required in this second step.

We will begin the section with a description of the H1 robust stabilization problem
(Glover and McFarlane, 1989). This is a particularly nice problem because it does
not require 
-iteration for its solution, and explicit formulas for the corresponding
controllers are available. The formulas are relatively simple and so will be presented
in full.

Following this, a step by step procedure for H1 loop-shaping design is presented.
This systematic procedure has its origin in the Ph.D. thesis of Hyde (1991)
and has since been successfully applied to several industrial problems. The
procedure synthesizes what is in effect a single degree-of-freedom controller. This
can be a limitation if there are stringent requirements on command following.
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However, as shown by Limebeer et al. (1993), the procedure can be extended
by introducing a second degree-of-freedom in the controller and formulating a
standardH1 optimization problem which allows one to trade off robust stabilization
against closed-loop model-matching. We will describe this two degrees-of-freedom
extension and further show that such controllers have a special observer-based
structure which can be taken advantage of in controller implementation.

9.4.1 Robust stabilization

For multivariable systems, classical gain and phase margins are unreliable indicators
of robust stability when defined for each channel (or loop), taken one at a time,
because simultaneous perturbations in more than one loop are not then catered for.
More general perturbations like diagfkig and diag

�
ej�i
	

, as discussed in section
9.2.2, are required to capture the uncertainty, but even these are limited. It is now
common practice, as seen in Chapter 8, to model uncertainty by stable norm-bounded
dynamic (complex) matrix perturbations. With a single perturbation, the associated
robustness tests is in terms of the maximum singular values of various closed-
loop transfer functions. Use of a single stable perturbation, restricts the plant and
perturbed plant models to either have the same number of unstable poles or the same
number of unstable (RHP) zeros.

To overcome this, two stable perturbations can be used, one on each of the factors
in a coprime factorization of the plant, as shown in Section 8.6.2. Although this
uncertainty description seems unrealistic and less intuitive than the others, it is in fact
quite general, and for our purposes it leads to a very useful H1 robust stabilization
problem. Before presenting the problem, we will first recall the uncertainty model
given in (8.62).

We will consider the stabilization of a plant G which has a normalized left coprime
factorization (as discussed in Section 4.1.5)

G =M�1N (9.62)

where we have dropped the subscript from M and N for simplicity. A perturbed
plant model Gp can then be written as

Gp = (M +�M )�1(N +�N ) (9.63)

where �M , �N are stable unknown transfer functions which represent the
uncertainty in the nominal plant model G. The objective of robust stabilization it
to stabilize not only the nominal model G, but a family of perturbed plants defined
by

Gp =
�
(M +�M )�1(N +�N ) : k

�
�N �M

� k1 < �
	

(9.64)
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Figure 9.16:H1 robust stabilization problem

where � > 0 is then the stability margin. To maximize this stability margin is the
problem of robust stabilization of normalized coprime factor plant descriptions as
introduced and solved by Glover and McFarlane (1989).

For the perturbed feedback system of Figure 9.16, as already derived in (8.64), the
stability property is robust if and only if the nominal feedback system is stable and



4
=





�KI
�
(I �GK)�1M�1






1
� 1

�
(9.65)

Notice that 
 is the H1 norm from � to
�
u
y

�
and (I � GK)�1 is the sensitivity

function for this positive feedback arrangement.

The lowest achievable value of 
 and the corresponding maximum stability margin �
are given by Glover and McFarlane (1989) as


min = ��1max =
n
1� k[N M ]k2H

o� 1
2

= (1 + �(XZ))
1
2 (9.66)

where k � kH denotes Hankel norm, � denotes the spectral radius (maximum
eigenvalue), and for a minimal state-space realization (A;B;C;D) of G, Z is the
unique positive definite solution to the algebraic Riccati equation

(A�BS�1DTC)Z+Z(A�BS�1DTC)T�ZCTR�1CZ+BS�1BT = 0 (9.67)

where
R = I +DDT ; S = I +DTD

and X is the unique positive definite solution of the following algebraic Riccati
equation

(A�BS�1DTC)TX +X(A�BS�1DTC)�XBS�1BTX + CTR�1C = 0

(9.68)
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Notice that the formulas simplify considerably for a strictly proper plant, i.e. when
D = 0.

A controller (the “central” controller in McFarlane and Glover (1990)) which
guarantees that 



�KI

�
(I �GK)�1M�1






1
� 
 (9.69)

for a specified 
 > 
min, is given by

K
s
=

�
A+BF + 
2(LT )�1ZCT (C +DF ) 
2(LT )�1ZCT

BTX �DT

�
(9.70)

F = �S�1(DTC + BTX) (9.71)

L = (1� 
2)I +XZ: (9.72)

The MATLAB function coprimeunc, listed in Table 9.2, can be used to generate
the controller in (9.70). It is important to emphasize that since we can compute

min from (9.66) we get an explicit solution by solving just two Riccati equations
(aresolv) and avoid the 
-iteration needed to solve the generalH1 problem.

Remark 1 An example of the use of coprimeunc is given in Example 9.3 below.

Remark 2 Notice that, if 
 = 
min in (9.70), then L = ��(XZ)I+XZ, which is singular,
and thus (9.70) cannot be implemented. If for some unusual reason the truly optimal controller
is required, then this problem can be resolved using a descriptor system approach, the details
of which can be found in Safonov et al. (1989).

Remark 3 Alternatively, from Glover and McFarlane (1989), all controllers achieving 
 =

min are given by K = UV �1, where U and V are stable, (U;V ) is a right coprime
factorization of K, and U; V satisfy



� �N�

M�

�
+

�
U
V

�




1

= k[N M ]kH (9.73)

The determination of U and V is a Nehari extension problem: that is, a problem in which an
unstable transfer function R(s) is approximated by a stable transfer function Q(s), such that
kR +Qk1 is minimized, the minimum being kR�kH . A solution to this problem is given in
Glover (1984).

Exercise 9.6 Formulate theH1 robust stabilization problem in the general control
configuration of Figure 9.8, and determine a transfer function expression and a state-space
realization for the generalized plantP .

9.4.2 A systematicH1 loop-shaping design procedure

Robust stabilization alone is not much use in practice because the designer is not able
to specify any performance requirements. To do this McFarlane and Glover (1990)
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Table 9.2: MATLAB function to generate theH1 controller in (9.70)
% Uses the Robust Control or Mu toolbox
function [Ac,Bc,Cc,Dc,gammin]=coprimeunc(a,b,c,d,gamrel)
%
% Finds the controller which optimally ‘‘robustifies’’ a given shaped plant
% in terms of tolerating maximum coprime uncertainty.
%
% INPUTS:
% a,b,c,d: State-space description of (shaped) plant.
% gamrel: gamma used is gamrel*gammin (typical gamrel=1.1)
%
% OUTPUTS:
% Ac,Bc,Cc,Dc: "Robustifying" controller (positive feedback).
%

S=eye(size(d’*d))+d’*d;
R=eye(size(d*d’))+d*d’;
A1=a-b*inv(S)*d’*c;
Q1=c’*inv(R)*c;
R1=b*inv(S)*b’;
[x1,x2,eig,xerr,wellposed,X] = aresolv(A1,Q1,R1);
% Alt. Mu toolbox:
%[x1,x2, fail, reig min] = ric schr([A1 -R1; -Q1 -A1’]); X = x2/x1;
[x1,x2,eig,xerr,wellposed,Z] = aresolv(A1’,R1,Q1);
% Alt. Mu toolbox:
%[x1, x2, fail, reig min] = ric schr([A1’ -Q1; -R1 -A1]); Z = x2/x1;
% Optimal gamma:
gammin=sqrt(1+max(eig(X*Z)))
% Use higher gamma.....
gam = gamrel*gammin;
L=(1-gam*gam)*eye(size(X*Z)) + X*Z;
F=-inv(S)*(d’*c+b’*X);
Ac=a+b*F+gam*gam*inv(L’)*Z*c’*(c+d*F);
Bc=gam*gam*inv(L’)*Z*c’;
Cc=b’*X;
Dc=-d’;
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proposed pre- and post-compensating the plant to shape the open-loop singular
values prior to robust stabilization of the “shaped” plant.

If W1 and W2 are the pre- and post-compensators respectively, then the shaped plant
Gs is given by

Gs =W2GW1 (9.74)

as shown in Figure 9.17. The controller Ks is synthesized by solving the robust

�

- - -
Gs

W1 G W2

Ks

Figure 9.17: The shaped plant and controller

stabilization problem of section 9.4.1 for the shaped plant G s with a normalized left
coprime factorization Gs = M�1

s Ns. The feedback controller for the plant G is
then K = W1KsW2. The above procedure contains all the essential ingredients of
classical loop shaping, and can easily be implemented using the formulas already
presented and reliable algorithms in, for example, MATLAB.

We first present a simple SISO example, where W2 = 1 and we select W1 to get
acceptable disturbance rejection. We will afterwards present a systematic procedure
for selecting the weights W1 and W2.

Example 9.3 Glover-McFarlane H1 loop shaping for the disturbance process.
Consider the disturbance process in (2.54) which was studied in detail in Chapter 2,

G(s) =
200

10s+ 1

1

(0:05s+ 1)2
; Gd(s) =

100

10s+ 1
(9.75)

We want as good disturbance rejection as possible, and the gain crossover frequencywc for
the final design should be about 10 rad/s.

In Example 2.8 we argued that for acceptable disturbance rejection with minimum input
usage, theloop shape (“shaped plant”)jGsj = jGW1j should be similar tojGdj, so
jW1j = jG�1Gdj is desired. Then after neglecting the high-frequency dynamics inG(s)
this yields an initial weightW1 = 0:5. To improve the performance at low frequencies we add
integral action, and we also add a phase-advance terms + 2 to reduce the slope forL from
�2 at lower frequencies to about�1 at crossover. Finally, to make the response a little faster
we multiply the gain by a factor2 to get the weight

W1 =
s+ 2

s
(9.76)
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Figure 9.18: Glover-McFarlane loop-shaping design for the disturbance process. Dashed line:
Initial “ shaped” design, Gs. Solid line: “ robustified” design, GsKs

This yields a shaped plantGs = GW1 with a gain crossover frequency of 13.7 rad/s, and the
magnitude ofGs(j!) is shown by the dashed line in Figure 9.18(a). The response to a unit
step in the disturbance response is shown by the dashed line in Figure 9.18(b), and, as may
expected, the response with the “controller”K =W1 is too oscillatory.

We now “robustify” this design so that the shaped plant tolerates as muchH1 coprime factor
uncertainty as possible. This may be done with the MATLAB�-toolbox using the command
ncfsyn or with the MATLAB Robust Control toolbox using the functioncoprimeunc given
in Table 9.2:

[Ac,Bc,Cc,Dc,gammin]=coprimeunc(A,B,C,D,gamrel)

Here the shaped plantGs = GW1 has state-space matricesA;B;C and D, and the
function returns the “robustifying” positive feedback controllerKs with state-space matrices
Ac;Bc; Cc andDc. In general,Ks has the same number of poles (states) asGs. gamrel
is the value of
 relative to
min, and was in our case selected as1:1. The returned variable
gammin (
min) is the inverse of the magnitude of coprime uncertainty we can tolerate before
we get instability. We want
min � 1 as small as possible, and we usually require that
min is
less than4, corresponding to 25% allowed coprime uncertainty.

By applying this to our example we get
min = 2:34 and an overall controllerK = W1Ks

with 5 states (Gs, and thusKs, has4 states, andW1 has1 state). The corresponding loop
shapejGsKsj is shown by the solid line in Figure 9.18(a). We see that the change in the
loop shape is small, and we note with interest that the slope around crossover is somewhat
gentler. This translates into better margins: the gain margin (GM) is improved from1:62 (for
Gs) to 3:48 (for GsKs), and the phase margin (PM) is improved from13:2Æ to 51:5Æ. The
gain crossover frequencywc is reduced slightly from13:7 to 10:3 rad/s. The corresponding
disturbance response is shown in Figure 9.18(b) and is seen to be much improved.

Remark. The response with the controller K = W1Ks is quite similar to that of the loop-
shaping controller K3(s) designed in Chapter 2 (see curves L3 and y3 in Figure 2.21). The
response for reference tracking with controllerK =W1Ks is not shown; it is also very similar
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to that with K3 (see Figure 2.23), but it has a slightly smaller overshoot of 21% rather than
24%. To reduce this overshoot we would need to use a two degrees-of-freedom controller.

Exercise 9.7 Design anH1 loop-shaping controller for the disturbance process in (9.75)
using the weightW1 in (9.76), i.e. generate plots corresponding to those in Figure 9.18. Next,
repeat the design withW1 = 2(s + 3)=s (which results in an initialGs which would yield
closed-loop instability withKc = 1). Compute the gain and phase margins and compare
the disturbance and reference responses. In both cases find!c and use (2.37) to compute the
maximum delay that can be tolerated in the plant before instability arises.

Skill is required in the selection of the weights (pre- and post-compensatorsW 1 and
W2), but experience on real applications has shown that robust controllers can be
designed with relatively little effort by following a few simple rules. An excellent
illustration of this is given in the thesis of Hyde (1991) who worked with Glover
on the robust control of VSTOL (vertical and/or short take-off and landing) aircraft.
Their work culminated in a successful flight test of H1 loop-shaping control laws
implemented on a Harrier jump-jet research vehicle at the UK Defence Research
Agency (DRA), Bedford in 1993. The H1 loop-shaping procedure has also been
extensively studied and worked on by Postlethwaite and Walker (1992) in their
work on advanced control of high performance helicopters, also for the UK DRA
at Bedford. This application is discussed in detail in the helicopter case study in
Section 12.2. More recently,H1loop-shaping has been tested in flight on a Bell 205
fly-by-wire helipcopter; see Postlethwaite et al. (1999) and Smerlas et al. (2001).

Based on these, and other studies, it is recommended that the following systematic
procedure is followed when usingH1 loop-shaping design:

1. Scale the plant outputs and inputs. This is very important for most design
procedures and is sometimes forgotten. In general, scaling improves the
conditioning of the design problem, it enables meaningful analysis to be made
of the robustness properties of the feedback system in the frequency domain,
and for loop-shaping it can simplify the selection of weights. There are a variety
of methods available including normalization with respect to the magnitude of
the maximum or average value of the signal in question. Scaling with respect to
maximum values is important if the controllability analysis of earlier chapters is
to be used. However, if one is to go straight to a design the following variation has
proved useful in practice:

(a) The outputs are scaled such that equal magnitudes of cross-coupling into each
of the outputs is equally undesirable.

(b) Each input is scaled by a given percentage (say 10%) of its expected range
of operation. That is, the inputs are scaled to reflect the relative actuator
capabilities. An example of this type of scaling is given in the aero-engine
case study of Chapter 12.
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2. Order the inputs and outputs so that the plant is as diagonal as possible. The
relative gain array can be useful here. The purpose of this pseudo-diagonalization
is to ease the design of the pre- and post-compensators which, for simplicity, will
be chosen to be diagonal.

Next, we discuss the selection of weights to obtain the shaped plant Gs = W2GW1

where
W1 =WpWaWg (9.77)

3. Select the elements of diagonal pre- and post-compensators W p and W2 so that
the singular values of W2GWp are desirable. This would normally mean high
gain at low frequencies, roll-off rates of approximately 20 dB/decade (a slope of
about�1) at the desired bandwidth(s), with higher rates at high frequencies. Some
trial and error is involved here. W2 is usually chosen as a constant, reflecting the
relative importance of the outputs to be controlled and the other measurements
being fed back to the controller. For example, if there are feedback measurements
of two outputs to be controlled and a velocity signal, then W 2 might be chosen
to be diag[1, 1, 0.1], where 0:1 is in the velocity signal channel. Wp contains the
dynamic shaping. Integral action, for low frequency performance; phase-advance
for reducing the roll-off rates at crossover; and phase-lag to increase the roll-off
rates at high frequencies should all be placed inWp if desired. The weights should
be chosen so that no unstable hidden modes are created in G s.

4. Optional: Align the singular values at a desired bandwidth using a further constant
weight Wa cascaded with Wp. This is effectively a constant decoupler and
should not be used if the plant is ill-conditioned in terms of large RGA elements
(see Section 6.10.4). The align algorithm of Kouvaritakis (1974) which has
been implemented in the MATLAB Multivariable Frequency-Domain Toolbox
is recommended.

5. Optional: Introduce an additional gain matrix W g cascaded with Wa to provide
control over actuator usage. Wg is diagonal and is adjusted so that actuator rate
limits are not exceeded for reference demands and typical disturbances on the
scaled plant outputs. This requires some trial and error.

6. Robustly stabilize the shaped plant Gs = W2GW1, where W1 = WpWaWg ,
using the formulas of the previous section. First, calculate the maximum stability
margin �max = 1=
min. If the margin is too small, �max < 0:25, then go back
to step 4 and modify the weights. Otherwise, select 
 > 
min, by about 10%,
and synthesize a suboptimal controller using equation (9.70). There is usually
no advantage to be gained by using the optimal controller. When �max > 0:25
(respectively 
min < 4) the design is usually successful. In this case, at least
25% coprime factor uncertainty is allowed, and we also find that the shape of the
open-loop singular values will not have changed much after robust stabilization.
A small value of �max indicates that the chosen singular value loop-shapes are
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incompatible with robust stability requirements. That the loop-shapes do not
change much following robust stabilization if 
 is small (� large), is justified
theoretically in McFarlane and Glover (1990).

7. Analyze the design and if all the specifications are not met make further
modifications to the weights.

8. Implement the controller. The configuration shown in Figure 9.19 has been found
useful when compared with the conventional set up in Figure 9.1. This is because

e q- - - - -
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6
r Ks(0)W2(0) -

+
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u
G

y

W2
ys

Ks

Figure 9.19: A practical implementation of the loop-shaping controller

the references do not directly excite the dynamics ofK s, which can result in large
amounts of overshoot (classical derivative kick). The constant prefilter ensures a
steady-state gain of 1 between r and y, assuming integral action in W1 or G.

It has recently been shown (Glover et al., 2000) that the stability margin �max =
1=
min, here defined in terms of comprime factor perturbations, can be interpreted
in terms of simultaneous gain and phase margins in all the plant’s inputs and outputs,
when theH1loop-shaping weights W1 andW2 are diagonal. The derivation of these
margins is based on the gap metric (Gergiou and Smith, 1990) and the �-gap metric
(Vinnicombe, 1993) measures for uncertainty. A discussion of these mesures lies
outside the scope of this book, but the interested reader is referred to the excellent
book on the subject by Vinnicombe (2001) and the paper by Glover et al. (2000).

We will conclude this subsection with a summary of the advantages offered by the
aboveH1 loop-shaping design procedure:

� It is relatively easy to use, being based on classical loop-shaping ideas.
� There exists a closed formula for the H1 optimal cost 
min, which in turn

corresponds to a maximum stability margin �max = 1=
min.
� No 
-iteration is required in the solution.
� Except for special systems, ones with all-pass factors, there are no pole-zero

cancellations between the plant and controller (Sefton and Glover, 1990; Tsai
et al., 1992). Pole-zeros cancellations are common in manyH1 control problems
and are a problem when the plant has lightly damped modes.

Exercise 9.8 First a definition and some useful properties.

Definition: A stable transfer function matrixH(s) is inner if H�H = I, and co-inner if
HH� = I. The operatorH� is defined asH�(s) = HT (�s).
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Properties: TheH1 norm is invariant under right multiplication by a co-inner function and
under left multiplication by an inner function.

Equipped with the above definition and properties, show for the shapedGs = M�1
s Ns, that

the matrix[Ms Ns ] is co-inner and hence that theH1 loop-shaping cost function
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is equivalent to 
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(9.79)

whereSs = (I �GsKs)
�1. This shows that the problem of finding a stabilizing controller to

minimise the 4-block cost function (9.79) has an exact solution.

Whilst it is highly desirable, from a computational point of view, to have exact
solutions for H1 optimization problems, such problems are rare. We are fortunate
that the above robust stabilization problem is also one of great practical significance.

9.4.3 Two degrees-of-freedom controllers

Many control design problems possess two degrees-of-freedom: on the one hand,
measurement or feedback signals and on the other, commands or references.
Sometimes, one degree-of-freedom is left out of the design, and the controller is
driven (for example) by an error signal i.e. the difference between a command
and the output. But in cases where stringent time-domain specifications are set on
the output response, a one degree-of-freedom structure may not be sufficient. A
general two degrees-of-freedom feedback control scheme is depicted in Figure 9.20.
The commands and feedbacks enter the controller separately and are independently
processed.

q -
-
-r

-Controller G
y

Figure 9.20: General two degrees-of-freedom feedback control scheme

The H1 loop-shaping design procedure of McFarlane and Glover is a one degree-
of-freedom design, although as we showed in Figure 9.19 a simple constant prefilter
can easily be implemented for steady-state accuracy. For many tracking problems,
however, this will not be sufficient and a dynamic two degrees-of-freedom design is
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required. In Hoyle et al. (1991) and Limebeer et al. (1993) a two degrees-of-freedom
extension of the Glover-McFarlane procedure was proposed to enhance the model-
matching properties of the closed-loop. With this the feedback part of the controller is
designed to meet robust stability and disturbance rejection requirements in a manner
similar to the one degree-of-freedom loop-shaping design procedure except that only
a pre-compensator weight W is used. It is assumed that the measured outputs and
the outputs to be controlled are the same although this assumption can be removed as
shown later. An additional prefilter part of the controller is then introduced to force
the response of the closed-loop system to follow that of a specified model, T ref , often
called the reference model. Both parts of the controller are synthesized by solving
the design problem illustrated in Figure 9.21.
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Figure 9.21: Two degrees-of-freedom H1 loop-shaping design problem

The design problem is to find the stabilizing controller K =
�
K1 K2

�
for

the shaped plant Gs = GW1, with a normalized coprime factorization Gs =
M�1

s Ns, which minimizes theH1 norm of the transfer function between the signals�
rT �T

�T
and

�
uTs yT eT

�T
as defined in Figure 9.21. The problem is

easily cast into the general control configuration and solved suboptimally using
standard methods and 
-iteration. We will show this later.

The control signal to the shaped plant us is given by

us = [K1 K2 ]

�
�
y

�
(9.80)

whereK1 is the prefilter,K2 is the feedback controller, � is the scaled reference, and
y is the measured output. The purpose of the prefilter is to ensure that

k(I �GsK2)
�1GsK1 � Trefk1 � 
��2 (9.81)

Tref is the desired closed-loop transfer function selected by the designer to introduce
time-domain specifications (desired response characteristics) into the design process;
and � is a scalar parameter that the designer can increase to place more emphasis on
model matching in the optimization at the expense of robustness.
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From Figure 9.21 and a little bit of algebra, we have that

24 us
y
e

35 =

24 �(I �K2Gs)
�1K1 K2(I �GsK2)

�1M�1
s

�(I �GsK2)
�1GsK1 (I �GsK2)

�1M�1
s

�2
�
(I �GsK2)

�1GsK1 � Tref
�

�(I �GsK2)
�1M�1

s

35� r
�

�
(9.82)

In the optimization, theH1 norm of this block matrix transfer function is minimized.

Notice that the (1,2) and (2,2) blocks taken together are associated with robust
stabilization and the (3,1) block corresponds to model-matching. In addition, the
(1,1) and (2,1) blocks help to limit actuator usage and the (3,3) block is linked
to the performance of the loop. For � = 0, the problem reverts to minimizing

the H1 norm of the transfer function between � and
�
uTs yT

�T
, namely, the

robust stabilization problem, and the two degrees-of-freedom controller reduces to
an ordinaryH1 loop-shaping controller.

To put the two degrees-of-freedom design problem into the standard control
configuration, we can define a generalized plant P by

266664
us
y
e

- - -
�
y

377775 =

�
P11 P12
P21 P22

�24 r
�

- - -
us

35 (9.83)

=

266664
0 0 I
0 M�1

s Gs

��2Tref �M�1
s �Gs- - - - - - - - - - - - - - - - - -

�I 0 0
0 M�1

s Gs

377775
24 r

�
- - -
us

35 (9.84)

Further, if the shaped plant Gs and the desired stable closed-loop transfer function
Tref have the following state-space realizations

Gs
s
=

�
As Bs

Cs Ds

�
(9.85)

Tref
s
=

�
Ar Br

Cr Dr

�
(9.86)
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then P may be realized by26666666664

As 0 0 (BsD
T
s + ZsC

T
s )R

�1=2
s Bs

0 Ar Br 0 0
0 0 0 0 I

Cs 0 0 R
1=2
s Ds

�Cs ��2Cr ��2Dr �R
1=2
s �Ds- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 0 �I 0 0

Cs 0 0 R
1=2
s Ds

37777777775
(9.87)

and used in standardH1 algorithms (Doyle et al., 1989) to synthesize the controller
K. Note that Rs = I +DsD

T
s , and Zs is the unique positive definite solution to the

generalized Riccati equation (9.67) for Gs. MATLAB commands to synthesize the
controller are given in Table 9.3.

Remark 1 We stress that we here aim to minimize the H1 norm of the entire transfer
function in (9.82). An alternative problem would be to minimize the H1 norm form r to e
subject to an upper bound on k [ �Ns �Ms ] k1. This problem would involve the structured
singular value, and the optimal controller could be obtained from solving a series of H1
optimization problems using DK-iteration; see Section 8.12.

Remark 2 Extra measurements. In some cases, a designer has more plant outputs available
as measurements than can (or even need) to be controlled. These extra measurements can often
make the design problem easier (e.g. velocity feedback) and therefore when beneficial should
be used by the feedback controller K2. This can be accommodated in the two degrees-of-
freedom design procedure by introducing an output selection matrix Wo. This matrix selects
from the output measurements y only those which are to be controlled and hence included
in the model-matching part of the optimization. In Figure 9.21, Wo is introduced between y
and the summing junction. In the optimization problem, only the equation for the error e is
affected, and in the realization (9.87) for P one simply replaces �Cs by �WoCs and �R1=2

s

by �WoR
1=2
s in the fifth row. For example, if there are four feedback measurements and only

the first three are to be controlled then

Wo =

24 1 0 0 0
0 1 0 0
0 0 1 0

35 (9.88)

Remark 3 Steady-state gain matching. The command signals r can be scaled by a constant
matrix Wi to make the closed-loop transfer function from r to the controlled outputs Woy
match the desired model Tref exactly at steady-state. This is not guaranteed by the optimization
which aims to minimize the1-norm of the error. The required scaling is given by

Wi
4
=
�
Wo(I �Gs(0)K2(0))

�1Gs(0)K1(0)
��1

Tref(0) (9.89)

Recall that Wo = I if there are no extra feedback measurements beyond those that are to be
controlled. The resulting controller is K =

�
K1Wi K2

�
.
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Table 9.3: MATLAB commands to synthesize theH1 2-DOF controller in (9.80)
% Uses MATLAB mu toolbox
%
% INPUTS: Shaped plant Gs
% Reference model Tref
%
% OUTPUT: Two degrees-of-freedom controller K
%
% Coprime factorization of Gs
%
[As,Bs,Cs,Ds] = unpck(Gs);
[Ar,Br,Cr,Dr] = unpck(Tref);
[nr,nr] = size(Ar); [lr,mr] = size(Dr);
[ns,ns] = size(As); [ls,ms] = size(Ds);
Rs = eye(ls)+Ds*Ds.’; Ss = eye(ms)+Ds’*Ds;
A1 = (As - Bs*inv(Ss)*Ds’*Cs);
R1 = Cs’*inv(Rs)*Cs; Q1 = Bs*inv(Ss)*Bs’;
[Z1, Z2, fail, reig min] = ric schr([A1’ -R1; -Q1 -A1]); Zs = Z2/Z1;
% Alt. Robust Control toolbox:
% [Z1,Z2,eig,zerr,wellposed,Zs] = aresolv(A1’,Q1,R1);
%
% Choose rho=1 (Designer’s choice) and
% build the generalized plant P in (9.87)
%
rho=1;
A = daug(As,Ar);
B1 = [zeros(ns,mr) ((Bs*Ds’)+(Zs*Cs’))*inv(sqrt(Rs));

Br zeros(nr,ls)];
B2 = [Bs;zeros(nr,ms)];
C1 = [zeros(ms,ns+nr);Cs zeros(ls,nr);rho*Cs -rho*rho*Cr];
C2 = [zeros(mr,ns+nr);Cs zeros(ls,nr)];
D11 = [zeros(ms,mr+ls);zeros(ls,mr) sqrt(Rs);-rho*rho*Dr rho*sqrt(Rs)];
D12 = [eye(ms);Ds;rho*Ds];
D21 = [rho*eye(mr) zeros(mr,ls);zeros(ls,mr) sqrt(Rs)];
D22 = [zeros(mr,ms);Ds];
B = [B1 B2]; C = [C1;C2]; D = [D11 D12;D21 D22];
P = pck(A,B,C,D);
% Alternative: Use sysic to generate P from Figure 9.21
% but may get extra states, since states from Gs may enter twice.
%
% Gamma iterations to obtain H-infinity controller
%
[l1,m2] = size(D12); [l2,m1] = size(D21);
nmeas = l2; ncon = m2; gmin = 1; gmax = 5; gtol = 0.01;
[K, Gnclp, gam] = hinfsyn(P, nmeas, ncon, gmin, gmax, gtol);
% Alt. Robust toolbox, use command: hinfopt
%
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We will conclude this subsection with a summary of the main steps required to
synthesize a two degrees-of-freedomH1 loop-shaping controller.

1. Design a one degree-of-freedomH1 loop-shaping controller using the procedure
of Subsection 9.4.2, but without a post-compensator weight W 2. Hence W1.

2. Select a desired closed-loop transfer function T ref between the commands and
controlled outputs.

3. Set the scalar parameter � to a small value greater than 1; something in the range
1 to 3 will usually suffice.

4. For the shaped plant Gs = GW1, the desired response Tref , and the scalar
parameter �, solve the standardH1 optimization problem defined by P in (9.87)
to a specified tolerance to get K =

�
K1 K2

�
. Remember to include Wo in

the problem formulation if extra feedback measurements are to be used.
5. Replace the prefilter K1, by K1Wi to give exact model-matching at steady-state.
6. Analyse and, if required, redesign making adjustments to � and possibly W 1 and
Tref .

The final two degrees-of-freedom H1 loop-shaping controller is illustrated in
Figure 9.22

Controller

d- - - - W1
- -

K2
�

6
Wi K1 G

y+
+

r

Figure 9.22: Two degrees-of-freedom H1 loop-shaping controller

9.4.4 Observer-based structure forH1 loop-shaping controllers

H1 designs exhibit a separation structure in the controller. As seen from (9.50) and
(9.51) the controller has an observer/state feedback structure, but the observer is non-
standard, having a disturbance term (a “worst” disturbance) entering the observer
state equations. ForH1 loop-shaping controllers, whether of the one or two degrees-
of-freedom variety, this extra term is not present. The clear structure of H1 loop-
shaping controllers has several advantages:

� It is helpful in describing a controller’s function, especially to one’s managers or
clients who may not be familiar with advanced control.

� It lends itself to implementation in a gain-scheduled scheme, as shown by Hyde
and Glover (1993).
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� It offers computational savings in digital implementations and some multi-mode
switching schemes, as shown in (Samar, 1995).

We will present the controller equations, for both one and two degrees-of-freedom
H1 loop-shaping designs. For simplicity we will assume the shaped plant is strictly
proper, with a stabilizable and detectable state-space realization

Gs
s
=

�
As Bs

Cs 0

�
(9.90)

In which case, as shown in (Sefton and Glover, 1990), the single degree-of-freedom
H1 loop-shaping controller can be realized as an observer for the shaped plant plus
a state-feedback control law. The equations are

_bxs = Asbxs +Hs(Csbxs � ys) +Bsus (9.91)

us = Ksbxs (9.92)

where bxs is the observer state, us and ys are respectively the input and output of the
shaped plant, and

Hs = �ZsCT
s (9.93)

Ks = �BT
s

�
I � 
�2I � 
�2XsZs

��1
Xs (9.94)

where Zs and Xs are the appropriate solutions to the generalized algebraic Riccati
equations for Gs given in (9.67) and (9.68).

In Figure 9.23, an implementation of an observer-basedH1 loop-shaping controller
is shown in block diagram form. The same structure was used by Hyde and Glover
(1993) in their VSTOL design which was scheduled as a function of aircraft forward
speed.

Walker (1996) has shown that the two degrees-of-freedom H1 loop-shaping
controller also has an observer-based structure. He considers a stabilizable and
detectable plant

Gs
s
=

�
As Bs

Cs 0

�
(9.95)

and a desired closed-loop transfer function

Tref
s
=

�
Ar Br

Cr 0

�
(9.96)
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Figure 9.23: An implementation of an H1 loop-shaping controller for use when gain
scheduling against a variable v

in which case the generalized plant P (s) in (9.87) simplifies to

P
s
=

266666664

As 0 0 ZsC
T
s Bs

0 Ar Br 0 0

0 0 0 0 I
Cs 0 0 I 0
�Cs ��2Cr 0 �I 0

- - - - - - - - - - - - - - - - - - - - - - - - - -
0 0 �I 0 0
Cs 0 0 I 0

377777775
4
=

24 A B1 B2

C1 D11 D12

C2 D21 D22

35 (9.97)

Walker then shows that a stabilizing controller K =
�
K1 K2

�
satisfying

kFl(P;K)k1 < 
 exists if, and only if,

(i) 
 >
p
1 + �2, and

(ii) X1 � 0 is a solution to the algebraic Riccati equation

X1A+ATX1 + CT
1 C1 � �F T ( �DT �J �D) �F = 0 (9.98)

such that Re �i
�
A+B �F

�
< 0 8i, where

�F = ( �DT �J �D)�1( �DT �JC +BTX1) (9.99)

�D =

�
D11 D12

Iw 0

�
(9.100)

�J =

�
Iz 0
0 �
2Iw

�
(9.101)
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where Iz and Iw are unit matrices of dimensions equal to those of the error
signal z, and exogenous input w, respectively, in the standard configuration.

Notice that this H1 controller depends on the solution to just one algebraic Riccati
equation, not two. This is a characteristic of the two degrees-of-freedomH1 loop-
shaping controller (Hoyle et al., 1991).

Walker further shows that if (i) and (ii) are satisfied, then a stabilizing controller
K(s) satisfying kFl(P;K)k1 < 
 has the following equations:

_bxs = Asbxs +Hs(Csbxs � ys) + Bsus (9.102)

_xr = Arxr +Brr (9.103)

us = �BT
s X111bxs �BT

s X112xr (9.104)

where X111 and X112 are elements of

X1 =

�
X111 X112

X121 X122

�
(9.105)

which has been partitioned conformally with

A =

�
As 0
0 Ar

�
(9.106)

and Hs is as in (9.93).

The structure of this controller is shown in Figure 9.24, where the state-feedback
gain matrices Fs and Fr are defined by

Fs
4
= BT

s X111 Fr
4
= BT

s X112 (9.107)

The controller consists of a state observer for the shaped plant G s, a model of the
desired closed-loop transfer function Tref (without Cr) and a state-feedback control
law that uses both the observer and reference-model states.

As in the one degree-of-freedom case, this observer-based structure is useful in gain-
scheduling. The reference-model part of the controller is also nice because it is often
the same at different design operating points and so may not need to be changed at all
during a scheduled operation of the controller. Likewise, parts of the observer may
not change; for example, if the weight W1(s) is the same at all the design operating
points. Therefore whilst the structure of the controller is comforting in the familiarity
of its parts, it also has some significant advantages when it comes to implementation.

9.4.5 Implementation issues

Discrete-time controllers. For implementation purposes, discrete-time controllers
are usually required. These can be obtained from a continuous-time design using
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a bilinear transformation from the s-domain to the z-domain, but there can be
advantages in being able to design directly in discrete-time. In Samar (1995) and
Postlethwaite et al. (1995), observer-based state-space equations are derived directly
in discrete-time for the two degrees-of-freedom H1 loop-shaping controller and
successfully applied to an aero engine. This application was on a real engine, a
Spey engine, which is a Rolls Royce 2-spool reheated turbofan housed at the UK
Defence Research Agency, Pyestock. As this was a real application, a number of
important implementation issues needed to be addressed. Although these are outside
the general scope of this book, they will be briefly mentioned now.

Anti-windup. InH1 loop-shaping the pre-compensator weightW1 would normally
include integral action in order to reject low frequency disturbances acting on the
system. However, in the case of actuator saturation the integrators continue to
integrate their input and hence cause windup problems. An anti-windup scheme is
therefore required on the weighting functionW 1. The approach we recommend is to
implement the weight W1 in its self-conditionedor Hanusform. Let the weight W1

have a realization

W1
s
=

�
Aw Bw

Cw Dw

�
(9.108)

and let u be the input to the plant actuators and us the input to the shaped plant.
Then u = W1us. When implemented in Hanus form, the expression for u becomes
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Figure 9.24: Structure of the two degrees-of-freedom H1 loop-shaping controller
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(Hanus et al., 1987)

u =

�
Aw �BwD

�1
w Cw 0 BwD

�1
w

Cw Dw 0

��
us
ua

�
(9.109)

where ua is the actual plant input, that is the measurement at the output of the
actuators which therefore contains information about possible actuator saturation.
The situation is illustrated in Figure 9.25, where the actuators are each modelled by
a unit gain and a saturation. The Hanus form prevents windup by keeping the states
of W1 consistent with the actual plant input at all times. When there is no saturation
ua = u, the dynamics of W1 remain unaffected and (9.109) simplifies to (9.108).
But when ua 6= u the dynamics are inverted and driven by ua so that the states
remain consistent with the actual plant input ua. Notice that such an implementation
requires W1 to be invertible and minimum phase.

q ---
-

-

�
��
6
-conditioned

Self-

W1

us

actuator
saturation

u ua
G

Figure 9.25: Self-conditioned weight W1

Exercise 9.9 Show that the Hanus form of the weightW1 in (9.109) simplifies to (9.108)
when there is no saturation i.e. whenua = u.

Bumpless transfer. In the aero-engine application, a multi-mode switched
controller was designed. This consisted of three controllers, each designed for a
different set of engine output variables, which were switched between depending
on the most significant outputs at any given time. To ensure smooth transition from
one controller to another - bumpless transfer - it was found useful to condition the
reference models and the observers in each of the controllers. Thus when on-line, the
observer state evolves according to an equation of the form (9.102) but when off-line
the state equation becomes

_bxs = Asbxs +Hs(Csbxs � ys) +Bsuas (9.110)

where uas is the actual input to the shaped plant governed by the on-line controller.
The reference model with state feedback given by (9.103) and (9.104) is not
invertible and therefore cannot be self-conditioned. However, in discrete-time the
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optimal control also has a feed-through term from r which gives a reference model
that can be inverted. Consequently, in the aero-engine example the reference models
for the three controllers were each conditioned so that the inputs to the shaped plant
from the off-line controller followed the actual shaped plant input u as given by the
on-line controller.

Satisfactory solutions to implementation issues such as those discussed above are
crucial if advanced control methods are to gain wider acceptance in industry. We
have tried to demonstrate here that the observer-based structure of the H1 loop-
shaping controller is helpful in this regard.

9.5 Conclusion

We have described several methods and techniques for controller design, but our
emphasis has been onH1 loop shaping which is easy to apply and in our experience
works very well in practice. It combines classical loop-shaping ideas (familiar to
most practising engineers) with an effective method for robustly stabilizing the
feedback loop. For complex problems, such as unstable plants with multiple gain
crossover frequencies, it may not be easy to decide on a desired loop shape. In which
case, we would suggest doing an initial LQG design (with simple weights) and using
the resulting loop shape as a reasonable one to aim for inH1 loop shaping.

An alternative to H1 loop shaping is a standard H1 design with a “stacked”
cost function such as in S/KS mixed-sensitivity optimization. In this approach,H1
optimization is used to shape two or sometimes three closed-loop transfer functions.
However, with more functions the shaping becomes increasingly difficult for the
designer.

In other design situations where there are several performance objectives (e.g. on
signals, model following and model uncertainty), it may be more appropriate to
follow a signal-based H2 or H1 approach. But again the problem formulations
become so complex that the designer has little direct influence on the design.

After a design, the resulting controller should be analyzed with respect to robustness
and tested by nonlinear simulation. For the former, we recommend �-analysis as
discussed in Chapter 8, and if the design is not robust, then the weights will need
modifying in a redesign. Sometimes one might consider synthesizing a �-optimal
controller, but this complexity is rarely necessary in practice. Moreover, one should
be careful about combining controller synthesis and analysis into a single step. The
following quote from Rosenbrock (1974) illustrates the dilemma:

In synthesis the designer specifies in detail the properties which his
system must have, to the point where there is only one possible solution.
... The act of specifying the requirements in detail implies the final
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solution, yet has to be done in ignorance of this solution, which can then
turn out to be unsuitable in ways that were not foreseen.

Therefore, control system design usually proceeds iteratively through the steps
of modelling, control structure design, controllability analysis, performance and
robustness weights selection, controller synthesis, control system analysis and
nonlinear simulation. Rosenbrock (1974) makes the following observation:

Solutions are constrained by so many requirements that it is virtually
impossible to list them all. The designer finds himself threading a maze of
such requirements, attempting to reconcile conflicting demands of cost,
performance, easy maintenance, and so on. A good design usually has
strong aesthetic appeal to those who are competent in the subject.
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CONTROL STRUCTURE

DESIGN

Most (if not all) available control theories assume that a control structure is given at the outset.
They therefore fail to answer some basic questions which a control engineer regularly meets
in practice. Which variables should be controlled, which variables should be measured, which
inputs should be manipulated, and which links should be made between them? The objective
of this chapter is to describe the main issues involved in control structure design and to present
some of the available quantitative methods, for example, for decentralized control.

10.1 Introduction

Control structure design was considered by Foss (1973) in his paper entitled
“Critique of process control theory” where he concluded by challenging the control
theoreticians of the day to close the gap between theory and applications in this
important area. Later Morari et al. (1980) presented an overview of control structure
design, hierarchical control and multilevel optimization in their paper “Studies in the
synthesis of control structure for chemical processes” , but the gap still remained, and
still does to some extent today.

Control structure design is clearly important in the chemical process industry because
of the complexity of these plants, but the same issues are relevant in most other areas
of control where we have large-scale systems. For example, in the late 1980s Carl
Nett (Nett, 1989; Nett and Minto, 1989) gave a number of lectures based on his
experience on aero-engine control at General Electric, under the title “A quantitative
approach to the selection and partitioning of measurements and manipulations for
the control of complex systems” . He noted that increases in controller complexity
unnecessarily outpaces increases in plant complexity, and that the objective should
be to
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... minimize control system complexity subject to the achievement of
accuracy specifications in the face of uncertainty.

�

-
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K
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exogenous inputs
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exogenous outputs
(weighted)

u v

zw

Figure 10.1: General control configuration

In Chapter 3.8 we considered the general control problem formulation in Figure 10.1,
and stated that the controller design problem is to

� Find a controllerK which based on the information in v, generates a control signal
u which counteracts the influence of w on z, thereby minimizing the closed-loop
norm from w to z.

However, if we go back to Chapter 1 (page 1), then we see that this is only Step 7 in
the overall process of designing a control system. In this chapter we are concerned
with the structural decisions (Steps 4, 5, 6 and 7) associated with the following tasks
of control structure design:

1. The selection of controlled outputs (a set of variables which are to be controlled
to achieve a set of specific objectives; see sections 10.2 and 10.3): What are the
variablesz in Figure 10.1?

2. The selection of manipulations and measurements (sets of variables which can be
manipulated and measured for control purposes; see section 10.4): What are the
variable setsu andv in Figure 10.1?

3. The selection of a control configuration(a structure interconnecting measure-
ments/commands and manipulated variables; see sections 10.6, 10.7 and 10.8):
What is the structure ofK in Figure 10.1, that is, how should we “pair” the vari-
able setsu andv?

4. The selection of a controller type(control law specification, e.g. PID-controller,
decoupler, LQG, etc): What algorithm is used forK in Figure 10.1?

The distinction between the words control structureand control configurationmay
seem minor, but note that it is significant within the context of this book. The
control structure(or control strategy) refers to all structural decisions included
in the design of a control system. On the other hand, the control configuration
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refers only to the structuring (decomposition) of the controller K itself (also
called the measurement/manipulation partitioning or input/output pairing). Control
configuration issues are discussed in more detail in Section 10.6.

The selection of controlled outputs, manipulations and measurements (tasks 1 and 2
combined) is sometimes called input/output selection.

Ideally, the tasks involved in designing a complete control system are performed
sequentially; first a “ top-down” selection of controlled outputs, measurements and
inputs (with little regard to the configuration of the controllerK) and then a “bottom-
up” design of the control system (in which the selection of the control configuration
is the most important decision). However, in practice the tasks are closely related
in that one decision directly influences the others, so the procedure may involve
iteration.

One important reason for decomposing the control system into a specific control
configurationis that it may allow for simple tuning of the subcontrollers without
the need for a detailed plant model describing the dynamics and interactions in the
process. Multivariable centralized controllers may always outperform decomposed
(decentralized) controllers, but this performance gain must be traded off against the
cost of obtaining and maintaining a sufficiently detailed plant model.

The number of possible control structures shows a combinatorial growth, so for
most systems a careful evaluation of all alternative control structures is impractical.
Fortunately, we can often from physical insight obtain a reasonable choice of
controlled outputs, measurements and manipulated inputs. In other cases, simple
controllability measures as presented in Chapters 5 and 6 may be used for quickly
evaluating or screening alternative control structures.

Some discussion on control structure design in the process industry is given by
Morari (1982), Shinskey (1988), Stephanopoulos (1984) and Balchen and Mumme
(1988). A survey on control structure design is given by van de Wal and de Jager
(1995). A review of control structure design in the chemical process industry
(plantwide control) is given by Larsson and Skogestad (2000). The reader is
referred to Chapter 5 (page 160) for an overview of the literature on input-output
controllability analysis.

10.2 Optimization and control

In Sections 10.2 and 10.3 we are concerned with the selection of controlled variables
(outputs). These are the variables z in Figure 10.1, but we will in these two sections
call them y.

The selection of controlled outputs involves selecting the variables y to be controlled
at given reference values, y � r. Here the reference value r is set at some higher layer
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in the control hierarchy. Thus, the selection of controlled outputs (for the control
layer) is usually intimately related to the hierarchical structuring of the control
system which is often divided into two layers:

� optimization layer— computes the desired reference commands r (outside the
scope of this book)

� control layer— implements these commands to achieve y � r (the focus of this
book).

Additional layers are possible, as is illustrated in Figure 10.2 which shows a typical
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Figure 10.2: Typical control system hierarchy in a chemical plant

control hierarchy for a complete chemical plant. Here the control layer is subdivided
into two layers: supervisory control(“advanced control” ) and regulatory control
(“base control” ). We have also included a scheduling layer above the optimization. In
general, the information flow in such a control hierarchy is based on the higher layer
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sending reference values (setpoints) to the layer below, and the lower layer reporting
back any problems in achieving this, see Figure 10.3(b).

The optimization tends to be performed open-loopwith limited use of feedback.
On the other hand, the control layer is mainly based on feedbackinformation. The
optimization is often based on nonlinear steady-state models, whereas we often use
linear dynamic models in the control layer (as we do throughout the book).

There is usually a time scale separation with faster lower layers as indicated in
Figure 10.2. This means that the setpoints, as viewed from a given layer in the
hierarchy, are updated only periodically. Between these updates, when the setpoints
are constant, it is important that the system remains reasonably close to its optimum.
This observation is the basis for Section 10.3 which deals with selecting outputs for
the control layer.

From a theoretical point of view, the optimal coordination of the inputs and thus
the optimal performance is obtained with a centralized optimizing controller, which
combines the two layers of optimization and control; see Figure 10.3(c). All control
actions in such an ideal control system would be perfectly coordinated and the
control system would use on-line dynamic optimization based on a nonlinear
dynamic model of the complete plant instead of, for example, infrequent steady-state
optimization. However, this solution is normally not used for a number of reasons;
including the cost of modelling, the difficulty of controller design, maintenance and
modification, robustness problems, operator acceptance, and the lack of computing
power.

As noted above we may also decompose the control layer, and from now on when we
talk about control configurations, hierarchical decomposition and decentralization,
we generally refer to the control layer.

Mesarovic (1970) reviews some ideas related to on-line multi-layer structures
applied to large-scale industrial complexes. However, according to Lunze (1992),
multilayer structures, although often used in practice, lack a formal analytical
treatment. Nevertheless, in the next section we provide some ideas on how to select
objectives (controlled outputs) for the control layer, such that the overall goal is
satisfied.

Remark 1 In accordance with Lunze (1992) we have purposely used the word layer rather
than level for the hierarchical decomposition of the control system. The difference is that in
a multilevelsystem all units contribute to satisfying the same goal, whereas in a multilayer
system the different units have different objectives (which preferably contribute to the overall
goal). Multilevel systems have been studied in connection with the solution of optimization
problems.

Remark 2 The tasks within any layer can be performed by humans (e.g. manual control), and
the interaction and task sharing between the automatic control system and the human operators
are very important in most cases, e.g. an aircraft pilot. However, these issues are outside the
scope of this book.
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Figure 10.3: Alternative structures for optimization and control. (a) Open-loop optimization.
(b) Closed-loop implementation with separate control layer. (c) Integrated optimization and
control.

10.3 Selection of controlled outputs

A controlled outputis an output variable (usually measured) with an associated
control objective (usually a reference value). In many cases, it is clear from a physical
understanding of the process what the controlled outputs should be. For example, if
we consider heating or cooling a room, then we should select room temperature as the
controlled output y. In other cases it is less obvious because each control objective
may not be associated with a measured output variable. Then the controlled outputs
y are selected to achieve the overall system goal, and may not appear to be important
variables in themselves.

Example 10.1 Cake baking. To get an idea of the issues involved in output selection let
us consider the process of baking a cake. The overall goal is to make a cake which is well
baked inside and with a nice exterior. The manipulated input for achieving this is the heat
input,u = Q, (and we will assume that the duration of the baking is fixed, e.g. at15 minutes).
Now, if we had never baked a cake before, and if we were to construct the stove ourselves, we
might consider directly manipulating the heat input to the stove, possibly with a watt-meter
measurement. However, thisopen-loop implementation would not work well, as the optimal
heat input depends strongly on the particular oven we use, and the operation is also sensitive
to disturbances, for example, from opening the oven door or whatever else might be in the
oven. In shortm the open-loop implementation is sensitive to uncertainty. An effective way of
reducing the uncertainty is to use feedback. Therefore, in practice we look up the optimal oven
temperature in a cook book, and use aclosed-loop implementation where a thermostat is used
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to keep the temperaturey at its predetermined valueT .

The (a) open-loop and (b) closed-loop implementations of the cake baking process are
illustrated in Figure 10.3. In (b) the “optimizer” is the cook book which has a pre-computed
table of the optimal temperature profile. The reference valuer for temperature is then sent
down to the control layer which consists of a simple feedback controller (the thermostat).

Recall that the title of this section is selection of controlled outputs. In the cake
baking process we select oven temperatureas the controlled output y in the control
layer. It is interesting to note that controlling the oven temperature in itself has no
direct relation to the overall goal of making a well-baked cake. So why do we select
the oven temperature as a controlled output? We now want to outline an approach for
answering questions of this kind.

In the following, we let y denote the selected controlled outputs in the control layer.
Note that this may also include directly using the inputs (open-loop implementation)
by selecting y = u. Two distinct questions arise:

1. What variables y should be selected as the controlled variables?
2. What is the optimal reference value (yopt) for these variables?

The second problem is one of optimization and is extensively studied (but not in
this book). Here we want to gain some insight into the first problem. We make the
following assumptions:

(a) The overall goal can be quantified in terms of a scalar cost function J which
we want to minimize.

(b) For a given disturbance d, there exists an optimal value u opt(d) and
corresponding value yopt(d) which minimizes the cost function J .

(c) The reference values r for the controlled outputs y should be constant, i.e. r
should be independent of the disturbances d. Typically, some average value is
selected, e.g. r = yopt( �d)

For example, in the cake baking process we may assign to each cake a number P
on a scale from 0 to 10, based on cake quality. A perfectly baked cake achieves
P = 10, and an acceptably baked cake achieves P > 6 (a completely burned cake
may correspond to P = 1). In another case P could be the operating profit. In both
cases we can select J = �P , and the overall goal of the control system is then to
minimize J .

The system behaviour is a function of the independent variables u and d, so we may
write J = J(u; d). For a given disturbance d the optimal value of the cost function
is

Jopt(d) , J(uopt; d) = min
u
J(u; d) (10.1)

Ideally, we want u = uopt. However, this will not be achieved in practice, and we
select controlled outputs y such that:
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� The inputu (generated by feedback to achievey � r) should be close to the
optimal inputuopt(d).

Note that we have assumed that r is independent of d.

What happens if u 6= uopt, e.g. due to a disturbance? Obviously, we then have a loss
which can be quantified by L = J � Jopt, and a reasonable objective for selecting
controlled outputs y is to minimize some norm of the loss, for example, the worst-
case loss

Worst� case loss : � , max
d2D

j J(u; d)� J(uopt; d)| {z }
L

j (10.2)

HereD is the set of possible disturbances. As “disturbances” we should also include
changes in operating point and model uncertainty.

10.3.1 Selecting controlled outputs: Direct evaluation of cost

The “brute force” approach for selecting controlled variables is to evaluate the
loss for alternative sets of controlled variables. Specically, by solving the nonlinear
equations, we evaluate directly the cost function J for various disturbances d and
control errors e, assuming y = r + e where r is kept constant. The set of controlled
outputs with smallest worst-case or average value of J is then preferred. This
approach is may be time consuming because the solution of the nonlinear equations
must be repeated for each candidate set of controlled outputs.

If we with constant references (setpoints) r can achieve an acceptable loss, then this
set of controlled variables is said to be self-optimizing. Here r is usually selected as
the optimal value for the nominal disturbance, but this may not be the best choice
and its value may also be found by optimization (“optimal back-off” ).

The special case of measurement selection for indirect control is covered on
page 439.

10.3.2 Selecting controlled outputs: Linear analysis

We here use a linear analysis of the loss function. This results in the useful minimum
singular value rule. However, note that this is a local analysis, which may be
misleading, for example, if the optimum point of operation is close to infeasibility.

Consider the loss L = J(u; d) � Jopt(d) (10.2), where d is a fixed (generally non-
zero) disturbance. We make the following additional assumptions:

(d) The cost function J is smooth, or more precisely twice differentiable.
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(e) The optimization problem is unconstrained. If it is optimal to keep some
variable at a constraint, then we assume that this is implemented and consider
the remaining unconstrained problem.

(f) The dynamics of the problem can be neglected, that is, we consider the steady-
state control and optimization.

For a fixed d we may then express J(u; d) in terms of a Taylor series expansion in u
around the optimal point. We get

J(u; d) = Jopt(d) +

�
@J

@u

�T
opt| {z }

=0

(u� uopt(d)) +

1

2
(u� uopt(d))

T

�
@2J

@u2

�
opt

(u� uopt(d)) + � � � (10.3)

We will neglect terms of third order and higher (which assumes that we are
reasonably close to the optimum). The second term on the right hand side in (10.3)
is zero at the optimal point for an unconstrained problem.

Equation (10.3) quantifies how u�uopt affects the cost function. Next, to study how
this relates to output selection we use a linearized model of the plant, which for a
fixed d becomes y � yopt = G(u� uopt) where G is the steady-state gain matrix. If
G is invertible we then get

u� uopt = G�1(y � yopt) (10.4)

(IfG is not invertible we may use the pseudo-inverseGy which results in the smallest
possible ku� uoptk2 for a given y � yopt.) We get

J � Jopt � 1

2

�
G�1 (y � yopt)

�T �@2J
@u2

�
opt

G�1 (y � yopt) (10.5)

where the term (@2J=@u2)opt is independent of y. Obviously, we would like to select
the controlled outputs such that y � yopt is zero. However, this is not possible in
practice. To see this, write

y � yopt = y � r + r � yopt = e+ eopt (10.6)

First, we have an optimization error eopt(d) , r � yopt(d), because the algorithm
(e.g. a cook book) pre-computes a desired r which is different from the optimal
yopt(d). In addition, we have a control error e = y � r because the control
layer is not perfect, for example due to poor control performance or an incorrect
measurement or estimate (steady-state bias) of y. If the control itself is perfect then
e = n (measurement noise). In most cases the errors e and eopt(d) can be assumed
independent.
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Example 10.1 Cake baking, continued. Let us return to our initial question: Why select
the oven temperature as a controlled output? We have two alternatives: a closed-loop
implementation withy = T (the oven temperature) and an open-loop implementation with
y = u = Q (the heat input). From experience, we know that the optimal oven temperature
Topt is largely independent of disturbances and is almost the same for any oven. This means
that we may always specify the same oven temperature, sayTr = 190ÆC, as obtained from the
cook book. On the other hand, the optimal heat inputQopt depends strongly on the heat loss,
the size of the oven, etc, and may vary between, say100W and5000W. A cook book would
then need to list a different value ofQr for each kind of oven and would in addition need some
correction factor depending on the room temperature, how often the oven door is opened, etc.
Therefore, we find that it is much easier to keepeopt = T � Topt [ÆC] small than to keep
Qr�Qopt [W] small. In summary, the main reason for controlling the oven temperature is to
minimize the optimization error.

From (10.5) and (10.6), we conclude that we should select the controlled outputs y
such that:

1. G�1 is small (i.e.G is large); the choice ofy should be such that the inputs have
a large effect ony.

2. eopt(d) = r � yopt(d) is small; the choice ofy should be such that its optimal
valueyopt(d) depends only weakly on the disturbances and other changes.

3. e = y�r is small; the choice ofy should be such that it is easy to keep the control
error e small.

Note that ��(G�1) = 1=�(G), and so we want the smallest singular value of the
steady-state gain matrix to be large (but recall that singular values depend on scaling
as is discussed below). The desire to have �(G) large is consistent with our intuition
that we should ensure that the controlled outputs are independent of each other.

To use �(G) to select controlled outputs, we see from (10.5) that we should first
scale the outputs such that the expected magnitude of y i � yiopt is similar (e.g. 1)
in magnitude for each output, and scale the inputs such that the effect of a given
deviation uj � ujopt on the cost function J is similar for each input (such that�
@2J=@u2

�
opt

is close to a constant times a unitary matrix). We must also assume
that the variations in yi�yiopt are uncorrelated, or more precisely, we must assume:

(g) The “worst-case” combination of output deviations, y i � yiopt , corresponding
to the direction of �(G), can occur in practice.

Procedure. The use of the minimum singular value to select controlled outputs may
be summarized in the following procedure:

1. From a (nonlinear) model compute the optimal parameters (inputs and outputs)
for various conditions (disturbances, operating points). (This yields a “ look-up”
table of optimal parameter values as a function of the operating conditions.)

2. From this data obtain for each candidate output the variation in its optimal value,
vi = (yiopt;max � yiopt;min)=2.
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3. Scale the candidate outputs such that for each output the sum of the magnitudes
of vi and the control error (ei, including measurement noise ni) is similar (e.g.
jvij+ jeij = 1).

4. Scale the inputs such that a unit deviation in each input from its optimal value has
the same effect on the cost function J (i.e. such that

�
@2J=@u2

�
opt

is close to a
constant times a unitary matrix).

5. Select as candidates those sets of controlled outputs which correspond to a large
value of �(G). G is the transfer function for the effect of the scaled inputs on the
scaled outputs.

Note that the disturbances and measurement noise enter indirectly through the
scaling of the outputs (!).

Example. The aero-engine application in Chapter 12 provides a nice illustration of
output selection. There the overall goal is to operate the engine optimally in terms of fuel
consumption, while at the same time staying safely away from instability. The optimization
layer is a look-up table, which gives the optimal parameters for the engine at various operating
points. Since the engine at steady-state has three degrees-of-freedom we need to specify three
variables to keep the engine approximately at the optimal point, and five alternative sets of
three outputs are given. The outputs are scaled as outlined above, and a good output set is
then one with a large value of�(G), provided we can also achieve good dynamic control
performance.

Remark. Note that our desire to have �(G) large for output selection is not related to the
desire to have �(G) large to avoid input constraints as discussed in Section 6.9. In particular,
the scalings, and thus the matrix G, are different for the two cases.

10.3.3 Selection of controlled variables: Summary

Generally, the optimal values of all variables will change with time during operation
(due to disturbances and other changes). For practical reasons, we have considered
a hierarchical strategy where the optimization is performed only periodically. The
question is then: Which variables (controlled outputs) should be kept constant
(between each optimization)? Essentially, we found that we should select variables y
for which the variation in optimal value and control error is small compared to their
controllable range (the range y may reach by varying the input u). We considered
two approaches for selecting controlled outputs:

1. “Brute force” evaluation to find the set with the smallest loss imposed by using
constant values for the setpoints r.

2. Maximization of �(G) whereG is appropriately scaled (see the above procedure).

If the loss imposed by keeping constant setpoints is acceptable then we have self-
optimizing control. The objective of the control layer is then to keep the controlled
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outputs at their reference values (which are computed by the optimization layer). The
controlled outputs are often measured, but we may also estimate their values based
on other measured variables. We may also use other measurements to improve the
control of the controlled outputs, for example, by use of cascade control. Thus, the
selection of controlled and measured outputs are two separate issues, although the
two decisions are obviously closely related.

The measurement selection problem is briefly discussed in the next section. Then
in section 10.5 we discuss the relative gain array of the “big” transfer matrix (with
all candidate outputs included), as a useful screening tool for selecting controlled
outputs.

10.4 Selection of manipulations and measurements

We are here concerned with the variable sets u and v in Figure 10.1. Note that the
measurements used by the controller (v) are in general different from the controlled
variables (z), because 1) we may not be able to measure all the controlled variables,
and 2) we may want to measure and control additional variables in order to

� stabilize the plant (or more generally change its dynamics)
� improve local disturbance rejection

Stabilization. We usually start the controller design by designing a (lower-layer)
controller to stabilize the plant. The issue is then: Which outputs (measurements)
and inputs (manipulatons) should be used for stabilization? We should clearly
avoid saturation of the inputs, because this makes the system effective open-loop
and stabilization is impossible. A reasonable objective is therefore to minimize
the required input usage of the stabilizing control system. It turns out that this is
achieved, for a single unstable mode, by selecting the output (measurement) and
input (manipulation) corresponding to the largest elements in the output and input
pole vectors (yp and up), respectively (see remark on page 2) (Havre, 1998)(Havre
and Skogestad, 1998b). This choice maximizes the (state) controllability and
observability of the unstable mode.

Local disturbance rejection. For measurements, the rule is generally to select those
which have a strong relationship with the controlled outputs, or which may quickly
detect a major disturbance and which together with manipulations can be used for
local disturbance rejection.

The selected manipulations should have a large effect on the controlled outputs,
and should be located “close” (in terms of dynamic response) to the outputs and
measurements.

For a more formal analysis we may consider the model yall = Galluall + Gdalld.
Here
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� yall = all candidate outputs (measurements)
� uall = all candidate inputs (manipulations)

The model for a particular combination of inputs and outputs is then y = Gu+G dd
where

G = SOGallSI ; Gd = SOGdall (10.7)

Here SO is a non-square input “selection” matrix with a 1 and otherwise 0’s in
each row, and SI is a non-square output “selection” matrix with a 1 and otherwise
0’s in each column. For example, with SO = I all outputs are selected, and with
SO = [ 0 I ] output 1 has notbeen selected.

To evaluate the alternative combinations, one may, based on G and G d, perform an
input-output controllability analysis as outlined in Chapter 6 for each combination
(e.g, consider the minimum singular value, RHP-zeros, interactions, etc). At least this
may be useful for eliminating some alternatives. A more involved approach, based
on analyzing achievable robust performance by neglecting causality, is outlined by
Lee et al. (1995). This approach is more involved both in terms of computation time
and in the effort required to define the robust performance objective. An even more
involved (and exact) approach would be to synthesize controllers for optimal robust
performance for each candidate combination.

However, the number of combinations has a combinatorial growth, so even a simple
input-output controllability analysis becomes very time-consuming if there are many
alternatives. For a plant where we want to selectm fromM candidate manipulations,
and l from L candidate measurements, the number of possibilities is�

L

l

��
M

m

�
=

L!

l!(L� l)!

M !

m!(M �m)!
(10.8)

A few examples: form = l = 1 andM = L = 2 the number of possibilities is 4; for
m = l = 2 and M = L = 4 it is 36; for m = l = 5 and M = L = 10 it is 63504;
and for m =M , l = 5 and L = 100 (selecting 5 measurements out of 100 possible)
there are 75287520 possible combinations.

Remark. The number of possibilities is much larger if we consider all possible combinations
with 1 to M inputs and 1 to L outputs. The number is (Nett, 1989):

PM
m=1

PL
l=1

�
L
l

��
M
m

�
.For

example, with M = L = 2 there are 4+2+2+1=9 candidates (4 structures with one input and
one output, 2 structures with two inputs and one output, 2 structures with one input and two
outputs, and 1 structure with two inputs and two outputs).

One way of avoiding this combinatorial problem is to base the selection directly on
the “big” models Gall and Gdall. For example, one may consider the singular value
decomposition and relative gain array of Gall as discussed in the next section. This
rather crude analysis may be used, together with physical insight, rules of thumb
and simple controllability measures, to perform a pre-screening in order to reduce
the possibilities to a manageable number. These candidate combinations can then be
analyzed more carefully.
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10.5 RGA for non-square plant

A simple but effective screening tool for selecting inputs and outputs, which avoids
the combinatorial problem just mentioned, is the relative gain array (RGA) of the
“big” transfer matrix Gall with all candidate inputs and outputs included, � =

Gall �Gy
T

all .

Essentially, for the case of many candidate manipulations (inputs) one may consider
not using those manipulations corresponding to columns in the RGA where the sum
of the elements is much smaller than 1 (Cao, 1995). Similarly, for the case of many
candidate measured outputs (or controlled outputs) one may consider not using those
outputs corresponding to rows in the RGA where the sum of the elements is much
smaller than 1.

To see this, write the singular value decomposition of Gall as

Gall = U�V H = Ur�rV
H
r (10.9)

where �r consists only of the r = rank(G) non-zero singular values, Ur consists
of the r first columns of U , and Vr consists of the r first columns of V . Thus, Vr
consists of the input directions with a non-zero effect on the outputs, and U r consists
of the output directions we can affect (reach) by use of the inputs.

Let ej = [ 0 � � � 0 1 0 � � � 0 ]
T be a unit vector with a 1 in position j and

0’s elsewhere. Then the j’ th input is uj = eTj u. Define ei in a similar way such that
the i’ th output is yi = eTi y. We then have that eTj Vr yields the projection of a unit
input uj onto the effective input space of G, and we follow Cao (1995) and define

Projection for input j = keTj Vrk2 (10.10)

which is a number between 0 and 1. Similarly, eTi Ur yields the projection of a unit
output yi onto the effective (reachable) output space of G, and we define

Projection for output i = keTi Urk2 (10.11)

which is a number between 0 and 1. The following theorem links the input and output
(measurement) projection to the column and row sums of the RGA.

Theorem 10.1 (RGA and input and output projections.) Thei’th row sum of the
RGA is equal to the square of thei’th output projection, and thej’th column sum of
the RGA is equal to the square of thej’th input projection, i.e.

mX
j=1

�ij = keTi Urk22;
lX

i=1

�ij = keTj Vrk22 (10.12)

For a square non-singular matrix both the row and column sums in (10.12) are 1.
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Proof: See Appendix A.4.2. 2

The RGA is a useful screening tool because it need only be computed once. It
includes all the alternative inputs and/or outputs and thus avoids the combinatorial
problem. From (10.12) we see that the row and column sums of the RGA provide
a useful way of interpreting the information available in the singular vectors. For
the case of extra inputs the RGA-values depend on the input scaling, and for extra
outputs on the output scaling. The variables must therefore be scaled prior to the
analysis.

Example 10.2 Consider a plant with2 inputs and6 candidate outputs of which we want to
select2. The plant and its RGA-matrix are

Gall =

266664
10 10
10 9
2 1
2 �1
2 2
0 2

377775; � =

266664
�0:1050 0:6303
0:5742 �0:1008
0:1317 �0:0616
0:4034 0:2101
�0:0042 0:0252

0 0:2969

377775
There exist

�
6
2

�
= 15 combinations with2 inputs and 2 outputs. The RGA may

be useful in providing an initial screening. The six row sums of the RGA-matrix are
0:5252; 0:4734; 0:0700; 0:6134; 0:0210 and 0:2969. To maximize the output projection we
should select outputs 1 and 4. For this selection�(G) = 2:12 whereas�(Gall) = �2(Gall) =
2:69 with all outputs included. This shows that we have not lost much gain in the low-gain
direction by using only2 of the6 outputs. However, there are a large number of other factors
that determine controllability, such as RHP-zeros, sensitivity to uncertainty, and these must be
taken into account when making the final selection.

The following example shows that although the RGA is an efficient screening tool,
it must be used with some caution.

Example 10.3 Consider a plant with2 inputs and4 candidate outputs of which we want to
select2. We have:

Gall =

264 10 10
10 9
2 1
2 1

375; � =

264�2:57 3:27
1:96 �1:43
0:80 �0:42
0:80 �0:42

375
The four row sums of the RGA-matrix are0:70, 0:53, 0:38 and 0:38. Thus, to maximize
the output projection we should select outputs1 and 2. However, this yields a plantG1 =�
10 10
10 9

�
which is ill-conditioned with large RGA-elements,�(G1) =

��9 10
10 �9

�
, and

is likely to be difficult to control. On the other hand, selecting outputs1 and 3 yields

G2 =
�
10 10
2 1

�
which is well-conditioned with�(G2) =

��1 2
2 �1

�
. For comparison,

the minimum singular values are:�(Gall) = 1:05, �(G1) = 0:51, and�(G2) = 0:70.

We discuss on page 435 the selection of extra measurements for use in a cascade
control system.
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10.6 Control configuration elements

We now assume that the measurements, manipulations and controlled outputs are
fixed. The available synthesis theories presented in this book result in a multivariable
controller K which connects all available measurements/commands (v) with all
available manipulations (u),

u = Kv (10.13)

(the variables v will mostly be denoted y in the following). However, such a “big”
(full) controller may not be desirable. By control configuration selection we mean
the partitioning of measurements/commands and manipulations within the control
layer. More specifically, we define

Control configuration. The restrictions imposed on the overall controllerK by
decomposing it into a set of local controllers (subcontrollers, units, elements,
blocks) with predetermined links and with a possibly predetermined design
sequence where subcontrollers are designed locally.

In a conventional feedback system a typical restriction on K is to use a one degree-
of-freedom controller (so that we have the same controller for r and�y). Obviously,
this limits the achievable performance compared to that of a two degrees of freedom
controller. In other cases we may use a two degrees-of-freedom controller, but we
may impose the restriction that the feedback part of the controller (K y) is first
designed locally for disturbance rejection, and then the prefilter (K r) is designed for
command tracking. In general this will limit the achievable performance compared
to a simultaneous design (see also the remark on page 105). Similar arguments apply
to other cascade schemes.

Some elements used to build up a specific control configuration are:

� Cascade controllers
� Decentralized controllers
� Feedforward elements
� Decoupling elements
� Selectors

These are discussed in more detail below, and in the context of the process industry
in Shinskey (1988) and Balchen and Mumme (1988). First, some definitions:

Decentralized control is when the control system consists of independent feedback
controllers which interconnect a subset of the output measurements/commands
with a subset of the manipulated inputs. These subsets should not be used by
any other controller.

This definition of decentralized control is consistent with its use by the
control community. In decentralized control we may rearrange the ordering of
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measurements/commands and manipulated inputs such that the feedback part of the
overall controllerK in (10.13) has a fixed block-diagonal structure.

Cascade control is when the output from one controller is the input to another.This
is broader than the conventional definition of cascade control which is that the
output from one controller is the reference command (setpoint) to another.

Feedforward elements link measured disturbances and manipulated inputs.

Decoupling elements link one set of manipulated inputs (“measurements”) with
another set of manipulated inputs. They are used to improve the performance
of decentralized control systems, and are often viewed as feedforward elements
(although this is not correct when we view the control system as a whole) where
the “measured disturbance” is the manipulated input computed by another
decentralized controller.

Selectors are used to select for control, depending on the conditions of the system,
a subset of the manipulated inputs or a subset of the outputs.

In addition to restrictions on the structure of K, we may impose restrictions on
the way, or rather in which sequence, the subcontrollers are designed. For most
decomposed control systems we design the controllers sequentially, starting with the
“ fast” or “ inner” or “ lower-layer” control loops in the control hierarchy. In particular,
this is relevant for cascade control systems, and it is sometimes also used in the
design of decentralized control systems.

The choice of control configuration leads to two different ways of partitioning the
control system:

� Vertical decomposition.This usually results from a sequential design of the
control system, e.g. based on cascading (series interconnecting) the controllers
in a hierarchical manner.

� Horizontal decomposition.This usually involves a set of independent decentral-
ized controllers.

Remark 1 Sequential design of a decentralized controller results in a control system which
is decomposed both horizontally (since K is diagonal) as well as vertically (since controllers
at higher layers are tuned with lower-layer controllers in place).

Remark 2 Of course, a performance loss is inevitable if we decompose the control system.
For example, for a hierarchical decentralized control system, if we select a poor configuration
at the lower (base) control layer, then this may pose fundamental limitations on the achievable
performance which cannot be overcome by advanced controller designs at higher layers.
These limitations imposed by the lower-layer controllers may include RHP-zeros (see the
aero-engine case study in Chapter 12) or strong interactions (see the distillation case study in
Chapter 12 where the LV -configuration yields large RGA-elements at low frequencies).

In this section, we discuss cascade controllers and selectors, and give some
justification for using such “suboptimal” configurations rather than directly
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designing the overall controller K. Later, in Section 10.7, we discuss in more
detail the hierarchical decomposition, including cascade control, partially controlled
systems and sequential controller design. Finally, in Section 10.8 we consider
decentralized diagonal control.

10.6.1 Cascade control systems

We want to illustrate how a control system which is decomposed into subcontrollers
can be used to solve multivariable control problems. For simplicity, we here use
single-input single-output (SISO) controllers of the form

ui = Ki(s)(ri � yi) (10.14)

whereKi(s) is a scalar. Note that whenever we close a SISO control loop we lose the
corresponding input, ui, as a degree of freedom, but at the same time the reference,
ri, becomes a new degree of freedom.

It may look like it is not possible to handle non-square systems with SISO controllers.
However, since the input to the controller in (10.14) is a reference minus a
measurement, we can cascade controllers to make use of extra measurements or
extra inputs. A cascade control structureresults when either of the following two
situations arise:

� The reference ri is an output from another controller (typically used for the case of
an extra measurement yi), see Figure 10.4(a). This is conventional cascade control.

� The “measurement” yi is an output from another controller (typically used for
the case of an extra manipulated input uj ; e.g. in Figure 10.4(b) where u2 is the
“measurement” for controller K1). This cascade scheme is referred to as input
resetting.

10.6.2 Cascade control: Extra measurements

In many cases we make use of extra measurements y2 (secondary outputs) to provide
local disturbance rejection and linearization, or to reduce the effect of measurement
noise. For example, velocity feedback is frequently used in mechanical systems, and
local flow cascades are used in process systems. Let u be the manipulated input,
y1 the controlled output (with an associated control objective r 1) and y2 the extra
measurement.

Centralized (parallel) implementation. A centralized implementation u = K(r �
y), where K is a 2-input-1-output controller, may be written

u = K11(s)(r1 � y1) +K12(s)(r2 � y2) (10.15)
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Figure 10.4: Cascade implementations

where in most cases r2 = 0 (since we do not have a degree of freedom to control
y2).

Cascade implementation (conventional cascade control). To obtain an implemen-
tation with two SISO controllers we may cascade the controllers as illustrated in
Figure 10.4(a):

r2 = K1(s)(r1 � y1); (10.16)

u2 = K2(s)(r2 � y2); r2 = bu1 (10.17)

Note that the output r2 from the slower primary controller K1 is not a manipulated
plant input, but rather the reference input to the faster secondary(or slave) controller
K2. For example, cascades based on measuring the actual manipulated variable (in
which case y2 = um) are commonly used to reduce uncertainty and nonlinearity at
the plant input.

With r2 = 0 in (10.15) the relationship between the centralized and cascade
implementation is K11 = K2K1 and K12 = K2.

An advantage with the cascade implementation is that it more clearly decouples the
design of the two controllers. It also shows more clearly that r2 is not a degree-of-
freedom at higher layers in the control system. Finally, it allows for integral action
in both loops (whereas usually only K11 should have integral action in (10.15)).

On the other hand, a centralized implementation is better suited for direct
multivariable synthesis; see the velocity feedback for the helicopter case study in
Section 12.2.

Remark. Consider conventional cascade control in Figure 10.4(a). In the general case y1 and
y2 are not directly related to each other, and this is sometimes referred to as parallel cascade
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Figure 10.5: Common case of cascade control where the primary output y1 depends directly
on the extra measurement y2.

control. However, it is common to encounter the situation in Figure 10.5 where y1 depends

directly on y2. This is a special case of Figure 10.4(a) with “Plant”=
�
G1G2

G2

�
, and it is

considered further in Example 10.1.

Exercise 10.1 Conventional cascade control. With reference to the special (but common)
case of conventional cascade control shown in Figure 10.5, Morari and Zafiriou (1989)
conclude that the use of extra measurements is useful under the following circumstances:

(a) The disturbanced2 is significant andG1 is non-minimum phase.
(b) The plantG2 has considerable uncertainty associated with it – e.g. a poorly known

nonlinear behaviour – and the inner loop serves to remove the uncertainty.

In terms of design they recommended thatK2 is first designed to minimize the effect ofd2
on y1 (with K1 = 0) and thenK1 is designed to minimize the effect ofd1 on y1. We want
to derive conclusions (a) and (b) from an input-output controllability analysis, and also, (c)
explain why we may choose to use cascade control if we want to use simple controllers (even
with d2 = 0).

Outline of solution: (a) Note that ifG1 is minimum phase, then the input-output controllability
of G2 and G1G2 are in theory the same, and for rejectingd2 there is no fundamental
advantage in measuringy1 rather than y2. (b) The inner loopL2 = G2K2 removes
the uncertainty if it is sufficiently fast (high gain feedback) and yields a transfer function
(I + L2)

�1L2 close toI at frequencies whereK1 is active. (c) In most cases, such as when
PID controllers are used, the practical bandwidth is limited by the frequencywu where the
phase of the plant is�180Æ (see section 5.12), so an inner cascade loop may yield faster
control (for rejectingd1 and trackingr1) if the phase ofG2 is less than that ofG1G2.

Exercise 10.2 To illustrate the benefit of using inner cascades for high-order plants, case
(c) in the above example, consider Figure 10.5 and let

G1 =
1

(s+ 1)2
; G2 =

1

s+ 1

We use a fast proportional controllerK2 = 25 in the inner loop, whereas a somewhat slower
PID-controller is used in the outer loop,

K1(s) = Kc
(s+ 1)2

s(0:1s+ 1)
; Kc = 5

Sketch the closed-loop response. What is the bandwidth for each of the two loops?
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Compare this with the case where we only measurey1, soG = G1G2, and use a PID-
controllerK(s) with the same dynamics asK1(s) but with a smaller value ofKc. What is the
achievable bandwidth? Find a reasonable value forKc (starting withKc = 1) and sketch the
closed-loop response (you will see that it is about a factor 5 slower without the inner cascade).

10.6.3 Cascade control: Extra inputs

In some cases we have more manipulated inputs than controlled outputs. These may
be used to improve control performance. Consider a plant with a single controlled
output y and two manipulated inputs u1 and u2. Sometimes u2 is an extra input
which can be used to improve the fast (transient) control of y, but if it does not have
sufficient power or is too costly to use for long-term control, then after a while it is
reset to some desired value (“ ideal resting value” ).

Centralized (parallel) implementation. A centralized implementation u = K(r �
y) where K is a 1-input 2-output controller, may be written

u1 = K11(s)(r � y); u2 = K21(s)(r � y) (10.18)

Here two inputs are used to control one output, so to get a unique steady-state for the
inputs u1 and u2. We usually let K11 have integral control whereas K21 does not.
Then u2(t) will only be used for transient (fast) control and will return to zero (or
more precisely to its desired value ru2 ) as t!1.

Cascade implementation (input resetting). To obtain an implementation with two
SISO controllers we may cascade the controllers as shown in Figure 10.4(b). We
again let input u2 take care of the fast control and u1 of the long-term control. The
fast control loop is then

u2 = K2(s)(r � y) (10.19)

The objective of the other slower controller is then to use input u 1 to reset input u2
to its desired value ru2 :

u1 = K1(s)(ru2 � y1); y1 = u2 (10.20)

and we see that the output from the fast controller K2 is the “measurement” for the
slow controllerK1.

With ru2 = 0 the relationship between the centralized and cascade implementation
is K11 = �K1K2 and K21 = K2.

The cascade implementation again has the advantage of decoupling the design of the
two controllers. It also shows more clearly that ru2 , the reference for u2, may be used
as a degree-of-freedom at higher layers in the control system. Finally, we can have
integral action in both K1 and K2, but note that the gain of K1 should be negative
(if effects of u1 and u2 on y are both positive).
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Remark 1 Typically, the controllers in a cascade system are tuned one at a time starting with
the fast loop. For example, for the control system in Figure 10.6 we would probably tune the
three controllers in the order K2 (inner cascade using fast input), K3 (input resetting using
slower input), and K1 (final adjustment of y1).

Remark 2 In process control, the cascade implementation of input resetting is sometimes
referred to as valve position control, because the extra input u2, usually a valve, is reset to a
desired position by the outer cascade.

Exercise 10.3 Draw the block diagrams for the two centralized (parallel) implementations
corresponding to Figure 10.4.

Exercise 10.4 Derive the closed-loop transfer functions for the effect ofr on y, u1 and
u2 for the cascade input resetting scheme in Figure 10.4(b). As an example useG =

[G11 G12 ] = [ 1 1 ] and use integral action in both controllers,K1 = �1=s and
K2 = 10=s. Show that inputu2 is reset at steady-state.

Example 10.4 Two layers of cascade control. Consider the system in Figure 10.6 with two
manipulated inputs (u2 andu3), one controlled output (y1 which should be close tor1) and
two measured variables (y1 andy2). Inputu2 has a more direct effect ony1 than does input
u3 (there is a large delay inG3(s)). Inputu2 should only be used for transient control as it is
desirable that it remains close tor3 = ru2 . The extra measurementy2 is closer thany1 to the
inputu2 and may be useful for detecting disturbances (not shown) affectingG1.
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Figure 10.6: Control configuration with two layers of cascade control.

In Figure 10.6 controllersK1 and K2 are cascaded in a conventional manner, whereas
controllersK2 andK3 are cascaded to achieve input resetting. The corresponding equations
are bu1 = K1(s)(r1 � y1) (10.21)

u2 = K2(s)(r2 � y2); r2 = bu1 (10.22)
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u3 = K3(s)(r3 � y3); y3 = u2 (10.23)

ControllerK1 controls the primary outputy1 at its referencer1 by adjusting the “input”bu1,
which is the reference value fory2. Controller K2 controls the secondary outputy2 using
inputu2. Finally, controllerK3 manipulatesu3 slowly in order to reset inputu2 to its desired
valuer3.

Exercise 10.5 Process control application. A practical case of a control system like the
one in Figure 10.6 is in the use of a pre-heater to keep the reactor temperaturey1 at a given
valuer1. In this casey2 may be the outlet temperature from the pre-heater,u2 the bypass flow
(which should be reset tor3, say10% of the total flow), andu3 the flow of heating medium
(steam). Make a process flowsheet with instrumentation lines (not a block diagram) for this
heater/reactor process.

10.6.4 Extra inputs and outputs (local feedback)

In many cases performance may be improved with local feedback loops involving
extra manipulated inputs and extra measurements. However, the improvement must
be traded off against the cost of the extra actuator, measurement and control system.
An example where local feedback is required to counteract the effect of high-order
lags is given for a neutralization process in Figure 5.24 on page 208. The use of local
feedback is also discussed by Horowitz (1991).

10.6.5 Selectors

Split-range control for extra inputs. We assumed above that the extra input is used
to improve dynamic performance. Another situation is when input constraints make
it necessary to add a manipulated input. In this case the control range is often split
such that, for example, u1 is used for control when y 2 [ymin; y1], and u2 is used
when y 2 [y1; ymax].

Selectors for too few inputs. A completely different situation occurs if there are
too few inputs. Consider the case with one input (u) and several outputs (y 1; y2; : : :).
In this case, we cannot control all the outputs independently, so we either need to
control all the outputs in some average manner, or we need to make a choice about
which outputs are the most important to control. Selectors or logic switches are often
used for the latter. Auctioneering selectorsare used to decide to control one of several
similar outputs. For example, this may be used to adjust the heat input (u) to keep
the maximum temperature (maxi yi) in a fired heater below some value. Override
selectorsare used when several controllers compute the input value, and we select
the smallest (or largest) as the input. For example, this is used in a heater where the
heat input (u) normally controls temperature (y1), except when the pressure (y2) is
too large and pressure control takes over.
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10.6.6 Why use cascade and decentralized control?

As is evident from Figure 10.6(a), decomposed control configurations can easily
become quite complex and difficult to maintain and understand. It may therefore be
both simpler and better in terms of control performance to set up the controller design
problem as an optimization problem and let the computer do the job, resulting in a
centralized multivariable controller as used in other chapters of this book.

If this is the case, why is cascade and decentralized control used in practice? There
are a number of reasons, but the most important one is probably the cost associated
with obtaining good plant models, which are a prerequisite for applying multivariable
control. On the other hand, with cascade and decentralized control each controller is
usually tuned one at a time with a minimum of modelling effort, sometimes even on-
line by selecting only a few parameters (e.g, the gain and integral time constant of a
PI-controller). A fundamental reason for applying cascade and decentralized control
is thus to save on modelling effort. Since cascade and decentralized control systems
depend more strongly on feedback rather than models as their source of information,
it is usually more important (relative to centralized multivariable control) that the
fast control loops be tuned to respond quickly.

Other advantages of cascade and decentralized control include the following: they are
often easier to understand by operators, they reduce the need for control links and
allow for decentralized implementation, their tuning parameters have a direct and
“ localized” effect, and they tend to be less sensitive to uncertainty, for example, in
the input channels. The issue of simplified implementation and reduced computation
load is also important in many applications, but is becoming less relevant as the cost
of computing power is reduced.

Based on the above discussion, the main challenge is to find a control configuration
which allows the (sub)controllers to be tuned independently based on a minimum
of model information (the pairing problem). For industrial problems, the number of
possible pairings is usually very high, but in most cases physical insight and simple
tools, such as the RGA, can be helpful in reducing the number of alternatives to
a manageable number. To be able to tune the controllers independently, we must
require that the loops interact only to a limited extent. For example, one desirable
property is that the steady-state gain from u i to yi in an “ inner” loop (which has
already been tuned), does not change too much as outer loops are closed. For
decentralized diagonal control the RGA is a useful tool for addressing this pairing
problem.

Why do we need a theory for cascade and decentralized control? We just argued
that the main advantage of decentralized control was its saving on the modelling
effort, but any theoretical treatment of decentralized control requires a plant model.
This seems to be a contradiction. However, even though we may not want to use
a model to tune the controllers, we may still want to use a model to decide on a
control structure and to decide on whether acceptable control with a decentralized
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configuration is possible. The modelling effort in this case is less, because the model
may be of a more “generic” nature and does not need to be modified for each
particular application.

10.7 Hierarchical and partial control

A hierarchical control system results when we design the subcontrollers in a
sequential manner, usually starting with the fast loops (“bottom-up”). This means
that the controller at some higher layer in the hierarchy is designed based on a
partially controlled plant. In this section we derive transfer functions for partial
control, and provide some guidelines for designing hierarchical control systems.

10.7.1 Partial control

Partial control involves controlling only a subset of the outputs for which there is a
control objective. We divide the outputs into two classes:

� y1 – (temporarily) uncontrolled output (for which there is an associated control
objective)

� y2 – (locally) measured and controlled output

We also subdivide the available manipulated inputs in a similar manner:

� u2 – inputs used for controlling y2
� u1 – remaining inputs (which maybe used for controlling y 1)

We have inserted the word temporarily above, since y1 is normally a controlled
output at some higher layer in the hierarchy. However, we here consider the partially
controlled system as it appears after having implemented only a local control system
where u2 is used to control y2. In most of the development that follows we assume
that the outputs y2 are tightly controlled.

Four applications of partial control are:

1. Sequential design of decentralized controllers.The outputs y (which include
y1 and y2) all have an associated control objective, and we use a hierarchical
control system. We first design a controller K2 to control the subset y2. With
this controller K2 in place (a partially controlled system), we may then design a
controllerK1 for the remaining outputs.

2. Sequential design of conventional cascade control.The outputs y 2 are
additional measured (“secondary” ) variables which are not important variables
in themselves. The reason for controlling y2 is to improve the control of y1. The
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references r2 are used as degrees of freedom for controlling y1 so the set u1 is
often empty.

3. “True” partial control . The outputs y (which include y1 and y2) all have an
associated control objective, and we consider whether by controlling only the
subset y2; we can indirectly achieve acceptable control of y1, that is, the outputs
y1 remain uncontrolled and the set u1 remains unused.

4. Indirect control. The outputs y1 have an associated control objective, but they
are not measured. Instead, we aim at indirectly controlling y 1 by controlling the
“secondary” measured variables y2 (which have no associated control objective).
The references r2 are used as degrees of freedom and the set u1 is empty. This
is similar to cascade control, but there is no “outer” loop involving y 1. Indirect
control was discussed in Section 10.7.4.

The following table shows more clearly the difference between the four applications
of partial control. In all cases there is a control objective associated with y1 and a
feedback loop involving measurement and control of y 2.

Measurement and Control objective
control of y1 ? for y2 ?

Sequential decentralized control Yes Yes
Sequential cascade control Yes No

“True” partial control No Yes
Indirect control No No

The four problems are closely related, and in all cases we (1) want the effect of the
disturbances on y1 to be small (when y2 is controlled), and (2) want it to be easy to
control y2 using u2 (dynamically). . Let us derive the transfer functions for y 1 when
y2 is controlled. One difficulty is that this requires a separate analysis for each choice
of y2 and u2, and the number of alternatives has a combinatorial growth as illustrated
by (10.8).

By partitioning the inputs and outputs, the overall model y = Gu may be written

y1 = G11u1 +G12u2 +Gd1d (10.24)

y2 = G21u1 +G22u2 +Gd2d (10.25)

Assume now that feedback control u2 = K2(r2�y2�n2) is used for the “secondary”
subsystem involving u2 and y2, see Figure 10.7. By eliminating u2 and y2, we then
get the following model for the resulting partially controlled system:

y1 =
�
G11 �G12K2(I +G22K2)

�1G21

�
u1 +�

Gd1 �G12K2(I +G22K2)
�1Gd2

�
d +

G12K2(I +G22K2)
�1(r2 � n2) (10.26)
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Figure 10.7: Partial control

Remark. (10.26) may be rewritten in terms of linear fractional transformations. For example,
the transfer function from u1 to y1 is

Fl(G;�K2) = G11 �G12K2(I +G22K2)
�1G21 (10.27)

Tight control of y2. In some cases we can assume that the control of y2 is fast
compared to the control of y1. To obtain the model we may formally let K2 !1 in
(10.26), but it is better to solve for u2 in (10.25) to get

u2 = �G�122 Gd2d�G�122 G21u1 +G�122 y2

We have here assumed that G22 is square and invertible, otherwise we can get the
least-square solution by replacing G�1

22 by the pseudo-inverse, Gy
22. On substituting

this into (10.24) we get

y1 = (G11 �G12G
�1
22 G21)| {z }

, Pu

u1 + (Gd1 �G12G
�1
22 Gd2)| {z }

, Pd

d+G12G
�1
22| {z }

, Pr

(r2 � e2| {z }
y2

)

(10.28)
where Pd is called the partial disturbance gain, which is the disturbance gain for
a system under perfect partial control, and Pu is the effect of u1 on y1 with y2
perfectly controlled. In many cases the set u1 is empty (there are no extra inputs).
The advantage of the model (10.28) over (10.26) is that it is independent of K 2, but
we stress that it only applies at frequencies where y2 is tightly controlled. For the
case of tight control we have e2 , y2 � r2 = n2, i.e., the control error e2 equals the
measurement error (noise) n2.
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Remark. Relationships similar to those given in (10.28) have been derived by many authors,
e.g. see the work of Manousiouthakis et al. (1986) on block relative gains and the work of
Haggblom and Waller (1988) on distillation control configurations.

10.7.2 Hierarchical control and sequential design

A hierarchical control system arises when we apply a sequential design procedure to
a cascade or decentralized control system.

The idea is to first implement a local lower-layer (or inner) control system for
controlling the outputs y2. Next, with this lower-layer control system in place, we
design a controller K1 to control y1. The appropriate model for designing K1 is
given by (10.26) (for the general case) or (10.28) (for the case when we can assume
y2 perfectly controlled).

The objectives for this hierarchical decomposition may vary:

1. To allow for simple or even on-line tuning of the lower-layer control system (K 2).
2. To allow the use of longer sampling intervals for the higher layers (K 1).
3. To allow simple models when designing the higher-layer control system (K 1).

The high-frequency dynamics of the models of the partially controlled plant (e.g.
Pu and Pr) may be simplified if K1 is mainly effective at lower frequencies.

4. To “stabilize” 1 the plant using a lower-layer control system (K2) such that it is
amenable to manual control.

The latter is the case in many process control applications where we first close a
number of faster “ regulatory” loops in order to “stabilize” the plant. The higher
layer control system (K1) is then used mainly for optimization purposes, and is not
required to operate the plant.

Based on these objectives, Hovd and Skogestad (1993) proposed some criteria for
selecting u2 and y2 for use in the lower-layer control system:

1. The lower layer must quickly implement the setpoints computed by the higher
layers, that is, the input-output controllability of the subsystem involving use of
u2 to control y2 should be good (consider G22 and Gd2).

2. The control of y2 using u2 should provide local disturbance rejection, that is,
it should minimize the effect of disturbances on y1 (consider Pd for y2 tightly
controlled).

3. The control of y2 using u2 should not impose unnecessary control limitations on
the remaining control problem which involves using u 1 and/or r2 to control y1. By
“unnecessary” we mean limitations (RHP-zeros, ill-conditioning, etc.) that did not

1 The terms “stabilize” and “unstable” as used by process operators may not refer to a plant that is unstable
in a mathematical sense, but rather to a plant that is sensitiveto disturbances and which is difficult to
control manually.
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exist in the original overall problem involvingu and y. Consider the controllability
of Pu for y2 tightly controlled, which should not be much worse than that of G.

These three criteria are important for selecting control configurations for distillation
columns as is discussed in the next example.

Example 10.5 Control configurations for distillation columns. The overall control
problem for the distillation column in Figure 10.8 has 5 inputs

u = [L V D B VT ]
T

(these are all flows: refluxL, boilupV , distillateD, bottom flowB, overhead vapourVT ) and
5 outputs

y = [ yD xB MD MB p ]
T

(these are compositions and inventories: top compositionyD, bottom compositionxB,
condenser holdupMD, reboiler holdupMB , pressurep) see Figure 10.8. This problem
usually has no inherent control limitations caused by RHP-zeros, but the plant has poles fin
or close to the origin and needs to be stabilized. In addition, for high-purity separations the
5 � 5 RGA-matrix may have some large elements. Another complication is that composition
measurements are often expensive and unreliable.

In most cases, the distillation column is first stabilized by closing three decentralized SISO
loops for level and pressure so

y2 = [MD MB p ]
T

and the remaining outputs are
y1 = [ yD xB ]

T

The three SISO loops for controllingy2 usually interact weakly and may be tuned
independently of each other. However, since each level (tank) has an inlet and two outlet
flows, there exists many possible choices foru2 (and thus foru1). By convention, each choice
(“configuration”) is named by the inputsu1 left for composition control.

For example, the “LV -configuration” used in many examples in this book refers to a partially
controlled system where we use

u1 = [L V ]
T

to control y1 (and we assume that there is a control system in place which usesu2 =
[D B VT ]T to control y2). TheLV -configuration is good from the point of view that
control ofy1 usingu1 is nearly independent of the tuning of the controllerK2 involvingy2 and
u2. However, the problem of controllingy1 by u1 (“plant” Pu) is often strongly interactive
with large steady-state RGA-elements inPu.

Another configuration is theDV -configuration where

u1 = [D V ]
T

and thusu2 = [L B VT ]T . In this case, the steady-state interactions fromu1 to y1 are
generally much less, andPu has small RGA-elements. But the model in (10.26) depends
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Figure 10.8: Typical distillation column controlled with the LV -configuration

strongly onK2 (i.e. on the tuning of the level loops), and a slow level loop forMD may
introduce unfavourable dynamics for the response fromu1 to y1.

There are also many other possible configurations (choices for the two inputs inu1); with
five inputs there are10 alternative configurations. Furthermore, one often allows for the
possibility of using ratios between flows, e.g.L=D, as possible degrees of freedom inu1,
and this sharply increases the number of alternatives.

Expressions whichdirectly relate the models for various configurations, e.g. relationships
betweenPLV

u ; PLV
d and PDV

u ; PDV
d etc., are given in Haggblom and Waller (1988) and

Skogestad and Morari (1987a). However, it may be simpler to start from the overall5 � 5
modelG, and derive the models for the configurations using (10.26) or (10.28), see also the
MATLAB file on page 501.

To select a good distillation control configuration, one should first consider the problem of
controlling levels and pressure (y2). This eliminates a few alternatives, so the final choice is
based on the2 � 2 composition control problem (y1). If y2 is tightly controlled then none
of the configurations seem to yield RHP-zeros inPu. Important issues to consider then are
disturbance sensitivity (the partial disturbance gainPd should be small) and the interactions
(the RGA-elements ofPu). These issues are discussed by, for example, Waller et al. (1988)
and Skogestad et al. (1990). Another important issue is that it is often not desirable to have
tight level loops and some configurations, like theDV -configuration mentioned above, are
sensitive to the tuning ofK2. Then the expressions forPu and Pd, which are used in the
references mentioned above, may not apply. This is further discussed in Skogestad (1997).
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Because of the problems of interactions and the high cost of composition measurements, we
often find in practice that only one of the two product compositions is controlled (“true”
partial control). This is discussed in detail in Example 10.7 below. Another common solution
is to make use of additional temperature measurements from the column, where their reference
values are set by a composition controller in a cascade manner.

In summary, the overall 5�5 distillation control problem is solved by first designing
a 3� 3 controller K2 for levels and pressure, and then designing a 2 � 2 controller
K1 for the composition control. This is then a case of (block) decentralized control
where the controller blocks K1 and K2 are designed sequentially (in addition, the
blocks K1 and K2 may themselves be decentralized).

Sequential design is also used for the design of cascade control systems. This is
discussed next.

Sequential design of cascade control systems

Consider the conventional cascade control system in Figure 10.4(a), where we have
additional “ secondary” measurements y2 with no associated control objective, and
the objective is to improve the control of the primary outputs y 1 by locally controlling
y2. The idea is that this should reduce the effect of disturbances and uncertainty on
y1.

From (10.28), it follows that we should select secondary measurements y 2 (and
inputs u2) such that kPdk is small and at least smaller than kGd1k. In particular, these
arguments apply at higher frequencies. Furthermore, it should be easy to control y 1
by using as degrees of freedom the references r2 (for the secondary outputs) or the
unused inputs u1. More precisely, we want the input-output controllability of the
“plant” [Pu Pr ] (or Pr if the set u1 is empty) with disturbance model Pd, to be
better than that of the plant [G11 G12 ] (or G12) with disturbance model Gd1.

Remark. Most of the arguments given in Section 10.2, for the separation into an optimization
and a control layer, and in Section 10.3, for the selection of controlled outputs, apply to cascade
control if the term “optimization layer” is replaced by “primary controller” , and “control layer”
is replaced by “secondary controller” .

Exercise 10.6 The block diagram in Figure 10.5 shows a cascade control system where
the primary outputy1 depends directly on the extra measurementy2, so G12 = G1G2,
G22 = G2, Gd1 = [ I G1 ] andGd2 = [ 0 I ]. Show thatPd = [ I 0 ] andPr = G1

and discuss the result. Note thatPr is the “new” plant as it appears with the inner loop
closed.
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10.7.3 “True” partial control

We here consider the case where we attempt to leave a set of primary outputs y 1
uncontrolled. This “ true” partial control may be possible in cases where the outputs
are correlated such that controlling the outputs y2 indirectly gives acceptable control
of y1. One justification for partial control is that measurements, actuators and control
links cost money, and we therefore prefer control schemes with as few control loops
as possible.

To analyze the feasibility of partial control, consider the effect of disturbances on the
uncontrolledoutput(s) y1 as given by (10.28). Suppose all variables have been scaled
as discussed in Section 1.4. Then we have that:

� A set of outputsy1 may be left uncontrolled only if the effects of all disturbances
ony1, as expressed by the elements in the corresponding partial disturbance gain
matrixPd, are less than 1 in magnitude at all frequencies.

Therefore, to evaluate the feasibility of partial control one must for each choice of
controlled outputs (y2) and corresponding inputs (u2), rearrange the system as in
(10.24) and (10.25) and compute Pd using (10.28).

There may also be changes in r2 (of magnitude R2) which may be regarded as
disturbances on the uncontrolled outputs y1. From (10.28) then, we also have that:

� A set of outputsy1 may be left uncontrolled only if the effects of all reference
changes in the controlled outputs (y2) on y1, as expressed by the elements in the
matrixG12G

�1
22 R2, are less than1 in magnitude at all frequencies.

One uncontrolled output and one unused input. “True” partial control is often
considered if we have an m � m plant G(s) where acceptable control of all m
outputs is difficult, and we consider leaving one input u j unused and one output

yi uncontrolled. In this case, as an alternative to rearranging y into
�
y1
y2

�
and u

into
�
u1
u2

�
for each candidate control configuration and computing P d from (10.28),

we may directly evaluate the partial disturbance gain based on the overall model
y = Gu+Gdd. The effect of a disturbance dk on the uncontrolled output yi is

Pdk =

�
@yi
@dk

�
uj=0;yl6=i=0

=
[G�1Gd]jk
[G�1]ji

(10.29)

where “uj = 0; yl6=i = 0” means that input uj is constant (unused) and the remaining
outputs yl6=i are constant (perfectly controlled).

Proof of (10.29):The proof is from Skogestad and Wolff (1992). Rewrite y = Gu+ [Gd]kdk
as u = G�1y� [G�1]kGdd. Set yl = 0 for all l 6= i. Then uj = [G�1]jiyi � [G�1Gd]jkdk
and by setting uj = 0 we find yi=dk = [G�1Gd]jk=[G

�1]ji. 2



CONTROL STRUCTURE DESIGN 437

We want Pdk small so from (10.29) we derive direct insight into how to select the
uncontrolled output and unused input:

1. Select the unused input uj such that the j’ th row in G�1Gd has small elements.
That is, keep the input constant (unused) if its desired change is small.

2. Select the uncontrolled output yi and unused input uj such that the ji’ th element
in G�1 is large. That is, keep an output uncontrolled if it is insensitive to changes
in the unused input with the other outputs controlled.

Example 10.6 Consider the FCC process in Exercise 6.16 on page 250 with

G(0) =

"
16:8 30:5 4:30
�16:7 31:0 �1:41
1:27 54:1 5:40

#
; G�1(0) =

"
0:09 0:02 �0:06
0:03 0:03 �0:02
�0:34 �0:32 0:38

#

where we want to leave one input unused and one output uncontrolled. From the second rule,
since all elements in the third row ofG�1 are large, it seems reasonable to let inputu3 be
unused, as is done in Exercise 6.16. (The outputs are mainly selected to avoid the presence of
RHP-zeros, see Exercise 6.16).

(10.29) may be generalized to the case with several uncontrolled outputs / unused
inputs (Zhao and Skogestad, 1997). We first reorder G such that the upper left 11-
subsystem contains the uncontrolled and unused variables. If G (and thus G 11) is
square, we then have

Pd =
��
G�1

�
11

��1 �
G�1Gd

�
1

(10.30)

This result is derived from the definition of Pd in (10.28) by making use of the Schur
complement in (A.7).

We next consider a 2 � 2 distillation process where it is difficult to control both
outputs independently due to strong interactions, and we leave one output (y 1)
uncontrolled. To improve the performance of y 1 we also consider the use of
feedforward control where u1 is adjusted based on measuring the disturbance (but
we need no measurement of y1).

Example 10.7 Partial and feedforward control of 2 � 2 distillation process. Consider
a distillation process with2 inputs (refluxL and boilupV ), 2 outputs (product compositions
yD andxB) and2 disturbances (feed flowrateF and feed compositionzF ). We assume that
changes in the reference (r1 andr2) are infrequent and they will not be considered. At steady-
state (s = 0) we have

G =
�
87:8 �86:4
108:2 �109:6

�
; Gd =

�
7:88 8:81
11:72 11:19

�
; G�1Gd =

��0:54 �0:005
�0:64 �0:107

�
(10.31)

Since the row elements inG�1Gd are similar in magnitude as are also the elements ofG�1

(between0:3 and0:4), the rules following (10.29) do not clearly favour any particular partial
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control scheme. This is confirmed by the values ofPd, which are seen to be quite similar for
the four candidate partial control schemes:

P 2;2
d1 =

� �1:36
�0:011

�T
; P 2;1

d1 =

��1:63
�0:27

�T
; P 1;2

d2 =

�
1:72
0:014

�T
; P 1;1

d2 =

�
2:00
0:33

�T
The superscripts denote the controlled output and corresponding input. Importantly, in all
four cases, the magnitudes of the elements inPd are much smaller than inGd, so control of
one output significantly reduces the effect of the disturbances on the uncontrolled output. In
particular, this is the case for disturbance2, for which the gain is reduced from about10 to
0:33 and less.

Let us consider in more detail scheme1 which has the smallest disturbance sensitivity for
the uncontrolled output (P2;2

d1 ). This scheme corresponds to controlling outputy2 (the bottom
composition) usingu2 (the boilupV ) and withy1 (the top composition) uncontrolled. We use
a dynamic model which includes liquid flow dynamics; the model is given in Section 12.4.
Frequency-dependent plots ofGd andPd show that the conclusion at steady state also applies
at higher frequencies. This is illustrated in Figure 10.9, where we show for the uncontrolled
outputy1 and the worst disturbanced1 both the open-loop disturbance gain (Gd11, Curve1)
and the partial disturbance gain (P2;2

d11, Curve2). For disturbanced2 the partial disturbance
gain (not shown) remains below1 at all frequencies.
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Figure 10.9: Effect of disturbance 1 on output 1 for distillation column example

The partial disturbance gain for disturbanced1 (the feed flowrateF ) is somewhat above1 at
low frequencies (Pd(0) = �1:36), so let us next consider how we may reduce its effect ony1.
One approach is to reduce the disturbance itself, for example, by installing a buffer tank (as
in pH-example in Chapter 5.16.3). However, a buffer tank has no effect at steady-state, so it
does not help in this case.

Another approach is to install a feedforward controller based on measuringd1 and adjusting
u1 (the refluxL) which is so far unused. In practice, this is easily implemented as a ratio
controller which keepsL=F constant. This eliminates the steady-state effect ofd1 on y1
(provided the other control loop is closed). In terms of our linear model, the mathematical
equivalence of this ratio controller is to useu1 = 0:54d1, where0:54 is the1; 1-element
in �G�1Gd. The effect of the disturbance after including this static feedforward controller
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is shown as curve3 in Figure 10.9. However, due to measurement error we cannot achieve
perfect feedforward control, so let us assume the error is20%, and useu1 = 1:2 �0:54d1 . The
steady-state effect of the disturbance is thenPd(0)(1 � 1:2) = 1:36 � 0:2 = 0:27, which is
still acceptable. But, as seen from the frequency-dependent plot (curve4), the effect is above
0:5 at higher frequencies, which may not be desirable. The reason for this undesirable peak
is that the feedforward controller, which is purely static, reacts too fast, and in fact makes the
response worse at higher frequencies (as seen when comparing curves3 and4 with curve2).
To avoid this we filter the feedforward action with a time constant of3 min resulting in the
following feedforward controller:

u1 =
0:54

3s+ 1
d1 (10.32)

To be realistic we again assume an error of20%. The resulting effect of the disturbance on
the uncontrolled output is shown by curve5, and we see that the effect is now less than0:27
at all frequencies, so the performance is acceptable.

Remark. In the example there are four alternative partial control schemes with quite similar
disturbance sensitivity for the uncontrolled output. To decide on the best scheme, we should
also perform a controllability analysis of the feedback properties of the four1 � 1 problems.
Performing such an analysis, we find that schemes1 (the one chosen) and4 are preferable,
because the input in these two cases has a more direct effect on the output, and with less phase
lag.

In conclusion, for this example it is difficult to control both outputs simultaneously
using feedback control due to strong interactions. However, we can almost achieve
acceptable control of both outputs by leaving y1 uncontrolled. The effect of the
most difficult disturbance on y1 can be further reduced using a simple feedforward
controller (10.32) from disturbance d1 to u1.

10.7.4 Measurement selection for indirect control

Assume the overall goal is to keep some variable y1 at a given value (setpoint) r1,
e.g. our objective is to minimize J = ky1 � r1k. We assume we cannot measure y1,
and instead we attempt to achieve our goal by controlling y 2 at a constant value r2.
For small changes we may assume linearity and write

y1 = G1u+Gd1d (10.33)

y2 = G2u+Gd2d (10.34)

With feedback control of y2 we get y2 = r2 + e2 where e2 is the control error. We
now follow the derivation that led to Pd in (10.28): Solving for u2 in (10.34) and
substituting into (10.33) yields

y1 = (Gd1 �G1G
�1
2 Gd2)d+G1G

�1
2 (r2 + e2)
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With e2 = 0 and d = 0 this gives y1 = G1G
�1
2 r2, so r2 must be chosen such that

r1 = G1G
�1
2 r2 (10.35)

he control error in the primary output is then

y1 � r1 = (Gd1 �G1G
�1
2 Gd2)| {z }

Pd

d+G1G
�1
2| {z }

Pr

e2 (10.36)

To minimize J = ky1 � r1k we should therefore select controlled outputs such that
kPddk and kPre2k are small. Note that Pd depends on the scaling of disturbances d
and “primary” outputs y1 (and is independent of the scaling of inputs u and selected
outputs y2, at least for square plants). The magnitude of the control error e 2 depends
on the choice of outputs y2. Based on (10.36) a procedure for selecting controlled
outputs y2 may be suggested:

Scale the disturbances d to be of magnitude 1 (as usual), and scale the
outputs y2 so that the expected control error e2 (measurement noise) is
of magnitude 1 for each output (this is different from the output scaling
used in other cases). Then to minimize the control error for the primary
outputs, J = ky1�r1k, we should select sets of controlled outputs which:

Minimizes k [Pd Pr ] k (10.37)

Remark 1 The choice of norm in (10.37) is usually of secondary importance. The maximum
singular value arises if kdk2 � 1 and ke2k2 � 1, and we want to minimize ky1 � r1k2.

Remark 2 For the choice y2 = y1 we have that r1 = r2 is independent of d and the matrix
Pd in (10.36) and (10.37) is zero. However, Pr is still non-zero.

Remark 3 In some cases this measurement selection problem involves a trade-off between
wanting kPdk small (wanting a strong correlation between measured outputs y2 and “primary”
outputs y1) and wanting kPrk small (wanting the effect of control errors (measurement noise)
to be small). For example, this is the case in a distillation column when we use temperatures
inside the column (y2) for indirect control of the product compositions (y1). For a high-purity
separation, we cannot place the measurement too close to the column end due to sensitivity to
measurement error (kPrk becomes large), and we cannot place it too far from the column end
due to sensitivity to disturbances (kPdk becomes large).

Remark 4 Indirect control is related to the idea of inferential controlwhich is commonly
used in the process industry. However, in inferential control the idea is usually to use
the measurement of y2 to estimate (infer) y1 and then to control this estimate rather than
controlling y2 directly, e.g. see Stephanopoulos (1984). However, there is no universal
agreement on these terms, and Marlin (1995) uses the term inferential control to mean indirect
control as discussed above.

Remark 5 The problem of indirect control is closely related to that of cascade control
discussed in Section 10.7.2. The main difference is that in cascade control we also measure and
control y1 in an outer loop. In this case we want k [Pd Pr ] k small only at high frequencies
beyond the bandwidth of the outer loop involving y1.
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10.8 Decentralized feedback control
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Figure 10.10: Decentralized diagonal control of a 2� 2 plant

In this section, G(s) is a square plant which is to be controlled using a diagonal
controller (see Figure 10.10)

K(s) = diagfki(s)g =

26664
k1(s)

k2(s)

. . .
km(s)

37775 (10.38)

This is the problem of decentralized diagonal feedback control. The design of
decentralized control systems involves two steps:

1. The choice of pairings (control configuration selection)
2. The design (tuning) of each controller, k i(s).

The optimal solution to this problem is very difficult mathematically, because the
optimal controller is in general of infinite order and may be non-unique; we do
not address it in this book. The reader is referred to the literature (e.g. Sourlas
and Manousiouthakis, 1995) for more details. Rather we aim at providing simple
tools for pairing selections (step 1) and for analyzing the achievable performance
(controllability) of diagonally controlled plants (which may assist in step 2).

Notation for decentralized diagonal control. G(s) denotes a square m �m plant
with elements gij . Gij(s) denotes the remaining (m� 1)� (m� 1) plant obtained
by removing row i and column j in G(s). With a particular choice of pairing we can
rearrange the columns or rows of G(s) such that the paired elements are along the
diagonal of G(s). We then have that the controllerK(s) is diagonal (diagfk ig), and
we also introduce

eG , diagfgiig =

26664
g11

g22
. . .

gmm

37775 (10.39)



442 MULTIVARIABLE FEEDBACK CONTROL

as the matrix consisting of the diagonal elements of G. The loop transfer function
in loop i is denoted Li = giiki, which is also equal to the i’ th diagonal element of
L = GK.

10.8.1 RGA as interaction measure for decentralized control

We here follow Bristol (1966), and show that the RGA provides a measure of
the interactions caused by decentralized diagonal control. Let u j and yi denote a
particular input and output for the multivariable plantG(s), and assume that our task
is to use uj to control yi. Bristol argued that there will be two extreme cases:

� Other loops open: All other inputs are constant, i.e. uk = 0;8k 6= j.
� Other loops closed: All other outputs are constant, i.e. yk = 0;8k 6= i.

In the latter case, it is assumed that the other loops are closed with perfect control.
Perfect control is only possible at steady-state, but it is a good approximation at
frequencies within the bandwidth of each loop. We now evaluate the effect @y i=@uj
of “our” given input uj on “our” given output yi for the two extreme cases. We get

Other loops open:

�
@yi
@uj

�
uk=0;k 6=j

= gij (10.40)

Other loops closed:

�
@yi
@uj

�
yk=0;k 6=i

, bgij (10.41)

Here gij = [G]ij is the ij’ th element of G, whereas bgij is the inverse of the ji’ th
element of G�1 bgij = 1=[G�1]ji (10.42)

To derive (10.42) note that

y = Gu )
�
@yi
@uj

�
uk=0;k 6=j

= [G]ij (10.43)

and interchange the roles of G and G�1, of u and y, and of i and j to get

u = G�1y )
�
@uj
@yi

�
yk=0;k 6=i

= [G�1]ji (10.44)

and (10.42) follows. Bristol argued that the ratio between the gains in (10.40) and
(10.41), corresponding to the two extreme cases, is a useful measure of interactions,
and he introduced the term, ij’ th relative gain defined as

�ij ,
gijbgij = [G]ij [G

�1]ji (10.45)
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The Relative Gain Array (RGA) is the corresponding matrix of relative gains.
From (10.45) we get �(G) = G � (G�1)T where � denotes element-by-element
multiplication (the Schur product). This is identical to our definition of the RGA-
matrix in (3.69).

Intuitively, we would like to pair variables uj and yi so that �ij is close to 1, because
this means that the gain from uj to yi is unaffected by closing the other loops. More
precicely, we would like to pair such that the rearranged system, with the pairings
along the diagonal, has a RGA matrix close to identity (see Pairing Rule 1, page 445).

10.8.2 Factorization of sensitivity function

The magnitude of the off-diagonal elements in G (the interactions) relative to its
diagonal elements are given by the matrix

E , (G� eG) eG�1 (10.46)

An important relationship for decentralized control is given by the following
factorization of the return difference operator:

(I +GK)| {z }
overall

= (I +E eT )| {z }
interactions

(I + eGK)| {z }
individual loops

(10.47)

or equivalently in terms of the sensitivity function S = (I +GK)�1,

S = eS(I +E eT )�1 (10.48)

Here

eS , (I + eGK)�1 = diagf 1

1 + giiki
g and eT = I � eS (10.49)

contain the sensitivity and complementary sensitivity functions for the individual
loops. Note that eS is not equal to the matrix of diagonal elements of S. (10.48)
follows from (A.139) with G = eG and G0 = G. The reader is encouraged to
confirm that (10.48) is correct, because most of the important results for stability
and performance using decentralized control may be derived from this expression.

10.8.3 Stability of decentralized control systems

Consider a square plant with single-loop controllers. For a 2� 2 plant there are two
alternative pairings, a 3 � 3 plant offers 6, a 4 � 4 plant 24, and an m � m plant
has m! alternatives. Thus, tools are needed which are capable of quickly evaluating
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alternative pairings. In this section we first derive sufficient conditions for stability
which may be used to select promising pairings. These give rules in terms of diagonal
dominance. We then derive necessary conditions for stability which may be used to
eliminateundesirable pairings.

A. Sufficient conditions for stability

For decentralized diagonal control, it is desirable that the system can be tuned
and operated one loop at a time. Assume therefore that G is stable and each
individual loop is stable by itself ( eS and eT are stable). Then from the factorization
S = eS(I + E eT )�1 in (10.47) and the generalized Nyquist theorem in Lemma A.5
(page 540), it follows that the overall system is stable (S is stable) if and only if
det(I + E eT (s)) does not encircle the origin as s traverses the Nyquist D-contour.
From the spectral radius stability condition in (4.107) we then have that the overall
system is stable if

�(E eT (j!)) < 1;8! (10.50)

This sufficient condition for overall stability can, as discussed by Grosdidier and
Morari (1986), be used to obtain a number of even weakerstability conditions.

Sufficient conditions in terms of E. The least conservative approach is to split
up �(E eT ) using the structured singular value. From (8.92) we have �(E eT ) �
�(E)��(T ) and from (10.50) we get the following theorem (as first derived by
Grosdidier and Morari, 1986):

Theorem 10.2 AssumeG is stable and that the individual loops are stable (eT is
stable). Then the entire system is closed-loop stable (T is stable) if

��( eT ) = max
i
jetij < 1=�(E) 8! (10.51)

Here �(E) is called the structured singular value interaction measure, and is
computed with respect to the diagonal structureof eT , where we may view eT as
the “design uncertainty” . We would like to use integral action in the loops, that is,
we want eT � I at low frequencies, i.e. ��( eT ) � 1. Thus, in order to satisfy (10.51)
we need �(E) � 1 at low frequencies where we have tight control. This gives the
following rule:

Prefer pairings for which we have�(E) < 1 (“generalized diagonal dominance”)
at low frequencies.

Another approach is to use Gershgorin’s theorem, see page 514. From (10.50) we
then derive the following sufficient condition for overall stability in terms of the
rows of G:

jetij < jgiij=X
j 6=i

jgij j 8i;8! (10.52)
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or alternatively, in terms of the columns,

jetij < jgiij=X
j 6=i

jgjij 8i;8! (10.53)

This gives the important insight that we prefer to pair on large elements in G.

Remark 1 We cannot say that (10.51) is always less conservative than (10.52) and (10.53).
It is true that the smallestof the i = 1; : : :m upper bounds in (10.52) or (10.53) is always
smaller (more restrictive) than 1=�(E) in (10.51). However, (10.51) imposes the samebound
on jetij for each loop, whereas (10.52) and (10.53) give individual bounds, some of which may
be less restrictive than 1=�(E).

Remark 2 Another definition of generalized diagonal dominance is that �(jEj) < 1, where
�(jEj) is the Perron root; see (A.127). However, since �(E) = �(DED�1), see (8.84) where
D in this case is diagonal, it follows from (A.127) that �(E) � �(jEj), and it is better (less
restrictive) to use �(E) to define diagonal dominance.

Remark 3 Condition (10.51) and the use of �(E) for (nominal) stability of the decentralized
control system can be generalized to include robust stability and robust performance; see
equations (31a-b) in Skogestad and Morari (1989).

Sufficient conditions for stability in terms of RGA. We now want to show that for
closed-loop stability it is desirable to select pairings such that the RGA is close to
the identity matrix in the crossover region. The next simple theorem, which applies
to a triangular plant, will enable us to do this:

Theorem 10.3 Suppose the plantG(s) is stable. If the RGA-matrix�(G) = I 8!
then stability of each of the individual loops implies stability of the entire system.

Proof: From the definition of the RGA it follows that �(G) = I can only arise from a
triangular G(s) or from G(s)-matrices that can be made triangular by interchanging rows
and columns in such a way that the diagonal elements remain the same but in a different order
(the pairings remain the same). A plant with a “ triangularized” transfer matrix (as described
above) controlled by a diagonal controller has only one-way couplingand will always yield
a stable system provided the individual loops are stable. Mathematically, E = (G� eG) eG�1
can be made triangular, and since the diagonal elements of E are zero, it follows that all
eigenvalues of E eT are zero, so �(E eT ) = 0 and (10.50) is satisfied. 2

RGA at crossover frequencies. In most cases, it is sufficient for overall stability to
require that G(j!) is close to triangular (or �(G) � I) at crossover frequencies:

Pairing Rule 1. To achieve stability with decentralized control prefer pairings such
that at frequencies! around crossover, the rearranged matrixG(j!) (with the
paired elements along the diaginal) is close to triangular. This is equivalent to
requiring�(G(j!)) � I , i.e. the RGA-numberk�(G(j!))� Iksum should be
small.
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Derivation of Pairing rule 1.Assume that eS is stable, and that eS�(s) = eS eG(s)G(s)�1 is
stable and has no RHP-zeros (which is always satisfied if both G and eG are stable and have
no RHP-zeros). Then from (10.60) the overall system is stable (S is stable) if and only if
(I + eS(� � I))�1 is stable. Here eS(� � I) is stable, so from the spectral radius stability
condition in (4.107) the overall system is stable if

�(eS(�� I)(j!)) < 1; 8! (10.54)

At low frequencies, this condition is usually satisfied because eS is small. At higher
frequencies, where the elements in eS = diagfesig approach and possibly exceed 1 in
magnitude, (10.54) may be satisfied if G(j!) is close to triangular. This is because � � I

and thus eS(� � I) are then close to triangular, with diagonal elements close to zero, so the
eigenvalues of eS(� � I)(j!) are close to zero, (10.54) is satisfied and we have stability of
S. This conclusion also holds for plants with RHP-zeros provided they are located beyond the
crossover frequency range. 2

Example. Consider a plant and its RGA-matrix

G =

��5 1
6 2

�
; �(G) =

�
0:625 0:375
0:375 0:625

�
The RGA indicates thatG is diagonally dominant and that we would prefer to use the diagonal
pairing. This is confirned by computing the relative interactions as given by the matrixE:

eG =
��5 0
0 2

�
; E = (G� eG) eG�1 = �

0:375 0:3125
�0:75 0:375

�
. The SSV-interaction measure is�(E) = 0:6124, so the plant is diagonally dominant, and
from (10.51) stability of the individual loops will guarantee stability of the overall closed-loop
system. Note that the Perron root�(jEj) = 0:8591 which shows that the use of�(E) is less
conservative.

It is not possible in this case to conclude from the Gershgorin bounds in (10.52) and (10.53)
that the plant is diagonally dominant, because the off-diagonal element of 6 is larger than any
of the diagonal elements.

B. Necessary steady-state conditions for stability

A desirable property of a decentralized control system is that it has integrity, i.e. the
closed-loop system should remain stable as subsystem controllers are brought in and
out of service. Mathematically, the system possesses integrity if it remains stable
when the controller K is replaced by EK where E = diagf� ig and �i may take on
the values of �i = 0 or �i = 1.

An even stronger requirement is that the system remains stable as the gain in
various loops are reduced (detuned) by an arbitrary factor, i.e. 0 � � i � 1
(“complete detunability” ). Decentralized integral controllability (DIC) is concerned
with whether this is possibleintegral control:
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Definition 10.1 Decentralized Integral Controllability (DIC). The plant G(s)
(corresponding to a given pairing with the paired elements along its diagonal) is
DIC if thereexists a stabilizing decentralized controller with integral action in each
loop such that each individual loop may be detuned independently by a factor� i
(0 � �i � 1) without introducing instability.

Note that DIC considers the existenceof a controller, so it depends only on the plant
G and the chosen pairings. The steady-state RGA provides a very useful tool to test
for DIC, as is clear from the following result which was first proved by Grosdidier
et al. (1985):

Theorem 10.4 Steady-state RGA and DIC. Consider a stable square plantG and
a diagonal controllerK with integral action in all elements, and assume that the
loop transfer functionGK is strictly proper. If a pairing of outputs and manipulated
inputs corresponds to a negative steady-state relative gain, then the closed-loop
system has at least one of the following properties:
(a) The overall closed-loop system is unstable.
(b) The loop with the negative relative gain is unstable by itself.
(c) The closed-loop system is unstable if the loop with the negative relative gain is
opened (broken).

This can be summarized as follows:

A stable (reordered) plant G(s) is DIC only if �ii(0) � 0 for all i. (10.55)

Proof: The theorem may be proved by setting eT = I in (10.47) and applying the generalized
Nyquist stability condition. Alternatively, we can use Theorem 6.5 on page 245 and select

G0 = diagfgii; Giig. Since detG0 = gii detG
ii and from (A.77) �ii =

gii detG
ii

detG
we have

detG0=detG = �ii and Theorem 10.4 follows. 2

Each of the three possible instabilities in Theorem 10.4 resulting from pairing on a
negative value of �ij(0) is undesirable. The worst case is (a) when the overall system
is unstable, but situation (c) is also highly undesirable as it will imply instability if
the loop with the negative relative gain somehow becomes inactive, for example, due
to input saturation. Situation (b) is unacceptable if the loop in question is intended to
be operated by itself, or if all the other loops may become inactive, e.g. due to input
saturation.

Remarks on DIC and RGA.

1. DIC was introduced by Skogestad and Morari (1988b). A detailed survey of conditions for
DIC and other related properties is given by Campo and Morari (1994).

2. Unstable plants are not DIC. The reason is that with all �i = 0 we are left with the
uncontrolled plant G, and the system will be (internally) unstable if G(s) is unstable.
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3. For �i = 0 we assume that the integrator of the corresponding SISO controller has been
removed, otherwise the integrator would yield internal instability.

4. For 2� 2 and 3� 3 plants we have even tighter conditions for DIC than (10.55). For 2� 2
plants (Skogestad and Morari, 1988b)

DIC , �11(0) > 0 (10.56)

For 3 � 3 plants with positive diagonal RGA-elements of G(0) and of Gii(0); i = 1; 2; 3
(its three principal submatrices) we have (Yu and Fan, 1990)

DIC ,
p
�11(0) +

p
�22(0) +

p
�33(0) � 1 (10.57)

(Strictly speaking, as pointed out by Campo and Morari (1994), we do not have equivalence
for the case when

p
�11(0) +

p
�22(0) +

p
�33(0) is identical to 1, but this has little

practical significance).
5. One cannot expect tight conditions for DIC in terms of the RGA for 4�4 systems or higher.

The reason is that the RGA essentially only considers “corner values” , �i = 0 or �i = 1
(integrity), for the detuning factor in each loop in the definition of DIC. This is clear from

the fact that �ii =
gii detG

ii

detG
, where G corresponds to �i = 1 for all i, gii corresponds to

�i = 1 with the other �k = 0, and Gii corresponds to �i = 0 with the other �k = 1.
6. Determinant conditions for integrity (DIC). The following condition is concerned with

whether it is possible to design a decentralized controller for the plant such that the
system possesses integrity, which is a prerequisite for having DIC: Assume without loss
of generality that the signs of the rows or columns ofG have been adjusted such that
all diagonal elements ofG are positive, i.e.gii(0) � 0. Then one may compute the
determinant ofG(0) and all its principal submatrices (obtained by deleting rows and
corresponding columns inG(0)), which should all have the same sign for DIC.
This determinant condition follows by applying Theorem 6.5 to all possible combinations
of �i = 0 or 1 as illustrated in the proof of Theorem 10.4, and is equivalent to requiring
that the so-called Niederlinski indices,

NI = detG(0)=�igii(0) (10.58)

ofG(0) and its principal submatrices are all positive. Actually, this yields more information

than the RGA, because in the RGA the terms are combined into �ii = gii detG
ii

detG
so

we may have cases where two negative determinants result in a positive RGA-element.
Nevertheless, the RGA is usually the preferred tool because it does not have to be
recomputed for each pairing.

7. DIC is also closely related to D-stability, see papers by Yu and Fan (1990) and Campo
and Morari (1994). The theory of D-stability provides necessary and sufficient conditions
except in a few special cases, such as when the determinant of one or more of the
submatrices is zero.

8. If we assume that the controllers have integral action, then T (0) = I , and we can
derive from (10.51) that a sufficient condition for DIC is that G is generalized diagonally
dominant at steady-state, that is,

�(E(0)) < 1

This is proved by Braatz (1993, p.154). However, the requirement is only sufficient for
DIC and therefore cannot be used to eliminate designs. Specifically, for a 2 � 2 system
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it is easy to show (Grosdidier and Morari, 1986) that �(E(0)) < 1 is equivalent to
�11(0) > 0:5, which is conservative when compared with the necessary and sufficient
condition �11(0) > 0 in (10.56).

9. If the plant has j!-axis poles, e.g. integrators, it is recommended that, prior to the RGA-
analysis, these are moved slightly into the LHP (e.g. by using very low-gain feedback).
This will have no practical significance for the subsequent analysis.

10. Since Theorem 6.5 applies to unstable plants, we may also easily extend Theorem 10.4
to unstable plants (and in this case one may actually desire to pair on a negative RGA-
element). This is shown in Hovd and Skogestad (1994a). Alternatively, one may first
implement a stabilizing controller and then analyze the partially controlled system as if
it were the plant G(s).

11. The above results only address stability. Performance is analyzed in Section 10.8.5.

10.8.4 The RGA and right-half plane zeros: Further reasons for
not pairing on negative RGA elements

Bristol (1966) claimed that negative values of � ii(0) implied the presence of RHP-
zeros. This is indeed true as illustrated by the following two theorems:

Theorem 10.5 (Hovd and Skogestad, 1992) Consider a transfer function matrix
G(s) with no zeros or poles ats = 0. Assumelims!1 �ij(s) is finite and different
from zero. If�ij(j1) and �ij(0) have different signs then at least one of the
following must be true:
a) The elementgij(s) has a RHP-zero.
b) The overall plantG(s) has a RHP-zero.
c) The subsystem with inputj and outputi removed,G ij(s), has a RHP-zero.

Theorem 10.6 (Grosdidier et al., 1985) Consider a stable transfer function matrix
G(s) with elementsgij(s). Let bgij(s) denote the closed-loop transfer function
between inputuj and outputyi with all the other outputs under integral control.
Assume that: (i)gij(s) has no RHP-zeros, (ii) the loop transfer functionGK is
strictly proper, (iii) all other elements ofG(s) have equal or higher pole excess than
gij(s). We then have:

If �ij(0) < 0 thenbgij(s) has an odd number of RHP-poles and RHP-zeros.

Negative RGA-elements and decentralized performance With decentralized
control we usually design and implement the controller by tuning and closing one
loop at a time in a sequential manner. Assume that we pair on a negativesteady-state
RGA-element, �ij(0) < 0, assume that �ij(1) is positive (it is usually close to 1,
see Pairing rule 1), and assume that the element g ij has no RHP-zero. Then taken
together the above two theorems then have the following implications:
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(a) If we start by closing this loop (involving input u i and output yj), then we will get
a RHP-zero (inGij(s)) which will limit the performance in the other outputs (follows
from Theorem 10.5 by assuming that G has no RHP-zero and that � ij(1) > 0).

(b) If we end by closing this loop, then we will get a RHP-zero i(in bg ij(s)) which
will limit the performance in output yi (follows from Theorem 10.6).

In conclusion, pairing on a negative RGA-element will, in addition to resulting
in potential instability as given in Theorem 10.4, also limit the closed-loop
decentralized performance.

We have then firmly established the following rule:

Pairing Rule 2. For a stable plant avoid pairings that correspond to negative
steady-state RGA-elements,�ij(0) < 0.

The RGA is a very efficient tool because it does not have to be recomputed for
each possible choice of pairing. This follows since any permutation of the rows and
columns of G results in the same permutation in the RGA of G. To achieve DIC one
has to pair on a positive RGA(0)-element in each row and column, and therefore one
can often eliminate many alternative pairings by a simple glance at the RGA-matrix.
This is illustrated by the following example.

Example 10.8 Consider a3� 3 plant with

G(0) =

"
10:2 5:6 1:4
15:5 �8:4 �0:7
18:1 0:4 1:8

#
; �(0) =

"
0:96 1:45 �1:41
0:94 �0:37 0:43
�0:90 �0:07 1:98

#
(10.59)

For a 3 � 3 plant there are 6 alternative pairings, but from the steady-state RGA we see that
there is only one positive element in column2 (�12 = 1:45), and only one positive element in
row 3 (�33 = 1:98), and therefore there is only one possible pairing with all RGA-elements
positive (u1 $ y2, u2 $ y1, u3 $ y3). Thus, if we require DIC we can from a quick glance
at the steady-state RGA eliminate five of the six alternative pairings.

Example 10.9 Consider the plant and RGA

G(s) =
(�s+ 1)

(5s+ 1)2

"
1 4:19 �25:96

6:19 1 �25:96
1 1 1

#
; �(G) =

"
1 5 �5
�5 1 5
5 �5 1

#

Note that the RGA is constant, independent of frequency. Only two of the six possible pairings
give positive steady-state RGA-elements (Pairing Rule 2): (a) The (diagonal) pairing on all
�ii = 1. (b) The pairing on all�ii = 5. Intuitively, one may expect pairing (a) to be the best
since it corresponds to pairing on RGA-elements equal to 1. However, the RGA-matrix is far
from identity, and the RGA-number,k�� Iksum, is 30 for both alternatives. Thus, none of the
two alternatives satisfy Pairing Rule 1, and we are led to conclude that decentralized control
should not be used for this plant.

Remark. (Hovd and Skogestad, 1992) confirm this conclusion by designing PI controllers for
the two cases. Surprisingly, they found pairing (a) corresponding to�ii = 1 to be significantly
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worse than (b) with�ii = 5. They found the achieveable closed-loop time constants to be 1160
and 220, respectively, which in both cases is very slow compared to the RHP-zero which has
a time constant of 1.

Exercise 10.7 (a) Assume that the4� 4 matrix in (A.82) represents the steady-state model
of a plant. Show that20 of the24 possible pairings can be eliminated by requiring DIC. (b)
Consider the3 � 3 FCC process in Exercise 6.16 on page 250. Show that 5 of the 6 possible
pairings can be eliminated by requiring DIC.

10.8.5 Performance of decentralized control systems

Above we used the factorization S = eS(I + E eT )�1 in (10.48) to study stability.
Here we want to consider perfomance. A related factorization which follows from
(A.140) is

S = (I + eS(�� I))�1 eS� (10.60)

where � is the Performance Relative Gain Array (PRGA),

�(s) , eG(s)G�1(s) (10.61)

which is a scaled inverse of the plant. Note that E = ��1 � I . At frequencies
where feedback is effective ( eS � 0), (10.60) yields S � eS� which shows that �
is important when evaluating performance with decentralized control. The diagonal
elements of the PRGA-matrix are equal to the diagonal elements of the RGA,

ii = �ii, and this is the reason for its name. Note that the off-diagonal elements of
the PRGA depend on the relative scaling on the outputs, whereas the RGA is scaling
independent. On the other hand, the PRGA measures also one-way interaction,
whereas the RGA only measures two-way interaction.

We will also make use of the related Closed-Loop Disturbance Gain (CLDG) matrix,
defined as eGd(s) , �(s)Gd(s) = eG(s)G�1(s)Gd(s) (10.62)

The CLDG depends on both output and disturbance scaling.

In the following, we consider performance in terms of the control error

e = y � r = Gu+Gdd� r (10.63)

Suppose the system has been scaled as outlined in Section 1.4, such that at each
frequency:

1. Each disturbance is less than 1 in magnitude, jdkj < 1.
2. Each reference change is less than the corresponding diagonal element in R,
jrj j < Rj .
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3. For each output the acceptable control error is less than 1, je ij < 1.

For SISO systems, we found in Section 5.10 that in terms of scaled variables we
must at all frequencies require

j1 + Lj > jGdj and j1 + Lj > jRj (10.64)

for acceptable disturbance rejection and command tracking, respectively. Note that
L;Gd andR are all scalars in this case. For decentralized control these requirements
may be directly generalized by introducing the PRGA-matrix, � = eGG�1, and the
CLDG-matrix, eGd = �Gd. These generalizations will be presented and discussed
next, and then subsequently proved.

Single disturbance. Consider a single disturbance, in which case Gd is a vector,
and let gdi denote the i’ th element of Gd. Let Li = giiki denote the loop transfer
function in loop i. Consider frequencies where feedback is effective so eS� is small
(and (10.67) is valid). Then for acceptable disturbance rejection (je ij < 1) we must
with decentralized control require for each loop i,

j1 + Lij > jegdij 8i (10.65)

which is the same as the SISO-condition (5.52) except that Gd is replaced by the
CLDG, egdi. In words, egdi gives the “apparent” disturbance gain as seen from loop i
when the system is controlled using decentralized control.

Single reference change. Similarly, consider a change in reference for output j
of magnitude Rj . Consider frequencies where feedback is effective (and (10.67) is
valid). Then for acceptable reference tracking (je ij < 1) we must require for each
loop i

j1 + Lij > j
ij j � jRj j 8i (10.66)

which is the same as the SISO-condition except for the PRGA-factor, j
 ij j. In other
words, when the other loops are closed the response in loop i gets slower by a factor
j
iij. Consequently, for performanceit is desirable to have small elements in �, at
least at frequencies where feedback is effective. However, at frequencies close to
crossover, stability is the main issue, and since the diagonal elements of the PRGA
and RGA are equal, we usually prefer to have 
 ii close to 1 (recall Pairing Rule 1 on
page 445).

Proofs of (10.65) and (10.66):At frequencies where feedback is effective, eS is small, so

I + eS(�� I) � I (10.67)

and from (10.60) we have
S � eS� (10.68)

The closed-loop response then becomes

e = SGdd� Sr � eS eGdd� eS�r (10.69)
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and the response in output i to a single disturbance dk and a single reference change rj is

ei � esiegdikdk � esi
ikrk (10.70)

where esi = 1=(1 + giiki) is the sensitivity function for loop i by itself. Thus, to achieve
jeij < 1 for jdkj = 1 we must require jesiegdikj < 1 and (10.65) follows. Similarly, to achieve
jeij < 1 for jrj j = jRj j we must require jsi
ikRj j < 1 and (10.66) follows. Also note that
jsi
ikj < 1 will imply that assumption (10.67) is valid. Since R usually has all of its elements
larger than 1, in most cases (10.67) will be automatically satisfied if (10.66) is satisfied, so we
normally need not check assumption (10.67). 2

Remark 1 (10.68) may also be derived from (10.48) by assuming eT � I which yields
(I +E eT )�1 � (I +E)�1 = �.

Remark 2 Consider a particular disturbance with model gd. Its effect on output i with no
control is gdi, and the ratio between egdi (the CLDG) and gdi is the relative disturbance gain
(RDG) (�i) of Stanley et al. (1985) (see also Skogestad and Morari (1987b)):

�i , egdi=gdi = [ eGG�1gd]i=[gd]i (10.71)

Thus �i, which is scaling independent, gives the changein the effect of the disturbance caused
by decentralized control. It is desirable to have �i small, as this means that the interactions are
such that they reduce the apparent effect of the disturbance, such that one does not need high
gains jLij in the individual loops.

10.8.6 Summary: Controllability analysis for decentralized
control

When considering decentralized diagonal control of a plant, one should first check
that the plant is controllable with any controller. If the plant is unstable, then as
usual the unstable modes must be controllable and observable. In addition, the
unstable modes must not be decentralized fixed modes, otherwise the plant cannot
be stabilized with a diagonal controller (Lunze, 1992). For example, this is the case
for a triangular plant if the unstable mode appears only in the off-diagonal elements.

The next step is to compute the RGA-matrix as a function of frequency, and to
determine if one can find a good set of input-output pairs bearing in mind the
following:

1. Prefer pairings which have the RGA-matrix close to identity at frequencies around
crossover, i.e. the RGA-number k�(j!) � Ik should be small. This rule is to
ensure that interactions from other loops do not cause instability as discussed
following (10.54).

2. Avoid a pairing ij with negative steady-state RGA elements, � ij(G(0)).
3. Prefer a pairing ij where gij puts minimal restrictions on the achievable

bandwidth. Specifically, the frequency !uij where \gij(j!uij) = �180Æ should
be as large as possible.
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This rule favours pairing on variables “close to each other” , which makes it easier
to satisfy (10.65) and (10.66) physically while at the same time achieving stability.
It is also consistent with the desire that �(j!) is close to I .

When a reasonable choice of pairings has been made, one should rearrangeG to have
the paired elements along the diagonal and perform a controllability analysis.

4. Compute the CLDG and PRGA, and plot these as a function of frequency.
5. For systems with many loops, it is best to perform the analysis one loop at the

time, that is, for each loop i, plot jegdikj for each disturbance k and plot j
ij j
for each reference j (assuming here for simplicity that each reference is of unit
magnitude). For performance, we need j1 + L ij to be larger than each of these

Performance : j1 + Lij > max
k;j

fjegdikj; j
ij jg (10.72)

To achieve stability of the individual loops one must analyze g ii(s) to ensure
that the bandwidth required by (10.72) is achievable. Note that RHP-zeros in the
diagonal elements may limit achievable decentralized control, whereas they may
not pose any problems for a multivariable controller. Since with decentralized
control we usually want to use simple controllers, the achievable bandwidth
in each loop will be limited by the frequency where \g ii is �180Æ (recall
Section 5.12).

6. As already mentioned one may check for constraints by considering the elements
of G�1Gd and making sure that they do not exceed one in magnitude within the
frequency range where control is needed. Equivalently, one may for each loop i
plot jgiij, and the requirement is then that

To avoid input constraints : jgiij > jegdikj; 8k (10.73)

at frequencies where jegdikj is larger than 1 (this follows since eGd = eGG�1Gd).
This provides a direct generalization of the requirement jGj > jGdj for SISO
systems. The advantage of (10.73) compared to usingG�1Gd is that we can limit
ourselves to frequencies where control is needed to reject the disturbance (where
jegdikj > 1).

If the plant is not controllable, then one may consider another choice of pairings and
go back to Step 4. If one still cannot find any pairings which are controllable, then
one should consider multivariable control.

7. If the chosen pairing is controllable then the analysis based on (10.72) tells us
directly how large jLij = jgiikijmust be, and can be used as a basis for designing
the controller ki(s) for loop i.

Remark. In some cases, pairings which violate the above rules may be chosen. For example,
one may even choose to pair on elements with gii = 0 which yield �ii = 0. One then relies on
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the interactions to achieve the desired performance as loop i by itself has no effect. An example
of this is in distillation control when the LV -configuration is not used, see Example 10.5.

Example 10.10 Application to distillation process. In order to demonstrate the use
of the frequency dependent RGA and CLDG for evaluation of expected diagonal control
performance, we consider again the distillation process used in Example 10.7. TheLV
configuration is used, that is, the manipulated inputs are refluxL (u1) and boilupV (u2).
Outputs are the product compositionsyD (y1) andxB (y2). Disturbances in feed flowrateF
(d1) and feed compositionzF (d2), are included in the model. The disturbances and outputs
have been scaled such that a magnitude of1 corresponds to a change inF of 20%, a change
in zF of 20%, and a change inxB andyD of 0:01 mole fraction units. The5 state dynamic
model is given in Section 12.4.

Initial controllability analysis. G(s) is stable and has no RHP-zeros. The plant and RGA-
matrix at steady-state are

G(0) =
�
87:8 �86:4
108:2 �109:6

�
; �(0) =

�
35:1 �34:1
�34:1 35:1

�
(10.74)

The RGA-elements are much larger than1 and indicate a plant that is fundamentally
difficult to control. Fortunately, the flow dynamics partially decouple the response at higher
frequencies, and we find that�(j!) � I at frequencies above about0:5 rad/min. Therefore if
we can achieve sufficiently fast control, the large steady-state RGA-elements may be less of a
problem.
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Figure 10.11: Disturbance gains jgdikj, for effect of disturbance k on output i

The steady-state effect of the two disturbances is given by

Gd(0) =
�
7:88 8:81
11:72 11:19

�
(10.75)

and the magnitudes of the elements inGd(j!) are plotted as a function of frequency in
Figure 10.11. From this plot the two disturbances seem to be equally difficult to reject with
magnitudes larger than1 up to a frequency of about0:1 rad/min. We conclude that control is
needed up to 0.1 rad/min. The magnitude of the elements inG�1Gd(j!) (not shown) are all
less than1 at all frequencies (at least up to10 rad/min), and so it will be assumed that input
constraints pose no problem.
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Figure 10.12: Closed-loop disturbance gains, jegdikj, for effect of disturbance k on output i

Choice of pairings. The selection ofu1 to control y1 and u2 to control y2, corresponds to
pairing on positive elements of�(0) and�(j!) � I at high frequencies. This seems sensible,
and is used in the following.

Analysis of decentralized control. The elements in the CLDG and PRGA matrices are shown
as functions of frequency in Figures 10.12 and 10.13. At steady-state we have

�(0) =
�
35:1 �27:6
�43:2 35:1

�
; eGd(0) = �(0)Gd(0) =

��47:7 �0:40
70:5 11:7

�
(10.76)

In this particular case the off-diagonal elements of RGA (�) and PRGA (�) are quite similar.
We note thateGd(0) is very different fromGd(0), and this also holds at higher frequencies. For
disturbance1 (first column ineGd) we find that the interactions increase the apparent effect of
the disturbance, whereas they reduce the effect of disturbance2, at least on output1.
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Figure 10.13: PRGA-elements j
ij j for effect of reference j on output i

We now consider one loop at a time to find the required bandwidth. For loop1 (output1) we
consider
11 and
12 for references, andegd11 andegd12 for disturbances. Disturbance1 is the
most difficult, and we needj1 + L1j > jbgd11j at frequencies wherejbgd11j is larger than1,
which is up to about0:2 rad/min. The magnitude of the PRGA-elements are somewhat smaller
thanjegd11j (at least at low frequencies), so reference tracking will be achieved if we can reject
disturbance1. From egd12 we see that disturbance2 has almost no effect on output1 under
feedback control.
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Figure 10.14: Decentralized PI-control. Responses to a unit step in d1 at t = 0 and a unit step
in d2 at t = 50 min

Also, for loop2 we find that disturbance1 is the most difficult, and fromegd12 we require a
loop gain larger than1 up to about0:3 rad/min. A bandwidth of about0:2 to 0:3 rad/min in
each loop, is required for rejecting disturbance1, and should be achievable in practice.

Observed control performance. To check the validity of the above results we designed two
single-loop PI controllers:

k1(s) = 0:261
1 + 3:76s

3:76s
; k2(s) = �0:3751 + 3:31s

3:31s
(10.77)

The loop gains,Li = giiki, with these controllers are larger than the closed-loop disturbance
gains,jÆikj, at frequencies up to crossover. Closed-loop simulations with these controllers are
shown in Figure 10.14. The simulations confirm that disturbance2 is more easily rejected than
disturbance1.

In summary, there is an excellent agreement between the controllability analysis and
the simulations, as has also been confirmed by a number of other examples.

10.8.7 Sequential design of decentralized controllers

The results presented in this section on decentralized control are most useful for
the case when the local controllers ki(s) are designed independently, that is, each
controller is designed locally and then all the loops are closed. As discussed above,
one problem with this is that the interactions may cause the overall system (T ) to
be unstable, even though the local loops ( eT ) are stable. This will not happen if the
plant is diagonally dominant, such that we satisfy, for example, ��( eT ) < 1=�(E) in
(10.51).

The stability problem is avoided if the controllers are designed sequentiallyas is
commonly done in practice when, for example, the bandwidths of the loops are
quite different. In this case the outer loops are tuned with the inner (fast) loops in
place, and each step may be considered as a SISO control problem. In particular,
overall stability is determined by m SISO stability conditions. However, the issue
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of performance is more complicated because the closing of a loop may cause
“disturbances” (interactions) into a previously designed loop. The engineer must then
go back and redesign a loop that has been designed earlier. Thus sequential design
may involve many iterations; see Hovd and Skogestad (1994b). The performance
bounds in (10.72) are useful for determining the required bandwidth in each loop
and may thus suggest a suitable sequence in which to design the controllers.

Although the analysis and derivations given in this section apply when we design
the controllers sequentially, it is often useful, after having designed a lower-layer
controller (the inner fast loops), to redo the analysis based on the model of the
partially controlled system using (10.26) or (10.28). For example, this is usually
done for distillation columns, where we base the analysis of the composition control
problem on a 2� 2 model of the partially controlled 5� 5 plant, see Examples 10.5
and 10.10.

10.8.8 Conclusions on decentralized control

In this section, we have derived a number of conditions for the stability, e.g. (10.51)
and (10.55), and performance, e.g. (10.65) and (10.66), of decentralized control
systems. The conditions may be useful in determining appropriate pairings of inputs
and outputs and the sequence in which the decentralized controllers should be
designed. Recall, however, that in many practical cases decentralized controllers are
tuned based on local models or even on-line. The conditions/bounds are also useful in
an input-output controllability analysis for determining the viability of decentralized
control.

Some exercises which include a controllability analysis of decentralized control are
given at the end of Chapter 6.

10.9 Conclusion

The issue of control structure design is very important in applications, but it has
received relatively little attention in the control community during the last 40 years.
In this chapter, we have discussed the issues involved, and we have provided some
ideas and tools. There is clearly a need for better tools and theory in this area.
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MODEL REDUCTION

This chapter describes methods for reducing the order of a plant or controller model. We place
considerable emphasis on reduced order models obtained by residualizing the less controllable
and observable states of a balanced realization. We also present the more familiar methods of
balanced truncation and optimal Hankel norm approximation.

11.1 Introduction

Modern controller design methods such as H1 and LQG, produce controllers of
order at least equal to that of the plant, and usually higher because of the inclusion
of weights. These control laws may be too complex with regards to practical
implementation and simpler designs are then sought. For this purpose, one can either
reduce the order of the plant model prior to controller design, or reduce the controller
in the final stage, or both.

The central problem we address is: given a high-order linear time-invariant stable
modelG, find a low-order approximationGa such that the infinity (H1 orL1) norm
of the difference, kG�Gak1, is small. By model order, we mean the dimension of
the state vector in a minimal realization. This is sometimes called the McMillan
degree.

So far in this book we have only been interested in the infinity (H1) norm of stable
systems. But the errorG�Ga may be unstable and the definition of the infinity norm
needs to be extended to unstable systems. L1 defines the set of rational functions
which have no poles on the imaginary axis, it includesH1, and its norm (likeH1)
is given by kGk1 = supw �� (G(jw)).

We will describe three main methods for tackling this problem: balanced truncation,
balanced residualization and optimal Hankel norm approximation. Each method
gives a stable approximation and a guaranteed bound on the error in the
approximation. We will further show how the methods can be employed to reduce
the order of an unstablemodel G. All these methods start from a special state-space
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realization of G referred to as balanced. We will describe this realization, but first
we will show how the techniques of truncation and residualization can be used to
remove the high frequency or fast modes of a state-space realization.

11.2 Truncation and residualization

Let (A;B;C;D) be a minimal realization of a stable system G(s), and partition the

state vector x, of dimension n, into
�
x1
x2

�
where x2 is the vector of n � k states

which we wish to remove. With appropriate partitioning of A, B and C, the state-
space equations become

_x1 = A11x1 +A12x2 +B1u (11.1)

_x2 = A21x1 +A22x2 +B2u

y = C1x1 + C2x2 +Du

11.2.1 Truncation

A k-th order truncation of the realization G
s
= (A;B;C;D) is given by Ga

s
=

(A11; B1; C1; D). The truncated model Ga is equal to G at infinite frequency,
G(1) = Ga(1) = D, but apart from this there is little that can be said in the
general case about the relationship between G and Ga. If, however, A is in Jordan
form then it is easy to order the states so that x2 corresponds to high frequency or
fast modes. This is discussed next.

Modal truncation. For simplicity, assume that A has been diagonalized so that

A =

2664
�1 0 � � � 0
0 �2 � � � 0
...

...
. . .

...
0 0 � � � �n

3775 B =

2664
bT1
bT2
...
bTn

3775 C = [ c1 c2 � � � cn ] (11.2)

Then, if the �i are ordered so that j�1j < j�2j < � � �, the fastest modes are removed
from the model after truncation. The difference between G and G a following a k-th
order model truncation is given by

G�Ga =
nX

i=k+1

cib
T
i

s� �i
(11.3)

and therefore

kG�Gak1 �
nX

i=k+1

��(cib
T
i )

jRe(�i)j (11.4)
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It is interesting to note that the error depends on the residues c ibTi as well as the �i.
The distance of �i from the imaginary axis is therefore not a reliable indicator of
whether the associated mode should be included in the reduced order model or not.

An advantage of modal truncation is that the poles of the truncated model are a subset
of the poles of the original model and therefore retain any physical interpretation they
might have, e.g. the phugoid mode in aircraft dynamics.

11.2.2 Residualization

In truncation, we discard all the states and dynamics associated with x2. Suppose
that instead of this we simply set _x2 = 0, i.e. we residualizex2, in the state-space
equations. One can then solve for x2 in terms of x1 and u, and back substitution of
x2, then gives

_x1 = (A11 �A12A
�1
22 A21)x1 + (B1 �A12A

�1
22 B2)u (11.5)

y = (C1 � C2A
�1
22 A21)x1 + (D � C2A

�1
22 B2)u (11.6)

Let us assume A22 is invertible and define

Ar
4
= A11 �A12A

�1
22 A21 (11.7)

Br
4
= B1 �A12A

�1
22 B2 (11.8)

Cr
4
= C1 � C2A

�1
22 A21 (11.9)

Dr
4
= D � C2A

�1
22 B2 (11.10)

The reduced order model Ga(s)
s
= (Ar ; Br; Cr; Dr) is called a residualization of

G(s)
s
= (A;B;C;D). Usually (A;B;C;D) will have been put into Jordan form,

with the eigenvalues ordered so that x2 contains the fast modes. Model reduction
by residualization is then equivalent to singular perturbational approximation, where
the derivatives of the fastest states are allowed to approach zero with some parameter
�. An important property of residualization is that it preserves the steady-state gain
of the system, Ga(0) = G(0). This should be no surprise since the residualization
process sets derivatives to zero, which are zero anyway at steady-state. But it is in
stark contrast to truncation which retains the system behaviour at infinite frequency.
This contrast between truncation and residualization follows from the simple bilinear
relationship s! 1

s which relates the two (e.g. Liu and Anderson, 1989)

It is clear from the discussion above that truncation is to be preferred when accuracy
is required at high frequencies, whereas residualization is better for low frequency
modelling.

Both methods depend to a large extent on the original realization and we have
suggested the use of the Jordan form. A better realization, with many useful
properties, is the balanced realization which will be considered next.
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11.3 Balanced realizations

In words only: A balanced realizationis an asymptotically stable minimal realization
in which the controllability and observability Gramians are equal and diagonal.

More formally: Let (A;B;C;D) be a minimal realization of a stable, rational
transfer function G(s), then (A;B;C;D) is called balancedif the solutions to the
following Lyapunov equations

AP + PAT +BBT = 0 (11.11)

ATQ+QA+ CTC = 0 (11.12)

are P = Q = diag(�1; �2; : : : ; �n)
4
= �, where �1 � �2 � : : : � �n > 0. P and Q

are the controllability and observability Gramians, also defined by

P
4
=

Z 1

0

eAtBBT eA
T tdt (11.13)

Q
4
=

Z 1

0

eA
T tCTCeAtdt (11.14)

� is therefore simply referred to as the Gramian of G(s). The � i are the ordered

Hankel singular values of G(s), more generally defined as � i
4
= �

1
2

i (PQ); i =
1; : : : ; n. Notice that �1 = kGkH , the Hankel norm of G(s).

Any minimal realization of a stable transfer function can be balanced by a simple
state similarity transformation, and routines for doing this are available in MATLAB.
For further details on computing balanced realizations, see Laub et al. (1987). Note
that balancing does not depend on D.

So what is so special about a balanced realization? In a balanced realization the value
of each �i is associated with a state xi of the balanced system. And the size of �i
is a relative measure of the contribution that x i makes to the input-output behaviour
of the system; also see the discussion on page 157. Therefore if � 1 � �2, then
the state x1 affects the input-output behaviour much more than x 2, or indeed any
other state because of the ordering of the � i. After balancing a system, each state is
just as controllable as it is observable, and a measure of a state’s joint observability
and controllability is given by its associated Hankel singular value. This property is
fundamental to the model reduction methods in the remainder of this chapter which
work by removing states having little effect on the system’s input-output behaviour.
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11.4 Balanced truncation and balanced
residualization

Let the balanced realization (A;B;C;D) of G(s) and the corresponding � be
partitioned compatibly as

A =

�
A11 A12

A21 A22

�
; B =

�
B1

B2

�
; C =

�
C1 C2

�
(11.15)

� =

�
�1 0
0 �2

�
(11.16)

where �1 = diag(�1; �2; : : : ; �k); �2 = diag(�k+1; �k+2; : : : ; �n) and �k >
�k+1.

Balanced truncation. The reduced order model given by (A 11; B1; C1; D) is called
a balanced truncationof the full order system G(s). This idea of balancing the
system and then discarding the states corresponding to small Hankel singular values
was first introduced by Moore (1981). A balanced truncation is also a balanced
realization (Pernebo and Silverman, 1982), and the infinity norm of the error between
G(s) and the reduced order system is bounded by twice the sum of the last n � k
Hankel singular values, i.e. twice the trace of �2 or simply “ twice the sum of the
tail” (Glover, 1984; Enns, 1984). For the case of repeated Hankel singular values,
Glover (1984) shows that each repeated Hankel singular value is to be counted only
once in calculating the sum.

A precise statement of the bound on the approximation error is given in Theorem
11.1 below.

Useful algorithms that compute balanced truncations without first computing a
balanced realization have been developed by Tombs and Postlethwaite (1987) and
Safonov and Chiang (1989). These still require the computation of the observability
and controllability Gramians, which can be a problem if the system to be reduced is
of very high order. In such cases the technique of Jaimoukha et al. (1992), based on
computing approximate solutions to Lyapunov equations, is recommended.

Balanced residualization. In balanced truncation above, we discarded the least
controllable and observable states corresponding to �2. In balanced residualization,
we simply set to zero the derivatives of all these states. The method was
introduced by Fernando and Nicholson (1982) who called it a singular perturbational
approximation of a balanced system. The resulting balanced residualization of G(s)
is (Ar; Br; Cr; Dr) as given by the formulas (11.7)–(11.10).

Liu and Anderson (1989) have shown that balanced residualization enjoys the same
error bound as balanced truncation. An alternative derivation of the error bound,
more in the style of Glover (1984), is given by Samar et al. (1995). A precise
statement of the error bound is given in the following theorem.
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Theorem 11.1 LetG(s) be a stable rational transfer function with Hankel singular
values�1 > �2 > : : : > �N where each�i has multiplicityri and letGk

a(s) be
obtained by truncating or residualizing the balanced realization ofG(s) to the first
(r1 + r2 + : : :+ rk) states. Then

kG(s)�Gk
a(s)k1 � 2(�k+1 + �k+2 + : : :+ �N ): (11.17)

The following two exercises are to emphasize that (i) balanced residualization
preserves the steady state-gain of the system and (ii) balanced residualization is
related to balanced truncation by the bilinear transformation s! s�1.

Exercise 11.1 The steady-state gain of a full order balanced system(A;B;C;D) is
D � CA�1B. Show, by algebraic manipulation, that this is also equal toDr � CrA

�1
r Br,

the steady-state gain of the balanced residualization given by (11.7)–(11.10).

Exercise 11.2 LetG(s) have a balanced realization
�
A B
C D

�
, then

�
A�1 A�1B

�CA�1 D � CA�1B

�

is a balanced realization ofH(s)
4
= G(s�1), and the Gramians of the two realizations are

the same.

1. Write down an expression for a balanced truncationHt(s) ofH(s).

2. Apply the reverse transformations�1 ! s to Ht(s), and hence show thatGr(s)
4
=

Ht(s
�1) is a balanced residualization ofG(s) as defined by (11.7)–(11.10).

11.5 Optimal Hankel norm approximation

In this approach to model reduction, the problem that is directly addressed is the
following: given a stable model G(s) of order (McMillan degree) n, find a reduced
order modelGk

h(s) of degree k such that the Hankel norm of the approximation error,
kG(s)�Gk

h(s)kH , is minimized.

The Hankel norm of any stable transfer functionE(s) is defined as

kE(s)kH 4
= �

1
2 (PQ) (11.18)

where P and Q are the controllability and observability Gramians of E(s). It is also
the maximum Hankel singular value ofE(s). So in the optimization we seek an error
which is in some sense closest to being completely unobservable and completely
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uncontrollable, which seems sensible. A more detailed discussion of the Hankel
norm was given in Section 4.10.4.

The Hankel norm approximation problem has been considered by many but
especially Glover (1984). In Glover (1984) a complete treatment of the problem is
given, including a closed-form optimal solution and a bound on the infinity norm of
the approximation error. The infinity norm bound is of particular interest because it
is better than that for balanced truncation and residualization.

The theorem below gives a particular construction for optimal Hankel norm
approximations of square stable transfer functions.

Theorem 11.2 Let G(s) be a stable, square, transfer functionG(s) with Hankel
singular values�1 � �2 � � � � � �k � �k+1 = �k+2 = � � � = �k+l > �k+l+1 �
� � � � �n > 0, then an optimal Hankel norm approximation of orderk, Gk

h(s), can
be constructed as follows.

Let (A;B;C;D) be a balanced realization ofG(s) with the Hankel singular values
reordered so that the Gramian matrix is

� = diag (�1; �2; � � � ; �k; �k+l+1; � � � ; �n; �k+1; � � � ; �k+l) (11.19)
4
= diag (�1; �k+1I)

Partition (A;B;C;D) to conform with�:

A =

�
A11 A12

A21 A22

�
B =

�
B1

B2

�
C = [C1 C2 ] (11.20)

Define( bA; bB; bC; bD) by

bA 4
= ��1

�
�2k+1A

T
11 +�1A11�1 � �k+1C

T
1 UB

T
1

�
(11.21)bB 4

= ��1
�
�1B1 + �k+1C

T
1 U
�

(11.22)bC 4
= C1�1 + �k+1UB

T
1 (11.23)bD 4

= D � �k+1U (11.24)

whereU is a unitary matrix satisfying

B2 = �CT
2 U (11.25)

and
�
4
= �2

1 � �2k+1I (11.26)

The matrixbA hask “stable” eigenvalues (in the open left-half plane); the remaining
ones are in the open right-half plane. Then

Gk
h(s) + F (s)

s
=

" bA bBbC bD
#

(11.27)
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whereGk
h(s) is a stable optimal Hankel norm approximation of orderk, andF (s)

is an anti-stable (all poles in the open right-half plane) transfer function of order
n� k � l. The Hankel norm of the error betweenG and the optimal approximation
Gk
h is equal to the(k + 1)’th Hankel singular value ofG:

kG�Gk
hkH = �k+1(G) (11.28)

Remark 1 The k+1’ th Hankel singular value is generally not repeated, but the possibility is
included in the theory for completeness.

Remark 2 The order k of the approximation can either be selected directly, or indirectly by
choosing the “cut-off” value �k for the included Hankel singular values. In the latter case, one
often looks for large “gaps” in the relative magnitude, �k=�k+1.

Remark 3 There is an infinite number of unitary matrices U satisfying (11.25); one choice is
U = �C2(B

T
2 )
y.

Remark 4 If �k+1 = �n, i.e. only the smallest Hankel singular value is deleted, then F = 0,
otherwise ( bA; bB; bC; bD) has a non-zero anti-stable part and Gk

h has to be separated from F .

Remark 5 For non-square systems, an optimal Hankel norm approximation can be obtained
by first augmenting G(s) with zero to form a square system. For example, if G(s) is flat,

define �G(s)
4
=

�
G(s)
0

�
which is square, and let �Gh(s) =

�
G1(s)
G2(s)

�
be a k-th order optimal

Hankel norm approximation of �G(s) such that k �G(s)� �Gh(s)kH = �k+1
�
�G(s)

�
. Then

�k+1 (G(s)) � kG�G1kH � k �G� �GhkH = �k+1( �G) = �k+1(G)

Consequently, this implies that kG � G1kH = �k+1(G) and G1(s) is an optimal Hankel
norm approximation of G(s).

Remark 6 The Hankel norm of a system does not depend on the D-matrix in the system’s
state-space realization. The choice of the D-matrix in Gk

h is therefore arbitrary except when
F = 0, in which case it is equal to bD.

Remark 7 The infinity norm does depend on the D-matrix, and therefore the D-matrix of
Gk
h can be chosen to reduce the infinity norm of the approximation error (without changing

the Hankel norm). Glover (1984) showed that through a particular choice of D, called Do, the
following bound could be obtained:

kG�Gk
h �Dok1 � �k+1 + Æ (11.29)

where

Æ
4
= kF �Dok1 �

n�k�lX
i=1

�i (F (�s)) �
n�k�lX
i=1

�i+k+l (G(s)) (11.30)

This results in an infinity norm bound on the approximation error, Æ � �k+l+1 + � � � + �n,
which is equal to the “sum of the tail” or less since the Hankel singular value �k+1, which may
be repeated, is only included once. Recall that the bound for the error in balanced truncation
and balanced residualization is twicethe “sum of the tail” .
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11.6 Two practical examples

In this section, we make comparisons between the three main model reduction
techniques presented by applying them to two practical examples. The first example
is on the reduction of a plant model and the second considers the reduction of a
two degrees-of-freedom controller. Our presentation is similar to that in Samar et al.
(1995).

11.6.1 Reduction of a gas turbine aero-engine model

For the first example, we consider the reduction of a model of a Rolls Royce
Spey gas turbine engine. This engine will be considered again in Chapter 12. The
model has 3 inputs, 3 outputs, and 15 states. Inputs to the engine are fuel flow,
variable nozzle area and an inlet guide vane with a variable angle setting. The
outputs to be controlled are the high pressure compressor’s spool speed, the ratio
of the high pressure compressor’s outlet pressure to engine inlet pressure, and the
low pressure compressor’s exit Mach number measurement. The model describes
the engine at 87% of maximum thrust with sea-level static conditions. The Hankel
singular values for the 15 state model are listed in Table 11.1 below. Recall that
the L1 error bounds after reduction are “ twice the sum of the tail” for balanced
residualization and balanced truncation and the “sum of the tail” for optimal Hankel
norm approximation. Based on this we decided to reduce the model to 6 states.

1) 2.0005e+01 6) 6.2964e-01 11) 1.3621e-02
2) 4.0464e+00 7) 1.6689e-01 12) 3.9967e-03
3) 2.7546e+00 8) 9.3407e-02 13) 1.1789e-03
4) 1.7635e+00 9) 2.2193e-02 14) 3.2410e-04
5) 1.2965e+00 10) 1.5669e-02 15) 3.3073e-05

Table 11.1: Hankel singular values of the gas turbine aero-engine model

Figure 11.1 shows the singular values (not Hankel singular values) of the reduced
and full order models plotted against frequency for the residualized, truncated and
optimal Hankel norm approximated cases respectively. The D matrix used for
optimal Hankel norm approximation is such that the error bound given in (11.29) is
met. It can be seen that the residualized system matches perfectly at steady-state. The
singular values of the error system (G � Ga), for each of the three approximations
are shown in Figure 11.2(a). The infinity norm of the error system is computed to be
0.295 for balanced residualization and occurs at 208 rad/s; the corresponding error
norms for balanced truncation and optimal Hankel norm approximation are 0.324
and 0.179 occurring at 169 rad/sec and 248 rad/sec, respectively. The theoretical
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Figure 11.1: Singular values for model reductions of the aero-engine from 15 to 6 states
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Figure 11.2: Singular values for the scaled and unscaled error systems

upper bounds for these error norms are 0.635 (twice the sum of the tail) for
residualization and truncation, and 0.187 (using (11.29)) for optimal Hankel norm
approximation respectively. It should be noted that the plant under consideration
is desired to have a closed-loop bandwidth of around 10 rad/sec. The error around
this frequency, therefore, should be as small as possible for good controller design.
Figure 11.2(a) shows that the error for balanced residualization is the smallest in this
frequency range.

Steady-state gain preservation. It is sometimes desirable to have the steady-state
gain of the reduced plant model the same as the full order model. For example,
this is the case if we want to use the model for feedforward control. The truncated
and optimal Hankel norm approximated systems do not preserve the steady-state
gain and have to be scaled, i.e. the model approximation G a is replaced by GaWs,
where Ws = Ga(0)

�1G(0), G being the full order model. The scaled system no
longer enjoys the bounds guaranteed by these methods and kG � G aWsk1 can be
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quite large as is shown in Figure 11.2(b). Note that the residualized system does not
need scaling, and the error system for this case has been shown again only for ease
of comparison. The infinity norms of these errors are computed and are found to
degrade to 5.71 (at 151 rad/sec) for the scaled truncated system and 2.61 (at 168.5
rad/sec) for the scaled optimal Hankel norm approximated system. The truncated and
Hankel norm approximated systems are clearly worse after scaling since the errors in
the critical frequency range around crossover become large despite the improvement
at steady-state. Hence residualization is to be preferred over these other techniques
whenever good low frequency matching is desired.
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Figure 11.3: Aero-engine: Impulse responses (2nd input)
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Figure 11.4: Aero-engine: Step responses (2nd input)

Impulse and step responses from the second input to all the outputs for the three
reduced systems (with the truncated and optimal Hankel norm approximated systems
scaled) are shown in Figures 11.3 and 11.4 respectively. The responses for the
other inputs were found to be similar. The simulations confirm that the residualized
model’s response is closer to the full order model’s response.
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11.6.2 Reduction of an aero-engine controller

We now consider reduction of a two degrees-of-freedom H1 loop-shaping
controller. The plant for which the controller is designed is the full order gas turbine
engine model described in example 11.6.1 above.

A robust controller was designed using the procedure outlined in Section 9.4.3;
see Figure 9.21 which describes the design problem. T ref(s) is the desired closed-
loop transfer function, � is a design parameter, Gs = M�1

s Ns is the shaped plant
and (�Ns

;�Ms
) are perturbations on the normalized coprime factors representing

uncertainty. We denote the actual closed-loop transfer function (from � to y) by T y�.

The controller K = [K1 K2], which excludes the loop-shaping weight W1 (which
includes 3 integral action states), has 6 inputs (because of the two degrees-of-freedom
structure), 3 outputs, and 24 states. It has not been scaled (i.e. the steady-state value
of Ty� has not been matched to that of Tref by scaling the prefilter). It is reduced to
7 states in each of the cases that follow.

Let us first compare the magnitude of Ty� with that of the specified model Tref .
By magnitude, we mean singular values. These are shown in Figure 11.5(a). The
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Figure 11.5: Singular values of Tref and Ty�

infinity norm of the difference Ty� � Tref is computed to be 0.974 and occurs at
8.5 rad/sec. Note that we have � = 1 and the 
 achieved in the H1 optimization is
2.32, so that kTy� � Trefk1 � 
��2 as required; see (9.81). The prefilter is now
scaled so that Ty� matches Tref exactly at steady-state, i.e. we replace K1 by K1Wi

where Wi = Ty�(0)
�1Tref(0). It is argued by Hoyle et al. (1991) that this scaling

produces better model matching at all frequencies, because the H1 optimization
process has already given Ty� the same magnitude frequency response shape as the
model Tref . The scaled transfer function is shown in Figure 11.5(b), and the infinity
norm of the difference (Ty� � Tref) computed to be 1.44 (at 46 rad/sec). It can be
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seen that this scaling has not degraded the infinity norm of the error significantly
as was claimed by Hoyle et al. (1991). To ensure perfect steady-state tracking the
controller is always scaled in this way. We are now in a position to discuss ways of
reducing the controller. We will look at the following two approaches:

1. The scaled controller [K1Wi K2 ] is reduced. A balanced residualization of this
controller preserves the controller’s steady-state gain and would not need to be
scaled again. Reductions via truncation and optimal Hankel norm approximation
techniques, however, lose the steady-state gain. The prefilters of these reduced
controllers would therefore need to be rescaled to match T ref(0).

2. The full order controller [K1 K2 ] is directly reduced without first scaling the
prefilter. In which case, scaling is done after reduction.

We now consider the first approach. A balanced residualization of [K 1Wi K2 ] is
obtained. The theoretical upper bound on the infinity norm of the error (twice the
sum of the tail) is 0.698, i.e.

kK1Wi � (K1Wi)a K2 �K2a k1 � 0:698 (11.31)

where the subscript a refers to the low order approximation. The actual error norm
is computed to be 0.365. Ty� for this residualization is computed and its magnitude
plotted in Figure 11.6(a). The infinity norm of the difference (T y��Tref) is computed
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Figure 11.6: Singular values of Tref and Ty� for reduced [K1Wi K2 ]

to be 1.44 (at 43 rad/sec). This value is very close to that obtained with the full order
controller [K1Wi K2 ], and so the closed-loop response of the system with this
reduced controller is expected to be very close to that with the full order controller.
Next [K1Wi K2 ] is reduced via balanced truncation. The bound given by (11.31)
still holds. The steady-state gain, however, falls below the adjusted level, and the
prefilter of the truncated controller is thus scaled. The bound given by (11.31)
can no longer be guaranteed for the prefilter (it is in fact found to degrade to
3.66), but it holds for K2 � K2a. Singular values of Tref and Ty� for the scaled
truncated controller are shown in Figure 11.6(b). The infinity norm of the difference
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is computed to be 1.44 and this maximum occurs at 46 rad/sec. Finally [K 1Wi K2 ]
is reduced by optimal Hankel norm approximation. The following error bound is
theoretically guaranteed:

kK1Wi � (K1Wi)a K2 �K2a k1 � 0:189 (11.32)

Again the reduced prefilter needs to be scaled and the above bound can no longer be
guaranteed; it actually degrades to 1.87. Magnitude plots of T y� and Tref are shown
in Figure 11.6(c), and the infinity norm of the difference is computed to be 1.43 and
occurs at 43 rad/sec.

It has been observed that both balanced truncation and optimal Hankel norm
approximation cause a lowering of the system steady-state gain. In the process of
adjustment of these steady-state gains, the infinity norm error bounds are destroyed.
In the case of our two degrees-of-freedom controller, where the prefilter has been
optimized to give closed-loop responses within a tolerance of a chosen ideal model,
large deviations may be incurred. Closed-loop responses for the three reduced
controllers discussed above are shown in Figures 11.7, 11.8 and 11.9.

It is seen that the residualized controller performs much closer to the full order
controller and exhibits better performance in terms of interactions and overshoots.
It may not be possible to use the other two reduced controllers if the deviation
from the specified model becomes larger than the allowable tolerance, in which case
the number of states by which the controller is reduced would probably have to be
reduced. It should also be noted from (11.31) and (11.32) that the guaranteed bound
for K2 �K2a is lowest for optimal Hankel norm approximation.

Let us now consider the second approach. The controller [K 1 K2 ] obtained from
the H1 optimization algorithm is reduced directly. The theoretical upper bound on
the error for balanced residualization and truncation is

kK1 �K1a K2 �K2a k1 � 0:165 (11.33)

The residualized controller retains the steady-state gain of [K1 K2 ]. It is therefore
scaled with the same Wi as was required for scaling the prefilter of the full order
controller. Singular values of Tref and Ty� for this reduced controller are shown in
Figure 11.10(a), and the infinity norm of the difference was computed to be 1.50
at 44 rad/sec. [K1 K2 ] is next truncated. The steady-state gain of the truncated
controller is lower than that of [K1 K2 ], and it turns out that this has the effect
of reducing the steady-state gain of Ty�. Note that the steady-state gain of Ty�
is already less than that of Tref (Figure 11.5). Thus in scaling the prefilter of the
truncated controller, the steady-state gain has to be pulled up from a lower level as
compared with the previous (residualized) case. This causes greater degradation at
other frequencies. The infinity norm of (Ty� � Tref) in this case is computed to be
25.3 and occurs at 3.4 rad/sec (see Figure 11.10(b)). Finally [K 1 K2 ] is reduced
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Figure 11.7: Closed-loop step responses: [K1Wi K2 ] balanced residualized
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Figure 11.8: Closed-loop step responses: [K1Wi K2 ] balanced truncated
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Figure 11.9: Closed-loop step responses: [K1Wi K2 ] optimal Hankel norm approximated
and rescaled
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Figure 11.10: Singular values of Tref and Ty� for reduced [K1 K2 ]

by optimal Hankel norm approximation. The theoretical bound given in (11.29) is
computed and found to be 0.037, i.e. we have

kK1 �K1a K2 �K2a k1 � 0:037 (11.34)

The steady-state gain falls once more in the reduction process, and again a
larger scaling is required. Singular value plots for Ty� and Tref are shown in
Figure 11.10(c). kTy� � Trefk1 is computed to be 4.5 and occurs at 5.1 rad/sec.

Some closed-loop step response simulations are shown in Figures 11.11, 11.12 and
11.13. It can be seen that the truncated and Hankel norm approximated systems
have deteriorated to an unacceptable level. Only the residualized system maintains
an acceptable level of performance.

We have seen that the first approach yields better model matching, though at the
expense of a larger infinity norm bound onK 2�K2a (compare (11.31) and (11.33),
or (11.32) and (11.34)). We have also seen how the scaling of the prefilter in the
first approach gives poorer performance for the truncated and optimal Hankel norm
approximated controllers, relative to the residualized one.

In the second case, all the reduced controllers need to be scaled, but a “ larger” scaling
is required for the truncated and optimal Hankel norm approximated controllers.
There appears to be no formal proof of this observation. It is, however, intuitive
in the sense that controllers reduced by these two methods yield poorer model
matching at steady-state as compared with that achieved by the full order controller.
A larger scaling is therefore required for them than is required by the full order or
residualized controllers. In any case, this larger scaling gives poorer model matching
at other frequencies, and only the residualized controller’s performance is deemed
acceptable.
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Figure 11.11: Closed-loop step responses: [K1 K2 ] balanced residualized and scaled

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

Time [sec]

Reduced:

Full order:

(a) Step in r1

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

Time [sec]

Reduced:

Full order:

(b) Step in r2

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

Time [sec]

Reduced:

Full order:

(c) Step in r3

Figure 11.12: Closed-loop step responses: [K1 K2 ] balanced truncated and scaled
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Figure 11.13: Closed-loop step responses: [K1 K2 ] optimal Hankel norm approximated and
scaled
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11.7 Reduction of unstable models

Balanced truncation, balanced residualization and optimal Hankel norm approxima-
tion only apply to stable models. In this section we will briefly present two ap-
proaches for reducing the order of an unstable model.

11.7.1 Stable part model reduction

Enns (1984) and Glover (1984) proposed that the unstable model could first be
decomposed into its stable and anti-stable parts. Namely

G(s) = Gu(s) +Gs(s) (11.35)

whereGu(s) has all its poles in the closed right-half plane andGs(s) has all its poles
in the open left-half plane. Balanced truncation, balanced residualization or optimal
Hankel norm approximation can then be applied to the stable part G s(s) to find a
reduced order approximation Gsa(s). This is then added to the anti-stable part to
give

Ga(s) = Gu(s) +Gsa(s) (11.36)

as an approximation to the full order model G(s).

11.7.2 Coprime factor model reduction

The coprime factors of a transfer function G(s) are stable, and therefore we could
reduce the order of these factors using balanced truncation, balanced residualization
or optimal Hankel norm approximation, as proposed in the following scheme
(McFarlane and Glover, 1990).

� Let G(s) = M�1(s)N(s), where M(s) and N(s) are stable left-coprime factors
of G(s).

� Approximate [N M ] of degree n by [Na Ma] of degree k < n, using balanced
truncation, balanced residualization or optimal Hankel norm approximation.

� Realize the reduced order transfer function Ga(s), of degree k, by Ga(s) =
M�1

a Na.

A dual procedure could be written down based on a right coprime factorization of
G(s).

For related work in this area, we refer the reader to (Anderson and Liu, 1989; Meyer,
1987). In particular, Meyer (1987) has derived the following result:

Theorem 11.3 Let (N;M) be a normalized left-coprime factorization ofG(s) of
degreen. Let [Na Ma] be a degreek balanced truncation of[N M ] which has
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Hankel singular values�1 � �2 � : : : � �k > �k+1 � � � � � �n > 0.
Then(Na;Ma) is a normalized left-coprime factorization ofGa = M�1

a Na, and
[Na Ma] has Hankel singular values�1; �2; : : : ; �k.

Exercise 11.3 Is Theorem 11.3 true, if we replace balanced truncation by balanced
residualization?

11.8 Model reduction using MATLAB

The commands in Table 11.2 from the MATLAB �-toolbox may be used to perform
model reduction for stable systems. For an unstable system the commands in
Table 11.3 may be used.

Table 11.2: MATLAB commands for model reduction of a stable system
% Uses the Mu-toolbox
sysd=strans(sys); % order states in Jordan form according to speed
syst=strunc(sysd,k); % then: truncate leaving k states in syst.
sysr=sresid(sysd,k); % or: residualize leaving k states in sysr.
%
[sysb,hsig]=sysbal(sys); % obtain balanced realization.
sysbt=strunc(sysb,k); % then: balanced truncation leaving k states.
sysbr=sresid(sysb,k); % or: balanced residualization.
sysh=hankmr(sysb,hsig,k,’d’); % or: optimal Hankel norm approximation

Table 11.3: MATLAB commands for model reduction of an unstable system
% Uses the Mu-toolbox
[syss,sysu]=sdecomp(sys); % decompose into stable and unstable part.
[sysb,hsig]=sysbal[syss); %
sys1=sresid(sysb,ks); % balanced residualization of stable part.
sys1=hankmr(sysb,hsig,ks,’d’); % or: Hankel norm approx. of stable part.
syssbr=madd(sys1,sysu); % realize reduced-order system.
%
[nlcf,hsig,nrcf]=sncfbal(sys); % balanced realization of coprime factors.
nrcfr=sresid(nrcf,k); % residualization of coprime factors.
syscbr=cf2sys(nrcfr); % realize reduced-order system.

Alternatively, the command [ar,br,cr,dr]=ohklmr(a,b,c,d,1,k) in
the MATLAB Robust Control Toolbox finds directly the optimal Hankel norm
approximation of an unstable plant based on first decomposing the system into the
stable and unstable parts. It avoids the sometimes numerically ill-conditioned step of
first finding a balanced realization.
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11.9 Conclusion

We have presented and compared three main methods for model reduction based
on balanced realizations: balanced truncation, balanced residualization and optimal
Hankel norm approximation.

Residualization, unlike truncation and optimal Hankel norm approximation,
preserves the steady-state gain of the system, and, like truncation, it is simple and
computationally inexpensive. It is observed that truncation and optimal Hankel norm
approximation perform better at high frequencies, whereas residualization performs
better at low and medium frequencies, i.e. up to the critical frequencies. Thus for
plant model reduction, where models are not accurate at high frequencies to start
with, residualization would seem to be a better option. Further, if the steady-state
gains are to be kept unchanged, truncated and optimal Hankel norm approximated
systems require scaling, which may result in large errors. In such a case, too,
residualization would be a preferred choice.

Frequency weighted model reduction has been the subject of numerous papers over
the past few years. The idea is to emphasize frequency ranges where better matching
is required. This, however, has been observed to have the effect of producing larger
errors (greater mismatching) at other frequencies (Anderson, 1986; Enns, 1984). In
order to get good steady-state matching, a relatively large weight would have to be
used at steady-state, which would cause poorer matching elsewhere. The choice of
weights is not straightforward, and an error bound is available only for weighted
Hankel norm approximation. The computation of the bound is also not as easy as
in the unweighted case (Anderson and Liu, 1989). Balanced residualization can in
this context, be seen as a reduction scheme with implicit low and medium frequency
weighting.

For controller reduction, we have shown in a two degrees-of-freedom example, the
importance of scaling and steady-state gain matching.

In general, steady-state gain matching may not be crucial, but the matching should
usually be good near the desired closed-loop bandwidth. Balanced residualization
has been seen to perform close to the full order system in this frequency range. Good
approximation at high frequencies may also sometimes be desired. In such a case,
using truncation or optimal Hankel norm approximation with appropriate frequency
weightings may yield better results.
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CASE STUDIES

In this chapter, we present three case studies which illustrate a number of important practical
issues, namely: weights selection in H1 mixed-sensitivity design, disturbance rejection,
output selection, two degrees-of-freedom H1 loop-shaping design, ill-conditioned plants, �
analysis and � synthesis.

12.1 Introduction

The complete design process for an industrial control system will normally include
the following steps:

1. Plant modelling:to determine a mathematical model of the plant either from
experimental data using identification techniques, or from physical equations
describing the plant dynamics, or a combination of these.

2. Plant input-output controllability analysis:to discover what closed-loop
performance can be expected and what inherent limitations there are to ‘good’
control, and to assist in deciding upon an initial control structure and may be an
initial selection of performance weights.

3. Control structure design:to decide on which variables to be manipulated and
measured and which links should be made between them.

4. Controller design:to formulate a mathematical design problem which captures
the engineering design problem and to synthesize a corresponding controller.

5. Control system analysis:to assess the control system by analysis and simulation
against the performance specifications or the designer’s expectations.

6. Controller implementation:to implement the controller, almost certainly in
software for computer control, taking care to address important issues such as
anti-windup and bumpless transfer.

7. Control system commissioning:to bring the controller on-line, to carry out on-
site testing and to implement any required modifications before certifying that the
controlled plant is fully operational.
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In this book we have focused on steps 2, 3, 4 and 5, and in this chapter we will present
three case studies which demonstrate many of the ideas and practical techniques
which can be used in these steps. The case studies are not meant to produce the
‘best’ controller for the application considered but rather are used here to illustrate a
particular technique from the book.

In case study 1, a helicopter control law is designed for the rejection of atmospheric
turbulence. The gust disturbance is modelled as an extra input to an S=KS
H1 mixed-sensitivity design problem. Results from nonlinear simulations indicate
significant improvement over a standard S=KS design. For more information on the
applicability of H1 control to advanced helicopter flight, the reader is referred to
Walker and Postlethwaite (1996) who describe the design and ground-based piloted
simulation testing of a high performance helicopter flight control system.

Case study 2 illustrates the application and usefulness of the two degrees-of-freedom
H1 loop-shaping approach by applying it to the design of a robust controller for
a high performance areo-engine. Nonlinear simulation results are shown. Efficient
and effective tools for control structure design (input-output selection) are also
described and applied to this problem. This design work on the aero-engine has been
further developed and forms the basis of a multi-mode controller which has been
implemented and successfully tested on a Rolls-Royce Spey engine test facility at
the UK Defence Research Agency, Pyestock (Samar, 1995).

The final case study is concerned with the control of an idealized distillation column.
A very simple plant model is used, but it is sufficient to illustrate the difficulties of
controlling ill-conditioned plants and the adverse effects of model uncertainty. The
structured singular value � is seen to be a powerful tool for robustness analysis.

Case studies 1, 2 and 3 are based on papers by Postlethwaite et al. (1994), Samar and
Postlethwaite (1994), and Skogestad et al. (1988), respectively.

12.2 Helicopter control

This case study is used to illustrate how weights can be selected in H1 mixed-
sensitivity design, and how this design problem can be modified to improve
disturbance rejection properties.

12.2.1 Problem description

In this case study, we consider the design of a controller to reduce the effects of
atmospheric turbulence on helicopters. The reduction of the effects of gusts is very
important in reducing a pilot’s workload, and enables aggressive manoeuvers to
be carried out in poor weather conditions. Also, as a consequence of decreased
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buffeting, the airframe and component lives are lengthened and passenger comfort is
increased.

The design of rotorcraft flight control systems, for robust stability and performance,
has been studied over a number of years using a variety of methods including:
H1 optimization (Yue and Postlethwaite, 1990; Postlethwaite and Walker, 1992);
eigenstructure assignment (Manness and Murray-Smith, 1992; Samblancatt et al.,
1990); sliding mode control (Foster et al., 1993); and H 2 design (Takahashi, 1993).
The H1 controller designs have been particularly successful (Walker et al., 1993),
and have proved themselves in piloted simulations. These designs have used
frequency information about the disturbances to limit the system sensitivity but
in general there has been no explicit consideration of the effects of atmospheric
turbulence. Therefore by incorporating practical knowledge about the disturbance
characteristics, and how they affect the real helicopter, improvements to the overall
performance should be possible. We will demonstrate this below.

The nonlinear helicopter model we will use for simulation purposes was developed at
the Defence Research Agency (DRA), Bedford (Padfield, 1981) and is known as the
Rationalized Helicopter Model (RHM). A turbulence generator module has recently
been included in the RHM and this enables controller designs to be tested on-line
for their disturbance rejection properties. It should be noted that the model of the
gusts affects the helicopter equations in a complicated fashion and is self contained
in the code of the RHM. For design purposes we will imagine that the gusts affect
the model in a much simpler manner.

We will begin by repeating the design of Yue and Postlethwaite (1990) which used
an S=KS H1 mixed sensitivity problem formulation without explicitly considering
atmospheric turbulence. We will then, for the purposes of design, represent gusts as a
perturbation in the velocity states of the helicopter model and include this disturbance
as an extra input to the S=KS design problem. The resulting controller is seen to
be substantially better at rejecting atmospheric turbulence than the earlier standard
S=KS design.

12.2.2 The helicopter model

The aircraft model used in our work is representative of the Westland Lynx, a twin-
engined multi-purpose military helicopter, approximately 9000 lbs gross weight,
with a four-blade semi-rigid main rotor. The unaugmented aircraft is unstable, and
exhibits many of the cross-couplings characteristic of a single main-rotor helicopter.
In addition to the basic rigid body, engine and actuator components, the model also
includes second order rotor flapping and coning modes for off-line use. The model
has the advantage that essentially the same code can be used for a real-time piloted
simulation as for a workstation-based off-line handling qualities assessment.

The equations governing the motion of the helicopter are complex and difficult
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to formulate with high levels of precision. For example, the rotor dynamics are
particularly difficult to model. A robust design methodology is therefore essential for
high performance helicopter control. The starting point for this study was to obtain

State Description

� Pitch attitude
� Roll attitude
p Roll rate (body-axis)
q Pitch rate (body-axis)
� Yaw rate
vx Forward velocity
vy Lateral velocity
vz Vertical velocity

Table 12.1: Helicopter state vector

an eighth-order differential equation modelling the small-perturbation rigid motion
of the aircraft about hover. The corresponding state-space model is

_x = Ax+Bu (12.1)

y = Cx (12.2)

where the matricesA;B andC for the appropriately scaled system are available over
the Internet as described in the preface. The 8 state rigid body vector x is given in
the Table 12.1. The outputs consist of four controlled outputs

� Heave velocity _H
� Pitch attitude �
� Roll attitude �
� Heading rate _ 

9>>=>>; y1

together with two additional (body-axis) measurements

� Roll rate p
� Pitch rate q

�
y2

The controller (or pilot in manual control) generates four blade angle demands which
are effectively the helicopter inputs, since the actuators (which are typically modelled
as first order lags) are modelled as unity gains in this study. The blade angles are

� main rotor collective
� longitudinal cyclic
� lateral cyclic
� tail rotor collective

9>>=>>;u

The action of each of these blade angles can be briefly described as follows. The main
rotor collective changes all the blades of the main rotor by an equal amount and so
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roughly speaking controls lift. The longitudinal and lateral cyclic inputs change the
main rotor blade angles differently thereby tilting the lift vector to give longitudinal
and lateral motion, respectively. The tail rotor is used to balance the torque generated
by the main rotor, and so stops the helicopter spinning around; it is also used to give
lateral motion. This description, which assumes the helicopter inputs and outputs are
decoupled, is useful to get a feeling of how a helicopter works but the dynamics are
actually highly coupled. They are also unstable, and about some operating points
exhibit non-minimum phase characteristics.

We are interested in the design of full-authority controllers, which means that the
controller has total control over the blade angles of the main and tail rotors, and is
interposed between the pilot and the actuation system. It is normal in conventional
helicopters for the controller to have only limited authority leaving the pilot to close
the loop for much of the time (manual control). With a full-authority controller, the
pilot merely provides the reference commands.

One degree-of-freedom controllers as shown in Figure 12.1 are to be designed.
Notice that in the standard one degree-of-freedom configuration the pilot reference

d

d

q

q

--
-- -

-- --
6

6 K G
u

y2
y1

Pilot commands Controlled outputs

rate feedback

(a)

-
+r1

K G
u�

r1
0

� �
y1
y2

�

(b)

-
+

Figure 12.1: Helicopter control structure (a) as implemented, (b) in the standard one
degree-of-freedom configuration

commands r1 are augmented by a zero vector because of the rate feedback signals.
These zeros indicate that there are no a priori performance specifications on y 2 =
[ p q ]T .
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12.2.3 H1 mixed-sensitivity design

We will consider theH1 mixed-sensitivity design problem illustrated in Figure 12.2.
It can be viewed as a tracking problem as previously discussed in Chapter 9 (see

d q q q- - - - -

-

- -

-

6
r yK G

W2

W1

W3

9=; z

u-

+

Figure 12.2: S=KS mixed-sensitivity minimization

Figure 9.11), but with an additional weight W3. W1 and W2 are selected as loop-
shaping weights whereas W3 is signal-based. The optimization problem is to find a
stabilizing controllerK to minimize the cost function



� W1SW3

W2KSW3

�




1

(12.3)

This cost was also considered by Yue and Postlethwaite (1990) in the context
of helicopter control. Their controller was successfully tested on a piloted flight
simulator at DRA Bedford and so we propose to use the same weights here. The
design weights W1;W2 and W3 were selected as

W1 = diag

�
0:5

s+ 12

s+ 0:012
; 0:89

s+ 2:81

s+ 0:005
; 0:89

s+ 2:81

s+ 0:005
;

0:5
s+ 10

s+ 0:01
;

2s

(s+ 4)(s+ 4:5)
;

2s

(s+ 4)(s+ 4:5)

�
(12.4)

W2 = 0:5
s+ 0:0001

s+ 10
I4 (12.5)

W3 = diag f1; 1; 1; 1; 0:1; 0:1g (12.6)

The reasoning behind these selections of Yue and Postlethwaite (1990) is
summarized below.

Selection ofW1(s): For good tracking accuracy in each of the controlled outputs
the sensitivity function is required to be small. This suggests forcing integral action
into the controller by selecting an s�1 shape in the weights associated with the
controlled outputs. It was not thought necessary to have exactly zero steady-state
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errors and therefore these weights were given a finite gain of 500 at low frequencies.
(Notice that a pure integrator cannot be included in W 1 anyway, since the standard
H1 optimal control problem would not then be well posed in the sense that the
corresponding generalized plant P could not then be stabilized by the feedback
controllerK). In tuning W1 it was found that a finite attenuation at high frequencies
was useful in reducing overshoot. Therefore, high-gain low-pass filters were used in
the primary channels to give accurate tracking up to about 6 rad/s. The presence of
unmodelled rotor dynamics around 10 rad/s limits the bandwidth of W 1. With four
inputs to the helicopter, we can only expect to independently control four outputs.
Because of the rate feedback measurements the sensitivity function S is a six by
six matrix and therefore two of its singular values (corresponding to p and q) are
always close to one across all frequencies. All that can be done in these channels is
to improve the disturbance rejection properties around crossover, 4 to 7 rad/s, and
this was achieved using second-order band-pass filters in the rate channels of W 1.

Selection ofW2(s): The same first-order high-pass filter is used in each channel
with a corner frequency of 10 rad/s to limit input magnitudes at high frequencies
and thereby limit the closed-loop bandwidth. The high frequency gain of W 2 can be
increased to limit fast actuator movement. The low frequency gain of W 2 was set to
approximately�100 dB to ensure that the cost function is dominated by W 1 at low
frequencies.

Selection ofW3(s): W3 is a weighting on the reference input r. It is chosen to
be a constant matrix with unity weighting on each of the output commands and
a weighting of 0.1 on the fictitious rate demands. The reduced weighting on the
rates (which are not directly controlled) enables some disturbance rejection on these
outputs, without them significantly affecting the cost function. The main aim of W 3

is to force equally good tracking of each of the primary signals.

For the controller designed using the above weights, the singular value plots of S
andKS are shown in Figures 12.3(a) and 12.3(b). These have the general shapes and
bandwidths designed for and, as already mentioned, the controlled system performed
well in piloted simulation. The effects of atmospheric turbulence will be illustrated
later after designing a second controller in which disturbance rejection is explicitly
included in the design problem.

12.2.4 Disturbance rejection design

In the design below we will assume that the atmospheric turbulence can be modelled
as gust velocity components that perturb the helicopter’s velocity states vx, vy and
vz by d = [ d1 d2 d3 ]

T as in the following equations. The disturbed system is
therefore expressed as

_x = Ax+A

�
0
d

�
+Bu (12.7)
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Figure 12.3: Singular values of S and KS (S=KS design)

y = Cx: (12.8)

Define Bd
4
= columns 6,7 and 8 of A. Then we have

_x = Ax+Bu+Bdd (12.9)

y = Cx (12.10)

which in transfer function terms can be expressed as

y = G(s)u+Gd(s)d (12.11)

where G(s) = C(sI �A)�1B, and Gd(s) = C(sI �A)�1Bd. The design problem
we will solve is illustrated in Figure 12.4. The optimization problem is to find a
stabilizing controllerK that minimizes the cost function



� W1SW3 �W1SGdW4

W2KSW3 �W2KSGdW4

�




1

(12.12)

which is theH1 norm of the transfer function from
�
r
d

�
to z. This is easily cast into

the general control configuration and solved using standard software. Notice that if
we set W4 to zero the problem reverts to the S=KS mixed-sensitivity design of the
previous subsection. To synthesize the controller we used the same weights W 1, W2

and W3 as in the S=KS design, and selected W4 = �I , with � a scalar parameter
used to emphasize disturbance rejection. After a few iterations we finalized on
� = 30. For this value of �, the singular value plots of S andKS, see Figures 12.5(a)
and 12.5(b), are quite similar to those of the S=KS design, but as we will see in the
next subsection there is a significant improvement in the rejection of gusts. Also,
since Gd shares the same dynamics as G, and W4 is a constant matrix, the degree of
the disturbance rejection controller is the same as that for the S=KS design.
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Figure 12.4: Disturbance rejection design
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Figure 12.5: Singular values of S and KS (disturbance rejection design)

12.2.5 Comparison of disturbance rejection properties of the
two designs

To compare the disturbance rejection properties of the two designs we simulated
both controllers on the RHM nonlinear helicopter model equipped with a statistical
discrete gust model for atmospheric turbulence, (Dahl and Faulkner, 1979). With this
simulation facility, gusts cannot be generated at hover and so the nonlinear model was
trimmed at a forward flight speed of 20 knots (at an altitude of 100 ft), and the effect
of turbulence on the four controlled outputs observed. Recall that both designs were
based on a linearized model about hover and therefore these tests at 20 knots also
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Figure 12.7: Response to turbulence of the S=KS design (time in seconds)

demonstrate the robustness of the controllers. Tests were carried out for a variety of
gusts, and in all cases the disturbance rejection design was significantly better than
the S=KS design.
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Figure 12.8: Response to turbulence of the disturbance rejection design (time in seconds)

In Figure 12.6, we show a typical gust generated by the RHM. The effects of this
on the controlled outputs are shown in Figures 12.7 and 12.8 for the S=KS design
and the disturbance rejection design, respectively. Compared with the S=KS design,
the disturbance rejection controller practically halves the turbulence effect on heavy
velocity, pitch attitude and roll attitude. The change in the effect on heading rate is
small.

12.2.6 Conclusions

The two controllers designed were of the same degree and had similar frequency
domain properties. But by incorporating knowledge about turbulence activity into
the second design, substantial improvements in disturbance rejection were achieved.
The reduction of the turbulence effects by a half in heave velocity, pitch attitude and
roll attitude indicates the possibility of a significant reduction in a pilot’s workload,
allowing more aggressive manoeuvers to be carried out with greater precision.
Passenger comfort and safety would also be increased.

The study was primarily meant to illustrate the ease with which information about
disturbances can be beneficially included in controller design. The case study also
demonstrated the selection of weights in H1 mixed-sensitivity design. To read how
the H1methods have been successfully used and tested in flight on a Bell 205 fly-
by-wire helipcopter, see Postlethwaite et al. (1999) and Smerlas et al. (2001).
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12.3 Aero-engine control

In this case study, we apply a variety of tools to the problem of output selection, and
illustrate the application of the two degrees-of-freedom H1 loop-shaping design
procedure.

12.3.1 Problem description

This case study explores the application of advanced control techniques to the
problem of control structure design and robust multivariable controller design for
a high performance gas turbine engine. The engine under consideration is the Spey
engine which is a Rolls-Royce 2-spool reheated turbofan, used to power modern
military aircraft. The engine has two compressors: a low pressure (LP) compressor
or fan, and a high pressure (HP) or core compressor as shown in Figure 12.9. The

�
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Figure 12.9: Schematic of the aero-engine

high pressure flow at the exit of the core compressor is combusted and allowed to
partially expand through the HP and LP turbines which drive the two compressors.
The flow finally expands to atmospheric pressure at the nozzle exit, thus producing
thrust for aircraft propulsion. The efficiency of the engine and the thrust produced
depends on the pressure ratios generated by the two compressors. If the pressure ratio
across a compressor exceeds a certain maximum, it may no longer be able to hold the
pressure head generated and the flow will tend to reverse its direction. This happens
in practice, with the flow actually going negative, but it is only a momentary effect.
When the back pressure has cleared itself, positive flow is re-established but, if flow
conditions do not change, the pressure builds up causing flow reversal again. Thus
the flow surges back and forth at high frequency, the phenomenon being referred
to as surge. Surging causes excessive aerodynamic pulsations which are transmitted
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through the whole machine and must be avoided at all costs. However, for higher
performance and greater efficiency the compressors must also be operated close to
their surge lines. The primary aim of the control system is thus to control engine
thrust whilst regulating compressor surge margins. But these engine parameters,
namely thrust and the two compressor surge margins, are not directly measurable.
There are, however, a number of measurements available which represent these
quantities, and our first task is to choose from the available measurements, the ones
that are in some sense better for control purposes. This is the problem of output
selection as discussed in Chapter 10.

The next step is the design of a robust multivariable controller which provides
satisfactory performance over the entire operating range of the engine. Since the
aero-engine is a highly nonlinear system, it is normal for several controllers to be
designed at different operating points and then to be scheduled across the flight
envelope. Also in an aero-engine there are a number of parameters, apart from the
ones being primarily controlled, that are to be kept within specified safety limits, e.g.
the turbine blade temperature. The number of parameters to be controlled and/or
limited exceeds the number of available inputs, and hence all these parameters
cannot be controlled independently at the same time. The problem can be tackled
by designing a number of scheduled controllers, each for a different set of output
variables, which are then switched between, depending on the most significant limit
at any given time. The switching is usually done by means of lowest-wins or highest-
wins gates, which serve to propagate the output of the most suitable controller
to the plant input. Thus, a switched gain-scheduled controller can be designed to
cover the full operating range and all possible configurations. In Postlethwaite et al.
(1995) a digital multi-mode scheduled controller is designed for the Spey engine
under consideration here. In their study gain-scheduling was not required to meet
the design specifications. Below we will describe the design of a robust controller
for the primary engine outputs using the two degrees-of-freedomH1 loop-shaping
approach. The same methodology was used in the design of Postlethwaite et al.
(1995) which was successfully implemented and tested on the Spey engine.

12.3.2 Control structure design: output selection

The Spey engine has three inputs, namely fuel flow (WFE), a nozzle with a variable
area (AJ), and inlet guide vanes with a variable angle setting (IGV):

u = [WFE AJ IGV ]
T

In this study, there are six output measurements available,

yall = [ NL OPR1 OPR2 LPPR LPEMN NH]
T

as described below. For each one of the six output measurements, a look-up table
provides its desired optimal value (set point) as a function of the operating point.
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However, with three inputs we can only control three outputs independently so the
first question we face is, which three?

Engine thrust (one of the parameters to be controlled) can be defined in terms of the
LP compressor’s spool speed (NL), the ratio of the HP compressor’s outlet pressure
to engine inlet pressure (OPR1), or the engine overall pressure ratio (OPR2). We will
choose from these three measurements the one that is best for control.

� Engine thrust: Select one of NL, OPR1 and OPR2 (outputs 1, 2 and 3).

Similarly, surge margin of the LP compressor can be represented by either the
LP compressor’s pressure ratio (LPPR) or the LP compressor’s exit Mach number
measurement (LPEMN), and a selection between the two has to be made.

� Surge margin: Select one of LPPR and LPEMN (outputs 4 and 5).

In this study we will not consider control of the HP compressor’s surge margin, or
other configurations concerned with the limiting of engine temperatures. Our third
output will be the HP compressor’s spool speed (NH), which it is also important to
maintain within safe limits. (NH is actually the HP spool speed made dimensionless
by dividing by the square root of the total inlet temperature and scaled so that it is a
percentage of the maximum spool speed at a standard temperature of 288:15 ÆK).

� Spool speed: Select NH (output 6).

We have now subdivided the available outputs into three subsets, and decided to
select one output from each subset. This gives rise to the six candidate output sets as
listed in Table 12.2.

We now apply some of the tools given in Chapter 10 for tackling the output selection
problem. It is emphasized at this point that a good physical understanding of the
plant is very important in the context of this problem, and some measurements may
have to be screened beforehand on practical grounds. A 15 state linear model of the
engine (derived from a nonlinear simulation at 87% of maximum thrust) will be used
in the analysis that follows. The model is available over the Internet (as described in
the preface), along with actuator dynamics which result in a plant model of 18 states
for controller design. The nonlinear model used in this case study was provided by
the UK Defence Research Agency at Pyestock with the permission of Rolls-Royce
Military Aero Engines Ltd.

Scaling. Some of the tools we will use for control structure selection are dependent
on the scalings employed. Scaling the inputs and the candidate measurements
therefore, is vital before comparisons are made and can also improve the
conditioning of the problem for design purposes. We use the method of scaling
described in Section 9.4.2. The outputs are scaled such that equal magnitudes of
cross-coupling into each of the outputs are equally undesirable. We have chosen
to scale the thrust-related outputs such that one unit of each scaled measurement
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represents 7:5% of maximum thrust. A step demand on each of these scaled outputs
would thus correspond to a demand of 7:5% (of maximum) in thrust. The surge
margin-related outputs are scaled so that one unit corresponds to 5% surge margin.
If the controller designed provides an interaction of less than 10% between the scaled
outputs (for unit reference steps), then we would have 0:75% or less change in thrust
for a step demand of 5% in surge margin, and a 0:5% or less change in surge margin
for a 7:5% step demand in thrust. The final output NH (which is already a scaled
variable) was further scaled (divided by 2.2) so that a unit change in NH corresponds
to a 2:2% change in NH. The inputs are scaled by 10% of their expected ranges of
operation.

Candidate RHP zeros
Set No. controlled < 100 rad/sec � (G(0))

outputs

1 NL, LPPR, NH (1, 4, 6) none 0.060
2 OPR1, LPPR, NH (2, 4, 6) none 0.049
3 OPR2, LPPR, NH (3, 4, 6) 30.9 0.056
4 NL, LPEMN, NH (1, 5, 6) none 0.366
5 OPR1, LPEMN, NH (2, 5, 6) none 0.409
6 OPR2, LPEMN, NH (3, 5, 6) 27.7 0.392

Table 12.2: RHP zeros and minimum singular value for the six candidate output sets

Steady-state model. With these scalings the steady-state model yall = Gallu
(with all the candidate outputs included) and the corresponding RGA-matrix, � =

Gall �Gy
T

all , are given by

Gall =

266664
0:696 �0:046 �0:001
1:076 �0:027 0:004
1:385 0:087 �0:002
11:036 0:238 �0:017
�0:064 �0:412 0:000
1:474 �0:093 0:983

377775 �(Gall) =

266664
0:009 0:016 0:000
0:016 0:008 �0:000
0:006 0:028 �0:000
0:971 �0:001 0:002
�0:003 0:950 0:000
0:002 �0:000 0:998

377775
(12.13)

and the singular value decomposition of Gall(0) = U0�0V
H
0 is

U0 =

266664
0:062 0:001 �0:144 �0:944 �0:117 �0:266
0:095 0:001 �0:118 �0:070 �0:734 0:659
0:123 �0:025 0:133 �0:286 0:640 0:689
0:977 �0:129 �0:011 0:103 �0:001 �0:133
�0:006 0:065 �0:971 0:108 0:195 0:055
0:131 0:989 0:066 �0:000 0:004 �0:004

377775
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�0 =

266664
11:296 0 0
0 0:986 0
0 0 0:417
0 0 0
0 0 0
0 0 0

377775 V0 =

"
1:000 �0:007 �0:021
0:020 �0:154 0:988
0:010 0:988 0:154

#

The RGA-matrix of Gall, the overall non-square gain matrix, is sometimes a useful
screening tool when there are many alternatives. The six row-sums of the RGA-
matrix are

�� = [ 0:025 0:023 0:034 0:972 0:947 1:000 ]
T

and from (10.12) this indicates that we should select outputs 4, 5 and 6
(corresponding to the three largest elements) in order to maximize the projection
of the selected outputs onto the space corresponding to the three non-zero singular
values. However, this selection is not one of our six candidate output sets because
there is no output directly related to engine thrust (outputs 1, 2 and 3).

We now proceed with a more detailed input-output controllability analysis of the six
candidate output sets. In the following, G(s) refers to the transfer function matrix
for the effect of the three inputs on the selected three outputs.

Minimum singular value. In Chapter 10, we showed that a reasonable criterion for
selecting controlled outputs y is to make kG�1(y � yopt)k small, in particular at
steady-state. Here y � yopt is the deviation in y from its optimal value. At steady-
state this deviation arises mainly from errors in the (look-up table) set point due to
disturbances and unknown variations in the operating point. If we assume that, with
the scalings given above, the magnitude j(y � yopt)ij is similar (close to 1) for each
of the six outputs, then we should select a set of outputs such that the elements in
G�1(0) are small, or alternatively, such that � (G(0)) is as large as possible. In Table
12.2 we have listed � (G(0)) for the six candidate output sets. We conclude that we
can eliminate sets 1, 2 and 3, and consider only sets 4, 5 and 6. For these three sets
we find that the value of ��(G(0)) is between 0.366 and 0.409 which is only slightly
smaller than ��(Gall(0)) = 0:417.

Remark. The three eliminated sets all include output 4, LPPR. Interestingly, this output
is associated with the largest element in the gain matrix Gall(0) of 11.0, and is thus also
associated with the largest singular value (as seen from the first column of U ). This illustrates
that the preferred choice is often not associated with ��(G).

Right-half plane zeros. Right-half plane (RHP) zeros limit the achievable
performance of a feedback loop by limiting the open-loop gain-bandwidth product.
They can be a cause of concern, particularly if they lie within the desired closed-loop
bandwidth. Also, choosing different outputs for feedback control can give rise to
different numbers of RHP zeros at different locations. The choice of outputs should
be such that a minimum number of RHP zeros are encountered, and should be as far
removed from the imaginary axis as possible.
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Table 12.2 shows the RHP zeros slower than 100 rad/sec for all combinations of
prospective output variables. The closed-loop bandwidth requirement for the aero-
engine is approximately 10 rad/sec. RHP zeros close to this value or smaller (closer
to the origin) will therefore, cause problems and should be avoided. It can be seen
that the variable OPR2 introduces (relatively) slow RHP zeros. It was observed that
these zeros move closer to the origin at higher thrust levels. Thus Sets 3 and 6 are
unfavourable for closed-loop control. This along with the minimum singular value
analysis leaves us with sets 4 and 5 for further consideration

Relative gain array (RGA). We here consider the RGAs of the candidate square
transfer function matrices G(s) with three outputs,

�(G(s)) = G(s)�G�T (s) (12.14)

In Section 3.6.2, it is argued that the RGA provides useful information for the
analysis of input-output controllability and for the pairing of inputs and outputs.
Specifically input and output variables should be paired so that the diagonal elements
of the RGA are as close as possible to unity. Furthermore, if the plant has large RGA
elements and an inverting controller is used, the closed-loop system will have little
robustness in the face of diagonal input uncertainty. Such a perturbation is quite
common due to uncertainty in the actuators. Thus we want � to have small elements
and for diagonal dominance we want �� I to be small. These two objectives can be
combined in the single objective of a small RGA-number, defined as

RGA-number , k�� Iksum =
X
i=j

j 1� �ij j +
X
i6=j

j �ij j (12.15)

The lower the RGA number, the more preferred is the control structure. Before
calculating the RGA number over frequency we rearranged the output variables so
that the steady-state RGA matrix was as close as possible to the identity matrix.
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Figure 12.10: RGA numbers

The RGA numbers for the six candidate output sets are shown in Figure 12.10. As in
the minimum singular value analysis above, we again see that Sets 1,2 and 3 are less
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favourable. Once more, sets 4 and 5 are the best but too similar to allow a decisive
selection.

Hankel singular values. Notice that Sets 4 and 5 differ only in one output variable,
NL in Set 4 and OPR1 in Set 5. Therefore, to select between them we next consider
the Hankel singular values of the two transfer functions between the three inputs and
output NL and output OPR1, respectively. Hankel singular values reflect the joint
controllability and observability of the states of a balanced realization (as described
in Section 11.3). Recall that the Hankel singular values are invariant under state
transformations but they do depend on scaling.
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0

0.1
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0.3

0.4

n-state number

NL (Output 1): +

OPR1 (Output 2): �

Figure 12.11: Hankel singular values

Figure 12.11 shows the Hankel singular values of the two transfer functions for
outputs NL and OPR1, respectively. The Hankel singular values for OPR1 are larger,
which indicates that OPR1 has better state controllability and observability properties
than NL. In other words, output OPR1 contains more information about the system
internal states than output NL. It therefore seems to be preferable to use OPR1 for
control purposes rather than NL, and hence (in the absence of no other information)
Set 5 is our final choice.

12.3.3 A two degrees-of-freedom H1 loop-shaping design

The design procedure given in Section 9.4.3 will be used to design a two degrees-of-
freedom H1 loop-shaping controller for the 3-input 3-output plant G. An 18 state
linear plant model G (including actuator dynamics), is available over the Internet. It
is based on scaling, output selection, and input-output pairing as described below. To
summarize, the selected outputs (Set 5) are

� engine inlet pressure, OPR1
� LP compressor’s exit mach number measurement, LPEMN
� HP compressor’s spool speed, NH

and the corresponding inputs are
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� fuel flow, WFE
� nozzle area, AJ
� inlet guide vane angle, IGV

The corresponding steady-state (s = 0) model and RGA-matrix is

G =

"
1:076 �0:027 0:004
�0:064 �0:412 0:000
1:474 �0:093 0:983

#
; �(G) =

"
1:002 0:004 �0:006
0:004 0:996 �0:000
�0:006 �0:000 1:006

#
(12.16)

Pairing of inputs and outputs. The pairing of inputs and outputs is important
because it makes the design of the prefilter easier in a two degrees-of-freedom
control configuration and simplifies the selection of weights. It is of even greater
importance if a decentralized control scheme is to be used, and gives insight into the
working of the plant. In Chapter 10, it is argued that negative entries on the principal
diagonal of the steady-state RGA should be avoided and that the outputs in G should
be (re)arranged such that the RGA is close to the identity matrix. For the selected
output set, we see from (12.16) that no rearranging of the outputs is needed. That is,
we should pair OPR1, LPEMN and NH with WFE, AJ and IGV, respectively.

H1 loop-shaping design. We follow the design procedure given in Section 9.4.3.
In steps 1 to 3 we discuss how pre- and post-compensators are selected to obtain the
desired shaped plant (loop shape) Gs = W2GW1 where W1 = WpWaWb. In steps
4 to 6 we present the subsequentH1 design.

1. The singular values of the plant are shown in Figure 12.12(a) and indicate a need
for extra low frequency gain to give good steady-state tracking and disturbance
rejection. The precompensator weight is chosen as simple integrators, i.e. W p =
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Figure 12.12: Singular values for plant and shaped plant

1
s I3, and the post-compensator weight is selected as W2 = I3.

2. W2GWp is next aligned at 7 rad/sec. The align gain Wa (used in front of Wp) is
the approximate real inverse of the shaped system at the specified frequency. The
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crossover is thus adjusted to 7 rad/sec in order to give a closed-loop bandwidth
of approximately 10 rad/sec. Alignment should not be used if the plant is ill-
conditioned with large RGA elements at the selected alignment frequency. In our
case the RGA elements are small (see Figure 12.10) and hence alignment is not
expected to cause problems.

3. An additional gain Wg is used in front of the align gain to give some control over
actuator usage. Wg is adjusted so that the actuator rate limits are not exceeded
for reference and disturbance steps on the scaled outputs. By some trial and error,
Wg is chosen to be diag(1; 2:5; 0:3). This indicates that the second actuator (AJ)
is made to respond at higher rates whereas the third actuator (IGV) is made slower.
The shaped plant now becomes Gs = GW1 where W1 =WpWaWg . Its singular
values are shown in Figure 12.12(b).

4. 
min in (9.66) for this shaped plant is found to be 2.3 which indicates that the
shaped plant is compatible with robust stability.

5. � is set to 1 and the reference model Tref is chosen as Tref = diagf 1
0:018s+1 ;

1
0:008s+1 ;

1
0:2s+1g. The third output NH is thus made slower than the other two in

following reference inputs.
6. The standard H1 optimization defined by P in (9:87) is solved. 
 iterations are

performed and a slightly suboptimal controller achieving 
 = 2:9 is obtained.
Moving closer to optimality introduces very fast poles in the controller which, if
the controller is to be discretized, would ask for a very high sample rate. Choosing
a slightly suboptimal controller alleviates this problem and also improves on the
H2 performance. The prefilter is finally scaled to achieve perfect steady-state
model matching. The controller (with the weights W1 and W2) has 27 states.

12.3.4 Analysis and simulation results

Step responses of the linear controlled plant model are shown in Figure 12.13.
The decoupling is good with less than 10% interactions. Although not shown here
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Figure 12.13: Reference step responses
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the control inputs were analyzed and the actuator signals were found to lie within
specified limits. Responses to disturbance steps on the outputs were also seen to meet
the problem specifications. Notice that because there are two degrees-of-freedom in
the controller structure, the reference to output and disturbance to output transfer
functions can be given different bandwidths.

The robustness properties of the closed-loop system are now analyzed. Fig-
ure 12.14(a) shows the singular values of the sensitivity function. The peak value
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Figure 12.14: Sensitivity and complementary sensitivity functions

is less than 2 (actually it is 1:44 = 3:2 dB), which is considered satisfactory. Fig-
ure 12.14(b) shows the maximum singular values of T = (I �GW 1K2)

�1GW1K2

and TI = (I �W1K2G)
�1W1K2G. Both of these have small peaks and go to zero

quickly at high frequencies. From Section 9.2.2, this indicates good robustness both
with respect to multiplicative output and multiplicative input plant perturbations.

Nonlinear simulation results are shown in Figure 12.15. Reference signals are given
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Figure 12.15: Nonlinear simulation results

to each of the scaled outputs simultaneously. The solid lines show the references,
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and the dash-dot lines, the outputs. It can be seen that the controller exhibits good
performance with low interactions.

12.3.5 Conclusions

The case study has demonstrated the ease with which the two degrees-of-freedom
H1 loop-shaping design procedure can be applied to a complex engineering system.
Some tools for control structure design have also been usefully applied to the aero-
engine example. We stress that a good control structure selection is very important.
It results in simpler controllers and in general, a simpler design exercise.

12.4 Distillation process

A typical distillation column is shown in Figure 10.8 on page 434. The overall 5� 5
control problem is discussed in Example 10.5 (page 433) and you are advised to read
this first. The commonly used LV - and DV -configurations, which are discussed
below, are partially controlled systems where 3 loops for liquid level and pressure
have already been closed.

For a general discussion on distillation column control, the reader is also referred to
Shinskey (1984), Skogestad and Morari (1987a) and the survey paper by Skogestad
(1997).

We have throughout the book studied a particular high-purity binary distillation
column with 40 theoretical stages (39 trays and a reboiler) plus a total condenser.
This is “column A” in Skogestad et al. (1990). The feed is an equimolar liquid
mixture of two components with a relative volatility of 1.5. The pressure p is
assumed constant (perfect control of p using VT as an input). The operating variables
(e.g. reflux and boilup rates) are such that we nominally have 99% purity for each
product (yD and xB). The nominal holdups on all stages, including the reboiler and
condenser, are M �

i =F = 0:5 min. The liquid flow dynamics are modelled by a
simple linear relationship, Li(t) = L�i + (Mi(t) � M�

i )=�L, where �L = 0:063
min (the same value is used on all trays). No actuator or measurement dynamics are
included. This results in a model with 82 states. This distillation process is difficult to
control because of strong interactions between the two product compositions. More
information, including steady-state profiles along the column, is available over the
internet.

This distillation process has been used as an illustrative example throughout the
book, and so to avoid unnecessary repetition we will simply summarize what has
been done and refer to the many exercises and examples for more details.
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Remark 1 The complete linear distillation column model with 4 inputs (L; V;D; B), 4
outputs (yD; xB;MD;MB), 2 disturbances (F; zF ) and 82 states is available over the internet.
The states are the mole fractions and liquid holdups on each of the 41 stages. By closing
the two level loops (MD and MB) this model may be used to generate the model for any
configuration (LV , DV , etc.). The MATLAB commands for generating the LV -, DV - and
DB-configurations are given in Table 12.3.

Table 12.3: MATLAB program for generating model of various distillation
configurations

% Uses MATLAB Mu toolbox
% G4: State-space model (4 inputs, 2 disturbances, 4 outputs, 82 states)
% Level controllers using D and B (P-controllers; bandwidth = 10 rad/min):
Kd = 10; Kb = 10;
% Now generate the LV-configuration from G4 using sysic:
systemnames = ’G4 Kd Kb’;
inputvar = ’[L(1); V(1); d(2)]’;
outputvar = ’[G4(1);G4(2)]’;
input to G4 = ’[L; V; Kd; Kb; d ]’;
input to Kd = ’[G4(3)]’;
input to Kb = ’[G4(4)]’;
sysoutname =’Glv’;
cleanupsysic=’yes’; sysic;
%
% Modifications needed to generate DV-configuration:
Kl = 10; Kb = 10;
systemnames = ’G4 Kl Kb’;
inputvar = ’[D(1); V(1); d(2)]’;
input to G4 = ’[Kl; V; D; Kb; d ]’;
input to Kl = ’[G4(3)]’;
input to Kb = ’[G4(4)]’;
sysoutname =’Gdv’;
%
% Modifications needed to generate DB-configuration:
Kl = 10; Kv = 10;
systemnames = ’G4 Kl Kv’;
inputvar = ’[D(1); B(1); d(2)]’;
input to G4 = ’[Kl; Kv; D; B; d ]’;
input to Kl = ’[G4(3)]’;
input to Kv = ’[G4(4)]’;
sysoutname =’Gdb’;

Remark 2 A 5 state LV -model, obtained by model reducing the above model, is given on
page 504. This model is also available over the internet.

12.4.1 Idealized LV -model

The following idealized model of the distillation process, originally from Skogestad
et al. (1988), has been used in examples throughout the book:

G(s) =
1

75s+ 1

�
87:8 �86:4
108:2 �109:6

�
(12.17)

The inputs are the reflux (L) and boilup (V ), and the controlled outputs are the top
and bottom product compositions (yD and xB). This is a very crude model of the
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distillation process, but it provides an excellent example of an ill-conditioned process
where control is difficult, primarily due to the presence of input uncertainty.

We refer the reader to the following places in the book where the model (12.17) is
used:

Example 3.5 (page 75):SVD-analysis. The singular values are plotted as a function
of frequency in Figure 3.6(b) on page 77.

Example 3.6 (page 76):Discussion of the physics of the process and the interpreta-
tion of directions.

Example 3.11 (page 89):The condition number, 
(G), is 141.7, and the 1; 1-
element of the RGA, �11(G), is 35.1 (at all frequencies).

Motivating Example No. 2 (page 93):Introduction to robustness problems with
inverse-based controller using simulation with 20% input uncertainty.

Exercise 3.7 (page 96):Design of robust SVD-controller.

Exercise 3.8 (page 96):Combined input and output uncertainty for inverse-based
controller.

Exercise 3.9 (page 97):Attempt to “ robustify” an inverse-based design using
McFarlane-GloverH1 loop-shaping procedure.

Example 6.5 (page 232):Magnitude of inputs for rejecting disturbances (in feed rate
and feed composition) at steady state.

Example 6.6 (page 240):Sensitivity to input uncertainty with feedforward control
(RGA).

Example 6.7 (page 241):Sensitivity to input uncertainty with inverse-based con-
troller, sensitivity peak (RGA).

Example 6.11 (page 245):Sensitivity to element-by-element uncertainty (relevant
for identification).

Example 8.1 (page 296):Coupling between uncertainty in transfer function ele-
ments.

Example in Section 8.11.3 (page 333):� for robust performance which explains
poor performance in Motivating Example No. 2.

Example in Section 8.12.4 (page 341):Design of �-optimal controller using DK-
iteration.

The model in (12.17) has also been the basis for two benchmark problems.

Original benchmark problem. The original control problem was formulated by
Skogestad et al. (1988) as a bound on the weighted sensitivity with frequency-
bounded input uncertainty. The optimal solution to this problem is provided by the
one degree-of-freedom �-optimal controller given in the example in Section 8.12.4
where a peak �-value of 0.974 (remark 1 on page 1) was obtained.
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CDC benchmark problem. The original problem formulation is unrealistic in that
there is no bound on the input magnitudes. Furthermore, the bounds on performance
and uncertainty are given in the frequency domain (in terms of weightedH1 norm),
whereas many engineers feel that time domain specifications are more realistic.
Limebeer (1991) therefore suggested the following CDC-specifications. The set of
plants � is defined by

eG(s) = 1

75s+ 1

�
0:878 �0:864
1:082 �1:096

��
k1e��1s 0

0 k2e��2s

�
ki 2 [ 0:8 1:2 ]; �i 2 [ 0 1:0 ] (12.18)

In physical terms this means 20% gain uncertainty and up to 1 minute delay in each
input channel. The specification is to achieve for for every plant eG 2 �:

S1: Closed-loop stability.

S2: For a unit step demand in channel 1 at t = 0 the plant output y 1 (tracking) and
y2 (interaction) should satisfy:

� y1(t) � 0:9 for all t � 30 min
� y1(t) � 1:1 for all t
� 0:99 � y1(1) � 1:01
� y1(t) � 0:5 for all t
� �0:01 � y2(1) � 0:01

The same corresponding requirements hold for a unit step demand in channel 2.

S3: ��(Ky
eS) < 0:316; 8!

S4: ��( eGKy) < 1 for ! � 150

Note that a two degrees-of-freedom controller may be used andK y then refers to the
feedback plant of the controller. In practice, specification S4 is indirectly satisfied by
S3. Note that the uncertainty description Gp = G(I + !I�I) with wI = s+0:2

0:5s+1 (as
used in the examples in the book) only allows for about 0.9 minute time delay error.
To get a weight wI (s) which includes the uncertainty in (12.18) we may use the
procedure described on 268, equations (7.26) or (7.27) with r k = 0:2 and �max = 1.

Several designs have been presented which satisfy the specifications for the CDC-
problem in (12.18). For example, a two degrees-of-freedomH1 loop-shaping design
is given by Limebeer et al. (1993), and an extension of this by Whidborne et al.
(1994). A two degrees-of-freedom�-optimal design is presented by Lundström et al.
(1999).

12.4.2 Detailed LV -model

In the book we have also used a 5 state dynamic model of the distillation process
which includes liquid flow dynamics (in addition to the composition dynamics) as



504 MULTIVARIABLE FEEDBACK CONTROL

well as disturbances. This 5 state model was obtained from model reduction of the
detailed model with 82 states. The steady-state gains for the two disturbances are
given in (10.75).

The 5-state model is similar to (12.17) at low frequencies, but the model is much
less interactive at higher frequencies. The physical reason for this is that the liquid
flow dynamics decouple the response and make G(j!) upper triangular at higher
frequencies. The effect is illustrated in Figure 12.16 where we show the singular
values and the magnitudes of the RGA-elements as functions of frequency. As a
comparison, the RGA element �11(G) = 35:1 at all frequencies (and not just at
steady-state) for the simplified model in (12.17). The implication is that control at
crossover frequencies is easier than expected from the simplified model (12.17).
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Figure 12.16: Detailed 5-state model of distillation column

Applications based on the 5 state model are found in:

Example 10.7 (page 437): Controllability analysis of partial control and feedfor-
ward control.

Example in Section 10.10 (page 455): Controllability analysis of decentralized con-
trol.

Details on the 5 state model. A state-space realization is

G(s)
s
=

�
A B
C 0

�
; Gd(s)

s
=

�
A Bd

C 0

�
(12.19)
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where

A =

26664
�:005131 0 0 0 0

0 �:07366 0 0 0
0 0 �:1829 0 0
0 0 0 �:4620 :9895
0 0 0 �:9895 �:4620

37775; B =

26664
�:629 :624
:055 �:172
:030 �:108
�:186 �:139
�1:23 �:056

37775

C =
��:7223 �:5170 :3386 �:1633 :1121
�:8913 :4728 :9876 :8425 :2186

�
; Bd =

26664
�0:062 �0:067
0:131 0:040
0:022 �0:106
�0:188 0:027
�0:045 0:014

37775

Scaling. The model is scaled such that a magnitude of 1 corresponds to the following:
0.01 mole fraction units for each output (yD and xB), the nominal feed flowrate for
the two inputs (L and V ) and a 20% change for each disturbance (feed rate F and
feed composition zF ). Notice that the steady-state gains computed with this model
are slightly different from the ones used in the examples.

Remark. A similar dynamic LV -model, but with 8 states, is given by Green and Limebeer
(1995), who also design anH1 loop-shaping controller.

Exercise 12.1 Repeat the�-optimal design based onDK-iteration in Section 8.12.4 using
the model (12.19).

12.4.3 Idealized DV -model

Finally, we have also made use of an idealized model for the DV -configuration:

G(s) =
1

75s+ 1

� �87:8 1:4
�108:2 �1:4

�
(12.20)

In this case the condition number 
(G) = 70:8 is still large, but the RGA elements
are small (about 0:5).

Example 6.8 (page 242)Bounds on the sensitivity peak show that an inverse-based
controller is robust with respect to diagonal input uncertainty.

Example 8.9 (page 323): � for robust stability with a diagonal controller is
computed. The difference between diagonal and full-block input uncertainty
is significant.

Remark. In practice, the DV -configuration may not be as favourable as indicated by these
examples, because the level controller at the top of the column is not perfect as was assumed
when deriving (12.20).
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12.4.4 Further distillation case studies

The full distillation model, which is available over the internet, may form the basis
for several case studies (projects). These could include input-output controllability
analysis, controller design, robustness analysis, and closed-loop simulation. The
following cases may be considered:

1. Model with 4 inputs and 4 outputs
2. LV -configuration (studied extensively in this book)
3. DV -configuration (see previous page)
4. DB-configuration (see also Exercise 6.15 page 250)

The models in the latter three cases are generated from the 4 � 4 model by closing
two level loops (see the MATLAB file in Table 12.3) to get a partially controlled
plant with 2 inputs and 2 outputs (in addition to the two disturbances).

Remark 1 For the DV - and DB-configurations the resulting model depends quite strongly
on the tuning of the level loops, so one may consider separately the two cases of tight level
control (e.g. K = 10, as in Table 12.3) or loosely tuned level control (e.g. K = 0:2
corresponding to a time constant of 5 min). Level control tuning may also be considered as a
source of uncertainty.

Remark 2 The models do not include actuator or measurement dynamics, which may also be
considered as a source of uncertainty.

12.5 Conclusion

The case studies in this chapter have served to demonstrate the usefulness and ease
of application of many of the techniques discussed in the book. Realistic problems
have been considered but the idea has been to illustrate the techniques rather than to
provide “optimal” solutions.

For the helicopter problem, practice was obtained in the selection of weights in H1
mixed-sensitivity design, and it was seen how information about disturbances could
easily be considered in the design problem.

In the aero-engine study, we applied a variety of tools to the problem of output
selection and then designed a two degrees-of-freedomH1 loop-shaping controller.

The final case study was a collection of examples and exercises on the distillation
process considered throughout the book. This served to illustrate the difficulties of
controlling ill-conditioned plants and the adverse effects of model uncertainty. The
structured singular value played an important role in the robustness analysis.

You should now be in a position to move straight to Appendix B, to complete a major
project on your own and to sit the sample exam.
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Good luck!
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APPENDIX A

MATRIX THEORY AND

NORMS

The topics in this Appendix are included as background material for the book, and should
ideally be studied before reading Chapter 3.

After studying the Appendix the reader should feel comfortable with a range of mathematical
tools including eigenvalues, eigenvectors and the singular value decomposition; the reader
should appreciate the difference between various norms of vectors, matrices, signals and
systems, and know how these norms can be used to measure performance.

The main references are: Strang (1976) and Horn and Johnson (1985) on matrices, and Zhou
et al. (1996) on norms.

A.1 Basics

Let us start with a complex scalar

c = �+ j�; where � = Re c; � = Im c

To compute the magnitude jcj, we multiply c by its conjugate �c , � � j� and take
the square root, i.e.

jcj = p
�cc =

p
�2 � j2�2 =

p
�2 + �2

A complex column vectora with m components (elements) is written

a =

26664
a1
a2
...
am

37775
where ai is a complex scalar. aT (the transposed) is used to denote a row vector.
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Now consider a complex l �m matrix A with elements a ij = Re aij + j Im aij .
l is the number of rows (the number of “outputs” when viewed as an operator) and
m is the number of columns (“ inputs” ). Mathematically, we write A 2 C l�m if A is
a complex matrix, or A 2 R l�m if A is a real matrix. Note that a column vector a
with m elements may be viewed as an m� 1 matrix.

The transpose of a matrix A is AT (with elements aji), the conjugate is �A (with
elements Re aij � j Im aij), the conjugate transpose (or Hermitian adjoint) matrix
is AH , �AT (with elements Re aji � jIm aji), the trace is trA (sum of diagonal
elements), and the determinant is detA. By definition, the inverse of a non-singular
matrix A, denoted A�1, satisfies A�1A = AA�1 = I , and is given by

A�1 =
adjA

detA
(A.1)

where adjA is the adjugate (or “classical adjoint” ) of A which is the transposed
matrix of cofactors cij of A,

cij = [adjA]ji , (�1)i+j detAij (A.2)

HereAij is a submatrix formed by deleting row i and column j ofA. As an example,
for a 2� 2 matrix we have

A =

�
a11 a12
a21 a22

�
; detA = a11a22 � a12a21

A�1 =
1

detA

�
a22 �a12
�a21 a11

�
(A.3)

We also have
(AB)T = BTAT ; (AB)H = BHAH (A.4)

and, assuming the inverses exist,

(AB)�1 = B�1A�1 (A.5)

A square matrix A is symmetric if AT = A, and Hermitianif AH = A.

A Hermitian matrix A is said to be positive definiteif xHAx > 0 for any non-zero
vector x; this is denoted A > 0. Similarly, a Hermitian matrix A is positive semi-
definite (A � 0) if xHAx � 0. For a positive semi-definite matrix A, the matrix
square root (A1=2) satisfies A1=2A1=2 = A.

A.1.1 Some useful matrix identities

Lemma A.1 The matrix inversion lemma. LetA1; A2; A3 andA4 be matrices with
compatible dimensions such that the matricesA2A3A4 and (A1 + A2A3A4) are
defined. Also assume that the inverses given below exist. Then

(A1 +A2A3A4)
�1 = A�11 �A�11 A2(A4A

�1
1 A2 +A�13 )�1A4A

�1
1 (A.6)
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Proof: Postmultiply (or premultiply) the right hand side in (A.6) by A1+A2A3A4. This gives
the identity matrix. 2

Lemma A.2 Inverse of a partitioned matrix. If A�111 andX�1 exist then�
A11 A12

A21 A22

��1
=

�
A�111 +A�111 A12X

�1A21A
�1
11 �A�111 A12X

�1

�X�1A21A
�1
11 X�1

�
(A.7)

whereX , A22�A21A
�1
11 A12 is the Schur complement ofA11 inA; also see (A.15).

Similarly ifA�122 andY �1 exist then�
A11 A12

A21 A22

��1
=

�
Y �1 �Y �1A12A

�1
22

�A�122 A21Y
�1 A�122 +A�122 A21Y

�1A12A
�1
22

�
(A.8)

whereY , A11�A12A
�1
22 A21 is the Schur complement ofA22 inA; also see (A.16).

A.1.2 Some determinant identities

The determinant is defined only for square matrices, so let A be an n � n matrix.
The matrix is non-singular if detA is non-zero. The determinant may be defined
inductively as detA =

Pn
i=1 aijcij (expansion along column j) or detA =Pn

j=1 aijcij (expansion along row i), where c ij is the ij’ th cofactor given in (A.2).
This inductive definition begins by defining the determinant of an 1 � 1 matrix
(a scalar) to be the value of the scalar, i.e. det a = a. We then get for a 2 � 2
matrix detA = a11a22 � a12a21 and so on. From the definition we directly get that
detA = detAT . Some other determinant identities are given below:

1. Let A1 and A2 be square matrices of the same dimension. Then

det(A1A2) = det(A2A1) = detA1 � detA2 (A.9)

2. Let c be a complex scalar and A an n� n matrix. Then

det(cA) = cn det(A) (A.10)

3. Let A be a non-singular matrix. Then

detA�1 = 1= detA (A.11)

4. Let A1 and A2 be matrices of compatible dimensions such that both matrices
A1A2 andA2A1 are square (butA1 andA2 need not themselves be square). Then

det(I +A1A2) = det(I +A2A1) (A.12)

This is actually a special case of Schur’s formula given in (A.14). (A.12) is useful
in the field of control because it yields det(I +GK) = det(I +KG).
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5. The determinant of a triangular or block-triangular matrix is the product of the
determinants of the diagonal blocks:

det

�
A11 A12

0 A22

�
= det

�
A11 0
A21 A22

�
= det(A11) � det(A22) (A.13)

6. Schur’s formula for the determinant of a partitioned matrix:

det

�
A11 A12

A21 A22

�
= det(A11) � det(A22 �A21A

�1
11 A12)

= det(A22) � det(A11 �A12A
�1
22 A21) (A.14)

where it is assumed that A11 and/or A22 are non-singular.

Proof: Note that A has the following decomposition if A11 is non-singular:�
A11 A12

A21 A22

�
=

�
I 0

A21A
�1
11 I

� �
A11 0
0 X

� �
I A�111 A12

0 I

�
(A.15)

where X = A22 � A21A
�1
11 A12. The first part of (A.14) is proved by evaluating the

determinant using (A.9) and (A.13). Similarly, if A22 is non-singular,�
A11 A12

A21 A22

�
=

�
I A12A

�1
22

0 I

��
Y 0
0 A22

��
I 0

A�122 A21 I

�
(A.16)

where Y = A11 �A12A
�1
22 A21, and the last part of (A.14) follows. 2

A.2 Eigenvalues and eigenvectors

Definition A.1 Eigenvalues and eigenvectors. LetA be a squaren�nmatrix. The
eigenvalues�i, i = 1; : : : ; n, are then solutions to then’th order characteristic
equation

det(A� �I) = 0 (A.17)

The (right) eigenvectorti corresponding to the eigenvalue�i is the nontrivial
solution (ti 6= 0) to

(A� �iI)ti = 0 , Ati = �iti (A.18)

The corresponding left eigenvectorsqi satisfy

qHi (A� �iI) = 0 , qHi A = �iq
H
i (A.19)

When we just sayeigenvector we mean the right eigenvector.
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Remark. Note that if t is an eigenvector then so is �t for any constant �. Therefore, the
eigenvectors are usually normalized to have unit length, i.e. tHi ti = 1.

The left eigenvectors of A are the (right) eigenvectors of AH . The eigenvalues are
sometimes called characteristic gains. The set of eigenvalues of A is called the
spectrum of A. The largest of the absolute values of the eigenvalues of A is the
spectral radiusof A, �(A) , maxi j�i(A)j.
An important result for eigenvectors is that eigenvectors corresponding to distinct
eigenvalues are always linearly independent.For repeated eigenvalues, this may
not always be the case, that is, not all n � n matrices have n linearly independent
eigenvectors (these are the so-called “defective” matrices).

The eigenvectors may be collected as columns in the matrix T and the eigenvalues
�1; �2; : : : ; �n as diagonal elements in the matrix �:

T = ft1; t2; : : : ; tng; � = diagf�1; �2; : : : ; �ng (A.20)

We may then write (A.18) as AT = T�. If the eigenvectors are linearly independent
such that T�1 exists, we then have that A may be “diagonalized” as follows:

� = T�1AT (A.21)

This always happens if the eigenvalues are distinct, and may also happen in other
cases, e.g. for A = I . For distinct eigenvalues, we also have that the right and left
eigenvalues are mutually orthogonal,

qHi tj =

�
1 if i = j
0 if i 6= j

and the dyadic expansionof the matrix A from its eigenevectors and eigenvectors
applies:

A =

nX
i=1

�itiq
H
i (A.22)

Remark. The case where the eigenvalues are not distinct (i.e. repeat) is much more
complicated, both theoretically and computationally. Fortunately, from a practical point of
view it is sufficient to understand the case where the eigenvalues are distinct.

A.2.1 Eigenvalue properties

Let �i denote the eigenvalues of A in the following properties:

1. The sum of the eigenvalues of A is equal to the trace of A (sum of the diagonal
elements): trA =

P
i �i.
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2. The product of the eigenvalues of A is equal to the determinant of A: detA =Q
i �i.

3. The eigenvalues of an upper or lower triangular matrix are equal to the diagonal
elements of the matrix.

4. For a real matrix the eigenvalues are either real, or occur in complex conjugate
pairs.

5. A and AT have the same eigenvalues (but in general different eigenvectors).
6. The inverse A�1 exists if and only if all eigenvalues of A are non-zero. The

eigenvalues of A�1 are then 1=�1; : : : ; 1=�n.
7. The matrix A+ cI has eigenvalues �i + c.
8. The matrix cAk where k is an integer has eigenvalues c�ki .
9. Consider the l�mmatrixA and them�lmatrixB. Then the l�lmatrixAB and

the m �m matrix BA have the same non-zero eigenvalues. To be more specific
assume l > m. Then the matrixAB has the samem eigenvalues asBA plus l�m
eigenvalues which are identically equal to zero.

10. Eigenvalues are invariant under similarity transformations, that is,A andDAD�1

have the same eigenvalues.
11. The same eigenvector matrix diagonalizes the matrixA and the matrix (I+A)�1.

(Proof: T�1(I +A)�1T = (T�1(I +A)T )�1 = (I + �)�1: )
12. Gershgorin’s theorem.The eigenvalues of the n� n matrix A lie in the union of

n circles in the complex plane, each with centre a ii and radius ri =
P

j 6=i jaij j
(sum of off-diagonal elements in row i). They also lie in the union of n circles,
each with centre aii and radius r0i =

P
j 6=i jajij (sum of off-diagonal elements in

column i).
13. The eigenvalues of a Hermitian matrix (and hence of a symmetric matrix) are real.
14. A Hermitian matrix is positive definite (A > 0) if all its eigenvalues are positive.

From the above properties we have, for example, that

�i(S) = �i((I + L)�1) =
1

�i(I + L)
=

1

1 + �i(L)
(A.23)

In this book we are sometimes interested in the eigenvalues of a real (state) matrix,
and in other cases in the eigenvalues of a complex transfer function matrix evaluated
at a given frequency, e.g. L(j!). It is important to appreciate this difference.

A.2.2 Eigenvalues of the state matrix

Consider a system described by the linear differential equations

_x = Ax+Bu (A.24)

Unless A is diagonal this is a set of coupled differential equations. For simplicity,
assume that the eigenvectors ti of A are linearly independent and introduce the new
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state vector z = T�1x, that is, x = Tz. We then get

T _z = ATz +Bu , _z = �z + T�1Bu (A.25)

which is a set of uncoupled differential equations in terms of the new states z = Tx.
The unforced solution (i.e. with u = 0) for each state z i is zi = z0ie

�it where z0i
is the value of the state at t = 0. If �i is real, then we see that this mode is stable
(zi ! 0 as t ! 1) if and only if �i < 0. If �i = Re�i + jIm�i is complex, then
we get e�it = eRe�it(cos(Im�it) + j sin(Im�it)) and the mode is stable (zi ! 0
as t ! 1) if and only if Re�i < 0. The fact that the new state zi is complex is of
no concern since the real physical states x = Tz are of course real. Consequently,
a linear system is stable if and only if all the eigenvalues of the state matrix A have
real parts less than 0, that is, lie in the open left-half plane.

A.2.3 Eigenvalues of transfer functions

The eigenvalues of the loop transfer function matrix, � i(L(j!)), evaluated as a
function of frequency, are sometimes called the characteristic loci, and to some extent
they generalize L(j!) for a scalar system. In Chapter 8, we make use of � i(L) to
study the stability of the M�-structure where L = M�. Even more important in
this context is the spectral radius, �(L) = maxi j�i(L(j!))j.

A.3 Singular Value Decomposition

Definition A.2 Unitary matrix. A (complex) matrixU is unitary if

UH = U�1 (A.26)

All the eigenvalues of a unitary matrix have absolute value equal to 1, and all its
singular values (as we shall see from the definition below) are equal to 1.

Definition A.3 SVD. Any complexl�mmatrixAmay be factorized into a singular
value decomposition

A = U�V H (A.27)

where thel� l matrixU and them�m matrixV are unitary, and thel�m matrix
� contains a diagonal matrix�1 of real, non-negative singular values,�i, arranged
in a descending order as in

� =

�
�1

0

�
; l � m (A.28)
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or
� = [�1 0 ] ; l � m (A.29)

where
�1 = diagf�1; �2; : : : ; �kg; k = min(l;m) (A.30)

and
�� � �1 � �2 � : : : � �k � � (A.31)

The unitary matrices U and V form orthonormal bases for the column (output) space
and the row (input) space ofA. The column vectors of V , denoted v i, are called right
or input singular vectors and the column vectors of U , denoted u i, are called left or
output singular vectors. We define �u � u1, �v � v1, u � uk and v � vk.

Note that the decomposition in (A.27) is not unique. For example, A = U 0�V 0H ,
where U 0 = US, V 0 = V S, S = diagfej�ig and �i is any real number, is also an
SVD of a square matrix A. However, the singular values, � i, areunique.

The singular values are the positive square roots of the k = min(l;m) largest
eigenvalues of both AAH and AHA. We have

�i(A) =
q
�i(AHA) =

q
�i(AAH) (A.32)

Also, the columns of U and V are unit eigenvectors ofAAH andAHA, respectively.
To derive (A.32) write

AAH = (U�V H)(U�V H)H = (U�V H)(V �HUH) = U��HUH (A.33)

or equivalently since U is unitary and satisfies UH = U�1 we get

(AAH )U = U��H (A.34)

We then see that U is the matrix of eigenvectors of AAH and f�2i g are its
eigenvalues. Similarly, we have that V is the matrix of eigenvectors of AHA.

A.3.1 Rank

Definition A.4 Therank of a matrix is equal to the number of non-zero singular
values of the matrix. Let rank(A) = r, then the matrixA is called rank deficient if
r < k = min(l;m), and we have singular values�i = 0 for i = r + 1; : : : k. A
rank deficient square matrix is a singular matrix (non-square matrices are always
singular).

The rank of a matrix is unchanged after left or right multiplication by a non-singular
matrix. Furthermore, for an l�m-matrixA and anm�p-matrixB, the rank of their
productAB is bounded as follows (Sylvester’s inequality):

rank(A) + rank(B)�m � rank(AB) � min(rank(A); rank(B)) (A.35)
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A.3.2 Singular values of a 2� 2 matrix

In general, the singular values must be computed numerically. For 2 � 2 matrices,
however, an analytic expression is easily derived. Introduce

b , tr(AHA) =
X
i;j

jaij j2; c , det(AHA)

Now the sum of the eigenvalues of a matrix is equal to its trace and the product is
equal to its determinant, so

�1 + �2 = b; �1 � �2 = c

Upon solving for �1 and �2, and using �i(A) =
p
�i(AHA) we get

��(A) =

s
b+

p
b2 � 4c

2
; �(A) =

s
b�pb2 � 4c

2
(A.36)

For example, for A =
�
1 2
3 4

�
we have b =

P jaij j2 = 1 + 4 + 9 + 16 = 30,

c = (detA)2 = (�2)2 = 4, and we find ��(A) = 5:465 and �(A) = 0:366.
Note that for singular 2 � 2 matrices (with detA = 0 and �(A) = 0) we get
��(A) =

pP jaij j2) , kAkF (the Frobenius norm), which is actually a special
case of (A.126).

A.3.3 SVD of a matrix inverse

Since A = U�V H we get, provided the m�m A is non-singular, that

A�1 = V ��1UH (A.37)

This is the SVD of A�1 but with the order of the singular values reversed. Let
j = m� i+ 1. Then it follows from (A.37) that

�i(A
�1) = 1=�j(A); ui(A

�1) = vj(A); vi(A
�1) = uj(A) (A.38)

and in particular
��(A�1) = 1=�(A) (A.39)

A.3.4 Singular value inequalities

The singular values bound the magnitude of the eigenvalues (also see (A.116)):

�(A) � j�i(A)j � ��(A) (A.40)
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The following is obvious from the SVD-definition:

��(AH) = ��(A) and ��(AT ) = ��(A) (A.41)

The next important property is proved below (eq. A.97):

��(AB) � ��(A)��(B) (A.42)

For a non-singularA (or B) we also have a lower bound on ��(AB)

�(A)��(B) � ��(AB) or ��(A)�(B) � ��(AB) (A.43)

We also have a lower bound on the minimum singular value

�(A)�(B) � �(AB) (A.44)

For a partitioned matrix the following inequalities are useful:

maxf��(A); ��(B)g � ��

�
A
B

�
�
p
2maxf��(A); ��(B)g (A.45)

��

�
A
B

�
� ��(A) + ��(B) (A.46)

The following equality for a block-diagonal matrix is used extensively in the book:

��

�
A 0
0 B

�
= maxf��(A); ��(B)g (A.47)

Another very useful result is Fan’s theorem (Horn and Johnson, 1991, p. 140 and
p. 178):

�i(A) � ��(B) � �i(A+B) � �i(A) + ��(B) (A.48)

Two special cases of (A.48) are:

j��(A)� ��(B)j � ��(A+B) � ��(A) + ��(B) (A.49)

�(A)� ��(B) � �(A+B) � �(A) + ��(B) (A.50)

(A.50) yields
�(A) � 1 � �(I +A) � �(A) + 1 (A.51)

On combining (A.39) and (A.51) we get a relationship that is useful when evaluating
the amplification of closed-loop systems:

�(A)� 1 � 1

��(I + A)�1
� �(A) + 1 (A.52)
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A.3.5 SVD as a sum of rank 1 matrices

Let r denote the rank of the l � m matrix A. We may then consider the SVD as a
decomposition of A into r l �m matrices, each of rank 1. We have

A = U�V H =
rX
i=1

�iuiv
H
i (A.53)

The remaining terms from r + 1 to k = min(l;m) have singular values equal to 0
and give no contribution to the sum. The first and most important submatrix is given
by A1 = �1u1v

H
1 . If we now consider the residual matrix

A1 = A�A1 = A� �1u1v
H
1 (A.54)

then
�1(A

1) = �2(A) (A.55)

That is, the largest singular value of A1 is equal to the second singular value of the
original matrix. This shows that the direction corresponding to � 2(A) is the second
most important direction, and so on.

A.3.6 Singularity of matrix A+ E

From the left inequality in (A.50) we find that

��(E) < �(A) ) �(A+E) > 0 (A.56)

and A + E is non-singular. On the other hand, there always exists an E with
��(E) = �(A) which makes A+ E singular, e.g. choose E = �u� vH ; see (A.53).
Thus the smallest singular value �(A) measures how near the matrix A is to being
singular or rank deficient. This test is often used in numerical analysis, and it is also
an important inequality in the formulation of robustness tests.

A.3.7 Economy-size SVD

Since there are only r = rank(A) � min(l;m) non-zero singular values, and since
only the non-zero singular values contribute to the overall result, the singular value
decomposition of A is sometimes written as an economy-size SVD, as follows

Al�m = U l�r
r �r�rr (V m�r

r )H (A.57)

where the matrices Ur and Vr contain only the first r columns of the matrices U and
V introduced above. Here we have used the notation A l�m to indicate that A is an
l�m matrix. The economy-size SVD is used for computing the pseudo inverse, see
(A.60).
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Remark. The “economy-size SVD” presently used in MATLAB is not quite as economic as
the one given in (A.57) as it uses m instead of r for �.

A.3.8 Pseudo-inverse (Generalized inverse)

Consider the set of linear equations

y = Ax (A.58)

with a given l � 1 vector y and a given l �m matrix A. A least squaressolution
to (A.58) is an m� 1 vector x such that kxk2 =

p
x21 + x22 � � �x2m is minimized

among all vectors for which ky�Axk2 is minimized. The solution is given in terms
of the pseudo-inverse (Moore-Penrose generalized inverse) of A:

x = Ayy (A.59)

The pseudo-inverse may be obtained from an SVD of A = U�V H by

Ay = Vr�
�1
r UH

r =

rX
i=1

1

�i(A)
viu

H
i (A.60)

where r is the number of non-zero singular values of A. We have that

�(A) = 1=��(Ay) (A.61)

Note that Ay exists for any matrix A, even for a singular square matrix and a non-
square matrix. The pseudo-inverse also satisfies

AAyA = A and AyAAy = Ay

Note the following cases (where r is the rank of A):

1. r = l = m, i.e. A is non-singular. In this case Ay = A�1 is the inverse of the
matrix.

2. r = m � l, i.e. A has full column rank. This is the “conventional least squares
problem” where we want to minimize ky �Axk2, and the solution is

Ay = (AHA)�1AH (A.62)

In this case AyA = I , so Ay is a left inverseof A.
3. r = l � m, i.e. A has full row rank. In this case we have an infinite number of

solutions to (A.58) and we seek the one that minimizes kxk2. We get

Ay = AH(AAH )�1 (A.63)

In this case AAy = I , so Ay is a right inverseof A.
4. r < k = min(l;m) (general case). In this case both matrices AHA and AAH are

rank deficient, and we have to use the SVD to obtain the pseudo-inverse. In this
case A has neither a left nor a right inverse.
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Principal component regression (PCR)

We note that the pseudo-inverse in (A.60) may be very sensitive to noise and “blow
up” if the smallest non-zero singular value, �r is small. In the PCR method one
avoids this problem by using only the q � r first singular values which can be
distinguished from the noise. The PCR pseudo-inverse then becomes

AyPCR =

qX
i=1

1

�i
viu

H
i (A.64)

Remark. This is similar in spirit to the use of Hankel singular values for model reduction.

A.3.9 Condition number

The condition number of a matrix is defined in this book as the ratio


(A) = �1(A)=�k(A) = ��(A)=�(A) (A.65)

where k = min(l;m). A matrix with a large condition number is said to be ill-
conditioned. This definition yields an infinite condition number for rank deficient
matrices. For a non-singular matrix we get from (A.39)


(A) = ��(A) � ��(A�1) (A.66)

Other definitions for the condition number of a non-singular matrix are also in use,
for example,


p(A) = kAk � kA�1k (A.67)

where kAk denotes any matrix norm. If we use the induced 2-norm (maximum
singular value) then this yields (A.66). From (A.66) and (A.42), we get for non-
singular matrices


(AB) � 
(A)
(B) (A.68)

The minimized condition number is obtained by minimizing the condition number
over all possible scalings. We have


�(G) , min
DI ;DO


(DOGDI) (A.69)

where DI and DO are diagonal scaling matrices. For a 2� 2 matrix, the minimized
condition number is given by (Grosdidier et al., 1985) as


�(G) = k�ki1 +
q
k�k2i1 � 1 (A.70)
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where k�ki1 is the induced 1-norm (maximum column sum) of the RGA-matrix of
G. Note that,�(G) = I and 
�(G) = 1 for a triangular 2�2matrix. If we allow only
scaling on one side then we get the input and output minimized condition numbers:


�I (G) , min
DI


(GDI); 
�O(G) , min
DO


(DOG) (A.71)

Remark. To compute these minimized condition numbers we define

H =

�
0 G�1

G 0

�
(A.72)

Then we have, as proven by Braatz and Morari (1994):p

�(G) = min

DI ;DO
��(DHD�1); D = diagfD�1

I ; DOg (A.73)

q

�I (G) = min

DI
��(DHD�1); D = diagfD�1

I ; Ig (A.74)q

�O(G) = min

DO
��(DHD�1); D = diagfI;DOg (A.75)

These convex optimization problems may be solved using available software for the upper
bound on the structured singular value ��(H); see (8.87). In calculating ��(H), we
use for 
�(G) the structure � = diagf�diag;�diagg, for 
�I (G) the structure � =
diagf�diag;�fullg, and for 
�O(G) the structure � = diagf�full;�diagg.

A.4 Relative Gain Array

The relative gain array (RGA) was introduced by Bristol (1966). Many of its
properties were stated by Bristol, but they were not proven rigorously until the
work by Grosdidier et al. (1985). Some additional properties are given in Hovd and
Skogestad (1992).

The Relative Gain Array of a complex non-singular m � m matrix A, denoted
RGA(A) or �(A), is a complex m�m matrix defined by

RGA(A) � �(A) , A� (A�1)T (A.76)

where the operation � denotes element by element multiplication (Hadamard or
Schur product). If A is real then �(A) is also real.

Example:

A1 =

�
1 �2
3 4

�
; A�11 =

�
0:4 0:2
�0:3 0:1

�
; �(A1) =

�
0:4 0:6
0:6 0:4

�
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A.4.1 Properties of the RGA

Most of the properties below follow directly if we write the RGA-elements in the
form

�ij = aij � eaji = aij
cij

detA
= (�1)i+j aij detA

ij

detA
(A.77)

where eaji denotes the ji’ th element of the matrix eA , A�1, Aij denotes the matrix
A with row i and column j deleted, and c ij = (�1)i+j detAij is the ij’ th cofactor
of the matrix A.

For any non-singularm�m matrix A, the following properties hold:

1. �(A�1) = �(AT ) = �(A)T

2. Any permutation of the rows and columns of A results in the same permutation
in the RGA. That is, �(P1AP2) = P1�(A)P2 where P1 and P2 are permutation
matrices. (A permutation matrix has a single 1 in every row and column and all
other elements equal to 0.) �(P ) = P for any permutation matrix.

3. The sum of the elements in each row (and each column) of the RGA is 1. That is,Pm
i=1 �ij = 1 and

Pm
j=1 �ij = 1.

4. �(A) = I if and only if A is a lower or upper triangular matrix; and in particular
the RGA of a diagonal matrix is the identity matrix.

5. The RGA is scaling invariant. Therefore, �(D1AD2) = �(A) where D1 and D2

are diagonal matrices.
6. The RGA is a measure of sensitivity to relative element-by-element uncertainty

in the matrix. More precisely, the matrix A becomes singular if a single element
in A is perturbed from aij to a0ij = aij(1� 1

�ij
).

7. The norm of the RGA is closely related to the minimized condition number,

�(A) = minD1;D2


(D1AD2) where D1 and D2 are diagonal matrices. We
have the following lower and conjectured upper bounds on 
 �(A)

k�km � 1


�(A)
� 
�(A) � k�ksum + k(m) (A.78)

where k(m) is a constant, k�km , 2maxfk�ki1; k�ki1g, and k�ksum =P
ij j�ij j (the matrix norms are defined in Section A.5.2). The lower bound is

proved by Nett and Manousiouthakis (1987). The upper bound is proved for 2�2
matrices with k(2) = 0 (Grosdidier et al., 1985), but it is only conjectured for the
general case with k(3) = 1 and k(4) = 2 (Skogestad and Morari, 1987c; Nett and
Manousiouthakis, 1987). Note that k�km � k�ksum where the equality always
holds in the 2�2 case. Consequently, for 2�2matrices 
 � and k�ksum are always
very close in magnitude (also see (A.70)):

2� 2 matrix : k�ksum � 1


�(A)
� 
�(A) � k�ksum (A.79)
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8. The diagonal elements of the matrix ADA�1 are given in terms of the
corresponding row-elements of the RGA (Skogestad and Morari, 1987c)(Nett and
Manousiouthakis, 1987). For any diagonal matrix D = diagfd ig we have

[ADA�1]ii =
mX
j=1

�ij(A)dj (A.80)

[A�1DA]ii =
mX
i=1

�ij(A)di (A.81)

9. It follows from Property 3 that � always has at least one eigenvalue and one
singular value equal to 1.

Proofs of some of the properties: Property 3: Since AA�1 = I it follows that
Pm

j=1 aijbaji =
1. From the definition of the RGA we then have that

Pm
j=1 �ij = 1. Property 4: If the matrix

is upper triangular then aij = 0 for i > j. It then follows that cij = 0 for j > i and all the
off-diagonal RGA-elements are zero. Property 5: Let A0 = D1AD2. Then a0ij = d1id2jaij
and ba0ij = 1

d2j

1
d1i
baij and the result follows. Property 6: The determinant can be evaluated by

expanding it in terms of any row or column, e.g. by row i, detA =
P

i(�1)i+jaij detAij .
Let A0 denote A with a0ij substituted for aij . By expanding the determinant of A0 by row i
and then using (A.77) we get

detA0 = detA� (�1)i+j aij
�ij

detAij

| {z }
detA

= 0

Property 8: The ii’ th element of the matrix B = ADA�1 is bii =
P

j djaijbaji =P
j dj�ij .

2 2

Example A.1

A2 =

2664
56 66 75 97
75 54 82 28
18 66 25 38
9 51 8 11

3775 ; �(A2) =

2664
6:16 �0:69 �7:94 3:48
�1:77 0:10 3:16 �0:49
�6:60 1:73 8:55 �2:69
3:21 �0:14 �2:77 0:70

3775 (A.82)

In this case,
(A2) = ��(A2)=�(A2) = 207:68=1:367 = 151:9 and 
�(A2) = 51:73
(obtained numerically using (A.73)). Furthermore,k�km = 2maxf22:42; 19:58g = 44:84,
andk�ksum = 50:19, so (A.78) withk(m) = k(4) = 2 is satisfied. The matrixA2 is non-
singular and the1; 3-element of the RGA is�13(A2) = �7:94. Thus from Property 6 the
matrix A2 becomes singular if the1; 3-element is perturbed from75 to 75(1 � 1

�7:94
) =

84:45.
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A.4.2 RGA of a non-square matrix

The RGA may be generalized to a non-square l �m matrix A by use of the pseudo
inverse Ay defined in (A.60). We have

�(A) = A� (Ay)T (A.83)

Properties 1 (transpose and inverse) and 2 (permutations) of the RGA also hold for
non-square matrices, but the remaining properties do not apply in the general case.
However, they partly apply if A is either of full row rank or full column rank.

1. A has full row rank,r = rank(A) = l (i.e. A has at least as many inputs as
outputs, and the outputs are linearly independent). In this case AA y = I , and the
following properties hold:

(a) The RGA is independent of output scaling, i.e. �(DA) = �(A).
(b) The elements in each row of the RGA sum to 1,

Pm
j �ij = 1.

(c) The elements of column j of the RGA sum to the square of the 2-norm of the
j’ th row in Vr,

lX
i=1

�ij = keTj Vrk22 � 1 (A.84)

Here Vr contains the first r input singular vectors for G, and e j is an m � 1

basis vector for input uj ; ej = [ 0 � � � 0 1 0 � � � 0 ]T where 1 appears in
position j.

(d) The diagonal elements of B = ADAy are bii =
Pm

j=1 djaijbaji =Pm
j=1 dj�ij , where baji denotes the ji’ th element of Ay and D is any diagonal

matrix.

2. A has full column rank,r = rank(A) = m (i.e. A has no more inputs than
outputs, and the inputs are linearly independent). In this case A yA = I , and the
following properties hold:

(a) The RGA is independent of input scaling, i.e. �(AD) = �(A).
(b) The elements in each column of the RGA sum to 1,

Pl
i �ij = 1.

(c) The elements of row i of the RGA sum to the square of the 2-norm of the i’ th
row in Ur,

mX
i=1

�ij = keTi Urk22 � 1 (A.85)

Here Ur contains the first r output singular vectors for G, and e i is an l � 1
basis vector for output yi; ei = [ 0 � � � 0 1 0 � � � 0 ]T where 1 appears in
position i.

(d) The diagonal elements of B = AyDA are equal to bjj =
Pl

i=1 bajidiaij =Pl
i=1 di�ij , where baji denotes the ji’ th element of Ay and D is any diagonal

matrix.
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3. General case.For a general square or non-square matrix which has neither full
row nor full column rank, identities (A.84) and (A.85) still apply.
From this it also follows that the rank of any matrix is equal to the sum of its
RGA-elements: Let the l �m matrix G have rank r, thenX

i;j

�ij(G) = rank(G) = r (A.86)

Proofs of (A.84) and (A.85):We will prove these identities for the general case. Write the SVD
ofG asG = Ur�rV

H
r (this is the economy-size SVD from (A.57)) where�r is invertible. We

have that gij = eHi Ur�rV
H
r ej ,

�
Gy
�
ji
= eHj Vr�

�1
r UH

r ei, UH
r Ur = Ir and V H

r Vr = Ir,
where Ir denotes identity matrix of dim r � r. For the row sum (A.85) we then get

mX
j=1

�ij =

mX
j=1

eHi Ur�rV
H
r eje

H
j Vr�

�1
r UH

r ei =

eHi Ur�rV
H
r

mX
j=1

eje
H
j| {z }

Im

Vr�
�1
r UH

r ei = eHi UrU
H
r ei = keHi Urk22

The result for the column sum (A.84) is proved in a similar fashion. 2

Remark. The extension of the RGA to non-square matrices was suggested by Chang and Yu
(1990) who also stated most of its properties, although in a somewhat incomplete form. More
general and precise statements are found in e.g. Cao (1995).

A.4.3 Computing the RGA with MATLAB

If G is a constant matrix then the RGA can be computed using

RGA = G.*pinv(G.’);

If G(j!) is a frequency-dependent matrix generated using the � toolbox, e.g.

G=pck(A,B,C,D); omega=logspace(-2,2,41); Gw=frsp(G,omega);

then the RGA as a function of frequency can be computed using

RGAw = veval(’.*’,Gw,vpinv(vtp(Gw)));

A.5 Norms

It is useful to have a single number which gives an overall measure of the size of
a vector, a matrix, a signal, or a system. For this purpose we use functions which
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are called norms. The most commonly used norm is the Euclidean vector norm,
kek2 =

pje1j2 + je2j2 + � � � jemj2. This is simply the distance between two points
y and x, where ei = yi � xi is the difference in their i’ th coordinates.

Definition A.5 A norm ofe (which may be a vector, matrix, signal or system) is a
real number, denotedkek, that satisfies the following properties:

1. Non-negative:kek � 0.
2. Positive:kek = 0, e = 0 (for semi-norms we havekek = 0( e = 0).
3. Homogeneous:k� � ek = j�j � kek for all complex scalars�.
4. Triangle inequality:

ke1 + e2k � ke1k+ ke2k (A.87)

More precisely,e is an element in a vector spaceV over the fieldC of complex
numbers, and the properties above must be satisfied8e; e1; e2 2 V and8� 2 C .

In this book we consider the norms of four different objects (norms on four different
vector spaces):

1. e is a constant vector.
2. e is a constant matrix.
3. e is a time dependent signal, e(t), which at each fixed t is a constant scalar or

vector.
4. e is a “system” , a transfer function G(s) or impulse response g(t), which at each

fixed s or t is a constant scalar or matrix.

Cases 1 and 2 involve spatial norms and the question that arises is: how do we
average or sum up the channels? Cases 3 and 4 involve function norms or temporal
norms where we want to “average” or “sum up” as a function of time or frequency.
Note that the first two are finite dimensional norms, while the latter two are infinite-
dimensional.

Remark. Notation for norms. The reader should be aware that the notation on norms in
the literature is not consistent, and one must be careful to avoid confusion. First, in spite of
the fundamental difference between spatial and temporal norms, the same notation, k � k, is
generally used for both of them, and we adopt this here. Second, the same notation is often
used to denote entirely different norms. For example, consider the infinity-norm, kek1. If e
is a constant vector, then kek1 is the largest element in the vector (we often use kekmax for
this). If e(t) is a scalar time signal, then ke(t)k1 is the peak value of je(t)j as a function
of time. If E is a constant matrix then kEk1 may denote the the largest matrix element
(we use kAkmax for this), while other authors use kEk1 to denote the largest matrix row-
sum (we use kEki1 for this). Finally, if E(s) is a stable proper system (transfer function),
then kEk1 is the H1 norm which is the peak value of the maximum singular value of E,
kE(s)k1 = maxw ��(E(j!)) (which is how we mostly use the1-norm in this book).
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A.5.1 Vector norms

We will consider a vector a with m elements, that is, the vector space is V = C m .
To illustrate the different norms we will calculate each of them for the vector

b =

24 b1b2
b3

35 =

24 1
3
�5

35 (A.88)

We will consider three norms which are special cases of the vector p-norm

kakp = (
X
i

jaijp)1=p (A.89)

where we must have p � 1 to satisfy the triangle inequality (property 4 of a norm).
Here a is a column vector with elements ai and jaij is the absolute value of the
complex scalar ai.

Vector 1-norm (or sum-norm ). This is sometimes referred to as the “ taxi-cab
norm” , as in two dimensions it corresponds to the distance between two places when
following the “streets” (New York style). We have

kak1 ,
X
i

jaij (kbk1 = 1 + 3 + 5 = 9) (A.90)

Vector 2-norm (Euclidean norm). This is the most common vector norm, and
corresponds to the shortest distance between two points

kak2 ,
sX

i

jaij2 (kbk2 =
p
1 + 9 + 25 = 5:916) (A.91)

The Euclidean vector norm satisfies the property

aHa = kak22 (A.92)

where aH denotes the complex conjugate transpose of the vector a.

Vector1 -norm (or max norm ). This is the largest element magnitude in the vector.
We use the notation kakmax so that

kakmax � kak1 , max
i
jaij (kbkmax = j � 5j = 5) (A.93)

Since the various vector norms only differ by constant factors, they are often said to
be equivalent. For example, for a vector with m elements

kakmax � kak2 �
p
m kakmax (A.94)

kak2 � kak1 �
p
m kak2 (A.95)

In Figure A.1 the differences between the vector norms are illustrated by plotting the
contours for kakp = 1 for the case with m = 2.
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p =1

p = 1

p = 2

�1

�1

1

1

a1

a2

Figure A.1: Contours for the vector p-norm, kakp = 1 for p = 1; 2;1.
(Mathematically: The unit ball on R2 with three different norms)

A.5.2 Matrix norms

We will consider a constant l�mmatrixA The matrixAmay represent, for example,
the frequency response, G(j!), of a system G(s) with m inputs and l outputs. For
numerical illustrations we will use the following 2� 2 matrix example

A0 =

�
1 2
�3 4

�
(A.96)

Definition A.6 A norm on a matrixkAk is amatrix norm if, in addition to the four
norm properties in Definition A.5, it also satisfies the multiplicative property (also
called the consistency condition):

kABk � kAk � kBk (A.97)

Property (A.97) is very important when combining systems, and forms the basis for
the small gain theorem. Note that there exist norms on matrices(thus satisfying the
four properties of a norm), which are not matrix norms(thus not satisfying (A.97)).
Such norms are sometimes called generalized matrix norms. The only generalized
matrix norm considered in this book is the largest-element norm, kAkmax.

Let us first examine three norms which are direct extensions of the definitions of the
vector p-norms.

Sum matrix norm. This is the sum of the element magnitudes

kAksum =
X
i;j

jaij j (kA0ksum = 1 + 2 + 3 + 4 = 10) (A.98)
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Frobenius matrix norm (or Euclidean norm). This is the square root of the sum of
the squared element magnitudes

kAkF =

sX
i;j

jaij j2 =
q
tr(AHA) (kA0kF =

p
30 = 5:477) (A.99)

The trace tr is the sum of the the diagonal elements, and AH is the complex
conjugate transpose of A. The Frobenius norm is important in control because it
is used for summing up the channels, for example, when using LQG optimal control.

Max element norm. This is the largest element magnitude,

kAkmax = max
i;j

jaij j (kA0kmax = 4) (A.100)

This norm is not a matrix norm as it does not satisfy (A.97). However note thatp
lm kAkmax is a matrix norm.

The above three norms are sometimes called the 1�, 2� and1�norm, respectively,
but this notation is notused in this book to avoid confusion with the more important
induced p-norms introduced next.

Induced matrix norms

- -A
w z

Figure A.2: Representation of (A.101)

Induced matrix norms are important because of their close relationship to signal
amplification in systems. Consider the following equation which is illustrated in
Figure A.2

z = Aw (A.101)

We may think of w as the input vector and z as the output vector and consider the
“amplification” or “gain” of the matrix A as defined by the ratio kzk=kwk. The
maximum gain for all possible input directions is of particular interest. This is given
by the induced normwhich is defined as

kAkip , max
w 6=0

kAwkp
kwkp (A.102)

where kwkp = (
P

i jwijp)1=p denotes the vector p-norm. In other words, we are
looking for a direction of the vector w such that the ratio kzk p=kwkp is maximized.
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Thus, the induced norm gives the largest possible “amplifying power” of the matrix.
The following equivalent definition is also used

kAkip = max
kwkp�1

kAwkp = max
kwkp=1

kAwkp (A.103)

For the induced 1-, 2- and1-norms the following identities hold:

kAki1 = max
j

(
X
i

jaij j) “maximum column sum” (A.104)

kAki1 = max
i
(
X
j

jaij j) “maximum row sum” (A.105)

kAki2 = ��(A) =
q
�(AHA) “ singular value or spectral norm” (A.106)

where the spectral radius �(A) = maxi j�i(A)j is the largest eigenvalue of the matrix
A. Note that the induced 2-norm of a matrix is equal to the (largest) singular value,
and is often called the spectral norm. For the example matrix in (A.96) we get

kA0ki1 = 6; kA0ki1 = 7; kA0ki2 = ��(A0) = 5:117 (A.107)

Theorem A.3 All induced normskAkip are matrix norms and thus satisfy the
multiplicative property

kABkip � kAkip � kBkip (A.108)

- - -AB
w v z

Figure A.3: Representation of (A.109)

Proof: Consider the following set of equations which is illustrated graphically in Figure A.3.

z = Av; v = Bw ) z = ABw (A.109)

From the definition of the induced norm we get by first introducing v = Bw, then multiplying
the numerator and denominator by kvkp 6= 0, and finally maximizing each term involving w
and v independently, that

kABkip , max
w 6=0

kA
vz}|{
Bw kp
kwkp = max

w 6=0

kAvkp
kvkp � kBwkpkwkp � max

v 6=0

kAvkp
kvkp �max

w 6=0

kBwkp
kwkp

and (A.108) follows from the definition of an induced norm. 2
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Implications of the multiplicative property

For matrix norms the multiplicative property kABk � kAk � kBk holds for matrices
A and B of any dimension as long as the productAB exists. In particular, it holds if
we choose A and B as vectors. From this observation we get:

1. Choose B to be a vector, i.e B = w. Then for any matrix norm we have from
(A.97) that

kAwk � kAk � kwk (A.110)

We say that the “matrix norm kAk is compatible with its corresponding vector
norm kwk” . Clearly, from (A.102) any induced matrix p-norm is compatible with
its corresponding vector p-norm. Similarly, the Frobenius norm is compatible with
the vector 2-norm (since when w is a vector kwkF = kwk2).

2. From (A.110) we also get for any matrix norm that

kAk � max
w 6=0

kAwk
kwk (A.111)

Note that the induced norms are defined such that we have equality in (A.111).
The property kAkF � ��(A) then follows since kwkF = kwk2.

3. Choose both A = zH and B = w as vectors. Then using the Frobenius norm
or induced 2-norm (singular value) in (A.97) we derive the Cauchy-Schwarz
inequality

jzHwj � kzk2 � kwk2 (A.112)

where z and w are column vectors of the same dimension and zHw is the
Euclidean inner product between the vectors z and w.

4. The inner product can also be used to define the angle � between two vectors z
and w

� = cos�1
� jzHwj
kzk2 � kwk2

�
(A.113)

Note that with this definition, � is between 0o and 90o.

A.5.3 The spectral radius

The spectral radius �(A) is the magnitude of the largest eigenvalue of the matrix A,

�(A) = max
i
j�i(A)j (A.114)

It is nota norm, as it does not satisfy norm properties 2 and 4 in Definition A.5. For
example, for

A1 =

�
1 0
10 1

�
; A2 =

�
1 10
0 1

�
(A.115)
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we have �(A1) = 1 and �(A2) = 1. However, �(A1 + A2) = 12 and �(A1A2) =
101:99, which neither satisfy the triangle inequality (property 4 of a norm) nor the
multiplicative property in (A.97).

Although the spectral radius is not a norm, it provides a lower bound on any matrix
norm, which can be very useful.

Theorem A.4 For any matrix norm (and in particular for any induced norm)

�(A) � kAk (A.116)

Proof: Since �i(A) is an eigenvalue of A, we have that Ati = �iti where ti denotes the
eigenvector. We get

j�ij � ktik = k�itik = kAtik � kAk � ktik (A.117)

(the last inequality follows from (A.110)). Thus for any matrix norm j�i(A)j � kAk and
since this holds for all eigenvalues the result follows. 2

For our example matrix in (A.96) we get �(A0) =
p
10 � 3:162 which is less than

all the induced norms (kA0ki1 = 6; kA0ki1 = 7; ��(A0) = 5:117) and also less than
the Frobenius norm (kAkF = 5:477) and the sum-norm (kAksum = 10).

A simple physical interpretation of (A.116) is that the eigenvalue measures the
gain of the matrix only in certain directions (given by the eigenvectors), and must
therefore be less than that for a matrix norm which allows any direction and yields
the maximum gain, recall (A.111).

A.5.4 Some matrix norm relationships

The various norms of the matrix A are closely related as can be seen from the
following inequalities taken from Golub and van Loan (1989, p. 15) and Horn and
Johnson (1985, p. 314). Let A be an l�m matrix, then

��(A) � kAkF �
p
min(l;m) ��(A) (A.118)

kAkmax � ��(A) �
p
lm kAkmax (A.119)

��(A) �
p
kAki1kAki1 (A.120)

1p
m
kAki1 � ��(A) �

p
l kAki1 (A.121)

1p
l
kAki1 � ��(A) � pm kAki1 (A.122)

maxf��(A); kAkF ; kAki1; kAki1g � kAksum (A.123)
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All these norms, except kAkmax, are matrix norms and satisfy (A.97). The
inequalities are tight; that is, there exist matrices of any size for which the equality
holds. Note from (A.119) that the maximum singular value is closely related to the
largest element of the matrix. Therefore, kAkmax can be used as a simple and readily
available estimate of ��(A).

An important property of the Frobenius norm and the maximum singular value
(induced 2-norm) is that they are invariant with respect to unitary transformations,
i.e. for unitary matrices Ui, satisfying UiUH

i = I , we have

kU1AU2kF = kAkF (A.124)

��(U1AU2) = ��(A) (A.125)

From an SVD of the matrix A = U�V H and (A.124), we then obtain an important
relationship between the Frobenius norm and the singular values, � i(A), namely

kAkF =

sX
i

�2i (A) (A.126)

The Perron-Frobenius theorem, which applies to a square matrix A, states that

min
D
kDAD�1ki1 = min

D
kDAD�1ki1 = �(jAj) (A.127)

whereD is a diagonal “scaling” matrix, jAj denotes the matrixAwith all its elements
replaced by their magnitudes, and �(jAj) = max i j�i(jAj)j is the Perron root
(Perron-Frobenius eigenvalue). The Perron root is greater than or equal to the spectral
radius, �(A) � �(jAj).

A.5.5 Matrix and vector norms in MATLAB

The following MATLAB commands are used for matrices:

��(A) = kAki2 norm(A,2) or max(svd(A))
kAki1 norm(A,1)
kAki1 norm(A,’inf’)
kAkF norm(A,’fro’)

kAksum sum (sum(abs(A)))
kAkmax max(max(abs(A))) (which is not a matrix norm)
�(A) max(abs(eig(A)))
�(jAj) max(eig(abs(A)))


(A) = ��(A)=�(A) cond(A)

For vectors:
kak1 norm(a,1)
kak2 norm(a,2)

kakmax norm(a,’inf’)
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A.5.6 Signal norms

We will consider the temporal norm of a time-varying (or frequency-varying) signal,
e(t). In contrast with spatial norms (vector and matrix norms), we find that the
choice of temporal norm makes a big difference. As an example, consider Figure A.4
which shows two signals, e1(t) and e2(t). For e1(t) the infinity-norm (peak) is one,
ke1(t)k1 = 1, whereas since the signal does not “die out” the 2-norm is infinite,
ke1(t)k2 =1. For e2(t) the opposite is true.

e

t

e1(t)

e2(t)

1

Figure A.4: Signals with entirely different 2-norms and1-norms.

e

t

e(t)

Area = kek1

kek1

Figure A.5: Signal 1-norm and1-norm.

For signals we may compute the norm in two steps:

1. “Sum up” the channels at a given time or frequency using a vector norm (for a
scalar signal we simply take the absolute value).

2. “Sum up” in time or frequency using a temporal norm.

Recall from above, that the vector norms are “equivalent” in the sense that their
values differ only by a constant factor. Therefore, it does not really make too much
difference which norm we use in step 1. We normally use the same p-norm both for
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the vector and the signal, and thus define the temporal p-norm, ke(t)k p, of a time-
varying vector as

Lp norm: ke(t)kp =
 Z 1

�1

X
i

jei(�)jpd�
!1=p

(A.128)

The following temporal norms of signals are commonly used:

1-norm in time (integral absolute error (IAE), see Figure A.5):

ke(t)k1 =
Z 1

�1

X
i

jei(�)jd� (A.129)

2-norm in time (quadratic norm, integral square error (ISE), “energy” of signal):

ke(t)k2 =
sZ 1

�1

X
i

jei(�)j2d� (A.130)

1-norm in time (peak value in time, see Figure A.5):

ke(t)k1 = max
�

�
max
i
jei(�)j

�
(A.131)

In addition, we will consider the power-norm or RMS-norm (which is actually only
a semi-norm since it does not satisfy norm property 2)

ke(t)kpow = lim
T!1

vuut 1

2T

Z T

�T

X
i

jei(�)j2d� (A.132)

Remark 1 In most cases we assume e(t) = 0 for t < 0 so the lower value for the integration
may be changed to � = 0.

Remark 2 To be mathematically correct we should have used sup� (least upper bound) rather
than max� in (A.131), since the maximum value may not actually be achieved (e.g. if it occurs
for t =1).

A.5.7 Signal interpretation of various system norms

Two system norms are considered in Section 4.10. These are the H 2 norm,
kG(s)k2 = kg(t)k2 and theH1 norm, kG(s)k1. The main reason for including this
section is to show that there are many ways of evaluating performance in terms of
signals, and to show that the H2 andH1 norms are useful measures in this context.
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This in turn will be useful in helping us to understand how to select performance
weights in controller design problems. The proofs of the results in this section require
a good background in functional analysis and can be found in Doyle et al. (1992),
Dahleh and Diaz-Bobillo (1995) and Zhou et al. (1996).

Consider a system G with input d and output e, such that

e = Gd (A.133)

For performance we may want the output signal e to be “small” for any allowed input
signals d. We therefore need to specify:

1. What d’s are allowed. (Which set does d belong to?)
2. What we mean by “small” . (Which norm should we use for e?)

Some possible input signal sets are:

1. d(t) consists of impulses, Æ(t). These generate step changes in the states, which
is the usual way of introducing the LQ-objective and gives rise to theH 2 norm.

2. d(t) is a white noise process with zero mean.
3. d(t) = sin(!t) with fixed frequency, applied from t = �1 (which corresponds

to the steady-state sinusoidal response).
4. d(t) is a set of sinusoids with all frequencies allowed.
5. d(t) is bounded in energy, kd(t)k2 � 1.
6. d(t) is bounded in power, kd(t)kpow � 1.
7. d(t) is bounded in magnitude, kd(t)k1 � 1.

The first three sets of input are specific signals, whereas the latter three are classes of
inputs with bounded norm. The physical problem at hand determines which of these
input classes is the most reasonable.

To measure the output signal one may consider the following norms:

1. 1-norm, ke(t)k1
2. 2-norm (energy), ke(t)k2
3. 1-norm (peak magnitude), ke(t)k1
4. Power, ke(t)kpow
Other norms are possible, but again, it is engineering issues that determine which
norm is the most appropriate. We will now consider which system norms result from
the definitions of input classes, and output norms, respectively. That is, we want
to find the appropriate system gain to test for performance. The results for SISO
systems in which d(t) and e(t) are scalar signals, are summarized in Tables A.1
and A.2. In these tables G(s) is the transfer function and g(t) is its corresponding
impulse response. Note in particular that

H1 norm: kG(s)k1 , max! ��(G(j!)) = maxd(t)
ke(t)k2
kd(t)k2 (A.134)
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and

L1 norm: kg(t)k1 ,
R1
�1 g(t)dt = maxd(t)

ke(t)k1
kd(t)k1 (A.135)

(the two right equalities are not by definition; these are important results from
functional analysis). We see from Tables A.1 and A.2 that the H2 and H1 norms
appear in several positions. This gives some basis for their popularity in control. In
addition, the H1 norm results if we consider d(t) to be the set of sinusoids with
all frequencies allowed, and measure the output using the 2-norm (not shown in
Tables A.1 and A.2, but discussed in Section 3.3.5). Also, theH 2 norm results if the
input is white noise and we measure the output using the 2-norm.

d(t) = Æ(t) d(t) = sin(!t)

jjejj2 jjG(s)jj2 1 (usually)
jjejj1 jjg(t)jj1 ��(G(j!))
jjejjpow 0 1p

2
��(G(j!))

Table A.1: System norms for two specific input signals and three different output norms

jjdjj2 jjdjj1 jjdjjpow
jjejj2 jjG(s)jj1 1 1 (usually)
jjejj1 jjG(s)jj2 jjg(t)jj1 1 (usually)
jjejjpow 0 � jjG(s)jj1 jjG(s)jj1

Table A.2: System norms for three sets of norm-bounded input signals and three different
output norms. The entries along the diagonal are induced norms.

The results in Tables A.1 and A.2 may be generalized to MIMO systems by use
of the appropriate matrix and vector norms. In particular, the induced norms along
the diagonal in Table A.2 generalize if we use for the H1 norm kG(s)k1 =
max! ��(G(j!)), and for the L1 norm we use kg(t)k1 = maxi kgi(t)k1, where
gi(t) denotes row i of the impulse response matrix. The fact that the H1 norm
and L1 norm are induced norms makes them well suited for robustness analysis, for
example, using the small gain theorem. The two norms are also closely related as can
be seen from the following bounds for a proper scalar system

kG(s)k1 � kg(t)k1 � (2n+ 1) � kG(s)k1 (A.136)

where n is the number of states in a minimal realization. We have the following
generalization for a multivariable l�m system (Dahleh and Diaz-Bobillo (1995), p.
342)

kG(s)k1 �
p
l � kg(t)k1 �

p
lm � (2n+ 1) � kG(s)k1 (A.137)
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A.6 Factorization of the sensitivity function

Consider two plant models, G a nominal model and G 0 an alternative model, and
assume that the same controller is applied to both plants. Then the corresponding
sensitivity functions are

S = (I +GK)�1; S0 = (I +G0K)�1 (A.138)

A.6.1 Output perturbations

Assume that G0 is related to G by either an output multiplicative perturbation EO ,
or an inverse output multiplicative perturbation E iO . Then S 0 can be factorized in
terms of S as follows

S0 = S(I +EOT )
�1; G0 = (I +EO)G (A.139)

S0 = S(I �EiOS)
�1(I �EiO); G0 = (I �EiO)

�1G (A.140)

For a square plant, EO and EiO can be obtained from a given G and G 0 by

EO = (G0 �G)G�1; EiO = (G0 �G)G0�1 (A.141)

Proof of (A.139):

I +G0K = I + (I +EO)GK = (I +EO GK(I +GK)�1| {z }
T

)(I +GK) (A.142)

Proof of (A.140):

I +G0K = I + (I �EiO)
�1GK = (I �EiO)

�1((I �EiO) +GK)

= (I �EiO)
�1(I �EiO (I +GK)�1| {z }

S

)(I +GK) (A.143)

Similar factorizations may be written in terms of the complementary sensitivity
function (Horowitz and Shaked, 1975; Zames, 1981). For example, by writing
(A.139) in the form S = S 0(I + EOT ) and using the fact S � S 0 = T 0 � T ,
we get

T 0 � T = S0EOT (A.144)

A.6.2 Input perturbations

For a square plant, the following factorization in terms of input multiplicative
uncertaintyEI is useful:

S0 = S(I+GEIG
�1T )�1 = SG(I+EITI)

�1G�1; G0 = G(I+EI) (A.145)

where TI = KG(I +KG)�1 is the input complementary sensitivity function.
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Proof: Substitute EO = GEIG
�1 into (A.139) and use G�1T = TIG

�1. 2

Alternatively, we may factor out the controller to get

S0 = (I + TK�1EIK)�1S = K�1(I + TIEI )
�1KS (A.146)

Proof: Start from I +G0K = I +G(I +EI)K and factor out (I +GK) to the left. 2

A.6.3 Stability conditions

The next Lemma follows directly from the generalized Nyquist Theorem and the
factorization (A.139):

Lemma A.5 Assume that the negative feedback closed-loop system with loop
transfer functionG(s)K(s) is stable. SupposeG0 = (I + EO)G, and let the
number of open loop unstable poles ofG(s)K(s) andG 0(s)K(s) be P and P 0,
respectively. Then the negative feedback closed-loop system with loop transfer
functionG0(s)K(s) is stable if and only if

N (det(I +EOT )) = P � P 0 (A.147)

whereN denotes the number of clockwise encirclements of the origin ass traverses
the NyquistD-contour in a clockwise direction.

Proof: Let N (f) denote the number of clockwise encirclements of the origin by f(s) as s
traverses the Nyquist D contour in a clockwise direction. For the encirclements of the product
of two functions we have N (f1f2) = N (f1) + N (f2). This together with (A.142) and the
fact det(AB) = detA � detB yields

N (det(I +G0K)) = N (det(I +EOT )) +N (det(I +GK)) (A.148)

For stability we need from Theorem 4.7 that N (det(I + G0K)) = �P 0, but we know
that N (det(I + GK)) = �P and hence Lemma A.5 follows. The Lemma is from Hovd
and Skogestad (1994a); similar results, at least for stable plants, have been presented by e.g.
Grosdidier and Morari (1986) and Nwokah and Perez (1991). 2

In other words, (A.147) tells us that for stability det(I + EOT ) must provide the
required additional number of clockwise encirclements. If (A.147) is not satisfied
then the negative feedback system with G 0K must be unstable. We show in
Theorem 6.5 how the information about what happens at s = 0 can be used to
determine stability.
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A.7 Linear fractional transformations

Linear fractional transformations (LFTs), as they are currently used in the control
literature for analysis and design, were introduced by Doyle (1984). Consider a
matrix P of dimension (n1 + n2)� (m1 +m2) and partition it as follows:

P =

�
P11 P12
P21 P22

�
(A.149)

Let the matrices � and K have dimensions m1 � n1 and m2 � n2, respectively
(compatible with the upper and lower partitions of P , respectively). We adopt the
following notation for the lower and upper linear fractional transformations

Fl(P;K) , P11 + P12K(I � P22K)�1P21 (A.150)

Fu(P;�) , P22 + P21�(I � P11�)�1P12 (A.151)

where subscript l denotes lower and subscript u upper. In the following, let R denote
a matrix function resulting from an LFT.

- -

�

-

- -

�

-

w z

R1

P

K

vu

R2

�

Pw z

y�u�

(a) (b)

Figure A.6: (a) R1 as lower LFT in terms of K. (b) R2 as upper LFT in terms of �.

The lower fractional transformation F l(P;K) is the transfer function R1 resulting
from wrapping (positive) feedback K around the lower part of P as illustrated in
Figure A.6(a). To see this, note that the block diagram in Figure A.6(a) may be
written as

z = P11w + P12u; v = P21w + P22u; u = Kv (A.152)

Upon eliminating v and u from these equations we get

z = R1w = Fl(P;K)w = [P11 + P12K(I � P22K)�1P21]w (A.153)

In words, R1 is written as a lower LFT of P in terms of the parameter K. Similarly,
in Figure A.6(b) we illustrate the upper LFT,R2 = Fu(P;�), obtained by wrapping
(positive) feedback � around the upper part of P .
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Figure A.7: An interconnection of LFTs yields an LFT

A.7.1 Interconnection of LFTs

An important property of LFTs is that any interconnection of LFTs is again an LFT.
Consider Figure A.7 where R is written in terms of a lower LFT of K 0, which again
is a lower LFT of K, and we want to express R directly as an LFT of K. We have

R = Fl(Q;K
0) where K 0 = Fl(M;K) (A.154)

and we want to obtain the P (in terms of Q and M ) such that

R = Fl(P;K) (A.155)

We find

P =

�
P11 P12
P21 P22

�
=�

Q11 +Q12M11(I �Q22M11)
�1Q21 Q12(I �M11Q22)

�1M12

M21(I �Q22M11)
�1Q21 M22 +M21Q22(I �M11Q22)

�1M12

�
(A.156)

Similar expressions apply when we use upperLFTs. For

R = Fu(M;�0) where �0 = Fu(Q;�) (A.157)

we get R = Fu(P;�) where P is given in terms of Q and M by (A.156).

A.7.2 Relationship between Fl and Fu.

Fl and Fu are obviously closely related. If we know R = F l(M;K), then we may
directly obtain R in terms of an upper transformation of K by reordering M . We
have

Fu(fM;K) = Fl(M;K) (A.158)
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where fM =

�
0 I
I 0

�
M

�
0 I
I 0

�
(A.159)

A.7.3 Inverse of LFTs

On the assumption that all the relevant inverses exist we have

(Fl(M;K))�1 = Fl(fM;K) (A.160)

where fM is given by

fM =

�
M�1

11 �M�1
11 M12

M21M
�1
11 M22 �M21M

�1
11 M12

�
(A.161)

This expression follows easily from the matrix inversion lemma in (A.6).

A.7.4 LFT in terms of the inverse parameter

Given an LFT in terms of K, it is possible to derive an equivalent LFT in terms of
K�1. If we assume that all the relevant inverses exist we have

Fl(M;K) = Fl(cM;K�1) (A.162)

where cM is given by

cM =

�
M11 �M12M

�1
22 M21 �M12M

�1
22

M�1
22 M21 M�1

22

�
(A.163)

This expression follows from the fact that (I + L)�1 = I � L(I + L)�1 for any
square matrix L.

A.7.5 Generalized LFT: The matrix star product

A generalization of the upper and lower LFTs above is provided by Redheffer’s star
product. Consider Figure A.8 where Q and M are interconnected such that the last
nu outputs from Q are the first nu inputs of M , and the first nl outputs from M are
the last nl inputs of Q. The corresponding partitioned matrices are

Q =

�
Q11 Q12

Q21 Q22

�
; M =

�
M11 M12

M21 M22

�
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Figure A.8: Star product of Q and M , R = S(Q;M)

The overall matrix R with these interconnections closed (see Figure A.8) is called
the star product, S(Q;M), between Q and M . We find that

R = S(Q;M) =�
Q11 +Q12M11(I �Q22M11)

�1Q21 Q12(I �M11Q22)
�1M12

M21(I �Q22M11)
�1Q21 M22 +M21Q22(I �M11Q22)

�1M12

�
(A.164)

Note that S(Q;M) depends on the chosen partitioning of the matrices Q and M . If
one of the matrices is notpartitioned then this means that this matrix has no external
inputs and outputs, and S(Q;M) then gives the “maximum” interconnection. For
example, we have for the LFTs

Fl(P;K) = S(P;K) (A.165)

Fu(P;�) = S(�; P ) (A.166)

The order in the last equation is not a misprint. Of course, this assumes that the
dimensions of K and � are smaller than those of P . The corresponding command
to generate (A.164) in the MATLAB �-toolbox is

starp(Q,M,nu,nl)

where nu and nl are as shown in Figure A.8. If nu and nl are not specified then this
results in a “maximum” interconnection involving the corresponding LFT in (A.165)
or (A.166).



APPENDIX B

PROJECT WORK and

SAMPLE EXAM

B.1 Project work

Students are encouraged to formulate their own project based on an application they
are working on. Otherwise, the project is given by the instructor. In either case, a
preliminary statement of the problem must be approved before starting the project;
see the first item below.

A useful collection of benchmark problems for control system design is provided
in Davison (1990). The helicopter, aero-engine and distillation case studies in
Chapter 12, and the chemical reactor in Example 6.16, also provide the basis for
several projects. These models are available over the internet.

1. Introduction: Preliminary problem definition.

(i) Give a simple description of the engineering problem with the aid of one or
two diagrams.

(ii) Discuss briefly the control objectives.

(iii) Specify the exogenous inputs (disturbances, noise, setpoints), the manipu-
lated inputs, the measurements, and the controlled outputs (exogenous out-
puts).

(iv) Describe the most important sources of model uncertainty.

(v) What specific control problems do you expect, e.g. due to interactions, RHP-
zeros, saturation, etc.

The preliminary statement of no more than 3 pages must be handed in and
approved before starting the project.

2. Plant model.Specify all parameters, operating conditions, etc. and obtain a linear
model of the plant. Comment: You may need to consider more than one operating
point.
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3. Analysis of the plant.For example, compute the steady-state gain matrix, plot
the gain elements as a function of frequency, obtain the poles and zeros (both of
the individual elements and the overall system), compute the SVD and comment
on directions and the condition number, perform an RGA-analysis, a disturbance
analysis, etc.. Does the analysis indicate that the plant is difficult to control?

4. Initial controller design.Design at least two controllers, for example, using

(i) Decentralized control (PID).

(ii) Centralized control (LQG, LTR, H2 (in principle same as LQG, but with a
different way of choosing weights),H1 loop shaping,H1mixed sensitivity,
etc.).

(iii) A decoupler combined with PI-control.

5. Simulations.Perform simulations in the time domain for the closed-loop system.
6. Robustness analysis using�.

(i) Choose suitable performance and uncertainty weights. Plot the weights as
functions of frequency.

(ii) State clearly how RP is defined for your problem (using block diagrams).

(iii) Compute � for NP, RS, and RP.

(iv) Perform a sensitivity analysis. For example, change the weights (e.g. to make
one output channel faster and another slower), move uncertainties around
(e.g. from input to output), change �’s from a diagonal to full matrix, etc.

Comment: You may need to move back to step (a) and redefine your weights if
you find out from step (c) that your original weights are unreasonable.

7. Optional: H1 or �-optimal controller design.Design an H1 or �-optimal
controller and see if you can improve the response and satisfy RP. Compare
simulations with previous designs.

8. Discussion.Discuss the main results. You should also comment on the usefulness
of the project as an aid to learning and give suggestions on how the project activity
might be improved.

9. Conclusion.

B.2 Sample exam

A Norwegian-style 5-hour exam.

Problem 1 (35%). Controllability analysis.

Perform a controllability analysis (compute poles, zeros, RGA (�11(s)), check for
constraints, discuss the use of decentralized control (pairings), etc.) for the following
four plants. You can assume that the plants have been scaled properly.
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(a) 2� 2 plant:

G(s) =
1

(s+ 2)(s� 1:1)

�
s� 1 1
90 10(s� 1)

�
(B.1)

(b) SISO plant with disturbance:

g(s) = 200
�0:1s+ 1

(s+ 10)(0:2s+ 1)
; gd(s) =

40

s+ 1
(B.2)

(c) Plant with two inputs and one output:

y(s) =
s

0:2s+ 1
u1 +

4

0:2s+ 1
u2 +

3

0:02s+ 1
d (B.3)

(d) Consider the following 2�2 plant with 1 disturbance given in state-space form:

_x1 = �0:1x1 + 0:01u1

_x2 = �0:5x2 + 10u2

_x3 = 0:25x1 + 0:25x2 � 0:25x3 + 1:25d

y1 = 0:8x3; y2 = 0:1x3

i. Construct a block diagram representation of the system with each block in
the form k=(1 + �s).

ii. Perform a controllability analysis.

Problem 2 (25%). General Control Problem Formulation.

Consider the neutralization process in Figure B.1 where acid is added in two stages.
Most of the neutralization takes place in tank 1 where a large amount of acid is used
(input u1) to obtain a pH of about 10 (measurement y1). In tank 2 the pH is fine-tuned
to about 7 (output y2) by using a small amount of acid (input u2). This description is
is just to give you some idea of a real process; all the information you need to solve
the problem is given below.

A block diagram of the process is shown in Figure B.2. It includes one disturbance,
two inputs and two measurements (y1 and y2). The main control objective is to keep
y2 � r2. In addition, we would like to reset input 2 to its nominal value, that is, we
want u2 � ru2 at low frequencies. Note that there is no particular control objective
for y1.

(a) Define the general control problem, that is, find z,w, u, v and P (see Figure B.3).

(b) Define an H1 control problem based on P . Discuss briefly what you want the
unweighted transfer functions from d to z to look like, and use this to say a little
about how the performance weights should be selected.
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Figure B.1: Neutralization process
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(c) A simple practical solution based on single loops is shown in Figure B.4. Explain
briefly the idea behind this control structure, and find the interconnection matrix P
and the generalized controller K = diagf k1; k2; k3 g. Note that u and y are
different in this case, while w and z are the same as in (a).

Problem 3 (40%). Various.

Give brief answers to each of the following questions:

(a) Consider the plant

_x(t) = a(1 + 1:5Æa)x(t) + b(1 + 0:2Æb)u(t); y = x

where jÆaj � 1 and jÆbj � 1. For a feedback controller K(s) derive the
interconnection matrix M for robust stability.

(b) For the above case consider using the conditionminD ��(DMD�1) < 1 to check
for robust stability (RS). What is D (give as few parameters as possible)? Is the
RS-condition tight in this case?

(c) When is the condition �(M�) < 1 necessary and sufficient for robust stability?
Based on �(M�) < 1, derive the RS-condition �(M) < 1. When is this last
condition necessary and sufficient?

(d) Let

Gp(s) =

�
g11 + w1�1 g12 + w2�2

g21 + w3�1 g22

�
; j�1j � 1; j�2j � 1

Represent this uncertainty as Gp = G +W1�W2 where � is diagonal. Determine
the correspondingM�-structure and derive the RS-condition.

(e) Let

Gp(s) =
1� �s

1 + �s
; � = �0(1 + w�); j�j < 1

and consider the controllerK(s) = c=s. Put this into the M�-structure and find the
RS-condition.

(f) Show by a counterexample that in general ��(AB) is not equal to ��(BA). Under
what conditions is �(AB) = �(BA)?

(g) The PRGA matrix is defined as � = GdiagG
�1. What is its relationship to the

RGA?
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Acceptable control, 190
Actuator saturation, seeInput constraint
Adjoint

classical, seeAdjugate
Hermitian, seeConjugate transpose

Adjugate (classical adjoint), 504
Aero-engine case study, 463, 486–496

model reduction, 463
controller, 466–470
plant, 463–465

Align algorithm, 385
All-pass, 45, 82, 170, 171, 214
Angle between vectors, 526
Anti-stable, 472
Anti-windup, 396
Augmented plant model, 358

Balanced model reduction, 459
residualization, 459
truncation, 459

Balanced realization, 157, 458
Bandwidth, 36

complementary sensitivity (!BT ), 37
gain crossover (!c), 32
sensitivity function (!B), 37, 78

Bezout identity, 117
Bi-proper, seeSemi-proper
Blaschke product, 214
Block relative gain array, 427, 437
Bode gain-phase relationship, 19
Bode plots, 17, 28
Bode sensitivity integral, 165

MIMO, 213
SISO, 165

Bode’s differential relationship, 23, 234
Bode’s stability condition, 25
Break frequency, 20
Buffer tank

concentration disturbance, 208
flowrate disturbance, 208

Bumpless transfer, 397

Cake baking process, 406, 409
Canonical form, 114, 120

controllability, 121
diagonalized (Jordan), 121
observability, 121
observer, 120, 121

Cascade control, 208, 416–422
conventional, 416, 418, 425, 430
generalized controller, 105
input resetting, 418, 421
parallel cascade, 419
why use, 423

Case studies
aero-engine, 486–496
distillation process, 496–502
helicopter, 476–485

Cauchy-Schwarz inequality, 526
Causal, 180, 200
Cause-and-effect graph, 216
Centralized controller, 403
Characteristic gain, seeEigenvalue
Characteristic loci, 80, 150
Characteristic polynomial, 146

closed-loop, 146
open-loop, 146

Classical control, 15–62
Closed-Loop Disturbance Gain (CLDG), 447, 451
Combinatorial growth, 412
Command, seeReference (r)
Compatible norm, 526
Compensator, 79
Complementary sensitivity function (T ), 22, 66, 215

bandwidth (!BT ), 37
maximum peak (MT ), 33
output, 66
peak MIMO, 215
peak SISO, 170
RHP-pole, 170, 184
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Complex number, 503
Conclusion, 502
Condition number (
), 87, 515

computation, 516
disturbance (
d), 224
input uncertainty, 241
minimized, 87, 515
robust performance, 332, 335

Conjugate ( �A), 504
Conjugate transpose (AH ), 504
Control configuration, 11, 402, 415

general, 11
one degree-of-freedom, 11
two degrees-of-freedom, 11

Control error (e), 3
scaling, 6

Control layer, 403
Control signal (u), 13
Control structure design, 2, 402, 487

aero-engine case study, 487
Control system decomposition

horizontal, 417
vertical, 417

Control system design, 1, 475
Control system hierarchy, 404
Controllability

, seeInput-output controllability
, seeState controllability

Controllability Gramian, 123, 458
Controllability matrix, 123
Controlled output, 402, 406

aero-engine, 410, 487
indirect control, 435
selection, 406–411

Controller (K), 13
Controller design, 39, 351, 398

numerical optimization, 40
shaping of transfer functions, 39
signal-based, 39
trade-offs, 351–354
, see alsoH2 optimal control
, see alsoH1 optimal control
, see alsoLQG control
, see also�-synthesis

Controller parameterization, 143
Convex optimization, 316
Convex set, 305
Convolution, 115
Coprime factor uncertainty, 379

robust stability, 309
Coprime factorization, 116–118

left, 117
model reduction, 472
normalized, 117
right, 116
stabilizing controllers, 144
state space realization, 118
uncertainty, 379

Crossover frequency, 36
gain (!c), 32, 37
phase (!180), 31

D-stability, 444
Dead time, seeTime Delay
Decay ratio, 29
Decentralized control, 82, 237, 416, 436–454

application: distillation process, 450
CLDG, 447
controllability analysis, 449
D-stability, 444
input uncertainty (RGA), 237
interaction, 438
pairing, 90, 437, 441, 445
performance, 446
PRGA, 446, 448
RDG, 448
RGA, 437–446
sequential design, 425, 427, 453
stability, 439
triangular plant, 441
why use, 423

Decentralized fixed mode, 449
Decentralized Integral Controllability (DIC), 442

determinant condition, 444
RGA, 443

Decibel (dB), 17
Decoupling, 80–81

dynamic, 80
partial, 81
steady-state, 80

Decoupling element, 80, 416
Delay, seeTime Delay
Delta function, seeImpulse function (Æ)
Derivative action, 121, 193
Descriptor system, 115, 381
Detectable, 128
Determinant, 505
Deviation variable, 5, 8
Diagonal controller, seeDecentralized control
Diagonal dominance, 90, 439, 440
Differential sensitivity, 255
Direction of plant, 69, see alsoOutput direction
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Directionality, 63, 73, 87
Discrete time control
H1 loop shaping, 395

Distillation process, 93, 496–502
DV-model, 501

diagonal controller, 321
inverse-based controller, 240
robust stability, 321
sensitivity peak, 240

LV-model, 497–501
CDC benchmark problem, 498
coupling between elements, 294
decentralized control, 450
detailed model, 499
disturbance rejection, 229
DK-iteration, 339
element-by-element uncertainty, 243
feedforward control, 238, 433
H1 loop-shaping, 97
inverse-based controller, 93, 96, 239, 330
�-optimal controller, 339
partial control, 433
physics and direction, 76
robust performance, 330
robustness problem, 93, 238
sensitivity peak (RGA), 239
SVD-analysis, 75
SVD-controller, 96

Measurement selection, 436
Disturbance (d), 13

limitation MIMO, 224–226
limitation SISO, 187–189
scaling, 6

Disturbance condition number (
d), 224
Disturbance model (Gd), 116, 142

internal stability, 142
Disturbance process example, 46
H1 loop shaping, 383
inverse-based controller, 47
loop-shaping design, 49
mixed sensitivity, 60
two degrees-of-freedom design, 52

Disturbance rejection, 48
MIMO system, 82
mixed sensitivity, 482

DK-iteration, 337
Dyadic expansion, 114, 507
Dynamic resilience, 162

Eigenvalue
generalized, 132

Eigenvalue (�), 71, 506
measure of gain, 71
pole, 128
properties of, 507
spectral radius, seeSpectral radius
state matrix (A), 508
transfer function, 509

Eigenvector, 506
left, 506
right, 506

Element uncertainty, 241, 517
RGA, 241

Estimator
general control configuration, 105
, see alsoObserver

Euclidean norm, 524
Excess variation, 29
Exogenous input (w), 13
Exogenous output (z), 13
Extra input, 420
Extra measurement, 418

Fan’s theorem, 512
FCC process, 248

controllability analysis, 248, 432
pairings, 446
RHP-zeros, 248

Feedback
negative, 21, 65
positive, 65
why use, 24

Feedback rule, 64
Feedforward control, 24

distillation process, 433
perfect, 24

Feedforward element, 416
Fictitious disturbance, 252
Final value theorem, 43
Fl (lower LFT), 535
Flexible structure, 53
Fourier transform, 116
Frequency response, 15–21, 116

bandwidth, seeBandwidth
break frequency, 17
gain crossover frequency (!c), 32, 37
magnitude, 16, 17
MIMO system, 68
minimum phase, 19
phase, 16
phase crossover frequency (!180), 31
phase shift, 17
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physical interpretation, 15
straight-line approximation, 20

Frobenius norm, 524
Fu (upper LFT), 535
Full-authority controller, 479
Functional controllability, 216

and zeros, 137
uncontrollable output direction, 216

Gain, 17, 70
Gain Margin (GM), 31, 34, 273

LQG, 360
Gain reduction margin, 32

LQG, 360
Gain scheduling
H1 loop shaping, 394

Gain-phase relationship, 19
General control configuration, 98, 365

including weights, 100
Generalized controller, 98
Generalized eigenvalue problem, 132
Generalized inverse, 514
Generalized plant, 13, 98, 104, 365
H1 loop shaping, 389, 394
estimator, 105
feedforward control, 104
input uncertainty, 301
limitation, 107
mixed sensitivity (S=KS), 372
mixed sensitivity (S=T ), 374
one degree-of-freedom controller, 99
two degrees-of-freedom controller, 104
uncertainty, 291

Gershgorin’s theorem, 440, 508
Glover-McFarlane loop shaping, seeH1 loop shaping
Gramian

controllability, 123
observability, 126

Gramian matrix, 123, 458, 461

H2 norm, 56, 152, 532
computation of, 153
stochastic interpretation, 367

H2 optimal control, 366–369
assumptions, 366
LQG control, 368

H1 loop shaping, 54, 378–398
aero-engine, 492
anti-windup, 396
bumpless transfer, 397
controller implementation, 386

controller order, 466
design procedure, 382
discrete time control, 395
gain scheduling, 394
generalized plant, 389, 394
implementation, 395
MATLAB, 383
observer, 392
servo problem, 387, 392
two degrees-of-freedom controller, 387–392
weight selection, 493

H1 norm, 55, 56, 153, 532
induced 2-norm, 153
MIMO system, 78
multiplicative property, 155
relationship toH2 norm, 154

H1 optimal control, 366, 369–378

-iteration, 371
assumptions, 366
mixed sensitivity, 371, 479
robust performance, 377
signal-based, 375

Hadamard-weighted H1 problem, 108
Hamiltonian matrix, 154
Hankel norm, 156–158, 380, 458, 460

model reduction, 157, 460–462
Hankel singular value, 156, 458, 459, 463

aero-engine, 492
Hanus form, 396
Hardy space, 56
Helicopter case study, 476–485
Hermitian matrix, 504
Hidden mode, 127
Hierarchical control, 424–436
5� 5 distillation process, 428
cascade control, 430
extra measurement, 430
partial control, 424, 431
sequential design, 427

Hurwitz, 129

Ideal resting value, 420
Identification, 242

sensitivity to uncertainty, 243
Ill-conditioned, 87
Improper, 5
Impulse function (Æ), 115, 355
Impulse response, 30
Impulse response matrix, 115
Indirect control, 425, 426, 435

partial control, 431
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Induced norm, 524
maximum column sum, 525
maximum row sum, 525
multiplicative property, 525
singular value, 525
spectral norm, 525

Inferential control, 436
Inner product, 526
Inner transfer function, 118
Input constraint, 189, 397

acceptable control, 190, 227
anti-windup, 396
distillation process, 229
limitation MIMO, 226–231
limitation SISO, 189–192
max-norm, 226
perfect control, 189, 226
two-norm, 227
unstable plant, 191

Input direction, 73
Input resetting, 418
Input selection, 411
Input uncertainty, 92, 232, 241

condition number, 241
diagonal, 92, 95
generalized plant, 301
magnitude of, 301

, see alsoUncertainty
minimized condition number, 241
RGA, 241

Input, manipulated, 13
scaling, 6

Input-output controllability, 160
analysis of, 160
application

aero-engine, 486–496
FCC process, 248, 432
first-order delay process, 200
neutralization process, 203
room heating, 202

condition number, 87
controllability rule, 197
decentralized control, 449
exercises, 246
feedforward control, 199
plant design change, 160, 245
plant inversion, 163
remarks definition, 162
RGA analysis, 88
scaling MIMO, 212
scaling SISO, 161

summary: MIMO, 243–246
summary: SISO, 196–199

Input-output pairing, 90, 436–446, 493
Input-output selection, 402
Integral absolute error (IAE), 530
Integral action, 27

in LQG controller, 358
Integral control

uncertainty, 242
, see alsoDecentralized Integral Controllability

Integral square error (ISE), 30
optimal control, 218

Integrator, 147
Integrity, 442

determinant condition, 444
, see alsoDecentralized Integral Controllability

Interaction, 63, 75
two-way, 89

Internal model control (IMC), 46, 49, 81, 144
Internal model principle, 49
Internal stability, 128, 138–143

disturbance model, 142
feedback system, 139
interpolation constraint, 141
two degrees-of-freedom controller, 142

Interpolation constraint, 141, 213
MIMO, 213
RHP-pole, 213
RHP-zero, 213
SISO, 169

Inverse matrix, 504, 514
Inverse response, 173
Inverse response process, 24, 43

loop-shaping design, 43
LQG design, 358
P control, 25
PI control, 27

Inverse system, 119
Inverse-based controller, 46, 47, 80, 94

input uncertainty and RGA, 237
robust performance, 334
structured singular value (�), 334
worst-case uncertainty, 237

Irrational transfer function, 121
ISE optimal control, 171

Jordan form, 121, 456, 457

Kalman filter, 106, 357
generalized plant, 106
robustness, 361
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Kalman inequality, 168, 360

L1 norm, 532
L1 norm, 455
Laplace transform, 115

final value theorem, 43
Least squares solution, 514
Left-half plane (LHP) zero, 180
Linear fractional transformation (LFT), 103, 109, 111, 535–538

factorization of S, 112
interconnection, 536
inverse, 537
MATLAB, 538
stabilizing controller, 111
star product, 537
uncertainty, 285

Linear matrix inequality (LMI), 348
Linear model, 8
Linear quadratic Gaussian, seeLQG
Linear quadratic regulator (LQR), 356

cheap control, 218
robustness, 360

Linear system, 113
Linear system theory, 113–158
Linearization, 8
Local feedback, 188, 207, 208
Loop shaping, 39, 41, 351–354

desired loop shape, 42, 48, 82
disturbance rejection, 48
flexible structure, 53
Robust performance, 277
slope, 42
trade-off, 40
, see alsoH1 loop shaping

Loop transfer function (L), 22, 66
Loop transfer recovery (LTR), 354, 363–364
LQG control, 40, 252, 355–363
H2 optimal control, 368
controller, 358
inverse response process, 358
MATLAB, 359
problem definition, 356
robustness, 360, 362

Lyapunov equation, 123, 126, 458

Main loop theorem, 324
Manipulated input, seeInput
Manual control, 405
MATLAB files

coprime uncertainty, 381, 383
LQG design, 359

matrix norm, 528
mixed sensitivity, 60
model reduction, 473
RGA, 520
step response, 35
vector norm, 528

Matrix, 114, 503–520
exponential function, 114
generalized inverse, 514
inverse, 504
norm, 523–528

Matrix inversion lemma, 504
Matrix norm, 72, 523

Frobenius norm, 524
induced norm, 524
inequality, 527
MATLAB, 528
max element norm, 524
relationship between norms, 527

Matrix square root (A1=2), 504
Maximum modulus principle, 169
Maximum singular value, 74
McMillan degree, 127, 455
McMillan form, 135
Measurement, 13

cascade control, 430
Measurement noise (n), 13
Measurement selection, 435

distillation column, 436
MIMO system, 63
Minimal realization, 127
Minimized condition number, 515, 517

input uncertainty, 241
Minimum phase, 19
Minimum singular value, 74, 244

aero-engine, 490
output selection, 410
plant, 216, 227

Minor of a matrix, 129
Mixed sensitivity, 59, 277

disturbance rejection, 482
general control configuration, 101
generalized plant, 102
H1 optimal control, 371, 479
RP, 277
weight selection, 480

Mixed sensitivity (S=KS), 60
disturbance process, 60
generalized plant, 372
MATLAB, 60
MIMO plant with RHP-zero, 85
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MIMO weight selection, 83
Mixed sensitivity (S=T )

generalized plant, 374
Modal truncation, 456
Mode, 115
Model, 13

derivation of, 8
scaling, 7

Model matching, 390, 466
Model predictive control, 40
Model reduction, 455–474

aero-engine model, 463
balanced residualization, 459
balanced truncation, 459
coprime, 472
error bound, 462, 473
frequency weight, 474
Hankel norm approximation, 157, 460–462
MATLAB, 473
modal truncation, 456
residualization, 457
steady-state gain preservation, 464
truncation, 456
unstable plant, 472–473

Model uncertainty
seeUncertainty, 24

Moore-Penrose inverse, 514
�, seeStructured singular value
�-synthesis, 336–345
Multilayer, 405
Multilevel, 405
Multiplicative property, 72, 155, 525
Multiplicative uncertainty, seeUncertainty, seeUncertainty
Multivariable stability margin, 313
Multivariable zero, seeZero

Neglected dynamics, seeUncertainty
Neutralization process, 203–208, 541

control system design, 207
mixing tank, 204
plant design change

multiple pH adjustments, 207
multiple tanks, 205

Niederlinski index, 444
Noise (n), 13
Nominal Performance (NP), 3
Nominal performance (NP), 275, 304

Nyquist plot, 275
Nominal Stability (NS), 3
Nominal stability (NS), 304
Non-causal controller, 180

Non-minimum phase, 19
Norm, 520–532

, see alsoMatrix norm
, see alsoSignal norm
, see alsoSystem norm
, see alsoVector norm

Normal rank, 132, 216
Notation, 11
Nyquist D-contour, 148
Nyquist array, 80
Nyquist plot, 17, 31
Nyquist stability theorem, 147

argument principle, 148
generalized, MIMO, 147
SISO, 25

Observability, 126
Observability Gramian, 126, 458
Observability matrix, 126
Observer, 392
H1 loop shaping, 392

Offset, seeControl error (e)
One degree-of-freedom controller, 11, 21
Optimization, 405

closed-loop implementation, 406
open-loop implementation, 406

Optimization layer, 403
look-up table, 410

Orthogonal, 73
Orthonormal, 73
Output (y), 13

primary, 13, 422
secondary, 13, 422

Output direction, 73, 211, 212
disturbance, 211, 224
plant, 73, 211
pole, 131, 211
zero, 134, 211

Output scaling, 6
Output uncertainty, seeUncertainty
Overshoot, 29

Padé approximation, 121, 173
Pairing, 90, 437, 441, 445

aero-engine, 493
, see alsoDecentralized control

Parseval’s Theorem, 368
Partial control, 424

“ true” , 425, 431
distillation process, 433
FCC process, 248
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Partitioned matrix, 505, 506
Perfect control, 163

non-causal controller, 180, 181
unstable controller, 181

Performance, 29
H1norm, 78
frequency domain, 31
limitations MIMO, 211–249
limitations SISO, 159–210
time domain, 29
weight selection, 58
weighted sensitivity, 56, 78
worst-case, 327, 344
, see alsoRobust performance

Performance Relative Gain Array (PRGA), 446, 452
Permutation matrix, 517
Perron root (� (j A j)), 440, 528
Perron-Frobenius theorem, 528
Perturbation, 304

allowed, 304
, see alsoReal perturbation
, see alsoUncertainty

Phase, seeFrequency response, phase
Phase lag

limitation SISO, 192
RHP-zero, 166

Phase Margin (PM), 32, 34
LQG, 360

Phasor notation, 18
PI-controller, 27

Ziegler-Nichols tuning rule, 28
PID-controller, 121

cascade form, 193
ideal form, 121

Pinned zero, 136
Plant (G), 13

, see alsoGeneralized plant (P )
Plant design change, 160, 205, 245

neutralization process, 205, 207
Pole, 128, 128–132

effect of feedback, 136, 137
stability, 129
, see alsoRHP-pole

Pole direction, 131, 221
Pole polynomial, 129
Pole vector, 122, 131

stabilization, 131, 411
Polynomial system matrix, 132
Positive definite matrix (A > 0), 504, 508
Post-compensator, 81
Power spectral density, 355, 363

Pre-compensator, 79
Prediction, 163, 180, 202
Prefilter, 29, 51
Principal component regression, 515
Principal gain, 73

, see alsoSingular value
Process noise, 355
Proper, 5
Pseudo-inverse, 514

Q-parameterization, 143

Rank, 510
normal rank, 216

Rate feedback, 479
Real perturbation, 346
DGK-iteration, 347
�, 314, 346
robust stability, 305

Realization, seeState-space realization, seeState-space realization
Reference (r), 13, 406

optimal value, 406
performance requirement MIMO, 229
performance requirement SISO, 187–189
scaling, 6, 7

Reference model (Tref ), 52, 388
Regulator problem, 2
Regulatory control, 403
Relative disturbance gain (RDG), 448
Relative Gain Array (RGA, �), 88, 516

aero-engine, 491
controllability analysis, 88
decentralized control, 90, 437–446
diagonal input uncertainty, 89
DIC, 443
element uncertainty, 89
element-by-element uncertainty, 241
input uncertainty, 237, 241
input-output selection, 413
MATLAB, 520
measure of interaction, 438
non-square, 90, 518
properties of, 517
RGA-number, 90, 449, 491
RHP-zero, 444
steady-state, 493

Relative order, 5, 193
Return difference, 146

factorization, 439, 533
RHP-pole, 14, 25, 182, 221

input usage, 182, 221
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limitation MIMO, 221
limitation SISO, 182

RHP-pole and RHP-zero
MIMO, 222

angle between pole and zero, 215
sensitivity peak, 214

SISO, 185
H1 design, 185
stabilization, 185

RHP-zero, 14, 19, 45, 172, 218
aero-engine, 490
bandwidth limitation, 173
complex pair, 173
decoupled response, 220
FCC process, 248
high-gain instability, 173
interaction, 220
inverse response, 173
limitation MIMO, 218
limitation SISO, 45, 172
low or high frequency, 178
move effect of, 86, 218
multivariable, 84
perfect control, 180, 181
phase lag, 19
positive feedback, 178
RGA, 444
weighted sensitivity, 169, 175, 214

performance at high frequency, 177
performance at low frequency, 175

Riccati equation, 118
H1optimal control, 370
H1 loop shaping, 394
controller, 370
coprime uncertainty, 380
Kalman filter, 358
state feedback, 357

Right-half plane (RHP), 14
Right-half plane pole, seeRHP-pole
Right-half plane zero, seeRHP-zero
Rise time, 29
Robust performance (RP), 3, 251, 275, 304, 323
�, 323
H1optimal control, 377
condition number, 332, 335
distillation process, 330
graphical derivation, 276
input uncertainty, 328–336
inverse-based controller, 334
loop-shaping, 277
mixed sensitivity, 277

Nyquist plot, 277
output uncertainty, 336
relationship to robust stability, 325
relationship to RS, 280
SISO, 275, 280
structured singular value, 278
worst-case, 327

Robust stability (RS), 3, 251, 268, 304, 320
M�-structure, 292, 305
complementary sensitivity, 270
coprime uncertainty, 309, 379
determinant condition, 305
gain margin, 273
graphical derivation, 269
input uncertainty, 308, 321
inverse multiplicative uncertainty, 274, 308
multiplicative uncertainty, 269
Nyquist plot, 269
real perturbation, 305
relationship to RP, 280
scaling, 311
sensitivity, 274
SISO, 268
skewed-�, 323
small gain theorem, 311
spectral radius condition, 306
spinning satellite, 322
structured singular value (�), 320
unstructured uncertainty, 307, 308

Robustness, 91, 97
H1norm, 97
LQG control, 360
LTR, 363
motivating examples, 91

Roll-off rate, 42
Room heating process

controllability analysis, 202
deriving model, 9

Routh-Hurwitz stability test, 26

Saturation, seeInput constraint
Scaling, 5–8, 161, 212, 384

aero-engine, 488
MIMO controllability analysis, 212
SISO controllability analysis, 161

Schur complement, 505
Schur product, 516
Schur’s formula, 506
Second-order system, 35
Secondary output, 418
Selector
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auctioneering, 423
override, 423

Self-optimizing control, 408
Self-regulation, 187, 199
Semi-norm, 521
Semi-proper, 5
Sensitivity function (S), 22–23, 66

bandwidth (!B), 37
factorization, 112, 533
output (SO), 66
, see alsoMixed sensitivity
, see alsoWeighted sensitivity

Sensitivity function peak (kSk1), 170, 214
MIMO RHP-pole and/or RHP-zero, 214
SISO peak (M , MS), 33
SISO RHP-pole and RHP-zero, 170
SISO RHP-zero, 170
uncertainty, 235–241

Separation Theorem, 356, 358
Sequential design, 427, 453
Servo problem, 3
H1 loop shaping, 387
non-causal controller, 180

Setpoint, seeReference (r)
Settling time, 29
Shaped plant (Gs), 79, 382
Shaping of closed-loop transfer function, 39, see alsoLoop shaping
Sign of plant MIMO, 242
Signal, 4
Signal norm, 529
1-norm, 530
lp norm, 530
1-norm, 530
2-norm, 530
ISE, 530
power-norm, 530

Signal uncertainty, 24
, see alsoDisturbance (d), see alsoNoise (n)

Signal-based controller design, 375
Similarity transformation, 508
Singular approximation, 459
Singular matrix, 510, 513
Singular value, 72, 74
2� 2 matrix, 511
H1norm, 78
frequency plot, 77
inequalities, 511

Singular value decomposition (SVD), 72, 509
2� 2 matrix, 73
economy-size, 513
nonsquare plant, 76

of inverse, 511
pseudo-inverse, 514
SVD-controller, 81

Singular vector, 73, 510
Sinusoid, 16
Skewed-�, 323, 327, 335
Small gain theorem, 151

robust stability, 311
Spatial norm, 521

, see alsoMatrix norm
, see alsoVector norm

Spectral radius (�), 507, 526
Perron root (� (j A j)), 528

Spectral radius stability condition, 150
Spinning satellite, 91

robust stability, 322
Split-range control, 423
Stability, 24, 127, 129

closed-loop, 24
frequency domain, 145
internal, 127
, see alsoRobust stability

Stability margin, 33
coprime uncertainty, 380
multivariable, 313

Stabilizable, 128, 185
strongly stabilizable, 185
unstable controller, 224

Stabilization, 185
pole vector, 131, 411

Stabilizing controller, 111, 143–145
Star product, 302, 538
State controllability, 122, 131, 162

example: tanks in series, 124
State estimator, seeObserver
State feedback, 356, 357
State matrix (A), 114
State observability, 126, 131

example: tanks in series, 127
State-space realization, 113, 119

hidden mode, 127
inversion of, 119
minimal (McMillan degree), 127
unstable hidden mode, 128
, see alsoCanonical form

Steady-state gain, 17
Steady-state offset, 27, 29
Step response, 30
Stochastic, 355, 367, 368
Strictly proper, 5
Structural property, 216
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Structured singular value (�, SSV), 278, 312, 313
�-synthesis, 336–345
complex perturbations, 314
computational complexity, 347
definition, 313
discrete case, 347
DK-iteration, 337

distillation process, 339
interaction measure, 440
LMI, 348
nominal performance, 327
practical use, 350
properties of, 314

complex perturbation, 315–319
real perturbation, 314

real perturbation, 346
relation to condition number, 332
robust performance, 323, 327, 378
robust stability, 327
RP, 278
scalar, 313
skewed-�, 278, 323, 327
state-space test, 348
upper bound, 346
worst-case performance, 327

Submatrix (Aij), 504
Sum norm (k A ksum), 523
Superposition principle, 5, 113
Supervisory control, 403
Supremum (sup), 55
System norm, 152–158, 530
System type, 43

Temporal norm, 521
, see alsoSignal norm
, see alsoSystem norm

Time delay, 45, 121, 172, 217
Padé approximation, 121
increased delay, 217
limitation MIMO, 217
limitation SISO, 45, 172
perfect control, 180
phase lag, 19

Time delay uncertainty, 33
Time response

decay ratio, 29
excess variation, 29
overshoot, 29
quality, 29
rise time, 29
settling time, 29

speed, 29
steady-state offset, 29
total variation, 29

Total variation, 29
Transfer function, 3, 22, 115

closed-loop, 22
evaluation MIMO, 65
evaluation SISO, 23
rational, 4
state-space realization, 119

Transmission zero, seeZero, 135
Transpose (AT ), 504
Triangle inequality, 72, 521
Truncation, 456
Two degrees of freedom controller

local design, 415
Two degrees-of-freedom controller, 11, 142
H1 loop shaping, 387–392
design, 51–52
internal stability, 142
local design, 105

Ultimate gain, 25
Uncertainty, 3, 24, 194, 251, 291, 294
N�-structure, 293
additive, 259, 261, 295
and feedback – benefits, 233
and feedback — problems, 235
at crossover, 195
chemical reactor, 285
complex SISO, 258–264
convex set, 305
coprime factor, 309, 379
diagonal, 299
element-by-element, 294, 298
feedforward control, 194, 232

distillation process, 238
RGA, 233

frequency domain, 257
generalized plant, 291
infinite order, 268
input, 295, 297, 301, see alsoInput uncertainty
input and output, 303
integral control, 242
inverse additive, 296
inverse multiplicative, 255, 296
LFT, 285, 292
limitation MIMO, 231–243
limitation SISO, 194–196
lumped, 254, 297
modelling SISO, 251
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multiplicative, 254, 260, 261
neglected dynamics, 253, 264
nominal model, 263
Nyquist plot, 258, 264
output, 232, 295, 297
parametric, 253, 256, 262, 295
A-matrix, 285
gain, 256, 288
gain and delay, 266
pole, 282
repeated perturbations, 285
time constant, 256
zero, 283

physical origin, 253
pole, 263
RHP-pole, 282
RHP-zero, 283, 287
signal, 24
state space, 284
stochastic, 255
structured, 255
time-varying, 346
unmodelled, 253, 267
unstable plant, 282
unstructured, 255, 295
weight, 261, 262

Unitary matrix, 509
Unstable hidden mode, 128
Unstable mode, 129
Unstable plant

frequency response, 18

Valve position control, 421
Vector norm, 521
p-norm, 522
Euclidean norm, 522
MATLAB, 528
max norm, 522

Waterbed effect, 164
Weight selection, 58, 338
H1 loop shaping, 384, 493
mixed sensitivity, 480
mixed sensitivity (S=KS), 83
performance, 58, 338

Weighted sensitivity, 56
generalized plant, 107
MIMO system, 78
RHP-zero, 169, 175, 214
typical specification, 56

Weighted sensitivity integral, 168

White noise, 355
Wiener-Hopf design, 376

Youla parameterization, 143

Zero, 132, 132–138
decoupling zero, 135
effect of feedback, 136, 137
from state-space realization, 132
from transfer function, 133
input blocking, 135
invariant zero, 135
non-square system, 133, 137
pinned, 136
, see alsoRHP-zero

Zero direction, 134
Ziegler-Nichols’ tuning rule, 28


