Programming Micro-Aerial Vehicle Swarms With Karma

Karthik Dantu*
Harvard University
Cambridge, MA, USA

kar@eecs.harvard.edu

Peter Balilis
UC Berkeley
Berkeley, CA, USA

pbailis@cs.berkeley.edu

Abstract

Research in micro-aerial vehicle (MAV) construction,
control, and high-density power sources is enabling swarms
of MAVs as a new class of mobile sensing systems. For ef-
ficient operation, such systems must adapt to dynamic en-
vironments, cope with uncertainty in sensing and control,
and operate with limited resources. We propose a novel sys-
tem architecture based on a hive-drone model that simpli-
fies the functionality of an individual MAV to a sequence
of sensing and actuation commands with no in-field com-
munication. This decision simplifies the hardware and soft-
ware complexity of individual MAVs and moves the com-
plexity of coordination entirely to a central hive computer.
We present Karma, a system for programming and manag-
ing MAV swarms. Through simulation and testbed experi-
ments we demonstrate how applications in Karma can run
on limited resources, are robust to individual MAV failure,
and adapt to changes in the environment.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems—Distributed Applications; 1.2.9 [Artificial
Intelligence]: Robotics—Autonomous Vehicles

General Terms
Design, Management

Keywords

Swarm, Micro-Aerial Vehicle, Mobile Sensor Network

* Co-primary author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SenSys’11, November 1-4, 2011, Seattle, WA, USA.

Copyright 2011 ACM 978-1-4503-0718-5/11/11 ...$10.00

Bryan Kate*
Harvard University
Cambridge, MA, USA

bkate@eecs.harvard.edu

Jason Waterman
Harvard University
Cambridge, MA, USA

waterman@eecs.harvard.edu

Matt Welsh
Google, Inc.
Seattle, WA, USA

mdw@mdw.la

(a) MFI (b) RoboBee

Figure 1. Example prototypes of insect-scale MAVs.

1 Introduction

Micro-aerial vehicles (MAVs) are an emerging class of
sensing systems consisting of small autonomous aerial vehi-
cles, capable of limited computing, communication, sensing,
and actuation [8, 19]. At the forefront of MAV research are
efforts to construct insect-scale flapping-wing MAVs, just a
few centimeters in diameter. Recent advances in airframe
construction [22, 24], flight dynamics and control [20], sen-
sor design [4, 13], and high-density power sources [14] are
quickly pushing insect-scale MAVs closer to mass produc-
tion. Figure 1 depicts two such prototypes. '

A swarm of such MAVs could be considered an airborne
sensor network, an approach that opens up many novel re-
search directions in terms of applications and systems infras-
tructure to support the swarm. Applications include urban
surveillance, crowd monitoring, and disaster recovery, where
they can be quickly deployed and monitored from a nearby
ground station [16]. Insect-scale MAVs are most appropriate
for situations requiring covert sensing, operation in confined
spaces, or fine-grained manipulation of the environment.

Mobility allows a MAV swarm to cover a much larger
area than a stationary sensor network and to reposition the
coverage as the features of interest change in the environ-
ment. However, MAV swarms also present a unique set of
challenges. Actuation dominates the weight and power bud-
gets for these devices, keeping sensing and control to the
bare minimum. The limits on sensing and control imply that
MAVs will often fail in the field. This can be mitigated by

1 Images courtesy of R. J. Wood (MFI) and Ben Finio (RoboBee)

the sheer size of the swarm, but as the swarm size scales up
it becomes harder to reason about the swarm as a whole and
the complexity of coordination increases.

The extreme resource limitations of the insect-scale MAV
platform restrict the complexity of the programs that can be
executed on the vehicle. In this work, we focus on construct-
ing high-level programs from simple MAV behaviors. More
specifically, we present a system for controlling the actions
of MAV swarms that is built around our investigation of the
following questions:

e How can the behaviors that execute on MAVs be simpli-
fied to match the resource constraints while maintaining
global utility to the swarm?

e In what ways can simple MAV behaviors be combined
to accomplish a swarm-level goal?

e To what extent can the burden of low-level MAV coor-
dination be lifted from the end user?

We propose a system architecture based on the hive-drone
model in which individual MAVs, called drones, perform the
simple sensing and manipulation tasks required to fulfill the
goals of the swarm. We impose the restriction that drones
can not communicate with each other in the field. Further,
we assume that drones operate without precise knowledge of
location, relying on proprioception or periodic external lo-
calization. These restrictions simplify drone programs and
allows swarm-scale behavior that is coordinated by a cen-
tralized hive, which contains sufficient sensing, computation,
and storage capabilities to manage the swarm. With the ma-
jority of the computational burden pushed to the hive, the ap-
plication programmer can focus on implementing the correct
behaviors for the application (what to do) while the system
reasons about the execution of the application on the swarm
(where and when to do it).

To achieve this decoupling, we propose a programming
model that allows the application programmer to compose
programs from simple MAV-level behaviors by relating the
behaviors that produce information to the ones that consume
it. This model allows for an easy and flexible composition
of programs and enables the system to reason about MAV
scheduling efficiently.

Our contribution in this paper is Karma, a system that
demonstrates the feasibilty of a centralized approach to pro-
gramming and managing large-scale MAV swarms. We
show the capabilities of our system in simulation and on pro-
totype hardware. Our system is efficient with respect to time
and energy, resilient to failure, and adaptable to changing
environmental conditions.

2 Background: MAV Swarms

Several research groups are developing insect-scale MAV
platforms [8, 9, 24], some of which are shown in Figure 1.
MAVs in this class are typically only a few centimeters in di-
ameter, with the total weight limited by the amount of thrust
that can be generated by the wings. Studies of insect-scale
MAV prototypes have shown that up to 93% of the weight
budget (50 mg total) and 95% of the power budget (10 mW
total) is allocated for actuation [11]. These restrictive bud-

gets impose hard constraints on the computing and sensing
elements. In addition to sensing for control, the MAV must
carry sensors required to perform tasks for the intended ap-
plication. For example, in a commercial crop pollination sce-
nario, the MAV requires a sensor to detect flowers [13] and
an appendage to collect and deposit pollen.

Insect-scale MAV platforms have two advantages — ex-
tremely small size and deployment in large numbers. Insect-
scale MAVs are relatively inconspicuous and can operate in
enclosed, close-quartered areas where traditional aerial ve-
hicles cannot fly. In addition, these systems can be used to
perform tasks that are challenging for larger platforms, such
as landing on a flower and collecting or depositing pollen.
Further, hundreds to thousands of MAVs can be deployed in
conjunction to achieve a specific task in a massively parallel
fashion. A MAV swarm makes up for lack of sophisticated
sensing and actuation through scale in deployment, provid-
ing parallelism and robustness to failure in the field.

In this work we target applications that closely match the
strengths of MAV swarms. Applications that are well suited
to the swarm approach exhibit a set of common characteris-
tics:

e Spatial Concurrency: The application requires a cer-
tain coverage of the target area (e.g. surveillance or
environmental monitoring). Swarms take a massively
parallel approach to achieve this coverage.

e Approximate Operation: Due to sensing and actua-
tion limitations, applications often take a stochastic ap-
proach to navigation and task execution. It may not be
possible for a single MAYV to reliably sense a given lo-
cation, but many MAVs sensing in a target region are
likely to collect the desired information in aggregate.

e Mobility: MAV swarm applications exploit near-
constant actuation for rapid deployment and dynamic
reconfiguration.

2.1 Example Application: Alfalfa Crop Mon-
itoring and Pollination

Throughout this paper we use an example application to
illustrate the design and operation of our system. The ap-
plication, alfalfa crop monitoring and pollination [7], repre-
sents a typical application of MAV swarms in that it relies on
both information gathering and micro-manipulation behav-
iors in a relatively static environment. Alfalfa is an impor-
tant food crop for cattle and requires an external pollinator
(e.g. bees) to produce seeds. In recent years, colony collapse
disorder [21] has devastated honeybee populations and jeop-
ardized the cultivation of important crops. We believe that
a swarm of insect-scale MAVs is well-suited to performing
this type of pollination.

In addition to pollination, alfalfa crops require periodic
monitoring for pests and disease. These tasks need to be per-
formed at least three times a week, and are normally done
with visual spot checks. We envision a full service applica-
tion that not only pollinates the crop when it is in bloom, but
monitors the crop throughout the growing season.

To meet these requirements, the application consists of
three periodic behaviors: searching for pests, searching for

diseases, and looking for flowers in bloom. Pest infestation
is typically detected by inspecting the leaves of the crop for
damage caused by feeding insects. Diseases can be detected
by looking at the color of the leaves, which turn greenish-
white or brown in the presence of disease. If pests or dis-
eases are found, the system notifies the farmer so that he can
treat the infected area. If the flowers are in bloom, the sys-
tem should start a one-time pollination behavior. Together,
the application has four behaviors in total. We will use this
application to describe our design and evaluate our system.

3 Hive-Drone Model

In Karma, we seek a system design and programming ab-
straction that shifts most of the complexity away from the
application programmer and towards the underlying system.
We propose the hive-drone model, which moves the coordi-
nation complexity to a centralized computer. In this model,
MAVs are stationed at the hive, which has a physical pres-
ence in the environment and the capability to recharge MAV
batteries. The hive computer determines how MAVs should
be used to accomplish the swarm objectives and dispatches
MAVs as drones to execute specific tasks in the environment.
This system design is coupled with a programming model
that allows the application programmer to specify the desired
swarm behaviors as sequences of sensing, sensor processing,
and actuation commands without concern for coordination.

In our system, the complexity of coordination and fault
tolerance becomes the responsibility of the system, not the
application programmer. We minimize the program com-
plexity of individual MAVs by eliminating in-field communi-
cation and restricting programs to a simple set of commands.
Therefore, by design, the application programmer is granted
the freedom to describe how a MAV behaves when it is dis-
patched, but has no ability to explicitly coordinate its actions
in the field. While these restrictions prohibit the expression
of some programs, they allow us to accomplish our original
goal of presenting a simple swarm interface to the user. Our
approach is analogous to the philosophy of the MapReduce
programming model [6]; we provide a simple, powerful ab-
straction to the user with the caveat that not all computations
can be expressed using the abstraction. However, if the in-
variants of the model are followed, the system will handle
the inherent complexity of coordinating the massively paral-
lel operation.

Further, the hive-drone model fits well with the target
hardware. In addition to the processing and sensing lim-
itations, there is a rather severe restriction on flight time.
Current estimates of insect-scale MAV flight times suggest
that a drone could operate for 5-10 minutes before its en-
ergy source is depleted. If the drone must return to the hive
to recharge after a short period of time, it makes sense to es-
chew in-field communication in favor of implicit coordina-
tion at the hive. There are few scenarios that would necessi-
tate in-field communication given the flight time restrictions
and inherent burden of complexity.

The benefits of the hive-drone model can be summarized
as follows:

e Simplify MAV programming: The drones need not
coordinate amongst themselves, make tasking deci-
sions, or deal with MAV loss. Thus, their software com-
plexity is reduced.

e Better decision making: The centralized hive is more
informed than an individual drone making greedy de-
cisions based on partial information. The overhead for
sharing information in the field is eliminated. The hive
has the advantage of collective intelligence and more
computation to better allocate resources.

In any sensing paradigm there will be a delay from the
time an event of interest occurs in the environment to when
the end user is notified of the event. We call this delay the
information latency in the system. In traditional sensor net-
work deployments, this latency may be on the order of a few
seconds, depending on the duty cycle of the sensor and the
properties of the network that propagates the information to
a base station. One drawback of the hive-drone model is that
it introduces an additional latency because drones retain in-
formation collected in the field until they return to the hive
rather than routing it through a network. It is up to the user
to decide if this latency (on the order of minutes) is toler-
able given the nature of their application. There are some
optimizations that can be made in the system to reduce this
latency at runtime (Section 4.3).

To facilitate the description of our system and the dis-
cussion of the hive-drone model, we introduce the following
definitions that will be used throughout the paper.

e Sortie: One round trip in which a drone executes a sin-
gle behavior.

e Behavior: A sequence of sensing, sensor processing,
and actuation commands that are followed by a drone
on a sortie. For example, a disease detection behav-
ior for the alfalfa application consists of performing a
random walk to search for alfalfa leaves, acquiring an
image with a simple image sensor, and checking for dis-
eases with a color matching algorithm.

e Application: A composition of low level drone behav-
iors and high level goals that is submitted by a user for
execution on the swarm.

3.1 Spatial Decomposition

Given the inherent spatial nature of swarm applications, it
is necessary to control the dispersion of the swarm through-
out a target space. At a high level, the user deploying the
swarm application has some notion of how it should be dis-
tributed. For example, a farmer may desire uniform coverage
of the pest monitoring behavior, but want targeted execution
of the pollination behavior. The Karma system provides an
abstraction that establishes a shared spatial context between
the hive and the application behaviors. At the time of de-
ployment, the target area in which the swarm will operate is
divided into regions. The spatial decomposition may be in-
fluenced by application parameters (e.g. the size of the field
and the desired sampling resolution) but is ultimately con-
trolled by the hive. Behaviors are assumed to be written in a
location agnostic manner so that they can be applied to any

region in the target space. However, they are given access to
a location service at runtime that provides the current region
for accounting purposes.

The choice to decompose space into regions benefits our
system in multiple ways. First, it transforms the area of
deployment from a continuous space into a discrete space,
making it easier to reason about MAV allocation. Second,
it aligns the localization primitives available to the drone
behaviors with the likely capabilities of the MAV platform.
Given the extreme limitations on computation and sensing, it
is unlikely that the MAVs will have access to high-resolution
location services in the field. The MAVs will rely on a com-
bination of proprioception and exteroception (e.g. odometry
using inertial sensors and a polarized light compass [15]) to
navigate in the field. It may also be possible to externally
localize the MAVs from the hive using RF triangulation or
harmonic radar [18]. This information could be used to up-
date the MAVs in flight or correlate sensor readings with a
location when the drones return. In this paper we assume
that it is possible to localize MAVs to the resolution of a re-
gion through a combination of these techniques, though we
do not solve this problem directly.

Finally, it is not necessary for the regions in the spatial
abstraction to be defined using a Cartesian coordinate sys-
tem. The abstraction will work just as well if the regions are
defined topologically or as nodes in a graph. For example,
it may be possible to embed beacons into a target area and
allow the drones to localize to the region that is defined by
the closest beacon signal. Though it is an exciting prospect,
we do not explore the use of non-Cartesian decompositions
in this work.

3.2 Data Model

The hive-drone model advocates for central storage of in-
formation that is collected in the field. For this purpose, the
hive maintains a key-value repository called the Datastore.
Updates to this data structure are asynchronous, occurring
when drones return from a sortie. The value for each key
is structured as a log, with new data appended along with
metadata describing the time and location at which it was
collected by the drone. Thus, the Datastore can be queried
both temporally and spatially (at the resolution of a region).
The information collected in the Datastore is used by the hive
to track the progress of the application and make allocation
decisions.

Figure 2 shows the data model in action. A drone flies out
with a blank local store (called a scratchpad) that is popu-
lated as it executes a behavior. Upon its return, the informa-
tion it collected is uploaded to the hive Datastore. Thus, the
Datastore at the hive has a partial view of the environment
at any given time, which is dependent on the information
brought back by drones that have completed their sorties.

3.3 Programming Model

As defined above, an application in our system is a com-
position of low-level drone behaviors and high-level goals.
In general, we restrict behaviors to be location agnostic so
that they can be applied to any region as determined by the
hive. Though we do not restrict the actions taken by the be-
haviors, we only explore simple algorithms in this work (e.g.

Datastore
T E [[|
LS (g g K
|
L [[| []
Hive Area of deployment

Figure 2. The hive-drone data model in action. Drones
are dispatched with blank scratchpads. As they execute
a behavior, they populate their scratchpad. On return to
the hive, the scratchpad is appended to the Datastore.

random walks, open loop patterns, and periodic sensing).

The high-level goals of an application are more abstract.
In general, the user will need to specify the sequencing of
behaviors and the area over which the swarm will operate.
For example, a farmer may wish to specify a portion of crops
to be monitored and that a pollination behavior should only
be executed following the detection of flowers in bloom.

From the perspective of the hive, the sole purpose of a
drone behavior is to populate the Datastore with new infor-
mation. We take this notion one step further and require that
every behavior produce some type of information under nor-
mal execution. For monitoring behaviors this requirement is
trivial to fulfill — a new piece of information can be produced
with each sensor reading. A similar approach is taken by be-
haviors that manipulate the environment. For instance, a pol-
lination behavior could record attempted landings. All be-
haviors produce information that is propagated to the Data-
store and the hive uses this information to reason about the
state of the application at runtime. This is the idea behind
the Karma programming model, in which this information
is used to define relationships between behaviors and selec-
tively apply them to regions. In this abstraction, the program-
mer defines an application as a set of simple drone behaviors
along with two functions for each behavior:

e Activation Predicate: A boolean function based on the
information in the Datastore. The hive can allocate a
drone to execute this behavior if the function evaluates
to true.

e Progress Function: A function based on the informa-
tion in the Datastore that evaluates to a real number be-
tween 0 and 1, indicating the progress made toward the
application goal associated with the behavior. When
this function returns a value of 1, the application has
achieved the behavior’s goal.

These function definitions enable the hive to make deci-
sions about MAYV allocation over time and space. Using the
activation predicates, the hive can determine when it is ap-
propriate to execute each behavior. Since the Datastore can
be queried spatially (at a regional resolution), the context of
the information passed to this function can be narrowed to
determine where the behavior is activated. This allows a
programmer to specify a data dependency that defines the
selective execution of a behavior at runtime. Further, the in-

formation used by the activation predicate defines the prereq-
uisites for execution. That is, an implicit dependency is cre-
ated between a behavior that produces the information used
by another behavior’s activation predicate. By defining the
activation predicates this way, a programmer can sequence
the execution of behaviors. Since each activation predicate
is evaluated independently, our model allows multiple be-
haviors to be activated concurrently, including behaviors that
have a dependent relationship. For example, consider our al-
falfa application; the pollination behavior is dependent on
the bloom monitoring behavior, but both could be activated
once some flowers have been found. Pollination could begin
on the known flowers while more are sought. We would like
to note that the implicit behavior graph created by this rep-
resentation may contain cycles. At this point, we make no
effort to detect cycles in an application.

The progress function is used by the hive to reason about
resource allocation. By tracking the rate of change of this
function, it can determine an estimate for the number of
drones that are required to complete the behavior. Like the
activation predicate, the Datastore query can be narrowed to
a regional context, allowing the hive to make more targeted
drone allocations. By defining the progress function this
way, we assume that the application is associating a fixed
amount of work with a behavior. Most of the target applica-
tions that we have studied require a fixed amount of work or
can be transformed into a periodic representation, removing
the problem caused by open-ended goals.

3.4 Scheduling Problem

The hive-drone model and our programming abstraction
transform the problem of executing an application on a MAV
swarm into a problem of scheduling behaviors on drones.
There are many policies for determining the allocation of
drones to behaviors. We have chosen the shortest time to ap-
plication completion as one objective. There is an economic
argument for wanting to finish an application as soon as pos-
sible — swarm maintenance (e.g. powering the hive computer
and charging drones) may be expensive. Other reasons might
be environmental in nature; for example, MAV flight will not
be possible when it is raining, so an application may be rac-
ing against an unfavorable weather forecast. This objective
advocates greedily scheduling all available drones. It could,
however, lead to a policy that would execute behaviors that
are concurrently activated in a batch sequence. That is, the
scheduling objective makes no distinction between a sched-
ule that allocates all drones to behavior A until it is completed
followed by all drones to behavior B, and one that interleaves
allocations for A and B. We posit that concurrently activated
behaviors should be scheduled fairly (without starvation) in
the absence of prioritization information. A second objective
is introduced to achieve fairness between behaviors. Fair-
ness can be defined as parity in the output of the progress
functions of individual behaviors. Therefore, the second ob-
jective of our scheduling function is to minimize the differ-
ence in progress between any two activated behaviors.

More formally, let B={b; | 1 <i <n} be the set of behav-
iors in the application. Let d be the total number of drones
available in the swarm. Let prev; be the total number of

drones that have previously executed behavior b;. At the cur-

rent time, let prog;(S) be the progress made toward the goal

of behavior b; and S the state of the Datastore. Let the es-

timate of the rate of progress made for behavior i per drone
_ prosgi($)

be defined as rate; = Sorev Let curr; be the number of

drones currently running this behavior. Let d be the number
of drones currently available for dispatch.

To solve our objectives, we need to allocate alloc; drones
to behavior i such that

max{ratey x (previ + curry + allocy) } V k € [1,n]
and

min {[rate; x (prev; + curr; + alloc;))
— [ratejx (prevj+currj+alloc;)]} ¥ (i,j) € [1,n]

such that

c+ Z {alloc; +curri} <d
i€(1,n)

Given these objectives, the hive will allocate drones to
behaviors as resources become available.

4 Karma Implementation

We have built Karma, a resource management system for
MAV swarms based on the hive-drone model. Figure 3 de-
picts the functional block diagram of Karma. The Karma
runtime at the hive consists of a hive Controller, Scheduler,
Dispatcher, and Datastore. The hive Controller is the over-
all manager of the runtime and invokes the other modules
when needed. When a user submits an application to the
Karma system, the hive Controller determines the set of ac-
tive processes (using the activation predicates), and invokes
the Scheduler to allocate the available drones to them. The
hive Controller monitors the progress of each process and
considers the application complete when the set of active
processes is empty. The Scheduler is periodically invoked
by the Controller to allocate drones to each active process.
The Dispatcher is responsible for tracking the status of the
physical resources (the MAVs). It programs the drones with
the allocated behavior prior to a sortie, tracks the size of the
swarm, and notifies the Controller when a drone returns to
the hive and is ready for re-deployment.

4.1 Programming the Swarm

To accomplish any goal with the MAV swarm, a user must
submit an application. Karma applications are collections of
processes that are executed at the hive. Each process de-
fined by the application has an associated behavior that is
executed on the drone. Each process also specifies the infor-
mation that it yields when its behavior is executed, as well as
the information that is required to activate the process. This
is accomplished by enumerating the Datastore keys for the
information that is used and yielded. The activation pred-
icate and progress function are evaluated by the Scheduler
in the context of queries made against the Datastore using
these keys. As mentioned in Section 3.2, these queries can
be temporally bounded to suit the needs of the application.

Hive

Application

process Drone
runs F P -
activated rogram — h
progress :- (ehavior

process lonitorfests 7 User

User t Karma

Scratchpad

Location

Karma

- Process

« Behavior
* Act. Predicate
« Prog. Function

Dispatcher

Datastore

—

Return

Update

Figure 3. Block diagram of the Karma design. Appli-
cations containing sets of processes are submitted to the
Karma hive by a user. Each process definition contains
an activation predicate, a progress function, and a drone
behavior. The Scheduler allocates resources (available
drones) to processes. The Dispatcher consumes the al-
location and programs behaviors on to drones and dis-
patches them on a sorties. Upon their return, drones
transfer the contents of their scratchpad to the hive Data-
store.

Figure 4 shows pseudo-code for part of the example ap-
plication described in Section 2. The code defines four pro-
cesses, two of which are omitted for brevity but are defined
similarly to MonitorBloom. In this case, the pseudo-code
references library behaviors that are specified outside of the
application code. With this approach it is possible to de-
fine common routines that execute on the drone and share
them amongst applications. The behavior associated with the
MonitorBloom process, RandomWalkFlowerSearch, exe-
cutes a random walk pattern while periodically using an opti-
cal sensor to detect the presence of flower blooms. Each time
the sensor is read, a counter in the drone’s local scratchpad
with the key bloom_obs is incremented. After analyzing the
reading, a counter with the key bloom_det is incremented if
a flower bloom was detected. When the drone returns to the
hive, this information is propagated to the hive Datastore,
where it can be queried by the Scheduler to evaluate activa-
tion predicates and progress functions. In this case, it uses
the total number of observations in the past 12 hours to de-
termine if the MonitorBloom process should be activated,
and how much progress has been made toward its comple-
tion. The Pollinate process references a similar behavior
that executes a random walk and lands the drone on flow-
ers, collecting and depositing pollen through incidental con-
tact. However, unlike the MonitorBloom process, which is
activated by a lack of observations in the past 12 hours, this
process is only activated when flower blooms have been de-
tected (in the past 12 hours). The information dependency
on bloom_det creates an implicit sequence of operations. For
the Pollinate process to active, the Datastore must contain
information for the key bloom_det. In our application, this
means that a drone running the RandomiWalkFlowerSearch

process MonitorBloom
runs RandomWalkFlowerSearch

uses ()

yields (’'bloom _obs’, 'bloom _det')
activated when (’'bloom obs’:12h < 2000)
progress := ('bloom_obs’':12h / 2000

process MonitorPests
process MonitorDisease

process Pollinate
runs RandomWalkPollinate
uses (’'bloom det')
yields (’'pollinated’)
activated when (’'bloom det’:12h > 0)
progress := (if isNull ('bloom_det’:12h)
then 1
else ('pollinated’:12h /
(2 * "bloom det’:12h)))

Figure 4. Pseudo-code for the process definitions that
make up the alfalfa crop monitoring and pollination ap-
plication.

behavior for the MonitorBloom process must observe flow-
ers on a prior sortie. Alternatively, should the need arise to
bootstrap the Pollinate process, the user could inject this
information into the Datastore manually. The information
dependency also exists in the progress function defined by
the Pollinate process. The function is defined such that the
process is considered complete in regions where there is no
bloom_det information. This allows the progress of the pro-
cess to be evaluated regionally, and prevents drones from be-
ing allocated to regions where no blooms have been detected.
Finally, recall that the activation predicate for each process
is evaluated independently, potentially resulting in multiple
activated processes. In this case, the monitoring processes
may execute concurrently with the pollination process, and
the Scheduler must allocate resources appropriately.

4.2 Karma Scheduler

Karma implements a fair, work-stealing scheduler that
solves the optimization problem illustrated in Section 3.4. It
operates in two steps. First, it estimates the total workload to
be performed for the set of active processes per region. Let
P ={p; |1 <i<n} be the set of active processes. Let R be
the set of regions the area of operation is divided into. Let S,
be the state of the Datastore at the hive at time ¢. The progress
of a process i in a given region r at time ¢ can be evaluated
using the progress function provided (PF;(S})). Let us de-
note this progress as prog’(l.ﬂ = PF(S"). At a future time ¢/
(t' > t) when the scheduler is invoked, let there be k drones
executing sorties for process i in region r that have returned
to the hive.

We can compute the rate of progress per drone-sortie for

!

. (progl; \—progl;) .
process i (q(;,»)) as 4, = % Given the rate

of progress per drone per sortie g(;), we can estimate the
amount of work remaining to complete process i in region r

(in terms of number of drone-sorties) as N(’,. = U=progip)
i,r) Elq(i)
Since the value of g(;,) can vary significantly over time
and with environmental conditions, we compute the value
Elq(;,)) using a weighted average of historical ¢g(;, val-
ues. Note that the progress rates q(;) cannot be computed
at t = 0. We bootstrap the progress estimation mechanism
by sending a fixed number of scout drones to regions where
there is insufficient progress information. Once the progress
of the scout drones is known, g;) can be computed as de-
fined above. We can then estimate the total work to be done
across all active processes as N' = Zie(l,n)’reRN(t; e Note

that the work estimate N” assumes a linear relationship be-
tween the number of drones dispatched and the amount of
progress made.

The second step is to allocate the available drones to the
set of active processes fairly. Karma takes a work-stealing
approach to allocation, using a sorted queue with each ele-
ment in the queue representing an active process requesting
drones in a region. The queue is sorted in ascending order
according to the service level of each request. We define ser-
vice level as the ratio of remaining amount of work to com-
plete process i in region r (N(t;_r)) to the total work to be done
by the application for all active processes across all regions
at the current time (N’ /). As drones become available, Karma
allocates them iteratively by servicing the request at the head
of the queue. If m drones are available for allocation, this re-

sults in an allocation of alloc‘(/l._r) for each process i in region

r at time ¢’

alloc’(lm: N;' *m

This formulation meets our objective of fairness across pro-
cesses as illustrated in Section 3.4.

The above formulation ensures that resources are divided
fairly across processes and regions. However, there may be
applications in which the processes must be executed in a
predetermined order. To address this class of applications,
we allow for the specification of a process priority in the ap-
plication description. To accommodate these requirements,
we first sort the queue used for drone allocation by process
priority and then by service level. In a resource constrained
situation, we allocate drones to the higher priority processes,
allowing lower priority processes to starve.

4.3 Dispatcher

The Dispatcher is responsible for carrying out the alloca-
tion decisions made by the Scheduler. Specifically, it man-
ages the drone inventory and prepares drones for sorties by
programming the specified behavior onto the drone and pa-
rameterizing the starting region. When a drone returns, the
Dispatcher invokes a process to merge the drone’s scratchpad
with the hive Datastore and initiates a charge cycle. When
drones are fully charged and ready to be dispatched, the Dis-
patcher notifies the Controller of the resource availability.

In Section 3, we define the term information latency as the
difference in time between an event occurring in the world
and the hive being informed of the occurrence. This latency

process Search
runs RandomWalkSearch

uses ()

yields ('obs’, 'feature’)
activated when (’obs’ < 250)
progress := ('obs’ / 250)

process Survey
runs RandomWalkSurvey

uses (' feature’)

yields (’'studied’)

activated when ('’ feature’ > 0)

progress := (if isNull ('’ feature')
then 1

else (’studied’ / (2 * ' feature')))

Figure 5. Psuedo-code for the definition of processes that
make up the walkthrough application.

is a function of the swarm deployment (e.g. swarm size, sor-
tie time, charge time, maximum velocity) and dispatch pol-
icy. In general, it is desirable to minimize the information
latency in the system, but it is particularly important for ap-
plications that track highly dynamic or continuous phenom-
ena. In Karma we manipulate the dispatch policy to better fit
the application and minimize the information latency. The
Controller in Karma operates in two phases; it first deter-
mines how many resources each process-region pair should
be granted by invoking the Scheduler, and then dispatches
drones (using the Dispatcher) to fill the allocation requests.
The algorithm for determining the amount of resources to
grant is fixed, but the dispatch policy may vary. As such, we
propose two dispatch policies. The goal of the continuous
dispatch policy in Karma is to ensure a constant presence of
drones in the field and minimize the information latency in
the system by amortizing the total allocation of drones to a
region over a period of time (sortie time + charge time). In
contrast, the greedy dispatch policy dispatches drones oppor-
tunistically. We investiagate the effects of these policies in
our system evaluation.

Reducing information latency can have a significant im-
pact on the quality of data collected by applications that
track continuously changing phenomena, such as chemical
plumes. The application programmer should decide how in-
formation latency affects the application at hand. We allow
the application programmer to add this as part of the pro-
gram specification, and the corresponding dispatch policy is
selected accordingly.

4.4 Execution Walkthrough

We conclude the description of the system by walking
through an execution trace of a simplified application. We
illustrate key features of the system by examining the de-
cisions made by the Controller over the course of the exe-
cution. The example application consists of two processes,
Search and Survey. Process Search runs a behavior exe-
cuted uniformly over the target area and produces informa-
tion relating to interesting features observed in the field. Pro-
cess Survey runs a behavior that is triggered to execute only
in areas identified as interesting by the Search process. The
pseudo-code for this application is given in Figure 5.

We execute this application in simulation using 200
drones in a target area that is 75 x 75 meters. The world is
partitioned into regions by dividing the target area as a grid
with 10 rows and 10 columns. The hive is placed at the cen-
ter of this area. A circular area representing the presence of
interesting features is modeled with its origin at (15, 15) and
a radius of 10 meters. For simplicity, no weather or hard-
ware failure is modeled. A greedy dispatch policy is used on
the hive. Each drone is given enough energy to complete a
40-50 second sortie, with a subsequent charge time of about
2 minutes.

Figure 6 depicts an execution trace for this application.
The top panel shows the amount of remaining work over
time. The bottom panel shows the number of drones that
are allocated to each process over time. This data illustrates
two points about our scheduling algorithm. First, the drones
appear to be allocated in waves. For the most part, this is
true. The peaks in the bottom panel represent times when
drones were dispatched (opportunistically using the greedy
policy) and the valleys represent charging cycles. Since the
drones are returning from different regions in the target area
and have slightly different battery capacities upon returning,
they are not available for scheduling at exactly the same time.
This creates the jagged appearance of each “step” in the al-
location plot. Second, notice that the Survey process is ini-
tially idle, and remains idle until the first Search sortie re-
turns to the hive and the drones deposit the collected infor-
mation into the central Datastore, demonstrating the implicit
dependency between the two processes. Third, the bootstrap-
ping sortie, as described in Section 4.2, is required when
there is a lack of information about the progress rate for a
process in a given region. In this example the number of
drones allocated to the first sortie of each process is limited
to one per region (100 total) despite the fact that more drones
are available at the outset. Finally, the number of drones allo-
cated to each process is proportional to the amount of work
remaining and is a function of the estimated progress rate.
For most of the execution the amount of work remaining for
Survey is far below that of Search, so Search is allocated
most of the resources.

Figure 7 illustrates how the dependency between pro-
cesses results in selective allocation. The lefthand panel
shows a drawing of the world in which the application is run-
ning. The hive is at the center and the world and an area con-
taining interesting features is set in the top right as shown.
The Search process records observations of these features
when it executes in this area. The scheduler evaluates the
activation predicate for the Survey process in each region of
the discretized world and allocates drones accordingly. The
righthand panel depicts the resulting cumulative allocation
of drones to regions for the Survey process over the course
of the execution. Without prior knowledge, our system cor-
rectly allocates drones to execute the Survey behavior only
in regions where this behavior is useful. This allocation falls
out of a single data dependency in the activation predicate.

This example demonstrates how the key features of
Karma, progress rate estimation, proportional scheduling,
and selective activation of processes in regions, can be com-
bined to execute a swarm application.

100

= Search ——
% 80 Survey -
S 60
[}
o 40 }
<
o 20
100 |
e)
Q
IS
(8]
i)
<
O\O

10 15 20 25 30
Time (min)
Figure 6. Karma allocates drones to behaviors accord-
ing to the estimated amount of work to be done and the
measured progress rate of each behavior per region. Re-
maining work is the sum of remaining progress across all
regions.

World Survey

825 Features 9 70
8 60 3
() = 7 ‘ 50 ®
- | B g
€ T 5 40 2
= 0 L} S 4 30 <
> Hive = 3 »
S5 20 <>(
1 10 s

0
325 0
-32.5 0 32,5 0123456789

X (m) Grid Column

Figure 7. Processes are selectively activated by the pres-
ence or absence of information. The righthand panel
shows the regions in which the Survey process is acti-
vated by the prior detection of environmental features.

5 Evaluation

In this section we demonstrate that the Karma system can
be used to manage a swarm of MAVs and effectively execute
applications inspired by real world workloads. We character-
ize the effectiveness of our system by evaluating its perfor-
mance with respect to three metrics; execution time, energy
cost, and information latency. Completion time and energy
cost are useful metrics of efficiency. For instance, a farmer
may want to minimize the total execution time so that a sin-
gle hive can be shared among a number of fields on a fixed
schedule. However, minimizing completion time may result
in more resources being consumed than is strictly necessary,
forcing a tradeoff to be made. We evaluate the scheduling
decisions made by the system in the context of this tradeoff.
Increased information latency is a direct result of the hive-
drone paradigm. It is especially problematic for applications
that track features of the environment that change frequently
or continuously. To this end, we use this metric to evalu-
ate how the selection of a dispatch policy can mitigate the
negative effects of the sortie model.

5.1 Simulation Setup

We have developed a simulation environment, Sim-
beeotic, that allows us to test our ideas in a realistic, three-
dimensional virtual world. The simulator is written in Java
and builds atop an open source, six degrees of freedom,
rigid body physics engine, JBullet.> JBullet provides realis-
tic physical interaction between objects in the virtual world.
Programmers write routines for controlling actuation and at-
tach them to virtual MAV platforms, which can be equipped
with a number of virtual sensors (e.g. accelerometer, gy-
roscope, range finder, compass, optical flow). In addition,
users can create virtual worlds with flower patches, build-
ings, obstacles, and environmental effects such as gravity
and wind. With this tool we are able to simulate swarms
of MAVs at scales well beyond the practical limitations of
our prototype testbed.

The Karma implementation consists of two runtimes; one
that executes on the hive, and one that is embedded on the
drones. The hive runtime is responsible for monitoring the
progress of applications, scheduling and dispatching sorties,
and charging drones. The drone runtime provides location
and data storage services to running behaviors. The Karma
hive runtime is implemented as a standalone Java applica-
tion and is decoupled from the drone runtimes by a custom
dispatch driver. This arrangement allows the Karma hive to
execute the same application on multiple deployments. Our
evaluation is based on experiments carried out in Simbeeotic
and on a testbed of toy helicopters using this mechanism.
All of the results shown are obtained in simulation, with the
exception of the testbed experiment in Section 5.6.

We evaluate our system by using the alfalfa crop moni-
toring and pollination application introduced in Section 2.1
and depicted in Figure 4. In the following experiments, we
run this application in a model alfalfa field that is one acre
in area (63.63 by 63.63 meters) discretized into a 6x6 region
grid. The origin of the world is at the center of the field and
the hive is placed outside the field at (—35,0). The appli-
cation is designed to execute for an entire growing season,
periodically re-executing the three monitoring behaviors and
activating the pollination behavior when the crop is in bloom.
As written, the application expects the field to be monitored
for pests, disease, and flower blooms once per day. Our
experiments consist of single day snapshots of the applica-
tion rather than the entire season. The battery and energy
model of the drones are parameterized to provide approxi-
mate sortie and charge times of 5 minutes and 20 minutes
respectively. The drones have a top speed of 2 meters per
second when cruising to and from the hive, but operate at
speeds between 0.25 and 0.5 meters per second when exe-
cuting behaviors. The Scheduler is set to allocate drones (if
available) every 10 seconds. Statistics for experimental re-
sults are gathered by repeating simulated experiments five
times with varying random seeds. Unless otherwise noted,
a swarm size of 800 drones is used in combination with a
greedy dispatch policy for all experiments.

2nttp://jbullet.advel.cz

500 r

‘@ 400 i
3 -
B2 300
Qg
DS 200 .
S 100 |
0 1 1 1 1 1 1 1 1
220 r
200 | 1 greedy ----e---
-y continuous - e« -
= 180 | &y offline —=—
E 160 | %
© L kY
g 140 \
= 120 f
§ 100}
é_ 80
g 60 |
O 40 }
20 |

200 400 600 800 1000 1200 1400 1600
Swarm Size

Figure 8. Karma scales sub-linearly (w.r.t. completion
time) as swarm size increases. Gains are offset by rela-
tively long charging periods in short scenarios.

5.2 Efficiency

We evaluate the efficiency of our system by comparing
the overall completion time and energy cost of the alfalfa
crop monitoring and pollination application as executed by
Karma in Simbeeotic to a restricted version of an oracle of-
fline scheduling model. For a fair comparison, the offline
solution is required to use the gridded spatial decomposition
and search each region for flower blooms despite having per-
fect knowledge of the bloom density. For each drone sched-
uled, the oracle model has full knowledge of the performance
of all previously deployed drones. Since drones are sched-
uled concurrently, this implies that the oracle model has fore-
knowledge of all the activity of the drones that are currently
deployed. As such, the Scheduler can allocate the minimum
number of drones required to complete the application with-
out having to estimate drone performance. We use this ora-
cle model as a theoretical lower bound for comparison with
Karma, even though it is not attainable in practice.

Figure 8 shows the scenario completion time and ex-
pended energy as a function of swarm size. We do not ex-
pect the performance (w.r.t. completion time) of Karma to
improve linearly with swarm size in short scenarios because
recharging is the dominant contributor to swarm overhead.
Unless there is enough swarm growth to reduce the number
of sorties executed by each drone, the gains will be limited.
As expected, the oracle solution scales nearly linearly to the
point where there are enough drones to complete all of the re-
quired work without recharging (about 850 drones). Karma
scales sub-linearly with swarm size. The performance gap
between Karma and the offline solution is mainly attributed
to the bootstrapping sorties (with the accompanying charge
period) and the information latency caused by muling data.

120

=

£ 80}

Y 6ot

S

T 40}

o

£ 2}

o

(@) 0= N N N N

0 0.5 1 1.5 2
Probability of Failure per Sortie (%)

Figure 9. Karma is resilient to individual drone failures,
exhibiting a graceful degradation in performance as the
probability of failure increases.

We evaluate Karma using the greedy and continuous dis-
patch policies described in Section 4.3. Since the workload is
fixed and the evaluation metric is total completion time, the
performance of the two dispatch policies is roughly equiva-
lent. However, there is a disparity between the two dispatch
policies with respect to energy consumption. As the size of
the swarm increases, the system using the greedy dispatch
policy consumes 50% more resources. This is due to a com-
bination of poor allocation estimates and opportunistic dis-
patching. The greedy dispatch policy tends to release drones
in batches. Empirical evidence suggests that early allocation
estimates are inaccurate, which leads to an overcommitment
of resources. Since the continuous policy staggers drone dis-
patching over time, the erroneous resource allocations can be
gradually corrected with limited overhead.

5.3 Resilience to Failure

We demonstrate Karma’s resilience to individual drone
failure. Our system is designed to provide a graceful degra-
dation in performance (as measured by overall completion
time) that is proportional to the amount of failure that occurs.
The approach we take follows naturally from the hive-drone
model and the use of progress rates to estimate resource al-
location needs. When a drone fails in the field, it never re-
turns to update the Datastore and, from the perspective of
the hive, no progress is made. The Dispatcher will detect the
failure with a timeout and inform the Scheduler that it has
one less resource in the field and that the swarm size has de-
creased. The Scheduler will take this into account during the
next allocation cycle and update its estimates accordingly.
This mechanism works well when failure is uniformly dis-
tributed across all regions of the target area. However, there
is a corner case in which a disturbance (e.g. strong wind) is
localized to a subset of the area. In this case we would prefer
that the system detect the anomaly and discontinue sending
drones to the hazardous area. Because this disturbance may
also be time-varying, an attempt could be made to resume
allocation to the problem region after a period of time. Han-
dling these situations in Karma is left as future work.

We evaluate the effectiveness of our system design with
respect to failure by executing the alfalfa crop monitoring
and pollination application with a swarm of drones that have
a constant probability of failure. With this model we expect

to see an increase in the total execution time of the applica-
tion with an increase in failure. As shown in Figure 9, Karma
handles the unexpected failures with a predicted graceful
degradation in performance. The majority of the extra time
is due to the swarm’s inability to immediately react to a de-
tected failure (all of the drones are deployed or charging).
This issue can be mitigated by reserving drones or increas-
ing the swarm size. In addition to the time overhead, there is
a small energy penalty (5% in the worst case scenario) that is
caused by the additional sorties required to make up for the
lost drones. The swarm size may dwindle to the point that
no progress can be made, but that point is reached through
graceful degradation, not hard failure.

5.4 Adaptability

Consider the impact on a drone of wind blowing at a con-
stant speed and direction. The drone must work harder to
compensate for the additional force and avoid being blown
off-course. As a result, it will expend more energy to fight
the wind, resulting in a shorter sortie time. In turn, the
progress rate for the behavior it is executing will be reduced
and the system will produce higher resource estimates.

In the following experiment we modify the alfalfa crop
monitoring and pollination application to introduce a con-
stant wind over the bottom third of the field. Drones dis-
patched to the bottom third of the field experienced a 32%
reduction in sortie time. Because the workload is constant
for the four behaviors in this application, shorter sortie times
result in less work being accomplished per sortie, which re-
duces the progress rate for these regions. In this case, the
Scheduler responds by allocating 12% more drones than the
wind-free regions to accomplish the same amount of work.
Correspondingly, the energy cost for executing in the pres-
ence of regional wind is 7% higher than that of the windless
scenario.

The environmental dynamics are implicitly captured in
the regional behavior progress rates. Even though the Karma
system did not explicitly measure the wind speed, the swarm
was able to adapt to its presence. By representing the dynam-
ics in a single variable (the progress rate), the hive is able to
adapt to external influences, but it cannot disambiguate the
causes or apply specific solutions. Though this experiment
demonstrates spatial variation, the dynamics of the environ-
ment can also change over time. The Scheduler’s use of the
regional progress rates to capture these dynamics also ac-
counts for temporal fluctuation. The accuracy with which
the scheduler can track the progress rate (and implicitly the
environmental dynamics influencing it) depends on how fre-
quently that rate is sampled (how often a drone returns from
that region). This is defined in Section 3 as the information
latency problem, and is addressed in the next set of experi-
ments.

5.5 Information Latency

The previous experiment focused on evaluating our sys-
tem in the presence of environmental dynamics. However,
the features of interest that the application is interested in de-
tecting and tracking are essentially static (or do not change
in some detectable way) over the period of execution. How
does the system behave when applications aim to track phe-

1200 sec

"

600 sec

Grid Row
O=MNWHrOION®O

2400 sec 3600 sec

w
o
o

0123456789 0123456789

0123456789
Grid Column

Level Set Detections
(in past 500s)

0123456789

Figure 11. A series of snapshots from the hive Datastore depicting the measured contour of an expanding chemical

plume.

process DetectPlume
priority = 2
runs RandomWalkPlumeSearch
uses ()
yields (’'plume_obs’', 'plume_det’)
activated when (’'plume_obs’:5m < 400)
progress := ('plume_obs’:5m / 400)

process FindLevelSet
priority = 1
runs RandomWalkLevelSet

uses (' plume_det’)
yields (’level_obs’, ’level_det’)
activated when (’'plume_det’:5m > 0)
progress := (if (isNull (' plume_det’ :5m)
then 1
else (’'level_obs’:5m / 500)))

process FindCenter
priority = 1

Figure 10. Psuedo-code for the definition of processes
that make up the plume tracking application.

nomena that change continuously? We demonstrate that the
hive-drone paradigm can be used to continuously measure
time varying phenomena. To this end, we define a chemical
plume tracking application that consists of three behaviors;
one to perform a uniform search of the target area, one to
detect a level set (contour) of the plume, and one to find the
center. Figure 10 defines this application in pseudo-code.
The application is executed in a target area that is 100 me-
ters by 100 meters, discretized into a 10x10 region grid. The
plume is centered at (—25,25) and expands in a hemispher-
ical pattern at a rate of 1 centimeter per second. Unless oth-
erwise noted, a swarm size of 800 drones is used along with
the continuous dispatch policy.

All three processes defined by the plume tracking appli-
cation are unbounded, meaning that they are not meant to
terminate after some fixed amount of work is done. Rather,
they define sliding windows in which the activation predi-
cates and progress functions are evaluated as time moves for-
ward. Using these windows, drones are allocated to regions
that have the most recent information, allowing the frontier
of swarm activity to follow the plume as it expands. Fig-
ure 11 depicts a series of snapshots taken from the Datastore

10000
2 greedy
c continuous
23 1000 F
3%
§2 100
T2
E -
5\‘{’, 10 f
E

1

200 400 800
Swarm Size

1600

Figure 12. Information latency measurements for one
process-region pair in the plume tracking application.
The continuous dispatch policy consistently outperforms
the greedy policy.

as the plume tracking application is executed. Using a win-
dowed query, we are able define the regions in which the
level_det feature was most recently observed. Older obser-
vations of this feature are stored in the Datastore, but are not
included in the view defined by the windowed query.

In the next experiment, we quantify the effect that the
dispatching policy has on information latency. We execute
the plume tracking scenario with the two dispatch policies
(greedy and continuous). As a proxy for information latency
(as defined in Section 3), we measure the process-region re-
turn period; the amount of time between consecutive drones
returning from each region for each process. This allows us
to measure how frequently we receive information from a
region, which is directly related to the information latency
on events that occur in that region. Because the drones that
are dispatched concurrently do not return at exactly the same
time, we cluster return events that occur within a 30 second
period as one event.

Figure 12 shows the results of the experiment running
for 6 virtual hours. Depicted is the mean and standard de-
viation of information latency measurements for a single
process-region pair. As expected, the continuous policy out-
performs the greedy policy with respect to minimizing in-
formation latency. As the swarm size increases, there are
more drones available when the Scheduler requests resources
and the charge time plays a smaller role in defining the in-
formation latency. On average, switching policies reduces
the measured information latency by 63%, with an order of

Figure 13. The ground vehicle and helicopters operating
in the indoor testbed.

magnitude improvement (97%) when the swarm size is in-
creased to 1600 drones. The takeaway is that certain aspects
of the Karma system are coupled with the application, and
customizing the system deployment can have a significant
impact on the application performance.

5.6 Helicopter Testbed

In addition to the experiments in simulation, we evaluate
Karma on a prototype MAV testbed. Our prototype MAV is
the low cost ($120), E-flite Blade mCX2 micro coaxial radio
helicopter. The mCX2 is 20 cm long, 12 cm high, weighs
28 grams, and has a flight time of 6—8 minutes depending on
flight maneuvers.

We have integrated the mCX2 helicopter with Simbeeotic
such that the helicopter can be controlled by behaviors run-
ning in the simulation. This hardware-in-the-loop setup al-
lows us to control a model of the helicopter in the virtual
world (using virtual sensors), while the helicopter flies in the
physical world. We modify the mCX2 radio transmitter to
accept commands from a USB port, allowing us to send RC
commands to the helicopter when its model is controlled. To
complete the loop, the physical position and orientation of
the helicopter is captured by a precision Vicon® motion cap-
ture system and injected into the model’s state. Note that no
Karma code is executing onboard the helicopter, though this
is the subject of ongoing work.

For our testbed experiment, we evaluate a simple tracking
application using three helicopters and one ground vehicle
(shown in Figure 13). Our testbed space is divided into four
equally sized regions. Initially, Karma dispatches helicopters
with the Search behavior, causing the helicopters to look for
ground vehicles. When a helicopter has located a vehicle,
it writes the location of the vehicle to its local scratchpad.
When the drone returns to the hive and uploads its data, the
tracking process is activated. Karma then dispatches a he-
licopter with the Track behavior to the last known vehicle
location to resume observation.

The ground vehicle starts off stationary in the center of
one of the regions. After approximately 30 seconds the vehi-
cle moves to an adjacent region and waits another 30 seconds

3http://www.vicon.com

X
Figure 14. Ground truth target location and helicopter
flight paths as recorded by the motion capture system
during the testbed experiment. The target is solid and
the helicopters are dotted.

ground truth
- observations +
Karma -

Region

f —

0 20 40 60 80 100 120
Time (seconds)
Figure 15. The region occupied by the target throughout
the experiment. The perceived location (dotted line) lags
behind the truth location due to information latency.

before moving on. This process repeats for the duration of
the experiment. The helicopters fly 20 seconds sorties. This
is short of the maximum flight time of the helicopter, but
allows us to see Karma perform several sorties during the
course of the experiment. We equip the helicopters with a
virtual sensor that allows them to locate the ground vehicle
if they are within 90cm in the x-y plane.

Figure 14 shows a ground truth trace of the tracking ex-
periment. At the start, the vehicle begins in region 1 and
moves in a clockwise fashion. Figure 15 shows a region-
level trace of the target location during the experiment. The
markers indicate when a helicopter records an observation
into its scratchpad. The hive-drone model introduces infor-
mation latency, which can be seen here as a gap (on the time
axis) between the solid and dotted lines, which represent the
truth and perceived target location, respectively.

6 Discussion

We demonstrate that the Karma system is capable of ex-
ecuting swarm applications with reasonable efficiency and
resiliency. However, there are some aspects of the system
design that warrant further discussion and study.

In our design, each drone is assigned a behavior to exe-
cute per sortie. This policy is a direct result of the short flight
times of the current MAV prototype. If the drones had longer
flight times, multi-tasking on individual drones might allow
for more efficient operation. Further, we only consider sor-
ties that keep the drones deployed for the maximum amount
of time. It may be possible to reduce information latency and
gain more flexibility in scheduling by considering variable
length sorties. In addition, a larger area could be covered if
a multi-hive solution were adopted (with inter-hive commu-
nication), allowing for one-way sorties that redistribute the
swarm’s resources at runtime. These features would require
significant modifications to the Scheduler to incorporate re-
source planning.

The Karma scheduler relies on estimating the progress
rates of drones executing behaviors in the field. Though this
allows the system to adapt to varying conditions, it can be
problematic when the estimate is inaccurate. It may be pos-
sible to produce more robust estimates by incorporating val-
ues from neighboring regions or using a priori models. An
over-provisioning strategy could mitigate the impact of over-
estimation (or underperforming drones) on completion time
at an additional cost in resources.

7 Related Work

Programming clusters of computers is a long-standing
problem that has received ample attention in research.
River [1] provides adaptive mechanisms that allow database
query-processing applications to cope with performance
variations in cluster platforms. They propose a dataflow
programming model and two new constructs — a distributed
queue to decouple the dependence of producers of data from
consumers and a graduated declustering mechanism which
decouples the consumers from producers. Like Karma,
River handles massively parallel operations by estimating
the performance variations and doing intelligent schedul-
ing to achieve the best performance. However, the work-
loads are inherently parallel in River whereas the parallelism
is achieved in partitioning space and simplifying the se-
quence of actions in a behavior in Karma. Applications in
Dryad [10] and CIEL [17] are expressed as dataflow graphs.
The Karma programming model avoids the explicit paral-
lelization used in Dryad graphs, allowing processes to be
scaled with the size of the swarm. Although the process
interdependencies in Karma applications can be similarly
expressed in the dataflow graphs of cluster computing sys-
tems, the scheduling problem is quite different. Cluster sys-
tems like MapReduce and Dryad must schedule jobs while
optimizing for data locality, network usage, and resource
availability. However, the inputs and outputs of these sys-
tems are mostly deterministic (a static partitioning of ex-
isting data), whereas the operation of a MAV swarm in an
unknown environment is anything but predictable. This is
why Karma takes a reactive approach to scheduling the sys-

tem resources, basing decisions on feedback. CIEL provides
support for iterative and recursive computations by allowing
the the dataflow graph to be modified at runtime. We believe
this programming model is well suited for MAV swarms, and
hope to explore its usefulness as a frontend to Karma in fu-
ture work.

Spatially-oriented computing offers an alternative ap-
proach to procedural multi-robot programming. In this
paradigm, space is used as a first-class computing abstrac-
tion, and individual nodes typically act according to some
spatially-oriented conditions. Protoswarm [3] is a language
that presents the swarm as a single continuous spatial com-
puter. Meld [2] is a declarative logic-programming language
to program robotic ensembles. Meld was designed for mod-
ular robots where the inter-robot communication is limited
to immediate neighbors. Locally distributed predicates [5]
are distributed conditions that hold for a connected ensem-
ble of the robotic system. Programs in this paradigm are
collection of LDPs with actions that are triggered when sub-
ensembles match a particular predicate. Karma partitions
space to achieve data-parallel operation.

Swarm robotics and swarm intelligence research applies
resource management techniques at large scale. Swarm
robotics algorithms and systems typically focus on emergent
behavior arising from local decisions made by large numbers
of simple agents. These often biologically-inspired algo-
rithms have proven successful in diverse tasks such as collec-
tive construction [23] and multi-parameter optimization [12].
The large body of work in this area is directly applicable to
MAV swarm programming. In designing Karma, we have
eschewed the principles of emergent collective behavior in
favor of explicit, global coordination based on the hive-drone
model. We employ simple agent behaviors, and move most
of the complexity to the central hive. Since resource alloca-
tion is an iterative, centralized problem, we are able to make
a reasoned assessment of swarm progress — something that
is often difficult with emergent algorithms.

8 Conclusions

MAV swarms are an emerging class of mobile sensing
systems. However, challenges exist in programming such
systems. We propose a novel system architecture based on
the hive-drone model. The model uses a programming ab-
straction that simplifies programming individual MAVs and
shifts the coordination complexity to a central hive. We im-
plement this model in our prototype system called Karma
and show that it is efficient, adaptive, and resilient to failure.

9 Acknowledgements

We would like to thank to our shepherd, Philip Levis, Ge-
offrey Challen, and the anonymous reviewers for their in-
sight and detailed feedback. Special thanks to Margo Seltzer
for her participation and thoughtful commentary that vastly
improved the quality of this work. This work was partially
supported by the National Science Foundation (award num-
ber CCF-0926148). Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
National Science Foundation.

10
(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

References

R. H. Arpaci-Dusseau. Run-time adaptation in river.
ACM Transactions on Computer Systems (TOCS),
21(1):36-86, February 2003.

M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C.
Mowry, and P. Pillai. Meld: A declarative ap-
proach to programming ensembles. In Proceedings of
the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), October 2007.

J. Bachrach, J. McLurkin, and A. Grue. Protoswarm:
a language for programming multi-robot systems using
the amorphous medium abstraction. In Proceedings of
the 7th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 1175—
1178, 2008.

G. L. Barrows, J. S. Chahl, and Y. V. Srinivasan.
Biomimetic visual sensing and flight control. In Pro-
ceedings of the Bristol UAV Conference, pages 159—
168, 2002.

M. De Rosa, S. Goldstein, P. Lee, P. Pillai, and
J. Campbell. Programming modular robots with lo-
cally distributed predicates. In Proceedings of the IEEE
International Conference on Robotics and Automation
(ICRA), pages 3156-3162, May 2008.

J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In Proceedings of
6th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 137-150, 2004.

K. S. Delaplane and D. F. Mayer. Crop Pollination by
Bees. CABI Publishing, New York, NY, 2000.

X. Deng, L. Schenato, W. C. Wu, and S. Sastry. Flap-
ping flight for biomimetic robotic insects: Part i-system
modeling. IEEE Transactions on Robotics, 22(4):776
—788, August 2006.

M. H. Dickinson, F.-O. Lehmann, and S. P. Sane. Wing
rotation and the aerodynamic basis of insect flight. Sci-
ence, 284(5422):1954-1960, 1999.

M. Isard, M. Budiu, Y. Yu, and A. Birrell. Dryad: dis-
tributed data-parallel programs from sequential build-
ing blocks. In Proceedings of the 2nd ACM SIGOP-
S/EuroSys European Conference on Computer Systems,
2007.

M. Karpelson, J. Whitney, G.-Y. Wei, and R.J.Wood.
Energetics of flapping-wing robotic insects: Towards
autonomous hovering flight. In Proceedings of
the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), October 2010.

J. Kennedy and R. Eberhart. Particle swarm optimiza-
tion. In Proceedings of IEEE International Conference
on Neural Networks, 1995.

S. Koppal, 1. Gkioulekas, G. Barrows, and T. Zickler.
Wide-angle micro sensors for vision on a tight budget.
In Proceedings of IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2011.

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

B.-K. Lai, K. Kerman, and S. Ramanathan. Nanos-
tructured LaU,GSro,4C00,3Feo,203 / Yo,ogzro,gzol,% /
Lag ¢Srg.4Cog sFep 203 (LSCF/YSZ/LSCF) symmetric
thin film solid oxide fuel cells. Journal of Power
Sources, 196(4):1826 — 1832, 2011.

D. Lambrinos, R. Moller, T. Labhart, and R. Pfeifer.
A mobile robot employing insect strategies for naviga-
tion. Robotics and Autonomous Systems, 30(1-2):39—
64, 2000.

J. W. Langelaan and N. Roy. Enabling New Missions
for Robotic Aircraft. Science, 2009.

D. Murray, M. Schwarzkopf, and C. Smowton. CIEL:
A universal execution engine for distributed data-flow
computing. In Proceedings of the 8th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI), 2011.

D. Psychoudakis, W. Moulder, C.-C. Chen, H. Zhu, and
J. L. Volakis. A portable low-power harmonic radar
system and conformal tag for insect tracking. IEEE An-
tennas and Wireless Propagation Letters, 7:444—-447,
2008.

A. Purohit, Z. Sun, M. Salas, and P. Zhang. SensorFly:
Controlled-mobile Sensing Platform for Indoor Emer-
gency Response Applications. In Proceedings of the
10th International Conference on Information Process-
ing in Sensor Networks (IPSN), 2011.

P. Sreetharan and R. Wood. Passive torque regulation
in an underactuated flapping wing robotic insect. In
Proceedings of Robotics: Science and Systems, June
2010.

E. Stokstad. The Case of the Empty Hives. Science,
316(5827):970-972, 2007.

H. Tanaka and R. J. Wood. Fabrication of corru-
gated artificial insect wings using laser micromachined
molds. Journal of Micromechanics and Microengineer-
ing, 20(7):075008, 2010.

G. Theraulaz and E. Bonabeau. Coordination in dis-
tributed building. Science, 269(5224):686—688, 1995.

R. J. Wood. The first takeoff of a biologically inspired
at-scale robotic insect. IEEFE Transactions on Robotics,
24(2):341 -347, April 2008.

