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1. Motivation, Aims
and Examples

These lectures will concentrate on (nonlinear) stochastic partial differential
equations (SPDEs) of evolutionary type. All kinds of dynamics with stochas-
tic influence in nature or man-made complex systems can be modelled by
such equations. As we shall see from the examples, at the end of this section
the state spaces of their solutions are necessarily infinite dimensional such
as spaces of (generalized) functions. In these notes the state spaces, denoted
by E, will be mostly separable Hilbert spaces, sometimes separable Banach
spaces.

There is also enormous research activity on SPDEs, where the state spaces
are not linear, but rather spaces of measures (particle systems, dynamics in
population genetics) or infinite-dimensional manifolds (path or loop spaces
over Riemannian manifolds).

There are basically three approaches to analysing SPDEs: the “martingale
(or martingale measure) approach” (cf. [Wal86]), the “semigroup (or mild
solution) approach” (cf. [DPZ92], [DPZ96]) and the “variational approach”
(cf. [Roz90]). There is an enormously rich literature on all three approaches
which cannot be listed here. We refer instead to the above monographs.

The purpose of these notes is to give a concise introduction to the “vari-
ational approach”, as self-contained as possible. This approach was initiated
in pioneering work by Pardoux ([Par72],[Par75]) and further developed by
N. Krylov and B. Rozowskii in [KR79] (see also [Roz90]) for continuous mar-
tingales as integrators in the noise term and later by I. Gyongy and N. Krylov
in [GK81],[GK82],[Gyö82] for not necessarily continuous martingales.

These notes grew out of a two-semester graduate course given by the second-
named author at Purdue University in 2005/2006. The material has been
streamlined and could be covered in just one semester depending on the pre-
knowledge of the attending students. Prerequisites would be an advanced
course in probability theory, covering standard martingale theory, stochas-
tic processes in R

d and maybe basic stochastic integration, though the latter
is not formally required. Since graduate students in probability theory are
usually not familiar with the theory of Hilbert spaces or basic linear operator
theory, all required material from these areas is included in the notes, most
of it in the appendices. For the same reason we minimize the general theory
of martingales on Hilbert spaces, paying, however, the price that some proofs
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2 1. Motivation, Aims and Examples

about stochastic integration on Hilbert space are a bit lengthy, since they have
to be done “by bare hands”.

In comparison with [Roz90] for simplicity we specialize to the case where
the integrator in the noise term is just a cylindrical Wiener process. But every-
thing is spelt out in a way so that it generalizes directly to continuous local
martingales. In particular, integrands are always assumed to be predictable
rather than just adapted and product measurable. The existence and unique-
ness proof (cf. Subsection 4.2) is our personal version of the one in [KR79],
[Roz90] and largely taken from [RRW06] presented there in a more general
framework. The results on invariant measures (cf. Subsection 4.3) we could
not find in the literature for the “variational approach”. They are, however,
quite straightforward modifications of those in the “semigroup approach” in
[DPZ96]. The examples and applications in Subsection 4.1 in connection with
the stochastic porous media equation are fairly recent and are modifications
from results in [DPRLRW06] and [RRW06].

To keep these notes reasonably self-contained we also include a complete
proof of the finite-dimensional case in Chapter 3, which is based on the very
focussed and beautiful exposition in [Kry99], which uses the Euler approxi-
mation. Among other complementing topics the appendices contain a detailed
account of the Yamada–Watanabe theorem on the relation between weak and
strong solutions (cf. Appendix E).

The structure of these notes is, as we hope, obvious from the list of con-
tents. We only would like to mention here, that a substantial part consists of
a very detailed introduction to stochastic integration on Hilbert spaces (see
Chapter 2), major parts of which (as well as Appendices A–C) are taken from
the Diploma thesis of Claudia Prévôt and Katja Frieler. We would like to
thank Katja Frieler at this point for her permission to do this. We also like to
thank all coauthors of those joint papers which form another component for
the basis of these notes. It was really a pleasure working with them in this
exciting area of probability. We would also like to thank Matthias Stephan
and Sven Wiesinger for the excellent typing job, as well as the participants
of the graduate course at Purdue University for spotting many misprints and
small mistakes.

Before starting with the main body of these notes we would like to give a few
examples of SPDE that appear in fundamental applications. We do this in a
very brief way, in particular, pointing out which of them can be analysed by
the tools developed in this course. We refer to the above-mentioned literature
for a more elaborate discussion of these and many more examples and their
role in the applied sciences.

Example 1.0.1 (Stochastic quantization of the free Euclidean quan-
tum field).

dXt = (∆ − m2)Xt dt + dWt

on E ⊂ S ′(Rd).



1. Motivation, Aims and Examples 3

• m ∈ [0,∞) denotes “mass”,

• (Wt)t�0 is a cylindrical Brownian motion on L2(Rd) ⊂ E (the inclusion
is a Hilbert–Schmidt embedding).

Example 1.0.2 (Stochastic reaction diffusion equations).

dXt = [∆Xt − X3
t ] dt +

√
Q dWt

on E := Lp(Rd).

• Q is a trace class operator on L2(Rd), can also depend on Xt (then Q
becomes Q(Xt)),

• (Wt)t�0 is a cylindrical Brownian motion on L2(Rd).

Example 1.0.3 (Stochastic Burgers equation).

dXt = ∆Xt − Xt
d
dξ

Xt +
√

Q dWt

on E := L2
(
[0, 1]
)
.

• ξ ∈ [0, 1],

• Q as above,

• (Wt)t�0 is a cylindrical Brownian motion on L2
(
[0, 1]
)
.

Example 1.0.4 (Stochastic Navier–Stokes equation).

dXt =
[
ν∆sXt − 〈Xt,∇〉Xt

]
dt +
√

Q dWt

on E :=
{
x ∈ L2(Λ → R

2, dx)
∣∣ div x = 0

}
, Λ ⊂ R

d, d = 2, 3, ∂Λ smooth.

• ν denotes viscosity,

• ∆s denotes the Stokes Laplacian,

• Q as above,

• (Wt)t�0 is a cylindrical Brownian motion on L2(Λ → R
d),

• div is taken in the sense of distributions.

Example 1.0.5 (Stochastic porous media equation).

dXt =
[
∆Ψ(Xt) + Φ(Xt)

]
dt + B(Xt) dWt

on H := dual of H1
0 (Λ) (:= Sobolev space of order 1 in L2(Λ) with Dirichlet

boundary conditions).
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• Λ as above,

• Ψ,Φ : R → R “monotone”,

• B(x) : H → H Hilbert–Schmidt operator, ∀ x ∈ H.

The general form of these equations with state spaces consisting of functions
ξ 	→ x(ξ), where ξ is a spatial variable, e.g. from a subset of R

d, looks as
follows:

dXt(ξ) = A
(
t,Xt(ξ),DξXt(ξ),D2

ξ

(
Xt(ξ)

))
dt

+ B
(
t,Xt(ξ),DξXt(ξ),D2

ξ

(
Xt(ξ)

))
dWt .

Here Dξ and D2
ξ mean first and second total derivatives, respectively. The

stochastic term can be considered as a “perturbation by noise”. So, clearly one
motivation for studying SPDEs is to get information about the corresponding
(unperturbed) deterministic PDE by letting the noise go to zero (e.g. replace
B by ε · B and let ε → 0) or to understand the different features occurring if
one adds the noise term.

If we drop the stochastic term in these equations we get a deterministic
PDE of “evolutionary type”. Roughly speaking this means we have that the
time derivative of the desired solution (on the left) is equal to a non–linear
functional of its spatial derivatives (on the right).

Among others (see Subsection 4.1, in particular the cases, where ∆ is
replaced by the p-Laplacian) the approach presented in these notes will cover
Examples 1.0.2 in case d = 3 or 4. (cf. Remark 4.1.10,2. and also [RRW06]
without restrictions on the dimension) and 1.0.5 (cf. Example 4.1.11). For
Example 1.0.1 we refer to [AR91] and for Examples 1.0.3 and 1.0.4 e.g. to
[DPZ92], [DPZ96].



2. The Stochastic Integral
in General Hilbert Spaces
(w.r.t. Brownian Motion)

This chapter is a slight modification of Chap. 1 in [FK01].
We fix two separable Hilbert spaces

(
U, 〈 , 〉U

)
and
(
H, 〈 , 〉

)
. The first part

of this chapter is devoted to the construction of the stochastic Itô integral
∫ t

0

Φ(s) dW (s), t ∈ [0, T ],

where W (t), t ∈ [0, T ], is a Wiener process on U and Φ is a process with
values that are linear but not necessarily bounded operators from U to H.

For that we first will have to introduce the notion of the standard Wiener
process in infinite dimensions. Then there will be a short section about mar-
tingales in general Hilbert spaces. These two concepts are important for the
construction of the stochastic integral which will be explained in the following
section.

In the second part of this chapter we will present the Itô formula and
the stochastic Fubini theorem and establish basic properties of the stochastic
integral, including the Burkholder–Davis–Gundy inequality.

Finally, we will describe how to transmit the definition of the stochastic
integral to the case that W (t), t ∈ [0, T ], is a cylindrical Wiener process. For
simplicity we assume that U and H are real Hilbert spaces.

2.1. Infinite-dimensional Wiener processes

For a topological space X we denote its Borel σ-algebra by B(X).

Definition 2.1.1. A probability measure µ on
(
U,B(U)

)
is called Gaussian

if for all v ∈ U the bounded linear mapping

v′ :U → R

defined by

u 	→ 〈u, v〉U , u ∈ U,

5



6 2. Stochastic Integral in Hilbert Spaces

has a Gaussian law, i.e. for all v ∈ U there exist m := m(v) ∈ R and σ :=
σ(v) ∈ [0,∞[ such that, if σ(v) > 0,

(
µ ◦ (v′)−1

)
(A) = µ(v′ ∈ A) =

1√
2πσ2

∫

A

e−
(x−m)2

2σ2 dx for all A ∈ B(R),

and, if σ(v) = 0,
µ ◦ (v′)−1 = δm(v).

Theorem 2.1.2. A measure µ on
(
U,B(U)

)
is Gaussian if and only if

µ̂(u) :=
∫

U

ei〈u,v〉U µ(dv) = ei〈m,u〉U− 1
2 〈Qu,u〉U , u ∈ U,

where m ∈ U and Q ∈ L(U) is nonnegative, symmetric, with finite trace (see
Definition B.0.3; here L(U) denotes the set of all bounded linear operators
on U).

In this case µ will be denoted by N(m,Q) where m is called mean and Q
is called covariance (operator). The measure µ is uniquely determined by m
and Q.

Furthermore, for all h, g ∈ U
∫
〈x, h〉U µ(dx) = 〈m,h〉U ,

∫ (
〈x, h〉U − 〈m,h〉U

)(
〈x, g〉U − 〈m, g〉U

)
µ(dx) = 〈Qh, g〉U ,

∫
‖x − m‖2

U µ(dx) = tr Q.

Proof. (cf. [DPZ92]) Obviously, a probability measure with this Fourier trans-
form is Gaussian. Now let us conversely assume that µ is Gaussian. We need
the following:

Lemma 2.1.3. Let ν be a probability measure on (U,B(U)). Let k ∈ N be
such that ∫

U

∣∣〈z, x〉U
∣∣k ν(dx) < ∞ ∀ z ∈ U.

Then there exists a constant C = C(k, ν) > 0 such that for all h1, . . . , hk ∈ U

∫

U

∣∣〈h1, x〉U · · · 〈hk, x〉U
∣∣ ν(dx) � C ‖h1‖U · · · ‖hk‖U .

In particular, the symmetric k-linear form

Uk 
 (h1, . . . , hk) 	→
∫
〈h1, x〉U · · · 〈hk, x〉U ν(dx) ∈ R

is continuous.
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Proof. For n ∈ N define

Un :=
{

z ∈ U

∣∣
∣∣

∫

U

∣
∣〈z, x〉U

∣
∣k ν(dx) � n

}
.

By assumption

U =
∞⋃

n=1

Un.

Since U is a complete metric space, by the Baire category theorem, there
exists n0 ∈ N such that Un0 has non-empty interior, so there exists a ball
(with centre z0 and radius r0) B(z0, r0) ⊂ Un0 . Hence

∫

U

∣∣〈z0 + y, x〉U
∣∣k ν(dx) � n0 ∀ y ∈ B(0, r0),

therefore for all y ∈ B(0, r0)
∫

U

∣
∣〈y, x〉U

∣
∣k ν(dx) =

∫

U

∣
∣〈z0 + y, x〉U − 〈z0, x〉U

∣
∣k ν(dx)

� 2k−1

∫

U

∣
∣〈z0 + y, x〉U

∣
∣k ν(dx) + 2k−1

∫

U

∣
∣〈z0, x〉U

∣
∣k ν(dx)

� 2kn0.

Applying this for y := r0z, z ∈ U with |z|U = 1, we obtain
∫

U

∣∣〈z, x〉U
∣∣k ν(dx) � 2kn0r

−k
0 .

Hence, if h1, . . . , hk ∈ U \ {0}, then by the generalized Hölder inequality
∫

U

∣∣∣
∣∣

〈
h1

|h1|U
, x

〉

U

· · ·
〈

hk

|hk|U
, x

〉

U

∣∣∣
∣∣
ν(dx)

�
(∫

U

∣∣
∣∣

〈
h1

|h1|U
, x

〉

U

∣∣
∣∣

k

ν(dx)

)1/k

. . .

(∫

U

∣∣
∣∣

〈
hk

|hk|U
, x

〉

U

∣∣
∣∣

k

ν(dx)

)1/k

� 2kn0r
−k
0 ,

and the assertion follows.

Applying Lemma 2.1.3 for k = 1 and ν := µ we obtain that

U 
 h 	→
∫
〈h, x〉U µ(dx) ∈ R

is a continuous linear map, hence there exists m ∈ U such that
∫

U

〈x, h〉U µ(dx) = 〈m,h〉 ∀ h ∈ H.
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Applying Lemma 2.1.3 for k = 2 and ν := µ we obtain that

U2 
 (h1, h2) 	→
∫
〈x, h1〉U 〈x, h2〉U µ(dx) − 〈m,h1〉U 〈m,h2〉U

is a continuous symmetric bilinear map, hence there exists a symmetric Q ∈
L(U) such that this map is equal to

U2 
 (h1, h2) 	→ 〈Qh1, h2〉U .

Since for all h ∈ U

〈Qh, h〉U =
∫
〈x, h〉2U µ(dx) −

(∫
〈x, h〉U µ(dx)

)2

� 0,

Q is positive definite. It remains to prove that Q is trace class (i.e.

trQ :=
∞∑

i=1

〈Qei, ei〉U < ∞

for one (hence every) orthonormal basis {ei | i ∈ N} of U , cf. Appendix B).
We may assume without loss of generality that µ has mean zero, i.e. m = 0
(∈ U), since the image measure of µ under the translation U 
 x 	→ x − m is
again Gaussian with mean zero and the same covariance Q. Then we have for
all h ∈ U and all c ∈ (0,∞)

1 − e−
1
2 〈Qh,h〉U =

∫

U

(
1 − cos〈h, x〉U

)
µ(dx)

�
∫

{|x|U �c}

(
1 − cos〈h, x〉U

)
µ(dx) + 2µ

({
x ∈ U

∣∣ |x|U > c
})

� 1
2

∫

{|x|U �c}

∣
∣〈h, x〉U

∣
∣2 µ(dx) + 2µ

({
x ∈ U

∣
∣ |x|U > c

})
(2.1.1)

(since 1 − cos x � 1
2x2). Defining the positive definite symmetric linear oper-

ator Qc on U by

〈Qch1, h2〉U :=
∫

{|x|U �c}
〈h1, x〉U · 〈h2, x〉U µ(dx), h1, h2 ∈ U,

we even have that Qc is trace class because for every orthonormal basis {ek |
k ∈ N} of U we have (by monotone convergence)

∞∑

k=1

〈Qcek, ek〉U =
∫

{|x|U �c}

∞∑

k=1

〈ek, x〉2U µ(dx) =
∫

{|x|U �c}
|x|2U µ(dx)

� c2 < ∞.
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Claim: There exists c0 ∈ (0,∞) (large enough) so that Q � 2 log 4 Qc0 (mean-
ing that 〈Qh, h〉U � 2 log 4〈Qc0h, h〉U for all h ∈ U).

To prove the claim let c0 be so big that µ
({

x ∈ U
∣∣ |x|U > c0

})
� 1

8 . Let
h ∈ U such that 〈Qc0h, h〉U � 1. Then (2.1.1) implies

1 − e−
1
2 〈Qh,h〉U � 1

2
+

1
4

=
3
4
,

hence 4 � e
1
2 〈Qh,h〉U , so 〈Qh, h〉U � 2 log 4. If h ∈ U is arbitrary, but

〈Qc0h, h〉U �= 0, then we apply what we have just proved to h/〈Qc0h, h〉
1
2
U and

the claim follows for such h. If, however, 〈Qc0h, h〉 = 0, then for all n ∈ N,
〈Qc0nh, nh〉U = 0 � 1, hence by the above 〈Qh, h〉U � n−22 log 4. Therefore,
〈Qc0h, h〉U = 0 and the claim is proved, also for such h.

Since Qc0 has finite trace, so has Q by the claim and the theorem is proved,
since the uniqueness part follows from the fact that the Fourier transform is
one-to-one.

The following result is then obvious.

Proposition 2.1.4. Let X be a U -valued Gaussian random variable on a
probability space (Ω,F , P ), i.e. there exist m ∈ U and Q ∈ L(U) nonnegative,
symmetric, with finite trace such that P ◦ X−1 = N(m,Q).

Then 〈X,u〉U is normally distributed for all u ∈ U and the following state-
ments hold:

• E
(
〈X,u〉U

)
= 〈m,u〉U for all u ∈ U ,

• E
(
〈X − m,u〉U · 〈X − m, v〉U

)
= 〈Qu, v〉U for all u, v ∈ U ,

• E
(
‖X − m‖2

U

)
= tr Q.

The following proposition will lead to a representation of a U -valued
Gaussian random variable in terms of real-valued Gaussian random variables.

Proposition 2.1.5. If Q ∈ L(U) is nonnegative, symmetric, with finite trace
then there exists an orthonormal basis ek, k ∈ N, of U such that

Qek = λkek, λk � 0, k ∈ N,

and 0 is the only accumulation point of the sequence (λk)k∈N.

Proof. See [RS72, Theorem VI.21; Theorem VI.16 (Hilbert–Schmidt theorem)].

Proposition 2.1.6 (Representation of a Gaussian random variable).
Let m ∈ U and Q ∈ L(U) be nonnegative, symmetric, with tr Q < ∞. In
addition, we assume that ek, k ∈ N, is an orthonormal basis of U consist-
ing of eigenvectors of Q with corresponding eigenvalues λk, k ∈ N, as in
Proposition 2.1.5, numbered in decreasing order.
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Then a U -valued random variable X on a probability space (Ω,F , P ) is
Gaussian with P ◦ X−1 = N(m,Q) if and only if

X =
∑

k∈N

√
λkβkek + m (as objects in L2(Ω,F , P ;U)),

where βk, k ∈ N, are independent real-valued random variables with P ◦βk
−1 =

N(0, 1) for all k ∈ N with λk > 0. The series converges in L2(Ω,F , P ;U).

Proof.

1. Let X be a Gaussian random variable with mean m and covariance Q.
Below we set 〈 , 〉 := 〈 , 〉U .

Then X =
∑

k∈N
〈X, ek〉ek in U where 〈X, ek〉 is normally distributed with

mean 〈m, ek〉 and variance λk, k ∈ N, by Proposition 2.1.4. If we now define

βk :

{
= 〈X,ek〉−〈m,ek〉√

λk
if k ∈ N with λk > 0

≡ 0 ∈ R else,

then we get that P ◦β−1
k = N(0, 1) and X =

∑
k∈N

√
λkβkek +m. To prove

the independence of βk, k ∈ N, we take an arbitrary n ∈ N and ak ∈ R,
1 � k � n, and obtain that for c := −

∑n
k=1, λk �=0

ak√
λk

〈m, ek〉

n∑

k=1

akβk =
n∑

k=1,
λk �=0

ak√
λk

〈X, ek〉 + c =
〈

X,

n∑

k=1,
λk �=0

ak√
λk

ek

〉
+ c

which is normally distributed since X is a Gaussian random variable. There-
fore we have that βk, k ∈ N, form a Gaussian family. Hence, to get the
independence, we only have to check that the covariance of βi and βj ,
i, j ∈ N, i �= j, with λi �= 0 �= λj , is equal to zero. But this is clear since

E(βiβj) =
1

√
λiλj

E
(
〈X − m, ei〉〈X − m, ej〉

)
=

1
√

λiλj

〈Qei, ej〉

=
λi√
λiλj

〈ei, ej〉 = 0

for i �= j.

Besides, the series
∑n

k=1

√
λkβkek, n ∈ N, converges in L2(Ω,F , P ;U) since

the space is complete and

E

(∥∥∥
n∑

k=m

√
λkβkek

∥∥∥
2
)

=
n∑

k=m

λkE
(
|βk|2
)

=
n∑

k=m

λk.

Since
∑

k∈N
λk = tr Q < ∞ this expression becomes arbitrarily small for

m and n large enough.
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2. Let ek, k ∈ N, be an orthonormal basis of U such that Qek = λkek,
k ∈ N, and let βk, k ∈ N, be a family of independent real-valued Gaussian
random variables with mean 0 and variance 1. Then it is clear that the
series

∑n
k=1

√
λkβkek + m, n ∈ N, converges to X :=

∑
k∈N

√
λkβkek + m

in L2(Ω,F , P ;U) (see part 1). Now we fix u ∈ U and get that

〈 n∑

k=1

√
λkβkek + m,u

〉
=

n∑

k=1

√
λkβk〈ek, u〉 + 〈m,u〉

is normally distributed for all n ∈ N and the sequence converges in
L2(Ω,F , P ). This implies that the limit 〈X,u〉 is also normally distributed
where

E
(
〈X,u〉

)
= E
(∑

k∈N

√
λkβk〈ek, u〉 + 〈m,u〉

)

= lim
n→∞

E
( n∑

k=1

√
λkβk〈ek, u〉

)
+ 〈m,u〉 = 〈m,u〉

and concerning the covariance we obtain that

E
((

〈X,u〉 − 〈m,u〉
)(
〈X, v〉 − 〈m, v〉

))

= lim
n→∞

E
( n∑

k=1

√
λkβk〈ek, u〉

n∑

k=1

√
λkβk〈ek, v〉

)

=
∑

k∈N

λk〈ek, u〉〈ek, v〉 =
∑

k∈N

〈Qek, u〉〈ek, v〉

=
∑

k∈N

〈ek, Qu〉〈ek, v〉 = 〈Qu, v〉

for all u, v ∈ U .

By part 2 of this proof we finally get the following existence result.

Corollary 2.1.7. Let Q be a nonnegative and symmetric operator in L(U)
with finite trace and let m ∈ U . Then there exists a Gaussian measure µ =
N(m,Q) on

(
U,B(U)

)
.

Let us give an alternative, more direct proof of Corollary 2.1.7 without using
Proposition 2.1.6. For the proof we need the following exercise.

Exercise 2.1.8. Consider R
∞ with the product topology. Let B(R∞) denote

its Borel σ-algebra. Prove:

(i) B(R∞) = σ(πk | k ∈ N), where πk : R
∞ → R denotes the projection on

the k-th coordinate.
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(ii) l2(R)
(
:=
{

(xk)k∈N ∈ R
∞
∣∣
∣

∞∑

k=1

x2
k < ∞

})
∈ B(R∞).

(iii) B(R∞) ∩ l2(R) = σ
(
πk |l2

∣∣ k ∈ N
)
.

(iv) Let l2(R) be equipped with its natural norm

‖x‖l2 :=
( ∞∑

k=1

x2
k

) 1
2
, x = (xk)k∈N ∈ l2(R),

and let B
(
l2(R)

)
be the corresponding Borel σ-algebra. Then:

B
(
l2(R)

)
= B(R∞) ∩ l2(R).

Alternative Proof of Corollary 2.1.7. It suffices to construct N(0, Q), since
N(m,Q) is the image measure of N(0, Q) under translation with m. For
k ∈ N consider the normal distribution N(0, λk) on R and let ν be their
product measure on

(
R

∞,B(R∞)
)
, i.e.

ν =
∏

k∈N

N(0, λk) on
(
R

∞,B(R∞)
)
.

Here λk, k ∈ N, are as in Proposition 2.1.5. Since the map g : R
∞ → [0,∞]

defined by

g(x) :=
∞∑

k=1

x2
k , x = (xk)k∈N ∈ R

∞,

is B(R∞)-measurable, we may calculate

∫

R∞
g(x) ν(dx) =

∞∑

k=1

∫
x2

k N(0, λk)(dxk) =
∞∑

k=1

λk < ∞.

Therefore, using Exercise 2.1.8(ii), we obtain ν
(
l2(R)

)
= 1. Restricting ν to

B(R∞) ∩ l2(R), by Exercise 2.1.8(iv) we get a probability measure, let us
call it µ̃, on

(
l2(R),B

(
l2(R)

))
. Now take the orthonormal basis {ek | k ∈ N}

from Proposition 2.1.5 and consider the corresponding canonical isomorphism
I : l2(R) → U defined by

I(x) =
∞∑

k=1

xkek, x = (xk)k∈N ∈ l2(R).

It is then easy to check that the image measure

µ := µ̃ ◦ I−1 on
(
U,B(U)

)

is the desired measure, i.e. µ = N(0, Q).
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After these preparations we will give the definition of the standard Q-Wiener
process. To this end we fix an element Q ∈ L(U), nonnegative, symmetric and
with finite trace and a positive real number T .

Definition 2.1.9. A U -valued stochastic process W (t), t ∈ [0, T ], on a prob-
ability space (Ω,F , P ) is called a (standard) Q-Wiener process if:

• W (0) = 0,

• W has P -a.s. continuous trajectories,

• the increments of W are independent, i.e. the random variables

W (t1), W (t2) − W (t1), . . . , W (tn) − W (tn−1)

are independent for all 0 � t1 < · · · < tn � T , n ∈ N,

• the increments have the following Gaussian laws:

P ◦
(
W (t) − W (s)

)−1 = N
(
0, (t − s)Q

)
for all 0 � s � t � T .

Similarly to the existence of Gaussian measures the existence of a Q-Wiener
process in U can be reduced to the real-valued case. This is the content of the
following proposition.

Proposition 2.1.10 (Representation of the Q-Wiener process). Let ek,
k ∈ N, be an orthonormal basis of U consisting of eigenvectors of Q with cor-
responding eigenvalues λk, k ∈ N. Then a U -valued stochastic process W (t),
t ∈ [0, T ], is a Q-Wiener process if and only if

W (t) =
∑

k∈N

√
λkβk(t)ek, t ∈ [0, T ], (2.1.2)

where βk, k ∈ {n ∈ N | λn > 0}, are independent real-valued Brownian
motions on a probability space (Ω,F , P ). The series even converges in
L2
(
Ω,F , P ;C([0, T ], U)

)
, and thus always has a P -a.s. continuous modifica-

tion. (Here the space C
(
[0, T ], U

)
is equipped with the sup norm.) In particu-

lar, for any Q as above there exists a Q-Wiener process on U .

Proof.

1. Let W (t), t ∈ [0, T ], be a Q-Wiener process in U .

Since P ◦ W (t)−1 = N(0, tQ), we see as in the proof of Proposition 2.1.6
that

W (t) =
∑

k∈N

√
λkβk(t)ek, t ∈ [0, T ],

with

βk(t) :

{
= 〈W (t),ek〉√

λk
if k ∈ N with λk > 0

≡ 0 else,
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for all t ∈ [0, T ]. Furthermore, P ◦ β−1
k (t) = N(0, t), k ∈ N, and βk(t),

k ∈ N, are independent for each t ∈ [0, T ].

Now we fix k ∈ N. First we show that βk(t), t ∈ [0, T ], is a Brownian
motion:

If we take an arbitrary partition 0 = t0 � t1 < · · · < tn � T , n ∈ N, of
[0, T ] we get that

βk(t1), βk(t2) − βk(t1), . . . , βk(tn) − βk(tn−1)

are independent for each k ∈ N since for 1 � j � n

βk(tj) − βk(tj−1) =

{
1√
λk

〈
W (tj) − W (tj−1), ek

〉
if λk > 0,

0 else.

Moreover, we obtain that for the same reason P ◦
(
βk(t) − βk(s)

)−1 =
N(0, t − s) for 0 � s � t � T .

In addition,

t 	→ 1√
λk

〈
W (t), ek

〉
= βk(t)

is P -a.s. continuous for all k ∈ N.

Secondly, it remains to prove that βk, k ∈ N, are independent.

We take k1, . . . , kn ∈ N, n ∈ N, ki �= kj if i �= j and an arbitrary partition
0 = t0 � t1 � . . . � tm � T , m ∈ N.

Then we have to show that

σ
(
βk1(t1), . . . , βk1(tm)

)
, . . . , σ

(
βkn

(t1), . . . , βkn
(tm)
)

are independent.

We will prove this by induction with respect to m:

If m = 1 it is clear that βk1(t1), . . . , βkn
(t1) are independent as observed

above. Thus, we now take a partition 0 = t0 � t1 � . . . � tm+1 � T and
assume that

σ
(
βk1(t1), . . . , βk1(tm)

)
, . . . , σ

(
βkn

(t1), . . . , βkn
(tm)
)

are independent. We note that

σ
(
βki

(t1), . . . , βki
(tm), βki

(tm+1)
)

= σ
(
βki

(t1), . . . , βki
(tm), βki

(tm+1) − βki
(tm)
)
, 1 � i � n,

and that

βki
(tm+1) − βki

(tm) =

{
1√
λki

〈
W (tm+1) − W (tm), eki

〉
U

if λk > 0,

0 else,
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1 � i � n, are independent since they are pairwise orthogonal in
L2(Ω,F , P ; R) and since W (tm+1) − W (tm) is a Gaussian random vari-
able. If we take Ai,j ∈ B(R), 1 � i � n, 1 � j � m+1, then because of the
independence of σ

(
W (s)

∣∣ s � tm
)

and σ
(
W (tm+1) − W (tm)

)
we get that

P
( n⋂

i=1

{
βki

(t1) ∈ Ai,1, . . . , βki
(tm) ∈ Ai,m,

βki
(tm+1) − βki

(tm) ∈ Ai,m+1

})

=P
( n⋂

i=1

m⋂

j=1

{
βki

(tj) ∈ Ai,j

}

︸ ︷︷ ︸
∈ σ
(
W (s)

∣∣ s � tm
)

∩
n⋂

i=1

{
βki

(tm+1) − βki
(tm) ∈ Ai,m+1

}

︸ ︷︷ ︸
∈ σ
(
W (tm+1) − W (tm)

)

)

=P
( n⋂

i=1

m⋂

j=1

{
βki

(tj) ∈ Ai,j

})
· P
( n⋂

i=1

{
βki

(tm+1) − βki
(tm) ∈ Ai,m+1

})

=
( n∏

i=1

P
( m⋂

j=1

{
βki

(tj) ∈ Ai,j

}))

·
( n∏

i=1

P
{
βki

(tm+1) − βki
(tm) ∈ Ai,m+1

})

=
n∏

i=1

P
( m⋂

j=1

{
βki

(tj) ∈ Ai,j

}
∩
{
βki

(tm+1) − βki
(tm) ∈ Ai,m+1

})

and therefore the assertion follows.

2. If we define
W (t) :=

∑

k∈N

√
λkβk(t)ek, t ∈ [0, T ],

where βk, k ∈ N, are independent real-valued continuous Brownian motions
then it is clear that W (t), t ∈ [0, T ], is well-defined in L2(Ω,F , P ;U). Be-
sides, it is obvious that the process W (t), t ∈ [0, T ], starts at zero and
that

P ◦
(
W (t) − W (s)

)−1 = N
(
0, (t − s)Q

)
, 0 � s < t � T,

by Proposition 2.1.6. It is also clear that the increments are independent.

Thus it remains to show that the above series converges in
L2
(
Ω,F , P ;C([0, T ], U)

)
. To this end we set

WN (t, ω) :=
N∑

k=1

√
λkβk(t, ω)ek
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for all (t, ω) ∈ ΩT := [0, T ] × Ω and N ∈ N. Then WN , N ∈ N, is P -a.s.
continuous and we have that for M < N

E
(

sup
t∈[0,T ]

∥∥WN (t) − WM (t)
∥∥2

U

)
= E
(

sup
t∈[0,T ]

N∑

k=M+1

λkβ2
k(t)
)

�
N∑

k=M+1

λkE
(

sup
t∈[0,T ]

β2
k(t)
)

� c

N∑

k=M+1

λk

where ci = E
(
supt∈[0,T ] β

2
1(t)
)

< ∞ because of Doob’s maximal inequal-

ity for real-valued submartingales. As
∑

k∈N

λk = trQ < ∞, the assertion

follows.

Definition 2.1.11 (Normal filtration). A filtration Ft, t ∈ [0, T ], on a
probability space (Ω,F , P ) is called normal if:

• F0 contains all elements A ∈ F with P (A) = 0 and

• Ft = Ft+ =
⋂

s>t

Fs for all t ∈ [0, T ] .

Definition 2.1.12 (Q-Wiener process with respect to a filtration).
A Q-Wiener process W (t), t ∈ [0, T ], is called a Q-Wiener process with respect
to a filtration Ft, t ∈ [0, T ], if:

• W (t), t ∈ [0, T ], is adapted to Ft, t ∈ [0, T ], and

• W (t) − W (s) is independent of Fs for all 0 � s � t � T .

In fact it is possible to show that any U -valued Q-Wiener process W (t),
t ∈ [0, T ], is a Q-Wiener process with respect to a normal filtration:

We define

N :=
{
A ∈ F

∣∣ P (A) = 0
}

, F̃t := σ
(
W (s)

∣∣ s � t
)

and F̃0
t := σ(F̃t ∪N ).

Then it is clear that
Ft :=

⋂

s>t

F̃0
s , t ∈ [0, T ], (2.1.3)

is a normal filtration and we get:

Proposition 2.1.13. Let W (t), t ∈ [0, T ], be an arbitrary U -valued Q-Wiener
process on a probability space (Ω,F , P ). Then it is a Q-Wiener process with
respect to the normal filtration Ft, t ∈ [0, T ], given by (2.1.3).
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Proof. It is clear that W (t), t ∈ [0, T ], is adapted to Ft, t ∈ [0, T ]. Hence we
only have to verify that W (t)−W (s) is independent of Fs, 0 � s < t � T . But
if we fix 0 � s < t � T it is clear that W (t)−W (s) is independent of F̃s since

σ
(
W (t1), W (t2), . . . , W (tn)

)

= σ
(
W (t1), W (t2) − W (t1), . . . , W (tn) − W (tn−1)

)

for all 0 � t1 < t2 < · · · < tn � s. Of course, W (t) − W (s) is then also
independent of F̃0

s . To prove now that W (t) − W (s) is independent of Fs it
is enough to show that

P
({

W (t) − W (s) ∈ A
}
∩ B
)

= P
(
W (t) − W (s) ∈ A

)
· P (B)

for any B ∈ Fs and any closed subset A ⊂ U as E := {A ⊂ U | A closed}
generates B(U) and is stable under finite intersections. But we have

P
({

W (t) − W (s) ∈ A
}
∩ B
)

= E
(
1A ◦
(
W (t) − W (s)

)
· 1B

)

= lim
n→∞

E

([(
1 − ndist

(
W (t) − W (s), A

))
∨ 0
]
1B

)

= lim
n→∞

lim
m→∞

E

([(
1 − ndist

(
W (t) − W (s + 1

m ), A
))

∨ 0
]
1B

)

= lim
n→∞

lim
m→∞

E

((
1 − ndist

(
W (t) − W (s + 1

m ), A
))

∨ 0
)
· P (B)

= P
(
W (t) − W (s) ∈ A

)
· P (B),

since W (t)−W (s+ 1
m ) is independent of F̃0

s+ 1
m

⊃ Fs if m is large enough.

2.2. Martingales in general Banach spaces

Analogously to the real-valued case it is possible to define the conditional
expectation of any Bochner integrable random variable with values in an
arbitrary separable Banach space

(
E, ‖ ‖

)
. This result is formulated in the

following proposition.

Proposition 2.2.1 (Existence of the conditional expectation). Assume
that E is a separable real Banach space. Let X be a Bochner integrable E-
valued random variable defined on a probability space (Ω,F , P ) and let G be a
σ-field contained in F .
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Then there exists a unique, up to a set of P -probability zero, Bochner inte-
grable E-valued random variable Z, measurable with respect to G such that

∫

A

X dP =
∫

A

Z dP for all A ∈ G. (2.2.1)

The random variable Z is denoted by E(X | G) and is called the conditional
expectation of X given G. Furthermore,

∥∥E(X | G)
∥∥ � E

(
‖X‖
∣∣ G
)
.

Proof. (cf. [DPZ92, Proposition 1.10, p. 27]) Let us first show uniqueness.
Since E is a separable Banach space, there exist ln ∈ E∗, n ∈ N, separating

the points of E. Suppose that Z1, Z2 are Bochner integrable, G-measurable
mappings from Ω to E such that

∫

A

X dP =
∫

A

Z1 dP =
∫

A

Z2 dP for all A ∈ G.

Then for n ∈ N by Proposition A.2.2
∫

A

(
ln(Z1) − ln(Z2)

)
dP = 0 for all A ∈ G.

Applying this with A :=
{
ln(Z1) > ln(Z2)

}
and A :=

{
ln(Z1) < ln(Z2)

}
it

follows that ln(Z1) = ln(Z2) P -a.s., so

Ω0 :=
⋂

n∈N

{
ln(Z1) = ln(Z2)

}

has P -measure one. Since ln, n ∈ N, separate the points of E; it follows that
Z1 = Z2 on Ω0.

To show existence we first assume that X is a simple function. So, there
exist x1, . . . , xN ∈ E and pairwise disjoint sets A1, . . . , AN ∈ F such that

X =
N∑

k=1

xk1Ak
.

Define

Z :=
N∑

k=1

xkE(1Ak
| G).

Then obviously Z is G-measurable and satisfies (2.2.1). Furthermore,

‖Z‖ �
N∑

k=1

‖xk‖E(1Ak
| G) = E

( N∑

k=1

‖xk‖1Ak

∣∣∣ G
)

= E
(
‖X‖
∣∣ G
)
. (2.2.2)
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Taking expectation we get

E
(
‖Z‖
)

� E
(
‖X‖
)
. (2.2.3)

For general X take simple functions Xn, n ∈ N, as in Lemma A.1.4 and
define Zn as above with Xn replacing X. Then by (2.2.3) for all n,m ∈ N

E
(
‖Zn − Zm‖

)
� E
(
‖Xn − Xm‖

)
,

so Z := limn→∞ Zn exists in L1(Ω,F , P ;E). Therefore, for all A ∈ G
∫

A

X dP = lim
n→∞

∫

A

Xn dP = lim
n→∞

∫

A

Zn dP =
∫

A

Z dP.

Clearly, Z can be chosen G-measurable, since so are the Zn. Furthermore, by
(2.2.2)
∥
∥E(X | G)

∥
∥ = ‖Z‖ = lim

n→∞
‖Zn‖ � lim

n→∞
E
(
‖Xn‖

∣
∣ G
)

= E
(
‖X‖
∣
∣ G
)
,

where the limits are taken in L1(P ).

Later we will need the following result:

Proposition 2.2.2. Let (E1, E1) and (E2, E2) be two measurable spaces and
Ψ : E1×E2 → R a bounded measurable function. Let X1 and X2 be two random
variables on (Ω,F , P ) with values in (E1, E1) and (E2, E2) respectively, and
let G ⊂ F be a fixed σ-field.

Assume that X1 is G-measurable and X2 is independent of G, then

E
(
Ψ(X1,X2)

∣∣ G
)

= Ψ̂(X1)

where
Ψ̂(x1) = E

(
Ψ(x1,X2)

)
, x1 ∈ E1.

Proof. A simple exercise or see [DPZ92, Proposition 1.12, p. 29].

Remark 2.2.3. The previous proposition can be easily extended to the case
where the function Ψ is not necessarily bounded but nonnegative.

Definition 2.2.4. Let M(t), t � 0, be a stochastic process on (Ω,F , P ) with
values in a separable Banach space E, and let Ft, t � 0, be a filtration on
(Ω,F , P ).

The process M is called an Ft-martingale, if:

• E
(
‖M(t)‖

)
< ∞ for all t � 0,

• M(t) is Ft-measurable for all t � 0,

• E
(
M(t)

∣∣ Fs

)
= M(s) P -a.s. for all 0 � s � t < ∞.
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Remark 2.2.5. Let M be as above such that E(‖M(t)‖) < ∞ for all t ∈
[0, T ]. Then M is an Ft-martingale if and only if l(M) is an Ft-martingale
for all l ∈ E∗. In particular, results like optional stopping etc. extend to
E-valued martingales.

There is the following connection to real-valued submartingales.

Proposition 2.2.6. If M(t), t � 0, is an E-valued Ft-martingale and p ∈
[1,∞), then

∥
∥M(t)

∥
∥p, t � 0, is a real-valued Ft-submartingale.

Proof. Since E is separable there exist lk ∈ E∗, k ∈ N, such that ‖z‖ =
sup lk(z) for all z ∈ E. Then for s < t

E
(
‖Mt‖

∣∣ Fs

)
� sup

k
E
(
lk(Mt)

∣∣ Fs

)

= sup
k

lk
(
E(Mt | Fs)

)

= sup
k

lk(Ms) = ‖Ms‖.

This proves the assertion for p = 1. Then Jensen’s inequality implies the
assertion for all p ∈ [1,∞).

Theorem 2.2.7 (Maximal inequality). Let p > 1 and let E be a separable
Banach space.

If M(t), t ∈ [0, T ], is a right-continuous E-valued Ft-martingale, then

(
E
(

sup
t∈[0,T ]

∥∥M(t)
∥∥p
)) 1

p

� p

p − 1
sup

t∈[0,T ]

(
E
(
‖M(t)‖p

)) 1
p

=
p

p − 1

(
E
(
‖M(T )‖p

)) 1
p

.

Proof. The inequality is a consequence of the previous proposition and Doob’s
maximal inequality for real-valued submartingales.

Remark 2.2.8. We note that in the inequality in Theorem 2.2.7 the first
norm is the standard norm on Lp

(
Ω,F , P ;C([0, T ];E)

)
, whereas the second

is the standard norm on C
(
[0, T ];Lp(Ω,F , P ;E)

)
. So, for right-continuous

E-valued Ft-martingales these two norms are equivalent.

Now we fix 0 < T < ∞ and denote by M2
T (E) the space of all E-valued

continuous, square integrable martingales M(t), t ∈ [0, T ]. This space will play
an important role with regard to the definition of the stochastic integral. We
will use especially the following fact.
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Proposition 2.2.9. The space M2
T (E) equipped with the norm

‖M‖M2
T

:= sup
t∈[0,T ]

(
E
(
‖M(t)‖2

)) 1
2

=
(
E
(
‖M(T )‖2

)) 1
2

�
(
E
(

sup
t∈[0,T ]

‖M(t)‖2
)) 1

2 � 2 · E
(
‖M(T )‖2

) 1
2 .

is a Banach space.

Proof. By the Riesz–Fischer theorem the space L2
(
Ω,F , P ;C

(
[0, T ], E

))
is

complete. So, we only have to show that M2
T is closed. But this is obvious

since even L1(Ω,F , P ;E)-limits of martingales are martingales.

Proposition 2.2.10. Let T > 0 and W (t), t ∈ [0, T ], be a U -valued Q-Wiener
process with respect to a normal filtration Ft, t ∈ [0, T ], on a probability
space (Ω,F , P ). Then W (t), t ∈ [0, T ], is a continuous square integrable Ft-
martingale, i.e. W ∈ M2

T (U).

Proof. The continuity is clear by definition and for each t ∈ [0, T ] we have that
E
(
‖W (t)‖2

U

)
= t trQ < ∞ (see Proposition 2.1.4). Hence let 0 � s � t � T

and A ∈ Fs. Then we get by Proposition A.2.2 that
〈∫

A

W (t) − W (s) dP, u

〉

U

=
∫

A

〈
W (t) − W (s), u

〉
U

dP

= P (A)
∫ 〈

W (t) − W (s), u
〉

U
dP = 0

for all u ∈ U as Fs is independent of W (t) − W (s) and
E
(
〈W (t) − W (s), u〉U

)
= 0 for all u ∈ U . Therefore,

∫

A

W (t) dP =
∫

A

W (s) +
(
W (t) − W (s)

)
dP

=
∫

A

W (s) dP +
∫

A

W (t) − W (s) dP

=
∫

A

W (s) dP, for all A ∈ Fs.

2.3. The definition of the stochastic integral

For the whole section we fix a positive real number T and a probability space
(Ω,F , P ) and we define ΩT := [0, T ] × Ω and PT := dx ⊗ P where dx is the
Lebesgue measure.

Moreover, let Q ∈ L(U) be symmetric, nonnegative and with finite trace
and we consider a Q-Wiener process W (t), t ∈ [0, T ], with respect to a normal
filtration Ft, t ∈ [0, T ].
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2.3.1. Scheme of the construction of the stochastic
integral

Step 1: First we consider a certain class E of elementary L(U,H)-valued
processes and define the mapping

Int : E → M2
T (H) =: M2

T

Φ 	→
∫ t

0
Φ(s) dW (s), t ∈ [0, T ].

Step 2: We prove that there is a certain norm on E such that

Int : E → M2
T

is an isometry. Since M2
T is a Banach space this implies that Int can be

extended to the abstract completion Ē of E . This extension remains isometric
and it is unique.

Step 3: We give an explicit representation of Ē .

Step 4: We show how the definition of the stochastic integral can be ext-
ended by localization.

2.3.2. The construction of the stochastic integral
in detail

Step 1: First we define the class E of all elementary processes as follows.

Definition 2.3.1 (Elementary process). An L = L(U,H)-valued process
Φ(t), t ∈ [0, T ], on (Ω,F , P ) with normal filtration Ft, t ∈ [0, T ], is said to be
elementary if there exist 0 = t0 < · · · < tk = T , k ∈ N, such that

Φ(t) =
k−1∑

m=0

Φm1]tm,tm+1](t), t ∈ [0, T ],

where:

• Φm : Ω → L(U,H) is Ftm
-measurable, w.r.t. strong Borel σ-algebra on

L(U,H), 0 � m � k − 1,

• Φm takes only a finite number of values in L(U,H), 1 � m � k − 1.

If we define now

Int(Φ)(t) :=
∫ t

0

Φ(s) dW (s) :=
k−1∑

m=0

Φm

(
W (tm+1∧t)−W (tm∧t)

)
, t ∈ [0, T ],

(this is obviously independent of the representation) for all Φ ∈ E , we have
the following important result.
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Proposition 2.3.2. Let Φ ∈ E. Then the stochastic integral
∫ t

0

Φ(s) dW (s),

t ∈ [0, T ], defined in the previous way, is a continuous square integrable mar-
tingale with respect to Ft, t ∈ [0, T ], i.e.

Int : E → M2
T .

Proof. Let Φ ∈ E be given by

Φ(t) =
k−1∑

m=0

Φm1]tm,tm+1](t), t ∈ [0, T ],

as in Definition 2.3.1. Then it is clear that

t 	→
∫ t

0

Φ(s) dW (s) =
k−1∑

m=0

Φm

(
W (tm+1 ∧ t) − W (tm ∧ t)

)

is P -a.s. continuous because of the continuity of the Wiener process and the
continuity of Φm(ω) : U → H, 0 � m � k − 1, ω ∈ Ω. In addition, we get for
each summand that

∥∥∥Φm

(
W (tm+1 ∧ t) − W (tm ∧ t)

)∥∥∥

�‖Φm‖L(U,H)

∥∥W (tm+1 ∧ t) − W (tm ∧ t)
∥∥

U
.

Since W (t), t ∈ [0, T ], is square integrable this implies that
∫ t

0

Φ(s) dW (s) is

square integrable for each t ∈ [0, T ].

To prove the martingale property we take 0 � s � t � T and a set A from
Fs. If

{
Φm(ω)

∣∣ ω ∈ Ω
}

:= {Lm
1 , . . . , Lm

km
} we obtain by Proposition A.2.2

and the martingale property of the Wiener process (more precisely using
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optional stopping) that
∫

A

k−1∑

m=0

Φm

(
W (tm+1 ∧ t) − W (tm ∧ t)

)
dP

=
∑

0�m�k−1,
tm+1<s

∫

A

Φm

(
W (tm+1 ∧ s) − W (tm ∧ s)

)
dP

+
∑

0�m�k−1,
s�tm+1

km∑

j=1

∫

A∩{Φm=Lm
j }

Lm
j

(
W (tm+1 ∧ t) − W (tm ∧ t)

)
dP

=
∑

0�m�k−1,
tm+1<s

∫

A

Φm

(
W (tm+1 ∧ s) − W (tm ∧ s)

)
dP

+
∑

0�m�k−1,
s�tm+1

km∑

j=1

Lm
j

∫

A∩{Φm=Lm
j }

︸ ︷︷ ︸
∈Fs∨tm

W (tm+1 ∧ t) − W (tm ∧ t) dP

=
∑

0�m�k−1,
tm+1<s

∫

A

Φm

(
W (tm+1 ∧ s) − W (tm ∧ s)

)
dP

+
∑

0�m�k−1,
tm<s�tm+1

km∑

j=1

Lm
j

∫

A∩{Φm=Lm
j }

W (tm+1 ∧ s) − W (tm ∧ s) dP

=
∫

A

k−1∑

m=0

Φm

(
W (tm+1 ∧ s) − W (tm ∧ s)

)
dP.

Step 2: To verify the assertion that there is a norm on E such that Int :
E → M2

T is an isometry, we have to introduce the following notion.

Definition 2.3.3 (Hilbert–Schmidt operator). Let ek, k ∈ N, be an or-
thonormal basis of U . An operator A ∈ L(U,H) is called Hilbert-Schmidt
if ∑

k∈N

〈Aek, Aek〉 < ∞.

In Appendix B we take a close look at this notion. So here we only sum-
marize the results which are important for the construction of the stochastic
integral.

The definition of a Hilbert–Schmidt operator and the number

‖A‖L2 :=
(∑

k∈N

‖Aek‖2
) 1

2
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are independent of the choice of the basis (see Remark B.0.6(i)). Moreover,
the space L2(U,H) of all Hilbert–Schmidt operators from U to H equipped
with the inner product

〈A,B〉L2 :=
∑

k∈N

〈Aek, Bek〉

is a separable Hilbert space (see Proposition B.0.7). Later, we will use the
fact that ‖A‖L2(U,H) = ‖A∗‖L2(H,U), where A∗ is the adjoint operator of A
(see Remark B.0.6(i)). Furthermore, compositions of Hilbert–Schmidt with
bounded linear operators are again Hilbert–Schmidt.

Besides we recall the following fact.

Proposition 2.3.4. If Q ∈ L(U) is nonnegative and symmetric then there
exists exactly one element Q

1
2 ∈ L(U) nonnegative and symmetric such that

Q
1
2 ◦ Q

1
2 = Q.

If, in addition, trQ < ∞ we have that Q
1
2 ∈ L2(U) where ‖Q 1

2 ‖2
L2

= tr Q

and of course L ◦ Q
1
2 ∈ L2(U,H) for all L ∈ L(U,H).

Proof. [RS72, Theorem VI.9, p. 196]

After these preparations we simply calculate the M2
T -norm of

∫ t

0

Φ(s) dW (s), t ∈ [0, T ],

and get the following result.

Proposition 2.3.5. If Φ =
∑k−1

m=0 Φm1]tm,tm+1] is an elementary L(U,H)-
valued process then
∥
∥∥∥

∫ ·

0

Φ(s) dW (s)
∥
∥∥∥

2

M2
T

= E

(∫ T

0

∥∥Φ(s)◦Q
1
2
∥∥2

L2
ds

)
=: ‖Φ‖2

T (“Itô-isometry”).

Proof. If we set ∆m := W (tm+1) − W (tm) then we get that
∥∥∥∥

∫ ·

0

Φ(s) dW (s)
∥∥∥∥

2

M2
T

= E

(∥∥∥∥

∫ T

0

Φ(s) dW (s)
∥∥∥∥

2

H

)

= E

(∥∥∥
k−1∑

m=0

Φm∆m

∥∥∥
2

H

)

= E
( k−1∑

m=0

‖Φm∆m‖2
H

)
+ 2E

( ∑

0�m<n�k−1

〈Φm∆m,Φn∆n〉H
)
.

Claim 1:

E
( k−1∑

m=0

‖Φm∆m‖2
H

)
=

k−1∑

m=0

(tm+1 − tm)E
(
‖Φm ◦ Q

1
2 ‖2

L2

)

=
∫ T

0

E
(∥∥Φ(s) ◦ Q

1
2
∥∥2

L2

)
ds.
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To prove this we take an orthonormal basis fk, k ∈ N, of H and get by the
Parseval identity and Levi’s monotone convergence theorem that

E
(
‖Φm∆m‖2

H

)
=
∑

l∈N

E
(
〈Φm∆m, fl〉2H

)
=
∑

l∈N

E
(
E
(
〈∆m,Φ∗

mfl〉2U
∣
∣ Ftm

))
.

Taking an orthonormal basis ek, k ∈ N, of U we obtain that

Φ∗
mfl =

∑

k∈N

〈fl,Φmek〉Hek.

Since 〈fl,Φmek〉H is Ftm
-measurable, this implies that Φ∗

mfl is Ftm
-measurable

by Proposition A.1.3. Using the fact that σ(∆m) is independent of Ftm
we

obtain by Lemma 2.2.2 that for P -a.e. ω ∈ Ω

E
(
〈∆m,Φ∗

mfl〉2U
∣∣ Ftm

)
(ω) = E

(〈
∆m,Φ∗

m(ω)fl

〉2
U

)

= (tm+1 − tm)
〈
Q
(
Φ∗

m(ω)fl

)
,Φ∗

m(ω)fl

〉

U
,

since E
(
〈∆m, u〉2U

)
= (tm+1 − tm)〈Qu, u〉U for all u ∈ U . Thus, the symmetry

of Q
1
2 finally implies that

E
(
‖Φm∆m‖2

H

)
=
∑

l∈N

E
(
E
(
〈∆m,Φ∗

mfl〉2U
∣∣ Ftm

))

= (tm+1 − tm)
∑

l∈N

E
(
〈QΦ∗

mfl,Φ∗
mfl〉U

)

= (tm+1 − tm)
∑

l∈N

E
(∥∥Q

1
2 Φ∗

mfl

∥∥2
U

)

= (tm+1 − tm)E
(∥∥∥
(
Φm ◦ Q

1
2
)∗∥∥∥

2

L2(H,U)

)

= (tm+1 − tm)E
(∥∥Φm ◦ Q

1
2
∥∥2

L2(U,H)

)
.

Hence the first assertion is proved and it only remains to verify the following
claim.

Claim 2:

E
(
〈Φm∆m,Φn∆n〉H

)
= 0 , 0 � m < n � k − 1.

But this can be proved in a similar way to Claim 1:

E
(
〈Φm∆m,Φn∆n〉H

)
= E
(
E
(
〈Φ∗

nΦm∆m,∆n〉U
∣∣ Ftn

))

=
∫

E
(〈

Φ∗
n(ω)Φm(ω)∆m(ω),∆n

〉
U

)
P (dω) = 0,
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since E
(
〈u,∆n〉U

)
= 0 for all u ∈ U (see Proposition 2.2.2). Hence the asser-

tion follows.

Hence the right norm on E has been identified. But strictly speaking ‖ ‖T

is only a seminorm on E . Therefore, we have to consider equivalence classes of
elementary processes with respect to ‖ ‖T to get a norm on E . For simplicity
we will not change the notation but stress the following fact.

Remark 2.3.6. If two elementary processes Φ and Φ̃ belong to one equiva-
lence class with respect to ‖ ‖T it does not follow that they are equal PT -a.e.
because their values only have to correspond on Q

1
2 (U) PT -a.e.

Thus we finally have shown that

Int :
(
E , ‖ ‖T

)
→
(
M2

T , ‖ ‖M2
T

)

is an isometric transformation. Since E is dense in the abstract completion Ē
of E with respect to ‖ ‖T it is clear that there is a unique isometric extension
of Int to Ē .

Step 3: To give an explicit representation of Ē it is useful, at this moment,
to introduce the subspace U0 := Q

1
2 (U) with the inner product given by

〈u0, v0〉0 :=
〈
Q− 1

2 u0, Q
− 1

2 v0

〉
U

,

u0, v0 ∈ U0, where Q− 1
2 is the pseudo inverse of Q

1
2 in the case that Q is not

one-to-one. Then we get by Proposition C.0.3(i) that (U0, 〈 , 〉0) is again a
separable Hilbert space.

The separable Hilbert space L2(U0,H) is called L0
2. By Proposition C.0.3(ii)

we know that Q
1
2 gk, k ∈ N, is an orthonormal basis of

(
U0, 〈 , 〉0

)
if gk, k ∈ N,

is an orthonormal basis of
(
Ker Q

1
2
)⊥. This basis can be supplemented to a

basis of U by elements of Ker Q
1
2 . Thus we obtain that

‖L‖L0
2

=
∥∥L ◦ Q

1
2
∥∥

L2
for each L ∈ L0

2.

Define L(U,H)0 :=
{
T |U0

∣∣ T ∈ L(U,H)
}
. Since Q

1
2 ∈ L2(U) it is clear

that L(U,H)0 ⊂ L0
2 and that the ‖ ‖T -norm of Φ ∈ E can be written in the

following way:

‖Φ‖T =

(

E

(∫ T

0

‖Φ(s)‖2
L0

2
ds

)) 1
2

Besides we need the following σ-field:

PT := σ
({

]s, t] × Fs

∣
∣ 0 � s < t � T, Fs ∈ Fs

}
∪
{
{0} × F0

∣
∣ F0 ∈ F0

})

= σ
(
Y : ΩT → R

∣∣ Y is left-continuous and adapted to

Ft, t ∈ [0, T ]
)
.
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Let H̃ be an arbitrary separable Hilbert space. If Y : ΩT → H̃ is PT /B(H̃)-
measurable it is called (H̃-)predictable.

If, for example, the process Y itself is continuous and adapted to Ft,
t∈ [0, T ], then it is predictable.

So, we are now able to characterize Ē .

Claim: There is an explicit representation of Ē and it is given by

N 2
W (0, T ;H) :=

{
Φ : [0, T ] × Ω → L0

2

∣∣ Φ is predictable and ‖Φ‖T < ∞
}

= L2
(
[0, T ] × Ω,PT , dt ⊗ P ;L0

2

)
.

For simplicity we also write N 2
W (0, T ) or N 2

W instead of N 2
W (0, T ;H).

To prove this claim we first notice the following facts:

1. Since L(U,H)0 ⊂ L0
2 and since any Φ ∈ E is L0

2-predictable by construction
we have that E ⊂ N 2

W .

2. Because of the completeness of L0
2 we get by Appendix A that

N 2
W = L2(ΩT ,PT , PT ;L0

2)

is also complete.

Therefore N 2
W is at least a candidate for a representation of Ē . Thus there

only remains to show that E is a dense subset of N 2
W . But this is formulated

in Proposition 2.3.8 below, which can be proved with the help of the following
lemma.

Lemma 2.3.7. There is an orthonormal basis of L0
2 consisting of elements

of L(U,H)0. This implies especially that L(U,H)0 is a dense subset of L0
2.

Proof. Since Q is symmetric, nonnegative and trQ < ∞ we know by
Lemma 2.1.5 that there exists an orthonormal basis ek, k ∈ N, of U such
that Qek = λkek, λk � 0, k ∈ N. In this case Q

1
2 ek =

√
λkek, k ∈ N with

λk > 0, is an orthonormal basis of U0 (see Proposition C.0.3(ii)).
If fk, k ∈ N, is an orthonormal basis of H then by Proposition B.0.7 we

know that

fj ⊗
√

λkek = fj〈
√

λkek, ·〉U0 =
1
λk

fj〈ek, ·〉U , j, k ∈ N, λk > 0,

form an orthonormal basis of L2
0 consisting of operators in L(U,H). But, of

course,

span
(

1√
λk

fj ⊗ ek

∣∣∣
∣ j, k ∈ N with λk > 0

)
= L0

2.



2.3. The definition of the stochastic integral 29

Proposition 2.3.8. If Φ is a L0
2-predictable process such that ‖Φ‖T < ∞ then

there exists a sequence Φn, n ∈ N, of L(U,H)0-valued elementary processes
such that

‖Φ − Φn‖T −→ 0 as n → ∞.

Proof. Step 1: If Φ ∈ N 2
W there exists a sequence of simple random variables

Φn =
∑Mn

k=1 Ln
k1An

k
, An

k ∈ PT and Ln
k ∈ L0

2, n ∈ N, such that

‖Φ − Φn‖T −→ 0 as n → ∞.

As L0
2 is a Hilbert space this is a simple consequence of Lemma A.1.4 and

Lebesgue’s dominated convergence theorem.
Thus the assertion is reduced to the case that Φ = L1A where L ∈ L0

2 and
A ∈ PT .
Step 2: Let A ∈ PT and L ∈ L0

2. Then there exists a sequence Ln, n ∈ N, in
L(U,H)0 such that

‖L1A − Ln1A‖T −→ 0 as n → ∞.

This result is obvious by Lemma 2.3.7 and thus now we only have to consider
the case that Φ = L1A, L ∈ L(U,H)0 and A ∈ PT .
Step 3: If Φ = L1A, L ∈ L(U,H)0, A ∈ PT , then there is a sequence Φn,
n ∈ N, of elementary L(U,H)0-valued processes in the sense of Definition 2.3.1
such that

‖L1A − Φn‖T −→ 0 as n −→ ∞.

To show this it is sufficient to prove that for any ε > 0 there is a finite union

Λ =
N⋃

n=1

An of pairwise disjoint predictable rectangles

An ∈
{
]s, t] × Fs

∣∣ 0 � s < t � T, Fs ∈ Fs

}
∪
{
{0} × F0

∣∣ F0 ∈ F0

}
=: A

such that

PT

(
(A \ Λ) ∪ (Λ \ A)

)
< ε.

For then we get that
∑N

n=1 L1An
differs from an elementary process by a

function of type 1{0}×F0 with F0 ∈ F0, which has ‖ · ‖T -norm zero and

∥∥∥L1A −
N∑

n=1

L1An

∥∥∥
2

T
= E

(∫ T

0

∥
∥∥∥L
(
1A −

N∑

n=1

1An

)∥∥∥∥

2

L0
2

ds

)

� ε‖L‖2
L0

2
.

Hence we define

K :=
{⋃

i∈I

Ai

∣
∣∣ I is finite and Ai ∈ A, i ∈ I

}
.

Then K is an algebra and any element in K can be written as a finite disjoint
union of elements in A. Now let G be the family of all A ∈ PT which can
be approximated by elements of K in the above sense. Then G is a Dynkin
system and therefore PT = σ(K) = D(K) ⊂ G as K ⊂ G.
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Step 4: Finally the so-called localization procedure provides the possibility
to extend the definition of the stochastic integral even to the linear space

NW (0, T ;H) :=

{

Φ : ΩT → L0
2

∣
∣∣∣∣
Φ is predictable with

P

(∫ T

0

‖Φ(s)‖2
L0

2
ds < ∞

)
= 1

}

.

For simplicity we also write NW (0, T ) or NW instead of NW (0, T ;H) and NW

is called the class of stochastically integrable processes on [0, T ].
The extension is done in the following way:
For Φ ∈ NW we define

τn := inf
{

t ∈ [0, T ]
∣∣∣∣

∫ t

0

‖Φ(s)‖2
L0

2
ds > n

}
∧ T. (2.3.1)

Then by the right-continuity of the filtration Ft, t ∈ [0, T ], we get that

{τn � t} =
⋂

m∈N

{
τn < t +

1
m

}

=
⋂

m∈N

⋃

q∈[0,t+ 1
m [∩Q

{∫ q

0

‖Φ(s)‖2
L0

2
ds > n

}

︸ ︷︷ ︸
∈Fq by the real Fubini theorem

︸ ︷︷ ︸
∈F

t+ 1
m

and decreasing in m

∈ Ft.

Therefore τn, n ∈ N, is an increasing sequence of stopping times with respect
to Ft, t ∈ [0, T ], such that

E

(∫ T

0

‖1]0,τn](s)Φ(s)‖2
L0

2
ds

)
� n < ∞.

In addition, the processes 1]0,τn]Φ, n ∈ N, are still L0
2-predictable since 1]0,τn]

is left-continuous and (Ft)-adapted or since

]0, τn] :=
{
(s, ω) ∈ ΩT

∣∣ 0 < s � τn(ω)
}

=
({

(s, ω) ∈ ΩT

∣∣ τn(ω) < s � T
}
∪ {0} × Ω

)c

=
(⋃

q∈Q

(
]q, T ] × {τn � q}

︸ ︷︷ ︸
∈Fq

)

︸ ︷︷ ︸
∈PT

∪{0} × Ω
)c

∈ PT .

Thus we get that the stochastic integrals
∫ t

0

1]0,τn](s)Φ(s) dW (s), t ∈ [0, T ],
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are well-defined for all n ∈ N. For arbitrary t ∈ [0, T ] we set

∫ t

0

Φ(s) dW (s) :=
∫ t

0

1]0,τn](s)Φ(s) dW (s), (2.3.2)

where n is an arbitrary natural number such that τn � t. (Note that the
sequence τn, n ∈ N, even reaches T P -a.s., in the sense that for P -a.e. ω ∈ Ω
there exists n(ω) ∈ N such that τn(ω) = T for all n � n(ω).)

To show that this definition is consistent we have to prove that for arbitrary
natural numbers m < n and t ∈ [0, T ]

∫ t

0

1]0,τm](s)Φ(s) dW (s) =
∫ t

0

1]0,τn](s)Φ(s) dW (s) P -a.s.

on {τm � t} ⊂ {τn � t}. This result follows from the following lemma, which
implies that the process in (2.3.2) is a continuous H-valued local martingale.

Lemma 2.3.9. Assume that Φ ∈ N 2
W and that τ is an Ft-stopping time such

that P (τ � T ) = 1. Then there exists a P -null set N ∈ F independent of
t ∈ [0, T ] such that

∫ t

0

1]0,τ ](s)Φ(s) dW (s) = Int
(
1]0,τ ]Φ

)
(t) = Int(Φ)(τ ∧ t)

=
∫ τ∧t

0

Φ(s) dW (s) on N c for all t ∈ [0, T ].

Proof. Since both integrals which appear in the equation are P -a.s. continuous
we only have to prove that they are equal P -a.s. at any fixed time t ∈ [0, T ].
Step 1: We first consider the case that Φ ∈ E and that τ is a simple stopping
time which means that it takes only a finite number of values.

Let 0 = t0 < t1 < · · · < tk � T , k ∈ N, and

Φ =
k−1∑

m=0

Φm1]tm,tm+1]

where Φm : Ω → L(U,H) is Ftm
-measurable and only takes a finite number

of values for all 0 � m � k − 1.
If τ is a simple stopping time there exists n ∈ N such that

τ(Ω) = {a0, . . . , an} and

τ =
n∑

j=0

aj1Aj

where 0 � aj < aj+1 � T and Aj = {τ = aj} ∈ Faj
. In this way we get that
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1]τ,T ]Φ is an elementary process since

1]τ,T ](s)Φ(s) =
k−1∑

m=0

Φm1]tm,tm+1]∩]τ,T ](s)

=
k−1∑

m=0

n∑

j=0

1Aj
Φm1]tm,tm+1]∩]aj ,T ](s)

=
k−1∑

m=0

n∑

j=0

1Aj
Φm

︸ ︷︷ ︸
Ftm∨aj

-measurable

1]tm∨aj ,tm+1∨aj ](s)

and concerning the integral we are interested in, we obtain that
∫ t

0

1]0,τ ](s)Φ(s) dW (s) =
∫ t

0

Φ(s) dW (s) −
∫ t

0

1]τ,T ](s)Φ(s) dW (s)

=
k−1∑

m=0

Φm

(
W (tm+1 ∧ t) − W (tm ∧ t)

)

−
k−1∑

m=0

n∑

j=0

1Aj
Φm

(
W
(
(tm+1 ∨ aj) ∧ t

)
− W
(
(tm ∨ aj) ∧ t

))

=
k−1∑

m=0

Φm

(
W (tm+1 ∧ t) − W (tm ∧ t)

)

−
k−1∑

m=0

n∑

j=0

1Aj
Φm

(
W
(
(tm+1 ∨ τ) ∧ t

)
− W
(
(tm ∨ τ) ∧ t

))

=
k−1∑

m=0

Φm

(
W (tm+1 ∧ t) − W (tm ∧ t)

)

−
k−1∑

m=0

Φm

(
W
(
(tm+1 ∨ τ) ∧ t

)
− W
(
(tm ∨ τ) ∧ t

))

=
k−1∑

m=0

Φm

(
W (tm+1 ∧ t) − W (tm ∧ t)

− W
(
(tm+1 ∨ τ) ∧ t

)
− W
(
(tm ∨ τ) ∧ t

))

=
k−1∑

m=0

Φm

(
W (tm+1 ∧ τ ∧ t) − W (tm ∧ τ ∧ t)

)
=
∫ t∧τ

0

Φ(s) dW (s).

Step 2: Now we consider the case that Φ is still an elementary process while
τ is an arbitrary stopping time with P (τ � T ) = 1.



2.3. The definition of the stochastic integral 33

Then there exists a sequence

τn =
2n−1∑

k=0

T (k + 1)2−n1]Tk2−n,T (k+1)2−n] ◦ τ, n ∈ N,

of simple stopping times such that τn ↓ τ as n → ∞ and because of the
continuity of the stochastic integral we get that

∫ τn∧t

0

Φ(s) dW (s) n→∞−−−−→
∫ τ∧t

0

Φ(s) dW (s) P -a.s.

Besides, we obtain (even for non-elementary processes Φ) that

∥∥1]0,τn]Φ − 1]0,τ ]Φ
∥∥2

T
= E

(∫ T

0

1]τ,τn](s)‖Φ(s)‖2
L0

2
ds

)
n→∞−−−−→ 0,

which by the definition of the integral implies that

E

(∥
∥∥∥

∫ t

0

1]0,τn](s)Φ(s) dW (s) −
∫ t

0

1]0,τ ](s)Φ(s) dW (s)
∥
∥∥∥

2
)

n→∞−−−−→ 0

for all t ∈ [0, T ]. As by Step 1

∫ t

0

1]0,τn](s)Φ(s) dW (s) =
∫ τn∧t

0

Φ(s) dW (s), n ∈ N, t ∈ [0, T ],

the assertion follows.
Step 3: Finally we generalize the statement to arbitrary Φ ∈ N 2

W (0, T ):
If Φ ∈ N 2

W (0, T ) then there exists a sequence of elementary processes Φn,
n ∈ N, such that

‖Φn − Φ‖T
n→∞−−−−→ 0 .

By the definition of the stochastic integral this means that
∫ ·

0

Φn(s) dW (s) n→∞−−−−→
∫ ·

0

Φ(s) dW (s) in M2
T .

Hence it follows that there is a subsequence nk, k ∈ N, and a P -null set N ∈ F
independent of t ∈ [0, T ] such that

∫ t

0

Φnk
(s) dW (s) k→∞−−−−→

∫ t

0

Φ(s) dW (s) on N c

for all t ∈ [0, T ] and therefore we get for all t ∈ [0, T ] that

∫ τ∧t

0

Φnk
(s) dW (s) k→∞−−−−→

∫ τ∧t

0

Φ(s) dW (s) P -a.s.
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In addition, it is clear that

‖1]0,τ ]Φn − 1]0,τ ]Φ‖T −→
n→∞

0

which implies that for all t ∈ [0, T ]

E

(∥∥
∥∥

∫ t

0

1]0,τ ](s)Φn(s) dW (s) −
∫ t

0

1]0,τ ](s)Φ(s) dW (s)
∥∥
∥∥

2
)

n→∞−−−−→ 0.

As by Step 2
∫ t

0

1]0,τ ](s)Φnk
(s) dW (s) =

∫ τ∧t

0

Φnk
(s) dW (s) P -a.s.

for all k ∈ N the assertion follows.

Therefore, for m < n on {τm � t} ⊂ {τn � t}
∫ t

0

1]0,τn](s)Φ(s) dW (s) =
∫ τm∧t

0

1]0,τn](s)Φ(s) dW (s)

=
∫ t

0

1]0,τm](s)1]0,τn](s)Φ(s) dW (s) =
∫ t

0

1]0,τm](s)Φ(s) dW (s) P -a.s.,

where we used Lemma 2.3.9 for the second equality. Hence the definition is
consistent.

Remark 2.3.10. In fact it is easy to see that the definition of the stochastic
integral does not depend on the choice of τn, n ∈ N. If σn, n ∈ N, is another
sequence of stopping times such that σn ↑ T as n → ∞ and 1]0,σn]Φ ∈ N 2

W

for all n ∈ N we also get that
∫ t

0

Φ(s) dW (s) = lim
n→∞

∫ t

0

1]0,σn](s)Φ(s) dW (s) P -a.s. for all t ∈ [0, T ].

Proof. Let t ∈ [0, T ]. Then we get that on the set {τm � t}
∫ t

0

Φ(s) dW (s) =
∫ t

0

1]0,τm](s)Φ(s) dW (s)

= lim
n→∞

∫ t∧σn

0

1]0,τm](s)Φ(s) dW (s)

= lim
n→∞

∫ t∧τm

0

1]0,σn](s)Φ(s) dW (s)

= lim
n→∞

∫ t

0

1]0,σn](s)Φ(s) dW (s) P -a.s..
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2.4. Properties of the stochastic integral

Let T be a positive real number and W (t), t ∈ [0, T ], a Q-Wiener process as
described at the beginning of the previous section.

Lemma 2.4.1. Let Φ be a L0
2-valued stochastically integrable process,

(H̃, ‖ ‖H̃) a further separable Hilbert space and L ∈ L(H, H̃).
Then the process L

(
Φ(t)
)
, t ∈ [0, T ], is an element of NW (0, T ; H̃) and

L

(∫ T

0

Φ(t) dW (t)
)

=
∫ T

0

L
(
Φ(t)
)

dW (t) P -a.s.

Proof. Since Φ is a stochastically integrable process and
∥
∥∥L
(
Φ(t)
)∥∥∥

L2(U0,H̃)
� ‖L‖L(H,H̃)‖Φ(t)‖L0

2
,

it is obvious that L
(
Φ(t)
)
, t ∈ [0, T ], is L2(U0, H̃)-predictable and

P

(∫ T

0

∥∥
∥L
(
Φ(t)
)∥∥
∥

2

L2(U0,H̃)
dt < ∞

)
= 1.

Step 1: As the first step we consider the case that Φ is an elementary
process, i.e.

Φ(t) =
k−1∑

m=0

Φm1]tm,tm+1](t), t ∈ [0, T ],

where 0 = t0 < t1 < · · · < tk = T , Φm : Ω → L(U,H) Ftm
-measurable with∣

∣Φm(Ω)
∣
∣ < ∞ for 0 � m � k. Then

L

(∫ T

0

Φ(t) dW (t)
)

= L
( k−1∑

m=0

Φm

(
W (tm+1) − W (tm)

))

=
k−1∑

m=0

L
(
Φm

(
W (tm+1) − W (tm)

))
=
∫ T

0

L
(
Φ(t)
)

dW (t).

Step 2: Now let Φ ∈ N 2
W (0, T ). Then there exists a sequence Φn, n ∈ N, of

elementary processes with values in L(U,H)0 such that

‖Φn − Φ‖T =

(

E

(∫ T

0

‖Φn(t) − Φ(t)‖2
L0

2
dt

)) 1
2

n→∞−−−−→ 0.

Then L(Φn), n ∈ N, is a sequence of elementary processes with values in
L(U, H̃)0 and

∥∥L(Φn) − L(Φ)
∥∥

T
� ‖L‖L(H,H̃)‖Φn − Φ‖T

n→∞−−−−→ 0.
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By the definition of the stochastic integral, Step 1 and the continuity of L we
get that there is a subsequence nk, k ∈ N, such that

∫ T

0

L
(
Φ(t)
)

dW (t) = lim
k→∞

∫ T

0

L
(
Φnk

(t)
)

dW (t)

= lim
k→∞

L

(∫ T

0

Φnk
(t) dW (t)

)
= L

(
lim

k→∞

∫ T

0

Φnk
(t) dW (t)

)

= L

(∫ T

0

Φ(t) dW (t)
)

P -a.s.

Step 3: Finally let Φ ∈ NW (0, T ).
Let τn, n ∈ N, be a sequence of stopping times such that τn ↑ T as n → ∞

and 1]0,τn]Φ ∈ N 2
W (0, T,H). Then 1]0,τn]L(Φ) ∈ N 2

W (0, T, H̃) for all n ∈ N and
we obtain by Remark 2.3.10 and Step 2 (selecting a subsequence if necessary)

∫ T

0

L
(
Φ(t)
)

dW (t) = lim
n→∞

∫ T

0

1]0,τn](t)L
(
Φ(t)
)

dW (t)

= lim
n→∞

L

(∫ T

0

1]0,τn](t)Φ(t) dW (t)
)

= L

(
lim

n→∞

∫ T

0

1]0,τn](t)Φ(t) dW (t)
)

= L

(∫ T

0

Φ(t) dW (t)
)

P -a.s.

Lemma 2.4.2. Let Φ ∈ NW (0, T ) and f an (Ft)-adapted continuous H-
valued process. Set

∫ T

0

〈
f(t),Φ(t) dW (t)

〉
:=
∫ T

0

Φ̃f (t) dW (t) (2.4.1)

with
Φ̃f (t)(u) :=

〈
f(t),Φ(t)u

〉
, u ∈ U0.

Then the stochastic integral in (2.4.1) is well-defined as a continuous R-valued
stochastic process. More precisely, Φ̃f is a PT /B(L2(U0, R))-measurable map
from [0, T ] × Ω to L2(U0, R),

‖Φ̃f (t, ω)‖L2(U0,R) = ‖Φ∗(t, ω)f(t, ω)‖U0

for all (t, ω) ∈ [0, T ] × Ω and

∫ T

0

‖Φ̃f (t)‖2
L2(U0,R) dt � sup

t∈[0,T ]

‖f(t)‖
∫ T

0

‖Φ(t)‖2
L0

2
dt < ∞ P-a.e..
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Proof. Since f is continuous, Φ̃f is clearly predictable. Let ek, k ∈ N, be an
orthonormal basis of U0. Then for all (t, ω) ∈ [0, T ] × Ω

‖Φ̃f (t, ω)‖2
L2(U0,R) =

∞∑

k=1

〈f(t, ω),Φ(t, ω)ek〉2

=
∞∑

k=1

〈Φ∗(t, ω)f(t, ω), ek〉2U0

= ‖Φ∗(t, ω)f(t, ω)‖2
U0

� ‖Φ∗(t, ω)‖2
L(H,U0)

‖f(t, ω)‖2
H

� ‖Φ∗(t, ω)‖2
L2(H,U0)

‖f(t, ω)‖2
H

= ‖Φ(t, ω)‖2
L0

2
‖f(t, ω)‖2

H ,

where we used Remark B.0.6(i) in the last step. Now all assertions follow.

Lemma 2.4.3. Let Φ ∈ NW (0, T ) and M(t) :=
∫ t

0
Φ(s) dW (s), t ∈ [0, T ].

Define

〈M〉t :=
∫ t

0

‖Φ(s)‖2
L0

2
ds, t ∈ [0, T ].

Then 〈M〉 is the unique continuous increasing (Ft)-adapted process starting
at zero such that ‖M(t)‖2 − 〈M〉t, t ∈ [0, T ], is a local martingale. If Φ ∈
N 2

W (0, T ), then for any sequence

Il := {0 = tl0 < tl1 < . . . < tlkl
= T}, l ∈ N,

of partitions with
max

i
(tli − tli−1) → 0 as l → ∞

lim
l→∞

E

⎛

⎝

∣∣
∣∣∣∣

∑

tl
j+1�t

‖M(tlj+1) − M(tlj)‖2 − 〈M〉t

∣∣
∣∣∣∣

⎞

⎠ = 0.

Proof. For n ∈ N let τn be as in (2.3.1) and τ an Ft-stopping time with
P [τ � T ] = 1. Then by Lemma 2.3.9 for σ := τ ∧ τn, t ∈ [0, T ]

E

(∥
∥∥∥

∫ t∧σ

0

Φ(s) dW (s)
∥
∥∥∥

2
)

= E

(∥
∥∥∥

∫ t

0

1]0,σ]Φ(s) dW (s)
∥
∥∥∥

2
)

= E

(∫ t

0

‖1]0,σ]Φ(s)‖2
L0

2
ds

)

= E

(∫ t∧σ

0

‖Φ(s)‖2
L0

2
ds

)
,
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and the first assertion follows, because the uniqueness is obvious, since any
real-valued local martingale of bounded variation is constant.
To prove the second assertion we fix an orthonormal basis {ei|i ∈ N} of H
and note that by the theory of real-valued martingales we have for each i ∈ N

lim
l→∞

E

⎛

⎝
∣∣∣
∑

tl
j+1�t

〈ei,M(tlj+1) − M(tlj)〉2H −
∫ t

0

‖Φ(s)∗ei‖2
U0

ds
∣∣∣

⎞

⎠ = 0, (2.4.2)

since by the first part of the assertion and Lemmas 2.4.1 and 2.4.2
〈∫ t

0

〈ei,Φ(s) dW (s)〉H
〉

t

=
∫ t

0

‖Φ(s)∗ei‖2
U0

ds, t ∈ [0, T ].

Furthermore, for all i ∈ N

E

⎛

⎝

∣
∣∣∣∣∣

∑

tl
j+1�t

〈ei,M(tlj+1) − M(tlj)〉2H −
∫ t

0

‖Φ(s)∗ei‖2
U0

ds

∣
∣∣∣∣∣

⎞

⎠

�
∑

tl
j+1�t

E

⎡

⎣

(∫ tl
j+1

tl
j

〈ei,Φ(s) dW (s)〉H

)2
⎤

⎦+ E

(∫ t

0

‖Φ(s)∗ei‖2
U0

ds

)

=
∑

tl
j+1�t

E

(∫ tl
j+1

tl
j

‖Φ(s)∗ei‖2
U0

ds

)

+ E

(∫ t

0

‖Φ(s)∗ei‖2
U0

ds

)

� 2E

(∫ t

0

‖Φ(s)∗ei‖2
U0

ds

)

(2.4.3)

which is summable over i ∈ N. Here we used the isometry property of Int in
the second to last step. But

E

⎛

⎝

∣∣
∣∣∣∣

∑

tl
j+1�t

‖M(tlj+1) − M(tlj)‖2 −
∫ t

0

‖Φ(s)‖2
L0

2
ds

∣∣
∣∣∣∣

⎞

⎠

= E

⎛

⎝

∣∣∣∣∣
∣

∞∑

i=1

⎛

⎝
∑

tl
j+1�t

〈ei,M(tlj+1) − M(tlj)〉2H −
∫ t

0

‖Φ(s)∗ei‖2
U0

ds

⎞

⎠

∣∣∣∣∣
∣

⎞

⎠

�
∞∑

i=1

E

⎛

⎝

∣
∣∣∣∣∣

∑

tl
j+1�t

〈ei,M(tlj+1) − M(tlj)〉2H −
∫ t

0

‖Φ(s)∗ei‖2
U0

ds

∣
∣∣∣∣∣

⎞

⎠

where we used Remark B.0.6(i) in the second step. Hence the second assertion
follows by Lebesgue dominated convergence theorem from (2.4.2) and (2.4.3).



2.5. The stochastic integral for cylindrical Wiener processes 39

2.5. The stochastic integral for cylindrical
Wiener processes

Until now we have considered the case that W (t), t ∈ [0, T ], was a standard
Q-Wiener process where Q ∈ L(U) was nonnegative, symmetric and with
finite trace. We could integrate processes in

NW :=
{

Φ : ΩT → L2(Q
1
2 (U),H) | Φ is predictable and

P

(∫ T

0

‖Φ(s)‖2
L0

2
ds < ∞

)

= 1
}

.

In fact it is possible to extend the definition of the stochastic integral to the
case that Q is not necessarily of finite trace. To this end we first have to
introduce the concept of cylindrical Wiener processes.

2.5.1. Cylindrical Wiener processes

Let Q ∈ L(U) be nonnegative definite and symmetric. Remember that in
the case that Q is of finite trace the Q-Wiener process has the following
representation:

W (t) =
∑

k∈N

βk(t)ek, t ∈ [0, T ],

where ek, k ∈ N, is an orthonormal basis of Q
1
2 (U) = U0 and βk, k ∈ N, is

a family of independent real-valued Brownian motions. The series converges
in L2(Ω,F , P ;U), because the inclusion U0 ⊂ U defines a Hilbert–Schmidt
embedding from (U0, 〈 , 〉0) to (U, 〈 , 〉). In the case that Q is no longer of
finite trace one looses this convergence. Nevertheless, it is possible to define
the Wiener process.

To this end we need a further Hilbert space (U1, 〈 , 〉1) and a Hilbert–Schmidt
embedding

J : (U0, 〈 , 〉0) → (U1, 〈 , 〉1).

Remark 2.5.1. (U1, 〈 , 〉1)) and J as above always exist; e.g. choose U1 := U
and αk ∈]0,∞[, k ∈ N, such that

∑∞
k=1 α2

k < ∞. Define J : U0 → U by

J(u) :=
∞∑

k=1

αk〈u, ek〉0 ek, u ∈ U0.

Then J is one-to-one and Hilbert–Schmidt.

Then the process given by the following proposition is called a cylindrical
Q-Wiener process in U .
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Proposition 2.5.2. Let ek, k ∈ N, be an orthonormal basis of U0 = Q
1
2 (U)

and βk, k ∈ N, a family of independent real-valued Brownian motions. Define
Q1 := JJ∗. Then Q1 ∈ L(U1), Q1 is nonnegative definite and symmetric with
finite trace and the series

W (t) =
∞∑

k=1

βk(t)Jek, t ∈ [0, T ], (2.5.1)

converges in M2
T (U1) and defines a Q1-Wiener process on U1. Moreover, we

have that Q
1
2
1 (U1) = J(U0) and for all u0 ∈ U0

‖u0‖0 = ‖Q− 1
2

1 Ju0‖1 = ‖Ju0‖
Q

1
2
1 U1

,

i.e. J : U0 → Q
1
2
1 U1 is an isometry.

Proof. Step 1: We prove that W (t), t ∈ [0, T ], defined in (2.5.1) is a Q1-
Wiener process in U1.
If we set ξj(t) := βj(t)J(ej), j ∈ N, we obtain that ξj(t), t ∈ [0, T ], is a
continuous U1-valued martingale with respect to

Gt := σ

( ⋃

j∈N

σ(βj(s)|s � t)
)

,

t ∈ [0, T ], since

E(βj(t) | Gs) = E(βj(t) | σ(βj(u)|u � s)) = βj(s) for all 0 � s < t � T

as σ
(
σ(βj(u)|u � s) ∪ σ(βj(t))

)
is independent of

σ

(⋃

k∈N

k �=j

σ(βk(u)|u � s)
)

.

Then it is clear that

Wn(t) :=
n∑

j=1

βj(t)J(ej), t ∈ [0, T ],

is also a continuous U1-valued martingale with respect to Gt, t ∈ [0, T ]. In
addition, we obtain that

E

⎛

⎝ sup
t∈[0,T ]

‖
m∑

j=n

βj(t)J(ej)‖2
1

⎞

⎠ � 4 sup
t∈[0,T ]

E

⎛

⎝‖
m∑

j=n

βj(t)J(ej)‖2
1

⎞

⎠

= 4T

m∑

j=n

‖J(ej)‖2
1, m � n � 1.
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Note that ‖J‖2
L2(U0,U1)

=
∑

j∈N

‖J(ej)‖2
1 < ∞. Therefore, we get the convergence

of Wn(t), t ∈ [0, T ], in M2
T (U1), hence the limit W (t), t ∈ [0, T ], is P -a.s. con-

tinuous.
Now we want to show that P ◦ (W (t) − W (s))−1 = N(0, (t − s)JJ∗). Anal-
ogously to the second part of the proof of Proposition 2.1.6 we get that
〈W (t) − W (s), u1〉1 is normally distributed for all 0 � s < t � T and u1 ∈ U1.
It is easy to see that the mean is equal to zero and concerning the covariance
of 〈W (t) − W (s), u1〉1 and 〈W (t) − W (s), v1〉1, u1, v1 ∈ U1, we obtain that

E(〈W (t) − W (s), u1〉1〈W (t) − W (s), v1〉1)

=
∑

k∈N

(t − s)〈Jek, u1〉1〈Jek, v1〉1

= (t − s)
∑

k∈N

〈ek, J∗u1〉0〈ek, J∗v1〉0

= (t − s)〈J∗u1, J
∗v1〉0 = (t − s)〈JJ∗u1, v1〉1.

Thus, it only remains to show that the increments of W (t), t ∈ [0, T ], are
independent but this can be done in the same way as in the proof of Propo-
sition 2.1.10.
Step 2: We prove that Im Q

1
2
1 = J(U0) and that ‖u0‖0 = ‖Q− 1

2
1 Ju0‖1 for all

u0 ∈ U0.
Since Q1 = JJ∗, by Corollary C.0.6 we obtain that Q

1
2
1 (U1) = J(U0) and that

‖Q− 1
2

1 u1‖1 = ‖J−1u1‖0 for all u1 ∈ J(U0). We now replace u1 by J(u0),
u0 ∈ U0, to get the last assertion, because J : U0 → U1 is one-to-one.

2.5.2. The definition of the stochastic integral
for cylindrical Wiener processes

We fix Q ∈ L(U) nonnegative, symmetric but not necessarily of finite trace.
After the preparations of the previous section we are now able to define the
stochastic integral with respect to a cylindrical Q-Wiener process W (t), t ∈
[0, T ].

Basically we integrate with respect to the standard U1-valued Q1-Wiener
process given by Proposition 2.5.2. In this sense we first get that a process
Φ(t), t ∈ [0, T ], is integrable with respect to W (t), t ∈ [0, T ], if it takes values

in L2(Q
1
2
1 (U1),H), is predictable and if

P

(∫ T

0

‖Φ(s)‖2

L2(Q
1
2
1 (U1),H)

ds < ∞
)

= 1.
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But in addition, we have by Proposition 2.5.2 that Q
1
2
1 (U1) = J(U0) and that

〈Ju0, Jv0〉
Q

1
2
1 (U1)

= 〈Q− 1
2

1 Ju0, Q
− 1

2
1 Jv0〉1 = 〈u0, v0〉0

for all u0, v0 ∈ U0 (by polarization). In particular, it follows that Jek, k ∈ N,

is an orthonormal basis of Q
1
2
1 (U1). Hence we get that

Φ ∈ L0
2 = L2(Q

1
2 (U),H) ⇐⇒ Φ ◦ J−1 ∈ L2(Q

1
2
1 (U1),H)

since

‖Φ‖2
L0

2
=
∑

k∈N

〈Φek,Φek〉

=
∑

k∈N

〈Φ ◦ J−1(Jek),Φ ◦ J−1(Jek)〉 = ‖Φ ◦ J−1‖2

L2(Q
1
2
1 (U1),H)

Now we define
∫ t

0

Φ(s) dW (s) :=
∫ t

0

Φ(s) ◦ J−1 dW (s), t ∈ [0, T ]. (2.5.2)

Then the class of all integrable processes is given by

NW =
{

Φ : ΩT → L0
2 | Φ predictable and P

(∫ T

0

‖Φ(s)‖2
L0

2
ds < ∞

)
= 1
}

as in the case where W (t), t ∈ [0, T ], is a standard Q-Wiener process in U .

Remark 2.5.3.

1. We note that the stochastic integral defined in (2.5.2) is independent of
the choice of (U1, 〈 , 〉1) and J . This follows by construction, since by
(2.5.1) for elementary processes (2.5.2) does not depend on J.

2. If Q ∈ L(U) is nonnegative, symmetric and with finite trace the stan-
dard Q-Wiener process can also be considered as a cylindrical Q-Wiener
process by setting J = I : U0 → U where I is the identity map. In this
case both definitions of the stochastic integral coincide.

Finally, we note that since the stochastic integrals in this chapter all have a
standard Wiener process as integrator, we can drop the predictability
assumption on Φ∈NW and just assume progressive measurability, i.e. Φ|[0,t]×Ω

is B([0, t])⊗Ft/B(L0
2)-measurable for all t ∈ [0, T ], at least if (Ω,F , P ) is com-

plete (otherwise we consider its completion) (cf. [WW90, Theorem 6.3.1]).
We used the above framework so that it easily extends to more general

Hilbert-space-valued martingales as integrators replacing the standard Wiener
process. Details are left to the reader.



3. Stochastic Differential
Equations in Finite
Dimensions

This chapter is an extended version of [Kry99, Section 1].

3.1. Main result and a localization lemma

Let (Ω,F , P ) be a complete probability space and Ft, t ∈ [0,∞[, a normal
filtration. Let (Wt)t�0 be a standard Wiener process on R

d1 , d1 ∈ N, with
respect to Ft, t ∈ [0,∞[. So, in the terminology of the previous section U :=
R

d1 , Q := I. The role of the Hilbert space H there will be taken by R
d, d ∈ N.

Let M(d×d1, R) denote the set of all real d×d1-matrices. Let the following
maps σ = σ(t, x, ω), b = b(t, x, ω) be given:

σ :[0,∞[×R
d × Ω → M(d × d1, R)

b :[0,∞[×R
d × Ω → R

d

such that both are continuous in x ∈ R
d for each fixed t ∈ [0,∞[, w ∈ Ω,

and progressively measurable, i.e. for each t their restriction to [0, t] × Ω is
B([0, t])⊗Ft-measurable, for each fixed x ∈ R

d. We note that then both σ and
b restricted to [0, t] × R

d × Ω are B([0, t]) ⊗ B(Rd) ⊗Ft-measurable for every
t ∈ [0,∞[. In particular, for every x ∈ R

d, t ∈ [0,∞[ both are Ft-measurable.
We also assume that the following integrability conditions hold:

∫ T

0

sup
|x|�R

{‖σ(t, x)‖2 + |b(t, x)|} dt < ∞ on Ω, (3.1.1)

for all T,R ∈ [0,∞[. Here | · | denotes the Euclidean distance on R
d and

‖σ‖2 :=
d∑

i=1

d1∑

j=1

|σij |2. (3.1.2)

〈 , 〉 below denotes the Euclidean inner product on R
d.

43
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Theorem 3.1.1. Let b, σ be as above satisfying (3.1.1). Assume that on Ω
for all t, R ∈ [0,∞[, x, y ∈ R

d, |x|, |y| � R

2〈x − y, b(t, x) − b(t, y)〉 + ‖σ(t, x) − σ(t, y)‖2

� Kt(R)|x − y|2
(local weak monotonicity)

(3.1.3)

and

2〈x, b(t, x)〉 + ‖σ(t, x)‖2 � Kt(1)(1 + |x|2), (weak coercivity) (3.1.4)

where for R ∈ [0,∞[, Kt(R) is an R+-valued (Ft)-adapted process satisfying
on Ω for all R, T ∈ [0,∞[

αT (R) :=
∫ T

0

Kt(R) dt < ∞. (3.1.5)

Then for any F0-measurable map X0 : Ω → R
d there exists a (up to P -

indistinguish-ability) unique solution to the stochastic differential equation

dX(t) = b(t,X(t)) dt + σ(t,X(t)) dW (t). (3.1.6)

Here solution means that (X(t))t�0 is a P -a.s. continuous R
d-valued (Ft)-

adapted process such that P -a.s. for all t ∈ [0,∞[

X(t) = X0 +
∫ t

0

b(s,X(s)) ds +
∫ t

0

σ(s,X(s)) dW (s). (3.1.7)

Furthermore, for all t ∈ [0,∞[

E(|X(t)|2e−αt(1)) � E(|X0|2) + 1. (3.1.8)

Remark 3.1.2. We note that by (3.1.1) the integrals on the right-hand side
of (3.1.7) are well-defined.

For the proof of the above theorem we need two lemmas.

Lemma 3.1.3. Let Y (t), t ∈ [0,∞[, be a continuous, R+-valued, (Ft)-adapted
process on (Ω,F , P ) and γ an (Ft)-stopping time, and let ε ∈ (0,∞). Set

τε := γ ∧ inf{t � 0|Y (t) � ε}

(where as usual we set inf ∅ = +∞). Then

P ({ sup
t∈[0,γ]

Y (t) � ε}) � 1
ε
E(Y (τε)).
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Proof. We have
{ sup

t∈[0,γ]

Y (t) � ε} = {Y (τε) � ε}.

Hence the assertion follows by Chebyshev’s inequality.

The following general “localization lemma” will be crucial.

Lemma 3.1.4. Let n ∈ N and X(n)(t), t ∈ [0,∞[, be a continuous, R
d-

valued, (Ft)-adapted process on (Ω,F , P ) such that X(n)(0) = X0 for some
F0-measurable function X0 : Ω → R

d and

dX(n)(t) = b(t,X(n)(t)+p(n)(t)) dt+σ(t,X(n)(t)+p(n)(t)) dW (t), t ∈ [0,∞[

for some progressively measurable process p(n)(t), t ∈ [0,∞[. For n ∈ N and
R ∈ [0,∞[ let τ (n)(R) be (Ft)-stopping times such that

(i)
|X(n)(t)| + |p(n)(t)| � R if t ∈ ]0, τ (n)(R)] P-a.e.

(ii)

lim
n→∞

E

∫ T∧τ(n)(R)

0

|p(n)(t)| dt = 0 for all T ∈ [0,∞[.

(iii) There exists a function r : [0,∞[→ [0,∞[ such that limR→∞ r(R) = ∞
and

lim
R→∞

lim
n→∞

P
({

τ (n)(R) � T, sup
t∈[0,τ(n)(R)]

|X(n)(t)| � r(R)
})

= 0 for all T ∈ [0,∞[.

Then for every T ∈ [0,∞[ we have

sup
t∈[0,T ]

|X(n)(t) − X(m)(t)| → 0 in probability as n,m → ∞.

Proof. By (3.1.1) we may assume that

sup
|x|�R

|b(t, x)| � Kt(R) for all R, t ∈ [0,∞[. (3.1.9)

(Otherwise, we replace Kt(R) by the maximum of Kt(R) and the integrand
in (3.1.1).) Fix R ∈ [0,∞[ and define the (Ft)-stopping times

τ(R, u) := inf{t � 0|αt(R) > u}, u ∈ [0,∞[.

Since t 	→ αt(R) is locally bounded, we have that τ(R, u) ↑ ∞ as u → ∞.
In particular, there exists u(R) ∈ [0,∞[ such that

P ({τ(R, u(R)) � R}) � 1
R

.
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Setting τ(R) := τ(R, u(R)) we have τ(R) → ∞ in probability as R → ∞ and
αt∧τ(R)(R) � u(R) for all t, R ∈ [0,∞[.

Furthermore, if we replace τ (n)(R) by τ (n)(R)∧ τ(R) for n ∈ N, R ∈ [0,∞[,
then clearly assumptions (i) and (ii) above still hold. But

P

({

τ (n)(R) ∧ τ(R) � T, sup
t∈[0,τ(n)(R)∧τ(R)]

|X(n)(t)| � r(R)

})

� P

({

τ (n)(R) � T, sup
t∈[0,τ(n)(R)]

|X(n)(t)| � r(R), τ (n)(R) � τ(R)

})

+ P ({τ(R) � T, τ (n)(R) > τ(R)})

and limR→∞ P ({τ(R) � T}) = 0. So, also assumption (iii) holds when τ (n)(R)
is replaced by τ (n)(R)∧τ(R). We may thus assume that τ (n)(R) � τ(R), hence

αt∧τ(n)(R)(R) � u(R) for all t, R ∈ [0,∞[, n ∈ N. (3.1.10)

Fix R ∈ [0,∞[ and define

λ
(n)
t (R) :=

∫ t

0

|p(n)(s)|Ks(R) ds, t ∈ ]0,∞[, n ∈ N. (3.1.11)

By (3.1.10) it follows that

lim
n→∞

E
(
λ

(n)

T∧τ(n)(R)
(R)
)

= 0 for all R, T ∈ [0,∞[. (3.1.12)

Indeed, for all m,n ∈ N

∫ T∧τ(n)(R)

0

|p(n)(t)|Kt(R) dt

� m

∫ T∧τ(n)(R)

0

|p(n)(t)| dt + R

∫ T∧τ(R)

0

1]m,∞[(Kt(R))Kt(R) dt.

By assumption (ii) we know that as n → ∞ this converges in L1(Ω,F , P ) to

R

∫ T∧τ(R)

0

1]m,∞[(Kt(R))Kt(R) dt,

which in turn is dominated by R αT∧τ(R) � R u(R) and converges P -a.e.
to zero as m → ∞ by (3.1.5). So, (3.1.12) follows by Lebesgue’s dominated
convergence theorem. Let n,m ∈ N and set

ψt(R) := exp(−2αt(R) − |X0|), t ∈ [0,∞[. (3.1.13)
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Then by Itô’s formula we have P-a.e. for all t ∈ [0,∞[

|X(n)(t) − X(m)(t)|2ψt(R)

=
∫ t

0

ψs(R)
[
2〈X(n)(s) − X(m)(s), b(s,X(n)(s) + p(n)(s))

− b(s,X(m)(s) + p(m)(s))〉

+ ‖σ(s,X(n)(s) + p(n)(s)) − σ(s,X(m)(s) + p(m)(s))‖2

− 2Ks(R)|X(n)(s) − X(m)(s)|2
]

ds + M
(n,m)
R (t),

(3.1.14)

where M
(n,m)
R (t), t ∈ [0,∞[, is a continuous local (Ft)-martingale with

M
(n,m)
R (0) = 0. Writing

X(n)(s)−X(m)(s) = (X(n)(s)+p(n)(s))−(X(m)(s)+p(m)(s))−p(n)(s)+p(m)(s)

and by the weak monotonicity assumption (3.1.3), for t ∈ [0, τn(R) ∧ τm(R)]
the right-hand side of (3.1.14) is P-a.e. dominated by

∫ t

0

ψs(R)
[
2〈p(m)(s) − p(n)(s), b(s,X(n)(s) + p(n)(s))

− b(s,X(m)(s) + p(m)(s))〉

+ Ks(R)|(X(n)(s) − X(m)(s)) + (p(n)(s) − p(m)(s))|2

− 2Ks(R)|X(n)(s) − X(m)(s)|2
]

ds + M
(n,m)
R (t)

� 2
∫ t

0

ψs(R)Ks(R)
(
2|p(m)(s) − p(n)(s)| + |p(m)(s) − p(n)(s)|2

)
ds

+ M
(n,m)
R (t),

where we used (3.1.9) and assumption (i) in the last step. Since ψs(R) � 1
for all s ∈ [0,∞[ and since for s ∈]0, τ (n)(R) ∧ τ (m)(R)]

|p(m)(s) − p(n)(s)|2 � 2R(|p(m)(s)| + |p(n)(s)|) P-a.e.,

the above implies that for T ∈ [0,∞[ fixed and γ(n,m)(R) := T ∧ τ (n)(R) ∧
τ (m)(R) we have P-a.e. for t ∈ [0, γ(n,m)(R)]

|X(n)(t) − X(m)(t)|2ψt(R) � 4(1 + R)(λ(n)
t (R) + λ

(m)
t (R)) + M

(n,m)
R (t).

(3.1.15)
Hence for any (Ft)-stopping time τ � γ(n,m)(R) and (Ft)-stopping times
σk ↑ ∞ as k → ∞ so that M

(n,m)
R (t ∧ σk), t ∈ [0,∞[, is a martingale for all
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k ∈ N, we have

E(|X(n)(τ ∧ σk) − X(m)(τ ∧ σk)|2ψτ∧σk
(R))

� 4(1 + R)E(λ(n)

T∧τ(n)(R)
(R) + λ

(m)

T∧τ(m)(R)
(R)).

First letting k → ∞ and applying Fatou’s lemma, and then using Lemma
3.1.3 we obtain that for every ε ∈ ]0,∞[

P ({ sup
t∈[0,γ(n,m)(R)]

(|X(n)(t) − X(m)(t)|2ψt(R)) > ε})

� 4(1 + R)
ε

E(λ(n)

T∧τ(n)(R)
(R) + λ

(m)

T∧τ(m)(R)
(R)).

Since [0,∞[
 t 	→ ψt(R)(ω) is strictly positive, independent of n,m ∈ N, and
continuous, the above inequality and (3.1.12) imply that

sup
t∈[0,γ(n,m)(R)]

|X(n)(t) − X(m)(t)| → 0 as n,m → ∞

in P -measure. So, to prove the assertion it remains to show that given T ∈
[0,∞[,

lim
R→∞

lim
n→∞

P ({τ (n)(R) � T}) = 0. (3.1.16)

We first observe that replacing Kt(R) by max(Kt(R),Kt(1)) we may assume
that

Kt(1) � Kt(R) for all t ∈ [0,∞[, R ∈ [1,∞[. (3.1.17)

Now we proceed similarly as above, but use the assumption of weak coercivity
(3.1.4) instead of the weak monotonicity (3.1.3). Let n ∈ N and R ∈ [1,∞[.
Then by Itô’s formula P -a.e. for all t ∈ [0,∞[ we have

|X(n)(t)|2ψt(1)

=|X0|2e−|X0| +
∫ t

0

ψs(1)
[
2〈X(n)(s), b(s,X(n)(s) + p(n)(s))〉

+ ‖σ(s,X(n)(s) + p(n)(s))‖2 − 2Ks(1)|X(n)(s)|2
]

ds + M
(n)
R (t),

(3.1.18)

where M
(n)
R (t), t ∈ [0,∞[, is a continuous local (Ft)-martingale with

M
(n)
R (0) = 0. By (3.1.4) and (3.1.9) and since ψs(1) � 1 for all s ∈ [0,∞[ the

second summand of the right-hand side of (3.1.18) is P -a.e. for all
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t ∈ [0, T ∧ τ (n)(R)] dominated by

∫ t

0

ψs(1)
[
2〈−p(n)(s), b(s,X(n)(s) + p(n)(s))〉

+ Ks(1)|X(n)(s) + p(n)(s)|2 + Ks(1) − 2Ks(1) |X(n)(s)|2
]

ds

� 2
∫ t

0

Ks(R) |p(n)(s)|(1 + |p(n)(s)|) ds +
∫ t

0

e−2αs(1)Ks(1) ds

� 2(1 + R)λ(n)
t (R) +

∫ αt(1)

0

e−2s ds,

(3.1.19)

where we used (3.1.9), (3.1.17) and assumption (i).
Again localizing M

(n)
R (t), t ∈ [0,∞[, from (3.1.18) and (3.1.19) we deduce

that for every (Ft)-stopping time τ � T ∧ τ (n)(R)

E(|X(n)(τ)|2ψτ (1)) � E(|X0|2e−|X0|) +
1
2

+ 2(1 + R)E(λ(n)

T∧τ(n)(R)
(R)).

Hence by Lemma 3.1.3 and (3.1.12) we obtain that for every c ∈ ]0,∞[

lim
c→∞

sup
R∈[0,∞[

lim
n→∞

P ({ sup
t∈[0,T∧τ(n)(R)]

(|X(n)(t)|2ψt(1)) � c}) = 0.

Since [0,∞[
 t 	→ ψt(1) is strictly positive, independent of n ∈ N and contin-
uous, and since r(R) → ∞ as R → ∞, we conclude that

lim
R→∞

lim
n→∞

P ({ sup
t∈[0,τ(n)(R)]

|X(n)(t)| � r(R), τ (n)(R) � T})

� lim
R→∞

sup
R̃∈[0,∞[

lim
n→∞

P ({ sup
t∈[0,T∧τ(n)(R̃)]

|X(n)(t)| � r(R)}) = 0.

Hence (3.1.16) follows from assumption (iii).

Remark 3.1.5. In our application of Lemma 3.1.4 below, assumption (iii)
will be fulfilled, since the event under P will be empty for all n ∈ N, R ∈ [0,∞[.
For a case where assumption (iii) is more difficult to check, we refer to [Kry99,
Section 1].

3.2. Proof of existence and uniqueness

Proof of Theorem 3.1.1. The proof is based on Euler’s method. Fix n ∈ N

and define the processes X(n)(t), t ∈ [0,∞[, iteratively by setting

X(n)(0) := X0
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and for k ∈ N ∪ {0} and t ∈
]

k
n , k+1

n

]
by

X(n)(t)

=X(n)

(
k

n

)
+
∫ t

k
n

b

(
s,X(n)

(
k

n

))
ds +

∫ t

k
n

σ

(
s,X(n)

(
k

n

))
dW (s).

This is equivalent to

X(n)(t) = X0 +
∫ t

0

b(s,X(n)(κ(n, s))) ds

+
∫ t

0

σ(s,X(n)(κ(n, s))) dW (s), t ∈ [0,∞[,

(3.2.1)

where κ(n, t) := [tn]/n, and also to

X(n)(t) = X0 +
∫ t

0

b(s,X(n)(s) + p(n)(s)) ds

+
∫ t

0

σ(s,X(n)(s) + p(n)(s)) dW (s), t ∈ [0,∞[,

where

p(n)(t) :=X(n)(κ(n, t)) − X(n)(t)

= −
∫ t

κ(n,t)

b(s,X(n)(κ(n, s))) ds

−
∫ t

κ(n,t)

σ(s,X(n)(κ(n, s))) dW (s), t ∈ [0,∞[.

Now fix R ∈ [0,∞[ and define

τ (n)(R) := inf
{

t � 0
∣∣|X(n)(t)| >

R

3

}

and
r(R) :=

R

4
.

Then clearly,

|p(n)(t)| � 2R

3
and |X(n)(t)| � R

3
if t ∈ ]0, τ (n)(R)].

In particular, condition (i) in Lemma 3.1.4 holds and the event in Lemma
3.1.4(iii) is empty for all n ∈ N, R ∈ [0,∞[, so this condition is satisfied. Let
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ei, 1 � i � d, be the canonical basis of R
d and T ∈ [0,∞[. Since for t ∈ [0, T ]

− 〈ei, p
(n)(t)〉

=
∫ t

κ(n,t)

〈ei, b(s,X(n)(κ(n, s)))〉 ds +
∫ t

κ(n,t)

〈ei, σ(s,X(n)(κ(n, s))) dW (s)〉,

it follows that for ε ∈ ]0,∞[ and 1 � i � d, t ∈ [0,∞[

P ({|〈ei, p
(n)(t)〉| � 2ε, t � τ (n)(R)})

� P

({∫ t

κ(n,t)

sup
|x|�R

|b(s, x)| ds � ε

})

+ P

({
sup

t̃∈[0,t]

∣∣∣∣

∫ t̃∧τ(n)(R)

0

1[κ(n,t),T ](s)

〈ei, σ(s,X(n)(κ(n, s))) dW (s)〉
∣∣∣
∣ � ε

})

and by Corollary D.0.2 the second summand is bounded by

3δ

ε
+ P

({∫ t

κ(n,t)

sup
|x|�R

‖σ(t, x)‖2 ds > δ2

})

.

Altogether, letting first n → ∞ and using (3.1.1), and then letting δ → 0 we
obtain that for all t ∈ [0,∞[

1[0.τn(R)](t) p(n)(t) → 0 as n → ∞

in P -measure. Since

1[0.τn(R)](t)
∣∣∣pn)(t)

∣∣∣ � 2R

3
, t ∈ [0,∞[,

it follows by Lebesgue’s dominated convergence theorem and Fubini’s theorem
that condition (ii) in Lemma 3.1.4 is also fulfilled. Now Lemma 3.1.4 and the
fact that the space of continuous processes is complete with respect to locally
(in t ∈ [0,∞[) uniform convergence in probability imply that there exists a
continuous, (Ft)-adapted, R

d-valued process X(t), t ∈ [0,∞[, such that for all
T ∈ [0,∞[

sup
t∈[0,T ]

|X(n)(t) − X(t)| → 0 in P -measure as n → ∞. (3.2.2)

To prove that X satisfies (3.1.6) we are going to take the limit in (3.2.1).
To this end, fix T ∈ [0,∞[ and t ∈ [0, T ]. By (3.2.2) and because of the path
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continuity we only have to show that the right-hand side of (3.2.1) converges
in P -measure to

X0 +
∫ t

0

b(s,X(s)) ds +
∫ t

0

σ(s,X(s)) dW (s).

Since the convergence in (3.2.2) is uniform on [0, T ], by equicontinuity we have
that also

sup
t∈[0,T ]

|X(n)(κ(n, t)) − X(t)| → 0 in P -measure as n → ∞.

Hence for Y (n)(t) := X(n)(κ(n, t)) and a subsequence (nk)k∈N

sup
t∈[0,T ]

|Y (nk)(t) − X(t)| → 0 P -a.e. as k → ∞.

In particular, for S(t) := supk∈N |Y (nk)(t)|

sup
t∈[0,T ]

S(t) < ∞ P -a.e.. (3.2.3)

For R ∈ [0,∞[ define the (Ft)-stopping time

τ(R) := inf{t ∈ [0, T ]|S(t) > R} ∧ T.

By the continuity of b in x ∈ R
d and by (3.1.1)

lim
k→∞

∫ t

0

b(s,X(nk)(κ(nk, s))) ds =
∫ t

0

b(s,X(s)) ds P -a.e. on {t � τ(R)}.
(3.2.4)

To handle the stochastic integrals we need another sequence of stopping times.
For R,N ∈ [0,∞[ define the (Ft)-stopping time

τN (R) := inf{t ∈ [0, T ]|
∫ t

0

sup
|x|�R

‖σ(s, x)‖2 ds > N} ∧ τ(R).

Then by the continuity of σ in x ∈ R
d, (3.1.1), and Lebesgue’s dominated

convergence theorem

lim
k→∞

E

(∫ τN (R)

0

‖σ(s,X(nk)(κ(nk, s))) − σ(s,X(s))‖2 ds

)

= 0,

hence
∫ t

0

σ(s,X(nk)(κ(nk, s))) dW (s) →
∫ t

0

σ(s,X(s)) dW (s) (3.2.5)
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in P -measure on {t � τN (R)} as k → ∞. By (3.1.1) for every ω ∈ Ω there
exists N(ω) ∈ [0,∞[ such that τN (R) = τ(R) for all N � N(ω), so

⋃

N∈N

{t � τN (R)} = {t � τ(R)}.

Therefore, (3.2.5) holds on {t � τ(R)}. But by (3.2.3) for P -a.e. ω ∈ Ω there
exists R(ω) ∈ [0,∞[ such that τ(R) = T for all R � R(ω). So, as above we
conclude that (3.2.4) and (3.2.5) hold P -a.e. on Ω. This completes the proof
for existence.

The uniqueness is a special case of the next proposition. So, let us prove
the final statement. We have by Itô’s formula for our solution X that P -a.e.
for all t ∈ [0,∞[

|X(t)|2e−αt(1) = |X0|2 +
∫ t

0

e−αs(1)
[
2〈X(s), b(s,X(s))〉 + ‖σ(s,X(s))‖2

− Ks(1)|X(s)|2
]

ds + M(t),

where M(t), t ∈ [0,∞[, is a continuous local martingale with M(0) = 0. By
the weak coercivity assumption (3.1.4) the latter is dominated by

|X0|2 +
∫ αt(1)

0

e−s ds + M(t).

So, again by localizing M(t), t ∈ [0,∞[, and Fatou’s lemma we get

E(|X(t)|2e−αt(1)) � E(|X0|2) + 1, t ∈ [0,∞[.

Proposition 3.2.1. Let the assumptions of Theorem 3.1.1 apart from (3.1.4)
be satisfied. Let X0,X

(n)
0 : Ω → R

d, n ∈ N, be F0-measurable such that

P − lim
n→∞

X
(n)
0 = X0.

Let T ∈ [0,∞[ and assume that X(t),X(n)(t), t ∈ [0, T ], n ∈ N, be solutions
of (3.1.6) (up to time T ) such that X(0) = X0 and X(n)(0) = X

(n)
0 P-a.e.

for all n ∈ N. Then

P − lim
n→∞

sup
t∈[0,T ]

|X(n)(t) − X(t)| = 0. (3.2.6)

Proof. By the characterization of convergence in P -measure in terms of P -a.e.
convergent subsequences (cf. e.g. [Bau01]), we may assume that X

(n)
0 → X0

as n → ∞ P -a.e..
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Fix R ∈ [0,∞[ and define

φt(R) := exp(−αt(R) − sup
n

|X(n)
0 |), t ∈ [0,∞[.

We note that since |X0| < ∞, we have φt(R) > 0 P -a.e. for all t ∈ [0,∞[.
Define

γ(n)(R) := inf{t � 0||X(n)(t)| + |X(t)| > R} ∧ T.

Analogously to deriving (3.1.14) in the proof of Lemma 3.1.4 using the weak
monotonicity assumption (3.1.3), we obtain that P -a.e. for all t ∈ [0, T ] and
all n ∈ N

|X(n)(t ∧ γ(n)(R)) − X(t ∧ γ(n)(R))|2φt∧γ(n)(R)(R)

� |X(n)
0 − X0|2e− supn |X(n)

0 | + m
(n)
R (t),

where m
(n)
R (t), t ∈ [0, T ], are continuous local (Ft)-martingales such that

m
(n)
R (0) = 0. Hence localizing m

(n)
R (t), t ∈ [0, T ], for any (Ft)-stopping time

τ � γ(n)(R) we obtain that

E(|X(n)(τ) − X(τ)|2φτ (R)) � E(|X(n)
0 − X0|2e− supn |X(n)

0 |). (3.2.7)

Since the right-hand side of (3.2.7) converges to zero, by Lemma 3.1.3 we
conclude that

P − lim
n→∞

sup
t∈[0,T ]

(
|Xn)(t ∧ γ(n)(R)) − X(t ∧ γ(n)(R))|2φt∧γ(n)(R)(R)

)
= 0.

(3.2.8)
Since P -a.e. the function [0,∞[
 t 	→ φt(R) is continuous and strictly positive,
(3.2.8) implies

P − lim
n→∞

sup
t∈[0,T ]

|X(n)(t ∧ γ(n)(R)) − X(t ∧ γ(n)(R))| = 0. (3.2.9)

But

P ({γ(n)(R) < T})

�P ({ sup
t∈[0,T ]

|X(n)(t ∧ γ(n)(R))| + |X(t ∧ γ(n)(R))|) � R})

�P ({ sup
t∈[0,T ]

|X(n)(t ∧ γ(n)(R)) − X(t ∧ γ(n)(R))|) � 1})

+ P ({2 sup
t∈[0,T ]

|X(t)| � R − 1}).

This together with (3.2.9) implies that

lim
R→∞

lim
n→∞

P ({γ(n)(R) < T}) = 0. (3.2.10)

(3.2.9) and (3.2.10) imply (3.2.6).



4. A Class of Stochastic
Differential Equations in
Banach Spaces and
Applications to Stochastic
Partial Differential Equations

In this chapter we will present one specific method to solve stochastic dif-
ferential equations in infinite-dimensional spaces, known as the variational
approach. The main criterion for this approach to work is that the coeffi-
cients satisfy certain monotonicity assumptions. As the main references for
Subsection 4.2 we mention [RRW06] and [KR79], but also one should check
the references therein.

4.1. Gelfand triples, conditions on the
coefficients and examples

Let H be a separable Hilbert space with inner product 〈 , 〉H and H∗ its
dual. Let V be a Banach space, such that V ⊂ H continuously and densely.
Then for its dual space V ∗ it follows that H∗ ⊂ V ∗ continuously and densely.
Identifying H and H∗ via the Riesz isomorphism we have that

V ⊂ H ⊂ V ∗ (4.1.1)

continuously and densely and if V ∗〈 , 〉V denotes the dualization between V ∗

and V (i.e. V ∗〈z, v〉V := z(v) for z ∈ V ∗, v ∈ V ), it follows that

V ∗〈z, v〉V = 〈z, v〉H for all z ∈ H, v ∈ V. (4.1.2)

(V,H, V ∗) is called a Gelfand triple. Note that since H ⊂ V ∗ continuously and
densely, also V ∗ is separable, hence so is V . Furthermore, B(V ) is generated
by V ∗ and B(H) by H∗. We also have by Kuratowski’s theorem that V ∈
B(H), H ∈ B(V ∗) and B(V ) = B(H) ∩ V, B(H) = B(V ∗) ∩ H.

Below we want to study stochastic differential equations on H of type

dX(t) = A(t,X(t))dt + B(t,X(t)) dW (t) (4.1.3)

55
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with W (t), t ∈ [0, T ] a cylindrical Q-Wiener process with Q = I on another
separable Hilbert space (U, 〈 , 〉U ) and with B taking values in L2(U,H) as
in Chapter 2, but with A taking values in the larger space V ∗.
The solution X will, however, take values in H again. In this section we give
precise conditions on A and B.
Let T ∈ [0,∞[ be fixed and let (Ω,F , P ) be a complete probability space with
normal filtration Ft, t ∈ [0,∞[. Let

A : [0, T ] × V × Ω → V ∗, B : [0, T ] × V × Ω → L2(U,H)

be progressively measurable, i.e. for every t ∈ [0, T ], these maps restricted to
[0, t]×V ×Ω are B([0, t])⊗B(V )⊗Ft-measurable. As usual by writing A(t, v)
we mean the map ω 	→ A(t, v, ω). Analogously for B(t, v). We impose the
following conditions on A and B:

(H1) (Hemicontinuity) For all u, v, x ∈ V, ω ∈ Ω and t ∈ [0, T ] the map

R 
 λ 	→ V ∗〈A(t, u + λv, ω), x〉V

is continuous.

(H2) (Weak monotonicity) There exists c ∈ R such that for all u, v ∈ V

2 V ∗〈A(·, u) − A(·, v), u − v〉V + ‖B(·, u) − B(·, v)‖2
L2(U,H)

� c‖u − v‖2
H on [0, T ] × Ω.

(H3) (Coercivity) There exist α ∈ ]1,∞[, c1 ∈ R, c2 ∈ ]0,∞[ and an (Ft)-
adapted process f ∈ L1([0, T ] × Ω, dt ⊗ P ) such that for all v ∈ V, t ∈
[0, T ]

2 V ∗〈A(t, v), v〉V +‖B(t, v)‖2
L2(U,H) � c1‖v‖2

H − c2‖v‖α
V + f(t) on Ω.

(H4) (Boundedness) There exist c3 ∈ [0,∞[ and an (Ft)-adapted process
g ∈ L

α
α−1 ([0, T ] × Ω, dt ⊗ P ) such that for all v ∈ V, t ∈ [0, T ]

‖A(t, v)‖V ∗ � g(t) + c3‖v‖α−1
V on Ω,

where α is as in (H3).

Remark 4.1.1. 1. By (H3) and (H4) it follows that for all v ∈ V, t ∈
[0, T ]

‖B(t, v)‖2
L2(U,H) � c1‖v‖2

H + f(t) + 2‖v‖V g(t) + 2c3‖v‖α
V on Ω.

2. Let ω ∈ Ω, t ∈ [0, T ]. (H1) and (H2) imply that A(t, ·, ω) is demicontin-
uous, i.e.

un → u as n → ∞ (strongly) in V
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implies

A(t, un, ω) → A(t, u, ω) as n → ∞ weakly in V ∗

(cf. [Zei90, Proposition 26.4])
In particular if H = R

d, d ∈ N, hence V = V ∗ = R
d, then (H1) and

(H2) imply that u 	→ A(t, u, ω) is continuous from R
d to R

d.

Proof. Fix (t, ω) ∈ [0, T ] × Ω and set for u ∈ V

A(u) := A(t, u, ω) − cu.

The proof will be done in four steps.
Claim 1: A is locally bounded, i.e. for all u ∈ V there exists a neighborhood
U(u) such that A(U(u)) is a bounded subset of V ∗.

Proof of Claim 1. Consider first u := 0. Suppose A(U(0)) is unbounded for
all neighborhoods U(0) of 0. Then there exist un ∈ V such that

un → 0 and ‖A(un)‖V ∗ → ∞ as n → ∞.

Set
an := (1 + ‖A(un)‖V ∗‖un‖V )−1.

Then by (H2) for all v ∈ V

an V ∗〈A(un), un − (±v)〉V −an V ∗〈A(±v), un − (±v)〉V � 0,

hence

∓an V ∗〈A(un), v〉V � −an V ∗〈A(un), un〉V +an V ∗〈A(±v), un ∓ v〉V
� an‖A(un)‖V ∗‖un‖V + ‖A(±v)‖V ∗‖un ∓ v‖V

� 1 + ‖A(±v)‖V ∗

(
sup

n
‖un‖V + ‖v‖V

)
.

Consequently,

sup
n

| V ∗〈anA(un), v〉V | < ∞ for all v ∈ V.

Therefore, by the Banach–Steinhaus theorem

N := sup
n

‖anA(un)‖V ∗ < ∞,

and thus for n0 ∈ N so large that ‖un‖ � 1
2N for all n � n0 we obtain

‖A(un)‖V ∗ � a−1
n N � N +

1
2
‖A(un)‖V ∗ ,
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i.e.
‖A(un)‖V ∗ � 2N for all n � n0,

which is a contradiction. So, A(U(0)) is bounded for some neighborhood U(0)
of 0.
For arbitrary u ∈ V we apply the above argument to the operator

Au(v) := A(u + v), v ∈ V

which obviously is also hemicontinuous and weakly monotone. So, Claim 1 is
proved.

Claim 2: Let u ∈ V, b ∈ V ∗ such that

V ∗〈b − A(v), u − v〉V � 0 for all v ∈ V.

Then A(u) = b.

Proof of Claim 2. Let w ∈ V, t ∈ ]0,∞[ and set v := u − tw. Then

V ∗〈b − A(u − tw), tw〉V = V ∗〈b − A(v), u − v〉V � 0.

Dividing first by t and then letting t → 0, by (H1) we obtain

V ∗〈b − A(u), w〉V � 0 for all w ∈ V.

So, replacing w by −w, w ∈ V , we get

V ∗〈b − A(u), w〉V = 0 for all w ∈ V,

hence A(u) = b.

Claim 3: (“monotonicity trick”). Let un, u ∈ V, n ∈ N, and b ∈ V ∗ such that

un → u as n → ∞ weakly in V,

A(un) → b as n → ∞ weakly in V ∗

and
lim V ∗〈A(un), un〉V � V ∗〈b, u〉V .

Then A(u) = b.

Proof of Claim 3. We have for all v ∈ V

V ∗〈A(un), un〉V − V ∗〈A(v), un〉V − V ∗〈A(un) − A(v), v〉V
= V ∗〈A(un) − A(v), un − v〉V � 0.

Letting n → ∞ we obtain

V ∗〈b, u〉V − V ∗〈A(v), u〉V − V ∗〈b − A(v), v〉V � 0,

so
V ∗〈b − A(v), u − v〉V � 0 for all v ∈ V.

Hence Claim 2 implies that A(u) = b.
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Claim 4: Let un, u ∈ V, n ∈ N, such that

un → u as n → ∞ (strongly) in V.

Then
A(un) → A(u) as n → ∞ weakly in V ∗.

Proof of Claim 4. Since {un|n∈N} is bounded, by Claim 1 also {A(un)|n∈N}
is bounded in V ∗. Since bounded sets in V ∗ are weakly compact by the
Banach-Alaoglu theorem, there exists a subsequence (nk)k∈N and b ∈ V ∗

such that A(unk
) → b as k → ∞ weakly in V ∗. Since unk

→ u strongly in V
as k → ∞, we get

lim
k→∞ V ∗〈A(unk

), unk
〉V = V ∗〈b, u〉V .

Therefore, all conditions in Claim 3 are fulfilled and we can conclude that
A(u) = b. So, for all such subsequences their weak limit is A(u), hence
A(un) → A(u) as n → ∞ weakly in V ∗.

Let us now discuss the above conditions. We shall solely concentrate on A
and take B ≡ 0. The latter we do because of the following:

Exercise 4.1.2.

1. Suppose A,B satisfy (H2), (H3) above and Ã is another map as A satis-
fying (H2), (H3). Then A + Ã, B satisfy (H2),(H3). Likewise, if A and
Ã both satisfy (H1), (H4) then so does A + Ã.

2. If A satisfies (H2), (H3) (with B ≡ 0) and for all t ∈ [0, T ], ω ∈ Ω, the
map u 	→ B(t, u, ω) is Lipschitz with Lipschitz constant independent of
t ∈ [0, T ], ω ∈ Ω then A,B satisfy (H2), (H3).

Below, we only look at A independent of t ∈ [0, T ], ω ∈ Ω. From here
examples for A dependent on (t, ω) are then immediate.

Example 4.1.3. V = H = V ∗ (which includes the case H = R
d)

Clearly, since for all v ∈ V

2 V ∗〈A(v), v〉V � 2 V ∗〈A(v) − A(0), v〉V +‖A(0)‖2
V ∗ + ‖v‖2

V ,

in the present case where V = H = V ∗, (H2) implies (H3) with c1 > c2

and α := 2. Furthermore, obviously, if A is Lipschitz in u then (H1)–(H4)
are immediately satisfied. But for (H1)–(H3) to hold, purely local conditions
(with respect to u) on A can be sufficient, as the following proposition shows.

Proposition 4.1.4. Suppose A : H → H is Fréchet differentiable such that
for some c ∈ [0,∞[ the operator DA(x)− cI (∈ L(H)) is negative definite for
all x ∈ H. Then A satisfies (H1)–(H3) (with B ≡ 0).
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Proof. Since A is Fréchet differentiable it is continuous, so, in particular, (H1)
holds. Furthermore, for x, y ∈ H we have

A(x) − A(y) =
∫ 1

0

d

ds
A(y + s(x − y))ds

=
∫ 1

0

DA(y + s(x − y))(x − y)ds.

Hence by assumption

〈A(x) − A(y), x − y〉H =
∫ 1

0

〈DA(y + s(x − y))(x − y), x − y〉Hds

� c

∫ 1

0

〈x − y, x − y〉Hds

= c‖x − y‖2
H ,

and so (H2) holds and hence (H3), as shown above.

We again note that Proposition 4.1.4 shows that purely local conditions on
A can already imply (H1)–(H3), if (V = H = V ∗ and) α = 2. However, the
global condition (H4) then requires that A is of at most linear growth since
α−1 = 1 if α = 2. We also note that for H = R

1 the conditions in Proposition
4.1.4 just mean that A is differentiable and decreasing.

If H is a space of functions, a possible and easy choice for A would be e.g.
Au = −u3. But then we cannot choose H = L2 because A would not leave L2

invariant. This is one motivation to look at triples V ⊂ H ⊂ V ∗ because then
we can take V = Lp and H = L2 and define A from V to V ∗ = Lp/(p−1). Let
us look at this case more precisely.

Example 4.1.5 (Lp ⊂ L2 ⊂ Lp/(p−1) and A(u) := −u|u|p−2).
Let p ∈ [2,∞[, Λ ⊂ R

d, Λ open. Let

V := Lp(Λ) := Lp(Λ, dξ),

equipped with its usual norm ‖·‖p, and

H := L2(Λ) := L2(Λ, dξ),

where dξ denotes Lebesgue measure on Λ. Then

V ∗ = Lp/(p−1)(Λ).

If p > 2 we assume that

|Λ| :=
∫

Rd

IΛ(ξ) dξ < ∞. (4.1.4)
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Then
V ⊂ H ⊂ V ∗,

or concretely
Lp(Λ) ⊂ L2(Λ) ⊂ Lp/(p−1)(Λ)

continuously and densely. Recall that since p > 1, Lp(Λ) is reflexive.
Define A : V → V ∗ by

Au := −u|u|p−2, u ∈ V = Lp(Λ).

Indeed, A takes values in V ∗ = Lp/(p−1)(Λ), since
∫

|Au(ξ)|p/(p−1) dξ =
∫

|u(ξ)|p dξ < ∞

for all u ∈ Lp(Λ).

Claim: A satisfies (H1)–(H4).

Proof. Let u, v, x ∈ V . Then for λ ∈ R

V ∗〈A(u + λv) − A(u), x〉V

=
∫

(u(ξ)|u(ξ)|p−2 − (u(ξ) + λv(ξ))|u(ξ) + λv(ξ)|p−2)x(ξ) dξ

�
∥∥u|u|p−2 − (u + λv)|u + λv|p−2

∥∥
V ∗‖x‖V

which converges to zero as λ → 0 by Lebesgue’s dominated convergence the-
orem. So, (H1) holds.
Furthermore,

V ∗〈A(u) − A(v), u − v〉V

=
∫

(v(ξ)|v(ξ)|p−2 − u(ξ)|u(ξ)|p−2)(u(ξ) − v(ξ)) dξ � 0,

since the map s 	→ s|s|p−2 is increasing on R. Thus (H2) holds, with c := 0.
We also have that

V ∗〈A(v), v〉V = −
∫

|v(ξ)|p dξ = −‖v‖p
V ,

so (H3) holds with α := p. In addition,

‖A(v)‖V ∗ =
(∫

|v(ξ)|p dξ

) p−1
p

= ‖v‖p−1
V

so (H4) holds with α := p as required.
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Remark 4.1.6. In the example above we may take A : V := Lp(Λ) →
L

p
p−1 (Λ) = V ∗ defined by

A(v) := −Ψ(v), v ∈ Lp(Λ),

where Ψ : R → R is a fixed function satisfying properties (Ψ1)− (Ψ4) specified
in Example 4.1.11 below.

Now we turn to cases where A is given by a (possibly nonlinear) partial
differential operator. We shall start with the linear case; more concretely, A
will be given by the classical Laplace operator

∆ =
d∑

i=1

∂2

∂ξ2
i

with initial domain given by C∞
0 (Λ). We want to take A to be an extension of

∆ to a properly chosen Banach space V so that A : V → V ∗ is (defined on all
of V and) continuous with respect to ‖·‖V and ‖·‖V ∗ . The right choice for V
is the classical Sobolev space H1,p

0 (Λ) for p ∈ [2,∞[ with Dirichlet boundary
conditions. So, as a preparation we need to introduce (first-order) Sobolev
spaces.

Again let Λ ⊂ R
d, Λ open, and let C∞

0 (Λ) denote the set of all infinitely
differentiable real-valued functions on Λ with compact support. Let p ∈ [1,∞[
and for u ∈ C∞

0 (Λ) define

‖u‖1,p :=
(∫

(|u(ξ)|p + |∇u(ξ)|p) dξ

)1/p

. (4.1.5)

Then define

H1,p
0 (Λ) := completion of C∞

0 (Λ) with respect to ‖·‖1,p. (4.1.6)

At this stage H1,p
0 (Λ), called the Sobolev space of order 1 in Lp(Λ) with

Dirichlet boundary conditions, just consists of abstract objects, namly equiv-
alence classes of ‖·‖1,p-Cauchy sequences. The main point is to show that

H1,p
0 (Λ) ⊂ Lp(Λ), (4.1.7)

i.e. that the unique continuous extension

ī : H1,p
0 (Λ) → Lp(Λ)

of the embedding
i : C∞

0 (Λ) ↪→ Lp(Λ)

is one-to-one. To this end it suffices (in fact it is equivalent) to show that if
un ∈ C∞

0 (Λ), n ∈ N, such that

un → 0 in Lp(Λ)



4.1. Gelfand triples, conditions on the coefficients and examples 63

and ∫
|∇(un − um)(ξ)|p dξ → 0 as n,m → ∞,

then
∫

|∇(un(ξ)|p dξ → 0 as n → ∞. (4.1.8)

But by the completeness of Lp(Λ; Rd) there exists

F = (F1, . . . , Fd) ∈ Lp(Λ; Rd)

such that ∇un → F as n → ∞ in Lp(Λ; Rd). Let v ∈ C∞
0 (Λ). Then for

1 � i � d, integrating by parts we obtain that
∫

v(ξ)Fi(ξ) dξ = lim
n→∞

∫
v(ξ)

∂

∂ξi
un(ξ) dξ

= − lim
n→∞

∫
∂

∂ξi
v(ξ)un(ξ) dξ

= 0.

Hence Fi = 0 dξ-a.e. for all 1 � i � d, so (4.1.8) holds.
Consider the operator

∇ : C∞
0 (Λ) ⊂ Lp(Λ) → Lp(Λ; Rd).

By what we have shown above, we can extend ∇ to all of H1,p
0 (Λ) as follows.

Let u ∈ H1,p
0 (Λ) and let un ∈ C∞

0 (Λ) such that limn→∞‖u − un‖1,p = 0. In
particular, (∇un)n∈N is a Cauchy sequence in Lp(Λ; Rd), hence has a limit
there. So, define

∇u := lim
n→∞

∇un in Lp(Λ; Rd). (4.1.9)

By what we have shown above this limit only depends on u and not on the
chosen sequence. We recall the fact that H1,p

0 (Λ) is reflexive for all p ∈ ]1,∞[
(cf. [Zei90]).

Example 4.1.7 (H1,2
0 ⊂ L2 ⊂ (H1,2

0 )∗, A = ∆).
Though later we shall see that to have (H3) we have to take p = 2, we shall
first consider for p ∈ [2,∞[ and define

V := H1,p
0 (Λ),H := L2(Λ),

so
V ∗ := H1,p

0 (Λ)∗.

Again we assume (4.1.4) to hold if p > 2. Since then V ⊂ Lp(Λ) ⊂ H,
continuously and densely, identifying H with its dual we obtain the continuous
and dense embeddings

V ⊂ H ⊂ V ∗
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or concretely

H1,p
0 (Λ) ⊂ L2(Λ) ⊂ H1,p

0 (Λ)∗. (4.1.10)

Now we are going to extend ∆ with initial domain C∞
0 (Λ) to a bounded linear

operator A : V → V ∗. First of all we can consider ∆ as an operator taking
values in V ∗ since

∆ : C∞
0 (Λ) → C∞

0 (Λ) ⊂ L2(Λ) ⊂ V ∗.

Furthermore, for u, v ∈ C∞
0 (Λ) again integrating by parts we obtain

| V ∗〈∆u, v〉V | = |〈∆u, v〉H |

=
∣∣∣∣−
∫
〈∇u(ξ),∇v(ξ)〉 dξ

∣∣∣∣

�
(∫

|∇u(ξ)|
p

p−1 dξ

) p−1
p
(∫

|∇v(ξ)|p dξ

) 1
p

�
(∫

|∇u(ξ)|
p

p−1 dξ

) p−1
p

‖v‖1,p.

Hence for all u ∈ C∞
0 (Λ)

‖∆u‖V ∗ � ‖|∇u|‖ p
p−1

. (4.1.11)

So, by (4.1.4) and since p
p−1 � 2 � p, we get by Hölder’s inequality

‖∆u‖V ∗ � |Λ|
p−2

p ‖u‖1,p for all u ∈ C∞
0 (Λ), (4.1.12)

where for p = 2 the factor on the right is just equal to 1.
So, ∆ with domain C∞

0 (Λ) extends (uniquely) to a bounded linear operator
A : V → V ∗ (with domain all of V ), also sometimes denoted by ∆.
Now let us check (H1)–(H4) for A.

Claim:
A(= ∆) : H1,p

0 (Λ) →
(
H1,p

0 (Λ)
)∗

satisfies (H1),(H2),(H4) and provided p = 2, also (H3).

Proof. Since A : V → V ∗ is linear, (H1) is obviously satisfied. Further, if
u, v ∈ V then there exists un, vn ∈ C∞

0 (Λ), n ∈ N, such that un → u, vn → v
as n → ∞ in V . Hence integrating by parts we get

V ∗〈A(u) − A(v), u − v〉V = lim
n→∞ V ∗〈∆un − ∆vn, un − vn〉V

= lim
n→∞

〈∆(un − vn), un − vn〉H

= lim
n→∞

−
∫

|∇(un − vn)(ξ)|2 dξ � 0.
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So (H2) is satisfied. Furthermore,

2 V ∗〈A(v), v〉V = lim
n→∞

2〈∆vn, vn〉H

= − lim
n→∞

2
∫

|∇vn(ξ)|2 dξ

= −2
∫

|∇v(ξ)|2 dξ

= 2
(
‖v‖2

H − ‖v‖2
1,2

)
.

So (H3) is satisfied if p = 2 with α = 2. Furthermore, (H4), with α = 2 is
clear by (4.1.12).

Remark 4.1.8. The corresponding SDE (4.1.3) then reads

dX(t) = ∆X(t) dt + B(t,X(t)) dW (t).

If B ≡ 0, this is just the classical heat equation. If B �≡ 0, but constant, the
solution is an Ornstein–Uhlenbeck process on H.

Example 4.1.9 (H1,p
0 ⊂ L2 ⊂ (H1,p

0 )∗, A = p-Laplacian).
Again we take p ∈ [2,∞[, Λ ∈ R

d, Λ open and bounded, and V := H1,p
0 (Λ),

H := L2(Λ), so V ∗ = (H1,p
0 (Λ))∗. Define A : H1,p

0 (Λ) → H1,p
0 (Λ)∗ by

A(u) := div(|∇u|p−2∇u), u ∈ H1,p
0 (Λ);

more precisely, given u ∈ H1,p
0 (Λ) for all v ∈ H1,p

0 (Λ)

V ∗〈A(u), v〉V := −
∫

|∇u(ξ)|p−2〈∇u(ξ),∇v(ξ)〉 dξ for all v ∈ H1,p
0 (Λ).

(4.1.13)

A is called the p-Laplacian, also denoted by ∆p. Note that ∆2 = ∆. To
show that A : V → V ∗ is well-defined we have to show that the right-hand
side of (4.1.13) defines a linear functional in v ∈ V which is continuous with
respect to ‖·‖V = ‖·‖1,p. First we recall that by (4.1.9) ∇u ∈ Lp(Λ; Rd) for
all u ∈ H1,p

0 (Λ). Hence by Hölder’s inequality

∫
|∇u(ξ)|p−1|∇v(ξ)| dξ �

(∫
|∇u(ξ)|p dξ

) p−1
p
(∫

|∇v(ξ)|p dξ

) 1
p

� ‖u‖p−1
1,p ‖v‖1,p.

Since this dominates the right-hand side of (4.1.13) for all u ∈ H1,p
0 (Λ) we

have that A(u) is a well-defined element of (H1,p
0 (Λ))∗ and that

‖A(u)‖V ∗ � ‖u‖p−1
V . (4.1.14)

Now we are going to check that A satisfies (H1)–(H4).
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(H1): Let u, v, x ∈ H1,p
0 (Λ), then by (4.1.13) we have to show for λ ∈ R, |λ| �

1

lim
λ→0

∫ (
|∇(u + λv)(ξ)|p−2〈∇(u + λv)(ξ),∇x(ξ)〉

− |∇u(ξ)|p−2〈∇u(ξ),∇x(ξ)〉
)
dξ = 0.

Since obviously the integrands converge to zero as λ → 0 dξ-a.e., we
only have to find a dominating function to apply Lebesgue’s dominated
convergence theorem. But obviously, since |λ| � 1

|∇(u + λv)(ξ)|p−2|〈∇(u + λv)(ξ),∇x(ξ)〉|

� 2p−1
(
|∇u(ξ)|p−1 + |∇v(ξ)|p−1

)
|∇x(ξ)|

and the right-hand side is in L1(Λ) by Hölder’s inequality as we have
seen above.

(H2): Let u, v ∈ H1,p
0 (Λ). Then by (4.1.13)

− V ∗〈A(u) − A(v), u − v〉V

=
∫
〈|∇u(ξ)|p−2∇u(ξ) − |∇v(ξ)|p−2∇v(ξ),∇u(ξ) −∇v(ξ)〉 dξ

=
∫

(|∇u(ξ)|p + |∇v(ξ)|p − |∇u(ξ)|p−2〈∇u(ξ),∇v(ξ)〉

− |∇v(ξ)|p−2〈∇u(ξ),∇v(ξ)〉) dξ

�
∫

(|∇u(ξ)|p + |∇v(ξ)|p − |∇u(ξ)|p−1|∇v(ξ)|

− |∇v(ξ)|p−1|∇u(ξ)|) dξ

=
∫

(|∇u(ξ)|p−1 − |∇v(ξ)|p−1)(|∇u(ξ)| − |∇v(ξ)|) dξ

� 0,

since the map R+ 
 s 	→ sp−1 is increasing. Hence (H2) is shown with
c = 0.

(H3): Because Λ is bounded by Poincaré’s inequality (cf. [GT83]) there exists
a constant c = c(p, d, |Λ|) ∈]0,∞[ such that
∫

|∇u(ξ)|p dξ � c

∫
|u(ξ)|p dξ for all u ∈ H1,p

0 (Λ). (4.1.15)

Hence by (4.1.13) for all u ∈ H1,p
0 (Λ)

V ∗〈A(u), u〉V = −
∫

|∇u(ξ)|p dξ � −min(1, c)
2

‖u‖p
1,p.
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So, (H3) holds with α = p and c1 = 0. (We note that only for (H3) have
we used that Λ is bounded.)

(H4): This condition holds for A by (4.1.14) with α = p.

Before we go on to our last example which will include the case of the porous
medium equation we would like to stress the following:

Remark 4.1.10. 1. If one is given V ⊂ H ⊂ V ∗ and A : V → V ∗ (e.g.
as in the above examples) satisfying (H1)–(H4) (with B ≡ 0) one can
consider a “smaller” space V0, i.e. another reflexive separable Banach
space such that

V0 ⊂ V

continuously and densely, hence (by restricting the linear functionals to
V0)

V ∗ ⊂ V ∗
0

continuously and densely, so altogether

V0 ⊂ V ⊂ H ⊂ V ∗ ⊂ V ∗
0 .

Restricting A to V0 we see that A satisfies (H1),(H2) and (H4) with
respect to the Gelfand triple

V0 ⊂ H ⊂ V ∗
0 .

However, since ‖·‖V0 is up to a multiplicative constant larger than ‖·‖V ,
property (H3) might no longer hold. Therefore, e.g. if one considers a
map A which is given by a sum of the Laplacian (cf. Example 4.1.7)
and e.g. a monomial (cf. Example 4.1.5) one cannot just take any V0 ⊂
H1,2

0 (Λ) ∩ Lp(Λ), since (H3) might get lost. However, if e.g. d � 3
and 1

d + 1
p = 1

2 , then if Λ is bounded, by a Sobolev embedding theorem
(cf. [GT83, Theorems 7.10 and 7.15]), H1,2

0 (Λ) ⊂ Lp(Λ) (⊂ Lp′
(Λ), p′ ∈

[1, p]) continuously and densely, so one can take V := H1,2
0 (Λ),

H = L2(Λ) and can consider

A(u) := ∆u − u|u|p′−2, u ∈ H1,2
0 (Λ).

Then (H3) holds with d := 2. So, if p′ ∈ [1, 2], also (H4) holds with
d = 2. The corresponding SDE (4.1.3) then reads

dX(t) = (∆X(t) − X(t)|X(t)|p′−2) dt (+B(t,X(t)) dW (t))

and is called a (stochastic) reaction diffusion equation.
In the case of the p-Laplacian, p ∈ [2,∞[, it is even easier to take
sums with monomials, since clearly H1,p

0 (Λ) ⊂ Lp(Λ) continuously and
densely, so

A(u) := div(|∇u|p−2∇u) − u|u|p−2, u ∈ H1,p
0 (Λ),
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satisfies (H1)–(H4), if Λ is bounded, with respect to the Gelfand triple

H1,p
0 (Λ) ⊂ L2(Λ) ⊂ (H1,p

0 (Λ))∗.

But generally, taking sums of A as above requires some care and is not
always possible.

2. In all our analysis the space V ∗ is only used as a tool. Eventually, since
the solutions to our SDE (4.1.3) will take values in H, V ∗ will be of no
relevance. Therefore, no further information about V ∗ such as its explicit
representation (e.g. as a space of Schwartz distributions) is necessary.

Example 4.1.11. [Lp ⊂ (H1,2
0 )∗ ⊂ (Lp)∗, A = porous medium operator]

As references for this example we refer e.g. to [Aro86], [DPRLRW06], [RRW06].
Let Λ ⊂ R

d, Λ open and bounded, p ∈ [2,∞[ and

V := Lp(Λ),H := (H1,2
0 (Λ))∗.

Since Λ is bounded we have by Poincaré’s inequality (4.1.15) that for some
constant c = c(2, d, |Λ|) > 0

‖u‖1,2 � ‖u‖H1,2
0

:=
(∫

|∇u(ξ)|2 dξ

) 1
2

�
(

min(1, c)
2

) 1
2

‖u‖1,2 for all u ∈ H1,2
0 (Λ).

(4.1.16)

So, we can (and will do so below) consider H1,2
0 (Λ) with norm ‖·‖H1,2

0
and

corresponding scalar product

〈u, v〉H1,2
0

:=
∫
〈∇u(ξ),∇v(ξ)〉 dξ, u, v ∈ H1,2

0 (Λ).

Since H1,2
0 (Λ) ⊂ L2(Λ) continuously and densely, so is

H1,2
0 (Λ) ⊂ L

p
p−1 (Λ).

Hence
Lp(Λ) ≡

(
L

p
p−1 (Λ)

)∗
⊂ (H1,2

0 (Λ))∗ = H,

continuously and densely. Now we would like to identify H with its dual
H∗ = H1,2

0 (Λ) via the corresponding Riesz isomorphism R : H → H∗ defined
by Rx := 〈x, ·〉H , x ∈ H. Let us calculate the latter.

Lemma 4.1.12. The map ∆ : H1,2
0 (Λ) → (H1,2

0 (Λ))∗ = H (defined by
(4.1.13) for p = 2) is an isometric isomorphism. In particular,

〈∆u,∆v〉H = 〈u, v〉H1,2
0

for all u, v ∈ H1,2
0 (Λ). (4.1.17)
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Furthermore, (−∆)−1 : H → H∗ = H1,2
0 (Λ) is the Riesz isomorphism for H,

i.e. for every x ∈ H

〈x, ·〉H = H1,2
0

〈(−∆)−1x, ·〉H . (4.1.18)

Proof. Let u ∈ H1,2
0 (Λ). Since by (4.1.13) for all v ∈ H1,2

0 (Λ)

H〈−∆u, v〉H1,2
0

=
∫
〈∇u(ξ),∇v(ξ)〉 dξ = 〈u, v〉H1,2

0
, (4.1.19)

it follows that −∆ : H1,2
0 (Λ) → H is just the Riesz isomorphism for H1,2

0 (Λ)
and the first part of the assertion including (4.1.17) follows. To prove the last
part, fix x ∈ H. Then by (4.1.17) and (4.1.19) for all y ∈ H

〈x, y〉H = 〈(−∆)−1x, (−∆)−1y〉H1,2
0

= H〈x, (−∆)−1y〉H1,2
0

.

Now we identify H with its dual H∗ by the Riesz map (−∆)−1 : H → H∗,
so H ≡ H∗ in this sense, hence

V = Lp(Λ) ⊂ H ⊂ (Lp(Λ))∗ = V ∗ (4.1.20)

continuously and densely.

Lemma 4.1.13. The map

∆ : H1,2
0 (Λ) → (Lp(Λ))∗

extends to a linear isometry

∆ : L
p

p−1 (Λ) → (Lp(Λ))∗ = V ∗

and for all u ∈ L
p

p−1 (Λ), v ∈ Lp(Λ)

V ∗〈−∆u, v〉V =
L

p
p−1

〈u, v〉Lp =
∫

u(ξ)v(ξ) dξ. (4.1.21)

Remark 4.1.14. One can prove that this isometry is in fact surjective, hence

(Lp(Λ))∗ = ∆(L
p

p−1 ) �= L
p

p−1 .

We shall not use this below, but it shows that the embedding (4.1.20) has to
be handled with care taking always into account that H is identified with H∗

by (−∆)−1 : H → H∗ giving rise to a different dualization between Lp(Λ) and
(Lp(Λ))∗. In particular, for all x ∈ H, v ∈ Lp(Λ)

(Lp)∗〈x, v〉Lp = 〈x, v〉H
(
�=

L
p

p−1
〈x, v〉Lp =

∫
x(ξ)v(ξ) dξ provided x ∈ L

p
p−1

)
.
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Proof of Lemma 4.1.13. Let u ∈ H1,2
0 (Λ). Then since ∆u ∈ H, by (4.1.2) and

(4.1.18) we obtain that for all v ∈ V

V ∗〈∆u, v〉V = 〈∆u, v〉H = −H1,2
0

〈u, v〉H = −〈u, v〉L2 (4.1.22)

since v ∈ V ⊂ L2(Λ). Therefore,

‖∆u‖V ∗ � ‖u‖ p
p−1

.

So, ∆ extends to a continuous linear map

∆ : L
p

p−1 (Λ) → V ∗

such that (4.1.22) holds for all u ∈ L
p

p−1 (Λ), i.e. (4.1.21) is proved.
So, applying it to u ∈ L

p
p−1 (Λ) and

v := −‖u‖−
q
p

q u|u|q−2 ∈ Lp(Λ),

where q := p
p−1 , by (4.1.21) we obtain that

V ∗〈∆u, v〉V = ‖u‖ p
p−1

and ‖v‖p = 1, so ‖∆u‖V ∗ = ‖u‖ p
p−1

and the assertion is completely proved.

Now we want to define the “porous medium operator A”. So, let Ψ : R → R

be a function having the following properties:

(Ψ1) Ψ is continuous.

(Ψ2) For all s, t ∈ R

(t − s)(Ψ(t) − Ψ(s)) � 0.

(Ψ3) There exist p ∈ [2,∞[, a ∈ ]0,∞[, c ∈ [0,∞[ such that for all s ∈ R

sΨ(s) � a|s|p − c.

(Ψ4) There exist c3, c4 ∈ ]0,∞[ such that for all s ∈ R

|Ψ(s)| � c4 + c3|s|p−1,

where p is as in (Ψ3).

We note that (Ψ4) implies that

Ψ(v) ∈ L
p

p−1 (Λ) for all v ∈ Lp(Λ). (4.1.23)

Now we can define the porous medium operator A : Lp(Λ) = V → V ∗ =
(Lp(Λ))∗ by

A(u) := ∆Ψ(u), u ∈ Lp(Λ). (4.1.24)

Note that by (4.1.21) and Lemma 4.1.13 the operator A is well-defined. Now
let us check (H1)–(H4).



4.1. Gelfand triples, conditions on the coefficients and examples 71

(H1): Let u, v, x ∈ V = Lp(Λ) and λ ∈ R. Then by (4.1.21)

V ∗〈A(u + λv), x〉V = V ∗〈∆Ψ(u + λv), x〉V

= −
∫

Ψ(u(ξ) + λv(ξ))x(ξ) dξ.
(4.1.25)

By (Ψ4) for |λ| � 1 the integrand in the right-hand side of (4.1.25) is
bounded by

[c4 + c32p−1(|u|p−1 + |v|p−1)]|x|
which by Hölder’s inequality is in L1(Λ). So, (H1) follows by (Ψ1) and
Lebesgue’s dominated convergence theorem.

(H2): Let u, v ∈ V = Lp(Λ). Then by (4.1.21)

V ∗〈A(u) − A(v), u − v)〉V = V ∗〈∆(Ψ(u) − Ψ(v)), u − v〉V

= −
∫

[Ψ(u(ξ)) − Ψ(v(ξ))](u(ξ) − v(ξ)) dξ

� 0,

where we used (Ψ2) in the last step.

(H3): Let v ∈ Lp(Λ) = V . Then by (4.1.21) and (Ψ3)

V ∗〈A(v), v〉V = −
∫

Ψ(v(ξ))v(ξ) dξ

�
∫

(−a|v(ξ)|p + c) dξ.

Hence (H3) is satisfied with c1 := 0, c2 := 2a, α = p and f(t) = 2c|Λ|.

(H4): Let v ∈ Lp(Λ) = V . Then by Lemma 4.1.13 and (Ψ4)

‖A(v)‖V ∗ = ‖∆Ψ(v)‖V ∗

= ‖Ψ(v)‖
L

p
p−1

� c4|Λ|
p−1

p + c3

(∫
|v(ξ)|p dξ

) p−1
p

= c4|Λ|
p−1

p + c3‖v‖p−1
V ,

so (H4) holds with α = p.

Remark 4.1.15. 1. For p ∈ [2,∞[ and Ψ(s) := s|s|p−2 we have

A(v) = ∆(v|v|p−2), v ∈ Lp(Λ),
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which is the non-linear operator appearing in the classical porous medium
equation, i.e.

∂X(t)
∂t

= ∆(X(t)|X(t)|p−2), X(0, ·) = X0,

whose solution describes the time evolution of the density X(t) of a
substance in a porous medium (cf. e.g. [Aro86]).

2. Let Ψ : R → R be given such that (Ψ1)–(Ψ4) are satisfied with some
p ∈ ]1,∞[ (in (Ψ3), (Ψ4)). One can see that the above assumptions that
Λ is bounded and p � 2, can be avoided. But p then depends on the
dimension of the underlying space R

d. Let us assume first that d � 3.
We distinguish two cases:

Case 1. |Λ| = ∞ and p := 2d
d+2 , c = c4 = 0, where c, c4 are the constants in

(Ψ3) and in (Ψ4) respectively.

Case 2. |Λ| < ∞ and p ∈
[

2d
d+2 ,∞

[
.

By the Sobolev embedding theorem (cf. [GT83, Theorem 7.10]) we have

H1,2
0 (Λ) ⊂ L

2d
d−2 (Λ)

continuously and densely, and

‖u‖ 2d
d−2

� 2(d − 1)√
d(d − 2)

‖u‖H1,2
0

for all u ∈ H1,2
0 (Λ).

In Case 1 we have 2d
d−2 = p

p−1 and in Case 2 (hence in both cases)

2d

d − 2
� p

p − 1

and thus
H1,2

0 (Λ) ⊂ L
p

p−1 (Λ)

densely and for some c0 ∈]0,∞[

‖u‖ p
p−1

� c0‖u‖H1,2
0

for all u ∈ H1,2
0 (Λ).

Now the above arguments generalize to both Cases 1 and 2, i.e. for the
Gelfand triple

V := Lp(Λ) ⊂ H := (H1,2
0 (Λ))∗ ⊂ (Lp(Λ))∗

the operator
A : Lp(Λ) =: V → V ∗ = (Lp(Λ))∗

defined in (4.1.24), satisfies (H1)–(H4).
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We note that in Case 1 the norm ‖·‖H1,2
0

defined in (4.1.16) is in general
not equivalent to ‖·‖1,2, because the Poincare inequality does not hold.
So, H1,2

0 (Λ))∗ as a dual to the normed vector spaces (H1
0 (Λ), ‖·‖H1,2

0
) is

complete. In particular, if (3 � d) � 6, we may take p = 3
2 and

Ψ(s) := sign(s)
√

|s|, s ∈ R.

For Λ bounded the above extends, of course, also to the case d = 1, 2
where even stronger Sobolev embeddings hold (cf. [GT83, Theorems 7.10
and 7.15]).

4.2. The main result and an Itô formula

Consider the general situation described at the beginning of the previous
section. So, we have a Gelfand triple

V ⊂ H ⊂ V ∗

and maps

A : [0, T ] × V × Ω → V ∗, B : [0, T ] × V × Ω → L2(U,H)

as specified there, satisfying (H1)–(H4), and consider the stochastic differential
equation

dX(t) = A(t,X(t)) dt + B(t,X(t)) dW (t) (4.2.1)

on H with W (t), t ∈ [0, T ], a cylindrical Q-Wiener process with Q := I taking
values in another separable Hilbert space (U, 〈 , 〉U ) and being defined on a
complete probability space (Ω,F , P ) with normal filtration Ft, t ∈ [0, T ].

Before we formulate our main existence and uniqueness result for solutions
of (4.2.1) we have to define what we mean by “solution”.

Definition 4.2.1. A continuous H-valued (Ft)-adapted process (X(t))t∈[0,T ]

is called a solution of (4.2.1), if for its dt ⊗ P -equivalence class X̂ we have
X̂ ∈ Lα([0, T ] × Ω, dt ⊗ P ;V ) ∩ L2([0, T ] × Ω, dt ⊗ P ;H) with α as in (H3)
and P -a.s.

X(t) = X(0) +
∫ t

0

A(s, X̄(s))ds +
∫ t

0

B(s, X̄(s)) dW (s), t ∈ [0, T ],

(4.2.2)

where X̄ is any V -valued progressively measurable dt ⊗ P -version of X̂.
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Remark 4.2.2.

1. The existence of the special version X̄ above follows from Exercise 4.2.3
below. Furthermore, for technical reasons in Definition 4.2.1 and
below we consider all processes initially as V ∗-valued, hence by dt⊗
P -equivalence classes we always mean classes of V ∗-valued processes.

2. The integral with respect to ds in (4.2.2) is initially a V ∗-valued Bochner
integral which turns out to be in fact H-valued.

3. Solutions in the sense of Definition 4.2.1 are often called variational
solutions in the literature. There are various other notions of solutions
for stochastic (partial) differential equations. We recall the definition of
(probabilistically) weak and strong solutions in Appendix E below. The
notions of analytically weak and strong solutions as well as the notion
of mild solutions and their relations are recalled in Appendix F below.

Exercise 4.2.3.

1. Let BV ∗

1 denote the closed unit ball in V ∗. Since BV ∗

1 ∩H �= ∅, it has a
countable subset {li|i ∈ N}, which is dense in BV ∗

1 ∩ H with respect to
H-norm.
Define Θ : H → [0,∞] by

Θ(h) := sup
i∈N

|〈li, h〉H |, h ∈ H.

Then Θ is lower semicontinuous on H, hence B(H)-measurable. Since
V ∗〈li, v〉V = 〈li, v〉H , i ∈ N, v ∈ V , we have

Θ(v) = ‖v‖V for all v ∈ V,

and furthermore (by the reflexivity of V )

{Θ < ∞} = V.

2. Let X : [0, T ] × Ω → H be any progressively measurable (i.e. B([0, t]) ⊗
Ft/B(H)-measurable for all t ∈ [0, T ]) dt⊗P -version of X̂ ∈ Lα([0, T ]×
Ω, dt ⊗ P ;V ), α ∈ (0,∞). Then

X̄ := I{Θ◦X<∞}X

is a V -valued progressively measurable (i.e. B([0, t]) ⊗ Ft/B(V )-measu-
rable) dt ⊗ P -version of X̂.

3. Both A(·, X̄) and B(·, X̄) are V -valued respectively L2(U,H)-valued pro-
gressively measurable processes.

Now the main result (cf. [KR79]):
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Theorem 4.2.4. Let A,B above satisfy (H1)–(H4) and let
X0 ∈ L2(Ω,F0, P ;H). Then there exists a unique solution X to (4.2.1) in
the sense of Definition 4.2.1. Moreover,

E( sup
t∈[0,T ]

‖X(t)‖2
H) < ∞. (4.2.3)

The proof of Theorem 4.2.4 strongly depends on the following Itô formula,
from [KR79, Theorem I.3.1], which we shall prove here first. The presentation
of its proof and that of Theorem 4.2.4 is an extended adaptation of those in
[RRW06].

Theorem 4.2.5. Let X0 ∈ L2(Ω,F0, P ;H) and Y ∈ L
α

α−1 ([0, T ] × Ω, dt ⊗
P ;V ∗), Z ∈ L2([0, T ] × Ω, dt ⊗ P ;L2(U,H)), both progressively measurable.
Define the continuous V ∗-valued process

X(t) := X0 +
∫ t

0

Y (s)ds +
∫ t

0

Z(s) dW (s), t ∈ [0, T ].

If for its dt ⊗ P -equivalence class X̂ we have X̂ ∈ Lα([0, T ] × Ω, dt ⊗ P, V )
with α as in (H3), then X is an H-valued continuous (Ft)-adapted process,

E

(

sup
t∈[0,T ]

‖X(t)‖2
H

)

< ∞

and the following Itô-formula holds for the square of its H-norm P-a.s.

‖X(t)‖2
H = ‖X0‖2

H +
∫ t

0

(
2 V ∗〈Y (s), X̄(s)〉V +‖Z(s)‖2

L2(U,H)

)
ds

+ 2
∫ t

0

〈X(s), Z(s) dW (s)〉H for all t ∈ [0, T ]

(4.2.4)

for any V -valued progressively measurable dt ⊗ P -version X̄ of X̂.

As in [KR79] for the proof of Theorem 4.2.5 we need the following lemma
about piecewise constant approximations based on an argument due to
[Doo53]. For abbreviation below we set

K := Lα([0, T ] × Ω, dt ⊗ P ;V ). (4.2.5)

Lemma 4.2.6. Let X : [0, T ] × Ω → V ∗ be B([0, T ]) ⊗ F/B(V ∗)-measurable
such that for its dt ⊗ P -equivalence class X̂ we have X̂ ∈ K. Then there
exists a sequence of partitions Il := {0 = tl0 < tl1 < · · · < tlkl

= T} such that
Il ⊂ Il+1 and δ(Il) := maxi(tli − tli−1) → 0 as l → ∞, X(tli) ∈ V P -a.e. for
all l ∈ N, 1 ≤ i ≤ kl − 1, and for
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X̄ l :=
kl∑

i=2

1[tl
i−1,tl

i[
X(tli−1), X̃ l :=

kl−1∑

i=1

1[tl
i−1,tl

i[
X(tli), l ∈ N,

we have X̄ l, X̃ l are ( dt ⊗ P -versions of elements) in K such that

lim
l→∞

{
‖X̂ − X̄ l‖K + ‖X̂ − X̃ l‖K

}
= 0.

Proof. For simplicity we assume that T = 1 and let X̄ : [0, 1] × Ω → V be a
dt ⊗ P -version of X̂. We extend X̄ to R × Ω by setting X̄ = 0 on [0, 1]c × Ω.
There exists Ω′ ∈ F with full probability such that for every ω ∈ Ω′ there
exists a sequence (fn)n∈N ⊂ C(R;V ) with compact support such that

∫

R

‖fn(s) − X̄(s, ω)‖α
V ds ≤ 1

2n
, n ∈ N.

Thus, for every n ∈ N,

lim sup
δ→0

∫

R

‖X̄(δ + s, ω) − X̄(s, ω)‖α
V ds

≤ 3α−1 lim sup
δ→0

∫

R

[
‖X̄(δ + s, ω) − fn(δ + s)‖α

V + ‖X̄(s, ω) − fn(s)‖α
V

]
ds

≤3α−1

n
, n ∈ N.

Here we used that since each fn is uniformly continuous, by Lebesgue’s dom-
inated convergence theorem we have that for all n ∈ N

lim
δ→0

∫

R

‖fn(δ + s) − fn(s)‖α
V ds = 0.

Letting n → ∞ we obtain

lim
δ→0

∫

R

‖X̄(δ + s, ω) − X̄(s, ω)‖α
V ds = 0, ω ∈ Ω′. (4.2.6)

Now, given t ∈ R, let [t] denote the largest integer ≤ t. Let γn(t) := 2−n[2nt],
n ∈ N, that is, γn(t) is the largest number of the form k

2n , k ∈ Z, below t.
Shifting the integral in (4.2.6) by t and taking δ = γn(t) − t we obtain

lim
n→∞

∫

R

‖X̄(γn(t) + s) − X̄(t + s)‖α
V ds = 0 on Ω′.
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Moreover,

∫ 1

0

‖X̄(γn(t) + s) − X̄(t + s)‖α
V ds

≤ 1[−2,2](t)2α−1

∫

R

[
‖X̄(γn(t) + s)‖α

V + ‖X̄(t + s)‖α
V

]
ds

= 2α1[−2,2](t)
∫ 1

0

‖X̄(s)‖α
V ds on Ω′.

So, by Lebesgue’s dominated convergence theorem, we obtain that

0 = lim
n→∞

E

∫

R

dt

∫ 1

0

‖X̄(γn(t) + s) − X̄(t + s)‖α
V ds

≥ lim
n→∞

E

∫ 1

0

ds

∫ 1

0

‖X̄(γn(t − s) + s) − X̄(t)‖α
V dt.

(4.2.7)

Given s ∈ [0, 1) and n ∈ N, let the partition In(s) be defined by

tn0 (s) := 0, tni (s) :=
(
s − [2ns]

2n

)
+

i − 1
2n

, 1 ≤ i ≤ 2n, tn2n+1(s) := 1.

Then, for t ∈ [tni−1(s), t
n
i (s)[, 1 � i � 2n + 1, one has t − s ∈ [2−n(i − [2ns] −

2), 2−n(i − [2ns] − 1)[ and hence,

γn(t − s) + s =
[
2−n(i − [2ns] − 2) + s

]+ = tni−1(s), 1 ≤ i ≤ 2n + 1.

Therefore, (4.2.7) implies

lim
n→∞

E

∫ 1

0

ds

∫ 1

0

‖X̄(t) − X̄n,s(t)‖α
V dt = 0,

where X̄n,s is the process defined as X̄ l for the partition In(s) but with
X(tli−1(s)) replaced by X̄(tli−1(s)). Similarly, the same holds for X̃n,s in place
of X̄n,s by using γ̃n := γn + 2−n instead of γn, where X̃n,s is defined as X̃ l

for the partition In(s) but with X(tli(s)) replaced by X̄(tli(s)). Hence, there
exist a subsequence nk → ∞ and a ds-zero set N1 ∈ B([0, 1]) such that

lim
k→∞

E

∫ 1

0

{
‖X̄(t)−X̄nk,s(t)‖α

V +‖X̄(t)−X̃nk,s(t)‖α
V

}
dt = 0, s ∈ [0, 1]\N1.

Since for 1 ≤ i ≤ 2n the maps s 	→ tni (s) are piecewise C1-diffeomorphisms,
the image measures of ds under these maps are absolutely continuous with
respect to ds. Therefore, since X̄ = X ds ⊗ P -a.e., there exists a ds-zero set
N2 ∈ B([0, 1]) such that
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X̄(tni (s)) = X(tni (s)) P -a.e. for all s ∈ [0, 1] \ N2, 1 ≤ i ≤ 2n.

Since for any s ∈ [0, 1] \ (N1 ∪ N2) one has E
(
‖X̄(tni (s))‖α

V

)
< ∞, the map

[0, 1] × Ω 
 (s, ω) 	→ X(tni (s), ω) ∈ V

is once again (a dt ⊗ P -version of an element) in K. Therefore, fixing
s ∈ [0, 1]\(N1∪N2), the sequence of the corresponding partitions Inl

(s), l ≥ 1,
has all properties of the assertion.

Remark 4.2.7. As follows from the above proof all the partition points tli, l ≥
1, 1 ≤ i ≤ kl − 1, in the assertion of Lemma 4.2.6 can be chosen outside an a
priori given Lebesgue zero set in [0, T ] instead of N2 above.

Proof of Theorem 4.2.5. Since M(t) :=
∫ t

0
Z(s) dW (s), t ∈ [0, T ], is already

a continuous martingale on H and since Y ∈ K∗ = Lα/(α−1)([0, T ] × Ω →
V ∗; dt ⊗ P ) is progressively measurable,

∫ t

0
Y (s) ds is a continuous adapted

process on V ∗. Thus, X is a continuous adapted process on V ∗, hence
B([0, T ]) ⊗F/B(V ∗)-measurable.

Claim (a):

‖X(t)‖2
H =‖X(s)‖2

H + 2
∫ t

s
V ∗〈Y (r),X(t)〉V dr + 2〈X(s),M(t) − M(s)〉H

+ ‖M(t) − M(s)‖2
H − ‖X(t) − X(s) − M(t) + M(s)‖2

H

(4.2.8)

holds for all t > s such that X(t),X(s) ∈ V.
Indeed, this follows immediately by noting that

‖M(t) − M(s)‖2
H − ‖X(t) − X(s) − M(t) + M(s)‖2

H

+ 2〈X(s),M(t) − M(s)〉H
= 2〈X(t) − X(s),M(t) − M(s)〉H − ‖X(t) − X(s)‖2

H

+ 2〈X(s),M(t) − M(s)〉H
= 2〈X(t),M(t) − M(s)〉H − ‖X(t) − X(s)‖2

H

= 2〈X(t),X(t) − X(s)〉H − 2
∫ t

s
V ∗〈Y (r),X(t)〉V dr

− ‖X(t)‖2
H − ‖X(s)‖2

H + 2〈X(t),X(s)〉H

= ‖X(t)‖2
H − ‖X(s)‖2

H − 2
∫ t

s
V ∗〈Y (r),X(t)〉V dr.
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Claim (b): We have

E

(
sup

t∈[0,T ]

‖X(t)‖2
H

)
< ∞. (4.2.9)

Indeed, by (4.2.8), for any t = tli ∈ Il \ {0, T} given in Lemma 4.2.6,

‖X(t)‖2
H − ‖X0‖2

H

=
i−1∑

j=0

(‖X(tlj+1)‖2
H − ‖X(tlj)‖2

H)

= 2
∫ t

0
V ∗〈Y (s), X̃ l(s)〉V ds

+ 2
∫ t

0

〈X̄ l(s), Z(s) dW (s)〉H + 2〈X(0),
∫ tl

1

0

Z(s) dW (s)〉H

+
i−1∑

j=0

(
‖M(tlj+1) − M(tlj)‖2

H − ‖X(tlj+1) − X(tlj) − M(tlj+1) + M(tlj)‖2
H

)
.

(4.2.10)

We note that since X̄ l is pathwise bounded the stochastic integral involving
X̄ l above is well-defined. By Lemma 4.2.6

E

(∫ T

0

| V ∗〈Y (s), X̃ l(s)〉V | ds

)

≤ ‖Y ‖K∗‖X̃ l‖K ≤ c1 (4.2.11)

for some constant c1 > 0 independent of l. Moreover, by the Burkholder–Davis
inequality (cf. Proposition D.0.1), Lemmas 2.4.2 and 2.4.3,

E

(

sup
t∈[0,T ]

∣∣∣∣

∫ t

0

〈X̄ l(s), Z(s) dW (s)〉H
∣∣∣∣

)

�3E

([∫ T

0

‖Z(s)∗X̄ l(s)‖2
U ds

]1/2
)

�3E

([∫ T

0

‖X̄ l(s)‖2
H‖Z(s)‖2

L2(U,H) ds

]1/2
)

=3E

([∫ T

0

‖X̄ l(s)‖2
H d〈M〉s

]1/2
)

≤1
4
E

(
sup

kl−1≥j≥0
‖X(tlj)‖2

H

)
+ 9E

(
〈M〉T

)
,

(4.2.12)
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where 〈M〉t =
∫ t

0
‖Z(s)‖2

L2(U,H) ds and we used that

ab � 1
12

a2 + 3b2, a, b > 0.

Finally, by Lemma 2.4.3

E

⎛

⎝
i−1∑

j=0

‖M(tlj+1) − M(tlj)‖2
H

⎞

⎠ =
i−1∑

j=0

E

(∫ tl
j+1

tl
j

‖Z(s)‖2
L2(U,H) ds

)

= E

(∫ tl
i

0

‖Z(s)‖2
L2(U,H) ds

)

= E
(
〈M〉tl

i

)
.

(4.2.13)

Combining (4.2.10)–(4.2.13), we obtain

E

(

sup
t∈Il\{T}

‖X(t)‖2
H

)

≤ c2

for some constant c2 > 0 independent of l. Therefore, letting l ↑ ∞ and setting
I := ∪l≥1Il \ {T}, with Il as in Lemma 4.2.6, we obtain

E

(
sup
t∈I

‖X(t)‖2
H

)
� c2,

since Il ⊂ Il+1 for all l ∈ N. Since for all t ∈ [0, T ]

N∑

j=1
V ∗〈X(t), ej〉2V ↑ ‖X(t)‖2

H as N ↑ ∞,

where {ej

∣∣j ∈ N} ⊂ V is an orthonormal basis of H and as usual for x ∈ V ∗\H
we set ‖x‖H := ∞, it follows that t 	→ ‖X(t)‖H is lower semicontinuous P -a.s.
Since I is dense in [0, T ], we arrive at supt∈[0,T ] ‖X(t)‖2

H = supt∈I ‖X(t)‖2
H .

Thus, (4.2.9) holds.
Claim (c):

lim
l→∞

sup
t∈[0,T ]

∣∣
∣∣

∫ t

0

〈X(s) − X̄ l(s), Z(s) dW (s)〉H
∣∣
∣∣ = 0 in probability. (4.2.14)

We first note that because of (b) X is H-valued and by its continuity in V ∗ the
process X is weakly continuous in H and, therefore, since B(H) is generated
by H∗, progressively measurable as an H-valued process. Hence, for any n ∈ N

the process PnX(s) is continuous in H so that
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lim
l→∞

∫ T

0

‖Pn(X(s) − X̄ l(s))‖2
H d〈M〉s = 0, P -a.s..

Here Pn denotes the orthogonal projection onto span{e1, . . . , en} in H. There-
fore, it suffices to show that for any ε > 0,

lim
n→∞

sup
l∈N

P

(
sup

t∈[0,T ]

∣∣∣∣

∫ t

0

〈(1 − Pn)X̄ l(s), Z(s) dW (s)〉H
∣∣∣∣ > ε

)
= 0,

lim
n→∞

P

(
sup

t∈[0,T ]

∣
∣∣∣

∫ t

0

〈(1 − Pn)X(s), Z(s) dW (s)〉H
∣
∣∣∣ > ε

)
= 0.

(4.2.15)

For any n ∈ N, δ ∈ (0, 1) and N > 1 by Corollary D.0.2 we have that

P

(
sup

t∈[0,T ]

∣∣∣∣

∫ t

0

〈(1 − Pn)X̄ l(s), Z(s) dW (s)〉H
∣∣∣∣ > ε

)

≤ 3δ

ε
+ P

(∫ T

0

‖X̄ l(s)‖2
H d〈(1 − Pn)M〉s > δ2

)

≤ 3δ

ε
+ P
(

sup
t∈[0,T ]

‖X(t)‖H > N
)

+
N2

δ2
E〈(1 − Pn)M〉T .

By first letting n → ∞, and using Lemma 2.4.3, and then letting N → ∞
and finally δ → 0, we prove the first equality in (4.2.15). Similarly, the second
equality is proved.

Claim (d): (4.2.4) holds for t ∈ I.
Fix t ∈ I. We may assume that t �= 0. In this case for each sufficiently large l ∈
N there exists a unique 0 < i < kl such that t = tli. We have X(tlj) ∈ V a.s. for
all j. By Lemma 4.2.6 and (4.2.14) the sum of the first three terms in the right-
hand side of (4.2.10) converges in probability to 2

∫ t

0 V ∗〈Y (s), X̄(s)〉V ds +
2
∫ t

0
〈X(s), Z(s) dW (s)〉H , as l → ∞. Hence by Lemma 2.4.3

‖X(t)‖2
H − ‖X(0)‖2

H

= 2
∫ t

0
V ∗〈Y (s), X̄(s)〉V ds + 2

∫ t

0

〈X(s), Z(s) dW (s)〉H + 〈M〉t − ε0,

where

ε0 := P − lim
l→∞

i−1∑

j=0

‖X(tlj+1) − X(tlj) − M(tlj+1) + M(tlj)‖2
H
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exists and “P − lim” denotes limit in probability. So, to prove (4.2.4) for t as
above, it suffices to show that ε0 = 0. Since for any ϕ ∈ V ,

〈X(tlj+1) − X(tlj) − M(tlj+1) + M(tlj), ϕ〉H =
∫ tl

j+1

tl
j

V ∗〈Y (s), ϕ〉V ds,

letting M̃ l and M̄ l be defined as X̃ l and X̄ l respectively, for M replacing X,
we obtain for every n ∈ N

ε0 = P − lim
l→∞

(∫ t

0
V ∗〈Y (s), X̃ l(s) − X̄ l(s) − Pn(M̃ l(s) − M̄ l(s))〉V ds

− 〈X(tl1) − X(0) − M(tl1) + M(0), PnM(0) − X(0)〉H

−
i−1∑

j=0

〈X(tlj+1) − X(tlj) − M(tlj+1)

+ M(tlj), (1 − Pn)(M(tlj+1) − M(tlj))〉H
)

.

By the weak continuity of X in H the second term converges to zero as
l → ∞. Lemma 4.2.6 implies that

∫ t

0 V ∗〈Y (s), X̃ l(s) − X̄ l(s)〉V ds → 0 in
probability as l → ∞. Moreover, since PnM(s) is a continuous process in V ,∫ t

0 V ∗〈Y (s), Pn(M̃ l(s) − M̄ l(s))〉V ds → 0 as l → ∞. Thus, by Lemma 2.4.3

ε0 ≤ P- lim
l→∞

( i−1∑

j=0

‖X(tlj+1) − X(tlj) − M(tlj+1) + M(tlj)‖2
H

) 1
2

·
( i−1∑

j=0

‖(1 − Pn)(M(tlj+1) − M(tlj))‖2
H

) 1
2

= ε
1/2
0 〈(1 − Pn)M〉1/2

t ,

which goes to zero as n → ∞ again by Lemma 2.4.3 and Lebesgue’s dominated
convergence theorem. Therefore, ε0 = 0.

Claim (e): (4.2.4) holds for all t ∈ [0, T ]\I.
Take Ω′ ∈ F with full probability such that the limit in (4.2.14) is a pointwise
limit in Ω′ for some subsequence (denoted again by l → ∞) and (4.2.4) holds
for all t ∈ I on Ω′. If t /∈ I, for any l ∈ N there exists a unique j(l) < kl

such that t ∈]tlj(l), t
l
j(l)+1]. Letting t(l) := tlj(l), we have t(l) ↑ t as l ↑ ∞. By

(4.2.4) for t ∈ I, for any l > m we have on Ω′ (since the above applies to
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X − X(t(m)) replacing X)

‖X(t(l)) − X(t(m))‖2
H

= 2
∫ t(l)

t(m)
V ∗〈Y (s), X̄(s) − X(t(m))〉V ds

+ 2
∫ t(l)

t(m)

〈X(s) − X(t(m)), Z(s) dW (s)〉H + 〈M〉t(l) − 〈M〉(t(m)

= 2
∫ T

0

1[t(m),t(l)](s) V ∗〈Y (s), X̄(s) − X̄m(s)〉V ds

+ 2
∫ t(m)

t(l)

〈X(s) − X̄m(s), Z(s) dW (s)〉H + 〈M〉t(l) − 〈M〉(t(m).

(4.2.16)

The second summand is dominated by

4 sup
t∈[0,T ]

∣∣∣∣

∫ t

0

〈X(s) − X̄m(s), Z(s) dW (s)〉H
∣∣∣∣ .

Thus, by the continuity of 〈M〉t and (4.2.14) (holding pointwise on Ω′), we
have that

lim
m→∞

sup
l>m

{
2
∣∣∣∣

∫ T

0

1[t(m),t(l)](s)〈 X(s) − X̄m(s), Z(s) dW (s)〉H
∣∣∣∣

+ |〈M〉t(l) − 〈M〉(t(m)|
}

= 0

(4.2.17)

holding on Ω′. Furthermore, by Lemma 4.2.6, selecting another subsequence
if necessary, we have for some Ω′′ ∈ F with full probability and Ω′′ ⊂ Ω′, that
on Ω′′

lim
m→∞

∫ T

0

| V ∗〈Y (s), X̄(s) − X̄m(s)〉V | ds = 0.

Since for all t /∈ I

sup
l>m

∫ t(l)

t(m)

| V ∗〈Y (s), X̄(s) − X̄m(s)〉V | ds

≤
∫ T

0

| V ∗〈Y (s), X̄(s) − X̄m(s)〉V | ds,
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we have that

lim
m→∞

sup
l>m

∫ t(l)

t(m)
V ∗〈Y (s), X̄(s) − X̄m(s)〉V ds = 0

holds on Ω′′.
Combining this with (4.2.16) and (4.2.17), we conclude that

lim
m→∞

sup
l≥m

‖X(t(l)) − X(t(m))‖2
H = 0

holds on Ω′′. Thus, (X(t(l)))l∈N converges in H on Ω′′. Since we know that
X(t(l)) → X(t) in V ∗, it converges to X(t) strongly in H on Ω′′. Therefore,
since (4.2.4) holds on Ω′′ for t(l), letting l → ∞, we obtain (4.2.4) on Ω′′ also
for all t /∈ I.

Claim (f): X is strongly continuous in H.
Since the right-hand side of (4.2.4) is on Ω′′ continuous in t ∈ [0, T ], so must
be its left-hand side, i.e. t 	→ ‖X(t)‖H is continuous on [0, T ]. Therefore, the
weak continuity of X(t) in H implies its strong continuity in H.

Remark 4.2.8. In the situation of Theorem 4.2.5 we have

E(‖X(t)‖2
H)

= E(‖X0‖2
H) +

∫ t

0

E(2 V ∗〈Y (s), X̄(s)〉V +‖Z(s)‖2
L2(U,H)) ds, t ∈ [0, T ].

(4.2.18)

Proof. Let M(t), t ∈ [0, T ], denote the real valued local martingale in (4.2.4)
and let τl, l ∈ N, be (Ft)-stopping times such that M(t ∧ τl), t ∈ [0, T ], is a
martingale and τl ↑ ∞ as l → ∞. Then for all l ∈ N, t ∈ [0, T ], we have

E(‖X(t ∧ τl)‖2
H)

= E(‖X0‖2
H) +

∫ t

0

E(1[0,τl](s)[2 V ∗〈Y (s), X̄(s)〉V +‖Z(s)‖2
L2(U,H)]) ds.

(4.2.19)

Using Claim (b) from the proof of Theorem 4.2.5 and the fact that the inte-
grands on the right-hand side of (4.2.19) are dt ⊗ P -integrable we can apply
Lebesgue’s dominated convergence theorem to obtain the assertion.

Now we turn to the proof of Theorem 4.2.4. We first need some prepa-
rations. Let {ei|i ∈ N} ⊂ V be an orthonormal basis of H and let Hn :=
span{e1, . . . , en} such that span{ei|i ∈ N} is dense in V . Let Pn : V ∗ → Hn

be defined by

Pny :=
n∑

i=1

V ∗〈y, ei〉V ei, y ∈ V ∗. (4.2.20)
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Clearly, Pn|H is just the orthogonal projection onto Hn in H. Let {gi|i ∈ N}
be an orthonormal basis of U and set

W (n)(t) :=
n∑

i=1

〈W (t), gi〉Ugi =
n∑

i=1

Bi(t) gi.

For each finite n ∈ N we consider the following stochastic equation on Hn :

dX(n)(t)

= PnA(t,X(n)(t)) dt + PnB(t,X(n)(t)) dW (n)(t), 1 ≤ j ≤ n,
(4.2.21)

where X(n)(0) := PnX0. It is easily seen (cf. in particular Remark 4.1.1, parts
1 and 2) that we are in the situation of Theorem 3.1.1 which implies that
(4.2.21) has a unique continuous strong solution. Let

J := L2([0, T ] × Ω, dt ⊗ P ;L2(U,H)). (4.2.22)

To construct the solution to (4.2.1), we need the following lemma.

Lemma 4.2.9. Under the assumptions in Theorem 4.2.4, there exists C ∈
]0,∞[ such that

‖X(n)‖K + ‖A(·,X(n))‖K∗ + sup
t∈[0,T ]

E‖X(n)(t)‖2
H ≤ C (4.2.23)

for all n ∈ N.

Proof. By the finite-dimensional Itô formula we have P -a.s.

‖X(n)(t)‖2
H = ‖X(n)

0 ‖2
H +
∫ t

0

(
2 V ∗〈A(s,X(n)(s)),X(n)(s)〉V

+ ‖Z(n)(s)‖2
L2(U,H)

)
ds + M (n)(t), t ∈ [0, T ],

where Z(n)(s) := PnB(s,X(n)(s)) and

M (n)(t) := 2
∫ t

0

〈X(n)(s), PnB(s,X(n)(s)) dW (n)(s)〉H , t ∈ [0, T ],

is a local martingale. Let τl, l ∈ N, be (Ft)-stopping times such that ‖X(n)(t∧
τl)(ω)‖V is bounded uniformly in (t, ω) ∈ [0, T ]×Ω, M (n)(t∧ τl), t ∈ [0, T ], is
a martingale for each l ∈ N and τl ↑ ∞ as l → ∞. Then for all l ∈ N, t ∈ [0, T ]

E
(
‖X(n)(t ∧ τl)‖2

H

)

= E(‖X(n)
0 ‖2

H) +
∫ t

0

E
(
1[0,τl](s)(2 V ∗〈A(s,X(n)(s)),X(n)(s)〉V

+ ‖Z(n)(s)‖2
L2(U,H))

)
ds.
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Hence using the product rule we obtain

E(e−c1t‖X(n)(t ∧ τl)‖2
H)

=E(‖X(n)
0 ‖2

H) +
∫ t

0

E(‖X(n)(s ∧ τl)‖2
H) d(e−c1s)

+
∫ t

0

e−c1s d(E(‖X(n)(s ∧ τl)‖2
H))

=E(‖X(n)
0 ‖2

H) −
∫ t

0

c1E(‖X(n)(s ∧ τl)‖2
H)e−c1s ds

+
∫ t

0

e−c1sE
(
1[0,τl](s)(2 V ∗〈A(s,X(n)(s)),X(n)(s)〉V

+ ‖Z(n)(s)‖2
L2(U,H))

)
ds.

(4.2.24)

Applying (H3) we arrive at

E(e−c1t‖X(n)(t ∧ τl)‖2
H) +

∫ t

0

c1E(‖X(n)(s ∧ τl)‖2
H)e−c1s ds

+ c2

∫ t

0

E(1[0,τl](s)‖X(n)(s ∧ τl)‖α
V )e−c1s ds

� E(‖X(n)
0 ‖2

H) +
∫ t

0

c1E(‖X(n)(s)‖2
H)e−c1s ds +

∫ T

0

E(|f(s)|) ds.

Now taking l → ∞ and applying Fatou’s lemma we get

E(e−c1t‖X(n)(t)‖2
H) + c2E

(∫ t

0

‖X(n)(s)‖α
V e−c1s ds

)

�E(‖X(n)
0 ‖2

H) + E

(∫ T

0

|f(s)| ds

)

for all t ∈ [0, T ]. Here we used that by Theorem 4.2.5 (applied to (4.2.21)) the
substracted terms are finite. Since ‖X(n)

0 ‖H � ‖X0‖H , now the assertion fol-
lows for the first and third summand in (4.2.23). For the remaining summand
the assertion then follows by (H4).

Proof of Theorem 4.2.4. By the reflexivity of K, Lemma 4.2.9 and Remark
4.1.1, part 1, we have, for a subsequence nk → ∞:

(i) X(nk) → X̄ weakly in K and weakly in L2([0, T ] × Ω; dt ⊗ P ;H).

(ii) Y (nk) := A(·,X(nk)) → Y weakly in K∗.
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(iii) Z(nk) := Pnk
B(·,X(nk)) → Z weakly in J and hence

∫ ·

0

Pnk
B(s,X(nk)(s)) dW (nk)(s) →

∫ ·

0

Z(s) dW (s)

weakly in L∞([0, T ], dt;L2(Ω, P ;H)) (equipped with the supremum
norm).

Here the second part in (iii) follows since also B(·,X(nk))P̃nk
→ Z weakly in

J , where P̃n is the orthogonal projection onto span{g1, · · · , gn} in U , since

∫ ·

0

Pnk
B(s,X(nk)(s)) dW (nk)(s) =

∫ ·

0

Pnk
B(s,Xnk(s))P̃nk

dW (s)

and since a bounded linear operator between two Banach spaces is trivially
weakly continuous. Since the approximants are progressively measurable, so
are (the dt ⊗ P -versions) X̄, Y and Z.

Thus from (4.2.21) for all v ∈
⋃

n�1 Hn, ϕ ∈ L∞([0, T ] × Ω) by Fubini’s
theorem we get

E

(∫ T

0
V ∗〈X̄(t), ϕ(t)v〉V dt

)

= lim
k→∞

E

(∫ T

0
V ∗〈X(nk)(t), ϕ(t)v〉V dt

)

= lim
k→∞

E

(∫ T

0
V ∗〈X(nk)

0 , ϕ(t)v〉V dt

+
∫ T

0

∫ t

0
V ∗〈Pnk

Y (nk)(s), ϕ(t)v〉V ds dt

+
∫ T

0

〈∫ t

0

Z(nk)(s) dW (nk)(s), ϕ(t)v
〉

H

dt

)

= lim
k→∞

[
E

(

〈X(nk)
0 , v〉H

∫ T

0

ϕ(t) dt

)

+ E

(∫ T

0 V ∗
〈Y (nk)(s),

∫ T

s

ϕ(t) dt v〉
V

ds

)

+
∫ T

0

E

(
ϕ(t)
〈∫ t

0

Z(nk)(s) dW (nk)(s), v
〉

H

)
dt

]

=E

(∫ T

0 V ∗
〈X0 +

∫ t

0

Y (s) ds +
∫ t

0

Z(s) dW (s), ϕ(t)v〉
V

dt

)
.
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Therefore, defining

X(t) := X0 +
∫ t

0

Y (s) ds +
∫ t

0

Z(s) dW (s), t ∈ [0, T ], (4.2.25)

we have X = X̄ dt ⊗ P -a.e.
Now Theorem 4.2.5 applies to X in (4.2.25), so X is continuous in H and

E

(
sup
t≤T

‖X(t)‖2
H

)
< ∞.

Thus, it remains to verify that

B(·, X̄) = Z, A(·, X̄) = Y, dt ⊗ P -a.e.. (4.2.26)

To this end, we first note that for any nonnegative ψ ∈ L∞([0, T ], dt; R) it
follows from (i) that

E

(∫ T

0

ψ(t)‖X̄(t)‖2
H dt

)

= lim
k→∞

E

(∫ T

0

〈ψ(t)X̄(t),X(nk)(t)〉H dt

)

≤
(

E

∫ T

0

ψ(t)‖X̄(t)‖2
H dt

)1/2

lim inf
k→∞

(
E

∫ T

0

ψ(t)‖X(nk)(t)‖2
H dt

)1/2

< ∞.

Since X = X̄ dt ⊗ P -a.e., this implies

E

(∫ T

0

ψ(t)‖X(t)‖2
H dt

)

≤ lim inf
k→∞

E

(∫ T

0

ψ(t)‖X(nk)(t)‖2
H dt

)

. (4.2.27)

By (4.2.25) using Remark 4.2.8 and the product rule we obtain that

E
(
e−ct‖X(t)‖2

H

)
− E
(
‖X0‖2

H

)

= E

(∫ t

0

e−cs
(
2 V ∗〈Y (s), X̄(s)〉V + ‖Z(s)‖2

L2(U,H) − c‖X(s)‖2
H

)
ds

)
.

(4.2.28)

Furthermore, for any φ ∈ K ∩L2([0, T ]×Ω, dt⊗ P ;H) and taking l → ∞ in
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(4.2.24) with c1 replaced by c

E
(
e−ct‖X(nk)(t)‖2

H

)
− E
(
‖X(nk)

0 ‖2
H

)

= E

(∫ t

0

e−cs
(
2 V ∗〈A(s,X(nk)(s)),X(nk)(s)〉V

+ ‖Pnk
B(s,X(nk)(s))P̃nk

‖2
L2(U,H) − c‖X(nk)(s)‖2

H

)
ds

)

≤ E

(∫ t

0

e−cs
(
2 V ∗〈A(s,X(nk)(s)),X(nk)(s)〉V

+ ‖B(s,X(nk)(s))‖2
L2(U,H) − c‖X(nk)(s)‖2

H

)
ds

)

= E

(∫ t

0

e−cs
(
2 V ∗〈A(s,X(nk)(s)) − A(s, φ(s)),X(nk)(s) − φ(s)〉V

+ ‖B(s,X(nk)(s)) − B(s, φ(s))‖2
L2(U,H) − c‖X(nk)(s) − φ(s)‖2

H

)
ds

+ E

(∫ t

0

e−cs
(
2 V ∗〈A(s, φ(s)),X(nk)(s)〉V

+ 2 V ∗〈A(s,X(nk)(s)) − A(s, φ(s)), φ(s)〉V
− ‖B(s, φ(s))‖2

L2(U,H) + 2〈B(s,X(nk)(s)), B(s, φ(s))〉L2(U,H)

− 2c〈X(nk)(s), φ(s)〉H + c‖φ(s)‖2
H

)
ds

)
.

(4.2.29)

Note that by (H2) the first of the two summands above is negative. Hence by
letting k → ∞ we conclude by (i)–(iii), Fubini’s theorem, and (4.2.27) that
for every nonnegative ψ ∈ L∞([0, T ], dt; R)

E

(∫ T

0

ψ(t)(e−ct‖X(t)‖2
H − ‖X0‖2

H) dt

)

≤ E

(∫ T

0

ψ(t)
(∫ t

0

e−cs
[
2 V ∗〈A(s, φ(s)), X̄(s)〉V + 2 V ∗〈Y (s)

− A(s, φ(s)), φ(s)〉V − ‖B(s, φ(s))‖2
L2(U,H) + 2〈Z(s), B(s, φ(s))〉L2(U,H)

− 2c〈X(s), φ(s)〉H + c‖φ(s)‖2
H

]
ds

)
dt

)
.
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Inserting (4.2.28) for the left-hand side and rearranging as above we arrive at

0 ≥E

(∫ T

0

ψ(t)
(∫ t

0

e−cs
[
2 V ∗〈Y (s) − A(s, φ(s)), X̄(s) − φ(s)〉V

+ ‖B(s, φ(s)) − Z(s)‖2
L2(U,H) − c‖X(s) − φ(s)‖2

H

]
ds

)
dt

)
.

(4.2.30)

Taking φ = X̄ we obtain from (4.2.30) that Z = B(·, X̄). Finally, first applying
(4.2.30) to φ = X̄ − εφ̃ v for ε > 0 and φ̃ ∈ L∞([0, T ] × Ω, dt ⊗ P ; R), v ∈ V ,
then dividing both sides by ε and letting ε → 0, by Lebesgue’s dominated
convergence theorem, (H1) and (H4), we obtain

0 ≥ E

(∫ T

0

ψ(t)
(∫ t

0

e−csφ̃(s) V ∗〈Y (s) − A(s, X̄(s)), v〉V ds

)
dt

)

.

By the arbitrariness of ψ and φ̃, we conclude that Y = A(·, X̄). This completes
the existence proof.

The uniqueness is a consequence of the following proposition.

Proposition 4.2.10. Consider the situation of Theorem 4.2.4 and let X,Y
be two solutions. Then for c ∈ R as in (H2)

E(‖X(t) − Y (t)‖2
H) � ectE(‖X(0) − Y (0)‖2

H) for all t ∈ [0, T ]. (4.2.31)

Proof. We first note that by our definition of solution (cf. Definition 4.2.1)
and by Remark 4.1.1, part 1 we can apply Remark 4.2.8 to X −Y and obtain
for t ∈ [0, T ]

E(‖X(t) − Y (t)‖2
H) = E(‖X0 − Y0‖2

H)

+
∫ t

0

E(2 V ∗〈A(s, X̄(s)) − A(s, Ȳ (s)), X̄(s) − Ȳ (s)〉V

+ ‖B(s,X(s)) − B(s, Y (s))‖2
L2(U,H)) ds

� E(‖X0 − Y0‖2
H) + c

∫ t

0

E(‖X(s) − Y (s)‖2
H) ds,

where we used (H2) in the last step. Applying Gronwall’s lemma we obtain
the assertion.

Remark 4.2.11. Let s ∈ [0, T ] and Xs ∈ L2(Ω,Fs, P ;H). Consider the
equation

X(t) = Xs +
∫ t

s

A(u, X̄(u)) du +
∫ t

s

B(u, X̄(u)) dW (u), t ∈ [s, T ] (4.2.32)
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with underlying Wiener process W (t)−W (s), t ∈ [s, T ], and filtration (Ft)t�s,
i.e. we just start our time at s. We define the notion of solution for (4.2.32)
analogously to Definition 4.2.1. Then all results above in the case s = 0 carry
over to this more general case. In particular, there exists a unique solution with
initial condition Xs denoted by X(t, s,Xs), t ∈ [s, T ]. Let 0 � r � s � T .
Then for Xr ∈ L2(Ω,Fr, P ;H)

X(t, r,Xr) = X(t, s,X(s, r,Xr)), t ∈ [s, T ] P-a.e. (4.2.33)

Indeed, we have

X(t, r,Xr) = Xr +
∫ t

r

A(u, X̄(u, r,Xr)) du +
∫ t

r

B(u, X̄(u, r,Xr)) dW (u)

= X(s, r,Xr) +
∫ t

s

A(u, X̄(u, r,Xr)) du

+
∫ t

s

B(u, X̄(u, r,Xr)) dW (u), t ∈ [s, T ].

But by definition X(t, s,X(s, r,Xr)), t ∈ [s, T ], satisfies the same equation.
So, (4.2.33) follows by uniqueness. Furthermore, if for s ∈ [0, T ], Xs = x for
some x ∈ H and A and B are independent of ω ∈ Ω, then X(t, s, x) obviously
is independent of Fs for all t ∈ [s, T ], since so are collections of increments
of W (t), t ∈ [s, T ].

4.3. Markov property and invariant measures

Now we are going to prove some qualitative results about the solutions of
(4.2.1) or (4.2.32) and about their transition probabilities, i.e. about

ps,t(x, dy) := P ◦ (X(t, s, x))−1(dy), 0 � s � t � T, x ∈ H. (4.3.1)

As usual we set for B(H)-measurable F : H → R, and t ∈ [s, T ], x ∈ H

ps,tF (x) :=
∫

F (y)ps,t(x, dy),

provided F is ps,t(x, dy)-integrable.

Remark 4.3.1. The measures ps,t(x, dy), 0 � s � t � T, x ∈ H, could in
principle depend on the chosen Wiener process and the respective filtration.
However, the construction of our solutions X(t, s, x), t ∈ [s, T ], suggests that
this is not the case. This can be rigorously proved in several ways. It is e.g. a
consequence of the famous Yamada–Watanabe theorem which is included in
Appendix E below in a finite-dimensional case, which immediately extends to
infinite dimensions if the underlying Wiener process has covariance of finite
trace. For the case of a cylindrical Wiener process we refer to [Ond04]. In
these notes we shall use the latter as a fact referring to this remark each time
we do so.
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Proposition 4.3.2. Consider the situation of Theorem 4.2.4. Let F : H → R

be Lipschitz with

Lip(F ) := sup
x,y∈H,x�=y

|F (x) − F (y)|
‖x − y‖H

(< ∞)

denoting its Lipschitz constant. Then for all 0 � s � t � T

ps,t|F |(x) < ∞ for all x ∈ H

and for all x, y ∈ H

|ps,tF (x) − ps,tF (y)| � e
c
2 (t−s)Lip(F ) ‖x − y‖H , (4.3.2)

where c is as in (H2).

Proof. Clearly, for all x ∈ H

|F (x)| � |F (0)| + Lip(F ) ‖x‖H ,

and thus for all 0 � s � t � T

ps,t|F |(x) = E(|F |(X(t, s, x)))

� |F (0)| + Lip(F ) E(‖X(t, s, x)‖H)

� |F (0)| + Lip(F )

(

E

(

sup
t∈[s,T ]

‖X(t, s, x)‖2
H

))1/2

< ∞.

Furthermore, for x, y ∈ H by (the “started at s” analogue of) (4.2.31)

|ps,tF (x) − ps,tF (y)| � E(|F (X(t, s, x)) − F (X(t, s, y)))|)
� Lip(F ) E(‖X(t, s, x) − X(t, s, y)‖H)

� Lip(F ) e
c
2 (t−s)‖x − y‖H .

Proposition 4.3.3. Consider the situation of Theorem 4.2.4 and, in addition,
assume that both A and B as well as f and g in (H3),(H4) respectively, are
independent of ω ∈ Ω. Then any solution X(t), t ∈ [r, T ], of (4.2.32) (with r
replacing s) is Markov in the following sense:
for every bounded, B(H)-measurable F : H → R, and all s, t ∈ [r, T ], s � t

E(F (X(t))|Fs)(ω) = E(F (X(t, s,X(s)(ω)))) for P-a.e. ω ∈ Ω. (4.3.3)
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Proof. Clearly, by a monotone class argument we may assume F in (4.3.3)
to be Lipschitz continuous. We first note that by Proposition 4.3.2 for all
0 � s � t � T the map

H 
 x 	→ E(F (X(t, s, x))) = ps,tF (x)

is Lipschitz on H. So, the right-hand side of (4.3.3) is Fs-measurable. Further-
more, for any bounded Fs-measurable function Fs : Ω → R, applying (4.2.33)
we have

E(FsF (X(t))) = E(FsF (X(t, s,X(s)))). (4.3.4)

By Lemma A.1.4 there exists a sequence of H-valued Fs-measurable simple
functions

fn : Ω → H, fn =
Nn∑

k=1

h
(n)
k 1{fn=h

(n)
k }, Nn ∈ N,

where h
(n)
1 , . . . , h

(n)
Nn

∈ H are pairwise distinct and Ω =
⋃Nn

k=1{fn = h
(n)
k },

such that

‖fn(ω) − X(s)(ω)‖H ↓ 0 as n → ∞ for all ω ∈ Ω.

Hence again by (the “s-shifted version” of) (4.2.31) the right-hand side of
(4.3.4) is equal to

lim
n→∞

E(FsF (X(t, s, fn)))

= lim
n→∞

Nn∑

k=1

E
(
Fs1{fn=h

(n)
k }F (X(t, s, h(n)

k ))
)

= lim
n→∞

Nn∑

k=1

E
(
Fs1{fn=h

(n)
k }

)
E
(
F (X(t, s, h(n)

k ))
)

= lim
n→∞

E

(

Fs

Nn∑

k=1

1{fn=h
(n)
k }E

(
F (X(t, s, h(n)

k ))
))

= lim
n→∞

∫
Fs(ω)E(F (X(t, s, fn(ω))))P (dω)

=
∫

Fs(ω)E(F (X(t, s,X(s)(ω))))P (dω),

where we used the last part of Remark 4.2.11 for the first and again (4.2.31)
for the last equality. Now the assertion follows.

Corollary 4.3.4. Consider the situation of Proposition 4.3.3 and let 0 � r �
s � t � T . Then

pr,sps,t = pr,t, (4.3.5)
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i.e. for F : H → R, bounded and B(H)-measurable, x ∈ H,

pr,s(ps,tF )(x) = pr,tF (x).

Proof. For F : H → R as above and x ∈ H by Proposition 4.3.3 we have

pr,s(ps,tF )(x) = E(ps,tF (X(s, r, x))) =
∫

E(F (X(t, s,X(s, r, x)(ω))))P (dω)

=
∫

E(F (X(t, r, x))|Fs)(ω)P (dω)

= E(F (X(t, r, x))) = pr,tF (x).

Now let us assume that in the situation of Theorem 4.2.4 both A and B as
well as f and g in (H3), (H4) respectively are independent of (t, ω) ∈ [0, T ]×Ω
(so they particularly hold for all T ∈ [0,∞[). Then again using the notation
introduced in Remark 4.2.11 for 0 � s � t < ∞ and x ∈ H we have

X(t, s, x) = XW̃ (t − s, 0, x) P -a.e., (4.3.6)

where XW̃ (t, 0, x), t ∈ [0,∞[, is the solution of

X(t) = x +
∫ t

0

A(X̄(u)) du +
∫ t

0

B(X̄(u)) dW̃ (u)

and W̃ := W (· + s) − W (s) with filtration Fs+u, u ∈ [0,∞[, which is again
a Wiener process. To show this let us express the dependence of the solution
X(t, s, x), s ∈ [t,∞) of (4.2.32) with Xs := x on the Wiener process W by
writing XW (t, s, x) instead of X(t, s, x) and similarly, pW

s,t(s, dy) instead of
ps,t(x, dy). Then, for all 0 � s � t < ∞

XW ((t − s) + s, s, x)

=XW (t, s, x)

=x +
∫ t

s

A(X̄W (u, s, x)) du +
∫ t

s

B(X̄W (u, s, x)) dW (u)

=x +
∫ t−s

0

A(X̄W (u + s, s, x)) du +
∫ t−s

0

B(X̄W (u + s, s, x)) dW̃ (u),

So, by uniqueness the process XW (u+s, s, x), u ∈ [0,∞[, must P -a.e. coincide
with XW̃ (u, 0, x), u ∈ [0,∞[. In particular, it follows by Remark 4.3.1 that

pW
s,t(x, dy) = P ◦ (XW̃ (t − s, 0, x))−1(dy) = pW̃

0,t−s(x, dy) = pW
0,t−s(x, dy)

(4.3.7)
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(“time homogeneity”), where we used Remark 4.3.1 for the last equality.
Defining

pt := pW
0,t, t ∈ [0,∞[,

equality (4.3.5) for r = 0 and s + t replacing t turns into

ps+t = pspt for s, t ∈ [0,∞[. (4.3.8)

For x ∈ H we define
Px := P ◦ (X(·, 0, x))−1, (4.3.9)

i.e. Px is the distribution of the solution to (4.2.1) with initial condition x ∈ H,
defined as a measure on C([0,∞[,H). We equip C([0,∞[,H) with the σ-
algebra

G := σ(πs|s ∈ [0,∞[)

and filtration
Gt := σ(πs|s ∈ [0, t]), t ∈ [0,∞[,

where πt(w) := w(t) for w ∈ C([0,∞[,H), t ∈ [0,∞[.

Proposition 4.3.5. Consider the situation of Theorem 4.2.4 and, in addition,
assume that both A and B as well as f and g in (H3),(H4) respectively, are
independent of (t, ω) ∈ [0, T ]×Ω (so they particularly hold for all T ∈ [0,∞[).
Then the following assertions hold:

1. Px, x ∈ H, form a time-homogenous Markov process on C([0,∞),H)
with respect to the filtration Gt, t ∈ [0,∞[, i.e. for all s, t ∈ [0,∞[, and
all bounded, B(H)-measurable F : H → R

Ex(F (πt+s)|Gs) = Eπs
(F (πt)) Px − a.e., (4.3.10)

where Ex and Ex(·|Gs) denote expectation, conditional expectation with
respect to Px respectively.

2. Suppose dim H < ∞. If there exist η, f ∈ ]0,∞[ such that

2 V ∗〈A(v), v〉V +‖B(v)‖2
L2(U,H) � −η‖v‖2

H + f for all v ∈ V, (4.3.11)

(“strict coercivity”) then there exists an invariant measure µ for (pt)t�0,
i.e. µ is a probability measure on (H,B(H)) such that

∫
ptF dµ =

∫
F dµ for all t ∈ [0,∞[ (4.3.12)

and all bounded, B(H)-measurable F : H → R.

Proof. 1. The right-hand side of (4.3.10) is Gs-measurable by Proposition
4.3.2 and a monotone class argument. So, let 0 � t1 < t2 < . . . < tn � s
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and let G : Hn → R be bounded and ⊗n
i=1B(H)-measurable. Then by

(4.3.3) and (4.3.6)

Ex(G(πt1 , . . . , πtn
)F (πt+s))

= E(G(X(t1, 0, x), . . . ,X(tn, 0, x))F (X(t + s, 0, x))

= E(G(X(t1, 0, x), . . . ,X(tn, 0, x))E(F (X(t + s, 0, x))|Fs))

=
∫

G(X(t1, 0, x)(ω), . . . ,X(tn, 0, x)(ω))

E(F (X(t + s, s,X(s, 0, x)(ω))))P (dω)

=
∫

G(X(t1, 0, x)(ω), . . . ,X(tn, 0, x)(ω))

E(F (X(t, 0,X(s, 0, x)(ω))))P (dω)

=
∫

G(πt1(ω), . . . , πtn
(ω))E(F (X(t, 0, πs(ω))))Px(dω)

=
∫

G(πt1(ω), . . . , πtn
(ω))Eπs(ω)(F (πt))Px(dω).

Since the functions G(πt1 , . . . , πtn
) considered above generate Fs, equal-

ity (4.3.10) follows.

2. Let δ0 be the Dirac measure in 0 ∈ H considered as a measure on
(H,B(H)) and for n ∈ N define the Krylov–Bogoliubov measure

µn :=
1
n

∫ n

0

δ0pt dt,

i.e. for B(H)-measurable F : H → [0,∞[
∫

F dµn =
1
n

∫ n

0

ptF (0) dt.

Clearly, each µn is a probability measure. We first prove that {µn|n ∈ N}
is tight. By Remark 4.2.8 for any solution X to (4.2.1) applying the
product rule and using (4.3.11) we get that

E(eηt‖X(t)‖2
H) = E(‖X(0)‖2

H) + E

(∫ t

0

eηs
(
2 V ∗〈A(X̄(s)), X̄(s)〉V

+ ‖B(X̄(s))‖2
L2(U,H) + η‖X̄(s)‖2

H

)
ds

)

� E(‖X(0)‖2
H) + f

∫ t

0

eηs ds, t ∈ [0,∞[.
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Therefore,

E(‖X(t)‖2
H) � e−ηtE(‖X(0)‖2

H) +
f

η
, t ∈ [0,∞[, (4.3.13)

which in turn implies that
∫
‖x‖2

Hµn(dx) =
1
n

∫ n

0

E(‖X(t, 0, 0)‖2
H) dt � f

η
for all n ∈ N.

(4.3.14)
Hence by Chebychev’s inequality

sup
n∈N

µn({‖·‖2
H > R}) � 1

R

f

η
→ 0 as R → ∞. (4.3.15)

Since dimH < ∞, the closed balls {‖·‖2
H � R}, R ∈ ]0,∞[, are compact.

Hence by Prohorov’s theorem there exists a probability measure µ and
a subsequence (µnk

)k∈N such that µnk
→ µ weakly as k → ∞.

Now let us prove that µ is invariant for (pt)t�0. So, let t ∈ [0,∞[ and
let F : H → R be bounded and B(H)-measurable. By a monotone class
argument we may assume that F is Lipschitz continuous. Then ptF is
bounded and (Lipschitz) continuous by Proposition 4.3.2. Hence using
(4.3.8) for the third equality below, we obtain
∫

ptF dµ

= lim
k→∞

∫
ptF dµnk

= lim
k→∞

1
nk

∫ nk

0

ps(ptF )(0) ds

= lim
k→∞

1
nk

∫ nk

0

ps+tF (0) ds

= lim
k→∞

∫
F dµnk

+ lim
k→∞

1
nk

∫ nk+t

nk

psF (0) ds − lim
k→∞

1
nk

∫ t

0

psF (0) ds

=
∫

F dµ,

(4.3.16)

since |psF (0)| � supx∈H |F (x)|, so the second and third limits above are
equal to zero.

Remark 4.3.6. If dim H = ∞, the above proof of Proposition 4.3.5, part 2
works up to and including (4.3.15). However, since closed balls are no longer
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compact, one can apply Prohorov’s theorem only on a Hilbert space H1 into
which H is compactly embedded. So, let H1 be a separable Hilbert space such
that H ⊂ H1 compactly and densely (e.g. take H1 to be the completion of H
in the norm

‖x‖1 :=

[ ∞∑

i=1

αi〈x, ei〉2H

]1/2

, x ∈ H,

where αi ∈ ]0,∞[,
∑∞

i=1 αi < ∞, and {ei|i ∈ N} is an orthonormal basis of
H); extending the measures µn by zero to B(H1) we obtain that {µn|n ∈ N} is
tight on H1. This extension of the measures is possible, since by Kuratowski’s
theorem H ∈ B(H1) and B(H1) ∩ H = B(H). Hence by Prohorov’s theorem
there exists a probability measure µ̄ on (H1,B(H1)) and a subsequence (µnk

)k∈N

such that µnk
→ µ̄ weakly on H1 as k → ∞. As in Exercise 4.2.3, part 1 one

constructs a lower semicontinuous function Θ : H1 → [0,∞] such that

Θ :=
{

‖·‖H on H
+∞ on H1\H.

Then (4.3.14) implies that for li, i ∈ N, as in Example 4.2.3, part 1,
∫

H1

Θ2(x)µ̄( dx) = lim
N→∞

lim
M→∞

∫
sup
i�N

〈li, x〉2H1
∧ Mµ̄(dx)

= sup
M,N∈N

lim
k→∞

∫
sup
i�N

〈li, x〉2H1
∧ Mµnk

(dx)

� lim inf
k→∞

sup
N,M∈N

∫
sup
i�N

〈li, x〉2H1
∧ Mµnk

(dx)

= lim inf
k→∞

∫

H

‖x‖2
Hµnk

(dx)

� f

η
.

Hence Θ < ∞ µ̄-a.e., so µ̄(H) = 1. Therefore, µ := µ̄
∣∣
B(H)

is a probability
measure on (H,B(H)).
Unfortunately, the part of the proof of Proposition 4.3.5, part 2 above, which
shows that µ is invariant, does not work. More precisely, for the first equality
in (4.3.16) we need that ptF is continuous with respect to the same topology
with respect to which (µnk

)k∈N converges weakly, i.e. the topology on H1. This
one is, however, weaker than that on H. So, unless we can construct H1 in
such a way that ptF has a continuous extension to H1, the first equality in
(4.3.16) may not hold.

So far, we have taken a positive time s as the starting time for our SDE
(see Remark 4.2.11). In the case of coefficients independent of t and ω, it
is possible and convenient to consider negative starting times also. For this
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we, however, need a Wiener process with negative time. To this end we re-
call that we can run a cylindrical Wiener process W (t), t ∈ [0,∞[ on H
(with positive time) backwards in time and get again a Wiener process.
More precisely, for fixed T ∈ [0,∞[ we have that W (T − t) − W (T ), t ∈
[0, T ] is again a cylindrical Wiener process with respect to the filtration
σ({W (T − s) − W (T )|s ∈ [0, t]}), t ∈ [0, T ], and also with respect to the
filtration σ({W (r2) − W (r1)|r1, r2 ∈ [T − t,∞[, r2 � r1}), t ∈ [0, T ], where
the latter will be more convenient for us.

So, let A,B be independent of (t, ω) ∈ [0, T ]×Ω and let W (1)(t), t ∈ [0,∞[,
be another cylindrical Wiener process on (Ω,F , P ) with covariance operator
Q = I, independent of W (t), t ∈ [0,∞[. Define

W̄ (t) :=
{

W (t), if t ∈ [0,∞[,
W (1)(−t), if t ∈] −∞, 0]

(4.3.17)

with filtration
F̄t :=

⋂

s>t

F̄◦
s , t ∈ R, (4.3.18)

where F̄◦
s := σ({W̄ (r2) − W̄ (r1)|r1, r2 ∈] − ∞, s], r2 � r1},N ) and N :=

{A ∈ F|P (A) = 0}. As in the proof of Proposition 2.1.13 one shows that if
−∞ < s < t < ∞, then W̄ (t) − W̄ (s) is independent of F̄s. Now for s ∈ R

fixed consider the SDE

dX(t) = A(X(t)) dt + B(X(t)) dW̄ (t), t ∈ [s,∞[. (4.3.19)

Remark 4.3.7. Let s ∈ R and Xs ∈ L2(Ω, F̄s, P ;H) and consider the integral
version of (4.3.19)

X(t) = Xs +
∫ t

s

A(X̄(u)) du +
∫ t

s

B(X̄(u)) dW̄ (u), t ∈ [s,∞[, (4.3.20)

with underlying Wiener process W̄ (t)−W̄ (s), t ∈ [s,∞[ and filtration (F̄t)t�s

(cf. Remark 4.2.11). We define the notion of solution for (4.3.20) analogously
to Definition 4.2.1. Then again all results above for s = 0 (respectively for s ∈
[0,∞[, see Remark 4.2.11) carry over to this more general case. In particular,
we have the analogue of (4.3.5), namely

pr,sps,t = pr,t for all −∞ < r � s � t < ∞, (4.3.21)

where for s, t ∈ R, s � t, x ∈ H

ps,t(x, dy) := P ◦ (X(t, s, x))−1(dy),

and analogously to (4.3.7) one shows that

ps,t(x, dy) = p0,t−s(x, dy).
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In particular, for t = 0 we have

p−s,0(x, dy) = p0,s(x, dy) for all x ∈ H, s ∈ [0,∞[. (4.3.22)

Furthermore, for every s ∈ R there exists a unique solution with initial con-
dition Xs denoted by X(t, s,Xs), t ∈ [s,∞[, and (4.2.33) as well as the final
part of Remark 4.2.11 hold also in this case.

Our next main aim (cf. Theorem 4.3.9 below) is to prove the existence of
a unique invariant measure for (4.3.19) if the constant c in (H2) is strictly
negative (“strict monotonicity”). The method of the proof is an adaptation
from [DPZ96, Subsection 6.3.1]. We shall need the following:

Lemma 4.3.8. Suppose (H3), (H4) hold and that (H2) holds for c := −λ for
some λ ∈]0,∞[. Let η ∈]0, λ[. Then there exists δη ∈]0,∞[ such that for all
v ∈ V

2 V ∗〈A(v), v〉V +‖B(v)‖2
L2(U,H) � −η‖v‖2

H + δη. (4.3.23)

Proof. Let v ∈ V and ε ∈]0, 1[. Then using (H2) first (with c = −λ according
to our assumption), then Remark 4.1.1, part 1 and finally (H3) we obtain

2 V ∗〈A(v), v〉V +‖B(v)‖2
L2(U,H)

= 2 V ∗〈A(v) − A(0), v〉V +2 V ∗〈A(0), v〉V +‖B(v) − B(0)‖2
L2(U,H)

− ‖B(0)‖2
L2(U,H) + 2〈B(v), B(0)〉L2(U,H)

� −λ‖v‖2
H + 2ε‖v‖α

V + 2ε−
1

α−1 (α − 1)α
−α

α−1 ‖A(0)‖
α

α−1
V ∗ + ε−1‖B(0)‖2

L2(U,H)

+ ε‖B(v)‖2
L2(U,H)

� −λ‖v‖2
H + 2ε‖v‖α

V + βε

+ ε

(
c1‖v‖2

H + f +
2
α
‖v‖α

V + 2
α − 1

α
g

α
α−1 + 2c3‖v‖α

V

)

�
[
−λ + εc1

(
1 +

2
c2

(1 + α−1 + c3)
)]

‖v‖2
H + β̃ε +

2
c2

ε(1 + α−1 + c3)f

− 2
c2

ε(1 + α−1 + c3)(2 V ∗〈A(v), v〉V +‖B(v)‖2
L2(U,H))

with βε, β̃ε ∈ ]0,∞[ independent of v and where we applied Young’s inequality
in the form

ab = [(αε)−1/αa][(αε)1/αb] � (αε)−1/(α−1)

α/(α − 1)
aα/(α−1) + εbα,

a, b ∈ [0,∞[ in the second step. Hence taking ε small enough we can find
δη ∈ ]0,∞[ such that for all v ∈ V

2 V ∗〈A(v), v〉V +‖B(v)‖2
L2(U,H) � −η‖v‖2

H + δη.
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Theorem 4.3.9. Consider the situation of Proposition 4.3.5 and, in addition,
assume that c ∈ R in (H2) is strictly negative, i.e. c = −λ, λ ∈]0,∞[ (“strict
monotonicity”). Then there exists an invariant measure µ for (pt)t�0 such
that ∫

‖y‖2
Hµ(dy) < ∞.

Moreover, for F : H → R Lipschitz, x ∈ H and any invariant measure µ for
(pt)t�0

|ptF (x) −
∫

F dµ| � e−
λ
2 tLip(F )

∫
‖x − y‖Hµ(dy) for all t ∈ [0,∞[.

(4.3.24)
In particular, there exists exactly one invariant measure for (pt)t�0 with the
property that ∫

‖y‖Hµ(dy) < ∞.

Remark 4.3.10. (4.3.24) is referred to as “exponential convergence of (pt)t�0

to equilibrium” (uniformly with respect to x in balls in H).

For the proof of Theorem 4.3.9 we need one lemma.

Lemma 4.3.11. Consider the situation of Theorem 4.3.9. Let t ∈ R. Then
there exists ηt ∈ L2(Ω,F , P ;H), such that for all x ∈ H

lim
s→−∞

X(t, s, x) = ηt in L2(Ω,F , P ;H).

Moreover, there exists C ∈ [0,∞[ such that for all s ∈ ] −∞, t]

E(‖X(t, s, x) − ηt‖2
H) � Ceλ(s−t)(1 + ‖x‖2

H).

Proof. For s1, s2 ∈ ] −∞, t], s1 � s2, and x ∈ H

X(t, s1, x) − X(t, s2, x)

=
∫ t

s2

[A(X̄(u, s1, x)) − A(X̄(u, s2, x))] ds

+
∫ t

s2

[B(X̄(u, s1, x)) − B(X̄(u, s2, x))] dW̄ (u) + X(s2, s1, x) − x,

since

X(s2, s1, x) = x +
∫ s2

s1

A(X̄(u, s1, x)) du +
∫ s2

s1

B(X̄(u, s1, x)) dW̄ (u).

(4.3.25)
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Since Remark 4.2.8 extends to our present case we can use the product rule
and (H2) with c = −λ to obtain

E(eλt‖X(t, s1, x) − X(t, s2, x)‖2
H) = E(eλs2‖X(s2, s1, x) − x‖2

H)

+

t∫

s2

eλuE
(
2 V ∗〈A(X̄(u, s1, x)) − A(X̄(u, s2, x)), X̄(u, s1, x) − X̄(u, s1, x)〉V

+ ‖B(X̄(u, s1, x)) − B(X̄(u, s2, x))‖2
L2(U,H)

)
du

+

t∫

s2

eλuλE
(
‖X(u, s1, x) − X(u, s2, x)‖2

H

)
du

� 2eλs2 [E
(
‖X(s2, s1, x)‖2

H) + ‖x‖2
H

]
.

(4.3.26)

But again by Remark 4.2.8 extended to the present case, the product rule and
(4.3.23) imply

E(eηs2‖X(s2, s1, x)‖2
H)

= es1η‖x‖2
H +
∫ s2

s1

eηuE
(
2 V ∗〈A(X̄(u, s1, x)), X̄(u, s1, x)〉V

+ ‖B(X̄(u, s1, x))‖2
L2(U,H)

)
du +

∫ s2

s1

eηuηE(‖X(u, s1, x)‖2
H) du

� es1η‖x‖2
H + δη

∫ s2

s1

eηu du � es1η‖x‖2
H +

δη

η
es2η.

(4.3.27)

Combining (4.3.26) and (4.3.27) we obtain

E(‖X(t, s1, x) − X(t, s2, x)‖2
H) � 2

(
δη

η
+ 2‖x‖2

H

)
eλ(s2−t). (4.3.28)

Letting s2 (hence s1) tend to −∞, it follows that there exists
ηt(x) ∈ L2(Ω,F , P ;H) such that

lim
s→−∞

X(t, s, x) = ηt(x) in L2(Ω,F , P ;H),

and letting s1 → −∞ in (4.3.28) the last part of the assertion follows also,
provided we can prove that ηt(x) is independent of x ∈ H. To this end let



4.3. Markov property and invariant measures 103

x, y ∈ H and s ∈ ] −∞, t]. Then

X(t, s, x) − X(t, s, y)

=x − y +
∫ t

s

(A(X̄(u, s, x)) − A(X̄(u, s, y)) du

+
∫ t

s

(B(X̄(u, s, x)) − B(X̄(u, s, y)) dW̄ (u).

Hence by the same arguments to derive (4.3.26) we get

E(eλt‖X(t, s, x) − X(t, s, y)‖2
H) � eλs‖x − y‖2

H ,

so
lim

s→−∞
(X(t, s, x) − X(t, s, y)) = 0 in L2(Ω,F , P ;H).

Hence both assertions are completely proved.

Proof of Theorem 4.3.9. Define

µ := P ◦ η−1
0

with η0 as in Lemma 4.3.11. Since η0 ∈ L2(Ω,F , P ;H) we have that
∫
‖y‖2

Hµ(dy) < ∞.

Let t ∈ [0,∞[. We note that by (4.3.21) and (4.3.22) for all s ∈ [0,∞[

p−s,0p0,t = p−s,t = p0,t+s = p−(t+s),0. (4.3.29)

Let F : H → R, F bounded and Lipschitz. Then by Proposition 4.3.2 we have
that p0,tF is (bounded and) Lipschitz. Furthermore, by Lemma 4.3.11 for all
x ∈ H

p−s,0(x, dy) → µ weakly as s → ∞.

Hence by (4.3.29) for all x ∈ H
∫

p0,tF dµ = lim
s→∞

p−s,0(p0,tF )(x) = lim
s→∞

p−(t+s),0F (x) =
∫

F dµ.

Recalling that by definition pt = p0,t, it follows that µ is an invariant measure
for (pt)t�0. Furthermore, if µ is an invariant measure for (pt)t�0, then by
Proposition 4.3.2 for all t ∈ [0,∞[

∣∣
∣∣ptF (x) −

∫
F dµ

∣∣
∣∣ =
∣∣
∣∣

∫
(ptF (x) − ptF (y))µ(dy)

∣∣
∣∣

� e−
λ
2 tLip(F )

∫
‖x − y‖Hµ(dy).



A. The Bochner Integral

This chapter is a slight modification of Chap. A in [FK01].
Let
(
X, ‖ ‖

)
be a Banach space, B(X) the Borel σ-field of X and (Ω,F , µ)

a measure space with finite measure µ.

A.1. Definition of the Bochner integral

Step 1: As first step we want to define the integral for simple functions
which are defined as follows. Set

E :=
{

f : Ω → X
∣∣∣ f =

n∑

k=1

xk1Ak
, xk ∈ X, Ak ∈ F , 1 � k � n, n ∈ N

}

and define a semi-norm ‖ ‖E on the vector space E by

‖f‖E :=
∫
‖f‖ dµ, f ∈ E .

To get that
(
E , ‖ ‖E

)
is a normed vector space we consider equivalence classes

with respect to ‖ ‖E . For simplicity we will not change the notations.
For f ∈ E , f =

∑n
k=1 xk1Ak

, Ak’s pairwise disjoint (such a representation
is called normal and always exists, because f =

∑n
k=1 xk1Ak

, where f(Ω) =
{x1, . . . , xk}, xi �= xj , and Ak := {f = xk}) and we now define the Bochner
integral to be

∫
f dµ :=

n∑

k=1

xkµ(Ak).

(Exercise: This definition is independent of representations, and hence linear.)
In this way we get a mapping

int :
(
E , ‖ ‖E

)
→
(
X, ‖ ‖

)

f 	→
∫

f dµ

which is linear and uniformly continuous since
∥∥∫ f dµ

∥∥ �
∫
‖f‖ dµ for all

f ∈ E .
Therefore we can extend the mapping int to the abstract completion of E

with respect to ‖ ‖E which we denote by E .
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Step 2: We give an explicit representation of E .

Definition A.1.1. A function f : Ω → X is called strongly measurable if it
is F/B(X)-measurable and f(Ω) ⊂ X is separable.

Definition A.1.2. Let 1 � p < ∞. Then we define

Lp(Ω,F , µ;X) := Lp(µ;X)

:=
{

f : Ω → X

∣∣∣∣ f is strongly measurable with

respect to F , and
∫
‖f‖p dµ < ∞

}

and the semi-norm

‖f‖Lp :=
(∫

‖f‖p dµ

) 1
p

, f ∈ Lp(Ω,F , µ;X).

The space of all equivalence classes in Lp(Ω,F , µ;X) with respect to ‖ ‖Lp is
denoted by Lp(Ω,F , µ;X) := Lp(µ;X).

Claim: L1(Ω,F , µ;X) = E .

Step 2.a:
(
L1(Ω,F , µ;X), ‖ ‖L1

)
is complete.

The proof is just a modification of the proof of the Fischer–Riesz theorem
by the help of the following proposition.

Proposition A.1.3. Let (Ω,F) be a measurable space and let X be a Banach
space. Then:

(i) the set of F/B(X)-measurable functions from Ω to X is closed under
the formation of pointwise limits, and

(ii) the set of strongly measurable functions from Ω to X is closed under the
formation of pointwise limits.

Proof. Simple exercise or see [Coh80, Proposition E.1, p. 350].

Step 2.b: E is a dense subset of L1(Ω,F , µ;X) with respect to ‖ ‖L1 .
This can be shown by the help of the following lemma.

Lemma A.1.4. Let E be a metric space with metric d and let f : Ω → E
be strongly measurable. Then there exists a sequence fn, n ∈ N, of simple E-
valued functions (i.e. fn is F/B(E)-measurable and takes only a finite number
of values) such that for arbitrary ω ∈ Ω the sequence d

(
fn(ω), f(ω)

)
, n ∈ N,

is monotonely decreasing to zero.
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Proof. [DPZ92, Lemma 1.1, p. 16] Let {ek | k ∈ N} be a countable dense
subset of f(Ω). For m ∈ N define

dm(ω) := min
{
d
(
f(ω), ek

) ∣∣ k � m
} (

= dist(f(ω), {ek, k � m})
)
,

km(ω) := min
{
k � m

∣∣ dm(ω) = d
(
f(ω), ek

)}
,

fm(ω) := ekm(ω).

Obviously fm, m ∈ N, are simple functions since they are F/B(E)-measurable
(exercise) and

fm(Ω) ⊂ {e1, e2, . . . , em}.

Moreover, by the density of {ek | k ∈ N}, the sequence dm(ω), m ∈ N, is
monotonically decreasing to zero for arbitrary ω ∈ Ω. Since d

(
fm(ω), f(ω)

)
=

dm(ω) the assertion follows.

Let now f ∈ L1(µ;X). By the Lemma A.1.4 above we get the existence of
a sequence of simple functions fn, n ∈ N, such that

∥∥fn(ω) − f(ω)
∥∥ ↓ 0 for all ω ∈ Ω as n → ∞.

Hence fn
n→∞−−−−→ f in ‖ ‖L1 by Lebesgue’s dominated convergence theorem.

A.2. Properties of the Bochner integral

Proposition A.2.1 (Bochner inequality). Let f ∈ L1(Ω,F , µ;X). Then
∥
∥∥∥

∫
f dµ

∥
∥∥∥ �
∫
‖f‖ dµ.

Proof. We know the assertion is true for f ∈ E , i.e. int : E → X is linear,
continuous with ‖int f‖ � ‖f‖E for all f ∈ E , so the same is true for its unique
continuous extension int : E = L1(µ;X) → X, i.e. for all f ∈ L1(X,µ)

∥
∥∥∥

∫
f dµ

∥
∥∥∥ =
∥∥intf

∥∥ � ‖f‖E =
∫
‖f‖ dµ.

Proposition A.2.2. Let f ∈ L1(Ω,F , µ;X). Then

∫
L ◦ f dµ = L

(∫
f dµ

)

holds for all L ∈ L(X,Y ), where Y is another Banach space.

Proof. Simple exercise or see [Coh80, Proposition E.11, p. 356].
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Proposition A.2.3 (Fundamental theorem of calculus). Let −∞ < a <
b < ∞ and f ∈ C1

(
[a, b];X

)
. Then

f(t) − f(s) =
∫ t

s

f ′(u) du :=

{ ∫
1[s,t](u)f ′(u) du if s � t

−
∫

1[t,s](u)f ′(u) du otherwise

for all s, t ∈ [a, b] where du denotes the Lebesgue measure on B(R).

Proof. Claim 1: If we set F (t) =
∫ t

s
f ′(u) du, t ∈ [a, b], we get that F ′(t) =

f ′(t) for all t ∈ [a, b].
For that we have to prove that

∥∥∥∥
1
h

(
F (t + h) − F (t)

)
− f ′(t)

∥∥∥∥
X

h→0−−−→ 0.

To this end we fix t ∈ [a, b] and take an arbitrary ε > 0. Since f ′ is continuous
on [a, b] there exists δ > 0 such that

∥∥f ′(u) − f ′(t)
∥∥

X
< ε for all u ∈ [a, b]

with |u − t| < δ. Then we obtain that
∥∥∥∥

1
h

(
F (t + h) − F (t)

)
− f ′(t)

∥∥∥∥
X

=
∥∥∥∥

1
h

∫ t+h

t

(
f ′(u) − f ′(t)

)
du

∥∥∥∥
X

� 1
h

∫ t+h

t

∥∥f ′(u) − f ′(t)
∥∥

X
du < ε

if t + h ∈ [a, b] and |h| < δ.
Claim 2: If F̃ ∈ C1

(
[a, b];X

)
is a further function with F̃ ′ = F ′ = f ′ then

there exists a constant c ∈ X such that F − F̃ = c.
For all L ∈ X∗ = L(X, R) we define gL := L(F − F̃ ). Then g′L = 0 and

therefore gL is constant. Since X∗ separates the points of X by the Hahn–
Banach theorem (see [Alt92, Satz 4.2, p. 114]) this implies that F − F̃ itself
is constant.



B. Nuclear and Hilbert–Schmidt
Operators

This chapter is identical to Chap. B in [FK01].
Let
(
U, 〈 , 〉U

)
and
(
H, 〈 , 〉

)
be two separable Hilbert spaces. The space of

all bounded linear operators from U to H is denoted by L(U,H); for simplicity
we write L(U) instead of L(U,U). If we speak of the adjoint operator of
L ∈ L(U,H) we write L∗ ∈ L(H,U). An element L ∈ L(U) is called symmetric
if 〈Lu, v〉U = 〈u, Lv〉U for all u, v ∈ U . In addition, L ∈ L(U) is called
nonnegative if 〈Lu, u〉 � 0 for all u ∈ U .

Definition B.0.1 (Nuclear operator). An element T ∈ L(U,H) is said to
be a nuclear operator if there exists a sequence (aj)j∈N in H and a sequence
(bj)j∈N in U such that

Tx =
∞∑

j=1

aj〈bj , x〉U for all x ∈ U

and
∑

j∈N

‖aj‖ · ‖bj‖U < ∞.

The space of all nuclear operators from U to H is denoted by L1(U,H).
If U = H, T ∈ L1(U,H) is nonnegative and symmetric, then T is called trace
class.

Proposition B.0.2. The space L1(U,H) endowed with the norm

‖T‖L1(U,H) := inf
{∑

j∈N

‖aj‖ · ‖bj‖U

∣∣∣ Tx =
∞∑

j=1

aj〈bj , x〉U , x ∈ U
}

is a Banach space.

Proof. [MV92, Corollar 16.25, p. 154].

Definition B.0.3. Let T ∈ L(U) and let ek, k ∈ N, be an orthonormal basis
of U . Then we define

tr T :=
∑

k∈N

〈Tek, ek〉U

if the series is convergent.
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One has to notice that this definition could depend on the choice of the
orthonormal basis. But there is the following result concerning nuclear oper-
ators.

Remark B.0.4. If T ∈ L1(U) then trT is well-defined independently of the
choice of the orthonormal basis ek, k ∈ N. Moreover we have that

|tr T | � ‖T‖L1(U).

Proof. Let (aj)j∈N and (bj)j∈N be sequences in U such that

Tx =
∑

j∈N

aj〈bj , x〉U

for all x ∈ U and
∑

j∈N

‖aj‖U · ‖bj‖U < ∞.

Then we get for any orthonormal basis ek, k ∈ N, of U that

〈Tek, ek〉U =
∑

j∈N

〈ek, aj〉U · 〈ek, bj〉U

and therefore
∑

k∈N

∣∣〈Tek, ek〉U
∣∣ �
∑

j∈N

∑

k∈N

∣∣〈ek, aj〉U · 〈ek, bj〉U
∣∣

�
∑

j∈N

(∑

k∈N

∣∣〈ek, aj〉U
∣∣2
) 1

2 ·
(∑

k∈N

∣∣〈ek, bj〉U
∣∣2
) 1

2

=
∑

j∈N

‖aj‖U · ‖bj‖U < ∞.

This implies that we can exchange the summation to get that
∑

k∈N

〈Tek, ek〉U =
∑

j∈N

∑

k∈N

〈ek, aj〉U · 〈ek, bj〉U =
∑

j∈N

〈aj , bj〉U ,

and the assertion follows.

Definition B.0.5 (Hilbert–Schmidt operator). A bounded linear opera-
tor T : U → H is called Hilbert–Schmidt if

∑

k∈N

‖Tek‖2 < ∞

where ek, k ∈ N, is an orthonormal basis of U .
The space of all Hilbert–Schmidt operators from U to H is denoted by

L2(U,H).
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Remark B.0.6. (i) The definition of Hilbert–Schmidt operator and the
number

‖T‖2
L2(U,H) :=

∑

k∈N

‖Tek‖2

does not depend on the choice of the orthonormal basis ek, k ∈ N, and we
have that ‖T‖L2(U,H) = ‖T ∗‖L2(H,U). For simplicity we also write ‖T‖L2

instead of ‖T‖L2(U,H).

(ii) ‖T‖L(U,H) � ‖T‖L2(U,H).

(iii) Let G be another Hilbert space and S1 ∈ L(H,G), S2 ∈ L(G,U), T ∈
L2(U,H). Then S1T ∈ L2(U,G) and TS2 ∈ L2(G,H) and

‖S1T‖L2(U,G) � ‖S1‖L(H,G)‖T‖L2(U,H),

‖TS2‖L2(G,H) � ‖T‖L(U,H)‖S2‖L2(G,U).

Proof. (i) If ek, k ∈ N, is an orthonormal basis of U and fk, k ∈ N, is an
orthonormal basis of H we obtain by the Parseval identity that

∑

k∈N

‖Tek‖2 =
∑

k∈N

∑

j∈N

∣∣〈Tek, fj〉
∣∣2 =
∑

j∈N

‖T ∗fj‖2
U

and therefore the assertion follows.

(ii) Let x ∈ U and fk, k ∈ N, be an orthonormal basis of H. Then we get
that

‖Tx‖2 =
∑

k∈N

〈Tx, fk〉2 � ‖x‖2
U

∑

k∈N

‖T ∗fk‖2
U = ‖T‖2

L2(U,H) · ‖x‖2
U .

(iii) Let ek, k ∈ N be an orthonormal basis of U . Then

∑

k∈N

‖S1Tek‖2
G � ‖S1‖2

L(H,G)‖T‖2
L2(U,H).

Furthermore, since (TS2)∗ = S∗
2T ∗, it follows that by the above and (i)

that TS2 ∈ L2(G,H) and

‖TS2‖L2(G,H) = ‖(TS2)∗‖L2(H,G)

= ‖S∗
2T ∗‖L2(H,G)

� ‖S2‖L(G,U) · ‖T‖L2(U,H).
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Proposition B.0.7. Let S, T ∈ L2(U,H) and let ek, k ∈ N, be an orthonor-
mal basis of U . If we define

〈T, S〉L2 :=
∑

k∈N

〈Sek, T ek〉

we obtain that
(
L2(U,H), 〈 , 〉L2

)
is a separable Hilbert space.

If fk, k ∈ N, is an orthonormal basis of H we get that fj ⊗ek := fj〈ek, · 〉U ,
j, k ∈ N, is an orthonormal basis of L2(U,H).

Proof. We have to prove the completeness and the separability.

1. L2(U,H) is complete:

Let Tn, n ∈ N, be a Cauchy sequence in L2(U,H). Then it is clear that it is
also a Cauchy sequence in L(U,H). Because of the completeness of L(U,H)
there exists an element T ∈ L(U,H) such that ‖Tn − T‖L(U,H) −→ 0 as
n → ∞. But by the lemma of Fatou we also have for any orthonormal basis
ek, k ∈ N, of U that

‖Tn − T‖2
L2

=
∑

k∈N

〈
(Tn − T )ek, (Tn − T )ek

〉

=
∑

k∈N

lim inf
m→∞

∥∥(Tn − Tm)ek

∥∥2

� lim inf
m→∞

∑

k∈N

∥
∥(Tn − Tm)ek

∥
∥2 = lim inf

m→∞
‖Tn − Tm‖2

L2
< ε

for all n ∈ N big enough. Therefore the assertion follows.

2. L2(U,H) is separable:

If we define fj ⊗ ek := fj〈ek, · 〉U , j, k ∈ N, then it is clear that fj ⊗ ek ∈
L2(U,H) for all j, k ∈ N and for arbitrary T ∈ L2(U,H) we get that

〈fj ⊗ ek, T 〉L2 =
∑

n∈N

〈ek, en〉U · 〈fj , T en〉 = 〈fj , T ek〉.

Therefore it is obvious that fj ⊗ ek, j, k ∈ N, is an orthonormal system.
In addition, T = 0 if 〈fj ⊗ ek, T 〉L2 = 0 for all j, k ∈ N, and therefore
span(fj ⊗ ek | j, k ∈ N) is a dense subspace of L2(U,H).

Proposition B.0.8. Let
(
G, 〈 , 〉G

)
be a further separable Hilbert space.

If T ∈ L2(U,H) and S ∈ L2(H,G) then ST ∈ L1(U,G) and

‖ST‖L1(U,G) � ‖S‖L2 · ‖T‖L2 .

Proof. Let fk, k ∈ N, be an orthonormal basis of H. Then we have that

STx =
∑

k∈N

〈Tx, fk〉Sfk, x ∈ U
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and therefore

‖ST‖L1(U,G) �
∑

k∈N

‖T ∗fk‖U · ‖Sfk‖G

�
(∑

k∈N

‖T ∗fk‖2
U

) 1
2 ·
(∑

k∈N

‖Sfk‖2
G

) 1
2

= ‖S‖L2 · ‖T‖L2 .

Remark B.0.9. Let ek, k ∈ N, be an orthonormal basis of U . If T ∈ L(U)
is symmetric, nonnegative with

∑
k∈N

〈Tek, ek〉U < ∞ then T ∈ L1(U).

Proof. The result is obvious by the previous proposition and the fact that
there exists T

1
2 ∈ L(U) nonnegative and symmetric such that T = T

1
2 T

1
2 (see

Proposition 2.3.4). Then T
1
2 ∈ L2(U).

Proposition B.0.10. Let L ∈ L(H) and B ∈ L2(U,H). Then LBB∗ ∈
L1(H), B∗LB ∈ L1(U) and we have that

tr LBB∗ = tr B∗LB.

Proof. We know by Remark B.0.6 (iii) and Proposition B.0.8 that LBB∗ ∈
L1(H) and B∗LB ∈ L1(U). Let ek, k ∈ N, be an orthonormal basis of U
and let fk, k ∈ N, be an orthonormal basis of H. Then the Parseval identity
implies that

∑

k∈N

∑

n∈N

∣∣〈fk, Ben〉 · 〈fk, LBen〉
∣∣

�
∑

n∈N

(∑

k∈N

∣∣〈fk, Ben〉
∣∣2
) 1

2 ·
(∑

k∈N

∣∣〈fk, LBen〉
∣∣2
) 1

2

=
∑

n∈N

‖Ben‖ · ‖LBen‖ � ‖L‖L(H) · ‖B‖2
L2

.

Therefore, it is allowed to interchange the sums to obtain that

trLBB∗ =
∑

k∈N

〈LBB∗fk, fk〉 =
∑

k∈N

〈B∗fk, B∗L∗fk〉U

=
∑

k∈N

∑

n∈N

〈B∗fk, en〉U · 〈B∗L∗fk, en〉U =
∑

n∈N

∑

k∈N

〈fk, Ben〉 · 〈fk, LBen〉

=
∑

n∈N

〈Ben, LBen〉 =
∑

n∈N

〈en, B∗LBen〉U = tr B∗LB.



C. Pseudo Inverse of Linear
Operators

This chapter is a slight modification of Chapter C in [FK01].
Let
(
U, 〈 , 〉U

)
and
(
H, 〈 , 〉

)
be two Hilbert spaces.

Definition C.0.1 (Pseudo inverse). Let T ∈ L(U,H) and Ker(T ) := {x ∈
U | Tx = 0}. The pseudo inverse of T is defined as

T−1 :=
(
T |Ker(T )⊥

)−1 : T
(
Ker(T )⊥

)
= T (U) → Ker(T )⊥.

(Note that T is one-to-one on Ker(T )⊥.)

Remark C.0.2. (i) There is an equivalent way of defining the pseudo in-
verse of a linear operator T ∈ L(U,H). For x ∈ T (U) one sets T−1x ∈ U
to be the solution of minimal norm of the equation Ty = x, y ∈ U .

(ii) If T ∈ L(U,H) then T−1 : T (U) → Ker(T )⊥ is linear and bijective.

Proposition C.0.3. Let T ∈ L(U) and T−1 the pseudo inverse of T .

(i) If we define an inner product on T (U) by

〈x, y〉T (U) := 〈T−1x, T−1y〉U for all x, y ∈ T (U),

then
(
T (U), 〈 , 〉T (U)

)
is a Hilbert space.

(ii) Let ek, k ∈ N, be an orthonormal basis of (Ker T )⊥. Then Tek, k ∈ N,
is an orthonormal basis of

(
T (U), 〈 , 〉T (U)

)
.

Proof. T : (Ker T )⊥ → T (U) is bijective and an isometry if (KerT )⊥ is
equipped with 〈 , 〉U and T (U) with 〈 , 〉T (U).

Now we want to present a result about the images of linear operators. To
this end we need the following lemma.

Lemma C.0.4. Let T ∈ L(U,H). Then the set TBc(0) (=
{
Tu
∣∣ u ∈

U, ‖u‖U � c
}
), c � 0, is convex and closed.

Proof. Since T is linear it is obvious that the set is convex.
Since a convex subset of a Hilbert space is closed (with respect to the norm)

if and only if it is weakly closed, it suffices to show that TBc(0) is weakly
closed. Since T : U → H is linear and continuous (with respect to the norms
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on U,H respectively) it is also obviously continuous with respect to the weak
topologies on U,H respectively. But by the Banach–Alaoglou theorem (see
e.g. [RS72, Theorem IV.21, p. 115]) closed balls in a Hilbert space are weakly
compact. Hence Bc(0) is weakly compact, and so is its continuous image, i.e.
TBc(0) is weakly compact, therefore weakly closed.

Proposition C.0.5. Let
(
U1, 〈 , 〉1

)
and
(
U2, 〈 , 〉2

)
be two Hilbert spaces.

In addition, we take T1 ∈ L(U1,H) and T2 ∈ L(U2,H). Then the following
statements hold.

(i) If there exists a constant c � 0 such that ‖T ∗
1 x‖1 � c‖T ∗

2 x‖2 for all
x ∈ H then

{
T1u
∣∣ u ∈ U1, ‖u‖1 � 1

}
⊂
{
T2v
∣∣ v ∈ U2, ‖v‖2 � c

}
. In

particular, this implies that Im T1 ⊂ Im T2.

(ii) If ‖T ∗
1 x‖1 = ‖T ∗

2 x‖2 for all x ∈ H then Im T1 = Im T2 and ‖T−1
1 x‖1 =

‖T−1
2 x‖2 for all x ∈ Im T1.

Proof. [DPZ92, Proposition B.1, p. 407]

(i) Assume that there exists u0 ∈ U1 such that

‖u0‖1 � 1 and T1u0 /∈
{
T2v
∣
∣ v ∈ U2, ‖v‖2 � c

}
.

By Lemma C.0.4 we know that the set
{
T2v
∣∣ v ∈ U2, ‖v‖2 � c

}
is

closed and convex. Therefore, we get by the separation theorem (see
[Alt92, 5.11 Trennungssatz, p. 166]) there exists x ∈ H, x �= 0, such that

1 < 〈x, T1u0〉 and 〈x, T2v〉 � 1 for all v ∈ U2 with ‖v‖2 � c.

Thus ‖T ∗
1 x‖1 > 1 and c‖T ∗

2 x‖2 = sup
‖v‖2�c

∣∣〈T ∗
2 x, v〉2

∣∣ � 1, a contradiction.

(ii) By (i) we know that ImT1 = Im T2. It remains to verify that

‖T−1
1 x‖1 = ‖T−1

2 x‖2 for all x ∈ Im T1.

If x = 0 then ‖T−1
1 0‖1 = 0 = ‖T−1

2 0‖2.

If x ∈ Im T1 \ {0} then there exist u1 ∈ (Ker T1)⊥ and u2 ∈ (Ker T2)⊥

such that x = T1u1 = T2u2. We have to show that ‖u1‖1 = ‖u2‖2.

Assume that ‖u1‖1 > ‖u2‖2 > 0. Then (i) implies that

x

‖u2‖2
= T2

(
u2

‖u2‖2

)

∈
{
T2v
∣
∣ v ∈ U2, ‖v‖2 � 1

}
=
{
T1u
∣
∣ u ∈ U1, ‖u‖1 � 1

}
.

But
x

‖u2‖2
= T1

(
u1

‖u2‖2

)
and

∥∥∥∥
u1

‖u2‖2

∥∥∥∥
1

> 1,
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therefore, there exists ũ1 ∈ U1, ‖ũ1‖1 � 1, so that for ũ2 := u1
‖u2‖2

∈
(Ker T1)⊥ we have

T1ũ1 =
x

‖u2‖2
= T1ũ2 , i.e. ũ1 − ũ2 ∈ Ker T1.

Therefore,

0 = 〈ũ1 − ũ2, ũ2〉1 = 〈ũ1, ũ2〉1 − ‖ũ2‖2
1

� ‖ũ1‖1‖ũ2‖1 − ‖ũ2‖2
1 =
(
1 − ‖ũ2‖1

)
‖ũ2‖1.

This is a contradiction.

Corollary C.0.6. Let T ∈ L(U,H) and set Q := TT ∗ ∈ L(H). Then we
have

Im Q
1
2 = Im T and

∥
∥Q− 1

2 x
∥
∥ = ‖T−1x‖U for all x ∈ Im T ,

where Q− 1
2 is the pseudo inverse of Q

1
2 .

Proof. Since by Lemma 2.3.4 Q
1
2 is symmetric we have for all x ∈ H that

∥∥∥
(
Q

1
2
)∗

x
∥∥∥

2

=
∥∥Q

1
2 x
∥∥2 = 〈Qx, x〉 = 〈TT ∗x, x〉 = ‖T ∗x‖2

U .

Therefore the assertion follows by Proposition C.0.5.



D. Some Tools from Real
Martingale Theory

We need the following Burkholder–Davis inequality for real-valued continuous
local martingales.

Proposition D.0.1. Let (Nt)t∈[0,T ] be a real-valued continuous local mar-
tingale on a probability space (Ω, E, P ) with respect to a normal filtration
(Ft)t∈[0,T ]. Then for all stopping times τ(� T )

E( sup
t∈[0,τ ]

|Nt|) � 3E(〈N〉1/2
τ ).

Proof. See e.g. [KS88, Theorem 3.28].

Corollary D.0.2. Let ε, δ ∈]0,∞[. Then for N as in Proposition D.0.1

P ( sup
t∈[0,T ]

|Nt| � ε) � 3
ε
E(〈N〉1/2

T ∧ δ) + P (〈N〉1/2
T > δ).

Proof. Let
τ := inf{t � 0| 〈N〉1/2

t > δ} ∧ T.

Then τ(� T ) is an Ft-stopping time. Hence by Proposition D.0.1

P

(

sup
t∈[0,T ]

|Nt| � ε

)

=P

(
sup

t∈[0,T ]

|Nt| � ε, τ = T

)
+ P

(
sup

t∈[0,T ]

|Nt| � ε, τ < T

)

�3
ε
E(〈N〉1/2

τ ) + P

(
sup

t∈[0,T ]

|Nt| � ε, 〈N〉1/2
T > δ

)

�3
ε
E(〈N〉1/2

T ∧ δ) + P (〈N〉1/2
T > δ).

119



E. Weak and Strong Solutions:
the Yamada-Watanabe
Theorem

Let (Ω,F , P ) be a complete probability space with normal filtration Ft, t ∈
[0,∞[. Below we shall call ((Ω,F , P, (Ft)) a stochastic basis. Let d, d1 ∈ N and
let M(d × d1, R) denote the set of all real d × d1-matrices equipped with the
norm (3.1.2). Let

W d := C([0,∞[→ R
d) (E.0.1)

and
W d

0 := {w ∈ W d|w(0) = 0}. (E.0.2)

W d is equipped with metric

�(w1, w2) :=
∞∑

k=1

2−k( max
0�t�k

|w1(t) − w2(t)| ∧ 1), w1, w2 ∈ W d, (E.0.3)

which makes it a Polish space. Its Borel σ-algebra is denoted by B(W d).
Let Bt(W d) denote the σ-Algebra generated by all maps πs, 0 � s � t,
where πs(w) := w(s), w ∈ W d. Let Ad,d1 denote the set of all B([0,∞[) ⊗
B(W d)/B(M(d × d1, R))-measurable maps α : [0,∞[×W d → M(d × d1, R)
such that for each t∈ [0,∞[ the map

W d 
 w 	→ α(t, w) ∈ M(d × d1, R)

is Bt(W d)/B(M(d × d1, R))-measurable.

E.1. The main result

Fix σ ∈ Ad,d1 and b ∈ Ad,1 and consider the following stochastic differential
equation:

dX(t) = b(t,X) dt + σ(t,X) dW (t), t ∈ [0,∞[. (E.1.1)

Definition E.1.1. An R
d-valued continuous, (Ft)-adapted process X(t), t ∈

[0,∞[, on some stochastic basis (Ω,F , P, (Ft)) is called a (weak) solution to
(E.1.1), if
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(i) ∫ t

0

|b(s,X)| ds < ∞ P -a.e. for all t ∈ [0,∞[.

(ii) ∫ t

0

‖σ(s,X)‖2 ds < ∞ P -a.e. for all t ∈ [0,∞[.

(iii) There exists an R
d1 -valued standard (Ft)-Wiener process W (t), t ∈

[0,∞[, on (Ω,F , P ) such that P -a.e.

X(t) = X(0)+
∫ t

0

b(s,X) ds+
∫ t

0

σ(s,X) dW (s), t ∈ [0,∞[. (E.1.2)

Remark E.1.2. (i) Clearly, by the measurability assumption on elements
in Ad,d1 it follows that if X is a solution, then [0, t] × Ω 
 (s, ω) 	→
σ(s,X(ω)) is B([0, t])⊗F/B(M(d×d1, R))-measurable and σ(t,X) is Ft-
measurable for t ∈ [0,∞[. Likewise for b(·,X). The (Ft)-adaptedness for
σ(·,X) and b(·,X) follows since the (Ft)-adaptiveness of X is equivalent
to the Ft/Bt(W d) measurability of X.

(ii) Below we shall briefly say (X,W ) in Definition E.1.1 is a (weak) solution
to (E.1.1) not always mentioning explicitly the stochastic basis, that
comes with it.

Definition E.1.3. We say that (weak) uniqueness holds for (E.1.1) if when-
ever X and X ′ are two (weak) solutions (with stochastic bases
(Ω,F , P, (Ft)), (Ω′,F ′, P ′, (F ′

t)) and associated Wiener processes W (t),
W ′(t), t ∈ [0,∞[) such that

P ◦ X(0)−1 = P ′ ◦ X ′(0)−1,

(as measures on (Rd,B(Rd))), then

P ◦ X−1 = P ′ ◦ (X ′)−1

(as measures on (W d,B(W d))).

Definition E.1.4. We say that pathwise uniqueness holds for (E.1.1), if
whenever X and X ′ are two (weak) solutions on the same stochastic basis
(Ω,F , P, (Ft)) and with the same (Ft)-Wiener process W (t), t ∈ [0,∞[ on
(Ω,F , P ) such that X(0) = X ′(0) P -a.e., then P -a.e.

X(t) = X ′(t), t ∈ [0,∞[.

To define strong solutions we need to introduce the following class Ê of
maps:
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Let Ê denote the set of all maps F : R
d×W d1

0 → W d such that for every prob-

ability measure µ on (Rd,B(Rd)) there exists a B(Rd) ⊗ B(W d1
0 )

µ⊗P W

/B(W d)-
measurable map Fµ : R

d × W d1
0 → W d such that for µ-a.e. x ∈ R

d

F (x,w) = Fµ(x,w) for PW -a.e. w ∈ W d1
0 .

Here B(Rd) ⊗ B(W d1
0 )

µ⊗P W

denotes the completion of B(Rd) ⊗B(W d1
0 ) with

respect to µ ⊗ PW , and PW denotes classical Wiener measure on
(W d1

0 ,B(W d1
0 )).

Let F ∈ Ê . For an F/B(Rd)-measurable map ξ : Ω → R
d on some prob-

ability space (Ω,F , P ) and an R
d1-valued, standard Wiener process W (t),

t ∈ [0,∞[, on (Ω,F , P ) independent of ξ, we set

F (ξ,W ) := FP◦ξ−1(ξ,W ).

Definition E.1.5. A (weak) solution X to (E.1.1) on (Ω,F , P, (Ft)) and
associated Wiener process W (t), t ∈ [0,∞[, is called a strong solution if there

exists F ∈ Ê such that for x ∈ R
d, w 	→ F (x,w) is Bt(W d1

0 )
P W

/Bt(W d)-
measurable for every t ∈ [0,∞[ and

X = F (X(0),W ) P -a.e.,

where Bt(W d1
0 )

P W

denotes the completion with respect to PW in B(W d1
0 ).

Definition E.1.6. Equation (E.1.1) is said to have a unique strong solution,
if there exists F ∈ Ê satisfying the adaptiveness condition in Definition E.1.5
and such that:

1. For every R
d1-valued standard (Ft)-Wiener process W (t), t ∈ [0,∞[, on

a stochastic basis (Ω,F , P, (Ft)) and any F0/B(Rd)-measurable ξ : Ω →
R

d the continuous process

X := F (ξ,W )

satisfies (i), (ii) and (E.1.2) in Definition E.1.1, i.e. (F (ξ,W ),W ) is a
(weak) solution to (E.1.1), and X(0) = ξ P-a.e..

2. For any (weak) solution (X,W ) to (E.1.1) we have

X = F (X(0),W ) P -a.e..

Remark E.1.7. Since X(0) in the above definition is P -independent of W ,
thus

P ◦ (X(0),W )−1 = µ ⊗ PW ,

we have that the existence of a unique strong solution for (E.1.1) implies that
also (weak) uniqueness holds.
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Now we can formulate the main result of this section.

Theorem E.1.8. Let σ ∈ Ad,d1 and b ∈ Ad,1. Then equation (E.1.1) has a
unique strong solution if and only if both of the following properties hold:

(i) For every probability measure µ on (Rd,B(Rd)) there exists a (weak)
solution (X,W ) of (E.1.1) such that µ is the distribution of X(0).

(ii) Pathwise uniqueness holds for (E.1.1).

Proof. Suppose (E.1.1) has a unique strong solution. Then (ii) obviously
holds. To show (i) one only has to take the classical Wiener space

(W d1
0 ,B(W d1

0 ), PW ) and consider (Rd × W d1
0 ,B(Rd) ⊗ B(W d1

0 )
µ⊗P W

, µ ⊗ PW )
with filtration ⋂

ε>0

σ(B(Rd) ⊗ Bt+ε(W d1
0 ),N ), t � 0,

where N denotes all µ ⊗ PW -zero sets in B(Rd) ⊗ B(W d1
0 )

µ⊗P W

. Let
ξ : R

d × W d1
0 → R

d and W : R
d × W d1

0 → W d1
0 be the canonical projec-

tions. Then X := F (ξ,W ) is the desired weak solution in (i).

Now let us suppose that (i) and (ii) hold. The proof that then there exists a
unique strong solution for (E.1.1) is quite technical. We structure it through
a series of lemmas.

Lemma E.1.9. Let (Ω,F) be a measurable space such that {ω} ∈ F for all
ω ∈ Ω and such that

D := {(ω, ω)|ω ∈ Ω} ∈ F ⊗ F

(which is e.g. the case if Ω is a Polish space and F its Borel σ-algebra).
Let P1, P2 be probability measures on (Ω,F) such that P1 ⊗ P2(D) = 1. Then
P1 = P2 = δω0 for some ω0 ∈ Ω.

Proof. Let f : Ω → [0,∞[ be F-measurable. Then
∫

f(ω1)P1(dω1) =
∫∫

f(ω1)P1(dω1)P2(dω2)

=
∫∫

1D(ω1, ω2)f(ω1)P1(dω1)P2(dω2)

=
∫∫

1D(ω1, ω2)f(ω2)P1(dω1)P2(dω2) =
∫

f(ω2)P2(dω2),

so P1 = P2. Furthermore,

1 =
∫∫

1D(ω1, ω2)P1(dω1)P2(dω2) =
∫

P1({ω2})P2(dω2),

hence 1 = P1({ω2}) for P2-a.e. ω2 ∈ Ω. Therefore, P1 = δω0 for some ω0 ∈ Ω.
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Fix a probability measure µ on (Rd,B(Rd)) and let (X,W ) with stochastic
basis (Ω,F , P, (Ft)) be a (weak) solution to (E.1.1) with initial distribution µ.
Define a probability measure Pµ on (Rd×W d×W d1

0 ,B(Rd)⊗B(W d)⊗B(W d1
0 )),

by
Pµ := P ◦ (X(0),X,W )−1.

Lemma E.1.10. There exists a family Kµ((x,w), dw1), x ∈ R
d, w ∈ W d1

0 , of
probability measures on (W d,B(W d)) having the following properties:

(i) For every A ∈ B(W d) the map

R
d × W d1

0 
 (x,w) 	→ Kµ((x,w), A)

is B(Rd) ⊗ B(W d1
0 )-measurable.

(ii) For every B(Rd) ⊗ B(W d) ⊗ B(W d1
0 )-measurable map f : R

d × W d ×
W d1

0 → [0,∞[ we have
∫

f(x,w1, w)Pµ(dx dw1 dw)

=
∫

Rd

∫

W
d1
0

∫

W d

f(x,w1, w)Kµ((x,w), dw1)PW(dw)µ(dx).

(iii) If t ∈ [0,∞[ and f : W d → [0,∞[ is Bt(W d)-measurable, then

R
d × W d1

0 
 (x,w) 	→
∫

f(w1)Kµ((x,w), dw1)

is B(Rd) ⊗ Bt(W d1
0 )

µ⊗P W

-measurable, where B(Rd) ⊗ Bt(W d1
0 )

µ⊗P W

de-
notes the completion with respect to µ ⊗ PW in B(Rd) ⊗ B(W d1

0 ).

Proof. Let Π : R
d×W d×W d1

0 → R
d×W d1

0 be the canonical projection. Since
X(0) is F0-measurable, hence P -independent of W , it follows that

Pµ ◦ Π−1 = P ◦ (X(0),W )−1 = µ ⊗ PW .

Hence by the existence result on regular conditional distributions (cf. e.g.
[IW81, Corollary to Theorem 3.3 on p. 15]), the existence of the family
Kµ((x,w), dw1), x ∈ R

d, w ∈ W d1
0 , satisfying (i) and (ii) follows.

To prove (iii) it suffices to show that for t ∈ [0,∞[ and for all A0 ∈ B(Rd),
A1 ∈ Bt(W d), A ∈ Bt(W d1

0 ) and

A′ := {πr1 − πt ∈ B1, . . . , πrk
− πt ∈ Bk},

t � r1 < . . . < rk, B1, . . . , Bk ∈ B(Rd1),
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∫

A0

∫

W
d1
0

1A∩A′(w)Kµ((x,w), A1)PW(dw)µ(dx)

=
∫

A0

∫

W
d1
0

1A∩A′(w)Eµ⊗P W (Kµ(·, A1)|B(Rd) ⊗ Bt(W d1
0 ))PW(dw)µ(dx),

(E.1.3)

since the system of all A ∩ A′, A ∈ Bt(W d1
0 ), A′ as above generates B(W d1

0 ).
But by part (ii) above, the left-hand side of (E.1.3) is equal to

∫
1A0(x)1A∩A′(w)1A1(w1)Pµ(dx dw1 dw)

=
∫

1A0(X(0))1A1(X)1A(W )1A′(W ) dP

=
∫

1A0(X(0))1A1(X)1A(W )EP (1A′(W )|Ft) dP.

(E.1.4)

But 1A′(W ) is P -independent of Ft, since W is an (Ft)-Wiener process on
(Ω,F , P ), so

EP (1A′(W )|Ft) = EP (1A′(W )).

Hence the right-hand side of (E.1.4) is equal to

PW (A′)
∫

1A0(x)1A(w)1A1(w1)Pµ(dx dw1 dw)

= PW (A′)
∫

A0

∫

A

Kµ((x,w), A1)PW(dw)µ(dx)

= PW (A′)
∫

A0

∫

A

Eµ⊗P W (Kµ(·, A1)|B(Rd) ⊗ Bt(W d1
0 ))((x,w))

PW(dw)µ(dx)

=
∫

A0

∫

W
d1
0

1A∩A′(w)Eµ⊗P W (Kµ(·, A1)|B(Rd) ⊗ Bt(W d1
0 ))((x,w))

PW(dw)µ(dx),

since A′ is PW -independent of Bt(W d1
0 ).

For x ∈ R
d define a measure Qx on

(Rd × W d × W d × W d1
0 ,B(Rd) ⊗ B(W d) ⊗ B(W d) ⊗ B(W d1

0 ))

by

Qx(A) :=
∫

Rd

∫

W
d1
0

∫

W d

∫

W d

1A(z, w1, w2, w)

Kµ((z, w), dw1)Kµ((z, w), dw2)PW(dw)δx(dz).
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Define the stochastic basis

Ω̃ := R
d × W d × W d × W d1

0

F̃x := B(Rd) ⊗ B(W d) ⊗ B(W d) ⊗ B(W d1
0 )

Qx

F̃x
t :=

⋂

ε>0

σ(B(Rd) ⊗ Bt+ε(W d) ⊗ Bt+ε(W d) ⊗ Bt+ε(W d1
0 ),Nx),

where
Nx := {N ∈ F̃x|Qx(N) = 0},

and define maps

Π0 : Ω̃ → R
d, (x,w1, w2, w) 	→ x,

Πi : Ω̃ → W d, (x,w1, w2, w) 	→ wi ∈ W d, i = 1, 2,

Π3 : Ω̃ → W d1
0 , (x,w1, w2, w) 	→ w ∈ W d1

0 .

Then, obviously,
Qx ◦ Π−1

0 = δx (E.1.5)

and
Qx ◦ Π−1

3 = PW (= P ◦ W−1). (E.1.6)

Lemma E.1.11. There exists N0 ∈ B(Rd) with µ(N0) = 0 such that for all
x ∈ N c

0 we have that Π3 is an (F̃x
t )-Wiener process on (Ω̃, F̃x, Qx) taking

values in R
d1 .

Proof. By definition Π3 is (F̃x
t )-adapted for every x ∈ R

d. Furthermore, for
0 � s < t, y ∈ R

d, and A0 ∈ B(Rd), Ai ∈ Bs(W d), i = 1, 2, A3 ∈ Bs(W d1
0 ),

∫

Rd

EQx
(exp(i〈y,Π3(t) − Π3(s)〉)1A0×A1×A2×A3)µ(dx)

=
∫

Rd

∫

W
d1
0

exp(i〈y, w(t) − w(s)〉)1A0(x)1A3(w)

Kµ((x,w), A1)Kµ((x,w), A2)PW(dw)µ(dx)

=
∫

W
d1
0

exp(i〈y, w(t) − w(s)〉)PW(dw)
∫

Rd

Qx(A0 × A1 × A2 × A3)µ(dx),

where we used Lemma E.1.10(iii) in the last step. Now the assertion follows
by (E.1.6), a monotone class argument and the same reasoning as in the proof
of Proposition 2.1.13.
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Lemma E.1.12. There exists N1 ∈ B(Rd), N0 ⊂ N1, with µ(N1) = 0 such
that for all x ∈ N c

1 , (Π1,Π3) and (Π2,Π3) with stochastic basis
(Ω̃, F̃x, Qx, (F̃x

t )) are (weak) solutions of (E.1.1) such that

Π1(0) = Π2(0) = x Qx-a.e.,

therefore, Π1 = Π2 Qx-a.e.

Proof. For i = 1, 2 consider the set Ai ∈ F̃x defined by

Ai :=
{

Πi(t) − Πi(0) =
∫ t

0

b(s,Πi) ds +
∫ t

0

σ(s,Πi) dΠ3(s)

for all t ∈ [0,∞[
}
∩ {Πi(0) = Π0}.

Define A ∈ B(Rd) ⊗ B(W d) ⊗ B(W d1
0 ) analogously with Πi replaced by the

canonical projection from R
d ×W d ×W d1

0 onto the second and Π0,Π3 by the
canonical projection onto the first and third coordinate respectively. Then by
Lemma E.1.10 (ii) for i = 1, 2

∫

Rd

∫

W
d1
0

∫

W d

∫

W d

1Ai
(x,w1, w2, w)

Kµ((x,w), dw1)Kµ((x,w), dw2)PW(dw)µ(dx)

= Pµ(A) = P ({(X(0),X,W ) ∈ A}) = 1.

(E.1.7)

Since all measures in the left-hand side of (E.1.7) are probability measures, it
follows that for µ-a.e. x ∈ R

d

1 = Qx(Ai) = Qx(Ai,x),

where for i = 1, 2

Ai,x :=
{

Πi(t) − x =
∫ t

0

b(s,Πi) ds +
∫ t

0

σ(s,Πi) dΠ3(s), ∀t ∈ [0,∞[
}
!.

Hence the first assertion follows. The second then follows by the pathwise
uniqueness assumption in condition (ii) of the theorem.

Lemma E.1.13. There exists a B(Rd) ⊗ B(W d1
0 )

µ⊗P W

/B(W d)- measurable
map

Fµ : R
d × W d1

0 → W d

such that
Kµ((x,w), ·) = δFµ(x,w)

(= Dirac measure on B(W d) with mass in Fµ(x,w))
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for µ ⊗ PW -a.e. (x,w) ∈ R
d × W d1

0 . Furthermore, Fµ is

B(Rd) ⊗ Bt(W d1
0 )

µ⊗P W

/Bt(W d)-measurable for all t ∈ [0,∞[, where

B(Rd) ⊗ Bt(W d1
0 )

µ⊗P W

denotes the completion with respect to µ ⊗ PW in
B(Rd) ⊗ Bt(W d1

0 ).

Proof. By Lemma E.1.12 for all x ∈ N c
1 , we have

1 = Qx({Π1 = Π2})

=
∫

W
d1
0

∫

W d

∫

W d

1D(w1, w2)Kµ((x,w), dw1)Kµ((x,w), dw2)PW(dw),

where D := {(w1, w1) ∈ W d × W d|w1 ∈ W d}. Hence by Lemma E.1.9 there
exists N ∈ B(Rd)⊗B(W d1

0 ) such that µ⊗PW (N) = 0 and for all (x,w) ∈ N c

there exists Fµ(x,w) ∈ W d such that

Kµ((x,w), dw1) = δFµ(x,w)(dw1).

Set Fµ(x,w) := 0, if (x,w) ∈ N . Let A ∈ B(W d). Then

{Fµ ∈ A} = ({Fµ ∈ A} ∩ N) ∪ ({Kµ(·, A) = 1} ∩ N c)

and the measurability properties of Fµ follow from Lemma E.1.10.

Having defined the mapping Fµ let us check the conditions of Definition
E.1.5 and Definition E.1.6. We start with condition 2.

Lemma E.1.14. We have

X = Fµ(X(0),W ) P -a.e..

Proof. By Lemmas E.1.10 and E.1.13 we have

P ({X = Fµ(X(0),W )})

=
∫

Rd

∫

W
d1
0

∫

W d

1{w1=Fµ(x,w)}(x,w1, w)δFµ(x,w)(dw1)PW(dw)µ(dx)

=1.

Now let us check condition 1. Let W ′ be another R
d1-valued standard (F ′

t)-
Wiener process on a stochastic basis (Ω′, F ′, P ′, (F ′

t)) and ξ : Ω′ → R
d an

F ′
0/B(Rd)-measurable map and µ := P ′ ◦ ξ−1. Let Fµ be as above and set

X ′ := Fµ(ξ,W ′).



130 E. Weak and Strong Solutions: Yamada–Watanabe Theorem

Lemma E.1.15. (X ′,W ′) is a (weak) solution to (E.1.1) with X ′(0) = ξ
P ′-a.s..

Proof. We have

P ′({ξ = X ′(0)}) = P ′({ξ = Fµ(ξ,W ′)(0)})

= µ ⊗ PW ({(x,w) ∈ R
d × W d1

0 |x = Fµ(x,w)})
= P ({X(0) = Fµ(X(0),W )(0)}) = 1,

where we used Lemma E.1.14 in the last step.
To see that (X ′,W ′) is a (weak) solution we consider the set A ∈ B(Rd) ⊗

B(W d)⊗B(W d1
0 ) defined in the proof of Lemma E.1.12. We have to show that

P ′({(X ′(0),X ′,W ′) ∈ A}) = 1.

But since X ′(0) = ξ is P ′-independent of W ′, we have
∫

1A(X ′(0), Fµ(X ′(0),W ′),W ′) dP ′

=
∫

Rd

∫

W
d1
0

1A(x, Fµ(x,w), w)PW(dw)µ(dx)

=
∫

Rd

∫

W
d1
0

∫

W d

1A(x,w1, w)δFµ(x,w)(dw1)PW(dw)µ(dx)

=
∫

1A(x,w1, w)Pµ(dx dw1 dw)

=P ({(X(0),X,W ) ∈ A}) = 1,

where we used E.1.10 and E.1.11 in the second to last step.

To complete the proof we still have to construct F ∈ Ê and to check the
adaptiveness conditions on the corresponding mappings Fµ. Below we shall
apply what we have obtained above now also to δx replacing µ. So, for each
x ∈ R

d we have a function Fδx
. Now define

F (x,w) := Fδx
(x,w), x ∈ R

d, w ∈ W d1
0 . (E.1.8)

The proof of Theorem E.1.8 is then completed by the following lemma.

Lemma E.1.16. Let µ be a probability measure on (Rd,B(Rd)) and Fµ :
R

d × W d1
0 → W d as constructed in Lemma E.1.13. Then for µ-a.e. x ∈ R

d

F (x, ·) = Fµ(x, ·) PW − a.e..

Furthermore, F (x, ·) is Bt(W d1
0 )

P W

/Bt(W d)-measurable for all x ∈ R
d,

t ∈ [0,∞[, where Bt(W d1
0 )

P W

denotes the completion of Bt(W d1
0 ) with respect

to PW in B(W d1
0 ).
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Proof. Let
Ω̄ := R

d × W d × W d1
0

F̄ := B(Rd) ⊗ B(W d) ⊗ B(W d1
0 )

and fix x ∈ R
d. Define a measure Q̄x on (Ω̄, F̄) by

Q̄x(A) :=
∫

Rd

∫

W
d1
0

∫

W d

1A(z, w1, w)Kµ((z, w), dw1)PW(dw)δx(dz)

with Kµ as in Lemma E.1.10. Consider the stochastic basis (Ω̄, F̄x, Q̄x, (F̄x
t ))

where

F̄x := B(Rd) ⊗ B(W d) ⊗ B(W d1
0 )

Q̄x

,

F̄x
t :=

⋂

ε>0

σ(B(Rd) ⊗ Bt+ε(W d) ⊗ Bt+ε(W d1
0 ), N̄x),

where N̄x := {N ∈ F̄x|Q̄x(N) = 0}. As in the proof of Lemma E.1.12 one
shows that (Π,Π3) on (Ω̄, F̄x, Q̄x, (F̄x

t )) is a (weak) solution to (E.1.1) with
Π(0) = x Q̄x-a.e. Here

Π0 : R
d × W d × W d1

0 → R
d, (x,w1, w) 	→ x,

Π : R
d × W d × W d1

0 → W d, (x,w1, w) 	→ w1,

Π3 : R
d × W d × W d1

0 → W d1
0 , (x,w1, w) 	→ w.

By Lemma E.1.15 (Fδx
(x,Π3),Π3) on the stochastic basis (Ω̄, F̄x, Q̄x, (F̄x

t ))
is a (weak) solution to (E.1.1) with

Fδx
(x,Π3)(0) = x.

Hence by our pathwise uniqueness assumption (ii), it follows that

Fδx
(x,Π3) = Π Q̄x-a.s.. (E.1.9)

Hence for all A ∈ B(Rd) ⊗ B(W d) ⊗ B(W d1
0 ) by Lemma E.1.13 and (E.1.9)

∫

Rd

∫

W d

∫

W
d1
0

1A(x,w1, w)δFµ(x,w)(dw1)PW(dw)µ(dx)

=
∫

Rd

Q̄x(A)µ(dx)

=
∫

Rd

∫

Ω̄

1A(Π0, Fδx
(x,Π3),Π3) dQ̄xµ(dx)

=
∫

Rd

∫

W
d!
0

1A(x, Fδx
(x,w), w)PW(dw)µ(dx)

=
∫

Rd

∫

W
d1
0

∫

W d

1A(x,w1, w)δFδx (x,w)(dw1)PW(dw)µ(dx),
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which implies the assertion.
Let x ∈ R

d, t ∈ [0,∞[, A ∈ Bt(W d), and define

F̄δx
:= 1{x}×W

d1
0

Fδx
.

Then
F̄δx

= Fδx
δx ⊗ PW − a.e.,

hence

{F̄δx
∈ A} ∈ B(Rd) ⊗ Bt(W d1

0 )
δx⊗P W

. (E.1.10)

But
{F̄δx

∈ A} = {x} × {Fδx
(x, ·) ∈ A} ∪ (Rd\{x}) × {0 ∈ A},

so by (E.1.10) it follows that

{Fδx
(x, ·) ∈ A} ∈ Bt(W d1

0 )
P W

.



F. Strong, Mild and Weak
Solutions

This chapter is a short version of Chapter 2 in [FK01]. We only state the
results and refer to [FK01], [DPZ92] for the proofs.

As in previous chapters let (U, ‖‖U ) and (H, ‖‖) be separable Hilbert spaces.
We take Q = I and fix a cylindrical Q-Wiener process W (t), t � 0, in U on a
probability space (Ω,F , P ) with a normal filtration Ft, t � 0. Moreover, we
fix T > 0 and consider the following type of stochastic differential equations
in H:

dX(t) = [CX(t) + F (X(t))] dt + B(X(t)) dW (t), t ∈ [0, T ],

X(0) = ξ,
(F.0.1)

where:

• C : D(C) → H is the infinitesimal generator of a C0-semigroup S(t),
t � 0, of linear operators on H,

• F : H → H is B(H)/B(H)-measurable,

• B : H → L(U,H),

• ξ is a H-valued, F0-measurable random variable.

Definition F.0.1 (mild solution). An H-valued predictable process X(t),
t ∈ [0, T ], is called a mild solution of problem (F.0.1) if

X(t) = S(t)ξ +
∫ t

0

S(t − s)F (X(s)) ds

+
∫ t

0

S(t − s)B(X(s)) dW (s) P -a.s.

(F.0.2)

for each t ∈ [0, T ]. In particular, the appearing integrals have to be well-
defined.

Definition F.0.2 (analytically strong solutions). A D(C)-valued pre-
dictable process X(t), t ∈ [0, T ], (i.e. (s, ω) 	→ X(s, ω) is PT /B(H)-
measurable) is called an analytically strong solution of problem (F.0.1) if

X(t) = ξ +
∫ t

0

CX(s) + F (X(s)) ds +
∫ t

0

B(X(s)) dW (s) P -a.s. (F.0.3)

133
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for each t ∈ [0, T ]. In particular, the integrals on the right-hand side have to be
well-defined, that is, CX(t), F (X(t)), t ∈ [0, T ], are P -a.s. Bochner integrable
and B(X) ∈ NW .

Definition F.0.3 (analytically weak solution). An H-valued predictable
process X(t), t ∈ [0, T ], is called an analytically weak solution of problem
(F.0.1) if

〈X(t), ζ〉 = 〈ξ, ζ〉 +
∫ t

0

〈X(s), C∗ζ〉 + 〈F (X(s)), ζ〉 ds

+
∫ t

0

〈ζ,B(X(s))dW (s)〉 P -a.s.

(F.0.4)

for each t ∈ [0, T ] and ζ ∈ D(C∗). Here (C∗,D(C∗)) is the adjoint of (C,D(C))
on H.
In particular, as in Definitions F.0.2 and F.0.1, the appearing integrals have
to be well-defined.

Proposition F.0.4 (analytically weak versus analytically strong so-
lutions).

(i) Every analytically strong solution of problem (F.0.1) is also an analyti-
cally weak solution.

(ii) Let X(t), t ∈ [0, T ], be an analytically weak solution of problem (F.0.1)
with values in D(C) such that B(X(t)) takes values in L2(U,H) for all
t ∈ [0, T ]. Besides we assume that

P

(∫ T

0

‖CX(t)‖ dt < ∞
)

= 1

P

(∫ T

0

‖F (X(t))‖ dt < ∞
)

= 1

P

(∫ T

0

‖B(X(t))‖2
L2

dt < ∞
)

= 1.

Then the process is also an analytically strong solution.

Proposition F.0.5 (analytically weak versus mild solutions).

(i) Let X(t), t ∈ [0, T ], be an analytically weak solution of problem (F.0.1)
such that B(X(t)) takes values in L2(U,H) for all t ∈ [0, T ]. Besides
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we assume that

P

(∫ T

0

‖X(t)‖ dt < ∞
)

= 1

P

(∫ T

0

‖F (X(t))‖ dt < ∞
)

= 1

P

(∫ T

0

‖B(X(t))‖2
L2

dt < ∞
)

= 1.

Then the process is also a mild solution.

(ii) Let X(t), t ∈ [0, T ], be a mild solution of problem (F.0.1) such that the
mappings

(t, ω) 	→
∫ t

0

S(t − s)F (X(s, ω)) ds

(t, ω) 	→
∫ t

0

S(t − s)B(X(s)) dW (s)(ω)

have predictable versions. In addition, we require that

P (
∫ T

0

‖F (X(t))‖ dt < ∞) = 1

∫ T

0

E(
∫ t

0

‖〈S(t − s)B(X(s)), C∗ζ〉‖2
L2(U,R) ds) dt < ∞

for all ζ ∈ D(C∗).
Then the process is also an analytically weak solution.

Remark F.0.6. The precise relation of mild and analytically weak solutions
with the variational solutions from Definition 4.2.1 is obviously more difficult
to describe in general. We shall concentrate just on the following quite typical
special case:
Consider the situation of Subsection 4.2, but with A and B independent of t
and ω. Assume that there exist a self-adjoint operator (C,D(C)) on H such
that −C � const. > 0 and F : H → H B(H)/B(H)-measurable such that

A(x) = C(x) + F (x), x ∈ V,

and
V := D((−C)

1
2 ),

equipped with the graph norm of (−C)
1
2 . Then it is easy to see that C extends

to a continuous linear operator form V to V ∗, again denoted by C such that
for x ∈ V , y ∈ D(C)

V ∗〈Cx, y〉V = 〈x,Cy〉. (F.0.5)
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Now let X be a (variational) solution in the sense of Definition 4.2.1, then
it follows immediately from (F.0.5) that X is an analytically weak solution in
the sense of Definition F.0.3.
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[MV92] R. Meise and D. Vogt, Einführung in die Funktionalanalysis,
Vieweg Verlag, 1992.

[Ond04] M. Ondreját, Uniqueness for stochastic evolution equations in
Banach spaces, Dissertationes Math. (Rozprawy Mat.) 426
(2004), 1–63.



Bibliography 139
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