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Motivation Windowing query

Windowing

The geographic maps

given a rectangular region, or a window, the system must determine the
part of the map(roads, cities, and so on) that lie in the window , and
display them. This is called a windowing query.
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Motivation Windowing query

Windowing

Design of printed circuit boards

Windowing is required whenever one wants to inspect a small portion of a
large, complex object.
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Motivation Windowing query

Windowing

We assume that the query window is an axis-parallel rectangle, that is, a
rectangle whose edges are axis-parallel.

Let S be a set of n axis-parallel line segments.

(Yazd University) More Geometric Data Structures 4 / 71



Motivation Windowing query

Windowing

To solve windowing queries we need a data structure that stores S in such
a way that the segments intersecting a query window W :=[x : x′]×[y : y′]
can be reported efficiently.
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Motivation Windowing query

Windowing

What ways a segment can intersect the
rectangle ?

Segments that have at least one
endpoint inside the rectangle
Segments with both endpoints outside
the rectangle
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Motivation Windowing query

Storing segments and searching with a rectangle

Segments with at least one endpoint in the rectangle can be found by
building a 2d range tree on the 2n endpoints.

Keep pointer from each endpoint stored in tree to the segments
Mark segments as you output them, so that you don’t output
contained segments twice.
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Motivation Windowing query

Lemma

Lemma 10.1
Let S be a set of n axis-parallel line segments in the plane.The segments
that have at least one endpoint inside an axis-parallel query window W can
be reported in O(log n+k) time with a data structure that uses O(nlog n)
storage and preprocessing time, where k is the number of reported
segments.
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Motivation Windowing query

Storing segments and searching with a rectangle

Segments with both endpoints outside the rectangle :

Store the segments and query with the left side and the bottom side
of the rectangle
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Motivation Windowing query

Current problem:

Given a set of horizontal (vertical) line
segments, preprocess them into a data
structure so that the ones intersecting a
vertical (horizontal) query segment can be
reported efficiently.

Consider the problem of finding the
horizontal segments intersected by the left
edge of W .
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Motivation Windowing query

Simpler problem :

The query segment is a full line.

` := (x = qx) denote the query line.

A horizontal segment s := (x, y)(x′, y)
is intersected by ` iff x 6 qx 6 x′

Then the problem is essentially
1-dimensional.
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Interval Trees Definition

Interval querying

Given a set of intervals I := {[x : x′], [x : x′], ..., [xn : x′n]} on the real
line, report the ones that contain the query point qx.
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Interval Trees Definition

Classification a set of intervals

Let xmid be the median of the 2n interval endpoints,

partition the intervals into three subsets :

Intervals Ileft := {[xj : x′j ] ∈ I : x′j < xmid}
Intervals Imid := {[xj : x′j ] ∈ I : xj 6 xmid 6 x′j}
Intervals Iright := {[xj : x′j ] ∈ I : xmid < xj}
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Interval Trees Definition

Construct a binary tree

If the query value qx lies to the left of xmid then Iright do not contain
qx.

Or if the query value qx lies to the right of xmid then Ileft do not
contain qx.

we construct a binary tree based on this idea.
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Interval Trees Definition

Interval tree

Recursively build subtrees on interval set as follows:
the intervals Ileft are stored in the left subtree
the intervals Iright are stored in the right subtree

How should we store Imid ?

we store the set Imid in a
separate structure and associate
that structure with the root of
our tree.
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Interval Trees Definition

Interval tree : left and right lists

Imid could be the same as I.

But there is a difference ,all the Intervals in Imid contain xmid.

If the query point(qx) is left of xmid, then only the left endpoint
determine if an interval is an answer

Symmetrically : If the query point(qx) is right of xmid, then only the
right endpoint determine if an interval is an answer
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Interval Trees Definition

Interval tree : left and right lists

Make a list Lleft sorted on
increasing left endpoints of Imid.

Make a list Lright sorted on
decreasing right endpoints of
Imid.

we can simply walk along the sorted list reporting intervals, until we
come to an interval that does not contain qx.
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Interval Trees Definition

Interval tree

The interval tree consist of a root node v storing xmid.Furthermore,

The set Imid is stored twice; once in a list Lleft , and once in a list
Lright,

The left subtree of v is an interval tree for the set Ileft,

The right subtree of v is an interval tree for the set Iright.
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Interval Trees Definition

Interval tree : example
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Interval Trees Definition

Interval Tree : storage

Lemma 10.2
An interval tree on a set of n intervals uses O(n) storage and has depth
O(log n).

Proof.
By choosing the median, we split the set of end points in half each
time therefore depth is O(log n).
each interval is only stored in a set Imid onec and,hence, only appears
once in the two sorted lists.consequently, the interval tree uses O(n)
storage.
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Interval Trees Construction

Construct interval tree Algorithm
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Interval Trees Construction

Build time

Lemma 10.3
An interval tree on a set of n intervals can be built in O(n log n) time.

Proof.
1 Presorting all of the interval endpoints requires O(n log n) time.

2 Compute Imid,Ileft,Iright takes O(n) time.
Over all T (n) = O(n)+2T (n/2) = O(n log n).

3 Create Lleft and Lright takes O(nmid log nmid) time , where nmid=
card(Imid). over all take

∑
O(nmid log nmid),

since
∑
nmid = n,

∑
O(nmid log nmid) 6 O(n log n).

4 The total built time therefore becomes O(n log n).
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Interval Trees Querying

Query Interval Tree Algorithm
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Interval Trees Querying

Interval tree:query example
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Interval Trees Querying

Interval tree:query example
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Interval Trees Querying

Query time

The total query time is O(log n+ k), Since

- At any node v that we visit we spend O(1+ kv) time,where kv is the
number of intervals that we report at v,

-
∑

vkv = k,

- We visit at most one node at any depth of the tree,

- The depth of the interval tree is O(log n),

- So the total query time is O(log n+ k).
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Interval Trees Querying

Interval tree : result

Theorem 10.4
An interval tree for a set I of n intervals uses O(n) storage and can be
built in O(n log n) time. Using the interval tree we can report all intervals
that contain a query point in O(log n+ k) time, where k is the number of
reported intervals.
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Vertical Segment Searching

Let SH ⊆ S be the subset of horizontal
segments in S.

And q be the vertical query segment
qx × [qy : q′y].

For a segment s := [sx : s′x]× sy in SH ,
we call s := [sx : s′x] the x-interval of
the segment.
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Vertical Segment Searching

Suppose we have stored the segments in SH in an interval tree T
according to their x-interval.

For a segment s ∈ Imid to be intersected by q , it is not sufficient that
its left (right) endpoint lies to the left (right) of q; it is also required
that its y-coordinate lies in the range [qy : q′y].

Then the lists Lleft and Lright are not suitable anymore to solve the
query problem for the segments corresponding to Imid.
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Vertical Segment Queries

We need a assosiated structure.

The main structure is an interval tree T on the x-interval of the
segments.

Instead of the sorted lists we have two range tree as the associated
structure.

A range tree Tleft(v) on the left endpoints of the segments in Imid(v),
and a range tree Tright(v) on the right endpoints of the segments in
Imid(v).

Instead of traversing Lleft or Lright, we perform a query in the range
tree Tleft or Tright.
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Vertical Segment Queries
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Vertical Segment Queries: Storage and query time

The total amount of storage for the data structure becomes
O(n log n), Since

- The total amount of storage for a rangr tree is O(nv log nv),
-
∑
nv = n,

-
∑
O(nv log nv) 6 O(n log n).

The total query time becomes O(log n+ k),Since

- There are O(log n) nodes v on the search path,

- At each node v have to do an O(log n+ k) search on a range tree
(assuming your range trees use fractional cascading),

- The total query time therefore becomes O(log n+ k).
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Result

Theorem 10.5
Let S be a set of n horizontal segments in the plane. The segments
intersecting a vertical query segment can be reported in O(log n+ k) time
with a data structure that uses O(n log n) storage, where k is the number
of reported segments. The structure can be built in O(n log n) time.

Priority search trees reduce the storage to O(n).
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Corollary 10.6
Let S be a set of n axis-parallel segments in the plane. The segments
intersecting a axis-parallel rectangular query window can be reported in
O(log n+ k) time with a data structure that uses O(n log n) storage,
where k is the number of reported segments. The structure can be built in
O(n log n) time.
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Priority Search Trees (PST )

Property : queries are unbounded on one side

Using priority search tree, that uses this property, instead of range trees in
the data structure for windowing reduces the storage bound in Theorem
10.5 to O(n).
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Priority Search Trees (PST ) Definition

Heap and search tree

A priority search tree is like a heap on x-coordinate and binary search tree
on y-coordinate at the same time.

Recall the heap :

Example query : (−∞ : ]

Report All values 6 5 A heap has the query time O(1+k).
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Priority Search Trees (PST ) Definition

Priority search tree

Let P := {p, p, . . . , pn} be a set of points in the plane.

If P = ∅ then the priority search tree is an empty leaf.otherwise,let

pmin := point with the smallest x-coordinate,
ymid := median of y-coordinates of points in P − {pmin},
Pbelow := {p ∈ P − {pmin} : py < ymid},
Pabove := {p ∈ P − {pmin} : py > ymid}

The priority search tree has a root node v where the point pmin and the
value ymid are stored.

The left subtree of v is a priority search tree for the set Pbelow and right
subtree of v is a priority search tree for the set Pabove .
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Priority Search Trees (PST ) Definition

Priority search tree

Priority search tree can be built in O(n log n) time.
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Priority Search Trees (PST ) Querying

Querying a priority search tree

A query with a range (−∞ : qx]× [qy : q′y]
in a PST :

First, we find all the points that lie in
[qy : q′y](shaded subtrees).

Then, we search those subtrees based
on x-coordinate only (heap on
x-coordinate).

Also, must check each node along both
paths because they store points.
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Priority Search Trees (PST ) Querying
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Priority Search Trees (PST ) Querying

Lemma 10.7
REPORTINSUBTREE (v, qx) reports in O(1+kv) time all points in the
subtree rooted at v whose x-coordinate is at most qx, where kv is the
number of reported points.

Proof.
All points with x-coordinate at most qx are reported.
All points that are reported have x-coordinate at most qx.

The query time for a subtree is like query time for a heap, namely
O(1+kv).
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Priority Search Trees (PST ) Querying
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Priority Search Trees (PST ) Querying

Lemma 10.8
Algorithm QUERYPRIOSEARCHTREE reports the points in a query range
(−∞ : qx]× [qy : q′y] in O(log n+ k) time, where k is the number of
reported points.

Proof.
Any point that is reported by the algorithm lies in the query range.
Any point that lies in the range is reported by the algorithm.

The search paths to qy and q′y have O(log n) nodes. At each node
O(1) time is spent.

The time taken by all executions of REPORTINSUBTREE is
O(log n+ k).
The total query time is O(log n+ k).
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O(1) time is spent.

The time taken by all executions of REPORTINSUBTREE is
O(log n+ k).
The total query time is O(log n+ k).
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Priority Search Trees (PST ) Querying

Priority search tree: result

Theorem 10.9
A priority search tree for a set P of n points in the plane uses O(n) storage
and can report all points in a query range of the form (−∞ : qx]× [qy : q′y]
in O(log n+ k) time, where k is the number of reported points.
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Arbitrarily oriented segments

Two cases of intersection:

An endpoint lies inside the query
window; solve with range trees

The segment intersects the
window boundary; solve how?
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Segment Trees

Arbitrarily Oriented Segments

A simple solution:
Replace each line segment by its
bounding box.

So we could search in the 4n
bounding box sides.

In the worst case:
The solution is quite bad:

All bounding boxes may intersect
W whereas none of the segments
do.
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Segment Trees

Current problem:

Current problem of our intesect:
Given a set S of line segments with arbitrary
orientations in the plane, and we want to
find those segments in S that intersect a
vertical query segment q := qx × [qy : q′y].
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Segment Trees

Why don’t interval trees work ?

If the segments have arbitrary orientation, knowing that the right endpoint
of a segment is to the right of q doesn’t help us much.
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Segment Trees Definition

Given a set S = {s, s, . . . , sn} of n segments(Intervals) on the real line,
preprocess them into a data structure so that the ones containing a query
point (value) can be reported efficiently

The new structure is called the segment tree.
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Segment Trees Definition

Locus approach

The locus approach is the idea to partition the parameter space into
regions where the answer to a query is the same.

Our query has only one parameter, qx, so the parameter space is the real
line. Let p, p, ..., pm be the list of distinct interval endpoints, sorted from
left to right; m 62n

The real line is partitioned into
(−∞, p), [p, p], (p, p), [p, p], (p, p), . . . , (pm,+∞), these are called
the elementary intervals.
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Segment Trees Definition

Locus approach

We could make a binary search tree that
has a leaf for every elementary interval.

We denote the elementary interval
corresponding to a leaf µ by Int(µ).

all the segments (intervals) in S containing
Int(µ) are stored at the leaf µ

each internal node corresponds to an
interval that is the union of the elementary
intervals of all leaves below it
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Segment Trees Definition

Storage

O(n2) storage in the
worst case:

Query time
We can report the k intervals containing qx in O(log n+ k) time.
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Segment Trees Definition

Reduce the amount of storage

To avoid quadratic storage, we store any segment sj with v iff Int(v) ⊆ sj
but Int(parent(v)) * sj .

The data structure based on this principle is called a segment tree.
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Segment Trees Definition

Segment tree

A segment tree on a set S of segments is a balanced binary search tree on
the elementary intervals defined by S, and each node stores its interval,
and its canonical subset of S in a list.

The canonical subset of a node v contains segments sj such that
Int(v) ⊆ sj but Int(parent(v)) * sj
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Segment Trees Definition

Segment tree
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Segment Trees Definition

Segment tree
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Segment Trees Definition

Lemma 10.10
A segment tree on a set of n intervals uses O(n log n) storage.

Proof.
We claim that any segment is stored for at most two nodes at the same
depth of the tree.
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Segment Trees Querying

Query algorithm
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Segment Trees Querying

Example query
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Segment Trees Querying

Lemma 10.11
Using a segment tree, the intervals containing a query point qx can be
reported in O(log n+ k) time, where k is the number of reported intervals.
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Segment Trees Construction

Segment Tree Construction

Build tree :

- Sort the endpoints of the segments take O(n log n) time.This give us
the elementary intervals.

- Construct a balanced binary tree on the elementary intervals,this can
be done bottom-up in O(n) time.

Compute the canonical subset for the nodes.To this end we insert the
intervals one by one into the segment tree by calling :
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Segment Trees Construction

How much time does it take to insert an interval [x : x′] into the segment
tree?

an interval is stored at most twice at each level of T
There is also at most one node at every level whose corresponding
interval contains x and one node whose interval contains x′.
So we visit at most 4 nodes per level.
Hence, the time to insert a single interval is O(log n), and the total
time to construct the segment tree is O(n log n) .
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Segment Trees

Result

Theorem 10.12
A segment tree for a set I of n intervals uses O(n log n) storage and can
be built in O(n log n) time. Using the segment tree we can report all
intervals that contain a query point in O(log n+ k) time, where k is the
number of reported intervals.
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Windowing

Back to windowing problem

Let S be a set of arbitrarily oriented, disjoint
segments in the plane. We want to report
the segments intersecting a vertical query
segment q := qx × [qy : q′y]
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Windowing Segment tree

Build a segment tree T on the x-intervals of the segments in S.

A node v in T can now be considered to correspond to the vertical
slab Int(v)× (−∞ : +∞).

A segment si is in the canonical subset of v, if it crosses the slab of v
completely, but not the slab of the parent of v.

We denote canonical subset of v with S(v).
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Windowing Segment tree
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Windowing Segment tree
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Windowing Querying

Querying

When we search with qx in T we find
O(log n) canonical subsets that
collectively contain all the segments
whose x-interval contains qx.

A segment s in such a canonical subset
is intersected by q if and only if the
lower endpoint of q is below s and the
upper endpointof q is above s.
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Windowing Querying

Querying

segments in the canonical subset
S(v) do not intersect each other.
This implies that the segments
can be ordered vertically.

we can store S(v) in a search
tree T (v) according to the
vertical order.
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Windowing Querying

Query time

A query with qx follows one path down the main tree(segment tree)

And at every node v on the search path we search with endpoints of q
in T (v) to report the segments in S(v) intersected by q
(a 1-dimensional range query).

The search in T (v) takes O(log n+ kv) time,wherekv is the number
of reported segments at (v).

Hence, the total query time is O(log n+ k).
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Windowing Storage

Storage

Because the associated structure of any node v uses storage linear in
the size of S(v), the total amount of storage remains O(n log n).

Data structure can be build in O(n log n) time.
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Windowing

Result

Theorem 10.13
Let S be a set of n disjoint segments in the plane. The segments
intersecting a vertical query segment can be reported in O(log n+ k) time
with a data structure that uses O(n log n) storage, where k is the number
of reported segments. The structure can be built in O(n log n) time.

Corollary 10.14
Let S be a set of n segments in the plane with disjoint interiors. The
segments intersecting an axis-parallel rectangular query window can be
reported in O(log n+ k) time with a data structure that uses O(n log n)
storage, where k is the number of reported segments. The structure can be
built in O(n log n) time
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END
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