
Powering Indoor Sensing with Airflows: A Trinity of Energy
Harvesting, Synchronous Duty-Cycling, and Sensing∗

Tianyu Xiang, Zicheng Chi, Feng Li, Jun Luo
School of Computer Engineering
Nanyang Technological University

{txiang001, zcchi, fli3, junluo}@ntu.edu.sg

Lihua Tang, Liya Zhao, Yaowen Yang
School of Civil and Environmental Engineering

Nanyang Technological University
{tanglh, lyzhao1, yyw}@ntu.edu.sg

ABSTRACT
Whereas a lot of efforts have been put on energy conserva-
tion in wireless sensor networks, the limited lifetime of these
systems still hampers their practical deployments. This sit-
uation is further exacerbated indoors, as conventional en-
ergy harvesting (e.g., solar) ceases to work. To enable long-
lived indoor sensing, we report in this paper a self-sustaining
sensing system that draws energy from indoor environments,
adapts its duty-cycle to the harvested energy, and pays back
the environment by enhancing the awareness of the indoor
microclimate through an “energy-free” sensing.

First of all, given the pervasive operation of heating, ven-
tilation and air conditioning (HVAC) systems indoors, our
system harvests energy from airflow introduced by the HVAC
systems to power each sensor node. Secondly, as the har-
vested power is tiny (only of hundreds of µW), an extremely
low but synchronous duty-cycle has to be applied whereas
the system gets no energy surplus to support existing syn-
chronization schemes. So we design two complementary syn-
chronization schemes that cost virtually no energy. Finally,
we exploit the feature of our harvester to sense the airflow
speed (which can be used to infer the indoor microclimate)
in an energy-free manner. To our knowledge, this is the first
indoor wireless sensing system that encapsulates energy har-
vesting, network operating, and sensing all together.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed
Systems]

General Terms
Design, Algorithms, Performance, Experiments

Keywords
Indoor energy harvesting, duty-cycle, synchronization

∗This work was supported in part by AcRF Tier 2 Grant
ARC15/11.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SenSys’13, November 11–15, 2013, Rome, Italy.
Copyright 2013 ACM 978-1-4503-1169-4 ...$15.00.

1. INTRODUCTION
Wireless Sensor Networks (WSNs) have been involved in

many environmental monitoring applications [18], including
in particular indoor environmental monitoring [20, 35]. For
such applications, one of the most challenging problems is
the conflict between limited lifetime of the WSNs and their
purpose for a long-term monitoring [18]. Although harvest-
ing energy from surrounding environment offers a potential
solution [26,38], conventional power sources (e.g., solar) are
often unavailable in an indoor environment.

Being able to harvest energy from vibrations, piezoelec-
tric materials have long been claimed as suitable for indoor
energy harvesting [11, 36]. In fact, dedicated sensor nodes
designed to accept piezoelectricity power can be found in
the market [3]. However, the following questions have never
been fully answered: i) what kind of vibrations can be har-
vested indoors to produce sufficient energy? ii) how much
power can be produced to support indoor sensing? iii) how
to build a power management module for commonly used
sensor nodes? and finally, iv) how should a WSN operate
under such a harvester? These are indeed questions we in-
tend to tackle in our paper.

One typical indoor application of WSNs is microclimate
control [32,33]. As heating, ventilation and air conditioning
(HVAC) systems are extensively installed indoors and cost a
huge amount of energy, indoor microclimate control aims to
adapt the output of HVAC systems to population density,
which may save energy on one hand while improving the
comfort level of occupants on the other hand. To this end,
a sensing system is required to “sit” beside the outlets and
measure the speed of airflow, whose output is in turn fed to
the control system for precise actuation. Obviously, the sen-
sor nodes of this system (close to the outlets) are often far
from power grid, and it is not affordable to frequently main-
tain them (e.g., changing batteries) given the large number
of outlets. In fact, such a sensing system (if ready) can serve
other indoor applications, such as illumination control or air
quality monitoring. Therefore, we dedicate a prototype of
energy harvesting WSN in this paper to such applications.

In this paper, we present Trinity as a self-sustaining sens-
ing system. Trinity harvests energy from the airflow pro-
duced by HVAC outlets to power the sensor nodes, and it
adapts nodes’ duty-cycle to the harvested energy. Moreover,
we take advantage of the physical properties of our harvester
to i) synchronize sensor nodes such that a sender does not
miss its receiver under very low duty-cycle, and ii) create an
“energy-free sensor” for detecting the speed of airflow. Note
that, because the energy harvested from HVAC system is

tiny (only of hundreds of µW), our WSN has to operate
under an extremely low and synchronous duty-cycle. More-
over, the off-the-shelf airflow sensors consume higher energy
than what our harvester can supply, so an energy-free sens-
ing is necessary for Trinity to work. In summary, we make
the following main contributions:

• We design a special type of energy harvester for draw-
ing energy from indoor airflows with a speed of 2 to
6m/s. Our harvester makes use of a bimorph (can-
tilever with two layers of piezoelectric materials) to
convert airflow induced vibration into electric power.

• We produce a general-purpose power management mod-
ule to accept piezoelectricity from the harvester. It
then powers a sensor node while charging the surplus
energy (if any) into two thin-film batteries.

• We present two complementary synchronization strate-
gies with very low energy consumptions. The first one
calibrates the native clock of a sensor node using the
periodic output of our harvester when there is no data
traffic, and the other one relies on the data traffic to
perform constant synchronization among nodes.

• We innovate in proposing an energy-free sensor for de-
tecting the airflow speed, using the physical features
of our energy harvester.

• We build Trinity as a prototype of a self-sustaining
indoor airflow sensing system. We evaluate its perfor-
mance by using our research center as a testing site.

In the following, we first briefly introduce the targeted ap-
plication/problem as well as the Trinity system in Section 2.
Then we present the three key modules of Trinity, namely
energy harvesting, synchronous duty-cycling, and power-free
sensing, in Section 3, 4, and 5 respectively. We report our
field tests in Section 6, and we survey literature while dis-
cussing related issues in Section 7 before finally concluding
our paper in Section 8.

2. PROBLEM AND SYSTEM
We first briefly explain the problem context, then we give

a general overview of our Trinity system, as well as the ra-
tionales behind its design.

2.1 Indoor Microclimate Control and Sensing
Existing HVAC systems in large buildings are mostly con-

trolled in a centralized manner through an air handling unit
(AHU). Although tuning the output of certain outlets is
possible, it is often not preferred as it normally requires
mechanics to physically approach those outlets. Also, as
tuning HVAC systems in such a way is not real-time, the
outcome may lag far behind the need. For example, when
a big but short-term gathering takes place in a certain sec-
tion of a building, air conditioning may need to run more
intensively to cool down the surrounding area. Whereas an
adjustment at the AHU causes excessive power consump-
tion for the whole building, tuning the outlets close to the
concerning area could be too tardy to be useful for serving
the gathering. Consequently, there is an increasing desire
on indoor microclimate control in recently years, i.e., con-
trolling the individual outlets of a HVAC system such that
they adapt to the changes of occupancy in real-time.

A key component of indoor microclimate control for pre-
cise actuation, airflow speed sensing at individual HVAC
outlets delivers an essential feedback to the control unit(s),
along with other components such as temperature sensing
and occupancy detection [10]. Figure 1 illustrates an indoor
microclimate control system with its airflow speed sensing
module highlighted. Apparently, a WSN could be a per-

AHU

Control

Network

Outlet

Self-

Powered

Sensor

Air Pipes

Valve

Control

Center

WSN

Figure 1: An indoor microclimate control system.

fect candidate for this sensing task, but this task is special
in that it has to be performed right at the outlets, which
makes it very challenging to tackle the power supply issue.
As most of the HVAC outlets are not close to the power
grid, wiring the sensor nodes may cause a lot of troubles
to, for example, indoor wire planning (which is what we try
to avoid by wireless sensing), and is hence not a preferred
choice. Moveover, a normal battery-powered WSN is not
competent either, as changing batteries from time to time
for a large building with tens of thousands HVAC outlets
is definitely not feasible. Therefore, one would need a self-
powered WSN that performs sensing and networking oper-
ations (for gathering sensed data) in an autonomous man-
ner. Although BACnet [12] based systems might be used for
the same sensing purpose, the penetration of such systems
cannot be guaranteed even in developed countries such as
Singapore. Moreover, a power-free WSN can complement
BACnet based systems to further suppress the energy con-
sumption of sensing.

To tackle the aforementioned issue, we aim to develop
a prototype of a self-sustaining sensing system for airflow
monitoring. In particular, we revive the long-envisioned
idea of piezoelectric energy harvesting and make a concrete
case of applying it to power indoor WSNs. In addition,
although the sensing module is designed for airflow moni-
toring, the energy harvesting and networking modules may
serve other indoor sensing requirements (e.g., for tempera-
ture, light, and/or air quality). Finally, we intend to answer
the four questions raised in Section 1 based on our field tests;
these answers can yield intriguing insights and hence provide
guidance for full-fledged developments and deployments of
self-powered indoor sensing systems.

2.2 Trinity Sensing System Overview
We sketch the schematic of Trinity in Figure 2. The har-

vester is a frame with piezoelectric sheets (bimorph and uni-
morph) attached in the middle. We use a MicaZ Mote run-

Vin Vout

DC-DC

Convertor

Circuit

GND

 Signal for Sensing
 Signal for Synchronization

Bridge Rectifier

Operational Amplifier ATMega128L

microcontroller

Analog I/O

Interrupt

CC2420 Radio

Power

Connector

5
1

-P
in

 E
x

p
an

sio
n

 C
o

n
n

e
c
to

r

L
E

D
s

Antenna

Fixed

Fixed

Thin-Film

Battery and

Recharging

Circuit

+

Comparator

Bimorph

(Harvester)

Bluff body

MicaZ Mote

Unimorph

(Sensor)

C+ C- A

B+ B-

Figure 2: Trinity Indoor Sensing System.

ning TinyOS 2.1 as the sensor node platform, but Trinity can
be readily adapted to all other commonly used nodes. Three
“paths”exist between the harvester and the node. The upper
one is for power supply; it goes through our power manage-
ment module. The middle one samples the voltage and thus
serves as our sensor. The lower one transforms the voltage
signal into square waves for synchronization purpose.

2.2.1 Energy Harvesting and Power Management
As our sensor nodes are deployed right beside individ-

ual outlets, drawing power from the airflow issued by the
outlets comes in handy. We choose piezoelectricity for en-
ergy harvesting because it is shown to be more efficient than
other schemes (e.g., a micro turbine) given the low airflow
speed [36]. In Figure 3, we show our harvester prototype

(a) The harvester (b) A bimorph

Figure 3: Energy harvester and its key component.

along with its key component, a bimorph. The harvester
consists of a fixed frame that can be stuck to an HVAC out-
let and a bimorph (as shown in Figure 2) with bluff body
attached to better absorb the power carried by the airflow.

The power generated by the bimorph cannot be directly
used by a sensor node due to the extremely high internal
resistance (in the scale of mega-ohm, or MΩ) of the bi-
morph. In addition, we would like to have the operations
of a sensor node (power consumer) as independent of the
harvesting procedure (power supplier) as possible. Gener-
ally speaking, the power produced by a harvester (hundreds

of micro-Watts, or µWs) is far lower than the power con-
sumption of a sensor node in its active mode (tens of milli-
Watts, or mWs). However, a naive operation mode that a
bunch of packets can be sent or received only upon sufficient
energy (hence voltage) is accumulated appears to be highly
undesirable. Therefore, while low duty-cycle is necessary to
keep a node “alive” under the tiny power supply, the actual
percentage of the duty-cycle should be constrained only by
the average power output from the harvester, instead of by
the time period to accumulate a sufficiently high voltage.
The power management module that we have produced is
shown in Figure 4. It has several integrated circuits on the

Bridge Rectifier &

DC/DC Convertor

Circuit

Power Output

Connector

Bimorph

Connector

Battery

Recharging

Circuit A

Battery

Recharging

Circuit B

(a) Front side

Thin Film

Battery A

Thin Film

Battery B

(b) Back side

Figure 4: Power management module.

front side to regulate the power (both voltage and current),
while having two thin film rechargeable batteries attached
on the back side: they serve as energy buffers to decouple
the power supplier from the power consumer. Details on the
energy harvesting and power management module will be
elaborated in Section 3.

2.2.2 Synchronous Duty-Cycling
Given the low power output of our harvester, our WSN

must perform in a very low duty-cycle manner. Further-

more, the duty-cycling of the sensor nodes needs to be syn-
chronized so that the receivers wake up in time to receive
data packets sent by the respective senders, as otherwise
asynchronous duty-cycling requires extra overhead to no-
tify either receivers or senders and it may wake up nodes
not involved in the transmissions [14,21,30]. Unfortunately,
synchronization needs to be repeated in a regular basis in
order to compensate for the clock drifts of individual sensor
nodes. Existing synchronization protocols (e.g., FTSP [27])
rely on periodically flooding, resulting in an unaffordable
load on our system. In Figure 5, we illustrate the relative
drift between two MicaZ Motes, assuming each node has a
sleeping-active period of 30s including a 45ms active slot.
It shows that, without a regular (re)synchronization, two
initially synchronized nodes may only communicate with
each other for about 50 minutes (each period takes 30s).

1 10 20 30 40 50 60 70 80 90 100
5

10

15

20

25

30

35

40

45

Indices of sleeping−active periods

D
ri
ft

 (
m

s
)

Figure 5: Relative clock drift
between two nodes.

Our Trinity sys-
tem first employs
a low-power self-
calibration strategy.
Based on the phys-
ical property of our
harvester that its
vibration frequency
depends only on
its structure and
material, the out-
put of the har-
vester can be used
as an external oscillator to calibrate the native clock of the
connected sensor node. In order to avoid the interference
from the network operations, we use an additional small
piece of unimorph (as shown in Figure 2) for the purpose of
synchronization. Although we borrow this idea from the FM
synchronization reported in [24], our strategy consumes far
less energy as the external oscillation comes directly from
the harvester and hence needs no additional receiver or sig-
nal processing. Nevertheless, this self-calibration process
still incurs an mW scale energy consumption, so we want to
avoid invoking it as much as possible. Consequently, we also
propose a complementary strategy for synchronization. This
approach piggybacks control information with data traffic:
for each transmission link, the sender synchronizes its sleep-
ing time with that of the receiver based on the information
piggyback with the acknowledgements sent by the receiver.
According to our field tests, our per-link synchronization is
sufficient in most cases to maintain an adequate level of suc-
cessful transmissions. We will provide more details on these
two strategies in Section 4.

2.2.3 Airflow Speed Sensing
Being an important aspect for indoor microclimate mon-

itoring, airflow sensing can be preformed by many off-the-
shelf products. However, almost all the sensor products have
a high demand on power. For example, Figure 6 shows a typ-
ical airflow sensor. It has a current consumption of 15mA
and requires an input voltage of 10.8 to 26.4V, which en-
tails about 400mW power consumption. Such a huge power
consumption is beyond the capacity of our energy harvester.

To this end, Trinity takes a novel approach towards sens-
ing the airflow speed. As it can be shown (in Section 3.1)
that the peak output voltage of our harvester is a function of

the airflow speed, we may simply sample the voltage of the
harvester to infer the airflow speed. The sampling procedure

Figure 6: MEMS air-
flow sensor D6F-10A pro-
duced by OMRON Elec-
tronic Components LLC.

involves an amplifier
circuit (shown in Fig-
ure 2) and the ADC
module of MicaZ Mote’s
MCU; the resulting to-
tal power consumption
is below 500µW. Similar
to our clock calibration
strategy, we again take
the output from the uni-
morph to avoid inter-
ference from the power
generation. We shall
provide more details in Section 5.

3. HARVESTING AND MANAGING TINY
ENERGY

In this section, we first discuss the physical principles of
our energy harvester, then we explain the design of the power
management module.

3.1 Harvesting Energy from Airflow
The basic idea behind our energy harvesting scheme is

the piezoelectric effect. More specifically, certain materials
produce electric charges (or piezoelectricity) on their sur-
faces as a consequence of applying mechanical stress. In our
case, the mechanical stress is expected to be applied by the
airflows. Therefore, our design, as shown by Figure 2 and
3(a), is meant to attach a bimorph (containing piezoelectric
materials) to a frame fixed on an HVAC outlet such that
the bimorph (a type of cantilever with a tip mass, the bluff
body) can exhibit forced oscillation under the blow of air-
flow. As a result, the oscillation exerts mechanical stress on
the bimorph that in turn accumulates electric charges.

Based on aforementioned principles, we may establish the
following coupled lumped parameter model [36] to emulate
the electromechanical coupling behavior of our harvester.
The model is characterized by two governing equations:

Meff ẅ + Cẇ +Kw + ΘV = F (1)

V

RL
+ CpV̇ −Θẇ = 0 (2)

where w is the tip displacement in the direction normal
to the airflow, C and K are the damping coefficient and
stiffness of the harvester, respectively, V is the generated
voltage, RL is the applied load resistance, and Cp is the
total capacitance of the piezoelectric sheets. Other param-
eters need a bit more elaborations. Meff = 33

140
Mb + Mblu

is the effective mass, where Mb is the distributed mass of
the cantilever, and Mblu is the mass of the bluff body. Θ =√

(ω2
noc − ω2

nsc)MeffCp is the electromechanical coupling term,
where ωnoc and ωnsc denote the open circuit and short cir-
cuit natural frequencies of the harvester, respectively. F
represents the aerodynamic force acting on the tip body in
the direction normal to the airflow, it can be computed as

F =
1

2
ρahLbluU

2CF , (3)

where ρa is the air density, h · Lblu denotes the windward
area of the bluff body, U is the airflow speed, and CF =

∑
iArα

r (r = 1, 2, 3, ...) is a function of the angle of attack
α, and can be determined through experiments (e.g., [13]).
Here Ar denotes an empirical coefficients for the polynomial
fitting. The attack α is defined by α = ẇ

U
+ wa where wa

denotes the rotation angle of the cantilever at the free end.
The mechanical part of the equation system (1–2) de-

scribes an aeroelastic phenomenon termed across-wind gal-
loping [16], whose frequency is determined by the natural
frequency of the harvester. Moreover, as the system is cou-
pled with the piezoelectric effect, there exists an implicit
function relation between the airflow speed U and the volt-
age V . Finally, the vibrations incurred by galloping are
converted into an alternating output voltage with a fixed
frequency. We shall use these features later for our synchro-
nization and sensing modules (see Section 4.2 and 5), but
we focus only on power generation for now.

According to our estimates and measurements, different
bimorphs may produce a peak-peak open-circuit voltage rang-
ing from 20V to 50V and a short-circuit current around
100µA. This suggests a large internal resistance RI in the
scale of MΩ. Given a certain load resistance RL, the power

output is P = V 2

RL
, but this V is lower than the open-circuit

voltage and is affected by the ratio between RL and RI . In
Table 1, the parameters of two harvesters (among several
others that we have tried) are shown; the main difference
comes from the distinct bimorphs used. Apparently, to ef-
ficiently utilize the harvested power, a power management
circuit should be added between the harvester and sensor
node in order to match RL to RI , so that sufficient power
can be generated regardless of the node’s working modes.

Table 1: Two Different Harvester Designs
Parameters Harv. 1 Harv. 2

Open circuit frequency ωnoc (Hz) 13.23 10.99
Short circuit frequency ωnsc (Hz) 13.14 10.87

Capacitance Cp (nF) 52 18

Bimorph Type 1 V21BL V22BL
Mass of bluff body Mblu (kg) 0.0017 0.0017

Windward area of bluff body(cm2) 20 20
Airflow speed (m/s) 5.5 5.5

Equiv Ra
L for active mode (kΩ) 1 1

Power P a under Ra
L (µW) 4.51 2.11

Equiv Rs
L for sleeping mode (kΩ) 425 425

Power P s under Rs
L (µW) 622 258

Power P ∗ under optimal load (µW) 667 268

3.2 Regulating and Buffering Energy
In general, a power management module that draws power

from our harvester and supplies power to a MicaZ Mote has
to achieve the following three objectives:

1. Regulate the alternating voltage (also its amplitude)
to suit the 3.3V direct voltage input of a MicaZ Mote.

2. Deliver an equivalent load resistance RL that matches
the internal resistance RI of the harvester, largely in-
dependent of the working modes of a sensor node.

3. Buffer generated power to decouple the power genera-
tion from power consumption.

1The specification for the two types of bimorphs can be
found in http://www.mide.com/pdfs/Volture_Datasheet_
001.pdf

Our power management module (shown in Figure 2 and
4) consists of three components: a low-loss full-wave bridge
rectifier, a DC/DC converter (with a high efficiency of 85%)
and a battery recharging system that can work under a low
operating current. The first two components are built in
chip LTC3588-1 [5]: it rectifies the alternating power gener-
ated by the bimorph into a DC power by a bridge rectifier.
The output of the bridge is divided into two parts. One is
converted to the working voltage of a MicaZ Mote for di-
rect power supply. The other one is employed to recharge
two batteries via a battery recharging circuit. The bat-
tery recharging/enegy storage sub-system is made by two
LTC4071 chips [6] and two thin film batteries (THINERGY
MEC201 from Infinite Power Solutions [9]).

The charging circuit LTC4071 has a low operating cur-
rent of 550nA. It also has a disconnect function to protect
the rechargeable batteries from a deep discharge and poten-
tially irreparable damage. The thin film battery MEC201
has several desirable features, including 0.17mm thickness,
490mg weight, ultralow self-discharge rate, and a long cy-
cle life. The battery recharging system not only stores the
residual energy when the sensor node is in low-power sleep
mode, but also plays a key role of power backup in case
that the harvester temporarily stops working. According to
our field test, even if the harvester is detached, a node may
keep working for up to 20 hours with the supply delivered
by MEC201.

4. NETWORK OPERATIONS UNDER EX-
TREMELY LOW POWER SUPPLIES

According to Table 1, the power generated by our har-
vester is several hundreds of µWs, but a MicaZ Mote con-
sumes several tens of mWs in various working modes (see
Table 2). Due to this deficit in power supply, a Trinity WSN
has to operate under a very low duty-cycle. Fortunately, as
we shall show in our field tests, such a low duty-cycle does
not compromise the functionality of Trinity as an indoor
sensing system. In this section, we first introduce the duty-
cycling configuration for Trinity in Section 4.1, and then we
propose two complementary strategies in Section 4.2 and
Section 4.3, respectively, that provide a crucial synchroniza-
tion service for Trinity to properly operate a WSN.

4.1 Duty-Cycling Configuration
A Trinity sensor node works in a periodic on-off manner

and, as shown in Figure 7, it has a sleeping-active period Tdc

consisting of a sleep duration Tsleep and an active duration
Tactive . In addition, the sensor node usually needs to spend
Twake (3 to 4ms) to recover from sleeping mode to active
mode. Obviously, Rdc = Tactive

Tdc
is the duty-cycle.

()activet i ()sleept i
sleepT activeT

wakeT

dcT

Figure 7: The sleeping-active period of a sensor
node.

The large deficit in energy supply requires Trinity to not
only employ an extremely low duty-cycle but also reduce the

http://www.mide.com/pdfs/Volture_Datasheet_001.pdf
http://www.mide.com/pdfs/Volture_Datasheet_001.pdf

power consumption during Tsleep as far as possible. Accord-
ing to Table 2,2 the most energy-consuming components of

Table 2: Current draws under different modes.
Sleeping mode 20∼60µA

Active mode (radio off but MCU on) 8mA
Active mode (receiving) 22.4mA

Active mode (transmitting, 0dBm) 23.4mA
Active mode (transmitting, -10dBm) 21.8mA
Active mode (transmitting, -25dBm) 21.4mA

our MicaZ Motes are the radio module (CC2420 [2]) and
MCU (ATmega128L [1]). While the radio and MCU to-
gether may draw up to 23.4mA, the MCU alone already
needs 8mA. Therefore, only shutting down the radio during
Tsleep is not enough, we have to shutdown everything except
the oscillator, which leads to the sleeping mode shown in
Table 2. The actual power consumption of a node under
the sleeping mode varies from 66 to 198µW (given the 3.3V
working voltage of a node); this allows for several hundreds
of µW power surplus to be charged into the battery. Driven
by these measurements, we can figure out an upper bound
on the duty-cycle Rdc . Let Ih, Iactive , Isleep , and Ic denote
the output current of the harvester, the current draws within
Tactive and Tsleep , and the current consumed by the power
management module (approximate 8 µA), respectively, and
Rdc should satisfy

IactiveVnode

Vharvδ
· Rdc +

IsleepVnode

Vharvδ
· (1−Rdc) + Ic ≤ Ih, (4)

where Vharv and Vnode are the the output voltage of the har-
vester and the working voltage of a node, respectively, and
δ = 0.85 is the efficiency of the DC-DC convertor. Any
Rdc satisfying this constraint guarantees that the excessive
energy cost during Tactive can be compensated during Tsleep .

Detailed calculation ofRdc will be postponed to Section 6.2,
we hereby briefly introduce our strategy of adaptively ad-
justing Rdc to satisfy (4). We fix the active duration Tactive

and empirically specify the shortest sleep-active period Tdc

according toRdc measured under the maximum airflow speed
offered by an HVAC setting. Upon waking up, a sensor node
first reads its voltage to check if it is maintained to the same
level as before. If not, it doubles Tdc until a sustainable Rdc

is reached.
Given an mA scale Iactive and a µA scale Ih, it is obvi-

ous that the duty-cycle has to be below 1%. Now how a
Trinity WSN operates under such a low duty-cycle is a key
question we need to address. Obviously, asynchronous low
power MACs such as [14,21,30] would not work (which will
also be demonstrated later in Section 6.3.2), because the ef-
fective Rdc cannot be made very low given that a sender
has to either send a long preamble or wait for a receiver
to wake up. Consequently, a Trinity WSN has to operate
in a synchronous manner, such that a pair of sender and
receiver wake up at roughly (with accuracy down to mil-
lisecond scale) the same time. This cannot be done with-
out a constant synchronization service running at the back-
ground, as two native clocks of an arbitrary pair of nodes
may always exhibit relative drift [24] (also see Figure 5).

2The data reported in Table 2 are obtained by our own
experiments, which may differ significantly from the data
sheet of CC2420 [2].

Nevertheless, the synchronization service has to be almost
energy-free, since Trinity does not have much energy bud-
get for it. Therefore, we hereby propose two complementary
synchronization strategies in the following.

4.2 Self-Calibration with Harvester Vibration
One important property of the harvester vibration (briefly

discussed in Section 3.1) is that, its frequency (thus that of
the output voltage) is consistent with the natural frequency
of the harvester, which relies only on the structure and ma-
terial of the harvester [31]. For our Trinity system, each
node is connected to a harvester whose natural frequency is
accurately measured. As the structure of a harvester (thus
its natural frequency) is robust to environment changes, its
output voltage can serve as an external reference oscillator
(with a known frequency) to calibrate the native clocks of
the connected node in order to eliminate its clock drift. As
explained in Section 2.2.2 (also shown in Figure 2), we at-
tach an additional unimorph to the bimorph, so that they
share the same frequency but come with independent volt-
age outputs. This is meant to avoid the interference from
the load (the power draw from the node). In the following,
we first explain the rationale of our self-calibration strategy,
before diving into the technical details.

4.2.1 Principle of Self-Calibration
Our strategy is based on a clock calibration method, whose

goal is to estimate the drift rate of a certain clock with re-
spect to a presumably more accurate reference clock. Being
aware of the instant clock drift rate, a node in a WSN would
easily maintain a native clock that is synchronized with the
reference clock. This idea was recently proposed for sensor
node clock calibration using FM radio signal [24]. However,
while the method proposed in [24] requires an independent
sensing and signal processing module (which entails a power
consumption comparable to that of the data transmission),
our method directly gets the reference clock signal from the
harvester to trigger interrupts of a node’s MCU, resulting in
a much lower power consumption.

Given a certain time period T , we measure it using the
reference clock by counting the number of periods of refer-
ence clock and dividing it by the known frequency fref . We
denote this measurement by Tref . During the same period,
a node is also able to measure it using its native clock (simi-
larly by counting the number of ticks and dividing it by the
nominal frequency fnode of the internal oscillator), which is
denoted by Tnode . Comparing the two measurements on the
same time period T , we can compute the clock drift ξ 3 of
the node’s native clock with respect to the reference clock:

ϑ(Tref) + Tref = Tnode(1 + ξ) (5)

where ϑ(Tref) = Tref − T is a zero-mean Gaussian variable
representing the error of the reference clock when measur-
ing T . As the clock drift rate may vary due to the envi-
ronmental factors, e.g., battery level, temperature, and so
on, the calibration procedure may need to be performed pe-
riodically, such that the estimation of the clock drift rate
can be updated in response to the drift jitter. Therefore,
we take the linear regression approach used in [24]: each
node periodically measures both Tref and Tnode , and main-
tains a table of k tuples sampled in the last k periods T =

3If the node’s native clock runs slower than the reference
clock, ξ > 0; otherwise, −1 < ξ < 0.

{〈T k
ref , T k

node〉, 〈T k−1
ref , T k−1

node 〉, · · · }. Then a linear regression
is applied to fit these points and hence to estimate ξ (as
ϑ(Tref) is zero-mean, the intercept of the line should goes to
zero with a large k). In the following, we will discuss how
to apply this principle to the context of Trinity.

4.2.2 Trinity Self-Calibration
The output voltage of the unimorph is a sine wave, whose

actual measurements are shown in Figure 8(a). In order
to capture the zero-passing points that can be used as the
ticks for the reference clock, we employ a comparator (see
Figure 2) to convert the sine wave to a square wave shown
in Figure 8(b). Using every two rising edges to trigger an
interrupt in a node’s MCU, we get a reference clock for self-
calibration, whose frequency is indeed the natural frequency
of the harvester (measured when it is manufactured). As the
power consumption of the comparator is 1.3mW and that of
MCU is negligible,4 our self-calibration is extremely energy
efficient. To show the reference clock is sufficiently stable to

(a) Sine wave (b) Square wave

Figure 8: The signals of the reference clock.

measure the drift rate, we first use an accurate clock to mea-
sure the interrupt period in Figure 9(a); the Gaussian fitting
gives a mean of 101800µs.Then we use the interrupt period
to calibrate the native clock of a node in Figure 9(b), re-
sulting a mean of 101900µs. Obviously, the 100µs difference
results in the drift of this native clock. As both histograms
can be perfectly fitted by a Gaussian distribution, the noise
around the mean will be eliminated by the linear regression.

98,000 100,000 102,000 104,000 106,000
0

1%

2%

3%

Periods of the output voltage (µs)

P
e
rc

e
n
ta

g
e

4%

(a) Accurate clock

98,000 100,000 102,000 104,000 106,000
0

0.5%

1%

1.5%

2%

2.5%

Periods of the output voltage (µs)

P
e
rc

e
n
ta

g
e

(b) Native clock

Figure 9: Frequency stability of the reference clock
under an accurate clock (a) and the native clock of
a node (b).

Our self-calibration algorithm is summarized in Algo-
rithm 1. The basic idea is to perform the calibration during
Tactive in a periodic manner. As the drift is minor within
each duty-cycle period, so the period of calibration can be
longer than that of duty-cycling. A slight difficulty here is
that, as the MCU and the comparator are both shut down

4As the calibration only takes place during Tactive , the MCU
is considered to have a “flat rate” current draw of 8mA.

during Tsleep , the clock cycle of the reference clock is not
counted between two calibrations. Therefore, the measure-
ment of the reference clock at the j-th calibrations, T j

ref can-
not be directly measured. Within the active duration for

Algorithm 1: Self-Calibration (the j-th period)

Input: The reference clock frequency fref ; the
estimated drift rate of the last calibration ξj−1

Output: The estimation for the clock drift rate ξj

1 upon Interrupt

2 Record T j
node

3 T j
ref ← b(1 + ξj−1)T j

node · fnode + 0.5c · f−1
ref

4 insert 〈T j
ref , T

j
node〉 into T

5 if j > k then delete 〈T j−k
ref , T j−k

node 〉 from T

6 Fit a line
(
1 + ξj

)
x+ b to the points in T using

linear regression and return ξj

the j-th calibration, the node simply waits for the next in-
terrupt (driven by the rising edges shown in Figure 8(b)).
When an interrupt is fired, the native clock time T j

node is
recorded (line 2). As no interrupt has been counted since
the last calibration, we have to figure out the index of this
interrupt in order to compute T j

ref . Using T j
node , fref and the

last estimated drift rate ξj−1, this index can be computed
by rounding (1 + ξj−1)T j

node · fnode to the nearest integer,

which in turn suggests T j
ref (line 3). The remaining part

simply maintains the table T and performs a linear regres-
sion to estimate the drift rate ξj . The correctness of this
computation relies on an assumption that the drift jitter of
the native clock of the node can only cause a misalignment
less than half of the reference clock period, which can be
easily guaranteed by choosing a proper calibration period.
As our reference clock has a frequency of around 10Hz, so
given a drift jitter of 1ms/minute, this condition can still be
guaranteed even if the calibration period is about an hour.

Assuming all nodes are initially synchronized, the calibra-
tions at individual nodes allow every node to slightly adjust
its Tsleep and Tactive , such that the duty-cycling remains syn-
chronized. This synchronization does not have to be perfect,
a several-millisecond misalignment between a pair of sender
and receiver (as far as it is stable) is tolerable. We shall
discuss in the following a complementary strategy that can
be used to perform the initial synchronization and also to
further reduce the power consumption of synchronization.

4.3 Per-Link Synchronization through ACKs
The self-calibration presented in Section 4.2 only com-

pensates the clock drift for individual sensor nodes without
actually synchronizing them. Moreover, its mW scale power
consumption may still be a burden for Trinity. So we hereby
propose a per-link synchronization strategy. It virtually con-
sumes no power as the information is piggyback with ACKs,
and it complements the self-calibration, allowing nodes to be
synchronized with each other. We first introduce the basic
protocol, then we discuss its limitations and extensions.

4.3.1 The Synchronization Protocol
The objective of our per-link synchronization is to let the

sender and receiver wake up and go dormant at the same
time. In practice, we actually require the receiver to wake

up slightly before the sender in order to accommodate cer-
tain system errors. In the following, we use lower-case t to
represent a point in time and upper-case T for a time pe-
riod. Also let t (or T) denote the wall-clock time, t̂ (or T̂)
denote the reading from the native clock of a node, and a
superscript s (resp. r) denote the sender (resp. the receiver).

Given tssleep(i) and trsleep(i) as the times for the sender and
receiver to go dormant in the i-th sleeping-active period, the
times for them to wake up in the i+ 1-th period are

tsactive(i+ 1) = tssleep(i) + T̂ s
sleep(ξs + 1) (6)

tractive(i+ 1) = trsleep(i) + T̂ r
sleep(ξr + 1) (7)

where ξs and ξr are the clock drift rates of the sender and
receiver, respectively. Assuming tssleep(i) = trsleep(i) and the
drift rates are known, we can (re)set the duty-cycling pa-

rameters (i.e., T̂ s
sleep and T̂ r

sleep) for the sender and receiver
to guarantee that tractive(i + 1) < tsactive(i + 1). As the drift
rates are already estimated by our self-calibration strategy,
the per-link synchronization problem is now reduced to syn-
chronizing tssleep and trsleep for each sleeping-active period.

For the actual protocol, the time can only be measured
by the native clock for a node. Let us consider one specific
active period. The sender records a timestamp t̂stx when
sending a data packet. When the receiver gets the incoming
packet, it also records a timestamp t̂rrx , and it computes
its time-to-dormant as Λ = t̂rsleep − t̂rrx . The receiver then
piggybacks Λ and ξr with the ACK. Upon receiving this
feedback, the sender sets its sleep time locally as follows

t̂ssleep = t̂stx +
[
∆T + Λ(1 + ξr)−1] (1 + ξs) (8)

where ∆T is the time cost in packet delivery (including MCU
interrupt handling, decoding/encoding and propagation de-
lay) and can be estimated offline. In practice, ∆T is only
hundreds of microseconds, so omitting ∆T does not cause
any problem in our synchronization protocol. As the clock
drift during Λ (caused by ξs and ξr) is also negligible, we
may simplify (8) to

t̂ssleep = t̂stx + Λ (9)

We give two examples in Figure 10 to visualize our per-link
synchronization strategy. Basically, it shows that, regardless
of the drifting direction of the sender with respect to the
receiver, the two nodes can be re-synchronized as far as the
two-way communications can be preserved.

While combining (6), (7) and (8) allows for an accurate
per-link synchronization by making use of the outcome of
our self-calibration, the per-link synchronization can also be
a stand-alone protocol if we apply (9) and the following:

tsactive(i+ 1) = tssleep(i) + T̂ s
sleep (10)

tractive(i+ 1) = trsleep(i) + T̂ r
sleep (11)

Under this simplified protocol, special care has to be taken
to guarantee the receiver receives the data packet sent by
the sender in the (i+ 1)-th duty-cycle period. Typically, we
would require

0 < tsactive(i+ 1)− tractive(i+ 1) < T r
active

According to our experience, setting T r
sleep − T s

sleep = 5ms is
sufficient to guarantee the difference in active time is larger
than 0, and the clock drift during the sleep period cannot
result in a gap larger than T r

active .

ˆr
activet ˆr

rxt
ˆr
sleept

ˆs
activet ˆs

txt
ˆs
sleept

ACK

Sender

Receiver

Processing
delay

TD

(a) Sender drifts forward with respect to receiver

ACK

Sender

Receiver
TD

ˆr
activet ˆr

rxt ˆr
sleept

ˆs
activet ˆs

txt ˆs
sleept

Processing
delay

(b) Sender drifts backward with respect to receiver

Figure 10: Per-link synchronization between two
nodes. The green arrows denote the original dor-
mant times for the sender before synchronizing with
the receiver.

4.3.2 Limitations and Extensions
In order for the per-link synchronization to be stable in a

WSN, the network topology has to satisfy certain conditions.
Instead of speculating on what topologies could accommo-
date this synchronization protocol, we directly organize our
Trinity WSN into a tree with its root at the sink. This makes
sense as the data collection functionality of a WSN is often
performed on a tree topology. Within the tree, non-root
nodes report data to their respective parent nodes, hence
get synchronized with these parent nodes. Obviously, as our
per-link synchronization forces a sender to keep up with its
receiver, running this protocol within a tree network sim-
ply lets every node to stay roughly synchronized with the
sink. The apparent drawback of sticking to a tree topology
rather than allowing for flexible route selections based on
link quality (e.g., [22]) is a potential reduction in packet de-
livery ratio. Fortunately, as a Trinity WSN is often deployed
on the ceiling, the link quality is rather stable due to the
absence of common disturbance such as human movements.
Our field tests reported in Section 6.4 show that our Trinity
WSN achieves an adequate packet delivery performance.

Packet or ACK loss may reduce the opportunity for nodes
to get synchronized. However, our Trinity WSN has a rather
high packet delivery ratio (more than 90% per link), so losing
less than 10% of the synchronization opportunities should
not cause much trouble. Moreover, with the drift rate esti-
mated by the self-calibration, nodes may stay synchronized
for quite a long time even without data traffic.

In fact, a straightforward extension of the per-link syn-
chronization protocol can be used to achieve the initial syn-
chronization. With the help of the energy pre-stored in the
rechargeable batteries, the sensor nodes remain active (i.e.,
no duty-cycling) long enough before being synchronized. We
let the sink push a SYNC message downstream along the
tree. The protocol remains the same except that this SYNC
replaces the ACKs: the parent nodes notify their respec-
tive child nodes of their time-to-dormant Λ, and the syn-
chronized dormant time tsleep sets a common entry point to

duty-cycling. Such a procedure could be completed in tens
of seconds for a WSN with several tens of nodes. This ini-
tialization synchronization can definitely be supported by
Trinity’s rechargeable batteries.

5. ENERGY-FREE SENSING
As mentioned in Section 2.1, airflow speed sensing is a

crucial part of an indoor microclimate control system. How-
ever, the off-the-shelf airflow sensors often consume more
power than a sensor node. Obviously, Trinity has to look
for an alternative solution. According to Section 3.1, there
exits an implicit function relation between airflow speed U
and the harvester output voltage V . Therefore, if we could
experimentally obtain this function, our harvester may also
serve as an airflow sensor. In fact, we do not take the voltage
from the bimorph, as the voltage there may not be stable
given the varying load (due to node duty-cycling, also see
Section 6.2). Instead, our sensing module shares the uni-
morph with the self-calibration module (see Section 4.2.2):
while the former samples the magnitude of the voltage, the
latter only uses the zero-passing points to trigger interrupts.

According to our experience, the peak output voltage of
the unimorph is up to 20V, whereas the MCU of our Mi-
caZ Mote only supports a voltage input of 3.3V. Therefore,
we employ an amplifier circuit to proportionally reduce the
output voltage. The reduced voltage is introduced into the
ADC module of MicaZ Mote’s MCU via the 51-pin expan-
sion connector, as shown in Figure 2. We perform several
experiments in a wind tunnel (where wind speed can be con-
trolled) with our three different types of unimorphs attached
to our harvester. The resulting function relations between
wind speeds and the peak voltage values read by our MicaZ
Mote are shown in Figure 11. We show both mean values
and standard deviations in the figure: the voltage value un-
der a given wind speed has a variation only up to ±0.06V,
which suggests that using voltage to infer wind speed has
an adequate accuracy with an error of ±0.2m/s. We choose
the third unimorph for Trinity, as it has the widest dynamic
range (in terms of measuring wind speed).

0 1 2 3 4 5 6 7
0

1

2

3

4

Wind Speed (m/s)

V
o

lt
a

g
e

 (
V

)

Unimorph 1

Unimorph 2

Unimorph 3

Figure 11: Peak voltage under different wind speeds.

Based on our measurement, the power consumption of
the amplifier circuit is no more than 500µW. As the vi-
bration of our harvester results in an alternative voltage
whose frequency is about 10Hz (see the measurements in
Section 4.2.2), the node only needs to sample the voltage for
at most 100ms in order to catch a peak voltage, entailing an
extremely low energy cost. Given the far higher sample rate
of the ADC module (up to 76.9kHz), the error in captur-
ing the voltage peak due to discrete sampling is negligible.
Consequently, Trinity now has an almost energy-free airflow
speed sensor with a satisfactory accuracy.

6. SYSTEM EVALUATIONS
We have built a prototype of Trinity and deployed a small

scale WSN in our research center for more than one month.
In the following, we report various evaluations that we have
performed on this prototype. We start with a brief de-
scription of the deployment and evaluation settings, then
we present the results concerning individual components,
namely energy harvesting, networking, and sensing.

6.1 System Settings
Our Trinity prototype is built using the schematic shown

in Figure 2. Our hardware mainly contains i) an energy
harvester with a bimorph as the power generator (the sec-
ond type shown in Table 1) and a unimorph (the third type
shown in Figure 11) to produce voltage signal for both self-
calibration and airflow speed sensing, ii) a power manage-
ment module (see Figure 4) along with a few circuits for pre-
processing the voltage signal from the unimorph, and iii) a
MicaZ Mote to serve as the processing and networking unit.
We implement the software part (including the two synchro-
nization strategies and the airflow speed sensing) using NesC
under TinyOS-2.1. To accurately measure the power supply-
ing process under different networking scenarios, we make
use of an NI9229 (a 4-Channel, 24-Bit analog input mod-
ule) [8] and NI LabVIEW [4] to monitor the current and
voltage in Trinity. Finally, we use a hand-held anemometer
to verify the airflow sensing data collected by our Trinity
nodes. All these equipments are shown in Figure 12, in-
cluding two sets of Trinity and the monitoring equipments.

Figure 12: Lab setting
for measurements.

We deploy a Trinity
WSN consisting of 17
nodes on the ceiling of
our research center; each
node is fixed on an HVAC
outlet. The WSN con-
stantly monitors the air-
flow speeds of individ-
ual outlets, and reports
them to the sink (node
n0), possibly through
multi-hop transmissions.
Given the need for a syn-
chronous duty-cycling, we
deliberately make the net-
work topology a tree rooted at the sink (see explanations in
Section 4.3.2), and the WSN uses this topology to perform
data collection.

6.2 Energy Harvesting and Power Supplying
To observe the interactions between the energy harvester

and the energy consumer (power management module + sen-
sor node), we use NI9229 and LabVIEW to monitor the
current and voltage at the three points marked in Figure 2.
We first use Figure 14 to illustrate the voltage changing at
point C.5 The node has a 0.26% duty-cycle (Tsleep = 15s
and Tactive = 40ms), this satisfies the constraint (4) given
Ih = 70µA for the harvester output. Therefore, the voltage
should exhibit a stable and periodic pattern, which is appar-

5We are actually concerned with variations of the input volt-
age of a node, but the DC-DC converter conceals them by
stabilizing its output voltage. Therefore, the testing point
has to be set before the DC-DC converter.

n0n1

n2

n3

n4 n5

n6 n7

n8

n9n10

n11 n12

n16

n13 n14 n15

Figure 13: The Trinity WSN deployed in our 800m2

research center. Node n0 serves as the sink, while
other nodes sense the airflow speeds of individual
outlets to which they are attached and report the
data to the sink.

ently the case in Figure 14. When the node becomes active
(with both radio and MCU enabled), its current draw is in-
creased to about 20mA. Due to a large internal resistance
of the power supplier, the voltage suffers a drastic drop, but
the power supplier (assisted by the rechargeable batteries)
can still sustain the node. After the node goes dormant, the
current draw is reduced to µA level, which allows the voltage
to gradually recover and the batteries are hence recharged.
The critical things are that the voltage should be able re-
cover to the same level and that the voltage drop should not
reach the threshold triggering the protecting circuit; these
can be guaranteed if the constraint (4) is satisfied.

0 10 20 30 40 50 60 70 80 90 100
5.4

Time (s)

V
o

lt
a

g
e
 (

V
)

6.4

7.4

8.4

Figure 14: Voltage variations at testing point C dur-
ing several sleeping-active periods.

In Figure 15, we set four different duty-cycles to verify
their effects on the power supplier. Keeping Tactive = 40ms
and varying Tsleep to be 15s, 10s, 5s and 1s, we end up with
four duty-cycles at 0.26%, 0.4%, 0.79%, and 3.85%. While
each row is dedicated to a certain duty-cycle, columns show
the measurements at different testing points: the first col-
umn is the node’s current draw sampled at point A, while
the other two are output voltage of the harvester and that of

the batteries sampled at points B and C, respectively. Note
that the first two columns have a sample period of only a
minute (in order to avoid blending signals together), whereas
the last column has a sample period of one hour. For each
figure, we attach a small zoomed figure to show the detail
of each period.

The first column shows that there is always a current
spike whenever the node wakes up; this obviously corre-
sponds to the drastic voltage drop in the last column. The
actual power consumption during Tactive is shown by the
“plateau” following the spike, which can only be observed in
the zoomed figure. The second column is the output volt-
age of the harvester, which is supposed to be close to a sine
wave under open circuit (see Figure 8(a)). However, it is“de-
formed” (in both shape and magnitude) by the varying load.
As a result, we cannot use it for self-calibration and sensing
purpose. The last column is meant to demonstrate the ef-
fect of over-spending power by increasing duty-cycle. As the
voltage is taken at the output of the batteries, its reduction
signals the depletion of the batteries. With 0.2% duty-cycle,
the voltage remains the same after one hour. Doubling the
duty-cycle leads to a very small but barely discernable de-
crease in voltage. Further doubling the duty-cycle results in
a discernable reduction, and the zoomed figure shows that
the voltage can barely be recovered at the end of each pe-
riod. The last one, 3.8% duty-cycle, is apparently too large
for Trinity to handle: the continuous decreasing of voltage
triggers the protecting circuit of the battery charging sys-
tem (briefly mentioned in Section 3.2) after about 37 min-
utes running. Once this protecting circuit is triggered, the
output of the DC-DC convert will never rise beyond 3.3V,
forcing the node to shut down.

In fact, given different airflow speeds, we can estimate the
equivalent output currents of the harvester. Then using the
constraint (4), we may figure out the upper bounds on the
corresponding sustainable duty-cycles. Table 3 shows such
a correspondence within the range of airflow speeds that are
meaningful for indoor environments (our outlets offer airflow
speeds varying from 3 to 6m/s), assuming Vharv = 9.2V,
Vnode = 3.3V, Iactive = 25mA, Isleep = 60µA, and Ic = 8mA.

Table 3: DC bounds for different airflow speeds.
Airflow speed (m/s) Ih (mA) Duty-cycle

3 37.1 0.04%
3.5 44.5 0.10%
4 50.9 0.17%

4.5 58.3 0.24%
5 62.6 0.28%

5.5 68.9 0.34%
6 72.1 0.37%

6.5 75.3 0.40%
7 77.4 0.42%

6.3 Synchronous Duty-Cycling
We evaluate the effectiveness of our synchronization strate-

gies by checking an arbitrary link within our Trinity testbed.
To demonstrate the necessity of a synchronous duty-cycling,
we employ A-MAC [21] on that link and compare it with our
duty-cycling in terms of sustainability.

6.3.1 The Effectiveness of Trinity Synchronization
We apply our two synchronization strategies separately

on an arbitrarily link in our Trinity WSN, and we run the

(a) The current at testing point A (b) The voltage at testing point B (c) The voltage at testing point C

Figure 15: Monitoring energy harvesting and power supplying at different testing points marked in Figure 2.
Rows correspond to different duty-cycles: 0.26%, 0.4%, 0.79%, and 3.85%.

tests for more than 8 hours with CSMA enabled. As the ob-
jective is to avoid the receiver missing the packet from the
sender rather than perfectly synchronize the sensor nodes in
µs scale, we report the results as, instead of synchronization
accuracy, the time-to-receive (TTR) interval between the ac-
tive time and the receiving time at the side of receiver, i.e.,
t̂rrx − t̂ractive in Figure 16. Besides the original data shown in
the left side, we also plot the interquartile range and median
value to facilitate understanding the experiment results. Ac-
cording to our measurements, the average time in sending
one packet is about 10ms for MicaZ Motes. Considering
the receiver wakes up 5ms earlier than the transmitter, the
receiver is supposed to get the data packet in 15ms after
waking up, which accords with the median values shown in
the box plots. The fluctuation in TTR intervals stems from
the variations in channel accessing and sending. In sum-
mary, both our synchronization strategies could effectively
correct the clock drift between a pair of sender and receiver.

6.3.2 Synchronous vs. Asynchronous
In order to show the necessity of using synchronous duty-

cycling for Trinity, we apply A-MAC [21] to one of the links

in our Trinity WSN using the same duty-cycle (0.26% with
Tactive = 40ms and Tsleep = 15s) as Trinity. 6 In the network,
every node generates a packet during Tactive . The basic idea
of A-MAC, a receiver initiated link layer protocol, is that a
sender waits for (radio on) the receiver to wake up in order to
send a packet, so the effective duty-cycle could be larger due
to the waiting time. From our knowledge, many factors may
result in a large effective duty-cycle for A-MAC, including
the discrepancy of wake-up times and also the loss of the
notification from the receiver upon waking up. In fact, our
comparison favors A-MAC: as the whole WSN is initially
synchronized, the sender does not need to wait long at the
beginning, but the effective duty-cycle will get larger due to
the relative clock drift between the sender and receiver.

Figure 17(a) shows that the sender of the link running
our synchronous duty-cycling still works after a continuous
operation of 2 hours (in fact, the link has been working for
more than a month since our tests). However, running A-

6The sender-initiated low-power listening (LPL) [30] does
not support very low duty-cycle due to the limit on the
preamble length.

0 500 1000 1500 2000
5

10

15

20

25

Indices of sleeping−active periods

T
T

R
 i
n
te

rv
a
l
(m

s
)

5

10

15

20

25

(a) Self-calibration only

0 500 1000 1500 2000
5

10

15

20

25

Indices of sleeping−active periods

T
T

R
 i
n

te
rv

a
l
(m

s
)

5

10

15

20

25

(b) Per-link synchronization only

Figure 16: Performance of Trinity synchronization.

0 1 2 3 4 5 6 7 8 9 10 11 12

V
o

lt
a

g
e

 (
V

)

Time (×10 min)

5.4

4.8

6.0

8.4

6.6

7.2

7.8

(a) Trinity synchronous duty-cycle

0 1 2 3 4 5 6 7 8 9 10 11 12

V
o

lt
a

g
e
 (

V
)

Time (×10 min)

4.4

3.4

5.4

8.4

6.4

7.4

(b) A-MAC asynchronous duty-cycle

Figure 17: Comparing our synchronous duty-cycling
with A-MAC.

MAC“kills” that node in less than 2 hours. According to the
clock drift rate between the two nodes obtained experimen-
tally, the link can remain “alive” for at most 9 hours due to
the increasing effective duty-cycle caused by the clock drift.
However, if a notification from the receiver gets lost, the
sender is forced to wait for several seconds until the next
notification arrives. This is shown by the “glitches” in Fig-
ure 17(b), and as such a situation drastically increases the
effective duty-cycle, it kills a node sooner than expected.

6.4 Network Performance
Our Trinity WSN shown in Figure 13 has been running for

months, hence demonstrating the validity of its self-powered
design. However, as nodes in the WSN are all running under

very low duty-cycles (determined by the airflow speeds of
the individual outlets to which they are attached), there
might be a suspicion on the packet delivery ratio (PDR) for
individual nodes. Therefore, we compare our Trinity WSN
with the same network running CTP [22] but powered by
alkaline batteries. Note that the routing topology of CTP
is not fixed, but rather determined by the link qualities.
For fairness purpose, the sending rates of individual nodes
are the same for both scenarios (i.e., one packet per 15.04
seconds), but the CTP WSN does not involve duty-cycling
(to serve as a convincing reference). As a result, whereas
we collect data through the whole lifetime (months for now)
of the Trinity WSN, the data from CTP is obtained for a
couple of days since batteries run out.

Due to the low packet generation rate, CTP can achieve
an almost 100% PDR for every node: a PDR of 96.8% can
be reached even in the worst case (e.g., for node 16). This
makes CTP a good reference for us to evaluate the perfor-
mance of Trinity. We calculate the ratio of PDR (relative
PDR) between our Trinity WSN and the CTP WSN for ev-
ery node. As shown by Figure 18, Trinity works sufficiently
well in the sense that most of the relative PDRs are beyond
80% and 8 out of 16 are over 90%. Moreover, the relative
PDR is lower for a node further (in hop) from the sink. This
is expectable as Trinity uses a fixed tree topology for data
collection, where CTP adapts its routing paths to the link
qualities. However, this is a (small) price Trinity has to pay
for being able to operate under a very low duty-cycle.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1

Node id

R
e
la

ti
v
e
 p

a
c
k
e
t
d
e
liv

e
ry

 r
a
ti
o

Figure 18: Relative PDRs between Trinity and CTP.

6.5 Airflow Monitoring in Action
According to Section 5, our Trinity WSN can sense the air-

flow speeds of the outlets that they are attached to, with an
almost zero energy consumption. Therefore, we collect the
readings from our airflow sensors through the WSN during
the February 2013. At the same time, we also let someone
use the hand-held anemometer to check the same spots inter-
mittently. We first plot Figure 19 to show the peak voltage
outputs of five different sensors. Although the voltage val-
ues keep varying, the variances are negligible and the mean
values can definitely be used to derive the airflow speeds (by
consulting a table that is used to produce Figure 11). Since
our research institute does not allow the HVAC system to be
freely tuned, we simply observe a constant airflow speed at
a given spot. In Figure 20, we show the monthly averages of
the airflow speeds measured at the 16 outlets by both Trin-
ity and the hand-held anemometer. The differences between
the two sets of measurements are minor, and they can result
from the errors of both approaches. Most importantly, we
are now convinced that we can totally rely on Trinity to re-

0 100 200 300 400 500 600 700
1

1.5

2

2.5

3

Hours in monitoring

P
e
a

k
 o

u
tp

u
t

v
o
lt
a

g
e
 (

V
)

Node 16

Node 7

Node 5

Node 4

Node 2

Figure 19: Five nodes’ voltage readings in 30 days.

port the measurements, without bothering to have someone
climbing up to the ceiling several times a day.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

7

Node id

W
in

d
 s

p
e

e
d

 (
m

/s
)

Measurement by Trinity

Measurement by anemometer

Figure 20: Average airflow speeds measured at 16
outlets by Trinity and a hand-held anemometer.

7. RELATED WORK AND DISCUSSIONS
The recent decade has witnessed an increasing interest in

harvesting energy for sustainable WSNs [15]. As the WSNs
are usually applied to monitor surrounding environment, a
natural choice is to extract ambient energy, e.g., solar [17,
26,38], vibration [34], heat [28,37], and radio [29].

Solar power is popularly explored by many proposals. As
the first solar-based system integrating energy harvesting
and power management, Heliomote [26] equips Mica2 Motes
with solar panels and uses an adaptive schedule mechanism
to bridge the applications at upper layer to the power man-
agement at lower layer. Corke et al. [17] studies the effects of
combining a DC-DC converter with NiMH batteries to build
a solar-drive wireless sensor networks. Zhu et al. [38] build
their solar-based platform using ultra-capacitors instead of
rechargeable batteries. Keeping an eye on the leakage of the
capacitor, the network behaviors can be adaptively adjusted
thereby prolonging the lifetime of the network.

Thermal energy harvesting is a recently explored field.
Temperature difference of the steam pipeline is used to pro-
duce power up to 0.8W [37], and the thermoelectric har-
vester is again used in [28] to harness the small temperature
difference in water. Due to the heavily limited energy sup-
ply, the latter system adopts an extremely low power wake
up strategy: a node wakes up only upon a water flow event
that supplies it with sufficient energy. Our work goes close
to [28, 37] in that we all deliver an integrated sensing sys-
tem that draws energy from the sensing objects, but Trinity
differs from these existing proposals by positioning itself as
an indoor sensing system, and it indeed faces great chal-
lenges very different from those in [28,37]. While the energy

that can be harvested by Trinity is far lower than that from
steam pipelines [37], Trinity has to constantly monitor the
environment instead of being triggered only by events [28].

Trinity has been tested only in Singapore (a tropical coun-
try) where the HVAC systems are always on. The airflow
speeds may be decreased for energy-saving purpose, but a
minumum air flow speed required by our harvesters can
be guaranteed. For more general cases where some out-
lets even the whole HVAC system may be turned off, a
re-synchronization is required and it may leverage the ini-
tialization operation presented in Section 4.3.2. The system
building cost, which is about 80USD except the radio board,
may be another concern. The current cost is reasonable for
a prototype, but we are working towards a better system
integration that may further lower the cost.

8. CONCLUSIONS
We have presented Trinity as a self-sustaining and inte-

grated indoor sensing system. Trinity encapsulates three
main components: energy harvesting, synchronous duty-
cycling, and sensing, and it fully sustains itself by harvest-
ing the energy from the airflow issued by the HVAC outlets.
Being the very first one of its kind (to the best of our knowl-
edge), Trinity endows us with the privilege to answer several
questions that were never fully addressed. First of all, we are
now convinced that the vibration caused by indoor airflow
is a promising resource for piezoelectric energy harvesting.
Secondly, we have obtained the first-hand experiment results
on the amount of power that can be generated (under vari-
ous conditions) by this type of piezoelectric energy harvest-
ing (which is far lower than what can be obtained outdoors).
Thirdly, we have gained sufficient experience on designing a
proper power management module to marry a piezoelectric
energy harvester and a commonly used sensor node. Finally,
although indoor energy harvesters can only generate lim-
ited energy, Trinity serves as a perfect demonstration that
a meaningful indoor sensing system can sustain itself by re-
lying on these energy harvesters, with a carefully designed
network operation (in particular duty-cycling) mode.

At the meantime, we are testing Trinity in a data cen-
ter, where a sensing system monitoring rack temperatures
is crucial [25] but the HVAC system works in a different
manner. We are also integrating Trinity with a novel multi-
channel MAC [23] to improve its reliability. Moreover, a
new integrated design that packs everything into one cir-
cuit board is being studied. Finally, we intend to add more
nodes into our current deployment and open it for serving
public testing. Different from existing testbeds (e.g., [7,19]),
our Trinity-based testbed will be dedicated to testing indoor
applications that accommodate a low duty-cycle.

9. REFERENCES
[1] 8-bit Atmel Microcontroller with 128KBytes

In-System Programmable Flash.
www.atmel.com/Images/doc2467.pdf.

[2] Chipcon’s CC2420 2.4G IEEE 802.15.4/ZigBee-ready
RF Transceiver.
www.ti.com/lit/ds/symlink/cc2420.pdf.

[3] EH-Link?Energy Harvesting Wireless Node.
www.microstrain.com/energy-harvesting/eh-link.

[4] LabVIEW System Design Software.
www.ni.com/labview/.

www.atmel.com/Images/doc2467.pdf
www.ti.com/lit/ds/symlink/cc2420.pdf
www.microstrain.com/energy-harvesting/eh-link
www.ni.com/labview/

[5] LTC3588-1 Piezoelectric Energy Harvesting Power
Supply.
cds.linear.com/docs/en/datasheet/35881fa.pdf.

[6] LTC4071 Li-lon/Polymer Shunt Battery Charge
System with Low Battery Disconnect.
cds.linear.com/docs/en/datasheet/4071fc.pdf.

[7] MoteLab: Harvard Sensor Network Testbed.
motelab.eecs.harvard.edu/.

[8] NI 9229 4-Channel, 24-Bit Analog Input Module.
sine.ni.com/nips/cds/view/p/lang/en/nid/208796.

[9] THINERGY MEC201 Solid-State Rechargable
Micro-Energy Cell.
www.infinitepowersolutions.com/images/stories/

downloads/controlled_documents/DS1012.pdf.

[10] Y. Agarwal, B. Balaji, R. Gupta, J. Lyles, M. Wei,
and T. Weng. Occupancy-driven Energy Management
for Smart Building Automation. In Proc. of the 2nd
ACM BuildSys, pages 1–6, 2010.

[11] S. Anton and H. Sodano. A Review of Power
Harvesting Using Piezoelectric Materials (2003-2006).
Smart Materials and Structures, 16(3):R1–R21, 2007.

[12] ASHRAE. ANSI/ASHRAE Standard 135-1995:
BACnet, 1995.

[13] A. Barrero-Gil, A. Sanz-Andrés, and M. Roura.
Transverse Galloping at Low Reynolds Numbers. J.
Fluids Struc., 25(7):1236–1242, 2009.

[14] M. Buettner, G. Yee, E. Anderson, and R. Han.
X-MAC: A Short Preamble MAC Protocol for
Duty-cycled Wireless Sensor Networks. In Proc. of the
4th ACM SenSys, pages 307–320, 2006.

[15] A. Chandrakasan, R. Amirtharajah, S. Cho,
J. Goodman, G. Konduri, J. Kulik, W. Rabiner, and
A. Wang. Design Considerations for Distributed
Microsensor Systems. In Proc. of IEEE CICC, pages
279–286, 1999.

[16] R. Clark, D. Cox, H. Curtiss, J. Edwards, K. Hall,
D. Peters, R. Scanlan, E. Simiu, F. Sisto, T. Strganac,
and E. Dowell. A Modern Course in Aeroelasticity.
Springer, 1995.

[17] P. Corke, P. Valencia, P. Sikka, T. Wark, and
L. Overs. Long-duration Solar-powered Wireless
Sensor Networks. In Proc. of the 4th ACM EmNets,
pages 33–37, 2007.

[18] P. Corke, T. Wark, R. Jurdak, W. Hu, P. Valencia,
and D. Moore. Environmental Wireless Sensor
Networks. PIEEE, 98(11):1903–1917, 2010.

[19] M. Doddavenkatappa, M. Chan, and A. Ananda.
Indriya: A Low-cost, 3D Wireless Sensor Network
Testbed. Testbeds and Research Infrastructure.
Development of Networks and Communities,
90:302–316, 2012.

[20] Q. Dong, L. Yu, Z. Hong, and Y. Chen. Design of
Building Monitoring Systems Based on Wireless
Sensor Networks. Wireless Sensor Netowrks,
2(9):703–709, 2010.

[21] P. Dutta, S. Dawson-Haggerty, Y. Chen, C. Liang,
and A. Terzis. Design and Evaluation of a Versatile
and Efficient Receiver-initiated Link Layer for
Low-power Wireless. In Proc. of the 8th ACM SenSys,
pages 1–14, 2010.

[22] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and
P. Levis. Collection Tree Protocol. In Proc. of the 7th

ACM SenSys, pages 1–14, 2009.

[23] F. Li, J. Luo, G. Shi, and Y. He. FAVOR: Frequency
Allocation for Versatile Occupancy of spectRum in
Wireless Sensor Networks. In Proc. of the 14th ACM
MobiHoc, pages 39–48, 2013.

[24] L. Li, G. Xing, L. Sun, H. Wei, R. Zhou, and H. Zhu.
Exploiting FM Radio Data System for Adaptive Clock
Calibration in Sensor Networks. In Proc. of the 9th
ACM MobiSys, pages 169–182, 2011.

[25] C. Liang, J. Liu, L. Luo, A. Terzis, and F. Zhao.
RACNet: A High-Fidelity Data Center Sensing
Network. In Proc. of the 7th ACM SenSys, pages
15–28, 2009.

[26] K. Lin, J. Yu, J. Hsu, S. Zahedi, D. Lee, J. Friedman,
A. Kansal, V. Raghunathan, and M. Srivastava.
Heliomote: Enabling Long-lived Sensor Networks
Through Solar Energy Harvesting. In Proc. of the 3rd
ACM SenSys, pages 309–309, 2005.

[27] M. Maroti, B. Kusy, G. Simon, and A.Ledeczi. The
Flooding Time Synchronization Protocol. In Proc. of
the 3th ACM/IEEE IPSN, pages 39–49, 2004.

[28] P. Martin, Z. Charbiwala, and M. Srivastava.
DoubleDip: Leveraging Thermoelectric Harvesting for
Low Power Monitoring of Sporadic Water . In Proc. of
the 10th ACM SenSys, pages 225–238, 2012.

[29] H. Nishimoto, Y. Kawahara, and T. Asami. Prototype
Implementation of Ambient RF Energy Harvesting
Wireless Sensor Networks. In Proc. of IEEE Sensors,
pages 1282–1287, 2010.

[30] J. Polastre, J. Hill, and D. Culler. Versatile Low
Power Media Access for Wireless Sensor Networks. In
Proc. of the 2nd ACM SenSys, pages 95–107, 2004.

[31] J. Sirohi and R. Mahadik. Harvesting Wind Energy
Using a Galloping Piezoelectric Beam. J. Vib. Acoust.,
134(1):011009.1–011009.6, 2012.

[32] J. Taneja, A. Krioukov, S. Dawson-Haggerty, and
D. Culler. Enabling Advanced Environmental
Conditioning with a Building Application Stack. In
Proc. of the 4th IGCC, 2013.

[33] N. Watthanawisuth, A. Tuantranont, and
T. Kerdcharoen. Microclimate Real-time Monitoring
based on ZigBee Sensor Network. In Proc. of IEEE
Sensors, pages 1814–1818, 2009.

[34] C. Williams and R. Yates. Analysis Of a Micro-electric
Generator For Microsystems. In Proc. of the 8th Int’l
Conf. on Solid-State Sensor and Actuators and
Eurosensors, pages 369–372, 1995.

[35] Z. Wu, Z. Liu, X. Huang, and J. Liu. Real-time Indoor
Monitoring System Based on Wireless Sensor
Networks. In Proc. of SPIE, pages 22–25, 2009.

[36] Y. Yang, L. Zhao, and L. Tang. Comparative Study of
Tip Cross-Sections for Efficient Galloping Energy
Harvesting. Appl. Phys. Lett., 102(6):064105:1 –
064105:4, 2013.

[37] C. Zhang, A. Syed, Y. Cho, and J. Heidemann.
Steam-powered Sensing. In Proc. of the 9th ACM
SenSys, pages 204–217, 2011.

[38] T. Zhu, Z. Zhong, G. Yu, T. He, and Z. Zhang.
Leakage-aware Energy Synchronization for Wireless
Sensor Networks. In Proc. of the 7th MobiSys, pages
319–332, 2009.

cds.linear.com/docs/en/datasheet/35881fa.pdf
cds.linear.com/docs/en/datasheet/4071fc.pdf
motelab.eecs.harvard.edu/
sine.ni.com/nips/cds/view/p/lang/en/nid/208796
www.infinitepowersolutions.com/images/stories/downloads/controlled_documents/DS1012.pdf
www.infinitepowersolutions.com/images/stories/downloads/controlled_documents/DS1012.pdf

	Introduction
	Problem and System
	Indoor Microclimate Control and Sensing
	Trinity Sensing System Overview
	Energy Harvesting and Power Management
	Synchronous Duty-Cycling
	Airflow Speed Sensing

	Harvesting and Managing Tiny Energy
	Harvesting Energy from Airflow
	Regulating and Buffering Energy

	Network Operations under Extremely Low Power Supplies
	Duty-Cycling Configuration
	Self-Calibration with Harvester Vibration
	Principle of Self-Calibration
	Trinity Self-Calibration

	Per-Link Synchronization through ACKs
	The Synchronization Protocol
	Limitations and Extensions

	Energy-Free Sensing
	System Evaluations
	System Settings
	Energy Harvesting and Power Supplying
	Synchronous Duty-Cycling
	The Effectiveness of Trinity Synchronization
	Synchronous vs. Asynchronous

	Network Performance
	Airflow Monitoring in Action

	Related Work and Discussions
	Conclusions
	References

