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Preface to the third edition

As with the two previous editions this book has been written
primarily as a textbook for students with no previous knowledge
of numerical methods whatsoever, and because of its purpose the
various methods of solution and analysis have been illustrated by
worked examples. In addition, every chapter, except the first,
includes exercises with solutions that often extend the theory as
well as amplify points in the text.

It is intended for students taking degree courses in mathema-
tics, physics and engineering, and is self-contained in that the
basic calculus and matrix algebra needed for the development of
the subject will be known to most second-year students. It is also
hoped that the book will continue to be useful to those post-
graduate students who need a rapid and uncomplicated introduc-
tion to this field of study.

With regard to changes, the new Chapter 2 is essentially a
combination of the main ideas of Chapters 2 and 3 of the second
edition; I did this because students, both undergraduate and
postgraduate, said they preferred a more immediate mixture of
method and analysis. The section on stability has been completely
rewritten and based on the Lax—Richtmyer definition which en-
sures convergence when the difference equations are consistent
and stable. This has necessitated an introductory section on
norms.

Chapter 3 can be omitted by those who need only a quick
introduction to all three types of partial differential equations
because it deals mainly with an alternative derivation of differ-
ence equations approximating parabolic equations. It also in-
cludes miscellaneous methods for non-linear equations, the im-
provement of accuracy, the analytical solution of difference equa-
tions, and a new section on an eigenvalue—eigenvector solution
that is used to give a new method of approximation particularly
suited to large values of t.

Chapter 4 contains the standard work on hyperbolic equations
and has been enlarged only slightly by the application of new
work done in Chapter 3.



vi Preface to the third edition

Chapter 5 on elliptic equations and iterative methods remains
unchanged, except that my teaching experience has led to a
simpler presentation of the theoretical work associated with the
SOR method.

Finally, it gives me very great pleasure to thank all those who
have been of help to me in the preparation of the three editions.
Mr E. L. Albasiny and Dr D. W. Martin of the National Physical
Laboratory for a stimulating set of lectures they gave on numeri-
cal methods for partial differential equations at Brunel in 1960,
Professor J. Crank for criticising and improving the first edition;
Dr 1. Parker for computing many of the numerical examples
when a research student; Professor L. Fox and Dr J. Gregory for
helpful suggestions concerning the second edition, and particu-
larly Dr N. Papamichael for his criticisms of my initial draft and
his permission to use parts of his M.Sc. dissertation on consistent
orderings. With regard to the third edition, I am deeply grateful
to Dr E. H. Twizell and Dr A. Q. M. Khaliq, Brunel University,
for their work on L,-stable methods, and to Mr D. Drew, Brunel
University, for very recent work on semi-discrete semi-analytic
approximation methods.

Brunel University G.D.S.
December 1984
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Notation

i=1(n i varies from 1 to n by intervals of 1, ie. i=
1,2,3,...,n—1,n

S={ay, ay,...,a,} S is the set whose members are
Ay, Azy o ooy Ay
a,€S a, is a member of the set S.

S={(x,y):0=x=<a,0<y=<bh} S is the set of ordered pairs
(x, y) such that 0<x=<a and O0<y=<b.

A=[a;] A is the matrix whose element in the ith row and jth
column is a;.

| The unit matrix of order N.
A" The transpose of matrix A, i.e. AT=[a;].
A™!  The inverse of matrix A, i.e., AA™'=L

A The matrix whose elements are the complex conjugates of
the corresponding elements of matrix A.

x=[x,%5...,x,]" The column vector whose components
are Xiq, X, ..., Xy

[\|  The modulus of A.

max |\, i=1(1)n.  The maximum of |A4|,|A,], ..., |A.|.

p(A) The spectral radius of matrix A, which is the maximum
of the moduli of its eigenvalues A;, i =1(1)n.



1 Introduction and finite-difference formulae

The mathematical formulation of most problems in science in-
volving rates of change with respect to two or more independent
variables, usually representing time, length or angle, leads either
to a partial differential equation or to a set of such equations.
Special cases of the two dimensional second-order equation

2 2 2
o, Fo 00,

—+fp+g=0,
% ox? axdy ay> ox 9y fé+e

where a, b, ¢, d, e, f, and g may be functions of the independent
variables x and y and of the dependent variable ¢, occur more
frequently than any other because they are often the mathemati-
cal form of one of the conservation principles of physics.

For reasons that are given in Chapter 4 this equation is said to
be elliptic when b%>—4ac <0, parabolic when b*—4ac =0, and
hyperbolic when b>—4ac>0.

Two-dimensional elliptic equations

These equations, of which the best known are Poisson’s equation

and Laplace’s equation

are generally associated with equilibrium or steady-state prob-
lems. For example, the velocity potential for the steady flow of
incompressible non-viscous fluid satisfies Laplace’s equation and
is the mathematical way of expressing the idea that the rate at
which such fluid enters any given region is equal to the rate at
which it leaves it. Similarly, the electric potential V' associated
with a two-dimensional electron distribution of charge density p



2 Introduction and finite-differences formula

satisfies Poisson’s equation 8°V/dx?+9>V/dy>+ p/e =0, where ¢ is
the dielectric constant. This is the partial differential equation
form of the well-known theorem by Gauss which states that the
total electric flux through any closed surface is equal to the total
charge enclosed.

The analytical solution of a two-dimensional elliptic equation
is a function of the space co-ordinates x and y which satisfies the
partial differential equation at every point of the area S inside a
plane closed curve C and satisfies certain conditions at every point
on this boundary curve C (Fig. 1.1). The function ¢, for instance,
from which we can calculate the displacements and shear stresses
within a long solid elastic cylinder in a state of torsion satisfies

at every point of a right cross-section, and has a constant value
round the perimeter of the cross-section. Similarly, the steady
motion of incompressible viscous fluid through a straight uniform
tube can be found from a function that satisfies Laplace’s equa-
tion at every point of the cross-section and equals 3(x>+y?) at
each point on the boundary.

The condition that the dependent variable must satisfy round
the boundary curve C is termed the boundary condition.

To the present, only a limited number of special types of

y A

U X /

Fig. 1.1



Introduction and finite-difference formula 3

elliptic equations have been solved analytically and the usefulness
of these solutions is further restricted to problems involving
shapes for which the boundary conditions can be satisfied. This
not only eliminates all problems with boundary curves that are
undefined in terms of equations, but also many for which the
boundary conditions are too difficult to satisfy even though the
equations for the boundary curves are known. In such cases
approximation methods, whether analytical or numerical in
character, are the only means of solution, apart from the use of
analogue devices. Analytical approximation methods often pro-
vide extremely useful information concerning the character of the
solution for critical values of the dependent variables but tend to
be more difficult to apply than the numerical methods, and will
not be discussed in this book. Of the numerical approximation
methods available for solving differential equations those em-
ploying finite-differences or finite elements are more frequently
used and more universally applicable than any other, although
finite elements are not considered in this book. Before outlining
these methods however, the reader should be aware of the
manner in which the term ‘approximation method’ is used.
Finite-difference methods are approximate in the sense that deriv-
atives at a point are approximated by difference quotients over a
small interval, i.e., 3¢/dx is replaced by 8¢/8x where 8x is small
and y is constant, but the solutions are not approximate in the
sense of being crude estimates. The data of the problems of
technology are invariably subject to errors of measurement,
besides which, all arithmetical work is limited to a finite number
of significant figures and contains rounding errors, so even analyt-
ical solutions provide only approximate numerical answers.
Finite-difference methods generally give solutions that are either
as accurate as the data warrant or as accurate as is necessary for
the technical purposes for which the solutions are required. In
both cases a finite-difference solution is as satisfactory as one
calculated from an analytical formula. In future, all non-
analytical approximation methods will be called numerical
methods

They are not of course restricted to problems for which no
analytical solutions can be found. The numerical evaluation of an
analytical solution is often a laborious task, as can be seen by
inspecting the solution of the torsion problem for a rectangular
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cross-section defined by x = +a, y = +b, namely

s v (=D 2n+1)7a
— B2 y2_ 2_-3
¢ =b2—y>—32b%x ,.go(2n+ 1)3sech T

@n+Dax  2n+Day
osh b cos b ,

and numerical methods generally provide adequate numerical
solutions more simply and efficiently. This is certainly so with
finite-difference methods for solving partial differential equations.

In these methods (Fig. 1.1), the area of integration of the
elliptic equation, i.e. the area S bounded by the closed curve C, is
overlayed by a system of rectangular meshes formed by two
sets of equally spaced lines, one set parallel to Ox and the
other parallel to Oy, and an approximate solution to the differ-
ential equation is found at the points of intersection
P,,,Py,,...,P;,...of the parallel lines, which points are called
mesh points. (Other terms in common use are pivotal, nodal,
grid, or lattice points.) This solution is obtained by approximating
the partial differential equation over the area S by n algebraic
equations involving the values of ¢ at the n mesh points internal
to C. The approximation consists of replacing each derivative of
the partial differential equation at the point P;; (say) by a
finite-difference approximation in terms of the values of ¢ at P;;
and at neighbouring mesh points and boundary points, and in
writing down for each of the n internal mesh points the algebraic
equation approximating the differential equation. This process
clearly gives n algebraic equations for the n unknowns ¢, .,
¢12,... &ij ... . Accuracy can usually be improved either by
increasing the number of mesh points or by including ‘correction
terms’ in the approximations for the derivatives.

X C

Parabolic and hyperbolic equations

Problems involving time t as one independent variable lead
usually to parabolic or hyperbolic equations.

The simplest parabolic equation, aU/at =«kd*U/ax?, derives
from the theory of heat conduction and its solution gives, for
example, the temperature U at a distance x units of length from
one end of a thermally insulated bar after ¢ seconds of heat
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conduction. In such a problem the temperatures at the ends of a
bar of length [ (say) are often known for all time. In other words,
the boundary conditions are known. It is also usual for the
temperature distribution along the bar to be known at some
particular instant. This instant is usually taken as zero time and
the temperature distribution is called the initial condition. The
solution gives U for values of x between O and [ and values of ¢
from zero to infinity. Hence the area of integration S in the x—t
plane (Fig. 1.2), is the infinite area bounded by the x-axis and the
parallel lines x=0,x=1 This is described as an open area
because the boundary curves marked C do not constitute a closed
boundary in any finite region of the x—t plane.

Applications of finite-difference methods of solution to
parabolic equations are no different from their application to
elliptic equations in so far as the integration of the differential
equation over S is approximated by the solution of algebraic
equations. The structure of the algebraic equations is different
however in that it propagates the solution forward from one
time row to the next in a step-by-step fashion.

Hyperbolic equations generally originate from vibration prob-
lems, or from problems where discontinuities can persist in time,
such as with shock waves, across which there are discontinuities
in speed, pressure and density. The simplest hyperbolic equation
is the one-dimensional wave equation 8*U/at>= c23*U/dx?, giv-
ing, for example, the transverse displacement U at a distance x

!
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6 Introduction and finite-differences formula

from one end of a vibrating string of length [ after a time t. As
the values of U at the ends of the string are usually known for all
time (the boundary conditions) and the shape and velocity of the
string are prescribed at zero time (the initial conditions), it is seen
(Fig. 1.2), that the solution is similar to that of a parabolic
equation in that the calculation of U for a given x and ¢,
(0=<x <), entails integration of the equation over the open area
S bounded by the open curve C. Although hyperbolic equations
can be solved numerically by finite-difference methods, those
involving only two independent variables, x and ¢ say, are often
dealt with by the method of characteristics, especially if the initial
conditions and/or boundary conditions involve discontinuities.
This method finds special curves in the x—t plane, called charac-
teristic curves, along which the solution of the partial differential
equation is reduced to the integration of an ordinary differential
equation. This ordinary equation is generally integrated by num-
erical methods.

In conclusion, it is worth noting that whereas changes to the
shape of the area of integration or to the boundary and initial
conditions of partial differential equations often make their
analytical solutions impossible, such changes do not fundamen-
tally affect finite-difference methods although they sometimes
necessitate rather complicated modifications to the methods.

Finite-difference approximations to derivatives

When a function U and its derivatives are single-valued, finite
and continuous functions of x, then by Taylor’s theorem,

U(x+h)=U(x)+hU'(x)+3h2U"(x) +Eh3U"(x) +. ..
(1.1)

and
U(x—h)=U(x)—hU'(x)+3h%u"(x)-th*U"(x).... (1.2)
Addition of these expansions gives
U(x+h)+ U(x—h)=2U(x)+h?U"(x)+ O(h%, (1.3)

where O(h?) denotes terms containing fourth and higher powers
of h. Assuming these are negligible in comparison with lower
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powers of h it follows that,

2 1
U'(x)= (%TL;) =12 {U(x+h)-2U(x)+ U(x—h)}, (1.4
with a leading error on the right-hand side of order hZ.
Subtraction of eqn (1.2) from eqn (1.1) and neglect of terms of:
order h? leads to

U'(x)= (d___l{) =—1—{U(x+h)— U(x —h)}, (1.5)
dx /.-, 2h
with an error of order h2.

Equation (1.5) clearly approximates the slope of the tangent at
P by the slope of the chord AB, and is called a central-difference
approximation. We can also approximate the slope of the tangent
at P by either the slope of the chord PB, giving the forward-
difference formula,

U'(x)= ;1; {U(x+h)—U(x)}, (1.6)

or the slope of the chord AP giving the backward-difference
formula

U'(x) = % (UG- Ulx - h)}. 1.7

/

u(x)“

P
——
A
u(x—h) u(x) u(x+h)
o x—h x x+h x

Fig. 1.3
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Fig. 1.4

Both (1.6) and (1.7) can be written down immediately from eqns
(1.1) and (1.2) respectively, assuming second and higher powers
of h are negligible. This shows that the leading errors in these
forward and backward-difference formulae are both O(h).

Notation for functions of several variables

Assume U is a function of the independent variables x and t.
Subdivide the x-t plane into sets of equal rectangles of sides
8x = h, 8t =k, by equally spaced grid lines parallel to Oy, defined
by x; =ih, i=0,+1,+£2,..., and equally spaced grid lines paral-
lel to Ox, defined by t;=jk,j=0,1,2,...,as shown in Fig. 1.4.

Denote the value of U at the representative mesh point
P(ih, jk) by

UP = U(ih, jk) = Ui,y"
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Then by eqn (1.4),

(62_U) _ (aZ_U) _U{(i+D)h, jk}—2U{ih, jk}+ U{(i — 1)h, jk}
p— 6x2 ii )

ax> h?
ie.
62U Ui+1j_2Uii+ Ui—l]'
—_—— . &) 3! 1.8
with a leading error of order h?. Similarly,
82U> Uijt1—2U;;+ Uy
— ) =— . A= 1.9
(at2 iy k? (1.9)

with a leading error of order k2.
With this notation the forward-difference approximation for
dUJat at P is

a_l_f~ Ui,j+1_ Ui,j
at k ’
with a leading error of O(k).

(1.10)






Parabolic equations: finite difference
2 methods, convergence, and stability

Transformation to non-dimensional form

The computational stage of all numerical methods for solving
problems of any complexity generally involves a great deal of
arithmetic. It is usual therefore to arrange, whenever possible, for
one solution to suffice for a variety of different problems. This
can be done by expressing all equations in terms of non-
dimensional variables. Then all problems with the same non-
dimensional mathematical formulation can be dealt with by
means of one solution. For example, the oscillation of a pen-
dulum in a viscous medium and the discharge of electricity from a
capacitance through a resistance and inductance are different
problems physically, but identical mathematically when expressed
in terms of non-dimensional variables. The problems need not, of
course, be dimensionally different, but merely variations of the
same type of problem, as we would have with the calculation of
the periods of oscillation of springs of different lengths [ support-
ing different masses m and having different stiffnesses s. A single
solution of the corresponding non-dimensional equation would
allow us to solve a wide variety of spring problems because a
single parameter £, say, would replace some combination of I, m,
and s.
This non-dimensionalizing process is illustrated below with the
parabolic equation
2
%Lf]= K%] , K constant, 2.1)
the solution of which gives the temperature U at a distance X
from one end of a thin uniform rod after a time T. (This assumes
the rod is heat-insulated along its length so that temperature
changes occur through heat conduction along its length and heat
transfer at its ends.) Let L represent the length of the rod and U,
some particular temperature such as the maximum or minimum
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temperature at zero time. Put

X —5 and ——I—J—
L Uy’
Then
aU aU dx _a_(_]l
aX oaxdX ox L
and

fg_i(ﬂ’)_i(la_g)ﬁ_ifg
aX? g \ox/ ox \L ¥/ dX L?ax>’
\ 2X

so eqn (2.1) transforms to

a(qu)__ﬁaz(uUO)

oT L% ox® °
ie.
1 ou_du
kL™29T ax?*’

Writing t = kT/L? and applying the function of a function rule to

the left side yields
du du
a o @2

as the non-dimensional form of (2.1).

It should be noted that the number representing the length of
the rod is 1.

An explicit method of solution

By eqns (1.10) and (1.8) one finite-difference approximation to

aU_&U
2.3)
at ax
is
Uijr— Uiy Uprj—2U 5+ U_q

kK 2 ’
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where u is the exact solution of the approximating difference
equations,
x;=ih, (i=0,1,2,..)),

5=jk, (G=0,1,2,..)).

This can be written as

and

Uijr1™= mi—1,j+(1—2’)ui,;+mi+1,j, (2.9

where r=28t/(8x)*>=k/h?, and gives a formula for the unknown
‘temperature’ u;;,; at the (i, j+1)th mesh point in terms of
known ‘temperatures’ along the jth time-row (Fig. 2.1). Hence
we can calculate the unknown pi@'gﬁ;l values of u along the first
time-row, t=k, in terms of known boundary and initial values
along t =0, then the unknown pivotal values along the second
time-row in terms of the calculated pivotal values along the first,
and so on. A formula such as this which expresses one unknown
pivotal value directly in terms of known pivotal values is called an
explicit formula.

Example 2.1

As a numerical example let us solve (2.4) given that the ends of
the rod are kept in contact with blocks of melting ice and that the

ljk
s 2
-
5 L
] -
s C
E -
-~
/ - Unknown
3 Uiyt - value
o -
; -
; 2
?l/ - Known
= Uiyj U, Uivl, g values
z -
~1 j
-] o
]
C <
]
A ; I
Q
. 4
- -
CR 7
4k 7
7 7
; h—— L
AT LR TRV TR VTRV TR TRV VTRV RV TRVR RN
u=£f(x) x

Fig. 2.1
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initial temperature distribution in non-dimensional form is
(a) U=2x o=x=<i,

(2.5)
(b) U=2(1-x), 3<x<IL.

In other words, we are seeking a numerical solution of aU/dt =
8*U/3x* which satisfies

(i) U=0 at x=0 and 1 for all t>0. (The boundary condi-

tion.)

ii = =x=<i

v e ex< 1} £=0. (The initial condition.)
(This initial temperature distribution could be obtained by heat-
ing the centre of the rod for a long time and keeping the ends in
contact with the ice.)

For 8x =h =1y, the initial values and boundary values are as
shown in Table 2.1. The problem is symmetric with respect to
x =3 so we need the solution only for 0<x=<1.

Case 1

Take 8x=h=1, 8t=k =13y, so r=k/h?=+. Equation (2.4)
then reads as

Ujjv1= Tl(‘)(“i—1,j+8“i,j+ “i+1,i)- (2.6)

For pencil and paper calculations the relationship between these
four function values is represented very conveniently by the
‘molecule’ in Fig. 2.2. The numbers in the ‘atoms’ are the
multipliers of the function values at the corresponding mesh
points.

Application of eqn (2.6) to the data of Table 2.1 is shown in
Table 2.2, and readers are recommended to check some of the

TaABLE 2.1

x=0 0.1 02 03 04 05 0.6

T X
j=01]0 02 04 06 038 1.0 0.8
i=11]0
i=210
i=310
ji=410
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=

ij+1

i—1j

©

Fig. 2.2

15

-

i+ 1

calculations, remembering that the values of U at x =35 and &
are equal because of symmetry. (Increasing values of t, i.e. of j,
are shown moving downwards for convenience of calculation.) As
examples,

Us,=15{0.8+ (8% 1)+0.8} = 0,9600.
Ugr=15{0.6+(8x0.8)+0.96} = 0.7960.

The analytical solution of the partial differential equation satis-
fying these conditions is

8 «w 1 . .
U=— Y — (sin 3n)(sin nmx)exp(—n2m2t).
n=1
TABLE 2.2

i=0 i=1 i=2 i=3 i=4 i=5 i=6

x=0 0.1 0.2 0.3 0.4 0.5 0.6
(j=0)t=0.000 0 0.2000 0.4000 0.6000 0.8000 1.0000 0.8000
(G=1) 0.001 0 0.2000 0.4000 0.6000 0.8000 0.9600 0.8000
(G=2) 0.002 0 0.2000 0.4000 0.6000 0.7960 0.9280 0.7960
(G=3) 0.003 0 0.2000 0.4000 0.5996 0.7896 0.9016 0.7896
(G=4) 0.004 0 0.2000 0.4000 0.5986 0.7818 0.8792 0.7818
(G=5) 0.005 0 0.2000 0.3999 0.5971 0.7732 0.8597 0.7732
(G=10) 0.01 0 0.1996 0.3968 0.5822 0.7281 0.7867 0.7281
(j=20) 0.02 0 0.1938 0.3781 0.5373 0.6486 0.6891 0.6486
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TABLE 2.3

Finite-difference =~ Analytical Percentage
solution (x =0.3) solution (x =0.3) Difference error

t=0.005 0.5971 0.5966 0.0005 0.08
t=0.01 0.5822 0.5799 0.0023 0.4
t=0.02 0.5373 0.5334 0.0039 0.7
t=0.10 0.2472 0.2444 0.0028 1.1

Comparison of this solution with the finite-difference one at
x = 0.3, a3 given above, shows that the finite-difference solution is
reasonably accurate. The percentage error is the difference of the
solutions expressed as a percentage of the analytical solution of
the partial differential equation.

The comparison at x = 0.5 is not quite so good because of the
discontinuity in the initial value of dU/ox, from +2 to —2, at this
point (eqn 2.5). Inspection of Table 2.4 shows, however, that the
effect of this discontinuity dies away as t increases.

It can be proved analytically that when the boundary values are
constant the effect of discontinuities in initial values and initial
derivatives upon the solution of a parabolic equation decreases as
t increases.

An examination of Tables 2.19 and 2.21 given in Exercise 1 at
the end of this chapter shows that the same finite-difference
solution for a problem in which the initial function and all its
derivatives are continuous is very close indeed to the solution of
the partial differential equation.

Richtmyer, reference 25, has shown for this particular finite-
difference scheme that when the initial function and its first
(p—1) derivatives are continuous and the pth derivative ordinar-

TABLE 2.4
Finite-difference =~ Analytical Percentage
solution (x =0.5) solution (x =0.5) Difference error
t=0.005 0.8597 0.8404 0.0193 2.3
t=0.01 0.7867 0.7743 0.0124 1.6
t=0.02 0.6891 0.6809 0.0082 1.2

t=0.10 0.3056 0.3021 0.0035 1.2
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TABLE 2.5
i=0 1 2 3 4 5 6
x=0 0.1 0.2 0.3 0.4 0.5 0.6

T =0.000 0 0.2000 0.4000 0.6000 0.8000 1.0000 0.8000
0.005 0 0.2000 0.4000 0.6000 0.8000 0.8000 0.8000
0.010 0 0.2000 0.4000 0.6000 0.7000 0.8000 0.7000
0.015 0 0.2000 0.4000 0.5500 0.7000 0.7000 0.7000

0 0.2000 0.3750 0.5500 0.6250 0.7000 0.6250

0.020

0.100 0 0.0949 0.1717 0.2484 0.2778 0.3071 0.2778

ily discontinuous (i.e. changes by finite jumps), then the differ-
ence between the solution of the partial differential equation and
a convergent solution of the difference equation is of order
(81)®+2/®+D  for small 8t.

In this example, p=1, so the difference is of order (8t)3. As
(0.001)}=0.016, it is seen that the finite-difference solution is
actually better than the estimate indicates, a feature common to
most error estimates. When all the derivatives are continuous,
p — o, and the error is of order &t.

Case 2

Take 8x =h =14, 8t=k =135, so r=k/h>=0.5. Then eqn (2.4)
gives
Upj1= %(“i—l,,"*' Uii1,), 2.7

and the solution obtained by applying this finite-difference equa-
tion to the boundary and initial values is recorded in Table 2.5.

TABLE 2.6
Finite-difference =~ Analytical Percentage
solution (x =0.3) solution (x =0.3) Difference error
t=0.005 0.6000 0.5966 0.0034 0.57
t=0.01 0.6000 0.5799 0.0201 3.5
t=0.02 0.5500 0.5334 0.0166 3.1

t=0.1 0.2484 0.2444 0.0040 1.6
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It is seen that this finite-difference solution is not quite as good
an approximation to the solution of the partial differential equa-
tion as the previous one; nevertheless it would be adequate for
most technical purposes.

Case 3

Take 8x =15, 8t =18g, S0 r=8t/(8x)*>=1. Then eqn (2.4) gives
Uijor = Ui, j— Uit Uiy, 2.9)

and the solution of this finite-difference scheme is as below.

TABLE 2.7
i=0 1 2 3 4 5 6
x=0 0.1 02 03 04 05 06
t=000 | 0 02 04 0.6 0.8 1.0 0.8
0.01 0 02 04 0.6 0.8 06 0.8
0.02 0 02 04 06 0.4 1.0 04
0.03 0 02 04 02 1.2 -02 1.2
0.04 0 02 0.0 14 -12 26 -12

Considered as a solution of the partial differential equation this is
obviously meaningless, although it is, of course, the correct
solution of eqn (2.9) with respect to the initial values and
boundary values given.

These three cases clearly indicate that the value of r is impor-
tant and it will be proved later that this explicit method is valid
only for 0 <r=3. The conditions that must be satisfied for a valid
solution are dealt with both descriptively and analytically later in
this chapter under the headings of convergence, stability, and
consistency. Any reader who would prefer to have an introduc-
tion to these concepts at this stage could do so by reading the
descriptive treatments of these topics as they are independent of
the remainder of this chapter.

The graphs opposite compare the analytical solution of the
partial differential equation (shown as continuous curves) with
the finite-difference solution (shown by dots) for values of r just
below and above 3, and the same number of time-steps.
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u
i r=0.48 Solution of the differential equation
shown by the curves

0.5
Solution of the finite-difference
equations shown by the dots
04}
t=0.048. (j+1=10)
0.3F

1=0.096. (j+1=20)

t=0.192. (j+1=40
0.2 v )

0.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 X

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 «x
(b)

Fig. 2.3
Crank—-Nicolson implicit method

Although the explicit method is computationally simple it has one
serious drawback. The time step 8t = k is necessarily very small
because the process is valid only for 0<k/h?*<3}, i.e. k <3h? and
h = 8x must be kept small in order to attain reasonable accuracy.
Crank and Nicolson (1947) proposed, and used, a method that
reduces the total volume of calculation and is valid (i.e., con-
vergent and stable) for all finite values of r. They considered the
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partial differential equation as being satisfied at the midpoint
{ih, (j +3)k} and replaced 9*U/dx> by the mean of its finite-
difference approximations at the jth and (j+ 1)th time-levels. In
other words they approximated the equation

(5, (52)
ot /ijuy N\ox/ iy

Wijr — Uiy _ l {ui+1,j+1_ 2Ui it Uiy in 4 Uiy~ 2u;+ ui-—l,i}
k 2 h? h? ’

by

giving
—TUi_y it 2+ 2r)ui,j+1 — U1 = MUt (2- 2")ui,j+ TUii1,j
(2.10)

where r = k/h>.
In general, the left side of eqn (2.10) contains three unknown,
and the right side three known, pivotal values of u (Fig. 2.4).
If there are N internal mesh points along each time row then
for j=0 and i=1,2,..., N, eqn (2.10) gives N simultaneous
equations for the N unknown pivotal values along the first

IA I

L]
Unknown values of u

-—

i+1

Known values of u

i—1 i i+1 x
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time-row in terms of known initial and boundary values. Simi-
larly, j=1 expresses N unknown values of u along the second
time-row in terms of the calculated values along the first, etc. A
method such as this where the calculation of an unknown pivotal
value necessitates the solution of a set of simultaneous equations
is described as an implicit one.

For readers familiar with finite-difference notation, the Crank-
Nicolson method approximates the partial differential equation at
the point {ih, (j+3)k} by

1
Estui,j+% 2’12 {82 u+1+8 Ui i }

where the subscripts ¢t and x denote differencing in the ¢- and
x-directions respectively. Relative to the point {ih, (j+3)k}, both
aU/ot and 8°UJ/ox> have been replaced by central-difference
approximations. This tends to reduce the errors introduced by the
approximations.

Example 2.2

Use the Crank—Nicolson method to calculate a numerical solution
of the previous worked example, namely,
oU 9*U
—=—, 0<x<1,t>0,
at  dx
where (i) U=0,x=0 and 1,t=0,
(i) U=2x, O<x<2 t=0,
(i) U=2(1—-x), i=x=<1, t=0.

Take h =15. Although the method is valid for all finite values
of r=k/h?, a large value will yield an inaccurate approximation
for aU/at. A suitable value is r=1 and has the advantage of
making the coefficient of u;; zero in (2.10). Then k =1§; and
(2.10) reads as

Ui g1 T AU T Ui T Ui Uy (2.11)
The computational molecule corresponding to eqn (2.11) is

shown in Fig. 2.5. Denote u;;,; by u; (i=1,2,...,9). For this
problem, because of symmetry, ug= u,, u;= us, etc (Fig. 2.6).



22 Parabolic equations

i—1j+1 ij+1 i+1j+1
i—=1,j i+1,j
Fig. 2.5

The values of u for the first time step then satisfy
—0+4u,—u,=0 +0.4,
—uyt+4u,—u;=0.2+0.6,
—u, +4uz—u,=0.4 +0.8,
—us+4u,—us=0.6+1.0,
—2u,+4us =0.8+0.8.

As indicated in the next section these are easily solved by
systematic eliminations to give

u,; =0.1989, u, =0.3956, us;=0.5834, u,=0.7381, us=0.7691.

Hence the equations for the pivotal values of u along the next
time row are

—0+4u,—u,=0+0.3956,
—uy+4u,—u;=0.1989+0.5834,
—u,+4us—u,=0.3956+0.7381,
—us+4u,—us=0.5834+0.7691,

—2uy+4us =2x%0.7381

~

AN

=0

u

U, Ty TUs U, TUs TUy TUy | Uy

u=0 02 04 06 0.8 1.0 08 06 04 *

Fig. 2.6
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TABLE 2.8

0.1 0.2 0.3 0.4 0.5

0
t=0.00{0 0.2 0.4 0.6 0.8 1.0
t=0.01|{0 0.1989 0.3956 0.5834 0.7381 0.7691
t=0.02|0 0.1936 0.3789 0.5400 0.6461 0.6921
0

t=0.10{0 0.0948 0.1803 0.2482 0.2918 0.3069
Analytical
solution t=0.10{0 0.0934 0.1776 0.2444 0.2873 0.3021

The solution of these equations is given in Table 2.8 together
with figures comparing the finite-difference solution at t=0.1
with the solution of the partial differential equation. The numeri-
cal solution is clearly a good one.

Table 2.9 below displays both solutions at x = 0.5 for various
values of t. A glance at Table 2.4 shows that in this example the
accuracy of this implicit method over the time-range taken is
about the same as for the explicit method which uses ten times as
many time-steps.

As mentioned previously the greatest difference between the two
solutions occurs at x =0.5 because of the ordinary discontinuity
in the initial value of dU/dx at this point. A glance at Table 2.25
in Exercise 3 at the end of the chapter shows that this difference is
less for an initial function that is continuous together with its
derivatives.

Although the Crank-Nicolson method for aU/ot =0>U/ax? is
stable for all positive values of r in the sense that the solution and
all errors eventually tend to zero as j tends to infinity, it will be
shown later that large values for r, such as 40, can introduce

TABLE 2.9

Finite-difference =~ Analytical Percentage
solution (x =0.5) solution (x =0.5) Difference error

t=0.01 0.7691 0.7743 -0.0052 —0.7
t=0.02 0.6921 0.6809 +0.0112  +1.6
t=0.10 0.3069 0.3021 0.0048 1.6
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unwanted finite oscillations into the numerical solution. Such
oscillations die away only very slowly with increasing j, and
usually occur in the x-neighbourhood of points of discontinuity in
the initial values or between initial values and boundary values.

Solution of the equations by Gauss’'s elimination method
(without pivoting)

‘When there are N—1 internal mesh points along each time row
the Crank-Nicolson equations (2.10) can be written very gener-
ally as

+b1u1—01u2 =d1,
—ayu;+byu,—cous =d,,
— QiU+ by — Uiy =d,

—AN-1UN—2FbN_Un_ 1 =dN-y,

where the a’s, b’s, ¢’s, and d’s are known. The first equation
can be used to eliminate u, from the second equation, the new
second equation used to eliminate u, from the third equation and
so on, until finally, the new last but one equation can be used to
eliminate uy_, from the last equation, giving one equation with
only one unknown, uy_,. The unknowns upn_,, Un_3, - .. Us, Uy
can then be found in turn by back-substitution. Noting that the
coefficient ¢ in each new equation is the same as in the corres-
ponding old equation, assume that the following stage of the
eliminations has been reached,

QUi —Cig U =Sy,
—au;_y+bu —cu;,=d;,

where a;,=b,, S,=4d;.
Eliminating u;_, leads to
a;S; 1

a;Ci—
(bi —— U Ui =di+——
i a;q

-

i.e.
;U — G =S, (2.12)



Parabolic equations 25

where C. iSi
aCi— and S, =d, +-£l_'—'__—1 (i=2,3,...).

iy ;i

ai=bi_

The last pair of simultaneous equations are

AN QUN—2~ CN—2UN-1= SN2
and
—an—yUn—2tbnun— 1= dNos.

Elimination of uy_, gives

AN—1CN—2 an—1Sn—2
(bN-—l___— Uy =dn+——,
aAN-—2 aN—2

i.e.
an-1Un-1= Sn-1 (2.13)

Equations (2.12) and (2.13) show that the solution can be calcu-
lated from
SN—I

Un—1= ’
AN-1

1
w=—(S+cui) (=N-2,N-3,...,1),

where the a’s and S’s are given recursively by

a;

a;=by; a;=b;— Ci—1,

(L]

Sl=d1; Si=di+&ﬁ—si_1 (i=2,3,...,N—1).
i—1

In many problems «; and a;/a;_, are independent of time and
need only be calculated once, irrespective of the number of
time-steps.

As an illustration consider the last worked example for which

the equations were
4u,—u,=0.4,

—u;+4u,—u;=0.8,
—u,+4uz—u,=1.2,
—u3+4u4_ Us= 1.6,

—2u,+4us=1.6.
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Hence
a,=az=a,=1,a5=2,b;,=b,=by=b,=bs=4;
cG1=c=c3=c4=1;d,=04,d,=0.8,d;=12,d,=ds=1.6,

SO

a=by=4 a=b-—ci=4-—" (i=23,4,5),

i—1 a;_q

giving the following coefficients which are invariant for every
time-step.

a1=4’
a, 1 a,
—===0.25, a,=4——==3775,
a; 4 o,
w375 0.2667, az;=4 ” 3.7333,
a, 1 a,
—= =0. =4—-—=37321,
w, 37333 02679, es=4-Cn
as 2 as
== =0. =4-"5=34641.
w3321 0.5359, as=4 " 3.4641
As
S,=d;=0.4 and si=di+a“i Siy (i=2,3,4,5),
i—1

$:=0.4,

S, = 0.8+% $,=0.8+(0.25)(0.4)= 0.9,
1
as
S;=1.2+2 s, =1.4400,
a
L2
S4= 1.6+— S3 = 1.9858,
aj

Ss=1.6+228,=2.6642,
ay
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and the solution for the first time-step is

1
Uyg=— (S4+ C4u5) = 0.7381,
ay
1
Uz =— (S3+ C3u4) = 0.5834,
Qs
1
Uy=—" (Sz+ C2u3) = 0.3956,
a

1
U, =— (Sl+ Cluz) =0.1989.
ay

A comment on the stability of the elimination method

The non-pivoting elimination method previously described for
solving the set of linear equations Au=d, with a tridiagonal
matrix A, is always stable, that is, with no growth of rounding
errors, if

(i) a,>0, b;>0 and ¢;>0,

(i) b;>a; ;1 +c;_yfori=1,2,...,N—1, defining c;=an =0,

and

(iii) b;>a;+c¢; for i=1,2,...,N—1, defining a,=cn_,=0.
Conditions (i) and (ii), which ensure that the forward elimination
is stable, state that the diagonal element must exceed the sum of
the moduli of the other elements in the same column of the
matrix A of coefficients. Conditions (i) and (iii), which ensure that
the back substitution is stable, state that the diagonal element
must exceed the sum of the moduli of the other elements in the
same row. When these conditions are satisfied the algorithm is a
very efficient one for programming on a digital computer, using a
minimum of storage space.

Proof

To prove that the forward elimination procedure is stable it is
necessary to show that the moduli of the multipliers m; = aj/a; 4
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used to eliminate u,, u,, ..., are <1. By p. 25.
a;c;_
o =b ———==b;—mc;_y,
;g
Therefore,
mo . =dirt G
- o b-mg_,’
Hence,
0< m2< b 2<1 since by;>a,>0=c.
1
Similarly,
0<my= since a;>0,b,>c¢, and 0<m,<1,
b,—mycy
since ¢,;>0,
b,—c,
as .
<——=1 since b,>az+c;.
(astc)—cy
In this way, 0<m,, ms,..., my_;<1. The stability of the back

substitution is proved in Exercise 4, Chapter 2.

A weighted average approximation

A more general finite-difference approximation to aU/dt =
8*U/dx? than those considered is given by

Uijr1 ™ Uij 1

8t (8

> {o(ui+1,j+1_ 2ui.j+1 + ui—-l,]'+1) +(1-9)
)

X (Uypr,i— 25+ Uig )},

where, in practice, 0=<0=<1. For readers familiar with finite-
difference notation this replacement approximates the partial
differential equation at the point {idx, (j +3)8t} by the difference
equation

1
'8';8(“@;42 2{682 ;+1+(1 9)8 un}

(x)
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where the subscripts ¢t and x denote differencing in the t- and
x-directions respectively. 8 =0 gives the explicit scheme, 6 =3
the Crank-Nicolson, and 6§ =1 a fully implicit backward time-
difference method. The equations are unconditionally valid, i.e.
stable and convergent for 3=< 60 <1, but for0 < <3 we must have

ot 1

=— i .
r ox7 ~2(1=20) (See Exercise 20, Chapter 2.)

Derivative boundary conditions

Boundary conditions expressed in terms of derivatives occur very
frequently in practice. When, for example, the surface of a
heat-conducting material is thermally insulated, there is no heat
flow normal to the surface and the corresponding boundary
condition is dU/on =0 at every point of the insulated surface,
where the differentiation of the temperature U is in the direction
of the normal to the surface. Similarly, the rate at which heat is
transferred by radiation from an external surface at temperature
U into a surrounding medium at temperature v is often assumed
to be proportional to (U —v). As the fundamental assumption of
heat-conduction theory is that the rate of flow across any surface
is equal to —KadU]/an units of heat per unit time in the direction
of the outward normal, the corresponding boundary condition for
surface radiation is

—K£]= H(U -v).
an

The constant K is the thermal conductivity of the material and
the constant H its coefficient of surface heat transfer. The nega-
tive sign indicates that heat is assumed to flow in the opposite
direction to that in which U increases algebraically. This equation
can be written as

y= - h(U_ U),
on
where h is a positive constant.

Consider a thin rod that is thermally insulated along its length
and which radiates heat from the end x =0. The temperature at
this end at time ¢ is now unknown and its determination requires



30 Parabolic equations

an extra equation. This equation can be the boundary condition
itself when a forward difference is used for aU/dx, because the
boundary condition at x =0, the left-hand end, namely,

aU

—=—h(U-v),

will be represented by

Uy~ Uo,i
o h(ug;—v),

giving one extra equation for the temperature u,;. A negative
sign must be associated with dU/dx because the outward normal
to the rod at this end is in the negative direction of the x-axis.
Alternatively, in the heat-flow law, — KU/ dn implies that when the
positive direction of the x-axis (and of U) is to the right, then the
quantity of heat flowing from right to left across unit area per unit
time is +KaU]/adx, and this is proportional to the excess tempera-
ture at x=0.

If we wish to represent dU/dx more accurately at x =0 by a
central difference formula it is necessary to introduce the ‘fictiti-
ous’ temperature u_,; at the external mesh point (—8x, j8t) (Fig.
2.7), by imagining the rod to be extended a distance 8x at this
end. The boundary condition can then be represented by

Upi—U—1j_

2% = h(uo,;—v).

The temperature u_, ; is unknown and necessitates another equa-
tion. This is obtained by assuming that the heat conduction

t{k
-1 0 1 N—1 N N+1
¥ * ¥ X% ¥*
U-1,; Uo, Uy, Unyiy
o 1 x

Fig. 2.7
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equation is satisfied at the end x =0 of the rod. The unknown
u_;; can then be eliminated between these equations. Similar
equations can be written down for radiation from the other end
of the rod.

These methods are applied below to the problem of the cooling
of a homogeneous rod by radiation from its ends into air at a
constant temperature, the rod being at a different constant tem-
perature initially.

Example 2.3

Solve the equation ,
aU 9°U
—=— 2.1
at  ax*’ 2.14)
satisfying the initial condition,
U=1for0<x=<1whent=0,

and the boundary conditions,

?LJ: U at x=0, for all ¢,
9x
ﬂj=_U at x =1, for all ¢,
ox

using an explicit method and employing central-differences for
the boundary conditions.
One explicit finite-difference representation of eqn (2.14) is

Uijar " Uiy Uioyj = 2Ui5+ Ui

. St (6x)? ’
1.€.
Uijer = Ut r(ui—l,j_zui,i+ ui+1,j)a (2.15)
where r = 8t/(6x)2.
At x=0,
uo,]‘+1= uo’j+ r(u_l‘j—2u0,i+ ul,,-). (2.16)

The boundary condition at x =0, in terms of central-differences,
can be written as

d=y, . (2.17)
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Eliminating u_,; between (2.16) and (2.17) gives
Ug,js1 = Ug,;+2r{uy ;— (1+8x)ug }. (2.18)
Let 6x=0.1. Then at x =1, eqn (2.15) becomes
Uqo,j+1 = Uro; + (U —2Uy0;+ Upy ), (2.19)

and the boundary condition is

Uy~ Uo
1155,( 9’]=_u10,i' (2.20)

Elimination of the ‘fictitious’ value u,,; between (2.19) and
(2.20) yields

Uqo i+l u101+2r{u9] (1+6x)u101} (2.21)

This result could have been deduced from the corresponding
equation at x =0 because of the symmetry with respect to x =3.
Later in this chapter this scheme is proved to be valid for
r<1/(2+ héx), i.e. r=1/2.1 in this example.
Choose r=3. The difference equations (2.18), (2.15), then
become

Ugjr1= 3(0.9ug i+ u, ),
Uijor =50y 2u it uig ) (i=1,2,3,4),
and the use of symmetry rather than eqn (2.21) gives
Usjir = 4Qua;+2us).

As the initial temperature is u = 1, the values of u at the end of
the first time-step when t = r(8x)*= 335, are

0.1=2(0.9+1)=0.95,
=i1+24+D)=1=uy 1= U3 = Uy = Us 1,
and the values at the end of the second time-step are
Uo>=3(0.9%0.95+1)=0.9275,
>,=3%0.95+2+1)=10.9875,
=142+ 1) =1=uz,=u,,=us,.

Similarly for subsequent time-steps. The values for several
steps are recorded in Table 2.10.
The analytical solution of the partial differential equation satis-
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TABLE 2.10

0 1 2 3 4 5
0 0.1 0.2 0.3 0.4 0.5

l
X

t=0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0025 0.9500 1.0000 1.0000 1.0000 1.0000 1.0000
t=0.005 0.9275 0.9875 1.0000 1.0000 1.0000 1.0000
0.0075 0.9111 0.9756 0.9969 1.0000 1.0000 1.0000
0.0100 0.8978 0.9648 0.9923 0.9992 1.0000 1.0000
0.0125 0.8864 0.9549 0.9872 0.9977 0.9998 1.0000
0.0150 0.8764 0.9459 0.9818 0.9956 0.9993 0.9999
0.0175 0.8673 0.9375 0.9762 0.9931 0.9985 0.9996
0.0200 0.8590 0.9296 0.9708 0.9902 0.9974 0.9991

0.1000 0.7175 0.7829 0.8345 0.8718 0.8942 0.9017
0.2500 0.5542 0.6048 0.6452 0.6745 0.6923 0.6983
0.5000 0.3612 0.3942 0.4205 0.4396 0.4512 0.4551
1.0000 0.1534 0.1674 0.1786 0.1867 0.1917 0.1933

fying these boundary and initial conditions is

SEC A 40z }
U=4 Z {(3+4a2) cos 2a,,(x — 0<x<1),

where a, are the positive roots of
atana =3

Values of U calculated from this analytical solution are re-
corded in Table 2.11.

The two solutions are compared at x =0-2 in Table 2.12.

The finite-difference solution is clearly very accurate for this
small value of r.

Because of the symmetry with respect to x =3 the solution
above is the same for a rod of length 1, thermally insulated along
its length and at x =%, and which cools by radiation from x =0
into a medium at zero temperature.

Example 2.4

Re-solve the Worked Example 2.3 using an explicit method and
employing a forward-difference for the boundary condition at
x=0.
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TABLE 2.11
x= 0 0.1 0.2 0.3 0.4 0.5
t
0.0025 0.9460 0.9951 0.9999 1.0000 1.0000 1.0000
0.0050 0.9250 0.9841 0.9984 0.9999 1.0000 1.0000
0.0075 0.9093 0.9730 0.9950 0.9994 1.0000 1.0000
0.0100 0.8965 0.9627 0.9905 0.9984 0.9998 1.0000
0.0125 0.8854 0.9532 0.9855 0.9967 0.9994 0.9999
0.0150 0.8755 0.9444 0.9802 0.9945 0.9988 0.9996
0.0175 0.8666 0.9362 0.9748 0.9919 0.9979 0.9992
0.0200 0.8585 0.9286 0.9695 0.9891 0.9967 0.9985
0.1000 0.7176 0.7828 0.8342 0.8713 0.8936 0.9010
0.2500 0.5546 0.6052 0.6454 0.6747 0.6924 0.6984
0.5000 0.3619 0.3949 0.4212 0.4403 0.4519 0.4558
1.0000 0.1542 0.1682 0.1794 0.1875 0.1925 0.1941
TABLE 2.12
Finite-difference Analytical Percentage
solution (x =0.2) solution (x =0.2) error
t=0.005 1.0000 0.9984 0.16
0.050 0.9126 0.9120 0.07
0.100 0.8345 0.8342 0.04
0.250 0.6452 0.6454 -0.03
0.500 0.4205 0.4212 -0.16
1.000 0.1786 0.1794 —-0.45

By eqn (2.15), one explicit finite-difference representation of
the partial differential equation is

Uijr = U+ (U ;— 20+ Ui ).
Hence, for i=1,
ul,i+1 = ul,i+ r(uo,,-—Zul,,--l- uz,j). (2.22)

The boundary condition at x =0, namely dU/dx = U, in terms of a
forward difference is
Ui Uo,
éx

= uO,j9
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SO

Up,; =

Ui

1+6x "

Eliminating u,; between (2.22) and (2.23) gives

r
uu+1= 1‘“2r+1+6x ul,,-+m2,j~.

35

(2.23)

(2.24)

This scheme is valid for 0 <r=3 (see Exercise 24, Chapter 2),
but in order to compare its solution with the previous one, put
r=}% and 8x =0.1. The relevant equations are then

and

U j+r1=
uO,j+1

Upjr1=

u51+1

8 1
11U1,it3Uo
—10
=11U1+15

4(“1 1]+2u +ul+l]) (l

2,3,4),

#(Qu,; +2us;), because of symmetry.

The solution of these equations for an initial value of U=1 is
shown in Table 2.13. A comparison with the analytical solution at
x =0.2 is given in Table 2.14.

TABLE 2.13
x = 0 0.1 0.2 0.3 0.4 0.5
t=0.0000 | 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0025 | 0.8884 0.9773 1.0000 1.0000 1.0000 1.0000
0.0050 | 0.8734 0.9607 0.9943 1.0000 1.0000 1.0000
0.0075 | 0.8612 0.9473 0.9873 0.9986 1.0000 1.0000
0.0100 | 0.8507 0.9358 0.9801 0.9961 0.9996 1.0000
0.0125 | 0.8415 0.9256 0.9730 0.9930 0.9989 0.9998
0.0150 | 0.8331 0.9164 0.9662 0.9895 0.9976 0.9993
0.0175 | 0.8255 0.9080 0.9596 0.9857 0.9960 0.9985
0.0200 | 0.8184 0.9003 0.9532 0.9817 0.9941 0.9973
0.1000 | 0.6869 0.7556 0.8102 0.8498 0.8738 0.8818
0.2500 { 0.5206 0.5727 0.6142 0.6444 0.6628 0.6689
0.5000 | 0.3283 0.3611 0.3873 0.4063 0.4179 0.4218
1.0000 | 0.1305 0.1435 0.1540 0.1615 0.1661 0.1677




36 Parabolic equations

TaBLE 2.14
Finite-difference Analytical Percentage
solution (x =0.2) solution (x =0.2) error
t =0.005 0.9943 0.9984 -0.4
0.050 0.8912 0.9120 -2.3
0.100 0.8102 0.8342 -2.9
0.250 0.6142 0.6454 -4.8
0.500 0.3873 0.4212 -8.0
1.000 0.1540 0.1794 -14.2

Although this solution is not as good as the previous one it is
still sufficiently accurate for many practical purposes.

Example 2.5

Solve Example 2.3 by the Crank-Nicolson method.
This method represents dU/at =8>U/ax> by

Ugjrr Ui 1 {ui+1,j+1 ~ 22U U Wi~ 22Ut ui—l,y‘}
5t 2 (8x)? (8x)? ’

which can be written as

—TU; 1 220U oy — MUy = TU g+ (2—2r)ui,]'+ TU; 15

(2.25)

The central difference representation of the boundary condi-
tion at x=0is

u 1,i2 _8:—1,1‘ = uo,,
from which it follows that

U_y;=Uy;—28xuUg;
and

U_1j+1 T Uyjr1— 28XUg ;1.

The last two equations enable us to eliminate u_,; and u_, ;.4
from the equation obtained by putting i =0 in (2.25).



Parabolic equations 37

The boundary condition at x =1 can be dealt with in the same
way although in this problem it is easier to make use of the
symmetry with respect to x =3, namely, uq;=uy.

This scheme is formally valid for all finite values of r but we
must keep it reasonably small if we want a close approximation to
the solution of the partial differential equation. Choose r=1 and
6x=0.1. A small amount of algebra soon shows that the equa-
tions for the unknown pivotal values ug .y, Uy i1, . . ., Usj4q ATE

2.1ug 1~ Uy j1=—0.1ug;+uy
Uiy P AU~ U = WU (0=1,2,3,4),
“Ug i1+t 2Us i = Uy
For the first time-step these give
21uy—u,;=0.9,
—ug+4u; —u,=2.0,
—u;+4u,—uz;=2.0,
—uU,+4uz;—u,=2.0,
—uz+4u,—us=2.0,
—uy+2us=1.0.

These can be solved by the direct elimination method previ-
ously described. Table 2.15 records the solution for several
time-steps and Table 2.16 compares it with the analytical solution
at x=0.2.

TABLE 2.15
i= 0 1 2 3 4 5
t=0.00 1.0 1.0 1.0 1.0 1.0 1.0

0.01 0.8908 0.9707 0.9922 0.9979 0.9994 0.9997
0.02 0.8624 0.9293 0.9720 0.9900 0.9964 0.9979
0.10 0.7179 0.7834 0.8349 0.8720 0.8944 0.9018
0.25 0.5547 0.6054 0.6458 0.6751 0.6929 0.6989
0.50 0.3618 0.3949 0.4212 0.4404 0.4520 0.4559
1.00 0.1540 0.1680 0.1793 0.1874 0.1923 0.1940
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TABLE 2.16
Finite-difference Analytical Percentage
solution (x =0.2) solution (x =0.2) error
t=0.01 0.9922 0.9905 0.17
0.05 09131 0.9120 0.12
0.10 0.8349 0.8342 0.08
0.25 0.6458 0.6454 0.06
0.50 0.4212 0.4212 0.00
1.00 0.1793 0.1794 —0.06

The local truncation error and consistency

The local truncation error

Let F,(u)=0 represent the difference equation approximating
the partial differential equation at the (i, j)th mesh point, with
exact solution u. If u is replaced by U at the mesh points of the
difference equation, where U is the exact solution of the partial
differential equation, the value of F;j(U) is called the local
truncation error T;; at the (i, j) mesh point. F;;(U) clearly meas-
ures the amount by which the exact solution values of the partial
differential equation at the mesh points of the difference equation
do not satisfy the difference equation at the point (ih, jk).

Using Taylor expansions, it is easy to express T;; in terms of
powers of h and k and partial derivatives of U at (ih, jk).
Although U and its derivatives are generally unknown, the
analysis is worthwhile because it provides a method for compar-
ing the local accuracies of different difference schemes approxi-
mating the partial differential equation.

Example 2.6
Calculate the order of the local truncation error of the classical
explicit difference approximation to

2U_#U_

ot x>
at the point (ih, jk).
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Li+1” Wiy Wis—2U 5+ Uiy _

u
Fi,i(u) = k h2

0

Therefore,

w1~ Uiy Uin1j=2U+ Uiy

U
T, ;=F,(U)= Kk h2

By Taylor’s expansion
Ui+1,i = U{(i + 1)h,jk} = U(xi + h, t,)

3 8? o
0eh(1) 1(2D) oY)
Ui ax/.; > \ax?/, oh x>/,

L] L]

Ui—1;= U{(i—Dh, jk} = U(x; — h, t;)

3 8? 3’
~u,~ k(&) +awe(ED) —awe(ED) 4
Ui h(ai})i,j 2h ax?/y; oh x>/

i ij
Ui,j+1 = U(xi, + k)

] a° ?®
=U,;+k|—) +3 2(—U) +3 3(—U> +.o...
Ui k(altj)v. *ae LT\ Gs g

L] 5]

Substitution into the expression for T;; then gives

U 92 32 94
rue (2-29) (59) (5
T \at ax2/y; P \ar2 ) U \ax*/y;
3 *U
+lk2(—U) a2 ZUL
\ar3/,; PP axS

But U is the solution of the differential equation so

(ﬁf_az_U) 0
at ax*/y

Therefore the principal part of the local truncation error is

U a*
lk___LhZ_U> .

ij

Hence
Ti,j = O(k) + O(hz).

When k=rh? 0<rs<} T,; is O(k) or O(h?, as one would
expect by eqns (1.8) and (1.10).
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This error may be further reduced by choosing a special value
for k/h? because the equation for T;; can be written as

k 8*U a*
T, = Lh2(6 — ————H) + O(k?+ O(h%).
i h? a2 ax*/,;
By the differential equation,
a_&
at ax>’

)

d (aU)_ 8’ (62U)

at \at /] ax* \ax2/’
assuming that these derivatives exist. If we put 6k/h>=1, the
expression in the brackets is then zero and T;; is O(k?)+ O(h*).
This is of little use in practice because k =h? is very small for

small h so the volume of arithmetic needed to advance the
solution to a large time-level is substantial.

Consistency or compatibility

It is sometimes possible to approximate a parabolic or hyperbolic
equation by a finite-difference scheme that is stable, (i.e. limits
the amplification of all the components of the initial conditions),
but which has a solution that converges to the solution of a
different differential equation as the mesh lengths tend to zero.
Such a difference scheme is said to be inconsistent or incompatible
with the partial differential equation and an example is given in
Worked Example 2.7.

The real importance of the concept of consistency lies in a
theorem by Lax (reference 25), which states that if a linear
finite-difference equation is consistent with a properly posed
linear initial-value problem then stability guarantees convergence
of u to U as the mesh lengths tend to zero. Consistency can be
defined in either of two equivalent but slightly different ways.

The more general definition is as follows. Let L(U) =0 repres-
ent the partial differential equation in the independent variables x
and t, with exact solution U.

Let F(u) = 0 represent the approximating finite-difference equa-
tion with exact solution u.
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Let v be a continuous function of x and t with a sufficient
number of continuous derivatives to enable L(v) to be evaluated
at the point (ih, jk).

Then the truncation error T, (v) at the point (ih, jk) is defined
by ,

Ti,i(v) = Fi,j(v) —L (U i,j)'

If T,j(v)—0 as h =0, k — 0, the difference equation is said to
be consistent or compatible with the partial differential equation.
With this definition T;; gives an indication of the error resulting
from the replacement of L(v;;) by F;;(v).

Most authors put v = U because L(U) = 0. It then follows that

Ti,j( U) =F i,j( U),

and the truncation error coincides with the local truncation error.
The difference equation is then consistent if the limiting value of
the local truncation error is zero as h — 0, k — 0. This is the
definition that will be adopted in this book. By the Worked
Example 2.6 it follows that the classical explicit approximation to
aUJat = 3*UJax? is consistent with the differential equation.

Example 2.7

The equation
U _&°U_

a  ax?
is approximated at the point (ih, jk) by the difference equation
Uijrr " Uij—1 Uivsj— 2{9u,,+1+(1 0)“.1—1}"‘14; —1,j_

=0.
2k h?
Show that the local truncation error at this point is
k?8*U h? a“ 2kaU k2 62 (k3
— T ,h*, k )
6 o> 120x* +26-13z EFTRITE h?

Discuss the consistency of this scheme with the partial differential
equation when:

(i) k=rh and (i) k=rh?

where r is a positive constant and 6 a variable parameter.
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Expansion of the terms U, ;.,, U;;-1, U;sy, and U;_,; about
the point (ih, jk) by Taylor’s series, as in Example 2.6, and
substitution into

_ Uijs1— Ui,i—l_ Ui+1,j_2{0Ui,j+1+(1 — O)Ui,j—1}+ Ui—l,j

T..=
H 2k h?
leads to
T _(3U_6"_U) {k_zﬂf_biﬂ_f
o \ar ax*/y; Le ar® 12 9x*
2koU k"'a"-U} (k3
+(20-1)—=S—+—=5—(+0\5,h" “).
(26 )hzat h? at? th h k
Hence the result since aU/at —82U/ax>=0.
Case (i) k=rh
As h—0,
aU d*U 2roU ., o°
T..= . {————+ — —_— 2__(;r} .
v = Fiy(U) = a  ox? (26 1)h at | o "

When 6#31 the third term tends to infinity. When 6 =3 the
limiting value of T;; is
oU 9°U, ,0°U

———trr—.
at  ax? at?

In this case the finite-difference equation is consistent with the
hyperbolic equation

aU d*U . ,9°U

T3 + 1‘2 2= 0.

at  ox at
Hence the difference equation is always inconsistent with dU/at —
8*U/ox*>*=0 when k =rh.

Case (ii) k=rh?
Ash— 0,
aU U oU

P ————+ — —_
Tu= 5 ez P20 Dr oy

When 0#3 the difference scheme is consistent with the parabolic
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equation

U U _

ot ox?

{1+2(26—-1)r} 0.

It is only when @ =3 that the difference scheme is consistent with
the given differential equation. This is then the well-known Du
Fort and Frankel three-level explicit scheme which is also stable
for all r>0. (See Worked Example 3.2). It was devised to
overcome the unconditional instability of the early Richardson
explicit scheme

Uijri " Uij—1 Ui 2ui it Uiy

2k h?

but to retain the advantage of the central-difference approxima-
tion to the time-derivative which gives a local truncation error of
O(k*)+ O(h? as opposed to O(k)+ O(h?) for the classical exp-
licit approximation to dU/at —a*U/ax>=0.

0,

Convergence and stability

The following sections are concerned with the conditions that
must be satisfied if the solution of the finite-difference equations
is to be a reasonably accurate approximation to the solution of
the corresponding parabolic or hyperbolic partial differential
equation.

These conditions are associated with two different but interre-
lated problems. The first concerns the convergence of the exact
solution of the approximating difference equations to the solution
of the differential equation; the second concerns the unbounded
growth, or controlled decay or boundedness of the exact
solution of the finite-difference equations, and therefore of all
rounding errors introduced during the computation because the
errors and exact solution are processed by the same arithmetic
operations. (The stability problem.)

Descriptive treatment of convergence

Let U represent the exact solution of a partial differential equa-
tion with independent variables x and t, and u the exact solution
of the difference equations used to approximate the partial
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differential equation. Then the finite-difference equation is said
to be convergent when u tends to U at a fixed point or along a
fixed t-level as 6x and &t both tend to zero.

Although the conditions under which u converges to U have
been established for linear elliptic, parabolic and hyperbolic
second-order partial differential equations with solutions satisfy-
ing fairly general boundary and initial conditions, they are not yet
known for non-linear equations except in a few particular cases.
(The equation,

U | U a"'U 104

U
a—+b +c d—+e——+fU+g 0,
9x axot ot*

is linear when the coefficients a, b, . . ., g, are constants or func-
tions of x and ¢t only. Otherwise it is non-linear. If the coefficients
of the second-order derivatives are functions of x, t, U, dU/dx and
dU/at but not of second-order derivatives the equation is de-
scribed as quasi-linear even though it is non-linear. The impor-
tant feature of linear equations is that the sum of separate
solutions is also a solution.)

The difference (U—u) is called the discretization error. Some
texts call it the truncation error but in this book the latter term
will be reserved for the difference between the differential equa-
tion and its approximating difference equation. The magnitude of
the discretization error at any mesh point depends on the finite-
sizes of the mesh lengths, 8x and 8¢, i.e. on the distances between
consecutive, discrete grid-points, and on the number of terms in
the truncated series of differences used to approximate the de-
rivatives. Readers familiar with the calculus of finite-differences
will have recognized the approximation used earlier for dUJ/at as
the first term in either the series

9

@)(Z) =@-a2+382-. U,
ij

or the series

i)
@) =87+ dpT . I
ii+3

and the approximation for 3>U/ax? as the first term in the series

(B PUii_ (52— 1p2+ 35— . )U,,
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where the subscripts ¢t and x denote the directions in which the
differences are calculated. The symbols A and & are the forward
and central difference operators defined by Au; ;= u;;.;—u;; and
SU; = U — Uy, SO that 53“@;‘ =8,(8,u;) =8, (Uiy; —U;1;)=
U1~ 2u;;+u;_,;. Better approximations can be obtained by
truncating the series after two or more terms but have the
disadvantage of involving more pivotal values of u. It will be
shown later that the discretization error can be analysed in terms
of preceding local truncation errors. (See p. 73.)

The discretization error can usually be diminished by decreas-
ing 8x and &t, subject invariably to some relationship between
them, but as this leads to an increase in the number of equations
to be solved, this method of improvement is limited by such
factors as cost of computation and computer storage require-
ments, etc.

In general, the problem of convergence is a difficult one to
investigate usefully because the final expression for the discretiza-
tion error is usually in terms of unknown derivatives for which no
bounds can be estimated. Fortunately, however, the convergence
of difference equations approximating linear parabolic and
hyperbolic differential equations can be investigated in terms of
stability and consistency, which are easier to deal with. (Refer-
ence Lax’s equivalence theorem, p. 72).

Analytical treatment of convergence (A direct method)

The convergence of the solution of an approximating set of
linear-difference equations to the solution of a linear partial
differential equation is dealt with most easily via Lax’s equival-
ence theorem. Explicit difference schemes however, can be inves-
tigated directly by deriving a difference equation for the discreti-
zation error e. Denote the exact solution of the partial differential
equation by U and the exact solution of the finite-difference
equation by u. Then e=U —u.
Consider the equation

aU &*U

5 a2 0<x<Lr>0, (2.26)

where U is known for 0=<x=<1 when t=0, and at x=0 and 1
when t>0.
The simplest explicit finite-difference approximation to (2.26)
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is

Wijr1 Uiy Ui, — 22Ut Uy

. = 2.27)

At the mesh points,
ui=U—eij Uijer=Uijia— €., etC.
Substitution into (2.27) leads to
eiji=re_;+(1-2ne;;+re,,;+U;j.— Uy

+ r(2 Ui,j— Ui—l,j - Ui+1,i)' (2.28)
By Taylor’s theorem,

B2 U (x,+04h, 1),
Ui ;=UM +h, t)=U, +h( U) +— 9
3 h2 azU(xi - 02h‘, tj),
Ui—l,i— U(x,—h, tj)—‘ tji,,‘_h(gi—’>~ +—2-'EF

AU (x;, t; + 05k),
Uz]+1 U(xut +k) Ulj+k (x’ 3 )

where 0<6,<1, 0<0,<1 and 0<6,<1. Substitution into eqn
(2.28) gives
e jr1=Tre;_1;+ (1-2r)e; itrei;

+k{aU(x" t; + 0sk) a2U(x,+04h L)

; s ) eam

where —1<6,<1.

This is a difference equation for e;; which fortunately we need
not solve.

Let E; denote the maximum value of |e; | along the jth time-
row and M the maximum modulus of the expression in the braces
for all i and j. When r=<3}, all the coefficients of e in eqn (2.29)
are positive or zero, so

|ei,i+1| = ’|ei—1,j| +(1 —2r)|ei,il + r|ei+1,i| +kM
<rE;+(1-2rE, +rE +kM
=E,+kM.
As this is true for all values of i it is true for maxle;; ,|. Hence

E; <E +kM<(E,_,+ kM)+kM=E,_, +2kM,
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etc., from which it follows that
E,<E,+jkM=1tM,

because the initial values for u and U are the same, i.e. E,=0.
When h tends to zero, k =rh? also tends to zero and M tends to
(G-57)

ot ax?/y;

Since U is a solution of eqn (2.26) the limiting value of M and
therefore of E,; is zero. As |U;—u;;|<E, this proves that u
converges to U as h tends to zero when r<3 and ¢ is finite.

When r>1 it can be shown that the complementary function of
the difference equation (2.29) tends to infinity as h tends to zero.
There is no need, however, to do this when our main purpose is
to find the conditions necessary for a useful numerical solution
because we shall prove later that this finite-difference scheme is
stable for r=3 but unstable for r>3.

The proof above implies that U/t and 3*U/dx? are uniformly
continuous and bounded throughout the solution domain. This
was so in the Worked Example 2.1 in which 8>U/dx? was initially
zero in spite of the discontinuity in dU/ax. If it is assumed that U
possesses continuous bounded derivatives up to order three in ¢
and order six in x, Exercise 13 shows that the discretization error
is of order h?, except when r =% in which case it is of order h*.

Descriptive treatment of stability

The equations that are actually solved are, of course, the finite-
difference equations, and their application and solution to succes-
sive time-rows advances the finite-difference solution from the
initial line, on which initial values are known, to time-levels k,
2k, ... Jk =T, say, where T is finite. If no rounding errors were
introduced into this numerical process then the exact solution u,;
of the finite-difference equations would be obtained at each mesh
point (i, j), i=0(1)N, 0<j=<J.

The essential idea defining stability is that this numerical
process, applied exactly, should limit the amplification of all
components of the initial conditions.

For linear initial-value boundary-value problems, Lax and
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Richtmyer have related stability to convergence via Lax’s Equival-
ence Theorem (p. 72) by defining stability, in effect, in terms of
the boundedness of the solution of the finite-difference equations
at a fixed time-level T as k — 0, i.e. as J — o, it being assumed
that 3x = h is related to k in such a way that h — 0 as k — 0.

Assume that the vector of solution values wu;,,=
[Uy 41> Upjars - - - » Un—15j+1]" Of the finite-difference equations at
the (j+1)th time-level is related to the vector of solution values
at the jth time-level by the equation

Uj+1~= Allj +b;,

where b; is a column vector of known boundary-values and zeros,
and matrix A an (N—1)X(N—1) matrix of known elements.
Then it will be shown that the practical consequence of this
definition of stability is that a norm of matrix A compatible with
a norm of u must satisfy

lAll<1

when the solution of the partial differential equation does not
increase as t increases, Or

lAll<1+O(k)

when the solution of the partial differential increases as t in-
creases.

These conditions also ensure the boundedness of all rounding
errors because they are subject to the same arithmetic operations
as the finite-difference solution.

In an actual computation, however, k and h are normally kept
constant as the solution is propagated forward time-level by
time-level from ¢t =0 to ¢, = jk, and in many textbooks and papers
stability is defined in terms of the boundedness of this numerical
solution as j— o, k fixed. In this process the order (N—1) of
matrix A remains constant, unlike the matrix A associated with
Lax and Richtmyer’s definition. The matrix method of analysis
then shows that the equations are stable if the largest of the
moduli of the eigenvalues of matrix A, i.e. the spectral radius
p(A) of A, satisfies

p(A) =<1,

when the solution of the differential equation does not increase
with increasing t.
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Although this condition ensures the boundedness of the com-
puted solution it does not guarantee convergence unless the
eigenvalues of A are restricted to satisfy p(A)<||Al|<1, as N—
. In practice, assuming that the difference equations are consis-
tent, it is usually only in the immediate neighbourhood of p(A) =
1 that non-convergence might occur. An illuminating discussion
of these points is given in reference 19. (If the solution of the
partial differential equation increases as t — «, the condition for
stability with fixed h and k is then p(A) <1+ O(k). See p. 66.)

Vector and matrix norms

This section is needed for the Lax—Richtmyer definition of
stability.

Vector norms

The norm of vector x is a real positive number giving a measure
of the ‘size’ of the vector and is denoted by |lx||. It must satisfy the
following axioms.
(i) |Ix||>0 if x#0 and |x||=0 if x=0.

(ii) llex||=|c||Ix|| for a real or complex scalar c.

(i) [+ vl =<|xl| + iyl

If the nx1 vector x has components x, X, ..., X,, then the
three most commonly used norms are defined as follows.

The 1-norm of x is the sum of the moduli of the components of
X, i.e.

lIxlly = e +xo) + . ..+ xa | = Z |x;}.
i=1

The infinity norm of x is the maximum of the moduli of the
components of x, i.e.

Il = max x|

The 2-norm of x is the square root of the sum of the squares of
the moduli of the components of x, i.e.

1
2

R e e i P

The 2-norm gives the ‘length’ of the vector.
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Matrix norms

The norm of matrix A is a real positive number giving a measure
of the ‘size’ of the matrix and must satisfy the following axioms.
(i) JlAll>0 if A#0 and ||Al|=0if A=0.
(ii) icAll=Ic|||Al| for a real or complex scalar c.
(iii) ||A+Bj<||Al|+|B||.
@(iv) |AB|<||A]l|B}.

Compatible or consistent norms

Vectors and matrices occur together so it is essential that they
satisfy a condition equivalent to (iv). As a consequence, matrix
and vector norms are said to be compatible or consistent if

laxi|<{lAlfixl, x#o.

Subordinate matrix norms

Let A be an nXn matrix and x a member of the set S of n X1
vectors whose norms are unity, i.e. x€ S if |[x}| = 1. In general, the
norm of the vector Ax will vary as x varies, XeS. Let x, be a
member of S that makes ||Ax|| attain its maximum value. Then
the norm of matrix A is defined by

A=l Axol| = max || Axi.
This matrix norm is said to be subordinate to the vector norm
and automatically satisfies the compatibility condition, because, if
X=X, is any other member of S, ||Ax,||<||Ax/||={lAll=|All|kxll,
since |jx,||=1. It also follows that for all subordinate matrix

norms,
I = max x| = max x| = 1

where I is the unit matrix. The definitions of the 1, 2, and «
norms with ||x|| =1 lead to the following results which are proved
in most linear algebra books. (See Exercise 15.)

The 1-norm of matrix A is the maximum column sum of the
moduli of the elements of A.

The infinity norm of matrix A is the maximum row sum of the
moduli of the elements of A.



Parabolic equations 51

The 2-norm of matrix A is the square root of the spectral
radius of A¥A, where A¥ =(A)7, the transpose of the conjugate
complex of A. For example, if

-1 1] H_T_[m —7]
A—[3 | then A¥A=ATA=|

with eigenvalues 14.93 and 0.067. Hence ||All; =1+3=4, |Al.=
3+2=5 and |Al,=v14.93=3.86.
When matrix A is real and symmetric, A¥ = A, and

1Al =[p(A)F =[p*(A)E = p(A) = max |A,.

A bound for the spectral radius

Let A; be an eigenvalue of the nXn matrix A and x; the
corresponding eigenvector. Hence

Ax; = \;X;
and
A || = llx ]| = A ]l
For all compatible matrix and vector norms it follows that
A lhall = Al <A ]l
Therefore,
Inl<[lAl, i=1MDn.
Hence,

p(A)<||A|l.

A necessary and sufficient condition for stability.
(Constants coefficients)

Let the solution domain of the partial differential equation be the
finite rectangle 0<x <1, 0=<t=<T, and subdivide it into uniform
rectangular meshes by the lines x; =ih, i =0(1)N, where Nh =1,
and the lines t =jk, j =0(1)J where Jk =T. It will be assumed
that h is related to k by some relationship such as k=rh or
k =rh? r>0 and finite, so that h —0 as k — 0.
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Assume that the finite-difference equation relating the mesh-
point values along the (j+1)th and jth time-rows is

bi Uiy i1+ bl b Uiy =G Uiyt UG, it CiaUiv

where the coefficients are constants.

If the boundary values at i =0 and N, j>0, are known, these
(N—1) equations for i = 1(1)N—1 can be written in matrix form
as

—bl b, r-“1,,'+1 T
b, b, bs Uz i+l

bn—s bn—2 bns UN-2,j+1

L bn-2 bN-—l_ [UN—1,j+1

C, Cp I uw; 7 [Colto;— boug ;17
¢, C; C3 Uy 0
= +
CN-3 CN—2 Cn-1|[jUN—2 0
| CNn—2 CN-1]|UN-1i] [eNUN;— bNuN’,-.HJ

i.c. as Bu, , =Cu;+d; where the matrices B and C of order
(N—1) are as shown u; ., denotes the column vector with com-

ponents Uj;.q, Upji1,..., Un—1;+1 and d; denotes the column
vector of known boundary values and zeros.
Hence,

v =B 'Cy;+B7'd,
which may be expressed more conveniently as
U= Au; +f;,
where A =B7'C and f; = B™'d;. Applied recursively, this leads to
v, =Au;,_;+f;_, = A(Au;_, +f;_,)+f_,
=A% ,+Af ,+f_,

=Alu,+A T+ AT+, (2.30)
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where u, is the vector of initial values and f,, f,..., f;_; are
vectors of known boundary-values. When we are concerned more
with a property of the equations, such as stability, than with a
numerical solution, the constant vectors can be eliminated by
investigating the propagation of a perturbation.

Perturb the vector of initial values u, to u¥. The exact solution
at the jth time-row will then be

wi=Aluf+ A+ AT L (2.31)
If the perturbation or ‘error’ vector e is defined by
e=u*—u,
it follows by eqns (2.30) and (2.31) that
e, =uf—u,=Auf—uy)=Ale,, j=1(1)J. (2.32)

In other words, a perturbation e, of the initial values will be
propagated according to the equation

ej =Ae,~_1=A2e,~_2=. . .=Aieo, ]= 1(1)].
Hence, for compatible matrix and vector norms,
lle;ll=<llA] lleol.

Lax and Richtmyer define the difference scheme to be stable
when there exists a positive number M, independent of j, h, and
k, such that

A<M, j=1(1)J.

This clearly limits the amplification of any initial perturbation,
and therefore of any arbitrary initial rounding errors, because

llesll < M je|.

In reference 25, this definition of stability is related to con-
vergence via Lax’s equivalence theorem (p. 72).
Since

A%l =laAa <Al A <. . .<]|AY,

it follows that the Lax-Richtmyer definition of stability is satisfied
by
lAll<1.

This is the necessary and sufficient condition for the difference
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equations to be stable when the solution of the partial differential
equation does not increase as t increases.

When this condition is satisfied it follows automatically that the
spectral radius p(A)=<1 since p(A)=<|Al.

If, however, p(A)=<1, it does not follow that ||Al]|<1. This is
demonstrated by the simple example

_[-0.8 0]
A‘[ 04 077

for which A, =-0.8, A,=0.7, p(A)=0.8, |Al; =1.2 and ||Al|..=
1.1. If, however, A is real and symmetric, then

lAll,=Vp(ATA) =Vp(A?) = Vp*A) = p(A).

Example 2.8

Consider the stability of the classical explicit equations
Uii+v1= mi—l,j+(1 —2r)ui,j+ Ui+ i= 1(1)N_ 1,
for which the (N—1)X(N—1) matrix A is

1-2r) r
r 1-2nr
r (1-2r) r
r (1-2r),
where r=k/h*>0, and it is assumed that the boundary values
Uo; and uy; are known for j=1,2,....

When 1-2r=0, then 0<r=<1
and

lAl.=r+(1-2r+r=1.
When 1-2r<0, r>3, |1-2r|=2r—-1
and
Ale=r+2r—1+r=4r—1>1.

Therefore the scheme is stable for 0<r=<3.
Alternatively, since matrix A is real and symmetric,

Al = p(A) = max ||,
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where u is the sth eigenvalue of A. Now A can be written as

1 -2 1

+r e 1 =IN_1+YTN_1,

where Iy_; is the unit matrix of order (N—1) and Ty_; an
(N—1)x(N-1) matrix whose eigenvalues A, are given by

A, =—4sin”? sw/2N, s=1(1)N—1. (See p. 59.)

Hence the eigenvalues of A, as shown later in ‘A note on
eigenvalues and eigenvectors’ are w, =1—4r sin® s7/2N.
Therefore the equations will be stable when

l|All, = max |1—4r sin® s7m/2N| <1,
ie.,
—1<1-4rsin®sm/2N<1, s=1(1)N-1.
The left-hand inequality gives that
r<1/2sin* (N—1)m/2N.

As h—0, N—x and sin’(N—1Da/2N— 1.
Hence r=3.

It has been shown that these equations are also consistent.
Hence by Lax’s equivalence theorem they are also convergent for
0o<r=i.

Example 2.9

The Crank-Nicolson equations (2.10) are

=rUi_1j1 tC+20) U — U
= rui_l,j+(2—2r)ui,,~+ an.l,i, i= 1(1)N_ 1.
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In matrix form, for known boundary values, these give

_(2+2r) —r T _u1,i+1-‘
-r 2+2r) —r Uz i+l

-r (2+2r) -r uN_z’j_‘.l

-r (2 + 2r)_ _uN_Lj.,,l_

-(2 - 2r) r u 1,j
r 2-2r) r Uz

i

r 2-2r) r Un—2,;

L r (2_27)_ \_uN_L,-_

where b, is a vector of known boundary values and zeros. This
can be written as

(I — rTn_DUj 1 = QIn_1 + T )u; +b;
from which it follows that matrix A of eqn (2.30) is
A=y~ Ty ) Qo +rTyy).

In Exercise 14 it is proved that if the n X n symmetric matrices B
and C commute then B™'C, BC! and B'C™! are symmetric.
Matrix Tn_; is symmetric so 20y_; —rTn_; and 20y_; +rTy_, are
symmetric. They also commute as their multiplication im-
mediately shows. Hence matrix A is symmetric. Since the eigen-
values of Tn_; are A, =—4sin®sw/2N, s=1(1)N—1, it follows
that the eigenvalues of A are (2+4rsin®sn/2N)'(2—
4r sin? smi/2N). (See p. 59.)

Therefore

1—2rsin® s7/2N
Al = p(A) = A\ 2 sin? s7f2N

<1forall r>0,

proving that the Crank-Nicolson equations are unconditionally
stable. They are also consistent, reference Exercise 11, so they
are also convergent, although it will be shown under A,-stability
that r must be restricted in order to avoid the possibility of finite
oscillations near points of discontinuity.
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Matrix method of analysis, fixed mesh lengths

The following method of analysis will establish the conditions
necessary for the boundedness of the analytical solution of the
finite-difference equations as t;=jk tends to infinity for fixed
mesh lengths h and k. These conditions may not, however, be
sufficient to ensure convergence when the equations are also
consistent and large finite errors can occur near the end points of
the range of values of some parameter, such as r=k/h? for
which the equations are bounded.

Consider the classical explicit finite-difference equations incor-
porating known boundary values, namely,

ul’]'_,.l (1_2r) r ul,j ruo’i
u2’j+1 r(l _2r)r Uy ; 0
= +
UN—2,j+1 r (1 —2r)r UN-2,j 0
| un-uie ] [ r(1=2n } [un—yf [ )
ie.
u;,;=Au +b;

As shown by eqn (2.32), if the vector of initial values u, is
perturbed to u¥ and no further perturbations or errors are
introduced into the subsequent calculations, the perturbation
vector e = u* —u will be propagated forward in time, according to
the equation

e, =Aleg,

a procedure that eliminates the boundary values.

For fixed mesh lengths h and k the difference equations will be
stable if e; remains bounded as j increases indefinitely. This can
always be investigated by expressing the initial perturbation
vector in terms of the eigenvectors of A, which remain fixed as j
increases.

Assume that matrix A is non-deficient, i.e. has (N —1) linearly
independent eigenvectors v, which will be so if the eigenvalues A,
of A are all distinct or A is real and symmetric. Then these
eigenvectors can be used as a basis for our (N—1) dimensional
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vector space and the perturbation vector e, with its (N—1)
components, can be expressed uniquely as a linear combination

of them, namely, N

€y = Z CsVs,

s=1

where the ¢, s =1(1)N -1, are known scalars.
The perturbations along time-level t=k, resulting from the
initial perturbation e, will be

N-—1
e, =Ae,=A Z csvs=2csAvs.

s=1

But Av, = \,v; by the definition of an eigenvalue. Therefore,

e = Z CsA V.
Similarly,
N-1
e = Z CAlv,.
s=1

This shows that the perturbations will not increase exponentially
with j provided

max |\{|<1, s=1(1)N-1.

By p. 59, A,=1-—4rsin®sm/2N.
Therefore any perturbation, rounding errors and u;; will be
bounded as j increases if

—-1=<1-4rsin’sa/2N<1, where r>0.

This is satisfied by r<3.

A note on eigenvalues and eigenvectors

Let x be an eigenvector of the matrix A corresponding to the
eigenvalue A\. Then Ax=Ax. Hence A(Ax)=A%X=)\Ax=A%,
showing that the matrix A% has an eigenvalue A2 corresponding
to the eigenvector x. Similarly APx=APx, p=3,4,....

() If f(A)=a,A’+a, ;A°'+...+a,l is a polynomial in A
with scalar coefficients a,,...,a, then f(A)x=(aA?+...
+ag)x=f(A)x, showing that f(A) has an eigenvalue f(A) cor-
responding to the eigenvector x.
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(ii) The eigenvalue of [f;(A)] 'f,(A) corresponding to the
eigenvector x is f5(A)/f,(A), where f,(A) and f,(A) are polyno-
mials in A. The proof is as follows. By (i),

filA)x=fi(\)x and fr(A)x=fr(A)x.
Premultiply both equations by [f;(A)]™" and write as

[.fl(A)]_lx =x/fy(A) and [fl(A)]_lfz(A)x = fz()\)[fl(A)]—ll

Then the elimination of [f,(A)] 'x between these two equations
shows that

(LA f(A)x={£(N)/ (M)},

which states, by the definition of an eigenvalue, that f,(A)/f,(A) is
an eigenvalue of [f;(A)]"'f,(A) corresponding to the eigenvector
x. In a similar manner the eigenvalue of f,(A)[f,(A)]™! corres-
ponding to the eigenvector x is f,(A)/f1(A).

In particular, the eigenvalue of [f;(A)]™! corresponding to the
eigenvector x is 1/f;(A).

The eigenvalues of a common tridiagonal matrix

The eigenvalue of the N XN matrix

b
c a b
c a b
c a b
c
are
A —a+2{~/(bc)}cosN T s=1(1N,

where a, b, and ¢ may be real or complex. A proof is given on p.
154.

Another useful result is the following. If a real tridiagonal
matrix has either all its off-diagonal elements positive or all its
off-diagonal elements negative, then all its eigenvalues are real.
A proof is given in Exercise 16.
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Useful theorems on bounds for eigenvalues
Gerschgorin’s first theorem

The largest of the moduli of the eigenvalues of the square matrix
A cannot exceed the largest sum of the moduli of the elements
along any row or any column. In other words

p(A)<|All; or [Al..

Proof

Let A; be an eigenvalue of the NXN matrix A, and x; the
corresponding eigenvector with components v4, U,...v,. Then

the equation
Ax; = \;X;
in detail, is
a1+t a1,02+. ..+ a0, =AUy,

A1V, A2205+ .. .+ a5, 0, =AUy,

a1t a v+, . . tag,

Let v, be the largest in modulus of vy, v,,..., v,. Select the sth
equation and divide by v, giving

v v v
A= as,1<—1) + as,2<—g) +...+ as,n(—">.
v v v

s s
Therefore
Nil<lasil+laszl+. .. +lag,l,
because

y;

U

=<1, i=12,...,n

If this is not the largest row sum then |A;| < the largest row sum.
In particular this holds for |A;| = max|A,|, s = 1(1)N.

Since the eigenvalues of the transpose of A are the same as those
of A the theorem is also true for columns.
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Gerschgorin’s circle theorem or Brauer’s theorem

Let P, be the sum of the moduli of the elements along the sth
row excluding the diagonal element a,,. Then each eigenvalue of

A lies inside or on the boundary of at least one of the circles
l/\ - as,sl = Ps°

Proof

By the previous proof,

v v v
A= as,1<—1> + as,z(—2> +...tagt.. ot as,n(——">.
v v v

s N

() (Y
as,l(—1>+. A0+t as,,,<—‘)l
(v Uy

s
<|a,q|+|aga+...+0+.. . +|a
=P,

which completes the proof.

As an illustrative example consider the Crank—Nicolson equa-
tions with known boundary-values, namely

Hence

IAi - as,sl =

ol

(2n—1— TN 14
=(2An_+rTy_Du;+b; ={4ly_, — 2In_, — rTn_)}u; +b;,

which can be written as
Bu,,,= (4l —B)u; +b,
giving
W= (4B7! —In_Du;+ B—lbi’
where

2+2r) -r
-r  (2+2r) —r
—.r(2+2r).—r
—r (242r)
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The equations will be stable in the Lax—Richtmyer sense when
4B~ —Iy_,|<1. Since B is real and symmetric it follows by
Exercise 14 that 4B~ '—I_, is real and symmetric, so |[4B™'—
In_1ll=p(@B '—Iy_,). The stability condition will therefore be
satisfied when the modulus of every eigenvalue of 4B™'—Iy_;
does not exceed one; that is, when

4
—-1
A

4
=<1, implying -1 sx— 1=<1,

where A is an eigenvalue of B. This states that A =2.
For the matrix B, a,,=2+2r, max P, =2r, so Gerschgorin’s
circle theorem leads to

A —=2-2r|=2r,
from which it follows that
—2r<A—-2-2r<2r,
or
2<s)\A<2+4y,

proving that the equations are unconditionally stable, since A =2
for all r>0.

Gerschgorin’s circle theorem and the norm of matrix A

It should be noted that when the eigenvalues \; of matrix A are
estimated by the circle theorem, the condition |A;|<1 is equival-
ent to ||Al..<1 or ||Al|; <1. The theorem states that

IA' - aS‘S| s PS'

Hence,

so that
—P,+a,<A<P +a,.
The eigenvalue A will therefore satisfy —1=<A =<1 if
-1=s-P,+a,<P,+a,<1, s=1(1)N-1.

Remembering that P is the sum of the moduli of the elements of
A along the sth row and that a,; may be positive or negative, this
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inequality is equivalent to
N-1
Y lagl<1, s=11)N-1,
i=1

i.e. to |A]l.=1 for rows or ||A]l; =<1 for columns.

When both inequalities hold, it follows automatically that
lAll,=<1 because it is shown in Exercise 15 that [|A|3 <||Al|; | All...
Therefore, Gerschgorin’s circle theorem can be used to establish
conditions satisfying the Lax—Richtmyer definition of stability, a
situation that frequently arises with derivative boundary-
conditions.

Gerschgorin’s third theorem

If p of the circles of Gerschgorin’s circle theorem form a con-
nected domain that is isolated from the other circles, then there
are precisely p eigenvalues of matrix A within this connected
domain.

In particular, an isolated Gerschgorin circle contains one eigen-
value.

A proof is given in reference 30.

Stability criteria for derivative boundary conditions

Consider the equation

aU d2*U

E—a—xi, 0<x<1,

and the conditions,

U
—=h(U-v,) at x=0, t=0,
ox
aU
—=—h,(U-v,) atx=1,t=0,
X

where h,, h,, v,, v, are constants, h, =0, h,=0.
When the boundary conditions are approximated by the
central-difference equations

(ul,j_ u_u)/28x = hl(uO,j_ v4),

(uN+1,1’_ uN—l,j)/zsx = _hz(uN,j_ vy), (Néx=1),
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and the differential equation by the explicit scheme
Uijor =i+ (1=20u; i+ 1w

elimination of u_,; un,,;, leads to the equations

Ug,j+1
Ui+
“1‘\1—1,j+1
UN,j+1
{1-2r(1+ h,6x)} 2r 7
r a-2rn r
r (1-2r) r
2r {1-2r(1+ h,8x)} |
Uo,; 2rh,v,6x7]
Uy 0
X . +
UN—1, 0
Un,; 2rh,v,6x

As each component of the last column vector is a constant the
matrix determining the propagation of the error is

{1-2r(1+h,8x)}  2r
r a-2r r
r (1-2r) r
2r {1-2r(1+ h,8x)}
Since the off-diagonal elements of this real matrix are one-signed,
all its eigenvalues are real. (See Exercise 16.) Application of the
circle theorem to this matrix, with
a,=1-2r(1+h,6x) and P ,=2r,

shows that some of its eigenvalues A may lie on or within the
circle

IN={1—=2r(1+ h,8x)}|<2r.
Using Fig. 2.8,

A1=1_2r(2+ hlsx), A2=1_2rh18x,
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y

A

2r : 2r

@~
Ay 1=2r(1+h,0x) Az

Fig.2.8

and for stability,
=1, |Al=1.
Hence
-1=<1-2r(2+h,8x)<1, giving r<1/(2+ h,6x),
and
—1=<1-2rh,8x, giving r<1/h,bx.
The least of these is r<1/(2+ h,6x).
Similarly, we require r<1/(2 + h,6x).
For rows 2(1)N — 1, a,,=1-2r, P,=2r, giving r<3.
For overall stability, r <min{1/(2+ h,8x); 1/(2+ h,6x)}.

Direct application of |Al.<1

As mentioned earlier, the circle theorem and |A\|=<1 is equivalent
to ||All.=1. This is easily verified for this example.
Row 1. If 1-2r(1+h,8x)=0, the sum of the moduli of the
terms along row 1=1-2rh,6x.

Since ||All.=<1 for Lax-Richtmyer stability,

0<1-2rh8x=<1 implies r<1/2h,8x.
If 1-2r(1+h,8x)=<0, the sum of the moduli of the elements
along row 1=2r(1+h,86x)—1+2r=2r(2+h,6x)—1.

As before, 0 <2r(2+ h,8x)— 1=<1 implies that r<1/(2+ h,8x).
Similarly for the other rows.

Crank-Nicolson equations

It is easily shown that the Crank-Nicolson equations for the
problem just considered propagate any perturbation or rounding
error by the recursion formula

ei+1 = (4B_1 - I)e’,
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where
{2+2r(1+ h,8x)} —2r
-r 2+2r) -r
B= . . .
—r 2+2r) —r

=2r {2+2r(1+h,8x)}

As shown previously, the spectral radius of 4B '—1I=<1 if the
eigenvalues of B=2. By the circle theorem,
IN—={2+2r(1+h,8x)}|<2r,
giving
2+2rh 6x <A.

Similarly, the remaining rows give that 2=\ and 2+2rh,8x <A.
Hence the equations are unconditionally stable.

Stability condition allowing exponential growth (Constant
coefficients)

If the solution of the partial differential equation increases ex-
ponentially with increasing t then the exact solution of the
difference equations must do so also. In order to allow this we
need to return to the original definition of stability for the
equations

€; =Ajeo, i=1)J, Jk=T,

which was that
A<M,

where M is a positive number independent of j, h, and k.
Since [|A/]|=]|A - ATY<|A]l |ATY|<. . . <||Al,
the definition will be satisfied by

lAlf <M, 0<j<J.
Assuming M>1,

; 1
A<M =exp(ln M) = exp(; In M)

=l+}1:lnM+...
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In particular, this must satisfy

1
||A||$1+71nM+...
=1+l M

T

k
=1+TlnM.

In other words, a necessary and sufficient condition for stability is
that
lAll<1+Kk =1+0(k),

where the positive number K is independent of h and k. (See
Worked Example 2.11.) A much more rigorous treatment of this
condition based on infinite sets of uniformly bounded linear
operators is given in reference 25.

Stability by the Fourier series method (von Neumann’s
method)

Assume we are concerned with the stability of a linear two
time-level difference equation in u(x,t) in the time interval
0<t<T=Jk, T finite, as 6x=h—0 and 6t=k—0, i.e. as
J — », The Fourier series or von Neumann method, first discus-
sed in detail in reference 21, expresses the initial values at the
mesh points along t =0 in terms of a finite Fourier series, then
considers the growth of a function that reduces to this series for
t=0 by a ‘variables separable’ method identical to that com-
monly used for solving partial differential equations.

The Fourier series can be formulated in terms of sines and
cosines but the algebra is easier if the complex exponential form
is used, i.e. with ¥ a, cos(nmx/l) or ¥ b, sin(nmx/l) replaced by
the equivalent YA, e™™", where i =+—1 and [ is the x-interval
throughout which the function is defined. Clearly we need to
change our usual notation u;; to u(ph, gk) = u,,. In terms of this
notation,

A" einmx/l — A,, einmph/Nh An eiB,,ph

where B, =nw/Nh and Nh=1.
Denote the initial values at the pivotal points along t=0 by
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u(ph,0)=u,o, p=0(1)N. Then the N+1 equations

N
Upo= 2, A& p=0,1,...,N, (2.33)
n=0
are sufficient to determine the (N+1) unknowns Ay, A4, ..., Ay

uniquely, showing that the initial mesh values can be expressed in
this complex exponential form. As we are considering only
linear-difference equations we need investigate the propagation
of only one initial value, such as e**”", because separate solutions
are additive. The coeflicient A, is a constant and can be neg-
lected.

To investigate the propagation of this term as ¢ increases, put

U, o= e'Pe™ = eifPheak = gifthga, (2.34)

where £ =e** and «, in general, is a complex constant. ¢ is often
called the amplification factor.

The finite-difference equations will be stable by the Lax-
Richtmyer definition if |u,, remains bounded for all q<J as
h — 0 and k — 0, and for all values of 8 needed to satisfy the
initial conditions.

If the exact solution of the difference equations does not
increase exponentially with time, then a necessary and sufficient
condition for stability is that

l€l=<1,
i.e.
—-1=<¢<1. (2.35)

If, however, u,, does increase with t, (see Worked Example
2.11), then the necessary and sufficient condition for stability is,
as shown in the preceding section,

|&|<1+Kk =1+ O(k), (2.36)

where the positive number K is independent of h, k and B.

It should be noted that this method applies only to linear
equations with constant coefficients, and strictly speaking only to
initial value problems with periodic initial data, of period I. For
difference equations involving three or more time-levels or two
or more dependent variables, the von Neumann conditions (2.35)
and (2.36) are always necessary but may not be sufficient, refer-
ence 25. In practice, the method often gives useful results even
when its application is not fully justified.
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Example 2.10

Investigate the stability of the fully implicit difference equation
1
E (up,q+1 - up,q) = h_2 (up—l,q+l - 2up,q+l + up+1,q+l)

approximating dU/dt = 8*U/ax> at (ph, gk).
Substitution of u, = e**"¢? into the difference equation shows
that

einh€Q+l _einhé-q — r{eiB(p—l)h€q+1 _ 2CiBthq+l + eiB(p+l)h€q+1},
where r = k/h2. Division by e?"¢9 leads to
E—1=ré(e B —2 + PPl
=ré(2 cos Bh—2)
= —4r¢ sin?(Bh/2).
Hence,
IS S
1+4rsin®Bh/2”

Clearly, 0<¢=1 for all r>0 and all B. Therefore the equations
are unconditionally stable.

3

Example 2.11
Investigate the stability of the linear difference equation

1 a
E (up,q+1 TUpg _h_z (“p—l,q—zup,q+ Up,+1,9) DUy,

approximating the parabolic equation

U _ 9°U
—=a——<+ bU
at ox
at the point (ph, gk), where a and b are positive constants.
The analytical solution of this equation increases with t be-
cause it is eventually dominated by the term

1
e"‘L f(x)dx, where U=f(x)whent=0,0<x=<1.

. A
Substitution of u,,=e*""¢* into the difference equation leads
to
E—1=ra(e " —2+e®+kb, r=k/h>.
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This leads to
£=1—4ra sin®(Bh/2)+ kb, b>0.
Hence,
|é|=<|1—4ra sin*(Bh/2)|+ kb

satisfies the von Neumann condition (2.36) if
|1 —4ra sin*(Bh/2)|<1.

This leads to r=<1/2a, which is the same restriction on r as for
b =0. It is easily shown that the difference equation is consistent
so it follows that it is also convergent.

Example 2.12

The hyperbolic equation 8*U/at*>=5?U/ax? is approximated at
(ph, gk) by the explicit difference scheme
(Up g1 = 2Up g+ Up g /K = Uy g—2Up g+ Uy IR,

Investigate its stability.
It is easily shown by the procedure of Example 2.10 that the
equation for £ is
E2-2A¢(+1=0,
where
A =1-2r*sin*(Bh/2) r=k/h. (2.37)

Hence the values of & are
£,=A+(A%—1) and &£=A—-(A2-1).

As U does not increase exponentially with ¢ and because the
difference equation is a three time-level approximation, a neces-
sary condition for stability is that

jgl<1.

As r, k and B are real, A=<1 by (2.37).
When A <—1, |&|> 1, giving instability.
‘When

—1<SA<1,A%<1,£(,=A+i(1-A%, &LE=A—i(1—- A%,
hence
|&] =& ={A%Z+(1-AH)p=1,

showing that a necessary condition for stability is —1<A <1. By



Parabolic equations 71
(2.37),
—-1=<1-2r%sin*(Bh/2) <1.
The only useful inequality is
—1=<1-2r*sin*(Bh/2),
giving
r=k/h=<1.

In reference 25, this condition is also shown to be sufficient.

The global rounding error

For simplicity, assume that all boundary values are zero so that
the finite-difference equations approximating the initial-value
differential equation in the solution domain 0 <x <1, t>0, can
be written as

0, =Au;_,,

where uy,= U, is the vector of known initial values and A is a
square matrix of known elements of order (N—1).

In general, the computer will not store the initial value u;,
exactly, but a numerical approximation N,, so that

Ni,O = ui,o_ ri,o, i.e. NO =Wy —Ip,
where r, is the vector of initial rounding errors. As rounding
errors will be introduced at every stage of the calculations the

numerical solution values calculated by the computer at the first
time-level will be

N, =AN;-—r,=Au,— Ar,—r1,.
Finally, at the jth time-level, the computed solution will be
N;=Aluy—Alr,— A 'r,—...—;
If there were no rounding errors the exact solution of the
difference equations would be
u; = Alu,.

Hence the difference between the exact solution and the com-
puted solution, i.e., the global rounding error R;, at the jth
time-level is

u,—N;=Alrg+ A '+t

This shows that the local rounding error vector at each time-level
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propagates forward in the same way as the exact solution vector
at that time-level. As proved earlier, the effect of each local
rounding error will diminish with increasing j if max|A|<1,
where A;, i = 1(1)(N — 1), are the eigenvalues of A, but the global
rounding error cannot possibly tend to zero because of the terms
r, Ar,_,,....

Lax’s equivalence theorem

Given a properly posed linear initial-value problem and a linear
finite-difference approximation to it that satisfies the consistency
condition, stability is the necessary and sufficient condition for
convergence.

The proof of this theorem is beyond the scope of this book and
interested readers should consult reference 25.

A simple example demonstrating the relationship between
convergence, stability, and consistency

The classical explicit approximation to the heat conduction equa-
tion provides a comparatively simple illustration of Lax’s equival-
ence theorem.

In general, a problem is properly posed if:

(i) The solution is unique when it exists.
(ii) The solution depends continuously on the initial data.

(iii) A solution always exists for initial data that is arbitrarily
close to initial data for which no solution exists. (In heat flow
problems, for example, discontinuous temperature distributions
can be approximated by a sum of N continuous functions whose
limiting value, as N tends to infinity, equals the discontinuous
distribution except at the points of discontinuity.)

Let U satisfy the equation
oU U

a2 0<x<1 >0, (2.38)

have known continuous initial values when t=0, 0=<x=<1, and
known continuous boundary values at x =0 and 1, t>0.
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The classical explicit approximation to (2.38) is

Uijor Uiy U1 = 2UF Uiy

Lty Bt S (N - 1), (239)

where x = ih, t = jk, and Nh = 1. The local truncation error of this
difference scheme is defined by

Uyr1— Uy Uiy —2U;+ Uiy
k h? ’

which may be written as

Ti;=

Uijsr1=kTy+rU_1;+(1-2nU;;+rU,;.,, (2.40)

where r=k/h2. For i=1(1)(N—1), eqns (2.40) can be written
in matrix form as

Ul,j+1 T,; (1-2r) r
U2,]'+l Tz’,' r (1 - 2r) r
o=k - |+
UN—l,i+l TN—l,i r (1-2r)
U, rUo;
Uz, 0
X : +

0
Un-1, rUn;
i.e. as
U, =kT; + AU; +¢;, (2.41)

where ¢; is a vector of known boundary values. Applying this
recursively,

Ui+1=kT-+A(kT, 1+AU 1+c. l)+c
=k(T; +AT,_,) + A%U,_, +(¢; + A¢;_,)

=k(T;+AT,_;+.. .+ AT) + AU,
+(c;+Ac_+...+Alcy). (2.42)
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As the boundary and initial values for u are the same as for U, it
follows from eqn (2.39), which can be written as

Upjr1=TU;— 11+(1 2r)ulj+ru!+l il 1(1)(N_ 1),

that
;= Ay +c;

This leads as before to
Uy =AM e+ (¢ + A +. .+ Alg). (2.43)
Subtraction of (2.43) from (2.42) shows that
U —u, = k(T + AT, +.. .+ A'T) + A (U, — ).
But U,=u, = vector of initial values. Hence
U~ = k(T +AT;_, +.. .+ A'T,). (2.44)

This equation shows that the difference between the exact solu-
tion of the partial differential equation and the exact solution of
the approximating difference equation at, say, the (i, j +1)th mesh
point depends on the local truncation errors at certain mesh
points on every preceding time-level and on the difference
scheme used. Whether or not the accumulative effect at the
(i, j+ 1)th mesh point of these preceding errors is a catastrophic
build-up or a hoped-for decay as j increases depends clearly on
the matrix A and the nature of the T;;, i = 1(1)N, j=0(1)J, if the
field of integration of the dlﬁerentlal equation is the rectangle
O0=sx=<1,0=<t=jk<T=Jk, T finite.
Hence eqn (2.44) gives

101 =l < KT+ AT ol .o HIATNITR, 0<j<JT-1.
By the Lax—Richtmyer definition of stability,
A<M, j=1(1)J,

where M is a positive number independent of j, h and k.
Therefore,
101 =l <k T + KM(IT-0ll + . ..+ [ITo)).

If the maximum of all of the moduli of the components of T,
T,,...,T; is C, then the infinity norm of each T, s =1(1)j, will
be <C. Using this norm it follows that

U1 — w1 < KC + kMjC = kC + MtC.
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But jk =t=<T = Jk is finite and k — 0 as J — o, so the first term
of the right-hand side tends to zero irrespective of the mag-
nitudes of M and C. The second term, however, tends to zero if
and only if C=max|T;;| tends to zero as k and h =(k/r)! tend

1)
to zero, which, by definition, is the condition for consistency. This
proves, in this particular case, that the difference scheme is
convergent when it is stable and consistent.

Finite difference approximations to dU/dt = VU
in cylindrical and spherical polar co-ordinates

The non-dimensional form of the equation for heat-conduction in
three dimensions is dU/at = V>U, which, in cylindrical polar coor-
dinates (r, 0, z) is

aU U 19U 182U 32U

+ +=
ot ar*> rar r 302 922

Assuming, for simplicity, that U is independent of z, this
reduces to the two-dimensional equation

U _ PU 10U 10°U

—t——t= :
ot orr ror r?ae?’ (2.45)

For non-zero values of r there is no difficulty in expressing
each derivative in terms of standard finite-difference approxima-
tions, as shown in Chapter 5, but at r =0 the right side appears to
contain singularities. This complication can be dealt with by
replacing the polar co-ordinate form of V2U by its Cartesian

equivalent which transforms eqn (2.45) to the equation
aU 9°U o*U
—_—=—t— 2.46
a  9x% ay? (2.46)

Now construct a circle of radius 6r, centre the origin, and
denote the four points in which Ox, Oy meet this circle by 1, 2,
3, 4. Denote the corresponding function values by u,, u,, usz, and
u, and the value at the origin by u,. Then

(ul + U2+ u3+ u4_ 4“0)
(8r)

Rotation of the axes through a small angle clearly leads to a

VU=

+ O{(8r)%}.
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similar equation. Repetition of this rotation and the addition of
all such equations then gives
_ 4(uns — uo)

VU = —W +O{(8r)%,

where u,, is a mean value of U round the circle. The best mean
value available is given, of course, by adding all values and
dividing by their number.

When a two-dimensional problem in cylindrical co-ordinates
possesses circular symmetry, then 8°U/06%>=0, and eqn (2.45)
simplifies to

0U_#U, 13U

. 2.47
at  ar> ror (2.47)

Assuming oU/dr=0 at r=0, which it will be if the problem is
symmetrical with respect to the origin, it is seen that (1/r)aUjar
assumes the indeterminate form 0/0 at this point.

By Maclaurin’s expansion,

U'(n) = U'(0)+rU"(0) +3PU"(0) +.. .,

but U’'(0)=0, so the limiting value of (1/r)aU/or as r tends to
zero is the value of §*UJar” at r = 0. Hence eqn (2.47) at r=0 can
be replaced by

U _9°U

o 2 PR (2.48)
This result can also be deduced from eqn (2.46) because
8°U/9x* = 9*U/dy? from the circular symmetry, and we can make
the x-axis coincide with the direction of r. The finite-difference
representation of (2.48) is further simplified by the condition
aU/ar =0 at r =0 because this gives u_, ;= u, ;. For example, the
explicit approximation

(Uo,iv1— Uo,) _ 2(uy,;—2ug,+u_y,)
5t (8r)?

to eqn (2.48) simplifies to

(uo,j+1 - uo,,') _ 4(u 1, uO,j)
5t (8r)?

. (See Example 2.13)
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A complication identical to the one above also arises at r=0
with the spherical polar form of V2U, namely

U 23U cot8U+182U+ 1 &PU
9 ror r 90 r?a6% r’sin®0 9>

By the same argument as in the two-dimensional case, this can
be replaced at r =0 by 9?U/ax>+8°U/dy>+ 9*U/dz> and approxi-
mated by 6(u,, — u)/(8r)%, where u,, is the mean value of U over
the sphere of radius &r, centre the origin. The factor 6 occurs
because Ox, Oy, Oz meet the sphere in six points. If, however,
the problem is symmetrical with respect to the origin, i.e. inde-
pendent of 6 and ¢, V?U reduces to 8*U/ar*+ (2/r)aU/or, with
dU/ar zero at r = 0. By either of the previous arguments it follows
that the heat conduction equation at r =0 becomes

0U_, U
at ar?

It is of interest to note that symmetrical heat flow problems for
hollow cylinders and spheres that exclude r =0 can be solved by
simpler equations than those considered because the change of
independent variable defined by R =log r transforms the cylin-
drical equation

U_PU, 10U | edU_2U
at  ar* r ar 9t oR*
and the change of dependent variable given by U = w/r trans-
forms the spherical equation
aU_9U 23U aw_aw

= — to —=—5.
at  or* r ar at  or?

Example 2.13

The function U is a solution of the equation

2
(')U ¥y v 26U, 0<x<1,t>0,
at ax>  x ox

and satisfies the initial conditions

U=1-x*>whent=0, 0<x=<l1,
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and the boundary conditions

%—g=03tx=0, t>0; U=0atx=1, t>0.
Using a rectangular grid defined by 8x=0.1 and &t=0.001,
calculate a finite-difference solution to 4D by an explicit method
at the points (0, 0.001), (0.1,0.001) and (0.9,0.001) in the x—t
plane. (See Chapter 2, Exercise 23, for the stability of the
difference scheme.) At x =0, (2/x)(0U/dx) is indeterminate. As
29U *U

lim——=1lm2——,
x—0 X X x—0 09X

the equation can be replaced at x =0 by
U_,oU
at  ax*’
This may be approximated by the difference equation

o1~ Uoj _ 3(U_r;=2uo,;+ Uy)
5t (8x)?

If (0U/ax);; is approximated by (u;.,;—u;_;;)/2(8x), it follows
that u_, ;= u,; since (3U/dx),;=0. Hence eqn (2.49) reduces to

(2.49)

uo’,‘_,_l = uo’f"' 3r(2u 1,i 2“0’1‘) = (1 - 6r)uo,,-+ 6ru 1,i
where r = 8t/(8x)*>=0.1 in this example. Therefore
uo’j+1 = %(2“0‘1"" 3“1’,‘). (2.50)
At x#0 the differential equation can be approximated by
1 1 2
's_t (ui,j+1 - ux,) = W (“i—u - 2ui,j + ui+1,j)+m)—2 (ui+1,j - ui—-l,]')
giving
1 1
ui’,’_'.l =r 1 —7 ui_l,i"' (1 - 2r)ui,]-+ r(l +'i_)ui+1,]'.

Therefore
Uyjr1= (4u 1,it uz,,‘) (2.51)

and
ug,i_,.l = ‘g‘(%u&i+ ug’,’) Since Uq0,i = 0. (2.52)

By eqns (2.50), (2.51), and (2.52) the solution values at the points
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in question are as shown below

x= 0 0.1 0.2 ... 0.8 0.9
t=0 1.0000 0.9900 0.9600 ... 0.3600 0.1900
t=0.001 0.9940 0.9840 0.1840

Exercises and solutions

E.DS. means finite difference solution.
AS. means analytical solution of the partial differential equation.

1. Calculate a finite-difference solution of the equation

oU 2’U
—a—t-=5x—2 0<x<1,t>0)

satisfying the initial condition
U=sinwmx whent=0for0=x=<1,
and the boundary condition
U=0atx=0and 1 fort>0,

using an explicit method with 8x =0.1 and r=0.1.

Show by the method of separation of the variables, or merely
verify, that the analytical solution is U=e ™"sin mx. Hence
check the accuracy of the numerical solution for ¢t =0.005.

Solutions (Tables 2.18-2.21)

Solutions for r=0.1 and 0.5 and comparisons with the analytical
solution at x = 0.5 are given overpage. They show clearly that when
the initial function and all its derivatives are continuous, and the
boundary values at (0,0) and (1,0) remain equal to the initial
values at these points, then the finite-difference solution can be
very accurate indeed. Only one-half of the solution is shown
because the problem is symmetric with respect to x =0.5.

2. Calculate a numerical solution of the equation oU/dt=
02U/ox?, 0<x<1, satisfying the initial condition U=1 when
t=0, 0<x <1, and the boundary condition U=0 at x=0 and 1,
t=0.
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TABLE 2.18
x=0 0.1 0.2 0.3 0.4 0.5
t
(ED). 0.005|0 02942 0559 07702 0.9054 0.9520
(AS) 0005|0 02941 05595 0.7701 0.9053 0.9519
(FDS) 001 |0 02801 0.5327 07332 0.8602 0.9063
(AS) 001 |0 02800 05325 07330 0.8617 0.9060
FDS. 002 |0 02538 04828 0.6645 07812 0.8214
(AS) 002 |0 02537 04825 06641 0.7807 0.8209
(EDS) 0.10 |0 0.1156 02198 03025 0.3556 0.3739
(AS) 010 |0 0.1152 02191 0.3015 0.3545 0.3727
TABLE 2.19
Finite-difference Analytical Percentage
solution (x =0.5) solution (x =0.5) error
t=0.005  0.9520 0.9519 negligible
t=0.01  0.9063 0.9060 negligible
t=0.02 08214 0.8209 negligible
t=0.10 03739 0.3727 0.3
r=0.5 Ui+ =%(ui—1‘i+ Uity ).
TABLE 2.20
x=0 01 0.2 0.3 0.4 05
t
(EDS) 0.005|0 02939 0.5590 07694 09045 0.9511
(FD.S) 00100 02795 0.5317 07318  0.8602 0.9045
.o
(EDS) 002 |0 02528 0.4809 06619 07781 0.8181
(FEDS) 010 |0 0.1133 02154 0.2965 03486 0.3665
(AS) 010 |0 01152 02191 03015 03545 0.3727
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TABLE 2.21
Finite-difference Analytical Percentage
solution (x =0.5) solution (x =0.5) error
t =0.005 0.9511 0.9519 —0.08
t=0.01 0.9045 0.9060 -0.17
t=0.02 0.8181 0.8209 -0.34
t=0.10 0.3665 0.3727 —1.66

2 (continued)
Show by the method of separation of the variables that the
analytical solution is

U =;ir "go (Tn—l-rl—) e @ gin(2n + D arx.

Compare these solutions at x = 0.1 for small values of t. (See
the comments below the tables in the solution on p. 82.)

This problem concerns the temperature changes in a uniform
heat-insulated rod that is initially at a constant temperature and
which is cooled by having its ends reduced to zero temperature at
zero time and subsequently kept at zero.

Solution

The finite-difference solution given by eqn (2.6) with r=0.1 is
shown in Table 2.22, and the analytical solution in Table 2.23.
Only one-half the solution is given because the problem is
symmetrical with respect to x =3.

TaBLE 2.22. Finite-difference solution

x=0 0.1 0.2 0.3 0.4 0.5
t=0.000 O 1.0000 1.0000 1.0000 1.0000 1.0000
0.001 O 0.9000 1.0000 1.0000 1.0000 1.0000
0.002 0 0.8200 0.9900 1.0000 1.0000 1.0000
0.005 0 0.6566 0.9335 0.9927 0.9996 1.0000
0.010 O 0.5113 0.8283 0.9566 0.9919 0.9979
0.050 0 0.2429 0.4589 0.6263 0.7313 0.7669
0.100 O 0.1460  0.2776 0.3820 0.4490 0.4721
0.200 O 0.0546 0.1038 0.1428 0.1679 0.1766
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TABLE 2.23. Analytical solution

x=0 0.1 0.2 0.3 0.4 0.5
t=0.000 O 1.0000 1.0000 1.0000 1.0000 1.0000
0.001 O 0.9747 1.0000 1.0000 1.0000 1.0000
0.002 0 0.8862 0.9984 1.0000 1.0000 1.0000
0.005 O 0.6827 0.9545 0.9973 0.9999 1.0000
0.010 O 0.5205 0.8427 0.9661 0.9953 0.9992
0.050 0 0.2442 0.4616 0.6304 0.7363 0.7723
0.100 O 0.1467 0.2790 0.3839 0.4513 0.4745
0.200 O 0.0547 0.1040 0.1431 0.1682 0.1769
Comments

An obvious difficulty arises in the solution domain at (0, 0)
because the limiting value of the initial temperature is unity as x
tends to zero, whereas the limiting value of the boundary temper-
atures is zero as t tends to zero. In other words the temperature
is discontinuous at (0,0) and its value could equally well have
been chosen as 1 or 3 instead of zero. Because of this discon-
tinuity the finite-difference solution is a poor one near x =0 for
small values of t. It will be noticed, however, on comparing
Tables 2.22 and 2.23, that the accuracy of the finite-difference
solution near x =0 improves as t increases. This is characteristic
of parabolic equations and indicates that an implicit method
would give a better solution in the neighbourhood of (0, 0) than
an explicit one because it would not draw its information exclu-
sively from the first row and column. In general, however, we
cannot calculate an accurate solution near a point of discontinuity
by finite-difference methods unless we remove the discontinuity
by a suitable transformation such as below. An alternative ap-
proach is to calculate an analytical solution that is continuous
near the discontinuity.

For the problem above it is possible to remove the discon-
tinuity at (0, 0) by changing the independent variables from (x, t)
to (X, T) by means of the equations

X=xt7% T=t

This expands the origin x =t=0 into the positive half of the
X-axis and collapses the positive half of the x-axis into the point
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at infinity along the x-axis. Consequently the discontinuity in U
at x=t=0 is transformed into a smooth change along the posi-
tive half of the X-axis. Further details are given in reference 8.

3. Derive the Crank-Nicolson equations for the problem in
Exercise 1 and solve them directly for at least two time-steps.

Evaluate the corresponding analytical solution and calculate
the percentage error in the numerical solution.

Solution

The solution for x =0(0.1)0.5 and r=1 is given in Table 2.24.

TABLE 2.24
x=0 0.1 0.2 0.3 0.4 0.5
t
(F.D.S) 0.01 0 0.2802 0.5329 0.7335 0.8623 0.9067
(AS) 0.01 0 0.2800 0.5325 0.7330 0.8617 0.9060
(F.D.S) 0.02 0 0.2540 0.4832 0.6651 0.7818 0.8221
(AS) 0.02 0 0.2537 0.4825 0.6641 0.7807 0.8209
(F.D.S.) 0.10 0 0.1160 0.2207 0.3037 0.3571 0.3754
(AS) 0.10 0 0.1152 0.2191 0.3015 0.3545 0.3727
TABLE 2.25
Finite-difference Analytical Percentage
solution (x =0.5) solution (x =0.5) error
t=0.01 0.9067 0.9060 0.08
0.02 0.8221 0.8209 0.15
0.10 0.3754 0.3727 0.72

4. Prove that the back-substitution procedure of the non-
pivoting elimination algorithm given on p. 24 for solving a
tridiagonal system of linear equations is stable when a; >0, b; >0,
¢;>0,and b;>a;+c¢,i=1,2,..., (N—1), where a;=cn_1=0.
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Solution
1 S;
U =— (S + GUi1) = PivalUi +—, (say),
Q; Q;
where us.
a;C;
ar=by, oq=b-"=1 §=d, S=d+2
a;_q a1

a1=0=CN_1, i=1,2,...,N—1.

There will be no build-up of errors in the back-substitution
process if |p;.1l<1,
where
¢ G
i=—=———_ i=1(1)N-1).

p1+1 a; bi"'aipi’ i ( ) )

Now p, = (c,/b,), since a,=0. Also b,>c; by hypothesis.
Therefore, 0 <p,<1.
C2

2~ azP>

As ¢,>0, 0<p,<1, and b,>a,>0, it follows that

P3=b

0<ps<

2=y
By hypothesis, b,>a,+ c,. Hence

Co
O<p;<——mmm—=1.
Ps (az+cr)—a,

Similarly, 0<p4, ps,...,Pn-1<1.
5. Use the Gaussian elimination algorithm on p. 24 to calculate
a finite-difference approximation to Worked Example 2.1 for one

time-step taking 8x =0.1 and r=1 using either
(i) the fully implicit backward time-difference equation

Upjr1— U j= r(ui—l,j+1_2ui,j+1+ ui+1,j+1),

or (ii) the Douglas equations (3.45) of Chapter 3.

Solution

(@) Uiyt (A 20) U — MU = U

The equations for the first time-step are 3u;—u,=0.2,
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—u+3u,—u3;=04, —u,+3u;—uy;=0.6, —usz+3u,—us=0.8,
and —2u,+3us=1.0.
a,=3, a,=2.66667, a;=2.62500, a,=2.61905, as=
2.23636. S, =0.2, S,=0.46667, S;=0.77500, S,=1.09524, S5 =
1 83636. us=Ss/as and u; =(S;+cu;,1)/a; giving us=0.8211,
=0.7317, u;=0.5740, u,=0.3902, u, =0.1967.

(ii) (A=6r)u;_1 ;1 +(A0+121)u; ;0 + (1= 67Uty jia
=(1+6r)u;_,;+(10—12r)u;; + (1 —6r)u; 1

The equations for the first time-step are 22u;—S5u,=2.4,
—Su,+22u,—Su;=4.8, —Suy,+22uz—5u,=7.2, —Suz+22u,—
Sus=9.6, and —10u,+22us=9.2.

a;=22, a,=20.86364, a;=20.80174, a,=20.79818, as=
19.59594.

S,=2.4, S,=5.34545, S,=8.48104, S,=11.63855, Ss=
14. 79594

=0.7551, u,=0.7411, u;=0.5858, u,=0.3966, and u,=
0. 1992

6. The function U satisfies the equation

U _ U
Fyiatew —0<x<1,t>0)

and the boundary conditions

aU— hi(U-vy) atx= ﬂJ=—hz(U—v2) atx=1,
ax X
where h,, h,, v, v, are positive constants.
(a) When the boundary conditions are approximated by cen-
tral differences (see Worked Example 2.3) show that one explicit
difference scheme is

uO,i+1={1"2r(1+h 8x)}u0j+2ru1i+2rh11)18x,
Uijer =T+ A-20u v ru gy, (=1,2,...,N-1),

uN,j.,.l = 2mN_1’j+{1 - 2’(1 + hzax)}uN,i"‘ 2rh2026x,

where N6x =1 and r= 8t/(8x)2.

(b) When the boundary conditions are approximated by
forward-differences at x =0 and backward-differences at x =1
(see Worked Example 2.4), show that another explicit difference
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scheme is

ul,]u'_l = {1 —-2r+ r/(l + hlsx)}uu-l' ru2’i+ rhlvlax/(l + hlsx),

Ugjr1 = (U 41+ hi018x)/(1+ h,8x),

ui,i_._l = rui_u-l- (1 '_2r)ui’j+ rui+1,,', (i = 2, 3, PP N- 2),

uN_l’,’+1 = {1 - 21‘ + r/(l + h23x)}uN_1,
+ mN_z’j + rhzvzax/(l + hzax),

Unjr1= (Un—1jr1 Tt Ra028%)/(1+ hy8x).
7. A uniform solid rod of one-half a unit of length is thermally
insulated along its length and its initial temperature at zero time
is 0°C. One end is thermally insulated and the other supplied
with heat at a steady rate. Show that the subsequent tempera-

tures at points within the rod are given, in non-dimensional form,
by the solution of the equation

%Ltj= "’a—jg 0<x<i t>0)
satisfying the initial condition

U=0whent=0 (0sx=<J),
and the boundary conditions

oU U
—=0atx=0, t>0, —=fatx=31, t>0
X 0x

where f is a constant.
Solve this problem numerically for f=1 using
(a) an explicit method with 8x =0.1 and r =4,
(b) an implicit method with 8x=0.1 and r=1.

Solution

The solution given by the explicit method of Worked Example
2.3, for which the equations are

Uoj+1~ %(uo,j“‘ u”),
Ujjr1= %t(ui—l,i‘*‘ 2u;;+ ui+1,i) (i=1,2,3,4),

Us i1 =3(Ugj+us;+0.1),
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TaBLE 2.26. Explicit method

x= 0 0.1 0.2 0.3 0.4 0.5

t=0.005 | 0.0000 0.0000 0.0000 0.0000 0.0125 0.0750
0.0075 | 0.0000 0.0000 0.0000 0.0031 0.0250 0.0938
0.01 0.0000 0.0000 0.0008 0.0078 0.0367 0.1094
0.02 0.0009 0.0027 0.0103 0.0313 0.0767 0.1571
0.03 0.0062 0.0104 0.0248 0.0554 0.1095 0.1934
0.05 0.0291 0.0364 0.0594 0.1007 0.1636 0.2509
0.10 0.1169 0.1265 0.1556 0.2044 0.2735 0.3631
0.20 0.3150 0.3250 0.3550 0.4050 0.4750 0.5650
0.50 0.9150 0.9250 0.9550 1.0050 1.0750 1.1650
1.00 19150 1.9250 1.9550 2.0050 2.0750 2.1650

is recorded in Table 2.26. The Crank-Nicolson solution, as in the
Worked Example 2.5, is shown in Table 2.27. The analytical
solution of the differential equation is

12x -1 - 1)n _4 2n2; }
+ [ — T N2t 2
U=2t 2{ 6 2 n§1 2 CcOoS 2nx
(2n+1-2x) (2n+1+2x)}
= ) +
2Vt o{ze adt i erfc it .

and is evaluated in Table 2.28. Comparisons are made in Table
2.29.

The finite-difference solutions are clearly very accurate except
for small values of t.

A simple calculation shows that the effect of the exponential

TABLE 2.27. Crank-Nicolson method

x= 0 0.1 0.2 0.3 0.4 0.5

t=0.01 0.0003 0.0006 0.0022 0.0083 0.0309 0.1155
0.02 0.0023 0.0039 0.0108 0.0302 0.0770 0.1540
0.03 0.0077 0.0115 0.0252 0.0552 0.1080 0.1925
0.05 0.0301 0.0373 0.0597 0.1004 0.1627 0.2499
0.10 0.1172 0.1268 0.1557 0.2043 0.2732 0.3628
0.20 0.3150 0.3250 0.3550 0.4050 0.4750 0.5650
0.50 0.9150 0.9250 0.9550 1.0050 1.0750 1.1650
1.00 1.9150 1.9250 1.9550 2.0050 2.0750 2.1650
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TABLE 2.28. Analytical solution

x= 0 0.1 0.2 0.3 0.4 0.5

t=0.0025 | 0.0000 0.0000 0.0000 0.0001 0.0050 0.0564
0.0050 | 0.0000 0.0000 0.0001 0.0017 0.0167 0.0798
0.0075 | 0.0000 0.0000 0.0006 0.0053 0.0286 0.0977
0.01 0.0000 0.0002 0.0017 0.0101 0.0399 0.1128
0.02 0.0016 0.0035 0.0117 0.0333 0.0791 0.1596
0.03 0.0074 0.0117 0.0264 0.0573 0.1115 0.1954
0.05 0.0307 0.0381 0.0610 0.1023 0.1653 0.2526
0.10 0.1186 0.1282 0.1573 0.2061 0.2751 0.3647
0.20 0.3167 0.3267 0.3567 0.4067 0.4766 0.5666
0.50 0.9167 0.9267 0.9567 1.0067 1.0767 1.1667
1.00 1.9167 19267 1.9567 2.0067 2.0767 2.1667

component of the analytical solution is negligible for values of ¢
in excess of 0.1.

A point of interest in this example is that the difference
between the analytical solution and both finite-difference solu-
tions for values of ¢ in excess of 0.1 is 0.0017 = 0.01/6 = (6x)?/6.
It can be proved that the transient component of the solution of
any explicit or implicit finite-difference scheme for a parabolic
equation satisfying the boundary conditions above does not tend
to zero as t increases, as does the transient, i.e. exponential
component of the solution of the differential equation, but tends
to a value of k(8x)? k constant. In this example k =3¢.

TABLE 2.29
Crank-

Analytical  Explicit Nicolson

solution solution Percentage solution Percentage
t x=0.3 x=0.3 error x=0.3 error
0.0075 0.0053 0.0031 —-41.5
0.01 0.0101 0.0078 —22.8 0.0083 -17.8
0.05 0.1023 0.1007 —1.56 0.1004 —1.85
0.10 0.2061 0.2044 -0.82 0.2043 —0.87
0.50 1.0067 1.0050 -0.17 1.0050 -0.17

1 :00 2.0067 2.0050 —0.08 2.0050 —0.08
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8. The function U satisfies the equation
aU U
—=x—7, 0<x<3 >0,
at ax

the boundary conditions

U
U=0atx=0, t>0, £=—%Uatx=%, t>0,

and the initial condition U= x(1—x) when t=0, 0=<x=<1.

When all the derivatives with respect to x are expressed in
terms of central-difference formulae show that the simplest ex-
plicit difference equations approximating this problem at the point
(ih, jk) in the x —t plane can be written as

ui,j+1 = irhui__l,j'i' (1 - 2irh)uu+ irhui+1,j, i= 1(1)(N_ 1),
and
uN,!'_'_l = 2thrN_1,!-+ (1 —2Nrh— th2)uN,]',

where r=k/h? and Nh =3.

Take h =0.1 and r=0.5 and calculate a numerical solution to
4D at the points along the first time-level corresponding to i =3
and 5. Will the solution at points near the point (3, 0) be very
accurate? Give a reason for your answer. (The stability of these
equations is considered in Chapter 2, Exercise 25.)

Solution

The simplest explicit approximation is

Wijrr —Uij ih(uioy;—2ui+ Uirgy)
k h? ’

giving
ui’j+1 = irhui_l,]' + (1 - 2irh)u”’ + irhui+1,j, i= 1(1)(N_ 1).

Mentally extend the interval of integration 0<x<3 to 0<x<
1+h. Then the previous equation holds for i=N. Eliminate
Un+1,; by means of the approximating boundary condition equa-
tion

(uN+1,j— uN—1,j)/2h = —%uN,y’
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to give
Un,j+1=2Nrhuy_,;+(1—2Nrh — Nrh®)uy ;.
For h=0.1 and r=34,
Uijr1=0.05iu;_, ;+(1-0.1i)u,;+0.05iu;,,; i=1(1)4,

and

us’]’...l =0-5 u4,,- +0-475 us,,-.
i= 0 1 2 3 4 5
t=0 0 0.0900 0.1600 0.2100 0.2400 0.2500
t=0.005 O 0.2070 0.2388

As (x,00— 3, 0), 0U/ox=1-2x—>0. At (2, 0), U=i1-d=1%
As G, )—> @4, 0), 0UJ/ox =—-3U — —4 - 1 =—}. Therefore aU/ax is
discontinuous at (3, 0) so the ﬁmte-dlﬂerence solution will not be
very accurate at mesh points near (3,0). The solution of the
differential equation is continuous at (3, 0) and the effect of this
discontinuous derivative on the difference solution is very small a
few mesh lengths from (3, 0).

9. The function V satisfies the non-linear equation

V PV (aV\?
§__=a_2+<_\_’), 0<x<l1, t>0,
Jat  odx 0x

the initial condition V=0 when t=0, 0=x =1, and the bound-
ary conditions

\%
3;=1 at x=0,t>0; V=0atx=1, t>0.
Show that the change of dependent variable defined by V=
log U, U#0, transforms the problem to the solution of the
equation
w_ U 0<x<l1, t>0
9t ox?’ ’ ’
where U satisfies the conditions
U=1whent=0, 0=sx=<]1,

aU
5;=Uatx=0,t>0; U=1latx=1, t>0.
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Using a rectangular mesh defined by 8x = 0.1 and 8t =0.0025,
approximate the equation for U by the classical explicit scheme,
the derivative boundary condition being approximated by a
central-difference formula.

Hence calculate a numerical solution for V at the points
(0, 0.005) and (0, 0.0075) in the x—t plane.

Solution
V_1oU av_1sU PV__ 1 (LY 17U
at Uat’ ox Uax’ ax> U?\ox/ U ox?
By V=log U, U=1, when V=0. As aV/ax =(1/U)(0U/ax) and
aViax=1at x=0, t>0, therefore dU/ax=U at x=0, t>0. The
approximation equation is
Uijr1 = Z(ui—l,j+2ui,j + ui+1,i), i=1(1)9.

Putting i =0 and eliminating u_,; by means of the derivative
boundary equation (u;;—u_;)/0.2=uy; leads to ug;. 1=
0.45uy;+0.5u, ;.

x= 0 0.1 0.2
t=0 1.0000 1.0000 1.0000
t=0.0025 0.9500 1.0000 1.0000
t=0.0050 0.9275 0.9875 1.0000
t=0.0075 09111

V(0,0.005) =log, 0.9275=-0.0753. V(0, 0.0075)=log, 0.9111
=-0.0931. :

10. The equation
oU 9*U

at  ax?
is approximated at the point (ih, jk) by the difference equation

0(“i,i+12—kui,j—1)+ (1-6) (“i,j _kui.i—l) h12 82u,,=0.

Show that the truncation error at this point is given by

*U *U
_%k(l - 0) 87—113h2 a‘z"l- O(kz, h4)
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Hence find the value of 6 that will reduce this error to one of
order k? and h*.

Solution

T.;j=0U;j:1—U;j—)2k+(1—-0)(U;;— U;;1)/k
- (Ui—lj 2U + U!+1 j)/h

Expand each term by Taylor’s series about (ih, jk) to get

*U

Tu‘= -1 —Tlih2_a?+ O(k2)+o(h4),
where
aU U
9t ax2’
so that
> ax*’
Hence,
T,,={—%k(1—0)— h2} +O(k2)+ O(h%.
Therefore,
h2
1k(1-0)= —5h? ie. 0= 1+—6-E

gives the required result.

11. Show that the local truncation error at the point (ih, jk) of
the Crank-Nicolson approximation to aU/at=aU/dx> is
O(h?)+ O(k?.

Solution

1 1
= E (Ui,j+1 - Ui,j) _W (8§Ui,j+1 + 8§Ui,j)’
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where, by Taylor’s expansion about the point (ih, jk),
oU U U *U
Ui+1,j= [U+h ax 2h2 6’13T+24h4 +O(h6)]
ij
etc., giving
2 2 U 4 6
82U h —+12h —+O(h)
ij
Again, by Taylor’s expansion,

82U,;,,=982U, +k 62U i+ O(k?).

Therefore,
aU &°U 8 [aU_o°U
’ at ox> at Lot ax? i

4
_‘_12"2(_3;‘{) + Ok + O(h*) + O(kh?),
ij

where
0U_2U
a  9x>
Hence the resulit.
12. The equation
aU U
a—+——f(x,t)=0, « constant,

at  9dx

is approximated at the point (ih, jk) in the x—t plane by the
difference scheme

a 1
E {ui,j+l _%(ui+l,j+ ui—l,j)}+§z (ui+1,j_ ui—l,i) _.fi,j: 0

Investigate the consistency of this scheme for (a) k = rh, and (b)
k=rh? r a positive constant, where it is assumed that U is
sufficiently smooth for third-order derivatives in x and second-
order derivatives in t to exist.

If either is inconsistent with the differential equation obtain the
equation it does approximate.
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Solution
U,
U= Uyt k2 "+%k2 Py
U, 8’ Ui,' 3® Ui+e2 ;
Uin,;=U, +h ‘+2h2 axz’+%h3 Py
an" azui" a3Ui_e ,'
Ui—l,j=Ui,j_h ax ‘+%h2 axzj_%h:}, ax3 3‘,
where 0<8,, 6,, 6;<1. Hence
aU aU ) L Ui
=F, —4——f]) +iak——2=
Ty,=F (U= (a at  ox f,,- Y
Oth2 62 lj Oth3 (33Ui+92,,»_83Ui_93,,~)+O(h2)
2k ox® 12k \ oax? ax> )

(a) k=rh. Scheme is consistent.
(b) k =rh?. The difference equation approximates

as h — 0.

13. Prove that when the explicit finite-difference scheme

k

h 2

is used to approximate the equation dU/dt=9°U/dx>, and it is
assumed that U possesses continuous and finite derivatives up to

order three in t and order six in x, then the discretization error is
the solution of the difference equation

Uijrr=Mi—y;+(1—2nu;;+ ru;,,;, where r=

eijs1=re_1;+(1-2r)e;;+re,y;+ko(x,t),

where

2 > 4 2.3
w(x,t)—h (maU 9 U) +E_ﬂ1(xi,ti+o,.k)

12 2 ax* 6 ot®
_h* UM +6h 1),

-1<6. < <6 <1.
360 35° 1<6,<1 and 0<6,<1
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If the maximum value of |w| is M, deduce, for 0 <r=<3, that
|e;;|=<tM. Hence show that the discretization error is of order h2,
except when r=% in which case it is of order h*.

Solution

As in the text, p. 46.

14. (a) If the n X n matrices A and B are symmetric, prove that
AB and BA are symmetric if and only if A and B commute.

(b) If the non-singular matrix A is symmetric, prove that A™!
is also symmetric.

(¢) If the non-singular matrices A and B commute, prove that
A~ 'and B, A and B}, and also A~! and B! commute.

(d) If the n X n non-singular and symmetric matrices A and B
commute, prove that A™'B, AB™! and A"'B™' are symmetric.

Solution

(a) Assume AB=BA. Since A and B are symmetric, (AB)T =
BTAT =BA = AB by hypothesis. Hence AB is symmetric. Simi-
larly for BA. Assume AB is symmetric. Since A and B are
symmetric, (AB)T = BTAT =BA. But (AB)” = AB by hypothesis.
Hence AB=BA, proving A and B commute.

(b) I=A A= (AA_l)T (A~ 1)TAT—(A‘I)TA since AT=A.
Hence (A™)T=A"", proving A™! is symmetric.

(c0 AB= BA, so AT'(AB)A™'=A"'(BA)A™'. Therefore
(AT'A)BA '=A"'B(AA™Y), proving that BA™'=A"'B. Simi-
larly for the other pairs.

(d By (c), AT'B=BA™!. Therefore (A7'B)T=BA HT=
(A™HTBT. But A™! is symmetric by (b) and B is symmetric.
Hence (A™)TBT = A™'B, proving that A™'B is symmetric. Simi-
larly for the other pairs.

15. (a) Prove that the infinity norm of matrix A is equal to the
maximum row sum of the moduli of the elements of A, assuming
[/l = 1. |

(b) Assuming that ||A|3 = p(A¥A), prove that ||A|3<|Al|, |All..
(For derivative boundary condition problems this can sometimes
be used to establish stability in the 2-norm.)
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Solution

(@) [All.= [max ||Ax|.. where

n

Ya

!'=

| Ax||.. = max

|<max 3 tayt 1 <max 5 {la,imax i .

But |x|..= maxl 5|=1. Hence, ||Ax||x<max ", la;| =max row

sum of the moduh of the elements of A. If the maximum row sum
is given by i = k then ||Ax||, will attain this max value by choosing
x; =1, when a,;=0 and x; = —1 when q,;<0.

(b) ||A|? = p(A™A). By Gerschgorin’s first theorem, p(A¥A)<
AT Al <[|A5]; Al =lCA) 1, Al = |All. |All;.

16. Prove that a real tridiagonal matrix with either all its off-
diagonal elements positive or all its off-diagonal elements nega-
tive is similar to a real symmetric tridiagonal matrix with non-
zero off-diagonal elements. Deduce that the eigenvalues of such a
matrix are real.

Solution
a, C;
b, a, c;
A= © by az ¢
b, a,
Let D be a real diagonal matrix with elements d,, d,, ..., d,, i.e.

D =diag(d,, d, . . ., d,). Calculate DAD . This matrix will be
symmetric if

di_b, di_b,  di._ b,

d2 ¢’ d2 ¢’ d? ¢,

Each right-hand side is positive. Assign a real value to d,, then
d,, ds, ..., d, are determined. Matrix A and the real symmetric
DAD™! are similar so they have the same eigenvalues. Hence the
eigenvalues of A are real because the eigenvalues of a real
symmetric matrix are real.
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17. If the real non-symmetric matrix A is similar to the real
symmetric matrix B, prove that the equations w;,,; = Au; +b; are
stable in the Lax—Richtmyer sense if |B/|<M, j=1,2, ..., where
M is a positive number independent of h, k, and j. Show, in
particular, that the equations are stable if p(B)=<1, but that the
errors could be large. (See also Chapter 2, Exercise 16.)

Solution

Since A is similar to B, there exists a non-singular matrix P such
that B=P 'AP. Hence, A=PBP!, A%>=(PBP )(PBP )=
PB?P ! and A’ =PB/P . Therefore, |Al||<|/P|| |B'|| |P*|. As |[P||
and [P~ are finite and ||[B’||< M, therefore ||A/|| is bounded for all
i» h, and k, proving stability. Using the 2-norm, |B|,<|B|L=
[p(B)} <1 by hypothesis and because B is real and symmetric.
Therefore, ||A’|l, <|[P||, [P~*||, which is a finite number that could
be large as j increases.

18. The equation

u_ U

-BU, 0<x<1, t>0,
at ax

where a and B are real positive constants, is approximated at the
point (ih, jk) by the explicit difference scheme

1 o
EAtui,j="? szu,,—Buu. 4

Given that U has known continuous initial values throughout the
interval 0=<x=<1, t=0, known boundary-values at x=0 and 1,
t>0, and that Nh =1, find an upper bound for r = k/h? that will
be sufficient to keep the difference equations stable, assuming
that U does not increase with t.

Verify that Gerschgorin’s circle theorem establishes the same
sufficient condition for stability.

Solution

Upjr1— Uiy = ra(ui—l,j_ 2ui,j+ ui+1,j) - kBui,i'
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Hence u,,, = Au; +b;, where r=k/h?,

(1-2ra—kB ra
A= ra (1-2ra—kB) ro
re (1-2ra— kB)

and b; is a column vector of known values. The equations will be
stable when ||Al|<1.

Since A is real and symmetric, [Al,=p(A)=
max |1 — kB —4ra sin’s7/2N|, s =1(1)N—1. The largest value for

r is given by —1=<1—rh?B —4ra sin®(N—1)7r/2N, which implies
r<2/(4a + Bh?). The 1-norm leads to the same result if 1—2ra —
kB=<0, for then [Al;=2ra+kB—1+2ra=4ra+rh’g-1<1
for stability, etc. If 1—2ra—kB>0, then 0<|Al;=1-2ra—
kB+2ra=1-rh?f<1, which implies that r<1/h’f>
2/(4a + h*B).

19. The equation
oU_ PU

a—7, 0<x<1, t>0
at ax

where a is a positive constant, is approximated at the point
(ih, jk) by the fully implicit backward-difference (or backward
Euler) scheme

Uijr1= ra(ui—l,i+l_ 2ui,j+1+ ui+1,j+1):

where r=k/h? and Nh=1. Assuming that the boundary and
initial values are known, prove that:

(a) The scheme is unconditionally stable in the Lax—Richtmyer
sense.

(b) The local truncation error is O(k)+ O(h3).

Comment

This is called a backward difference scheme because the time-
difference relative to the time of the space-difference is a back-
ward one. It is not as accurate as the Crank-Nicolson method
because the truncation error for the latter is O(k?)+ O(h?).
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Solution

(a) Show that w;,; = (I—raTy_,) " 'u; +b,. The matrix is real and
symmetric so

lAlL = p(A) = 1/{1 + 4ra sin®>m/2N}< 1

for all r>0.

19°U  °U 9*
b Ta~=k(——— __) 1 2(_U>
®) Tij= k|3 ar “axtatl,, a5 ).

13°U *U
w22y ) +
2Poxart),,
20. The equation aUJat =8*Ulax?, 0<x<1, t>0, is approxi-
mated by the difference scheme

Upj+1— Ui = r{o(ui—l,j+1—2ui,i+1+ ui+1,j+1)
+(1=0)(ui_y;—2u;;+ Uiy )},

where 0<60<1, r=k/h? and Nh=1. Assuming that the initial
values and boundary values are known, show that:
(a) The scheme is unconditionally stable in the Lax—Richtmyer
sense for 3=<60 <1 and stable for 0<60 <3 when r=<1/2(1-26).
(b) The von Neumann method gives exactly the same results as

(a).

Solution

(a) The matrix A of the equations is

I—r0Tn_) HI+r(1—0)Tn_.}. Since (A—r8Tn_,) and {I+
r(1— 0Ty, are both symmetric and commute, matrix A is
symmetric. (Exercise 14(d)). Hence its 2-norm is equal to its
spectral radius. The equations will be stable when

1—4r(1— 0)sin?(sw/2N) -

—1=<max 1.

s 1+4r0 sin®(sw/2N)
The right-hand inequality is automatically satisfied for r>0,
0 =<6 =<1. The left-hand inequality gives 2r(1 —20) < 1. Hence the
result.
(b) Replacing u,, by e*®""¢9 leads to

£ ={1—4r(1- 0)sin’Bh/2}/{1 + 4r0 sin*Bh/2}.
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Because u, , does not increase exponentially with g, the condition
for stability is that —1<¢=<1, etc.

21. A set of linear difference equations is given by u;,;=
Au; +b;, where the non-singular N X N matrix A has N distinct
non-zero eigenvalues A;, i=1(1)N, and a corresponding non-
singular matrix of eigenvectors X =[xy, X,, . . . , X5 ]. Show that for
the matrix method of analysis in which h, k, and N are kept
constant, the stability condition ||A!||< M, where M is a positive
number independent only of j, is equivalent to |\;|<1, i=1(1)N.
(N.B. For the Lax-Richtmyer definition of stability M must be
independent of j, h, and k.)

Solution

Any perturbation e=u—u* satisfies e; =Ale,. Hence |e|<
||A’l|lleo] and will be bounded if ||A/|<M, a constant that is
independent of j, since h and k are fixed.

The set of all equations Ax; = A;X;, i = 1(1)N, can be written as
AX=XD, where D=diag(Ay, A5, ...,Ay). (See Chapter 3,
Eigenvector-eigenvalue solution). Hence A=XDX"!, AZ=
XDX 'XDX '=XD?’X"! and A'=XID'X"'. Therefore, ||All|<
X} D || [X~*|. But the 1,2, and ~ norms of the diagonal matrix
D =diag(A}, AL, .. ) are max|)t ['. Therefore, a sufficient

condition for ||A ||<M is that max I\ =1.

22. (a) Show that one explicit finite-difference scheme approx-
imating the equation dUJat = 8>U/ox>

Uijr1 = TU;— ly+(1 2r)uzy+rul+11

Given that the initial values and boundary values are known,
show that Gerschgorin’s ﬁrst and second theorems establish sta-
bility of this scheme for r <3, but give no useful result for r>2.

(b) Show that Gerschgorin’s first theorem is inadequate for
establishing the unconditional stability of the Crank-Nicolson
equations approximating the equation aU/dt=08?U/ox>?, the
boundary and initial values being assumed known.

Solution

(a) Gerschgorin’s theorem gives |\|<2|r|+|1—2r|. Consider
0<r=<1 Then |A|=<2r+(1—-2r)=1. Hence the finite-difference
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equations are stable. r >3 leads to |A\|<4r—1>1, which is incon-
clusive. The circle theorem gives |A —1+2r|<2r, since r>0.
Hence —2r<\A—1+2r=<2r, giving 1—4r<A <1. The equations
will be stable when —1<1—4r,ie., r<3. Whenr>}, A=1—-4r<
—1, which is inconclusive.

(b) As shown in the text, the necessary condition for stability is
A =2, where A is an eigenvalue of B. Gerschgorin’s first theorem
leads to |A|<2+4r, where r>0, which is insufficient to establish
A=2,

23. The function U satisfies the equation

U U 29
W_PY 20U ) s,

the initial condition U=1—x2 when t=0, 0<x=<1, and the
boundary conditions

%i—]=0 atx=0,t>0; U=0atx=1,t>0.

The partial differential equation is approximated at the point
(ih, jk) in the x—t plane by the explicit difference equation

i— Aug ;= hlz 82u; +;1Z (Aguyj+V,ou,),
and the limiting form of the partial differential equation at x =0
is approximated in a similar manner. The derivative boundary
condition is subsequently approximated by the usual central-
difference formula.

Given that Nh =1 and that k = rh?, r>0, show that the matrix
A of the difference equations u;.; = Ay; is

(1-6r) 6r .
0 (1-2r) 2r
r(1-3) (1-2r) r(1+3)

. A=) a-andis])

r(l-— ﬁ) 1 —2r)_

Deduce that one eigenvalue of A is (1—6r). Derive from this
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result a necessary upper bound M on r for possible stability of
the equations. Deduce that for r <M the infinity norm of matrix
A is 1. Using the largest possible value for r and taking h =0.1,
calculate the solution values denoted by ug,, U, 4, and ug ;.

Solution

1 1 1
E (ui,j+1 - ui,i) =h_2 (ui—l,i— 2u;;+ ui+1,i) +ih—2 (ui+1,i_ ui—l,i)’

giving

1 1
ui,,-_ﬂ = r(l —?)ui_l,ﬁ-(l —2r)ui,,-+ r(]. +7>ui+1,i.

At x=0, 9U/ot=38*U/ox*> which can be approximated by
(Mo,j+1— Uo,j)/ Kk =3(u_1,j —2uo;+uy;)/h* where u_;;=u,;
because dU/3x =0 at x =0. In matrix form,

[(1—-6r) 6r T
0 1-2r) 2r

1 1
Wj+1 = r(l__i) (1_2r)r(1 +?) ;s i.e.,

! -2

u;,,=Auw;, where w =(ug; Uy ..., Un_1,). Expansion of the
determinant of (A— )d) by the first column gives (1—6r) as an
eigenvalue For this eigenvalue —1=<1-6r=<1 for stability.
Hence r<3i. When 0<r <} every term in the matrix is positive
and the sum of the moduli of the terms along every row except
the last is 1. For the last row,

1
< 1l = 1+ —-—) <1
0 ; IaN 1,]l 1 ( N 1

Taking r =%, h = 0.1, uOJ+1 = _uo’,"" 2“ 1,j and ui,i+1 =
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Q- /i)y ;+u;+(1+ A/Nu;rr i}, i=1(1)9. Hence ug;=
0.98, u,,=0.94, and uy,=0.17.

24. Prove that the equations of Exercise 6(b), Chapter 2, are
stable in the Lax-Richtmyer sense for 0 <r=<3.

Solution

Uoj+1 and un;.q are given in terms of u, ;.; and uyn_, ;.1 respec-
tively, so any errors in their solution are not propagated forward
in time. Hence we need consider only the remaining equations,
namely,

—“1,i+1
Uz it
| UN—1,j+1_]
_{1—2r+——' } M
1+hox) " 1
r 1-2r r Us
B +¢
r (1-2r) r
r
iz Yo
i { T T e | [N

where ¢ is a column vector of constants.

If 1-2r=0, i.e. 0<r=<1, the sum of the moduli of the ele-
ments along rows 2 to N—2 is 1 and along row 1=
1—r+r/(1+ h6x)=1—rh,6x/(1+h,8x)<1 for r>0, h,>0.
Similarly for row N—1. Hence ||A]l..=1, proving that the equa-
tions are stable for 0 <r=<3. When r>3, the sum of the moduli of
the terms along rows 2 to N—2=4r—1>1. Therefore ||Al..>1
and the equations will be unstable.
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Comment

As mentioned in the text, Gerschgorin’s circle theorem combined
with |A| <1 is equivalent to ||All..<1, and this method can be used
to establish stability for 0 <r=3 as in the next exercise.

25. Prove that the solution and rounding errors of the equations
in Exercise 8, Chapter 2, will not increase exponentially with
increasing time if r<2/(2+3h).

Solution
The N XN matrix A of the equations is

(1-2rh) rh
2rh - (1—4rh) 2rh

irh (1—2irh) irh
r (1-r—3rh)

We can proceed either as in Exercise 24, or use Gerschgorin’s
circle theorem together with |A| <1, which is equivalent to |A|..<
1, as follows.

The circle theorem applied to row N gives that |A—
(1—r—3rh)|<r, i.e. 1-2r—3rh <A <1-4rh. The right-hand in-
equality merely shows that A <1 for r, h>0. The condition
—1=<A\ will be satisfied by —1<1—2r—3rh, giving r<2/(2+3h).
Similarly, row 1 gives r<2/3h and rows 2 to N—1 that r<2/4ih,
i=2(1)N—1, where Nh=1 The smallest range is 0<r=<
2/(2+3h).

26. Use the Fourier series method to prove that
(a) Upag+1~ Upqg™ r(up—l,q_zup,q'i' Upi1q)

is stable for 0 <r=<3. (The forward-difference explicit approxima-
tion to dU/dt = 9*UJox>.)

(b) Upai1~ Upg-1=2r(Up_14=2UpaF Upi1g)

is unstable for all positive values of r. (The central-difference
explicit approximation to dU/at = 3>U/dx>, often called Richard-
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son’s method.)
(© Upgi1 ™ 2Up gt Upgr

= %rz{(up+1,q+l - 2up,q+1 + up—l,q+1)
+ (up+1,q—1 - 2up,q—1 + up—l,q—l)}

is stable for all positive values of r = 8t/8x. (As implicit approxi-
mation to the hyperbolic equation 9*>U/at> = > U/dx>.)

Solution

(@) £€=1-2r(1—cosBh) where |&|<1. This gives r=<
1/(1—cos Bh),

The least value of the right side is 3.

(b) &2+8rEsin®(Bh/2)—1=0, so & =-1/& and £ +&=
—8rsin®(Bh/2). For stability |&|<1 and |&|< 1. When |£,|<1,
|€&:]>1, giving instability. When &,=1, & =-1, and &+&,=0
giving r=0.

(c) E2—24E+1=0 where A=1/{1+2r*sin*(Bh/2)}>1.
Hence & = A £ i(1 — A%}, giving |&| =1 for all real values of r.

27. The equation

2
A aU+l_a_l_J, 0<x<1, t>0,
at ax2  x ox

is approximated at the point (ph, qk) by the difference equation

1Au

E tYpq h282qu+ (Ax UpatVy upq)

Use the von Neumann method of analysis to show that the
difference equations are stable for x >0 when

k 2
—_—=——
h? 4+p?

Evaluate the form of the differential equation at x =0 given that
aUfox =0 at x=0, t>0.

Given also that U is constant at x =1, that Nh =1, and that
the derivative boundary condition at x =0 is approximated by a
central-difference formula, write out in matrix form the corres-
ponding explicit difference equations approximating the partial
differential equation and associated boundary conditions.
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Given that k/h?<1, deduce that the errors will not increase
exponentially with increasing q.

Parabolic equations

Solution

1

1 1
E (up.q+1 - up,q) = h_z (up+1,q_2up.q+ up—l,q)"'mi (up+1,q_ up—l.q)'

The error function E,,=e*""¢9, i =+/(—1), satisfies

p=1.

E=(—4r Sinz%Bh)H—:;sin Bh, r=h£2,

|€|>=1+16r%sin*3Bh —4r sin? 1 Bh(2 _Eri cos? %Bh).

|&| <1 if 4r sin? %Bh(Z—pL2 cos® %Bh) =16rsin* 1Bh,

giving
r< 2 - 2
h 4+p2"
4sin’1Bh +—2 cos?3Bh p

At x=0, aU/at =29°U/ox> and this can be approximated by
(Uogr1— U0k =2(U_1 q—2Ugq+ Uy )/h?. As dU8x =0 at x =0,
Uy ,=U_1, Hence ugg=(1—4r)ug,+4ru,, In matrix form

u,., = Au, +¢,, where ¢, is a column of constants and
- (1—4r) 4r T
1-YHr 1-2r) Q+dHr
1 (1+35)
A (1 2p>r (1-2r) 2 r
(1) a2
L 2(N-1) A
When r=<3 the sum of the moduli of the terms along each row

=<1. Hence |All.<1.
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28. The function U satisfies the diffusion—-convection equation

aU U U

-A—, 0< <1,t>0,)\>0,
at  oax®> T ax x

and the conditions
U(x,00=0, 0<x<1,

alu(1, t)___

U@, =1, 0, t>0.

If the equation is approximated at (ph, qk) by the central-
difference scheme

(a) Upg+1— Upg _ Upi1,qg=2UpgtUp_14 A Up+1,a~ Up-14

k h? 2h

and by the ‘upwind’ scheme

Upg+1 " Upg up+1,q—2up,q+ Up—1q_ Upg—Up—14
®) k h h? A h ’
use the von Neumann method to show that the Lax-Richtmyer
definition of stability is satisfied by 0 <r=3 for Scheme (a) and by
0<r=<1/{2+(A\?/2K)}<% for Scheme (b), K a positive number
and r =k/h? (It must be assumed, with the usual notation, that
the Fourier solution of the difference equations and boundary
conditions at (ph,qk), p=1(1)N, Nh=1, is such that Bh=
+7/N, £27/N, ..., +7.)

Demonstrate that the upwind scheme is unstable for r=1 by
showing that the initial values u,o,=(—1)" are amplified by a
factor of (1+Ah) at each time-step.

If the growth of errors and of u,,=e*""¢9 are restricted by the
severer condition |£|<1, show that:

(i) Scheme (a) is stable when O0<r=<2/{A2h%2+(4—
A2h?)sin? Bh/2}. Deduce that r<min{3, 2/A%h?%}.

(ii) Scheme (b) is stable when O0<r<(Q2+Ah){Q2+
Ah)Zsin?(Bh/2) + A2h? cos? Bh/2}.

Deduce that 0<r=<1/(2+Ah). (See reference 19).

Solution

Substitution of u,,=e*""¢9 into (a) leads to

£=1—4rsin® Bh/2—i(Ak/h)sin Bh, i=+—1.



108 Parabolic equations

The stability condition |£|<1+ Kk for all h, k, and B, where
K>0 is a positive number independent of h, k, and B, gives
|€]* = (1—4r sin® Bh/2)?+ A2rk sin® Bh <1+2Kk + K?*k?>>1+2Kk.
This is satisfied by |£2<1+2Kk. When O<r<i,
(1—4rsin”® Bh/2)*><1 for all Bh, and A?rk sin?> Bh <2Kk for suffi-
ciently large K.

Substitution of u,,=e*"¢9 into (b) leads to £=1-2r(1-
cos Bh)—Arh(1—e *") =[1—(4r+2Arh)sin? Bh/2]—ikrh sin Bh. As
in (a) this gives that

|€|*> =[1—(4r+2Arh) sin® Bh/2F + Ak sin® Bh <1+2Kk.

When —1=<1—(4r+2Arh)sin® Bh/2, the inequality is automati-
cally satisfied for |Bh| < and for sufficiently large K. This gives
r <1/(2+ Ah)sin® Bh/2. When Bh ==, sin> Bh =0 and the in-
equality is satisfied by —1-Kk=<1-—(4r+2Arh), giving
r(2+Ah—3Kh?)<1. Completing the square, 2+Ah—iKh’>=
—3K(h—A/K)*+2+(A?2K) is seen to have a maximum value of
2+(A%2K) when h = A/K. Hence r<1/(2+ A?/2K).
When |£]2<1, Scheme (a) gives

0=<(1—4rsin? Bh/2)*>+A?rk sin’> Bh<1.

The left-hand inequality is automatically satisfied. The right-hand
inequality and sin Bh =2sin Bh/2 cos Bh/2 lead to r{A%h>*+
(4—\2h?sin® Bh/2}<2. The range O<Bh<mw gives r<
min{3, 2/A*h?}. (For the latter, let B — 0.)

Scheme (b) gives

[1—(4r+2Arh) sin? Bh/2P+A%r?*h2sin? Bh <1.

The wuse of sinBh=2sinBh/2cosBh/2 leads to r{(2+
Ah)?sin? Bh/2+A2h? cos? Bh/2} <2+ Ah. Hence r<(2+Ah)/{(4+
4\h) sin? Bh/2+A?h?} and its upper bound is given by Bh =,
etc.
29. The function U is a solution of the equation
oU 0°U 19U 10°U
—=t-—t+5=, 0<r<l, t>0,
ot a9r° r ar r-o6

at every point P(r, 8, t) of the open-bounded domain 0<r<1,
t>0, and satisfies the initial condition U=rsin30, 0<r=<]1,
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t=0, and the boundary condition aUdr=-U at r=1, t>0,
where (r, 6, t) are the cylindrical polar co-ordinates of P.

Take 8r=0.1, 80 = 7/16, and 8t = 0.01(8r), and use an explicit
method to calculate the numerical values of u(o, m, 8t) and
u(1, m, 8t), where u is an approximation to U.

Solution

As shown on p. 75, the equation may be approximated at
(0, 6, £,)bY (U j,n+1— Up j,n)] O = 4(Ups — Ug j ,)/ (87)?, Where uy,is
the mean value of u round the circle r = 0.1 at time ¢, = néd¢. Initially,
u(r, 6,0)=U(r, 6, 0). Hence

1 (> .6 0.1(> . 6
uM:E L rs1n§d0=ﬁ L sm§d0=0.0637.
As uo’i’0= 0 fOI' all j,

u(O, , 8t) = u0,16,1 = 48tuM/(8r)2 = 0.04“M = 0.0025.

As shown on p. 246, the equation can be approximated at the
pOint (rb 0]” tn) by

Wijn+1~ Wijn _ 1 {( _l) o +<1+l) o
5t @ W\ 75 JHi-tin 2i )it

1 1
- 2<1 + W)uu,n + 7(60) (Uij_1nt ui,;+1,..)}-

By the boundary condition, (U1 ;,,— Ue ;,)/2(8r) = — ;0 ». Hence
Uyyjn=Ugjn—0.2Uy0;,. Putting i=10, j=16, and n=0 in the
difference equation leads to

Uq0,16,1 = U10,160 T 0-01{%"9‘16,04'%_(1)(“9,16,0_ 0.2u10,16,0)
162 162
_2(1"‘100 )ulo 16,0 W(“lo 15,01 Uqo, 170)}

where uy4,160=sin(m/2) =1, ug160=0.9, and u;0150=U10,17,0=
0.9952. Therefore u;0,461=1—0.01882=0.9812 to 4D.






Parabolic equations: alternative derivation of
difference equations and miscellaneous
3 topics

This chapter is not necessary for any reader who would prefer to
study, at this stage, the numerical solution of hyperbolic and/or
elliptic equations.

Reduction to a system of ordinary differential equations

Consider the equation
oU _°U
—=—, 0<x<X, >0, 3.1
ot  ox

where U satisfies the initial condition U(x, 0)=g(x), 0<x<X
and has known boundary values at x =0 and X, t>0.
If the x derivative at (x, t) is replaced by

ﬁla {U(x=h,t)=-2U(x, t)+ U(x + h, )} + O(h?)

and x is considered as a constant, eqn (3.1) can be written as the
ordinary differential equation

dgt(t) N 515 {U(x—h, t)—=2U(x, )+ U(x + h, )} + O(h?).

(3.2)

Uy (DU, (0|U, (1) U, (1) Uy

o h 2h ih (N—-Dh (X,0)

Fig. 3.1
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Subdivide the interval 0 =<x=<X into N equal subintervals by
the grid lines x; = ih, i = 0(1)N, where Nh =X, and write down
eqn (3.2) at every mesh point x; =ih, i=1(1)N—1, along time-
level t. It then follows that the values V,(t) approximating U;(t)
will be the exact solution values of the system of (N —1) ordinary
differential equations

dv,(t 1
dV,(t 1
2()=h_2(V1“2V2+V3)

dt

dVn_y

1
dt  n? (Vn—2—2Vno+ Vi),

where V, and V, are known boundary-values. These can be
written in matrix form as

Vl _2 1 Vl VO
ol o Dol : el IR E
VN—2 1 _2 1 VN—2 0
VN1 1 -2| [Vna Vn
i.e. as
av(t
VO _ aviey+n, (3.3)
dt
where V(t)=[V,, V,, ..., Va_1]%, b is a column vector of zeros

and known boundary-values and matrix A of order (N—1) is
given by 5 1
1 -2 1
A=— T . 3.4
-2 1
1 -2

The solution of the ordinary scalar differential equation

dv
—=AV+b
dt ’

where A and b are independent of ¢t and V(i) satisfies the initial
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condition V(0)= g, is easily shown, by the method of separation
of the variables, to be

V(t)= —£+ (g +£)exp(At).

At the end of this section it is shown that the solution of (3.3)
satisfying the initial condition V(0)=[g;, g5, ..., gv_1]7 =8, and
where b is independent of ¢, is

V(t)=—-A"'b+{exp(tA)}g+ A 'b). 3.5)
Hence,

V(t+k)=—A"'b+{exp(t+k)ANg+ A 'b)
=—-A"'b+{exp(kA)Hexp(tA)}(g+ A 'b).

By eqn (3.5) this leads to

V(t+k)=—A""b+{exp(k A){V(t)+ A 'b). (3.6)
If all boundary values are zero,
V(t+k)={exp(kA)}V(t). 3.7

The boundary values can always be eliminated if we are con-
cerned more, say, with stability than with a particular numerical
solution. Perturb the vector of initial values from g to g*. By eqn
(3.5), the solution V*(¢) is

V*(t)=—A"'b+{exp(tA)}g*+ A 'D). (3.8)
Equations (3.5) and (3.8) then show that
V(1) - V(1) = {exp(tA)}g* — g).

Hence the perturbation vector e(t)=V*(t)—V(t) at time t is
related to the initial perturbation vector e(0) =g*—g by

e(t) ={exp(tA)le(0).
As before, e(t+k) = {exp(kA)}e(t).
A note on the solution of dV/dt=AV+b

Define the exponential matrix of the real n X n matrix P by

P2 P3 oo Pm
—_ P pnd Wl ‘e —_—
expP=cF =1, + P+ +t mgom!, (3.9)

where P°=1,, is the unit matrix of order n.
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If Q is a real n X n matrix such that PQ= QP, it can be proved

by (3.9) that PO c0uP = P,

Hence
But, by (3.9),

Therefore
ePe P=1,. (3.10)

Premultiplication of both sides of (3.10) by the inverse (€¥)™! of
e¥, defined by (e®)'e¥ =1, then shows

e P=(cP)L
On putting P = At into (3.9), where matrix A is independent of t,
and differentiating with respect to ¢, it follows that
d

” (eAh) = AeAt = eA'A.

Now consider V(t)=e*'g, where g is independent of t. This
clearly satisfies the initial condition V(0) = g. Differentiation with
respect to t gives that

% =AeMg=AV.

In other words, the solution of

dv
4 AV (3.11)
which satisfies V(0) = g, is
V(t)=erg.

Similarly, the vector function

V(t)=—A"b+e*(g+ A D),
which obviously satisfies the initial condition V(0)=g, is the
solution of

4V _AV+b,
dt
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provided vector b and matrix A are independent of t. The
analytical solution of (3.11) in terms of the eigenvalues and
eigenvectors of matrix A is given later.

Finite difference approximation via the ordinary
differential equations

For simplicity, assume that the boundary values associated with
oU_#U

Py —?, 0<x<X, t>0,

are zero. By eqn (3.7) the recurrence relationship satisfied by the
vector of values V(t) approximating U(t) at the mesh points
x; =th, i=1(1)N—1, along time-level t, is

V(t+k)={exp(kA}V(t), t=0,k,2k,..., (3.12)

where matrix A is defined by eqn (3.4).

In order to derive a set of finite difference equations from this
it is necessary to approximate the exponential of kA by a finite
algebraic function of k A. Since exp(kA), by definition, is

I+kA+3kZAZ+21K3A3+. ..,
one obvious approximation is I+ k A, with a leading error term of
order k2. The vector of values w=[u,, u,,..., uny_,]* approx-

imating V in eqn (3.12) will then be the solution of the finite-
difference equations

u(t+k)=>A+kA)u(t). (3.13)

If t=¢=jk and r=k/h?, these equations in detail, for zero
boundary-values, are

Uy i+ (1-2r) r Uy,
u2,,<_,.1 r (1 - 2r) r uz’i
UN—2,j+1 r (1-2r) r UN—2,j
UN-1,j+1 r (1-2r) UN-—1,j

The ith equation is the classical explicit approximation

Ujjp1 =Tyt (1 _zr)ui,i trug, I= 1()N-1.
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Other higher-order approximations are given by the Padé ap-
proximants to the exponential function.

The Padé approximants to €°, 6 real

Assume that e? is to be approximated by (1+p,6)/(1+4q,0),
where p, and g, are constants. The determination of p; and q,
requires two equations, which will come from the coefficients of 6
and 02, so the leading error term will be of order 6>. Hence

ee=-__1+p10
1+q,0

+C303+ C404+. e

Therefore,
(1+q,0)(1+6+30%+263+...)
=1+p,0+(1+q,0)(c303+c,0%+...).
Hence,
(1+q,-p)0+G+4q1)0%+(E+3q,— ¢3)0°
+higher order terms=0.

This is satisfied uniquely to terms of order three by

_1 1 __1
pP1=2 ¢q1=—3 and c3=-13.

The rational approximation (1+30)/(1—38) is called the (1, 1)
Padé approximation of order 2 to exp 6 and has a leading error
term of order 3.

In general, it is possible to approximate exp 6 by

e(,=1+pl(9+13202+. ..+ pr0T
1+q,0+q,0%+...+qsb°

+Csrre 85T+ O(657T+2),

where cg,r4; 18 a constant. The rational function
1+p,0+...+p8" Pr(8)
1+q,0+...+qs6°5 Qs(8)
is called the (S, T) Padé approximant of order (S+ T) to €. The

following table gives the first eight Padé approximants to exp 6
and their leading error terms.

Rs,'r(o )=
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TaBLE 3.1
Principal
(S, 7 Rs.1(8) error term
0,1 1+6 102
0,2) 1+6+360° 193
1
(1,0) 1—e —16°
1+16
1, T-is -56°
2
1+30+367
1,2 —-t —70*
3
(2 0) ; 103
’ 1-6+162 °
@y e ot
’ 1-20+2162 e
1+360+156°
2,2) 20+ 10 A0°

1-30+16°

Standard finite difference equations via the Padé
approximants

The classical explicit approximation

It is seen by Table 3.1 and eqn (3.13) that the classical explicit
approximation to 8U/dt=08U/ox> is given by approximating
exp(kA) by its (0, 1) Padé approximant.

The classical implicit approximation

The (1, 0) Padé approximant approximates
V(t+k)={exp(k A)}V(t)



118 Parabolic equations
by
u(t+k)=>O—-kA) u().
Premultiplication of both sides by the matrix (I-kA) yields
I-kAu(;+k)=u(), j=0,1,2,...,

where w(t;+k)=[uy sy, Uzjrys-- ., Un_1;+1]" and matrix A is
defined by (3.4). In detail, for zero boundary-conditions,

1+2r) —r
-r 1+2r) —-r

-r (1+2r) —r

-r (1+2r)
Uy j+1 Uy,
Uz i1 Uz
X . = .
UN—2,j+1 Un—2i
UN—1,j+1 Un-—1,j

The ith equation gives the implicit or backward-difference
scheme
Uyt (=20 U — Uy = Wy, i=H1N-1

This is unconditionally stable for all r=k/h?>>0. The leading
error terms are of order h? in x because of the central-difference
approximation to 9>°U/dx? and of order k in t. (The leading error
term of the (1, 0) Padé approximant to exp(kA) is O(k?) but eqn
(3.12) was derived by integrating the ordinary differential for V(t)
with respect to t.) The method is said to be first order accurate in
t.

The Crank-Nicolson equations

Table 3.1 shows that the (1, 1) Padé approximant replaces

V(t+k)={exp(kA)}V(t)
by

u(t+k)=A-3kA)'I+3kA)u(t).
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For numerical calculations this needs to be written as
(I—1kA)u(t+ k)= T+1ikAu(t).
This gives the Crank-Nicolson scheme
Uiy T 20 DUy — Uy i
=rui_q;+ 20— +ru,j, i=11N-1.

It is second-order accurate in t, having an error term via its Padé
approximant of order k3, and may be used with larger time-
intervals than the backward difference method. As shown later, it
can, however, produce unwanted finite oscillations near points of
discontinuity if k/h > X/w. (See Fig. 3.2.)

Ag-stability, L,-stability and the symbol of the method
Assume that the boundary values associated with the equation

0U_#U

Y 5—2, 0<x<X, t>0,
p

are zero and that the vector of initial values is
U(0)=g=[81, 82 ---,8-1]" Nh=X

Then the vector of values V(t) approximating U(t) at the mesh
points x; =ih, i=1(1)N—1, along time-level t; = jk satisfies the
recurrence relationship

V(¢ + k) ={exp(kA}IV(t), j=0,1,2,....

If the exponential of kA is approximated by its (S, T) Padé
approximant Rg1(kA), the resulting set of finite difference equa-
tions is

u(; + k)= Rg r(kA)u(t),
which can be written equivalently as

u(t) = Rsr(kAu(y;_y).
Applied recursively this leads to

u(t;) =[Rsr(kA)Tu(0), (3.14)
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where u(0) = U(0) =g. Now the eigenvalues of matrix A are

4 ., sw
A= —h—z‘Slnzm, s=1(1)N—-1,

and are all different. Hence the (N —1) eigenvectors v, of A are
linearly independent and can be used as a basis for the (N—1)
dimensional space of the vector g of initial values. In other words,
g can be expressed as

N-1

g= z CsVs
s=1

where the ¢, are constants. Equation (3.14) can therefore be

written as .

No
u(y) =[Rer (kAT X cyv,

s=1
N-1
= Y c[Rsr(kA)Tv.. (3.15)
s=1
Remembering that Av, = A,v, and that f(A)v, = f(A,)v,, it follows
by eqn (3.15) that the solution of the finite-difference equations
can be expressed as
N-1
u(t)= 2 G[Rsr(kA)Ivs. (3.16)
Equation (3.16) shows that u(f;) will tend to the null vector as
j— if and only if |Rgr(kA)|<1, s=1(1)N—1. All rounding
errors will also tend to zero because they are subject to the same
arithmetic operations as the components of u(t), j=1,2,.... If
this condition depends on the value of r = k/h?, the equations are
conditionally stable. This definition corresponds exactly to condi-
tional stability defined by the matrix method for fixed h and k,
when the solution tends to zero with increasing t.

When |Rg1(kA)|<1 for all r>0, the equations are said to be
Ag-stable. This definition corresponds exactly to unconditional
stability defined by the matrix method in the sense that u(z;) tends
to the null vector as j — o and is not merely bounded for fixed h
and k.

The suffix ‘0’ refers to the fact that all the eigenvalues of matrix
A are real, negative and non-zero, so that A, considered as a
complex number, is such that 7+ 0= arg A, = 7 — 0. (If the eigen-
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values are within the wedge defined by m+a>arg\,>7—a,
0<a<m/2, then the method is A(a)-stable when, within this
wedge, |Rsr(kA)|<1, s=1(1)N—1, for all r>0.)

Although A,-stability implies that —1 < Rg1(kA,)<1 for real
Rsr(kA,), it is possible that some values of Rgr(kA,) might be
close to —1 for particular values of kA,. The corresponding values
of [Rsr(kA)J in eqn (3.16) will then alternate in sign as j
increases and diminish in magnitude only very slowly. If the
corresponding terms on the right-hand side of (3.16) are large in
comparison with the remaining terms, the numerical solution
could then oscillate finitely as j increases. This phenomenon is
particularly pronounced in the x-neighbourhoods of points of
discontinuity either in the initial values or between boundary
values and initial values, as is illustrated in the next section.

The real coefficients Rgr(kA,) in (3.16) would clearly give a
solution that is stable and free of unwanted oscillations if 0<
Rsr(kA)<1, s=1(1)N—1, and Rgr(kA;) = 0 monotonically as
kA, increases in magnitude. The (1,0) Padé approximant, for

which R, o(kA,) = , A, real and negative, is of this charac-

_1
1—kA,
ter. In practice, this is an unnecessarily severe set of conditions
and it is sufficient for Rg(kA,) to tend to zero through positive
and/or negative values as kA, — —, A\, <0 and real.

As a consequence, a set of difference equations is said to be
Lg-stable if |Rgr(kA)|<1, s=1(1)N—1, and Rgr(kr;)— 0 as
kA, — —, where A is real, negative, and non-zero.

Following Gourlay and Morris 1980, reference 10, it is usual to
put kA,=-—z, which makes 2z positive since A=
—(4/h?sin*sm/2N, and to call Rg1(—2z) the symbol of the method.

A set of difference equations would then be L,-stable if
|Rs(=2)|<1 for all z>0 and Rgr(—2z)—0 as z — . For the
(1,0) Padé approximant, R;q(—z)=1/(1+2z) and obviously
satisfies both conditions, showing that the backward-difference
scheme is L,-stable. (See Fig. 3.3.)

For the Crank-Nicolson scheme,

1-3z 2/z-1
R, (-2)= 2=
B vy

(3.17)

Clearly, |R, ,(—z)|<1 for all z>0, but R, ;(—z)— —1 as z >,
showing that the scheme is A,-stable.
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In general, L,-stable schemes are preferable to A,-stable ones
because possible unwanted finite oscillations in the numerical
solution are rapidly dampened and this eliminates constraints on
the time-step k in relation to the space-step h, as occurs with the
Crank-Nicolson method. (See the next section.) With A,-stable
methods it is also common for unwanted finite oscillations to
increase in magnitude when any attempt is made to improve
accuracy by decreasing h. This occurs if the term Rg (k) of eqn
(3.16) approaches —1 more closely because of the decrease in h.
The Crank-Nicolson equations exhibit this phenomenon because
a decrease in h increases the magnitude of A, = (—4/h?)sin?sm/2N,
i.e. increases z and brings R; ;(—2) of eqn (3.17) closer to —1.
(See also the section on Stiff Equations.)

As a consequence, a great deal of research since 1978 has been
directed towards the generation of L,-stable methods of high-
order accuracy in t. (Reference Lawson and Morris 1978, Gourlay
and Morris 1980, Twizell and Khaliq 1982.)

The Padé approximation schemes for parabolic equations are
L,-stable when S>T and A,-stable when S=T.

A necessary constraint on the time-step for the
Crank-Nicolson method

Numerical studies indicate that very slowly decaying finite oscilla-
tions can occur with the Crank—Nicolson method in the neigh-
bourhood of discontinuities in the initial values or between initial
values and boundary values.

Assume that the boundary values for

oU_a*U

Y —‘ax—z, 0<x<X, t>0,

are zero and that the vector of initial values is Uy, =g. Then the
Crank-Nicolson or (1, 1) Padé approximant solution correspond-
ing to eqn (3.16) will be

N-1

u=Y culy,, (3.18)

s=1
where
_1+3kA,
1-3kA,’

s s=1(1)N-1, (3.19)
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are the eigenvalues of the amplification matrix (I—3kA)™'(I+
1kA), A, and v, are the eigenvalues and corresponding eigen-
vectors of matrix A of (3.4), Nh = X, A\, = —(4/h?)sin*s7/2N, and

N-1

g= 2 GV.. (3.20)

s=1
The eigenvalue u,, often called the growth factor associated with
v,, is less than one in modulus for all s because A; is negative.
Hence eqn (3.18) shows that u; tends to the null vector as j —> .
In this sense the equations are unconditionally stable. By eqn
(3.19) it is seen, however, that u, will be close to —1 when
kA, = —4rsin’sw/2N is large, where r=k/h? This will occur
when r is large and smw/2N =x/2, implying N and s both large,
ie.s=N-1,N-2,....

By eqns (3.20) and (3.18) it is seen that the high-frequency
components ¢n_1Vn-1, CN—2YnN_2, - - - » Of the initial values have
been transformed to cy_jpi—1¥n—1, CN—2MN—2VN—2, . . ., TESPEC-
tively, at the jth time-level. As j increases these components will
alternate in sign and decay only very slowly. If cn_1, Cn—2) - - -,
are large, as tends to occur when there are discontinuities be-
tween initial values and boundary values, the solution will oscil-
late finitely near the points of discontinuity. (See Fig. 3.2.)

Lawson and Morris, reference 14, have pointed out, however,
that these oscillatory terms will not have disastrous consequences
provided the highest-frequency component cy_;Vn_; decays to
zero faster than the lowest-frequency component c¢,v,. The con-
dition for this, by (3.18), is that |un_q| <|uil, i.e. —p1<pn-_1<
K1, giving

—1-3kA; 1+3kAn_, 1+3kr,
_%k)‘l 1 —%k)‘N—l —%k)\l ’

The right-hand inequality is automatically satisfied by A,=
—(4/h?sin*sw/2N. The left-hand inequality leads to

k2 Anoy <4 (3.21)
For large N, \;=—47?/4h>N?*=—x?/X?, and
An—1=—(4/h?)sin’w/2 = —4/h>.
Hence by (3.21),
k/h < X/m approximately, or k <hX]/.
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Fig. 3.2

Figure 3.2 exhibits the analytical solution at ¢t =0.25 of dU/dt =
8%U/ax?, 0<x <1, t>0, satisfying U(0, t)=U(1, t)=0, t >0, and
U@O,x)=1, 0sx=<1, t=0, together with the Crank-Nicolson
and backward-difference or (1, 0) Padé approximant solutions for
h=0.025 and r=40. For these values, k=0.025>hX/7m =
0.00796.

The local truncation errors associated with the Padé
approximants

When the exponential of matrix kA, defined by (3.4), is approxi-
mated by its (S, T) Padé approximant, the difference equation
approximating

aU 9?U

=-S==0

ot ax2
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at the point (i, j) is the ith row of the equations
1

where Rg1(kA)=Qs'(kA)P1(kA). Assuming that Q' is non-
singular, it follows that the difference equations can be written as

1 .
E{QS(kA)“j+1—PT(kA)uj} =0, i=1()N-1
The definition of the local truncation error T;;(U) then gives
1
T.;(U)=ith row of ;(—{Qs(kA)U,-“—PT(kA)U,-},

i=2(1)N-2.

If all the terms on the right-hand side are expanded about the
point (i, j) by Taylor’s series, (see Exercise 4), it can be shown
that the principal part of the local truncation error at (i, j) is

‘U 39
—5h2=—+C k""-—y] ,
[ 127 axt e ot 1,

where q =S+ T+ 1. Some of the constants C, are given in Table
3.2. (Reference 13.) The component —h?3*U/dx* arises from

TABLE 3.2

S, T q and r C, E,
o, 1 2 3 5
(1L 3 ~i 1
(1,0) 2 = 3
2,0 3 3 -3
2,1 4 7 ~54s
2,2 5 7% —189
(1,2) 4 —7 ~3as
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the approximation of 8°U/ax> by {u(x—h,t)—2u(x, )+
u(x+h, )}/h?* and will appear in the principal part of the local
truncation error of every difference scheme that approximates
exp(kA) by a Padé approximant. The C, term is determined by
(S, T).

Stiff equations

The magnitude of the component —h?(8*U/dx*)/12 of the local
truncation error can obviously be decreased by increasing N,
since Nh=X, a fixed number. This inevitably increases the
number and range of the eigenvalues A, = —(4/h?)sin?sw/2N, s =
1(1)N —1, of matrix A. As a consequence, the analytical solution
of the difference equations, namely

N-1

uj= Z cs[RS,T(kAs)]jVS’
s=1
may contain a large number of components with widely varying
rates of decay, assuming |Rg1(kA,)|<1. Equations giving rise to
this phenomenon are said to be ‘stiff’. If, in general, the eigen-
values of matrix A are A, = —u, +iv,, Where u,, v, are real and
ws >0, the ‘stiffness ratio’ of the equations is measured by
max p/min w, For A defined by (3.4), the stiffness ratio for large
N is
{sin*(N — 1)@r/2N}/sin’7/2N = 4N?/ 7>,

An extrapolation method for improving accuracy in ¢

Consider the equation

2
§g=3_12{, 0<x<X, t>0,
at  ox
satisfying the boundary conditions U(0, t)=U(X, t)=0, t>0. As
shown previously, the vector of values V approximating U at the
mesh points x; =ih, i =1(1)N—1, along time-levels t and t+k
satisfy
V(t+k)={exp(kA}V(t), t=0,k,2k,.... (3.22)

If the exponential is approximated by its (1, 0) Padé approximant,
the vector of values u=[u;, u,, ..., uny_,]" approximating V will



Parabolic equations 127
be the solution of the implicit backward difference equations
u(t+k)=>O-kA) "u(r), (3.23)

where matrix A is defined by (3.4). Over a time-interval of 2k
this gives
u®P(t+2k) = T-2kA) 'u(r). (3.24)

Alternatively, the application of eqn (3.23) twice, each over a
time-interval of k, leads to the implicit equations

@ +2k)=I-kA) u(t+k)=>T-kA) 'A—kA) u(t)
e u®(t +2k) = (1- kA) u(?). (3.25)
Equations (3.24) and (3.25) are two different backward-
difference schemes for calculating approximations to U;(t+2k),
i =1(1)N—1. The detail of the arithmetic is given later.

The binomial expansion of the matrix inverses of (3.24) and
(3.25) show that

u®(t+2k) = I+ 2k A+ 4k*A%u(t) + O(k?) (3.26)

and u@(t+2k) = (I+ 2k A+ 3k2A2u(t) + O(k3).  (3.27)

But the Maclaurin expansion of exp(2kA) in
V(t+2k) ={exp(Rk A)}V(v),

an equation giving a more accurate approximation to U;(t+2k)
than either (3.26) or (3.27), i =1(1)N—1, results in
V(t+2k)=0+2kA+2k2A%) V(1) + O(k>). (3.28)
Comparison of eqns (3.26), (3.27), and (3.28) shows that
neither (3.26) nor (3.27) is accurate to terms of order k2. A
simple linear combination of (3.26) and (3.27) will, however,

produce an extrapolated vector u® that is second-order accurate
in t, i.e. with a leading error term O(k?), namely,

u®(t+2k) =2u®(t + 2k) —u®P(t + 2k)
= (I+2kA+2k*A%)u(t)
The algorithm for the extrapolation is therefore
(I-2kA)uP(t+2k) =u(r), (3.29)
I-kA)u®(t+2k) =u(t) (3.30)
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and
u®(t+2k) =2u?—u®. (3.31)

Naturally, the extrapolated solution values are used as the
starting values for the extrapolation procedure over the next two
time-levels.

The symbol for the extrapolation method

If eqn (3.31) is written in the form
v ®(t+2k) =S, o(kA)u(t) = 20— kA) 72— (I—-2kA) }u(t),
then
S10(kA)=2(I-kA)2—(I-2kA)".
Therefore the symbol S, o(—z) of the extrapolation method is

2 1 1+42z-2°
(1+2)? 1+2z 1+4z+52%2+223°

Sl,o(_z) =

Division of the numerator and denominator by z? shows that
S10(—2)—0 as z—>o, whilst Fig. 3.3 demonstrates that
[S1.0(—=2)|<1 for all z>0. Hence the scheme is Ly-stable. The
symbol is small and negative for z > 1++/2, which implies that
small oscillations or fluctuations could occur in the numerical
solution for z = —kA;> 1++2. They would, of course, be heavily

1.0
0.75
0.5

0.25

025

Fig. 3.3
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damped in subsequent calculations because S; o(—z) is very small
for these values of z.
In practice, only L,-stable methods are worth extrapolating.
The arithmetic of the extrapolation method
As
1+4r) —2r
I—2KA = =2r (1+4r) —-2r' ’
—2r (1+4r)

it follows that eqn (3.29), with zero boundary-values, yields the
equations

1
(1+4r)u(1,])+2—2ru2]+2 = Uy,

1 1
-2, +(1+4r)u(2}+2—-2ru3 12 =,

_2ruN 2,+2+(1+4r)uN 1,j+2 = uN—l,j'

These can be solved by the algorithm on p. 24. Similarly, eqn
(3.30) can be treated as two tridiagonal systems, namely,

I—kAu®(t+k)=mwu(t) (3.32)
and

I-kA)u®(t+2k)=u®(t+k), (3.33)

where the equations for (3.32) are

2 2
1+ 2r)u(1}+1 m(z ;)+1 Ui

2) 2
—ru(1,+1 +(1+2r)u(2}+1 ru(33+1 Uz

2 2 _
_rug\l)—z,j+1 +(1+20ul = UN-1,j+1

Similarly for (3.33). Alternatively, eqn (3.30) can be written as
(I—-2kA+Kk?AHu®(t +2k) = u(t), (3.34)
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Equation (3.34) can then be solved directly for the components
of u®(t+2k) by means of a quindiagonal solver.

For the heat-flow problem aU/at =ad*U/ax?, 0<x<1, t>0,
Uuo,)=U(,t)=0, t>0, and U(x,0)=1, 0=x=<1, Fig. 3.4
shows the graphs of the solutions at t =0.25 by the backward-
difference method, eqn (3.23), and the extrapolation method, eqn
(3.31) taking h =k =0.025 and r=40. The maximum errors, at
x =0.5, are 0.0324 (backward-difference) and 0.0061 (extrapola-
tion).

Further comments

If the classical explicit method is extrapolated it is easily shown
that |So 1(—2z)| <1 for 0 <r=1/4. (Exercise 2.) In general, there is
little advantage in the extrapolation of conditionally stable and
Aj-stable methods, especially if discontinuities exist in the initial
values or between initial values and boundary values.

As one would expect, Ly-stable difference methods of third
and fourth accuracy in t can be achieved by extrapolating over
three or four time-levels respectively and two such schemes are
considered in Gourlay and Morris, reference 10. The extrapola-
tion of (2,0), (2,1), (2,2), and (3,0) Padé approximations are
given in references 28 and 13.
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The local truncation errors and amplification symbols of
extrapolated schemes

In general, the extrapolation formula for the (S, T) Padé approx-
imant is
u®(t+2k) = au®— (a — Du'?,
where a =25+T)(25+T—-1).
The principal part of the local truncation error of the extrapo-
lated scheme at (i, j) is

‘U U
—-Lth?2—+E "1——] i = N-2
[ 12h ax4 rk ot i,]" l 2(1) >

where r=S+ T+2. Some of the constants E, are given in Table
3.2. The amplification symbol of the extrapolated method as-
sociated with the (S, T) Padé approximant is
Ssr(—2z)= a[Rs,T(_Z)]2_ (a— 1)Rs,'r(—2z)-
As an example, consider the (2,0) Padé approximant to exp 6,
namely R,((68)=1/(1—6+36?). For this,
a=2%/(2>-1)=4/3, u®P=®-® and r=4.

The principal part of the local truncation error is
4

[___17 h? fg -1 3 '3_2]

T oaxt U et ly;

and
4 1

3(1+z+4z2) 3(1+2z+22%)°

52,0(_ z)=

which is easily shown to give L,-stability.
The eigenvalue—eigenvector solution of a system of
O.D.E's

Preliminary results

(i) If matrix A of order N has N linearly independent eigen-
vectors x; corresponding to the N different eigenvalues A;, i=
1(1)N, then the N equations

Ax; = \x;, i=1()N,
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may be written in matrix form as
AlX,, X5, ..., Xy =[AX,, AX,, ..., Axy]
=[A1Xy, AoXa, - . ., AnXN]
A1

A
=[x1’x2’-'-,xN] 2,

An
Putting the matrix of eigenvectors [x,, X5, . .., Xy ]=X, often cal-
led the modal matrix, and
Ay
Ao .
. =diag(Ay, Ay, ..., AN) =D,

An
the eigenvalue—eigenvector equations can be expressed very com-

pactly as
AX=XD.
Hence
X 'AX=D. (3.35)
(ii) By eqn (3.35),
(X'AX)? = (XTAX)(XTAX) =X 'AZX =D?
=diag(A\%,A2,...,AD).

Similarly, X 'A™X =D™ =diag(AT, AT, ..., D).
(iii) By definition of exp A,

1
X (exp A)X=X'1[IN+A+5 A%+, .]X

1 2
=Iy+D+ D7+ ...

i.e.
X Y(exp A)X=exp D.

(iv) Using 2X2 matrices for simplicity, the definition of
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exp(tD), t a scalar, gives

1 1
exp(iD)=L+tD+— (tD)*>+...+— (D)™ +...
2! m!

_[1 0]+[n\, 0]+ +L[mr 0 ]+
"o 1 0 thd T mil 0o mapl

1
(1+m,+o o +—m;"+--->
m

1
(1+t/\2+-'-+—t"‘/\'2"+~-') ,
m!

i.e.
_ [exp(ta,) 0 ]
exp(tD) [ 0 exp(thy) ]’ (3.36)
The eigenvalue—eigenvector solution of dV/dt = AV
As shown earlier, the solution of
dv
—_— A
dt v,
where A is independent of ¢, is
V(t) ={exp(tA)}V(0). (3.37)
Put
V() =XY(t), (3.38)

where X is the modal matrix of A, of order (N — 1), say. Then, by
eqns (3.37) and (3.38),

XY(t) ={exp(tA)}V(0) = {exp(t A)}XY(0).
Hence by (iii) and (iv),
Y(t) =X Hexp(tA)}XY(0)
={exp(tD)}Y(0)
exp(tA,)

exp(tA2) Y(O)

exp(tAn—1)
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from which it follows that the sth component Y,(t) of Y(¢t) is
Y, () = {exp(tA,)} Y, (0).

Therefore eqn (3.38) gives the solution

V(1) Y,(0)exp(tA,)
V.z(t) =X Yz(O):eXp(t)lz) ’ (3.39)
Vit (0) Yr_1(0)exp(thn_,)

where XY(0) =V(0). For known eigenvectors the latter could be
solved for the components of Y(0) by Gaussian elimination.

Solution (3.39) will also hold for problems with derivative
boundary-conditions at x=0 and L except that V(t)=
[Vo(®), Vi(2), . .., Va(®)]F, Nh =L, and matrix A will be of order
(N+1).

Equation (3.39) can be used to give an approximate solution
for sufficiently large positive values of ¢t when the eigenvalues are
negative, and I am indebted to D. Drew, Brunel University, for
the following example.

Consider Worked Example 2.2, for which h=0.1 and A, =
—(4/h?sin?s/20, so that

A1 =-9.7887,A,=—38.197, ..., Ag=—390.2.

Then
V() Y,(0)exp(—9.8t) Y.(0)exp(—9.8¢t)
V?(t) -x Y2(0)e):(p(—38.2t) ~X g . (3.40)
120 :
0

for t>0.1, to about 3 significant place accuracy.

As V(0) =XY(0), Y(0)=X"'V(0).

But matrix A is symmetric, so X*X =1, assuming each eigen-
vector has been normalized to 1, i.e. divided by the square root
of the sum of the squares of its components. Therefore,

Y(0) = XTV(0). (3.41)
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If xT=[x11, X21, .-, Xo1], €qn (3.41) gives
le(o) = [xlla X215 ey xQI]V(O)
9
= Z x;1V;(0).
i=1
Hence by (3.40),

9
= x;1[exp(—9.78871)] .2 X1 Vi (0). (3.42)

i=1

In Worked Example 2.2, which is symmetric about i =5, V,(0)=

0.2i, i =1(1)5, and the normalized component x;, of9 X, 18 x;;=

(sin im/10)/v/5, i=1(1)9. These values give that ) x;;Vi(0)=
1

4.0863/+/5. For t=0.1,

i
10
=0.3071 sin in/10.

V;(0.1)= %(sin )[exp(—0.9789)](4.0863)

Table 3.3 shows that these approximate values differ from the
Crank-Nicolson solution for r=1 only in the fourth decimal
place.

If matrix A is non-symmetric but satisfies the conditions of
Exercise 16, Chapter 2, the same method can be used by trans-
forming A to the symmetric matrix DAD™, where D is the
diagonal matrix of Exercise 16.

TABLE 3.3

X 0.1 0.2 0.3 0.4 0.5

Approximate V; 0.0949 0.1805 0.2484 0.2920 0.3071

C— N solution 0.0948 0.1803 0.2482 0.2918 0.3069

Solution of P.D.E. 0.0934 0.1776 0.2444 0.2873 0.3021
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Miscellaneous methods for improving accuracy

(i) Reduction of the local truncation error (Douglas equations)

All derivatives can be expressed exactly in terms of infinite series
of forward, backward, or central-differences. For example

U 1
a2 - GRU B U+58U+. . ) (3.43)

where the subscript x denotes differencing in the x-direction and
the central-differences are defined by

0. Ui = Uiy — Uiy,

and
82U; = 8,(8,U, i) =Uis;—2U;; + U_,, etc. (3.44)

In the approximation methods already considered the right-hand
side of (3.43) has been truncated after the first term. If it is
truncated after two or more terms the accuracy of the approxima-
tion method will always be improved but this normally increases
the number of unknowns in an implicit method and complicates
the boundary procedure. For equations involving second-order
derivatives however it is possible to eliminate the fourth-order
central-differences yet leave the number of unknowns unchanged.
For example, if the equation
aU _ 8’U

at  ax?
is approximated at the point (i, j+3) by

Lo _1{(@) +(29 )
i W) T 5 1\502 i1 ax? ij

2h2 (82 28:4‘%82"‘ .. ~)(ui,j+1+ ui,]’)’

then the terms involving 8% can be eliminated by operating on
both sides with (1+7582). This gives that

(1+ﬁsi)(ui,j+1_ui,; =3r(82 Ui+ 85 “1;)'*‘0(33)
which can be written as

{1+ (12 2")32}“; 41 ={1+ ( +%r)8§}ui,j
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when terms of order 8¢ are neglected. By (3.44) it follows that
the differential equation at the point (i, j +3) can be approximated
by the implicit algebraic equation

1- 6r)ui_1,,~+1+ (10+ 12r)ui,j+1 +(1 _6r)ui+1,j+1
= (1 + 6r)ui_1’]'+ (10 - 12r)u'd + (1 +6r)ui+1,,~, (3.45)

where r = k/h2. The resulting tridiagonal system of equations can
be solved by the algorithm on p. 24 and requires exactly the
same amount of arithmetic as the Crank-Nicolson method.
Whereas, however, the local truncation error of the Crank-—
Nicolson equation is O(h%)+ O(k?), it is O(h*)+ O(k?) for the
Douglas equation. As proved in Chapter 3, Exercise 6, the
equations are stable and consistent for all positive r. The numeri-
cal solution of Example 2.1 by eqns (3.45) for h=0.1and r=1 at
t=0.1 is compared with the Crank—Nicolson solution for r=1 in
Table 3.4.

An explicit difference equation of h* accuracy is developed in
Exercise 7.

(ii) Use of three time-level difference equations

The finite-difference approximation of a parabolic equation needs
only two time-levels. Three (or more) time-level schemes can be
constructed but naturally this is done only to achieve some
advantage over two-level schemes, such as a smaller local trunca-
tion error, greater stability, or the transformation of a non-linear
problem to a linear one as is demonstrated further on in this
chapter. For example, the three-level difference equation

é (W1~ Uiy) 1 (Ui —uij—1) _ (Uigy,iv1 = 2Ug500 + Uim1,41)

2 k 2 k h?

TABLE 3.4

x= 01 0.2 0.3 0.4 0.5

Solution of P.D.E. 0.0934 0.1776 0.2444 0.2873 0.3021
Douglas solution 0.0941 0.1789 0.2463 0.2895 0.3044
C-N solution 0.0948 0.1803 0.2482 0.2918 0.3069
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approximating dU/at = 3*U/dx> has a truncation error of the same
order as the Crank-Nicolson equation, namely O(k?)+ O(h?),
but is the better one to use when the initial data is discontinuous
or varies very rapidly with x. The Crank-Nicolson approximation
should be used when the initial data and its derivatives are
continuous (reference 25). In order to solve the first set of
equations for u;, it is necessary to calculate a solution along the
first time-level by some other method, it being assumed that the
initial data along t =0 are known. This first time-level solution
must be of the same accuracy as that given by the three-levels
equation. A three-level variation of the Douglas equation is

1
ﬁ {%(ui+1,j+l - ui+1,j) _%(ui-l—l,i - ui+1,j—1)}

+g":{%(ui,j+1 u 1( l] l] 1)}

1
12k {2('4: 1j+1 7 i—l.i)_%(ui—l,j - ui—l,j—l)}

1
= h_2 (Uisrje1—2U 541+ ui—l,i+1):

and like the Douglas equation its truncation error is O(k?)+
O(h*. A number of such schemes for constant and variable
coefficients and for one and two space dimensions are discussed
in references 18 and 25.

(iii) Deferred correction method

In this method the approximating difference equations are solved
as usual. Their solution is then used to calculate a correction
term, at each mesh point of the solution domain, which is added
to the approximating difference equation at each mesh point. The
corrected equations are then re-solved and the process repeated
if necessary. The correction terms are numbers obtained by
differencing the numerical solution in either the x-direction or
the t-direction, or both directions. One method for deriving a
correction term for the Crank-Nicolson equations is given in
Chapter 3, Exercise 9, but the following is better as it is based on
a general result. Define the averaging operator w by ufi,1=
3(f; + fi+1) and use the following results which are proved in most
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introductory books to numerical analysis, namely,
d A \
k Y 2sinh™'(38,) and p,=(1+36%)%.

From these it follows that

(50 (5 )=l
al ij at L,j+1 Bt ',j+%

={(1+482)%2 sinh*(38,)}U, ;.-

The expansion of the right-hand side into positive powers of §,
leads to

AR
P o +\=- = t"'la?_L t5+...Ui- 1
2k{(a(;,)“ <6t . (8 +13 1200 VUi
which can be rearranged as

1 6U> (6(]) }
Lji+i=2 - +\— + i,j+ds
Ol zk{(at GG ), g Gl

L]

giving
d
Ui,j+1 - Ui,j = %k 5; (Ui,j + Ui.i+1) + Ctlji,j+%, (3-46)
where
Co=—183+ 1585 +. ...

Equation (3.46) is a general result relating the value of a continu-
ous function at the (j+ 1)th time-level to its value at the jth
time-level in terms of first time-derivatives and central-
differences in the t-direction. For the equation

oU_sU
a  ax?
it follows that
a9
at ox2

Hence by (3.46)

2

d
Ui,j+1 - U., = %k (_9—x_2 (Ui,j + Ui,i+1) + CtL]i,i-l—%'
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Using eqn (3.43) it is seen that

1k
U|]+1 Ul] = h2 (62 6:+9_1082+' . ')(Ui,i+l+ []i,j)+ct[]i.,j+%

=3r(82U,;,,+82U,;)+C, (3.47)
where
C=%r{(—ﬁ34Uij+1 +9_1086Ui1'+1+ )
(— 86U +. )}+ (_1283 |1+2+ 1208 Ul 1+§)

The first approximation to the solution of (3.47) would be found
by putting C =0 and solving the Crank-Nicolson equations

ui,i+1 l] % (8 ul]+l+8)cul )

over the solution domain [0<x <1]x[0<t=<T], say. The cor-
rection term at each mesh point would then be calculated from a
truncated approximation to C such as

, r
C' = —ZI,- (S:ui,j+1 + 6:"‘1,]) —11_28;?‘“”4'_21'

This method, in effect, includes higher-order difference terms in
the approximations to the derivatives but keeps the matrix of
coefficients of the approximation equations tridiagonal which
allows the algorithm on p.24 to be used.

(iv) Richardson’s deferred app;'oach to the limit

For this method two or more solutions approximating the prob-
lem must be known for two or more different mesh sizes and the
difference between the solution of the partial differential equa-
tion and the solution of the approximating equations must be
known as a function of the mesh lengths.

Let U represent the solution of the differential equation and
u,, represent the solution of the finite-difference equations for a
mesh of size (h,, k,). Now assume, for example, that the discreti-
zation error

U —u(h, k)= Ak + Bh2+ Ck2+ Dh*+

as it is for the classical explicit method for finite t.
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If two solutions u,; and u,, are known then
U-u,,=Ak,+Bhi+Ck?+Dht+
U —u,,= Ak, + Bh3+ Ck3+ Dh3+
Hence B (or A, but not both) can be eliminated to give that
k h3—k,h3
- h%

If the term involving A is negligible then U is an improvement
on u;, and u,,. For the special case h,=2h,, k, =2k,

= %(4'41,1 - uz,z)“'%kA +....

and

1
U=-5—7h3u,—hiun)+ A
hz_hl > >

If three different solutions are known then A and B can be
eliminated. For the Crank-Nicolson equations,

U —u(h, k)= Ah*+ Bk*+ Ch*+
If h,=Ah, and k,= Ak, it is easily shown that

2

A
U=u,,+ Az(uzz u; 1)+ Oh?).

1-

Solution of non-linear parabolic equations

There is no difficulty in formally applying finite-difference
methods to non-linear parabolic equations. The difficulties are
associated with the difference equations themselves. If they are
linear they can usually be solved quite easily, although we still
have the problem of determining the conditions that must be
satisfied for stability and convergence because the coefficients of
the unknowns will be functions of the solution at earlier time-
levels. If they are non-linear we have also the problem of their
solution. Direct methods, in general, are difficult, so they are
usually solved iteratively after being linearized in some way.
Taylor’s expansion provides a standard way of doing this and the
method is usually referred to as Newton’s method.

Linearization by Newton’s method

Let
fi(ul, Uy ...y uN) = 0, i = 1(1)N’ (3'48)
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represent N equations in the N dependent variables
Ugy Ugy o ooy Une

Let V; be a known approximation to the exact solution value
u;, i=1(1)N.

Put uy; = V, + ¢; and substitute into eqn (3.48). Then by Taylor’s
expansion to first-order terms in g, i = 1(1)N,

ofi ofi ofi ]
u =V,

(Vy, Vo, .., V, +[—-—e +— g, t+. .. +—L¢
f( 1 2 N) aul 1 au2 2 auN N

i=1(1)N. (3.49)

The subscript notation on the second bracket indicates that the
dependent variables u,, u,, ..., uy appearing in the coefficients
of &y, &,,...,ey are replaced by V,, V,, ..., Vy respectively
after the differentiations. Equation (3.49) represents N linear
equations for the N unknowns ¢, €,, ..., ey because V;, V,, Vy
are known. When the &’s have been calculated the process is
repeated, the starting values of the dependent variables for the
next iteration being (V; +¢;), i = 1(1)N. This process of successive
approximations is continued until the u;’s have been found to the
required degree of accuracy, such as || <1078, i =1(1)N. Some
numerical results for a particular problem are given on p. 148.

=0,

Example 3.1

The function U satisfies the non-linear equation
oU _3*U?
— =, 0<x<1, t>0,
at  ox

the initial condition U=4x(1—-x), 0<x<1, t=0, and the
boundary conditions U=0 at x=0 and 1, t=0.
If the equation is approximated at the point {ih, (j +3)k} in the
x—t plane by the difference scheme
1 1 2.2 2.,2
7{' Ol j 43 = iﬁi (5 uij+85ui),
use Newton’s method to derive a set of linear equations giving an
improved value (V; + ¢;) to the approximate value V; at the mesh
points defined by x; =%i, i=1(1)5, t=k =%.
If the V; are taken equal to the initial values at x; =¢i,
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i=1(1)5, t =0, show that these equations reduce to
—19¢,+8e,+%=0,
5e,—25e,+9e;—%=0,

and
16e,—27e5—3=0.

The approximation equation is
1 _ 1 2 2 2
; (ui,j+1 - ui,j) = 57!3 {(ui—l,j+1 - 2ui,]'+1 + ui+1,j+1)
+ Uiy 2uft ula))

Put p="h?/k and denote u;;.; by u. The equation can then be
written as
ul_y—=2(u?+pu) +ule H{ui 2wl - pu) +uiog )
= OEfi(ui——la ui’ ui+1)-
By eqn (3.49),

of, of.  of,
[ f €1 +'_f 3i+_f_ 3i+1]
au; 4 Iy, U

+fi(‘/i—1a ‘/ia ‘/i+1) =0,
Vi

w=

hence

2V, 18- 2QV, +p)e; + 2V g H{VE - 2(VZ+pV) + Vi,
+ {uiz—l,j_ 2(“;{,’_ P“i,j) + ui2+1,j}] =0, (3.50)

where V;, is an approximation to u; ;..

The problem is symmetric with respect to x =2, When the V; are
taken equal to u;,, eqn (3.50) for j =0 reduces to

2U; 1081~ 2QuUot+ P)E +2Ui 11,0841
+ {2“?_1’0 - 4u§0 + 2ui2+1’0} = 0.

This gives the equations quoted for p=1 and the initial values
indicated in Fig. 3.5 since ¢q=0.

Richtmyer’s linearization method

Richtmyer, reference 25, considers the equation
oU_s'Ur

Y 7, m a positive integer =2,
x
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1
=k (e} I:I I.: 1:3 & ‘::I (o)
(o} v, V. V3 Vs v o
o < \
10=8 uyo =8 Uyp=1 Uy0=8
Fig. 3.5

which he approximates by the implicit weighted average differ-
ence scheme

£ =) =23 083wl )+ (1-0) X)) (3.51)

By Taylor’s expansion about the point (i, j),

m my g OUL;
ui‘]‘+1=ui,j+k_at_]+
—un kau,,au,,+
ou; ot

Hence to terms of order k,
Ui = Ut mug; (ui,i+l_uu

a result which replaces the non-linear unknown u;;,; by an
approximation linear in Uijs1-
Putting o; = u;;,,—u;; in eqn (3.51) leads to
1

o= [682(u"‘+ mult 'w)+(1-6) 82ul}

2 2
[m68 u oy +82ul

[m0(u, 1; i 2u{f}—1wi+u?ﬁ,l,~we+1)

+ (uZ'Ll,r 2ufi+ut)l

which gives a set of linear equations for the w;. The solution at
the (j+1)th time-level is obtained from u;;,,=;+u;;. For
known boundary values at x =0 and 1, where Nh=1 and r=
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k/h2, the equations in matrix form for m =2 are

(1+4r6u,;) —2r6u,; @1
—2r0u,; (1+4rfu,;) —2rbus; w2
—2r9uN_3'j(l +4r0uN_2‘,«)—2r9uN_|‘,~ WN-2
—2rBun_»,(1+4r0un_,,) ON-1
=2ruy;  Tug,; L¥]
Uy —2ruy;  Tus Uz
TUn_2,; — 2MUn_1, UN-1,i

rud i+ 2ruo (o j+1— Uo;)
0
+ 0 (3.52)
0
ru%l.i"' zrouN,j(uN‘i-O»l - uN‘i)

These are easily solved by the algorithm on p. 24. Numerical
results for a particular problem are given on p.148.

A three time-level method

Lees, reference 16, considered the non-linear equation

b(U)———=a—{ (U)——-}, a(U)>0, b(U)>0, (3.53)
and investigated a difference scheme that

(i) achieved linearity in the unknowns u;;,; by evaluating all
coefficients of u;;., at a time-level of known solution values,
(ii) preserved stability by averaging u;; over three time-levels,
and

(iii) maintained accuracy by using central-difference approxima-
tions.

As
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an obvious central-difference approximation to (3.53) is
1 1 1
b(u;;) ﬂ (U a1 — Uij—1) = ﬁ 8x{a(ui,j) Z axui,i}
1
= h—2 6x{a(ui,j)(ui+§,j - ui—%,i)}

1
= h_2 {a(“i-o-%,j)(“in,;’— “u;) - a(ui—é,j)(ui,j - ui—l‘j)}’

but this is certainly unstable for a =b =1 (reference Chapter 2,
Exercise 26(b)). If, however, u;,;, u;;, and w,_,; are replaced by
%(ui+1,j+1+ Uisrjt+Uiri—1)s %(ui,j-'-l +u;+u; ), and %(ui—l,j+1+
W;—1;+tu;_1;-1) respectively, and the coefficients a(u;,1;) and
a(u;_1;) are replaced by af{3(u;.1;+u;;)} and a{3(u;; +u;_,;) re-
spectively in order to avoid midpoint values of u, Lees proved
that for sufficiently small values of h and k,

max |U;; — u;| < A(h*+k?),
L]

where A is a constant.
For this method the equation considered in the preceding
section needs to be written as

aU U™ 9 d
2W_FUZ_2 ((yymrl)
at ax a9x ax

A comparison of results for a particular problem

If it is assumed that U = U(x —vt), v constant, is a solution of the
equation
oU 9*U?

Y ?;2—, 0<x<1, t>0, (3.54)

substitution into (3.54) and integration with respect to (x—uvt)
gives that

A A
;10g(U—;)+ U=B—-3v(x—vt),

where A and B are constants. Choosing A =1 and v =2, then
B =U(0,0)=1.5 leads to the particular solution

QU-3)+log(U-1)=2t—x). (3.55)
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For any given x and t eqn (3.55) can be solved iteratively for U
by, for example, the Newton—-Raphson method. In a similar way
initial values for this particular solution can be found by putting
t=0 in (3.55), and x = 0(0.1)1, say. Boundary values at x =0 and
1 for known values of t can be found in the same manner. These
initial values and boundary values can then be used as the
boundary data for approximation methods whose accuracy can be
checked against the analytical solution of the differential equa-
tion.

The solution of eqns (3.51) for =%, m =2, h=0.1, r=k/h%*=
1, and t = 0.5, which corresponds to 100 time-steps, by Newton’s,
Richtmyer’s, and the three time-levels methods, are given below.
All agree with the analytical solution of the differential equation
to five decimal places after rounding, and with each other to 6D.

Solution of Newton’s, Richtmyer’s, and
X the P.D.E. the three time-levels methods
0.1 2.149703 2.149701
0.3 1.997951 1.997948
0.5 1.849962 1.849958
0.7 1.706244 1.706240
0.9 1.567391 1.567389

The stability of three of more time-level difference
equations (Fixed mesh lengths)

The following theorem is useful for the matrix method of analysis
of the stability of three or more time-level difference equations
and is easier to use than one might at first think.

Theorem: If the matrix A can be written as

Al,l A1’2 “ee Al,m
A= A.Z,l A2,2 e A?,m ,
Ai AL ... AL

where each A;; is an nXn matrix, and all the A;; have a
common set of n linearly independent eigenvectors, then the
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eigenvalues of A are given by the eigenvalues of the matrices

(k k k

A9 A LAk,

A A w)
v ’ , k=1)n,
(k) (k) *

)\m‘l )\m,Z LR Am,m

where A is the kth eigenvalue of A,; corresponding to the kth
eigenvector v, common to all the A;;’s.

Proof

Let v, be an eigenvector common to all the submatrices A,;;,
i,j=1(1)m, and denote the corresponding -eigenvalues of
A, Ay, ... by AY, A8, ... respectively. For simplicity con-
sider i, j= 1(1)2 and denote v, by v, A%’ by A;;. Then
Aiv=A00Y, Apv=Ag,y,
Az,lv = Az’lv, Az’zv = )\2,2".

Multiply these equations respectively by the non-zero constants
aq, ay, aq, and a, and write them as

[A1.1A1,2][0¢1V] _ [(/\1,1a1 + /\1,20‘2)"]
A A Lasy (Az 101+ Ay pa0)V

Assume now that

(3.56)

AiiA, 2]
A= [ > >
AzaAz2

has an eigenvalue w corresponding to the eigenvector
o]
v
[A1,1A1,2] [alv] _ [alv] (3.57)
A2,1A2’2 LV ® aLV ) :

By the right-hand sides of eqns (3.56) and (3.57),

so that

(A= w)ag+ A a,=0

and
)\2,10(1 + (Az’z— I.L)az = 0.
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These two equations will have a non-trivial solution for «; and a5
if and only if

A1~ w) A2 ]
det[ X ’ =0,
/\2,1 (/\2,2_M~)

i.e. if and only if u is an eigenvalue of the matrix
['\ 1.1 7\1,2]
)\2’1 )\2,2
Matrices with common eigenvector systems

Proofs of the following theorems can be found in reference 30.

(i) If the N X N matrix A has N distinct eigenvalues A, it has N
unique linearly independent eigenvectors v, s=1(1)N. As
proved earlier, any polynomial f(A) of A has the same set of
eigenvectors v, and a corresponding set of eigenvalues f(A,).

(ii) All N x N Hermitian matrices, which includes real symmet-
ric matrices, have N linearly independent eigenvectors.

(iii) If the matrices A and B commute and have linear elemen-
tary divisors then they have a common system of eigenvectors. In
particular, all matrices with distinct eigenvalues, all Hermitian,
and therefore all real symmetric matrices, have linear elementary
divisors.

(iv) Let A and B be matrices with a common system of
eigenvectors. Let A and p be the eigenvalues of A and B
respectively corresponding to the common eigenvector v. Then v
is an eigenvector of AB and A™'B and the corresponding eigen-
values are An and A~ 'n respectively. These results are easily
proved. By hypothesis, Bv=uv and Av= Av. Therefore ABv=
pAV=pAv. Also A7'Bv=p A 'v=(u/\)v. ’

Example 3.2

Investigate the stability of the Du Fort and Frankel approxima-
tion to the equation

aU 32U
—=—, 0<x<1, t>0,
at  ox
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for fixed mesh lengths, given that U is known on the boundaries
x=0 and 1 for t>0. (See Worked Example 2.7.)
The approximation at the point (ih, jk) is

1 1
EE (ui,j+1 - ui.j—l) = P {ui—l.j - (ui,j—l + ui,i+l) + ui+1,)‘}a

which may be written as
(T+2n) U501 =2r(u—q j+ Ui ) (1 =201 5_q,

where r=k/h2 For known boundary-values and Nh =1 these
equations in matrix form are

U1 1 01 U
(1+2r)] usjyq |=2r 1 01 Us;
UN-1,j+1 1 0L un_1,
[~ Ui Ug,;
Uz -1 0

+(1-2r)| wusj—1 |+2r] O

UN—1,j—1 Un,i
giving
2r 1-2r
Au. +
1+2r "N 152r

w_;+c, (3.58)

U, =

where A is as displayed and ¢; is a vector of known values. Put

el ]

Then eqn (3.58) and the identity u; =w; can be written as

u; A:' (1-2r) u; C;
|;’+1]= 1+2r P42 N N S I

>

(4] i, ()
where Iy_; is the unit matrix of order (N—1), i.e. as

Vit =PV,~ + dj,
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where P is the matrix shown and d; a column vector of known
constants. This technique has reduced a three-level difference
equation to a two-level one. The equations will be stable when
each eigenvalue of P has a modulus <1. The matrix A has
(N—1) different eigenvalues so it has (N—1) linearly indepen-
dent eigenvectors v, s =1(1)(N—1). Although the matrix Iy_,
has (N—1) eigenvalues each equal to 1 it has (N—1) linearly
independent eigenvectors which may be taken as v, s=
1(1)(N—1), because the eigenvalue equation Bx= Ax is clearly
satisfied by Iy_ v, =1 - v,. Hence the eigenvalues A of P are the
eigenvalues of the matrix

2rh, 1-2r
1+2r 1+2r
1 0 ?

where A, is the kth eigenvalue of A. For such a simple case we
can work from first principles and find A by evaluating

{ 2ri, _/\} 1-2r
+
det[ 1+4+2r 1 2r] —0,

1 -A
giving
2rA 1-2r
A——— A -——=0.
1+2r)t 1+2r 0

By the formula on p. 59
A =2cos(kw/N), k=1(1)(N-1).

Hence
1
A= {2r cos %:ﬁ: (1 —4r?sin® %7)2}/(1 +2r).

Case (i) 1>1—4r? sinz%zo.

Then
2r+1

1.
1+2r

|Al<
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Case (ii) 1-—4r?sin? %< 0.

Then
1 ( k'n')2 . Sk }
2 phdiad 2 220
JA| (2r+1)2{ 2rcosN +4r*sin N 1
4r>—1
=Zrirrm<1 since r>0.

Therefore the equations, for a fixed mesh size, are uncondition-
ally stable for all positive r. It is shown in reference 25 that these
equations are also stable for all >0 as the mesh lengths tend to
zero.

Brief introduction to the analytical solution of
homogeneous finite-difference equations

Linear equations with constant coefficients

Consider the difference equation
u,»+2+ au,»+1+ bui = 0, ] = 0, 1, 2, ooy (3.59)

where a and b are real constants.
Assume that )
u;=Am’
is a solution, where A and m are non-zero constants. Substitu-
tion into (3.59) shows that m is a root of the quadratic equation

m2+am+b=0. (3.60)

Case (i) Roots real and distinct, m = m, and m = m,, say.

One solution is u; = Am} and another is u; = Bm) where A and B
are arbitrary constants. As eqn (3.59) is linear in u its general
solution is

u; = Am’ + Bm}.
Case (ii) Repeated roots, m = m, twice, say. Clearly one solution
is u;=Amj.
Put u; = m)f(j). Substitution into (3.59) and the use of a=
—2m,, b=m? leads to

fG+2)=2f(j+ 1)+ f()=0.
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By inspection it is seen that f(j) = j satisfies this equation. There-
fore a second solution of (3.59) is ; = Bjm). Hence the solution
of eqn (3.59) in this case is

u; = (A + Bj)m}.
Case (iii) Complex roots.
Because a and b are real the roots of (3.60) will be conjugate
complex numbers, m; = re® and m, = re™", say, where i =v/(-1).
Hence a=—r(e®+e®)=—2rcos @ and b=r2 As in Case (i)
the solution of (3.59) is

u; = Ar'e"+ Brie "= r'{(A + B)cos j§ +i(A — B)sin j6}.

Since A and B are arbitrary constants and r = b, this can be
written as ‘

u; = b¥(C cos jo + D sin j6),

where C and D are arbitrary constants and cos 8 =—a/2r=
—a/2Vb. Methods for deriving particular integrals for non-homo-
geneous difference equations are given in Finite Difference Equa-
tions by H. Levy and F. Lessman (Pitman).

The eigenvalues and vectors of a common tridiagonal matrix

Let

cC a

be a square matrix of order N, where a, b, and ¢ may be real or
complex numbers.

Let A represent an eigenvalue of A and v the corresponding
eigenvector with components vy, U,, . . ., Uy. Then the eigenvalue
equation Av= Av gives

(a—MNv,+bv,=0
cv;+(a—A)vy,+bvy=0

CD,-_I + (a - /\)v] + bv,'+1 = 0
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and con_1+(a—A)on=0.

If we define vy=vy.;=0 then these N equations can be com-
bined into the single difference equation

Cvi_1+(a—/\)v,~+bv,~+1=0, ] = 1(1)N. (3.61)
As shown, previously, the solution of (3.61) is
v; = Bm} + Cmb, (3.62)

where B and C are arbitrary constants and m,, m, are the roots
of the equation
c+(a=Nm+bm?=0. (3.63)

(It is proved later that the roots cannot be equal.)
By eqn (3.62) it follows, since vy = vy, =0, that,

0=B+C
and
0= Bm}*'+ Cm}*1.
Hence
N+1
(1"—‘) =1=¢>", s=1)N,
ms

where i =+/(—1). Therefore

M1 gi2smiN+1). (3.64)
my
By eqn (3.63)
mymy, = i)c— , (3.65)

and elimination of m, between (3.64) and (3.65) leads to

c 1
m,= (__)2eis1'r/(N+l).
b

Similarly, .
m,= (ﬁ)ie—as«/(lvn).
b
Again, by eqn (3.63)

m1+m2=(/\_a)/b,



156 Parabolic equations

giving that .
c\z, ; .
A=a+ b(z)2(ezm/(u+1) e iSTIN+D)

Hence the N eigenvalues are given by

1
C\2 N
= + _— = |
As=a 2b(b) cosN+1, s=1(1)N.

The jth component of the eigenvector is

1
. . c\?, . -
vj — Bm'1+ Cm)2= B(E) (e:js‘l'r/N+1_e usq-r/N+1)

c\¥ . jsw
g,
o) N1

so the eigenvector v, corresponding to A, can be taken as
vi= {(E)% sin—— < sin 2sm (E)%
* b N+1'b~ N+1'\b
X in—§1 (E)N/Z in Nsw}
SN \e) UNFLS

It is easily shown that the roots of eqn (3.63) cannot be equal
because if we assume m, = m, the solution of (3.63) is then

v;=(B+Cj)m},

and vy=ovn,1 =0 implies that B=C=0, giving v=0, which is
not possible.

An analytical solution of the classical explicit
approximation to oU/4ot = 3°U/9x>

Consider the equation
U_5U

Fy =?, 0<x<l1, >0,

where U=0 at x=0 and 1, t>0, and U is known when t=0,
O0=x=1.
The classical explicit approximation to the differential equation
is
Upjar =T+ (1=20)u + g, (3.66)
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where =ih, t=jk, r=k/h? and Nh=1.

Assume that a solution of eqn (3.66) is of the form
u;; = f.g;. (3.67)
Substitution of (3.67) into (3.66) leads to
&_1="fi—1+(1"2')fi+'fi+1
8&; fi
Since the left-hand side of (3.68) is independent of i and the
right-hand side is independent of j it follows that both sides must

equal a parameter ¢ which is independent of i and j. This gives
two homogeneous difference equations for f; and g;, namely,

(3.68)

gir1—cg=0 (3.69)
and
1-2r—c
fa+1+(——r—)f. +fi.1=0. (3.70)

The solution of eqn (3.69) is
= Ac'. (3.71)

As the solution of the partial differential equation is periodic in x
it is reasonable to assume that the solution of (3.70) is periodic in
i, so that

f,= B cos i0 + D sin i6, (3.72)
where
cos 0=2r+c—1)/2r. (3.73)

Then, by (3.72), the boundary condition u,; =0 for all j gives
that

fo=0=B.
Similarly, the condition uy; =0 for all j gives that
fu=0=D sin N,
showing that

NO =sm, s an integer.

Therefore
ism

fi =D sin N (3.74)
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By eqn (3.73) | s
=1-2r(1-cos 8)=1—-4 —
c= r(1—cos 8)= r sin® N

Hence eqns (3.67), (3.71), and (3.74) give that

sw\ . swmi
u;; = E(l —4r sin? ——) sin—,
! 2N N
where E replaces AD and s is an integer. But eqn (3.66) is linear
in u;; so the sum of different solutions is a solution. It follows
therefore that a more general solution that will satisfy fairly
general initial conditions is

= i
U = sg,l E (1 4r sin -281—1:-]) sin % (3.75)
Case (i) If the initial function u;, is known only at the (N+1)
mesh points (i, 0), i = 0(1)N, only the first (N + 1) values of E, can
be found by solving the (N+ 1) linear equations

N+1
i

Z E, sm N i=0(1)N.

s=1

Case (ii) If u,o=d(x), say, is a continuous function of x in
0<x <1, it follows from eqn (3.75) that

In this case E, are the coeflicients in the Fourier sine series for
&(x) and their values will be given by

1
E‘=2I d(x)sin swmxdx, s=1,2,3,....
0

Exercises and solutions

1. (a) Define the (S, T) Padé approximant. Calculate the (2,0)
Padé approximant to exp 6 and show that its leading error term is
63/6.
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(b) The equation daU/dt =8°Ufax?, 0<x <1, t >0, for which U
is zero at x =0 and 1, t>0, is approximated at the mesh points
x;=ih, i=1(1)N—1, Nh =1, along time-level ¢; = jk by the set of
difference equations

u;,1 =R, o(rTn-1u;,

where R, (8) is the (2,0) Padé approximant to exp 0, r = k/h>
and Ty_, is the matrix of order (N — 1) defined on p. 55. Show:
(i) That this difference scheme is L,-stable.
(ii) That its extrapolated form is L,-stable.
Could discontinuities between boundary and initial values possi-
bly induce finite oscillations in the numerical solution?

Solution

(a) exp 0={1/(1+q,0+q.07)}+c56%+.... The Maclaurin ex-
pansion of exp@ leads to (1+q,)0+(q;+q.+3)0%+
(3g1+g>—c3)0%+...=0 for all . Hence q,=-1, q,=3, c;=4¢.

(b) R,o(—2)=1/(1+z+3z%), z2>0. Clearly, |R,(—2)|<1 for
all z>0 and R, (—z) tends to zero monotonically as z — © and
discontinuities cannot induce finite oscillations.

(i) 0B = au®—(a—1)u?, where a =25*T/(25+T-1)=4%

Sz,o(_z) = §[ Rz,o(‘z)]2‘ %Rz,o(_zz)
=4/3(1+z+12?)2-1/3(1+2z+22?

B 1+2z+2z%-1z3-%2*
1+4z+822+923+%z4+325+12%°

Therefore, |S,0(—z)|<1 for all z>0 and S, (—2z)— 0 as z — o,
The graph of S,,(—z) is as in Fig. 3.6 and shows that S,
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decreases monotonically to zero. Hence the scheme is suitable for
problems with discontinuities.

2. Show that the extrapolated form of the classical explicit-
difference approximation to dU/at = 8*U/ax? is stable for 0 <r=<3},
r=k/h>

Solution

]+1 RO l(kA)ll = (I+ kA)“ “(1)(t]‘ + 2k) = (l+ 2kA)ll, and
u®(t; 4+ 2k) = I+ kA)%u; = (I+ 2k A+ k2A?)u,. V(t;+2k)=
{exp(2kA)}V; = (I+ 2k A+ 2k>A?)V, + O(k?). Hence,

II(E)(ti + 2k) = 2“(2) - “(1) = (l+ 2kA+ 2k2A2)“]' = SO,l(kA)u]'.

Therefore, So1(—z)=1—2z +2z% where z =4rsin’n/2N, s =
1(1)N — 1. For stability, —1<1—2z +2z%< 1. The lower inequal-
ity implies that 0 <(z —3)?>+3, which is satisfied by all real z. The
upper inequality gives z(z—1)<0. Hence, 0<z <1, i.e. 0<r<
1/4 sin?sm/2N > 1/4, which is satisfied by 0<r=<1/4.

3. The function U satisfies the equation

auU_ U
ot ax?’

and the boundary conditions U(0,t)=U(X, t)=0, t>0. If the
space derivative is replaced by

0<x<X, t>0,

%{U(x —h, t)=2U(x, t)+ U(x+h, t)}+ O(h?),

where Nh = X, show that the partial differential equation, when
applied at each of the (N—1) internal mesh points (ih,t), i=
1(1)N -1, can be approximated by a system of first-order ordi-
nary differential equations dV(t)/dt = AV(t), and define vector
V(t) and matrix A.

Show that the solution of this system satisfies the time-step

relation
V(t+ k) ={exp(kA)}V(z).

This relation is approximated by

u(t+ k) ={I-k(1-0)A} 'A+kOA)u(t) = L u(t),
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where I is the unit matrix of order (N—1) and 6 a scalar
parameter. If the vectors u”(t +2k) and u®(t+2k) are defined
by the computational procedures

u®P(t+2k)=Lyu(t) and u®(t+2k)=Lu(t),

show that the vector of extrapolated values u®(t +2k), defined
by
uB(t+2k) = au®+(1-a)u?,

where a is a scalar parameter, is second-order accurate in t if
a =2 for all §, or § =3 for all a.
Show that the method is L,-stable for a =2, § =—1.

Solution

uP(t+2k) ={I-2k(1— 0)A} I+ 2k0A)u(r)
={I+2kA+4(1-0)k2A%+8(1—0)%k3A3+.. Ju(p).
u@(t+2k)={I- k(1—0)A} 2(I+ k6 A)%u(t)
={I+2kA+(3-20)k>A%+2(1-60)2—-60)k>A>+. . }u(t).
B (t+2k) =[I1+2kA+{(3-20)a +4(1 — a)(1— 0)k2A2
+{2a(1-0)2-0)+8(1—a)(1—0)3k3A3+. . .Ju(t).
V(t+2k) =exp(2k A)V(1) = (T+ 2k A+ 2k2A2+2Kk3A%+. . )V(1).

u®(t+2k) and V(t+2k) will be equal to terms in k? if (3—
20)a+4(1—-a)(1—-60)=2, i.e. (a—2)(20—1)=0. Hence the re-
sult.
Putting u®(¢t +2k) = S(kA)u(t), it follows that

S(kA) = a{I-(1—0)k A} >(I1+ 0k A)?

+(1-a)I-2(1-0)kAY '(I+26kA).

Hence
S(-z)=a(l-0z)*/{1+ (1 - 6)z)*

For a=2, 6=-1, +(1—-a)(1-262)/{1+2(1 - 6)z}.

S(—2)=(1+6z+6z%)/(1+8z+20z2+16z%
=1-[(2z+14z>+1623)/(1+ 8z +202z%+1623)]
Hence 0<S(-2z)<1, z>0, and S(—z)—> 0 as z — .
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Comments
Gourlay and Morris, reference 10, give numerical results for

various values of 8 and «a and also develop very accurate schemes
of third- and fourth-order accuracy in t.

4. The equation aU/3t —9*U/dx>=0, 0<x <1, t >0, for which U
is zero at x =0 and 1, t>0, is approximated at the mesh points
x; = ih, i=1(1)N —1, along time-level ¢; = jk by the set of differ-
ence equations

1
x {41~ Ry o(rTy—)u;} =0,

where R, (0) is the (1,0) Padé approximant to exp 6, r = k/h>
and matrix Ty_, is as previously defined.

Show that the principal part of the local truncation error at the
point (ih, jk) is

4 2
[ hzaU %k%]]  i=2()N-2.
ij

Solution

1
Ti,j = ith row of E{(I_ rTN_l)U"+1 - U]}

1
= E {- "Ui—l,,'+1 +(1+2r) Ui,]’+1 - rUi+1,i+1 - Ui,i},

where

3 3 1( d 3)2 ]
= | U+ (~h =t k=) U+ (-h—+k=) U+...| |
Uictjn [U (hax ka:>U 2 hax kar v iy
au | ,8°U ]
L]

Ui,i+1= [U+k§+§k2—+. ..

2
sy = [V (rprigusloarig) v ]
L]

i o aU U , &
First- and second-order derivative terms = E ax2 +zk 32

. 3 3
Third-order terms = [—k 2U +ék28-—[3—1] .
dax~ at at” 1,
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84
Fourth-order terms = [—ﬁh2 —li-,] .
ax™ 1y
, & PU _’U
Hence the result since —=—=so ——=—5.
ax ax“at ot

5. As in Exercise 3, show that the solution V(t) of the system of
ordinary differential equations approximating the solution of
aU/at =8%Ulox>, 0<x<X, t>0, U(0,t)=U(X,t)=0, at the
mesh points x; = ih, i = 1(1)N — 1, satisfies the recurrence relation

V(t+ k) ={exp(kKA)}V(1).

If the exponential of kA is approximated by its (2,0) Padé
approximant, show that the vector u(t) approximating V is the
solution of the difference equations

L u(t; + k) =u(y),

where ¢ d a -
d ¢ d a
a d c d a
L, =Iy_;—kA+3k?A2=| ... ,
a d d a
a d c¢ d
b a d g -

g=1+2r+3r% c=1+2r+3r% d=-r=2r% a=37 r= k/h?,
u(t) =luyp Uz - .-, Un—1,]" and ;= jk.

Defining u®(t+2k)=L2u(t) and u®(t+2k)=Lyu(t), show
that both u® and u® are second-order accurate in ¢, i.e. with a
leading error term O(k?) in t.

Find the value of « if

u®(t+2k) = an’— (a—1u?

is third-order accurate in t.

Comments

In Exercise 1, the extrapolated scheme is shown to be L,-stable
and to exclude spurious oscillations. Twizell and Khaliq, refer-
ence 28, show that the method is highly accurate, with maximum
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errors for U(x,0)=1, X=2and t = 1.2, of 0.74 X 107*, (r = 10),
0.41x 1073, (r=40), and 0.36x 1073, (r = 160).

Solution

R,o(kA)=(I—-kA+3k?>A%'=L,'. Matrix A” is given in the
section on extrapolation, so L, is easily written down.
uP(t+2k) = (I- kA +3k2A% (1)
= (T+2kA+2k2A%+ k3A3 - 1k*A%u(t) + O(k>).
u@(t + 2k) = (1 - 2kA + 2k*A?) " tu(r)
=(I+2kA+2k*A%—4k*A%u(t) + O(k®).
u(t+2k)=(exp 2k A)u(t)
=([I+2kA+2k>A%+5k3A3+3k*AMu(t) + O(k>).
a =% 50 u®(t+2k) =5 -u?®+ 0k +O(h?.
6. The Douglas equations approximating aU/at = 3*U/ax?, 0<
x <1, t>0, are given by
(1=6ru;_q1;21 +(10+12r)u; +(1—6r)u;,q 444
=(1+6r)u;_;;+(10—-12r)u;; + (1 +6r)u;, 4,
i=1(1)N—-1, Nh=1.

Given that the boundary values are known for all j, prove that
the equations are unconditionally stable in the Lax—Richtmyer
sense for all r=k/h?>>0. (See Exercise 8(c)).

Solution

The equations in matrix form are
where b; is known, and matrix A is

0 1
1 01
1 01

10
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of order N—1. Since the coefficient matrices of u;.; and u; are
symmetric and commute, it follows that

B={(10+12nNI+(1-6r)A} {(10— 121+ (1+6r)A}

is real and symmetric. Hence, |B|, = p(B). If A is an eigenvalue of
A, the equations will be stable when

(10 12rn+ 1+ 6r)/\

(10+ 12r)+(1- 6r))\ ’

for all A, i.e.,
—(10+12r)—(1—-6nNA<(10—-12r)+ (1 +61)A
<(10+12r)+(1—61)A,

provided (10+12r)+(1-6r)A>0. Hence —-10sA<2. The
eigenvalues of A are A, =2 cos sw/N. This value satisfies all the
necessary inequalities for r>0.

7. Show that U, ;. = {exp(k(3/a1))}U,;, where U,; = U(x; t;), x; =
ih,i=0,+1,%2,...,and =jk,j=0,1,2,.... Using the result

2 1
D, =sinh™(8,) = (8.~ 283 +&%83+. . ),

where D, =(d/dx) and 8,U,; = U,,3; — U,_y;, show that the exact
difference replacement of the equation (3U/at) = (8*U/ox?) is
given by

Ujrr ={1+r82+3r(r—9 81+ 5r(rP—3r+15) 83+.. YUy,

where r = k/h>.

If only second-order central-differences are retained show that
the function w;; approximating U;; is the solution of the classical
explicit equation

Upjor = Mg+ (1= 20U + Mg .
If only second- and fourth-order differences are retained show
that u;; is the solution of the explicit equation
Upjr1= 32-5r+ 6r?) u;+ %"(2 =3r) (Ui 1+ Uimr,j)
"%2"(1 - 6")(“i+2,j + ui—z,j)-

(This equation is stable for r<3.)
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Solution

By Taylor’s series,

2
U,js1=U(x, t;+ k)= U, +k ”+2k2 a;ch”+
kgt U fe{i))
2 — 3 L. = — ..
<1+k ~*5 k a3 Kot U= el ko) (Ui

For the equation
W_FU o _ 9
ot ax> ot ax?

Hence
62
Ujn= {CXP<k a—xi)}Ui,j = {CXP(kDi)} U,;
=(1+kD2+3k*Di+ik>DS+. . YU,
where )
D, = (8, — 282 +55562+...)

Evaluate D2, D?, and D¢ to terms in 82 and substitute into the
expression for u;;,; etc. The results stated follow from

2
O%Uij = Ui, = 2Uij + Uiry
and
4, _ a2
Su; = 8x(ui—1,j_ 2u;;+ ui+1.j)

=Up;— AUy T OU;— AUyt U

8. (a) The equation

8U8

ot ax{ (x )_}’ a(x)>0,

is approximated at the point (ih, jk) by the difference equation

1 1 1
E Ay ;= E Sx(ai E qui,i) .

Show that this gives the explicit difference equation

Ui iy = 10 Uiy i+ {1 —r(a g+ a )i + ra; gt g,
where r= k/h2.
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(b) Using the result
i)
U(x, t+k)= {exp(k a—t)}U(x, 1),

show that the equation

oU_#U

at  ax?
may be replaced exactly by the equation

CXP(_%kDi) U= CXP(%kDi) U,

where
*Uy,
ax?

1
Diui,j = ='l,:i (83_%28:"’9_%834' . .) Ui,]"

Hence show that to second-order differences the differential
equation may be approximated by the (Crank—Nicolson) equation
=My A2 U — MUy = Uy (2= 20U+

(c) Eliminate the fourth-order term in

1
Dish—2 (82— 1585 +3505+. . ).

Hence use the first part of (b) to show that U/t = 8>U/ax> may
be approximated by the Douglas difference equation

(1 - 6r)ui+1,,»+1 + (10 + 12r)ui,,-+1 + (1 - 6r)ui+1,,-+1

= (1 + 6r)ui_.1’i + (10 - 12r)ui‘,~ + (1 + 6r)ui+1’]‘,

where r=k/h>. (As mentioned previously this uses the same six
grid points as the Crank-Nicolson equation but gives a more
accurate solution.)

Solution

(a) As 8,u;; =u;,3;—u;_y;, the approximation leads to

1 1
r (U1 — Ui ) = e S {ai(uy; —wi g}

1
= e {ais(urr; — ) —ay ;i (u; — u g )} ete.
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(b) U, j+1={exp(k(3/3t))}U;;. Operate on both sides with
exp(—3k(8/3t)). Hence {exp(—%k(a/at))}Ui,jﬂ={exp(%k(@/
81))}U;,;. By the differential equation (3/9r)= D2 therefore
{exp(— 1ka)}U, j41= {exp(szz)}U, ;- Substituting for D2
terms of 62 and expanding to terms in 82 shows that

(1 _%rai)ui,j+l =(1 +%’8§)“u

approximates the partial differential equation to this order of
accuracy. Hence the result.

(c) Operate on both sides of
— 1 2 14
=-h—5(8x—1—28x+. )
with (1+%82) to give that

1
(1+5863)D2=— n 82+ 0(8%).
2

By part (b), (1-3kD2+...)U,;,;=(1+3kD2+...)U,;. Operate
on both sides with (1+ 12:52) and use the previous identity.
Neglecting terms of order 8° and above yields the approximation
equation

(1+1282 2"82)11”_,_1 (1+ 282 2r32)u

Hence the result.

9. The Crank-Nicolson method approximates the equation

G, -G8, w G, =6 G, )
ot i,i—%_ ax? ij—4 Y ot /a2 ox2/,; \ax?/,; 1)

L] L

Assuming the following central-difference formulae for the
derivatives f' and f” for a mesh length h, namely,

hfi=(8—283+5308°—. . )f1
and
h2fo=(8%—138%+38°—. . )fo,
show that the Crank-Nicolson equation leads to
(i —wij- 1) k
=i 2u Uyt U~ 22U ui—l,j—l)/2h2+ G,
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where the correction term C is given by
1 1
C= x (%483“&,1—5_64—;085%,;'—%4' e +2_hz {(_%584‘4@;’ + 91'686ui,j — )k
+(=150%u ;1 +368%U 1 — - - Du)
Comment

The correction term can be used to improve the accuracy of the
finite-difference solution obtained initially by neglecting it. The
function values of this first approximation are differenced in the ¢
direction to give 8%u;;_; and in the x-direction to give

4 4 6 6
8 ui,]‘, 8 ui,j—l’ 8 ui,j and 8 ui’i_l.

The correction term for each equation is then calculated from
these differences, which of course are numbers, and the corrected
finite-difference equations re-solved for the u;;.

10. The function U satisfies the non-linear equation

aU _9U?

Y ——axT, 0<x<1, >0,

the initial condition U=1, 0<x=<1, t=0, and the boundary
conditions

£J=O at x=0, t>0, w=—U at x=1, t>0.
0x ax

If the equation is approximated by the difference equation

1 1
% Oy = e (83u?;s1+87ud),

and the derivative boundary conditions are approximated by the
usual central-difference formulae, show that the corresponding
non-linear approximation equations are
ud+puo—ui+{ud;—pug;—ui}=0,
Ui — 2(ui2+ pu;)+ uli+ {uiz—l,i_ 2('4&2,;'_ pu;;)+ u52+1,i} =0,
i=11)N-1),
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and
UR—1— 2hun_yun—(1=2h)uy— pun
+ {u?q_l,i_ 2huN_1’iuN‘i - (1 - 2h2)u§],j+ puN,,-} = O,

where p=h?/k, Nn =1 and u; denotes the unknown u;;,,, i =
0(1)N.

Briefly describe Newton’s method for deriving a set of linear
equations giving an improved value (V; +¢;) to the approximate
solution values V;, i = 1(1)N, of the N non-linear equations

fi(uh Uz, ..., uN) = O, i= 1(1)N'

Apply this method to the approximation equations previously
obtained and write out the linear equations giving the first
iteration values at mesh points along the time-level t =k, taking
Vi, i =0(1)N, equal to the initial value 1.

Solution

1
A (U1 — Uy
1
= W (ui2—1,i+1 - 2ui2,j+1 + ui2+1,j+1 + uiz—l,j_ 2ui2.j+ ui2+1,1')-
Put p = h*/k and denote u;;,; by w. Then
ul = 2(ul+pu)+ul, + {uiz—l,j_ 2(‘4&2,;‘ pu;;)+ ui2+1,j} =0.

By the B.C,,

6 ul,‘ - u_1‘~
(5)0’;—‘-'2—,1—]= 0> u_1;=uy;

Put i=0 in the approximation equation and eliminate u_,; to
give
ug+ puo— ui+(ug;— pug,; — u3;)=0.
By the B.C. at
1

i=N, ——(Unirjr1—UNn-1j+1) = "Un; etC.

2h
By Newton’s method,

of; of; )
— g t+...+— +f(V, Vo, ..., Vi) =0.
(aulsl BMNGN v, fi(V, V, 'N)
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Hence
(2Vo+p)eo—2V, e, +{V3+pV,— Vi+ (“%,j" PUo,i — u%,j)} =0,
2Vi_181—2Q2V;+p)&g; +2V, 1841
+H{VL —2(Vi+pV)+ V2,
+(uiy = 2[u— pu 1+ ui D=0,
and
(2Vn-1—2hV)en_1 +{-2hVy_;—2(1— 2h?) Vn—Dlen
+{VZ_ - 2hVy_1Va—(1-2hH)VZ—pVy
+uk_1;— 2hun_qun; —(1—=2h%u;+ pun;} =0.

Put V,=1, i=0(1)N, j=0, and u,o=1, i =0(1)N etc.

11. The equation

U d?U

§=?, 0<x<l1, t>0,

is approximated at the point (ih, jk) by the difference equation

g(ui,j+l - “i,;') _l(ui,i - ui,i—1> — 1 8%u. .
2 k 2 k h2 xYij+1>

where x = ih, t = jk, and Nh = 1. Investigate the stability of this
system of equations by the matrix method, for known boundary
values and a fixed mesh size.

Solution

Equations are —2rui_1’,~+1 + (3 + 4r)ui‘j+1 - 2rui+1’,~+1 = 4“,,J - ui’]’_l,
i =1(1)(N—1). For known boundary values they can be written
as

v =4A e, - A e +A ¢,

where ¢;,, is a vector of known boundary values and

(3+4r) —2r

A= =2r (3+4r) -2r

—2r (3+4r)



172 Parabolic equations

is of order (N—1). This equation and w; =wu; can be written as

(A R

ie. v;,;=Pv;+c. A has distinct eigenvalues and all the sub-
matrices of P commute with each other so the eigenvalues A of P
are the eigenvalues of

4 _1
Mk Mk
1 0

where p, is the kth eigenvalue of A. As detP—-AD=0=
A2— (@A + (1 w), A ={2£V(4— )Y, where

pr = 3+8rsin®(kw/2N), k=1(1)(N-1)
by p. 59. Hence

. kw)%}/( ) k*n')
_ _ 2 2
)\—{Zi(l 8r sin 5N 3+ 8rsin 5N/

When the roots are real, |A|<(2+1)/(3+8), §>0. Hence |\|<1.
When the roots are complex, |A|=pz?<1. Therefore the equa-
tions are unconditionally stable.

12. Show that the components of the eigenvector v, correspond-
ing to the eigenvalue A of the matrix A of order N defined by

—2 2 .
1 2 1
Az 1 -2 1
1 -2 1
| 1 -2

are given by the solution of the difference equations
V1= 2+ My +v.,=0, j=2(1)N,
satisfying the conditions
-2+ N +20,=0=vy44.
Hence prove that the jth component of v can be expressed as

v; =B cos jo + Csin j6,
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where B and C are constants. Deduce that the rth eigenvalue of
A is —4sin*((2r—1)w/4N).

Solution

Expand Av = Av. The solution of v;_;—(2+A)v;+v;,; =0 is v; =
Dmi+Em) where m,, m, are the roots of m*—(2+A)m+1=0.
Therefore mym,=1, m;+m,=2+\, A real by part (a). Put
my=re®. Then r=1, giving A=2(-1+cos@), v;=
B cos j6 + Csin jO. As vy, =0, B/C=—tan(N + 1)6. Substitute for
vy, Uy, and A in terms of 6 into —(2+A)v,;+2v,=0 to get
Csin 6 cos N0 =0. Hence 6 =(2r—1)@/2N, r an integer.

13. Verify that U =e ™'sin 7x is a solution of the equation
oU_2U

a1 —5—2, 0<x<l1, t>0,
X

which satisfies the boundary conditions U=0 at x=0 and 1,
t>0, and the initial condition U =sin wx when t=0, 0<x<1.
The differential equation is approximated at the point (ih, jk) by
the explicit equation

1 1

¥ A =3
Show that the analytical solution of the difference equation
satisfying the same boundary and initial values is

2
qui,j.

h\i
U= (1 —4r sin? %) sin 7x;,

where r=k/h2.
Given that 0<r=<3, deduce that u;; converges to U,; as h
tends to zero, for finite values of t.

Solution

As in the text. Because of the initial function, only the first term
of the series solution is needed.

N
lu;— Ul = l(1—4r sin® %) —e ki

|sin 7rx| = |a’ — b'] |sin x|,
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where
lal= |1—4rsin2%h|s1

since r<3 and |b|=|e ™| <1. Hence
lu,;— Uy l=la=blla*+a"?b+...+ b |sin wx|<jla—b|,

since there are j terms in the second series, =j|1—-2r+
2r cos wh —e ™. Replace cos wh and e ™ by their Maclaurin
expansions to get that

Iui’j - [Ii,jl < t'1T4h2A,

where A is bounded because it cannot exceed |a — b|. Hence the
result.
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First-order quasi-linear equations and characteristics

Consider the equation

where a, b, and c are, in general, functions of x, y, and U but not
of dU/ax and aU]/dy, i.e. the first-order derivatives occur only to
the first degree although the equation need not be linear in U.
Such an equation is said to be quasi-linear. It is customary to put
dU/ox =p and dUJdy =q and to write the equation as

ap+bg=c. 4.1)

The following analysis shows that at each point of the solution
domain of such an equation there is a direction along which the
integration of eqn (4.1) transforms to the integration of an
ordinary differential equation. In other words, in this direction the
expression to be integrated will be independent of partial deriva-
tives in other directions, such as p and q.

Assume we know the solution values U of eqn (4.1) at every
point on a curve C in the x—y plane, where C does not coincide
with the curve T' on which initial values of U are specified. The
question to be asked at this stage is this. Can we determine values
for p and q on C from the values of U on C so that they satisfy
eqn (4.1)?

If we can, then in directions tangential to C from points on C
we shall automatically satisfy the differential relationship

oU . aU
dU=—dx+—dy=pdx+qdy, 4.2
Uaxxayypqu (4.2)

where dy/dx is the slope of the tangent to C at P(x,y) on C.
Equations (4.1) and (4.2) are two equations for p and q.
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Elimination of p between them gives that

dU=c_aqux+qdy,

which can be written as
q(ady—bdx)+(cdx—adU)=0. 4.3)

This equation is explicitly independent of p because the coeffi-
cients a, b, and ¢ are functions of x, y, and U only. It can also be
made independent of q by choosing the curve C so that its slope
dy/dx satisfies the equation

ady—-bdx=0. 4.4)
By eqns (4.4) and (4.3) it then follows that
cdx—adU=0. 4.5)

Equation (4.4) is a differential equation for the curve C and (4.5)
is a differential equation for the solution values of U along C.
The curve C is called a characteristic curve or characteristic.
These equations are easy to remember because they can be
written as

This also shows that U may be found from either the equation
dU =(c/a) dx or the equation dU = (c¢/b) dy.

Example 4.1

Consider the equation

aU oU
—+—=2, 4.6
Y o 3y (4.6)
where U is known along the initial segment I" defined by y =0,
O0=sx=<1.
The differential equation of the family of characteristic curves
is
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Hence the equation of this family is x =3y?+ A, where the
parameter A is a constant for each characteristic. For the charac-
teristic through R(xg, 0), A = xg, so the equation of this particu-
lar characteristic is y*=2(x — xg).

The solution along a characteristic curve is given by

dy_dU
1 2

which integrates to U=2y+B, where B is constant along a
particular characteristic. If U = Ug at R(xg, 0) then B= Ug and
the solution along the characteristic y?>=2(x—xg) is U=
2y+ Ug.

Since initial values for U are known only on the line segment
OF, Fig. 4.1, where 0<xg =<1, it follows that the solution is
defined only in the region bounded by, and including, the termi-
nal characteristics y>=2x and y>=2(x—1). In this region the
solution is clearly unique. Outside this region the solution is
undefined.

If the initial curve T' coincides with a characteristic, say, for
example, the characteristic y>=2x through O(0,0), then the
solution along this characteristic is U =2y + U, where U, is the
specified initial value of U at O. In other words, the initial values

0(0,0) |
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for U on the initial curve y?>=2x cannot now be arbitrarily
prescribed as is obviously possible when I" does not coincide with
a characteristic curve. In this case it is also easily shown that the
solution is not unique at points off y>=2x. Consider, for

example, U=2y+Uy+A(y>-2x),

where A is an arbitrary constant. This is clearly the solution along
y?=2x, whatever the value of A. It is also a solution of eqn (4.6)
when y?#2x as can easily be verified by direct differentiation.
Since A is an arbitrary constant there is an infinite number of
different solutions at points off the characteristic y>=2x.

A method for numerical integration along a characteristic

Let U be specified on the initial curve ' which must not be a
characteristic curve.

Let R(xg, yr) be a point on T and P(xp, yp) be a point on the
characteristic curve C through R such that xp —xg is small, Fig.
4.2. The differential equation for the characteristic is

ady=>bdx,

which gives either dy or dx when the other quantities are known.
The differential equation for the solution along a characteristic

is either adU=cdx or bdU=cdy,

which gives dU for known dx or dy and known a, b, and c.
Denote a first approximation to U by u‘®, a second approxi-
mation by u®, etc.

First approximations
Assume that xp is known. Then by the equations (4.4), (4.5)
ar{y$’ — yr} = br (xp — xg)

C

P(xp.yp)

Fig. 4.2
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gives a first approximation y{ to y, and

(1) 1)

ar{up’ — ug} = cr(xp— xg) gives up’.

Second and subsequent approximations

Replace the coefficients a, b, and ¢ by known mean values over
the arc RP. Then

Z(aR + a(l))(y(z) —Yr)= 2(bR + b(l))(xp XRr) gives Y(z)

and
Yag +aP)uUP — ug) =2(cg + cP)(xp — xg) gives u.

This second procedure can be repeated iteratively until successive
iterates agree to a specified number of decimal places.

Example 4.2
The function U satisfies the equation
d U
WAL LS
ax ay

and the condition U=1o0on y=0, 0 <x <o,

Show that the Cartesian equation of the characteristic through
the point R(xg,0), x>0, is y=Ilog2Vx+1—2vxg). Use a
finite-difference method to calculate a first approximation to the
solution and to the value of y at the point P(1.1, y), y >0, on the
characteristic through the point R(1, 0).

Calculate a second approximation to these values by an itera-
tive method. Compare the results with those given by the analyti-
cal formulae for y and U. We have that

dx_dy_du
Jx U -U?*
Hence y=-log AU. As U=1 at (xg,0), A=1, so
=lo —1— 4.7)
y gU' .

Similarly, 2vVx=1/U+B. As U=1 at (xg,0), B=2Vxg—1.
Therefore,

%= 2Vx +1—2Vxg. 4.8)
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Elimination of the parameter U between eqns (4.7) and (4.8)
shows that the Cartesian equation of the characteristic through

(xg, 0) is
y =log(2vx + 1—2vxg).

The solution along the characteristic is given either by

1
QVx+1-2Vxg) "

U=e”> or U=

First approximations at (1.1, y). (Fig. 4.2)

We have that vx dy = U dx and vx dU =-U?dx.
Hence

Vxg(y$—0) = Ug dx giving y§° L 0.1)=0.1,
V1

and

Vxgr P —1)=—-UZdx giving u®=1-0.1=0.9.

Second approximations

Using average values for the coefficients,

(ug + u(l)) dx = 2(‘/xR + ‘/xP)(y(z) —Yr)»

giving
(14+0.9)(0.1) = (1+1.0488)(y@-0),
from which y@ =0.0927. Also
3(Vxg +Vxp) P — ug) = —Huk+ (uP’)? dx,

giving

(1+1.0488)(u@—-1)=—(1+0.81)(0.1),
from which U® =0.9117.

(4.9)

(4.10)

Note: The differential equations could have been written as

2

U
dy=$dx and dU=—%dx

and the second approximations obtained from

P-4,
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=35, - () o

These approximations yield y& =0.0929 and u®=0.9114.

and

Analytical values
By eqn (4.9),

yp = log, {2(1.0488)+1—2}=0.0934.
By eqn (4.10),

1

Ur=10976

=0.9111.

Finite-difference methods on a rectangular mesh for first-
order equations

Lax-Wendroff explicit method

In the theory of fluid flow the equations of motion, of continuity,
and of energy can be combined into one conservation equation of
the form

U , (V)

=0, 4.11
ot ox ( )

where U and F are each column vectors with three components.
The Lax-Wendroff method, as illustrated below for a single
dependent variable, can be used to approximate eqn (4.11) by an
explicit difference equation of second-order accuracy.

Consider

a a positive constant. By Taylor’s expansion,

32
2k2( U) +...,
Li t ij

1)

Uyr= Ul 5+ )= U + k(20

where x; =ih and t,=jk, i=0,x1,£2,...,j=0,1,2,....
The differential equation can now be used to eliminate the
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t-derivatives because it gives that

9 0

a ax

— 9 2,2 62
Ui,i+1—-lfi’,~—ka -a;' u k ax2 i.+....

8

SO

Finally, the replacement of the x-derivatives by central-difference
approximations gives, to terms in k2, the explicit difference
equation

ka k2a?
Ui jv1 = Uj— h (“:+1; i—1,j)+W (ui—l,i_zui,i + ui+1,]’)
=3ap(1+ap)u;_,; +(1—a’p?u;; —3ap(1— ap)u; v

(4.12)

where p=k/h. This may be used for both initial-value and
initial-value boundary-value problems. It is often used to obtain
numerical solutions to differential equations in fluid-flow prob-
lems when the dependent variables change rapidly with time. In
such problems k must be kept small so the advantages of implicit
methods are lost, namely stable equations and accurate results for
fairly large values of k. As shown in Exercise 3, eqn (4.12) is
stable for 0<ap =<1 and its local truncation error is

a*U a*U

6k2 +6 ah®>—+..
ax>

Example 4.3

The function U satisfies the equation

U, U_o, 0<x<w, 10,
Jat  dx

the boundary condition
Uu@o,)=2t, t>0,
and the initial conditions
U, 0)=x(x—2), 0sx=<2,
U, 0)=2(x—2), 2=<x.
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U=(x—1) (x—t-2) U=2(x—1-2)

o U=x(x=2) (2,0) U=2(x-2) x
Fig. 4.3

Calculate (i) the analytical solution and (ii) a numerical solution
using the explicit Lax-Wendroff equation.

(i) dt=dx =dUJ/0. Hence U is constant along the straight line
characteristics t= x +constant. Therefore, the equation of the
characteristic from R(xg,0) is t =x—xg and if U(x, 0) is ¢(x),
say, then the solution along this characteristic is U(x, t) = ¢(xg) =
¢ (x—1t). Similarly, if U(0, t) = ¢s(¢), the solution along the charac-
teristic t—tg=x from S(0,t) is U(x, t)=y(t—x). Hence the
conditions of the problem give the solution shown in Fig. 4.3.

(ii) Equation (4.12) for h=3% and k=3 is

Uije1 = 3Uio1;+ 3 — Bl ).
Table 4.1 displays the analytical solution of the differential equa-
tion below each mesh point and the corresponding Lax-Wendroft
solution to 3D above each mesh point for x =0(1)7 and t =03)3.
The boundary and initial conditions make U(x, t) continuous at

(0,0) and (2,0), aU/ox continuous at (2,0), and ensures that
dUJax and oUjat satisfy the differential equation at (0, 0).

The Lax-Wendroff method for a set of simultaneous equations

The Lax-Wendroff approximation is easily extended to the set of
simultaneous equations
aU oU

A 4.13
at Aax 0, ( )

where
auU [aU, aU AUT
=[Uy, Uy, ..., UxT, —=[——‘,——2,...,——”],
U=[U,, U, n] at at > at at

etc., and A is an N X N matrix with real constant elements.
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TaBLE 4.1

r s : : Fo s

6-000 3996 2:008 ().06() . ¥

0,4) : : - <
80 60 40 20 S0 -fo 6 20

5001 3-005 0946 ; —0:'763 -0 695 S

0,3-5) : : : VA
70 500 3i0 1-0, -075 —0;75, 10 30
3999 2:G10 0050 —1011 0354 2:000 4-000

0,3) : : 2 2 4
6:0 40 2:0 ;9 —10 o220 40
3-000 0-965 i-0’ 754 —oj713 '1-@04 3000 5-000

(0,2-5) : : : !
50 30 10 —0-75 -075° 10 30 50
2:007 —o~o39 ~1:009 0-041 2:000 4-000 6-000

0,2) : : = 4 L
40 20 'o —io ,b 20 40 60
0985 ,—0 150 -0/ 732 /1001 3-000 5-000 7-000

0,1-5) ; 4 A— :
30 10 -075 —q~75,l 0 30 50 70
~0-p22 -1002 0-024 2:D00  4-000 6-000 8-000

(0,1) - : i —— i 5
20 /0 -10 0 2o 40 60 80
£0-750 ~0-750 /1-000 3000 5-000 7-000 9-000

0,0-5) —— — : :
1-0 -0:75 —0'-75,' 1:0 3-0 5:0 70 9-0
Soo-1o 07 20 40 60 80 100

(0,0) 1 1 1 a0 2 a2

(1,00 (2,00 (G3,00 40 (50 (60 (7,0

By Taylor’s expansion,

aU;, ou
Ui =Uy +k l+2kza(at>

By eqn (4.13),

at Aax'
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Hence,
3 8
Ui,i+1 = Ui,j - kA(H) lk2A2( U) +.....
ax /ij 0x“ /ij

The standard central-difference approximations for 4U/dx and
8°U/ax? then give the approximating difference equations

i1 ™ PA(“:+1, .—1,;)+%P2A2(“e—1,j _2“i,j +ui+1,i)-

(See Exercise 4.)
The formal development of an approximation to (4.11) is as
follows. By Taylor’s series,

U U
U= U,,+k +1k2— (at) +....

In virtue of eqn (4.11) it follows that

aF) 1,29 (OF)
U k(Y g2 (F\ L 4.1
U:,H-l Uul k(ax i 2k ot\ox/; @

But
iﬁ‘" 6 aF 9 {GF GU} {6F OF}
atax ax ot ax\aU at ~ax laU ax
where F
6
=A(U),
50 ((9)]
the Jacobian matrix of F with respect to U, is defined by
dF,
Apn="rr.
™" U,

For example, if
U1] [Fl(U)]
U=[ and F(U)=
U, ©=lrw)
_[8F, /U, 6F1/6U2]
then  A(U)= [6F2/6U1 dF,/oU, 1"

Therefore eqn (4.14) can be written as

Ul]+1 u k(BF> +2k2 {A(U) _} LY
oxJy;
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and using the central-difference approximation for the last term
as shown in Chapter 3, Exercise 8(a), we obtain the Lax-
Wendroff approximation

Wi =W — %p(FH-l,j_Fi—l,j)
+ %P 2{Ai +4,j (Fi+1,j - Fi,j) - Ai—%,i (Fi,i —F i—l,i)}°

To avoid midpoint evaluations it is usual to approximate A,,;; by
%(Ai,i +Ai+1,i) and A;_3; by %(Ai—l,i_" Ai,i)'

Further details concerning stability, well posedness, and the
solution of eqn (4.11) are given in references 25 and 18.

The Courant-Friedrichs—Lewy (C.F.L.) condition for first-
order equations

Assume that a first-order hyperbolic differential equation has
been approximated by a difference equation of the form

Uijr1=al—q;t bui,i +cUitq

Then up, Fig. 4.4, depends on the values of u at the mesh points
A, B, and C. Assume now that the characteristic curve through P
of the hyperbolic equation meets the line AC at D and consider
AC as an initial line segment. If the initial values along AC are
altered then the solution value at P of the finite-difference
equation will change, but these alterations will not affect the
solution value at P of the differential equation which depends on
the initial value at D. In this case up cannot converge to Up as
h — 0, k — 0. For convergence D must lie between A and C.
(The C.F.L. condition.) Consider, for example, the Lax-Wendroff
approximation (4.12). The slope dt/dx of the characteristic of the
corresponding differential equation is given by d#/1=dx/a. For
convergence of the difference equation, slope of PD =slope of

) —|
f P (G+1) "level
k /
l »* 1 level
D A B C

Fig. 4.4
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PA, i.e. 1/a=k/h, giving ap <1, which coincides with the condi-
tion for stability, namely, 0 <ap =<1, since a>0, p>0.

Wendroff’s implicit approximation
An implicit approximation of second-order accuracy to the equa-
tion

oU  aU

a—+b—=c
ox dy

at the point P, Fig. 4.5, is given by approximating (dU/dx)p and
(8U/ay)p by

AG G e GG

respectively, then approximating these derivatives by central-
difference formulae to give the Wendroff equation

AjlUg —Us  Uc— Up b{“D‘“A “c“uB}
— —_ + —
2{ R h }+2 p P

which can be written as

(b—ap)up +(b+ap)uc = (b+ap)u, +(b—ap)ug + 2kc.

This is unconditionally stable. (See Exercise 5.) It cannot be used
for pure initial-value problems, i.e. conditions on t=0 only,
because it would give an infinite number of simultaneous equa-
tions. If, however, initial values are known on Ox, x=0, and
boundary values on O, t=0, the equation can be used explicitly
by writing it as

b—ap 2kc
=Yy +———— - + 4.1
Uc = Ua b+ap(uB up) btap’ (4.15)

D F C
RN : -

k G———:/’ —/-—-E
/// ! \\\

A H B

h -
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and will give the solution in the quarter plane x >0, t>0. (See p.
191 for a numerical example.) It will also give approximation
values in the strip 0<x =<1, ¢t>0, when initial values are known
on Ox, 0=<x=1, and boundary values are known on O, t>0.

Propagation of discontinuities in first-order equations

Consider the equation

U oU
—+—=1, y=0, —o<x<o»,
ax ay

where U is known at points P(xp, 0) on the x-axis. The charac-
teristic direction is given by dx =dy and along the characteristics,
dU =dy. Hence the characteristic through P is y = x — xp and the
solution along it is U= Up +y.

Discontinuous initial values

P(xp.0) A(0) Q(xg.0) x
- ) F 120
Fig. 4.6
Let
U(x, 0) =fi(x), —0o<x<Xg4,
and

U(x, 0) =fa(x), x4 <x<oo.

To the left of the characteristic y=x—x, the solution Uy, is

Ugy=f1(xp)+y along y = x —xp. To the right of the straight line

y =x —x, the solution U, is Ur,=fa(x0)+y along y =x —xo.
Hence, for the same value of y in both solutions,

Up—Ugr = f1(xp) — f2(xQ).



Hyperbolic equations 189

Clearly, as xp and xo both tend to x4, Ugy— U, is discon-
tinuous along y =x—x, where

x‘l,i_lgA f1(xp) # xll_fle f2(xq)-

This shows that when the initial values are discontinuous at a
particular point A, say, then the solution is discontinuous along
the characteristic curve C from A. Moreover, the effect of this
initial discontinuity does not diminish as we move away from A
along C. With parabolic and elliptic differential equations the
effect of an initial discontinuity is quite different as it tends to be
localized and to diminish fairly rapidly with distance from the
point of discontinuity.

Discontinuous initial derivatives

Ulx,0)=0 (0,0) U(x,0)=x
(p=0g4=1) (p=1.4=0)
Fig. 4.7
Let
U(x,0)=0, —owo<x=0,
and

U, 0)=x, 0<x<oo,

This makes the initial derivative p(x, 0) =aU(x, 0)/dx discontinu-
ous at (0,0). The initial derivative q(x, 0)=[aU(x, y)/dyly.o is
also discontinuous at (0, 0) because p+q =1 from the differential
equation. U(x, 0) itself is clearly continuous at (0, 0). As before,
U—-Up=y=x—xp along the characteristic y=x—xp from
P(xp, 0). Therefore the solution U, to the left of y=x is

U(L)'__y) _°°<st> )’?0,
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and the solution U, to the right of y=x is
U(R)":x, 0<x<°°, y?O

It is seen from this that Uy ,= Uy, along y=x but that pq,=
dUq,/0x =0 and pg)=98Uxy/d0x =1, i.e. the solution is continu-
ous along the characteristic C from the point of discontinuity but
the initial discontinuities in the partial derivatives are propagated
undiminished across the solution domain along this characteristic.
In many cases discontinuous partial derivatives arise from sudden
changes in the direction of the boundary-initial curve as illus-
trated in the next section.

Discontinuities and finite difference methods

As shown above, a discontinuity in the initial data of a first-order
equation is propagated across the solution domain along the
characteristic from the point of discontinuity. In such a case one
would expect the ‘method of characteristics’ on p. 178 to give a
more accurate numerical solution than finite-difference methods
because the solution corresponding to a particular initial value is
developed along a characteristic that does not intersect the
characteristic from a point of discontinuity. But the programming
of the method of characteristics, especially for problems involving
a set of simultaneous first-order equations, is much more difficult
than the programming of difference methods. For this reason a
great deal of research has been devoted to the formulation of
finite-difference schemes that simulate the propagation of discon-
tinuities along characteristics in the sense that rapid changes are
confined to narrow regions. (See references 15 and 25.)

The ‘blurring’ of discontinuities that occurs with difference
methods is illustrated in the following example. Consider the
equation

§£]+—'3H= 1, 0<x<w, y>0, (4.16)
ax ay
where U(0,y)=0, 0<y<oo,
U(x,0)=0, 0=sx=<3,
U(x,0)=x—3, 3sx<x,

In general, if U= Uy at the initial point R(xg, yr) then the
characteristic through R and the solution along it are given by
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U—Ug =x—xg =Yy —yg. Therefore:

(i) U=x along the characteristic from (0, yg), yr >0,

(if) U=y along the characteristic from (xg, 0) 0=<xz <3, and
(iii) U = x—3 along the characteristic from (xg, 0), xg =3.

The numerical values for this analytical solution are shown in
Table 4.2 for x=0(1)8 and y=0(1)5. Although the boundary
values and initial values are continuous at (0,0) and (3, 0) it is
seen that p=90U/dx and q=0UJjoy are discontinuous at these
points. The discontinuities at (0, 0) arise from the sudden change
in the direction of the boundary curve yOx at O. (N.B. As
p+q =1 from the differential equation, 8p = —8q.) The table also
illustrates numerically how the discontinuities in p and q in the
solution domain occur on the characteristics from (0,0) and
(3, 0), i.e. the discontinuities are propagated cleanly along these
characteristics.

Let us now approximate eqn (4.16) by Wendroff’s equation
(4.15). By Fig. 4.5,

h—k )4 2hk
h+ k“B Up)t Tk

Case (i) Take h=k=1. Then

Uc = Uy +

uC=uA+1, ie. U1 RES u”+1

and the application of this equation to the boundary and initial
values of Table 4.2 shows that the numerical solution coincides

TABLE 4.2
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with the differential equation solution. This happens because
U;i1,41= U+ 1 propagates the finite-difference solution forward
along the characteristics from the initial points and boundary
points and because the local truncation error at the point (i+
1 j+3) is zero in this case.
Case (ii) Take h=1, k=3. Then

Uc = un +3(up — up) +3.
The numerical solution to 2D is displayed in Table 4.3. Every
second row corresponds to a row of Table 4.2. The values of
ai; = (u;.1—u;;)/k are shown in Table 4.4. The analytical values
for g;; for the three different solution domains are indicated at
the top of Table 4.4. The values for u clearly improve in accuracy
as one moves away from the characteristics through (0, 0) and
(3, 0) and Table 4.4 shows that the discontinuity in q along these
characteristics is ‘diffused’ over an area each side of the charac-
teristics.

TABLE 4.3

0,5)

1-00 2-00 2-99 395 4-77 5-23 5-22 513

7
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0
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1100

—
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O
N
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TABLE 4.4

y q=0 . q=1 q=0
©,5) - .

0 0f0 000 0§02 O0fi1 0@l 0{94 123 07
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0 _0j00o 01 0{10 ',"6-41 100 1026 " 0lsa —0p6
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X
(0,0 (3.0 (8,0

Reduction of a first-order equation to a system of ordinary
differential equations

This section can be omitted if the reader wishes to study im-
mediately the numerical solution of second-order hyperbolic equa-
tions.

Consider the first-order hyperbolic equation

U
a—+a13LJ=O, x>0, t>0, 4.17)
ot ax

where a is a real positive constant and U satisfies the initial
condition
U(x, 0)=g(x), x=0,

and the boundary condition
U@©,t)=>b(), t>0.
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Assume that the solution is needed in that strip R of the first
quadrant x>0, t>0, defined by R=[0<x<X]X[t>0]. (Read
as the set of all points (x,t) such that 0<x<X and t>0.)
Subdivide the interval 0=<x =<X into N parts each of width h, so
that Nh = X, and discretize t in steps of length k. A typical mesh
point (x;, t;) is then defined by

(% £)=(ih, jk), 0<i<N, j=0,1,2,....

If the x-derivative at (x,t) is replaced by the backward-
difference formula

au_1 {U(x, t)— U(x— h, t)}+ O(h), (4.18)
ax h

and x is considered as a constant, eqn (4.17) can be written as the
ordinary differential equation

dU(t)
dt

_% {U(x, )— U(x—h, )} + O(h).

On writing down this ordinary equation at the N mesh points
x; =ih, i=1(1)N, along time-level t, it follows that the values
V;(t) approximating U;(t) are the exact solution values of the N
equations

dVv a

o TR
dv a
PR
daVv a

‘f= —Z{VN_ Vn-1}

These can be expressed as

dv(t)
dt

=—aCV(t)+ ab(t), (4.19)

where V() =[V,(t), Vu(1),..., Va(@®)]%, C is the NXN lower
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bidiagonal matrix

S =

L -1 1.

and b(t) =[b(¢)/h, 0,0, ...,0]" is known from the boundary con-
dition. When b(t) is a constant vector the solution of (4.19) is,
by eqn (3.5),

V(t) = C'b(t) + {exp(—atC)H{g— C'b(t)}, (4.20)
and satisfies the recurrence relationship

V(t+k)=Cb(t) +{exp(—ak OO{V() - Cb(r)}). (4.21)

The approximating finite-difference equations

Replacement of the exponential in eqn (4.21) by an (S, T) Padé
approximant, S=T, leads to an unconditionally stable implicit
difference scheme that can always be put into an explicit form
because the initial conditions and boundary conditions are known
along the two axes of the first quadrant.

For example, the (1, 0) Padé approximant approximates (4.21)
by the difference equations

“l'+1 = C_lbj + (l+ akC)_l{“]‘ - C_lb]'},
giving the implicit scheme
In detail, the equations are
(1+ap)u, 1= u,;+ apb;
and
—apu;_ij1t 1+ aP)“i,j+1 =uy, i= 2(1)N,

where p =k/h. A small modification enables us to write them
more compactly. The boundary value has been treated as a
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constant over t; <t<t;,; and could be given its value at ¢; or ¢,
or even averaged. For implicit schemes it is usually assigned its
value at t.,,. All N equations of the (1, 0) approximant can then
be written as

—apu;_y 1t (1+ap)u; o =uw,;, i=11)N. (4.22)
They can obviously be expressed explicitly as
Ui =(apu;_y j+1 +u;)/(1+ap), (4.23)

and are shown to be unconditionally stable in Exercise 7. The princi-
pal part of the local truncation error of (4.22) at (ih, jk) is

FU aZU]
1 h——lk—— X
[ M e ],

(See Exercise 6.)

A comment on the non-stiffness of the equations

Although matrix C has N eigenvalues A; each equal to 1/h, it has
N linearly independent eigenvectors v,, so the vector of initial
values g, with its N components g;, g5, . . . , gy, can be expressed

N
as g= Y V., ¢, constants. Hence the solution (4.20) can be

s=1
written as
V() =Cb(t) + { Z cs[exp(—atAs)]vs}— {exp(—atC)}C 'b(t).

This proves that the system of ordinary differential equations is
non-stiff because the components {exp(—atA;)}v, of V() do not
decay at different rates, as occurs with parabolic equations. The
components are also non-oscillatory because a, t and A; = 1/h are
real.

The Crank-Nicolson scheme

It is easily shown that the (1, 1) Padé approximant to exp(—atC)
in eqn (4.20) leads to the explicit equations,

uia=[(1 "%ap)“l,i"‘ %ap(uo,j+1+ uo;) (1 +3ap),
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and
Ui =[3apu;_1 .1 +(1—3ap)u; +3apu;_, ;1/(1+3ap),
i=2(1)N. (4.24)

These are Ay-stable and the principal part of the local truncation

error at (ih, jk) is
32U 2a3u]
[ ah —iak a3

The k-components of the local truncation errors of eqns (4.23)
and (4.24) can be improved by at least one power of k by
extrapolating in t, as described in Chapter 3, but this may not be
worth the computational effort involved if the h-component is
not improved to at least O(h?), as described in the next section.

An improved approximation to oU/ox

By Maclaurin’s expansion,

2
UGx—h, )= U(x, 1) haU(x’ D gp22 U(" D\ om),
2
U(x—2h, t)=U(x, t)—2h E’U;;‘ ‘)+2h2a [;S D\ om).

Elimination of h?8%Ujox? leads to

aU 1
- a(:’ _t)=ﬁ{3u(x, t)—4U(x—h, )+ U(x—2h, )} + O(h?).

(4.25)

As this involves three points along any one time-row it can be
used only for i=2,3,...,N. At i =1 we shall use the previous
backward difference replacement (4.18). The equation

W, 29 0, 0<x<x, t>0,
at 0x

is then approximated at the mesh points ih, i =1(1)N, along
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time-level t, by the system of ordinary equations

av,
KT
av,
dt
dv,
2=

dVy
dt

0

———%{3V2—4V1+b(t)}

'_'zih {3V3_4V2+ Vl}

= —%{3VN—4VN_1+ Va_ah

These can be written in matrix form as

dv(r) _

& —1aDV(1) +3ab(t), (4.26)
where the matrix D of order N is
- 2 T [ 2b(t) ]
-4 3 —b(t)
111 -4 3 1 0
D=3 1 -4 3 and BI=111
i 1 —4 3 o0 |

The solution of eqn (4.26) satisfying the initial condition V(0) =g

is, by eqn (3.5), for b(t) constant

V(t) =D 'b(t) + {exp(—3atD)H{g— D 'b(t)}.

(4.27)

Gustafsson’s theorems, reference 11, justify this mixture of
approximations to dU/ox provided the Padé approximant chosen
to approximate the exponential is such that when applied to the
set of ordinary differential equations given by the lower-order
approximation (4.18), the resulting difference equations are un-
conditionally stable. The difference equations given by (4.26) will
also be unconditionally stable and converge at the same rate as

the more accurate approximation.

Equations (4.26) are non-stiff because matrix D has one eigen-
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value 2/h and (N—1) eigenvalues 3/h, so the range of eigen-
values is small.
The solution (4.27) satisfies the recurrence relationship

V(t+k)=D"'b(t) +{exp(—3ak D) V(t) - D 'b(t)}, (4.28)

on treating b(t) as constant in <t=<t;,,.

The (1, 0) Padé approximant

Approximating the exponential in (4.28) by its (1,0) Padé ap-
proximant (I+3akD)™' and replacing b(t) by b(t+k) gives the
L,-stable system

(l+%akD)“i+1 _%akb"+1 = llj.

In detail, the equations are

(1+ap)uy;1—apb; g =uy;
—2apuy j.q+(1+3ap)uz g +3aph;. = uy;
3apU; 21— 2apU;_y o+ (1 +3ap)u = uy,  i=3(1N.
Although they look implicit they can be solved explicitly for

ui,j.'.l, i= 1(1)N.
The principal part of the local truncation error is

*U | & .
[—%ah W—%ka_ﬁ at (h, ]k)
and
U |, o* . .
[—%ah2 gx—g—%k —é?; at (ih, jk), i=2(1)N.

This scheme is worth extrapolating in ¢ because the local trunca-
tion error is O(h? in x and the equations L,-stable. As in
Chapter 3 we calculate (I-2kA)u®=u(t), I—kA)2a? =u(t),
where A =—1aD, then n®(t +2k)=2u® —u®.

All the equations can be solved explicitly and the principal part
of the local truncation error is

U U )
[—%ah W+§k2?] at (1,j)
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and 3 3
[—-%ah2 %}:{+§k21—g] at (i, j), i=2(1)N.

Twizell and Khaliq, references 35 and 13 did numerical experi-
ments with the (1, 1), (2,0), (2, 1), and (2, 2) Padé approximants
and observed that the (1,1) and (2,0) approximants with the
low-order (4.18) replacement of the space derivative, and the
(2,1) and (2,2) approximants with the higher-order (4.25) re-
placement of the space derivative, gave better results than any
other method in the literature existing to 1983.

A word of caution on the central-difference approximation to
aUJax

If 6U/ox is approximated at (ih, jk) by
[Ux+h,t)—U(x—h, t)]}/2h,

then the system of differential equations approximating
——+a—;=0, a>0, 0<x<X, t>0, (4.29)

U(x, 0) = g(x), U(0, t)=b(t), at the mesh points ih, i =1(1)N,
along time-level ¢ is

d__‘d’f‘) = ~1aBV(1)+1ab(1), (4.29a)
where V(1) =[V,(t), V(1) ..., Va@®T",
0 1 ]
-1 01
B=% -10 . 1 of order N,
1 01
i -1 0]

and hb(t)=[b(1),0,0,...,—Vnu®]. Vu., is the solution at
{(N+1)h,t} and would be known only for periodic boundary
conditions. That part of the solution corresponding to the term

—3aBV(t) is {exp(—3atB)}g. (4.30)
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The eigenvalues A, of Bare A, = 2(V —1)cossa/N +1,s=1(1)N,
and are all different. Hence the N eigenvectors v, of B are
linearly independent so the initial vector g=[gq, go, . . ., gvJ]* can

N

be written as g=z ¢,v,. Equation (4.30) then gives that the
1

complementary function of the differential equation is
N

2 c,{exp(—%atls)}vs.

But A, is complex and exp(v'—1 6)=cos 6 ++ —1sin 6, show-
ing that the solution V(¢) contains oscillatory terms. These are
due entirely to the central-difference approximation to dU/dx and
would not occur with backward-difference approximations.

The numerical solution shown in Fig. 4.8 was calculated by
Khaliq, reference 13, for eqn (4.29a), at t =1 witha =1, g(x) =
sin 4mx, 0sx =<1, b(t)=—sin 4wt, h =1/80 and p = k/h = 4, using
the (1, 0) Padé approximant. The solution of the partial differen-
tial equation is U(x, t) =sin 47 (x —t). The diagram clearly shows

UW_

U=sin 4n(x-t), t=1.

TN [\ Gniteence satuion
0.75-//«\-‘ \\ // \
Nl
e I !,‘ ,M,\}‘A,il“ Il |Ir\6'x
\"w i l 0 \i'"lfl“ !
IV R il

\ \ it/

—075}1- \ / \ /

Fig. 4.8
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that the effect of the oscillatory terms in the finite-difference
solution increases with increasing x.

Second-order quasi-linear hyperbolic equations
Consider the second-order partial differential equation

U | 9 *U
7+ U"‘C s te=0, (4.31)
ax ax ay ay

a

where a, b, ¢, and e may be functions of x, y, U, dU/dx, and aUJdy
but not of 32U/ax2, 3*U/ox dy, and 8°U/dy?, i.e. the second-order
derivatives occur only to the first degree. Such an equation is said
to be quasi-linear.

It will be shown that at each point of the solution domain there
are two directions along which the integration of the partial
differential equation transforms to the integration of an equation
involving total differentials only. In other words, in these direc-
tions the equation to be integrated is not complicated by the
presence of partial derivatives in other directions. Furthermore, it
will be seen that this leads to a natural classification of partial
differential equations.

Denote the partial derivatives by

aU oU 3*U *U U

=p, —=q TS=1 =s and —=t
ax P dy ¢ 52 3x dy

Let C be a curve in the x—y plane on which it is assumed that
we know the solution values U of eqn (4.31), together with
values for p and q related to U through the equation

U U
=—dx+—dy=pdx+
dU ox dx 3y dy=pdx+qdy,

where dy/dx is the slope of the tangent to C. (Curve C is not an
initial curve on which initial values for U, p, and q are specified.
The reason for this will be apparent later.) The question to ask
now is this. Is it possible to find values for r, s, and t on C that
will satisfy the partial differential equation, namely,

ar+bs+ct+e=0. (4.32)
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As r, s, and t on C must satisfy the equations

dp=—dx+ dy—rdx+s dy (4.33)
and
aq aq
=—dx+—dy=sdx+ .
dq o dx 3y dy=sdx+tdy, (4.34)

it is seen that eqns (4.32), (4.33), and (4.34) are three equations
for r, s, and t. Elimination of r and t from eqn (4.32) by means of
eqns (4.33) and (4.34) leads to

a c
I (dp—sdy)+bs dy (dg—sdx)+e=0,

dy) (dy) } { dpdy dq dy}
—Z)+ct—{a—=T+c—+e—=t= .
{ (dx b ax) "¢ %ax dx cdx_!—edx 0, (435
where dy/dx is the slope of the tangent to C.
By hypothesis, eqn (4.32) is quasi-linear so a, b, ¢, and e are
independent of r, s, and t. Hence eqn (4.35) is independent of r

and t. It can also be made independent of s by choosing the curve
C so that the slope of the tangent at each point on C is a root of

the equation
dY) (d)’)

+c= .

( dx -b ey R 0. (4.36)

By eqns (4.36) and (4.35) it follows that along directions tangen-
tial to C from points on C,
dpdy dq _dy

+e==2=0. .
adxdx+cd edx 0 (4.37)

i.e.

Hence we have shown that at each point of the solution domain
there are two directions, given by the roots of eqn (4.36), along
which there are relationships between the total differentials dp
and dq, given by eqn (4.37), that are independent of partial
derivatives in other directions. As will be seen later this relation-
ship can be used to solve the original differential equation numer-
ically by a series of step-by-step integrations.

The directions given by the roots of eqn (4.36) are called the
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characteristic directions and the partial differential equation is
said to be hyperbolic, parabolic, or elliptic according to whether
these roots are real and distinct, equal, or complex, respectively,
i.e. according to whether b>—4ac Z0. The best-known examples
in these classes are the hyperbolic ‘wave-equation’ *U/at>=
8°U/9x>, the parabolic ‘heat-conduction’ or ‘diffusion’ equation
aU/ot =9%Ulax?, and the elliptic ‘Laplace equation’ 9>UJox>+
9?U/ay%=0.

Assume eqn (4.31) is hyperbolic and that the roots of eqn
(4.36) are dy/dx =f and dy/dx =g. Then the curve through the
point P(x, y) whose slope at every point is f is said to be an f
characteristic. Clearly there are two different characteristic curves
through every point of the solution domain of a second-order
hyperbolic equation.

It should be noted that the classification of a partial differential
equation, and consequently its method of solution, may depend
on the region in which the solution is to be found. For example,
the characteristic directions of the equation

¥U+x¥U+ U
Yooxz Foxay Yoy?

=F(x,y,U,p,q)

are given by the roots m,, m, of the quadratic
ym?*—xm+y=0, m=dy/dx,

which are real, equal or complex according to whether x2Z4y2.
Thus, the equation is hyperbolic when |x|>2 |y|, parabolic along
|x|=2ly|, and elliptic for |x|<2]y|.

Solution of hyperbolic equations by the method of
characteristics

Summarizing the previous work, the slopes of the characteristic
directions associated with the equation
PU . U U
a—+b +tc—
ax 9x dy ay

+e=0 (4.38)

are given by the roots of the quadratic equation

o) -+(5)
—2) —b|l-Z)+c= .
a(dx b ax c=0, (4.39)
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and along these characteristic directions the differentials dp and
dq are related by the equation

dydp dq dy
axdx  ‘ax  ax 0,
which can be written as
dy
a—dp+cdq+edy=0. (4.40)

dx

Assuming that eqn (4.38) is hyperbolic the roots of eqn (4.39)
will be real and distinct. Let them be

dy dy
v f and it < 4.41)
Let I" be a non-characteristic curve along which initial values for
U, p, and q are known. Let P and Q be points on I' that are close
together and let the f characteristic through P intersect the g
characteristic through Q at the point R(xg, yg), Fig. 4.9.

As a first approximation we may regard the arcs PR and QR
as straight lines of slopes fp and g, respectively. Then eqns (4.41)
can be approximated by

Yr — Yp = fp(xr — Xp) (4.42)
and

YR~ Yo = 8a(Xr — Xa), (4.43)

giving two equations for the two unknowns xg, yg.
By eqn (4.40) the differential relationships along the charac-

f




206 Hyperbolic equations
teristics are

afdp+cdg+edy=0 (4.44)
and

agdp+cdq+edy=0. (4.45)
The first one can be approximated along PR by the equation

apfe(pr —pp) + cp(dr —dp) + ep(yr —yp) =0,  (4.46)
and the second along QR by the equation

a08a(Pr —Pa) t ca(dr —do) t €a(Yr —¥o)=0.  (4.47)

These are two equations for the two unknowns pg, qg, as soon as
Xr, Yr have been calculated from (4.42) and (4.43). The value of
U at R can then be obtained from

aU aU
dU=—dx+—dy=pdx+qdy,
Uaxxayypqu

by replacing the values of p and q along PR by their average
values and approximating the last equation by
ug — tp = 3(pp + pr)(Xr — Xp) +3(gp + qr)(Yr — yp). (4.48)

This first approximation for ugz can now be improved by
replacing the pivotal values of the various coefficients by average
values. Equations (4.42) and (4.43) for improved values of xg
and yg then become

Yr — Yp = 3(fp + fr)(Xg — Xp) (4.49)

and .
Y& — Yo =3(8a + 8r)(Xr — Xa), (4.50)

and eqns (4.46), (4.47) for improved values of pg, qr become
3(ap + ag)3(fp + fr)(Pr — pp) +3(cp + cr)(dr — ap)
+3(ep+er)(yr—yp) =0 (4.51)
and
3(aq + ar)x(go + gr)(Pr — Po) +3(co + cr)(dr — o)
+3(eqo+er)(Yr—yo)=0. (4.52)

An improved value for ug can then be found from eqn (4.48).
Repetition of this last cycle of operations will eventually yield ug
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to the accuracy warranted by these finite-difference approxima-
tions. Provided Q is close to P the number of iterations will
usually be small.

In this way we can calculate solution values at the grid points R
and S, Fig. 4.9, and thence proceed to the grid-point T, and so
on.

Example 4.4

Use the method of characteristics to derive a solution of the
quasi-linear equation

U U262—U=
ax? ay?

0,

at the first characteristic grid point between x =0.2 and 0.3,
y >0, where U satisfies the conditions

U=0.2+5x> and %;—J=3x,

along the initial line y =0, for 0<x=<1.

Since U is given as a continuous function of x along Ox the
initial value of p =aUJdx is 10x. The slopes of the characteristics
are the roots of the equation m?>— U?=0. Hence

f=U=-g.

In this example the characteristics depend on the solution so
the network of characteristics can be built-up only as the solution
unfolds.

Initially, U=02+5x=f=—g,
p=10x and q=3x.
Also a=1, b=e=0, c=—U?, therefore, Fig. 4.10
fo=04, go=-065 pp=2.0, po=3.0, Up=0.4,
Uy=065 ap=06, qo=09, cp=-0.16, co=—0.4225.
By eqns (4.42) and (4.43),
yr =0.4(xg —0.2)

and yR = _0-65(xR - 0-3),
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P S/
R(XR YR )
Y
o 0.2 0.3 x
Fig. 4.10

giving, as a first approximation,
xg =0.26190, yg =0.024762,

to five significant figures.
The differential relationships along the characteristics are, by
eqns (4.46) and (4.47),

0.4(pr —2.0)—0.16(qg —0.6) =0,
and
—0.65(pr —3.0)—0.4225(gg — 0.9) = 0.
Their solution is
pr =2.45524; qr=1.73810.
By eqn (4.48),
ug = 0.4+3(2.0+2.45524)(0.0619) + 4(1.73810+ 0.6)(0.024762)
=0.56684.
For the second approximation,
fr=—8r =ug =0.56684; cg=—-uk=-0.32131.

By eqns (4.49) and (4.50), more accurate values for xg, yg are
given by

yr =3(0.4+0.56684)(xg —0.2)
and
yr =—3(0.65+0.56684)(xg —0.3),
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from which,

xr =0.25572, yg=0.026938.
By eqns (4.51) and (4.52),

3(0.4+0.56684)(pg —2.0)—3(0.16 +0.32131)(ge — 0.6) =0,
—3(0.65+0.56684)(pg —3.0) —1(0.4225+0.32131)(qg —0.9) = 0.
These equations give the improved values
Pr=2.53117; qr=1.66700.

Hence the second approximation to ug, by eqn (4.48) is

ug = 0.4+3{(2+2.53117)(0.05572) + (0.6 + 1.6670)(0.026938)}
=0.55677.

It is left to the reader to show that the next iteration gives

xg =0.25578, ygr =0.02668,

Pr =2.52876, qr=1.67637,

and
ug =0.55667.

Since, to four decimal places,
ulP=0.5668, u?=0.5568 and uP=0.5567,

it is obvious that the solution of the finite-difference equations for
ug is 0.5567, to this degree of accuracy. A fourth iteration does,
in fact, give ug =0.55666 to five decimal places.

Additional comments on characteristics
A characteristic as an initial curve

When the curve on which initial values are given is itself a
characteristic the equation can have no solution unless the initial
conditions satisfy the necessary differential relationship for this
characteristic. If they do, the solution will be unique along the
initial curve but nowhere else, as is illustrated in the example
below. It is also impossible in this case to use the method of
characteristics to extend the solution from points on the initial
curve to points off it, because the locus of all points such as R in
Fig. 4.9 is the initial curve itself.
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Consider the equation

ax 0x 9y ay B

The characteristic directions are given by

3 +(@)-e-0-(G+3)E-2)
(dx+dx60 +3dx2’

so the characteristics are the straight lines y + 3x = constant, and
y —2x = constant. Let the initial curve be the characteristic y—
2x =0. The differential relationship along this line by eqn (4.40)
is 2dp—6dq =0, i.e. p—3q = constant, and is obviously satisfied
by the initial conditions U=2, p=-2, q=1. It is easily verified
that one solution satisfying these conditions is

U=2+(y—2x)+A(y —2x)%,

where A is an arbitrary constant. This is unique along y—2x=0
but nowhere else in the x—y plane.

Propagation of discontinuities

It can be proved that the solutions of elliptic and parabolic
equations are analytic even when the boundary or initial condi-
tions are discontinuous. Hyperbolic equations however are differ-
ent in that discontinuities in initial conditions are propagated as
discontinuities into the solution domain along the characteristics.
Let I', Fig. 4.11, be a non-characteristic curve along which
initial values for U, p, and q are known. Let P and Q be two
distinct points on I' and let the f characteristic through P meet
the g characteristic through Q at R. Then the solution at R can
be calculated in terms of the initial conditions at P and Q.
Assuming no two characteristics of the same family intersect it
follows that the solution at every point such as S inside the
curvilinear triangle POR is determined by the initial conditions
between the points P and Q. Similarly, the solution at each point
U inside the curvilinear strip PRVT is determined by the initial
conditions at a point along the arc TP (propagating along an f
characteristic) and the initial conditions at a point along the arc
PQ (propagated along a g characteristic). When the initial condi-
tions along TP are analytically different from the initial condi-
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I‘\

Fig. 4.11

tions along PQ then the solution inside the strip PRVT will be
analytically different from the solution inside the curvilinear
triangle POR. As T tends to P the strip tends to the characteris-
tic PR proving that the discontinuity in the initial conditions at P
is propagated along a characteristic.

The argument above shows that a characteristic can separate
two different solutions. An extremely important feature of second-
order equations is that these two solutions together with their
first-order derivatives can be continuous across the dividing
characteristic, but their second- and higher-order derivatives dis-
continuous across the same characteristic. This is easily seen by
recalling that the characteristic directions and the differential
relationships in these directions were originally defined from eqn
(4.35), namely,

dy)2 (dy) } { dpdy dq dY}
—Z ) — - — —_— — te—2t=
s{a(dx b dx te adx dx+cdx edx 0,

by making the expressions inside both pairs of braces zero. Then
s =0°UJox dy is indeterminate and can be given an arbitrary
value along a characteristic. Once, however, a value has been
assigned to s the values of r and t are not indeterminate but can
be calculated uniquely from any pair of eqns (4.32), (4.33), and
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