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Abstract
In the context of wireless data collection, a common

application class in wireless sensor networks, this paper
presents a novel, non-intrusive algorithm for the precise re-
construction of the packet path, the per-hop arrival order and
the per-hop arrival times of individual packets from partial
in-band information at runtime. Information is reconstructed
outside the network immediately after a packet is received
at the sink. After establishing the correctness of our pro-
posed algorithm, we evaluate its performance in testbed ex-
periments using CTP and Dozer, two well-known data col-
lection protocols. Foremost interested in obtaining a better
understanding of the performance of long-term real-world
deployments, Multi-hop Network Tomography (MNT) is ap-
plied to in total more than 140 million packets that have
been obtained from three multi-year WSN deployments of
the PermaSense project. The capabilities of the performance
analysis of deployed systems using the proposed algorithm
and methodology are demonstrated in a case study.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-

work Architecture and Design—Wireless communication;
B.8.2 [Performance and Reliability]: Performance Anal-
ysis and Design Aids

General Terms
Performance, Design, Measurement

Keywords
Performance analysis, data collection, wireless sensor

networks, network tomography, multi-hop

1 Introduction
Wireless sensor networks (WSNs) have proven their ap-

plicability in many scenarios, e.g., ecosystem management
[22], monitoring of buildings [5], and monitoring of natural
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hazards [2]. When preparing the initial installation, a consid-
erable research and development effort is usually spent cus-
tomizing and optimizing a WSN implementation for a given
application scenario. Different methods and tools such as ab-
stractions [9], simulators [18], testbeds [11] and diagnostics
[33] have been developed for supporting and facilitating all
phases of the life-cycle up to long-term operation.

However, appropriate tools are largely missing to support
detailed performance analysis of deployed systems. When
for example the network size, the sensing modalities or the
environment, e.g., due to the addition of new interferers like
4G/LTE equipment in the vicinity, are changing over the
years of deployment, it is typically very hard to assess at
which point in time the system must undergo minor, e.g.,
new parametrization, or major, e.g., addition or removal of
features, modifications. While commonly available perfor-
mance metrics, i.e., data yield, end-to-end packet delays,
radio duty-cycle, and link quality measurements are well-
suited for giving an overview and estimating the general
health of a deployed system, the root causes of an observed
drop in the system performance remain mostly hidden.

Additional information are usually not available due to
the costs and risks attached to their retrieval. For instance,
transmitting extra information to aid such analysis in-band
would increase the required bandwidth and is not always
feasible. Furthermore, if a behavior is only observed after
successful deployment, an addition of further data to be col-
lected and transmitted is only possible with an update of all
installed systems, either using a manual process, or by in-
network reprogramming facilities. The latter of which is of-
ten regarded as an extra risk as it can easily render a system
unusable [31]. Duplication of a similar system in a testbed
setting and using this “replica” for analysis purposes in most
cases suffers from economic feasibility and an inherent mis-
match between production and test environments.

It is therefore desirable to devise comprehensive analysis
capabilities based solely on the in-band information trans-
mitted through a wireless sensor network. As a stepping
stone for facilitating a passive but accurate health and per-
formance monitoring of WSNs, this paper presents multi-
hop network tomography (MNT), a novel, non-intrusive al-
gorithm for reconstructing the travelled path, the per-hop ar-
rival order, and the per-hop arrival times of individual pack-
ets at runtime. Information is reconstructed outside the net-
work immediately after a packet has been received at the



sink. Concretely, we exploit the fact that packets are trans-
ferred through the network in a first-in first-out (FIFO) fash-
ion. We find that the order in which packets arrive at the
sink allows us create correspondences between packets that
originate from independent sources but travel along simi-
lar paths. The apparent challenge lies foremost in the dy-
namics found in wireless multi-hop networks, e.g., topology
changes, packet reordering, and lost packets.

Specifically, multi-hop network tomography addresses
the following problems: First, transferring path, per-hop
arrival order, and per-hop arrival time information in-band
does not scale for large networks as the amount of informa-
tion grows linearly with the path length. As a result, the
overall network performance may decrease due to conges-
tion and higher packet loss rates [29] when sending more
and larger packets further aggravating the capability to un-
derstand network behavior in detail. Second, active meth-
ods for extracting desired information would also require
to modify the software that is running on the sensor nodes.
Not only introducing the effort of reconfiguring a deployed
system, valuable path, per-hop arrival order and per-hop ar-
rival time information from historic data would remain un-
known. While this work primarily targets low-power WSNs,
the method as such can be applied to any multi-hop network.
It is clear however that the most benefit is achieved in re-
source constrained scenarios commonly found in WSNs.

Apart from the analysis of deployed systems, MNT of-
fers advantages in potentially any scenario in which no other
communication channels, e.g., serial ports, for extracting
performance data are usable. For example, adding load
on the serial interface for outputting additional performance
data is also unfavorable in certain testbed settings, e.g., when
the execution timing must not be changed.

The contribution of this paper is as follows:
• We present the MNT algorithm for reconstructing the

packet path, the per-hop arrival order, and the per-hop
arrival timing of individual packets.
• Based on a formal model of a real system, we proof the

correctness of results obtained, i.e., that extracted path,
order and timing information match with ground truth.
• We validate the correctness of our implementation in

extensive experiments with two well-known commu-
nication protocols, i.e., CTP [10], and Dozer [4], on
testbeds of up to 90 nodes size. Here, testbed infrastruc-
ture allows us to extract ground truth without the need
for congesting the in-band communication resource un-
der investigation. We evaluate the performance of our
algorithm in terms of the fraction of packets that can be
reconstructed in various settings. The scalability of the
approach is discussed using simulation.
• The application of the MNT algorithm to more than

140 million packets from three deployed systems is pre-
sented in a case study.

Related work including a discussion of the novelty of this
work is presented in Section 2. Section 3 motivates the un-
derlying problem of reconstructing data from partial infor-
mation, the core principles used in multi-hop network to-
mography are presented in Section 4. Assumptions made
when designing the MNT algorithm are introduced in Sec-

tion 5, the full algorithm is presented in Section 6. Section 7
presents our validation done on real hardware and in simu-
lation, our case study based on data from real-world deploy-
ments is presented in Section 8. The broader applicability
and limitations of the MNT algorithm are discussed in Sec-
tion 9, Section 10 concludes this paper.
2 Related Work
A. Performance of Wireless Sensor Networks

The performance of wireless sensor networks has been
intensively studied at several layers. For instance, [34] and
[30] study the link-layer performance in numerous config-
urations and environments. Various protocol papers, e.g.,
CTP [10] and the low-power wireless bus [8], discuss the
performance of the routing layer. The end-to-end applica-
tion performance is subject of several deployment reports,
e.g., [17, 1, 12]. An extensive cross-layer performance study
is provided by [24]. Located on the intersection between the
routing and the application layer, the purpose of this work is
to passively reconstruct hidden network performance data.
B. Network Health Monitoring

For dealing with the inherent challenges found in the
long-term operation of WSNs, e.g., hardware failures, sev-
eral solutions for the run-time monitoring of deployed sys-
tems have been proposed [28, 20]. While the problem of
how to combine measured information for inferring a root
cause is orthogonal to this work, such systems could poten-
tially benefit from per-packet path and timing information
that is provided by the MNT algorithm. Ideally, we expect
reconstructed per-hop timing information to even facilitate
the development of health monitoring systems that are also
able to automatically report small variations of the system
performance before a major incident happened.
C. Wired Network Tomography

Network tomography is an important tool for network
monitoring in wired IP networks. Without the need for coop-
eration of involved components, e.g., routers, network struc-
ture and link-level performance characteristics, e.g., delay or
packet loss, are measured based on the travel of actively in-
serted probes. The problem of network tomography in wired
networks has been well-studied, an extensive overview of
available methods is given in [6]. In most cases, the studied
problem is either to reconstruct the network structure only,
or to determine link-level performance measurements for an
a priori known network topology. Regarding our goal of re-
constructing both the network structure and link-level char-
acteristics, we found the work of Rabbat et al. [27] as the
possibly earliest work that already covers both dimensions
in the wired scenario.
D. WSN Network Tomography

Network tomography algorithms for wireless sensor net-
works are restricted by WSNs supporting much less prob-
ing traffic than wired networks. Nguyen et al. [25] propose
the application of statistical methods, i.e., Maximum likeli-
hood and Bayesian approaches, for the identification of lossy
links. While the network topology is assumed to be known,
the method of Nguyen et al. also allows for multiple, dy-
namic topologies by splitting a trace into so called “routing
time slots” in which the topology is assumed to be stable.



Being interested in learning an unknown network topology,
Liu et al. [20] propose an active marking scheme for the
reconstruction of topology information at the sink. Here, ex-
tracted path information is not guaranteed to be correct.

Without adding extra probing traffic to the network, the
MNT algorithm extracts all information from already exist-
ing application traffic. To the best of our knowledge, this
is the first work that aims for the reconstruction of detailed
per-packet information while also giving guarantees on the
correctness of extracted information.
3 Exploiting Information Implicitly Given

Measurements taken inside a sensor network provide ad-
ditional detail for the understanding of an observed end-to-
end system performance. For example, an observed end-to-
end packet delay might have several causes, e.g., transmis-
sion failures, back-pressure, or unfair resource allocation.
However, the amount of information that can be transferred
in-band is limited as additional load potentially threatens the
performance of the system under investigation.

For enabling detailed performance analyses of sensor net-
works in spite of resource constraints this paper wants to an-
swer the following questions: Is it sufficient to transmit only
partial information in-band in order to reconstruct missing
information outside the network? What information is com-
monly transferred and thus already available in sensor net-
work applications? Which useful information is implicitly
given by the structure and behavior a-priori known from a
given WSN application, and thus does not need to be trans-
mitted over the precious communication resource? How
much information of which detail and accuracy can be re-
constructed outside the sensor network? Are corresponding
methods applicable to a broader set of applications?

As one concrete example, this paper presents multi-hop
network tomography (MNT) for the reconstruction of the
path, the per-hop arrival order, and the per-hop arrival time
of individual packets from partial information.
4 Wireless Multi-Hop Tomography

In multi-hop data collection applications, sensor nodes
have the dual functionality of (i) generating packets and (ii)
forwarding packets of other nodes that are more distant to
the sink. Generated packets typically include certain applica-
tion header information, e.g., the source address and a packet
generation timestamp. For reconstructing information at the
sink, multi-hop network tomography exploits the fact that
state-of-the-art protocols like CTP maintain a single packet
queue to which both locally generated and forwarded pack-
ets are added while traveling through the network. In the
common case correspondences created between forwarded
and locally generated packets are still visible at the sink, i.e.,
packets arrive at the sink in the same order as they left a node
within the network. The path, the per-hop arrival order and
the per-hop arrival timing of individual packets are recon-
structed by a per-hop correlation of information from both,
locally generated and forwarded packets.

In the exemplary situation in Figure 1, packets s and t
were consecutively generated at a node N. In contrast, packet
k was generated at another node M. Minimal topology infor-
mation is provided by the address of the first-hop receiver,
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Figure 1. Reconstruction of packet path and arrival time
bounds of packet k based on information from packets s
and t. Packets s and t were subsequently generated at node
N. Packet k from node M arrived at N after the generation of
s, but before the generation of t.

e.g., packet k reports node N, packets s and t report node K,
that is transmitted with every packet. Packet k arrived at N
after the generation of s, but before the generation of packet
t. Given that none of the packets was either lost, duplicated
or reordered in this example, the observable order of arrival
at the sink, see Figure 1(b), matches with the non-observable
order of arrival at the intermediate node N, see Figure 1(c).

Packets s and t are selected as so called “anchor packets”
and used for reconstructing (i) at which time packet k arrived
at node N, and (ii) to which node packet k was forwarded af-
ter leaving node N. Concretely, information is inferred from
(i) the known packet generation time of packets s and t, see
Figure 1(c), and (ii) the first-hop receiver reported by pack-
ets s and t. For every packet, this procedure is repetitively
applied until the packet has been traced up to the sink.

Due to phenomena common to WSNs, e.g., packet loss,
packet duplication and packet reordering, observations made
at the sink might not match with the reality. Therefore, the
MNT algorithm has to assess for each packet if information
can safely be reconstructed, or if there is the risk of obtaining
incorrect information. Based on the formal model of a sys-
tem that is presented in the next Section 5, the description of
the full MNT algorithm is situated in Section 6.

5 System Model
This section summarizes assumptions made and variables

used by the MNT algorithm. Details on the adaptation of
this generic model to more complex systems are presented
in Section 5.1, i.e., multiple sinks and systems that include
multi-layered storage architectures.

We assume a multi-hop wireless sensor network that con-
sists of a number of static sensor nodes and a sink. Commu-
nication is based on a tree-based routing protocol. The net-
work operation is subject to phenomena common to wireless
sensor networks, i.e., topology changes, packet loss, packet
duplication and packet reordering. All nodes produce and re-
lay data in the sense of a data collection application. Nodes
do not have access to global timing information and rely on
a local clock.



Packet application headers
o(k) Source node network address
t̃g(k) Estimated packet generation time
p(k) Network address of the current parent

Added on arrival at the sink
tb(k) Arrival time at the sink

From analysis, packet headers, or post-processing
∆u,l(k) Upper and lower bounds on the accuracy of the

estimated packet generation time t̃g(k)
idN(k) Packet index reflecting the correct order of gener-

ation for packets originating from a node N
Table 1. Overview of system model variables

FIFO send queue. All sensor nodes have the dual func-
tionality of (i) generating data locally and (ii) forwarding
packets received from other nodes. Sensor nodes maintain
a finite FIFO queue for all outgoing packets. A packet is
immediately added to this queue after generation in the lo-
cal application or arrival on the radio. If connected, a sen-
sor nodes transmits the contents of its send queue to the next
hop. If single-hop communication fails, a sensor nodes keeps
retransmitting the currently selected packet until this packet
was successfully acknowledged by the parent node, or if the
maximum number of transmission attempts is reached.
Delay-tolerant data generation. Sensor nodes are gener-
ating data, i.e., recording status information, that is trans-
mitted to the sink. The timing of data generation is unspec-
ified. Sensor nodes may also generate data while discon-
nected from the network. In this case, packets are buffered
on the sensor node until connectivity is reestablished.

We further assume that the information listed in Table 1
is known for each packet k that has been received at the sink.

Timing information. The arrival time at the sink tb(k) is
measured on a perfect clock and known for any packet k.
To allow for packet time-stamping mechanisms with inac-
curacies, we assume that only an estimate t̃g(k) of the packet
generation tg(k) is accessible for all packets. The error of this
estimate is bounded by t̃g(k)−∆l(k)≤ tg(k)≤ t̃g(k)+∆u(k).
Here, ∆u(k) and ∆l(k) denote the upper and lower bounds on
the error of the time-stamping mechanism used. ∆u(k) and
∆l(k) are not transmitted as part of a packet k, but assumed to
be derived from an analysis, e.g., an analysis on the accuracy
of the clock synchronization scheme used. As packets are
immediately added to the send queue after generation, t̃g(k)
is a valid proxy for the arrival time of a packet k at the send
queue of its source.
Sequencing information. We assume the existence of a
unique index idN(k) that yields the correct order of packet
generation for packets originating from an individual node
N: idN(u) > idN(v) iff tg(u) > tg(v). Packet loss is an ar-
tifact that is common to wireless multi-hop networks and
therefore cannot be avoided. We assume that idN(k) also
allows us to detect packet loss: Given a packet v generated
at N in direct succession of a packet u, it must also hold that
idN(v) ≡ idN(u)+ 1. Practically, idN(k) can be obtained by
submitting idN(k) as part of each packet, or by using post-

processing algorithms that can reconstruct idN(k), e.g., [14].
Piggy-backed topology information. Each packet k carries
a source address o(k) and a first-hop receiver address p(k).
For retrieving up-to-date information, p(k) is updated im-
mediately before each try of transmitting the packet to the
current parent. While transferring parent information is a
common best practice in many real applications, e.g., for
being able to generate snapshots of the network topology,
certain protocols, e.g., [32], even require this information to
be transmitted for their operation, e.g., for enabling passive
neighbor discovery. For applications that do not yet trans-
fer first-hop receiver information, a single field, we follow
the argumentation of Liu et al. [20] while considering the
introduced traffic overhead to be negligible.

For the MNT algorithm to be able to trace packets based
on the topology information described, we need to add an
assumption concerning the observability of parent changes:
For our further argumentation (see Section 6.3.1), it must
hold that the parent of N cannot have changed between the
successful transmission of consecutively, locally generated
packets u and v, if we observe p(u) ≡ p(v). Therefore, we
can only allow for up to one parent change between the suc-
cessful transmission of locally generated packets u and v.
While this is satisfied in the common case, properly han-
dling the rare situation of more than one consecutive parent
change between the transmission of two locally generated
packets would only ask for a small modification of the pro-
tocol operation, e.g., letting nodes locally count the number
of parent changes since the most recently transmitted topol-
ogy information and mark packets that were forwarded after
the second, consecutive change.

5.1 Modeling More Complex Systems
None or only little extra information is required for adapt-

ing our model to significantly more complex systems:

Multi-layered storage architecture. For supporting high
sampling rates and disconnected operation, recent system de-
signs envision sensor nodes to be equipped with extra hard-
ware for bulk storage, e.g., FRAM [5] or SD memory cards
[2]. Instead of maintaining a single packet queue only, lo-
cally generated packets are firstly added to a second queue
that is situated on the added storage. Extra information is
needed for supporting multi-layered storage architectures,
namely the time spent in other queues before a packet was
ultimately added to the send queue.
Multiple sinks. Sensor nodes may concurrently transmit
packets to multiple sinks, e.g., [23]. Here, sensor nodes are
at the same time part of multiple concurrent tree topologies.
A concrete multi-sink system conforms to our system model
if its operation can be abstracted as the concurrent operation
of multiple single-sink data collection trees that individually
conform to our system model. Data received at each sink is
then analyzed separately.

6 Safe Information Reconstruction
The MNT algorithm for reconstructing the travelled path,

the per-hop arrival order, and the per-hop arrival times of
individual packets is based on three core principles: First,
path information is reconstructed by a per-hop correlation



of locally generated and forwarded packets. Here, we ex-
ploit that locally generated packets include the address of the
first-hop receiver. Second, the per-hop arrival order of both
locally generated and forwarded packets is inferred from the
observed order of packet arrival at the sink. Third, packet
generation time information of locally generated packets is
used to bound the per-hop arrival time of forwarded packets
that arrived at a respective node immediately before or after
packet generation.

The correctness of information inferred is threatened by
phenomena common to WSNs, namely topology changes,
packet loss, and packet reordering. In the context of the
MNT algorithm, we need to address the following two prob-
lems: Firstly, observed and real packet paths of individual
packets must match. Therefore, we can only argue about
packets for which we can guarantee that those packets in
any case can only have travelled along exactly one path.
Likewise, per-hop order information inferred from the ob-
served order of arrival at the sink must also match with the
real packet order at packet queues within the network. Path
changes are the single source of packet reordering in multi-
hop networks. Thus, we must ensure that a packet can not
have been reordered due to a path change before we are al-
lowed to reconstruct information of this packet or to use this
packet for reconstructing information of other packets.

Given a trace P of received packets, the first step of the
MNT algorithm is to determine the set R of so called “reli-
able” packets. For packets within this set, we introduce the
concept of “anchor packets” for reconstructing packet path,
per-hop order, and per-hop arrival times of individual packets
at the sink: Given a forwarded packet k that was forwarded
to a node N, “anchor packets” s and t correspond to locally
generated packets that were generated at node N immedi-
ately before and after the arrival of k at N. Generation time
information and first-hop receiver information of both s and
t are used to firstly bound the time of arrival of k at N, and
secondly to deduce the next hop to which k travelled after N.

In the following, we will first describe the concept of
information reconstruction using “anchor packets” in Sec-
tion 6.1. The correctness of the results obtained is threat-
ened by artifacts of path changes. After specifying the con-
crete impact on our problem in Section 6.2, the following
Section 6.3 describes the properties of “reliable” packets and
how a set R of “reliable” packets can be determined given a
trace of received packets. Further extensions for improving
extracted information using forward and backward reason-
ing are presented in Section 6.4. Reconstructed timing in-
formation is often too pessimistic and can be improved by
correlating information of multiple packets.
6.1 Packet Correlation using Anchor Packets

This section formally describes the most integral concept
of information reconstruction using “anchor packets”. For
clarity and brevity, the following description assumes that
all involved packets are members of the corresponding set
of “reliable” packets R, and therefore reconstructed informa-
tion is correct. The construction of a set of “reliable” packets
will be described afterwards in Section 6.3.

Given a packet k, we want to reconstruct the following
information:

• Packet path Nk: Starting at the packet source o(k), the
ordered set Nk contains all nodes that packet k visited
until arriving at the sink node S. The order of items in
Nk reflects the order of visited nodes.

• Queue index qidN(k): For all nodes N that k visited,
i.e., ∀N ∈ Nk, we want to build a queue index qidN so
that qidN reflects the order of packet arrivals at N: The
queue index is larger, i.e., qidN(m)> qidN(n), iff packet
m arrived at N after another packet n, i.e., ta(N,m) >
ta(N,n). In contrast to the already known packet index
idN(k), the queue index qidN(k) provides not only the
sequence of locally generated packets, but also that of
forwarded packets.

• Bounds on queue arrival time tu,l
a (N,k): For all nodes

N that k visited, i.e., ∀N ∈ Nk, we want to bound the
unknown queue arrival time ta(N,k) so that t l

a(N,k) ≤
ta(N,k)≤ tu

a (N,k).
The reconstruction process for any packet k starts at the

source node o(k) where we are immediately able to assign
the queue index qido(k)(k), the arrival time bounds tu

a (o(k),k)
and t l

a(o(k),k), and the first two entries of the packet path
Nk. Concretely, the queue index qido(k)(k) is initialized
with a multiple of the known packet index ido(k)(k), i.e.,
qido(k)(k) := ido(k)(k) · c with c > 1. By multiplying the
packet index idN(k), we give room for adding forwarded
packets that arrived in between locally generated packets.
Therefore, the multiplier c must be larger than the maximum
number of forwarded packets that can arrive in between two
consecutively generated packets.

Next, arrival time bounds are initialized using upper and
lower bounds on the packet generation time:

t l
a(o(k),k) := t̃g(k)−∆

l(k) (1)
tu
a (o(k),k) := t̃g(k)+∆

u(k) (2)

Likewise, the arrival time tu,l
a (S,k) at the sink corresponds to

the known time of arrival at the sink tb(k): ta(S,k)u,l := tb(k).
The packet path Nk is initialized with Nk := {o(k)}. The next
hop corresponds to the known first-hop receiver p(k), we ini-
tialize N∗ := p(k), and start searching for anchor packets s
and t at N∗:

s := argmax
x

tb(x) for all x : o(x)≡ N∗∧ tb(x)< tb(k) (3)

t := argmin
x

tb(x) for all x : o(x)≡ N∗∧ tb(x)> tb(k) (4)

Regarding all packets that were generated at N∗, s is the
packet that arrived at the sink latest before k. Likewise,
packet t arrived at the sink earliest after k. While we can
only observe the order in which s, t and k arrived at the sink,
(3) assumes that if tb(s)< tb(k), it also holds that ta(N,s)<
ta(N,k). Likewise, (4) assumes that if tb(t) > tb(k), it also
holds that ta(N, t) > ta(N,k). We will show in Section 6.3
that this assumption is backed by packets s, k and t being
members of the corresponding set R of “reliable” packets.

The complete packet tracing algorithm is shown in Al-
gorithm 1. The anchor packet selection is situated between
lines 5 and 8. Tracing must firstly stop, if we cannot find



anchor packets s and t (line 9), if found packets s and t were
not consecutively generated (line 10), i.e., not all relevant
packets are also part of the set of “reliable” packets, or if we
cannot safely determine the next hop (line 11). The lowest
free queue index qidN∗(k) that is smaller than the queue in-
dex qidN∗(t) of the anchor packet t is determined in line 13.

Algorithm 1: Reconstruction of the path, the per-hop
arrival order, and per-hop arrival times of a packet k

input: Packet k with origin o(k), first-hop receiver p(k)
and arrival time at the sink tb(k). k ∈ R

1 begin
2 t l

a(o(k),k)←− t̃g(k)−∆l(k) ;
tu
a (o(k),k)←− t̃g(k)+∆u(k) ;

3 Nk←− {o(k)} ; N∗←− p(k) ;
4 while N∗ 6≡ S do
5 s← argmaxx tb(x)
6 for all x : x ∈ R∧o(x)≡ N∗∧ tb(x)< tb(k) ;
7 t← argminx tb(x)
8 for all x : x ∈ R∧o(x)≡ N∗∧ tb(x)> tb(k) ;
9 if s≡ {} or t ≡ {} then break ;

10 if idN∗(s) 6≡ idN∗(t)−1 then break ;
11 if p(s) 6≡ p(t) then break ;
12 Nk←−Nk ∪{N∗} ;
13 qidN∗(k)←− 1+maxqidN∗ qidN∗ < qidN∗(t) ;
14 t l

a(N
∗,k)←− t̃g(s)−∆l(s) ;

tu
a (N

∗,k)←− t̃g(t)+∆u(t) ;
15 N∗←− p(s) ;
16 end
17 t l

a(S,k)←− tb(k) ; tu
a (S,k)←− tb(k) ;

18 end

6.2 The Problem with Path Changes
Regarding our scheme of inferring information from ob-

servations made at the sink, path changes in the network
can introduce two kinds of difficulties: (i) Observations may
yield more than one possible path along which a packet k
may have travelled. In this case, it is not further decid-
able which of those multiple paths corresponds to the cor-
rect path. (ii) Packets can get reordered, and thus arrive at
the sink in a different order than they arrived at individual
queues within the network. In both cases, inferred informa-
tion is no longer guaranteed to be correct.

Let us outline those two problems in the following brief
example of a parent change: In Figure 2, we see that the par-
ent of a node N changes from node K to node L at a time tx.
Let us assume that packets nK1, nK2 and nL were generated
at node N. Additionally, there is a packet k that was for-
warded from a node M to node N in between the generation
of nK1 and nK2. While packets nK1, k and nK2 were still for-
warded to node K, packet nL was the first packet that went
to the new parent L. Although both paths individually for-
ward packets in the correct order, a larger delay for packets
traveling along the old path can lead to packets arriving out
of order when packets from both paths join at the sink. For
example, we now assume that packet nL arrived at the sink
before packets k and nK2, thus out of order. This can lead to

}
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Figure 2. Possible FIFO violation. In this example, the
parent of node N changes from node K to node L at time tx.
Since packets on both paths may experience arbitrary delays,
packets generated just before and after the topology change
might not arrive at the sink in the order of generation any-
more. This also affects packets being generated at more dis-
tant nodes, i.e., node M.

the following two problems: (i) Observations from the sink
no longer suggest that k can only have travelled along its real
path Nk := {M,N,K,S}, but also along the new path over
node L. (ii) Although nK1 and nK2 are the real “anchor pack-
ets” of k, the order of arrival at the sink would suggest to
wrongly select nL and nK2.
6.3 Finding a Set of Reliable Packets

With the goal of ensuring that packet correlation using
anchor packets is only applied when this procedure is safe,
we propose to limit information reconstruction to a subset
of the set P of received packets, namely to a set R ⊆ P of
“reliable” packets.

A packet k is reliable, i.e., k ∈ R, if it fulfills two proper-
ties: From our observations at the sink, we can guarantee
that (i) packet k can only have travelled along exactly one
path Nk, and that (ii) the order relation between packet k
and any other packet m ∈ R is consistent along all packet
queues in the network including the sink.

Regarding the first condition, the underlying problem is
that our observations made at the sink can yield multiple,
ambiguous paths when it is not decidable if a packet k left a
node N before or after node N switching to another parent.
Needed timing and order information for deciding this prob-
lem are yet unknown. While multiple choices might lead to
selecting another, but the real path, we can only reason about
packets that can only have travelled along exactly one path.

The second condition allows us to reason about the packet
arrival order at packet queues within the network from ob-
servations at the sink. While attached packet sequencing in-
formation idN(k) yields the sequence of packet generation
at a node N, the condition for reliable packets is stronger
as it covers both locally generated and forwarded packets at
an arbitrary node N. Formally, the second condition asks
for the following: For any packets m,n ∈ R, it holds that
∀N ∈ Nm ∩Nn : ta(N,m) > ta(N,n) iff tb(m) > tb(n). Here,
ta(N,m) and ta(N,n) are the unknown arrival times of pack-
ets m and n at node N. Nm∩Nn denotes the set of nodes that
both m and n visited, and therefore the set of nodes for which
an order relation between packets m and n exists.



We will now present how the MNT algorithm consecu-
tively solves those two problems. First, we present a worst-
case analysis that decides if a packet can only have travelled
along exactly one path, or if there are ambiguities. Second,
we will show in Section 6.3.2 how available packet sequenc-
ing information idN(k) of locally generated packets can be
used for solving the second problem. The complete algo-
rithm for finding a set of “reliable” packets is finally pre-
sented in Section 6.3.3.

6.3.1 Per-hop Worst-Case Path Analysis
In the following, we will describe how we can test

whether a packet k can only have left a node N to a unique
next hop, or whether there are ambiguities. Starting at
the known first-hop receiver p(k), the following procedure
is carried out per-hop until either the sink is reached, or
we must conclude that we cannot decide along which path
packet k travelled along.

Let us assume a packet k that was forwarded to a node
N. We now want to determine whether we can guarantee
that k can only have left node N to exactly one next hop,
and if yes, to which next hop. In this two-part worst-case
analysis, we first determine the set W of locally generated
packets in between which k may have arrived at N. Secondly,
we analyze whether all packets in W were forwarded to the
same next hop. Here, we consider both observable parent
changes, i.e., packets reporting different first-hop receivers,
and potential, hidden parent changes, i.e., a lost packet.

We start with determining the set W of locally generated
packets in between which k may have arrived at N. As the
arrival time of packet k at node N is yet unknown, we must
resort to bounding the arrival ta(N,k) of packet k at node N
by the lower bound on the generation time, i.e., t̃g(k)−∆l(k),
and the arrival time at the sink tb(k), i.e., t l

g(k) ≤ ta(N,k) ≤
tb(k). Based on those bounds, we determine packets u and
v that were generated at N immediately before and after the
earliest and latest arrival of k at N, respectively. Based on
the packet indexes idN(u) and idN(v), we then determine the
set W of packets in between which k can have arrived at N.
Here, W includes u, v, and all received packets that were
generated after and before u and v at node N, respectively.

u := argmax
x

t̃g(x)+∆
u(x) for all x : o(x)≡ N

∧ t̃g(x)+∆
u(x)< t̃g(k)−∆

l(k) (5)

v := argmin
x

t̃g(x)−∆
l(x) for all x : o(x)≡ N

∧ t̃g(x)−∆
l(x)> tb(k) (6)

W :=
{

w | o(w)≡ N

∧ idN(u)≤ idN(w)≤ idN(v)
}

(7)

THEOREM 1. We defined W as the set of all packets gener-
ated at a node N in between which a forwarded packet k must
have arrived at N. Given a packet k that arrived at a node N
in between two locally generated packets m,n ∈W, we can
guarantee that k was forwarded to a single possible next hop
if (1) all packets m ∈W were received at the sink, i.e., no

packet of W was lost, and (2) all packets m ∈W carry the
same first-hop receiver.
PROOF. For the proof, we now go back to our formal model
where we require that the first-hop receiver can not change
more than once between the successful transmission of two
consecutively, locally generated packets. Concretely, for any
parent change, there must be at least one transmitted packet
m that carries the new parent as its first-hop receiver p(m).
Based on this assumption, there can be only one possible
next hop if (1) all packets m ∈ W were received, and (2)
all packets m,n ∈W were forwarded to the same first-hop
receiver, i.e., ∀m,n ∈W : p(m)≡ p(n).

Practically, packet loss is detected using the packet in-
dex idN : No packets between u and v were lost, iff the
number of elements |W| of the duplicate-free set W equals
the difference of idN(v) and idN(u) plus one, i.e., |W| ≡
idN(v)− idN(u) + 1. If packet loss is detected, we cannot
add packet k to the set R of reliable packets.
6.3.2 Exclusion of Packet Reordering

If a packet k is guaranteed to have travelled along exactly
one path, we can add k to the set R of “reliable” packets, if
we can also guarantee that the order relation between packet
k and any other packet m ∈ R is consistent along all packet
queues in the network including the sink.

Here, our approach is to solve this problem at its source,
namely parent changes within the network. Concretely, we
want to analyze per hop if packets were reordered due to a
parent change at this node. In the following, we present how
this is done using sequencing information that is provided
for locally generated packets.

We define CN as the set of conflict-free packets originat-
ing from a node N. Concretely, it holds that ∀m,n ∈ CN :
tb(m) > tb(n) iff idN(m) > idN(n), which essentially means
that all packets that are in CN arrived at the sink in the same
order as they were generated at node N. While the number
of possible subsets CN ⊆ P is arbitrarily large, we propose to
maximize the size of CN by mapping the problem of finding
CN to solving the maximum independent set problem [21].
Therefore, we construct a graph in which each packet that
originates from a node N under investigation is represented
by a vertex. While the maximum independent set problem
is about finding the largest subset of independent elements,
we connect two vertices with an edge, if the requirement
tb(m) > tb(n) iff idN(m) > idN(n) is violated between the
corresponding packets m and n.
THEOREM 2. We defined W as the set of all packets gen-
erated at a node N in between which a packet k must have
arrived at N. For any packet k that arrived at a node N in be-
tween two consecutively, locally generated packets m,n∈W,
it holds that packet k cannot have been reordered due to a
parent change at N, if (1) k can only have left N to a sin-
gle possible next hop, and (2) all packets m that are part of
W are also part of the set of conflict-free packets CN , thus
∀m ∈W : m ∈ CN .
PROOF. Let us go back to the situation in Figure 2 and con-
sider a node N that generated packets nK1, nK2 and nL. While
nK1 and nK2 were forwarded to a node L, packet nK was for-
warded to another parent K. We further assume that all three
packets are in W, i.e., W := {nK1,nK2,nL}. In the follow-



ing, we will now discuss three possible cases concerning a
forwarded packet k arriving in between two packets of W.
Case 1: Packet k arrived in between nK2 and nL: As packets
nK2 and nL were forwarded to different next hops and there-
fore must carry distinct first-hop receivers, k is already ex-
cluded from being a member of the set R of reliable packets
due to ambiguities in the observable path.
Case 2A: Packet k arrived in between nK1 and nK2, all pack-
ets nK1, nK2 and nL arrive at the sink in the same order as they
arrived at N: Since all locally generated packets arrived in
order, all three packets n1, nK and nL are part of the conflict-
free set of packets. In fact, packet k has not been reordered
due to a parent change at N. Analyzing packet k continues
until the sink S is reached.
Case 2B: Packet k arrived in between nK1 and nK2, packets
arrive at the sink in the inconsistent order nK1→ nL→ k→
nK2: Packet k is no longer arriving at the sink in between
its correct “anchor packets” nK1 and nK2, but in between nL
and nK2. It becomes apparent, that nL arriving at the sink be-
fore nK2 is a conflict, which means that at most one of those
two packets can still be in the set of conflict-free packets CN .
Therefore, not all packets that are part of W are now also part
of CN anymore. In consequence, k is no longer guaranteed to
not have been reordered, and therefore not added to the set
of “reliable” packets R.
6.3.3 Algorithm for Finding a Reliable Set

In the following presentation of the complete algorithm
for constructing a set of “reliable” packets R, we will now
combine our previous findings. Here, we construct R by de-
ciding for each packet k ∈ P, if k is also a member of R.
While the corresponding sets of conflict-free packets CN is
not part of Algorithm 2, those sets are determined before ex-
ecuting Algorithm 2 by solving the corresponding maximum
independent set problem (see previous Section 6.3.2).

We start with firstly determining if packet k arrived at the
sink out of order w.r.t. packets originating from the same
source (line 2). Then, we start with our analysis at the first-
hop receiver N∗ := p(k). We can safely assume that k must
have arrived at N∗ later than it was generated, but earlier than
it arrived at the sink, i.e., t̃g(k)−∆l(k) < ta(N∗,k) < tb(k).
Thus, k can have arrived at N∗ in between any of two locally
generated packets m,n ∈W. Here, Equations (5) to (7) for
determining W are reflected by lines 7 to 13 in Algorithm 2.

This analysis is a worst-case analysis, because we must
prematurely stop for safety reasons, if one of the following
conditions is met: First, we must stop, if k might have been
forwarded to not only one, but alternative other nodes. Ev-
idence for this is found if we find evidence for packet loss
in W (lines 14 to 15), as well as when not all packets in
W were forwarded to the same first-hop receiver (lines 16
to 17). Second, we must also stop, if we find evidence that
a packet w ∈W arrived at the sink out of order w.r.t. an-
other locally generated packet v (line 18). In the good case,
we continue analyzing k in the context of the next hop, i.e.,
N∗ := p(u) (line 19). Packet k is added to R, if we can safely
trace the packet until the sink is reached (line 21). At the end
of this algorithm, we constructed a set R ⊆ P so that packet
correlation using anchor packets is safe for all packets k ∈R.

Algorithm 2: Algorithm for deciding if a packet k ∈ P
is also a member of the set of “reliable” packets R

input: Packet k

1 begin
2 if k 6∈ Co(k) then
3 return ;
4 end
5 N∗←− p(k) ;
6 while N∗ 6≡ S do
7 u← argmaxx t̃g(x)+∆u(x) for all x : o(x)≡ N∗

8 ∧ t̃g(x)+∆u(x)< t̃g(k)−∆l(k) ;
9 v← argminx t̃g(x)−∆l(x) for all x : o(x)≡ N∗

10 ∧ t̃g(x)−∆l(x)> tb(k) ;
11 if u≡ {} or v≡ {} then break ;
12 W←− {w | o(w)≡ N∗
13 ∧idN∗(u)≤ idN∗(w)≤ idN∗(v)}
14 I←− {idN∗(w) | w ∈W} ;
15 if |I| 6≡maxI−minI+1 then break ;
16 P←− {p(w) | w ∈W} ;
17 if |P|> 1 then break ;
18 if ∃m ∈W : m 6∈ CN∗ then break ;
19 N∗←− p(u) ;
20 end
21 if N∗ ≡ S then R←− R∪{k} ;
22 end

6.4 Forward and Backward Reasoning
Initially set bounds on packet arrival times ta(N,k) are

often pessimistic. As a first improvement, a packet can ap-
parently not have arrived earlier than it was generated:

∀N ∈Nk : t l
a(N,k) := max

(
t̃g(k)−∆

l(k), t l
a(N,k)

)
Likewise, the arrival time at the sink tb(k) of a packet k

marks the largest upper bound:

∀N ∈Nk : tu
a (N,k) := min

(
tb(k), tu

a (N,k)
)

6.4.1 Forward and Backward Queue Traversal
For achieving further improvements of the arrival time of

a packet k at a node N, the timing information of packet k
can be correlated with information of other packets that also
arrived at node N.

Given a packet k that was arriving at the queue of a node
N, thus N ∈ Nk, the following equations state, that the ob-
servable order of arrival at node N must also be reflected by
the upper and lower bounds on the arrival time ta(N,k):

∀u,N ∈Nu, tb(u)< tb(k) : t l
a(N,k) := max

(
t l
a (N,k) , t l

a (N,u)
)

∀v,N ∈Nv, tb(v)> tb(k) : tu
a (N,k) := min

(
tu
a (N,k) , tu

a (N,v)
)

As we are restricting us to packets k ∈ R, the order of
packet arrivals at the packet queue of node N matches with
the observed order of packet arrivals at the sink. Simi-
larly, bounds can also be improved by correlating informa-
tion from different nodes that a particular packet visited.



7 Multi-Protocol Testbed Evaluation
In this section, we validate and evaluate our implemen-

tation of the MNT algorithm based on experiments with
two well-known state-of-the-art communication stacks used
for data collection, namely CTP [10] and Dozer [4]. After
describing the experimental setup, i.e., the protocol selec-
tion, the packet time-stamping scheme used, and the infras-
tructure used for extracting ground-truth information, results
obtained are validated by comparing them to ground truth.
The performance of the implementation used is evaluated in
terms of the fraction of packets for which information recon-
struction succeeded, the time passed until results are avail-
able, and the accuracy of calculated arrival time bounds.

7.1 Experimental Setup
The results presented originate from three test environ-

ments: CTP Noe is executed on top of the standard low-
power listening (LPL) MAC that is provided with version
2.1 of TinyOS. Those tests are carried out on up to 92
Tmote Sky (TI MSP430, CC2420 radio) nodes that are part
of the TWIST testbed [11]. Twenty-five TinyNode184 (TI
MSP430, Semtech SX1211 radio) nodes of the also public
FlockLab testbed [19] are used for measurements that in-
volve Dozer. For larger scaling tests on a 100-hop line topol-
ogy, we are furthermore running experiments with an imple-
mentation of CTP [7] in the Castalia/OMNeT++ [3] network
simulator.

The purpose of the protocol selection and configuration
used is to cover the following design aspect of routing pro-
tocols: While nodes are configured to turn on their duty-
cycled radios every 62ms and 250ms, respectively, when
running CTP Noe on top of the standard low-power listen-
ing [26] MAC found in TinyOS 2.1, communication only
takes place every 15 or 30 seconds, respectively, when run-
ning Dozer with a corresponding set of parameters. While
the design space for routing protocols is definitely broader,
e.g., includes energy considerations, the tradeoff between re-
activity and latency is of highest relevance in the context of
this work. All protocols have only been modified to trans-
mit per-packet information assumed by our formal system
model. This requires only changes on the application-level,
other layers remain untouched.

7.1.1 Packet Time-stamping
Providing simple integration, we decided to obtain packet

generation timestamps using elapsed time on arrival [16].
We define ts(k) as the accumulated sojourn time that a packet
k spent within the network. Ideally, the packet generation
time tg(k) of a packet k is retrieved by subtracting the packet
sojourn time ts(k) from the arrival time of the packet at the
sink, thus tg(k) := tb(k)− ts(k). Here, it is assumed that tb(k)
and ts(k) are measured on perfect clocks.

In the context of real clocks, we cannot measure ts(k),
but the estimated packet sojourn time t̃s(k) that includes ar-
tifacts caused by measuring time on clocks with a low res-
olution and drift. After being initialized with t̃s(k) := 0 on
packet generation, this additional packet header is succes-
sively updated while a packet travels through the network.
The inaccuracy of the resulting packet generation time esti-
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Figure 3. Extraction of ground truth. For our validation
tests, we instrumented code to make the travel of individ-
ual packets observable. This information is not transferred
in-band, but over the serial port of the sensor node. Sen-
sor nodes firstly generate a log message when a packet is
added to the send queue (ADD), and secondly immediately
before a packet is handed over to the radio for transmission
(GET). The value of the local transmission counter tNr is in-
cremented before any transmission attempt, and logged on
both sender and receiver sides.

mate t̃g(k) := tb(k)− t̃s(k) of a packet k is as follows:

∆
u(k) :=

t̃s(k)
1+ ρ̂

, ∆
l(k) :=

t̃s(k)+ |Nk| · t̂u
1− ρ̂

Here, we assume a bounded clock drift ρ ∈ [−ρ̂; ρ̂], e.g.,
ρ̂ :=±60 ppm, and a clock resolution of t̂u, e.g., t̂u := 1 sec.
As an error of [0,+t̂u) can be introduced by each separate
measurement, we must multiply t̂u with the length |Nk| of
the packet path Nk.
7.1.2 Extraction of Ground Truth

For the validation of the MNT algorithm, we are inter-
ested in the ground truth w.r.t. the path, the per-hop ar-
rival order, and the per-hop arrival time of individual pack-
ets. Therefore, we instrumented existing protocol code for
outputting this information over the serial port of the sensor
node. An observer device, e.g., a more powerful, networked
PC, is connected to the serial port of any sensor node, re-
ceived messages are logged to a file. Compared to sending
ground truth information in-band over the radio, transmitting
ground truth information over the serial port is very reliable,
does not influence the packet stream under investigation, and
also scales well for larger networks. Additionally, messages
can be timestamped using the accurate, synchronized clock
of the observer device. Ground truth is eventually recon-
structed by correlating information from individual logs.

In more detail, sensor nodes log the following two events:
Firstly, a log message is generated when a packet is added to
the packet queue (ADD). This can be triggered by the appli-
cation generating a new message, by the reception of a for-
warded packet, or when a packet is copied from a secondary
node storage, e.g., a SD card. Secondly, a log message is
also generated immediately before every attempt of trans-
mitting a message over the radio (GET). Therefore, there can
be multiple occurrences of GET events for a single packet.
The occurrences of both events are timestamped on the lo-
cal node clocks, the time difference between corresponding
ADD and GET events yields the local packet sojourn time of
a packet on a particular node. The sink is simply forwarding



Packets Proc. Delay Uncertainty
N D IPI H PC DY Received Reliable Full path Correct p0.9 p0.98 p0.9 p0.98

CTP Noe/LPL
A) 92 10h 15s 4 274 99.0% 217,078 99.0% 98.9% 100.0% 17s 20s <1s <1s
B) 85 9h 30s 3 122 98.3% 88,541 98.9% 98.9% 100.0% 32s 40s <1s 1s
C) 91 9h 120s 4 416 99.2% 54,143 98.4% 98.2% 100.0% 62s 75s 1s 1s

CTP (Simulation)
D) 100 5h 30s 100 0 99.9% 60,150 96.5% 93.2% 100.0% 30s 31s <1s <1s
E) 100 20h 120s 100 0 99.9% 60,112 97.0% 94.3% 100.0% 120s 121s <1s <1s

Dozer
F) 25 12h 15s 3 548 99.8% 48,321 91.3% 91.2% 100.0% 537s 1363s 15s 90s
G) 25 16h 30s 4 193 99.9% 35,220 92.4% 92.3% 100.0% 1024s 2201s 30s 120s
H) 25 24h 120s 4 196 99.9% 18,216 98.5% 98.4% 100.0% 120s 180s 84s 114s
I) 10 60h ∗120s 3 37 99.5% 84,563 97.7% 97.7% 100.0% 122s 212s 74s 118s

Table 2. Validation and evaluation based on testbed experiments and simulation. Shown are the number of sensor nodes
(N), the duration of the test (D), the inter-packet interval (IPI), the height of the data collection tree in hops (H), the number
of observed parent changes (PC), and the data yield (DY). The fractions of packets that were part of the “reliable” set and the
fractions of packets that could be fully reconstructed up to the sink are specified based on the number of packets received.
The distribution of the processing delay is given by the 90th and 98th percentiles. Similar, the per-hop arrival time bounds
uncertainty, i.e., the difference of upper and lower bounds, is also given using percentiles. (∗) Deployment configuration in
which five packets are generated every 120s.

any received packet to the serial port.
Packet duplications can lead to multiple copies of a single

packet being simultaneously traveling through the network.
For being able to distinguish between multiple instances of a
single packet, each packet transmission is made uniquely de-
tectable by adding a transmission counter. Each sensor node
is individually counting its local transmission attempts, the
current counter value is added to each packet just before the
packet is passed over to the radio. Sending the counter value
in-band allows to log the respective value at both sides and
finally to match the traces of the sending and the receiving
node. An illustrating example of this mechanism is shown in
Figure 3.
7.2 Validation and Evaluation Results

Validation and evaluation results from nine different test
configurations are shown in Table 2. Results from simulation
are in line with results obtained from experiments on real
hardware. Varying test durations and network sizes are a re-
sult of varying availabilities of testbed resources. Apart from
available time slots, tests are also limited to sensor nodes for
which serial logging turned out to be successful in a pre-test.

For evaluating the sensitivity of the MNT algorithm w.r.t.
the inter-packet interval (IPI), tests are repeated using vary-
ing packet generation rates. While using a periodic packet
generation scheme allows us to make the sensitivity w.r.t. the
IPI more visible, the MNT algorithm neither requires packet
generation to be periodic, nor asks for all sensor nodes being
using the same scheme (see Section 5). For being able to
evaluate the performance for both very high and artificially
lowered data yields, nodes are programmed to only generate
new packets when there is free space in the local send queue.
While this avoids packets being dropped due to queue over-
flows, this can result in the effective IPI being lower than the
configured IPI.
7.2.1 Evaluation Methodology

The number of parent changes is computed from collected
ground truth information. The number of missing packets,

and thus the data yield, is calculated from included packet
sequencing information idN(k). Here, a packet is not only
missing if it was not received at the sink, but also when
ground truth information is missing. As we generally find
serial port communication very reliable, the amount of pack-
ets missing due to missing ground truth information is not
significant.

Reconstructed information of a packet is only counted
as correct if all three reconstructed components, i.e., packet
path, per-hop arrival order and per-hop arrival times, are cor-
rect. The reconstructed path Nk of a packet k is correct if
found nodes including their order matches with ground truth.
The reconstructed path can prematurely end if packet k could
not be fully reconstructed, but cannot contain additional el-
ements or gaps. Reconstructed arrival order information is
correct if the order of the queue index qidN(k) matches with
ground truth for any node N ∈ Nk. Lastly, extracted ar-
rival time bounds are correct if it holds for all packets k ∈ R
that the real arrival time ta(N,k) is within the reconstructed
bounds, i.e., ∀N ∈ Nk : t l

a(N,k) ≤ ta(N,k) ≤ tu
a (N,k). As

both reconstructed bounds and ground truth are measured on
clocks of varying resolution and drift, this comparison allows
for a bounded measurement error.

As presented in Section 6, the MNT algorithm also re-
quires information of packets that arrived at the sink later
than a packet k under investigation. We define the process-
ing delay as the time distance between the arrival time tb(k)
of packet k at the sink and the arrival time tb(v) of packet v at
the sink, i.e., tb(v)−tb(l). Here, v is the latest arriving packet
that is required for the analysis of packet k.

The uncertainty of reconstructed per-hop arrival time
bounds is defined as the difference between upper and lower
bounds, i.e., tu

a (N,k)− t l
a(N,k).

7.2.2 Discussion
This section details on how the IPI, the reactivity of

the communication protocol used, the length of the routing
paths, the time packets spent in the network and the amount
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Figure 4. Sensitivity of the reconstruction performance
to a decreasing data yield. The fraction of received packets
for which information can be safely reconstructed converges
towards the fraction of packets that originate from single-hop
neighbors of the sink.

of lost packets influence the performance of the MNT algo-
rithm. After firstly discussing the fraction of reconstructed
packets, we will also detail on the processing delay and the
uncertainty of reconstructed per-hop arrival time bounds.

While the core principle of the MNT algorithm is to
reconstruct information from created correspondences be-
tween multiple packets of different sources, an integral met-
ric for understanding the reconstruction performance is the
number of correspondences that are needed for being able
to safely reconstruct the information of a packet. The num-
ber of packets that need to be considered during a worst-case
path analysis (see Section 6.3.1) grows with the length of the
routing path and the time a packet spent in the network. Sim-
ilarly, the number of packets whose reconstruction relies on
a particular packet also grows for longer routing paths and
larger packet sojourn times. In consequence, the number of
packets whose reconstruction might be affected by a partic-
ular parent change or a lost packet is also increasing.

Recent deployment reports, e.g., [5, 15], confirm that a
data yield of ≥ 99.5% is achievable even in very challeng-
ing environments. A problem within the network must not
necessarily be reflected by a large portion of packets being
lost, but can also cause packets arriving at the sink with a
larger delay. For instance, the Dozer implementation used
in the PermaSense project does not deliberately drop pack-
ets, but retransmits each single packet until its reception was
eventually acknowledged by the next hop.

Nevertheless, artificially lowering the data yield down to
50% allows us to study the fundamental limits of the MNT
algorithm. Starting with the original traces obtained from
tests C), E), F) and H), the data yield is consecutively low-
ered by randomly removing packets. The resulting recon-
struction performance is shown in Figure 4. Here, we see the
fraction of fully reconstructed and received packets converg-
ing towards a stable value which is the fraction of packets
originating from one-hop neighbors of the sink. For exam-
ple, only 1% of the packets in test E) originate from the sin-
gle one-hop neighbor in the simulated 100-hop line topology.
The decrease is almost linear for cases C) and H), the curves
for the tests E) and F) show a steep decay at the beginning
of the curve. Large routing paths in test E) and large packet
sojourn times of up to four hours in test F) result in large
numbers of correspondences needed for deciding if informa-

tion can be reconstructed safely. In consequence, already
a small number of lost packets can cause the information
needed for the reconstruction of multiple other packets be-
ing lost in those extreme situations.

Regarding the time needed until all related packets also
arrived at the sink, the results of tests A) to E) show a cor-
relation between the processing delay and the chosen IPI.
While almost all packets reached the sink as fast as possi-
ble in those five tests, the results presented for tests F) and
G) include the effects of a fraction of packets staying in the
network for several hours.

The uncertainty of reconstructed per-hop arrival time
bounds is upper bound by the largest IPI used along the rout-
ing path. Uncertainties are significantly reduced when a re-
active communication stack, i.e., CTP Noe/LPL, is used.

Overall, the MNT algorithm has proven to achieve high
reconstruction rates≥ 91.2% in various configurations based
on well-known CTP and Dozer protocols. During normal op-
eration without congestion, information can be reconstructed
quickly after a packet has been received at the sink. The
uncertainty of reconstructed per-hop arrival time bounds is
not affected by large packet sojourn times. Comparison with
ground truth showed reconstructed information to be correct
in all cases.

8 Making Real Network Dynamics Visible
This case study presents the application of the MNT algo-

rithm to large data sets that originate from three productive
real-world deployments of the PermaSense project. After the
initial deployment of the first system in 2008, the principle
operation of the Dozer protocol used and the definition of
packet application headers transmitted have not been modi-
fied ever since. This enables a coherent analysis of the com-
plete data sets using the MNT algorithm.

Section 8.1 presents the reconstruction of information re-
quired by the MNT algorithm. The purpose of this step is to
map the output of the specific system implementation to the
inputs of the implementation-independent, generic system
model (see Section 5). The accuracy of this transformation
step is evaluated in testbed experiments. Results obtained
from applying the MNT algorithm to the resulting traces are
presented and discussed in Section 8.3. Section 8.4 describes
the targeted usage scenario of reconstructed data.

8.1 Data Preparation Methodology
Input data required by the MNT algorithm is not implic-

itly included in PermaSense data sets and must therefore be
reconstructed from other information during a multi-stage
pre-processing step, see Figure 5:

• Packet index idN(k): Sequencing information provided
by a sequence number transmitted that is reset to zero
every 20 days in average must be converted to a mono-
tonically increasing packet index idN(k). The algorithm
used is able to address both intended, i.e., the maximum
counter value is reached, and unintended resets, e.g., a
node failure, of the sequence number.

• SD card store time: Most sensor nodes used in the
PermaSense project are equipped with an SD card that
buffers locally generated packets when the node is dis-
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Figure 6. PermaSense sensor node with two packet
queues. Locally generated packets are looped through a sec-
ond queue that is situated on a SD memory card. The packet
generation time is no longer a valid proxy for the send queue
arrival time, the MNT algorithm thus requires the duration
for which a packet was stored on the SD card to be known.

connected. Independent of the connection state, all lo-
cally generated packets are looped through this extra
queue, see Figure 6. Received packet sequencing and
periodically sampled queue size information are used
for replaying queue operations and eventually recon-
structing the SD card store time of individual packets.

• First-hop receiver p(k): Nodes do not transmit the
first-hop receiver of individual packets, but periodically
sample the address of the current parent node. This
requires the reconstruction of the time when a locally
generated packet left the send queue, and thus was suc-
cessfully transmitted over the radio. The estimation of
this information is also based on known properties of
the queue implementations used.

The accuracy of the deployment data preparation test is
verified in two testbed experiments of 110 hours duration
in total. Similar to a deployed setting, these experiments
involve six sensor nodes with attached SD cards, four sen-
sor nodes that can only buffer messages in the RAM, and
one sink node. Sensor nodes generate five packets every 2
minutes. Queue size counters and parent information are
transmitted with every fifth packet. In contrast to the de-
ployed setting, ground truth SD card store time and first-hop
receiver are also transmitted with every packet. For forc-
ing sensor nodes to buffer messages, the sink node is eight
times switched off for a duration of 3 hours each. From
157,645 unique packets received, 99.4% of the packets pass
the first stage of assigning a unique packet index idN(k).
SD card store time and first-hop receiver information are
reconstructed for 154,870 packets, remaining packets can-
not be reconstructed due to missing context at the end of the

Matterhorn Jungfraujoch Dirruhorn
Deployment characteristics

Network size 26 nodes 15-28 nodes 28 nodes
Years of operation 3.3 3.1 1.6

Received packets
Unique 78,023,336 46,101,139 19,500,270
Duplicates 548,796 435,542 132,027

Packets after Data Cleaning
Unique 99.0% 98.5% 99.3%

Packets after Health Packet Analysis
Total unique 98.4% 86.2% 98.3%
Per node, min 97.0% 33.6% 94.0%
Per node, max 99.9% 99.9% 99.4%

Input of Multi-Hop Network Tomography
Total 76,869,053 39,814,741 19,207,962
% of unique packets 98.5% 86.4% 98.5%

Table 3. Results of PermaSense-specific data prepara-
tion. Large portions of the input data have been recon-
structed and are therefore ready for the multi-hop network
tomography. Results of the Jungfraujoch deployment vary
due to gaps in the traces used.

trace. Reconstructed first-hop receiver information is correct
in 99.96% of the cases. Subject to actually buffered packets
only, the absolute mean error of the estimated SD card store
time is 50s. This is to be expected given that queue sizes are
only sampled every two minutes. Please notice that the log-
ical ordering in which packets arrive is unaffected from this
uncertainty, and that this uncertainty is specific to historic
data originating from PermaSense deployments only.
8.2 Multi-Year Deployment Data Preparation

Multi-year deployment data originating from different
hardware and software releases is not perfect, e.g., still con-
tains artifacts of problems that have been fixed over time.
Therefore, the analysis of such data requires highest atten-
tion and care. Results of each intermediate step are sepa-
rately verified by automated and manual sanity checks. The
results of the implementation-specific data preparation for
more than 140 million packets that originate from three sen-
sor network deployments are shown in Table 3. More than
98.5% of the data from Matterhorn and Dirruhorn deploy-
ments have been reconstructed and are therefore ready for
multi-hop network tomography. The results for the Jungfrau-
joch deployment originate from truncated traces that are
possibly caused by unintended manual deletion in the data
repository. While the ends of the three incomplete traces
show ca. 100,000 buffered packets each after a long phase
of no connectivity, corresponding health packets for recon-
structing how queues were flushed are missing.
8.3 Multi-Deployment Network Tomography

The execution of the MNT algorithm requires the com-
bined processing of the traces of all sensor nodes. To deal
with the amounts of data found in this case study, data sets
are split into week-long slices with approximately 300,000
packets per slice. Each slice contains packets that were gen-
erated during the corresponding week. Depending on the
time packets spent in the network also packets of following
weeks must be loaded for providing required context to the
worst-case path analysis that is part of the MNT algorithm
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Figure 7. Weekly reconstruction performance of
Jungfraujoch data set. Lower performance is caused by
gaps in the data repository that were unintentionally intro-
duced during the handling of data received.

Matterhorn Jungfraujoch Dirruhorn
Total packets including packet duplicates

Input 76,869,053 39,814,741 19,207,962
Reliable 99.5% 93.4% 97.8%
Full path 99.5% 91.5% 93.7%

Fully reconstructed packets per week-long slice
Min 92.5% 7.5% 67.8%
Max 100.0% 100.0% 100.0%

Table 4. Results of multi-hop network tomography. The
MNT algorithm is able to trace both original packets and
independently traveling packet duplicates. Since it is not
known at which hop a packet was actually duplicated, all
packet instances are assumed to originate from the source.
Duplicates are generally flagged and removed if this inaccu-
racy might harm the result of a particular analysis.

(see Section 6.3.1). For example, up to 10 times more data
must be loaded when processing packets that were buffered
in the network for multiple months at the Jungfraujoch site.

Multi-hop network tomography results are presented in
Table 4 and Figure 7. More than 91.5% of the packets passed
to the MNT algorithm were fully reconstructed. Compared
to the amount of total received packets from the network be-
fore the data preparation, this accounts to 97.3%, 78.3%, and
91.6% of packets being fully reconstructed.

Lower results for individual weeks are caused by the
MNT algorithm not being able to reconstruct all packets due
to missing context, i.e., human errors while handling data
causing significant amounts of packets to be missing in the
data repository. This is especially visible in Figure 7 which
shows the weekly amounts of fully reconstructed packets and
raised errors due to missing context. The number of errors
virtually mirrors the number of packets that could not be re-
constructed. Other potential problems, e.g., sporadically lost
packets and packet reordering, are only causing insignificant
amounts of packets to be not reconstructable.
8.4 Performance Analysis Inside the Network

Multiple phenomena contribute to the delay that a packet
experiences inside the network. Apart from the baseline set
by the configuration of the protocol used, the packet delay is
also influenced by intermittent routing problems, e.g., prob-
lems with the wireless channel or no free buffer capacity at
the next hop towards the sink. For example, understand-
ing that large amounts of packets are delayed due to miss-
ing fairness within the network could be a valuable indica-
tor for improving the network beyond the scope of protocol
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Figure 8. Goodput (left-hand side axis) and fairness
index (right-hand side axis) at node position 3 of the
Dirruhorn deployment. This node is on average two hops
away from the sink. It generates own data and receives pack-
ets from seven other nodes during the time period shown.
Different packet sources are shown using distinct colors. The
allocation of slots in the packet queue is no longer fair when
the goodput is higher than 0.5 packets per second.

self-recovery mechanisms, e.g., by modifying statically set
protocol parameters.

Combining reconstructed packet path and per-hop arrival
times for deriving bounds on per-hop packet sojourn times
is probably the most promising application of reconstructed
data. Supported by the fact that the uncertainty of recon-
structed arrival times is not affected by large packet sojourn
times, our vision is to infer detailed network state, e.g., links
suffering from bad connectivity, from reconstructed per-hop
packet sojourn times.

While the automated processing and interpretation of re-
constructed information is outside the scope of this paper, the
following example highlights how reconstructed information
can be used for analyzing fairness within the network. Fol-
lowing the definition of Jain et al. [13], we calculate the
Fairness Index that is defined as the fraction of users being
treated fair. An allocation is fair, if all users receive a share
that is fair in terms of their own demand and the demand of
other users. Results obtained for 20 minutes long slices are
shown in Figure 8. While the demand is defined as the num-
ber of packets that are currently buffered in both queues of a
sensor node, the allocated share is defined as the number of
packets that a particular child node transmitted during a slice
of 20 minutes length.

In our analysis, we find the sink node to always be fair to
its children. This is to be expected as the sink node is not
duty-cycled and also does not suffer from queue size con-
straints when data is immediately forwarded to the base sta-
tion PC. However, fairness is no longer given at intermediate
nodes when the amount of received packets is higher than 0.5
packets per second over a longer time period. It is to investi-
gate if this behavior needs to be improved, e.g., by modifying
the current queue allocation scheme.
9 Broader Applicability and Limitations

With tree-based routing protocols being very popular in
real-world deployments, the MAC-independent MNT algo-
rithm can potentially be used in many scenarios. Still, the
assumption of all nodes generating data might not fit to some
applications. While sensor nodes that only forward packets
could be modified to cooperate, i.e., modify passing first-hop
receiver information to hide themselves, the existence of sole
forwarders will unavoidably introduce inaccuracies. Addi-



tionally, the assumption of routing paths being rather stable
might render the MNT algorithm not applicable for systems
in which path changes occur very frequent, e.g., because of
nodes selecting the next hop in a round-robin fashion.

10 Conclusions
This paper presented multi-hop network tomography

(MNT), a novel, non-intrusive algorithm for the reconstruc-
tion of the path, the per-hop arrival order and the per-hop
arrival time of individual packets. The results of extensive
testbed runs of two state-of-the-art data collection protocols,
i.e., CTP and Dozer, verified that information can be recon-
structed with a great confidence. The application in a deploy-
ment context has been proven to be feasible in a case study
that involved more than 140 million packets from three real-
world sensor network deployments.
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