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Abstract We introduce a new model for robust combinatorial optimization where
the uncertain parameters belong to the image of multifunctions of the problem vari-
ables. In particular, we study the variable budgeted uncertainty, an extension of the
budgeted uncertainty introduced by Bertsimas and Sim. Variable budgeted uncertainty
can provide the same probabilistic guarantee as the budgeted uncertainty while being
less conservative for vectors with few non-zero components. The feasibility set of
the resulting optimization problem is in general non-convex so that we propose a
mixed-integer programming reformulation for the problem, based on the dualization
technique often used in robust linear programming. We show how to extend these
results to non-binary variables and to more general multifunctions involving uncer-
tainty set defined by conic constraints that are affine in the problem variables. We
present a computational comparison of the budgeted uncertainty and the variable bud-
geted uncertainty on the robust knapsack problem. The experiments show a reduction
of the price of robustness by an average factor of 18 %.
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76 Michael Poss

1 Introduction

For a large class of linear programs it is very hard or even impossible to compute
exactly the parameters. Two main frameworks have been introduced to address this
difficulty: stochastic programming and robust programming. Stochastic programming
supposes that the unknown parameters are described by known random variables and
replaces the deterministic constraints by chance constraints that must be satisfied
with a given probability. Robust programming supposes that the unknown parameters
belong to known uncertainty sets and imposes that the constraints are feasible for
all values of the parameters in the uncertainty sets. The two frameworks have also
been considered in a dynamic context, where subsets of the decision variables must
be fixed only after part of the uncertainty has been revealed. This is usually known as
multi-stage stochastic programming (Birge and Louveaux 2011) and adjustable robust
optimization (Ben-Tal et al. 2009), respectively. In this paper, we are interested by the
static situation where all decisions must be taken before the uncertainty is revealed.

Linear chance constraints suffer from two main drawbacks: (i) the probability dis-
tributions of the random parameters are often impossible to describe with precision
and (ii) the resulting optimization problems are very hard to solve exactly. In contrast,
computing uncertainty sets for robust linear constraints requires less information on the
parameters and, as long as these sets are defined by a conic system of constraints, the
resulting optimization problems are essentially of the same computational complexity
as their deterministic counterparts (Ben-Tal et al. 2009). For instance, the robust coun-
terparts of linear programs subject to uncertainty sets defined by linear inequalities,
second-order cone constraints, or matrix linear inequalities are, respectively, linear
programs, second-order cone programs, or semi-definite programs, which are all solv-
able in polynomial time. The tractability of robust optimization has motivated the large
interest on the topic for the last ten years, see Ben-Tal et al. (2009). Between these two
extremes, ambiguous chance constraints models constraints where the parameters are
described by random variables which are not known exactly. Namely, the constraint
must be satisfied with a given probability for all probability distributions in a given
set (Erdogan and Iyengar 2006).

Among the large literature on robust optimization, researchers have proposed uncer-
tainty sets that allow a robust constraint to approximate a chance constraint or an
ambiguous chance constraint in the following sense: any solution to the robust con-
straint will be feasible for the original chance constraint or ambiguous chance con-
straint. For instance, Ben-Tal and Nemirovski (2000) and Bertsimas and Sim (2004)
have introduced uncertainty sets for which a robust constraint approximates an ambigu-
ous chance constraint where the coefficients are described by bounded random per-
turbations that are only assumed to be symmetrically and independently distributed
around their means.

In this paper, we introduce a novel model for combinatorial optimization under
uncertainty. Given a linear constraint

∑n
i=1 ai xi ≤ b, its robust counterpart is

defined as
n∑

i=1

ai xi ≤ b, a ∈ U, (1)
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Robust combinatorial optimization with variable budgeted uncertainty 77

where U ⊂ R
n is the uncertainty set. Herein, we extend inequality (1) by considering

the constraint

n∑

i=1

ai xi ≤ b, a ∈ U(x), (2)

where U : R
n ⇒ R

n is a multifunction of x . We recall in Sect. 2.1 the uncertainty
polytope UΓ introduced by Bertsimas and Sim (2004) and introduce in Sect. 2.2 a mul-
tifunction Uγ that generalizes UΓ . Model Uγ is motivated by the probabilistic bounds
discussed in Sect. 3. We see that Uγ is less conservative than UΓ while protecting
the associated ambiguous chance constraint with the same probability. We provide an
example showing that the feasibility set delimited by (2) is in general non-convex,
which contrasts with the convexity of robust linear programs. We show in Sect. 4 how
the classical dualization technique can be generalized to Uγ . Section 5 extends our
results to non-binary variables and considers the case of multifunctions described by
conic constraints that are affine in the problem variables. Section 6 provides a numer-
ical evaluation of model Uγ on the robust knapsack problem. We conclude the paper
in Sect. 7.

In the rest of this paper, ‖x‖ = ∑n
i=1 |xi | denotes the L1 norm and

∑
refers to the

summation over the set {1, . . . , n} unless stated otherwise.

2 Variable budgeted uncertainty

2.1 Static model

Combinatorial optimization problems that feature robust constraints of the type (1)
have witnessed an increasing attention in recent years, see for instance Agra et al.
(2012) and Klopfenstein and Nace (2012). This success can be explained by two main
reasons. First, Ben-Tal and Nemirovski (1999) have shown how the infinite set of
constraints (1) can be reformulated as a finite set of constraints by introducing a new
set of real variables. Given a linear description of U, this reformulation adds n linear
constraints to the problem as well as a number of variables equal to the number of
linear constraints that define U; we come back to this technique in Sect. 4. Second,
Bertsimas and Sim (2004) have introduced a rich class of uncertainty polytopes with
a conservatism that can be regulated by parameter Γ :

UΓ :=
{

a ∈ R
n : ai = ai + δi âi , 0 ≤ δi ≤ 1,

∑
δi ≤ Γ

}
. (3)

Clearly, increasing Γ increases the size of UΓ and thus, the conservatism of the
approach. For instance, if Γ ≥ n, then all components of a can take simultaneously
their peak values and the robust constraint becomes

∑
(ai +âi )xi ≤ b. On the opposite

side, if Γ = 0, all components of a are equal to their non-peak values and the robust
constraint becomes

∑
ai xi ≤ b. Varying Γ between 0 and n enables Bertsimas and

Sim (2004) to define a wide variety of uncertainty polytopes.
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2.2 Variable model

The uncertainty sets proposed by Bertsimas and Sim (2004) suffer from a practical
drawback: they are independent from the value of x . Because of this, binary vectors
with few non-zero components are more protected than binary vectors with larger
numbers of non-zero components. For instance, consider two binary vectors x1 and
x2 feasible for constraint (1) and suppose that ‖x1‖ = Γ while ‖x2‖ = 2Γ . The
robust constraints associated to x1 and x2 are

∑

i :x1
i =1

ai ≤ b, a ∈ UΓ , (4)

and
∑

i :x2
i =1

ai ≤ b, a ∈ UΓ , (5)

respectively. In a relative point of view, vector x1 is more protected than vector x2 since
it is ensured that constraint (4) is feasible against the simultaneous perturbation of all
of its terms while constraint (5) is only protected against the simultaneous perturbation
of half of its terms. This relative point of view has a natural probabilistic interpretation.
If ãi are random variables distributed between ai − âi and ai + âi , then the probability
that constraint

∑
i :x1

i =1 ãi ≤ b be violated is always zero while the probability that
∑

i :x2
i =1 ãi ≤ b be violated can be strictly positive for particular choices of b and

probability distributions.
To avoid this conservatism, we introduce in this paper a novel model of uncertainty.

Instead of considering an uncertainty set U ⊆ R
n independent of x , we introduce

a multifunction of x (point-to-set mapping) U : R
n ⇒ R

n . For each value of x ,
uncertainty set U(x) ⊆ R

n contains all feasible values for the uncertain parameters a.
We consider in particular multifunctions that are generalizations of the budgeted uncer-
tainty. Given a non-negative function γ : R

n → R+, we define the variable budgeted
uncertainty as

Uγ (x) :=
{

a ∈ R
n : ai = ai + δi âi , 0 ≤ δi ≤ 1,

∑
δi ≤ γ (x)

}
. (6)

If γ is constantly equal to Γ , then Uγ (x) coincide with UΓ for any x . In general
however, Uγ enables us to avoid to overprotect vectors with few components, yielding
a less conservative model than UΓ . The pendant of (1) for the variable budgeted
uncertainty is

∑
ai xi ≤ b, a ∈ Uγ (x). (7)

3 Probabilistic bounds

Using the probabilistic bounds derived in Bertsimas and Sim (2004), we show in this
section how Uγ enables us to guarantee exactly the same protection level for every
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Robust combinatorial optimization with variable budgeted uncertainty 79

x ∈ {0, 1}n . The following notation is used throughout: ãi = ai + ηi âi denotes
the random variable associated with parameter ai and ηi , i = 1, . . . , n, are arbitrary
random variables independently and symmetrically distributed in [−1, 1]. Given any
vector x∗ that satisfies the robust constraint (1) for UΓ , Bertsimas and Sim (2004)
prove that

P
(∑

ãi x∗
i > b

)
≤ exp

(

−Γ 2

2n

)

. (8)

We adapt below their bound to variable budgeted uncertainty. First we need to make
bound (8) dependent on x .

Lemma 1 Let x∗ be a binary vector that satisfies the robust constraint (1) for UΓ . It
holds that

P
(∑

ãi x∗
i > b

)
≤ exp

(

− Γ 2

2‖x∗‖
)

.

Proof If ‖x∗‖ ≤ Γ then P
(∑

ãi x∗
i > b

) = 0. Hence, suppose that ‖x∗‖ > Γ , so
that x∗ satisfies the robust constraint

∑

i :x∗=1

ai xi ≤ b, a ∈ UΓ . (9)

Then,

P

(
n∑

i=1

ãi x∗
i > b

)

= P

⎛

⎝
∑

i :x∗
1 =1

ãi x∗
i > b

⎞

⎠

≤ exp

(

− Γ 2

2‖x∗‖
)

, (10)

where (10) follows from Proposition 2 and Theorem 2 from Bertsimas and Sim (2004)
applied to vector x∗ that satisfies robust constraint (9), which contains with ‖x∗‖
terms. 
�

Define the non-negative function αε(x) = (−2 ln(ε)‖x‖)1/2. The bound from
Lemma 1 implies that any binary vector x∗ that satisfies a robust constraint for uncer-
tainty set Uαε(x∗) will also satisfy the chance constraint with probability 1−ε. Because
Uαε(x∗) = Uαε (x∗), this result can be applied to variable budgeted uncertainty.

Corollary 1 Let x∗ be a binary vector and consider ε ∈ (0, 1). If x∗ satisfies
constraint (7) with γ (x∗) = αε(x∗), then P

(∑
ãi x∗

i > b
) ≤ ε.

The interest of Corollary (1) lies in the fact that αε(x) is an increasing function of
‖x‖. Then, taking x1 and x2 such that ‖x1‖ ≤ ‖x2‖, we have that Uαε (x1) ⊆ Uαε (x2).
Hence, Uαε enables us to impose that x1 be protected against a smaller uncertainty
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set than x2, and the uncertainty sets are tailored in such a way that the probability
of violating the constraint is at most ε for both x1 and x2. In contrast, the classical
budgeted uncertainty would have to protect both x1 and x2 against the variations of a
in the uncertainty set Uαε(n).

Bertsimas and Sim (2004) mention that bound (8) is not very tight. For this reason,
they introduce more complex bounds that provide tighter approximations of the prob-
ability P

(∑
ãi x∗

i > b
)
. The strongest of these bounds states that any vector x∗ that

satisfies the robust constraint (1) for UΓ satisfies

P
(∑

ãi x∗
i > b

)
≤ B(n, Γ ) = 1

2n

⎛

⎝(1 − μ)

(
n

�ν

)

+
n∑

l=�ν
+1

(
n

l

)
⎞

⎠ , (11)

whereν = (Γ +n)/2, μ = ν−�ν
. Their experiments show that the bound provided by
B(n, Γ ) is one order of magnitude smaller than bound (8) for n = 100 and n = 2000.

Using the same reasoning as the one used for Lemma 1, we can make this bound
dependent of ‖x∗‖ by considering the subconstraint that contains only terms where
x∗ is different from zero.

Lemma 2 Let x∗ be a binary vector that satisfies the robust constraint (1) for UΓ .
It holds that P

(∑
ãi x∗

i > b
) ≤ B(‖x∗‖, Γ ).

To use this bound in the context of Uγ , we need to solve the following equation in
variable Γ

B(‖x∗‖, Γ ) − ε = 0. (12)

The unicity of solutions to equation (12) follows from the following property of
B(n, Γ ).

Lemma 3 Function B(n, Γ ) is strictly decreasing in Γ .

Proof Let δ > 0 be small enough so that
⌊ n+Γ +δ

2

⌋ = ⌊ n+Γ
2

⌋
. Then,

B(n, Γ + δ) − B(n, Γ ) = − δ

2n

(
n

�ν

)

< 0.


�
Because B(n, Γ ) is strictly decreasing in Γ , equation (12) has at most one solution

for all B(n, Γ ), which we denote βε(x). However, the equation does not always have a
solution, that is, βε(x) is not defined for all x ∈ {0, 1}n and ε > 0. Taking for instance
x∗ with only one component equal to one (i.e. ‖x‖ = 1), the minimum of B(‖x∗‖, Γ )

is equal to 0.5 and is obtained for Γ = 1. Hence, βε(x∗) is not defined for ε < 0.5.
In practice, βε(x) is defined for relatively small values of ‖x‖. Because B(n, Γ )

is decreasing in Γ , we can solve equation (12) to the required precision by using a
dichotomic search. Namely, we first evaluate B(n, n/2). If B(n, n/2) > ε, then we
know that βε(x) ∈ [0, n/2]. Otherwise, this means that βε(x) ∈ [n/2, n]. We can
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Robust combinatorial optimization with variable budgeted uncertainty 81

Fig. 1 Comparison of the two bounds

proceed this way up to the required precision on Γ . We have computed β0.01 and β0.05
numerically up to a precision of 0.01. These computations have shown that equation
(12) has a solution for ε equal to 0.01 and 0.05 when ‖x∗‖ is greater than or equal to
8 and 5, respectively.

Whenever βε(x) is defined, it can be used to ensure that the probabilistic constraint
is satisfied.

Corollary 2 Let x∗ be a binary vector and consider ε ∈ (0, 1) so that βε(x∗) is
well-defined. If x∗ satisfies the robust constraint (7) with γ (x∗) = βε(x∗) then
P

(∑
ãi x∗

i > b
) ≤ ε.

We compare in Fig. 1 the values of the two bounds discussed previously for ε

equal to 0.01 and 0.05. We see that β0.01 ≤ α0.01 and β0.05 ≤ α0.05 for all values of
‖x‖ depicted in the figure. This was expected because Bertsimas and Sim (2004) had
observed that B(n, Γ ) is tighter than bound (8). For this reason, we focus on βε in the
rest of the paper.

We present in Sect. 6 numerical results for the knapsack problem showing that the
use of Uβε reduces the cost of protecting the solution with probability 0.99 or 0.95 by
18 % on average. More complex problems may witness more important cost reduc-
tions. For instance, the protection cost is reduced to zero for the problem described in
Example 1.

Example 1 Let ai be random variables independently and symmetrically distributed in
[−1, 1] and let m and n be any integers such that (i) m ≤ β0.01(n) and (ii) β0.01(m) ≤
m − 1. Consider then the following combinatorial optimization problem:

max c xm

s.t. xi+1 ≤ xi , i = 1, . . . , n − 1
n∑

i=1

ai xi ≤ m − 1,

x ∈ {0, 1}n .
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The deterministic version of the problem replaces the random variables ai by their
mean values, 0, yielding the solution x∗

i = 1 for 1 ≤ i ≤ m and x∗
i = 0 otherwise,

with objective value c. Using uncertainty models Uβ0.01(n) and Uβ0.01 , we can ensure
that constraint

∑n
i=1 ãi xi ≤ m −1 is satisfied with probability 0.99 by any solution to

the robust models. The optimal solution costs to models Uβ0.01(n) and Uβ0.01 are 0 and c,
respectively. Therefore, the protection cost for model Uβ0.01(n) is equal to c while there
is no protection cost for model Uβ0.01 .

In this section, we have motivated the introduction of our new model, Uγ . Given a
function γ properly chosen, the model can be less conservative than UΓ while ensuring
the required level of protection. In spite of this good news, using model Uγ is more
complex than using model UΓ . This arises from the following observation. A robust
constraint subject to a non-empty uncertainty polytope, such as UΓ , can always be
rewritten as a finite set of linear constraints. This reformulation makes possible to
solve a large class of robust combinatorial optimization problems efficiently.

The situation is more complex in the case of budgeted variable uncertainty Uγ . We
show in the example below that the feasible region of the vectors that satisfy (7) is in
general non-convex.

Example 2 Consider the feasibility set of a linear constraint in two variables

X := {x ∈ R
2 s.t. a1x1 + a2x2 ≤ 1 for all a ∈ Uγ (x)}.

where

Uγ (x) :=
{

a ∈ R
2 : a = (1, 1) + (2, 0)δ, 0 ≤ δ ≤ 1, δ1 + δ2 ≤ x1 + x2

}
,

Set X is non-convex because x1 = (0.5, 0) ∈ X, x2 = (0, 1) ∈ X and 0.5x1 +
0.5x2 /∈ X.

In view of Example 2, combinatorial optimization problems that present robust
variable constraints (7) belong to the general class of non-convex Mixed-Integer Non-
Linear Programming. Although some progress has been made for that type of problems
(Burer and Letchford 2012), they remain very hard to solve to optimality in general,
especially when the constraints do not define a known structure. Nevertheless, we show
in the next section how the dualization technique can be applied to Uγ . To simplify
the notations, we often omit the index ε in the rest of the paper.

4 Dualization

We recall in this section the classical dualization technique used in robust linear
programming and show how it extends to the case of variable uncertainty. The method
described below requires that function γ involved in the definition of Uγ be an affine
function of x . Recall, however, that neither α nor β are affine functions so that we
can not apply our method directly to Uβ . Therefore, we define below another class
of multifunctions that enables us to approximate Uβ by using only affine functions
of x .
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Robust combinatorial optimization with variable budgeted uncertainty 83

Let γ 1, . . . , γ m be affine functions of x defined by γ j (x) = γ
j

0 + ∑
γ

j
i xi . For

each x ∈ {0, 1}n , the set Uγ 1...γ m
(x) contains vectors a ∈ R

n such that ai = ai + δi âi

and

0 ≤ δi ≤ 1, i = 1, . . . , n, (13)
∑

δi ≤ γ j (x), j = 1, . . . , m. (14)

In what follows, we will use multifunction Uγ 1...γ m
as an approximation of Uβ . To

ensure that Uγ 1...γ m
yields the same probabilistic guarantee as Uβ , functions γ j , j =

1, . . . , m, must be greater than or equal to β for all x ∈ {0, 1}n .

Lemma 4 Let γ 1, . . . , γ m be affine functions of x such that γ j (x) ≥ β(x) for all
x ∈ {0, 1}n. If x∗ ∈ {0, 1}n satisfies the robust constraint

∑
ai x∗

i ≤ b, for all

a ∈ Uγ 1...γ m
(x), then P(

∑
ãi x∗

i > b) ≤ ε.

Proof Since γ j (x∗) ≥ β(x∗) for each j = 1, . . . , m, it holds that Uγ 1...γ m
(x∗) ⊆

Uβ(x∗). Hence, the constraint
∑

ai x∗
i ≤ b is satisfied for all a ∈ Uβ(x∗) and Corollary

2 implies the result. 
�
The next result shows to handle the upper approximation provided by γ 1, . . . , γ m .

Theorem 1 Consider robust constraint

aT x ≤ b, a ∈ Uγ 1...γ m
(x),

x ∈ {0, 1}n,
(15)

and suppose that γ 1, . . . , γ m are affine functions of x, non-negative for x ∈ {0, 1}n.
Then, (15) is equivalent to

n∑

i=1

ai xi +
m∑

j=1

(

γ
j

0 z j +
n∑

i=1

γ
j

i w j i

)

+
n∑

i=1

pi ≤ b (16)

m∑

j=1

z j + pi ≥ âi xi , i = 1, . . . , n, (17)

w j i − z j ≥ − max
j

(â j )(1 − xi ), i = 1, . . . , n,

j = 1, . . . , m, (18)

p, w, z ≥ 0, (19)

x ∈ {0, 1}n . (20)

Proof The proof works in two steps. The first step applies the dualization technique
from Ben-Tal and Nemirovski (1999). Let p and z be the dual multipliers associated
to constraints (13) and (14), respectively. For any x ∈ {0, 1}n, γ j (x) ≥ 0 so that
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Uγ 1...γ m
(x) is non-empty and bounded. Hence, strong duality in linear programming

implies that (15) is equivalent to

n∑

i=1

ai xi +
m∑

j=1

γ j (x)z j +
n∑

i=1

pi ≤ b (21)

m∑

j=1

z j + pi ≥ âi xi , i = 1, . . . , n, (22)

p, z ≥ 0, (23)

x ∈ {0, 1}n . (24)

We are left to linearize the bilinear terms in (21): γ (x) j z j = (γ
j

0 + ∑
γ

j
i xi )z j .

Introducing nm real variables w j i to represent products xi z j , constraint (21) for x
binary can be rewritten as

n∑

i=1

ai xi +
m∑

j=1

(

γ0z j +
n∑

i=1

γiw j i

)

+
n∑

i=1

pi ≤ b (25)

w j i − z j ≥ −M(1 − xi ), i = 1, . . . , n,

j = 1, . . . , m, (26)

w ≥ 0, (27)

where M is a constant large enough. Because each z j must satisfies constraints (22),
M may be as large as maxi âi . Constraint (25) does not impose additional restriction
on the minimal value of z j , so that we can choose M equal to maxi âi . Regrouping
constraints (22)–(27) yields the result. 
�

Some care must be taken when choosing functions γ 1, . . . , γ m . If β were a concave
and differentiable function defined for all x ∈ [0, 1]n , its differentials would provide
the best over-approximating affine functions. Unfortunately, β is defined only for
x ∈ {0, 1}n so that no differential is available. Moreover, the finite differences of step
equal to 1 may not be sufficient because there exists x∗, x ′ ∈ {0, 1}n with ‖x∗−x ′‖ = 1
such that

β(x ′) > β(x∗) + (x ′ − x∗)(β(x ′) − β(x∗)).

Therefore, we define the angular coefficient of each function γ j by using x∗, x ′ ∈
{0, 1}n with ‖x∗ − x ′‖ > s for some step s. In our experiments, we use s equal to 5.
Notice that because β(x) only depends ‖x‖, we only use affine functions where the
coefficients of all variables are equal. Then, to ensure that for each x ∈ {0, 1}n, γ j (x)

is greater than or equal to β(x), we add the constant term

max
x∈{0,1}n

|β(x) − γ j (x)|. (28)

Problem (28) is solved by enumeration over ‖x‖ ∈ {1, . . . , n}. We present in Fig. 2
examples of piece-wise affine over-approximations of β for ε = 0.01.
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(b)

(a)

Fig. 2 Approximating β

5 Extensions

5.1 Non-binary variables

We show in this subsection how to extends the results developed in Sects. 3 and
4 to a robust constraint that contains bounded real or integer variables, in addi-
tion to the binary variables considered so far. Recall that our motivation for intro-
ducing multifunctions Uα and Uβ arise from the probabilistic bounds computed by
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Bertsimas and Sim (2004): these bounds depend on the number of non-zero elements
in a robust constraint, which we adapt to variable uncertainty with binary variables by
using the L1 norm ‖ ∗ ‖.

To count the number of non-zeroes for real or integer variables, we need to use
a function different from ‖ ∗ ‖. Given an arbitrary vector x∗ ∈ R

n , let 1x∗
be the

binary vector whose i-th coordinate is equal to 0 if x∗
i is equal to 0 and equal to

1 otherwise. We define ‖x∗‖0 := ‖1x∗‖, sometimes abusively called the L0 norm.
This function enables us to extend αε and βε to values of x∗ different from zero and
one: α0

ε (x∗) = (−2 ln(ε)‖x∗‖0)
1/2 and β0

ε (x∗) is the unique solution to equation
B(‖x∗‖0, Γ ) − ε = 0 in variable Γ (if the solution exists). The values of ‖x‖0 and
‖x‖ coincide for any binary vector x so that functions αε and α0

ε (resp. βε and β0
ε )

coincide on {0, 1}n . We see immediately that the results from Sect. 3 extend to α0
ε and

β0
ε . Namely, Corollary 2 becomes the proposition below, and we can similarly adapt

Corollary 1.

Proposition 1 Let x∗ be a vector in R
n and consider ε ∈ (0, 1) so that β0

ε (x∗)
is well-defined. If x∗ satisfies the robust constraint (7) with γ (x∗) = β0

ε (x∗) then
P

(∑
ãi x∗

i > b
) ≤ ε.

The reformulation from Sect. 4 can also be extended to bounded real or integer
variables. By assumption, we know that there exists a positive real M large enough so
that any vector x∗ feasible for our problem belongs to BM (0), the ball centered at the
origin of radius M . Hence, ‖x‖0 can be expressed by introducing an auxiliary binary
vector y, equal to 1x∗

:

xi ≤ Myi , i = 1, . . . , n, (29)

y ∈ {0, 1}n . (30)

To extend Theorem 1 to non-binary variables and avoid products of real variables,
we need to restrict ourselves to affine functions γ j that depend only on r := ‖x‖0 :
γ j (x) = γ

j
0 + γ

j
1 ‖x‖0. We present below an extension of Theorem 1 where it is

supposed that the affine functions depend on a unique variable r . This restricted version
of the result does not prevent us from approximating α0 and β0 with affine functions
becauseα0 andβ0 can be expressed as functions of r := ‖x‖0. Similarly, we mentioned
already that α and β can be expressed as functions of r := ‖x‖. The proof of the next
result is essentially the same as the proof of Theorem 1.

Theorem 2 Consider robust constraint

aT x ≤ b, a ∈ Uγ 1...γ m
(x),

x ∈ BM (0),
(31)

and suppose that γ 1, . . . , γ m are affine functions of r := ‖x‖0, non-negative for all
x ∈ BM (0). Then, (31) is equivalent to
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n∑

i=1

ai xi +
m∑

j=1

(

γ
j

0 z j + γ
j

1

n∑

i=1

w j i

)

+
n∑

i=1

pi ≤ b

w j i − z j ≥ − max
j

(â j )(1 − yi ), i = 1, . . . , n,

j = 1, . . . , m,

x ∈ BM (0),

(17), (19), (29), (30).

5.2 Conic uncertainty sets

So far we have only considered a very particular multifunction, Uγ , which can be seen
as a generalization of the budgeted uncertainty set from Bertsimas and Sim (2004),
UΓ . This is motivated by the probabilistic bounds that Bertsimas and Sim (2004) have
provided for UΓ , and the fact that these bounds extend to Uγ for proper choices of
γ . However, the concept of variable uncertainty could be applied to more general
multifunctions U . For instance, the specific knowledge of a practical problem could
motivate the use of a multifunction different from Uγ , justified by the application.

The aim of this subsection is to show that Theorem 1 can be generalized to multi-
functions whose images are sets defined by conic inequalities that depend affinely on
x . More precisely, we consider again a robust constraint

aT x ≤ b, (a, b) ∈ U(x), (32)

and we suppose that the uncertainty set is defined by

U(x) := {(a, b) = (a0, b0) +
L∑


=1

(a
, b
)ζ
 : ζ ∈ Z(x)},

where the perturbation set Z(x) is given by the conic representation

Z(x) := {ζ ∈ R
L : ∃u ∈ R

K : P(x)ζ + Q(x)u + p(x) ∈ K}, (33)

where K is closed convex pointed cone in R
N with nonempty interior, and for all

x, P(x), Q(x) are given matrices and p(x) is a given vector. In the case where K is
not a polyhedral cone, we assume that the Slater’s condition holds for all x ∈ {0, 1}n ,
see for instance Ben-Tal et al. (2009). As in the classical case, where P(x), Q(x) and
p(x) are constant, we can apply the strong duality of conic programming and replace
(32) by a finite set of conic constraints, see for instance Ben-Tal and Nemirovski (2002)
for a proof.

Proposition 2 The robust constraint (32) can be represented by the following system
of conic inequalities in variables x ∈ R

n, y ∈ R
N :

pT (x)y + (a0)T ≤ b0 (34)
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QT (x)y = 0 (35)

(PT (x)y)
 + (a
)T x = b
, 
 = 1, . . . , L , (36)

y ∈ K∗,

where K∗ = {y : yT z ≥ 0 ∀ z ∈ K} is the cone dual to K.

If p(x), P(x), and Q(x) are affine functions of x , the products of variables that
appear in constraints (34)–(36) can be linearized with the help of big-M coefficients,
yielding a mixed-integer conic reformulation for constraint (32) that generalizes the
reformulation of Theorem 1.

6 Computational experiments

This section studies two numerical aspects of the robust knapsack problem under
uncertainty model Uγ . First, we compare the prices of robustness of Uγ and UΓ : we
show that the cost of protecting the capacity constraint with a probability of 0.99 or
0.95 is strictly less for Uγ than for UΓ . Second, we study the computational complexity
of Uγ . We perform this comparison for the binary knapsack problem as well as for
its linear relaxation. We performed our experiments on a computer equipped with a
processor Intel Core i5 at 2.53 GHz and 4 GB of RAM memory and calling CPLEX
12.1 in JAVA via Concert Technology (IBM 2012).

Given a set of n items, each with profit pi and weight ai , the knapsack problem
aims at choosing a subset of these items not exceeding the available capacity b and
maximizing the profit:

max
n∑

i=1

pi xi

s.t.
n∑

i=1

ai xi ≤ b, (37)

x ∈ {0, 1}n . (38)

Although NP-hard to solve exactly, state of the art MIP solvers can easily solve
instances of the knapsack problem with thousands of variables. This problem is central
to integer programming because many complicated integer programs feature capac-
ity constraints like (37). For this reason, the problem is often used to benchmark
new approaches for integer linear programs in the uncertain context. In stochastic
programming, Kleywegt et al. (2002) use the knapsack problem to test their sam-
ple average approximation algorithm and Fortz et al. (2012) use the problem to test
their simple-recourse reformulations and evaluate its complexity. In robust program-
ming, Bertsimas and Sim (2004) use the problem to evaluate the cost of protecting the
capacity constraint for various probability guarantees.

To evaluate our new model Uβ , we generate our instances similarly to Bertsimas
and Sim (2004). We consider different item numbers n ∈ {100, 200, . . . , 1,000} and
set the capacity to b = 20n for each value of n. For each value of n, we generate
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randomly five instances as follows. For each i = 1, . . . , n, the average weight ai is
chosen uniformly from the set {20, 21, . . . , 29}, the deviation âi is equal to 10 % of
ai , and the profit pi is chosen uniformly from the set {16, 17, . . . , 77}.

We compare in Fig. 3 the optimal protection costs of the different models with
binary variables. For each value of n, we compute Γε = βε(n). Then, we compute the
affine function γε that overestimate βε as described in Sect. 4. Let p(det), p(UΓε ),
and p(Uγε ) denote the optimal solution costs to, respectively, the deterministic model
and the robust models where constraint (37) must be satisfied for all values of a in
UΓε or Uγε . We compute the cost c(∗) of protecting a solution with a given probability
for model ∗ as c(∗) = p(∗)−p(det)

p(det) . We present in Fig. 3 the geometric means of these

protection costs for each value of n. On average, c(Uγε ) is 18 % less than c(UΓε ).
We compare then the computational complexity of models Uγε and UΓε . Let t (∗)

be the solution time in seconds to solve model ∗ to optimality. The solution time was
less than 10 second for any of our instances. For ε = 0.01, the geometric mean of the
ratios t (Uγ0.01)/t (UΓ0.01) is equal to 1.7, with a maximum value of 7.68. For ε = 0.05,
these values increase to 2.5 and 10, respectively. The ratios do not increase with the
problem size. In addition to the solution times, we investigate the bound provided by
the linear relaxation of the problem. In particular, we want to understand whether the
bound proposed in Theorem 1 for the big-M coefficients is tight. Our results show that
the gap between the linear relaxation and the solution of the problem are very close
for both models. In fact, the gap of model Uγε is 10 % better in average than the one
of UΓε . However, replacing max j (â j ) by very large numbers reduce significantly the
bound provided by the linear relaxation. For instance, setting M to 10,000 multiplies
the gap by an average factor of four.

We have also tested more refined linearizations, using two and three linear over-
approximations. Unreported results have shown that the solution times tend to increase
more than linearly with the number of linear functions used while decreasing the
protecting cost by less than 1 %.

We turn then to the linear relaxation of the knapsack problem, where the binary
restriction (37) is replaced by x ∈ [0, 1]n . For this model, the robust counterpart using
model UΓε is a linear program, while the robust counterpart of model Uγε requires the
introduction of binary variables to describe ‖ ∗ ‖0, see Theorem 2. Similarly to the
case of the binary knapsack problem, we compute the optimal protection costs of
the two models and compare the geometric means of their ratios in Fig. 4. On average,
model Uγε is 18 % cheaper than UΓε , as in the case of the binary knapsack problem.

Without surprise, the solution times of Uγε are higher than those of UΓε , but the
average ratio t (Uγ0.01)/t (UΓ0.01) are hard to compute exactly because a large part of
the solutions times for Uγ0.01 are too small to be measured. For both models, most
instances are solved in less than 0.05 seconds, and the ratio t (Uγ0.01)/t (UΓ0.01) can be
as large as 60 for the instances with 1,000 items.

7 Conclusion

We have presented a new model for combinatorial optimization under uncertainty
where the uncertain parameters are allowed to vary in uncertainty sets defined by
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(a)

(b)

Fig. 3 Cost of protecting the solution for the knapsack problem

multifunctions of the problem variables. We have motivated this general model by
proposing a particular example of multifunction Uγ that extends the budgeted uncer-
tainty set UΓ studied by Bertsimas and Sim (2004). Using multifunction Uγ , one can
obtain less conservative solutions than using UΓ , while ensuring the same probabilistic
satisfaction of the constraint.

We have then shown how the robust counterpart of linear constraints can be com-
puted in the new model, assuming that the uncertainty sets are delimited by conic
inequalities that depend affinely on the variables of the problem. If the variables of
the original problem are all binary, the dualization of the new model introduces a
polynomial number of real variables and constraints, in addition to those added by
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(a)

(b)

Fig. 4 Cost of protecting the solution for the fractional knapsack problem

the classical model. In that case, the new model can be almost as easy to solve as the
classical robust model. However, if the original problem contains fractional or integer
variables, the dualization requires to introduce additional binary variables and big-M
coefficients.

We have provided computational experiments for the robust knapsack problem. The
experiments show that using model Uγ reduces the cost of protecting the constraint
of model UΓ by 18 % on average both for the binary and the fractional versions of the
problem.
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