
 Klein
Entity Fram

ew
ork 4.0

Companion
eBook

Available

7.5 x 9.25 spine = 0.78125" 280 page count

Scott Klein

The future of data access in .NET programming

Pro

Entity
Framework 4.0

THE EXPERT’S VOICE® IN .NET

Pro

this print for content only—size & color not accurate

 CYAN
 MAGENTA

 YELLOW
 BLACK
 PANTONE 123 C

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Pro Entity Framework 4.0
Dear Reader,

ADO.NET Entity Framework is an object/relational mapping framework
enabling you to work with relational data in terms of strongly typed objects.
Entity Framework eliminates the need for writing much of the data access code
found in many of today's applications.

This book shows how to use ADO.NET Entity Framework 4.0 along with Visual
Studio 2010 to design and develop applications. I walk you through the changes
and enhancements in the 4.0 release. You’ll see how to use the new features to
build applications using common development environments such as Windows
and WCF Data Services.

I begin with an introductory look at the Entity Framework and key features
such as the Entity Data Model. You’ll learn the internals of the Entity Data Model,
and how to leverage those internals to create flexible applications. Then you’ll
learn to query the Entity Data Model using LINQ, through a feature referred to as
“LINQ to Entities”.

The rest of the book goes into many of the great new features such as sup-
port for model-first development and code-only building of conceptual mod-
els. There is better relationship support for foreign keys, and new support for T4
templates. You’ll find information on enhanced features such as improved stored
procedure support. Detailed examples are provided in each chapter to illustrate
how to use each of these new and improved features.

I am a database guy. I live and breathe databases, especially SQL Server. I’m
excited by Entity Framework 4.0 and what it offers to developers. My goals with this
book are to provide background into what the Entity Framework is, and to show
how it can be beneficial to you and your applications. I hope you find the informa-
tion valuable and have as much fun working with Entity Framework as I have.

Scott Klein

US $54.99

Shelve in:
Databases / SQL Server

User level:
Intermediate–Advanced

www.apress.com

SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN 978-1-59059-990-7

9 781590 599907

55499

THE APRESS ROADMAP

Pro
Entity Framework 4.0

Pro LINQ:
Language Integrated

Query in C# 2010

Introducing .NET 4.0
with

Visual Studio 2010

Beginning
SQL Server 2008

for Developers

Entity Framework
Recipes

Expert
SQL Server 2008

Development

Pro Entity Framework 4.0

� � �

Scott Klein

 CONTENTS

ii

Pro Entity Framework 4.0

Copyright © 2010 by Scott Klein

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system, without the prior written permission of the copyright
owner and the publisher.

ISBN-13 (pbk): 978-1-59059-990-7

ISBN-13 (electronic): 978-1-4302-0648-4

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Publisher and President: Paul Manning
Lead Editor: Jonathan Gennick
Technical Reviewer: Vidya Vrat Agarwal
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary

Cornell, Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie,
Duncan Parkes, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke,
Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Anita Castro
Copy Editor: Tiffany Taylor and Mary Ann Fugate
Compositor: Bob Cooper
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-
ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales—eBook Licensing web page at
www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although
every precaution has been taken in the preparation of this work, neither the author(s) nor
Apress shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in this work.

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales

■ CONTENTS

iii

To my parents, Richard and Carolyn.

■ CONTENTS

iv

Contents at a Glance

Contents at a Glance... iv

Contents ... v
About the Authors ...xi
About the Technical Reviewers...xii
Acknowledgments ..xiii
■ Chapter 1: Introducing the ADO.NET 4.0 Entity Framework...1
■ Chapter 2: The Entity Data Model ...13
■ Chapter 3: The Entity Data Model Inside and Out...35
■ Chapter 4: Querying the EDM ..63
■ Chapter 5: Working with Entities ..83
■ Chapter 6: Stored Procedures and the EDM ...93
■ Chapter 7: Relationships and Associations..109
■ Chapter 8: T4 Code Generation ...127
■ Chapter 9: Model-First Development ..145
■ Chapter 10: Code-Only Development ..167
■ Chapter 11: N-tier Development with WCF Data Services ...187
■ Chapter 12: Performance Tuning and Exception Handling ..209
■ Chapter 13: Data Binding with the Entity Framework..229
■ Index ..253

■ CONTENTS

v

Contents

Contents at a Glance... iii

Contents ... v
About the Authors ...xi
About the Technical Reviewers...xii
Acknowledgments ..xiii
■ Chapter 1: Introducing the ADO.NET 4.0 Entity Framework...1

Need for an Entity Framework .. 2

This Has Been Tried Before .. 4

So, What Is the Entity Framework? .. 5

Database vs. Model .. 5

Database-Driven ... 6

Model-Driven .. 6

Working with Entities.. 8

Entity Framework 4.0 Features... 10

POCO Support ... 10

Model-First Support.. 10

Related Object–Deferred Loading... 10

LINQ-to-Entities Function Support .. 11

Plurality Naming ... 11

Complex Types ... 11

Customized Object-Layer Code Generation .. 11

Model Browser Improvements.. 11

Back-End Support... 12

■ Chapter 2: The Entity Data Model ...13
Creating an EDM ... 13

Taking a Database-First Approach ... 14

■ CONTENTS

vi

Making Generated Object Names Plural or Singular... 19

Taking a Model-First Approach... 22

Generating a Schema and Database... 27

Managing Table Inheritance ... 31

Taking a Code-Only Approach .. 32

■ Chapter 3: The Entity Data Model Inside and Out...35
The Designer Window and the EDM.. 35

The Designer Window... 35

Model Browser Window.. 37

Mapping Details Window .. 38

Entities.. 38

Scalar Properties .. 40

Complex Types ... 40

Complex Types Defined .. 41

Creating a Complex Type.. 41

Foreign Keys and Relationships (Associations) .. 45

Navigation Properties ... 46

Mapping Details .. 47

Lifting the EDM Hood .. 48

The EDM Model Parts.. 50

The SSDL Section ... 50

EntityType Element... 52

Association Element ... 52

The CSDL Section ... 53

EntityType Element ... 54

Associations ... 55

The CS (MSL) Section ... 56

EDM-Generated Classes ... 58

■ Chapter 4: Querying the EDM ..63
Querying with the Entity Framework .. 63

Syntax Options.. 63

Query-Expression Syntax.. 63

Context.. 67

Method-Based Syntax... 68

■ CONTENTS

vii

Querying Options .. 69

LINQ to Entities ... 69

Entity SQL ... 74

The EntityClient... 76

EntityConnection... 77

EntityCommand .. 78

Immediate vs. Deferred Query Execution ... 78

Deferred Execution ... 79

Immediate Execution .. 80

■ Chapter 5: Working with Entities ..83
The ObjectContext... 83

ObjectStateEntry ... 83

Tracking and Saving Changes .. 84

Updating Entities... 85

Adding Entities.. 87

Relational Inserts .. 89

Deleting Entities.. 91

■ Chapter 6: Stored Procedures and the EDM ...93
Stored Procedures in the EDM.. 93

The Model Browser... 97

What Is an EF Function? ... 98

Mapping Functions ... 99

Functions (Stored Procedures) in Action .. 102

Insert... 102

Update .. 104

Delete ... 105

Select.. 105

Using Functions in Queries ... 106

■ Chapter 7: Relationships and Associations..109
Overview... 109

Relationships in General ... 109

Relationships in EF 3.5 ... 110

EF 4.0 Relationships ... 113

■ CONTENTS

viii

Creating a WinForms Project .. 113

Defining Referential Constraints... 116

Adding an Association .. 116

Looking at XML Differences.. 117

Understanding Approaches to Foreign Keys in EF 4.0.. 119

Using FK Associations in Code.. 120

Adding Dependent Objects ... 120

Manually Setting the Foreign Key Property .. 121

Setting the Foreign Key Automatically.. 122

Building the Sample Project ... 123

Summary .. 126

■ Chapter 8: T4 Code Generation ...127
T4 Template Overview .. 127

Adding a Template Using Visual Studio 2008 ... 127

Installing a T4 Editor ... 128

Writing Some T4 Code .. 129

Scoping Your Code.. 132

Example 1: Running the Project.. 133

Example 2: Returning Your Computer’s Processes .. 134

Example 3: Listing Your SQL Databases ... 135

T4 Templates and the Entity Framework.. 137

T4 Customization Example.. 142

■ Chapter 9: Model-First Development ..145
Model-First Design ... 145

Creating a Conceptual Model.. 145

Creating Entities in the Empty Model.. 148

Creating Associations and Navigation Properties... 150

Saving the Model .. 151

Verifying Compilation.. 152

Creating the Mappings and Database... 152

Database Generation Rules... 159

Tables ... 159

Associations.. 160

Handling of Complex Types .. 161

■ CONTENTS

ix

DB Generation Script Customization... 163

■ Chapter 10: Code-Only Development ..167
Getting Started with Code-Only .. 167

Creating the Data Project.. 168

Adding the User-Interface Project .. 170

Adding References.. 170

Adding Context and Connections.. 172

Coding the User Interface ... 173

Creating Configuration Classes... 173

Testing the Code-Only Model.. 175

Building the Project .. 176

Loading Some Rows ... 177

Connecting the DataGridView Control... 178

Running the Application ... 179

Overcoming Restrictions in EF 3.5.. 180

Additional POCO Information... 180

Complex-Type Support ... 181

Lazy Loading... 182

Change Tracking... 182

Finishing the Example... 183

■ Chapter 11: N-tier Development with WCF Data Services ...187
Building the WCF Data Service ... 187

Testing the WCF Data Service... 194

Consuming the WCF Data Service .. 201

Adding the Service Reference .. 202

Utilizing the Service.. 206

■ Chapter 12: Performance Tuning and Exception Handling ..209
Updating the Model... 209

Checking the Model .. 213

Stored Procedure Mapping ... 215

Building an Entity Framework Project .. 216

Exception Handling ... 219

Try/Catch Blocks... 219

■ CONTENTS

x

The Using Statement .. 221

Exception Class... 221

Connection Exceptions ... 223

Query Exceptions .. 225

EntitySQL Exceptions .. 226

■ Chapter 13: Data Binding with the Entity Framework..229
Windows Forms Data Binding... 229

Creating a Project Directory.. 229

Creating a New Form.. 229

Creating Data Sources .. 232

Adding Code to the Form .. 236

Adding a Grid Control.. 238

Getting the Grid to Display Some Data ... 239

Helping the Grid to Navigate the Relation... 241

Testing Your Final Grid Implementation ... 241

Implementing Add, Delete, and Save Functionality .. 242

Implementing Add Functionality ... 242

Implementing Delete Functionality ... 244

Implementing Save Functionality ... 244

WPF Data Binding ... 245

Creating a Project ... 245

Adding Some Code ... 245

Running the Project .. 246

Displaying Related Detail.. 248

■ Index ..253

■ CONTENTS

xi

About the Author

■ Scott Klein is a Microsoft SQL Server MVP and independent
consultant specializing in SQL Server performance and business
intelligence. Scott is the author of several books including
Professional SQL Server 2005 XML, Professional LINQ, and
Professional Windows Communication Foundation, and was a
contributing author on Pro SQL Server 2008 Relational Database
Design and Implementation as well as Microsoft SQL Server 2008
Bible. Scott has also written many articles for SQL Server
Standard magazine. Scott holds the MCDBA, MCSD, and MCSE
certifications and is heavily involved in the South Florida
community, running two SQL Server user groups and South
Florida SQL Saturday events. He frequently speaks at user
groups across South Florida. Scott has nearly 20 years’
experience with SQL Server, working and consulting in small to

enterprise-size environments.

■ CONTENTS

xii

About the Technical Reviewer

■ Vidya Vrat Agarwal, is a Microsoft .NET Purist and an MCT, MCPD,
MCTS, MCSD.NET, MCAD.NET, and MCSD and a lifetime member of
the Computer Society of India (CSI). Vidya started working on
Microsoft .NET with its 1st beta release and has been involved in
software development, evangelism, consultation, corporate training,
and T3 programs on Microsoft .NET for various employers and
corporate clients. He is a published author for Apress titles Beginning
C# 2008 Databases: From Novice to Professional, Beginning VB 2008
Databases: From Novice to Professional and Pro ASP.NET 3.5 in VB
2008 : Includes Silverlight 2Pro as well as a technical reviewer of many
books published by Apress.

Vidya lives with his beloved wife, Rupali, and lovely daughter, Vamika (“Pearly”) and
believes that nothing will turn into a reality without them. He is the follower of the concept No
Pain, No Gain and believes that his wife is his greatest strength. He is a bibliophile and blogs
at http://dotnetpassion.blogspot.com. You can reach him via email at Vidya_mct@yahoo.com.

http://dotnetpassion.blogspot.com
mailto:mct@yahoo.com

■ CONTENTS

xiii

Acknowledgments

Anyone who has written a book knows that it isn’t the work of a single individual. Although
the author (or authors) are at the forefront, a myriad of individuals behind the scenes actually
make the book a reality, making sure all the pieces come together smoothly (or as smoothly as
possible). It is these behind-the-scenes individuals whom I want to thank profoundly.

First and foremost, the people at Apress. Jonathan Gennick, the person who has stuck by
me while getting this project off the ground and through a period when we thought it would
never get done: my hat is off to you. Thank you for your support.

Anita Castro, the coordinating editor who kept me honest and on schedule as best she
could. I hope I didn’t put you through too much stress.

Greg and Keith, what can I say? Great times.
In addition to those already mentioned, you are reading this book because of the support

of many friends and family. Herve and Jared, you guys rock, and your friendship is
unmeasurable. Joe Healy, what would South Florida do without you?

To my contacts at Microsoft who allowed me to ask a thousand questions: Elisa Flasko,
Noam Ben-Ami, Diego Vega, Alex James, Daniel Simmons, and Tim Mallalieu. Thank you for
your time and help in this great endeavor.

Nothing, however, compares to the support and love that you receive from those at home.
To my wife and children (Lynelle, Sadie, Forrest, Allara, and Shayna), thank you for the love,
support, and wonderful home. You make it all worth while.

C H A P T E R 1

■ ■ ■

1

Introducing the ADO.NET 4.0
Entity Framework

In July 2008 Microsoft released the first version of the ADO.NET Entity Framework as part of the Visual
Studio 2008 Service Pack 1 as well as the .NET Framework 3.5 Service Pack 1. At the time, Microsoft LINQ
(Language Integrated Query) and LINQ to SQL had been out for a while and were gaining a lot of
attention. Both the Entity Framework and LINQ to SQL showed that Microsoft was very serious about
improving developer productivity, by providing an infrastructure for managing relational data as objects
and programming against a conceptual model instead of directly against a storage schema. While
Microsoft did its best to tout the Entity Framework, it went somewhat unnoticed out of the gate,
primarily due to the rise in popularity of LINQ to SQL and the misunderstanding from the public of what
the Entity Framework really was.

By the time this book hits the shelves, Visual Studio 2010 with the .NET Framework 4.0 and
ADO.NET Entity Framework will have just been released or will be very shortly. Yet, I still get questions
from people wondering what the Entity Framework is or how it differs from LINQ to SQL.

Thus, the reason for this book is twofold; first, it will answer the question of what the Entity
Framework is and why Microsoft is dedicating a lot of resources and energy to its development,
advancement, and developer acceptance. Second, it will discuss all the new features and enhancements
that will be available in ADO.NET 4.0, which will be released with Visual Studio 2010.

This book is intended to address two types of developers: those who have never worked with the
Entity Framework before, and those who have but are looking at what the ADO.NET 4.0 Entity
Framework has to offer. As such, it will cover all aspects of the Entity Framework and, where
appropriate, point out the new features and enhancements found in the EF 4.0.

The Entity Framework does not, nor is intended to, replace existing ADO.NET data access
technologies; rather, it is an enhancement to ADO.NET, providing developers an augmented approach
to accessing data, letting them work with a conceptual model, and thus enabling developers to deal with
data as objects and properties, a concept already familiar to them.

The Need for an Entity Framework
To really understand what the Entity Framework is and why it is so important, we need to take a step
back and look at some of the existing data access technologies. Microsoft has put a lot of time and effort
into ADO.NET over the past many years. Prior to that, it was RDO, and prior to that it was DAO. Heaven
forbid we look prior to DAO. With ADO.NET, developers were finally sensing that Microsoft had settled
on a data access strategy and technology. With the improvements and enhancements that were being
made to ADO.NET with each .NET release, it was the “go-to” technology for data access.

Developers’ data access technologies of choice have primarily been the DataReader and the DataSet,
and these have been serving developers well for many years. Yet with all of the improvements being
made to ADO.NET, there was still a disconnect between the application and the back-end database.

CHAPTER 1 ■ INTRODUCING THE ADO.NET 4.0 ENTITY FRAMEWORK

2

Developers were spending far too much time trying to keep up with changes being made to the
database. Any schema change to a table or stored procedure, for example, could potentially break an
application.

Take the following code snippet, for example, which runs against Microsoft’s standard
AdventureWorks example database. Take a good look at this code sample and then ask yourself two
questions:

1. Will it compile?

2. Assuming it compiles, when it runs, will you get the “yep, we have rows”
message?

try
{
 string connectionString = Class1.GetConnectionString();

 using (SqlConnection conn = new SqlConnection(connectionString))
 {
 conn.Open();
 using (SqlCommand cmd = new SqlCommand())
 {
 cmd.Connection = conn;
 cmd.CommandText = "SELECT FirstName, MidleName, LastName FROM Person.Contact
 WHERE ContactID = @ContactID";
 SqlParameter param = new SqlParameter("@ContactID", SqlDbType.Int, 50,
 "ContactID");
 param.Value = 8;
 cmd.Parameters.Add(param);

 SqlDataReader rdr = cmd.ExecuteReader();
 while (rdr.Read())
 {
 Console.WriteLine(String.Format("{0}, {1}",
 rdr[0], rdr[1]));
 }
 }
 }

}
catch (Exception ex)
{
 MessageBox.Show(ex.Message);
}

If you want to try it out, open up a new instance of Visual Studio 2010 (or 2008—this example is not

specific to 2010) and create a new C# Windows Forms application. On the form, place a button on the
form and in the click event of that button enter the code as you see it above. Prior to running the project,
change the connection string username and password for your environment and add the following using
statement:

using System.Data.SqlClient;

If you don’t feel like typing, you can download the code from the Apress web site for this book. In

any case, run the project and click the button. When the project runs and the form displays, it should be

CHAPTER 1 ■ INTRODUCING THE ADO.NET 4.0 ENTITY FRAMEWORK

3

obvious at that point that the code did compile successfully. Now click the button. Did you get the “yep,
we have rows” message?

If you typed in the code just as you see it above, you didn’t get the message indicating a successful
run. Instead you received a message that the column MidName is an invalid column name. The column
containing the middle name is actually called MiddleName. The problem is you had to run the
application to find that out. Now imagine if yours had been a larger production application and you
received a similar error. A larger application makes it much more difficult to find the offending line of
code, plus you have the greater overhead of tracking down the actual spelling of the column name.

The point is that developers spend far too much time worrying about things they shouldn’t need to
when it comes to the database side of things. Developers need to focus only on developing applications
and should not be concerned if a table, stored procedure, relationship, or some other database object
changes.

In the code example above, the error that you get illustrates an example of a table change being
made without informing the developers. When the table was originally created, it possibly could have
had a column named MidName, but someone decided to change that column’s name to MiddleName to be
consistent with the other name columns in the table. Unless that schema change is disseminated to the
appropriate people (the developers in this case), no one is going to find out about the change until run
time. Think of what could happen if for some reason the change was not picked up and somehow
slipped through QA and into the production release. Oops.

What was needed was a model where the database, application, and data move together. This is
exactly what the Entity Framework provides. The Entity Framework is a conceptual model that works
with databases and applications, eliminating the gap between data and applications (and application
languages) that developers normally have to work with when working with the DataReader object and
other data access technologies.

This Has Been Tried Before
Modeling applications exist in abundance, but each application has a specific focus such as process data
flow or describing objects. The following lists some of the modeling application types and their primary
focus.

• ERM (Entity Relationship Model): Used with databases, it is a way to represent
logical relationships of entities (objects) in order to create a database.

• UML (Unified Modeling Language): A standard modeling language that is used to
describe objects.

• ORM (Object-Relational Mapping): Method of mapping relational databases and
object-oriented programming languages.

• DFD (Data Flow Diagram): A graphical representation of the flow of data between
processes and between systems.

The problem is that each of these modeling applications is limited in scope. For example, ERM
products do logical data models really well, but struggle at UML tasks. UML excels at describing objects,
but falls short at performing ERM tasks.

And lest we forget, there are other ERM-like products in the market that have been around for a bit
and provide Entity Framework-like capabilities, such as the following:

• NHibernate: Ported from Hibernate Core for Java for the .NET Framework,
NHibernate for .NET persists plain .NET objects to and from an underlying
relational database.

CHAPTER 1 ■ INTRODUCING THE ADO.NET 4.0 ENTITY FRAMEWORK

4

• SPRINT.net: An open-source application framework, and based on the Java
version of Spring Framework, allowing you to build components that can be
integrated into multiple tiers of your application.

While this list is by no means complete, it is provided to illustrate the necessity and need for good
ERM application development products that remove many of the complexities of working with
databases to help improve productivity.

The ADO.NET Entity Framework does not have the same limitations of other modeling products.
This is because the Entity Framework works at a conceptual level that is based on the ERM and, as such,
provides a depth and richness of functionality that many of the stand-alone ERMs and UMLs cannot
provide.

As the name suggests, the Entity Framework allows you to work directly with Entities that represent
your own schema without having to deal with the nuances of DataReader and DataSet objects. Some
developers who have worked with or have some knowledge about Entity Framework compare it to other
relational mappers and try to classify it as an object relational mapper. This comparison or thought
process is not entirely correct. The Entity Framework does have relational mapping capabilities. But the
Entity Framework is much more than just a relational mapper, and the ORM capabilities it does have are
implemented much differently than that of other ORM products.

So, What Is the Entity Framework?
The Entity Framework is a set of technologies in ADO.NET that helps fill in the space between object-
oriented development (objects) and databases. This gap is commonly known as an “impedance
mismatch” and it exists because the mapping and organization of classes does not quite match up to the
organization of relational objects. Many mapping solutions have tried to solve this problem by mapping
OO (object-oriented) classes and properties straight to tables and columns.

For example, let’s use the case of customers and products. First, in a simple mapping scenario, you
may have a product class that contains a property that references an instance of a customer class.
Second, a customer class might contain a property containing a collection of instances of the product
class. While this might seem fine, how do you represent the foreign keys between customer and product
in the first case (while in the second case you have a reference of an object-oriented collection of
product instances that has no comparable column in the customer table in the database)?

A scenario such as this one is known as the conceptual space and is accomplished by raising the
abstraction level to a point that lets developers query entities and relationships in the conceptual model,
all while letting the Entity Framework translate the query operations to data source–specific commands.
It allows applications to be written against conceptual models and not directly against the database. By
doing so, the gap between object-oriented programming and databases has been closed, letting
developers focus on the task of developing applications, without concerning themselves about the
database (structure or otherwise) or data access.

You should start to see where the gap comes into play, simply because there is no one-to-one
mapping. Relationships between relational objects are represented much differently from class
relationships. And this is where the Entity Framework takes a much different approach. The EF maps
relational objects to conceptual models. Conceptual mapping provides a number of huge benefits. For
example, it provides the needed improved flexibility in creating (defining) and enhancing the logical
model.

■ Note The Entity Framework divides the data model into three separate models: conceptual, logical, and

physical. Each of these will be discussed in detail in Chapter 3.

CHAPTER 1 ■ INTRODUCING THE ADO.NET 4.0 ENTITY FRAMEWORK

5

By putting the focus on the conceptual model, the Entity Framework lets you query entities and
relationships, letting the EF do the work of translating the query operations into commands specific to
the data source, such as Microsoft SQL Server.

Developers can also work in an object-oriented environment that is familiar to them, all while
gaining the benefits of operating in such an environment, such as IntelliSense and compile-time
checking. For example, had the example a few pages ago been done using the Entity Framework, the
error discussed earlier would have been caught during application compilation.

Keep in mind there are many more benefits to Entity Framework than what I’ve discussed so far.
They will be discussed throughout this chapter and the rest of this book.

Database vs. Model
You now have two data access choices. On one hand are the tried and true DataReader and DataSet
objects. On the other is the Entity Framework. Which should a developer choose? Since this book is
about the Entity Framework, obviously the book is going to steer you in that direction. However, the next
two sections are going to point out the differences between both options.

Database-Driven
Developers familiar with DataReaders and DataSets know that the majority of the time and code is
making a connection to the database, getting data from the database, and then performing some action
on the results as the results are assigned to classes. At the very minimum, the code to open a connection
and execute a query would look something like the following (modified from the example above):

using (SqlConnection conn = new SqlConnection(@"Data Source=(local);Initial
 Catalog=AdventureWorks;UID=sa;PWD=pwd"))
{
 conn.Open();
 using (SqlCommand cmd = new SqlCommand())
 {
 cmd.Connection = conn;
 cmd.CommandType = CommandType.Text;
 cmd.CommandText = "SELECT FirstName, MiddleName, LastName FROM Person.Contact
 WHERE LastName = @LastName";
 cmd.Parameters.Add(new SqlParameter("@LastName",
 System.Data.SqlDbType.char)).Value = “Smith”;
 using (SqlDataReader rdr = cmd.ExecuteReader())
 {
 if (rdr.HasRows)
 {
 Rdr.Read();
 //
 }
 }
 }
}

While this type of coding has served developers well in the past, it leaves developers with a mixed

model where the application code and data (i.e., schema) are all mixed together; the application
implicitly contains the model. In the system I have just described, the application is tied to a specific set
of database features and neither the application nor the database makes sense without each other.

CHAPTER 1 ■ INTRODUCING THE ADO.NET 4.0 ENTITY FRAMEWORK

6

Model-Driven
With the Entity Framework, you do not have to worry about the database. Rather, you simply code and
query against a set of objects (entities) that reflects the business model. Results are returned as objects,
and unlike other data access options, the developer does not have to spend time (code) figuring out rows
and columns in the returned results just to bind them to objects. Since results are returned as objects,
this work is automatically done.

A term or concept that that you should familiarize yourself with is an Entity Data Model (EDM). The
EDM is the foundation of the Entity Framework and is comprised of the three models mentioned earlier:
the conceptual model, the logical model, and the storage model. Think of the EDM as an “enhanced”
version of an ERM. The EDM is the component that describes the overall structure of your business
objects. The Entity Framework does not map your database objects in a simple 1:1 (one-to-one)
mapping. While it can do that, it can do much more than that. Consider, for example, the following
figure from the AdventureWorks database.

In Figure 1-1 there are three tables: Contact, Employee, and AdditionalContactInfo. Person provides
information about a person, while the Employee table provides additional data regarding that person as
an employee. The Business Entity table is the source of the ID that connects many of the tables such as
people (persons), employees, and other information.

For most, if not all, developers this structure looks very familiar. Developers who write applications
that access data are extremely familiar with working with tabular data. The past few pages, however,
have highlighted many of the pitfalls when working in that environment.

Figure 1-1. Database Model

CHAPTER 1 ■ INTRODUCING THE ADO.NET 4.0 ENTITY FRAMEWORK

7

A developer might need to write a query that pulls information from all of these tables. For example,
the application might require that a form that displays the employee’s first name, last name, job title,
hire date, and possibly some other information. A SQL Server query to pull data might look something
like the following:

SELECT c.FirstName, c.LastName, e.Title, e.HireDate, aci.CellPhone, aci.EmailAddress
FROM Contact c
INNER JOIN AdditionalContactInfo aci ON c.ContactID = aci.ContactID
INNER JOIN Employee e ON c.ContactID = e.ContactID

The)Entity Data Model of the Entity Framework is not the same as the database model, and it is

important that a distinction between the two be made. The EDM describes the structure of your
business objects; the database model describes the database schema. The two are distinct and separate,
but the goal of the EF is to reform or reorganize the database objects in such a way that your EDM
matches the goal of your business layer instead of an exact match of your database schema.

For example, using the Entity Framework and the EDM, a developer can take the above three tables
and reshape them using inheritance as follows:

Figure 1-2. Reshaped schema using inheritance

With LINQ the pervious query can now be written much more clearly and cleanly, as follows:

From c in Contact.TypeOf<Employee> select c;

Remember that with the Entity Framework developers now work at the object level, not at the

tabular level. No more tabular translation or the need to manually map results to objects. The next
chapter, Chapter 2, will discuss the EDM in great detail.

Working with Entities
A key term any Entity Framework developer needs to know is the term entity. The objects in Figure 1-2
are called entities. Chapter 4 will discuss entities in much greater detail, but they are introduced here
since they are vital in understanding how to work with the EDM.

CHAPTER 1 ■ INTRODUCING THE ADO.NET 4.0 ENTITY FRAMEWORK

8

In some ways, entities are like objects, for example:

• Entities have a known type.

• Entities have properties, and these properties can hold scalar values.

• Entity properties can hold references to other entities.

• Each entity has a distinct identity.

Even though entities have properties, entities have very little behavior. What behavior they do have
is strictly limited to the methods that enable change tracking.

Entities also differ from objects, for example:

• Entities live within a collection.

• Each entity has associations with other entities.

• Entities have primary keys that uniquely identify the entity.

Equally important, entities also have some similarities to relational data:

• Entities live within an entity set.

• Entities have relationships to other entities.

• They have a primary key.

On the flip side, they differ from relational data:

• Entities support complex types.

• Entities support inheritance.

• Entities do not have physical storage knowledge.

Entities are extremely flexible, meaning that they can be reshaped as you saw a few pages ago when
models were discussed. Entities can have relationships between them, and those relationships can be
defined directly in the EDM Designer.

CHAPTER 1 ■ INTRODUCING THE ADO.NET 4.0 ENTITY FRAMEWORK

9

Figure 1-3. Entities and relationships

You saw earlier how easy it is to query against this type of model. The model provides all the
appropriate and necessary navigation between the entities, and you will see a lot more of this in Chapter
4. The EDM makes it extremely simple to visually see how the entities are linked. In Figure 1-3, each
entity has a navigation property. This property visually illustrates how a developer can easily “navigate”
between the entities.

One of the many nice features of the Entity Framework is the ability to retrieve what is called a
graph. This does not refer to the pie/bar chart type of graph. An Entity Framework graph is the ability to
return shaped data. For example, in a single result I can return data such as a salesperson and all of that
person’s contact details along with it.

Entity Framework 4.0 Features
Lastly, this chapter is going to briefly cover some of the new features in version 4.0 of the Entity
Framework. There are a lot of new features and enhancements, but these next few pages will highlight
some of the most requested and needed features.

Following are some of the more important features and enhancements to be aware of. Some saw the
lack of some of these features in the first version of the Entity Framework as a notable shortcoming.

• Plain Old CLR Objects (POCO) Support

• Model-First Support

• Deferred Loading of Related Objects

• Functions in LINQ to Entities Queries

CHAPTER 1 ■ INTRODUCING THE ADO.NET 4.0 ENTITY FRAMEWORK

10

• Plurality Naming Support

• Complex Type Support

• Customized Object Layer Code Generation

• Model Browser Improvements

The following sections will briefly discuss each item. A more detailed discussion of each item is
included throughout the book.

POCO Support
One of the more powerful new features of the Entity Framework is the ability to add and use your own
custom data classes in conjunction with your data model. This is accomplished by using CLR objects,
commonly known as “POCO” (Plain Old CLR Objects). The added benefit comes in the form of not
needing to make additional modifications to the data classes. This is also called persistence-ignorance.

The flexibility of extending these partial classes means more control over the core entity object
functionality. This is a huge advantage as developers can now leverage and preserve valuable
customizations and business logic, which they might not have been able to do previously.

Model-First Support
In the first version of the Entity Framework, developers could create a conceptual model using the
Create Database Wizard, but that model could not be persisted (created) based on that model. This
changes with the ADO.NET 4.0 Entity Framework.

When creating your initial conceptual model via the Create Database Wizard you can now create the
database based on the conceptual model. This is a huge plus for developers who like to create the object
model first and generate the database based on the model. This functionality supports the data-driven
design that the EDM is purely based on.

Related Object–Deferred Loading
Deferred loading is also known as lazy loading, and in the first version of the Entity Framework, related
objects were not automatically loaded from the data source as navigation properties were accessed.

In ADO.NET 4.0 Entity Framework, query results can be shaped by composing queries that explicitly
navigate the relationships via the navigation properties.

LINQ-to-Entities Function Support
Function support in the first version of the Entity Framework was limited. A function represented either
a stored procedure or a UDF in the database.

Two new classes have been added to the Entity Framework for this release to address this issue, the
EntityFunctions and SqlFunctions classes. These classes provide developers the ability to access
canonical and database functions via LINQ to Entities queries.

Additionally, a new attribute called EdmFunctionAttribute gives the Entity Framework the ability to
use a CLR method to serve as a proxy for a function defined in the conceptual model.

More on function support is discussed in Chapter 5.

Plurality Naming
One of the big complaints in the first version of the Entity Framework was how naming conventions
were applied to EDM objects such as entities and navigation properties when using the model wizards.

CHAPTER 1 ■ INTRODUCING THE ADO.NET 4.0 ENTITY FRAMEWORK

11

The first version of the Entity Framework gave the Entity Name and the Entity Set Name the same name.
There was no attempt to singularize or pluralize names when generating a model from a database.

The problem is that this caused some confusion when referencing the database table or EntityType
in code. For example, if your database has a table called Employees, then you will also get an EntityType
called Employees as well. This causes confusion about whether you are referencing the table or the
EntityType, such as in the code fragment below.

Customers customer = new Customers();

Luckily, this issue has been addressed. The model wizards, both the Entity Data Model and Update

Model Wizards, now provide the option of using singular or plural forms of names for entities, entity
sets, and navigation properties.

The goal of this change was to make the application code much easier to read and avoid a lot of the
confusion between object names.

More on the EDM is discussed in Chapter 2.

Complex Types
A big addition to this version of the Entity Framework is the support for complex types. Complex types
are like entities in that they consist of a scalar property or one or more complex type properties. Thus,
complex types are non-scalar properties of entity types that enable scalar properties to be organized
within entities.

Complex types are discussed in detail in Chapter 3.

Customized Object-Layer Code Generation
Object-layer code is generated, by default, by the EDM using the Entity Model Code Generator tool. This
version of the Entity Framework allows developers to add text templates to a project that replaces the
default tool to generate the object-layer code.

By using custom text templates, the EDM will generate the object context and entity classes. The
Entity Framework makes it very easy to add custom templates via the EDM.

Complex Types are discussed in detail in Chapter 3.

Model Browser Improvements
Several improvements have been made to the model browser that make working with the EDM much
more pleasant. Improvements include the following:

• Updating the model when changes are made to the underlying database.

• Deleting objects from the model.

• Searching for a specified string in the storage and conceptual models.

• Locating entity types on the design surface.

This list is by no means complete, as many more improvements have been made to the model
browser.

The model browser enhancements will be discussed in detail in Chapter 2.

CHAPTER 1 ■ INTRODUCING THE ADO.NET 4.0 ENTITY FRAMEWORK

12

Back-End Support
The great thing about the Entity Framework is that in essence it does not really care about the data store
from which the data is being queried. It doesn’t need to. Neither the type of database nor the schema
itself is completely unknown to the Entity Framework, and they will have no impact on your model.

Out of the box, the Entity Framework ships with two providers:

• EntityClient Provider for the Entity Framework: Used by Entity Framework
applications to access data described in the EDM. This provider uses the .NET
Framework Data Provider for SQL Server (SqlClient) to access a SQL Server
database.

• NET Framework Data Provider for SQL Server (SqlClient) for the Entity
Framework: Supports the Entity Framework for use with a SQL Server database.

The great thing about the Entity Framework is that it is database-, or data source–, independent, in
that you can create custom providers to access other databases. For example, through third party
providers you can access the following:

• Oracle

• MySql

• PostgreSQL

• SQL Anywhere

• DB2

• Informix

• U2

• Ingres

• Progress

• Firebird

• Synergy

• Virtuoso

This is quite a list and it shows you that the Entity Framework is gaining in popularity. This list is by
no means complete, as providers are continuously being created by third-party vendors. At the time of
this writing, a complete list of providers and their vendors can be found here:

http://msdn.microsoft.com/en-us/data/dd363565.aspx

The great thing about this is that the provider does all of the work for you pertaining to query

reshaping. You are responsible for providing the connection information to the specific data store, but
the provider takes care of the rest when working with the Entity Framework. Why? Because of the need
to learn databases or figure out the nuances of different data stores. Instead, you use the Entity
Framework’s query syntax such as LINQ to Entities or Entity SQL and forgo the headache of
remembering the database differences.

This book will use Microsoft SQL Server 2008 as its database and will use the .NET Framework Data
Provider for SQL Server (SqlClient) for the Entity Framework as the data provider. Through this provider
you can use SQL Server as far back as version SQL Server 2000 up through SQL Server 2008. Microsoft
even supports SQL Server Compact Edition.

http://msdn.microsoft.com/en-us/data/dd363565.aspx

C H A P T E R 2

■ ■ ■

13

The Entity Data Model

Chapter 1 spent quite a bit of time discussing the need for, and introducing, the Entity Framework. As
part of that discussion the chapter introduced the EDM (Entity Data Model) and its many benefits to
you. As you have learned, the EDM is the bridge between your application and your data and is the
component that allows you to work with your data conceptually rather than going directly against your
database and trying to figure out the back-end schema.

This chapter is going to build on the first chapter and spend the entire time taking an in-depth look
at an EDM and how it works. This chapter will walk you through creating an EDM, and then we will lift
the lid, take a look underneath, and explore every nook and cranny of the EDM. This chapter will spend
quite a bit of time looking at the EDM Designer and its related files. The first thing this chapter is going
to walk you through is the creation of your first Entity Data Model. From there, we’ll lift the lid and
discuss everything there is about it.

Creating an EDM
In the previous version of the Entity Framework you could generate a model from an existing database,
and you could also start with an empty model and create the conceptual model from scratch.

However, that is where the functionality ended for creating an EDM. If you created a model from
scratch, you could not create the database from that model and in some cases you were required to work
with the raw XML (more on that later in this chapter).

There have been significant changes to the Entity Framework and the EDM. With the EF 4.0, some
significant improvements have been made. Along with creating an EDM from an existing database
schema (called database-first), you can now also do the following:

• Model-first: Allows you to start with an empty model, define your model and then
generate the database, mappings, and classes from the defined model.

• Code-only: Allows you to use the Entity Framework using Plain Old CLR Objects
(POCO) entities and without an EDMX file.

The database-first approach has been available since the very beginning of the EF with the release of
.NET 3.5 SP1. The model-first approach is new to Visual Studio 2010 and .NET 4.0 and allows you to
create an EDM from scratch. The code-only approach lets developers view their code as their model.

The following three sections will discuss each of the approaches for creating an EDM. I’m going to
let you know now that there are a lot of screen shots, and they are included for two reasons. The first is to
help those who are not familiar with the EF to get up and going with ease. The second is to help those
already familiar with the EF to know where the new changes and enhancements are. All the examples in
this book will use the AdventureWorks database for SQL Server 2008. That database can be downloaded
from the CodePlex web site, from the following URL:

http://msftdbprodsamples.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=18407

So, let’s begin.

http://msftdbprodsamples.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=18407

CHAPTER 2 ■ THE ENTITY DATA MODEL

14

Taking a Database-First Approach
Fire up Visual Studio 2010 and create a new Windows Forms Application project. Make sure on the New
Project dialog that you have the .NET Framework 4.0 selected (it should select this by default, however). I
called my project EFDemo but you can call your project whatever you want.

Once the project is created, open solution explorer and right-click on the project. Select Add ➤ New
Item from the context menu. This will open the Add New Item dialog shown below in Figure 2-1.

Figure 2-1. The Add New Item dialog

In the list of Installed Templates on the left side of the dialog, select the Data node. This will list all
the Data object templates, among them the ADO.NET Entity Data Model template. Select the ADO.NET
Entity Data Model template and click Add.

Selecting the ADO.NET Entity Data Model template will begin the Entity Data Model Wizard. The
first step in the wizard lets you choose the type of model you want to use. In this step, you have the
option of generating a model from a database or starting with an empty model.

This section deals with generating a model from an existing database schema; select that option as
shown in Figure 2-2 and click Next.

CHAPTER 2 ■ THE ENTITY DATA MODEL

15

Figure 2-2. Entity data model wizard: choose model contents

The next page in the wizard lets you specify the data connection for your EDM. If you have
previously created connections they will show up in the list. If you have a connection to the
AdventureWorks database, select that connection. Figure 2-3 shows this step in the wizard prior to
making any selections.

If you haven’t created any connections you will need to create one, and this can be done by clicking
the New Connection button. This button will open the Connection Properties dialog, shown in Figure 2-
4.

CHAPTER 2 ■ THE ENTITY DATA MODEL

16

Figure 2-3. Choose your data connection

The Connection Properties dialog looks very similar to most other SQL Server connection dialogs in
that you need to provide the server name, authentication method (Windows for SQL Server
authentication), and the database name. Select the AdventureWorks2008 database and click the Test
Connection button to make sure all the connection settings are correct. If everything checks out fine,
click OK on the Connection Properties dialog. Figure 2-4 shows my Connection Properties dialog filled
out.

Clicking OK on the Connection Properties dialog will take you back to the data connection page of
the wizard with your new connection shown in the connection drop-down, shown in Figure 2-5.

The other options on that page of the wizard should now be enabled. These other options determine
how the connection string in the EDM will be stored. The two options state that you will either include
the username and password in the connection string or you will set the username and password in your
code.

CHAPTER 2 ■ THE ENTITY DATA MODEL

17

Figure 2-4. Database connection properties

As you toggle between the two connection string options on the Data Connection page of the wizard
you will notice that the User ID and Password values in the Entity connection string section appear and
disappear. For the purpose of this demo, select the option to include the sensitive data in the connection
string. In a production environment you certainly would not want to select this option.

Lastly, you have the option to save the connection string in the application configuration file and
provide a name of the section in which to save the information. If you do not select this option you will
have to provide the entire connection string information through code. For the sake of this demo, accept
the default, which is to save the settings in the application configuration file. Figure 2-5 shows a
completed data connection page. Click Next once you have made all the necessary selections.

CHAPTER 2 ■ THE ENTITY DATA MODEL

18

Figure 2-5. Choose your data connection

The next step of the wizard allows you to select the database objects to include in the EDM. On this
page, shown in Figure 2-6, you can select tables, views, and stored procedures. Also included in the list of
stored procedures are scalar-valued functions. Functions will be discussed in Chapter 5.

For this example, I have selected the following:

• Tables: Person.BusinessEntity, Person.Person, HumanResources.Employee

• Views: Sales.vPersonDemographic, person.vAdditionalContactInfo,
HumanResources.vEmployee

• Stored procedures: uspGetManagerEmployees

CHAPTER 2 ■ THE ENTITY DATA MODEL

19

Figure 2-6. Choosing the database objects

At this point our model is ready to be built. But before you click the Finish button, there is a very
important item that I need to discuss that has been added to this step in the wizard. If you take a good
look at Figure 2-6 you will notice something that was not there before in the previous version, and that is
the checkbox “Pluralize or singularize generated object names.”

Making Generated Object Names Plural or Singular
If you have worked at all with the previous version of the Entity Framework (version 3.5) then the
checkbox on in Figure 2-6 should make you stand up and shout for joy. The ability to pluralize or
singularize object names is one of the biggest requested enhancements for 4.0.

In the previous version of EF, the Entity Set Name and the Entity Name properties were both the
same. For example, if you mapped the Person table, the Entity Set Name and Entity Name properties
were both named Person. This naming convention caused confusion because as you started coding
against the model, the names of the objects did not quite make sense.

Naming is improved in Entity Framework 4.0. The checkbox on the Database Objects page of the
model wizard shown in Figure 2-6 provides for the pluralization or singularization of Entity names. By
default, this checkbox is checked, and if you leave it checked, the wizard will automatically pluralize or

CHAPTER 2 ■ THE ENTITY DATA MODEL

20

singularize Entity names. The wizard applies English-language rules for singulars and plurals by doing
the following:

• Making all EntityType names singular

• Making all Entity Set names plural

For example, take a look at Figure 2-7. When we mapped the Person table a few moments ago, it
pluralized the name Person to People. It left the Entity Name as Person but pluralized that name to
People for the Entity Set Name property.

Figure 2-7. Entity properties

The same is true for the opposite scenario when the Entity Name is pluralized. For example, if the
Entity Name property had a value of People, the EDM wizard would have set the Entity Set Name
property to Person. Just think how much less confusing naming will be. Now when you code against the
model, the names of objects will be logical.

Plural and Singular Navigation Properties

The checkbox at the bottom of Figure 2-6 also applies to navigation properties. Leaving the checkbox
checked will set the following for navigation properties:

You’ll read about navigation properties a little later in Chapter 3. As a quick introduction, navigation
properties are shortcut properties used to identify entity relationships.

Go ahead and click the Finish button on Database Object page of the wizard. At this point the new
EDM model will be generated and displayed in the Designer window, shown in Figure 2-8.

• Make the navigation property name singular for each navigation property that
returns at most one entity

• Make the navigation property name plural for each navigation property that returns
more than one entity

CHAPTER 2 ■ THE ENTITY DATA MODEL

21

Figure 2-8. Finished entity data model

What you are looking at in Figure 2-8 is the Designer window of the entity data model. The file on
which the figure is based is named Model1.edmx, and the contents of that file will be displayed in the
Solution Explorer. The Designer windows will be discussed in greater detail in Chapter 3, in the section
“The Designer Window and the EDM.”

You have just created your first Entity Data Model generated from an existing database. We will be
discussing the EDM further later in the book. For now, let’s look at the model-first and code-only
approaches to generating an EDM.

CHAPTER 2 ■ THE ENTITY DATA MODEL

22

Taking a Model-First Approach
A new and welcomed feature to the EF 4.0 is the ability to create a conceptual model first and then derive
the storage model, database, and mappings from that. This section will walk you through each step of
generating a conceptual model, and will explain all the different properties and components involved in
the model-first approach.

As you did in the first exercise, open the solution explorer and right-click on the project. Select Add
➤ New Item from the context menu and select the ADO.NET Entity Data Model template and click Add.
This will start the Entity Data Model Wizard again.

This time select the Empty model template and click Finish (it’s the only button option). A new and
empty model will be displayed in the Designer window, such as the one shown in Figure 2-10.

Figure 2-9. The EDM designer

Also shown in Figure 2-9 is the Toolbox. Inside the toolbox are the objects you can drag into your
model in the Designer. There are three:

• Entity: Allows you to design and create an Entity.

• Association: Lets you create an association (or relationship) between two entities.

• Inheritance: Lets you create an Inheritance relationship between two entities.

■ Note Entities, Associations, and Inheritance are discussed in Chapter 7.

As the hint in the designer suggests, you can create entities by dragging the Entity object from the
toolbox into the Designer. Another option is to right-click in the Designer itself and select Add ➤ Entity
from the context menu.

CHAPTER 2 ■ THE ENTITY DATA MODEL

23

Drag an Entity into the designer. This will create a new Entity called Entity1, with a single property
called ID, as shown in Figure 2-10.

Figure 2-10. EDM designer - entity

The default ID property is created as a “Primary Key” for the Entity. You can change the name of the
Entity property by opening the Properties page of the Entity property and changing it there, as shown in
Figure 2-11. I am creating a Customer table so I called my property Customer ID.

Figure 2-11. Entity properties

CHAPTER 2 ■ THE ENTITY DATA MODEL

24

Notice also the other properties of the Entity Property. The Entity Key property is set to True,
indicating that this column is used as the Entity “Primary Key.” You can also set a default value, specify
whether it can be nullified, and change its data type.

Additional properties can be added by right-clicking on the Entity itself and selecting Add ➤ Scalar
Property or Complex Property, as shown in Figure 2-12.

Figure 2-12. Adding a scalar property

You should also notice in Figure 2-12 a new Add menu option, called Complex Property. A complex
property (or type) is a non-scalar property of entity types that facilitates the organization of scalar
properties within entities. If that explanation didn’t make sense, don’t worry about it now because
complex properties will be explained in Chapter 3.

We are going to add a few more properties to this Entity and add two more Entities and their
properties as well to finish off this example; but first, let’s add a new property to the Customer Entity
called CustomerFirstName. From the Add menu, select Scalar Property and type in CustomerFirstName.
Figure 2-13 shows the properties of this scalar property. Here you can set properties such as Fixed
Length, Max Length, Nullable, and Type.

CHAPTER 2 ■ THE ENTITY DATA MODEL

25

Figure 2-13. Entity Scalar Properties

Let’s finish this example by adding the rest of the Customer properties, and two more Entities and
their properties. For the Customer Entity, add the following properties and their types:

• CustomerLastName (String)

• CustomerAddress (String)

• CustomerCity (String)

• CustomerState (String)

• CustomerZipCode (String)

• CustomerPhone (String)

• ModifyDateTime (DateTime)

We need to add two more Entities: Item and Order. Add a new Entity to the Designer and change its
name to Item. Change the ID property to ItemID. Add the following scalar properties:

• ItemName (String)

• ItemDescription (String)

• ModifyDateTime (DateTime)

Add one more entity to the Designer and name it Order. Change its ID property to OrderID. Add the
following scalar properties and their types:

• OrderID (int32)

• CustomerID (int32)

• ItemID (int32)

• ModifyDateTime (DateTime)

CHAPTER 2 ■ THE ENTITY DATA MODEL

26

We’re almost done. The next thing we need to do is add relationships, or associations. From the
toolbox select Association and create an association between the Customer and Order by selecting the
CustomerID property in the Customer entity and, while holding the left mouse button down, drag over
to the CustomerID property in the Order entity. Create a second association between Item and Order
using the ItemID property in each entity.

When you are all done, your model should look like Figure 2-14.

Figure 2-14. Generate database from model

Now comes the really cool part. In the previous version of the EF, this basically is as far as you could
go. But not with 4.0! You asked for the ability to generate the schema model and database from the
conceptual model and you got it!

CHAPTER 2 ■ THE ENTITY DATA MODEL

27

Generating a Schema and Database
Figure 2-15 shows how you can continue on and generate a schema and database after creating a new
model. Notice that there is a new menu item on the context menu when you right-click on the Designer
(it is highlighted in the previous figure), called Generate Database Script from Model.

Since you are starting with an empty model you will need to specify the target database. As soon as
you select the Generate Database Script from Model you will get the Data Connection screen, shown in
Figure 2-15, which is identical to the one shown in Figure 2-5. The idea is that you need an available
server and database that the system will use to determine what type of DDL to generate.

Figure 2-15. Selecting the data connection

Clicking the Next button on this step of the wizard will take you to the next step, which presents you
with a preview of the DDL that will be generated, such as the one in Figure 2-16, which is the DDL
generated for the model created previously.

The DDL in Figure 2-16 is generated by a template and is read-only. If you want to edit the format of
the DDL you need to modify the template. The resulting DDL, such as that shown in the figure, should
be placed in a separate DDL file that will not be regenerated.

CHAPTER 2 ■ THE ENTITY DATA MODEL

28

Figure 2-16. Database script summary

When you click Finish, you will be presented with the warning in Figure 2-17.

Figure 2-17. Schema overwrite warning

This warning in Figure 2-17 is simply to let you know that you are about to regenerate all existing
Storage Schema (SSDL) and Mapping (MSL) from scratch. This means that if you modify your
conceptual model and run the Generate Database Script from Model again, you will lose any
customizations or modifications that you have made since the first time around.

CHAPTER 2 ■ THE ENTITY DATA MODEL

29

Your resulting DDL will then be displayed in the Visual Studio IDE with a file name of
ModelName.edmx.sql. For example, the model for this example was EmptyModel, and therefore the
saved DDL file was named EmptyModel.edmx.sql. You can see this in Figures 2-18 and 2-19.

One of the things you will notice in Figure 2-19 is the toolbar used to Deploy the DDL with the
appropriate database already selected.

Figure 2-18. Generated DDL script

Figure 2-19 also shows the DDL file added to your project. One thing to keep in mind about the
generated DDL is that it will not migrate data or schema. Your database will be recreated from scratch
when the DDL script is run. No existing data will be saved. If you have data that you wish to save, you
must save and restore it yourself.

CHAPTER 2 ■ THE ENTITY DATA MODEL

30

Figure 2-19. New model in solution explorer

Running the script will create the database objects. When the script has finished running, you will
get a message stating that the script has run successfully, as shown in Figure 2-20.

Figure 2-20. Running the SQL DDL script

The DDL script that you’ve just seen run in Figure 2-20 will generate the schema shown in Figure 2-
21. That schema will correspond to the model shown earlier in Figure 2-14. Notice that all the primary
key and foreign key constraints have been created between the tables. The engine will also create the
appropriate clustered keys on primary keys, and indexes on foreign keys.

CHAPTER 2 ■ THE ENTITY DATA MODEL

31

Figure 2-21. Generated database schema

One of the reasons the model-first approach of creating the EDM is so welcome is simply due to its
extensibility. You can take control of the entire process of only sections or parts of it. An example of this
extensibility would be modifying the DDL generation process so that you can customize the DDL to add
support for your specific database or environment. We’ll cover this type of customization later in
Chapter 9.

Managing Table Inheritance
Table inheritance is a concept that will come in handy while developing with the Entity Framework. You
have two options for how table inheritance is implemented within your model. They are

• Table-per-type: Uses a separate table in storage to maintain data for each type in
the inheritance hierarchy.

• Table-per-hierarchy: Uses one table in storage to maintain data for all the types in
an inheritance hierarchy.

Since the EF engine uses a table-per-type mapping strategy, that is, each entity is mapped to a single
database table, certain rules are used to generate the database schema. These rules are outlined in Table
2-1, which contains information on how tables are created based on entity types.

CHAPTER 2 ■ THE ENTITY DATA MODEL

32

Table 2-1. Entity Types and Tables

 Table Name Created Columns Primary Key Foreign Keys

Non-derived
type

Derived from the
EntitySet property.

A column for each
scalar property.

Column(s) that
correspond to the
entity key property
or properties.

See Foreign Key
section below.

Derived type A combination of
the base type’s
EntitySet element
name and type
name.

A column for each
non-inherited
scalar property
and a column for
each inherited key
property.

Column or
columns that
correspond to
inherited entity
key property or
properties.

The primary key of
the child table is
also a foreign key
that references the
primary key of its
parent table.

Even though the engine creates a table column for each property, you can still create additional

columns for navigation properties. We’ll cover more of table mappings in the next chapter.
The last topic to cover is code-only EDM creation.

Taking a Code-Only Approach
So far we talked about two different ways to create your Entity Data Model: database-first and model-
first. There is a third method, as was mentioned earlier, which allows developers to create their model
using POCO (Plain Old CLR Objects) classes. This method is called code-only because the model that is
created is done only through code. The code-only approach allows developers to write domain classes
without ever looking at or touching a designer or dealing with XML.

The code-only approach simply requires that you create POCO classes that contain the same
structure as the database schema you want to map to, such as the following Contact and Employee
classes, which you will be creating later in Chapter 10.

public class Contact
{
 public Contact() { }
 public int ContactID { get; set; }
 public bool NameStyle { get; set; }
 public string Title { get; set; }
 public string FirstName { get; set; }
 public string MiddleName { get; set; }
 public string LastName { get; set; }
 public string Suffix { get; set; }
 public string EmailAddress { get; set; }
 public int EmailPromotion { get; set; }
 public string Phone { get; set; }
 public string PasswordHash { get; set; }
 public string PasswordSalt { get; set; }
 public Guid rowguid { get; set; }
 public DateTime ModifiedDate { get; set; }
 public ICollection<Employee> Employees { get; set; }
}

CHAPTER 2 ■ THE ENTITY DATA MODEL

33

public class Employee
{
 public Employee() { }
 public int EmployeeID { get; set; }
 public string NationalIDNumber { get; set; }
 public string LoginID { get; set; }
 public int ManagerID { get; set; }
 public string Title { get; set; }
 public DateTime BirthDate { get; set; }
 public string MaritalStatus { get; set; }
 public string Gender { get; set; }
 public DateTime HireDate { get; set; }
 public bool SalariedFlag { get; set; }
 public int VacationHours { get; set; }
 public int SickLeaveHours { get; set; }
 public bool CurrentFlag { get; set; }
 public Guid rowguid { get; set; }
 public DateTime ModifiedDate { get; set; }
 public Contact Contact { get; set; }
}

Once you have your POCO classes created, the next step is to define a class that derives from the

ObjectContext class. This newly created class is used to describe the shape of the model you are creating,
along with the mechanism for accessing your POCO classes, such as the following code:

public class AWModel : ObjectContext
{
 public AWModel(EntityConnection connection)
 : base(connection)
 {
 DefaultContainerName = "AWModel";
 }

 public IObjectSet<Contact> Contact
 {
 get { return base.CreateObjectSet<Contact>(); }
 }

 public IObjectSet<Employee> Employee
 {
 get { return base.CreateObjectSet<Employee>(); }
 }
}

One of the great things about the code-only approach is the flexibility to define your model, such

that you can easily put your Entity Framework-aware classes in one assembly while your POCO classes
are located in a second assembly, much like you would do in a non-POCO project.

■ Note Code-only development is covered in Chapter 10.

CHAPTER 2 ■ THE ENTITY DATA MODEL

34

C H A P T E R 3

■ ■ ■

35

The Entity Data Model
Inside and Out

Chapter 2 introduced you to the different ways an EDM (Entity Data Model) can be created. Regardless
of the method that was used to create the model (generate from a database, start with an empty designer
or through POCO), you should have begun to see the purpose of the EDM, such as how it lets developers
work on a data model conceptually instead of directly. We talked a lot in the first chapter about how the
EDM “bridges the gap” between the application and the data, and by this point you should begin to see
how the EDM does that.

If you still aren’t making the connection, then this chapter should do that for you. While we have
talked at length about what the Entity Framework is and what it does, we have yet to spend any time
discussing the “how.” This chapter discusses the “how” by taking a look at the Entity Data Model itself
and the components of the EDM. This chapter will take a look “under the hood” so-to-speak, looking at
the pieces that actually make up the EDM and the Designer (the composition) and see how it is all
structured. Later on in the book we will discuss more advanced topics regarding the EDM, such as model
customizations.

We’ll first take a look at the visual aspect of the EDM by exploring all of the components of the
Designer, followed by an internal look at the EDM by digging into the code and components that make
up the EDM.

The Designer Window and the EDM
In Chapter 2 we created several models, illustrating how to create an EDM. This chapter will use the first
example, which created an EDM from an existing database. When the EDM model wizard is all finished,
you should be staring at the EDM Designer window.

The Designer Window
Figure 3-1 shows the EDM that you generated from the AdventureWorks database. In this conceptual
view you see three tables (BusinessEntity, Person, and Employee), three views (Employee,
AdditionalContactInfo, and PersonDemographics). There is also one stored procedure, but that does not
show up in the Designer—instead it is listed in the Model Browser, which will be discussed shortly.

You should notice something a bit different in Figure 3-1 from the similar image in Chapter 2
(Figure 2-8). The entities in the image show extra information, specifically the property data type. By
default, the EDM does not display the property type information, but that can easily be displayed by
right-clicking on the EDM background and selecting Scalar Property Format ➤ Display Name and Type
from the context menu. Notice that not only do the scalar property types display for the tables, but for
the views as well, which is very nice. The result is a quick view so that you don’t need to view the

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

36

Properties page to look at the data type. What the EDM does not show is the length. For example, for
String scalar properties, it simply shows “String” but does not show the length. You will still need to look
at the Properties page to view the string length information as well as other information pertaining to the
selected scalar property.

Figure 3-1. AdventureWorks Entity Data Model

The Designer window provides a graphical view of your Entity Data Model and the members that
you included in your model. It is through the EDM that you can do tasks such as the following:

• Create and modify entities

• Create and modify associations between entities

• View and edit mappings

• Modify inheritance relationships

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

37

The Designer is the tool that allows you to work with the EDM and provides the functionality
developers need to create, modify, and update the EDM. The Designer consists of several components to
assist you in designing and editing your conceptual model. Figure 3-2 shows the different components,
including the following:

• Designer surface: A visual surface for creating and modifying the conceptual
model.

• Mapping Details window: The location where mappings are created or modified.
The window is discussed later in the chapter.

• Toolbox: Contains controls that can be used to create entities, associations, and
inheritance relationships.

• Model Browser window: Provides a view of the conceptual model and the
associated storage model.

Model Browser Window
The Model Browser window provides a tree view of the conceptual and storage models that are defined
in the EDM (specifically, the .edmx). The information in this window is organized by the type of
information contained within the window, as shown in Figure 3-2. The first node displays the
information found in the conceptual model, such as entities and associations. The second node displays
the storage model components, i.e., those components of the database that have been imported into the
model, such as tables, views, and stored procedures. Within the Model Browser window you can

• Locate an entity on the Designer surface by right-clicking the entity and selecting
Show in Designer from the context menu

• Delete objects from the storage model, including stored procedures, tables, and
views

• Create function imports from stored procedures by right-clicking on a stored
procedure and selecting Add Function Import from the context menu

• Update the model from the database

As you select items in the Model Browser window, these items become the active object in the
Properties and Mapping windows, making it easy to modify and work with EDM objects.

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

38

Figure 3-2. Designer surface and windows

Mapping Details Window
The Mapping Details window provides an interface enabling you to view and edit the physical mappings
between the storage and conceptual models. Through this window you can view and modify the
mappings for the tables and views as well as map entities to functions (stored procedures).

When an entity is selected in the Designer, the Mapping Details window shows the mapping
between the entity properties and the table column in the storage model. For example, in Figure 3-2 you
can see the Person entity is selected in the Designer as well as the Mapping Details window showing the
mapping between the table columns and the properties of the Person entity. Within this window you can
change the individual property mappings or assign imported stored procedures as functions to perform
Insert, Update, and Delete operations.

With an understanding of the different windows in the Designer, let’s move on and discuss the
different components in the EDM Designer itself.

Entities
To understand the Entity Framework and how entities work, there are a few concepts that you should
know:

• Entity type: This represents a particular type of data, such as Employee, Order, or
Product. Entity types are highly structured records with a key.

• Entity set: This is a logical container for entities of a single type.

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

39

Entities, therefore, are instances of entity types, and entities can be grouped into entity sets. The
model in Figure 3-3 illustrates this concept, which includes three entity types (SalesPerson,
SalesOrderHeader, and SalesOrderDetail), two entity sets (SalesPerson and SalesOrder), and relationships
between the three entity types.

Figure 3-3. Entity and EntitySets

With the explicit concept of entities and relationships, developers can now describe schemas more
precisely by using entities to provide the formal design for the details of a data structure. In other words,
the formal design should specify how an application will encapsulate the different types and kinds of
data in a logical structure. The EDM model we created earlier came from the AdventureWorks database,
which contains Employees, Products, Sales, and more. Each of these represents a data structure and
entities are the formal specifications of the details of those structures.

An Order type, for example, contains details such as salesperson, order date, and quantity. A
SalesPerson type could contain name, address, and other pertinent information. The EDM represents a
logical connection between the SalesPerson and the Order as a relationship, or association.

You’ll also notice that the entity set is defined in the properties of the entity itself. For example,
Figure 3-4 shows the Employee entity selected with the Properties page opened showing the properties
for that entity. One of the properties of the entity is the Entity Set Name. In this example the property
takes on the plural version of the entity name, in this case, Employees. This property is editable, and as
such allows you to change the entity set name and add multiple entities to the same entity set.

Figure 3-4. Entity properties

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

40

Scalar Properties
Entities are made up of properties. Scalar properties are properties whose values are physically and
literally contained within the entity itself. As you saw earlier, you can modify the display of the entity to
also show the scalar property data type, also shown in Figure 3-5. Also shown in the figure are the
properties of a selected scalar property, including properties such as whether the property can be null or
if the property is an entity key. String scalar properties include additional properties that define string
length.

Figure 3-5. Scalar properties

You should also notice a property called StoreGeneratedPattern. This property is used to determine
if the corresponding column in the database will be auto-generated during insert and update operations.
This property is applied to all scalar properties.

Additional properties can be added to entities by right-clicking on the entity and selecting Add ➤
Scalar Property from the context menu, shown in Figure 3-6.

Figure 3-6. Adding a scalar property

You can then define the data type and other properties of the new scalar property.

Complex Types
Complex types are not new to the Entity Framework 4.0. They existed in 3.5, but you could not create
them via the Designer—you had to create them manually. Creating them manually meant that you had
to go into the CSDL (Conceptual Schema) and add the necessary XML to create the complex type. The
problem with this is that once you created your complex type, you could not open the EDM Designer
anymore because the Designer didn’t support complex types.

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

41

With the Entity Framework 4.0, the process of manually creating the complex type is gone. With EF
4.0 you now have the ability to add complex types via the Designer. Before we walk through how to
create them, let’s first back the bus up and discuss what they are.

Complex Types Defined
Complex types provide a handy mechanism for storing and encapsulating properties related to one or
more entities. For example, you may have more than one entity that needs to store phone and email
information. Complex types can also be used to add additional structure to your entities. Regardless of
how you use them, they are very useful. As you will see shortly, complex types are made up of scalar
properties as well as additional complex types.

Complex types in EF 4.0 are anything but complex in the sense of what it takes to create one.
Complex types are types, meaning that you can instantiate them outside of the parent entity. Yet as such
they still provide the ability to navigate to them through the related entity or entities. Let’s take a look at
how to create them and how they work.

Creating a Complex Type
Creating a complex type is quite easy. Open the Model Browser window and expand the top node (the
conceptual model node). Within that node is a complex types node, shown in Figure 3-7. The complex
types node will contain all the complex types for your model. Complex types can be added, deleted, and
modified directly through the Model Browser. As you will see shortly, creating and defining complex
types are quite easy to do.

Figure 3-7. Model Browser

To add a new complex type, right-click on the complex type node and select Create Complex Type
from the context menu, as shown in Figure 3-8. This will create a complex type with a default name of
ComplexType1. You can rename the complex type by right-clicking the complex type and selecting
Rename from the context menu. I renamed my complex type to AddntlContactInfo.

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

42

Figure 3-8. Create complex type

At this point the complex type is useless because we have not defined any properties. To add
properties to the complex type, right-click in the complex type and select Add ➤ Scalar Property, then
select the data type of the scalar property you want to create. You can see this in Figure 3-9. As you can
see, you have the same data types for complex type scalar properties as you do with regular entity scalar
properties. And this should be no surprise because a complex type is simply an extension of your entity
or entities.

Figure 3-9. Adding scalar properties to the complex type

For this example, I added three scalar properties called Active, CellPhone, and EmailAddress, which
you can see in Figure 3-10. CellPhone and EmailAddress are type String while Active is type Byte. If you
have followed along, congratulations—you have created your first complex type.

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

43

Figure 3-10. Finished complex type

The next step is to add it to our desired entity. Going back to the EDM, let’s add it to the Contact
entity. Adding a complex type is just like adding a scalar property to an entity. Right-click on the entity
you want to add the complex type to and select Add ➤ Complex Property from the context menu, as
shown in Figure 3-11.

Figure 3-11. Adding the complex type to the entity

You should now have a complex property added to the entity with a default name of
ComplexProperty, shown in Figure 3-12. It would be wise to rename this new complex property
something more meaningful.

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

44

Figure 3-12. Entity with complex type property

Even though you have added a complex property to the entity, you haven’t told it which complex
type you want this property based on. This is very easy to do. With the new complex property
highlighted, you can either right-click the complex property and select Properties from the context
menu, or you can simply open the Properties window. In either case, you will be presented with the
properties for the complex property, shown in Figure 3-13. The complex property has a type property,
which lists all the complex types defined. Simply expand the drop-down and select the complex type (in
this case there is only one) that you want your new complex property based on.

Figure 3-13. Setting the type property

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

45

Voila, you’re done! You have successfully created and implemented a complex type. Querying this
new complex property is as simple as navigating to it from the Contact entity, as follows:

Contact.AddntlContactInfo.EmailAddress

Throughout this exercise we used the terms complex type and complex property. These terms are

not interchangeable. As we have discussed, complex types are made up of scalar properties and other
complex types. A complex property is what is added to an entity and based on the complex type.

Foreign Keys and Relationships (Associations)
As you become familiar with the Entity Framework and the EDM, you’ll find a definite appreciation for
how the EF creates associations. Creating the associations is not trivial, and the engine follows specific
DDL rules to generate each association.

In an EDM, relationships look much like logical relationships at the database schema level and
therefore are logical connections between entities. Each entity that participates in an association is
called an end. Each end has a role attribute that names and describes each end of the association
logically (or in other words, specifies the entities related by the association). Associations have what is
called a multiplicity attribute, which specifies the number of instances that each end can take part in the
association.

For example, Figure 3-14 shows properties of the association (relationship) between the Employee
and Person entities. These properties define the association, which include all of the aspects discussed
previously. In this example, the roles are the Employee and Person entities, and it is a one-to-many
relationship. Although denoted by “0..1” (which means “zero or one”) this can be misinterpreted. This
simply means that one Person might have multiple Employee roles, but only one employee can be
related to a single Person.

A better explanation might be taken from Figure 3-3, a few pages earlier. A salesperson can have
multiple sales (in the SalesOrderHeader table), but only one sale can be related to a single salesperson.

The OnDelete properties specify an action to be taken when an entity on the corresponding end is
deleted. In database terms, this is called “cascading deletes” and provides a way to delete a child record
when the parent record is deleted, preventing what are called “orphaned” child records.

Figure 3-14. Association properties

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

46

In this example, every Employee must be related to a corresponding Person. Person and Employee
are logically related but they exist as independent entities. As such, it is possible to have a Person
without an associated Employee, but not possible to have an Employee without an associated Person.
This is the “zero or one” part. Table 3-1 describes those association generation rules.

Table 3-1. Rules for Generating Associations

Relationship (Association) Type Generation Rule

One-to-many (1:*) Columns are added to the table that corresponds to the entity type on
the 0..1 or * end of the association. The added columns have foreign
key constraints that reference the primary key or the table that
corresponds to the entity type on the other end of the association.

One-to-one (1:1) Columns are added to one of the tables that corresponds to entity
types on the ends of the association. The table to which the columns
are added is chosen at random. The added columns have foreign key
constraints that reference the primary key of the table that
corresponds to the entity type on the other end of the association.

Many-to-many (*:*) A join table is created, and for each key property in each entity type, a
column is added to the table. The columns have foreign key
constraints that reference the primary keys in the tables created based
on the entity types on the ends of the association. The primary key of
the created table will be a compound primary key that consists of all
the columns in the table.

The goal of the EDM in regards to relationships is to provide flexible modeling capabilities, allowing

explicit reference and navigation based on a pure peer-to-peer relationship model.

Navigation Properties
We talked about properties a bit ago when we discussed scalar properties. Entities also have navigation
properties. Navigation properties are simply pointers to related entities, shortcut properties used to
locate the entities at the ends of an association. Navigation properties help describe navigable paths
between associations.

Figure 3-15 shows the EDM created earlier, highlighting the entities contained in the EDM. In the
figure, the Employee navigation property in the Person entity is highlighted. The properties of that
navigation property are shown on the right in the Properties pane. In this figure you can see that the
navigation properties of each entity inherit the name of their related entity.

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

47

Figure 3-15. Navigation properties

From the figure you can see that there is indeed a foreign key defined between the Person and
Employee entities on the BusinessEntityID property. You can also see much of the same type of
information that you see when looking at the association information in Figure 3-14, such as multiplicity
for the corresponding end of the association as well as the role the navigation property belongs to.

Due to the way associations and navigation properties are handled, navigation between entities is
very easy. For example, Figure 3-15 shows the Person and Employee entities each with an associated
navigation property to the corresponding related entity, providing a path that allows navigation between
the two entities. As such, it is now possible to easily locate an instance of the Person entity from the
Employee entity, or vice-versa.

Navigation properties also provide collection functionality. Let’s use the case of the SalesPerson and
SalesOrderHeader for this example. In my EDM, the object model will contain an Add method on the
SalesOrderHeader property, which allows new SalesOrderHeader instances to be created and added.

Mapping Details
The Mapping Details window the lets you view and edit mappings between the conceptual model and
the storage model within the EDM. Changes made here are applied immediately to the .edmx file.
Through this window you can map entity types or associations.

Figure 3-16 shows table column mapping. There are three columns: the Column column lists the
table column name and data type, the Operator column provides the mapping type, and the
Value/Property column is the entity column that the table column is directly mapped to.

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

48

Figure 3-16. Mapping details

Lifting the EDM Hood
Now that we know how the visual part of the EDM works, the next step is to look at the makeup of the
EDM. Visually, only a small part of the model is viewable via the Designer, but most of the work is done
under the hood and it will really help you to know what goes on underneath there.

Double-clicking on the .edmx files always opens up the EDM in the Designer, so to look under the
hood you’ll need to implement a “right-click” approach. So, right-click on the .edmx file and select Open
With... from the context menu. This will open the Open With dialog box, shown in Figure 3-17.

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

49

Figure 3-17. Opening the EDM in XML

We want to look at the EDM in its raw form, so select XML Editor (as shown in Figure 3-17) and click
OK. If you have the EDM Designer open it will ask you to close it before continuing. Click Yes.

What you are now looking at are 547 lines of raw XML. If you added more or fewer tables, views, or
stored procedures your XML might be more or fewer rows, but in my example, there are 547 lines.
However, the line count is not important—what is important is the content of the XML. It might look
intimidating, but it really is not. The .edmx file is really a combination of three EDM metadata files: the
conceptual schema definition language (CSDL), store schema definition language (SSDL), and mapping
specification language (MSL) files. The best way to view these is to collapse the individual sections, as
shown in Figure 3-18. This will break it down into about 14 lines.

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

50

Figure 3-18. EDM in raw XML

From here, we’ll look at the individual sections.

The EDM Model Parts
As stated earlier, the EDM is really comprised of several different pieces within two different sections. In
Figure 3-18 you can see the two different sections, the Runtime and the Designer sections.

The Runtime section is made up of three additional sections, which were mentioned briefly earlier:

• SSDL: Storage Schema Definition Language, also known as the conceptual model

• CSDL: Conceptual Schema Definition Language, also known as the storage model

• CS (MSL): Mapping information

Each of these sections is discussed in the following pages.

The SSDL Section
As the name suggests, the SSDL (StorageModel) section is an XML schematic representation of the
mapped data store. In this case, it is the tables selected from the AdventureWorks2008 database. Figure
3-19 shows the top of this section expanded. This section itself is about 240 lines long for the objects
selected from the database in our example.

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

51

Figure 3-19. SSDL

Obviously it wouldn’t be prudent to paste the entire XML section in here, but I have tried to include
enough to give you an idea of what this section is all about. I’ll also include some code snippets as well to
illustrate how the SSDL is implemented.

First, there are a few things that need to be highlighted that will help distinguish this section from
others. Take a look at the Schema element. The Namespace includes “.Store”—an apparent indication
that this mapped to the data store and not to the conceptual model or anything else. There are other
name/value pairs that provide visual clues as to the source of the storage. You’ll notice a Provider
attribute and a ProviderManifestToken attribute. These two attributes show what provider was used to
connect to the data store and the version of the data store. In this case, the System.Data.SqlClient
provider was used to access a SQL Server version 2008 database.

There is also an EntityContainer element, which in the SSDL describes the persisted data store. This
is usually a database such as SQL Server. The name for this element is typically the name of the database
with the words “StoreContainer” appended to the end.

You’ll also notice in Figure 3-19 a <DefiningQuery> element. This element defines a query that maps
to data-store views through client-side projection inside the EDM. These mappings are read-only.
Client-side projection is useful in that users would need to map all store-view columns manually.

OK, with that let’s take a look at some of the content further on in the SSDL section.

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

52

EntityType Element
As you scroll down in the XML you’ll see one or more <EntityType> elements. There will be one for each
table included in the EDM. The entity type names are the actual names of the tables in the database.

The <EntityType> element is used in the SSDL to define metadata about entities in the storage
model that is used by the EDM. For example, the following was taken from the SSDL from our example:

 <EntityType Name="Person">
 <Key>
 <PropertyRef Name="BusinessEntityID" />
 </Key>
 <Property Name="BusinessEntityID" Type="int" Nullable="false" />
 <Property Name="PersonType" Type="nchar" Nullable="false" MaxLength="2" />
 <Property Name="NameStyle" Type="bit" Nullable="false" />
 <Property Name="Title" Type="nvarchar" MaxLength="8" />
 <Property Name="FirstName" Type="nvarchar" Nullable="false" MaxLength="50" />
 <Property Name="MiddleName" Type="nvarchar" MaxLength="50" />
 <Property Name="LastName" Type="nvarchar" Nullable="false" MaxLength="50" />
 <Property Name="Suffix" Type="nvarchar" MaxLength="10" />
 <Property Name="EmailPromotion" Type="int" Nullable="false" />
 <Property Name="AdditionalContactInfo" Type="xml" />
 <Property Name="Demographics" Type="xml" />
 <Property Name="rowguid" Type="uniqueidentifier" Nullable="false" />
 <Property Name="ModifiedDate" Type="datetime" Nullable="false" />
 </EntityType>

One thing to keep in mind is that the Type attribute of the Property element is the provider data

types, meaning the SQL Server data types. The <Key> element specifies which properties make up the
identity key of the table.

Association Element
The Association element defines how the database defines the relationships between the given tables. In
the following code sample taken from the SSDL, the Association element defines the primary key and
foreign key relationships between the Employee table and the Person table.

 <Association Name="FK_Employee_Person_BusinessEntityID">
 <End Role="Person" Type="AdventureWorks2008Model.Store.Person" Multiplicity="1" />
 <End Role="Employee" Type="AdventureWorks2008Model.Store.Employee"
 Multiplicity="0..1" />
 <ReferentialConstraint>
 <Principal Role="Person">
 <PropertyRef Name="BusinessEntityID" />
 </Principal>
 <Dependent Role="Employee">
 <PropertyRef Name="BusinessEntityID" />
 </Dependent>
 </ReferentialConstraint>
 </Association>

Much of the information is pulled directly from the database. For example, the Name attribute is the

name of the foreign key found in the database.

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

53

One of the most important elements in the association is the ReferentialConstraint element. This
element serves two main purposes:

• Relationship direction: Using the Principle and Dependent elements, this specifies
the direction in a relationship. In the previous code, Employee is dependent on
Person.

• Ensures data integrity: Specifies data integrity between entities. For example, a
row in the Employee table cannot exist in the Person table. This rule exists in the
database via the foreign key, but this is also enforced in the Entity Framework
because of the ReferentialConstraint element.

As data is sent to the database, the Entity Framework APIs will use the ReferentialConstraint
element to check any and all data against this rule before it is sent to the database. Anything that does
not pass the ReferentialConstraint rule will result in the data not even being sent to the database.

Related to the <Association> element is the <AssociationSet> element. Directly below the
<DefiningQuery> element you will find one or more <AssociationSet> elements. This element specifies
the associations in the SSDL metadata. For example, the following XML defines the association shown
previously.

 <AssociationSet Name="FK_Employee_Person_BusinessEntityID"
 Association="AdventureWorks2008Model.Store.FK_Employee_Person_BusinessEntityID">
 <End Role="Person" EntitySet="Person" />
 <End Role="Employee" EntitySet="Employee" />
 </AssociationSet>

An AssociationSet is simply a container for an association. This might be confusing because you also

have an EntityContainer for entities, which is ideal because it is very possible and expected to have many
Employee entities, for example. But does that mean you can have a collection of associations? The
answer is that associations between entities are also objects, and therefore you can have multiple
association objects. An example of this would be where you have a single SalesPerson with multiple
orders (SalesOrderHeader), and as such you would have an association (FK object) for each relationship.

OK, now on to the CSDL.

The CSDL Section
The CSDL (Conceptual Schema Definition Language), as the name suggests, is simply a conceptual
schema. In other words, it is a conceptual design template for the object model that applications will use
to build their applications against. Figure 3-13 shows the top of this section expanded. This section itself
is about 170 lines long.

If you think that this looks similar to the SSDL, you are correct. However, there are some differences
in the elements and differences in the purposes of the elements. This section also has a Schema element
as well as EntityType elements and Association elements.

The CSDL also has an EntityContainer element, but for the CSDL this element controls the scope of
entity and associations in the defined object model. As you can see in the next figure, the EntityType and
AssociationSet definitions are all contained within the EntityContainer. The EntityContainer exposes the
EntitySets, making it the entry point for executing queries against the model. When you write queries,
you write them against the EntitySet, and it is the responsibility of the EntitySet to pass permission on to
the entity itself.

For the CSDL, the name of this element is typically the name of the database with the word
“Entities” appended to the end. You can see this in Figure 3-20.

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

54

Figure 3-20. CSDL

Let’s take a look at a few things we also looked at in the SSDL section, starting with the Schema
element. The Namespace is missing the “.Store” appendage. The name/value pairs found in the SSDL
that were used to map and connect to a data store and specify data store version are also gone. This
makes sense because we are dealing conceptually and not with physical storage.

OK, with that let’s take a look at some of the content further on in the CSDL section.

EntityType Element
In the CSDL, the EntityType element is used to specify an object in the domain of the designed
application. Another way to say that is an EntityType is a data type in the conceptual model. The
following code shows the EntityType for the Employee entity taken from our example.

 <EntityType Name="Employee">
 <Key>
 <PropertyRef Name="BusinessEntityID" />
 </Key>
 <Property Name="BusinessEntityID" Type="Int32" Nullable="false" />
 <Property Name="NationalIDNumber" Type="String" Nullable="false" MaxLength="15"
 Unicode="true" FixedLength="false" />
 <Property Name="LoginID" Type="String" Nullable="false" MaxLength="256"
 Unicode="true" FixedLength="false" />

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

55

 <Property Name="OrganizationLevel" Type="Int16"
 annotation:StoreGeneratedPattern="Computed" />
 <Property Name="JobTitle" Type="String" Nullable="false" MaxLength="50"
 Unicode="true" FixedLength="false" />
 <Property Name="BirthDate" Type="DateTime" Nullable="false" />
 <Property Name="MaritalStatus" Type="String" Nullable="false" MaxLength="1"
 Unicode="true" FixedLength="true" />
 <Property Name="Gender" Type="String" Nullable="false" MaxLength="1"
 Unicode="true" FixedLength="true" />
 <Property Name="HireDate" Type="DateTime" Nullable="false" />
 <Property Name="SalariedFlag" Type="Boolean" Nullable="false" />
 <Property Name="VacationHours" Type="Int16" Nullable="false" />
 <Property Name="SickLeaveHours" Type="Int16" Nullable="false" />
 <Property Name="CurrentFlag" Type="Boolean" Nullable="false" />
 <Property Name="rowguid" Type="Guid" Nullable="false" />
 <Property Name="ModifiedDate" Type="DateTime" Nullable="false" />
 <NavigationProperty Name="Person" Relationship="AdventureWorks2008Model
.FK_Employee_Person_BusinessEntityID" FromRole="Employee" ToRole="Person" />
 </EntityType>

This code looks much like the EntityType of the SSDL, but you’ll notice some additional

information:

• Types: Unlike the SSDL, the data types that define these properties are primitive
types, or simple types, of the Entity Framework object model that align with the
.NET Framework data types.

• String data types: String data types have additional attributes such as Unicode and
FixedLength.

Also, you’ll notice the addition of a NavigationProperty element. This element defines a shortcut
that is used to navigate between entities that are related using the Association type.

The Key element is used differently in the CSDL than in the SSDL. The Key element defines which
property or properties make up the identity key for the entity. It also provides tracking at the entity level,
meaning that you can track changes to the entity and track updates and entity refreshes.

Associations
Lastly, let’s look at the association for the CSDL. It looks nearly identical to an association defined in the
SSDL, but the one difference in this example is that where the Type attribute included “.Store” while the
Type attributes for the CSDL do not.

 <Association Name="FK_Employee_Person_BusinessEntityID">
 <End Role="Person" Type="AdventureWorks2008Model.Person" Multiplicity="1" />
 <End Role="Employee" Type="AdventureWorks2008Model.Employee"
 Multiplicity="0..1" />
 <ReferentialConstraint>
 <Principal Role="Person">
 <PropertyRef Name="BusinessEntityID" />
 </Principal>
 <Dependent Role="Employee">
 <PropertyRef Name="BusinessEntityID" />
 </Dependent>
 </ReferentialConstraint>

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

56

 </Association>

You should be able to look at these associations and see that they include all of the same

information that you see in Figure 3-7. Two ends are defined, one with a role of Person and one with a
role of Employee. The association Name comes from the predefined relationship established in the
database. The multiplicity is also defined, and you can see that for every Person there will be at least one
Employee, but only a single Employee can be associated to a single Person.

OK, now on to the CSDL.

The CS (MSL) Section
The mapping section is a specification that is used to connect the CSDL types to the database metadata
defined in the SSDL. Figure 3-21 shows the mapping from our example.

Figure 3-21. MSL

The mapping is a layer that resides between the conceptual and store layers. Its entire purpose is to
provide the mapping between entities (entity properties) to the tables and columns in the data store.
Notice in the previous figure that the section is actually called C-S Mapping, referring to conceptual
storage mapping.

Can these mappings be modified? Absolutely. The mapping layer provides model customization if
you like to work with XML. However, there is a better way to work with the mapping and that is

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

57

discussed in a few pages. What we want to take a look at here are the elements contained in the mapping
layer, as they are different from the CSDL and SSDL sections. The elements are defined as follows:

• Mapping: This is the root element. You’ll notice that the element contains MSL
(Mapping Specification Language) Space = “C-S” abbreviation. This simply
signifies that the mapping is between the Conceptual and Storage schemas.

• EntityContainerMapping: This maps the entity container defined in the
conceptual schema to the entity container in the storage schema. This element
contains the name of the two entity containers and uses those to identify the same
container names provided in the CSDL and SSDL.

• EntitySetMapping: This connects an EntitySet defined in the CSDL to an EntitySet
in the SSDL.

• EntityTypeMapping: This connects an entity type and each of its properties in the
CSDL to a table and column defined in the SSDL.

• Mapping Fragment: This is used for entity splitting. It does not apply in the
current example and will be discussed in detail later in the book.

• AssociationSetMapping: This identifies columns in the tables that directly
correspond to EndProperty elements of related entities. Entities can only be
related when a foreign key column in the data table contains a property of another
table (usually a key property of another entity).

• ScalarProperty: This maps the property name of the entity type property in the
CSDL to the column name of the mapped table.

Let me say a few words about association mapping. Figure 3-22 shows how association properties
work using foreign keys. This example uses the SalesPerson and SalesOrderHeader table. Think of this
like mapping entities using the EntitySetMapping, except here the AssociationSetMapping is being used
to map associations.

Figure 3-22. Association mapping details

The key in this example is the foreign key, FK_SalesOrderHeader_SalesPerson_SalesPersonID. The
AssociationSetMapping maps this foreign key association in the CSDL to the SalesOrderHeader table in
the SSDL.

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

58

EDM-Generated Classes
When your EDM is created, a file is also added to the project that is auto-generated by a tool called the
EntityModelCodeGenerator, which is used by the ADO.NET Entity Data Model Designer. This tool is
called by the Entity Data Model Wizard when you generate your EDM. The file that is created has a file
name patterned after the name of your model with the extension of designer.cs. Thus, if you name your
model EFDemo, this file will be called EFDemo.Designer.cs.

Figure 3-23 shows the high levels of this class. By expanding the different regions in this file you will
notice that this file is made up of partial classes that define the contexts and entities used by the EDM. In
the Contexts region you will find a partial class that inherits from the ObjectContext class, used to
provide facilities for querying and working with entity data as objects. Within this region are also the
different constructors used to initialize AdventureWorks2008Entities objects.

Figure 3-23. Code generation

The following code shows the constructors within the Contexts region. As you can see in the code,
the top constructor utilizes the app.config file to retrieve the connection string.

#region Constructors

/// <summary>

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

59

/// Initializes a new AdventureWorks2008Entities object using the connection string found
 in the 'AdventureWorks2008Entities' section of the application configuration file.
/// </summary>
public AdventureWorks2008Entities() : base("name=AdventureWorks2008Entities",
 "AdventureWorks2008Entities")
{
 this.ContextOptions.LazyLoadingEnabled = true;
 OnContextCreated();
}

/// <summary>
/// Initialize a new AdventureWorks2008Entities object.
/// </summary>
public AdventureWorks2008Entities(string connectionString) : base(connectionString,
 "AdventureWorks2008Entities")
{
 this.ContextOptions.LazyLoadingEnabled = true;
 OnContextCreated();
}

/// <summary>
/// Initialize a new AdventureWorks2008Entities object.
/// </summary>
public AdventureWorks2008Entities(EntityConnection connection) : base(connection,
 "AdventureWorks2008Entities")
{
 this.ContextOptions.LazyLoadingEnabled = true;
 OnContextCreated();
}

#endregion

Expanding the Entities region, you will find multiple partial classes, one for each object defined in

the EDM, such as tables and views. These partial classes define the methods, properties, and navigation
methods of each entity. Looking at the Person partial class you will also see the complex type you defined
earlier.

/// <summary>
/// No Metadata Documentation available.
/// </summary>
[EdmEntityTypeAttribute(NamespaceName="AdventureWorks2008Model", Name="Person")]
[Serializable()]
[DataContractAttribute(IsReference=true)]
public partial class Person : EntityObject
{
#region Factory Method

/// <summary>
/// Create a new Person object.
/// </summary>
/// <param name="businessEntityID">Initial value of the BusinessEntityID property.</param>
/// <param name="personType">Initial value of the PersonType property.</param>
/// <param name="nameStyle">Initial value of the NameStyle property.</param>

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

60

/// <param name="firstName">Initial value of the FirstName property.</param>
/// <param name="lastName">Initial value of the LastName property.</param>
/// <param name="emailPromotion">Initial value of the EmailPromotion property.</param>
/// <param name="rowguid">Initial value of the rowguid property.</param>
/// <param name="modifiedDate">Initial value of the ModifiedDate property.</param>
public static Person CreatePerson(global::System.Int32 businessEntityID,
 global::System.String personType, global::System.Boolean nameStyle,
 global::System.String firstName, global::System.String lastName,
 global::System.Int32 emailPromotion, global::System.Guid rowguid,
 global::System.DateTime modifiedDate)
{
 Person person = new Person();
 person.BusinessEntityID = businessEntityID;
 person.PersonType = personType;
 person.NameStyle = nameStyle;
 person.FirstName = firstName;
 person.LastName = lastName;
 person.EmailPromotion = emailPromotion;
 person.rowguid = rowguid;
 person.ModifiedDate = modifiedDate;
 return person;
}

#endregion
#region Primitive Properties

/// <summary>
/// No Metadata Documentation available.
/// </summary>
[EdmScalarPropertyAttribute(EntityKeyProperty=true, IsNullable=false)]
[DataMemberAttribute()]
public global::System.Int32 BusinessEntityID
{
 get
 {
 return _BusinessEntityID;
 }
 set
 {
 if (_BusinessEntityID != value)
 {
 OnBusinessEntityIDChanging(value);
 ReportPropertyChanging("BusinessEntityID");
 _BusinessEntityID = StructuralObject.SetValidValue(value);
 ReportPropertyChanged("BusinessEntityID");
 OnBusinessEntityIDChanged();
 }
 }
}
private global::System.Int32 _BusinessEntityID;
partial void OnBusinessEntityIDChanging(global::System.Int32 value);
partial void OnBusinessEntityIDChanged();

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

61

The Entity Framework allows you to extend these classes to add your own logic and protect the custom
code you write. When not using partial classes, you run the risk of losing the changes you make to auto-
generated code when you regenerate the EDM. Instead of making changes directly to the auto-generated
classes, you can put your custom code in a separate file that won’t be overwritten whenever you
regenerate or update the EDM. The goal is to declare your class as partial. In Chapter 10 we’ll see how to
create all of these classes by hand using POCO (Plain Old CLR Objects) without the need of the Designer.

CHAPTER 3 ■ THE ENTITY DATA MODEL INSIDE AND OUT

62

C H A P T E R 4

■ ■ ■

63

Querying the EDM

You have spent the previous two chapters creating and exploring an Entity Data Model. Chapter 2
discussed the different ways an EDM can be created, and Chapter 3 explored the many facets of the EDM
both internally and externally. It is now finally time to write some code.

This chapter will discuss how to write queries against the EDM by using the LINQ-to-Entities syntax
and the Entity SQL syntax, both provided by the Entity Framework. This chapter will also discuss the
difference between query syntax and method syntax and when you might use one over the other. We’ll
also spend a few pages discussing how queries are executed so that you can write effective queries for
optimal performance.

We won’t go too deep in this chapter, since we’ll save the more advanced topics for later. The
important thing this chapter will do will be to build a foundation you can use for writing and optimizing
queries.

Querying with the Entity Framework
The key to remember when working and querying with the Entity Framework is that you are querying a
data model, not directly against a database. Over the last couple of chapters you have created several
EDMs, and in this chapter you are going to query against the EDM. This is much different than querying
directly against a database, for several reasons. First, the syntax is different. Instead of writing T-SQL
queries, you will use LINQ to Entities or Entity SQL to construct and execute queries. Second, when you
query the EDM you are letting the Entity Framework do a lot of the work for you, such as processing your
queries and handling results.

The Entity Framework employs the ADO.NET providers to handle query operations. Specifically, the
System.Data.SqlClient is utilized to turn your query into something the SQL Server database engine will
understand. On the return side, this same provider will do the work of translating the results into objects
that your application can work with.

I know by now you are itching to starting querying, so let’s get to that.

Syntax Options
When writing queries to query your EDM, there are several syntax options available to you. Before you
begin writing queries it will be helpful to know the differences between the two syntaxes and why you
would use one or the other. Thus, the following two sections will discuss the available syntaxes, query
expression and method-based.

Query-Expression Syntax
The most common syntax used with writing LINQ queries (LINQ to Entities, LINQ to SQL, etc.) is the
query-expression syntax. This is simply because it is easier to read and understand. With query-

CHAPTER 4 ■ QUERYING THE EDM

64

expression syntax, queries are written using operators and functions. This section will spend a page or
two showing some examples of query expression, and most if not all of the examples throughout this
book will use this syntax.

For your first example, open Form1.cs in design mode and place a button and list box on the form.
In the Click event of the button, place the following code:

using (var context = new AdventureWorks2008Entities())
{
 var people = context.People;
 foreach (var person in people)
 {
 listBox1.Items.Add(string.Format("{0} {1}", person.FirstName, person.LastName));
 }
}

Run the code by pressing F5. When the form appears, click the button. After several seconds, the list

will populate, as shown in Figure 4-1.

Figure 4-1. First query

If this is your very first LINQ-to-Entities query, congratulations. Let’s spend a few minutes looking at
the syntax. The very first line we are interested in is the following:

var context = new AdventureWorks2008Entities()

In Chapter 3 you learned all about the context and how the context is used in the Entity Framework.

The context is discussed again shortly.
The next line we want to look at is this one:

var people = context.People

CHAPTER 4 ■ QUERYING THE EDM

65

This line is the query itself. This is the simplest form of a query. The last line executes the query and

then iterates through the results.

foreach (var person in people)

Before we move on, I need to point out a change between .NET 3.5 Entity Framework and .NET 4.0

Entity Framework. Put a breakpoint on the closing brace (}) of the foreach block. Run the app again and
click the button. When the execution hits the breakpoint, hold your mouse pointer over the word people
in the foreach line. You’ll notice that the type is a System.Data.Objects.ObjectSet.

Figure 4-2. ObjectSet

The ObjectSet class lets you work with typed entity sets without the need to specify the entity set
name as an argument to each method call. The Object set class also provides object context functionality
by expanding the ObjectQuery(T) functionality that allows you to execute actions directly against objects
such as deleting and adding objects. The System.Data.Objects namespace contains a number of classes
that provides query functionality that the Entity Framework utilizes. These classes enable you to query
data by working with strongly typed CLR object instances of entity types. These classes also provide
insert, update, and delete capabilities as well.

The previous example is the simplest form of a query expression. Let’s get a bit more complicated
than that because the previous query just said “give me every record from the People entity.” This is not
very good because there are 19,972 records in that table. Let’s modify that query as follows:

using (var context = new AdventureWorks2008Entities())
{
 var people = from p in context.People
 where p.LastName == "King"
 select p;
 foreach (var person in people)
 {
 listBox1.Items.Add(string.Format("{0} {1}", person.FirstName, person.LastName));
 }
}

Press F5 to run the query and click the button when the form loads. This time the list box will

populate with all people with a last name of “King,” as shown in Figure 4-3.

CHAPTER 4 ■ QUERYING THE EDM

66

Figure 4-3. Specific results

The query you wrote in the previous example is a LINQ-to-Entities query. LINQ queries begin with
the FROM clause and end with the SELECT clause. This is much like how the SQL Server Query Engine
processes a query. If you were to take the previous LINQ query and write it in T-SQL format it would look
something like this:

SELECT * FROM Person.Person WHERE LastName = 'King'

This is the type of syntax all T-SQL developers are familiar with. When a T-SQL query is written, at

the very minimum the query includes, and begins with, a SELECT clause, which specifies the columns
you want to be returned by the query, followed by a FROM clause, which lists the tables and/or views
containing columns identified in the SELECT clause.

Depending on the T-SQL query, it could include one or more joins, such as INNER JOIN or OUTER
JOIN, followed by some filtering using the WHERE clause. It could also contain a HAVING clause, and
quite possibly some ordering using the ORDER BY clause.

How many of you stopped to think how SQL Server processes the queries such as the previous one?
Does SQL Server execute the query from top to bottom starting with the SELECT clause and work its way
down? Initially one might think that, but that is not how a query is processed in SQL Server at all. SQL
Server logically processes a query in the following order (by number):

(8) SELECT (9) TOP
(1) FROM
(3) JOIN
(2) ON
(4) WHERE
(5) GROUP BY
(6) WITH
(7) HAVING
(1) ORDER BY

CHAPTER 4 ■ QUERYING THE EDM

67

Notice that the FROM clause is processed first, while the SELECT clause is processed almost last.
Any clause that is not specified in the query is simply skipped by the query processing engine. So, why is
this important?

While this discussion won’t go into the intricacies of the SQL Server query processing, it was
discussed to point out the similarities between a LINQ query syntax and how SQL Server processes a
query.

Thus, we can take the previous example and write it as follows, keeping in mind how similar it looks
to the recent order:

from p in context.People
where p.LastName == "King"
orderby p.FirstName
select p;

The previous code selected all the columns from the People entity, so let’s modify that a bit to only

select the first name and last name, as shown in the following code:

from p in context.People
where p.LastName == "King"
orderby p.FirstName
select new { p.FirstName, p.LastName };

As you typed these queries you should have immediately noticed the presence of IntelliSense. This

is also an indication that you are dealing with a LINQ-to-Entities query. As you typed the “p.” you were
presented with a list of available properties from which to select to include in your query. This is simply
because you identified the People EntitySet in the outset of your code, and LINQ to Entities immediately
was able to determine the items in the collection that you will need in your query, specifically items from
the People EntitySet.

Context
Before we move on to method-based syntax, let’s revisit the topic of context again just so we can fully
understand what it is and what it does. At the end of Chapter 3 we spent a few pages looking at the code
behind the EDM, which contained a number of properties and partial classes.

It is through these properties and partial classes that AdventureWorks2008Entities() class is found.
This class represents the EntityContainer, which you saw in the EDM XML that you saw earlier in
Chapter 3. The EntityContainer inherits from an EntityFramework class called the ObjectContext. This
ObjectContext class is the primary class that has the responsibility of managing data as objects of
defined EDM entity types.

It is through the ObjectContext that connections to the actual data store are made and through
which object state and identity management for entity type instances are maintained.

Thus, the very first line in our code examples has been the following:

using (var context = new AdventureWorks2008Entities())

This line establishes and manages our database connection and provides of the functionality of

working with entity data as objects as well as managing object state.
OK, enough about query expression syntax. Let’s move on to method-based syntax.

CHAPTER 4 ■ QUERYING THE EDM

68

Method-Based Syntax
Method-based syntax, while not as elegant and easily readable as query-expression syntax, is no less
functional or effective than query-expression syntax. As I stated earlier, most of the examples will be
given in query-expression syntax, but this section will describe the method-based syntax so that you
have a second option when writing LINQ-to-Entities queries.

Method-based syntax at first might seem a bit daunting and confusing, but the key to understanding
method-based syntax is to understand Lambda expressions. Lambda expressions, first introduced in
.NET Framework 3.0, are anonymous functions that can contain expressions and statements. Lambda
expressions use the operator =>, which is read as “goes to,” meaning that the left side of the operator
specifies any input parameters while the right side of the operator holds the expression or statement
block. For example, the following is a simple example of a lambda expression:

y =>y + y

The previous expression is read as “y goes to y plus y.” In a lambda expression the => operator has

the same precedence as the = assignment. So, how does this apply to LINQ queries? Lambdas are used in
method-based LINQ queries as arguments to query operator methods. For example, the following code
sample shows lambda expressions used as arguments to the Where and OrderBy standard query operator
methods.

var people = context.People.Where(c => c.LastName == "King").OrderBy(d => d.FirstName);

foreach (var person in people)
{
 listBox1.Items.Add(string.Format("{0} {1}", person.FirstName, person.LastName));
}

In the previous code, a simple lambda expression is used to create a LINQ-to-Entities query similar

to the query used earlier. While they are syntactically different, the results are the same. This query
returns people who have a last name of “King” and orders the results by first name. This query, however,
such as the query-expression query used earlier in the chapter, returns all the rows and then pulls out
the first name and last name properties to populate the list box.

To fix this, we can add another lambda expression to return only the first name and last name
properties from the entity, as shown here.

var people = context.People.Where(c => c.LastName == "King").OrderBy(d =>
d.FirstName).Select(r => new { r.FirstName, r.LastName });

So, other than syntax, what is the difference between a method-based query and a query-expression

query? The answer to this lies in the way the CLR processes these two types of queries. Visual Basic and
C# understand LINQ syntax, but the CLR does not understand it. When a LINQ query expression is sent
for execution, it is first translated to a set of method calls that the CLR can understand. Since method-
based syntax is already in “method” form, there is no need for the translation.

As an exercise, run the previous method-based query in your code. However, before you run the
code, open SQL Server Profiler and create a trace against the AdventureWorks2008 database. Run the
code that contains the previous query, and when the code is finished executing, open the SQL Profiler
trace and look for the query that was executed.

You’ll notice that the query that was actually executed looks much different than the LINQ query.
Here is the SQL that the SQL Profiler showed that was executed.

SELECT
[Project1].[C1] AS [C1],
[Project1].[FirstName] AS [FirstName],

CHAPTER 4 ■ QUERYING THE EDM

69

[Project1].[LastName] AS [LastName]
FROM (SELECT
 [Extent1].[FirstName] AS [FirstName],
 [Extent1].[LastName] AS [LastName],
 1 AS [C1]
 FROM [Person].[Person] AS [Extent1]
 WHERE N'King' = [Extent1].[LastName]
) AS [Project1]
ORDER BY [Project1].[FirstName] ASC

The idea here is that while LINQ evaluates the query one method at a time, the query is not

processed one method at a time. LINQ to Entities evaluates each method one at a time, and when it is
done evaluating it will create a store command based on all the evaluated methods. Again, even though
the methods are evaluated individually, they are not executed individually (or separately).

Also notice that each lambda expression in the recent method-based query uses different variable
names. This is not necessary, as I could have used the same variable in each expression, as shown here.

var people = context.People.Where(c => c.LastName == "King").OrderBy(c =>
c.FirstName).Select(c => new { c.FirstName, c.LastName });

I use different variables just for clarity and so that I can easily see how the query is evaluated in the

compiler.
So, why use one syntax over the other? Developer preference. Develop in the syntax or style you

prefer. It’s a personal choice.
With an understanding of the two query syntaxes, let’s move on to the available query options.

Querying Options
When the Entity Framework was first being developed, the Entity SQL language was actually being
developed as the query language to use to query the EDM. However, the EF team caught wind of a
“LINQ” language and quickly realized that the LINQ language would be a great benefit to the EF product.
Thus occurred the birth of LINQ to Entities. However, that does not mean that Entity SQL has gone
away. That option still exists and is certainly a viable option for querying your EDM.

This section, then, will discuss these two options.

LINQ to Entities
LINQ to Entities is typically the query syntax of choice simply because it is easier to learn as well as
familiar to those who already know the LINQ syntax. The LINQ syntax has been in existence since Visual
Studio 2008 and is gaining popularity fast. LINQ (Language INtegrated Query) was first created to query
in-memory CLR objects but quickly expanded to include querying capabilities for XML, databases,
DataSets, and EF Entities.

In this chapter you have a seen a few LINQ-to-Entities queries, but this section is going to drill a
little deeper. As you have already learned, LINQ to Entities is one of the LINQ implementations and
provides the ability to query EF Entities. Since LINQ is integrated into the Visual Studio IDE you get the
benefits of IntelliSense and working in an object-oriented environment.

As a quick refresher, a LINQ query begins with the FROM clause and ends with the SELECT clause.
Why does a LINQ query begin with the FROM clause? Identifying the type right out of the gate enables
the IntelliSense to provide correct and consequential suggestions when constructing the rest of the
query.

You saw the following LINQ-to-Entities query earlier:

CHAPTER 4 ■ QUERYING THE EDM

70

from p in context.People
where p.LastName == "King"
orderby p.FirstName
select new { p.FirstName, p.LastName };

In this query, p is simply a query variable name that will be used in the rest of the query to reference

the entity object you are working with. Also in the query are four LINQ standard query operators: from,
where, orderby, and select.

There are 53 standard query operators that provide sorting, filtering, grouping, join, and other
functionality that can be included in a LINQ query. While a discussion of all of the standard query
operators is outside the scope of this book, a few of them will be discussed in this chapter as well as later
in the book in a discussion of advanced query topics.

For the most part, except for the from being the first clause and the select being the last clause, the
order of any other operator does not matter. For example, the preceding query can also have the orderby
and where reversed:

from p in context.People
orderby p.FirstName
where p.LastName == "King"
select new { p.FirstName, p.LastName };

Yet when this query is executed and viewed via SQL Profiler you’ll notice that the query executed at

the database is exactly as before:

SELECT
[Project1].[C1] AS [C1],
[Project1].[FirstName] AS [FirstName],
[Project1].[LastName] AS [LastName]
FROM (SELECT
 [Extent1].[FirstName] AS [FirstName],
 [Extent1].[LastName] AS [LastName],
 1 AS [C1]
 FROM [Person].[Person] AS [Extent1]
 WHERE N'King' = [Extent1].[LastName]
) AS [Project1]
ORDER BY [Project1].[FirstName] ASC

OK, a quick comment before we get to a few LINQ-to-Entities examples. We need to discuss the

IQueryable interface. The IQueryable interface is a LINQ query type, providing the ability to evaluate
queries against specific typed data sources (in other words, where the type is known).

Figure 4-4 shows you what the compiler thinks the type is when you hover your mouse over people
in the foreach statement.

Figure 4-4. IQueryable

CHAPTER 4 ■ QUERYING THE EDM

71

In this example, the compiler recognizes that this is a LINQ query, but it doesn’t know that it is a
LINQ-to-Entities query and therefore really can’t tell you the return type because we used an
anonymous type to declare people. Although the query will be processed by the Entity Framework, it will
result in an ObjectQuery, which implements IQueryable.

OK, let’s do a few LINQ-to-Entities query examples. These queries will build on our earlier
examples. This first example selects everyone with a first name of King or a first name of Jones, orders
them by first name, and then selects only the FirstName and LastName properties to be returned in the
results.

var people = from p in context.People
 where p.LastName == "King"
 || p.LastName == "Jones"
 orderby p.FirstName
 select new { p.FirstName, p.LastName };

This query is similar to the following T-SQL query:

SELECT p.FirstName, p.LastName
FROM Person.Person AS p
WHERE p.LastName = 'King'
OR p.LastName = 'Jones'
ORDER BY p.FirstName

Modify the LINQ query behind button1 to look like the previous LINQ-to-Entities query. Press F5 to

run the project, and when the form appears, click button 1. Figure 4-5 shows the results of the query.

Figure 4-5. Order by first name

Since we ordered by first name, the Kings and Joneses are intermixed. What if we didn’t want them
intermixed (grouping by last name)? We can accomplish this two ways.

CHAPTER 4 ■ QUERYING THE EDM

72

Modify the LINQ-to-Entities query as shown here. We change the Order By to order first by
LastName, then by FirstName.

var people = from p in context.People
 where p.LastName == "King"
 || p.LastName == "Jones"
 orderby p.LastName, p.FirstName
 select new { p.FirstName, p.LastName };

Now when we run the application and click the button, we see that the Joneses are listed first

(ordered by first name), then the Kings are listed second (ordered by first name), as you can see in Figure
4-6.

Figure 4-6. Order by last name and first name

However, there is another way to not intermix the names, and that is by using the group operator.
Modify the query and foreach as you see it here.

var people = from p in context.People
 orderby p.FirstName
 where p.LastName == "King"
 || p.LastName == "Jones"
 group p by p.LastName;

foreach (var person in people)
{
 foreach (var per in person)
 {
 listBox1.Items.Add(string.Format("{0} {1}", per.FirstName, per.LastName));
 }

CHAPTER 4 ■ QUERYING THE EDM

73

}

Running this query will return the same results as the previous query (shown in Figure 4-6). In this

example we use the group operator to group the last names, still ordering by first name. This way, all last
names are grouped together.

You’re probably asking yourself, “Why doesn’t this query end in a SELECT?” Well, I sort of fibbed
earlier. A LINQ query can end in either a SELECT or GROUP. I wanted to make understanding LINQ
queries easy and didn’t want to over-complicate things. Now that you have a pretty good grasp of LINQ
queries, I feel it is time to throw this at you, but I promise I’ll try not to fib any more.

This next query is similar to the original query, but it orders the first name in descending order.

var people = from p in context.People
 where p.LastName == "King"
 || p.LastName == "Jones"
 orderby p.LastName, p.FirstName descending
 select new { p.FirstName, p.LastName };

foreach (var person in people)
{
 listBox1.Items.Add(string.Format("{0} {1}", person.FirstName, person.LastName));
 }

Running this query will result in the names being ordered by LastName, then FirstName in

descending order, as shown in Figure 4-7.

Figure 4-7. Order FirstName descending

OK, one last example. This query uses the join operator to pull in a third piece of data, the hire date.
For this query, I removed the where operator filter, but joined on the Employees entity to get the hire
date of the person.

CHAPTER 4 ■ QUERYING THE EDM

74

var people = from p in context.People
 join emp in context.Employees on p.BusinessEntityID equals emp.BusinessEntityID
 orderby p.LastName, p.FirstName descending
 select new { p.FirstName, p.LastName, emp.HireDate };

foreach (var person in people)
{
 listBox1.Items.Add(string.Format("{0} {1} {2}", person.FirstName, person.LastName,
 person.HireDate));
}

Notice that the join syntax looks very similar to that of T-SQL. Running this query produces the

following results:

Figure 4-8. Join results

In this section we have looked at some pretty basic LINQ-to-Entities queries, but it should give you a
foundation on which to start writing and authoring queries. Later on in the book we’ll explore more
detailed and advanced queries.

Entity SQL
The ADO.NET-provided Entity SQL language is a storage-independent syntax and language that looks
very similar to T-SQL. It was the original language designed to work with the Entity Framework to query
EDM objects, and as such it supports EDM constructs, letting users query data represented by an EDM.

As much as it looks like T-SQL, there are some differences between the two languages. For example,
Entity SQL does not support the * syntax (for example SELECT *, or COUNT(*)). Another example is that
T-SQL allows for ORDER BY clauses to be specified only at the topmost SELECT statement, whereas in

CHAPTER 4 ■ QUERYING THE EDM

75

Entity SQL you can use a nested ORDER BY expression and be placed anywhere in the query. There are
many differences and a complete list can be found here:

http://msdn.microsoft.com/en-us/library/bb738573(VS.100).aspx

Let’s get to the first example. Open Form1 in design and add another button to it. In the Click event

of the new button, add the following code:

using (var context = new AdventureWorks2008Entities())
{
 var str = "SELECT VALUE p FROM AdventureWorks2008Entities.People AS p WHERE p.LastName
 = 'King' Order by p.FirstName";

 var people = context.CreateQuery<Person>(str);

 foreach (var person in people)
 {
 listBox1.Items.Add(string.Format("{0} {1}", person.FirstName, person.LastName));
 }
}

Press F5 to run the application and when the form appears click the new button. The list box will

populate with the same data as did our very first LINQ-to-Entities example from this chapter.
Functionally, the two queries are the same, but syntactically they are very much different.

To understand how an Entity SQL query works, let’s take a look at the query itself and its different
components. Here is the query itself:

SELECT VALUE p FROM AdventureWorks2008Entities.People AS p

Now let’s spend a few minutes and look at the individual components that make up this query:

• VALUE: Used to return an object, not a row. If returning a single item then this is
not used.

• p: A variable reference.

• AdventureWorks2008Entities.People: The collection (EntityContainer.EntitySet) to
be evaluated.

• p: A defining variable.

The VALUE clause is required only when you want to return a single item such as an entity,
property, or collection. However, as stated previously, the VALUE clause cannot be used when selecting
multiple items.

Immediately you should see a problem with the Entity SQL approach. While the previous code
works and we get the desired results back, the query is a string value and you won’t know it works until
you run the program. But with LINQ to Entities and IntelliSense, you’ll know immediately prior to
running the application.

var str = "SELECT p.FirstName, p.LastName FROM AdventureWorks2008Entities.People AS p WHERE
p.LastName = 'King' Order by p.FirstName";

This last example will utilize the same query but pass a parameter to it.

var str = "SELECT p.FirstName, p.LastName FROM AdventureWorks2008Entities.People

http://msdn.microsoft.com/en-us/library/bb738573

CHAPTER 4 ■ QUERYING THE EDM

76

 AS p WHERE p.LastName = @LastName Order by p.FirstName";

var people = new System.Data.Objects.ObjectQuery<Person>(str, context);
people.Parameters.Add(new System.Data.Objects.ObjectParameter("LastName", "King"));

We haven’t spent as much time on Entity SQL simply because it is string-based and is not as elegant

as LINQ to Entities. However, that does not mean that the Entity SQL language is not a viable option. It
most certainly is. Entity SQL uses a return type of ObjectQuery, in the case of the previous example and
ObjectQuery<Person>, not an IQueryable as we discussed earlier. As an ObjectQuery it has all the methods
and properties that are not available to IQueryable (however, keep in mind that IQueryable inherits from
ObjectQuery).

The EntityClient
Besides using LINQ to Entities and Entity SQL, there is one more way you can query the EDM, and that is
through the EntityClient. The EntityClient provider can be used by the Entity Framework to access data
described in an EDM. This provider uses supplementary .NET Framework data providers to access data
sources, such as SQL Server. For example, the SqlClient provider for SQL Server is used by the
EntityClient provider to access the SQL Server database.

The key to using this provider is found in the System.Data.EntityClient namespace. Through this
provider operations that are performed on conceptual entities are translated into operations performed
on physical sources, and returned results are translated from physical data sources into conceptual
entities.

The EntityClient, unlike LINQ to Entities or Entity SQL, does not have its own language, but rather
uses the Entity SQL language to execute commands against an entity model. As such, the Entity
Framework facilitates the communication and translation of Entity SQL into storage specific queries.
Since the Entity SQL language is not tied to any particular database, Entity SQL works great for the
EntityClient provider.

Using the EntityClient is extremely similar to using other .NET data access technologies such as the
SqlClient. If you are familiar with the SqlClient (and subsequent SqlDataReader) then you won’t have a
problem with the EntityClient at all.

Let’s walk though a quick example to illustrate how the EntityClient works. Open Form1 in design
again and add a third button to the form. In the code behind the form, add the following to the
declaration section:

using System.Data.EntityClient

Next, behind the code for the new button, add the following:

var firstname = "";
var lastname = "";

using (EntityConnection conn = new EntityConnection("name = AdventureWorks2008Entities"))
{
 conn.Open();
 var query = "SELECT p.FirstName, p.LastName FROM AdventureWorks2008Entities.People
 AS p WHERE p.LastName = 'King' Order by p.FirstName";

 EntityCommand cmd = conn.CreateCommand();
 cmd.CommandText = query;

 using (EntityDataReader rdr

CHAPTER 4 ■ QUERYING THE EDM

77

 = cmd.ExecuteReader(System.Data.CommandBehavior.SequentialAccess))
 {
 while (rdr.Read())
 {
 firstname = rdr.GetString(0);
 lastname = rdr.GetString(1);
 listBox1.Items.Add(string.Format("{0} {1}", firstname, lastname));
 }
 }
 conn.Close();
}

Run the project by pressing F5 again. When Form1 displays, click the new button. The list box will

populate with data we have seen in previous examples, such as that in Figure 4-3.
In this example, you’ll notice that it executes an Entity SQL query that you have seen a few times in

previous sections. But what needs to be highlighted are several new classes, the EntityConnection class
and the EntityCommand class.

EntityConnection
Unlike other connection classes, the EntityConnection class is what provides a connection to an EDM,
not directly to a data store. The EntityConnection class has several constructors, one of which accepts a
string such as the one we used in the recent example, which is the name of the compiled EDM.

using (EntityConnection conn = new EntityConnection("name = AdventureWorks2008Entities"))

The connection information is tied to the EDM schema with pointers to the connection overloads.

Notice in the following code the connection information for the EntityConnection.

#region Constructors

/// <summary>
/// Initializes a new AdventureWorks2008Entities object using the connection string
 found in the
 'AdventureWorks2008Entities' section of the application configuration file.
/// </summary>
public AdventureWorks2008Entities() : base("name=AdventureWorks2008Entities",
 "AdventureWorks2008Entities")
{
 OnContextCreated();
}

/// <summary>
/// Initialize a new AdventureWorks2008Entities object.
/// </summary>
public AdventureWorks2008Entities(string connectionString) : base(connectionString,
 "AdventureWorks2008Entities")
{
 OnContextCreated();
}

/// <summary>
/// Initialize a new AdventureWorks2008Entities object.

CHAPTER 4 ■ QUERYING THE EDM

78

/// </summary>
public AdventureWorks2008Entities(EntityConnection connection) : base(connection,
 "AdventureWorks2008Entities")
{
 OnContextCreated();
}

#endregion

You can also see how all of this information is mapped together by exploring the app.config file in

the Solution Explorer. In the app.config file is a <ConnectionString> section with the same name found
in the previous code as well as what we specified in our EntityClient example.

EntityCommand
The EntityCommand is really no different than other provider commands you have used. It essentially
represents a command that will be executed against an EDM. Like other command providers, the
EntityCommand has similar properties and events such as the CommandText property and ExecuteReader
method. The CommandText property points to the Entity SQL statement that is to be executed. The
ExecuteReader method executes the command and returns a data reader.

Immediate vs. Deferred Query Execution
This chapter has focused specifically on queries and query execution. But there is a bit more that needs
to be discussed regarding when and how queries are executed. The point at which query expressions are
executed varies. The query is not executed when the query is created, and in fact if you step through the
code and try to look at the results of a query prior to iteration it will tell you that the results will
automatically be enumerated if you try to look at the results. You can see this in Figure 4-9.

The key is to know when queries will be executed and what triggers queries execution, along with
what you can do to tell a query to have it execute it immediately. By default, all LINQ queries are
executed when the query variable is iterated over. The query is not executed when it is built, which
means the following code does not execute a query:

var query = from p in context.people
 select new { p.LastName, p.FirstName, p.MiddleName }

CHAPTER 4 ■ QUERYING THE EDM

79

Figure 4-9. Query execution timing

Deferred Execution
The select statement in the previous code does not execute the query. The query is executed when the
query variable (in this case, the variable query) is iterated over in the foreach statement. This form of
query execution is called deferred execution. With deferred query execution, the query variable does not
hold the query results—it only stores the query command. The query is actually executed at some point
after the construction of the query. Deferred query execution has the benefit of being able to execute the
query more than once, or as frequently as needed.

Deferred query execution also has the added benefit of being able to extend the query. For example,
in the following code the initial query is created, then a second query extends (modifies) the first query
to include an additional filter. Both queries are then executed during iteration, but the second iteration
returns only a single row.

var query = from p in context.People
 select new { p.LastName, p.FirstName, p.MiddleName, p.BusinessEntityID };

var secondquery = query.Where(p => p.BusinessEntityID == 8);

foreach (var per in query)
{
 listBox1.Items.Add(string.Format("{0} {1}", per.FirstName, per.LastName));
}

foreach (var per in secondquery)
{
 textBox1.Text = per.FirstName + " " + per.LastName;
}

When queries return a sequence of values, then deferred query execution is the norm. However,

what happens when you need the results immediately or if the query returns a singleton value? This is
where immediate query execution comes into play.

CHAPTER 4 ■ QUERYING THE EDM

80

Immediate Execution
Any query that returns a singleton value is executed immediately. You can also force a query to be
executed immediately. Both of these scenarios are accomplished by using one of the LINQ query
operators that provide this functionality. LINQ provides several operators that force the query to be
executed immediately and also return a singleton value. These operators include the following:

• ToList: Create a List(T) from an IEnumerable(T).

• ToDictionary: Creates a Dictionary from an IEnumerable(T).

• ToLookup: Creates a generic Lookup from an IEnumerable(T).

• ToArray: Creates an array from an IEnumerable(T).

• Average: Computes the average of a sequence of numeric values.

• First: Selects first value in a sequence of values.

• Count: Counts number of values in a sequence of values.

• Max: Returns the maximum value in a sequence of values.
Let’s take a look at how to force an immediate query execution first. The following code causes the

query to be executed immediately by using the ToList operator, which returns the query results in a List
object.

var query = (from p in context.People
 select new { p.LastName, p.FirstName, p.MiddleName, p.BusinessEntityID
}).ToList();

Again, if we step through the code and look at the query variable we can see that the query was

executed even before the query was iterated over. We can see this in Figure 4-10.

Figure 4-10. Immediate query execution

CHAPTER 4 ■ QUERYING THE EDM

81

The following is an example of using the Count operator to execute the query immediately to return
a count of all people in the Person table whose last name begins with the letter “K.”

var query = (from p in context.People
 where p.LastName.StartsWith("K")
 select new { p.LastName, p.FirstName, p.MiddleName, p.BusinessEntityID
}).Count();

When we run the code and look at the query variable we can see that it returned 482 rows and that there
is no need to do any iteration. Queries that return a singleton value do so because the query must
produce the results to calculate the singleton value.

CHAPTER 4 ■ QUERYING THE EDM

82

C H A P T E R 5

■ ■ ■

83

Working with Entities

By now, you should have a good understanding of how the Entity Data Model (EDM) is organized and
how to query it. I’ve focused a bit on entities and will examine them in more detail later in the book
when I look at advanced topics, but I’ve barely scratched the surface. You can do much more with
entities when dealing with data, and that is what this chapter discusses.

The last chapter focused on querying the EDM; but what do you do after you receive the data? In
real-world scenarios, you typically add, modify, and even delete data. All these things are possible in the
Entity Framework (EF). You can add a new entity or edit or delete existing entities. You’ll also look at
how changes are tracked via the EF and how changes are ushered back and forth between the EDM and
the database.

The ObjectContext
The end of Chapter 3 discussed the ObjectContext and the important role it plays in the EDM, and
Chapter 4 referenced it again as it talked about how the ObjectContext is necessary when you’re
querying the EDM. Every query you wrote in the last chapter used the ObjectContext via the
AdventureWorks2008Entities class (which inherits from the ObjectContext). You use this context to
execute queries and work with resulting objects returned by those queries.

Let’s examine the last sentence in the previous paragraph. The EF deals with objects. Queries are
executed against a data source, and the query results data records are never returned; the results are
materialized into common language runtime (CLR) types and then returned to the client. This process is
called object materialization and is performed by the EF. You learned in Chapter 3 that this functionality
is provided by the Object Services implemented in the System.Data.Objects and
System.Data.Objects.DataClasses namespaces.

The ObjectContext resides through these namespaces. This class encapsulates an
ObjectStateManager object that tracks objects during CUD (Create, Update, Delete) operations. There is
only one ObjectStateManager for each object context. The ObjectContext also maintains an
ObjectStateEntry for each and every entity stored in the ObjectContext cache. This class is the focus of
the next section.

ObjectStateEntry
The ObjectStateEntry class is responsible for maintaining state and key information for entities. An
instance of the class is created for each entity type in the cache, and it has the sole responsibility of
tracking and maintaining the original values of the object, its relationships, and any properties that have
been modified on the entity. The ObjectStateEntry class also tracks EntityState (such as whether the
entity has been detached, deleted, modified, and so on) and EntityKey values.

One ObjectStateEntry can’t have the same key as another ObjectStateEntry within the same
ObjectStateManager.

CHAPTER 5 ■ WORKING WITH ENTITIES

84

When an entity is first created (enters the ObjectContext cache), the ObjectStateEntity takes a
snapshot of it. This snapshot contains the original values of the entity, and as the entity is modified the
current values are also stored. At the point of entity modification, the EntityState property is set to one
of the following values:

• Detached: The object exists, but it isn’t being tracked by the Object Services.

• Unchanged: The object hasn’t been modified since it was loaded into the context
or since the SaveChanges method was last called.

• Added: The object is newly added to the context, and the SaveChanges method
hasn’t been called.

• Deleted: The object has been deleted from the context.

• Modified: The object has changed, but the SaveChanges method hasn’t been called.

The great thing about working with entities is that the EF and the ObjectContext do all the change
tracking for you. As changes are made to the entity, the ObjectContext tracks these changes and
automatically sets the EntityState property. Before you work on some examples, the next section
examines change tracking and how changes are saved.

Tracking and Saving Changes
I briefly discussed how changes are tracked using the EntityState, but let’s dig a bit deeper to
understand how change tracking works. When a new object is added to the ObjectQuery (returned by the
query), it’s added to the object cache. This cache is maintained by the ObjectStateManager. There is one
ObjectStateManager for each object context, and within that object context you can add, modify, and
delete objects.

Only a single instance of an object, by entity key, is kept in the cache and managed by Object
Services. As such, and by default, queries only return objects that aren’t already in the cache. This
provides the added functionality of not overwriting the data (objects) in the cache. This functionality is
provided by the MergeOption enumeration (which is specified for queries and load options), consisting of
the following enumeration members:

• Append Only: The default behavior. Existing objects in the object context aren’t
loaded from the data source.

• OverwriteChanges: Objects are always loaded from the data source. Property
changes made to objects in the object context are overwritten by data-source
values.

• PreserveChanges: Objects are always loaded from the data source. Property
changes made to objects are preserved in the object context.

• NoTracking: Objects aren’t tracked in the ObjectStateManager and are maintained
in a detached state.

After all changes to the entities have been made, the changes need to be ushered back to the data
source. This is done by a single method of the ObjectContext called SaveChanges. This method is
responsible for persisting all entity changes to the data store and resetting the change tracking on the
object context.

For the ADO.NET 4.0 Entity Framework, a couple of changes have been made to the SaveChanges
method. In the ADO.NET 3.5 Entity Framework, the SaveChanges method had two constructors. The first
constructor, SaveChanges(), saved all updates to the data store and reset all change tracking. The second
constructor, SaveChanges(Boolean), saved all updates to the data store and optionally reset all change
tracking.

CHAPTER 5 ■ WORKING WITH ENTITIES

85

For the ADO.NET 4.0 Entity Framework, SaveChanges(Boolean) has been deprecated and replaced
with a new SaveChanges(SaveOptions) constructor. Thus, the SaveChanges method has the following two
constructors:

• SaveChanges():Saves all updates to the data store and resets all change tracking.

• SaveChanges(SaveOptions): Saves all updates to the data store with the associated
SaveOptions.

The second constructor allows you to specify an Enum (enumeration) that dictates the behavior of
the object context when the SaveOptions method is called. The enumeration members are as follows:

• AcceptAllChangesAfterSave: After all the changes are saved, the
AcceptAllChangesAfterSave() method is called, resetting change tracking.

• DetectChangesBeforeSave: Before changes are saved, the DetectChanges() method
is called to synchronize the property values of objects. These objects are those that
are associated to the object context with data in the ObjectStateManager.

• None: Changes are saved without the DetectChanges() method or the
AcceptAllChangesAfterSave() method being called.

An example of this enumeration in use is shown here:

context.SaveChanges(SaveOptions.AcceptAllChangesAfterSave);

The SaveOptions overload should be used to make sure either that DetectChanges is called before

you save changes to the data store or that the AcceptAllChanges method is called after you save the
changes to the data store. Why would you one over the other? The DetectChanges method ensures that
all ObjectStateEntry changes are identified and synchronized in all objects managed and tracked by the
ObjectStateManager. The AcceptAllChanges method allows all the changes on all related entries in
ObjectStateManager so that the resulting state is either unchanged or detached. Really, you don’t need to
use one or the other, because the enumeration has a FlagsAttribute attribute that allows a bitwise
combination of the values.

Let’s get to some examples. The following sections discuss updating, adding, and deleting entities.

Updating Entities
Updating an entity is simple, as the following examples illustrate. Open your Visual Studio project, and,
on the form you worked with earlier, place a new button and a label. This example updates a record in
the Person table.

Prior to adding the code, let’s look at the data in SQL Server. Open SQL Server Management Studio,
open a new query window, and select the AdventureWorks2008 database. In the query window, execute
the following query:

select * from Person.Person where LastName = 'Kleinerman'

You should get two records for Kleinerman, one with a Title value and one without. Let’s update the

Title value on the record that doesn’t have a title. BusinessEntityID 1243 contains a Title value, but id 228
doesn’t. This example updates row id 228 to include a Title value.

In the code behind the new button, add the following code (including the commented-out line):

try
{
 using (var context = new AdventureWorks2008Entities())

CHAPTER 5 ■ WORKING WITH ENTITIES

86

 {
 var per = context.People.First(p => p.BusinessEntityID == 228);
 // var per = context.People.Where(p => p.BusinessEntityID == 228).First();
 per.Title = "Mr.";
 per.ModifiedDate = DateTime.Now;
 context.SaveChanges();
 label1.Text = "Save Successful";
 }
}
catch (Exception ex)
{
 MessageBox.Show(ex.Message);
}

Run the project by pressing F5. When the form displays, click the new button you added. The label

on the form displays “Save Successful” when it has executed successfully. Go back to SQL Server
Management Studio (SSMS), and rerun the previous query. You see that row id 228 now includes a Title
value.

In the code, you create a new AdventureWorks2008Entities object (as you have in previous
examples). You then create an object query that returns the record you’re looking for. You set (update)
the title, update the ModifiedDate, and finally call SaveChanges on the context to persist the changes back
to the data store.

Let’s look what happens behind the scene. Open SQL Server Profiler, and run the code again. When
the code has finished executing, examine the output in SQL Server Profiler. Figure 5-1 highlights one of
the lines you’re interested in.

Figure 5-1. Query execution in SQL Server Profiler

A SELECT was issued against the data store to return the data for the specific row you’re looking for.
This SELECT is in the form of standard T-SQL. Here you can see that the EF, and more specifically the

CHAPTER 5 ■ WORKING WITH ENTITIES

87

ObjectContext, translated the LINQ query into a T-SQL statement that the database engine can
understand.

Go back into SQL Server Profiler, and click the row that has the update statement in it (the far-left
column says “RPD:Completed,” as shown in Figure 5-1). The statement was executed to update the data
store by calling the SaveChanges method.

What is important here is that only the Title and ModifiedDate columns were updated because
those were the only values you changed. Again, as you’ve learned, the EF sends values to the data store
only for those entity properties that have changed. The following code is proof of that:

exec sp_executesql N'update [Person].[Person]
set [Title] = @0, [ModifiedDate] = @1
where ([BusinessEntityID] = @2)
',N'@0 nvarchar(8),@1 datetime2(7),@2 int',@0=N'Mr.',@1='2009-09-07 11:41:25.1656711',@2=228

One last item before you move to adding entities. Go back to the code behind the button, comment

out the first line, and un–comment out the following line. Before you run the code, ask yourself whether
the statement sent to SQL and executed will be any different than the previous code.

Next, place a breakpoint on the line you just uncommented, and make sure SQL Server Profile is still
running. Now, rerun the code, keeping an eye on Profiler. When the execution stops at the breakpoint,
press F10. Notice that the SELECT statement is immediately executed. I discuss this in a second.

Press F5 to finish running the code. Go back to SQL Server Profiler, and look at the update
statement. Is it any different? No, it isn’t. Why not? Because both statements are essentially the same.
The First operator allows you to specify a condition for which to test each element. It then returns the
first element of a sequence that satisfies the supplied condition. In essence, it’s a filer.

Go back to the SELECT statement. Why was it sent immediately to the data store when you ran the
code highlighted by the breakpoint? Standard query operators differ in the timing of their execution. If a
query returns a singleton value executes immediately. If they return a sequence of values defer their
execution and return an enumerable object. The First operator returns a singleton value and thus
executes immediately.

Adding Entities
Let’s move on to adding entities. For this example, you use a different set of tables. For the sake of
simplicity, create a new EDM, pointing to the AdventureWorks2008 database, and include the following
tables:

• Production.ProductModel

• Production.Product

The EDM wizard takes care of all the naming, so you should be ready to move forward with this
example.

Back in SSMS, run the following query:

SELECT * FROM Production.ProductModel ORDER BY ProductModelID

Scroll down in the Results window, and you see that there are 128 rows in the ProductModel table.

This example adds a new row to that table.
Add a new button to the form in Visual Studio. Behind that button, add the following code (if you

didn’t change the context name, it should be called AdventureWorks2008Entities1):

try
{

mailto:int',@0=N'Mr.',@1=
mailto:25.1656711',@2=228

CHAPTER 5 ■ WORKING WITH ENTITIES

88

 using (var context = new AdventureWorks2008Entities1())
 {
 ProductModel prodModel = new ProductModel();
 prodModel.Name = "Front Forks";
 prodModel.rowguid = Guid.NewGuid();
 prodModel.ModifiedDate = DateTime.Now;
 context.ProductModels.AddObject(prodModel);
 context.SaveChanges();
 label1.Text = "Save Successful";
 }
}
catch (Exception ex)
{
 MessageBox.Show(ex.Message);
}

Run the project, and click the new button when the form displays. When the code finishes executing,

the label again displays “Save Successful.” Go back to SSMS, and rerun the query. Scroll to the bottom of
the Results window, and you should see a new row added with an id of 129, as shown in Figure 5-2.

Figure 5-2. New product model

In the code, you first create a new instance of the ProductModel class object and then set the Name,
rowguid, and ModifiedDate properties. You add the object to the context by calling the AddObject
method, and you call the SaveChanges method on the context. Calling the AddObject method adds the
object to the ObjectStateManager in the Added state.

There is another way to add an entity, as shown in the following code:

try
{
 using (var context = new AdventureWorks2008Entities())
 {
 var prodModel = ProductModel.CreateProductModel(0, "Rear Shock", Guid.NewGuid(),
 DateTime.Now);
 context.AddToProductModels(prodModel);
 context.SaveChanges();
 label1.Text = "Save Successful";
 }
}
catch (Exception ex)
{
 MessageBox.Show(ex.Message);
}

CHAPTER 5 ■ WORKING WITH ENTITIES

89

In this example, you use the CreateProductModel method to create a new ProductModel object. This

method lets you specify the property values in the method overload. Then, as in the previous example,
you add that object to the ProductModel using the AddToProductModel method.

Relational Inserts
So far in this chapter, you’ve worked with single entities without dealing with any of their associations or
relationships. In the previous examples, you’ve updated or inserted into tables that act in a parent role,
such as ProductModel and Person. But in reality, developers work with relational data, and that means
working with child entities. Product suppliers may add product models on occasion, but they add
related products much more often. The EF needs to be able to insert related child data easily.
Fortunately, it does this quite well. Let’s illustrate this functionality with an example.

For this example, add another button to your form, and add the following code to the button’s Click
event:

try
{
 using (var context = new AdventureWorks2008Entities())
 {
 var prodMod = context.ProductModels.Where(pm => pm.ProductModelID == 129).First();
 var prod = new Product();
 prod.Name = "Inverted Kayaba";
 prod.ProductNumber = "IKAYA-R209";
 prod.MakeFlag = true;
 prod.FinishedGoodsFlag = true;
 prod.Color = "Red";
 prod.SafetyStockLevel = 250;
 prod.ReorderPoint = 250;
 prod.StandardCost = 2500;
 prod.ListPrice = 3900;
 prod.Size = "40M";
 prod.SizeUnitMeasureCode = "CM";
 prod.WeightUnitMeasureCode = "LB";
 prod.Weight = (decimal)45.2;
 prod.DaysToManufacture = 5;
 prod.ProductLine = "S";
 prod.Class = "M";
 prod.Style = "M";
 prod.ProductSubcategoryID = 1;
 prod.SellStartDate = DateTime.Now;
 prod.ModifiedDate = DateTime.Now;
 prod.rowguid = Guid.NewGuid();
 prod.ProductModel = prodMod;
 context.SaveChanges();
 label1.Text = "Save Successful";
 }
}
catch (Exception ex)
{
 MessageBox.Show(ex.InnerException.Message);
}

CHAPTER 5 ■ WORKING WITH ENTITIES

90

In this example, a new Product is created in memory and then attached to the related ProductModel
that was queried and returned from the data store. After it’s attached, the SaveChanges method is called.

Prior to running the example, open SQL Server Profiler again so you can evaluate the query that is
executed. Run the project, and click the new button when the form displays. As in the previous
examples, the label displays the success message after the code executes successfully.

In SSMS, execute the following query:

SELECT * FROM Production.Product ORDER BY ProductModelID

Scroll down to the bottom of the Results window, and you see the newly added row, shown in Figure

5-3.

Figure 5-3. Relational insert

In this example, you first query for the ProductModel you want to attach the Product to. You then
create a new instance of the Product class and fill in its properties. You attach the new Product to the
ProductModel.

However, look at the code that creates the new Product. After the new product is created in memory,
it’s attached to the ProductModel, but where is the relation? If you look at the table in SSMS, you see a
foreign key column called ProductModelID; but it isn’t set in the previous code. If you query the Product
table for the record that was just inserted, it does have the correct ProductModelID value.

Go back to SQL Server Profiler, and find the INSERT statement. I’ve included it here as well. Notice
that the ProductModelID column is included in this T-SQL statement with the correct value:

exec sp_executesql N'insert [Production].[Product]([Name], [ProductNumber], [MakeFlag],
 [FinishedGoodsFlag], [Color], [SafetyStockLevel], [ReorderPoint], [StandardCost],
 [ListPrice], [Size], [SizeUnitMeasureCode], [WeightUnitMeasureCode], [Weight],
 [DaysToManufacture], [ProductLine], [Class], [Style], [ProductSubcategoryID],
 [ProductModelID], [SellStartDate], [SellEndDate], [DiscontinuedDate], [rowguid],
 [ModifiedDate])
values (@0, @1, @2, @3, @4, @5, @6, @7, @8, @9, @10, @11, @12, @13, @14, @15, @16, @17,
 @18, @19, null, null, @20, @21)
select [ProductID]
from [Production].[Product]
where @@ROWCOUNT > 0 and [ProductID] = scope_identity()',N'@0 nvarchar(50),@1
 nvarchar(25),@2 bit,@3 bit,@4 nvarchar(15),@5 smallint,@6 smallint,@7 decimal(19,4),@8
 decimal(19,4),@9 nvarchar(5),@10 nchar(3),@11 nchar(3),@12 decimal(8,2),@13 int,@14
 nchar(2),@15 nchar(2),@16 nchar(2),@17 int,@18 int,@19 datetime2(7),@20

CHAPTER 5 ■ WORKING WITH ENTITIES

91

 uniqueidentifier,@21 datetime2(7)',@0=N'Inverted Kayaba',@1=N'IKAYA-R209',
@2=1,@3=1,@4=N'Red',@5=250,@6=250,@7=2500.0000,@8=3900.0000,@9=N'40M',@10=N'CM ',@11=N'LB
 ',@12=45.20,@13=5,@14=N'S ',@15=N'M ',@16=N'M ',@17=1,@18=129,@19='2009-09-07
 12:07:26.0439482',@20='00000000-0000-0000-0000-000000000000',@21='2009-09-07
 12:07:26.0439482'

The relationship defined in the EDM between ProductModel and Product is accomplished via the

new foreign key support in EF 4.0 and the associated mappings that interact with the ProductModelID
foreign key value.

You should be starting to understand the inner workings of the EF and what happens when the
SaveChanges method is called. Long before the query is translated to the data store native command, the
ObjectContext identifies the appropriate relationships and uses the defined EDM model mappings to
determine the foreign key field’s needs. In this case, the ProductModelID in the related ProductModel is
needed for the ProductModelID in the new Product.

Deleting Entities
You can delete an entity several different ways, depending on what your code is currently doing. This
section explores the options.

Add another button to the form, and add the following code to the button’s Click event:

try
{
 using (var context = new AdventureWorks2008Entities())
 {
 var prod = context.Products.Where(p => p.ProductID == 1005).First();
 context.DeleteObject(prod);
 context.SaveChanges();
 }
}
catch (Exception ex)
{
 MessageBox.Show(ex.InnerException.Message);
}

In this example, you create an object query that returns the record you’re looking for—in this case,

the new product you just added. You then call the DeleteObject method on the context, pass it the object
you returned in the query, and call the context SaveChanges method. The DeleteObject method marks an
object for deletion from the ObjectStateManager. After SaveChanges is called, the object is deleted from
the data store. If DeleteObject is called on a parent object, all child objects are also deleted.

Run the project, and click the new button. Again, after the success message is displayed in the label,
query the product table; you see that the newly added product has been deleted.

The next example illustrates another way to delete entities. In this example, you get the object by
entity key by creating an instance of the EntityKey class. By using the EntityKey class, you can specify
the EntitySet name, the primary key column name, and the key value. You use the GetObjectByKey
method to return the object of the specified key and then call the same DeleteObject method used in the
previous example:

try
{
 using (var context = new AdventureWorks2008Entities())
 {

mailto:@2=1,@3=1,@4=N'Red',@5=250,@6=250,@7=2500.0000,@8=3900.0000,@9=N
mailto:',@12=45.20,@13=5,@14=N'S
mailto:26.0439482',@20=

CHAPTER 5 ■ WORKING WITH ENTITIES

92

 var prodKey = new EntityKey("AdventureWorks2008Entities.Products",
 "ProductID", 1005);
 var prod = context.GetObjectByKey(prodKey);
 context.DeleteObject(prod);
 context.SaveChanges();
 }
}
catch (Exception ex)
{
 MessageBox.Show(ex.Message);
}

This chapter wraps up with one final example, illustrating another way to delete entities. You use

the same technique of querying the data store immediately for the record to be deleted, and then you
call the same DeleteObject method and SaveChanges method to delete the record. This approach isn’t
the best performing, because you query and return the record you want to delete. It isn’t efficient, but it
shows you several options:

try
{
 using (var context = new AdventureWorks2008Entities())
 {
 ProductModel prodMod = context.ProductModels.Where(pm => pm.ProductModelID
 == 129).First();
 context.DeleteObject(prodMod.Products.Where(p => p.ProductID == 1007));
 context.SaveChanges();
 }
}
catch (Exception ex)
{
 MessageBox.Show(ex. Message);
}

Now that you know how to work with entities and query them, the next chapter builds on that
knowledge by showing you how to work with stored procedures. Several new features have been added
to the ADO.NET 4.0 Entity Framework to help you use stored procedures more effectively.

C H A P T E R 6

■ ■ ■

93

Stored Procedures and the EDM

The last couple of chapters, specifically Chapters 4 and 5, focused on querying the Entity Data Model
(EDM) and using entities to add, update, and delete data. Chapter 4 provided a good background on the
different methods and technologies used to query the EDM using LINQ to Entities and Entity SQL.
Chapter 5 provided the foundation for understanding how to work with entities: using entities to update
objects, add new objects, and delete existing objects. This information provides the foundation for this
chapter.

Given the strengths of LINQ to Entities and Entity SQL, many developers still prefer to use stored
procedures when executing database logic, such as CRUD (Create, Read, Update, and Delete)
operations. Dynamic commands are proving to be just as efficient as their stored procedure
counterparts—but I am of the firm opinion that if the world was coming to an end amid earthquakes and
tornados and hurricanes, there would be two developers ignoring the devastation because they were still
debating dynamic SQL versus stored procedures.

This chapter doesn’t debate which approach is better. There are cases where both are warranted.
You may have current stored procedures that you want to take advantage of, or you may want the
control over what is executed and how it’s executed that stored procedures can give.

This chapter shows you how the Entity Framework (EF) utilizes stored procedures and how this
approach differs from using the SaveChanges method you learned about in the last chapter.

Stored Procedures in the EDM
The first EDM you built back in Chapter 2 included a few tables and views from the AdventureWorks
database, but it included only a single stored procedure that returned employees for a given manager.
For this chapter, you need a few more stored procedures that insert into, update, and delete from a table;
but the AdventureWorks database doesn’t include any stored procedures for the tables you’re using, so
let’s create some.

The following code creates three stored procedures on the Person table: one to insert a new person,
one to update an existing person, and one to delete an existing person. This code is also available from
this book’s catalog page on www.apress.com:

USE [AdventureWorks2008]
GO

IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N'[dbo]
.[UpdatePerson]') AND type in (N'P', N'PC'))
DROP PROCEDURE [dbo].[UpdatePerson]
GO

SET ANSI_NULLS ON
GO

http://www.apress.com:

CHAPTER 6 ■ STORED PROCEDURES AND THE EDM

94

SET QUOTED_IDENTIFIER ON
GO

CREATE PROCEDURE [dbo].[UpdatePerson]
(
 @BusinessEntityID int,
 @PersonType nchar(2),
 @NameStyle NameStyle,
 @Title nvarchar(8),
 @FirstName Name,
 @MiddleName Name,
 @LastName Name,
 @Suffix nvarchar(10),
 @EmailPromotion int,
 @rowguid uniqueidentifier,
 @ModifiedDate datetime
)
AS
BEGIN
 UPDATE [AdventureWorks2008].[Person].[Person]
 SET
 [PersonType] = @PersonType,
 [NameStyle] = @NameStyle,
 [Title] = @Title,
 [FirstName] = @FirstName,
 [MiddleName] = @MiddleName,
 [LastName] = @LastName,
 [Suffix] = @Suffix,
 [EmailPromotion] = @EmailPromotion,
 [rowguid] = @rowguid,
 [ModifiedDate] = @ModifiedDate
 WHERE [BusinessEntityID] = @BusinessEntityID
END;

USE [AdventureWorks2008]
GO

IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N'[dbo]
.[InsertPerson]') AND type in (N'P', N'PC'))
DROP PROCEDURE [dbo].[InsertPerson]
GO

SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

CREATE PROCEDURE [dbo].[InsertPerson]
(
 @BusinessEntityID int,
 @PersonType nchar(2),

CHAPTER 6 ■ STORED PROCEDURES AND THE EDM

95

 @NameStyle NameStyle,
 @Title nvarchar(8),
 @FirstName Name,
 @MiddleName Name,
 @LastName Name,
 @Suffix nvarchar(10),
 @EmailPromotion int,
 @rowguid uniqueidentifier,
 @ModifiedDate datetime
)
AS
BEGIN

 INSERT INTO [AdventureWorks2008].[Person].[Person]
 (
 [BusinessEntityID],
 [PersonType],
 [NameStyle],
 [Title],
 [FirstName],
 [MiddleName],
 [LastName],
 [Suffix],
 [EmailPromotion],
 [rowguid],
 [ModifiedDate]
)
 VALUES
 (
 @BusinessEntityID,
 @PersonType,
 @NameStyle,
 @Title,
 @FirstName,
 @MiddleName,
 @LastName,
 @Suffix,
 @EmailPromotion,
 @rowguid,
 @ModifiedDate
)
END;

USE [AdventureWorks2008]
GO

IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N'[dbo]
.[DeletePerson]') AND type in (N'P', N'PC'))
DROP PROCEDURE [dbo].[DeletePerson]
GO

SET ANSI_NULLS ON
GO

CHAPTER 6 ■ STORED PROCEDURES AND THE EDM

96

SET QUOTED_IDENTIFIER ON
GO

CREATE PROCEDURE [dbo].[DeletePerson]
(
 @BusinessEntityID int
)
AS
BEGIN

 DELETE FROM Person.Person WHERE Person.Person.BusinessEntityID = @BusinessEntityID

END;

GO

After you’ve created the stored procedures, it’s time to add them to the model. Fortunately, the EF

makes adding an object to an existing model easy. With the Designer open, right-click anywhere in the
designer window and select Update Model from Database from the context menu, as shown in Figure 6-
1.

Figure 6-1. Choose Update Model from Database.

Choosing Update Model from Database opens the Update Wizard shown in Figure 6-2.

CHAPTER 6 ■ STORED PROCEDURES AND THE EDM

97

Figure 6-2. Adding new stored procedures

You use this wizard to update your model (the .edmx file). The Update Wizard has three tabs: Add,
Refresh, and Delete. The Delete tab displays a list of database objects that will be deleted from the
storage model. The Refresh tab displays a list of database objects whose definitions will be refreshed in
the storage model. The Add tab lets you choose which objects you want to add to your model that you
have not previously added.

On the Add tab, expand the Stored Procedures node, and select the three stored procedures you
created earlier: DeletePerson, SelectPerson, and UpdatePerson. Then, click the Finish button. You use
these stored procedures momentarily; first, I you need to discuss the Model Browser window.

The Model Browser
Whenever you have an EDM open and are viewing the Designer, a new windows appears to the right in
the Visual Studio IDE: the Model Browser. This window is integrated into the EDM Designer to provide a
view into the conceptual and storage models defined into the .edmx file.

The Model Browser window has two main nodes. The first (or top) node lists the entity types,
complex types, and associations in the conceptual model. The second node lists all the objects you’ve
imported into your EDM from the target database. Figure 6-3 shows the Model Browser from this
chapter’s example; I’ve expanded the first and second nodes and then expanded the Stored Procedures
node under the data store node. The figure shows the stored procedures that I’ve imported into my
EDM.

CHAPTER 6 ■ STORED PROCEDURES AND THE EDM

98

Figure 6-3. The Model Browser

You use the Model Browser later in the chapter; it’s an important part of the EDM. In the Model
Browser window, you can modify properties and mappings, locate an entity type on the design surface,
and search the tree view of the conceptual and storage models.

What Is an EF Function?
You’ll find out very quickly that the EDM doesn’t incorporate the concept of a stored procedure. The
EDM deals with functions, and in the model a function can represent either a stored procedure or a
user-defined function (UDF). When you added stored procedures to the EDM, the SOAP Service
Description Language (SSDL) represents the stored procedures as functions. For example, the following
XML was taken from the SSDL from this chapter’s example for the InsertPerson stored procedure:

<Function Name="InsertPerson" Aggregate="false" BuiltIn="false" NiladicFunction="false"
 IsComposable="false" ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo">
 <Parameter Name="BusinessEntityID" Type="int" Mode="In" />
 <Parameter Name="PersonType" Type="nchar" Mode="In" />
 <Parameter Name="NameStyle" Type="bit" Mode="In" />
 <Parameter Name="Title" Type="nvarchar" Mode="In" />
 <Parameter Name="FirstName" Type="nvarchar" Mode="In" />
 <Parameter Name="MiddleName" Type="nvarchar" Mode="In" />
 <Parameter Name="LastName" Type="nvarchar" Mode="In" />
 <Parameter Name="Suffix" Type="nvarchar" Mode="In" />
 <Parameter Name="EmailPromotion" Type="int" Mode="In" />
 <Parameter Name="rowguid" Type="uniqueidentifier" Mode="In" />
 <Parameter Name="ModifiedDate" Type="datetime" Mode="In" />
</Function>

As you can see, the stored procedure is represented via a <Function>. This element contains several

attributes that define the characteristics and behavior of the stored procedure, such as schema, which
defines the database schema the object belongs to, and IsComposable, which indicates that the results

CHAPTER 6 ■ STORED PROCEDURES AND THE EDM

99

returned by the procedure can’t be used in the FROM clause of other SQL Statements (the value of this
attribute must be false).

The <Parameter> element lists and describes any and all parameters, whether input or output. In this
case, they’re all input parameters.

From here, it’s time to map the stored procedures (functions) to the appropriate entity.

Mapping Functions
Mapping a function is straightforward. By default, the EF constructs its own insert, update, and delete
commands and sends them to the data store to be executed. You saw some of that in the previous
chapter. This default behavior can be overwritten by mapping functions to a specific entity. After the
mapping is done and your code calls SaveChanges(), the stored procedure is called instead of the native
commands.

This section shows you how to map functions to entities, which is quite simple. With the EDM
Designer open, click the entity to which you want to map the stored procedures. For this example, map
the stored procedures to the Person entity. When you’ve selected the Person entity, open the Mapping
Details window at the bottom of the Visual Studio IDE.

In this window, you see two icons at left. The top icon lets you map the selected entity to a table or
view. You want the option shown in Figure 6-4, which lets you map entities to functions.

Figure 6-4. The Mapping Details window

Let’s map the insert function first. In the Mapping Details window, click <Select Insert Function>.
When you do, you’re presented with a drop-down list of the available functions. Select the InsertPerson
function. Your Mapping Details window now looks like Figure 6-5.

CHAPTER 6 ■ STORED PROCEDURES AND THE EDM

100

Figure 6-5. Mapping the insert function

Figure 6-5 shows the results of mapping a function to an entity. The Parameter/Column column
lists all the columns or parameters (in this case, parameters) in the function. The Operator column
shows the mapping or condition operator. In this example, it’s showing what parameters are being
mapped to what columns in the table (or entity). The Property column displays the entity property to
which the parameter or column is being mapped.

Next, map the update function by selecting the UpdatePerson stored procedure from the drop-down
list. Figure 6-6 shows the results of that mapping.

Figure 6-6. Mapping the update function

Last, map the delete function by selecting the DeletePerson stored procedure from the drop-down
list. Figure 6-7 shows the results of that mapping.

CHAPTER 6 ■ STORED PROCEDURES AND THE EDM

101

Figure 6-7. Mapping the delete function

With the mappings complete, let’s look at what happened under the covers. This information can be
found in the mapping information (mapping specification language [MSL]) of the .edmx file. The
following code shows what was added to the MSL. Here you see that a second EntityTypeMapping
element has been added, mapping the functions to the Person entity:

<EntitySetMapping Name="People">
 <EntityTypeMapping TypeName="AdventureWorks2008Model.Person">
 <MappingFragment StoreEntitySet="Person">
 <ScalarProperty Name="BusinessEntityID" ColumnName="BusinessEntityID" />
 <ScalarProperty Name="PersonType" ColumnName="PersonType" />
 <ScalarProperty Name="NameStyle" ColumnName="NameStyle" />
 <ScalarProperty Name="Title" ColumnName="Title" />
 <ScalarProperty Name="FirstName" ColumnName="FirstName" />
 <ScalarProperty Name="MiddleName" ColumnName="MiddleName" />
 <ScalarProperty Name="LastName" ColumnName="LastName" />
 <ScalarProperty Name="Suffix" ColumnName="Suffix" />
 <ScalarProperty Name="EmailPromotion" ColumnName="EmailPromotion" />
 <ScalarProperty Name="AdditionalContactInfo" ColumnName
="AdditionalContactInfo" />
 <ScalarProperty Name="Demographics" ColumnName="Demographics" />
 <ScalarProperty Name="rowguid" ColumnName="rowguid" />
 <ScalarProperty Name="ModifiedDate" ColumnName="ModifiedDate" />
 </MappingFragment>
 </EntityTypeMapping>
 <EntityTypeMapping TypeName="AdventureWorks2008Model.Person">
 <ModificationFunctionMapping>
 <InsertFunction FunctionName="AdventureWorks2008Model.Store.InsertPerson">
 <ScalarProperty Name="ModifiedDate" ParameterName="ModifiedDate" />
 <ScalarProperty Name="rowguid" ParameterName="rowguid" />
 <ScalarProperty Name="EmailPromotion" ParameterName="EmailPromotion" />
 <ScalarProperty Name="Suffix" ParameterName="Suffix" />
 <ScalarProperty Name="LastName" ParameterName="LastName" />
 <ScalarProperty Name="MiddleName" ParameterName="MiddleName" />
 <ScalarProperty Name="FirstName" ParameterName="FirstName" />
 <ScalarProperty Name="Title" ParameterName="Title" />
 <ScalarProperty Name="NameStyle" ParameterName="NameStyle" />
 <ScalarProperty Name="PersonType" ParameterName="PersonType" />
 <ScalarProperty Name="BusinessEntityID" ParameterName="BusinessEntityID" />
 </InsertFunction>

CHAPTER 6 ■ STORED PROCEDURES AND THE EDM

102

 <UpdateFunction FunctionName="AdventureWorks2008Model.Store.UpdatePerson">
 <ScalarProperty Name="ModifiedDate" ParameterName="ModifiedDate"
 Version="Current" />
 <ScalarProperty Name="rowguid" ParameterName="rowguid" Version="Current" />
 <ScalarProperty Name="EmailPromotion" ParameterName="EmailPromotion"
 Version="Current" />
 <ScalarProperty Name="Suffix" ParameterName="Suffix" Version="Current" />
 <ScalarProperty Name="LastName" ParameterName="LastName"
 Version="Current" />
 <ScalarProperty Name="MiddleName" ParameterName="MiddleName"
 Version="Current" />
 <ScalarProperty Name="FirstName" ParameterName="FirstName"
 Version="Current" />
 <ScalarProperty Name="Title" ParameterName="Title" Version="Current" />
 <ScalarProperty Name="NameStyle" ParameterName="NameStyle"
 Version="Current" />
 <ScalarProperty Name="PersonType" ParameterName="PersonType"
 Version="Current" />
 <ScalarProperty Name="BusinessEntityID" ParameterName="BusinessEntityID"
 Version="Current" />
 </UpdateFunction>
 <DeleteFunction FunctionName="AdventureWorks2008Model.Store.DeletePerson">
 <ScalarProperty Name="BusinessEntityID" ParameterName="BusinessEntityID" />
 </DeleteFunction>
 </ModificationFunctionMapping>
 </EntityTypeMapping>
</EntitySetMapping>

As a child element of the EntityTypeMapping element, the ModificationFunctionMapping element

specifies the functions (stored procedures) in the storage schema that handle change processing for an
entity type. This element lists the insert, update, and delete function elements. The Function elements—
that is, the InsertFunction, UpdateFunction, and DeleteFunction child elements—define the function to
be called for the associated operation and the parameter bindings.

Functions (Stored Procedures) in Action
Now you put your new stored procedures and function mappings to the test. Open your form from the
last example in design mode, and add four more buttons and another list box (if there is a list box
already on the form, you can use it). Set the Text properties of the buttons to Insert, Update, Delete, and
Select. You’re going for functionality here, not pretty form design.

The next four sections test the functions you created.

Insert
Let’s test the insert function first. In the code behind the Insert button, add the following code:

try
{
 using (var context = new AdventureWorks2008EmployeeEntities())
 {
 var busent = context.BusinessEntities.Where(p => p.BusinessEntityID == 292).First();
 var per = new Person();

CHAPTER 6 ■ STORED PROCEDURES AND THE EDM

103

 per.PersonType = "SC";
 per.NameStyle = true;
 per.Title = "Geek";
 per.FirstName = "Scott";
 per.MiddleName = "L";
 per.LastName = "Klein";
 per.Suffix = "Mr";
 per.EmailPromotion = 1;
 per.rowguid = Guid.NewGuid();
 per.ModifiedDate = DateTime.Now;
 busent.Person = per;
 context.SaveChanges();
 MessageBox.Show("record inserted");
 }
}
catch (Exception ex)
{
 MessageBox.Show(ex.InnerException.Message);
}

This code should look extremely familiar, because it’s much like the code you wrote in the last

chapter. First the context is created. Then, you query for a specific BusinessEntity, because in this
example you insert a related Person record for an existing BusinessEntity record that doesn’t already
exist in the Person table.

You then create a new Person object, populate its properties, and call SaveChanges(). However,
before you run this example, open SQL Server Profiler and start a new trace. When the trace is running,
switch to Visual Studio, and run the project. Click the Insert button; if you coded everything correctly,
you get a message box stating that the insert was successful.

Go back to the SQL Server Profiler, and pause the trace. Scroll up or down in the trace until you see
the statement showing the execution of the InsertPerson stored procedure (see Figure 6-8).

Figure 6-8. SQL Server Profiler insert

Instead of the native SQL commands being executed, the EF and the EDM utilized the stored
procedure to do the insert, passing as parameters all the values you specified.

CHAPTER 6 ■ STORED PROCEDURES AND THE EDM

104

Now, a note: You may be asking, “What about stored procedures that return a new identity value?”
These examples use the AdventureWorks2008 Person tables, and they use the same BusinessEntityID as
the primary key in the tables. What you’re wondering about, however, is doable, and I discuss it in
another chapter.

Update
Let’s move on to the update function. Behind the Update button, add the following code:

try
{
 using (var context = new AdventureWorks2008EmployeeEntities())
 {
 var per = context.People.Where(p => p.BusinessEntityID == 292).First();
 per.Title = "Head Geek";
 per.ModifiedDate = DateTime.Now;
 per.PersonType = "EM";
 context.SaveChanges();
 MessageBox.Show("record updated");
 }
}
catch (Exception ex)
{
 MessageBox.Show(ex.InnerException.Message);
}

This code is much like the first example, in that you’re creating a new context instance; but this time

you query the People entity for the record you just inserted, because you want to update that record.
Start SQL Server Profiler again, and run the project. Click the Update button, and you should get a
message stating that the update was successful. Switch over to SQL Server Profiler, and pause the trace
so you can scroll up to find the update execution statement (see Figure 6-9).

Figure 6-9. SQL Server Profiler update

Notice that even though you only updated the Title, PersonType, and ModifiedDate properties, the
update statement included all the property values and sent them to the stored procedure. Why? Because
the update stored procedure, based on the earlier mapping, expects 11 parameters, not just 3.

CHAPTER 6 ■ STORED PROCEDURES AND THE EDM

105

Delete
Finally, the delete function. Behind the Delete button, add the following code:

try
{
 using (var context = new AdventureWorks2008EmployeeEntities())
 {
 var per = context.People.Where(p => p.BusinessEntityID == 292).First();
 context.DeleteObject(per);
 context.SaveChanges();
 MessageBox.Show("record deleted");
 }
}
catch (Exception ex)
{
 MessageBox.Show(ex.Message);
}

Nothing too complicated here. You ask for the record you just inserted/updated, call the

DeleteObject() method on the context (just as you did in the last chapter), and call the SaveChanges()
method. Figure 6-10 shows the results of this code execution in SQL Server Profiler.

Figure 6-10. SQL Server Profiler delete

Now you’ve seen how easy it is to map stored procedures in the EF. Granted, these examples are
simple, but the goal is to show you how function-mapping works. I’ll get into more in-depth examples
(such as using complex types) later in the book.

Select
But wait—you’re not finished. What about stored procedures that return data? This is where the Model
Browser comes in. Select stored procedures aren’t mapped like their other CRUD brethren. You need to
use the Model Browser for select procedures. First you need a select stored procedure, so let’s create
one. The following code creates a stored procedure that simply selects from the Person.Person table:

CHAPTER 6 ■ STORED PROCEDURES AND THE EDM

106

USE [AdventureWorks2008]
GO

IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N'[dbo]
.[SelectPeople]') AND type in (N'P', N'PC'))
DROP PROCEDURE [dbo].[SelectPeople]
GO

SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

CREATE PROCEDURE [dbo].[SelectPeople]
AS
BEGIN

 SELECT
 [BusinessEntityID],
 [PersonType],
 [NameStyle],
 [Title],
 [FirstName],
 [MiddleName],
 [LastName],
 [Suffix],
 [EmailPromotion],
 [AdditionalContactInfo],
 [Demographics],
 [rowguid],
 [ModifiedDate]
 FROM
 [AdventureWorks2008].[Person].[Person]

END;

GO

You still need to add this stored procedure to the EDM, following the steps outlined earlier. The next

section walks you through using your new stored procedure.

Using Functions in Queries
With the new stored procedure added, you need to go into the Model Browser so you can map it for
reading. You do that by creating a Function Import mapping. In the Model Browser window, navigate to
the stored procedures, and right-click the SelectPerson stored procedure. Doing so displays a context
menu; select Add Function Import, as shown in Figure 6-11.

CHAPTER 6 ■ STORED PROCEDURES AND THE EDM

107

Figure 6-11. Add Function Import menu option

Note that the Add Function Import menu item is renamed for the ADO.NET 4.0 Entity Framework—
it used to be Create Function Import. Selecting this option opens the Add Function Import dialog,
shown in Figure 6-12.

Figure 6-12. Add Function Import dialog

If you’re familiar with this form in ADO.NET 3.5, you’ll immediately notice that it looks much
different. The top part of the dialog looks like the previous version except for the ability to return a

CHAPTER 6 ■ STORED PROCEDURES AND THE EDM

108

collection of a complex type. The lower half of the dialog is completely new. This section allows you to
create a new complex type to use in your stored procedure mapping. Again, I don’t look at this here, but
I’ll return to it in a later chapter.

You want to select an Entity return type collection and then select the Person entity. Click OK.
Now you know why you added four buttons to the form. Add the following code behind the Select

button:

using (var context = new AdventureWorks2008EmployeeEntities())
{
 var query = from p in context.SelectPeople()
 where p.LastName.StartsWith("Kl")
 select p;

 foreach (var per in query)
 {
 listbox1.Items.Add(string.Format("{0} {1}", per.FirstName, per.LastName);
 }
}

In SQL Server Profiler, run the project. Click the Select button, and a few names appear in the list

box. Figure 6-13 shows the results of the stored procedure execution.

Figure 6-13. SQL Server Profiler select

Again, this mapping is fairly straightforward. In Chapter 11, I discuss advanced queries as well as more
complex stored procedures and function mappings.

C H A P T E R 7

■ ■ ■

109

Relationships and Associations

Whether you’re a seasoned EF veteran or this is your first foray into the Entity Framework, it should be
obvious that when you’re working with entities that are related to other entities, it’s vital to remember
that an Entity Data Model (EDM) isn’t just made up of just entities but also includes relationships. Why
is that? Because an EDM is based on an Entity Relationship Model (ERM), and these relationships are
actual objects carrying the same importance and weight that an entity does.

The EF instantiates relationships as objects automatically as you work with the EDM, although you
can still access the associations if you really need to. The great news is that as a developer, you don’t
need to work with them directly in most cases. Keep in mind that in scenarios where you need to map
stored procedures to an entity, you must take into consideration any related entities (via association).

There is better news: Microsoft made some very significant improvements to how relationships and
associations are handled in EF 4.0. This chapter focuses on those changes and discusses what that
means to you as a developer. I spent a few pages in Chapter 3 discussing relationships within the EDM,
and this chapter begins by revisiting that information and providing a brief overview of relationships
and association types. I’ll follow that up by taking a short look at how EF 3.5 dealt with relationships,
because it’s important for you to know what impact the new changes will have on your current EF
projects. Most of the chapter focuses on the new EF 4.0 changes and their effect on the EDM.

Overview
One of the hardest concepts for developers to grasp, when dealing with the EF, is that of relationships
and their use and application within the EDM. This confusion makes it difficult for developers to write
efficient queries against the EDM. Let’s begin this section by discussing the fundamentals of
relationships and looking at a simple model example. This gives you a foundation on which to build your
knowledge of how EF 3.5 and 4.0 handle relationships.

Relationships in General
Within the EDM designer, you see several representations of relationships between entities. These
relationships, or associations, are displayed as lines between entities that are related one to another. At
the end of each line is displayed the multiplicity between the entities—that is, how many items each end
of line (entity) can and may have. The multiplicity is defined in one of the following three ways:

• One: Displayed as a numerical 1, this end of the relationship can have only one
item—not less than one, and not more than one.

• Many: Displayed as the character *, this end of the relationship can and may have
one or many (more than one) items.

news:Microsoft

CHAPTER 7 ■ RELATIONSHIPS AND ASSOCIAATIONS

110

• Zero or One: Displayed as the character string 0..1, this end of the relationship can
have either zero items or one item, but no more than one item. Thus, 0..1 means
Zero or One.

The One side of a relationship is typically a parent in a parent-child relationship. The Many side of a
relationship is commonly a collection of children (or items) in a parent-child relationship. An example of
a One-to-Many is customers and orders. One customer can have many orders. However, keep in mind
that you can have a parent without a child, meaning you can have a customer who hasn’t placed any
orders.

Many relationships are the Zero or One-to-Many type. For example, a customer may have multiple
phone numbers but may have only one of those numbers designated as a primary phone. When the
customer record is first entered, perhaps several phone numbers are entered but none is designated as
the primary phone. If a primary phone is later defined, then only one number can be defined as the
primary number.

Relationships in EF 3.5
Let’s jump into a brief EF 3.5 discussion and look at how the first version of the EF handled relationships.
For this discussion, you use two tables from the AdventureWorks database: Person.Contact and
HumanResources.Employee. Figure 7-1 shows the SQL Server Management Studio (SSMS) database
diagram of these two tables and their relationships.

Figure 7-1. A simple relationship

This example ignores the self-referencing relationship on the HumanResources.Employee table and
focuses strictly on the relationship between the two tables. You use Visual Studio 2008 SP1, in order to
illustrate relationships defined in EF 3.5. In Visual Studio 2008, create a new project (either a Windows
Forms or Class Library project). Add a new ADO.NET Entity Data Model item. When the Entity Data
Model Wizard begins, create a connection to the AdventureWorks database, and click Next. In the
Choose Your Database Objects step shown in Figure 7-2, select the two tables from Figure 7-1.

CHAPTER 7 ■ RELATIONSHIPS AND ASSOCIATIONS

111

Figure 7-2. Choose Your Database Objects

Click Finish. You’re then presented with your EDM with the two entities shown in Figure 7-3.

Figure 7-3. Entities defined in EF 3.5

CHAPTER 7 ■ RELATIONSHIPS AND ASSOCIAATIONS

112

You should immediately notice in Figure 7-3 that there are only 14 properties in the Employee table
versus the 16 columns in the Employee table in Figure 7-1. What is missing? Foreign keys. ContactID and
ManagerID are missing from the Employee entity. This is because foreign keys are typically mapped to a
separate association set within the model.

You can also see that this example contains the three relationship types discussed earlier and is a
perfect example of relationships and associations. In this example, a One-to-Many association exists
between Contact and Employee, and there is also a Zero-or-One-to-Many on Employee.

You can see the association set in Figure 7-4, which shows the properties of the association defined
between the two entities. The Association Set Name property, by default, holds the name of the
association set that contains the association. You can view the association properties by right-clicking
the association line between the two entities and selecting Properties from the context menu. This
association was created when the EDM wizard read the AdventureWorks database and created the
association based on the information it found in the database—namely, the information found in Figure
7-1.

Figure 7-4. Association properties

Along with the association, a few other things are created in the model based on the relationship:

• Navigation properties: You can see the navigation properties in Figure 7-3, just
below the scalar properties. Navigation properties aren’t required, but they
provide bidirectional navigation between entities via its association. The
association tells the navigation which association in the model holds the
information regarding how to navigate to the related entity.

• Association sets: These are containers for associations that have been instantiated
at runtime. For example, for every Customer and related orders, you have that
many instances of the association. If the ObjectContext contains five customers
and their one or more related orders, you also have five instances of the
association in the context.

• AssociationSetMapping element: This contains all the relationship information,
identifying columns in data tables that correspond to related entities.

CHAPTER 7 ■ RELATIONSHIPS AND ASSOCIATIONS

113

You look at the AssociationSetMapping element in a few pages when I discuss XML differences
between EF 3.5 and 4.0.

In EF 3.5, associations were called first class associations. For 3.5, first class means that the EF treats
associations at the same level as entities and other objects. You may have heard Microsoft say that
associations aren’t second-class citizens. This is certainly not the case—in fact, the opposite is true.
Associations are first class because the EDM has a specific way to talk about and work with them.

EF 4.0 Relationships
Let’s move on to EF 4.0 and look at the improvements Microsoft has made. To begin with, this section
walks through the same example as for 3.5, but this time you use Visual Studio 2010.

Creating a WinForms Project
Fire up Visual Studio 2010, and create a new WinForms project (you’re creating a WinForms project
because you use the UI later). Add a new ADO.NET Entity Data Model item to the project, and follow the
same steps as before (generate from a database, and create a connection to the AdventureWorks
database).

On the Choose Your Database Objects step of the wizard, select the same two tables as in Figure 7-1:
Person.Contact and HumanResources.Employee. Before you click Next, look at the dialog shown in
Figure 7-5. This dialog is very similar to Figure 7-2. In EF 4.0, however, two new options are added:

• Pluralize or singularize generated object names

• Include foreign key columns in the model

As you learned in Chapter 2, the first option affects the naming of objects in your model (such as
making all EntityType names singular and all EntitySet names plural). However, it’s the second option
you should focus your attention on. Checking the “Include foreign key columns in the model” option
tells the model to use the new FK associations rather than the previous 3.5 type associations. Can you
still use the EF 3.5 type associations? Absolutely, and I’ll cover that shortly. For now, keep this option
checked, and click Finish.

CHAPTER 7 ■ RELATIONSHIPS AND ASSOCIAATIONS

114

Figure 7-5. Choose Your Database Objects 4.0

When the model is built, notice that the entities in the model look extremely similar to those built in
EF 3.5. Comparing figures 7-6 and 7-3, you should see that they’re nearly identical. The only difference
between the two figures is the addition of the two scalar properties ContactID and ManagerID in the
HumanResources.Employee table, the foreign keys to Person.Contact table, and the
HumanResources.Employee table itself. Visually, everything else in the EDM is the same, including the
associations and the navigation properties.

But that isn’t to say that things didn’t change under the covers. Microsoft made some great
improvements to be able to include foreign keys in conceptual and object models. I discuss this shortly.

CHAPTER 7 ■ RELATIONSHIPS AND ASSOCIATIONS

115

Figure 7-6. Entities defined in EF 4.0

Many of the changes that Microsoft made were to the EDM. You can see in Figure 7-7 that the
properties page for the association has been modified. The information in the properties page isn’t that
different from EF 3.5, but you can see some property naming differences as well as a few additions. You
now have End1 and End2 differentiation, and you still have the Multiplicity and Role for each end. New
to EF 4.0 on this page is the OnDelete property for each end, which specifies the action to be taken when
an entity on this specified end is deleted. Your options for the OnDelete property are None and Cascade.

Figure 7-7. EF 4.0 association properties

CHAPTER 7 ■ RELATIONSHIPS AND ASSOCIAATIONS

116

Microsoft also added a couple of new visual items to the UI to help define and manage relationships
between entities. These items and features are discussed in the following sections.

Defining Referential Constraints
Back in the EDM Designer, double-click the association between the two entities. In EF 4.0, a new
Referential Constraint dialog opens, showing the foreign key properties for the relationship (see Figure
7-8).

Figure 7-8. Referential Contstraint Dialog

The Referential Constraint dialog allows you to define the foreign key (FK) constraint between the
source entity and the target entity. How do you know which is the target and which is the source? If it
isn’t obvious, click Cancel in the Referential Constraint dialog, and hold your mouse cursor over the
association line between the two entities. As you hover your mouse over the association line, a small
pop-up window displays, showing you which entity is the source and which entity is the target.

Double-click the association line again to display the Referential Constraint dialog. This dialog
contains FK information. The Principle field displays the source entity and is a drop-down listing the
entities defined in the relationship. By default, it lists the source entity in the relationship.

The Dependent field shows the source entity. This field isn’t editable. The Principle Key and
Dependent Property fields show the two fields that are used in the FK relationship.

Adding an Association
In your EDM Designer, drag a new entity from the toolbox, and drop it onto the designer surface. Next,
right-click the new entity, and select Add ➤ Association from the context menu. Doing so displays the
Add Association dialog box, shown in Figure 7-9. This dialog isn’t new to the EF, but Microsoft did make
some changes to it, the biggest being the “Add foreign key properties to the entityname Entity” check
box.

CHAPTER 7 ■ RELATIONSHIPS AND ASSOCIATIONS

117

Figure 7-9. Add Association in EF 4.0

When you create an association, this check box lets you specify this association as a FK association.
Can you specify a typical (non-FK) association? Absolutely: uncheck the “Add foreign key properties to
the entityname Entity” check box. What does this do? I know I’ve been saying this for a few pages now,
but bear with me—I’ll explain shortly.

Also new in the Add Association dialog are the Navigation Property check boxes.

Looking at XML Differences
Before I get into the “I’ll get to that shortly” topics, I want to cover the XML differences between EF 3.5
and 4.0. Close the EDM Designer, right-click the EDM, and select Open With from the context menu. In
the Open With dialog, select XML Editor, and click OK.

Let’s first look at the conceptual schema definition language (CSDL) XML for your EF 3.5 project.
The XML fragment for the independent association looks like this:

<Association Name="FK_Employee_Contact_ContactID">
 <End Role="Contact" Type="AdventureWorksModel.Contact" Multiplicity="1" />
 <End Role="Employee" Type="AdventureWorksModel.Employee" Multiplicity="*" />
</Association>
<Association Name="FK_Employee_Employee_ManagerID">
 <End Role="Employee" Type="AdventureWorksModel.Employee" Multiplicity="0..1" />
 <End Role="Employee1" Type="AdventureWorksModel.Employee" Multiplicity="*" />
</Association>

The mapping for the association tells the EF how to negotiate the relationship. In EF 3.5 MSL, that

mapping looks as follows:

CHAPTER 7 ■ RELATIONSHIPS AND ASSOCIAATIONS

118

<AssociationSetMapping Name="FK_Employee_Contact_ContactID" TypeName=
"AdventureWorksModel.FK_Employee_Contact_ContactID" StoreEntitySet="Employee">
 <EndProperty Name="Contact">
 <ScalarProperty Name="ContactID" ColumnName="ContactID" />
 </EndProperty>
 <EndProperty Name="Employee">
 <ScalarProperty Name="EmployeeID" ColumnName="EmployeeID" />
 </EndProperty>
</AssociationSetMapping>
<AssociationSetMapping Name="FK_Employee_Employee_ManagerID" TypeName=
"AdventureWorksModel.FK_Employee_Employee_ManagerID" StoreEntitySet="Employee">
 <EndProperty Name="Employee">
 <ScalarProperty Name="EmployeeID" ColumnName="ManagerID" />
 </EndProperty>
 <EndProperty Name="Employee1">
 <ScalarProperty Name="EmployeeID" ColumnName="EmployeeID" />
 </EndProperty>
 <Condition ColumnName="ManagerID" IsNull="false" />
</AssociationSetMapping>

Now, let’s look at the EF 4.0 XML. The CSDL XML has two sections. The top of the CSDL contains the

AssociationSet element:

<EntityContainer Name="AdventureWorksEntities3" annotation:LazyLoadingEnabled="true">
 <EntitySet Name="Employees" EntityType="AdventureWorksModel.Employee" />
 <EntitySet Name="Contacts" EntityType="AdventureWorksModel.Contact" />
 <AssociationSet Name="FK_Employee_Contact_ContactID" Association=
"AdventureWorksModel.FK_Employee_Contact_ContactID">
 <End Role="Contact" EntitySet="Contacts" />
 <End Role="Employee" EntitySet="Employees" />
 </AssociationSet>
 <AssociationSet Name="FK_Employee_Employee_ManagerID" Association=
"AdventureWorksModel.FK_Employee_Employee_ManagerID">
 <End Role="Employee" EntitySet="Employees" />
 <End Role="Employee1" EntitySet="Employees" />
 </AssociationSet>
</EntityContainer>

At the end of the CSDL is the following XML fragment, which contains the ReferentialConstraint

element. The contents of this element define the FK. In other words, the data within the
ReferentialConstraint element defines functionality that is similar to a database constraint. Notice that
the element contains the entities and associated properties that make up the FK:

<Association Name="FK_Employee_Contact_ContactID">
 <End Role="Contact" Type="AdventureWorksModel.Contact" Multiplicity="1" />
 <End Role="Employee" Type="AdventureWorksModel.Employee" Multiplicity="*" />
 <ReferentialConstraint>
 <Principal Role="Contact">
 <PropertyRef Name="ContactID" />
 </Principal>
 <Dependent Role="Employee">
 <PropertyRef Name="ContactID" />
 </Dependent>

CHAPTER 7 ■ RELATIONSHIPS AND ASSOCIATIONS

119

 </ReferentialConstraint>
</Association>
<Association Name="FK_Employee_Employee_ManagerID">
 <End Role="Employee" Type="AdventureWorksModel.Employee" Multiplicity="0..1" />
 <End Role="Employee1" Type="AdventureWorksModel.Employee" Multiplicity="*" />
 <ReferentialConstraint>
 <Principal Role="Employee">
 <PropertyRef Name="EmployeeID" />
 </Principal>
 <Dependent Role="Employee1">
 <PropertyRef Name="ManagerID" />
 </Dependent>
 </ReferentialConstraint>
</Association>

Keep in mind that ReferentialConstraint also existed in EF 3.5, but the behavior was different. In

EF 3.5, the ReferentialConstraint element was used in the conceptual model (CSDL) to specify the
principle role and dependent role of an association.

Let’s look at the mapping specification language (MSL) for a minute. Notice that no XML fragment
maps the relationship. This is because all the important and pertinent information is contained in the
CSDL.

Understanding Approaches to Foreign Keys in EF 4.0
I mentioned earlier that associations in EF 3.5 were considered first-class citizens, and I explained the
reasoning for this. It’s because the EF treats associations at the same level as entities and other objects.
Microsoft wanted to know whether putting foreign keys in a conceptual and object model was necessary.
So, Microsoft asked, and the company learned that some people thought it was a great idea and some
thought it would muddy the waters.

The solution Microsoft came up with was to support both approaches. Although While Microsoft
put FK support in the EDM, it also kept support for EF 3.5–style associations. The key to remember is
that the old-style EF 3.5 associations are now called independent associations. They can still be used in
EF 4.0.

Independent associations are those whose lifetime and representation are independent of any
entity instances. An association relates two entities, as you’ve learned; but looking at it from a
conceptual point of view, an association has a life of its own in a conceptual model. For example, let’s
consider the database perspective. An association in terms of the database most likely takes the form of a
FK that exists on one of the two tables (entities)—but how do you tell which entity it belongs to by
looking at the conceptual model?

On the other hand, a FK association in the conceptual model is represented by a FK that is part of
one of the entities. This is important because it means the association has the same lifetime as the entity,
is always retrieved when the entity is retrieved, and has the same concurrency-control mechanism as the
entity. Independent associations are just that: independent. They have their own lifetime and their own
concurrency control, and they aren’t necessarily automatically returned when you retrieve an entity.

This information should answer the questions regarding why and how to use FK associations.
Microsoft is convinced that when people start using FK associations, this will be the default choice going
forward, because FK associations simplify key coding patterns considerably. Many of the things that
were difficult to accomplish via independent associations are much easier using FK associations,
including data binding, N-Tier, concurrency, and dynamic data.

Looking at the previous examples, you should be able to tell that the EF handles the two association
types differently. You’ll see that a little more in the next section as you look at some code examples using
the EF 4.0 project you’ve created.

CHAPTER 7 ■ RELATIONSHIPS AND ASSOCIAATIONS

120

Using FK Associations in Code
The next few pages go through examples of how to code using FK associations. Each example takes a
different approach and looks at how you can utilize FK associations to enhance your code. I introduce
each example, show you the code, and then explain how the example uses the foreign keys.

Adding Dependent Objects
For this first example, add a button to the form, and add the following code behind the button. I’ll
explain the code shortly:

using (AdventureWorksEntities context = new AdventureWorksEntities())
{
 try
 {
 DateTime Birthdt = new DateTime(1965, 9, 26);
 DateTime Hiredt = new DateTime(2010, 1, 1);

 Contact con = new Contact { Title = "Geek", FirstName = "Scott", LastName = "Klein",
 EmailAddress = "ScottKlein@SqlXml.com", EmailPromotion = 0, Phone =
 "555-55-5555",
 PasswordHash = "", PasswordSalt = "", rowguid = System.Guid.NewGuid(),
 ModifiedDate = DateTime.Now };

 Employee emp = new Employee { NationalIDNumber = "1234567890", LoginID = "sklein",
 ManagerID = 1, Title = "Geek", BirthDate = Birthdt, MaritalStatus = "M",
 Gender = "M", HireDate = Hiredt, SalariedFlag = true, VacationHours = 80,
 SickLeaveHours = 40, CurrentFlag = true, rowguid = System.Guid.NewGuid(),
 ModifiedDate = DateTime.Now };

 con.Employees.Add(emp);
 context.Contacts.AddObject(con);
 context.SaveChanges();

 Messagebox.Show("Items saved");
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

This code does several things. In addition to opening a connection to the database and creating a

few datetime variables, it does the following:

1. Creates a Contact object

2. Creates an Employee object

3. Adds the Employee object to the Contacts object’s Employee collection

4. Adds the new Contact object to the context

5. Saves the changes

mailto:ScottKlein@SqlXml.com

CHAPTER 7 ■ RELATIONSHIPS AND ASSOCIATIONS

121

You may notice that this process doesn’t use the FK association, and that is correct. This example
illustrates that it’s possible to work without using FK associations and that it’s the recommended
method when you’re adding new dependent objects together (the key word being new). You can use the
navigation properties when the Employee object is added to the Employee collection of the Contact object,
allowing you to navigate between the Contact and Employee objects.

When you run the project and click the button, two records are saved; you can see that by querying
the two tables. Figure 7-10 shows the two records added to the Contact table (top) and the Employee
table (bottom).

Figure 7-10. Example 1 results

Manually Setting the Foreign Key Property
The next two examples use FK associations and illustrate how to set the FK property manually. Add
another button to the form, and behind it add the following code:

using (AdventureWorksEntities context = new AdventureWorksEntities())
{
 try
 {
 DateTime Birthdt = new DateTime(1965, 9, 26);
 DateTime Hiredt = new DateTime(2010, 1, 1);

 Contact con = new Contact { Title = "Geek", FirstName = "Scott", LastName = "Klein",
 EmailAddress = "ScottKlein@SqlXml.com", EmailPromotion = 0, Phone =
 "555-55-5555",
 PasswordHash = "", PasswordSalt = "", rowguid = System.Guid.NewGuid(),
 ModifiedDate = DateTime.Now };

 Employee emp = new Employee { ContactID = 19983, NationalIDNumber = "12345678901",
 LoginID = "sklein1", ManagerID = 1, Title = "Geek", BirthDate = Birthdt,
 MaritalStatus = "M", Gender = "M", HireDate = Hiredt, SalariedFlag = true,
 VacationHours = 80, SickLeaveHours = 40, CurrentFlag = true,
 rowguid = System.Guid.NewGuid(), ModifiedDate = DateTime.Now };

 context.Employees.AddObject(emp);
 context.Contacts.AddObject(con);
 context.SaveChanges();

 Messagebox.Show("Items saved");

mailto:ScottKlein@SqlXml.com

CHAPTER 7 ■ RELATIONSHIPS AND ASSOCIAATIONS

122

 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

This code looks similar to the first example, but here you manually set the ContactID FK property

instead of adding it to the Contact Employees collection. You also change a few values so that no check
constraints are violated.

This example also differs from the first in another significant way: because the context doesn’t know
about the parent object yet, the navigation properties on the two objects aren’t mapped to each other
until after SaveChanges() is called. This is because you add each object to the context, whereas in the first
example you added the Employee object to the Contacts object’s Employee collection.

When you run the project and click button2, two records are again saved; you can see that by
querying the two tables. Figure 7-11 shows the two records added to the Contact table (top, top row) and
Employee table (bottom, top row).

Figure 7-11. Example 2 results

Setting the Foreign Key Automatically
A last example for this section illustrates how the FK is applied automatically. Add a third button to the
form, and, in the button’s Click event, add the following code:

using (AdventureWorksEntities context = new AdventureWorksEntities())
{
 try
 {
 DateTime Birthdt = new DateTime(1965, 9, 26);
 DateTime Hiredt = new DateTime(2010, 1, 1);

 Employee emp = new Employee { ContactID = 19983, NationalIDNumber = "12345678902",
 LoginID = "sklein2", ManagerID = 1, Title = "Geek", BirthDate = Birthdt,
 MaritalStatus = "M", Gender = "M", HireDate = Hiredt, SalariedFlag = true,
 VacationHours = 80, SickLeaveHours = 40, CurrentFlag = true,
 rowguid = System.Guid.NewGuid(), ModifiedDate = DateTime.Now };

CHAPTER 7 ■ RELATIONSHIPS AND ASSOCIATIONS

123

 context.Employees.AddObject(emp);
 context.SaveChanges();

 Messagebox.Show("Items saved");
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

In this example, you never load the contact into memory. You know that ContactID is a valid ID, and

you can set the ContactID property for the Employee object directly. Because the Contact object already
exists in the context, your Employee.Contact navigation property becomes effective the second the FK
property is set. Very nice.

Querying the Employee table again, you see the addition of the third record shown in Figure 7-12
(second row).

Figure 7-12. Example 3 results

This type of FK associations come in handy in data binding: in situations where you have data-
bound grids and you have the new value of the FK in the grid but don’t have the related object. Because
you have the FK value, you don’t have to bear the burden of getting the parent (principle) object.

You can also use the FK property to change relationships between objects—for example, changing
the Employee ContactID to point to another contact. You also don’t incur the overhead of getting the
parent object.

The key takeaway from these examples is that the EF takes on the responsibility of keeping related
references and FKs in sync and thus removes this burden from you.

Building the Sample Project
The last thing you do in this chapter is build a sample project that will be used in the remaining chapters
of the book. You can also work with this data project on your own.

The downloads for this book include a SQL Server script called EF40CreationScript.sql. This script
creates a database called EF40 and all the necessary objects that this project uses. Open the script in SQL
Server Management Studio, and run it. This script assumes that you have the AdventureWorks database,
so be sure to download that database prior to running the script.

Next, create a new Visual Studio Class Library project, and name it EF40Data (see Figure 7-13).

CHAPTER 7 ■ RELATIONSHIPS AND ASSOCIAATIONS

124

Figure 7-13. New EF40Data project

Delete the Class1.cs file (or Class1.vb if you choose to do this in Visual Basic.NET). Add a new
ADO.NET EDM to the project, and name it EF40Model. Select Generate from Database in the Choose
Model Contents dialog, and select all the tables and stored procedures in the Choose Your Database
Objects dialog, as shown in Figure 7-14.

CHAPTER 7 ■ RELATIONSHIPS AND ASSOCIATIONS

125

Figure 7-14. Selecting the tables for the project

Make sure you keep the “Pluralize or singularize generated object names” and “Include foreign key
columns in the model” options checked. Click Finish. When your model is built, it should look like
Figure 7-15.

CHAPTER 7 ■ RELATIONSHIPS AND ASSOCIAATIONS

126

Figure 7-15. The finished model

You use many of the objects in the model in future chapters. In addition, you can see from Figure 7-
15 that the model has plenty of tables and relationships around which you can design a nice application
to start experimenting with the new FK associations.

Summary
In this chapter, you learned about the new ADO.NET Entity Framework 4.0 FK associations. You began
by creating a simple example using EF 3.5 in order to provide a foundation for the discussion of EF 4.0.
You then built the same example using EF 4.0, to illustrate the improvements and changes Microsoft has
made. Significant changes were made to the UI alone to allow for better handling and support for FK
associations without giving up EF 3.5 functionality by independent associations.
I spent the remainder of the chapter discussing how the new FK associations affect your queries and
navigation between objects and how these changes simplify many things used in projects, such as data
binding and concurrency.

C H A P T E R 8

■ ■ ■

127

T4 Code Generation

Up until now, this book has focused primarily on enhancements to the ADO.NET 4.0 Entity Framework
(EF), including improved stored procedure support (such as those that return unknown types), complex
types, using ObjectSet versus ObjectQuery, and more. Some of the new features were discussed in
previous chapters, such as complex types and stored procedure improvements. But Microsoft also spent
a lot of time adding many great new features to the EF. Although V1 of the EF was groundbreaking, it
lacked enough fundamental features that developers complained quite loudly. Microsoft listened, and
EF4 is the result.

Starting with this chapter, the remainder of this book focuses on the new features that have been
added to version 4 of the EF and that require chapters of their own. These topics include Text Template
Transformation Toolkit (T4) support, model-first design, Plain Old Class Objects (POCO) support, and
others. This chapter begins with T4 support and how it’s utilized within the EF.

T4 Template Overview
T4 templates are a means of creating a code-generation artifact with the goal of saving developers a lot of
time. T4 has been around since Visual Studio 2005. Even though you’ve had it for almost half a decade,
it’s one of those technologies that most developers still don’t know exists. When told about it, the
response is generally, ”Really? What is it? Not that Microsoft has intentionally been keeping T4 secret
since VS 2005; but many of the latest technologies, such as LINQ to SQL, MVC, and now EF, use T4 as
their foundation and framework for code generation.

Adding a Template Using Visual Studio 2008
I hope you have VS 2008. Fire up an instance, and create a new C# console application. This example is
to help you understand a little about how T4 templates work, so I didn’t change the project name. Feel
free to give your project a better name than ConsoleApplication1.

Add a new item to the project. When the Add New Item dialog appears, select the Text File template
type. Looking through the list of templates, notice that there is no T4 template item. The trick to utilize
T4 templates is to select the Text File template type but change the extension. The default name for the
text file is TextFile1.txt; but in order to use the T4 template functionality, change the extension from
.txt to .tt. In this example, change the name to TextTemplate.tt, as shown in Figure 8-1.

CHAPTER 8 ■ T4 CODE GENERATION

128

Figure 8-1. Adding a new template

Click Add in the Add New Item dialog. Looking in Solution Explorer, your T4 template is added to
your solution along with its associated code file, as shown in Figure 8-2.

Figure 8-2. T4 template in Solution Explorer

Installing a T4 Editor
When you clicked Add in the Add New Item dialog, the TextTemplate.tt file as also opened in the Visual
Studio IDE. It’s just a blank text file, so you can do some text editing. The problem is, unless you know
how to write T4 code, it’s easy to get lost. If you’ve seen T4 code prior to now, you know that it looks a lot
like ASP classic syntax with the brackets. But where do you begin? Luckily, the people at Clarius created a
nifty utility called Visual T4 to alleviate some of the guesswork and pain. Visual T4 provides T4

CHAPTER 8 ■ T4 CODE GENERATION

129

IntelliSense and template editing. You can download this nifty tool from the following site:
www.visualt4.com.

On the website, click the Downloads link in the upper-right corner. On the Downloads page are
multiple versions. At the time of this writing, there isn’t a version for VS 2010, which is why you’re doing
this example in VS 2008. Download the Visual T4 Editor Community Edition for VS 2008. The file you
download is called T4EditorForVS2008-Community.msi. Just to be safe, close all instances of Visual Studio
prior to installing this utility.

With the T4 editor installed, open Visual Studio 2008 again as well as the TextTemplate.tt file. To get
an idea of how IntelliSense works, type a less-than sign (<). Immediately you see a list of directives, as
shown in Figure 8-3.

Figure 8-3. T4 IntelliSense with listed directives

These directives are essentially instructions to the T4 generator. There are more than are shown in
Figure 8-3, as you see shortly. This chapter isn’t a tutorial on T4 syntax; you can find books or articles to
help with that. However, you use some of these directives in the following examples, and when you do, I
explain what they mean.

Writing Some T4 Code
The first two T4 directives you use are template and output. The template directive allows you to specify
instructions regarding this specific template. Notice as you type that this directive has several attributes,
such as language, debug, and inherits. For this example, you use the language attribute, which specifies
that you’re creating your template using C# and that the generator must use the C# compiler.

The next directive you use is output. This directive has only one attribute: extension. This directive
and its associated attribute specify the type of output your template will generate. For example, you can
specify that you’ll use the C# language in your template but that you want the resulting output to be
Visual Basic:

<#@ template language="C#" #>
<#@ output extension=".vb" #>

When you save the template, notice that the extension of the associated source code file in Solution

Explorer has changed from .cs to .vb. Looking at the properties of the file shows that the extension has
changed on the actual file, as shown in Figure 8-4.

http://www.visualt4.com

CHAPTER 8 ■ T4 CODE GENERATION

130

Figure 8-4. Output file properties

This example is simple and keeps everything C#. Add the language and extension directives to the
top of the file. Also add a little code to the template, as follows:

<#@ template language="C#" #>
<#@ output extension=".cs" #>
namespace ConsoleApplication1
{
 public class CountStuff
 {
 public void DoCounter()
 {
 //
 }
 }
}

The act of saving the template initiates the T4 code-generation engine, which generates the output

source code. Looking at the .cs file, you can see that the code has been generated:

namespace ConsoleApplication1
{
 public class CountStuff
 {
 public void DoCounter()
 {
 //
 }
 }
}

As is, this code doesn’t do you much good. You need to add more T4 code; and again, this is where

the T4 editor IntelliSense comes in very handy. Going back to the template, delete the two forward
slashes, and type the less-than sign again. This time, notice that you get three entirely different
directives, as shown in Figure 8-5.

CHAPTER 8 ■ T4 CODE GENERATION

131

Figure 8-5. Inline code directives

These three directives apply solely to inline code. The first directive applies to inline code that is
executed directly within the template. The second directive lets you write out results as is. The third
directive allows you to create additional source, such as functions and methods that are called from
another location. You use the first two directives in this example.

Use the top directive to add a for loop, as shown in the code that follows. Add a second line that
uses the Console.WriteLine method to write the value to the console window. This example loops five
times and writes the counter out to the console:

<#@ template language="C#" #>
<#@ output extension=".cs" #>
namespace ConsoleApplication1
{
 public class CountStuff
 {
 public void DoCounter()
 {
 <# for (int i = 1; i < 6; i++) #>
 System.Console.WriteLine(i.ToString());
 }
 }
}

Save the template, and look at the generated code. No, the code you’re looking at here isn’t a

copy/paste error. This layout is how it shows up in your .cs file:

namespace ConsoleApplication1
{
 public class CountStuff
 {
 public void DoCounter()
 {
 System.Console.WriteLine(i.ToString());
 }
 }
} System.Console.WriteLine(i.ToString());
 }
 }
} System.Console.WriteLine(i.ToString());
 }
 }
} System.Console.WriteLine(i.ToString());
 }

CHAPTER 8 ■ T4 CODE GENERATION

132

 }
} System.Console.WriteLine(i.ToString());
 }
 }
}

Everything below the for loop was executed for each iteration—meaning WriteLine and the three

closing braces (}) were executed each time. This example shows that you need to clearly understand the
scope of your code and how the inline code directives can help you.

Scoping Your Code
The fix to the scoping problem is simple: you need to tell the code generator the scope of your code. You
can do that by using the first derivative again. You need to include an open bracket ({) in your first line
and then add the closing braces (}) within the first derivative, as shown here:

<# for (int i = 1; i < 6; i++) { #>
System.Console.WriteLine(i.ToString());
<# } #>

Save the template, and look at the code again. It still isn’t quite correct, because you should see a

handful of build errors stating that the name i doesn’t exist; but you’re getting closer. The format is still
off, as well. But in this example, you can see how the derivatives are used to define the scope of the code
appropriately:

namespace ConsoleApplication1
{
 public class CountStuff
 {
 public void DoCounter()
 {
 System.Console.WriteLine(i.ToString());
 System.Console.WriteLine(i.ToString());
 System.Console.WriteLine(i.ToString());
 System.Console.WriteLine(i.ToString());
 System.Console.WriteLine(i.ToString());
 }
 }
}

You’re not finished: you need the WriteLine code to show the write information. For this, you use

the second directive, as shown here:

System.Console.WriteLine(<#= i.ToString() #>);

Now, when you save the file and look at the output code again, the format is still off but your code is

correct (you look at fixing the format in a bit):

namespace ConsoleApplication1
{
 public class CountStuff
 {

CHAPTER 8 ■ T4 CODE GENERATION

133

 public void DoCounter()
 {
 System.Console.WriteLine(1);
 System.Console.WriteLine(2);
 System.Console.WriteLine(3);
 System.Console.WriteLine(4);
 System.Console.WriteLine(5);
 }
 }
}

Example 1: Running the Project
Let’s write some code that uses your generated code, with the end goal being to create a project that you
can execute. Your console project automatically includes a Program.cs file. Open Program.cs, and add
the following code to the Main method:

CountStuff count = new CountStuff();
count.DoCounter();
Console.ReadLine();

Your Program.cs should now look like the following:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 CountStuff count = new CountStuff();
 count.DoCounter();
 Console.ReadLine();
 }
 }
}

The code in your Main method simply creates an instance of the T4-generated CounterStuff class

and then calls the DoCounter method. This last line executes a ReadLine so the console window stays
open until you press the Enter key.

Run the project by pressing F5. When the console window appears, it writes the numbers 1 through
5 to the window, exactly as you wanted. Press the Enter key to terminate the program. You can see the
result of the execution in Figure 8-6.

CHAPTER 8 ■ T4 CODE GENERATION

134

Figure 8-6. Console output

Although this example isn’t terribly exciting, it gives you an idea of how T4 templates work and a
brief introduction to the T4 template syntax.

Example 2: Returning Your Computer’s Processes
Let’s work through two more examples that are more useful. In this example, you modify your template
to use .NET classes that return all the processes on your computer. This illustrates how easy it is to use T-
4 templates integrated with .NET code. Modify the template file to look like the following:

<#@ template language="C#" #>
<#@ output extension=".cs" #>
using System.Diagnostics;
namespace ConsoleApplication1
{
 public class CountStuff
 {
 public void DoCounter()
 {
 Process[] procs = Process.GetProcesses();
 foreach (Process proc in procs)
 System.Console.WriteLine(proc.ProcessName);
 }
 }
}

This code is a little different from the first example. Here you use straight inline code, so you don’t

need the second derivative. The output, shown here, matches the template exactly:

using System.Diagnostics;
namespace ConsoleApplication1
{
 public class CountStuff
 {

CHAPTER 8 ■ T4 CODE GENERATION

135

 public void DoCounter()
 {
 Process[] procs = Process.GetProcesses();
 foreach (Process proc in procs)
 System.Console.WriteLine(proc.ProcessName);
 }
 }
}

When you run this, the output is a list of all the processes on the computer that is running the

application (see Figure 8-7).

Figure 8-7. Process output results

Example 3: Listing Your SQL Databases
Here’s a final example to illustrate T4. For this example, you need to add the following references to your
project:

• Microsoft.SqlServer.ConnectionInfo

• Microsoft.SqlServer.Management.Sdk.Sfc

• Microsoft.SqlServer.Smo

Next, in your template, you need to reference these classes. In T4, you do this by using one of the
directives shown in Figure 8-3: the assembly directive. This directive identifies an assembly to be
referenced so that you can use types within that assembly from code in the text template. This is
equivalent to using Add Reference in Visual Studio.

You also need to use the namespace directive, which allows you to refer to types in a text template
without providing a fully qualified name.

Modify your template to look like the following (be sure to change the server name to your actual
SQL server instance name):

CHAPTER 8 ■ T4 CODE GENERATION

136

<#@ template language="C#" #>
<#@ output extension=".cs" #>
<#@ assembly name="Microsoft.SqlServer.Smo, Version=10.0.0.0, Culture=neutral,
 PublicKeyToken=89845dcd8080cc91" #>
<#@ assembly name="Microsoft.SqlServer.Management.Sdk.Sfc, Version=10.0.0.0,
 Culture=neutral, PublicKeyToken=89845dcd8080cc91" #>
<#@ assembly name="Microsoft.SqlServer.ConnectionInfo, Version=10.0.0.0,
 Culture=neutral, PublicKeyToken=89845dcd8080cc91" #>
<#@ import namespace="System" #>
<#@ import namespace="Microsoft.SqlServer.Management.Smo" #>
<#@ import namespace="Microsoft.SqlServer" #>
using Microsoft.SqlServer.Management.Smo;
using Microsoft.SqlServer.Server;
namespace ConsoleApplication1
{
 public class CountStuff
 {
 public void DoCounter()
 {
 Server srv = new Server("servername");
 foreach (Database db in srv.Databases)
 System.Console.WriteLine(db.Name);
 }
 }
}

This example references some new namespaces because you use some of the classes in the code.

You then use Server Management Objects (SMO) to query for all the databases on that server.
When run, your results are output in the console window as shown in Figure 8-8.

Figure 8-8. Database output results

CHAPTER 8 ■ T4 CODE GENERATION

137

That’s enough of an introduction to T4. Let’s get to the real reason for this chapter and discuss how
T4 is used on the EF.

T4 Templates and the Entity Framework
After all you learned in the previous 10 pages, the question becomes, how are T4 templates used in the
EF? Just as important is how you can use T4 to customize the classes from your EDM.

Let’s start from the beginning and look at what the EF uses to build the classes from the entities
defined in the model. Realistically, you could do the same thing you did in the first example at the
beginning of the chapter: you could add a .tt file to the project and start from scratch. VS 2010 has a
template for adding T4 templates, called the ADO.NET EntityObject Generator, shown in Figure 8-9.
Adding a T4 template this way requires you to know where to find it in the list of templates and items.

Figure 8-9. ADO.NET EntityObject Generator item

But simply adding a blank text template doesn’t gain you anything. Again, you’re faced with a blank
page, waiting for you to type something in. Why do that when the EF can do much of the work for you?

Open the EF40Data project for Chapter 8, and open the EDM. Open the properties for the EDM and
locate the Custom Tool property, shown in Figure 8-10.

CHAPTER 8 ■ T4 CODE GENERATION

138

Figure 8-10. EntityModelCodeGenerator

The EntityModelCodeGenerator is the built-in tool that automatically generates an object layer
based on your conceptual schema definition language (CSDL) in the .edmx file.

You don’t want to delete the value of this property directly. Let’s let EF do it properly for you. To do
that, open the EDM; on the EDM surface, right-click, and select Add Code Generation Item from the
context menu as shown in Figure 8-10. Selecting this menu option opens the all-too-familiar Add New
Item dialog, shown in Figure 8-12.

CHAPTER 8 ■ T4 CODE GENERATION

139

Figure 8-11. Add Code Generation Item menu option

Figure 8-12. Add New Item dialog

The difference this time is that the Add New Item dialog knows exactly what you’re looking for and
presents you with the single item you want. Give it a good name, and click Add.

CHAPTER 8 ■ T4 CODE GENERATION

140

You now see the warning shown in Figure 8-13. It’s a short, simple, but glaring message stating that
if you continue, significant changes will be made to your model with a probability that something may
break if you aren’t careful. Go ahead and click OK, because the changes it makes are detailed next.

Figure 8-13. T4 Template security warning

By clicking OK, you telling the EF that you want to control the code generation from now on:
“Thanks, Entity Framework, for all your hard work, but I’ll take it from here.” I know you’re wondering if
there is a way to tell the EF that you made a mistake and want it to take back control of the code
generation. Absolutely. To do so, set the Custom Tool property back to the value
EntityModelCodeGenerator, and you’re back in business.

The only caveat is if you make custom changes that don’t compile. The EF will tell you that you need
to fix those errors prior to handing back control. You should understand this: it’s like inheriting buggy
code from a co-worker. The EF doesn’t want to inherit buggy code. Get your code working before you
hand it back.

By taking control of the code generation, the EF does a couple of things. First, the Custom Tool
property value is automatically deleted. This means no code file (EF40Model.Designer.cs) is attached to
the .edmx file.

Second, the new template is added to Solution Explorer. Figure 8-14 shows both the addition of the
text template and the removal of the Custom Tool. The template is now responsible for generating the
classes, so the class file is attached to the template. You saw this in the first section of this chapter and
learned how the two work in harmony.

CHAPTER 8 ■ T4 CODE GENERATION

141

Figure 8-14. Custom Tool removed

The good thing is that the EF keeps everything intact. You may at first think that the text template
the EF creates is empty. No way. The EF takes everything it uses for code generation and places it in your
new text template. Double-click the .tt file to open it in the Visual Studio IDE.

If you have line numbers enabled, you see that the file is more than 1,250 lines long. At the top of the
file, as shown here, are some nice instructions for modifying the template along with some URLs to
provide further information. Not too shabby:

<#
// You can use this text template to customize object layer code generation for
// applications that use the Entity Framework. The template generates code based
 on an .edmx file.
// Before using this template, note the following:
//
// *The name of the text template file will determine the name of the code file
 it generates.
// For example, if the text template is named TextTemplate.tt, the generated
 file will be named
// TextTemplate.vb or TextTemplate.cs.
// *The Custom Tool property of the targeted .edmx file must be empty. For more

CHAPTER 8 ■ T4 CODE GENERATION

142

 information,
// see .edmx File Properties (http://go.microsoft.com/fwlink/?LinkId=139299).
// *The SourceCsdlPath initialization below must be set to one of the following:
// 1) the path of the targeted .edmx or .csdl file
// 2) the path of the targeted .edmx or .csdl file relative to the template path
//
// For more detailed information about using this template, see
// How to: Customize Object Layer Code Generation
 (http://go.microsoft.com/fwlink/?LinkId=139297).
// For general information about text templates, see
// Generating Artifacts by Using Text Templates
 (http://go.microsoft.com/fwlink/?LinkId=139298)
#>
<#@ template language="C#" debug="false" hostspecific="true"#>
<#@ include file="EF.Utility.CS.ttinclude"#>
<#@ output extension=".cs"#>
<#

UserSettings userSettings =
 new UserSettings
 {
 SourceCsdlPath = @"EF40Model.edmx",
 ReferenceCsdlPaths = new string[] {},
 FullyQualifySystemTypes = true,
 CreateContextAddToMethods = true,
 CamelCaseFields = false,
 };

ApplyUserSettings(userSettings);
if(Errors.HasErrors)
{
 return String.Empty;
}

With that background, let’s look at an example of how you can use the new template to create

custom classes.

T4 Customization Example
This section walks you through an example of customizing code generation. Let’s begin by adding a new
class called IValidator. It’s a simple validation class. To do so, add a new class to the project, call it
IValidator.cs, and click OK. In the class, add the following code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace EF40Data
{
 public interface IValidator
 {
 void Validate();

http://go.microsoft.com/fwlink/?LinkId=139299
http://go.microsoft.com/fwlink/?LinkId=139297
http://go.microsoft.com/fwlink/?LinkId=139298

CHAPTER 8 ■ T4 CODE GENERATION

143

 }
}

Next, open the text template EF40Template.tt. Scroll down to line 316, and add the bold code to the

end of that line. The bold code includes the comma before IValidator:

<#=Accessibility.ForType(entity)#> <#=code.SpaceAfter(code.AbstractOption(entity))#>
partial class <#=code.Escape(entity)#> : <#=BaseTypeName(entity, code)#>, IValidator

Next, just below the opening bracket on line 317, add the following code:

void IValidator.Validate()
{
 OnValidate();
}

partial void OnValidate();

Save the text template. Open the associated class, and scroll down to the entities section. Notice

now that every entity inherits from the IValidator class:

#region Entities

/// <summary>
/// No Metadata Documentation available.
/// </summary>
 [EdmEntityTypeAttribute(NamespaceName="EF40Model", Name="Contact")]
 [Serializable()]
 [DataContractAttribute(IsReference=true)]
public partial class Contact : EntityObject, IValidator
{
 void IValidator.Validate()
 {
 OnValidate();
 }

 partial void OnValidate()

As you can see, T4 templates provide a nice way to customize your entity classes. The reason for
implementing and using T4 for code generation is simply to make it easy to customize the way your
entities are generated.

CHAPTER 8 ■ T4 CODE GENERATION

144

C H A P T E R 9

■ ■ ■

145

Model-First Development

In the last chapter we focused on how to use text templates to customize the generation of the EDM. T4
has been incorporated in many facets in EF 4.0, and this chapter will build on that. One of the things
requested by EF developers was the ability to generate a database based on the EDM. In the previous
version of EF you could build an EDM starting with an empty model, but you couldn’t do anything with
it after that. More specifically, you could not build or create your database based on your EDM.

EF 4.0 fixes that problem, and not only lets you build your database based on your EDM, but also
lets you customize the DDL that is generated. This chapter will focus on two aspects of model-first
design, the first being the ability to build an EDM and to then create the database based on your EDM.
The second part of the chapter will utilize the information you gained in the previous chapter by using
T4 templates and Windows Workflow to customize the output of the DDL.

Model-First Design
One of the most glaring and almost agonizing exclusions from the first release of the Entity Framework
was a complete model-first solution. With EF V1, you could create a model from scratch, but you could
not really do much with mapping and database creation. Anyone who spent any time on the MSDN
Entity Framework forums knows that creating the model first was one of the most requested pieces of
functionality.

Microsoft listened, and, with Version 4.0 of the Entity Framework, they delivered. With version 4.0 of
the Entity Framework, you now have a true “model-first” solution. Once you have your conceptual
model created, you can now derive the storage model, mappings, and database from your conceptual
model, all from a single menu item on the Designer context menu. From this menu you can generate a
database schema directly from your model as well as the appropriate mappings.

Microsoft also provides the ability to customize the database creation process through T4 templates,
giving developers much-needed flexibility and control over how the mappings and the schema are
generated. I’m getting goose bumps.

This section will walk you through the entire process, from creating the conceptual model to the
creation of the database and mappings.

Creating a Conceptual Model
Let’s begin our model-first design by creating a somewhat simple model. Create a new Class Library
project and name the project ModelFirst. We are not going to add any user interface components, so we
don’t need to create a Windows Forms application for this example.

Our model, and subsequent database, is going to track motocross teams, their riders, and the class
in which each rider races. In the sport of motocross, a rider can actually race in multiple classes, but we
don’t want anything that complicated for this example. For the sake of this example, a rider will race a
single class. Unlike other sports, in the sport of motocross a rider rarely changes, or “gets traded” to,
another team during the year. So we won’t worry about a rider changing teams either.

CHAPTER 9 ■ MODEL-FRIST DEVELOPMENT

146

In this example we will create an EDM and then use a new feature to generate a database based on
our model. Figure 9-1 shows the New Project creation screen—nothing new here. Pick the project type,
enter the project name and click OK.

Figure 9-1. Project creation

Once the project has been created, add a new ADO.NET Entity Data Model item to the project.
Name the model Motocross.edmx and click Add. What you’re doing here is really no different than in
previous examples, in previous chapters.

One difference with this example is that we will not be generating our model from a database, as we
have done in previous examples. When we generate from a database, our mappings and model are
already created for us. In this example, we want to start with an empty model from which to design our
conceptual model. Create a new Windows Forms project, and once the project is created add a new
ADO.NET Entity Data Model to your project, shown in Figure 9-2.

CHAPTER 9 ■ MODEL-FIRST DEVELOPMENT

147

Figure 9-2. Adding an Entity Data Model

When the Entity Data Model Wizard begins, select the Empty Model option, shown in Figure 9-3,
and click Finish. Visual Studio creates an empty EDM, an empty canvas, so to speak, in which to start
designing your conceptual model.

The designer, when empty, contains a simple message, which states that to create new entities you
need to drag them from the Toolbox. Just like normal Visual Studio development, the items you want to
place on your designer are found in the Toolbox. The Toolbox contains, besides the Pointer, three
controls, or items, from which to design your conceptual Entity Data Model. Those three items are the
following:

• Entity: Used to define, or “model” a top-level concept.

• Association: Defines a relationship between two entity types.

• Inheritance: Authorizes a derived type to extend the features of another type.

We won’t discuss inheritance in this chapter, but we will be using the Entity item and the
Association item to build our conceptual model.

CHAPTER 9 ■ MODEL-FRIST DEVELOPMENT

148

Figure 9-3. Selecting an empty model template

Creating Entities in the Empty Model
To appropriately track the information needed for our motocross application, we will need to create four
entities:

• Team: This entity will contain the individual motocross teams.

• Rider: This entity will track the individual riders and the team each rides for, via an
association to the Team entity.

• Class: This is the class the rider races in, 250 or 450.

• Brand: This is the brand of each team (Yamaha, Honda, etc.).

Begin by dropping four entities onto the designer from the Toolbox. Tables 9-1 through 9-4 show
the properties that need to be added to each entity and their related data type. Let’s begin with the Team
table. To add properties to the entity, simply right-click on the entity and select Add ➤ Scalar Property
from the context menu.

CHAPTER 9 ■ MODEL-FIRST DEVELOPMENT

149

Table 9-1. The Team Table

Column Name Data Type Description

TeamID Int32 Unique identifier

TeamName String The name of each team

IsSupportTeam Boolean Is this a factory team or a factory sponsored team?

BrandID Int32 The FK to the Brand entity to associate the team with a bike
brand the team uses

Table 9-2. The Brand Table

Column Name Data Type Description

BrandID Int32 Unique identifier

BrandName String The brand name of the bike

Table 9-3. The Rider Table

Column Name Data Type Description

RiderID Int32 Unique identifier

FirstName String The rider’s first name

MiddleName String The rider’s middle name

LastName String The rider’s last name

Age Int16 The rider’s age

ClassID Int32 The FK to the Brand entity to associate the team with a bike
brand the team uses

TeamID Int32 The FK to the Brand entity to associate the team with a bike
brand the team uses

CHAPTER 9 ■ MODEL-FRIST DEVELOPMENT

150

Table 9-4. The Class Table

Column Name Data Type Description

ClassID Int32 Unique identifier

ClassName String The name of the class

You should have noticed that each time you added an entity to the designer it automatically added

an ID column. The designer will have set the data type of that column to Int32. That’s a good thing.
What the designer did not do was to set a property called StoreGeneratedPattern. For each entity,

we want the IDs to be auto-generated primary keys. To achieve that goal, we need to set the
StoreGeneratedPattern property. Select the TeamID property in Team entity and in the Properties
window set the StoreGeneratedPattern to Identity. Figure 9-4 shows this being done for one of the
entities. Do the same thing for the other three entities for the properties identified as Unique Identifiers.

Figure 9-4. Setting the StoreGeneratedPattern property

Creating Associations and Navigation Properties
We are almost done, but we are missing our Associations and Navigation properties. Three associations
need to be created, along with their respective navigation properties.

Table 9-5 details the three associations to be created between the entities and the column in each
entity on which the associations need to be joined.

Table 9-5. Associations for the Motocross Model

Parent Entity Child Entity Property

Brand Team BrandID

Team Rider TeamID

Class Rider ClassID

Once you’ve created the associations in Table 9-5, your model should look something like Figure 9-

5.

CHAPTER 9 ■ MODEL-FIRST DEVELOPMENT

151

Figure 9-5. Completed model

Saving the Model
The model is finished, but when you open the model you should be presented with the warnings shown
in Figure 9-6.

Figure 9-6. Mapping warnings

These warnings are completely valid, and the information is absolutely correct. These warnings are
letting us know that the items in the designer are not mapped to anything. The project will save and
compile as-is, since these are warnings, but beyond having our conceptual model we really don’t have
anything substantial.

CHAPTER 9 ■ MODEL-FRIST DEVELOPMENT

152

Verifying Compilation
We can verify that our project will compile by closing our EDM, right-clicking on the Motocross.edmx in
Solution Explorer, and selecting Open With from the context menu. In the Open With dialog, select XML
Editor from the list of programs, then click OK.

Figure 9-7 shows the C-S Mapping Content section. You have seen this previously, but notice here
the lack of content. The entire file itself is only 118 lines long. The mapping section is only ten lines long.

Figure 9-7. Model mapping content

Creating the Mappings and Database
We could spend a lot of time defining our mappings by hand, but that won’t work simply because we
don’t have anything to map the entity types or associations to. Plus, I don’t feel like writing, and
debugging, a ton of XML, and I’m sure you don’t either.

But this is where the model-first functionality of version 4.0 of the Entity Framework kicks in. We
don’t have to write any code, or do anything special, because the new model-first features take care of
that for us. Let’s put that great new technology to work and create our mapping and database.

Close the XML window and reopen the EDM. With the EDM open, right-click anywhere on the
surface of the designer. A familiar context menu will appear, but you’ll notice a new menu item in the
menu, called Generate Database from Model. You can see this menu item in Figure 9-8.

Selecting this menu starts a very simple wizard, the Create Database Wizard. The first step in the
wizard is the familiar Choose Your Data Connection dialog. This dialog lets you select or create a new
database connection. This is the exact same dialog you see when you generate your model from a
database and walk through that wizard. It is the dialog that lets you specify the data source, connection
options, and database that you will use to run the generated script against.

While the name of the wizard leads you to believe it will create the physical database for you, the
Generate Database Wizard does not actually create the physical target database. What the wizard really
does is to generate and optionally execute the schema-creation script, which creates tables and other
objects that you may need. You’ll have to have already created an empty database. For the example in
this chapter, I used the default, AdventureWorks database.

CHAPTER 9 ■ MODEL-FIRST DEVELOPMENT

153

Figure 9-8. Generate database from model

Once you have specified the connection information, click Next. The next screen in the wizard is the
Summary and Settings screen, shown in Figure 9-9. This step in the wizard shows the DDL that was
generated from the conceptual model. Take a few minutes to scroll through the DDL, examining the
statements that were generated. For your convenience, the entire DDL is shown as well. What should
jump out at you are the DROP statements. This is vitally important to know, as the wizard does not
UPDATE. This means that if you have an existing database, it does not go out to the schema and figure
out the differences between your model and the database and create DDL that will modify or update
your schema. It simply drops all the objects and recreates them.

This is important to know because any data you have, any schemas changes you made on the
database side, will be lost if you run the generated DDL script. You will need to back up the current
database to ensure no data or schema changes are lost. You will find out shortly that there is a second
part of this as well, pertaining to the mapping.

If this is the first time you are running the DDL, then you have nothing to worry about. But if the
opposite is true, meaning that you have previously generated DDL off of your model and created a
database, then you need to take precautions to ensure that any database you want to keep does not get
lost.

Click the Cancel button and the Summary and Settings form if you do not wish to execute the script.
Clicking Cancel will terminate the wizard and take you back to the EDM. No mapping has taken place
nor has any DDL been generated.

CHAPTER 9 ■ MODEL-FRIST DEVELOPMENT

154

Figure 9-9. Summary and settings

Here is the entire DDL script from Figure 9-9:

-- --
-- Date Created: 12/05/2009 08:32:14
-- Generated from EDMX file: C:\Projects\APress\Chapter9\
ModelFirst\ModelFirst\Motocross.edmx
-- --

SET QUOTED_IDENTIFIER OFF;
SET ANSI_NULLS ON;
GO

USE [AdventureWorks]
GO
IF SCHEMA_ID(N'dbo') IS NULL EXECUTE(N'CREATE SCHEMA [dbo]')
GO

CHAPTER 9 ■ MODEL-FIRST DEVELOPMENT

155

-- --
-- Dropping existing FK constraints
-- --

IF OBJECT_ID(N'[dbo].[FK_BrandTeam]', 'F') IS NOT NULL
 ALTER TABLE [dbo].[Teams] DROP CONSTRAINT [FK_BrandTeam]
GO
IF OBJECT_ID(N'[dbo].[FK_RiderTeam]', 'F') IS NOT NULL
 ALTER TABLE [dbo].[Teams] DROP CONSTRAINT [FK_RiderTeam]
GO
IF OBJECT_ID(N'[dbo].[FK_ClassRider]', 'F') IS NOT NULL
 ALTER TABLE [dbo].[Riders] DROP CONSTRAINT [FK_ClassRider]
GO

-- --
-- Dropping existing tables
-- --

IF OBJECT_ID(N'[dbo].[Teams]', 'U') IS NOT NULL
 DROP TABLE [dbo].[Teams];
GO
IF OBJECT_ID(N'[dbo].[Riders]', 'U') IS NOT NULL
 DROP TABLE [dbo].[Riders];
GO
IF OBJECT_ID(N'[dbo].[Classes]', 'U') IS NOT NULL
 DROP TABLE [dbo].[Classes];
GO
IF OBJECT_ID(N'[dbo].[Brands]', 'U') IS NOT NULL
 DROP TABLE [dbo].[Brands];
GO

-- --
-- Creating all tables
-- --

-- Creating table 'Teams'
CREATE TABLE [dbo].[Teams] (
 [TeamID] int IDENTITY(1,1) NOT NULL,
 [TeamName] nvarchar(max) NOT NULL,
 [IsSupportTeam] bit NOT NULL,
 [BrandID] int NOT NULL,
 [Brand_BrandID] int NOT NULL
);
GO
-- Creating table 'Riders'
CREATE TABLE [dbo].[Riders] (
 [RiderID] int IDENTITY(1,1) NOT NULL,
 [FirstName] nvarchar(max) NOT NULL,
 [MiddleName] nvarchar(max) NULL,
 [LastName] nvarchar(max) NOT NULL,
 [Age] smallint NOT NULL,
 [ClassID] int NOT NULL,
 [TeamID] int NOT NULL,
 [Class_ClassID] int NOT NULL,

CHAPTER 9 ■ MODEL-FRIST DEVELOPMENT

156

 [Team_TeamID] int NOT NULL
);
GO
-- Creating table 'Classes'
CREATE TABLE [dbo].[Classes] (
 [ClassID] int IDENTITY(1,1) NOT NULL,
 [ClassName] nvarchar(max) NOT NULL
);
GO
-- Creating table 'Brands'
CREATE TABLE [dbo].[Brands] (
 [BrandID] int IDENTITY(1,1) NOT NULL,
 [BrandName] nvarchar(max) NOT NULL
);
GO

-- --
-- Creating all Primary Key Constraints
-- --

-- Creating primary key on [TeamID] in table 'Teams'
ALTER TABLE [dbo].[Teams] WITH NOCHECK
ADD CONSTRAINT [PK_Teams]
 PRIMARY KEY CLUSTERED ([TeamID] ASC)
 ON [PRIMARY]
GO
-- Creating primary key on [RiderID] in table 'Riders'
ALTER TABLE [dbo].[Riders] WITH NOCHECK
ADD CONSTRAINT [PK_Riders]
 PRIMARY KEY CLUSTERED ([RiderID] ASC)
 ON [PRIMARY]
GO
-- Creating primary key on [ClassID] in table 'Classes'
ALTER TABLE [dbo].[Classes] WITH NOCHECK
ADD CONSTRAINT [PK_Classes]
 PRIMARY KEY CLUSTERED ([ClassID] ASC)
 ON [PRIMARY]
GO
-- Creating primary key on [BrandID] in table 'Brands'
ALTER TABLE [dbo].[Brands] WITH NOCHECK
ADD CONSTRAINT [PK_Brands]
 PRIMARY KEY CLUSTERED ([BrandID] ASC)
 ON [PRIMARY]
GO

-- --
-- Creating all Foreign Key Constraints
-- --

-- Creating foreign key on [Brand_BrandID] in table 'Teams'
ALTER TABLE [dbo].[Teams] WITH NOCHECK
ADD CONSTRAINT [FK_BrandTeam]
 FOREIGN KEY ([Brand_BrandID])
 REFERENCES [dbo].[Brands]

CHAPTER 9 ■ MODEL-FIRST DEVELOPMENT

157

 ([BrandID])
 ON DELETE NO ACTION ON UPDATE NO ACTION
GO
-- Creating foreign key on [Class_ClassID] in table 'Riders'
ALTER TABLE [dbo].[Riders] WITH NOCHECK
ADD CONSTRAINT [FK_ClassRider]
 FOREIGN KEY ([Class_ClassID])
 REFERENCES [dbo].[Classes]
 ([ClassID])
 ON DELETE NO ACTION ON UPDATE NO ACTION
GO
-- Creating foreign key on [Team_TeamID] in table 'Riders'
ALTER TABLE [dbo].[Riders] WITH NOCHECK
ADD CONSTRAINT [FK_TeamRider]
 FOREIGN KEY ([Team_TeamID])
 REFERENCES [dbo].[Teams]
 ([TeamID])
 ON DELETE NO ACTION ON UPDATE NO ACTION
GO

-- --
-- Script has ended
-- --

As you can see by this DDL, the script is very thorough. It takes care of handling any existing

relationships and keys so that the script will run successfully.
Click the Finish button in Figure 9-9 if you do wish to execute the script that you’ve generated.

Clicking Finish on the Summary and Settings dialog closes the wizard, and then presents you with the
warning shown in Figure 9-10.

Figure 9-10. Overwrite warning

This warning is not to be taken lightly, as it is really telling you two things. First, if you haven’t
noticed the DROP statements in the DDL, it will be dropping and recreating the objects in your database
(this was talked about earlier).

■ Caution! If you have existing objects to drop, you will lose any data in those objects. This goes without saying,

but I’ll say it anyway. If you have test or other data that is important to you, be sure to save it before you recreate

your schema.

CHAPTER 9 ■ MODEL-FRIST DEVELOPMENT

158

Second, the warning is telling you that any current mappings you have will be overwritten. This has
significant meaning, in that if you have made any custom changes to the mapping, or have run this
wizard before to generate the mapping, all of that will be lost. Just like the DDL, which deletes the
objects and recreates them, the GDW (Generate Database Wizard) deletes all existing mapping and
recreates them.

Go ahead and click Yes. This will open the DDL in a new tab in our Visual Studio environment,
shown in Figure 9-11. This is quite handy because we can easily create a server connection in the Visual
Studio Server Explorer window and connect our SQL window to execute the DDL. We don’t have to copy
the content and past it into a query window in SSMS (SQL Server Management Studio).

Figure 9-11. DDL not connected

Before we move on, take a good look at Figure 9-11. Besides the fact that the .sql window is not
connected, you should notice one other important thing. Notice that the .edmx file has been modified, as
you can see by the * on the tab. That is because the wizard did three things behind the scenes:

• Generated the store schema (SSDL) and the mapping specification (MSL) that
provides the CSDL.

• Generated the DDL to be executed. This file was then saved as a .sql file in the
project.

• Connection string information was added to the App.config/Web.config file.

Save and close the EDM and open it again using the XML Editor (just like you did earlier in this
chapter). Looking again at the XML will show you that the .edmx file has been updated with the
generated SSDL and MSL and related CSDL mapping information. You can see this in Figure 9-12.

CHAPTER 9 ■ MODEL-FIRST DEVELOPMENT

159

Figure 9-12. Updated mapping

Also, take a look at the content of the Solution Explorer window. As already stated, you will notice
the addition of a new .sql file that contains the generated DDL. This file will be overwritten each time
you run the Generate Database Wizard.

You have now walked through an example of how model-first design works, but let’s take a quick
look at some of the rules that the wizard follows.

Database Generation Rules
As you have learned, the Database Generation Wizard creates a schema from a conceptual model. This
section will discuss the rules that the wizard follows to generate the schema and mapping.

Tables
Tables are generated by using a table-per-type mapping strategy, which means a separate table in the
storage schema is used to maintain data from each type (EntityType) in the model. In other words, there
is one database table for one entity type. Tables are based on entity types, using one set of rules for non-
derived types, and another set for derived types.

Following are the rules for non-derived types:

• Table name: The element name of the type’s EntitySet

• Primary key: Column or columns corresponding to the entity key property (or
properties)

• Columns: One column for each scalar property. This also includes each scalar
property used in complex type property.

CHAPTER 9 ■ MODEL-FRIST DEVELOPMENT

160

And next are the rules for derived types:

• Table name: The base type’s EntitySet element name and the type name are
combined together.

• Primary Key: Column or columns corresponding to the inherited entity key
property or properties

• Columns: One column for each non-inherited scalar property as well as each
inherited key property. This also includes each scalar property used in a complex
type property.

The example in the beginning of this chapter is a good example of type-per-type generation from
non-derived types. In that example, the table names are taken from the EntitySet element name, each
column maps to a specific scalar property, and the primary key is generated from the entity key of each
entity.

Associations
Associations also follow some rules, regardless of the type. These are as follows:

• One-to-zero / One-to-many: Columns are added to the table that corresponds to
the entity type of the one or many end of the association. Each added column has
a foreign key constraint that references the primary key of the table that
corresponds to the entity type on the other end of the association. The name of
each added column in the association is the combination of the navigation
property name and the key property name.

• One-to-one: In a one-to-one scenario where this is no primary key–to–primary key
and no constraint, it is possible to select either end to hold the foreign key. Thus,
one of the ends is arbitrarily selected to hold the foreign key. The added columns
have foreign key constraints that reference the primary key of the table that
corresponds to the entity type on the other end of the association. The name of
each added column in the association is the combination of the navigation
property name and the key property name.

• Many-to-many: A join table is created with the name of the AssociatedSet element
name. The primary key of this table is a compound key consisting of all the
columns in the table. A column is added to the table for each key property in each
entity type, and these columns have foreign key constraints referencing the
primary keys in the entity types on the other end of the association.

If a referential constraint exists on a one-to-zero, one-to-many, or one-to-one association in the
conceptual model, foreign key constraints are created instead of adding the specific columns to the
database. The result is a constraint in the database that matches the constraint in the conceptual model.

The example from earlier in this chapter shows how the foreign keys were generated using the rules
just listed. The entities in our example used one-to-many association types, and, based on those
associations, the appropriate DDL was generated following the rules listed previously.

For example, the following code shows the DDL generated for the association between the Team
and Rider entities, and by looking at the DDL generated for the Rider table you can see that a column
was added to the table following the rules specified.

ALTER TABLE [dbo].[Riders] WITH NOCHECK
ADD CONSTRAINT [FK_ClassRider]
 FOREIGN KEY ([Class_ClassID])
 REFERENCES [dbo].[Classes]

CHAPTER 9 ■ MODEL-FIRST DEVELOPMENT

161

 ([ClassID])
 ON DELETE NO ACTION ON UPDATE NO ACTION
GO

Handling of Complex Types
Let’s look at an example of how complex types are handled when generating a database from a model.
Let’s begin by creating a complex type that we can use in our model. For this example, add a new empty
data model to the project. Once that is added, right-click anywhere on the surface of the designer and,
from the context menu, select Add ➤ Complex Type. The complex type will be added to the Model
Browser window underneath the Complex Types node with a default name of ComplexType1. For this
example, rename the complex type to ContactInfo.

Next, right-click on the new complex type and select Add ➤ Scalar Property ➤ String from the
context menu. Name the new scalar property CellPhone. Create three more string scalar properties
named EmailAddress, Fax, and HomePhone. Figure 9-13 shows what the completed complex type will
look like in the Model Browser window.

Figure 9-13. ContactInfo complex property

With the complex property created, let’s add that to an entity. From the Toolbox window, drag an
entity to the designer and name it Customer. Rename the Id field to CustomerId, and add four more
string scalar properties called Firstname, Lastname, Address, and City.

Next, add the complex type property to the entity but, right-clicking the entity, select Add ➤
Complex Property from the context menu. Rename the complex property to AdditionalContactInfo. The
completed entity will look like Figure 9-14.

CHAPTER 9 ■ MODEL-FRIST DEVELOPMENT

162

Figure 9-14. Customer entity

Use the same steps you used earlier in the chapter to generate the DDL. Notice that a column for
each scalar property of the complex type is added to the table that is created based on the entity type.
Each column name in the complex type is the combination of the complex type property name along
with an underscore character (“_”) and the name of the corresponding complex type scalar property
name.

-- --
-- Date Created: 11/28/2009 12:05:34
-- Generated from EDMX file: C:\Projects\APress\Chapter9\ModelFirst\ModelFirst\Model1.edmx
-- --

-- --
-- Creating all tables
-- --

-- Creating table 'Customers'
CREATE TABLE [dbo].[Customers] (
 [CustomerId] int NOT NULL,
 [Firstname] nvarchar(max) NOT NULL,
 [Lastname] nvarchar(max) NOT NULL,
 [Address] nvarchar(max) NOT NULL,
 [City] nvarchar(max) NOT NULL,
 [AdditionalContactInfo_HomePhone] real NOT NULL,
 [AdditionalContactInfo _CellPhone] nvarchar(max) NOT NULL,
 [AdditionalContactInfo _Fax] nvarchar(max) NOT NULL,
 [AdditionalContactInfo _EmailAddress] nvarchar(max) NOT NULL
);
GO

-- --
-- Script has ended
-- --

CHAPTER 9 ■ MODEL-FIRST DEVELOPMENT

163

DB Generation Script Customization
You saw earlier how to generate a database from your model. This section is going to show you how that
is done and provide you with the information needed to customize the output of the DDL as well as the
mapping information.

Open the Motocross EDM and then right-click anywhere on the designer surface and select
Properties from the context menu. In the Properties window you will see a section called Database Script
Generation, which has three properties:

• Database Generation Workflow

• Database Schema Name

• DDL Generation Template
You can see these in Figure 9-15. These three properties are used in the generation of the DDL when

you run the Database Generation Wizard.

Figure 9-15. Database script generation

Two of the properties point to actual files located on your hard drive. The location of these two files
is the following:

C:\Program Files\Microsoft Visual Studio 10.0\Common7\IDE\Extensions\Microsoft\Entity
 Framework Tools\DBGen

These two files, shown in Figure 9-16, make up the functionality that generates the DDL. One is a

simple .tt (T4 Template) file, which you learned all about in Chapter 8. The other file is a Windows
Workflow Markup .xaml file.

CHAPTER 9 ■ MODEL-FRIST DEVELOPMENT

164

Figure 9-16. Script generation file location

I have opened up the .tt file and scrolled to the location in the template where it generated the
DROP TABLE statements followed by the CREATE TABLE statements. You can see that location in Figure
9-17. In each instance the template is looping through the EntitySets and generating the appropriate
DDL statements.

Figure 9-17. SSDLToSQL10.tt

CHAPTER 9 ■ MODEL-FIRST DEVELOPMENT

165

The question remains, however, what is the .xaml file and how is it used? Unlike the .tt file, you
can’t simply just open it up. This is, however, a .xaml file and it can be viewed. Fire up a new instance of
Visual Studio and create a new project. The type of project you want to create is a Workflow type. In the
list of Installed Templates, select Workflow (either C# or Visual Basic) and then select Workflow Console
Application from the list of template types.

When the project loads, open the Solution Explorer window and right-click the project. Select Add ➤
Existing Item from the context menu and browse to the location previously listed. Select the
TablePerTypeStrategy.xaml file and click Add. The .xaml file will be added to the project.

Double-click the TablePerTypeStrategy.xaml in Solution Explorer. When it opens you will see a
GenerateDatabaseScriptWorkflow item, which is shown in Figure 9-18. If you are not familiar with
Windows Workflow, you are looking at it. The TablePerTypeStrategy.xaml is a Windows Workflow that
contains a Sequence Control Workflow and two activities. However, if you browse the components and
activities in the Toolbox window, you won’t find those two activities. This is because these activities are
found in a unique class. Select one of the activities in the Sequence container and then open the
properties window. You will notice that the activity comes from the following location:

Microsoft.Data.Entity.Design.DatabaseGeneration.Activities.CsdlToSsdlAndMslActivity

Figure 9-18. Generate database workflow

If you want look at this, add a reference to the Microsoft.Data.Entity.Design.DatabaseGeneration
namespace. Then go to the Toolbox window, right-click anywhere in the Toolbox window and select
Choose Items from the context menu. In the Choose Toolbox Items dialog, select the
System.Activities.Components tab and select the CsdlToSsdlAndMslActivity then click OK. This activity
should now be added to the Toolbox window.

Out of the box, Microsoft has made it fairly easy to customize many aspects of the Entity
Framework, including how your DDL scripts are generated. T-4 templates are a great example of this. Yet
it can be quite cumbersome if you are trying to learn T-4 and all the ins and outs of the T-4 language and
how best to implement your customization.

While there is much room for improvement, they have not left developers out in the cold. One of the
external tools Microsoft is working on is a tool called the Entity Designer Database Generation Power
Pack. This is a free tool, currently in Community Technology Preview, which provides an enhanced user-
interface to help manage database generation strategies. It also includes six new workflow options for
generating your database. Since this tool is fairly new at the time of this writing, it was hard to put it into
this book. However, by the time this book reaches your hands there will be several blog posts and articles

CHAPTER 9 ■ MODEL-FRIST DEVELOPMENT

166

on my blog and web site on how to use this great tool in your application to customize your database
generation scripts.

http://visualstudiogallery.msdn.microsoft.com/en-us/df3541c3-d833-4b65-b942-989e7ec74c87

http://visualstudiogallery.msdn.microsoft.com/en-us/df3541c3-d833-4b65-b942-989e7ec74c87

C H A P T E R 10

■ ■ ■

167

Code-Only Development

When Microsoft set about to make the Entity Framework more flexible, their goal was to provide
developers with an environment in which they could create their model from one of their approaches.
The first approach, which has existed since the initial release of EF, is the ability to generate your model
from a database. Many of the chapters in this book have covered the new features and concepts that are
tied to this approach.

Chapter 9 covered the second approach, model-first, which lets developers start with a conceptual
model and generate their database based on that conceptual model. This approach also lets developers
customize DDL generation through T4 templates and Windows Workflow, giving them the utmost
flexibility and control over the creation and generation of the DDL. This is truly a “model-first” solution.
This ability to customize is a giant step over EF 3.5, in which you could define your conceptual model in
EF but not do anything beyond that, such as generate your database.

This chapter will cover the third approach, the code-only approach, which provides developers the
ability to use the Entity Framework using POCO entities and without an EDMX file. This approach lets
developers view code as their model. There is a lot of discussion around the code-only approach, such as
whether code-only will contain much of the functionality found in a standard EDM model approach.
The goal from the outset was to ensure that most, if not all, of the functionality found in the other two
approaches (model-first, database-first) is found in the code-only approach. This includes topics such as
deferred/lazy loading, change tracking, and complex types. And let’s not forget new foreign key
association support. This is included as well.

In this chapter we will cover the code-only approach and discuss many aspects of building an EF
project using code-only. We will build a simple example, and we will also discuss some of the other
aspects that you can add to your code-only project, including deferred/lazy loading, complex types, and
change tracking.

Let’s get started.

Getting Started with Code-Only
The first thing you need to do is download a feature preview from the Microsoft website. In your favorite
browser, go to the following URL:

http://www.microsoft.com/downloads/details.aspx?familyid
=13FDFCE4-7F92-438F-8058-B5B4041D0F01&displaylang=en

The ADO.NET Entity Framework Feature CTP is a set of features that adds additional features and

components to EF 4.0. From this website, click the Download button, which downloads a file called
EF4FeatureCTP2.exe. The ADO.NET Entity Framework Feature CTP installs the following components:

• Templates for self-tracking entities (used for N-Tier support...we’ll use this in
Chapter 11)

http://www.microsoft.com/downloads/details.aspx?familyid%EF%83%89

CHAPTER 10 ■ CODE-ONLY DEVELOPMENT

168

• Code-only programming model used with the Entity Data Model

Make sure Visual Studio is not open when you run the installation. When the installation is
complete, we are ready to begin.

Creating the Data Project
In Visual Studio 2010, create a new Class Library project. I called mine CodeOnlyData, as you can see in
Figure 10-1. The CodeOnlyData project is the data project that will contain the POCO classes that will
mimic the EDM.

Figure 10-1. Create class library project

Once the project has been created, delete the Class1.cs class and add two additional classes:

• Contact.cs

• Employee.cs

We are ready to add code. The Contact and Employee classes are our POCO classes and are
essentially called POCO entities. Let’s work with the Contact class first. Open the Contact class and
replace everything in that class with the following:

using System;
using System.Data;
using System.Collections.Generic;
using System.Linq;
using System.Text;

CHAPTER 10 ■ CODE-ONLY DEVELOPMENT

169

namespace CodeOnlyData
{
 public class Contact
 {
 public Contact() { }
 public int ContactID { get; set; }
 public bool NameStyle { get; set; }
 public string Title { get; set; }
 public string FirstName { get; set; }
 public string MiddleName { get; set; }
 public string LastName { get; set; }
 public string Suffix { get; set; }
 public string EmailAddress { get; set; }
 public int EmailPromotion { get; set; }
 public string Phone { get; set; }
 public string PasswordHash { get; set; }
 public string PasswordSalt { get; set; }
 public Guid rowguid { get; set; }
 public DateTime ModifiedDate { get; set; }
 public ICollection<Employee> Employees { get; set; }
 }
}

This code is our POCO class for Contact. If you were to look at an EDM generated from the

AdventureWorks database for the same table, you would see that this nearly matches the CSDL entity
type with many of the properties. It’s as simple as that.

Now for the Employee class. Open Employee.cs and replace the code in that class with the following:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace CodeOnlyData
{
 public class Employee
 {
 public Employee() { }
 public int EmployeeID { get; set; }
 public string NationalIDNumber { get; set; }
 public string LoginID { get; set; }
 public Nullable<int> ManagerID { get; set; }
 public string Title { get; set; }
 public DateTime BirthDate { get; set; }
 public string MaritalStatus { get; set; }
 public string Gender { get; set; }
 public DateTime HireDate { get; set; }
 public bool SalariedFlag { get; set; }
 public short VacationHours { get; set; }
 public short SickLeaveHours { get; set; }
 public bool CurrentFlag { get; set; }
 public Guid rowguid { get; set; }

CHAPTER 10 ■ CODE-ONLY DEVELOPMENT

170

 public DateTime ModifiedDate { get; set; }
 public Contact Contact { get; set; }
 //public int ContactID { get; set; }

 }
}

This creates our POCO class for the employee. At this point we are pretty much done with our data

project. We haven’t defined any relationships or configuration items, but we will do that shortly in a
second project, and I’ll explain why we do it there when we get to that point. So, let’s build our UI
project.

Adding the User-Interface Project
We need a UI project that will consume our data project, so let’s add that. From the file menu, select Add
➤ New Project. When the Add New Project dialog opens, select Windows from the list of installed
templates, then select Windows Forms Application from the list of templates. Name this project
CodeOnlyUI and click OK.

You might be asking why we created a separate project for our POCO classes. The answer is simply
because we want several things. First, this allows us to compile our classes into a separate and distinct
assembly from the UI project. Second, and most important, is that this allows us to keep the data
assembly persistence-ignorant.

Adding References
Here is where the ADO.NET Entity Framework Feature CTP comes in to play. We need to add a few
references to our UI project. Right-click on the references node in Solution Explorer for the CodeOnlyUI
project. When the references dialog displays, we need to add two references to this project. They are the
following:

• System.Data.Entity

• Microsoft.Data.Entity.Ctp

Figure 10-2 shows the Microsoft.Data.Entity.Ctp component selected in the Add Reference dialog.
This is the Code-Only Programming Model component. Select these two components and then click OK.

CHAPTER 10 ■ CODE-ONLY DEVELOPMENT

171

Figure 10-2. Adding feature reference

Why do we need a reference to the Code-Only Programming Model component? If you look at the
properties of either the System.Data or Microsoft.Data.Entity.Ctp assemblies you will notice that they
point to a location that is different from the System.Data assembly in your data project. Your
System.Data component in your data project (CodeOnlyData) points to the following location:

C:\Program Files(x86)\Reference Assemblies\Microsoft\Framework\.NetFramework\v4.0

The System.Data and Microsoft.Data.Entity.Ctp assemblies in your UI project (CodeOnlyUI) are

located here:

C:\Program Files(x86)\Reference Assemblies\Microsoft\Framework\.NetFramework\v4.0\
Profile\Client

The client profile target framework allows you to create an assembly that only needs the smaller

subset of .NET 4.0 assemblies, which is in the client profile. If all of the assemblies in your application
target the client profile target framework then this will allow you to install your application on a client
computer with a very small footprint, and download and install only the smaller components.

We also need to add a reference to our data project within our UI project. Right-click on the
references node again in Solution Explorer for the UI project, and select Add Reference. When the Add
References dialog opens, select the Projects tab and select the CodeOnlyData project, shown in Figure
10-3. Click OK.

CHAPTER 10 ■ CODE-ONLY DEVELOPMENT

172

Figure 10-3. Adding project reference

Adding Context and Connections
At this point we have a simple code-only “model” via our POCO classes, and the beginnings of our UI
application. What we don’t have yet is our context and connections or any configuration components
that define relationships and associations, so let’s add those now.

Add the following three classes to the UI project:

• AWModel.cs

• ContactConfiguration.cs

• EmployeeConfiguration.cs

When we are all finished adding everything, our Solution Explorer should now look like Figure 10-4.

Figure 10-4. Solution Explorer

CHAPTER 10 ■ CODE-ONLY DEVELOPMENT

173

Coding the User Interface
It is time to start adding code to our UI project. Open AWModel.cs and replace the code that is there with
the following:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data.Objects;
using System.Data.EntityClient;
using CodeOnlyData;

namespace CodeOnlyUI
{
 public class AWModel : ObjectContext
 {
 public AWModel(EntityConnection connection)
 : base(connection)
 {
 DefaultContainerName = "AWModel";
 }

 public IObjectSet<Contact> Contact
 {
 get { return base.CreateObjectSet<Contact>(); }
 }

 public IObjectSet<Employee> Employee
 {
 get { return base.CreateObjectSet<Employee>(); }
 }
 }
}

This class is our context and extends the ObjectContext. It represents the shape of our model and is

the entry and tunnel to the database. We added a single constructor, which accepts an
EntityConnection. This is simply a wrapper around the true database connection and the EF metadata.
This connection information is passed to the constructor when a new instance of the AWModel is
instantiated.

We also declare two typed entities using the IObjectSet interface, which allow us to perform create,
read, update, and delete operations. Since the ObjectSet class derives from ObjectQuery, it can also work
as a query object.

Creating Configuration Classes
The next step is to create our configuration classes and methods, one for Contact and one for Employee.
Open ContactConfiguration.cs and replace the code in that class with the following:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

CHAPTER 10 ■ CODE-ONLY DEVELOPMENT

174

using Microsoft.Data.Objects;
using CodeOnlyData;

namespace CodeOnlyUI
{
 class ContactConfiguration : EntityConfiguration<Contact>
 {
 public ContactConfiguration()
 {
 Property(c => c.ContactID).IsIdentity();
 Property(c => c.Title).HasMaxLength(8);
 Property(c => c.FirstName).HasMaxLength(50);
 Property(c => c.FirstName).IsRequired();
 Property(c => c.MiddleName).HasMaxLength(50);
 Property(c => c.LastName).HasMaxLength(50);
 Property(c => c.LastName).IsRequired();
 Property(c => c.Suffix).HasMaxLength(10);
 Property(c => c.EmailAddress).HasMaxLength(50);
 Property(c => c.Phone).HasMaxLength(25);

 Property(c => c.PasswordHash).HasMaxLength(128).IsRequired();
 Property(c => c.PasswordSalt).HasMaxLength(10).IsRequired;
 }
 }
}

This class holds the entire configuration for the Contact class. In this class we define the property

that is the primary key by using the IsIdentity() property. We also specify other property facets such as
MaxLength and IsRequired. Notice that this example also illustrates that you can combine the properties
on a single line instead of two separate statements. The PasswordHash and PasswordSalt properties
show this.

Let’s do the Employee next. Open EmployeeConfiguration.cs and replace all the code that is there
with the following:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.Data.Objects;
using CodeOnlyData;

namespace CodeOnlyUI
{
 class EmployeeConfiguration : EntityConfiguration<Employee>
 {
 public EmployeeConfiguration()
 {
 Property(e => e.EmployeeID).IsIdentity();
 Property(e => e.NationalIDNumber).HasMaxLength(15).IsRequired();
 Property(e => e.LoginID).HasMaxLength(256).IsRequired();
 Property(e => e.Title).HasMaxLength(50).IsRequired();
 Property(e => e.MaritalStatus).HasMaxLength(1).IsRequired();
 Property(e => e.Gender).HasMaxLength(1).IsRequired();

CHAPTER 10 ■ CODE-ONLY DEVELOPMENT

175

 Relationship(e => e.Contact).IsRequired();

 Relationship(e => e.Contact).FromProperty(c => c.Employee);
 }
 }
}

In this code, we define the identity for the Employee and set the MaxLength and IsRequired

properties as we did with the Contact class. However, we also did a couple of other things. First, we
define the relationship between Contact and Employee, and second, we set the relationship as required.
Thus, we have just defined the PK association.

Testing the Code-Only Model
Let’s put this code to good use and test our code-only model. Open Form1 in design view and drop a list
box onto the form. In the code behind the form, replace the code with the following:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Data.SqlClient;
using Microsoft.Data.Objects;

namespace CodeOnlyUI
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 try
 {

 SqlConnection conn = new SqlConnection("Data Source=servername;Initial
 Catalog=EF40;User ID=sa;PWD=password;MultipleActiveResultSets=True;");

 var builder = new ContextBuilder<AWModel>();
 Registerconfig(builder);
 var context = builder.Create(conn);

 var query = from c in context.Contact
 select c;

 foreach (var con in query)

CHAPTER 10 ■ CODE-ONLY DEVELOPMENT

176

 {
 listBox1.Items.Add(con.FirstName);
 }

 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.InnerException.Message);
 }
 }
 static void Registerconfig(ContextBuilder<AWModel> builder)
 {
 builder.Configurations.Add(new ContactConfiguration());
 builder.Configurations.Add(new EmployeeConfiguration());
 }
 }
}

In this code we simply create an SQLConnection that defines our connection information. We then

instantiate a new ContextBuilder. Our goal is to construct the context (of the AWModel) by passing in the
EntityConnection to the constructor. The following is the relevant line of code from the example:

var context = builder.Create(conn)

Where did the ContextBuilder come from? It was installed as part of the ADO.NET Entity Framework

Feature CTP and exists in the Microsoft.Data.Objects.ContextBuilder class. This class infers the
Conceptual Model, Storage Model, and Mapping, using the metadata and the SqlConnection to create
an EntityConnection.

Building the Project
Build the project to ensure there are no errors, then run the project by pressing F5. When the form
displays, the list box will populate with the first name of all the contacts, shown in Figure 10-5. The form
isn’t very effective, but the purpose of this example isn’t form functionality here. We’ll make
modifications shortly to add more functionality. Also, feel free to modify the query to experiment with
this example.

CHAPTER 10 ■ CODE-ONLY DEVELOPMENT

177

Figure 10-5. List of contact first names

This example isn’t very efficient because we are not filtering on anything, so we are returning a lot of
records (nearly 20,000 to be exact). The form may take several seconds to load. Again, we aren’t going
after prettiness, but functionality of code-only.

Loading Some Rows
Let’s continue this example by adding some code that will use the Employee entity. Stop the application
and open the form in design view, and place a DataGridView on the form below the list box.

The first thing we need to do is modify the code so that it is more usable throughout the form. To do
that, add the following three lines in the declaration section. The first line simply defines a variable so
that we know whether the form is loading. The second line defines an SqlConnection variable, and the
last line defines a ContextBuilder variable based on the model we are using.

bool isLoaded = false;
SqlConnection conn;
ContextBuilder<AWModel> builder

Next, we need to modify the code in the Load event of the form so that it is not loading all 20,000

rows—we just want a specific subset of that. Therefore, modify your code in the Load event to look like
the following:

try
{

 conn = new SqlConnection("Data Source=SCOTT-LAPTOP;Initial Catalog=EF40;User
 ID=sa;PWD=InsertYourPasswordHere;MultipleActiveResultSets=True;");

 builder = new ContextBuilder<AWModel>();
 Registerconfig(builder);
 var context = builder.Create(conn);

CHAPTER 10 ■ CODE-ONLY DEVELOPMENT

178

 context.ContextOptions.LazyLoadingEnabled = true;

 var query = from c in context.Contact
 where c.LastName.StartsWith("G")
 orderby c.FirstName
 select new { c.ContactID, c.FirstName, c.LastName };

 isLoaded = false;
 listBox1.DataSource = query;
 listBox1.DisplayMember = "FirstName";
 listBox1.ValueMember = "ContactID";
 isLoaded = true;

}
catch (Exception ex)
{
 MessageBox.Show(ex.Message);
 if (ex.InnerException != null)
 {
 MessageBox.Show(ex.InnerException.Message);
 }
}

This code is much like our previous example, but with a few changes. We changed our query to

return only those contacts whose last name starts with the letter G. We then load the list box a bit
differently. Instead of looping through each row to load the list box, we bind the query to the list box
itself by setting the DataSource property to the query, and then set the DisplayMember and
ValueMember properties. The DisplayMember property identifies which value in the query to display in
the list box. The ValueMember sets the property to use as the actual value of the items in the list box.

Connecting the DataGridView Control
Our next step is to wire up the DataGridView control. We do this by adding the following code to the
SelectedIndexChanged event of the list box.

try
{
 if (isLoaded == true)
 {
 var context = builder.Create(conn);
 context.ContextOptions.LazyLoadingEnabled = true;

 int id = (int)listBox1.SelectedValue;
 label1.Text = id.ToString();

 var query = from emp in context.Employee
 where emp.Contact.ContactID == id
 select emp;

 dataGridView1.DataSource = query;
 }
}
catch (Exception ex)

CHAPTER 10 ■ CODE-ONLY DEVELOPMENT

179

{
 MessageBox.Show(ex.Message);
 if (ex.InnerException != null)
 {
 MessageBox.Show(ex.InnerException.Message);
 }
}

As we click on different names in the list box, the SelectedIndexChanged event gets called, executing

the previous code. This code first creates our context, then gets the ID of the contact we just selected in
the list box by using the SelectedValue property. We then use that value in a LINQ query to get the
related Employee data; then, like we did earlier, we bind the query to the DataSource property of the
DataGridView control.

Running the Application
Once you have added the code, run the application. When the form displays, it will list the first name of
everyone from the Contact table, in alphabetical order, whose last name begins with the letter G. Scroll
down in the list until you see those contacts whose first name is Scott. Select the second Scott. This
contact’s Employee information will then display in the grid, as seen in Figure 10-6.

You will notice that I have added a label on my form that displays the ContactID of the selected
contact. You’ll also notice that as you select other names in the list box that their associated Employee
information does not display in the grid. That is because they don’t have any Employee information. Our
query in the Load event doesn’t look for contacts who have related Employee information. We can fix
that by joining the Contact table to Employee table as follows:

var query = from c in context.Contact
 join emp in context.Employee on c.ContactID equals emp.Contact.ContactID
 where c.LastName.StartsWith("G")
 orderby c.FirstName
 select new { c.ContactID, c.FirstName, c.LastName };

This query will return only eight rows because we are still looking for contacts whose last name

begins with the letter G. Comment the where clause out in the query to remove the query filter.

CHAPTER 10 ■ CODE-ONLY DEVELOPMENT

180

Figure 10-6. Contact and Related Employee Information

Through these examples you can see how easy and flexible the code-only approach is compared to
database-first and model-first.

Overcoming Restrictions in EF 3.5
When dealing with entity classes with EF 3.5, developers were faced with some restrictions that made it
fairly difficult for developers to implement EF-friendly technology. These constraints included the
following:

• Developers needed to implement IPOCO interfaces such as IEntityWithKey,
IEntityWithChangeTracker, and IEntityWithRelationships.

• Entity classes needed to be sub-classes of EntityObject.

These restrictions made it difficult for developers to build domain classes that were persistence-
ignorant, requiring developers to inherit and implement interfaces and base classes that were needed for
persistence.

EF 4.0 overcomes this by utilizing the Entity Framework to query these instance types simply by
using POCO, getting all of the regular EF functionality such as change tracking, FK associations, lazy
loading, and complex-type support automatically.

The next section will talk about these features in detail and how to implement this functionality
using POCO.

Additional POCO Information
Microsoft put a lot of effort into supporting POCO in the Entity Framework. They wanted to ensure that
your experience with POCO would be a good one, and, therefore, they made sure that much of the
functionality you get with the other facets (model-first and database-first) are also found in code-first.
This section will discuss using complex types, lazy loading, and change tracking.

CHAPTER 10 ■ CODE-ONLY DEVELOPMENT

181

Complex-Type Support
As you become familiar with the code-only approach you will soon learn that much of the functionality
found in the other facets is just as available in code-only. Complex types are an example of that. They are
supported in POCO just as they are with the normal EntityObject-based entities.

The process for using complex types is quite simple. Let’s walk through a quick example. Add a new
class to the CodeOnlyData project called AdditionalContactInfo. In the class, replace the code that is
there with the following:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;

namespace CodeOnlyData
{
 public class AdditionalContactInfo
 {
 public string CellPhone { get; set; }
 public string WorkPhone { get; set; }
 public string Fax { get; set; }
 public string EmailAddress2 { get; set; }
 }
}

This code is fairly straightforward. We simply declare four properties. So how do we tie that to the

Contact? We tie it to the Contact by adding the highlighted line of the following code to the Contact
class.

public Guid rowguid { get; set; }
public DateTime ModifiedDate { get; set; }
public ICollection<Employee> Employees { get; set; }
public AdditionalContactInfo AddtlContInfo { get; set; }

We can then query it normally just like we did when working with complex types in the normal

EntityObject-based entities, such as the following query. The following code queries the complex-type
filtering on the EmailAddress2 property of the AdditionalContactInfo class.

var query = from c in context.Contact
 where c.AddtlContInfo.EmailAddress2 == "headgeek@hotmail.com"
 select c;

It’s not too difficult, really. It’s much different than in EF 3.5 where you had to add complex types

manually to the CSDL. With EF 4.0 it is as simple as creating a class and defining properties. However,
there are two points that need to be mentioned when working with POCO complex types:

• Complex types must be classes. You cannot use structs.

• Inheritance is not allowed with complex-type classes.
Other than that, you are off and running!

mailto:headgeek@hotmail.com

CHAPTER 10 ■ CODE-ONLY DEVELOPMENT

182

Lazy Loading
This simply means going back to the database to get data related to data your current query has already
returned. An example of this would be a customer/orders scenario. You already have the customers
loaded, but you want their orders. So now you go back to the database to get orders for a particular
customer. Lazy loading means that this trip to the database to get the sales information has happened
automatically.

You’ll be pleased to know that POCO supports deferred/lazy loading. And it is really quite easy to
implement. It is a two-step process. The first step is to enable it on the context by setting the
DeferredLoadingEnabled property to true, as shown in the following code snippet:

context.ContextOptions.LazyLoadingEnabled = true;

The next step is to set the property that you would like lazily loaded as virtual. For example, we can

set the Contacts to load lazily by setting the Contact property to virtual as shown by the following
highlighted code.

public Guid rowguid { get; set; }
public DateTime ModifiedDate { get; set; }
public virtual Contact Contact { get; set; }
public int ContactID { get; set; }

Properties that can be tagged as virtual can be any collection that implements ICollection<T> or

can be referenced in a 1/0..1 relationship.

■ Note You are probably asking why we need to tag specific properties as virtual. Marking collection properties

and relationships as virtual allows the Entity Framework to runtime proxy instance for all POCO types. These proxy

types are what perform the lazy loading automatically. Based on a typed derived from the POCO entity class, the

proxy instance allows all the functionality provided by the class to be preserved, allowing you to write persistence-

ignorant code even though you might be required to maintain deferred loading.

Change Tracking
You might think that implementing change tracking is difficult using POCO—au contraire! We spoke
about proxy creation a second ago, and it applies equally here in that they are utilized for change
tracking.

Since our objects are persistence-ignorant and proxy creation is enabled, these objects implement
IEntityWithChangeTracker automatically at runtime. This runtime implementation enables any
persistence-ignorant object to be tracked, automatically, the same way that normal EDM, code-
generated objects track objects. However, to enable change-tracking functionality, our objects must
meet the requirements outlined here:

• A custom data class must be declared with public access.

• A custom data class cannot be declared as a sealed class (NotInheritable in Visual
Basic) or abstract class (MustInherit in Visual Basic).

• A custom data class cannot implement the IEntityWithChangeTracker or
IEntityWithRelationships interfaces.

CHAPTER 10 ■ CODE-ONLY DEVELOPMENT

183

• Custom data classes must implement a default constructor with no parameters.

• Properties mapped to a conceptual model entity type property must be public.

• Navigation properties defined in the conceptual model must correspond to a
navigation property in the custom data class. These properties must be declared
as virtual (Overridable in Visual Basic) in order to support lazy loading.

• The “many” end of a relationship representing a navigation property must return
an ICollection<T> type, where the T represents the object at the other end of the
relationship.

• Complex properties in the conceptual model must be mapped to a property in the
custom data class that returns a reference type.

• Mapped entity type properties must implement get and set accessors.

• The name of the entity type must be the same as the custom data class. Properties
of the entity type must map to a public property in the custom data class. Type
names and mapped property names must be equivalent.

• You must use the CreateObject method on the ObjectContext when creating a new
object when creating a proxy type with your object.

You saw an example of many of these requirements in the previous example. For instance, all the
data classes were declared as public, did not implement the IEntityWithChangeTracker or
IEntityWithRelationships interfaces, and implemented a default constructor, such as the following:

public class Employee
{
 public Employee() { }
 public int EmployeeID { get; set; }
 public string NationalIDNumber { get; set; }

You also saw that ICollection<T> was used in several places representing relationship ends, as well

as other requirements that were followed in order to utilize change tracking.
You can also disable proxy creation by utilizing the ProxyCreationEnabled property on the context,

as follows:

Context.ContextOptions.ProxyCreationEnabled = false;

By default, this property is enabled. It is also recommended that you disable proxies before

serializing your persistence-ignorant objects to another tier. The downside to disabling proxy classes is
that you are not responsible for managing your own change tracking. Changes can be detected by
comparing snapshots of current values against the values in the initial snapshot (when your objects are
first loaded into the context).

Finishing the Example
The example we started this chapter with was quite simple and showed a simple one-to-many
relationship. Let’s add to it a bit more to show the other relationship types and how these can be
accomplished using POCO.

In the Data project, add four more classes. Add the following two to the Data project:

• SalesPerson.cs

CHAPTER 10 ■ CODE-ONLY DEVELOPMENT

184

• SalesTerritory.cs

Next, add the following two to the UI project:

• SalesPersonConfiguration.cs

• SalesTerritoryConfiguration.cs

In SalesPerson.cs, replace the existing code with the following:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;

namespace CodeOnlyData
{
 public class SalesPerson
 {
 public SalesPerson() {}
 public int SalesPersonID { get; set; }
 public int TerritoryID { get; set; }
 public decimal SalesQuota { get; set; }
 public decimal Bonus { get; set; }
 public decimal CommissionPct { get; set; }
 public decimal SalesYTD { get; set; }
 public decimal SalesLastYear { get; set; }
 public Guid rowguid { get; set; }
 public DateTime ModifiedDate { get; set; }
 public virtual Employee Employee { get; set; }
 public virtual SalesTerritory SalesTerritory { get; set; }
 }
}

This code is not that different from the classes we defined for Contact and Employee. In this code

we define the SalesPerson entity with the appropriate properties. Notice also that we define the
Employee property and SalesTerritory property that will be used for our navigation properties.

Next comes the SalesTerritory.cs. Open that class and replace existing code with the following:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;

namespace CodeOnlyData
{
 public class SalesTerritory
 {
 public SalesTerritory() {}
 public int TerritoryID { get; set; }
 public string Name { get; set; }
 public string CountryRegionCode { get; set; }
 public string Group { get; set; }

CHAPTER 10 ■ CODE-ONLY DEVELOPMENT

185

 public decimal SalesYTD { get; set; }
 public decimal SalesLastYear { get; set; }
 public decimal CostYTD { get; set; }
 public decimal CostLastYear { get; set; }
 public Guid rowguid { get; set; }
 public DateTime ModifiedDate { get; set; }
 public virtual SalesPerson SalesPeople { get; set; }
 }
}

In this code we define the SalesTerritory entity with the appropriate properties. Notice also that we

define the SalesPerson property that will be used for our navigation property.
The model we are going after is one like Figure 10-7, if we were to model this conceptually via the

EDM. However, we are able to do this via POCO using the four classes we defined throughout this
chapter.

Figure 10-7. Desired model

The next thing to do is to define the configuration for these two class entities. In the
SalesPersonConfiguration.cs class, replace what is there with the following:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.Data.Objects;
using CodeOnlyData;

namespace CodeOnlyUI
{
 class SalesPersonConfiguration : EntityConfiguration<SalesPerson>
 {
 public SalesPersonConfiguration()

CHAPTER 10 ■ CODE-ONLY DEVELOPMENT

186

 {
 // add the appropriate items
 }
 }
}

Do the same with SalesTerritoryConfiguration.cs.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.Data.Objects;
using CodeOnlyData;

namespace CodeOnlyUI
{
 class SalesTerritoryConfiguration : EntityConfiguration<SalesTerritory>
 {
 public SalesTerritoryConfiguration()
 {
 // add the appropriate items
 }
 }
}

The next task is to update the RegisterConfig method on the form. Add the following two lines to

the RegisterConfig method:

builder.Configurations.Add(new SalesPersonConfiguration());
builder.Configurations.Add(new SalesTerritoryConfiguration());

You are not quite done. You are looking at these two configuration classes thinking that something

is missing. You are correct. Your homework assignment is to fill in these two configuration classes with
the appropriate properties and relationships. You can also modify the form to include the SalesPerson
and SalesTerritory information. It is up to you how you want to add this information.
If you run into problems you can find finished solutions in the download for this book in the Chapter10
folder.

C H A P T E R 11

■ ■ ■

187

N-tier Development
with WCF Data Services

We have spent the entire book so far walking through examples that illustrate how to work with data in a
connected state, that is, making a direct connection to the database and working with data in a direct
fashion. While this works in many cases, it is no secret or mystery that more and more business and
applications require that they work in a disconnected, n-tier environment to support the ever-expanding
SOA (service-oriented architecture) arena.

Microsoft seriously entered the fray with .NET Fx 3.0, releasing Windows Communication
Foundation (WCF), which has been rapidly gaining acceptance as the .NET technology of choice to build
rapid SOA applications that provide communication capabilities across the enterprise as well as the web.

Not far behind came .NET Rich Internet Application (RIA) Services, which provided a simplified
approach to developing n-tier applications on ASP.NET and Silverlight platforms. .NET RIA Services is
aimed at providing a simple pattern for developing middle-tier application logic focused on controlling
data access by managing data access for queries, changes, and custom operations.

ADO.NET Data Services, on the heels of WCF and .NET RIA Services (and not to be forgotten),
provides developers the ability to create and access data services for the web by exposing data as
resource-addressable via URIs. ADO.NET Data Services also employs the use of the Entity Data Model
and entity-relationship conventions to expose underlying sources as entities, thus allowing developers
to work in the familiar entity concept.

Over the last few years Microsoft has realized that there is some commonality among these three
technologies and has spent some serious time working to better support the types of applications that
require hearty and flexible solutions. As such, Microsoft has made some name changes to better align
these technologies. Thus, ADO.NET Data Services is now WCF Data Services and .NET RIA Services is
now WCF RIA Services. That’s right—Microsoft is building what they call a “one-stop shop” for
architecting and deploying services and n-tier applications.

This chapter, therefore, will focus on WCF Data Services, beginning with a discussion on how to
create and test a data service on top of a relational database using the Entity Framework. We will look at
the WCF Data Service functionality and several examples of how you can use WCF Data Services to look
at the underlying data.

We will then spend the remaining part of this chapter walking through an example that consumes
the service, and then use that service to query the relational database using a WinForms front end to
display the data.

Building the WCF Data Service
All of the examples in the book up to this point have primarily begun by creating a WinForms
application in which to house the data model. As was mentioned earlier, this approach might work in
some cases when the requirements of an application do not call for operating in a disconnected mode,

CHAPTER 11 ■ N-TIER DEVELOPMENT WITH WCF DATA SERVICES

188

i.e., in an n-tier environment. This chapter’s example, however, is going to change direction a bit
because it will allow us to look at how the WCF Data Service interacts with the EF. We’ll also look at the
functionality their interaction provides.

To begin, open Visual Studio 2010 and create a new ASP.NET Web Application project, as shown in
Figure 11-1.

Figure 11-1. Creating the ASP.NET web application

I have kept the default project name in Figure 11-1, but you are free to change it. Click OK on the
New Project dialog. Once the project is created, we now have an empty and non-functional web
application. However, we are quickly going to make it functional with very little code.

As you have done many times before, add an ADO.NET Entity Data Model to the project. In the Add
New Item dialog, shown in Figure 11-2, name the model AWModel and click Add. For this example we
are going to generate our model of the AdventureWorks database.

Create a connection to the AdventureWorks database if you have not already done so, and continue
through the wizard until you get to the step in the wizard in which you choose the database objects to
include in your model. We are going to select only a few tables that will help demonstrate the WCF Data
Services functionality.

CHAPTER 11 ■ N-TIER DEVELOPMENT WITH WCF DATA SERVICES

189

Figure 11-2. Adding the ADO.NET Entity Data Model

In the Choose Your Database Objects step of the wizard, select the following tables:

• HumanResources.Employee

• HumanResources.EmployeeAddress

• Person.Address

• Person.Contact

• Person.StateProvince

• Purchasing.PurchaseOrderHeader

• Sales.SalesPerson

• Sales.SalesTerritory

As shown in Figure 11-3, keep the pluralization and foreign key options checked, enter the value
AdventureWorksModel for the model namespace, and then click Finish. We do not need any stored
procedures or views for this example. At this point all we have is an ASP.NET Web Application
containing an Entity Data Model. We really don’t have anything functional yet, but we are at the point
where we can introduce the WCF Data Services component, so let’s do that.

■ Note The entity connection setting in the Choose Your Data Connection step of the wizard should default to

AdventureWorksEntities. Change it to this value if it does not default properly, since the code examples in this

chapter will state this value and it will be easier to follow along and debug your application if you keep to the same

value.

CHAPTER 11 ■ N-TIER DEVELOPMENT WITH WCF DATA SERVICES

190

Figure 11-3. Selecting the tables

Right-click on the project in Solution Explorer and add a new item to the project. When the Add
New Item dialog appears, select the Web option, then scroll down in the list of installed templates until
you see ADO.NET Data Services template. Give this object the name of AWService.svc as shown in Figure
11-4, and then click Add.

CHAPTER 11 ■ N-TIER DEVELOPMENT WITH WCF DATA SERVICES

191

Figure 11-4. Adding the ADO.NET Data Service to the project

Adding the ADO.NET Data Service to your project does several things. First, as you can see in Figure
11-5, it adds a number of namespace references to your project. Highlighted in Figure 11-5 is one of
those, System.ServiceModel. That namespace contains all of the classes and interfaces necessary to build
services and client applications in n-tier environments. Also added to the project by the ADO.NET Data
Service template are the following references:

• System.Data.Services

• System.Data.Services.Web

• System.Data.Entity

• System.ServiceModel.Web

You are probably looking at this list thinking that the System.Data.Entity reference is added when
you add an Entity Data Model to your project. That is true. However, if you add the Data Service to your
project first (prior to adding the Entity Data Model), then the System.Data.Entity reference will also be
added automatically.

CHAPTER 11 ■ N-TIER DEVELOPMENT WITH WCF DATA SERVICES

192

Figure 11-5. System.ServiceModel namespace

The second thing that was added by the ADO.NET Data Service template is, obviously, the service
itself. Shown in Figure 11-6, the service is composed of AWService.svc and the supporting
AWService.svc.cs file. You can’t open and modify the .svc file directly. In fact, if you double-click the
.svc file, the effect will be to open the underlying .cs file. However, if you right-click the .svc file, then
select Open With, and then select XML Editor, you will see that the .svc file is simply an XML file
consisting of a single line. Unlike the Entity Framework and the EDM where you can make changes to
the underlying XML, Microsoft (and I, as well) highly recommend you don’t modify the .svc file and its
XML. This is simply because modifying the .svc file does not provide any benefits.

CHAPTER 11 ■ N-TIER DEVELOPMENT WITH WCF DATA SERVICES

193

Figure 11-6. The AWService WCF Service

When the ADO.NET Data Service is added to our project, the associated .cs file will automatically be
displayed in the IDE. Figure 11-7 shows that file, and what the ADO.NET Data Service template has
generated for us. The result is basically the beginning of our data service.

Figure 11-7. Data Service shell

As you can see in Figure 11-7, the template also generates some instructions for us, which provide
us some direction as to what we need to do next. The first thing we need to do is wire up our data service
to our data model so that the service knows where to get its data. We know where to do this because, as

CHAPTER 11 ■ N-TIER DEVELOPMENT WITH WCF DATA SERVICES

194

you can see in the highlighted code in Figure 11-7, the code tells us where. Thus, replace the code
comment with the name of the AdventureWorksEntities (see the note a few pages back regarding this
value). When you have made the change, the public class line of code will look like the following:

public class AWService : DataService< AdventureWorksEntities >

Wiring up our data service to the model is as simple as that. Believe it or not, we are ready to test our

service.

Testing the WCF Data Service
Testing our WCF Data Service provides us not only the chance to see if our little application works, but
also the opportunity to explore some of the WCF Data Service functionality and the interaction between
EF and the WCF Data Service. You will also see why we built this project in an ASP.NET Web Application.

Press Ctrl + F5 to compile and run the project. When the project runs, the web browser will open
and display what you see in Figure 11-8.

Figure 11-8. Initial test results

On the surface the results in Figure 11-8 really don’t tell us much, except for the fact that we have a
REST-based (REpresentational State Transfer) service running on top of our database using the Entity
Framework. That’s still very cool, though.

Yet, our output in the browser isn’t showing us what we want. What we really want to see is data
from the database. We don’t see data because, by default, the WCF.NET Data Service is secured. The
WCF Data Service needs to be told explicitly which data you want to see. The instructions in the code tell
us this, as you can see in Figure 11-7, in the TODO comment. Some examples are even provided in the
comments to help us out. But the comment is there as a reminder. We still have to do some work. Let’s
choose to not restrict anything in our example. Instead, we’ll unlock all the entities. We do that by
adding the highlighted code below to the InitializeService method:

CHAPTER 11 ■ N-TIER DEVELOPMENT WITH WCF DATA SERVICES

195

public static void InitializeService(DataServiceConfiguration config)
{
 // TODO: set rules to indicate which entity sets and service operations are visible,
 updatable, etc.
 // Examples:
 // config.SetEntitySetAccessRule("MyEntityset", EntitySetRights.AllRead);
 // config.SetServiceOperationAccessRule("MyServiceOperation",
 ServiceOperationRights.All);
 config.SetEntitySetAccessRule("*", EntitySetRights.All);
 config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2;
}

The highlighted code sets the permissions for the specified entity sets in our model. The

SetEntitySetAccessRule method takes two parameters. The first parameter is the entity we want to set
permissions for, and the second parameter is the access rights to be granted to this resource (entity).

By specifying the value of * in the first parameter, we are specifying that we want to set permissions
for all entity sets. The second parameter takes the EntitySetRights enumeration, which contains the
following members:

• None: Denies all rights to data access

• ReadSingle: Authorizes read rights to single items

• ReadMultiple: Authorizes read rights to sets of data

• WriteAppend: Authorizes create rights on data items in data sets

• WriteReplace: Provides rights to replace data

• WriteDelete: Authorizes deletes on data items from data sets

• WriteMerge: Authorizes rights to merge data

• AllRead: Authorizes read data rights

• AllWrite: Authorizes write data rights

• All: Authorizes read, create, update, and delete rights on data

In our example we used the All enumeration to allow all rights to all entity sets. Run the application
again, and when the web page appears you will see that you get back a list of all the entity sets in the
underlying model, as shown in Figure 11-9.

CHAPTER 11 ■ N-TIER DEVELOPMENT WITH WCF DATA SERVICES

196

Figure 11-9. Entity set list

Earlier we mentioned that the WCF Data Service worked by exposing data as resource addressable
via URIs, and to see the data we can use any of the URIs in Figure 11-9.

By utilizing the exposed URIs we can explore the data in the underlying model. For example, let’s
look at the SalesTerritory data by using the associated URI for that entity set and add it to the URI for this
page. By using the appropriate URI, shown in Figure 11-10, we get a list of all the sales territories.

CHAPTER 11 ■ N-TIER DEVELOPMENT WITH WCF DATA SERVICES

197

Figure 11-10. Sales territories

One of two things is going to happen when you try to browse the sales territories. You will either get
a list of all the sales territories like you see in Figure 11-10, or you will get a page like that in Figure 11-11,
indicating that we are receiving an RSS feed of sales territories.

CHAPTER 11 ■ N-TIER DEVELOPMENT WITH WCF DATA SERVICES

198

Figure 11-11. RSS feed page

To fix the RSS feed issue we need to turn off the RSS Feed feature in Internet Explorer. With IE open,
select Options from the Tools menu to open the Internet Options dialog. This dialog has a number of
tabs along the top, which you might be familiar with. Select the Content tab and on that tab click the
Settings button under Feeds and Web Slices.

Clicking the Settings button will display the Settings dialog, and on this dialog you need to uncheck
the Turn on feed reading view checkbox, shown in Figure 11-12. Click OK on this dialog and the Internet
Options dialog.

CHAPTER 11 ■ N-TIER DEVELOPMENT WITH WCF DATA SERVICES

199

Figure 11-12. Turning off feed reading view

Back on our web page, press F5 to refresh the page. What you should get back now is a collection of
sales territories like that shown earlier in Figure 11-10. The source for that list is a query against the
underlying database for the sales territories.

We are not done exploring all of the service functionality yet—there is still so much more we can do
here. For example, the page you are currently looking at displays all the sales territories, but what if we
want to return a specific territory?

Looking at the data we can see that the each record contains the ID of the specific row, and we can
use that to our advantage by including that in our URI. For this example, let’s use Sales Territory ID 4.
Modify the URI by appending the number four to the end of the URI enclosed in parentheses, as shown
in Figure 11-13.

By loading the URI, which includes the ID of a specific record, I can now drill down further and
return just the record I am looking for. This is just like applying a WHERE clause to a T-SQL query, in this
case WHERE TerritoryID = 4. In this case I have queried the underlying store for a specific sales territory
by simply passing the appropriate ID in the URI.

CHAPTER 11 ■ N-TIER DEVELOPMENT WITH WCF DATA SERVICES

200

Figure 11-13. A specific sales territory

This is not all, however. Since our service is based on an Entity Framework EDM, we can easily
navigate between entities to pull related data. For example, let’s say we wanted to see all the sales people
that are related to a specific sales territory. By simply appending the SalesPerson entity to the end of the
URI we can navigate between entities. By taking a good look at the information in Figures 11-13 and 11-
10 we can see some elements called link elements, which means that the current sales territory has a
relationship to other items, such as StateProvince and SalesPerson. You can use these link items to
navigate these relationships by first selecting the specific sales territory you want to work with and then
including the specific link item in your URI.

Figure 11-14 illustrates how this is done. In this example we are still using SalesTerritory ID 4 and
then we append the SalesPerson item to the end of our URI, which allows us to navigate the relationship
between SalesTerritory and SalesPerson for the given TerritoryID.

CHAPTER 11 ■ N-TIER DEVELOPMENT WITH WCF DATA SERVICES

201

Figure 11-14. Sales people for a selected sales territory

When refreshing the page we are presented with all the sales people associated to the selected sales
territory, TerritoryID 4 in this case. You can probably guess that we can drill down even further, by
adding properties to the end of the URI to bring back specific column data. After all of the examples we
have done so far, I’ll let you do that.

While all of this is interesting, let’s take it to the next level and add a WinForms application to
consume the service. This will also allow us to utilize the service and write LINQ queries using the
service.

Consuming the WCF Data Service
In the last section we walked through how to create a WCF Data Service and then looked at the data
using a REST-based interface. This section is going to walk you through how to consume the service built
in the previous section and then use that service to query data from the underlying EF model.

CHAPTER 11 ■ N-TIER DEVELOPMENT WITH WCF DATA SERVICES

202

The first thing we need to do is add a WinForms project to the solution. Within Solution Explorer,
right-click on the solution and select Add ➤ New Project from the context menu. In the Add New Project
dialog, select Windows Forms Application from the list of templates. Feel free to name the project
whatever you want—I kept the default name. Click OK on the Add New Project dialog, then click OK.
Your Solution Explorer should now look like Figure 11-15.

Figure 11-15. Adding the WinForms project

Our service at this point lives in the project we created at the beginning of that chapter, but we are
working within the new WinForms project we just added. So we need something that can communicate
to the service in the other project. What we need is a proxy object that we can add to our WinForms
project that we can use to communicate with the service in the other project.

There are number of ways to do this, but we are going to use the easy way, which is simply by adding
a service reference to our WinForms project.

Adding the Service Reference
In order to use the WCF Data Service in our new WinForms project, we need to add a proxy object that
will be our communication gateway to the service in the other project. To add this proxy object, right-
click on the References node in Solution Explorer for the WinForms project and select Add Service
Reference, as seen in Figure 11-16.

CHAPTER 11 ■ N-TIER DEVELOPMENT WITH WCF DATA SERVICES

203

Figure 11-16. Adding the service reference

Selecting the Add Service Reference menu option, open the Add Service Reference dialog shown in
Figure 11-17. This dialog allows us to find and discover services that exist in either our current solution
or out on the web.

Figure 11-17. Service information

On the Add Service Reference dialog in Figure 11-17, you will see a Discover button. Later, we’ll click
it to find services within our solution. When we click the button, we’ll select the Services in Solution
option, as shown in Figure 11-18.

CHAPTER 11 ■ N-TIER DEVELOPMENT WITH WCF DATA SERVICES

204

Figure 11-18. Discovering the service within the solution

You will also see a textbox in Figure 11-17 labeled “Address:”. This allows us to type in a URI address
to a service that exists out on the web and consume that service in our application. By typing in the URI
and clicking the Go button, the application will interrogate the specified URI and look for the location of
that service and any metadata for that service, and then create objects for that service.

Go ahead and click the Discover button and select Services in Solution. The application will then
interrogate the solution and look for any services contained within our solution. You’ll see those services
displayed in the dialog shown in Figure 11-19. Click the service that we’ve created, named
AWService.svc.

Figure 11-19. The AWService and related types

There is not much more to do on the Add Service Reference dialog other than providing a name for
our service namespace. For the sake of this example, keep the default name. Before you click OK on the
dialog, it would be wise to copy the URI displayed in the dialog, as it will come in handy shortly.

CHAPTER 11 ■ N-TIER DEVELOPMENT WITH WCF DATA SERVICES

205

Go ahead and click OK on the dialog. Doing so will cause the Add Service Reference wizard to
generate our client objects and add them to our WinForms solution.

Looking at our WinForms project now, we can see that the service proxy has been added to our
solution. You can see that in Figure 11-20.

Figure 11-20. The service in Solution Explorer

If you haven’t already done so, click on the Show All Files button in Solution Explorer, as there are
files of the newly-added service that we should look at. Expand the ServiceReference1 node and you will
see that some code was generated. Open the Reference.cs file and let’s look at the code.

In the Reference.cs file we can see that a number of partial classes were created. The first class,
called AdventureWorksEntities, represents the entire service and allows us to work at the service level.
You’ll also notice that a partial class was created for each entity in the remote service, allowing us to
work with the entities individually. The following snippet shows such a partial class.

public partial class AdventureWorksEntities :
global::System.Data.Services.Client.DataServiceContext
{
 /// <summary>
 /// Initialize a new AdventureWorksEntities object.
 /// </summary>
 public AdventureWorksEntities(global::System.Uri serviceRoot) :
 base(serviceRoot)
 {
 this.ResolveName = new global::System.Func<global::System.Type,
 string>(this.ResolveNameFromType);
 this.ResolveType = new global::System.Func<string,
 global::System.Type>(this.ResolveTypeFromName);
 this.OnContextCreated();
 }
 partial void OnContextCreated();
 /// <summary>
 /// Since the namespace configured for this service reference
.
.

CHAPTER 11 ■ N-TIER DEVELOPMENT WITH WCF DATA SERVICES

206

.

.
/// <summary>
/// There are no comments for AdventureWorksModel.Contact in the schema.
/// </summary>
/// <KeyProperties>
/// ContactID
/// </KeyProperties>
[global::System.Data.Services.Common.EntitySetAttribute("Contacts")]
[global::System.Data.Services.Common.DataServiceKeyAttribute("ContactID")]
public partial class Contact : global::System.ComponentModel.INotifyPropertyChanged
{
 /// <summary>
 /// Create a new Contact object.

The AdventureWorksEntities class is a logical representation of the service that we have consumed.

It does not work with connections; it does not open, close, or manage any connection information. This
class simply allows us to work with the service.

At this point we have consumed the WCF Data Service in our application. Now let’s put that service
to good use.

Utilizing the Service
Up to this point we have created our service and consumed that service within a WinForms application.
Our next step is to write code to utilize the service to query the underlying data store. In the WinForms
project, open the form in design view and add two buttons and a list box. Double-click the first button to
view the code.

The first thing we need to do is add a using statement for the service proxy (the generated classes we
just looked at), shown in the code here.

namespace WindowsFormsApplication1
{
 using ServiceReference1;

Now add the following code to the Click event of the first button.

try
{
 AdventureWorksEntities svc = new AdventureWorksEntities(new
Uri("http://localhost:1089/AWService.svc"));

 foreach (Employee emp in svc.Employees)
 {
 listBox1.Items.Add(string.Format("{0} {1}", emp.ContactID, emp.Title));
 }
}
catch (Exception ex)
{
 MessageBox.Show(ex.Message);
}

The first line of this code instantiates the class that represents the service. As part of this

instantiation we need to pass it the URI of the service that we want to talk to. Remember the information

http://localhost:1089/AWService.svc

CHAPTER 11 ■ N-TIER DEVELOPMENT WITH WCF DATA SERVICES

207

I asked you to copy from the Add Service Reference dialog? This is where you add it, as a parameter to
the constructor of this class.

When you selected to discover the services within the project, the discovery came back and said that
it found a service at the location displayed on the dialog. In order for your application to use the service,
you need to include this URI so that your application knows which service to talk to.

The next section of code loops through the collection of employees and writes the ContactID and
Title to the list box on the form, using the generated Employee type in the class we looked at earlier.

Let’s run the solution (make sure you set the WinForms project as the solution startup project) and
when the form displays, click button1. The list box on the form should populate with the ContactID and
the Title off everyone in the underlying Employee table, shown in Figure 11-21.

Figure 11-21. First query results

While this first example isn’t very complicated, it does show how easy it is to utilize WCF Data
Services in your applications. But let’s build on this example a little bit because it does not illustrate any
LINQ features. The next example will utilize LINQ to construct a query to pull contacts. What you should
notice are the similarities between the classes created by the service proxy and the classes of an EDM.
They look very similar. Additionally, because we are coding against objects, we have all the benefits of
LINQ.

Let’s take advantage of LINQ. Edit the Click event of the second button and add the following code:

try
{
 AdventureWorksEntities svc = new AdventureWorksEntities(new
 Uri("http://localhost:1089/AWService.svc"));

 var query = from c in svc.Contacts

http://localhost:1089/AWService.svc

CHAPTER 11 ■ N-TIER DEVELOPMENT WITH WCF DATA SERVICES

208

 where c.LastName.StartsWith("K")
 orderby c.LastName
 select c;

 foreach (var con in query)
 {
 listBox1.Items.Add(string.Format("{0} {1}", con.FirstName, con.LastName));
 }
}
catch (Exception ex)
{
 MessageBox.Show(ex.Message);
}

This code really isn’t much different from the first example, except for the fact that we are using a

LINQ to query for specific contacts. We still need to instantiate the class that represents the service and
we still iterate over the results to display the information to the list box. However, the difference here is
that we are using the generated classes of the service proxy to construct our query.

Run the solution and when the form displays, click button2. The list box will quickly fill with all
contacts whose last name begins with the letter K, as shown in Figure 11-22.

Figure 11-22. Query results using LINQ to Entities

The purpose of this chapter is to illustrate how to build n-tier applications using the Entity
Framework and WCF Data Services. As you can see via the examples in this chapter, the two
technologies work wonderfully together and provide a very flexible yet powerful multi-tier application
solution. As you have been going through the examples in this chapter, specifically the last example, you
will also notice that there really is no performance lost going through a WCF Data Service.

C H A P T E R 12

■ ■ ■

209

Performance Tuning
and Exception Handling

The majority of this book has focused primarily on the new features and enhancements to the Entity
Framework, including the Entity Data Model, foreign keys, and querying concepts. For the most part we
have used what the EF generated for us because Microsoft fixed and addressed a lot of issues that were
apparent in EF 3.5, such as relationships and object naming. We have not covered the topic of how to
handle EF specific errors within the code. Knowing how to deal with Entity Framework specific errors is
half the battle, and if you know what to look and trap for, it will go a long way toward ensuring a smooth-
flowing application.

This chapter will therefore focus on both of these aspects. First, we will look at how to tune your
EDM by looking at object naming, relationships, and other performance aspects. Second, we will look at
how to handle Entity Framework specific exceptions. By understanding the types of exceptions the EF
can throw, you will know better how to approach your code.

For this chapter we will use the same project we created in Chapter 7 and that we have used since
then, the EF40 project.

Updating the Model
For this chapter we need to add run an additional SQL script to add a few stored procedures that we will
use later in the chapter. Open SQL Server Management Studio and open the file
AddContactProcedures.sql that is found in the Chapter12 directory. This script will create three stored
procedures that are used to insert, update, and delete from the Contact table. Go ahead and execute that
SQL script. It will automatically select the appropriate database via the USE statement at the top of the
script.

In Chapter 10 we added a few more tables to the EF40 database, but we have not yet added them to
our EDM. We also need to add the three stored procedures to our model that we just added to the EF40
database. Open Visual Studio 2010 project and open the EDM. Right-click in the EDM Designer and
select Update Model from Database from the context menu, shown in Figure 12-1.

We have seen this menu used in previous chapters, and it works very well. We simply want to update
our model with the objects that we added to the database.

CHAPTER 12 ■ PERFORMANCE TUNING AND EXCEPTION HANDLING

210

Figure 12-1. Update model from database menu item

In the Choose Your Database Objects dialog, shown in Figure 12-2, expand the Tables node and
select the following tables:

• Address

• EmployeeAddress

• SalesTerritory

Expand the Stored Procedures Node and select the following:

• DeleteContact

• InsertContact

• UpdateContact

Keep the pluralization and FK checkboxes checked as shown in Figure 12-2, and click Finish. We’ll
use the stored procedures later in the chapter when we talk about performance tuning.

CHAPTER 12 ■ PERFORMANCE TUNING AND EXCEPTION HANDLING

211

Figure 12-2. Choosing the tables

Your model should now look like Figure 12-3. Notice that our stored procedures are not added to
the EDM designer, but they are definitely added to the EDM. You can see this by opening the Model
Browser tab in Visual Studio and expanding the Stored Procedures node.

CHAPTER 12 ■ PERFORMANCE TUNING AND EXCEPTION HANDLING

212

Figure 12-3. Finished model

For the most part, the Entity Framework was fairly accurate when deciding on the pluralization and
singularization of the generated object names. If you recall from our discussion in Chapters 2 and 7, the
“Pluralize or singularize generated object names” checkbox on the Choose Your Database Objects dialog
does four things if you leave the checkbox checked:

• Makes all EntityType names singular

• Makes all EntitySet names plural

• Makes all Navigation properties singular that return at most one entity

• Makes all Navigation properties plural that return more than one entity

CHAPTER 12 ■ PERFORMANCE TUNING AND EXCEPTION HANDLING

213

In our model, we left the checkbox checked, so it should do all of these things. However, as smart as
the Entity Framework is, let’s make sure it did its job correctly.

Checking the Model
We can now check to make sure the EntityType and EntitySet names are set correctly. Figure 12-4 shows
the properties for the SalesTerritory entity. We can see that indeed the EntityType property is singular
and the EntitySet name is plural. The EDM wizard is quite accurate when pluralizing names. Generally,
the EDM takes anything that ends in “y” and changes it to “ies.” For example, ProductCategory becomes
ProductCategories, and SalesTerritory becomes SalesTerritories. For other names an “s” will be
appended. For example, SalesOrderHeader becomes SalesOrderHeaders, UnitMeasure becomes
UnitMeasures, and Product becomes Products. Not too complicated.

You are also free to change the Entity Set Name to something more meaningful if you like. I did not
change any of the Entity Set Names simply because their pluralization names are sufficient. Changing
their names would not gain anything.

Figure 12-4. EntityType and EntitySet properties

We can also verify that the navigation properties were set properly as well, based on the previous
pluralization and singularization rules. Figure 12-5 shows a section of the EDM containing five tables
and three relationship types (one, many, and zero-or-one). Following the relationship rules, we can see
the following:

• In the Employee entity, the EmployeeAddresses navigation property is plural
because it is coming from a many side of a relationship, but the SalesPerson
navigation property is coming from a zero-or-one side.

• In the EmployeeAddress entity, both the navigation properties are singular
because they are both coming from a one side relationship, returning at most one
entity.

• In the Address entity, the EmployeeAddresses property is plural because that
property is returning more than one entity (coming from a many side of a
relationship).

CHAPTER 12 ■ PERFORMANCE TUNING AND EXCEPTION HANDLING

214

• In the SalesPerson entity, both the Employee and SalesTerritory navigation
properties are singular because both will return at most one entity.

• In the SalesTerritory entity, the SalesPersons navigation property is plural because
it returns more than one entity.

With this information, you can interrogate the rest of the navigation properties. Like most
everything else, you are free to change the navigation property names. However, since they follow the
rules outlined by the Designer, I have kept them the same.

Figure 12-5. Navigation properties

If you change any names, whether it be entity, property, or EntitySet, you need to ensure that the
names do not conflict with other names. For example, you can’t have an entity called Contact that has a
property called Contact. You can rename entities without needing to rename the underlying table.
Remember, the MSL takes care of the mapping, so you can change any EDM object name and still be
fine as long as you don’t have name collision.

Also, be careful not to rename an object to the same name as a .NET reserved word. I’m sure this
would be rare but it could happen if you’re not careful.

CHAPTER 12 ■ PERFORMANCE TUNING AND EXCEPTION HANDLING

215

Stored Procedure Mapping
Our model is good to go, but there is one more thing we can do to tune the EDM and improve
performance. In Chapter 6 you learned about stored procedures. Using stored procedures is one of the
best ways you can potentially improve performance and tune your EDM.

When we updated the model from the database, we included three stored procedures that are used
to perform some CRUD (create, read, update, delete) operations on the Contact table. Let’s map the
insert procedure first. Select the Contact entity in the EDM and then open the Mapping Details window,
then select Map Entity to Functions on the left. For the Insert Function, select InsertContact from the
list.

For the Insert function there really isn’t any work we have to do other than map the Result Column
Bindings. This stored procedure returns the ContactID of the newly inserted row, so we need to map this
value. Figure 12-6 shows what the mapping should look like.

Figure 12-6. Mapping the insert procedure

Now let’s map the update procedure. For the Update Function, select UpdateContact from the list.
Since we are updating an existing contact, we are not returning anything, so there is no Result Column
Binding. For this example we won’t select the Use Original Value checkboxes, but you recall from
Chapter 6 that this provides us a way to check concurrency in our application code. Figure 12-7 shows
the mapping.

CHAPTER 12 ■ PERFORMANCE TUNING AND EXCEPTION HANDLING

216

Figure 12-7. Mapping the update procedure

Lastly, let’s map the Delete procedure. For the Delete Function, select DeleteContact from the list.
Figure 12-8 shows what the delete mapping looks like. This stored procedure takes a single parameter,
which is the ID of the contact we want to delete. Very simple.

Figure 12-8. Mapping the delete procedure

At this point, you should now have an EDM that you can easily work with and normalize from a
database perspective. From here let’s talk about the project itself and the components a compiled
project has and how to work with them.

Building an Entity Framework Project
Earlier in the book we mentioned, albeit briefly, what happens to the xml schema of the EDM (the
EDMX) when the project containing the EDM is compiled. By default, the EDMX is separated into three

CHAPTER 12 ■ PERFORMANCE TUNING AND EXCEPTION HANDLING

217

distinct files and included as separate files within the project binary. We can see this by using a .NET
reflector tool to browse the contents of the binary, as shown in Figure 12-9.

Figure 12-9. Individual schemas in the binary

When the schema files are included in the binary, the metadata portion of the connection string
found in the app.config looks like this:

res://*/EF40Model.csdl|res://*/EF40Model.ssdl|res://*/EF40Model.msl

The * in the line means that schema files are included in the binary assembly. Can you change this?

In other words, can you tell the assembly that you don’t want to include the individual schema files in
the binary assembly? Absolutely!

With the EDM open, open the Properties window. Or, right-click anywhere on the Designer window
and select Properties from the context menu. In the Properties window of the EDM, shown in Figure 12-
10, is a property called Metadata Artifact Processing. By default, this value is set to Embed in Output
Assembly.

CHAPTER 12 ■ PERFORMANCE TUNING AND EXCEPTION HANDLING

218

Figure 12-10. Metadata artifact processing

Changing this property to Copy to Output Directory as shown in Figure 12-10 will do two things.
First, it will tell the compiler to not include the schemas in the binary assembly but to create three
separate schema files in the build folder. Second, it will change the metadata string in the connection
string.

Go ahead and change the Metadata Artifact Processing property value from Embed in Output
Assembly to Copy to Output Directory, then save the EDM. From the Build menu in Visual Studio select
Build Solution. Once the project has finished compiling, browse to the build folder, which is the
bin\release folder for your project.

In this folder you will see the three schema files along with the binary assembly. These three files
will have the extensions of .csdl (conceptual schema definition language), .msl (mapping schema
language), and .ssdl (store schema definition language). You can see this in Figure 12-11.

Figure 12-11. External schema files

CHAPTER 12 ■ PERFORMANCE TUNING AND EXCEPTION HANDLING

219

Looking at the metadata section of the connection string of the app.config, you will notice that the
metadata section has changed as well.

metadata=.\EF40Model.csdl|.\EF40Model.ssdl|.\EF40Model.msl;

However, you don’t have to look at the app.config file to see the metadata changes. Whenever you

change the Metadata Artifact Processing property value and then save the EDM, you can visually see the
Connection String property (Figure 12-10) change accordingly. You can also copy the schema files
wherever you want and specify the location in the metadata by specifying the location of the files.

metadata=C:\AW\EF40Model.csdl | C:\AW\EF40Model.ssdl | C:\AW\EF40Model.msl

So, the question is, why would you want to have the schema files outside of the binary assembly?

The answer really boils down to how often you change the model after deployment. By separating the
schema files from the binary assembly you provide a loosely coupled scenario. For example, non-
breaking schema changes could be made on the database, such as adding a table, which allow you to
modify the SSDL and MSL to reflect these changes while the CSDL could be left alone. Be careful with
this. If you move these, and the ObjectContext cannot find them, an exception will be thrown.

Exception Handling
Let’s talk about handling Entity Framework specific exceptions. Obviously we are not going to discuss all
of them because that would take a really long time and be completely boring. However, we will talk
about how to handle specific types of errors and the best way to approach your code to handle these
exceptions.

Some of what I cover is standard .NET error handling standards, while the rest is particular to the
Entity Framework. We’ll begin by discussing some standard ways to trap and handle errors and then
take a look at some specific EF exceptions and how the standard exception handling can help.

If you have been developing applications for any length of time you know that exceptions can be
generated from the second you launch the application all the way until you close the application. The
Entity Framework is no different. An exception can be generated from the moment you create your
context (by instantiating an ObjectContext) all the way through to the point you call SaveChanges. We can
efficiently and elegantly handle these exceptions by using try/catch blocks supplied by the .NET
Framework.

Try/Catch Blocks
Try/Catch blocks can be the cure to many headaches when used effectively. I’m hoping all of you know
how to use a try/catch block, but in case you are new to .NET, the basic try/catch block looks like this:

try
{
 // Do Something
}
catch (Exception ex)
{
 // handle the exception
}

In this example, the try block is where you perform any task such as instantiating an ObjectContext

or performing some queries. When an exception is generated within the try block, the flow is routed to

CHAPTER 12 ■ PERFORMANCE TUNING AND EXCEPTION HANDLING

220

the catch block where you can obtain error information and handle it accordingly. When exceptions are
generated, the program automatically looks for the catch statement block to handle the exception.

For example, the following code snippet uses the try block to instantiate an instance of the
EF40Entities ObjectContext then creates a simple LINQ-to-Entities query. If an exception is generated,
the flow is routed to the catch block and executes the throw statement. For those not familiar with the
throw statement, it is a simple statement that is used to indicate an anomalous exception.

try
{
 EF40Entities context = new EF40Entities ();
 var query = from con in context.Contacts select con;
}
catch (Exception ex)
{
 throw;
}

More on the throw statement and how it can be used can be found here:

http://msdn.microsoft.com/en-us/library/aa664760(VS.71).aspx

Optionally, instead of using the throw statement, you could display the message using the

MessageBox class (if you are within your user interface) to display the exception, such as

MessageBox.Show(ex.Message);

The following code includes a finally block, which can be included as part of the try/catch. The

finally block is useful for cleaning up resources allocated in the try block as well as running and
executing any code that needs to be run, despite whether there is an exception. In other words,
execution control is always passed to the finally block regardless of what happens in the try block,
even if no exception occurred and the catch block was not executed.

In this example, an instance of the ObjectContext is created in the try block. When program
execution hits the finally block the instance is disposed of, freeing up memory, by setting the context to
null (the context has been defined prior to the try block).

try
{
 context = new EF40Entities();
}
catch (Exception ex)
{
 throw;
}
finally
{
 context = null;
}

While the finally block is nice and comes in handy, there are other ways to dispose of objects, and

make code a little cleaner and more efficient. The using statement provides this functionality.

http://msdn.microsoft.com/en-us/library/aa664760

CHAPTER 12 ■ PERFORMANCE TUNING AND EXCEPTION HANDLING

221

The Using Statement
Instead of including a finally block and manually disposing of objects, the using statement provides a
clean and convenient way of ensuring that objects are disposed of. The using statement automatically
releases memory used to store objects that are no longer required. using statements can be exited
automatically when the end of the using statement is reached or if an exception is thrown (at which
point control leaves the statement block).

In the following code, the using statement is used to create an instance of the EF40Entities
ObjectContext. At the end of the using block, all objects and resources controlled by the using block are
automatically disposed of.

using (EF40Entities context = new EF40Entities())
{
 //peform a query
}

As such, disposing of the context manually by setting it to null is not required. The appropriate way

to use the using block is to include it with a try/catch block, as follows:

try
{
 using (EF40Entities context = new EF40Entities())
 {
 //
 }
}
catch (Exception ex)
{
 throw;
}

As explained earlier, using statements are exited automatically when code execution reaches the

end of the using statement or when an exception is thrown. Thus, in the previous code, the catch block
will handle any and all exceptions thrown within the using statement.

Exception Class
The Exception class, found in the System.Exception namespace, is your best friend when working with
exceptions. This is the class that represents errors that occur during application execution. You have
seen throughout this book the use of the Exception class in the catch block to display errors. Effectively
using the methods and properties of the Exception class can provide great insight into the error that
caused the exception to be thrown.

Two of these properties are the Message property and InnerException property. The Message
property should completely describe the error and explain how to correct it when possible. The value of
the Message property is included in the information returned by ToString. For example, the following
code will display the exception information in a message box that was thrown by the exception thrown
in the try block.

try
{
 // Do Something Cool
}
catch (Exception ex)

CHAPTER 12 ■ PERFORMANCE TUNING AND EXCEPTION HANDLING

222

{
 MessageBox.Show(ex.Message.ToString());
}

However, the keyword in the previous paragraph is the word should. This is where the

InnerException comes in to play. The InnerException property is used to get the set of exceptions that
led to the current exception. Sometimes, however, the Exception.Message property doesn’t have a whole
lot of information, and this is when you can find more detailed information in the InnerException. A lot
of times the Message property is helpful and will tell you that you need to look in the InnerException.

"An error occurred while executing the command definition. See the inner exception
 for details."

Getting to the InnerException is easy, as it is a property of the Exception class. The following code

illustrates how to use the InnerException property. This property also has a Message property, which
contains the set of exceptions that led to the exception.

try
{
 // Do Something
}
catch (Exception ex)
{
 MessageBox.Show(ex.Message.ToString());
 if (ex.InnerException != null)
 {
 MessageBox.Show(ex.InnerException.Message.ToString());
 }
}

To see this at work, open up the code-only example of Chapter 10. Open up the Employee.cs class in

the AWCodeOnlyData project and add the following line of code:

public int ContactID { get; set; }

Go to the AWCodeOnlyUI project and in the Load event of the form change the code to the

following:

try
{

 SqlConnection conn = new SqlConnection("Data Source=SCOTT-LAPTOP;Initial
Catalog=EF40;User ID=userid;PWD=pwd");

 var builder = new ContextBuilder<AWModel>();
 Registerconfig(builder);
 var context = builder.Create(conn);

 var query = from emp in context.Employee
 select emp;

 foreach (var empl in query)
 {

CHAPTER 12 ■ PERFORMANCE TUNING AND EXCEPTION HANDLING

223

 listBox1.Items.Add(empl.LoginID);
 }
}
catch (Exception ex)
{
 MessageBox.Show(ex.Message);
 If (ex.InnerException != null)
 {
 MessageBox.Show(ex.InnerException.Message.ToString());
 }
}

Now run the project. When the form loads you will see two errors. The first message box will tell you

that you need to look at the InnerException for more information. Click OK on the first message box. The
next message box now displays the real cause of the error.

OK, enough background. Let’s take a look at some Entity Framework-specific errors.

Connection Exceptions
Connection issues can be cumbersome when working with the ObjectContext. The ObjectContext is
created for you by default and out of the box creates three connection constructors. The following code
shows the three constructors for the Chapter 12 project.

public partial class EF40Entities : ObjectContext
{
 #region Constructors

 /// <summary>
 /// Initializes a new EF40Entities object using the connection string found
 in the 'EF40Entities' section
 of the application configuration file.
 /// </summary>
 public EF40Entities() : base("name=EF40Entities", "EF40Entities")
 {
 this.ContextOptions.LazyLoadingEnabled = true;
 OnContextCreated();
 }

 /// <summary>
 /// Initialize a new EF40Entities object.
 /// </summary>
 public EF40Entities(string connectionString) : base(connectionString, "EF40Entities")
 {
 this.ContextOptions.LazyLoadingEnabled = true;
 OnContextCreated();
 }

 /// <summary>
 /// Initialize a new EF40Entities object.
 /// </summary>
 public EF40Entities(EntityConnection connection) : base(connection, "EF40Entities")
 {
 this.ContextOptions.LazyLoadingEnabled = true;

CHAPTER 12 ■ PERFORMANCE TUNING AND EXCEPTION HANDLING

224

 OnContextCreated();
 }

 #endregion

The main thing to recognize here is that each constructor contains connection information relating

to the entity connection string. This information maps the connection information found in the
app.config file, in the <connectionStrings> section. For example,

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <connectionStrings>
 <add name="EF40Entities" connectionString="..." />
 </connectionStrings>
</configuration>

If the ObjectContext cannot find the corresponding name within the app.config, you will receive the

following error:

The specified named connection is either not found in the configuration, not intended
 to be used with the EntityClient provider, or not valid.

To illustrate this, open the form in this project in design mode and add a button and a list box to the

form. In the code behind the button, add the following:

try
{
 EF40Entities context = new EF40Entities();
}
Catch (Exception ex)
{
 MessageBox.Show(ex.Message.ToString());
}

Next, modify the name attribute in your app.config as follows:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <connectionStrings>
 <add name="EF40EntitiesNew" ... />
 </connectionStrings>
</configuration>

Run the project and click the button. You should get the same error mentioned previously.
Other connection problems could include invalid connection information. For example, in your

app.config, set the connection name back to EF40Entities, and change the connection password, like
the following:

provider connection string="Data Source=SCOTT-LAPTOP;Initial Catalog=EF40;User
ID=sa;Password=badpassword

Next, on the form, modify the code behind the button to look like the following:

CHAPTER 12 ■ PERFORMANCE TUNING AND EXCEPTION HANDLING

225

try
{
 context = new EF40Entities();
 var query = from con in context.Contacts
 select con;

 foreach (var cont in query)
 {
 listBox1.Items.Add(cont.FirstName);
 }
}
catch (Exception ex)
{
 MessageBox.Show(ex.Message.ToString());
}
finally
{
 context = null;
}

Run the project and click the button. The error you get this time informs you that your login for the

specified user is invalid.
There are several ways to handle errors such as these, but the most important thing is to gracefully

handle the exceptions. For example, in your exception block you could trap for specific text in the error
message returned by the exception.

catch (Exception ex)
{
 If (ex.Message.Contains("specified name connection"))
 {
 //log the error, inform the user, and exit gracefully
 }
}

We mentioned that you could compile the EDM with the schema files external to the assembly.

Errors can be thrown in this case if the ObjectContext cannot find those files or the metadata tags can’t
be found. In cases such as these you can use the MetadataException class, as shown here:

catch (MetadataException ex)
{
 // throw back to calling application or handle here
}

The key here is that there are many errors ranging from the moment the application starts to the

moment the application closes, and it all boils down to how you handle those errors.

Query Exceptions
One of the benefits of the LINQ query language is the IntelliSense and compile-time syntax checking.
Thus, the opportunity for query expression errors drops dramatically to nearly non-existent. However, as
good as the compiler is, while the majority of the syntax might pass the compiler check, some syntax will
still fail at runtime.

CHAPTER 12 ■ PERFORMANCE TUNING AND EXCEPTION HANDLING

226

Most of the offenders, i.e., runtime exceptions, are when you are dealing with dates. For example,
the following compiles but shows errors during runtime:

var query = from emp in context.Employees
 select emp.HireDate.ToLongDateString();

foreach (var empl in query)
(
 //do something
)

The compiler has no problem with the previous code snippet. However, at runtime the minute you

start to iterate through the returned collection you will receive an error stating that the ToLongDateString
method cannot be translated into a store expression. You will also get the same exception if you use the
ToShortDateString method.

As we discussed earlier, you can look to see if the InnerException property has any additional
information, but in this case it does not.

However, dates are not the only culprit for this type of error. You can also receive the previous error
if you are trying to convert a decimal to a string, as shown in the following code snippet.

var query = from prod in context.Products
 select prod.StandardCost.ToString();

foreach (var pro in query)
(
 //do something
)

This code compiles fine but returns the same “method cannot be translated to a store expression”

exception. Now, granted, we should ask, how many times are you going to convert a decimal to a string?
Probably not a lot, but the point is that there are times when query expressions won’t get caught until
runtime, and you need to handle them appropriately by using the try/catch block.

EntitySQL Exceptions
I prefer LINQ to Entities over EntitySQL, but if you are the opposite and prefer EntitySQL over LINQ to
Entities, you will be spending a lot more of your time debugging your EntitySQL. EntitySQL exceptions
generate EntitySQLException exceptions, and this typically happens when your EntitySQL expression is
invalid or can’t be processed by SQL.

The key to handling EntitySQL exceptions is to use the EntitySQLException class in your catch block,
shown in the following code snippet. The EntitySQLException class handles exceptions due to invalid
EntitySQL commands, such as when syntactic or semantic rules are violated.

catch (EntitySQLException ex)
{
 //handle the exception
}

The EntitySQLException class contains the same properties as the other exception classes discussed

in this chapter, such as the Message property and InnerException property. The important takeaway is
that you need to understand the type of exceptions you might be, or probably will be, dealing with and
take the necessary steps to handle each type of exception appropriately, whether it is an
EntityConnection or EntitySQLException exception.

CHAPTER 12 ■ PERFORMANCE TUNING AND EXCEPTION HANDLING

227

There are several tools out there that assist in writing EntitySQL code. The query builder is one of
them, but if you have used it at all you know that it is limited in the usable number of operators and
functions. Another option is eSqlBlast, found here:

http://code.msdn.microsoft.com/esql

eSqlBlast is a useful tool that helps with testing EntitySQL queries and expressions prior to
implementing your queries in your application code.

http://code.msdn.microsoft.com/esql

CHAPTER 12 ■ PERFORMANCE TUNING AND EXCEPTION HANDLING

228

C H A P T E R 13

■ ■ ■

229

Data Binding with
the Entity Framework

The last few chapters have focused on new features in the ADO.NET 4.0 Entity Framework (EF), things
that have been very needed and extremely beneficial to the EF. Chapter 12 focused specifically on how to
use the EF in an N-Tier scenario. You can apply the knowledge and information you gained from
Chapter 12 to what you learn in this chapter regarding the art of data binding with the EF.

This chapter focuses on the topic of data binding using Windows Forms and Windows Presentation
Foundation (WPF). Although data binding isn’t new to the EF, several enhancements have been made to
the EF to make data binding much easier to work with. For example, the chapter discusses the
INotifyPropertyChanged event, which is used to notify clients that a property value has changed.

You also learn about the data-binding features of Visual Studio when used with EF objects. If you’re
familiar with data binding with Datasets, then this shouldn’t be too much of a stretch, due to some
similarities; the examples you walk through in this chapter show how to bind EF query results directly to
WinForms controls as well as WPF controls. The chapter also spends some time discussing binding best
practices to help you get the most out of binding.

Windows Forms Data Binding
Let’s get started with binding EF objects to a WinForms application. You begin by creating a project
directory. Then, you create a form, add some controls to that form, and write some code to bind those
controls to your data. Finally, you introduce add/delete/change functionality.

Creating a Project Directory
The first thing you need to do is create a new directory for your project. Create a new folder named
Chapter 13 in the ApressSamples directory, and then copy the EF40Data project from the Chapter 7
folder into the Chapter 13 folder. Fire up Visual Studio, and open the EF40Data project from within the
Chapter 13 folder.

Creating a New Form
When the project has loaded, you want to add a new WinForms project. From the File menu, select Add
➤ New Project. The New Project dialog opens, as shown in Figure 13-1.

CHAPTER 13 ■ DATABINDING WITH THE ENTITY FRAMEWORK

230

Figure 13-1. New Project dialog

In the list of templates, select a Visual C# Windows Forms Application template, and give it the
name WinFormsBinding. Make sure you set the directory for the new project to the correct location.
Figure 13-1 shows the New Project dialog with the appropriate settings filled in.

When you’ve added the new Windows Forms Application project, you should have two projects in
your solution: EF40Data and WinFormsBinding. You’re not ready to start coding, because you need to
do a little prep work to get the two projects in sync. First, expand the References node in the
WinFormsBinding project. You need to add a reference to the EF40Data project. To do that, right-click
the References node, and select Add Reference from the context menu. The Add Reference dialog opens,
as shown in Figure 13-2. In this dialog, select the Projects tab, select the EF40Data project, and click OK.

CHAPTER 13 ■ DATABINDING WITH THE ENTITY FRAMEWORK

231

Figure 13-2. Adding a project reference

You also need to add a reference to the System.Data.Entity namespace. It contains all the EF
runtime objects, so you need to be to access it from within your WinForms application. The EDM wizard
automatically adds this reference for you when you add an Entity Data Model (EDM) to a project.
Because your EDM is in another project (within the same solution), you must manually add that
reference.

Add another reference. This time, when the Add Reference dialog appears, select the .NET tab, and
scroll down in the list of components until you see the System.Data.Entity namespace. Select that, and
click OK.

Next, you need to copy the app.config file from the EF40Data project to the WinFormsBinding
project. To do so, right-click the app.config file in the EF40Data project, and select Copy from the
context menu. Right-click the WinFormsBinding project, and select Paste from the context menu.

Your solution at this point should look like Figure 13-3, which shows the two solutions and the
appropriate references to the EF40Data solution as well as to the System.Data.Entity namespace.

CHAPTER 13 ■ DATABINDING WITH THE ENTITY FRAMEWORK

232

Figure 13-3. Solution Explorer

You could now start adding controls to your form—but those of you who have done data binding
before know that in a binding solution, this would be fruitless, because you have nothing to bind to.
Prior to adding controls to a form, you need to create data sources.

Creating Data Sources
Data sources aren’t new to Visual Studio; they have been around since Visual Studio 2005 and provide an
effective and efficient mechanism to bind data within your applications. A data source is, in essence,
what links the data to the controls on your form.

Just as you’d use a data source to bind a Dataset or DataTable, you can equally bind entity classes.
In the examples in this chapter, you see how easy it is to use the data-binding features of Visual Studio to
bind dynamically generated entities.

Data binding allows you to retrieve data from a myriad of different data sources such as a service,
SharePoint (new for Visual Studio 2010), directly from a database, or an object. These different data
source types make data binding in Visual Studio flexible, powerful, and yet quite easy. In this example
you bind to an object because you work with entity objects (object classes) with the EF.

Let’s add the data source. Just like the Solution Explorer or Properties window, you should have a
Data Sources window, which by default docks to the left side of the Visual Studio IDE. If you don’t see
the Data Sources window, you can open it by selecting Data ➤ Show Data Sources (see Figure 13-4).

CHAPTER 13 ■ DATABINDING WITH THE ENTITY FRAMEWORK

233

Figure 13-4. Displaying the Data Sources window

Figure 13-5 shows the Data Sources window.

Figure 13-5. Data Sources window

Unless you’ve previously configured any data sources, the Data Sources window doesn’t display any
data sources and provides a link to add new data sources. Click the Add New Data Source link. Doing so
starts the Data Sources Configuration Wizard.

The first page of the wizard—shown in Figure 13-6—is where you choose the data source type. You
have four to choose from:

• Database: Binds to database objects, such as a table, though a database
connection.

• Service: Binds and returns data through a connection to a service. Selecting this
option opens the Add Service Reference dialog.

• Object: Provides data binding through objects, such as Datasets or entity classes.

• SharePoint: Provides binding to SharePoint objects through a connection to a
SharePoint site.

CHAPTER 13 ■ DATABINDING WITH THE ENTITY FRAMEWORK

234

Figure 13-6. Data Source Configuration Wizard: selecting the data source type

You need to be sure you understand the differences in the way these types interact with data. Let’s
focus on the Database type and the Object type, which handle data binding a little differently from each
other.

A Database binding source pulls data automatically when the form loads. This means no extra code
has to be written to get the data and populate the binding source. Not so with an Object data source
type. Although an Object data source provides class schemas to the controls and facilitates interaction
with the controls, it doesn’t trigger data pull. Additional code must be written to fetch the data and bind
it to the binding source.

As mentioned previously, you want your form and controls to bind to entity objects; so, select the
Object type, and click Next. Doing so takes you to the second step of the wizard, which displays a list of
objects from which you can choose to use for data binding.

The second page of the wizard, shown in Figure 13-7, can cause a little confusion. If you don’t see
any objects listed, don’t panic. Microsoft is keenly aware of what is going on and provides a hint: the text
in the wizard informs you that you need to cancel the wizard, build/rebuild your project, and then
restart the Data Source Configuration Wizard. When you get to the second page of the wizard, you see all
the objects, as in Figure 13-7.

CHAPTER 13 ■ DATABINDING WITH THE ENTITY FRAMEWORK

235

Figure 13-7. Selecting the data objects

Notice the Add Reference button. If the object you want to bind to isn’t located in the immediate
project, you need to add a reference to the object in order for it to appear in the wizard. Clicking the Add
Reference button opens the standard and familiar Add Reference dialog, which allows you to browse to
the project or .NET/COM assembly that contains the object.

Figure 13-7 shows what objects are available in your project to select for data binding. Prior to
moving on, let’s look at these objects. At the root node are the WinFormsBinding project and the
EF40Data project. Expanding each of these nodes displays the available objects in each project that you
can bind to. Because the WinFormsBinding project is brand new, there isn’t anything for you to use. If
you were to expand this node, you would see Form1 and Program, which represent the Program.cs file
and the default Form1 that was created when the project was added.

The EF40Data node is where you want to concentrate your attention for this example. Expanding
this node displays all of the entity classes that were added to your EDM, as shown in Figure 13-7.

Notice that an object is listed per entity. This is because Object data sources can’t bind to a full
EntityContainer. Remember that an EntityContainer is a logical grouping of entity and association sets.
An Object data source can only bind to a single entity (a single class).

Again, because you’re dealing with Object data sources, you need to take the extra step of actually
querying the data that you then apply to the binding source at runtime. This is am important difference

CHAPTER 13 ■ DATABINDING WITH THE ENTITY FRAMEWORK

236

over the Database data source. The EF makes it easy and nearly flawless, although there are some best
practices you should follow when doing data binding using the EF.

You’re almost ready to start laying out your form and adding code. As shown in Figure 13-7, select
the ProductModel class, and click Finish. Your Data Sources window should now look somewhat like
Figure 13-8.

Figure 13-8. Data Sources Window

It’s important to understand the use of the term somewhat in the preceding paragraph. Toward that
end, let’s pause and look at Figure 13-8. The ProductModel node is expanded. The Products node is also
expanded under the ProductModel node.

As you can see, even though you only selected ProductModel, you also have access to the Products
entity. And if you scroll down in the Data Sources window, you notice that through the Products entity,
you have access to other entities as well, such as ProductSubCategory and UnitMeasure. This access is due
to the associations (relationships) that are defined within the class. Through the defined navigation
properties, you can easily navigate to other scalar properties in related entities. Thus, you don’t need to
select all the classes in the wizard; you simply select the appropriate class that you need to display on the
form.

Each class (entity) also lists its available properties (columns), and you use these properties to create
the form. In this example, you create a simple parent/child form in which the top portion of the form
displays product model information and the lower portion displays product information related to the
selected product model.

Adding Code to the Form
It’s time to get to designing the form and writing some code. Open Form1 in design from the Data
Sources window. From the ProductModel class, drag the ProductModelID and Name properties onto the
form. Here you have the beginnings of a simple form. You notice that an extra control was placed on the
form: this is the BindingNavigator, part of the System.Windows.Forms namespace, which is paired with a

CHAPTER 13 ■ DATABINDING WITH THE ENTITY FRAMEWORK

237

BindingSource control (which appears below the form on the perimeter). You bind the results of your
query the BindingSource control. The BindingNavigator provides navigation (forward, back) and
manipulation (add, delete, save) for the controls on the form that the controls are bound to.

As you drag each property to the form, notice that the IDE selects the appropriate control to use on
the form for each given property. In fact, you can even see this correlation between property and control
in the Data Sources window (Figure 13-8); Visual Studio knows how to handle and present the
appropriate control, whether the property is a string, a date, or a boolean.

Go ahead and run the project. When the form displays, no data is displayed. This is because you
haven’t written any code to query the data to bind to the BindingSource control. Even though you have a
data source that is essentially bound to your ProductModel entity, you haven’t populated the entity with
any data.

In the code behind Form1, add the following bold code:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Data.Objects;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace WinFormsBinding
{
 public partial class Form1 : Form
 {
 EF40Data.EF40Entities context;

 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 context = new EF40Data.EF40Entities();

 ObjectResult<EF40Data.ProductModel> pm =
 context.ProductModels.Execute(MergeOption.AppendOnly);

 productModelBindingSource.DataSource = pm;

 grid.Rows[e.RowIndex].Cells[ProductModelName.Index].Value =
 prod.ProductModel.Name;
 grid.Rows[e.RowIndex].Cells[ProductSubCategoryName.Index].Value =
 prod.ProductSubcategory.Name;
 }
 }
}

CHAPTER 13 ■ DATABINDING WITH THE ENTITY FRAMEWORK

238

This example, like the many others you’ve done, needs access to the context, so the first thing you
do is define the context. You do this on a wider scope, not just in the Load event of the form, because you
want access to the context at the form level so that you can save, delete, and delete.

In the form’s Load event, you create an instance of the context, and then you use the ObjectResult
class to return an object query. The ObjectResult class is the base class for the results of an object query.
You’re using a typed query, so you use ObjectResult<T>, which returns a typed object—in this case, the
ProductModel object.

One of the important keys in this example is the use of ObjectResult for binding. Microsoft
recommends binding to ObjectResult<T> to avoid repeated query executions. If you bind to an
ObjectQuery<T>, you get repeated query executions during the binding process.

Rerun the application. When the form displays, you see data in the two fields on the form: Product
Model ID and Name (see Figure 13-9). You can also navigate between records using the
BindingNavigator control, which you see at the top of the form.

Figure 13-9. WinForm binding step 1

Adding a Grid Control
Your form so far is very simple, so let’s spruce it up. With Form1 in design view, go back to the Data
Sources window, and drag the entire Products class onto the form. When you do, Visual Studio is smart
enough to realize that because you want to see all the scalar properties of the Products class, the
appropriate control to use is the DataGrid. Very nice. Size the grid so that it fills the entire lower portion
of the form.

CHAPTER 13 ■ DATABINDING WITH THE ENTITY FRAMEWORK

239

Getting the Grid to Display Some Data
At this point, ask yourself whether the grid would display data if you ran the project right now. The
answer to this question, or at least part of the answer, lies below the form, again in the perimeter. A new
BindingSource has been added, called productsBindingSource.

Take a minute to look at the properties of the productsBindingSource control. The first thing to
notice is that its DataSource property is the binding source of the product model,
productModelBindingSource.

Let’s answer the original question by running the application. When the form displays, you
definitely see product data in the grid that is related to the selected product model. As you scroll through
the records, the data in the grid changes to display the appropriate related data. This is data binding at
its best. Figure 13-10 shows the form displaying the selected product model and related product
information.

Figure 13-10. WinForm binding step 2

However, there is a problem. Scroll the grid all the way to the right, as shown in Figure 13-11. The
last four columns in the grid aren’t displaying the correct values, but instead are showing the type. That’s
not very useful. The reason is that the grid can’t figure out the relation between ProductModel and
Products. This is a limitation of the grid, not of the EF or binding.

CHAPTER 13 ■ DATABINDING WITH THE ENTITY FRAMEWORK

240

Figure 13-11. Unbound columns

The fix is simple. Stop the application, and open the form in design. Select the grid, and open its
Properties window. Scroll down until you see the Columns property. Select the ellipse button for this
property to open the Edit Columns dialog, shown in Figure 13-12.

Figure 13-12. Edit Columns dialog

CHAPTER 13 ■ DATABINDING WITH THE ENTITY FRAMEWORK

241

In order to fix the columns that are displaying incorrect data, you need to add a couple of additional
columns to the grid. Click the Add button, and add two additional columns: ProductModelName and
ProductSubCategoryName. Then, click OK to save your changes.

You’re probably thinking that based on the fact that the grid is bound to the productsBindingSource,
you could have typed ProductModel.Name in the DataPropertyName property for the ProductModel column
in the grid. Good guess, but unfortunately that doesn’t work. The trick to addressing this issue is in the
code. Let’s look at that next.

Helping the Grid to Navigate the Relation
Select the grid while in design view. In the Properties window, click the Events button. In the list of
events for the grid, scroll down until you see the RowPrePaint event, and double-click it. In the newly
created RowPrePaint event, add the following code in bold:

private void productsDataGridView_RowPrePaint(object sender,
 DataGridViewRowPrePaintEventArgs e)
{
 var prod = (EF40Data.Product)(productsBindingSource[e.RowIndex]);

 var grid = productsDataGridView;

 grid.Rows[e.RowIndex].Cells[ProductModelName.Index].Value = prod.ProductModel.Name;
 grid.Rows[e.RowIndex].Cells[ProductSubCategoryName.Index].Value =
 prod.ProductSubcategory.Name;
}

The key here is that even though the grid is unable to figure out and navigate the relationships, you

can still use the grid to fix the problem by superseding the functionality at the row and cell level. As the
grid is being rendered and each row is being formatted, you can tell the appropriate cells what values to
display based on the row index.

Telling the cells what values to display is exactly what the code is doing. For each row that is being
painted, you grab the row index and then set each to the appropriate value by using the navigation
properties.

Testing Your Final Grid Implementation
Let’s test the changes by running the application again. This time, when the form displays, you should
see the appropriate values when you scroll to the end of grid, as shown in Figure 13-13.

CHAPTER 13 ■ DATABINDING WITH THE ENTITY FRAMEWORK

242

Figure 13-13. Correct values in the grid

The takeaway is the simple fact that you didn’t need to write any additional code to populate the
grid or any additional queries to display the correct values in the two columns you added. Nor did you
have to write any additional binding logic or the grid.

Implementing Add, Delete, and Save Functionality
Before moving on to WPF, let’s modify the form so that you can add and delete records. Thankfully, the
modification is pretty simple. Notice in Figure 13-13 that the Add, Delete, and Save buttons are disabled.
They’re disabled by default; to enable them, you need to right-click each button and select Enabled from
the context menu.

Having enabled the buttons, you need to write some code behind each one of them. Flip back a few
pages, and look at the code in the form’s Load event. Notice that you don’t declare the context there, but
at the form level, so the entire form has access to it. Remember that the context is what tracks changes to
entities: by putting the context at the form level, you just need to add a single line of code behind each
button to facilitate adding, deleting, and saving records.

Implementing Add Functionality
Adding data when working with data-bound controls takes a bit of thinking and planning but isn’t too
complicated. Adding new data requires the use of several methods on the form controls. When you
dropped a data source for the ProductModel onto the form, a BindingSource control called
productModelBindingSource was added to the form. This control has several events that allow you to
properly implement adding operations for new records, as you see momentarily.

The first thing you need to do is add a few variables to the form’s declaration section. The first
variable declares the context you use to add new records, using the EF40Entities data model from the
EF40Data project. The second variable defines the ProductModel entity to which you add a record. Last is

CHAPTER 13 ■ DATABINDING WITH THE ENTITY FRAMEWORK

243

a boolean variable that you use to determine when a new records is created. The following code snippet
shows the variable declarations:

EF40Data.EF40Entities context;
EF40Data.ProductModel prodMods;
bool isNew;

The next step is to implement the isNew variable, which must be placed in the AddingNew event of

the productModelBindingSource. This event is one of the events mentioned earlier. It’s fired every time a
new record is added to the productModel object. The following code shows the implementation of this
event and the boolean variable:

private void productModelBindingSource_AddingNew(object sender, AddingNewEventArgs e)
{
 isNew = true;
}

Next, you implement the code that adds the new record. This is done via the Click event of the

productModelBindingNavigationSaveItem button. In this event, you check to see if the isNew variable has
the value true; if it does, you check the length of the product model name text box to ensure that the user
has added a new product model. You then call the EndEdit method of the productModelBindingSource,
which applies any pending changes to the underlying data source. You create a new instance of the
ProductModel object, and add the new product model name to the Name property of the ProductModel
object. You then add the ProductModel object to the context using the AddObject method, which adds the
specified object (the ProductModel object, in this case) to the object context in the current entity set.
Finally, you call the SaveChanges() method on the context and set the isNew variable to false:

private void productModelBindingNavigationSaveItem_Click(object sender, EventArgs e)

{
 if (isNew)
 {
 try
 {
 if (nameTextBox.Text.Length > 0)
 {
 productModelBindingSource.EndEdit();
 prodMods = new EF40Data.ProductModel();
 prodMods.Name = nameTextBox.Text;
 context.ProductModels.AddObject(prodMods);
 context.SaveChanges();
 isNew = false;
 }
 }
 catch (Exception ex)
 {
 if (ex.InnerException != null)
 MessageBox.Show(ex.InnerException.Message.ToString());
 else
 MessageBox.Show(ex.Message.ToString());
 }
 }
 else

CHAPTER 13 ■ DATABINDING WITH THE ENTITY FRAMEWORK

244

 {
 productModelBindingSource.EndEdit();
 context.SaveChanges();
 }
}

Last, you implement the saving of the new record. As you’ve previously learned, this is

accomplished via the SaveChanges method on the context. As you did in the previous code snippet, you
first call the EndEdit method on the BindingSource, which applies pending changes to the underlying
data source:

private void productModelBindingNavigatorSaveItem_Click(object sender, EventArgs e)

{
 productModelBindingSource.EndEdit();
 context.SaveChanges();
}

Press F5 to run the project. When the form appears, click the plus (+) button to add a new record.

The Binding Navigator counter goes from 1 to 130. The Product Model ID displays a value of 0 because
this is a new record: the ProductModelID column is autogenerated, and 0 is the default value for new
records that haven’t yet been saved to the underlying data store. Add a product model name, and click
the Save button (you aren’t worrying about related products yet). Clicking Save adds your new product
model to the database. Querying the ProductModel table shows the new record added.

Implementing Delete Functionality
Deleting records is much easier than deleting records, fortunately. Not that adding records is extremely
difficult, but deleting records is far easier. With the project running, navigate to the record you just
added, click the Delete button on the Product Model Binding Navigator, and then click the Save button.
Voila: the record is deleted. Clicking the Delete button removes the record from the ProductModel class
within the context, and clicking the Save button calls the SaveChanges event of the context—which, as
you’ve learned, tracks changes to entities and ushers those changes back to the database. No special
code needs to be added to the underlying Click event of the Delete button because the object context
handles the state of all entity objects.

Implementing Save Functionality
You’ve seen data being saved in several chapters, including Chapter 5, so you don’t spend a lot of time
on it here. Saving of records is accomplished via the context’s SaveChanges method. As you learned in
Chapter 5, the SaveChanges method persists all changes to the data source, whether those changes are
updates, deletes, or inserts.

To wrap up this section, let’s look at what you’ve done. You first created the data object from which
the controls are bound. You then placed some controls on your form and added code that populates the
controls. You made a few adjustments for those columns in the grid to address the relationship between
ProductModel and Products so the appropriate foreign key values appear in the grid. You also added code
to add new records.

Your homework assignment for this section is to fix the other two columns in the grid, UnitMeasure
and UnitMeasure1. Both of these columns are foreign keys to the UnitMeasure table. You can use the
previous example of how you fixed the columns earlier.

Let’s move on to data binding with WPF.

CHAPTER 13 ■ DATABINDING WITH THE ENTITY FRAMEWORK

245

WPF Data Binding
This section discusses binding with Windows Presentation Foundation (WPF). In this example, you
focus on the sales side of things, pulling in SalesOrderHeader and SalesOrderDetail information to
populate a simple WPF form.

If you’ve never developed an application with WPF before, don’t fear. This example doesn’t go deep
into the intricacies of WPF (there are many great WPF books out there), but you get an idea of how to
build a simple EF data binding application for WPF.

Creating a Project
Binding in WPF is quite different from a Windows form because WPF has no built-in binding controls.
The first thing you need to do is create the project; in the existing solution that you’ve been using,
choose File ➤ Add ➤ New Project. This opens the Add New Project dialog, show earlier in Figure 13-1.
This time, however, you want to select the WPF Application template. Give it the name WPFBinding, and
click OK.

Just like your WinFormsBinding project, add a reference to the EF40Data project to this
WPFBinding project. Before you start adding code, drag a WPF list box onto the window. Again, you
aren’t going for a well-designed layout—you simply need a list box. In the code, I’ve renamed Window1
to MainWindow. You may want to do the same to avoid any confusion.

Adding Some Code
Let’s add some code. Modify the code behind the MainWindow to look like the following. Notice the
addition of some using statements (besides the default using statements), some variable declarations at
the Window level, and some code in the Loaded event for the window:

using EF40Data;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Data.Objects;
using System.Collections.ObjectModel;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

namespace WPFBinding
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 private EF40Entities context;
 private List<SalesOrderHeader> soh;

CHAPTER 13 ■ DATABINDING WITH THE ENTITY FRAMEWORK

246

 public MainWindow()
 {
 InitializeComponent();
 }

 private void Window_Loaded(object sender, RoutedEventArgs e)
 {
 context = new EF40Entities();

 soh = context.SalesOrderHeaders.OrderBy(o => o.AccountNumber).ToList();

 listBox1.ItemsSource = soh;
 }
 }
}

Running the Project
To run this project you need to set it as the default project. In Solution Explorer, right-click the
WPFBinding project, and select Set as Default Project from the context menu. Press F5 to run the
application. When the WPF form displays, you should immediately notice that the data in the list box
doesn’t look right, as shown in Figure 13-14.

Figure 13-14. WPF main form

The problem in this example is much like the problem you had with the data grid in the previous
example: the columns in the list box don’t know where to get the data. Sure, you bound the list box

CHAPTER 13 ■ DATABINDING WITH THE ENTITY FRAMEWORK

247

control using the ItemsSource property, which is the method that WPF uses to bind controls. But you
haven’t defined the appropriate columns, nor have you defined how the columns get their data from the
query results.

In essence, you haven’t given the list box any specific instructions, so the list box by default calls the
ToString method when trying to display objects. Thus, the list box displays the string representation of
each source in the object. Displaying string representations of everything isn’t very useful.

The fix to the problem of displaying string representations isn’t in the code, but in the WPF XAML.
Switch to design view for the window, and you should see some XML in the design window. This is
where you need to make your changes.

Go to the window in design view and add the following code in bold in the form’s XAML window.
Your results should appear similar to those in Figure 13-15.

<ListBox Height="222" HorizontalAlignment="Left" Margin="12,12,0,0" Name="listBox1"
VerticalAlignment="Top" Width="599">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock Width="200" Text="{Binding Path=AccountNumber}" />
 <TextBlock Text="{Binding Path=PurchaseOrderNumber}" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

Figure 13-15. XAML window

CHAPTER 13 ■ DATABINDING WITH THE ENTITY FRAMEWORK

248

Before you run this code to test it, let’s look at what you’re doing. You’re adding to the list box
control itself. First, you define the rows and what they look like, via the ListBox.ItemTemplate. The
ItemTemplate is used to specify the visualization (visual structure) of the data objects.

Inside the ItemTemplate, you use a DataTemplate, because that is what helps you specify how each
item appears in your next element, the StackPanel. The StackPanel arranges each child element into a
single line that can be oriented either horizontally or vertically. In this example, you want the rows laid
out horizontally.

You then use the TextBlock element to define your columns and display the data. However, this is
just simple XAML. The key here is the Text property of each TextBlock, which allows you to specify your
binding properties. The Binding property lets you specify where the TextBlock gets its data via binding.
The Path property specifies the name of the entity property from which it’s bound.

Now you’re ready to run the project again. Press F5; when the form displays, you should a nice
listbox with two columns that display the account number and the purchase order number, as shown in
Figure 13-16.

Figure 13-16. Displaying account numbers and purchase orders

The list box knows where it’s getting the values because you defined that in the code. You had to
define the list box columns and specify where the columns get their data.

Displaying Related Detail
As is, the form isn’t very useful. It simply displays sales header information: account numbers and
related purchase orders. Let’s modify this window a bit to display related sales detail information. With
the window in design mode, size the window so that there is extra space below the list box, and place
eight labels, seven text boxes, and one combo box on the window. See Figure 13-17.

CHAPTER 13 ■ DATABINDING WITH THE ENTITY FRAMEWORK

249

Figure 13-17. Completed form

You can modify the window so that as you select on a row within the list box, related sales order
detail information is displayed in the new controls you placed in the window. Displaying the details isn’t
as difficult as you may imagine.

After you’ve placed and arranged the controls, binding them is simple. No extra code needs to be
written—in fact, the only thing you need to do is modify the TextBox elements to include the binding
details. The syntax from the form in the following code example shows two ways the controls can be
bound.

The first method is to include a completely separate Binding child element of the TextBox element,
shown in the first bold code. The second method is to include the binding within the Text property of
the TextBox element, as shown in the second highlighted section of code:

<Label Content="Order Date" Height="25" HorizontalAlignment="Left" Margin="16,240,0,0"
 Name="label1" VerticalAlignment="Top" Width="74" Visibility="Visible" />
<Label Content="Due Date" Height="25" HorizontalAlignment="Left" Margin="16,271,0,0"
 Name="label2" VerticalAlignment="Top" Width="74" Visibility="Visible" />
<Label Content="Ship Date" Height="25" HorizontalAlignment="Left" Margin="16,300,0,0"
 Name="label3" VerticalAlignment="Top" Width="74" Visibility="Visible" />
<Label Content="Sales Order Number" Height="25" HorizontalAlignment="Left"
 Margin="257,240,0,0"
 Name="label4" VerticalAlignment="Top" Width="123" Visibility="Visible" />
<Label Content="Sub Total" Height="25" HorizontalAlignment="Left" Margin="257,273,0,0"
 Name="label5" VerticalAlignment="Top" Width="123" Visibility="Visible" />
<Label Content="Tax" Height="25" HorizontalAlignment="Left" Margin="257,302,0,0"
 Name="label6"
 VerticalAlignment="Top" Width="123" Visibility="Visible" />
<Label Content="Total" Height="25" HorizontalAlignment="Left" Margin="257,329,0,0"
 Name="label7"
 VerticalAlignment="Top" Width="123" Visibility="Visible" />
<Label Content="Sales Person" HorizontalAlignment="Left" Margin="16,329,0,38" Name="label8"
 Width="83" Visibility="Visible" />

CHAPTER 13 ■ DATABINDING WITH THE ENTITY FRAMEWORK

250

<TextBox Height="23" HorizontalAlignment="Left" Margin="105,242,0,0" Name="textBox1"
 VerticalAlignment="Top" Width="120" Visibility="Visible">
 <Binding ElementName="listBox1" Path="SelectedItem.OrderDate"
 StringFormat="{}{0:MM/dd/yyyy}" />
</TextBox>
<TextBox Height="23" HorizontalAlignment="Left" Margin="105,273,0,0" Name="textBox2"
 Text="{Binding ElementName=listBox1, Path=SelectedItem.DueDate,
 StringFormat=\{0:MM/dd/yyyy\}}" VerticalAlignment="Top" Width="120"
 Visibility="Visible" />
<TextBox Height="23" HorizontalAlignment="Left" Margin="105,302,0,0" Name="textBox3"
 Text="{Binding ElementName=listBox1, Path=SelectedItem.ShipDate,
 StringFormat=\{0:MM/dd/yyyy\}}" VerticalAlignment="Top" Width="120"
 Visibility="Visible" />
<TextBox Height="23" HorizontalAlignment="Left" Margin="386,242,0,0" Name="textBox4"
 Text="{Binding ElementName=listBox1, Path=SelectedItem.SalesOrderNumber}"
 VerticalAlignment="Top" Width="120" Visibility="Visible" />
<TextBox Height="23" HorizontalAlignment="Left" Margin="386,273,0,0" Name="textBox5"
 Text="{Binding ElementName=listBox1, Path=SelectedItem.SubTotal,
 StringFormat=\{0:######.##\}}" VerticalAlignment="Top" Width="120"
 Visibility="Visible" />
<TextBox Height="23" HorizontalAlignment="Left" Margin="386,302,0,0" Name="textBox6"
 Text="{Binding ElementName=listBox1, Path=SelectedItem.TaxAmt,
 StringFormat=\{0:######.##\}}" VerticalAlignment="Top" Width="120"
 Visibility="Visible" />
<TextBox Height="23" HorizontalAlignment="Left" Margin="386,331,0,0" Name="textBox7"
 Text="{Binding ElementName=listBox1, Path=SelectedItem.TotalDue,
 StringFormat=\{0:######.##\}}" VerticalAlignment="Top" Width="120"
 Visibility="Visible" />
<ComboBox Height="23" HorizontalAlignment="Right" Margin="0,331,398,0" Name="comboBox1"
 VerticalAlignment="Top" Width="120" DisplayMemberPath="LastName"
 SelectedValuePath="ContactID" SelectedValue="{Binding ElementName=listBox1,
 Path=SelectedItem.SalesPersonID}" Visibility="Visible" />

Either method works—use whichever is more readable for you. The key here is the information that

shows how the binding takes place. First, notice the ElementName property, which specifies the name of
the binding source object. Next is the familiar Path property, which specifies the name of the entity
property from which the element is bound. Last, notice that some text boxes have a StringFormat
property, which specifies how to format the string when it’s displayed in the text box.

Because you’ve already placed the controls (labels, text boxes, and a combo box) on the window, the
only thing you need to be concerned about is the binding information. You’re ready to test. Run the
project again; and when the form displays, select the first record in the list box. The text boxes should
display the related sales order detail information for the selected sales order header record in the list
box.

You can test this form easily. Open the form in design view, and add a button to the form. Set the
Content property to Save. In the Click event, add the following code:

context.SaveChanges();

Run the project again; and when the form displays, change the Tax value. (In my test, I changed the

value from 1057.28 to 2057.28.) Watch the Total value when you click the Save button. It changes,
doesn’t it? The Total value is a calculated column in the database, so the fact that the field on the form
updates when you change and save the Tax value shows that binding is working and that the values are
being saved and updated in the database.

CHAPTER 13 ■ DATABINDING WITH THE ENTITY FRAMEWORK

251

What you haven’t done is hook up the combo box. Guess what your homework assignment is? Yep,
you get to hook up the combo box. However, I won’t leave you without a hint. You first need this
declaration in the code behind the window:

private List<SalesPerson> sp;

Here is the code to put in the Window_Loaded event, underneath the code to get the sales order

header data

sp = context.SalesPersons.OrderBy(s => s.SalesPersonID).ToList();
comboBox1.ItemsSource = sp;

Next, you need to modify the XAML code for the combo. The hint for this is that the SalesPerson

information comes from the SalesOrderHeader, and you need to use the navigation properties to get to
the contact info if you want to display the name of the sales person. Got it?
As you’ve probably gathered from this chapter, data binding with the EF is flexible and powerful
regardless of the application type. There are certain nuances you need to be prepared to work with
depending on the environment, as you’ve seen in this chapter, such as displaying relational data in grids
or working with data sources in WPF. Yet regardless of what issues you may run in to, data binding with
the EF makes for rapid application development with the flexibility of working with EF objects.

CHAPTER 13 ■ DATABINDING WITH THE ENTITY FRAMEWORK

252

■ INDEX

253

Index

■ SPECIAL CHARACTERS &
NUMERICS
* syntax, 74
: (many-to-many) association, 46, 160
_ (underscore character), 162
+ (plus) button, 244
= assignment, 68
=> operator, 68
1:* (one-to-many) type, 46
1:1 (one-to-one) type, 46

■ A
AcceptAllChanges method, 85
AcceptAllChangesAfterSave() method, 85
Active property, 42
Add Association dialog box, 117
Add button, 241–242
Add Code Generation Item option, 138–139
Add foreign key properties to the entityname

Entity check box, 116–117
Add Function Import dialog box, 107
Add Function Import option, 37, 106–107
Add menu option, 24
Add method option, 47
Add New Data Source link, 233
Add New Item dialog box, 14, 127–128, 138–139,

188, 190
Add New Project dialog box, 170, 202, 245
Add Reference button, 235
Add Reference dialog box, 170, 230–231, 235
Add Reference option, 230
Add References dialog box, 171
Add Service Reference dialog box, 203–204, 207,

233
Add Service Reference option, 202–203
Add Service Reference wizard, 205
Add tab, Update Wizard, 97
AddContactProcedures.sql file, 209

Added state, 88
added value, 84
AddingNew event, 243
AdditionalContactInfo class, 181
AdditionalContactInfo property, 161
AdditionalContactInfo table, 6
AdditionalContactInfo view, 35
AddObject method, 88, 243
Address textbox, 204
AddToProductModel method, 89
AdventureWorks database, 15, 110, 112, 152, 169,

188
AdventureWorks2008Entities class, 67, 83
AdventureWorks2008Entities objects, 58, 86
AdventureWorksEntities class, 205–206
AdventureWorksModel value, 189
Age column, Rider table, 149
All enumeration, 195
AllRead enumeration, 195
AllWrite enumeration, 195
app.config file, 58, 78, 219, 224, 231
Append Only enumeration, 84
assembly directive, 135
Association element, 52–53
Association item, 147
Association object, 22
association set, 112
Association Set Name property, 112
association sets, 112
associations

adding, 116–117
of CSDL section, 55–56
for entities, 45–46
first class, 113
foreign keys (FK), 119
independent, 119
rules for generating, 46

AssociationSet element, 53, 118
AssociationSetMapping element, 57, 112

■ INDEX

254

Average operator, 80
AWCodeOnlyData project, 222
AWCodeOnlyUI project, 222
AWModel.cs class, 172–173, 176
AWService.svc file, 192, 204

■ B
binary assembly, 217, 219
Binding element, 249
binding, entity classes, 232
Binding Navigator counter, 244
BindingNavigator control, 236–238
BindingSource control, 237, 239, 242, 244
Brand entity, 148
BrandID column, 149
BrandName column, Brand table, 149
breakpoint, 65, 87
Build menu, 218
Build Solution option, 218
BusinessEntity record, 103
BusinessEntity table, 35
BusinessEntityID property, 47
button2 button, 208

■ C
Cascade option, OnDelete property, 115
cascading deletes, 45
catch block, 220–221, 226
CellPhone property, 42, 161
change tracking, in POCO, 182–183
Choose Model Contents dialog box, 124
Choose Toolbox Items dialog box, 165
Choose Your Data Connection dialog box, 152
Choose Your Data Connection option, 189
Choose Your Database Objects dialog box, 110,

113, 124, 210, 212
Clarius Corporation, 128
Class entity, 148
Class Library project, 110, 168
Class1.cs file, 124
classes, generated by Entity Data Model, 58–61
ClassID column

Class table, 150
Rider table, 149

ClassName column, Class table, 150
Click event, 64, 75, 89, 91, 122, 206–207, 243–244,

250
closing braces, 65, 132
CLR (common language runtime) types, 83
code-only, 167–186

adding references, 170–171
building project, 176–180

connecting DataGridView control, 178–
179

loading some rows, 177–178
running application, 179–180

configuration classes
adding, 172
creating, 173–175

data project, 168–170
installing EF Feature CTP, 167–168
method to create EDM, 32–33
POCO information, 180–183
testing model, 175–176
User-Interface (UI) project, 170–173

CodeOnlyData project, 171, 181
CodePlex web site, 13
Column column, 47
column mapping, 47
column, Rider table, 149
Columns property, 240
CommandText property, 78
common language runtime (CLR) types, 83
Community Technology Preview, 165
compilation, verifying for model-first design, 152
Complex Property, Add menu, 43, 161
Complex Property option, Add menu, 24
complex types

of entities, 40–45
handling of with model-first design, 161–162
support for in version 4.0, 11
support in POCO, 181

complex types node, 41–42, 161
conceptual layer, 56
conceptual mapping, 5
conceptual model, 5
conceptual model node, 41
Conceptual Schema Definition Language (CSDL),

40, 49, 117–118, 138, 169, 218
of Entity Data Model Runtime section

associations, 55–56
EntityType element, 54–55
overview, 53

configuration classes, code-only model design
adding, 172
creating, 173–175

connection exceptions, 223–225
Connection Properties dialog box, 15–16
Connection String property, 219
<ConnectionString> section, 78, 224
Console.WriteLine method, 131

■ INDEX

255

Contact class, 32, 174–175, 181
Contact Employees collection, 122
Contact entity, 43, 45
Contact object, 120–121, 123
Contact property, 182, 214
Contact table, 6, 179, 215
ContactConfiguration.cs class, 172–173
ContactID FK property, 122
ContactID property, 112, 114, 123
Contacts object, 122
Content property, 250
Content tab, 198
ContextBuilder variable, 176–177
Contexts region, 58
Copy to Output Directory property, 218
copy/paste error, 131
CounterStuff class, 133
Create Complex Type option, 41
Create Database Wizard, 10, 152
create, read, update, delete (CRUD) operations,

215
CREATE TABLE statement, 164
Create, Update, Delete (CUD) oprerations, 83
CreateObject method, 183
CreateProductModel method, 89
CRUD (create, read, update, delete) operations,

215
.cs file, 193
C-S Mapping Content section, 152
C-S Mapping Specification Language (MSL)

section, of Entity Data Model Runtime
section, 56–57

CSDL. See Conceptual Schema Definition
Language

.csdl extension, 218
CsdlToSsdlAndMslActivity, 165
CUD (Create, Update, Delete) oprerations, 83
Custom Tool property, 140–141
Customer entity, 26
CustomerAddress property, 25
CustomerCity property, 25
CustomerFirstName property, 24
CustomerID property, 25–26
CustomerLastName property, 25
CustomerPhone property, 25
CustomerState property, 25
CustomerZipCode property, 25

■ D
data access, comparison of options for

database-driven, 5–6

model-driven, 6–8
overview, 5

data binding with Entity Framework (EF), 229–
251

in windows forms, 229–244
add function, 242–244
creating data sources, 232–236
creating new form, 229–232
creating project directory, 229
delete function, 244
form code, 236–238
grid control, 238–242
save function, 244

WPF data binding, 245–251
adding code, 245
creating project, 245
displaying related detail, 248–251
running project, 246–248

Data Connection page, 17
Data Connection screen, 27
Data Definition Language (DDL), 29–31, 153–154,

163
Data Flow Diagram (DFD), 4
data integrity, 53
Data node, 14
Data object templates, 14
Data Service template, 190–193
Data Source Configuration Wizard, 234
Data Sources Configuration Wizard, 233
data sources, creating data binding in windows

forms, 232–236
Data Sources window, 232–233, 236, 238
database

generating after creating EDM, 27–31
generation rules

for associations, 160
for tables, 159–160

generation script customization, 163–166
Database binding, 234
Database data source, 236
Database Generation Wizard, 159, 163
Database Generation Workflow property, 163
database model, 7
Database Objects page, 19–20
Database Schema Name property, 163
Database Script Generation section, 163
Database type, 233
database-driven, data access, 5–6
database-first, method to create EDM, 14–19
data-binding, 232
DataGrid control, 238

■ INDEX

256

DataGridView control, connecting in code-only
model design, 178–179

DataPropertyName property, 241
DataReader class, 2
DataReader object, 3–5
DataSet class, 2
DataSet object, 4–5
DataSource property, 178–179, 239
DataTemplate, 248
datetime variables, 120
DDL (Data Definition Language), 29–31, 153–154,

163
debug attribute, template directive, 129
deferred execution, of query, 79
DeferredLoadingEnabled property, 182
<DefiningQuery> element, 51, 53
Delete button, 105, 242, 244
delete function, 105
Delete operation, 38
Delete procedure, 216
Delete tab, Update Wizard, 97
deleted value, 84
DeleteFunction element, 102
DeleteObject() method, 91–92, 105
DeletePerson procedure, 97, 100
Dependent element, 53
Dependent field, 116
dependent objects, adding, 120–121
Dependent Property field, 116
derived type, 32
design view, 247
design window, 247
Designer surface, Designer tool, 37
Designer window, 20–22, 35–37, 217
designer.cs. extension, 58
detached value, 84
DetectChanges() method, 85
DetectChangesBeforeSave enumeration, 85
DFD (Data Flow Diagram), 4
Discover button, 203–204
DisplayMember property, 178
DoCounter method, 133
Download button, 167
DROP statements, 153, 157
DROP TABLE statement, 164

■ E
Edit Columns dialog box, 240
EDM. See Entity Data Model
EDM Designer, 9
EdmFunctionAttribute attribute, 11

.edmx file, 47–49, 97, 101, 140, 158
EF. See Entity Framework
EF40CreationScript.sql file, 123
EF40Data node, 235
EF40Data project, and relationships, 123
EF40Data solution, 231
EF40Entities data model, 242
EF40Template.tt, 143
EF4FeatureCTP2.exe file, 167
EFDemo.Designer.cs file, 58
ElementName property, 250
elements

association, of SSDL section, 52–53
EntityType

of Conceptual Schema Definition
Language (CSDL) section, 54–55

of Storage Model (SSDL) section, 52
EmailAddress property, 42
EmailAddress2 property, 181
Employee class, 32
Employee collection, 120–122
Employee entity, 47
Employee object, 120–123
Employee property, 46
Employee role, 56
Employee table, 6, 35, 52, 112, 207
Employee type, 207
Employee view, 35
EmployeeAddresses property, 213
EmployeeConfiguration.cs class, 172, 174
Employee.Contact property, 123
Employee.cs class, 222
Empty Model option, 147
Empty model template, 22
EndEdit method, 243–244
EndProperty elements, 57
entities

adding, 87–89
associations for, 45–46
complex types, 40–45
creating in empty model with model-first

design, 148–150
deleting, 91
features of, 8
navigation properties of, 9, 46–47
and ObjectContext class

ObjectStateEntry class, 83–84
tracking and saving changes, 84–85

relational inserts, 89–91
scalar properties, 40
updating, 85–87

■ INDEX

257

Entities region, 59
entity classes, binding, 232
Entity connection string section, 17
Entity Data Model (EDM), 13–61

checking, 213–214
classes generated by, 58–61
creation methods, 13

code-only, 32–33
database-first, 14–19
model-first, 22–26

Designer window, 35–37
entities, 38–47

associations for, 45–46
complex types, 40–45
navigation properties of, 46–47
scalar properties, 40

generating schema and database, 27–31
making plural or singular names, 19–21
Mapping Details window, 38–47
Model Browser window, 37
Runtime section parts, 50–57

CS MSL section, 56–57
CSDL section, 53–56
SSDL section, 50–53

and stored procedures, 93–97
table inheritance, 31–32
updating, 209–213
viewing XML of, 48–50

Entity Data Model (EDM) template, 14, 22
Entity Data Model (EDM) Wizard, 11, 14–15, 22,

58, 110, 147, 231
Entity Designer Database Generation Power Pack

tool, Microsoft, 165
Entity Framework (EF), 208

comparison of data access options
database-driven, 5–6
model-driven, 6–8
overview, 5

database-independent support, 12–13
entity features, 8–9
need for, 2–5
overview, 4–5
and T4 templates, 137–142
version 4.0 features

complex types, 11
LINQ-to-entities function support, 11
model browser improvements, 11–12
model-first support, 10
object-layer code generation, 11
overview, 10
plurality naming, 11

POCO support, 10
related object-deferred loading, 10

Entity Framework (EF) 3.5
and relationships, 110–113
restrictions in, 180

Entity Framework (EF) Feature CTP, 167–168,
170, 176

Entity Framework (EF) functions, 98–99
Entity Framework (EF) project, building for

performance, 216–219
Entity Framework EDM, 200
Entity item, 147
entity key, 40
Entity Key property, 24
Entity Model Code Generator tool, 11
Entity Name property, 19–20
Entity object, 22
Entity property, 23–24
Entity Relationship Model (ERM), 3–4
entity set, 38
Entity Set Name property, 19–20, 39
Entity Set names, 20
Entity SQL, option to query Entity Data Model,

74–76
entity type, 38
EntityClient

EntityCommand, 78
EntityConnection, 77–78
overview, 76

EntityClient Provider for the Entity Framework,
12

EntityCommand class, 77
EntityConnection class, 77, 173, 176
EntityContainer element, 51, 53, 67, 235
EntityContainerMapping element, 57
EntityFramework, 67
EntityFunctions class, 11
EntityKey class, 91
EntityKey values, 83
EntityModelCodeGenerator tool, 58, 140
EntityObject class, 180
EntityObject Generator template, 137–138
EntitySet element, 32, 160
EntitySet name, 91
EntitySet property, 32, 213
EntitySetMapping element, 57
EntitySetRights enumeration, 195
EntitySets, 53
EntitySQL exceptions, 226–227
EntitySQLException class, 226
EntityState property, 84

■ INDEX

258

EntityType element, 11
of CSDL section, 54–55
of SSDL section, 52

EntityType names, 20
EntityType property, 213
EntityTypeMapping element, 57, 101–102
enumerable object, 87
ERM (Entity Relationship Model), 3–4
eSqlBlast tool, 227
Events button, 241
Exception class, 221–223
exception handling

connection exceptions, 223–225
EntitySQL exceptions, 226–227
Exception class, 221–223
overview, 219
query exceptions, 225–226
try/catch blocks, 219–220
using statement, 221

Exception.Message property, 222
ExecuteReader method, 78
execution of query

deferred, 79
immediate, 80–81
overview, 78–79

expressions, Lambda, 68
Extensible Markup Language. See XML
extension attribute, output directive, 129
extension directive, 130

■ F
finally block, 220–221
Finish button, 20
first class associations, 113
First operator, 80, 87
FirstName column, Rider table, 149
Fixed Length property, 24
FK. See foreign keys
FK_SalesOrderHeader_SalesPerson_SalesPersonI

D key, 57
FlagsAttribute attribute, 85
for loop, 131–132
foreach block, 65
foreach line, 65
foreach statement, 70, 79
foreign keys (FK), 30, 53, 112, 116

in relationships
adding dependent objects, 120–121
manually setting, 121–122
overview, 119
setting automatically, 122–123

Form1.cs file, 64
FROM clause, 66–67, 69–70, 99
from operator, 70
function, 11
Function elements, 98, 102
Function Import mapping, 106
functions

delete, 105
insert, 102–104
mapping of, 99–102
select, 105–106
update, 104
using in queries, 106

■ G
GDW (Generate Database Wizard), 152, 158–159
Generate Database from Model item, 152
Generate Database Script from Model option, 27–

28
Generate Database Wizard (GDW), 152, 158–159
GenerateDatabaseScriptWorkflow item, 165
get accessor, 183
GetObjectByKey method, 91
Go button, 204
graph, Entity Framework, 9
grid control, data binding in windows forms

displaying data with, 239–241
navigating relation in, 241
overview, 238
testing, 241–242

group operator, 72–73

■ H
HAVING clause, 66
HumanResources.Employee table, 114

■ I
ICollection<T> type, 182–183
Id field, 161
ID property, 23, 25
IEntityWithChangeTracker interface, 180, 182–

183
IEntityWithKey interface, 180
IEntityWithRelationships interface, 180, 182–183
immediate execution, of query, 80–81
include foreign key columns in the model option,

113, 125
independent associations, 119
inheritance, 7–8, 22

■ INDEX

259

inherits attribute, template directive, 129
InitializeService method, 194
inline code directives, 131
INNER JOIN, 66
InnerException property, 221–222, 226
Insert button, 102–104
insert function, 102, 215
Insert operation, 38
INSERT statement, 90
InsertFunction element, 102
InsertPerson function, 99
InsertPerson procedure, 98, 103
Installed Templates list, 14, 165
IntelliSense, directives of, 129
Internet Options dialog box, 198
IObjectSet interface, 173
IQueryable interface, 70–71, 76
IsComposable attribute, 98
IsIdentity() property, 174
isNew variable, 243
IsRequired property, 174–175
IsSupportTeam column, Team table, 149
ItemDescription property, 25
ItemID property, 25–26
ItemName property, 25
ItemsSource property, 247
ItemTemplate, 248
IValidator class, 142–143

■ J
join operator, 73
join syntax, 74

■ K
Key element, 52, 55

■ L
Lambda expressions, 68
language attribute, template directive, 129
language directive, 130
Language INtegrated Query. See LINQ
lass Library project, 145
lazy loading, in POCO, 182
LINQ (Language INtegrated Query), 69, 207
LINQ (Language Integrated Query)-to-Entities

function, 11
LINQ (Language Integrated Query)-to-Entities

query, 69–74
List object, 80

ListBox.ItemTemplate, 248
Load event, 177, 179, 222
Loaded event, 245
logical model, 5

■ M
Main method, 133
ManagerID property, 112, 114
Many relationships, 109
many-to-many (*:*) association, 46, 160
mapping

functions, 99–102
stored procedures for performance, 215–216

Mapping Details window, 37–47, 99, 215
mapping element, 57
mapping fragment element, 57
mapping layer, 56
mapping schema language, 218
mapping specification language (MSL), 49, 101,

119, 158
mapping warnings, 151
Mapping window, 37
mappings, creating with model-first design, 152–

159
Max Length property, 24
Max operator, 80
MaxLength property, 174–175
MergeOption enumeration, 84
Message property, 221–222, 226
MessageBox class, 220
Metadata Artifact Processing property, 217–219
metadata files, EDM, 49
MetadataException class, 225
method-based, syntax to query EDM, 68–69
Microsoft.Data.Entity.Ctp assembly, 171
Microsoft.Data.Entity.Ctp component, 170
Microsoft.Data.Entity.Design.DatabaseGeneratio

n namespace, 165
Microsoft.Data.Objects.ContextBuilder class, 176
Microsoft.SqlServer.ConnectionInfo class, 135
Microsoft.SqlServer.Management.Sdk.Sfc, 135
Microsoft.SqlServer.Smo, 135
MiddleName column, Rider table, 149
MidName column, 3
Model Browser, 105–106
model browser

improvements to in version 4.0, 11–12
and stored procedures, 97–98

Model Browser tab, 211
Model Browser window, 37, 41, 161
model contents option, 14–15

■ INDEX

260

model-driven, data access, 6–8
model-first

database generation rules, 159–160
database generation script customization,

163–166
design

creating Associations and Navigation
properties, 150

creating conceptual model, 145–147
creating entities in empty model, 148–150
creating mappings and database, 152–159
overview, 145
saving model, 151
verifying compilation, 152

handling of complex types, 161–162
method to create EDM, 22–26
overview, 145
support for in version 4.0, 10

modeling applications, others vs. Entity
Framework, 3–4

ModelName.edmx.sql file, 29
ModificationFunctionMapping element, 102
modified value, 84
ModifiedDate column, 87
ModifiedDate property, 86, 88
ModifyDateTime property, 25
Motocross EDM, 163
MSL (mapping specification language), 49, 56–57,

101, 119, 158
.msl extension, 218
multiplicity attribute, 45, 109

■ N
Name association, 56
Name attribute, 52
Name property, 88, 236, 243
namespace directive, 135
Namespace element, 54
navigation properties, 46–47, 112
navigation property, 9
Navigation Property check box, 117
NavigationProperty element, 55
NET Framework Data Provider for SqlClient for

Entity Framework, 12
.NET/COM assembly, 235
New Connection button, 15
New Item option, 14
new keyword, 121
New Project dialog box, 14, 188, 229–230
NHibernate, 4
non-derived type, 32

None enumeration, 85, 195
None option, OnDelete property, 115
NoTracking enumeration, 84
n-tier development

overview, 187
WCF Data Service

building, 187–194
consuming, 201–208
testing, 194–201

n-tier environment, 188
Nullable property, 24

■ O
Object data source, 235
object materialization, 83
object names of EDM, making plural or singular,

19–21
Object type, 233–234
ObjectContext cache, 84
ObjectContext class, 33, 58

and entities, 83–85
and syntax to query EDM, 67

object-layer code generation, support for in
version 4.0, 11

ObjectQuery class, 84, 173
ObjectQuery type, 76
ObjectQuery<T>, 238
Object-Relational Mapping (ORM), 4
ObjectResult class, 238
ObjectResult<T>, 238
ObjectSet class, 65, 173
ObjectStateEntry class, and entities, 83–84
ObjectStateManager class, 84–85
ObjectStateManager object, 83
OnDelete property, 45, 115
One relationships, 109
one-to-many (1:*) type, 46
One-to-Many association, 112, 160
one-to-one (1:1) type, 46
one-to-one association, 160
one-to-one mapping, 6
one-to-zero association, 160
open bracket, 132
Open With dialog box, 48, 117, 152
Open With option, 117, 152
Operator column, 47, 100
ORDER BY clause, 74
Order entity, 26
Order type, 39
orderby clause, 70
OrderBy method, 68

■ INDEX

261

orderby operator, 70
OrderID property, 25
ORM (Object-Relational Mapping), 4
OUTER JOIN, 66
output directive, 129
overwrite warning, 157
OverwriteChanges enumeration, 84

■ P
p variable, 75
<Parameter> element, 99
Parameter/Column column, 100
PasswordHash property, 174
PasswordSalt property, 174
Paste option, 231
Path property, 248, 250
People entity, 104
People for the Entity Set Name property, 20
people variable, 70
performance tuning

building Entity Framework project, 216–219
stored procedure mapping, 215–216

Person class, 59
Person entity, 46–47
Person object, 103
Person record, 103
Person role, 56
Person table, 35, 52, 103
PersonDemographics view, 35
physical model, 5
Plain Old CLR Objects (POCO), 32–33, 168, 170

change tracking, 182–183
complex-type support, 181
lazy loading, 182
overview, 180
support for in version 4.0, 10

plurality naming, support for in version 4.0, 11
Pluralize or singularize generated object names

checkbox, 19, 212
pluralize or singularize generated object names

option, 113, 125
plus (+) button, 244
POCO. See Plain Old CLR Objects
PreserveChanges enumeration, 84
primary key

constraint, 30
derived type, 160
non-derived type, 159

Principle element, 53
Principle field, 116
Principle Key field, 116

Product class, 90
Product Model Binding Navigator, 244
Product Model ID, 244
Production.Product table, 87
Production.ProductModel table, 87
ProductModel class, 88, 236, 244
ProductModel column, 241
ProductModel entity, 237, 242
ProductModel node, 236
ProductModel object, 89, 243
ProductModel table, 87, 244
productModelBindingNavigationSaveItem

button, 243
productModelBindingSource, 239, 242–243
ProductModelID column, 90, 244
ProductModelID property, 236
ProductModelID value, 90–91
ProductModelName column, 241
Products class, 238–239, 244
Products entity, 236
Products node, 236
productsBindingSource, 239, 241
ProductSubCategory entity, 236
ProductSubCategoryName column, 241
project directory, creating data binding in

windows forms, 229
Projects tab, 171, 230
Properties page, 23, 36
Properties pane, 46
Properties window, 37, 44, 163, 217, 232, 241
Property column, 100
Property element, 52
Provider attribute, 51
ProviderManifestToken attribute, 51
proxy instance, 182
ProxyCreationEnabled property, 183

■ Q
queries, using functions in, 106
query exceptions, 225–226
query execution

deferred, 79
immediate, 80–81
overview, 78

query variable, 79
query-expression, syntax to query Entity Data

Model (EDM), 63–67
querying Entity Data Model (EDM)

EntityClient
EntityCommand, 78
EntityConnection, 77–78

■ INDEX

262

overview, 76
overview, 63
query execution

deferred, 79
immediate, 80–81
overview, 78

querying options
Entity SQL, 74–76
EntityClient, 76–78
LINQ to Entities, 69–74
overview, 69

syntax
method-based, 68–69
and ObjectContext class, 67
overview, 63
query-expression, 63–67

■ R
ReadMultiple enumeration, 195
ReadSingle enumeration, 195
Reference.cs file, 205
references, code-only model design, 170–171
references dialog box, 170
References node, 170, 202, 230
Referential Constraint dialog box, 116
ReferentialConstraint element, 53, 118–119
reflector tool, 217
Refresh tab, Update Wizard, 97
RegisterConfig method, 186
related object-deferred loading, support for in

version 4.0, 10
relational inserts, 89–91
relationships

adding association, 116–117
direction of, 53
EF40Data project, 123
in Entity Framework (EF) 3.5, 110–113
foreign keys

adding dependent objects, 120–121
manually setting, 121–122
overview, 119
setting automatically, 122–123

overview, 109–110
Referential Constraints, 116
WinForms project, 113–116
XML differences from version 3.5, 117–119

REST (REpresentational State Transfer), 194, 201
restrictions, in Entity Framework (EF) 3.5, 180
Results window, 87–88, 90
Rider entity, 148
Rider table, 160

RiderID column, Rider table, 149
role attribute, 45
rowguid property, 88
RowPrePaint event, 241
RSS Feed feature, Internet Explorer, 198
Runtime section of Entity Data Model

Conceptual Schema Definition Language
(CSDL) section

Associations, 55–56
EntityType element, 54–55
overview, 53

CS Mapping Specification Language (MSL)
section, 56–57

overview, 50
Storage Model (SSDL) section

Association element, 52–53
EntityType element, 52
overview, 50

■ S
SalesOrder entity set, 39
SalesOrderDetail entity type, 39, 245
SalesOrderHeader entity type, 39, 245, 251
SalesPerson entity, 39, 184, 200, 251
SalesPerson property, 213
SalesPerson type, 39
SalesPersonConfiguration.cs class, 184–185
SalesPerson.cs class, 183
SalesPersons property, 214
SalesTerritory data, 196
SalesTerritory property, 214
SalesTerritoryConfiguration.cs class, 184, 186
SalesTerritory.cs class, 184
Save button, 242, 244, 250
SaveChanges event, 244
SaveChanges() method, 86, 88, 90, 92, 99, 103,

105, 122, 219, 244
SaveChanges(Boolean) constructor, 84–85
SaveChanges(SaveOptions) constructor, 85
SaveOptions method, 85
SaveOptions overload, 85
scalar properties, 25, 42
scalar properties, of entities, 40
Scalar Property, Add menu, 24, 40, 42
scalar property data type, 40
Scalar Property option, 24, 148
scalar property types, 35
ScalarProperty element, 57
schema attribute, 98
Schema element, 51, 54
schema, generating after creating EDM, 27–31

■ INDEX

263

schema overwrite warning, 28
scope, of T4 code

example project, 133–134
listing SQL databases, 135–137
overview, 132
returning computer's processes, 134–135

sealed class, 182
Select button, 105–106, 108
SELECT clause, 66–67, 69–70
<Select Insert Function> option, 99
select operator, 70
SELECT statement, 74, 79, 87
SelectedIndexChanged event, 178–179
SelectedValue property, 179
SelectPerson procedure, 97, 106
Sequence Control Workflow, 165
Server Management Objects (SMO), 136
Service type, 233
ServiceReference1 node, 205
services

adding references, 202–206
utilizing, 206–208

Services in Solution option, 203–204
set accessor, 183
Set as Default Project option, 246
SetEntitySetAccessRule method, 195
Settings button, 198
Settings dialog box, 198
SharePoint objects, 233
SharePoint site, 233
SharePoint type, 233
Show All Files button, Solution Explorer, 205
Show Data Sources option, 232
singleton value, 87
SMO (Server Management Objects), 136
SOAP Service Description Language (SSDL), 98
Solution Explorer window, 159, 165
SPRINT.net, 4
.sql file, 158–159
SQL Server Management Studio (SSMS), 85–86,

158
SQL Server Profile, 87
SQL Server Profiler, 86–87, 90, 103–105, 108
SQL Server query, 67
.sql window, 158
SQLConnection class, 176
SqlConnection variable, 177
SqlFunctions class, 11
SSDL (SOAP Service Description Language), 28,

49, 98, 158, 218
.ssdl extension, 218

SSMS (SQL Server Management Studio), 85–86,
158

StackPanel, 248
Storage Model (SSDL) section, of Entity Data

Model Runtime section
Association element, 52–53
EntityType element, 52
overview, 50

Storage Schema (SSDL), 28, 158
.Store appendage, 54
store command, 69
store layer, 56
store schema definition language (SSDL) file, 49,

218
stored procedures

delete, 105
and Entity Data Model (EDM), 93–97
Entity Framework (EF) functions, 98–99
insert, 102–104
mapping for performance, 215–216
Model Browser, 97–98
overview, 93
select, 105–106
update, 104

Stored Procedures node, 97, 210–211
StoreGeneratedPattern property, 40, 150
string data types, 55
String scalar properties, 36, 40
StringFormat property, 250
Summary and Settings dialog box, 157
Summary and Settings form, 153
Summary and Settings screen, 153–154
.svc file, 192
System.Activities.Components tab, 165
System.Data assembly, 171
System.Data.Entity namespace, 231
System.Data.Entity reference, 191
System.Data.EntityClient namespace, 76
System.Data.Objects namespace, 65, 83
System.Data.Objects.DataClasses namespace, 83
System.Data.Services.Web reference, 191
System.Data.SqlClient provider, 51, 63
System.Exception namespace, 221
System.ServiceModel.Web reference, 191
System.Windows.Forms namespace, 236

■ T
T4. See Text Template Transformation Toolkit
table column mapping, 47
Table name, derived type, 160
Table name, non-derived type, 159

■ INDEX

264

table-per-hierarchy option, 31
table-per-type option, 31
TablePerTypeStrategy.xaml file, 165
Tables node, 210
Team entity, 148
TeamID column, Rider table, 149
TeamID column, Team table, 149
TeamID property, 150
TeamName column, Team table, 149
template directive, 129
Test Connection button, 16
Text File template type, 127
Text property, 248–249
Text Template Transformation Toolkit (T4) code

generation
customization example, 142
overview, 127
scope of code

example project, 133–134
listing SQL databases, 135–137
overview, 132
returning computer's processes, 134–135

templates
adding template using Visual Studio 2008,

127–128
and Entity Framework (EF), 137–142
installing T4 Editor, 128–129
overview, 127–132
writing T4 code, 129–132

TextBlock element, 248
TextBox element, 249
TextBox elements, 249
TextFile1.txt file, 127
TextTemplate.tt file, 127–128
throw statement, 220
Title column, 87
Title value, 85–86
ToArray operator, 80
ToDictionary operator, 80
TODO comment, 194
ToList operator, 80
ToLongDateString method, 226
ToLookup operator, 80
Toolbox, Designer tool, 22, 37, 147
Toolbox window, 161, 165
Tools menu, 198
ToShortDateString method, 226
ToString method, 247
Total value, 250
try block, 219–221
try/catch blocks, for exception handling, 219–220

T-SQL query, 66
T-SQL statement, 90
.tt file, 165
Turn on feed reading view checkbox, 198–199
Type attribute, 55
Type property, 24

■ U
UDF (user-defined function), 98
UI (User-Interface) project for code-only model

design, 170–173
UML (Unified Modeling Language), 4
unchanged value, 84
underscore character (_), 162
Unified Modeling Language (UML), 4
UnitMeasure column, 244
UnitMeasure entity, 236
UnitMeasure table, 244
UnitMeasure1 column, 244
Update button, 104
update function, 104
Update Model from Database option, 96, 209–210
Update Model Wizard, 11
Update operation, 38
Update Wizard, 96–97
UpdateFunction element, 102
UpdatePerson procedure, 97, 100
Use Original Value checkbox, 215
user-defined function (UDF), 98
User-Interface (UI) project for code-only model

design, 170–173
using block, 221
using statement, for exception handling, 221

■ V
VALUE clause, 75
ValueMember property, 178
Value/Property column, 47
version 4.0 features, 10–12
Visual Studio Class Library project, 123
Visual Studio environment, 158
Visual Studio Server Explorer window, 158
Visual T4 utility, Clarius, 128

■ W
warnings, mapping, 151
WCF. See Windows Communication Foundation
Web option, 190
WHERE clause, 66, 70, 199

■ INDEX

265

Where method, 68
where operator, 70, 73
Window level, 245
Window_Loaded event, 251
Windows Communication Foundation (WCF)

Data Service
building, 187–194
consuming

adding service reference, 202–206
overview, 201
utilizing service, 206–208

testing, 194–201
Windows Forms Application project, 230
Windows Forms Application template, 202, 230
windows forms, data binding with EF in

add function, 242–244
creating data sources, 232–236
creating new form, 229–232
creating project directory, 229
delete function, 244
form code, 236–238
grid control, 238–242
overview, 229
save function, 244

Windows Forms project, 110, 146
Windows Presentation Foundation (WPF), data

binding
adding code, 245
creating project, 245
displaying related detail, 248–251
overview, 245
running project, 246–248

Windows Workflow Markup .xaml file, 163
WinForms application, 187, 201, 206
WinForms project, 113–116, 202, 205, 207
WinFormsBinding project, 230–231
Workflow Console Application, 165
WPF. See Windows Presentation Foundation
WPF Application template, 245
WriteAppend enumeration, 195
WriteDelete enumeration, 195
WriteLine code, 132
WriteMerge enumeration, 195
WriteReplace enumeration, 195

■ X
.xaml file, 165
XAML window, 247
XML (Extensible Markup Language)

differences between version 3.5 & 4.0, 117–
119

of Entity Data Model, 48–50
XML Editor, 49, 158, 192

■ Z
Zero or One relationships, 110

	Prelim
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introducing the ADO.NET 4.0 Entity Framework
	The Need for an Entity Framework
	This Has Been Tried Before
	So, What Is the Entity Framework?

	Database vs. Model
	Database-Driven
	Model-Driven

	Working with Entities
	Entity Framework 4.0 Features
	POCO Support
	Model-First Support
	Related Object–Deferred Loading
	LINQ-to-Entities Function Support
	Plurality Naming
	Complex Types
	Customized Object-Layer Code Generation
	Model Browser Improvements

	Back-End Support

	The Entity Data Model
	Creating an EDM
	Taking a Database-First Approach
	Making Generated Object Names Plural or Singular
	Taking a Model-First Approach
	Generating a Schema and Database
	Managing Table Inheritance
	Taking a Code-Only Approach

	The Entity Data Model Inside and Out
	The Designer Window and the EDM
	The Designer Window
	Model Browser Window
	Mapping Details Window

	Entities
	Scalar Properties
	Complex Types
	Complex Types Defined
	Creating a Complex Type
	Foreign Keys and Relationships (Associations)
	Navigation Properties

	Mapping Details
	Lifting the EDM Hood
	The EDM Model Parts
	The SSDL Section
	EntityType Element
	Association Element
	The CSDL Section
	EntityType Element
	Associations
	The CS (MSL) Section

	EDM-Generated Classes

	Querying the EDM
	Querying with the Entity Framework
	Syntax Options
	Query-Expression Syntax
	Context
	Method-Based Syntax

	Querying Options
	LINQ to Entities
	Entity SQL

	The EntityClient
	EntityConnection
	EntityCommand

	Immediate vs. Deferred Query Execution
	Deferred Execution
	Immediate Execution

	Working with Entities
	The ObjectContext
	ObjectStateEntry
	Tracking and Saving Changes

	Updating Entities
	Adding Entities
	Relational Inserts
	Deleting Entities

	Stored Procedures and the EDM
	Stored Procedures in the EDM
	The Model Browser
	What Is an EF Function?
	Mapping Functions
	Functions (Stored Procedures) in Action
	Insert
	Update
	Delete
	Select

	Using Functions in Queries

	Relationships and Associations
	Overview
	Relationships in General
	Relationships in EF 3.5

	EF 4.0 Relationships
	Creating a WinForms Project
	Defining Referential Constraints
	Adding an Association
	Looking at XML Differences
	Understanding Approaches to Foreign Keys in EF 4.0

	Using FK Associations in Code
	Adding Dependent Objects
	Manually Setting the Foreign Key Property
	Setting the Foreign Key Automatically

	Building the Sample Project
	Summary

	T4 Code Generation
	T4 Template Overview
	Adding a Template Using Visual Studio 2008
	Installing a T4 Editor
	Writing Some T4 Code

	Scoping Your Code
	Example 1: Running the Project
	Example 2: Returning Your Computer’s Processes
	Example 3: Listing Your SQL Databases

	T4 Templates and the Entity Framework
	T4 Customization Example

	Model-First Development
	Model-First Design
	Creating a Conceptual Model
	Creating Entities in the Empty Model
	Creating Associations and Navigation Properties
	Saving the Model
	Verifying Compilation
	Creating the Mappings and Database

	Database Generation Rules
	Tables
	Associations

	Handling of Complex Types
	DB Generation Script Customization

	Code-Only Development
	Getting Started with Code-Only
	Creating the Data Project
	Adding the User-Interface Project
	Adding References
	Adding Context and Connections
	Coding the User Interface
	Creating Configuration Classes
	Testing the Code-Only Model
	Building the Project
	Loading Some Rows
	Connecting the DataGridView Control
	Running the Application
	Overcoming Restrictions in EF 3.5

	Additional POCO Information
	Complex-Type Support
	Lazy Loading
	Change Tracking

	Finishing the Example

	N-tier Development with WCF Data Services
	Building the WCF Data Service
	Testing the WCF Data Service
	Consuming the WCF Data Service
	Adding the Service Reference
	Utilizing the Service

	Performance Tuning and Exception Handling
	Updating the Model
	Checking the Model
	Stored Procedure Mapping
	Building an Entity Framework Project
	Exception Handling
	Try/Catch Blocks
	The Using Statement
	Exception Class
	Connection Exceptions
	Query Exceptions
	EntitySQL Exceptions

	Data Binding with the Entity Framework
	Windows Forms Data Binding
	Creating a Project Directory
	Creating a New Form
	Creating Data Sources
	Adding Code to the Form
	Adding a Grid Control
	Getting the Grid to Display Some Data
	Helping the Grid to Navigate the Relation
	Testing Your Final Grid Implementation
	Implementing Add, Delete, and Save Functionality
	Implementing Add Functionality
	Implementing Delete Functionality
	Implementing Save Functionality

	WPF Data Binding
	Creating a Project
	Adding Some Code
	Running the Project
	Displaying Related Detail

	Index
	¦ SPECIAL CHARACTERS &
	NUMERICS
	A
	¦
	¦ B
	¦ C
	¦ D
	E
	¦
	¦ G
	¦ F
	¦ H
	I
	¦
	M
	¦
	¦ J
	¦ K
	L
	¦
	¦ O
	¦ N
	P
	¦
	¦ Q
	R
	¦
	S
	¦
	¦ T
	¦ U
	V
	¦
	W
	¦
	X
	¦
	Z
	¦

