
 International Journal Of Research In Computer Engineering And Electronics. PAGE # 1 ISSN 2319-376X

 VOL:3 ISSUE:2 (MARCH-APRIL’14)

 ICV:4.08

IJRCEE@2014
http://www.ijrcee.org

Analysis of Parallel Computing, Focusing on

Parallel Computing Models and Parallel

Programming Models

Shweta Kumari

Abstract— Parallel computing has turn out to be an important subject in the field of computer science. It has proven to be

critical when researching high performance solutions. The evolution of computer architectures towards a higher number of

cores i.e. multi-core and many-core, can only confirm that parallelism is the means of choice for speeding up an algorithm.

My goal is to present a set of theoretical and technical concepts that are frequently required to understand the parallel

computing, its models and algorithms. In this paper I briefly discuss the design patterns in parallel computing. Focus is on a

large variety of parallel computing and programming models. I talk about memory consistency models which provide the

contract between software and hardware. I describe general Parallel Programming Methodologies and some parallel

programming tools. In this article I study few implementation issues of parallel programming. By understanding above

mentioned topics, readers can overcome many of the technical limitations found beside the way and can design better

algorithms and achieve speedups.

Index Terms— Parallel computing, computing models, design patterns, implementation issues, programming models,

parallel programming tools, evaluation.

—————————— ——————————

1. INTRODUCTION
The aim of parallel computing is to boost an

application’s performance by executing the application

on multiple processors. Traditionally parallel computing

was associated with the high performance computing

community, now it is becoming more common for the

mainstream computing because of the recent progress of

commodity multi-core architecture. For understanding

parallel computing more closely we have discussed

many factors related to it. We described some models

like PRAM, UMP, and BSP. A few programming

methodologies are used such as fosters PCAM method,

incremental parallelization, automatic parallelization,

and some more researches are done. This paper is

organized in ten sections; the research begins with the

design pattern for parallel computing in section two

followed by a survey of the proposed models of parallel

computation in section three. The fourth part examines

the parallel programming models. Section five discusses

some of the memory consistency models used in a

parallel computing paradigm. Brief review of general

parallel programming methodologies is given in section

six, and in section seven I talk about parallel

programming tools. This article presents a survey of

parallel computing implementation issued in brief such

as races, out of order execution, message buffering, and

hardware errors. Ninth section put forward seven

criteria to qualitatively evaluate parallel programming

models. We conclude some observations at the end.

2. Design pattern for parallel computing
Design pattern for parallel computing is the result of

two different directions of research. The goal of first

direction of research was to identify key influences on

computer architecture, aimed to analyze vast varieties of

computing. This led to thirteen computation patterns of

parallel computing. The second direction of research

was on architecting large piece of software. This

research led to the identification of a series of

architectural styles or patterns [1].

A design pattern is a general solution to recurring

problem, which occurs within a well-defined context.

These are written in a highly structured format and

capture essential elements of the required solution, such

that a software designer can quickly and easily find

what he or she needs to solve a problem. With the help

of design patterns a software designer can develop

many solution alternatives to a problem.

2.1. Patterns for parallel programming

For parallel programming in parallel computers, we

combine the computational and structural patterns with

————————————————

 Shweta Kumari, currently pursuing masters degree program in computer
science and engineering in Galgotias University, India.

 International Journal Of Research In Computer Engineering And Electronics. PAGE # 2 ISSN 2319-376X

 VOL:3 ISSUE:2 (MARCH-APRIL’14)

 ICV:4.08

IJRCEE@2014
http://www.ijrcee.org

the parallel programming design pattern languages [2].

These parallel programming patterns define a distinct

pattern language for parallel programming (PLPP). The

PLPP emphasises on patterns relevant to cluster and

shared-memory multiprocessor computers.

3. Models of parallel computing
A model of parallel computation is a parameterized

description of a class of machines [3]. Some models of

parallel computing are discussed below:

3.1. Parallel Random Access Machine (PRAM)

The PRAM model was proposed by Fortune and Wyllie

[4]. It is a simple extension of the Random Access

Machine (RAM) model used in the design and analysis

of sequential algorithms. In PRAM a set of processors

are connected to a shared memory, and a global clock

feeds processors as well as memory. The execution of

any instruction, takes exactly one unit of time and the

shared memory can be accessed by any number of

processers simultaneously. The memory model of the

PRAM is the strongest consistency model known [5]. An

EREW PRAM allows a memory location, exclusive read

and exclusive write. CREW PRAM allows concurrent

read but exclusive write. CRCW PRAM allows

concurrent read and write to the same memory location

in the same clock cycle. CROW PRAM is a little limited

form, here each memory cell may be written by only one

processor known as the cell’s owner.

3.2. Unrestricted Message Passing (UMP)

A message-passing multicomputer also known as

distributed memory machine consists of a number of

RAMs which run asynchronously. They communicate

via messages sent over a communication network. The

send and receive commands can be of two types (i)

blocking, i.e. the processors get synchronized and (ii)

non-blocking, i.e. the sending processor puts the

message in a buffer, the message is forwarded by the

message- passing subsystem to the receiving processor.

It get buffered there until the receiving processor

executes the receive command. The operations

performed locally are treated as in a RAM, Point-to-

point non-blocking communications are modelled by

the LogP model.

3.3. Bulk Synchronous Parallelism (BSP)

The BSP model, proposed by Valiant in 1990[6] enforces

a structuring of message passing computations as a

(dynamic) sequence of barrier-separated supersteps,

where each superstep consists of a computation phase

operating on local variables only, followed by a global

interprocessor communication phase.

3.4. Data Parallel Models

In data parallel computing the same scalar computation

involves the element wise application to several

elements of one or many operand vectors creating a

result vector. All element computations must be

independent of each other hence may be executed in

parallel, or in a pipelined way in any order. A special

case of data parallel computing is single instruction

multiple data (SIMD) computing.

3.5. Task Parallel Models and Task Graphs

Many applications can be considered as a set of tasks,

each task solving a part of the problem. These tasks may

communicate with each other during their execution.

Such collection of tasks may be represented by a task

graph, where arcs represent communication, i.e. data

dependencies and nodes represent tasks. Task graphs

can occur at several levels of granularity.

4. Parallel programming models
Parallel computing should be analyzed on the basis of

the communication between the processors and their

programs. PRAM uses shared memory model, whereas

LogP and BSP use a message passing model. These two

models are parallel programming models. A parallel

programming model is an abstraction of the

programmable aspects of a computing model. While

computing models in section 3 are useful for algorithm

design and analysis. Following are some parallel

programming models which have been implemented by

modern APIs.

4.1. Shared memory

In the shared memory model, read and write can be

performed on a common memory. This programming

model works good with the PRAM computing model, is

useful for multi-core and GPU based solutions. When

concurrent threads read and write on the same memory

locations, we must supply an explicit synchronization

and control mechanism such as monitors [7], and

semaphores [8].

4.2. Message passing

In a message passing programming model processors

communicate asynchronously or synchronously by

sending and receiving messages containing words of

data. In this model, emphasis is placed on

communication and synchronization making distributed

computing the main application for the model. This

programming model works naturally with the BSP and

LogP models.

4.3. Implicit

Implicit parallelism is a high-level tool, capable of

achieving a degree of parallelism automatically from a

sequential piece of source code. Its advantage is that all

the hard work is done by the tool, achieving actually the

same performance as a manual parallelization. Its

disadvantage is that it only works for simple problems

such as for loops with independent iterations.

4.4. Algorithmic skeletons

 International Journal Of Research In Computer Engineering And Electronics. PAGE # 3 ISSN 2319-376X

 VOL:3 ISSUE:2 (MARCH-APRIL’14)

 ICV:4.08

IJRCEE@2014
http://www.ijrcee.org

Algorithm skeletons provide an important abstraction

layer for implementing a parallel algorithm. Algorithm

skeletons, also known as parallelism patterns, were

proposed by Cole in 1989 and published in 1991 [9]. The

model is based on a set of parallel computing patterns

known as skeletons that are available to use.

5. Memory Consistency Models
The memory consistency model provides the contract

between software and hardware, the memory remains

consistent and the program is guaranteed to execute

correctly. It can be divided into following categories:

5.1. The Sequential Memory Consistency Model

The Sequential Consistency Model is simplest to

understand since it extends the uniprocessor model, and

hence, follows the basic assumptions which are made

about sequential memory. The memory consistency is

maintained through hardware, and therefore allows the

programmer to write code which follows the intuitive

memory model.

There are two requirements for maintaining sequential

consistency [5]. First is program order requirement, here

program order must be maintained among memory

operations in a single processor. And second is write

atomicity requirement, here a single sequential order

must be maintained among all operations. There are

three types of memory operation pairs: a read-after-

write, a write-after-write, and a read/write-after-read.

Following is an example of the first case: a read-after-

write [5].

Initially:

flagA = flagB = 0;

Processor 1:

flagA = 1;

if(flagB == 0)

// Enter Critical Section

flagA = 0;

Processor 2:

flagB = 1;

if(flagA == 0)

// Enter Critical Section

flagB = 0;

This is Dekker’s Algorithm for Critical Sections: This

code is guaranteed to execute correctly on a sequentially

consistent system due to the Program Order

requirement. Now the second condition to ensure the

appearance of write atomicity is to prohibit any reads

from occurring on any memory location for which there

is an outstanding write; this can be accomplished with

an acknowledgment of invalidates or updates sent by all

processors.

Initially:

varA = varB = varC = 0;

Processor 1:

varA = 1;

varB = 1;

Processor 2:

varA = 2;

varC = 1;

Processor 3:

while(varB != 1) {;} // Busy wait

while(varC != 1) {;} // Busy wait

reg1 = varA;

Processor 3:

while(varB != 1) {;} // Busy wait

while(varC != 1) {;} // Busy wait

reg2 = varA;

In a sequentially consistent system, this code [5] is

guaranteed to run correctly due to the write atomicity

requirement.

5.2. Relaxed Memory Consistency Models

The Relaxed Memory Consistency Models are the

collective result of group of memory consistency

models. These models relax one or more of the

requirements of sequential consistency.

5.3. Transactional Memory Models

After the development of many relaxed consistency

models, researchers invented a way to combine both

cache coherency and memory consistency models in a

single, software or hardware supported communication

model for shared memory which is easy to use. This is

known as Transactional Memory models. A transaction

is a sequence of operations executed by a single thread.

After completion of operations, the transaction does one

of these: If any memory operation doesn’t conflict with

other memory operation of another transaction, the

transaction commits and it takes effect; otherwise, it

aborts and its effects are discarded.

6. General Parallel Programming
Methodologies

Here we briefly review the general parallel

programming methodologies (PPM).

 International Journal Of Research In Computer Engineering And Electronics. PAGE # 4 ISSN 2319-376X

 VOL:3 ISSUE:2 (MARCH-APRIL’14)

 ICV:4.08

IJRCEE@2014
http://www.ijrcee.org

6.1. Fosters Method

A researcher Foster [10] suggests that the design of a

parallel program should start from an existing (possibly

sequential) algorithmic solution to a computational

problem by partitioning it into many small tasks and

identifying dependences between these that may result

in communication and synchronization, for which

suitable structures should be selected. These first two

design phases, partitioning and communication, are for

a model that puts no restriction on the number of

processors.

6.2. Incremental Parallelization

Parallel programming languages such as HPF and

OpenMP, are designed as a semantically consistent

extension to a sequential base language, such as Fortran

and C, which allow to start from sequential source code

and can be parallelized incrementally.

6.3. Automatic Parallelization

Automatic parallelization is of high importance to

industry but is very difficult. It is of two forms: static

parallelization supported by a smart compiler, and run-

time parallelization supported by the run-time system

or the hardware.

6.4. Skeleton Based and Library Based
Parallel Programming

Skeleton programming also known as structured

parallel programming [11, 12] restricts many ways of

expressing parallelism to compositions of only a few,

predefined patterns, so-called skeletons. Skeletons [11,

13] are generic, portable, and reusable basic program

building blocks for which parallel implementations may

be available.

Fig1: Pictorial Representation of Parallel

Programming Methodologies

7. Parallel programming tools
There are many programming tools are available for the

implementation of parallel programs. The selection of

parallel programming tool to be used depends on the

characteristics of problem to be solved. Some of these

are discussed below.

7.1. PVM

PVM (Parallel Virtual Machine) is extensively used for

message passing library, fashioned to support the

development of parallel programs executed on a set of

interconnected heterogeneous machines. A set of tasks is

contained in PVM program, which performs

communication in a parallel virtual machine by

exchanging messages. To control the sending and

receiving of messages, a managing process is executed

in every machine. The parallel programs can be written

in C, C++, or FORTRAN.

7.2. MPI

MPI (Message Passing Interface) enables program

portability among different parallel machines. It cannot

handle issues like debugging and program structuring,

because it just defines a message passing programming

interface, not a complete parallel programming

environment. For point-to-point communication

between pairs of tasks MPI contains routines, which can

be in two modes, blocking and non-blocking.

Communication is available in three modes (i) ready, (ii)

standard, and (iii) synchronous.

7.3. Linda

Linda is based on the idea of associative shared

memory, it is a language which offers a set of primitives

meant for process construction and communication. The

shared memory is the tuplespace, it contains a group of

tuples(or data registers). Information is accessed by its

content, not by its address in case of associative access to

memory. Every time when a process wants to

communicate with another one, it generates a new tuple

and spaces it in the tuplespace, and the receiver process

may access this tuple since it is written in the shared

memory space. The programmer develops a parallel

program implementation by writing a C, C++, or

FORTRAN code by means of the basic Linda operations

to access the tuplespace: write a tuple, read a tuple, take

a tuple from the tuplespace, place a new tuple in the

tuplespace, and create a new process.

7.4. HPF

Processor mapping and data distribution onto the

physical processors can be controlled by the

programmer using six HPF compiler directives: ALIGN,

DISTRIBUTE, PROCESSORS, TEMPLATE,

REDISTRIBUTE, and REALIGN. At the start the

PPM

Incremental Parallelization

Automatic Parallelization

Fosters Method

Skeleton Based and Library Based

Parallel Programming

Communicatio

n

Partitioning

Static

Run-Time

Generic Portable Reusable

 International Journal Of Research In Computer Engineering And Electronics. PAGE # 5 ISSN 2319-376X

 VOL:3 ISSUE:2 (MARCH-APRIL’14)

 ICV:4.08

IJRCEE@2014
http://www.ijrcee.org

programmer has to relate the group of arrays by

ALIGN. After that these aligned substances are

distributed to the processors using DISTRIBUTE

directive. REALIGN and REDISTRIBUTE are the vibrant

forms of the DISTRIBUTE and ALIGN directives,

allowing data mapping to change throughout the

program execution. To identify the shape and the size of

a set of abstract processors, the PROCESSORS directive

is used. The TEMPLATE directive describes a

conceptual object to be used for alignment and

distribution operations.

7.5. Threads

Threads are not specially related to parallel program,

they are common operating systems concept. Due to

their significance in providing support for concurrent

programming, it is very important to understand them.

Several threads may perform in the context of single

process, and can communicate by means of global

memory allocated to the associated process.

Programming with threads is very useful in shared-

memory machines.

8. Implementation issues
Most programming models for parallel computing

present chances for good performance, but at the cost of

a greater chance for program error. This section briefs a

few of the most frequent programming errors for

programming models.

8.1. Races

One of the most hazardous and frequent errors of

parallel programming is a race condition. This takes

place in parts of the code where a race among two or

more threads of execution concludes the behaviour of

the program. The program starts behaving incorrectly, if

the wrong thread wins the race.

8.2. Out-of-Order Execution

In writing algorithms for parallel programming model,

it should be ensured that data on one thread is not

accessed by any other, until a few conditions is satisfied.

Locks are often used for this purpose. Unluckily, locks

are generally quite expensive to execute, hence

programmers are often appealed to use simple flag

variables to mediate access to the data. With flag

variables it is very tough to guarantee that either the

compiler or the processor will protect the order of the

operations inside a single thread, which appears to be

independent statements. Hence within a single thread,

the order of operations is not guaranteed and it is

known as out of order execution.

8.3. Message Buffering

Message passing combines data transfer and notification

into a single routine and there is no direct access to the

memory of another process. Hence message passing

programs are very immune to race conditions. The real

risk in message passing begins by using buffered send

operations in unsafe means. The programme may

function correctly for few inputs but may laid to

deadlock for others.

8.4. Hardware Errors

Parallel computers are frequently used for the most

difficult problems. And another source of problems in

them is probability of an error in the computer

hardware, it is low but not zero. This occurs mainly with

high-performance interconnect networks.

9. Qualitatively Evaluation of Parallel
Programming model

In this section, we describe seven criteria to qualitatively

evaluate a parallel programming model.

9.1. System Architecture

Two architectures are considered: shared memory and

distributed memory. In shared memory architecture

systems such as an SMP/MPP node, all processors share

a single address space. In such models, applications can

run and make use of only processors inside a single

node. Whereas in distributed memory architecture

systems such as a cluster of compute nodes, there is one

address space per node.

Shared Memory Distributed

Memory

PThreads

OpenMP

CUDA

 MPI

UPC

Fortress

All Processers Nodes

Single Address

Space

 One Address

Space

SMP/

 Cluster

 MPP SMP/

MPP

SMP/

MPP

SMP/

MPP

Fig2: Six Programming Models and their Supported

System Architecture

Fig2 illustrates the supported system architecture of the

six programming models. As can be seen, Pthreads,

OpenMP and CUDA support shared memory

Uses Per Node Uses

 International Journal Of Research In Computer Engineering And Electronics. PAGE # 6 ISSN 2319-376X

 VOL:3 ISSUE:2 (MARCH-APRIL’14)

 ICV:4.08

IJRCEE@2014
http://www.ijrcee.org

architecture, and thus can only run and utilize

processors within a single node. On the other hand,

MPI, UPC and Fortress also support distributed

memory architecture so that applications developed

with these model can run on single node (i.e. shared

memory architecture) or multiple nodes.

9.2. Programming Methodologies

Focus should be at how parallelism abilities are exposed

to programmers. Some examples are: API, special

directives, new language specification, etc.

9.3. Worker Management

This monitors at the creation of the unit of worker,

threads or processors. Worker management is implied

when there is no need for programmers to manage the

lifetime of workers. They need to only specify, the

number of unit of workers required or the section of

code to be execute in parallel. In explicit approach,

programmer needs to code the construction and

destruction of workers.

9.4. Workload Partitioning Scheme

Worker partitioning describes how the workload are

divided into smaller chunks which is called tasks. In

implicit approach, programmers require to only specify

that a workload can be processed in parallel. How the

workload is actually partitioned into tasks need not be

managed by programmers. In contrast, with the explicit

approach, programmers require to manually decide

how workload is partitioned.

9.5. Task-to-Worker Mapping

Task-to-worker mapping defines how tasks are map

onto workers. In the implicit approach, programmers do

not need to specify which worker is responsible for a

particular task. In contrast, the explicit approach

requires programmers to manage how tasks are

assigned to workers.

9.6. Synchronization

Synchronization defines the time order in which

workers access shared data. In implicit synchronization,

there is no or little programming effort done by

programmers: either no synchronization constructs are

needed or it is sufficient to only specify that

synchronization is needed. In explicit synchronization,

programmers are required to manage the worker’s

access.

9.7. Communication Model

This aspect looks at the communication concept used by

a model.

10. Conclusion

Parallel computing has evolved significantly from being

a matter of high equipped data centres and

supercomputers to almost every electronic device.

Today, the field of parallel computing is having one of

its best moments in history of computing and its

importance will only grow as long as computer

architectures keep evolving to a higher number of

processors. Speedup and efficiency are the most

important measures in a parallel solution and will

continue to be in the following years. At the end of this

review of parallel computing models, their

programming models and many more issues we may

observe some current trends and speculate a bit about

the future of parallel programming models. There is still

much work to be done in the field of parallel computing.

The challenge for massive parallel architectures in the

following years has become more flexible and energy

efficient. At the same time, the challenge for computer

science researchers

will be to design more efficient algorithms by using the

features of these new architectures.

11. References
[1] M. Shaw and D. Garlan, “Software architecture:

perspectives on an emerging discipline,” 1996.

[2] T. G. Mattson, B. A. Sanders, and B. L. Massingill,

“Patterns for parallel programming,” Addison-Wesley

Professional, 2004.

[3] Ferri Abolhassan, Reinhard Drefenstedt, Jorg Keller,

Wolfgang J. Paul, and Dieter Scheerer, “On the physical

design of PRAMs,” Computer J.,36(8):756-768,

December 1993.

[4] S. Fortune and J. Wyllie, “Parallelism in random

access machines,” In Proc. 10th Annual ACM Symp.

Theory of

Computing, pages 114-118, 1978.

[5] Sarita V. Adve and Kourosh Gharachorloo, “Shared

Memory Consistency Models: a Tutorial,” IEEE

Comput.,29(12):66-76, 1996.

[6] Albert Alexandrov, Mihai F. Ionescu, Klaus E.

Schauser, and Chris Scheiman, “LogGP

Incorporating long messages into the LogP model for

parallel computation,” Journal of Parallel and

Distributed Computing, 44(1):71-79, 1997.

[7] C. A. R. Hoare, “Monitors: an operating system

structuring concept,” Commun. ACM, 17(10):549–

557,October 1974.

[8] N. Dunstan, “Semaphores for fair scheduling

monitor conditions,” SIGOPS Oper. Syst. Rev., 25(3):27–

31,May 1991.

 International Journal Of Research In Computer Engineering And Electronics. PAGE # 7 ISSN 2319-376X

 VOL:3 ISSUE:2 (MARCH-APRIL’14)

 ICV:4.08

IJRCEE@2014
http://www.ijrcee.org

[9] M. Cole, “Algorithmic skeletons: structured

management of parallel computation,” MIT Press,

Cambridge, MA, USA, 1991.

[10] Ian Foster, “Designing and Building Parallel

Programs,” Addison Wesley, 1995.

[11] Murray I. Cole, “Algorithmic Skeletons: Structured

Management of Parallel Computation,” Pitman and MIT

Press, 1989.

[12] Susanna Pelagatti, “Structured Development of

Parallel Programs,” Taylor&Francis, 1998.

[13] J. Darlington, A. J. Field, P. G. Harrison, P. H. B.

Kelly, D. W. N. Sharp, and Q. Wu, “Parallel

Programming

Using Skeleton Functions,” In Proc. Conf. Parallel

Architectures and Languages Europe, pages 146-160.

Springer LNCS 694, 1993.

