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Many-Body Perturbation Theory:
The GW Approximation

Christoph Friedrich and Arno Schindlmayr

Institute of Solid State Research
Forschungszentrum Jillich
52425 Jilich, Germany
E-mail: {c.friedrich, a.schindlmayr } @fz-juelich.de

In this lecture we present many-body perturbation theogyragthod to determine quasiparticle
excitations in solids, especially electronic band strregyaccurately from first principles. The
main ingredient is the electronic self-energy that, in @pte, contains all many-body exchange
and correlation effects beyond the Hartree potential. a®xact mathematical expression is
unknown, approximations must be used in practical caliculiat TheGW approximation is
obtained using a systematic algebraic approach on the bfa€iseen function techniques. It
constitutes an expansion of the self-energy up to lineaerardthe screened Coulomb poten-
tial, which describes the interaction between the quatsges and includes dynamic screening
through the creation of exchange-correlation holes ardbhadare particles. The implemen-
tation of theGW approximation relies on a perturbative treatment staftioon density func-
tional theory. Besides a detailed mathematical discuss®focus on the underlying physical
concepts and show some illustrative applications.

1 Introduction

In the previous lectures we have seen that density fundttheary (DFT) is the method
of choice when we are interested in the ground-state priegest a many-electron sys-
tem. DFT is based on the Hohenberg-Kohn theotenhich states that there is (a) a
one-to-one correspondence between the ground-statetydeg&) and the external po-
tential as well as (b) a variational principle for the enefigyctional E[ng] < E[n]. The
second statement allows to obtain the ground state of a rak@eyron system by variation
of its density, a quantity that is much less complicated th@many-electron wave func-
tion ¥o(r1,...,rn), WhereN is the particle number. The first statement implies that the
many-particle Hamiltonian is a functional of the groundtstdensity. Since the diagonal-
ization of the Hamiltonian yields the complete excitatipestrum, the excited states can
ultimately be regarded as functionals of the ground-statesifly as well. However, the
Hohenberg-Kohn theorem does not provide us with an expliathematical form. In this
lecture we show that excited-state properties can be amtessre directly with a purpose-
built method, the so-called many-body perturbation thécryncidentally, in practice its
implementation within th&WW approximatiofi for the electronic self-energy is based on a
perturbative evaluation with Kohn-Sham orbitals and chardfore, finally be interpreted
as the desired density functional.

The solution of the Kohn-Sham equattoof DFT yields a whole spectrum of single-
particle states, and one is tempted to identify the corneding eigenvalues with excitation
energies. Strictly speaking, such an interpretation issgrdahe Kohn-Sham wave func-
tions and eigenvalues must be considered as mathematidsilaiod cannot be endowed
with a physical meaning. The only exception is the energyeftighest occupied state,
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Figure 1. Comparison of LDAGW and experimental band gaps for a variety of materials. Téien Ref. 8.

which equals the exact ionization potential (or chemicakptal for metalsf:” Con-
sequently, while often qualitatively correct, the DFT bastidicture fails to give reliable
guantitative values for the band gaps of insulators and gamductors, which are often
underestimated by as much as 1.0 eV or more. In the case ofeGedchl-density approx-
imation (LDA) of DFT even predicts a semi-metal with a negatband gap rather than
a semiconductor. In this lecture we demonstrate that thenk®tham eigenvalues can be
corrected using Green function techniques and@i# approximation for the electronic
self-energy. Figure 1 shows a comparison of LDA and selfgyneorrected band gaps
with respective experimental values for a variety of malsriThe underestimation within
the LDA as well as the improvement by t6847 approximation are evident.

Band gaps are experimentally measured by photoelectratrepeopy. Figure 2 gives
a schematic illustration. In direct photoelectron spestopy a photon with energyw
impinges on the sample and ejects an electron, whose kieveigyFy;, is subsequently
measured. The binding energyof this electron is given by the differeneg= Ey;, — iw.
Actually, we already simplified the argumentation herehadormulation “binding energy
of an electron” suggests that the electrons are indepentfentality they are correlated
through the Coulomb interaction, and the ejection of antededs always a many-body
process. In this general senseequals the difference; = E)Y — Efvfl between the
total energyF}¥ of the N-particle ground stat&}¥ and the energ;@‘f‘”1 of the(N —1)-
particle state[lﬁvfl that remains after the emission. Inverse photoelectrocigpopy is
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Figure 2. Schematic illustration of direct and inverse pktctron spectroscopy. In both processes the particle
number changes. The measured energy differdf\gg — hw corresponds te; = Eé" — EiN_1 in direct and

e; = B} T' — EY ininverse photoelectron spectroscopy.

the complementary process: electrons are injected intsahwle, and the energy of the
emitted photon is measured. The number of electrons in tsteisythus increases from

to N + 1, and we can identify;, — hiw with the energy differencg = EN ' — EJY of
the many-electron systems.

The fact that the independent-electron picture breaks dhwerto the strong Coulomb
interaction questions single-electron concepts like sinatture or Fermi surface. Still, in
practice these work surprisingly well. In fact, we can asteatain a nearly-independent-
particle picture if we consider quasiparticles insteadlettons (or holes). In the case
of electron injection into a sample the repulsive Coulontiriaction creates a Coulomb
hole around the additional electron (see Figure 3). Analsfypif an electron leaves the
system, its Coulomb hole also disappears. Relative to thengl-stateV-electron system,
the addition (removal) of an electron in indirect (diredippoelectron spectroscopy hence
creates (annihilates) an ensemble consisting of the bectreh and its oppositely charged
Coulomb hole. This ensemble behaves in many ways like aesipaiticle and is thus
called “quasiparticle”. Since the Coulomb hole reducesttit@l charge of the quasipar-
ticle, the effective interaction between quasipartickesdreened and considerably weaker
than the bare Coulomb interaction between electrons. I flae screened interaction is
sufficiently small so that the quasiparticles can be reghadeapproximately independent,
which finally justifies the independent-particle approxiimaand explains the success of
mean-field theories.

A theoretical description of processes involving the égecbr injection of electrons
requires a framework that links th®¥-particle with the(NV + 1)-particle systems. For
this purpose we employ many-body perturbation theory. Erral variable is the time-
ordered Green functio@(rt,r't'). As we will see, it contains the excitation energigs
and even the excitation lifetimes. Besides, we can diretitain the ground-state electron
density, the expectation values of one-particle operandsthe ground-state total energy
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Figure 3. The electrons in a many-electron system are etectlby the strong Coulomb interaction The
motion of one electron depends on the motion of all othertelas. A nearly-independent-particle picture can
be recovered within the quasiparticle concept. Due to exgand correlation effects a Coulomb hole forms
around an electron and behaves together with it like a sieigligy, which is called quasiparticle. Quasiparticles
interact via a weak screened interactidninstead of the strong Coulomb interaction.

from it. The Green function is hence capable of giving actetke same observables as
the ground-state electron density. In contrast to the DFdfessionE [n], the functional
E[G] is even known exactl§.While the Green function contains much more information
than the electron density, it is also a more complicatedtfanand thus rarely applied
to ground-state properties. In the present lecture we widyefore, concentrate on the
calculation of excited states.

Section 2 lays the theoretical foundations of the methodieMomplicated derivations
are deferred to the appendix. T8V approximation is discussed in Section 3.1, and
some aspects of its numerical implementation are given ati®@e3.2. As an illustration,
Section 3.3 presents a number of selected applicationioBdccontains the summary.

2 Theory

2.1 Green Function

In this section we introduce the time-ordered Green functéind examine its properties.
We use the second-quantization formulation of quantum eweick? 2 For the present
purpose it is sufficient to know that this formalism involiesd operators)(r) andi)' (r)
that describe the annihilation and the creation of an elecit the positiorr, respectively.
We will not take spin dependence explicitly into accountnédtessary, the spin quantum
number can simply be added to the formulas by considering litet part of the spatial
coordinater.

The Green functiori7®(rt, r't") is defined such thatiGe(rt,r't') is the probability
amplitude for the propagation of an additional electromfr@’, ') to (r,t) in a many-
electron system with the Hamiltonian (Eq. 41)). This predesngs the system from the
N-electron ground statel{’ (¢')) to a final state)(r)U(t, ' )¢t (x') [¥ (¢')). The final
state is constructed by the successive action of the efectemtion operatopt (r'), the
evolution operatol/ (¢, ') = exp[—iH (t—t')/h], which takes the system frothto a later
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timet > ¢, and the electron annihilation operatfr) on theN-electron ground state. As
the probability amplitude is given by the overlap of the fisialte With|'Il{]V(t)>, the Green
function becomes

Go(et,x't) = —1 (0 (0[S0 ) ) | 9 () ) 6(e - ¢)
— 5 (W [yt @) W Yo - ), )

wheref(t — t') is the Heaviside step function defined by

Lift > ¢,
Hu_y):{0ﬁt<f. @)

For the last equality in Eq. (1) we changed from the Schrgelitio the Heisenberg picture,
where the expression is particularly simple. States andabges in the two pictures are
related by

|Ty) = U(0,t) |Ps(t)) and Au(t) = U(0,¢)AsU(t,0). (3)

In the following we always omit the indices S and H. Similaviee have the Green function
Gt vt) = — (U [ (' ¢)b(et)| ) 6t — 1) @

for the propagation of an additional hole frdm ¢) to (r/,¢'). As a matter of convenience,
we combine the two expressions in one time-ordered Greestium

G(rt,r't') = G(rt,r't') — GP(x't!, rt) = —% <x1;gv ‘T [@(rt)gﬁf(r't')] ‘ oy > ., (5)

where we used the time-ordering operﬁbmhich rearranges a series of field operators
in order of ascending time arguments from right to left witfaetor (—1) for each pair
permutation. Depending on the time order, Eq. (5) descritber electron#( > t') or
hole ¢ < ¢') propagation. The electron densityr) can be expressed in terms of the
Green function as

n(rt) = <q;g)v ‘Jﬁ(rt)&(rt)‘ o > — —ihG(rt,rt + 7). 6)

Here and in the following; is an infinitesimal positive number. It serves only to enéorc
the correct order of the field operators. Its unit should gkMae clear from the context;
presently it is an infinitesimal time.

Let us consider the time-ordered Green functi#(m, r'; 7) of a stationary system with
T =t —t'. If we insert the closure relatiop, [¥)=") (BN*!| = 1 between the two
field operators in Eq. (5), wherf[¥'*")} is the complete set of state vectors of the
(N + 1)-particle system, transform to the Schrodinger picture ase the definitions

o) = (O )| ) and () = (B [bw)| e @)
together with the excitation energies

e '=EY-EN!' and &' =ENT - E}, (8)

%



then we obtain

Glr,x'sm) =~ Zwi”l<r>w£”1*(ﬂ)a“”“”ﬁe(ﬂ

thN 1 N 1*( )efieﬁv_l‘r/he(_,r)‘ (9)

The sums run over the ground state and all excited statee¢Mh- 1)- and(N + 1)-
particle system, respectively. Expression (Eg. (9)) camtegpreted as follows: The state
after the addition of an electrom (> 0) is represented by a linear combination of excited
states

Fa) |y = SN @) [N (10)

that subsequently evolve according to their respective@fm:torszxp(—ieﬁ" 7 /h). The
resulting state is then probed at the pairity the projectionspf"“(r). The caser < 0
(hole propagation) is analogous. Consequently, the Graectibn indeed contains the
complete excitation spectrum of tii&/ + 1)-particle system. Fourier transformation of
Eq. (9) to the frequency axis using the Fourier transfornheftieaviside step function

1 [ ; i
- = iwT—n|T| - v
o /700 0(r) e dr o7 (w0 £ in) (11)

finally yields the Lehmann representation of the Green fonct

¢N+1 ¢N+1* 'l,[}N 1 )¢N+1*(r)
G(r', 1) Z hw — N+1+m Z —in

(12)

We observe that the Green function has poles at the true rpanyc-le excitation energies
eN*!. These energies correspond to excitations of sin- 1)-particle and af(N + 1)-
particle system and hence to those processes measureddhatid inverse photoelectron
spectroscopy. In the case of a nonlnteractlng (or mean)asistem theyN T (r) are
simply the unoccupied and thﬁv r) the occupied single-particle wave functions, the

fVﬂ are the corresponding single- partlcle energies. In ordetaoverload the notation,
we will drop the(V + 1) superscripts from now on.

2.2 Spectral Function

In connection with Eq. (9) we can define the spectral funci¢n r'; w), i.e., the density
of the excited (or quasiparticle) states that contributthéoelectron or hole propagation.
In a finite system this density is a series of delta functidrie@excitation energies

A(r,r';w) Z¢, )} (') (hw — €;) (13)

weighted by the products of the corresponding projecti@ts (7)). This allows us to
rewrite Eg. (12) as an integral over frequencies

Afr,r';w")

I, — !
G(r,r';w) —h/_oo hw—hw’+sgr(hw’—p)indw (14)
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Figure 4. The excitation peaks of a finite system in the spk@iinction A(w) merge into quasiparticle peaks

of finite width in the case of an infinite system. This give®rie finite excitation lifetimes determined by the
inverse of the peak widths.

with max (€] ') < p < min (¢]' ). In an infinite systenu corresponds to the chemical
potential. The inequalitynax (e ) < min (e} *!) follows from the convexity of the

total energy as a function of the particle number, B, — E)Y > E) - EY*': we lose
more energy when removing an electron than we gain by addiegWith the identity

L __»p (é) + ird(z) (15)

T F

in the limitp — 0%, whereP(1/z) is the principal value of /z, we find that
1
A(r,r;w) = —sgnhw — p) = IM G(r,r';w) . (16)
o

The closure relation of the functions in Eq. (7) yields amofimportant property
h/ Arrwdw_zwl r)f (') = 6(r —1'). (17)

When we change from a finite to an infinite system, the deltatfans inA(r, r'; w) merge
and form a series of smooth peaks with finite line widths iadtef sharp resonances (see
Figure 4). However, if the resulting spectral features dieooentzian form, i.e.,

T;

A(r,1t’;w) Z Yi(r (ﬁw i (18)
where theg; are the peak positions arl;| the corresponding peak widths, then we can
perform the integration in Eq. (14) analytically and agditedn a discrete sum oveas in
Eq. (12), provided that the energies are defined as complabers:; = ¢; + i[';. Conse-
qguently, the form of the Fourier transform (Eqg. (9)) remainshanged, too. The imaginary
component of; leads to a damping terexp(—|T';7|/h), revealing that the excitation has
a finite lifetime of# |Fz-|_1. Physically, the de-excitation proceeds via Auger traomsi
that create electron-hole pairs on the way. The dampingeopérticle propagata® may
seem surprising, as it suggests that the particle graddeigppears. However, one must
keep in mind that we deal with an infinite system, iJé..» oo, and an additional particle



(electron or hole) can “dissipate” into the Fermi sea. Iis thénse, one often speaks of
finite quasiparticle lifetimes and callg;(r) ande; the quasiparticle wave functions and
energies, respectively. The quasiparticle equation (g2)duced in the next section holds
for infinite systems if one uses an analytic continuatiorhefdelf-energy into the complex

frequency plane.

2.3 Dyson Equation

Appendix A shows that the time-ordered Green functifie, r'; w) of the interacting sys-
tem obeys an integral equation, the Dyson equation

G(r,t";w) = Go(r,r';w) / Go(r,r""5w) "G (" w)d3r" d3 " (19)
whereGj (r, r';w) is the Green function of a mean-field system defined by
hog} (r) = €0} (r) (20)
with the single-particle Hamiltonian
. h2
ho(r) = ——v2 + Vext (T 47T60 |r — r’I (21)

The quantitiesV,,(r), m, e andey are defined as in Eqg. (41). The Green function
Gy (r,r';w) is obtained from Eq. (12) with the wave functiop®(r) and energies]. The
nonlocal and frequency-dependent functifr, r’,w) is the non-Hermitian self-energy
operator, which contains all many-body exchange and aifoel effects beyond the elec-
trostatic Hartree potential. This can be more easily seenragformulation of the Dyson
equation. By inserting the Lehmann representation (Eg) (b2 Eq. (19), we find that
the wave functiong; (r) and energies; obey the quasiparticle equation

%mwm+/zmmqmmwmw:qwm (22)

(see Appendix B), which is nonlinear 3. Although it looks very similar to the one-
particle equations of mean-field approaches like Hartregtrele-Fock or DFT, it doesot
constitute a mean-field formulation, since the self-en¢a@gs all dynamic many-electron
processes into account. Consequently, the functifiis) and energies; must not be
understood as single-particle quantities. In fact, theydefined in Egs. (7) and (8) as
properties of the many-electron system. From the nonlityeadithe quasiparticle equation
it follows that the wave functiong;(r) are not orthonormal, in contrast to single-particle
wave functions. However, they do fulfill the closure relati&q. (17)).

The Dyson equation (19) can be rewritten in the form of a geédmseries by subse-
quently replacing7 on the right-hand side b§, + GoXG, which leads to, symbolically
written,

G =Gy + GoXGo + GoXGoXGo + GoXGoXGoXGo + ... . (23)

This is a typical equation of scattering theory, where thfedint terms of the geometric
series describe single, double, triple, etc., scatteringgsses, anB is the scattering po-
tential. Such a succession of scattering processes cauftedted by Feynman diagrams,
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Figure 5. lllustration of a series of scattering process@sguFeynman diagrams. All zigzag lines representing
the instantaneous Coulomb interaction must be drawn hurflg. Arrows going forward in time represent
electron and those going backward in time hole propagafohe self-energy is the sum of all possible single
scattering processes.

whereGy is drawn as a straight arrow and the Coulomb interaction agzag line. Ac-
cording to Eq. (23), a diagrammatic representation of aipialscattering process should
involve a series of arrowsd,) divided by single scattering process&y.(In the example
of Figure 5 these are the exchange interaction, the creafian electron-hole pair (the
“bubble” diagram) and finally the creation of a pair thatlitseeates another pair. In order
to obtain the complete Green function, we have to sum alliplelscattering processes,
of which the one shown in Figure 5 is merely one example. THeesergy is given by
the sum of all single scattering processes. The interpoetat terms of scattering pro-
cesses allows to construct approximationsidyy the summation of diagrams considered
essential for the physical behavior of a given electronesyistin general, however, such
approximations are rarely convergent, and too many presdssn out to be quantitatively
important. Therefore, we apply a systematic algebraic oteihstead.

3 Implementation and Applications

3.1 GW Approximation

In practice we must use an approximation for the self-enegh as thé& W approxima-
tion, which contains the electron exchange and a large painecelectron correlation. It
is formally derived in Appendix A and has a very simple mathé&oal form in the time
domain

YW (e, r'; 1) = ihGo(r,'; )W (x, ;7 + 1)) . (24)



In order to calculate the self-energy contribution to thagjparticle energies, we need the
Fourier transform on the frequency axis

- oo
YW (e, r';w) = %/ Go(r,r';w + )W (r,r';w')e™ dw' . (25)
—o0

The first function on the right-hand side is the Green fumctidthe noninteracting sys-
tem defined by Eq. (20) and the second function the dynamjisalieened interaction
W (r,r';w), which is related to the bare Coulomb potentiat, r') = €2/ (4weg |r — ')
through the inverse of the dielectric function

W(r,r';w) = /efl(r,r";w)v(r”,r')dgr" =o(r,r) +/nind(r,r”;w)v(r”,r')dgr”.

(26)
The screened interactidi (r, r'; w) is the effective potential at induced by a quasipar-
ticle atr: the Coulomb potential of the electron repels other eletiia its neighborhood
and thus gives rise to the formation of an exchange and edioelhole, whose effective
positive chargeu,q(r, r'’;w) screens the bare Coulomb potentiét, r') (see Figure 6).
Analogously, an effective negative charge screens thedddulpotential of a hole. The
screened interaction is considerably weaker than the baméo@b interaction. Thé&W
approximation uses the random-phase approximation (RPA)

e(r,r;w) =4d(r —1') — /v(r,r")P(r",r';w)d3r”, (27)

P(r,v';7) = —ihGo(r,t';7)Go (', 1; —7) . (28)

It corresponds to a subset of scattering processes in thg-slactron system. Some of the
respective diagrams are just the ones shown in Figure 5.gUsipression in Eq. (12) for
the Green functioisy of the noninteracting system we observe that the Fouriastoam
of the polarization function in Eq. (28) is given by

0OCC. unocc.

Pariw) =3 Y ol @ @6l @) ¢ @)

1 1
X - 29
(hw+e?—eg-'+in hw—e?-l—e‘;-—in) (29)

in terms of the wave functions] (r) and energies..

)
A% f",f‘) + —+

r v(r,r") . r
W(r,r") +  + /*Quasiparticle”

Figure 6. The formation of the Coulomb hole around an elecatr screens its Coulomb potentia(r, r').
This leads to the definition of the screened interaciiir, r’) that takes into account the combined potentials
of the bare electron and its screening claugy. The ensemble consisting of the electron and its polaorzati
cloud is called “quasiparticle”.
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The well-known Hartree-Fock equations can be recovered fq. (22) if we use the
energy-independent self-energy

Y (r,r") = ihGo(r,r'; —n)uv(r, ') (30)

(given in the time domain) instead. By comparison with Edl)(2ve see that th&W
approximation constitutes an expansion of the self-enepglp first order in the screened
interaction as opposed to the bare Coulomb interaction in(B@). This approximates
the exact self-energy considerably better, becd¥isés much smaller tham. Due to
the similarity of the two self-energy expressions, i approximation can formally be
regarded as a Hartree-Fock approach with a dynamicallgseckinteractiod instead
of the static Coulomb interactian

3.2 Numerical Implementation

For band structure calculations it is more efficient to abthie; directly from the quasi-

particle equation (22) instead of solving the Dyson integrpiation (19) and searching
for the poles of the Green function. Furthermore, it is theagible to exploit the formal

similarity to the Kohn-Sham equation

oS (r) + Vie(r) kS (1) = 505 (x) (31)

whereV,.(r) is the local exchange-correlation potential. In many céiseKohn-Sham
eigenvaluesXS already provide a reasonable estimate of the band struahdeare in
gualitative agreement with experiment. For systems whergtiasiparticle wave functions
are known, one also findg<® (r) ~ 1;(r).° This observation indicates that the self-energy
correctionX (r,r'; €;/h) — Vic(r)d(r — ') is small and justifies the use of first-order
perturbation theory to obtain approximate energies

& ~ €S + (5|9 (es/B) — Vil 65) (32)

A solution of this nonlinear equation still requires the Wwiedge of the frequency depen-
dence of the self-energy, which is not known in general. &fwee, we use the linear
expansion

€; — €55 9% (r,r'; €55 /R)

S(r,r'se/h) & D, v S /) + T T (33)
which leads to
€ N é(s + Zz' <§0§(S |2 (ef(S/h) - ch| ‘P£<S> - (34)
The quasiparticle renormalization factor is given by
—1
103 (eKS/h)
Zi= 1= (88 |zt L /1 KS 35
and equals the quasiparticle weight
7 =/|¢i(r)|2d3r <1. (36)

11



With the decomposition dfV into the bare Coulomb interactienand the remainddl —
v, the GW self-energy (Eq. (24)) splits into exchange and corretgtiarts, symbolically
written as

YW — ihGySW = ihGESv + ihGES (W — v) = B¢V 4 5GW (37)

Instead ofGy we use the Kohn-Sham Green functi@fS. After inserting this decompo-
sition into Eq. (25), we must evaluate the convolutions
ih

oo
o GES(r,r';w + Wo(r,r")e™ "du’ (38a)
™

2 (r,1';w) =

—00

W (e, r';w) = ;—h/ GES(r,r';w + W) [W(r,r';w') —v(r,r')] dw'. (38b)
™ —0o0

The integral (Eq. (38a)) can be evaluated analytically aad$ to the well-known expres-
sion for the Hartree-Fock exchange term

occ. KS* N AKS (!
(A 91 = 5, 3 [ 2 ) f AR o oy
0

v —r'|

(39)
In general, the second convolution (Eqg. (38b)) must be caetbaumerically. For this pur-
pose the integration contour is usually deformed to the dexqane, where the analytical
continuations of7y andWW are smoother.
Let the Kohn-Sham wave functions be represented in a §dsig)}. According to
Eq. (29) we can then write the polarization function and elhted quantities in terms of
productsy,,(r) = ¢ (r){g(r) with the composite index = («, 3) as

P(r,r";w) ZP,W xv(r'). (40)

The Eqgs. (24) to (28) are solved by matrix operations:

1. A self-consistent DFT loop produces the Kohn-Sham wavetfans 95 (r) and
energiesXS. At this point we can already evaluate the exchange term(@).

2. The polarization matri¥,, (w) is calculated according to Eq. (29).

3. The dielectric matrix is obtained from, (w) = 04y — 3=, vuy Pyv(w) and inverted.

4. Next the screened interactioV,, (w) = >°., €.y ! (w)vy, is calculated from a matrix
multiplication of the inverse dielectric function with ti@oulomb matrix.

5. The correlation ternfokS |SEW| oXS) is evaluated according to Eq. (38b) with a
numerical contour integration on the complex frequency@la

6. Finally, approximate quasiparticle energies are obthfrom Eqgs. (34) and (35).

The computation of the dielectric function, its inversiardahe convolution (Eq. (38b))
are very time-consuming. Therefore, some (especiallyrpldedes approximate the in-
verse dielectric function by a so-called plasmon-pole rhé8ié! These models replace the
imaginary component af ! (w), which has a peaked structure, by a sum of delta functions
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at the corresponding frequencies. This simplification cedithe third step to a single ma-
trix inversion of the static dielectric function at= 0 and makes an analytic evaluation of
the frequency integral (Eq. (38b)) possible.

3.3 Examples

Although Hedin’s seminal articfewas already published in 1965, it was not before the
middle of the 1980s that the first ab initio calculations fealrmaterials were reported in
the literature. In spite of several approximations in thenatical treatment, which were
necessary because of the lack of computer power back thi&ia| results were already
very promising. Hybertsen and Lodfeas well as Godbyt al.*® showed that the cal-
culated band gap of Si fell within a margin of about 0.1 eV frthra experimental value.
Shortly afterwards the same authors reported band gaps¥era other semiconducting
materials that turned out to be equally accufét®® After these pioneering studies the
GW approximation was applied to a variety of semiconductoith \great success (see,
e.g., Figure 1). The principal effect of tiféll/ self-energy correction on the band struc-
ture of a semiconductor is to rigidly shift the valence bandsind the conduction bands
down, thus opening the band gap. Figure 7 shows this effe&ifas an example.

Not only the band gaps of semiconductors and insulatorsrgyeived by the&s W self-
energy correction, but the correlation-induced band némg of metals is also correctly
described. The band narrowing reflects the higher effectiass of quasiparticles (the
polarization cloud adds to the electron mass) comparedrdiactrons. For this reason,
the self-energy is sometimes also referred to as “massimpergigure 8 shows the energy

S

2
S -1t
G.J L
& 2F
-3—
4
-57
L

Figure 7. LDA band structure (dashed lines) of silicon withV’ self-energy corrected valence and conduction
bands (solid lines). Th&W approximation shifts the corresponding bands up and daspectively, but leaves
the dispersion essentially unaffected.
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Figure 8. Comparison of LDA (dashed), quasiparticle (slafie) and experimental (crosses) bands for Na. Taken
from Ref. 16.
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Figure 9. De-excitation dynamics measured in time-resblivgo-photon photoemission spectroscopy (dia-
monds) and calculated with ti@&W approximation (solid line). Taken from Ref. 17.

dispersion of Na as an examgfe.The band narrowing brought about by 68V self-
energy correction leads to nearly perfect agreement witeigment.

The calculated excitation or quasiparticle lifetimes cardivectly compared with two-
photon photoemission spectroscopy. This experimentdiodetllows to measure dynam-
ical de-excitation processes in electronic systems. Adtérst photon has excited the
electron system (creating a “hot” electron), a second phptobes the quasiparticle den-
sity of states like in ordinary direct photoelectron spestopy. The time delay between
the two photons can be tuned such that the system can be etisedifferent stages of the
electronic de-excitation process. From a series of measmts one can thus deduce the
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lifetime, which depends on the excitation energy, i.e. ghergy of the first photon. In the
example of Ag in Figure 9 the theoretical curve= 7i|1“|_1 obtained from the imaginary
parts of the quasiparticle energies (see Section 2.2)lglfséows the experimental data
points!’

4 Summary

In this lecture we presented tid&V approximation for the electronic self-energy, which
allows to calculate excited-state properties like exicitaenergies and lifetimes. The
self-energy describes scattering processes betweemoglecnd, in principle, contains
all exchange and correlation effects beyond the electiodtartree potential. Th&W
approximation includes a subset of these scattering pseseé\part from exchange it de-
scribes the creation of electron-hole pairs within the cangbhase approximation (RPA)
that leads to the formation of polarization clouds arouredlihre particles. The ensemble
of an electron or a hole together with its polarization cliethaves essentially like a sin-
gle entity and is called a quasiparticle. The quasipadititeract via a screened potential
that is considerably weaker than the bare Coulomb intemacirhis makes a perturbative
treatment possible. In this respect, tH& approximation constitutes an expansion of the
self-energy up to linear order in the screened interactibmvorks well in a large class
of systems where the polarization effects covered by the RB# the dominant role in
electron correlation, such as simple metals and semicdoiduc

TheGW approximation is by nature a perturbative approach. Act&l calculations
are usually based on the self-consistent Kohn-Sham wawtifuns and energies as a start-
ing point. This method has its limitations in materials whBY-T already gives unphysical
results. It breaks down for systems with very strong eledtrcorrelation, which is in-
sufficiently described by the available exchange-cori@idtinctionals. The large error in
the band gap of NiO in Figure 1 is an example. In reality, Ni@ istrongly correlated
Mott-Hubbard insulator, whereas it comes out as a semiadondwith a very small band
gap (nearly a semi-metal) in DFT calculations.

TheGW method is designed for the analysis of excited states ofshe- 1)-electron
systems. The treatment of optical absorption processesienthe particle number does
not change due to the promotion of valence electrons inteeumged conduction states
rather than emission, requires the simultaneous desamijofi two particles, an electron
and a hole, i.e., an exciton. Consequently, one must desstibh a process with a two-
particle Green function. In this case many-body pertudvetiheory leads to the so-called
Bethe-Salpeter equation. Absorption spectra obtained ftis equation are indeed very
accuraté® An alternative is time-dependent density functional tiggd@mwhich also gives
access to the excited states of/drelectron system.
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Appendix A

Hedin equations

With the field-operators introduced in Section 2.1 we carritewhe many-particle Hamil-
tonian

5 m _, 1
=3 [0+ Veate)] + 5 S vlri), )
i 2]
whereVex (r) is the potential created by the atomic nuclé, r') = €2/ (4meg |r — r'|)

the Coulomb interactiony the electron masg;, the electron charge argd the vacuum
dielectric constant, as

i = [ @h@dedr+ 5 [[ @i e nieioerer @)
with the one-particle operator
2
h(e) = 092 4 Vo). (43)

The expression in Eq. (42) is just a mathematical refornanaif Eq. (41) and should not
be mistaken for the energy expectation value in Hartreerthatihough it looks similar.
From the equation of motion for the annihilation operator
ing b e,0) = [6e,0, 8] = k00 + [ o) 000, 00 0

(44)

which describes the time evolution of a Heisenberg opergatdhe same way as the

Schrodinger equation describes that of a wave function;aredirectly deduce the equa-

tion of motion for the Green function

iﬁ%G(rt, ) = 5(r — )8(t — ) + h(r)G(xt, 't (45)

—3 [ o) (O[T [0 o6, b0t @) | 9 o
This is not a closed equation, because it involves the twtgaGreen function
1 I PP n
G(1234) = —— (W |7 [P @it 3)] | ) - (46)

Here and in the following we denote the set of space-timedinateqr;, ¢;) with a natural
number 1, etc., and further define

(5(12) = 5(1‘1 I‘2)(5(t1 - t2) s (47)
’U(12) = v(rl,r2)5(t1 - t2) 5 (48)
dl= [ d*n / dty, (49)

= (ri,t1 +n), (50)
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wheren is an infinitesimal positive time. With the two-particle @refunction (Eq. (46))
we can rewrite Eq. (45) as

m%a(m) =6(12) + h(1)G(12) — ik / v(113)G(13231)d3 . (51)

1

The additional infinitesimals ih* and3* make sure that the time order is the same as in
Eq. (45).

In order to employ the functional-derivative method, weadtce an external potential
U(1) that is again set to zero at the end. Of course, all quanfio®es now on depend on
U(1), while the equations remain invariant provided that weaegh(1) — A(1) + U(1).

We can use functional differentiation to define a number efuisquantities. The reac-
tion of the density to changes in the external potential igegoed by the linear-response
function

_ (1)

U(2) |y—o
The test potential and the Coulomb potential created byrtieded charge can be com-
bined into an effective potential

R(12)

(52)

Ue(1) = U(1) +//v(13)R(32)U(2)d2d3, (53)

which is related td/ (1) via the inverse dielectric function
—1(qg) = el _ 59 13)R(32)d3. 54
02)= Ty | =s09+ [oasre) (54

With the definition of the polarization function

on(1)

P(12) = 55
(12) et (@) |y (55)

and the chain rule for functional derivatives one obtairsgbometric series

e71(12) = §(12) + /v(13)P(32)d3 + ///v(13)P(34)v(45)P(52)d3 ddds+ ...,
(56)
which can easily be inverted to yield

e(12) = 6(12) — /v(13)P(32)d3. (57)

If we take the Coulomb potential of an electror2as the test potential, we get the screened
potential

W (12) = / e~1(13)0(32)d3 = v(12) + / / v(13)P(34)W (42)d3d4  (58)

as the effective potential at positian
After this interlude we can go on with the derivation. For thectional derivative of
the Green function with respect to the test potential we*ffdd
0G(12)
oU(3)

= G(12)G(33") — G(13231). (59)
U=0
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This allows us to eliminate the two-particle Green functiand the integral in Eq. (51)
becomes

—ih / v(173)G(13231)d3

5G(12)
U (3)

= —ih (/v(13)G(33+)d3) G(12) +ih/v(1+3) d3 (60)

~~

Vi)

— VH1)G(12) + / $(13)G(32)d3,

whereVH(1) is the Hartree potential [cf. Eq. (21)] and

$(12) = ih / / v(1+3) 6;['}((134)) G1(42)d3 d4

= —ih//v(1+3)G(14)6G6Z_]71(§1)2)d3d4 (61)

= m// W (173)G(14)T'(42; 3)d3 d4

the self-energy. For the second identity we used partiabition and for the third the
chain rule for functional derivatives, the definition of thereened interaction (Eq. (58))
and the vertex function

dG~1(12)
et (3) |y—o
With the self-energy (Eq. (61)) the equation of motion foe tAreen function (Eq. (51))
now becomes

I(12;3) = — (62)

[mg - ﬁ0(1)] G(12) - / $(13)G(32)d3 = 6(12), (63)
1
where we incorporated the Hartree potential into the oméegb@operator

ho(1) = h(1) + VH(1). (64)

The delta function on the right-hand side of Eq. (63) denmaias thaiz(12) is indeed
a Green function in the mathematical sense. In a nonintatasystem the self-energy
vanishes, and Eg. (63) becomes

[iha% - 50(1)] Go(12) = §(12). (65)

Multiplication of Eq. (63) withGy and Eq. (65) withG from the left followed by integra-
tion yields the Dyson equation

G(12) = Go(12) + // Go(13)2(34)G(42)d3 d4. (66)
Finally, Egs. (65) and (66) allow us to rewrite the vertexdiion (Eq. (62)) as
'(12;3) = 6(12)6(13) + ;[22(23)) , (67)
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and with the identity

6G(12
= 14 2)d4
s weﬁ / G 45)G(52)d4 d5

45)
5Ueﬂ / / G( 14 5Ueﬁ G(52)d4 d5 (68)

we obtain

I(12;3) = 6(12)5(13) ///

and analogously

)T(67;3)G(74)ddd5d6d7  (69)

aG(11Y)
6Ueﬁ'( )

The Egs. (58), (66), (61), (69) and (70) constitute Hedintsa$ integro-differential equa-
tions, whose self-consistent solution, in principle, sslthe many-electron problem ex-
actly. Unfortunately, they are not just numerical relasidrut contain a functional deriva-
tive in Eq. (69). Therefore, the Hedin equations cannot heesiself-consistently by com-
puter codes, but they may be iterated analytically in ordeierive useful approximations.
In practice we can only perform one iteration. We start whth Green functioii7y of the
noninteracting system, which corresponds to the singtdgba Hamiltonian (Eq. (64)).
As the corresponding self-energy vanishes in this casesghef equations simplifies to

P(12) = —ih=——L = —jh / / G(13)T'(34;2)G(41)d3 d4 . (70)

r(12;3) = 6(12)6(13), (71)

P(12) = —ihGo(12)Go(21), (72)
W(12) = v(12) / / (13)P(34)W (42)d3 d4 (73)
%(12) = ihGo(12)W (172), (74)
G(12) = Go(1 / Go(13)%(34)G(42)d3 d4 . (75)

The polarization function here corresponds to the bubldgrdim of Feynman’s diagram-
matic approach to many-body perturbation theory and leatiset random-phase approx-
imation for the screened interaction (cf. Figure 5). Theresgpion for the self-energy in
this first iteration coined the nandéi” approximation.

Appendix B

Quasiparticle equation

Inserting Eq. (12) into the equation of motion for the Greamdtion of a stationary system
in the frequency domain

[ﬁw - ﬁo(r)] G(r,r',w) — /E(r,r";w)G(r”,r';w)d3r" =§(r—r), (76)

19



which is equivalent to the Dyson equation, yields

Z hw — € :Fm {[hw ~ ho (r)] Yi (r) — /E (r,r";w) 9 (r") d37‘"} =§(r—r').

(77)
Now we multiply with (fw — €;) and take the limity — €; /A on both sides. If we assume
that the system is nondegenerate (i.e.¢adlre different), the left-hand side becomes

wgg-l/n Z hw — € :F in { [hw —ho (r)] Yilr) = /E (r,x%50) 4 &) d3r”}

=Wﬂﬂ{h—%@ﬂ%®—/2mﬂmMWﬂﬂfW}, (78)
and the right-hand side becomes

lim (hw—¢€;)d(r—1')=0. (79)
w—)q/h
Sincey? (r') does not vanish for alt’, the expression in the curly brackets must be zero.
This leads directly to the quasiparticle equation

%@Mﬂﬂ+/E&M%MM%@UfW=q%@% (80)

It remains valid in the degenerate case, which is seen asmell We assume that
the solution of Eq. (80) leads to degenerate amplitutigs) and energies;. Then we
introduce an arbitrary perturbatidh e.g., an additional external potentialfva(r), that
breaks the symmetry in such a way that the degeneracy id.liRer this (nondegenerate)
case the above proof applies. The validity of Eq. (80) for degenerate case is then
established by taking the limg — 0.
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