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Preface

Over the last few decades, advances in molecular genetics technologies, such as DNA
microarrays, have stimulated a new line of research in bioinformatics. DNA microarrays
allow us to obtain a global view of the cell, where it is possible to measure the simultaneous
expression of tens of thousands of genes. In particular, this type of data works by collecting
information from tissue and cell samples regarding gene expression differences that could be
useful for diagnosing disease or for distinguishing a specific tumor type.

Microarray data quickly became very popular among bioinformatics researchers. In a
microarray experiment, there are usually very few samples (often fewer than 100 samples),
but the number of features in the raw data ranges up to 60,000. This high dimensionality,
together with the almost naturally unbalancedness of such data, makes the analysis of
microarray data very appealing for machine learning and statistical researchers too.

This book provides a comprehensive review of the main, up-to-date methods, tools, and
techniques for microarray data analysis. Internationally recognized experts address specific
research topics and challenges in their areas of expertise, some of them being from the field
of biology, others from the field of computer science, and others from the field of statistics.
This interdisciplinarity provides valuable knowledge about the state-of-the-art methods for
microarray analysis, covering the necessary steps for the acquisition of the data, its prepro-
cessing, and its posterior analysis. From the field of biology, this book covers an introduction
to bioinformatics, as well as the protocol for DNA microarrays on glass slides and data
warehousing. Once the microarray data is ready to be dealt with, machine learning methods
for microarray data analysis cover main aspects such as clustering, feature selection, classifi-
cation, data normalization, and missing value imputation. We have also covered the statisti-
cal analysis of the data and presented the most popular computer tools to analyze microarray
data. Since the use of high-performance computing (HPC) has become very popular in the
field, there is a chapter devoted to HPC tools to deal with microarray data. Finally, a chapter
discussing the challenges and future trends for microarray analysis closes this book. The
book also contains examples and code of research work using microarray data from pub-
lished articles that are referred to in the references at the end of each chapter. In this way,
interested readers can easily find those proposals and results more directly related to each of
the subjects addressed in each chapter.

The book is intended for researchers and graduate students in bioinformatics, with basic
knowledge in biology and computer science and with a view to work with microarray
datasets. The most used tools in this book are R and Weka, both of which can be down-
loaded free1,2. Basic understanding of both is needed to fully take advantage of the pre-
sented examples. However, the ideas presented do not assumemore than basic knowledge of
computer science. We hope our readers enjoy reading this book as much as we enjoyed
editing it.

1 https://www.cs.waikato.ac.nz/~ml/weka/downloading.html
2 https://www.r-project.org
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This book has been made possible thanks to the expert contributors who have carefully
put their efforts into writing high-quality chapters about their specific topics. We are grateful
to them for making this happen. We are also indebted to the book series editor, JohnWalker,
who specially invited us to edit this book and guided us through the main steps.

A Coruña, Spain Ver�onica Bol�on-Canedo
Amparo Alonso-Betanzos
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Chapter 1

Introduction to Bioinformatics

Dilara Ayyildiz and Silvano Piazza

Abstract

How the scientific community looks at molecular biology today is very different from that 50 years ago.
During this time technological developments have led to many significant findings that have shook one of
the most important foundations of molecular biology: the central dogma. In this chapter, we will mention
how these changes occurred and gave birth to a very important field of today’s science, bioinformatics. We
will also mention briefly the newest topics of molecular biology regarding bioinformatics technologies and
skills.

Key words Bioinformatics, High-throughput technology, Molecular biology

1 From Molecular Biology to Bioinformatics

Molecular biology has faced a lot of changes in the last decades,
comprehending advancements both at technological level and at
the level of understanding cell biology. In 1962, Watson and
Crick’s Nobel Prize in Physiology or Medicine for uncovering the
structure and function of DNA was a remarkable milestone in
molecular biology, but it also initiated a misleading way of thinking
about biological systems. The claim made by Francis Crick (1966)
that “The ultimate aim of the modern movement in biology is to
explain all biology in terms of physics and chemistry” holds impor-
tant clues to understand the perspective that was dominant for half
a century. The representation of the fact that biological systems are
composed of atoms and molecules had opened the way of reduc-
tionism in biology. The scientists who believed that biological
systems can be explained using the physiochemical aspect of their
individual components began to apply their analysis to the putative
reduction of Mendelian or population genetics to molecular
genetics.

Probably the most famous “poster-child” of reductionism in
biology is the central dogma (Fig. 1) known as “DNA makes RNA
and RNA makes protein” [1]. As a result of this linear information

Verónica Bolón-Canedo and Amparo Alonso-Betanzos (eds.), Microarray Bioinformatics, Methods in Molecular Biology, vol. 1986,
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flow, there were certain beliefs about the genome: that it is station-
ary throughout the life of the organism; it is persistent between cell
types and individuals; [2–4] that changes occurring in somatic cells
cannot be inherited [5]; and that necessary and sufficient informa-
tion for cellular function is contained in the gene sequence.

Although the reductionist approach was successful at the
beginning of molecular biology, further down the road it was
realized that it failed to estimate the complexity of biological sys-
tems. The perspective about explaining or predicting an extremely
complex and large system by studying their individual parts had to
be changed. Today, it is known that a phenomenon of a complex
biological system does not result by the specificity of its individual
parts only but also by the interaction of these components with
each other as well as with other components. The realization of the
complexity of biological systems was not new to the scientists, but it
acquired a new status after recent technological developments
allowed them to simulate these systems using mathematical models
[6, 7].

The introduction of computational methods for understanding
biological systems has increased the magnitude of the data accu-
mulating in the genomic, transcriptomic, proteomic, and many
other omics studies. As a result of the high demand for computa-
tional studies, new tools are being developed every day. Hence, the
knowledge at each biological level of the central dogma is increas-
ing at an unprecedented pace.

l DNA (genome level). The first organism to have its entire
genome sequenced was Haemophilus influenzae in 1995, and,
at the time of writing this book, several thousands of different
organisms had been analyzed, in particular, 1641 animals, 3325
fungi, 679 plants, and 583 protists (Source: NCBI). In addition
to this several international ongoing projects are focusing on a
specific class of organisms: the 1KITE project to sequence the
transcriptome of 1000 insects, the i5k initiative for 5000 arthro-
pods, or the oneKP initiative for more than 1000 plants.

l RNA (transcriptome level). If we consider the transcriptome as
the set of all possible RNAmolecules of an organism, we actually
do not have that definitive answer. In fact, even for humans, we
do not know all the possible transcripts because some of them

Fig. 1 Francis Crick’s central dogma. The central dogma for biology postulates that the flux of information is
going in a one-way direction. Even in this simple form, it had held for several decades, because there was no
evidence undermining it
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are To be Experimentally Confirmed (TEC) and maybe some
will be discovered in the future. At the moment, 65,000 genes
and 224,502 associated transcripts are annotated in the human
genome. Moreover, if we consider only the two main public
databases for biological high-throughput data (NCBI-GEO
and EBI-ArrayExpress) gene expression data are available for
more than 3000 different species, and so potentially millions of
unique transcripts.

l Protein (proteome level). The same amount of information is
available for the protein level: more than 1100 Eukaryota and
more than 16,000 organisms have a reference proteome
(Source: UniProtKB). But as in other biological layers, a large
number of proteins are not analyzed in detail: out of 125 million
proteins discovered, only half million are manually annotated
and reviewed.

2 The Change of Perspective

As a consequence ofthe aforementioned developments the central
dogma was revised. The linear information flow from DNA to
protein was changed in a more complex way where all the elements
of the central dogma would be coordinately working (Fig. 2). The
discoveries in genomics, transcriptomics, and proteomics modified
the central dogma significantly, and in particular, epigenetics added
other important layers to all these fields.

Fig. 2 Number of samples available in NCI-GEO and EBI-ArrayExpress databases
over the last 16 years. The data for the cumulative samples available to analyze
were obtained from the corresponding websites

Introduction to Bioinformatics 3



2.1 Epigenetics “Epigenetic,” as an adjective of the word “epigenesis,” had already
been used in the past centuries before we adopted the term epige-
netics. In fact, epigenesis referred to the development and concep-
tion of fertilized egg giving rise to a complex organism with cells of
varied phenotypes. Epigenesis was antagonistic to preformation,
according to which the embryo or parts of it are preformed form
origination. This reveals the meaning lying behind the word epi-
genesis: epi (over, above) and genesis (origin). Similarly, “epige-
netics” was used to describe the whole complex of development
processes that lie between the genotype and phenotype when the
term was first introduced by embryologist Conrad Waddington in
1942 [8]. Waddington’s perspective about “epigenotype” was
described as “concatenations of processes [are] linked together in
a network, so that a disturbance at an early stage may gradually
cause more and more far-reaching abnormalities in many different
organs and tissues” [8]. He defined a model, called “epigenetic
landscape,” in order to describe the path followed by a cell. So the
possible divergences were determined by the presence or absence of
a particular factor.

Years after Waddington, microbiologist David Ledbetter Nan-
ney brought a new concept in “epigenetics” by considering cellular
control systems into two genetic systems and auxiliary mechanisms.
In his model, by referring to Waddington’s paper (1942), he stated
that these auxiliary mechanisms (epigenetic) are involved in the
determination of specificities to be expressed in a particular cell to
emphasize the importance of these systems in genetic systems in cell
development [9]. However, research related to regulation of gene
expression in development of organisms was not part of epigenetics
but molecular genetics.

Following Walther Flemming’s discovery of chromosome in
1879, experiments by many investigators, including Wilson and
Boveri, provided strong evidence that the developmental program
resided in the chromosomes. While Flemming used the term “chro-
matin” to refer stainable structures in the cell nucleus during cell
division, he thought the term would disappear when its chemical
composition would be explained. However, it has been used to
define the complex of DNA with histone proteins. Studies on
chromatin, particularly DNA methylation and histone modifica-
tions, started to take place in the 1960s, though they were related
to “epigenetics” only after the 1990s.

The chemical modifications of DNA and histone modifications
are the result of interactions of DNA with proteins (and RNA) that
involve specific enzymes working on specific target sites. Epige-
netics did not replace genetic research, but it added another layer
of understanding by stating: “This is not the all, there is beyond
(epi) genetics.” In the following paragraphs, we will explore the
different methodologies that could be applied.

4 Dilara Ayyildiz and Silvano Piazza



2.1.1 DNA Methylation The role of DNA methylation in the regulation of gene expression
by acting as an epigenetic mark was proposed by Holliday and
Riggs in 1975. Then it was shown in vitro experiments that the
addition of a methyl group at the 50 position of cytosine residue
(5mC) causes gene inactivation and the pattern of methylation was
maintained through the generations of cells [10–13]. Since then,
there has been a great focus on DNA methylation profiling for the
understanding of the mechanisms particularly on endogenous pat-
terns of DNA methylation, maintenance of the patterns through
generations, inactivation of gene expression by methylation, initia-
tion or inhibition of methylation at a fully unmethylated site,
discovery of enzymes for de novo methylation, and keeping meth-
ylation on already methylated sites. However, the efforts to dis-
cover epigenetic modifications was challenged by the lack of high-
throughput technologies in the past. Over the last years, increasing
demand on these topics has given birth to numerous methods
developed to map 5mC, providing insights on genome-wide
DNA methylations.

The primitive times of DNA methylation technologies (i.e.,
pyrosequencing, methylation-specific polymerase chain reaction,
and Sanger sequencing) were limited to analyze only the target
regions, such as promoter region of a single gene or CpG island.
The use of microarray hybridization techniques dramatically
increased DNA methylation studies by providing a chance to
work at the genome-wide level. Although these studies do not
require large amounts of input DNA and money, the high coverage
depends on the array design [14]. Thanks to the emergence of
next-generation sequencing this is not a concern anymore. It allows
for a very detailed analysis of methylation status at the genomic
level with high coverage. The mapping of genome-wide DNA
methylation can be achieved by the use of chromatin immunopre-
cipitation (ChIP) with DNA microarray (chip) ChIP-on-chip, or a
variation of it called methyl-DNA immunoprecipitation (MeDIP),
where purified DNA is immunoprecipitated with an antibody
against methylated cytosines, giving rise to genomic maps of
DNA methylation. More recently, these techniques have been
improved with the use of high-throughput sequencing methodol-
ogies, leading to ChIP-seq. Finally, we may have bisulfite sequenc-
ing in which the DNA methylation state of cytosines bisulfite may
be changed into a methylation-dependent SNP [15]. From the
bioinformatics point of view, this last method continues to be the
gold standard due to its single-base-pair resolution. A summary of
DNA methylation technologies in epigenomics can be seen in
Fig. 3.

Introduction to Bioinformatics 5



2.1.2 Histone

Modifications

In 1950, Stedman and Stedman [16] assumed that histones were
general repressors of gene expression and so different kinds of cells
in an organism should have different kinds of histones to create
phenotype diversities. So, based on this theory, activation of a gene
would require removal of histones; however, the regions that
should be detached from histones were not clear. The problem
was solved when Allfrey and Mirsky in 1964 [17] reported their
findings about gene activation by histone acetylation. Later, other
types of histone modifications (i.e., methylation and phosphoryla-
tion) were identified.Modern chromatin research was initiated with
the discovery of the basic units of eukaryotic chromatin structure
called nucleosomes, in 1974, by Kornberg and Thomas
[18]. Nucleosomes are formed by 150 bp DNA wrapped around
eight histone proteins. After the discovery of nucleosomes, a few
years later, Grunstein and his collaborators [19, 20] stated that the
histone amino-terminal tails were essential for regulation of gene
expression, and for the establishment of silent chromatin domains.
In 1996, David Allis [21] identified a histone acetyltransferase
enzyme in Tetrahymena similar to a transcriptional regulatory

Fig. 3 Development of high-throughput technologies in epigenomics research with time. BS-Seq bisulfite
sequencing, ChIP-chip chromatin immunoprecipitation with microarray; tiling array, MeDIP-Seq methylated
DNA immunoprecipitation sequencing, RRBS-Seq reduced representation bisulfite sequencing, ChIP-Seq
chromatin immunoprecipitation sequencing, BeadChip bead-based microarray,WGBS whole-genome bisulfite
sequencing, MethylCap-Seq methylation capture sequencing, MBD-Seq methyl-CpG binding domain
sequencing; sequencing, SMRT single-molecule real-time sequencing, oxBS-Seq oxidative bisulfite sequenc-
ing, TAB-Seq TET-associated bisulfite sequencing, BSAS bisulfite sequencing, ATAC-Seq assay for
transposase-accessible chromatin with high-throughput sequencing; SeqCap Epi CpGiant and Nanopore-Seq
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protein in yeast, suggesting that histone acetylation was related to
regulation of gene expression. The same year, another study by
Taunton and coworkers provided evidence that a mammalian his-
tone deacetylase was related with transcriptional repressor in yeast.
All these studies concluded that both histone modification and
nucleosome remodeling were involved in preparing the chromatin
template for transcription and, in some cases, the modifications
can be transmitted through cell division. In order to create a global
map of these modifications, current methodologies are a modified
version of ChiP-seq experiments in which DNA fragments of
interest are immunoprecipitated by specific histone-modification
antibodies.

2.2 Epitrans-

criptomics

Collaborative works in the fields of genomics, transcriptomics, and
proteomics together with epigenetics has begun to increasingly
elucidate the roles of DNA, RNA, and protein modifications in
gene regulation, leading to a new regulatory layer between DNA
and protein: “epitranscriptomics.” Similar to epigenomics, the term
itself holds the explanation—study of processes involved in the
regulation of transcriptome by RNA molecules themselves. The
idea of transcription in the central dogma was changed after the
observation that only a small fraction of DNA encodes functional
proteins with the release of the human genome sequence
[22]. Thereafter, it became clear that the large proportion of the
non-protein-coding regions of the genome is also transcribed to
produce various RNA regulatory molecules with many different
functions [23].

2.2.1 Noncoding RNAs The regulatory RNA products of these noncoding genes were
named according to their base pair lengths: short noncoding
RNAs (sncRNA, <200 bp) and long noncoding RNAs (lncRNAs,
>200 bp). sncRNAs consist of many different types of RNA mole-
cules such as microRNAs (miRNAs), small interfering RNAs (siR-
NAs), piwi-interacting RNAs (piRNAs), small nucleolar RNAs
(snoRNAs), small nuclear RNAs (snRNAs), extracellular RNAs
(exRNAs), small-Cajal body-specific RNAs (scaRNAs), ribosomal
RNAs (rRNAs), and transfer RNAs (tRNAs). On the other hand,
lncRNAs hold the largest class of noncoding RNAs in the mamma-
lian genome with many different subtypes according to their func-
tions. In addition, they are able to have post-transcriptional
modifications such as splicing, 50-capping, and 30-polyadenylation
[24]. The most known lncRNAs are long intergenic noncoding
RNAs (lincRNAs), antisense RNAs (asRNAs), pseudogenes, and
circular RNAs (circRNAs).

In order to observe all these new kinds of genes, the suggested
experiment is a total RNA extraction followed by sequencing or
custom-designed microarrays. Since, usually, they are not expressed
at a high level, experiments have to be designed in order to

Introduction to Bioinformatics 7



maximize the low-level spectrum of the signal for microarrays or for
RNA-Seq, thus obtaining a high number of reads for each sample.

2.2.2 miRNAs and

ceRNAs

MicroRNAs (miRNAs) are generally 22 bp long and belong to the
sncRNA family. miRNAs are involved in posttranscriptional gene
regulation by negatively regulating mRNAs or noncoding tran-
scripts. They are attached to Argonaute proteins to form
RNA-induced silencing complexes (RISCs) to be able to bind
miRNA-response-elements (MREs) located on the 30 UTR of
mRNAs. As a result of this binding, mRNA degradation or inhibi-
tion is achieved to repress the target protein translation [25]. Since
a single mRNA can be regulated by a number of miRNAs, they
usually contain multiple MREs, which provide binding sites for
multiple target miRNAs [26]. The interactions between mRNA
and miRNA play a central role in many different biological pro-
cesses via gene regulation. In this regard, regulation of miRNAs is
an important process which occurs via competing for endogenous
RNA (ceRNA) interactions [27, 28]. According to ceRNA hypoth-
esis [29], pseudogenes, lncRNAs, and circRNAs compete with
mRNAs for the same pool of miRNAs by sharing common MREs
and hence acting like miRNA “sponges” [28, 30, 31]. As a result,
absorption of miRNA by ceRNA interactions lowers the available
level of miRNAs for the target mRNA, thus causing derepression of
translation.

In order to observe all these new kinds of genes, the suggested
experiment design is a total RNA extraction, followed by size
selection to enrich the small fraction of RNAs and then RNA
sequencing, or custom-designed microarrays.

2.2.3 RNA Methylation The gradually accumulating studies about ncRNAs have started to
change the stable role of RNA in the cell. One of the most striking
discoveries in “epitranscriptomics” of course was the modifications
of RNA. These processes modulate interactions of RNA with
other molecules by affecting RNA structure and hence having a
significant impact on cell physiology. RNA methylation is a revers-
ible posttranscriptional modification on RNA, regulating many
different pathways, that is, RNA stability and mRNA translation
[32–35]. The main types of methylations found in ncRNAs are N6-
methyladenosine (m6A), N1-methyladenosine (m1A), 20-O-meth-
ylation (20 OMe/Nm), and 5-methylcytosine (m5C). Among
these, N6-methyladenosine is the most abundant modification
detected in mRNA [36], but it has also been found in tRNA,
rRNA, snRNA, and several lncRNAs [37]. The function of N6-
methyladenosine is not fully clear yet; however, it has been shown
to have important roles in splicing, stability, nuclear transport, and
mediation of cap-dependent translation and turnover by regulating
mRNA and ncRNA [38]. On the other hand, methylation at the N1

position of adenosine (N1-methyladenosine) has been shown to
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have a role in mRNA translation by close localization to the trans-
lation start site and first splice site [36, 39, 40]. The most common
RNA modification fundamentally present in rRNAs, snRNAs,
tRNAs, and miRNAs is 20-O-methylation [32, 36, 41, 42]. It
plays a significant role in protecting against 30-50 degradation and
30 uridylation of some small RNAs in animals and Drosophila
[32]. Finally, 5-methylcytosine is methylation event that involves
the fifth carbon atom of cytosine as a target for methylation in poly
(A) RNA, rRNA, tRNA, snRNA, and lncRNA [43, 44]. This type
of modification stabilizes tRNA secondary structure and prevents
degradation as well as has a role in translation and mRNA transcript
stabilization [45].

The technologies for the transcriptome-wide N6-methyladeno-
sine (m6A) profiling came out in 2012, namely, m6A-seq and
MeRIP-seq(m6A-specific methylated RNA immunoprecipitation
sequencing) [37, 46]. These methods allowed researchers to detect
m6A peaks in mRNA, mostly enriched in 30 UTR regions and long
exons. The disadvantages of these methods were the difficulties to
mark the actual site of methylation due to the low resolution
[47]. As a solution to this problem, UV-based techniques were
developed. The combination of m6A-seq with UV-induced
RNA–antibody cross-linking gave rise to the technique called
photo-cross-linking assisted m6A-seq (PA-m6A-seq). m6A-CLIP
(cross-linking immunoprecipitation) [48] and miCLIP (m6A
individual-nucleotide-resolution cross-linking immunoprecipita-
tion) [49] are other UV-based techniques that came out a few
years later. On the other hand, some techniques were developed
to measure the methylation status (m6A+:m6A - ratio) of each
methylation site. SCARLET (site-specific cleavage and
radioactive-labeling followed by ligation-assisted extraction and
thin-layer chromatography) [50] and m6A-LAIC-seq (m6A-level
and isoform-characterization sequencing) [51] were examples of
this category. The aforementioned methods applied for m6A detec-
tion can be used also for m6Am profiling by adapting them for
m6Am (N6,20-O-dimethyladenosine). Finally, relatively recent
technologies have been developed as single-molecule real-time
sequencing by Pacific BioSciences (PacBio) and Nanopore
Sequencing by Oxford Nanopore Technologies that could read
the property of the molecules, like their modification, directly.

The aforementioned developments in omics sciences and the
revision of the central dogma formed the driving force for changing
of perspectives in molecular biology. Scientists acquired an opposite
of reductionist mindset called systems biology which is based on the
collaborative way of thinking to not underestimate the complexity
of biological systems. Obviously, studying all different layers of the
central dogma individually and also in collaboration needs high-
throughput technologies and interpretation of intensive work on
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big data science. At this point, the importance of bioinformatics is
inevitable in terms of both developing new algorithms and/or
applying these tools to provide better insights into systems (Fig. 4).

3 Different Levels of Bioinformatics

The different levels of bioinformatics can be divided into three
types according to their purposes. The first level is related to the
use and improvement of biological databases, organizing and sub-
mitting produced data as a result of high-throughput experiments.
This task is also known as data curation which holds great impor-
tance to make the existing information accessible and updated for
the scientific community. This is followed by the usage of these
stored data which brings the second task of bioinformatics: devel-
oping tools and resources. This level requires an advanced knowl-
edge of computer science which may be difficult to achieve at the
beginning of a bioinformatician’s career. Many different tools are
written in many different programming languages, in relation to

Fig. 4 Revised central dogma. Graphical representation of the revised biology
central dogma. As we can see additional information obtained in the last decade,
shown here as the epigenome, the epitrascriptome, and the epiproteome, extend
the three canonical layers (DNA, RNA, and protein level). Notably also the flux of
information is not more unidirectional but instead creates a complex network
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the needs and constant developments in both science and technol-
ogy. These tools have improved the understanding of biology since
it has become possible to analyze big data which is not human
readable. The third and last task, integrated closely with biology,
is the application of these tools for the interpretation of the results
with biological reasoning.

3.1 So What Skills or

Knowledge Are Needed

to Become a

Computational

Biologist?

3.1.1 Personal Skills

Based on what we have discussed in the previous paragraph, we
believe that the most important skill is to be able to think from a
global perspective of biological systems: in other words, this means
to be able to integrate data and analyses trying to understand
biological models as a whole with respect to single aspects. This
change of perspective, even if it seems a simple advice to follow, is
very challenging. In fact, the usual mistake an inexperienced bioin-
formatician does is trying to confirm with the analyses they perform
the theory behind the experiments. But usually, biology is far more
complicated than expected. For example, let us assume that you are
involved in a project in which a drug is a promising candidate of a
high-throughput functional screening and the biological readout
for the experiment is the reduced cell mobility. As a second step of
the project, the team decides to perform a global transcriptional
profile of mRNA.

In this situation, it is very easy to try to focus on the possible
pathways linked to cell motility, cell migration, or adhesion.
Instead, rigorous analyses may provide unexpected results: for
instance, the drug causes bioenergetics impairment interfering
with mitochondrial activity, leading to a modified cell proliferation
rate that in the end is responsible for the differential cell
mobility [52].

A second, maybe unexpected, skill to have is patience and
proceed at a slow pace with the analyses. This is for two different
reasons: (1) Most of the time you will spend your days writing
scripts, or compiling or installing specific programs. The advice
that we want to give you is to take your time to perform these
tasks and comment your code in order to be able to review your
work in the future and to avoid simple mistakes. Most of the time
you will perform the analyses more than once or you want to utilize
the code you have written for similar projects. Without a proper
annotation, you will not be able to remember all the specific steps
you choose and why you do so. Another related advice is that you
may try to write the detailed method description as you perform the
analysis. In this way, you will have an explanatory document ready
to share with your colleagues and collaborators, or to be included
in a manuscript. In the long run, you will obtain results faster
because you become more efficient. (2) A very important good
practice is to read the documentation that often comes with the
software you are planning to use. Once again, do not rush into your
analyses, take your time and try to reproduce with the sample data
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the expected results. When you have become familiar with the
tools, you may feel confident to try with your data.

In bioinformatics analyses, almost always the software is
designed with internal methods of quality control which employs
statistical methods to monitor and control the robustness of the
results. For example, if a statistical test is applied in a high-
throughput experiment procedure, the multiple test correction is
automatically computed (see the other chapters in the book for real
examples). So you may feel confident that all the statistical controls
are already done and your job is more related to the interpretation
of results. Even though this may be true in some cases, usually it is
not enough. In fact, it is your duty to check if the model may apply
or not to your specific case; for example, a commonmistake is using
parametric statistical tests when the sample size is small, or in the
presence of obviously violated assumptions of the model. In fact, as
a computational biologist, you will constantly struggle with tool
design for applications such as psychology, business analytics, or
economics where the sample size is not a problem in respect to
biology where if you have a triplicate you are lucky. So, in the end,
you have to be very careful handling data and always consider the
quality and quantity of our input data, perform the quality checks
on the intermediate data, and test similar tools in order to check the
consistency of the results. In other words, try to use the same
strategy that is commonly used at the bench in the wet laboratory,
that is, when you need to prove an idea, several experiments with a
common biological readout are performed.

3.1.2 Programming Skills In terms of specific programming skills, a common question is
which language is the best for learning bioinformatics. Since this
is a very general question, the answer is also very generic and not
very satisfactory: it depends on your specific application. For exam-
ple, if your interest is writing programs where the calculation speed
in a high-performance framework is the most critical parameter, an
obvious choice would be a low-level language such as C, C++, GO,
or Swift. On the other hand, if you would like to build up software
with a graphical interface, Java may be an optimal choice. Finally, if
you are more interested in data processing and great visualization
capability, you may use Python or R. But in all cases, the most
important factors that may help you to decide are not the intrinsic
property of the languages but their extrinsic one: the available
libraries related to your task. When you perform any kind of ana-
lyses, you will be surprised that most of the times, other people
already have encountered the same challenge. So probably you may
want to take advantage of others’ experience to quickly find solu-
tions to your problem. In other words, you do not want to waste
time reinventing the wheel. In bioinformatics this means that spe-
cific extensions may be available to your software. In Python, they
are called python modules, and in R language, they are called R
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packages. Moreover, some of them are also organized in specific
biologically related collections as Biopython or R/Bioconductor.
At the time of writing this book, there are several thousand exten-
sions available for each language, covering the majority of bioinfor-
matics needs you may encounter. But the most interesting part of
these projects is that they are open source, meaning that you have
access to the source code used for their implementations. For
medium to advance users this means to have a template of a com-
plex statistical package and in this way be able to learn how to create
their own.

3.1.3 Time to Say Hello

to Linux

The modern operating systems like Windows 10 or OSX are won-
derful tools that you may use as your primary setup for bioinfor-
matics analyses. The majority of the software we discussed so far
have an implementation for them. So you may think that those old
days with programs that must be operated by text-only interface
running in a Unix/Linux machine are gone for good. Well, that is
not actually the case.

In our bioinformatics day-to-day work, we always use Unix/
Linux machines for one simple reason: scalability. As long as you
will continue to work in bioinformatics, you will find yourself
involved in big projects with, for example, thousands of samples
with high-throughput data that would require a huge amount of
computational power. Even modern top-of-the-line laptops or even
workstations are not capable enough to handle such heavy-duty
tasks. So the use of high-performance-computing (HPC) platform
is nowadays an essential requirement, and usually, all these data
centers are operated by Unix/Linux systems. So, in order to avoid
reproducibility problems or software incompatibility issues, it is a
good idea to have the same system in your daily machine (the test
set) and in the HPC (the analysis set). Fortunately, that means that
you do not need to become a Linux guru: probably you may just
need to become familiar with the use of the Linux shell (e.g., bash)
and with some text-manipulation programs like sed or awk. In fact,
very often, you will encounter tasks that are merely preprocessing
steps because the input files are not directly readable. An apparent
simpler approach in those situations may seem to be the use of
Microsoft Excel. But remember that every time, in your workflow,
there is a step that could not be automated by some scripts, you are
taking the chance to have errors difficult to debug in the future, or
to obtain a procedure irreproducible by others.

Nevertheless, you do not need to worry, since nowadays several
available distributions are very easy to install, maintain, and use.
Just to cite some examples of what you may encounter, we can
mention Scientific Linux, Bio-Linux, or CentOS distributions.

Another smart possibility may be installing your favorite Linux
flavor into a virtualized or dockerized environment. Both solutions
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rely on a simple principle: your machine becomes the host of
another virtualized operating system; in this way you may continue
to use your Windows or OSX for your daily activities and the Linux
installation for the bioinformatics analyses. On modern computers
with at least 32GB of RAM memory, it is not a problem to utilize
this kind of setup without any degradation of performance.
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Chapter 2

Protocol for DNA Microarrays on Glass Slides

Kathleen M. Eyster

Abstract

The DNA microarray is a powerful, flexible, nonbiased discovery technology. Microarrays can be used to
assess processes from gene expression to long noncoding RNAs to specific pathologies, as well as many
others. This chapter describes the protocol for DNA microarray analysis of differential gene expression
using DNA sequences spotted on microscope slides.

Key words DNA microarray, Gene expression, RNA extraction, RNA analysis

1 Introduction

The microarray is a flexible, nonbiased technology that can be used
to assess a variety of entities. Early arrays were designed to analyze
gene expression using the now-familiar grid pattern of DNA
sequences attached to a platform such as a glass slide or specialized
cassette [1]. Over time, microarrays have been designed to assess
DNAmutations [2], DNAmethylation [3], including single nucle-
otide polymorphisms [4], chromosomal fragments [5], micro-
RNAs [6], and long noncoding RNAs [7]. The technique of
chromatin immunoprecipitation can be combined with DNA
microarray technology [8]. Microarrays have been designed to
analyze peptides [9], tissue expression of specific proteins [10],
and other factors [11]. Some DNA microarrays cover entire gen-
omes [1, 12], whereas others are focused on a subset of genes that
have been shown to be involved in a specific function or pathology
such as foodborne viruses [13] or apoptosis [14], and custom
microarrays can be designed [15]. Microarrays were initially
focused on basic research, but applications have entered clinical
practice and may be used as the basis for clinical diagnosis or clinical
decision making [4, 16], and microarrays are applied in agriculture
[17, 18].

This chapter describes the performance of DNA microarray
experiments using DNA sequences attached to treated microscope
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slides for the analysis of differential gene expression. The protocol
involves extraction and purification of total RNA, processing of
RNA through synthesis of double-stranded cDNA, synthesis of
labeled antisense RNA, hybridization with the DNA microarray,
and posthybridization processing and scanning of the microarrays.

2 Materials

1. RNAlater (Ambion) or similar RNA preservation reagent.

2. Tri reagent (Molecular Research Center).

3. 1.5 mL and 2 mL microfuge tubes.

4. Polytron homogenizer with 7 mm probe (Kinematica) for
processing tissue, or pellet pestle with cordless motor (Kimble
Kontes) or glass Dounce homogenizer for processing cultured
cells (Kimble Kontes).

5. Bromochloropropane.

6. Sodium acetate, 3 M.

7. RNase Zap (Ambion) or RNase Away (Life Technologies).

8. Diethylpyrocarbonate (DEPC)-treated water: Add 1 mL of
DEPC (Sigma) to 999 mL purified water (18.2 MΩ resistivity)
and stir on a stir plate overnight. Destroy the toxicity of DEPC
by autoclaving the water. Store at room temperature.

9. Silica-based RNA purification spin columns such as the RNeasy
kit (Qiagen) or equivalent. The RNeasy Kit contains silica-
based spin columns, binding and washing buffers, and
nuclease-free water.

10. RLT buffer (Qiagen RNeasy kit): Requires addition of 10 μL
β-mercaptoethanol to 1 mL of the RNeasy lysis buffer/binding
RLT buffer before use.

11. 100% ethanol, molecular grade.

12. RPE buffer (Qiagen RNeasy kit): Requires addition of 44 mL
molecular grade 100% ethanol to 11 mL washing buffer RPE
concentrate before use.

13. RNase-free DNase (Qiagen) stock solution: Gently mix 550 μL
nuclease-free water with the vial of lyophilized DNase.

14. RNase-free DNase (Qiagen) working solution: Gently mix
10 μL DNase stock solution with 70 μL RNase-free DNase
dilution buffer for each sample.

15. Agilent Bioanalyzer and Nano 6000 LabChip and reagents for
RNA analysis.

16. Preparation of gel matrix for the Agilent RNA 6000 Nano
Lab Chip: Add 550 μL of gel matrix to a spin filter cartridge
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mounted in a microfuge tube. Centrifuge the gel at 1500 � g
for 10 min at room temperature. The filtered gel can be stored
in 65 μL aliquots at 4 �C for up to 1 month.

17. MessageAmp II-Biotin Enhanced Kit (Ambion): contains T7
oligo dT primer, ArrayScript reverse transcriptase, RNase
inhibitor, 10� first strand buffer, dNTP mix, 10� second
strand buffer, DNA polymerase, RNase H, T7 enzyme mix,
T7 10� reaction buffer, biotin-NTP mix, nuclease-free water,
cDNA filter cartridges, and aRNA filter cartridges.

18. Reverse Transcription Master Mix: Mix 1 μL nuclease-free
water, 1 μL T7 oligo dT primer, 2 μL 10� first strand buffer,
4 μL dNTP mix, 1 μL RNase inhibitor, and 1 μL ArrayScript
reverse transcriptase for each sample. Increase the volume by
5% to account for pipetting overage.

19. Second Strand Master Mix: Mix 63 μL nuclease-free water,
10 μL second strand buffer, 4 μL dNTP mix, 2 μL DNA
polymerase, and 1 μL RNase H for each sample plus 5% volume
overage.

20. Wash buffer for cDNA and aRNA spin column purification:
add 24 mL ethanol to the entire bottle of Wash buffer before
using.

21. In vitro Transcription (IVT) Master Mix: Mix 4 μL T7 10�
reaction buffer, 4 μL T7 enzyme mix, and 12 μL Biotin-NTP
mix for each sample plus 5% volume overage. (The Biotin-NTP
mix contains ATP, GTP, CTP, and biotin-11-UTP.)

22. DNAmicroarrays spotted on treated microscope slides, such as
those from Microarrays, Inc., Phalanx Biotech, or CodeLink.

23. Flexible adhesive cover slip gaskets (HybriWell, Grace
Bio-Labs, Inc) with sealing strips.

24. Prehybridization buffer: 5� SSC, 0.1% Tween 20, 0.1% bovine
serum albumin (BSA), filtered through 0.2 μm filter. Store
frozen at �20 �C (see Note 1).

25. Hybridization buffer: 40–70% deionized formamide, 10�
SSC, 0.2% SDS, 0.02% sheared salmon sperm DNA, or pur-
chased hybridization buffer designed for microarrays.

26. Posthybridization wash buffer #1: 0.075 M Tris, pH 7.6,
0.1125 M NaCl, 0.0375% Tween 20. Filter through 0.2 μm
filter and store at room temperature.

27. Posthybridization wash buffer #2: 0.1 M Tris, pH 7.6, 0.15 M
NaCl, 0.05% Tween 20. Filter through 0.2 μm filter and store
at room temperature.

28. Posthybridization wash buffer #3: 0.1� SSC, 0.05% Tween 20.
Filter through 0.2 μm filter and store at room temperature.
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29. TNB buffer: 0.1 M Tris–HCl, pH 7.6, 0.15 M NaCl, 0.5%
NEN blocking reagent (Perkin Elmer). Mix liquid buffer com-
ponents and heat to 60 �C on stir plate. Add NEN blocking
reagent slowly to warm buffer. Stir overnight. Filter through
0.88 μm filter and store in 50 mL aliquots at �20 �C.

30. Streptavidin Alexa 647 stock solution: Mix 1 mL of 1� PBS,
pH 7.4, with 1 mg of Streptavidin Alexa 647 Fluor (Molecular
Probes, now Thermofisher). Store aliquots of the stock solu-
tion at �80 �C in an opaque box.

31. Streptavidin Alexa 647 working dilution: Mix in the ratio of
10 μL Streptavidin Alexa 647 stock solution to 4990 μL TNB
buffer in a volume sufficient to submerge the slides in the
fluorescent dye in the chosen reservoir.

3 Methods

3.1 RNA Hygiene Technologies such as DNA microarray and reverse transcription-
quantitative polymerase chain reaction (RT-qPCR) require very
high-quality purified RNA. The ubiquity of RNases requires that
steps must be taken to prevent RNA degradation. It is also critical
to remove substances such as genomic DNA that may contaminate
the RNA.

1. Clean all of the hard surfaces of instruments, bench tops, racks,
and any other materials that will be used in the processing of
tissues or cells for extraction of RNA with a reagent that
destroys RNases such as RNase Zap. Rinse with DEPC-treated
water.

2. Wear gloves at all times and restrain long hair to avoid contam-
ination with RNases from the skin and hair. Change gloves
often.

3. Destroy contaminating RNases in water by treatment with
diethylpyrocarbonate (DEPC) as described in Subheading 2,
item 8.

4. Laboratory disposables such as microfuge tubes and pipette
tips should be nuclease-free.

3.2 Extraction of RNA

from Cultured Cells

1. Remove culture medium from the cell cultures by centrifuga-
tion of cells growing in suspension; resuspend the cells in saline
to rinse and centrifuge again. For adherent cells, rinse with
saline.

2. Add 1mLTri reagent to pelleted cells (grown in suspension) or
to the culture dish (for adherent cells) (see Notes 2 and 3).

3. Pipet the Tri reagent/cell debris into a 1.5 mLmicrofuge tube.
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4. Disperse the cellular contents equally throughout the Tri
reagent with an instrument such as the pellet pestle and cord-
less motor or a Dounce glass homogenizer.

3.3 Extraction of RNA

from Tissues

1. At the time of collection, store dissected tissues in an RNA
preservation reagent such as RNAlater (seeNotes 4 and 5) and
store at �80 �C.

2. Thaw tissue, blot to remove RNAlater, and weigh a tissue piece
no larger than 30 mg.

3. Mince the tissue using scalpels or scissors under Tri reagent.

4. Place the minced tissue in 1 mL of Tri reagent in a 12� 75 mm
nuclease-free polypropylene test tube.

5. Use a Polytron instrument with a 7 mm probe or equivalent
to homogenize the tissue (see Notes 6–8), pulsing for 10 s
three times with a 30-s rest period on ice between pulses (see
Note 9).

6. After homogenizing each sample, rinse the probe with DEPC-
treated water, spray with RNase Zap, rinse again with DEPC-
treated water, run the probe in a graduated cylinder filled with
DEPC-treated water, and dry the probe in preparation for the
next sample.

7. Homogenize all samples then thoroughly clean the probe. The
corrosiveness of Tri reagent will ruin the probe if not removed
as quickly as possible (see Note 10).

3.4 Purification

of RNA

1. To each 1 mL of cultured cells dispersed in Tri reagent or
sample of tissue homogenized in 1 mL of Tri reagent, add
60 μL of 3 M sodium acetate and 200 μL of bromochloropro-
pane. Shake the samples vigorously to mix while holding the
caps on tightly to prevent spillage. Fresh Tri reagent is a clear
pink; it will turn milky with this mixing step. Incubate on ice for
15 min.

2. Separate the phases by centrifugation for 5 min at 8000 � g.

3. After centrifugation, transfer the aqueous layer (the top clear
layer) to a nuclease-free 12 � 75 mm test tube (see Note 11).

4. Add 1 mL RLT buffer and 1.2 mL 100% ethanol to the RNA
sample (see Note 12).

5. Place a spin column with a silica-based membrane into a micro-
fuge tube and dispense 700 μL of the RNA sample into the
column. Centrifuge for 30 s at 10,000 � g and discard the
eluent.

6. Repeat the centrifugation of 700 μL aliquots until all of the
sample has been filtered through the spin column.
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7. Using wash buffer RW1 (from the extraction kit), add 350 μL
of the RW1 buffer to the column. Centrifuge for 30 s at
10,000 � g and discard the eluent.

8. Carry out a DNase treatment on the column by adding 80 μL
RNase-free DNase working reagent directly to the membrane
of the column.

9. Allow the DNase to act for 15 min at room temperature.

10. Wash the column again with 350 μL wash buffer RW1; centri-
fuge the column at 10,000 � g for 30 s and discard the eluent.

11. Wash the column twice with buffer RPE (from the extraction
kit). For each wash, add 500 μL RPE to the column, centrifuge
for 30 s at 10,000 � g, and discard the eluent.

12. Transfer the column to a clean, dry microfuge tube. Centrifuge
the column for 2 min at 14,000 � g without adding any buffer
to dry the column.

13. Transfer the column to a fresh, nuclease-free 1.5 mLmicrofuge
tube. Ensure that it is well labeled as this will be the collection
and storage tube for the purified RNA sample.

14. Deliver 50 μL of nuclease-free water to the center of the
column and incubate at room temperature for 10 min (see
Note 13).

15. Centrifuge the column at 10,000 � g for 1 min to elute the
RNA. Do not discard the eluent; it contains the purified RNA.

16. Deliver a second aliquot of 50 μL of nuclease-free water to the
center of the column. Incubate at room temperature for
10 min.

17. To elute the second aliquot of RNA into the microfuge collec-
tion tube containing the first elution volume, centrifuge the
column at 10,000 � g for 1 min (see Note 14).

18. Remove the column from the microfuge collection tube and
discard.

19. Save a 3–5 μL aliquot of the RNA separately to use for analysis
of the quantity and purity of the RNA.

20. Store the purified RNA sample and the aliquot for analysis at
�80 �C until used for DNA microarray or other downstream
applications.

3.5 Analysis

of the Purified RNA

Use the Agilent RNA 6000 Nano Lab Chip to analyze the quantity
and quality of the purified RNA (see Notes 15 and 16).

1. The kit reagents of marker mixture, dye concentrate, and one
65 μL aliquot of prepared gel matrix should be removed from
storage at 4 �C 30min before use. Place them in an opaque box
to come to room temperature in the dark.
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2. Turn on water bath to come to temperature at 70 �C.

3. Vortex the dye concentrate well, then centrifuge for 5–10 s at
10,000 � g.

4. Add 1 μL of the dye concentrate to the 65 μL aliquot of
prepared gel matrix and vortex thoroughly to mix. Centrifuge
at 13,000 � g for 10 min.

5. Thaw the 3–5 μL aliquots of RNA samples that had been set
aside for analysis as well as the RNA ladder.

6. Heat the RNA samples and RNA ladder at 70 �C for 2 min in
the water bath to denature them. Chill all samples on ice. When
the samples are chilled, centrifuge for 1 min at 10,000 � g to
return the condensate to the bottom of the tubes.

7. Add the gel matrix to the appropriate well on the chip as
designated by the manufacturer and pressurize the gel. Add
the gel, marker mixture, RNA ladder, and RNA samples to the
appropriate wells.

8. Using a vortexer with speed adjustment and an adaptor, vortex
the chip at 2400 rpm for 1 min.

9. Place the chip in the Agilent BioAnalyzer and follow the
prompts of the software to read the chip. Record the RIN
number and RNA concentration for each sample (seeNote 17).

10. Remove the chip from the machine and clean the electrodes
with nuclease-free water as soon as the chip is finished reading
to avoid undue corrosion of the electrodes.

3.6 Preparation

of Antisense RNA

The next series of reactions is designed to synthesize biotinylated
antisense RNA (aRNA, alias complementary RNA or cRNA) in
preparation for hybridization.

1. The quantity of total RNA required for the microarray plat-
form that you are using will be designated by the manufacturer.
The desired quantity is usually 0.2–2.0 μg total RNA in 10 μL
volume. Calculate the volume containing the proper quantity
of RNA for each sample. Bring the volume to 10 μL with
nuclease-free water, or use a vacuum concentrator such as a
SpeedVac to reduce the volume to 10 μL as necessary (see
Note 18).

2. To each sample of total RNA, add reverse transcription master
mix (10 μL).

3. Incubate the samples in a well-controlled heat block or ther-
mocycler for 2 h at 42 �C. Place on ice to cool after the
incubation. The first strand of cDNA has now been
synthesized.
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4. Place vials of nuclease-free water (24 μL per sample) on a heat
block or in a water bath and bring to 55 �C in preparation for
the cDNA purification step later.

5. To each sample, add 80 μL of second strand master mix.

6. Incubate the samples at 16 �C for 2 h in a well-controlled heat
block or thermocycler to synthesize the second strand of
cDNA. Cool the samples on ice after the incubation.

7. Purify the resulting double-stranded cDNA using the cDNA
filter cartridges. To each sample of double-stranded cDNA,
add 250 μL of cDNA binding buffer to yield a total volume
of 350 μL; pipet up and down to mix.

8. Transfer the cDNA samples to the filter cartridges.

9. Centrifuge the filter cartridges for 1 min at 10,000 � g.

10. Discard the eluent and wash the filter cartridge with 500 μL of
wash buffer; add the wash buffer and centrifuge for 1 min at
10,000 � g. Discard the eluent of the wash buffer.

11. Dry the filter cartridges by centrifugation for 1 min at
10,000 � g in the absence of added buffer.

12. Move the filter cartridge to a new, nuclease-free, carefully
labeled collection tube.

13. To the center of each filter cartridge, add 22 μL of preheated
55 �C nuclease-free water.

14. Leave on the bench at room temperature for 2 min.

15. Elute the double-stranded cDNA into the collection tubes by
centrifugation for 1 min at 10,000 � g.

16. To each 20 μL sample of purified double-stranded cDNA, add
20 μL of IVT master mix.

17. Carry out the IVT reaction in a well-controlled heat block or
thermocycler for 14 h at 37 �C. Biotin-labeled aRNA is synthe-
sized in this reaction (see Note 19).

18. Stop the IVT reaction by adding 60 μL room temperature
nuclease-free water to each sample.

19. Bring nuclease-free water (200 μL per sample) to 55 �C in a
heat block or water bath in preparation for the aRNA purifica-
tion step (see Note 20).

20. Transfer 350 μL of the aRNA binding buffer to each sample of
synthesized aRNA.

21. Pipet 250 μL of 100% ethanol into the first sample and gently
pipet up and down to mix. Do not vortex or centrifuge as this
will cause the aRNA to precipitate and will reduce recovery of
the sample. As soon as the reagents are mixed, transfer the
entire volume to an aRNA filter cartridge in a collection tube.
Complete the addition of ethanol, gentle mixing, and transfer
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to the filter cartridge for each sample before moving on the
next sample.

22. Centrifuge the samples for 1 min at 10,000� g and discard the
eluent.

23. Add 650 μL wash buffer to each filter cartridge and centrifuge
for 1 min at 10,000 � g to wash the filter, and discard the
eluent.

24. Without adding buffer, centrifuge the filter cartridges for
1 min at 10,000 � g to dry the filters.

25. Transfer the filter cartridges to well-labeled, new, nuclease-free
collection tubes.

26. Transfer 200 μL of 55 �C nuclease-free water to each filter
cartridge. Place the samples in the 55 �C water bath or heat
block to incubate for 10 min.

27. Centrifuge the filter cartridges for 90 s at 10,000 � g to elute
the purified biotinylated aRNA (see Note 21).

28. The concentration of aRNA in each sample can be calculated
by reading the absorbance at a wavelength of 260 nm (A260) in
a spectrophotometer (see Note 22). Use the equation:

A260 � dilution factor � 40 μg/mL � 0.001 mL/μL ¼ μg
aRNA/μL

29. Aliquot the aRNA into aliquots containing 10 μg aRNA each
and freeze at �80 �C, or proceed directly to hybridization.

3.7 Hybridization Preparation for hybridization requires final preparation of the sam-
ples and prehybridization of the microarray slides. These two steps
should be carried out simultaneously so that the prehybridized
slides are ready at the same time as the samples.

1. Turn on the heat block and set to 90 �C for the denaturation
reaction. Make sure the prehybridization buffer has been
warmed to 55 �C. Turn on the shaking incubator or hybridiza-
tion oven and warm to 42 �C in preparation for the hybridiza-
tion reaction.

2. For sample preparation, compute the volume of each aRNA
sample that contains 10 μg of aRNA. Raise the volume to 20 μL
with nuclease-free water or reduce the volume to 20 μL using a
vacuum concentrator as necessary.

3. Pipet 5 μL of fragmentation buffer into the 20 μL sample of
biotinylated aRNA and heat at 94 �C for 20 min in a thermo-
cycler or heat block (see Note 23).

4. Place on ice to cool for at least 5 min.

5. Centrifuge for 30 s at 10,000 � g to return condensate to the
bottom of the tubes.
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6. Transfer 185 μL of hybridization buffer to the 25 μL of frag-
mented aRNA and mix thoroughly.

7. Heat the sample in a preheated heat block for 5 min at 90 �C to
denature the aRNA.

8. Place on ice to cool for 5 min before loading the samples onto
the microarrays. Ensure that no more than 30 min elapses
between completion of the denaturation step and loading all
of the samples onto microarray slides.

9. Simultaneously with the fragmentation and denaturation of the
samples, the slides must be prehybridized. Ensure that the
prehybridization buffer has been preheated to 55 �C in a
water bath.

10. Place the microarray slides in a slide holder.

11. Immerse the slides in the 55 �C prehybridization buffer and
incubate on a rotator for 30 min.

12. Rinse the slides with DEPC-treated water by placing the reser-
voir holding the slides into the sink and carefully flooding the
container with water. Be careful not to let the prehybridization
buffer dry on the slides. When all of the prehybridization buffer
has been replaced with water, place the reservoir on a rotator
and rock gently for 1 min.

13. Dump the water off of the slides and carefully flood the reser-
voir holding the slides with DEPC-treated water again.

14. Rock gently for 1 min.

15. Repeat the wash and gentle rocking steps three more times,
1 min each wash, for a total of five washes of the microarray
slides.

16. Place the slides in a slide holder designed to fit a 96-well plate
rotor and dry the slides by centrifugation at 1000 � g for
3 min.

17. Adhere a flexible adhesive coverslip to each microarray slide.
Line up the end and edges of the adhesive gasket with the end
and edges of the microarray and attach the coverslip. Ensure
that the gasket is completely adhered at all edges.

18. Thoroughly vortex the first fragmented and denatured sample.

19. Carefully pipet 200 μL of the hybridization sample onto the
microarray, loading through one of the ports of the adhered
coverslip. Avoid formation of bubbles between the coverslip
and slide.

20. Load the remaining samples in the same manner.

21. Use the seals supplied with the adhesive coverslips to seal the
ports.
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22. Place the microarrays in a slide holder and incubate in a shaking
incubator set at 300 rpm or in a hybridization oven at 42 �C
for 18 h.

23. Warm a container of Posthybridization buffer #1 large enough
to submerge the microarray slides in their slide holder in a
water bath set at 42 �C so that it comes to temperature during
the hybridization reaction. The first wash step after the hybri-
dization will use this preheated buffer.

3.8 Post-hybridi-

zation Processing

1. Fill an open container with Posthybridization wash buffer #1.
Place a slide holder in a second container and fill with Post-
hybridization wash buffer #1 to a level that will submerge the
microarray slides.

2. Take the microarray slides out of the incubator/
hybridization oven.

3. Place the first slide in the open container of buffer and slowly
peel off the flexible coverslip such that the surface of the slide is
immediately flooded with the buffer.

4. Move the first slide into the slide rack in the second container
of buffer, submerged in the buffer.

5. Repeat the removal of coverslips and placement in the slide rack
until all microarrays have been processed through this step.

6. To eliminate unbound/unhybridized aRNA from the micro-
arrays, transfer the rack of slides into the container of 42 �C
Posthybridization wash buffer #1 (step 23 in Subheading 3.7).
Incubate the microarrays at 42 �C for 1 h exactly.

7. During the incubation, prepare a container of room tempera-
ture Streptavidin-Alexa Fluor 647.

8. Remove the rack of slides from the 42 �C Posthybridization
wash buffer #1 and submerge in the Streptavidin-Alexa Fluor
647 and incubate for 30 min in the dark (see Note 24).

9. Set up four containers with Posthybridization wash buffer #2.

10. Transfer the microarray slide rack from the container of fluor
into the first container of buffer. Incubate covered for 5 min.

11. Gently raise and lower the slide rack several times in the buffer
to gently agitate, then transfer the rack of microarrays into the
second container of Posthybridization wash buffer #2. Agitate
gently at the beginning and end of the 5 min incubation
period.

12. Repeat washing of the slides in the third and fourth containers
of Posthybridization washer buffer #2 with gentle agitation at
the beginning and end of each 5 min incubation.

13. Prepare a container of Posthybridization wash buffer #3.
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14. Transfer the rack of microarray slides to the container of Post-
hybridization wash buffer #3.

15. Incubate for 30 s. Maintain gentle agitation throughout the
entire 30 s incubation.

16. Dry the slides by centrifugation using a 96-well plate rotor
adaptor at 1000 � g for 3 min.

17. Store the dried slides in the dark in an opaque slide box.

18. Scan the slides as soon as possible after completion of slide
processing, using a GenePix Pro 4000B scanner or equivalent.
The scanner and software should be turned on for approxi-
mately 15 min in preparation to scan the slides.

19. If the initial scans of the slides identify regions containing high
fluorescent background, repeat the final wash step in Posthy-
bridization wash buffer #3, dry the slides by centrifugation as
before, and repeat the scan.

20. The microarray data should be analyzed using specialized soft-
ware such as GeneSpring or a similar program.

21. Use complementary technologies such as RT-qPCR [19] or in
situ hybridization [20] to confirm differential gene expression.
Similarly, use immunoblot [21], immunohistochemistry [22],
or enzyme-linked immunosorbent assay (ELISA) [23] to fur-
ther explore differential expression of the proteins encoded by
differentially expressed genes.

22. The experimental details and raw data from the microarray
scans for each microarray experiment should be deposited in
a public database at the time of publication to maintain com-
pliance with the recommendations of Minimum Information
About A Microarray (MIAME) [24]. The Gene Expression
Omnibus (GEO), maintained by the National center for Bio-
technology Information (www.ncbi.nlm.nih.gov), is a database
designed to store microarray and related data for public use in
the USA.

4 Notes

1. Make prehybridization buffer in advance and filter; this buffer
filters slowly so it is difficult to make in a hurry. Freeze 50 mL
aliquots as this volume thaws expeditiously.

2. Cells should readily dissolve in Tri reagent. Pelleted cells that
were grown in suspension may need to be dispersed in the Tri
reagent to achieve dissolution of the cells. Some especially
adherent cells may need to be scraped from the culture dish.

3. If cells grown in different culture dishes are to be combined,
add 1 mL of Tri reagent to the first dish. When the cells in that
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dish are in solution, aspirate the Tri reagent/cell solution and
transfer it to the second dish and continue until all cells to be
combined have been dissolved in 1 mL of Tri reagent.

4. Pieces of dissected tissue should be small (e.g., 5 mm in one
dimension) as the ability of RNAlater to preserve the RNA in
the sample can be overcome if the tissue sample is too large for
the volume of reagent (e.g., use five volumes of reagent per mg
of tissue).

5. If tissues are from animals, the protocol for animal treatment
and tissue procurement must have prior approval from the
appropriate institutional committee for ethical treatment of
animals, such as the Institutional Animal Care and Use Com-
mittee. If tissues are sourced from human subjects, all protocols
should conform to the Declaration of Helsinki and must have
prior approval from the appropriate institutional committee
charged with overseeing the ethical treatment of human sub-
jects in medical research, such as the Institutional Review
Board.

6. Use RNase Zap to decontaminate the Polytron probe each
time before using it to homogenize tissue. Clean a 100 mL
graduated cylinder with RNase Zap and rinse with DEPC-
treated water, then fill the cylinder with DEPC-treated water.
Spray the homogenizer probe with RNase Zap and rinse with
DEPC-treated water, then run the probe in the graduated
cylinder of DEPC-treated water to ensure removal of all
RNase Zap. Dry off any residual water before using the probe.

7. The 12� 75 mm tube is well sized for the 7 mm probe. Ensure
compatibility of the probe and tube if substituting a different
tube or probe.

8. If your tissue samples are especially small or hard to obtain,
substitute a 2 mL microfuge tube (Make sure to use a 2 mL
microfuge tube; 1.5 mL tubes are too small for the 7 mm
probe, and the v-bottoms are typically of a conformation
incompatible with the probe.) for the 12 � 75 mm test tube,
and use 600 μL Tri reagent instead of 1 mL for homogeniza-
tion. Homogenize the tissue in this smaller volume of Tri
reagent, then rinse the probe in 400 μL of fresh Tri reagent
to recover the drop of Tri reagent that would otherwise be lost
to the probe. Combine the 600 and 400 μL aliquots. Recovery
of this drop results in a significant increase in the total RNA
extracted from small tissue samples.

9. Increase the number of pulses of homogenization as necessary
for tissues with a greater percentage of connective tissue or
muscle. The minced tissue can be soaked in Tri reagent for an
hour before initiating homogenization in order to soften espe-
cially difficult tissues.
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10. The RLT buffer that comes in the RNeasy kit is a lysis buffer
and can be used for homogenization of either cultured cells or
intact tissues. However, we find that phase separation of RNA
from DNA and protein, as occurs with a Tri reagent-based
extraction protocol, yields a better product as it provides an
additional step that reduces the quantity of genomic DNA that
goes onto the column. The greater the quantity of genomic
DNA that goes onto the column, the more likely it is that some
of that DNA will persist to contaminate the final eluted RNA.

11. Centrifugation separates the sample into a clear, aqueous layer
on top containing RNA and an organic layer on the bottom
containing protein. Genomic DNA is found at the interface
between the two layers. Leave plenty of headspace between the
pipette tip and the genomic DNA when pipetting off the
aqueous layer containing RNA as it is easier to avoid contami-
nation with genomic DNA than to remove it later. The sample
protein can be extracted from the organic layer of the Tri
reagent extraction [25]. However, our experience is that
some proteins do not perform well in applications such as
immunoblot after being denatured in Tri reagent.

12. The volume of RNA is typically approximately 450 μL. Add
proportionally more RLT buffer and 100% ethanol if the vol-
ume of RNA is greater than 450 μL.

13. Do not use DEPC-treated water for this step as DEPC may
interfere with downstream applications of RNA.

14. Recovery of purified RNA is best if the elution is carried out
twice with 50 μL water each time than if elution is performed
with smaller volumes or only once. If the RNA is too dilute for
downstream applications it can be concentrated using a vac-
uum concentrating device such as a SpeedVac. We have
observed that some silica-based columns are not as effective
as others at purifying RNA and may compromise the quality
and quantity of the eluted RNA. However, we do find that the
silica-based columns provide a more consistent product than
the phenol–chloroform–isoamyl alcohol RNA extraction
method [25].

15. If the RNA concentration is expected to be low, use the Agilent
RNA 6000 Pico Chip.

16. Agarose gel electrophoresis and spectrophotometry can be
used to analyze RNA [25]. However, the advantage of the
Agilent Bioanalyzer is that it consumes only 1 μL of sample
to analyze both the quality and quantity of RNA in the sample.
This analysis designates the quality of the RNA by an RNA
integrity number (RIN). RIN numbers range from a low of
undefined to a high of 10; RNA samples for DNA microarray
should have RIN numbers greater than 8.

30 Kathleen M. Eyster



17. Clean the electrodes of the Agilent Bioanalyzer before and after
each use, carefully following the manufacturer’s instructions.
Carry out monthly maintenance of the electrodes and maintain
hygiene of the machine to keep it clean and functional.

18. If less than the requisite quantity of 0.2 μg of total RNA of a
given sample is available, then the sample can be amplified
through two rounds of aRNA. Synthesize aRNA as described
in Subheading 3.6 but in the final synthesis step use unlabeled
nucleotides since cDNA cannot be synthesized from biotiny-
lated aRNA. Use the unlabeled, single-stranded aRNA from
this reaction as a template and use random primers to initiate
synthesis of a second round of first strand cDNA. Use T7 oligo
dT to prime the synthesis of the second strand of cDNA, and
use the resulting double-stranded cDNA to synthesize aRNA.
In the synthesis of this second round of aRNA, incorporate
biotinylated 11-UTP to yield biotinylated aRNA.

19. When the original total RNA is reverse transcribed to the first
strand of cDNA, the reaction uses a primer that carries the T7
promoter sequence plus oligo (dT). The messenger RNA in
the sample binds to the oligo dT sequence of the primer. As
each new cDNA transcript is synthesized, the T7 promoter
sequence is incorporated. In the IVT reaction, the T7 RNA
polymerase enzyme in the master mix will transcribe the
double-stranded cDNA sequences because they carry the T7
promoter in their 50 end.

20. Make sure to have the water heated to 55 �C so it is ready for
the purification step. Since the IVT reaction proceeds for 14 h,
it is often carried out overnight, so it is useful to prepare the
water and let it heat overnight so that it will be ready when the
IVT reaction is halted.

21. If it is necessary to interrupt the process of synthesizing aRNA,
there are several points at which the samples can be frozen at
�80 �C until the process can be continued later. It is safe to
stop and freeze the samples after synthesis of the second strand
of cDNA (see Subheading 3.6, step 6), after the double-
stranded cDNA has been purified (see Subheading 3.6,
step 15), or after elution of the purified aRNA (see Subheading
3.6, step 27).

22. Do not use DEPC-treated water to dilute aRNA for spectro-
photometry as DEPC interferes with the spectrophotometry
reading. Instead, use nuclease-free water or purified water with
18.2 MΩ resistivity.

23. Fragmentation of the biotinylated aRNA is designed to lessen
secondary and tertiary RNA structure. Secondary and tertiary
structure can impede RNA hybridization to DNA microarrays,
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hence the biotinylated aRNA is fragmented by metal-induced
hydrolysis prior to hybridization.

24. The slides should be kept in the dark as much as possible from
this point on, but the photobleaching of Alexa 647 proceeds
much more slowly than that of many other fluorescent dyes.
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Chapter 3

Data Warehousing with TargetMine for Omics Data Analysis

Yi-An Chen, Lokesh P. Tripathi, and Kenji Mizuguchi

Abstract

Most biological processes including diseases are multifactorial and determined by a complex interplay of
various genetic and environmental factors. This chapter aims to provide a user guide to data querying,
analysis, and visualization with TargetMine and the associated auxiliary toolkit. We have also discussed some
of the commonly used data queries for the researchers who are interested in gene set analysis within a data
warehouse framework. Overall, TargetMine provides a convenient web browser-based interface that enables
the discovery of new hypotheses interactively, by performing analysis of omics data using complicated
searches without any scripting and programming efforts on the part of the user and also by providing the
results in an easy-to-comprehend output format.

Key words Data warehouse, Data integration, Multi-omics data analysis, Drug discovery, Gene
prioritization, Data mining, Knowledge discovery

1 Introduction

The development of high-throughput “omics” technologies has
contributed to a proliferation of genomics, transcriptomics, prote-
omics, and metabolomics data for a wide range of biological sys-
tems, including diseases. However, omics experiments typically
generate large volumes of data; for instance, the list of differentially
expressed genes (DEGs) generated by a gene expression microarray
experiment can easily run into hundreds and even thousands. This
data overload far outstrips the pace at which individual genes can be
characterized experimentally. Therefore, there is a pressing need for
the development of bioinformatics tools and approaches that can
process and analyze such large volumes of data for prioritizing
candidate genes and for biological knowledge discovery.

A single omics datatype, such as microarray data, on its own
typically offers very specific (and limited) insights into gene func-
tion in the biological phenomenon under study. Therefore,
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combining multiple omics data types can complement the informa-
tion in the individual data types and deepen our understanding of
the causative mechanisms underlying the complexity within the
cellular processes and complex diseases and disorders. However,
integrating diverse biological datatypes into a singular, holistic
framework is an extremely challenging task because of the diversity
of data types, variability in technical platforms and experimental
methodologies. In recognition of the benefits of data integration
many different types of frameworks and methods have been devel-
oped to integrate and collate diverse data types, with their own
associated strengths and shortcomings [1].

A data warehouse is a data integration system that assembles all
data onto a unified platform and therefore is well suited for integra-
tion of multiple omics data types and to query and analyze diverse
data types in a singular framework [2–4]. We have developed
TargetMine, an integrated data analysis platform for gene set anal-
ysis and biological knowledge discovery [5, 6] based on the multi-
purpose InterMine data warehouse framework [7]. TargetMine has
been successfully employed for analysis of omics data and candidate
gene prioritization [8–13].

This chapter is aimed at providing a basic user guide for
researchers seeking to use TargetMine for integrative analysis of
large gene (and protein) sets emanating from high-throughput
omics experiments such as gene expression microarrays. We intro-
duce the TargetMine data analysis platform and discuss in detail
how the users can utilize the various embedded tools and features
to search, visualize, and analyze the integrated biological data
within TargetMine. We discuss how the users can perform keyword
searches, submit batch queries, manipulate different gene/protein
lists, navigate the TargetMine data model to perform complicated
queries, and perform functional enrichment analysis. We also
describe how the users can obtain the results in the form of export-
able tables that can be immediately inputted to other stand-alone
data analytical and visualization tools for subsequent analysis.

2 Materials

1. TargetMine and the associated auxiliary tool kit are freely
available for all users at http://targetmine.mizuguchilab.org,
subject to terms of use. No programming expertise is necessary
for the users to perform data analysis with TargetMine;
advanced users can, however, use the TargetMine Application
programming interface (API), available in commonly used
programming languages to access all the TargetMine features
and to perform complicated queries and data analysis.
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2. Users and developers may also install a local version of Target-
Mine, the TargetMine source code and instructions describing
installation are available at http://targetmine.mizuguchilab.
org/download. TargetMine is typically rebuilt once a month
and the latest releases are hosted on https://github.com/
chenyian-nibio/targetmine. The local installationofTargetMine
requires IT expertise and the users are recommended to obtain
the necessary technical support from their institutional ITsupport
or a commercial service provider. To install TargetMine locally for
commercial purposes, the users should contact our commercial
service partner. (http://www.mss.co.jp/businessfield/bioinfor
matics/solution/products/targetmine/ index.html).

3 TargetMine Data Model, Development and Data Sources

1. TargetMine is based on the InterMine data warehouse frame-
work [7] that uses an object-oriented data model; each
biological entity (such as genes and proteins) in TargetMine/
InterMine is modeled as an “object” that is described by a set of
“attributes”; objects of the same type are grouped together in
“classes” and the interclass relationships and associations are
modeled as “references.” The InterMine data structure readily
allows the stored biological data to be easily navigable.

2. The TargetMine data model was developed by combining a
customized version of the core InterMine data model and
models specifically developed for TargetMine to process and
analyze a wide variety of omics data types and that would assist
in drug discovery and related research. For instance, transfer-
ring experimental readings from probes/probesets to genes is
an important step in analyzing microarray data. We specifically
designed a probeset data model to store the mapped associa-
tions between selected Affymetrix probesets and their
corresponding genes (as supplied by the manufacturer) and
thereby also linking them up with the gene-associated annota-
tions. The implementation of the probeset data model allowed
the users to directly query a probeset or a collection of probe-
sets such as a set of differentially expressed probes derived from
a microarray experiment and retrieve their functional associa-
tions and perform biological enrichment analysis (see below).

3. The data sources in TargetMine were carefully selected to
survey a wide expanse of biological data space to facilitate target
prioritization and assist biological knowledge and drug discov-
ery in general [5, 6, 14]. As of now the data sources are limited
to human, mouse, and rat, the model organisms in disease
biology. TargetMine is rebuilt once a month to incorporate
the updated data sources as well as to integrate new data
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sources that we have identified as potentially useful for drug
discovery. The list of current data sources and their version
releases may be found at http://targetmine.mizuguchilab.
org/targetmine/dataCategories.do.

4. We have also developed the TargetMine Auxiliary Toolkit to
assist with data analysis and visualization and to transition
TargetMine from a data warehouse to a more integrative data
analysis platform.

4 Data Querying and Gene Set Analysis

On the home page for the TargetMine data analysis platform,
http://targetmine.mizuguchilab.org, the users will find the links
for the TargetMine data warehouse and the TargetMine Auxiliary
Toolkit (see below). The users can click the “Start using Target-
Mine” button to commence data analysis with TargetMine (Fig. 1).

Fig. 1 Getting started with TargetMine. TargetMine homepage provides information that the users are advised
to go through before getting started. The tabs on the top provide links to an overview of TargetMine system,
tutorials, latest updates, documentation and information on bulk data download. Clicking the “Start using
TargetMine” button transfers the users to the TargetMine main page; “TargetMine Auxiliary Toolkit” button
provides the link to an overview of the auxiliary toolkit, and clicking the “Enrichment analysis+” and
“Composite network” buttons transfers the users to the corresponding analyses pages in the auxiliary toolkit.
On the TargetMine main page, the users can enter a keyword in the search box to perform a keyword search or
paste list of object identifiers in the list upload box to analyze a list. The tabs on the top of the page provide
links to the predefined queries (templates), list upload function, the “Query Builder” tool and the TargetMine
API information. The account users can “Log in” and click the “MyMine” tab to manage the stored lists and
queries. Source: http://targetmine.mizuguchilab.org/

38 Yi-An Chen et al.

http://targetmine.mizuguchilab.org/targetmine/dataCategories.do
http://targetmine.mizuguchilab.org/targetmine/dataCategories.do
http://targetmine.mizuguchilab.org
http://targetmine.mizuguchilab.org/


4.1 Keyword Search 1. The simplest type of query that the users can perform in
TargetMine is searching by keywords. In the TargetMine
home page, users can enter the keyword (Gene/protein
ID/miRNA/chemical compound ID, symbol, name, path-
ways, ontology terms, etc.) in the “Search” box and then
click the “SEARCH” button below. Alternatively, the users
can enter the keywords in the “Search:” box on the upper
right of any TargetMine page and click “GO” (Fig. 2).

2. The keyword search retrieves a list of items that ranked by the
similarity to the query keywords; on the left side, the hits are
categorized by item type (genes protein, terms, etc.) and
organism along with the number of hits of each type that
were returned in the search results. The user can click the
results to view detailed information about the selected items
(Fig. 2).

3. Clicking on the selected result will direct the user to the type-
specific report page that provides an overview of the annota-
tions associated with selected result that are divided into differ-
ent sections such as different types of biological theme
associations (Gene Ontology [GO] [15], KEGG/Reactome/
NCI-PID Pathways [16–18], etc.), biomolecular interactions
(table-wise and as embedded graphics) and orthologous asso-
ciations if available. The user can select a specific section from
the “Quick Links:” tab below the summary or by scrolling
down. The user can also follow the external links on the right
of the report page to examine more detailed information asso-
ciated with the selected object (Fig. 2).

4.2 Uploading

and Manipulating Data

Lists in TargetMine

1. The “Upload” function under the “Lists” tab allows the user
to upload a list of items (such as genes or proteins) to Target-
Mine. TargetMine accepts different types of identifiers; for
instance, a gene list could consist of NCBI Gene IDs, gene
symbols, ENSEMBL IDs, RefSeq or GenBank IDs. The users
may either type/paste the list of identifiers into the box or use
the “Browse. . .” button to upload identifiers from a file. The
users must specify the data type (genes, proteins, probesets,
etc.) of the list items from the drop-down menu next to the
“Select type:” field. When uploading identifiers that can be less
than specific, such as gene symbols or RefSeq IDs, the users
may also click the checkboxes next to “Match on case” and
“Remove version tags” to minimize ambiguity. Finally, the
users can create a list by clicking “Create List” button at the
bottom of the menu (Fig. 3).

2. Once the list is uploaded, the user is asked to “Choose a name
for the list” in the field provided and also to verify if the
identifiers have been mapped correctly. The centralized data
model in TargetMine enables the user-supplied IDs to be
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Fig. 2 Keyword search in TargetMine. A search for the keyword “STAT3” retrieved 260 results containing the
search term; the results were listed in the order of relevance that was highlighted as a score on the right of the
individual results. The results were also categorized by item type and organism under “Categories.” Clicking
on a selected item transfers the user to the object reports page that provides a summary of the object being
examined



Fig. 3 Uploading and creating a gene list. The list upload function can be accessed from the “Lists” tab in
every TargetMine web page. The user is required to specify the object type and either type/paste common
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accurately mapped to the database entries in TargetMine. In
the event of multiple mappings, the users have the option to
select some or all of the mappings or ignore them altogether.
The deprecated and unrecognized identifiers will be displayed
in the list of objects not found and excluded from the final list.
Finally, the users are asked to save the list by clicking the “Save a
list of # <>”, where # <> refers to the number and type of
mapped entities in the user-supplied list (Fig. 3).

3. Next, the user is directed to the TargetMine “List Analysis”
page that provides a table of objects in the user-supplied list and
accompanying information. For instance, for a user-supplied
gene list, the page provides NCBI gene IDs, official gene
symbols, gene names, and the source organism. The table can
be exported to external files in excel and text compatible for-
mats or upload to the Galaxy tool [19] by clicking on the
“Export” button and select from the available options. The
“Manage Columns” button enables the users to select the
columns to be retained or deleted in the exported list or to
select and include additional columns in the list (see below)
(Fig. 3).

4. The users can retrieve their lists by clicking on the “View” tab
under the “Lists” tab. The user uploaded lists will be retained
while the web browser session is active. For long-term storage
of lists, the users are advised to create a TargetMine user
account, which will allow them to store and categorize their
lists for future reference. The stored lists can be accessed and
also shared with other account users by using the personalized
“MyMine” tab (Fig. 4).

5. The “Lists” tab also allows the users to perform multiple
actions with two or more lists containing objects of the same
type. The user needs to click the checkboxes next to the lists
that they wish to manipulate and process and then select the
operation they wish to perform from the available “Actions”—
“Union,” “Subtract,” “Intersect,” and “Asymmetric Differ-
ence”—on the top of the panel. Once the user has selected
the lists and the appropriate “Action,” they will be prompted to
enter a name for the resultant list and click “Save” to generate a
new TargetMine list. It should be noted that the “Asymmetric
Difference” operation can only be performed with two lists at a
time and when performing this action, the users will be
prompted to enter the names of two resultant lists—List A

�

Fig. 3 (continued) identifiers in the corresponding box or browse to upload a list from a local file and click the
“Create List” button. On the next page, the user is required to enter a name for the list and click the “Save. . .”
button to create the list. The user is then transferred to the “Lists Analysis” page to view the objects in the list
and perform further actions—functional enrichment, template queries, etc.
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“minus” List B and List B “minus” List A. The users can
choose to name and save either or both of the resultant lists
(Fig. 4).

4.3 Advanced Data

Mining

with TargetMine

1. The TargetMine “QueryBuilder” is a powerful and a versatile
tool that allows the user to (a) easily navigate the TargetMine
data model across multiple data types, and (b) choose and
constrain from the available biological associations to be
attached to the input set of items and obtain a compact and
unified output for subsequent analysis.

2. The “QueryBuilder” tool can be accessed from the tab panel in
the top of every web page in TargetMine. To use the “Query-
Builder,” the first step is to select the query type from the list of
entities in the drop-down menu and click select. This action
transfers the user to the QueryBuilder page that outlines the
construction of the user-defined query. The query builder
consists of three sections that display the data model, query
outline, and output columns. The top left panel displays the
“Model browser” where the user can select the data types and
the associated information to be displayed and/or constrained
for the query. To view and select the type of information
available within the “Model browser,” the users can click the

Fig. 4 List operations in TargetMine. The “View” tab allows the user to retrieve all the created lists. The
“Actions” panel features the different types of operations that can be performed to manipulate two or more
lists containing the same object type. In this example we have performed the operation to obtain an
“Asymmetric difference” of “List A” and “List B” containing 20 and 21 genes, respectively. After selecting
the checkboxes next to the two lists and clicking “Asymmetric Difference” in the “Actions:” panel, the user is
prompted to enter a name for the resulting lists (in this example, List C, which is a list of objects derived after
subtracting the contests of List A from List B) and clicking the “Save” button to create a new list
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Fig. 5 Navigating the TargetMine data model using the “Query Builder.” The “Query Builder” tool requires the
users to specify the query data type. The “Model browser” displays the class of the user-selected data type;
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“+” symbol to expand the class/node of interest and view the
available nodes/classes within; the “SHOW” label allows the
users to select the datatypes and attributes to be displayed in
the output, and the “CONSTRAIN” label allows the users to
restrict the queries to user-specified subsets of the initial dataset
(such as the user-supplied gene set and/or specific attributes).
The top right panel displays the “Query Overview” that sum-
marizes the datatypes that were selected and constrained for
query using the “Model browser.” The “Model browser” is
equipped with two features that allow the users to either
remove an existing constraint by clicking on the red “�”
icon, or modify the initial constraints by clicking the blue
“edit” icon. Lastly, the “Fields selected for output” panel at
the bottom shows the arrangement of the “Columns to Dis-
play” that is the user-selected attributes as they will appear in
the results table. The users can rearrange the column order by
clicking and dragging the column of interest to the desired
position. The user can finally execute the query and view the
output by clicking on the “Show results” button in the right of
the panel. Advanced users can click the “web service URL” to
retrieve the URL for performing API queries; the web service
client libraries to perform API queries in TargetMine and fetch
the results in different formats are available in Perl, Python,
Ruby, and Java programming languages. The users can also
export the query in xml format by clicking on the “Export
XML” button (Fig. 5).

3. Templates To enable the users to quickly and easily perform
different queries across diverse data types, TargetMine is
equipped with a library of “Templates” that consist of prede-
fined queries with a simple form and description. TargetMine
Templates are categorized by data types, thus allowing the
users to search for the desired query by a keyword in the field
provided next to “Filter” or to filter them by selecting the data
category from the drop-down menu. Templates can be easily
modified by imposing constraints (filters) to restrict the query
and output to user-specified subsets of data. In a template
query, the user may directly input a string (a gene name or
gene ID for instance) in the field provided next to the
“LOOKUP” function (the user may enter multiple gene

�

Fig. 5 (continued) the user can click the “SHOW” button next to individual attributes to select the information
to be displayed in the output and/or click the “CONSTRAIN” button to specify the constraint. Clicking the
“SUMMARY” button displays a set of default attributes for the data type. The user-selected attributes and
constraints are displayed in the “Query Overview” panel on the right. The attributes selected for display in the
final results are added to “Fields selected for output” panel at the bottom of the query builder. The user can
run the query by clicking the “Show results” button and generate a results table
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names or IDs by separating them individually by a comma) or
constrain the query to the user-supplied list using the “con-
strain to be” feature and selecting from the premade Target-
Mine lists from the drop-downmenu next to “saved Gene list”.
The user can finally execute the query and view the output by
clicking on the “Show results” button on the lower-left end of
the template form. The user can also customize the template
query by clicking the “Edit Query” button on the lower right;
the user will be directed to the query builder web page to
perform the requisite edits. A commonly used template search
in TargetMine is “Gene(s) ! HCDP (tissue constrained),”
that is, given a gene or a list of genes, retrieve the high confi-
dence direct physical protein–protein interactions (PPIs)
(HCDP; see below), where the interacting genes are highly
expressed in user-specified tissues and cell types (Fig. 6). This
is an example of a template that queries for functional associa-
tions across three different TargetMine classes—“Genes,”
“Interactions,” and “Expression” that describe genes, PPIs,
and organ/cell-specific gene expression, respectively. The
account users can also store their preferred templates under
the “MyMine” tab for reuse or for sharing with other users.

4. Results tables As with the lists, TargetMine query outputs are
displayed as a table of results. The table appears with the
columns in the order of display as specified by the user in the
query builder or predefined in the templates. The users can
specify the number of rows to be displayed in a single web page
by selecting from the drop-down menu next to “Rows per
page”; the default view is 25 rows per page. TargetMine tables
enable the users to examine, analyze, and manipulate the
results—either column-wise or the table as a whole. Every
column is equipped with set of features (visible as icons at the
top of the column) to perform column operations. The users
can sort the column in ascending or descending using the
triangle-shaped icon; the upward facing triangle “~” indicates
that the column is sorted in an ascending order, whereas the
inverted triangle “▾” indicates that the column is in a des-
cending order. The users can also remove the column using the
“�” icon; toggle the column visibility using the ellipsis (“. . .”)
icon, the column can be reopened for viewing using the expand
icon “$”; filter the contents of the column using the funnel-
shaped icon and view the summary of the column objects using
the bar chart icon. The view column summary function also
allows the users to filter and display selective column entries by
selecting the checkboxes next to the entries in the display and
clicking on the “Filter” button at the bottom of the display.
Alternatively, the user can perform an inverse select and filter
operation by selecting the desired checkboxes and clicking on
the “Toggle selection” icon. The “Reset selection” icon allows
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the users to undo the previous operations in the display. An
“undo” icon above the column allows the user to undo their
last operations. Furthermore, the user can manage the columns
by clicking the “Manage Columns” button; clicking the button
will display a pop-up window, where the user can reorder the
columns by dragging; remove columns either by clicking on

Fig. 6 An example of TargetMine template query. In this example we demonstrate the “Gene(s) ! HCDP
(tissue constrained)” template to find all the high-quality binary PPIs (HCDPs) that are associated with the gene
of interest and are highly expressed in specific cells/tissues. Users have the option to enter the query gene
(or select a preuploaded list of genes) and specifying the cell or tissue to filter the interacting genes
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the red (�) icon to the right of the column names or dragging
the column to the trash icon; sort the column order using
“Sort order” button; and add additional columns by clicking
on the “+ Add a Column” button and choose from the avail-
able attributes in the model browser (Fig. 7). The user can also

Fig. 7 TargetMine tables display query output results or information for a list of objects. Users can add and
remove columns, customize existing filters, and manage the attribute relationships for column objects using
the features on the upper left of the page. Users can save the contents of individual columns as lists and export
the table in different formats. Each column header has multiple icons that allow the user to sort, filter, and
summarize column contents and manipulate column visibility
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add new filters or modify existing filters using the “Manage
Filters” function. Moreover, the users can determine how the
different attributes are presented and stored in the table using
the “Manage Relationships” function. The “Save as List” func-
tion allows the user to generate a new list of objects from the
objects listed in the table. The user can choose to create a new
list of objects by clicking on the “Create List” button and enter
the name of the list when prompted; the users can also append
the selected objects to an existing list (of the same type) by
using “Add to List” function. The users can further click the
“Pick items from the table” and select the checkboxes next to
the individual objects to select the objects to be stored in the
resulting list. Finally, the “Export” function allows the users to
export the table in multiple formats and also specify the col-
umns and rows to be included in the exported file. The users
can preview the output by clicking on the “Preview” tab (lim-
ited to three results) and download the file by clicking the
“Download” button.

4.4 Biological

Enrichment Analysis

in TargetMine

1. Microarray and similar omics experiments can often yield
hundreds or even thousands of genes that need to be properly
analyzed to understand the underlying biological process.
Functional enrichment analysis is based on the statistical analy-
sis of the relative abundance of biological themes (including,
but not limited to, KEGG/Reactome/NCI-PID pathways
[16–18], Gene Ontology (GO) terms [15], and Integrated
Pathway clusters (IPCs) [14]) and allows the users to identify
the themes (and the associated genes/entities) that are over-
represented, that is, enriched and therefore most pertinent to
the biological conditions under study.

2. Enrichment of specific biological themes associated with the
user-supplied list of gene/entities seeks to identify genes/enti-
ties and the associated biological themes that are more abun-
dant than that would be expected to occur by chance given a
background population (by default, the number of genes/
entities mapped to the specified biological theme in the given
genome); the p-value of the degree of the abundance is esti-
mated by one-tailed Fisher’s exact test. Since multiple statistical
tests when performed in parallel can increase the probability of
false positives, the inferred p-values are further adjusted for
multiple test corrections to control the false discovery rate.
The users can set their own p-value thresholds by selecting
from the drop-down menu under “Max p-value.” The users
may also click the drop-down menu under “Test Correction”
to choose from the available correction methods for multiple
testing—Benjamini–Hochberg [20, 21], Bonferroni [22], and

Data Warehousing with TargetMine for Omics Data Analysis 49



Holm-Bonferroni [23]—that offer varying degrees of strin-
gency when filtering out false positives (Fig. 8).

(Note: The statistical calculations are performed for a sin-
gle species only).

3. Enrichment statistics for different biological themes are sum-
marized in the individual enrichment widgets. The users can
also perform the enrichment analysis with a customized back-
ground population (the number of genes/entities tested in the
underlying experiment for instance) for an individual widget by
clicking on the “Change” button under “Background popula-
tion” and choose from the available lists (that were uploaded by
the user prior to the selection). The background population so
selected must, however, include all the items contained in the
list and must be selected individually for each of the enrichment
widgets (Fig. 8).

4. The individual enrichment widgets display the widget-specific
enriched biological themes along with their associated p-values

Fig. 8 Enrichment widgets output the results of statistical tests for the enrichment of specific biological
themes (pathways, GO terms, etc.) in the user-created lists in a tabular form. In this example, the users can
specify the pathway dataset from the KEGG, Reactome, and NCI-PID repositories or choose all of them, select
p-value thresholds and multiple-test correction options. The users can also select a background population for
the enrichment analysis. The users can export the results by clicking the “View” or “Download” buttons
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and the corresponding “Matches,” that is, the counts of the
objects in the query list that were associated with the given
biological theme. By default, only the significantly enriched
biological associations, that is, those that satisfied a condition
of p � 0.05 after a multiple test correction with the Benjamini
and Hochberg procedure [20, 21] are displayed in the table
(Fig. 8).

5. Enrichment widgets are designed to output the results of mul-
tiple enrichment analyses for biological themes of the same data
type, where available. For instance, the “Pathway Enrichment”
widget allows the users to individually examine the enrichment
of KEGG Pathways, Reactome pathways, NCI-PID pathways,
or collectively for all of them by selecting the corresponding
dataset from the drop-down box below “Data Set” (Fig. 8).
Likewise, the users can specify the preferred GO aspect
(biological process, cellular component, and molecular func-
tion) in both the “GO Enrichment” and “GOSlim Enrich-
ment” widgets. Also, the users may specify the background
dataset for the protein–chemical compound (small molecule)
interactions (PCIs) in the “Compound Enrichment” widget.

6. The users can export the enrichment results by clicking on the
checkbox next to the <Theme type> and then either clicking
the “View” button to export the results into a TargetMine
table or the “Download” button to export the results in text
or excel compatible formats. The users can specify select indi-
vidual associations by clicking on the corresponding check-
boxes in the enrichment widget; doing so will only export
user-specified enriched associations upon clicking the “View”
or “Download” buttons (Fig. 8).

5 Network Analysis with Multiple Biomolecular Interaction Types

1. Most genes and proteins function in concert with other bio-
molecules such as proteins, nucleic acids, and metabolites.
Typically, such interactions are represented as a network
model which consists of individual biomolecules as nodes and
biomolecular interactions as edges, that is, the vertices connect-
ing them. Protein–protein interactions (PPIs) are key determi-
nants of much of the cellular function and therefore prominent
candidates for knowledge and target discovery. In this section,
therefore, we will discuss network analysis largely in the context
of PPI networks (PPINs).

2. TargetMine users can query for PPIs for their initial list of
genes/proteins to construct context-specific PPINs that can
help to obtain a deeper understanding of gene functions via
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PPIN analysis (see below). For convenience, all PPIs in Tar-
getMine are stored as gene–gene interactions.

3. In the “Model browser,” the users can retrieve PPIs for a gene
or a list of genes by clicking on the “SUMMARY” label asso-
ciated with the “Interactions” class. Since, the publicly available
(unfiltered) PPI data can be inherently noisy, to ensure the
robustness of their PPIN analysis, users can choose to restrict
their searches to a subset of PPIs by expanding the “Interac-
tions” class and the “Confidences” class within and then click-
ing the “CONSTRAIN” label associated with “Type”; the user
will then be prompted to select a filter specifying the prefiltered
PPI type from the drop-down menu to “Add to the query.”
Two types of prefiltered PPI subsets are available within Tar-
getMine—“HC” (high-confidence PPIs) are PPIs character-
ized by at least two different experimental methods or
reported in two independent publications and “HCDP”
(high-confidence direct physical PPIs) that are a subset of HC
that were classified as binary PPIs and are most suitable for
PPIN analysis [6].

4. PPIN analysis In the first step toward construction of PPINs,
PPIs (typically HCDPs) for the genes/proteins within the
user-supplied list are retrieved as described above. The result-
ing PPIs can be stored as a separate list; the user may choose to
create an extended gene list by a union of the initial gene list
and the list of interacting genes/proteins. Alternatively, the
user can append the interacting genes to the initial list
(as described in column operations above) to create an
extended gene list. The former option is useful if the user
wishes to reuse the initial gene list for other tasks. The
extended gene list represents the components of the inferred
PPIN involving user-supplied genes and the interacting genes.
To construct and visualize the actual PPIN, the user must
perform an additional query to recreate all the HCDPs
between all the genes in the extended list. This operation can
be achieved using the query builder or more simply by using
the template for “Gene(s) ! Intraset HCDP” that is given a
list of genes, retrieve all HCDPs within the list to construct a
PPIN for the user-supplied gene list. The PPIN can be
exported using the column functions described above and the
network components can be further examined and processed
either using stand-alone graphical tools such as Cytoscape [24]
or using the Composite interaction network feature in the
TargetMine Auxiliary Toolkit [6] (see below).

5. Network topology The connectivity of nodes and edges within a
PPIN is referred to as network topology.Network topology is a key
determinant of network function, therefore network concepts
such as node degree distribution and betweenness centrality can

52 Yi-An Chen et al.



help to pinpoint key regulators of network function
[25]. Within TargetMine we have classified genes/proteins as
network “hubs,” that is, nodes with high node degree (many
PPIs) that are believed to have the ability to influence network
functions via multiple PPIs; and network “bottlenecks,” that is,
nodes with high betweenness centrality that are believed to
represent central points for communication within the network
[26]. The users can identify hubs and bottlenecks (predefined
as the top 10% of the nodes in a species-specific PPI network
ranked by “node degree distribution” and “betweenness” mea-
sures, respectively) in their list by expanding the “Network
Properties” class in the “Model browser” and selecting the
properties and attributes they wish to constrain upon their
gene list. The users may also use one of the available templates
such as “Gene(s) ! PPI Network properties (Bottleneck and
Hub)” to query for hubs and/or bottlenecks in their gene list.

(Note: Network topology parameters were calculated with
HCDPs only)

6 Orthologue Mapping for Expanding Functional Annotations

1. Despite the advances in characterization of gene functions,
most genome annotations are incomplete and they remain
biased toward well-studied genes and proteins. Therefore, a
large number of genes are still underrepresented in functional
annotation databases or are bereft of any biological annotation
altogether [27].

2. In TargetMine we have included mappings across orthologous
genes in human, mouse and rat genomes. Orthologous genes
are descended from a common ancestral gene as a consequence
of speciation and thereby believed to retain similarity in struc-
ture and function including PPIs [28–30]. Orthology, there-
fore, forms an important basis for the transfer of functional
annotation across genes and proteins [31].

3. TargetMine users can circumvent the limited species-specific
information by using the single-click gene conversion system to
transform a list of genes from one organism, say mouse, to a list
of orthologous genes in the human genome. The “Convert to
a different type” feature displayed as a top-right panel in the
TargetMine “List Analysis” web page allows the users to
quickly view and transform the items within the user-supplied
list to another item type, for instance gene to protein and
probesets to genes. The bottom half of the panel is subtitled
“Orthologues,” and it summarizes the number of orthologues
(in parentheses) that were mapped in the corresponding species
(Fig. 9).

Data Warehousing with TargetMine for Omics Data Analysis 53



4. Clicking on the <species short name> (# of orthologues)
hyperlink will direct the user to a new “List Analysis” web
page titled “[] orthologues for the Gene list <> (# genes)”,
where “[]” refers to the corresponding organism, “<>” is the
name of the initial user-supplied item list and “(# genes)”
corresponds to the number of orthologous genes that were
mapped and compiled in the new list (Fig. 9).

5. The users can then examine the enriched biological themes
associated with the new list and also perform the requisite
analysis using the new list (Fig. 9).

7 TargetMine Auxiliary Toolkit for Streamlining Data Analysis and Visualization

TargetMine Auxiliary Toolkit [6] is a suite of programs that features
a series of interactive and easy-to-use tools to query the data in
TargetMine, perform data analysis, define a data analysis workflow,
and visualize the results without any scripting or programming
efforts on the part of the user. The auxiliary toolkit complements
TargetMine in two major ways: (a) biological enrichment analysis
with data conversion, graphs and charts, including association heat
maps and (b) composite interaction network for network visualiza-
tion and analysis.

Detailed information about the auxiliary toolkit can be readily
accessed by clicking the “TargetMine Auxiliary Toolkit” button on
the TargetMine platform home page (http://targetmine.

Fig. 9 Orthologue conversion can help circumvent the paucity of functional annotations. In this example, the
initial set of 32 mouse genes were not mapped to any enriched pathways. By transforming this gene list to a
set of 32 human orthologous genes, 133 enriched pathways were identified
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mizuguchilab.org/) (Fig. 1). The individual analytical features can
be accessed by clicking on the corresponding buttons (see below)
on the home page or from the “Auxiliary Toolkit” panel in the
“List Analysis” web page in TargetMine. Below we describe in
detail how to use the different features within the auxiliary toolkit
and how these implementations can enable the users to perform
complicated queries with only a few clicks of the mouse that would
otherwise necessitate multiple steps and invoking multiple queries
in TargetMine.

1. Enrichment analysis The augmented enrichment analysis fea-
ture (along with the “Composite interaction network” feature;
see below) can be individually accessed from the TargetMine
home page (http://targetmine.mizuguchilab.org/; Fig. 1) or
by using the “Auxiliary toolkit” link from the “Auxiliary
Toolkit” in the TargetMine Lists page. Clicking the “Auxiliary
toolkit” link on the home page will direct the user to a desig-
nated input form, where the user can type/paste a list of gene
IDs in the “Type/Paste in identifiers;” box, select the organism
from the drop-down menu next to “Organism:” or upload a
gene list from file by clicking the “Browse” button followed by
clicking “Read” button. The user can also import a gene list
from TargetMine by clicking the “Import” button (this process
requires TargetMine web service). Finally, the user can click the
“GO, Create list” button to submit the list of genes for
subsequent analysis. The user is then directed to the “Target-
Mine Auxiliary Toolkit” web page, where the items in the user-
supplied list are displayed as a table of objects with accompany-
ing information. The “Auxiliary toolkit” link in the Lists page
directly transfers the user to “TargetMine Auxiliary Toolkit”
page from TargetMine. To the right of the table are three
panels that allow the users to perform “Enrichment Analysis
with Charts and Graphs,” “Convert to Orthologous Genes,”
and “Add Interacting Partners into the List.” We discuss these
features individually below (Fig. 10).

(a) Enrichment Analysis with Charts and Graphs The
“Enrichment Analysis with Charts and Graphs” panel
allows the user to perform functional enrichment analysis
of the input gene list by clicking the “Analysis” button.
The user is then directed to the “Enrichment Analysis”
page. The “Enrichment Analysis” allows the user to spec-
ify the biological theme type and dataset for enrichment
analysis and select the multiple-test correction procedure
from the drop corresponding drop-down menus. The
user can also enter a value in the box to the right of
“Filtered with p-value �” and then click the “Apply”
button to specify the p-value threshold. The enriched
biological themes are graphically summarized as “Bar
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Fig. 10 Enrichment analysis with TargetMine auxiliary toolkit. The user is
required to specify the organism and either type/paste common gene
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chart of the enriched<biological theme>”, displaying the
top ten enriched themes; the bar chart plots a histogram
of the abundance of the genes/items mapped to a specific
enriched theme in the user-supplied list along with their
relative abundance in the background population; these
values are reflected in percentage terms. Below the graph
there is a table of enriched biological themes (database
identifier and name) along with their number of matches
in the list and the background population and the asso-
ciated p-values. By default, only the top ten enriched
themes are displayed in the table. The user can select the
number of rows to be displayed in the table by selecting
from the drop-down menu next to “Rows per page.” The
user can scroll through all the items in the table by clicking
on the “►” icon below the table, the users can go back to
the previous items by clicking on the “◂” icon. The user
can view the selected gene–biological theme associations
as a heat map by selecting checkboxes next to the entries
in the display (or the checkbox on the top of the table to
view all of them) and then clicking the “Show HeatMap”
button (see below) (Fig. 10).

(b) Orthologue conversion The “Convert to Orthologous
Genes” panel allows the user to convert their genes from
one organism, to a list of orthologous genes in another
organism (only human, mouse and rat genes can be inter-
converted in this manner) by selecting the organism from
the drop-down menu next to “Convert to” function,
followed by clicking the “Convert” button (Fig. 10).

(c) Extending the user-supplied gene list The users can
“extend” the query gene list by including PPI partners
by using the “Add Interacting Partners into the List”
feature. The user can choose “All” (unfiltered), HC, or
HCDP from the “interactions” drop-down menu. The
user can choose to filter newly added genes by their cell/

�

Fig. 10 (continued) identifiers in the corresponding box or browse to upload a
list from a local file, click “Read” to read the contents of the file and then click
the “GO, Create List” button. On the next page, the user can view a summary of
the functional annotations with the query list and exclude specific genes from
further analysis by clicking the “Remove” button. On the next page, the user can
select datasets for enrichment analysis, customize p-value thresholds, export
results to a file, and generate a heat map of the results by selecting the
checkboxes against the enriched associations and clicking the “Show HeatMap”
button. On the heat map page, the user can export the heat map as an image or
the underlying matrix as a .txt file, reorder the heat map by gene or biological
theme clusters and examine clusters of functionally correlated genes
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tissue-specific expression by clicking the “add tissue con-
straints” link. The user will be prompted to enter a key-
word for the cell tissue in the “Search” box and a list of
cell/tissue types related to the query will automatically
appear in the “Available items:” box. The user can click
to select the individual cell/tissue types and transfer them
to the “Selected items:” box by clicking the “!” button
between the two boxes. Conversely, the user can remove
the entries from the “Selected items:” by clicking the
individual entries followed by clicking the “ ” button
and transfer them back to the “Available items:” box.
The users can finalize their constraints by clicking the
“OK” button at the bottom of the panel. The users may
also upload a list of cell/tissue types by clicking the
“Upload a list” and typing or pasting cell/tissue types in
the resulting box and clicking “OK.” Finally, the user can
create an extended gene list by clicking the “Extend list”
button for subsequent operations and enrichment ana-
lyses (Fig. 10).

2. Association Heat Map To assist with the visualization and anal-
ysis of multiple associations between genes and the associated
biological themes, we have introduced the Association Heat
Map function in the auxiliary toolkit. The user can visualize a
heat map of enriched biological theme associations by clicking
the “Show HeatMap” button in the “Enrichment Analysis”
page. The user is directed to the “Gene-<Biological theme>
Association Heat Map” page to visualize the selected associa-
tions as a two-way hierarchically organized mosaic plot (genes/
items as rows and biological themes as columns) such that the
genes that share a greater proportion of enriched associations
are clustered as bright spots on the grid. The mosaic plot is
bound by dendrograms on the top and left displaying the
hierarchical organization of the association clusters that allows
the users to identify clusters of functionally correlated genes as
well as outliers that share little functional overlap with other
items in the user-supplied list. The users can reshape the grid by
rearranging the column order (by gene cluster or gene names)
and/or the row order (by biological theme name or cluster) by
selecting the option from the drop-down menus next to “Col-
umn Order:” and “Row Order:” respectively. The users specify
the colors in the grid by clicking on the “Change color” button
and then either selecting from the preexisting list of colors or
entering the hex color code in the boxes for “Yes” and “No”
values. The users can export the heat map as a publication
quality image by clicking the “Export image” button and also
export the underlying matrix as a text document by clicking the
“Export matrix” button (Fig. 10). Alternatively, the users can
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also paste or upload their own gene–biological theme associa-
tions as column-delimited values, such as those exported from
the results of a TargetMine query in the “Association Heat
Map” designated input form that is accessible from the “Tar-
getMine Auxiliary Toolkit” button in the home page. Next, the
users are directed to a “Preview” page, where they are
prompted to select two columns, the values of which will be
used to assemble the heat map, using the drop-down menus
beside “Column 1” and “Column 2,” respectively. Finally, the
users can click the “Draw HeatMap” button to visualize
the user-supplied associations as a heat map.

3. Composite interaction network Cellular networks are made up
of multiple organizational layers that involve different types of
biomolecular interactions such as PPIs, microRNA (miRNA)–-
target interactions (MTIs), transcription factor (TF)–target
gene interactions, and PCIs. A fundamental approach in sys-
tems biology is to understand how these components come
together and define the complexity and functioning of all
biological processes. The auxiliary toolkit permits the users to
construct and visualize a composite interaction network of all the
biomolecular interactions that are associated with the user-
supplied gene list. This feature can be accessed by clicking the
“Composite network” button on the TargetMine home page.
The user is then transferred to the designated input form in the
“Composite Interaction Network” page; the user can type/
paste a list of gene IDs in the “Type/Paste in identifiers;” box
and select the organism from the drop-down menu above. The
right side of the page allows the user to select the interaction
types to construct the interaction network by selecting the
checkboxes next to individual interaction types. When selecting
PCIs, an additional menu appears, where the users can choose
to filter PCIs by affinity, that is, on the basis of IC50, Ki, or Kd
values (in nm) that can be typed in the box next to “<Affinity
parameter type>�” tag. Finally, the user can click the “GO,
Create List” button to submit the list of genes for building the
composite network and the user is transferred to the “Com-
posite Interaction Network” page (Fig. 11). The “Composite
interaction network” in the TargetMine Lists page also trans-
fers the user to “Composite Interaction Network” page. The
left panel contains a table of user selected genes and basic
accompanying information (Gene ID, symbol, and name).
The user can remove individual genes from the list by clicking
on the “Remove” button associated with each gene (the
remove action can be undone by clicking on the “Undo
remove” button at the bottom). The right of the table allows
the user to reassess their selection of the interaction types and
make any changes by selecting or unselecting the checkboxes
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Fig. 11 Constructing a composite interaction network with TargetMine auxiliary toolkit. The user is required to
specify the organism and either type/paste common gene identifiers in the corresponding box or browse to
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next to individual interaction types (Fig. 11). Finally, the user
can visualize the composite network by clicking the “Show
Network” button above the gene lists table. The user is trans-
ferred to a new page that displays the composite network
constructed with the user-supplied genes and their interacting
partners. The constituent biomolecules and interaction types
are indicated by different colors and shapes that are summar-
ized by a key on the right side of the page. The user can display
(or undisplay) the individual interaction types by selecting or
unselecting the corresponding checkboxes; select the network
layout and zoom in and zoom out to visualize the network. The
user can click the individual nodes and edges for more infor-
mation about them. The users can export the network as image
files or as a GraphML/tsv/XGMML file for visualization in
stand-alone tools (Fig. 11).

8 A Suggested Protocol for Gene Set Analysis with TargetMine

Here we propose a simple and easy-to-use protocol for users to
getting started with gene set analysis with TargetMine (Fig. 12).

1. As the first step in gene set analysis, the user can upload a set of
initial candidate genes or proteins (e.g., a set of DEGs
[or probes] derived from a microarray experiment or a set of
proteins that interact with a given protein or set of proteins) to
TargetMine and create a list.

2. In the next step the user can gather the genes mapped to the
topN significant associations (see above; whereN ¼ 1,2,3. . .)
retrieved from one or more of the enrichment widgets. In the
event of two or more lists, the user can merge them and
perform an intersect operation using the list function to sum-
marize the enriched functional associations and obtain a list of
prioritized genes.

3. If the enrichment analysis fails to return the desired signifi-
cantly enriched annotations, the user can retrieve the HCDPs
(and/or other interaction types) for their initial gene list and
merge them to create an extended gene list (see above); the
user can then reperform the enrichment analysis and process
the enrichment analysis results as described in step 2. The user

�

Fig. 11 (continued) upload a list from a local file, click “Read” to read the contents of the file; the user can
also specify the interaction types for inclusion into the network by selecting/unselecting the corresponding
checkboxes and then click the “GO, Create List” button. On the next page, the user can exclude specific genes
from further analysis by clicking the “Remove” button and then click the “Show Network” button to create and
visualize the composite interaction network. Next, the user can export the network as graphics or a table of
values, change the network display layout, and also display or undisplay interaction types from the final view
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Fig. 12 A suggested protocol for gene set analysis using TargetMine
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can also filter HCDPs by gene expression. For instance, if the
user-supplied gene list was derived from a microarray experi-
ment that profiled liver cells, the users can specify that the
interacting genes that are incorporated into the extended
gene list must be highly expressed in liver and liver-associated
cell types (see above) as well. The extended gene list may also
be used for the construction of context-specific gene–gene
interaction networks.

4. In the event the extended gene list too fails to turn up signifi-
cantly enriched associations, the user may use the more relaxed
HC dataset for inclusion into the extended gene list and pro-
ceed as in step 3. However, a dataset consisting of HCs rather
than HCDPs may not be used reliably for constructing binary
gene–gene interaction networks.

5. If steps 1–4 fail to return any significantly enriched biological
associations, the user may perform orthologue conversion to
transform the initial gene list into orthologous genes and
repeat the steps 1–4 with the orthologous gene set.
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Chapter 4

A Review of Microarray Datasets: Where to Find Them
and Specific Characteristics

Amparo Alonso-Betanzos, Verónica Bolón-Canedo,
Laura Morán-Fernández, and Noelia Sánchez-Maroño

Abstract

The advent of DNA microarray datasets has stimulated a new line of research both in bioinformatics and in
machine learning. This type of data is used to collect information from tissue and cell samples regarding
gene expression differences that could be useful for disease diagnosis or for distinguishing specific types of
tumor. Microarray data classification is a difficult challenge for machine learning researchers due to its high
number of features and the small sample sizes. This chapter is devoted to reviewing the microarray databases
most frequently used in the literature. We also make the interested reader aware of the problematic of data
characteristics in this domain, such as the imbalance of the data, their complexity, and the so-called
dataset shift.

Key words Microarray data, High dimensionality, Unbalanced data, Dataset shift

1 Introduction

All cells have a nucleus, and inside this nucleus there is DNA, which
encodes the “program” for future organisms. DNA has coding and
non-coding segments. The coding segments, also known as genes,
specify the structure of proteins, which do the essential work in
every organism. Genes make proteins in two steps: DNA is tran-
scribed into mRNA and then mRNA is translated into proteins.
Advances in molecular genetics technologies, such as DNA micro-
arrays, allow us to obtain a global view of the cell, with which it is
possible to measure the simultaneous expression of tens of
thousands of genes [1]. Figure 1 displays the general process of
acquiring the gene expression data from a DNA microarray. These
gene expression profiles can be used as inputs to large-scale data
analysis, for example, to increase our understanding of normal and
diseased states.

During the last two decades, the advent of microarray datasets
has stimulated a new line of research both in bioinformatics and in
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machine learning. Although there are usually very small samples
(often less than 100 patients) for training and testing, the number
of features in the raw data ranges from 6000 to 60,000, since it
measures the gene expression en masse. A typical classification task
is to separate healthy patients from cancer patients based on their
gene expression “profile” (binary approach). There are also datasets
in which the goal is to distinguish among different types of tumors
(multiclass approach), making the task even more complicated.

Therefore, microarray data pose a serious challenge for
machine learning researchers. Having so many fields relative to so
few samples creates a high likelihood of finding “false positives” due
to chance (both in finding relevant genes and in building predictive
models) [1]. It becomes necessary to find robust methods to vali-
date the models and assess their likelihood. Furthermore, addi-
tional experimental complications (like noise and variability)
render the analysis of microarray data an exciting domain [2].

Several studies have shown that most genes measured in a DNA
microarray experiment are not relevant in the accurate classification
of different classes of the problem [3]. To avoid the problem of the
“curse of dimensionality” [4], feature (gene) selection plays a cru-
cial role in DNAmicroarray analysis, which is defined as the process
of identifying and removing irrelevant features from the training
data, so that the learning algorithm focuses only on those aspects of
the training data useful for analysis and future prediction [5].

Apart from the large number of genes vs small sample size,
microarray data have other particularities such as the imbalance of

Fig. 1 General process of acquiring the gene expression data from DNA
microarray
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the data, their complexity, the presence of overlapping and outliers,
or the so-called dataset shift. These problematics render the analysis
of microarray data an interesting domain.

The rest of this chapter will comment on the specific character-
istics of microarray data as well as providing a summary of the
characteristics of the most famous datasets used in the literature
and existing repositories.

2 Microarray Datasets

This section will be focused on where to find and where have been
used microarray datasets. First, Subheading 2.1 will enumerate the
existing microarray data repositories, while Subheading 2.2 pro-
vides a summary of the characteristics of the most famous binary
and multiclass datasets used in the literature.

2.1 DNA Microarray

Repositories

Although in the initial development of DNA microarray data anal-
ysis it was difficult to find datasets to deal with, in recent years there
have been a growing number of public microarray data repositories
of a wide spectrum of cancer types available for the scientific com-
munity. There are some websites specialized in this type of datasets,
the most famous are listed below:

l ArrayExpress, from the European Bioinformatics Institute [6]:

http://www.ebi.ac.uk/arrayexpress/
l Gene Expression Omnibus, from the National Institutes of

Health [7]:

http://www.ncbi.nlm.nih.gov/geo/
l The Cancer Genome Atlas (TCGA), from both the National

Cancer Institute and the National Human Genome Research
Institute [8]:

https://cancergenome.nih.gov/
l Cancer Program Datasets, from the Broad Institute [9]:

http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
l Dataset Repository, from the Bioinformatics Research Group of

Universidad Pablo de Olavide [10]:

http://eps.upo.es/bigs/datasets.html
l Gene Expression Model Selector, from Vanderbilt University [11]:

http://www.gems-system.org
l Gene Expression Project, from Princeton University [12]:

http://genomics-pubs.princeton.edu/oncology/
l TAIRMicroarrays, from The Arabidopsis Information Resource

[13]:

https://www.arabidopsis.org/portals/expression/microarray/
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l Genevestigator commercialized by NEBION AG under
exclusive license from the Swiss Federal Institute of Technology
Zurich (ETH) [14]

https://genevestigator.com
l AROMA: An open-source R framework for your microarray

analysis [15]:

http://www.aroma-project.org/
l ELVIRA Biomedical Dataset Repository [16]

http://leo.ugr.es/elvira/DBCRepository/

In addition, there are data repositories from the field of
machine learning that contain many of these datasets, it is worth
mentioning:

l Machine learning dataset repository, supported by Pattern Anal-
ysis, Statistical Modeling, and Computational Learning (PAS-
CAL) [17]:

http://mldata.org/repository/data/
l Kaggle.The Home of Data Science & Machine Learning [18]:

https://www.kaggle.com/datasets
l UCI Machine Learning Repository from the Center for Machine

Learning and Intelligent Systems, University of California
(Irvine) [19]:

http://archive.ics.uci.edu/ml/index.php
l Feature Selection Datasets, from Arizona State University [20]:

http://featureselection.asu.edu/datasets.php
l Bioconductor Open-source software for bioinformatics [21]:

http://www.bioconductor.org/

2.2 Datasets As mentioned in Subheading 1, there are two types of microarray
datasets present in the literature. The most famous are the binary
datasets, usually related to separating healthy patients from cancer
patients. When the goal is to distinguish between different types of
tumors, we can find multiclass datasets, in which the classification
task becomes more complicated.

Table 1 displays binary microarray datasets used in the litera-
ture. There the number of samples s, the number of features f, the
class distribution, the original reference of the dataset, the year
when the dataset was published, the references of some works
using the dataset, and where it is available for download can all be
found. When a data is not available, it is represented as “unknown.”
In turn, Table 2 visualizes the multiclass microarray datasets. In this
case, c stands for the number of classes and the class distribution is
not shown due to the high diversity in the number of classes.
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Table 1
Dataset description for binary datasets: s and f are the number of samples and features, respectively

Dataset s f Distribution
Original
ref. Year Where used Download

B_MD 34 7129 26–74% [22] 2002 [23] unknown

Bone Lesion 173 12,625 unknown [24] 2003 [23] unknown

Brain 21 12,625 33–67% [25] 2003 [26–30] [9]

Brain_Tumor1 60 7129 unknown unknown unknown [31] unknown

Brain_Tumor2 50 12,625 unknown unknown unknown [31] unknown

Breast 22 3226 unknown [32] 2001 [33] unknown

Breast Cancer 97 24,481 unknown [34] 2002 [26, 35–38] [16, 17]

Breast-test 19 24,481 37–63% [34] 2002 [36, 39] [16]

Breast-train 78 24,481 56–44% [34] 2002 [29, 36, 39] [16]

BreastER 49 7129 49–51% [40] 2001 [23] unknown

BR-ER49 49 6817 49–51% [40] 2001 [41] unknown

C_MD 60 7129 35–65% [22] 2002 [23] unknown

Celiac 132 22,185 unknown [42] 2009 [23] unknown

CNS/
Embrional-T

60 7129 35–75% [22] 2002 [26–29, 35, 36, 43,
43–47]

[9, 10]

Colon 62 2000 35–65% [48] 1999 [23, 33, 46, 49–52]
[26–28, 35, 36, 44,
53] [29, 39, 41,
54–57] [30, 38, 47,
58, 59]

[9, 10,
12, 16,
17]

Colon-epi 202 44,290 unknown [60] 2008 [23] unknown

DLBCL 77 5470 75–25% [61] 2002 [47, 49, 56, 59, 62] [11]

DLBCL 47 4026 49–51% [63] 2000 [26–29, 33, 35, 36, 43,
45]

[9, 17]

DLBCL 77 7129 75–25% [61] 2002 [31, 44, 46, 55] [9, 17]

GLI-85 85 22,283 31–69% [64] 2004 [26–29] [20]

Leukemia/
ALLAML

72 7129 35–65% [3] 1999 [26, 35, 43, 44, 49, 53,
58] [23, 33, 37, 38,
41, 54, 59] [30, 46,
51, 65]

[9, 16,
17]

Leukemia_test 34 7129 71–29% [3] 1999 [36, 39, 57, 66] [9, 10]

Leukemia_train 38 7129 59–41% [3] 1999 [36, 39, 57, 66, 67] [9, 10]

Lung 52 918 75–25% [68] 2001 [23] unknown

Lung 181 12,533 83–17% [69] 2002 [26, 35, 39, 43, 59, 70] [9, 16]

(continued)
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3 Intrinsic Characteristics of Microarray Data

As mentioned in Subheading 1, microarray data classification poses
a serious challenge for computational techniques, because of their
large dimensionality (up to several tens of thousands of genes) with
small sample sizes. Furthermore, there are additional experimental
complications that render the analysis of microarray data an
intriguing domain.

3.1 Small

Sample Size

The first problem that one may find when dealing with microarray
data is related to the small sample size (usually less than 100), as
microarrays are still costly, although the price has been diminishing
progressively. Thus, microarray has increased the rate of data col-
lection during the last years, but sample size is still a major issue
when selecting features and building predictive models for medical
applications. A key point in this regard is that error estimation is
greatly impacted by small samples [94], as well as the low power for

Table 1
(continued)

Dataset s f Distribution
Original
ref. Year Where used Download

Lung 410 2428 34–66% [71] 2008 [58] unknown

Lung_test 149 12,533 90–10% [69] 2002 [36, 39] [9, 16]

Lung_train 32 12,533 50–50% [69] 2002 [36, 39] [9, 16]

LUNG181 181 12,600 17–83% [69] 2002 [41] unknown

LYM77 77 6817 25–75% [61] 2002 [41] unknown

Lymphoma/
B-cell1

45 4026 49–51% [63] 2000 [53, 57] [9]

Moffitt colon
cancer

122 2619 31–69% [72] 2005 [58] unknown

Ovarian 253 15,154 36–64% [73] 2002 [26–30, 35–37, 43, 51] [16, 17]

Prostate 102 6033 51–49% [74] 2002 [50, 53] unknown

Prostate 136 12,600 43–57% [74] 2002 [26, 35, 43, 46, 59] [9, 16]

Prostate-test 34 12,600 26–74% [74] 2002 [36, 39, 54, 75] [16, 17]

Prostate-train 102 12,600 49–51% [74] 2002 [29, 31, 36, 39, 41, 54,
55] [45, 65, 75]

[16, 17]

Prostate
Tumor

102 10,509 51–49% [74] 2002 [30, 47, 49, 62] [11]

SMK-CAN-
187

187 19,993 48–52% [76] 2007 [26–29, 57, 66] [20]
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Table 2
Dataset description for multiclass datasets: s, f, and c are the number of samples, features, and
classes, respectively

Dataset s f c
Original
ref. Year Where used Download

9-Tumors 60 5726 9 [77] 2001 [31, 47, 49, 62, 78] [11]

11-Tumors/
Carcinomas

174 12,533 11 [79] 2001 [31, 47, 49, 62, 65,
78, 80]

[11]

14-Tumors 308 15,009 26 [81] 2001 [31, 47, 49, 62, 82] [11]

Brain Tumor 1 90 5920 5 [22] 2002 [31, 38, 47, 49, 62,
78]

[11]

Brain Tumor 2 50 10,367 4 [25] 2003 [31, 49, 62, 78, 83] [11]

CLL-SUB-111 111 11,340 3 [84] 2004 [57, 66] [20]

GCM 198 16,306 14 [81] 2001 [26, 33, 35, 36] [9]

GCM 190 16,063 14 [81] 2001 [47, 80] [10]

GLA-BRA-180 180 49,151 4 [85] 2006 [26, 57] [20]

Glioma 50 12,625 4 [25] 2003 [65] [9]

Global Cancer
Map/GCM-Train

144 16,063 14 [81] 2001 [57, 66] [10]

Leukemia 110 22,278 unknown unknown unknown [86] unknown

Leukemia 1 72 5327 3 [3] 1999 [31, 38, 47, 49, 62,
83]

[11]

Leukemia 2 72 11,225 3 [87] 2002 [31, 38, 47, 49, 62] [11]

Leukemia-MLL 72 8359 3 [87] 2002 [88] [9]

Leukemia-MLL-train 57 12,582 3 [87] 2002 [75, 89] [16, 17]

Leukemia-MLL-test 15 12,582 3 [87] 2002 [75] [16, 17]

Lung 254 8359 5 [90] 2001 [88] [9]

Lung-Cancer 203 12,601 5 [90] 2001 [31, 47, 49, 62, 65,
78, 89]

[11]

Lymphoma/B-cell3 96 4026 9 [63] 2000 [26, 30, 35, 36, 49,
52, 57]

[11]

TOX-171 171 5748 4 [91] 2010 [26, 57, 66] [20]

SRBCT 83 2309 4 [92] 2001 [31, 33, 38, 49, 62,
70, 78, 88]

[11]

SRBCT-train 63 2309 4 [92] 2001 [75, 80] [11]

SRBCT-test 20 2309 4 [92] 2001 [75] [11]

Yeast 79 2467 unknown [93] 2000 [51] unknown
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statistical tests, as, for example, the widely used t-test for compari-
son of groups [95]. Regarding the validity of the statistical tests,
several approaches have been proposed, mainly consisting in pool-
ing of permutation-derived tests statistics across all genes
[95–97]. The proposal in Yang and Churchill [95] demonstrated
that using the standard t-test to define a subset of genes for pooling
a threshold for subset feature selection can be determined, and
using these provide correct type I error.1 Murie et al. [98] offered
a comparison in performance of statistical tests aimed at circum-
venting the problem of small sizes.

As said above, the number of datasets available has been grow-
ing during the last years, although the sample size of each dataset
remains small regarding the number of features, as shown in
Tables 1 and 2. One way of dealing with this problem was to
combine multiple datasets [99, 100] that has the potential for
increasing the power of microarray data analysis by pooling infor-
mation, as just discussed. Combining datasets is however difficult,
as on the one hand different normalization and summarization
techniques are used. Also, due to the shortage of datasets measur-
ing the same area, perhaps different platforms might be needed,
complicating even more the problem. That is perhaps the main
reason behind the fact that most studies are limited to single
datasets of small size. But combination might also be achieved by
using fold-change methods, as feature selection is improved that
way, and feature selection is almost mandatory for these type of
datasets. The first paper using finite mixture modeling and boot-
strap inference to address the problems of false positive and false
negative results was [101], but several others followed. For exam-
ple, Phan et al. [102] proposed a wrapper-based selection tech-
nique that combines bootstrap estimated classification errors for
individual genes across multiple datasets, reducing the contribution
of datasets with high variance.

Without the appropriate estimation of the error, an unsound
application of classification methods follows, which has generated a
large number of publications and an equally large amount of
unsubstantiated scientific hypotheses [103]. For example, in
Michiels et al. [104] it is reported that reanalysis of data from the
seven largest published microarray-based studies that have
attempted to predict the prognosis of cancer patients reveals that
five of those seven did not classify patients better than chance. To
overcome this problem, it becomes necessary to select a correct
validation method for estimating the classification error. Cross-
validation error estimation is perhaps the most common way for
estimating classification errors in microarrays, as they on average

1A type I error is the incorrect rejection of a true null hypothesis that usually has the effect of concluding that a
given relationship exists when in fact it does not. That is, a type I error is a false positive.
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nearly agree with the true errors. But the problem with cross--
validation is that it might be highly affected by the small sample
size. Braga-Neto and Dougherty [105] compared cross-validation,
resubstitution, and bootstrap estimation using synthetic and real
microarray data, concluding that although cross-validation is less
biased, it has an excessive variance, and thus making individual
estimates unreliable for small samples. Bootstrap methods, on the
contrary, improve the performance relative to variance, but at a
high computational cost and many times with increased bias.
Finally, resubstitution tends to be low biased, even severely,
although having the advantage of being computationally inexpen-
sive and exhibiting lower variability than cross-validation. In Hanc-
zar et al. [106] the conclusion on the lack of reliability in ROC
performance results over microarrays due to small sample size is
also relevant. Thus, these studies should be taken into account
when using an error estimation method over small size microarray
datasets. Alternatives have been proposed in Laber and Murphy
[107], using confidence measures for the generalization error and
providing a computationally efficient algorithm.

3.2 Class Imbalance A common problem in real datasets is the so-called “class-imbal-
ance problem.” This occurs when a dataset is dominated by a major
class or classes which have significantly more samples than the other
rare/minority classes in the data [108–110]. In these cases, stan-
dard classification algorithms have a bias toward the classes with a
greater number of instances, since the rules that correctly predict
those instances are positively weighted in favor of the accuracy
metric, whereas specific rules that predict examples from the minor-
ity class are usually ignored (treated as noise), because more general
rules are preferred. This bias is even larger when data is high-
dimensional, such as microarrays: the high dimensionality further
increases the bias toward the classification into the majority class,
even there is no real difference between the classes [111]. There-
fore, minority class instances are more often misclassified than those
from the other classes [112].

In the domain at hand, the cancer class tends to be rarer than the
non-cancer class because usually there are more healthy patients.
However, it is important for practitioners to predict and prevent the
appearance of cancer. Examples of very unbalanced microarray
datasets are Lung_test, or Brain Tumor 1, among others (Fig. 2).
This problematic is of special importance when the imbalance is
more marked in the test set than in the training set. Multiclass
datasets also suffer from this problem: some type of tumors/tissues
has fewer samples compared to others. For example, Brain Tumor
1 has 5 classes but the majority class takes 67% of the samples.

The traditional preprocessing techniques used to overcome this
issue are undersampling and oversampling methods. Undersam-
pling is a technique which creates a subset of the original dataset
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by eliminating samples. It aims to attain the same number of
samples of the majority class as in the minority class. As a very
small number of samples are available in the microarray datasets,
elimination of observations is not a good option. In contrast, over-
sampling methods create a superset of the original dataset by repli-
cating some instances or creating new instances from existing ones.
One of the most employed oversampling techniques is the so-called
SMOTE [113], in which the minority class is oversampled by
taking each minority class sample and introducing synthetic exam-
ples along the line segments joining any/all of the k minority class
nearest neighbors. This technique was applied in Blagus and Lusa
[114] on microarray data, although the authors stated that it does
not attenuate the bias toward classification in the majority class for
most classifiers. Morán-Fernández et al. [115] observed that the
imbalance ratio is not enough to predict the adequate performance
of the classifier. As an alternative approach, authors computed
several data complexity measures over the imbalance microarray
datasets in order to support the application or not of an oversam-
pling method. They recommend to analyze the theoretical com-
plexity before applying the SMOTE algorithm since the classifier is
more affected by the complexity of the microarray data itself than
by the imbalance problem.

In recent years, ensemble of classifiers has arisen as a possible
solution to the class-imbalance problem, attracting great interest
among researchers [112, 116], in several cases combined with
preprocessing techniques such as SMOTE. Ensemble-based algo-
rithms have been proven to improve the results that are obtained by
the usage of data preprocessing techniques and training a single
classifier [112]. For all these reasons, it is worth considering this
problematic when dealing with unbalanced microarray datasets.
Another approach to deal with imbalanced microarray datasets
could be one-class SVM trained only with the target class, which
may lead to a better predictive performance [117, 118].

(a) (b)

Fig. 2 Class distributions for the (a) Lung_test and (b) Brain Tumor 1 datasets
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3.3 Data Complexity Classical classifiers may fail to obtain acceptable accuracies on
microarray data. In several cases drawbacks in the classifier perfor-
mance could arise not because of deficiencies in the algorithms, but
due to characteristics intrinsic to the data. On such a context, data
complexity measures were proposed to represent data particularities
that add complexity to classification tasks, such as overlaps between
classes, separability and decision boundary linearity, and at identify-
ing relationships with classification performance. The most com-
monly employed data complexity measures are those proposed by
Ho and Basu [119], gathering metrics of three types:

1. Measures of overlap in feature values from different classes:
l F1 returns the maximum Fisher’s discriminant ratio over all

features. Small values represent strong overlapping.

l F2 is defined as the amount of overlap between bounding
boxes of two classes, and it is zero if there is at least one
feature in which the values of the two classes do not overlap.

l F3 returns the maximum (individual) feature efficiency, i.e.,
the largest fraction of points distinguishable with only fea-
ture. Small values of this measure indicate high overlap.

2. Measures of class separability:
l L1 evaluates to what extent the training data is linearly

separable. It returns the sum of the differences between a
linear classifier predicted and the current class value. This
measure is zero for a linearly separable problem.

l L2 returns the error rate of the linear classifier defined for
L1, measured using the training set.

l N1 returns the fraction of points on the class boundary. For
doing so, it constructs a class-blind minimum spanning tree
over the full dataset, counting the number of points incident
to an edge going across the two classes. The index thus
reflects the fraction of such points over all points in the
dataset. High values of this measure indicate smaller separa-
tion and a more difficult classification task.

l N2 is the ratio of average intra-/interclass NN distance. For
each instance, the Euclidean distances to its nearest neigh-
bor from the same class and its nearest neighbor from the
other class are calculated. Then, the result is the ratio of the
sum of the intraclass distances to the sum of the interclass
distances for each instance. High values indicate that sam-
ples from the same class are disperse.

l N3 returns the error rate of the 1-NN classifier, estimated by
leave-one-out cross-validation on the training set.
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3. Measures of geometry, topology, and density of manifolds:

l L3 makes use of the linear classifier defined for L1 and
returns the error rate obtained on a test set created from
the training set by linear interpolation between randomly
drawn pairs of points from the same class. For linear classi-
fiers and linearly separable problems, it measures alignment
of the decision surface with the class boundary.

l N4 creates a test set as proposed by L3 and returns the error
for the 1-NN classifier.

l T1 counts the number of spheres needed to cover each class,
where each sphere is centered at a training point and grown
to the maximum size before it touches another class. The
count is then normalized by the total number of points. In a
problem where each point is closet to points in the other
class than points in its own class, each point is covered by a
distinctive sphere of a small size, resulting in a high value for
the measure.

l T2 is the simple ratio between the number of points in the
dataset and the number of feature dimensions.

In the area of microarray classification, we can find several
works using these data complexity measures. Lorena et al. [120],
who, using the Ho and Basu measures, investigated the particular
characteristics of several microarrays datasets that most impacted on
the prediction ability of support vector machine classifiers. Okun
et al. [121] in a novel approach based on using an ensemble of k-
NN classifiers also found positive dependence between complexity
and error. Bolón-Canedo et al. [122] analyzed in depth the theo-
retical complexity of several binary microarray datasets and then
connecting it with the empirical results obtained by four widely
used classifiers. An extension for microarray datasets with multiple
classes was presented in Morán-Fernández et al. [123]. Experimen-
tal results for 21 binary and multiclass datasets demonstrated that a
correlation exists between the theoretical complexity of microarray
data and the classification error rates. Thus, some interesting prop-
erties of the microarray datasets were identified from these works:

l Almost all the microarray datasets, according to the values of L1
and L2, were linearly separable. Thus, SVM with a linear kernel
was a good option, in overall, reporting high classification
accuracies.

l The correlation between different classifiers and T1 pointed out
that the sparsity of microarray data is a major aspect for indicat-
ing the complexity of microarray classification.

l For N2, the microarray datasets lent to higher values. This
indicates that instances from the same class were dispersed in
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the feature space. Both separability measures, N2 and N1, offer
interesting relations with the NN classifier.

l F2, which was zero for all microarray datasets, did not yield any
information. A side effect of calculating the volume is that the
value of the measures decreases greatly as dimensionality
increases. Thus, it might be interesting to compute the sum
(length of the overlap) in this type of datasets.

l F1 and F3 overlapping measures have demonstrated to be
related to classification accuracy. As these measures increase in
value, overlapping between classes is reduced so better classifica-
tion results are expected.

3.4 Dataset Shift Another common problem when datasets were originally divided to
training and test sets is the so-called dataset shift. This occurs when
the testing (unseen) data experience a phenomenon that leads to a
change in the distribution of a single feature, a combination of
features, or the class boundaries [124]. As a result, the common
assumption that the training and testing data follow the same
distributions is often violated in real-world applications and scenar-
ios, which may hinder the process of feature selection and classifi-
cation. For example, Lung, Leukemia, and Prostate datasets have
separated training and test sets (see Table 1). In the case of Lung,
there is a single feature (#1136) which can correctly classify all the
samples in the training set, as shown in Fig. 3a, in which different
colors and shapes stand for different classes and the dashed line
shows a clear linear separation between them. However, the same
feature is not that informative in the test set and the class is not
linearly separable, as displayed in Fig. 3b. Furthermore, note that
there is an enormous disparity in class distribution: 50–50% in the
training set and 90–10% in the test set. A similar situation happens
with Leukemia dataset (see Fig. 4) and feature #4847.

0 500 1000 1500 2000
Feature #1136

(a)

0 500 1000 1500 2000
Feature #1136

(b)

Fig. 3 Feature #1136 in Lung dataset. (a) Lung_train. (b) Lung_test
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The Prostate dataset poses a big challenge for machine learning
methods since the test dataset was extracted from a different exper-
iment and has a nearly 10-fold difference in overall microarray
intensity from the training data. In fact, the test distribution
(26–74%) differs significantly from the train distribution
(49–51%) and with an inappropriate or no feature selection, some
classifiers simply assign all the samples to one of the classes
[36, 43]. In fact, if we plot the twomost relevant features according
to their mutual information with the class (features #6185 and
#8965), we can see in Fig. 5 some interesting facts. The two
features range in very different intervals (notice that the maximum
values in the x axis are around 450 and 3500, respectively, for train
and test). If we draw a line to separate the two classes in the training
set, allowing some misclassifications, the same line in the test set is
equivalent to assigning all the samples to one of the classes (see
bottom left corner of Fig. 5b). More details about this phenome-
non and a possible solution using normalization can be found in
Bolón-Canedo et al. [122].
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Fig. 4 Feature #4847 in Leukemia dataset. (a) Leukemia_train. (b) Leukemia_test
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Fig. 5 Features #6185 and #8965 in Prostate dataset. (a) Prostate-train. (b) Prostate-test
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Dataset shift can also appear because of the validation tech-
nique chosen. One of the most widely used validation techniques in
the microarray domain is the so-called k-fold cross-validation, along
with its variant leave-one-out cross-validation. However, it has been
shown [125] that cross-validation can potentially introduce dataset
shift, a harmful factor that is often not taken into account and
which can result in inaccurate performance estimation. To solve
this problem, distribution optimally balanced stratified cross-valida-
tion (DOB-SCV) [125] is based on the idea that, by assigning
close-by examples to different folds, each fold will end up with
enough representatives of every region, thus avoiding dataset
shift. To achieve this goal, DOB-SCV starts on a random unas-
signed example, and then finds its k � 1 nearest unassigned neigh-
bors of the same class. Once it has found them, it assigns each of
those examples to a different fold. The process is repeated until all
examples have been assigned.

3.5 Outliers An important aspect that has been neglected in the literature is to
detect outliers [126] in microarray samples. In some microarray
datasets, there are samples that are incorrectly labeled or identified
as likely to be contaminated which should in fact be designated
outliers, since they can exert a negative effect on the selection of
informative genes for sample classification. In Kadota et al. [127], a
method was developed which found some outlying samples in the
well-known Colon dataset. Therefore, analysis of samples desig-
nated as outliers should be considered as a preprocessing step in the
classification of microarray datasets because they can have a negative
effect on the gene subset selection and, as a consequence, on the
final prediction [128].

4 Summary

This chapter is a brief introduction to microarray datasets, describ-
ing the main reasons that have converted them to a challenging and
fruitful field of application for machine learning algorithms. Due to
their high dimensionality, dimensionality reduction techniques are
to be used for correct classification and also for explainability of
results to microarray experts, as many of the features of the datasets
are irrelevant and/or redundant. For the interested reader, the
most common repositories where one can download these type of
datasets, both binary and multiclass, are given, together with
descriptions of more than 50 specific microarray datasets. Finally,
some insights on several characteristics of these datasets (such as
small sample size, class imbalance, dataset shift, data complexity,
and the existence of outliers) and their influence on the machine
learning algorithms employed and the results obtained are given.
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of feature selection techniques in bioinfor-
matics. Bioinformatics 23(19):2507–2517

3. Golub TR, Slonim DK, Tamayo P, Huard C,
Gaasenbeek M, Mesirov JP, Coller H, Loh
ML, Downing JR, Caligiuri MA et al (1999)
Molecular classification of cancer: class discov-
ery and class prediction by gene expression
monitoring. Science 286(5439):531–537

4. Jain A, Zongker D (1997) Feature selection:
evaluation, application, and small sample per-
formance. IEEE Trans Pattern Anal Mach
Intell 19(2):153–158

5. Guyon I, Gunn S, Nikravesh M, Zadeh LA
(2006) Feature extraction: foundations and
applications, vol 207. Springer, Berlin

6. Arrayexpress - Functional Genomics Data
(2018). http://www.ebi.ac.uk/arrayexpress/
. [Online; accessed Jan 2018]

7. Gene Expression Omnibus (2018). http://
www.ncbi.nlm.nih.gov/geo/. [Online;
accessed Jan 2018]

8. The Cancer Genome Atlas (TCGA) (2018).
https://cancergenome.nih.gov/. [Online;
accessed Jan 2018]

9. Broad Institute (2018) Cancer Program Data
Sets. http://www.broadinstitute.org/cgi-
bin/cancer/datasets.cgi. [Online; accessed
Jan 2018]

10. Dataset Repository, Bioinformatics Research
Group (2018). http://www.upo.es/eps/
bigs/datasets.html. [Online; accessed Jan
2018]

11. Statnikov A, Aliferis CF, Tsamardinos I
(2018) Gems: gene expression model selec-
tor. http://www.gems-system.org. [Online;
accessed Jan 2018]

12. Gene Expression Project (2014) Princeton
University. http://genomics-pubs.princeton.
edu/oncology/. [Online; accessed Jan 2014]

13. The Arabidopsis Information Resource, Gene
Expression Resources (2018) https://www.
arabidopsis.org/portals/expression/micro
array/. [Online; accessed Jan 2018]

14. Hruz T, Laule O, Szabo G, Wessendorp F,
Bleuler S, Oertle L, Widmayer P,
Gruissem W, Zimmermann P (2008) Gene-
vestigator v3: a reference expression database
for the meta-analysis of transcriptomes. Adv
Bioinforma 2008, 5pp.

15. An open-source r framework for your micro-
array analysis (2018). http://www.aroma-proj
ect.org/. [Online; accessed Jan 2018]

16. ELVIRA Biomedical Data Set Repository
(2018). http://leo.ugr.es/elvira/DBCReposi
tory/. [Online; accessed Jan 2018]

17. Machine Learning Dataset Repository
(2018). http://mldata.org/repository/data/
. [Online; accessed Jan 2018]

18. The home of data science & machine learning
(2018). https://www.kaggle.com/datasets.
[Online; accessed Jan 2018]

19. Frank A, Asuncion A (2018). UCI machine
learning repository. http://archive.ics.uci.
edu/ml, 2010. [Online; accessed Jan 2018]

20. Feature Selection Datasets at Arizona State
University (2018). http://featureselection.
asu.edu/datasets.php. [Online; accessed Jan
2018]

21. Bioconductor, open source software for bio-
informatics (2018). http://www.bio
conductor.org. [Online; accessed Jan 2018]

22. Pomeroy SL, Tamayo P, Gaasenbeek M,
Sturla LM, Angelo M, McLaughlin ME, Kim
JYH, Goumnerova LC, Black PM, Lau C et al
(2002) Prediction of central nervous system
embryonal tumour outcome based on gene
expression. Nature 415(6870):436–442

23. Shah M, Marchand M, Corbeil J (2012) Fea-
ture selection with conjunctions of decision
stumps and learning from microarray data.
IEEE Trans Pattern Anal Mach Intell 34
(1):174–186

24. Tian E, Zhan F, Walker R, Rasmussen E,
Ma Y, Barlogie B, Shaughnessy JD Jr (2003)
The role of the wnt-signaling antagonist dkk1
in the development of osteolytic lesions in
multiple myeloma. N Engl J Med 349
(26):2483–2494

25. Nutt CL, Mani DR, Betensky RA, Tamayo P,
Cairncross JG, Ladd C, Pohl U, Hartmann C,
McLaughlin ME, Batchelor TT et al (2003)
Gene expression-based classification of malig-
nant gliomas correlates better with survival
than histological classification. Cancer Res
63(7):1602–1607

26. Bolón-Canedo V, Seth S, Sánchez-Maroño N,
Alonso-Betanzos A, Principe JC (2011) Sta-
tistical dependence measure for feature selec-
tion in microarray datasets. In: 19th European
symposium on artificial neural networks-
ESANN, pp 23–28

80 Amparo Alonso-Betanzos et al.

http://www.ebi.ac.uk/arrayexpress/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://cancergenome.nih.gov/
http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
http://www.upo.es/eps/bigs/datasets.html
http://www.upo.es/eps/bigs/datasets.html
http://www.gems-system.org
http://genomics-pubs.princeton.edu/oncology/
http://genomics-pubs.princeton.edu/oncology/
https://www.arabidopsis.org/portals/expression/microarray/
https://www.arabidopsis.org/portals/expression/microarray/
https://www.arabidopsis.org/portals/expression/microarray/
http://www.aroma-project.org/
http://www.aroma-project.org/
http://leo.ugr.es/elvira/DBCRepository/
http://leo.ugr.es/elvira/DBCRepository/
http://mldata.org/repository/data/
https://www.kaggle.com/datasets
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://featureselection.asu.edu/datasets.php
http://featureselection.asu.edu/datasets.php
http://www.bioconductor.org
http://www.bioconductor.org


27. Bolón-Canedo V, Sánchez-Marono N,
Alonso-Betanzos A, Benı́tez JM, Herrera F
(2014) A review of microarray datasets and
applied feature selection methods. Inf Sci
282:111–135

28. Bolón-Canedo V, Sechidis K, Sánchez-
Marono N, Alonso-Betanzos A, Brown G
(2017) Exploring the consequences of
distributed feature selection in dna microarray
data. In: International joint conference on
neural networks

29. Ebrahimpour MK, Zare M, Eftekhari M,
Aghamolaei G (2017) Occam’s razor in
dimension reduction: using reduced row ech-
elon form for finding linear independent fea-
tures in high dimensional microarray datasets.
Eng Appl Artif Intell 62:214–221

30. Wanderley MF, Gardeux V, Natowicz R,
Braga AP (2013) Ga-kde-bayes: an evolution-
ary wrapper method based on non-parametric
density estimation applied to bioinformatics
problems. In: 21st European symposium on
artificial neural networks-ESANN, pp
155–160

31. Meyer PE, Schretter C, Bontempi G (2008)
Information-theoretic feature selection in
microarray data using variable complementar-
ity. IEEE J Sel Top Signal Process 2
(3):261–274

32. Hedenfalk I, Duggan D, Chen Y,
Radmacher M, Bittner M, Simon R,
Meltzer P, Gusterson B, Esteller M, Raffeld
M et al (2001) Gene-expression profiles in
hereditary breast cancer. N Engl J Med 344
(8):539–548

33. Lee C, Leu Y (2011) A novel hybrid feature
selection method for microarray data analysis.
Appl Soft Comput 11(1):208–213

34. van’t Veer LJ, Dai H, Van De Vijver MJ, He
YD, Hart AAM, Mao M, Peterse HL, van der
Kooy K, Marton MJ, Witteveen AT et al
(2002) Gene expression profiling predicts
clinical outcome of breast cancer. Nature
415(6871):530–536

35. Bolón-Canedo V, Sánchez-Maroño N,
Alonso-Betanzos A (2012) An ensemble of
filters and classifiers for microarray data classi-
fication. Pattern Recogn 45(1):531–539

36. Bolón-Canedo V, Sánchez-Maroño N,
Alonso-Betanzos A (2010) On the effective-
ness of discretization on gene selection of
microarray data. In: The 2010 international
joint conference on neural networks
(IJCNN). IEEE, Piscataway, pp 18–23

37. Kumar M, Rath SK (2015) Classification of
microarray using mapreduce based proximal

support vector machine classifier. Knowl-
Based Syst 89:584–602

38. Mohapatra P, Chakravarty S, Dash PK (2016)
Microarray medical data classification using
kernel ridge regression and modified cat
swarm optimization based gene selection sys-
tem. Swarm Evol Comput 28:144–160
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Chapter 5

Statistical Analysis of Microarray Data

Ricardo Gonzalo Sanz and Alex Sánchez-Pla

Abstract

Microarray data analysis has been one of the most important hits in the interaction between statistics and
bioinformatics in the last two decades. The analysis of microarray data can be done in different ways using
different tools. In this chapter a typical workflow for analyzing microarray data using R and Bioconductor
packages is presented. The workflow starts with the raw data—binary files obtained from the hybridization
process—and goes through a series of steps: Reading raw data, Quality Check, Normalization, Filtering,
Selection of differentially expressed genes, Comparison of selected lists, and Analysis of Biological Signifi-
cance. The implementation of each step in R is described through a use case that goes from raw data until
the analysis of biological significance. Data and code for the analysis are provided in a github repository.

Key words Microarrays, Bioconductor, R, Differential expression

1 Introduction

Microarray data analysis is one of the clearest cases where interac-
tion between bioinformatics and statistics has been highly beneficial
for both disciplines. Efron [1] even calls the twenty-first century as
the century of microarrays.

What is generically described as “microarray data analysis” is a
process that starts with the design of the experiment intended to
answer with one or more biological questions and ends with a
tentative answer for these questions. Statistics is involved at every
step of this process, for preparing, transforming visualizing or
analyzing data. And, of course, every step can be done in different
way that use either classical statistics or new methods developed ad
hoc for these often high-dimensional problems. The detailed
description of these steps is out of the scope of this chapter and
the reader is assumed to be familiar with them. It is assumed that
the reader is already familiar with microarrays such as they are
introduced in [2] and also with the general ideas of microarray
data analysis such as can be found in [3]. In any case, for the sake
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of completeness basic ideas will be briefly introduced and citations
provided the first time they are discussed.

For our objectives we can assume that a microarray dataset is a
matrix of continuous values that represent the expressions of a set of
genes (one gene per row), in a variety of conditions or samples (one
sample per column). See Fig. 1 for an example.

Note that we have described the row contents as “genes.”
Strictly speaking, depending on the type of array, each row may
correspond to one distinct, but related, entity, a “probeset” or a
“transcript.”

l A transcript describes how the gene has been transcribed into
messenger RNA. If transcription was unique there would be a
single transcript per gene. However, due to the phenomenon of
alternative splicing, [4], there may be different transcriptions of
the same gene (the associated proteins are called “isoforms”).
Note that there may be multiple transcripts per gene.

l A probeset is, as indicated by its name, a set of “probes,” which
are designed to map different fragments of a given gene. Alto-
gether it is expected that each set of probes, or probeset,
uniquely characterizes one gene. However, given that this char-
acterization is not always possible it may be convenient to have
more than one probeset per gene. That is, although it is com-
mon to exchange the terms “probeset” and “gene,” it is impor-
tant to be aware that there may be several probesets per
each gene.

In practice, given that either probesets or transcripts map to
genes, it is common to describe the array rows as “genes.”

Our main goal is to describe a workflow, a series of ordered
steps that takes us from the raw data, the digitized images as
produced by the hybridization system, to one or more lists of
genes that can be used to help answering a certain biological
question. This can be done in distinct ways. What we present here
is an approach that has become very popular over the last decades

Fig. 1 A simplified view of a gene expression matrix
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based on analyzing the data from the images to the lists of genes,
using the R Statistical language and some of the packages devel-
oped specifically for this in the Bioconductor project.

A summary of the process can be found in Fig. 2.

2 Materials

In this section we list all the materials needed to perform a micro-
array data analysis.

2.1 Software First of all, it is needed to install the software to perform all the
required calculations.

There are many options available [5], but one of the most
common approaches is to use the R statistical software. R can be
downloaded from its web page (https://cran.r-project.org/index.
html) and installed following the instructions described there. The
microarray analysis presented in this chapter has been performed
with the latest version of R which, at the moment of writing, was
3.4.4.

R is a console-based software. Its use can be facilitated with an
additional interface called “R-Studio.” It can be downloaded and
installed following the instructions listed in its web page: https://
www.rstudio.com/. Although its use is not compulsory for repro-
ducing the analyses in this chapter it is highly recommended to
work with R using this interface.

Biological question

Biological verification
and interpretation

Experimental design

Microarray experiment

Image analysis
Quality

Measurement

Analysis

Normalization

Class
Discovery

Class
Prediction

Pathway
Analysis

Class
Comparison

Failed

Pass

Fig. 2 Microarray data analysis process
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When working with R it is often required to use some functions
not available in the basic installation. This can be done by installing
additional libraries, also called “packages.” developed by the scien-
tific community. Most packages used for the analysis of high
throughput genomic data are part of the Bioconductor project
which started with a few packages in 2002 and has now more
than one thousand (https://www.bioconductor.org/). Indeed,
Bioconductor has become the state-of-the-art way to analyze
microarray and other omics data and it has grown from hardly a
dozen packages in 2002 to the current number of more than one
thousand. The analysis presented have been performed using Bio-
conductor version 3.6.

R and Bioconductor are open source free software. They have
many advantages, but they may sometimes be a problem, especially
when new functionalities are not compatible with previous versions
(see Note 1).

Table 1 shows the packages needed for the analysis presented in
this chapter. The table contains the name, the source, and a short
description of all the packages that have to be install to run the
current case study. In the following section we will show the code
necessary to install all of them.

2.2 Data This protocol is applied on a dataset from a published study
[20]. The data had been uploaded into the Gene Expression Omni-
bus (GEO) database, an international public repository that
archives and freely distributes high-throughput gene expression
and other functional genomics data sets [21]. The dataset selected
is identified with the accession number: GSE100924.

The study that generated the data investigated the function of
gene ZBTB7B (http://www.genecards.org/cgi-bin/carddisp.pl?
gene¼ZBTB7B). This gene activates the thermogenic gene pro-
gram during brown and beige adipocyte differentiation regulating
brown fat gene expression at ambient room temperature and fol-
lowing cold exposure. The experiment compared 10-week-old
mice with the gene deactivated (“KO” or knockout) or not
(“WT” or Wild type) at two different temperatures, ambient
room temperature (RT, 22 �C) or following cold exposure
(COLD, 4 �C) for 4 h. That is, it was a 2 � 2 factorial design
(genotype and temperature) with two levels each (wild type and
knockout, for genotype, and room temperature and cold, for tem-
perature). The sample size of the experiment is 12 samples, three
replicates of each group.

The microarrays used for this experiment are of type Mouse
Gene 2.1 from Affymetrix, now Thermofisher, one of the most
popular vendors of microarray technology.
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Table 1
List of R/Bioconductor packages used in this chapter

Package.name Description References

Oligo Oligo is a Bioconductor package for preprocessing
oligonucleotide microarrays. We use this package to read
the CEL files and normalize them

[6]

pd.mogene.2.1.st It is an annotation package for the array used in this
experiment

[7]

Biobase This package contains standardized data structures to
represent genomic data that are used by other R packages

[8]

arrayQualityMetrics This package generates microarray quality metrics reports
for microarray data

[9]

gplots Various R programming tools for plotting data [10]

ggplot2 This package is a plotting system for R. We will use it to
build nice graphs

[11]

ggrepel This package is used to avoid overlapping of labels in plots [12]

pvca This package contains the functions necessary to assess the
batch effect sources involved in a microarray experiment

[13]

limma Limma is an R package for the analysis of gene expression
microarray data especially the use of linear models for
analyzing designed experiments and the assessment of
differential expression

[14]

genefilter The genefilter package can be used to filter (select) genes
from a microarray dataset according to a variety of
different filtering mechanisms

[15]

annotate An R package for managing annotations, that is, for
providing functions to extract information from
annotation packages. These are essentially databases
containing information about genes and related features

[16]

org.Mm.eg.db Annotation package for mouse. Contains multiple SQL
tables relating gene information from mouse with
different databases. The main key for all tables is the
Entrez Gene identifier a unique integer number for every
gene in every organism. There are multiple organism-
centric annotation packages named as: org.XX.eg.db.
Each package provides information on organism XX
indexed by the Entrez Gene identifiers (eg) of this
organism

[17]

mogene21sttranscriptcluster.
db

Platform-centric annotation package. Instead of providing
information using the Entrez Gene identifiers these
databases use the specific c identifiers of (at the probeset
or transcript level) of a given type of array as indexes to
link to other databases

[18]

ReactomePA An R/Bioconductor package providing enrichment analyses
including hypergeometric test and gene set enrichment
analyses

[19]
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3 Methods

3.1 Environment

Preparation

In a microarray data analysis project, data analyst will have to
manage a lot of files, including the files with the raw data (.CEL
files) and the files generated during the analysis of them. For this
reason, it is very advisable to define some folders before beginning
with the analysis to try to not get lost, if all the files go to the same
folder. We strongly recommend that user creates the following
folders:

l A main folder that will be the “working directory” called, for
example, “MicroarraysAnalysis.”

l A folder called, for example, data located within the working
directory: Here we will save all the .CEL files and the targets file
with information on the covariates, described in next section.

l A folder called, for example, results located within the working
directory: Here we will send all the results obtained in the
microarray analysis.

The following commands create the desired folders. This can
be made from within R as described, or using a visual file browser
such as Windows File Explorer or any other (in that case you can
omit this step):

> dir.create("data")

> dir.create("results")

The code for running this analysis, that can be easily adapted to
run similar studies can be downloaded from a github repository
specifically devoted to this chapter. In the following sections it is
assumed that such code has been downloaded and copied into the
working directory. The url for the repository is: https://github.
com/alexsanchezpla/StatisticalAnalysisOfMicroarrayData.

Once it is saved, open R-Studio, open the file with the R code,
and in R-Studio go to the menu option in the top “Session -> Set
working directory -> To source file location.” This action will set
the folder we have set as “main” folder as our working directory.

3.2 Prepare the Data

for the Analysis

The data for the analysis will be provided as two types of files, the
“CEL” “files and the “targets” file.

CEL files are the files with the “raw data” originated after
microarray scanning and preprocessing with Affymetrix software.
These files need to be saved into the data folder. Usually one
expects to have a .CEL file for each sample in the experiment.

Another file needed for the analysis is the targets file, which
contains the information on groups and covariates. That is, this file
relates the name of each .CEL file with their condition in the
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experiment. We can use the targets to retain all the information
valuable for the analysis like other covariables.

Although the targets file need not have any fixed names it is
practical to use its column names to create labels that will be used
later. For example:

l Column called FileName: It may contain the exact name of the
CEL files in the data folder.

l Column called Group: It may summarize the conditions in the
experiment for that sample.

l Column called ShortName: It may be used to store a short label
of the sample useful for some plots.

l There may be other columns to store covariables in the study
such as sex and age.

For this analysis, targets file has been saved in .csv format,
separated by semicolon, although any other format that works for
delimited text files might have been used (see Note 2). Table 2
shows the contents of the targets file used in this analysis.

> targets <- read.csv2("./data/targets.csv", header = TRUE, sep = ";")

> knitr::kable(

+ targets, booktabs = TRUE,

+ caption = ’Content of the targets file used for the current

analysis’)

Table 2
Content of the targets file used for the current analysis

FileName Group Genotype Temperature ShortName

GSM2696488_WT_RT_1.CEL WT.RT WT RT WT.RT.1

GSM2696489_WT_RT_2.CEL WT.RT WT RT WT.RT.2

GSM2696490_WT_RT_3.CEL WT.RT WT RT WT.RT.3

GSM2696491_KO_RT_1.CEL KO.RT KO RT KO.RT.1

GSM2696492_KO_RT_2.CEL KO.RT KO RT KO.RT.2

GSM2696493_KO_RT_3.CEL KO.RT KO RT KO.RT.3

GSM2696494_WT_Cold_1.CEL WT.COLD WT COLD WT.COLD.1

GSM2696495_WT_Cold_2.CEL WT.COLD WT COLD WT.COLD.2

GSM2696496_WT_Cold_3.CEL WT.COLD WT COLD WT.COLD.3

GSM2696497_KO_Cold_1.CEL KO.COLD KO COLD KO.COLD.1

GSM2696498_KO_Cold_2.CEL KO.COLD KO COLD KO.COLD.2

GSM2696499_KO_Cold_3.CEL KO.COLD KO COLD KO.COLD.3
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3.3 Packages

Installation in R

Packages not available in the basic R installation need to be installed
before the analysis can be done (see Note 3).

As commented in Subheading 2, packages needed to do the
study, may be downloaded from distinct repositories. The most
common ones will be CRAN for standard packages or Bioconduc-
tor for Bioconductor packages.

Standard R packages can be downloaded and installed from
default repositories with the install.packages function. Bioconduc-
tor packages can be downloaded and installed with the function
biocLite() which at its time can be loaded into R with the instruc-
tion source (“https://bioconductor.org/biocLite.R”).

The code below will download and install the packages needed
for the analysis. Note that this code must be executed only once.
Subsequent executions of the analysis do not need to reinstall the
packages:

> install.packages("colorspace")

> install.packages("gplots")

> install.packages("ggplot2")

> install.packages("ggrepel")

> source("http://bioconductor.org/biocLite.R")

> biocLite("oligo")

> biocLite("pd.mogene.2.1.st")

> biocLite("arrayQualityMetrics")

> biocLite("limma")

> biocLite("genefilter")

> biocLite("pvca")

> biocLite("mogene21sttranscriptcluster.db")

> biocLite("annotate")

> biocLite("org.Mm.eg.db")

> biocLite("ReactomePA")

3.4 Read the CEL

Files

Next step is to read the raw data (CEL files) and to store in a
variable (in this case we have called it rawData). First, we have to
load the package oligo with the function library. In this package are
coded the functions to read the CEL files. Take care to put the
correct folder where the CEL files are saved when executing list.
celfiles function.

> require(oligo)

> celFiles <- list.celfiles("./data", full.names = TRUE)

> require(Biobase)

> my.targets <-read.AnnotatedDataFrame(file.path("./data","targets.csv"),

+ header = TRUE, row.names = 1,

+ sep=";")

> rawData <- read.celfiles(celFiles, phenoData = my.targets)

Note that we have read another time the targets file, but now
using another specific function: read.AnnotatedDataFrame, and
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stored in a new variable called my.targets. We have done that to
associate the information stored in the CEL files with the targets file
in on single variable with the last code’s line. This object is called
ExpressionSet and is designed to combine several different sources
of information into a single convenient structure. We could store in
this object all the information available about the experiment per-
formed (protocol used, experiment data, microarray type, . . .).
Moreover, it allows us to change the long name of the samples,
for the short and more comprehensive label previously coded in
ShortName column of the targets.

> colnames(rawData) <-rownames(pData(rawData)) <-

my.targets@data$ShortName

3.5 Quality Control

of Raw Data

Once the raw data is loaded it is the moment to check if the data
have enough quality for normalization. This step is very important
since bad quality data could introduce a lot of noise in the analysis,
that normalization process could not solve. ArrayQualityMetrics
package performs different quality approaches, like boxplot of the
intensity of the data and Principal Component Analysis (PCA)
among others. If one array is above a certain threshold defined in
the function it is marked with an asterisk as an outlier. When a
certain array is marked three times it should be revised carefully;
perhaps this sample will have to be rejected to improve the overall
quality of the experiment. The first step is to load the library to gain
access to the function. Be careful again to specify correctly the
destination folder of the results:

> require(arrayQualityMetrics)

> arrayQualityMetrics(rawData, outdir = file.path("./results",

"QCDir.Raw"), force=TRUE)

We have to check the results of the quality analysis in a recently
created QCDir.Raw folder inside the results folder previously cre-
ated. Inside this folder we have to look for a file called index.html,
which opens a web page from where we will be able to access a
summary of the analysis performed. The image in Fig. 3 shows the
header of this file which contains a table with three columns indi-
cating some quality criteria that should be verified by “good qual-
ity” arrays. In this example three samples have been marked once.
Usually if there is only one mark it means that potential problems
are small so we can decide to keep all the arrays in the analysis.

A more comprehensive principal component analysis can be
obtained using a function specifically design for that. The code
for this function is shown in the next code chunk.
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> require(ggplot2)

> require(ggrepel)

> plotPCA3 <- function (datos, labels, factor, title, scale,colores, size

= 1.5, glineas = 0.25) {

+ data <- prcomp(t(datos),scale=scale)

+ # plot adjustments

+ dataDf <- data.frame(data$x)

+ Group <- factor

+ loads <- round(data$sdev^2/sum(data$sdev^2)*100,1)

+ # main plot

+ p1 <- ggplot(dataDf,aes(x=PC1, y=PC2)) +

+ theme_classic() +

+ geom_hline(yintercept = 0, color = "gray70") +

+ geom_vline(xintercept = 0, color = "gray70") +

+ geom_point(aes(color = Group), alpha = 0.55, size = 3) +

+ coord_cartesian(xlim = c(min(data$x[,1])-5,max(data$x[,1])+5)) +

+ scale_fill_discrete(name = "Group")

+ # avoiding labels superposition

+ p1 + geom_text_repel(aes(y = PC2 + 0.25, label = labels),segment.size =

0.25, size = size) +

+ labs(x =

c(paste("PC1",loads[1],"%")),y=c(paste("PC2",loads[2],"%"))) +

+ ggtitle(paste("Principal Component Analysis for: ",title,sep=" "))+

+ theme(plot.title = element_text(hjust = 0.5)) +

+ scale_color_manual(values=colores)

+ }

Fig. 3 Aspect of the summary table, in the index.html file, produced by the arrayQualityMetrics package on
the raw data

96 Ricardo Gonzalo Sanz and Alex Sánchez-Pla



Figure 4 shows the scatterplot of the first two principal com-
ponents performed on the raw data.

> plotPCA3(exprs(rawData), labels = targets$ShortName, factor

= targets$Group,

+ title="Raw data", scale = FALSE, size = 3,

+ colores = c("red", "blue", "green", "yellow"))

Note that we have defined in the function some parameters to
facilitate the visualization.

l The label of the samples; remember that it is coded in the
ShortName column of the targets.

l The characteristic to color the samples, coded in the Group
column in targets.

l The colors of each group.

If necessary, it is easy to save the plots to a tiff file with the
following code:

Fig. 4 Visualization of the two first principal components for raw data
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> tiff("figures/PCA_RawData.tiff", res = 300, width = 4, height

= 4, units = ’in’)

> plotPCA3(exprs(rawData), labels = targets$ShortName, factor

= targets$Group,

+ title="Raw data", scale = FALSE, size = 2,

+ colores = c("red", "blue", "green", "yellow"))

> dev.off()

First component of the PCA accounts for 55.9% of the total
variability of the samples, and as we can observe in the plot, this
variability is mainly contributed by the temperature condition since
samples incubated to 4� are on the right and samples incubated at
room temperature are on the left.

In the same way, we can easily visualize the intensity distribu-
tion of the arrays using boxplots. Figure 5 shows a multiple boxplot
depicting the distribution of the intensities along all samples.

> boxplot(rawData, cex.axis=0.5, las=2, which="all",

+ col = c(rep("red", 3), rep("blue", 3), rep("green", 3),

rep("yellow", 3)),

+ main="Distribution of raw intensity values")

A light variation of intensity among arrays is observed, but this
is the expected for raw data.

Fig. 5 Boxplot for arrays intensities (Raw Data)
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3.6 Data

Normalization

Before beginning with differential expression analysis, it is neces-
sary to make the arrays comparable among them and try to reduce,
and if it is possible to eliminate, all the variability in the samples not
owing to biological reasons. Normalization process tries to assure
that the intensity differences present in the array reflect the differ-
ential expression of the genes rather than artificial biases due to
technical issues. Normalization process consists of three discrete
steps: background correction, normalization, and summarization.
Most commonly used method for array normalization is Robust
Multichip Analysis [22]:

> eset_rma <- rma(rawData)

Background correcting

Normalizing

Calculating Expression

3.7 Quality Control

of Normalized Data

After performing normalization it is interesting to perform again a
quality control to check how the data looks. In the same way than
before (look, we have changed rawData object to eset_rma).

> arrayQualityMetrics(eset_rma, outdir = file.path("./re-

sults", "QCDir.Norm"), force=TRUE)

Figure 6 shows the same summary as before, but performed on
normalized data.

Figure 7 shows the scatterplot of the first two principal com-
ponents performed on normalized data.

Fig. 6 Aspect of the summary table, in the index.html file, produced by the arrayQualityMetrics package on
normalized data
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> plotPCA3(exprs(eset_rma), labels = targets$ShortName, factor

= targets$Group,

+ title="Normalized data", scale = FALSE, size = 3,

+ colores = c("red", "blue", "green", "yellow"))

Now first component accounts for 33% of the total variability.
Notice that the percentage of explained variability has decreased
with respect to PCA performed on raw data. As similar as the PCA
with raw data, it separates samples from COLD level of temperature
condition on the right, and samples from RT level on the left. It is
important to note that there are one sample from group KO.RT
that groups near WT.RT and vice versa. It could be an issue of
mislabeling of samples that should be checked with the laboratory
that has processed the samples.

Figure 8 shows a multiple boxplot depicting the distribution of
the normalized intensities along all samples. Notice that all box-
plots have the same aspect. This suggests that the normalization has
worked fine. However, it is important to be aware that RMA
includes a step (“quantile normalization”) where the empirical
distribution of all the samples is set to the same values. As a

Fig. 7 Visualization of first two principal components for normalized data
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consequence, it is expected that the boxplots are identical or at least
very similar.

> boxplot(eset_rma, cex.axis=0.5, las=2, which="all",

+ col = c(rep("red", 3), rep("blue", 3), rep("green", 3),

rep("yellow", 3)),

+ main="Boxplot for arrays intensity: Normalized Data")

3.8 Batch Detection Gene expression microarray results can be affected by minuscule
differences in any number of nonbiological variables like reagents
from different lots, different technicians, and, the more usual issue,
different processing dates of samples from the same experiment.
The cumulative error introduced by these time and place-
dependent experimental variations is referred to as “batch effects.”
Different approaches have been developed for identifying and
removing batch effects from microarray data like surrogate variable
analysis, Combat, and principal variation component analysis
(PVCA).

Here we will use the last one, principal variation component
analysis, which estimates source and proportion of variation in two
steps, principal component analysis and variance component analy-
sis. Only for illustration purposes we have added a new column to
our targets file, with a fictitious sample processing date. We will
perform the PVCA analysis before and after adding this column to
see the differences.

Fig. 8 Distribution of intensities for normalized data
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> #load the library

> require(pvca)

> pData(eset_rma) <- targets

> #select the threshold

> pct_threshold <- 0.6

> #select the factors to analyze

> batch.factors <- c("Genotype", "Temperature")

> #run the analysis

> pvcaObj <- pvcaBatchAssess (eset_rma, batch.factors,

pct_threshold)

Figure 9 shows a bar diagram with one bar per each source of
variation included in the analysis. Their relative size indicates the
percentage of variability attributable to each source. The plot shows
that the main source of variation in the samples is the Temperature
condition. This was also observed on the PCA plots on raw and
normalized data in Figs. 4 and 7.

> #plot the results

> bp <- barplot(pvcaObj$dat, xlab = "Effects",

+ ylab = "Weighted average proportion variance",

+ ylim= c(0,1.1),col = c("mediumorchid"), las=2,

+ main="PVCA estimation")
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Fig. 9 Relative importance of the different factors—genotype, temperature, and
interaction—affecting gene expression
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> axis(1, at = bp, labels = pvcaObj$label, cex.axis = 0.55,

las=2)

> values = pvcaObj$dat

> new_values = round(values , 3)

> text(bp,pvcaObj$dat,labels = new_values, pos=3, cex = 0.5)

3.9 Detecting Most

Variable Genes

Selection of differentially expressed genes is affected by the number
of genes on which we make it. The higher the number, the greater
the necessary adjustment of p-values (as will be seen below), which
will lead to end up miscarrying more genes.

If a gene is differentially expressed, it is expected that there is a
certain difference between the groups, and therefore the overall
variance of the gene will be greater than that of those that do not
have differential expression. Plotting the overall variability of all
genes is useful to decide which percentage of genes shows a varia-
bility that can be attributed to other causes than random variation.
Figure 10 depicts the standard deviations of all genes sorted from
smallest to biggest values. The plot shows that the most variable
genes are those with a standard deviation above 90–95% of all
standard deviations.

> sds <- apply (exprs(eset_rma), 1, sd)

> sdsO<- sort(sds)

> plot(1:length(sdsO), sdsO, main="Distribution of variability

for all genes",

Fig. 10 Values of standard deviations along all samples for all genes ordered
from smallest to biggest
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+ sub="Vertical lines represent 90% and 95% percentiles",

+ xlab="Gene index (from least to most variable)",

ylab="Standard deviation")

> abline(v=length(sds)*c(0.9,0.95))

3.10 Filtering Least

Variable Genes

Filtering out those genes whose variability can be attributed to
random variation, that is, the genes that are, reasonably, not
expected to be differentially expressed, has proven to be useful to
reduce the number of tests to be performed with the corresponding
increase in power [23].

Function nsFilter from the bioconductor package genefilter
can be used to remove genes based on a variability threshold. If
an annotation package—associating probesets identifiers and gene
identifiers from different databases—is available it can also be used
to remove probesets which do not have a gene identifier associated.

> require(genefilter)

> require(mogene21sttranscriptcluster.db)

> annotation(eset_rma) <- "mogene21sttranscriptcluster.db"

> filtered <- nsFilter(eset_rma,

+ require.entrez = TRUE, remove.dupEntrez = TRUE,

+ var.filter=TRUE, var.func=IQR, var.cutoff=0.75,

+ filterByQuantile=TRUE, feature.exclude = "^AFFX")

Function nsFilter returns the filtered values and a report of the
filtering results.

> print(filtered$filter.log)

$numDupsRemoved

[1] 672

$numLowVar

[1] 17994

$numRemoved.ENTREZID

[1] 16681

> eset_filtered <-filtered$eset

After filtering there are 5998 genes left. Note that we have
stored the genes left in the variable eset_filtered.

3.11 Saving

Normalized

and Filtered Data

Normalized filtered data are the starting point for further analyses
but we may want to go back to them, for example to review specific
gene expression values. It is usual to save the binary objects but also
to write expression values into text or excel files. Writing to Excel
from R is not a trivial task—for strange it may seem—because
different packages work differently depending of the operating
system, so it is omitted from the code.
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> write.csv(exprs(eset_rma), file="./results/normalized.Data.csv")

> write.csv(exprs(eset_filtered),

file="./results/normalized.Filtered.Data.csv")

> save(eset_rma, eset_filtered, file="./results/normalized.Data.Rda")

3.12 Defining

the Experimental

Setup: The Design

Matrix

Selection of differentially expressed genes basically consists of doing
some type of test, usually on a gene-wise basis, to compare gene
expression between groups. This can be done using many different
approaches (see [24]). There is a general agreement that using
standard statistical tests such as t-tests is not appropriate [25] and
that better options are methods that perform some type of variance
shrinking [26]. Techniques specifically developed for microarrays
such as SAM [27] or Linear Models for Microarrays [28] have
proved to produce much better results [24].

In this protocol the Linear Models for Microarrays method,
implemented in the limma package [14] is used to select differen-
tially expressed genes.

The first step for the analysis based on linear models is to create
the design matrix. Basically, it is a table that describes the alloca-
tion of each sample to a group or experimental condition. It has as
many rows as samples and as many columns as groups (if only one
factor is considered). Each row contains a one in the column of the
group to which the sample belongs and a zero in the others.

The design matrix can be defined manually or from a factor
variable that may have been introduced in the “targets” file with
this aim created specifically for it. In this study that “Group”
variable is a combination of the two experimental conditions,
“KO/Wild” and “RT/COLD” which are jointly represented as
one factor with four levels.

> if (!exists("eset_filtered")) load

(file="./results/normalized.Data.Rda")

> require(limma)

> designMat<- model.matrix(~0+Group, pData(eset_filtered))

> colnames(designMat) <- c("KO.COLD", "KO.RT", "WT.COLD", "WT.RT")

> print(designMat)

KO.COLD KO.RT WT.COLD WT.RT

1 0 0 0 1

2 0 0 0 1

3 0 0 0 1

4 0 1 0 0

5 0 1 0 0

6 0 1 0 0

7 0 0 1 0

8 0 0 1 0

9 0 0 1 0

10 1 0 0 0
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11 1 0 0 0

12 1 0 0 0

attr(,"assign")

[1] 1 1 1 1

attr(,"contrasts")

attr(,"contrasts")$Group

[1] "contr.treatment"

3.13 Defining

Comparisons

with the Contrast

Matrix

The contrast matrix is used to describe the comparisons between
groups. It consists of as many columns as comparisons and as many
rows as groups (i.e., as columns of the design matrix). A compari-
son between groups—called “contrast”—is represented by a “1”
and a “-1” in the rows of groups to compare and zeros in the rest.
If several groups are involved in the comparison we would have as
many coefficients as groups with the only restriction that its sum
would be zero.

In this example we want to check the effect of knocking out a
gene (“KO vs WT”) separately for cold and RT temperature. Also,
we want to test if there is any interaction between knocking out the
gene and temperature. This can be done by doing three compar-
isons described below:

> cont.matrix <- makeContrasts (KOvsWT.COLD = KO.COLD-WT.COLD,

+ KOvsWT.RT = KO.RT-WT.RT,

+ INT = (KO.COLD-WT.COLD) - (KO.RT-WT.RT),

+ levels=designMat)

> print(cont.matrix)

Contrasts

Levels KOvsWT.COLD KOvsWT.RT INT

KO.COLD 1 0 1

KO.RT 0 1 -1

WT.COLD -1 0 -1

WT.RT 0 -1 1

The contrast matrix is defined to perform three comparisons:
effect of KO in Cold temperature, effect of KO in RT temperature,
and interaction between KO and temperature.

3.14 Model

Estimation and Gene

Selection

Once the design matrix and the contrasts have been defined, we can
proceed to estimate the model, estimate the contrasts and perform
the significance tests that will lead to the decision, for each gene and
each comparison, if they can be considered differentially expressed.

The method implemented in the package extends the tradi-
tional analysis using Empirical Bayes models to combine an esti-
mate of variability based on the entire matrix with individual
estimates based on each individual value providing improved error
estimates [28].
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The analysis provides the usual test statistics such as Fold-
change, t-moderated or adjusted p-values that are used to order
the genes from more to less differential expressed.

In order to control the percentage of false positives that may
result from high number of contrasts made simultaneously the p-
values are adjusted so that we have control over the false positive
rate using the Benjamini and Hochberg method [29].

All relevant information for further exploration of the results is
stored in an R object of class MArrayLM defined in the limma
package. Here it is named as fit.main.

> require(limma)

> fit<-lmFit(eset_filtered, designMat)

> fit.main<-contrasts.fit(fit, cont.matrix)

> fit.main<-eBayes(fit.main)

> class(fit.main)

[1] "MArrayLM"

attr(,"package")

[1] "limma"

3.15 Obtaining Lists

of Differentially

Expressed Genes

The package implements function topTable which contains, for a
given contrast a list of genes ordered from smallest to biggest p-
value which can be considered from most to least differentially
expressed. For each gene the following statistics are provided:

We can have a look at the first lines of each topTable.
For comparison 1 (KOvsWT.COLD): Genes that change their

expression between KO and WT in cold temperature:

> topTab_KOvsWT.COLD <- topTable (fit.main, number=nrow(fit.

main), coef="KOvsWT.COLD", adjust="fdr")

> head(topTab_KOvsWT.COLD)

logFC AveExpr t P.Value adj.P.Val B

17497829 2.474954 6.706683 15.73346 0eþ00 0.0000302 10.274342

17407049 3.676524 4.697071 14.65945 0eþ00 0.0000324 9.720840

17529307 �3.628616 3.493648 �10.96795 2e-07 0.0003533 7.266518

17373930 2.071352 5.412865 10.79138 3e-07 0.0003533 7.122736

17251565 1.991109 2.955199 10.72126 3e-07 0.0003533 7.064847

17291821 �2.434786 5.348719 �10.24479 5e-07 0.0004045 6.659254

For comparison 2 (KOvsWT.RT): Genes that change their
expression between KO and WT in room temperature:
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> topTab_KOvsWT.RT <- topTable (fit.main, number=nrow(fit.

main), coef="KOvsWT.RT", adjust="fdr")

> head(topTab_KOvsWT.RT)

logFC AveExpr t P.Value adj.P.Val B

17407049 3.675590 4.697071 14.65573 0eþ00 0.0000243 9.811319

17282970 �3.565316 9.093793 �14.60418 0eþ00 0.0000243 9.782552

17497829 2.280728 6.706683 14.49875 0eþ00 0.0000243 9.723258

17425609 2.207391 2.464984 11.91994 1e-07 0.0001205 8.053747

17472497 �3.366076 7.132534 �11.88661 1e-07 0.0001205 8.029086

17399411 �1.816331 4.457054 �11.15112 2e-07 0.0001891 7.461733

For comparison 3 (INT): Genes that behave differently
between comparison 1 and 2:

> topTab_INT <- topTable (fit.main, number=nrow(fit.main),

coef="INT", adjust="fdr")

> head(topTab_INT)

logFC AveExpr t P.Value adj.P.Val B

17282970 3.369838 9.093793 9.760524 8.00e-07 0.0046281 5.715626

17494820 2.023908 1.704030 8.447940 3.30e-06 0.0098332 4.580929

17251565 2.127194 2.955199 8.099213 5.00e-06 0.0099083 4.243694

17274184 �1.800778 8.001305 �7.330313 1.29e-05 0.0180537 3.440917

17543045 2.012296 9.748289 7.212880 1.50e-05 0.0180537 3.310756

17432247 2.798819 4.218885 7.054483 1.85e-05 0.0185289 3.131888

First column of each topTable contains the manufacturer’s
(Affymetrix) ID for each probeset. Next step is to guess which
gene correspond to each Affymetrix ID. This process is called
annotation.

3.16 Gene

Annotation

Once we have the top table it is useful to provide additional
information on the features that have been selected. This process
is called “annotation” and essentially what it does is to look for
information to associate identifiers that appear in the top table,
usually corresponding to probesets or transcripts depending of
the array type, with more familiar names such as the Gene Symbol,
the Entrez Gene identifier, or the Gene description.

For simplicity, because there are three topTables, a function
annotating one topTable with a given package is prepared and used.
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> annotatedTopTable <- function(topTab, anotPackage)

+ {

+ topTab <- cbind(PROBEID=rownames(topTab), topTab)

+ myProbes <- rownames(topTab)

+ thePackage <- eval(parse(text = anotPackage))

+ geneAnots <- select(thePackage, myProbes, c("SYMBOL", "ENTREZID",

"GENENAME"))

+ annotatedTopTab<- merge(x=geneAnots, y=topTab, by.x="PROBEID",

by.y="PROBEID")

+ return(annotatedTopTab)

+ }

> topAnnotated_KOvsWT.COLD <- annotatedTopTable(topTab_KOvsWT.COLD,

+ anotPackage="mogene21sttranscriptcluster.db")

> topAnnotated_KOvsWT.RT <- annotatedTopTable(topTab_KOvsWT.RT,

+ anotPackage="mogene21sttranscriptcluster.db")

> topAnnotated_INT <- annotatedTopTable(topTab_INT,

+ anotPackage="mogene21sttranscriptcluster.db")

> write.csv(topAnnotated_KOvsWT.COLD, file="./results/topAnnotated_-

KOvsWT_COLD.csv")

> write.csv(topAnnotated_KOvsWT.RT, file="./results/topAnnotated_-

KOvsWT_RT.csv")

> write.csv(topAnnotated_INT, file="./results/topAnnotated_INT.csv")

Annotation makes the tables more comprehensible. Table 3
shows the annotations added to results “topTable” for the compar-
ison “KOvsWT.COLD” (only the first four columns are shown).

> short <- head(topAnnotated_KOvsWT.COLD[1:5,1:4])

> knitr::kable(

+ short, booktabs = TRUE,

+ caption = ’Annotations added to results "topTable" for the

comparison "KOvsWT.COLD"’

+ )

Table 3
Annotations added to results “topTable” for the comparison “KOvsWT.COLD”

PROBEID SYMBOL ENTREZID GENENAME

17210887 Atp6v1h 108664 ATPase, Hþ transporting, lysosomal V1 subunit H

17210984 Pcmtd1 319263 protein-L-isoaspartate (D-aspartate) O-methyltransferase
domain containing 1

17211000 Rrs1 59014 ribosome biogenesis regulator 1

17211131 Prex2 109294 phosphatidylinositol-3,4,5-trisphosphate-dependent Rac
exchange factor 2

17211174 A830018L16Rik 320492 RIKEN cDNA A830018L16 gene
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3.17 Visualizing

Differential Expression

A visualization of the overall differential expression can be obtained
using volcano-plots. These plots show if there are many or few
genes with a large fold-change and significantly expressed or if
this number is low. These graphs represent in the X-axis the changes
of expression in logarithmic scale (“biological effect”) and in the
Y-axis the “minus logarithm” of the p-value or alternatively the B
statistic (“Statistical effect”). Figure 11 shows a volcano plot for the
comparison between KO and WT in COLD temperature. The
names of the top ten genes (i.e., the first ten genes in the topTable)
are shown in the plot.

> require(mogene21sttranscriptcluster.db)

> geneSymbols <- select(mogene21sttranscriptcluster.db, row-

names(fit.main), c("SYMBOL"))

> SYMBOLS<- geneSymbols$SYMBOL

> volcanoplot(fit.main, coef=1, highlight=10, names=SYMBOLS,

+ main=paste("Differentially expressed genes",

colnames(cont.matrix)[1], sep="\n"))

> abline(v=c(-1,1))

3.18 Multiple

Comparisons

When one selects genes in several comparisons it is usually interest-
ing to know which genes have been selected in each comparison.
Sometimes, biologically relevant genes will be those that are

Fig. 11 Volcano plot for the comparison between KO and WT in COLD
temperature. The names of the top 4 genes (i.e., the first four genes in the
topTable) are shown in the plot
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selected in one of them but not in others. On other occasions, the
interest will lie with genes that are selected in all comparisons.

Functions decideTests and VennDiagram from package limma
can be used to annotate and count the genes selected in every
comparison.

> require(limma)

> res<-decideTests(fit.main, method="separate", adjust.meth-

od="fdr", p.value=0.1, lfc=1)

This object has as many columns as comparisons and as many
rows as genes. Per each gene and comparison a “þ1” denotes
significantly upregulated (t-test values >0, FDR < selected cutoff),
a “-1” significantly downregulated (t-test values<0, FDR< selected
cutoff), and a “0” nonsignificant difference (FDR > selected
cutoff).

> sum.res.rows<-apply(abs(res),1,sum)

> res.selected<-res[sum.res.rows!=0,]

> print(summary(res))

KOvsWT.COLD KOvsWT.RT INT

-1 99 72 24

0 5830 5846 5953

1 69 80 21

This can be visualized in a Venn Diagram. Figure 12 shows a
Venn diagram depicting the number of genes that have been called
differentially expressed in each comparison with a given cutoff (here
the cutoff is defined by “FDR < 0.1” and “logFC > 1” The figure
shows how many of these genes are shared by one or more
selections.

> vennDiagram (res.selected[,1:3], cex=0.9)

> title("Genes in common between the three comparisons\n Genes

selected with FDR < 0.1 and logFC > 1")

3.19 Heatmaps Genes that have been selected as differentially expressed may be
visualized using a heatmap. These plots use color palettes to high-
light distinct values—here positive (upregulation) or negative
(downregulation) significantly different expressions.

Heatmaps can be used to visualize the expression values of
differentially expressed genes with no specific order, but it is usually
preferred to plot them doing a hierarchical clustering on genes
(rows) or columns(samples) in order to find groups of genes with
common patterns of variation which can eventually be associated to
the different groups being compared.

There may be discussion on which genes to select for doing a
heatmap. A common option is to select the gens that have been
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selected in the previous steps, that is, the genes that have been
called differentially expressed in at least one comparison.

> probesInHeatmap <- rownames(res.selected)

> HMdata <- exprs(eset_filtered)[rownames(exprs(eset_

filtered)) %in% probesInHeatmap,]

>

> geneSymbols <- select(mogene21sttranscriptcluster.db,

rownames(HMdata), c("SYMBOL"))

> SYMBOLS<- geneSymbols$SYMBOL

> rownames(HMdata) <- SYMBOLS

> write.csv(HMdata, file = file.path("./results/data4Heatmap.

csv"))

With the selected data a heatmap can be generated with or
without clustering genes and/or samples.

Figure 13 shows a heatmap produced for all the genes selected
with the same criteria described above (FDR < 0.1 and logFC> 1)
where no clustering of genes and samples is performed.

Fig. 12 Venn diagram showing the genes in common between the three
comparisons performed
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> my_palette <- colorRampPalette(c("blue", "red"))(n = 299)

> require(gplots)

>

> heatmap.2(HMdata,

+ Rowv = FALSE,

+ Colv = FALSE,

+ main = "Differentially expressed genes \n FDR < 0,1,

logFC >=1",

+ scale = "row",

+ col = my_palette,

+ sepcolor = "white",

+ sepwidth = c(0.05,0.05),

+ cexRow = 0.5,

+ cexCol = 0.9,

+ key = TRUE,

+ keysize = 1.5,

+ density.info = "histogram",

Fig. 13 Heatmap for expression data without any grouping
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+ ColSideColors = c(rep("red",3),rep("blue",3), rep

("green",3), rep("yellow",3)),

+ tracecol = NULL,

+ dendrogram = "none",

+ srtCol = 30)

Figure 14 shows a heatmap produced for all the genes selected
with the same criteria described above (FDR < 0.1 and logFC> 1)
where genes and samples are forced to group by row and column
similarity, respectively.

> heatmap.2(HMdata,

+ Rowv = TRUE,

+ Colv = TRUE,

+ dendrogram = "both",

+ main = "Differentially expressed genes \n FDR < 0,1,

logFC >=1",

Fig. 14 Heatmap for expression data grouping genes (rows) and samples (columns) by their similarity
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+ scale = "row",

+ col = my_palette,

+ sepcolor = "white",

+ sepwidth = c(0.05,0.05),

+ cexRow = 0.5,

+ cexCol = 0.9,

+ key = TRUE,

+ keysize = 1.5,

+ density.info = "histogram",

+ ColSideColors = c(rep("red",3),rep("blue",3), rep

("green",3), rep("yellow",3)),

+ tracecol = NULL,

+ srtCol = 30)

3.20 Biological

Significance of Results

Once a list of gene has been obtained that characterizes the differ-
ence between two conditions it has to be interpreted. Although this
requires, of course, a good understanding of the underlying
biological problem, a statistical approach known as “Gene Set
Analysis” can be useful for suggesting ideas for the interpretation.

With this aim these types of analyses seek to establish whether,
given a list of genes selected for being differentially expressed
between two conditions, the functions, biological processes, or
molecular pathways that characterize them appear on this list
more frequently than among the rest of the genes analyzed.

There are many variants of these types of analysis (see [30]), but
here we will use the basic enrichment analysis as described and
implemented in the ReactomePA Bioconductor package. The anal-
ysis is done on the ReactomePA annotation database https://
reactome.org/.

Analyses of this type need a minimum number of genes to be
reliable, preferably a few hundreds than a few dozens, so it is
common to perform a selection less restrictive than with the previ-
ous steps. For instance, an option is to include all genes with a
nonstringent FDR cutoff, such as FDR < 0.15 without filtering by
minimum “fold-change”).

In the first step we prepare the list of gene lists that will be
analyzed:

> listOfTables <- list(KOvsWT.COLD = topTab_KOvsWT.COLD,

+ KOvsWT.RT = topTab_KOvsWT.RT,

+ INT = topTab_INT)

> listOfSelected <- list()

> for (i in 1:length(listOfTables)){

+ # select the toptable

+ topTab <- listOfTables[[i]]

+ # select the genes to be included in the analysis

+ whichGenes<-topTab["adj.P.Val"]<0.15

+ selectedIDs <- rownames(topTab)[whichGenes]
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+ # convert the ID to Entrez

+ EntrezIDs<- select(mogene21sttranscriptcluster.db, selec-

tedIDs, c("ENTREZID"))

+ EntrezIDs <- EntrezIDs$ENTREZID

+ listOfSelected[[i]] <- EntrezIDs

+ names(listOfSelected)[i] <- names(listOfTables)[i]

+ }

> sapply(listOfSelected, length)

KOvsWT.COLD KOvsWT.RT INT

759 452 85

The analysis also requires to have the Entrez Identifiers for all
the genes analyzed.

> EntrezUni <- topAnnotated_KOvsWT.COLD$ENTREZID

The biological significance analysis will be applied only to the
first two lists. Sometimes, yet another decomposition is applied so
that upregulated and downregulated genes are separately analyzed.
This will not be done here because there is no clear biological
argument to proceed so in all cases.

> require(ReactomePA)

>

> listOfData <- listOfSelected[1:2]

> comparisonsNames <- names(listOfData)

>

> organisme <- "mouse"

> universe <- as.character(EntrezUni)

>

> for (i in 1:length(listOfData)){

+ data <- listOfData[[i]]

+ genesIn <- listOfSelected[[i]]

+ comparison <- comparisonsNames[i]

+ enrich.result <- enrichPathway(gene = genesIn,

+ pvalueCutoff = 0.05,

+ readable = T,

+ organism = organisme,

+ universe = universe,

+ minGSSize = 5,

+ maxGSSize = 500,

+ pAdjustMethod = "BH")

+

+ if (length(rownames(enrich.result@result)) != 0) {

+ write.csv(as.data.frame(enrich.result),

+ file =paste0("./results/","ReactomePA.Results.",

comparison,".csv"),

+ row.names = FALSE)
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+

+ pdf(file=paste0("./results/","ReactomePABarplot.",compar-

ison,".pdf"))

+ print(barplot(enrich.result, showCategory = 15, font.size

= 4,

+ title = paste0("Reactome Pathway Analysis for ",

comparison,". Barplot")))

+ dev.off()

+

+ pdf(file = paste0("./results/","ReactomePAcnetplot.",com-

parison,".pdf"))

+ print(cnetplot(enrich.result, categorySize = "geneNum",

schowCategory = 15,

+ vertex.label.cex = 0.75))

+ dev.off()

+ }

+ }

IGRAPH 8f7cba7 UN-- 9 8 --

+ attr: name (v/c), size (v/n), color (v/c), label (v/c), width

| (e/n), color (e/c)

+ edges from 8f7cba7 (vertex names):

[1] Synthesis of very long-chain fatty acyl-CoAs--Elovl4

[2] Synthesis of very long-chain fatty acyl-CoAs--Elovl2

[3] Synthesis of very long-chain fatty acyl-CoAs--Acsl5

[4] Synthesis of very long-chain fatty acyl-CoAs--Elovl7

[5] Synthesis of very long-chain fatty acyl-CoAs--Elovl3

[6] Synthesis of very long-chain fatty acyl-CoAs--Acsl4

[7] Synthesis of very long-chain fatty acyl-CoAs--Hsd17b12

+ ... omitted several edges

The results obtained in the analysis of biological significance are
the following:

l A .csv file with a summary of all the enriched pathways and the
associated statistics.

l A bar plot with the best enriched pathways. Height of the bar
plot is the number of genes of our analysis related with that
pathway. Moreover, pathways are ordered by statistical
significance.

l A plot with a network of the enriched pathways and the relation
among the genes included.

In our study, for comparison KOvsWT.COLD only a single
enriched pathway has been found, Synthesis of very long-chain fatty
acyl-CoAs, while for comparison KOvsCTL.RT, four enriched
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pathways have been found (Table 4). The more statistically relevant
is _ Inositol phosphate metabolism_.

> Tab.react <- read.csv2(file.path("./results/ReactomePA.Re-

sults.KOvsWT.RT.csv"),

+ sep = ",", header = TRUE, row.names = 1)

>

> Tab.react <- Tab.react[1:4, 1:5]

> knitr::kable(Tab.react, booktabs = TRUE, caption = "First

rows and columns for Reactome results on KOvsWT.RT.csv compar-

ison")

3.21 Summary

of Results

Once the process has been completed, one has to obtained a,
sometimes long, list of files with the data and the analysis results.
These files are of the basis for discussing the results and looking for
a biological interpretation. Both aspects are beyond the goals of this
chapter, so they are omitted here.

It is useful to create a file with the type, name and description of
all the files generated along the analysis. Table 5 shows the list of
files generated in the current case study.

> listOfFiles <- read.table(file="results/listOfFiles.txt",

sep="\t", head=T)

> knitr::kable(

+ listOfFiles, booktabs = TRUE,

+ caption = ’List of files generated in the analysis’

+ )

Table 4
First rows and columns for Reactome results on KOvsWT.RT.csv comparison

Description GeneRatio BgRatio pvalue p.adjust

R-MMU-
1483249

Inositol phosphate metabolism 7/200 16/
2422

0.0001418 0.038842

R-MMU-166658 Complement cascade 6/200 13/
2422

0.0003086 0.038842

R-MMU-977606 Regulation of Complement cascade 6/200 13/
2422

0.0003086 0.038842

R-MMU-
1855204

Synthesis of IP3 and IP4 in the
cytosol

5/200 9/2422 0.0003499 0.038842
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Table 5
List of files generated in the analysis

File Category Order Description

targets.csv DATA 1 Sample groups, labels and covariates information
file

normalized.Data.csv DATA 2 Normalized expression values for all genes
(or transcripts, or probesets)

normalized.Filtered.Data.csv DATA 3 Normalized expression values for genes
(or transcripts, or probesets)

BoxplotRaw.pdf QC 4 Intensity distribution for raw data

BoxplotNorm.pdf QC 5 Intensity distribution for normalized data

PCAraw.pdf QC 6 Principal Component Analysis plot for raw data

PCANorm.pdf QC 7 Principal Component Analysis plot for
normalized data

QCDir.Raw/index.html QC 8 Quality control plots of raw data with
ArrayQualityMetrics package

QCDir.Norm/index.html QC 9 Quality control plots of normalized data with
ArrayQualityMetrics package

SDplot.pdf ANAL
YSIS

9 Standard deviation of all genes (or transcripts or
probesets) in the array

topAnnotated_KOvsCTL_COLD.
csv

ANAL
YSIS

10 Top Table (with annotations) for the
comparison: KOvsCTL in COLD temperature

topAnnotated_KovsCTL_RT.csv ANAL
YSIS

11 Top Table (with annotations) for the
comparison: KOvsCTL in ROOM
temperature

topAnnotated_INT.csv ANAL
YSIS

12 Top Table (with annotations) for the comparison
between comparions: INT

Volcanos.pdf ANAL
YSIS

13 Volcano plot for the comparisons performed

HeatmapUnordered.pdf ANAL
YSIS

14 Heatmap made from genes selected from
multiple comparisons. No additional ordering
of rows.

HeatmapOrderByRows.pdf ANAL
YSIS

15 Heatmap made from genes selected from
multiple comparisons. Rows ordered by
similarity

ReactomePA.Results.KovsCTL.
COLD.csv

SIGBIO 16 Summary of all the enriched pathways and the
associated statistics for the comparison:
KOvsCTL in COLD temperature

ReactomePA.Results.KovsCTL.
RT.csv

SIGBIO 17 Summary of all the enriched pathways and the
associated statistics for the comparison:
KOvsCTL in ROOM temperature

(continued)
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4 Notes

1. R and Bioconductor are open source software. This means that
they are free (as in “free bier”), but it also means that compati-
bility between versions is not always 100% granted. It is impor-
tant to know which version of R and Bioconductor is used for
the analysis.

2. Although it may seem irrelevant it is important to be aware of
regional settings before reading or writing text files. For
instance, in some European countries the decimal point is the
“comma,” while in Anglo-Saxon ones it is the “dot.” R can
read any of these data formats, but, of course, it needs to be
informed of which format is used in any situation.]

3. Sometimes, package installation may present some difficulties,
often related to the operating system being used or even the
workplace (e.g., if the user is behind a proxy). In these cases,
the recommendation is to try to install packages one by one
and, if needed contact the institution IT team.
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Comprehensive analytical chemistry, vol 63.
Elsevier, pp 1–23

3. Draghici S (2012) Statistics and data analysis
for microarrays using R and bioconductor.
CRC Press, New York

4. Sánchez-Pla A, Reverter F, Ruı́z de Villa MC,
Comabella M (2012) Transcriptomics: mRNA

Table 5
(continued)

File Category Order Description

ReactomePA.Barplot.KovsCTL.
COLD.pdf

SIGBIO 18 Bar plot with the best enriched pathways for the
comparison: KOvsCTL in COLD temperature

ReactomePABarplot.KovsCTL.
RT.pdf

SIGBIO 19 Bar plot with the best enriched pathways for the
comparison: KOvsCTL in ROOM
temperature

ReactomePA.cnetplot.KovsCTL.
COLD.pdf

SIGBIO 20 Plot with a network of the enriched pathways and
the relation among the genes included for the
comparison: KOvsCTL in COLD temperature

ReactomePA.cnetplot.KovsCTL.
RT.pdf

SIGBIO 21 plot with a network of the enriched pathways and
the relation among the genes included for the
comparison: KOvsCTL in ROOM
temperature

120 Ricardo Gonzalo Sanz and Alex Sánchez-Pla



and alternative splicing. J Neuroimmunol
248:23–31. https://doi.org/10.1016/j.
jneuroim.2012.04.008

5. Mehta JP, Rani S (2011) Software and tools for
microarray data analysis. Methods Mol Biol
784:41–53

6. Carvalho BS, Irizarry RA (2010) A framework
for oligonucleotide microarray preprocessing.
Bioinformatics 26:2363–2367. https://doi.
org/10.1093/bioinformatics/btq431

7. Carvalho B (2015) Pd.mogene.2.1.st: Plat-
form design info for affymetrix mogene-2.1-st

8. Huber W, Carey VJ et al (2015) Orchestrating
high-throughput genomic analysis with bio-
conductor. Nat Methods 12:115–121

9. Kauffmann A, Gentleman R, Huber W (2009)
ArrayQualityMetrics–a bioconductor package
for quality assessment of microarray data. Bio-
informatics 25:415–416

10. Warnes GR, Bolker B, Bonebakker L, et al
(2016) Gplots: various r programming tools
for plotting data

11. Wickham H (2009) Ggplot2: elegant graphics
for data analysis. Springer-Verlag, New York

12. Slowikowski K (2017) Ggrepel: repulsive text
and label geoms for ‘ggplot2’

13. Bushel P (2013) Pvca: principal variance com-
ponent analysis (pvca)

14. Smyth GK (2005) limma: linear models for
microarray data. In: Gentleman R, Carey V,
Dudoit S, Irizarry R, Huber W (eds) Bioinfor-
matics and computational biology solutions
using r and bioconductor. Springer-Verlag,
New York, pp 397–420

15. Gentleman R, Carey V, Huber W, Hahne F
(2017) Genefilter: genefilter: methods for fil-
tering genes from high-throughput
experiments

16. Gentleman R (2017) Annotate: annotation for
microarrays

17. Carlson M (2017) Org.Mm.eg.db: Genome
wide annotation for mouse

18. MacDonald JW (2017) Mogene21sttran-
scriptcluster.db: Affymetrix mogene21 annota-
tion data (chip mogene21sttranscriptcluster)

19. Yu G, He Q-Y (2016) ReactomePA: an R/Bio-
conductor package for reactome pathway anal-
ysis and visualization. Mol BioSyst
12:477–479. https://doi.org/10.1039/
c5mb00663e

20. Li S, Mi L, Yu L et al (2017) Zbtb7b engages
the long noncoding rna blnc1 to drive brown
and beige fat development and thermogenesis.
Proc Natl Acad Sci 114:E7111–E7120.
https://doi.org/10.1073/pnas.1703494114

21. Clough E, Barrett T (2016) The Gene Expres-
sion Omnibus database. Methods Mol Biol
1418:93–110

22. Irizarry RA, Hobbs B, Collin F et al (2003)
Exploration, normalization, and summaries of
high density oligonucleotide array probe level
data. Biostatistics 4:249–264. https://doi.
org/10.1093/biostatistics/4.2.249

23. Hackstadt AJ, Hess AM (2009) Filtering for
increased power for microarray data analysis.
BMC Bioinformatics 10:11. https://doi.org/
10.1186/1471-2105-10-11

24. Chrominski K, TkaczM (2015) Comparison of
high-level microarray analysis methods in the
context of result consistency. PLoS One 10:
e0128845. https://doi.org/10.1371/JOUR
NAL.PONE.0128845

25. Jeanmougin M, de Reynies A, Marisa L et al
(2010) Should we abandon the t-Test in the
analysis of gene expression microarray data: a
comparison of variance modeling strategies.
PLoS One 5:e12336. https://doi.org/10.
1371/journal.pone.0012336

26. Allison DB, Cui X, Page GP, Sabripour M
(2006) Microarray data analysis: from disarray
to consolidation and consensus. Nat Rev Genet
7:55–65. https://doi.org/10.1038/nrg1749

27. Tusher VG, Tibshirani R, Chu G (2001) Sig-
nificance analysis of microarrays applied to the
ionizing radiation response. Proc Natl Acad Sci
U S A 98:5116–5121. https://doi.org/10.
1073/pnas.091062498

28. Smyth GK (2004) Linear models and empirical
Bayes methods for assessing differential expres-
sion in microarray experiments. Stat Appl
Genet Mol Biol 3:1–25. https://doi.org/10.
2202/1544-6115.1027

29. Benjamini Y, Hochberg Y (1995) Controlling
the false discovery rate: a practical and powerful
approach to multiple testing. J R Stat Soc Ser B
Methodol 57:289–300

30. Khatri P, Sirota M, Butte AJ (2012) Ten years
of pathway analysis: current approaches and
outstanding challenges. PLoS Comput Biol 8:
e1002375. https://doi.org/10.1371/journal.
pcbi.1002375

Statistical Analysis of Microarray Data 121

https://doi.org/10.1016/j.jneuroim.2012.04.008
https://doi.org/10.1016/j.jneuroim.2012.04.008
https://doi.org/10.1093/bioinformatics/btq431
https://doi.org/10.1093/bioinformatics/btq431
https://doi.org/10.1039/c5mb00663e
https://doi.org/10.1039/c5mb00663e
https://doi.org/10.1073/pnas.1703494114
https://doi.org/10.1093/biostatistics/4.2.249
https://doi.org/10.1093/biostatistics/4.2.249
https://doi.org/10.1186/1471-2105-10-11
https://doi.org/10.1186/1471-2105-10-11
https://doi.org/10.1371/JOURNAL.PONE.0128845
https://doi.org/10.1371/JOURNAL.PONE.0128845
https://doi.org/10.1371/journal.pone.0012336
https://doi.org/10.1371/journal.pone.0012336
https://doi.org/10.1038/nrg1749
https://doi.org/10.1073/pnas.091062498
https://doi.org/10.1073/pnas.091062498
https://doi.org/10.2202/1544-6115.1027
https://doi.org/10.2202/1544-6115.1027
https://doi.org/10.1371/journal.pcbi.1002375
https://doi.org/10.1371/journal.pcbi.1002375


Chapter 6

Feature Selection Applied to Microarray Data

Amparo Alonso-Betanzos, Verónica Bolón-Canedo,
Laura Morán-Fernández, and Borja Seijo-Pardo

Abstract

A typical characteristic of microarray data is that it has a very high number of features (in the order of
thousands) while the number of examples is usually less than 100. In the context of microarray classifica-
tion, this poses a challenge for machine learning methods, which can suffer overfitting and thus degradation
in their performance. A common solution is to apply a dimensionality reduction technique before classifi-
cation, to reduce the number of features. This chapter will be focused on one of the most famous
dimensionality reduction techniques: feature selection. We will see how feature selection can help improve
the classification accuracy in several microarray data scenarios.

Key words Microarray data, Dimensionality reduction, Feature selection

1 Introduction

Microarray technology is used to collect information from tissue
and cell samples regarding gene expression differences that could
be useful for diagnosing diseases. The classification of this type of
data has been viewed as a particular challenge for machine learning
researchers over the last 20 years, mainly due to their extremely
high dimensionality (from 2000 to 25,000 features) in contrast
with small sample sizes (often fewer than 100 patients). A typical
classification task is to separate healthy patients from cancer patients
based on their gene expression “profile” (binary approach). There
are also microarray datasets in which the goal is to distinguish
between different types of tumors (multiclass approach), making
the task even more complicated.

Theoretically, it seems logical to expect that having more fea-
tures should give more discriminant power to the algorithm. How-
ever, this is not the case for some induction algorithms, as many of
them suffer from the problem of “curse of dimensionality.” This
phenomenon occurs when by increasing the number of features in a
task, the training time required by the induction algorithms grows
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exponentially. This scenario, apart from presenting high execution
times, has other drawbacks as the appearance of false positives
[1]. Besides, several studies have demonstrated that most of the
genes measured in a DNA microarray experiment are not crucial to
classification accuracy [2], as selecting a small number of discrimi-
native genes ensures effective categorization of diseases [3–5]. For
this reason, feature selection—defined as the process of identifying
and removing irrelevant features from the training data—is receiv-
ing growing attention in gene selection for sample classification and
is being increasingly used as preprocessing step in tackling micro-
array data. The selection of relevant genes while eliminating those
which cannot add extra knowledge involves a number of important
benefits such as improving the classification accuracy, helping biol-
ogists identify the underlying mechanisms relating gene expression
to disease, or reducing the risk of overfitting. There are usually
three varieties of feature selection methods: filters, wrappers, and
embedded methods. While wrappers models involve optimizing a
predictor as part of the selection process, filter models rely on the
general characteristics of the training data to select features inde-
pendent of any predictor. The embedded methods generally use
machine learning models for classification, and then an optimal
subset of features is built by the classifier algorithm. Traditionally,
the most employed gene selection methods fall into the filter
approach. Discretization as a step prior to feature selection has
also received some degree of attention.

The remainder of this chapter is organized as follows. Subhead-
ing 2 states the foundations of feature selection and an experimen-
tal framework that can be used for future comparative studies.
Then, Subheading 3 reviews the most up-to-date feature selection
methods applied to microarray data. Subheading 4 presents several
case studies in which (1) feature selection is combined with a
previous discretization step, (2) the complexity of the datasets
seems to be reduced after applying feature selection, (3) feature
selection is applied in a distributed way, and (4) ensembles of
feature selection are employed. Finally, Subheading 5 summarizes
and closes the chapter.

2 Feature Selection

The advent of DNAmicroarray datasets has stimulated a new line of
research both in bioinformatics and in machine learning. Especially
for machine learning researchers, it poses a serious challenge
because of having so many fields (in the order of thousands) relative
to so few samples, which can lead to overfitting of the learning
models. Moreover, several studies have shown that most genes
measured in a DNA microarray experiment are not relevant in the
accurate classification of different classes of the problem
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[2]. To avoid the problem of the “curse of dimensionality” [6],
dimensionality reduction techniques play a crucial role in DNA
microarray analysis.

Dimensionality reduction techniques usually come in two fla-
vors: feature selection and feature extraction. On the one hand,
feature extraction techniques achieve dimensionality reduction by
combining the original features. In this manner, they are able to
generate a set of new features, which is usually more compact and of
stronger discriminating power. It is the typical choice in applica-
tions such as image analysis, signal processing, or information
retrieval. On the other hand, feature selection (FS) achieves
dimensionality reduction by removing the irrelevant and redundant
features. Due to the fact that feature selection maintains the origi-
nal features, it is especially useful for applications where the original
features are important for model interpreting and knowledge
extraction, as it is the case in microarray analysis.

Feature selection methods are typically divided into three major
approaches according to the relationship with the inductive
learning method used to infer a model [7]:

l Filters, which rely on the general characteristics of training data
and carry out the FS process as a preprocessing step with inde-
pendence of the induction algorithm. This model is advanta-
geous for its low computational cost and good generalization
ability.

l Wrappers, which involve a learning algorithm as a black box and
consists of using its prediction performance to assess the relative
usefulness of subsets of variables. In other words, the FS algo-
rithm uses the learning method as a subroutine with the compu-
tational burden that comes from calling the learning algorithm
to evaluate each subset of features. However, this interaction
with the classifier tends to give better performance results than
filters.

l Embedded methods, which perform FS in the process of training
and are usually specific to given learning machines. Therefore,
the search for an optimal subset of features is built into the
classifier construction and can be seen as a search in the com-
bined space of feature subsets and hypotheses. In other words,
ensemble methods learn which features best contribute to the
accuracy of the model while the model is being created. This
approach is able to capture dependencies at a lower computa-
tional cost than wrappers.

As can be seen above, each model has its advantages and
disadvantages. In the case of microarray data, and due to the fact
of having more features than samples, filters are usually preferred
because of their low computational cost and low risk of overfitting.
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In addition to this classification, feature selection methods may
also be divided into univariate and multivariate types. Univariate
methods consider each feature independently of other features, a
drawback that can be overcome by multivariate techniques that
incorporate feature dependencies to some degree, at the cost of
demanding more computational resources. Besides, FS methods
can be divided according to the output they produce: a subset of
relevant features or an ordered ranking of all the features, according
to their relevance. The first approach is known as subset evaluation
and the latter as individual evaluation or feature ranking. Notice
that, in the case of individual evaluation, it is necessary to establish a
threshold in order to reduce the dimensionality of the problem.

2.1 Feature Selection

Methods

As mentioned before, filter methods are the typical choice to
achieve dimensionality reduction in microarray data. A brief
description of some classical filter follows, which will be used in
the experiments shown in Subheading 4.

l Correlation-based feature selection (CFS) is a simple multi-
variate filter algorithm that ranks feature subsets according to a
correlation-based heuristic evaluation function [8]. The bias of
the evaluation function is toward subsets that contain features
that are highly correlated with the class and uncorrelated with
each other. Irrelevant features should be ignored because they
will have low correlation with the class. Redundant features
should be screened out as they will be highly correlated with
one or more of the remaining features. The acceptance of a
feature will depend on the extent to which it predicts classes in
areas of the instance space not already predicted by other
features.

l The fast correlation-based filter (FCBF) method [9] is a mul-
tivariate algorithm that measures feature–class and feature–fea-
ture correlation. FCBF starts by selecting a set of features that is
highly correlated with the class based on symmetrical uncer-
tainty (SU), which is defined as the ratio between the informa-
tion gain and the entropy of two features. Then, it applies three
heuristics that remove the redundant features and keep the
features that are more relevant to the class. FCBF was designed
for high-dimensionality data and has been shown to be effective
in removing both irrelevant and redundant features. However, it
fails to take into consideration the interaction between features.

l The INTERACT algorithm [10] uses the same goodness mea-
sure as the FCBF filter, i.e., SU, but it also includes the consis-
tency contribution, which is an indicator of how significantly the
elimination of a feature will affect consistency. The algorithm
consists of two major parts. In the first part, the features are
ranked in descending order based on their SU values. In the
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second part, features are evaluated one by one starting from the
end of the ranked feature list. If the consistency contribution of a
feature is less than an established threshold, the feature is
removed, otherwise it is selected. The authors stated that this
method can handle feature interaction, and efficiently selects
relevant features.

l Information gain [11] is one of the most common attribute
evaluation methods. This univariate filter provides an ordered
ranking of all the features and then a threshold is required. In
this work the threshold will be set up selecting the features which
obtain a positive information gain value.

l ReliefF [12] is an extension of the original Relief algorithm
[13]. The original Relief works by randomly sampling an instance
from the data and then locating its nearest neighbor from the
same andopposite class. The values of the attributes of the nearest
neighbors are compared to the sampled instance and used to
update the relevance scores for each attribute. The rationale is
that a useful attribute shoulddifferentiate between instances from
different classes and have the same value, for instances, from the
same class. ReliefF adds the ability of dealing with multiclass
problems and is also more robust and capable of dealing with
incomplete and noisy data. This method may be applied in all
situations, has low bias, includes interaction among features, and
may capture local dependencies which other methods miss.

l The mRMR (minimum redundancy maximum relevance)
method [14] selects features that have the highest relevance
with the target class and are also minimally redundant, i.e., it
selects features that are maximally dissimilar to each other. Both
optimization criteria (maximum relevance and minimum redun-
dancy) are based on mutual information.

l SVM-RFE (support vector machine based on recursive feature
elimination) is probably the most famous embedded method,
proposed by Guyon [15] to specifically deal with gene selection
for cancer classification. This embedded method performs fea-
ture selection by iteratively training an SVM classifier with the
current set of features and removing the least important feature
indicated by the SVM.

2.2 Experimental

Framework

The goal of performing feature selection on microarray data can be
twofold: class prediction or biomarkers’ identification. If the goal is
class prediction, there is a demand for machine learning techniques
such as supervised classification. However, if the objective is to find
informative genes, the classification performance is ignored and the
selected genes have to be individually evaluated. The experiments
that will be presented in this subsection are focused on class predic-
tion, which is an important reason to use feature selection methods
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in microarray analysis. The typical microarray pipeline is formed by
a feature selection step, followed by a classification stage which
provides an error estimation, as seen in Fig. 1.

For this experimental study, we have considered nine widely
used binary microarray datasets, which are available for download
in [16, 17]. The reason for choosing binary datasets is that they are
much more common in the literature than the multiclass ones. As a
matter of fact, a typical microarray dataset consists of distinguishing
between having a given cancer or not, therefore the great majority
of the datasets are binary. Tables 1 and 2 summarize the properties
of the selected datasets: for each dataset, the number of features (#
Feats.), number of samples (# Samp.), and the percentage of exam-
ples of each class are shown. Datasets from Table 1 will be evaluated
using a hold-out validation, while on those from Table 2 a fivefold
cross-validation is performed.

Microarray
dataset

Feature
selection

Classification
Error

estimation

Fig. 1 Microarray classification pipeline

Table 1
Summary description of the binary datasets already divided into train and test

Train Test

Dataset # Feats. # Samp. (%min,%maj) # Samp. (%min,%maj)

Breast 24,481 78 (43.59, 56.41) 19 (36.84, 63.16)

Prostate 12,600 102 (49.02, 50.98) 34 (26.47, 73.53)

Table 2
Summary description of the binary datasets with only training set

Dataset # Feats. # Samp. (%min,%maj)

Brain 12,625 21 (33.33, 66.67)

CNS 7129 60 (35.00, 65.00)

Colon 2000 62 (35.48, 64.52)

DLBCL 4026 47 (48.94, 51.06)

GLI 22,283 85 (30.59, 69.41)

Ovarian 15,154 253 (35.97, 64.03)

SMK 19,993 187 (48.13, 51.87)
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As for feature selection methods, we used the seven classical
methods described in Subheading 2.1, widely used by the research-
ers in this field and all of them available in the well-known Weka
tool [18], except for the mRMR filter, whose implementation is
available for Matlab ®. Their performance may serve as a reference
for the interested reader, so that comparative studies can easily be
carried out based on this material. The three first feature selection
methods (CFS, FCBF, and INTERACT) return a subset of fea-
tures, while the remaining four (IG, ReliefF, mRMR, and
SVM-RFE) provide an ordered ranking of the features. For the
ranker methods, we show the performance when the top 10 and
top 50 features are retained. After feature selection, three well-
known classifiers were chosen to be applied: C4.5, Naive Bayes,
and SVM (support vector machine). For more details, please refer
to the work by Bolón-Canedo et al. [19].

2.2.1 Holdout Validation

Study

This section reports the experimental results achieved over the
binary datasets that were originally divided into training and test
sets (see Table 1). Tables 3, 4, and 5 show the results achieved by
C4.5, Naive Bayes, and SVM, respectively. These tables depict the
classification accuracy (Ac), sensitivity (Se), and specificity (Sp) of
the test datasets. For the sake of comparison, the first row shows
those values without applying feature selection techniques. Notice
that the C4.5 algorithm carries out a feature selection because not

Table 3
Experimental results for C4.5 classifier on binary datasets after performing holdout validation

Breast Prostate

Ac Se Sp Ac Se Sp

No FS 0.74 1.00 0.58 0.26 1.00 0.00

CFS 0.68 0.71 0.66 0.26 1.00 0.00

FCBF 0.58 0.28 0.75 0.26 1.00 0.00

INT 0.79 0.71 0.83 0.26 1.00 0.00

IG #10 0.47 0.28 0.58 0.26 1.00 0.00
#50 0.53 0.42 0.58 0.29 1.00 0.04

ReliefF #10 0.58 0.28 0.75 0.26 1.00 0.00
#50 0.42 0.71 0.25 0.29 1.00 0.04

SVM-RFE #10 0.58 1.00 0.33 0.32 1.00 0.08
#50 0.58 1.00 0.33 0.26 1.00 0.00

mRMR #10 0.58 0.71 0.50 0.41 0.88 0.24
#50 0.74 0.42 0.91 0.35 1.00 0.12
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Table 4
Experimental results for Naive Bayes classifier on binary datasets after performing holdout validation

Breast Prostate

Ac Se Sp Ac Se Sp

No FS 0.37 1.00 0.00 0.26 1.00 0.00

CFS 0.37 1.00 0.00 0.26 1.00 0.00

FCBF 0.37 1.00 0.00 0.26 1.00 0.00

INT 0.37 1.00 0.00 0.26 1.00 0.00

IG #10 0.32 0.85 0.00 0.26 0.88 0.04
#50 0.37 1.00 0.00 0.24 0.88 0.00

ReliefF #10 0.74 0.71 0.75 0.21 0.55 0.08
#50 0.89 0.85 0.91 0.21 0.77 0.00

SVM-RFE #10 0.68 0.85 0.58 0.18 0.55 0.04
#50 0.63 1.00 0.41 0.26 1.00 0.00

mRMR #10 0.37 1.00 0.00 0.26 1.00 0.00
#50 0.37 1.00 0.00 0.26 1.00 0.00

Table 5
Experimental results for SVM classifier on binary datasets after performing holdout validation

Breast Prostate

Ac Se Sp Ac Se Sp

No FS 0.58 0.85 0.41 0.53 1.00 0.36

CFS 0.68 0.85 0.58 0.97 1.00 0.96

FCBF 0.58 0.28 0.75 0.97 1.00 0.96

INT 0.74 0.71 0.75 0.71 1.00 0.60

IG #10 0.58 0.71 0.50 0.97 1.00 0.96
#50 0.79 0.57 0.91 0.97 1.00 0.96

ReliefF #10 0.84 1.00 0.75 0.94 0.88 0.96
#50 0.84 0.85 0.83 0.97 1.00 0.96

SVM-RFE #10 0.68 1.00 0.50 0.79 1.00 0.72
#50 0.68 1.00 0.50 0.74 1.00 0.64

mRMR #10 0.63 0.71 0.58 0.44 1.00 0.24
#50 0.68 0.71 0.66 0.91 0.77 0.96
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all the attributes are considered when constructing the tree. The
best results for the dataset and classifier are highlighted in bold.

Analyzing these tables, it is notable that the results obtained
with SVM considerably outperformed those achieved by C4.5 or
Naive Bayes. In fact, there is a clear tendency in the literature to use
SVM as the standard de facto method to estimate performance
measures and in González-Navarro [20], it is stated that the supe-
riority of SVMs to other several classifiers seems to be beyond
doubt. The Prostate dataset suffers from dataset shift [19], since
the test dataset was extracted from a different experiment, and
apparently C4.5 and Naive Bayes classifiers cannot solve this prob-
lem and opted for assigning all the examples to the majority class.

It is worth noting that the embedded method SVM-RFE, in
spite of the fact that it is, in theory, better than the filters, achieves
comparable or even worse results than them in terms of classifica-
tion accuracy. Even when combined with the SVM classifier (see
Table 5) it does not obtain the highest accuracy, contrary to what
was expected. However, two datasets are not a sufficient basis from
which to draw strong conclusions so it is necessary to check the
results on the remaining datasets.

2.2.2 Cross-Validation

Study

Now we show the classification results obtained when applying the
well-known cross-validation technique. To this end, a fivefold
cross-validation was performed over the binary datasets presented
in Table 2, which only have the training set available. Tables 6, 7,
and 8 are devoted to the three classifiers employed (C4.5, Naive
Bayes, and SVM), where 5 folds were considered and the results
shown in the tables are the average test results for the 5 folds. These
tables depict the classification accuracy (Ac), sensitivity (Se), and
specificity (Sp). For the sake of comparison, the first row reports
those values without applying feature selection. The best results
for dataset and classifier regarding each measure are highlighted
in bold.

Some interesting conclusions can be extracted by looking at the
results reported in Tables 6, 7, and 8.

l The best performances are obtained by SVM and Naive Bayes
classifiers. As mentioned above, some studies [20] noted the
superiority of SVMs over other classifiers. On the other hand,
the performance of C4.5 may be affected by its embedded
feature selection, in some cases leading to an extremely reduced
set of features which can degrade the classification accuracy.

l Focusing on the feature selection methods, on average for all
datasets, the subset filters show an outstanding behavior, partic-
ularly CFS and INTERACT. It is surprising that SVM-RFE did
not achieve the best results when combined with the SVM
classifier, but the poor performance of the ranker methods can
be explained by the restriction of having to establish a threshold

Feature Selection Applied to Microarray Data 131



for the number of features to retain. In the case of the subset
filters, the number of features which form the final subset of
features is the optimal one for a given dataset and method.
However, the main disadvantage of rankers is the necessity of

Table 6
Experimental results for C4.5 classifier on binary datasets after performing fivefold cross-validation

Brain CNS Colon DLBCL Gli85 Ovarian Smk Avg

No FS Ac 1.00 0.58 0.74 0.70 0.75 0.97 0.65 0.77
Se 1.00 0.64 0.60 0.69 0.81 0.95 0.66 0.77
Sp 1.00 0.48 0.82 0.70 0.63 0.98 0.62 0.75

CFS Ac 1.00 0.62 0.79 0.75 0.79 0.98 0.64 0.79
Se 1.00 0.64 0.68 0.78 0.81 0.95 0.56 0.78
Sp 1.00 0.58 0.85 0.71 0.75 0.99 0.71 0.80

FCBF Ac 0.86 0.48 0.79 0.73 0.82 0.99 0.61 0.75

Se 0.80 0.49 0.64 0.74 0.86 0.99 0.65 0.74

Sp 0.86 0.50 0.87 0.70 0.75 0.99 0.56 0.75

INT Ac 1.00 0.55 0.79 0.70 0.78 0.98 0.59 0.77

Se 1.00 0.54 0.72 0.74 0.81 0.98 0.51 0.76

Sp 1.00 0.58 0.82 0.66 0.71 0.98 0.66 0.77

IG #10 Ac 0.71 0.62 0.72 0.75 0.85 0.96 0.60 0.74
Se 0.70 0.69 0.78 0.79 0.88 0.93 0.71 0.78
Sp 0.70 0.48 0.70 0.71 0.79 0.97 0.48 0.69

#50 Ac 0.81 0.63 0.84 0.73 0.81 0.96 0.65 0.78
Se 0.70 0.67 0.83 0.69 0.86 0.96 0.62 0.76
Sp 0.87 0.58 0.85 0.74 0.71 0.97 0.67 0.77

ReliefF #10 Ac 0.72 0.47 0.72 0.85 0.85 0.97 0.65 0.75
Se 0.20 0.59 0.50 0.83 0.88 0.94 0.80 0.68
Sp 1.00 0.25 0.85 0.87 0.77 0.99 0.47 0.74

#50 Ac 0.62 0.53 0.82 0.73 0.82 0.99 0.61 0.73
Se 0.20 0.60 0.68 0.74 0.88 0.99 0.61 0.67
Sp 0.86 0.44 0.90 0.70 0.70 0.99 0.62 0.74

SVM-RFE #10 Ac 0.57 0.65 0.71 0.81 0.81 0.98 0.60 0.73
Se 0.00 0.74 0.60 0.82 0.85 0.98 0.65 0.66
Sp 0.87 0.48 0.77 0.79 0.75 0.98 0.55 0.74

#50 Ac 0.70 0.57 0.80 0.82 0.79 0.98 0.65 0.76
Se 1.00 0.61 0.77 0.84 0.83 0.99 0.62 0.81
Sp 0.56 0.49 0.82 0.79 0.70 0.98 0.66 0.72

mRMR #10 Ac 0.86 0.55 0.82 0.75 0.79 0.98 0.68 0.77
Se 0.90 0.72 0.68 0.79 0.86 0.96 0.71 0.80
Sp 0.87 0.23 0.90 0.70 0.61 0.99 0.64 0.70

#50 Ac 0.86 0.58 0.82 0.73 0.80 0.97 0.62 0.77
Se 0.90 0.70 0.77 0.69 0.91 0.96 0.66 0.80
Sp 0.87 0.39 0.85 0.74 0.54 0.98 0.57 0.71
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setting the threshold a priori. This has the risk of choosing too
large or too small a number.

l All the methods tested except information gain are multivariate,
which in theory should show a better performance than univari-
ate methods. However, on average, for all the datasets evaluated,

Table 7
Experimental results for Naive Bayes classifier on binary datasets after performing fivefold cross-
validation

Brain CNS Colon DLBCL Gli85 Ovarian Smk Avg

No FS Ac 0.67 0.60 0.55 0.92 0.84 0.93 0.63 0.73
Se 0.00 0.64 0.69 0.96 0.88 0.99 0.60 0.68
Sp 1.00 0.52 0.47 0.88 0.73 0.89 0.66 0.74

CFS Ac 0.81 0.67 0.85 0.90 0.82 1.00 0.65 0.81
Se 0.50 0.75 0.76 0.96 0.90 0.99 0.67 0.79
Sp 1.00 0.54 0.90 0.84 0.67 1.00 0.62 0.79

FCBF Ac 0.61 0.70 0.80 0.90 0.85 0.99 0.69 0.79
Se 1.00 0.77 0.76 0.96 0.90 1.00 0.72 0.87
Sp 0.40 0.58 0.82 0.84 0.74 0.99 0.65 0.72

INT Ac 0.81 0.70 0.77 0.90 0.82 1.00 0.64 0.81
Se 0.50 0.77 0.76 0.96 0.88 1.00 0.72 0.80
Sp 1.00 0.58 0.77 0.83 0.71 0.99 0.55 0.78

IG #10 Ac 0.86 0.63 0.79 0.94 0.85 0.96 0.61 0.81
Se 0.70 0.67 0.72 0.96 0.88 0.95 0.59 0.78
Sp 0.93 0.58 0.82 0.92 0.77 0.96 0.64 0.80

#50 Ac 0.81 0.63 0.77 0.92 0.85 0.98 0.66 0.80
Se 0.50 0.75 0.76 0.96 0.86 0.96 0.67 0.78
Sp 1.00 0.42 0.77 0.88 0.81 0.98 0.65 0.79

ReliefF #10 Ac 0.20 0.63 0.82 0.94 0.86 0.96 0.67 0.73
Se 0.20 0.72 0.72 0.96 0.88 0.95 0.71 0.73
Sp 0.20 0.48 0.87 0.92 0.81 0.96 0.63 0.70

#50 Ac 0.19 0.67 0.84 0.92 0.89 0.98 0.67 0.74
Se 0.50 0.72 0.77 0.96 0.86 0.95 0.72 0.78
Sp 0.07 0.58 0.87 0.88 0.97 0.99 0.61 0.71

SVM-RFE #10 Ac 0.62 0.68 0.73 0.92 0.82 0.99 0.71 0.78
Se 0.30 0.77 0.61 0.91 0.83 1.00 0.77 0.74
Sp 0.76 0.54 0.80 0.92 0.81 0.98 0.64 0.78

#50 Ac 0.67 0.70 0.76 0.92 0.88 0.99 0.70 0.80
Se 0.20 0.82 0.69 0.91 0.86 1.00 0.73 0.75
Sp 0.90 0.49 0.80 0.92 0.93 0.98 0.65 0.81

mRMR #10 Ac 0.73 0.63 0.80 0.92 0.85 0.99 0.67 0.80
Se 0.60 0.79 0.78 0.96 0.88 0.96 0.68 0.81
Sp 0.86 0.33 0.82 0.88 0.77 1.00 0.65 0.76

#50 Ac 0.63 0.62 0.80 0.94 0.80 0.99 0.67 0.78
Se 0.20 0.75 0.86 0.96 0.81 0.98 0.67 0.75
Sp 0.86 0.38 0.77 0.92 0.77 0.99 0.67 0.77
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information gain obtains similar classification accuracy results to
the other algorithms, considering that its complexity is lower.

l Some of the algorithms employed in this experimental study are
based on information theory (information gain, mRMR, FCBF,
and INTERACT) while the rest are based on correlation coeffi-
cients (CFS, ReliefF, and SVM-RFE). It seems that there is no

Table 8
Experimental results for SVM classifier on binary datasets after performing fivefold cross-validation

Brain CNS Colon DLBCL Gli85 Ovarian Smk Avg

No FS Ac 0.68 0.67 0.77 0.96 0.92 1.00 0.72 0.82
Se 0.20 0.82 0.60 0.96 0.98 1.00 0.79 0.77
Sp 0.93 0.38 0.87 0.96 0.78 1.00 0.63 0.79

CFS Ac 0.61 0.62 0.81 0.88 0.88 1.00 0.64 0.78
Se 0.60 0.70 0.69 0.86 0.93 1.00 0.66 0.78
Sp 0.66 0.49 0.87 0.88 0.77 1.00 0.61 0.76

FCBF Ac 0.67 0.65 0.84 0.81 0.87 1.00 0.71 0.79
Se 0.00 0.80 0.73 0.82 0.93 1.00 0.76 0.72
Sp 1.00 0.39 0.90 0.79 0.73 1.00 0.64 0.78

INT Ac 0.61 0.62 0.81 0.88 0.88 1.00 0.66 0.78
Se 0.60 0.75 0.64 0.91 0.91 1.00 0.69 0.79
Sp 0.66 0.39 0.90 0.83 0.81 1.00 0.63 0.75

IG #10 Ac 0.48 0.63 0.81 0.94 0.91 0.98 0.64 0.77
Se 0.00 0.82 0.59 0.96 0.98 0.96 0.74 0.72
Sp 0.70 0.30 0.92 0.92 0.74 0.99 0.53 0.73

#50 Ac 0.66 0.67 0.85 0.94 0.86 1.00 0.72 0.81
Se 0.80 0.77 0.81 0.96 0.90 1.00 0.73 0.85
Sp 0.66 0.48 0.87 0.92 0.77 0.99 0.70 0.77

ReliefF #10 Ac 0.50 0.68 0.81 0.94 0.87 0.98 0.69 0.78
Se 0.00 0.87 0.60 0.96 0.96 0.94 0.82 0.74
Sp 0.73 0.34 0.92 0.92 0.66 0.99 0.54 0.73

#50 Ac 0.35 0.73 0.85 0.92 0.89 1.00 0.69 0.78
Se 0.00 0.82 0.72 1.00 0.93 1.00 0.74 0.74
Sp 0.53 0.58 0.92 0.84 0.82 1.00 0.64 0.76

SVM-RFE #10 Ac 0.62 0.73 0.73 0.87 0.86 1.00 0.70 0.79
Se 0.20 0.84 0.56 0.87 0.88 1.00 0.78 0.73
Sp 0.86 0.53 0.82 0.88 0.81 1.00 0.61 0.79

#50 Ac 0.48 0.72 0.71 0.88 0.89 1.00 0.72 0.77
Se 0.20 0.82 0.57 0.91 0.91 1.00 0.74 0.74
Sp 0.63 0.53 0.80 0.84 0.85 1.00 0.68 0.76

mRMR #10 Ac 0.53 0.65 0.77 0.92 0.89 1.00 0.68 0.78
Se 0.60 0.95 0.56 0.96 0.95 0.99 0.74 0.82
Sp 0.56 0.10 0.90 0.87 0.77 1.00 0.62 0.69

#50 Ac 0.49 0.70 0.84 0.96 0.89 1.00 0.68 0.79
Se 0.20 0.77 0.77 1.00 0.95 1.00 0.74 0.78
Sp 0.63 0.57 0.87 0.92 0.77 1.00 0.62 0.77
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relation between the nature of the methods and their behavior.
In fact, CFS achieves the highest accuracy on average for most of
the classifiers, while ReliefF obtains in many cases the poorest
results, and both of them are based on correlation coefficients.

3 Recent Approaches

DNA microarray technology [21, 22] allows for the monitoring
and measurement of thousands of gene expression activation levels
in a single experiment. Starting from 2001, release year of the
human genome working draft [23], the field of bioinformatics has
constantly grown and captured a remarkable interest of the scien-
tific community, both in the area of computer science and in
biology or medicine.

An interesting way to study the underlying biological processes
is to apply a systematic and computational analysis on DNA micro-
array datasets. New machine learning methods to improve the
analysis and understanding of these datasets have been developed
in parallel [24]. In these scenarios, the analysis frequently involves
class prediction, regression, feature selection, outliers detection,
principal component analysis, discovering of gene relationships,
and cluster analysis [25]. Due to their extremely high dimensional-
ity, feature selection has a vital importance in the analysis of DNA
microarray datasets [26].

Currently, new FS methods and improvements over existing
ones continue to be developed, with the aim of dealing with DNA
microarray dimensionality problem. One of the main research lines
is the classification and diagnosis of cancer fromDNA genes. In this
sense, hybrid models are recently being proposed, integrating two
different steps: a first step to perform a subset selection and a
second in which the previous obtained subset is refined. Medjahed
et al. [27] improved a classical SVM-RFE feature selection method
by subsequently adding a binary dragonfly (BDF) metaheuristic
[28]. Its efficiency was demonstrated by providing a higher classifi-
cation accuracy rate in different microarray datasets often used in
the literature. Jain et al. [29] integrated and improved correlation-
based feature selection (CFS) with improved-binary particle swarm
optimization (iBPSO), evaluating its performance on 11 bench-
mark microarray datasets of different cancer types. In a similar way,
Alomari et al. [30] used a minimum redundancy maximum rele-
vancy (MRMR) method together with bat-inspired algorithm
(BA). BA is a recent swarm-based algorithm, which imitates the
echolocation system of bat individuals.

Another recent approach is ensemble methodology, where sev-
eral individual feature selection methods are combined with the
main goal of reducing variability of individual methods, taking
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advantage of their respective strengths and overcoming their weak
points at the same time. Ebrahimpour et al. [31] executed an
interesting study to discuss the rationale of ensemble feature selec-
tion. In addition, they proposed a new particular ensemble method
called data perturbation strategy. This method consists in combin-
ing multiple selectors based on the same core algorithm but trained
on different perturbed versions of the original data. This ensemble
strategy was evaluated on ten public genomic datasets, providing
useful conclusions and paving the way to design and develop new
ensemble methods. Alkuhlani et al. [32] proposed a multistage
feature selection approach combining three different filter methods
to select the optimal subset of features on different DNA cancer
datasets. Seijo-Pardo et al. [33] proposed a deep study on feature
selection ensemble approaches, where several ranker methods are
combined leading to different ensemble configurations based on
different combination methods and threshold values. The perfor-
mance of each ensemble configuration was tested on different
scenarios, including DNA microarray datasets.

4 Case Studies

4.1 Discretization Microarray datasets typically have a very large number of features
and small number of instances. For this reason, machine learning
algorithms in order to be effective need to confront the curse of
dimensionality. One of the ways in whichmachine learning faces the
problem is using feature selection, as many features are irrelevant or
redundant for the classification task, a situation that is specially
complicated if the training datasets are relatively small, as these
irrelevancies/redundancies are harder to detect [34]. For this last
reason, discretization is also an interesting method to apply to
microarrays, as it greatly reduces the memory needed and improves
classification accuracy. Discretization is a preprocessing step that
aims at transforming quantitative data into qualitative data, as
numerical attributes are converted to discrete or nominal attributes
using a finite number of intervals, and thus obtaining a
non-overlapping partition of the continuous input domain. Then,
an association between each interval with a discrete value is
established.

Most of the times, discretization is applied in a way transpar-
ent to the user, as several tools (as for example, Weka [18]) apply a
discretizer by defect when using certain FS methods, mainly with
many filters that can only work with discrete data [35]. Hence, a
common practice to deal with numeric attributes is to discretize
the data, mapping the real data into typically a small number of
finite values, before conducting filtering. Furthermore, some of
the features of microarray datasets have unbalanced values, and
discretization seems to be a solution for this problem. There are
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several advantages derived from the use of a preprocessing
discretization [36]:

l The machine learning process will be more effective and effi-
cient, as a reduced amount of data is needed in comparison with
methods that use continuous values. Besides, as data is simpli-
fied, the learning process is usually faster, and the obtained
results are more compact [7, 37, 38]. This characteristic is
specially important in the present scenario of Big Data, for
which discretization approaches are still scarce [39].

l The interpretability of the results is increased, as discrete values
are easier to understand, use, and explain, in part because of the
homogenization of the values carried out by the
preprocessing [36].

l Additionally, by using discrete states part of the noise present in
the original microarray data is absorbed, leading to a more
robust behavior and better prediction accuracy [40, 41]

But not all are advantages, as discretization also implies a loss of
information, and different discretization strategies might yield to
distinct discrete-state models, even if the original data is the same.
Thus, the selection of an appropriate discretization process has a
major impact on the design and outcome of the inference algo-
rithms, as there are a number of relevant issues that need to be
considered [42, 43].

As stated above, microarray datasets are usually preprocessed
using some feature selection algorithm that eliminates redundant
and irrelevant genes. There are two general approaches commonly
applied to feature (gene) selection: wrapper and filter approaches
[7]. The wrapper approach uses a predetermined data mining
algorithm and employs its performance as the evaluation criterion,
while filters employ only general characteristics of the data to
evaluate and select gene subsets. Wrappers tend to obtain better
performances, but on the other hand they are very time consuming
and have the risk of overfitting due to the small sample size of
microarray data.

In the following, a summary of the results obtained by the
authors in [44] are discussed. In the research described, several
combination of discretizers and filters were tested before the classi-
fication step, with the aim of demonstrating (1) the improvement in
accuracy with respect to using only the classifiers, and (2) that the
combination of discretizerþfilter achieves better performances than
using FS alone. The discretization step is introduced both for
aiding the filtering process and for dealing with the high number
of genes with very unbalanced values present in microarray data.

The authors in [36] carried out an extensive study over an
important number of different types of discretizers, classifiers, and
dataset, aiming to give some recommendations on their combined
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use; however, they are not focused on the gene selection problem.
Conversely in Gallo et al. [42] there is an extensive review of the
different state-of-the-art discretization methods, together with
some aspects that need to be considered when designing or select-
ing a discretization approach for gene expression data. In [43], the
authors carried out a comparative study using two commonly used
discretizers (see description below), three filters (CFS, INTER-
ACT, and Cons), and three classifiers (C4.5, Naive Bayes, and
IB1). The filters and classifiers have been already described in
other sections of this book, as in Subheading 2.1. The discretizers
used are EMD (entropy minimization discretization) and PKID
(proportional k-interval discretization). Both were selected due to
their good results in a previous research [44]:

l EMD (entropy minimization discretization) [45]. This method
evaluates as a candidate cut point the midpoint between each
successive pair of the sorted values of an attribute. For evaluating
each candidate cut point, the data are discretized into two
intervals and the resulting class information entropy is calculated
in polynomial time. A binary discretization is determined by
selecting the cut point for which the entropy is minimal
among all candidates. The binary discretization is applied recur-
sively, always selecting the best cut point. A minimum descrip-
tion length (MDL) criterion is applied to decide when to stop
discretization.

l PKID (proportional k-interval discretization) [46] is a method
based on the idea that discretization bias and variance are related
to interval size and interval number. This strategy seeks an
appropriate trade-off between the bias and variance of the prob-
ability estimation by adjusting the number and size of intervals
to the number of training instances. The following compromise
is adopted: given a numeric attribute, with n training instances
with known values for it, it is discretized into

ffiffiffi

n
p

intervals, with
ffiffiffi

n
p

instances in each interval. Thus equal weight to both bias
and variance management is given.

4.1.1 Experimental

Setting

The proposed method consists of applying a discretizer, a filter, and
a classifier (as can be seen in Fig. 2).

Two different discretizers, three filters, and three classifiers
were tested. The results obtained by all combinations over ten
well-known microarray datasets are shown in Table 9. Some data-
sets were already originally divided into training and test sets; those
that were not, and for which only training dataset was available
(CNS, DLBCL, Colon, Lymphoma, Ovarian, and Breast) were
randomly divided using the common rule 2/3 for training and
1/3 for testing.
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In Table 9, the distribution for training and testing datasets is
shown in the corresponding columns for binary datasets. In the
case of the multiclass, the distribution of GCM dataset is balanced
and the percentages in the training and the test sets are roughly
maintained. However, for lymphoma dataset, one of the nine clas-
ses corresponds with half of the samples and thus, there are some
classes without representation in the training set or in the test set,
making classification a much more complex task.

For carrying out the experiments, the Weka platform [18] was
used, using default values for all parameters. For each dataset, a
tenfold cross-validation was performed over the training set to
derive a model that in turn will be applied to the test dataset, with
the aim of checking the performance over a dataset with new data.
In Table 10 it can be seen the results obtained after comparing the

FEATURE SELECTION
(FILTER)

CFS INTERACT CONS

CLASSIFIER

C4.5 NB IB1

DISCRETIZER

EMD PKID

MICROARRAY DATA

Fig. 2 Steps and alternative methods tested

Table 9
Dataset description

Train Test

Dataset Classes Features Samples Distribution Samples Distribution

Leukemia 2 7129 38 71–29% 34 59–41%

CNS 2 7129 40 65–35% 20 65–35%

DLBCL 2 4026 32 50–50% 15 53–47%

Colon 2 2000 42 67–33% 20 60–40%

Prostate 2 12,600 102 49–51% 34 26–74%

Lung 2 12,533 32 50–50% 149 90–10%

Ovarian 2 15,154 169 35–65% 84 38–62%

Breast 2 24,481 78 56–44% 19 37–63%

GCM 14 16,063 144 – 46 –

Lymphoma 9 4026 64 – 32 –

Columns “Train distribution” and “Test distribution” show the percentages of the two classes for each binary dataset

both in training and test sets
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performance achieved with a classifier (without preprocessing) and
the best performance obtained by our proposed method grouped
by dataset and classifier. Remember that 18 different methods were
tested (Fig. 2), named by joining their acronyms by a “þ” sign (for
example, EMDþINTþNB). The table shows the validation accu-
racy (achieved using a tenfold cross-validation over the training
dataset), the test accuracy (result of applying the model to the
independent test dataset), and the number of genes required for
each combination tested. The best test accuracy obtained for each
dataset is emphasized in bold font.

As it can be seen in Table 10, for the majority of the datasets
(the exceptions being colon and lymphoma), there is an

Table 10
Best results obtained using the discretizer+feature selection filter+ classifier for each dataset

Dataset Method Validation accuracy Test accuracy No. of genes

Leukemia C4.5 84.21 91.18 7129
PKIDþConsþC4.5 94.74 94.12 2
NB 94.74 88.24 7129
PKIDþCFSþNB 100.00 94.12 18
IB1 89.47 70.59 7129
EMDþConsþIB1 100.00 91.18 1

CNS C4.5 55.00 60.00 7129
EMDþINTþC4.5 82.50 65.00 47
NB 65.00 60.00 7129
PKIDþINTþNB 90.00 75.00 4
IB1 50.00 55.00 7129
PKIDþINTþIB1 85.00 65.00 4

DLBCL C4.5 87.50 86.67 4026
EMDþConsþC4.5 96.88 86.67 2
NB 84.38 93.33 4026
EMDþINTþNB 100.00 93.33 36
IB1 71.88 73.33 4026
EMDþINTþIB1 96.88 66.67 36

Colon C4.5 83.33 90.00 2000
EMDþConsþC4.5 97.62 85.00 3
NB 54.14 70.00 2000
EMDþConsþNB 100.00 85.00 3
IB1 66.67 95.00 2000
EMDþConsþIB1 97.62 85.00 3

Prostate C4.5 85.29 26.47 12,600
PKIDþConsþC4.5 88.24 73.53 2
NB 63.73 26.47 12,600
PKIDþConsþNB 85.29 73.53 2
IB1 84.31 52.94 12,600
PKIDþConsþIB1 88.24 73.53 2

(continued)

140 Amparo Alonso-Betanzos et al.



improvement in accuracy over the test set, with also a remarkable
decrease in the number of features used. Focusing on the behavior
of the approach regarding the accuracy of the classifiers, in the case
of Naive Bayes and IB1, the proposed approach clearly improves
the results of the classifier method alone, while with C4.5 it has a
more irregular behavior, although in general (7 out of 10 datasets)
the combination discretizerþfilterþclassifier maintains or improves
the results of the classifier itself (for a more detailed explanation,
please consult Bolón-Canedo et al. [43]). These results are in
agreement with those findings in [36]. With respect to lazy and
Bayesian learning, KNN, and Naive Bayes, for which the authors
demonstrated that the subset of remarkable discretizers included
PKID (remind that the study included several dataset types, not
only microarrays).

Table 10
(continued)

Dataset Method Validation accuracy Test accuracy No. of genes

Lung C4.5 71.88 81.88 12,533
EMDþConsþC4.5 100.00 81.88 1
NB 96.88 95.30 12,533
EMDþConsþNB 96.88 95.30 1
IB1 100.00 97.99 12,533
PKIDþINTþIB1 100.00 100.00 40

Ovarian C4.5 91.72 98.81 15,154
EMDþConsþC4.5 97.04 98.81 3
NB 92.31 88.10 15,154
EMDþConsþNB 98.22 100.00 3
IB1 93.49 92.86 15,154
PKIDþCFSþIB1 95.86 100.00 17

Breast C4.5 51.28 73.68 24,481
PKIDþINTþC4.5 67.95 78.95 3
NB 57.69 36.84 24,481
EMDþConsþNB 96.15 73.68 5
IB1 62.82 68.42 24,481
EMDþConsþIB1 96.15 73.68 5

GCM C4.5 50.00 52.17 16,063
EMDþConsþC4.5 61.81 41.30 9
NB 67.36 52.17 16,063
EMDþConsþNB 68.06 54.35 9
IB1 58.33 45.65 16,063
PKIDþCFSþIB1 86.11 52.17 1431

Lymphoma C4.5 70.31 75.00 4026
EMDþConsþC4.5 85.94 59.38 3
NB 65.63 68.75 4026
EMDþINTþNB 98.44 81.25 160
IB1 95.31 87.50 4026
PKIDþCFSþIB1 98.44 81.25 160
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The number of features employed, on the other hand,
diminishes drastically for all classifiers and datasets, using features
in the order of dozens of genes instead of thousands of them of the
original dataset. This is an interesting aspect for enhancing trans-
parency and explainability of the results, as it has the capacity to
make it easier the identification of the underlying mechanisms
relating gene expression to diseases. In [43] the authors also show
the results obtained by their method in comparison with those of
other authors that had used wrappers or other filters for classifica-
tion of microarray datasets. Although the comparison should be
interpreted in a broad sense, as the experimental conditions are
slightly different, the conclusion is that the combination approach
proposed (discretizerþfilterþclassifier) clearly outperforms them,
with accuracy improvements slightly below 30%, which is notable in
the case of wrappers than tend to be more precise in accuracy,
although at the cost of higher computational complexities. Thus,
the importance of using an adequate discretizer for microarray
datasets has been established.

Some new tendencies in the area are related with the fact that
generally discretization is applied before FS, as many of the latter
methods require discrete data as input. Thus, and in order to be
efficient, features are generally discretized individually. This univar-
iate approach may not hold in cases where feature interactions exist,
thus degrading the performance of the preprocessing stage, since as
commented above, there is inevitably a loss of information in the
process, and in this case information about feature interactions will
probably be lost during the discretization process. Tran et al. [47]
proposed a method that combines discretization and feature selec-
tion in just one step, using bare-bones particle swarm optimization
(BBPSO). The method is named potential particle swarm optimi-
zation (PPSO), and uses a new representation aiming at reducing
the search space of the problem, and also a new fitness function for
evaluating candidate solutions to guide the search. Their results
show a considerable reduction in the number of features selected,
while performance regarding accuracy and generalization capabil-
ities is maintained.

4.2 Complexity Microarray data often presents some characteristics that can have a
negative impact in the generalization ability of the classifiers. Some
of the properties are data sparsity, a high number of features and a
low number of samples, and class imbalance, since the cancer class
tends to be rarer than the non-cancer class. Applying a proper
feature selection method to the data can reduce the influence of
those characteristics in the error rates of the classifiers induced.
Lorena et al. [48] showed that, when a dimensionality reduction
is accomplished, the impact of these characteristics tends to be
decreased. Authors used a well-known feature selection procedure
based on the Fisher linear discriminant analysis, due to its good
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results in the context of microarray data [49]. Morán-Fernández
et al. [50], making use of several data complexity measures, ana-
lyzed the intrinsic complexity of several microarray datasets with
and without feature selection. Specifically, correlation-based feature
selection and consistency-based filter were used in this work to
reduce the microarray dimensionality. In both studies, data com-
plexity measures proposed by Ho and Basu [51] were used. Data
complexity analysis is aimed at representing data particularities that
add complexity to classification tasks, such as overlaps between
classes, separability, and decision boundary linearity. These mea-
sures are subsequently, as follows, grouped according to the aspect
of the data they focus on.

1. Measures of overlap in feature values from different classes:
l Maximum Fisher’s discriminant ratio (F1).

l Length of overlap region (F2).

l Maximum (individual) feature efficiency (F3)

2. Measures of class separability:

l Minimized sum of the error distance by linear programming
(L1).

l Error rate of the linear classifier by linear programming
(L2).

l Fraction of points on the class boundary (N1).

l Ratio of average intra-/interclass NN distance (N2).

l Error rate of the 1-NN classifier (N3).

3. Measures of geometry, topology, and density of manifolds:

l Nonlinearity of a linear classifier by linear programming
(L3).

l Nonlinearity of the 1-NN classifier (N4).

l Fraction of maximum covering spheres (T1).

l Average number of points per dimension (T2).

From the previous cited works, it can be seen that feature
selection seems to be effective in reducing microarray data com-
plexity. Taking into account that higher values of F1 indicate sim-
pler classification problems, in some cases the use of a feature
selection method led to a decrease in the complexity of the classifi-
cation problem. According to F2 values, there is less overlap
between classes after applying feature selection, when compared
to the original data. N1 and N2 values decreased significantly,
indicating a simplification of the data structure. Higher N1 values
indicate smaller separation in distributions and a more difficult
classification task, so it seems logical to think that lower values
after applying feature selection would improve classification
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performance. N2 values for the original datasets were higher,
suggesting that samples from the same class were dispersed in the
feature space. However, values were lower after feature selection
was applied. The values of the data complexity measures relative to
linear separability, L1 and L2, increased significantly after applying
feature selection, which might be because feature selection reduces
the risk of overfitting.

4.3 Distributed

Feature Selection

In the past, feature selection methods have been designed to run in
centralized computing environments. But nowadays, several
sources produce environments with distributed datasets where it
is not legal or affordable to gather the data in a single location. Also
big datasets might be collected in a central repository where pro-
cessing imposes quite high computing requirements. In this con-
text, most existing feature selection methods do not scale well, and
their efficiency may significantly deteriorate to the point of becom-
ing inapplicable. Thus, in order to improve the scalability of exist-
ing feature selection methods for high-dimensional datasets,
feature selection is performed in distributed manner. Das et al.
[52] developed a local distributed privacy preserving algorithm
for feature selection in a large peer-to-peer environment. Banerjee
et al. [53] proposed a secure distributed protocol that allowed
feature selection for multiple parties without revealing their own
data. Tan et al. [54] presented a new adaptive feature scaling
framework for ultrahigh dimensional feature selection on big data-
sets. Other authors had considered parallel computing environ-
ments to re-implement feature selection algorithms. Peralta et al.
[55] presented a feature selection algorithm based on evolutionary
computation that used the MapReduce paradigm to obtain subsets
of features for large datasets. Another proposal was a distributed
parallel feature selection method that can read data in distributed
form and perform parallel feature selection in symmetric
multiprocessing mode via multi-threading and massively parallel
processing [56].

Applied to microarray data, Bolón-Canedo et al. [57] proposed
a method for distributing the feature selection process. The general
idea consisted of dividing the microarray data into several nodes
and then applying a feature selection method at each node
performing several rounds to obtain a stable set of features. Later,
a merging procedure is carried out to combine the partial results
into a single subset of relevant features according to improvements
in the classification accuracy. Data can be partitioned by samples
(horizontally) or by features (vertically), depending on the charac-
teristics of a particular problem. In the case of microarray data, the
small sample size in contrast with the extremely high dimensionality
demands the use of vertical partitioning. By applying the proposed
distributed methodology to this domain, subsets will present a
more balanced feature/sample ratio and, therefore, overfitting
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problems will be avoided. Although the experimental results over
eight microarray datasets showed that the runtime was significantly
reduced whereas classification performance was maintained—or
even improving—compared to centralized algorithms, the merging
procedure was dependent on the classifier used and in some cases it
introduced an important computational burden. Thus, in order to
overcome this drawback, Morán-Fernández et al. [58] designed a
distributed method in which the final feature subset was updated
according to the theoretical complexity of these features, by using
the Ho and Basu data complexity measures [51] instead of the
classification error. Hence, the new framework was not only inde-
pendent of the classifier chosen, but also reduced considerably the
computational time. The novel procedure was tested in five micro-
array datasets (Table 11) [59].

Figure 3 displays the classification accuracy obtained by the
CFS filter and SVM classifier for the centralized approach (C) and
distributed approaches (D-F1, D-F2, and D-N2) based on data
complexity measure Fisher’s multiple discriminant ratio (F1),
length of the overlapping region (F2), and ratio of average intra-/
interclass nearest neighbor distance (N2), respectively, for each
microarray dataset. As can be seen, for some datasets the distributed
versions even slightly outperform the standard centralized one. If
we focus on the computational time (Table 12), we can see that it
was drastically shortened by applying the distributed approach.

In light of these results, authors concluded that their
distributed proposal performed successfully, since the running
time was considerably reduced and the classification accuracy did
not drop to inadmissible values. In fact, their approach was able to
match and in some cases even improve the standard algorithms
applied to the non-partitioned microarray datasets. As the runtime
was small for the three distributed approaches, it could be interest-
ing to use the data complexity measure with the best classification
accuracy (F1).

Table 11
Microarray datasets used in experiments, described in terms of the number of features, samples, and
classes

Dataset #Features #Samples #Classes

11-Tumors 11 12,533 174 11

Breast 24,481 78 2

CLL-SUB-111 111,340 111 3

Gli85 22,283 85 2

Lung cancer 12,600 203 5
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An open line of research is the inclusion of feature selection
algorithms in parallel programming paradigms as Apache Hadoop
[60] or Apache Spark [61]. Although both paradigms include
machine learning libraries—Mahout and MLlib, respectively—
with a number of learning algorithms such as SVM and Naive
Bayes classification and k-means clustering, as yet, it includes no
feature selection algorithms [62]. Some recent works, however,
supply versions of well-known state-of-the-art algorithms, such as
mRMR (minimum redundancy maximum relevance), ReliefF, and
a framework of feature selection algorithms based on information
theory [63–66].

4.4 Ensembles Machine learning methods have traditionally used a single learning
model to solve a given problem. However, along the last few years,
ensemble learning has become the focus of much attention based
on the assumption that combining the output of multiple learning
models in a particular problem improves the results obtained by a
single model [67, 68]. This idea of ensemble learning has tradition-
ally been applied to classification, although it can be also thought as
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Fig. 3 Classification accuracy obtained by the CFS filter and SVM classifier on the five microarray datasets

Table 12
Runtime (seconds) for the CFS filter on the five microarray datasets

Distributed

Centralized D-F1 D-F2 D-N2

11-Tumors 7959.8 3.4 1.1 2.6

Breast 7669.2 3.6 1.3 2.8

CLL-SUB-111 1335.0 3.4 1.1 2.6

Gli85 7652.1 4.4 2.1 3.6

Lung cancer 9434.4 3.4 1.1 2.6
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a means of improving other machine learning disciplines such as
feature selection. In this field the goal is to select a subset of features
that minimizes the prediction error of a given classifier [26]. Using
a single feature selection method could generate local optima, but
using an ensemble may be obtained more certain, precise, and
accurate results. The aim of this approach is to achieve a method
that, using ensembles and thus obtaining diversity in the selection,
is able to reduce the variability of the individual methods, taking
advantage of their respective strengths and overcoming their weak
points at the same time. Another advantage of the ensemble
method is the fact that the user is released from the task of choosing
an adequate algorithm for each scenario, since this approach pro-
vides acceptable results independently of the characteristics of
the data.

Improving the robustness of feature selection algorithms by
using multiple feature selection evaluation criteria is proposed in
recent works. For example, a recently ensemble-based multi-filter
feature selection method [69] was proposed, combining the output
of four filter methods to achieve an optimum selection for DDoS
detection in cloud computing. Besides there are some other works
in which all the feature selection methods of the final ensemble are
ranker methods. Wang et al. performed a few outstanding works in
this area, providing two interesting studies. One of them examines
the ensembles of six commonly used filter-based rankers [70], while
the other checks 17 different ensembles of feature ranking techni-
ques [71], where the ensembles are composed of different numbers
of rankers, ranging from 2 to 18 single feature selection methods.
Focusing on microarray data processing, recent ensemble
approaches can be found. One of this, min-max ensemble feature
selection (M2-EFS) [72], is based on balanced data partition and
min-max ensemble strategy. This approach can obtain higher per-
formance than other classical ensemble methods especially for
large-scale, high-dimensional, and imbalanced data. Another inter-
esting study is the multicriterion fusion-based recursive feature
elimination (MCF-RFE) algorithm [73], developed with the goal
of improving both the classification performance and the stability of
the feature selection results on microarray data.

In this field, it should be noted an exhaustive comparison study
between different feature selection ensemble configurations
[33]. This work builds ensembles based on six well-known individ-
ual ranker methods, differentiating two main steps:

l Combination step. Different rankings returned by each individ-
ual method are combining by an aggregation method.

l Thresholding step. Due to all FS methods employed are rankers,
a threshold should be selected to obtain a practical subset of
features. In this regard, fixed and automatic thresholds were
used. Fixed thresholds retain a number of features according
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to dataset dimension, i.e., select a percentage like 10%, 25%, or
log2(n) features [74] where n is the dataset dimension. Auto-
matic thresholds retain a number of features according to dataset
nature, i.e., thresholds based on complexity measures of overlap
like F1, F2, and F3 (see Subheading 4.2).

Finally, after deriving a unique list of features, a classification step is
carried out using five different classification methods. This
approach was tested in seven DNA binary microarray datasets
(available at http://datam.i2r.a-star.edu.sg/datasets/krbd/),
which are detailed in Table 13.

Figure 4 displays the number of cases in which individual or
ensemble approaches achieve the best classification error results.
Ensemble approach was built using seven different combination
methods (SVM-Rank [75], Min [76], Median [76], Mean [76],
GeomMean [76], Stuart [77], RRA [78]). In addition, a thresh-
olding step was applied to both individual and ensemble approaches
using a fixed threshold (log2(n)) and an automatic threshold
(F1 complexity measure). The performance of both approaches
was tested by applying five different classification methods (C4.5
[79], Naive Bayes [80], K-nearest neighbor (k-NN) [81], random
forest [82], and support vector machine (SVM) [7]) on the afore-
mentioned seven DNA microarray datasets (Table 13). This figure
compares the traditional approach of applying individual feature
selection methods (orange bars) and the novel approach of applying
a feature selection ensemble method (blue bars). A total of 70 dif-
ferent experimentation cases (combination of 7 scenarios, 2 thresh-
olds, and 5 classifiers) have been obtained. As can be seen, ensemble
approach based onMin combination method has obtained the best
performance. This ensemble achieved best results in 27 out of
70 experimentation cases, overcoming any of the individual

Table 13
Binary microarray datasets employed in the experimental study

#Samples

Dataset #Features Train Test Train distribution (%) Test distribution (%)

Colon 2000 42 20 67–33 60–40

DLBCL 4026 32 15 50–50 53–47

CNS 7129 40 20 65–35 65–35

Leukemia 7129 38 34 71–29 59–41

Lung 12,533 32 149 50–50 90–10

Prostate 12,600 102 34 49–51 26–74

Ovarian 15,154 169 84 35–65 38–62
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methods. Despite of its simplicity,Min combination method within
ensemble approach was able to get noteworthy results on DNA
microarray scenarios.

5 Summary

DNA microarray data allows the expression levels of thousands of
genes to be measured simultaneously. Such measurements can be
used to assist with disease diagnosis, as they enable distinct kinds or
subtypes of tumors to be classified according to expression patterns.
In recent years, the classification of this type of data has been viewed
as a particular challenge for machine learning researchers, mainly
due to the mismatch between dimensionality and sample size.
Several studies have demonstrated that most of the genes measured
in a DNA microarray experiment do not actually contribute to
efficient sample classification. In this sense, feature selection is
advisable so as to identify the specific genes that enhance classifica-
tion accuracy. In this chapter we have seen four different study
cases: using a previous discretization step, carrying out a data
complexity analysis, employing distributed approaches and finally,
using ensemble approaches, for the study of DNA microarray
datasets.
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Chapter 7

Cluster Analysis of Microarray Data

Manuel Franco and Juana-Marı́a Vivo

Abstract

The cluster analysis has been widely applied by researchers from several scientific fields over the last decades.
Advances in knowledge of biological phenomena have revived a great interest in cluster analysis due in part
to the large amount of microarray data. Traditional clustering algorithms show, apart from the need of user-
defined parameters, clear limitations to handle microarray data owing to its inherent characteristics: high-
dimensional-low-sample-sized, highly redundant, and noisy. That has motivated the study of clustering
algorithms tailored to the task of analyzing microarray data, which currently continue being developed and
adapted. The present chapter is devoted to review clustering methods with different cluster analysis
approaches in the challenging context of microarray data. Furthermore, the validation of the clustering
results is briefly discussed by means of validity indexes used to assess the goodness of the number of clusters
and the induced cluster assignments.

Key words Cluster analysis, Microarray data, High-dimensional-low-sample-sized, Clustering tech-
niques, Multiclustering methods, Validity indexes, Cluster stability

1 Introduction

The task of assigning objects to clusters or classes from measure-
ments made on these objects is a long-standing issue that has
attracted the attention of research community in many scientific
fields, including information retrieval, social sciences, machine
learning, data mining, image segmentation, pattern recognition,
and bioinformatics, among others. Based on the necessity to dis-
cover these clusters, when there is no a priori knowledge of them, it
is found the so-called unsupervised methods, also known as cluster
analysis, class discovery, or unsupervised pattern recognition. Alter-
natively, supervised methods are focused on understanding the
basis for the classification into predefined classes from a set of
labeled objects (learning set) in order to classify new unlabeled
objects (prediction). They are also named classification, discrimi-
nant analysis, class prediction, or supervised pattern recognition,
which are extensively used to find informative genes. Supervised
methods can be applied when the phenotypes of the samples or
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class patterns are known a priori. However, microarray data
clustering is mainly performed by unsupervised or hybrid methods
because expression patterns are unknown.

Since the 1990s, the burgeoning field of microarray data analy-
sis has revived interest in cluster analysis by posing methodological
and computational challenges [128] which enable to reveal the
meaningful patterns hidden in this kind of data. This potential of
clustering was proved in an early paper by Eisen et al. [38], who
applied hierarchical clustering to identify functional groups of
genes. Thus, at the beginning, the first-generation clustering algo-
rithms were adopted by microarray users, but not all of them
performed well to handle high-dimensional data because of the
well-known curse of dimensionality [15]. In microarray data analy-
sis, this problem is compounded by the relatively small sample size
regarding the high dimensionality of the available data. Recently,
sophisticated algorithms have been developed for performing effi-
cient clustering on datasets with a large number of data, tackling
some of the limitations of the traditional clustering methods as well
as satisfying those specific requirements for microarray data [115].

By and large, a cluster analysis is a process which involves a
number of consecutive interconnected stages: preprocessing, prox-
imity calculation, clustering, and evaluation [65, 106]. Despite its
undeniable fruitfulness in microarray research is increasingly visible
in the literature (see Fig. 1), as regards second and third stages, yet
there is no consensus about what is similar objects and how to
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Fig. 1 Results produced by a quick search from ISI-WoS in the period
1998–2017 and using the keyword microarray clustering
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cluster such objects together. As well-known, the resulting out-
comes of the unsupervised methods depend on the clustering
algorithms as well as the distance metrics which are taken into
account. However, as a response to both crucial points, many
authors have frequently addressed their research on one of these
issues.

Clustering has become an essential tool to generate new
hypothesis from gene expression data, even more it has been usually
deemed one of the first steps in gene expression analysis [32], and
its large amount of applications has been commonly split into two
categories: sample-based clustering and gene-based clustering
[14, 33, 68] (see Fig. 2). The first one of them is focused on
clustering biological samples to discover the phenotypic structures
or substructures of samples, becoming usual in high throughput
cancer studies since the seminal microarray analysis paper given by
Golub et al. [50], in which it was demonstrated that the phenotypes
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expression data of Golub et al. [50]
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of samples can be separated considering only a small subset of
informative genes whose expression levels are strongly correlated
with the distinctions. Considering genes as objects and samples as
features, gene-based clustering is aimed at identifying genes
expressed differentially and groups of genes or clusters with similar
expression patterns or profiles, and obtaining expression measure-
ments in order to determine genes with similar function or
co-regulated [38]. Currently, a third category, called subspace
clustering, has been deemed, which is focused on finding clusters
consisting of a subset of genes across a subset of samples that might
have different feature spaces [69].

In the literature, numerous papers are devoted to review clus-
tering approaches. Sneath and Sokal [117], Bezdek [19], Kaufman
and Rousseeuw [74], Jain et al. [65], Aggarwal and Reddy [2], and
Saxena et al. [111] provide good backgrounds on clustering meth-
odologies. Sheng et al. [115] give an overview on the clustering
algorithms of both the first and second generation which are
selected by “their popularity, their ability to handle the specific
characteristics of microarray data, and inevitably some personal
biases.” Other interesting reviews of clustering algorithms applied
to microarray gene expression data analysis have been presented by
Jiang et al. [69], Wong [130], Belacel et al. [14], and Kerr et al.
[76], among others. A detailed and comprehensive review of tradi-
tional and modern clustering algorithms is given by Xu and Tian
[132], introducing the core idea beyond them, and specifying their
time complexity, weakness, and strengths. Aghabozorgi et al. [3]
provide a review of time-series clusterings which tackles the cluster-
ing algorithms developed to time-series data during the last decade,
some of which have been applied to microarray time-series data.
The reader can also find an updated survey given by Oyelade et al.
[99] on clustering approaches applicable to gene expression data.

Furthermore, commercial and non-commercial software tools
are available to assist in clustering analysis in the challenging con-
text of microarray data. Among the most widely used open-source
software projects are found the statistical packages written in R
project (https://www.r-project.org/), and those specifically
designed for the genome data analysis through the Bioconductor
(http://www.bioconductor.org). The growing and fast develop-
ment of freely available packages has enabled statistical techniques
to be implemented usually in the R environment, playing an impor-
tant role in the advance of the scientific knowledge based on
microarray data. Interested readers can see the “Cluster Analysis
and Finite Mixture Models” CRAN task view at https://cran.r-
project.org/web/views/Cluster.html for a list of packages dedi-
cated to this field. In addition, Bioconductor clustering packages
are enumerated at http://bioconductor.org/packages/release/Bio
cViews.html#___Clustering.
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Owing to the increasing development of the algorithms for
clustering gene expression data, it is not attempted to carry out
an exhaustive review of the state-of-the-art. In this chapter, the
authors have intended to include popular clustering algorithms,
both traditional and modern, which have been used in the micro-
array analysis.

This chapter is organized as follows: Section 2 discusses the
curse of the dimensionality in the context of microarray data.
Furthermore, it is presented the preprocessing steps needed to be
carried out before performing cluster analysis, being a prerequisite
to mitigate the difficulties derived from the own nature of micro-
array data. Section 3 displays some distance metrics available for
distance-based clustering algorithms; weakness, strengths, appro-
priateness, and differences are briefly indicated. Section 4 gives an
overview of clustering algorithms, both the traditional and the
modern algorithms, which have been used in microarray analysis,
identifying some drawbacks of them in handling of the inherent
characteristics of microarray data, and including new algorithms
proposed in order to overcome such pitfalls. Section 5 provides a
brief survey about biclustering and triclustering algorithms, and
finally, Sect. 6 briefly discusses validity indexes to evaluate the
goodness of the number of clusters and the stability of resulting
cluster assignments.

2 Preprocessing Steps

The malediction of “the curse of dimensionality” is a term coined
by Bellman [15] referred to as the soaring growth in the difficult
posed by data analysis techniques as the number of dimension
increases. For the sake of clarifying, Steinbach et al. [118] explain
it simply by considering 100 points uniformly distributed over the
unit interval [0, 1]. By supposing that such a unit interval is split
into 10 subintervals, then it is highly probably that all bins have
points. Now then, if these 100 points are distributed over the unit
square fragmented into a lattice of 100 small square of side 0.1, it
seems quite probable that some of their cells are empty. In addition,
if the same amount of points is distributed in the unit cube which is
divided into a three-dimensional lattice of 1000 subcubes of side
0.1, the majority of these small volumes are bound to be empty. As
a result, the sparseness of data usually increases as the dimensional-
ity of data increases.

Furthermore, clustering methods which work well in low
dimension are affected by the curse of dimensionality. In microarray
data analysis, the problem is magnified by the relatively small sam-
ple size regarding the high dimensionality of available datasets,
close to 0.01 samples per dimension as highlighted by Jain et al.
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[66] and Wang et al. [128]. Unfortunately, this fact poses a diffi-
culty to traditional clustering algorithms.

Within clustering framework, distance metrics suffer when the
dimensionality increases, becoming gradually meaningless because
the spatial density of points decreases, and then all points tend to be
equidistant which means that the nearest neighbors are not stable.
Indeed, it is a proven fact that relative difference of the distances
between closest and farthest data points from a randomly chosen
point goes to zero when all features are identically and indepen-
dently distributed [18]. As regards absolute difference, research
confirmed that L1 increases by dimensionality, L2 remains relatively
constant, and Lp metric for p � 3 tends to be meaningless as
dimensionality increases [62]. These metrics are defined in Sect. 3.

In order to manage the curse of dimensionality, there are a lot
to be said for reducing dimensionality in microarray data as a
prerequisite for performing a cluster analysis. To deal with, feature
selection and feature extraction are two preprocessing steps that can
be applied [65, 106]. Feature selection is the process focused on
selecting the meaningful features, getting rid of noise according to
an evaluation criterion, increasing accuracy, and comprehensibility
of the results [134]. By comparison, feature selection on microarray
is more difficult owing to its relative small sample size in relation to
the large number of genes. What is more, some genes are strongly
correlated, and therefore, one out of hundred genes is enough to
depict the data [29]. Three general feature selection methods are
distinguished: filter models, wrapper models, and combination of
both [106]. One of the main advantages of this preprocessing step
is that the original features are preserved. In high dimensionality,
feature selection also plays an important role for helping to detect
the underlying grouping tendency in a much lower-dimensional
subspace [128]. Other available preprocessing step is feature extrac-
tion consisting of procedures which aim to reduce the dimension-
ality without losing relevant information by projecting objects from
a higher dimensional space to a lower-dimensional one, usually
removing noise. Principal Component Analysis (PCA) and Singular
Value Decomposition (SVD) are mainly used for dimensionality
reduction. Nevertheless, feature selection and feature extraction
procedures may be unsuitable when clusters are in different sub-
spaces, which is automatically enabled by algorithms for clustering
high-dimensional data [101, 115]. Some of them are discussed
further in Sect. 4.

Another key preprocessing step is the standardization
(or rescaling) in order to prevent the effect that the different scales
can have on the similarity measures commonly used for microarray
data which we will study later on. For instance, it can be about
genes exhibiting the same relative behavior, but diverging absolute
behavior [115]. Several standardization approaches have been
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proposed, such as min–max normalization, autoscaling, and deci-
mal scaling [106].

On the other hand, microarray data usually contain a high rate
of missing values which poses a great difficulty for the application of
the clustering procedures [21]. In order to solve this drawback, a
straightforward solution proposed is to remove rows and columns
with missing values which may vary from 1 to 10% affecting up to
95% of genes [27]. Apart from biased estimates, the huge loss of the
information derived from this strategy has been conducted to use
metrics that admit missing values, and alternatively, algorithms for
microarray missing value imputation. In the literature, it is found a
wide range of papers relative to missing value imputation for micro-
array data, e.g., see [6, 27, 82].

3 Distance Metrics

To start with, the relationship between objects to be clustered is
represented by a symmetric squared matrix referred to as proximity
matrix. Its elements are given in terms of degree of similarity
(or dissimilarity) between all the objects by means of a distance,
which are known as distance metrics (or distance measures). Thus,
given two objects from the n-dimensional space n, x ¼ (x1, . . .,
xn) and y ¼ (y1, . . ., yn) (where xi and yi are named attributes) the
distance between them is denoted by d(x, y) and should be sym-
metric and non-negative, and also satisfy the triangle inequality
given by: d(x, y) � d(x, z) + d(y, z), for all z. In contrast to
model-based clustering methods discussed later on, the perfor-
mance of distance-based clustering algorithms depends on distance
metric. However, there is no universally accepted distance measure
for clustering. Popular distance measures widely used are the fol-
lowing, when the data to be clustered are continuous, e.g., see
[25, 46, 51, 68].

l Minkowski distance, also referred to as Lp-norm. Minkowski
family is given by dminkðx, yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 jxi � yijpp

p
, where p∈

such that p � 1.

l Euclidean distance, also referred to as L2 norm, measures the
geometric distance between two objects, considering the length
of the straight line that connects those two objects. In spite of its
frequent use in clustering, this well-known measure poses a
problem when two data objects have no attribute values in
common, because the distance between them may be smaller
than any other pair of objects presenting the same attribute
values [116]. As a Minkowski distance, Euclidean distance is
sensitive to outliers and can be affected by differences in feature
scales, i.e., the largest scaled feature would dominate the rest of
them. For that reason, as commented before, the first is to

Cluster Analysis of Microarray Data 159



transform all features to have similar scales at the outset of data
analysis, for example, by standardizing them [65]. This measure

is defined as deðx, yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðxi � yiÞ2
q

, or equivalently, its

squared measure can be used, Squared Euclidean distance,

dseðx, yÞ ¼
Pn

i¼1 ðxi � yiÞ2. Alternatively, it can be modified by
assigning increasingly greater weight on objects that are further
apart.

l To solve the above-mentioned problem, average distance is
provided as a modified Euclidean distance which enhances
the results. This measure is given by daveðx, yÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn
i¼1 ðxi � yiÞ2

q
.

l Weighted Euclidean distance, where features may be weighed

differentially, is given by dweðx, yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 wiðxi � yiÞ2
q

,

where a weight is allocated to each feature.

l Manhattan distance, also referred to as city block distance or
taxicab distance or L1 norm, is a particular case of Minkowski
metric when p ¼ 1 given by the sum of the absolute differences,
i.e., dmanðx, yÞ ¼

Pn
i¼1 jxi � yij. Manhattan distance is more

robust that Euclidean distance.

l Chebyshev distance, also referred to as L1 or Maximum metric,
may be appropriate in cases that require to define two objects as
“different” if they are different on any one of the dimensions.
This metric is robust with respect to outliers. The Chebyshev
distance is computed as dcheb(x, y) ¼ max1�i�n|xi � yi|.

l Mahalanobis distance was introduced by Mahalanobis in
[91]. This data-driven measure is based on correlations between

variables, and given bydmahðx, yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� yÞS�1ðx� yÞt

q
, where

S is the covariance matrix of the data which needs to be esti-
mated additionally. Mahalanobis distance is advised when clus-
ters are assumed to have elliptical shapes [48]. However, it can
be expensive in terms of computation, and the time complexity
is given by O(3n) [116]. With uncorrelated components, S is
equal to identity matrix, and then Mahalanobis distance is
reduced to Euclidean distance.

l Canberra distance is a scaled relative of Euclidean and Manhat-
tan distances, whose range varies from 0 to 1. The Canberra
distance is defined as dcanðx, yÞ ¼

Pn
i¼1 jxi � yij=ðjxij þ jyijÞ.

l Widely used in clustering microarray data [38], Pearson sample
correlation distance is very useful when the shape of the expres-
sion vector is more important than its magnitude, for example,
by calculating the similarity between the shapes of two gene
patterns. This correlation-based distance is defined as
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dcorðx,yÞ ¼ 1� rðx,yÞ ¼ 1�
Pn

i¼1 ðxi � xÞðyi � y ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxi � xÞ2 Pn

i¼1 ðxi � y Þ2
q ,

ð1Þ
wherex and y are the means for x and y, respectively. As it can derive
from Eq. 1, dcor is bounded in [0, 2]. Furthermore, its sensitivity to
outliers can be improved by using Jackknife correlation [61].
In addition, variations on this distance are based on either replacing
x and y with 0 (known asCosine correlation distance) or considering
the absolute value of correlation. On the other hand, the insensitiv-
ity of dcor to the amplitude of the expression vector may make its
square useful to encompass repressions such as a form of
coexpression [115].

l Since outliers affect correlation-based distances, robust mea-
sures such as Spearman sample correlation distance andKendall’s
τ sample correlation distance are preferred [46], which are given

by dspearðx,yÞ ¼ 1�
Pn

i¼1
ðx 0i�x 0 Þðy 0i�y 0 ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðx 0

i
�x0Þ2

Pn

i¼1
ðy 0

i
�y0Þ2

p and dtauðx,yÞ ¼

1� τðx,yÞ ¼ 1�
Pn

i¼1

Pn

j¼1
Cxi j

Cyi j

nðn�1Þ , respectively, where

x 0i ¼ rankðxiÞ, y 0i ¼ rankðyiÞ, Cxi j ¼ signðxi � xj Þ, and

Cyi j ¼ signðyi � yj Þ, [7].
Finally, it should be noticed that Euclidean and correlation

distances are equivalent after standardization, more specifically:

deðx, yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n 1� rðx, yÞð Þp

.
For the sake of understanding of the difference among the

above distance metrics, an illustrative example showing pairwise
distance between five gene expression patterns by four different
similarity measures can be found in [33]. A study on the impact of
chosen distance on microarray data analysis is carried out in
[46]. Recently, Shirkhorshidi et al. [116] focused on the behavior
of similarity measures on the results of distance-based clustering
algorithms in high-dimensional datasets. Jaskowiak et al. [68] con-
ducted a similar study on microarray data.

4 Clustering Techniques

According to Jardine et al. [67], there is no precise definition about
what determines a cluster. For a clearer understanding, Fig. 3
illustrates three different ways to divide 22 points into clusters.

Traditionally, clustering algorithms broadly fall into two main
groups: hierarchical and partitioning, as depicted in Fig. 4. The
algorithms of the first group produce nested sequences of clusters
arranged as a tree in which is considered (1) a nodo (cluster), the
union of its children (subclusters) as well as any one of the leaf

Cluster Analysis of Microarray Data 161



nodes, and (2) the root, the cluster including all the objects, whereas
the algorithms of the second group attempt to optimally separate
n objects into k (non-nested or crisp) non-empty and
non-overlapping subsets (clusters) whose union is the whole data-
set. Nevertheless, some drawbacks have been reported using both
hierarchical and non-hierarchical methods on microarray data, such
as non-unique tree along with higher time and space complexity
suffered from the first ones, and prefixed number of clusters
required by the second ones. In order to overcome such limita-
tions, a number of new clustering algorithms have been recently
developed based on different concepts, e.g., see [99, 111].

Currently, as the term “cluster” encompasses different
approaches with unsupervised methods, the categorization of clus-
tering algorithms is not straightforward [17]. Taxonometric repre-
sentations of clustering methods can be found in the literature
[65, 99, 108], and for reader convenience, a close taxonomy of
clustering approaches like the one discussed by Saxena et al. [111]
is displayed in Fig. 4.

Different clustering approaches corresponding to above cate-
gories are explored below. Note that, apart from nested and
non-nested clustering, other resulting types are mentioned
throughout the present section: exclusive versus overlapping versus
fuzzy, and complete versus partial, e.g., see [106, 122].

Single Complete Average
� � �

Error Square Probabilistic
� �

Agglomerative Divisive Distance
Based

Model
Based

Density
Based

� � � � �

Hierarchical Partitional
� �
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Fig. 4 Taxonomy of clustering approaches [113]
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Fig. 3 Different clusterings for a set of 22 points
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4.1 Hierarchical

Clustering

Popularized by Eisen et al. [38] among others, hierarchical cluster-
ing has been extensively applied to analyze many types of micro-
array data (gene expression data, CGH arrays, and protein arrays).
A hierarchical clustering is a sequence of partitions where each
partition is nested into the next one, and a hierarchical clustering
method [7, 23, 26, 38, 78, 89] is a procedure for transforming a
proximity matrix into a sequence of nested partitions. The resulting
hierarchical cluster structure is usually displayed by a dendrogram
which is useful for interactive exploration and visualization (Fig. 5).
By and large, it is considered two types of hierarchical clustering
methods: agglomerative and divisive. The first one, also known as
bottom-up approach, starts out with as clusters of size one as single
objects. At each step, clusters merge into new clusters on the basis
of their similarity, until all the objects are combined into a single
cluster or a specified termination condition is reached. Neverthe-
less, the second algorithm, also called top-down approach, starts
with a single cluster consisting of all the objects. At each step,
resulting clusters are split until only clusters of single object remain
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Fig. 5 Unrooted phylogenetic tree dendrogram of 100 genes chosen from the
gene expression data of Golub et al. [50]
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or termination condition set by user is reached. AGNES (AGglom-
erative NESting) and DIANA (DIvisive ANAlysis) are two earlier
hierarchical clustering algorithms and the corresponding detailed
implementations can be seen in Kaufman and Rousseeuw [74].

In order to define the inter-cluster distance, also the so-called
cluster-to-cluster distance, different agglomerative hierarchical
clusterings based on linkage metrics can be used in microarray
data analysis.

l Single-linkage clustering, which is also known as the connect-
edness, the minimummethod, or the nearest-neighbor method.
The distance between two clusters is defined as the minimum
distance from any object of one cluster to any object of the other
one. As a tendency, clusters can be merged as long as two objects
are close together regardless of other object contributions. Con-
sequently, results in “chaining” may appear.

l Complete-linkage clustering, which is also called diameter, the
maximum method, or the furthest-neighbor method. The dis-
tance between two clusters is calculated as the greatest distance
between objects of the relevant clusters. Not surprisingly, this
method tends to produce very compact clusters of elements and
the clusters are often very similar in size (Fig. 6).

l Average-linkage clustering, which is also named as minimum
variance method, is provided as an improvement in the face of
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Fig. 6 Circular dendrogram of 100 genes chosen from the gene expression data
[50] by selecting complete-linkage clustering
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the sensitivity to outliers suffered by single-linkage and
complete-linkage clusterings. The distance between clusters is
calculated using average values which can be obtained by differ-
ent methods. For instance, the most common is the Unweighted
Pair-GroupMethod Average (UPGMA). The average distance is
computed from the distance between each object in a cluster and
all other objects in another cluster. The two clusters with the
lowest average distance are joined together to form a new clus-
ter. Related methods use the centroids (centroid linkage or
UPGMC) or the medians for the average.

l Weighted pair-group average. This method is similar to
UPGMA, but the size of the respective clusters is used as a
weight in the computations. This alternative method should be
considered rather than UPGMA, when the cluster sizes are
suspected to be greatly unequal. Sneath and Sokal [117] intro-
duced the abbreviation WPGMA to refer to this method as
Weighted Pair-Group Method using Arithmetic Averages.
Related methods use the centroids (WPGMC) or the medians
for the average.

l Within-groups clustering. This method is similar to UPGMA,
but clusters are joined and a cluster average is used for further
computations rather than the individual cluster objects,
providing tighter clusters than UPGMA.

l Ward’s method. This method presented by Ward [129] is based
on the analysis of variance rather than considering distance or
association measures. The objects are assigned to clusters by
calculating the total sum of squared deviations from the mean
of a cluster and joining clusters to produce the smallest possible
increases in the sum of squared errors, i.e., to minimize the
information loss. Note that a smaller sum of squared errors
implies more similarity among the objects. More appropriate
for quantitative variables, the clusters provided should be nearly
elliptical-shaped.

Figure 7 displays dendrograms from three different linkage
clusterings. Further, for an illustrative visual comparison, Fig. 8
shows two of them pointing out their differences.

As mentioned before, yet there is no theoretical rule for select-
ing the most appropriate method, but simulations may be a useful
way to compare them [112]. The results provided by these linkage
methods are slightly different as long as clusterings consist of
compact and well separate clusters [34]. Apart from the linkage
strategy, it should be pointed out that the resulting clustering
depends on various parameters such as distance metric between
objects as input to determine clusters. Likewise, it is worth men-
tioning that negatives associations are not considered, although the
chosen distance measure supports them.
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Hierarchical clustering algorithms require high-computational
complexity. No less important, agglomerative and divisive traditional
approaches suffer from local convergence due to its greedy nature for
building dendrogram, since misclustering at the early steps is not
reversible later, and then magnified as the procedure performs.
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Fig. 7 Hierarchical clustering of 100 genes chosen from the gene expression data [50], by selecting single-,
average-, and complete-linkage clusterings, respectively
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To address the issues of standard hierarchical clustering, recent
algorithms have adopted one of the two following approaches. The
first one represented by the algorithms such as CURE and CHA-
MELEON uses more complex principles to split or merge the
clusters, and although both are irreversible yet, less errors are
made because a better method is used. Clustering Using Represen-
tatives (CURE) is a hierarchical clustering algorithm which adopts a
middle ground between centroid-based and all-point extremes
[53]. CURE selects a number of well-scattered objects as represen-
tative of the cluster rather than mean, and then shrinking them
toward the cluster centroid according to a determined fraction
which dampens the adverse effect of outliers [99, 124]. In order
to handle large datasets efficiently, CURE uses random sampling
and partitioning to speed up clustering. Moreover, CURE is less
sensitive to outliers and can identify both spherical and
non-spherical clusters. CURE clustering algorithm was applied to
gene expression by Guha et al. [53]. Developed by the authors of
CURE, ROCK [52] deals with categorical datasets following a
hierarchical agglomerative clustering. Iteratively, it merges clusters
so as to try and maximize a criterion function, ROCK uses data
sampling like CURE. CHAMELEON is a clustering algorithm that
explores graph partitioning and dynamic modeling in hierarchical
clustering to find the clusters in the dataset by using a two-phase
algorithm [73]. Clusters are merged in the clustering process only if
inter-connectivity and closeness between two clusters are high
relative to the internal inter-connectivity and closeness within the
clusters [111], thereby allowing it to choose the most similar pairs
of clusters and get over the downside of incorrect merging deci-
sions. However, CHAMELEON was not used to high
dimensionality [110].

The second approach represented by algorithms like BIRCH
(Balanced Iterative Reducing and Clustering using Hierarchies)
intends to obtain an initial result by using a hierarchical agglomer-
ative algorithm and then refining the outcome by using iterative
relocation [130]. This approach uses the idea of Cluster Feature
(CF) that is the triple (n, LS, SS), consisting of the number of
objects, the linear sum of the feature values of the objects, and
the sum of squares of the feature values of the objects stored in a CF
tree form, i.e., a hierarchical data structure for multiphase cluster-
ing which reduces the volume of data. Two algorithms are used in
BIRCH clustering: insertion and rebuilding [136]. The main
advantages of BIRCH are the ability to deal with outliers and
large datasets.

4.2 Partitioning

Clustering

One of the most applied algorithms of partitioning clustering is k-
means [90] which aims to find partitioning of the objects into a
predefined number k of non-empty and non-overlapping clusters,
by maximizing both the compactness of the objects within cluster
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and the separability between the clusters. In other words, minimiz-
ing the intra-cluster variance and maximizing the inter-cluster vari-
ance. A cluster centroid corresponds to the mean or median and the
nearness is established by dissimilarity or similarity. Starting out
with k centroids which are chosen randomly, each object is assigned
to the cluster with near centroid. At each interaction, the new
k centroids are recalculated from the previous partitioning, and
then the new cluster assignment is carried out by reallocating each
object to the nearest centroid, minimizing

Pk
j¼1

P
x∈Cj

x� cj
�� ��2,

where cj is the centroid of cluster Cj. The algorithm stops when
objects do not change cluster or the centroids do not change.
Furthermore, the complexity of k-means clustering method is lin-
ear, specifically O(t k m n), where t is the number iterations for
convergence on a sample size of m and n features. However, the
number of clusters must be specified by the user, and k-means
clustering may become trapped in a local optimum because of this
random initial clustering. In practice, the optimum number of
clusters is obtained by using prediction-based resampling methods
[35] or stability based methods instead of using a trial-and-error
approach [115].

Alternatively, to overcome the sensitivity to noise and outliers
presented by k-means clustering [74], some extents using the
medoids rather than means can be applied. Medoid is the most
centrally located object of the cluster whose average distance to all
other objects in the same cluster is minimal. Unlike centroids,
medoids can be always defined [64], for instance, in gene expres-
sion framework [125]. Even though medoid is an estimator of
location more robust to outliers than mean, its calculation is com-
putationally more costly since all pairwise distances are calculated
within each cluster. It can be applied using Partitioning Around
Medoids (PAM) algorithm [74] intended for spherical clusters, and
its extension PAMSIL [125], which are popular k-medoid algo-
rithms. Taking a dissimilarity matrix and a predefined number k of
clusters, whereas PAM is based on minimizing the sum of the
dissimilarities of the objects to their nearest medoid, PAMSIL is
focused on maximizing the average silhouette width of a cluster,
whose mathematical expression will be introduced further in
Sect. 6. According to [125], PAMSIL is good at finding small size
clusters and the PAM medoids seem to be good starting values for
PAMSIL. Unlike PAM, Clustering LARge Applications (CLARA)
[74] and Clustering LARge Applications based upon RANdomized
Search (CLARANS) [97] are two popular partitional clustering
methods available for high-dimensional data. CLARA takes a sam-
ple of objects from the dataset on which PAM is applied to find
medoids and returns its best clustering as output. However,
CLARA depends on the sample, and the necessity to overcome
such a disadvantage is fulfilled by CLARANS, whose core idea is
random search to choose samples and combination of PAM and
CLARA.
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Observe that it should be run the algorithm using various
random seeds in order to partition-optimization algorithms such
as k-means and k-medoids.

4.3 Graph-Theoretic

Clustering

Graph-theoretic clustering is an approach which depicts clusters in
terms of a graph and considers the problem of clustering as finding
the minimum cut or maximal cliques. From a dataset, a weighted
graph or proximity graph, G(V, E), can be constructed, in which
each data object corresponds to a vertex or node and each pair of
them is connected by an edge with a weight assigned reflecting its
proximity. On the basis of a threshold value, proximity is mapped to
either 0 or 1 with edges only existing between objects with prox-
imity equal to 1.

Graph-theoretic algorithm based on Minimum Spanning Tree
(MST) for clustering gene expression data [135] allows to trans-
form multidimensional clustering problem into a tree partitioning
problem since each cluster of the expression data corresponds to
one subtree of the MST. Applied to gene expression data, Hartuv
and Shamir [57] introduced a clustering algorithm HCS (Highly
Connected Subgraph) based on graph connectivity. In this frame-
work, a cut is defined as a set of edges whose removal results in a
disconnected graph, and the edge connectivity of a graphG(V, E) is
determined by the minimum number of edges whose removal
disconnects a graph. A cut is said a minimum cut if and only if its
cardinal is equal to the edge connectivity of the graph. Further-
more, a graph or subgraph with more than a vertex is said highly
connected if its edge connectivity is greater than half its total
number of vertexes. Each highly connected subgraph is considered
to be a cluster. HCS returns a minimum cut which recursively splits
a graph G(V, E) for finding a set of “highly connected” subgraphs
(clusters).

In Ben-Dor et al. [16], Cluster Affinity Search Technique
(CAST) was introduced to cluster gene expression data. In the
graph, each node corresponds to a gene and each edge between
two nodes is weighted according to the similarity of the two gene
expression profiles. Inspired by the concept of a corrupted clique
graph, this classic heuristic algorithm aims at searching for cliques,
groups of closely connected nodes, in the graph [56]. CAST does
not need a predefined number of clusters and can efficiently handle
outliers. On the other hand, CAST requires a predefined parameter
called affinity threshold, varying from 0 to 1, which controls the
number of clusters.

Presented by Sharan and Shamir [113], CLuster Identification
via Connectivity Kernels (CLICK) algorithm is an innovative
graph-theoretical algorithm based on identifying kernels (cluster)
of highly similar objects. CLICK makes the assumption that
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pairwise similarity between objects is normally distributed. Thus,
the weight of an edge is the probability that its vertexes belong to
the same cluster. CLICK consists of two phases. First, the proce-
dure iteratively finds the minimum cut in the graph and divides the
dataset recursively into a group of connected components from the
minimum cut. In the second phase, CLICK carries out two post-
pruning steps to expand the kernels to final clustering. The adop-
tion step repeatedly assigns remaining singletons to the kernels with
the maximum similarity, and the merging step iteratively merges
two clusters with similarity greater than a predefined threshold.
This approach does not require initial number of clusters. More-
over, not only is CLICK scalable, but it is also very fast.

4.4 Evolutionary

Approaches Based

Clustering

Recently, Evolutionary Approaches (EA) [65] have been combined
with clustering, as not only are they quite effective in searching
optimal solutions, but they are also pretty time-consuming. Moti-
vatedbynatural evolution, these approachesmainly includeEvolution
Strategies (ES), Evolutionary Programming (EP), Genetic Algo-
rithms (GA), Particle Swarm Optimization (PSO), and Ant Colony
Optimization (ACO). For instance, GA are considered effective in
dealing with NP-hard global optimization problems becoming suit-
able for overcoming clustering issues. However, the performance of
GA is affected by predefined input parameters and inherent GA para-
meters fine-tuning for each single problem, e.g., general details ofGA
can be seen in [44] and the references given therein.

On the other hand, Krishna and Murty [79] introduced the
Genetic k-means Algorithm (GKA) as a hybrid approach based on
the genetic algorithm with a gradient descent algorithm and k-
means algorithm. Inspired by GKA, Lu et al. [87] proposed a Fast
Genetic k-means Algorithm (FGKA) where fitness function con-
verges to the global optimum faster than previous algorithm.
Moreover, some of these authors [86] proposed the Incremental
Genetic k-means Algorithm (IGKA) based on clustering centroids
incrementally. More recently, a GA-based Hierarchical Clustering
method (HCGA), focused on finding global optima, provided by
Castellanos-Garzón and Dı́az [23] was applied to the analysis of
DNA microarray data.

Other type of evolutionary approach is PSO developed by
Kennedy and Eberhart [75] which is based on the simulation of
social behavior of birds in a flock, and Xiao et al. [131] provided a
hybrid clustering approach in order to improve the rate of conver-
gence using SOM and PSO.

4.5 Grid-Based

Clustering

These algorithms are based on a multiple-level granularity struc-
ture, i.e., a set of grid cells. Objects are assigned to the appropriate
grid cell, and then the density of each cell is computed. Cells whose
density is below a specified threshold are removed, whereas adja-
cent high-density cells are merged to form clusters [111]. The main
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upside is its fast processing time [54] which depends on the number
of grid cells [109]. Moreover, methods of adaptive grids can auto-
matically regulate the size of grids based on the data distribution
and do not necessarily need the user to specify the grid size or the
density threshold by using STING, WaveCluster, CLIQUE, and
MAFIA [4, 49, 114, 127].

STING (STatistical INformation Grid approach) byWang et al.
[127] is designed to provide “region oriented” required by using
numerical attributes (spatial data).

WaveCluster [114] is a multi-resolution clustering approach,
based on ideas of signal processing. This algorithm applies the
wavelet transform to map spatial data preserving the relative dis-
tance between objects at different levels of resolution
[17, 111]. Considered as both grid-based and density-based clus-
tering approaches, Wavelet is scalable and can handle outliers.

CLIQUE (CLustering In QUEst) by Agrawal et al. [4] is a
multiphase clustering algorithm which automatically finds sub-
spaces of the highest dimensionality in a data space such that
high-density clusters exist in those subspaces. It can be considered
as both density-based and grid-based. MAFIA (Merging Adaptive
Finite IntervAls) is a extent of CLIQUE algorithm which finds
better quality clusters and achieves higher efficiency by
non-uniform grid cells. These subspace clustering techniques
focused on finding clusters within subspaces of the dataset can be
useful for uncovering the complex relationships in microarray
data [101].

4.6 Density-Based

Clustering

This type of approaches is based on the common idea of defining
clusters as connected dense components. The core idea behind
density-based clustering is to find dense regions in the object
space, regions with a high density. Density-based clusters are sepa-
rated from other such regions by regions with low density, which
means that for each object of a cluster, its neighborhood within a
given radius ε has to contain at least a minimum number (minpts) of
other objects. Consequently, regions of lower object density are not
assigned to any cluster. Such methods make assumptions neither
about a specific shape for the cluster, nor about the number of
cluster, nor about the distribution.

The algorithm Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) by Ester et al. [40] is based on the
concepts of density and connectivity in respect of local distribution
of nearest neighbors, and requires an ε-radius and a threshold
minpts to be specified by user in advance. Moreover, DBSCAN
cannot find meaningful clusters in data varying density. To over-
come shortcomings of DBSCAN, the Ordering Points To Identify
the Clustering Structure (OPTICS) algorithm is provided by
Ankerst et al. [9]. By keeping the same two parameters, ε-radius
and minpts, OPTICS covers a range of all variety ε0� ε. Instead of
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relying only on the two parameters, OPTICS also stores two values
for each object: the core-distance and reachability-distance. How-
ever, DBSCAN and OPTICS are not suitable for high-
dimensionality data.

In Hinneburg and Keim [62] another density-based clustering
algorithm, DENCLUE, is introduced to find arbitrary shaped clus-
ters in high-dimensionality data by using a kernel density estimator.
DENCLUE is focused onmodeling the overall object density as the
sum of influence functions of the data objects, where the influence
functions describe the impact of a data object within its neighbor-
hood. A cluster is defined by a local maximum of the estimated
density function, called density attractor. Each object is associated
with the density attractor that is in the direction of maximum
increase in density from the corresponding object. It should be to
notice that the quality of the resulting clustering depends on the
selection of the two parameters, the one which sets the influence of
an object in its neighborhood and the other one that establishes
whether a density attractor is significant.

4.7 Model-Based

Clustering

The core idea behind model-based clustering is to consider data as
from a mixture distribution, e.g., see the pioneering works done by
Banfield and Raftery [12] and Fraley and Raftery [43] for further
details. The main purpose is to find the unobserved label for each
object xi with i ¼ 1, 2, . . ., n, such as zi ¼ g if xi comes from cluster
g with g ¼ 1, 2, . . .k, and fðxi ,ziÞgni¼1 is referred to as the complete
dataset. In other words, objects are grouped by using finite mixture
models in such way that each mixture component represents a
cluster. Thus, it is said that a random vector X arises from a k-
component (or k-cluster) mixture model if, for all x ∈X, its density
probability function can be written as f ðxjθÞ ¼ Pk

g¼1 πg f gðxjθgÞ,
where the mixing proportions πg ∈ [0, 1] such as

Pk
g¼1 πg ¼ 1 and

fg(x|θg) is the conditional density function of the gth mixture
component for g ¼ 1, . . ., k [93, 94].

In general for continuous data, and in particular for microarray,
finite normal mixture distributions are commonly used [100]. Mix-
ture distributions are fitted by maximum likelihood using the
Expectation-Maximization (EM) algorithm [31]. This two-step
iterative optimization algorithm is focused to find mixture model
parameters that maximize the log-likelihood. These methods pres-
ent upsides over heuristic approaches, for example, to asses uncer-
tainty about resulting clustering and estimate the number of
clusters [28]. Model-based clustering approaches for gene expres-
sion data are discussed in [69, 92], among others. A model-based
clustering approach is AutoClass [1], where the finite mixture
model is supplemented by a Bayesian method and the optimal is
determined by EM algorithm. AutoClass is used to find class
description, without specifying number of classes, and applied on
microarray data.
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Apart from this probabilistic approach, there are model-based
clustering algorithms based on statistical learning method and
neural network learning method [132]. Proposed by Kohonen
[77], Self-Organizing Feature Map (SOM or SOFM) is a well-
known model-based clustering approach [111] widely applied in
gene expression clustering [14, 76], and based on a single-layered
Artificial Neural Network (ANN) where the SOM is constructed by
training [14]. From data objects as input, the output neurons
represent clusters, but also objects connected to the prototype
neurons. SOM generates an intuitive appealing map of a high-
dimensional dataset in one-, two-, or three-dimensional space
where similar clusters are placed close to each other. Before cluster-
ing starts, each neuron of the neural network is associated with a
random weight pattern (also called reference vector). During train-
ing, objects are mapped repeatedly. Thus, clustering is performed
by having neurons compete for the current training data object.
The winning neuron is that one with the closest reference vector,
which is updated to even closer. When the training is complete, the
mapping of all objects to the output neurons conducts the identifi-
cation of clusters.

SOMs are pretty used as vector quantization method
[111]. SOMs are robust to noise and outliers as neuron learning
process, dependent on distance metric and neighborhood function
used [69, 76]. Due to their linear run time [14], SOMs have
efficient in handling large-scale datasets. Tamayo et al. [121]
depicted one of the first uses of SOMs for clustering of microarrays.

To get over pitfalls of SOM, Su and Chang [120] developed the
Double SOM (DSOM) in order to determine the number of
clusters. In this approach, each node is associated with an n-dimen-
sional weight vector and a two-dimensional position vector which
are updated as learning process goes. Even though the number of
clusters can be revealed from the final location of position vectors,
ADaptive DSOM (ADSOM) is an improvement on DSOM by
updating the free parameters involved in DSOM [33].

Applied on microarray data, Hsu et al. [63] combined dynamic
SOM tree and Growing SOM (GSOM) getting an appropriate
number of clusters and optimal. Self-Organizing Tree Algorithm
(SOTA) [60], Dynamically Growing Self-Organizing Tree
(DGSOT) algorithm [88], and Growing Hierarchical Tree SOM
(GHTSOM) [42] are based on neural networks combined with
hierarchical clustering. Such tree structured self-organizing net-
works incorporate speed and robustness to noise along with lenient
requirement for a number of clusters specification and training as
strengths to deal with characteristics of gene expression data [76].

4.8 Soft Clustering In contrast with hard clustering, soft approaches can assign one
gene to more than one cluster (fuzzy assignment), if their expres-
sion patterns are similar, allowing genes to be captured in multiple
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transcriptional programs and biological processes. Thus, whereas
crisp membership is boolean, fuzzy membership is given by a
membership weight from 0 to 1. Fuzzy c-means (FCM) algorithm
was developed by Dunn [36], and enhanced by Bezdek [19] as
iterative optimization of an objective function to minimize the
variation of objects within clusters [58, 80]. On the other hand, it
also has a priori requirement of c value and outliers can be assigned
with similar membership in each cluster. Over the years, variants of
FCM have been provided, for example, fuzzy J-means [13] and
FuzzySOM [102]. Whereas the first algorithm is focused on avoid-
ing cluster solution trapped in local minima, the second one is
based on SOM for the assignment of cluster centroids into a grid.

Fuzzy clustering by Local Approximation of MEmbership
(FLAME) [45] deals with neighborhood relationships and fuzzy
membership assignment by local approximation [72]. FLAME can
capture non-linear relationships and non-globular clusters, auto-
mate definition of the number of clusters, and identify cluster out-
liers [99]. For more details, e.g., see [83].

4.9 Multi-Objective

Clustering

Multi-objective clustering combines several clustering criteria
which are optimized simultaneously. Thus, Handl and Knowles
[55] proposed anMOO (Multi-Objective Optimization) clustering
algorithm with automatic k-determination (MOCK) based on first
maximizing cluster compactness, and then maximizing cluster con-
nectivity. MOCK algorithm can automatically find the appropriate
partitioning having either hyperspherical-shaped cluster or well-
separated clusters [84], and ends up with a number of Pareto
optimal solutions. In MOCLE (Multi-Objective CLustering
Ensemble) algorithm provided by Fareli et al. [41], aspects from
multi-objective methods and cluster ensemble techniques are
integrated. MOCLE is applied to the clustering analysis of micro-
array data with cancer in [119].

Introduced by Bandyopadhyay et al. [10], Archived Multi-
Objective Simulated Annealing (AMOSA) algorithm is based on
an MOO technique which enhances the performance for problems
with many objectives. More recently, ε-AMOSA includes the con-
cept of ε-dominance improving onAMOSA approach [11]. Readers
can find an updated review about multi-objective clustering
in [103].

5 Multiclustering Techniques

In microarray data, the number of genes may range from 103 to 104

(being expected to reach 106), whereas the amount of experimental
conditions is usually less than 100 [69]. This characteristic of the
microarray data has yielded to apply clustering to both genes and
samples by using two-way clustering methods, and [47] analyzed
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different aspects of two-way clustering methods, i.e., clustering
applied to both genes and samples, under several specifications of
the clustering algorithm and similarity measures.

As extension of clustering, these techniques are focused on
extracting the genes which are correlated only in a subset of sam-
ples, in other words biclustering allows simultaneous clustering of
both rows and columns in the data matrix [8]. Considering the
kind of the searched biclusters and the mathematical formulation
employed to identify them, biclustering techniques are classified
into four categories [98].

Correlation Maximization Biclustering methods (CMB) seek for
subsets of genes and samples where the expression values of the
genes (samples) are highly correlated with the samples (genes)
[8, 98]. Examples of this class are the CC algorithm [24], and the
FLOC algorithm proposed by Yang et al. [133] which overcomes
the drawback of random interference caused by masking discovered
biclusters in the CC algorithm.

Variance Minimization Biclustering methods (VMB) seek for
subsets characterized by expression values with low variance
throughout the selected genes, conditions, or the whole submatrix
[98]. For instance, the conserved gene expression motif (XMO-
TIF) method proposed by Murali and Kasif [96] aims to find
biclusters with constant value at rows [39].

Two-Way Clustering methods (TWC) identify biclusters by iter-
atively carrying out one-way clustering on the genes and samples
[98]. As an example of this class, it can be considered the Coupled
Two-Way Clustering method (CTWC) proposed by Getz et al.
[47] which alternates row and column clustering approaches by
using any clustering algorithm.

Finally, Probabilistic and Generative methods (PGM) use prob-
abilistic procedures in order to identify genes (samples) similarly
expressed across a subset of samples (genes). For example, the
cMonkey developed by Reiss et al. [105] models the biclusters by
using a Markov chain process.

In regard to triclustering methods, Jiang et al. [70] introduce a
set enumeration-based method to mine triclusters from three-
dimensional datasets using Pearson correlation coefficient,
providing two variants of the method to extract triclusters that are
spread over all the time points. TRICLUSTER [136] is another
well-known triclustering method that extracts maximal triclusters
from three-dimensional datasets using a graph-theoretic approach.
gTRICLUSTER [71] uses Spearman rank correlation coefficient to
measure local similarities among objects across time points in order
to detect more cluster patterns and be more robust to noise. ICSM
[5] is a triclustering method that operates on possible pairs of gene-
sample planes and detects some initial modules which are further
extended to triclusters by using a planar similarity measure.
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6 Clustering Validation

In unsupervised methods, the assumption of the existence of
underlying patterns in the data is an important weakness, and
therefore, the resulting clustering should be validated [20]. Apart
from determining the number of clusters, assessing the goodness of
such a number and the induced cluster assignments is particularly
crucial in cluster analysis of gene expression data. As mentioned in
[95], the clustering results are especially sensitive to noise and
susceptible to overfitting because of the nature of high dimension-
ality and relatively small sample size in such datasets.

Available validity indexes are used to assess the goodness of
clustering obtained, such as Silhouette width [107], Calinski-
Harabasz [22], Dunn [37], and Davies-Boudin [30] measure-
ments. These well-known indexes take into consideration the com-
pactness of the objects into the same cluster and the separability
between clusters, which are two internal properties for the valida-
tion. A brief description of these cluster validity indexes can be
found in [85], and from each of them a general rule for interpreta-
tion can be derived. The smallest (highest) the value of the last
(three first) validity index (indexes), the best the resulting cluster-
ing is. It is worth noting the Silhouette width index since it enables
to measure the goodness of the clustering outputs for both samples
and features, which is given by silðxiÞ ¼ ðbi � aiÞ=maxðai, biÞ, for
i ¼ 1, . . ., n, where ai is the mean distance between the object
xi and the rest in the same cluster, and bi is the mean distance
between the object xi and the ones of the “nearest neighboring
cluster.” Its value varies between �1 and 1 indicating how well the
object xi has been assigned. A value close to 1 (�1) indicates “well-
classified” (“misclassified”). A value close to zero means that the
object lies equally far away from the cluster assigned and the nearest
neighboring one. Second, the overall goodness of the clustering
may be evaluated by the global Silhouette coefficient, which is
defined by the mean of the sil scores. Kaufman and Rousseeuw
[74] suggested the interpretation of the global Silhouette width
score as the effectiveness of the clustering structure: there is no
substantial clustering structure into [�1, 0.25], it is weak and could
be artificial into (0.25, 0.5], there is a reasonable clustering struc-
ture into (0.5, 0.7], and a strong clustering structure into (0.7, 1]
(see Fig. 9).

Furthermore, Lord et al. [85] have recently introduced a new
procedure to analyze the robustness of individual objects in a
clustering. This procedure provides a novel individual stability
index based on a global validity index. Thus, its related cluster
and global stability indexes measure the robustness of the clustering
and improve the ability to determine the optimal number of clus-
ters. For instance, Lord et al. [85] propose a global stability index
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for each one of the above four validity indexes, which allows the
comparison among them.

Research in this framework emphasizes the evaluation of the
existing clustering quality measures in high-dimensional data, e.g.,
see [123]. More recently, Dash and Misra [29] have conducted a
grading approach over five clustering techniques applied to five
microarray datasets in order to find a stable technique considering
seven validity indexes.

Despite external evaluation being strongly beneficial for assess-
ment of the clustering results, a gold standard is rarely available to
carry out it. In this context, indexes for clustering comparison
measure the similarity between the clustering and a ground truth
partition or gold standard, and the stability of the resulting clusters.
For example, the Rand index [104] is given by the ratio of concor-
dant pairs of objects between both of them, i.e.,R ¼ c n

2

� ��1
, where

c is the number of pairs of objects that are in the same cluster of the
output and in the same cluster of the gold standard plus the number
of pairs of objects that are in different clusters of the output and in
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different clusters of the gold standard. The Jaccard index [59]
measures the stability of each cluster of the output through the
proportion of concordant objects between the cluster and the most
similar one by a resampling approach. Related indexes involved in
such task and other measurements on the accuracy of a discriminant
method, e.g., see [126] and the references given therein, are usually
discussed in classification analysis.

7 Summary

The recent explosion of microarray data has posed methodological
and computational challenges in cluster analysis due to the inherent
nature of such datasets. The potential of these unsupervised meth-
ods to detect patterns in microarray data, along with the limitations
of the traditional clustering algorithms to handle high-dimen-
sional-low-sample-sized data, has promoted the need to develop
sophisticated clustering algorithms that can statistically
analyze them.

In this chapter, we have intended to provide an overview on the
clustering algorithms of both the first and second generation within
the framework of microarray data. Moreover, owing to the many
choices of available algorithms, validity indexes used to assess the
goodness of clustering solutions are discussed as last stage of the
cluster analysis process of microarray data. As reflected in this
review, recent techniques developed for performing efficient clus-
terings on sets with a large number of data have been able to
overcome many drawbacks arisen from traditional approaches on
microarray data. Currently, developed and adapted clustering algo-
rithms are assisted by available software solutions which spread their
use because they make their application easy, fast, and reliable.
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sis. Sankhyā A 55:494–505

49. Goil S, Nagesh H, Choudhary A (1999)
MAFIA: efficient and scalable subspace clus-
tering for very large data sets. In: Proceedings
5th ACM SIGKDD 99. http://www.acade
mia.edu/download/38278360/
goil99mafia.pdf

50. Golub TR, Slonim DK, Tamayo P et al
(1999) Molecular classification of cancer:
class discovery and class prediction by gene
expression monitoring. Science 286:531–537

51. Gollub J, Sherlock G (2006) Clustering
microarray data. In: Kimmel AR, Oliver B
(eds) DNA microarrays: databases and statis-
tics Part B. Academic Press, San Diego

52. Guha S, Rastogi R, Shim K (2000) ROCK: a
robust clustering algorithm for categorical
attributes. Inform Syst 25-345–366

53. Guha S, Rastogi R, Shim K (2001) CURE: an
efficient clustering algorithm for large data-
bases. Inform Syst 26:35–58

54. Han J, Kamber M, Pei J (2011) Data mining:
concepts and techniques, 3rd edn. Morgan
Kaufman, San Francisco

55. Handl J, Knowles J (2007) An evolutionary
approach to multi-objective clustering. IEEE
Trans Evol Comput 11:56–76

56. Hartuv E, Schmitt A, Lange J et al (1999) An
algorithm for clustering cDNAs for gene
expression analysis. In: Proceedings 3rd
RECOMB 99. https://doi.org/10.1145/
299432.299483

57. Hartuv E, Shamir R (2000) A clustering algo-
rithm based on graph connectivity. Inform
Proc Lett 76:175–181

58. Hathaway RJ, Bezdek JC (1985) Local con-
vergence of the fuzzy c-means algorithms.
Pattern Recognit 19:477–480

59. Hennig C (2007) Cluster-wise assessment of
cluster stability. Comput Stat Data Anal
52:258–271

60. Herrero J, Valencia A, Dopazo J (2001) A
hierarchical unsupervised growing neural net-
work for clustering gene expression patterns.
Bioinformatics 17(2):126–136

61. Heyer LJ, Kruglyak S, Yooseph S (1999)
Exploring expression data: identification and

180 Manuel Franco and Juana-Marı́a Vivo

https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
https://doi.org/10.1080/1351847X.2017.1392332
https://doi.org/10.1080/1351847X.2017.1392332
https://doi.org/10.1186/1471-2105-8-3
http://www.academia.edu/download/38278360/goil99mafia.pdf
http://www.academia.edu/download/38278360/goil99mafia.pdf
http://www.academia.edu/download/38278360/goil99mafia.pdf
https://doi.org/10.1145/299432.299483
https://doi.org/10.1145/299432.299483


analysis of coexpressed genes. Genome Res
9:1106–1115

62. Hinneburg A, Keim DA (1998) An efficient
approach to clustering in large multimedia
databases with noise. In: Proceedings 4th
KDD 98, vol 98, pp 58–65

63. Hsu AL, Tang S, Halgamuge SK (2003) An
unsupervised hierarchical dynamic self-
organizing approach to cancer class discovery
and marker gene identification in microarray
data. Bioinformatics 19:2131–2140

64. Irigoien I, Mestres F, Arenas C (2013) The
depth problem: identifying the most repre-
sentative units in a data group. IEEE Trans
Comput Biol Bioinform 10:161–172

65. Jain AK, Murty MN, Flynn PJ (1999) Data
clustering: a review. ACM Comput Surv
31:264–323

66. Jain AK, Dui RPW, Mao J (2000) Statistical
pattern recognition: a review. IEEE Trans Pat-
tern Anal Mach Intell 22:4–37

67. Jardine CJ, Jardine N, Sibson R (1967) The
structure and construction of taxonomic hier-
archies. Math Biosci 1:173–179

68. Jaskowiak PA, Campello RJ, Costa IG (2014)
On the selection of appropriate distances for
gene expression data clustering. BMC Bioin-
form 15(S2):S2. https://doi.org/10.1186/
1471-2105-15-S2-S2

69. Jiang D, Tang C, Zhang A (2004) Cluster
analysis for gene expression data: a survey.
IEEE Trans Knowl Data Eng 16:1370–1384

70. Jiang MRCTD, Pei J, Zhang A (2004)
Mining coherent gene clusters from gene-
sample-time microarray data. In: Proceedings
10th ACM SIGKDD 04. https://doi.org/10.
1145/1014052.1014101

71. Jiang H, Zhou S, Guan J et al (2006)
gTRICLUSTER: a more general and effective
3D clustering algorithm for gene-sampletime
microarray data. In: Proceedings BioDM06.
Lecture notes in computer science, vol 3916.
Springer, Berlin, pp 48–59

72. Kafieh R, Mehridehnavi A (2013) A compre-
hensive comparison of different clustering
methods for reliability analysis of microarray
data. J Med Signals Sens 3:22–30

73. Karypis G, Han EH, Kumar V (1999) Cha-
meleon: hierarchical clustering using dynamic
modeling. IEEE Comput 32(8):68–75

74. Kaufman L, Rousseeuw PJ (1990) Finding
groups in data: an introduction to cluster
analysis. Wiley, New York

75. Kennedy J, Eberhart RC (1999) Particle
swarm optimization. In: Proceedings 1995
IEEE neural networks. https://doi.org/10.
1109/ICNN.1995.488968

76. Kerr G, Ruskin HJ, Crane M et al (2008)
Techniques for clustering gene expression
data. Comput Biol Med 38:283–293

77. Kohonen T (1990) The self-organizing map.
Proc IEEE 78(9):1464–1480

78. Korte B, Vygen J (2006) Combinatorial opti-
mization. Theory and algorithms, 3rd edn.
Springer, Berlin

79. Krishna K, Murty M (1999) Genetic K-means
algorithm. IEEE Trans Syst Man Cybern B
29:433–439

80. Kumar L, Futschik ME (2007) Mfuzz: a soft-
ware package for soft clustering of microarray
data. Bioinformation 2(1):5–7

81. Liew AWC, Law NF, Yan H (2011) Missing
value imputation for gene expression data:
computational techniques to recover missing
data from available information. Brief Bioin-
form 12:498–513

82. Liu J, Pham TD (2011) Fuzzy clustering for
microarray data analysis: a review. Curr Bioin-
form 6:427–443

83. Liu R, Liu Y, Li Y (2012) An improved
method for multi-objective clustering ensem-
ble algorithm. In: Proceedings 2012 IEEE
WCCI. https://doi.org/10.1109/CEC.
2012.6252972

84. Lord E, Willems M, Lapointe FJ et al (2017)
Using the stability of objects to determine the
number of clusters in datasets. Inform Sci
393:29–46

85. Lu Y, Lu S, Deng Y et al (2004) Incremental
genetic K-means algorithm and its application
in gene expression data analysis. BMC Bioin-
form 5:172. https://doi.org/10.1186/
1471-2105-5-172

86. Lu Y, Lu S, Fotouchi F et al (2004) FGKA: a
fast genetic K-means clustering algorithm. In:
Proceedings 2004 ACM SAC. https://doi.
org/10.1145/967900.968029

87. Luo F, Khan L, Bastani F et al (2004) A
dynamically growing self-organizing tree
(DGSOT) for hierarchical clustering gene
expression profiles. Bioinformatics 20
(16):2605–2617

88. Macnaughton-Smith P, Williams WT, Dale
MB et al (1964) Dissimilarity analysis: a new
technique of hierarchical sub-division. Nature
202:1034–1035

89. MacQueen J (1967) Some methods for classi-
fication and analysis of multivariate observa-
tions. In: Proceedings 5th Berkeley Symp
Math Stat Prob. https://projecteuclid.org/
download/pdf_1/euclid.bsmspp/
1200512992

90. Mahalanobis PC (1936) On the generalized
distance in statistics. In: Proceedings of

Cluster Analysis of Microarray Data 181

https://doi.org/10.1186/1471-2105-15-S2-S2
https://doi.org/10.1186/1471-2105-15-S2-S2
https://doi.org/10.1145/1014052.1014101
https://doi.org/10.1145/1014052.1014101
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/CEC.2012.6252972
https://doi.org/10.1109/CEC.2012.6252972
https://doi.org/10.1186/1471-2105-5-172
https://doi.org/10.1186/1471-2105-5-172
https://doi.org/10.1145/967900.968029
https://doi.org/10.1145/967900.968029
https://projecteuclid.org/download/pdf_1/euclid.bsmspp/1200512992
https://projecteuclid.org/download/pdf_1/euclid.bsmspp/1200512992
https://projecteuclid.org/download/pdf_1/euclid.bsmspp/1200512992


National Institute of Sciences of India.
http://www.insa.nic.in/writereaddata/
UpLoadedFiles/PINSA/Vol02_1936_1_
Art05.pdf

91. McLachlan GJ, Bean RW, Peel D (2002) A
mixture model-based approach to the cluster-
ing of microarray expression data. Bioinfor-
matics 18(3):413–422

92. McNicholas PD (2016) Model-based cluster-
ing. J Classif 33:331–373

93. McNicholas PD, Murphy TB (2010) Model-
based clustering of microarray expression data
via latent Gaussian mixture models. Bioinfor-
matics 26:2705–2712

94. Monti S, Tamayo P, Mesirov J et al (2003)
Consensus clustering: a resampling-based
method for class discovery and visualization
of gene expression microarray data. Mach
Learn 52:91–118

95. Murali TM, Kasif S (2003) Extracting con-
served gene expression motifs from gene
expression data. Pac Symp Biocomput
8:77–88

96. Ng RT, Han J (2002) Clarans: a method for
clustering objects for spatial data mining.
IEEE Trans Knowl Data Eng 14
(5):1003–1016

97. Oghabian A, Kilpinen S, Hautaniemi S et al
(2014) Biclustering methods: biological rele-
vance and application in gene expression anal-
ysis. PLoS One 9:e90801. https://doi.org/
10.1371/journal.pone.0090801

98. Oyelade J, Isewon I, Oladipupo F et al (2016)
Clustering algorithms: their application to
gene expression data. Bioinform Biol Insights
10:237–253

99. Pan W, Lin J, Le CT (2002) Model-based
cluster analysis of microarray gene-expression
data. Genome Biol 3(2):research0009.1-
0009.8. http://genomebiology.com/2002/
3/2/research/0009.1

100. Parson L, Haque E, Liu H (2004) Subspace
clustering for high dimensional data: a review.
In: Proceedings 10th ACM SIGKDD.
https://doi.org/10.1145/1007730.
1007731

101. Pascual-Marqui RD, Pascual-Montano AD,
Kochi K et al (2001) Smoothly distributed
fuzzy c-means: a new self-organizing map.
Pattern Recognit 34:2395–2402

102. Pizzuti C (2017) Evolutionary computation
for community detection in networks: a
review. IEEE Trans Evol Comput. https://
doi.org/10.1109/TEVC.2017.2737600

103. Rand WM (1971) Objective criteria for the
evaluation of clustering methods. J Am Stat
Assoc 66:846–850

104. Reiss DJ, Baliga NS, Bonneau R (2006)
Integrated biclustering of heterogeneous
genome-wide datasets for the inference of
global regulatory networks. BMC Bioinform
7:280–302
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Chapter 8

Classification of Microarray Data

Noelia Sánchez-Maroño, Oscar Fontenla-Romero,
and Beatriz Pérez-Sánchez

Abstract

The automatic classification of DNA microarray data is one of the hot topics in the field of bioinformatics,
since it is an effective tool for the diagnosis of diseases in patients. The aim of this chapter is to present the
most relevant aspects related to the classification of microarrays. We carried out an analysis of the strategies
used for the classification of microarray data and a review of the main methods used in the literature. In
addition, other related aspects are addressed as the reduction of dimensionality, to try to eliminate
redundant information in genes, or the treatment of imbalanced data and missing of data. To conclude,
we present an exhaustive review of the main scientific works in journals to show the most successful
techniques applied in this discipline as well as the most used datasets to verify their effectiveness.

Key words Classification problems, Classification methods, Microarray, Machine learning, Data
preprococessing

1 Introduction

Microarray technology is being widely used, among other applica-
tions, for the diagnosis of diseases, including cancer. Microarray
classification is a supervised learning task that provides the diagnos-
tic category of a tissue sample from its expression array phenotype.
For this, it employs labeled data samples and supplies a model that
classifies new data samples into different predefined diseases. There
are two important challenges that the models used for the classifi-
cation of microarray data have to face: a low number of instances,
often from less than hundreds of patients, and a high dimensional-
ity coming from tens of thousands of genes. These characteristics
mean that not all machine learning models are able to obtain a
reliable classifier to predict future samples, since many will not
adequately generalize from the training data.

In this chapter, we review the machine learning methods most
commonly used in the field of microarray classification and, also,
related aspects of data preprocessing such as dimensionality
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reduction strategies and the treatment of imbalanced data and
missing data. Besides, the most remarkable validation techniques
and evaluation measures employed to check the performance of the
classifiers are analyzed. Finally, we present an exhaustive analysis of
the main recent contributions in the field during the last years and
the reference datasets employed in the experimental studies con-
ducted in the literature.

2 Classification Problems

The goal in classification is to take an input vector x and to assign it
to one of the c discrete classes. In the most common scenario, the
classes are taken to be disjoint, so that each input is assigned to one
and only one class. The simplest classification problem consists in
distinguishing between two classes (c ¼ 2) and it is called binary
classification, a more complex task considers a higher number of
classes (c > 2) and it is known as multiple classes classification.
Research has demonstrated convincingly that accurate cancer diag-
nosis can be achieved by performing microarray data classification,
i.e., by constructing classifiers to compare the gene expression
profile of a tissue of unknown cancer status to a database stored
expression profiles from tissues of known cancer status [1]. Binary
classification has attracted most of the interest in the microarray
field because many problems try to distinguish between healthy and
non-healthy patients. However, trying to classify the different types
of cancer is not an easy-to-solve question and different strategies
can be adopted. The next subsection copes with these strategies.

2.1 Multiple Classes There are two basic approaches to deal with classifying multiple
classes: one is to use classification algorithms that can deal directly
with multiple classes, and the alternative is to divide the original
problem into several classification problems [2].

Some authors conclude that there is not a method that outper-
forms every other one, and that the method to be used in order to
obtain the best results will depend on the problem, and also on the
user-defined constraints, such as the desired level of accuracy, the
time available for obtaining a solution, etc. [3]. Classifiers that may
cope directly with multiple classes are: extreme learning machine
(ELM) [4], ridge regression (RR), and kernel ridge regression
(KRR) [5], decision trees and random forest [5], naive Bayes [6],
and so on.

There are different schemes to transform the multiple classes
problem into several binary problems, known as binarization stra-
tegies, the most popular are:

l One-versus-rest (OVR): it transforms a problem with c classes in
c binary problems. The elected class represents the positive
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samples and the remaining classes the negative ones. It is also
known as one-versus-all (OVA).

l One-versus-one (OVO): it generates a classifier to confront each
pair of classes, therefore, there are l ¼ c(c � 1)/2 classifiers.

l The error-correcting output-codes (ECOC) method [7]. In this
method the output is transformed by using a matrix Ml�c which
columns are the number of classes (c) and its rows the number of
classifiers (l). The authors [7] suggest that the number of classi-
fiers l must be higher than the minimum number necessary to
differentiate each class uniquely. The additional bits introduce a
redundancy in the classes codification and provide the system the
capability to recover from classification errors committed by
some of its predictors.

Transforming the multiple class problem into several binary pro-
blems is a coding technique that requires a counterpart, i.e., a
decoding technique. This decoding technique should integrate
the information provided by all the classifiers into a unique solu-
tion. Among them, distance-based decoding is the most commonly
used scheme [8] when ECOC is applied, mainly using Hamming or
Euclidean distance. Besides these distance-based decoding strate-
gies, researchers also proposed some other schemes based on loss
function [8]. Majority voting is a common strategy when leading
with OVO decomposition, whereas OVR binarization usually
requires the base classifiers to produce a real-valued confidence
score for achieving a solution, otherwise multiple classes can be
predicted for a single sample.

There are many other techniques for generating the binary
problems and to obtain the final results, the interested reader may
consult [9].

3 Overview of Classifiers

Microarray data have two particular characteristics that differentiate
it from most of the datasets used in automatic classification tasks:
high dimensionality and a small number of instances. This causes
that many of the machine learning methods have difficulties to
carry out the task of classification in a way that they generalize
adequately, mainly due to problems of overfitting the data or the
curse of dimensionality. For this reason, many of the methods used
in the literature are based on simple models, of linear type, or on
nonlinear models designed specifically to alleviate the problems of
overfitting. The most used methods in the literature for microarray
classification are described in the following subsections.
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3.1 k-Nearest

Neighbors (k-nn)

This algorithm is based on a very simple and intuitive idea, which
together with its easy implementation makes it a very extended
classification paradigm. The basic idea on which it is based is that
a new instance is going to be classified in the most frequent class to
which its nearest k neighbors belong. To do this, a metric will be
used that allows to measure the distance between data points. This
is a lazy algorithm since it does not perform a training process, like
the vast majority of learning models, but simply stores in memory
the data and its class, provided for the learning of the model, and
when it is necessary to classify future samples it calculates the
distances of that new data with all those stored in memory. Once
the distances have been calculated, they are ordered from least to
greatest. The class for the new data is then assigned using the
majority class among the k samples with the least distance. Figure 1
graphically shows an example of the algorithm for k ¼ 3 and k ¼ 5.

An important issue in this method is the determination of the
optimal value of k. It is empirically ascertained that the percentage
of well-classified cases is non-monotonous with respect to k.

3.2 Support Vector

Machines (SVM)

While most of the learning methods focus on minimizing the errors
made by the model generated from the training examples (empiri-
cal error), the inductive bias associated with the SVMs lies in mini-
mizing the so-called structural risk. The idea is to find a separation
hyperplane that is equidistant from the closest examples of each
class, in order to achieve what is called a maximum margin on each
side of the hyperplane. When defining the hyperplane, only the
training examples of each class that fall just at the border of those
margins are relevant. These examples are called support vectors.
Figure 2 shows an example of two possible hyperplanes (a line in
this 2D case) that separate a toy dataset. The line on the right has a
greater margin than the line on the left. From a practical point of
view, the maximum margin hyperplane has shown to have a good

Fig. 1 Example of classification for k-nn algorithm using k ¼ 3 and k ¼ 5
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generalization capacity, avoiding to a large extent the problem of
overfitting to the training examples. This is a very desirable charac-
teristic, especially in microarray sets, since they are usually sets
composed of few samples and many variables per sample.

In the SVM, the searching process to find the parameters that
define the maximummargin hyperplane can be done independently
of the dimensionality of the problem to be solved, which is also an
advantage in the case of microarrays datasets that usually have a
high dimensionality. On one hand, if the dimensionality is low, it is
enough to directly solve the associated primal optimization prob-
lem. On the other hand, if the dimensionality is very high, it is
enough to transform the primal problem into its equivalent dual
problem and solve the latter problem.

For high-dimensional problems, as the microarray datasets,
sometimes the data are linearly separable. However, in the general
case they are not and, then, there is no straight hyperplane that can
separate the classes. In the case of problems that are not linearly
separable, there is an alternative formulation based on a soft margin
that has a hyperparameter, usually called C, which measures the
trade-off between the training errors and the maximization of the
margin. In this case, this formulation allows the decision margin to
make a few mistakes, i.e., points inside or on the wrong side of the
margin. Then, the hyperparameterC is a regularization term, which
provides a way to control overfitting.

In addition, SVMs can be extended to nonlinear models for the
classification of nonlinearly separable data. For this, the strategy
consists in mapping the original input space into a higher-
dimensional feature space in which the training dataset is linearly
separable. The process is based on two steps. First, the input data

(a) (b)

Fig. 2 Example of two separating lines. The line on the right has a greater margin and then a better
generalization capacity. (a) A line separating the data with a small margin. (b) A line separating the data
with a large margin
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are transformed into high-dimensional feature vectors and, later,
SVM is used to find the optimal hyperplane in the feature space.
Thus, although the obtained hyperplane is a linear separating func-
tion in the new feature space, it is a nonlinear function in the
original input space. This transformation is achieved using what is
known as the “the kernel trick.” The choice of a proper kernel
function is important, since it defines the feature space in which
the training instances should be classified.

For all the aforementioned, the SVM is the most popular
classification method for microarray datasets as it obtains good
generalization results, mainly because it avoids overfitting by
choosing the maximum margin hyperplane among all those that
can separate the data in the feature space. In addition, the SVM uses
a straightforward learning algorithm that solves a convex optimiza-
tion problem that contains a unique minimum avoiding the prob-
lem of local minima. Therefore, for a given dataset, the training
process always converges to the same solution regardless of the
starting conditions used, unlike other learning methods as, for
example, artificial neural networks.

3.3 Decision Trees

and Random Forests

Decision trees are one of the most popular classification models in
bioinformatics, especially due to their capacity to represent the
results in a format which is easy to interpret for humans. The aim
of this method is to generate a tree whose leaves are linked with a
specific value of the class and whose inner nodes represent descrip-
tive attributes. Given an inner node, each child corresponds to an
alternative value of the associated attribute. To build decision trees,
such as C4.5 [10] or CART [11], usually a top-down heuristic
search with recursive partitioning is used. The most important
step in tree growing is to select the best attribute to split a node.
Starting from a heterogeneous training set, in terms of the variation
in the class label, each attribute is independently evaluated using a
statistic to determine how well it classifies the training samples.
With this purpose, several measures have been designed to evaluate
the degree of inhomogeneity, or impurity, in a set. For decision
trees, the two most common measures are entropy and the Gini
index. The best attribute is selected using any of these measures to
split the training samples. This process is recursively repeated to
split the descendant nodes until some pre-established stopping
criteria is achieved. This search algorithm is greedy since it never
backtracks to reconsider its previous decisions. Usually this phase is
followed by a bottom-up pruning step to avoid overfitting.

Although decision trees generate efficient models, they are
unstable and tend to overfit training data, which can give poor
generalization results. Because of this, they are often used in classi-
fier ensembles. Random forests [12] are a type of nonparametric
predictive models consisting of an ensemble of classification trees,
where each tree has been trained using a bootstrap sample of

190 Noelia Sánchez-Maroño et al.



individuals from the data. They are a combination of tree predictors
such that each tree depends on the values of a random vector
sampled independently and with the same distribution for all trees
in the forest. Random forests classify an instance by assigning it to
each tree of the forest and each tree gives an individual classifica-
tion. Subsequently, the forest chooses the class with the most votes
from all the trees. Unlike classical decision trees, in random forest
there is no need to prune trees since the ensemble and bootstrap-
ping schemes help them to overcome overfitting issues.

Each tree in the forest is constructed, from data having
n instances and m variables, as follows:

1. From the whole dataset, select a training set by choosing
n instances with replacement.

2. At each node in the tree, randomly select s variables from the
m variables in the dataset, where s << m. The value of
s remains constant throughout the entire process.

3. Get the best split at each node from among the subset of
s variables selected in the previous step.

4. Iterate steps 2 and 3 until the tree is fully grown.

The random sampling and ensemble strategies utilized by ran-
dom forest allow it to get accurate predictions as well as achieving a
good generalization capacity. Also, unlike many of the machine
learning models, it allows the use of various types of variables
(continuous, categorical, etc.) and its results are interpretable.
This is an important characteristic, since in many of the bioinfor-
matics problems the interpretability of predictive algorithms is
considered as important as the prediction accuracy.

4 Data Preprocessing

In machine learning, there are many preprocessing techniques that
can be applied to improve the performance results of any classifier.
In this section we focus on those employed for microarray datasets.

4.1 Dimensionality

Reduction

The high dimensionality of data has an important impact in
learning algorithms, since they degrade their performance when a
number of irrelevant and redundant features are present. In fact,
this phenomenon is known as the curse of dimensionality, because
unnecessary features increase the size of the search space and make
generalization more difficult.

Dimensionality reduction is the transformation of high-
dimensional data into a meaningful representation of reduced
dimensionality. Ideally, the reduced representation should have a
dimensionality that corresponds to the intrinsic dimensionality of
the data, i.e., the minimum number of parameters needed to
account for the observed properties of the data. This dimensionality
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reduction helps to mitigate the curse of dimensionality and other
undesired properties of high-dimensional spaces [13]. Another
important reason to reduce dimensionality is to help biologists to
identify the underlying mechanism that relates gene expression to
diseases. Dimensionality reduction techniques can be divided into
feature extraction and feature selection. Feature extraction (FE) is a
process that extracts a set of new features from the original features
through some functional mapping [14]. Classical examples are
principal component analysis (PCA) and multidimensional scaling
(MDS) [15].

Feature selection (FS) is defined as the process of identifying
and removing irrelevant and redundant features from the training
data, so that the learning algorithm focuses only on those aspects of
the training data useful for analysis and future prediction. This
reduction in the input dimensionality implies, most of the time,
an improvement in the performance. There are three main models
that deal with feature selection: filter methods, wrapper methods,
and embedded methods. While wrapper models involve optimizing
a predictor as part of the selection process, filter models rely on the
general characteristics of the training data to select features with
independence of any predictor. The embedded methods generally
use machine learning models for classification, and then an optimal
subset of features is built by the classifier algorithm. Although
wrapper model tends to obtain better performances, it is very
time consuming and has the risk of overfitting due to the reduced
number of instances of microarray data and the small ratio between
number of samples and number of features [16].

In the past several decades, many dimensionality reduction
techniques have been proposed. Focus on feature extraction, the
paper by Van [13], presents a comparative study of the most impor-
tant linear dimensionality reduction technique (PCA) and 12 fron-
tranked nonlinear dimensionality reduction techniques. After an
experimental study using artificial and real data, they concluded
that nonlinear techniques for dimensionality reduction are, despite
their large variance, often not capable of outperforming traditional
linear techniques such as PCA [13].

New feature selection methods are constantly being developed
so there is a wide suite available to researchers. Traditionally, the
most employed gene selection methods fall into the filter approach.
However, it is also worth noticing that the review of up-to-date
literature has shown a tendency to mix algorithms, in the form of
either hybrid methods or ensemble methods. To know the most
recent advances in the feature selection field, the interested reader
can consult the paper by Bolón-Canedo et al. [17].

4.2 Class

Representation

In an ideal situation, all classes of a problem would be equally
represented, i.e., each class would have the same number of sam-
ples. However, in real situations this frequently does not happen.
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Microarray data are known to have skewed class distribution which
is called class imbalance problem. For instance, lung dataset—
formed by 181 instances and 12,533 features—has 83% samples
in one class and just 17% in the other one. This dataset is formed by
joining the original datasets: (1) Lung-test (149 instances) and
(2) Lung-train (32 instances). Lung-train set is completely bal-
anced (50–50); however, the lung-test is extremely skewed
(90–10). Therefore, a classifier with good accuracy level in the
training phase may lead to very poor performance results in the
test set. The problem becomes more complex when dealing with
multiple classes, where again healthy patients outnumber cancer
patients or a specific type of cancer is much more uncommon than
the others. When the number of classes is very large, there are many
probabilities that one (or several) of them have a very low represen-
tativeness and its correct classification becomes a challenge. The
class imbalance problem has been recognized as a crucial problem
in machine learning because such a problem is encountered in a
large number of domains and, in certain cases, it causes seriously
negative effects on the performance of classifiers. To deal with this
issue different strategies can be considered [18], presenting all is
beyond the scope of this chapter, we will focus on those most
applied to microarray datasets:

l Random oversampling and undersampling: Oversampling con-
sists in augmenting the original set S by replicating a set of
selected samples from the minority class and adding them to S.
In this way, the number of total examples in S is increased and
the class distribution balance of S is adjusted accordingly.
Whereas oversampling appends data to the original dataset,
random undersampling removes data from the original dataset.
Analogously, we randomly select a set of majority class examples
and remove these samples from S. Both methods have their
drawbacks. In the case of undersampling, removing examples
from the majority class may cause the classifier to miss important
concepts pertaining to the majority class. In the case of over-
sampling, multiple instances of certain examples become tied
leading to overfitting.

l Synthetic minority over-sampling technique (SMOTE): The
SMOTE algorithm creates artificial data based on the feature
space similarities between existing minority examples. Specifi-
cally, the minority class is oversampled by taking each minority
class sample and introducing synthetic examples along the line
segments joining any/all of the k minority class nearest neigh-
bors. Depending upon the amount of oversampling required,
neighbors from the k nearest neighbors are randomly
chosen [19].
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4.3 Missing Data Although DNA microarray is a mature technology, expression data
can contain missing values due to several reasons as, for example,
scratches or spots on the slide or fabrication errors. To solve this
problem, several solutions can be proposed. The most obvious
solution would be to repeat the microarray experiments, but it
should be avoided because it is the most expensive option. Another
rather simple solution would be to remove genes containing miss-
ing values, but in that case a lot of relevant information could be
lost. The most beneficial solution, but at the same time the most
sophisticated, is the one that uses imputation procedures to esti-
mate missing values.

In the literature, several methods have been proposed to be
able to impute missing values in a general way and some others for
microarray data in particular. The imputation of missing data sup-
poses the use of information on the rest of the data to be able to
estimate the deficiencies. For this, there are two types of informa-
tion that is usually used. The first type of information consists of the
correlation structure between the entries in the data matrix. The
correlation between instances exists due to the fact that genes
involved in similar cellular processes usually have similar expression
profiles. In this sense, some approaches estimate the missing values
based on the overall correlation information obtained from the
complete dataset, while others use only a local structure of the
data. Likewise, another type of correlation can exist between vari-
ables (genes) since it is expected that the set of genes behaves
similarly in similar situations. The second type of information is
the knowledge that is available about the domain or the biological
processes that generate the data. This knowledge can be used to
obtain more plausible estimates. In this sense, several of the most
current data imputation algorithms have tried to incorporate this
information on the underlying processes to try to improve the
imputation performance [20, 21]. Recent surveys studies with a
comprehensive review and main techniques for microarray missing
value imputation can be found in the work by Chiu et al. [22]
and [23].

5 Evaluation Procedures

The number of papers using microarray datasets has not stopped
growing in recent years. Mainly for two reasons, on the one hand,
there are more and more microarray datasets on specialized plat-
forms (ArrayExpress1 or Gene Expression Omnibus2). On the
other hand, the intrinsic characteristics of these datasets pose a

1 http://www.ebi.ac.uk/arrayexpress/.
2 http://www.ncbi.nlm.nih.gov/geo/.
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challenge for learning methods where new methods are emerging
trying to solve them. Therefore, whenever a novel method is pre-
sented or a new dataset is created, it is important to test it properly.
In this section we present the evaluation measures and validation
techniques for these datasets.

5.1 Evaluation

Measures

In pattern recognition, information retrieval, and binary classifica-
tion, many evaluation measures are defined from a confusion matrix
or contingency table. The structure of this matrix can be seen in
Table 1.

Recent papers have followed the convention that confusion
matrix rows correspond to alternative predicted classes, while col-
umns correspond to actual classes. Using this table, the following
measures are defined:

Accuracy ¼ ðTNþ TPÞ=ðTNþ TPþ FNþ FPÞ
Precision or Positive Predictive Value ðPPVÞ ¼ TP=ðTPþ FPÞ
Sensitivity or True Positive Rate ðTPRÞ ¼ TP=ðTPþ FNÞ
Specificity ðSPCÞ or True Negative Rate ¼ TN=ðTNþ FPÞ
Fall‐out or False Positive Rate ðFPRÞ ¼ FP=ðFPþ TNÞ ¼ 1� SPC

As commented in Subheading 4.2, some microarray datasets
are highly unbalanced, so there exists a class with most of samples.
In these situations, the design of a high accuracy classifier is
straightforward: just classifying every new case as belonging to
the majority class. However, accurate classification of minority
class cases (usually non-healthy patients) is frequently the major
objective in microarray datasets. Then, in order to evaluate the
performance of any classifier applied on these datasets it is not
valid to compute only accuracy, at least the specificity—focused
on the minority class—should also be calculated, although most
common is to include these three measures: accuracy, sensitivity,
and specificity. Another important measure of the performance is
the area under the ROC curve (AUC). The receiver operating
characteristic (ROC) curve is created by plotting the sensitivity
against the false positive rate (FPR) at various threshold settings.
In binary classification, the class prediction for each instance is often
made based on a score (x) computed for that instance. Given a
threshold parameter T, the instance is assigned to one class if
x > T, and otherwise to the other. Varying this threshold T,

Table 1
Confusion matrix

Actual negative Actual positive

Predicted negative True negative (TN) False negative (FN)

Predicted positive False positive (FP) True positive (TP)
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different values of sensitivity and specificity are achieved and this
variation is reflected in a ROC curve. Figure 3 illustrates an example
of this curve by showing the hypothetical results of two methods
(labeled Method 1 and 2). The best possible prediction method
would yield a point in the upper left corner of the ROC space,
representing 100% sensitivity (no false negatives) and 100% speci-
ficity (no false positives). A random guess would give a point along
the dotted diagonal line. The performance of method 1 is better
than the method 2, because its curve gets closer to the perfect
score. Moreover, the area under the curve (AUC) for method
1, i.e., the surface between the curve and the X axis, is larger than
the AUC for method 2.

The previous example using the ROC curve (see Fig. 3) pro-
vides a way for comparing two learning algorithms (or more) on a
single dataset. However, usually we want to analyze the perfor-
mance of a new classifier (or a part of it or some new pre- or
postprocessing step) comparing the results achieved against other
methods over different datasets. Then, to determine which classifier
is the best, common strategies are to compute the average accuracy
or the average position in a ranking (after obtaining a performance
ordered list of classifiers for each dataset). However, statistical test is
highly recommended and Demšar [24] suggested a set of simple,
yet safe and robust nonparametric tests for statistical comparisons
of classifiers: the Wilcoxon signed ranks test for comparison of two
classifiers and the Friedman test with the corresponding post-hoc
tests for comparison of more classifiers over multiple datasets.
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5.2 Validation

Techniques

To evaluate the goodness of a model, it is necessary to have an
independent test set with data which have not seen by the classifi-
cation task. In some cases, the data come originally distributed into
train and test sets, so the training set is usually employed to perform
the learning model and the test set is used to evaluate its appropri-
ateness. However, not all the datasets found in the literature are
originally partitioned. For overcoming this issue, there exist several
validation techniques, where the most used ones in the microarray
domain are:

l k-fold cross-validation (k-fold CV). The data (D) is partitioned
into k non-overlapping subsets D1, D2, . . ., Dk of roughly equal
size. The learner is trained on k � 1 of these subsets combined
together and then applied to the remaining subset to obtain an
estimate of the prediction error. This process is repeated in turn
for each of the k subsets, and the cross-validation error is given
by the average of these k estimates [25].

l Leave-one-out cross-validation (LOOCV): it is a variant of k-
fold CV where k is the number of samples, so a single observa-
tion is left out each time [25].

l Bootstrap. It is a general resampling technique. A bootstrap
sample consists of n (being n the number of samples) equally
likely draws with replacement from the original data. Therefore,
some of the samples will appear multiple times, whereas others
will not appear at all. The learner is designed on the bootstrap
sample and tested on the left-out data points. The error is
approximated by a sample mean based on independent replicates
(usually between 25 and 100). There exist some famous variants
of the method such as balanced bootstrap or 0.632 bootstrap [26].

l Holdout validation (HO). This technique consists of randomly
splitting the data into a disjoint pair train-test. A common
partition is to use 2/3 for training and 1/3 for testing.

A key point for microarray classification is that error estimation
is greatly impacted by small samples [27]. The behavior of cross-
validation for very small samples has been thoroughly studied in
Braga-Neto and Dougherty [28] who did not even find substantial
differences, in terms of decreased variance, among the cross-
validated variants (leave-one-out, 5- and 10-fold, stratified and
repeated cross-validation). In the review by Bolon-Canedo et al.
[27], they test the performance of regular cross-validation against
DOB-SCV (distribution optimally balanced stratified cross-
validation) concluding that, on average, the latter obtains better
results than the former. Bootstrap estimation procedures are
smoothed versions of cross-validation to reduce the variability of
performance estimates. They come at the price of a high computa-
tional cost and an increased bias [28]. It seems that there is not a
consensus in determining a validation technique for this field. In
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fact, reviewing the recent literature one can find examples of the
four methods described above. k-fold cross-validation is a common
choice [29–46]. There are also many representatives of leave-one-
out cross-validation [38, 47–57], as well as holdout validation
[42, 58–66]. Although in small number, there are also some
research papers using the original division of the datasets [5, 63,
67–69]. Finally, bootstrap sampling seems less used [70, 71], prob-
ably due to its high computational cost.

6 Recent Contributions

At present there are numerous classification methods that have
been applied in the field of microarrays, in this section we have
tried to summarize them including the preprocessing and valida-
tion techniques used. Table 2 illustrates the most commonmachine
learning methods found in the literature from 2010, where SVM
stands out as the most used method. For the sake of brevity Table 2
cannot reflect all applied machine learning methods. However, for
those researchers who want to test some new method in this field,
next we show some of the less common applied classifiers (it is not
the intention of the authors to create an exhaustive list since the
literature in this field is extremely extensive): logistic regression
(LR), evolutionary generalized radial basis function (EGRBF)
[58], multi-logistic (MultiLog), simple logistic (SimpleLog), logis-
tic model tree (LMT) [58, 72], ridge logistic regression (RLR)
[5, 70], weighted voting (WV) [49], LDA with genetic algorithm
(LDA + GA) [30], intelligent dynamic genetic algorithm (IDGA)
combined with different classifiers (SVM, KNN, and NB) [47],
lattice neural network with dendritic processing (LNNDP), Bayes
net [63], expectation propagation (EP), Bayesian model with EP,
Markov chain Monte Carlo (MCMC), diagonal linear discriminant
analysis (DLDA), nearest shrunken centroids (NSC), relevance
vector machine (RVM) [59], linear discriminant (LD), repeated
incremental pruning to produce error reduction (RIPPER) [64],
combined penalization least squares (CP-LS), elastic net (Enet),
sparse logistic regression (SLR) [57], adaptive huberized support
vector machine (AHSVM), Golub’s method [61], case-based
reasoning method (MicroCBR) [62], wavelet neural network
(WNN) [46], binary particle swarm optimization (BPSO), particle
swarm optimization (PSO) based DT, Taguchi chaotic binary par-
ticle swarm optimization (CFS-TCBPSO-1NN), Markov blanket-
embedded genetic algorithm (MBEGA) [36], IB1 [29], Ibk [43],
probabilistic neural network (PNN) [54], multitest decision tree
(MTDT) [33], Laplace naive Bayes model with mean shrinkage
(LNB-MS), Gaussian naive Bayes model with mean shrinkage
(GNBMS), distribution-based classification with feature selection
based on t-statistic (DBC-T), margin influence analysis (MIA),
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Table 2
Summary of the most used techniques from 2010 for the classification of microarrays

Classifier Task Preprocessing Validation References

SVM Binary, multi,
one-class

Dissimilarity space, double-
bounded tree-connected
Isomap (dbt-Isomap),
FE, FS, FS with artificial
bee colony (ABC), FS
based on cat swarm
optimization (CSO), FS
using evolutionary
algorithms (EA), fuzzy
preference-based rough
set (FPRS), kernelized
fuzzy rough set (KFRS),
microarray gene selection
based on ant colony
(MGSACO), PCA-log
regression, texture
descriptors, Wavelet
decomposition

Test set, HO, CV,
LOOCV,
Bootstrap

[5, 8, 29, 32, 36,
41, 43–45, 49,
53, 55, 58– 61,
63– 66, 68, 69,
71, 75–79]

KNN Binary, multi FS, KFRS, FPRS,
information theory and
approximate Markov
blanket

HO, CV, LOOCV [8, 37, 40, 42,
45, 49, 52, 54,
59, 60, 64–66,
75, 78]

Random forest Binary, multi FS, FS based on CSO,
guided regularized
random forest (GRRF)

Test set, CV [5, 31, 34, 36]

Decision trees Binary, multi FS, GRRF, MGSACO HO, CV [16, 29, 33, 34,
42, 43, 58, 64,
72, 79]

Extreme
learning
machine
(ELM)

Binary, multi FS, PCA-log regression Test set, HO, CV [4, 39, 63, 80]

Naive Bayes
(NB)

Binary, multi FE (ICA), FS, FPRS, KFRS,
PCA-log regression

Test set, HO, CV [29, 40, 43, 45,
63, 76, 81, 82]

Multilayer
perceptron
(MLP)

Binary, multi FS, FS with ABC, PCA-log
regression

Test set, HO, CV,
LOOCV

[42, 54, 58, 63,
68, 78]

Radial basis
function
(RBF)

Binary FS with ABC, PCA-log
regression

Test set and HO [58, 63, 68, 72]

Lasso Binary None HO, bootstrap [59, 70, 73]

(continued)
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Table 2
(continued)

Classifier Task Preprocessing Validation References

AdaBoost (AB) Binary FS HO, CV [42, 44, 58]

Linear
discriminant
analysis
(LDA)

Binary Genetic algorithm (GA), FS CV, LOOCV,
bootstrap

[37, 54, 71]

Table 3
Summary of the most used datasets for microarrays as well as the classifiers used in each case

Datasets Classifiers References

Breast AB, Bayesian model with EP, BPSO,
CFS-TCBPSO-1NN, DLDA, DT, ELM, EP,
EGRBF, FVQIT, GA-based SVM, KNN,
LASSO, LD, logistic model tree (LMT), LR,
MBEGA,MCMC, MLP, MultiLog, NB,
NSC, PSO-based DT, RBF, RLR, RIPPER,
RF, RFE, RVM, SimpleLog, SRKNN, SVM

[5, 33, 35, 36, 40–42, 51, 52, 56, 58, 59,
64, 68, 74, 80]

Colon AB, Bayesian model with EP, BPSO,
CFS-TCBPSO-1NN, DBC-T, DLDA,
ensemble fuzzy RF, ELM, EP, FLD, GRBF,
GNB, KNN, LASSO, LNB, LNB-T,
MBEGA, MCMC,MIA, MLP, MSVM-RFE,
MultiLog, NB-MS, NSC, PAC Bayes,
PSO-based DT, RBF, RF, RFE, RLR, RVM,
sequential random KNN, SimpleLog, SVM

[5, 30, 31, 35, 36, 40, 41, 44, 55, 56, 59,
65, 72, 74, 75, 78, 80]

Leukemia IDGA + SVM, KNN, NB, RLR, KNN, SVM,
RF, LNNDP, ELM, Bayes Net, BPSO,
PSO-based DT, MBEGA, CFS-TCBPSO-
1NN, DT, IB1, GA, LDA, MLP,
MapReduce-based proximal SVM
(mrPSVM), SRKNN, WV, Bayesian model
with EP, EP, MCMC, DLDA, RFE, RVM,
NSC, LASSO, RIPPER, FVQIT, Golub’s
method, AB, RBF, MultiLog, SimpleLog,
LMT, RLR, dbt-Isomap, LNB-MS,
GNB-MS, LNB-T, DBC-T, MSVM-RFE,
MIA, LNB, GNB, GRBF, SLiM

[5, 16, 29, 30, 32, 33, 36–38, 40, 42, 44,
45, 47–49, 54, 55, 58–61, 63–65,
67– 76, 79–83]

(continued)
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Laplace naive Bayes model (LNB), Gaussian naive Bayes model
(GNB) [73], genetic swarm algorithm (GSA) [48], generalized
radial basis function neural networks (GRBFNNs) [72], probably
approximately correct (PAC) Bayes [44], SLiM (integrates feature
selection with classification) [67], and sequential random k-nearest
neighbors (SRKNN) [74].

Analogously, although new datasets are constantly appearing,
there are some classical datasets that have been tested with numer-
ous techniques shown in Table 3. It is worth mentioning that there
are many variants of some datasets (adding/removing features
and/or samples) that have not been considered when constructing
Table 3. The researcher should bear in mind that a slight variation
in the number of samples or features can lead to very different
performance results, so for any comparative study, it is mandatory
to look carefully the characteristics of each dataset.

Table 3
(continued)

Datasets Classifiers References

Lung AB, BPSO, CFS-TCBPSO-1NN, DBC-T, DT,
EA + SVM, ELM, ESVM, FVQIT, GA-based
ensemble SVM, GNB-MS, IB1, KNN, LD,
LDA + GA, GNB, Lasso, LMT, LNB,
LNB-MS, LNB-T, MBEGA, MC-SVM,
MGSACO, MIA, MLP, MSVM-RFE,
MultiLog, NB, PSO-based DT, RBF, RF,
RIPPER, SimpleLog, SLiM, SVM

[16, 29, 30, 35, 36, 38, 42, 52, 53, 56,
58, 64–66, 72, 73, 75, 77, 78, 80, 81]

Lymphoma Bayes net, Bayesian model with EP, BPSO,
CFS-TCBPSO-1NN, DLDA, DT, ELM,
ensemble fuzzy RF, EP, GSA, KNN, IB1,
LASSO, LNNDP, MBEGA, MCMC, MLP,
NB, NSC, PSO-based DT, RBF, RF, RFE,
RVM, SVM

[16, 31, 36, 48, 59, 63]

Ovarian AB, Bayesian model with EP, BPSO,
CFS-TCBPSO-1NN, DLDA, DT, FVQIT,
IB1, KNN, LASSO, LDA + GA, MLP, NB,
PSO-based decision trees, MBEGA,MCMC,
MLP, NB, NSC, EP, RF, RFE, RVM, SVM

[16, 29, 30, 36, 41, 42, 59, 64, 75, 78]

Prostate AB, DT, EA + SVM, ensemble fuzzy RF, ESVM
FLD, forest classification tree, forest SVM,
FVQIT, GA-based ensemble SVM, IB1,
KNN, LD, LDA + GA, MC-SVM,
MGSACO, MLP, NB, RIPPER, SLiM,
SRKNN, SVM

[16, 29–31, 40–42, 52, 56, 64, 67, 74,
75, 77– 79, 84]

SRBCT ELM, IDGA + SVM, KNN, NB, KNN, RF,
RLR, SVM

[4, 5, 47, 65–67, 80]

Classification of Microarray Data 201



References

1. Peng Y (2006) A novel ensemble machine
learning for robust microarray data classifica-
tion. Comput Biol Med 36(6):553–573

2. Sánchez-Maroño N, Alonso-Betanzos A, Gar-
cı́a-González P, Bolón-Canedo V (2010) Mul-
ticlass classifiers vs multiple binary classifiers
using filters for feature selection. In:
The 2010 international joint conference on
neural networks (IJCNN). IEEE, Piscataway,
pp 1–8

3. Golestani A, Ali Amiri KA, Jahed Motlagh MR
(2007) A novel adaptive-boost-based strategy
for combining classifiers using diversity con-
cept. In: 6th IEEE/ACIS international confer-
ence on computer and information science,
2007, ICIS 2007. IEEE, Piscataway, pp
128–134

4. Liu Z, Tang D, Cai Y, Wang R, Chen F (2017)
A hybrid method based on ensemble WELM
for handling multi class imbalance in cancer
microarray data. Neurocomputing
266:641–650

5. Mohapatra P, Chakravarty S, Dash PK (2016)
Microarray medical data classification using
kernel ridge regression and modified cat
swarm optimization based gene selection sys-
tem. Swarm Evol Comput 28:144–160

6. Friedman N, Geiger D, Goldszmidt M (1997)
Bayesian network classifiers. Mach Learn 29
(2–3):131–163

7. Dietterich TG, Bakiri G (1995) Solving multi-
class learning problems via error-correcting
output codes. J Artif Intell Res 2:263–286

8. Liu K-H, Zeng Z-H, Ng VTY (2016) A hierar-
chical ensemble of ECOC for cancer classifica-
tion based on multi-class microarray data. Inf
Sci 349:102–118

9. Lorena AC, De Carvalho ACPLF, Gama JMP
(2008) A review on the combination of binary
classifiers in multiclass problems. Artif Intell
Rev 30(1–4):19

10. Quinlan JR (1993) C4.5: programs for
machine learning. Morgan Kaufmann, San
Mateo

11. Breiman L, Friedman J, Olshen R, Stone C
(1984) Classification and regression trees.
Wadsworth International Group, Belmont

12. Breiman L (2001) Random forests. Mach
Learn 45(1):5–32

13. Van Der Maaten L, Postma E, Van den Herik J
(2009) Dimensionality reduction: a compara-
tive. J Mach Learn Res 10:66–71

14. Liu H, Motoda H (1998) Feature extraction,
construction and selection: a data mining per-
spective, vol 453. Springer Science & Business
Media, New York

15. Guyon I, Gunn S, Nikravesh M, Zadeh LA
(2008) Feature extraction: foundations and
applications, vol 207. Springer, Berlin

16. Bolón-Canedo V, Sánchez-Maroño N, Alonso-
Betanzos A (2012) An ensemble of filters and
classifiers for microarray data classification. Pat-
tern Recogn 45(1):531–539

17. Bolón-Canedo V, Sánchez-Maroño N, Alonso-
Betanzos A (2015) Recent advances and
emerging challenges of feature selection in the
context of big data. Knowl-Based Syst
86:33–45

18. He H, Garcia EA (2009) Learning from imbal-
anced data. IEEE Trans Knowl Data Eng 21
(9):1263–1284

19. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer
WP (2002) Smote: synthetic minority over-
sampling technique. J Artif Intell Res
16:321–357

20. Gan X, Liew AW-C, Yan H (2006) Microarray
missing data imputation based on a set theo-
retic framework and biological knowledge.
Nucleic Acids Res 34(5):1608–1619

21. Xiang Q, Dai X, Deng Y,He C,Wang J, Feng J,
Dai Z (2008) Missing value imputation for
microarray gene expression data using histone
acetylation information. BMC Bioinformatics
9(1):252

22. Chiu C-C, Chan S-Y, Wang C-C, Wu W-S
(2013) Missing value imputation for microar-
ray data: a comprehensive comparison study
and a web tool. BMC Syst Biol 7(6):S12

23. Liew AW-C, Law N-F, Yan H (2011) Missing
value imputation for gene expression data:
computational techniques to recover missing
data from available information. Brief Bioin-
form 12(5):498–513
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Chapter 9

Microarray Data Normalization and Robust Detection
of Rhythmic Features

Yolanda Larriba, Cristina Rueda, Miguel A. Fernández,
and Shyamal D. Peddada

Abstract

Data derived frommicroarray technologies are generally subject to various sources of noise and accordingly
the raw data are pre-processed before formally analysed. Data normalization is a key pre-processing step
when dealing with microarray experiments, such as circadian gene-expressions, since it removes systematic
variations across arrays. A wide variety of normalization methods are available in the literature. However,
from our experience in the study of rhythmic expression patterns in oscillatory systems (e.g. cell-cycle,
circadian clock), the choice of the normalization method may substantially impair the identification of
rhythmic genes. Hence, the identification of a gene as rhythmic could be just as an artefact of how the data
were normalized. Yet, gene rhythmicity detection is crucial in modern toxicological and pharmacological
studies, thus a procedure to truly identify rhythmic genes that are robust to the choice of a normalization
method is required.
To perform the task of detecting rhythmic features, we propose a rhythmicity measure based on

bootstrap methodology to robustly identify rhythmic genes in oscillatory systems. Although our method-
ology can be extended to any high-throughput experiment, in this chapter, we illustrate how to apply it to a
publicly available circadian clock microarray gene-expression data and give full details (both statistical and
computational) so that the methodology can be used in an easy way. We will show that the choice of
normalization method has very little effect on the proposed methodology since the results derived from the
bootstrap-based rhythmicity measure are highly rank correlated for any pair of normalization methods
considered. This suggests, on the one hand, that the rhythmicity measure proposed is robust to the choice
of the normalization method, and on the other hand, that gene rhythmicity detected using this measure is
potentially not a mere artefact of the normalization method used. In this way the researcher using this
methodology will be protected against the possible effect of different normalizations, as the conclusions
obtained will not depend so strongly on them. Additionally, the described bootstrap methodology can also
be employed as a tool to simulate gene-expression participating in an oscillatory system from a reference
data set.

Key words Microarray, Normalization, Pre-processing, High-throughput technologies, Rhythmicity,
Oscillatory systems, Circadian genes
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1 Introduction

Microarray gene-expression analysis is hampered by the noisy
nature of the data [1, 2] that is intrinsic to each array. Hence, a
previous gene-expression data pre-processing is required to remove
(or reduce) sources of variation of non-biological origin among
arrays [3, 4]. Several pre-processing methods are available in the
literature, such as the model-based expression index (MBEI) [5],
MAS 5.0 [6, 7] and robust multi-array average (RMA) [8]. The
pre-processing goal is twofold, first to reduce non-biological varia-
bility, and second to take data from a tri-dimensional array of raw
intensities (i.e. probe level) to a gene-expression matrix (i.e. gene
level). Pre-processing methods usually involve three distinct steps
called background correction, normalization, and summarization
[9]. Normalization step plays a key role in pre-processing [3, 10],
since it removes technical (i.e. non-biological) variations from the
expression data. A variety of strategies are available in the literature
to normalize gene-expression data, and in this chapter we focus on
the following popular ones: Quantile [3], (Cyclic) Loess [3], Con-
trast [11], Invariant Set [5], Qspline [12], and variance stabiliza-
tion normalization (VSN) [13]. However, each strategy is based on
specific model and assumptions and consequently, the resulting
normalized expression data, and the downstream analyses, are likely
to depend upon the normalization method chosen (see Fig. 1). One
may refer to [14] for details.

After pre-processing, one of the most important problems in
practice regarding gene-expression data from biological processes
(c.f. metabolic cycle [15], cell-cycle [16–19] or circadian clock
[20, 21]) is to detect the components (genes) that govern those
oscillatory systems exhibiting rhythmic or periodic patterns over
time. There exists in the literature a wide variety of procedures to
detect rhythmicity including among other, those based on autocor-
relation [22], cosine curve-fitting [23], or non-parametric tests like
JTK_Cycle [24] and RAIN [25]. Recently, [21] proposed ORIOS,
an algorithm based on order restricted inference to detect and
classify rhythmic genes in oscillatory systems. Order restricted
inference incorporates the prior knowledge that certain parameters
satisfy an order restriction into the analysis improving the perfor-
mance of the statistical procedures, see [26]. It has proved to be
quite useful, for example, in the study of biologically interesting
problems in the cell-cycle among many others. Applications of
interest in this and other related fields together with the appropri-
ate software can be found in [27–32].

In order to make a clear exposition of our rhythmicity detection
methodology, in this chapter we will focus on rhythmicity detection
of circadian gene-expression and we will consider ORIOS as detec-
tion algorithm. As in any other detection algorithm (see [14]) the
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results from ORIOS substantially depend upon, among other fac-
tors, the normalization strategy chosen. This fact is reflected in
meaningful differences in the number of genes identified as rhyth-
mic. For instance, the percentage of genes identified as rhythmic in
the human cell lines microarray experiment U2OS, analysed in this
chapter (see Subheading 2 for details on the data set), decreases
more than a 40% when VSN normalization is chosen instead of
Loess. These differences can be also illustrated graphically. Figure 1
shows time-course data on two probesets (genes) from U2OS,
namely Probeset 7919776 and Probeset 8107117 (from now on
we refer to them as ProbesetA and ProbesetB, respectively). Data are
normalized using Quantile, Invariant Set, Loess, and Contrast stra-
tegies. The top panel of Fig. 1 provides the time-course plots of the
ProbesetA using Quantile (left panel) and Invariant Set (right
panel) normalization methods. The bottom panel of Fig. 1 displays
the time-course plots of the ProbesetB using Loess (left panel) and
Contrast (right panel) normalization strategies. As can be seen, the
gene-expression profiles are markedly different regarding the nor-
malization method employed. Moreover, ProbesetA and ProbesetB
are detected as rhythmic genes by ORIOS if Quantile or Loess
normalizations are used, respectively, but they are declared to be
non-rhythmic genes if Invariant Set or Contrast strategies are
employed. This observation that normalization method may
impact the rhythmicity of a gene is not limited to the above genes

Fig. 1 Time-course gene-expression for Probeset 7919776 (top) and 8107117 (bottom). Both probesets are
identified as rhythmic by ORIOS according to Quantile and Loess normalizations, respectively, but they are
identify as non-rhythmic by ORIOS for Invariant Set and Contrast normalizations, respectively
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but is rather a common feature of time-course data as noted in
Fig. 4.

In a recent paper [14], we introduced a bootstrap-based rhyth-
micity measure that is strongly correlated across the normalization
strategies. In this chapter we review that methodology and provide
step-by-step details for its application, so that an interested
researcher can apply it in a smooth way and obtain a set of rhythmi-
cally ranked genes from an appropriate data set. As a product of the
methodology the genes declared as rhythmic and appearing in the
top positions of rhythmicity ranks under one normalization are
expected to also appear in top positions under a different one
thus reinforcing the conclusions that may be obtained.

In addition, a by-product of the proposed bootstrap method-
ology is that it can be used for simulating potentially realistic
microarray experiments. Despite that several authors have provided
algorithms for simulating gene-expression microarray data
[33–36], many of them are not broadly applicable, since they are
designed to cover specific requirements. Unlike those procedures,
the proposed algorithm is very generic and allows us to simulate
microarray gene experiment from probe to gene level from a micro-
array reference data set.

The layout of the chapter is as follows. In Subheading 2 we start
describing the data set and the software employed to pre-process
microarray data. Subheading 3 details the bootstrap methodology
to define a robust rhythmicity measure and includes a brief remark
about its usage to simulate microarray experiments. In this section,
we also provide the results from applying the bootstrap methodol-
ogy on the mentioned data set, showing the good performance of
the proposed rhythmicity measure and how the improvement on
rank correlations among the different normalizations can be useful
in biological practice. In Subheading 4, short step-by- step instruc-
tions to generate microarray data sets are provided and some
important issues concerning both methodology and data analysis
are highlighted.

2 Materials

We analyse a publicly available time-course gene-expression data
from the U2OS human cell lines, a conventional model of the
autonomous circadian clock [37, 38]. The human osteosarcoma
U2OS cell line is one of the first generated cell lines and is used in
various areas of biomedical research, since it is a primary malignant
tumour of the bone affecting children and young adults (age 15–29
years), as well as adults in later life (age > 60 years), see [39]. Data
are online available at NCBI GEO (http://www.ncbi.nlm.nih.gov/
geo/) with GSE13949 GEO accession number and they have been
widely analysed in the literature to identify rhythmicity, see among
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others [14, 20, 21, 24]. Note 1 in Subheading 4 provides addi-
tional details to access and download the microarray data.

Raw data are expressed at probe level. Each gene g, g ¼ 1, . . .,
G, is associated with a P � Tmatrix of gene-intensity values, where
P and T represent the number of probes and arrays (time points)
regarding the gene g, respectively, and G denotes the number of
genes in the data set. The number of probes P varies from one gene
to other, whereas the number of time points T is usually fixed. Data
must be pre-processed not only to reduce variability but also to
obtain a G � T matrix of gene-expression values. A scheme of
pre-processing procedure is illustrated in Fig. 2. Note 2 in Sub-
heading 4 illustrates a step-by-step guide to pre-process microarray
data.

In this chapter, raw data are pre-processed according to RMA
procedure, following the lines described in [8]. The six normaliza-
tion methods mentioned before are implemented together with the
background correction and summarization steps proposed in
[8]. To do so, we make use of the R-packages Affy [40] and VSN
[13] from the Bioconductor Project [41] as is shown in Note 2 in
Subheading 4. Resulting from pre-processing, the U2OS data set
consists of 32321 single gene-expressions obtained along 48 time
points representing two periods of data of 24 h length.

3 Methods

In this section we provide a standard rhythmicity measure that
allows to declare genes as rhythmic or not. In addition, for the
sake of completeness and self-containment, we review the
bootstrap-based methodology appearing in [14] both to robustly
identify rhythmicity and to simulate microarray data sets. Finally,

Fig. 2 Work-flow of pre-processing procedure from raw intensities R to gene-expression matrix S
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we illustrate the performance of bootstrap-based methodology on
improving rank correlations in the U2OS cell lines data set.

The methodology described in this chapter considers ORIOS
as rhythmicity detection algorithm and six different normalization
methods, called (1) Quantile, (2) (Cyclic) Loess, (3) Contrast,
(4) Invariant Set, (5) Qspline, (6) VSN. As already mentioned, it
can be extended to other normalization methods and/or detection
algorithms, see Note I in Subheading 4.

3.1 Standard

Measure of Gene

Rhythmicity

The usual way to detect gene rhythmicity, not only in ORIOS but
also in the most popular detection algorithms (see [21, 24, 25]), is
to perform a set of hypotheses tests as the following one for the
genes in the data set:

H 0 : Theunderlyinggenepatternisflat
H 1 : Theunderlyinggenepatternisrhythmic

ð1Þ

Then, rhythmicity detection is given in terms of the Benjamini–-
Hochberg (BH) [42] adjusted p-values derived from (1). BH
adjusted p-values are then used to define a standard measure of
gene rhythmicity as follows. Let p-valueg(n) denote the BH
adjusted p-value of the gene g with respect to the normalization
method n, for n ¼ 1, . . ., 6 and g ¼ 1, . . ., G. The standard
measure of gene rhythmicity associated with g (for g ¼ 1, . . ., G)
is defined as:

MgðnÞ ¼ 1� p�valuegðnÞ: ð2Þ
The components of vectorM(n) ¼ (M1(n), . . .,MG(n))

0
take values

between 0 and 1. Measurements close to 0 indicate potentially
non-rhythmic genes and close to 1 indicate potentially rhythmic
genes. For instance, for ProbesetA and ProbesetB involved in Fig. 1
we have MProbesetA(Quantile) ¼ 0.989, MProbesetA(InvariantSet)
¼ 0.871, MProbesetB(Loess) ¼ 0.988, and MProbesetB(Contrast)
¼ 0.891. Taking M(n) � 0.95, as the rhythmicity criterion, those
numbers reinforce, as was illustrated graphically (see Fig. 1), that
both probesets are potentially rhythmic under Quantile and Loess
normalization methods, but not under Invariant Set and Contrast,
respectively.

3.2 Bootstrap

Methodology

In the following we review the bootstrap methodology proposed in
[14] in order to introduceMRobust(n), a more robust measurement
with respect to the normalization method. We also give details on
how to use the bootstrap methodology to simulate microarray
gene-expression data from a reference data set.

Let R be a reference microarray data set of raw intensity values
derived from an oscillatory system, see Fig. 2. We propose a para-
metric bootstrap [43] based on a linear model from the
tri-dimensional array of corrected intensities X derived from the
reference data set.
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Let X
g
pt denote the corrected intensity value for gene

g on probe p at time point t after background correction, where
g ¼ 1, . . ., G, p ¼ 1, . . ., P, and t ¼ 1, . . ., T. For each bootstrap
replication b ¼ 1, . . ., B, simulated intensity data sets X(b)∗ are
generated as follows:

log2ðX ðbÞg∗
pt Þ ¼ α̂pg þ β̂t g þ εðbÞg∗pt , ð3Þ

where g ¼ 1, . . ., G, p ¼ 1, . . ., P, t ¼ 1, . . ., T, b ¼ 1, . . .B.

fα̂pggGg¼1
, and f ^βt gg

G

g¼1 denote original estimates of probe and

array effects, respectively, obtained from corrected (but
non-normalized) intensities X in the pre-processing of the refer-
ence data R, see Fig. 2 for details. εðbÞg∗pt are identically and indepen-
dently distributed according to a normal distribution N ð0, ^σ 2gÞ,
where ^σ 2g is the usual mean squared error (MSE) under the
original two-way model. See Note II in Subheading 4 for details.

The valuesX(b)∗ are expressed at probe level, thus normalization
and summarization stepsmust be conducted (seeNote 2 in Subhead-
ing 4). X(b)∗ are normalized regarding the six normalization strate-
gies considered in this chapter. Summarization step follows the
methodology described in [8]. There, a median polish algorithm is
used to estimate model parameters [44]. This algorithm takes into
account probe and array effects, similar to a two-way ANOVA-based
estimation procedure, except that it employs medians instead of
means to ensure robustness tooutliers.As a result, for eachbootstrap
replication b (b ¼ 1, . . .,B), aG � Tmatrix S(b)∗ of simulated gene-
expression is obtained as output of the pre-processing procedure.
Thus, in addition to detect rhythmic genes robustly, our bootstrap
methodology may also be used as a tool to generate reasonably
realistic gene-expression data (i.e. S(b)∗). Note 3 in Subheading 4
gives full details to conduct bootstrapping in order to simulate
microarray data from a reference data set.

Figure 3 illustrates the performance of our methodology as a
microarray simulator. Time-course gene-expression data of gene
Per3 and Probeset 7892507 are displayed on top and bottom left
panels of Fig. 3, respectively. Figure 3 shows how well our
bootstrap-based simulated data (right panels in Fig. 3) resembles
the pattern of expression of the real data (left panels), both for
rhythmic (gene Per3) or non-rhythmic (Probeset 7892507) genes.
The reason for this good behaviour is that in Eq. 3, we just
bootstrap the residuals. Thus the mean signal over the bootstrap
samples retains the original expression and hence there is no loss of
information in the mean signal through bootstrapping. Although
in this chapter microarray simulation is addressed to detect rhyth-
mic features, our methodology can be adapted to other biological
applications. It is important to note that, in practice, microarray
simulation may be a hard task in terms of storage and memory
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computation since data derived from bootstrap procedure are
expressed at probe level. See Note III in Subheading 4 for further
details.

3.3 Robust Measure

of Gene Rhythmicity

Given a normalization strategy n and a random realization of the
data, the above bootstrap methodology allows us to provide the
gene rhythmicity measure MRobust(n) that reduces the impact of
the normalization method chosen to detect rhythmicity.

Our parameter of interest is θðnÞ ¼ ðMðnÞÞ, the vector con-
taining the true rhythmicity values of the genes under normaliza-
tion strategy n.

^
θ ðnÞ ¼ MðnÞ is an estimator of this value, whereM

(n) is the rhythmicity statistic defined in Eq. 2. Now, we define a
new (and better) estimator for our parameter of interest using
the bootstrap samples as follows. For each bootstrap sample
b (b ¼ 1, 2, . . ., B), we define ^θ ðbÞ∗ðnÞ as the bootstrap estimate
of θ(n). It is determined computing the statistic (Eq. 2) on the
simulated gene-expression matrix S(b)∗ derived from Eq. 3. Now,
the robust gene rhythmicity measure MRobust(n) is defined using
the bootstrap samples mean and a measure of sample to sample
variation as:

MRobustðnÞ ¼ ̂ðθ̂ ðnÞÞ � dRMSðθ̂ ðnÞÞ, ð4Þ
where ̂ ðθ̂ ðnÞÞ and dRMSEðθ̂ ðnÞÞ are defined as:

Fig. 3 Original vs simulated gene-expression attained after bootstrapping from U2OS using Quantile normali-
zation. Top: Original (left) and simulated (right) time-course gene patterns of the rhythmic gene Per3. Bottom:
Original (left) and simulated (right) time-course gene patterns of the non-rhythmic Probeset 7892507
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̂ ð
^

θ ðnÞÞ ¼ 1

B

XB

b¼1

ð ^θ ðbÞ∗ðnÞÞ ð5Þ

RMSE ðθ̂ ðnÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B � 1

XB

b¼1

ð ^θ ðbÞ∗ðnÞ � θ̂ ðnÞÞ2:
vuut ð6Þ

This gene rhythmicity measure is termed as “robust” since, as
demonstrated later in the chapter, it reduces the effect of the
normalization method used correcting for sample to sample varia-
tion in the rhythmicity measure (i.e. RMSE).

3.4 Results Now we apply our methodology on the data set U2OS, consisted
of 32321 gene-expressions along 48 time points. Expression data
were pre-processed according to the six normalization methods
mentioned above. For each normalization method n, ORIOS algo-
rithm is used to detect rhythmicity, taking Mg(n) � 0.95 (resp.

Mg
RobustðnÞ � 0:95) as the criterion to declare a gene to be (resp.

robustly) rhythmic, for n ¼ 1, . . ., 6. (See note IV in Subheading 4
for a discussion about the choice of that threshold.) Figure 4 clearly
shows how the normalization choice presents a large impact on the
number of genes declared to be rhythmic by the standard measure.

To illustrate how our bootstrap-based gene rhythmicity mea-
sure, MRobust, increases the correlation among different

Fig. 4 Joint rhythmic gene distribution in U2OS across normalization strategies,
according to Mg(n) � 0.95, for n ¼ 1, . . ., 6 and g ¼ 1, . . ., 32321
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normalization methods, we compute the Spearman rank correla-
tion coefficients betweenMRobust(ni) andMRobust(nj) for all pairs of
normalization methods ni, nj, i 6¼ j. The correlation coefficients
obtained are then compared with those corresponding to the stan-
dard measure. To reinforce this fact, we also compute the per cent
of concordance of rhythmic and non-rhythmic genes across all
normalization methods comparing standard and robust measures.
Correlation (Fig. 5) and concordance (Fig. 6) analyses provided in
this chapter are limited to the set of 8882 genes in U2OS that were
declared to be rhythmic by at least one of the normalization stra-
tegies n, according to the criterion Mg(n) � 0.95, for n ¼ 1, . . .,
6 and g ¼ 1, . . ., 32321. For every pair of normalization methods,
Figs. 5 and 6 display a substantial increase from the left to the right
panel. In both figures, left-hand panels are related toM(n), whereas
the right ones correspond to MRobust(n). To better illustrate this
fact, we consider the Spearman correlation coefficient between M
(Loess) and M(V SN). We observe that it increases from 0.2 (left
panel of Fig. 5) to 0.65 (right panel of Fig. 5) when MRobust(Loess)
and MRobust(V SN) are considered, which is a substantial increase.
The increase is even more dramatic when considering the percent-
age of concordant genes. In this case, it increases dramatically by
more than 44%, from 55.26 to 99.69% (see Fig. 6). Moreover, that
increase can be further illustrated graphically. Figure 7 displays the
scatter plot of the normalization pairs Loess and VSN regarding
standard (left panel) and robust (right panel) rhythmicity measures.
Left panel of Fig. 7 presents a highly non-elliptic scatter of points
with no clear correlation, whereas the scatter plot on the right panel
appears to be very elliptic with smaller minor axis. As a by-product,
concordance (Fig. 5) and correlation (Fig. 6) analyses together

Fig. 5 Spearman rank correlation coefficients between all pairs of normalization procedures considering the
standard measure of rhythmicity M (left) and the proposed robust measure MRobust (right) for the ORIOS
algorithm using the 8882 genes, showing a highly increased consistency due to bootstrapping
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with Fig. 4 imply that the Contrast normalization method may be
the least preferred method among the six normalization schemes, as
the corresponding robust measure seems to be least correlated with
the others and also because the number of genes exclusively
declared to be rhythmic by that method regarding the standard
measure is extremely high compared with the other strategies.

It is worthy to mention that Spearman correlation coefficients
are based on ranks. Thus, the increase in the right-hand panel of
Fig. 5 suggests that gene rhythmicity ranks are correlated across the
normalization methods considered here when our bootstrap meth-
odology is applied. As a consequence, a gene declared to be rhythmic
(resp. non-rhythmic) under one normalization scheme is likely to be

Fig. 6 Percentage of (rhythmic and non-rhythmic) concordant genes before (left) and after (right) bootstrapping
for all pairs of normalization procedures using the 8882 genes. Bootstrapping increases significantly the
concordance

Fig. 7 Pairwise scatter plots of (Mg(Loess), Mg(V SN)) (left) and ðMg
RobustðLoessÞ,Mg

RobustðV SNÞÞ (right). Red
line is the 45∘ diagonal and the blue lines are the Cartesian axes. Right side scatter plot shows a much more
elliptical shape and a higher correlation indicating higher consistency between this pair of normalizations
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rhythmic (resp. non-rhythmic) under a different one.To illustrate this
point, consider again the two genes plotted in Fig. 1. As noted in
Subsection 3.1, the rhythmicity calls on these two genes largely
depend on the normalization method n, when the standard criterion
Mg(n) � 0.95 is considered. Yet, under the criterion

Mg
RobustðnÞ � 0:95, neither of these genes are considered to be

rhythmic. In particular, according to the normalization
methods used earlier in Fig. 1, we obtained the following robust
rhythmicity measures MProbesetA

Robust ðQuantileÞ ¼ 0:698;

MProbesetA
Robust ðInvariantSetÞ ¼ 0:292; MProbesetB

Robust ðLoessÞ ¼ 0:696, and

MProbesetB
Robust ðContrastÞ ¼ 0:492. None of these numbers exceed 0.95.
To show the practical interest of the procedure exposed and

reinforce our rank analysis conclusions, let us suppose that a
researcher wants to identify a set of rhythmic genes to explore
more deeply. A good choice might be to consider those genes
appearing in the first positions in the rhythmicity ranks under
several (or all) normalization methods. If this is done considering
all normalizations and using our bootstrap procedure, we will
obtain the 10 genes appearing in Table 1 (seeNote V in Subheading
4 for full details on how to obtain these genes and Table 2 for the
original symbol names of these genes). We can see that, after boot-
strapping, all of them appear on very good positions (right side of
Table 1), while this does not happen if the standard procedure is
considered (left side of Table 1), so that some of these genes might
have been left out due to large variations on their rank positions.

Table 1
Rank rhythmicity position for the genes Gene1,. . .,Gene10 regarding standard (left side) and robust
(right side) rhythmicity measures

M(n) MRobust(n)

Labels Quant. Loess Contr. Inv. Set Qspl. VSN Quant. Loess Contr. Inv. Set Qspl. VSN

Gene1 133 106 283 98 35 15 7 6 6 9 6 6

Gene2 9 4 6 11 14 107 3 3 4 3 2 11

Gene3 2 1 1 1 2 3 1 1 1 1 1 1

Gene4 105 139 348 101 102 57 27 24 18 25 29 24

Gene5 1175 1382 2373 1019 1181 1146 15 18 17 11 15 15

Gene6 749 360 357 637 781 381 6 8 8 23 7 5

Gene7 1153 1311 1689 998 1199 967 33 25 11 22 32 17

Gene8 1460 818 360 1236 1713 156 9 10 9 8 12 7

Gene9 1 2 3 2 1 2 2 2 2 2 3 3

Gene10 276 299 98 236 526 53 4 5 3 5 5 4

218 Yolanda Larriba et al.



A more graphical example of this issue can be observed in
Fig. 8, where a visually rhythmic gene (gene Nr1d1) appears on
the top 5 rank for five of normalizations for the robust measure, see
Table 3 (recall that Contrast normalization is one of the less corre-
lated with the rest) while it only appears on the top 30 rank for the
standard procedure on one of the normalizations. Thus, it is
revealed that much more strong coherence on the rhythmicity
appears after considering our bootstrap methodology.

4 Notes

This section provides programming instructions to simulate a
microarray data set using R (see Notes 1 to 3). In addition, we
discuss some important points related to methodology and data
analysis (see Notes I to V).

Notes 1 to 3 contain short step-by-step R-code instructions to
read, pre-process, and simulate an Affymetrix microarray data set
using U2OS (with GSE13949 GEO accession number) as the
reference microarray experiment.

1. Reading data.
Obtain the .CEL extension files associated with your Affy-

metrix GeneChip experiment that contains the raw intensity
data files resulting from array scanning process. Those files can
be downloaded from databases like NCBI GEO (http://www.
ncbi.nlm.nih.gov/geo/) or CircaDB (http://circadb.
hogeneschlab.org/) [45]. Then, load the Affy package from

Table 2
Original symbol genes associated with the labelled genes Gene1,. . .,
Gene10

Label Symbol

Gene1 Probeset 7894590

Gene2 Gene Per3

Gene3 Gene Arntl

Gene4 Probeset 7973867

Gene5 Gene Pdpk1

Gene6 Probeset 8013519

Gene7 Gene Rnu2-1

Gene8 Gene Ccdc74a

Gene9 Gene Nr1d2

Gene10 Probeset 8180318
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Bioconductor and read the .CEL data files in order to obtain raw
intensity data (dat) which are expressed at probe level. Make
sure that .CEL files are saved in your R working directory.

source("https://bioconductor.org/biocLite.R")

biocLite("affy")

Table 3
Rank rhythmicity position for the gene Nr1d1 regarding standard (left side) and robust (right side)
rhythmicity measures

M(n) MRobust(n)

Gene Quant. Loess Contr. Inv. Set Qspl. VSN Quant. Loess Contr. Inv. Set Qspl. VSN

Nr1d1 45 32 144 34 49 4 5 4 68 4 4 2

Fig. 8 Time-course gene-expression for the gene Nr1d1 regarding the six normalization methods
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library("affy")

dat <- ReadAffy()

2. Pre-processing data.
Raw data are background corrected as in the RMA

pre-processing method [8].

backDat <- bg.correct(dat, method = "rma")

Then, corrected data are normalized according to one of
the normalization strategies proposed in the chapter. Package
VSN from Bioconductor is required to conduct VSN
normalization.

normDat<-normalize.AffyBatch.quantiles(backDat,

type="pmonly")

normDat<-normalize.AffyBatch.loess(backDat,

type="pmonly")

normDat<-normalize.AffyBatch.contrasts(backDat,

type="pmonly")

normDat<-normalize.AffyBatch.invariantset(backDat,

baseline.type="median",type="pmonly")

normDat<-normalize.AffyBatch.qspline(backDat,

type="pmonly")

normDat<-justvsn(backDat)

Once data have been normalized, they are summarized to
obtain a matrix of gene-expression values. To do so we make
use of the summarization step implemented in the RMA
pre-processing method [8].

summDat<-exprs(rma(normDat,background=FALSE,

normalize=FALSE))

3. Simulating data.
Before starting, check your R memory limit using mem-

ory.limit(). Microarray analyses involve high dimensional
data to be stored, thus it is likely that you have to increase its
limits using memory.limit(size¼newMemoryLi mit).
Check ?memory.limit to assign a value to
newMemoryLimit.

The simulation of microarray experiments requires, on the
one hand, an array of raw intensity data (dat) from a reference
data set. On the other hand, we also need the specific chip
description file (CDF) associated with the reference experiment
(pd.hugene.1.0.st.v1 for the case of U2OS). CDF files
describe the layout for Affymetrix GeneChip arrays, among
others, they contain the location of the probes on the chip as
well as intrinsic phenotype features of the experiment. Biocon-
ductor holds packages containing the environment associated
with such CDF files.
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biocLite("pd.hugene.1.0.st.v1")

library("pd.hugene.1.0.st.v1")

Then, microarray simulation is conducted following the
lines described in Subheading 3.2 as follows. First, the parame-
ter estimators of the two-way model associated with the refer-
ence experiment are subtracted using the function called
modelComponentX. Then, bootstrap replication is built as is
proposed in Eq. 3 using buildingX. Finally, simulPheno-
Data function provides an AffyBatch class-object reproducing
the metadata and phenotype of the reference microarray exper-
iment. All these functions, as well as a user friendly R-code and
a user guide, can be found in http://www.eio.uva.es/~miguel/
robustdetectionprocedure.html.

originalEst <- modelComponentXPar(dat,Ngenes=32321)

X_boot <- buildingXPar(dat,originalEst,Ngenes=32321

,timePoints=48)

X_b_star <- simulPhenoData(dat,X_boot,timePoints=48)

Finally, simulated data set (X_b_star) is normalized and
summarized following the instruction given above (see pre-
processing data) to obtain a matrix of simulated gene-
expression values imitating the realistic features of the reference
data set. As a closing remark, since microarray experiments
involve high dimensional data, parallel programming may
increase computational efficiency.

Next, notes I to V highlights some important issues concerning
the methodology and the data.

I. Bootstrap-based methodology introduced in the chapter is
focused on six normalization strategies (Quantile, (Cyclic)
Loess, Contrast, Invariant Set, Qspline, and VSN) and a rhyth-
micity detection algorithm (ORIOS). However, the general
formulation of the proposed methodology allows us to extend
it (see [14]) to other choices of normalization strategies and/or
rhythmicity detection algorithms according to the reader
necessities.

II. Error terms in Eq. 3 are i.i.d. according to a normal distribution
with mean 0 and variance ^σ 2g, for g ¼ 1, . . ., G. ^σ 2g is the
MSE under the original two-way model associated with each
gene. It is defined as follows:

σ̂2g ¼

XP
p¼1

XT
t¼1

Y
g
pt � Y

g

p: � Y
g

:t þ Y
g

::

ðP � 1ÞðT � 1Þ , for g ¼ 1 . . . ,G,
ð7Þ

where Y
g
pt ¼ log2ðXg

ptÞ: The terms Y
g

p:, Y
g

:t , and Y
g

:: denote row,
column, and global means, respectively.
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III. The bootstrap methodology introduced in this chapter gener-
ates microarray data expressed at probe level. Probe level ana-
lyses involve high dimensional data. For instance, in U2OS,
each bootstrap replication generates a � 788k � 48 matrix of
corrected intensities. It supposes a challenge when many
simulated microarray data sets regarding different normaliza-
tion schemes are considered. Thus, microarray simulation is a
hard procedure in terms of storage and memory consumption.

IV. One of the major difficulties dealing with microarray data is the
noisy nature of the data. Normalization stage is key to address
this issue reducing non-biological variations. Even so, other
factors (c.f. environmental conditions, errors derived frommea-
suring devices, or tissue specific features) might also impact on
subsequent analyses such as rhythmicity detection. In addition
to this, the expected rate of rhythmic genes largely varies from
ones data sets to others. For instance, it is known that the
rhythmicity rate in U2OS cell lines is lower (� 3%) than it is
for other data sets like mouse liver (� 20%). One may refer to
[21] for details. Thus, rhythmicity criterion thresholds must be
chosen according to the above comments. Moreover, moti-
vated by rank analyses results, authors insist on assessing relative
gene rank positions, rather than fixing a cut off threshold.

V. For the U2OS experiment, we propose as a suitable set of genes
to be explored more deeply the set of 10 genes which are
declared to be rhythmic by all the normalization strategies
according to the criterion Mg

RobustðnÞ � 0:95, for n ¼ 1, . . .,
6 and g ¼ 1, . . ., 32321. We refer to them as Gene1,. . .,Gene10.
Table 2 states the correspondence between those labels and
their corresponding gene symbols.
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(2003) A comparison of normalization meth-
ods for high density oligonucleotide array data
based on variance and bias. Bioinformatics 19:
185–193

4. Irizarry RA, Bolstad BM, Collin F et al (2003)
Summaries of Affymetrix GeneChip probe level
data. Nucleic Acids Res 31: e15. https://doi.
org/10.1093/nar/gng015

5. Li C, Wong WH (2001) Model-based analysis
of oligonucleotide arrays: expression index
computation and outlier detection. Proc Natl
Acad Sci USA 98: 31–36

6. Hubbell E, Liu WM, Mei R (2002) Robust
estimators for expression analysis. Bioinformat-
ics 18: 1585–1592

7. Liu G, Loraine AE, Shigeta R et al (2003)
NetAffx: Affymetrix probesets and annota-
tions. Nucleic Acids Res 31: 82–86

8. Irizarry RA, Hobbs B, Collin F et al (2003)
Exploration, normalization, and summaries of
high density oligonucleotide array probe level
data. Biostatistics 4: 249–264

9. Wu Z (2009) A review of statistical methods for
preprocessing oligonucleotide microarrays.
Stat Methods Med Res 18: 533–541

Microarray Data Normalization and Robust Detection of Rhythmic Features 223

https://doi.org/10.1186/1745-6150-2-9
https://doi.org/10.1186/1745-6150-2-9
https://doi.org/10.1093/nar/gng015
https://doi.org/10.1093/nar/gng015


10. Cheng L, Lo LY, Tang NLS et al (2016) Cross-
Norm: a novel normalization strategy for
microarray data in cancers. Sci Rep 6: 18898.
https://doi.org/10.1038/srep18898

11. Astrand M (2003) Contrast normalization of
oligonucleotide arrays. J Comput Biol 10:
95–102

12. Workman C, Jensen LJ, Jarmer H et al (2002)
A new non-linear normalization method for
reducing variability in DNA microarray experi-
ments. Genome Biol 3: research0048.1–re-
search0048.16. https://doi.org/10.1186/
gb-2002-3-9-research0048

13. Huber W, Von Heydebreck A, Sültmann H
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Chapter 10

HPC Tools to Deal with Microarray Data

Jorge González-Domı́nguez and Roberto R. Expósito

Abstract

Parallel and high performance computing is continuously gaining attention in the last years as a means to
accelerate several kind of computationally expensive applications. This chapter is a review of different
research works and publicly available tools whose target is the acceleration of microarray data analysis,
thanks to exploiting high performance computing systems.

Key words Microarray data, High performance computing, Parallel computing

1 Introduction

High performance computing (HPC) has become increasingly
important over the last decades as an essential tool for scientific
research. In fact, HPC is currently one of the leading edge disci-
plines in IT with a wide range of demanding applications in econ-
omy, science, and engineering. HPC applications generally involve
complex mathematical models and numerical solution techniques
that often require a large number of computing resources to cut
down their computational complexity.

High-throughput techniques for gene expression analysis have
significantly increased its speed during the last years, which has led
to a huge amount of microarray data. Scientists and researchers face
the challenge of transforming this data into interesting biological
information. Therefore, they require scalable bioinformatics tools
capable of analyzing large microarray datasets in a reasonable period
of time. Meeting HPC and bioinformatics is the solution on several
scenarios.

In this chapter we will enumerate a significant number of works
that have attempted to accelerate different stages of the microarray
analysis pipeline using HPC facilities. Before this enumeration we
start the chapter with a brief description of the different kind of
parallel architectures that have been exploited for microarray data.

Verónica Bolón-Canedo and Amparo Alonso-Betanzos (eds.), Microarray Bioinformatics, Methods in Molecular Biology, vol. 1986,
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2 Background on HPC Architectures

Themain factor drivingHPC performance is parallel computing. In
its simplest sense, it can be defined as a type of computation in
which multiple computing resources are concurrently used to solve
a complex computational problem. These computing resources
vary widely from a single computer with multiple processors or
cores to an arbitrary number of such computers interconnected
through a high-speed network. The increasingly computing needs
of HPC applications has caused parallel computers to significantly
evolve over time. Virtually all standalone computers today are
inherently parallel from a hardware perspective, including multiple
functional units, processing cores, and hardware threads. In fact,
parallelism can be on many levels:

l Micro-architecture level: instruction level parallelism (ILP), sin-
gle instruction multiple data (SIMD).

l Processor level: multicore processors and manycore accelerators.

l Node level: multiple processors and accelerators per node.

l System level: multiple nodes per system.

Next, this section provides the background of this chapter
regarding the HPC architectures and programming models most
commonly used to fully exploit the different levels of parallelism
available on current systems.

2.1 Shared-Memory

Systems

Shared-memory systems have in common the ability for all proces-
sors or cores to access all the available physical memory as a global
address space that they read and write to asynchronously. In this
way, multiple processors can operate independently but sharing the
same memory resources. So, changes in a memory location carried
out by one processor are visible to all other processors in the
system. Based upon memory access times, shared-memory systems
have historically been classified as:

l Uniform memory access (UMA). Access time to a memory
location is independent of which processor makes the request
or which memory module contains the data. These systems are
also known as symmetric multiprocessor (SMP) machines.

l Non-uniform memory access (NUMA). Not all processors have
equal access time to all memories. Each processor still has access
to all the available physical memory, but it is directly connected
only to a portion of it. To access other parts of the physical
memory, it uses a fast interconnection link. So, accessing the
local memory is faster than accessing the remote memory.

Representative examples of shared-memory machines are mul-
tiprocessor systems, with two or more processors in close
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communication, andmulticore processors (i.e., a multiprocessor on
a single chip). Nowadays, the combination of both approaches is
largely being used as the building block for most HPC deploy-
ments. Basically, each computing node is usually a NUMA multi-
processor system where multiple processors are installed in different
sockets, with each socket providing a UMA multicore processor.

OpenMP [23] is a standardization effort jointly defined by a
group of major computer hardware and software vendors, which is
the most commonly employed protocol for parallel programming
of shared-memory systems. The OpenMPAPI specification defines
a portable and scalable model that provides a simple interface for
developing parallel applications in C, Cþþ, and Fortran. Basically,
OpenMP is based on the fork-join threading model and proposes a
set of compiler directives and library routines. Other lower-level
programming models for shared-memory systems are threading
libraries such as POSIX threads (pthreads) and the use of inter
process communication (IPC) mechanisms (e.g., shared-memory
segments) provided by operating systems.

2.2 Manycore

Accelerators

A recent trend in HPC is the deployment of heterogeneous archi-
tectures that combine fine-grain and coarse-grain parallelism using
hundreds or thousands of processing cores. These abundant pro-
cessing cores are generally available in the form of massively parallel
hardware devices known as manycore accelerators or co-processors.
In HPC, an accelerator is a hardware component whose role is to
speed up some aspect of the computing workload. These accelera-
tors can be considered specialized multicore processors designed
for a high degree of parallel processing, containing a large number
of simpler, independent processing cores. The main advantage of
these systems is their good trade-off between computational cap-
abilities and energy requirements. Compared to conventional mul-
ticore processors, these devices can offer an order-of-magnitude
improvement in performance per watt. Examples of such manycore
accelerators include graphics processing units (GPUs), Intel Xeon
Phi, and field-programmable gate arrays (FPGAs).

To tackle the platform diversity problem arising from these
complex heterogeneous architectures, the open computing lan-
guage (OpenCL) [106] was proposed in 2008. OpenCL is an
open standard maintained by the non-profit technology consor-
tium Khronos Group. Basically, OpenCL is a platform-independent
framework to write parallel programs that execute across heteroge-
neous platforms, proposing a common hardware model for all
manycore and multicore platforms. The user programs this “vir-
tual” platform, and the resulting source code is portable on any
OpenCL compliant platform. OpenCL views a computing system
as consisting of a number of compute devices, which may be
general-purpose multicore processors or manycore accelerators
attached to a host processor. Moreover, OpenCL defines a
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multilevel shared-memory model, featuring four distinct memory
spaces (private, local, constant, and global) that are allowed to be
collapsed together depending on the memory subsystem of the
underlying platform.

2.2.1 GPUs GPUs were originally designed to accelerate graphics tasks like
image rendering, also supporting 3D graphics, especially for video
games and graphics APIs such as DirectX and OpenGL. This is
basically done through mostly floating-point arithmetic, which is
the same stuff HPC developers mainly use supercomputing for.
During years, GPUs have evolved from non-programmable hard-
ware pipelines to fully programmable highly parallel manycore
architectures, which has enabled their use for non-graphical com-
putationally intensive applications, known as general-purpose com-
puting on GPUs (GPGPU).

To access the GPU computational resources, the algorithms
had initially to be expressed in native graphics operations, so effi-
cient applications could be developed but programming was very
difficult and time-consuming. For this reason, the tools for the
development of GPGPU applications have greatly improved over
time. On the one hand, NVIDIA introduced in 2006 the compute
unified device architecture (CUDA) [81]. Based on C, CUDA uses
language extensions to separate device (i.e., GPU) from host code
and data, as well as to launch CUDA kernels. On the other hand,
AMD first embraced Brookþ as a high-level programming model
for their GPUs, which is based on an extended version of Brook
[10], but finally adopted OpenCL.

Basically, programming GPUs is based on offloading and fine-
grained parallelism: the host processor offloads the data-parallel
kernels as large collections (blocks) of threads on the GPU. From
the architectural standpoint, GPUs are inherently SIMD processors
that rely on data parallelism with a high number of cores grouped
into blocks, and memory organized in a hierarchical way (at thread,
block, and global level).

2.2.2 Intel Xeon Phi Xeon Phi is a series of manycore co-processors based on the many
integrated core (MIC) architecture, which has its roots in an earlier
GPU design by Intel. The main feature of the MIC architecture is
that it provides fully x86-compatible processing cores that can run
software that was originally targeted at a standard x86 processor.
This means a simpler programming style than that of GPUs, thanks
to the use of standard programming languages and APIs such as
OpenMP, in addition to platform-independent frameworks such as
OpenCL. Basically, MIC is based on simple, low-frequency in-or-
der x86 cores for reduced power consumption together with wide
SIMD and multithreading units to deliver massive data and thread
parallelism, respectively.
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Initially, the first generation of Xeon Phi (i.e., Knights Corner)
was only available in the form of PCIe-based cards to be used as
manycore accelerators, just like GPUs. However, the second gener-
ation (Knights Landing) is available in two forms: as an accelerator
or as a host standalone processor.

2.2.3 FPGAs FPGAs are massively parallel, digital logic arrays designed to be
configured by the end user after being manufactured. FPGAs sup-
port the notion of reconfigurable computing and offer a high
degree of on-chip parallelism, being extremely competitive devices
compared to state-of-the-art multicore processors and GPUs while
providing lower power consumption.

One of the main hurdles in the utilization of FPGAs as many-
core HPC accelerators is the complexity of programming them.
The traditional way to configure FPGAs has been through a hard-
ware description language (HDL) such as Verilog or VHDL used
by hardware designers. This limitation is being tackled by high-level
synthesis (HLS) [72] techniques, which enable designers to pro-
gram an FPGA using high-level languages (e.g., C, Cþþ). In fact,
some vendors are also offering HLS tools for OpenCL to dramati-
cally simplify FPGA programming by enabling users to code their
algorithms in a platform-independent parallel framework.

Another major benefit of FPGAs is energy efficiency, reducing
power consumption of an HPC system in two ways. First, pro-
grammed FPGAs can take on tasks delegated from the host proces-
sor to optimize the workload. Second, because the FPGA’s role is
defined by software, only the needed onboard elements of the
FPGA are activated (i.e., the rest of the configurable elements can
remain inactive).

2.3 Distributed-

Memory Systems

The common characteristic of distributed-memory systems is the
use of a communication network to connect inter-processor mem-
ories. In these systems, processors have their own private memory
and there is no mapping of memory addresses across them. Unlike
shared-memory systems, there is no concept of a global address
space (i.e., changes a processor makes to its local memory have no
effect on the memory of other processors). When a processor needs
access to data in another processor, it is usually the task of the
programmer to explicitly define how and when data is communi-
cated. Distributed-memory systems vary widely from small clusters
built using commodity off-the-shelf hardware (e.g., the so-called
Beowulf clusters) to large supercomputers installed at national
laboratories, big research groups, or large companies.

The message-passing model is by far the most widely used
approach to program distributed-memory systems in the HPC
community. The message passing interface (MPI) [74] is the de
facto standard for message-passing based on the consensus of more
than 40 participating organizations, including vendors, researchers,
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and users. MPI provides a portable and scalable API to write robust
and efficient parallel applications using the message-passing para-
digm, where processes exchange data through communications by
sending and receiving messages. Currently, there exist several
implementations of the MPI interface for C, Cþþ, Fortran, and
Java languages.

As mentioned before, the majority of HPC deployments in the
world today employ both shared and distributed-memory architec-
tures. These systems provide several multicore nodes connected
through a network, where each node is generally equipped with
multiple manycore accelerators. To program these systems, hybrid
parallel approaches are generally used by combining MPI with a
shared-memory thread model (e.g., MPIþOpenMP) or other APIs
to exploit the compute capabilities of manycore accelerators (e.g.,
MPIþCUDA/OpenCL).

2.4 Cloud Computing

Platforms

Cloud computing [11] is an Internet-based computing model that
has gained significant acceptance in many research areas and IT
organizations as an elastic, flexible, and variable-cost way to deploy
their services using outsourced resources. More specifically, infra-
structure as a service (IaaS) is a type of cloud service that dynami-
cally provides on-demand and self-service access to elastic
computing resources (e.g., CPU, memory, disk), which are typi-
cally billed on a pay-as-you-go basis.

In recent years, cloud computing has generated strong interest
in the HPC community due to the effortless access to large number
of computing resources. Traditional HPC systems are typically
managed and operated by individual organizations in private. How-
ever, computing demand is fluctuating, with periods where dedi-
cated resources are either underutilized or overloaded. The
advantages of the pay-as-you-go model, elasticity, flexibility, cus-
tomization, and resource control offered by virtualization technol-
ogies make cloud computing an attractive option to meet the needs
of HPC users. In this context, resources are no longer hosted by the
researchers’ computational facilities, but leased from IaaS providers
only when needed, which is especially interesting for users who
cannot afford their own HPC infrastructure.

The interest of cloud platforms for HPC increases as their
availability, computational power, price, and performance improve.
Public IaaS providers (e.g., Amazon EC2) are increasingly offering
HPC-aimed resources that are intended well suited for HPC work-
loads and other demanding network-bound applications. These
resources include state-of-the-art multicore processors, high-
speed networks, enhanced storage performance through solid
state drive (SSD) disks, and manycore accelerators (GPUs and
FPGAs). Using the powerful abstraction provided by the IaaS
model, researchers can set up virtual clusters to exploit
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supercomputing-level power without any knowledge of the under-
lying infrastructure [71].

From the new programming paradigms that have been pro-
posed to deal with large-scale computations on cloud platforms, the
MapReduce model developed by Google [24] is the most popular
one since its inception. MapReduce executes in parallel several
instances of two user-defined functions, Map and Reduce, over
the computing nodes of distributed-memory systems such as clus-
ters and clouds. MapReduce applications are made in batches rely-
ing on the distributed Google file system (GFS) [35] to take the
input and store the output. Regarding open-source implementa-
tions, Hadoop [108] is the most widespread MapReduce frame-
work for large-scale batch processing, providing the Hadoop
distributed file system (HDFS) [104] as GFS counterpart. How-
ever, MapReduce is not well suited for iterative algorithms because
there is no efficient way of reusing data or computation from
previous iterations. Emerging frameworks, such as Spark [116]
and Flink [14], are designed from the very beginning to efficiently
support iterative workloads, providing a programming API based
on distributed in-memory data structures (e.g., Spark RDDs
[115]). Moreover, these frameworks are suitable for streaming
computations, even with real-time or near real-time constraints.

3 Acceleration Microarray Data Processing

3.1 Preprocessing

Steps

In recent years, biologists have generated massive amounts of
microarray data using modern platforms. However, this extreme
speed in sampling microarray data usually comes with a prize: some
data might have low quality or even sampling errors. The first step
in microarray analyses consists in assessing the quality of the micro-
array data and preprocessing the data to obtain gene expressions.
Tools that exploit HPC facilities are necessary in order to perform
the quality assessment and preprocessing of very large microarray
datasets.

Probably the most used parallel tool for microarray data pre-
processing is affyPara [101]. It extends the sequential affy
package [52], is written with R and MPI, and is publicly available
[89]. affyPara involves three steps: background correction, nor-
malization, and summarization. The background correction step
attempts to remove the background noise from the raw intensity.
Therefore background correction is essential, since part of the
measured probe intensities is due to non-specific hybridization
and the noise in the optical detection system. Normalization aims
to correct the variation of gene expression in the same array due to
experimental bias. Summarization combines the multiple probe
intensities for each probeset to produce expression values.
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A counterpart of affyPara is presented in [44]. It also
employs a master–slave MPI approach for the normalization and
summarization steps. According to the authors it presents three
advantages over affyPara: (1) the possibility to apply more sum-
marization schemes such as Plier; (2) the mechanism to easily
extend the algorithm to newer types of SNP arrays; and (3) it
does not require the installation of the bioconductor platform.
However, it is not available to download from a public repository.

The two previous MPI approaches need the microarray data
loaded into memory for preprocessing, which limits the size of the
microarray datasets they can handle. An integrated microarray
quality assessment and preprocessing tool parallelized for cloud
and GPU systems is capable to handle background correction,
normalization, and summarization for larger datasets [82]. It
employs Hadoop for the data-intensive part while CUDA for the
compute-intensive tasks. A different approach to remove noise of
microarray data on the cloud is presented in [45]. Concretely, it
uses Hadoop and wavelet-based thresholds to remove noise from
microarrays while retaining gene significance within the microarray
dataset.

Image processing techniques are also very employed to
complete the preprocessing steps and evaluate the gene expressions.
Their high complexity makes them suitable for parallelization. For
instance, an automated FPGA-based system for microarray image
processing is presented in [7]. It includes image enhancement
(improve image quality and enhance weakly expressed spots),
image addressing or gridding (creation of a grid that matches the
spots in the image), and image segmentation (identify those pixels
that belong to the microarray spot and those pixels that represent
background information). It was satisfactorily tested on a
Xilinx xc5vlx110t FPGA found on the Virtex5 platform. FPGAs
were also used in [60] to parallelize an edge detection method that
can be employed as base for image segmentation of DNA
microarray data.

An interesting available tool [109] for image processing of
microarray data is MIGS-GPU [58], which provides a CUDA imple-
mentation of the gridding and segmentation steps for NVIDIA
GPUs. They are implemented with a genetic and a grow-cut algo-
rithm (region growing algorithm that can segment a greyscale or
multichannel image into regions belonging to multiple classes),
respectively. The authors have also presented a OpenMP implemen-
tation of their image segmentation approach for multicore CPU
systems [57], where threads apply the segmentation to different
quadrilaterals of the image provided by the gridding process.

Finally, PIMA(GE) [33] is a complete library for image proces-
sing that is parallelized with MPI and CUDA to be used on multi-
core clusters, GPUs, and even on modern heterogeneous clusters
and supercomputers where the nodes have available several CPUs
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and GPUs. Among different scenarios it has been tested on images
obtained with tissue microarray technology, obtaining high
scalability.

3.2 Construction

of Gene Networks

Gene co-expression networks are used to illustrate the complex
interactions that can be present among multiple genes. The nodes
and edges represent genes and interesting correlations, respectively.
There exist several applications that construct these networks
receiving as input the microarray expression values for each gene
and each sample.

One of the most popular tools to construct gene networks is
ARACNE [70]. It uses an information theoretic framework based on
the data processing inequality theorem to infer direct regulatory
relationships between transcriptional regulator proteins and target
genes. However, its MATLAB/Cþþ implementation is quite slow
and it is limited to small datasets. A publicly available [5] multi-
threaded Java counterpart ARACNe-AP [63] that can be executed in
parallel on multicore shared-memory systems has been developed.
Networks inferred by ARACNe-AP are virtually identical to those
inferred by the original tool but in significant lower runtime.

There exist different algorithms to construct gene networks,
some of them more suitable for parallelization. For instance,
FastGCN [66] is an available tool [31] that uses OpenMP and
CUDA to parallelize its four steps, so that they can be executed
either on multicore platforms or GPUs: (1) preprocessing of the
input data with genetic information entropy; (2) computation of
the Pearson correlation coefficient for each gene pair; (3) transfor-
mation of the coefficients to a normal distribution; and (4) identifi-
cation of modules. Another approach valid for both multicore and
GPU systems was presented in [118].

The computational capabilities of GPUs are also exploited by
CUDA-MI [21] to accelerate the estimation of the pairwise mutual
information from gene microarray data [103], which is a common
step of many approaches to construct gene networks. CUDA-GRN
[4] is an efficient GPU version of the widely used GENIE3 tool
[53], which employs random forests to extract gene networks from
microarray data. Other examples of GPU-based works are based on
random matrix theory [51] or mean conditional entropy [9].

GPUs are not the only type of accelerators that have been used
for gene network construction. For instance, an approach based on
the parallel calculation of mutual information on Intel Xeon Phi
co-processors was presented in [75]. There also exist alternatives
for FPGAs focused on Bayesian learning [6, 93] or boolean
graphs [32].

The construction of gene networks is so computationally
expensive that also larger infrastructures have been exploited to
accelerate it. The first approximation using MPI was presented in
[98], with a promising experimental evaluation on an old Beowulf
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cluster. More modern MPI approaches that produce high-quality
networks from large microarray datasets on a reasonable time are
described in [107, 121]. Nevertheless, up to our knowledge, MPI-
GeneNet [36] is the only available tool [79] to accelerate gene
network construction with the message-passing paradigm. It effi-
ciently exploits multicore clusters with a two-level MPIþOpenMP
parallel implementation of its two steps: (1) Pearson correlation
and (2) the randommatrix theory threshold. Even anMPIþCUDA
implementation for heterogeneous clusters exists [13].

Finally, it is interesting to mention similar approaches also
developed for high performance facilities such as clusters or clouds
with the MapReduce paradigm. The examples include a Spark
implementation of a method based on mutual information [18]
and a Hadoop program for time-series microarray data [2] (paral-
lelization of TimeDelay-ARACNE [122]). It is worthy to include in
this review a work [112] that evaluates the impact of using the
RHIPE MapReduce framework (written on top of Hadoop) to
parallelize four different correlations methods that are usually an
important step for the construction of gene networks.

3.3 Statistical

Analysis

After a gene expression experiment has been conducted and basic
preprocessing has been performed, the general analysis procedure
for univariate association testing involves comparing samples with a
combination of criteria for expression level and statistical signifi-
cance. For a typical case-control study, probably the most common
approach consists in the application of one or several statistical tests
to compare expression levels for each gene or SNP of interest in
control individuals to those that present the disease. These tests are
not usually too expensive in terms of computational time, so they
do not require extreme parallel solutions. Nevertheless, a publicly
available [26] multithreaded library called EDGE efficiently works
on small multicore shared-memory systems either for static or time-
course data [65]. There even exist cloud-based approaches for tests
such as ANOVA [95] or Fisher’s [3, 25].

These kind of tests have been extensively used for analysis due
to its good trade-off between simplicity and quality of results.
Nevertheless, alternatives based on machine learning techniques
such as feature selection or classification can increase the accuracy
of the analyses at expense of longer runtimes. These approaches can
benefit from high performance computing. For instance, the avail-
able CUDA tools CFMDS [15] and FastMRMR [29] perform feature
selection on NVIDIAGPUs and have been tested over microarrays.
The first tool implements the multidimensional scaling method
[90] while the second provides a greedy optimization of the popu-
lar mRMR (minimum redundancy maximum relevance) feature
selection approach [94]. Examples of classification techniques par-
allelized for GPUs are presented in [8] and [113], while an alterna-
tive for FPGAs is presented in [50]. Some examples for distributed-
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memory systems are the MPI parallelization of the multicategory
support vector machine (SVM) classification method [117], and
the random forest classifier implemented with parallel R
[76, 77]. Nevertheless, MapReduce paradigm is the most popular
when gathering machine learning and microarray data. Approaches
focus on different classification methods such as K-nearest neigh-
bor [54, 62] or proximal SVM [61], and some of them also include
parallel feature selection algorithms [96].

The use of computationally expensive data mining techniques
such as clustering or biclustering can also be useful to associate
genes or SNPs to the presence or absence of certain diseases.
Parallel works related to these techniques compress all possible
HPC architectures. Starting by Intel shared-memory platforms, a
parallel dictionary learning can accelerate the biclustering of micro-
array gene expression data on multicore CPU platforms [64], while
the partition around medoids algorithm (a variation of K-Means)
can benefit from the Xeon Phi co-processor [97]. Applications for
specific hardware include several FPGA-based implementations of
K-Means [12, 49], as well as GPU the publicly available library
CAMPAIGN [20], that provides GPU implementations of several
clustering methods [59]. Three open-source tools (DBSCAN
[86], PINK [87], and OPTICS [88]) are the most representative
examples of clustering using the message-passing paradigm. They
implement density-based clustering [91], hierarchical clustering
[47], and a mix of both methods [92], respectively.

Finally, some works even deal with different architectures and
compare their suitability for these data mining algorithms. For
instance, the performance of both multicore CPUs and GPUs
biclustering or microarrays is analyzed in [67] and [84] (this last
work also includes FPGAs). The hybrid MPIþCUDA implementa-
tion of NMF-mGPU [73] allows this publicly available tool [83] to
exploit heterogeneous clusters where each node contains one or
several GPUs to complete the biclustering of microarrays through
the non-negative matrix factorization method. A hybrid parallel
implementation of the K-Means clustering technique that exploits
both CPU cores and FPGAs on a single node has been presented in
[1]. There also exists an implementation of this algorithm for
clusters of FPGAs, using Hadoop to distribute the workload
among accelerators [19].

3.4 Epistasis

Detection

The main drawback of the univariate tests presented in the previous
section is that they are not powerful enough to explain most of
genetic influence on diseases. In these cases the detection of joint
genetic effects of two or more SNPs or genes (epistasis) needs to be
considered [78]. The most common approach consists in checking
the influence of SNP-pairs (second order interactions). Algorithms
that address this kind of problem are expensive due to their qua-
dratic complexity with the number of SNPs. Many parallel tools
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have been developed, and even two reviews have been published
[16, 111], the second one only focused on GPUs.

GPUs are undoubtedly the most popular parallel platform to
accelerate second level epistasis. As examples of publicly available
tools we should mention MDRGPU [80] (a CUDA implementation
of the powerful model-free multifactor dimensionality reduction
method [42]), SHEsisEpi [100] (using Z-test to determine the
SNP-pairs with influence on the disease [48]), EpiGPU [27]
(OpenCL implementation that can be executed on GPUs of differ-
ent vendors [46]), and GBOOST [34] (with boolean data represen-
tation to accelerate calculations [114]). There also exist research
works that compare the performance of GPUs implementations
with other parallel architectures such as multicore CPUs [17, 38],
FPGAs [39], or Intel Xeon Phi co-processors [22, 40, 105].

Nevertheless, larger HPC facilities have also been exploited to
accelerate pairwise epistasis detection with message-passing-based
tools such as EPISNPmpi [28] and FastEpistasis [30] (both of
them implemented with MPI for quantitative analysis [68, 102]),
or ParallABEL [85] (implemented with Rmpi [99]). Cloud-based
counterparts include tools based on ant colony [120] or chi-square
tests [119].

Although less common, it is even possible to analyze the influ-
ence of larger groups of SNPs or genes. Remark GPU3SNP [41] and
TST [110] as tools that are able to exploit GPUs to find third-level
epistasis (interactions of SNP-triplets) [37, 69]. A similar alterna-
tive for FPGAs was presented in [56]. Finally, parallel implementa-
tions to find interactions with a level even higher than three were
developed for GPUs [55] and cloud systems [43].
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Chapter 11

ROC Curves for the Statistical Analysis of Microarray Data

Ricardo Cao and Ignacio López-de-Ullibarri

Abstract

A receiver operating characteristic (ROC) curve is a graphical plot that illustrates the diagnostic ability of a
binary classifier as a function of its discrimination threshold. This chapter is an overview on the use of ROC
curves for microarray data. The notion of ROC curve and its motivation is introduced in Subheading
1. Relevant scientific contributions concerning the use of ROC curves for microarray data are briefly
reviewed in Subheading 2. The special case with covariates is considered in Subheading 3. Two relevant
aspects are reviewed in this section: the use of LASSO techniques for selecting and combining relevant
markers and how to correct for multiple testing when a large number of markers are available. Finally, some
conclusions are included.

Key words AUC, FDR, FWER, LASSO, Microarray, Multiple testing, pAUC, ROC curve

1 Motivation and Background

A diagnostic test is a procedure to identify an individual’s propen-
sity to disease or illness. For example, in order to diagnose a
herniated disc, physicians may employ magnetic resonance imaging
(MRI), computer assisted tomography (CAT scan), and/or elec-
tromyography (EMG) to determine if the herniated disc is imping-
ing on a nerve root. Diagnostic tests are often based on quantitative
markers and the quality of the tests is typically measured by means
of their sensitivity and specificity. Sensitivity is the true positive
probability, i.e., the probability that an ill patient is identified as
being ill. On the other hand, specificity is the true negative proba-
bility, which means the probability that a healthy patient is identi-
fied as such. Of course, high values of sensitivity and specificity are
desired. However, when using a marker, moving its threshold to
identify an ill patient as well as possible increases the test’s specificity
but decreases its sensitivity.

Denoting by Y0 the marker for the diagnostic test for healthy
people and by Y1 the marker for diseased, and given a threshold
value, u, for the diagnostic test, the sensitivity is P(Y1 > u) and the
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specificity is P(Y0 � u). In this context, the receiver operating
characteristic (ROC) curve is just the curve described by plotting
the true versus false positive probabilities as a function of the
threshold. ROC curves were first developed by electrical and
radar engineers during World War II, but they were soon intro-
duced in psychology and since then very much used in medicine
(see the seminal work by Green and Swets [1], Swets and
Pickett [2] and Hanley [3]). Mathematically, the ROC curve is
defined as fðPðY 0 > uÞ,PðY 1 > uÞÞ : u∈ℝg ¼ fð1� F 0ðuÞ,
1� F 1ðuÞÞ : u∈g, with F0 (respectively, F1) the cumulative distri-
bution function (cdf) of Y0 (respectively, Y1). Alternatively, by con-
sidering t ¼ 1 � F0(u) the ROC curve can be parameterized by

fðt ,1� F 1ðF�1
0 ð1� tÞÞÞ : t∈½0,1�g.

In the extreme case where the distributions of the diagnostic
marker for healthy and diseased people are the same (i.e., F0 ¼ F1)
the ROC curve results in the diagonal line for the first quadrant:
{(t, t) : t ∈ [0, 1]}, with no more diagnostic power than a random
choice. In general, the ROC curve is above the diagonal and the
closer to the point (0, 1), the better the diagnostic power. A
common index that can be computed with the ROC curve is the
area under the curve (AUC). This index is smaller than or equal to
one (the area of the unit square). The larger the AUC, the better
the diagnostic power. The extreme case of no diagnostic power at
all (i.e., random choice for diagnosis) corresponds to the value 0.5
for AUC.

Statistical properties and extensions of ROC curves have been
extensively studied, see [4–10] for related work. For readers inter-
ested in relevant publications concerning ROC curves for different
medical problems we refer to [11–15], among many others.

2 ROC Analysis for Microarray Data

Over the past two decades ROC analysis has been applied to
diagnostic tests based on microarrays. In this section we will con-
centrate on the papers [16–18].

Pepe, Longton, Anderson, and Schummer (see [16]) consider
several statistical methods to rank genes (or proteins) in regard to
differential expression between tissues, aiming to distinguish
between cancerous and normal organ tissues. They propose to use
AUC and a version of it, the pAUC, the partial area under the ROC
curve between 0 and a certain value t0 ∈ (0, 1). The authors
propose to select the value t0 based on false positive rates that are
acceptable in practice. For instance t0 could be chosen as the
maximal acceptable false positive rate. In general, very small values
for t0 are required in cancer screening; however, with small number
of tissue samples, estimation of pAUC(t0) is not very accurate. For
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the selected value, t0, they suggest to use ROC(t0) and pAUC(t0)
to rank genes. Unlike classical settings in which standard errors and
p-values are considered, the authors suggest using the “selection
probability function” for quantifying sample variability. For a gene
g and a number of top genes, k, the selection probability function is
defined as P(Rank(g) � k). The bootstrap method is used to esti-
mate this function. The authors propose a method to calculate the
sample size based on the selection probability function. The meth-
ods presented in [16] are used to analyze a real data set of gene
expression arrays of 23 normal and 30 ovarian cancer tissues.

Tsai and Chen (see [17]) depart from [16] and use measures as
ROC(t0), pAUC(t0), and AUC, with an arbitrary choice of the
threshold, t0 ¼ 0.1, in practice. These authors propose to use p-
values, estimated based on permutation tests, to calculate scores for
ranking genes. With this approach, selecting the significant genes is
equivalent to testing a large number of hypotheses, which brings
the issue of multiple testing (see Subheading 3.2).

Berrar and Flatch (see [18]) discuss limitations of the ROC
curve in the context of microarray data. The authors point out
the drawbacks of ROC curves that are not convex and how to
convexify non-convex ROC curves. The authors also argue that
the cost curves may be an interesting alternative to ROC curves
when the cost of the two possible misclassification errors can be
quantified. The difference between classifying and ranking is also
stressed in [18]. In that sense, the concept of ROC curve and AUC
is better suited for measuring the ability of rankers than classifiers.
Classifiers and rankers optimize different loss functions. Whereas
classifiers aim at minimizing classification errors, rankers try to
minimize the number of ranking errors. Another important caution
when using ROC curves, mentioned in [18], concerns models
derived from different training data sets. This is often done when
performances are compared with published results. In those cases,
the training sets are rarely the same when using different data, and
sampling mechanisms turn out to be of vital importance. The
fallacy of the undistributed middle is also presented to show how
AUC ¼ 0.5 does not necessarily imply that the classifier behaves
like a random guessing. This is illustrated with some examples
where classification may be even perfect but the behavior of the
quantitative marker is not monotonic in terms of positive and
negative instances, but two thresholds are needed instead to classify
between normal (in the interval (u0, u1)) and diseased (in the set
(�1, u0] \ [u1, 1)). In connection with this, the early retrieval
problem is considered and it is shown how AUC may be useless
when one is interested in just correctly classifying some top ranked
cases (see also the concentrated AUC proposed by Swamidass et al.
[19]). Multiple testing issues are also important when using AUC
and its p-values in gene selection, when hundreds or thousands of
genes are investigated. The authors also point out the importance
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of using confidence intervals, rather than p-values, recommending
the use of the bootstrap given the non-normality of the AUC
distribution. All these points are discussed by means of illustrative
examples coming from real-world studies.

3 ROC Analysis with Covariates

It is quite common in clinical practice that multiple diagnostic tests
are performed on an individual. When multiple disease markers are
available, a reasonable way to proceed to diagnose disease is to
combine the information of those markers. Some of the very first
papers that proposed to use linear combinations of markers in order
to optimize diagnostic accuracy are [20] and [21]. Pepe and
Thompson (see [20]) consider maximizing AUC and propose a
distribution-free rank-based approach for optimizing the area
under the ROC curve. The method is shown to be efficient in
simulation studies and may be extended to deal with partial areas
under the ROC curve, which allows one to focus on relevant
regions of the ROC curve concerning clinical practice. These
authors use this approach to study two cancer data sets, one involv-
ing serum antigen markers for pancreatic cancer and the other one
concerning longitudinal prostate-specific antigen data. Following
these ideas, Pepe, Cai, and Longton (see [21]) compare this linear
combination approach maximizing AUC with classical maximum
likelihood criteria dealing with multiple markers. Simulation stud-
ies performed by these authors suggest that AUC-based classifica-
tion scores have a similar performance to logistic likelihood-based
scores when the logistic regression model holds. On the other
hand, the performance of the proposed method can be much better
than logistic regression when this parametric model does not hold.
This is illustrated by analyzing a data set from a proteomics bio-
marker study. The authors conclude that maximizing the AUC
(rather than the likelihood) should be considered when the goal
is to derive a marker combination score for classification or
prediction.

The two previous papers do not consider applications to micro-
arrays. In fact, this approach has a high computational burden when
the number of markers is larger than two and no specific method is
mentioned to deal with the problem of a large number of markers.
This is extremely important for microarray data. Two of the papers
recently published that are useful to overcome the computational
limitations of the previous approach are [22] and [23]. Liu, Liu,
and Halabi (see [22]) propose a min–max method which is a variant
of the one in [21]. Simulation results by these authors show that
the min–max method is more robust against distributional assump-
tions. The method is applied to a growth-related hormones data set
from the Growth and Maturation in Children with Autism or
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Autistic Spectrum Disorder Study (Autism/ASD Study). Although
the method is computationally efficient for high-dimensional data,
an important drawback is that when the dimension tends to infinity,
the minimum sensitivity tends to 0 and the maximum sensitivity
tends to 1, while the minimum specificity tends to 1 and the
maximum specificity tends to 0. Another variation of [21] is the
method proposed by Kang, Liu, and Tian (see [23]). These authors
propose a nonparametric stepwise method and use a leave-one-pair-
out cross-validation method to evaluate the performance of differ-
ent linear combination methods in terms of AUC. Although this
method combines the markers in a computationally efficient way,
the fact that all the markers are combined makes the method not
very well suited for microarray data. The authors apply this
approach to a Duchenne muscular dystrophy data set.

3.1 LASSO-Like

Techniques

Problems arising when the number of covariates is large are nowa-
days common in the statistical practice. In the context of linear
regression with a large number of covariates, Tibshirani (see [24])
proposed the LASSO (least absolute shrinkage and selection oper-
ator) for multiple linear regression. Its key idea is to minimize an
L1-penalized version of the classical sum of squares. Denoting the
data by (Xi, Yi), i ¼ 1, . . ., n, where Xi is the ith observation of the
column vector of explanatory covariates and Yi is the ith observa-
tion of the response variable, the LASSO simply minimizes, in the
parameter vector β ¼ (β1, . . ., βp)

⊤, the expression:

Xn

i¼1

ðY i � β⊤X iÞ2 þ λ
Xp

j¼1

βj

���
���,

where λ > 0 is a penalty term. An alternative way of formulating
LASSO is to minimize

Pn
i¼1 ðY i � β⊤X iÞ2 subject to

Pp
j¼1 βj

���
��� � t :

When t is large, the solution of this optimization problem is very
close to the classical ordinary least squares estimator, while for small
values of t, LASSO gives a solution with plenty of coefficients
βj ¼ 0. An efficient iterative algorithm to find the LASSO solution
has been proposed also in [24].

While LASSO is well suited for regression models with contin-
uous response, the method must be adapted to the context of
classification. A possible way to do this consists in using optimal
scoring (see [25] and [26]). Ghosh and Chinnaiyan (see [27]) use
optimal scoring ideas to carry out LASSO for minimizing a pena-
lized version of AUC. Denoting by Xi the ith observation of the
gene expression profile vector (i.e., Xij is the gene expression
measurement of the jth gene, j ¼ 1, . . ., p, for the ith observation
in the sample, i ¼ 1, . . ., n) and by gi ∈{0, 1} the indicator of a
diseased patient, the optimal scoring problem finds the vector of
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coefficients η ¼ (η1, . . ., ηp)
⊤ and the scoring map θ : f0,1g ! ℝ

that minimize the following average squared residual:

ASR ¼ n�1
Xn

i¼1

ðθðgiÞ � η⊤X iÞ2:

An equivalence between LASSO and support vector machines
(SVM) allows Ghosh and Chinnaiyan to carry out their method
using standard software. These authors applied their method to a
data set coming from a prostate cancer study.

3.2 Multiple Testing

Issues

Regular p-values cannot be directly used to quantify the likelihood
of hundreds or thousands of simultaneous hypotheses, which is
often the case when dealing with high-dimensional data. This is
because many features are tested at the same time and the probabil-
ity that at least one null hypothesis is incorrectly rejected is not so
small. This is known as the multiple comparisons or multiple testing
problem. The most widely used approach to multiple testing is to
define a procedure and then control an informative error rate for
it. This means adapting the procedure to guarantee an error rate
below a predefined value. The procedures are typically flexible
through parameters or cutoffs that allow one to control specificity
and sensitivity. An example of a procedure is: (a) compute a p-value
for each gene; (b) consider significant all genes with p-values smal-
ler than some value α. Observe that changing the value of α permits
to adjust specificity and sensitivity.

The family-wise error rate (FWER) is the probability of making
at least one type I error in the family of hypotheses to be tested (see
[28] and [29]). In the context of microarray data, FWER could be
regarded as the probability that at least one non-influential gene is
incorrectly detected as significant among all the tested genes.
Controlling FWER is an important issue to ensure simultaneous
correctness of a set of inferences as to guarantee a correct overall
decision. However, FWER is often in practice a too restrictive way
to control for multiple testing. If the number of genes tested is
large, as it is the case in microarray experiments, the FWER
approach tends to discard all but a few genes showing extreme
differential expression. The false discovery rate (FDR) is an alterna-
tive method for accounting the rate of type I errors in null hypoth-
esis testing when conducting multiple comparisons. FDR
procedures control the expected proportion of “discoveries”
(rejected null hypotheses) that are false (incorrect rejections). For
microarray data, FDR controls the number of non-influential genes
that are incorrectly detected as significant, when testing for all
genes. FDR provides less stringent control of type I errors com-
pared to FWER procedures, which control the probability of at
least one type I error. Thus, FDR procedures have greater power, at
the cost of an increased numbers of type I errors. Benjamini and
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Hochberg (see [30]) and Benjamini and Yekutieli (see [31]) pro-
posed very popular choices for FDR procedures. They essentially
consist in computing the p-values for all the hypotheses to be
tested, sorting and comparing them with a sequence of thresholds
depending on the rank of each sorted p-value. It has been argued
(see [32]) that, under general conditions, these procedures cannot
control the FDR conditional to having rejected one or more
hypotheses.

There exist several methods in the literature specifically
designed for multiple testing when dealing with microarray data.
Among them we mention the following papers: [33–37].

Tusher, Tibshirani, and Chu proposed the SAM approach (see
[33]) as a method for estimating FDR, rather than controlling it,
with a fixed rejected region.

Hsueh, Chen, and Kodell (see [34]) point out that the error
rate of FWER or FDR procedures is usually lower than the specified
level. These authors proposed five methods to estimate the number
of true null hypotheses, and then used this estimated number to
improve the power of FWER or FDR. Monte Carlo simulations
showed that the so-called lowest slope and mean of differences
methods appear to perform the best. These two methods control
the FWER properly when the number of false null hypotheses is
small. These methods are applied to a data set from a toxicoge-
nomic microarray experiment.

Tsai, Hsueh, and Chen (see [35]) consider a convolution of two
binomial distributions for the number of rejections and a noncen-
tral hypergeometric distribution for the conditional distribution of
the number of false rejections given the number of rejections. The
authors used these distributions as well as some other more com-
plex ones valid for equicorrelation and proposed five FDR proba-
bility error measures, which were evaluated by simulation.

In the context of cDNA, Delongchamp, Bowyer, Chen, and
Kodell (see [36]) propose to use a plot of the observed p-values
versus their expectation under a uniform [0, 1] distribution to
estimate the number of true null hypotheses (true influential
genes). Using this estimate, the false positive rates and false nega-
tive rates can be estimated for any p-value cutoff. The authors
proposed to select the cutoff by a decision-theoretic method similar
to methods developed for ROC curves. They also applied these
procedures to two functional genomics studies that were designed
to assess a treatment effect.

Chen, Wang, Tsai, and Lin (see [37]) considered four com-
monly used statistics (t, SAM, Mann–WhitneyU, and the M-statis-
tic) to compute the p-values for gene ranking. FWER- and
FDR-controlling procedures were used to select a limited number
of genes, and a ROC approach to select a larger number of genes
for assigning the significance level. A colon cancer data set was used
to illustrate different gene ranking and significance level assignment
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methods for applications to genomic/genetic profiling studies. The
use of p-values or FDR probability, as the primary criterion, and
then the fold-change as a surrogate measure of biological signifi-
cance for gene selection is also discussed by these authors.

4 Conclusions

The use of ROC curves for microarray data is considered in this
chapter. In general, ROC curves are very useful tools to measure
the discrimination power of a binary classifier and, as a conse-
quence, ROC analysis is a key element for evaluating how good a
genetic marker can be for microarray data. The area under the ROC
curve (AUC) and the partial area under the ROC curve (pAUC) are
natural indices to measure the power of a marker to classify between
healthy and ill patients (or normal and cancerous tissues). It is often
the case that a vast number of genetic markers that are not of
interest to the investigator may be present in the microarray. As a
consequence, the selection, ranking, and combination of genetic
markers are extremely important issues for microarray data. These
issues can be addressed using a ROC analysis view, based on the
AUC and pAUC. LASSO and SVM techniques are very useful to
combine genes and to select the genes that are useful for discrimi-
nation. On the other hand, since the number of involved genes is
high, multiple testing issues need to be handled using algorithms
that control the false discovery probability and the expected num-
ber of false discoveries, like FDR and FWER. In summary ROC
analysis for high-dimensional data is a research line with a
promising future and plenty of room for applications to
microarray data.
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Abstract

In gene expression studies, missing values are a common problem with important consequences for the
interpretation of the final data (Satija et al., Nat Biotechnol 33(5):495, 2015). Numerous bioinformatics
examination tools are used for cancer prediction, including the data set matrix (Bailey et al., Cell 173
(2):371–385, 2018); thus, it is necessary to resolve the problem of missing-values imputation. This chapter
presents a review of the research on missing-values imputation approaches for gene expression data. By
using local and global correlation of the data, we were able to focus mostly on the differences between the
algorithms. We classified the algorithms as global, hybrid, local, or knowledge-based techniques. Addition-
ally, this chapter presents suitable assessments of the different approaches. The purpose of this review is to
focus on developments in the current techniques for scientists rather than applying different or newly
developed algorithms with identical functional goals. The aim was to adapt the algorithms to the char-
acteristics of the data.

Key words Missing-values imputation, Gene expression data, Microarray, Cancer Informatics,
Computational intelligence

1 Introduction

In the microarray method, scientists use several important tools to
observe the appearance of different genes in a particular creature
[1]. In genetic analyses, microarray technology is especially impor-
tant for microdimension chips, which contain a huge number of
genes that can be used for extensive investigations of gene expres-
sion. This technology allows for the development of sample infor-
mation, to which statistics can be applied for the detection of gene
expression and gene regulation. In studies on cancer organization,
the detection of appropriate genes for the analysis can be achieved
with the microarray technique. In addition, the technique is also
used to examine the effects of drugs in cancer diagnosis [2, 3]. This
method has also proven to be useful in other fields, such as
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immunology, microbiology, and virology [4]. By identifying testing
samples from altered diseases, the microarray method can be
improved to investigate different classes [5].

In the field of bioinformatics microarray, data investigations are
challenging because there are uncharacterized variables that require
interpretation [6]. In particular, problems may be encountered in
gene expression analysis because of missing values [7]. Missing
values are considered to be inconsequential when they occur at a
rate of less than 1% and controllable at 1–5%. However, a rate of
5–15% requires sophisticated methods to handle the imputation,
whereas a rate exceeding 15% greatly affects the estimate or inter-
pretation. Numerous explanations for missing values have been
reported, including the presence of artifacts on the microarray,
low resolution, and hybridization failures [8].

Other investigations have shown that data with missing values
can greatly affect an analysis and hamper the detection of differently
expressed genes, supervised and unsupervised classification of
genes, and the creation of gene regulation networks [9]. Further-
more, missing values in data have shown negative consequence on
algorithms, such as singular value decomposition (SVD), support
vector machines, and principal component analysis (PCA) [10].

The imputation of missing values to replace the probability of
informative genes through the assortment is important. The issue
can be resolved by recent developments in algorithms for missing
values approximation; thus, the detection of useful genes will be
protected. This is vital for the primary detection of genes that are
specific targets of a particular class [11]. Therefore, missing-values
approximation is considered to be an effective and low-cost
approach. By using computational techniques, the missing values
in data can be estimated without the need to repeat all microarray
experiments.

Previous studies have established that inclusive detection or
data scrutiny can be used for missing-values imputation [12]. Sev-
eral refined mathematical models have been established and were
proven useful in different biomedical research fields [13]. In all of
these methods, the absent values are estimated from the
non-missing data set. In certain circumstances for gene expression
data, the missing values are estimated from incorrect values, which
affects the detection of disease-related genes. Hence, the probabil-
ity of dropping useful genes is high and the general ranking of
significant genes is disturbed [14]. Microarray experiments have
resulted in many newly identified gene expressions Thus, they may
not contain typical errors from repeating the microarray
investigation.

For the development of cancer prediction algorithms, much
data exist on cancer patients. However, pre-processed raw data may
have missing values from the use of outdated approaches, which are
frequently centered on k-nearest neighbor. The replication of gene
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expression profiles allows for development in the pre-processing
stage; this has been extensively used to estimate cancer, such as
colon cancer and brain cancer.

Early methods to address missing values included the elimina-
tion of the entire row that contained missing values, imputing
missing values with median or regular row values, and changing
the missing values to be zero [15]. However, replacing missing
values with average values or zero is not the best approach because
it may introduce biases, as the association of the data is not
counted.

2 Review of Missing-Values Imputation Algorithms

In early imputation approaches, software was used for the imputa-
tion of microarray data. The data centered on statistical scrutiny
and natural evidence of the data was passed over. In current impu-
tation approaches, imputation procedures were designed to use the
information from the microarray data as an advantage [16].

The approaches to missing-values imputation can be divided
into three categories: parameter estimation, pairwise deletion, and
imputation techniques [17]. There are four altered approaches to
deal with missing values [18]: k Nearest Neighbor (KNN) imputa-
tion (KNNI), median imputation (MDI), mean imputation (MI),
and case deletion (CD). In CD, all cases or instances with missing
values are removed. In MI, the missing values of an individual are
exchanged by computing the mean based on all known values of
attributes. The median is used for the MDI to declare consistency
instead of meaning because the mean is influenced by the presence
of outliers. The KNNI approach uses a distance function in which
the similarity of two instances is determined and established on the
illustrations that are furthermost parallel to the instance of atten-
tion, and the missing values are imputed [19].

The imputation techniques for missing values can be character-
ized into two principal types: generic statistical approaches and
application-specific alterations. Generic statistical techniques
include mean, hot deck, model-based, multiple, and cold deck
imputations. The quality matters and investigational projects are
taken into account when imputing gene expression data.

The investigations of current algorithms can be classified into
four key types by the type of information used: global, local, hybrid,
and knowledge-assisted approach. The algorithms are categorized
and listed in Table 1.

2.1 Global Approach In a global approach, the algorithms execute missing-value approx-
imations based on global correlation material resulting from the
whole data matrix. The imputation becomes less accurate when the
algorithms take up the existence of a global covariance organization
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in all gene samples, as well as if the genes have identical structures.
Algorithms based on a global approach include SVD [20] and
Bayesian principal component analysis [21].

2.2 Local Approach In a local approach, the algorithms show only a local correspon-
dence arrangement for computing missing-value imputations
within the data sets. The subgroups of genes that show high corre-
lation through the genes are used to calculate the missing values in
the gene. Some well-known algorithms that use this procedure
include the local least square imputation (LLSimpute) and
K nearest neighbor (KNN). MICE-CART is a nonparametric
method that uses multiple imputations by chained equations
(MICE) and classification and regression trees (CART) [22].

Multiple imputations have also been performed through
chained equations using sequential regression trees as the condi-
tional models [23]. Complex relationships of the data are captured
and applied to decrease the practice of limitation and imputing

Table 1
List of missing-value imputations by category

Algorithm Year Category

SVDimpute 2001 Global

BPCA 2003 Global

MICE-CART 2010 Local

KNNimpute 2001 Local

GMCimpute 2004 Local

LLSimpute 2005 Local

SLLSimpute 2008 Local

CMVE 2005 Local

AMVI 2008 Local

ABBA 2010 Local

LinCmb 2005 Hybrid

HPM-MI 2015 Hybrid

FCM+GA 2015 Hybrid

HPF 2015 Hybrid

AR-ANN 2015 Hybrid

POCSimpute 2006 Knowledge

GOimpute 2006 Knowledge

HAIimpute 2008 Knowledge
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tuning. For target genes with missing values, the k nearest reference
genes are used in KNN to impute the missing values with pairwise
information. KNN imputation works very well when robust corre-
lations are found between genes in the data.

Gaussian mixture clustering (GMC) is able to use extra global
correlation information even though it is considered to be a local
approach algorithm [24]. In this algorithm, the data is clustered
into S components. Gaussian mixtures using the S estimates of the
missing values and EM algorithms are able to obtain the final
estimated missing values. GMC uses the local correlation informa-
tion through a mixture of components.

A local least squares imputation uses multiple regression mod-
els to impute missing values [25]. This method has been recog-
nized to be marginally competitive with KNN imputation and
considerably more difficult than Bayesian principal component
analysis (BPCA). Sequential LL Simpute (SLLSimpute) is an exten-
sion of this method [26].

The Simpute algorithm implements the imputation sequen-
tially by establishing the minimum missing rates from the gene.
The imputed genes are then recycled for the imputation of other
genes. Because of the reusability of the genes with missing values,
SLLS imputation shows better performance than LL Simpute.

To improve the final estimation, the collateral missing value
imputation (CMVE) technique uses the idea of numerous similar
estimations of missing values [27]. For many datasets involving
ovarian cancer and yeast sporulation time series data, CMVE [27]
has been able to produce better accuracy in normalized RMS error
(NRMSE) than BPCA, KNN, and L Simpute. By using Monte
Carlo simulation for the determination of an ideal number of
reference genes K, ameliorative missing value imputation (AMVI)
has enhanced CMVE [28]. A strong dependency among observa-
tions is displayed by time series expression profiles.

For binary matrices, an adaptive bicluster-based approach
(ABBA) is used as a missing-values estimator [29]. The complica-
tions of the algorithm itself have been decreased, whereas the
amount of parameter alterations that can be achieved is increased.
When the rate of missing values is much higher than normal, the
algorithm has been verified to be superior to KNN [20].

2.3 Hybrid Approach For heterogeneous data sets, local correlation among genes is
dominant. In such cases, local imputation methods, such as KNN
or LL Simpute, perform better compared with BPCA or SVD
impute. This is because the correlation structure of the data affects
the performance of the imputation systems. However, for homo-
geneous data, global methods such as BPCA and SVD would work
better by capturing global correlation material in the data.

There are numerous hybrid methods for missing-values impu-
tation, such as hybrid prediction model with missing value
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imputation (HPM-MI). By using the best imputation methods,
data quality can be considerably enhanced. HPM-MI uses 11 differ-
ent missing-values imputation methods, combining K-mean clus-
tering with Multilayer Perceptron and then selecting the best
clusters among the results. Class labels of given data are validated
using K-means clustering. This is a hybrid prediction model for
medical data. After extensive examination of 11 imputation meth-
ods, the best imputation technique is used [27].

For gene expression, specific linear topology can be used. This
topology has a state of transition and self-transitions to the next
state. At the start of each chain, there is a special start state. The
results can be interpreted as an expression close to background
level, which is shown by an expression value near zero; a value
above zero shows over-expression or up-regulation, whereas a
value below zero shows under-expression or down-regulation.
For example, consider a linear Hidden Markov Model (HMM)
with two emitting states: the first one with a zero mean emission
and the second with a one mean emission; this typically shows
up-regulation prototypical behavior [30].

FCM+GA is an acronym for Fuzzy C-means based imputation
+ genetic algorithm. This approach is based on inductance loop
detector outputs. Using the resemblance among data vector-based
data, the structure transformed into a matrix-based data pattern.
Hence, a genetic algorithm is used to optimize the membership
functions and plays a central role in the FC model. The Fuzzy C is a
hybrid method. The Fuzzy C imputation method is combined with
the genetic algorithm to estimate the missing values in data
[31]. This method is mostly used in pattern recognition. It has
the advantage of giving the best modeling results. However, the
weighting exponent (m) is fixed to a conventional value of 2, which
is not suitable for all applications.

The iterative search approach is used to get an optimal number
of clusters and find the optimal single-output Sugeno-Type. A
Fuzzy inference system (FIS) model is used to obtain the minimum
least square error by improving the limits of the subtractive cluster-
ing algorithm among the actual data and the Sugeno Fuzzy model.
The two methods are proposed when the number of clusters is the
optimized weighting exponent (m). These two approaches of iter-
ative search and the genetic algorithms were tested on the data from
the original function. The Fuzzy models were found to have the
least error among the real data and Fuzzy model [31].

Fuzzy c-means (FCM) allows the feature vector to belong to all
clusters with a Fuzzy truth value (between 0 and 1). The algorithm
assigns a feature vector to clusters based on the maximum feature
vector weight over other clusters. HPF is a hybrid approach. To
avoid the intervals determined by altered cluster material, this
hybrid method can be used. It is helpful in improving the clustering
performance [32]. This algorithm uses global optimization. To

260 Kohbalan Moorthy et al.



calculate membership information, the cluster prototypes and
gradient-based FCM are used. The HPF hybrid approach uses the
global optimization capability of particle swarm.

Artificial Neural Networks (ANN) is another method used for
missing-values imputation. It is able to handle nonlinearity issues.
The input layer structure of ANN can be determined using an
autoregressive (AR) model. A hybrid AR-ANN method can be
used to analyze the imputation of missing values [33]. Before AR
modeling, deletion was used to deal with missing values in wind
speed time series data sets. This also shows the nonlinearity of wind
speed data.

The use of a multilayer feed-forward back propagation neural
network for time series forecasting is supported by the ANN tool-
box in MATLAB software. To create the most appropriate ANN
structure, the types of hidden and output layers and other require-
ments are necessary. Hence, the training functions and the transfer
functions need to be determined. The transfer functions are
tan-sigmoid that generate nonlinear outputs between �1 and +1.
The log-sigmoid generates nonlinear outputs between 0 and
1, whereas the linear generates linear outputs between �1 and +1.
It is important to select a suitable function to obtain the best
results. The best training functions for back propagation algorithms
are Levenberg-Marquardt and Bayesian regularization. To create an
applicable ANN, the number of neurons must be measured cor-
rectly in the hidden layers [34].

2.4 Knowledge-

Assisted Approach

A knowledge-assisted approach incorporates domain information
or outside data into the missing-values imputation. The imputation
accuracy is expressively improved with the use of domain knowl-
edge associated with a data-driven method, particularly for data sets
with a high missing rate, a small number of samples, and noise.

The correlation information between genes and arrays is
exploited when the missing-values imputation for projection onto
convex sets (POCS) is a flexible set with a theoretic structure
[35]. POC Simpute performs local least square regression to cap-
ture gene-wise correlations. It also performs PCA imputation to
capture array-wise correlation and synchronization loss, which
restricts the squared power of the expression profiles.

Using POC Simpute, the best solution can be obtained irre-
spective of global or local correlation structures that are prevalent in
the data. This is due to the final solution being constantly domi-
nated by the smallest yet furthermost consistent constraint set
though adequate larger yet less reliable constraint sets. Functionally
correlated genes are likely to be expressed in a modular fashion
through a higher degree of concerted responses to certain
stimuli [36].

For gene function classification, gene ontology (GO) is a well-
accepted standard [37]. GO has three independent ontologies that
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describe a gene product in terms of related biological processes,
molecular functions (MFs), and cellular components [38]. GO
increases the imputation accuracy. This has been proven when the
number of experimental situations is small, the ratio of the anno-
tated genes is large, or the rates of missing values are high.

To improve the precision of missing-values approximation,
histone acetylation information-aided imputation (HAIimpute)
combines histone acetylation information into KNNimpute and
LLSimpute [27]. HAIimpute uses the mean expression of genes
from all clusters to form the pattern expression. By fitting a linear
regression model, the missing values are then found among the
gene and pattern expressions. The final estimations of the missing
values are assumed by a convex combination of linear regression
imputations and secondary imputations using KNNimpute and
LLSimpute. The experimental results proved that the imputed
genes of HAIimpute show better correlation with the original
complete genes compared with KNNimpute or LLSimpute.

3 Performance Evaluation

An assessment of an algorithm’s imputation results is a critical step
to determine the algorithm’s reliability, performance, and accuracy.
For missing-values imputation, there are two main validation types:
internal validation and external validation. In internal validation,
the performance indices are computed among the imputed and the
known original values to validate the algorithms. This validation
also uses information from the dataset. For external validation, the
validation is prepared by following biological analysis to assess the
imputation effects. External validation usually uses the knowledge
assembled externally rather than internal data information. Table 2
presents a list of comparative validation methods.

3.1 Internal

Validation

By computing the normalized root mean square error (NRMSE),
the missing-values imputation algorithms can be validated. Lower
NRMSE values indicate that the imputation algorithm is more
precise.

The NRMSE is defined as follows:

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1

Pn
k¼1

�
gik � ~g ik

�2
Pm
i¼1

Pn
k¼1

gik

� �2

vuuuuut ð1Þ

Here, the kth experiment is for gene gi, with gik and ~g denoting
the true value and imputed value, respectively.
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3.2 External

Validation

The validity of the imputation algorithms can be determined by
external information, such as pathway information and functional
annotations. For example, GO can be considerably enriched
between genes. It is thus useful to characterize the functional
roles of the genes in biological research. For each GO term t, the
enrichment of the P-value can be calculated using the following
formula for each cluster:

p ¼
Xmin b;Tð Þ

i¼k

T
i

� �
B � T
b � i

� �

B
b

� � ð2Þ

The number of genes in the cluster is represented by b for the
GO term t, with the cluster of genes represented by K. In the data
set, the number of genes is B, and the number of genes with GO
term t is represented by T.

4 Limitations

There are many advantages and disadvantages of the algorithms,
according to the datasets being used for each missing-values tech-
nique. The performance of missing-values imputation algorithms is
considerably affected by a variety of factors, such as the missing-
data mechanism, the correlation structure in the data, the percent-
age of missing values in the data, and distribution of missing entries
in the data. Selecting the right algorithm may significantly boost
the accuracy of the imputation results. However, there is no one
imputation algorithm that shows best results in every situation. For
low-entropy data sets, global methods such as SVDimpute and
BPCA perform better. For high-entropy data sets, local methods
such as LLSimpute and KNNimpute perform better.

Table 2
Performance evaluation methods for missing-values imputation algorithms

Validation type

Internal validation
NRMSE or its variants
Pearson Correlation
Preservation of differentially expressed genes
Preservation of prediction/classification problem

External validation
GO enrichment
Presence of biologically relevant genes
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Most studies have shown that missing values in microarrays are
randomly missing through missing-values imputations. In practice,
the missing values also tend to arise in a systematic manner. In a
data matrix, the distribution of missing entries, such as missing data
patterns, influence the imputation performance; thus, this needs to
be considered in data analysis and algorithm design. A data matrix
that contains a non-random distribution of missing values may
result from different experimental conditions across the columns.
In a microarray data matrix, each column comes from one
experiment.

5 Conclusion

Many studies have reported that missing-values imputation is a
common problem because microarray gene expression data may
include missing values, which affects a study’s results. Due to
various experimental causes, gene expression profiling techniques,
such as cDNA microarray technology, suffer from the problem of
missing values.

In microarray data analysis, missing-values imputation is an
essential pre-processing step. Many analyses require a complete
data set. If the existing algorithms could be assessed, matched,
and recognized instead of establishing new algorithms that are
based on existing techniques, it would be a great achievement.

For optimal execution of an algorithm, suitable parameters and
operating platforms could be identified and assessed using different
algorithms. This could be used to avoid the development of new
missing-values imputation algorithms. These algorithms are
expected to perform similarly because the full functional capability
of existing algorithms has not been fully explored.

6 Future Works

Many algorithms have been explored for missing-values imputa-
tion. There is a need to identify algorithms that provide accurate
results and adapt to the features of data sets. An adaptive technique
that can capture correlation information from both the local and
global methods would be useful in many situations. As more exper-
imental data from different domains becomes available, new impu-
tation algorithms that can handle categorical data and mixed
domain data sets with missing continuous information will be
required.
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Chapter 13

Computer Tools to Analyze Microarray Data

Giuseppe Agapito

Abstract

Microarrays are broadly used in genomic analyses and find several applications in biology and medicine,
providing a significant amount of data from a single experiment. Different kinds of microarrays are available
which are identifiable by characteristics such as the type of probes, the surface used as support, and the
method used for target detection. Although microarrays have been applied in many biological areas, their
management, and investigation require advanced computational tools to speed up data analysis and at the
same time make the interpretation of the results easier. To better deal with microarray datasets of large size,
the development of analysis tools that are simple to use as well as able to produce accurate predictions, and
of comprehensible models is essential. The tools have to provide an exhaustive collection of information to
discriminate and identify SNPs, which are associated with the activity of particular genes affecting biological
functions (e.g., a particular drug response), or involved in the development of complex diseases. The object
of this chapter is to provide a review of software tools that are easy to use even for nonexperts of the domain,
and that are able to efficiently deal with microarray data.

Key words Microarrays, Statistical analysis, Data mining, Genomics, Genotyping

1 Introduction

The discovery of the 3D structure of DNA byWatson and Crick [1]
contributed to the rapid improvement of genotyping techniques.
After the 3D structure of DNA was discovered initial efforts
focused on sequencing a small fragment of pure RNA. In 1977
thanks to Sanger there was a major breakthrough in the sequencing
methodology with the development of the Sanger’s “Chain Termi-
nation” method, also known as dideoxy method [2]. The accuracy,
robustness, and ease of use of Sanger sequencing has made it the
most used technology to sequence DNA. Meanwhile, the forma-
tion of hybrid DNA molecules through the employment of heavy
isotope-labeled DNA molecule has been used to shed light on
DNA strand separation and recombination [3]. In [4] the authors
illustrated and developed an application of hybridization technique
can be applied to the DNA of a significant number of colonies of
Escherichia coli characterized by different hybrid plasmids. The
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proposed technique can quickly screen all the colonies to discover
which hybrid plasmids include a specified DNA sequence or gene.
Thus, the technique developed in [4] can be considered an initial
example of a labeled probe used to identify complementary base
pairing. Consequently, this method can be considered the first
example of a microarray assay.

Nowadays, microarray technology has become one of the stan-
dard ways to study gene expression, single nucleotide polymorph-
isms (SNPs), and diagnosis of disease. The main strength of
microarrays is the capability to compare the expression and regula-
tion of thousands of genes in parallel for a single experiment
helping physicians to figure out the harmful genes responsible for
the disease. Before the automatization and miniaturization of
microarrays, researchers have been limited to observations of smal-
ler numbers of genetic units per single experiment and were able to
evaluate only interacting genes on the smaller scale. Microarray
technology is especially useful in the evaluation of gene expression
patterns in complex disorders thanks to its ability to monitor the
expression of the same genes in different samples at the same time,
providing clues about interactions between multiple genetic units,
unlike analyzing single genes per time. A microarray is composed of
a solid surface (i.e., glass, silicon, nylon) with several DNA spots
attached to it. Each spot contains a small sequence of DNA (gene)
of interest called probe. A collection of probes which have the same
nucleotide sequences is called a probeset which will assist in detect-
ing the expression of a particular gene. Microarrays arrange
biological samples in a two-dimensional space, where samples are
placed within the spots and organized in columns and rows. This
scheme allows for an efficient analysis of the genetic material in
microarrays, making microarrays well suited for large-scale case–-
control studies.

A general microarray study requires a considerable quantity of
complementary DNA (cDNA) or oligonucleotide DNA sequences
(spots) that are attached to the microarray’s plate. The microarray is
then reacted with two series of messenger RNA (mRNA) probes
(cases and controls) that are treated with two different isotopes
allowing to obtain two different colors of fluorescent for the two
classes of probes. At the end of the hybridization process, the
microarray is washed. Washing the microarray allows the probes
that are not hybridized to be removed from the base. Thus, only the
hybridized probes that are attached to the spots on the slide remain.
After the washing, it is mandatory to read the microarray. Micro-
array reading happens through a scanner using a laser beam to
generate an image of the intensity of all the spots. The intensity of
the fluorescent signal from each spot is taken as a measure of the
levels of the mRNA associated with the specific hybridized
sequence at that spot. The image of all the spots is analyzed using
special proprietary software that are able to convert the intensity
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value of each spot into numerical information. This then makes
possible to estimate the gene expression level in each spot as well as
detect single nucleotide polymorphisms (SNPs) via genotype trans-
lation. Typically, a microarray experiment comprises the following
phases:

– Microarray choice: This step comprises (a) the selection of the
DNA sequences to be used in the analysis; (b) the methodology
to attach the sequences onto the plate.

– Probe preparation and hybridization: First, it is necessary to
extract some samples of RNA (i.e., healthy and cancerous
biological tissues) from the samples under investigation, and
purifying mRNA from each sample. Second, by using copy,
clone, and reverse transcriptase (via polymerase chain reaction)
the cDNA copies of mRNAs are synthesized and used in vitro
transcription, then they are converted to cRNA and labeled with
fluorescent solutions. Finally, the is mixture is placed on the
microarray’s probes. Complementary RNAs to the molecules
on the microarray hybridize with the strands in the microarray.

– Microarray washing: At the end of the hybridization process,
washing the microarray helps to highlight remarkably the hybri-
dized probes (tightly chemically bound) remaining thus
attached to the plate.

– Hybridization intensity reading: The last step is the intensity
reading that is the result of the hybridization process. Reading
is achieved by using a laser beam that shines on the slide causing
a different level of fluorescence related to each cDNA compo-
nent. Thus, the greater the length of hybridized segments, the
higher the intensities.

At the end of the main steps listed above, before to extract
actionable knowledge, it is mandatory to preprocess the intensity
files. Intensity files contain noise due to the spots, that are often
composed of imperfections due to irregular contours, artifacts, and
low expression. The easiest initial cleaning attempt is to perform
background correction. Background correction approach consists
in subtracting the background estimate value directly from the spot
intensity. In fact, it is often considered that the signal obtained as a
result is the combination of the hybridization and the background
signal (noise). Background noise may increase due to dust, finger-
prints, hybridization problems, or residual effects from inadequate
washing. Thus, many image analysis methods have been adapted to
deal with the microarrays results read, to obtain reliable data with
which conduct further analysis.

Users can export the preprocessed and cleaned data in order to
perform further automatic or manual data analysis. Because micro-
array datasets are commonly very large, this makes manual analysis
unfeasible, time consuming and error prone, thus the necessity of
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highly automated data analysis tools arise. In order to extract
biological relevant information contained in microarray datasets, a
basic knowledge of the employed computational tools is therefore
required for optimal experimental design and meaningful data
analysis.

2 Type of Microarrays

Features such as the nature of the probe, the plate used, and the
method to detect the target can be used to categorise microarrays.
Thus, microarrays can be classified as, printed, in situ-synthesized,
high-density bead, electronic, and suspension bead microarrays.
The DNA sequence bound to the microarray support (i.e., glass,
ceramic, and silico) is known as probe, while the sequence of DNA
under investigation is called target. A microarray is organized as a
big table composed of thousands of identical probes (a well-known
sequence to whom the target sequence will bind through hybridi-
zation), whereas the target is an unknown fluorescently labeled
sequence (complementary sequence). The sample sequences can
be labeled by using radioactive isotope such as 33P, or fluorescent
dyes such as phycoerythrin, Cy3, or Cy5. The hybridization
between the labeled target and the probe results in an increase in
fluorescence intensity that can be read by using specific optical
scanners, which are able to evaluate the quantity of mRNA pro-
duced during the hybridization process. Due to the base pairing of
the four nucleotides adenine, cytosine, guanine and, thymine, in
short A, C, G, and T, for DNA and A, C, G, U (uracil) for RNA, the
hybridization is a well-known and deterministic process. In partic-
ular, only complementary nucleotides can bind together, that is, A
can bind with its complementary T {A-T} and G can bind with its
complementary C {G-C} for DNA, whereas {A-U} and {G-C} for
RNA. This is the basic principle of a microarray.

The different types of available microarrays can be classified in
the following five classes:

– printed microarrays. Printed microarrays can be classified as a
contact or noncontact printing. The noncontact printer blows
the biological unit droplets onto the microarray’s surface by
using a technology similar to that used in a computer printer
(e.g., ink-jet). In contact printing, the print head hits the sur-
face, applying the probe solution directly onto the microarray’s
surface. In both cases, only a few quantities of probe solution are
used per single spot. Another distinctive element that allows to
classify printed microarrays is the nature of probes, the double-
stranded DNA (dsDNA) [5] and the oligonucleotide
[6]. dsDNA microarray probes are obtained by using the poly-
merase chain reaction (PCR) and are called amplicons.
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Sequences length range from a few hundred bases to a thousand.
In dsDNA, genes are identified each 200–800 bases pair (bp).
dsDNA presents high sensitivity and low specificity that can be
improved by using redundancy methodologies of sequences into
probes. In oligonucleotide microarrays, probes are obtained
from a chemical synthesized sequence. In oligonucleotide
microarrays, the length of probes ranges from 25 to 80 bp,
reaching 150 bp for gene expression microarrays. Shorter
probe length allows to reduce the number of errors during the
synthesis phase as well as simplify the interrogation of small
genomic regions including the polymorphisms. On the other
hand, shorter probe length may adversely affect sensitivity com-
pared to dsDNA probes; whereas specificity is often higher when
short, that is, interrogating specific genomic regions.

– In situ-synthesized oligonucleotide microarrays (iSSOM) are
known as very high-density microarrays and use oligonucleotide
probes. The most known iSSOM is the GeneChip produced by
Affymetrix [7, 8]. In iSSOM, probes are synthesized directly on
the surface of the microarray typically made of glass or quartz.
Probes are synthesized using semiconductor-based photochem-
ical synthesis. The average probe length in iSSOM ranges
between 20 and 25 bp; to improve statistical accuracy, specificity,
and sensitivity multiple probes per target are added. Other high-
density oligonucleotide microarrays include those manufactured
by Roche NimbleGen and Agilent Technologies. NimbleGen
uses maskless photo-mediated synthesis, and Agilent employs
inkjet technology for in situ manufacturing of probes. The
expense of a custom Affymetrix microarray is high and expensive
to be customized for diagnostic purposes; in contrast, Nimble-
Gen and Agilent can be easily customized for diagnostic
purpose.

– High-density bead microarrays (HDBM) [9, 10]. HDBM tech-
nology is produced by Illumina, making HDBM appropriate for
whole-genome genotyping, copy number variation (CNV)
detection. Because the beads in BeadArrays randomly assort to
their final location on the array, the bead location must be
mapped. The mapping of the Illumina beads is achieved by a
group of hybridization and rinse methods, enabling fluores-
cently labeled complementary oligonucleotides to bind to their
specific bead sequences. HDBM have been successfully applied
to and SNP genotyping, including the International HapMap
Project.

– Electronic microarrays (EM). In EM nucleic acid move through
the electric fields, thus the hybridization process is controlled by
electric fields. Nanogen is the developer of electronic technology
that allows for transport and hybridization of DNA on a semi-
conductor chip [11, 12]. EMs rely on semiconductor-

Computer Tools to Analyze Microarray Data 271



connectors that control each test sites (connectors and test sites
depend on the chosen microarray). Electronic microarrays allow
fast and accurate delivery of electronically charged biological
molecules to test sites (electrodes) on microarrays. Negatively
charged nucleic acids are transported to specific locations when a
positive current flow goes through one or more spot on the
microarray. At the end of hybridization, the hybridized probes
can be read through a scanner, to detect the red and green colors
obtained by applying labels fluorescently (normally an isotope).

– Suspension bead microarrays (SBA) are three-dimensional
microarrays described for the first time in 1977 in [13]. SBAs
use microsphere beads (56 μm in diameter), allowing for the
concurrent testing of multiple gene variants. Each microsphere
bead has a unique identifier relying on variations in optical
features, that is, in fluorescent color. The intensity defines the
color of each bead easily discriminated through their wavelength
intensity. Similar to flat microarrays (e.g., DNA microarray),
hybridization happens between a suitable receptor and a
probe that attaches itself to different microspheres
[14, 15]. Probe–target hybridization is detected by optical tar-
gets, determining the relative abundance of each target in the
sample.

Compared with iSSOMs, PMs are relatively inexpensive and
straightforward. The significant benefits of printed microarrays are
flexibility and the capability to study organisms that have not been
fully sequenced. As a drawback, there is difficulty in employing PMs
and iSSOMs in clinical diagnostics.

Unlike the known locations of printed and in situ-hybridized
microarrays, the beads in HDBMs randomly assort to their final
location on the array. Thus, the bead location needs to be mapped,
through an opportune decoding process.

The PMs, iSSOMs, and HDBMs rely on passive transport of
nucleic acids for the hybridization process. Conversely, EMs
employ active hybridization through electric fields to control the
transport of nucleic acids. Moreover, EMs are a more flexible
technology and is more practical for diagnostic applications.

SBAs is the most attractive platform for high-throughput
nucleic acid detection in clinical diagnostics.

3 Software Tools to Analyze Microarray Data

In the last decade, microarrays have become one of the most
valuable methodologies in genomic research, due to the consider-
able amount of data produced per single experiment. The micro-
array outcomes involve the analysis of large datasets of information
derived from each single biological experiment. Feature that made
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microarrays one of the most valuable methodologies in genomic
research, due to the considerable amount of data produced per
single experiment, making possible to study problem from a
broader and better prospective especially complex diseases such as
cancer. Microarrays data analysis depend on the type of employed
microarray. Gene expression analysis involves the monitoring of the
expression levels of thousands of genes simultaneously, it is neces-
sary use specific tools able to deal with numerical data. Conversely
to analyze data obtained by using oligonucleotides microarrays, it is
mandatory to use different tools form that employed in gene
expression analysis, because, in this case it is necessary to handle
textual data.

Elucidating the statistical relevance of these huge amount of
data obtained from microarray experiments is a challenge. Dealing
with huge datasets requires skillful statistical and computational
support, since manually data analysis is infeasible as well as error-
prone task. Thus, the development of software tools that can han-
dle these large datasets is mandatory, in order to simplify and speed
up the work of biologists. Moreover, the number of applications
where microarrays are involved is increasing faster than the devel-
opment of suitable data analysis models and tools, generating an
increasing demand for adequate statistical and data mining tools.
On the other hand, the necessity to provide researchers with scal-
able and easy-to-use software tools arises as well. Thus, to extract
biologically relevant information contained in microarray datasets,
we report a list of available tools with which we could analyze
microarray datasets. In this section we try to highlight their main
features.

– Automated Microarray Data Analysis (ADMA) [16] is freely
available for download as an R [17] package under the GPL
license, at the following web address: [18]. AMDA is written by
using the R language [19]. The R/Bioconductor project [20]
has become the reference open-source software project for the
analysis of Affymetrix [21] microarray datasets, including nor-
malization, election of differentially expressed genes, image
analysis, quality controls, and clustering. Moreover, R/Biocon-
ductor is easy to install on the most common operating systems
(Linux, Mac OS X, Windows), making ADMA available with all
the major operating systems. AMDA is available as a stand-alone
R tool; help is available in the standard R documentation format.

– Microarray Data Analysis System (MIDAS) [22–24] is a soft-
ware application written in Java, to preprocess Affymetrix data.
The main advantage of the software written in Java [25] is the
compatibility with all the most known and used operating sys-
tems such as Unix/Linux, Mac OS, and Windows. The only
requirement for the user to be possible to use MIDAS is that,
users have already installed Java on his/her machine. MIDAS
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is available freely for the download at the following web
site: https://sourceforge.net/projects/midas-tm4/files/latest/
download?source¼files. It is made available under freeware
license for any academic or other noncommercial purposes. To
execute MIDAS on his/her machine users should use the
provided “.sh” file on Linux and Mac OS machines or the “.
bat” file on Windows machines. MIDAS comes with an intuitive
graphical user interface (GUI) with which to design analysis
workflow combining one or more normalization and filtering
functions. Moreover, the results of the analysis workflows can be
conveyed in graphical format such as scatterplots, and box-plots
making easier for the users to investigate hidden trend into the
data. MIDAS can deal with CDF (channel file) and CEL (inten-
sity file) files. At the end of the analysis workflow, MIDAS allows
user to export data in “tav” file format, or export report in pdf or
plain-text files.

– Meta-Analysis of Affymetrix Microarray Data analysis
(MAAMD) [26–31] is an automated tool developed in Kepler
to create analysis workflow with which to execute data down-
loading, data organization, data quality control, pathway visual-
ization, differential gene expression analysis, clustering analysis,
gene-set enrichment analysis, and cross-species orthologous-
gene comparisons. MAAMD is freely available as stand-alone
software tools, for R, AltAnalyze, and as Bioconductor packages
[20]. Moreover, GEOquery and arrayQualityMetrics modules
are embedded in MAAMD. The inputs of MAAMD are CEL
and csv files, which contain sample information and parameters
describing the locations of input files and required tools. More-
over, input files are user-editable. Outcomes of MAAMD are
arranged in a structured folder containing the microarray
data and analyzed results. Users in order to useMAAMD should
have preinstalled on his/her machine Kepler 2.4 or above [32],
AltAnalyze 2.0.8 or above [33], JDK 7 or above [25], and R
3.0.0 or above [17]. MAAMD is compatible with Windows and
Mac OSX operating systems, and it is freely available for aca-
demic or noncommercial use at the following address: https://
www.biokepler.org/use_cases/maamd-workflow-standardize-
meta-analyses-affymetrix-microarray-data.

– GSEA [34, 35] is a software implemented in Java and R lan-
guages. The desktop version GSEA comes with and easy-to-use
graphical interface through run the analysis workflows. In addi-
tion, GSEA is available as Java jar file providing only a Command
line interface that may be useful for analyzing several datasets
sequentially, analyzing large datasets, or running analyses on a
compute cluster. R-GSEA, is an R implementation of GSEA.
GSEA supports input data as default ASCII tab-delimited text
files. Other different text files are identified by means of special
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extensions. Extensions available are .gct to identify expression
data, “.cls” for phenotypes, “.gmt” for gene sets, and .chip for
chip annotations. After loaded the data files, it is possible to run
the gene set enrichment analysis. GSEA is available for download
at http://software.broadinstitute.org/gsea/login.jsp under
BSD3-clause “New” or “Revised” license, after full filled the
registration form. GSEA is available for MacOs and Linux
operating systems.

– CisGenome is a bioinformatics platform to create ChIP-seq
analysis workflows [36, 37]. CisGenome is available for Linux/
Unix, Windows, and Mac OS operating systems. It can be freely
downloaded for academic or noncommercial uses at http://www.
biostat.jhsph.edu/~hji/cisgenome/index_files/download.htm.
CisGenome is entirely written by using C [38] and Cþþ [39]
programming languages. CisGenome is available as command
line tools (core programs only) version suitable for analyzing
large amounts of data effectively on cluster computers. CisGen-
ome requires advanced computer science skills to be used. Desk-
top version comes with a graphical user interface providing the
same functionalities of command line version, but it is easier to
use. CisGenome allows users to perform data normalization, data
visualization, false discovery rate (FDR) computation, peak detec-
tion, gene-peak association, sequence analysis, and motif analysis.

– Birdsuite [40, 41] is an open-source collection of tools, with
which to discover SNP genotypes, common copy-number poly-
morphisms (CNPs), and de novo CNVs in samples obtained by
using Affymetrix platform. The current version of Birdsuite is
available only for Linux operating system. To make Birdsuite
compatible with other operating systems, it is necessary to
download and use theMatlab version. Both versions of Birdsuite
can be downloaded at https://www.broadinstitute.org/
birdsuite/birdsuite-downloads.

To run Birdsuite users have to install the following compo-
nents: Java 1.5. or higher [25], Python 2.5.2 or higher [42],
numpy Python package, version 1.2 or higher [43], R 2.4 or
higher [17], mclust R package, version 3 or higher [44], Affy-
metrix Power Tools (APT) 1.8.6 or 1.10.2, binaries [45] and
Affymetrix library bundle for Genome-Wide Human SNPAr-
ray6.0. Birdsuite is specially designed for integrated analysis of
SNPs and CNVs.

– EXpression Analyzer and DisplayER (EXPANDER) [46–48] is a
framework for the creation of gene expression data analysis
workflows. EXPANDER is written in Java characteristic that
make it compatible with all operating systems compatible with
the Java technology. Expander can be freely downloaded only
for academic or noncommercial use. The preprocessing of CEL
file and the SAM filter utility require the preinstallation of R, for
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statistical computing and graphics. Files with suffix BED and
GFF3 are supported as input in the ChIP-Seq file format, while
Gene Ranking Analysis files supported as input present the
GSEA suffix; for the other kinds of files there is no suffix limita-
tion. EXPANDER provides data preprocessing, Clustering and
Biclustering GE Data analysis and visualization, Network Based
Grouping of GE Data, integrative analysis of ChIP-Seq and
Gene Expression Data, General and specific Enrichment Analy-
sis, Network Based Enrichment Analysis, Matrix Visualizations,
and PCA Transformation.

– lumi data preprocessing of Illumina [49] bead microarray analy-
sis. lumi [50] is a framework developed by Illumina for bead
microarray to perform methylation and expression analysis
[51, 52]. lumi is freely available for download at http://bio
conductor.org/packages/release/bioc/html/lumi.html under
GNU Lesser General Public License version 3.0. It comes with
a command line interface, and it is written in R language; thus
preinstalling R on the computer where lumi will be used is a
prerequisite. lumi is compatible with Unix/Linux, Mac OS, and
Windows operating systems.

– TreeView gene expression visualization framework [53]. Tree-
View is developed in Java and is freely available for download at
https://sourceforge.net/projects/jtreeview/files/ under the
GNU General Public License version 2.0. It compatible with
Unix/Linux, Mac OS, and Windows operating systems, requir-
ing the preinstallation of Java to work properly. TreeView comes
with a simple graphical user interface with which user can visua-
lize and analyze microarray data. At the end of data analysis
phase, results are conveyed by means dendrogram, scatterplot,
and karyoscope charts, providing visual clues on the principal
genes in a study. TreeView allows to export results in image
formats such as PNG, PPM, and JPEG; it also supports export
to vector-based postcript files. Additionally, it is possible to
export subsets of results as a tab-delimited text, that is, gene
lists and cdts. Command line interface is very useful to analyze
huge datasets by taking advantage of high-performance compu-
ters (i.e., clusters). Command line provides all the features of
GUI version with the only difference that command should be
typed as argument of the Java virtual machine.

– DMET-Analyzer [54] is a tool for the automatic association
analysis of variation of patient genomes and clinical conditions
of patients, that is, different responses to drugs. DMET-
Analyzer allows for automatizing the workflow of analysis of
DMET datasets, avoiding the use of multiple tools, as well as
the automatic annotation of SNP data retrieval information in
the existing databases of SNPs (e.g., dbSNP), and the associa-
tion of SNP within a pathway retrieving information in
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specialized databases (e.g., PharmaGKB). DMET-Analyzer
input files have to be in xlsx or plain tab-delimited format. All
the results as well as annotated result can be easily saved by
clicking on it and saving it in txt format, html, or so
on. DMET-Analyzer is written in Java; it presents a simple
graphical user interface that allows users (doctors/biologists)
to analyze DMET files interactively produced by Affymetrix
DMET-Console. Moreover, FDR and Bonferroni statistical cor-
rector are available, as well as the Hardy–Weinberg equilibrium
calculator. DMET-Analyzer is written in Java and is available for
Unix/Linux, Mac OS, and Windows operating systems.
DMET-Analyzer is freely available under the GNU General
Public License version 2.0 for download at the following address
https://sourceforge.net/projects/dmetanalyzer/.

– PARES (Parallel Association Rules Extractor from SNPs) [55] is
a software tool developed in Java for the parallel extraction of
association rules from datasets obtained by using DMET micro-
arrays. PARES can handle input files in a tabular plain text
format or in xls (Excel) format. Result can be exported in txt
file or rtf (rich text format). Associative rules mined by PARES
can correlate the presence of a set of allelic variants with the
clinical condition of patients. PARES thanks to the simple and
intuitive graphic user interface is a software tool that allows to
easily extract multiple relations between genomic factors buried
in the datasets. PARES is compatible with Windows, Linux/
UNIX, and Mac OS operating systems. It is distributed under
Creative Commons license and is available for free download for
academic and not-for-profit institutions, at the following web
address https://sites.google.com/site/pareswebsite/pares.

– OS-Analyzer (OSA) [56] is a software tool written in Java for the
computation and visualization of Overall Survival (OS) and Pro-
gression Free Survival (PFS) curves of cancer patients and evalu-
ate their association with ADME gene variants. OS-Analyzer can
perform automatic analysis of DMET datasets enriched with
survival events. OS-Analyzer can handle DMET data annotated
with temporal information in tabular plain text format or in xls
(Excel) file format. Results can be exported as image file (png,
tiff) by clicking on the survival chart, together with overall
survival information. It is distributed under Creative Commons
license and is available for free download for academic and not-
for-profit institutions, at the following web address: https://
sites.google.com/site/overallsurvivalanalyzer/os-analyzer.

– DMET-Miner [57] is a software tool for the automatic mining of
association rules, correlating the presence of a group of allelic
variants with the clinical condition of subjects, (e.g., the combi-
nation of alleles typical of a class responsible for the different
response to drugs). DMET-Miner allows users to calculate
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automatically and directly association rules from a whole DMET
(Drug Metabolism Enzymes and Transporters) dataset. DMET-
Miner can handle input file in tabular plain text format or in xls
(excel) format. DMET-Miner is written in Java, and it presents a
simple graphical user interface, allowing the users to analyze a
dataset through some mouse clicks. DMET-Miner is distributed
under Creative Commons license and is available for free down-
load for academic and not-for-profit institutions, at the follow-
ing web address https://sites.google.com/site/dmetminer/
get-software.

– cloud4SNP [58] is a Cloud-based bioinformatics tool for the
parallel preprocessing and statistical analysis of pharmacoge-
nomics SNPDMETmicroarray data. It is a Cloud-based version
of DMET-Analyzer [54], that has been implemented on the
Cloud using the Data Mining Cloud Framework [59], a soft-
ware environment for the design and execution of knowledge
discovery workflows on the Cloud [60]. It allows to statistically
test the significance of the presence of SNPs in two classes of
samples using the well-known Fisher test. Cloud4SNP uses data
parallelism and employs an optimized methodology to avoid the
execution of useless Fisher tests, through filtering of probes with
similar SNPs distributions.

4 Discussion

Tools for microarray data analysis give an opportunity to generate
functional data on a genome-wide scale and, consequently, should
provide much needed data for the biological interpretation of genes
and their functions. To pursue this goal, the choice of the most
suitable analysis tool is mandatory, taking into account the plethora
of available software tools. The several tools make the analysis,
handling, and understanding of microarray data a vague science.
For these reasons, a basic knowledge of the employed computa-
tional tools is therefore required for optimal experimental design
and meaningful data analysis, to extract biological relevant infor-
mation contained in microarray datasets.

To help researchers to choose the most suitable tool for his/her
purpose in Table 1 are summarized the main features provided of
each listed tool in the previous section.

The tools listed above are thought to help the researcher to
performmicroarray data analysis in an easy and fast way. Each tool is
developed to be easy to use without losing accuracy in the provided
results.
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5 Conclusion

Microarrays allow for the investigation of genetic variations under-
lying interindividual variabilities in drug pharmacokinetics/phar-
macodynamics, providing a complete understanding of gene
function, regulation, and interactions. However, to exploit all the
power of this massive amount of data in the shortest time possible,
the necessity to develop software tools for efficient data collection
and analysis arises. The development of efficient and scalable soft-
ware tools avoids researchers being overwhelmed with the ever-
growing flow of data. Thus, tools that are able to deal with these
enormous amounts of data as well as easy to use can speed up the
process of data analysis and knowledge extraction. In this chapter,
we review some software tools available in the literature for dealing
with microarray data. The abundance of software tools is due to the
board spectrum of microarray analysis methods along with the
massive amount of data produced by a single microarray

Table 1
The table summarizes the main features provided by each listed tool

ToolName OS Lic InFile OFile GUI Vis DM SA CNV GE DE

ADMA WLM OSource CEL txt, images � √ � � � √ �
MIDAS WLM FW CDF, CEL tav, pdf, txt, images √ √ � � � � �
MAAMD WM FAnC CEL, csv folder √ √ � � � √ √

GSEA LM BSD3 txt txt, images √ √ � � � √ �
CisGenome WLM FAnC txt txt, images √ √ � √ � √ �
Birdsuite L OSource txt txt, images √ √ � √ √ � √

EXPANDER WLM FAnC BED, GF3 txt, images √ √ � � � √ √

lumi WLM GnuL txt txt, images √ √ � � � √ �
TreeView WLM GnuL2 txt images, ps √ √ � � √ � �
DMET-Analyzer WLM FAnC txt, xlsx txt, images √ √ � √ � � √

PARES WLM FAnC txt, xlsx txt, images √ √ √ � � � �
OS-Analyzer WLM FAnC txt, xlsx txt, images √ √ � √ � � √

DMET-Miner WLM FAnC txt, xlsx txt, images √ √ √ � � � √

cloud4SNP WLM FAnC txt, xlsx txt, images √ √ � √ � � �
In the table, OS refers to operating system, Lic is the abbreviation of license, InFile stands for input file, and OFile stands

for output file. Vis refers to Visualization, DM refers to Data Mining, SA refers to statistical analysis, CNV refers to of
copy number variation, GE refers to of Gene expression analysis, and DE refers to Data Enrichment. WLM refers to

Windows, Linux, and MacOS, FW refers to of Free-Ware, OSource refers to Open Source, FAnC stands for Free for

academic and not-for-profit institutions
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experiment, which makes impossible for a single tool to highlight
remarkably all the clues hidden in the data. Thus, the necessity of
multiple software tools that are able to examine accurately a single
aspect of the problem under investigation is essential.
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Laurila E, Houstis N, Daly MJ, Patterson N,
Mesirov JP, Golub TR, Tamayo P,
Spiegelman B, Lander ES, Hirschhorn JN,
Altshuler D, Groop LC (2003) PGC-1alpha-
responsive genes involved in oxidative phos-
phorylation are coordinately downregulated
in human diabetes. Nat Genet 34:267–273

35. Subramanian A, Tamayo P, Mootha VK,
Mukherjee S, Ebert BL, Gillette MA,
Paulovich A, Pomeroy SL, Golub TR, Lander
ES, Mesirov JP (2005) Gene set enrichment
analysis: a knowledge-based approach for inter-
preting genome-wide expression profiles. Proc
Natl Acad Sci U S A 102(43):15545

36. Ji H, Jiang H, Ma W, Johnson DS, Myers RM,
Wong WH (2008) An integrated software sys-
tem for analyzing chip-chip and chip-seq data.
Nat Biotechnol 26:1293. EP

37. Zhou Q, Wong WH (2004) CisModule: de
novo discovery of cis-regulatory modules by
hierarchical mixture modeling. Proc Natl
Acad Sci U S A 101(33):12114

38. http://www.open-std.org/jtc1/sc22/wg14/

39. http://www.open-std.org/jtc1/sc22/wg21/

40. Korn JM, Kuruvilla FG, Mc-Carroll SA,
Wysoker A, Nemesh J, Cawley S, Hubbell E,
Veitch J, Collins PJ, Darvishi K, Lee C, Nizzari
MM, Gabriel SB, Purcell S, Daly MJ, Altshuler
D (2008) Integrated genotype calling and
association analysis of snps, common copy
number polymorphisms and rare cnvs. Nat
Genet 40:1253–1260

41. McCarroll SA, Kuruvilla FG, Korn JM,
Cawley S, Nemesh J, Wysoker A, Shapero
MH, de Bakker PIW, Maller JB, Kirby A,
Elliott AL, Parkin M, Hubbell E, Webster T,
Mei R, Veitch J, Collins PJ, Handsaker R,
Lincoln S, Nizzari M, Blume J, Jones KW,
Rava R, Daly MJ, Gabriel SB, Altshuler D
(2008) Integrated detection and population-
genetic analysis of snps and copy number varia-
tion. Nat Genet 40:1166. EP

42. http://www.python.org

43. http://numpy.scipy.org

44. http://lib.stat.cmu.edu/R/CRAN/web/
packages/mclust/index.html

45. http://www.affymetrix.com/support/devel
oper/powertools/index.affx

46. Sharan R, Maron-Katz A, Shamir R (2003)
Click and expander: a system for clustering
and visualizing gene expression data. Bioinfor-
matics 19(14):1787

47. Ulitsky I, Maron-Katz A, Shavit S, Sagir D,
Linhart C, Elkon R, Tanay A, Sharan R,
Shiloh Y, Shamir R (2010) Expander: from
expression microarrays to networks and func-
tions. Nat Protoc 5:303. EP

48. Shamir R, Maron-Katz A, Tanay A, Linhart C,
Steinfeld I, Sharan R, Shiloh Y, Elkon R (2005)
Expander z an integrative program suite for
microarray data analysis. BMC Bioinformatics
6(1):232

49. https://emea.illumina.com/

50. Du P, Kibbe WA, Lin SM (2008) lumi: a pipe-
line for processing illumina microarray. Bioin-
formatics 24(13):1547

51. Du P, Zhang X, Huang CC, Jafari N, Kibbe
WA, Hou L, Lin SM (2010) Comparison of
beta-value and m-value methods for

Computer Tools to Analyze Microarray Data 281

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.edbt.org/Proceedings/2012-Berlin/papers/workshops/danac2012/a5-altintas.pdf
http://www.edbt.org/Proceedings/2012-Berlin/papers/workshops/danac2012/a5-altintas.pdf
http://www.edbt.org/Proceedings/2012-Berlin/papers/workshops/danac2012/a5-altintas.pdf
http://users.sdsc.edu/~jianwu/JianwuWang_files/Provenance_for_MapReduce-based_Data-Intensive_Workflows-2011.pdf
http://users.sdsc.edu/~jianwu/JianwuWang_files/Provenance_for_MapReduce-based_Data-Intensive_Workflows-2011.pdf
http://users.sdsc.edu/~jianwu/JianwuWang_files/Provenance_for_MapReduce-based_Data-Intensive_Workflows-2011.pdf
http://users.sdsc.edu/~jianwu/JianwuWang_files/Provenance_for_MapReduce-based_Data-Intensive_Workflows-2011.pdf
https://doi.org/10.1145/2110205.2110215
https://doi.org/10.1145/2110205.2110215
https://kepler-project.org/users/downloads
http://www.altanalyze.org/
http://www.open-std.org/jtc1/sc22/wg14/
http://www.open-std.org/jtc1/sc22/wg21/
http://www.python.org
http://numpy.scipy.org
http://lib.stat.cmu.edu/R/CRAN/web/packages/mclust/index.html
http://lib.stat.cmu.edu/R/CRAN/web/packages/mclust/index.html
http://www.affymetrix.com/support/developer/powertools/index.affx
http://www.affymetrix.com/support/developer/powertools/index.affx
https://emea.illumina.com/


quantifying methylation levels by microarray
analysis. BMC bioinformatics 11(1):587

52. Lin SM, Du P, Huber W, Kibbe WA (2008)
Model-based variance-stabilizing transforma-
tion for Illumina microarray data. Nucleic
Acids Res 36(2):e11

53. Saldanha AJ (2004) Java Treeview—extensible
visualization of microarray data. Bioinformatics
20(17):3246

54. Guzzi PH, Agapito G, Di Martino MT,
Arbitrio M, Tassone P, Tagliaferri P, Cannataro
M (2012) DMET-Analyzer: automatic analysis
of Affymetrix DMET data. BMC Bioinformat-
ics 13(1):258

55. Agapito G, Guzzi PH, Cannataro M (2019)
Parallel extraction of association rules from
genomics data. Appl Math Comput
350:434–446

56. Agapito G, Botta C, Guzzi PH, Arbitrio M, Di
Martino MT, Tassone P, Tagliaferri P, Canna-
taro M (2016) OSAnalyzer: a bioinformatics

tool for the analysis of gene polymorphisms
en-riched with clinical outcomes. Microarrays
5(4). https://doi.org/10.3390/
microarrays5040024

57. Agapito G, Guzzi PH, Cannataro M (2015)
DMET-Miner: Efficient discovery of associa-
tion rules from pharmacogenomic data. J
Biomed Inform 56:273

58. Agapito G, Cannataro M, Guzzi PH,
Marozzo F, Talia D, Trunfio P (2013) Pro-
ceedings of the international conference on
bioinformatics, computational biology and
biomedical informatics

59. Marozzo F, Talia D, Trunfio P (2013) A cloud
framework for big data analytics workflows on
azure. In: Grandinetti L (ed) Clouds, grids and
big data. IOS Press, Chap. Big Data

60. Marozzo F, Talia D, Trunfio P (2012)
European conference on parallel processing.
Springer, pp 220–227

282 Giuseppe Agapito

https://doi.org/10.3390/microarrays5040024
https://doi.org/10.3390/microarrays5040024


Chapter 14

Challenges and Future Trends for Microarray Analysis

Verónica Bolón-Canedo, Amparo Alonso-Betanzos,
Ignacio López-de-Ullibarri, and Ricardo Cao

Abstract

The current situation in microarray data analysis and prospects for the future are briefly discussed in this
chapter, in which the competition between microarray technologies and high-throughput technologies is
considered under a data analysis view. The up-to-date limitations of DNA microarrays are important to
forecast challenges and future trends in microarray data analysis; these include data analysis techniques
associated with an increasing sample sizes, new feature selection methods, deep learning techniques,
covariate significance testing as well as false discovery rate methods, among other procedures for a better
interpretability of the results.

Key words Big data, Deep learning, False discovery rate, Feature selection, Microarray data, Signifi-
cance testing

1 Introduction

In the last decade DNA microarray technologies have been coex-
isting with new competitive high-throughput methodologies based
on sequencing. In general, studies designed for techniques, for
example, gene-expression arrays, ChIP-on-chip (a technology that
combines chromatin immunoprecipitation—“ChIP”—with DNA
microarray chip), or SNP arrays (single nucleotide polymorphism, a
type of DNA microarray which is used to detect polymorphisms
within a population), could equally have been conducted by using
next-generation sequencing (NGS) procedures like, respectively,
RNA-seq, ChIP-seq, or genotyping-by-sequencing. Given the
much broader biological and technical insight of NGS, all experts
have agreed in predicting a progressive abandon of arrays in favor of
NGS methods (see, e.g., [1, 2]). A quick search on Medline along
the last years can convince the reader of the plausibility of this
prediction.

Currently, it appears that the main factor that could still induce
researchers to opt for array technologies in detriment of newer
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NGS alternatives is the better cost effectiveness of the former. In
this sense, although an objective, comprehensive evaluation of price
evolution would be difficult, time is on the side of NGS, since
available evidence indicates that the gap between the two technol-
ogies is progressively narrowing (see, e.g., the graphs at https://
www.genome.gov/27541954/dna-sequencing-costs-data/). Of
course, given the inherent constraints of hybridization technolo-
gies, it must be stressed that the cost advantage of microarrays
cannot be exploited, e.g., in studies aimed at gene discovery or
involving poorly characterized organisms, because then the probes
simply will not exist. On the other hand, in the case of large-sample
studies NGS will probably continue to be unaffordable for a long
time [2]. Besides, realistic measures of cost should consider not
only the market price of the technological product, but also other
components like workflow complexity and availability of data-
analytic resources. These aspects may add to the advantages of
microarrays over NGS. For example, some issues related to the
choice of processing workflow of (bulk and single-cell) RNA-seq
data are not yet settled [3–5], which conditions the interpretation
of results.

All in all, and for the sake of concreteness focusing on gene-
expression analysis, RNA-seq has become (or is becoming) the gold
standard in general transcriptome studies [5, 6]. To date, the only
possible exception where microarrays would outperform RNA-seq
would be found in studies aimed at the characterization of the
isoforms produced by alternative splicing of the exons. In that
setting, Nazarov et al. [7] conclude that, for the usual sequencing
depths, RNA-seq would suffer from reproducibility problems
concerning long non-coding RNAs. Git et al. [8] had previously
pointed out that, with the platforms they compared, RNA-seq
performed worse than microarrays in detecting differential micro-
RNA expression.

Perhaps, one could imagine a niche for the use of microarrays in
clinical applications of genetic testing [9, 10], where the list of
genes involved is typically well defined and the plethora of informa-
tion produced by NGS would be excessive. On the other hand, it is
true that for these low- to medium-throughput applications quan-
titative PCR (qPCR) is also available, besides having a reputation of
being a “gold standard.” Even more, newer hybridization-based
technologies like the Nanostring nCounter analysis system have
also been shown to perform promisingly in these settings [9, 11].

In the field of proteomics, the competing relationship between
protein microarrays and mass spectrometry may to some degree
resemble that between DNA microarrays and NGS, as described
above. According to some authors (see [12]) it would be more
accurate to perceive that relationship as one of the complementari-
ness. Currently, protein microarray technology is still a developing
area [13]. From a data-analytic viewpoint, general procedures
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developed for DNA microarrays in relation with, e.g., experimental
design, preprocessing, and differential expression analysis are, in
principle, extensible to protein microarrays.

The content of the rest of the chapter is as follows. Subheading
2 includes a view of the current limitations of DNAmicroarray data
analysis. The challenges and future trends foreseen by the authors
for the near future are included in Subheading 3. They include data
analysis techniques related to the increasing sample size issue, new
feature selection methods, deep learning techniques as well as
interpretation statistical tools, as covariance significance testing
and false discovery rate methods. Finally, some conclusions on the
subjects discussed are briefly outlined in Subheading 4.

2 Limitations of DNA Microarray Data Analysis

The use of microarrays provides a powerful technology in the field
of genetics. They have revolutionized the concept of patient-
tailored treatment since they allow in-depth analysis of gene-
expression profiles. Before microarrays being fully qualified as a
useful clinical tool they must demonstrate reliability and reproduc-
ibility. The nature of microarray experiments imposes a large num-
ber of limitations. These apply to simple issues as sample acquisition
and data mining, as well as to more controversial ones related to the
data analysis methods required for the enormous amount of infor-
mation available. Methods for validating gene-expression profiles
and those for improving trial designs are among the priorities for
the near future. On the other hand, in many setups microarrays are
being rapidly replaced by DNA sequencing technologies.

Microarrays are just devices to measure, in a simultaneous way,
the relative concentrations of different DNA or RNA sequences.
They have been very useful in many applications, but some of their
limitations will be considered in this section. Arrays are used to
construct an indirect measure of relative concentration. Thus the
value measured at a given position on a microarray is often assumed
to be proportional to the concentration of a species that can
hybridize to that location. However, the level at a given location
on the array is not fully proportional to concentration of the species
hybridizing to the array. At high concentrations the array becomes
saturated and at low concentrations no binding is very common. As
a consequence, the measured quantity is linear only on a range of
concentrations. On the other hand, it is often difficult to design
arrays in which multiple related DNA/RNA sequences will not
bind to the same probe on the array. A sequence designed to detect
a specific gene may also detect other genes, if those ones have
significant sequence homology to the first gene. This can be partic-
ularly problematic for gene families and for genes with multiple
splice variants. On the other hand, arrays can be designed to
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specifically detect splice variants. However, it is difficult to design
arrays that will uniquely detect every exon or gene in genomes with
multiple related genes.

It is important to stress that microarrays can only detect
sequences that they were designed to detect. Thus, if the solution
being hybridized to the array contains RNA or DNA species for
which there is no complimentary sequence on the array, those
species will not be detected. This means that genes not yet been
annotated in a genome will not be represented on the array. In
addition, non-coding RNAs that are not yet recognized as
expressed are typically not represented on an array. For highly
variable genomes, arrays are typically designed using information
from the genome of a reference strain and a large fraction of the
genes present may be missing. Consequently an array designed
using gene annotation may not contain many important genes.

3 Challenges and Future Trends for DNA Microarray Analysis

3.1 Increasing the

Number of Samples

A typical characteristic of microarray datasets is their small sample
size (usually less than 100 examples). This is because, especially in
the beginning, the sequencing cost was high, preventing its appli-
cation to a significant number of individuals. The small sample size
has been a major issue for data analysts, since it makes very difficult
to correctly evaluate their models.

It was back in 2001 when Dougherty [14] noted that the error
estimation is greatly impacted by small samples in microarray data
classification. Without the appropriate estimation of the error, an
unsound application of classification methods follows, which has
generated a large number of publications and an equally large
amount of unsubstantiated scientific hypotheses [15]. For example,
in [16] it is reported that reanalysis of data from the seven largest
published microarray-based studies that have attempted to predict
the prognosis of cancer patients reveals that five of those seven did
not classify patients better than chance. To overcome this problem,
until now the typical solutions were to select a correct validation
method for estimating the classification error or to combine multi-
ple datasets, but these two proposals have their problems and were
not completely successful.

However, over the past few years, the price for sequencing
DNA microarrays has been diminishing progressively, so it is to
be expected that in the near future we can count on having signifi-
cantly more samples. Increasing the number of samples would
make DNA microarray analysis a less challenging domain (in the
sense that it is now, regarding the high dimensionality characteris-
tic), and would open the door for the use of techniques that were,
until today, inapplicable. For example, the current paradigm when
trying to classify DNA microarray data made almost paramount the
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use of a dimensionality reduction technique as a preprocessing step,
because having so many features (genes) for so few examples could
produce overfitting of the models. But, paradoxically, some
dimensionality reduction techniques such as wrappers could not
have been applied either for the same reason. This issue will be
further commented in the next subsection.

Another new line of research that can be opened in DNA
microarray analysis—if it is possible to increase the sample size in
the near future—is the use of more sophisticated methods such as
those of deep learning. This discipline is revolutionizing, in the last
few years, all the previous works in the field of machine learning,
especially for images. Deep learning techniques have demonstrated
to shown particular promising results in extracting high level
abstractions from the raw data of very large, heterogeneous, high-
dimensional datasets [17]. In the case of DNA microarrays, so far
they were not large enough but, if this changes, deep learning
methods would be a very interesting approach to deal with them
(see Subheading 3.3) [18]. Besides, deep learning has led to a
multimodality-based algorithm framework, enabling the effective
fusion and use/retrieval of cross-domain multimedia data that
could be used to obtain useful information from microarray data
mixed with other information sources.

3.2 New Feature

Selection Methods

Although microarray datasets contain usually very small samples for
training and testing, the number of features in the raw data ranges
in the order of thousands, since they measure the gene-expression
en masse. To avoid the problem of the “curse of dimensionality”
[19], feature (gene) selection plays a crucial role in DNA micro-
array analysis, which is defined as the process of identifying and
removing irrelevant features from the training data (see Fig. 1), so
that the learning algorithm focuses only on those aspects of the
training data useful for analysis and future prediction [20]. There
are usually three varieties of feature selection methods: filters,
wrappers, and embedded methods. While wrapper models involve
optimizing a predictor as part of the selection process, filter models
rely on the general characteristics of the training data to select
features independent of any predictor. The embedded methods
generally use machine learning models for classification, and then
an optimal subset of features is built by the classifier algorithm. Of
course, the interaction with the classifier required by wrapper and
embedded methods comes with an important computational bur-
den (more important in the case of wrappers).

Feature selection as a preprocessing step to tackle microarray
data has rapidly become indispensable among researchers, not only
to remove redundant and irrelevant features, but also to help
biologists identify the underlying mechanism that relates gene
expression to diseases. Traditionally, the most employed gene selec-
tion methods fall into the filter approach, because of its low
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computational cost and the fact of having more features than
samples. On the other hand, and due to the heavy computational
consumption of resources and the high risk of overfitting, the
wrapper approach has been largely avoided in the literature [21].

However, if in the near future and because of the cost decrease
of DNA sequencing the number of samples is increasing, this could
favor the use of more sophisticated feature selection methods. First
of all, in this hypothetical scenario wrappers could be applied
without incurring in overfitting of the data, with the benefit that
they usually obtain better performance than filters.

Having large datasets in both number of samples and features
might have the implication that most feature selection methods
become impracticable, so they would need to be adapted. A possi-
ble solution is to use distributed feature selection methods, which
take advantage of processing multiple subsets in sequence or con-
currently [22]. This can be done in several ways. One of the
possible approaches consists of distributing the data, running fea-
ture selection on each partition and then combining the results.
The two main approaches to partitioned data distribution are by
features (vertically) or by samples (horizontally). In [23] an exhaus-
tive study of the implications of these two different distributions
applied, among others, to microarray datasets is described. In a
similar line, but aiming at deriving a more in-depth analysis of
how distributed strategies affect specifically to DNA microarray
data, the authors in [24] analyze several aspects of the distribution,
such as the adequate number of nodes, the level of overlapping in
vertical distribution, and the aggregation method used to join the
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Fig. 1 Scheme of a typical feature selection process on DNA microarray data

288 Verónica Bolón-Canedo et al.



partial results./AQPlease check if edit made to the sentence, “ One
of the possible approaches consists...” is fine.

There are other platforms for performing distributed learning
in which the distribution of the data is more transparent to the user.
MapReduce [25] is one such popular programming model with an
associated implementation for processing and generating large
datasets with a parallel, distributed algorithm on a cluster. Hadoop,
developed by Cutting and Cafarella in 2005 [26], is a set of algo-
rithms for distributed storage and distributed processing of very
large datasets on computer clusters; it is built from commodity
hardware and has a processing part based on MapReduce. Devel-
oped more recently is Apache Spark [27], a fast, general engine for
large-scale data processing, popular among machine learning
researchers due to its suitability for iterative procedures. Although
these paradigms are typically employed for parallelization of
learning algorithms, they have not been so used when it comes to
feature selection, offering an opportunity to parallelize new feature
selection methods to be applied to microarray data. In this respect,
some interesting contributions are those in [28–30], in which the
authors adapt to the Spark platform some of the most well-known
and employed feature selection methods.

Another option is the use of graphics processing units (GPUs)
to distribute and thus accelerate calculations made in feature selec-
tion algorithms. With many applications to physics simulations,
signal processing, financial modelling, neural networks, and count-
less other fields, parallel algorithms running on GPUs often achieve
up to 100x speedup over similar CPU algorithms. It could be
interesting to exploit GPU capabilities to design feature selection
methods to cope effectively and accurately with thousands (or even
millions) of genes. In [31] a package containing three different
implementations of the mRMR—minimum redundancy maximum
relevance—feature selection algorithm in several platforms, CPU
for sequential execution (a faster version than the original one,
introduced by Peng et al. in [32], and initially developed for dealing
with the classification of DNA microarray data), GPU (graphics
processing units) for parallel computing, and Apache Spark for
distributed computing using big data technologies is presented.

Finally, a reasonable method to deal with the problem of large
number of features and large-sample size is using subsampling. This
statistical technique has been introduced by Politis and Romano
[33] as an alternative procedure to classical resampling methods
(such as the bootstrap) and it can speed up those with factors of
thousands when the sample size is large. It consists in drawing
resamples of a much smaller sample size from the original sample
and using them to calibrate the sampling distribution of the statistic
to be used. This is of course very useful for covariate significance
test (e.g., to detect significant characteristics) or to compute confi-
dence intervals for the probability of correct classification, among
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many other. Interested readers are referred to the book by Politis
et al. [34] for detailed explanation about the subsampling method.
Subsampling has been used over the past few years for DNA data
analysis. For instance, Aguirre de Cárcer et al. [35] have used
subsampling methods for normalization of tagged high-
throughput sequencing microbiomes datasets.

3.3 Deep Learning

Techniques

Neural networks have been extensively used for years among
machine learning researchers, in a “shallow” way (using a single
of a few hidden layers). But, nowadays, the cutting-edge paradigm
is to use deep learning, which consists basically in applying neural
networks with many hierarchical layers of nonlinear information
processing.

When it comes to process natural data in their raw form,
standard machine learning techniques had the limitation of requir-
ing considerable domain expertise to extract a feature vector that
could be afterwards used by the learning method (typically a classi-
fier). However, deep learning techniques remove this limitation, by
being able to work directly with raw data and then discover the
representations needed for detection or classification through com-
posing simple but nonlinear modules that each transform the rep-
resentation at one level into a representation at a higher, slightly
more abstract level [36].

Although there already exist works that apply deep learning
techniques to DNA gene expression [37, 38], this paradigm takes
advantage of increases in the amount of available computation and
data, so it is expected that better results are to be obtained if the
sample size of DNA microarrays is increased. Besides, and as men-
tioned above, deep learning had made it possible to use multimodal
algorithms that may take advantage of the fusion of different cross-
domain multimedia data. In [18] the authors follow this line, and
develop a sparse autoencoder method capable of learning a concise
feature representation from unlabeled data. These unlabeled data
can be obtained by combining data from different tumor cells
provided that they are generated using the same microarray plat-
form, and thus having more samples that can be used as a basis for
feature learning.

Despite their broad benefits, deep learning models are often
seen as black-boxes difficult to interpret, which implies a problem
of user acceptance in critical sectors such as medicine, bioinformat-
ics, or robotics. The next subsection will comment on the issue of
interpretability.

3.4 Interpretability

and Visualization

One of the main problems when using black-box techniques (such
as deep learning methods or nonparametric methods) is interpret-
ability of the results obtained. For instance, if our method is using
hundreds or thousands of characteristics from our original dataset
for a classification problem, biological interpretation of what the
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method is doing is a difficult task. In that sense, those methods that
select a limited number of features from amodel are more useful for
interpretation. One possible approach to limit the number of fea-
tures of a method is to carry out some feature selection method
based on covariate significance tests. In a fully nonparametric con-
text Delgado and González-Manteiga [39] have proposed a covari-
ate significance test for regression. This test is then a useful
dimension reduction technique. However, when dealing with
hundreds or thousands of characteristics, the test becomes unprac-
tical without the use of statistical methods that account for false
discovery rate. Combination of this method with already existing
techniques to control the false discovery rate, such as those by
Benjamini and Hochberg [40] and Benjamini and Yekutieli [41],
provides a promising future in microarray data analysis with a large
number of characteristics. Another line of research has also being
opened recently on developing new visualization techniques for
deep networks. The problem of visualizing, understanding, and
interpreting deep neural networks has received a lot of attention
lately, but the theoretical foundations of the interpretability prob-
lem are yet to be investigated and the usefulness of the proposed
methods in practice still needs to be demonstrated, as it is the
conclusion of the recent NIPS 2017 Workshop entitled “Interpret-
ing, Explaining and Visualizing Deep Learning—Now what.”
There are several trends on this direction, as for example disentan-
gling the chaotic representations of convulational layers into graph-
ical or symbolic models. Another trend is the design of end-to-end
learning interpreable neural networks, whose intermediate layers
encode comprehensive patterns. Interesting surveys, more general
or either centered on convolutional neural networks, explainability
can be found in [42, 43], respectively.

4 Conclusions

Microarray data analysis has been traditionally a challenging, and as
a consequence prolific domain for machine learning techniques.
However, during the last years, new competitive high-throughput
methodologies based on sequencing have appeared that are threat-
ening to relegate microarray data analysis to the memory drawer, or
at least severely limit its use. However factors that apply for other
alternative technologies, such as economical costs, workflow com-
plexities, or reproducibility in some contexts, among others still
leave room for opportunities in microarray data analysis. Some new
opportunities may arise from the hand of increasing sample sizes
that in turn may derive new feature selection methods, or new
implementations of well-known methods in parallel platforms like
Spark, or GPU distributed approaches. Finally, the newly arrived
deep learning techniques could add value to the field, as they allow
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for the fusion of information coming from different sources. In this
latter case, and although interpretability of the results can consti-
tute a serious obstacle, during the very last years there have been
new lines of research opened aimed at alleviating the opaqueness of
the back-box representations of deep learning.
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