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Abstract: In order to provide a reliable service and supply the demand most of the time, all generators in a power grid should
be subjected to an effective maintenance plan. The smarter the maintenance performed could result in a better performance of
the system. However, a challenge is to minimise maintenance costs that do not compromise the benefits. Considering these
facts, this study presents a reliability-based smart-maintenance approach of generators to compute the net-maximum economic
benefit. The approach is derived from Kijima model type I to characterise the impact of maintenance over the component's
virtual age, and Markov chains to model the component's lifetime. To achieve a more realistic model, generators' failure and
repair rates are considered time-dependent variables. Then, the optimum preventive maintenance schedule is obtained by using
an advanced algorithm named accelerated quantum particle swarm optimisation in combination with sequential Monte Carlo
simulation. The effectiveness of the approach is investigated through a case study with four different scenarios: (i) no preventive
maintenance plan, (ii) yearly periodic preventive maintenance, (iii) reliability-centred maintenance and (iv) smart maintenance.
The results suggest that the approach is convenient for power system generators and delivers a significant knowledge
contribution in the area of maintenance.

Nomenclature
Some of the symbols and notations used throughout this
manuscript are defined below for quick reference. Others are
defined following their first appearances, as appropriate.

Vn virtual age after the nth maintenance is executed
Xn time elapse from the n − 1th failure to the nth failure
q degree of maintenance
δ maintenance factor
TU guarantee time of the component
TW end lifetime of the component
λ failure rate
μ repair rate
ϕ degradation rate
α failure rate scale parameter
β failure rate power parameter
ω failure rate location parameter
a failure rate displacement parameter
σ repair rate scale parameter
γ repair rate power parameter
b repair rate displacement parameter
l auxiliary variable

1 Introduction
Power systems require adaptive and dynamic maintenance of their
components to achieve a higher level of reliability. Such
maintenance strategies are vital to limit failures and minimise
downtime of the components [1]. The maintenance can be broadly
categorised into two basic schemes: (i) preventive maintenance
(PM), which is carried out at predetermined intervals or according
to prescribed criteria, aimed at reducing the failure risk or
performance degradation of the equipment [2]; (ii) corrective
maintenance (CM), which is carried out after failure detection and
is aimed at restoring an asset to a condition in which it can perform
its intended function [2].

Periodic preventive maintenance (PPM) is a typical strategy
used in many power system components. This strategy proposes
routine maintenance scheme given by the manufacturer's

specification. Even though PPM provides reliable operation of the
components, several studies [3, 4] proved that it may not
necessarily lead to the optimum benefits. This is because PPM does
not consider the composite system operation, consequently, the
number of maintenances is high and so the maintenance cost. For
this reason, new maintenance approaches have been developed in
the last two decades [5–7].

Among the advanced maintenance strategies, literature presents
the reliability-centred maintenance (RCM) [7] as one of the most
popular strategy. RCM proposes a maintenance schedule
optimisation problem, of which the objective is to minimise the
maintenance cost while keeping an adequate reliability of the
system [8]. The literature reports variations of RCM by
incorporating different optimisation techniques such as genetic
algorithm [9], particle swarm optimisation [10] and annealing
optimisation [11]. Although these studies propose advanced models
to guarantee the availability of the components, the main drawback
lies in the reliability model of the components. In this context,
literature presents the reliability model of the component as
Markov process between the state ‘operating’ and ‘not in service’
[12]. This idea brings two main drawbacks. In the first instance,
component's failure and repair rates are modelled using exponential
distribution [12], underestimating the ageing and bringing in less
accuracy in reliability assessment. Although recent studies in [7, 8]
propose Weibull distribution into RCM to model the ageing effect,
deeper analysis on these reveals that the assessment of the
degradation of the component is not captured in detail. In the
second instance, the alternating renewal process does not consider
the inclusion of PM into the model and considers only CM.

The concept of maintenance has reached a new paradigm of
smart maintenance (SM). Several researchers proposed this vision
based on some applications with the inclusion of smart inspections,
smart devices, smart services and asset management. In this regard,
Falahati et al. [13] propose a SM scheme with the implementation
of smart devices to monitor the operation of transformers and
circuit breakers in a small-scale distribution system. This study
includes a mathematical framework that allows quantifying the
impact of system monitoring on system reliability analytically.
Subsequently, the study is extended with the incorporation of a
novel index called ‘monitoring degree’ [14]. The vision of SM with
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the implementation of smart inspection and smart services are
proposed in [15]. This approach is based on eddy current
transducer carried out by an inspection robot to record the status of
transmission lines. The approach provides effective benefits for the
planning of a SM schedule. SM theoretical framework based on
management assets is presented in [16]. Such study exhibits a SM
decision support system that uses corporate big data analytics,
which is applied to transformers and circuit breakers. A
comprehensive vision of SM based on management assets is
presented in [17]. In this work, the authors propose an approach to
deal with the investment required for optimal mid- and long-term
decision making of distribution companies in the presence of
reward–penalty.

At the power generation level, recent investigations present
different SM approaches based on generators maintenance
scheduling problem. However, such approaches provide limited
transparency of mathematical frameworks that can effectively
capture the impact of long-term PM scheduling on the degradation
(due to ageing) of the generators. For instance, Balaji et al. [18]
propose a SM approach using conventional lambda iteration in
combination with differential evolution algorithm to minimise the
overall generator operation cost while satisfying power system
operational constraints. The main drawback with [18] is the lack of
consideration of the reliability parameters of the generators, such
as the failure and repair rates. Thus, sudden disruptions due to
random generator failures are not considered into the analysis,
which brings uncertainties into the results. The same issue appears
also in [19], with the difference being that the authors propose a
discrete integer Cuckoo search algorithm. In [20, 21], the authors
propose a vision of SM using stochastic mixed-integer polynomial
programming to obtain a proactive PM plan that maximises system
reliability. Although the given approaches show significant
computational gains, they need the recorded failures scenarios that
sometimes are not available in the published literature. The authors
of [22, 23] expose a SM schedule for generators based on
reliability theory and greedy heuristic local search algorithm,
respectively. Both studies seek to maximise the probability of no
power generating units in the power system failing during the

scheduling window. Even though the generators reliability model is
well presented in [22, 23], their main deficiency is the use of time-
independent failure and repair rates that produce inaccuracies for
real-world applications. In [24], a vision of a SM for real
hydropower systems is found. In this study, the authors suggest a
mixed-integer programming model that considers the time
windows of the maintenance activities with non-linearities and
disjunctions of the hydroelectric production functions to bring an
effective maintenance schedule. The gap in this study is that it
focuses on short- and mid-term PM planning. In order to get an
insight of each SM approach, Table 1 presents a qualitative
comparison of the presented literature. 

While the implementation of the ageing effect is limited in
almost all the available literature, there are few works [26–30] that
consider such effect. Nevertheless, these studies are limited to
short- and mid- terms PM schedules. Furthermore, these studies do
not consider the bathtub curve and half-arch shape to model a more
realistic behaviour of the failure and repair rates, respectively.
Therefore, the reliability models in these studies carry less
accuracies to depict a real impact of PM schedule on system
reliability. To overcome these limitations, this paper proposes an
innovative SM scheme of generators to enhance the reliability of a
power system. The model is based on the following stages: firstly,
the Kijima model type I (KMI) is adopted to create a link between
component's virtual age; secondly, by the employment of Markov
chain, the component's reliability model is obtained. The SM
formulates a maintenance schedule optimisation problem which is
solved using an advanced algorithm proposed in this paper as
accelerated quantum particle swarm optimisation (AQPSO). The
main contributions of this paper are: (i) a more realistic and
accurate ageing reliability model, which considers the
obsolescence state of the power generators; (ii) a novel AQPSO-
based algorithm for optimal long-term PM planning of power
generators; (iii) a novel mathematical formulation that describes
the relationship between generator's lifetime, virtual age,
degradation and transition rates; and (iv) an advanced SM
algorithm for optimal power system generation adequacy
assessment.

Table 1 Recent SM visions for power system generators
Reference Failure (λ) and

repair (μ) rate
behaviour

Consider
degradation due

to ageing

States per
component

Years of
analysis

Technique employed

Balaji et al. [18] not applied no not applied one lambda iteration approach and
differential evolution

Lakshminarayanan and Kaur [19] not applied no two one discrete integer cuckoo search
Basçiftci et al. [20] λ: not specified no not specified one stochastic mixed-integer

programming and sample
average approximation

μ: not specified

Jo et al. [21] λ: not specified no not specified one mixed-integer polynomial
programmingμ: not specified

Eygelaar et al. [22] λ: constant no two one reliability theory
μ: constant

Hosseini et al. [23] λ: constant no not specified one greedy heuristic
μ: constant local search algorithm

Rodríguez et al. [24] not applied no not applied one mixed-integer programming
Azadeh et al. [25] λ: Weibull variation yes two one Markovian discrete event and

Monte Carloμ: constant
Yildirim et al. [26] λ: Weibull yes two one mixed-integer

μ: Weibull optimisation and Monte Carlo
Mo and Sansavini [27] λ: Weibull variation yes two twenty linear programming and Monte

Carloμ: constant
Hoseyni et al. [28] λ: Weibull variation yes three thirty condition-based probabilistic

safety assessmentμ: not specified
Selvi et al. [29] λ: Weibull variation yes two ten genetic algorithm and Monte

Carloμ: not specified
proposed approach in this paper λ: bathtub curve yes three fifty AQPSO and sequential Monte

Carloμ: half-arch shape
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The rest of the paper is organised as follows. Section 2 presents
the reliability concepts required for SM; Section 3 presents the
mathematical formulations to describe the AQPSO; Section 4
describes the problem formulation; Section 5 presents an algorithm
to determine the optimum PM schedule based on the SM scheme;
Section 6 presents a case study; the results are analysed in Section
7. Finally, Section 9 gives the conclusion.

2 Smart maintenance mathematical framework
SM is an advanced strategy that takes the reliability features of the
components to set an effective maintenance plan as input. Fig. 1
presents the reliability concepts needed to formulate the SM
mathematical framework. 

2.1 Virtual age, actual age and maintenance

Maintenance action causes a rejuvenation, which is defined by its
virtual age. The KMI [31] is employed to model the relationship
between the virtual age before and after the nth maintenance
action. Maintenance influences the virtual age of a component, by
an amount proportional to the time elapsed from the n − 1th failure
to the nth failure. Then, the KMI can be described mathematically
as [12]

Vn =
Vn − 1 + qCMXn, if CM is performed

Vn − 1 + qPMXn, if PM is performed
(1)

KMI can also be represented in terms of the actual age t. This fact
can be appreciated in Fig. 2, in which the relationship between the
actual and virtual age is given. Then, the virtual age in terms of the
actual age tn when the nth failure occurs is as follows:

Vn =
qCM(X1 + ⋯ + Xn) = qCMtn, if CM is performed

qPM(X1 + ⋯ + Xn) = qPMtn, if PM is performed
(2)

The parameter q is the degree of efficacy defined as perfect,
imperfect and minimal. The term ‘perfect’ (q = 0) refers to the
restoration of the component to operate as a new, the ‘imperfect’
(0 < q < 1) implies a restoration of the component to operate in

between good (similar to new life) and worst (similar to end of life)
and in the case where the maintenance is developed with limited
effort, is called minimal (q = 1) [32].

To simplify KMI, maintenance factor δ is incorporated into the
model. This factor depends on the type of maintenance and can
take only two values: (i) one, if CM is performed; (ii) zero, if PM
is performed. Then, (2) can be rewritten as

Vn = qCM
δm qPM

1 − δmtn, δm =
1, if CM is performed

0, if PM is performed
(3)

2.2 Markov chain, transition rates and lifetime

A Markov chain is an illustration that contains the possible states
of a component, which are connected by transitions rates. This
point becomes relevant since the lifetime of the component follows
a Markovian process, which is defined by its failure and repair rate.

Regarding the generators’ failure rate, it is common to use the
bathtub curve to describe it. Bathtub curve is divided into four
stages [33]. The first stage is the infant mortality, which is defined
by the policy of the manufacturer and it corresponds to the period
of guarantee. In this stage, the component is in a state denominated
by ‘operation good as new’. Whenever a failure arises, the
component goes to a state characterised by the ‘policy of
replacement’. This process is recurrent, and the component goes to
the next stage only if no failure event occurs during the guarantee
period ends (0 ≤ t < TU). The next stage is the useful life
(TU ≤ t < TV), in which the component is subjected to the ‘normal
operation’ and ‘not in service’ states. The state ‘normal operation’
indicates that the component is operating under rated conditions,
while the ‘not in service’ state is driven by any failure that
interrupts the operation of the component. In this stage, the failure
rate takes a constant value. The next stage is the wear out
(TV ≤ t < TW), in which the component presents a high occurrence
of failure. This is because the ageing effects become so intense that
produces gradual increments on the failure rate of the component.
The last stage t ≥ TW  of the curve is the end lifetime, which
contains the ‘obsolescence’ state. This stage is the most critical
since the component is totally degraded. The failure rate takes
extremely high values. Consequently, component replacement is
required.

To include maintenance action into the proposed model, the
component's failure rate is treated as a function of the virtual age.
Since time t is the cumulative operation time of the system, the
virtual age can be written as [34]

V(t) = Vn + (t − tn) (4)

Then, by using Weibull distribution in combination with Gumbel
distribution [35], the bathtub curve mathematical model can
incorporate maintenance action as given in the following equation
[33]:

λ t =

λI, 0 ≤ V(t) < TU

λC, TU ≤ V(t) < TW

∞, V(t) ≥ TW

(5)

where λI = αIe
−βIV t  and λC = aC + αCe(V t − ω)/αC.

Regarding the repair rate of the component, it presents the same
four stages as in the bathtub curve, but with different behaviour.
During the infant mortality, the repairs or restoration of the
component is the responsibility of the manufacturer, which is given
by μI. In the useful life, the repair rate decreases at a lower rate,
while in the wear out stage the repair rate decreases at a faster rate.
This is attributed to the severity of the failures that increase the
difficulty to repair the component as time passes by. When the
component reaches the end lifetime stage, the component cannot be
repaired, and the repair rate goes to zero. Thus, the repair rate can
be mathematically written as follows [33]:

Fig. 1  Reliability concepts for SM
 

Fig. 2  Virtual age as a function of the actual age
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μ t =

μI, 0 ≤ V(t) < TU

μC, TU ≤ V(t) < TW

0, V(t) ≥ TW

(6)

where μC = b − σeγV t .
Fig. 3 shows the behaviour of the failure and repair rates

divided by stage and states as previously described. It can be
observed that although Fig. 3 shows five states, the model can be
reduced to three states by starting the analysis at time TU. This is
attributed to the fact that the manufacturer must ensure the correct
operation of the component to perform during the guarantee period
(infant mortality). Therefore, the states ‘0’ and ‘R’ can be
neglected, since they do not correspond to the customer.
Concerning the replacement action, this is modelled as a forced
decision that automatically occurs once the obsolescence state is
reached. Hence, the replacement is considered as a non-stochastic
process and for this reason it does not appear in the Markov chain
process presented in Fig. 3.

Therefore, the relationship between the component's virtual age,
transitions rates and lifetime is given by the stochastic matrix of
transition states H [36]. This is a square matrix that associates row
and column with a specific state. For the model given in Fig. 3, H
is a three by three matrix, where the first row and column associate
the state ‘Normal operation’; second row and column associate the
state ‘Not in service’; and third row and column associate the state
‘Obsolescence’.

The diagonal terms of the matrix denoted by hii are obtained by
performing the negative sum of the transition rates that leave the
state i, while the rest of terms hi j are given by the transition rate
that goes from state i to state j. Then, the H matrix for the proposed
model is as follows:

H =

−λC λC 0

μC −μC − ϕW ϕW

0 0 0

(7)

2.3 Absorbing state and degradation function

An absorbing state is defined as the state that, once entered, cannot
be left. For example, the obsolescence presented in Fig. 3
represents an absorbing state since there is no transition rate that
allows going out of this state. The expected time to get into an
absorbing state is given by the end lifetime of the component,
which can be obtained using the formulation given in the following
equation [36]:

TW =
λC + ϕW + μC

λCϕW
(8)

Solving for ϕw

ϕW =
λC + μC

TWλC − 1
(9)

Then, the degradation of the component is quantified using the
degradation rate and lifetime of the component. The expression
that described the degradation is given by [33]

Λ =
1

TW ϕW
(10)

subject to

lim
t → TW

Λ = ∞ (11)

The constraint presented in (11) is to hold the obsolescence state
[33].

2.4 Function of the probability vector of states

The main goal of this section is to determine an expression that can
capture the probability of being in the states given in Fig. 3 as a
function of the failure, repair and degradation rate of the
generators.

For every state s, there is a probability function Ps defined by its
transposed transition matrix HT. Mathematically, this is formulated
as [36]

P1(t) P2(t) ⋯ Pz(t)
T

= ∑
s = 1

z

Ksυse
χst (12)

where z is the total number of states, υ and χ are the eigenvectors
and eigenvalues of HT, and K is given by the initial conditions; T is
an operator that transpose the matrix. By employing this criterion
to (7), the probability vector of states is

P1 t P2 t P3 t
T = ∑

s = 1

3

Ksυse
χst (13)

where

l = −4λCϕW + λC + μC + ϕW
2

χ1 = 0; χ2 =
−λC − μC − ϕW − l

2
;

χ3 =
−λC − ϕW − μC + l

2

(14)

(see (15)) 
To get the Ks values, an initial condition is needed. In fact, it is

known that at V t = TU the component is in state ‘1’
P1 V t = TU

= 1; P2 V t = TU
= 0, P3 V t = TU

= 0 , therefore from (12)

1 0 0 T = K1υ1e
χ1V (t) + K2υ2e

χ2V (t) + K3υ3e
χ3V (t) (16)

Fig. 3  Failure and repair rates for SM scheme
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Replacing (14) and (15) in (16) and solving for K1, K2 and K3

K1 = 1;

K2 =
λC + μC + ϕW − l

2d
e0.5TU λC + μC + ϕW + l ;

K3 =
−λC − μC − ϕW − l

2d
e0.5TU λC + μC + ϕW − l ;

(17)

Once χ, υ and K are quantified in terms of the failure, repair and
degradation rates, the probability function of each state can be
determined by replacing (14), (15) and (17) in (13).

2.5 Reliability model: availability and unavailability

The reliability model of any component is defined by its
availability and unavailability. The availability is the sum
probabilities of the states defined in the set Θ that keep the
component in operation. On the other pole, the unavailability is the
sum probabilities of the states defined in the set Ω that keep the
component non-operating. They can be estimated using (18) and
(19), respectively

A t = ∑
s ∈ Θ

Ps t (18)

U t = ∑
s ∈ Ω

Ps t (19)

It is notable that for the model proposed

Θ = 1 ; Ω = 2, 3 (20)

Therefore

A t = P1 t (21)

U t = P2 t + P3 t (22)

At this point, the component's reliability model for SM scheme is
described. The next step is to define a method that allows getting
the maximum net benefit due to optimum PM scheduling. This is
described in the section below.

3 Optimisation technique: AQPSO
Metaheuristics approaches define different scenarios to describe
the motion of a particle. For instance, [37] traditional PSO presents
particles with characteristics of classical physics, such as inertia,
speed, acceleration and so on. Hence, the motion of the particles in
this scenario is governed by the laws of dynamics and kinematics.
Another example is given in [38], which proposes magnetic
particles and its motion is described using electromagnetism
theory. AQPSO proposes a scenario, where a unidimensional
particle lies in a quantum delta potential well. The motion of the
particle is driven by quantum mechanics concepts.

AQPSO follows the process described in Fig. 4. AQPSO starts
defining the initial population of the particles SS and total number
of iterations It. The position of the particle (x) represents a solution
candidate to the optimisation problem; thus, it can be used to
evaluate the objective function. Each quantum particle ℓ presents
two specific attributes, which are related to memory and
communication. The memory attribute refers to the ability to save
the best position of the particle by comparing its actual position

with the position after the motion. The memory attribute is known
as ‘personal best’ and denoted by qℓ. The communication attribute
refers to the ability to save the particle with the best position
among the swarm. The communication attribute is known as
‘global best’ and is denoted by g. The personal best and global best
are used to define the local attraction between particles. Clerc and
Kennedy [37] conducted a trajectory analysis of a particle and
demonstrated that this attraction mainly depends the terms qℓ and
g. Mathematically, the local attraction of the particle at search step
k is defined as follows:

Dℓ k = φ k qℓ k + 1 − φ k g k

φ k = d1u1/ d1u1 + d2u2

(23)

where u is a uniformly distributed random number, and d is a
constant of acceleration coefficient which values are between zero
and two [37]. The expression given in (23) is important because is
needed in the formulation of mathematical expression that
describes the motion of the quantum particle.

The process continues with the position update of every
particle. The new positions represent an evolution (enhancement)
of the actual solutions. The evolution is achieved based on the
particle motion mathematical formulations, which is given as
follows [39]:

xℓ k + 1 =

Dℓ k + α xℓ k −
1

SS
∑
ℓ = 1

SS

qℓ k ln
1
u

, if ρ ≥ 0.5

Dℓ k − α xℓ k −
1

SS
∑
ℓ = 1

SS

qi k ln
1
u

, if ρ < 0.5

(24)

υ1 = 0 0 1 T;

υ2 =
λC − μC − ϕW + l λC + μC + ϕW + l

4λCϕW

−λC − μC − ϕW − l

2ϕW
1

T

;

υ3 =
λC − μC − ϕW − l λC + μC + ϕW − l

4λCϕW

−λC − μC − ϕW + l

2ϕW
1

T

;

(15)

Fig. 4  AQPSO general process
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where ρ is the best observation given by the cardinality of the
observer sets as presented in [39].

The last step of AQPSO is to verify the termination criterion
using the total number of iterations It, and convergence tolerance
value e. The process finishes if one of the conditions given in (25)
is satisfied

Convergence criteria:
k = It

g k − g k − 1 ≤ e
(25)

4 Cost-benefit problem formulation
This section presents the cost-benefit analysis from the point of
view of reliability. The SM model is applied to power generators.

4.1 Generation adequacy net benefit

The annual reliability index of the power system under
consideration is the loss of energy expectation (LOEE) given in
MWh/year. This index is calculated using sequential Monte Carlo
simulation (SMCS). SMCS starts by generating random number for
each 1 h time slot sampling during the time analysis Ty. This is
executed for each unit generation in the power system, such that if
the generated number is greater than the unavailability, the
component goes to the ‘normal operation’ state, otherwise, the
component goes to ‘not in service’ state. The next step is to
calculate the margin generation by taking the difference between
the available hourly power generation and the hourly demand, as
presented in Fig. 5. The sum of the negative margin at experiment
ex determines the energy not supplied ENSex.

The value ENSex is saved, and one experiment is completed.
The process is repeated NE times. Finally, the LOEE is calculated
by [12]

LOEE =
1

NE
∑

ex = 1

NE

ENSex (26)

Then, the benefit is estimated as follows:

Benefit = KE ∑
t = 1

Ty

E(t) − LOEE (27)

where E corresponds to the energy served at hour t and KE is the
price per unit energy.

On the other hand, maintenance cost is the price paid for the
actions taken to preserve or restore a good or a product to an
operational state which depends on its type. In the case of CM
action, the cost is related to the repair or substitution of the failed
part in the component. In case of PM action, the cost is related to
the material needed to perform inspection and prevent any failure.

Hence, the total maintenance cost in the interval (0, Ts] can be
expressed as [40]

Costmaintenance = ∑
e = 1

NC

CostPM, eMPM, e + CostCM, eMCM, e (28)

where NC is the total number of components in the system,
CostPM, e is the price of performing one PM on component eth,
CostCM, e is the price of performing one CM on component eth,
MPM, e is the total number of PM performed on component eth
during time interval (0, Ts] and MCM, e is the total number of CM
performed on component eth during time interval (0, Ts].

If the time analysis is greater than the component's lifetime, an
extra cost will appear. This cost is due to component's renewal
labelled as Costrenew, e. In addition, there is a cost involved with the
operation of the generator defined as Costop, e. Therefore, the total
cost is

Costtotal = Costmaintenance + ∑
e = 1

NC

Costrenew, e + ∑
e = 1

NC

Costop, e (29)

Finally, the net benefit is defined as given in the following
equation:

NB = Benefit − Costtotal (30)

4.2 Optimisation problem

The main goal is to maximise the net benefit by obtaining the
optimum PM scheduling. Hence, the optimisation problem can be
defined as follows:

maximise(NB) (31)

Subject to

MPM, e, MCM, e ∈ ℕ (32)

tPM, e ∈ ℕ ≤ Ty (33)

∃ f ∈ F ⇒ ∃ CM: t < TW (34)

The restrictions shown in (32) indicate that the number of CM and
PM must be positive integers. Restriction (33) indicates that the
time to perform the PM must be an integer in the interval 0, Ty .
The last restriction (34) states that in case that the failure f (element
of the set of failures events F) is detected, a CM will immediately
take place, as long as, component's end lifetime is not reached.

5 Algorithm proposed for optimum PM schedule
The proposed algorithm is based on AQPSO and it takes as input
the generator reliability data, specifically their failure and repair
rates of the generators and the load demand profile during the time
of analysis. Next, the maximum number of iterations It and the
swarm size SS is defined. The particle xℓ represents a PM schedule.
The generators subject to PM are saved in xℓ ⋅ gPM, while the time
to perform the PM is saved in xℓ ⋅ tPM. The particle contains a
discrete number such that xℓ ⋅ gPM = 0 or xℓ ⋅ gPM = 1 (‘0’
indicates do not perform maintenance, while ‘1’ indicates the
opposite). Since the analysis is for k = 0 then qℓ 0 = xℓ 0 .

The next step is to add the information of particle to the power
system, then the generation adequacy assessment takes place and
the net benefit for each particle is determined. g 0  is obtained
based on the particle that has the maximum net benefit value. At
this point, the first iteration takes place, and the particles start their
motion. The attraction parameter Dℓ k  is obtained using (23).
Then, the new position of the particle is computed using (24). The
updated position of the particle represents a new PM schedule that
may lead to a better net benefit. Then, generation adequacy is

Fig. 5  Generation-demand margin model
 

IET Gener. Transm. Distrib., 2020, Vol. 14 Iss. 9, pp. 1770-1780
© The Institution of Engineering and Technology 2020

1775



computed to obtain a new net benefit value, which is saved in
xℓ ⋅ NB k .

Next, the particles compete between them to determine the best
PM schedule. If xℓ ⋅ NB k > xℓ ⋅ NB k − 1  then the particle
updates its position. The ‘personal best’ is also updated and saved
in qℓ. This is followed by a second comparison in which the ‘global
best’ is considered. For this purpose, it is required to find the best
xℓ k  among the swarm such that it brings the maximum savings.
The best particle is saved in the variable g′. If the g′ ⋅ NB > g ⋅ NB

then the xℓ k  becomes the ‘global best’, otherwise the ‘global best’
is not replaced. In case that xℓ ⋅ NB k ≤ xℓ ⋅ NB k  then the
process continues with the next particle and one iteration is
finished. Then, the process is repeated It times or the convergence
criteria presented in is satisfied. Consider for the convergence
criteria a xℓ ⋅ EENS k − xℓ ⋅ EENS k − 1 < 10−6. Finally, the

outcome is the best PM schedule. For more details regarding the
process of the determination of the effective PM schedule, Fig. 6 is
presented. 

6 Case study
The study incorporates the Roy Billinton Test System (RBTS) [12].
Four scenarios are evaluated: (i) no PM (NPM); (ii) yearly periodic
PM (PPM); (iii) RCM using PSO; and (iv) SM. The study is
conducted for the next 50 years. To simplify the analysis, the
assumptions are: (i) generators reliability and cost data is as given
in Tables 2 and 3, respectively; (ii) the failure and repair rates of
each generator follow the behaviour described in Fig. 7; (iii)
energy price is KE = 0.082 [£/kWh] with a yearly increment of 3%;
and (iv) yearly load profile is as shown in Fig. 8 with a yearly
increment of 0.5%; (v) all costs present a yearly increment of 2%;
(vi) the operation and repair actions are carried out according to the
manufacturer's guide (Fig. 7). 

7 Results and discussion
7.1 Smart maintenance schedule

The PM reduces the occurrence of failures of the generators; then,
the greater the number of PM performed, the more reliable the
component becomes. Nevertheless, there must be a balance
between the maintenance cost and its benefit and over this
statement the theory of SM is formulated. By using the algorithm
described in Section 5, the PM schedule that maximises the net
benefit is obtained. As a result, Figs. 9 and 10 show the optimum
PM scheduling applied to hydro and thermal UG, respectively. 

To understand these figures, a symbol is given for every UG.
Then, the time when the action takes place is given by the
interception point formed from the figure axis, that is, the month is
given by the x-axis and the year is given by its y-axis. For instance,
the first PM to execute for H5 (blue circle) is in June of the second
year. It is to be noted that most of the PM starts after the second
year. In the subsequent years, an average of one maintenance per
year is recommended. Then, between three to four years (on
average) before the UG reaches its end lifetime, it is recommended
not to perform PM.

A relevant fact that occurs during the optimisation process is
that SM defines a hierarchical level for each UG based on its
failure rate, capacity and lifetime. For instance, UGs with the
higher failure rate, lower lifetime and lower capacity require more
maintenance than the ones with lower failure rate, higher lifetime
and higher capacity, as presented in Figs. 9 and 10.

Fig. 6  SM flowchart to maximise the net benefit of generators
 

Table 2 Generators reliability data
Unit generation, H: hydro T: thermal H5 T10 H20 T20 H40 T40
No. of units 2 1 4 1 1 2
size, MW 5 10 20 20 40 40
TW, yr 25 20 30 25 40 35
λC [1/year] aC 2.0 4.0 2.4 5.0 3.0 6.0

αC 0.50 0.40 0.85 0.40 0.88 0.78
ω 25 20 30 25 40 35

μC [1/year] b 198 196 158 195 147 194
σ 0.20 0.10 0.10 0.25 0.30 0.30
γ 0.28 0.25 0.25 0.27 0.15 0.19

 

Table 3 Cost of the unit generations
UG H5 T10 H10 T20 H40 T40
acquisition cost, M£ 40 40 80 60 160 80
operation cost, k£/year 12.5 600 50 680 100 790
PM cost, k£ 25 100 60 200 120 220
CM cost, k£ 156 625 375 1250 750 1375
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7.2 Unit generation degradation

As presented in Section 2.3, the degradation of each generator can
be obtained using the data given in Table 2 in expression (10).
Fig. 11 shows the degradation function for each generator. The
figure depicts that there is a gradual increment on the degradation
magnitude. The generators reach the obsolescence state when the

degradation presents an extremely high value, as established in
(11).

The maintenance strategy with the lowest degradation belongs
to PPM, followed by RCM and SM. This fact is associated with the
number of PMs, as presented in Table 4. The more PM executed,
the slower the degradation process; this circumstance has
repercussion over the reliability of the UG, as is discussed in next
section.

7.3 Unit generation reliability model

Using the failure and repair rates of the component, probability
vector of states is determined for each unit generation by following
the process described in Section 2.4, the probability function for
each generator is obtained. Then, the reliability model of the
component is determined using (21). Fig. 12 presents the
availability as a function of time. It can be observed in Fig. 12 that
as time passes the probability of being in a ‘normal operation’
(availability) decreases. At some point, the obsolescence becomes
100% which indicates that the component has reached the end of

Fig. 7  Failure and repair rate of each unit generation
 

Fig. 8  Yearly load profile
 

Fig. 9  SM plan for hydro unit generation
 

Fig. 10  SM plan for thermal unit generation
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its lifetime, then a replacement takes place, and, finally the process
starts again.

When no PM is considered (No-PM), the UG's availability
decreases faster than the other scenarios. This fact is reasonable
since as exhibited in Section 7.2, scenario No-PM presents the
highest values of degradation. Concerning PPM, RCM and SM,
some UGs have slightly different values of availability than others.
Nevertheless, for all UG, at some point, the availability curve of
the SM tends to be under the RCM followed by PPM availability
curve. Therefore, PPM is the most reliable strategy. However, PPM
underestimates the optimal time to perform PM that maximises the
net benefit.

7.4 Net benefit

There are several variables involved in the net benefit
mathematical formulation, nevertheless, it mainly depends on the
number of PMs executed and LOEE index. Fig. 13 shows the
yearly LOEE discrete value for every scenario. In all scenarios,
there is a tendency of gradual increments of LOEE due to ageing,
and at some points, the values decrease considerably attributed to a
UG replacement.

The No-PM scenario shows the highest LOEE, while SM
scenario provides the lowest LOEE in most of the time, followed
by the RCM and PPM. Consequently, SM presents the lowest value
of energy not supplied and brings the highest net benefit since there
is an inverse relationship between the benefit and LOEE index, as
shown in (27). The net benefit for every scenario is presented in
Table 5. 

8 Computational performance
In order to show the computational efficacy of the AQPSO, the
same generation scheduling maintenance problem is solved using
traditional particle swarm optimisation with 50 particles and 100
iterations (PSO), genetic algorithm with 50 genes and 100
generations (GA), and simulated annealing with 50 neighbours and

100 steps (SA). A computer with a RAM of 16.0 GB and processor
of Intel Core i7-6700 of 3.40 GHz is used to run the algorithms.

In addition to the power system of 6 bus (RBTS) [12] used in
Section 6, the IEEE 73-bus reliability test system (RTS) [41] is also
employed. This is introduced to compare the computational
efficacy under two different power system sizes that is with small-
scale (RBTS) and large-scale (RTS).

The computational efficacy in terms of convergence is
presented in Fig. 14. The results depict that for the small-scale
power system (RBTS), there is not much difference (<3 iterations)
in the convergence between optimisation techniques. However, for
the large-scale power system (RTS), there is a notable difference in
computational performance. In percentage terms, AQPSO
convergence exceeds in iterations by 36.6, 22.5, 19.7% to PSO,
GA and SA, respectively. Therefore, the optimisation technique
with the highest convergence performance is given by AQPSO.

The time simulation is given in Fig. 15. The results reveal that
for the small-scale power system (RBTS), the simulation time
difference among the optimisation techniques does not exceed
0.2%. In contrast, the simulation time difference for large-scale
power system is very significant. The AQPSO presents the lowest
simulation time with 85.2 s, followed by SA with 95.2 s, GA with

Fig. 11  Degradation of each unit generation under different maintenance
strategies

 
Table 4 Summary of the maintenances
Unit generation Number of PM within 50 years

NPM PPM RCM SM
H5 0 50 30 26
T10 0 50 35 30
H20 0 50 40 36
T20 0 50 42 39
H40 0 50 45 42
T40 0 50 46 45

 

Fig. 12  Availability of each unit generation under different maintenance
strategies

 

Fig. 13  LOEE per year
 

Table 5 Net benefit after 50 years
Scenario No-PM PPM RCM SM
net benefit [£] × 106 0.2456 1.475 1.789 1.989
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100.5 s and PSO with 110.2 s. Thus, AQPSO prove to be the most
outperformed optimisation technique (among PSO, GA and SA)
due to its inherited properties (convergence iteration and simulation
time).

9 Conclusion
This paper proposes an innovative approach to SM of generators
with the aim of maximising net reliability benefits through the
improvement of generators’ operating life. The approach
incorporates KMI and Markov chain to establish the relationship
between the component's lifetime, virtual age and transition rates.
The main engine of the model is based on the AQPSO algorithm,
which determines the optimum PM schedules of generators.

The case study validated the effectiveness of the approach. The
results argue that the greater number of PMs could potentially lead
to a considerable level of the improvement in the reliability of
power supply. Nevertheless, it is vital to perform PM at the benefit
horizons to avoid superseding the cost over benefit.

AQPSO also outperforms PSO, GA and SA in terms of the
number of iterations required and simulation time, maintaining the
accuracy and robustness. Thus, AQPSO could be considered as one
of the most effective technique to solve the SM problem. The
effectiveness increases with the size of the power system.

The proposed approach is beneficial for designing SM
schedules of generators with the aim of improving the reliability

performances in the long run. Although the paper employs the SM
scheme for generators, the model can be extended for other power
system components, providing a range of opportunities for the
operational planning of modern power systems.
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