Chapter 3: Gauss's Law

- **✓ Electric Flux**
- √ Gauss's Law
- ✓ Applying Gauss's Law
- ✓ Examples

Session 6:

- **✓ Electric Flux**
- √ Gauss's Law
- ✓ Examples

Introduction

- ❖ Gauss' Law is convenient for calculating the electric field of highly symmetric charge distributions.
- ❖ Gauss' Law is important in understanding and verifying the properties of conductors in electrostatic equilibrium.

Electric Flux

• **Electric flux** is the product of the magnitude of the electric field and the surface area, A, perpendicular to the field.

$$\Phi_E = E A$$

Units: N·m²/C

Electric Flux, General Area

$$\Phi_E = EA \cos \theta = E.A$$

$$\Delta \Phi_{E} = E_{i} \Delta A_{i} \cos \theta_{i} = \vec{\mathbf{E}}_{i} \cdot \Delta \vec{\mathbf{A}}_{i}$$

$$\Phi_{E} = \lim_{\Delta A_{i} \to 0} \sum E_{i} \cdot \Delta A_{i}$$

$$\Phi_{\mathcal{E}} = \int_{\text{surface}} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}}$$

Electric Flux, Closed Surface

$$\Phi_{\it E} < 0$$

$$\Phi_{\mathcal{E}} = 0$$

$$\Phi_{\mathcal{E}} > 0$$

Electric Flux, Closed Surface

$$\Phi_{E} = \oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \oint E_{n} dA$$

- For face 1, $\Phi_E = -E l^2$
- For face 2, $\Phi_E = + E l^2$
- For the other sides, $\Phi_E = 0$
- Therefore, $\Phi_{E total} = 0$

The *net* flux through the surface is proportional to the net number of lines leaving the surface.

Gauss's Law

Gauss's law is an expression of the general relationship between the net electric flux through a closed surface and the charge enclosed by the surface.

The closed surface is often called a Gaussian surface.

$$\mathbf{E} = \frac{kq}{r^2}$$

$$\Phi_{E} = \oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \oint E \, dA = E \oint dA$$

$$\Phi_{E} = \frac{kq}{r^{2}}(4\pi r^{2}) = 4\pi kq = \frac{q}{\varepsilon_{o}}$$

Gauss's Law

The net electric flux is the same through all surfaces.

The number of field lines entering the surface equals the number leaving the surface.

$$\Phi_{\mathcal{E}} = \frac{q}{\varepsilon_{0}}$$

$$\Phi_E = 0$$

Gauss's Law

❖ The mathematical form of Gauss's law states:

$$\Phi_{E} = \oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{q_{\text{in}}}{\varepsilon_{o}}$$

Carl Friedrich Gauss (German mathematician)

Ex 1 (Prob 23. 5). A proton is a distance d/2 directly above the center of a square of side d. What is the magnitude of the electric flux through the square? (Hint: Think of the square as one face of a cube with edge d.)

$$\Phi_{E} = \oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{q}{\varepsilon_{o}} \qquad \qquad \Phi_{E}' = \frac{\Phi_{E}}{6} = \frac{q}{6\varepsilon_{o}}$$

$$\Phi_{E}' = \frac{q}{6 \, \varepsilon_o} = \frac{1.6 \times 10^{-19}}{6(8.85 \times 10^{-12})} \approx 3 \times 10^{-9} \ (\frac{\text{N.m}^2}{\text{C}})$$