Chapter 11: Rolling, Torque, and Angular Momentum

\checkmark Rolling
\checkmark Torque
\checkmark Angular Momentum
\checkmark Newton's Second Law in Angular Form
\checkmark Conservation of Angular Momentum

Chapter 11: Rolling, Torque, and Angular Momentum

Session 23:

\checkmark Rolling
\checkmark Examples

Rolling

In pure rolling motion, an object rolls without slipping:

$$
v_{\mathrm{com}}=\frac{d s}{d t}=R \frac{d \theta}{d t}=R \omega
$$

$$
s=R \theta
$$

$$
a_{\mathrm{com}}=\frac{d v_{\text {com }}}{d t}=R \frac{d \omega}{d t}=R \alpha
$$

Rolling

Rolling motion can be modeled as a combination of pure translational motion and pure rotational motion.

Rolling as a pure rotational motion.

$$
V_{\text {top }}=\sum V_{\mathrm{com}}=? F(b
$$

The Kinetic Energy of Rolling

$$
k=k_{\text {rot }}+k_{\text {tran }}
$$

$$
k=\frac{1}{2} I_{c o m} \omega^{2}+\frac{1}{2} M v_{c o m}^{2}
$$

$$
k=\frac{1}{2} I_{c o m} \omega^{2}+\frac{1}{2} M(R \omega)^{2}=\frac{1}{2}\left(I_{c o m}+M R^{2}\right) \omega^{2}
$$

$$
k=\frac{1}{2} I_{P} \omega^{2}
$$

The Forces of Rolling

$$
\overrightarrow{\mathbf{F}}_{n e t}=M \overrightarrow{\mathbf{a}}_{c o m}
$$

$$
\vec{\tau}_{\text {net }}=I_{\text {com }} \vec{\alpha}
$$

Friction and Rolling:

If the wheel does not slide, the force acts at P is a static frictional force (f_{s}), the motion is smooth rolling

$$
a_{\mathrm{com}}=R \alpha
$$

If the wheel does slide, the force that acts at P is a kinetic frictional force (f_{k}), motion is not smooth rolling.

$$
a_{\mathrm{com}} \neq R \alpha
$$

f_{s} acts on the wheel at P, opposing its tendency to slide.

Ex 1: A solid sphere released from rest and roll without slipping as shown in figure. Calculate the magnitude of the translational acceleration of the center of mass and the translational speed of the center of mass at the bottom of the incline.

$$
I_{\text {com }}=\frac{2}{5} m R^{2}
$$

$\mathbf{F}_{n e t}=m \mathbf{a}_{c o m} \quad \square \quad m g \sin \theta-f_{s}=m a_{c o m}$
$\tau_{\text {net }}=I_{\text {com }} \alpha \longmapsto f_{s} R=I_{\text {com }} \alpha=I_{\text {com }} \frac{a_{\text {com }}}{R} \quad \Rightarrow f_{s}=I_{\text {com }} \frac{a_{\text {com }}}{R^{2}}$
$m g \sin \theta-I_{c o m} \frac{a_{c o m}}{R^{2}}=m a_{c o m}$

$$
a_{c o m}=\frac{g \sin \theta}{1+\frac{I_{c o m}}{m R^{2}}}=\frac{5}{7} g \sin \theta
$$

$$
v^{2}-v_{0}{ }^{2}=2 \mathrm{a} x \square v_{c o m}^{2}=2 a_{c o m} x=\frac{10}{7} g(x \sin \theta) \square v_{c o m}=\sqrt{\frac{10}{7} g h}
$$

$$
I_{\text {com }}=\frac{2}{5} m R^{2}
$$

Despite the presence of friction, no loss of mechanical energy occurs because the contact point is at rest relative to the surface at any instant.

$$
\begin{aligned}
& \Delta K+\Delta U=0 \\
& \frac{1}{2} m\left(\frac{I_{c o m}}{m R^{2}}+1\right) v_{c o m}^{2}=m g h \\
& a_{c o m}=\frac{v_{c o m}^{2}}{2 x}=\frac{g \sin \theta}{1+\frac{I_{c o m}}{m R^{2}}}=\frac{5}{7} g \sin \theta \\
& \left.\left.V_{\text {Som }} \omega^{2}+\frac{1}{2} m v_{c o m}^{2}\right)-0\right]+[0-m g h]=0 \sqrt{v_{c o m}=R \omega} \sqrt{\frac{2 g h}{\left(1+\frac{I_{c o m}}{m R^{2}}\right)}}=\sqrt{\frac{10}{7} g h} \\
& 8 V_{\text {Disc }}>V_{\text {Loop }}
\end{aligned}
$$

Ex 2: (Problem 11. 11 Halliday)

A constant horizontal force of magnitude 10 N is applied to a wheel of mass $10 \mathbf{k g}$ and radius 0.30 m . The wheel rolls smoothly on the horizontal surface, and the acceleration of its center of mass has magnitude $0.60 \mathrm{~m} / \mathbf{s}^{2}$. (a) In unit-vector notation, what is the frictional force on the wheel? (b)What is the rotational inertia of the wheel about the rotation axis through its center of mass?

$$
\mathbf{F}_{n e t}=m \mathbf{a}_{c o m} \quad \square F_{a p p}-f_{s}=m a_{c o m}
$$

$$
f_{s}=F_{\text {app }}-m a_{c o m}=10-10(0.6)=4 \mathrm{~N}
$$

$$
\vec{f}_{s}=-4(\hat{\mathbf{i}}) N
$$

$$
\tau_{\text {net }}=I_{\text {com }} \alpha \Longrightarrow f_{s} R=I_{\text {com }} \alpha=I_{\text {com }} \frac{a_{\text {com }}}{R} \quad \Rightarrow I_{\text {com }}=\frac{f_{s} R^{2}}{a_{\text {com }}}
$$

$$
I_{\text {coom }}=0.6 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

Ex 3: (Problem 11. 71 Holiday)

A constant horizontal force of magnitude $\mathbf{1 2} \mathbf{N}$ is applied to a uniform solid cylinder by fishing line wrapped around the cylinder. The mass of the cylinder is $\mathbf{1 0} \mathbf{~ k g}$, its radius is $\mathbf{0 . 1 0 ~ \mathbf { ~ m }}$, and the cylinder rolls smoothly on the horizontal surface. (a) What is the magnitude of the acceleration of the center of mass of the cylinder? (b) What is the magnitude of the angular acceleration of the cylinder about the center of mass? (c) In unit-vector notation, what is the frictional force acting on the cylinder?

$$
I_{\text {com }}=\frac{1}{2} m R^{2}
$$

$$
\mathbf{F}_{n e t}=m \mathbf{a}_{c o m} \square F_{a p p}-f_{s}=m a_{c o m}
$$

$$
\tau_{n e t}=I_{c o m} \alpha \square F_{a p p} R+f_{s} R=I_{c o m} \alpha=\left(\frac{1}{2} m R^{2}\right) \frac{a_{c o m}}{R} \square F_{a p p}+f_{s}=\frac{1}{2} m a_{c o m}
$$

$$
2 F_{a p p}=\frac{3}{2} m a_{c o m}
$$

$$
a_{c o m}=\frac{4 F_{a p p}}{3 \mathrm{~m}}=1.6 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\alpha=\frac{a_{c o m}}{R}=16 \mathrm{rad} / \mathrm{s}^{2}
$$

$$
2 f_{s}=-\frac{1}{2} m a_{c o m} \square f_{s}=-\frac{1}{4} m a_{c o m}=-4 \mathrm{~N}
$$

$$
\vec{f}_{s}=+4(\hat{\mathbf{i}}) N
$$

