# MDA-WinZ80 MANUAL

An Integrated Development Environment kit

# **User's Manual**

Documentation Version 5.0



## Midas Engineering co., Itd.

ACE Techno-Tower  $\lor$  #906, 197-22, Guro-Dong Guro-Gu, Seoul, KOREA Tel. +82-2-2109-5964~7 Fax. +82-2-2109-5968 www.midaseng.com E\_mail. info@midaseng.com

# PREFACE •

The first 50 years of the 20th century witnessed the invention of the internal combustion engine, which greatly extended the physical strength of the human body.

In the second half of the century, the birth of the microprocessor further extended our mental capabilities. Applications of this amazing product in various industries have introduced so much impact on our lives, hence, it is called the second industrial Revolution.

Microcomputers represent a total change in designing systems. Both industrial and academic institutions are active in the development and search for new applications for microcomputers.

This book is designed to be used in conjunction with the "multi tech" MDA-WinZ80 Microcomputers as part of a one-year laboratory class on microcomputers. With the aid of this book, students will be able to learn the fundamentals of microcomputers, from basic CPU instructions to practical applications.

The first part of this book is an introduction to the basic concepts of microcomputer programming. It lays the foundation for year studies, the second part of this book is the microcomputer hardware, such as , input/output, interrupt, timer and counter experiment, and experiments using microcomputer instructions, such as, data transfers, arithmetic and logic operations, jump and subroutine and memory address allocation in simple program. Experiments involving more complicated arithmetic operations, such as, binary to decimal conversion, decimal to binary conversion, multiplication, division are presented.

There are various experiments in this book which are designed to familiarize the student with the fundamentals of input/output programming. These programs are centered around the keyboard and display. These experiments establish the foundation for later experiments involving a simple monitor program, which leads to more complicated MDA-WinZ80 programs.

# PART I :

# MDA-WinZ80 USER'S MANUAL

## TABLE OF CONTENTS

| 1. | MDA-WinZ80 SYSTEM CONFIGURATION 1                                                          |
|----|--------------------------------------------------------------------------------------------|
| 2. | OPERATION INTRODUCTION42-1. FUNCTION OF KEYS42-2. BASIC OPERATION52-3. Program Debugging10 |
| 3. | EXAMPLE PROGRAM 15                                                                         |
| 4. | Serial Monitor                                                                             |
|    | 4-1. How to setup the serial monitor                                                       |
|    | 4-2. How to connect MDA-WinZ80 to your PC                                                  |
|    | 4-3. MDA-WinIDEZ80 Installation                                                            |
|    | 4-4. Tutorial                                                                              |
|    | 4-4-1. Launching MDA-WinIDEZ80                                                             |
|    | 4-4-2. About MDA-WinIDEZ80                                                                 |
|    | 4-4-3. Assembling the source                                                               |
|    | 4-4-4. Troubleshooting                                                                     |
|    | 4-4-5. Port setting                                                                        |
|    | 4-4-6. Download and execute the source file                                                |
|    | 4-4-7. Other Serial monitor command                                                        |
|    | 4-4-8. ROM Writer                                                                          |

# PART II :

# MDA-WinZ80 EXPERIMENTS

## TABLE OF CONTENTS

| 1. | Keyboard Interface 4                                            | .9       |
|----|-----------------------------------------------------------------|----------|
|    | 1-1. Keyboard Interface 4                                       | 19       |
| 2. | LCD Display 5                                                   | 2        |
|    | 2-1. LCD                                                        | 52<br>56 |
| 3. | PIO Interrupt                                                   | 9        |
|    | 3-1. Introduction                                               | 59       |
| 4. | CTC Interrupt                                                   | i4       |
|    | 4-1. Introduction       6         4-2. CTC Architecture       6 | 52<br>54 |
| 5. | Speaker Interface                                               | i8       |
|    | 5-1. Speaker Interface                                          | 58       |
| 6. | Dot Matrix LED                                                  | 0'       |
|    | 6-1. Dot Matrix LED Display                                     | 70<br>71 |
| 7. | 8251A Interface                                                 | '8       |

| 8. | D/A Converter ······ 8                                                           | 0        |
|----|----------------------------------------------------------------------------------|----------|
|    | 8-1. D/A Converter specification                                                 | 30<br>31 |
| 9. | A/D Converter                                                                    | 3        |
|    | 9-1. A/D Converter specification                                                 | 33<br>34 |
| 10 | ). Stepping Motor Control                                                        | 9        |
|    | 10-1. Stepping Motor specification    8      10-2. Stepping Motor Interface    9 | 39<br>92 |

# APPENDIX

# MDA-WinZ80 APPENDIX

### TABLE OF CONTENTS

| 1. | MDA-WinZ80 | Memory Circuit       | 5 |
|----|------------|----------------------|---|
| 2. | MDA-WinZ80 | ROM Write Circuit    | 5 |
| 3. | MDA-WinZ80 | I/O Circuit          | 7 |
| 4. | MDA-WinZ80 | External Circuit 100 | 0 |

# 1. MDA-WinZ80 SYSTEM CONFIGURATION



Figure 1. MDA-WinZ80 System Configuration

#### 1. MDA-WinZ80 SYSTEM CONFIGURATION

- The function of IC's at Figure 1.
- ① CPU(Central processing unit) : Z80 CPU ( 4.9152Mz ).
- ② ROM(Read Only Memory) : It has program to control user's key input, LCD display, user's program. 8K Byte, it has data communication program. Range of ROM Address is 0000H~1FFFH.
- ③ SRAM(Static Random Access Memory) : Input user's program & data. Address of memory is 2000H~3FFFH, totally 8K Byte.
- ④ DISPLAY : Text LCD Module, 16(Characters)×2(Lines)
- (5) KEYBOARD : It is used to input machine language. There are 16 hexadecimal keys and 11 function keys.
- 6 SPEAKER : Sound test.
- $\bigcirc$  RS-232C : Serial communication with IBM compatible PC.
- ⑧ ROM WRITER : Write user's program to ROM.
- (9) DOT MATRIX LED : To understand & test the dot matrix structure and principle of display. It is interfaced to 8255A(PPI).
- <sup>(1)</sup> A/D CONVERTER : ADC0804 convert the analog signal to digital signal.

① D/A CONVERTER : DAC0800(8-bits D/A converter) convert the digital signal to the analog signal.

<sup>(12)</sup> STEPPING MOTOR INTERFACE : Stepping motor driver circuit is designed.

- 13 DC MOTOR : DC motor control.
- ④ POWER : AC 110~220V, DC +5V 3A, +12V 1A, -12V 0.5A SMPS.

#### X> MDA-WinZ80 ADDRESS MAP

## ① Memory map

| ADDRESS       | MEMORY       | DESCRIPTION           |  |
|---------------|--------------|-----------------------|--|
| 0000H ~ 1FFFH | ROM          | MONITOR ROM           |  |
| 2000H ~ 3FFFH | RAM          | PROGRAM & DATA MEMORY |  |
| 4000H ~ FFFFH | USER'S RANGE |                       |  |

#### 2 I/O address map

| ADDRESS                | I/O PORT                         | DESCRIPTION                                                                                                                                                                              |  |
|------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 00H ~ 03H              | LCD                              | LCD Display<br>00H : INSTRUCTION REGISTER<br>01H : DATA REGISTER                                                                                                                         |  |
| 04H ~ 07H<br>08H ~ 0BH | KEY INPUT<br>KEY FLAG            | Read<br>Write                                                                                                                                                                            |  |
| 0CH ~ 0FH              | 8251A                            | Data communication<br>0CH : Data Register<br>0EH : Control/Status Register                                                                                                               |  |
| 10H ~ 13H              | 8255A(PPI)                       | ROM Writer<br>10H : A port register<br>11H : B port register<br>12H : C port register<br>13H : Control register                                                                          |  |
| 14H ~ 17H              | PIO                              | <ul> <li>PIO Experiment</li> <li>14H : A port Data register</li> <li>15H : B port Data register</li> <li>16H : A port Control register</li> <li>17H : B port Control register</li> </ul> |  |
| 18H ~ 1BH              | СТС                              | PIO Experiment<br>18H : Channel 0, 19H : Channel 1<br>1AH : Channel 2, 1BH : Channel 3                                                                                                   |  |
| 1CH ~ 1FH              | A/D Converter<br>&<br>Dot-Matrix | Dot Matrix :<br>1CH : A port register<br>1DH : B port register<br>1EH : C port register<br>1FH : Control register                                                                        |  |
| 20H ~ 3FH              | I/O EXTEND CONNECTOR             |                                                                                                                                                                                          |  |
| 40H ~ FFH              | USER'S RANGE                     |                                                                                                                                                                                          |  |

MDA-WinZ80 MANUAL

# 2. OPERATION INTRODUCTION2-1. FUNCTION OF KEYS

MDA-WinZ80 has high performance 8K-byte monitor program. It is designed for easy function. After power is on, the monitor program begins to work. In addition to all the key function the monitor has a memory checking routine.

The following is a simple description of the key functions.

FUNCTION KEY

DATA KEY

| RES | GO  |  |
|-----|-----|--|
| REG | STP |  |
| +   | DA  |  |
| -   | AD  |  |

| С | D | Е | F |
|---|---|---|---|
| 8 | 9 | Α | В |
| 4 | 5 | 6 | 7 |
| 0 | 1 | 2 | 3 |
|   |   |   |   |

| RES |
|-----|
| DEC |



MDA-WinZ80 MANUAL

### 2-2. BASIC OPERATION

On a power-up, following message will be displayed on a LCD.



To select the Machine Code and Serial monitor mode with "SELECT MODE" switch.



ℜ RES System Reset Key

Whenever RES is pressed, the display becomes FIGURE 1-1 or FIGURE 1-2.

MDA-WinZ80 MANUAL

#### 2. OPERATION INTRODUCTION

X AD DA

Substitute Memo

#### EXAMPLE 1 ) Check the contents in memory 0000H~0003H

| KEY | _                                                       | LCD                  |                  |  |
|-----|---------------------------------------------------------|----------------------|------------------|--|
| AD  | The contents of RAM,<br>2000H.<br>(It may be different) | Addr.<br>2000_       | Data<br>FF       |  |
| 0   | The contents of ROM,<br>0000H.<br>(It may be different) | Addr.<br>0000_       | Data<br>FF       |  |
| +   |                                                         | Addr.<br>0001        | Data<br>00_      |  |
|     |                                                         | Address<br>increment | ↓<br>Move cursor |  |
| +   |                                                         | Addr.<br>0002        | Data<br>00_      |  |
|     |                                                         | Address<br>increment | ↓<br>Move cursor |  |
| -   |                                                         | Addr.<br>0003        | Data<br>00_      |  |
|     |                                                         | Address<br>increment | ↓<br>Move cursor |  |

EXAMPLE 2) Check the contents in memory 0001H to "AB"



No Change

#### 2. OPERATION INTRODUCTION

EXAMPLE 3 ) Change the contents of external data memory 2000H into "35"



LCD



| Addr.<br>2000_ | Data<br>FF |  |
|----------------|------------|--|
| $\downarrow$   |            |  |
| Move cursor    |            |  |

Data

FF

Addr.

2000\_

| 2 | 0 | 0 | 0 |  |
|---|---|---|---|--|
|   |   |   |   |  |

| Ac | ldr. | Data         |
|----|------|--------------|
| 20 | 00   | 00_          |
|    |      | $\downarrow$ |
|    |      | Move cursor  |
| Ac | ldr. | Data         |
|    | 00   | 25           |

The contents of external data memory 200H (It may be different)

| DA |  |
|----|--|
|----|--|

| 5 5 |
|-----|
|-----|

| EXAMPLE 4) | Check | Registers | with RI | EG key.                                    |
|------------|-------|-----------|---------|--------------------------------------------|
| KEY        | =     |           |         |                                            |
| REG        |       |           |         | PC=2000 SP = 3FB0<br>F=00=                 |
| +          |       |           |         | AF=0000 BC=0000<br>DE=0000 HL=0000         |
| +          |       |           |         | IX=0000 IY=0000<br>I=00 IFF2=0_            |
| +          |       |           |         | AF ' 0000 BC ' 0000<br>DE ' 0000 HL ' 0000 |
| -          |       |           |         | IX=0000 IY=0000<br>I=00 IFF2=0_            |
| -          |       |           |         | AF=0000 BC=0000<br>DE=0000 HL=0000         |
| -          |       |           |         | PC=2000 SP = 3FB0<br>F=00=                 |
| -          |       |           |         | AF ' 0000 BC ' 0000<br>DE ' 0000 HL ' 0000 |

## 2-3. Program Debugging



| I     | .CD                                                                                                     |
|-------|---------------------------------------------------------------------------------------------------------|
| Addr. | Data                                                                                                    |
| 2002  | D3_                                                                                                     |
| Addr. | Data                                                                                                    |
| 2003  | 16_                                                                                                     |
| Addr. | Data                                                                                                    |
| 2004  | 3E_                                                                                                     |
| Addr. | Data                                                                                                    |
| 2005  | FF_                                                                                                     |
| Addr. | Data                                                                                                    |
| 2006  | D3_                                                                                                     |
| Addr. | Data                                                                                                    |
| 2007  | 14                                                                                                      |
| Addr. | Data                                                                                                    |
|       | I<br>Addr.<br>2002<br>Addr.<br>2003<br>Addr.<br>2004<br>Addr.<br>2005<br>Addr.<br>2006<br>Addr.<br>2006 |

## GO Program Execution

This key is valid only, when the display is in the standard Addr-Data format. After pressing this key, the CPU jumps to the address on display. Before transferring control to the user's program, it restores all the user's registers. User's registers can be preset by pressing RES key.



Now, All LED is on.

Sing Step

STP

STP key is similar GO key. It is valid only when the display is in Addr-Data form. Pressing this key causes the CPU to execute one instruction point according to the user's PC. After execution, the monitor regains control and displays the new PC and its contents. The user may examine and modify registers and memory contents after each step.



| KEY | _           | LCD                                |
|-----|-------------|------------------------------------|
| STP | OUT (16H),A | PC=2004 SP = 3FB0<br>F=00=         |
|     |             | → Second step,<br>PC becomes 2004  |
| STP | LD A,0FFH   | PC=2006 SP = 3FB0<br>F=00=         |
|     |             | → Third step,<br>PC becomes 2006   |
| +   |             | AF=FF00 BC=3FB0<br>DE=0000 HL=0000 |
|     |             | $\rightarrow$ Register A is FF.    |
| STP | OUT (14H),A | PC=2008 SP = 3FB0<br>F=00=         |
|     |             | → Forth step,<br>PC becomes 2008   |
| STP | RST 38H     | PC=0038 SP = 3FAE<br>F=00=         |
|     |             | → Fifth step,<br>PC becomes 0038   |

#### EXAMPLE 1) Store the following code in RAM and execute it by single steps. Machine Code Address Mnemonic 2000 37 SCF 2001 3E FF LD A,0FFH 2003 3C INC А 2004 3E 7F LD A,7FH 3C 2006 INC А 2007 3E 00 LD A,00H 2009 3D DEC А 3E 80 A,08H 200A LD 200C 3D DEC A 3F 200D CCF C6 AD 200E ADD A,0ADH 2010 C6 69 ADD A,69H 2012 D6 13 SUB 13H 2014 D6 B3 SUB 0B3H 2016 D6 65 SUB 65H FF RST 2018 38H KEY LCD AD

# 3. Example Program

MDA-WinZ80 MANUAL

0

2

0

0

Addr.

2000\_

Data

FF



| KEY   | LCD                    |
|-------|------------------------|
| + 0 0 | Addr. Data<br>2008 00_ |
| + 3 D | Addr. Data<br>2009 3D_ |
| + 3 E | Addr. Data<br>200A 3E_ |
| + 0 8 | Addr. Data<br>200B 08_ |
| + 3 D | Addr. Data<br>200C 3D_ |
| + 3 F | Addr. Data<br>200D 3F_ |
| + C 6 | Addr. Data<br>200E C6_ |
| + A D | Addr. Data<br>200F AD_ |
| + C 6 | Addr. Data<br>2010 C6_ |





| KEY | _         |                                                                                                                            |
|-----|-----------|----------------------------------------------------------------------------------------------------------------------------|
| +   | -         | AF=0000 BC=0000<br>DE=0000 HL=0000                                                                                         |
| STP | LD A,07FH | $\rightarrow \text{Register A is 00.}$ $PC=2006 \text{ SP} = 3FB0$ $F=51= . Z . H C_{-}$                                   |
| +   |           | → PC becomes 2006<br>AF=7F00 BC=0000<br>DE=0000 HL=0000                                                                    |
| STP | INC A     | $\rightarrow \text{Register A is 7F.}$ $PC=2007 \text{ SP} = 3FB0$ $F=95= \text{ S} \cdot \text{ H V} \cdot \text{ C}_{-}$ |
| +   |           | → PC becomes 2007<br>AF=8000 BC=0000<br>DE=0000 HL=0000                                                                    |
| STP | LD A,00H  | → Register A is 80.<br>PC=2009 SP = 3FB0<br>F=95=S . H V . C_                                                              |
| +   |           | AF=0000 BC=0000<br>DE=0000 HL=0000                                                                                         |
| STP | DEC A     | $\rightarrow \text{Register A is 00.}$ $PC=200A \text{ SP} = 3FB0$ $F=95=S \cdot H \vee \cdot C_{-}$                       |

| KEY |            | LCD                                                                          |
|-----|------------|------------------------------------------------------------------------------|
| +   |            | AF=FF00 BC=0000<br>DE=0000 HL=0000                                           |
| STD |            | $\rightarrow \text{Register A is FF.}$ $PC=200C \text{ SP} = 3FB0$           |
| 511 | LD A,80H   | $F=BB= S \cdot H \cdot N C_{-}$ $\rightarrow PC \text{ becomes } 200C$       |
| +   |            | $AF=8000  BC=0000$ $DE=0000  HL=0000$ $\rightarrow Register A is 80$         |
| STP | DEC A      | PC=200D SP = 3FB0<br>F=3F= H V N C_                                          |
| +   |            | → PC becomes 2007<br>AF=7F00 BC=0000<br>DE=0000 HL=0000                      |
| STP | CCF        | $\rightarrow \text{Register A is 7F.}$ $PC=200E SP = 3FB0$ $F=3C= \dots H V$ |
|     |            | PC=2010 SP = 3FB0                                                            |
|     | ADD A,0ADH | F=39= H C_                                                                   |
| +   |            | $AF=2C39  BC=0000$ $DE=0000  HL=0000$ $\rightarrow \text{Register A is 2C.}$ |

| KEY | =         | LCD                                                                                            |
|-----|-----------|------------------------------------------------------------------------------------------------|
| STP | ADD A,69H | PC=2012 SP = 3FB0<br>F=94= S . H V                                                             |
| +   |           | AF=9594 BC=0000<br>DE=0000 HL=0000                                                             |
| STP | SUB 13H   | $\rightarrow \text{Register A is 95.}$ $PC=2014 \text{ SP} = 3FB0$ $F=82= S \dots N \dots$     |
| +   |           | AF=8282 BC=0000<br>DE=0000 HL=0000                                                             |
| STP | SUB 0B3H  | $\rightarrow \text{Register A is 82.}$ $PC=2016 \text{ SP} = 3FB0$ $F=9B= S \cdot H \cdot N C$ |
| +   |           | AF=CF92 BC=0000<br>DE=0000 HL=0000                                                             |
| STP | SUB 65H   | PC=2018 SP = 3FB0<br>F=2E= V N                                                                 |
| +   |           | AF=6A2E BC=0000<br>DE=0000 HL=0000                                                             |
|     |           | $\rightarrow$ Register A is 6A.                                                                |

# 4. Serial Monitor

Serial monitor is the basic monitor program to communicate between MDA-WinZ80 and your computer.

### 4-1. How to setup the serial monitor

Adjust the "SELECT MODE" switch as following figure.



Serial monitor

### 4-2. How to connect MDA-WinZ80 to your PC

① Connect the MDA-WinZ80 Kit to a spare serial port on your PC.



FIGURE 4-1. PC 25 PIN - MDA-WinZ80 9 PIN connection



FIGURE 4-2. PC 9 PIN - MDA-WinZ80 9 PIN connection

## 4-3. MDA-WinIDEZ80 Installation

① Insert the CD in the CD-ROM driver, and double click the file "SETUP.EXE".

2 The installation begins.

| A Installation of MDA-WinIDE Z8 | 30                                                                                                                                         |                                                                                   |       |                           |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------|---------------------------|
| MDA-WinID                       | <u>E Z80</u>                                                                                                                               |                                                                                   |       |                           |
| at Inst                         | allation of MDA-Win                                                                                                                        | IDE Z80                                                                           |       |                           |
|                                 | Installing                                                                                                                                 | MDA-WinIDE Z80.                                                                   |       |                           |
|                                 | Click <ab< th=""><th>ort&gt; to abort installation.<br/>to:<br/>in280<br/>item:<br/>JWS\system32\cp3240mt.dll</th><th></th><th></th></ab<> | ort> to abort installation.<br>to:<br>in280<br>item:<br>JWS\system32\cp3240mt.dll |       |                           |
| Midas                           | Engineering Co.,Ltd.                                                                                                                       |                                                                                   | Abort |                           |
|                                 |                                                                                                                                            |                                                                                   |       | Midas Engineering Co.Ltd. |

## 4-4. Tutorial

#### 4-4-1 Launching MDA-WinIDEZ80

(1) Click the **Start** button in the task bar, then click **All Programs** and **MIDAS ENG**. Then click the **MDA-WinIDEZ80** program icon



|            |           | EZ80               |              |                   |                          |   |
|------------|-----------|--------------------|--------------|-------------------|--------------------------|---|
| File(F) E  | uiii(E) W | Urk(W) Run         |              |                   |                          |   |
| <u>B</u> 🖻 | ຍູ່       | ) 🗟 🕰 🙋 🤧 😫 🗎      | ▶ → 🦻 🚬      |                   |                          |   |
| 题 C:\M     | DA\Wi     | inZ80\asm\PIO1.SRC |              | [Terminal Window] |                          |   |
| ;*****     | ******    |                    | *****        | 🔽 UpperCase       | 🚀 Clear                  |   |
| ; MDA-W    | inZ80     |                    |              |                   |                          |   |
| ; File     | name :    | Piol.SRC           |              |                   |                          |   |
| /          | r catti   | 20                 |              |                   |                          |   |
| : Conne    | ct betw   | reen P.3 and P4    |              |                   |                          |   |
| ;======    |           |                    |              |                   |                          |   |
| ; *Desc    | ription   | 1                  |              |                   |                          |   |
| ;*****     | ******    | *****              | ************ |                   |                          |   |
|            | ORG       | 2000H              |              |                   |                          |   |
| PIOAC:     | EQU       | 16H                |              |                   |                          |   |
| PIOAD:     | EQU       | 14H                |              |                   |                          |   |
| CT2        | FOU       | 008                |              |                   |                          |   |
| 012.       |           | 0011               |              |                   |                          |   |
|            | LD        | SP,3FBOH           | _            |                   |                          |   |
|            | 1         |                    |              |                   |                          |   |
|            | LD        | A, OFH             |              |                   |                          |   |
|            | OUT       | (PIOAC),A          |              |                   |                          |   |
|            | 1         |                    |              |                   |                          |   |
| LOOP1:     | LD        | A, O1H             |              |                   |                          |   |
| LOOP:      | 001       | (PIOAD),A          |              |                   |                          |   |
|            | CALL      | DELAY              |              |                   |                          |   |
|            | ;         |                    | ~            |                   |                          | > |
| <          |           |                    | > .::        | COM1 baud=960     | 0 Parity=N data=8 stop=1 |   |

(2) The MDA-WinIDEZ80 window will be displayed.

#### 4-4-2. About MDA-WinIDEZ80



#### 4. SERIAL MONITOR

#### (1) Menu bar

Gives access to the MDA-WinIDEZ80 menu.

File(F) Edit(E) Work(W) Run

#### ① File menu

The File menu provides command s for opening source files, saving and exiting from the MDA-WinIDEZ80 window.

| New     | Ctrl+N                                       | New     | Create empty text file                  |
|---------|----------------------------------------------|---------|-----------------------------------------|
| Open    | Ctrl+O                                       | Open    | Open a file in text editor              |
| Save    | Save Ctrl+S<br>Save As Ctrl+W<br>Exit Ctrl+Q | Save    | Save current text file                  |
| Save As |                                              | Save As | Save current text file under given name |
| Exit    |                                              | Exit    | Exit MDA-WinIDEZ80 window               |

#### 2 Edit menu

The Edit menu provides command for editing and searching in editor windows.

|                             | Undo       | Undo last editor action                  |
|-----------------------------|------------|------------------------------------------|
| Undo Ctrl+Z                 | Cut        | Cut and copy selected text from editor   |
| Cut Ctrl+>                  | Сору       | Copy selected text form editor           |
| Copy Ctrl+C<br>Paste Ctrl+V | Paste      | Paste any text form clipboard to the     |
| Find Ctrl+F                 |            | Open a find dialog to search through the |
| Select All Ctrl+A           | Find       | current source file                      |
|                             | Select All | Select all text at once                  |

#### 3 Work menu

|                      | Assemble | Assemble and link a source file you |
|----------------------|----------|-------------------------------------|
| Assemble & Link F3   | & Link   | are editing                         |
| Program Write Ctrl+D | Program  | Download a file to MDA Win780       |
|                      | Write    | Download a file to MDA-will280      |
| ④ Run menu           |          |                                     |
| Run F6               | Run      | Start execution of the program      |
| Trace F7             | Trace    | Execute one instruction             |

(2) Tool bar

The tool bar provides button s for the most useful commands on the MDA-WinIDEZ80 menus.

| Button    | Menu          | Command                                         |  |
|-----------|---------------|-------------------------------------------------|--|
| B         | New           | Create empty text file                          |  |
| ۵         | Open          | Open a file in text editor                      |  |
|           | Save          | Save current text file                          |  |
| Ð,        | Find          | Open a find dialog                              |  |
| ۩         | Undo          | Undo last editor action                         |  |
| Ē         | Show Line     | Show line number                                |  |
| HE I      | Number        |                                                 |  |
| ÂĹ        | Assemble      | Assemble and link a source file you are editing |  |
|           | & Link        |                                                 |  |
| 2         | Program write | Download an "ABS" file to MDA-WinZ80 kit        |  |
| • 🗎       | Memory dump   | Dump memory contents                            |  |
|           | Fill data     | Fill memory with any data                       |  |
|           | Move block    | Move memory block                               |  |
| >         | Run           | The program will be executed                    |  |
| <b></b> - | Trace         | Execute one instruction                         |  |
| 2         | Port setting  | To change the modem's port setting              |  |

#### 4. SERIAL MONITOR

- (3) Editor window
  - Source file is displayed in the editor window.

| 🖼 C:\MDA\WinZ80\asm\PIO1.SRC 💦 🔲 🗖 🔀 |                                         |          |           |  |  |
|--------------------------------------|-----------------------------------------|----------|-----------|--|--|
| 1                                    | ;************************************** |          |           |  |  |
| 2                                    | ; MDA-WinZ80                            |          |           |  |  |
| 3                                    | ; File name : Pio1.SRC                  |          |           |  |  |
| 4                                    | ,====================================== |          |           |  |  |
| 5                                    | ; Jumper setting                        |          |           |  |  |
| 6                                    | ; Connect between P3 and P4             |          |           |  |  |
| 7                                    | ,                                       |          |           |  |  |
| 8                                    | ; *Description                          |          |           |  |  |
| 9                                    | ******                                  | ******   | *******   |  |  |
| 10                                   |                                         | ORG      | 2000H     |  |  |
| 11                                   | PIOAC:                                  | EQU      | 16H       |  |  |
| 12                                   | PIOAD:                                  | EQU      | 14H       |  |  |
| 13                                   | CT1:                                    | EQU      | 00H       |  |  |
| 14                                   | CT2:                                    | EQU      | OOH       |  |  |
| 15                                   |                                         | <u>7</u> |           |  |  |
| 16                                   |                                         | LD       | SP, 3FBOH |  |  |
| 17                                   |                                         | 1.1      |           |  |  |
| 18                                   |                                         | LD       | A, OFH    |  |  |
| 19                                   |                                         | OUT      | (PIOAC),A |  |  |
| 20                                   |                                         | 1.00     | <b>`</b>  |  |  |
| <                                    |                                         |          | 🔪:        |  |  |

(4) Terminal window

Terminal window is that you can use to connect the MDA-WinZ80 kit.


## 4-4-3. Assembling the source

(1) Click *ki* button for assembling to generate an ABS file.





#### 4-4-4. Troubleshooting

The output window lists tool information during the code generation. You may check on error messages to correct syntax errors in your program.

| MDA-WinIDEZ80                              |                                       |
|--------------------------------------------|---------------------------------------|
| File(F) Edit(E) Work(W) Run                |                                       |
| Ŭဠૠ ℚ∄∄ £22 № № № > → 2                    |                                       |
| 🗟 C:\MDA\WinZ80\asm\PIO1.SRC 📃 🗆 🔀         | 🛛 [Terminal Window]                   |
| 1 *************************************    | 🔽 UpperCase 🥻 Clear                   |
| 2 ; MDA-WIN280<br>3 : File name : Piol.SRC |                                       |
| 4 /                                        | 7.88 \                                |
| 5 ; Jumper setting                         |                                       |
| 5 ; Connect between P3 and P4              |                                       |
| 8 ; *Description                           |                                       |
| 9                                          |                                       |
| 10 ORG 2000H                               |                                       |
| 11 PIOAC: EQU 16H                          |                                       |
| 13 CT1: EOU DOH                            |                                       |
| 14 CT2 : EQU OOH                           |                                       |
| 15 /                                       |                                       |
| 16 L SP, 3FBOH                             |                                       |
| 17 ,                                       |                                       |
| 18 LD A, OFH                               |                                       |
| 19 OUT (PIOAC), A                          |                                       |
|                                            |                                       |
| < C:\MDA\WINZ80\ASM\ASMZ80.EXE: PI01 >     |                                       |
| ** ERROR:(528) Invalid opcode.             |                                       |
| Errors: 1, Warnings: 0                     | <                                     |
|                                            | COM1 baud=9600 Parity=N data=8 stop=1 |
|                                            |                                       |
|                                            |                                       |

## 4-4-5. Port setting

(1) After connect the MDA-WinZ80 kit to a spare serial port on your PC, press RESET KEY, then "Z 80 >" prompt will be displayed.

If "Z 80 >" prompt is not displayed, click the  $\checkmark$  button to setup port.

| Port Settings 🛛 🔀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |           |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|--|--|--|--|--|
| Port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BPS      | Parity    |  |  |  |  |  |
| COM1     COM | C 2400   | None      |  |  |  |  |  |
| C COM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C 4800   | ⊂ Even    |  |  |  |  |  |
| C COM3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9600     | C Odd     |  |  |  |  |  |
| C COM4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C 19200  |           |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C 28800  |           |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C 38400  | Stop bits |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C 57600  | I Bit     |  |  |  |  |  |
| 🗙 Cansel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ○ 115200 | C 2 Bit   |  |  |  |  |  |

(2) Select the serial port to connected to your PC. (ie. COM1, COM2, COM3 or COM4 ) BPS : 9600, Parity : None, Stop bits : 1

(3) Press MDA-WinZ80 RESET KEY again then "Z 80 >" prompt will be displayed.

| MDA-WinIDEZ80                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File(F) Edit(E) Work(W) Run                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ਲ਼⊜®! @   🗈 🖬 🔐 😢 😢 🔛 🚽 🗸                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SC:\WDA\WinZ80\asm\PIO1.SRC                                                                                                         | 🕒 [Terminal Window]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1 /************************************                                                                                             | IF         UpperCase         Image: Clear         Image: Clear |
| 4 ;=                                                                                                                                | 2 80 >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7 /                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11 PIOAC: EQU 16H<br>12 PIOAD: EQU 14H<br>13 CT1: EQU 00H                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14 CT2: EQU OOH<br>15 /<br>16 LD SP,3FBOH                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17 /<br>18 LD A, OFH<br>19 OUT (PIOAC), A ♥                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C:\MD4\WINZ80\ASM\ASMZ80.EXE: PI01 >      Line: 16 2000 LI:SP 3/880+      "*ERR0R;[528] Invalid opcode.      Errors: 1, Warnings: 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                     | COM1 baud=9600 Parity=N data=8 stop=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## 4-4-6. Download and execute the source file

## 1. Download

Click 🔄 button or select Program Write from the Work menu. You can also type 'LO1' and "Enter" key on the Terminal window, then press "Page Up" button from your keyboard.

#### 4. SERIAL MONITOR

| e(F) Edit(E)          | Work(W)  | Run            |         |                   |                           |   |
|-----------------------|----------|----------------|---------|-------------------|---------------------------|---|
| ( 🗠 😫 🔍               | Assemb   | ile & Link F3  | ▶ → 🦻   |                   |                           |   |
| C:\MDA\\              | Program  | n Write Ctrl+D |         | [Terminal Window] |                           |   |
| 1                     | ******   | *****          | ******* | 🔽 UpperCase       | 🥂 Clear                   |   |
| 2 ; MDA-0<br>3 ; File | name :   | Piol.SRC       |         | Z 80 >            |                           |   |
| 4 ;=====              |          |                |         | Z 89 > =          |                           |   |
| 5 ; Jumpe             | er setti | ng             |         |                   |                           |   |
| b ; Conne             | ect betw | een P3 and P4  |         |                   |                           |   |
| 8 ; *Desc             | ription  |                |         |                   |                           |   |
| 9 ;*****              | ******   | *****          | ******  |                   |                           |   |
| 10                    | ORG      | 2000H          |         |                   |                           |   |
| 11 PIOAC:             | EQU      | 16H            |         |                   |                           |   |
| 12 PIOAD:             | EQU      | 14H            |         |                   |                           |   |
| 13 CT1:               | EQU      | OOH            |         |                   |                           |   |
| 14 CT2:               | EQU      | OOH            |         |                   |                           |   |
| 15                    | 1        |                |         |                   |                           |   |
| 16                    | LD       | SP, 3FBOH      |         |                   |                           |   |
| 17                    | 1        |                |         |                   |                           |   |
| 18                    | LD       | A, OFH         |         |                   |                           |   |
| 19                    | OUT      | (PIOAC), A     |         |                   |                           |   |
| 20                    | 1        |                |         |                   |                           |   |
| 21 LOOP1 :            | LD       | A.01H          |         |                   |                           |   |
| 22 LOOP :             | OUT      | (PIOAD) . A    |         |                   |                           |   |
| 23                    |          |                |         |                   |                           |   |
| 24                    | CALL     | DELAY          |         |                   |                           |   |
| 25                    |          |                | *       |                   |                           | > |
|                       | 1        |                |         | COM1 baud-96      | 10 Parity-N data-8 ctop-1 |   |

#### 2. Execute

(1) Run

Click **>** button or select "Run" from the Run menu.

You can also type 'G 2000' and "Enter" key on the Terminal window.

The Run command in the work menu starts execution of the program. The program will be executed until it is stopped by pressing RESET KEY.

#### (2) Trace

Click 📑 button or select "Trace" from the Run menu.

You can also type 'T' and "Enter" key on the Terminal window.

The Trace command in the work menu executes one instruction.

## 4-4-7. Other serial monitor command

User can only use command which stored at serial monitor. Serial monitor can execute to command when user type command and then CR(carriage return) key.

| Command | Description       | Example          |
|---------|-------------------|------------------|
| X       | Register display  | X                |
| XPC     | Exchange PC       | XPC 2000         |
| XSP     | Exchange SP       | XSP 3F9F         |
| D       | Memory dump       | D 0000 0100      |
| S       | Memory set        | S 2000           |
| М       | Memory block move | M 2000 2100 3000 |
| F       | Memory fill       | F 2000 2100 FF   |
| G       | Execute program   | G 2000           |
| Т       | Trace             | T 2000           |
| U       | Disassemble       | U 2000           |
| LO1     | Download program  | LO1              |
| ROM     | ROM writer        | ROM              |

## (1) Display registers

| Z 80 > X                | Display the contents   | of Register.       |           |
|-------------------------|------------------------|--------------------|-----------|
| PC = 2000               | Flag = 00 =            | $\dots$ IFF2 = 0   |           |
| AF = 0000               | BC = 0000              | DE = 0000          | HL = 0000 |
| AF'= 0000               | BC'= 0000              | DE'= 0000          | HL'= 0000 |
| IX = 0000               | IY = 0000              | SP = 3FB0          | I = 00    |
| Z 80 > XPC 3<br>PC = 20 | 000 Set the p<br>000   | rogram counter(PC) |           |
| Z 80 > XSP 3I $SP = 3$  | FAO Set the sta<br>FAO | ick pointer(SP)    |           |
| Z 80 > X                | Again, display the con | tents of Register. |           |
| PC = 2000               | Flag = 00 =            | $\dots$ IFF2 = 0   |           |
| AF = 0000               | BC = 0000              | DE = 0000          | HL = 0000 |
| AF'= 0000               | BC'= 0000              | DE'= 0000          | HL'= 0000 |
| IX = 0000               | IY = 0000              | SP=3FA0            | I = 00    |

### (1) Memory modify command.

 Z 80 > S 2000⊡
 Memory modify

 2000: FF? 11⊡
 2001: FF? 22⊡

 2002: FF? 33⊡
 2004: FF? . ⊡

 Terminate to modify

## (2) Memory display command.

Click 🎦 button, then memory dump window will be displayed.

| 🔊 Memory Dur  | ×           |  |
|---------------|-------------|--|
| Start<br>2000 | End<br>2100 |  |
|               |             |  |

Enter Start and End address, then click "Dump" button.

You can also enter the memory dump command on the Terminal window.

## **③** Fill certain data in memory.

Click 🔀 button, then Fill Data window will be displayed.

MDA-WinZ80 MANUAL



Enter Start, End, and Data, then click "Fill" button. You can also enter the Fill Data command on the Terminal window.

Start End Data  $\downarrow$   $\downarrow$   $\downarrow$ Z 80 >F 2000 2100 11

```
🖙 Verify
```

```
Z 80 >D 2000 2100 €
.....
.....
```

MDA-WinZ80 MANUAL

#### **(4)** Block move command.

The Block Move command is used to move blocks of memory from one area to another.

Click button, then Move window will be displayed.

| 🚨 Move |     |             |
|--------|-----|-------------|
| Start  | End | Destination |
| ļ      |     | ove         |

Enter Start, End, and Destination Address, then click "Move" button. You can also enter the Block Move command on the Terminal window.

Start End Destination Ţ Ļ Ţ Z 80 >M 2000 2100 3000 € □ Resulting ? Z 80 >D 2000 2100 €  

 30B0:
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11

## **(5)** Disassemble

The U command is disassemble

Z 80 >U 2000 ⊡

🖙 Result

| 2000: | 31B03F | LD   | SP,3FB0 |
|-------|--------|------|---------|
| 2003: | 3E0F   | LD   | A,0F    |
| 2005: | D316   | OUT  | (16),A  |
| 2007: | 3E01   | LD   | A,01    |
| 2009: | D314   | OUT  | (14),A  |
| 200B: | CD1520 | CALL | 2015    |
| 200E: | 07     | RLCA |         |
| 200F: | CB67   | BIT  | 4,A     |
| 2011: | 28F6   | JR   | Z,F6    |
| 2013: | 18F2   | JR   | F2      |
| 2015: | 1600   | LD   | D,00    |
| 2017: | 1E00   | LD   | E,00    |
| 2019: | 1D     | DEC  | E       |
| 201A: | 20FD   | JR   | NZ,FD   |
| 201C: | 15     | DEC  | D       |
| 201D: | 20F8   | JR   | NZ,F8   |

## 4-4-8. ROM Writer

1 Program download to write to ROM

|               | Asseme  | ole & Link F3       | ▶ → 🦻 |       |             |      |         |  |
|---------------|---------|---------------------|-------|-------|-------------|------|---------|--|
| C:\MDA\\      | Program | m Write Ctrl+D      |       | х́ол  | erminal Win | dow] |         |  |
| 1 /*****      | ******  |                     |       | 🔼 🔽 U | pperCase    |      | 😿 Clear |  |
| 2 / MDA-0     | linZ80  |                     |       | Z 80  | >           |      |         |  |
| 3 / File      | name :  | P101.SKC            |       |       |             |      |         |  |
| 4 /           | n cotti |                     |       | Z 80  | > 🗖         |      |         |  |
| 6 : Conne     | ct hetu | ny<br>men D3 and D4 |       |       |             |      |         |  |
| 7             |         |                     |       |       |             |      |         |  |
| 8 ; *Desc     | ription |                     |       |       |             |      |         |  |
| 9 . * * * * * | ******  | *********           | ***** |       |             |      |         |  |
| 10            | ORG     | 2000H               |       |       |             |      |         |  |
| 11 PIOAC:     | EQU     | 16H                 |       |       |             |      |         |  |
| 12 PIOAD:     | EQU     | 14H                 |       |       |             |      |         |  |
| 13 CT1:       | EQU     | OOH                 |       |       |             |      |         |  |
| 14 CT2 :      | EQU     | OOH                 |       |       |             |      |         |  |
| 15            | 1.00    |                     |       |       |             |      |         |  |
| 16            | LD      | SP, 3FBOH           |       |       |             |      |         |  |
| 17            | 1.      |                     |       |       |             |      |         |  |
| 18            | LD      | A, UFH              |       |       |             |      |         |  |
| 13            |         | (PIURC),A           |       |       |             |      |         |  |
| 21 LOOP1 *    | LD      | A 01H               |       |       |             |      |         |  |
| 22 LOOP :     | OUT     | (PTOAD) . A         |       |       |             |      |         |  |
| 23            |         | (1 1040) / 8        |       |       |             |      |         |  |
| 24            | CALL    | DELAY               |       |       |             |      |         |  |
|               |         | *                   |       |       |             |      |         |  |

In the File of types, select a source type from the drop-down list, as an ABS file. Select "PIO1.ABS" file, then click "Open" button.

| 🚨 MDA-                                                                                                                                           | WinID                                                                                   | Z80                                                                  |                                                                  |                                                                                                                                                                                    |                                                                                                                                                           |                                                                                                         |                   |            | _   🗆 🗙 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------|------------|---------|
| File(F) E                                                                                                                                        | dit(E) W                                                                                | ork(W)                                                               | Download                                                         | file                                                                                                                                                                               |                                                                                                                                                           |                                                                                                         | ? 🗙               |            |         |
|                                                                                                                                                  | 🛔 🔍 ປ                                                                                   |                                                                      | Look in:                                                         | asm                                                                                                                                                                                |                                                                                                                                                           | - ← 🗈 💣 🗉                                                                                               | •                 |            |         |
| <pre>Discovery content<br/>/ MDA-4<br/>/ File<br/>/ Jumpe<br/>/ Conne<br/>/ *Desc<br/>/<br/>PIOAC:<br/>PIOAC:<br/>PIOAD:<br/>CT1:<br/>CT2:</pre> | VinZ80<br>name :<br>er setti<br>ect betw<br>ORG<br>EQU<br>EQU<br>EQU<br>EQU<br>EQU<br>; | nZ80<br>*****<br>Pio1.:<br>ng<br>een P.<br>2000<br>16H<br>14H<br>00H | My Recent<br>Documents<br>Desktop<br>My Documents<br>My Computer | aa.abs<br>ADC1.ABS<br>ADC2.ABS<br>ADC3.ABS<br>ADC4.ABS<br>CTC1.ABS<br>CTC2.ABS<br>CTC3.ABS<br>DAC2.ABS<br>DAC2.ABS<br>DAC2.ABS<br>DD072.ABS<br>DD073.ABS<br>DD073.ABS<br>DD073.ABS | DOT6.ABS<br>DOTT1.ABS<br>LCD1.ABS<br>LCD2.ABS<br>LCD3.ABS<br>LCD3.ABS<br>LCD5.ABS<br>PIO1.ABS<br>PIO3.ABS<br>PIO4.ABS<br>PIO6.ABS<br>PIO6.ABS<br>PIO7.ABS | III SPK1.ABS<br>III SPK2.ABS<br>IIII SPK3.ABS<br>IIIII SPK3.ABS<br>IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | -                 | Clear      |         |
| LOOP1:                                                                                                                                           | LD<br>,<br>LD<br>OUT<br>,<br>LD                                                         | SP,3<br>A,01<br>(PIC                                                 | My Network<br>Places                                             | File name:<br>Files of type:                                                                                                                                                       | PI01<br>ABS files                                                                                                                                         |                                                                                                         | Open<br>Cancel    | 3          |         |
| LOOP:                                                                                                                                            | OUT<br>CALL                                                                             | (PIC                                                                 | AD), A<br>Y                                                      |                                                                                                                                                                                    | ~ <                                                                                                                                                       |                                                                                                         |                   |            | >       |
| < -                                                                                                                                              | 6                                                                                       |                                                                      |                                                                  |                                                                                                                                                                                    | <b>&gt;</b>                                                                                                                                               | COM1 baud=9                                                                                             | 600 Parity=N date | a=8 stop=1 |         |
|                                                                                                                                                  |                                                                                         |                                                                      |                                                                  |                                                                                                                                                                                    |                                                                                                                                                           |                                                                                                         |                   |            |         |

② Execute ROM write command

Z 80 >ROM

#### EP - ROM. WRITE PROGRAM

## ? -- YES : [SP], NO : [CR] SPACE BAR CARRIAGE RETURN KEY

Press space bar to continue.

#### ROM SELECT

| 2764   | <br>1 |
|--------|-------|
| 2764A  | <br>2 |
| 27128  | <br>3 |
| 27128A | <br>4 |
| 27256  | <br>5 |
| 27512  | <br>6 |

SELECT (1-6)? 6

ROM SET?. OK : [SP]

RAM BUF ADDR 2000

ROM BUF ADDR 0000 WRITE BYTE FFFF

#### 27512 MENU

| ROM SELECT & TEST | S | ROM select     |
|-------------------|---|----------------|
| SET BUF ADDRESS   | A | Address change |
| MASTER ROM READ   | R | ROM read       |
| ERASE CHECK       | C | Blank check    |
| WRITE & VERIFY    | W | ROM write      |
| VERIFY            | V | Verify         |
| END               | E | Terminate      |

| SELECT    | ( <b>S</b> , ] | R, C, | A, W | , V, | E )?( | 2  |         |         |
|-----------|----------------|-------|------|------|-------|----|---------|---------|
| Erase che | ck             | ERA   | SE O | K!   | Blank | OK | message | display |

ROM SET?. OK : [SP]

3 Address change

| RAM BUF ADDR | ROM BUF ADDR | WRITE BYTE |
|--------------|--------------|------------|
| 2000         | 0000         | FFFF       |

27512 MENU

| ROM SELECT & TEST | S |
|-------------------|---|
| SET BUF ADDRESS   | A |
| MASTER ROM READ   | R |
| ERASE CHECK       | C |
| WRITE & VERIFY    | W |
| VERIFY            | V |
| END               | E |

## SELECT (W, R, C, A, W, V, E)?A Address change

Buffer Addr setting

| ROM ADDRESS | = 0000 | Destination | ROM address                          |
|-------------|--------|-------------|--------------------------------------|
| RAM ADDRESS | = 2000 | Source men  | nory address                         |
| BYTE NUMBER | = FFFF | 0020        | Bytes to write                       |
| ROM SET ?   | OK:    | [SP]        | Insert ROM, and then press Space bar |

④ ROM writing.

| RAM BUF ADDR | ROM BUF ADDR | WRITE BYTE |
|--------------|--------------|------------|
| 2000         | 0000         | 0020       |

#### 27512 MENU

| ROM SELECT & TEST | <br>S |
|-------------------|-------|
| SET BUF ADDRESS   | <br>А |
| MASTER ROM READ   | <br>R |
| ERASE CHECK       | <br>С |
| WRITE & VERIFY    | <br>W |
| VERIFY            | <br>V |
| END               | <br>Е |

### SELECT (S, R, C, A, W, V, E)?W

| Writing | <br>Write E | END!! |
|---------|-------------|-------|
| Verify  | <br>Verify  | GOOD  |

ROM SET?. OK : [SP]

5 Power OFF and then power ON again.

Z 80 >

Z 80 > ROM

## EP - ROM. WRITE PROGRAM

? -- YES : [SP], NO : [CR]

## ROM SELECT

| 2764   | 1 |
|--------|---|
| 2764A  | 2 |
| 27128  | 3 |
| 27128A | 4 |
| 27256  | 5 |
| 27512  | 6 |

## SELECT (1-6)? 6

ROM SET?. OK : [SP]

6 Address set

| RAM BUF ADDR | ROM BUF ADDR | WRITE BYTE |
|--------------|--------------|------------|
| 2000         | 0000         | FFFF       |

## 27512 MENU

|                   | a     |
|-------------------|-------|
| ROM SELECT & TEST | <br>S |
| SET BUF ADDRESS   | <br>А |
| MASTER ROM READ   | <br>R |
| ERASE CHECK       | <br>С |
| WRITE & VERIFY    | <br>W |
| VERIFY            | <br>V |
| END               | <br>Е |

SELECT (S, R, C, A, W, V, E)?A Buffer Addr setting ROM ADDRESS = 0000RAM ADDRESS = 2000BYTE NUMBER = FFFF 0020 ROM SET?. OK : [SP] INT Note : RAM buffer address is 2000H-3FFFH, Total 8K byte. ⑦ ROM read. RAM BUF ADDR ROM BUF ADDR WRITE BYTE 2000 0000 0020 MENU 27512 ROM SELECT & TEST ----- S SET BUF ADDRESS ----- A

| MASTER ROM READ | <br>R |
|-----------------|-------|
| ERASE CHECK     | <br>С |
| WRITE & VERIFY  | <br>W |
| VERIFY          | <br>V |
| END             | <br>Е |

SELECT (S, R, C, A, W, V, E)?R

Reading ... READ END!!

ROM SET?. OK : [SP]

Press Space bar for next step.

MDA-WinZ80 MANUAL

| ROM SELECT & TEST | S |
|-------------------|---|
| SET BUF ADDRESS   | A |
| MASTER ROM READ   | R |
| ERASE CHECK       | C |
| WRITE & VERIFY    | W |
| VERIFY            | V |
| END               | E |

SELECT (S, R, C, A, W, V, E)? E (Terminate)

Z 80 >

Now, program execute.

Z 80 > G 2000

LED is shifting ?

# PART-II:

## **MDA-Z80 EXPERIMENTS**

# 1. Keyboard Interface

## 1-1. Keyboard Interface

| * | Position | Code |
|---|----------|------|
| * | Position | Code |

| KEY  | 0               | 1    | 2  | 3         | 4      | 5  | 6  | 7  |
|------|-----------------|------|----|-----------|--------|----|----|----|
| CODE | $\overline{00}$ | 01   | 02 | 03        | 04     | 05 | 06 | 07 |
| KEY  | 8               | 9    | А  | В         | С      | D  | Е  | F  |
| CODE | 08              | 09   | 0A | 0B        | 0C     | 0D | 0E | 0F |
| KEY  | REG             | STEP | GO | <br> <br> | -<br>- | +  | DA | AD |
| CODE | 10              | 11   | 12 | 13        | 14     | 15 | 16 | 17 |

\* Key Input Flowchart



MDA-WinZ80 MANUAL



Figure 1. Keyboard Interface

## < Sample Program 1-1. Key input subroutine >

| KEY:    | EQU    | 04H        |            |       |
|---------|--------|------------|------------|-------|
| KEYC:   | EQU    | 08H        |            |       |
|         | ; KEY  | IN = BUFF1 |            |       |
| START2: | LD     | SP,SSTACK  |            |       |
|         | DI     |            |            |       |
|         | CALL   | SCAN       |            |       |
|         | ;      |            |            |       |
| START3: | LD     | A,(BUF1)   |            |       |
|         | BIT    | 4,A        | ; FUNCTION | KEY ? |
|         | JP     | NZ,FUN     |            |       |
|         | ; BRAN | IСН        |            |       |
| FUN:    | LD     | HL,FTBL    |            |       |
|         | LD     | A,(BUF1)   |            |       |
|         | AND    | 07H        |            |       |

|        |            | ΔΔ             |           |
|--------|------------|----------------|-----------|
|        |            | л,л<br>А I     |           |
|        |            | A,L<br>I A     |           |
|        | IR         | L,A<br>NC FUN1 |           |
|        | JK         | H              |           |
| FUN1   |            | E (HI)         |           |
| PONI.  | INC        | E,(IIL)<br>HI  |           |
|        |            |                |           |
|        | LD<br>EV   | D,(IIL)        |           |
|        |            | (HI)           |           |
|        | JF         | (пс)           |           |
| ETDI · | ,<br>DW    | KDEC           |           |
| FIDL.  |            | KKLU           |           |
|        |            | KSILF          |           |
|        |            | MAIN           |           |
|        |            | MAIN<br>KDEC   |           |
|        |            | KDEC<br>INC    |           |
|        |            |                |           |
|        |            |                |           |
|        | D w        | KADDK          |           |
|        | ,<br>. VEV | DOADD SCAN     |           |
| SCAN   | , NEI      | A (KEV)        |           |
| SCAN:  |            | A, (KEI)       |           |
|        | BII        | /,A            |           |
|        | JK         | NZ,SCAN        |           |
|        | LD         | (BUFI),A       |           |
|        | 001        | (KEYC),A       |           |
|        | LD         | HL,002FH       | ; TONE ON |
|        | CALL       | TONEIK         |           |
|        | RET        |                |           |

# 2. LCD Display

## 2-1. LCD

\* 16 CHARACTERS  $\times$  2 LINE MODULE

## 1) PHYSICAL DATA

| Module size            | $80.0W \times 36.0H \times 9.30D$ mm |
|------------------------|--------------------------------------|
| Min. view area         | $65.6W \times 13.8D mm$              |
| Character construction | $5 \times 7$ dots                    |
| Character size         | $2.85W \times 3.8H$ mm               |
| Character Pitch        | 3.65 mm                              |
| Dot size               | $0.55W \times 0.5H$ mm               |

## 2) Pin Connections

| Pin NO. | Symbol | Level   |         | Function       |
|---------|--------|---------|---------|----------------|
| 1       | Vss    | -       | 0V      |                |
| 2       | Vdd    | -       | 5V      | Power supply   |
| 3       | VL     | -       | -       |                |
| 4       | DC     | II/I    | H : Da  | ta input       |
| 4       | КЭ     | $\Pi/L$ | L : Ins | truction input |
| _       |        | 11/1    | ta read |                |
| 5       | R/W    | H/L     | L : Da  | ta write       |
| 6       | Е      | H. H→L  | Enable  | signal         |
| 7       | D0     | H/L     |         |                |
| 8       | D1     | H/L     |         |                |
| 9       | D2     | H/L     |         |                |
| 10      | D3     | H/L     | Doto h  | na lina        |
| 11      | D4     | H/L     |         |                |
| 12      | D5     | H/L     |         |                |
| 13      | D6     | H/L     |         |                |
| 14      | D7     | H/L     |         |                |

## 3) INSTRUCTION

|               |         |                     |            |      |              |       |       |       |       |     |                                     | Execution    |  |  |
|---------------|---------|---------------------|------------|------|--------------|-------|-------|-------|-------|-----|-------------------------------------|--------------|--|--|
| Instruction   |         |                     |            |      | CO           | DE    |       |       |       |     | Description                         | time(max)    |  |  |
| пвищеноп      |         |                     |            |      |              |       |       |       | L .   |     | Description                         | fosc is      |  |  |
|               | RS      | R/W                 | <b>D</b> 7 | D6   | D5           | D4    | D3    | D2    | D1    | D0  |                                     | 250 KHz      |  |  |
| Clear display | 0       | 0                   | 0          | 0    | 0            | 0     | 0     | 0     | 0     | 1   | Clears entire display               | 1.64 ms      |  |  |
|               |         |                     |            |      |              |       |       |       |       |     | Returns display being               |              |  |  |
| Return Home   | 0       | 0                   | 0          | 0    | 0            | 0     | 0     | 0     | 1     | *   | shifted to original                 | 1.64 ms      |  |  |
|               |         |                     |            |      |              |       |       |       |       |     | position                            |              |  |  |
|               |         |                     |            |      |              |       |       |       |       |     | Sets cursor move                    |              |  |  |
| Entry         | 0       | 0                   | 0          | 0    | 0            | 0     | 0     | 1     | I/D   | s   | direction and specifies             | 40 //s       |  |  |
| Mode set      | ode set |                     |            |      |              |       | Ŭ     |       | 1, 2  |     | shift of display                    | .0 μ0        |  |  |
| Display       |         |                     |            |      |              |       |       |       |       |     | $D \cdot Display ON/OFF$            |              |  |  |
| ON/OFE        |         |                     | 0          | 0    | 0            | 0     | 1     | Л     | C     | р   | C : Current ON/OFF                  | 40           |  |  |
| ON/OFF        |         | 0                   |            | 0    | 0            |       | 1     |       | C     | D   |                                     | $40 \ \mu s$ |  |  |
| Control       |         |                     |            |      |              |       |       |       |       |     | B : Cursor Blink/Not                |              |  |  |
| Cursor or     | 0       | 0                   | 0          | 0    | 0            | 1     | S/C   | R/L   | *     | *   | Moves cursor and                    | 40 µs        |  |  |
| Display Shift |         |                     |            |      |              |       |       | _     |       |     | Shifts display                      |              |  |  |
| Function Set  | 0       | 0                   | 0          | 0    | 0 1 DL N F * |       |       |       |       | *   | Refer to Remark                     | $40 \ \mu s$ |  |  |
| Set CGRAM     | 0       | 0                   | 0          | 1    |              |       | A     | CG    |       |     | Sets CG RAM Addr.                   | 40 μs        |  |  |
| Set DD        | 0       | 0                   | 1          |      |              |       | AD    | D     |       |     | Sets DD RAM                         | 40 µs        |  |  |
| RAM Addr.     |         |                     |            |      |              |       |       |       |       |     | Address                             | <i></i>      |  |  |
| Read Busy     | 0       | 1                   | BF         |      |              |       | AC    | ٦     |       |     | BF : Busy flag                      | 40 //s       |  |  |
| Flag & Addr   | Ľ       | 1                   |            |      |              |       | 110   | ·     |       |     | Reads AC contents.                  | 10 µ3        |  |  |
| Write Data    | 1       | 0                   |            |      | v            | Writ  | e de  | ata   |       |     | Writes data into DD                 | 40 45        |  |  |
| CG or DD      |         | 0                   |            |      | v            | VIIU  | c ua  | ita   |       |     | RAM or CG RAM                       | 40 μs        |  |  |
| Read Data     |         |                     |            |      |              |       |       |       |       |     | Poods data from DD                  |              |  |  |
| from CG       | 1       | 1                   |            |      | ŀ            | Read  | d da  | ıta   |       |     |                                     | 40 µs        |  |  |
| or DD RAM     |         |                     |            |      |              |       |       |       |       |     | RAM or CG RAM                       |              |  |  |
|               | I/D     | = 1:                | Inci       | reme | ent          |       | 0: I  | Decr  | eme   | nt  | DD RAM : Display d                  | ata RAM      |  |  |
|               | S=      | 1: 4                | Acc        | omp  | anio         | es d  | lispl | ay s  | shift |     | CG RAM : Character                  | generator    |  |  |
|               | S/C     | C=1:D               | ispl       | ay s | shift        |       | 0:cu  | rsor  | mo    | ove | RAM                                 |              |  |  |
|               | R/L     | L=1:S               | hift       | rigł | nt.          |       | 0: 5  | Shift | lef   | t.  | ACG : CG RAM add                    | ress         |  |  |
|               | DL      | DL=1:8bits 0:4 bits |            |      |              |       |       |       |       |     | ADD : DD RAM add                    | ress         |  |  |
| Remark        | N :     | = 1 :               | 2          | line | s            |       | 0 :   | 1 li  | nes   |     | Corresponds to                      | ) cursor     |  |  |
|               | F =     | = 1 :               | 5×         | 10do | ots          |       | 0 :   | 5×7   | dots  | 5   | address                             |              |  |  |
|               | BF      | = 1:                | Int        | erna | allv         | ope   | erati | ng    |       |     | $AC \cdot Address counter used for$ |              |  |  |
|               |         | 0:                  | Ca         | n a  | ccei         | ot in | nstru | ictio | n     |     | both DD and CO                      | 7 RAM        |  |  |
|               | * 1     | NO F                | FFF        | CT   | I.           |       |       |       |       |     | addross                             | 5 11/11/1    |  |  |
|               | * 1     | NO E                | FFE        | ECT  |              |       |       |       |       |     | address                             |              |  |  |

## 4) INITIALIZATION SEQUENCE



\* 1. Should use this instruction only once in operation.

- \* 2. ADDR is the setting data cursor position to debug.
  In data, MSB(D7) should be "1" and other 7 bits (D0<sup>~</sup>D6) are cursor position.
- \* 3. DATA mean the ASCII codes.

## 5) CHARACTER FONT TABLE

| Upper<br>Nible | 0000          | 0010        | 0011        | 0100 | 0101 | 0110 | 0111              | 1000 | 1010     | 1011             | 1100 | 1101         | 1111                |
|----------------|---------------|-------------|-------------|------|------|------|-------------------|------|----------|------------------|------|--------------|---------------------|
| XXXX0000       | CG RAM<br>(1) |             | 0           | a    | р    | ~    | P                 |      |          | 9                | Ξ.   | œ            | р                   |
| XXXX0001       | (2)           | !           | 1           | A    | Q    | æ    | q                 | 8    | 7        | ÷                | í.   | ä            | q                   |
| XXXX0010       | (3)           | 11          | 2           | 8    | R    | Ь    | r                 | г    | 4        | ÿ                | ×    |              | 0                   |
| XXXX0011       | (4)           | #           | ۲. v.       | С    | S    | C    | 5                 |      | Ċ        | ų,               | E    | æ            | 67                  |
| XXXX0100       | (5)           | \$          | 역           | D    | Т    | d    | t                 | •    | I        | ŀ                | †?   | 1.1          | ŝ                   |
| XXXX0101       | (6)           | %           | U")         | E    | U    | 0    | Ч                 |      | オ        | ÷                | 1    | S            | ü                   |
| XXXX0110       | (7)           | 8.          | ŝ           | F    | Ų    | f    | Ų                 | 7    | ŢŢ       |                  |      | ρ            | 2                   |
| XXXX0111       | (8)           | 2           | <b>[</b> ~  | G    | Ŵ    | 9    | ω                 | 7    | 肀        | $\mathbb{R}^{2}$ | 7    | 9            | Л                   |
| XXXX1000       | (1)           | $\langle  $ | $\odot$     | Н    | Х    | h    | $\times$          | 4    | 0        | *                | Ņ    | . <b>,</b> r | $\overline{\times}$ |
| XXXX1001       | (2)           | $\rangle$   | сh,         | I    | Ŷ    | i    | 9                 | ÷    | Ţ        | )                | ıb   | -1           | Ч                   |
| XXXX1010       | (3)           | *           |             | J    | Z    | j.   | Z                 | I    |          | ù                | 17   | J.           | Ŧ                   |
| XXXX1011       | (4)           | ÷           | а <i>т.</i> | Κ    | Γ    | k    | $\langle \rangle$ | 7    | <b>"</b> | E                |      | ×            | F                   |
| XXXX1100       | (5)           | 2           | $\sim$      | L    | ¥    | 1    |                   | †2   | 5        | 7                | ņ    | ¢-           | μ                   |
| XXXX1101       | (6)           |             | ==          | Μ    | ]    | m    | >                 | .1.  | Z        | $\gamma$         | 2    | ŧ            | ÷                   |
| XXXX1110       | (7)           |             |             | N    | ~    | n    | ÷                 | Э    | Ċ        | <b>.</b>         |      | ň            |                     |
| XXXX1111       | (8)           | ./          | ?           | Ö    |      | Ö    | ÷                 | a    | 9        | 2                |      | ö            |                     |

NOTE : CGRAM is a CHARACTER GENERATOR RAM having a storage function of character pattern which enable to change freely by users program

## 2-2. LCD Interface



## 1. Message display



Display the message like below.

| S | е | r | i | а | l |   | m | 0 | n | I | t | 0 | r | ! |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Μ | D | Α | - | ₩ | l | n | Ζ | 8 | 0 |   | Κ | i | t | ļ |

Source file

🖄 C:\MDA\WinZ80\ASM\LCD1. SRC

## 2. Scroll the message center to right

Purpose

Scroll the message.

| S | е | r | i | а | I |   | m | 0 | n | i | t | 0 | r | - |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| M | D | Α | - | W | i | n | Ζ | 8 | 0 |   | Κ | i | t | ! |

Source file

🖄 C:\MDA\WinZ80\ASM\LCD2. SRC

3. Scroll the message right to left

## Purpose

Scroll the message, "MDA-WinZ80 Training Kit".

| 1 | D | Α | - | W | i | n | Ζ | 8 | 0 | Т | r | а | i | n |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |



C:\MDA\WinZ80\ASM\LCD3. SRC

## 4. Make clock with software timer



Display time

| Η | 0 | u | r |  | М | i | n |  | S | е | С | • |
|---|---|---|---|--|---|---|---|--|---|---|---|---|
|   |   | 0 | 0 |  |   | 0 | 0 |  |   | 0 | 0 |   |



C:\MDA\WinZ80\ASM\LCD4. SRC

5. Make clock with CTC



Display time

| H | 0 | u | r |  | М | i | n |  | S | е | с |  |
|---|---|---|---|--|---|---|---|--|---|---|---|--|
|   |   | 0 | 0 |  |   | 0 | 0 |  |   | 0 | 0 |  |

Source file

🖄 C:\MDA\WinZ80\ASM\LCD5. SRC

## 2. LCD Display

## 6. Display the pressed key on LCD

## Purpose

Display the pressed keypad on LCD

|  | Κ | е | у | С | 0 | d | е |  |  |  |
|--|---|---|---|---|---|---|---|--|--|--|
|  |   |   |   | 0 | 0 |   |   |  |  |  |



C:\MDA\WinZ80\ASM\LCD6. SRC

# 3. PIO Interrupt

## 3-1. Introduction

The Z-80 Parallel I/O(PIO) Circuit is programmable, two port device which provides a TTL compactable interface between peripheral devices and the Z9-CPU. The CPU can configure the Z80 PIO to interface with a wide range of peripheral devices with no other external logic required. Typical peripheral devices that are fully compatible with the Z80 PIO include most keyboards, paper tape readers and punches, printers, PROM programmers, etc. The Z80 PIO utilizes N channel silicon gate depletion load technology and is packaged in a 40 pin DIP. Major features of the Z80 PIO include:

- A. Two independent 8 bit bi-directional peripheral interface ports with "handshake" data transfer control.
- B. Interrupt driven "handshake" for fast response.
- C. Any one of four distinct modes of operation may be selected for a port including:

Byte output Byte input Byte bi-directional bus (Available on Port A only) Bit control mode All with interrupt controlled handshake

- D. Daisy chain priority interrupt logic includes providing for automatic interrupt vectorial without external logic.
- E. Eight outputs are capable of driving Darlingtontransistors.
- F. All inputs and outputs fully TTL compatible.
- G. Single 5-volt supply and single-phase clock are required.

One of the unique features of the Z80 PIO that separates it from other interface controllers is that all data transfer between the peripheral device and the CPU is accomplished under total interrupt control. The interrupt logic of the PIO permits full usage of the efficient interrupt capabilities of the Z80 CPU during I/O transfers. All logic necessary to implement a fully nested interrupt structure is included in the PIO so that additional circuits are not required. Another unique feature of the PIO is that it can be programmed to interrupt the CPU on the occurrence of specified status conditions in the peripheral device. For example, the PIO can be programmed to interrupt if any specified peripheral alarm conditions should occur. This interrupt capability reduces the amount of time that the processor must spend in polling peripheral status.

MDA-Z80 and PIO interface is shown Figure 3-1.



Figure 3-1. PIO Interface

1. LED





3. LED shifting ( Interrupt )



Press  $\overline{ASTB}$  button, then LED will be shifting.

MDA-WinZ80 MANUAL



4. Display DIP1 switch value



After change the DIP1 switch, press  $\overline{ASTB}$  button. DIP1 switch value will be displayed on the FND.



5. Display DIP1 switch value (Interrupt)



After change the DIP1 switch, press  $\overline{ASTB}$  button. DIP1 switch value will be displayed on the FND.



՝ C:\MDA\WinZ80\ASM\P105. SRC

MDA-WinZ80 MANUAL

## 6. Display DIP1 switch value (Interrupt)

Purpose

After change the DIP1 switch, press  $\overline{BSTB}$  button.

If you press  $\overline{ASTB}$  button, then DIP1 switch value will be displayed on LED.

Source file

C:\MDA\WinZ80\ASM\P106. SRC

# 4. CTC Interrupt

## 4-1. Introduction

The Z-80 Counter Timer Circuit (CTC) is a programmable component with four incepted channels that provide counting and timing functions for microcomputer systems based on the Z80-CPU. The CPU can configure the CTC channels to operate under various modes and conditions as required to interface with a wide range of devices. In most applications, little or no external logic is required. The Z80-CTC utilizes N-channel silicon gate depletion load technology and is packaged in a 28-pin DIP. The Z80-CTC requires only a single 5-volt supply and a one-phase 5-volt clock. Major features of the Z80-CTC include:

- A. All inputs and outputs are fully TTL compatible.
- B. Each channel may be selected to operate in either Counter Mode or Timer Mode.
- C. Used in either mode, a CPU-readable Down Counter indicates number of counts-to-go until zero.
- D. A time constant Register can automatically reload the Down Counter at Count Zero in both Counter and Timer Modes.
- E. A selectable positive or negative trigger initiates time operation in Timer Mode. The same input is monitored for event counts in Counter Mode.
- F. Three channels have Zero Count/Timeout outputs capable of driving Darlington transistors.
- G. Interrupts may be programmed to occur on the zero count condition in any channel.
- H. Daisy chain priority interrupt logic included to provide for automatic interrupt vectorial without external logic.

## 4-2. CTC Architecture

#### 4-2-1. Overview

The internal structure of the Z80-CTC consists of a Z80-CPU bus interface, Internal Control Logic and four sets of Counter/Timer Channels. Timer channels are identified by sequential numbers from 0 to 3. The CTC has the capability of generating a unique interrupt vector for each separate channel (for automatic vectorial to an interrupt service routine). The 4 channels can be connected into four contiguous slots in the standard Z80 priority chain with channel number 0 having the highest priority. The CPU bus interface logic allows the CTC device to interface directly to the CPU with no other external logic. However, port address decoders and/or line buffers may be required for large systems.

#### 4-2-2. Structure of channel logic

This logic is composed 2 registers, 2 counters, and control logic. The registers are an 8-bit Time Constant Register and an 8-bit Channel Control Register. The counters are an 8-bit CPU-readable Down Counter and an 8-bit pre-scaler.

MDA-Z80 and CTC interface is shown Figure 4-1.





Figure 4-1. CTC Interface

1. LED (CTC timer mode)


#### 2. 7 segment



Push the CLK0 button, then display 0 to 9 on the FND.



# 5. Speaker Interface

### 5-1. Speaker interface



2. Simulate a siren sound

Source file

🖄 C:\MDA\WinZ80\ASM\SPK2. SRC

3. Simulate a laser gun sound

Source file

🖄 C:\MDA\Winz80\ASM\SPK3. SRC

4. Make the musical scale

#### Purpose

| Keypad | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | В | C | D | E | F |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Scale  | G | Α | В | С | D | E | F | G | Α | В | C | D | Е | F | G | A |

#### Source file

🖄 C:\MDA\WinZ80\ASM\SPK4. SRC

5. Play "Jingle bells"



C:\MDA\WinZ80\ASM\SPK5. SRC

# 6. Dot Matrix LED

### 6-1. Dot Matrix LED Display

#### General description :

The KMD D1288C is 1.26 inch height 3mm diameter and  $8 \times 8$  dotmatrix LED displays. The KMD D1288C are dual emitting color type of red, green chips are contained in a dot with milky and white lens color.



Figure 6-1 Dot Matrix Internal Circuit Diagram



#### 6-2. Dot Matirx LED Interface

Figure 6-2. Dot Matrix LED Interface

#### 1. Matrix - Scroll top to bottom



Adjust the JP6 switch as following figure.





#### 2. Matrix - left to right



Adjust the JP6 switch as following figure.





#### 3. Matrix



Adjust the JP6 switch as following figure.





### 4. Matrix - Display 'A'





Adjust the JP6 switch as following figure.





՝ C:\MDA\Winz80\ASM\DOT4. SRC





Adjust the JP6 switch as following figure.







#### 6. Matrix - Scroll 'A' top to bottom

Adjust the JP6 switch as following figure.





# 7. 8251A Interface

8251A is an advanced design of the industry standard USART, the Intel 8251. The 8251A operates with an extended range of Intel microprocessors that includes the new 8085 CPU and maintains compatibility with the 8251. Familiarization time is minimal because of compatibility and involves only knowing the additional features and enhancements, and reviewing the AC and DC specification of the 8251A.

The 8251A incorporates all the key features of the 8251 and has the following additional features and enhancements;

a. 8251A has double-buffered data paths with separate I/O registers for control, status, Data in, and Data out, which considerably simplifies control programming and minimizes CPU overhead.

b. In asynchronous operations, the Receiver detects and handles "break" automatically relieving the CPU of this task.

c. refined Rx initialization prevents the Receiver from starting when in "break" state, preventing unwanted interrupts from a disconnected USART.

Refer to 8251A data sheet for more detail.

The 8251A and MDA-WinZ80 interface is shown in figure 7-1.



Figure 7-1. 8251A Interface

# 8. D/A Converter

#### 8-1. D/A Converter Specification

General Description :

The DAC0800 is a monolithic 8-Bit high-speed current output digital to analog converter (DAC) featuring typical setting times of 100ns. When used as a multiplying DAC monotonic performance over a 40 to 1 reference current range is possible. The DAC0800 also features high compliance complementary current outputs to allow differential output voltage of 20 Vpp with simple resistor loads as shown in FIGURE 8-1.



8. D/A Converter



FIGURE 6-1. DAC0800 BLOCK DIAGRAM

### 8-2. D/A Converter Interface



# 1. DC Motor

Purpose

Display the speed of DC motor.

|  | М | 0 | t | 0 | r | S | р | е | е | d |  |  |
|--|---|---|---|---|---|---|---|---|---|---|--|--|
|  |   |   | 0 | 0 | 0 | R | Ρ | М |   |   |  |  |

Connect between P3 and P6 cable.

Adjust the JP5 switch as following figure.





🖄 C:\MDA\WinZ80\ASM\DAC1.SRC

# 9. A/D Converter

#### 9-1. A/D Converter Specification

General Description :

The ADC0800 is an 8-bit monolithic A/D converter using P-channel ion-implanted MOS technology. It contains a high input impedance comparator 256 series resistors and analog switches control logic and output latches. Conversion is performed using a successive approximation technique where the unknown analog voltage is compared to the resister tie points using analog switches. When the appropriate tie point voltage matches the unknown voltage, conversion is complete and the digital outputs contain an 8-bit complementary binary word corresponding to the unknown. The binary output is TRI-STATE to permit busting on common data lines.





Figure 9-1. ADC0804 Block Diagram





#### 1. Volt meter (ADC Value)



Display the ADC value on LCD. Rotate the VR.

| C | 0 | n | ٧ | е | r | s | i | 0 | n | D | а | t | а |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   | ۷ | R |   | : |   | 0 | 0 | 0 |   |   |   |   |

Adjust the JP6 and DIP3 switches as following figure.

JP6

DIP3



| <u> </u> | 10 |  |
|----------|----|--|
| N        | ∠  |  |
| ω        |    |  |
| 4        |    |  |
|          |    |  |

Source file

🖄 C:\MDA\WinZ80\ASM\ADC1. SRC

#### 2. Volt meter ( Voltage )

Purpose

Display the VR value on LCD. Rotate the VR.

| ۷ | 0 | Ι | t | а | g | е | M | е | t | е | r |  |
|---|---|---|---|---|---|---|---|---|---|---|---|--|
|   |   | 0 |   | 0 | 0 | 0 | ۷ | 0 | I | t |   |  |

Adjust the JP6 and DIP3 switches as following figure.

JP6

DIP3



|   | 0 |  |
|---|---|--|
| N | 2 |  |
| ω |   |  |
| 4 |   |  |

Source file

🖄 C:\MDA\WinZ80\ASM\ADC2. SRC

#### 3. DA to AD

Purpose

Display DA output and ADC value on LCD

| D | Α |   |   | A | D |   |   |  |
|---|---|---|---|---|---|---|---|--|
| 0 | 0 | 0 | 0 |   | 0 | 0 | 0 |  |

Connect between P3 and P6

Adjust the JP4, JP5, JP6 and DIP3 switches as following figure.



#### 4. Thermistor

Purpose

Display the VR value on LCD. Rotate the VR.

| ۷ | 0 | Ι | t | а | g | е | M | е | t | е | r |  |
|---|---|---|---|---|---|---|---|---|---|---|---|--|
|   |   | 0 |   | 0 | 0 | 0 | ۷ | 0 | I | t |   |  |

Adjust the JP6 and DIP3 switches as following figure.



DIP3



|   | 0 |
|---|---|
| N | 2 |
| ω |   |
| 4 |   |
|   |   |

Source file

🖄 C:\MDA\WinZ80\ASM\ADC4. SRC

# 10. Stepping Motor Control

#### 10-1. Stepping Motor Specification

The stepping motor is a device which can transfer the incoming pulses to stepping motion of a predetermined angular displacement. By using suitable control circuity the angular displacement can be made proportional to the number of pulses. Using microcomputer, one can have better control of the angular displacement resolution and angular speed of a stepping motor. In the past few years the stepping motor has improved in size reduction, speed and precision. Stepping motor will have wider applications in the future.

Stepping motors are suitable for translating digital inputs into mechanical motion. In general, there are three types of stepping motor:

- (1). VR( Variable Reluctance ) stepping motors
- (2). Hybrid stepping motors
- (3). PM( Permanent Magnet ) stepping motors

Table 10-1. Stepping motor characteristics comparison

| Motor type<br>Characteristics | PM   | VR   | Hybrid |
|-------------------------------|------|------|--------|
| Efficiency                    | High | Low  | High   |
| Rotor Inertia                 | High | Low  | Low    |
| Speed                         | High | High | Low    |
| Torque                        | Fair | Low  | High   |
| Power O/P                     | High | Low  | Low    |
| Damping                       | Good | Poor | Poor   |
| Typical                       | 1.8° | 7.5° | 0.18°  |
| Step                          | 15°  | 15°  | 0.45°  |
| Angle                         | 30°  | 30°  |        |

#### 10. Stepping Motor Control

Figure 10-1 is used to explain the operation of simplified stepping motor  $(90^{\circ}/\text{step})$ . Here the A coil and B coil are perpendicular to each other. If either A or B coil is excited( a condition which is known as single-phase excitation), the rotor can be moved to  $0^{\circ}$ ,  $90^{\circ}$ ,  $180^{\circ}$ ,  $270^{\circ}$ degree position depending on the current's ON/OFF conditions in the coils, see FIGURE 10-1(a). If both coils have current flowing at the same time, then the rotor positions can be  $45^{\circ}$ ,  $135^{\circ}$ ,  $225^{\circ}$ ,  $315^{\circ}$ degrees as shown in FIGURE 10-1(b). This is known as two-phase exception. In FIGURE 10-1(c), the excitation alternates between 1-phase and 2-phase, then the motor will rotates according to  $0^{\circ}$ ,  $45^{\circ}$ ,  $90^{\circ}$ ,  $135^{\circ}$ ,  $180^{\circ}$ ,  $225^{\circ}$ ,  $270^{\circ}$ ,  $315^{\circ}$ sequence. This is 1-2 phase excitation, each step distance is only half of step movement of either 1-phase or 2-phase excitation.

Stepping motor can rotate in clockwise or counter-clockwise direction depending on the current pulse sequence applied to the excitation coils of the motor. Referring to the truth tables in FIGURE 10-1(a), (b), (c). If signals are applied to coil A and B according to Step 1,2,3,4,5,6,7,8, then counter-clockwise movement is achieved. And vice-versa is true. If signals are applied according to step 8,7,6,5,4,3,2,1, then clockwise movement is achieved.

Commercial stepping motor uses multimotor rotor, the rotor features two bearlike PM cylinders that are turned one-half of tooth spacing. One gear is south pole, the other gear is north pole. If a 50-tooth rotor gear is used, the following movement sequences will proceed.

A. single-phase excitation:

The stepping position will be  $0^{\circ}, 1.8^{\circ}, 3.6^{\circ}, \dots$  358.2°, total 200 steps in one round.

B. two-phase excitation:

The stepping positions will be  $0.9^{\circ}$ ,  $2.7^{\circ}$ ,  $4.5^{\circ}$ , .....  $359.1^{\circ}$ , total 200 steps in one round.

C. single-phase and two-phase excitations combined:

The stepping positions will be  $0^{\circ}$ ,  $0.9^{\circ}$ ,  $1.8^{\circ}$ ,  $2.7^{\circ}$ ,  $3.6^{\circ}$ ,  $4.5^{\circ}$ , .....  $358.2^{\circ}$ ,  $359.1^{\circ}$ , total 400 steps in one round.



FIGURE 10-1. Half-step and full-step rotation

Since stepping motor makes step-by-step movement and each step is equidistant, the rotor and stator magnetic field must be synchronous. During start-up and stopping, the two fields may not be synchronous, so it is suggested to slowly accelerate and decelerate the stepping motor during the start-up or stopping period.



## 10-2. Stepping Motor Interface

#### 1. Stepping motor

Purpose

Stepping motor test - 1 phase magnetization



՝ C:\MDA\WinZ80\ASM\STEP1.SRC

### 2. Stepping motor control

## Purpose

| Keypad | Function         |
|--------|------------------|
| 0      | Left 45 degree   |
| 1      | Right 45 degree  |
| 2      | Left 90 degree   |
| 3      | Right 90 degree  |
| 4      | Left 180 degree  |
| 5      | Right 180 degree |
| 6      | Left Revolution  |
| 7      | Right Revolution |
| STP    | Stop             |
| +      | Speed Up         |
| -      | Speed Down       |



՝ C:\MDA\WinZ80\ASM\STEP2. SRC

Appendix



# Appendix.

- 1 MDA-WinZ80 Memory Circuit
- 2. MDA-WinZ80 ROM Writer Circuit
- 3. MDA-WinZ80 I/O Circuit
- 4 MDA-WinZ80 External Connector



# 1. MDA-WinZ80 Memory Circuit



# 2. MDA-WinZ80 ROM Write Circuit

### 3. MDA-WinZ80 I/O Circuit



#### Appendix





MDA-WinZ80 MANUAL

# 4. MDA-WinZ80 External Circuit



| U31(74LS138) | CON10    | CON3     | CON10-1  |
|--------------|----------|----------|----------|
| Y0           | 20 - 23H |          | 20 - 23H |
| Y1           |          | 24 - 27H | 24 - 27H |
| Y2           |          |          | 28 - 2BH |
| Y3           |          |          | 2C - 2FH |
| Y4           |          |          | 30 - 33H |
| Y5           |          |          | 34 - 37H |
| Y6           |          |          | 38 - 3BH |
| Y7           |          |          | 3C - 3FH |

< Memory map >

| Port (U32)       | 8255A Address (U32) |
|------------------|---------------------|
| A port           | 24H                 |
| B port           | 25H                 |
| C port           | 26H                 |
| Control Register | 27H                 |



Tel : +82-2-2109-5964 Fax ; +82-2-2109-5968 E-mail ; info@midaseng.com Web ; www.midaseng.com

> MDA-WinZ80 User Guide Serial No. 090601

Printed in the Korea