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ABSTRACT Owing to spatiotemporal flexibility of electrical vehicles (EVs), EVs will introduce new
synergies between the urban traffic system (UTS) and power distribution system (PDS). As amobile charging
load, arranged EV charging can not only provide more flexibility for power system optimization, but also
influence the traveling time and other mobility-related characteristics of EVs. However, there are few studies
that consider the impact of the coupling facility (such as parking lot with charging facilities) on UTS
reliability, as well as the reliability of UTS and PDS (referred to as PTS). Therefore, it is necessary to extend
the original research scope to incorporate the traffic system simulation into the collaborative analysis of the
coordinated PTS. This paper first develops a new simulation framework for the coordinated UTS and PDS
coupled with commercial charging lots (CLs). Then, a new method is illustrated for measuring the reliability
of a coordinated UTS and PDS. At last, a novel unified PTS reliability index considering both UTS and PDS
reliability indices are presented.

INDEX TERMS Electric vehicles (EVs), power distribution system (PDS), urban traffic system (UTS),
commercial charging lots (CLs), reliability assessment, simulation of urban mobility (SUMO).

NOMENCLATURE
A. INDICES AND SETS
NT Total branches in the urban traffic system
NCL Total number of charging spots in one CL
p, q Index of nodes in urban traffic system
j Index of vehicles
k Index of charging spots in the CL
r Index of PTS reliability assessment iteration
i Index of substep in SUMO simulation
UTS Urban traffic system
PDS Power distribution system
PTS Power and transportation system
CLs Charging lots
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B. PARAMETERS
SOCmax Battery’s upper charging limit
SOCmin Battery’s lower charging limit
η Charging efficiency
P Constant charging power of EVs
Cj Capacity of jth EV
CP Energy is not supplied cost of PDS
CT Travel time cost of UTS

C. VARIABLES
Lpq Edge between nodes p and q
lpq Length of edge between nodes p and q
jpq Vehicle that has traveled Lpq
npq Total number of vehicles that traveled Lpq
ninpq Total number of vehicles that have entered Lpq
noutpq Total number of vehicles that reside outside

Lpq
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TT freepq Free-flow travel time for Lpq
PTTpq Planning travel time for Lpq
BIpq Buffer travel time for Lpq
TTIpq Travel time index for Lpq
TT 95%

pq 95th percentile travel time for Lpq
PTT avepq Average planning travel time for Lpq
BIavepq Average buffer travel time for lpq
TTIavepq Average travel time index for Lpq
TT 95%,ave

pq Average 95 percentile travel time for Lpq
TT pq Mean travel time for Lpq
VMTpq VMT for Lpq
tarrj Time of arrival at CL for jth vehicle

tdepj Time of departure from CL for jth vehicle
tj Time point for jth vehicle charging at CL
SOCarr

j Initial SOC when jth EV arrives at CL
SOC j SOC of jth vehicle charging at CL

Other notations are defined in the text.

I. INTRODUCTION
With the continuous growth of the world population and
the improvement of living standards in developing coun-
tries, the number of vehicles has been soaring all over the
world. This phenomenon causes a great burden to the traffic
congestion in commuting hours, as well as air pollution[1].
The deployment of electric vehicles (EVs) provides a unique
opportunity to deal with these problems. At the same time,
the rapid development of EVs will bring new challenges
to the management of both the urban traffic systems (UTS)
and the power system (PDS) [2].

Existing studies on the correlation between UTS and PDS
are briefly reviewed. In terms of the power system, the spa-
tiotemporal flexibility of EV charging has been considered
in recent years. Arranged EV demand makes it possible to
provide ancillary services with higher quality [3], regulation
of voltage [4], load balancing [5] for system integrated with
renewable energy resources, and maintain the peak power[6].
According to the historical vehicle data[7], most studies
model the probability distribution of daily trip distance, arrive
time, and initial SOC of EVs [8]. Reference [9] uses queuing
theory to model the drivers at each charging facility and
predict the average queuing time and possible waiting time.
Moreover, some studies also use data to predict more explicit
route for vehicles. GPS-enabled trajectory data is used to
provide the recorded route of vehicles in [10]. Recently, some
methods based on machine learning algorithm have been pre-
sented to model and predict the EVs traveling behavior. Ref-
erence [11] presents a new clustering-based short-term load
forecasting method using the deep neural network to forecast
the household and EV demand. Most studies use the modeled
EV traveling behavior to evaluate the complicated interac-
tions among different types of EVs and chargers [12], to solve
the charging station ‘‘overstay’’ problem [13], to determine
the location of public charging stations [10], and to optimize

the operation cost of the power system considering different
scenarios of EVs penetration [14].

In terms of the transportation system, it can leverage spa-
tiotemporal flexibility of EV to optimize the stopping place
for vehicles and manage traffic flow during afternoon com-
muting rush hours. EV drivers can reduce their charging costs
by using optimal strategies based on the provided incentives
from the power system operator [15]. Reference [16] consid-
ers the energy consumption in the area of travel prediction.
Reference [17] proposes a collaborative algorithm with two
non-profit entities, each representing one of the coupled net-
works in the market. The distribution of locational marginal
pricing is recalculated and adapted continuously according to
the users’ trips and behavior in [18].

As described above, EVs will introduce new synergies
between the UTS and PDS (referred to as power and trans-
portation system, PTS). Interdependent power and transporta-
tion network operators can leverage the flexible nature of this
energy demand [19] or combine the wireless communication
technology to improve the reliability of the corresponding
networks [20], [21]. Therefore, it is necessary to extend the
original research scope to incorporate the traffic system sim-
ulation into the collaborative analysis of coordinated PTS.

However, few studies take the impact of the coupling
facility on the reliability of the UTS or the coordinated PTS
into consideration. Reliability indices of the power system
are considered in [14], [22]. References [23] and [24] accept
some driving-related factor to meet the requested quality
of charging service. Based on the Wardrop user equilib-
rium (UE) that models the EV traffic flow [25], the static
travel simulation is time-divided to approximate the realistic
travel simulation under congestion [26]. Reliability studies
of urban transportation and power distribution systems in the
above references only consider the reliability of the power
system or evaluate the reliability from the perspective of
the EV charging service requirement. The reliability of UTS
in the system level needs to be evaluated. What’s more,
the interaction of EVs with other traffic factors have not
been taken into account [24]. Explicitly, the circumstance
described in the original paper, such as the vehicles breaking
on the road and the drivers changing original destination to
another charging station, would force other vehicles (includ-
ing EVs) to change the original routes. The changed routes
of other vehicles have not been considered. What is more,
the reliability indices evaluated in this paper are all indices
referring to EVs. The impact of EVs on the integrated system
has not been clarified.

From the general perspective, the commercial CLs can
attract vehicles, including EVs, to park and charge. Conse-
quently, the parking pattern not only influences traffic flow
but also provides an additional option for improving the
reliability of PDS. In terms of the UTS, the plan of commuters
to park at a CL relieves congestion pressure on the traffic
system during commuting rush hours because this option
makes more room for other motor vehicles on the road [27].
In terms of the PDS, EVs charging at commercial CLs will
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charge less at home. Compared with charging at home only,
additional charging places, such as commercial CLs, decrease
the charging demand at home.

However, the evaluation of the impact of CLs on the
reliability of PTS is a complex problem. The reason is that
the static path does not change with the time under traffic
congestion [26]. Furthermore, the high randomness of EVs
is derived from the variability of the traffic system operation
condition, such as traffic accidents and real-time road man-
agement. EV mobility characteristics represent composite
factors, such as the scenario-related road conditions, driver
behaviors, as well as the traffic control strategies [28]. The
impact of these composite factors is difficult to describe by
mathematical formulations.

To deal with this problem, real traffic system simulation is
an excellent selection, which not only provides the real-time
EV charging load profile but also considers traffic condi-
tions in a realistic situation. Simulation of Urban Mobility
(SUMO) [28] is a popular microscopic road traffic simulator.
SUMO is more precise than macroscopic models, especially
when individual routes need to be simulated [29]. Not only
the moving vehicles but also traffic lights, pedestrians, buses,
and bicycles, are involved in SUMOmicroscopic simulation.
Moreover, in SUMO, the movement of individual vehicles
is simulated to be more consistent with real scenarios based
on car-following [30] and lane-changing [31] theories. The
element modeling mechanism of SUMO allows researchers
to consider real traffic scenarios. Therefore, in order to eval-
uate our purposed problem, it is the right choice for us to use
SUMO to do the UTS simulation.

The contributions of this paper are as follows:

1) A new reliability assessment framework is built for the
cooperated PTS with CLs.
Considering the function of CL in the UTS and PDS,
we present a new framework to evaluate the impact of
the CL on coordinated PTS reliability in system-level.

2) A novel reliability evaluation method for cooperative
PTS with CLs is presented.
Time-varying traffic flow under congestion is realized
by SUMO tomodel more realistic scenarios in the traffic
system. SUMO cooperating with MATLAB simulates
the process of coordinated PTS reliability assessment
during afternoon commuting rush hours.

3) A new unified reliability index for coordinated PTS with
CLs is proposed.

The reliability indices of UTS and PDS in system-level are
introduced to quantify the reliability of the integrated system.

The remainder of this paper is organized as follows: The
framework andmain implementation steps for this framework
are organized in Section II. The interaction model between
the UTS and PDS is first discussed in Section III, and then
traffic system simulation by SUMO and reliability index
analysis are discussed. The reliability estimation method of
the power system is also presented in this section. A novel
reliability assessment approach for a coordinated PTS is

FIGURE 1. Proposed PTS framework with coordinated UTS and PDS.

FIGURE 2. The interface between the UTS (SUMO) and PDS (MATLAB).

proposed. Numerical studies are demonstrated in Section IV,
and conclusions are drawn in Section V.

II. FRAMEWORK OF THE PROPOSED METHOD
A. FRAMEWORK OF COORDINATED PTS WITH CLS
In the proposed framework, the UTS and PDS, coupled EV
charging lots, are referred to as a coordinated PTS. CLs
play an essential role in improving the reliability of both
systems; in particular, CLs located in commercial areas can
give more benefits for PTS coordination. Therefore, in this
paper, the UTS and PDS are coordinated through commercial
area CLs. The reliability of the two systems is estimated first,
and that of the coordinated PTS is considered accordingly.
The cooperation of the integrated UTS and PDS is simulated
in parallel by SUMO and MATLAB, and then, reliability
indices that have been widely used for decades in both traffic
and power systems are chosen to measure the performance of
each system. Finally, a novel unified indicator, the reliability
cost of the coordinated PTS (RCPTS), is proposed to quantify
the performance of the coordinated PTS. In this paper, all
CLs refer to CLs built-in commercial areas. Figure 1 shows
a representation of the PTS coordination coupling a UTS and
PDS with CLs.

B. OUTLINE OF THE PROPOSED FRAMEWORK
REALIZATION
From the above, it can be indicated that the reliability of a
PTS relies on the coordinated operation of the UTS and PDS.
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However, the major difficulties in assessing the reliability
process lie in the following two aspects: 1) the coordinated
PTS operation needs to cooperate on a short-term scale
between the UTS and PDS simulations and 2) a unified PTS
reliability indicator that can comprehensively describe the
coordinated systems needs to be developed.

As illustrated in figure 2, the proposed framework realiza-
tion approach is constructed by the following 4 steps:

1) UTS Simulation: Use SUMO to generate each edge
travel time index from the travel time captured on each
edge and then obtain the averaged indices for each edge
by considering the overall system information as the
weight.

2) PDS Simulation: Use Monte Carlo simulation (MCS)
to sample the working status of the branches for the
PDS. MCS in MATLAB gives feedback to SUMO on
the state of feeders that are interconnected by the CLs.
Then, SUMO determines whether EVs can charge at a
CL or not. The charging demand data are then provided
as feedback to MATLAB from SUMO and added to the
original bus load.

3) Coordinated System Simulation: The UTS and PDS
are simulated simultaneously at specific intervals.
MATLAB sends the working status of the charg-
ing facilities, and SUMO sends the real-time EV
charging data to MATLAB at the same simulation
interval. The bi-directional communication between
SUMO and MATLAB occurs via a traffic control
interface.

III. RELIABILITY ASSESSMENT OF THE COORDINATED
PDS AND UTS
A. BI-DIRECTIONAL COMMUNICATION BETWEEN UTS
AND PDS
In this paper, we propose an interactive simulation platform
for evaluating the reliability of the coordinated PTS using
MATLAB and SUMO. In this approach, the CLs are used
as storage for traffic flow, including EVs, coupling the UTS
and PDS. The CLs, with this function, will influence the
travel time reliability and EV charging performance as well.
In our work, a simulation process for the coordinated PTS
reliability assessment is presented and illustrated in figure 3.
The proposed process uses TraCI4MATLAB[32] which is
a traffic control interface (TraCI) in MATLAB that realizes
bidirectional communication, which allows the power system
reliability assessment written in MATLAB to interact with
SUMO.

We focus on the afternoon commuting rush hour (i.e.,
16:00 - 21:00). The steps in the MCS begin at 16:00. SUMO
and MATLAB will run in parallel until the one-loop simula-
tion ends up at 21:00.

As shown in figure 3, the branch states are sampled at the
beginning of each loop, and the topology of the PDS network
is updated accordingly. MATLAB then checks whether there
is load curtailment. Updated charging load data will be sent

FIGURE 3. Reliability assessment of coordinated PTS.

as feedback as the SUMO simulation runs. Precisely, as soon
as SUMO starts, in each simulation step, TraCI4MATLAB
will extract the EV charging load, as well as other related
and useful geographic information from SUMO, and send
it to MATLAB. The EV charging load will be added to the
original load of a bus to generate the updated bus load profile.
In each loop, once there is an outage, whether to cut the load
is checked. At the end of the whole simulation, calculate the
expected energy not supplied (EENS).

During the coordinated PTS reliability analysis,
TraCI4MATLAB extracts useful information from one sys-
tem and sends it to another. Specifically, after the net-
work branch states are sampled, TraCI4MATLAB extracts
the working status of the charging facilities to SUMO.
Then, SUMO sets the charging status of the parked
EVs. The charging load amount is extracted from SUMO
by TraCI4MATLAB to calculate the extra EV charging
demand at the CLs. Regarded as an information interface,
TraCI4MATLAB is used to translate the EV time-varying
routing to the PDS time-varying charging load. Furthermore,
as the EV charging strategy affects the EV charging demand
for the PDS, TraCI4MATLAB also sends the EV charging
strategies at the CLs to realize the EV coordinated charging
strategy in SUMO.

The next loop, which represents the afternoon commut-
ing rush hour of the next day, runs the same process of
cooperation between the PDS MATLAB simulation and the
UTS SUMO simulation. Because we aim to estimate the
impact of CLs in commuting rush hours, we consider only
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16:00 - 21:00 on weekdays. We repeat the same process until
the PDS MCS meets the end criterion.

Next, the reliability assessments of the UTS and PDS are
presented in parts B and C, respectively. The coordinated
PTS assessment is proposed in part D. Finally, the simple
coordinated charging strategy is briefly presented in part E.

B. TRAVEL TIME RELIABILITY OF UTS
Travel time reliability (TTR) measures the extent of an unex-
pected travel delay in traffic [33]. A reliable transportation
system provides users with a consistent range of predict travel
times [34]. Therefore, TTR is a critical performance indicator
for a UTS. The most effective methods of measuring TTR
are the 95th percentile travel time (TT95%), travel time index
(TTI), buffer index (BI), and planning time index (PTI).
TT95% estimates delays on specific routes during the most
massive traffic days. The TTI is a measure of how long,
on average, travel times will be during congestion hours.
The BI represents the additional time travelers must add to
their average travel time to ensure on-time arrival. The PTI
represents the total time a traveler should allow to ensure on-
time arrival. The TT95%c, the TTI, the PTI, and the BI are all
used to quantify the degree of late time arrivals.

In order to estimate the impact of CLs on UTS travel
time reliability, the edge-based indices calculated from the
metadata captured on edges are presented first, and then,
average edge indices are used to reflect the TTR performance
of the traffic system. The TT 95%

pq can be obtained from the
collected data directly, and the other three indices [34] are,

TTIpq =

npq∑
j=1

TTpq,j

npq
(1)

PTIpq =
TT 95%

pq

T freepq
(2)

BIpq =
TT 95%

pq − TTpq

T freepq
× 100% (3)

where TTpq,j is the travel time of the jth vehicle on Lpq and
TT pq is the mean travel time from the vehicle travel time data
on Lpq.

For Lpq, Tfree
pq is the time that one vehicle spends traveling

on Lpq at the free-flow speed. We assume that the maximum
speed for each vehicle in the UTS is 30 miles per hour and
that 60% of the maximum speed is the free-flow speed. Thus,
the travel time of one vehicle at the free-flow speed on Lpq is
TTfree

pq . In contrast to the other indices, the BI is expressed as
a percentage.

Accordingly, the indices calculated above only quantify
network-partial time-consumer attributes, while the network-
wide average indices estimate the weighted average UTS reli-
ability performance, especially considering the interactions
and correlations among all edges. Therefore, these weighted
indices are more useful for analyzing the impact of commer-
cial CLs on the UTS.

Here, the vehicle miles traveled (VMT)[35], [36] on each
edge is accepted as the weight of each edge. The VMT is
calculated as the sum of miles traveled by each vehicle. For
one vehicle, the VMT on one specific edge is the length of
that edge. In one specific period, many vehicles will travel
across this edge. Therefore, for one edge, theVMT, calculated
by multiplying the corresponding number of vehicles with
the edge length, is the weighting factor used to calculate the
edge-averaged TTR indices as follows,

VMTpq = lpq

nvehpq∑
jpq=1

tpq,j (4)

In this paper, we calculate VMTpq by using SUMO simu-
lation results[37], where the SUMO simulation-based VMTpq
is expressed as,

VMTpq = (ninpq + n
out
pq )× lpq (5)

Then, the network-wideweighted edge-averaged indices TTI,
PTI, and BI are,

TT 95%,ave
pq =

TT 95%
pq × VMTpq
NT∑
lpq=1

(VMTpq)

(6)

TTI avepq =
TTIpq × VMTpq

NT∑
lpq=1

(VMTpq)

(7)

PTI avepq =
PTIpq × VMTpq

NT∑
lpq=1

(VMTpq)

(8)

BI avepq =
BIpq × VMTpq
NT∑
lpq=1

(VMTpq)

(9)

figure 4 shows the simulation process to assess the UTS
reliability when vehicles, including EVs, plan to stop and
charge at CLs.
1) Build the SUMO Simulation Data: Specified scenarios

are built using traffic flow data (e.g., OD matrix) [38]
for the UTS. More detailed information is provided in
Section IV.

2) Data Collection for SUMO: Traffic flow data, such
as vehicle speed and vehicle location, are captured by
SUMO edge sensors during the simulation. Each edge is
equipped with point-based sensors to capture the traffic
data to estimate travel times and TTR.

3) Calculate Reliability Indices: After simulation in
SUMO, (1), (2), and (3) are used to calculate the reli-
ability indices based on travel times on edges and then
calculate the edge-averaged indices.We focus on TTR in
the afternoon commuting rush hour (16:00-21:00), and
individual traffic data are used to calculate the related
travel time.
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FIGURE 4. Travel time reliability assessment of UTS.

FIGURE 5. Power distribution system reliability assessment.

C. DRELIABILITY OF PDS
MCS is applied in this paper to sample the PDS topology
status and is presented in figure 5 [39]. The procedure for
sampling the system state is illustrated in the following steps,

1) Obtain the reliability data, such as the failure rate and
failure duration for each component;

2) Specify the initial state. The simulation starts from the
normal system state in which all components are in work
status;

3) Assume the times to failure for all branches are all have
an exponential distribution [39], [40]. Generate random
numbers [0–1] for each component and determine its
time to failure (TTF) according to the failure distribution
of each element.

4) Find the branch with the minimum TTF [40];
5) Select this branch as the failed component. Because the

study period is short in this paper, which is just the length
of the afternoon commuting rush hours, we assume that
the failed component could not be repaired during these
hours;

6) Update the varying EV charging load in each substep i,
and add it to the original bus load data;

7) Evaluate the energy not supplied (ENS) in each substep.
If there is no branch out of work, the ENS is set to zero;

8) Checkwhether theMCS achieves convergence. If it does
not meet the simulation ending rules, proceed to Step
3); otherwise, the simulation process is terminated, and
proceed to Step 9);

9) Calculate the reliability indices, expected energy not
supplied (EENS) [39],

EENS =

Nr∑
r=1

Ni∑
i=1

ENS

Nr × Ni
(10)

where Ni is the number of substeps in each iteration and
Nr is the number of iterations during the simulation.

D. COORDINATED PTS RELIABILITY ASSESSMENT
After completing the simulations, we assess the reliability of
the coordinated PTS. In a real scenario, EVs can choose to
park at any location and time. Therefore, we adjust the PDS
reliability index accordingly. To obtain a unified indicator for
the coordinated PTS, we present novel indices, the expected
energy not supplied cost (EENSC) and the expected travel
time cost (ETTC). Both indices are stated as,

EENSC = CP
× EENS (11)

ETTC = CT
×

NT∑
lpq=1

(TTI avepq ) (12)

where CP is the energy not supplied cost for the PDS and
CT is the travel time cost for the UTS. To verify the impact
of CLs on the coordinated PTS reliability, the scenario with
no CLs is the base case. Additionally, the differential values,
1EENSC and1ETTC , are the corresponding reliability cost
indices for the two systems as expressed in (13-14). Here, for
the scenario with no CLs in the PTS, EENSnCL , and ETTInCL

represent the indices for the PDS and UTS, respectively.
After converting both system indices into costs, the

expected reliability cost for the PTS (ECPTS), shown in (15),
is chosen as a novel reliability index to estimate the impact of
CLs on improving the reliability of the coordinated PTS.

1EENSC = EENSCnCL
− EENSC (13)

1ETTC = ETTCnCL
− ETTC (14)
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ECPTS = 1ETTC +1EENSC (15)

E. CHARGING STRATEGY IN A CL
Assume there are NCL charging spots in one CL and every
spot is associated with a charging pole where both conven-
tional vehicles and EVs can park. The SOCj of the jth EV
while parking and charging is expressed as [41],

SOCj = SOCarr
j +

ηP(tj − tarrj )

Cj
(16)

where Cj is the EV battery capacity and SOCj is the real-time
actual battery charge of the jth EV in the CL. Each EV is
charging as soon as it is parked in the CL at time tarrj . When
the jth EV has arrived at the CL, the initial SOC of the jth

EV is SOCarr
j . SOCmax and SOCmin are the corresponding

upper and lower SOC limits, respectively. If η is the charging
efficiency, the EV charging constraints are stated as,

tj ∈ [tarrj , tdepj ]

0 ≤ tj − tarrj ≤ tdepj − t
arr
j

SOCmin
j ≤ SOCj ≤ SOCmax

j (17)

In this paper, SOCmin is the minimum charge state of one
EV and is set at 20% of the battery capacity; SOCmax is set at
80%.

There are nCL charging spots available at one specified
time. The charging status of the jth vehicle, Sj, is a binary
variable at time t: Sj = 1 if the jth vehicle is charging; Sj = 0
otherwise. Expressly, si is set to 0 if:

1) The EV is not in the CL;
2) The EV is charged to 80% of its battery capacity once

parked in the CL. In this case, the EV may still be con-
nected to the charging pole but will not be charged once
wholly charged. For conventional vehicles, the charging
status is 0 during the simulation.

3) The total charge is constrained due to PDS forced out-
ages. For the jth connected EV, the EV charging will be
cut off if the PDS cannot supply the required energy.

The charging status is set to 1 if the EV is parked in the CL
and its SOCj is less than 80%. Besides, EVs depart from the
CL for the next destination, where they will be fully charged
again. By applying this strategy in SUMO, EVs will become
charged to SOCmax while satisfying all constraints.

IV. CASE STUDY
In this work, SUMO is used to simulate traffic scenarios
and obtain related data to calculate UTS reliability. SUMO
simulates how a given traffic demand that consists of single
vehicles moves through a given road. Here, SUMO is purely
microscopic, in which each vehicle is modeled explicitly with
its own route and moves individually through the network.
Except for vehicles as the main simulation object, other
components in the traffic system should also be modeled in
SUMO as additional imported metadata. SUMO could be

FIGURE 6. Case study topology for UTS and PDS.

used to simulate traffic system microscopic behavior by con-
sidering almost all traffic system components. Other objects
in the UTS, such as parking lots, intersections and traffic
signals, are also configured and imported in SUMO. Both
EVs and conventional vehicles are permitted to park in CLs.

In the case studies, the proposed framework assesses the
impact of CL position on the coordinated PTS reliability.
Different UTS edges located with CLs and different PDS
buses connected to CLs are estimated. Various case studies
are simulated, and detailed results are presented. UTS traffic
flow is preconfigured in SUMO, and the load penetration
profile [42] is used to build the PDS weekday load data.
EV charging demand data in SUMO are updated in each
SUMO simulation step. Here, the performance of the UTS
and PDS without CLs is built and simulated first regarded
as the base case for all reliability assessments. In the base
scenario, the TTR indices for each edge are calculated. Then,
CLs with charging spots are configured according to their
capacity and locations and imported in SUMO for the other
different scenarios. Here, we assume drivers choose to park
in CLs in the afternoon commuting rush hours. A coordinated
PTS coupled with a CL is shown in figure 6.

A. UTS TRAVEL TIME RELIABILITY
The Sioux Falls traffic network [43], chosen as the UTS
model in this paper, has 24 nodes and 76 edges, which are
illustrated in figure 6. For each UTS edge, there are two
lanes with similar geometry. The speed limit in the UTS is
set at 30 mph. Point-based sensors are located on each edge
to capture continuous data to estimate the UTS performance.
We also model certain factors as fixed, such as static traffic
control strategies for traffic lights and the movement of indi-
vidual vehicles.

System-level indices are evaluated by applying the process
described in Section III. In this section, we calculate the PTI
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FIGURE 7. PTI and BI for each edge during afternoon commuting rush
hours.

and BI for all UTS edges in the base scenario and show the
results in figure 7. As the PTI is related to the TT95% and
TTfree, the BI is a function of TT, so we choose the PTI
and BI to be representatives to find the edge with the worst
traffic condition. As shown in figure 7, edges with a higher
PTI also have a higher BI. Edges 25, 43, 51, and 52 have the
worst PTI and BI compared with the other edges, which are
6.98, 1.75, 2.89, and 6.33 and 170%, 91%, 120%, and 213%,
respectively.

To estimate the impact of CL position on the coordinated
PTS reliability, we consider CLs with the same capacity in
different edges in SUMO. According to the results shown
in figure 7, we built four scenarios where four CLs are located
beside edges 25, 43, 51, and 52, respectively.
Case A: Some vehicles that pass edge 25 in their original

route park at the CL belonging to edge 25.
Case B: Some vehicles that pass edge 43 in their original

route park at the CL belonging to edge 43.
Case C: Some vehicles that pass edge 51 in their original

route park at the CL belonging to edge 51.
Case D: Some vehicles that pass edge 52 in their original

route park at the CL belonging to edge 52.
In each scenario, we estimated the impact of CL location

by comparison with the results without the respective CL and
present the results in Tables 1 and 2 and figures 8-11.

Compared with the base case, it can figure out the indices
of UTS is changing with time. First, the edge-based indices
show that a CL can reduce traffic congestion. As shown
in Table 1, the variations and improvements of TT95% and
PTI are similar. It is because PTI is a linear function of the
TT95%. Compared with scenarios that CL located on other
edges, the CL located on edge 25 has a smaller impact on
itself reliability improvement. The result can also be figured
out from figure 8-11.

Meanwhile, CL along one edge can have a different impact
on the network average performance compared with the
impact on itself. For example, as tabulated in Table 1 and
Table 2, even though the CL located on edge 52 makes the
most improvement on itself edge-based reliability, the CL

FIGURE 8. Travel time for edge 25 (no CL & CL along edge 25).

TABLE 1. Comparison of edge-based indices.

TABLE 2. Comparison of average edge indices.

located at edge 52 makes less contribution to reducing
the travel time reliability of the UTS. Conversely, the CL
along edge 25 has the most impact on average reliability
indices improvement, the contribution for edge-based reli-
ability improvement is smallest. In detail, the decrease of
average edge indices which CL located at edge 25 are 7.59%,
1.59%, 10.34%, and 25%, respectively.
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FIGURE 9. Travel time for edge 43 (no CL & CL along edge 43).

FIGURE 10. Travel time for edge 51 (no CL & CL along edge 51).

FIGURE 11. Travel time for edge 52 (no CL & CL along edge 52).

Therefore, compared with the base case, some social fac-
tors, such as the demand for cheaper electricity, can attract
customers to stop at CLs and reduces the congestion on the
road in the UTS, especially in the afternoon commuting rush
hours.

B. PDS RELIABILITY ESTIMATION
Unlike conventional means of transportation, EVs can also
be charged while parked at CLs. For this reason, when EVs
choose to park at CLs, the UTS traffic conditions in the UTS
could influence the charging time and energy required for

FIGURE 12. Bus 8 (Commercial CL) total load profiles.

FIGURE 13. Bus 18 (Residential CL) total load profiles.

charging. Furthermore, choosing different electrical buses to
supply energy to the same CL has different impacts on the
PDS reliability.

In this section, we also discuss the PDS reliability consid-
ering a CL along edges 25, 43, 51, and 52, separately. The
presence of no CLs in the UTS is also considered as the base
case for the PDS reliability assessment. In order to focus on
the impact of CL implementation on the PDS, the number of
EVs is set as 35% of all parked vehicles in a CL. Additionally,
the IEEE 33-bus PDS [44] is divided into three areas repre-
senting industrial, commercial, and residential areas. Buses
8 and 9 are chosen to supply charging energy for commercial
CLs, and x bus 18 is connected with residential charging
facilities.

In each scenario, the PDS reliability assessment is esti-
mated by using the process presented in Section III. The
Chevrolet Bolt [45], one type of EV, is chosen as the EV
model built in SUMO in our simulation. Table 3 shows the
parameters of this Chevrolet EV.

Cases A to D are the 4 scenarios that are used to analyze the
impact of commercial area CLs on the PDS, and the results
are presented in Table 4. The load profiles of buses 8 and
18 are illustrated in figures 12 and 13, respectively.

As shown in Table 4, the EENS values in scenarios with
a CL are all less than the base case. It makes sense that
the reliability can be improved more by putting a load on
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TABLE 3. EV (Chevrolet Bolt) parameters.

TABLE 4. EENS for all cases.

the bus closer to the power source instead of away from the
power source. As TraCI4MATLAB extracts charging load
information every 5 min and we assume the charging load
is constant in each 5 min, we calculate the ENS in each
5 min and obtain the EENS. If we calculate the EENS for a
longer duration, the amount of EENS would be significantly
different.

As shown in figure 12, EVs parked at CLs caused a sig-
nificant load increase on bus 8. Among the four scenarios,
EVs charging at CL 52 presented the highest load increment,
as edge 52 has the enormous traffic demand in the afternoon
commuting rush hours. The residential charging load profile
shows that the demand for home charging is less than the
base case where EVs can only recharge at the residential bus.
As illustrated in figure 13, the peak load of bus 18 in some
scenarios is less than the base case. Meanwhiles, the decreas-
ing time point of residential load is slightly shifted to the left
as some EVs have charged on a commercial CL for a while.

Moreover, the residential charging load profiles might
reflect the route traffic conditions as well. The significant
increasing time of some residential bus profiles is a slightly
shifted to the right because EV drivers charged while on the
route. The result implies that shopping on the way back home
might not be a bad choice. From the perspective of customer
service, the social value of commercial CLs might need more
attention.

C. COORDINATED PTS RELIABILITY ASSESSMENT
The framework presented in section II is used here to estimate
the reliability of the coordinated PTS. Different cost values
are used to weight the loads in different functional areas in
the PDS[46]. For the UTS, the travel time cost is set to 6$/h
for drivers in the afternoon commuting rush hours. The cost
parameters for the two systems are listed below.

TABLE 5. Load and time unit costs for the PDS and UTS.

TABLE 6. Costs of all scenarios for the coordinated PTS.

The scenario where a CL is located at edge 43 has the high-
est impact on the PTS reliability, reducing a total scenario cost
of 49.969 k$. CLs located at different edges will have various
impacts on the UTS and PDS. In essence, CL at edge 52 will
save money for the PDS; however, the most economical UTS
scenario is the CL at edge 43. It may be caused by different
conditions on roads 52 and 43, even though the total number
of EVs that will choose to stop at the CL is the same. It is
because the number of conventional vehicles that choose to
travel and park in each scenario is different. In other words,
the driving behaviors of other vehicles (e.g., conventional
vehicles) have a significant impact on the reliability of the
coordinated system.

V. CONCLUSION
As a coupling component between the UTS and PDS, CL is
an essential participant that influences the reliability of future
smart cities constructed with the UTS and the PDS. This
paper focuses on the reliability evaluation of the impact of
CLs on the UTS and PDS. Considering the EV charging in a
CL, the reliability of the coordinated system is evaluated and
quantified using one unified index. SUMO realizes the UTS
real-time simulation. The MCS method is used to obtain the
state samples for branch outages in the PDS.

From the results of the comparison, it is observed that CL
has a significant impact on the system-level reliability of UTS
and PDS. What’s more, the impact on the UTS and PDS
are different. According to the coordinated PTS connection
typology given in this paper, the influence that one specific
CL has on the UTS is not the same as for the PDS. Therefore,
it is crucial to calculate the reliability of the two systems
together and an expertise unified index should be used for the
coordinated PTS. Considering the interaction among various
traffic factors, SUMO has been identified to be an excellent
selection to analyze the time-varying UTS with congestion.

Consequently, we propose an integrated novel framework
to evaluate the system-level reliability of coordinated PTS.
Further, the TraCI in MATLAB successfully realizes the
cooperation between the SUMO andMATLAB to analyze the
time-varying indices under congestion. The reliability model
and indices of a short-term coordinatedUTS and PDS provide
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the flexibility for the further reliability evaluation of a smart
city.
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