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ABSTRACT This paper proposes a controller-observer strategy for a class of second-order uncertain 

nonlinear systems with only available position measurement. The third-order sliding mode observer is first 

introduced to estimate both velocities and the lumped uncertain terms of system with high accuracy, less 

chattering, and finite time convergency of estimation errors. Then, the proposed controller-observer strategy 

is designed based on non-singular fast terminal sliding mode sliding control and proposed observer. Thanks 

to this combination, the proposed strategy has some superior properties such as high tracking accuracy, 

chattering phenomenon reduction, robustness against the effects of the lumped uncertain terms, velocity 

measurement elimination, finite time convergence, and faster reaching sliding motion. Especially, two 

period times, before and after the convergence of the velocity estimation takes place, are considered. The 

finite time stability of proposed controller-observer method is proved by using the Lyapunov stability 

theory. Final, the proposed strategy is applied to robot manipulator system and its effectiveness is verified 

by simulation results, in which a PUMA560 robot manipulator is employed. 

INDEX TERMS Uncertain Nonlinear Systems, Non-singular Fast Terminal Sliding Mode Control, Third-

Order Sliding Mode Observer, Controller-Observer Strategy, Uncertainty Compensation, Robot 

Manipulators. 

I. INTRODUCTION 

In the past decades, controlling uncertain nonlinear systems 

have been a topic that attracts attention from many 

researchers theoretically [1]–[3]. This topic is also crucial in 

practical because almost real-world systems have nonlinear 

dynamic characteristics. Generally, the dynamic model of the 

system is not clearly known because of the unknown 

uncertainties and/or external disturbances - in this paper, for 

more convenience and avoiding duplication, we will treat it 

as the lumped uncertainties. They affect directly to the 

control signal thus reduce the accuracy of the system. This 

problem has been a big challenge in control theory. To deal 

with the lumped uncertainties, numerous control strategies 

have been proposed by researchers, such as PID control [4], 

[5], adaptive control [6]–[8], fuzzy logic control [9], [10], 

neural network control [11], [12], and sliding mode control 

(SMC) [13]–[17], etc. Among them, sliding mode control 

(SMC) has been widely used in controlling uncertain system 

by many researchers because of its attractive properties such 

as fast dynamic response, robustness against the lumped 

uncertainties and a quite simple design procedure. It is 

suitable for various types of real systems such as DC-DC 

converters, motors, helicopters, magnetic levitation, aircraft, 

and robot manipulators. Besides the great benefits, the 

utilization of a linear sliding function in conventional SMC 

causes the finite-time convergence of system state error 
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cannot be guaranteed. To overcome this limitation, the 

terminal SMC (TSMC) has been proposed, in which 

nonlinear sliding functions are utilized instead of the linear 

sliding function in design procedure [18]–[20]. By carefully 

designing parameters, TSMC provides higher accuracy and 

finite-time convergence; unfortunately, the conventional 

TSMC generates two main limitations: 1) slower 

convergence time comparing to SMC; 2) singularity 

problem. Various great researches have been focused to 

overcome these drawbacks. Each problem has been solved 

by using fast TSMC (FTSMC) [21]–[23] and nonsingular 

TSMC (NTSMC) [24]–[26], separately. To handle both 

problems simultaneously, nonsingular fast TSMC 

(NFTSMC) has been developed [15], [27]–[30]. Thanks to 

the superior properties of the NFTSMC such as finite-time 

convergence, singularity elimination, high tracking error 

performance, and robustness against the lumped 

uncertainties, this controller has been extensively utilized to a 

variety of systems. However, both conventional SMC and 

NFTSMC still utilize a switching element in reaching phase 

with a big fixed sliding gain against the effects of the lumped 

uncertainties leads to the chattering phenomenon. It harms 

the system and thus reduces the practical applicability of both 

control methods. On the other hand, the design procedure 

requires real velocity information which is not usually 

available in a practical system because of saving cost and 

reducing the size of the device. 

In order to reduce or eliminate the chattering phenomenon, 

the basic idea is to reduce the sliding gain in the switching 

element. Accordingly, the lumped uncertainties must be 

completely or partially estimated and applied to the control 

signals to compensate for its effects. Consequently, the 

switching element is now used to handle the effects of the 

uncertainty’s estimation error instead of the lumped 

uncertainties; therefore, the sliding gain will be selected 

smaller than the original method to guarantee the sliding 

mode can be reached.  As a result, the chattering 

phenomenon will be reduced depending on the precision of 

the estimation method. In the literature, various model-based 

techniques have been developed to estimate the lumped 

uncertainties such as time delay estimation (TDE) [29], [31], 

neural network (NN) observer [32], [33], second-order 

sliding mode (SOSM) observer [34]–[37], third-order sliding 

mode (TOSM) observer [17], [34], [38]–[40]. Among them, 

the TDE technique can only provide the ability to estimate 

unknown inputs; therefore, an additional observer is needed 

to estimate the system velocities [29]. It leads the system 

more complex and increases the computational time. Thanks 

to the learning capability and excellent approximation, the 

NN observer can supply an arbitrary accuracy of estimation 

information. Especially, it can not only have the capability to 

approximate the lumped uncertainties but also the system 

velocities. Therefore, only one observer is employed in the 

system. However, the drawback of using learning techniques 

is that the transient performance in the existence of external 

disturbance can be reduced because of the requirement of the 

online learning procedure. Moreover, the complex training 

process of neural weights requires a large computation of the 

system thus degrades the implementation ability in a practical 

system. Compared to others, the SOSM observer stands out 

due to its capability to approximate both system velocities 

and the lumped uncertainties with the finite-time 

convergence of estimation error. Although providing high 

precision and less chattering in the estimation of velocities, 

the equivalent output injection of SOSM observer which is 

used to obtain the estimation of the lumped uncertainties is a 

discontinuous term that causes an undesired chattering 

phenomenon. Therefore, a lowpass filter is needed to 

reconstruct the lumped uncertainties from the equivalent 

output injection. However, it causes the estimation delay and 

error thus reduces the estimation accuracy of the SOSM 

observer. For that reason, the TOSM observer which has the 

ability to provide a continuous equivalent output injection, 

has been investigated. Consequently, the required filtration in 

the SOSM observer is eliminated. Compared with the SOSM 

observer, the TOSM observer provides the estimation of 

lumped uncertainties with less chattering and higher 

estimation accuracy. Moreover, the TOSM observer 

maintains almost all the advantages of the SOSM observer. 

Thanks to the superior benefits, the TOSM observer has been 

widely applied to control uncertain systems by many 

researchers [41]–[43]. In [41], the TOSM observer has been 

employed to estimate system velocities; however, the author 

did not consider the ability to approximate the lumped 

uncertainties of the observer. In contrast, an SMC combined 

with the TOSM observer is presented in [42]. Unfortunately, 

only the estimation of lumped uncertainties is considered to 

eliminate its effects. A combination of the two algorithms 

above, both obtained velocities and lumped uncertainties 

from the TOSM observer is applied to design a conventional 

SMC, in [43]. However, the actual velocity signal of the 

system is replaced by the estimated velocity which is after 

the convergence takes place instead of the original one. This 

makes the controller design simpler but leads to some 

components in the control signal not being clearly 

considered. Consequently, the system is sometimes unstable 

due to the incorrect selection of control parameters, 

especially, in the period before the convergence occurs. 

In this paper, the TOSM observer is first designed to 

estimate not only system velocities but also the lumped 

uncertainties for the class of second-order uncertain 

nonlinear systems without any filtration. Based on the 

obtained information, an NFTSMC is proposed for position 

tracking trajectory without the requirement of system 

velocities. With this control strategy, we can obtain a control 

law that provides high accuracy, non-singularity, robustness 

against the lumped uncertainties, low chattering, and finite-

time convergence without the need of velocity measurement. 

In summary, the major contributions of this paper are as 

follow: 1) proposes a NFTSM control law based on the 
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obtained information from the TOSM observer; 2) proves the 

global stability of the system when combining controller and 

observer by using the Lyapunov stability theory; 3) reduces 

the chattering phenomenon in control output signal by 

compensating the lumped uncertainties; 4) eliminates the 

requirement of velocity measurement in the system; 5) 

obtains higher performance of the NFTSM controller by 

using higher accuracy compensation method.  

This paper is constructed into seven sections. After the 

introduction, Section II declares the problem statement. In 

Section III, the design of the TOSM observer is presented, 

followed by the design method of the NFTSMC for the 

class of second-order uncertain nonlinear systems is 

proposed in Section IV. The application of the controller-

observer strategy for robotic manipulators is presented in 

Section V. In Section VI, numerical simulations on a 

PUMA560 robot manipulator are shown to prove the 

effectiveness of the proposed method. Finally, some 

conclusions are provided in Section VII. 

II.  PROBLEM STATEMENT 

Consider the following second-order nonlinear control 

systems with dynamic uncertainties and/or external 

disturbances as 

 
1 2

2 ( , ) ( , ) ( ) ( , , )

x x

x f x t g x t u t x u t

=

= + +
 (1) 

where 1

nx   and 2

nx  , 
1 2

T
T Tx x x =   denote the 

system state vectors, ( , ) nf x t   and ( , ) n ng x t   are 

given nonlinear functions, ( , )g x t is invertible, 

( , , ) nx u t   presents lumped uncertainties which 

includes the dynamic uncertainties and/or external 

disturbances, and ( , ) nu x t   denotes the control input. 

The main purpose of this paper is to design a controller-

observer strategy which can eliminate the effects of the 

lumped uncertainties without the requirement of velocity 

measurement. This control method is designed based on the 

following assumptions: 

Assumption 1: The system states are bounded at all 

time. 

Assumption 2: The lumped uncertainties
 

( , , )x u t  of 

the system (1) are bounded as 

 ( , , )x u t    (2) 

where   is a positive constant. 

Assumption 3: The first-time derivative lumped 

uncertainties ( , , )x u t  exist and are bounded as 

 ( , , )
d

x u t
dt
    (3) 

where   is a positive constant. 

III. STATE OBSERVER DESIGN AND UNCERTAINTY 
IDENTIFICATION 

First, the TOSM observer is introduced to estimate both 

system velocities and the lumped uncertainties. Then, the 

estimated information will be applied to design the control 

signal. 

A. STATE OBSERVER DESIGN 

Based on system (1), the TOSM observer is designed as [17] 

( )

( )

( )

1 1 1 1 1 1 2

1 1 1 1

3 1 1

2/3

1/3

2 2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( )

ˆˆ

x x x sign x x x

x f x t g x t u t x x sign x x z

z sign x x







= − − +

= + + − − −

= − −

 (4) 

where x̂  denotes the estimation of x  and i  denote the 

observer gains. 

Subtracting (1) to (4), we can get the estimation errors as  

 

( )

( ) ( )

( )

1 1 1 1 2

1 1

3 1

3

2/3

1/

2 2
ˆ( , , ) , , ,

ˆ

x x sign x x

x x sign x x u t d x x u t z

z sign x







= − +

= − + − +

= −

 (5) 

where ˆx x x= −  denote the system state’s estimation errors 

and the estimation errors of the lumped uncertainties are 
described as 

( )    ˆ ˆ, , , ( , ) ( , ) ( ) ( , ) ( , ) ( )d x x u t f x t g x t u t f x t g x t u t= + − + . 

Based on the Assumption 1, the estimation errors, 

( ), , ,d x x u t , are bounded as ( ), , ,d x x u t   . 

Denoting the estimation of the lumped uncertainties, 

( ), ,x u t , as ( ) ( ) ( )ˆ ˆ, , , , , , , ,x x u t x u t d x x u t =  − , the 

estimation errors (5) can be rewritten as follow  

 

( )

( ) ( )

( )1

2/3

1/

1 1 1 1

3

2 2

2

1 1

3

ˆ ˆ ˆ, , ,

ˆ

x x sign x x

x x sign x x x u t z

z sign x







= − +

= − +  +

= −

 (6) 

Now, let define ( )0
ˆ ˆˆ ˆ, , ,z x x u t z=  + , the system (6) 

becomes 

 

( )

( )

( ) ( )

1

2/3

1/3

1 1 1 2

1 1

3 1

2 2 0

0

ˆ

ˆ ˆˆ , , ,

x x sign x x

x x sign x z

z sign x x x u t







= − +

= − +

= − + 

 (7) 

The estimation errors (7) is in the standard form of 

second-order robust exact differentiator and its finite-time 

stability has successfully proved in literature [44]. 

Therefore, by selecting suitable observer gains, the 

estimation errors, 1x , 2x , and 0ẑ will converge to zero in 

finite time.  
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Remark 1: The observer gains of (4) could be selected 

based on [44] as 1/3

1 1L = , 
2/3

2 2 L = , and 3 3L =  

where 1 2 = , 2 2.12 = , and 3 1.1 =  with L = + . 

B. UNCERTAINTY IDENTIFICATION 

After the convergence process, the differentiators will 

converge to zero. In other words, the estimated states will 

achieve the real states ( 1 1x̂ x= , 2 2x̂ x= ) after finite time. 

Thus, the uncertainty estimation errors will be equal to zero, 

( ), , , 0d x x u t = . The third equation of system (7) turn into  

 ( ) ( )3 10
ˆ ˆˆ , , , 0z sign x x x u t= − +   (8) 

The lumped uncertainties can be reconstructed as 

 ( ) ( )3 1
ˆ ˆ, , ,x x u t sign x =   (9) 

Since the estimation of lumped uncertainties in (9) include 

integral element; therefore, it can be reconstructed 

immediately from the output injection term without 

requirement of lowpass filter. Thanks to this preeminent 

feature, the TOSM observer can provide higher estimation 

accuracy than that of SOSM observer, which is designed in 

Appendix A. Moreover, the finite time convergence of both 

system velocities and the lumped uncertainties is guaranteed. 

The obtained lumped uncertainties can also be utilized for 

fault detection and applied to the fault tolerant control. The 

estimated velocities are used in the control design procedure 

instead of the measured velocities in the next Section. 

Remark 2: It is worth noting that when applying the 

estimation states from the observer to the closed-loop 

controlling system, the exact estimation of system states can 

only achieve after some transient time. In another word, there 

exists additional errors in the period before the convergence 

occurs. These errors will affect in choosing the parameters of 

the controller. If it is not carefully considered, it will lead to a 

wrong selection of control parameters. Consequently, the 

system will be unstable in some cases. 

IV. DESIGN OF OBSERVER-BASED NFTSMC 
ALGORITHM 

In this part, a NFTSMC algorithm is proposed for the class 

of second-order uncertain nonlinear systems (1) to handle 

the effect of the lumped uncertainties with low chattering 

and minimum tracking errors. Especially, only position 

measurements are required. The design method is expressed 

in the two following steps. 

A. DESIGN OF SLIDING FUNCTION 

The tracking errors and velocity errors are defined as 

 
1

2

d

d

e x x

e x x

= −

= −
 (10) 

where ,d dx x  denote the desired trajectories and velocities, 

respectively.  

A terminal sliding function is chosen as the following 

expression [12] 

 ( ) ( )( )2 1

0
2 1

t

e sig tes n e e se dign
 

 = ++   (11) 

where constants 1 2,  denote sliding gains which can be 

chosen such that the polynomial 2 1p +  is Hurwitz and 

1 2,   can be selected as 

 

( ) ( )1

1

2

1

1 ,1 , 0,1

2

1

  






= − 

=
+

 (12) 

Generally, for saving the cost and reducing the weight of 

devices, the tachometers in the devices will be cut off by 

manufacturers. Therefore, in this article, we assume that 

only the position measurements are available in the system 

(1). Consequently, the variables e  in sliding functions, s , 

in (11), are not available. To achieve applicable sliding 

functions, we define the tracking errors and estimation of 

velocity errors as 

 1 de x x= −  (13) 

 
2

ˆ ˆ
de x x= −  (14) 

With the above defining, the estimation of sliding 

function (11) can be obtained as 

 ( ) ( )( )2
1

0
2 1

ˆˆˆ ˆ
t

s e dte sign e e sign e
 

+ +=   (15) 

B. DESIGN OF CONTROLLER 

In order to obtain the control signal for the uncertain 

nonlinear system (1), an NFTSMC based on TOSM 

observer as described in Fig.1 is proposed. The control law 

is proposed as below 

 ( )1( , ) eq swu g x t u u−= − +  (16) 

In (16), the equivalent control law, equ , holds the 

trajectory of the error state on the sliding surface, is 

designed as 

( )

( ) ( )
2

1

1/3

2

1 2

1

1

1

3

( , )

ˆ ˆ( )

eq

d

u f x t x sign x

sign x e sign e e sign e x
 





 

= +

+ + −+
 (17) 

The switching control law, swu , is constructed to 

compensate for the estimation errors as follows  

 ( )ˆ( )swu sign s= +  (18) 

where   is a small positive constant.  

The control design method for the system is described in 

Theorem below. 
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Figure 1.  Block diagram of the proposed controller-observer strategy. 

 

Theorem 1: Consider the class of second-order uncertain 

nonlinear systems given by (1), if the NFTSM control input 

is designed as (16-18), then the origin of the sliding 

function (15) is globally finite-time stable equilibrium point 

and the sliding function (15) will converge to zero in finite 

time defined by 
( )ˆ 0

r

s
T


= . 

Proof: 

Taking the first-time derivative of the estimated sliding 

function (15) yields 

 ( ) ( )
2

1

2 1
ˆˆˆ ê sign e e sign e

d
s e

dt

 
= + +  (19) 

We can obtain the first-time derivative of tracking 

velocity errors (14) as follows 

 
2

ˆˆ
d

d
e

d
x

t
x= −  (20) 

Substituting the second equation of observer (4) into 

(20), we can get 

 ( ) ( )

( )

( ) ( )
/

1 1 3 1

1/3

1

2

1 1

1 3

2 3

ˆ ˆ( , ) (ˆ , ) ( )

( , ) ( , ) ( ) , , ,

d

d

d
x f x t g x t u t

x sign x sign x

x f x t g x t u t d x x u t

x sign x sign

e

x

dt

 

 

= − + +

+ +

= − + + +

+ +





 (21) 

Substituting (21) into (20), we can obtain 

( )

( ) ( )

( ) ( )
2

1

2 1 1 3 1

1/3

2 1

ˆ ( , ) ( , ) ( ) , , ,

ˆ ˆ

dx f x t g x t u t d x x u t

x sign x

i

s

sign x

e s gn e e sign e
 

 

 

= − + +

+

+

+ +

+

  (22) 

Employing the control input from (16) to (18) into (22) 

yields 

 ( ) ( )(ˆ ˆ) , , ,sign s d x x u ts = − + +  (23) 

Define the Lyapunov function as following 

 
1

ˆ ˆ
2

TV s s=  (24) 

Taking the first-time derivative of Lyapunov function 

(24) and substituting the result from (23) yields 

 

( ) ( )( )

( )
1 1

1/2

ˆ ˆ

ˆ ˆ( ) , , ,

ˆ ˆ ˆ( ) , , ,

ˆ ˆ2 0, 0

T

T

n n
T

i i

i i

V s s

s sign s d x x u t

s d x x u t s s

s V s



 

 

= =

=

= −  + +

= −  + +  −

 − = −   

 
 (25) 

As a result, according to [45], we can conclude that the 

origins 0, 1,2,...,is i n= =  of sliding function (15) are 

globally finite-time stable equilibrium points and the sliding 

function will converge to zero in finite time 
( )ˆ 0

r

s
T


= . 

Theorem 1 is successful proved. 

The proposed controller-observer method provides high 

position tracking accuracy, non-singularity, robustness 

against the lumped uncertainties, low chattering, and finite-

time convergence without the need of velocity 

measurement. Its effectiveness will be illustrated by the 

simulation results. 

Remark 3: We can see that the estimation of the lumped 

uncertainties term, 13 ( )sign x , which is obtained from the 

TOSM observer (4), contains in the equivalent control 

signal (17). Accordingly, in the switching control law, only 

a small value of sliding gain,  , is selected to compensate 

the effects of the lumped uncertainties’ estimation errors, 

( ), , ,d x x u t . By using this way, the chattering is 

significantly reduced in control input torque.  
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Remark 4: It is worth noting that there exists an 

additional component, ( )1

1/3

12 x sign x , in the equivalent 

control signal (17) compared with the control signal (60), in 

which the converged estimation velocities is used in 

controller design procedure, see Appendix D. After the 

convergence time, this term will be equal to zero; however, 

the presence of this component ensures the proper 

functioning of the system when a steady state has not been 

established. 

V. APPLICATION TO ROBOT MANIPULATORS 

The controller-observer method is designed for the class of 

second-order uncertain nonlinear systems; therefore, it can 

be applied to many systems which have the same 

characteristic such as motors, helicopters, aircraft, and 

robot manipulators. In this part, the proposed controller-

observer strategy is employed for tracking trajectory a 

serial n-link robotic manipulator with the dynamic equation 

is given in Lagrange form as 

 ( ) ( ) ( ) ( ), ( ) ( )dM C G F t t       + + + = +  (26) 

where , , n     denote position, velocity, and 

acceleration of robot joints, respectively.  ( ) nt   

represents the control input torque, ( ) n nM    

represents the inertia matrix, ( ), nC     represents the 

Coriolis and centripetal forces, ( ) nG    represents the 

gravitational force term. ( ) nF   denotes the friction 

vector, ( ) n

d t   denotes the disturbance vector.  

Generally, because of the different between the 

mathematical and practical model, there exist uncertain 

component of the model of the robot manipulators as  

 ( ) ( ) ( )0M M M  = +  (27) 

 ( ) ( ) ( )0, , ,C C C     = +   (28) 

 ( ) ( ) ( )0G G G  = +  (29) 

where ( )0M  , ( )0 ,C   , and ( )0G   denote the nominal 

terms; and ( )M  , ( ),C   , and ( )G   denote the 

uncertain terms. Therefore, the robot dynamic equation (26) 

becomes  

 ( ) ( ) ( ) ( )0 0 0, ( ) , ,M C G t t       + + = +   (30) 

where 

( ) ( ) ( ) ( ) ( ), , , ( )dt M C G F t        = − − − − + . 

The robot dynamic equation (30) can be converted to the 

below form 

 ( ) ( ) ( ) ( )1

0 0 0( ) , , ,M t C G t       −  = − − +
 

 (31) 

For simply in designing, the robot dynamic (31) can be 

rewritten in state space form as 

 
*

1

2

* *

2

( ) ( ) ( ) ( , )

x x

x f x g x u t x t

=

= + +
 (32) 

where 1 ,x =  
2 ,x =  

1 2 ,
T

T Tx x x =    ( ) ( ),u t t=  

( ) ( ) ( )* 1

0 0 0( ) , ,f x M C G   −  = − −
 

 ( )* 1

0( ) ,g x M −=  

and ( ) ( )* 1

0( , ) , ,x t M t  − =  . 

It can be shown that the robot dynamic system (28) is in 

the same form as (1). Thus, the proposed controller-

observer algorithm, which are designed in Section III and 

Section IV, can be applied directly. 

VI. NUMERICAL SIMULATIONS 

 

FIGURE 2.  PUMA560 robot manipulator. 

 

In this section, a PUMA560 robot manipulator (the last 

three joints are blocked) as shown in Fig. 2 is used for 

computer simulation to demonstrate the significance and 

applicability of the proposed controller-observer method. 

The specific dynamic model with required parameter values 

of PUMA560 robot are provided in [46]. In this paper, the 

simulation analysis is performed by using the 

MATLAB/Simulink program and the sampling time is 10-

3s. 
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In this work, it is assumed that the desired trajectories to 

be tracked are 

 

( )

( )

( )

1

2

3

2cos 6 1

3sin 7 2 1

1.5sin 5 2 1

d

d d

d

t

t

t

 

   

 

  − 
   

= = + −   
   + −   

 (33) 

The initial states are chosen as 

1 2 3(0) (0) (0) 0.5  = = = −  and 
1 2 3(0) (0) (0) 0  = = = . 

The dynamic uncertainties, friction, and external 

disturbances are assumed as 

( ) ( )

( ) ( )

( ) ( )

1 1 1

2 2 2

3 3 3

1.1 1.2sin 3 2 cos

1.65 2.14cos 2 0.5sin

0.5 1.3sin 2.5 2 0.7sin 0.5

q q t

q q t

q q t





 − + + −  
  

 =  = − +  
   − + − +   

(34) 

 

( )

( )

( )

1 1

2 2

3 3

1.9cos 2

( ) 2.03sin 2 1

1.76cos 0.9

F q

F F q

F q

 

  
  

= = + −  
     

 (35) 

( ) ( )
( )

( )

( )

1

2

3

12.5sin 4 3

13.7cos 5 2

7.5sin 3

f

d

fd d

d

t

t T t T t

t

  

     



  − + 
   

= − = − +   
   

   

(36) 

where fT  denotes the time of occurrence and 

( ) ( ) ( ) ( ) 1 2, , ,f f f n ft T diag t T t T t T   − = − − −  

represents the time profile of the of the external disturbances. 

With ( ) ( )

0

1 i f

f

i t Tf

f

if t T
t T

e if t T



− −


− = 

− 

 and 0i   

denote the evolution rate.  

In this simulation, the external disturbances occur at 

20 .fT s=  The parameters of the controllers using in this 

simulation are chosen as 9L = , 1 21 2, 2 3 = = , 1, =  

( )1 15,15,15diag = , ( )2 10,10,10diag = . 

The simulation consists three parts. First, the estimation 

results of the TOSM observer is compared with that of the 

SOSM observer - which is designed in Appendix A. 

Second, the proposed NFTSM controller-observer method 

is compared with NFTSM controllers with and without 

compensating the estimation of lumped uncertainties – 

which are designed in Appendix B, C, and D. Finally, we 

will compare the proposed controller-observer strategy with 

the NFTSM controller with compensation of obtained 

lumped uncertainties from TOSM observer, which is 

designed in Appendix D, in term of changing value of the 

switching gain. 

 

 

 

 

Figure 3.  Velocity estimation errors of the TOSM observer compared with 
the SOSM observer. 

 

Figure 4.  Uncertainty estimation of the TOSM observer compared with the 
SOSM observer. 
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Figure 5.  Uncertainties estimation error of the TOSM observer compared 
with the SOSM observer. 

 

Figure 6.  Tracking position of the proposed controller-observer method 
compared with the NFTSM control with and without uncertainty 
compensation. 

 

Figure 7.  Tracking error of the proposed controller-observer method 
compared with the NFTSM control with and without uncertainty 
compensation. 

 

Figure 8.  Control input of proposed controller-observer method compared 
with the NFTSM control with and without uncertainty compensation. 
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Figure 9.  Position tracking error of the controller-observer control method compared with NFTSMC-TOSMO: a) 1 = , b) 0.3 = . 

 

Figure 10.  Control input of the proposed controller-observer method compared with NFTSMC-TOSMO: a) 1 = , b) 0.3 = . 
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Figure 11.  Sliding function of the proposed controller-observer method compared with NFTSMC-TOSMO: a) 1 = , b) 0.3 = . 

 

For the first part of the simulation, the comparison results 

between the TOSM observer and the SOSM observer are 

shown in Fig. 3, Fig. 4, and Fig. 5. Fig. 3 shows the 

obtained estimation error of velocity, as we can see that the 

TOSM observer can estimate the system velocity with 

higher precision whereas the SOSM observer provides a 

larger chattering in the estimation signal. In term of the 

estimation of lumped uncertainties, the SOSM observer 

requires a lowpass filter to reconstruct the estimation 

information that is the cause of time delay reducing the 

precision of this observer. On the contrary, the TOSM 

observer can construct the lumped uncertainties directly 

without the need of using lowpass filter. The simulation 

results of the estimation of lumped uncertainties and 

estimation errors in Fig. 4 and Fig. 5 indicate that the 

TOSM observer can obtain higher estimation accuracy than 

that of the SOSM observer. However, as a trade-off, the 

convergence time is little slower. It is worth noting that the 

more accurate the estimation information, the higher the 

control performance. 

For the second part of the simulation, the comparison 

results among the proposed controller-observer strategy in 

Eq. 16-18, the NFTSM controller without the uncertainties 

compensation in Eq. 43-45, the NFTSM controller with 

SOSM observer compensation (NFTSMC-SOSMO) in Eq. 

50-53, and the NFTSM controller with TOSM observer 

compensation (NFTSMC-TOSMO) in Eq. 58-61 are 

presented in Fig. 6, Fig. 7 and Fig. 8. The tracking position 

and the tracking error among three joints are shown in Fig.6 

and Fig.7, respectively. Fig. 8 presents the control input of 

controllers among three joints. As shown in the figures, the 

proposed controller-observer strategy can provide higher 

tracking precision and less chattering in control input 

compared with others, except for the NFTSMC-TOSMO.  

In order to show the superior properties of the proposed 

controller-observer strategy compared with the NFTSMC-

TOSMO, we go into the third part of the simulation in 

which the switching gain,  , of the switching control law, 

swu , is changed. The comparison of position tracking error 

between the proposed control method and the NFTSMC-

TOSMO is show in Fig. 9. The results show that when the 

switching gain, 1 = , the proposed controller-observer 

method and the NFTSMC-TOSMO can provide almost the 

same position tracking performance. However, when 

reducing the switching gain   to 0.3, the NFTSMC-

TOSMO provides a slower convergence time. This 

happened because the switching gain,  , in the proposed 

controller-observer strategy is only used against the effect 

of the uncertainties’ estimation error whereas in the 

NFTSMC-TOSMO, this gain is used to handle the effect of 

both the uncertainties’ estimation error and its 

overshooting. It is worth mentioning that the smaller the 

selected switching gain,  , the lower the chattering in the 
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control input signal, which is presented in Fig. 10.  The 

comparison of sliding function is illustrated in Fig. 11. As 

we can see that the proposed controller-observer method 

can provide fast convergence of sliding function for both 

cases. On the contrary, the convergence of sliding function 

of the NFTSMC-TOSMO increases when the value of 

switching gain,  , is reduced. It means that the sliding 

mode will reach slower. 

VII. CONCLUSIONS 

This paper has proposed an effective controller-observer 

method for the class of second-order uncertain nonlinear 

systems. The ability to approximate system velocities of the 

TOSM observer eliminates the requirement of tachometer 

in the system thus the device’s cost and size can be 

reduced. Moreover, the obtained lumped uncertainties with 

high accuracy increases the controller performance when 

applying the estimated information to compensate the 

uncertainties’ effects. The proposed NFTSMC method 

provides high tracking accuracy, fast response time, low 

chattering phenomenon, robustness against the lumped 

uncertainties, faster reaching to the sliding motion and 

finite-time convergence of the system states. The finite-

time stability of both observer and controller have been 

demonstrated in theory. The proposed controller-observer 

algorithm has been successfully applied to robot 

manipulator and its effectiveness has been verified by 

simulation results. 

APPENDIX 

A. DESIGN OF SOSM OBSERVER 

Based on system (1), the SOSM observer is designed in 

[37] as 

 
( )

( )1

1/2

2

1 2 1 1 1 1

12

1
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ( , ) ( , ) ( )

x x k x x sign x x

x f x t g x t u t k sign x x

= + − −

= + + −
 (37) 

where x̂  denotes the estimation of x  and ik  denote the 

observer gains. 

By subtracting (1) to (33) we can obtain the estimation 

error as 

 
( )

( ) ( )

1/2

2

1 1 1 1

2

2

1 ( , , ) , , ,

x k x sign x x

x k sign x x u t d x x u t

= − +

= − +  −
 (38) 

where ˆx x x= −  and 

( )    ˆ ˆ, , , ( , ) ( , ) ( ) ( , ) ( , ) ( )d x x u t f x t g x t u t f x t g x t u t= + − + . 

After the convergence process, the differentiators will 

converge to zero, thus the estimated states will reach the 

real states ( 1 1x̂ x= , 2 2x̂ x= ) and the lumped uncertainties’ 

estimation will be equal to zero, ( ), , , 0d x x u t = . The 

lumped uncertainties can be reconstructed as 

 ( ) ( )12
ˆ , ,x u t k sign x =  (39) 

As we can see, the equivalent output injection of SOSM 

observer is the result of the discontinuous terms 

( )12k sign x , which cause the chattering phenomenon in 

estimation signal. For that reason, a lowpass filter is 

required to reconstruct the estimation of the lumped 

uncertainties. 

The observer gains in (38) could be selected based on 

[44] as 2/3

1 1k L= , and 2 2k L=  where 1 2.12 = , and 

2 1.1 = . 

B. DESIGN OF NFTSMC WITHOUT UNCERTAINTIES 
COMPENSATION 

The tracking errors and velocity errors as (10), the terminal 

sliding function is selected as (11). The control law is 

designed as follows: 

 ( )1( , ) eq swu g x t u u−= − +  (40) 

 ( ) ( )2 1

2 1( , )eq du f x t e sign e e sign e x
 

 = + −+  (41) 

 ( ) ( )swu sign s= +  (42) 

After substituting the estimation of system velocities 

from the TOSM observer (4), the control law becomes  

 ( )1ˆ( , ) eq swu g x t u u−= − +  (43) 

 ( ) ( )
2

1

2 1
ˆ ˆˆ( , )eq du f x t e sign e e sign e x
 

 += + −  (44) 

 ( ) ( )ˆswu sign s= +  (45) 

The switching control law here is used to compensate for 

the lumped uncertainties. 

C. DESIGN OF NFTSMC WITH SOSM OBSERVER 
COMPENSATION 

The tracking errors and velocity errors as (10), the terminal 

sliding function is selected as (11). The control law is 

designed as follows: 

 ( )1( , ) eq sw cu g x t u u u−= − + +  (46) 

 ( ) ( )2 1

2 1( , )eq du f x t e sign e e sign e x
 

 = + −+  (47) 

 ( ) ( )swu sign s= +  (48) 

 ( )12cu k sign x=  (49) 

Substituting the estimation of system velocities from the 

SOSM observer (37), the control law becomes  

 ( )1ˆ( , ) eq sw cu g x t u u u−= − + +  (50) 

 ( ) ( )
2

1

2 1
ˆ ˆˆ( , )eq du f x t e sign e e sign e x
 

 += + −  (51) 
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 ( ) ( )ˆswu sign s= +  (52) 

 ( )12cu k sign x=  (53) 

The switching control law here is used to compensate for 

the uncertainty’s estimation error of the SOSM observer 

and the compensation element, cu , is obtained from (39). 

D. DESIGN OF NFTSMC WITH TOSM OBSERVER 
COMPENSATION 

The tracking errors and velocity errors as (10), the terminal 

sliding function is selected as (11). The control law is 

designed as follows: 

 ( )1( , ) eq sw cu g x t u u u−= − + +  (54) 

 ( ) ( )2 1

2 1( , )eq du f x t e sign e e sign e x
 

 = + −+  (55) 

 ( ) ( )swu sign s= +  (56) 

 ( )3 1cu sign x=   (57) 

Substituting the estimation of system velocities from the 

TOSM observer (4), the control law becomes  

 ( )1ˆ( , ) eq sw cu g x t u u u−= − + +  (58) 

 ( ) ( )
2

1

2 1
ˆ ˆˆ( , )eq du f x t e sign e e sign e x
 

 += + −  (59) 

 ( ) ( )ˆswu sign s= +  (60) 

 ( )3 1cu sign x=   (61) 

The switching control law here is used to compensate for 

the uncertainty’s estimation error of the TOSM observer 

and the compensation element, cu , is obtained from (9). 
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