b Chap, I.  Introduction to RF and Wireless Technology

[531 M. Soyuer et al., “A 3-V 4-GHz nMOS Voltage-Controlled Oscillator with Integrated
Resonator,” [EEE [ Solid-State Circuits, vol. 31, pp. 2042-2045. Dec. 1996.

[6] B. Kleveland et al., “"Monolithic CMOS Distributed Amplifier and Oscillator,” ISSCC Dig.
Tech. Papers, pp. 7T0-71, Feb. 1999,

[7]1 H. Wang, “A 50-GHz VCO in 0.25-pm CMOS,” ISSCC Dig. Tech. Fapers, pp. 372-373,
Feb. 2001.

[8] L. Franca-Neto. R. Bishop, and B. Bloechel, “64 GHz and 100 GHz VCOs in 90 nm CMOS
Using Optimum Pumping Method,” ISSCC Dig. Tech. Papers, pp. 444-445, Feb, 2004,

[9] E. Seok et al,, A 410GHz CMOS Push-Push Oscillator with an On-Chip Patch Antenna”
ISSCC Dig. Tech. Papers, pp. 472473, Feb. 2008,

[10] B. Razavi, A 300-GHz Fundamental Oscillator in 65-nm CMOS Technology,” Symposium

on VLST Circuits Dig. Of Tech. Papers, pp. 113=114, June 2010,

CHAPTER

BASIC CONCEPTS IN
RF DESIGN

RF design draws upon many concepts from a variety ol fields, including signals and
systems, electromagnetics and microwave theory, and communications. Nonetheless, RF
design has developed its own analytical methods and 1ts own language. For example, while
the nonlinear behavior of analog circuits may be characterized by “harmonic distortion,”
that of RF circuits is quantified by very different measures.

This chapter deals with general concepts thal prove essential to the analysis and
design of RF circuits, closing the gaps with respect to other fields such as analog design,
microwave theory, and communication systems. The outline 1s shown below.

Nonlinearity Noise Impedance Transformation
= Harmonic Distortion = Noise Spectrum = Series-Parallel Conversion
= Compression = Device Noise » Matching Networks
® [Intermodulation * MNoise in Circuits » S-Parameters

= Dynamic Nonlinear Systems

2.1 GENERAL CONSIDERATIONS
2.1.1 Units in RF Design

RF design has traditionally employed certain units to express gains and signal levels. It
15 helpful to review these units at the outset so that we can comfortably use them in our
subsequent studies.

The voltage gain, V,,,/Vi,, and power gain, P, /Pj,. are expressed in decibels (dB):

V-”H
Avlag = 20log 2 (2.1)
in
p
Aplag = 10log ;‘”. (2.2)
in
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These two quantities are equal (in dB) only if the input and output voltages appear across
equal impedances. For example, an amplifier having an input resistance of Ry (e.g.. 50 £2)
and driving a load resistance of Ry satisfies the following equation:

Vou
Aplas = 101og 0 2.3)
= 20log V"_‘” (2.4)
= AvlaB. ' (2.5)

where V,,; and Vi, are rms values. In many RF systems, however, this relationship does
not hold because the input and output impedances are not equal.

The absolute signal levels are often expressed in dBm rather than in watts or volts.
Used for power quantities, the unit dBm refers 1o “dB’s above 1| mW.” To express the
signal power, Pyjg. in dBm, we write

P |
Pn’gldBm = 10log (] r:::h") (2.6)

Example 2.1

An amplifier senses a sinusoidal signal and delivers a power of 0 dBm to a load resistance
of 50 £2. Determine the peak-to-peak voltage swing across the load.

Solution:

Since 0dBm is equivalent to 1 mW, for a sinusoidal having a peak-to-peak amplitude of
V,,p and hence an rms value of V,,, /(2+/2), we write

2

V

P — | mW, 27

iR, m (2.7)
where B; = 50 §2. Thus,

This is an extremely useful result, as demonstrated in the next example.

Example 2.2

A GSM receiver senses a narrowband (modulated) signal having a level of —100dBm. If
the front-end amplifier provides a voltage gain of 15 dB, calculate the peak-to-peak voltage
swing at the output of the amplifier.
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Example 2.2 (Continued)

Solution:

Since the amplifier output veltage swing is of interest, we first convert the received signal
level to voltage. From the previous example, we note that —100dBm is 100dB below
632mVpy,. Also, 100dB for voltage quantities is equivalent to 10°. Thus. —100dBm is
equivalent to 6.32 puVp,. This input level is amplified by 15dB (= 5.62), resulting in an
output swing of 35.5 Vpp.

The reader may wonder why the output veltage of the amplifier is of interest in the
above example. This may occur if the circuit following the amplifier does nol present a
50-£2 input impedance, and hence the power gain and voltage gain are not equal in dB. In
fact, the next stage may exhibit a purely capacitive input impedance, thereby requiring no
signal “power.” This situation is more familiar in analog circuits wherein one stage drives
the gate of the transistor in the next stage. As explained in Chapter 5. in most integrated
RF systems, we prefer voltage quantities to power quantities so as to avoid confusion if the
input and output impedances of cascade stages are unequal or contain negligible real parts.

The reader may also wonder why we were able to assume 0dBm is equivalent to
632 mV, in the above example even though the signal is not a pure sinusoid. After all, only
for a sinusoid can we assume that the rms value is equal to the peak-to-peak value divided
by 2+/2. Fortunately, for a narrowband 0-dBm signal, it is still possible to approximate the
(average) peak-to-peak swing as 632 mV.

Although dBm is a unit of power, we sometimes use it at interfaces that do not neces-
sarily entail power transfer. For example, consider the case shown in Fig. 2.1(a), where the
LNA drives a purely-capacitive load with a 632-mV,, swing, delivering no average power.
We mentally attach an ideal voltage buffer to node X and drive a 50-£2 load [Fig. 2.1(b)].
We then say that the signal at node X has a level of (0 dBm, tacitly meaning that if this
signal were applied to a 50-82 load, then it would deliver 1 mW.,

Bl e

o

Figure 2.1 (a) LNA driving a capacitive impedance, (b) use of fictitious buffer to visualize the signal
level in dBm.

{a) (b}

2.1.2 Time Variance

A system is linear if its output can be expressed as a linear combination (superposition) of
responses to individual inputs. More specifically, if the outputs in response to inputs x(t)
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= Vou
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Figure 2.2 (a) Simple switching circuit, (b) svstem with Vi) as the input, (¢} svstem with Vi as the
i,

and x2(f) can be respectively expressed as

yi(t) = fla()] (2.9)
ya(t) = flxa(n)l, (2.10)

then,
ay (1) + bya(t) = flax, (1) + bx2(0)], (2.11)

for arbitrary values of @ and b. Any system that does not satisfy this condition is nonlinear.
Note that, according to this definition, nonzero initial conditions or de offsets also make a
system nonlinear, but we often relax the rule to accommodate these two effects.

Another attribute of systems that may be confused with nonlinearity is time variance.
A system is time-invariant if a time shift in its input results in the same time shift in its
output. That is, if y(£) = f[x(f}], then v(t — ©) = flx(t — 7)] for arbitrary t.

As an example of an RF circuit in which time variance plays a critical role and must
not be confused with nonlinearity, let us consider the simple switching circuit shown in
Fig. 2.2(a). The control terminal of the switch is driven by v, (1) = A} cos w;t and the input
terminal by vi,2(1) = Az cos wal. We assume the switch is on if vj,; = 0 and off otherwise.
Is this system nonlinear or time-variant? If, as depicted in Fig. 2.2(b). the input of interest
15 Vi (while vi;2 18 part of the system and still equal to Az cos wat), then the system is
nonlinear because the control 1s only sensitive to the polarity of v and independent of
its amplitude. This system is also time-variant because the output depends on vi,s. For
example, if vi;; is constant and positive, then v . (1) = vi2(1), and if vy, is constant and
negative, then v, (1) = 0 (why7?).

Now consider the case shown in Fig. 2.2(c), where the input of interest is vi;2
(while vj,) remains part of the system and still equal to Aj cosw;r). This system is lin-
ear with respect to vj;2. For example, doubling the amplitude of vj,2 directly doubles that
of vy,r. The system is also time-variant due to the effect of vi,.

Example 2.3

Plot the output waveform of the circuit in Fig. 2.2(a) if vy = A coswt and vy =
Azcos(1.25m,1).
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Example 2.3 (Continued)

Solution:

As shown in Fig. 2.3, v, tracks viz2 if vy > 0 and is pulled down to zero by Ry if vy < 0.
That is, v,y is equal to the product of v;,» and a square wave toggling between 0 and 1.

AaaW
VAV

Vinz

i

.. :r\\J
“A N
ik

Figure 2.3 Input and ouwiput waveforms.

The circuit of Fig. 2.2(a) is an example of RF “mixers.” We will study such circuits in
Chapter 6 extensively, but it is important to draw several conclusions from the above study.
First, statements such as “switches are nonlinear™ are ambiguous. Second, a linear system
can generate frequency components that do not exist in the input signal—the system only
need be time-variant. From Example 2.3,

Vour (T} = Vim2(t) - 8(1), {2'2}

where S(f) denotes a square wave toggling between (0 and 1 with a frequency of
fi = e /(2m). The output spectrum is therefore given by the convolution of the spectra
of vi2(¢) and S(1). Since the spectrum of a square wave 1s equal to a train of impulses
whose amplitudes follow a sinc envelope, we have

i sin(nm/2) n
= Vil f _ - — 13
Vour(f) = Vi () # _Z_ = (f 'n) (2.13)
= —mo

< sin(nm/2) n
= z ;Vﬁﬂ (f = _)- {214}

e nm T

" s 4

where T\ = 2m/w). This operation is illustrated in Fig. 2.4 for a Vj,» spectrum located

around zero frequency.’

L. It is helpful to remember that, for n = 1, each impulse in the above summation has an area of 1/7 and the
corresponding sinusoid, a peak amplitude of 277,
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Figure 2.4 Multiplication in the time domain and corresponding comvolution in the frequency
donmain.

2.1.3 Nonlinearity

A system is called “memoryless™ or “static™ if its output does not depend on the past values
of its input (or the past values of the output itself). For a memoryless linear system. the
input/output characteristic is given by

y(t) = ax(r), (2.15)

where « is a function of time if the system is time-variant |e.g.. Fig. 2.2(c)]. For a
memoryless nonlinear system, the input/output characteristic can be approximated with
a polynomial,

Y1) = ag + a1x(1) + a2x” (1) + a3 (1) + - - -, (2.16)

where «; may be functions of time if the system is time-variant. Figure 2.5 shows a
common-source stage as an example of a memoryless nonlinear circuit (at low frequen-
cies). If M| operates in the saturation region and can be approximated as a square-law
device, then

Vow = Vop — IpRp (2.17)
W
I

I
= Vpb = > tnCox—Vin = Vi)*Rp. (2.18)

-

In this idealized case, the circuit displays only second-order nonlinearity.

The system described by Eq. (2.16) has “odd symmetry™ if y(r) is an odd function of
x(f), 1.e., if the response to — x(¢) is the negative of that to + x(#). This occurs if o; =0
for even j. Such a system is sometimes called “balanced.” as exemplified by the differential

Voo
Rp

’H"mo—l M_'

Figure 2.5 Common-source stage.
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Figure 2.6 (a) Differential pair and (b} its input/outpur characteristic.

pair shown in Fig. 2.6(a). Recall from basic analog design that by virtue of symmetry, the
circuit exhibits the characteristic depicted in Fig. 2.6(b) if the differential input varies from
very negative values to very positive values.

Example 2.4

For square-law MOS transistors operating in saturation, the characteristic of Fig. 2.6(b) can
be expressed as [1]

| W 4lss k=
Vour = — =iy Cox—Viu | ————= — V= Rp. 2.19
ot 2!'-5?: oy m‘/“ncm% ko { )

If the differential input is small, approximate the characteristic by a polynomial.

Solution:
Factoring 4755/, Cox W /L) out of the square root and assuming

41
Vi — (2.20)

| Snl 1

we use the approximation /1 — e & 1 — /2 to write

oo ¥ nCox'§ 2
Vour ® = onCox—IssVin [ 1 = ——=V | R 2.21
ot HnCox7IssVi ( 8l in) R0 (2.21)
2
R T L
" g | + Ipr s
= HnCox 7 IssRpVin 8 /Tss RpV;, (2.22)

The first term on the right-hand side represents linear operation, revealing the small-
signal voltage gain of the circuit (—g,Rp). Due to symmetry, even-order nonlinear
terms are absent. Interestingly, square-law devices vield a third-order characteristic in this
case. We return to this point in Chapter 5.
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A system is called “dynamic™ if its output depends on the past values of its input(s) or
output(s). For a linear, time-invariant, dynamic system,

vit) = hir) # x(1), (2.23)

where hir) denotes the impulse response. If a dynamic system is linear but time-variant,
its impulse response depends on the time origin; if 4(r) vields A(t), then §(t — 7) produces
hit, 7). Thus.

vit) = hit, T) = x(t). (2.24)

Finally, if a system is both nonlinear and dynamic, then its impulse response can be
approximated by a Volterra series. This is described in Section 2.8,

2.2 EFFECTS OF NONLINEARITY

While analog and RF circuits can be approximated by a linear model for small-signal opera-
tion, nonlinearities often lead to interesting and important phenomena that are not predicted
by small-signal models. In this section, we study these phenomena for memoryless systems
whose input/output characteristic can be approximated by*

vir) = ax(r) + azf{n * a'rwr]{!}, (2.25)

The reader is cautioned, however, that the effect of storage elements (dynamic nonlinearity)
and higher-order nonlinear terms must be carefully examined to ensure (2.25) is a plausible
representation, Section 2.7 deals with the case of dynamic nonlinearity. We may consider
o as the small-signal gain of the system because the other two terms are negligible for
small input swings. For example, o) = — /1, Cox (W /L) 5sRp in Eq. (2.22).

The nonlinearity effects described in this section primarily arise from the third-order
term in Eq. (2.25). The second-order term too manifests itself in certain types of receivers
and is studied in Chapter 4.

2.2.1 Harmonic Distortion

If a sinusoid is applied to a nonlinear system, the output generally exhibits frequency com-
ponents that are integer multiples (“harmonics™) of the input frequency. In Eq. (2.25), if
x(f) = Acos wt, then

vit) = oA coswt + aaA” cos” wt + o3A? cos® wi (2.26)
3

waA? wiA
— (1 + cos 2wri) + ‘1'T(3 cos ot + cos 3wl (2.27)

= wAcoswt +

aaA? JazA’ arA? a3A?
T+ oA + 1 Cos ol + 3 cos 2mf + cos 3wr, (2.28)

2. Mote that this expression should be considered as a fit across the signal swings of interest rather than as a
Taylor expansion in the vicinity of x = (0. These two views may yield slightly different values for o
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In Eq. (2.28), the first term on the right-hand side is a dc quantity arising from second-order
nonlinearity, the second is called the “fundamental,” the third is the second harmonic, and
the fourth is the third harmonic. We sometimes say that even-order nonlinearity introduces
de offsets.

From the above expansion, we make two observations. First, even-order harmonics
result from «; with even j, and vanish if the system has odd symmetry, i.e., if it is fully
differential. In reality, however, random mismatches corrupt the symmetry, yielding finite
even-order harmonics. Second, in (2.28) the amplitudes of the second and third harmon-
Ics are proportional to A? and A3, respectively, 1.e., we say the nth harmonic grows in
proportion to A",

In many RF circuits, harmonic distortion is unimportant or an irrelevant indicator of the
effect of nonlinearity. For example, an amplifier operating at 2.4 GHz produces a second
harmonic at 4.8 GHz, which is greatly suppressed if the circuit has a narrow bandwidth.
Nonetheless, harmonics must always be considered carefully before they are dismissed.
The following examples illustrate this point.

Example 2.5

An analog multiplier “mixes” its two inputs as shown in Fig, 2.7, ideally producing y(1) =
kx(Dx2(1), where k is a constant.” Assume x(t) = A; coswf and x2(1) = As cos wal.

x(t) y(t)

xa(t)

Figure 2.7 Analog multiplier

(a) If the mixer is ideal, determine the outpul frequency components,
(b) If the input port sensing x2(¢) suffers from third-order nonlinearity, determine the output
frequency components.

Solution:
{a) We have

vit) = k(A coswir)(Aa cos wal) (2.29)

kA A A
el 2 cos(w; — wall. (2.30)

cos{w; + w2t +

The output thus contains the sum and difference frequencies. These may be considered
“desired” components.

(Ceniinuey)

3. The factor k is necessary o ensuare a proper dimension for v{i).
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Example 2.5 (Continued)

(b) Representing the third harmonic of xa(f) by (cr;ﬂ.%f 4) cos 3wat, we wrile

a3A3
y(t) = k(A cos wu}(ﬂz cos waf + % cos 3‘”2‘) (i)
kAA kA A
= ; 2 cos(w + w2t + # cos(w — @)l
kazAjA3 ka3 A A3

The mixer now produces two “spurious” componenis at @) + 3w> and w; — 3w», one
or both of which often prove problematic. For example, if w; = 2x % (850 MHz) and
wa =2 X (900 MHz), then |w — 3wa2| = 2 X (1850 MHz), an “undesired” component
that is difficult to filter because it lies close to the desired component at w; + w2 = 2w X
(1750 MHz).

Example 2.6

The transmitter in a 900-MHz GSM cellphone delivers 1 W of power to the antenna.
Explain the effect of the harmonics of this signal,

Solution:

The second harmonic falls within another GSM cell phone band around 1800 MHz and
must be sufficiently small to negligibly impact the other users in that band. The third, fourth,
and fifth harmonics do not coincide with any popular bands but must still remain below
a certain level imposed by regulatory organizations in each country. The sixth harmonic
falls in the 5-GHz band used in wireless local area networks (WLANs), e.g., in laptops.
Figure 2.8 summarizes these results.

GSM1800 WLAN
Band Band

08 18 27 36 45 54 f(GHz)

Figure 2.8 Summary of harmonic components.

2.2.2 Gain Compression

The small-signal gain of circuits 1s usually obtained with the assumption that harmonics are
negligible. However, our formulation of harmonics, as expressed by Eq. (2.28), indicates
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that the gain experienced by A cos wi is equal to o + 3a3A% /4 and hence varies appreciably
as A becomes larger.* We must then ask, do «| and o3 have the same sign or opposite
signs? Returning to the third-order polynomial in Eq. (2.25), we note that if oy = 0,
then a1x + asx® overwhelms a»x” for large x regardless of the sign of @, yielding an
“expansive” characteristic [Fig. 2.9(a)]. For example, an ideal bipolar transistor operating
in the forward active region produces a collector current in proportion to exp(Vee/Vr).
exhibiting expansive behavior. On the other hand, if ¢ye3 = 0, the term w3 “bends”
the characteristic for sufficiently large x [Fig. 2.9(b}|, leading to “compressive” behavior,
i.e., a decreasing gain as the input amplitude increases. For example, the differential pair
of Fig. 2.6(a) suffers from compression as the second term in (2.22) becomes comparable
with the first. Since most RF circuits of interest are compressive, we hereafter focus on
this type.

Mqlig=0 qlig<0

(X 1'3
Ly X oy X 4
5 dominant
dominant Olg X dominant
dominant )}
[ L -
X X

{a) {b)

Figure 2.9 (a) Expansive and (b) compressive characteristics.

With ajay < 0, the gain experienced by A coswi in Eq. (2.28) falls as A rises. We quan-
tify this effect by the “1-dB compression point,” defined as the input signal level that causes
the gain to drop by 1 dB. If plotied on a log-log scale as a function of the input level, the
output level, A, falls below its ideal value by 1 dB at the 1-dB compression point, A;,, 145
(Fig. 2.10). Note that {a) A;, and A,,,; are voltage quantities here, but compression can also
be expressed in terms of power quantities; (b) 1-dB compression may also be specified in
terms of the output level at which it oceurs, A, 1gp. The input and output compression
points typically prove relevant in the receive path and the transmit path, respectively.

20logA nutl '* =

Ainide  20logA;,

Figure 2.10 Definition of 1-dB compression point.

4. This effect is akin w the fact that nonlinearity can also be viewed as variation of the slope of the inpuy'outpur
characteristic with the input level,
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To calculate the input 1-dB compression point, we equate the compressed gain, o) +
(3a3/4)A2 | s, 10 1dB less than the ideal gain, ¢;:

20log = 20log |a1| — 1 dB. (2.33)

3 a2
oy + 1“’3*"':'n.|fm

It follows that

ol
Ain. g8 = ,[0.145 | —
o3

(2.34)

Note that Eq. (2.34) gives the peak value (rather than the peak-to-peak value) of the input.
Also denoted by Pyg, the 1-dB compression point is typically in the range of —20 to
—25dBm (63.2 to 35.6 mV, in 50-82 system) at the input of RF receivers. We use the
notations A g and Pgp interchangeably in this book. Whether they refer to the input or
the output will be clear from the context or specified expheitly. While gain compression by
| dB seems arbitrary, the 1-dB compression point represents a 10% reduction in the gain
and is widely used to characterize RF circuits and systems.

Why does compression matter? After all, it appears that if a signal is so large as to
reduce the gain of a receiver, then it must lie well above the receiver noise and be easily

detectable. In fact, for some modulation schemes, this statement holds and compression of

the receiver would seem benign. For example, as illustrated in Fig. 2.11(a), a frequency-
modulated signal carries no information in its amplitude and hence tolerates compression
(i.e., amplitude limiting). On the other hand, modulation schemes that contain information
in the amplitude are distorted by compression [Fig. 2.11(b)]. This 1ssue manifests itself in
both receivers and transmitters.

Another adverse effect arising from compression occurs if a large interferer accom-
panies the received signal [Fig. 2.12(a)|. In the time domain, the small desired signal is
superimposed on the large interferer. Consequently. the receiver gain is reduced by the
large excursions produced by the interferer even though the desired signal itself is small

Fregquency Modulation

AVAVITAVAVES s N R

(a)
Amplitude Modulation

V\W\w —D-UUUL

Figure 2.11 Effect of compressive nonlinearity on (a) FM and (b) AM waveforms.
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Interferer

Desired Signal + Interferer

PN
U J’

Figure 2.12 (u} Interferer accompanying signal, (b) effect in time domain.

{a)

[Fig. 2.12(b)]. Called “desensitization,” this phenomenon lowers the signal-to-noise ratio
(SNR) at the receiver output and proves critical even if the signal contains no amplitude
information.

To quantify desensitization, let us assume x(1) = A| cosw 1 + Ascos wat, where the
first and second terms represent the desired component and the interferer, respectively. With
the third-order characteristic of Eg. (2.25), the output appears as

3 i Sl
yif) = (r:r] + 1“3AT + Eu.r;;.ﬂ.%)m cos el + -0 {2.35)

Note that a2 is absent in compression. For A| < Aa, this reduces to
3 e .
v = (m + 5{13.4:_;) Aycosent + - . (2.36)

Thus, the gain experienced by the desired signal is equal to ) + 3w343/2, a decreasing
function of As if ayw; < 0. In fact, for sufficiently large A2, the gain drops to zero, and we
say the signal is “blocked.” In RF design, the term “blocking signal™ or “blocker™ refers o
interferers that desensitize a circuit even if they do not reduce the gain to zero. Some RF
receivers must be able to withstand blockers that are 60 to 70dB greater than the desired
signal.

Example 2.7

A 900-MHz GSM transmitter delivers a power of 1 W to the antenna. By how much must
the second harmonic of the signal be suppressed (filtered) so that it does not desensitize a
1.8-GHz receiver having P4z = —25dBm? Assume the receiver is | m away (Fig. 2.13)
and the 1.8-GHz signal is attenuated by 10dB as it propagates across this distance,

(Centinues)
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Example 2.7 (Continued)

900-MHz 1.8-GHz
GSM TX RX
PA )) ) LMA
0.9 1.8 f
(GHz)
. o
1m

Figure 2.13 TX and RX in a cellular svstem.

Solution:

The output power at 900 MHz is equal to +30dBm. With an attenuation of 10dB, the
second harmonic must not exceed —15dBm at the transmitter antenna so that it is below
P\ 4p of the receiver. Thus, the second harmonic must remain at least 45dB below the
fundamental at the TX output, In practice, this interference must be another several dB
lower to ensure the RX does not compress.

2.2.3 Cross Modulation

Another phenomenon that occurs when a weak signal and a strong interferer pass through
a nonlinear system is the fransfer of modulation from the interferer to the signal. Called
“cross modulation,” this effect is exemplified by Eq. (2.36), where variations in A> affect
the amplitude of the signal at w,. For example. suppose that the interferer is an amplitude-
modulated signal, A>(1 + mcos wy!) coswot, where m 1s a constant and w,, denotes the
modulating frequency. Equation (2.36) thus assumes the following form:

) 3

e L

3 5
¥t = [m o Euf;,ﬂ:_; (I + m? - m? cos 2wt + 2mcos mmf)] Ajcoswyt+.-. . (2.37)

In other words, the desired signal at the output suffers from amplitude modulation at wy,
and 2e,,. Figure 2.14 illustrates this effect.

Figure 2.14 Cross modularion.
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Example 2.8

Suppose an interferer contains phase modulation but not amplitude modulation. Does cross
modulation occur in this case?

Solution:

Expressing the inpul as x({) = A cosat + Az cos(wot + ¢), where the second lerm rep-
resents the interferer (A, is constant but ¢ varies with time), we use the third-order
polynomial in Eq. (2.25) to write

¥(1) = Ay coswt + Ascos(war + ¢)| + aalA; coswit + As cos(war + ¢|]]2
+ aslA; cos wit + Aa cos(wat + @), (2.38)

We now note that (1) the second-order term yields components at ay = > but not at ey :
(2) the third-order term expansion gives 3a3d | cos m;M% cos*(wat + ¢). which, according
to cos”x = (1 + cos 2x)/2, results in a component at ). Thus,

yir) = (a. + %a;ﬂ%) Ajcosegt + --- . (2.39)

Interestingly, the desired signal at @) does not experience cross modulation. That is,
phase-modulated interferers do not cause cross modulation in memaryless (static) nonlinear
systems. Dynamic nonlinear systems, on the other hand, may not follow this rule.

Cross modulation commonly arises in amplifiers that must simultaneously process
many independent signal channels. Examples include cable television transmitters and
systems employing “orthogonal frequency division multiplexing™ (OFDM). We examine
OFDM in Chapter 3.

2.2.4 Intermodulation

Our study of nonlinearity has thus far considered the case of a single signal (for harmonic
distortion) or a signal accompanied by one large interferer (for desensitization). Another
scenario of interest in RF design occurs if fwo interferers accompany the desired signal.
Such a scenario represents realistic situations and reveals nonlinear effects that may not
manifest themselves in a harmonic distortion or desensitization test.

If two interferers at w; and > are applied to a nonlinear system, the output generally
exhibits components that are not harmonics of these frequencies. Called “intermodulation™
(IM), this phenomenon arises from “mixing” (multplication) of the two components as
their sum is raised to a power greater than unity. To understand how Eq. (2.25) leads to
intermodulation, assume x(1) = A coswf + Az cos wai. Thus,

V(1) = wy(A) coswyt + As coswal) + a2(A) cosw i + Az cos cugﬂg

+ a3(A] cosayt + As cos wot)’. (2.40)
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Expanding the right-hand side and discarding the dc terms, harmonics, and components al
@) = w7, we obtain the following “intermodulation products™:

3a3ATA; 3a3ATA, _
i = 2wyt owns Tms{im + wa )t + Tcns{im —wa)t  (2.41)
3u3A A3 Ja3A AL
0 = 2 4wy % cos(2wr + w )t + % cos(2wr —an )t (2.42)

and these tfundamental components:

55, s 3 ;
w=wp, wr: |a1A] + :—ia'3ri'l + EHE‘J'V'"E COS @ |

3 3 '
+ (n{lAg + Eﬁ'j:"l% + iﬂ'jAjA?) cos wof (2.43)

Figure 2.15 illustrates the results. Among these, the third-order IM products at 2w — a»n
and 2w> — w) are of particular interest. This is because, if w) and w7 are close to each
other, then 2w; — w> and 2w> — w) appear in the vicinity of @ and w2. We now explain
the significance of this statement.

jj_. f}ﬁ“%m

My Oy By O

0 = 0
2005=
0+ Dy P>
YA
2040, [
2m+ 4 =
ey

204~ 0,

Figure 2.15 Generation of various intermodulation components in a two-tone fesy,

Suppose an antenna receives a small desired signal at wy along with two large interfer-
ers at ey and w,. providing this combination to a low-noise amplifier (Fig. 2.16). Let us
assume that the interferer frequencies happen to satisfy 2e) — w2 = wy. Consequently, the
intermodulation product at 2 — w falls onto the desired channel, corrupting the signal.

T [ LNA '

Figure 2.16 Corruption due to thivd-ovder intermodulation.

Example 2.9

Suppose four Bluetooth users operate in a room as shown in Fig, 2,17, User 4 is in the
receive mode and attempts to sense a weak signal transmitted by User 1 at 2410GHz.
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Example 2.9 (Continued)

At the same time, Users 2 and 3 transmit at 2,420 GHz and 2.430 GHz, respectively, Explain
what happens.

User 2
TXz
User 3
X3
User 4

User 1 RX 4
T

241 242 243 1 (GHz)

Figure 2.17 Bluetooth RX in the presence of several transmitters.

Solution:

Since the frequencies transmitted by Users 1, 2, and 3 happen to be equally spaced, the
intermodulation in the LNA of RX, corrupts the desired signal at 2.410 GHz.

The reader may raise several questions at this point: (1) In our analysis of intermod-
ulation, we represented the interferers with pure (unmodulated) sinusoids (called “tones™)
whereas in Figs, 2.16 and 2,17, the interferers are modulated. Are these consistent? (2) Can
gain compression and desensitization (Pyp) also model intermodulation, or do we need
other measures of nonlinearity? (3) Why can we not simply remove the interferers by fil-
ters so that the receiver does not experience intermodulation? We answer the first two here
and address the third in Chapter 4.

For narrowband signals, it 15 sometimes helpful to “condense™ their energy into an
impulse, i.e., represent them with a tone of equal power |Fig. 2.18(a)|. This approxima-
tion must be made judiciously: if applied to study gain compression, it yields reasonably
accurate results; on the other hand, if applied to the case of cross modulation, it fails. In
intermodulation analyses, we proceed as follows: (a) approximate the interferers with tones,
(b) calculate the level of intermodulation products at the output, and (¢) mentally convert
the intermodulation tones back to modulated components so as to see the corruption.” This
thought process is illustrated in Fig. 2.18(b).

We now deal with the second question: if the gain is not compressed, then can we say
that intermodulation is negligible? The answer is no; the following example illustrates this
point.

5. Rince a tone contains no randomness, it generally does not cormupt 2 signal. But a tone appearing in the
spectrum of a signal may make the detection difficule




24 Chap. 2. Basic Concepis in RF Design

Pz F2
P, Py
0y s {y m1 g 3]
[ak
LNA
'. , ‘ \ > Lt
m; W3 © W 05 | o0, | ® Wy M, ®
2~y 20,- ), 200~ 2m5- @,

(b}

Figure 2.18 (a) Approximation of modulated signals by impulses,  (b) application to
intermodulation.

Example 2.10

A Bluetooth receiver employs a low-noise amplifier having a gain of 10 and an input
impedance of 50 €2, The LNA senses a desired signal level of —80dBm at 2.410GHz

and two interferers of equal levels at 2.420 GHz and 2.430 GHz. For simplicity, assume the
LNA drives a 50-2 load.

(a) Determine the value of o1 that yields a Pygp of —30dBm.

(b) If each interferer is 10 dB below Py . determine the corruption experienced by the
desired signal at the LNA output.

Solution:

(a) Noting that —30dBm=20mV,, =10mV,, from Eq. (2.34), we have
JOT45]ar; fa3] = 10 mV,,. Since @) = 10, we obtain a3 = 14, 500 V™2,

(b) Each interferer has a level of —40dBm (=6.32mV,). Setting A} =Ax=
6.32mVyp/2 in Eq. (2.41), we determine the amplitude of the IM product at
2.410 GHz as

3usA %Ag

7 = 0343mV, = —59.3dBm. (2.44)

The desired signal is amplified by a factor of @y = 10 = 20dB, emerging at the out-
put at a level of —60dBm. Unfortunately, the IM product is as large as the signal
itself even though the LNA does not experience significant compression.

The two-tone test is versatile and powerful because it can be applied to systems with
arbitrarily narrow bandwidths. A sufficiently small difference between the two tone fre-
quencies ensures that the IM products also fall within the band, thereby providing a
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Figure 2.19 (a} Two-tone and (b) harmeonic tests in a navrowband svstem.

meaningful view of the nonlinear behavior of the system. Depicted in Fig. 2.19(a), this
attribute stands in contrast to harmonic distortion tests, where higher harmonies lie so far

away in frequency that they are heavily filtered, making the system appear quite linear
[Fig. 2.19(b)].

Third Intercept Point Our thoughts thus far indicate the need for a measure of inter-
modulation. A common method of IM characterization is the “two-tone” test. whereby two
pure sinusoids of equal amplitudes are applied to the input. The amplitude of the output IM
products is then normalized to that of the fundamentals at the output. Denoting the peak
amplitude of each tone by A, we can write the result as

Relative IM = 20log (iw—jﬂj) dBc, (2.45)
o)
where the unit dBe denotes decibels with respect to the “carrier” to emphasize the normal-
ization. Note that, if the amplitude of each input tone increases by 6 dB (a factor of two), the
amplitude of the IM products (o A3) rises by 18 dB and hence the relative IM by 12dB.°
The principal difficulty in specifying the relative IM for a circuit is that it is meaningful
only if the value of A is given. From a practical point of view, we prefer a single measure
that captures the intermodulation behavior of the circuit with no need to know the input
level at which the two-tone test is carried out. Fortunately, such a measure exists and is
called the “third intercept point™ (IP3).
The concept of IP5 originates from our earlier observation that, if the amplitude of
cach tone rises, that of the output IM products increases more sharply (x A?). Thus, if
we continue to raise A, the amplitude of the IM products eventually becomes equal to that

6. It is assumed that no compression oceurs 5o that the output fundamental tones also rse by 6dB.
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Figure 2.20 Definition of IPa (for voltage guantities).

of the fundamental tones at the output. As illustrated in Fig. 2.20 on a log-log scale. the
input level at which this occurs 1s called the “input third intercept point”™ (IIP;). Simuilarly,
the corresponding output is represented by OIP5. In subsequent derivations, we denote the
input amplitude as Ajpa.

To determine the 11Ps, we simply equate the fundamental and IM amplitudes:

3
1A np3| = | a3Ajp (2.46)
obtaining
4 o ;
Anps = | = |—|- (2.47)
3 w3
Interestingly,
Apps [ 4 (2.48)
Awr V0435 ‘
~ 0.6 dB. (2.49)

This ratio proves helpful as a sanity check in simulations and measurements.” We some-
times write IP3 rather than TIP3 if it is clear from the context that the input is of
inierest.

Upon further consideration, the reader may question the consistency of the above
derivations. If the IPy is 9.6dB higher than P4z, is the gain not heavily compressed at
Ay, = Apps™ If the gain is compressed, why do we still express the amplitude of the fun-
damentals at the output as wA? It appears that we must instead write this amplitude as
lay + {gfi]ﬂ'gﬂjlri to account for the compression.

In reality, the situation is even more complicated. The value of [P given by Eq. (2.47)
may exceed the supply voltage. indicating that higher-order nonlinearities manifest them-
selves as A, approaches Appy [Fig. 2.21(a)]. In other words, the 1P; i1s not a directly
measurcable quantity.

In order to avoid these quandaries, we measure the [Py as follows. We begin with a very

low input level so that &) + (9}4){:{3&5] = ¢ (and, of course, higher order nonlinearities

7. Mote that this relationship holds for 4 third-order system and not necessarily if higher-order terms manifest
themselves,
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Figure 2.21 [a) Actual behavior of nonlinear circuiis, (b) definition of IP3 based on extrapolation.

are also negligible). We increase A;,, plot the amplitudes of the fundamentals and the IM
products on a log-log scale, and extrapolate these plots according to their slopes (one and
three, respectively) to obtain the IP5 [Fig. 2.21(b)]. To ensure that the signal levels remain
well below compression and higher-order terms are negligible, we must observe a 3-dB rise
in the IM products for every 1-dB increase in A;,. On the other hand, if A;, is excessively
small, then the output IM components become comparable with the noise floor of the circuit
{or the noise floor of the simulated spectrum). thus leading to inaccurate results.

Example 2.11

A low-noise amplifier senses a —80-dBm signal at 2.410GHz and two —20-dBm inter-
ferers at 2.420 GHz and 2,430 GHz. What I1P; is required if the IM products must remain
20dB below the signal? For simplicity, assume 50-2 interfaces at the input and output.

Solution:

Denoting the peak amplitudes of the signal and the interferers by A, and Ag,, respectively,
we can write at the LNA output:

3
—ﬂ’3ﬂ?m >

i (2.50)

201og lajAg,| — 20dB = 201log

It follows that S
lt1Asie| = ‘Iﬂsﬂi; ;
In a 50-€ system, the —80-dBm and —20-dBm levels respectively yield Ay, = 31.6 uVp

and Ay, = 31.6 mV,,. Thus,

(2.51)

4
P = ot (2.52)
3 |las
— 365V, (2.53)
= +15.2dBm. (2.54)

Such an IP; is extremely difficult to achieve. especially for a complete receiver chain.
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Figure 2.22 (a) Relationships among various power levels in a two-tone test, (b) illustration of
shorteut technigue.

Since extrapolation proves quite tedious in simulations or measurements, we often
employ a shortcut that provides a reasonable initial estimate. As illustrated in Fig, 2,22(a),
suppose hvpothetically that the input 18 equal to A gps, and hence the (extrapolated) output
IM products are as large as the (extrapolated) fundamental tones. Now, the input is reduced
to a level Ajy. That is, the change in the input is equal to 20log Ayps — 201log Ajy1. On a
log-log scale, the IM products fall with a slope of 3 and the fundamentals with a slope of
unity. Thus, the difference between the two plots increases with a slope of 2. We denote
20log Ay — 20log Ajy by AP and write

AP = 20logAr — 20log A = 2(20log Agrpy — 20log A1), (2.55)
obtaining
AF
20logApps = T + 20log At - (2.56)

In other words, for a given input level (well below P;5), the 1IPy can be calculated by
halving the difference between the output fundamental and IM levels and adding the result
to the input level, where all values are expressed as logarithmic quantities. Figure 2.22(b)
depicts an abbreviated notation for this rule. The key point here is that the IP3 is measured
without extrapolation.

Why do we consider the above resull an estimate? After all, the derivation assumes
third-order nonlinearity. A difficulty arises if the circuit contains dynamic nonlinearities,
in which case this result may deviate from that obtained by extrapolation. The latter is the
standard and accepted method for measuring and reporting the 1Ps, but the shortcut method
proves useful in understanding the behavior of the device under test.
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We should remark that second-order nonlinearity also leads to a certain type of inter-
modulation and is characterized by a “second intercept point.” (IP;)." We elaborate on this
effect in Chapter 4.

2.2.5 Cascaded Nonlinear Stages

Since in RF systems, signals are processed by cascaded stages, it is important to know how
the nonlinearity of each stage is referred to the input of the cascade. The calculation of Py
for a cascade is outlined in Problem 2.1. Here, we determine the 1Pz of a cascade. For the
sake of brevity, we hereafter denote the input IP3 by Ajp3 unless otherwise noted.

Consider two nonlinear stages in cascade (Fig. 2.23). If the input/output characteristics
of the two stages are expressed, respectively, as

yi(t) = ox(r) + &'gxz{n + ﬂ!'jlj{f} (2.57)
y2(t) = Bivi () + Bayi() + Bavi (), (2.58)

then

ya() = Bilox(t) + aax® () + a3 (0] + Balocix(t) + aax® (1) + a3 (0]
4 Bilox(n) + aax () + asx’ (). (2.59)

Considering only the first- and third-order terms, we have
va(t) = a1 B1x(0) + (@3B + 2on02P2 + @i f1x (1) + - (2.60)

Thus, from Eq. (2.47),

a B
w3fi + 2o1a0ps + @

4

J'IP3|2

”Pa,i

x(t)

Figure 2.23 Cascaded nonlinear stages.

Example 2.12

Two differential pairs are cascaded. s it possible to select the denominator of Eq. (2.61)
such that IP3 goes to infinity?

{Continues)

8. As seen in the next section, second-order nonlinearity also affects the 1Py in cascaded systems.
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Example 2.12  (Continued)

Solution:

With no asymmetries in the cascade, @2 = fi» = 0. Thus, we seek the condition a3f8; +
ai B3 =0, or equivalently,
S (2.62)
) Bi
Since both stages are compressive, a3/a < Oand g3/8, < 0. It is therefore impossible to
achieve an arbitrarily high IP;3.

Equation (2.61) leads to more intuitive results if its two sides are squared and inverted:

3
: _ 3 |aaf T 2ua0f +aifs 2.63)
Ay 4 a1hi
2
i 2 + 2a2pa + @53 (2.64)
4 o Bi Bi
2
= o 20000 W | (2.65)
Alps 2B P32

where A;ps | and Agpa 2 represent the input IP5’s of the first and second stages, respectively.
Note that Ajps, Azps1, and Ajps 2 are voltage quantities.

The key observation in Eq. (2.65) is that to “refer” the 1P; of the second stage to the
input of the cascade, we must divide 1t by ay. Thus, the higher the gain of the first stage,
the more nonlinearity is contributed by the second stage.

IM Spectra in a Cascade To gain more insight into the above results, let us assume
x(f) =Acoswii + Acoswat and identify the IM products in a cascade. With the aid of
Fig. 2.24, we make the following observations:”

I. The input tones are amplified by a factor of approximately « in the first stage and
B in the second. Thus, the output fundamentals are given by o) g Alcosw i +
COs wal).

2. The IM products generated by the first stage, namely, (3(&3;’4}&3|c03(2w| —wa)t +
cos(2wa — w )], are amplified by a factor of 8, when they appear at the output of
the second stage.

3. Sensing o A(coswt + cosmat) al its input, the second stage produces its own IM
components: (383/4) (1A} cos(2w) — wa)t + (3B1/4) (0 1A)° cos(2wr — w))L.

9. The spectrum of A cos wf consists of two impulses, each with a weight of A /2. We drop the lactorof 1/2 in
the figures for simplicity.
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Figure 2.24 Spectra in a cascade of nonlinear stages.

4. The second-order nonlinearity in v (f) generales components at @ — @2, 2wy, and
2w, Upon experiencing a similar nonlinearity in the second stage, these compo-
nents are mixed with those at w; and - and translated to 2w — wr and 2w: — @)
Specifically, as shown in Fig. 2.24, y2(1) contains terms such as 28|01 A cos wit X
w>A” cos(w; — wa)t] and 2@ Acosant X 0.5w2A2 cos 2wst). The resulting IM
products can be expressed as (3ajaafaA”/2)[cos(2a — walt + cos(2wr — @)1
Interestingly, the cascade of two second-order nonlincarities can produce third-

order IM products.

Adding the amplitudes of the IM products, we have

yalt) = a f1A{coswt + cos wat)

" (hiﬁl I 3ﬂ|3ﬁ3 i Joyan i

4

2

+ cos(2wr — ] + -+,

)A'}’Icns{m — 2wt

(2.60)

obtaining the same 1P; as above. This result assumes zero phase shift for all components.
Why did we add the amplitudes of the IM; products in Eq. (2.66) without regard for
their phases? Is it possible that phase shifts in the first and second stages allow partial
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cancellation of these terms and hence a higher IP37? Yes. it 1s possible but uncommon in
practice. Since the frequencies w), ws, 2w — w2, and 2w, — w) are close to one another,
these components experience approximately equal phase shifts.

But how about the terms described in the fourth observation? Components such as
wy — wr and 2wy may fall well out of the signal band and experience phase shifts different
from those in the first three observations. For this reason, we may consider Egs. (2.65) and
(2.66) as the worst-case scenario. Since most RF systems incorporate narrowband circuits,
the terms at e = s, 20y, and 2w» are heavily attenuated at the output of the first stage.
Consequently, the second term on the right-hand side of (2.65) becomes negligible, and

[ | wl
i ' (2.67)
’qu Alps,i “"IPB 2
Extending this result to three or more stages, we have
1 l ol &: 4
5 5 =t i - (2.68)
’d‘uﬂ. AJP% r Alpas Auﬂ, 3

Thus, if each stage in a cascade has a gain greater than unity, the nonlinearity of the latter
stages becomes increasingly more critical because the IP5 of each stage is equivalently
scaled dewn by the total gain preceding that stage.

Example 2.13

A low-noise amplifier having an input IP; of —10dBm and a gain of 20dB is followed
by a mixer with an input IP; of +4 dBm. Which stage limits the IP; of the cascade more?
Assume the conceptual picture shown in Fig. 2.1(b) to go between volts and dBm’s.

Solution:
With @) = 20dB, we note that

Az = —10dBm {(2.69)
A
P32 — _16dBm. (2.70)
o

Since the scaled 1P; of the second stage is lower than the IP; of the first stage, we say the
second stage limits the overall IP; more.

In the simulation of a cascade, it is possible to determine which stage limits the linearity
more. As depicted in Fig. 2.25, we examine the relative IM magnitudes at the output of each
stage (A and As, expressed in dB.) If A, = A, the second stage contributes neghgible
nonlinearity. On the other hand, if A- is substantially less than A, then the second stage
limits the 1P;5.
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Figure 2.25 Growth of IM components along the cascade.

2.2.6 AM/PM Conversion

In some RF circuits, e.g.. power amplifiers, amplitude modulation (AM) may be converted
to phase modulation (PM), thus producing undesirable effects. In this section, we study this
phenomenon.

AM/PM conversion (APC) can be viewed as the dependence of the phase shift upon
the signal amplitude. That is, for an input Vi, (1) = V} cos wyt, the fundamental output
component is given by

Vour(r) = Vacosfant + @ (Vi) (2.71)

where ¢ (V) denotes the amplitude-dependent phase shift. This, of course, does not occur
in a linear time-invariant system. For example, the phase shift experienced by a sinusoid
of frequency w through a first-order low-pass RC section is given by — tan™ ' (RCew)
regardless of the amplitude. Moreover, APC does not appear in a memoryless nonlinear
system because the phase shift is zero in this case.

We may therefore surmise that AM/PM conversion arises if a system is both dynamic
and nonlinear. For example, if the capacitor in a first-order low-pass RC section is nonlin-
ear, then its “average” value may depend on V|, resulting in a phase shift, — tan™ " (RCaw ),
that itself varies with Vj, To explore this point, let us consider the arrangement shown in
Fig. 2.26 and assume

":J =ikl ﬁVmu)Cu- {2?2}

Ay
IbllIl:ll.l't

l"rirl ) 01

Figure 2.26 RC section with nonlinear capacitor.

This capacitor is considered nonlinear because its value depends on its voltage. An
exact calculation of the phase shift is difficult here as it requires that we write
Vin = B C1dVy /dt + V,,,; and hence solve

VGH‘I

dt

We therefore make an approximation. Since the value of C; varies periodically with
time, we can express the output as that of a first-order network but with a time-varying

d
Vi cosewit = Ri(1 + aV,u)Co—=l + V. (2.73)
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capacitance, C (1):

V
Vo (1) = i cosfert — tan” ' [R1C; (D 1) (2.74)

V11 RC (0o

If Ry Cy(t)er; << | rad,
Vour (1) 2=V coslant — Ri(1 + o Vi ) Cown |. (2.75)
We also assume that (1 + «V,,,)Cy = (1 + «V) cos @ 1)Cy, obtaining
Ve (1) 22 V) cos(wf — R\ Copeny — aRCow V) cos w1). (2.76)

Does the outpul fundamental contain an input-dependent phase shift here? No, it does
not! The reader can show that the third term inside the parentheses produces only higher
harmonies. Thus, the phase shift of the fundamental is equal to —R;Cyw; and hence
constant.

The above example entails no AM/PM conversion because of the first-order depen-
dence of Cy upon V. As illustrated in Fig. 2.27, the average value of C; is equal to
Cp regardless of the output amplitude. In general, since C) varies periodically, it can be
expressed as a Fourier series with a “dc” term representing its average value:

e 4] o0
C] [I} = Cﬂ].'g + z-ﬂﬂ EUSUIM[” + Z b” Sin{”fﬂ]l'). {2.??]

n=1 n=]

Thus, if C,, is a function of the amplitude, then the phase shift of the fundamental com-
ponent in the output voltage becomes input-dependent. The following example illustrates
this point.

Figure 2.27 Time variation of capacitor with first-order voltage dependence for small and large
SWings.
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Example 2.14

Suppose C; in Fig. 2.26 is expressed as C; = Cy( 1 + oy Ve + a2 V_fm]. Study the AM/PM
conversion in this case if Vi, (t) = V) cos wit.

Solution:

Figure 2.28 plots €y (¢) for small and large input swings. revealing that Cy,, indeed depends
on the amplitude. We rewrite Eq. (2.75) as

cid

i -
! : ‘ vuut t
t
Y
Figure 2.28 Time variation of capacitor with second-order voltage dependence for small and large

Swings.

Vour () = Vy coslent — Ry Cpeoy (1 + o)V cos et + -:1:'21'-*'2 cos” wt)] (2.78)
I

2R Cowy Vi

=V I:'I'.)S(WH — R Cowy — 3

=k (2.79)
The phase shift of the fundamental now contains an input-dependent term,
— (2R Cow) V7)/2. Figure 2.28 also suggests that AM/PM conversion does not occur if
the capacitor voltage dependence is odd-symmetric.

What is the effect of APC? In the presence of APC, amplitude modulation (or amplitude
noise) corrupts the phase of the signal. For example. if Vi, (1) = V{1 + m cos w1 cos wt,
then Eq. (2.79) vields a phase corruption equal to —aaR|Chw|(ZmV) coswy! +
mEVIZ cos” wyt) /2. We will encounter examples of APC in Chapters 8 and 12.

2.3 NOISE

The performance of RF systems is limited by noise. Without noise, an RF receiver would
be able to detect arbitrarily small inputs, allowing communication across arbitrarily long
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distances. In this section, we review basic properties of noise and methods of calculat-
ing noise in circuits. For a more complete study of noise in analog circuits, the reader is
referred to [1].

2.3.1 Noise as a Random Process

The trouble with noise is that it is random, Engineers who are used to dealing with well-
defined. determimistic, “hard” facts often find the concept of randomness difficult to grasp,
especially if it must be incorporated mathematically. To overcome this fear of randomness,
we approach the problem from an intuitive angle.

By “noise is random.” we mean the instantaneous value of noise cannot be predicted.
For example. consider a resistor tied to a battery and carrying a current [Fig. 2.29(a)].
Due to the ambient temperature, cach electron carrving the current experiences thermal
agitation, thus following a somewhat random path while, on the average, moving toward
the positive terminal of the battery. As a result, the average current remains equal to Vg/R
but the instantaneous current displays random values."

Ve
1l
"

+

R

AAAANA

-
)
(a) (bl

Figure 2.29 (a} Nvise generated in a resistor, (b) effect of higher temperature.

Since noise cannot be characterized in terms of instantaneous voltages or currents, we
seck other attributes of noise that are predictable. For example, we know that a higher ambi-
ent temperature leads Lo greater thermal agitation of electrons and hence larger fluctuations
in the current [Fig. 2.29(b)]. How do we express the concept of larger random swings for
a current or voltage quantity? This property is revealed by the average power of the noise,
defined, in analogy with periodic signals, as

T
| 2
= H i - “
Py Tllﬂc Tf" ()di, (2.80)
[

where n(t) represents the noise waveform. Illustrated in Fig. 2.30, this definition simply
means that we compute the area under n°(¢) for a long time, T, and normalize the result
to T, thus obtaining the average power. For example, the two scenarios depicted in Fig. 2.29
yield different average powers.

10, As explained later, this 15 rue even with a zero average current.
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Figure 2.3 Computation of noise power.

If n{1) 1s random, how do we know that P, 1s not?! We are fortunate that noise compo-
nents in circuits have a constant average power. For example, P, is known and constant for
a resistor at a constant ambient temperature,

How long should T in Eq. (2.80) be? Due to its randomness, noise consists of different
frequencies. Thus, T must be long enough to accommodate several cycles of the lowest
frequency. For example. the noise in a crowded restaurant arises from human voice and
covers the range of 20 Hz to 20kHz, requiring that T be on the order of 0.5s to capture
about 10 cycles of the 20-Hz components. '

2.3.2 Noise Spectrum

Our foregoing study suggests that the time-domain view of noise provides E‘Tglimd informa-
tion, e.g., the average power. The frequency-domain view, on the other hand, yields much
greater insight and proves more useful in RF design.

The reader may already have some intuitive understanding of the concept of “spec-
trum.” We say the spectrum of human voice spans the range of 20Hz to 20kHz. This
means that if we somehow measure the frequency content of the voice, we observe all
components from 20 Hz to 20 kHz. How, then, do we measure a signal’s frequency content,
e.2.. the strength of a component at 10kHz? We would need to filter out the remainder
of the spectrum and measure the average power of the 10-kHz component. Figure 2.31(a)
conceptually illustrates such an experiment, where the microphone signal is applied to a
band-pass filter having a |-Hz bandwidth centered around 10kHz. If a person speaks into
the microphone at a steady volume, the power meter reads a constant value.

The scheme shown in Fig. 2.31(a) can be readily extended so as to measure the strength
of all frequency components. As depicted in Fig, 2.31(b), a bank of 1-Hz band-pass filters
centered at f) - - - f, measures the average power at each frequency.'* Called the spectrum or
the “power spectral density” (PSD) of x(¢) and denoted by 5,( /), the resulting plot displays
the average power that the voice (or the noise) carries in a 1-Hz bandwidth at different
frequencies.”

It 15 interesting to note that the total area under §,(f) represents the average power
carried by x(1):

o0 T

f So(fidf = lim - f.rl{:}a‘r, (2.81)
T—oc T

0 {

1. In practice. we make a guess for T, calculate Py, increase T, recaleulate Py, and repeat until consecutive
vilues of Py, become nearly egual.

12. This is also the concepiual operation of spectrum analyzers,

13. In the theory of signals and systems, the PSD is defined as the Fourier transform of the autocorrelation of
a signal. These two views are equivalent.
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Figure 2.31 Measurement of (a) power in | Hz, and (b) the spectrum.

The spectrum shown n Fig. 2.31(b) 1s called “one-sided™ because it 15 constructed for
positive frequencies. In some cases, the analysis is simpler if a “two-sided” spectrum is
utilized. The latter is an even-symmetric of the former scaled down vertically by a factor
of two (Fig. 2.32), so that the two carry equal energies.

Figure 2,32 Two-sided and one-sided spectra.

Example 2.15

A resistor of value R; generates a noise voltage whose one-sided PSD is given by
§.(f) = 4kTRy, (2.82)

See. 2.3, Noise 39

Example 2.15 (Continued)

where k = 1.38 X 10~ J/K denotes the Boltzmann constant and T the absolute tempera-
ture. Such a flat PSD is called “white” because, like white light, it contains all frequencies
with equal power levels,

(a) What is the total average power carried by the noise voltage?

{b) What is the dimension of 5.( )"

(c) Calculate the noise voltage for a 50-2 resistor in | Hz al room temperature.

Solution:

(a) The area under §,( f) appears to be infinite, an implausible result because the resistor
noise arises from the finite ambient heat. In reality. S,( /) begins to fall at f = 1 THz.
exhibiting a finite total energy, i.e.. thermal noise is not quite white.

(b) The dimension of S,(f) is voltage squared per unit bandwidth (V2/Hz) rather than
power per unit bandwidth (W/Hz). In fact, we may write the PSD as

2 = 4KTR, (2.83)

where ﬁﬂ denotes the average power of V,, in | Hz." While some texts express the
right-hand side as 4kTRAS to indicate the total noise in a bandwidth of Af, we omit
Af with the understanding that our PSDs always represent power in 1 Hz. We shall

use S,( ) and V2 interchangeably.
(c) For a 50-82 resistorat T = 300K,

V2 =828 X 1079 Vi/Hz, (2.84)

This means that if the noise voltage of the resistor is applied to a 1-Hz band-pass fil-
ter centered at any frequency (= 1 THz), then the average measured output is given
by the above value, To express the result as a root-mean-squared (rms) quantity and
in more familiar units, we may take the square root of both sides:

‘/v:;;! = 0.91 nV/+/Hz (2.85)

The familiar unit is nV but the strange unit is ~/Hz. The latter bears no profound
meaning; it simply says that the average power in 1 Hz is (0.91 nV)?,

2.3.3 Effect of Transfer Function on Noise

The principal reason for defining the PSD is that it allows many of the frequency-domain
operations used with deterministic signals to be applied to random signals as well. For

14, Also called “spot noise.”
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example, if white noise is applied to a low-pass filter, how do we determine the PSD at
the output? As shown in Fig. 2.33, we intuitively expect that the output PSD assumes the
shape of the filter’s frequency response. In fact, if x(1) is applied to a linear, time-invariant
system with a transfer function H(s), then the output spectrum is

S:(f) = S (HIHDI, (2.86)

where H({) = H(s = j2xf) |2]. We note that |[H( )| is squared because S,( f) is a (voltage
or current) squared quantity.

LPF

B I BN N

f f

Figure 2.33 Effect of low-pass filter on white noise.

2.3.4 Device Noise

In order to analyze the noise performance of cireuits, we wish to model the noise of their
constituent elements by familiar components such as voltage and current sources. Such a
representation allows the use of standard circuit analysis techniques.

Thermal Noise of Resistors As mentioned previously, the ambient thermal energy leads
to random agitation of charge carriers in resistors and hence noise. The noise can be

modeled by a series voltage source with a PSD of F_§=4kTRl [Thevenin equivalent,

Fig. 2.34(a)] or a parallel current source with a PSD of I?, = VE;’R] = 4kT /R, [Norton
equivalent, Fig. 2.34(b)]. The choice of the model sometimes simplifies the analysis.
The polarity of the sources is unimportant (but must be kept the same throughout the
calculations of a given circuit).

R,

+
4kTR, R,

(a) (b}

Figure 2.34 (a) Thevenin and (b) Norton models of resistor thermal noise.

Example 2.16

-Sketch the PSD of the noise voltage measured across the parallel RLC tank depicted in
Fig. 2.35(a).
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Example 2.16 (Continued)

fa) (b} el
Figure 2.35 (a) RLC tank, (b) inclusion of resistor noise, (¢ outpul noise spectrum due 1o Ry,

Solution:

Modeling the noise of Ry by a current source, Iﬁl = 4kT /R, [Fig. 2.35(b)] and noting that
the transfer function V,,/I, is. in fact, equal to the impedance of the tank, Zr, we write
from Eq. (2.86)

Vi=P\zrP (2.87)

Atfo=QrvTiCn~ ' Ly and C) resonate, reducing the circuit to only R. Thus, the output

noise at fiy is simply equal to Iﬁ, 1 = 4kTR,. At lower or higher frequencies, the impedance
of the tank falls and so does the output noise [Fig. 2.35(c)].

If a resistor converts the ambient heat to a noise voltage or current, can we extract
energy from the resistor? In particular, does the arrangement shown in Fig. 2.36 deliver
energy to R27 Interestingly, if Ry and K> reside at the same temperature, no net energy is
transferred between them because Ry also produces a noise PSD of 4kTR> (Problem 2.8).
However, suppose R> is held at T = 0 K. Then, R continues to draw thermal energy from
its environment, converting it to noise and delivering the energy to R2. The average power
transferred to R 15 equal to

(2.88)

(2.89)

(2.90)

Figure 2.36 Transfer of noise from one resistor to another.




42 Chap. 2. Basic Concepis in RF Design
This quantity reaches a maximum if R, = R;:
Prs max = kT. (2.91)

Called the “available noise power,” kT is independent of the resistor value and has the
dimension of power per unit bandwidth. The reader can prove that kT = —173.8dBm/Hz
al T =300K. .

For a circuit to exhibit a thermal noise density of V2 = 4kTR), it need not contain an
explicit resistor of value R). After all. Eq. (2.86) suggests that the noise density of a resistor
may be transformed to a higher or lower value by the surrounding circuit. We also note that
if a passive circuit dissipates energy, then it must contain a physical resistance'® and must
therefore produce thermal noise. We loosely say “lossy circuits are noisy.”

A theorem that consolidates the above observations is as follows: If the real part of
the impedance seen between two terminals of a passive (reciprocal) network is equal to
Rel{Z,,;1. then the PSD of the thermal noise seen between these terminals 1s given by V_ﬁ =
4kTRe{Z,,,} (Fig. 2.37) |8]. This general theorem is not limited to lumped circuits. For
example, consider a transmitting antenna that dissipates energy by radiation according to
the equation V%x_ms,fﬁmd, where R, is the “radiation resistance™ |[Fig. 2.38(a)]. As a
receiving element [Fig. 2.38(b)]. the antenna generates a thermal noise PSD of'®

Vﬁ

I, e

)
~

= 4kTRu4. (2.92)

|~ Lo
=> @mﬁ

AL

Figure 2.37 Ourpur noise of a passive (reciprocal) circuir.

noy o

4KTR g

=

{u) ib)

Figure 2.38 (a) Transmitting antenna, (b) receiving antenna producing thermal noise.

13, Recall that ideal inductors and capacitors store energy but do not dissipate it

16, Strictly speaking, this is not correct because the noise of a receiving antenna is in fact given by the “back-
ground” noise (e.g., cosmic radiation). However, in RF design, the antenna noise is commonly assumed o be
4kTR, 0.

Sec. 2.3, Noise 43
AKT Y
Im
= aTYg, —O—
M, M,
(a) (k)

Figure 2.39 Thermal channel noise of a MOSFET modeled as a (a) current source, (b) voltage
SOUFCE,

Noise in MOSFETs The thermal noise of MOS transistors operating in the saturation

region is approximated by a current source tied between the source and drain terminals
[Fig. 2.39(a)]:

2 = 4Ty gm, (2.93)

where y is the “excess noise coefficient” and g, the transconductance.!” The value of ¥
is 2/3 for long-channel transistors and may rise to even 2 in short-channel devices [4].
The actual value of y has other dependencies [5] and is usually obtained by measure-
ments for each generation of CMOS technology. In Problem 2.10, we prove that the noise
can alternatively be modeled by a voltage source V2 = 4kT'y /g, in series with the gate
[Fig. 2.39(b)].

Another component of thermal noise arises from the gate resistance of MOSFETs, an
effect that becomes increasingly more important as the gate length is scaled down. Illus-
trated in Fig. 2.40(a) for a device with a width of W and a length of L, this resistance

amounts to

W

Rc = —Rn, (2.94)

L
where R denotes the sheet resistance (resistance of one square) of the polysilicon gate.
For example, if W = | pum, L = 45nm, and R = 15 Q. then R; = 333 2. Since Ry; is dis-
tributed over the width of the transistor [Fig. 2.40(b}|, its noise must be calculated carefully.
As proved in [6], the structure can be reduced to a lumped model having an equivalent gate
resistance of Rg /3 with a thermal noise PSD of 4kTR; /3 [Fig. 2.40(c¢)]. In 4 good design,
this noise must be much less than that of the channel:

R 4kT
T2 o 20T
7 Zm

(2.95)

The gate and drain terminals also exhibit physical resistances, which are minimized through
the use of multiple fingers.

At very high frequencies the thermal noise current flowing through the channel couples
to the gate capacitively, thus generating a “gate-induced noise carrent” [3] (Fig. 2.41). This

17. More accurately, I2 = 4kTy g, where g is the drain-source conductance in the triode region (even
though the noise 1s measured in saturation) [3].
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Figure 2.40 (a) Gate resistance of a MOSFET, (b) equivalent circuit for noise calculation,
() equivalent noise and resistance in lumped model.
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Figure 2.41 Gate-induced noise, E

effect is not modeled in typical circuit simulators, but its significance has remained unclear,
In this book, we neglect the gate-induced noise current.

MOS devices also suffer from “flicker™ or “1/f™ noise. Modeled by a voltage source in
series with the gate, this noise exhibits the following PSD:

- _ K 1
T Wf.[:‘m.f L]

(2.96)

where K is a process-dependent constant, In most CMOS technologies, K is lower for
PMOS devices than for NMOS transistors because the former carry charge well below the
silicon-oxide interface and hence suffer less from “surface states” (dangling bonds) [1]. The
| /f dependence means that noise components that vary slowly assume a large amplitude.
The choice of the lowest frequency in the noise integration depends on the time scale of
interest and/or the spectrum of the desired signal [1].
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Example 2,17

Can the flicker noise be modeled by a current source?

Solution:

Yes, as shown in Fig. 2.42, a MOSFET having a small-signal voltage source of magnitude
V) in series with its gate is equivalent to a device with a current source of value g, V) tied
between drain and source. Thus,

e (2.97)

Figure 2.42 Conversion of flicker noise veltage to current.

For a given device size and bias current, the 1 /f noise PSD intercepts the thermal noise
PSD at some frequency, called the *1/f noise corner frequency,” (.. Hustrated in Fig. 2.43.

f can be obtained by converting the flicker noise voltage to current (according to the above

example) and equating the result to the thermal noise current:

K 1,
—pg- = 4kT ; 2.
WLC,, 1, 5n ~ Tv8m i
It follows that
K [
e y 2.99
f WLC,, 4kTy ( )

The corner frequency falls in the range of tens or even hundreds of megahertz in today’s
MOS technologies.

v |
Va Flicker Noise

(log scale)

Figure 2.43 Flicker noise corner frequency.
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While the effect of flicker noise may seem negligible at high frequencies, we must
note that nonlinearity or time variance in circuits such as mixers and oscillators may trans-
late the 1/f-shaped spectrum to the RF range. We study these phenomena in Chapters 6
and 8.

Noise in Bipolar Transistors Bipolar transistors contain physical resistances in their
base, emitter, and collector regions, all of which generate thermal noise. Moreover, they
also suffer from “shot noise™ associated with the transport of carriers across the base-emitter
junction. As shown in Fig. 2.44, this noise 1s modeled by two current sources having the
following PSDs:

E = 2qlp = 29— (2.100)

2. =24, (2.101)

e

where Iz and I~ are the base and collector bias currents, respectively. Since g, =1/ (kT /q)
for bipolar transistors, the collector current shot noise is often expressed as

2, = 4kT%, (2.102)

in analogy with the thermal noise of MOSFETS or resistors.

In low-noise circuits, the base resistance thermal noise and the collector current shot
noise become dominant. For this reason, wide transistors biased at high current levels are
employed.

Figure 2.44 Noise sources in a bipolar transistor,

2.3.5 Representation of Noise in Circuits

With the noise of devices formulated above, we now wish to develop measures of the noise
performance of circuits. i.e., metrics that reveal how noisy a given circuit is.

Input-Referred Noise How can the noise of a circuit be observed in the laboratory? We
have access only to the output and hence can measure only the output noise. Unfortunately,
the output noise does not permit a fair comparison between circuits: a circuit may exhibit
high output noise because it has a high gain rather than high noise. For this reason, we
“refer” the noise to the input.
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Figure 2.45 Input-referred noise.

In analog design, the input-referred noise is modeled by a series voltage source and a
parallel current source (Fig. 2.45) [1]. The former is obtained by shorting the input port
of models A and B and equating their output noises (or, equivalently, dividing the output
noise by the voltage gain). Similarly, the latter is computed by leaving the input ports
open and equating the output noises (or, equivalently, dividing the output noise by the
transimpedance gain).

Example 2.18

Calculate the input-referred noise of the common-gate stage depicted in Fig. 2.46(a).
Assume Iy is ideal and neglect the noise of R;.

(@) (b) {c)

Figure 2.46 (a) CG siage, (b) computation of input-referved noise voltage, (¢) computation of
input-referred noise current.

Solution:
Shorting the input to ground, we write from Fig. 2.46(b).

Vi =0.r. (2.103)

Since the voltage gain of the stage is given by 1 + g, 7o, the input-referred noise voltage is
equal to

- |
Po= D 2.1
Irj1I!'m:l'i U + gmrﬂ}z ( ' m}
4kT
Sasiilicy (2.105)
&m
{Cemtinuex)

0
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Example 2.18 (Continued)

where it is assumed g ro 3 1. Leaving the input open as shown in Fig. 2.46(c), the reader
can show that (Problem 2.12) '

V2, =T}, (2.106)

Defined as the output voltage divided by the input current, the transimpedance gain of the
stage is given by g, roR| (why?). It follows that

7 _ It (2.107)

adn gmrgRE x L
AkT

=1 (2.108)
ngI

From the above example, it may appear that the noise of M) is “counted™ twice. It
can be shown that | 1| the two input-referred noise sources are necessary and sufficient, but
often correlated.

Example 2.19

Explain why the output noise of a circuit depends on the output impedance of the preceding
stage.

Solution:

Modeling the noise of the circuit by input-referred sources as shown in Fig. 2.47. we

observe that some of 2 flows through Z;, generating a noise voltage at the input that
depends on |Z;|. Thus, the output noise, Vy, .., also depends on |Z;].

ﬂ—[>..]—[>—ﬂm:::>:-z_u (%{>—«

Figure 2,47 Novise in a cascade.

The computation and use of input-referred noise sources prove difficult at high fre-
quencies. For example. it i1s quite challenging to measure the transimpedance gain of an
RF stage. For this reason, RF designers employ the concept of “noise figure” as another
metric of noise performance that more easily lends itself to measurement.

Noise Figure In circuit and system design, we are interested in the signal-to-noise ratio
(SNR), defined as the signal power divided by the noise power. It 1s therefore helpful to
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ask, how does the SNR degrade as the signal travels through a given circuit? If the circuit
contains no noise, then the output SNR is equal to the input SNR even if the circuit acts as
an altenuator.”® To quantify how noisy the circuit is, we define its noise figure (NF) as

SNR;,

NF =
SNR{?M

(2.109)

such that it is equal to 1 for a noiseless stage. Since each quantity in this ratio has a
dimension of power (or voltage squared), we express NF in decibels as

SNR;,

NF|gg = 1010 ‘
& SNRu;

(2.110)

Note that most texts call (2.109) the “noise factor™ and (2.110) the noise figure. We do not
make this distinction in this book.

Compared to input-referred noise, the definition of NF in (2.109) may appear rather
complicated: it depends on not only the noise of the circuit under consideration but the
SNR provided by the preceding stage. In fact. if the input signal contains no noise, then
SNR;,;, = oo and NF= oo, even though the circuit may have finite internal noise. For
such a case, NF is not a meaningful parameter and only the input-referred noise can be
specified.

Calculation of the noise figure is generally simpler than Eq. (2.109) may suggest.
For example, suppose a low-noise amplifier senses the signal received by an antenna
[Fig. 2.48(a)]. As predicted by Eq. (2.92), the antenna “radiation resistance,” Rs, pro-

duces thermal noise, leading to the model shown in Fig. 2.48(h). Here, fo gs represents the

thermal noise of the antenna, and V_;? the output noise of the LNA. We must compute SNR;;,
at the LNA input and SNR,,,,; at its output.

o L Nl
i B Vnms i 5 i Vo | SNR
: § — -+ 1 iV -——F i n

LNA i T 17 O R
| + A Noiseless £ bl

Vout  Vin( ) i i [' Circuit i Vour
; P | L .
ézll'l
fa) (b

Figure 2.48 (a) Antenna followed by LNA, (b) equivalent cirenir.

[8. Because the input signal and the input noise are attenuated by the same factor.
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If the LNA exhibits an input impedance of Zy,, then both V;, and Vgs experience an
attenuation factor of o = Z;,/(Z;; + Rs) as they appear at the input of the LNA. That is,

L (2.111)

where Vj, denotes the rms value of the signal received by the antenna.
To determine SNR,,,,;, we assume a voltage gain of A, from the LNA input to the output
and recognize that the output signal power is equal to VF;JCFFHE, The output noise consists

of two components: (a) the noise of the antenna amplified by the LNA, Vﬁslulzﬂg, and

(b) the output noise of the LNA, FE Since these two components are uncorrelated. we
simply add the PSDs and write

V2 o |2A2
SNRyuy = = ‘"L |_’ "_1 (2:112)
V§5|w|-;fi; g
It follows that
vi V2 |aPA% + V2
NF = [ . R .,-, 1 I {2,' |3:|
4TRs V] |a[2A2
| Vidal?A2+V2
= ’ RSlull A L o) - {El |‘-]-)
Vs PR
Voo
=1+ — = (2.115)
A3 v,

This result leads to another definition of the NF: the total noise at the output divided by
the noise at the output due to the source impedance. The NF is usually specified for a 1-Hz
bandwidth at a given frequency, and hence sometimes called the “spotl noise figure” to
emphasize the small bandwidth.

Equation (2.115) suggests that the NF depends on the source impedance, not only

through V‘,";S but also through V_;? (Example 2.19). In fact, if we model the noise by input-

referred sources, then the input noise current, 77 . | partially flows through Rs, generating a

source-dependent noise voltage of I7 R; at the input and hence a proportional noise at the

n,in

output. Thus, the NF must be specified with respect to a source impedance—typically 50 £2.
For hand analysis and simulations, it is possible to reduce the right-hand side of
Eq. (2.114) to a simpler form by noting that the numerator is the fofal noise measured

at the output:

| 1%
F = e O (2.116)
s Ap

where V,ium includes both the source impedance noise and the LNA noise, and Ap = |a|A,
is the voltage gain from Vi, to V., (rather than the gain from the LNA input to its output).
We loosely say, “to calculate the NF, we simply divide the total output noise by the gain
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from Vy, to V,,,; and normalize the result to the noise of Rg.” Alternatuvely, we can say from

{2.115) that “we calculate the output noise due to the amplifier {‘.f':;’), divide it by the gain,
normalize it (o 4kTR g, and add 1 to the result.”

It 1s important to note that the above derivations are valid even if no actual power 1s
transferred from the antenna to the LNA or from the LNA to a load. For example, if Z;,
in Fig. 2.48(b) goes to infinity, no power is delivered to the LNA, but all of the deriva-
tions remain valid because they are based on veltage (squared) quantities rather than power
quantities. In other words, so long as the derivations incorporate noise and signal volt-
ages, no inconsistency arises in the presence of impedance mismatches or even infinite
input impedances. This is a critical difference in thinking between modern RF design and
traditional microwave design.

Example 2.20

Compute the noise figure of a shunt resistor Rp with respect to a source impedance Ry
[Fig. 2.49(a)].

V2
o
=,

o

Figure 2.49 (a) Circuit consisting of a single parallel resistor, (b) model for NF calculation.

Solution:
From Fig. 2.49(h), the total outpul noise voltage is obtained by setting Vi, to zero:

V2 o = 4kT(Rs||Rp). (2.117)
The gain is equal to
Re
B e 2.11
# Rp + Rg { 8)
Thus,
(Rs +Rp)® 1
NF = 4kT(Rs||R 2.11
(Rs||Rp) Rf, TETRs (2.119)
Rs
= + _— .
1 = (2.120)

The NF is therefore minimized by maximizing Rp. Note that if Rp = Rs to provide
impedance matching, then the NF cannot be less than 3 dB. We will return to this critical
point in the context of LNA design in Chapter 5.
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Example 2.21

Determine the noise figure of the common-source stage shown in Fig. 2.50(a) with respect
to a source impedance Rs. Neglect the capacitances and flicker noise of M and assume [,
is ideal.

{a)

Figure 2.50 (a) C5 stage, (b) inclusion of noise.

Solution:
From Fig. 2.50(b), the output noise consists of two components: (a) that due to M, Ifh M1 ro;
and (b) the amplified noise of Rs. V_,%S(gmrg)z. It follows that

_ MTygnrp + 4TRs(gnro) |1
(gnro)? 4kTRs

e oy (2.122)
.ng.S

(2.121)

This result implies that the NF falls as Rg rises. Does this mean that, even though the ampli-
fier remains unchanged. the overall system noise performance improves as Rs increases?!
This interesting point is studied in Problems 2.18 and 2.19.

Noise Figure of Cascaded Stages Since many stages appear in a receiver chain, it is
desirable to determine the NF of the overall cascade in terms of that of each stage. Consider
the cascade depicted in Fig. 2.51(a), where A, and A,» denote the unloaded voltage zain
of the two stages. The input and output impedances and the output noise voltages of the
two stages are also shown."

We first obtain the NF of the cascade using a direct method; according to (2.115), we
simply calculate the total noise at the output due to the two stages, divide by {‘.f'”mfﬂnhz.
normalize (o 4kTRs, and add one to the result. Taking the loadings into account, we wrile
the overall voltage gain as

V Rj'nl Rfﬂﬁ
Ay i 7. Aya. (2.123)
: Vfu Re'u] o s R.S ]ani + R.-_rrr.rl

19, We assume for simplicity that the reactive components of the input and output impedances are nulled but
the tinal result is valid even if they are not.
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Stage 1 Stage 2
: Ay F b Ay F i
Ae | T W nloil T n2
"1ij : D_-O+ i: r\\‘ -O E =] out
I iPm P i Pae
(i)

ih)

Figure 2.51 {a) Noise in a cascade of stages, (b) simplified diagram.

The output noise due to the two stages, denoted by V72 . consists of two components: (a)

V”l?. and (b) ‘.f’f] amplified by the second stage. Since V,;; sees an impedance of R, to its
left and R;» to its right, it is scaled by a factor of R/ (Riy2 + Ruur) as it appears at the
input of the second stage. Thus,

V2 .= VL + V2 Rinz AL, (2.124)
.ol n2 nl [R;'a:-i i Roml ]j v2

The overall NF 1s therefore expressed as

NFjot = 1 + vg‘f,"” e (2.125)
A2 3KTRs
. 7 |
( Rint )2 22 4kTRs
REJH + R.S ¥l
72
LnZ I

-4

(2.126)

( Rini )2143 ( Rino )2 AZ kTR
Rr'.lﬂ + R.S' & Rin? + Rw:."l e

The first two terms constitute the NF of the first stage, NF . with respect to a source
impedance of Rg. The third term represents the noise of the second stage, but how can it be
expressed in terms of the noise figure of this stage?
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Let us now consider the second stage by itself and determine its noise figure with
respect to a source impedance of R, [Fig. 2.51(b)]. Using (2.115) again, we have

NF: =1+ Vi ! (2.127)
P = z i
i Ri: o 4kTR.-_,lur]
{Rr'nE = Rn‘."”i"l.}:l e
It follows from (2.126) and (2.127) that
NFy — |
NF,,; = NF} + ~ ; {2.128)
R;'}rl 2 R-S

{Riﬂl + RS}E M Rmr!l

What does the denominator represent? This quantity is in fact the “available power gain”
of the first stage, defined as the “available power™ at its output, P, o (the power that it
would deliver to a matched load) divided by the available source power, Ps ,, (the power
that the source would deliver to a matched load). This can be readily verified by finding the
power that the first stage in Fig, 2.51(a) would deliver to a load equal to R,

R I
By N2 ml o . 2.129
@ = Vin R+ R ™ AR telea)

Similarly. the power that V;, would deliver to a load of Ry is given by

¥

V'
PS,HL' = in 3 {2. 13{])
4R

The ratio of (2.129) and (2.130} 1s indeed equal to the denominator in (2.128).
With these observations, we write

NF2 — |
NFy = NF| + ——, (2.131)
Api

where Ap; denotes the “available power gain” of the first stage. It is important to bear in
mind that NFa is computed with respect to the output impedance of the first stage. For m
stages,

NEFs — 1 NF,, —1
NFg=1+{NFi—-1})+ —+---+ . (2.132)
Ap Apt -~ Apin—1)

Called “Friis’ equation™ [7]. this result suggests that the noise contributed by each stage
decreases as the total gain preceding that stage increases, implying that the first few stages
in a cascade are the most critical. Conversely, if a stage suffers from attenuation (loss),
then the NF of the following circuits is “amplified” when referred to the input of that
stage.
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Example 2.22

Determine the NF of the cascade of common-source stages shown in Fig. 2.52. Neglect the
transistor capacitances and flicker noise.

Voo
Iy I
Rs. T
M, —L M,
Vin y = =

Figure 2.52 Cascade of CS stages for noise figure calculation.

Solution:

Which approach is simpler to use here. the direct method or Friis® equation? Since
Rini = Rinz = 00, Eq. (2.126) reduces to

NF=1+V3' : Vi 1

: 2.1
Afl 4kTRs AEIAEZ 4kTR Wit

where V2, = 4kTy gmirh;. V2 = 4KTy gmarsy, Avi = gmiror, and Ay = gmaroa. With all
of these quantities readily available, we simply substitute for their values in (2.133),
obtaining

i bl Y

NF =1+ 3 :
EmiRg gm[rglngRS

(2.134)
On the other hand. Friis® equation requires the calculation of the available power gain of
the first stage and the NF of the second stage with respect to a source impedance of rg,
leading to lengthy algebra.

The foregoing example represents a typical situation in modern RF design: the interface
between the two stages does not have a 50-8 impedance and no attempt has been made
to provide impedance matching between the two stages. In such cases, Friis’ equation
becomes cumbersome, making direct calculation of the NF more altractive.

While the above example assumes an infinite input impedance for the second stage, the
direct method can be extended to more realistic cases with the aid of Eq. (2.126). Even in the

presence of complex input and output impedances, Eq. (2.126) indicates that (1) V_Jfl must
be divided by the un&ided wain from Vi, to the output of the first stage; (2) the output noise
of the second stage, Vﬁz., must be calculated with this stage driven by the output impedance

of the first stage:™ and (3) 1_;5: must be divided by the total voltage gain from Vi, to V.

20. Recall from Example 2.19 that the output noise of a circuit may depend on the source impedance driving

- . . . 3
it, but the source impedance noise is excluded from L*’r;,.
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Example 2.23

Determine the noise figure of the circuit shown in Fig. 2.53(a). Neglect transistor
capacitances, flicker noise, channel-length modulation, and body effect.

T Voo Voo
= Rpy Rpa Rp;

Vout

:r. * Roi W I_"O‘L'L
8 2 A4kT Yy
v 5”1‘1 r’. Iz
L+
Vin ! =

Hnuﬂ Hﬁl:

ia) (b
Figure 2.53 (a) Cascade of C§ and CG stages, (b) simplified diagram.

Solution:
For the first stage. A,y = —g,,1Rp; and the unloaded output noise is equal to

V2, = 4kTygm Ry, + 4kTRp. (2.135)

For the second stage, the reader can show from Fig. 2.53(b) that

— 4;.:?*;»( Rio

2
V2, = ) + 4TRp;. (2.136)
Em2

Note that the output impedance of the first stage is included in the calculation of V_i but
the noise of Bp) is not.
We now substitute these values in Eq. (2.126), bearing in mind that Ry = 1 /g2 and

Avr = gm2Rp.

ATy gmR3, + TR, |

2

5 .
g;:lRDI 4kTR

4kTy Rpa
gm2 \g&.1 + Ro2

= 2 " 4kTRs
S 2 2 w3
Emi R (——j i ) 8ol

£ 5]

NF, =1+

2
) + 4kTRp>

+ (2.137)

Noise Figure of Lossy Circuits  Passive circuits such as filters appear at the front end of
RF transceivers and their loss proves critical (Chapter 4). The loss arises from unwanted
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resistive components within the circuit that convert the input power to heat, thereby pro-
ducing a smaller signal power at the output. Furthermore, recall from Fig. 2.37 that resistive
components also generate thermal noise. That is, passive lossy circuits both attenuate the
signal and introduce noise.

We wish to prove that the noise figure of a passive (reciprocal) circuit is equal to its
“power loss,” defined as L = Py, /P, where Py, is the available source power and P, the
available power at the output. As mentioned in the derivation of Friis® equation, the avail-
able power is the power that a given source or circuit would deliver to a conjugate-matched
load. The proof is straightforward if the input and output are matched (Problem 2.20). We
consider a more general case here.

Consider the arrangement shown in Fig. 2.54(a), where the lossy circuit is driven by
a source impedance of Rg while driving a load impedance of R;.”' From Eq. (2.130), the
available source power is Py, = Vr-::?,f{:lR,»_:L To determine the available output power, we
construct the Thevenin equivalent shown in Fig. 2.54(b), obtaining P,,; = V%.M,EHR{,,,,}.
Thus, the loss is given by

= é% (2.138)
V’P&w Rs

To calculate the noise figure, we utilize the theorem illustrated in Fig. 2.37 and the
equivalent circuit shown in Fig. 2.54(c) to write

P

V2 = Ak TRy —— e (2.139)
H Ol ot {RL + Ra”rl}: » o
Thevenin
Equivalent
As : H::ut
.r“j‘ < 1.‘." . =
Lossy e :
+ = . [
V'“é) Circuit "'—l =R, Vou _(,JP Vinev | Z Ry Vout
= _L_': | < : : o
= Ry Rout . | :
[a) (b
Rl:-ui
N 2
AkTRgy R Vo

)

Figure 2.54 (a} Lossy passive network, (b) Thevenin equivalent, (¢} simplified diagram.

21. For simplicity, we assume the reactive parts of the impedances are cancelled but the final result is valid
even if they are not.
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Note that Ry is assumed noiseless so that only the noise figure of the lossy circuit can be
determined. The voltage gain from Vi, to V,,,; is found by noling that, in response to Vi, the
circuit produces an output voltage of V,,; = VR /(Rp + Ry) [Fig. 2.54(b)]. That is,

Vike R
e Then L 1 (2.140)
Vi'rr R.L + RI'.'u"”n"

The NF is equal to (2.139) divided by the square of (2.140) and normalized to 4kTRs:

V: l
NF = 4kTRyyy—5———
V2, 4kTRs

=L (2.142)

Example 2.24

The receiver shown in Fig. 2.55 incorporates a front-end band-pass filter (BPF) to suppress
some of the interferers that may desensitize the LNA. If _thl: filter has a loss of L and the
LNA a noise figure of NFn4, calculate the overall noise figure.

Vs

Figure 2.55 Cascade of BPF and LNA.

(2.141)

Solution:
Denoting the noise figure of the filter by NFgy. we write Friis® equation as
NFy = NFgy + % (2.143)
=L+ (NFiya — DL (2.144)
=L «NFrna. (2.145)

where NFpnq is calculated with respect to the output resistance of the filter. For example,
if L=1.5dB and NFyy4 = 2dB, then NF,,; = 3.5dB.

2.4 SENSITIVITY AND DYNAMIC RANGE

The performance of RF receivers is characterized by many parameters. We study two,
namely, sensitivity and dynamic range, here and defer the others to Chapter 3.
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2.4.1 Sensitivity

The sensitivity is defined as the minimum signal level that a receiver can detect with
“acceptable quality.” In the presence of excessive noise, the detected signal becomes
unintelligible and carries little information. We define acceptable guality as sufficient
signal-to-noise ratio, which itself depends on the type of modulation and the corruption
(e.g., bit error rate) that the system can tolerate., Typical required SNR levels are in the
range of 6 1o 25 dB (Chapter 3).

In order to calculate the sensitivity, we write

SNR;
NF = i (2.146)
ShrRHHF
Psio/Prs
=5 ZEe e 2.147
SNRyp: (el

where Py, denotes the input signal power and Pgg the source resistance noise power, both
per unit bandwidth. Do we express these quantities in V*/Hz or W/Hz? Since the input
impedance of the receiver is typically matched to that of the antenna (Chapter 4), the
antenna indeed delivers signal power and noise power to the receiver. For this reason, it
is common to express both quantities in W/Hz (or dBm/Hz). It follows that

P-""-E," = Pgs - NF - SNR ;. (2.148)

Since the overall signal power is distributed across a certain bandwidth, B, the two sides
of (2.148) must be integrated over the bandwidth so as to obtain the total mean squared
power. Assuming a flat spectrum for the signal and the noise. we have

Psig.or = Pgs - NF - SNRy,,; - B. (2.149)
Equation (2.149) expresses the sensitivity as the minimum input signal that yields a

given value for the output SNR. Changing the notation slightly and expressing the quantities
in dB or dBm, we have™

Psenlagm = Prs|agmnz + NFlap + SNRuiglag + 10log B, (2.150)
where Py, 1s the sensitivity and B is expressed in Hz. Note that (2.150) does not directly
depend on the gain of the system. If the receiver is matched to the antenna, then from
(2.91), Pps = kT = —174dBm/Hz and

Pien = —174dBm/Hz + NF + 10log B + SNR,;,,. (2.151)

Note that the sum of the first three terms is the total integrated noise of the system
(sometimes called the “noise floor™),

22, Note that in conversion o dB or dBm, we take 10 log because these are power quantities.
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Example 2.25

A GSM receiver requires a minimum SNR of 12dB and has a channel bandwidth of
200kHz. A wireless LAN receiver, on the other hand, specifies a minimum SNR of 23 dB
and has a channel bandwidth of 20 MHz. Compare the sensitivities of these two systems if
both have an NF of 7 dB.

Solution:

For the GSM receiver, Pyn = — 102dBm, whereas for the wireless LAN system, Py, =
—=71 dBm. Does this mean that the latter is inferior? No, the latter employs a much wider
bandwidth and a more efficient modulation 1o accommodate a data rate of 54 Mb/s. The
GSM system handles a data rate of only 270 kb/s. In other words, specifying the sensitivity
of a receiver without the data rate is not meaningful.

2.4.2 Dynamic Range

Dynamic range (DR) is loosely defined as the maximum input level that a receiver can
“tolerate”™ divided by the minimum input level that it can detect (the sensitivity). This defi-
nition is quantified differently in different applications. For example, in analog circuits such
as analog-to-digital converters, the DR is defined as the “full-scale” input level divided by
the input level at which SNR = 1. The full scale is typically the input level beyond which a
hard saturation occurs and can be easily determined by examining the circuit.

In RF design, on the other hand, the situation is more complicated. Consider a sim-
ple common-source stage. How do we define the input “full scale™ for such a circunt? Is
there a particular input level beyond which the circuit becomes excessively nonlinear? We
may view the 1-dB compression point as such a level. But, what if the circuit senses two
interferers and suffers from intermodulation?

In RF design, two definitions of DR have emerged. The first, simply called the dynamic
range, refers to the maximum tolerable desired signal power divided by the minimum tol-
erable desired signal power (the sensitivity). Hlustrated in Fig. 2.56(a), this DR is limited
by compression at the upper end and noise at the lower end. For example, a cell phone
coming close 1o a base station may receive a very large signal and musl process it with

Performance
seeeoppe-- Limited by A
log Compression log
scale scale
DR
Sensitivi Performance Sensitivit
Y Limited by ki
Receiver g Moise Receiver —__|
Integrated Noise — - Integrated Noise —
f

(a) (bl

Figure 2.56 Definitions of {a) DR and (b) SFDR.
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acceptable distortion. In fact, the cell phone measures the signal strength and adjusts the
receiver gain so as to avoid compression. Excluding interferers, this “compression-based™
DR can exceed 100dB because the upper end can be raised relatively easily.

The second type, called the “spurious-free dynamic range™ (SFDR), represents limita-
tions arising from both noise and interference. The lower end 15 stll equal to the sensitivity,
but the upper end is defined as the maximum input level in a two-rone test for which the
third-order IM products do not exceed the integrated noise of the receiver. As shown in
Fig. 2.56(b). two (modulated or unmodulated) tones having equal amplitudes are applied
and their level is raised until the IM products reach the integrated noise.” The ratio of the
power of each tone to the sensitivity yields the SFDR. The SFDR represents the maximum
relative level of interferers that a receiver can tolerate while producing an acceptable signal
quality from a small input level.

Where should the various levels depicted in Fig. 2.56(b) be measured, at the input
of the circuit or at its output? Since the IM components appear only at the output, the
output port serves as a more natural candidate for such a measurement. In this case, the
sensitivity—usually an input-referred quantity—must be scaled by the gain of the circuit
so that it is referred to the output. Alternatively, the output IM magnitudes can be divided
by the gain so that they are referred to the input. We follow the latter approach in our SFDR
calculations.

To determine the upper end of the SFDR, we rewrite Eq. (2.56) as

Pouwr — Pt o

Pupy = Py + > A (2.152)

where, for the sake of brevity, we have denoted 20log A, as P, even though no actual
power may be transferred at the input or output ports. Also, Py o represents the level of
IM products at the output. If the circuit exhibits a gain of G (in dB), then we can refer the
IM level to the input by writing Py in = Pias.one — G. Similarly, the inpui level of each tone
is given by P;, = P,,; — G. Thus, (2.152) reduces to

l'-}J'rr =P in
Piupy = Py + ——— e (2.153)
3Pin — Pip.in 5
= — 2.154
3 ; ( )
and hence
2P + Py
Bl T MM (2.155)

3

The upper end of the SFDR is that value of Py, which makes Py i equal to the integrated
noise of the receiver:

_ 2Pyp3 + (—174dBm + NF + 10log B)

Pinmax = 3 (2.156)

23. Note that the integrated noise 15 4 single valoe {(e.g.. 100 0Vinms ), not a density.
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The SFDR is the difference (in dB) between Pjy nar and the sensitivity:

SFDR = Piy ax — (—174dBm + NF + 10log B + SNRyin) (2.157)
2(P + 174dBm — NF — 10]log B)
— 2Tk ~ o — SNRuin. (2.158)
For example. a GSM receiver with NF = 7dB, Pyp; = — 15dBm, and SNR,;;;, = 12dB

achieves an SFDR of 54 dB, a substantially lower value than the dynamic range in the
absence of interferers.

Example 2.26

The upper end of the dynamic range is limited by intermodulation in the presence of fwo
interferers or desensitization in the presence of one interferer. Compare these two cases and
determine which one is more restrictive.

Solution:
We must compare the upper end expressed by Eq. (2.156) with the 1-dB compression point:

i
P g :: Piﬂ,mu_x- (2.159)
Since P]-{m — Pm'ij - 9.6dB.,

1 2Ppps + (—174dBm + NF + 10log B
Pisi —96dB > — 2 ( - Olog )
o

(2.160)

and hence :
Pips — 28.8dB ;I —174dBm + NF + 10logB. (2.161)

Since the right-hand side represents the receiver noise floor, we expect it to be much lower
than the left-hand side. In fact, even for an extremely wideband channel of B = | GHz and
NF = 10dB, the right-hand side is equal to — 74 dBm, whereas, with a typical Pyp; of —10
to —25 dBm, the left-hand side still remains higher, It is therefore plausible to conclude that

Pi—ap = Pin.max- (2.162)
It follows that the maximum tolerable level in a two-tone test is quite lower than that in
a compression test, i.e., corruption by intermodulation between two interferers is much

greater than compression due to one. The SFDR is therefore a more stringent characteristic
of the system than the compression-based dynamic range.

2.5 PASSIVE IMPEDANCE TRANSFORMATION

At radio frequencies, we often employ passive networks to transform impedances—from
high to low and vice versa, or from complex to real and vice versa. Called “matching
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networks,” such circuits do not easily lend themselves to integration because their con-
stituent devices, particularly inductors, suffer from loss if built on silicon chips. (We do
use on-chip inductors in many RF building blocks.) Nonetheless, a basic understanding of
impedance transformation is essential.

2.5.1 Quality Factor

In its simplest form, the quality factor, Q, indicates how close to 1deal an energy-storing
device is. An ideal capacitor dissipates no energy, exhibiting an infinite O, but a series
resistance, Ry [Fig. 2.57(a)], reduces its ¢ to

1
o5 = Lo (2.163)
Rs

where the numerator denotes the “desired” component and the denominator, the “unde-
sired” component. If the resistive loss in the capacitor 1s modeled by a parallel resistance
[Fig. 2.57(b)], then we must define the Q as

Op = N (2.164)

Cw

because an ideal (infinite Q) results only if Rp = oo, As depicted in Figs. 2.57(¢) and (d).
similar concepts apply to inductors

Lw

= 2.165
Us Rs ( )
R
Op=—: (2.166)
Lo

While a parallel resistance appears to have no physical meaning, modeling the loss by Rp
proves useful in many circuits such as amplifiers and oscillators (Chapters 5 and 8). We
will also introduce other definitions of Q in Chapter 8.

2.5.2 Series-to-Parallel Conversion

Before studying transformation techniques. let us consider the series and parallel RC
sections shown in Fig. 2.58. What choice of values makes the two networks equivalent?

Rs € Rp Rs L e
c L
() {b) (c) (d)

Figure 2.57 (a) Series RC circuit, (b) equivalent parallel circuir, (¢) series RL circuit, (d) equivalent
parallel circuit,
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Rs Cs g
——A o
Cp
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Figure 2.58 Series-to-parallel conversion.

Equating the impedances,

RsCgs + 1 Rp _
= 3 2.167
Cgs RpCps + 1 \ )
and substituting jw for 5, we have
RpCsjw = 1 — RpCpRsCsw® + (RpCp + RsCsljw, (2.168)
and hence
RpCpRCsew” = 1 (2.169)
RpCp + RsCg — RpCq = 0, (2.170)

Equation (2.169) implies that s = Qp.

Of course, the two impedances cannot remain equal at all frequencies. For example, the
series section approaches an open circuit at low frequencies while the parallel section does
not. Nevertheless, an approximation allows equivalence for a narrow frequency range. We
first substitute for RpCp in (2.169) from (2.170), obtaining

I
Rp = ——— + Rs. (2.171)
5C52-Lr}"

Utilizing the definition of O in (2.163), we have

Rp = (03 + 1)Rs. (2.172)
Substitution in (2.169) thus yields
0
= Cs. (2.173
P Q?s' s )

So long as Qﬁ 3> 1 (which is true for a finite frequency range),

Rp =~ Q3Rs (2.174)
Cp = Cs. (2.175)
That 1s, the series-lo-parallel conversion retains the value of the capacitor but raises the

resistance by a factor of Q%. These approximations for Rp and Cp are relatively accu-
rate because the quality factors encountered in practice typically exceed 4. Conversely,
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parallel-to-series conversion reduces the resistance by a factor of Qi. This statement applies
to RL sections as well,

2.5.3 Basic Matching Networks

A common situation in RF transmitter design is that a load resistance must be transtformed
to a lower value. The circuit shown in Fig. 2.59(a) accomplishes this task. As mentioned
above, the capacitor in parallel with Ry, converts this resistance to a lower series component
[Fig. 2.59(b)]. The inductance is inserted to cancel the equivalent series capacitance.

L Li €

D—’MB‘T —fi—AF—
C, =R, |-- = Rg

Z in =
(a) {b)

Figure 2.59 (u) Maiching network, (b) equivalent circuir.

Writing Z;, from Fig. 2.59(a) and replacing s with jw, we have

Rp(l— L|C|m2} + jLjw

Ziol ) = ; ;
inl jw) | +jRLC1w (2.176)
Thus,
Ry
Re(Zip) = ———— 2.177
(Zin} | + R}?_Cl‘mz ( }
R
S (2.178)
| + Q%

indicating that Ry is transformed down by a factor of 1 + Qf,; Also, setting the imaginary
part to zero gives

RiC,
SR e 1 S (2.179)
1 + R;Ciw=
RiC
= bl (2.180)
1 + Q;,
If Q73> 1, then
I
RelZy) =~ ——— 2.181
{ i } RLC'I?U_IE {. }
|
L= : 2.182
| G2 ( )

The following example illustrates how the component values are chosen.
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Example 2.27

Design the matching network of Fig. 2.39(a) so as to transform R; =50 2 to 25 @2 at a
center frequency of 5 GHz.

Solution:

Assuming Q%.)‘y::- 1, we have from Eqs. (2.181) and (2.182), C; = 0.90pFand L, = 1.13nH,
respectively. Unfortunately, however, Qp = 1.41, indicating that Egs. (2.178) and (2.180)
must be used instead. We thus obtain C; = 0.637 pF and L, = (.796 nH.

In order to transform a resistance to a higher value, the capacitive network shown in
Fig. 2.60(a) can be used. The series-parallel conversion results derived previously pro-
vide insight here. If Q2 > |, the parallel combination of ) and R; can be converted to
a series network [Fig. 2.60(b)], where Rg = [R;_{Cm}zl_' and Cs= (. Viewing C; and
C) as one capacitor, Cy,, and converting the resulting series section to a parallel circuit
[Fig. 2.60(c)], we have

Roy=— 2,183
ot = Bl Coat?)? ( )
b
Oy
= o+ — ; .
(I Cg) R; (2.184)
That is, the network “boosts” the value of R; by a factor of (1 + C) ,’CI}E. Also,
I A &
Ceg = m {2.185)

Note that the capacitive component must be cancelled by placing an inductor in parallel
with the input.

02 GZ G1
— T S sy
{:1 EE RL = HE C,_ l 3
- i) *E

Fi o ¥. = o

n mn

i) (b (o

Ll

~

Figure 2.60 (a) Capacitive matching civcuit, (b) simplified civcuit with parallel-to-series conver-
sion, (¢) simplified civcuit with series-to-parallel conversion,

For low  values, the above derivations incur significant error. We thus compute the
input admittance (1/¥;,) and replace s with jew,

B JwoCa(1 + jewR;C))
| + R (Ci + C)jow’

(2.186)

i
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The real part of ¥j, yields the equivalent resistance seen to ground if we write

I

K., = 2187

" Rel¥;) 180
I f:.“])2

= — +R(1+=]. 2.188

RLCELUE b ( CE : :

In comparison with Eq. (2.184), this result contains an additional component, {RLC%wz}_ b

Example 2.28

Determine how the circuit shown in Fig. 2.61(a) transforms K.

B

&

() {b)
Figure 2.61 (a) Matching network, (b) simplified circuir.

Solution:

We postulate that conversion of the £,—R; branch to a parallel section produces a higher
resistance. If Q¢ = (L 1w/R1)* > 1, then the equivalent parallel resistance is obtained from
Eq. (2.174) as

Rp = QiR (2.189)
Liw?
=t
= —, 2.190
Ry ( )

The parallel equivalent inductance is approximately equal to L; and is cancelled by C)
[Fig. 2.61(b)].

The intuition gained from our analysis of matching networks leads to the four
“L-section” topologies™ shown in Fig. 2.62. In Fig. 2.62(a). C; transforms Ry to a smaller
series value and Ly cancels €. Simualarly, in Fig. 2.62(b), L, transforms R; to a smaller
series value while C) resonates with Ly. In Fig. 2.62(c), L; transforms Ry to a larger paral-
lel value and €y cancels the resulting parallel inductance. A similar observation applies to
Fig. 2.62(d).

How do these networks transform voltages and currents? As an example, consider the
circuit in Fig. 2.62(a). For a sinusoidal input voltage with an rms value of V;,, the power

24, The term “L” is used because the capacitor and the inductor form the letter L in the circuit diagram.
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Re{Z} >R, | ~ LT Re{Z,} >R, |

Figure 2.62 Four L sections used for matching.

delivered to the input port is equal to ‘.»’Ji [Re{Z;;}. and that delivered to the load, VEMXRL.
If Ly and C are ideal, these two powers must be equal, yielding

= —. (2.191)

This result, of course, applies to any lossless matching network whose input impedance
contains a zero imaginary part. Since Pjy, = Viplip and Py = Vouddowr. we also have

b _, [BelZs (2.192)
Iin ‘ '

B Ry

For example, a network transforming R; to a lower value “amplifies” the voltage and
altenuates the current by the above factor.

Example 2.29

A closer look at the L-sections in Figs. 2.62(a) and (c) suggests that one can be obtained
from the other by swapping the inpul and output ports. Is it possible o generalize this
observation?

Solution:

Yes, it is. Consider the arrangement shown in Fig. 2.63(a), where the passive network
transforms Ry by a factor of «. Assuming the input port exhibits no imaginary component,
we equate the power delivered to the network to the power delivered to the load:

aRy \* 1 V3,
it ot = : 2.193
( aRp + Rg) aRy Ry { )
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Example 2.29 (Continued)

Rs
Hﬁ X o
Lossless hr - o
+ V 2
v Passive %H Vot Yin R, Vou
in ) I: Network L m 3 & "'! L :
7 o) DERL s ! ﬁ
o

(a) (b)
Figure 2.63 (al Input and (b} output impedances of a lossless passive network.

It follows that
Vin R

B
Vi o i K
o

Vuu.‘ = (2194:'

pointing to the Thevenin equivalent shown in Fig. 2.63(b). We observe that the network
transforms Ry by a factor of | /a and the input voltage by a factor of 1/,/a. similar to that
in Eq. (2.191). In other words, if the input and output ports of such a network are swapped.
the resistance transformation ratio is simply inverted.

Transformers can also transform impedances. An ideal transformer having a turns ratio
of n “amplifies” the input voltage by a factor of n (Fig. 2.64). Since no power is lost,
Vi /Rin= ;;EVE_'-L /R and hence Ry, = R/ n*. The behavior of actual transformers, especially

those fabricated monaolithically, is studied in Chapter 7.

Figure 2,64 Impedance transformation by a physical transformer,

The networks studied here operate across only a narrow bandwidth because the trans-
formation ratio, e.g., 1 + @%, varies with frequency, and the capacitance and inductance
approximately resonate over a narrow frequency range. Broadband matching networks can
be constructed, but they typically suffer from a high loss.

2.5.4 Loss in Matching Networks

Our study of matching networks has thus far neglected the loss of their constituent compo-
nents, particularly, that of inductors. We analyze the effect of loss in a few cases here,
but, in general. simulations are necessary to determine the behavior of complex lossy
networks.
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P;, Lossy Matching Circuit p

o> | ARs L o>
o
v:n?r T Te %m

FIIIr'|1 -

-
-
Nt

Figure 2.65 Lossy matching network with series resistence.

Consider the matching network of Fig. 2.62(a), shown in Fig. 2.65 with the loss of L,
modeled by a series resistance, Rs. We define the loss as the power provided by the input
divided by that delivered to Ry, The former is equal to

V2
p, = _ 'in 2.195
" Rs+ Rin { )
and the latter,
R; =
PL=(Vie——2 e (2.196)
Ry + Ry R
because the power delivered to Ry, is entirely absorbed by Ry . It follows that
Pin
Loss = 2.197
P, ( )
Rs
=1+ {2.198)
Rint

For example, if Ry = 0.1R;;, then the (power) loss reaches 0.41 dB. Note that this network
transforms R; to a lower value, R;; = R /(1 + Q%}. thereby suffering from loss even if Rg
appears small.

As another example. consider the network of Fig. 2.62(b). depicted in Fig. 2.66 with
the loss of L) modeled by a parallel resistance, Rp. We note that the power delivered by Vi,
P;n. is entirely absorbed by Rp||R; :

V:
P, =i 04l (2.199)
Rpl|Ry
“¥
_: V{Tuf Rp'l‘RL [22[}(]]
R Rp )
Pin L

Figure 2.66 Lossy matching network with parallel resistence.

Sec. 2.6. Scattering Parameters n

Recognizing V2, /R; as the power delivered to the load, Py, we have

chuf

R
Loss = 1 + —=, (2.201)
Rp

For example. if Rp = 10R;, then the loss is equal to (1.41 dB.

2.6 SCATTERING PARAMETERS

Microwave theory deals mostly with power quantities rather than voltage or current quanti-
ties. Two reasons can explain this approach. First, traditional microwave design is based on
transfer of power from one stage to the next. Second, the measurement of high-frequency
voltages and currents in the laboratory proves very difficult, whereas that of average power
15 more straightforward. Microwave theory therefore models devices, circuits, and systems
by parameters that can be obtained through the measurement of power quantities. They are
called “scattering parameters™ (S-parameters).

Before studying S-parameters, we introduce an example that provides a useful view-
point. Consider the L|—C series combination depicted in Fig. 2.67. The circuit 15 driven by
a sinusoidal source, Vi, having an output impedance of Rs. A load resistance of R; = Ry
is tied to the output port. At an input frequency of @ = (/L1 Cy)~ I L, and C, form a short
circuit, providing a conjugate match between the source and the load. In analogy with trans-
mission lines, we say the “incident wave” produced by the signal source is absorbed by R .
At other frequencies, however, L) and C| attenuate the voltage delivered to Ry. Equiva-
lently, we say the input port of the circuit generates a “reflected wave” that returns to the
source. In other words, the difference between the incident power (the power that would be
delivered to a matched load) and the reflected power represents the power delivered to the
circuit.

Incident
Wave

Figure 2,67 [Incident wave in a network.

The above viewpoint can be generalized for any two-port network. As illustrated in
Fig. 2.68, we denote the incident and reflected waves at the input port by V" and V,
respectively. Similar waves are denoted by V" and V5 . respectively, at the output. Note

Two-Port| =+ V2
Network v, =

Figure 2.68 lustration of incident and rveflected waves at the input and outpul,
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that V" denotes a wave generated by Vy, as if the input impedance of the circuit were
equal to Rs. Since that may not be the case, we include the reflected wave, V. so that the
actual voltage measured at the input is equal to V|+ + V. Also, V:T denotes the incident
wave traveling into the output port or, equivalently, the wave reflected from R;. These four
quantities are uniquely related to one another through the S-parameters of the network:

Vi =8uV, +Spvs (2.202)
Vi =850V + 8nV;. (2.203)

With the aid of Fig. 2.69, we offer an intuitive interpretation for each parameter:

1. For 511, we have from Fig. 2.69(a)
Vi
S|| = ﬁlp’{ =0 (22[14]

Thus, 8§y is the ratio of the reflected and incident waves at the input port when the
reflection from R; (i.e.. F:T ) is zero. This parameter represents the accuracy of the
input matching.

2. For §12. we have from Fig. 2.69(b)

S22 = (2.205)

Ay
V;Wl — 0

Thus, 52 is the ratio of the reflected wave at the input port to the incident wave
into the output port when the input port is matched. In this case, the output port is
driven by the signal source. This parameter characterizes the “reverse isolation” of
the circuit, i.e.. how much of the output signal couples to the input network.

Rs . Rs | Ry
i W
Two-Port <R Two-Port
Network i ~— v, | Network
F;: 1] 'l'r1+= 0
(a) {b)
AL .
! -V,
5 Two-Port 2 v Two-Port ;
Network v, = et H Network v _,..
V-r: 0 V;: 0
i) id)

Figure 2.69 [llustration of four §-parameters.
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3. For 8§22, we have from Fig. 2.69(c)

VZ
S» = T |VI| = (2.206)

r

Thus, S2; is the ratio of reflected and incident waves at the output when the reflec-
tion from Ry (i.e.. V") is zero. This parameter represents the accuracy of the output
matching.

4. For 821, we have from Fig. 2.69(d)

Vy
Sy = —=

2 v |v2+ = (2.207)
I

Thus, 52 is the ratio of the wave incident on the load to that going to the input when
the reflection from Ry is zero. This parameter represents the gain of the circuit.

We should make a few remarks at this point. First, S-parameters generally have
frequency-dependent complex values. Second, we often express S-parameters in units of
dB as follows

Smnlap = 2010g [ Syl (2.208)

Third, the condition V:J“ =0in Egs. (2.204) and (2.207) requires that the reflection from Ry,
be zero, but it does nof mean that the output port of the circuit must be conjugate-matched
to Ry. This condition simply means that if, hypothetically, a transmission line having a char-
acteristic impedance equal to R carries the output signal to &, then no wave 1s reflected
from R;. A similar note applies to the requirement V|+ =0 in Eqgs. (2.205) and (2.206).
The conditions ‘if'|+ = (1 at the input or V;” = 0 at the output facilitate high-frequency mea-
surements while creating issues in modern RF design. As mentioned in Section 2.3.5 and
exemplified by the cascade of stages in Fig. 2.53, modern RF design typically does not
strive for matching between stages. Thus, if §); of the first stage must be measured with
R; = Ry at its output, then its value may not represent the 5y of the cascade.

In modern RF design, Sy, is the most commonly-used S parameter as it quantifies the
accuracy of impedance matching at the input of receivers. Consider the arrangement shown
in Fig. 2.70, where the recetver exhibits an mnput impedance of Z,. The incident wave V|+
is given by Vi, /2 (as if Z;, were equal to Rs). Moreover, the total voltage at the receiver

Receiver

zln

Figure 2.70 Receiver with incident and reflected waves.
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input is equal to Vi, Z;, /(Zi, + Rs), which is also equal to V" + V. Thus,

Example 2.30 (Continued)

Z:'ﬂ V'_., . :
Vo = e B (2.209) Solution
Zin+t Ry 2 Drawing the circuit as shown in Fig. 2.71(b), where Cy = Cgs+ Csp and Cy = Cgp + Cpp.
- %Vi"' (2.210) we write Zy = (1/gm)|[(Cxs)~ ' and
e in 5
Zin— R
fine e oo (2.212)
It follows that o
Il";l_ Z{Jr = RS ) - 1 . ngS - CXS
: : N : (2.213
Vi Zmt+Rs 2211 - }

For §y2, we recognize that the arrangement of Fig. 2.71(b) yields no coupling from the
output to the input it channel-length modulation is neglected. Thus. §2 = 0. For 822, we
note that Z,,,; = RDH[C}’S]_J and hence

Called the “input reflection coefficient” and denoted by I'j,. this quantity can also be
considered to be 51, if we remove the condition V" = 0in Eq. (2.204).

= Zour — Rg :
Example 2.30 S22 = m (2214)
Determine the S-parameters of the common-gate stage shown in Fig. 2.71(a). Neglect o _Rs — Rp + ReRpCys (2.215)
channel-length modulation and body effect. R¢ + Rp + RSRDCF.';' ;

Lastly, S2; is obtained according to the configuration of Fig. 2.71(c). Since V, /Vj, =
(V5 /Vx)(Vx/Vin), V5 /Vx=gulRp|IRs||(Cys)™'), and Vy/Viy=Zin/(Zin + Rs), we
obtain

vy | I
— = gw | Rp||R : 2216
Vin = ( IRl C}*S) 1+ gmRs + RsCxs { )

It follows that

1 1
§21 = 2gm (RuHRsIIC ) (2.217)

vs) 1+ guRs + RsCxs

2.7 ANALYSIS OF NONLINEAR DYNAMIC SYSTEMS*

In our treatment of systems in Section 2.2, we have assumed a static nonlinearity, e.g., in
the form of y(1) = ey x(1) + crng{:} G ﬂ'j._xj{f}. In some cases, a circuit may exhibit dynamic
nonlinearity, requiring a more complex analysis. In this section, we address this task.

2.7.1 Basic Considerations

Let us first consider a general nonlinear system with an input given by x{f) = A| coswf +
As cos wat. We expect the output, v(t), to contain harmonics at nw |, mwa, and IM products

(e}

Figure 2.71 {a) CG stage for calculation of §-paramerers, (b) inclusion of capacitors, (c) effect
of reflected wave af outpur.

25, This section can be skipped in a first reading,
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at kwy £ gw2, where, n, m, k, and g are integers. In other words,

¥(1) = Zan cos{nwt + ;) + Z by, cos(nawat + ¢y,)

n=] n=]|

+ Z Z Cop.n COS(NRW L+ maat + Py m). (2.218)

A=—0CmM=—00

In the above equation, a,, b, ¢;x . and the phase shifts are frequency-dependent quantities.
If the differential equation governing the system is known. we can simply substitute for v(r)
from this expression, equate the like terms, and compute a,. by, ¢y . and the phase shifts.
For example, consider the simple RC section shown in Fig. 2.72, where the capacitor is
nonlinear and expressed as C; = Co(l +a V). Adding the voltages across R and C; and
equating the result to V;,,, we have

RiCoil + wvuu.r}% + Vour = Vin. (2.219)
Now suppose Vi, (1) = Vycos wt+ Vy cos wof (as in a two-tone test) and assume the system
is only “weakly” nonlinear, i.e.. only the output terms at w), w2, @y + w2, 2w + ws, and
27 4wy are significant. Thus, the output assumes the form

Vo () = @) cos(ant + @) + by cos{wat + @) + ¢ cos[{w) + @)t + sl

+ 2 cos[(w; — wadl + ¢y + c3co8( (2w + wrdt + Ps)

teqcos[(wy + 2wdt + @l + c5 cos| (2w — wa)t + ¢7]

+ ¢g cos[{w) — 2wa)t + dgl, (2.220)
where, for simplicity, we have used ¢, and ¢,. We must now substitute for V,,;(f) and
Vip(t) in (2.219), convert products of sinusoids to sums, bring all of the terms to one side of
the equation, group them according to their frequencies, and equate the coefficient of each

sinusoid to zero. We thus obtain a system of 16 nonlinear equations and 16 knowns (a. by,

Eicos Ot s PR

Figure 2.72 RC circuit with nonlinear capacitor.

This type of analysis is called “harmonic balance™ because it predicts the output fre-
quencies and attempts to “balance™ the two sides of the circuit’s differential equation by
including these components in V. (1). The mathematical labor in harmonic balance makes
hand analysis difficult or impossible. The “Volterra series” approach, on the other hand,
prescribes a recursive method that computes the response more accurately in successive
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steps without the need for solving nonlinear equations. A detailed treatment of the concepts
described below can be found in [10-14].

2.8 VOLTERRA SERIES

In order to understand how the Volterra series represents the time response of a system,
we begin with a simple input form, Vi (1) = Vpexp(jw 1), OF course, if we wish to obtain
the response to a sinusoid of the form Vycosm it = Re[Vpexp(jwi1)}, we simply cal-
culate the real part of the output.” (The use of the exponential form greatly simplifies
the manipulation of the product terms.) For a linear, time-invariant system, the output is
iven by

Viour (1) = He YWoexp( jot). (2.221)

where H () ) 1s the Fourier transform of the impulse response. For example, if the capacitor
in Fig. 2.72 is linear, i.e., C; = Cy, then we can substitute for V,,; and Vi, in Eq. (2.219):

R\ CoH{w ) jaw ) Vyexp(jw ) + H{w)Vyexpljant) = Voexp(jw ). (2.222)

It follows that
|

H =
(@) R Cyjun + 1

(2.223)
Note that the phase shifl introduced by the circuit is included in H () ) here.

As our next step, let us ask, how should the output response of a dynamic nonlinear
system be expressed? To this end, we apply two tones to the input. V;, (1) = Vyexp(jw ) +
Vi exp( jwat), recognizing that the output consists of both linear and nonlinear responses.
The former are of the form

Vaurt (1) = He )V exp( jwyt) + Hw2) Vg expl jant), (2.224)

and the latter include exponentials such as expl jlw; + wno)t], ete. We expect that the coeffi-
cient of such an exponential 1s a function of both w) and w;. We thus make a slight change
in our notation: we denote H(w;) in Eq. (2.224) by H(w)) [to indicate first-order (linear)
terms| and the coefficient of exp| j(ew; + w2)t] by Ha(w), w?). In other words, the overall
output can be written as

vnuf{ﬂ' = HL{WI}VH ’:xp{jwl” + Hltwj}v{]exl}{jwzf}
+ Ha(w. 02)V§ expl jlw) + @] + - . (2.225)

How do we determine the terms at 2w, 2wo, and @) — @0 ? If Hy(w), w7) expl jlw) +
wn )| represents the component at w; + was, then Ha(w, w))expl j(2w;)i] must model

26. From another point of view, in Vyexpl jei) = Vycosapt + iV sine o, the first term generales its own
response, as does the second term; the two responses remain distinguishable by virue of the factor j.
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that at 2e. Similarly, Ha(wa, w>) and Ha(w), —w>) serve as coefficients for exp[ j(2wn )]
and exp| j{w; — wo)i], respectively. In other words, a more complete form of Eq. (2.225)
reads
Vour (1) = Hy (@) Vo expjwrt) + Hy(w2) Vg expliwat) + Halwy, 1) Vi exp(Zwt)
+ Halwo, wgﬂfﬁ exp(2jiat) + Haw, mg}V{:; expl jlw) + w2)t]
+ Halw), —an) Vi expl jlw; — wa)t] + - - . (2.226)

Thus, our task is simply to compute Ha{ew, w>).

Example 2.31

Determine Ha(w, w») for the circuit of Fig. 2.72.

Solution:

We apply the input Vi, () = Vyexpl jwt) + Vyexp( jwat) and assume the output is of the
form Vi (t) = Hy(w))Voexp(jot) + Hy(wn)Voexp(jwat) + Ha(wi, wa)VE expl jlw; +
an)t]. We substitute for V,,; and Vi, in Eq. (2.219):

RiColl + aH(w))Voe!' + aH\(w2)Voe' + aHa(wy, wp) Ve T2
X [Hi(wi)jo Vo™ + Hy (@2)jonVoe™' + Ha(w, wr)j(w) + w2)
X Vil et 4 Hy(wy)e™) + Hi(wn)e™ + Halwy, @) Vel T2
= Vol + Ve, (2.227)
To obtain H, we only consider the terms containing w; + wa:
R\ ColaHi (w1)Hi(wa)jon Ve T2 + aHy(w2)H) (w1 )jo Vg™ T2
+ Halwi. on)j(w) + w2)Viel ™ ™" + Ha(w), w2)
% VEelitali=g (2.228)
That is,

_aR | Cy jle) + w2)H () H | (w7)
R;ng{m; + ws) + 1

Hafey, w2) = (2.229)
Noting that the denominator resembles that of (2.223) but with w; replaced by w; + w2,
we simplify Ha(w), w2) 1o

Hy(wy, an) = —aRCyjlw) + w2)H (@) ) H i {w2)H (0 + w2). (2.230)

Why did we assume V()= Hi(w)Voexpljoit) + Hi{w2)Vpexpl jwat) +
Hgvg(mg cw2) expl (e + wa)t] while we know that V,,(r) also confains ferms at
2wy, 2wy, and w; — w-? This is because these other exponentials do not yield terms of the
form expl j(ew + w2)i].
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Example 2.32

If an input Vi exp( jw 1) is applied to the circuit of Fig. 2.72, determine the amplitude of

the second harmonic at the output.

Solution:
As mentioned earlier, the component at 2w is obtained as H, (w)., w) }Vg expl jlew; + w)i].
Thus, the amplitude is equal to
A2 | = laR Cow ) Hi (w))H) (2w1)|V (2.231)
2|a|Ry Cown V7

(RICiw? + 1),/4RIChew? + 1

We observe that A, falls to zero as w approaches zero because C) draws little current,
and also as w; goes to infinity because the second harmonic is suppressed by the low-pass
nature of the circuil.

(2.232)

Example 2,33

If two tones of equal amplitude are applied to the circuit of Fig. 2.72, determine the
ratio of the amplitudes of the components at @) + w2 and @) — wo. Recall that H(w) =
(R Cyjw + 1)1,

Solution:

From Eq. (2.230), the ratio is given by

A+ Halwy, an)
= | 2.233
Apt—wd ‘HE{WI, "alz'}‘ ( )
(e + o)) (en)H | (w) + wy) :
= - 2234
(w) = w)H | (—w2)H (w) — w2) ( )
Since |H\(an)| = |H| (—w2)|, we have
Aurion| (@1 02 [RC @) — ) + 1 s
Avt-a2| 1) — w:’!I\/R";Cﬁ{ml +an)? + 1

The foregoing examples point to a methodical approach that allows us to compute
the second harmonic or second-order IM components with a moderate amount of algebra.
But how about higher-order harmonics or IM products? We surmise that for Nth-order
terms, we must apply the input Vi, (1) = Vyexp(jwf) + - -- + Vyexp( joyi) and compute
Hylwy, ..., wy) as the coefficient of the exp| j(ew; + --- + @, }] terms in the output. The
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output can therefore be expressed as

N N N
Vour(t) = Y Hiw)Vaexp(jort) + Y Y Ha(om, £ Vi explj(om + o]
k=1 m=1k=1
N N N
+ 373" Ha(wn, tom, o) Vg expljon + om + oot + -+ . (2.236)
n=lm=1 k=1

The above representation of the output is called the Volterra series. As exemplified by
(2.230), H, (e, ..., wy) can be computed in terms of Hy, ..., Hyu— with no need to solve
nonlinear equations. We call H,, the m-th “Volierra kernel.”

Example 2.34

Determine the third Volterra kernel for the circuit of Fig. 2.72.

Solution:

We assume Vi (1) = Voexp(jw ) + Voexp(jwa1) + Vpexpl jwst). Since the output con-
tains many components, we introduce the short hands Hyy = H(w)) Vo exp(jw 1),
Hy2) = Hi(w)Voexp(jwat), ete.. Hog2) = Ha(wy, @2)V§ expl j(wi +wa)t]. ete., and
Hy(2.3) = H3(wy, w2, w:a,}Vﬂ expl jlew) + wy + w3)1]. We express the output as

Vourkt) = Higyy + Hyy + Husy + Haaz) + Haa + Hasy + Haan
+ Hayamy + Hya sy + Hiyn 23 + - (2.237)

We must substitute for V,,,, and V;, in Eq. (2.219) and group all of the terms that con-
tain @) + w2 + w3. To obtain such terms in the product of &V, and dV,,/di. we
note that oHa 2yjwiH s and aHy3/(w; + wa)H2 2 produce an exponential of the
form explj{w + w2)ilexp(jw3). Similarly, aHz2 3 i1 H 1), el njlw: + w3)Hy23),
My 3yjwaH 2y, and aH 2)j(w + w3)Hag 3 result in w) + w7 + w;. Finally, the product
of oV, and dV,,,/dt also contains 1 X j(ew; + wr + @3)H3;2.3,. Grouping all of the
terms. we have

Hﬂ(ﬂ}l, oW, D:J'j,}
— Hay(wy, an)wsHilwy) + Hylwy, w3)wi H(w)) + Hylw, w3)oxHi(02)
= —juRCy RC |
1Cojlen + a2 +w3) + 1
— Hy(w) Wy + w3)Hz(w;, w3) + Hy(wp)(wy + w3)Ha(w), w3)
JaR Cy

RiCyjlw) + wr + ) + 1

: Hy(w3Nw) + wa)Hy(w). )
— jaR,C : 2.238
PR Cojtwr + w2 F wp) + 1 e

Note that Hay 1y, ete., do not appear here and could have been omitted from Eq. (2.237).
With the third Volterra kernel available, we can compute the amplitude of critical terms.
For example, the third-order IM components in a two-tone test are obtained by substituting
awy for wy and — > for wa.
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The reader may wonder if the Volterra series can be used with inputs other than
exponentials. This is indeed possible [ 14] but beyond the scope of this book.

The approach described in this section is called the “harmonic” method of kernel
calculation. In summary, this method proceeds as follows:

L

2.8.1

Assume Vi, (1) = Voexp(jwir) and Vi, (1) = Hi(wi)Vyexp( jewit). Substitute for
Vi and Vi, in the system’s differential equation, group the terms that contain
exp( jet), and compute the first (linear) kernel, Ay (e ).

. Assume Vi, (r) = Vpexp(jw 1)+ Voexp(jwet) and Vi, (1) = H) (w))Voexp(jw )+

Hylw2)Vyexpl jwat) + Ha(wy, w:wﬂ? expl jler) + @7 )i]. Make substitutions in the
differential equation, group the terms that contain exp| j{w; + w2)1], and determine
the second kernel, Hx(w, an).

. Assume Vi, (1) = Vgexp(jw ) + Voexp(junt) + Voexp( jwat) and V(1) is given

by Eq. (2.237). Make substitutions, group the terms that contain exp|j(ew) + w2 +
w3 )t], and calculate the third kernel, Hs(w) . wo, w3).

. To compute the amplitude of harmonics and IM components, choose w;, an, ...

properly. For example, Ha(w;, ;) vields the transfer function for 2ew; and
Hi(wy, —w2, w) the transfer function for 2e0; — s,

Method of Nonlinear Currents

As seen in Example 2.34, the harmonic method becomes rapidly more complex as n
increases. An alternative approach called the method of “nonlinear currents™ is sometimes
preferred as it reduces the algebra to some extent. We describe the method itself here and
refer the reader to [ 13] for a formal proof of its validity.

The method of nonlinear currents proceeds as follows for a circuit that contains a two-
terminal nonlinear device [13]:

l.

]

Assume Vi, (1) = Vgexp(je 1) and determine the linear response of the circuit by
ignoring the nonlinearity. The “response™ includes both the output of interest and
the voltage across the nonlinear device.

. Assume Vi, (1) = Vgexp(jwi1) + Vyexp( jwat) and calculate the voltage across the

nonlinear device, assuming it is linear. Now, compute the nonlinear component of
the current flowing through the device, assuming the device is nonlinear,

Set the main input to zero and place a current source equal to the nonlinear
component found in Step 2 in parallel with the nonlinear device.

. Ignoring the nonlinearity of the device again, determine the circuit’s response to the

current source applied in Step 3. Again, the response includes the output of interest
and the voltage across the nonlinear device.

. Repeat Steps 2, 3, and 4 for higher-order responses. The overall response is equal

to the output components found in Steps 1, 4, etc.

The following example illustrates the procedure.
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Example 2.35

Determine H3(w), wa, w3) for the circuit of Fig. 2.72.
Solution:

In this case, the output voltage also appears across the nonlinear device. We know that
Hi(wi) = (RiCojawy + 1), Thus, with Via(t) = Voexp(ja 1), the voltage across the
capacitor is equal Lo
Vo :
Vei(t) = ——————— ™V, 2.2

G = (2239)
In the second step, we apply Vi.(1) = Vyexp(jwif) + Vi exp(jwar), obtaining the linear
voltage across C as

Vuef“"r " Vﬂfv"‘”?r

Veilt) = . 2.240
D= el | R el
With this voltage, we compute the nonlinear current flowing through Cy:
dVei

Ict nonft) = 'IC[!VC[? (2.241)

Voelor! Voelont

= aCy ( o + =
R Cyjery + 1 R Cpjwr + 1

) Voeli! jwn Va2

el = e . (2.242)
RiCyjmwy + 1 R Cyjwr + 1

Since only the component at w; + @2 is of interest at this point, we rewrite the above
expression as

(2.243)

(@1 + wayV 2o tonn
Ic1.non(t) = l'-?‘T'-':-'i.'i-l: ] -

mE
(R1Cyjan + )R Cyjars + 1)

= aCol jlwr + w2Vl ™ N H () H(w) + 1. (2.244)
In the third step, we set the input to zero, assume a linear capacitor, and apply Iy pon (1) in

parallel with C; (Fig. 2.73). The current component at w; + w> flows through the parallel
combination of Ry and Cy, producing Viey yon (1)

Ry
-l- iy l . 3 < V,:,,m
I Co () It n0n

Figure 2.73 Inclusion of nonfinear current in RC section.
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Example 2.35 (Continued)

Vernon() = —aCojlwr + o) Ve D H (o))
Ry
* H 2.24
e e i, a1 A2

= —aR | Cyjlw; + w)H(w)H (0 ) (w) + wy)Vie'1Te, (2.246)

We nate that the coefficient of V§ expl jlw; + @n)t] in these two equations is the same as
Halw), wa) in (2.229),

To determine Hi(w).ws. w3), we must assume an input of the form V(1) =
Vi exp( jwt) + Vi expl jewai) + Vyexp( jewsr) and write the voltage across C; as

Vcl{f] = Hl{m}‘ifwfmn + Hl (&}Z}VDGJ'WH i Hl(wj)vﬂej@y + Hz(mha}z}véeﬂmj+wghr
+ Hy(w), @3)Viel 1 "0 + Hy(ws, an) Vel 23, (2.247)

Note that, in contrast to Eq. (2.240)), we have included the second-order nonlinear terms in
the voltage so as to calculate the third-order terms.”” The nonlinear current through C) is

thus equal to

dVey
Ict non(t) = ECEVHT- (2.248)

We substitute for Ve and group the terms containing w; + w2 + wy:
Ietnon (D) = aCy|Hi(w) ) Ha(wa, w3)j{ws + w3) + Ha(ws, w3)joH) (@)
+ Hy (w2 Ha(wy, w3)ila + w3) + Ha(w, w3)jwrH ) (w2)
+ Hy(w3)Ha(wy, 02)j(w) + @2) + Halo), a)jesH) (w3)] Vel Tertent
By (2.249)
This current lows through the parallel combination of B and Cy, yvielding Ve qon(t). The

reader can readily show that the coefficient of exp| j(w) + w2 + w3)t] in Vioy non(1) is the
same as the third kernel expressed by Eq. (2.238).

The procedure described above applies to two-terminal nonlinear devices. For transis-
tors, a similar approach can be taken. We illustrate this point with the aid of an example.

Example 2.36

Figure 2.74(a) shows the input network of a commonly-used LNA (Chapter 5). Assuming
that g, L /Cgs = Rs (Chapter 5) and Ip = a(Vgs — V)2, determine the nonlinear terms
in Iy, Neglect other capacitances, channel-length modulation, and body effect.

(Confinues)

27. Other terms are excluded because they do not lead o a component at ay 4+ wa + w3,
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Example 2.36 (Continued) Example 2.36 (Continued)

Now, we assume Vi, (1) = Vgexp(jw1) + Vpexp( jwar) and write

i Vi) = Hy(w)Voel”" + H(w)Voe'™". (2253)
+
Vin() Upon experiencing the characteristic Iy = V7, this voltage results in a nonlinear current
= given by
Ip.non = 20H (@1)H, () Vel 102", (2254)
@ ) In the next step, we set Vj, to zero and insert a current source having the above value in
parallel with the drain current source [Fig. 2.74(b)]. We must compute V| in response to
Rs La Lot Iy non. assuming the circuit is linear. From the equivalent circuit shown in Fig. 2.74(c), we
. - have the following KVL:
S (Rg + LgsiViCgss + Vi + (gwV1 + Ippon + ViCass)Lis = 0. (2.255)
%h Thus, for s = jw
WA —jLiw
= (jw) = T (2.256)
() ID.uun X )
Figure 2.74 (a) CS stage with inductors in series with source and gate, (b) inclusion of nonlinear wy
current, (¢} compusation.of ewiput current. Since Iy pon contains a frequency component at @y + w3, the above transfer function must
Solution: be calculated at @) + w2 and multiplied by Ip si0n 10 yield Vi. We therefore have
In this circuit, two quantities are of interest, namely, the output current, ly ( = Ip), and —iLy () + )
the gate-source voltage, Vi; the latter must be computed each time as it determines the Hy(w), wy) = o)’ 2aH () )H (w2). (2.257)
nonlinear component in Ip. 2gmLijlw) + w2} + 1 — {w‘—f}z
Let us begin with the linear response. Since the current flowing through L; is equal to ey,
ViCgss + g,V and that flowing through Rg and L¢; equal to V| Cggs. we can write a KVL : . : :
around the input loop as In our last step, we assume Vi, (1) = Voexp(jw 1) + Voexp(jwat) + Vyexp( jwat) and write
Vin = (Rs + L)ViCass + Vi + (Vi Cass + gmVLis, (2.250) Vi = Hi(w)Voe"" + Hi(@2)Voe™ + Hy(w3) Vo' + Ha(ey, w2) Vg1 T
+ Hy(wr, 03) Vel ") + Hy(wn, w3) Vg 2T, (2.258)
It follows that
Vv | . : :
= (2.251) Since Ip = an. the nonlinear current at w; + w2 + w3 is expressed as

Vie (L) + Lg)Ciss® + (RsCos + gmli)s + 1

, . _ Ip non = 2a[Hi{w1)Ha (w2, w3) + Hi(w2)H2(w), 03)
Since we have assumed gl /Cgs = Rs, for s = jw we obtain

+ Hi(w3)Ha(wr, w2) [Vgel @1t ortest, (2.259)
Vv 1
V—](jw] = 7 = Hi(w), (2.252) The third-order nonlinear component in the output of interest, I, is equal to the
it 2gmLijow + 1 — o above expression. We note that, even though the transistor exhibits only second-order
mﬁ nonlinearity. the degeneration (feedback) caused by L, results in higher-order terms.

The reader is encouraged to repeat this analysis using the harmonic method and see
where mﬁ = [(Ly + L) Cas] ' Note that L = 2aV1 = g1 (en) Vi, that it is much more complex.
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PROBLEMS

2.1. Two nonlinear stages are cascaded. If the input/output characteristic of each stage
is approximated by a third-order polynomial, determine the Py g of the cascade in
terms of the Pygp of each stage.

2.2. Repeat Example 2.11 if one interferer has a level of —3 dBm and the other, —35 dBm.

2.3, If cascaded, stages having only second-order nonlinearity can yield a finite IF5. For

example, consider the cascade identical common-source stages shown in Fig. 2.75.

Rp

ML

WY
X

L=

Vin°—||:_LM1 —|. M,

Figure 2.75 Cascade of CS stages.

Problems B7

24

2.3,

2.9,

2.10.

2.11.
2.12.

If each transistor operates in saturation and follows the ideal square-law behavior,
determine the IP5 of the cascade.

Determine the IP3 and P\ gp for a system whose characteristic is approximated by a
fifth-order polynomial.

Consider the scenario shown in Fig. 2.76, where w3 — w2 = @ — w3 and the band-
pass filter provides an attenuation of 17 dB at w> and 37 dB at ws.

10 mV 10 mV
0.1 mv Amplifier

o BPF ‘D_WM
4 -

Figure 2.76 Cascade of BPF and amplifier.

(a) Compute the /1P of the amplifier such that the intermodulation product falling
at ) is 20dB below the desired signal.

(b) Suppose an amplifier with a voltage gain of 10dB and IIP; = 500mV,, precedes
the band-pass filter. Calculate the ITP; of the overall chain. (Neglect second-
order nonlinearities.)

Prove that the Fourier transform of the awtocorrelation of a random signal yields the
spectrum, 1.¢., the power measured in a 1-Hz bandwidth at each frequency.

. A broadband circuit sensing an input Vpcosaypt produces a third harmonic

V3 cos(3wqt). Determine the 1-dB compression point in terms of Vi and V.

Prove that in Fig. 2.36, the noise power delivered by R; to Rz is equal to that deliv-
ered by R» to R, if the resistors reside at the same temperature. What happens if they
do not?

Explain why the channel thermal noise of a MOSFET 1s modeled by a current source
tied between the source and drain terminals (rather than, say, between the gate and
source terminals ).

Prove that the channel thermal noise of a MOSFET can be referred to the gate as a
voltage given by 4kTy / g,,. As shown in Fig. 2.77, the two circuits must generate the
same current with the same terminal voltages.

Determine the NF of the circuit shown in Fig. 2.52 using Friis’ equation.
Prove that the output noise voltage of the circuit shown in Fig. 2.46(c) is given by

7 ._ 43 3
V=it

nl
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2:13.

2.16.

2.17.

2.18.

I~

19,
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Figure 2.77 Equivalent circuits for noise of a MOSFET.

Repeat Example 2.23 if the CS and CG stages are swapped. Does the NF change?
Why?

4. Repeat Example 2.23 if Rp; and Rp, are replaced with ideal current sources and

channel-length modulation 1s not neglected.

. The input/output characteristic of a bipolar differential pair is given by V,,, =

— 2Rl tanh| Vi, /(2V1) ], where R denotes the load resistance, [gg is the tail
current, and Vy = kT /g. Determine the 1P; of the circuit.

What happens to the noise figure of a circuit if the circuit is loaded by a noiseless
impedance Z; at its output?

The noise figure of a circuit is known for a source impedance of Rg,. Is it possible to
compute the noise figure for another source impedance Ry ? Explain in detail.
Equation (2.122) implies that the noise figure falls as Ry rises. Assuming that the
antenna voltage swing remains constant, explain what happens to the output SNR as
Rg increases.

Repeat Example 2.21 for the arrangement shown in Fig. 2.78, where the transformer
amplifies its primary voltage by a factor of n and transforms Rs to a value of nRs.

Figure 2.78 CS stage driven by a transformer.

. For matched inputs and outputs, prove that the NF of a passive (reciprocal) circuit is

equal to its power loss.

. Determine the noise figure of each circuit in Fig. 2.79 with respect to a source

impedance Rg. Neglect channel-length modulation and body effect.

Problems 89

Vino—

Vps—|

() el

Figure 2.79 CS stages for NF calculation,

2.22, Determine the noise figure of each circuit in Fig. 2.80 with respect to a source
impedance Rg. Neglect channel-length modulation and body effect.

&

i ° IIIH;l:rl.lt

v M, ’:.||—' o

in

{a) ()

(e (ch

Figure 2.80 CG stages for NF calculation.
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2.23, Determine the noise figure of each circuit in Fig. 2.81 with respect to a source
impedance Rs. Neglect channel-length modulation and body effect.

(i) ich

Figure 2.81 Stages for NF calculation.

CHAPTER

COMMUNICATION CONCEPTS

The design of highly-integrated RF transceivers requires a solid understanding of commu-
nication theory. For example, as mentioned in Chapter 2, the receiver sensitivity depends
on the minimum acceptable signal-to-noise ratio, which itself depends on the type of mod-
ulation. In fact, today we rarely design a low-noise amplifier, an oscillator, etc., with no
attention to the type of transceiver in which they are used. Furthermore, modern RF design-
ers must regularly interact with digital signal processing engineers to trade functions and
specifications and must therefore speak the same language.

This chapter provides a basic, yet necessary, understanding of modulation theory and
wireless standards. Tailored to a reader who is ultimately interested in RF IC design rather
than communication theory, the concepts are described 1n an intuitive language so that they
can be incorporated in the reader’s daily work. The outline of the chapter 15 shown below.

Modulation Mobile Systems Multiple Access Techngiues Wireless Standards
= AM, PM, FM ® Cellular System = Duplexing » GSM
* Intersymbaol Interference * Hand-off = FDMA * |5-95 CDMA
= Signal Constellations ® Multipath Fading = TDMA * Wideband CDMA
= ASK, PSK, FSK = Diversity = CDMA = Bluetooth
= QPSK, GMSK, QAM = |EEE802.11a/b/g
* OFDM

® Spectral Regrowth

3.1 GENERAL CONSIDERATIONS

How does your voice enter a cell phone here and come out of another cell phone miles
away? We wish to understand the incredible journey that your voice signal takes.

The transmitter 1n a cell phone must convert the voice, which is called a “baseband
signal” because its spectrum (20Hz to 20kHz) is centered around zero frequency, to a
“passhand signal,” i.e., one residing around a nonzero center frequency, e [Fig. 3.1(b)].
We call e, the “carmier frequency.”
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