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A Discretization-Free Sparse and Parametric
Approach for Linear Array Signal Processing

Zai Yang, Lihua Xie, Fellow, IEEE, and Cishen Zhang

Abstract—Direction of arrival (DOA) estimation in array pro-
cessing using uniform/sparse linear arrays is concerned in this pa-
per. While sparse methods via approximate parameter discretiza-
tion have been popular in the past decade, the discretization may
cause problems, e.g., modeling error and increased computations
due to dense sampling. In this paper, an exact discretization-
free method, named as sparse and parametric approach (SPA),
is proposed for uniform and sparse linear arrays. SPA carries
out parameter estimation in the continuous range based on well-
established covariance fitting criteria and convex optimization.
It guarantees to produce a sparse parameter estimate without
discretization required by existing sparse methods. Theoretical
analysis shows that the SPA parameter estimator is a large-
snapshot realization of the maximum likelihood estimator and
is statistically consistent (in the number of snapshots) under
uncorrelated sources. Other merits of SPA include improved
resolution, applicability to arbitrary number of snapshots, ro-
bustness to correlation of the sources and no requirement of
user-parameters. Numerical simulations are carried out to verify
our analysis and demonstrate advantages of SPA compared to
existing methods.

Index Terms—Array processing, DOA estimation, sparse and
parametric approach (SPA), continuous parameter estimation,
compressed sensing.

I. INTRODUCTION

Farfield narrowband source localization based on observed
snapshots of a sensor array is a major problem in array
signal processing [1], [2], known also as direction of arrival
(DOA) estimation. The difficulty of the problem arises from
the fact that the observed snapshots are nonlinear functions of
the directions of interest. According to estimation schemes
adopted, existing methods for the DOA estimation can be
classified into three categories: parametric, nonparametric and
semiparametric, which are described as follows.

Parametric methods explicitly carry out parameter esti-
mation using optimization or other methods. A prominent
example is the nonlinear least squares (NLS) method (see, e.g.,
[2]), which adopts the least squares criterion and has a strong
statistical motivation. However, NLS admits the following
two shortcomings: 1) it requires the knowledge of the source
number which is typically unavailable, and 2) its global
optimum cannot be guaranteed with a practically efficient
algorithm due to nonconvexity caused by the nonlinearity
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nature. Either of them may greatly degrade the parameter
estimation performance. MUSIC [3], [4] does the parameter
estimation by studying the subspace of the data covariance
matrix and is a large-snapshot realization of the maximum
likelihood (ML) method in the case of uncorrelated sources.
But it also requires the source number and does not have
reliable performance when the number of snapshots is small or
correlation exists between the sources. Other subspace-based
methods include ESPRIT and their variants (see [2] for a com-
plete review). In contrast, a nonparametric method typically
produces a dense spectrum whose peaks are interpreted as
source directions. So an alternative name dense is also used.
Examples include conventional beamformer and MVDR (or
Capon’s method) (see e.g., [2]) and recently introduced itera-
tive adaptive approach (IAA) [5] which eliminates to a large
extent leakage of the beamformer and is robust to correlation
of the sources. But it will be shown in this paper that IAA
suffers from resolution limit, especially in the moderate/low
SNR regime. While the classification above is consistent with
[2], MUSIC is sometimes categorized in the literature as a
nonparametric/dense method by interpreting the plot of its
objective function as its power spectrum whose peaks are the
optima of the directions.

Semiparametric methods have been popular in the past
decade which remove the direction variables in the obser-
vation model by parameter discretization and transform the
nonlinear parameter estimation problem into a sparse signal
recovery problem under a linear model, followed by some
sparse signal recovery technique and support detection of the
sparse solution. In particular, the continuous direction range
is approximated by a set of discrete grid points under the
assumption that the grid is fine enough such that any of the true
sources lies on (practically, close to) some grid point. After
that, the knowledge is exploited that each of the expanded
vector of source signals [composed of (virtual) source signals
from candidate directions on the grid] is a sparse signal since
the grid size is greatly larger than the source number, and a
sparse solution is sought after. Finally, the directions are re-
trieved from the support of the sparse solution. Consequently,
the semiparametric methods are also named as sparse methods
in contrast to dense. In principle, a source will be detected once
the estimated source signal/source power from some direction
is nonzero. Following from the literature of sparse signal
representation (SSR) and later developed compressed sensing
(CS) [6]–[8], `1 norm minimization and other sparse signal
recovery techniques have been widely used in the semipara-
metric methods (see, e.g., [9]–[19]). However, their theoretical
support based on SSR and CS cannot be applied due to
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dense discretization. Moreover, the sparse recovery techniques
usually require one or more practically unknown parameters,
e.g., the noise statistics, the source number or regularization
parameters, etc. The semiparametric iterative covariance-based
estimation (SPICE) method [20]–[22] is a breakthrough of the
semiparametric methods, in which covariance fitting criteria
are adopted with sound statistical motivation, the source power
and noise variance(s) are estimated in a natural manner,
no user-parameters are required and a connection to the `1
norm minimization is shown. In principle, the semiparametric
methods are approximation methods due to the discretization
scheme adopted. Furthermore, grid selection remains a major
problem since 1) a coarse grid leads to a high modeling
error and 2) too dense a grid is computationally prohibitive
and might result in computational instability (see, e.g., [23],
[24]). To alleviate the drawbacks of the discretization, pre-
liminary results have been obtained in [13], [16]–[18], [25],
[26]. Overall, because of the inherent discretization scheme,
the performance of semiparametric methods is dependent on
the trade off between the discretization grid size and the
computational workload.

This paper aims at developing discretization-free techniques
for DOA estimation with an affordable computational work-
load in a common scenario of linear arrays, more specifically,
uniform linear arrays (ULAs) and sparse linear arrays (SLAs).
We consider stochastic source signals and the same covariance
fitting criteria as in SPICE. By exploiting the Hermitian
Toeplitz structure in the data covariance matrix, the covariance
fitting problem is cast as semidefinite programming (SDP) and
solved using off-the-shelf SDP solvers, e.g., SDPT3 [27], in
a polynomial time. A postprocessing technique is presented
in this paper to retrieve, from the data covariance estimate,
the parameters of interest including source locations, source
powers and noise variance(s). The proposed method is a
sparse method because it utilizes the same covariance fitting
criteria of the semiparametric SPICE method and guarantees
to produce a sparse parameter estimate. At the same time, it
is a parametric method since it is proven to be equivalently
solving a covariance fitting problem parameterized by the
aforementioned parameters. Therefore, the proposed method
is named as sparse and parametric approach (SPA). The
SPA method differs from the existing sparse/semiparametric
methods by no need of discretization. Unlike the existing
parametric methods, SPA is based on convex optimization
and does not require the source number. Theoretical analysis
shows that SPA is a large-snapshot realization of the ML
estimation and is statistically consistent (in the number of
snapshots) under uncorrelated sources. Other merits of SPA
include improved resolution, applicability to arbitrary number
of snapshots, robustness to correlation of the sources and
no requirement of user-parameters. Numerical simulations are
carried out to verify our theoretical results and demonstrate the
superior performance of SPA compared to existing methods.

Though most, if not all, of the existing sparse methods can
be applied to sensor arrays with arbitrary geometry, problems
may occur when applied to the ULA and SLA cases as studied
in this paper. In particular, their parameter estimates might
suffer from some identifiability problem and not be truly

sparse as demonstrated in this paper, which conflicts with the
name sparse and decreases their resolution considerably. As
a byproduct, a modified SPICE method, named as SPICE-
PP, is presented to rectify the problem by incorporating the
postprocessing technique presented in this paper.

In the single-snapshot case, the parameter estimation prob-
lem studied in this paper is mathematically equivalent to
spectral analysis [2], for which discretization-free methods
have been developed recently in [28]–[30]. It is noted that the
results of [28]–[30] are based on very different techniques.
Furthermore, [28] and [30] are mainly focused on the noise-
free case (the former on the ULA case and the latter on the
SLA case in the language of this paper). [29] studies the ULA
case in the presence of i.i.d. Gaussian noise with known noise
statistics. The SPA method proposed in this paper can deal
with all of the above scenarios without the knowledge of noise
statistics. While this paper is focused on the array processing
applications in which the multisnapshot case is of the main
interest, it is still not clear whether the techniques in [28]–
[30] specialized for the single-snapshot case can be extended
to other cases.1

Notations used in this paper are as follows. R, R+ and C
denote the sets of real numbers, nonnegative real numbers and
complex numbers, respectively. Boldface letters are reserved
for vectors and matrices. For an integer N , [N ] is defined as
the set {1, . . . , N}. |·| denotes the absolute value of a scalar or
cardinality of a set. ‖·‖1, ‖·‖2 and ‖·‖F denote the `1, `2 and
Frobenius norms, respectively. xT , xH and x are the matrix
transpose, conjugate transpose and complex conjugate of x,
respectively. xj is the jth entry of a vector x and Ajk is the
jkth entry of a matrix A. Unless otherwise stated, xT is a
subvector of x with the index set T . For a vector x, diag (x)
is a diagonal matrix with x being its diagonal. x � 0 means
xj ≥ 0 for all j. tr (A) denotes the trace of a matrix A. For
positive semidefinite matrices A and B, A ≥ B means that
A−B is positive semidefinite. E [·] denotes expectation and
θ̂ is an estimator of θ. For notational simplicity, a random
variable and its numerical value will not be distinguished.

The rest of this paper is organized as follows. Section II
describes the problem of array processing with linear arrays.
Section III presents the proposed SPA method in the ULA
case followed by Section IV on the SLA case. Section V
introduces theoretical properties of SPA. Section VI discusses
its connections to existing methods. Section VII presents our
numerical simulations. Section VIII concludes this paper.

II. PROBLEM DESCRIPTION

A. Observation Model

Consider K narrowband farfield sources sk, k ∈ [K],
impinging on a linear array of omnidirectional sensors from
directions dk ∈ [−90◦, 90◦), k ∈ [K]. We are interested in
estimation of the direction vector d = [d1, . . . , dK ]

T , known
as the direction of arrival (DOA) estimation problem [1], [2].

1After submission of this paper, we have investigated connections between
the proposed statistical inference method and the deterministic atomic norm
technique in [28]–[30] and also extended the latter to the multisnapshot case
in [31]–[33].
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Denote θk = sin(dk)+1
2 ∈ [0, 1), k ∈ [K]. Then we can

equivalently estimate θ = [θ1, . . . , θK ]
T since the relation

d↔ θ is one-to-one. θ is called the frequency parameter and
its meaning will be clarified later. In this paper, we concern
only with the estimation of θ for convenience. According to
[1], [2], the time delays at different sensors can be represented
by simple phase shifts, leading to the observation model:

y(t) =

K∑
k=1

a (θk) sk(t)+e(t) = A(θ)s(t)+e(t), t ∈ [N ] ,

(1)
where t indexes the snapshot and N is the snapshot number,
y(t) ∈ CM , s(t) ∈ CK and e(t) ∈ CM denote the observed
snapshot, the vector of source signals and the vector of
measurement noise at snapshot t, respectively, and M is the
number of sensors (some notations will be redefined in the
SLA case). A(θ) = [a (θ1) , . . . ,a (θK)] is the so-called array
manifold matrix and a (θk) is the steering vector of the kth
source which is determined by the geometry of the sensor array
and will be given later. More compactly, (1) can be written into

Y = A(θ)S +E, (2)

where Y = [y(1), . . . ,y(N)], and S and E are similarly
defined. The number of sources K is assumed unknown in this
paper. So, the objective of the array processing is to estimate
the unknown parameter θ (or equivalently, the vector of DOAs
d) given the sensor measurements Y and the mapping θ →
A(θ).

B. Some Standard Assumptions

We introduce some standard assumptions for the problem
formulation and solution. e(t), t ∈ [N ], are assumed to be
spatially and temporarily white, i.e.,

E
[
e(t1)eH(t2)

]
= diag (σ) δt1,t2 , (3)

where σ = [σ1, . . . , σM ]
T ∈ RM+ is the noise variance

parameter and δt1,t2 is a delta function that equals 1 if t1 = t2
or 0 otherwise. The source signals and the noise are assumed
to be uncorrelated with each other. Moreover, assume that the
source signals are uncorrelated spatially and temporarily, i.e.,

E
[
s(t1)sH(t2)

]
= diag (p) δt1,t2 , (4)

where p = [p1, . . . , pM ]
T ∈ RM+ denotes the source power

parameter. Under the assumptions above, the data snapshots
{y(1), . . . ,y(N)} are uncorrelated with each other and have
the covariance matrix

R = E
[
y(t)yH(t)

]
= A (θ) diag (p)AH (θ) + diag (σ) .

(5)
It is worthy noting that the spatial uncorrelatedness of the
sources may not be satisfied in practice, i.e., two sources
{sk1(t)} and {sk2(t)} can be correlated or even coherent (i.e.,
completely correlated). However, the method proposed in this
paper will be shown to be robust to this assumption.

C. Uniform and Sparse Linear Arrays

Both uniform and sparse linear arrays will be studied in
this paper. In the ULA case, the sensors are uniformly spaced
with a spacing of λ

2 , where λ denotes the wavelength of the
sources. For an M -element ULA, the steering vector a (θk)
of source k has the following form with i =

√
−1:

a (θk) =
[
1, ei2πθk , . . . , ei2(M−1)πθk

]T
. (6)

It is clear that θk is the frequency of the uniformly sampled
complex sinusoid a (θk), a reason for why θ is called the
frequency parameter. A well-known result is that up to M −1
sources can be detected using an M -element ULA (see, e.g.,
[34]).

An SLA can be considered as a ULA with “missing”
sensors, i.e., an SLA takes only a subset, say Ω, of the sensors
of a ULA. Thus an SLA can be represented by its sensor index
set Ω ⊂ [M ]. Without loss of generality, we assume that Ω is
sorted ascendingly with Ω1 = 1 and ΩL = M , where L = |Ω|
denotes the array size (otherwise, we can redefine Ω, say Ω,
such that Ωj = Ωj −Ω1 + 1, j ∈ [L], and let M = ΩL). Then
the steering vector of the SLA Ω for source k, denoted by
aΩ (θk), is

aΩ (θk) =
[
ei2π(Ω1−1)θk , . . . , ei2π(ΩL−1)θk

]T
. (7)

Denote ΓΩ ∈ {0, 1}L×M a selection matrix such that the jth
row of ΓΩ contains all 0s but a single 1 at the Ωj th position.
It is clear that

aΩ (θk) = ΓΩa (θk) . (8)

Let

D = {m1 −m2 + 1 : m1,m2 ∈ Ω,m1 ≥ m2} ⊂ [M ] . (9)

An SLA defined by D is called the coarray of Ω. Ω is called
a redundancy array if D defines a ULA, i.e., D = [M ]. It
is obvious that a ULA is a redundancy array. The maximum
number of sources detectable using the array Ω is determined
by its coarray D [34], [35]. In particular, a redundancy array
can detect up to M − 1 sources like a ULA. For a non-
redundancy SLA, the maximum number of sources detectable
will be less than M − 1. It is noted that redundancy SLAs
are quite common and there generally exists such an array
satisfying that L2 ≤ 3 (M − 1) according to [35].

Example 1: The SLA Ω = {1, 2, 5, 7} is a redundancy
array, where L = 4 and M = 7. So maximally 6 sources
can be detected using this 4-element array.

III. SPA WITH A ULA

A. Covariance Fitting Criteria

Since a ULA can detect up to M −1 sources, the condition
K ≤ M − 1 can be considered as a priori knowledge while
the exact value of K is unavailable. The covariance of the data
snapshots Y is given in (5) under the assumptions specified
in Subsection II-B. Denote by R̃ = 1

NY Y
H the sample

covariance. When R̃ and R are both invertible we consider
the following covariance fitting criterion for the purpose of
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parameter estimation (see [20]–[22], [34] and the references
therein):

f1 (θ,p,σ) =

∥∥∥∥R− 1
2

(
R̃−R

)
R̃
− 1

2

∥∥∥∥2

F
. (10)

R−1 exists in the presence of noise, i.e., σj > 0 for j ∈ [M ].
Then R̃

−1
exists with probability one if N ≥ M . According

to [34], [36], the minimization of the criterion in (10) is a
large-snapshot realization of the ML estimator. In the case
where R̃ is singular (it happens when N < M ) we consider
an alternative criterion:

f2 (θ,p,σ) =
∥∥∥R− 1

2

(
R̃−R

)∥∥∥2

F
(11)

which has been studied in [20], [21]. We defer the latter case
to Subsection III-B2.

Remark 1: The covariance fitting criteria above exploit the
assumption that the sources are uncorrelated which results in
the expression of R in (5). However, a theoretical explanation
is provided in [20], [21] to show that the criteria are robust
to correlations of the sources. Moreover, according to [21],
[37] they are connected to the `1 norm minimization which
is known to be robust to the correlations. Consequently, such
robustness property is maintained in the method proposed in
this paper which utilizes the same criteria.

A simple calculation shows that

f1 = tr
[
R−

1
2

(
R̃−R

)
R̃
−1
(
R̃−R

)
R−

1
2

]
= tr

[(
R−1R̃− I

)(
I − R̃

−1
R
)]

= tr
(
R−1R̃

)
+ tr

(
R̃
−1
R
)
− 2M.

(12)

It is challenging to minimize f1 with respect to the unknown
parameters θ, p and σ due to their nonlinear relation to R by
(5). We propose to estimate R firstly by reparameterization
and then determine the parameters of interest. Let

C (θ,p) = A (θ) diag (p)AH (θ) . (13)

It is easy to see that C ≥ 0 and rank (C) = K ≤ M − 1.
Moreover,

Cjl =

K∑
k=1

pkaj (θk) al (θk) =

K∑
k=1

pke
i2π(j−l)θk . (14)

C is thus a (Hermitian) Toeplitz matrix which is determined
by M complex numbers and can be written as C = T (u) for
some u ∈ CM , where

T (u) =


u1 u2 · · · uM
u2 u1 · · · uM−1

...
...

. . .
...

uM uM−1 · · · u1

 . (15)

B. SDP Formulations in the Case of Different {σj}
It follows from (15) that the characterization

R (u,σ) = T (u) + diag (σ) (16)

captures the structure of R under the constraints T (u) ≥ 0
and σ � 0. Further observations reveal that R is inherently

determined by 2M − 1 numbers (M for the diagonal and the
other M − 1 for the off diagonal). However, 2M numbers
(M in u and the other M in σ) have been used in the
above expression of R (M + 1 for the diagonal and M − 1
for the off diagonal). As a result, redundancy exists along
the diagonal of R. The effect of the redundancy is twofold.
On one hand, it will cause an identifiability problem, which
will be tackled in Subsection III-D, that in general u, σ
cannot be uniquely identified from R without accounting for
additional information except T (u) ≥ 0 and σ � 0. It means
that the solution σ∗ of the SDPs to be presented cannot be
directly used as the final estimate of the noise variance. On
the other hand, the adoption of one redundant variable enables
us not to impose the nonconvex rank-deficiency constraint on
T (u) to characterize R (it will be clarified in Subsection
III-D). However, the redundancy problem will not affect the
estimation of R which is our current focus.

1) The Case of N ≥ M : With the characterization of R
in (16) the minimization of f1 is equivalent to

min
u,{σ�0}

tr
(
R−1R̃

)
+ tr

(
R̃
−1
R
)
,

subject to T (u) ≥ 0.
(17)

Then we can show the following equivalences:

(17)⇔ min
u,{σ�0}

tr
(
R̃

1
2R−1R̃

1
2

)
+ tr

(
R̃
−1
R
)
,

subject to T (u) ≥ 0

⇔ min
X,u,{σ�0}

tr (X) + tr
(
R̃
−1
R
)
,

subject to T (u) ≥ 0 and X ≥ R̃
1
2R−1R̃

1
2

⇔ min
X,u,{σ�0}

tr (X) + tr
(
R̃
−1
R
)
,

subject to

X R̃
1
2

R̃
1
2 R

T (u)

 ≥ 0.

(18)

So the problem in (17) can be formulated as an SDP and thus
is convex. As the result, R can be estimated by solving the
SDP with its estimate given by R̂ = T (u∗)+diag (σ∗), where
(u∗,σ∗) is the solution of the SDP.

2) The Case of N < M : When N < M , R̃ ceases to
be nonsingular and the criterion in (11) is used which can be
written into

f2 (u,σ) = tr
[(
R̃−R

)
R−1

(
R̃−R

)]
= tr

(
R̃R−1R̃

)
+ tr (R)− 2tr

(
R̃
) (19)

Hence, an SDP similar to (18) can be formulated as follows:

min
X,u,{σ�0}

tr (X) + tr (R) ,

subject to

X R̃

R̃ R
T (u)

 ≥ 0.
(20)
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C. SDP Formulations in the Case of Equal {σj}
It is reasonable to assume that the noise variances σj , j ∈

[M ], are equal in some scenarios. Though the formulations in
the last subsection can be applied to such a case by imposing
the constraint σ1 = · · · = σM = σ, simpler formulations
in fact exist. In such a case, diag (σ) = σI with σ ∈ R+.
Therefore, the covariance R has a Toeplitz structure and the
characterization

R = T (u) (21)

captures its structure without redundancy under the constraint
T (u) ≥ 0 for some u ∈ CM . Note that the T (u) here is
the same as that in (16) off the diagonal but different on the
diagonal, i.e., the two u’s are the same except the first entry.
Following from the similar procedures as in the last subsection,
similar SDPs can be formulated. In particular, when N ≥M
we have

min
X,u

tr (X) + tr
(
R̃
−1
T (u)

)
,

subject to

X R̃
1
2

R̃
1
2 T (u)

 ≥ 0.
(22)

When N < M ,

min
X,u

tr (X) + tr (T (u)) ,

subject to

[
X R̃

R̃ T (u)

]
≥ 0.

(23)

Note that the constraint T (u) ≥ 0 has been implicitly
included in the constraints in (22) and (23). The simplified
SDP formulations will lead to faster computations in practice.
By solving one of the SDPs, R̂ is obtained as R̂ = T (u∗)
given the solution u∗. For notational convenience, we say
σ∗ = 0 in this case. In fact, note that (21), (22) and (23) can
be obtained from (16), (18) and (20), respectively, by setting
σ = 0.

D. Postprocessing of R̂

After obtaining R̂, the following task is to estimate the
parameters θ, p and σ by writing it back into the form of (5).
To do this, we decompose R̂ into

R̂ = T (û) + diag (σ̂) , (24)

where T (û) = A
(
θ̂
)

diag (p̂)AH
(
θ̂
)
≥ 0 is the estimate

of C (θ,p) in (13) and σ̂ � 0 is the noise covariance
estimate. Such (û, σ̂) always exists according to the way R̂
is given, however, it is generally not unique. In particular,
for any δ ≥ −min (σ∗) satisfying that T (u∗) − δI ≥ 0,

(û, σ̂) =

(
u∗ −

[
δ
0

]
,σ∗ + δ1

)
leads to one realization of

the decomposition, which in fact also enumerates all possible
realizations. We utilize the prior knowledge that K ≤M − 1
to make the decomposition unique as follows. It follows from
K ≤ M − 1 that rank (C) = K ≤ M − 1. Therefore,
it is natural to impose that rank (T (û)) ≤ M − 1, i.e.,
T (û) = T (u∗)− δI is rank-deficient. A direct result is that

δ is an eigenvalue of T (u∗). Then by T (u∗) − δI ≥ 0 we
see that

δ = λmin (T (u∗)) (25)

and thus the decomposition is unique, where λmin (·) denotes
the minimum eigenvalue.2

Remark 2: The postprocessing is used to separate sources
and noise in the estimated covariance matrix such that the
source part can be represented by as few sources as possible
based on the minimum description length principle [38] (see
the next subsection for clarity). In fact, the idea of postprocess-
ing has been studied in the literature for a special case where
R̂ is a Toeplitz matrix as in the case of equal {σj} (see, e.g.,
[2, Section 4.9.2]). It is noted that the postprocessing is very
important in SPA, without which the final parameter estimate
is generally not unique and does not have the statistical
properties that will be shown in Section V. Even worse, the
frequency estimate of SPA can cease to be sparse. To see this,
suppose that T (u∗) has full rank (this is generally the case in
the presence of noise). Choose θ1 ∈ [0, 1) arbitrarily and let
p1 <

(
aH (θ1)T−1 (u∗)a (θ1)

)−1
. It follows that the residue

T (u∗) − p1a (θ1)aH (θ1) > 0 which still has the Toeplitz
structure. Then we can choose θ2 and p2 similarly based on
the residue. The process can be repeated infinitely many times
and results in infinitely long vectors θ and p.

E. Frequency and Power Solutions

The remaining task is to retrieve the frequency estimate
θ̂ and the power estimate p̂ given T (û), which is based on
the following classical Vandermonde decomposition lemma for
positive semidefinite Toeplitz matrices (see, e.g., [2], [39]).

Lemma 1: Any positive semidefinite Toeplitz matrix
T (u) ∈ CM×M can be represented as

T (u) = V PV H , (26)

where

V = [a (θ1) , . . . ,a (θr)] , (27)
P = diag (p1, . . . , pr) , (28)

θj ∈ [0, 1), pj > 0 for j ∈ [r], and r = rank (T (u)).
Moreover, the representation is unique up to permutation of
elements of θ and p if r ≤M − 1.

It follows from Lemma 1 that θ̂ and p̂ can be uniquely
determined given T (û) since rank (T (û)) ≤ M − 1. In
practice, θ̂ and p̂ can be obtained as follows. Given T (û) =

A
(
θ̂
)

diag (p̂)AH
(
θ̂
)

, it is easy to show that A
(
θ̂
)

A{2,...,M}

(
θ̂
) p̂ =

[
û

û{2,...,M}

]
(29)

since p̂ � 0, where A{2,...,M}
(
θ̂
)

takes all but the first rows

of the matrix A
(
θ̂
)

which denotes the complex conjugate of

2The postprocessing as in (24) can be done if we have only R̂ rather than
u∗ and σ∗. To see this, let ũ be the transpose of the first row of R̂. Then

û = ũ−
[
λmin (T (ũ))

0

]
and σ̂ is obtained as the diagonal of R̂ minus û11.
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A
(
θ̂
)

. So we build a system of 2M − 1 equations that is
linear in p̂ whose length is maximally M − 1, where each
column of the coefficient matrix corresponds to a uniformly
sampled sinusoid (after permutation of rows). According to
[40], Prony’s method can be applied to this type of systems
to efficiently solve θ̂ and p̂. In particular, θ̂ is firstly obtained
from zeros of a polynomial which is obtained by solving a
linear system involving only û. After that, p̂ is solved from
(29). Readers are referred to [40] for the detailed procedure.

The proposed SPA algorithm for the array processing with a
ULA is presented in Algorithm 1. The covariance matrix R is
firstly estimated by solving an SDP. Then the postprocessing
procedure is carried out for R̂ to resolve an identifiability
problem that exists in the solution of the SDP (the noise
variance is estimated at this step). Finally, the frequency and
the power are solved using Prony’s method. To carry out the
parameter estimation, SPA requires only the data snapshots Y
of the sensor array without any other user parameters. More
properties of SPA will be presented in Section V.

Algorithm 1 Sparse and parametric approach (SPA)
Input: observed snapshots Y .

1) Estimate R by solving the solution (u∗,σ∗) of an SDP;
2) Postprocess R̂ to obtain û and σ̂ via T (û) = T (u∗)−

λmin (T (u∗)) I and σ̂ = σ∗ + λmin (T (u∗)) 1;
3) Solve θ̂ and p̂ from (29) using Prony’s method.

Output: parameter estimator
(
θ̂, p̂, σ̂

)
.

Remark 3: In general, SPA cannot correctly determine the
true number of sources K but provides additionally spurious
sources. This is because that we do not assume in SPA any
knowledge of the source number or the noise variance(s).
Consequently, SPA solves the problem as in the worst case
where up to M − 1 sources can be present. In fact, the
source number estimation problem itself is very difficult
which is known as model order selection [41], and lacking
guarantees on the estimated source number seems to be a
common feature of sparse methods, especially when no prior
knowledge mentioned above is available (see, e.g., [9], [19],
[21], [22]). A positive side of SPA is that it has strong
statistical properties which will be shown in Section V, and
theoretically the powers of the spurious sources can be very
close to zero under sufficient snapshots or appropriately low
SNR, which enables the spurious sources to be distinguished
from the real ones. Currently, methods have been proposed
to remove spurious sources by modifying the solution of a
sparse method. For example, intuitive thresholding is used in
[19] and information criteria-based methods are presented in
[5], [23]. In future studies, we may seek to incorporate model
order selection in SPA such that the source number can be
estimated automatically together with the parameters but it is
beyond the scope of this paper.

IV. SPA WITH AN SLA

In this section we extend SPA to the SLA case. With
respect to an SLA Ω, denote the steering matrix by AΩ (θ) =

[aΩ (θ1) , . . . ,aΩ (θK)] ∈ CL×K , the data snapshots by
Y Ω = [yΩ (1) , . . . ,yΩ (N)] = AΩ (θ)S + EΩ ∈ CL×N ,
the covariance matrix by RΩ = E

{
yΩ(t)yHΩ(t)

}
=

AΩ (θ) diag (p)AH
Ω (θ) + diag (σΩ) ∈ CL×L and the sample

covariance by R̃Ω = 1
NY ΩY

H
Ω ∈ CL×L, where σΩ ∈ RL+

denotes the noise variance parameter. It follows from (8) that
AΩ (θ) = ΓΩA (θ) and then AΩ (θ) diag (p)AH

Ω (θ) =
ΓΩT (u) ΓTΩ , TΩ (u), where the Toeplitz matrix T (u) =
A (θ) diag (p)AH (θ) for some u ∈ CM . A careful study of
TΩ (u) reveals that

TΩ (u)jl =

K∑
k=1

pkaΩj
(θk) aΩl

(θk) =

K∑
k=1

pke
i2π(Ωj−Ωl)θk ,

(30)
i.e., the entries of TΩ (u) are specified by the coarray D
defined in (9).

In this paper we are mainly interested in the case where the
SLA Ω is a redundancy array. As in the ULA case, K ≤M−1
is considered as a priori knowledge according to Subsection
II-C. The matrix TΩ (u) contains all elements of u explicitly
by (30). It implies that the relation T (u) ↔ TΩ (u) is one-
to-one.

Example 2: Given a redundancy SLA Ω = {1, 2, 5, 7},
we have u ∈ C7 and TΩ (u) = ΓΩT (u) ΓTΩ =
u1 u2 u5 u7

u2 u1 u4 u6

u5 u4 u1 u3

u7 u6 u3 u1

, where all elements of u are contained.

It follows that the covariance matrix RΩ can be character-
ized as

RΩ = TΩ (u) + diag (σΩ)

= ΓΩT (u) ΓTΩ + diag (σΩ)
(31)

under the constraints T (u) ≥ 0 and σΩ � 0. Consider similar
covariance fitting criteria as in the ULA case, i.e., the min-

imization of
∥∥∥∥R− 1

2

Ω

(
R̃Ω −RΩ

)
R̃
− 1

2

Ω

∥∥∥∥2

F
when N ≥ L and∥∥∥R− 1

2

Ω

(
R̃Ω −RΩ

)∥∥∥2

F
otherwise. Then SPA can be extended

to the SLA case. In particular, when N ≥ L we obtain the
following SDP:

min
X,u,{σΩ�0}

tr (X) + tr
(
R̃
−1

Ω RΩ

)
,

subject to

X R̃
1
2

Ω

R̃
1
2

Ω RΩ

T (u)

 ≥ 0.
(32)

When N < L, it is

min
X,u,{σΩ�0}

tr (X) + tr (RΩ) ,

subject to

X R̃Ω

R̃Ω RΩ

T (u)

 ≥ 0.
(33)

In the case of equal noise variances, RΩ can be charac-
terized as RΩ = ΓΩT (u) ΓTΩ. Then similar SDPs can be
formulated as in (32) and (33) by simply setting σΩ = 0.
Note that the problem dimension in such a case cannot be



YANG, XIE & ZHANG: SPARSE AND PARAMETRIC APPROACH (SPA) FOR ARRAY PROCESSING 7

further reduced as in the ULA case since ΓΩT (u) ΓTΩ ≥ 0
does not imply T (u) ≥ 0.

Note that the same identifiability problem exists in the
solution (u∗,σ∗Ω) of the SDPs above. To resolve the problem,
the same procedures can be carried out as in the ULA case
by exploiting that rank (T (û)) ≤M − 1. Then the parameter
estimate

(
θ̂, p̂, σ̂Ω

)
can be obtained.

Remark 4: When the SLA Ω is not a redundancy array,
i.e., the coarray D is not a ULA, SPA presented above can be
applied straightforwardly. In such a case, it is natural to require
that K ≤M−1 < M−1, where M−1 denotes the maximum
number of sources detectable using the non-redundancy SLA.
However, the introduced implementation of SPA can only use
the information up to K ≤ M − 1, which should be a waste
of knowledge. A thorough study on exploitation of the full
information should be investigated in the future but is beyond
the scope of this paper.

V. PROPERTIES OF SPA

A. Sparse and Parametric Method

As its name suggests, SPA is a sparse and parametric
method. It carries out the optimization by reparameterization
and thus is a parametric method. The length of its frequency
estimator θ̂ is maximally M − 1. Since this is an important
result of this paper, we state it formally in the following
theorem.

Theorem 1: The length of the frequency estimator θ̂ of SPA
is maximally M − 1.

B. Statistical Properties

We consider ULAs and redundancy SLAs in this subsection,
or collectively, redundancy arrays. Notice that dimensions of
the parameter estimators θ̂ and p̂ may be different from the
true dimension K. To discuss statistical properties of the
SPA estimator, the dimension problem should be resolved
first. Notice that the proposed SPA is equivalently assuming
K = M−1 (the worst case) with the knowledge K ≤M−1.
Then we expand both the true parameter and its estimator to
the same dimension. Define

Ep (v) =

[
v
0

]
∈ RM−1, (34)

Ef (v) =

[
v
w

]
∈ RM−1 (35)

for a vector v of dimension no more than M − 1, where w ∈
[0, 1)

M−1−|v| is arbitrary. It is easy to see that (Ef (θ) , Ep (p))
and (θ,p) are physically equivalent since all of the added
virtual sources have zero powers. Then we have the following
results.

Theorem 2: Assume that {s(t)} and {e(t)} are
uncorrelated, E

[
s(t1)sH(t2)

]
= diag (p) δt1,t2 and

E
[
e(t1)eH(t2)

]
= diag (σ) δt1,t2 for t1, t2 ∈ [N ]. Moreover,

assume that the sensor array is a redundancy array and

K ≤M − 1. Then the parameter estimator
(
θ̂, p̂, σ̂

)
of SPA

is statistically consistent (in N ).3

Proof: Without loss of generality, we consider only the
ULA case. The proof is based on the observation that the pa-
rameter estimator

(
θ̂, p̂, σ̂

)
can be uniquely determined given

the covariance estimator R̂. Suppose that the true parameter
value is (θo,po,σo). As N → ∞, R̃ approaches the true
covariance Ro = A (θo) diag (po)AH (θo)+diag (σo). Then
by (10) the SDP of SPA admits a unique minimizer Ro of R,
which determines the unique parameter estimate (θo,po,σo)
given K ≤M − 1.

Theorem 3: Assume that {s(t)} and {e(t)} are uncorre-
lated and both are i.i.d. circular Gaussian with means zero
and covariance matrices diag (p) and diag (σ), respectively.
Moreover, assume that the sensor array is a redundancy array
and K ≤M−1. Then

(
Ef
(
θ̂
)
, Ep (p̂) , σ̂

)
is asymptotically

an ML estimator of (Ef (θ) , Ep (p) ,σ).
Proof: Consider first the ULA case. Since

(
θ̂, p̂, σ̂

)
can be uniquely determined given R̂, the SPA estimator is
equivalent to solving the following (nonconvex) optimization
problem:4

min
θ∈[0,1)M−1,p∈RM−1

+ ,σ�0

∥∥∥∥R− 1
2

(
R̃−R

)
R̃
− 1

2

∥∥∥∥2

F
,

subject to R = A (θ) diag (p)AH (θ) + diag (σ) .

(36)

On the other hand, the data snapshots {y(t)} are i.i.d. Gaus-
sian with mean zero and covariance R under the assump-
tions. According to the extended invariance principle (EXIP)
[36] and the derivations in [34], the global minimizer of
(36) is a large-snapshot realization of the ML estimator of
(Ef (θ) , Ep (p) ,σ).

Similarly, the SPA estimator in the redundancy SLA case is
the global minimizer of the following problem:

min
θ∈[0,1)M−1,p∈RM−1

+ ,σΩ�0

∥∥∥∥R− 1
2

Ω

(
R̃Ω −RΩ

)
R̃
− 1

2

Ω

∥∥∥∥2

F
,

subject to RΩ = AΩ (θ) diag (p)AH
Ω (θ) + diag (σΩ) .

(37)

Then the same result follows.
Theorem 3 states that

(
Ef
(
θ̂
)
, Ep (p̂) , σ̂

)
is asymptot-

ically an ML estimator of (Ef (θ) , Ep (p) ,σ) under some
technical assumptions. Theorem 2 shows that this estimator
is also consistent. Since, asymptotically, the power estimator
Ep (p̂) may lie on the boundary of RM−1

+ and thus the
asymptotic normality of

(
Ef
(
θ̂
)
, Ep (p̂) , σ̂

)
does not hold

directly. However, it indeed holds in the case of K = M − 1
where the true parameter po is an interior point of RM−1

+ . So
we have the following theorem.

Theorem 4: Under the assumptions of Theorem 3 and
K = M − 1 with p � 0 and σ � 0, the SPA estimator

3Without ambiguity, σ̂ and σ denote respectively σ̂Ω and σΩ in the SLA
case, or σ̂ and σ in the case of equal noise variances. It is the same for
Theorems 3 and 4.

4The zero entries, if any, of the solution of p are removed in SPA as well
as the corresponding entries of the solution of θ.
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(
θ̂, p̂, σ̂

)
is asymptotically normal with asymptotic unbiased

mean (θo,po,σo) and covariance F−1, where F denotes the
Fisher information matrix of the parameter. It follows that(
θ̂, p̂, σ̂

)
is statistically asymptotically efficient.

Proof: The result follows from Theorems 2 and 3 and the
properties of consistent ML estimators.

Remark 5: The asymptotic covariance matrix F−1 is usu-
ally referred to as the Crammer-Rao lower bound (CRLB),
which can be computed following from [42] and will be
omitted in this paper. Alternatively, its numerical results will
be presented in Section VII.

VI. CONNECTION TO PRIOR ARTS

A. Connection to SPICE

The SPA method proposed in this paper is closely connected
to SPICE in [21]. The two methods adopt the same covariance
fitting criteria. Roughly speaking, SPICE can be considered
as a discretized version of SPA when applied to ULAs and
SLAs. However, the following two main differences make their
performances very different. One is that SPA is a parametric
method while SPICE is a semiparametric method. In particular,
the covariance R is approximated in SPICE by discretizing
the continuous range [0, 1) of the frequency. Consider the
ULA case as an example. Denote θ̃ ∈ [0, 1)

Ñ the discretized
sampling grid of the frequency and p̃ ∈ RÑ+ the corresponding
power vector, where Ñ denotes the grid size. Then R is
expressed as

R (p̃,σ) = A
(
θ̃
)

diag (p̃)AH
(
θ̃
)

+ diag (σ) (38)

which is a linear function of (p̃,σ). With (38), the covariance
fitting criterion (10) or (11) becomes a convex function of
(p̃,σ) and is optimized in [20], [21] via an iterative algorithm,
named as SPICE. Note that the characterization of R in (38)
is only an approximation since there is no guarantee that the
true frequencies lie on the grid θ̃. Thus the approximation
error (or modeling error), which depends on the grid den-
sity, is one potential reason causing estimation inaccuracy of
SPICE. The other difference is that the parameter estimate of
SPICE is obtained directly from the solution

(
p̃∗,σ∗

)
of the

covariance fitting optimization problem while an additional
postprocessing procedure is carried out in SPA. In particular,
a source at θ̃j is detected in SPICE once p̃∗j > 0 and the
frequency estimate is constrained on the grid, which will be
referred to as the on-grid issue hereafter and becomes a second
potential reason causing inaccuracy of SPICE. Furthermore,
the parameter estimate without the postprocessing is generally
not unique according to Remark 2 due to an identifiability
problem which also exists in the solution

(
p̃∗,σ∗

)
of SPICE.

This can be a third potential reason causing inaccuracy of
SPICE. In fact, the SPICE estimate might not be sparse since
the support of p̃∗ can be as large as its dimension Ñ according
to Remark 2, which will be numerically verified in Section VII.

In summary, there are three potential reasons that may cause
inaccuracy to the parameter estimation of SPICE, including
the modeling error, the on-grid issue and the identifiability
problem, rendering that SPICE does not possess the sparse and

the statistical properties of SPA presented in Section V. The
first reason corresponds to the first difference and is introduced
by the discretization, which can be alleviated by adopting
a dense sampling grid but at the cost of more expensive
computations. The last two are related to the second difference.
Inspired by SPA, we present SPICE-PP to resolve them using
the postprocessing technique in the next subsection.5

Before proceeding to SPICE-PP, we compare computational
costs of SPICE and SPA. We consider only the dominant

part in the following comparison, i.e., the computation of R̂
1
2

or R̂
1
2

Ω is excluded for both SPICE and SPA which takes
O
(
M2N +M3

)
or O

(
L2N + L3

)
flops, respectively, and

the postprocessing and parameter solving are also excluded for
SPA which take O

(
M3
)

flops. SPICE is an iterative algorithm
whose computational complexity equals the complexity per
iteration times the number of iterations, i.e., O

(
M3ÑT

)
in

the ULA case and O
(
L3ÑT

)
in the SLA case, where T

denotes the number of iterations which is hard to quantify and
empirically observed to vary in different scenarios. For SPA
we adopt an off-the-shelf SDP solver, SDPT3 [27], where the
interior-point method is implemented to solve the SDP. Denote
by n1 and n2 × n2 the variable size and dimension of the
positive semidefinite matrix in the semidefinite constraint of an
SDP, respectively. Then the SDP can be solved in O

(
n2

1n
2.5
2

)
flops in the worst case according to [43]. In the ULA case, n1

is on the order of M2 and n2 is proportional to M . It follows
that the complexity of SPA is O

(
M6.5

)
. In the SLA case, n1

and n2 are on the order of L2 +M and L+M , respectively.
Then the complexity is O

(
L4M2.5 +M4.5

)
since L ≤ M .

Without surprise, the order on M or L for SPA is higher than
that for SPICE. But the positive side is that the complexity of
SPA does not depend on the grid size Ñ which is typically
much greater than M in array processing. As a result, SPA can
be possibly faster than SPICE if a dense sampling grid (large
Ñ ) is adopted in SPICE for obtaining high accuracy, and vise
versa. Note that the order on M or L might be decreased in the
future for both SPA and SPICE if there are more sophisticated
algorithms but the linear dependence on Ñ for SPICE probably
cannot due to the discretization (similar results hold for other
discretization-based methods).

B. Proposed SPICE-PP

Like SPA, we modify SPICE and obtain the parameter
estimate within three steps. Firstly, R is estimated as

R̂ = A
(
θ̃
)

diag
(
p̃∗
)
AH

(
θ̃
)

+ diag (σ∗) (39)

given the solution
(
p̃∗,σ∗

)
of the original SPICE. Then the

postprocessing is applied to decompose R̂ into R̂ = T (û) +
diag (σ̂) by exploiting K ≤ M − 1. Finally, the parameter
estimate is obtained via the Vandermonde decomposition of
T (û). The modified SPICE algorithm is named as SPICE
with the postprocessing, abbreviated as SPICE-PP. Note that
the frequency estimate of SPICE-PP is no long constrained on

5Note that the on-grid issue is not necessarily a consequence of the
discretization but can be solved using the postprocessing.
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the grid. It is also noted that this postprocessing technique can
be possibly applied to other covariance-based methods.

C. Connection to Existing Discretization-Free Methods in the
Case of N = 1

In the limiting single-snapshot case, i.e., when N = 1,
the array processing problem is mathematically equivalent to
spectral analysis [2]. For the latter topic, discretization-free
techniques have been recently proposed in [28]–[30] based
on atomic norm minimization (see [44]) which, also called
total variation norm in [28], is a continuous version of the
`1 norm. It is noted that the SPA method proposed in this
paper can also be applied to the single-snapshot case. In
fact, the SDPs in (20) and (23) can be further simplified
in such case. Given (23) as an example. It follows from
R̃ = yyH that tr

(
R̃R−1R̃

)
= ‖y‖22 yHR

−1y. So, an
alternative formulation of (23) will be

min
x,u

x+ tr (T (u)) ,

subject to
[

x ‖y‖2 yH
‖y‖2 y T (u)

]
≥ 0.

(40)

It is interesting to note that, though obtained from a very dif-
ferent technique, (40) is quite similar to the SDP formulations
in [28]–[30]. A detailed investigation of the relation is beyond
the scope of this paper and will be posed as a future work since
this paper is focused on the array processing applications in
which the multisnapshot case is of the main interest.

VII. NUMERICAL SIMULATIONS

A. Simulation Setups

In this section we illustrate the performance of the pro-
posed SPA method and compare it with existing methods via
numerical simulations. The methods that we consider include
SPICE [21], SPICE-PP, IAA [5], MUSIC and OGSBI-SVD
[13]. SPICE is a semiparametric method which can be roughly
considered as a discretized version of SPA as described in
Subsection VI-A. SPICE-PP is a modified version of SPICE
by incorporating the postprocessing technique presented in this
paper. IAA is an enhanced nonparametric method. MUSIC is
a classical subspace-based parametric method. OGSBI-SVD
is a semiparametric method for off-grid DOA estimation. The
information of source number, K, is required in MUSIC but
not in the other methods. Since SPA and SPICE operate
in different manners in the cases of equal/different noise
variances, ‘+’ is used to indicate the case when the equal
noise variances assumption is imposed. For example, SPA+
refers to SPA with the assumption. Without ambiguity, “SPA”
can refer to either the collectively called SPA technique or
the SPA method with different noise variances (in contrast
to SPA+) hereafter (similarly for the use of “SPICE”). Some
setups of the algorithms above are as follows. The SDPs of
SPA are implemented using CVX with the SDPT3 solver [27],
[45]. SPICE is implemented as in [21] and terminated when
the relative change of the objective function value in two
consecutive iterations falls below 1 × 10−6 or the maximum
number of iterations, set to 500, is reached. IAA is terminated

if the relative change of the `2 norm of the power vector in two
consecutive iterations falls below 1 × 10−6 or the maximum
number of iterations, set to 500, is reached. OGSBI-SVD
is implemented as in [13] except that the source number is
unknown (see details in [46]).

B. Spectra Comparisons

We compare spectra of the aforementioned methods in
this subsection. In our simulation, we consider K = 3
uncorrelated/coherent sources with power po = [5, 5, 1]

T

from directions specified by the frequency vector θo =
[0.1014, 0.1532, 0.5077]

T . A ULA with M = 10 is used to
receive the signals. Each of the source signals is randomly
generated with constant amplitude and random phase, which
is usually the situation in communications applications [21].
Zero-mean white circular Gaussian noise is added with the
noise variance σo. The signal to noise ratio (SNR) is defined
as the ratio of the minimum source power to the noise variance

(in dB), i.e., SNR = 10 log10

min(poj)
σo . The grid number is set

to 500 for SPICE and IAA.
Our simulation results of uncorrelated sources are presented

in Fig. 1 with respect to different settings of (N, SNR), where
some curves are omitted for better visual effects. In the case
of large snapshots, e.g., N = 200 as shown in Figs. 1(a) and
1(b), we observe the following phenomena. IAA produces a
dense spectrum and exhibits significant resolution degradation
in the moderate/low SNR regime. It cannot separate the first
two sources in Fig. 1(b). SPICE+ produces a sparse spectrum
which contains only a few spikes in the high SNR regime, e.g.,
SNR = 20dB. However, it produces a dense spectrum due to
the identifiability problem as addressed in Subsection VI-A
in the moderate/low SNR regime, e.g., SNR = 0dB, where it
returns a zero estimate of the noise variance. Unlike SPICE+,
SPICE always produces a dense spectrum whenever the SNR
is (its spectra are omitted in Fig. 1). Without surprise, the
SPA method proposed in this paper always produces a sparse
spectrum. Small spurious spikes exhibit due to the presence of
noise and absence of the knowledge of source number and the
noise level. By using the postprocessing technique presented
in this paper both SPICE+-PP and SPICE-PP produce sparse
spectra, and their differences from SPA+ (or SPA) are caused
by the modeling error of SPICE as described in Subsection
VI-A. Moreover, SPICE+ and SPICE+-PP have the same spec-
trum in the high SNR regime since the postprocessing does
not alter the spectrum when SPICE+ has already produced a
sparse spectrum. This point will be revisited later.

The limiting case N = +∞ with a very low SNR (−20dB)
is studied in Fig. 1(c), where the true covariance matrix is
adopted to implement SPA, SPICE and MUSIC. IAA is not
considered in this scenario. It is shown that SPA (similarly
for MUSIC) can exactly localize the three sources, which
verifies the conclusion of Theorem 2 that SPA is statistically
consistent. SPICE+ has low resolution in the low SNR regime
due to the identifiability problem and cannot separate the first
two sources. Due to the modeling error of SPICE, SPICE+-PP
is not consistent as well. Though this paper is mainly focused
on the case of moderate/large snapshots, it is noted that SPA
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(a) (N, SNR) = (200, 20dB)
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(c) (N, SNR) = (+∞,−20dB)
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Fig. 1. Spectra of SPA+, SPICE+, SPICE+-PP, IAA and MUSIC for uncorrelated sources with respect to (N, SNR). Other settings include: θo =
[0.1014, 0.1532, 0.5077]T , po = [5, 5, 1]T and ULA with M = 10. The subfigure in the lower right corner zooms in the area around source 1.
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Fig. 2. Spectra of SPA+, SPICE+, SPICE+-PP, IAA and MUSIC for coherent sources with respect to (N, SNR), where source 3 is a replica of source 1.
Other settings include: θo = [0.1014, 0.1532, 0.5077]T , po = [5, 5, 1]T and ULA with M = 10. The subfigure in the lower right corner zooms in the area
around source 1.
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can be applied to the case of small or even a single snapshot
as shown in Fig. 1(d) where MUSIC fails.

Fig. 2 presents simulation results of coherent sources, where
source 3 is exactly a replica of source 1. It is shown that
the proposed SPA method has consistently good performance
in the presence of complete correlation due to the adopted
covariance fitting criterion as shown in [20], [21]. In contrast,
IAA has low resolution as in the case of uncorrelated sources.
MUSIC typically misses coherent sources. SPICE tends to
miss coherent sources as well in the moderate/low SNR
regime. Finally, note that the power estimates of the coherent
sources are attenuated in SPA, the reason of which should be
investigated in the future.

C. Quantitative Comparisons with SPICE

Quantitative comparisons will be carried out in this subsec-
tion to demonstrate advantages of our discretization-free SPA
method compared to SPICE. Readers are referred to [21] for
performance comparisons of SPICE with IAA and MUSIC.
Unlike SPA, SPICE might produce a dense spectrum as the
nonparametric methods. The frequency estimate of SPICE is
obtained using the peaks of the spectrum following from [21].
To illustrate effects of the discretization adopted in SPICE,
three discretization levels are considered with the grid size
Ñ = 200, 500, 1000, respectively. For convenience, the SPICE
algorithm adopting the three discretization schemes will be
referred to as SPICE1, SPICE2 and SPICE3, respectively. The
‘+’ symbol will be used as before. Metrics recorded include
mean squared error (MSE) and CPU time usage. The MSE of

the frequency estimation is computed as 1
K

∥∥∥θ̂K − θo∥∥∥2

2
and

then averaged over a number of Monte Carlo runs, where θ̂K
denotes the frequency estimate which is obtained by keeping
the associated largest K entries of the power estimate p̂. The
CRLB is commonly used as a benchmark when evaluating
the performance of various estimators though it is a lower
bound for only unbiased estimators. Note also that to compute
the CRLB requires the knowledge of K which is not used
in SPA and SPICE. So, there might exist a gap between the
CRLB and the performance of SPA or SPICE that we study.
The simulations study both the ULA and SLA cases and are
focused on uncorrelated sources.

1) The ULA Case: Experiment 1 studies performance vari-
ation with respect to the SNR. We consider a ULA with
M = 10. Without loss of generality, K = 2 uncorrelated
sources impinge on the array with (off-grid) frequencies 1

6
and 4

15 and unit powers. Notice that each frequency is a third
grid interval away from the nearest grid point for SPICE.
Since the best frequency estimate for a given source is the
nearest grid point, the MSE of the frequency estimation of
SPICE is lower bounded by 1

9Ñ2
regardless of the SNR.6 The

number of snapshots is set to N = 200 and the SNR varies
in {−20,−15, . . . , 25}dB. 200 Monte Carlo runs are used for
each algorithm to obtain the metrics, where the source signals
and the noise are both i.i.d. Gaussian. Fig. 3 plots MSEs

6Under the assumption that the source is randomly located in one or more
grid intervals, the lower bound will be 1

12Ñ2
[13].

of the simulation results, where the two cases of equal and
different noise variances are separately presented to provide
a better illustration. SPICE has a better performance with
a finer discretization but lower bounded by some constant
as mentioned above. To the contrary, the MSEs of the SPA
methods improve constantly with the SNR and gradually
approach the CRLBs. Both the SPA methods and the SPICE
methods have similar performance trends in the two cases
of equal and different noise variances. However, SPICE-PPs
perform differently. In the former case, SPICE+-PPs and
SPICE+s coincide in the high SNR regime since they produce
the same sparse spectra as shown in Subsection VII-B. In
the latter case, SPICE-PPs outperform the associated SPICEs
when the SNR is larger than some threshold thanks to the
postprocessing technique presented in this paper. But when
the SNR is sufficiently high, the modeling error caused by
the discretization dominates the total uncertainties and further
performance improvement is impossible. On the other hand, in
the moderate/low SNR regime where the measurement noise
dominates the uncertainties, SPICE-PP coincides with SPA
as expected. Note that the bad performances of SPICE2+-
PP and SPICE3+-PP at SNR = 5dB are caused by very
few outliers (1 and 4 trials, respectively, out of 200), where
SPICE+ might not converge within 500 iterations and result
in a less accurate R̂ that is used for parameter estimation.
Finally, notice that SPICE can possibly outperform SPA in
the SNR range [−10, 10]dB (depending on the discretization
level), which will be discussed in Subsection VII-E.

Fig. 4 presents CPU times of Experiment 1. Since the
postprocessing can be applied efficiently, the time usage of
SPICE-PP is slightly longer than SPICE and is omitted. Both
SPICE+s and SPICEs have similar performance trends with
different discretization levels because the number of iterations
used is approximately the same. As a result, the time usage of
SPICE is proportional to the grid size Ñ while the proposed
discretization-free SPA does not depend on Ñ . Fig. 4 shows
that when Ñ = 1000 SPICE+ and SPICE are constantly slower
than SPA+ and SPA, respectively. When Ñ = 500, SPICE+ is
also slower than SPA+ sometimes.

Experiment 2 studies the performance with respect to the
array length M . We repeat Experiment 1 but set SNR =
10dB and vary M in {5, 10, . . . , 40}. Moreover, we consider
only the case Ñ = 1000 for SPICE. Only the case where
M ≤ 20 is considered for SPA (excluding SPA+) due to
time consideration. The simulation results are presented in
Fig. 5. Since CRLB+ and CRLB are slightly different and
almost undistinguishable, only CRLB+ is plotted. As before,
SPICE3+, SPICE3 and SPICE3+-PP share the same lower
bound due to discretization and the property of the SPICE+
estimator, while SPA+, SPA and SPICE3-PP can outperform
this bound. As M increases, e.g., when M ≥ 25, the
performances of SPA and SPICE3-PP hardly improve and the
gaps between the algorithms and CRLB+ become larger. Two
possible reasons are as follows: 1) Unlike CRLB+, SPA does
not use the knowledge of K but K ≤M − 1, which becomes
rougher when M increases and K keeps unaltered, and 2) The
modeling error of SPICE increases as M increases. The figure
at the bottom indicates that the speed of SPA+ scales well with
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Fig. 3. MSEs of frequency estimates of SPA compared with SPICE
and the CRLB. Some settings include: ULA with M = 10, K = 2

uncorrelated sources with θo =
[
1
6
, 4
15

]T and po = [1, 1]T , and N = 200.
The horizontal dashed lines are lower bounds of the SPICEs due to the
discretization.
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Fig. 5. MSEs of frequency estimates (top) and CPU time usages (bottom) of
SPA with an M -element ULA compared with SPICE. Some settings include:
K = 2 uncorrelated sources with θo =

[
1
6
, 11
30

]T and po = [1, 1]T , SNR =
10dB and N = 200.

M in our considered scenario and is faster than SPICE3+ as
M ≤ 30 and constantly faster than SPICE3. The number of
iterations of SPICE3+ is empirically observed to decrease with
increasing array length in our considered scenario, leading to
a seeming strange result that SPICE3+ gets faster when M
increases.

2) The SLA Case: Experiment 3 studies the SLA case
where a 4-element redundant array Ω = {1, 2, 5, 7} is con-
sidered. We try to verify Theorem 4 and attempt to locate
maximally K = 6 uncorrelated sources with the frequency
vector θo = [0.1008, 0.1809, 0.4001, 0.5509, 0.7006, 0.8501]

T

and power vector po = [2, 2, 2, 1, 1, 1]
T . Moreover, we set

SNR = 10dB and vary the number of snapshots N in
{20, 200, 2000, 20000}. 1000 Monte Carlo runs are used to
obtain the metrics for each N . To evaluate the performance, we
calculate the ratio CRLB+

MSE for each algorithm at each N . For an
unbiased estimator, the ratio is called its efficiency. The larger
the ratio is (≤ 1 for an unbiased estimator), the more accurate
the estimator will be. Table. I presents the simulation results.
Remarkably, SPA+ (or SPA) can outperform the CRLB+ (or
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TABLE I
MSES OF FREQUENCY ESTIMATES OF SPA COMPARED WITH SPICE AND

CRLB. EACH OF THE PRESENTED VALUES IS THE RATIO CRLB+
MSE(OR CRLB)

(THE LARGER THE BETTER).

N = 20 N = 200 N = 2000 N = 20000
CRLB+ 1 1 1 1
SPA+ 0.6780 1.2558 1.1327 1.0370
SPICE3+ 0.4730 1.0419 0.2286 0.0267
SPICE3+-PP 0.6610 1.2528 0.6039 0.1049
CRLB 0.9281 0.9281 0.9281 0.9281
SPA 0.5615 1.2134 1.0671 1.0168
SPICE3 0.5019 0.9535 0.2250 0.0267
SPICE3-PP 0.5555 1.1693 0.5791 0.1048
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Fig. 6. Frequency and power estimates of SPA+ for estimating K = 6
uncorrelated sources with a 4-element SLA Ω = {1, 2, 5, 7} when N = 200
and SNR = 10dB (1000 Monte Carlo runs). Black circles indicate the true
frequencies and corresponding powers.

CRLB) when N ≥ 200 since the ratios are larger than 1
(or 0.9281). Though SPICE+ (or SPICE) can outperform the
CRLB+ (or CRLB) as well at N = 200, its gap to the
CRLB+ (or CRLB) becomes larger as N increases. Moreover,
SPICE+-PP (or SPICE-PP) is consistently better than SPICE+
(or SPICE) and worse than SPA+ (or SPA). Notice that as N
gets larger, the gap between SPA+ (or SPA) and 1 (or 0.9281)
becomes smaller, which is consistent with the conclusions of
Theorem 4 that CRLB+

MSESPA+
, CRLB

MSESPA
→ 1, as N → +∞. It is also

noted that the source power and noise variance estimates of
the proposed SPA method have similar performances and their
metrics are omitted. The frequency and power estimates of
SPA+ at N = 200 are plotted in Fig. 6.

D. Comparison With OGSBI-SVD

We compare SPA with the off-grid method OGSBI-SVD
in [13] in this subsection. OGSBI-SVD utilizes the sparse
Bayesian learning (SBL) technique [47], [48], which mimics
the ML estimation according to [22], and is based on an off-
grid observation model which is a first-order approximation of
the exact model with continuous frequencies and has a reduced
modeling error (recall that the observation model of SPICE
and many others is a zeroth-order approximation while SPA
relies on the exact model). In OGSBI-SVD the grid offset
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Fig. 7. MSEs of frequency estimates of K = 2 uncorrelated sources
using SPA compared with OGSBI-SVD and the CRLB, with N = 200.
The horizontal dashed lines refer to lower bounds of on-grid methods with
Ñ = 100, 200.

(the distance from a true frequency location to its nearest grid
point) is estimated jointly with the sparse signal and singular
value decomposition (SVD) is used for reducing dimension of
the observed data and faster convergence. Since the covariance
R is also involved in OGSBI-SVD as in SPICE which cannot
be appropriately separated into the source and noise parts,
OGSBI-SVD usually produces a dense spectrum like SPICE.

In Experiment 4, we repeat Experiment 1 for SPA+ and
OGSBI-SVD and consider two discretization levels, Ñ =
100, 200, for OGSBI-SVD (denoted by ‘1’, ‘2’ respectively).
The MSEs are plotted in Fig. 7. As expected, OGSBI-SVD
can exceed the lower bounds of on-grid methods (horizontal
dashed lines). As SNR increases, e.g., at SNR = 25dB,
the modeling error of OGSBI-SVD becomes nonnegligible.
Then SPA is more accurate than OGSBI-SVD. Note also that
SPA is more robust to noise. For example, SPA can produce
satisfactory results at SNR = −10dB while OGSBI-SVD
cannot. In computational speed, SPA is slightly slower than
OGSBI-SVD with Ñ = 100 and about 3 times faster with
Ñ = 200.

In Experiment 5, we repeat the simulation by fixing SNR =
10dB and varying the number of snapshots N from 1 to 200
at a step of 3. Simulation results presented in Fig. 8 show
that SPA has consistently satisfactory performance though it
is slightly worse than OGSBI-SVD (the MSEs of SPA are less
than 1.5 times those of OGSBI-SVD in most of the scenarios).
Since OGSBI-SVD mimics the ML estimation and SPA is
a large-snapshot realization of the ML, the performance gap
between them vanishes as N increases.

E. Discussion: Resolution vs. Robustness

If an infinitely fine discretization scheme is allowed in
SPICE (to eliminate the modeling error), then SPICE and
SPA will produce the same covariance matrix estimate R̂.
However, SPA always has a sparse spectrum while SPICE may
produce a dense one. The two spectra can be considered as
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Fig. 8. MSEs of frequency estimates of K = 2 uncorrelated sources using
SPA compared with OGSBI-SVD and the CRLB, with SNR = 10dB. The
horizontal dashed lines refer to lower bounds of on-grid methods with Ñ =
100, 200.

two different decomposition schemes applied to R̂ to estimate
the source powers. The sparse decomposition of SPA has good
statistical properties as presented in Subsection V-B while the
dense decomposition of SPICE does not. Moreover, as shown
in Figs. 1(c) and 2(b), the dense decomposition of SPICE has
potentially inferior resolution. However, the simulation results
of Fig. 3 show that SPICE can outperform SPA in terms of
MSE in the middle range of the SNR (similar results are
presented in Figs. 7 and 8 for OGSBI-SVD). It is because
that 1) SPA is empirically observed to produce a more heavy-
tailed frequency estimator than SPICE since the frequency of a
source is determined by a single point unlike SPICE for which
the frequency estimate is given by the peaks of the spectrum,7

and 2) the MSE metric is sensitive to heavy-tailed estimators
(in fact, a careful study reveals that SPA+ is more accurate
than SPICE3+ in over half of the Monte Carlo runs in the
SNR range [−10, 5]dB in Fig. 3).

VIII. CONCLUSION AND FUTURE WORK

In this paper, the linear array signal processing problem
was studied and a discretization-free technique named as SPA
was proposed. The new method adopts the covariance fitting
criteria of SPICE and was formulated as an SDP followed by
a postprocessing technique. SPA is a parametric method and
guarantees to produce a sparse parameter estimate and in the
mean time enjoys several other merits. Its asymptotic statis-
tical properties were analyzed and practical performance was
demonstrated via simulations compared to existing methods.

The following directions should be investigated in the fu-
ture, some of which have been mentioned in the main context

7The use of peaks of a dense spectrum as the frequency estimates is
inspired by spectral-based methods, e.g, MUSIC and beamformer, and has
been adopted in many “sparse” methods (see, e.g., [13], [21]). However, it
conflicts with the principle of sparse methods that any (significant) nonzero
power estimate corresponds to a source (ruling out numerical effects). This
problem has been neglected in the literature and should be investigated in the
future.

of this paper: 1) connection of the proposed SPA method to the
atomic norm-based discretization-free methods in [28]–[30]
for spectral analysis, 2) postprocessing techniques for general
but not redundancy SLAs to utilize the full information of
the range of the source number, 3) performance analysis of
SPA in the finite-snapshot case while this paper is mainly on
its asymptotic statistical properties, 4) fast implementations of
the SPA method via developing more computationally efficient
algorithms for solving the SDPs involved, 5) modified SPA
methods with automatic source number estimation, and 6)
discretization-free methods for array processing with general
array geometries.
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