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ABSTRACT
Network radio frequency (RF) environment sensing (NRES)
systems pinpoint and track people in buildings using changes
in the signal strength measurements made by a wireless sen-
sor network. It has been shown that such systems can lo-
cate people who do not participate in the system by wear-
ing any radio device, even through walls, because of the
changes that moving people cause to the static wireless sen-
sor network. However, many such systems cannot locate
stationary people. We present and evaluate a system which
can locate stationary or moving people, without calibration,
by using kernel distance to quantify the difference between
two histograms of signal strength measurements. From five
experiments, we show that our kernel distance-based radio
tomographic localization system performs better than the
state-of-the-art NRES systems in different non line-of-sight
environments.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms, Design, Performance

Keywords
Localization, Tracking, Sensor networks

1. INTRODUCTION
Localization of people using wireless sensor networks has

significant benefits in elder care, security, and smart facil-
ity applications [3, 19, 20]. Standard “radio localization”
systems locate a transmitter tag, or allow a receiver to esti-
mate its position [3, 16]. For these mentioned applications,
it is critical to be able to locate all people, regardless of
whether they carry a radio device. In this paper, we explore

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’13, April 8–11, 2013, Philadelphia, Pennsylvania, USA.
Copyright 2013 ACM 978-1-4503-1959-1/13/04 ...$15.00.

“network RF environment sensing” (NRES), that is, using a
static wireless sensor network to create an image map of the
people and objects and thus locate them in an area of inter-
est based on the changes they cause in the radio frequency
(RF) environment. An extensive review of reported NRES
research can be found in [20]. NRES is also called “device-
free localization” [25], “passive localization” [28], or “sensor-
less sensing” [26]. Unlike infrared or thermal, RF penetrates
non-metal walls, and thus NRES is useful for emergency ap-
plications. For example, in a hostage situation, police could
deploy wireless devices outside of the building and learn in
real time where people are located in the building, informa-
tion that may save live. NRES systems can also be used in
emergency situations to help rescuers like firefighters locate
victims.

RF-based imaging and localization for emergency applica-
tions has been dominated by ultra-wideband (UWB) radar
systems. Companies like Camero [1] have developed sophis-
ticated phased array radar systems that are capable of pen-
etrating walls. However, these UWB systems are expensive
and are limited to military use only today. An emerging
NRES technique is to monitor the received signal strength
(RSS) on links in a deployed static network and to use the
changes in RSS to infer the location of the people in the de-
ployment area [28, 29, 24]. As opposed to multistatic UWB
radar [4] or MIMO radar [10], RSS-based NRES requires no
expensive and sophisticated hardware, and thus can be im-
plemented with standard wireless networks and devices. We
focus on such RSS-based systems in this paper.

Although different NRES systems have been reported and
tested, existing methods fail in particular situations. A com-
mon method is to use the change in mean in RSS on a
link to indicate the shadowing from a person obstructing
the link [18]. Shadowing-based radio tomographic imaging
(RTI) uses changes in link RSS mean values to estimate
the shadowing loss field in the area of the wireless sensor
network [13, 23, 5, 12]. Shadowing-based RTI works well in
line-of-sight (LOS) environments. In cluttered and non-LOS
areas, the assumption that RSS will decrease when a per-
son is on the line between transmitter and receiver (the link
line) fails. On a non-LOS link, the RSS may increase, de-
crease, or both, while a person is located on the link line [24],
thus shadowing-based RTI fails in non-LOS environments.
Variance-based NRES methods use the variance of RSS mea-
surements to locate human motion [29, 24]. These methods
perform well even in non-LOS environments because a mov-
ing person changes the RSS of links as she crosses through



them, increasing the RSS variance, even when the change
in mean of RSS is close to zero. However, a stationary per-
son does not change the RSS variance, thus variance-based
methods cannot locate her.

One contribution of this work is to use kernel distance to
quantify the change in RSS distribution caused by a person,
rather than the change in mean or variance. Using kernel
distance allows us to locate a person who is stationary or
moving, and who is in an LOS environment or non-LOS envi-
ronment. In short, mean and variance are just two aspects of
a random variable; a good metric like kernel distance quan-
tifies the changes in mean, variance and other distribution
features, in one metric. In this paper, we explore different
histogram difference metrics including the Kullback-Leibler
divergence (KLD) [7] and the kernel distance [21], and find
that the kernel distance performs better than other metrics
in NRES. A demonstration abstract has presented the idea
of using a difference between two histograms as a method
for RTI [32], however no algorithms, analysis, or validation
was presented.

In general, kernel distance-based NRES methods require
a single empty-room calibration, similar to shadowing-based
RTI methods. However, a second main contribution of this
work, we show that for our proposed NRES system, an
empty-room calibration can be replaced with a “long-term
histogram” which is calculated during operation, regardless
of the presence or absence of people. By enabling online cal-
ibration, we allow the NRES system to operate without any
empty-room calibration, and thus be used for emergency ap-
plications in which operators do not know a priori whether
an area is empty or not. We show that simple filtering of
online RSS measurements allows one to keep a long-term his-
togram in memory without significant computational com-
plexity. This long-term histogram is close enough to the
histogram which would have been measured in an empty-
room calibration to perform as well as with empty-room
calibration. In fact, in situations in which the environment
has changed since the empty-room calibration, the long-term
histogram is closer to a true empty-room measurement, and
NRES performs better with it than with the offline empty-
room calibration.

To summarize, the contribution of this paper is to pro-
vide a complete framework for RSS-based environmental
inference, which enables localization of both moving and
stationary people in both LOS and non-LOS environments,
and which uses online calibration so that the system does
not rely on “empty-room” offline calibration. We explore
this framework using reported measurement sets and new
measurement sets we collected for this purpose. We eval-
uate imaging, locating and tracking using our framework.
The results show that some links’ RSS measurements do not
change significantly while a person crosses the link line, so
using any single link for NRES is unreliable. However, in an
N -node wireless sensor network, there is redundancy from
the O

(
N2
)

links in the network, and one can reliably lo-
cate people in the environment. We formulate a new NRES
method that estimates a map of human presence from kernel
distances in the network, which we call kernel distance-based
radio tomographic imaging (KRTI). Then a person’s loca-
tion is estimated to be the coordinate of the pixel with the
maximum image value. We then test tracking a single per-

son in the area using a Kalman filter 1. Experimental results
show that KRTI can locate a moving person more accurately
than VRTI [24] and SubVRT [30]. For localization of a sta-
tionary person, KRTI also outperforms a sequential Monte
Carlo method [25] both in localization accuracy and com-
putational efficiency. Note that if a person stays still at a
location for a long time such as several minutes, our online
calibration would gradually “treat” the person as part of the
environment, and thus the person would disappear from our
KRTI images.

The rest of the paper is organized as follows. Section 2
presents related work. Section 3 first introduces two types of
RSS histograms and defines two histogram difference met-
rics, then describes how we use these metrics to image, locate
and track a person in a wireless sensor network. Section 4 de-
scribes experiments used in this paper, and Section 5 shows
the imaging, localization and tracking results. We conclude
in Section 6.

2. RELATED WORK
Many recent research studies have focused on RSS-based

NRES method using measurements from a wireless mesh
network [29, 22, 24], due to the fact that RSS measure-
ments are inexpensive and available in almost all wireless
devices. However, all reported methods so far are ad hoc
and incomplete. For example, [23] proposes an RSS model-
based method – shadowing-based RTI, to locate stationary
and moving people in LOS environments. Based on a sim-
ilar model, [5] proposes methods to simultaneously track
people and locate sensor nodes. However, these methods do
not perform well in non-LOS indoor environments due to
the multipath effects. For non-LOS indoor environments,
variance-based methods using different network configura-
tions [29, 24] have been proposed to locate human motion.
For example, RF sensors are placed on the ceiling of a room
to track people using the RSSI dynamic, which is calcu-
lated by RSS measurements with and without people mov-
ing inside the room [29]. Variance-based RTI deploys RF
sensors on top of stands outside a residential house to lo-
cate and track people walking inside the house [24]. How-
ever, these variance-based methods cannot locate stationary
people, since they all use certain forms of RSS variance to
locate human motion, and stationary people do not cause
much RSS variance. A more recent study [25] uses a se-
quential Monte Carlo method to locate both stationary and
moving people. This method works at both LOS and non-
LOS environments, however, it requires too much compu-
tational complexity and cannot be easily implemented in
real-time. Compared with all above methods, our proposed
NRES method is the only real-time method that is capable
of imaging and locating both stationary and moving people
in both LOS and non-LOS environments.

To be able to locate both stationary and moving people,
our method requires a long-term histogram from online RSS
measurements. However, the measurements used here are
unlabelled, which is different from the training measure-
ments used in fingerprint-based methods [17, 27] and the
offline calibration used in shadowing-based RTI methods [23,
5]. Some fingerprint-based methods use histograms of RSS

1Note that KRTI is capable of imaging the presence of mul-
tiple people, however, we focus on formulating localization
and tracking of a single person in this paper.



for purposes of NRES [17, 22]. During their training pe-
riod, RSS histograms are recorded on all links in a network
as a person stands in a known position, which becomes a
fingerprint for a person being at that location. Fingerprints
are recorded as the person moves to each possible position
in the environment. During operational localization period,
the current RSS histogram is compared to all of the finger-
prints, and the person is estimated to be at the position
with the closest matching fingerprint. These methods re-
quire RSS fingerprints at each possible person location (or
each combination of persons’ locations in the case of multiple
people), thus the training effort in fingerprint-based methods
could be extensive for a large area. In contrast, shadowing-
based RTI requires a single“empty-room”offline calibration.
Although this offline calibration does not involve extensive
training, an empty-room area may not be available in the
event of an emergency. Our online calibration proposed in
this paper requires neither collection of location fingerprints
nor empty-room calibration.

Finally, background subtraction [9] and foreground detec-
tion [33] provide methods to classify, from unlabelled RSS
data, when a link’s RSS data corresponds to a period of mo-
tion near the link or a period of no motion. Such methods
are an important part of future NRES systems which do not
require an empty-room calibration period. The perspective
of the methods proposed in this paper are complementary.
The method in [9] requires a link to experience periods of
motion and no motion, although unlabelled, so that the es-
timation algorithm can determine the distribution of RSS
measurements in both cases. Both [9] and [33] model the
state of the environment near the link as a binary – one of
two states, obstructed by a person or not obstructed. Our
kernel distance metric only measures a distance from the
long-term “normal” condition, and thus might provide more
“soft” information when the effect on the RSS may differ
by the type or location of the obstruction, or the RSS in
the “not obstructed” state does not simply stay close to one
mean value.

3. METHODS
In this section, we first describe how we calculate short-

term and long-term RSS histograms, and show human pres-
ence could increase the difference between these two his-
tograms. Then we define metrics to measure histogram dif-
ference, and we formulate imaging, localization and tracking
via histogram difference.

Commercial wireless devices return a discrete-valued RSS
value with each received packet. We denote the RSS of the
ith packet as yi. We assume there is a finite set of possible
RSS values, of size N . For example, if a device measures
RSS in a range from ymin to ymax dBm and quantization
is 1 dBm, then N = ymax − ymin + 1. Without loss of
generality, we refer to the RSS integer as a number in the
range 0, . . . , N − 1.

We assume that there is a network with L links, and pack-
ets are transmitted repeatedly and regularly on each link, so
that RSS measurements can be made.

3.1 Short-Term and Long-Term Histograms
In our proposed method, a link is characterized by a his-

togram h of its recent RSS measurements. The kth element
of vector h, that is, hk, is the proportion of time that RSS
integer k is measured on the link. At time n, we denote this
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Figure 1: Long-term histogram (LTH) from offline calibra-
tion measurements and short-term histograms (STH) with
and without (a) a stationary person; (b) a moving person.

histogram as hn, and calculate it as a filtered version, or
weighted average, of RSS measurements:

hn =
∑
i

wn,iIyi , (1)

where yi is the RSS at time i, I is an N -length indicator
vector, and wn,i is the weight for Iyi . The indicator vector

Iyi is one in element corresponding to the RSS integer yi

and zero in all other elements. Essentially, Iyi is an instan-
taneous histogram based only on the current measurement,
and hn is a weighted average or filtered version of past in-
stantaneous histograms.

We test two different weighting schemes to compute hn, an
offline uniform window, or an exponentially weighted moving
average (EWMA). The EWMA scheme has weights,

wn,i =

{
β(1− β)n−i i ≤ n
0 otherwise

, (2)

where 0 < β < 1 is the forgetting factor. A higher β in-
creases the importance of the most recent measurements in
the histogram estimate. The EWMA is an infinite impulse



response (IIR) filter, in which hn is calculated as,

hn = (1− β)hn−1 + βIyn . (3)

In this way, only the current RSS value yn and previous
histogram hn−1 are necessary to calculate the current his-
togram. Further, computation of (3) requires N multiplies
and a single add. Thus we use the EWMA scheme for all
histograms that are computed online, to minimize compu-
tational and memory complexity.

A histogram is short-term or long-term based on the cho-
sen weights wn,i. For the EWMA filter, the long-term his-
togram (LTH) would use a lower β, thus providing more
weight to past measurements, than the short-term histogram
(STH). In the next sections, we denote the LTH as q and
the STH as p.

The offline uniform window has weight wn,i given as,

wn,i =

{
1
T

0 ≤ i ≤ T − 1

0 otherwise
. (4)

If we substitute (4) into (1), we see that the first T RSS
values are given equal weight to calculate the histogram. As
is clear from the fact that wn,i is not a function of current
time n, the histogram computed from offline empty-room
calibration does not change over time. We use (4) to im-
plement the “empty-room” calibration, that is, we compute
the long-term histogram q from (4) when we want to test
how our system would have performed if calibrated using
data from an initial test period (from 0 to T ) when no per-
son was in the area. The offline uniform window is used
purely to compare results when using the proposed online
LTH vs. the offline empty-room LTH.

Examples shown in Figure 1 show how the STH and LTH
differ for two example links. The empty-room LTH, com-
puted from T = 141 and the offline uniform window, shows
a consistent value of -64 dBm on the link in Figure 1(a).
Two online STHs are shown, both computed with β = 0.9,
when a person is present on the link line and when no per-
son is on the link line. With no person present, the STH
is nearly identical to the empty-room LTH. When a person
stands still on the link line, the STH shows a consistent RSS
of -68 dBm. In Figure 1(b), a similar effect is seen — the
STH with no person on the link line is nearly the same as
the empty-room LTH. Note also the “STH with person” in
this figure is from a time when the person is moving across
(rather than standing still on) the link line, and two different
RSS values are present in the STH.

Finally, note that Figure 1(b) shows the similarity be-
tween the online (EWMA-based) LTH and the offline empty-
room LTH. The online LTH, computed from EWMA with a
forgetting factor β = 0.05 does show some non-zero proba-
bilities of other RSS values (e.g., -41, -43, -45, . . .), however,
the probabilities of these values are very close to zero. It is
the fact that these LTHs are very similar which allows us to
replace the empty-room calibration, which requires knowing
that no person is in the area for a period of time, with an
LTH calculated online while people are present and mov-
ing in the area. Next, we formalize our discussion of the
differences between histograms by defining two histogram
difference metrics.

3.2 Histogram Difference
There are many ways to measure the difference D(p,q)

between two histograms p and q. The “earth mover” dis-

tance is a popular way of comparing two histograms. How-
ever, it involves solving an optimal transportation problem
and thus is too computationally expensive for a real-time
NRES system. Here, we choose another well known metric,
the Kullback-Leibler divergence (KLD) [7]. We also propose
to use the kernel distance, which has been recently applied
in computational geometry [11].

3.2.1 Definitions
The Kullback-Leibler divergence between two histograms

p and q can be calculated as [7]:

DKL(p,q) =
∑
k

pk log
pk
q̃k
, (5)

where q̃k = max(ε,qk)∑
k max(ε,qk)

, and ε is a small number that we

use to avoid any divide-by-zero. Note that we investigate
the effect of ε later in Section 5.4.

The kernel distance between p and q is calculated as [21] 2:

DK(p,q) = pTKp + qTKq− 2pTKq, (6)

where K is an N by N kernel matrix from a 2-D kernel
function, and ()T indicates transpose. One commonly used
kernel is the Gaussian kernel, defined as:

K(yj , yk) = exp

(
−|yj − yk|

2

σ2
G

)
, (7)

where yj and yk are the jth and kth elements, and σ2
G is the

Gaussian kernel width parameter.
Another common kernel is the Epanechnikov kernel, which

is optimal in the sense that it minimizes asymptotic mean
integrated squared error [6],

K(yj , yk) =
3

4

(
1− |yj − yk|

2

σ2
E

)
I|yj−yk|≤σ2

E
, (8)

where Ia is the indicator function, Ia = 1 where a is true
and zero otherwise, and σ2

E is the Epanechnikov kernel width
parameter. Note that the Epanechnikov kernel is not neces-
sarily optimal for KRTI. Both Gaussian and Epanechnikov
kernel functions achieve similar performance in KRTI.

3.2.2 Efficient Implementation
The computation of (6) has O

(
N2
)

multiplication and
add operations. We show in the following that the kernel dis-
tance can be calculated with only O (N) operations. First,

we use the fact that K
1
2 is a symmetric matrix K

1
2 = (K

1
2 )T

to change formulation (6) to the standard Euclidean dis-
tance:

DK(p,q) = (K
1
2p)TK

1
2p + (K

1
2 q)TK

1
2 q−

2(K
1
2p)TK

1
2 q

= ‖K
1
2p−K

1
2 q‖2, (9)

where ‖ · ‖ indicates the Euclidean distance. Letting u =

K
1
2p, v = K

1
2 q, we obtain,

DK(p,q) = ‖u− v‖2. (10)

Now, consider the online computation of the kernel distance
at time n, that is, DK(pn,qn), where both LTH and STH
are calculated using the EWMA method in (3). Instead of

2Strickly speaking, definition in (6) is the squared kernel
distance. We use (6) in KRTI for computation convenience.
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Figure 2: RSS (×) and kernel distance (+) time series for a
link which a person crosses at n = 23 and n = 120.

updating pn and qn each time n, we can reduce computa-
tional complexity by instead updating un and vn, that is, u
and v at time n > 0, using the same EWMA method:

un = (1− βp)un−1 + βpK
1
2 Iyn

vn = (1− βq)vn−1 + βqK
1
2 Iyn , (11)

where yn is the RSS at time n, βp is the forgetting factor

for u, and βq is the factor for v. The term K
1
2 Iyn is simply

the kth column of matrix K
1
2 , where k is the index of the

RSS yn in the histogram, and thus does not require any
multiplications. Thus (11) only requires O (N) multiplies
and adds.

Now the current kernel distance at time n is calculated
as:

DK(un,vn) = ‖un − vn‖2. (12)

This formula is identical to DK(pn,qn) except that it re-
quiresO (N), rather thanO

(
N2
)
, multiplies and adds. Note

that initial values v0 and u0 must be given. We assume that
the system has been running prior to n = 0 and use these
initial measurements to initialize v0 and u0.

3.2.3 Examples
Consider the example histograms in Figure 1. For Fig-

ure 1(a), DK(p,q) = 0.83 between the LTH and the STH
with a person on the link line, if we use the Epanechnikov
kernel with σ2

E = 30. Without any people on the link line,
DK(pn,qn) = 0, since the STH is the same as the LTH. For
the moving people case in Figure 1(b), DK(pn,qn) = 1.2 be-
tween the LTH and the STH with people, whileDK(pn,qn) =
0.2 if no people near the link. These two examples show that
the presence of a stationary and moving person significantly
increases the kernel distance.

As another example, we show in Figure 2 both the RSS,
yn, and kernel distance, DK(pn,qn), for a period of time
in which a person crosses the link twice. Kernel distance is
very close to zero except when the person crosses the link
at n = 23 and n = 120, when it exceeds 1.0. Note that
0 ≤ DK(pn,qn) ≤ 2. The kernel distance indicates clearly
the link crossings by its high value.

3.3 Kernel Distance-Based Radio Tomographic
Imaging

Let d = [d0, . . . , dL−1]T denote a histogram difference
vector with L directional link histogram distances, dl =
D(pl,ql). Let x = [x0, . . . , xM−1]T denote an image vec-
tor, where xm is a measure of the current presence of a
person or object in pixel m that was not typically present
in the past. In other words, xm is the “novelty” of human
presence in pixel m. We assume that d can be expressed
as a linear combination of x, as has been assumed for other
RTI systems [18, 13, 23, 5, 12, 24]:

d = Wx + n, (13)

where n is a vector of measurement noise and model error.
We use the elliptical weight model W given in [23, 24], in
which the weight Wl,m for pixel m is non-zero only if the
pixel center is in an ellipse with foci at the link transmitter
and receiver locations.

A radio tomographic image x̂ be estimated from histogram
difference measurements d using:

x̂ = (WTC−1
n W + C−1

x )−1WTC−1
n d, (14)

where Cx is the covariance matrix of x, and Cn is the co-
variance matrix of the link measurement noise. Here we
use a least squares formulation, which has been shown to
outperform the Tikhonov regularization method [31]. The
covariance matrix of the link measurement noise, Cn, is not
generally known here, thus we assume the noise vector has
i.i.d. elements. Thus Cn becomes an identity matrix multi-
plied by σ2

n. We propose to use the following modified least
squares formulation:

x̂ = ΠKd where ΠK = (WTW + σ2
nC
−1
x )−1WT . (15)

We model the scaled image covariance the same as in [31],
where the (i, j) element of 1

σ2
n
Cx is given by[

1

σ2
n

Cx

]
i,j

=
σ2

δ
exp

(
−‖rj − ri‖

δ

)
, (16)

where σ2 = σ2
x/σ

2
n is the ratio of variance of human pres-

ence σ2
x to the variance of noise σ2

n, which plays the role
of regularization, δ is a correlation distance parameter, ri
and rj are the center coordinates of the ith and jth pixels,
and ‖ · ‖ indicates Euclidian distance. From (15) we see the
image estimate is the product of d with a projection matrix
ΠK which can be calculated ahead of time. Thus, the image
estimate can be easily calculated in real-time.

In Section 5.4, we compare the performance of KLD and
kernel distance for calculation of d in (15), and show that the
kernel distance consistently outperforms the KLD. Thus we
generally call our method kernel distance-based radio tomo-
graphic imaging, or KRTI. To obtain a good image resolution
of human presence, we set the pixel size of KRTI to be 0.3
m by 0.3 m in this paper. Then we choose RTI parameters
as explained in [23, 24, 31]. We list new parameters and
their values used in KRTI in Table 2. Note that we could
tune these parameters for a particular experiment to obtain
higher localization accuracy, but we use the same parameter
values for all experiments to show that KRTI performs well
in different environments. We investigate the effects of these
parameters on KRTI in Section 5.



Name Task Description
Exp.1 stationary person calm day through-wall
Exp.2 moving person calm day through-wall
Exp.3 moving person windy day with fans
Exp.4 moving person environment changes
Exp.5 moving person at a cluttered bookstore

Table 1: Experimental datasets.

3.4 Localization and Tracking
In this section, we describe how to use the image in (15) to

perform localization and tracking, which is the focus of this
paper. We assume, for simplifying formulation purpose, that
only one person is present in the network. When multiple
people are in the area, they can be seen in the KRTI image,
however, multi-target localization and tracking is not the
focus of this paper.

From the KRTI image estimate x̂, the position of the per-
son is estimated as the center coordinate of the pixel with
maximum value. That is,

ẑ = rq where q = arg max
p

x̂p

where x̂p is the pth element of vector x̂ from (15). The
localization error of this estimate is defined as: eloc = ‖ẑ−
z‖, where z is the actual position of the person.

To increase accuracy when locating moving people, we
apply a Kalman filter to the localization estimates to track
people’s locations over time. In the state transition model of
the Kalman filter, we include both mobile people’s location
and velocity in the state vector, and the observation inputs
of the Kalman filter are the localization estimates. Note that
other NRES methods like VRTI [24] is capable of tracking a
person even if she stops moving for a while by recording the
last location where she was present. However, VRTI can-
not image and locate a stationary person that is constantly
present at a single location in the network. We evaluate
both localization and tracking performance in Section 5.

4. EXPERIMENTS
In this section, we describe experiments that we use in

evaluating our new framework. We use TelosB nodes run-
ning a network protocol called Spin [2]. At any particular
time, only one node is broadcasting while all the other nodes
are measuring pairwise RSS. The transmission interval be-
tween two nodes is set by the Spin protocol so that three link
measurements are recorded each second to match the speed
of human motion. For faster human motion, we can in-
crease the transmission frequency at the cost of more power
consumption. All nodes are operating on the 26th channel
of IEEE 802.15.4 to avoid overlap with WiFi networks. A
basestation connected to a laptop listens to the broadcast
on that channel and collects RSS from these nodes.

In Experiments 1 and 2, thirty-four radio nodes are de-
ployed outside the living room of a residential house. Dur-
ing the first experiment (Experiment 1), a person is asked to
stand motionless at twenty different known locations inside
the living room. Experiment 2 is performed with the same
settings, but the task is to locate a person walking inside
the living room. A person walks around a marked path at
a constant speed using a metronome so that the location of
the person at any particular time is known. An important
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Figure 3: Experiment layout and environment of Exp. 5.

fact about Experiment 2 is after recording offline calibration
measurements, a node (node ID 32) on the PVC stand was
moved to a different location. This system change affects the
system performance, which we discuss later. Experiments 1
and 2 are performed and reported by [24]. The third and
fourth experiments (Experiment 3 and Experiment 4) are
new datasets, which are also through-wall experiments per-
formed at the same residential house with the same hard-
ware and software. Since a recent study [30] demonstrated
the degrading effect of wind-induced motion on a variance-
based localization system, we choose a windy day and we
also place three rotating fans at three locations in the liv-
ing room to create more motion to increase the background
noise for Experiments 3 and 4. Both experiments are per-
formed in the same condition, and both are used to locate
a person walking inside the house. The difference is that
we observe significant environmental difference between the
offline calibration period and the online localization period
in Experiment 4. During the offline calibration period, wind
blows strongly causing a lot of RSS variations, but it be-
comes much weaker during online period. We investigate
the effect of system and environment changes on the system
performance in Section 5.5. The last experiment (Experi-
ment 5) is performed by Wilson et al. [25] in the University
of Utah bookstore in an area of about 12 m by 5 m with
thirty-four nodes deployed on book shelves and display ta-
bles. A person walks clockwise around a known path twice
from Point A to Point D as shown in the experimental layout
Figure 3(a). The bookstore environment is cluttered with
shelves, tables and books, as shown in Figure 3(b).

As summarized in Table 1, the first four experiments are
all “through-wall” experiments with thirty-four nodes de-
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Figure 4: Detection results of using histogram distance to detect a person on link line or not.

ployed outside walls. The directional radio link density for
these experiments is about 15 links per m2. For Experi-
ment 5, the link density is about 19 links per m2. All five
experimental environments should be multipath-rich envi-
ronments.

5. RESULTS
In this section, we first evaluate detection via kernel dis-

tance, then we show imaging and localization results of a
stationary person. After that, we show localization and
tracking results of a moving person. Finally, we discuss the
performance of using KLD and kernel distance, we also dis-
cuss the effect of environment and system change on KRTI
performance.

5.1 Detection of a Person on Link Line
Before showing the imaging, localization and tracking re-

sults, we first test using kernel distance from a single link
to detect the presence of a person on a link line. First, we
define what we mean by a person being on a link line. We
denote the transmitting node and receiving node of link l
as il and jl, with coordinates sil and sjl , respectively. We
denote the person’s true location as z. Our definition of
“person on the link line” (POLL) is that the person’s center
coordinate z is in an ellipse of excess path length λ > 0 with
foci at the node locations, that is,

POLL : ‖sil − z‖+ ‖sjl − z‖ < ‖sil − sjl‖+ λ. (17)

Note that we use λ = 0.06m in our results, so that the
elliptical area includes only positions very close to the line
between the two nodes.

We want to decide between two hypotheses, H0 that the
NPOLL condition is true, and H1 that POLL is true. To
avoid making assumptions about the distribution of his-
togram differences given H0 or H1, we simply suggest that
histogram differences will be higher under H1 than under
H0. Thus, we decide whether we believe NPOLL or POLL
is true by comparing the histogram difference to a threshold:

D(pl,ql)
H1

≷
H0

η, (18)

where η is a user-defined detection threshold that is set to
be the same for each link, pl and ql are the STH and LTH

from link l, respectively, and D(pl,ql) is calculated from
either KLD or kernel distance formulation.

Now, we use data from Experiment 1 and parameters as
given in Table 2 to test the detection performance. First, we
record all kernel distances during H0 (NPOLL). The distri-
bution of DK(pn,qn) given H0 is shown in Figure 4(a). Ap-
proximately half of kernel distances are zero, and the vasty
majority are below 0.5. For the data recorded on links where
H1 (POLL) is true, the kernel distance distribution is shown
in Figure 4(b). Now, fewer kernel distances are zero, down
to 20%, however, this means that we have no chance of de-
tecting the person standing on the link line for 20% of links.
From the distributions of DK(pn,qn) given H0 and H1, we
calculate the receiver operating characteristic (ROC) curve
in Figure 4(c). Even for a probability of false alarm (PFA)
of 40%, the probability of detection is below 80%. Similarly,
we test the use of KLD as the difference metric, with the
resulting ROC curve shown in Figure 4(c). For low PFA,
kernel distance has higher detection performance, while for
high PFA, KLD performs better. The results show the dif-
ficulties in detecting human presence using only one link’s
RSS data. This motivates the use of a network of many
links, rather than just a single link, in order to infer the
presence and location of people in an area.

5.2 Imaging and Localization of a Stationary
Person

We now demonstrate that KRTI can not only locate mov-
ing people, but also stationary people, a major advantage
of KRTI over variance-based methods [24, 29]. In KRTI, we
use the EWMA scheme for both long-term and short-term
histograms, and the kernel distance, with parameters listed
in Table 2. We use measurements from Experiment 1, in
which a person stands motionless inside a house, and com-
pare imaging results from KRTI and VRTI [24]. In Fig-
ure 5(a), the KRTI image has relatively high pixel values
near the true location of the person, and the pixel with
maximum value is very close to the true location. Since
a stationary human body does not cause much RSS vari-
ance, VRTI cannot correctly image the person’s location, as
shown in Figure 5(b). Note that since EWMA filter is used
to update histograms using online measurements, a station-
ary person staying at one location for several minutes would
“fade away” from the KRTI images. However, if a person is
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Figure 5: Imaging results of a stationary person (true loca-
tion shown as ×) from (a) KRTI and (b) VRTI.

in the same location for minutes, we can always record the
location where she disappears from the images, and start
localization once new motion indicates that she has moved
again.

A recent method able to locate a stationary person in a
multipath-rich environment is the sequential Monte Carlo
(SMC) approach developed by [25]. The method of [25] re-
quires an empty-room (offline) calibration, and is substan-
tially more computational complex than the KRTI method.
Further, across experiments, we show that KRTI is more
accurate in localization. We run SMC using three hundred
particles using data from Experiment 1. In Experiment 1,
a person sequentially stands at each of twenty known lo-
cations for a constant period τ . At each location we have
about fifty KRTI estimates. For these twenty locations, we
calculate the overall average error ēloc =

∑20
i=1 ‖ẑa − z‖,

where ẑa is the average location estimates from KRTI and
SMC during period τ . The average location estimates ẑa
from KRTI are shown in Figure 6, in which the line between
the average estimate (shown as triangle) and the true loca-
tion (shown as cross) indicates the estimation error. We see
the errors from KRTI are generally below 1 m, more accu-
rate than the results from SMC shown in Figure 10 of [25].
The average error ēloc from SMC is 0.83 m, while ēloc from
KRTI is 0.71 m, a 14.5% reduction. On the same 2.4 GHz
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Figure 6: KRTI location estimates of a person standing at
twenty locations.

Core 2 Duo processor-based laptop, it takes 0.03 seconds to
produce one estimate from our KRTI Python code, while it
takes three to four minutes to produce one SMC location
estimate. Thus, KRTI outperforms SMC both in accuracy
and computational efficiency.

5.3 Localization and Tracking of a Moving Per-
son

Besides the improvement on imaging and locating station-
ary people, KRTI also provides better performance for lo-
cating moving people. Now we compare KRTI with two
variance-based methods, VRTI [24] and SubVRT [30]. We
run KRTI, VRTI and SubVRT on data from Experiments 2 -
5, and calculate the root mean squared error (RMSE), which
is defined as the square root of the average squared localiza-
tion error. As shown in Table 3, our KRTI can achieve sub-
meter localization accuracy in all experiments. Particularly,
for Experiment 3, performed on a windy day, the RMSE
from VRTI is 2.1 m, while the RMSE from KRTI is 0.81 m,
a 61% improvement. For Experiment 2, performed on a calm
day, SubVRT has a better performance than KRTI (0.65 m
vs. 0.73 m RMSE for KRTI). Since SubVRT uses offline
empty-room calibration measurements to estimate the noise
covariance [30], we expect it to perform particularly well dur-
ing windy conditions. KRTI does not use such empty-area
calibration. However, KRTI significantly outperforms Sub-
VRT, by 30-35%, in all other experiments. Particularly, in
Experiment 4, in which the environment changes between
the offline calibration and the online measurements, Sub-
VRT does not perform well. However, KRTI uses online
measurements to build the long-term histogram, thus is not
significantly affected by offline measurements. The RMSE
of KRTI is 0.79 m in this case, a 31% improvement on Sub-
VRT. We discuss the effect of environmental changes in more
detail in Section 5.5. For Experiment 5, due to the strong
multipath environment of the cluttered bookstore (as shown
in Figure 3(b)), neither VRTI nor SubVRT perform very
well. However, KRTI is particularly robust to non-LOS en-
vironments and achieves 0.74 m RMSE, a similar error as
in other experiments. To summarize, KRTI does not just
use RSS variance or RSS mean. Instead, it uses histogram
difference to include both the effect of a stationary person
and a moving person. It is particularly robust to the multi-
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KRTI for Experiment 5.

path environment, working just as well in strong multipath
environments.

Finally, we show the Kalman filter tracking results of Ex-
periment 5 in Figure 7. We see that tracking results have
highest errors when the person is far from the closest radio
node. For example, the tracking error is about 1 m when
the person is located at the upper left corner of the path.
However, KRTI with a Kalman filter is capable of tracking
a person in a large multipath-rich environment with subme-
ter accuracy in general. We also compare the cumulative
distribution functions (CDFs) of tracking errors from KRTI
and VRTI in Figure 8. For VRTI, 95% of tracking errors are
below 1.7 m, while 95% of errors from KRTI are below 1.2
m, a 29% improvement. We also see the median tracking
RMSE from VRTI is 1.0 m, while it is 0.6 m for KRTI, a
40% improvement.

5.4 Kernel Distance vs. KLD
In this section, we compare kernel distance and Kullback-

Leibler divergence (KLD) as histogram difference metrics in
localization. Using an Epanechnikv kernel defined in (8), we
test different kernel width parameters σ2

E . Figure 9 shows
that KRTI performance is not sensitive to this parameter.
RMSEs from Experiments 2 and 3 are both shallow functions
of σ2

E , as long as σ2
E ≥ 10. A kernel that is too wide tends

to smooth the data so much that all measurements look the
same. However, a kernel that is too narrow will not smooth
the data at all, and as a result is easily affected by noise. The
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Figure 9: Kernel parameter σ2
E vs. RMSE from KRTI.
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Figure 10: KLD parameter ε vs. RMSE from KRTI using
KLD.

kernel width should be chosen so it is roughly proportional
to the scale of sensing noise; then a strong signal can still be
observed, modest sensing noise will not change the results
much, and outliers will tend to be smoothed away.

To calculate KLD, we use parameter ε in (5) to avoid
division by zero. As shown in Figure 10, if ε < 0.1, the
localziation RMSE is only mildly sensitive to this parameter.
However, from a comparison of Experiments 2 and 3, the
RMSEs when using KLD are generally above 0.8 m, while
most RMSEs from kernel distance are below 0.8 m. From
Figure 9 and Figure 10, we see both histogram difference
metrics can achieve submeter localization accuracy, however,
kernel distance is less sensitive to its parameter σ2

E , and
consistently outperforms KLD in localization accuracy.

5.5 Effects of Environment and System Changes
In the above tests, we use the EWMA filter to calculate

the online LTH q. We can also use the offline empty-room
calibration in order to calculate the LTH. We compare the
two in this section.

Note that if the environment changes or sensors change
positions after the offline empty-room calibration, the changes
diminish system performance. As described in Section 4, the
location of a single node is accidentally changed after the of-
fline empty-room calibration period in Experiment 2, prior
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Figure 11: EWMA coefficient βq vs. RMSE from KRTI.
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Figure 12: KRTI RMSE vs. σ.

to the online period. Even if a receiver node moves by only
a fraction of its wavelength, its measured RSS values may
vary by tens of dBs as a result of small-scale fading [8]. We
apply the offline empty-room LTH in KRTI to generate the
image in Figure 14, in which a person is walking and is at
the position indicated by the cross. The figure shows two
hot spot areas — besides the one close to the true location
of the person, there is another one at the lower left corner of
the network, close to node 32 indicated by the red circle. A
similar false image, not shown, is seen during Experiment 4,
in which the environment changes after the offline empty-
room calibration. We avoid this false image problem by
using the EWMA for online calculation of the LTH. In our
KRTI, we use solely the EWMA filter for online calculation
of both long-term and short-term histograms. We do, how-
ever, require initialization of the histograms at time zero. In
real-time operation, we would simply run the system for a
short period to collect sufficient RSS measurements [14] to
allow the LTH to “settle” prior to using its results. By using
the EWMA filter, our KRTI does not have such false image
as shown in Figure 14. To see how EWMA overcomes the
effect of position change of a node in Experiment 2, we use
the offline calibration measurements as the initialization of
LTH, and then use EWMA and online measurements to up-
date LTH in our KRTI. The time series of position estimate
error is shown in Figure 15. We see that KRTI estimate
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Figure 13: KRTI RMSE vs. δ.

Figure 14: Effect of a moved node on KRTI when using the
offline empty-room LTH.

error can be up to 6 m due to offline LTH affected by the
node position change. However, after a few estimates, KRTI
errors are all below 2 m. The false hot spot disappears from
KRTI images due to the online EWMA update.

We see the relative RMSE performance of empty-room
LTH (offline FIR) vs. online LTH (online EWMA) in Ta-
ble 4. We see that the online LTH is as good or better than
the offline LTH in every case. While the RMSEs are similar
in Experiments 3 and 5, the online LTH performs signifi-
cantly better for Experiments 2 and 4, for which there were
either sensor position changes or environmental changes be-
tween the empty-room calibration and the online operation,
as described earlier. If we control the updating speed appro-
priately by choosing βq = 0.05, the “online EWMA” method
can achieve submeter accuracy for all experiments. Since
Experiments 3 and 5 do not have much environment and sys-
tem change effect, both methods have similar performance.

For KRTI using the online LTH, we test the effect of
EWMA forgetting factor βq. The RMSEs from KRTI with
different βq values are shown in Figure 11. The RMSEs are
very shallow functions of βq and are all below 1 m in the
range of 0.01 to 0.1. If βq is below 0.01, the weight of the
latest measurement becomes very small, that is, the update
process of the LTH is very slow. If βq = 0, it is equivalent
to no update. At the other extreme, if βq is too high, i.e.,
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Figure 15: KRTI error time series.

Parameter Value Description

σ2 0.05 Regularization parameter
δ 0.5 Space parameter (m)

σ2
E 30 Epanechnikov kernel width
ε 0.001 KLD parameter
βq 0.05 EWMA factor for v
βp 0.9 EWMA factor for u

Table 2: Parameters used in KRTI.

above 0.1, then the update speed becomes too fast. If βq ap-
proaches 1, then almost all previous RSS measurements are
removed from the memory. To keep sufficient history mea-
surements in memory and also balance between these two
extremes, we choose βq = 0.05 as listed in Table 2. We also
test the effect of EWMA factor βp for updating the STH p,
we find KRTI performance is best in the range of 0.8 to 1.

Note that other methods can be used to make an NRES
system more robust to the environment and system changes.
For example, [30, 31] use subspace method and least squares
method to reduce the noise effects due to the environment
changes. Work in [15] shows that one can detect when a
transmitter or receiver is mis-behaving, and future work
might be able to automatically detect failed or moved nodes.

5.6 Effects of KRTI Parameters
We have examined the effects of kernel width parameter

σ2
E and EWMA coefficient βq on the performance of KRTI

in the above two subsections. Now we investigate another
two important parameters – the regularization parameter σ2

and space parameter δ in our KRTI formulation (16).
Recall that parameter σ2 is the ratio of human presence

variance to noise variance. From (15) and (16), we see that
the reciprocal of σ2 plays the role of regularization parame-
ter as in [24, 23]. To see its effect, we set σ2 values in a wide
range from 0.001 to 10, fix other parameter values and run
KRTI to calculate the RMSEs. Figure 12 shows the RMSEs
of KRTI vs. σ2. We see that when σ2 is in the range of
0.002 and 0.1, RMSEs from Experiments 2 and 3 are both
below 1.3 m, and the RMSE vs. σ2 curves are shallow. How-
ever, when σ2 is above 0.2, that is, less regularization is used
in the inversion, the RMSEs increase significantly for both
experiments due to insufficient smoothing effect from regu-
larization. We also notice that we need a smaller σ2 value

RMSE (m) Exp. 2 Exp. 3 Exp. 4 Exp. 5
VRTI 0.70 2.12 1.46 1.09

SubVRT 0.65 1.05 1.14 1.08
KRTI 0.73 0.81 0.79 0.74

Table 3: RMSEs of locating a moving person.

RMSE (m) Exp. 2 Exp. 3 Exp. 4 Exp. 5
Offline FIR 1.49 0.74 5.02 0.74

Online EWMA 0.73 0.81 0.79 0.74

Table 4: RMSEs from KRTI using online IIR and offline
FIR methods.

for Experiment 3 compared to Experiment 2 to obtain the
minimum RMSE. This is due to the fact that Experiment
3 has more noise than Experiment 2. The noise variance of
Experiment 3 is greater than that of Experiment 2, thus σ2

should be set lower for Experiment 3 to keep the variance
of human presence a constant. We set σ2 = 0.05 for all five
experiments.

Another parameter listed in 2 is the correlation distance
parameter δ, which controls the spatial size of the exponen-
tially decaying regularization term in (16). While σ2 con-
trols the intensity of the regularization term, δ affects both
the intensity and the size of the smoothing “blob” (regular-
ization term) in the KRTI images. The RMSEs vs. δ plot
is shown in Figure 13. We see when δ = 0.1m, that is, the
size of the smoothing blob is very small, RMSEs of both
experiments are higher than 1.5 m. Even if the intensity of
the regularization is high, the general smoothing effect is not
sufficient due to a small sized blob. As long as the smooth-
ing blob reaches the size of a typical human size of about
0.5 m, RMSEs are below 1 m. Increasing δ beyond 2 m
causes too much smoothing effect for Experiment 2 without
much noise, thus RMSE of Experiment 2 increases slowly for
δ > 2. For Experiment 3 with a lot of noise, a larger blob
size averages out additional noise, thus RMSE continues to
decrease slowly. For a single person experiment like Experi-
ment 3, it does not hurt to increase the blob size. However,
for tracking more than one person, it would be necessary to
limit δ. In this paper, we choose δ = 0.5 for all experiments.

5.7 Discussion
Compared with other NRES methods, KRTI demonstrates

better performance in imaging, localization and tracking.
Shadowing-based radio tomographic imaging [23] can locate
both stationary and moving people at line-of-sight (LOS)
environments, but does not work at multipath-rich environ-
ments. Compared with variance-based methods [29, 24, 30],
KRTI has the ability of imaging a stationary person as well
as a moving person. For tracking a moving person, KRTI
also outperforms VRTI and SubVRT. In addition, KRTI

Features RTI[23] VRTI[24] SMC[25] KRTI
Through-wall? No Yes Yes Yes

Online calibration? No NA No Yes
Stationary people? Yes No Yes Yes

Real-time? Yes Yes No Yes

Table 5: Features of different NRES methods.



can use an EWMA filter to update the long-term histogram
continuously during an online period, and is more robust to
environmental and system changes. The advantage of KRTI
over the SMC method [25] is that KRTI does not require any
empty-room offline calibration, and performs better both in
localization accuracy and computational efficiency. To sum-
marize, KRTI has new properties that other methods do
not. We list features of different methods in Table 5. To
our knowledge, KRTI is the first NRES method that can
locate both stationary and moving people in both LOS and
non-LOS environments without any offline calibration.

6. CONCLUSION
In this paper, we propose a new NRES framework that

uses histogram difference and online calibration to perform
network RF sensing of people. Specifically, we propose a ker-
nel distance-based RTI, which uses the kernel distance be-
tween a short-term histogram and a long-term histogram to
image and locate a moving or stationary person. We explore
the framework using three reported measurement sets and
two new measurement sets. We evaluate detection, imaging
and tracking using our framework. Our experimental re-
sults show that KRTI provides robust imaging and tracking
capabilities at multipath-rich environments, even though de-
tection from individual links is unreliable. Compared with
previous methods, KRTI is the only real-time method that
is capable of imaging and locating both stationary and mov-
ing people in both LOS and non-LOS environments without
any training or empty-room calibration.
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