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Abstract

Cookies are the primary means for web applications
to authenticate HTTP requests and to maintain client
states. Many web applications (such as electronic com-
merce) demand a secure cookie protocol. Such a pro-
tocol needs to provide the following four services: au-
thentication, confidentiality, integrity and anti-replay.
Several secure cookie protocols have been proposed in
previous literature; however, none of them are com-
pletely satisfactory. In this paper, we propose a secure
cookie protocol that is effective, efficient, and easy to
deploy. In terms of effectiveness, our protocol provides
all of the above four security services. In terms of ef-
ficiency, our protocol does not involve any database
lookup or public key cryptography. In terms of deploy-
ability, our protocol can be easily deployed on an exist-
ing web server, and it does not require any change to
the Internet cookie specification. We implemented our
secure cookie protocol using PHP, and the experimen-
tal results show that our protocol is very efficient.

1. Introduction

The widely used HTTP (Hypertext Transfer Proto-
col) works in a request-response fashion. First, a client
sends a request (which either asks for a file or invokes
a program) to a server. Second, the server processes
the request and sends back a response to the client.
After this, the connection between the client and the
server is dropped and forgotten. HTTP is stateless in
that an HTTP server treats each request independently
of any previous requests. However, many web applica-
tions built on top of HTTP need to be stateful. For ex-
ample, most online shopping applications need to keep
track of the shopping carts of their clients.

1 Alex X. Liu is the corresponding author of this paper.

Web applications often use cookies to main-
tain state. A cookie is a piece of information that
records the state of a client. When a server needs to re-
member some state information for a client, the server
creates a cookie that contains the state informa-
tion and sends the cookie to the client. The client then
stores the cookie either in memory or on a hard disk.
The client later attaches the cookie to every subse-
quent request to the server.

Many web applications (such as electronic com-
merce) demand a secure cookie protocol. A secure
cookie protocol that runs between a client and a server
needs to provide the following four services: authenti-
cation, confidentiality, integrity and anti-replay.

1. Authentication: A secure cookie protocol should
allow the server to verify that the client has been
authenticated within a certain time period. More-
over, any client should not be able to forge a valid
cookie.

In secure web applications, a typical session
between a client and a server consists of two
phases. The first phase is called the login phase and
the second phase is called the subsequent-requests

phase.

Login Phase: In this phase, the client and the
server mutually authenticate each other. On one
hand, the client authenticates the server using the
server’s PKI (Public Key Infrastructure) Certifi-
cate after he establishes an SSL (Secure Sockets
Layer) connection with the server. On the other
hand, the server authenticates the client using the
client’s user name and password, and sends a se-
cure cookie (which is also called an “authentica-
tion token” or an “authenticator” in previous lit-
erature) to the client.

Subsequent-requests Phase: In this phase, the
client sends the secure cookie along with every re-
quest to the server; the server verifies whether the
cookie is valid, and if it is, services the request.



2. Confidentiality: The contents of a secure cookie
is intended only for the server to read. There are
two levels of confidentiality that a secure cookie
protocol may achieve: low-level confidentiality and
high-level confidentiality.

(a) Low-level Confidentiality : A secure cookie
protocol with low-level confidentiality pre-
vents any parties except the server and the
client from reading the contents of a cookie.
To achieve low-level confidentiality, a se-
cure cookie protocol usually runs on top of
SSL. Note that SSL encrypts every mes-
sage between the client and the server us-
ing a session key that only the client and
the server know. In this paper, we as-
sume that any secure cookie protocol runs
on top of SSL.

(b) High-level Confidentiality : A secure cookie
protocol with high-level confidentiality pre-
vents any parties except the server from read-
ing the sensitive information within a cookie
that the server does not want to reveal to the
client [8]. For example, the cookie’s contents
may contain some client information such as
their internal rating or credit score, which the
server may not want the client to be aware of.

Different web applications may require different
levels of confidentiality. Therefore, a secure cookie
protocol should be able to support either low-level
confidentiality or high-level confidentiality config-
urations.

3. Integrity: A secure cookie protocol should allow
a server to detect whether a cookie has been mod-
ified.

4. Anti-replay: In the case that an attacker replays
a stolen cookie, a secure cookie protocol should be
able to detect that the cookie is invalid. Other-
wise, the attacker would be authenticated as the
client that the replayed cookie was issued to.

In designing a secure cookie protocol, besides the
above security requirements, we also need to consider
the issues of efficiency and deployability. As for effi-
ciency concerns, a secure cookie protocol should avoid
requiring a server to do database lookups in verifying
a cookie, and should avoid public key cryptography.
Note that database lookups dramatically slow down
the speed that a server takes to verify a cookie. As for
deployability concerns, a secure cookie protocol should
avoid requiring a client to possess a public key and a
private key, which is currently impractical to assume.

Several cookie protocols have been proposed [2, 5,
8, 10]; however, none of these protocols are completely

satisfactory. The cookie protocol in [5] has three weak-
nesses: it does not have a mechanism for providing
high-level confidentiality, it is vulnerable to cookie re-
play attacks, and its mechanism for defending against
volume attacks is inefficient and non-scalable. The
three authentication mechanisms of the cookie proto-
col in [8] are either ineffective or difficult to deploy. The
cookie protocols in [2] and [10] are inefficient because
they require database lookups in verifying a cookie.

In this paper, we propose a secure cookie protocol
that is effective, efficient, and easy to deploy. In terms
of effectiveness, our secure cookie protocol provides all
of the above four security services. In terms of effi-
ciency, our secure cookie protocol does not involve any
database lookup or public key cryptography. In terms
of deployability, our secure cookie protocol can be eas-
ily deployed on an existing web server, and it does not
require any change to the current Internet cookie spec-
ification [7].

The rest of this paper proceeds as follows. In Sec-
tion 2, we present our secure cookie protocol in detail.
In Section 3, we discuss the implementation of our se-
cure cookie protocol and its performance. In Section 4,
we review and examine existing cookie protocols. We
give concluding remarks in Section 5.

2. Secure Cookie Protocol

The state of the art of secure cookie protocols is the
one presented by Fu et al. in [5]. In this section, we first
examine this protocol, which we refer as Fu’s cookie pro-

tocol. We show that this protocol has three major prob-
lems, and we give a solution to each of them. Finally,
we present our secure cookie protocol. The notations
used in this section are listed in the following table.

| Concatenation
HMAC (m, k) Keyed-Hash Message Authentication

Code of message m using key k

sk Server Key
(m)k Encryption of message m using key k

Table 1: Notations

The keyed-hash message authentication codes used
in this paper are assumed to be verifiable and non-

malleable: given a message m and a key k, it is com-
putationally cheap to compute HMAC (m, k); however,
given HMAC (m, k), it is computationally infeasible
to compute the message m and the key k. Examples
of such keyed-hash message authentication codes are
HMAC-MD5 and HMAC-SHA1 [1,4, 6, 9].

The server key (i.e., sk) of a server is a secret key
that only the server knows.



2.1. Fu’s Cookie Protocol

Fu’s cookie protocol is shown in Figure 1.

user name|expiration time|data
|HMAC( user name|expiration time|data, sk)

Figure 1. Fu’s Cookie Protocol

In this cookie protocol, a secure cookie that is issued
by a server to a client consists of the following four sub-
fields within the cookie value field of the HTTP cookie
specification.

1. User Name: The value of this field uniquely iden-
tifies a user.

2. Expiration Time: The value of this field, which is
expressed as seconds past 1970 GMT, indicates
when this cookie will expire and the server should
reject it from a client.

3. Data: The value of this field can be anything that
the server wants to remember for the client when
the cookie is created. The state information (such
as the contents of an online shopping cart) of the
communication between the client and the server
is usually stored in this field.

4. Keyed-Hash Message Authentication Code
(HMAC): The value of this field is the keyed-hash
message authentication code of the above three
fields using the server key.

Fu’s cookie protocol has three major security weak-
nesses. First, it does not have a mechanism for provid-
ing high-level confidentiality. Second, it is vulnerable
to cookie replay attacks. Third, its mechanism for de-
fending against volume attacks is inefficient and non-
scalable. Next, we detail these three weaknesses and
give an efficient and secure solution to each of them.

2.2. Problem I: Cookie Confidentiality

We have discussed that some web applications need
high-level confidentiality for their cookies. To pro-
vide high-level confidentiality, a secure cookie proto-
col should encrypt the data field of each cookie. Now
the question is this: which key should a server use for
this encryption?

Fu’s protocol does not provide an answer to this
question. There is only one key involved in Fu’s proto-
col, namely the server key. One straightforward solu-
tion is to use this server key to encrypt the data field
of every cookie; however, this solution is not secure.

An attacker can register as a legitimate client with a
server and then gather a large number of cookies is-
sued by the server. If the data fields of all of these
cookies are encrypted by the same server key, the at-
tacker could possibly discover this key using cryptanal-
ysis. Although such cryptanalysis is hard, but, it is pru-
dent to avoid any such possibility.

The cookie protocol proposed in [10] manages cookie
specific encryption keys as follows. A server maintains a
database that stores the user name and the encryption
key of every client. When a server creates a cookie for
a client, the server generates a new random key for en-
crypting the cookie and replaces the old encryption key
associated with the client in the database with this new
key. When a server receives an encrypted cookie from
a client, the server uses the user name of the client to
search in the database for the corresponding encryp-
tion key. This solution has two major disadvantages.
First, it is highly inefficient because of the overhead of
database lookups. Second, when the old encryption key
of a client is deleted, all the cookies that are encrypted
by the old encryption key become invalid. This could
be very destructive. A client may attach the same en-
crypted cookie to more than one request to a server.
The server may create a new cookie and a new encryp-
tion key for the client after the server receives the first
request, which results all the other requests with the
same cookie being denied by the server.

The cookie protocol proposed in [8] manages cookie
specific encryption keys in a different way: when a
server creates a cookie of high-level confidentiality, the
server generates a random key, encrypts the key with
the server’s public key, and stores the encrypted key in
the cookie itself rather than a database on the server
side. The downside of this solution is the verification
of every cookie involves public key cryptography, which
makes the cookie protocol complex and inefficient.

Our solution to this problem is simple and efficient.
We propose to use HMAC(user name|expiration time,
sk) as the encryption key. This solution has the fol-
lowing three good properties. First, the encryption key
is unique for each different cookie because of the user
name and expiration time. Note that whenever a new
cookie is created, a new expiration time is included in
the cookie. Second, the encryption key is unforgeable
because the server key is kept secret. Third, the encryp-
tion key of each cookie does not require any storage on
the server side or within the cookie, rather, it is com-
puted by a server dynamically.



2.3. Problem II: Replay Attacks

Fu’s cookie protocol is vulnerable to replay attacks,
which could be launched in the following two steps.
The first step is to steal a cookie that a server issued
to another client. An attacker may have several ways
to steal a cookie from someone else. For example, if a
client stores a cookie in his hard disk, an attacker may
steal it using Trojans, worms, or viruses. An attacker
may steal a cookie by launching a Denning-Sacco At-
tack [3]. In such an attack, an attacker first collects a
large number of messages that are encrypted by the
same SSL session key, and then obtains the SSL ses-
sion key using various methods. In the second step of
a replay attack, the attacker initiates an SSL connec-
tion with the server and replays a stolen cookie that
has not yet expired. Consequently, the server incor-
rectly authenticates the attacker as the spoofed client,
and allows the attacker to access the spoofed client’s
account.

To counter replay attacks, we propose to add the
SSL session key into the keyed-hash message authen-
tication code of a cookie, i.e., to use HMAC(user
name|expiration name|data|session key, sk) as the
keyed-hash message authentication code of each
cookie. Therefore, a cookie becomes session spe-
cific. Even if an attacker steals a cookie, he cannot suc-
cessfully replay it since the session key is known
only to a legitimate client and the server that cre-
ates the cookie.

2.4. Problem III: Volume Attacks

Using Fu’s cookie protocol, a server uses the same
server key in computing the HMAC of every cookie.
This makes the protocol potentially vulnerable to vol-
ume attacks. To launch volume attacks, an attacker
first collects a large number of HMACs of different mes-
sages where every HMAC is computed using the same
key; then the attacker discovers the key using various
methods. So far, HMAC-MD5 and HMAC-SHA1 are
not believed to be vulnerable to volume attacks [6],
however, as stated in [5], it is prudent to defend against
such attacks.

The solution proposed in [5] for defending against
volume attacks is to periodically change the server key.
However, this solution is inefficient and non-scalable.
First, each time the server key is changed, the server
needs to use both the original key and the new key to
verify cookies for a certain period. Let t denote the time
that the server key is changed from k to k′, and ∆ de-
note the largest expiration time that the server has is-
sued for a cookie before time t. Thus, in the time inter-

val [t, t + ∆], the server may receive legitimate cookies
that are created using either the old key k or the new
key k′; therefore, if the cookie has not expired and the
cookie failed to be verified by the new key k′, the server
has to use the old key k to verify the cookie. Clearly,
verifying cookies twice using two different keys is in-
efficient. Second, to make sure that the current server
key is changed to a new random key that has not been
used before, the server program has to be manually up-
dated and recompiled during key exchanges. Clearly,
this is not a scalable solution if the number of server
programs to be updated is large.

Our solution to this problem is efficient and scal-
able. We propose to use the encryption key, namely
HMAC(user name|expiration time, sk), as the key in
computing the keyed-hash message authentication code
of each cookie. This solution has the following three
good properties. First, as discussed in Section 2.2, this
key is unique for each new cookie because of the user
name and expiration time. Second, this key is unforge-
able because of the server key. Third, because this
key is the same as the encryption, the computation
of HMAC(user name|expiration time, sk) only needs
to be done once.

2.5. Our Secure Cookie Protocol

Our secure cookie protocol is shown in Figure 2. Re-
call that (data)k denotes the encryption of the data us-
ing key k, and sk denotes the server key of a server.

user name|expiration time|(data)k

|HMAC( user name|expiration time|data|session key, k)
where k=HMAC(user name|expiration time, sk)

Figure 2. Our Secure Cookie Protocol

Note that all of the four fields of user name, expira-
tion time, (data)k, and HMAC(user name|expiration
time|data|session key, k) are within the cookie value
field of the HTTP cookie specification [7]. The two
fields of user name and expiration time are in plain
text because the server needs to use them to compute
HMAC(user name|expiration time, sk). Note that the
field HMAC(user name|expiration time|data|session
key, k) is used by our protocol to provide authentica-
tion, integrity, and anti-replay.

Our secure cookie protocol can be configured to pro-
vide either high-level or low-level confidentiality. The
one shown in Figure 2 provides high-level confidential-
ity. If low-level cookie confidentiality is desired, one can



simply leave the data field unencrypted, i.e., replace
(data)k by the data in plain text.

The process for verifying a cookie created using our
protocol is shown in Figure 3. Note that if FALSE is
returned, the cookie is deemed invalid and the client
must login in again using his user name and password.

Cookie Verification

Input : A cookie
Output: TRUE if the cookie is valid; FALSE otherwise
1. Compare the cookie’s expiration time and the server’s current

time. If the cookie has expired, then return FALSE.
2. Compute the encryption key as follows:

k=HMAC(user name|expiration time, sk)
3. Decrypt the encrypted data using k.
4. Compute HMAC(user name|expiration time|data|session key, k),

and compare it with the keyed-hash message authentication code
of the cookie. If they match, then return TRUE;
otherwise return FALSE.

Figure 3. Cookie Verification

3. Implementation and Performance

In this section, we discuss the implementation and
performance issues of our secure cookie protocol. To
measure the performance of our secure cookie proto-
col in comparison to Fu’s cookie protocol, we devel-
oped the following four implementations in PHP: (1)
Fu’s cookie protocol with low-level confidentiality, (2)
Our cookie protocol with low-level confidentiality, (3)
Fu’s cookie protocol with high-level confidentiality, (4)
Our cookie protocol with high-level confidentiality.

Since Fu’s cookie protocol does not provide high-
level confidentiality, for performance evaluation pur-
poses, we assume that the data field of a cookie is en-
crypted with the server key. In order to provide a base-
line for comparison, we also implemented an insecure
cookie protocol in which no cookie has any message
authentication code or has any encryption, i.e., each
cookie contains only the following three fields in plain
text: user name, expiration time, and data.

Here we discuss some details of the implementation
of the above cookie protocols. We use HMAC-SHA1
(in the Crypt HMAC package of the PEAR PHP li-
brary) as the keyed-hash message authentication code
function. We use the Rijndael-256 algorithm (in the
mcrypt library) through ECB (Electronic Code Book)
mode as the encryption algorithm. The server key con-
sists of 160 bits. Every keyed-hash message authenti-
cation code output consists of 320 bits.

Our test environment consists of a medium-loaded
commercial web server, which uses a 2.4 GHz Celeron

processor, 512 MB RAM, and runs Microsoft Win-
dows 2003 Standard Edition, IIS 6.0, PHP 4.3.10 and
MySQL 3.23; and a client, which uses a 2.8 GHz Pen-
tium 4, 512 MB RAM, and runs Red Hat 3.0. The
server and the client are connected by a dedicated Gi-
gabit link with a 0.9 ms round-trip time.

We run each of the five cookie protocols over SSL
connections between the client and the server. For each
protocol, the client made 10,000 successive requests to
the server, where each request has an attached cookie.
We measure on the client side the average time from
when a request was sent to when a response was re-
ceived. In our implementations, the server creates a
new cookie after it receives a valid cookie. In other
words, the end-to-end latency that we measured con-
sists of: (1) the time for transferring a request with a
cookie from the client to the server, (2) the time for the
server to verify the cookie in the request, (3) the time
for the server to create a new cookie, and (4) the time
for transferring a response with a new cookie from the
server to the client. The overall size of each request in-
cluding HTTP headers is on average 1KB. The exper-
imental results are shown in Figure 4.
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Figure 4. End-to-end Performance Comparison

From the data in Figure 4, we can see that the per-
formance of our secure cookie protocol is very close to
that of Fu’s cookie scheme, while our secure cookie pro-
tocol provides better security.



4. Related Work

In this section, we examine previous secure cookie
protocols and compare them with our secure cookie
protocol.

In [5], Fu et al. discussed several home-brew cookie
protocols and demonstrated their vulnerabilities, lead-
ing to Fu’s more secure cookie protocol. As discussed in
Section 2, Fu’s cookie protocol has three major security
problems: it does not have a mechanism for providing
high-level confidentiality, it is vulnerable to cookie re-
play attacks, and its mechanism for defending against
volume attacks is inefficient and non-scalable.

In [8], Park and Sandhu proposed a cookie proto-
col that uses a set of inter-dependent cookies such as
a name cookie, a life cookie, a password cookie, a seal
cookie, etc. As discussed in Section 2.2, the mechanism
for providing confidentiality in this protocol is ineffi-
cient. Next, we examine the following three authentica-
tion mechanisms proposed in [8]: address-based authen-
tication, password-based authentication, and digital-
signature-based authentication. Using address-based
authentication, each cookie set has an IP cookie that
contains the IP address of the client. A server authen-
ticates a received cookie set by verifying whether the
cookie set is from the IP address in the IP cookie. This
authentication mechanism has three problems. First,
it is vulnerable to IP spoofing. Second, a client’s IP
address may be dynamically changing. Third, a client
may use a NAT (Network Address Translator) or a
proxy server and therefore may share the same (global)
IP address with other clients in the same domain. Us-
ing the password-based authentication, each cookie set
has a password cookie that contains the message di-
gest of the client’s password. A server authenticates
a received cookie set by verifying whether the value of
the password cookie is correct, which requires database
lookups. Using the digital-signature-based authentica-
tion, each time a client wants to make an HTTP re-
quest to a server, the client first generates a signature
cookie that contains a time stamp and the client’s sig-
nature of the time stamp. Secondly, the client sends
the HTTP request together with the cookie set issued
by the server to the client and the signature cookie cre-
ated by the client. The server authenticates a received
cookie set by verifying the signature cookie. This au-
thentication mechanism is difficult to deploy because
it assumes every client has a public key and a private
key. Moreover, this authentication mechanism is ex-
pensive because it requires both database lookups (for
a client’s public key) and public key cryptography.

In [10], Xu et al. presented a cookie protocol that is
used by a server to store the credit card information

of every client. As discussed in Section 2.2, this pro-
tocol could not correctly verify multiple simultaneous
requests with the same cookie. In addition, this pro-
tocol is inefficient because of the overhead of database
lookups and updates for verifying each cookie.

In [2], Blundo et al. discussed a web authentication
protocol that uses encrypted cookies. A downside of
this cookie protocol is that it requires a server to do
database lookups in verifying every received cookie.

5. Conclusions

Our contributions in this paper are threefold. First,
we discover that the state-of-the-art cookie protocol by
Fu et al. has the following three major problems: it does
not have a mechanism for providing high-level confiden-
tiality, it is vulnerable to cookie replay attacks, and its
mechanism for defending against volume attacks is in-
efficient and non-scalable. Second, we present a solu-
tion to each of these problems and we present a new
secure cookie protocol. Third, we make a thorough per-
formance evaluation of our secure cookie protocol. The
experiments show that our protocol and Fu’s protocol
are very close in terms of efficiency, while our proto-
col provides much better security.
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