Chapter 11: Rolling, Torque, and Angular Momentum

\checkmark Rolling
\checkmark Torque
\checkmark Angular Momentum
\checkmark Newton's Second Law in Angular Form
\checkmark Conservation of Angular Momentum

Chapter 11: Rolling, Torque, and Angular Momentum

Session 24:

\checkmark Torque
\checkmark Angular Momentum
\checkmark Examples

$\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}} \times \overrightarrow{\boldsymbol{B}}$
$|\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}|=A B \sin \theta$

$$
\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|=\left|\begin{array}{ll}
A_{y} & A_{z} \\
B_{y} & B_{z}
\end{array}\right| \hat{\mathbf{i}}-\left|\begin{array}{ll}
A_{x} & A_{z} \\
B_{x} & B_{z}
\end{array}\right| \hat{\mathbf{j}}+\left|\begin{array}{ll}
A_{x} & A_{y} \\
B_{x} & B_{y}
\end{array}\right| \hat{\mathbf{k}}
$$

$$
\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{\mathbf{i}}-\left(A_{x} B_{z}-A_{z} B_{x}\right) \hat{\mathbf{j}}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{\mathbf{k}}
$$

Ex 5: A force of $\mathbf{F}=\mathbf{2} \mathbf{i}+\mathbf{3} \mathbf{j} \mathbf{N}$ is applied to an object that is pivoted about a fixed axis aligned along the \mathbf{z} coordinate axis. The force is applied at a point located at $\mathbf{r}=\mathbf{4 i + 5 j} \mathbf{m}$. Find the torque applied to the object.

$$
\vec{\tau}=\vec{r} \times \vec{F}
$$

$$
\vec{\tau}=(4 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}) \times(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}})
$$

$$
\vec{\tau}=(4 \hat{\mathbf{i}} \times 2 \hat{\mathbf{i}})+(4 \hat{\mathbf{i}} \times 3 \hat{\mathbf{j}})+(5 \hat{\mathbf{j}} \times 2 \hat{\mathbf{i}})+(5 \hat{\mathbf{j}} \times 3 \hat{\mathbf{j}})
$$

$$
\vec{\tau}=0+12(\underbrace{(\hat{\mathbf{i}} \times \hat{\mathbf{j}}}_{\hat{\mathbf{k}}})+10(\underbrace{\hat{\mathbf{j}} \times \hat{\mathbf{i}}}_{-\hat{\mathbf{k}}})+0
$$

$$
\vec{\tau}=2 \hat{\mathbf{k}} \quad N . m
$$

Ex 6: (Problem 11. 24 Halliday)

In unit-vector notation, what is the torque about the origin on a jar of jalapeño peppers located at coordinates ($\mathbf{3} \mathbf{m},-\mathbf{2} \mathbf{m}, 4 \mathrm{~m}$) due to (a) force $\vec{F}_{1}=3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}(N)$
b) force $\vec{F}_{2}=-3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$ (N) and (c) the vector sum of \mathbf{F}_{1} and \mathbf{F}_{2} ? (d) Repeat part (c) for the torque about the point with coordinates ($\mathbf{3} \mathbf{~ m}, \mathbf{2 ~ m , 4 ~ m}$).

$$
\begin{aligned}
& \left.\vec{\tau}_{1}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}_{1}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
3 & -2 & 4 \\
3 & -4 & 5
\end{array}\right|=(-10+16) \hat{\mathbf{i}}-(15-12) \hat{\mathbf{j}}+(-12+6)\right) \hat{\mathbf{k}}=6 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-6 \hat{\mathbf{k}} \\
& \vec{\tau}_{2}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}_{2}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
3 & -2 & 4 \\
-3 & -4 & -5
\end{array}\right|=(10+16) \hat{\mathbf{i}}-(-15+12) \hat{\mathbf{j}}+(-12-6) \hat{\mathbf{k}}=\mathbf{2 6} \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-18 \hat{\mathbf{k}}
\end{aligned}
$$

$$
\begin{gathered}
\vec{\tau}_{n e t}=\overrightarrow{\mathbf{r}} \times\left(\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2}\right)=(3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}) \times(-8 \hat{\mathbf{j}})=32 \hat{\mathbf{i}}-24 \hat{\mathbf{k}} \\
\overrightarrow{\mathbf{r}}^{\prime}=\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}=(3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}})-(3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}})=-4 \hat{\mathbf{j}} \\
\vec{\tau}_{\text {net }}=\overrightarrow{\mathbf{r}}^{\prime} \times\left(\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2}\right)=(-4 \hat{\mathbf{j}}) \times(-8 \hat{\mathbf{j}})=0
\end{gathered}
$$

Angular Momentum

$\overrightarrow{\mathbf{F}}_{n e t}=\frac{d \overrightarrow{\mathbf{p}}}{d t}$

$\overrightarrow{\mathbf{p}}=m \overrightarrow{\mathbf{V}} \quad$ Linear Momentum (kg.m/s)

$$
\vec{\tau}_{n e t}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}_{n e t} \quad \vec{l}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}}=m(\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{V}}) \quad \text { Angular Momentum (kg.m²/s) }
$$

$$
|\vec{l}|=m r v \sin \varphi
$$

System of Particles:

$$
\overrightarrow{\mathrm{u}}_{\text {tot }}=\vec{l}_{1}+\vec{l}_{2}+\ldots+\vec{l}_{n}=\sum_{i=1}^{n} \vec{l}_{i}
$$

Ex 7: Angular momentum of a particle in circular motion

$$
\begin{gathered}
\vec{l}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}}=m(\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{v}}) \quad \Longrightarrow \quad \vec{l}=m r v \hat{\mathbf{k}} \\
v=r \omega \Rightarrow|\vec{l}|=m r^{2} \omega=I \omega
\end{gathered}
$$

Ex 8: The position vector of a particle of mass $2 \mathbf{k g}$ as a function of time is given by $\mathbf{r}=-6 \mathbf{t} \mathbf{i}+\mathbf{5} \mathbf{j}$, where \mathbf{r} is in meters and \mathbf{t} is in seconds. Determine the angular momentum of the particle about the origin as a function of time.

$$
\vec{l}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}}=m(\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{v}}) \quad \vec{l}=2(-6 t \hat{\mathbf{i}}+5 \hat{\mathbf{j}}) \times(-6 \hat{\mathbf{i}})=60 \hat{\mathbf{k}}\left(\mathrm{~kg} . \mathrm{m}^{2} / \mathrm{s}\right)
$$

$\overrightarrow{\mathbf{v}}=\frac{d \overrightarrow{\mathbf{r}}}{d t}=\frac{d}{d t}(-6 t \hat{\mathbf{i}}+5 \hat{\mathbf{j}})=-6 \hat{\mathbf{i}}$

Ex 9: Figure below shows an overhead view of two particles moving at constant momentum along horizontal paths. Particle 1, with momentum magnitude $p_{1}=5 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$, has position vector \mathbf{r}_{1} and will pass $\mathbf{2} \mathbf{m}$ from point O. Particle 2 , with momentum magnitude $\mathbf{p}_{\mathbf{2}}=\mathbf{2} \mathbf{k g} . \mathbf{m} / \mathbf{s}$, has position vector \mathbf{r}_{2} and will pass $\mathbf{4} \mathbf{m}$ from point O. What are the magnitude and direction of the net angular momentum about point O of the two particle system?

$$
\begin{gathered}
|\vec{l}|=r_{\perp} p \\
\left\{\begin{array}{l}
\left|\vec{l}_{1}\right|=r_{11} p_{1}=(2)(5)=10 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s} \\
\left|\vec{l}_{2}\right|=r_{12} p_{2}=(4)(2)=8 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}
\end{array}\right. \\
\left\{\begin{array}{l}
\vec{l}_{1}=+10 \hat{\mathbf{k}} \\
\vec{l}=-8 \hat{\mathbf{k}}
\end{array} \longrightarrow \overrightarrow{\overrightarrow{\mathbf{L}}_{\text {tot }}=\vec{l}_{1}+\vec{l}_{2}=+2 \hat{\mathbf{k}}}\right.
\end{gathered}
$$

Angular Momentum of a Rotating Rigid Object

$$
\vec{l}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}}=m(\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{v}}) \quad \square \quad|\vec{l}|=m r^{2} \omega=I \omega
$$

$$
\begin{gathered}
l_{i}=m_{i} r_{i}^{2} \omega \\
\mathbf{L}=\sum_{i} l_{i}=\sum_{i} m_{i} r_{i}^{2} \omega=\left(\sum_{i} m_{i} r_{i}^{2}\right) \omega \\
\mathbf{L}=I \omega
\end{gathered}
$$

$$
\overrightarrow{\mathbf{L}}=I \vec{\omega}
$$

Ex 10: A father of mass \mathbf{m}_{f} and his daughter of mass \mathbf{m}_{d} sit on opposite ends of a seesaw at equal distances from the pivot at the center. The seesaw is modeled as a rigid rod of mass \mathbf{M} and length l, and is pivoted without friction. At a given moment, the combination rotates in a vertical plane with an angular speed $\boldsymbol{\omega}$. Find an expression for the magnitude of the system's angular momentum.

$$
\mathbf{L}=I \omega
$$

$$
I=\frac{1}{12} M l^{2}+m_{f}\left(\frac{l}{2}\right)^{2}+m_{d}\left(\frac{l}{2}\right)^{2}=\frac{l^{2}}{4}\left(\frac{M}{3}+m_{f}+m_{d}\right)
$$

$$
\mathbf{L}=\frac{l^{2}}{4}\left(\frac{M}{3}+m_{f}+m_{d}\right) \omega
$$

