

This page intentionally left blank

Linear Programming
and Network Flows

This page intentionally left blank

Linear Programming
and Network Flows

Fourth Edition

Mokhtar S. Bazaraa
Agility Logistics

Atlanta, Georgia

John J. Jarvis
Georgia Institute of Technology

School of Industrial and Systems Engineering
Atlanta, Georgia

HanifD.Sherali
Virginia Polytechnic Institute and State University

Grado Department of Industrial and Systems Engineering
Blacksburg, Virginia

©WILEY
A John Wiley & Sons, Inc., Publication

Copyright © 2010 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic format. For information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Bazaraa, M. S.
Linear programming and network flows / Mokhtar S. Bazaraa, John J. Jarvis, Hanif D.

Sherali. — 4th ed.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-470-46272-0 (cloth)
1. Linear programming. 2. Network analysis (Planning) I. Jarvis, John J. II. Sherali,

Hanif D., 1952- III. Title.
T57.74.B39 2010
519.7'2—dc22 2009028769

Printed in the United States of America.

10 9 8 7 6 5 4 3

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

Dedicated to Our Parents

This page intentionally left blank

CONTENTS

Preface xi

ONE: INTRODUCTION 1
1.1 The Linear Programming Problem 1
1.2 Linear Programming Modeling and Examples 7
1.3 Geometric Solution 18
1.4 The Requirement Space 22
1.5 Notation 27

Exercises 29
Notes and References 42

TWO: LINEAR ALGEBRA, CONVEX ANALYSIS, AND
POLYHEDRAL SETS 45
2.1 Vectors 45
2.2 Matrices 51
2.3 Simultaneous Linear Equations 61
2.4 Convex Sets and Convex Functions 64
2.5 Polyhedral Sets and Polyhedral Cones 70
2.6 Extreme Points, Faces, Directions, and Extreme

Directions of Polyhedral Sets: Geometric Insights 71
2.7 Representation of Polyhedral Sets 75

Exercises 82
Notes and References 90

THREE: THE SIMPLEX METHOD 91
3.1 Extreme Points and Optimality 91
3.2 Basic Feasible Solutions 94
3.3 Key to the Simplex Method 103
3.4 Geometric Motivation of the Simplex Method 104
3.5 Algebra of the Simplex Method 108
3.6 Termination: Optimality and Unboundedness 114
3.7 The Simplex Method 120
3.8 The Simplex Method in Tableau Format 125
3.9 Block Pivoting 134

Exercises 135
Notes and References 148

FOUR: STARTING SOLUTION AND CONVERGENCE 151
4.1 The Initial Basic Feasible Solution 151
4.2 The Two-Phase Method 154
4.3 The Big-MMethod 165
4.4 How Big Should Big-WBe? 172
4.5 The Single Artificial Variable Technique 173
4.6 Degeneracy, Cycling, and Stalling 175
4.7 Validation of Cycling Prevention Rules 182

Exercises 187
Notes and References 198

FIVE: SPECIAL SIMPLEX IMPLEMENTATIONS AND
OPTIMALITY CONDITIONS 201
5.1 The Revised Simplex Method 201
5.2 The Simplex Method for Bounded Variables 220

vii

viii Contents

5.3 Farkas' Lemma via the Simplex Method 234
5.4 The Karush-Kuhn-Tucker Optimality Conditions 237

Exercises 243
Notes and References 256

SIX: DUALITY AND SENSITIVITY ANALYSIS 259
6.1 Formulation of the Dual Problem 259
6.2 Primal-Dual Relationships 264
6.3 Economic Interpretation of the Dual 270
6.4 The Dual Simplex Method 277
6.5 The Primal-Dual Method 285
6.6 Finding an Initial Dual Feasible Solution: The

Artificial Constraint Technique 293
6.7 Sensitivity Analysis 295
6.8 Parametric Analysis 312

Exercises 319
Notes and References 336

SEVEN: THE DECOMPOSITION PRINCIPLE 339
7.1 The Decomposition Algorithm 340
7.2 Numerical Example 345
7.3 Getting Started 353
7.4 The Case of an Unbounded Region X 354
7.5 Block Diagonal or Angular Structure 361
7.6 Duality and Relationships with other

Decomposition Procedures 371
Exercises 376
Notes and References 391

EIGHT: COMPLEXITY OF THE SIMPLEX ALGORITHM
AND POLYNOMIAL-TIME ALGORITHMS 393
8.1 Polynomial Complexity Issues 393
8.2 Computational Complexity of the Simplex Algorithm 397
8.3 Khachian's Ellipsoid Algorithm 401
8.4 Karmarkar's Projective Algorithm 402
8.5 Analysis of Karmarkar's Algorithm: Convergence,

Complexity, Sliding Objective Method, and Basic
Optimal Solutions 417

8.6 Affine Scaling, Primal-Dual Path Following, and
Predictor-Corrector Variants of Interior Point Methods 428
Exercises 435
Notes and References 448

NINE: MINIMAL-COST NETWORK FLOWS 453
9.1 The Minimal Cost Network Flow Problem 453
9.2 Some Basic Definitions and Terminology

from Graph Theory 455
9.3 Properties of the A Matrix 459
9.4 Representation of a Nonbasic Vector in

Terms of the Basic Vectors 465
9.5 The Simplex Method for Network Flow Problems 466
9.6 An Example of the Network Simplex Method 475
9.7 Finding an Initial Basic Feasible Solution 475
9.8 Network Flows with Lower and Upper Bounds 478

Contents IX

9.9 The Simplex Tableau Associated with a Network
Flow Problem 481

9.10 List Structures for Implementing the Network
Simplex Algorithm 482

9.11 Degeneracy, Cycling, and Stalling 488
9.12 Generalized Network Problems 494

Exercises 497
Notes and References 511

TEN : THE TRANSPORTATION AND ASSIGNMENT PROBLEMS 513
10.1 Definition of the Transportation Problem 513
10.2 Properties of the A Matrix 516
10.3 Representation of a Nonbasic Vector in Terms

of the Basic Vectors 520
10.4 The Simplex Method for Transportation Problems 522
10.5 Illustrative Examples and a Note on Degeneracy 528
10.6 The Simplex Tableau Associated with a Transportation

Tableau 535
10.7 The Assignment Problem: (Kuhn's) Hungarian

Algorithm 535
10.8 Alternating Path Basis Algorithm for Assignment Problems..544
10.9 A Polynomial-Time Successive Shortest Path

Approach for Assignment Problems 546
10.10 The Transshipment Problem 551

Exercises 552
Notes and References 564

ELEVEN: THE OUT-OF-KILTER ALGORITHM 567
11.1 The Out-of-Kilter Formulation of a Minimal

Cost Network Flow Problem 567
11.2 Strategy of the Out-of-Kilter Algorithm 573
11.3 Summary of the Out-of-Kilter Algorithm 586
11.4 An Example of the Out-of-Kilter Algorithm 587
11.5 A Labeling Procedure for the Out-of-Kilter Algorithm 589
11.6 Insight into Changes in Primal and Dual Function Values 591
11.7 Relaxation Algorithms 593

Exercises 595
Notes and References 605

TWELVE: MAXIMAL FLOW, SHORTEST PATH, MULTICOMMODITY
FLOW, AND NETWORK SYNTHESIS PROBLEMS 607
12.1 The Maximal Flow Problem 607
12.2 The Shortest Path Problem 619
12.3 Polynomial-Time Shortest Path Algorithms for Networks

Having Arbitrary Costs 635
12.4 Multicommodity Flows 639
12.5 Characterization of a Basis for the Multicommodity

Minimal-Cost Flow Problem 649
12.6 Synthesis of Multiterminal Flow Networks 654

Exercises 663
Notes and References 678

BIBLIOGRAPHY 681
INDEX 733

This page intentionally left blank

PREFACE

Linear Programming deals with the problem of minimizing or maximizing a
linear function in the presence of linear equality and/or inequality constraints.
Since the development of the simplex method by George B. Dantzig in 1947,
linear programming has been extensively used in the military, industrial,
governmental, and urban planning fields, among others. The popularity of linear
programming can be attributed to many factors including its ability to model
large and complex problems, and the ability of the users to solve such problems
in a reasonable amount of time by the use of effective algorithms and modern
computers.

During and after World War II, it became evident that planning and
coordination among various projects and the efficient utilization of scarce
resources were essential. Intensive work by the United States Air Force team
SCOOP (Scientific Computation of Optimum Programs) began in June 1947. As
a result, the simplex method was developed by George B. Dantzig by the end of
the summer of 1947. Interest in linear programming spread quickly among
economists, mathematicians, statisticians, and government institutions. In the
summer of 1949, a conference on linear programming was held under the
sponsorship of the Cowles Commission for Research in Economics. The papers
presented at that conference were later collected in 1951 by T. C. Koopmans
into the book Activity Analysis of Production and Allocation.

Since the development of the simplex method, many researchers and
practitioners have contributed to the growth of linear programming by
developing its mathematical theory, devising efficient computational methods
and codes, exploring new algorithms and new applications, and by their use of
linear programming as an aiding tool for solving more complex problems, for
instance, discrete programs, nonlinear programs, combinatorial problems,
stochastic programming problems, and problems of optimal control.

This book addresses linear programming and network flows. Both the
general theory and characteristics of these optimization problems, as well as
effective solution algorithms, are presented. The simplex algorithm provides
considerable insight into the theory of linear programming and yields an effi-
cient algorithm in practice. Hence, we study this method in detail in this text.
Whenever possible, the simplex algorithm is specialized to take advantage of the
problem structure, such as in network flow problems. We also present
Khachian's ellipsoid algorithm and Karmarkar's projective interior point
algorithm, both of which are polynomial-time procedures for solving linear
programming problems. The latter algorithm has inspired a class of interior
point methods that compare favorably with the simplex method, particularly for
general large-scale, sparse problems, and is therefore described in greater detail.
Computationally effective interior point algorithms in this class, including affine
scaling methods, primal-dual path-following procedures, and predictor-
corrector techniques, are also discussed. Throughout, we first present the
fundamental concepts and the algorithmic techniques, then illustrate these by
numerical examples, and finally provide further insights along with detailed
mathematical analyses and justification. Rigorous proofs of the results are given

xi

xii Preface

without the theorem-proof format. Although some readers might find this
unconventional, we believe that the format and mathematical level adopted in
this book will provide an insightful and engaging discussion for readers who
may either wish to learn the techniques and know how to use them, as well as
for those who wish to study the theory and the algorithms at a more rigorous
level.

The book can be used both as a reference and as a textbook for advanced
undergraduate students and first-year graduate students in the fields of industrial
engineering, management, operations research, computer science, mathematics,
and other engineering disciplines that deal with the subjects of linear
programming and network flows. Even though the book's material requires
some mathematical maturity, the only prerequisite is linear algebra and elemen-
tary calculus. For the convenience of the reader, pertinent results from linear
algebra and convex analysis are summarized in Chapter 2.

This book can be used in several ways. It can be used in a two-course
sequence on linear programming and network flows, in which case all of its
material could be easily covered. The book can also be utilized in a one-
semester course on linear programming and network flows. The instructor may
have to omit some topics at his or her discretion. The book can also be used as a
text for a course on either linear programming or network flows.

Following the introductory first chapter, the second chapter presents basic
results on linear algebra and convex analysis, along with an insightful, geomet-
rically motivated study of the structure of polyhedral sets. The remainder of the
book is organized into two parts: linear programming and networks flows. The
linear programming part consists of Chapters 3 to 8. In Chapter 3 the simplex
method is developed in detail, and in Chapter 4 the initiation of the simplex
method by the use of artificial variables and the problem of degeneracy and
cycling along with geometric concepts are discussed. Chapter 5 deals with some
specializations of the simplex method and the development of optimality criteria
in linear programming. In Chapter 6 we consider the dual problem, develop
several computational procedures based on duality, and discuss sensitivity
analysis (including the tolerance approach) and parametric analysis (including
the determination of shadow prices). Chapter 7 introduces the reader to the
decomposition principle and large-scale optimization. The equivalence of
several decomposition techniques for linear programming problems is exhibited
in this chapter. Chapter 8 discusses some basic computational complexity issues,
exhibits the worst-case exponential behavior of the simplex algorithm, and
presents Karmarkar's polynomial-time algorithm along with a brief introduction
to various interior point variants of this algorithm such as affine scaling
methods, primal-dual path-following procedures, and predictor-corrector
techniques. These variants constitute an arsenal of computationally effective
approaches that compare favorably with the simplex method for large, sparse,
generally structured problems. Khachian's polynomial-time ellipsoid algorithm
is presented in the Exercises.

The part on network flows consists of Chapters 9 to 12. In Chapter 9 we
study the principal characteristics of network structured linear programming
problems and discuss the specialization of the simplex algorithm to solve these
problems. A detailed discussion of list structures, useful from a terminology as
well as from an implementation viewpoint, is also presented. Chapter 10 deals

Preface xiii

with the popular transportation and assignment network flow problems.
Although the algorithmic justifications and some special techniques rely on the
material in Chapter 9, it is possible to study Chapter 10 separately if one is sim-
ply interested in the fundamental properties and algorithms for transportation
and assignment problems. Chapter 11 presents the out-of-kilter algorithm along
with some basic ingredients of primal-dual and relaxation types of algorithms
for network flow problems. Finally, Chapter 12 covers the special topics of the
maximal flow problem (including polynomial-time variants), the shortest path
problem (including several efficient polynomial-time algorithms for this
ubiquitous problem), the multicommodity minimal-cost flow problem, and a
network synthesis or design problem. The last of these topics complements, as
well as relies on, the techniques developed for the problems of analysis, which
are the types of problems considered in the remainder of this book.

In preparing revised editions of this book, we have followed two princi-
pal objectives. Our first objective was to offer further concepts and insights into
linear programming theory and algorithmic techniques. Toward this end, we
have included detailed geometrically motivated discussions dealing with the
structure of polyhedral sets, optimality conditions, and the nature of solution
algorithms and special phenomena such as cycling. We have also added
examples and remarks throughout the book that provide insights, and improve
the understanding of, and correlate, the various topics discussed in the book.
Our second objective was to update the book to the state-of-the-art while
keeping the exposition transparent and easy to follow. In keeping with this
spirit, several topics have now been included, such as cycling and stalling
phenomena and their prevention (including special approaches for network flow
problems), numerically stable implementation techniques and empirical studies
dealing with the simplex algorithm, the tolerance approach to sensitivity
analysis, the equivalence of the Dantzig-Wolfe decomposition, Benders'
partitioning method, and Lagrangian relaxation techniques for linear
programming problems, computational complexity issues, the worst-case
behavior of the simplex method, Khachian's and Karmarkar's polynomial-time
algorithms for linear programming problems, various other interior point algo-
rithms such as the affine scaling, primal-dual path-following, and predictor-
corrector methods, list structures for network simplex implementations, a suc-
cessive shortest path algorithm for linear assignment problems, polynomial-
time scaling strategies (illustrated for the maximal flow problem), polynomial-
time partitioned shortest path algorithms, and the network synthesis or design
problem, among others. The writing style enables the instructor to skip several
of these advanced topics in an undergraduate or introductory-level graduate
course without any loss of continuity. Also, several new exercises have been
added, including special exercises that simultaneously educate the reader on
some related advanced material. The notes and references sections and the
bibliography have also been updated.

We express our gratitude once again to Dr. Jeff Kennington, Dr. Gene
Ramsay, Dr. Ron Rardin, and Dr. Michael Todd for their many fine suggestions
during the preparation of the first edition; to Dr. Robert N. Lehrer, former
director of the School of Industrial and Systems Engineering at the Georgia
Institute of Technology, for his support during the preparation of this first
edition; to Mr. Carl H. Wohlers for preparing its bibliography; and to Mrs. Alice

XIV Preface

Jarvis, Mrs. Carolyn Piersma, Miss Kaye Watkins, and Mrs. Amelia Williams
for their typing assistance. We also thank Dr. Faiz Al-Khayyal, Dr. Richard
Cottle, Dr. Joanna Leleno, Dr. Craig Tovey, and Dr. Hossam Zaki among many
others for their helpful comments in preparing this manuscript. We are grateful
to Dr. Suleyman Tufekci, and to Drs. Joanna Leleno and Zhuangyi Liu for,
respectively, preparing the first and second versions of the solutions manual. A
special thanks to Dr. Barbara Fraticelli for her painstaking reading and feedback
on the third edition of this book, and for her preparation of the solutions manual
for the present (fourth) edition, and to Ki-Hwan Bae for his assistance with
editing the bibliography. Finally, our deep appreciation and gratitude to Ms.
Sandy Dalton for her magnificent single-handed feat at preparing the entire
electronic document (including figures) of the third and fourth editions of this
book.

Mokhtar S. Bazaraa
John J. Jarvis

Hanif D. Sherali

ONE: INTRODUCTION

Linear programming is concerned with the optimization (minimization or
maximization) of a linear function while satisfying a set of linear equality and/or
inequality constraints or restrictions. The linear programming problem was first
conceived by George B. Dantzig around 1947 while he was working as a
mathematical advisor to the United States Air Force Comptroller on developing
a mechanized planning tool for a time-staged deployment, training, and logistical
supply program. Although the Soviet mathematician and economist L. V.
Kantorovich formulated and solved a problem of this type dealing with
organization and planning in 1939, his work remained unknown until 1959.
Hence, the conception of the general class of linear programming problems is
usually credited to Dantzig. Because the Air Force refers to its various plans and
schedules to be implemented as "programs," Dantzig's first published paper
addressed this problem as "Programming in a Linear Structure." The term "linear
programming" was actually coined by the economist and mathematician T. C.
Koopmans in the summer of 1948 while he and Dantzig strolled near the Santa
Monica beach in California.

In 1949 George B. Dantzig published the "simplex method" for solving
linear programs. Since that time a number of individuals have contributed to the
field of linear programming in many different ways, including theoretical
developments, computational aspects, and exploration of new applications of the
subject. The simplex method of linear programming enjoys wide acceptance
because of (1) its ability to model important and complex management decision
problems, and (2) its capability for producing solutions in a reasonable amount
of time. In subsequent chapters of this text we shall consider the simplex method
and its variants, with emphasis on the understanding of the methods.

In this chapter, we introduce the linear programming problem. The
following topics are discussed: basic definitions in linear programming,
assumptions leading to linear models, manipulation of the problem, examples of
linear problems, and geometric solution in the feasible region space and the
requirement space. This chapter is elementary and may be skipped if the reader
has previous knowledge of linear programming.

1.1 THE LINEAR PROGRAMMING PROBLEM

We begin our discussion by formulating a particular type of linear programming
problem. As will be seen subsequently, any general linear programming
problem may be manipulated into this form.

Basic Definitions

Consider the following linear programming problem. Here, qxt + c2*2 + ■·· +

cnxn is the objective function (or criterion function) to be minimized and will

be denoted by z. The coefficients cj,c2,...,c„ are the (known) cost coefficients

and

1

2 Chapter 1

xl,x2,...,xn are the decision variables (variables, structural variables, or activity
levels) to be determined.

Minimize qxj + c2x2

subject to α\\Χχ + αχ2χ2

α2\χ\ + «22^2

+·
+·

+·

+·

+·

· +
· +

■ +

· +

· +

...,

cnxn

a\nxn

a2nxn

Π X

Xyl

>

>

>

>

b\

h

bm

0.

am\x\ + am2x2

Χγ , Χ2 ,

The inequality Σ%\aijxj ^ fydenotes the rth constraint (or restriction or functional,

structural, or technological constraint). The coefficients a^ for;'= \,...,m,j= 1,..., «are

called the technological coefficients. These technological coefficients form the constraint
matrix A.

A =

«11

«21

«12

«22

«1«

«2«

Ciyyiy, .«ml «m2

The column vector whose rth component is bt, which is referred to as the right-
hand-side vector, represents the minimal requirements to be satisfied. The
constraints X\, x2,... ,xn > 0 are the nonnegativity constraints. A set of values of

the variables x\,...,xn satisfying all the constraints is called a feasible point or a
feasible solution. The set of all such points constitutes the feasible region or the
feasible space.

Using the foregoing terminology, the linear programming problem can be
stated as follows: Among all feasible solutions, find one that minimizes (or
maximizes) the objective function.

Example 1.1

Consider the following linear problem:

Minimize 2xj +
subject to xj +

~x\ -
X], x-> > 0 .

5x2
x2

2x2
x2

>
>
>

-U

In this case, we have two decision variables χλ and x2. The objective function

to be minimized is 2xj + 5x2. The constraints and the feasible region are
illustrated in Figure 1.1. The optimization problem is thus to find a point in the
feasible region having the smallest possible objective value.

Introduction 3

Figure 1.1. Illustration of the feasible region.

Assumptions of Linear Programming

To represent an optimization problem as a linear program, several assumptions
that are implicit in the linear programming formulation discussed previously are
needed. A brief discussion of these assumptions is given next.

1. Proportionality. Given a variable x ·, its contribution to cost is ex.-

and its contribution to the rth constraint is ciyx,-. This means that if x ■

is doubled, say, so is its contribution to cost and to each of the
constraints. To illustrate, suppose that x.- is the amount of activity j

used. For instance, if x. = 10, then the cost of this activity is 10c,. If

x ■ = 20, then the cost is 20c., and so on. This means that no savings

(or extra costs) are realized by using more of activity/; that is, there are
no economies or returns to scale or discounts. Also, no setup cost for
starting the activity is realized.

2. Additivity. This assumption guarantees that the total cost is the sum
of the individual costs, and that the total contribution to the rth
restriction is the sum of the individual contributions of the individual
activities. In other words, there are no substitution or interaction
effects among the activities.

3. Divisibility. This assumption ensures that the decision variables can
be divided into any fractional levels so that non-integral values for
the decision variables are permitted.

4. Deterministic. The coefficients c-, ay, and bl are all known

deterministically. Any probabilistic or stochastic elements inherent in

4 Chapter 1

demands, costs, prices, resource availabilities, usages, and so on are all
assumed to be approximated by these coefficients through some
deterministic equivalent.

It is important to recognize that if a linear programming problem is being
used to model a given situation, then the aforementioned assumptions are
implied to hold, at least over some anticipated operating range for the activities.
When Dantzig first presented his linear programming model to a meeting of the
Econometric Society in Wisconsin, the famous economist H. Hotelling critically
remarked that in reality, the world is indeed nonlinear. As Dantzig recounts, the
well-known mathematician John von Neumann came to his rescue by counter-
ing that the talk was about "Linear" Programming and was based on a set of
postulated axioms. Quite simply, a user may apply this technique if and only if
the application fits the stated axioms.

Despite the seemingly restrictive assumptions, linear programs are among
the most widely used models today. They represent several systems quite satis-
factorily, and they are capable of providing a large amount of information
besides simply a solution, as we shall see later, particularly in Chapter 6.
Moreover, they are also often used to solve certain types of nonlinear
optimization problems via (successive) linear approximations and constitute an
important tool in solution methods for linear discrete optimization problems
having integer-restricted variables.

Problem Manipulation

Recall that a linear program is a problem of minimizing or maximizing a linear
function in the presence of linear inequality and/or equality constraints. By
simple manipulations the problem can be transformed from one form to another
equivalent form. These manipulations are most useful in linear programming, as
will be seen throughout the text.

INEQUALITIES AND EQUATIONS

An inequality can be easily transformed into an equation. To illustrate, consider the

constraint given by Σ"ί=\αϋχί - V This constraint can be put in an equation form

by subtracting the nonnegative surplus or slack variable xn+i (sometimes denoted by

Sf) leading to Y,n;=\aijxj - x
n+i = fy ^ d xn+i - 0· Similarly, the constraint

1L"J=\<*ÌJXJ ^ bt is equivalent to Σ/=ιβ(/*/ + x
n+i = ty and xn+i > 0. Also, an

equation of the form ΥΓ;=\αηχί = ty can be transformed into the two inequalities

Z/=i%*y ^ fy and Σ / ^ ^ · * / ^ bh although this is not the practice.

NONNEGATIVITY OF THE VARIABLES

For most practical problems the variables represent physical quantities, and hence
must be nonnegative. The simplex method is designed to solve linear programs
where the variables are nonnegative. If a variable x,· is unrestricted in sign, then it

can be replaced by x'- - x"- where x'- > 0 and x"· > 0. If xx,...,xk are some A:

Introduction 5

variables that are all unrestricted in sign, then only one additional variable x" is
needed in the equivalent transformation: x · = x'- - x" for j = 1, ..., k, where

x'l > 0 fory'= \,...,k, and x" > 0. (Here, -x" plays the role of representing the

most negative variable, while all the other variables x ■ are x'- above this value.)

Alternatively, one could solve for each unrestricted variable in terms of the other
variables using any equation in which it appears, eliminate this variable from the
problem by substitution using this equation, and then discard this equation from
the problem. However, this strategy is seldom used from a data management and
numerical implementation viewpoint. Continuing, if x > £ -, then the new

variable x'- = x ■ - £ ■ is automatically nonnegative. Also, if a variable x.- is

restricted such that x- < u.-, where we might possibly have w. < 0, then the

substitution X'I = u.- -x.- produces a nonnegative variable x'-.

MINIMIZATION AND MAXIMIZATION PROBLEMS

Another problem manipulation is to convert a maximization problem into a
minimization problem and conversely. Note that over any region,

n n
maximum X CJXJ = -minimum X ~cjxj-

Hence, a maximization (minimization) problem can be converted into a minimi-
zation (maximization) problem by multiplying the coefficients of the objective
function by - 1 . After the optimization of the new problem is completed, the
objective value of the old problem is -1 times the optimal objective value of the
new problem.

Standard and Canonical Formats

From the foregoing discussion, we have seen that any given linear program can
be put in different equivalent forms by suitable manipulations. In particular, two
forms will be useful. These are the standard and the canonical forms. A linear
program is said to be in standard format if all restrictions are equalities and all
variables are nonnegative. The simplex method is designed to be applied only
after the problem is put in standard form. The canonical form is also useful,
especially in exploiting duality relationships. A minimization problem is in
canonical form if all variables are nonnegative and all the constraints are of the
> type. A maximization problem is in canonical form if all the variables are
nonnegative and all the constraints are of the < type. The standard and canonical
forms are summarized in Table 1.1.

Linear Programming in Matrix Notation

A linear programming problem can be stated in a more convenient form using
matrix notation. To illustrate, consider the following problem:

T
ab

le
 1

.1
.

S
ta

nd
ar

d
an

d
C

an
on

ic
al

 F
or

m
s

S
T

A
N

D
A

R
D

F

O
R

M

C
A

N
O

N
IC

A
L

F

O
R

M

M
in

im
iz

e

su
bj

ec
t

to

M
in

im
iz

e

su
bj

ec
t

to

M
IN

IM
IZ

A
T

IO
N

P

R
O

B
L

E
M

« 7=
1

n Y
Ja

ij
x j

=
b i

,
i=

\,
.

7=
1

xj
*0

,
7

=
1

,.

n Y
uc ix j

7=
1 n H

a ijx j*
b i>

»'

=
!>

·

7=
1

xj
>

0,

j=
\,

.

.,
m

.,
n.

.,
m

.,
n.

M
ax

im
iz

e

su
bj

ec
t

to

M
ax

im
iz

e

su
bj

ec
t

to

M
A

X
IM

IZ
A

T
IO

N

P
R

O
B

L
E

M

n Σ
°]

χ]
7=

1 n H
a ijx j=

b i'
»'

=
!.

·■

7=
1

X
j>

0,

y
=

l,
„

n Σν
ο-

7=
1 n H

a ijx j-
b i'

'=
1

.·
·

7=
1

X
j^

O
,

j=
i,.

. .,
m

.,
«.

.,
m

.,
n.

f

Introduction 7

Minimize Σ c.-x.-
7=1
n

subject to Σ ayxj = bj, i = l,...,m

Xj > 0, j = l,...,n.

Denote the row vector (cj,c2,...,cn) by c, and consider the following column

vectors x and b, and the m x n matrix A.

~ * l "
x?

.•V

b =
V
b?

Pm_
A =

an an
a2\ a 22

am\ am2

Then the problem can be written as follows:

«2K

Minimize
subject to

ex
Ax = b

x > 0.

The problem can also be conveniently represented via the columns of A.
Denoting A by [aj,a2,...,a„] where a, is the /th column of A, the problem can

be formulated as follows:

Minimize Σ c.-x,·
y=i

subject to Σ ax , ·
y'=l

XJ > 0, j = !,...,«.

1.2 LINEAR PROGRAMMING MODELING AND EXAMPLES

The modeling and analysis of an operations research problem in general, and a
linear programming problem in particular, evolves through several stages. The
problem formulation phase involves a detailed study of the system, data
collection, and the identification of the specific problem that needs to be
analyzed (often the encapsulated problem may only be part of an overall system
problem), along with the system constraints, restrictions, or limitations, and the
objective function(s). Note that in real-world contexts, there frequently already
exists an operating solution and it is usually advisable to preserve a degree of
persistency with respect to this solution, i.e., to limit changes from it (e.g., to
limit the number of price changes, or decision option modifications, or changes
in percentage resource consumptions, or to limit changing some entity
contingent on changing another related entity). Such issues, aside from
technological or structural aspects of the problem, should also be modeled into
the problem constraints.

The next stage involves the construction of an abstraction or an
idealization of the problem through a mathematical model. Care must be taken
to ensure that the model satisfactorily represents the system being analyzed,

8 Chapter 1

while keeping the model mathematically tractable. This compromise must be
made judiciously, and the underlying assumptions inherent in the model must be
properly considered. It must be borne in mind that from this point onward, the
solutions obtained will be solutions to the model and not necessarily solutions to
the actual system unless the model adequately represents the true situation.

The third step is to derive a solution. A proper technique that exploits any
special structures (if present) must be chosen or designed. One or more optimal
solutions may be sought, or only a heuristic or an approximate solution may be
determined along with some assessment of its quality. In the case of multiple
objective functions, one may seek efficient or Pareto-optimal solutions, that is,
solutions that are such that a further improvement in any objective function
value is necessarily accompanied by a detriment in some other objective
function value.

The fourth stage is model testing, analysis, and (possibly) restructuring.
One examines the model solution and its sensitivity to relevant system
parameters, and studies its predictions to various what-if types of scenarios.
This analysis provides insights into the system. One can also use this analysis to
ascertain the reliability of the model by comparing the predicted outcomes with
the expected outcomes, using either past experience or conducting this test
retroactively using historical data. At this stage, one may wish to enrich the
model further by incorporating other important features of the system that have
not been modeled as yet, or, on the other hand, one may choose to simplify the
model.

The final stage is implementation. The primary purpose of a model is to
interactively aid in the decision-making process. The model should never
replace the decision maker. Often a "frank-factor" based on judgment and
experience needs to be applied to the model solution before making policy
decisions. Also, a model should be treated as a "living" entity that needs to be
nurtured over time, i.e., model parameters, assumptions, and restrictions should
be periodically revisited in order to keep the model current, relevant, and valid.

We describe several problems that can be formulated as linear programs.
The purpose is to exhibit the varieties of problems that can be recognized and
expressed in precise mathematical terms as linear programs.

Feed Mix Problem

An agricultural mill manufactures feed for chickens. This is done by mixing
several ingredients, such as corn, limestone, or alfalfa. The mixing is to be done in
such a way that the feed meets certain levels for different types of nutrients, such
as protein, calcium, carbohydrates, and vitamins. To be more specific, suppose
that n ingredients y = 1,..., n and m nutrients / = 1,..., m are considered. Let the unit
cost of ingredient j be c, and let the amount of ingrediente to be used be x,. The

cost is therefore Σ^=jC.-x,-. If the amount of the final product needed is b, then

we must have Z'Li*/ = b. Further suppose that a,·.- is the amount of nutrient i

present in a unit of ingrediente, and that the acceptable lower and upper limits of
nutrient / in a unit of the chicken feed are l\ and u\, respectively. Therefore, we

Introduction 9

must have the constraints i\b < Z'Lifl//*; < u\b for / = 1,..., m. Finally,

because of shortages, suppose that the mill cannot acquire more than u · units of

ingredient j . The problem of mixing the ingredients such that the cost is
minimized and the restrictions are met can be formulated as follows:

Minimize
subject to

c\x\
xx

bi\ < a^ixi

bi\ < a2\X\

bi'm < amXxx

+
+
+
+

+

c2x2
x2

«12*2
a22*2

am2x2

+ ··
+ -·
+ ··
+ ··

+ -·

·· +
·· +
·· +
·· +

·· +

cnxn
xn

a\nxn
a2nxn

amnxn

0 < X 2

=
<
<

<
<
<

b
bu[
bu'j

bu'm
u\
u2

0<xn < un.

Production Scheduling: An Optimal Control Problem

A company wishes to determine the production rate over the planning
horizon of the next T weeks such that the known demand is satisfied and the
total production and inventory cost is minimized. Let the known demand rate at
time / be g(t), and similarly, denote the production rate and inventory at time /
by x(t) and y(t), respectively. Furthermore, suppose that the initial inventory at
time 0 is _y0

 a n (i m a t m e desired inventory at the end of the planning horizon is
yT. Suppose that the inventory cost is proportional to the units in storage, so

that the inventory cost is given by q }0 y(t) dt where q > 0 is known. Also,

suppose that the production cost is proportional to the rate of production, and is

therefore given by c2jQ x(t)dt. Then the total cost is J0 [c^y(t) + c2x(t)]dt.

Also note that the inventory at any time is given according to the relationship

y(t) = y0 + ί'0[χ(τ) - g(T)]dr, for? E [Ο,Γ].

Suppose that no backlogs are allowed; that is, all demand must be satisfied.
Furthermore, suppose that the present manufacturing capacity restricts the
production rate so that it does not exceed t\ at any time. Also, assume that the

available storage restricts the maximum inventory to be less than or equal to b2.
Hence, the production scheduling problem can be stated as follows:

Minimize J0 [qy{t) + c2x(t)] dt

subject to y(t) = yo+i'0[x(T)-g(T)]dT, for ts[0,T]

y(T) = yT

0 < x (/) < q , for te[0,T]

0<y(t)<b2, for t e[0,T].

The foregoing model is a linear control problem, where the control variable is
the production rate x(t) and the state variable is the inventory level y(t). The

10 Chapter 1

problem can be approximated by a linear program by discretizing the continuous
variables x and y. First, the planning horizon [0, 7] is divided into n smaller
periods [0,Δ],[Δ,2Δ],...,[(« - 1)Δ,«Δ], where «Δ = T. The production rate,
the inventory, and the demand rate are assumed constant over each period. In
particular, let the production rate, the inventory, and the demand rate in period j
be X:, y ■, and g ■, respectively. Then, the production scheduling problem can

be approximated by the following linear program (why?).
n n

Minimize Σ (c\A)y ■ + Σ (c2A)x ■
7=1 j=\

subject to yj = yj_x +(xj -gj)A, j = \,...,n

yn=yr
0<Xj<bi, 7 = 1,.··,"
0<yj<b2, j = \,...,n.

Cutting Stock Problem

A manufacturer of metal sheets produces rolls of standard fixed width w and of
standard length £. A large order is placed by a customer who needs sheets of
width w and varying lengths. In particular, bt sheets with length li and width w
for / = 1,..., m are ordered. The manufacturer would like to cut the standard rolls in
such a way as to satisfy the order and to minimize the waste. Because scrap pieces
are useless to the manufacturer, the objective is to minimize the number of rolls
needed to satisfy the order. Given a standard sheet of length £, there are many
ways of cutting it. Each such way is called a cutting pattern. The j'th cutting
pattern is characterized by the column vector a,- where the z'th component of a,,

namely a^, is a nonnegative integer denoting the number of sheets of length £j in

they'th pattern. For instance, suppose that the standard sheets have length £ = 10
meters and that sheets of lengths 1.5, 2.5, 3.0, and 4.0 meters are needed. The
following are typical cutting patterns:

3
2
0
0

a2 =

0
4
0
0

a 3 =

0
0
3
0

Note that the vector a represents a cutting pattern if and only if YÀ"=iaij£i < I

and each α„ is a nonnegative integer. The number of cutting patterns n is finite.

If we let Xj be the number of standard rolls cut according to they'th pattern, the

problem can be formulated as follows:

Introduction 11

n
Minimize Σ x.-

7=1
n

subject to YdaijXj>bi, i = \,...,m
7=1

Xj>0, j = l,...,n
Xj integer, j = l,...,n.

If the integrality requirement on the Xj -variables is dropped, the problem is a

linear program. Of course, the difficulty with this problem is that the number of
possible cutting patterns n is very large, and also, it is not computationally
feasible to enumerate each cutting pattern and its column a, beforehand. The

decomposition algorithm of Chapter 7 is particularly suited to solve this
problem, where a new cutting pattern is generated at each iteration (see also
Exercise 7.28). In Section 6.7 we suggest a method for handling the integrality
requirements.

The Transportation Problem

The Brazilian coffee company processes coffee beans into coffee at m plants.
The coffee is then shipped every week to n warehouses in major cities for retail,
distribution, and exporting. Suppose that the unit shipping cost from plant / to
warehouse j is c«. Furthermore, suppose that the production capacity at plant ;

is Oj and that the demand at warehouse j is Z> · . It is desired to find the

production-shipping pattern JC,·.· from plant i to warehouse j , i = 1,..., m,j = 1,...,

n, which minimizes the overall shipping cost. This is the well-known
transportation problem. The essential elements of the problem are shown in the
network of Figure 1.2. The transportation problem can be formulated as the
following linear program:

Minimize

subject to

m n
Σ Σ CjjXjj
(=1 y=l
n
Σ Xy ^ah

7=1
m
ΣΧη =bj,
;=1
χ ^ ο ,

i = \,..

j = l-

i = l,..

.,m

..,«

.,m. j = \,...,n.

Capital Budgeting Problem

A municipal construction project has funding requirements over the next four
years of $2 million, $4 million, $8 million, and $5 million, respectively. Assume
that all of the money for a given year is required at the beginning of the year.

12 Chapter 1

Plants Warehouses

Figure 1.2. The transportation problem.

The city intends to sell exactly enough long-term bonds to cover the project
funding requirements, and all of these bonds, regardless of when they are sold,
will be paid off {mature) on the same date in a distant future year. The long-
term bond market interest rates (that is, the costs of selling bonds) for the next
four years are projected to be 7 percent, 6 percent, 6.5 percent, and 7.5 percent,
respectively. Bond interest paid will commence one year after the project is
complete and will continue for 20 years, after which the bonds will be paid off.
During the same period, the short-term interest rates on time deposits (that is,
what the city can earn on deposits) are projected to be 6 percent, 5.5 percent,
and 4.5 percent, respectively (the city will clearly not invest money in short-
term deposits during the fourth year). What is the city's optimal strategy for
selling bonds and depositing funds in time accounts in order to complete the
construction project?

To formulate this problem as a linear program, let x ·, j = 1,...,4, be the amount

of bonds sold at the beginning of each year/. When bonds are sold, some of the
money will immediately be used for construction and some money will be
placed in short-term deposits to be used in later years. Let y -, j = 1,...,3, be the

money placed in time deposits at the beginning of year/ Consider the
beginning of the first year. The amount of bonds sold minus the amount of time
deposits made will be used for the funding requirement at that year. Thus, we
may write

χ\ - y\ = 2.

We could have expressed this constraint as >. However, it is clear in this case
that any excess funds will be deposited so that equality is also acceptable.

Consider the beginning of the second year. In addition to bonds sold and
time deposits made, we also have time deposits plus interest becoming available
from the previous year. Thus, we have

1.06>Ί +χ2 -y2 = 4.

Introduction 13

The third and fourth constraints are constructed in a similar manner.
Ignoring the fact that the amounts occur in different years (that is, the

time value of money), the unit cost of selling bonds is 20 times the interest rate.
Thus, for bonds sold at the beginning of the first year we have c\ = 20(0.07).

The other cost coefficients are computed similarly.
Accordingly, the linear programming model is given as follows:

Minimize 20(0.07)^ + 20(0.06) x2 + 20(0.065) x3 + 20(0.075) x4

subject to x, - y\ = 2

1.067, + x2 - y2 = 4

1.055y2+ χτ, - y-i = 8

1.045^3 + x4 = 5

xx, x2, x3, x4, yx, y2, y3 > 0.

Tanker Scheduling Problem

A shipline company requires a fleet of ships to service requirements for carrying
cargo between six cities. There are four specific routes that must be served
daily. These routes and the number of ships required for each route are as
follows:

ROUTE # ORIGIN DESTINATION NUMBER OF SHIPS
PER DAY NEEDED

1
2
3
4

Dhahran
Marseilles

Naples
New York

New York
Istanbul
Mumbai

Marseilles

3
2
1
1

All cargo is compatible, and therefore only one type of ship is needed. The
travel time matrix between the various cities is shown.

Naples
Marseilles
Istanbul
New York
Dhahran
Mumbai

<
Z,

0
1
2
14
7
7

OQ

w on

<
2

1
0
3
13
8
8

J

1
H
t/3

2
3
0
15
5
5

^
O
>

«
Z

14
13
15
0
17
20

7,

X
<
X
a
7
8
5
17
0
3

<
pa

HJ

^

7
8
5

20
3
0

tjj matrix (days)

It takes one day to off-load and one day to on-load each ship. How many ships
must the shipline company purchase?

14 Chapter 1

In addition to nonnegativity restrictions, there are two types of constraints
that must be maintained in this problem. First, we must ensure that ships coming
off of some route get assigned to some (other) route. Second, we must ensure
that each route gets its required number of ships per day. Let x;y be the number

of ships per day coming off of route i and assigned to route j . Let ty represent
the number of ships per day required on route ;'.

To ensure that ships from a given route get assigned to other routes, we
write the constraint

4
Σ Xn = bh i = l , - ,4 .

7=1

To ensure that a given route gets its required number of ships, we write the
constraint

4
Σ Xki = bi> ' = !>···,4·

Computing the cost coefficients is a bit more involved. Since the objective is to
minimize the total number of ships, let c;y be the number of ships required to

ensure a continuous daily flow of one ship coming off of route / and assigned to
route j . To illustrate the computation of these c(y -coefficients, consider c23. It

takes one day to load a ship at Marseilles, three days to travel from Marseilles to
Istanbul, one day to unload cargo at Istanbul, and two days to head from
Istanbul to Naples—a total of seven days. This implies that seven ships are
needed to ensure that one ship will be assigned daily from route 2 to route 3
(why?). In particular, one ship will be on-loading at Marseilles, three ships en
route from Marseilles to Istanbul, one ship off-loading at Istanbul, and two
ships en route from Istanbul to Naples.

In general, c,·.· is given as follows:

% = one day for on-loading + number of days for transit on route i

+ one day for off-loading
+ number of days for travel from the destination of route / to the

origin of route j .

Therefore, the tanker scheduling problem can be formulated as follows:

Minimize 36xu + 32x[2 + 33x]3 + 19x]4 + 10x2i + 8x22 + 7*23

+20x24 + 12x31 + 17x32 + 16x33 + 29x34 + 23x41

+15x42
 + 16x43 + 28x44

4
subject to X Xjj = bj, i= 1,2,3,4

4
Σ Xki = bi> «'=1,2,3,4

k=\
Xij * 0, U = 1,2,3,4,

Introduction 15

where l\ = 3, b2 = 2, b^ = 1 , and b4 = 1.
It can be easily seen that this is another application of the transportation

problem (it is instructive for the reader to form the origins and destinations of
the corresponding transportation problem).

Multiperiod Coal Blending and Distribution Problem

A southwest Virginia coal company owns several mines that produce coal at
different given rates, and having known quality (ash and sulfur content)
specifications that vary over mines as well as over time periods at each mine.
This coal needs to be shipped to silo facilities where it can be possibly subjected
to a beneficiation (cleaning) process, in order to partially reduce its ash and
sulfur content to a desired degree. The different grades of coal then need to be
blended at individual silo facilities before being shipped to customers in order to
satisfy demands for various quantities having stipulated quality specifications.
The aim is to determine optimal schedules over a multiperiod time horizon for
shipping coal from mines to silos, cleaning and blending the coal at the silos,
and distributing the coal to the customers, subject to production capacity,
storage, material flow balance, shipment, and quality requirement restrictions,
so as to satisfy the demand at a minimum total cost, including revenues due to
rebates for possibly shipping coal to customers that is of a better quality than the
minimum acceptable specified level.

Suppose that this problem involves i = 1,..., m mines,/= \,...,Jsilos, k =
\,...,K customers, and that we are considering t= 1,..., Γ(> 3) time periods. Let
pit be the production (in tons of coal) at mine i during period t, and let ait and

sit respectively denote the ash and sulfur percentage content in the coal

produced at mine / during period t. Any excess coal not shipped must be stored

at the site of the mine at a per-period storage cost of c, per ton at mine i,

where the capacity of the storage facility at mine i is given by M,-.

Let Ay denote the permissible flow transfer arcs (i,j) from mine i to silo

j , and let Ft = {j : (;', j) e Α^} and R: = {i : (/, j) e Αχ}. The transportation

cost per ton from mine i to siloy is denoted by c,y, for each (/,/) e Αγ. Each

siloj has a storage capacity of S.-, and a per-ton storage cost of c .■, per period.

Assume that at the beginning of the time horizon, there exists an initial amount

of q: tons of coal stored at siloj, having an ash and sulfur percentage content of

a, and s , respectively. Some of the silos are equipped with beneficiation or

cleaning facilities, where any coal coming from mine i to such a siloy is cleaned

at a cost of Cy per ton, resulting in the ash and sulfur content being respectively

attenuated by a factor of /L e (0,1] and γ^ e (0,1], and the total weight being

thereby attenuated by a factor of α^ ε (0,1] (hence, for one ton input, the

16 Chapter 1

output is ay tons, which is then stored for shipment). Note that for silos that do

not have any cleaning facilities, we assume that ĉ = 0, and ay = /L = γ-y = 1.

Let A2 denote the feasible flow transfer arcs (j, k) from silo j to customer

k, and let FJ = {k : (j,k) e A2}, and R% = {j : (j,k) ε A2}. The transport-

tation cost per ton from silo y to customer k is denoted by Cjk, for each (j, k) e

A2. Additionally, if ty is the time period for a certain mine to silo shipment

(assumed to occur at the beginning of the period), and t2 is the time period for a

continuing silo to customer shipment (assumed to occur at the end of the

period), then the shipment lag between the two coal flows is given by t2 - fj. A

maximum of a three-period shipment lag is permitted between the coal
production at any mine and its ultimate shipment to customers through any silo,
based on an estimate of the maximum clearance time at the silos. (Actual
shipment times from mines to silos are assumed to be negligible.) The demand
placed (in tons of coal) by customer k during period / is given by dkt, with ash
and sulfur percentage contents being respectively required to lie in the intervals
defined by the lower and upper limits [#%,u%t] and [l\t, u\t]. There is also a
revenue earned of rkt per-ton per-percentage point that falls below the maxi-
mum specified percentage ukt of ash content in the coal delivered to customer k
during period /.

To model this problem, we first define a set of principal decision

variables as yyt = amount (tons) of coal shipped from mine i to siloy in period

t, with continued shipment to customer k in period τ (where τ = t, t + 1, t + 2,

based on the three-period shipment lag restriction), and yβτ = amount (tons)

of coal that is in initial storage at silo/, which is shipped to customer k in period
τ (where τ = 1,2,3, based on a three period dissipation limit). Controlled by
these principal decisions, there are four other auxiliary decision variables
defined as follows: xiS = slack variable that represents the amount (tons) of coal

remaining in storage at mine i during period δ;x.-g = accumulated storage

amount (tons) of coal in silo j during period δ; ζ%Τ = percentage ash content in

the blended coal that is ultimately delivered to customer k in period r, and ζ\τ =
percentage sulfur content in the blended coal that is ultimately delivered to
customer k in period τ. The linear programming model is then given as follows,
where the objective function records the transportation, cleaning, and storage
costs, along with the revenue term over the horizon \,...,T of interest. The
respective sets of constraints represent the flow balance at the mines, storage
capacity restrictions at the mines, flow balance at the silos, storage capacity
restrictions at the silos, the dissipation of the initial storage at the silos, the

Introduction 17

demand satisfaction constraints, the ash content identities, the quality bound
specifications with respect to the ash content, the sulfur content identities, the
quality bound specifications with respect to the sulfur content, and the
remaining logical nonnegativity restrictions. (All undefined variables and
summation terms are assumed to be zero. Also, see Exercises 1.19-1.21.)

Minimize
J T mm{t+2,T} , D .
Σ Σ Σ Σ Σ [c\ + cfj + c%

7=1 Ì<ER) k<EFJ t=\ τ=ί

+ (T-t + \)ή}γ^ + Σ Σ cfxfs
i=\ S=\

+ Σ Σ Σ c%y%T + Σ Σ c ^ j - Σ Σ y)kA
7=1 keFJ τ=\ j=\ t=\

K T

- Σ Σ («Ar - 4r)dkTrkT
k=\ r=l

r<t keFf

subject to
δ
ΣΡίΐ
t=\

t+2
.M xiS » Σ Σ Σ Σ Ϋψ

jeF> '=1 keFJ τ=ί

i = \,...,m,5 = \,...,T

0 < x $ <Mt, i = l,...,m,S = l,...,T

kx
δ t+2

Σ Σ Σ Σ ayyij,
ieRj keFJ /=max{l,<y-2} τ=δ

0
+[q)

min{5-l,3} 0 s

Σ Σ yjkri = XJS>
kzFJ τ=1

j = l,...,J, δ - Ι,.,.,Τ

0<x]s<Sj, j = l,...,J,S = l,...,T

sr 4- 0 0 · , ,
Σ Σ yjkz = ijy J = !>···,./

k&F} τ=\
τ

Σ
jeR% Ì&R) /=max{l,r-2} ye/{£

ayyyÌ + Σ 2 y%T = <4r>

k = Χ,.,.,Κ,τ = 1.....Γ

zkrdkT ~ Σ
jeR% ie/fj i=max{l,r-2}

k = Ι,.,.,Κ,τ = Ι,.,.,Τ

1\τ <ζ%τ <ua
kT,k = l,...,K,T = l,...,T

η kz , ^ 0 0
°ufiijyijt + Σ ajyjkt,

18 Chapter 1

zkTdkr = Σ Σ Σ Sit/ijyijt + Σ 5 / ^ r .
ye/?* ieRlj /=max{l,r-2} jeRJ

k = Ι,.,.,Κ,Τ = Ι,.,.,Τ

ί\τ <ζ{τ <4T,k = ì,...,K,T = l,...,T

y§ > 0,(i,j) e Aut = \,...,T,k = 1,...,*, τ = t,...,t + 2,

y% > 0,(Λ*) e ^2.*- = ! ' 2 ' 3 ·

1.3 GEOMETRIC SOLUTION

We describe here a geometrie procedure for solving a linear programming
problem. Even though this method is only suitable for very small problems, it
provides a great deal of insight into the linear programming problem. To be
more specific, consider the following problem:

Minimize ex
subject to Ax = b

x > 0.

Note that the feasible region consists of all vectors x satisfying Ax = b and x >
0. Among all such points, we wish to find a point having a minimal value of ex.
Note that points having the same objective value z satisfy the equation ex = z,

that is, YTj=\cìxi = z- Since z is to be minimized, then the plane (line in a

two-dimensional space) Σ,"/=ι€ίχ/ = z m u s t be moved parallel to itself in the

direction that minimizes the objective the most. This direction is -c , and hence
the plane is moved in the direction of -c as much as possible, while maintaining
contact with the feasible region. This process is illustrated in Figure 1.3. Note

that as the optimal point x is reached, the line C\X\ + C2X2 = z , where z =
c\x* + C2X2> cannot be moved farther in the direction -c = (-c, ,-c2), because
this will only lead to points outside the feasible region. In other words, one

cannot move from x* in a direction that makes an acute angle with -c , i.e., a
direction that reduces the objective function value, while remaining feasible. We

therefore conclude that x* is indeed an optimal solution. Needless to say, for a
maximization problem, the plane ex = z must be moved as much as possible in
the direction c, while maintaining contact with the feasible region.

The foregoing process is convenient for problems having two variables
and is obviously impractical for problems with more than three variables. It is

worth noting that the optimal point x* in Figure 1.3 is one of the five corner
points that are called extreme points. We shall show in Section 3.1 that if a
linear program in standard or canonical form has a finite optimal solution, then
it has an optimal corner (or extreme) point solution.

Introduction 19

Figure 1.3. Geometric solution.

Example 1.2

0.

The feasible region is illustrated in Figure 1.4. For example, consider the
second constraint. The equation associated with this constraint is -X] + 2x2

 =

8. The gradient or the partial derivative vector of the linear function -xj + 2x2

Minimize
subject to

-x,
X,

- X ,

X\,

- 3x2
+ x2

+ 2x2
x2

<
<
>

IS Hence, -xj + 2x2 increases in any direction making an acute angle

with -1
2 , and decreases in any direction making an acute angle 1

-2
. Conse-

quently, the region feasible to -Xj + 2x2 < 8 relative to the equation -xj +
2x2 = 8 is as shown in Figure 1.4 and encompasses points having decreasing
values of -Xj + 2x2 from the value 8. (Alternatively, this region may be
determined relative to the equation -xj + 2x2 = 8 by testing the feasibility of a
point, for example, the origin.) Similarly, the region feasible to the first
constraint is as shown. (Try adding the constraint -2x[+ 3x2 > 0 to this
figure.) The nonnegativity constraints restrict the points to be in the first
quadrant. The equations -X] - 3x2 = z, for different values of z, are called the
objective contours and are represented by dotted lines in Figure 1.4. In particular

20 Chapter 1

Figure 1.4. Numerical example.

the contour -X] - 3x2 = z = 0 passes through the origin. We move onto lower
valued contours in the direction -c = (1, 3) as much as possible until the
optimal point (4/3, 14/3) is reached.

In this example we had a unique optimal solution. Other cases may occur
depending on the problem structure. All possible cases that may arise are
summarized below (for a minimization problem).

1. Unique Optimal Solution. If the optimal solution is unique, then it
occurs at an extreme point. Figures 1.5a and b show a unique optimal
solution. In Figure 1.5a the feasible region is bounded; that is, there
is a ball of finite radius centered at, say, the origin that contains the
feasible region. In Figure 1.5b the feasible region is not bounded. In
each case, however, a finite unique optimal solution is obtained.

2. Alternative Optimal Solutions. This case is illustrated in Figure 1.6.
Note that in Figure 1.6a the feasible region is bounded. The two

corner points x* and X;> are optimal, as well as any point on the line
segment joining them. In Figure 1.6b the feasible region is
unbounded but the optimal objective is finite. Any point on the "ray"

with vertex x* in Figure 1.6b is optimal. Hence, the optimal solution
set is unbounded.

In both cases (1) and (2), it is instructive to make the following

observation. Pick an optimal solution x* in Figure 1.5 or 1.6, corner
point or not. Draw the normal vectors to the constraints passing

through x* pointing in the outward direction with respect to the

feasible region. Also, construct the vector -c at x*. Note that the

Introduction 21

"cone" spanned by the normals to the constraints passing through x*
contains the vector -c. This is in fact the necessary and sufficient

condition for x* to be optimal, and will be formally established
later. Intuitively, when this condition occurs, we can see that there is
no direction along which a motion is possible that would improve the
objective function while remaining feasible. Such a direction would
have to make an acute angle with -c to improve the objective value
and simultaneously make an angle > 90° with respect to each of the

normals to the constraints passing through x* in order to maintain
feasibility for some step length along this direction. This is
impossible at any optimal solution, although it is possible at any
nonoptimal solution.

3. Unbounded Optimal Objective Value. This case is illustrated in
Figure 1.7 where both the feasible region and the optimal objective
value are unbounded. For a minimization problem, the plane ex = z
can be moved in the direction -c indefinitely while always inter-
secting with the feasible region. In this case, the optimal objective
value is unbounded (with value —oo) and no optimal solution exists.

Examining Figure 1.8, it is clear that there exists no point (X],x2) satisfying
these inequalities. The problem is said to be infeasible, inconsistent, or with an
empty feasible region. Again, we say that no optimal solution exists in this case.

(a) (b)

Figure 1.5. Unique optimal solution: (a) Bounded region, (b) Unbounded region.

22 Chapter 1

Figure 1.6. Alternative optima: (a) Bounded region, (b) Unbounded region.

Figure 1.7. Unbounded optimal objective value.

Empty Feasible Region. In this case, the system of equations and/or
inequalities defining the feasible region is inconsistent. To illustrate,
consider the following problem:

Minimize
subject to

-2x[

~x\
2x]

X] ,

+ 3x2
+ 2x2

- x2
x2
x2

<
<
>
>

2
3
4
0,

1.4 THE REQUIREMENT SPACE

The linear programming problem can be interpreted and solved geometrically in
another space, referred to as the requirement space.

Introduction 23

Figure 1.8. An example of an empty feasible region.

Interpretation of Feasibility

Consider the following linear programming problem in standard form:

Minimize ex
subject to Ax = b

x > 0,

where A is an m χ η matrix whose7th column is denoted by a ,·. The problem

can be rewritten as follows:

Minimize Σ c.-x,·
7=1

subject to Σ &jXj
7=1

b

Xj > 0, j = Ι,.,.,η .

Given the vectors aj,a2,...,a„, we wish to find nonnegative scalare χλ, x2, —,xn

such that Jl"=]ajXj = b and such that Hnj-\CjXj is minimized. Note, however,

that the collection of vectors of the form X ^ = 1 a x - , where xx, x2,...,x„ > 0, is

the cone generated by aj,a2,...,a„ (see Figure 1.9). Thus, the problem has a
feasible solution if and only if the vector b belongs to this cone. Since the vector b
usually reflects requirements to be satisfied, Figure 1.9 is referred to as illustrating
the requirement space.

24 Chapter 1

Figure 1.9. Interpretation of feasibility in the requirement space: (a)
Feasible region is not empty, (b) Feasible region is empty.

Figure 1.10. Illustration of the requirement space: (a) System 1 is feasible,
(b) System 2 is inconsistent.

Introduction 25

Example 1.3

Consider the following two systems:

System 1 :

System 2:

2xi + X2 + X3
-X] + 3x 2

X], X2, X3,

2xi + X2 + X3
-X[+ 3x2

X], X2, X3,

+ x4
X4

+ x4
X4

= 2
= 3
> 0.

= -1
= 2
> 0.

Figure 1.10 shows the requirement space of both systems. For System 1, the

vector b belongs to the cone generated by the vectors 2
-1 5

1
3 1

1
0 , and

, and hence admits feasible solutions. For the second system, b does not

belong to the corresponding cone and the system is then inconsistent.

The Requirement Space and Inequality Constraints

We now illustrate the interpretation of feasibility for the inequality case.
Consider the following inequality system:

n
Σ a,x, < b

7=1

Xj > 0 , j= Ι,.,.,η.

Note that the collection of vectors Z ' L i 8 / * / , where x · > 0 fory = \,...,n, is

the cone generated by aj,a2,...,a„. If a feasible solution exists, then this cone
must intersect the collection of vectors that are less than or equal to the
requirement vector b. Figure 1.11 shows both a feasible system and an
infeasible system.

Optimality

We have seen that the system H,n;=*jXj = b and x,· > 0 for j = 1,..., n is

feasible if and only if b belongs to the cone generated by a!,a2,...,a„. The

variables X],x2,...,x„ must be chosen so that feasibility is satisfied and

Ji"i-\cjxj is minimized. Therefore, the linear programming problem can be

stated as follows. Find nonnegative x1; x2,...,x„ such that

*i +
c 2
a2

x2 + · · · + z
b

26 Chapter 1

Figure 1.11. Requirement space and inequality constraints: (a) System is
feasible, (b) System is infeasible.

where the objective z is to be minimized. In other words we seek to represent the

vector z
b

c2
a2

, for the smallest possible z, in the cone spanned by the vectors

. The reader should note that the price we must pay for

including the objective function explicitly in the requirement space is to increase
the dimensionality from mtom+ 1.

Example 1.4

Minimize -2xj - 3x2

subject to X] + 2x2 ^ 2
Xj , x 2 - 0.

Add the slack variable JC3 > 0. The problem is then to choose χγ, x2, x^ > 0
such that

-2
1 X\ +

-3
2 x2 + 0

1 *3 =
z
2

where z is to be minimized. The cone generated by the vectors

is shown in Figure 1.12. We want to choose a vector

-2
1

z
2

having a minimal value for z. This gives the optimal solution z
'-2

1}and

in this cone

= -4 with
2 (the multiplier associated with

1) and x2 = x-} = 0.

Introduction 27

Example 1.5

Minimize -2xt - 3x2

subject to x,
X] ,

+ 2x2 > 2 >
x2 > 0.

Obviously the optimal objective value is unbounded. We illustrate this fact in
the requirement space. Subtracting the slack (or surplus) variable x3 > 0, the

problem can be restated as follows: Find xj, x2, x3 > 0 such that

-2
1 Xj +

-3
2 x2 + 0

-1
x3 =

z
2

and such that z is minimized. The cone generated by -3
2 , and

shown in Figure 1.13. We want to choose in this cone having the smallest

possible value for z. Note that we can find points of the form in the cone

having an arbitrarily small value for z. Therefore, the objective value z can be
driven to -oo, or it is unbounded.

1.5 NOTATION

Throughout the text, we shall utilize notation that is, insofar as possible,
consistent with generally accepted standards for the fields of mathematics and
operations research. In this section, we indicate some of the notation that may
require special attention, either because of its infrequency of use in the linear
programming literature, or else because of the possibility of confusion with
other terms.

Figure 1.12. Optimal objective value in the requirement space.

28 Chapter 1

Figure 1.13. Unbounded optimal objective value in the requirement space.

In Chapter 2, we shall review material on vectors and matrices. We
indicate vectors by lowercase, boldface Greek or Roman letters or numerals,
such as a, b, x, 1, λ; matrices by uppercase, boldface Greek or Roman letters,
such as A, B, N, Φ; and all scalars by Greek or Roman letters or numerals that
are not boldface, such as a, b, 1, ε. Column vectors are generally denoted by
subscripts, such as a,, unless clear in the context. When special emphasis is

required, row vectors are indicated by superscripts, such as a'. A superscript t
will denote the transpose operation.

In calculus, the partial derivative, indicated by dz/dx, represents the rate
of change in the variable z with respect to (a unit increase in) the variable x. We
shall also utilize the symbol dz/dx to indicate the vector of partial derivatives
of z with respect to each element of the vector x. That is, if x = (xi,x2,...,xn),
then

dz _\ dz dz dz

dx y dx\ dx2 dx„ /

Also, we shall sometimes consider the partial derivative of one vector with
respect to another vector, such as dy I dx. If y = (y^,y2,...,ym) and x =

(xi,x2,...,x„), then

oy
dx

3*1

dy2

3*i

dx\

dx2

dy2

dx2

dx2

dx„

dy2

dx„

dxn

Introduction 29

Note that if z is a function of the vector x = (xi,X2,.-,xn), then dz/δχ is
called the gradient of z.

We shall, when necessary, use (a, b) to refer to the open interval a < x <
b, and [a, b] to refer to the closed interval a < x < b. Finally we shall utilize
the standard set operators u , n , c , and e to refer to union, intersection, set
inclusion, and set membership, respectively.

EXERCISES
[1.1] Fred has $5000 to invest over the next five years. At the beginning of each
year he can invest money in one- or two-year time deposits. The bank pays 4
percent interest on one-year time deposits and 9 percent (total) on two-year
time deposits. In addition, West World Limited will offer three-year certificates
starting at the beginning of the second year. These certificates will return 15
percent (total). If Fred reinvests his money that is available every year,
formulate a linear program to show him how to maximize his total cash on hand
at the end of the fifth year.

[1.2] A manufacturer of plastics is planning to blend a new product from four
chemical compounds. These compounds are mainly composed of three
elements: A, B, and C. The composition and unit cost of these chemicals are
shown in the following table:

CHEMICAL COMPOUND
Percentage A
Percentage B
Percentage C
Cost/kilogram

1
35
20
40
20

2
15
65
15
30

3
35
35
25
20

4
25
40
30
15

The new product consists of 25 percent element A, at least 35 percent element
B, and at least 20 percent element C. Owing to side effects of compounds 1 and
2, they must not exceed 25 percent and 30 percent, respectively, of the content
of the new product. Formulate the problem of finding the least costly way of
blending as a linear program.
[1.3] An agricultural mill manufactures feed for cattle, sheep, and chickens. This
is done by mixing the following main ingredients: corn, limestone, soybeans,
and fish meal. These ingredients contain the following nutrients: vitamins,
protein, calcium, and crude fat. The contents of the nutrients in standard units
for each kilogram of the ingredients are summarized in the following table:

NUTRIENT UNITS
INGREDIENT
Corn
Limestone
Soybeans
Fish meal

VITAMINS
8
6
10
4

PROTEIN
10
5
12
8

CALCIUM
6
10
6
6

CRUDE FAT
8
6
6
9

The mill is contracted to produce 12, 8, and 9 (metric) tons of cattle feed, sheep
feed, and chicken feed. Because of shortages, a limited amount of the
ingredients is available—namely, 9 tons of corn, 12 tons of limestone, 5 tons of

30 Chapter 1

soybeans, and 6 tons offish meal. The price per kilogram of these ingredients is,
respectively, $0.20, $0.12, $0.24, and $0.12. The minimal and maximal units of
the various nutrients that are permitted is summarized below for a kilogram of
the cattle feed, the sheep feed, and the chicken feed.

PRODUCT
Cattle feed
Sheep feed
Chicken feed

VITAMINS
MIN MAX
6
6
4

oo
OO

6

NUTRIENT UNITS
PROTEIN
MIN MAX
6 oo
6 oo
6 oo

CALCIUM
MIN MAX
7
6
6

oo
oo
oo

CRUDE FAT
MIN MAX
4 8
4 6
4 5

Formulate this feed-mix problem so that the total cost is minimized.

[1.4] Consider the problem of locating a new machine to an existing layout
consisting of four machines. These machines are located at the following

coordinates in two-dimensional space: , , , , - 1 , and L . Let the

coordinates of the new machine be ' . Formulate the problem of finding an

optimal location as a linear program for each of the following cases:

a. The sum of the distances from the new machine to the four machines
is minimized. Use the street distance (also known as Manhattan
distance or rectilinear distance); for example, the distance from

1 to the first machine located at , I is |xj - 3| + |x2 - l|·

b. Because of various amounts of flow between the new machine and
the existing machines, reformulate the problem where the sum of the
weighted distances is minimized, where the weights corresponding
to the four machines are 6,4, 7, and 2, respectively.

c. In order to avoid congestion, suppose that the new machine must be
located in the square {(x1;x2) : -1 ^ *i ^ 2, 0 < x2 < 1}. Form-
ulate Parts (a) and (b) with this added restriction.

d. Suppose that the new machine must be located so that its distance
from the first machine does not exceed 2. Formulate the problem
with this added restriction.

[1.5] The technical staff of a hospital wishes to develop a computerized menu-
planning system. To start with, a lunch menu is sought. The menu is divided
into three major categories: vegetables, meat, and dessert. At least one equi-
valent serving of each category is desired. The cost per serving of some
suggested items as well as their content of carbohydrates, vitamins, protein, and
fats is summarized below:

Introduction 31

Vegetables
Peas
Green beans
Okra
Corn
Macaroni
Rice

Meat
Chicken
Beef
Fish

Dessert
Orange
Apple
Pudding
Jello

CARBO-
HYDRATES

1
1
1
2
4
5

2
3
3

1
1
1
1

VITAMINS

3
5
5
6
2
1

1
8
6

3
2
0
0

PROTEIN

1
2
1
1
1
1

3
5
6

1
0
0
0

FATS

0
0
0
2
1
1

1
2
1

0
0
0
0

COST IN
$/SERVING

0.10
0.12
0.13
0.09
0.10
0.07

0.70
1.20
0.63

0.28
0.42
0.15
0.12

Suppose that the minimal requirements of carbohydrates, vitamins, protein, and
fats per meal are respectively 5, 10, 10, and 2.

a. Formulate the menu-planning problem as a linear program.

b. Many practical aspects have been left out in the foregoing model.
These include planning the breakfast, lunch, and supper menus
together, weekly planning so that different varieties of food are used,
and special menus for patients on particular diets. Discuss in detail how
these aspects can be incorporated in a comprehensive menu-planning
system.

[1.6] A cheese firm produces two types of cheese: swiss cheese and sharp
cheese. The firm has 60 experienced workers and would like to increase its
working force to 90 workers during the next eight weeks. Each experienced
worker can train three new employees in a period of two weeks during which
the workers involved virtually produce nothing. It takes one man-hour to
produce 10 pounds of Swiss cheese and one man-hour to produce 6 pounds of
sharp cheese. A work week is 40 hours. The weekly demands (in 1000 pounds)
are summarized below:

CHEESE TYPE
Swiss cheese
Sharp cheese

1
11
8

2
12
8

3
13
10

WEEK
4 5
18 14
8 12

6
18
13

7
20
12

8
20
12

Suppose that a trainee receives the same full salary as an experienced worker.
Further suppose that overaging destroys the flavor of the cheese, so that
inventory is limited to one week. How should the company hire and train its
new employees so that the labor cost is minimized over this 8-week period?
Formulate the problem as a linear program.

32 Chapter 1

[1.7] A company wishes to plan its production of two items with seasonal
demands over a 12-month period. The monthly demand of item 1 is 100,000
units during the months of October, November, and December; 10,000 units
during the months of January, February, March, and April; and 30,000 units
during the remaining months. The demand of item 2 is 50,000 during the
months of October through February and 15,000 during the remaining months.
Suppose that the unit product cost of items 1 and 2 is $5.00 and $8.50,
respectively, provided that these were manufactured prior to June. After June,
the unit costs are reduced to $4.50 and $7.00 because of the installation of an
improved manufacturing system. The total units of items 1 and 2 that can be
manufactured during any particular month cannot exceed 120,000 for Jan-Sept,
and 150,000 for Oct-Dec. Furthermore, each unit of item 1 occupies 2 cubic feet
and each unit of item 2 occupies 4 cubic feet of inventory space. Suppose that
the maximum inventory space allocated to these items is 150,000 cubic feet and
that the holding cost per cubic foot during any month is $0.20. Formulate the
production scheduling problem so that the total cost of production and inventory
is minimized.

[1.8] A textile mill produces five types of fabrics. The demand (in thousand
yards) over a quarter-year time horizon for these fabrics is 16, 48, 37, 21, and
82, respectively. These five fabrics are woven, finished, and sold in the market
at prices 0.9, 0.8, 0.8, 1.2, and 0.6 $/per yard, respectively. Besides weaving and
finishing the fabrics at the mill itself, the fabrics are also purchased woven from
outside sources and are then finished at the mill before being sold. If the
unfinished fabrics are purchased outside, the costs in $/per yard for the five
fabrics are 0.8, 0.7, 0.75, 0.9, and 0.7, respectively. If produced at the mill itself,
the respective costs are 0.6, 0.5, 0.6, 0.7, and 0.3 $/per yard. There are two types
of looms that can produce the fabrics at the mill, that is, there are 10 Dobbie
looms and 80 regular looms. The production rate of each Dobbie loom is 4.6,
4.6, 5.2, 3.8, and 4.2 yards per hour for the five fabrics. The regular looms have
the same production rates as the Dobbie looms, but they can only produce fabric
types 3, 4, and 5. Assuming that the mill operates seven days a week and 24
hours a day, formulate the problem of optimally planning to meet the demand
over a quarter-year horizon as a linear program. Is your formulation a
transportation problem? If not, reformulate the problem as a transportation
problem.

[1.9] A steel manufacturer produces four sizes of I beams: small, medium, large,
and extra large. These beams can be produced on any one of three machine
types: A, B, and C. The lengths in feet of the I beams that can be produced on
the machines per hour are summarized below:

BEAM
Small
Medium
Large
Extra large

A
350
250
200
125

MACHINE
B

650
400
350
200

C
850
700
600
325

Assume that each machine can be used up to 50 hours per week and that the
hourly operating costs of these machines are respectively $30.00, $50.00, and

Introduction 33

$80.00. Further suppose that 12,000, 6000, 5000, and 7000 feet of the different
size I beams are required weekly. Formulate the machine scheduling problem as
a linear program.

[1.10] An oil refinery can buy two types of oil: light crude oil and heavy crude
oil. The cost per barrel of these types is respectively $20 and $15. The following
quantities of gasoline, kerosene, and jet fuel are produced per barrel of each type
of oil.

GASOLINE KEROSENE JET FUEL
Light crude oil 0.4 0.2 0.35
Heavy crude oil 032 04 0.2

Note that 5 percent and 8 percent, respectively, of the light and heavy crude oil
are lost during the refining process. The refinery has contracted to deliver 1
million barrels of gasoline, 500,000 barrels of kerosene, and 300,000 barrels of
jet fuel. Formulate the problem of finding the number of barrels of each crude
oil that satisfies the demand and minimizes the total cost as a linear program.

[1.11] A lathe is used to reduce the diameter of a steel shaft whose length is 36 in.
from 14 in. to 12 in. The speed X\ (in revolutions per minute), the depth feed x2

(in inches per minute), and the length feed x3 (in inches per minute) must be
determined. The duration of the cut is given by 36/x2x3. The compression and
side stresses exerted on the cutting tool are given by 30 xj + 4500 x2 and 40 X] +
5000 x2 + 5000 x3 pounds per square inch, respectively. The temperature (in
degrees Fahrenheit) at the tip of the cutting tool is 200 + 0.5 jq + 150(x2 + x3).
The maximum compression stress, side stress, and temperature allowed are
150,000 psi, 100,000 psi, and 800°F, respectively. It is desired to determine the
speed (which must be in the range from 600 rpm to 800 rpm), the depth feed, and
the length feed such that the duration of the cut is minimized. In order to use a
linear model, the following approximation is made. Since 36/x2x3 is minimized if
and only if x2x3 is maximized, it was decided to replace the objective by the
maximization of the minimum of x2 and x3. Formulate the problem as a linear
model and comment on the validity of the approximation used in the objective
function.

[1.12] A television set manufacturing firm has to decide on the mix of color and
black-and-white TVs to be produced. A market research indicates that, at most,
2000 units and 4000 units of color and black-and-white TVs can be sold per
month. The maximum number of man-hours available is 60,000 per month. A
color TV requires 20 man-hours and a black-and-white TV requires 15 man-
hours to manufacture. The unit profits of the color and black-and-white TVs are
$60 and $30, respectively. It is desired to find the number of units of each TV
type that the firm must produce in order to maximize its profit. Formulate the
problem as a linear program.
[1.13] A production manager is planning the scheduling of three products on
four machines. Each product can be manufactured on each of the machines. The
unit production costs (in $) are summarized below.

34 Chapter 1

MACHINE
PRODUCT 1 2 3 4

4
6
12

4
7
10

5
5
8

7
6
11

The time (in hours) required to produce a unit of each product on each of the
machines is summarized below.

MACHINE
PRODUCT 1 2 3 4

0.3
0.2
0.8

0.25
0.3
0.6

0.2
0.2
0.6

0.2
0.25
0.5

Suppose that 3000, 6000, and 4000 units of the products are required, and that
the available machine-hours are 1500, 1200, 1500, and 2000, respectively.
Formulate the scheduling problem as a linear program.

[1.14] A furniture manufacturer has three plants that need 500, 700, and 600
tons of lumber weekly. The manufacturer may purchase the lumber from three
lumber companies. The first two lumber manufacturers virtually have an
unlimited supply and, because of other commitments, the third manufacturer
cannot ship more than 500 tons weekly. The first lumber manufacturer uses rail
for transportation and there is no limit on the tonnage that can be shipped to the
furniture facilities. On the other hand, the last two lumber companies use trucks
that limit the maximum tonnage that can be shipped to any of the furniture
companies to 200 tons. The following table gives the transportation cost from
the lumber companies to the furniture manufacturers ($ per ton).

LUMBER FURNITURE FACILITY
COMPANY 1 2 3

1
3.5
3.5

3
4

3.6

5
4.8
3.2

Formulate the problem as a linear program.
[1.15] A company manufactures an assembly consisting of a frame, a shaft, and
a ball bearing. The company manufactures the shafts and frames but purchases
the ball bearings from a ball bearing manufacturer. Each shaft must be
processed on a forging machine, a lathe, and a grinder. These operations require
0.6 hour, 0.3 hour, and 0.4 hour per shaft, respectively. Each frame requires 0.8
hour on a forging machine, 0.2 hour on a drilling machine, 0.3 hour on a milling
machine, and 0.6 hour on a grinder. The company has 5 lathes, 10 grinders, 20
forging machines, 3 drillers, and 6 millers. Assume that each machine operates a
maximum of 4500 hours per year. Formulate the problem of finding the
maximum number of assembled components that can be produced as a linear
program.

[1.16] A corporation has $30 million available for the coming year to allocate to
its three subsidiaries. Because of commitments to stability of personnel em-

Introduction 35

ployment and for other reasons, the corporation has established a minimal level
of funding for each subsidiary. These funding levels are $3 million, $5 million,
and $8 million, respectively. Owing to the nature of its operation, subsidiary 2
cannot utilize more than $17 million without major new capital expansion. The
corporation is unwilling to undertake such an expansion at this time. Each
subsidiary has the opportunity to conduct various projects with the funds it
receives. A rate of return (as a percent of investment) has been established for
each project. In addition, certain projects permit only limited investment. The
data of each project are given below:

SUBSIDIARY

1

2

3

PROJECT

1
2
3
4
5
6
7
8

RATE OF
RETURN

7%
5%
8%
5%
7%
9%
10%
8%

UPPER LIMIT OF
INVESTMENT

$6 million
$5 million
$9 million
$7 million

$10 million
$4 million
$6 million
$3 million

Formulate this problem as a linear program.

[1.17] A 10-acre slum in New York City is to be cleared. The officials of the
city must decide on the redevelopment plan. Two housing plans are to be
considered: low-income housing and middle-income housing. These types of
housing can be developed at 20 and 15 units per acre, respectively. The unit
costs of the low- and middle-income housing are $17,000 and $25,000. The
lower and upper limits set by the officials on the number of low-income
housing units are 80 and 120. Similarly, the number of middle-income housing
units must lie between 40 and 90. The combined maximum housing market
potential is estimated to be 190 (which is less than the sum of the individual
market limits due to the overlap between the two markets). The total mortgage
committed to the renewal plan is not to exceed $2.5 million. Finally, it was
suggested by the architectural adviser that the number of low-income housing
units be at least 50 units greater than one-half the number of the middle-income
housing units.

a. Formulate the minimum cost renewal planning problem as a linear
program and solve it graphically.

b. Resolve the problem if the objective is to maximize the number of
houses to be constructed.

[1.18] Consider the following problem of launching a rocket to a fixed altitude b
in a given time T while expending a minimum amount of fuel. Let u(t) be the
acceleration force exerted at time t and let y(t) be the rocket altitude at time t.
The problem can be formulated as follows:

Minimize J0 |w(?)|i#

subject to y(t) = u(t) - g

36 Chapter 1

y(T) = b
y(t) > 0, / e [Ο,Γ],

where g is the gravitational force and y is the second derivative of the altitude
y. Discretize the problem and reformulate it as a linear programming problem.
In particular, formulate the problem for T = 15, b = 20, and g = 32. (Hint:
Replace the integration by a proper summation and the differentiation by

difference equations. Make the change of variables M, = x ·, V/, based on the

discretization, and note that x- > u and x- > -w·.)

[1.19] Consider the Multiperiod Coal Blending and Distribution Problem
presented in Section 1.2. For the developed model, we have ignored the effect
of any production and distribution decisions made prior to period / = 1 that
might affect the present horizon problem, and we have also neglected to
consider how production decisions during the present horizon might impact
demand beyond period T (especially considering the shipment lag phenomenon).
Provide a detailed discussion on the impact of such considerations, and suggest
appropriate modifications to the resulting model.

[1.20] Consider the Multiperiod Coal Blending and Distribution Problem
presented in Section 1.2, and assume that the shipment lag is zero (but that the
initial storage at the silos is still assumed to be dissipated in three periods).

Defining the principal decision variables as y^, = amount (tons) of coal

shipped from mine / through siloy to customer k during a particular time period

t, and yjkz = amount (tons) of coal that is in initial storage at silo j , which is

shipped to customer k in period r (where r = 1, 2, 3), and defining all other
auxiliary variables as before, reformulate this problem as a linear program.
Discuss its size, structure, and assumptions relative to the model formulated in
Section 1.2.

[1.21] Consider the Multiperiod Coal Blending and Distribution Problem pre-
sented in Section 1.2. Suppose that we define the principal decision variables as

1 *s

yijt = amount (tons) of coal shipped from mine i to silo j in period t; yjkt =

amount (tons) of coal shipped from siloy to customer k in period t; and y^ =

amount (tons) of coal that is in initial storage at silo j , which is shipped to
customer k in period / (where / = 1, 2, 3), with all other auxiliary decision
variables being defined as before. Assuming that coal shipped from any mine i
to a silo j will essentially affect the ash and sulfur content at siloy for only three
periods as before (defined as the shipment lag), derive expressions for the
percentage ash and percentage sulfur contents of the coal that would be
available for shipment at silo j during each period /, in terms of the foregoing
decision variables. Discuss how you might derive some fixed constant estimates
for these values. Using these estimated constant values, formulate the coal
distribution and blending problem as a linear program in terms of the just-
mentioned decision variables. Discuss the size, structure, and assumptions of
this model relative to the model formulated in Section 1.2. Also, comment on

Introduction 37

the nature of the resulting model if we used the actual expressions for the ash
and sulfur content of coal at each silo j during each period t, in lieu of the
constant estimates.
[1.22] A region is divided into m residential and central business districts. Each
district is represented by a node, and the nodes are interconnected by links
representing major routes. People living in the various districts go to their
business in the same and/or at other districts so that each node attracts and/or
generates a number of trips. In particular, let ay be the number of trips

generated at node / with final destination at node j and let by be the time to

travel from node i to node j . It is desired to determine the routes to be taken by
the people living in the region.

a. Illustrate the problem by a suitable network.
b. Develop some measures of effectiveness for this traffic assignment

problem, and for each measure, devise a suitable model.

[1.23] Consider the problem of scheduling court hearings over a planning
horizon consisting of « periods. Let b- be the available judge-hours in period j ,

hy be the number of hearings of class ; arriving in period j , and ai be the

number of judge-hours required to process a hearing of class ;'. It is desired to
determine the number of hearings Xy of class i processed in period/

a. Formulate the problem as a linear program.
b. Modify the model in Part (a) so that hearings would not be delayed

for too long.

[1.24] Consider the following multiperiod, multiproduct Production-Inventory
Problem. Suppose that we are examining T periods t = 1,..., T, and some n
products / = 1,..., n. There is an initial inventory of yi0 that is available at hand
for each product /, / = 1,..., n. We need to principally determine the level of
production for each product i = 1,..., n during each of the periods / = 1,..., T, so
as to meet the forecasted demand dit for each product / during each period /

when it occurs, at a minimal total cost. To take advantage of varying demands
and costs, we are permitted to produce excess quantities to be stored for later
use. However, each unit of product / consumes a storage space Sj, and incurs a
storage cost of cit during period t, for / = 1,..., n, t = 1,..., T. The total storage
space anticipated to be available for these n products during period /is St, t=\
,..., T. Furthermore, each unit of product i requires /?, hours of labor to produce,
where the labor cost per hour when producing a unit of product i during period t
is given by iit, for / = 1,..., n, t = 1,..., T. The total number of labor hours

available to manufacture these n products during period t is given by Ht.
Formulate a linear program to solve this production-inventory control system
problem, prescribing production as well as inventory levels for each product
over each time period.

38 Chapter 1

[1.25] Suppose that there are m sources that generate waste and n disposal sites.
The amount of waste generated at source / is a,· and the capacity of site j is b-.

It is desired to select appropriate transfer facilities from among K candidate
facilities. Potential transfer facility k has a fixed cost fk, capacity qk, and unit

processing cost ak per ton of waste. Let cik and cL be the unit shipping costs

from source i to transfer station k and from transfer station k to disposal site j ,
respectively. The problem is to choose the transfer facilities and the shipping
pattern that minimize the total capital and operating costs of the transfer stations
plus the transportation costs. Formulate this distribution problem. {Hint: Let yk

be 1 if transfer station k is selected and 0 otherwise.)

[1.26] A governmental planning agency wishes to determine the purchasing
sources for fuel for use by n depots from among m bidders. Suppose that the
maximum quantity offered by bidder i is at gallons and that the demand of depot/

is bj gallons. Let c,y be the unit delivery cost for bidder i to they'th depot.

a. Formulate the problem of minimizing the total purchasing cost as a
linear program.

b. Suppose that a discount in the unit delivery cost is offered by bidder i
if the ordered quantity exceeds the level ar;. How would you
incorporate this modification in the model developed in Part (a)?

[1.27] The quality of air in an industrial region largely depends on the effluent
emission from n plants. Each plant can use m different types of fuel. Suppose
that the total energy needed at plant j is b- British Thermal Units per day and

that Cj- is the effluent emission per ton of fuel type i at plant j . Further suppose

that fuel type / costs c; dollars per ton and that each ton of this fuel type generates

ay British Thermal Units at plant j . The level of air pollution in the region is not

to exceed b micrograms per cubic meter. Finally, let γ ■ be a meteorological

parameter relating emissions at plant/ to air quality in the region.

a. Formulate the problem of determining the mix of fuels to be used at
each plant.

b. How would you incorporate technological constraints that prohibit
the use of certain mixes of fuel at certain plants?

c. How could you ensure equity among the plants?

[1.28] For some industry, let p(Q), Q > 0, be an inverse demand curve, that is,

p(Q) is the price at which a quantity Q will be demanded. L e t / (0 , Q > 0, be a
supply or marginal cost curve, that is, fyQ) is the price at which the industry is
willing to supply Q units of the product. Consider the problem of determining a

(perfect competition) equilibrium price and production quantity p* and Q* for

/>(·) and /(■) of the type shown in Figure 1.14 via the intersection of these

Introduction 39

supply and demand curves. Note that Q* is obtainable by finding that Q, which
maximizes the area under the demand curve minus the area under the supply
curve. Now, suppose that /(·) is not available directly, but being a marginal
cost curve, is given implicitly by

\®f(x)dx = min{cy: Ay = b, ay = Q,y > 0},

where A is m x n, a and c are 1 x «, and y is an «-vector representing a set of
production activities. Further, suppose that the demand curve />(·) is approx-
imated using the steps shown in the figure. (Let there be s steps used, each of
height Hi and width Wi for / = 1,..., s.) With this approximation, formulate the
problem of determining the price-quantity equilibrium as a linear program.

* Q

Figure 1.14. Supply demand equilibrium for Exercise 1.28

[1.29] Consider the following two-stage stochastic program with recourse.
Suppose that in a time-stage process, we need to make some immediate decision
("here and now") that is represented by the decision variable vector x > 0. (For
example, x might represent some investment or production decisions.) This
decision must satisfy the constraints Ax = b. Subsequent to this, a random demand
vector d, say, will be realized according to some probability distribution. Based on
the initial decision x and the realization d, we will need to make a recourse
decision y > 0 (e.g., some subsequent additional production decisions), such that
the constraint Dx + Ey = d is satisfied. The total objective cost for this pair of
decisions is given by q x + C2y. Assume that the random demand vector d can
take on a discrete set of possible values dj , d2 , —, d„ with respective known

probabilities p\, p2,—,pq, where Σ Pr
r=\

= 1, pr > 0, Vr = \,...,q. (Accord-

ingly, note that each realization dr will prompt a corresponding recourse decision
yr.) Formulate the problem of minimizing the total expected cost subject to the
initial and recourse decision constraints as a linear programming problem. Do you
observe any particular structure in the overall constraint coefficient matrix with
respect to the possible nonzero elements? (Chapter 7 explores ways for solving
such problems.)

[1.30] Consider the following linear programming problem.

40 Chapter 1

Minimize

subject to - * i

x\

- 2x2

+ 3x2

+ 2x2

- * 2

- 3x3

+ x3 < 13

+ 3x3 > 12

+ x3 = 4

x2 unrestricted

x3 < - 3 .

a. Reformulate the problem so that it is in standard format.
b. Reformulate the problem so that it is in canonical format.
c. Convert the problem into a maximization problem.

[1.31] Consider the following problem:

Maximize
subject to

x\
- j q

- 3 x j
x{,

~ x2
+ 3x2
+ 2x2

x2

<
>
>

0
-3

0

a.

b.

Sketch the feasible region in the (X], Χ2) space.

Identify the regions in the (xj, x2) space where the slack variables

x3 and x4 , say, are equal to zero.
Solve the problem geometrically.
Draw the requirement space and interpret feasibility.

[1.32] Consider the feasible region sketched in Figure \.5b. Geometrically,
identify conditions on the objective gradient vector c for which the different
points in the feasible region will be optimal and identify the vectors c for which
no optimum exists. (Assume a minimization problem.)

[1.33] Sketch the feasible region of the set {x: Ax < b} where A and b are as
given below. In each case, state whether the feasible region is empty or not and
whether it is bounded or not.

a.

b. A:

c.

"-1

0

2
1

0"

-1

3
-1

b =

"0"

0

6
5

1

-1

-1

f
-2

0

b =

5"

-12

0

[1.34] Consider the following problem:

Introduction 41

a.
b.

Maximize
subject to

3X!
-*1

Sketch the feasible region.

+
+

x2
2x2

x2
<
<

0
4.

Verify that the problem has an unbounded optimal solution value.

[1.35] Consider the following problem:

Maximize
subject to

2x\
*l

4xj
Xj,

+
+
+

3x2

x2

6x2
x2

<
<
>

2
9
0.

a. Sketch the feasible region.
b. Find two alternative optimal extreme (corner) points.
c. Find an infinite class of optimal solutions.

[1.36] Consider the following problem:

Maximize -xj - x2 + 2x3 + x4

subject to 2xj + x2 + x3 + x4 > 6
Xj + 2x2 - 2x3 + x4 < 4
X], x2 , x3, x4 > 0.

a. Introduce slack variables and draw the requirement space.
b. Interpret feasibility in the requirement space.
c. You are told that an optimal solution can be obtained by having at

most two positive variables while all other variables are set at zero.
Utilize this statement and the requirement space to find an optimal
solution.

[1.37] Consider the following problem:

Maximize
subject to

3xj
-*!

-2xj
*1
Xj,

+
+
+
+

6x2
2x2

x2

2x2
x2

<
<
<
>

2
0
4
0,

a. Graphically identify the set of all alternative optimal solutions to this
problem.

b. Suppose that a secondary priority objective function seeks to
maximize -3xj + x2 over the set of alternative optimal solutions
identified in Part (a). What is the resulting solution obtained?

c. What is the solution obtained if the priorities of the foregoing two
objective functions is reversed?

[1.38] Consider the problem: Minimize ex subject to Ax > b, x > 0. Suppose that
one component of the vector b, say bt, is increased by one unit to 6, + 1.

a. What happens to the feasible region?
b. What happens to the optimal objective value?

[1.39] From the results of the previous problem, assuming dz I dbj exists, is it <
0, = 0, or > 0?

42 Chapter 1

[1.40] Solve Exercises 1.38 and 1.39 if the restrictions Ax > b are replaced by
Ax<b .

[1.41] Consider the problem: Minimize ex subject to Ax > b, x > 0
a new constraint is added to the problem.

a. What happens to the feasible region?
b. What happens to the optimal objective value z ?

[1.42] Consider the problem: Minimize ex subject to Ax > b, x > 0
a new variable is added to the problem.

a. What happens to the feasible region?
b. What happens to the optimal objective value z ?

[1.43] Consider the problem: Minimize ex subject to Ax > b, x > 0
a constraint, say constraint /, is deleted from the problem.

a. What happens to the feasible region?
b. What happens to the optimal objective value z ?

[1.44] Consider the problem: Minimize ex subject to Ax > b, x > 0
a variable, say, xk, is deleted from the problem.

a. What happens to the feasible region?
b. What happens to the optimal objective value z ?

NOTES AND REFERENCES

1. Linear programming and the simplex method were developed by Dantzig
in 1947 in connection with military planning. A great deal of work has
influenced the development of linear programming, including World War
II operations and the need for scheduling supply and maintenance
operations as well as training of Air Force personnel: Leontief s input-
output model [1951], von Neumann's Equilibrium Model [1937],
Koopmans' Model of Transportation [1949], the Hitchcock transportation
problem [1941], the work of Kantorovich [1958], von Neumann-
Morgenstern game theory [1944], and the rapid progress in electronic
computing machines have also impacted the field of linear programming.
The papers by Dantzig [1982] and by Albers and Reid [1986] provide
good historical developments.

2. Linear programming has found numerous applications in the military, the
government, industry, and urban engineering. See Swanson [1980], for
example.

3. Linear programming is also frequently used as a part of general
computational schemes for solving nonlinear programming problems,
discrete programs, combinatorial problems, problems of optimal control,
and programming under uncertainty.

4. Exercise 1.8 is derived from Camm et al. [1987], who discuss some
modeling issues. For more detailed discussions, see Woolsey and
Swanson [1975], Woolsey [2003], and Swanson [1980]. The Multiperiod
Coal Blending and Distribution Problem discussed in Section 1.2, and
Exercises 1.19-1.21, are adapted from Sherali and Puri [1993] (see also
Sherali and Saifee [1993]). For a discussion on structured modeling and
on computer-assisted/artificial intelligence approaches to linear

Suppose that

Suppose that

Suppose that

Suppose that

Introduction 43

programming modeling, see Geoffrion [1987], Greenberg [1983], and
Murphy and Stohr [1986], for example.

5. For discussions on diagnosing infeasibilities and related Irreducible
Infeasible System (IIS) issues, see Arnaldi et al. [2003], Greenberg
[1996], Greenberg and Murphy [1991], and Parker and Ryan [1996].

6. For an excellent discussion on modeling issues and insights related to
formulating and solving real-world problems, the reader is referred to
Brown and Rosenthal [2008] (also, see the other references cited therein).

This page intentionally left blank

TWO: LINEAR ALGEBRA, CONVEX
ANALYSIS, AND POLYHEDRAL SETS

In this chapter we review some basic results from linear algebra and convex
analysis. These results will be used throughout the book. The reader may skip
any sections of this chapter, according to his or her familiarity with the subject
material. Sections 2.1 and 2.2 review some elementary results from vector and
matrix algebra. In Section 2.3 we discuss the solvability of a system of linear
equations and introduce an important notion of basic solutions. The remaining
sections discuss results from convex analysis, including the notions of convex
sets, convex and concave functions, convex cones, hyperplanes, and polyhedral
sets. The sections on polyhedral sets, which are sets over which linear programs
are solved, and their representation in terms of extreme points and extreme
directions are very important in linear programming, and hence they deserve
thorough study. In particular, Section 2.6 provides geometric insights into the
structure of polyhedral sets and develops its various characterizations using only
fundamental definitions.

2.1 VECTORS

An «-vector is a row or a column array of « numbers. For example, a = (1, 2, 3,

-!) -1, 4) is a row vector of size n = 5, and a is a column vector of size ,

2. Row and column vectors are denoted by lowercase boldface letters, such as
a, b, c. Whether a vector is a row or a column vector will be clear from the
context. Figure 2.1 shows some vectors in a two-dimensional space. Each
vector can be represented by a point or by a line from the origin to the point,
with an arrowhead at the end point of the line.

Figure 2.1. Some examples of vectors.

45

46 Chapter 2

Special Vectors

ZERO VECTOR

The zero vector, denoted by 0, is a vector with all components equal to zero.
This vector is also referred to as the origin.

ith UNIT VECTOR

This is a vector having zero components, except for a 1 in the ith position. This
vector is denoted by e; and is sometimes called the z'th coordinate vector.

rth position

i
e,· = (0,0,...,1,...,0,0).

SUM VECTOR

This is a vector having each component equal to one. The sum vector is denoted
by 1. (Sometimes, the vector e is used to denote this vector.)

Addition and Multiplication of Vectors

ADDITION

Two vectors of the same size can be added, where addition is performed
componentwise. To illustrate, let aj and a2 be the following two «-vectors:

a l = (.an,a2\,...,anl),

a2 = (au,a22,...,an2).

Then the addition of aj and a2, denoted by aj + a2, is the following vector:

«l + a2 = (an + an,a2X + a22,...,anl + an2).

The operation of vector addition is illustrated in Figure 2.2. Note that aj + a2 is

the diagonal of the parallelogram with sides aj and a2. It is obtained by step-

ping along aj and then a2, or vice versa.

SCALAR MULTIPLICATION

The operation of multiplying a vector a with a scalar k is performed component-
wise. I f a = {a\,a2,...,an), then the vector k& - (kax,ka2,...,kan). This opera-
tion is shown in Figure 2.3. If k > 0, then k& points in the same direction as a.
On the other hand, if k < 0, then ka points in the opposite direction.

Linear Algebra, Convex Analysis, and Polyhedral Sets 47

Figure 2.2. Vector addition.

Inner Product

Any two «-vectors a and b can be multiplied. The result of this multiplication is
a real number called the inner or dot product of the two vectors. It is defined as
follows:

ab = αφχ + α·φι + ··· + anbn = Σ ajbj-

For example, if a = (1,-1) and b = , , then ab = - 3 .

Norm of a Vector

Various norms (measures of size) of a vector can be used. We shall use here the
Euclidean norm. This norm is the square root of the inner product of the vector
and itself. In other words, the norm of a vector a, denoted by llall, is given by

Σ"=ία). Note that

a + b Hall2 + ||b||2 + 2ab

for any two vectors a and b of the same size.

Schwartz Inequality

Given two vectors a and b of the same size, the following inequality, called the
Schwartz inequality, holds:

|ab| < llall ||bj|.

To illustrate, let a = (0, 2) and b : . Then ab = 8, whereas llall = 2 and ||b|| =

5. Clearly 8 < 2 x 5. In fact, given nonzero vectors a and b, the ratio of the
inner product ab to llall llbll provides a measure of the angle Θ between the two

48 Chapter 2

k&, k>0 (here, k> 1)

Figure 2.3. Scalar multiplication.

vectors. In particular, cose? = a b / a b . Of course, if ab = 0, then cosi? = 0;

that is, the two vectors a and b are orthogonal or normal or perpendicular to
each other. Figure 2.4 shows two orthogonal vectors a and b.

Euclidean Space

An «-dimensional (real) Euclidean space, denoted by R", is the collection of

all vectors of dimension n. Addition and scalar multiplication of vectors in R"

were defined previously. Also, associated with any vector in Rn is its norm, and

associated with any two vectors in Rn is their inner product, defined previously.

Linear and Affine Combinations

A vector b in R" is said to be a linear combination of a[,a2,...,a£ in Rn, if b

■\h = = X*.=jA.-a,·, where Aj, λ^,.,.,λ^ are real numbers. If, in addition, £*._

1, then b is said to be an affine combination of aj,a2,...,at.

Linear and Affine Subspaces

A linear subspace SL of Rn is a subset of R" such that if a! and a2 £ SL,

then every linear combination of aj and a2 belongs to SL. Similarly, an affine

subspace SA of Rn is a subset of R" such that if aj and a2 £ SA, then every

affine combination of aj and a2 belongs to SA.

Linear Independence

A collection of vectors aj,a2,...,a^ of dimension n is called linearly inde-
pendent if

Σ l a - = 0 implies that A.- = 0, for ally = \,...,k.

Linear Algebra, Convex Analysis, and Polyhedral Sets 49

a = (-1,3)

b = (6,2)

Figure 2.4. Orthogonal vectors.

For example, let aj = (1, 2) and a2 = (-1,1). These two vectors are linearly
independent because A] (1,2) + ^(-1 ,1) = (0,0) implies that \ = Àq_ = 0. A
collection of vectors is called linearly dependent if they are not linearly
independent. Therefore, a1,a2,...,alt are linearly dependent if there exist

λχ,λχ,.,.,λ^, not all zero, such that γ}:χλ:&: = 0. For example, let a! = (1, 2,

3), a2 = (-1,1, - 1), and a3 = (0,3, 2). These three vectors are linearly

dependent because Ajaj + λ^Ά2 + A3a3 =0 for A] = λ^ — 1 and A3 = - 1 .

Spanning Set

A collection of vectors a1,a2,...,a/t in R" is said to span R" if any vector in

R" can be represented as a linear combination of &-i,&2,...,&k. In other words,

given any vector b in R", we must be able to find scalars λ^,λ^,.,.,λ^ such that

To illustrate, let n = 2, and consider aj = (1,0), a2 = (-1,3), and a3 =

(2, 1). The vectors ai,a2,a3 span R , since any vector b in R can be repre-

sented as a linear combination of these vectors. For example, b = (b\,b2) can

be represented as λχ&χ + A?_a2
 + ^3a3 w n e r e A] = ^ Η—b2, Aq = ~^2» anc^

A3 = 0. In this case, the representation is not unique. Another representation is

given by letting \ = i\ - 2b2, λχ = 0, and A3 = b2.

Basis

A collection of vectors a1,a2,...,a/t forms a basis of R" if the following
conditions hold:

1. a1?a2,...,a^ span R".

2. If any of these vectors is deleted, the remaining collection of vectors

does not span R".

50 Chapter 2

It can be shown that the foregoing conditions are equivalent to the following
two requirements: k = n and a],a2,...,a„ are linearly independent. To illustrate,

and a2 consider the two vectors aj
vh vl /

2
in R . These two vectors

2
form a basis of R since k = n = 2, and a! and a2 are linearly independent.

Given a basis of R", say ai,a2,...,a„, any vector b in R" is uniquely

represented in terms of this basis. If b = X"._jA,-a,- and also b = X"=jA'a ·,

then S'LiO^/ ~ Λ·/)8/ = 0> which implies thatyl · = λ': for each /, since

otherwise, we would violate the linear independence of aj,a2,...,a„.

Since a basis in R" must always have n vectors, then the dimension of a
basis is unique, namely, n. But a basis itself is not unique, since any set of n

vectors that are linearly independent will form a basis in R".

Replacing a Vector in the Basis by Another Vector

In the simplex method discussed in Chapter 3, different bases will be generated,
where one vector from the last basis is replaced by another vector. We have to
be careful in choosing the vectors entering and leaving the basis, because
otherwise, the new vectors may not be linearly independent, and hence will not
form a basis. To illustrate, the vectors aj = (1, 2,1), a2 = (3, 0,1), and a3 =

(2, -2, 1) are linearly independent, and hence form a basis of R . We cannot
replace a3 by (2, -2, 0), because aj, a2 , and (2, -2, 0) are linearly dependent
and do not form a basis.

This leads to the following natural question: If we have a basis of R",

what is the condition that will guarantee that if a vector of the basis, say a ,·, is

replaced by another vector, say a, then the new set of vectors still forms a basis?

Let a1?a2,...,a„ form a basis of R". We want to replace a by a. Since

a] ,...,&„ form a basis, then a can be represented as a linear combination of these
vectors, that is,

n
a = Σ Xi&i.

i = l

Suppose that λ- Φ 0. We shall show that the vectors a1? a2,...,a ·_],

a, a,+1,...,a„ are linearly independent, and hence form a basis. Suppose that

there exist μ and //,·(/ Φ j), such that

Σ MM + //a = 0.

Linear Algebra, Convex Analysis, and Polyhedral Sets 51

Substituting a = Σ"=ιΛ'8ί> w e g e t

Σ MM + μ Σ Λ-a, = 0,
i*j i=\

i.e., Σ (Mi + M) a ; + Mj*j = 0.

But since al5 a2,...,a,,...,a„ are linearly independent, then μλ- = 0, and

μι + μλι = 0 for / Φ j . Since A, Φ 0 by assumption, then // = 0. But this

implies that //, = 0 for i Φ j . In other words, £ i ? t -//,-a,· + /ia = 0 is only

possible if μ = 0 and μ, = 0 for / Φ j , and hence, a and a, for / ^ _/ are
linearly independent and must form a basis. From this discussion it is obvious
that the condition A · Φ 0 is sufficient for the new set of vectors to be linearly

independent. Obviously, the condition is also necessary, because if A.- were

zero, then a - Σ/*/Λ3/ = 0> a nd hence, a and a,· for / Φ j would be linearly

dependent.

2.2 MATRICES

A matrix is a rectangular array of numbers. If the matrix has m rows and n
columns, it is called an m χ η matrix (read "w by «"). Matrices will be denoted
by capital boldface letters, such as A, B, C. An example of a 3 χ 2 matrix is
given below:

1
2
3

-1
2
1

The entry in row / and column j is denoted by a;.·; for example, a]2 = -1 and

«3j = 3. An m χ « matrix A can be represented by its columns or by its rows. If

we denote the columns of A by a],a2,...,a„, then A = [aj,a2,...,a„]. Similarly,

A can be represented as

" A

where a , a ,...,am are the rows of A. Note that every vector is a matrix, but
every matrix is not necessarily a vector.

52 Chapter 2

Addition of Matrices

The addition of two matrices of the same dimension is defined component-wise;
that is, if A and B are m χ n matrices, then C = A + B is defined by letting
Cjj = o,y + by, for i = 1,..., m and/ = 1,..., n.

Multiplication by a Scalar

Let A be an w x « matrix and let & be a scalar. Then /cA is an m χ η matrix
whose ij entry is ka^.

Matrix Multiplication

Let A be an m χ n matrix and B be an n χ p matrix. Then the product AB is
defined to be the m χ p matrix C with

n
% = Y.aikbki, for/'=l,..., m and j=\,...,p.

k=\

In other words, the ij entry of C is determined as the inner product of the z'th row
of A and they'th column of B. Let

"1
4
2

-1 1
-2 5

0 1
and B =

5 0
3 0
1 1

Then

"1
4
2

-1 1
-2 5

0 1

"5 0"
3 0
1 1

=
" 3 f
19 5
11 1

The following points need to be emphasized. If A is an m χ n matrix and B is a
p x q matrix, then:

1. AB is defined only iin=p. AB is then an m χ q matrix.
2. BA is defined only if q = m. BA is then ap χ η matrix.
3. Even if AB and BA are both defined (if m = n — p — q), then AB is

not necessarily equal to BA. Note that AB in the foregoing example
is defined, but BA is not defined.

Special Matrices

ZERO MATRIX

An m x n matrix is called the zero matrix if each entry in the matrix is zero.

IDENTITY MATRIX

A square n χ η matrix is called the identity matrix, denoted by I (sometimes the
notation I„ is used to denote its size), if it has entries equal to one on the

Linear Algebra, Convex Analysis, and Polyhedral Sets 53

diagonal and zero entries everywhere else. Note that AI„ = A and ImA = A for
any m χ η matrix A.

TRIANGULAR MATRIX

A square n χ η matrix is called an upper triangular matrix if all the entries
below the diagonal are zeros. Similarly, an n χ η matrix is called a lower
triangular matrix if all elements above the diagonal are zeros.

Transposition

Given an m χ η matrix A with ay as its ij entry, the transpose of A, denoted by

A1, is an n x m matrix whose ij entry is α.Ί. In other words, A' is formed by

letting they'th column of A be they'th row of A' (similarly, by letting they'th row

of A be theyth column of A'). A square matrix A is called symmetric if A = A'

and skew-symmetric if A = -A' . The following results are obvious:

1. (A') ' = A.

2. If A and B have the same dimension, then (A + B)' = Α' + Β'.

3. If AB is defined, then (AB)' = Β Ά ' .

Partitioned Matrices

Given an m χ n matrix A, we can obtain a submatrix of A by deleting certain
rows and/or columns of A. Hence, we can think of a matrix A as being
partitioned into submatrices. For example, consider

«11

«21

«31

«41

«12

«22

«32

«42

«13

«23

«33

«43

«14

«24

«34

«44

Here A has been partitioned into four submatrices: A n , A12, A21, and A22;
therefore

An
A 2 1

A, 2

A 2 2

where

"«11

«21

.«31

«12

«22

«32 _

A 1 2 =

«13

«23

.«33

«14

«24

«34 .

54 Chapter 2

A21 = [a4] a42], Α22 = [a43 a44].

Now, suppose that A and B are partitioned as follows:

[An
A2 !

«2

Α12Ί

A22_ /W2

B
[B11

B21

?2

B 1 2

B 2 2

ft
B 1 3

B 2 3

The AB is defined by

AB =
[An
A21

A12

A 2 2 _

[B11
B 2 1

B12

B 2 2

B 13

B 2 3

P\

Pi-

Α,ιΒι, + Α,,Β H\a\\ 12D21

A91B11 + A99B l 2 1 D l l 22D21

A n B 1 2 + Α,,Β 12D22

A2iB12 + A22B22

AnB,3 + A]2B23

A T I B I T + A T O B l21D13 22D23

Note that we must have «j = ρχ and n2 = p2, so that the product of the sub-
matrices is well defined.

Elementary Matrix Operations

Given an m * n matrix A, we can perform some elementary row and column
operations. These operations are most helpful in solving a system of linear
equations and in finding the inverse of a matrix (to be defined later).

An elementary row operation on a matrix A is one of the following
operations:

1. Row i and rowy' of A are interchanged.
2. Row i is multiplied by a nonzero scalar k.
3. Row i is replaced by row / plus k times row/

Elementary row operations on a matrix A are equivalent to premultiplying A by
a specific matrix. Elementary column operations are defined similarly.
Elementary column operations on A are equivalent to postmultiplying A by a
specific matrix.

Example 2.1

Let

A =
2 1 1

-1 2 1
1 -1 2

10

We shall perform the following elementary operations on A. Divide row 1 by 2,
then add the new row 1 to row 2 and subtract it from row 3. This gives

1
0
0

1/2
5/2

-3/2

1/2
3/2
3/2

5
13
-3

Linear Algebra, Convex Analysis, and Polyhedral Sets 55

Now, multiply row 2 by 2/5, then multiply the new row 2 by 3/2 and add it to
row 3. This gives

1 1/2 1/2 5"
0 1 3/5 26/5
0 0 24/10 24/5

Divide row 3 by 24/10. This gives

"1 1/2 1/2 5"
0 1 3/5 26/5
0 0 1 2

Note that the matrix A is reduced to the foregoing matrix through elementary
row operations. In particular, the first operation is performed by premultiplying
A by the following matrix:

1/2 0 0
1/2 1 0

-1/2 0 1

Solving a System of Linear Equations by Elementary Matrix Operations

Consider the system Ax = b of m equations in n unknowns, where A is an m χ η
matrix, b is an w-vector, and x is an «-vector of variables. The following fact is
helpful in solving this system: Ax = b if and only if A'x = b', where (Α', b') is
obtained from (A, b) by a finite number of elementary row operations. To
illustrate, consider the following system:

Hence,

2xj +
- X j +

xx -

(A,b)

*2 +
2x, +

Χ'χ + -̂ **3

x3 =

*3 =

10

2.

1 1 10
2 1 8

- 1 2 2

This matrix was reduced in Example 2.1 through elementary row operations to

1 1/2 I/2 5

0 1 3/5 26/5
0 0 1 2

Therefore, x solves the original system if and only if it solves the
following system:

xx + (l/2)x2 + (1/2)JC3 = 5
x2 + (3/5) x3 = 26/5

x3 = 2.

56 Chapter 2

Note that A' is upper triangular, and we can solve the system by back-
substitution. From the third equation x3 = 2, from the second equation

x2 = 4, and from the first equation xl = 2. The process of reducing A into an
upper triangular matrix with ones on the diagonal is called Gaussian reduction
of the system. By performing further row operations, we could have reduced A
into an identity matrix, from which the vector b would have been transformed to

(2,4,2)'. This process is called a Gauss-Jordan reduction of the system.

Matrix Inversion

Let A be a square n χ n matrix. If B is an n χ n matrix such that AB = I and BA
= I, then B is called the inverse of A. The inverse matrix, if it exists, is unique

and is denoted by A" . If A has an inverse, A is called nonsingular; otherwise,
A is called singular.

CONDITION FOR EXISTENCE OF THE INVERSE

Given an « x « matrix A, it has an inverse if and only if the rows of A are
linearly independent or, equivalently, if the columns of A are linearly
independent.

CALCULATION OF THE INVERSE

The inverse matrix, if it exists, can be obtained through a finite number of
elementary row operations. This can be done by noting that if a sequence of ele-
mentary row operations reduce A to the identity, then the same sequence of

operations will reduce (A, I) to (I, A -). In fact, this is equivalent to pre-

multiplying the system by A~ . Further, if (A,B) is reduced to (I,F) by

elementary row operations, then F = A - B.
In order to calculate the inverse, we adjoin the identity to A. We then

reduce the matrix A to the identity matrix using elementary row operations. This

will result in reducing the identity to A - . Of course, if A~ does not exist, then
the elementary row operations will fail to produce the identity. This discussion
is made clear by the following two examples.

Example 2.2

(A" exists)

Consider the matrix A:

A =
2 1 1

-1 2 1
1 -1 2

To find the inverse, form the augmented matrix (A, I) and reduce A by
elementary row operations to the identity. The matrix in place of I will then be

A~ . To begin:

Linear Algebra, Convex Analysis, and Polyhedral Sets 57

2
1
1

1 1
2 1

-1 2

1 0 0
0 1 0
0 0 1

Divide the first row by 2. Add the new first row to the second row and subtract
it from the third row:

1 1/2 1/2
0 5/2 3/2
0 -3/2 3/2

1/2 0 0
1/2 1 0

-1/2 0 1

Multiply the second row by 2/5. Multiply the new second row by -1/2 and

add to the first row. Multiply the new second row by 3/2 and add to the third

row:

1 0 1/5
0 1 3/5
0 0 12/5

2/5 -1/5 0
1/5 2/5 0

-1/5 3/5 1

Multiply the third row by 5/12. Multiply the new third row by -3/5 and add to

the second row. Multiply the new third row by -1/5 and add to the first row:

5/12 -3/12 -1/12'
3/12 3/12 -3/12

-1/12 3/12 5/12

Therefore, the inverse of A exists and is given by

1
0
0

0
1
0

0
0
1

A - » = - L
12

5
3

-1

Example 2.3

(A" does not exist)

Consider the matrix A:

1
2
1

1 2
-1 1
2 3

The inverse does not exist since a3 = aj + a2. If we use the foregoing pro-
cedure, the elementary matrix operations will fail to produce the identity. To
begin, we form:

1
2
1

1 2
-1 1
2 3

1 0 0
0 1 0
0 0 1

58 Chapter 2

Multiply the first row by -2 and add to the second row. Multiply the first row
by -1 and add to the third row:

1
0
0

1
-3

1

2
-3

1

1 0 0
-2 1 0
-1 0 1

Multiply the second row by -1/3. Then multiply the new second row by -1 and
add to the first row. Multiply the new second row by -1 and add to the third
row:

1 0 1
0 1 1
0 0 0

1/3
2/3

-5/3

1/3 0
-1/3 0

1/3 1

There is no way that the left-hand-side matrix can be transformed into the
identity matrix by elementary row operations, and hence, the matrix A has no
inverse.

The following facts about matrix inversion are useful:

1. If A is nonsingular, then A' is also nonsingular and (A')~ =

(A"1)'.

2. If A and B are both n χ n nonsingular matrices, then AB is

nonsingular and (AB)~ = B~ A~ .

3. A triangular matrix (either lower or upper triangular) with nonzero
diagonal elements has an inverse. This can be easily established by
noting that such a matrix can be reduced to the identity by a finite
number of elementary row operations. In particular, let D =
diagli, . . . ,dn) be a diagonal matrix with diagonal elements
d\,...,dn and all other elements equal to zero. If d\,...,dn are all

nonzero, then D~ = diag {1 / d\,..., 1 / dn}.

4. Let A be partitioned as follows, where D is nonsingular:

"l

"2·

«1

I

0

"2

c
D

Then A is nonsingular and

A - ' =
-CD"

D -1

Linear Algebra, Convex Analysis, and Polyhedral Sets 59

Determinant of a Matrix

Associated with each square n χ η matrix is a real number called the
determinant of the matrix. Let A be an n χ η matrix whose ij element is a^. The

determinant of A, denoted by det A, is defined as follows:

detA = Σ anA\,

Nl + l where ΑΛ is the cofactor of αΛ defined as (-1) times the determinant of the
submatrix of A obtained by deleting the rth row and first column. The
determinant of a 1 x 1 matrix is just the element itself. To illustrate, consider the
following example:

det
1 0 1
2 1 -3

-3 2 1
141 + 2Λ71 - 3A *Ί1 ■21 3̂1

det 2 det 0 1
2 1 -3de t

Note that the foregoing definition reduces the calculation of a determinant of an
n x n matrix to n determinants of (n - 1) x (n - 1) matrices. The same

definition can be used to reduce the determinant of an (n - 1) x (n - 1) matrix

to determinants of (n - 2) x (n - 2) matrices, and so forth. Obviously, by this

definition, the determinant of a 2 χ 2 matrix, say A'
a2\

an

«22

is simply

α11α22 ~ al\a\2-
To summarize, the determinant of an « χ η matrix can be calculated by

successively applying the foregoing definition. The determinant of A is
therefore given by 1(1 + 6) - 2(0 - 2) - 3(0 - 1) = 14. We summarize some
important facts about determinants of square matrices.

1. In the definition, the first column was used as a reference in
calculating det A. Any column or row can be used as a reference in
the calculations, that is,

detA = Σ α ι /Λ; ' for any _/ = 1,..., n,
i=\

and similarly,

detA = Σ OfjAy, for any /= 1,..., n,
7=1

60 Chapter 2

where Ay is the cofactor of ay given as (-l)'+J times the deter-
minant of the submatrix obtained from A by deleting the rth row and
yth column.

2. detA = detA'.
3. Let B be obtained from A by interchanging two rows (or columns).

Then detB = -detA.
4. Let B be obtained from A by adding to one row (column) a constant

times another row (column). Then det B = det A.
5. Let B be obtained from A by multiplying a row (or column) by a

scalar k. Then det B = k det A.
6. Let A be partitioned as follows, where B and C are square:

B

D

0

c

Then detA = detB·detC.
7. By a repeated application of Fact 6, the determinant of a triangular

matrix is simply the product of the diagonal entries.
8. Let A and B be « χ n matrices. Then det (AB) = det A · det B.

9. detA Φ 0 if and only if the columns (and rows) of A are linearly
independent. Equivalently, det A = 0 if and only if the rows
(columns) of A are linearly dependent. Therefore, a square matrix A
has an inverse if and only if its determinant is not zero.

10. Let A be an « x « matrix whose determinant is not zero. Then A~
exists and is given by

detA

where B is the transpose of the matrix whose ij entry is Ay, the

cofactor of ay. Here B is called the adjoint matrix of A.

11. Consider the system Ax = b where A is « χ n, b is an «-vector, and x
is an «-vector of unknowns. If A has an inverse (that is, if
det A Φ 0), then the unique solution to this system is given by

detA·
X; = - , for/= 1,..., «, ; detA

where A .· is obtained from A by replacing they'th column of A by b.

This method for solving the system of equations is called Cramer's
Rule.

Linear Algebra, Convex Analysis, and Polyhedral Sets 61

The Rank of a Matrix

Let A be an m χ η matrix. The row rank of the matrix is equal to the maximum
number of linearly independent rows of A. The column rank of A is the
maximum number of linearly independent columns of A.

It can be shown that the row rank of a matrix is always equal to its
column rank, and hence the rank of the matrix is equal to the maximum number
of linearly independent rows (or columns) of A. Thus it is clear that rank (A) <
minimum {m, «}. If rank (A) = minimum {m, «}, A is said to be offull rank. It
can be shown that the rank of A is A: if and only if A can be reduced to

\h
0

Q
0

through a finite sequence of elementary matrix operations.

2.3 SIMULTANEOUS LINEAR EQUATIONS

Consider the system Ax = b and the augmented matrix (A, b) with m rows and n
+ 1 columns. If the rank of (A, b) is greater than the rank of A, then b cannot be
represented as a linear combination of ai,a2,...,a„, and hence there is no
solution to the system Ax = b (and in particular, there is no solution to the
system Ax = b, x > 0).

Now, let us suppose that rank (A) = rank (A, b) = k. Possibly after
rearranging the rows of (A, b), let

(A, b) =

where A] is k χ n, b] is a ^-vector, A2 is an (m - k) x n matrix, b 2 is an

(m - fc)-vector, and rank (Aj) = rank (Aj, bt) = k.

Note that if a vector x satisfies Ajx = bj, then it satisfies A2x = b 2

automatically. Therefore, we can throw away the "redundant" or "dependent"
constraints A2x = b 2 and keep the independent constraints Ajx = bj. Since

rank (A;) = k, we can pick k linearly independent columns of At. Possibly

after rearranging the columns of A], let A] = (B, N), where B is a k χ k

nonsingular matrix and N is k x (n - k). Note that such a matrix B exists since

Aj has rank k. Here B is called a basis matrix (since the columns of B form a

basis of R) and N is called the corresponding nonbasic matrix. Let us

decompose x accordingly into xB and xN, where xB is composed of

xx,x2,..;Xii and xN is composed of xk+l,...,xn. Now, AjX = bj means that

(Β,Ν) Χί

l7V
bi, that is, BxB + Nx^ = bj. Since B has an inverse, then we

can solve for xB in terms of xN by premultiplying by B , and we get

62 Chapter 2

xB = B \ - B l~NxN.

In the case k = n, N is vacuous, and we have a unique solution to the system

AjX= b], namely, xB = B~ bj = Aj" b). On the other hand, if n > k, then by

assigning arbitrary values to the vector xN, we can correspondingly compute

xB via the equation xB = B bj - B Nx̂ y to obtain a solution
XJV

to the

system Atx = b{. In this case, we have an infinite number of solutions to the

system Atx = b[(and hence to the system Ax = b). Note that the notion of

decomposing At into B and N and deriving xB = B~ bj - B~ ΉχΝ can be
interpreted as follows. We have a system of & equations in n unknowns. Assign
arbitrary values to n - k of the variables, corresponding to x^ , and then solve
for the remaining system of k equations in k unknowns. This is done such that
the k equations in k unknowns have a unique solution, and that is why we
require B to have an inverse. Such a solution obtained by letting xN = 0 and

xB = B~ bj is called a basic solution of the system AjX = bj. Let us now
summarize the different possible cases that may arise:

1. Rank (A, b) > rank (A), and hence Ax = b has no solution.
2. Rank (A, b) = rank (A) = k = n, and hence there exists a unique

solution to the system Ax = b.
3. Rank (A, b) = rank (A) = k < n, and hence we have an infinite

number of solutions to the system Ax = b.

In general, these cases may be determined through a Gauss-Jordan
reduction of the system Ax = b to the following form A'x = b' via elementary
row operations:

0 0
bi
b'2

Hence, rank (A) = k < min{w, «}. If k < m and b'2 Φ 0, we have Case (1). lik

= n < m, and also b^ = 0 when m> n, we have Case (2). lik < n, and also

b'2 = 0 when k<m,we have Case (3).

Example 2.4

Consider the following system:

+ 2 ^ 2 ~^~ -^3 — 2 x 4 =

+ ^-^2 — *̂ 3 ~^~ ^4 ~
x2 + x 3

= 10
= 6
= 2

We shall solve this system by matrix inversion (Gauss-Jordan reduction) and
also by only using a Gaussian reduction.

Linear Algebra, Convex Analysis, and Polyhedral Sets 63

1. Matrix Inversion. Reduce three columns of A to the identity (this is
possible since rank (A) = 3). To begin, we form:

1 2
-1 2
0 1

1
-1

1

-2
1
0

10
6
2

Add the first row to the second row:

2
4
1

2
-1
0

10"
16
2

Divide the second row by 4. Multiply the new second row by -2 and
add to the first row. Multiply the new second row by -1 and add to
the third row:

1 0 1 -3/2
0 1 0 -1/4
0 0 1 1/4

2
4

-2

Multiply the third row by -1 and add to the first row:

X] Xo -^ -̂ 4

1 0 0 -7 /4
0 1 0
0 0 1

-1/4
1/4

The original system has been reduced to the system shown above.
Equivalence of the two systems is assured since the new system is
obtained from the original system after performing a finite number of
elementary row operations. The solution to the system is as follows.
Assign x4 arbitrarily, say x4 = λ. Then xj = 4 + (7/4)A, x2 =

4 + (1/4)2, and x3 = -2 - (1/4)Λ.
Gaussian Reduction. To begin, we form:

1 2
-1 2
0 1

1
-1

1

-2
1
0

10
16
2

Add the first row to the second row:

2
-1
0

10"
16
2

Divide the second row by 4. Subtract the new second row from the
third row:

64 Chapter 2

XÌ X2 ·̂3 -̂ 4

1 2 1 -2
0 1 0 -1/4
0 0 1 1 / 4

10
4

-2

The foregoing matrix has an upper triangular submatrix. Let x4 be

equal to an arbitrary value λ. Then x3 = -2 - (1/4)A, x2 = 4 +

(1/4)2, and ^ = 10 + 2A - 2x2 - *3 = 4 + (7/4)/l. This gives

the same general solution obtained earlier, as expected.

2.4 CONVEX SETS AND CONVEX FUNCTIONS

In this section we consider some basic properties of convex sets, convex
functions, and concave functions.

Convex Sets

A set X in R" is called a convex set if given any two points xt and x2 in X,

then Axi + (1 - A)x2 e X for each λ e [0,1].

Note that λχ^ + (1 - A)x2 for A in the interval [0, 1] represents a point
on the line segment joining X] and x2. Any point of the form Axj + (1 - A)\2

where 0 < λ < 1 is called a convex combination (or weighted average) of x}

and x2. If λ e (0,1), then the convex combination is called strict. Hence,
convexity of X can be interpreted geometrically as follows. For each pair of
points Xi and x2 in X, the line segment joining them, or the convex

combinations of the two points, must belong to X.
Figure 2.5 shows an example of a convex set and an example of a

nonconvex set. In the latter case, we see that not all convex combinations of X[
and x2 belong to X. The following are some examples of convex sets:

1.
2.
3.

4.

5.

{(xt,x2) : x\ + x2 < 1}.
{x : Ax = b}, where A is an m χ η matrix and b is an /«-vector.
{x : Ax = b, x > 0}, where A is an m * n matrix and b is an m-
vector.
{x : Ax < b, x > 0}, where A is an m χ η matrix and b is an m-
vector.

i x : x —ΛΛ

1
0
0

+/?2
1
2
1

+A,
-1
2

-3
,Ai+À2+À-} = ί,λ^,λζ,λτ, > 0>.

Extreme Points

The notion of extreme points plays an especially important role in the theory of
linear programming. A point x in a convex set X is called an extreme point of X

Linear Algebra, Convex Analysis, and Polyhedral Sets 65

x 2

A convex set A nonconvex set

Figure 2.5. Examples of convex and nonconvex sets.

if x cannot be represented as a strict convex combination of two distinct points
in X. In other words, if x = Axj + (1 - A)x2 with λ e (0,1) and Xj, x2 e X,

then x = xj = x2.
Figure 2.6 shows some examples of extreme and nonextreme points of

convex sets. Note that xj is an extreme point of X, whereas x2 and x3 are not.
More insights into extreme points are given in Section 2.6.

Hyperplanes and Half-Spaces

A hyperplane in R" generalizes the notion of a straight line in R and the

notion of a plane in R . A hyperplane H in R" is a set of the form {x : px = k}

where p is a nonzero vector in R" and A: is a scalar. Here, p is called the normal
or the gradient to the hyperplane.

Equivalently, a hyperplane consists of all points x = (xi,x2,...,x„)

satisfying the equation Y,"=xPjXj = k. The constant k can be eliminated by

referring to a fixed point x0 on the hyperplane. If x0 e H , then px0 = k, and
for any x e H, we have px = k. Upon subtraction we get p(x - x0) = 0. In
other words, H can be represented as the collection of points satisfying
p(x - XQ) =0, where x0 is any fixed point in H. A hyperplane is a convex set.

Nonextreme points

Extreme point
xl

Figure 2.6. Extreme and nonextreme points.

66 Chapter 2

\ Direction of p

\ ^^ Hyperplane H

Direction of x - x ^ ' χο

Figure 2.7. Hyperplane.

Figure 2.7 shows a hyperplane and its normal vector p. Note that p is

orthogonal to x - x0 for each x in the hyperplane H. A hyperplane divides R"
into two regions, called half-spaces. Hence, a half-space is a collection of

points of the form {x : px > k}, where p is a nonzero vector in R" and & is a
scalar. A half-space can also be represented as a set of points of the form {x :
px < k}. The union of the two half-spaces {x : px > k} and {x : px < k} is

R". Referring to a fixed point x0 in the hyperplane defining the two half-
spaces the latter can be represented as {x : p(x - x0) ^ 0} or as {x : p(x - x0)
< 0}, as shown in Figure 2.8. Note that the first half-space consists of points x
for which (x - x0) makes an acute angle (<90°) with p, whereas the second

half-space is comprised of points x such that (x - XQ) makes an obtuse angle
(> 90°) with p.

Rays and Directions

Another example of a convex set is a ray. A ray is a collection of points of the
form {x0 + Ad : λ > 0}, where d is a nonzero vector. Here, x0 is called the
vertex of the ray, and d is the direction of the ray.

Directions of a Convex Set

Given a convex set, a nonzero vector d is called (recession) direction of the set,
if for each x0 in the set, the ray {x0 + λά : λ > 0} also belongs to the set.

Hence, starting at any point x0 in the set, one can recede along d for any step
length λ > 0 and remain within the set. Clearly, if the set is bounded, then it
has no directions.

Consider the nonempty polyhedral set X = {x : Ax < b,x > 0}. Then
a nonzero d is a direction of X if and only if

A(x + Ad) < b
x + Ad > 0

Linear Algebra, Convex Analysis, and Polyhedral Sets 67

Figure 2.8. Half-spaces.

for each λ > 0 and each x e X. Since x e X, then Ax < b and the first
inequality holds for λ > 0 arbitrarily large if and only if Ad < 0. Similarly, x
+ Ad is nonnegative for λ arbitrarily large, if and only if d is nonnegative. To
summarize, d is a (recession) direction ofXif and only if

d > 0, d Φ 0, and Ad < 0.

Similarly, if X = {x : Ax = b, x > 0} Φ 0 , then by replacing the equality by
two inequalities, it follows that d is a direction of X if and only if d Φ 0, d > 0,
and Ad = 0. The set of directions in either case forms a convex set.

Example 2.5

Consider the set X = {(x1,x2):x1-2x2 >-6, x{ - x2 > -2 , xx > 0, x2 > 1}

depicted in Figure 2.9. Let x0 = 1 be an arbitrary fixed feasible point. Then

d = f dJ 1 is a direction ofXif and only if f d} W n i and xn +/ld ={ Χχ +λΛ] 2 is a direction of X if and only if H 1 W \l and x0 + Ad = K / + Q

belongs to Sforali λ > 0. Therefore,

x\ - 2x2 + X(d\ - 2d2) > -6

X] - x2 + λ(άγ -d2) > -2
X] + λάλ > 0

x2 + λά2 > 1

for all λ > 0. Since the last two inequalities must hold for the fixed xj and x2

and for all λ > 0, we conclude that d\ and d2 > 0 (why?). Similarly, from

the first two inequalities we conclude that d\ - 2d2 ^ 0 and d\ - d2 > 0

(why?).

Since d] and d2 > 0, then c/j > 2d2 implies that d\ > d2. Therefore,

,' is a direction of X if and only if

68 Chapter 2

Figure 2.9. Directions of convex sets.

(i)'(S)
dl > 0 , c/2 > 0,

dl > 2d2.

This collection of vectors is shown in Figure 2.9 and can be normalized such
that each direction has norm (or length) equal to 1.

EXTREME DIRECTIONS OF A CONVEX SET

The notion of extreme directions is similar to the notion of extreme points. An
extreme direction of a convex set is a direction of the set that cannot be
represented as a positive combination of two distinct directions of the set. Two
vectors, dj and d2, are said to be distinct, or not equivalent, if dj cannot be
represented as a positive multiple of d2- In the foregoing example, after
normalization, we have two extreme directions dj =(1 ,0) and d2 = (2/
1/V5). Any other direction of the set, which is not a multiple of dj or d2, can
be represented as Ajdj + À^a2, where λχ,λ^ >0. Any ray that is contained in

the convex set and whose direction is an extreme direction is called an extreme
ray. Section 2.6 provides further insights into recession directions and extreme
directions.

Convex Cones

A special important class of convex sets is convex cones. A convex cone C is a
convex set with the additional property that 2 i e C for each x e C and for

Linear Algebra, Convex Analysis, and Polyhedral Sets 69

Figure 2.10. Some examples of convex cones.

each λ > 0. Note that a convex cone always contains the origin by letting λ =0,
and also, given any point x e C, the ray or half line {Ax : λ > 0} belongs to
C. Hence, a convex cone is a convex set that consists entirely of rays emanating
from the origin. Figure 2.10 shows some examples of convex cones. Since a
convex cone is formed by its rays, then a convex cone can be entirely
characterized by its directions. In fact, not all directions are needed, since a non-
extreme direction can be represented as a positive combination of extreme
directions. In other words, a convex cone is fully characterized by its extreme
directions.

As an example, consider the convex cone whose extreme directions are
(1, 1) and (0, 1). From Figure 2.11 it is clear that the convex cone must be the
Set {{X\,Xj) '■ X\ ^ 0,Xj < X2}.

Given a set of vectors ai,a2,...,ayt, we can form the convex cone C
generated by these vectors. This cone consists of all nonnegative combinations
of a1,a2,...,a/t, that is,

C = \ Σ Aj*j : λ] > 0, for j = \,...,k\.

Figure 2.11 shows the convex cone generated by the vectors (0, 1) and (1, 1).

Figure 2.11. Characterization of convex cones in terms of
extreme directions.

70 Chapter 2

/ (x i)
/(x2)

/ (* i) .

x, x2

(a)

Figure 2.12. Examples of convex and concave functions: (a) Convex
function, (b) Concave function, (c) Neither convex nor concave.

Convex and Concave Functions

Convex and concave functions play an important role in optimization problems.
These functions naturally arise in linear optimization problems (in a nonlinear
form) when dealing with parametric analysis.

A function/of the vector of variables (xj, x2,—,xn) is said to be convex

if the following inequality holds for any two vectors Xj and x2:

f{Axx + (1 " λ)χ2) < Af(xx) + (1 - Λ) / (χ 2) , for all A e [0,1].

Figure 2.12a shows an example of a convex function. Note that the foregoing
inequality can be interpreted as follows: Af(x{) + (1 - A)f{x2), where A e

[0, 1], represents the height of the chord joining (X],/(X])) and (x2 , / (x2)) at

the point Axx + (1 - A)x2. Since Af(xx) + (1 - A)f(x2) > f(Axx + (1 - λ)

x2), then the height of the chord is at least as large as the height of the function

itself.
A function/is concave if and only if - / is convex. This can be restated

as follows:

f(Axx + (1 - /t)x2) > Af{xx) + (1 - A)f(x2), forali A e [0,1],

for any given X] and x2. Figure 2.12b shows an example of a concave
function. An example of a function that is neither convex nor concave is
depicted in Figure 2.12c.

2.5 POLYHEDRAL SETS AND POLYHEDRAL CONES

Polyhedral sets and polyhedral cones represent important special cases of
convex sets and convex cones. A polyhedral set or a polyhedron is the
intersection of a finite number of half-spaces. A bounded polyhedral set is
called a polytope. Since a half-space can be represented by an inequality of the

type a'x < ty, then a polyhedral set can be represented by the system a'x < ty

for / = 1,..., m. Hence, a polyhedral set can be represented by {x : Ax < b}

where A is an m χ n matrix whose rth row is a' and b is an w-vector. Since an
equation can be written as two inequalities, a polyhedral set can be represented

Linear Algebra, Convex Analysis, and Polyhedral Sets 71

by a finite number of linear inequalities and/or equations. As an example,
consider the polyhedral set defined by the following inequalities:

-2xj + x2 < 4

X\ + %2 ^ 3

x, < 2

x, > 0

x2 > 0.

The intersection of these five half-spaces gives the shaded set of Figure 2.13.
Clearly the set is a convex set. We can see a distinct difference between the first
inequality and the remaining inequalities. If the first inequality is disregarded,
the polyhedral set is not affected. Such an inequality is called (geometrically)
redundant or irrelevant to the polyhedral set.

A special class of polyhedral sets is the set of polyhedral cones. A
polyhedral cone is the intersection of a finite number of half-spaces, whose
hyperplanes pass through the origin. In other words, C is a polyhedral cone if it
can be represented as {x : Ax < 0}, where A is an m x n matrix. Note that the

rth row of the matrix A is the normal vector to the hyperplane defining the rth
half-space. Figure 2.11 shows an example of a polyhedral cone.

2.6 EXTREME POINTS, FACES, DIRECTIONS, AND EXTREME
DIRECTIONS OF POLYHEDRAL SETS: GEOMETRIC INSIGHTS

In Section 2.4 we discussed extreme points and directions of general convex
sets, although we often used polyhedral sets for illustration. In this section, we
will provide some geometric insights and equivalent definitions of extreme
points and directions for polyhedral sets. We will assume that the polyhedral set
under discussion in this section is of the form

X = {x : Ax < b,x > 0} (2.1)

where A is m χ n and b is an w-vector. As shown in Chapter 1, through suitable
linear transformations, the feasible region of any linear programming problem
can be put into this so-called canonical form.

Extreme Points

We have already seen that an extreme point of X is a point in X that cannot be
made to lie in the interior of a line segment contained within X. We will now
provide an equivalent geometric definition. Toward this end, consider the
following simple but important observation. Let x e X and suppose that some
constraint αχ < β of X is binding, or tight, or active, at x that is, αχ = β.

Suppose further that we can write x = λχ' + (1 - À)x", where 0 < λ < 1 and

where x' and x" e X. Then it must be also true that αχ' = β and αχ" = β,

that is, αχ < β must be binding at x' and at x" as well. This clearly follows

72 Chapter 2

Figure 2.13. Polyhedral set.

from the fact that αχ' < β and αχ" < β (since x', x" e X), but A(ax') +

(1 - λ)(αχ") = β (since ax = ytf), where 0 < A < 1.
An extreme point can now be defined as follows. Let the hyperplanes

associated with the (m + ri) defining half-spaces of Xbe referred to as defining
hyperplanes of X. Furthermore, note that a set of defining hyperplanes are
linearly independent if the coefficient matrix associated with this set of
equations has full row rank. Then a point x e X is said to be an extreme point
or a corner point, or a vertex of X if x lies on some n linearly independent
defining hyperplanes of X If more than n defining hyperplanes pass through an
extreme point, then such an extreme point is called a degenerate extreme point.
The excess number of planes over n is called its order of degeneracy. A
polyhedron with at least one degenerate extreme point is said to be a degenerate
polyhedral set.

This definition of extreme points is readily seen to be equivalent to
saying that x cannot be written as a strict convex combination of two distinct
points in X. When x e X lies on some n linearly independent defining
hyperplanes, then if we can write x = λχ' + (1 - λ)χ", where 0 < λ < 1 and χ',

x" e X, we have that both x' and x" also lie on these n hyperplanes. The
solution to these n hyperplane equations, however, is unique. Hence, x =
x' = x". Conversely, if the maximum number of linearly independent defining
hyperplanes binding at x e X are r < n and are given by Gx = g, where G is r
x n, let d Φ 0 be a solution to Gd = 0. Note that such a d exists (why?). Then
there exists an ε > 0 such that x' = (x + εά) e X and x" = (x - ed) e X,
since Gx' = g, Gx" = g and the constraints of X that are nonbinding at x
remain satisfied provided ε > 0 is small enough. Consequently, since x =
0.5x' + 0.5x" and x', x" e X, we have that x is not an extreme point of X.

Referring to the polyhedral set in Figure 2.14, note how every extreme
point is formed by some n = 3 linearly independent defining hyperplanes, and at
every other point, fewer than n = 3 linearly independent defining hyperplanes
are binding. Note also that at the indicated degenerate extreme point, four
defining hyperplanes are binding. The order of degeneracy is one. In particular,

Linear Algebra, Convex Analysis, and Polyhedral Sets 73

/ - Degenerate extreme point

s' / \ \ ^ — Two-dimensional face

Adjacent extreme points

Figure 2.14. Extreme points and edges of X.

there is more than one choice of selecting n = 3 linearly independent
hyperplanes that give this vertex as their unique intersection point. However, no
defining hyperplanes or half-space can be omitted without changing the
structure of this polyhedron. That is, there are no redundant constraints.

Faces, Edges, and Adjacent Extreme Points

We have seen that each extreme point x of X is a unique solution to some n
linearly independent defining hyperplanes binding at x. In general, the set of
points in X that correspond to some nonempty set of binding defining
hyperplanes of X is called a face of X. Now, given any face F oiX, if r(F) is the
maximum number of linearly independent defining hyperplanes that are binding
at all points feasible to F, then the dimension ofF, denoted dim(F), is equal to
n - r(F). In other words, each linearly independent binding hyperplane results

in the loss of one "degree of freedom." Consequently, extreme points are zero-
dimensional faces ofX Similarly, an edge of X is a one-dimensional face of X,
that is, it is the set of points in X formed by the intersection of some (« - 1)
linearly independent defining hyperplanes (with some points in this set not
having more than (n - 1) binding linearly independent hyperplanes). That is, an
edge has one "degree of freedom" imparted by having one less than n linearly
independent hyperplanes that are binding at all points. Similarly, if r(X) is

defined with respect to X itself, then although X is in R", it is actually of

dimension dim(X) = n - r{X). The set X is said to be full dimensional if

r(X) = 0, that is, dim(X) = n. Furthermore, the set X (when not full
dimensional or viewed in a higher dimension) and the empty set are also
sometimes called improper faces of X itself. The other faces are called proper
faces. The highest dimensional proper face of X is of dimension dim(X) - 1

(when dim(X) > 1) and is called a facet of X.
Finally, two extreme points of X are said to be adjacent if the line

segment joining them is an edge of X. Hence, adjacent extreme points have
some (n - 1) common binding linearly independent defining hyperplanes. Figure
2.14 illustrates these definitions.

74 Chapter 2

Figure 2.15. Directions and extreme directions.

Recession Directions and Extreme Directions

In Section 2.4, we characterized the directions of X as vectors d satisfying the
conditions

d > 0, d Φ 0, and Ad < 0.

Geometrically, this so-called homogeneous system defines a polyhedral cone
(excepting the origin), also known as a recession cone, and is obtained by
translating the defining hyperplanes of X parallel to themselves until they pass
through the origin. To eliminate duplication, these directions may be
normalized. To maintain linearity, it is convenient to normalize the directions
using the (rectilinear) norm \άχ | H l· \dn | = 1, which leads to the normalization

constraint d\ + —v dn =1 , since d > 0. Hence, the set

D = {d : Ad < 0, Id = 1, d > 0} (2.2)

characterizes the set of recession directions of X, where 1 is a vector of ones.
Figure 2.15 illustrates this set. In fact, as seen in the figure, the extreme
directions of X are precisely the extreme points of D. Clearly, because of the
normalization constraint, a direction d e f l cannot be written as a positive
linear combination of two distinct directions if and only if it cannot be written as
a strict convex combination of two distinct directions in D.

Example 2.6

Consider the polyhedral set X given by the inequalities

-3XJ + x2 ^ - 2
-X] + x2 < 2
-Xj + 2x2 < 8

- x2 < - 2
X], x2 - 0·

Linear Algebra, Convex Analysis, and Polyhedral Sets 75

x2

Figure 2.16. Numerical example.

The set is illustrated in Figure 2.16. Its extreme points are given as:

x2 = 4 , and x3

The set D of Equation (2.2) is given by

D = {(dhd2) : -3i/j + d2 < 0,-d{ + d2 < 0,

4/3
2

-dx + 2d2 < 0,-d2 < 0,dx + d2 = \,dx > 0,d2 > 0}.

This set is sketched in Figure 2.16 and has extreme points dj 2/3
1/3 and

d, = . These are the two extreme directions of X.

2.7 REPRESENTATION OF POLYHEDRAL SETS

In this section, we discuss the representation of a polyhedral set in terms of
extreme points and extreme directions. This alternative representation will prove
very useful throughout the book. The proof of the representation theorem given
here is insightful and instructive. The reader may want to study this proof in
order to develop more confidence with the notions of extreme points and
extreme directions.

Basic Ideas

1. Bounded Polyhedral Sets (Polytopes)

Consider the bounded polyhedral set of Figure 2.17 (recall that a set is bounded
if there is a number k such that |x|| < k for each point x in the set), which is
formed as the intersection of five half-spaces. We have five extreme points,
labeled X],x2,X3,X4, and X5. Note that any point in the set can be represented

76 Chapter 2

as a convex combination, or a weighted average, of these five extreme points.
To illustrate, choose the point x shown in Figure 2.17. Note that x can be
represented as a convex combination of y and x4, that is,

x = Ay + (1 - λ)χ4, where λ e (0,1).

But y can itself be represented as a convex combination of Xj and x2, that is,

y = μχχ + (1 - μ)\2, where μ e (0,1).

Substituting, we get

x = λμχ\ + /l(l - μ)χ2 + (1 - λ)χ4.

Since λ e (0,1) and μ e (0,1), then λμ, λ{\ - μ), and (1 - λ) e (0,1).

Also, λμ + λ(1 - μ) + (1 - λ) = 1. In other words, x has been represented as a

convex combination of the extreme points xj, x2, and x4. In general, any point
in a bounded polyhedral set can be represented as a convex combination of its
extreme points. (This is formally established by Theorem 2.1 below.)

2. Unbounded Polyhedral Sets

Let us now consider the case of an unbounded polyhedral set. An example is
shown in Figure 2.18. We see that the set has three extreme points Xj, x2, and
x3, as well as two extreme directions dj and d2. From Figure 2.18 it is clear
that, in general, we can represent every point in the set as a convex combination
of the extreme points, plus a nonnegative linear combination of the extreme
directions. To illustrate, consider the point x in Figure 2.18. The point x can be
represented as y plus a positive multiple of the extreme direction d2. Note that

the vector x - y points in the direction d2. But y itself is a convex

combination of the extreme points Xj and x3, and hence,

x = y + μά2

= λχχ + (1 - λ)χ3 + μά2

Figure 2.17. Representation in terms of extreme points.

Linear Algebra, Convex Analysis, and Polyhedral Sets 77

Figure 2.18. Representation of polyhedral sets in terms of extreme points
and extreme directions.

where λ e (0,1) and μ > 0. This discussion is made more precise later.
We now state and prove the Representation!Resolution!Caratheodory

Theorem for the general case of bounded or unbounded sets X. Figure 2.19 is
provided to help conceptualize the ideas of the proof.

Theorem 2.1 Representation Theorem for the General Case

Let X = {x : Ax < b, x > 0} be a nonempty (polyhedral) set. Then the set of
extreme points is nonempty and has a finite number of elements, say
Xj,X2,...,X;t. Furthermore, the set of extreme directions is empty if and only if

X is bounded. If X is not bounded, then the set of extreme directions is
nonempty and has a finite number of elements, say d],d2,...,d^. Moreover,
x e X if and only if it can be represented as a convex combination of Xj,...,x^.
plus a nonnegative linear combination of dj,...,d^, that is,

k i

X = Σ AyXy + Σ Mjdj
7=1 j=\

Σλ.-=1 (2.3)
7=1

Àj>0, j=\,...,k

Mj>0, j=\,...,t

Proof:

For convenience, denote by S and Sj the sets of extreme points and extreme

directions of X. Let us first show that 1 < k < co, where \S„\ = k. Toward this

end, let x e X. If x e Sp, then k > 1. Otherwise, let r be the maximum

number of linearly independent defining hyperplanes binding at x and let

78 Chapter 2

Figure 2.19. Illustration for the proof of Theorem 2.1.

x = /lyi+(1-A)y2, where 0 < λ < 1 and yi,y2 e I , yt ΐ y2. Note that
0<r<n. Let d = y 2 - y i ^0 , so that yj =x - (l -A)d and y2 =x + /ld. Consider
moving from x along d and -d. Both directions permit positive step lengths
from the foregoing statement, but both cannot permit infinite step lengths since
^ c { x : x > 0 } . Hence, without loss of generality, let us say that

f = max{/:x-/dsX}<<x> and put y{=x - yd. Note that the maximum num-

ber of hyperplanes binding at y"] must be 7 > r + 1. This follows since the

defining hyperplanes binding at x are also binding at yt (because x is a strict

convex combination of ŷ and y2). Moreover, at least one additional linearly

independent hyperplane must be binding at yl to block any further motion

along -d and hence determine f. If 7 = n, then y"; eSp, and so k > 1. Other-

wise, we can replace x by yt and repeat this process until we obtain 7 = n,
which, clearly, must occur finitely. Hence, k>l. Because the number of ways n
linearly independent hyperplanes can be chosen from (m + ri) hyperplanes is
finite, we also have k<x>.

Next, by definition, if X'\s bounded, then D = 0 , and conversely, if X is

unbounded, then D Φ 0, since X is a convex set. Noting that D is of the same
form as X (where the equality in Equation (2.2) can be equivalently written as
two inequalities) and that the extreme points of D correspond to the extreme
directions of X, we have that 1 < £ < co.

Now, suppose that x can be written as in Equation (2.3). Then it is easily
verified using Equations (2.1) and (2.2) that x e X. Conversely, consider any
x € X, and let us show that x can be written as in Equation (2.3). Define the
set

Linear Algebra, Convex Analysis, and Polyhedral Sets 79

X = X n {x : lx < M}

where Mis large enough so that lx < M for eachy = 1, ..., k, and lx < M.

Note that X is bounded, and moreover, extreme points of X are also extreme
points of X. Let Sp = {xi,...,xìc,...,xìc+u} be the extreme points of X, where

0 < u < oo. Let us first show that we can write x as a convex combination of
points in S If x e Sp, this is obviously true. Otherwise, let the system Gx =

g represent the hyperplanes of X that are binding at x, and note that rank (G)

< (n - 1). Find a solution d Φ 0 to the system Gd = 0, and compute

fl =max{/:x + ̂ d e X } . Note that 0 < γ~\ < oo (why?). Denote y"i = x + ;Fjd.

Hence, at yj e X, we have at least one additional linearly independent

hyperplane of X binding. If the new binding hyperplane(s) along with Gx = g

produce a system of rank n, then yt is a vertex X. Otherwise, we may repeat

this step at yj until after at most [n - rank(G)] such steps, we obtain a vertex

yj of X satisfying Gyj = g. Now, define

Ϋ2 = max{/ : x + y(x - yj) e X)

and put

y2 = x + f2(J-y\)-

(See Figure 2.19.) Observe that y2 < <» since X is bounded. Also, f2> 0,

since G[x + γ(χ - yj)] = g for all γ > 0 implies that γ2 is determined by

some constraint not binding at x. Hence, in particular, Gy2 = g, and at least

one additional linearly independent hyperplane is binding at y2. Furthermore,

x is a convex combination δγλ + (1 - S)y2 of yj and y2, where

δ = γ2 /(l + γ2). Now, since yj e Sp, if we also have y2 e S . , then we

have written x as a convex combination of points in Sp. Otherwise, we can

write y2 itself as a strict convex combination of some y3 and y^, where

y3 e Sp and y4 has at least one additional linearly independent hyperplane

binding. Continuing this way, we can ultimately write x as a convex
combination of vertices of S , in fact, using no more than n - rank(G) + 1

vertices of S . Let this representation be given by

k+u k+u
x = Σ SjXj, where Σδ]=\, and δ > 0. (2.4)

7=1 7=1

80 Chapter 2

Now, if δ'■ = 0 for j > k, then Equation (2.4) is of the required form of

Equation (2.3). Otherwise, consider any xv with v > k and δν > 0. Note that

xv is a new extreme point created by the constraint lx < M, that is, lx = M

is one of any n linearly independent hyperplanes defining xv in X. The other

(n - 1) linearly independent hyperplanes come from the defining hyperplanes of

X, and therefore define an edge of X. Consequently, there exists some extreme

point χ,·/νΛ of X, 1 < i(v) < k, which is the adjacent extreme point of xv in X

along this edge. Moreover, (xv - X,YV\) is a recession direction of X since no

other hyperplane of X stops the progress along this direction from Χ,-ΛΛ. More

impor-tantly, let d = (xv - χ;γν))/#ν, where θν =1(χν -χ,γν))>0. Observe that

d e D. Furthermore, the (n - 1) linearly independent hyperplanes of the
homogeneous system Ad < 0, d > 0, which correspond to the (n - 1) linearly

independent hyperplanes of X defining xv, are binding at d. Also, from the

hyperplanes defining xv , these (« - 1) hyperplanes along with Id = 1 produce

n linearly independent binding hyperplanes of D at d. Hence, the direction d
must be an extreme point d ,· /ν \ , say, of D and therefore, an extreme direction of

X. Consequently, we have xv = X,YV\ + θνά YV\. Substituting this into Equation

(2.4) for each such v, and arbitrarily letting i(v) = j(v) = 1 if δν =0, we get

k k+u k+u
x = Σ Sj-Kj + Σ dvxi{v) + Σ δνθνάΛν),

j=\ v=k+\ v=k+\

which is of the form Equation (2.3). This completes the proof.

Corollary 2.1

Any x e X can be represented as in Equation (2.3) using no more than min
{(« + ì),(k + £)} positive λ.- and //.-variables.

Proof:

Given x e X, Theorem 2.1 asserts that there exists a solution to Equation
(2.3). Let r be the rank of the coefficient matrix associated with the equality
system in Equation (2.3). Hence, r = min {(« + 1), (k + £)}. Furthermore, note

that the set of (λ, μ) satisfying Equation (2.3) forms a polyhedral set in R + ,
and by Theorem 2.1, this set has an extreme point. Since there must be (k + £)
linearly independent hyperplanes binding at any such extreme point and the
equality system provides r such hyperplanes, we must have at least (k + I - r)
additional λ .■ - and μ .· -variables equal to zero at an extreme point of Equation

(2.3). Consequently, there exists a representation of x in Equation (2.3) in which
at most r of the A.· - and μ .· -variables are positive. This completes the proof.

Linear Algebra, Convex Analysis, and Polyhedral Sets 81

Theorem 2.1 suggests a constructive algorithm for actually representing a
given point x e X in terms of no more than (n + 1) extreme points and n
extreme directions, using a number of elementary computational operations such
as additions, multiplications, and comparisons, which are bounded above by a
polynomial in n of degree < 4. That is, it suggests a. polynomial-time algorithm

of complexity bounded by 0(n) to obtain such a representation (see Exercise
2.56). Note that ifXis bounded, then the algorithm uses no more than min {(« +
1), k} of its extreme points in the representation.

Example 2.7

Consider the polyhedral set of Example 2.6 that is illustrated in Figure 2.16. Let

us represent the point x = L e X as in Equation (2.3). Bound X by constructing

the plane x\ + x2 < M similar to Figure 2.19 to obtain the set X. Proceeding

as in the proof of Theorem 2.1, since no constraints of X are binding at x, pick

d = (0, 1) arbitrarily. Thus ;Fj = max{^ : (4, 3) + γ(0,\) e X} = 3, and hence

we get y"] = (4, 6). Since two linearly independent equations are binding at y1;

we have that yx is an extreme point \λ of X. Next, we compute γ2 = max

{/ : (4,3) + ^(0,-3) e X) = 1/3, and hence we get y2 = (4, 2). Therefore, we

have x = £y, + (1 - δ)γ2 where δ = (l/3)/(4/3) = 1/4. Hence,

x = (l/4)Xl + (3/4)y2.

Next, observe that one constraint x2 = 2 is binding at y2. Repeating the process

at y2, and using d = (1, 0) as a solution to the homogeneous system x2 = 0, we

get

(M - 6) 8/3
y2 = x-! + X4

(M - 10 /3) (M - 10 /3) 4

where x3 = (4/3, 2) and x4 = (M - 2, 2). Substituting, we obtain

_ 1 3(M - 6) 2
X = —Xi H X-, + XA.

4 ' 4(M - 10/3) J (M - 10/3) 4

Now, at x4 = (M - 2, 2), which is of the form of Equation (2.4), only one

constraint (x2 = 2) of X is binding. This gives via its homogeneous solution

the extreme direction dj = (1,0) of X, and so we get the adjacent extreme point

of x4 in X by searching along -dj as x3 = (4/3, 2). This gives x4 = x3 +

θύγ, where <9 = l(x4 - x 3) = (M-10/3). Substituting for x4, we finally obtain

82 Chapter 2

■x, +
3(M - 6)

4 (M - 1 0 / 3) ' -x, + (M - 10/3)
[x3 + (M - 10/3)d,]

or

X = —Xi

4 '
+ -X-. + 2d,,

4 i '

which is of the required form of Equation (2.3). Note that this representation is
not unique. Another representation for x is

- l] ΊΛ

X = —X 7 H Xi H d i .
2 l 2 J 3 '

Note from Figure 2.18 that n = 2, k = 3, and I = 2 in this problem. Hence,
min{(« + 1), (k + i)} = 3, and hence, both representations use the upper bound
number of terms prescribed by Corollary 2.1. In this case, a lower bound on the
number of terms required in any representation of x = (4, 3) also happens to be
three.

Some Insights into the Equality Constrained Polyhedron

Consider the nonempty polyhedral set X = {x : Ax = b, x > 0} where A is m x n
and rank(A) = m. Note that by equivalently replacing each equality constraint by
two inequalities, all the discussion in this section continues to hold true for this
case as well. In particular, consider the extreme points of X. As before, these are
points in X formed by the intersection of n linearly independent hyperplanes.
However, from the equality constraints, we know that m linearly independent
hyperplanes are always binding at any feasible solution. Hence, at any extreme
point x of X, there must be some (n - tri) additional hyperplanes binding from
the nonnegativity constraints, say, xN = 0, which together with Ax = b pro-
duce n linearly independent equations in n unknowns, thereby yielding x as the
unique solution. Similarly, one can characterize edges and adjacent extreme
points of X following Section 2.6, and note as before that extreme directions of
X correspond to extreme points of

D = {d : Ad = 0,ld = l,d > 0}.

Finally, in light of the remark concerning extreme points of X, the reader may
find it instructive to read through the proof of Theorem 2.1, thinking of Xas the
equality constrained set.

EXERCISES

[2.1] Show that the vectors

a, = 0 , 1 and *3 -

ίίλ

vh

Linear Algebra, Convex Analysis, and Polyhedral Sets 83

form a basis for R . Supposing that a2 is replaced by

new set of vector still forms a basis of R .

indicate whether the

"1 ~l

[2.2] Which of the following collection of vectors form a basis of R , span R ,
or neither?

a. aj =

b. aj =

c. a! =

d. aj =

e. aj =

[2.3] Let

rn 2
lu
(l)
3

f-1
2

I 3
rn 2
lu
rn 4 w

a2 =

a2 =

\
a2 =

/

a2 =

a2 =

a l =

f-l>
2

l°v
5

f-n
0 ?

1-iJ
f2i
0

(ολ
1

l°J
f-3

-1

I 2
f-1
-4

l-i

\
5

/
\

?

/

a2 =
i3l
2

15J

a 3 =

a 3 =

a3 =

a3 =

, a3

foi
0

lu

fU
2

l3j
ί 8

-1

I 7
ί°Ί

1
l°J

ΐ

λ

/

/

V

5/2Ì
3

5 J

^_3Λ
2

V 4y

Are these vectors linearly independent? Do they span R ?

[2.4] Let a1,a2,...,a/t form a basis for R". Show that a],a2,...,a^. are linearly
independent. Also show that k = n.

[2.5] Does the following matrix have an inverse? If the answer is yes, find A~ :

"1 -4 4 0"

2 5 0 1

0 2 0 1

1 3 2 2_

[2.6] Find the inverse of the following triangular matrix:

"2 4 -3 -Λ

0 4 3 2

0 0 2 5

0 0 0 - 1

84 Chapter 2

[2.7] Let A be a 3 x 5 matrix. Consider the matrix C obtained by weighting the
columns of A with scalars 1, 3/2, -2 , 4, and - 1 , respectively, and adding them
up. Write C as a matrix product. Similarly, let D be the weighted sum of the
rows of A, using weights 2, -2 , and 3/2, respectively. Write D as a matrix
product. Likewise, let E be a matrix whose first row is the sum of the rows of A,
whose second row is the third row of A, and whose third row is obtained by
summing: thrice the first row of A, -5/2 times the second row of A, and twice
the third row of A. Write E as a matrix product.

[2.8] Let B be an invertible matrix. Show that B" is unique.

[2.9] Suppose that &x,a2,...,&n form a basis of/?" and y = Ajaj +À2&2 + ·■· +

/L,a„ with Àj = 0. Prove that aj,...,a,-_j,y, a ,+1,...,a„ do not form a basis of R".

[2.10] Let

"B

T

0"

I

where B is an m χ m invertible matrix, I is a k x k identity matrix, 0 is an m x k
zero matrix, and T is an arbitrary k x m matrix. Show that A has an inverse and
that

A ' 1 =
B-1

T B 1

0

I

[2.11] Show that if A and B are n χ η matrices that are both invertible, then

(AB)-1 = B_1A_1.

[2.12] Let A be an » x « invertible matrix. Show that A' has an inverse and that

(A')"1 = (A"1)'.

[2.13] Let B be an invertible matrix with nonnegative entries. Show that every

row of B~ has a least one positive entry.

[2.14] Let A = (a1,a2,...,a,-,...,a/„) be an invertible m χ m matrix. Show that

A ' a,· = e ,· where e ,■ is a vector of zeros except for a 1 at positiony.

[2.15] Let A be an « x « matrix. Suppose that B is an n χ n matrix such that AB
= I. Is it necessarily true that A has an inverse? Is it necessarily true that B =

A"1?

[2.16] If the rth row of a square nonsingular matrix B is multiplied by a scalar

λ * 0, what changes would result in B~ ?

[2.17] If the rth column of a square nonsingular matrix B is multiplied by a

scalar λ Φ 0, what changes would result in B~ ?

Linear Algebra, Convex Analysis, and Polyhedral Sets 85

[2.18] Find the rank of the following matrices:

"1 0 1 - f

(i) A = 2 3 4 1

1 0 5 - 3

"-2 1 - 3 "

(ii) A = 2 4 - 2

4 3 1

[2.19] Find the determinants of the following matrices.
" 1 0 f

2 2 - 1 a. A

b. A =

c.

0

1

-3

-2

1

'2

1

3

1

0

1

2

2

-2

3

-2

-2

-1

-1

2

ί
-2

-3

[2.20] Solve the following system by Cramer's Rule:

2x, x2
5x, + 2xi

[2.21] Demonstrate by enumeration that every basis matrix of the following
system is triangular:

Χγ + X-J + X4 —

~X\ "H X"2 ~^~ X$ =

— X2 ~ X4. =

- x-i =

tig system of equations:

Xj + 2x2 + X3 =
x l + *2 - *3 =

X] + 3x2 + X3 =

4
2

-3
-2 .

1
3

-4

Without resolving the system, what is the solution if the right-hand-side of the
first equation is changed from 1 to 2?

[2.23] Show that the determinant of a square triangular matrix is the product of
the diagonal entries.

[2.24] Find all basic solutions of the following system:

86 Chapter 2

-X] + 2x2 + X3 + 3x4 - 2x5 = 4
xx - 2x2 + 2x4 + x5 = 2.

[2.25] Determine whether the following system possesses: (a) no solution, (b) a
unique solution, or (c) many (how many?) solutions.

Xi + 3 x 2 + X3 — ΧΛ — 1

5x2
 _ 6x3 + x4 = 0

X] - 2x2 + 4x3 = 2.

[2.26] Construct a general solution of the system Ax = b where A is an m χ η
matrix with rank m. What is the general solution of the following system?

Xi — 2x2 + X3 = 2
-Xj + 3x2 + 2x3 = 6.

[2.27] Consider the system Ax = b where A = [a|,a2,...,a„] is an m χ η matrix

of rank m. Let x be any solution of this system. Starting with x, construct a basic

solution. (Hint: Suppose that xx,...,xp *0 and xp+x,...,xn = 0. If p > m, repre-

sent one of the columns a , fory = 1, ..., p, as a linear combination of the

remaining vectors. This results in a new solution having a smaller number of
nonzero variables. Repeat the process.)

[2.28] Which of the following sets are convex and which are not?

a. {(xx,x2) : X\ + x2 > 3}.

b. {(xj,x2,X3) : xj + 2x2 < 1, xj - 2x3 < 2}.

c. {(xj,x2) : x2 - 3x] = 0}.

d. {(x],x2,x3) : x2 > Xj , X] + 2x2 + X3 < 4}.

e. {(xi,x2) : xi = 3 , |x2| < 4}.

f. {(x1;x2,x3) : x3 = |x2|, X! < 3}.

[2.29] Which of the following functions are convex, concave, or neither?

a. f(x) = x2.

b. / (x l 5 x 2) = e"*1"*2 + 2x,2 - 2xx.

c. f(xx, x2) = maximum{fx (xx,x2), f2 (xx,x2)} where / , (^, x2) = 3x2

"7 2
+ x2

 a n d f2Ìxl>x2) = ^xl _ 5*2-
d- /(Xi,X2) = minimum { ^ (x ^) , f2(x*x2)} w h e r e Ai') a n d /2O

are defined in Part (c).
2 2 2

e. y (Xi,Χ7 >-*3) = — x\ ~~ ̂ X 2 ~ x3 ~^~ 2XjX2 ~~ %2X3 ~^~ 1 ~^~ 5x-\.

1. J (Xi , X2) — Xi + X2
 — 2X]X2 + X 2 .

Linear Algebra, Convex Analysis, and Polyhedral Sets 87

[2.30] Consider the set {(xl5x2) : ~x\ + x2 - 2 , x\ + 2x2 -8> x\ - 0> x2 -0} ·

What is the minimum distance from (-3,4) to the set? What is the point in the

set closest to (-3,4)? Repeat with the point (6,4).

[2.31] Let a i = (^), a2 = (*), ^ = (" i j , «4 = |_4), and a5 = (^) . Illus-

trate geometrically the collection of all convex combinations of these five
points.

[2.32] Show that a hyperplane H = {x: px = k) and a half-space H+ = {x: px >
k] are convex sets.

[2.33] Show that/is convex if and only if its epigraph ={(x,y) : x e R", y e

R, y > f(x)} is a convex set. Similarly, show that/is concave if and only if its

hypograph = {(x,y) : x e R", y e R , y < / (x)} is a convex set.

[2.34] Show that a differentiable function / is convex if and only if the

following inequality holds for each fixed point x0 in Rn: f(x) > /(XQ) +

V/(x0)'(x - XQ) for all x e R", where V/(x0) is the gradient vector off at x0

given by

> (X Q) df(x0) g/(x0)Y

cbcj ' 9x2 ' ' δχη J

[2.35] Show that the set of feasible solutions to the following linear program
forms a convex set:

Minimize ex
subject to Ax = b

x > 0 .

[2.36] Consider the set X = {{x\,xj) : x\ + x2 ^ 2, x2 < 4, xl5x2 > 0}.

Find a hyperplane / / such that X and the point (1,-2) are on different sides of

the hyperplane. Write the equation of the hyperplane.

[2.37] If 5 is an open set, show that the problem

Maximize ex

subject to x e S

where c Φ 0 possesses no optimal point. {Note: S is open if for each x0 e S,

there is an ε > 0 such that ||x - x 0 | < ε implies that x e S.)

[2.38] Show that C is a convex cone if and only if x and y e C imply that

λχ + //y e C for all λ > 0 and μ > 0.

[2.39] Show that if C is a convex cone, then C has at most one extreme point,
namely, the origin.

88 Chapter 2

[2.40] Find the extreme points of the region defined by the following
inequalities:

Xj + 2x2 + x3 < 5
—X\ + x2 + 2x3 < 6

Xi , Xo, X3 ^ 0.

(///«/: Consider n = 3 intersecting defining hyperplanes at a time.)

[2.41] Why does the following set have directions? Find all its extreme
directions:

-Xj + 2x2 = 3
2x] - 2x2 - X3 < 2

x3 > 1
Xi, Xj , X3 — 0 .

(Hint: Enumerate the extreme points of its normalized set of directions. What
else needs to be checked?)

[2.42] Find all extreme points of the following polyhedral set:

X= {(xi,x2,x3) : X\ - x2 + Χτ, ^ Ι,Λ Ι̂ - 2x2 < 4,xl5x2,X3 > 0}.

Does X have any recession directions? Why?

[2.43] Let X= {x : Ax < b} c R" and let x0 e X be such that fewer than n

linearly independent hyperplanes defining X are active at x0. Show that x0

cannot be an extreme point of X.

[2.44] Prove in detail that a polyhedral set X is bounded if and only if it has no
directions.

[2.45] Consider the nonempty polyhedral set X = {x : Ax = b, x > 0}. Show

directly by definition that d is a direction of the set if and only ifd * 0, Ad = 0,

andd > 0. Obtain analogous results if Ax = b is replaced byAjx = bj,

A2x > b2.

[2.46] Given a nonempty polyhedron X, a face F of X is also defined as the
intersection of a supporting hyperplane of X with X itself. (A hyperplane
supports Χ'ιΐX lies completely in one half-space defined by the hyperplane and
the intersection of the hyperplane with X is nonempty.) Show the equivalence
between this definition and the one given in Section 2.6.

[2.47] You are given the following polyhedral set. Identify the faces, extreme
points, extreme directions, and extreme rays of the set.

Xj - x2 + x3 < 10
2χλ - x2 + 2x3 < 40
3xj - 2x2 + 3x3 < 50

Xi, X 2 , X3 ^ 0 .

Linear Algebra, Convex Analysis, and Polyhedral Sets 89

[2.48] Let X ={(xx,x2) : χλ - x2 < 3, -x1 + 3x2 < 3, xx > -3}. Find all
extreme points of X and represent x = (0, 1) as a convex combination of the
extreme points.
[2.49] Answer the following questions and provide a brief explanation or
illustration:

a. Is it possible for X in Equation (2.1) to be empty but D in Equation
(2.2) to be nonempty?

b. Is there a relationship between redundancy and degeneracy of a
polyhedral set?

c. Does degeneracy imply redundancy in two dimensions?
d. If the intersection of a finite number of half-spaces is nonempty,

then this set has at least one extreme point. True or false? Explain.
e. An unbounded «-dimensional polyhedral set can have at most n

extreme directions. True or false? Explain.
f. What is the maximum (actual) dimension of X = {x : Ax = b, x

> 0}, where A is m x n of rank r, with r<m<rf!

[2.50] Find all extreme points and extreme directions of the following poly-
hedral set:

X = \(X\ ,X2 5-̂ -3 , %4) · —X\ "t" %2 ~~ 3 '

—2X] — Xy + 2%4 < 2, X],X2,X2,XQ ^ 0 } .

Represent x = (1, 1, 1, 2) as a convex combination of the extreme points of X
plus a nonnegative combination of the extreme directions of X.

[2.51] Show that an unbounded polyhedral set of the form {x : Ax = b, x>0}
has at least one extreme direction. In particular, using the normalized direction
set D in lieu of Xin the proof of Theorem 2.1, show how you can start with any
direction d in D and reduce it to an extreme direction.

[2.52] Consider the polyhedral set X = {x : px = k] where p is a nonzero
vector and A: is a scalar. Show that X has neither extreme points nor extreme
rays. How do you explain this in terms of the general Representation Theorem?

[2.53] LetX= {x : Ax = b,x > 0} where A is an w x « matrix with rank m.
Show that d is an extreme direction of X if and only if d is a positive multiple of

the vector (-yy,0,0,...,l,0,...,0)' where the 1 appears in positionj, and where:

y7 = Β Λ 7 < Ο ,

A = [B, N] where B is an m x m invertible matrix
a = a column of N.

(Hint: Consider extreme points of the normalized direction set.) Illustrate by the
following system:

90 Chapter 2

X] - 3X2 + *3 = 0

-3x) + X2 + x 4 = 3

X i , X o , X3 , X4 ^ U.

[2.54] In the proof of Theorem 2.1, consider the direction d given by

(xv - x,(v))/(9v. Show how you would algebraically obtain d, given the

extreme point xv of X, v> k.

[2.55] Consider the polyhedral set X = {x : Qx < q}, where Q is m χ η.
Mathematically characterize the statement that an entire line belongs to X. What
does this imply about the rank of Q? Show that a nonempty polyhedron has
extreme points if and only if it contains no lines.

[2.56] Based on Theorem 2.1 and its proof, construct a polynomial-time

algorithm of complexity bounded by 0{n) in order to obtain a representation

of x e X in terms of no more than (n + 1) extreme points and n extreme
directions of X. Show that the number of extreme points needed in the
representation by this algorithm is no more than the bound provided by
Corollary 2.1 when X is a bounded set.

NOTES AND REFERENCES

1. Sections 2.1 through 2.3 present a quick review of some relevant results
of vector and matrix algebra.

2. Sections 2.4 and 2.5 give some basic definitions and properties of convex
sets, convex cones, and convex functions. For more details the reader
may refer to Eggleston [1958], Mangasarian [1969], Bazaraa, Sherali, and
Shetty [2006], and Rockafellar [1970].

3. Correspondence between bases and extreme points is established in the
next chapter in Section 3.2, and an algebraic characterization of extreme
directions is presented in Exercise 2.53.

4. The representation theorem for polyhedral sets evolved from the work of
Minkowski [1910] and Goldman and Tucker [1956]. The result is also
true for (nonpolyhedral) convex sets that contain no lines. See
Rockafellar [1970] and Bazaraa and Shetty [1976]. The geometric proof
of Theorem 2.1 in Section 2.6 is taken from Sherali [1987b]. (Parts of the
proof, parts of Example 2.7, and Figure 2.17 are reprinted from H. D.
Sherali, "A Constructive Proof of the Representation Theorem for
Polyhedral Sets Based on Fundamental Definitions," American Journal
of Mathematical and Management Sciences, Vol. 7 (1987), 253-270,
Copyright © 1987 by the American Sciences Press, Inc., 20 Cross Road,
Syracuse, New York 13224. Reprinted by permission.) For further
geometric insights, see Akgul [1988], Grunbaum [1967], Murty [1983,
1985], and Sommerville [1958].

THREE: THE SIMPLEX METHOD

In this chapter we begin to discuss Dantzig's simplex method, which was
conceived in the summer of 1947 for solving linear programming problems. The
first significant application of this method occurred soon after in the fall of
1947. J. Laderman solved a diet-planning linear program with nine equality
constraints and 27 nonnegative variables at the National Bureau of Standards.
Using desk calculators, this problem took 120 man-days to solve and the
worksheets were laboriously glued together and spread out like a "table cloth."
Today, using modern-age computer facilities and sophisticated implementations
of the simplex method, linear programs having more than tens-of-thousands of
constraints and variables are readily solvable. Although several variants of the
simplex method have evolved and other new competing algorithms have been
proposed (see Chapter 8), the simplex method remains a viable and popular tool
for solving linear programming problems. It also provides further insights into
the facial structure of polyhedral sets that define the underlying feasible region
for linear programs.

We begin our discussion of the simplex method by showing that if an
optimal solution exists, then an optimal extreme point also exists. Extreme
points are then characterized in terms of basic feasible solutions. We then
describe the simplex method for improving these solutions until optimality is
reached, or else until we conclude that the optimal value is unbounded. Both
geometric and algebraic descriptions are provided. The well-known tableau
format of the simplex method is also discussed. This is a key chapter,
fundamental to the development of many other chapters in the book.

3.1 EXTREME POINTS AND OPTIMALITY

We observed from Figure 1.3 that when an optimal solution of a linear
programming problem exists, an optimal extreme point also exists. This
observation is always true, as will be shown shortly.

Consider the following linear programming problem:

Minimize ex
subject to Ax = b

x > 0 .

Let X], x2, ..., Xfr be the extreme points of the constraint set, and let dj, d2, ...,

de, be the extreme directions of the constraint set. Recall that any point x such
that Ax = b and x > 0 can be represented as

k e
x = Σ Α,.χ, + Σ Mjdj

where

91

92 Chapter 3

k

Σ λ} = 1
7=1

Ay > 0,

Mj > 0,

7=1 , . .

y= l , . .

.,*

. ,£

Therefore, the linear programming problem can be conceptually
transformed into a problem in the variables λι,λ2,...,λΙι, μ],μ2,—,μι, result-
ing in the following equivalent linear program:

k t
Minimize Σ (cxy)Ay + Σ (cdy)/"y

7=1 7=1

it
subject to Σ Aj: = 1

Ay > 0, y=l, . . . , A;

/ ^ • > 0 , 7=1, . . . ,^ .

Assume that & > 1. Since the // -variables can be made arbitrarily large, the

minimum is -oo if cd7 < 0 for some/ e {1,..., £}. If cd, > 0 for ally = 1,..., t,

then the corresponding μ · can be chosen as zero. Now, in order to minimize

£^=,(cxy)A,· over Al,À2,...,Àlc satisfying A > 0 for j = 1,..., k, and

Σ^=ι^ί = 1 » w e simply find the minimum ex -, say cx„, let X = 1, and set

all other A.- -variables equal to zero.

To summarize, given feasibility, the optimal value of the linear problem
is finite if and only if cd, > 0 for all extreme directions. Furthermore, if this is

the case, then we can find a minimizing point by selecting a solution having the
minimum objective value among all extreme points. This shows that if an
optimal solution exists, we must be able to find an optimal extreme point
solution. Of course, if the minimum ex, value occurs at more than one index,

then each corresponding extreme point is an optimal point and each convex
combination of these points is an optimal solution (why?). In fact, the entire set
of alternative optimal solutions is given by the set of convex combinations of
such points plus a nonnegative linear combination of the extreme directions d,

that satisfy cd, = 0 (why?).

Example 3.1

Consider the region defined by the following constraints:

-Xj + %2 < 2

The Simplex Method 93

—jtj + 2 x 2 < 6

X\, x2 - 0.

Note that this region has three extreme points Xj, x2, and x3, and two

extreme directions dj and d2 (see Figure 3.1). These are (without normalizing

d2)

M

d, =

0]
0

Γ

u_

x2 =

d2 =

ΓοΊ
2

"2"

[_ ij
Now, suppose that we are minimizing X] - 3 x2 over the foregoing region. We
see from Figure 3.1a that the problem is unbounded and has value -co. In this
case, we have

ΓίΐΊ
0

= -6

CXj

cx2

cx3

cd!

cd2

= 0,-

= 0,

= (1.

= (1,

= (1,

-3)

-3)

-3)

-3)

-3)

"0"
0

"0"
2

~2

4

0
"2"

1

-10

= 1

The preceding problem is equivalent to the following:

Minimize 0/li - 6^2 - 10A3 + μ\
subject to \ + λχ + A3

\ , Àq_, A3, / / j ,

/"2
= 1

Ml > 0.

(a) (*)
Figure 3.1. Extreme directions and optimality: (a) Unbounded optimal
value, (b) Bounded optimal solution.

94 Chapter 3

Since cd2 = -1 < 0 and μ2 can be made arbitrarily large without violating

the foregoing constraints, the objective value can be made -co by letting μ2 =

co. Then μλ can be chosen equal to zero. Any set of nonnegative \ , λ%, λ^

adding to 1 satisfies the foregoing constraints, for example, \ = 1, λ^ = λ3 =
0. This illustrates the necessary and sufficient condition for unboundedness for a
feasible linear program, namely, cd < 0 for some extreme direction d.

Now, consider the problem of minimizing Axx - x2 over the same

region. From Figure 3.1b the optimal solution is the extreme point x2 =

this case we have
"ni

. In

CXi

cd,

cd->

= -2

= 4

(4,-1)

cx2 = (4,-1)

cx3 = (4,-1)

(4,-1)

: (4,-1)

This problem is therefore equivalent to the following:

7.

Minimize OAj

subject to A]

-2λχ

+ Λ2

*2>

+
+

4A3 + 4/4 +7μ2

tt> -"2

1

0.

Since the coefficients of μ\ and μ2 in the objective function are

positive, we let μλ = μ2 = 0. In order to minimize the expression 0/^ - 2λ2 +

4λ$ subject \α\+λζ+λί=\ and Aj, λχ, λ$ > 0, we let λ^ = 1 and λχ =

A3 = 0. This shows that the optimal solution is the extreme point x2 =

Minimizing ex corresponds to moving the plane ex = constant in the
direction -c as far as possible. When c = (1, -3) we can move the plane
indefinitely while always intersecting the feasible region, and hence the optimal
value is -GO. When c = (4, -1) we cannot move the plane indefinitely in this
fashion and we must stop at the point x2; otherwise, we will "leave" the
feasible region.

3.2 BASIC FEASIBLE SOLUTIONS

We have developed, in the previous section, a necessary and sufficient condition
for an unbounded solution. We also showed that if an optimal solution exists,

The Simplex Method 95

then an optimal extreme point also exists. The notion of an extreme point is a
geometric notion, and an algebraic characterization of extreme points is needed
before they can be utilized from a computational point of view.

In this section we introduce basic feasible solutions and show that they
correspond to extreme points. This characterization will enable us to
algebraically describe the simplex method.

Definition (Basic Feasible Solutions)

Consider the system Ax = b and x > 0, where A is an m χ n matrix and b is an
w-vector. Suppose that rank (A, b) = rank (A) = m. After possibly rearranging
the columns of A, let A = [B, N] where B is an m χ m invertible matrix and N is

X JV
anmx(n-ff l) matrix. The solution x to the equations Ax = b, where

xB = B_1b

and
xN =0

is called a basic solution of the system. If \B > 0, then x is called a basic
feasible solution of the system. Here B is called the basic matrix (or simply the
basis) and N is called the nonbasic matrix. The components of xB are called

basic variables (or dependent variables) and the components of xN are called

nonbasic variables (or independent variables). If xg > 0, then x is called a

nondegenerate basic feasible solution, and if at least one component of x g is
zero, then x is called a degenerate basic feasible solution.

The notion of a basic feasible solution is illustrated by the following two
examples.

Example 3.2

[Basic Feasible Solutions)

Consider the polyhedral set defined by the following inequalities (and illustrated
in Figure 3.2):

x\

X\,

+ x2
x2
x2

< 6
< 3
> 0.

By introducing the slack variables x3 and x4, the problem is put in the
following standard format:

X\,

x2
x2
x2>

+ x3

x3,

= 6
+ x4 = 3

x4 > 0.

96 Chapter 3

Figure 3.2. Basic feasible solutions.

Note that the constraint matrix A = [a],a2,a3,a4] 1 1 1 0
0 1 0 1 From the

foregoing definition, basic feasible solutions correspond to finding a 2 χ 2 basis

B with nonnegative B~ b. The following are the possible ways of extracting B
out of A.

2.

3.

4.

5.

B = [a!,a2] =

L*2

1 1
0 1

Β " ^ = 1 -1
0 1

ii,a4] =

~x{
X4

= E

"1 0"
0 1_

r'b =
Ί 0"
0 1

"6"
3 =

"6"
3

lJV

B = [a 2 ,a 3] =

Lx3.

1 1
1 0

ΒΛ = 0 1
1 - 1

x3

x2

x3

xx
X4

B = [a2,a<

Χβ =
~x2

X4

l] =

= B

"1 0"
1 1

->b =
1 0"

- 1 1
"6"
3 =

" 6"
- 3 > XN -

~x{
*3.

= 0
0

XR =

>3>a4] =

~x{
X4

= B

Ί 0"
0 1

lb =
"1 0"
0 1

~6
3 =

~6
3_ KN x2

Note that the points corresponding to 1,2, 3, and 5 are basic feasible solutions.
The point obtained in 4 is a basic solution, but it is not feasible because it violates

The Simplex Method 97

the normegativity restrictions. In other words, we have four basic feasible
solutions, namely:

*i =

3
3
0

LoJ
. x2 =

6
0
0

L3
. x3 =

0
3
3

LoJ

and

These points belong to R , since after introducing the slack variables we have

four variables. These basic feasible solutions, projected in R

(JCI,X2) space—give rise to the following four points:

that is, in the

3
3 »

6
0 1

0
3

and

These four points are illustrated in Figure 3.2. Note that these points are
precisely the extreme points of the feasible region.

In this example, the possible number of basic feasible solutions is
bounded by the number of ways of extracting two columns out of four columns
to form the basis. Therefore the number of basic feasible solutions is less than or
equal to

4!

2!2!
= 6.

Out of these six possibilities, one point violates the nonnegativity of B b.
Furthermore, aj and a3 could not have been used to form a basis, since aj = a3

are linearly dependent, and hence the matrix 1 1
0 0 does not qualify as

a basis. This leaves four basic feasible solutions. In general, the number of basic
feasible solutions is less than or equal to

\m) m\(n — m)\

There is another intuitive way of viewing basic solutions and basic feasible
solutions. (This is made more precise in the sequel.) Each constraint, including
the nonnegativity constraints, can be associated uniquely with a certain variable.
Thus x\ > 0 can be associated with the variable x^, and the line JCJ = 0 defines
the boundary of the half-space corresponding to xj > 0. Also, jq + x2 ^ 6 can
be associated with the variable x3, and x3 = 0 defines the boundary of the half-
space corresponding to xl + x2 ^ 6. Figure 3.3 portrays graphically the
boundaries of the various half-spaces defined by the constraints. Now, basic
solutions correspond to the intersection of two lines in this graph. The lines

98 Chapter 3

Figure 3.3. Associating basic solutions with nonbasic variables.

correspond to the nonbasic variables. In the graph there are five such
intersections corresponding to five basic solutions. Note that there is no
intersection of the lines x2 = 0 and x4 = 0, and thus no basic solution
corresponds to these two variables being nonbasic. Once the feasible region is
identified, we can distinguish the basic solutions from those that are also basic
feasible solutions.

Example 3.3

(Degenerate Basic Feasible Solutions)

Consider the following system of inequalities:

*1

X,

Xj ,

+

+

x2
x7.

2x2
x2

<
<
<
>

6
ί
9
0.

This system is illustrated in Figure 3.4. Note that the feasible region is precisely
the region of Example 3.2, since the third restriction xj + 2x2 < 9 is

"redundant." After adding the slack variables x3, x4, and x5, we get

Note that

x\

x\
X] ,

+

+

x2
x2

2x2

x2

x3

*3>

X4

X4

A = [a! ,a 2 ,a 3 , a 4 , a 5]

t

>

1
0
1

+

1
1
2

x5
x5

1
0
0

—

>

0
1
0

6
3
9
0.

0
0
1

Let us consider the basic feasible solution with B = [at, a2, a3]:

X,

x?
x3

=
1 1 1
0 1 0
1 2 Oj

- 1 6"
3

L9
=

0
0
1

-2
1
1

i l
0
-1

[61
3
9

=
Γ3Ί
3
0

The Simplex Method 99

Figure 3.4. Degenerate basic feasible solution.

0

.0.'

Note that this basic feasible solution is degenerate since the basic variable
x3 = 0. Now, consider the basic feasible solution with B = [aj,a2,a4]:

6^
3
9

=
3
3
0

x3

_ X 5 .
= 0

0

Note that this basis gives rise to the same basic feasible solution obtained by
B = [at,a2,a3]. We can also check that the basic feasible solution with basis
B = [a],a2,a5] is given by

~x3~
X4 = 0

.0.

Note that all three of the foregoing bases represent the single extreme point or
basic feasible solution (xl) = (3, 3, 0, 0, 0). This basic feasible
solution is degenerate since each associated basis involves a basic variable at
level zero. The remaining extreme points of Figure 3.4 correspond to
nondegenerate basic feasible solutions (why?). The reader should also note that
degeneracy is not always simply the result of redundant constraints (see Figure
2.14, for example).

Correspondence Between Basic Feasible Solutions and Extreme Points

We shall now show that the collection of basic feasible solutions and the
collection of extreme points are equivalent. In other words, a point is a basic
feasible solution if and only if it is an extreme point. Since a linear
programming problem having a finite optimal value has an optimal solution at
an extreme point, an optimal basic feasible solution can always be found for
such a problem.

lN
X4

x5

X,

x7
X4

=
1 1 0
0 1 1
1 2 0

—1 6
3
9

=

xl
x7.
x5

=
3
3
0

100 Chapter 3

Consider the following problem:

Minimize ex

subject to Ax = b

x > 0 ,
where A is an w x « matrix with rank m. Let x be an extreme point of the
feasible region. We shall show that x is also a basic feasible solution of the
system Ax = b, x > 0.

By the definition given in Section 2.6, there are some n linearly
independent defining hyperplanes binding at x. Since Ax = b provides m
linearly independent binding hyperplanes, there must be some p = n - m
additional binding defining hyperplanes from the nonnegativity constraints that
together with Ax = b provide n linearly independent defining hyperplanes
binding at x. Denoting these p additional hyperplanes by x^ = 0, we therefore

conclude that the system Ax = b, xN = 0 has x as the unique solution. Now, let

N represent the columns of the variables xN in A, and let B be the remaining

columns of A with xB as the associated variables. Since Ax = b can be written

as Bxg + Nxw = b, this means that B is tn x tti and invcrtiblc, and moreover, \β

= B"'b > 0, since x — (xg, Xyy) is a feasible solution. Therefore, x is a basic
feasible solution.

Conversely, suppose that x is a basic feasible solution of the system Ax =
b, x > 0. We want to show that x is an extreme point. By definition, x = (xB,

xN) where correspondingly A = (B, N) such that xB = B~ b > 0 and xN = 0.

But this means that the n hyperplanes Ax = b, xN = 0 are binding at x and are

moreover linearly independent, since B~ exists. Hence, by the definition in
Section 2.6, x is an extreme point. Therefore, we have shown that every basic
feasible solution is an extreme point and vice versa. Exercise 3.15 asks the
reader to construct an alternative proof for this characterization.

Every basic feasible solution is equivalent to an extreme point. However,
there may exist more than one basis corresponding to the same basic feasible
solution or extreme point. A case of this type can occur in the presence of
degeneracy, as illustrated in Example 3.3. Referring to the preceding proof, this
case corresponds to that of an extreme point at which some r> p = n- m defining
hyperplanes from x > 0 are binding. Hence, for any associated basis, (r-p) of the
x g -variables are also zero. Consequently, the number of positive variables is q =

m - (r - p) < m. In this case, each possible choice of a basis B that includes the
columns of these q positive variables represents this point (why?).

Clearly, if there exists more than one basis representing an extreme point,
then this extreme point is degenerate. However, the converse is not necessarily
true. Consider the following example of a polyhedral set:

Xj + Xj ~t" ΧΛ
 = 1

—Xi + X7 + X3 = 1

X\, X2, x3 - 0 .

The Simplex Method 101

Consider the solution x = (0, 1, 0). Observe that this is an extreme point or a
basic feasible solution with a corresponding basis having xy and x2 as basic
variables. Moreover, this is a degenerate extreme point. There are four defining
hyperplanes binding at x. Moreover, there are three ways of choosing three
linearly independent hyperplanes from this set that yield x as the (unique)
solution (how?). However, the basis associated with x is unique.

In this example, the constraints Ax = b imply that xj = 0. However, after

fixing X] = 0, we no longer have a full rank system. If this were not the case, then
for any degenerate extreme point, there would be more than one corresponding
basis. To see this, consider the system Ax = b, x > 0, where A is m χ η of rank m.
Let x be a degenerate extreme point solution, and let xB and xN be a set of basic
and nonbasic variables, respectively, corresponding to a particular basis. As usual,
let B and N be the columns of A associated with the variables x g and xN,
respectively. Then, the given system is equivalent to

B_1Nx^ + xB = B_1b = b

χΝ, xB > 0.

Consider a degenerate basic variable xB (with br = 0), which is such that Ax

= b does not necessarily imply that xB = 0. Given that such a variable exists,

we will construct another basis representing this point. Let xk be some

component of x^ that has a nonzero coefficient ΘΓ in the row corresponding to

xB . Note that xk exists. Then consider a new choice of (« - m) nonbasic

variables given by xB and Xjy-/t > where XJV_£ represents the components of

xN other than xk . Putting xB = 0 and x^r_^ = 0 above uniquely gives xk =

br/0r = 0 from row r, and so xB. = bt is obtained as before from the other

rows. Hence, this corresponds to an alternative basis that represents the same
extreme point. Finally, note that if no degenerate basic variable xB of this type

exists, then there is only one basis that represents this extreme point.

Existence of Basic Feasible Solutions

Since a nonempty set X= {x: Ax = b, x > 0} has extreme points (from Theorem
2.1), we know that the system Ax = b, x > 0 has at least one basic feasible
solution. In fact, starting from any feasible point x e X, the proof of Theorem
2.1 shows how to constructively obtain an extreme point, and hence a basic
feasible solution o fX Assuming without loss of generality that rank (A) = m,
we can examine the binding nonnegativity constraints at this extreme point, and
select p = (n - m) of them to correspond to the variables xN, such that the
system Ax = b, Xjy = 0 has rank n (how?). Calling the remaining m variables
Χβ as basic variables, we obtain a corresponding basis.

102 Chapter 3

Summary of Results

Let us summarize some of the important facts about the following linear
programming problem, where A is an m x n matrix with rank m.

Minimize ex

subject to Ax = b

x > 0 .

Theorem 3.1
The collection of extreme points corresponds to the collection of basic feasible
solutions, and both are nonempty provided that the feasible region is not empty.

Theorem 3.2
Assume that the feasible region is nonempty. Then a finite optimal solution
exists if and only if cd, > 0 fory = 1,..., I, where di,...,d^ are the extreme

directions of the feasible region. Otherwise, the optimal solution value is
unbounded.

Theorem 3.3
If an optimal solution exists, then an optimal extreme point (or equivalently an
optimal basic feasible solution) exists.

Theorem 3.4
For every extreme point (basic feasible solution) there is a corresponding basis
(not necessarily unique), and, conversely, for every basis there is a correspond-
ing (unique) extreme point. Moreover, if an extreme point has more than one
basis representing it, then it is degenerate. Conversely, a degenerate extreme
point has more than one basis representing it if and only if the system Ax = b
itself does not imply that the degenerate basic variables corresponding to an
associated basis are identically zero.

Now, since the extreme points may be enumerated by algebraically

enumerating all basic feasible solutions, which are bounded by \ \ , one may

think of simply listing all basic feasible solutions and picking the one having the
minimal objective value. This is unsatisfactory, however, for a number of

reasons. First, the number of basic feasible solutions is bounded by \ \ , which

is large, even for moderate values of m and n. Second, this simple approach does
not tell us if the problem has an unbounded optimal value, which may occur if
the feasible region is unbounded. Last, if the feasible region is empty and if we
apply the foregoing "simple-minded procedure," we shall discover that the
feasible region is empty, only after all possible ways of extracting m columns
out of n columns of the matrix A fail to produce a basic feasible solution, either

on the grounds that B does not have an inverse, or else that B~ b X 0.
The simplex method is a clever procedure that moves from one extreme

point to another extreme point having a better (at least not worse) objective

The Simplex Method 103

value. It also discovers whether the feasible region is empty and whether the
optimal objective value is unbounded. In practice, the method only enumerates a
small portion of the extreme points of the feasible region. The key to this
method is revealed next.

3.3 KEY TO THE SIMPLEX METHOD

The key to the simplex method lies in recognizing the optimality of a given
extreme point solution based on local considerations without having to
(globally) enumerate all extreme points or basic feasible solutions.

Consider the following linear programming problem:

LP: Minimize ex
subject to Ax = b

x > 0 ,

where A is an m χ η matrix with rank m. Suppose that we have a basic feasible

solution n whose objective value z0 is given by

Z° = C (B 0 b) = {CB'CN){B~Qb) = Cz?B~lb· (3-1}

Now, let x g and x^ denote the set of basic and nonbasic variables for the

given basis. Then feasibility requires that xB >0,xN> 0, and that b = Ax =

B xB + Νχ^. Multiplying the last equation by B" and rearranging the terms,
we get

say, (3.2)

where J is the current set of the indices of the nonbasic variables. Noting
Equations (3.1) and (3.2) and letting z denote the objective function value, we
get

B"'b

B"'b

b

- B~}mN

JeJ

- Z(y;)*;,
JeJ

CX
CBXB + CNXN

z 0

B_1b - Σ B"1»;*/

- Σ (2; - Cj)Xj

+ Σ CjXj
jeJ

(3.3)

where z · = c#B a ,■ for each nonbasic variable.

104 Chapter 3

Using the foregoing transformations, the linear programming problem LP
may be rewritten as:

Minimize z = z0 - £ (z ■ - c) x ·
jeJ

subject to Σ (y /) x / + XB ~ b (3-4)

Xj > 0, j e J, and χβ > 0.

Without loss of generality, let us assume that no row in Equation (3.4) has all
zeros in the columns of the nonbasic variables x.-, j e J. Otherwise, the basic

variable in such a row is known in value, and this row can be deleted from the
problem. Now, observe that the variables \B simply play the role of slack
variables in Equation (3.4). Hence, we can equivalently write LP in the nonbasic
variable space, that is, in terms of the nonbasic variables, as follows:

Minimize z = z0 - £ (z,- - c.)x ■
JzJ

subject to Z (y y) * y ^ b (3.5)
jeJ

Xj > 0, j e J.

Note that the number of nonbasic variables is p = (n - ni), and so we have
represented LP in some p-dimensional space. This is to be expected since there
are p independent variables or p degrees of freedom in our constraint system.
The values (c ,■ - z ■) are referred to as reduced cost coefficients since they are

the coefficients of the (nonbasic) variables in this reduced space. The
representation (3.4), in which the objective function z and the basic variables
xB have been solved for in terms of the nonbasic variables, is referred to as a

representation of the basic solution in canonical form. The key result now
simply says the following:

If (zj - Cj) < 0 for all j e J , then the current

basic feasible solution is optimal. (3.6)

This should be clear by noting that since z - c,· < 0 for all j e J, we have z

> z0 for any feasible solution; but for the current (basic) feasible solution, we

know thatz = z0, since x.- = 0 for all j e J.

3.4 GEOMETRIC MOTIVATION OF THE SIMPLEX METHOD

It is instructive to examine the foregoing operations geometrically. Observe that
in the nonbasic variable space representation, the feasible region of LP is
defined in terms of n intersecting half-spaces: m associated with the inequality
constraints in Equation (3.5), and/? = n - m associated with the nonnegativity
constraints. Associated with each of these half-spaces, there is a certain defining

The Simplex Method 105

Figure 3.5. Geometric motivation.

variable that takes on a value of zero on the corresponding defining hyperplane,
and takes on nonnegative values over the corresponding half-space. For the
inequalities in Equation (3.5), these defining variables are the basic variables
x g , and for the nonnegativity constraints, these defining variables are the Xj,j

e J, themselves.
Figure 3.5 illustrates a situation in/? = 2 dimensions, where n = 6, m = 4, J

= {1, 2}, and where xB = {x3,x4,x5,x6}. The defining variables associated with
the n = 6 defining hyperplanes are shown against the corresponding hyperplanes
in this figure. The extreme points or vertices of the feasible region are labeled as
Vj,...,v5, and ~c is the reduced cost vector. Note that the feasible region is defined

by the restrictions x,· > 0, j = 1,..., n, in this space. The current basic feasible

solution corresponds to the vertex Vj, that is, the origin. Notice also that every
other extreme point is also defined by the intersection of some p = 2 linearly
independent hyperplanes, with the corresponding p defining variables being the
nonbasic variables. Hence, for the vertex v2 defined by xx = 0 and x3 = 0, the

nonbasic variables are xj and x3, and the basic variables are x2 , Χ4, x$, andx6.
On the other hand, note that the degenerate vertex v3 has three defining hyper-
planes passing through it, any two of which uniquely define this extreme point as
their intersection. Hence, there are three bases representing v3. (Enumerate them.)

Now, consider the origin Vj and examine the p defining hyperplanes
associated with the corresponding nonbasic variables. Holding (p - 1) of these
hyperplanes binding and moving in a direction feasible to the remaining
hyperplane takes us along a one-dimensional ray with vertex at vj. There are p

such rays. Hence, at vj, since (p — 1) = 1, holding x2 = 0 and increasing X]

takes us along the xj axis, with the objective function changing at a rate of

dzldxx = -(zj - q) = q < 0. Similarly, holding X! = 0 and increasing x2 takes

us along the x2 axis, with the objective function changing at a rate of dz/dx2 =

-(z2-c2) = c2 < 0. Hence either ray describes an attractive direction of motion.

106 Chapter 3

Suppose that we choose the latter direction of motion. Because this is a feasible
direction, it takes us along an edge of the feasible region (why?). Naturally, we
would like to move as far as possible along this edge since dz/dx2 = c~2 is a
negative constant. However, our motion is blocked by the hyperplane x3 = 0,
since x3 has been driven to zero and moving any further would drive x3

negative. (Of course, if no such blocking hyperplane existed, then the optimal
solution value would have been unbounded.) Furthermore, since (p - 1) linearly
independent hyperplanes were binding all along and we were blocked by a new
hyperplane, we now have/) linearly independent hyperplanes binding, and so we
are at another extreme point of the feasible region. In fact, this is an adjacent
extreme point with respect to the previous extreme point (why?). At v2 the
nonbasic variables are X] and x3,and the remaining variables are basic. We
have now completed one step known as an iteration or pivot of the simplex
method. In this step, the variable x2 is called the entering variable since it

entered the set of basic variables, and the variable x3 is called the blocking
variable, or the leaving variable, since it blocked our motion or left the set of
basic variables with respect to Vj. The previous and the new basis differ in only
one basic variable, and therefore, in only one nonbasic variable. Such bases are
called adjacent bases.

Repeating this process at v2, we would of course not like to enter x3

into the basis, since it will only take us back along the reverse of the previous
direction. However, holding x3 = 0 and increasing X] takes us along an
improving edge (why?). Proceeding in this direction as shown in Figure 3.5, we
notice that more than one hyperplane blocks our motion. Suppose that we
arbitrarily choose one of these, namely, x4 = 0 as the blocking hyperplane.
Hence, X4 is the leaving variable, and for current basis representing v3, we
have that x3 and x4 are the nonbasic variables. Now, if we hold x4 = 0 and
move in a direction along which x3 increases, the objective function value
would decrease because this direction makes an acute angle with - c . However,
this direction is not feasible. We are blocked by the hyperplane x5 = 0 even
before we begin to move! That is, X5 leaves the basis giving x4 and x5 as our
new nonbasic variables, while we are still at the same vertex v3. Such a step in
which one basis is exchanged for an adjacent basis, both representing the same
extreme point solution, is called a degenerate iteration or a degenerate pivot.
While such a pivot is undesirable, it may not always be avoidable, unlike as in
Figure 3.5 (how?). Certainly, we would not like to be stuck in an infinite loop at
an extreme point while performing a sequence of degenerate pivots that takes us
in a closed loop of bases, all representing the same extreme point, with the
objective function therefore remaining a constant. Such a phenomenon is called
cycling and, as shown in Chapter 4, it can indeed occur. Special precautions
need to be taken for its prevention.

The Simplex Method 107

• ·
/? = 1 P = 2 P = 3

Figure 3.6. Examples of simplices in Rp, p = 1,2,3.

With x4 and x5 as the nonbasic variables at v3 , holding x5 = 0 and increasing
x4 takes us along an improving, feasible edge direction and therefore results in
a nondegenerate pivot. The blocking or leaving variable that gets driven to zero
is x6, and the new nonbasic variables are x5 and JC6 . Observe that corresponding
to this basis, none of the p rays, defined by holding some (p - 1) nonbasic
variables equal to zero and increasing the remaining nonbasic variable, lead to
an improvement in the objective function, and so our "key result" declares v4

to be optimal. In fact, v4 is optimal in the polyhedral cone formed by the half-
spaces having the current nonbasic variables as defining variables, which indeed
contains the feasible region (why?). A path followed by the simplex algorithm
along edges of the polyhedron (from Vj to v2 to v3 to v4 in the previous

example) is known as a simplex path.
The reader may note that when we implement the simplex method

algebraically, we will be representing the linear program in the nonbasic
variable space at every iteration, just as we did at the extreme point V[. This

will conveniently give us the rate of change in objective function value along
each of the p incident rays directly from the corresponding reduced cost vector,
and so at each iteration, we will be inquiring whether the current origin is
optimal or whether we ought to consider moving along one of the current "axis"
directions.

Finally, let us point out the origin of the term "simplex" in this algorithm
(which is not an antonym of "complex"!). A simplex in p dimensions is the

convex hull of a set of (p + 1) noncoplanar points in Rp, that is, points not all

lying on the same hyperplane in Rp. Hence, for/? = 1 this is a line segment; for
p = 2 it is a triangle, and for p = 3 it is a tetrahedron, as shown in Figure 3.6. In
particular, given a basis corresponding to an extreme point, examine for
convenience the feasible region represented in the space of the nonbasic
variables. Note that the convex hull of the current vertex taken as the origin, and
some p other points, with one point chosen along each axis, defines a simplex in

Rp (why?). In fact, by examining the axis directions, the simplex method is
verifying whether the origin is optimal for this simplex or whether any of the
other vertices of the simplex have a better objective value. Consequently, the
simplex method proceeds by examining one such simplex after another, each
time inquiring whether the current vertex of the present simplex is optimal for
this simplex or not.

108 Chapter 3

3.5 ALGEBRA OF THE SIMPLEX METHOD

We will now translate the geometric process described in the foregoing section
into algebra. Toward this end, consider the representation of the linear program
LP in the nonbasic variable space, written in equality form as in Equation (3.4).
If (z ■ - c ■) < 0 for all j e J, then x ■ = 0 for j eJ and xB = b is optimal

for LP as noted in Equation (3.6). Otherwise, while holding (p - 1) nonbasic
variables fixed at zero, the simplex method considers increasing the remaining
variable, say, xk . Naturally, we would like zk - ck to be positive, and perhaps

the most positive of all the zj -cj, j e J. Now, fixing Xj = 0 for j e J - {k},

we obtain from Equation (3.4) that

z = zo-(zk-ck)xk (3.7)

and

XBX

XB2

xBr

XB
m _

V
b2

K

A i .

y\k

yik

yrk

Jmk_

xk. (3.8)

If)>% < 0, then xB. increases as xk increases, and so xB. continues to be non-

negative. If yjk > 0, then xB. will decrease as xk increases. In order to satisfy

nonnegativity, xk is increased until the first point at which some basic variable

xB drops to zero. Examining Equation (3.8), it is then clear that the first basic

variable dropping to zero corresponds to the minimum of ft, I yik for positive

yik. More precisely, we can increase xk until

xk = —^- = minimum <{ ^— :yik > 0 \.
yrk \<i<m yik

lb, (3.9)

In the absence of degeneracy, br > 0, and hence xk = br I yrk > 0. From

Equation (3.7) and the fact that zk-ck > 0, it then follows that z < z0 and the

objective function strictly improves. As xk increases from level 0 to br I yrk, a

new feasible solution is obtained. Substituting xk = brlyrk in Equation (3.8)
gives the following point:

The Simplex Method 109

XB -Dj Dr, i= \,...,m,

xk =■

yrk
(3.10)

and all other x · -variables are zero.

From Equation (3.10), xB = 0 and hence, at most m variables are positive.

The corresponding columns in A are &Β,ΛΒ,...,ΛΒ, ak, aB ,...,& B . Note

that these columns are linearly independent since yrk Φ 0. (Recall that if &B ,...,

aB ,..., aB are linearly independent, and if ak replaces &B , then the new columns

are linearly independent if and only if yrk Φ 0; see Section 2.1.) Therefore, the point
given by Equation (3.10) is a basic feasible solution.

To summarize, we have algebraically described an iteration, that is, the
process of transforming from one basis to an adjacent basis. This is done by
increasing the value of a nonbasic variable xk with positive zk - ck and

adjusting the current basic variables. In the process, the variable xB drops to

zero. The variable xk hence enters the basis and xB leaves the basis. In the

absence of degeneracy the objective function value strictly decreases, and hence
the basic feasible solutions generated are distinct. Because there exists only a
finite number of basic feasible solutions, the procedure would terminate in a
finite number of steps.

Example 3.4

Minimize χλ + x2
subject to X\ + 2x2 ^ 4

x2 < 1
X[, x 2 - 0·

Introduce the slack variables x3 and x4 to put the problem in a standard form.
This leads to the following constraint matrix A:

A= [a 1 , a 2 , a3 ,a 4] = 1 2 1 0
0 1 0 1

Consider the basic feasible solution corresponding to B = [aj, a2] . In other

words, Xj and x2 are the basic variables, while x3 and x4 are the nonbasic
variables. The representation of the problem in this nonbasic variable space as in
Equation (3.4) with J= {3,4} may be obtained as follows. First, compute:

B"
Ί 2
0 1

-1 "1
0

-2
1 csB-'=(l, 1) = (i,-i).

110 Chapter 3

Hence,

and

Also,

y3 =B 'a3 =

y 4 =B~ 1 a 4 =

"1
0

"l
0

-2
1

-2"
1

Ki)-

(!)■[

"Γ
0_|'

"-2"
1

b = B_1b =

z 0 =c / i B- 1 b = (l , - l) ^) = 3,

Z 3 " C 3 = C B B a 3 - C 3 = (l , - l) -0 = 1,

z4~c4 =cBB a 4 - c 4 = (l , - l) - 0 = - l .

Hence, the required representation of the problem is:

Minimize 3 - x3 + x4

subject to x3 Ζ,ΧΛ + X\
x4
x2, x3,

+ x2 = 1
x4 > 0.

The feasible region of this problem is shown in Figure 3.7 in both the original
(xj,x2) space as well as in the current (x3,x4) space. Since z^-c^ > 0, then
the objective improves by increasing x3. The modified solution is given by

i.e.,

xB =B ' b - B 'a3x3

*3·
xx
x2

=
2
1 - 1

0

The maximum value of x3 is 2 (any larger value of x3 will force xj to be
negative). Therefore, the new basic feasible solution is

(x1,x2,x3,x4) = (0,1,2,0).

Here, x3 enters the basis and xj leaves the basis. Note that the new point has an
objective value equal to 1, which is an improvement over the previous objective

The Simplex Method 111

2

Improving
simplex path

X4

1*2 = °l - N Improving simplex path

Figure 3.7. Improving a basic feasible solution.

value of 3. The improvement is precisely (z3 - c 3) x 3 = 2 . The reader is asked
to continue the improvement process starting from the new point.

Interpretation of Entering and Leaving the Basis

We now look more closely at the process of entering and leaving the basis and
the interpretation for these operations.

INTERPRETATION OF zk -ck

The criterion zk-ck > 0 for a nonbasic variable xk to enter the basis will be
used over and over again throughout the text. It will be helpful at this stage to
review the definition of zk and make a few comments on the meaning of the

entry criterion zk-ck > 0. Recall that z = Cgb - (zk - ck)x/c, where

zk = CBB H = CBy* = Σ cB yik (3.11)

and cB. is the cost of the z'th basic variable. Note that if xk is raised from zero

level, while the other nonbasic variables are kept at zero level, then the basic
variables xB , xB , ..., xB must be modified according to Equation (3.8). In

other words, if xk is increased by one unit, then xB , xB ..., and xB will be

decreased respectively by y^k, y2k, ■■■, ymk units (if yik < 0, then xB. will be

increased). The saving (a negative saving means more cost) that results from the
modification of the basic variables, as a result of increasing xk by one unit, is

therefore £i=ic5-.);iVt> which is zk (see Equation 3.11). However, the cost of

increasing xk itself by one unit is ck. Hence, zk - ck is the saving minus the

cost of increasing xk by one unit. Naturally, if zk - ck is positive, it will be to

our advantage to increase xk. For each unit of xk, the cost will be reduced by

112 Chapter 3

an amount zk - ck, and hence it will be to our advantage to increase xk as
much as possible. On the other hand, if zk - ck< 0, then by increasing xk, the
net saving is negative, and this action will result in a larger cost. So this action is
prohibited. Finally, if zk - ck= 0, then increasing xk will lead to a different

solution having the same cost. So, whether xk is kept at zero level, or increased,
no change in cost takes place.

Now, suppose that xk is a basic variable. In particular, suppose that xk is

the /th basic variable, that is, xk = xB , ck = cB , and ak = aB . Recall that zk

= cgB~ ak = cgB~ ΆΒ . But B~ ag is a vector of zeros except for one at the

fth position (see Exercise 2.14). Therefore, zk = cB , and hence, zk ~ck = cB -

cBt = 0.

Leaving the Basis and the Blocking Variable

Suppose that we decided to increase a nonbasic variable xk with a positive zk —

ck. From Equation (3.7), the larger the value of xk, the smaller is the objective

z. As xk is increased, the basic variables are modified according to Equation

(3.8). If the vector y^ has any positive component(s), then the corresponding

basic variable(s) are decreased as xk is increased. Therefore, the nonbasic

variable xk cannot be indefinitely increased, because otherwise, the nonnegativ-

ity of the basic variables will be violated. Recall that a basic variable xB that

first drops to zero is called a blocking variable because it blocks the further
increase of xk. Thus, xk enters the basis and xB leaves the basis.

Example 3.5

Minimize 2x\
subject to -jq

2x\
Xj,

- *2
+ H
+ *2

x2

<
<
>

2
6
0.

Introduce the slack variables x3 and x4. This leads to the following constraints:

- * i
2xj

*1>

+
+

x2

x2
x2'

+ *3

*3>

+ X\

X$

=
=
>

2
6
0.

Consider the basic feasible solution with basis B = [a! ,a2] = -1 1
2 1

B _ I = -1/3 1/3"
_ 2/3 1/3

and

The Simplex Method 113

x^=B"1b-B"1NxA,

XBX

XB2

X,

x2_

"-1/3
_ 2/3

4/3
10/3

1/3] [2
1/3 J [6

- -Ψ
2/3

*3

1/3
2/3

1/3
1/3

1/3]
1/3.

X4.

Ί 0"
0 1

*3
x4

(3.12)

Currently, x3 = x4 = 0, xj = 4/3, and x2 = 10/3. Note that

Z4-C4 = c s B a 4 - c 4 = (2 , - i) -1/3 1/3'
2/3 1/3 - 0 = 1/3 >0.

Hence, the objective improves by holding x3 nonbasic and introducing x4 in the

basis. Then x3 is kept at zero level, x4 is increased, and x\ and x2 are modified

according to Equation (3.12). We see that x4 can be increased to 4, at which

instant xj drops to zero. Any further increase of x4 results in violating the

nonnegativity of X], and so, X] is the blocking variable. With x4 = 4 and x3 =

0, the modified values of xj and x2 are 0 and 2, respectively. The new basic

feasible solution is

(x1 ; x2 , x3, x4) = (0, 2, 0, 4).

Note that a4 replaces a^ that is, χλ drops from the basis and x4 enters the
basis. The new set of basic and nonbasic variables and their values are given as:

X R =
XBX

XB2

= X4

-x2_
=

"4"
2

liV -

Blocking constraint

• xx > 0

Figure 3.8. Blocking variable (constraint).

114 Chapter 3

Moving from the old to the new basic feasible solution is illustrated in Figure

3.8 in the original (xl5 x2) space. Note that as x4 increased by one unit, xj

decreases by 1/3 unit and x2 decreases by 1/3 unit; that is, we move in the

direction (-1/3, -1/3) in the (x1? x2) space. This continues until we are blocked

by the nonnegativity restriction xj > 0. At this point xj drops to zero and leaves

the basis.

3.6 TERMINATION: OPTIMALITY AND UNBOUNDEDNESS

We have discussed a procedure that moves from one basis to an adjacent basis,
by introducing one variable into the basis, and removing another variable from
the basis. The criteria for entering and leaving are summarized below:

1. Entering: xk may enter if zk - ck > 0

2. Leaving: xs may leave if

*r ■ ■ \bi J
—— = minimum^ —— :yjk > 0 >.
yrk \<i<m [yik J

Two logical questions immediately arise. First, what happens if each
nonbasic variable x,· has z - c, < 0? In this case, as seen by Equation (3.6),

we have obtained an optimal basic feasible solution. Second, suppose that
zk - ck > 0, and hence xk is eligible to enter the basis, but we cannot find any

positive component yik, that is, y^ < 0. In this case, the optimal objective value
is unbounded. These cases will be discussed in more detail in this section.

Termination with an Optimal Solution

Consider the following problem, where A is an m χ η matrix with rank m.

Minimize ex

subject to Ax = b

x > 0 .

Suppose that x* is a basic feasible solution with basis B; that is, x* = " " .

Let z* denote the objective of x*, that is, z* = csB~ b. Suppose further that

z - Cj < 0 for all nonbasic variables, and hence there are no nonbasic variables

that are eligible to enter the basis. Let x be any feasible solution with objective
value z. Then from Equation (3.3) we have

z* -z= X (zj-Cj)Xj. (3.13)

The Simplex Method 115

Because z · - c,· < 0 and x,· > 0 for all variables, then z < z, and so, as in

Equation (3.6), x is an optimal basic feasible solution.

Unique and Alternative Optimal Solutions

We can get more information from Equation (3.13). If z--c , · < 0 for all

nonbasic components, then the current optimal solution is unique. To show this,

let x be any feasible solution that is distinct from x*. Then there is at least one

nonbasic component x ,· that is positive, because if all nonbasic components are

zero, x would not be distinct from x*. From Equation (3.13) it follows that z >

z*, and hence, x* is the unique optimal solution.

Now, consider the case where z · -c ■ < 0 for all nonbasic components,

but zk - ck = 0 for at least one nonbasic variable xk. As xk is increased, we

get (in the absence of degeneracy) points that are distinct from x* but have the
same objective value (why?). If xk is increased until it is blocked by a basic
variable (if it is blocked at all), we get an alternative optimal basic feasible
solution. The process of increasing xk from level zero until it is blocked (if at
all) generates an infinite number of alternative optimal solutions.

Example 3.6

Minimize -3xj + x2
subject to χχ + 2x2 + x3 = 4

—Xi + X 2 ~̂~ -^4 = 1
Xj , X2 5 X3 5 X4 ^ 0 .

Consider the basic feasible solution with basis B = [a, ,a4] =

. The corresponding point is given by 1 0
1 1

xs =
Xj

X4
B ' b 1 0

1 1
XN -

x2

x3

1 0
-1 1 and B

and the objective value is -12. To see if we can improve the solution, calculate

z2 - c 2 and z3 - c3 as follows, noting that cgB~ = (-3, 0), where cB = (-3,

0):

z2-c2 =cBB a 2 - c 2 = (- 3 , 0) - l = -7 ,

116 Chapter 3

z3-c3=CgB a3-c3=(-3,0) -0 = -3.

Since both z2 - c2 < 0 and z^ - c^ < 0, then the basic feasible solution (X],

x2, X3, X4) = (4, 0, 0, 5) is the unique optimal point. This unique optimal

solution is illustrated in Figure 3.9a.
Now, consider a new problem where the objective function -2xt - 4 x2

is to be minimized over the same region. Again, consider the same point (4, 0, 0,

5). The objective value is - 8 , and the new cB = (-2, 0), c#B

Calculate z2 - c 2 and z3 - c3 as follows:

(-2, 0).

z2 " c2 = CBB a2 - c2 = (~2> 0)

z 3 -C3=c g B- 1 a 3 -C3=(-2 ,0)

+ 4 = 0,

-0 =

In this case, the given basic feasible solution is optimal, but it is no longer a
unique optimal solution. We see that by increasing x2, a family of optimal

solutions is obtained. Actually, if we increase x2, keep x3 = 0, and modify xj

and x4, we get

X4
=

=

B"

"4"
5

>b

- "2
3

B a2 x2

x2.

For any x2 < 5/3, the solution

xl
x2
x3
X4

=:

"4-2x2"
x2
0

5-3x2

Unique
optimum

Figure 3.9. Termination criterion: (a) Unique optimal solution;
(b) Alternative optima.

Family of alternative
optimal solutions

The Simplex Method 117

is an optimal solution with objective value - 8 . In particular, if x2 = 5/3, we get
an alternative basic feasible optimal solution, where x4 drops from the basis.
This is illustrated in Figure 3.9b. Note that the new objective function contours
are parallel to the hyperplane χχ + 2 x2 =4 corresponding to the first constraint.
That is why we obtain alternative optimal solutions in this example. In general,
whenever the optimal objective function contour contains a face of dimension
greater than 0, we will have alternative optimal solutions.

Unboundedness

Suppose that we have a basic feasible solution of the system Ax = b, x > 0, with
objective value z0. Now, let us consider the case when we find a corresponding

nonbasic variable xk with zk - ck > 0 and y^ < 0. This variable is eligible to
enter the basis, since increasing it will improve the objective function value.
From Equation (3.3) we have

Since we are minimizing the objective z and since zk - ck > 0, then it is to our
benefit to increase xk indefinitely, which will make z go to -co. The reason that
we were not able to do this before was that the increase in the value of xk was
blocked by a basic variable. This puts a "ceiling" on xk beyond which a basic
variable will become negative. But if blocking is not encountered, there is no
reason why we should stop increasing xk. This is precisely the case when y^ <
0. Recall that from Equation (3.8) we have

xB=B-lb-[yk]xk

and so, if y^ < 0, then xk can be increased indefinitely without any of the basic

variables becoming negative. Therefore, the solution x (where \B = B~ b -

[v/fc]x/t> the nonbasic variable xk is arbitrarily large, and other nonbasic

variables are zero) is feasible and its objective value is z = ZQ-(Z/C-CJC)X!(,

which approaches -co as xk approaches oo.

To summarize, if we have a basic feasible solution with zk-ck > 0 for

some nonbasic variable xk, and meanwhile y^ < 0, then the optimal objective

value is unbounded, tending to -co. This is obtained by increasing xk

indefinitely and adjusting the values of the current basic variables, and is
equivalent to moving along the ray:

118 Chapter 3

ÌVV
0

0

I Ò

+ **

"-y*"

0

i

ò

:xk>0

Note that the vertex of the ray is the current basic feasible solution

the direction of the ray is

B ' b and

0

j
Ò

where the 1 appears in the Mi position. It may be noted that
cd = (cB,cN)d = -cByk+ck =-zk+ck.

But ck-zk < 0 (because xk was eligible to enter the basis). Hence, cd < 0 for
the recession direction d of the (nonempty) feasible region, which is the
necessary and sufficient condition for unboundedness. In Exercise 3.52 we ask
the reader to verify that d is indeed an (extreme) direction of the feasible region.

Example 3.7

(Unboundedness)

Minimize —JCJ
subject to x\

-xl
Χγ,

- 3JC2

- 2x2 ^ 4
+ JC2 - 3

x2 > 0.

The problem, illustrated in Figure 3.10, clearly has an unbounded optimal
objective value. After introducing the slack variables x3 and x4, we get the

constraint matrix A
1 -2

-1 1

solution whose basis B = [a3,a4]

1 0
0 1

1 0
0 1

Now, consider the basic feasible

Xn = *3
X4

1 0"
0 1

~4
3 =

"4"
3 XN -

xl
x2

=
"0"
0

The Simplex Method 119

Figure 3.10. Unbounded optimal objective value.

i _ , Calculate zj - q and z2 - c2 as follows, noting c s B = (0, 0):

zl ~ c l = C B B a l ~ c l = _ c l = !»

Z 2 ~ C 2 = C B B a 2 - c 2 = - c 2 = 3 .

So, we increase x2, which has the most positive z · - c ■. Note that x# = B b

[B~ a2]x2, and hence,

*3
x4

=
4
3 - -2

1 x2.

The maximum value of x2 is 3, at which instant x4 drops to zero. Therefore,

the new basic feasible solution is (xj x2 , x3, x4) = (0, 3, 10, 0). The new

basis B is [a3,a2] 1 -2
0 1 with inverse 1 2

0 1 Since c g =(0,-3), we get

c s B = (0,-3), and we calculate zi -c\ and z4-c4 as follows:

z i - c i = c s B a i - c i = (0 , - 3) + 1 = 4,

z4-c4= c sB a4 - c4 = (0, -3) - 0 = -3 .

Note that zx - q > 0 and yj = B aj = -1
-1 . Therefore, the optimal objec-

tive value is unbounded. In this case, if xj is increased and x4 is kept zero, we
get the following solution:

xR=B"'b B 'aj xx

120 Chapter 3

i.e..

*3
_x2.

=
"10"

3 - "-Γ
-1

x,= "10 + X!-

3 + xt

with X] > 0, and x4 = 0. Note that this solution is feasible for all x^ > 0. In
particular,

X] -2x 2 + X3 =x\— 2(3 + X]) + (10 + Xj) = 4,

and

-χγ + x2 + X4 = -xi +(3 + xi) + 0 = 3.

Furthermore, z = - 9 - 4x1; which approaches -00 as xj approaches 00.
Therefore, the optimal objective value is unbounded by moving along the ray

{(0,3,10,0)+ xx (1,1, 1,0): xx >0}.

Again, note that the necessary and sufficient condition for unboundedness holds;
in particular,

cd = (-1 , -3 , 0,0) -4<0.

3.7 THE SIMPLEX METHOD

All the machinery that is needed to describe the simplex algorithm and to prove
its convergence in a finite number of iterations (in the absence of degeneracy)
has been generated. Given a basic feasible solution and a corresponding basis,
we can either improve it if zk - ck > 0 for some nonbasic variable xk, or stop
with an optimal point if z ■ -c ■ < 0 for all nonbasic variables. If zk -ck > 0
and the vector y^ contains at least one positive component, then the increase in
xk will be blocked by one of the current basic variables, which drops to zero
and leaves the basis. On the other hand, if zk -ck > 0 and y^ < 0, then xk can

be increased indefinitely, and the optimal objective value is unbounded (-co).
This discussion is precisely the essence of the simplex method.

We now give a summary of the simplex method for solving the following
linear programming problem:

Minimize ex

subject to Ax = b
x > 0 ,

where A is an m χ n matrix with rank m (the requirement that rank (A) = m will
be relaxed in Chapter 4).

The Simplex Method 121

The Simplex Algorithm (Minimization Problem)

INITIALIZATION STEP

Choose a starting basic feasible solution with basis B. (Several procedures for
finding an initial basis will be described in Chapter 4.)

MAIN STEP

1. Solve the system Bxg = b (with unique solution xB = B~ b = b).

Let xB = b, xN =0, andz = cBxB.

2. Solve the system wB = cB (with unique solution w = c5B~). (The
vector w is referred to as the vector of simplex multipliers because its
components are the multipliers of the rows of A that are added to the
objective function in order to bring it into canonical form.) Calculate
z ■ -Cj = wa - c ■ for all nonbasic variables. (This is known as the

pricing operation.) Let

zk-ck = maximum{z · - c . }
jeJ

where J is the current set of indices associated with the nonbasic
variables. If zk-ck < 0, then stop with the current basic feasible
solution as an optimal solution. Otherwise, go to Step 3 with xk as
the entering variable. (This strategy for selecting an entering variable
is known as Dantzig 's Rule.)

3. Solve the system B y^ = ak (with unique solution y .̂ = B~ ak). If

y^ < 0, then stop with the conclusion that the optimal solution is

unbounded along the ray

+ xk
-Yk
*k

:xk>0

where e^ is an (n - m)-vector of zeros except for a 1 at the Mi

position. If y^ X 0, go to Step 4.

Let xk enter the basis. The index r of the blocking variable, xB ,

which leaves the basis is determined by the following minimum ratio
test:

b, • · \bi
minimum < —^ : yik > 0

yrk \<i<m [yik

Update the basis B where zk replaces a g , update the index set J,

and repeat Step 1.

122 Chapter 3

Modification for a Maximization Problem

A maximization problem can be transformed into a minimization problem by
multiplying the objective coefficients by - 1 . A maximization problem can also
be handled directly as follows. Let zk -ck instead be the minimum z,- -c,· for/

nonbasic; the stopping criterion is that zk - ck > 0. Otherwise, the steps are as
previously presented.

Finite Convergence of the Simplex Method in the Absence of Degeneracy

Note that at each iteration, one of the following three actions is executed: (a) We

may stop with an optimal extreme point if zk-ck < 0; (b) we may stop with an

unbounded solution if zk -ck > 0 and y^ < 0; or else, (c) we generate a new

basic feasible solution if zk - ck > 0 and y^ X 0. In the absence of degeneracy,

br > 0, and hence xk = brlyrk > 0. Therefore, the difference between the
objective value at the previous iteration and that at the current iteration is
xk(zk -ck) > 0. In other words, the objective function strictly decreases at each
iteration, and hence the basic feasible solutions generated by the simplex
method are distinct. Since the number of basic feasible solutions is finite, the
method must stop in a finite number of steps with either an optimal solution or
with an indication of an unbounded optimal objective value. From this
discussion the following theorem is evident.

Theorem 3.5 Finite Convergence

In the absence of degeneracy (and assuming feasibility), the simplex method
stops in a finite number of iterations, either with an optimal basic feasible
solution or with the conclusion that the optimal objective value is unbounded.

In the presence of degeneracy, however, as we have mentioned, there is
the possibility of cycling in an infinite loop. This issue is discussed at length in
Chapter 4.

Example 3.8

Minimize -X] - 3x2
subject to 2xj + 3x2 ^ 6

-Χγ + X2 - 1
Xj, x 2 - 0·

The problem is illustrated in Figure 3.11. After introducing the nonnegative
slack variables x3 and x4, we get the following constraints:

2xj + 3x2 + X3 = 6
—Xj + x 2 + X4 = 1

X\, X2, X3, X4 — 0.

The Simplex Method 123

Figure 3.11. Example of the simplex method.

Iteration 1

LetB = [a3, a 4] : 1 0
0 1 and N = [a1? a2] 2 3

-1 1 . Solving the system Bxs

b leads to xB = x3 = 6 and xB = x4 = 1. The nonbasic variables are X] and x2

and the objective z = cB\B = (0, 0) 0. In order to determine which

variable enters the basis, calculate z ■ -c,- = cgB a , -c ■ = wa -c ·. First we

find w by solving the system wB = c#:

(wuw2)
1 0
0 1 = (0,0)=>Μ>! =w2 = 0 .

Hence,
zx-cx = w a 1 - q =1,

z2-c2 = w a 2 - c 2 =3.

Therefore, x2 is increased. In order to determine the extent by which we can

increase x2, we need to calculate y2 by solving the system By2 = a2:

1 0
0 1

yu
yn

■ yn = 3 and •V22 = !·

The variable xB leaving the basis is determined by the following minimum

ratio test:

Minimum «—*-,—— > = minimum {—,-} = 1.
[yn yn] (3 ij

124 Chapter 3

Therefore, the index r = 2; that is, xB = x4 leaves the basis. This is also

obvious by noting that

xBl
XB7

*3
X4

=
6
1 - 3

1 x2
(3.14)

and x4 first drops to zero when x2 = 1.

Iteration 2

The variable x2 enters the basis and x4 leaves the basis:

B = [a3,a2] 1 3
0 1 and N = [a1?a4] = 2 0

-1 1

Now, x g can be determined by solving BxB = b or simply by noting that x2

1 in Equation (3.14):

XBX
XB2

The objective value is z = - 3 . Calculate w by wB = cB:

x3
x2

=
3
1 5

x\
x4 1

=
0
0

(wuw2)
1 3
0 1 ;(0,-3)=>W! =0 and w2 = -3 .

Hence,

z, - q = waj - c,

(0,-3) + 1 = 4.

The variable x4 left the basis in the previous iteration and cannot enter the basis

in this iteration (because z4-c4 < 0; see Exercise 3.35). Therefore, Xj is

increased. Solve the system Byj = a^

1 3
0 1

yu
721

2
-1 ■yu=5 and y2l = - 1 .

Since >>2i < 0, then xB = x3 leaves the basis as X! is increased. This is also

clear by noting that

x f t

Χβ, 2_

xi
x7.

=
3
1 - 5

- 1

and x3 drops to zero when xl = 3/5.

The Simplex Method 125

Iteration 3

Here, xj enters the basis and x3 leaves the basis:

B = [a1;a2] 2 3
-1 1 and N = [a3,a4] 1 0

0 1

χ β ,
XB2

x2.

3/5'
8/5 ^N

X 3

X 4

The objective value is given by z = -27/5. Calculate w by wB = cB:

(w,,w2) 2 3
-1 1 = (-l,-3)=> wj -4/5 and w2 = -3 /5 .

The variable x3 left the basis in the last iteration and cannot enter the basis in

this iteration (because z3 - c3 < 0). Hence, we compute

z4-c4 = wa4 - c4

= (-4/5, - 3 /5) - 0 = - 3 / 5 .

Therefore, zj - c ,· < 0 for all nonbasic variables, and the current point is

optimal. The optimal solution is therefore given by

(x1 ;x2 ,x3 ,x4) = (3/5, 8/5, 0, 0)

with objective value -27/5. Figure 3.11 displays the simplex path, that is, the
sequence of steps that the simplex method took to reach the optimal point.

3.8 THE SIMPLEX METHOD IN TABLEAU FORMAT

At each iteration, the following linear systems of equations need to be solved:
BxB = b, wB = cB, and By^ = ak. Various procedures for solving and updating
these systems will lead to different algorithms that all lie under the general
framework of the simplex method described previously. In this section, we
describe the simplex method in tableau format. In subsequent chapters we shall
discuss several procedures for solving the preceding systems for general linear
programs as well as for problems having special structures such as network flow
problems.

Suppose that we have a starting basic feasible solution x with basis B.
The linear programming problem can be represented as follows.

126 Chapter 3

Minimize z
subject to z - cBxB - cNxN = 0

BxB + NxN = b
xB, xN > 0.

(3.15)
(3.16)

From Equation (3.16) we have

xB + B 'NXJV = B 'b. (3.17)

Multiplying (3.17) by cB and adding to Equation (3.15), we get

z + 0 x g + (csB"1N-cjV)xAr =CgB"'b. (3.18)

Currently, xN = 0, and from Equations (3.17) and (3.18) we get xB = B b

and z = csB~ b. Also, from (3.17) and (3.18) we can conveniently represent the
current basic feasible solution with basis B in the following tableau. Here, we
think of z as a (basic) variable to be minimized. The objective row will be
referred to as row 0 and the remaining rows are rows 1 through m. The right-
hand-side column (RHS) will denote the values of the basic variables (including
the objective function). The basic variables are identified in the far left column.

z

1

0

*B

0

I

XN

C/jB-'N - Cjv

B !N

RHS

CfiB-'b

B-'b

RowO

Rows 1 through m

The tableau in which z and xB have been solved in terms of x^ is said to be in

canonical form. Not only does this tableau give us the value of the objective

function c#B~ b and the basic variables B~ b in the right-hand-side column,

but it also gives us all the information we need to proceed with the simplex

method. Actually the cost row gives us c#B~ N-cN, which consists of the

(z · —c ,·)-values for the nonbasic variables. So, row zero will tell us if we are at

an optimal solution (if each z - c. < 0), and which nonbasic variable to

increase otherwise. If xk is increased, then the vector y^ = B~ ak, which is

stored in the tableau in rows 1 through m under the variable xk, will help us

determine by how much xk can be increased. If y^ < 0, then xk can be

increased indefinitely without being blocked, and the optimal objective value is

unbounded. On the other hand, if y^ X 0, that is, if y^ has at least one positive

component, then the increase in xk will be blocked by some currently basic

variable, which drops to zero. The minimum ratio test (which can be performed

since B~ b = b and y^ are both available in the tableau) determines the

blocking variable. We would like to have a scheme that will do the following:

The Simplex Method 127

1. Update the basic variables and their values.
2. Update the (z -c.)-values of the new nonbasic variables.

3. Update the y.- columns.

Pivoting

All of the foregoing tasks can be simultaneously accomplished by a simple
pivoting operation. If xk enters the basis and xB leaves the basis, then

pivoting on yrk can be stated as follows:

1. Divide row r by yrk.

2. For i = 1,..., m and i Φ r, update the rth row by adding to it -yik

times the new rth row.
3. Update row zero by adding to it ck -zk times the new rth row. The

two tableaux of Tables 3.1 and 3.2 represent the situation
immediately before and after pivoting.

Table 3.1. Before Pivoting

z χΒχ ■■■ xBr xBm Xj xk RHS

z

xBi

XBm

Let us examine the implications of the pivoting operation.

1. The variable xk entered the basis and xB left the basis. This is

recorded in the left-hand-side of the tableau by replacing xB

with xk. For the purpose of the following iteration, the new xB is

now xk.
2. The right-hand-side of the tableau gives the current values of the

basic variables (review Equation (3.10)). The nonbasic variable
values are zero.

3. Suppose that the original columns of the new basic and nonbasic
variables are B and N, respectively. Through a sequence of
elementary row operations (characterized by pivoting at the
intermediate iterations), the original tableau reduces to the current

tableau with B replaced by I. From Chapter 2 we know that this is

equivalent to premultiplication by B~ . Thus pivoting results in a

1

0

0

0

0 ·

1

0 ·

0 ·

• 0

■ 0

• 1 ·

• 0 ·

• 0

• 0

• 0

• 1

- z i ~ c i ■

... yXj .

- yrj ■

ymj

■· zk ~ck - ·

y\k

■ @ -

ymk

cBb

\

br

K

T
ab

le
 3

.2
.

A
fte

r
Pi

vo
tin

g

z
χ Β

λ
x B

r
x B

ni

X
B

,

x k

X
D

1 0 0 0

0
·

1
·

0
·

0
·

c k
-

z
k

y r
k

-y
\k

y r
k 1

y r
k

-y
m
k

y r
k

•
0

•
0

•
0

•
1

x k
R

H
S

-
(z

y
~

c
y

)
-

—
(z k

~
c k)

y r

k
k

yr
j

Il
L

yr
k yr

j
■"

y m

j
-

~~
ym

k
"

y r
k

■

o
··

·

•
0

·■
·

.
i

..
.

•
0

··
·

c
5

b
-(

z
/t

-c k)

rf
-

y r
k

bt

-—
b r

y r
k

Il
_

yr
k

b m

b r

y r
k

f

The Simplex Method 129

new tableau that gives the new B N under the nonbasic variables,
an updated set of (z - c.)-values for the new nonbasic variables,

and the values of the new basic variables and objective function.

The Simplex Method in Tableau Format (Minimization Problem)

INITIALIZATION STEP

Find an initial basic feasible solution with basis B. Form the following initial
tableau:

z

1

0

x s

0

I

XjV

c^B-'N - c^

B ' N

RHS

cBb

b

MAIN STEP

Let zk-ck = maximum {z,· -c, · : j eJ}. If zk -ck < 0, then stop; the current

solution is optimal. Otherwise, examine y^. If y^ < 0, then stop; the optimal
objective value is unbounded along the ray

:xk>0\
B-V

0
+ xk

"-y*"

ek_

where ek is a vector of zeros except for a 1 at the kth position. If y^ X 0,
determine the index r as follows:

—— = minimum
yrk \<i<m \iM

Update the tableau by pivoting at yrk. Update the basic and nonbasic variables

where xk enters the basis and xB leaves the basis, and repeat the main step.

Example 3.9

Minimize
subject to

X,

*\
*\

~xl
X],

+
+
+
+

Xo
x2
x2
x2

x2,

- 4x3

+ 2x3

" *3
+ x3

x3

<
<
<
>

9
2
4
0.

Introduce the nonnegative slack variables x4, x5, and x6. The problem becomes
the following:

130 Chapter 3

Minimize - 4x3 + 0x4 + 0x5 + Ox6

subject to xj + x2 + 2x3 + X4

- X j

X j ,

+ x2 -
+ x2 +

x2,

x3

*3
*3> X4,

*5

x5,

= 9
= 2

x6 = 4
x6 > 0.

Since b > 0, then we can choose our initial basis as B = [a4,a5,a6] = I3 , and we

indeed have B~ b = b > 0. This gives the following initial tableau:

Iteration 1

z

X4

X ,

H

z

1

0

0

0

X,

-1

1

1

-1

x2

-1

1

1

1

*3

4

2

-1

(J)

x4

0

1

0

0

*5

0

0

1

0

H
0

0

0

1

RHS

0

9

2

4

Iteration 2

z

H
x5

x3

z

1

0

0

0

X,

3

©
0

-1

x2

-5

-1

2

1

*3

0

0

0

1

H
0

1

0

0

x5

0

0

1

0

x6

-A

-2

1

1

RHS

-16

1

6

4

Iteration 3

x\
x5

X3

z
1

0

0

0

xx

0

1

0

0

x2

-4

-1/3

2

2/3

*3

0

0

0

1

X4

-1

1/3

0

1/3

x5

0

0

1

0

x6

-2

-2 /3

1

1/3

RHS
-17

1/3

6

13/3

This is an optimal tableau since z ■ - c, < 0 for all nonbasic variables. The

optimal solution is given by

X) = 1/3, x2 =0, x3 = 13/3,

withz = -17.

Note that the current optimal basis consists of the columns aj, a5, and a3,
namely,

The Simplex Method 131

B = [a,,a5,a3] =
1 0
1 1

-1 0

Interpretation of Entries in the Simplex Tableau

Consider the following typical simplex tableau and assume nondegeneracy:

«fi

The tableau may be thought of as a representation of both the basic variables xB

and the cost variable z in terms of the nonbasic variables xN. The nonbasic

variables can therefore be thought of as independent variables, whereas xB and

z are dependent variables. From row zero, we have

z

1

0

*B

0

I

XN

CgB-'N - cN

B_1N

RHS

csB- 'b

B ' b

z = cBB ' b - (c s B 1N-c i V)x N

= cgB b+ Σ (Cj-Zj)Xj,

and hence, the rate of change of z as a function of any nonbasic variable x ■ ,

namely dz/dx.-, is simply c. - z . In order to minimize z, we should increase

x · if dz/dx.- < 0, that is, if z · -c ■ > 0. (Here and later, each partial derivatives

is defined in the usual rate of change sense, holding all the other independent
variables constant at their current values.)

Also, the basic variables can be represented in terms of the nonbasic
variables as follows:

VB - B"1b-B~1NxA,

B ' b

B " b

" Σ [BV
■ Σ [yy]*r

Therefore, ΒχΒ/θχ,- = -y , · ; that is, -y,· is the rate of change of the basic

variables as a function of the nonbasic variable x,. In other words, if x, increases

by one unit, then the z'th basic variable xB. decreases by an amount yti, or

simply, dxB. I dx ■ = -yy. The column y · can be alternatively interpreted as

132 Chapter 3

follows. Recall that By = a , and hence y · represents the linear combination

of the basic columns that are needed to represent a . More specifically,

a7- = l[as.]yy.

The simplex tableau also gives us a convenient way of predicting the rate of
change of the objective function and the value of the basic variables as a
function of the right-hand-side vector b. Since the right-hand-side vector
usually represents scarce resources, we can predict the rate of change of the
objective function as the availability of the resources is varied. In particular,

z = c s B _ 1 b - X (Zj-Cj)Xj
jeJ

and hence, dz/db = cBB~ . If the original identity consists of slack variables

having zero costs, then the elements of row zero at the final tableau under the

slacks give cBB~ 1-0 = csB~ , which is dz/db. More specifically, if we let

w= cgB~ , then dz/dty =wj·.
Similarly, the rate of change of the basic variables as a function of the

right-hand-side vector b is given by

* S . = B-1.
5b

In particular, dxB. Idb is the z'th row of B~ , dxBl dbj is they'th column of B~ ,

and dxB. I dbj is the (/',_/) entry of B~ .

Note that if the tableau corresponds to a degenerate basic feasible
solution, then as a nonbasic variable x ,· actually increases, at least one of the

basic variables may become immediately negative (see Equation 3.8),
destroying feasibility. In this case, the indicated rate of change in the objective
value with respect to x ,■ is not realizable, because when x .· increases, holding

the other nonbasic variables at zero, the resulting points are infeasible. Similar
remarks hold for the other partial derivatives. In particular, if dz/dty = w,· at
optimality, then although this rate of change is valid in the usual sense of the
partial derivative, it may not be the actual realizable change in the optimal
objective function value when bt is increased in the case of degeneracy. As we
shall be seeing later in Chapter 6, the objective function z as a function of ty
may not be differentiable in such a case, and so w,- may only be the slope of one
possible tangential support to this function at the current value of bt.

Identifying B from the Simplex Tableau

The basis inverse matrix can be identified from the simplex tableau as follows.
Assume that the original tableau has an identity matrix. The process of reducing

The Simplex Method 133

the basis matrix B of the original tableau to an identity matrix in the current
tableau is equivalent to premultiplying rows 1 through m of the original tableau

by B~ to produce the current tableau (why?). This also converts the identity

matrix of the original tableau to B~ . Therefore B~ can be extracted from the
current tableau as the submatrix in rows 1 through m under the original identity
columns.

Example 3.10

To illustrate the interpretations of the simplex tableau, consider Example 3.9 at
iteration 2. Then

-3,
dz

dx-,
= 5,

dx6

d*5
dxi

= 0,
5x3

dx6
1,

dx-j

dz _ dz dz
= - 4 ,

dx5

'db,

dx4 _ 2

db3

and

B
1 0 -2
0 1 1
0 0 1

The vector a2 can be represented as a linear combination of the basic columns

as follows: a2 = - l a 4 + 2a5 + a3. At iteration 3, we have

f =<■
dx2

dx5 = _ 2 j

dx2

dz _

dx6

dx6

■2,

-1,
9x3

Sx7

= -2/3,

134 Chapter 3

3x2

1/3"
-2

-2/3_

ÌL=-i A= 0 > A
9 ^ 9è2 9Z>j

= -2,

dxf

dbi

-2/3

1

1/3

and

5xj

<5òJ"

B

^ = 1/3,
36,

1/3 0 -2/3
0 1 1

1/3 0 1/3

The vector a2 can be represented as a linear combination of the basic columns

as follows: a2 =-(l/3)ai + 2a5 + (2/3)a3.

3.9 BLOCK PIVOTING

Throughout this chapter we have considered the possibility of entering a single
nonbasic variable into the basis at each iteration. Recall that whenever a
nonbasic variable enters the basis we must ensure that the new set of variables,
the current basic set minus the exiting variable plus the entering variable,
satisfies the following: (1) it also forms a basis; (2) it remains feasible, that is,
Xg. > 0 for all i; and also, we must have that (3) the value of the objective

function either remains constant or decreases (for a minimization problem). It is
possible to enter sets of nonbasic variables as long as the same three conditions
are satisfied. The process of introducing several nonbasic variables simulta-
neously is called block pivoting. However, in the case of multiple entries, the
foregoing conditions become harder to ensure.

Suppose that we enter several nonbasic variables into the basis in such a
way that Condition 2 is maintained. Note that

z = cBB ■ Z^j~Cj)Xj.

If we, for example, use the entry criterion that z · - c > 0 for all entering

variables, we shall ensure that the value of z will either remain constant or else
decrease.

The Simplex Method 135

With respect to the question whether the new set still forms a basis, we
must extend the rule that the pivot element be nonzero. Consider the basic
equations before pivoting:

xg = B _ 1 b - B ' Ν Χ ^ .

Let b = B~1b, Y# =B- 1N,
*B2

XjV,

*N2J

where the vector x JV,

enters and the vector xB leaves the basis. Here xB and \N each contain the

same number of variables (why?). On partitioning the basic system, we get

Il 0
0 I ,

V*B2J

lN, lNv

lN-22
XN2

On rearranging, we get

"li YJV,

0 Y; N7 \x"u
b
b 2

0 Y M 12

v22

XB-

VW-2)

Now, the new set of variables, xB and \N , will form a basis if and only if the

matrix
Il Υ*π

0 Y ΛΤι-

can be converted into the identity matrix via row operations;

that is, if this matrix is invertible. From Chapter 2 we know that this matrix is
invertible if and only if the determinant of the square matrix Ŷ y is nonzero.

This is a natural extension of the rule when entering only one variable. The new
rule for maintaining a basis is as follows. Consider the square submatrix formed
by the elements in the leaving rows and entering columns of the current tableau.
If the determinant of this submatrix is nonzero, the new set will form a basis.

Rules for checking feasibility of the new basic set are more involved.
Except in special circumstances, such as network flows, the rules for feasibility
are difficult to check. This is primarily the reason why block pivoting is
generally avoided in practice.

EXERCISES

[3.1] Consider the following linear programming problem:

Maximize
subject to

x\
x\

-2xj
-3xj

2xj
X],

+
-
+
+
+

2x2
4x2

x2
4x2

x2
x2

<
<
<
<
>

4
2

12
8
0

136 Chapter 3

a. Sketch the feasible region in the (X],x2) space and identify the
optimal solution.

b. Identify all the extreme points and reformulate the problem in terms
of convex combination of the extreme points. Solve the resulting
problem. Is any extreme point degenerate? Explain.

c. Suppose that the fourth constraint is dropped. Identify the extreme
points and directions and reformulate the problem in terms of convex
combinations of the extreme points and nonnegative linear combina-
tions of the extreme directions. Solve the resulting problem and
interpret the solution.

d. Is the procedure described in Parts (b) and (c) practical for solving
larger problems? Discuss.

[3.2] Consider the following constraints:

2xj
2xj

X,

Xj,

+ 3x2

+ x2
- 2x2

x2

<
<
<
>

6
2
0
0.

a. Draw the feasible region.
b. Identify the extreme points, and at each extreme point identify all

possible basic and nonbasic variables.
"0"

c. Suppose that a move is made from the extreme point to the

extreme point in the (xj, x2) space. Specify the possible enter-

ing and leaving variables.
[3.3] Consider the following problem:

Maximize
subject to

x\
x\

-2xj
5X]

X] ,

+ 3x2
- 2x2

+ *2
+ 3x2

x2

< 0
< 4
< 15
> 0.

a. Solve this problem graphically.
b. Solve the problem by the simplex method.

[3.4] Solve the following problem by the simplex method starting with the basic
feasible solution corresponding to the vertex (JCJ, X2) = (0, 2). Sketch the
feasible region in the nonbasic variable space.

Maximize
subject to

2xj
2x[

*1
X,,

" *2
+ 3x2
- 2x2

*2

= 6
< 0
> 0

(Hint: Identify the initial basis and find its inverse.)

The Simplex Method 137

[3.5] Solve the following linear programming problem by the simplex method.

At each iteration, identify B and B - .

Maximize 3xj + 2x2 + x3
subject to 3xj - 3x2 + 2x3 < 3

-xj + 2x2 + x3 < 6
Xj, X 2 , Χ3 ^ 0 .

[3.6] Consider the following problem:

Maximize
subject to

-3xi
-x,
2xj

Xj

- 2x2
+ x2 <
+ 3x2 <

>
x2 >

1
6
0

4/3.

a. Solve the problem graphically.
b. Set up the problem in tableau form for the simplex method, and

obtain an initial basic feasible solution.
c. Perform one pivot. After one pivot:

i. Indicate the basis matrix.
ii. Indicate the values of all variables,
iii. Is the solution optimal?

d. Draw the requirements space representation,
i. Give the possible bases.
ii. Give the possible feasible bases.

e. Relate each basis in Part (d)(i) to a point in Part (a).

[3.7] Consider the following linear programming problem:

Maximize
subject to

2x[
2xj

x\
X[,

+ x2
+ x2

+ 4x2
x2>

~ x3
+ 4x3

- *3
*3

< 6
< 4
> 0,

Find an optimal solution by evaluating the objective function at all extreme
points of the constraint set. Show that this approach is valid in this problem.
Now, suppose that the first constraint is replaced by xj + x2 - 4x3 < 6. Can the
same approach for finding the optimal point be used? Explain why.
[3.8] Consider a maximization linear programming problem with extreme points
Xl, x2, x3, and x4, and extreme directions dj, d2, and d3, and with an

objective function gradient c such that cxj = 4, cx2 = 6, cx3 = 6, cx4 = 3, cdj

= 0, cd2 = 0, and cd3 = -2 . Characterize the set of alternative optimal solutions

to this problem.

[3.9] Consider the following linear programming problem:

Maximize
subject to

2x[
3xj
*1>

+ 2x2

+ 6x2

x2,

+ 4x3

+ 3x3

x3,
+ 3x4

X4,

+ 5x5
+ 3x5

x5,

+ 3x6
+ 4x6

*6

<
>

60
0.

138 Chapter 3

This problem has one constraint in addition to the nonnegativity constraints, and
is called a knapsack problem. Find all basic feasible solutions of the problem,
and find an optimum by comparing these basic feasible solutions. Hence,
prescribe a general rule to solve a knapsack problem of the type to Maximize
n n

X CjXj, subject to Σ ajxj ^b, x,· > 0 for y = 1,...,n, where b > 0, c,· > 0, V/,

and a. > 0, V/, based on the ratios c.· la,, j = \,...,n. Comment on how you

would treat the case c ,· < 0 for any/, or c > 0 and a ■ < 0 for any/.

[3.10] Consider the polyhedral set consisting of points (x{,x2) such that

Χγ + 2x2 ^ 2

xj, x2 unrestricted.

Verify geometrically and algebraically that this set has no extreme points.
Formulate an equivalent set in a higher dimension where all variables are
restricted to be nonnegative. Show that extreme points of the new set indeed
exist.

[3.11] Consider the linear program: Minimize ex subject to Ax < b, x > 0, where
c is a nonzero vector. Suppose that the point x0 is such that A x0 < b and x0 >

0. Show that x0 cannot be an optimal solution.

[3.12] Consider the following system:

Xj + 2x2 + x3 < 3
-2xj + 2x2 + 2x3 < 3

xu x2, x-i > 0.

The point (1/2, 1/2, 1/2) is feasible. Verify whether it is basic. If not, use the
method described in the text for reducing it to a basic feasible solution.
[3.13] Answer the following questions along with a concise explanation with
respect to the linear program to maximize ex subject to x e X = {x: Ax = b, x >
0}, where A is m χ η of rank m<n.

a. In a simplex tableau, if z ■ - c ,· = -7 for a nonbasic variable x ,·, what

is the change in objective value when x · enters the basis given that

the minimum ratio is 3 in the pivot?
b. If an extreme point is optimal, then is it possible that not all z ,· - c,· >

0 for an associated basis?
c. If there exists a d such that Ad = 0, d > 0, and cd > 0, then is the

optimal objective value unbounded?
d. Let x be a feasible solution with exactly m positive components. Is

x necessarily an extreme point of XÌ
e. If a nonbasic variable xk has Zjc~

ck = 0 a t optimality, then can one
claim that alternative optimal solutions exist?

The Simplex Method 139

f. If X] and x2 are adjacent points and if Bj and B2 are respective
associated bases, then these bases are also adjacent. True or false?
Explain.

g. Is it possible for an optimal solution to have more than m positive
variables?

h. Suppose that n = m+ 1. What is the least upper bound on the number
of extreme points and feasible bases?

i. A/^-dimensional polyhedron can have at most/? extreme directions.
True or false? Explain,

j . Let x be an extreme point having (m - 1) positive components.
Then there are (p + 1) bases associated with this extreme point,
where p = n-m. True or false? (Assume that Ax = b does not imply
any variable to be a constant.) Explain.

[3.14] Consider the region defined by the constraints Ax > b, where A is an m x

n matrix with m > n. Further suppose that rank (A) = n. Show that x0 is an
extreme point of the region if and only if the following decomposition of A and
b is possible:

Ai n rows . _
m-n rows ~~ b2

n rows
m-n rows

A 1 x 0 =b 1 , A 2 x 0 > b 2

rank (Aj) = n.

[3.15] Let X = {x : Ax = b, x > 0) where A is m χ n of rank m. Let x be a
feasible solution such that χ^,.,.,χ are positive and x +1,..., xn are zero.

Assuming that the columns a[,...,a of A corresponding to the positive vari-
ables are linearly dependent, construct feasible points x' and x" such that x is a
convex combination of these points. Hence, argue that if x is an extreme point of
X, it is also a basic feasible solution. Conversely, suppose that x is a basic
feasible solution of X with basis B and that x = λχ' + (1 - λ)χ" for some 0 < λ
< 1 and x', x" E X. Denoting xg and xN as the corresponding basic and non-
basic variables, show that x'N = x"N = 0 and x'B = x"B = B~ b. Hence, argue
that x is an extreme point of X.

[3.16] Corresponding to the sequence of simplex iterations discussed in Section
3.4 with respect to the problem in Figure 3.5, draw on this figure the sequence
of simplices considered by the simplex algorithm.

[3.17] Consider the constraints Ax = b, x > 0 and assume that they form a
bounded region. Consider the following two problems, where xn is the «th com-
ponent of x:

Minimize

subject to

xn

Ax = b
x>0 .

140 Chapter 3

Maximize
subject to

xn

Ax = b
x>0

Let the optimal objective values of these two problems be x'„ and x"n, respec-

tively. Let xn be any number in the interval [x'n , x"n]. Show that there exists a

feasible point whose «th component is equal to xn.

[3.18] Suppose that we have a basic feasible solution of the system Ax = b, x >
0 with basis B. Suppose that zk - ck > 0 and xk is introduced into the basis and

xB is removed from the basis. Denote the new basis by B. Show algebraically

that after pivoting:

a. The column under x- is (B)~ a-.

b. The right-hand-side is (B)~ b.

c. The new cost row is composed of (c^)(B)~ a · - c .·.

(Hint: Suppose that

B = (a1,a2,...,ar,...,am)

B = (a1,a2,...,aA,...,aOT).

First show that B = BE, and (B) l = E ' β \ where

E =

1 0
0 1

r-rth column

y\k - o
y2k ... 0

0 0 ... yrk ... 0

0 0 ymk

■ rth row

This form is usually called the product form of the inverse and is discussed in
more detail in Section 5.1.)
[3.19] Suppose that we have a basic feasible solution that is nondegenerate.
Furthermore, suppose that an improving nonbasic variable enters the basis.
Show that if the minimum ratio criterion for exiting from the basis occurs at a
unique index, then the resulting basic feasible solution is nondegenerate. Is this
necessarily true if the first solution is degenerate?

[3.20] An agricultural mill produces feed for cattle. The cattle feed consists of
three main ingredients: corn, lime, and fish meal. These ingredients contain
three nutrients: protein, calcium, and vitamins. The following table gives the
nutrient contents per pound of each ingredient:

The Simplex Method 141

INGREDIENT

NUTRIENT

Protein
Calcium

Vitamins

CORN

25

15

5

LIME

15

30
12

FISH MEAL

25
20

8

The protein, calcium, and vitamins content per pound of the cattle feed must be
in the following intervals respectively: [18, 22], [20, oo), and [6, 12]. If the
selling prices per pound of corn, lime, and fish meal are, respectively, $0.20,
$0.08, and $0.50, find the least expensive mix.

(Hint: First find a basis B such that B_1b > 0.)

[3.21] A nut packager has on hand 150 pounds of peanuts, 100 pounds of
cashews, and 50 pounds of almonds. The packager can sell three kinds of
mixtures of these nuts: a cheap mix consisting of 90 percent peanuts and 10
percent cashews; a party mix with 50 percent peanuts, 30 percent cashews, and
20 percent almonds; and a deluxe mix with 20 percent peanuts, 50 percent
cashews, and 30 percent almonds. If the 12-ounce can of the cheap mix, the
party mix, and the deluxe mix can be sold for $0.80, $1.10, and $1.30,
respectively, how many cans of each type would the packager produce in order
to maximize the return?

[3.22] A firm makes three products, 1, 2, and 3. Each product requires produc-
tion time in three departments as shown.

PRODUCT

1
2

3

DEPARTMENT 1

3 hr/unit

4 hr/unit
2 hr/unit

DEPARTMENT 2

2 hr/unit
1 hr/unit

2 hr/unit

DEPARTMENT 3

1 hr/unit
3 hr/unit

3 hr/unit

There are 500, 400, and 300 hours of production time available in the three
departments, respectively. If products 1, 2, and 3 contribute $3, $4, and $2.5 per
unit to profit, respectively, find an optimal product mix.

[3.23] Solve Exercise 1.11 as a linear model by the simplex method. Find the
actual value of the objective function 36/x2x^ corresponding to the optimal point
obtained from the simplex method. By trial and error see if you can find a
feasible point whose value for the objective function 36/x2*3 is better than that
obtained previously.

[3.24] Solve Exercise 1.10 to find the number of barrels of each crude oil that
satisfies the demand and minimizes the total cost: (Hint: First find a basis B

having B^b >0.)

[3.25] Solve the following problem by the simplex method:

142 Chapter 3

Maximize
subject to

X,
x\

2x|
-x,

Xj ,

- 2x2

+ 2x2
+ x2

+ 3x2
x2,

+
+
-

x3

3x3
x3

x3

<
<
<
>

12
6
9
0.

[3.26] Use the simplex method to solve the following problem. Note that the
variables are unrestricted in sign.

Minimize 2xj
subject to xj

2x]
2xj
3x]

der the following problem:

Maximize 2x{ + x2

subject to xi + 2x2
2xj + 3x2

X,

X j , X 2 ,

-
-
+
+
—

+
+
-
+

x2
3x2

x2
3x2
2x2

6x3

4x3
x3
x3
x3>

>
>
<
<

-
-
+
+

-3
-2

6
6.

4x4

X4

X4

X4

X4

<
<
<
>

6
12
2
0.

Find a basic feasible solution with the basic variables as xj, x2, and x4. Is this
solution optimal? If not, then starting with this solution find an optimal solution.
[3.28] Consider the following problem:

Maximize
subject to

-3xj
2xj
- X ,

-xx

xu

+ 2x2
- 3x2

+ 2x2
+ x2

Λ 2 .

- x3

- x3
+ 2x3
- 4x3

x3,

+
+
-
+

X4

X4

3x4
X4

X4

<
<
<
>

0
1
8
0.

Use the simplex method to verify that the optimal objective value is unbounded.
Make use of the final simplex tableau to construct a feasible solution having an
objective of at least 3500. Make use of the final tableau to construct a direction
d such that cd > 0.

[3.29] Find a nonbasic feasible optimal solution of the following problem:

Maximize llxj + 2x2 - x3

subject to 5xj + x2 - x3

-14xj - 3x2 + 3x3

2x, + (l/2)x2 - (l/2)x3

3x! + (l/2)x2 + (l/2)x3

Xj , X2 , X3 ,

(Hint: Let the initial basis consist of x5, x6 and the slack variables of the last
two constraints. Then find alternative optimal solutions for the problem.)

+ 3x4

+ 2x4

— 3X4

+ (l/2)x4

+ (3/2)x4

X4,

+
+

4x5

*5

x5,

+ x6

= 12
+ x6 = 2

< 5/2
< 3

x6 > 0.

The Simplex Method 143

[3.30] The following mathematical formulation describes a problem of
allocating three resources to the annual production of three commodities by a
manufacturing firm. The amounts of the three products to be produced are
denoted by xj, x2, and x3. The objective function reflects the dollar contribution
to profit of these products.

Maximize lOxj + 15x2 + 5x3
subject to 2xj + x2 - 6000

3*! + 3x2 + x3 < 9000
X! + 2x2 + 2x3 < 4000
Xj, x 2 , x 3 ^ 0.

a. Without using the simplex method, verify that the optimal basis
consists of the slack variable of the first constraint, x1; and x2.

b. Make use of the information in Part (a) to write the optimal tableau.
c. The Research and Development Department proposes a new product

whose production coefficients are represented by [2,4,2]'. If the
contribution to profit is $15 per unit of this new product, should this
product be produced? If so, what is the new optimal solution?

d. What is the minimal contribution to profit that should be expected
before production of this new product would actually increase the
value of the objective function?

[3.31] Solve Exercise 1.12 by the simplex method. Suppose that extra man-
hours can be obtained by allowing overtime at the average of $14 per hour.
Would it be profitable to increase the man-hours? If so, by how much? How
would this increase the profit?

[3.32] Solve Exercise 1.15 by the simplex method.
[3.33] Can a vector that is inserted at one iteration in the simplex method be
removed immediately at the next iteration? When can this occur and under what
entering variable choice rule would it be impossible?

[3.34] We showed in the text that z.· - c,- = 0 for a basic variable. Interpret

this result.

[3.35] Show that in the simplex method if a variable x · leaves the basis, it

cannot enter the basis in the next iteration.
[3.36] Prove or give a counterexample. In order to have a basic variable in a
particular row of the simplex tableau, that variable must have a nonzero
coefficient in its original column and the particular row.

[3.37] Consider the linear programming problem: Maximize ex subject to Ax =
b, x > 0, where A is an m χ η matrix of rank m. Suppose that an optimal solution
with basis B is at hand. Further suppose that b is replaced by b + Ad where A is a
scalar and d is a fixed nonzero vector of dimension m. Give a condition such
that the basis B will be optimal for all λ > 0.
[3.38] Write a precise argument showing that in the absence of degeneracy and
assuming feasibility, the simplex method will provide an optimal solution or
reveal unboundedness of a linear program in a finite number of steps.

144 Chapter 3

[3.39] Suppose that some tableau for a linear programming problem exhibits an
indication of unboundedness. Considering only the basic vectors and the non-
basic vector corresponding to the column giving the unboundedness indication,
demonstrate which entities, if any, satisfy the definition of an extreme point.
Also demonstrate which entities, if any, satisfy the definition of an extreme ray.
Give an example.

[3.40] Consider the linear program: Minimize ex subject to Ax > b, x > 0.
Converting the inequality constraints to equality constraints, suppose that the

optimal basis is B. Show that w = c#B~ > 0.

[3.41] Suppose that we know a priori that a solution cannot be optimal unless it
involves a particular variable at a positive value. Show that this variable can be
eliminated and that the reduced system with one less equation and variable can
be solved in its place. Illustrate by an example.

[3.42] Consider the problem to minimize z = ex, subject to Ax < b and x > 0.
Hence, we are to find the smallest z for which the inequality system z > ex, Ax <
b, x > 0 has a solution. Consider the variable χγ. Using each inequality with χλ

on one side and all other terms on the other side, show how xj can be

eliminated from the problem. Hence, show how this can be repeated to solve the
linear program. Illustrate using the example in Exercise 3.7. (This is known as
the Fourier-Motzkin Elimination Method?)
[3.43] a. Characterize the set of alternative optimal solutions given the following
optimal tableau:

Z Λ"| X2 X3 X4 Χς X(. RHS

1
0
0

0 0 0 0 2 3
1 0 3 - 2 - 1 1
0 1 - 3 2 2 3

0
0
0

b. Consider the problem to maximize ex subject to the inequality constraints
depicted below. Give all bases for which z · -c,· > 0 for the nonbasic variables.

[3.44] Consider the following linear program:

Minimize -x\ - 2x2 + ^3
subject to 2x] + x2 + *3 - 6

2x2 - X3 < 3
X], x2, X3 ^ 0.

The Simplex Method 145

a. Find an optimal solution by the simplex method. At each iteration

identify B, N, B"1, B-1N, C B B ~ \ and the (zj - Cy)-values.

b. At optimality, find dxi /dx3, dx2 /Sx4, dz/dx5, dxB /dxN, where x4

and x5 are the slack variables. Interpret these values.

c. Suppose that q is changed from -1 to —1 + Aj, and c2 is changed

from -2 to -2 + Δ2. Find the region in the (Aj, Δ2) space that will

maintain optimality of the solution you obtained in Part (a).

d. Suppose that a new activity x6 is considered. Here c6 = -4 , a16 = 2,

and α26
 = 4· Is it worthwhile to produce the activity? If your answer

is yes, find the new optimal solution.
e. Suppose that i\ is changed from 6 to 6 + Δ. Find the range of Δ that

will maintain optimality of the basis found in Part (a).
f. Make use of the final tableau to represent the column a3 as a linear

combination of aj and a2.

[3.45] Consider the following linear programming problem:

Maximize 2xj + 12x2 + 7x3

subject to xj + 3x2 + 2x3 < 10000

2xx + 2x2 + x3 < 4000

Xj, x 2 , x 3 > 0.

The optimal solution is shown below, where z is the objective function and x4

and x5 are slack variables:

a.

b.

c.
d.

z

x4

x3

z

1

0

0

X,

12

-3

2

xl
2

-1

2

x3
0

0

1

X4

0

1

0

x5

7

-2

1

RHS

28000

2000

4000

What are the rates of increase of the objective as a function of the
right-hand-side of the first and second constraints, respectively?
Suppose that the right-hand-side of the second constraint is changed
to 4000 + Δ. What is the range of A that will keep the basis of the
foregoing tableau optimal?
Find explicitly the optimal value z as a function of Δ for Part (b).
Suppose that increasing the right-hand-side of the second constraint
involved expanding a manufacturing department. This will involve a
fixed cost as well as a variable cost that is a function of Δ. In
particular, the cost as a function of Δ is

Α(Δ)
io if A = 0

[4000 + 2Δ if Δ > 0.

146 Chapter 3

What is the break-even point where the cost and the added profit will
balance? What do you recommend for the optimal value of Δ?

[3.46] Consider the following simplex tableau for a minimization problem (the
constraints are of the < type and x3, x4, and x5 are the slacks).

z

1

0

0

0

x\
0

1

0

0

x2

a

-2

-3

0

x3

0

0

1

0

X4

b

1

-2

3

x5

0

0

0

1

RHS

/
c

d

e

Suppose that a < 0, b < 0, and c,d,e> 0.

a. FindB-1.
b. Find B.
c. Is the tableau optimal?
d. Give the original tableau (in terms of the unknowns).

e. From the tableau identify cBB~ and give its interpretation.

Now, suppose that a > 0, b < 0; and c,d,e> 0.
f. Is the new tableau optimal?
g. Give an extreme direction.
h. Let a = 5 and/= -10. Give a feasible solution having z = -150.

[3.47] The following is the current simplex tableau of a linear programming
problem. The objective is to minimize -2x4 -x$- 2x6, and xj, x2, and x3 are
the slack variables.

z

1

0

0

0

x\
b

2

3

0

x2

c

0

d

e

x3

0

-14/3

2

/

H
0

0

0

1

*5

h

1

5/2

2

x6

g
1

0

0

RHS

-12

a

5

0

z
x6

x2

X4

a. Find the values of the unknowns a through h in the tableau.

b. Find B"1.

c. Find5x2/9xi, dz/dx5, dx^ldb^.

d. Without explicitly finding the basic vectors a6, a2, a4, give the rep-

resentation of the vector a5 in terms of these basic vectors.

[3.48] The starting and current tableaux of a given problem are shown below.
Find the values of the unknowns a through n.

The Simplex Method 147

Starting tableau

Current tableau

z
1
0
0

z

1

0

0

x\
a
b
-1

x\
0

8
h

x2

1
c
2

x2

-1/3

2/3

i

x3

-3
d
e

x3

j
2/3

-1/3

x4

0
1
0

x4

k

1/3

1/3

x5
0
0
1

x5

£

0

1

RHS
0
6
1

RHS

n

f
m

[3.49] The following is the current simplex tableau of a given maximization
problem. The objective is to maximize 2*] - 4x2, and the slack variables are *3

and *4. The constraints are of the < type.

z

x3

x\

z
1

0

0

X,

b

c

d

x2

1

0

e

x3

f
1

0

X4

8

1/5

2

KHS
8

4

a

a. Find the unknowns a through g.

b. Find B~'.

c. Find 3*3/3*2, dz/dbi, dz/dx4, dxyldbz-
d. Is the tableau optimal?

[3.50] Consider the problem: Maximize ex subject to Ax = b, x unrestricted in
sign. Under what conditions does this problem have a bounded optimal
solution?

[3.51] Consider a linear programming problem in which some of the variables
are unrestricted in sign. What are the conditions for a bounded optimal solution?
Without introducing additional variables, show how the entry and exit criteria of
the simplex method can be modified such that the unrestricted variables are
handled directly. How does the simplex method recognize reaching an optimal
solution in this case? Illustrate by solving the following problem.

Minimize
subject to

-3*i
2*i

*i

+ *2
+ 3*2
- * 2

*i

* 2

< 6
< 6
> 0

unrestricted

[3.52] A necessary and sufficient condition for unboundedness of the objective
value of a (feasible) minimization problem is that there exists a direction of the
feasible region such that cd < 0. A condition for unboundedness in the simplex
method is the existence of an index_/' such that z - c ,· > 0 and y, < 0. Discuss

in detail the correspondence between the two conditions.

148 Chapter 3

{Hint: Let

d =

0

where the 1 appears at they'th position. Show that d is a direction of the set and
that cd = Cj - zj. Can you show that d is an extreme direction?)

[3.53] Construct a detailed flow diagram of the simplex method. What are the
number of operations (additions, subtractions, multiplications, divisions) that are
needed at each simplex iteration?

[3.54] Consider the linear program to maximize ex subject to Ax = b and x > 0,

where A is m χ n of rank m. Let B be any basis matrix, and let B* be the basis

associated with any optimal basic feasible solution. Define Zj = c5B~ &j and

Z: = c „B a for ally. Consider a particular variable x, for which there

exists a set of m columns a,-(/), j = l,...,m, chosen from [A, b], and a

corresponding set of m scalars % ,) , j = \,...,m, such that

B~
m
Σ ei<j)*i<j)

7=1
> o

and

(z,· -ct)- Σ OiU)[zi(j) - zi(y)] > °-
7=1

Then show that x must be nonbasic at optimality. Is this generally
implementable? Can you identify an implementable special case?

*—1

{Hint: Since c «B B > c^ (why?), obtain an inequality by postmultiplying
both sides of this by the expression in the first condition and then use the second
condition.)

NOTES AND REFERENCES

1. This chapter describes the simplex algorithm of Dantzig (developed in
1947 and published at a later date in 1949). The material of this chapter is
standard and can be found in most linear programming books. The histori-
cal information is from Dantzig [1982].

2. In Section 3.1 we proved optimality at an extreme point via the
Representation Theorem. The reader may note that the simplex algorithm
itself gives a constructive proof of this optimality result.

The Simplex Method 149

3. The material on block pivoting is from Tucker [1960b]. For further read-
ing on block pivoting, see Dantzig [1963a], Lasdon [1970], and Cooper
and Kennington [1979]. For a discussion on some nonadjacent extreme
point methods for linear programs, see Sherali, Soyster, and Baines
[1983], Sherali and Baines [1984], Murty and Fathi [1984], Murty
[1986], and Sethi and Thompson [1984]. A host of nonlinear program-
ming approaches to linear programming problems have been inspired by
Khachian's [1979] and Karmarkar's [1984a, b] polynomial-time algo-
rithms for linear programs (see Chapter 8).

4. Exercise 3.54 relates to Cheng's [1980] theoretical work (see also
Brosius [1981]) on a priori recognizing basic or nonbasic variables at
optimality.

This page intentionally left blank

FOUR: STARTING SOLUTION
AND CONVERGENCE

In the previous chapter, we developed the simplex method with the assumption
that an initial basic feasible solution is at hand. In many cases, such a solution is
not readily available, and some work may be needed to get the simplex method
started. In this chapter, we describe two procedures (the two-phase method and
the big-Af method), both involving artificial variables, to obtain an initial basic
feasible solution to a slightly modified set of constraints. The simplex method is
used to eliminate the artificial variables and to then solve the original problem.
We also discuss in more detail the difficulties associated with degeneracy. In
particular we show that the simplex method converges in a finite number of
steps, even in the presence of degeneracy, provided that a special rule for
entering and/or exiting from the basis is adopted.

4.1 THE INITIAL BASIC FEASIBLE SOLUTION

Recall that the simplex method starts with a basic feasible solution and moves to
an improved basic feasible solution, until the optimal point is reached or
unboundedness of the objective function is verified. However, in order to

initialize the simplex method, a basis B with b = B b > 0 must be available.
We shall show that the simplex method can always be initiated with a very
simple basis, namely, the identity.

Easy Case

Suppose that the constraints are of the form Ax < b, x > 0 where A is an m χ η
matrix and b is a nonnegative w-vector. By adding the slack vector xs, the

constraints can be put in the following standard form: Ax + xs = b, x > 0, xs >
0. Note that the new m x (m + n) constraint matrix (A, I) has rank m, and a basic
feasible solution of this system is at hand, by letting x^ be the basic vector, and
x be the nonbasic vector. Hence, at this starting basic feasible solution, we have
xs = b and x = 0, and now the simplex method can be applied.

Some Bad Cases

In many situations, finding a starting basic feasible solution is not as straight-
forward as the case just described. To illustrate, suppose that the constraints are
of the form Ax < b, x > 0, but the vector b is not nonnegative. In this case, after
introducing the slack vector xs, we cannot let x = 0, because xs = b violates the

nonnegativity requirement.
Another situation occurs when the constraints are of the form Ax > b, x >

0, where b X 0. After subtracting the slack vector xs, we get Ax - xs= b, x >

151

152 Chapter 4

0, and xs > 0. Again, there is no obvious way of picking a basis B from the

matrix (A, -I) with b = B"1 b > 0.
In general any linear programming problem can be transformed into a

problem of the following form:

Minimize ex
subject to Ax = b

x > 0 ,

where b > 0 (if ty < 0, the rth row can be multiplied by -1). This can be

accomplished by introducing slack variables and by simple manipulations of the
constraints and variables (see Chapter 1 for details). If A contains an identity
matrix, then an immediate basic feasible solution is at hand, by simply letting B

= I, and since b > 0, then B~ b = b > 0. Otherwise, something else must be
done. A trial-and-error approach may be futile, particularly if the problem is
infeasible!

Example 4.1

a. Consider the following constraints:

xj + 2x2 < 4
-X[+ x2 - 1

xu x2 > 0.

After adding the slack variables x3 and x4, we get

Xl + 2x2 + X3 = 4
—Xj + X2 + ΧΛ

 = 1
X\ , X2 5 X3 5 XA — t).

An obvious starting basic feasible solution is given by

and xN

b. Consider the following constraints:

*3
X4

x,
x2.

Xj + X2

-2xj + 3x2

x2,

+ ^3
+ 2x3

x3

<
>
>

6
3
0.

Note that xj is unrestricted. So the change of variable Xj — Xj Xj

is made. Also, the slack variables x4 and x5 are introduced. This

leads to the following constraints in standard form:

Xi — Xi

-2x]+ + 2xf
X[, Xj ,

+ X2 + X3 + X4

+ 3x2 + 2x3

X2, Χ3, Χ4,

= 6
- x5 = 3

x5 > 0.

Starting Solution and Convergence 153

Note that the constraint matrix does not contain an identity and no
obvious feasible basis B can be extracted,

c. Consider the following constraints:
xl + x2 ~ 2*3 ^ -3

-2x\ + x2 + 3x3 < 7
X] , Χ'χ, X% — 0 .

Since the right-hand-side of the first constraint is negative, the first
inequality is multiplied by - 1 . Introducing the slack variables x4 and

x5 leads to the following system:

~X\ — X2 + 2x3 — χ^ = 3
-2x] + x2 + 3x3 + x5 = 7

X] , X2, X3, X4 ? X5 — t)·

Note again that this constraint matrix contains no identity.

Artificial Variables

After manipulating the constraints and introducing slack variables, suppose that
the constraints are put in the format Ax = b, x > 0 where A is an m x n matrix
and b > 0 is an w-vector. Furthermore, suppose that A has no identity submatrix
(if A has an identity submatrix then we have an obvious starting basic feasible
solution). In this case, we shall resort to artificial variables to get a starting basic
feasible solution, and then use the simplex method itself and get rid of these
artificial variables.

To illustrate, suppose that we change the restrictions by adding an
artificial vector xa leading to the system Ax + xa = b, x > 0, xa > 0. Note that

by construction, we created an identity matrix corresponding to the artificial
vector. This gives an immediate basic feasible solution of the new system,
namely, xa = b and x = 0. Even though we now have a starting basic feasible

solution and the simplex method can be applied, we have in effect changed the
problem. In order to get back to our original problem, we must force these
artificial variables to zero, because Ax = b if and only if Ax + xa = b with xa =

0. In other words, artificial variables are only a tool to get the simplex method
started; however, we must guarantee that these variables will eventually drop to
zero, if at all possible.

At this stage, it is worthwhile to note the difference between slack and
artificial variables. A slack variable is introduced to put the problem in equality
form, and the slack variable can very well be positive, which means that the
inequality holds as a strict inequality. Artificial variables, however, are not
legitimate variables, and they are merely introduced to facilitate the initiation of
the simplex method. These artificial variables, however, must eventually drop to
zero in order to attain feasibility in the original problem.

Example 4.2

Consider the following constraints:

154 Chapter 4

- 3 x j
2x|

Xj,

ick variables x3,

X\ + 2x 2 -
-3*1 + 4 x 2

2xj + X2

Xj, X2 >

+ 2x2
+ 4x2
+ X2

x2

x4, and

" *3

x3,

> 4
> 5
< 6
> 0.

x5, we get

= 4
X4 = 5

+ x5 = 6
x4, x5 > 0.

This constraint matrix has no identity submatrix. We can introduce three artifi-
cial variables to obtain a starting basic feasible solution. Note, however, that x5

appears in the last row only and it has a coefficient of 1. So we only need to
introduce two artificial variables x6 and x7, which leads to the following system:

Legitimate variables Artificial variables

xx

■3xj
2xj

+ 2x2
+ 4x2
+ X2

x2

X3 + x6 = 4
X4 + Xj — 5

+ x5 = 6
X3, X4, X5, Χβ, Χη ^ 0.

Now, we have an immediate starting basic feasible solution for the new system,
namely, x5 = 6, x6 = 4, and x7 = 5. The rest of the variables are nonbasic and
have a value of zero. Needless to say, we eventually would like the artificial
variables x6 and x7 to drop to zero.

4.2 THE TWO-PHASE METHOD

There are various methods that can be used to eliminate the artificial variables.
One of these methods is to minimize the sum of the artificial variables, subject
to the constraints Ax + xa = b, x > 0 and xa > 0. If the original problem has a

feasible solution, then the optimal value of this problem is zero, where all the
artificial variables drop to zero. More importantly, as the artificial variables drop
to zero, they leave the basis, and legitimate variables enter instead. Eventually,
all artificial variables leave the basis (this is not always the case, because we
may have an artificial variable in the basis at level zero; this will be discussed
later in greater detail). The basis then consists of legitimate variables. In other
words, we get a basic feasible solution for the original system Ax = b, x > 0, and
the simplex method can be started with the original objective function ex. If, on
the other hand, after solving this problem we have a positive artificial variable,
then the original problem has no feasible solution (why?). This procedure is
called the two-phase method. In the first phase, we reduce artificial variables to
value zero or conclude that the original problem has no feasible solutions. In the
former case, the second phase minimizes the original objective function starting
with the basic feasible solution obtained at the end of Phase I. The two-phase
method is outlined below:

Starting Solution and Convergence 155

Phase I

Solve the following linear program starting with the basic feasible solution x = 0
and \a= b:

Minimize x0 = i\a

subject to Ax + \a = b

x, x a > 0 .

If at optimality χα Φ 0, then stop; the original problem has no feasible solutions.

Otherwise, let the basic and nonbasic legitimate variables be \B and xN. (We

are assuming that all artificial variables left the basis. The case where some
artificial variables remain in the basis at zero level will be discussed later.)
Proceed to Phase II.

Phase II

Solve the following linear program starting with the basic feasible solution \B =

B"1 b and xN = 0:

Minimize z= cB xB + cN \N

subject to x g + B~ NXJV = B~ b

XB,XJV >0.

The foregoing problem is of course equivalent to the original problem.

Example 4.3

Minimize xj - 2x2

subject to *i + *2 - 2
-Xj + x 2 > 1

x2 < 3
Xj , * 2 - 0·

The feasible region and the path taken by Phase I and Phase II to reach the
optimal point are shown in Figure 4.1. After introducing the slack variables x3,

x4, and x5, the following problem is obtained:

Minimize Xj - 2x2
subject to xj + x2 - X3 = 2

—Xj + X2 — X4 — 1
X2 + X5 = 3

Xj, X2, X3, X4, Χ5 ^ 0.

An initial identity is not available. Hence, we introduce the artificial variables
x6 and x7 (note that the last constraint does not need an artificial variable).

Phase I starts by minimizing x0 = x6 + x7.

156 Chapter 4

Figure 4.1. Example of the two-phase method.

Phase I

ARTIFICIALS

Xn Xi Xy Xi ΧΛ X< Xf. X"7 Kfib

1

0

0

0

0

1

-1

0

0

1

1

1

0

-1

0

0

0

0

-1

0

0

0

0

1

-1

1

0

0

-1

0

1

0

0

2

1

3

Add rows 1 and 2 to row 0 so that we will obtain z6 - c6 = ζΊ - cj = 0.

Xr\ ΧΛ Λ"9 ΧΊ. ΧΛ ΧΖ Xfc Χη χντιΛ

1
0
0
0

0
1

-1
0

2
1

co
1

-1
-1
0
0

-1
0

-1
0

0
0
0
1

0
1
0
0

0
0
1
0

3
2
1
3

Χα XI X? -̂ 3 "̂ 4 *̂ 5 *̂ 6 "̂ 7 KJ~lo

1
0
0
0

2

Θ
-1 1

0
0
1
0

-1
-1
0
0

1
1

-1
1

0
0
0
1

0
1
0
0

-2
-1

1
-1

1
1
1
2

Χη Χι Χτ Χ3 ΧΑ -̂ 5 "̂ 6 "̂ 7

RHS 1
0
0
0

0
1
0
0

0
0
1
0

0
-1/2
-1/2

1/2

0
1/2

-1/2
1/2

0
0
0
1

-1
1/2
1/2

-1/2

-1
-1/2

1/2
-1/2

0
1/2
3/2
3/2

Starting Solution and Convergence 157

This is the end of Phase I. We have a starting basic feasible solution, {xx,
xl) = (1/2> 3/2)· Now we are ready to start Phase II, where the original objec-

tive is minimized starting from the extreme point (1/2, 3/2) (see Figure 4.1).

The artificial variables are disregarded from any further consideration.

Phase II

z
1
0
0
0

x\
-1

1
0
0

x2

2
0
1
0

x3

0
-1/2
-1/2

1/2

X4

0
1/2

-1/2
1/2

XS

0
0
0
1

RHS
0

1/2
3/2
3/2

Multiply rows 1 and 2 by 1 and - 2 , respectively, and add to row 0, producing
zl ~ c\ = z2 ~ c2 = °-

z
x\
x2

x5

z
x4

x2
x5

z
X4

x?
x3

z
1
0
0
0

z
1
0
0
0

z
1
0
0
0

x\
0
1
0
0

X,

-3
2
1

-1

X,

-1
1
0

-1

x?
0
0
1
0

x2

0
0
1
0

x2

0
0
1
0

x3

1/2
-1/2
-1/2

1/2

*3
2

-1

0
x3

0
0
0
1

x4

3/2
(1/2)
-1/2

1/2

X4

0
1
0
0

X4

0
1
0
0

x5
0
0
0
1

x5
0
0
0
1

*>
-2

1
1
1

RHS
-5/2

1/2
3/2
3/2

RHS
^t

1
2
1

RHS
-6

2
3
1

Since z Cj < 0 for all nonbasic variables, the optimal point (0, 3) with objec-

tive value -6 is reached. Note that Phase I moved from the infeasible point (0,
0), to the infeasible point (0, 1), and finally to the feasible point (1/2,3/2).

From this extreme point, Phase II moved to the feasible point (0, 2) and finally
to the optimal point (0, 3). This is illustrated in Figure 4.1. The purpose of Phase
I is to get us to an extreme point of the feasible region, while Phase II takes us
from this feasible point to an optimal point, assuming that an optimum exists.

Analysis of the Two-Phase Method

At the end of Phase I, either χα Φ 0 or else xa

in detail below:

: 0. These two cases are discussed

158 Chapter 4

Case A: xa φθ

If xa φ 0, then the original problem has no feasible solution, because if there is

an x > 0 with Ax = b, then I ft) is a feasible solution of the Phase I problem and

0(x) + 1(0) = 0 < l x a , violating optimality of xa.

Example 4.4

(Empty Feasible Region)

Minimize -3xj + 4x2
subject to xj + x2 < 4

2x, + 3x2 > 18
X], *2 - 0·

The constraints admit no feasible solution, as shown in Figure 4.2. This will be
detected by Phase I. Introducing the slack variables x3 and x4, we get the
following constraints in standard form:

xl + x2 + x3 = 4
2x\ + 3x2 - x4 = 1 8

X\, X2> *3 ! X4 — 0 .

Since no convenient basis exists, we introduce the artificial variable x5 into the

second constraint. Phase I is now used to try to get rid of the artificial variable.

Phase I

Xa Xi X9 -^3 -^4 -*5 J v H o

1
0
0

0 0 0 0 - 1
1 1 1 0 0
2 3 0 - 1 1

0
4

18

Add row 2 to row 0 so that we obtain z5 - c5 = 0.

*2

Figure 4.2. Empty feasible region.

Starting Solution and Convergence 159

JCQ

*5

XQ

x0

1
0
0

x0

1
0
0

*1
2
1
2

X]

-1
1

-1

x2

3

®
3

x2

0
1
0

x3

0
1
0

*5
-3

1
-3

X4

-1
0

-1

X4

-1
0

-1

x5

0
0
1

x5

0
0
1

RHS
18
4

18

RHS
6
4
6

The optimality criterion of the simplex method, namely z · - c. < 0, holds for

all variables; but the artificial variable x5 > 0. We conclude that the original

problem has no feasible solutions.

Case B: \a = 0

This case is further divided into two subcases. In subcase Bl, all the artificial
variables are out of the basis at the end of Phase I. The subcase B2 corresponds
to the presence of at least one artificial variable in the basis at zero level. These
cases are discussed in turn below:

Subcase Bl (All Artificials Are Out of the Basis)

Since at the end of Phase I we have a basic feasible solution, and since xa is
out of the basis, then the basis consists entirely of legitimate variables. If the
legitimate vector x is decomposed accordingly into \B and xN, then at the end
of Phase I, we have the following tableau:

xo

XQ

1

0

XS

0

I

XN

0

B-1N

x a

-1

B 1

RHS

0

B ' b

Now, Phase II can be started with the original objective function, after
discarding the columns corresponding to xa. (For academic purposes, these

columns may be kept since they would present B~ at each iteration. Note,
however, that an artificial variable should never be permitted to enter the basis
again.) The (z, - c.)-values for the nonbasic variables are given by the vector

cBB~ N - c^ , which can be easily calculated from the matrix B~ N stored in

the final tableau of Phase I. The following initial tableau of Phase II is
constructed. Starting with this tableau, the simplex method is used to find an
optimal solution or to detect unboundedness.

160 Chapter 4

z

1

0

χ β

0

I

xN

c B B- 'N - cN

B_1N

RHS

CfiB- 'b

B>b

Subcase B2 (Some Artificials Are in the Basis at Zero Values)

In this case we may proceed directly to Phase II, or else eliminate the artificial
basic variables and then proceed to Phase II. These two actions are discussed in
further detail next.

PROCEED DIRECTLY TO PHASE II

First, we eliminate the columns corresponding to the nonbasic artificial vari-
ables of Phase I. The starting tableau of Phase II consists of some legitimate
variables and some artificial variables at zero values. The cost row, consisting of
the (z ■ - Cj^-coefficients, is constructed for the original objective function so

that all legitimate variables that are basic have z, - c, = 0. The cost

coefficients of the artificial variables are given value zero (justify!). While
solving the Phase II problem by the simplex method, we must be careful that
artificial variables never reach a positive level (since this would destroy
feasibility). To illustrate, consider the following tableau, where for simplicity
we assume that the basis consists of the legitimate variables xl5 x2 >-->xk an(^
the artificial variables x„+£+i, —,xn+m (m e artificial variables xn+i,~;Xn+k left
the basis during Phase I):

z
x\
x2

xk

xn+k+l

xn+r

xn+m

z

1

0

0

0

0

0

0

X, · · ·

0 ···

1

1

0 ···

0 ···

0 ···

xk

0

1

0

0

0

xk+\ '"xj'"xn

zi - ci

y\j

yij

yq
yk+ij

yrj

ymj-

xn+k+l

0

0

0

0

1

■*n+m

0

0

0

0

1

1

RHS

cBb

\
h

h
0

0

0

Suppose that z - c.- > 0, and so x, is eligible to enter the basis, where

Xj is a legitimate nonbasic variable. If >>,·. > 0 for i = k + 1,..., m, then the

artificial variable xn+i will remain zero as x ■ enters the basis if ytj = 0, and

otherwise, if >>,-. > 0, then x ■ will enter the basis at the zero level. In either

case, the usual minimum ratio test can be performed, preferring to exit an artifi-
cial variable from the basis in the case of ties. If, on the other hand, at least one

Starting Solution and Convergence 161

component y ■ < 0, r e {k + 1, ..., m}, then the artificial variable xn+r will

become positive as xj is increased. This action must be prohibited since it

would destroy feasibility. This can be done by pivoting at yr.- rather than using

the usual minimum ratio test. Even though y ■ < 0, pivoting at yr,- would main-

tain feasibility since the right-hand-side at the corresponding row is zero. In

this case, x.- enters the basis and the artificial variable xn+r leaves the basis,

and the objective value remains constant. In all cases, nonbasic artificial
variable columns are deleted from the tableau. With this slight modification the
simplex method can be used to solve Phase II.

FIRST ELIMINATE THE BASIC ARTIFICIAL VARIABLES AT THE
END OF PHASE I

Rather than adopting the preceding rule, which nonetheless guarantees that
artificial variables will always be zero during Phase II, we can eliminate the
artificial variables altogether before proceeding to Phase II. The following is a
typical tableau (possibly after rearranging) at the end of Phase I. The objective
row and column do not play any role in the subsequent analysis and are hence
omitted.

BASIC NONBASIC NONBASIC BASIC
LEGITIMATE LEGITIMATE ARTIFICIAL ARTIFICIAL
VARIABLES VARIABLES VARIABLES VARIABLES

X,

x?

xk
xn+k+\

xn+m

X\
1

0

0

x? ■

1

0 ·

0

• xk

1
• 0

0

xk+\"'xn

Ri

R2

xn+\"

R3

R4

'xn+k xn+k + \

0
0

0
1

xn+m

0
0

0

1

RHS

*i
h

\
0
0

0

We now attempt to drive the artificial variables x„+£+i, —,xn+m out of
the basis by placing m - k of the nonbasic legitimate variables xk+\,..., xn into
the basis, if possible. For instance, x„+£+i can be driven out of the basis by
pivoting at any nonzero element of the first row of R2. The corresponding
nonbasic legitimate variable enters, x„+£+i leaves the basis, and the tableau is
updated. This process is continued. If all artificial variables drop from the basis,
then the basis would consist entirely of legitimate columns, and we proceed to
Phase II as described in subcase Bl. If, on the other hand, we reach a tableau
where the matrix R2 = 0, none of the artificial variables can leave the basis by

introducing x#+1, οτ xk+2,..., or xn. Denoting (xl,x2,—,χ^)' and (xk+l,...,xn)'

162 Chapter 4

by X[and x2, respectively, and decomposing A and b accordingly into

and it is clear that the system

["An
A21

A12

A22_

[An
A 2 1

A12

A 2 2

~ΧΓ
_ X 2 j

=
V
. b 2 .

is transformed into

I

0

Ri 1
0

~ x l ~

x2
= V

0

through a sequence of elementary matrix operations. This shows that rank (A, b)
= k < m; that is, the last m - k equations are algebraically redundant and

R] = Afi AJ2 and bj = A^b]. The last m - k rows of the last tableau can be
thrown away, and we can proceed to Phase II without the artificial variables.
The basic variables tire Xj, X2 ,.. -, Xfc and the nonbasic variables are xk+\ ,...,x„.

The starting tableau of Phase II is depicted below, where cB = (q, c2,...,ck):

z

1

0

XyXjt

0

I

xk+\ "'xn

C B A U A 1 2 " eN

Α Π A12 = R l

RHS

c^b,

bi

Example 4.5

(Redundancy)

Minimize
subject to

-Xj + 2x 2

xl

X | ,

x2

3x3
xi

~Xj + x2 + 2x^ —

2x2 + 3*3
x3

x2, x3

6
4

10
2
0.

After introducing a slack variable, x4, in the fourth constraint, the constraint

matrix A is given by:

" 1 1 1 0
- 1 1 2 0
0 2 3 0
0 0 1 1

Note that the matrix is not of full rank, since if we add the first two rows of A,
we get the third row; that is, any one of the first three constraints is redundant
and can be thrown away. We shall proceed as if this fact were not known,

Starting Solution and Convergence 163

however, and introduce the artificial variables x5, x6, and x7. The Phase I

objective is: Minimize x0 = x5 + x6 + χη. Phase I proceeds as follows:

Phase I

XQ XI X1) XT XA X5 Xf. X 7 K.H S

1
0
0
0
0

0
1

-1
0
0

0
1
1
2
0

0
1
2
3
1

0
0
0
0
1

-1
1
0
0
0

-1
0
1
0
0

-1
0
0
1
0

0
6
4

10
2

Add rows 1, 2, and 3 to row 0 to obtain z5 - c5 = z6 - c6 = ζΊ - cj = 0.

XQ

XS

Χβ

*7

XA

XQ

1
0
0
0
0

X\
0
1

-1
0
0

x2

4
1
1
2
0

*s
6
1
2
3

0)

x4

0
0
0
0
1

x5
0
1
0
0
0

x6
0
0
1
0
0

Χη

0
0
0
1
0

RHS
20
6
4
10
2

x0
1
0
0
0
0

X,

0
1

-1
0
0

x2
4
1

CO
2
0

*3
0
0
0
0
1

xA

-6
-1
-2
-3

1

x5

0
1
0
0
0

x6
0
0
1
0
0

X-l

0
0
0
1
0

RHS
8
4
0
4
2

XQ XI XT X3 X4 X5 X5 Xl KJ1S

1
0
0
0
0

4

(2)
-1
2
0

0
0
1
0
0

0
0
0
0
1

2
1

-2
1
1

0
1
0
0
0

-4
-1

1
-2

0

0
0
0
1
0

8
4
0
4
2

XQ X] X2 -*3 X4 -£5 -̂g Χη Kxib

1
0
0
0
0

0
1
0
0
0

0
0
1
0
0

0
0
0
0
1

0
1/2

-3/2
0
1

-2
1/2
1/2
-1
0

-2
-1/2

1/2
-1
0

0
0
0
1
0

0
2
2
0
2

Since all the artificial variables are at a level zero, we may proceed to
Phase II with a basic feasible solution to the original problem at hand. We can
either proceed directly with the artificial x7 in the basis at the zero level or

attempt to eliminate x7 from the basis. The only legitimate nonbasic variable is

XQ

X5

x6

Χη

x3

164 Chapter 4

x4, and it has zero coefficient in row 3 corresponding to x7. This shows that the
third row (constraint of the original problem) is redundant and can be thrown
away. This will be done as we move to Phase II. (Indeed, observe that by setting
the artificial variables x5, x6, and x7 to zero, this third equation row reads
simply as 0 = 0.)

PHASE II

Obviously, zj - c\ = z2
 _ c2 = z3 _ c3 = 0. Also, x5 and x6 are nonbasic

artificial variables and will be eliminated from the Phase II problem. In order to
complete row 0 we need to calculate z4 - c4:

^4 - c4 = c5B c4

(1/21
- 3 / 2

I iJ
= (-1,2,-3)

= -13/2.

Since we are minimizing and z4 - c4 < 0 for the only nonbasic variable, then

we stop; the solution obtained from Phase I is optimal. The following tableau
displays the optimal solution:

z
x\
x2

*3

z
1
0
0
0

*1
0
1
0
0

x2

0
0
1
0

x3

0
0
0
1

xA

-13/2
1/2

-3/2
1

RHS
-4
2
2
2

Organization of the Tableau in the Two-Phase Method

To eliminate the need for recomputing the (ZJ - Cj)-values when the Phase I

objective function is replaced by the Phase II (original) objective function, an
extra row could be added to the tableau representing the original cost
coefficients. The following represents the setup of the initial tableau (not yet in
canonical form):

ARTIFICIALS

xo
xn+\

z
1
0
0

0

x0

0
1
0

0

*i ·
-c, ·
0

«11 ·

am\ ■

■■ xn

■■ ~cn

0

■■ amn

xn+\
0
-1
1

0

xn+m
0
-1
0

1

RHS
0
0

bm

Phase II Objective
Phase I Objective

To convert this tableau to canonical form for Phase I (that is, unit vectors for all
basic variables), we must perform preliminary pivoting to obtain zeros for xM+[

Starting Solution and Convergence 165

through xn+m in the x0 (Phase I objective) row. This is done by successively

adding every row (except the z row) to the x0
 r o w ·

Once the initial tableau has been converted to canonical form, the
simplex method is applied to the resulting tableau using the x0 row as the

(Phase I) objective function row until optimality is achieved. During Phase I the
z row is transformed, just as any other row of the tableau would be, to maintain
unit vectors for the basic variables. Note, however, that during Phase I, although
the basis entry is solely determined by the entries in row x0, ties could be
broken using the z row.

At the end of Phase I, if x0 is positive, then the problem is infeasible and
the optimization process can be terminated. Otherwise, the x0 row and x0

column are deleted and Phase II is initiated (after possibly eliminating artificial
variables), with the values in the z row being the correct values of z. - c ■

(why?) for the Phase II objective.

4.3 THE BIG-M METHOD

Recall that artificial variables constitute a tool that can be used to initiate the
simplex method. However, the presence of artificial variables at a positive level,
by construction, means that the current point is an infeasible solution of the
original system. The two-phase method is one way to dispense with the
artificial variables. However, during Phase I of the two-phase method the
original cost coefficients are essentially ignored. Phase I of the two-phase
method seeks any basic feasible solution, not necessarily a good one. Another
possibility for eliminating the artificial variables is to assign coefficients for
these variables in the original objective function in such away as to make their
presence in the basis at a positive level very unattractive from the objective
function point of view. To illustrate, suppose that we want to solve the
following linear programming problem, where b > 0:

Minimize ex
subject to Ax = b

x > 0.

If no convenient basis is known, we can introduce the artificial vector xa,
which leads to the following system:

Ax + xa - b
x,xa > 0.

The starting basic feasible solution is given by xfl = b and x = 0. In order to

reflect the undesirability of a nonzero artificial vector, the objective function is
modified such that a large penalty is paid for any such solution. More specifi-
cally consider the following problem:

166 Chapter 4

Minimize zbig_M
 = c x + M\xa

subject to Ax + \a = b
x, \a > 0,

where Mis a very large positive number (see Section 4.4). The term Mlxa can

be interpreted as a penalty to be paid by any solution with xa Φ 0. Alternatively,

the foregoing strategy can be interpreted as one that minimizes lx a with priority

one, and among all alternative optimal solutions for this objective, minimizes

the secondary objective cx. Hence, even though the starting solution x = 0, xa =

b is feasible to the new constraints, it has a very unattractive objective value,
namely Mb. Therefore, the simplex method itself will try to get the artificial
variables out of the basis, and then continue to find an optimal solution to the
original problem, if one exists. We call this technique the big-M method.

The big-M method is illustrated by the following numerical example.
Validation of the method and possible cases that might arise are discussed
subsequently.

Example 4.6

Minimize z = χλ - 2x2

subject to xl + x2 - 2
- X j + x 2 - 1

x2 < 3

This example was solved earlier by the two-phase method (Example 4.3). The
slack variables X3 , Χ4 , and x5 are introduced and the artificial variables x6 and

xj are incorporated in the first two constraints. The modified objective function

is Zbig-M = x\ ~ 2x2 + Mxe + M*l > w n e r e M is a large positive number. This

leads to the following sequence of tableaux:

Zbig-M x\ x2 x3 x4 x5 x6 xl

1
0
0
0

-1
1

-1
0

2
1
1
1

0
-1
0
0

0
0

-1
0

0
0
0
1

-M
1
0
0

-M
0
1
0

0
2
1
3

Multiply rows 1 and 2 by Mand add to row 0.

Zbig-M x\ *2 x3 H x5 x6 x7 RHS

1

0
0
0

-1

1
-1
0

2 + 2M

1

CO
1

-M

-1
0
0

-M

0
-1
0

0

0
0
1

0

1
0
0

0

0
1
0

3M

2
1
3

Starting Solution and Convergence 167

zbig-
x6
x2
x5

Zbig

\1

-M
x\

x2
x5

Zbig-M
1

0
0
0

xl
1 + 2M

(2)
-1
1

x2
0

0
1
0

*3
-M

-1
0
0

x4

2 + M

1
-1
1

x5

0

0
0
1

*6
0

1
0
0

*7
- 2 - 2 M

-1
1

-1

RHS

-2 + M

1
1
2

Zbig-M

1

0
0
0

X[x2

0 0

1 0
0 1
0 0

*3
1/2

-1/2
-1/2

1/2

X4 X5

3/2 0

a© 0
-1/2 0

1 1

*6

-1/2 - A/

1/2
1/2

-1/2

x7

-3 /2 - M

-1/2
1/2
3/2

RHS

-5 /2

1/2
3/2
3/2

2big-M

X4

* 2
X5

Zbig-M

1

0
0
0

*1

- 3

2
1

-1

X2 *3 -«4

0 2 0

0 -1 1
1 -1 0
0 Q 0

*5

0

0
0
1

·%
-2 - M

1
1

-1

x7

-M

-1
0
0

RHS

-4

1
2
1

2big-M

X4

^2

x3

Zbig-M

1

0

0

0

x\
-1

1

0

- 1

x2

0

0

1

0

x3

0

0

0

1

X4

0

1

0

0

x5

-2

1

1

1

x6

-M

0

0

-1

x7

-Λ/

-1

0

0

RHS

- 6

2

3

1

Since z: -7 cy < 0 for each nonbasic variable, the last tableau gives an optimal

solution. The sequence of points generated in the (xj, x2) space is illustrated in

Figure 4.3.

Analysis of the Big-M Method

We now discuss in more detail the possible cases that may arise while solving
the big-M problem. The original problem P and the big-M problem P(M) are
stated below, where the vector b is nonnegative:

168 Chapter 4

Figure 4.3. Example of the big-M method.

Problem P: Minimize z = ex
subject to Ax = b

x > 0.

Problem P(M): Minimize zbig.M = ex + Mlxa

subject to Ax + xa = b
x, xa > 0.

Since Problem P(M) has a feasible solution (e.g., x = 0 and xa = b), then while

solving it by the simplex method one of the following two cases may arise:

1. We arrive at an optimal solution of P(M).
2. We conclude that P(M) has an unbounded optimal objective value,

that is, z —> -co.

Of course, we are interested in conclusions about Problem P and not
P(M). The following analysis will help us to draw such conclusions.

The key observation that makes this analysis simple and transparent is
that the objective function of the big-M method is simply the sum of the Phase
II objective and M times the Phase I objective of the two-phase method. In
other words, noting the objective function of Problem P(M) and that of the
Phase I problem in Section 4.2, we have that

Zbig-M = z + MXQ.

In fact, for any basic feasible solution to the artificial problem, the
canonical form of the objective row in the big-M method is precisely the sum of
the canonical form of the Phase II objective and M times the canonical form of
the Phase I objective in the two-phase method. Indeed, each of these objective
functions has simply been rewritten in terms of the nonbasic variables. For
example, examine the sequence of tableaux produced for Example 4.3 using the
two-phase method with those produced for this same problem in Example 4.6
using the big-M method. Notice that the coefficients of M in the objective row
Zbig-M f°r m e tableaux in Example 4.6 are precisely the objective coefficients

in the Phase I objective row x0 for the tableaux in Example 4.3, up to the point

when the artificial variables are all driven out of the basis. At this point, when
the two-phase method switches to Phase II, the objective coefficients in the z
row reveal the constants not associated with M in the zbig_M representation

(where the nonbasic artificial variables have been eliminated). Consequently,
the two-phase method avoids possible round-off computational error problems
associated with a large value of M by carrying the coefficients of M in the big-
M method separately as Phase I objective coefficients, and by carrying the other
coefficients as Phase II objective coefficients.

Starting Solution and Convergence 169

Hence, for example, the zbig.M objective row for the tableau at the

second iteration of Example 4.6 can be decomposed into its components z and
XQ using the preceding relationship, zbig_M = z + Mx0, as follows:

Z X Q X\ XJ X3 ΧΛ -^5 Xf, Χ"7 RHS
1
0
0
0
0

0
1
0
0
0

1
2
2

-1
1

0
0
0
1
0

0 2 0
-1
-1
0 -
0

1 0
1 0
1 0
1 1

0
0
1
0
0

-2
-2
-1

1
-1

-2
1
1
1
2

Notice that our first priority is to minimize x0. Viewing the objective row for

XQ (equivalently, viewing the coefficients of M in zbig_M), we notice that

Phase I is not complete. Hence, we enter xj and continue as in Example 4.6.
The rules for operating the big-M method are now directly evident by

thinking of this process as applying the two-phase method, while carrying the
canonical representation of both the original objective function z and the artifi-
cial objective function x0. While the coefficients of Min the zbi„_M row are

not all nonpositive (< 0), i.e., so long as some zj - cj in the zbig_M
 r o w n a s a

positive coefficient for M, we are not done with Phase I, and we select such a
nonbasic variable to enter the basis. Notice that this will automatically occur if
we select the nonbasic variable having the largest (z · - c.)-value to enter the

basis. Once all the coefficients of Min the (z · - c,)-values in the z^„M row

are nonpositive, we know that Phase I is done. At this point, we pause and view
the values of the artificial variables. The following two cases can arise:

Case A: The artificial variables are all equal to zero

In this case, the original problem is feasible, and in fact, we have a basic feasible
solution to this problem. (The artificial variables can be eliminated from the
problem, including the steps of having to possibly pivot out degenerate artificial
variables from the basis before deleting them, or deleting redundant rows, as
discussed for the two-phase method.) We can now continue with the simplex
method as usual, in effect applying it to the original problem itself, until
optimality or unboundedness is detected.

Case B: Some artificial variable is positive

In this case, as with the two-phase method, we can conclude that the original
problem is infeasible (because Phase I is over and some artificial variable is still
at a positive level). Note that in this case, we can stop the optimization process,
even though the Zbig-M r o w might still have some z · - c > 0 and even perhaps

reveal that Problem P(M) is unbounded.
The following examples illustrate these concepts:

170 Chapter 4

Example 4.7

(No Feasible Solutions)

Minimize
subject to

- * i

X,

-x1

X j ,

- 3x 2 + X3

+ x2 + 2x3

+ x3

*3
X 2 , X3

< 4
> 4
> 3
> 0

Introduce the slack variables and x6. Also, introduce the two artificial

variables x7 and x8 for the last two constraints with cost coefficients equal to

M. This leads to the following sequence of tableaux:

RHS Z b i g - M Λ"2 Χτ, Χ4 x6 Χη X%

1
0
0
0

1
1

-1
0

3
1
0
0

-1
2
1
1

0
1
0
0

0
0

-1
0

0
0
0

-1

-M
0
1
0

-M
0
0
1

0
4
4
3

Multiply rows 2 and 3 by M and add to row 0.

Zb\g-M

X4

*8

Z b i g - M

1

0
0
0

x\
\-M

1
-1

0

x2

3

1
0
0

x-i
-1 + 2M

1
1

JC4

0

1
0
0

x5

-M

0
-1
0

x6 x7 x8

- M O O

0 0 0
0 1 0

-1 0 1

RHS

ΊΜ

4
4
3

Zbig-M

*8

Zbig-M

1

0
0
0

*\
3/2 - 1M

1/2
-3/2
-1/2

x2

7 / 2 - M

1/2
-1/2
-1/2

*s
0

1
0
0

X4

1/2 - M

1/2
-1/2
-1/2

x5

-M

0
-1
0

X6

-M

0
0

-1

X-,

0

0
1
0

xs
0

0
0
1

RHS

2 + 3M

2
2
2

Since the coefficients of M in the ^big-M r o w a r e a n nonpositive, Phase I is

complete. (In fact, in this example, because M> 0 is very large, then z - c, <

0 for all nonbasic variables; that is, the tableau is optimal.) However, the
artificial variables x7 and x8 still remain in the basis at a positive level, and so
we conclude that the original problem has no feasible solutions.

Example 4.8
Minimize -xj - x2

subject to Xj - x2 - x3 = 1
—Xi + X2 "1~ ^X3 — ΧΛ ~ A

Xj, X 2 , Χ3, Χ4 > 0 .

Starting Solution and Convergence 171

Introduce the artificial variables x5 and x6 with cost coefficient M. This leads

to the following sequence of tableaux:
Zbig-M

1
0
0

x\
1
1

-1

x2

1
-1

1

*3

0
-1
2

X^

0
0

-1

x5

-M
1
0

x6

-M
0
1

RHS
0
1
1

Multiply rows 1 and 2 by Mand add to row 0.

Zbig-M x\ x2 x3 x4 x5 x6 RHS
Zbig-M

x6

1

0
0

1 1 M -M 0 0

1 - 1 - 1 0 1 0
-1 1 (2) -1 0 1

2AT

1
1

Zbig-M
x 5
x 3

Zbig-M

1

0
0

X,

1 + (1/2)M

CMÌ)
-1/2

x2 x3

- (1/2) Ai 0

-1/2 0
1/2 1

x4 x5

-(1/2)M 0

-1/2 1
-1/2 0

x6

-(1/2)M

1/2
1/2

RHS

(3/2)M
3/2
1/2

Zbig-M
x\
x3

Zbig-M

1

0
0

X] X2 -^3 %4

0 2 0 1
1 - 1 0 - 1
0 0 1 - 1

*5

- M - 2
2
1

x6

-A/-1
1
1

RHS
-3
3
2

Notice that the coefficients of M in the z^„M row are all nonpositive. Hence,

Phase I is complete. Furthermore, all the artificial variables are zero (and in fact
nonbasic). Hence, the original problem is feasible. Eliminating (or ignoring) the
artificial variables, we see now that the most positive z,· - c ■ corresponds to

xj and that y2 < 0. Therefore, the original program has an unbounded optimal

value along the ray {(3, 0, 2, 0) + λ(1, 1, 0, 0): λ > 0}.

Example 4.9

Minimize -χλ - x2

subject to X] - x2 > I
-Xj + x 2 - 1

Xj, x 2 > 0.

This problem has no feasible solutions, as shown in Figure 4.4. Introduce the
slack variables x3 and x4 and the artificial variables x5 and x6.

Zbig-M

1
0
0

*1

1
1

-1

x2

1
-1

1

*3

0
-1
0

x4

0
0

-1

*5

-M
1
0

x6

-M
0
1

RHS
0
1
1

172 Chapter 4

Figure 4.4. Empty feasible region.

Zbif>-M

1

0
0

*1

1

1
-1

x2

1

-1
1

*3

-M

-1
0

X4

-M

0
-1

x5

0

1
0

H
0

0
1

RHS
2M

1
1

Multiply rows 1 and 2 by Mand add to row 0.

Zbig-M

X5

x6

Notice that the coefficients of Min the zbig.M row are all nonpositive. Hence,

Phase I is complete; however, the artificial variables x5 and x6 are still positive.

Therefore, we can stop here with the conclusion that the original problem is
infeasible, even though this tableau for P(M) is not yet optimal. In fact, the
reader can verify that by continuing the optimization process, we will detect that
Problem P(M) is unbounded. Notwithstanding this, the infeasibility of the
original problem is evident right at the present stage, and we can therefore
terminate the optimization process.

4.4 HOW BIG SHOULD BIG-MBE?

There is another fundamental issue involved with the big-M method,
namely, how big should M be? Clearly, given that the original problem is
feasible, M should be large enough so that some basic feasible solution to P(M)
with all artificial variables equal to zero has an objective value strictly better
than the best basic feasible solution to P(M) that does not have all the artificial
variables equal to zero (why?). Note that a finite value for such an M exists
(why?). Hence, in selecting a value for M, it is erroneous to simply look at the
magnitude of the objective function coefficients. One also needs to see how
small (but positive) the sum of the artificial variables can get at a basic feasible
solution to P(M). For example, consider the following problem P and the
corresponding artificial problem P(M), where x3 is the slack variable, x4 is an

artificial variable, and ε> 0 is a (small) constant:

Starting Solution and Convergence 173

P : Minimize z = Xj
subject to εχχ - x2 - ε

xj , x2 - 0.

P(M) : Minimize zbig_M = *i + M*4
subject to εχι - x2 - X3 + X4 = ε

Χγ, X2, Χ3, Χ\ ^ 0.
Figure 4.5 depicts the feasible region in the (X], x2) space. Problem P(M) has
two basic feasible solutions, x and x, where x = (1, 0, 0, 0) and x = (0, 0, 0,
£·). The first of these is (basic) feasible to P, but the second is infeasible to P. In
P(M), the objective value for x is 1 and that for x is εΜ. We would therefore
like εΜ > 1, that is M> l/ε. Observe that if we had picked Mas, say, some
large constant times the largest objective coefficient in P, this would have been
inadequate by making ε> 0 small enough. In Figure 4.5, we are comparing (0,
0) with (1, 0), and although the former solution is infeasible, its infeasibility
reduces with a reduction in ε, thus requiring a higher penalty. In Exercise 4.43,
we ask the reader to generalize this concept.

4.5 THE SINGLE ARTIFICIAL VARIABLE TECHNIQUE

Thus far, we have described two methods to initiate the simplex algorithm by
the use of artificial variables. In this section, we discuss a procedure that
requires only a single artificial variable to get started. Consider the following
problem:

Minimize ex
subject to Ax = b

x > 0.

Suppose that we can partition the constraint matrix A into A = [B, N], where B
is a basis matrix, not necessarily feasible. B possibly corresponds to a set of
variables forced into the basis, regardless of feasibility, in anticipation that these
variables are likely to be positive at optimality. (Such a basis is called a crash
basis.) Index the basic variables from 1 to m.

Figure 4.5. Selecting a value for M.

174 Chapter 4

Multiplying the constraints by B , we get

Ixg + B ' N X J V = b

where b = B~ b. Suppose that b X 0 (if b > 0, we have a starting basic

feasible solution). To this system let us add a single artificial variable, xa, with a

coefficient o f -1 in each constraint that has bt < 0. Call this column ya. This

gives:

Ixg + B-'Nx^v + yaxa = b.

Now, introduce xa into the basis by selecting the pivot row r as follows:

br = minimum {è! .
i:bj<0 l '

Note that br < 0. On pivoting in row r (that is, inserting xa and removing xr),

we get the new right-hand-side values:

-br{>_0)

bt -br{> 0), ifo,· < 0 , i i r

bj(> 0), otherwise.

Thus by entering xa and exiting xr we have constructed a basic feasible solution

to the enlarged system (the one including the single artificial variable). Starting
with this solution, the simplex method can be used with either the two-phase or
the big-M method.

Note that the variable xa creates one extra dimension for this problem.

Its column is the sum of the artificial variable columns we would have added for
the two-phase or the big-M method. Hence, effectively, if we further restrict all
the artificial variables in the two-phase or big-M method to be equal to each
other, we would obtain the single artificial variable technique. Empirically, it
has been found that the single artificial variable technique is not as efficient as
the other two methods, perhaps because of its foregoing restrictive nature,
whereby a simplex path needs to be traced in which all violated constraints are
simultaneously satisfied.

Example 4.10

Minimize 2xj + 3x2
subject to x\ + x2 > 3

-2x] + x2 > 2
Χγ, x2 - 0·

Subtracting the slack variables x3 and x4 and multiplying by - 1 , the structural

constraints become:

—X] — x2 + X3 — —3
λΧχ — X2 + ΧΛ = —2.

bI =

b\ =

b\ =

Starting Solution and Convergence 175

Appending a single artificial variable x5 with activity vector j _ . 1 to the initial

tableau of the Phase I problem, we get the following tableau:

Xn Xi X7 X3 X4 X5 RHS
1
0
0

0 0 0 0 - 1
- 1 - 1 1 0 (-1)
2 - 1 0 1 - 1

0
-3
-2

Pivoting in the x3 row and x5 column, we get the following tableau:

ΧΛ XI X2 X3 X4 X5 I v r l o

1
0
0

1 1 - 1 0 0
1 1 - 1 0 1
3 0 - 1 1 0

3
3
1

This tableau is ready for application of the two-phase method. Subsequent
tableaux are not shown.

An analysis of the two-phase method and the big-M method for the
single artificial variable technique discussed in this section can be made similar
to the analysis of Sections 4.2 and 4.3. The details are left to the reader in
Exercise 4.19.

4.6 DEGENERACY, CYCLING, AND STALLING

Degeneracy causes several conceptual as well as computational difficulties in
linear programming. Conceptually, we have seen in Chapter 3, for example, that
in the presence of degeneracy, we have to be cautious about claiming the
existence of alternative optimal solutions simply based on observing a zero
reduced cost for a nonbasic variable at optimality. We also should be cautious
about interpreting dz I dty = W; as an actual (realizable) rate of change, and
must reckon that not all bases representing an optimal solution necessarily
satisfy Zj - Cj < 0, j = 1,..., n (for a minimization problem).

Furthermore, we have seen in Chapter 3 that in the absence of degener-
acy, the simplex method terminates finitely, either producing an optimal basic
feasible solution or else verifying unboundedness. However, when a degenerate
pivot occurs, we simply switch from one basis to another, both representing the
same extreme point solution. This is evident in Table 3.1 by examining the

situation before and after pivoting when br = 0. As the process is repeated, it is

conceivable that another degenerate pivot is performed, resulting in the same
extreme point having a different basis representation. It is therefore possible that
we may stay at a nonoptimal extreme point and pivot through a sequence of
associated bases Bl5 B2 ,—,Β,, where B, = B[. If the same sequence of pivots

is used over and over again, we shall cycle forever among the bases B1; B2,...,

B, = Bj without reaching an optimal solution.

176 Chapter 4

Hence, we present in the sequel some cycling prevention rules that
guarantee finite convergence of the simplex algorithm by ensuring that no basis
can be repeated. By doing so, such rules constructively demonstrate the
following result that has so far been evident only in the absence of degeneracy.

Theorem 4.1

Given an optimal extreme point solution (for a minimization linear program),
there exists an associated (optimal) basis for which z ■ - c < 0 for ally = 1,..., n.

We begin our discussion by first presenting an example that demonstrates
the phenomenon of cycling.

Example 4.11

{Cycling)

Consider the following example given by E. M. L. Beale:

Minimize - (3/4)x4

subject to xj + (1/4) x4

x2 + (1/2) x4

x3
x\> x2> x3> x4>

+ 20x5

- 8x5

- !2x5

*5>

- (1/2) x6 + 6x7

- x6 + 9x7

- (1/2) x6 + 3x7

+ x6

x6, x7

= 0
= 0
= 1
> 0

An optimal solution is given by Xj = 3/4, x4 = x6 = 1, and all other variables
equal to zero. The optimal objective value is -5/4. The following rules are
adopted: The entering variable is that with the most positive z ■ - c,·, and the

leaving variable is determined by the minimum ratio test, where ties are broken
arbitrarily.

z
x\
x2

x3

z
x4

x2
x3

z
x4

x5

xi

z
1
0
0
0

z
1
0
0
0

z
1
0
0
0

X,

0
1
0
0

X,

-3
4

-2
0

X,

-1
-12

-1/2
0

x2
0
0
1
0

x2

0
0
1
0

x2
-1
8

1/4
0

x3 x4

0 3/4
0 Q / 4 ;
0 1/2
1 0

X3 X^

0 0
0 1
0 0
1 0

x3 x4

0 0
0 1
0 0
1 0

x5
-20
-8
-12
0

xs
4

-32

©
0

*5
0
0
1
0

x6
1/2
-1

-1/2

x6

111
-A

3/2
1

x6
2

(5)
3/8

1

*7
-6
9
3
0

*7
-33
36

-15
0

x7

-18
-84

-15/4
0

RHS
0
0
0
1

RHS
0
0
0
1

RHS
0
0
0
1

Starting Solution and Convergence 177

z

*6

*5

*3

z
1
0
0
0

x\
2

-3/2
1/16
3/2

*2
-3

1
-1/8

-1

*3
0
0
0
1

x4

-1/4
1/8

-3/64
-1/8

x5
0
0
1
0

x6
0
1
0
0

X-j

3
-21/2
(5/16)
21/2

RHS
0
0
0
1

z

*6
x7

x3

z
1
0
0
0

X,

1

(2)
1/3
-2

x2
-1
-6

-2/3
6

x3
0
0
0
1

xA
1/2

-5/2
-1/4

5/2

x5
-16

56
16/3
-56

H
0
1
0
0

x7
0
0
1
0

RHS
0
0
0
1

z
x\
x7

x3

z
1
0
0
0

X[X2 X3

0 2 0
1 -3 0
0 (ί/Γ) 0
0 0 1

x4

7/4
-5/4

1/6
0

x5

-M
28

0

x6
-1/2

1/2
-1/6

1

x7

0
0
1
0

RHS
0
0
0
1

z
xi
x2

x3

z
1
0
0
0

xl
0
1
0
0

x2
0
0
1
0

*3
0
0
0
1

X^

3/4
1/4
1/2

0

x5
-20

-8
-12

0

H
1/2
-1

-1/2
1

*7
-6
9
3
0

RHS
0
0
0
1

We see that the last tableau is identical to the first tableau. All the tableaux
correspond to the extreme point (0, 0, 1,0, 0, 0, 0), but with different bases
representing this vertex. The foregoing sequence of pivots generated the bases
B], B2 , B3, B 4 , B5, B6 , and B7, where B7 = Bj = [al5 a2, a3]. If the

same sequence of pivots is used over and over again, the simplex algorithm will
cycle forever among these bases without reaching an optimal solution. (This
phenomenon of cycling can also occur at an optimal extreme point, without
recognizing its optimality via» tableau having z - c ■ < 0 for ally.)

Observe that in the foregoing example, the variable x3 remained basic

throughout the different tableaux, i.e., the last constraint in the problem
remained inactive, and as such, we can delete the last constraint and derive an
identical example that exhibits cycling. Now, as we shall see in Chapter 6, the
resultant two-constraint problem (call it the primal problem) has an
accompanying equivalent two-variable linear program (referred to as its dual
problem) for which the bases are in a one-to-one correspondence. Hence, we can
pictorially visualize the geometry of the cycling phenomenon by plotting the
constraints of this dual problem in two-dimensions, and tracking the sequence of
bases (intersection of pairs of lines in this case) that correspond to the cyclic
loop of bases for the primal problem (see Exercise 6.75). The insight derived
from this geometric view of cycling can also enable the construction of different

178 Chapter 4

problem instances that exhibit the phenomenon of cycling (see the Notes and
References section).

There are several other ways by which we can construct alternative
examples that exhibit cycling. One class of such examples are characterized by a
permutation structure whereby, after every fixed number of iterations, the
updated simplex tableau is a column permutation of the initial tableau. Exercise
4.48 reveals the essence of this idea. Another approach is to directly examine
the algebraic relationships that transition one tableau to the next and thereby
enforce conditions under which an initial tableau would repeat after a sequence
of iterations. The Notes and References section provides directions for further
reading on constructing such cycling examples as well as on the geometry of
cycling.

Two Rules that Prevent Cycling

Even though cycling appears to be very unlikely, it has been known to occur on
practical real-world problems. Hence, it is of interest to develop rules that
prevent cycling. We give two such rules here, and illustrate them in Example
4.11. A validation of these rules is postponed until the next section. Consider the
following linear programming problem:

Minimize ex
subject to Ax = b

x > 0,

where A is an m χ η matrix of rank m. Since the simplex method is usually
started with the initial basis as the identity matrix (corresponding to slack and/or
artificial variables), we shall assume that the first m columns of A form the
identity. The following rule, which uniquely specifies the variable leaving the
basis if the simplex minimum ratio test produces several candidates, will guar-
antee noncycling.

Lexicographic Rule for Selecting an Exiting Variable

Given a basic feasible solution with basis B, suppose that the nonbasic variable
xk is chosen to enter the basis (say, 0 < zk - ck = maximum z ■ - c,·). The

index r of the variable xB leaving the basis is determined as follows. Let

Λ) = \ r '■ ~f- = minimumj-7- : y^ > °f f·
[yrk \<i<m [yik JJ

If IQ is a singleton, namely 70
 = lrh m e n XB l e a v e s the basis. Otherwise,

form /] as follows:

T - \, ■ yn _ · · J ^ i l l l\ - \r . minimumi ft-
[yrk «e/0 {yik])

Starting Solution and Convergence 179

If /j is singleton, namely, /[= {r}, then xB leaves the basis. Otherwise, form

I2, where, in general, / is formed from / _j as follows:

/ - i , · yV - ■ ■ i ^ ' l l J, - \r . minimumi >>■
J [yrk ieij.i [yuc\\

Eventually, for somey < m, Ij will be a singleton (why?). If I j = {r}, then xB

leaves the basis.
Before we illustrate the preceding rule, let us briefly discuss its

implications. (The choice of the name for this method will become evident when
we validate this rule in the next section.) In this rule, we first use the usual
minimum ratio test as an exiting criterion. If this test gives a unique index, then
the corresponding variable leaves the basis. In case of a tie, we try to break it by
replacing the right-hand-side in the minimum ratio calculation by the first
column y\ and by only using the rows corresponding to the tie. If the tie is still

not broken, the second column is used in the minimum ratio test, and so forth.
When or before column m is reached, the tie must be broken, for if this were not

the case, we would have two rows of the matrix B~ = (yx, y2, —,ym) that are

proportional (why?). This is impossible, however, in view of linear

independence of the rows of B~ .

Example 4.12

We now solve the problem of Example 4.11, using the additional rule for exiting
from the basis.

Z ΧΛ XJ X3 ΧΛ Χς XA ΧΊ RHS
1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

3/4
1/4

(1/2)
0

-20
-8

-12
0

1/2
-1

-1/2
1

-6
9
3
0

0
0
0
1

Here, I0 = {1,2}, Ιλ = {2}, and therefore, xB = x2 leaves the basis. Note that

in Example 4.11, x\ left the basis during the first iteration.

Z JCj X2 -£3 Xif X5 Xfr Xj RHS
1
0
0
0

0
1
0
0

-3/2
-1/2

2
0

0
0
0
1

0
0
1
0

-2
-2

-24
0

5/4
-3/4

-1

(1)

-21/2
15/2

6
0

0
0
0
1

Here, I0 = {3}. Therefore, xB = x3 leaves.

180 Chapter 4

Z X| X2 X3 X4 X5 Xf, Χη RHS
1
0
0
0

0
1
0
0

-3/2
-1/2

2
0

-5/4
3/4

1
1

0
0
1
0

-2
-2

-24
0

0
0
0
1

-21/2
15/2

6
0

-5/4
3/4

1
1

The foregoing tableau gives the optimal solution, since z .· - c .■ < 0 for all

nonbasic variables.

Bland's Rule for Selecting Entering and Leaving Variables

Another rule that prevents cycling has been suggested by Robert Bland. This is a
very simple rule, but one that restricts the choice of both the entering and leaving
variables. In this rule, the variables are first ordered in some sequence, say, x1?

x2,...,x„, without loss of generality. Then, of all nonbasic variables having
z. - Cj > 0, the one that has the smallest index is selected to enter the basis.

Similarly, of all the candidates to leave the basis (i.e., which tie in the usual
minimum ratio test), the one that has the smallest index is chosen as the exiting
variable.

Using this rule in Example 4.11, we see that the first four tableaux are
produced as given. For example, in the first tableau, out of x4 and x6, we select

x4 to enter the basis, and out of the candidates X\ and x2 for the exiting variable,

we choose xy to leave the basis. However, in the fourth tableau, X| and x7 are

eligible to enter the basis, and the present rule selects Xj as the entering variable.

The leaving variable is uniquely determined as x5. In Exercise 4.39 we ask the

reader to verify that the resulting tableau leads to a nondegenerate pivot and that
the pivots continue until optimality is attained.

Some Practical Implementation Remarks and Stalling

Although most real-world problems are known to be degenerate and the
foregoing rules guarantee that cycling will not occur, these rules are largely
ignored in most commercial codes for solving linear programming problems via
the simplex method. There are two main reasons for this stance. First, the rules
are either computationally expensive to implement, as in the case of the lexico-
graphic method, or are computationally inefficient with respect to the length of
the simplex path generated, as in the case of Bland's Rule. Second, because of
computer round-off errors, it is usually argued that the updated right-hand-
sides are, in any case, perturbed from their actual values and one rarely
encounters exact zero right-hand-side values. In fact, as we ask the reader to
explore in Exercise 4.47, the lexicographic rule has an equivalent interpretation
as a perturbation technique in which the original right-hand-side values are
perturbed slightly to make the polyhedron nondegenerate. Accordingly, software
packages typically adopt a "practical" anticycling rule based on appropriate
perturbations of right-hand-sides of variable bounding constraints. However,

Starting Solution and Convergence 181

this is not guaranteed to obviate cycling (see the Notes and References section).
It is important to note here that in the case of network structured linear
programs, as we shall see later, neither of the foregoing reasons apply; however,
cycling prevention rules are both easy to implement and are often
computationally advantageous in this context.

There is another issue that needs to be mentioned at this point. Although
the foregoing rules prevent cycling, it is entirely possible that the simplex
algorithm may go through an exceedingly long (though finite) sequence of
degenerate pivots. In particular, for some classes of problems having a certain
structure, it may be possible that the algorithm performs a number of consecu-
tive degenerate pivots that are exponential in the size (m and n) of the problem.
This phenomenon is known as stalling. The term arises because with increasing
problem size, the algorithm can spend an enormous (though finite) amount of
time at a degenerate vertex before finally verifying optimality or moving off
from that vertex. Besides preventing cycling, we would also like to obviate
stalling by ensuring that the length of a sequence of degenerate pivots is
bounded from above by some polynomial in m and n.

The key to preventing stalling appears to lie in what are known as stages.
A stage is a sequence of degenerate pivots in which no nonbasic variable
remains enterable throughout, with no strict subset of this sequence having the
same property. We would like both the number of pivots in a stage, which is the
length of a stage, and the number of stages in a sequence of degenerate pivots to
be "small," that is, polynomially bounded. The first of these two conditions is
easy to achieve. For example, consider the following rule for choosing an
entering variable, which is sometimes referred to as the Least Recently
Considered (LRC) variable choice rule. Suppose that we maintain a circular list
of the variables and at any pivot, if a variable xk enters, then

suppose that the next entering variable is selected as the first eligible candidate
(with zj - Cj > 0) from the list {xk+\,...,xn, x\,...,xk) where xn+l = JCJ. Then it

is clear that the length of a stage is no more than n, since no variable could have
remained enterable and have been ignored throughout a sequence of n (or more)
degenerate pivots. Such a rule, by its nature, is aptly called an affirmative action
policy. Note that Bland's Rule is not an affirmative action strategy, since it
"discriminates" in favor of variables having lower indices. In fact, there exist
examples that demonstrate that Bland's Rule admits stalling (see the Notes and
References section of this chapter). On the other hand, it is an open question
whether the lexicographic rule plus Dantzig's Rule of entering the variable
having the most positive z - c admits or prevents stalling for general linear

programs. (For network structured problems, this is known to prevent stalling.)
The issue of ensuring a polynomial bound on the number of stages in a

sequence of degenerate pivots is harder to achieve. For general linear program-
ming problems, a rule that provides such a guarantee has not as yet been
discovered. However, as we shall see in Chapter 9, for network structured
problems, a lexicographic cycling prevention rule does exist that is easy to
implement, is computationally advantageous, and that prevents stalling when
used in conjunction with an appropriate affirmative action entering rule.

182 Chapter 4

4.7 VALIDATION OF CYCLING PREVENTION RULES

In this section we show that the rules adopted in the previous section indeed
prevent cycling. We do this by showing that none of the previous bases visited
by the simplex method are repeated. In view of the finite number of bases, this
automatically guarantees termination in a finite number of iterations.
Lexicographic Rule
In order to facilitate the proof of finite convergence under the lexicographic rule,
consider the following notion of a lexicographically positive vector. A vector x is
called lexicographically positive (denoted by x >- 0) if the following two require-
ments hold:

1. x is not identically zero.
2. The first nonzero component of x is positive.

For example, (0, 2, - 1 , 3), (2, 1, - 3 , 1), and (0, 0, 1, -1) are lexicographically
positive vectors, whereas (-1 , 1,2, 3), (0, 0, 0, 0), and (0, 0, -2 , 1) are not. A
lexicographically nonnegative vector, denoted by > 0, is either the zero vector
or else a lexicographically positive vector. In order to prove that none of the
bases generated by the simplex method is repeated, we first show that each row

of the m x (m + 1) matrix (b, B~) is lexicographically positive at each iteration,

where b = B~ b. Basic feasible solutions that satisfy this property are sometimes
called strongly feasible solutions. Indeed, in the absence of degeneracy, we have

b > 0, and therefore, each row (b, B~) is clearly lexicographically positive.

First, recall that the original basis is I, and since b > 0, then each row of

the matrix (b, B~) = (b, I) is lexicographically positive. (If a feasible basis that

is different from the identity is available, we still have a starting solution that
satisfies the lexicographic positive condition — see Exercise 4.41.) In view of
this, the preceding result will be proved if we can show the following: If each

row of (b, B~) is >- 0, then each row of (b, B~) is >- 0 where B is the new

basis obtained after pivoting and b = B~ b. Consider the following two tableaux
before and after entering xk, and recall that the first m columns (ignoring the z

column) in these tableaux represent B~ and B~ , respectively (since the first m
columns of the original problem form the identity). Here, z denotes the
objective value c#b before pivoting.

Starting Solution and Convergence 183

Before Pivoting

z

*?
XB>

*B,

XB

Z

1

0

0

0

0

x\
2 \ ~ c \ ■

y\\

Λ·ι

yr\

ym\ ■

■ XJ ■

■ ZJ ~ CJ ■

■ y\j ■

■ yy ■

■ yrj ■

ymj

xm
zm ~ cm

y\m

yim

yrm

ymm

xm +1 " "" xk '"xn
zk - c k ■■■

y\k

yjk

■ © ■■·

ymk

RHS

z

h

k

br

K

i-U Consider a typical row i of (b, B). From the foregoing tableau this row is

given by

yrk

\yrk yrk

yik^i\

yrm

'""' yrk

yr\

yrk
-yik'-->yim

yrm

yrk
■yik

\

for i Φ r

for / = r.

(4.1)

(4.2)

/

Since yrk > 0 and the rth row is >- 0 before pivoting, then from Equation (4.2),

the rth row after pivoting is also >■ 0. Now consider / Φ r. There are two mutu-

ally exclusive cases: either / g 70 or else / e 70. First suppose that i 0 IQ. If

yik < 0, then from Equation (4.1), we see that the rth row after pivoting is given

by

(bj,yiU...,yim) - ^(br,yrU...,yrm),
yrk

which is the sum of two vectors that are lexicographically positive and
lexicographically nonnegative (why?), and hence, it is >- 0. Now, suppose that

yij(> 0. By the definition of 70
 a n d since / 0 70, then brlyrk < b^ly^, and

hence, bj - {brlyrk)yik > 0· From Equation (4.1), the rth row is therefore >- 0.

Next, consider the case i e 70. Then yik > 0 and bj - (brlyrk)yii<: = 0. There are

two mutually exhaustive cases: either i 0 I\, or else i e 7j. In the former case,

by the definition of I\, yn - {yr\lyrk)yìk > 0 an^ m u s from Equation (4.1), the

rth row is >- 0. If, on the other hand, / e Ιχ, then yn - {yr\lyrk)yìk = 0 and we

examine whether / e 72 or not. This process is continued at most m + 1 steps,

with the conclusion that each row of(b , B _ 1) is y 0.

The foregoing analysis shows that each row of (B" 'b , B"1) is lexico-

graphically positive at any given iteration. This fact will be used shortly to prove

184 Chapter 4

finite convergence. First, by examining row 0 before and after pivoting, note
that

(C J B - V B B - 1) - ((- B - V i - B - 1) = Zk ~Ck(br,yrUyr2,...,yrm).
yrk

Note that {br, yr\,—,yrm) is the rth row of (b, B~) and is therefore >- 0. Since
zk " ck > 0 and yrk > 0, it is therefore evident that

(cgB-'b.CgB-1) - (c ^ b ^ B - 1) >- 0.

We are now ready to show that the lexicographic rule of Section 4.6 will
indeed prevent cycling. We do this by showing that the bases developed by the
simplex method are distinct. Suppose by contradiction that a sequence of bases
B], B2,...,Br is generated where B, = B). From the preceding analysis we have

icB.B-\cBjBY) -{cBj+lBf+1b,cBj+lBY+l} y 0, for/= 1,..., * - 1.

Adding overy = 1,..., / - 1 and noting that B, is assumed equal to Bj, we get 0

>- 0, which is impossible. This contradiction asserts that the bases visited by the
simplex algorithm are distinct. Because there are but a finite number of bases,
convergence in a finite number of steps is established.

Bland's Rule

In the absence of degeneracy, the objective function itself is a strictly decreasing
monotone function, which guarantees that no basis will be repeated by the
simplex algorithm. On the other hand, the lexicographic rule ensures finite con-
vergence by showing that while CgB~ b may remain constant in the presence of

degeneracy, the vector (cgB~ b, cgB~) is lexicographically monotone de-
creasing. Bland's rule has the following monotone feature: In a sequence of
degenerate pivots, if some variable xq enters the basis, then x„ cannot leave the

basis until some other variable having a higher index than q, which was non-
basic when xq entered, also enters the basis. If this holds, then cycling cannot

occur because in a cycle, any variable that enters must also leave the basis,
which means that there exists some highest indexed variable that enters and
leaves the basis. This contradicts the foregoing monotone feature (why?).

To show that this monotone feature holds true, consider the basic feasible
solution at which x„ enters. Let Jj and J2

 De t n e sets of the current nonbasic

variables having indices respectively less than and greater than q. As in
Equation (3.5), we can write the representation of the linear program in the
current canonical form as follows:

Starting Solution and Convergence 185

en

o

> fi
i .

c

■Jl

c
«
-V
K

~
ε H

S
H

H

N

—*
s
I
S

^
υ"1

1

N

^
<T
1

-*
1

'-Hk
1

IN

ό

1
-V
N

1

9
1

N

* l is
1

1

•—1 -v

*k
1

-

i ^

1

©

-4s

iS

1 *..
1
1

s

»s

ί| 3 -
1

i \

vl -*

*k..
1
is

o

•44

Ss

1
i<r

©

is

. 1 .̂.
1
1

ε
is

is
'M is

■ i s | is ··
1
ss

•V

i s
T"l -4i

. *k..
1 is

o

'*H 3 ··

"Γ

!| is ··
J\1 is

"ol IS ..
i s | pi:

T| IS ..
i s | i s

o

E
iS

1

l<>£

Ó

-ΐ

ÌSS

il ί
1
1

ε s

δ

'c-l IS
=M is

1

i s

δ

— 1 -ie

1

©

«3 ί

186 Chapter 4

Minimize Σ cjxj+cqx
q
+ Σ c.-x.-

subject to Ax^ + xB = b (4.3)

X iV> XB — ^>

where xB and xN are the current basic and nonbasic variables and c ■ = c, - z,

for ally. Note that since xq is an entering variable by Bland's rule, we have that

c' < 0 and c · > 0 for j e J j .

Now, suppose on the contrary that we go through a sequence of degen-
erate pivots in which x-, j e J2, remain nonbasic, and we reach a pivot in

which some x„ enters and x„ leaves the basis. Let us treat Equation (4.3) as an

"original" linear program, that is, define variable columns a ·, bases, and cost

coefficients with respect to this representation. In particular, let the basis in
Equation (4.3) at the pivot in which x„ enters and xq leaves be denoted by Bj

with the basic cost coefficient vector being ΈΒ . Hence, Cg Bj~ a - c > 0,

since xp enters. Because c" > 0 (why?), this means that cB Bf &p > 0. Let

y „ = Bf a and denote the pivot element in the row for the currently basic

variable xq by y . Note that y > 0 and c < 0, so that in the positive inner

product CD y„ , the component yqpCq gives a negative contribution. Hence,

there must be another basic variable xr that has cr > 0 and y > 0, since other

than ZL, all other components in cg correspond either to x ■, j e Jx, or to the

xg-variables, all of which have nonnegative Έ— values. In particular, we must

have r e Jj (why?), which also means that xr is currently zero, since we have

been performing degenerate pivots. But this means that xr is also an eligible

candidate to leave the basis in the minimum ratio test. Since r < q, the variable

xq cannot be the leaving variable by Bland's Rule. This contradiction proves the

desired result.

Other Anticycling Rules

There are several alternative rules for selecting entering and exiting variables that
can be devised in order to preclude the phenomenon of cycling in the simplex
method. For example, S. Zhang showed that the following type of "last in, first
out; last out, first in" rule would prevent cycling. Of all candidates to enter the
basis, select the one that became nonbasic most recently. Likewise, of all
candidates for the exiting variable, select the one that became basic most recently.
(In either case, ties to the rule may be broken arbitrarily.) Unfortunately, this rule

Starting Solution and Convergence 187

also admits stalling, although it inspires a wide class of anticycling rules (see the
Notes and References section).

EXERCISES

[4.1] Consider the following linear programming problem:
Maximize -xj + 3x2
subject to xj + x2 > 1

-2x\ + 3x2 < 6
x2 < 2

Xj, x2 - 0·

a. Solve the problem graphically.

b. Solve the problem by the two-phase simplex method. Show that the
points generated by Phase I correspond to basic solutions of the
original system.

[4.2] Solve the following problem by the two-phase simplex method:
Minimize xj + 3x2 ~ *3
subject to 2x] + x2 + 3x3 > 3

-Xj + x2 > 1
-X[- 5x2 + x3 < 4

X\, Χ 2 , Χ3 ^ t).

[4.3] Solve the following problem by the two-phase simplex method:
Maximize 2xt - x2 + x3

subject to 3xj + x2 - 2x3 < 8
4xj - x2 + 2x3 > 2
2xj + 3x2 - 2x3 > 4

X\, X 2 , X3 ^ ϋ .

[4.4] Solve the following problem by the two-phase method:
Maximize 4x, + 5x2 - 3x3

subject to X] + 2x2 + x3 = 10
X] - x2 > 6
Xj + 3x2 + x3 < 14
X], x2, x3 ^ 0.

[4.5] Solve the following problem by the two-phase method:
Maximize -Xj - 2x2

subject to 3xj + 4x2 < 12
X] - x2 > 2
Xj, x2 > 0.

[4.6] Solve the following problem by the two-phase method:
Maximize 5xj - 2x2 + x3

subject to 2x] + 4x2 + x3 < 6
2xj + 2x2 + 3x3 > 2
χ\, x2 > 0

x3 unrestricted.

188 Chapter 4

[4.7] Phase I of the two-phase method can be made use of to check redundancy.
Suppose that we have the following three constraints:

Xj - 2x2 > 2
xx + 3x2 > 4

2*1 + x2 > 6.

Note that the third constraint can be obtained by adding the first two constraints.
Would Phase I detect this kind of redundancy? If not, what kind of redundancy
will it detect? Does the type of redundancy in which some inequality holds
whenever the other inequalities hold imply degeneracy? Discuss.

[4.8] Show how Phase I of the simplex method can be used to solve n
simultaneous linear equations in n unknowns. Show how the following cases
can be detected:

a. Inconsistency of the system.
b. Redundancy of the equations.
c. Unique solution.

Also show how the inverse matrix corresponding to the system of equations can
be found in Part (c). Illustrate using the following system:

X\ + 2x2 - x3 = 4
~X\ — X2 ~t" 3x3

 = 3
3xj + 5x2 - 5x3 = 5.

[4.9] Solve the following problem by the b ig-M method:

Minimize 3x[+ 2x2 + 4x3 + 8x4

subject to xj - 2x2 + 3x3 + 6x4 > 8
-2x[+ 5x2 + 3x3 - 5x4 < 3

Xj, x2 , x3, x4 > 0.

[4.10] Use the b ig-M method to solve the following problem:

Minimize -2x[+ 2x2 + x3 + x4

subject to xj + 2x2 + 2x3 + x4 < 2
Xj - 2 x 2 + x 3 + 2 x 4 > 3

2x[- x 2 + 3x3 > 2
X\, X2, X3, X4 ^ 0.

[4.11] Solve the following problem by the b ig-M method:

Maximize 2xj - x2

subject to 2*i + 3x2 < 6
-Xj + x2 > 1

Xj, x2 > 0.

[4.12] Solve the following problem by the b ig-M method:

Maximize 2xj + 4x2 + 4x3 - 3x4

subject to 2xj + x2 + x3 = 4
x\ + 4 x 2 + 3x 4 = 6
Xj, x 2 , x 3 , x 4 > 0.

Starting Solution and Convergence 189

[4.13] Solve the following problem by the big-M method:

Minimize X| + 4x2
 _ *4

subject to -2*1 + 2x2 - X3 + 2x4 < 2
2xj + 3x2 + 2x3 - 2x4 = 4

xj - 3x3 + x4 > 2
x\, x2, x4 > 0.

x3 unrestricted.

[4.14] Use the big-M method to solve the following problem:

Maximize xj - 2x2 + X3
subject to X] + 2x2 - x3 > 4

x\ ~ 4x2 + x3 < 2
X i , x 2 , Χ3 ^ 0.

[4.15] Solve the following problem by the big-M method:

Maximize 5xj - 2x2 + X3
subject to xj + 4x2 + x3 < 5

2xj + x2 + 3x3 > 2
Χγ, Χ3 - 0·

x2 unrestricted.

[4.16] Solve the following linear program by both the two-phase method and
the big-M method:

Minimize 3xj - 3x2 + X3
subject to xi + 3x2 - 2x3 > 5

-3xt - 2x2 + x3 < 4
Xj, x2, X3 > 0.

[4.17] Use the single artificial variable technique to solve the following linear
programming problem:

Minimize -X] - 2x2 + x3
subject to Xj + 2x2 + X3 > 4

2xj - x3 > 3
x2 + x3 < 2

Xj , X 2 , X3 ^ 0.

[4.18] Use the single artificial variable technique to solve the following problem:

Maximize 4x] + 5x2 + 7x3 - x4
subject to Xj + x2 + 2x3 - x4 > 1

2XJ - 6x2 + 3x3 + x4 < -3
-2xj + 4x2 + 2x3 + 2x4 = -5

Xj, x2, x4 ^ 0
x3 unrestricted.

[4.19] Discuss in detail all the possible cases that may arise when using the
single artificial variable technique with both the two-phase method and the big-
M method.

[4.20] Discuss the advantages and disadvantages of using a single artificial
variable compared with a method using several artificial variables.

190 Chapter 4

[4.21] Is it possible that the optimal solution value of the big-M problem is
unbounded and at the same time the optimal solution of the original problem is
bounded? Discuss in detail.

[4.22] Is it possible that the region in R" given by

Ax = b
x > 0

is bounded, whereas the region in Rn+m

Ax + xa = b
x, xa > 0

is unbounded? What are the implications of your answer on using the big-M
method as a solution procedure?

[4.23] Suppose that either Phase I is completed or the bounded optimal solution
of the big-M problem is found. Furthermore, suppose that there exists at least
one artificial at a positive level indicating that the original system Ax = b and
and x > 0 has no solution. How would you differentiate between the following
two cases?

a. The system Ax = b is inconsistent.
b. The system Ax = b is consistent but Ax = b implies that x X 0.

Illustrate each case with an example.

[4.24] Suppose that the big-M method is used to solve a minimization linear
programming problem. Furthermore, suppose that zk - ck = maximum

(z. - c ·) > 0. Show that the original problem is infeasible if not all artificials

are equal to zero and y^ < 0 for each i such that xB. is an artificial variable.

[4.25] Geometric redundancy occurs when deletion of a constraint does not alter
the feasible set. How can geometric redundancy be detected? (Hint: Consider the
objective of minimizing xs, where xs is a particular slack variable.)

[4.26] Suppose that at some iteration of the simplex method the slack variable
xs is basic in the rth row. Show that if y^ < 0, j = 1, ..., n, j Φ s, then the

constraint associated with x is geometrically redundant.

Starting Solution and Convergence 191

[4.27] Suppose that it is possible to get the constraints of a linear program to the
i - l -U form \\B + B Nxjy = b, where b = B b ^ 0. Show that a single artificial

variable xa with activity vector b (where b < b) can be added and a basic

feasible solution can be obtained thereby.

[4.28] A manufacturer wishes to find the optimal weekly production of items A,
B, and C that maximizes the profit. The unit profit and the minimal weekly
production of these items are, respectively, $2.00, $3.00, and $4.00, and 100
units, 80 units, and 60 units. Items A, B, and C are processed on three machines.
The hours required per item per machine are summarized below.

ITEM
Machine

1
2
3

A
0
1
2

B
1
1
1

C
2
1
1

The numbers of hours of machines 1, 2, and 3 available per week are 240, 400,
and 380, respectively. Find an optimal production schedule.

[4.29] A manufacturer of metal sheets received an order for producing 2500
sheets of size 2' x 4' and 1000 sheets of size 4' x 7'. Two standard sheets are
available of sizes 1Γ x 3000' and 10' x 2000'. The engineering staff decided that
the four cutting patterns in the figure are suitable for this order. Formulate the
problem of meeting the order and minimizing the waste as a linear program and
solve it by the simplex method.

Patterns
from size 11' X 3000'

Pattern 1

+

Patterns
from size 10'X 2000'

Pattern 2

I ' r l · z 'I' r "I

H^ ? + Ϊ ^

[4.30] A trucking company owns three types of trucks: type I, type II, and type
III. These trucks are equipped to haul three different types of machines per load
according to the following chart:

TRUCK TYPE
I II III

Machine A
Machine B
Machine C

1
0
2

192 Chapter 4

Trucks of type I, II, and III cost $500, $600, and $1000 per trip, respectively.
We are interested in finding how many trucks of each type should be sent to
haul 12 machines of type A, 10 machines of type B, and 16 machines of type C.
Formulate the problem and then solve it by the simplex method. (This is an
integer programming problem; you may ignore the integrality requirements.)

[4.31] A company produces refrigerators, stoves, and dishwashers. During the
coming year, sales are expected to be as shown below. The company wants a
production schedule that meets the demand requirements. Management also has
decided that the inventory level for each product must be at least 150 units at the
end of each quarter. There is no inventory of any product at the start of the first
quarter.

QUARTER
PRODUCT

Refrigerators
Stoves
Dishwashers

1
1500
1500
1000

2
1000
1500
2000

3
2000
1200
1500

4
1200
1500
2500

During a quarter only 19,000 hours of production time are available. A
refrigerator requires 3 hours, a stove 5 hours, and a dishwasher 4 hours of
production time. Refrigerators cannot be manufactured in the fourth quarter
because the company plans to modify tooling for a new product line.

Assume that each item left in inventory at the end of a quarter incurs a
holding cost of $5. The company wants to plan its production schedule over the
year in such a way that meets the quarterly demands and minimizes the total
inventory cost. Formulate the problem and then solve it by the simplex method.

[4.32] A manufacturer wishes to plan the production of two items A and B for
the months of March, April, May, and June. The demands that must be met are
given below:

Item A
ItemB

MARCH
400
600

APRIL
500
600

MAY
600
700

JUNE
400
600

Suppose that the inventory of A and B at the end of February is 100 and 150,
respectively. Further suppose that at least 150 units of item B must be available
at the end of June. The inventory holding costs of items A and B during any
month are given by $ 1.20 and $ 1.00 times the inventory of the item at the end of
the month. Furthermore, because of space limitation, the sum of items A and B
in stock cannot exceed 250 during any month. Finally, the maximum number of
items A and B that can be produced during any given month is 550 and 650,
respectively.

a. Formulate the production problem as a linear program. The objective
is to minimize the total inventory cost (the production cost is
assumed constant).

b. Find an optimal production/inventory pattern.
c. Management is considering installing a new manufacturing system

for item B at the end of April. This would raise the maximum items

Starting Solution and Convergence 193

that can be produced per month from 650 to 700, and meanwhile
would reduce the unit manufacturing cost from $8.00 to $6.50.
Assess the benefits of this system in reducing the total manufacturing
costs plus inventory costs. If you were a member of the management
team, discuss how you would assess whether the new system is cost-
effective.

d. Suppose that management decided to introduce the new system. Market
research indicated that item B can be backlogged without serious
dissatisfaction of customers. It was the management's assessment that
each unit of unsatisfied demand during any month must be charged an
additional $1.00. Formulate the production/inventory problem and find
an optimal solution by the simplex method.

[4.33] A company manufactures stoves and ovens. The company has three
warehouses and two retail stores. Sixty, 80, and 50 stoves and 80, 50, and 50
ovens are available at the three warehouses, respectively. One hundred and 90
stoves, and 60 and 120 ovens are required at the retail stores, respectively. The
unit shopping costs, which apply to both the stoves and ovens, from the
warehouses to the retail stores are given below:

STORE
WAREHOUSE 1 2

1 4 5
2 2 4
3 5 3

Find a shipping pattern that minimizes the total transportation cost by the
simplex method.

[4.34] A farmer has 200 acres and 18,000 man-hours available. He wishes to
determine the acreage allocated to the following products: corn, wheat, okra,
tomatoes, and green beans. The farmer must produce at least 250 tons of corn to
feed his hogs and cattle, and he must produce at least 80 tons of wheat, which he
has precontracted. The tonnage and labor in man-hours per acre of the different
products are summarized below:

Tons/acre
Man-hours/acre

CORN
10
120

WHEAT
4

150

OKRA
4

100

TOMATOES
8
80

BEANS
6

120

The corn, wheat, okra, tomatoes, and beans can be sold for $120.00, $150.00,
$80.00, $60.00, and $75.00 per ton. Find an optimal solution.

[4.35] Solve the following problem, using the lexicographic rule for noncycling.
Repeat using Bland's Rule:

Maximize xj + 2x2 + *3
subject to Χχ + 4x2 + 3x3 < 4

-jci + x2 + 4x3 < 1
x\ + 3x2 + x3 < 6
X], x 2 , x3 ^ 0.

[4.36] Consider the following region:

194 Chapter 4

2x| - 2x2 + X3 < 4
- X j + X2 - X3 < 3

4xj + x2 - 3x3 < 2
X i , x 2 5 -^3 — " ·

Recall that d is a direction of the region if Ad < 0, d > 0, and d is nonzero. Thus,
in order to find directions of the region, we may solve the following problem:

Maximize c/j + d2 + c/3
subject to 2Ì/J - 2d2 + d$ < 0

-dx + d2 - d3 < 0
Adx + d2 - 3c/3 < 0

d\ + d2 + i/3 < 1
dy, d2, i/3 > 0.

The constraint d\ + d2 + <i3 < 1 is added for normalization; otherwise, the
optimal objective may reach +co. Solve this direction-finding problem by the
simplex method with the additional lexicographic exiting rule. Does this
procedure generate extreme directions? Why or why not? Can the normalization
constraint dx + d2 + c/3 < 1 be deleted? If so, describe how to find directions

if the simplex method indicates unboundedness. Illustrate by deleting this con-
straint and resolving the problem.

[4.37] Consider the following problem:

Maximize 2xj + 3x2

subject to x\ + 2x2 < 10
-Xj + 2x2 < 6

Xj + x2 < 6
Xj, x2 > 0.

a. Solve the problem graphically and verify that the optimal point is a
degenerate basic feasible solution.

b. Solve the problem by the simplex method.
c. From Part (a), identify the constraint that causes degeneracy and

resolve the problem after deleting this constraint. Note that
degeneracy disappears and the same optimal solution is obtained.

d. Is it true in general that degenerate basic feasible solutions can be
made nondegenerate by deleting some constraints without affecting
the feasible region?

[4.38] Show that cycling can never occur, even in the presence of degeneracy,
provided that a unique minimum is obtained in the computation

m i n i m u m ^ — : y^ > 0>
\<i<m [yik J

where b = B~ b, y^ = B~ a^, and xk is the entering variable.

[4.39] Solve the problem in Example 4.11 using Bland's cycling prevention rule.

Starting Solution and Convergence 195

[4.40] Suppose that we have an optimal extreme point of a minimization linear
programming problem. In the presence of degeneracy, is it possible that this
extreme point corresponds to a basic feasible solution such that z ■ - c .■ > 0 for at

least one nonbasic variable? If this were the case, are we guaranteed of another
basic feasible solution corresponding to the same extreme point where z · - c <

0 for all nonbasic variables? Why or why not? Illustrate by a numerical example.

[4.41] In order to prove finite convergence of the simplex method using the
lexicographic rule, we assumed that the first m columns of the constraint matrix
form the identity. Show that this assumption can be relaxed provided that we
have any basic feasible solution. (Hint: Let B be the starting basis and consider
the following equivalent problem.)

Minimize 0xs + (c^ - cfiB~ N)xN

subject to Ixg + B_1NxAr = B"'b
\B, xN > 0.

[4.42] We showed that the row vector (c#B~ b, cgB~) is lexicographically

decreasing from one iteration to another using the lexicographic rule. Give an

economic interpretation of this fact. (Hint: Note that z = c 5 B _ b and that

dz/db = cgB^].)

[4.43] LetX= {x: Ax = b, x > 0} be nonempty, where A is m χ η. Consider the
preemptive priority multiple objective problem of maximizing q x over x e X,

and among all alternative optimal solutions, maximizing c2x, and among all

continuing alternative optimal solutions, maximizing c3x, and so on, until the

final problem of maximizing crx over continuing alternative optimal solutions.

Call any such resulting optimal solution x a preemptive optimal solution, and
assume that one exists. Show that there exists a scalar MQ > 0 such that for any

M> MQ, a solution x* is a preemptive optimal solution if and only if it solves

the following problem:

Maximizes Σ Mr~'ci\ : x e X>.

[4.44] Suppose that a linear programming problem admits feasible points.
Utilize the result of Exercise 4.43 to show that if Mis large enough, then a finite
optimal solution of the big-M problem must have all artificials equal to zero.
Give all details.

[4.45] Consider the linear programming problem to minimize ex subject to
x e X = {x: Ax = b, x > 0}, where X is a nonempty, bounded polyhedral set in

R". Define 0X < θ2 <■·· < 9r as the distinct values taken on by ex over the

extreme points of X and let 5, be the set of extreme points of X for which the

196 Chapter 4

objective value is 9i for i = 1,..., r. An arrangement of the extreme points in S\

followed by those in S2, then S^,...,Sr is said to be a ranking of the extreme

points of X with respect to the objective function ex. Suppose that \h...,\e is a

partial ranking of the extreme points. Show that a candidate for the next ranked

extreme point x i + 1 is adjacent to some vertex in Xj,..., xe. How would you use

this result to produce all the sets S\,..., Sr ?

[4.46] Consider the following problem:

Minimize (cx,cY)

subject to A(x,Y) = (b,I)
(x,Y) > 0

where A is an m x n matrix, c is an «-vector, and the variables are the κ-vector x
and the « x m matrix Y. The objective function is a row vector, and the

minimization is taken in the lexicographic sense, that is, (cx2, cY2) -< (exj,

cYj) if and only if (cxl5 cYi) - (cx2, cY2) >■ 0. Each row of the matrix (x, Y) is

restricted to be lexicographically nonnegative, which means that each row is
zero or > 0.

a. Let x be a basic feasible solution of the system Ax = b, x > 0 with

basis B. Show that x = n and Y = " is a feasible solution

of the foregoing problem provided that (B~ b, B~) >- 0.
b. Show that the simplex method with the lexicographic exiting rule of

Section 4.6 generates the sequence (xj, Yj), (x2, Y2) ..., where
(cx,_i, cY,_!) - (ex ,·, cY.) >- 0 for ally. Interpret this fact empha-
sizing the relationship between the bases generated by the simplex
method and the foregoing problem.

[4.47] Consider the following problem:

Minimize ex

subject to Ax = b

x > 0.

Assume that the first m columns of A form the identity and assume that b > 0.

Given a basis B, the corresponding feasible solution is nondegenerate if B~ b >
0. Consider the following perturbation procedure of Charnes. Replace b by b +

Σ7=ι3/£''/ w n e r e ε is a very small positive number. Now, suppose that we have

a basis B, where B~' (b + ZJ= 1ay£7) = b + Σ"}^j£j > 0. Suppose that xk is

chosen to enter the basis and the following minimum ratio test is used:

Starting Solution and Convergence 197

minimum
\<i<m ytk

■ yik > °

a. Show that the minimum ratio occurs at a unique index r for a
sufficiently small e Show that the method of finding this index is
precisely the rule of Section 4.6.

b. Show that the new right-hand-side after pivoting is positive and that
the objective function strictly improves even in the presence of
degeneracy in the original problem.

c. Show that cycling will not occur if the rule in Part (a) is adopted.
Interpret this in terms of the perturbed problem.

d. Show that all the computations can be carried out without explicitly

replacing the right-hand-side with b + Z 7 = i a / ^ an<i without

explicitly assigning a value to ε.
[4.48] Consider an initial tableau for a maximization linear programming problem
in the following form, where B is a 2 x 2 nonsingular matrix, cB is a 2-vector, and
n is even:

z

xl

z

1

0

0

*i

0

1

0

*2

0

0

1

x3 x4

-CB

B

*5 *6

- c s (I + B)

B2

*7 *8

- c „ (I + B + B2)

B3

xn+\

-C S (I + B + B 2 +

*» + 2

•• + B2"1)

B2

RHS

0

0

0

Furthermore, suppose that

- + i -

B 2 =1 and -c B (I + B + B2 +··· + Β 2) = (0, 0).

(a) Display the form of the tableau for the cases when the basic variables are
selected as (i) {x3, x4}; (ii) {x5, x6}, and finally, (iii) {xn+\, xn+2Ì- m

each case, verify that the updated tableau is a (block-wise) permutation of
the columns of the initial tableau.

(b) Explain how the phenomenon observed in Part a can lead to an instance
where the above linear program would cycle, starting and ending at the
basic feasible solution displayed above.

(c) Illustrate Part b using n = 8, cB =(1/2,-7/20).

B
2

1
\2) 2

J_
2

198 Chapter 4

and with the simplex cycle proceeding through the following closed loop of
bases: {xu x2}, {x2, x^}, {*3> X4Ì> (x4> xs}> ix5> Χ(,},-·-Λχ9> XIO)>

{X], X\Q}, and back to {x^, x2}.

NOTES AND REFERENCES

1. The use of artificial variables to obtain a starting basic feasible solution
was first published by Dantzig [1951a].

2. The single artificial variable technique of Section 4.5 can be viewed as
the dual of a similar technique that adds a new row to obtain a starting
basic dual feasible solution. The latter is discussed in Section 6.6. Com-
putational results appear in Wolfe and Cutler [1963].

3. A general Phase I method in which the sum of infeasibilities is reduced
without regard to the feasibility of individual variables has been sug-
gested by Maros [1986].

4. The cycling example of Section 4.6 is due to Beale [1955]. The proof of
the cycling prevention rule via lexicographic ordering was published by
Dantzig, Orden, and Wolfe [1955]. The cycling prevention rule can also
be interpreted as a perturbation technique, as briefly described in Exercise
4.47. This technique was independently devised by Charnes [1952].

5. Bland's cycling prevention rule [1977] is simple and elegant, although
computationally unattractive. The notion of stages and an example of a
network structured linear program for which Bland's rule admits stalling
has been provided by Cunningham [1979]. The term "affirmative action"
for entering variable selection strategies is from Fathi and Tovey [1986].
For stalling prevention in network flow problems using Dantzig's
entering variable choice and the lexicographic cycling prevention rule,
see Orlin [1985]. Marshall and Suurballe [1969] show that the smallest
examples that can exhibit cycling have m = 2, n = 6, (n - ni) > 3, and
cycle length equal to 6. Related results for network structured problems
are studied by Cunningham [1979]. For a practical anticycling rule, see
Gill et al. [1988]. Hall and McKinnon [2004] have shown, however, that
this technique does not obviate cycling, using a class of simple examples.
The LIFO (last-in-first-out) type of anticycling rule has been proposed
by Zhang [1991], who also develops a wide class of cycling prevention
rules that uphold certain consistent and well-preserved orderings of
variable indices within the pivot rule.

6. The cycling examples based on a permutation structure as explained in
Section 4.6 are due to Zornig [2008] (Exercise 4.48 provides some details
of this concept based on this paper). Also, see Zornig [2006] for a
discussion on constructing cycling examples using Dantzig's entry rule
and the steepest edge entry rule (see Chapter 5) based on direct algebraic
pivoting relationships. Lee [1997] illustrates the geometry in the
requirement space (see Chapter 2) for the dual (see Chapter 6) to
Hoffman's [1953] example of cycling. In fact, Hoffman's [1953] example

Starting Solution and Convergence 199

also conforms to the abovementioned permutation structure. Furthermore,
Avis et al. [2008] discuss the geometry of cycling from the viewpoint of
the sequence of bases for the dual problem (see Chapter 6 and Exercise
6.75) that correspond to the closed cyclic loop of bases in a given
(primal) problem. This viewpoint also affords a mechanism for
constructing examples that exhibit the phenomenon of cycling.

7. Exercise 4.43 addresses the notion of equivalent weights for preemptive
priority multiple objective programs, as discussed in Sherali and Soyster
[1983a] and in Sherali [1982].

8. Exercise 4.45 states the basic result of Murty [1968] used for ranking
extreme points of polytopes. An alternative ranking technique appears in
Sherali and Dickey [1986]. For the special case of ranking vertices of an
assignment polytope, see Bazaraa and Sherali [1981]. Also, for related
work on enumerating all vertices of polytopes, see Mattheiss [1973] and
Mattheiss and Rubin [1980].

This page intentionally left blank

FIVE: SPECIAL SIMPLEX
IMPLEMENTATIONS AND
OPTIMALITY CONDITIONS

In this chapter we describe some special implementations of the simplex procedure
or slight modifications of it. The formats considered here will prove advantageous
in later chapters. The revised simplex method, which proceeds through the same
steps as the simplex method but keeps all pertinent information in a smaller array,
is described in Section 5.1. Numerically stable forms of this method are also
discussed. In Section 5.2 we describe a slight modification of the simplex method
for dealing implicitly with lower and upper bounds on the variables without
increasing the size of the basis. The remainder of the chapter is devoted to some
geometric aspects of the simplex method. In particular, Farkas' Lemma and the
Karush-Kuhn-Tucker optimality conditions are discussed.

5.1 THE REVISED SIMPLEX METHOD

The revised simplex method is a systematic procedure for implementing the steps
of the simplex method using a smaller array, thus saving storage space. Let us
begin by reviewing the steps of the simplex method.

Steps of the Simplex Method (Minimization Problem)

Suppose that we are given a basic feasible solution with basis B (and basis inverse

B"1). Then:

1. The basic feasible solution is given by x g = B~ b = b and x^ = 0.

The objective z = c5B~ b = cgb.

2. Calculate the simplex multipliers w = cgB~ . For each nonbasic

variable, calculate z ■ - c,- = cgB~ a, - c,- = wa, - c.·. Let zk - ck =

maximum z ■ - c.·. If zk - ck < 0, then stop; the current solution is

optimal. Otherwise, go to Step 3.

3. Calculate y^ = B~ ak. If y^ < 0, then stop; the optimal objective

value is unbounded. Otherwise, determine the index of the variable xB

leaving the basis as follows:

K . . \bi
yrk \<ì^m [ytk

Update B by replacing aB with &k and return to Step 1.

201

202 Chapter 5

Examining the preceding steps, it becomes clear that the simplex method
can be executed using a smaller array. Suppose that we have a basic feasible

solution with a known B~ . The following array is constructed where w = cBB~

and b = B_1b:

BASIS INVERSE RHS

w

B 1

cBb

b

Note that the foregoing tableau, called the revised simplex tableau, is also present
in the usual simplex tableau, provided that we start with the BASIS INVERSE
section having a zero vector in the objective row and an identity matrix in the other
rows. (This may correspond to the slack variables, if available as a starting basis,
or may simply be a section of this type maintained for bookkeeping purposes.) The
RHS is the usual tableau right-hand-side. Now, imagine that we are performing
the simplex algorithm on the entire tableau, but we are keeping hidden all but this
array and any other required information. Hence, only the "exposed" information is
explicitly calculated. The first piece of information that we need to see is the set of
(z - c,)-values. Since w is known, these values can be explicitly calculated as in

Step 2 to check for optimality. Suppose that zk - ck > 0. Then we wish to examine

the updated column of xk. Using B~ , we may compute y^ = B~ a^. If yk < 0, we
stop with the indication that the optimal objective value is unbounded. Otherwise,
the updated column of xk can be appended to the revised simplex tableau as
shown, while the rest of the tableau is still kept "hidden."

BASIS INVERSE RHS xk

zk ~ck

y\k

yik

ymk

The index r of Step 3 can now be calculated by the usual minimum ratio test. More
importantly, pivoting at yrk gives as usual the new values of w, B~ , b, and Cgb,
and the process is repeated. We leave it as an exercise to the reader to rigorously
verify that pivoting indeed updates the (m + 1) x (m + 1) revised simplex tableau.

The revised simplex method converges in a finite number of steps
provided that a cycling-prevention rule is adopted as discussed in Chapter 4. This
is obvious since the revised simplex method performs exactly the same steps as the
simplex method, with the exception that only a part of the tableau is explicitly

w

B-1

cBb

h
h

br

K

Special Simplex Implementations and Optimally Conditions 203

maintained and other information is generated only as required. The following is a
summary of the revised simplex method.

Summary of the Revised Simplex Method in Tableau Format (Minimization
Problem)

INITIALIZATION STEP

Find an initial basic feasible solution with basis inverse B~ . Calculate w =

cgB~ , b = B~ b, and form the following array (revised simplex tableau):

BASIS INVERSE RHS

w

B 1

cgb

b

MAIN STEP

For each nonbasic variable, calculate Zj - Cj = wa, - c,·. Let zk - ck =

maximum z,- - c ·. If zk - ck < 0, stop; the current basic feasible solution is

optimal. Otherwise, calculate y^ = B~ ak. If y^ < 0, stop; the optimal objective

value is unbounded. If y^ ^ 0, insert the column

tableau as follows:

BASIS INVERSE RHS

zk ~ck

xk

to the right of the

w

B 1

cBb

b

zk ~ck

y*

Determine the index r via the standard minimum ratio test:

yrk
minimum-i—^- : yik > Ok

\<i<m [yik

Pivot at yrk. This updates the tableau. Repeat the main step.

Example 5.1

Minimize
subject to

-x,
X,

2X]

X,,

- 2x2

+ *2
~ x2

x2,

+ x3

+ *3
- 2x3

x3
x3,

— x^
+ x4
+ x4

+ x4
X4,

- 4x5

+ x5

+ 2x5

^ 5 .

+ 2x6

+ x6

+ x6
x6

< 6
< 4
< 4
> U.

204 Chapter 5

Introduce the slack variables χη, x8, and x9. The initial basis is B = [a7, a8, a9]

I3. Also, w = c s B _ 1 = (0, 0, 0) and b = b.

Iteration 1

z

Χη

Xg

Xo

Here, w = (0, 0, 0). Noting that zj - Cj = way - Cj, we get

Z [- C j = l , z 2 - C 2 = 2 , Z3—C3=—1

z 4 - c 4 = l , z 5 - c 5 = 4 , z 6 - c 6 = - 2 .

Therefore, k = 5 and x5 enters the basis:

BASIS INVERSE
0 0 0
1 0 0
0 1 0
0 0 1

RHS
0
6
4
4

ys B'a-:
1 0 ol
0 1 0
0 0 1

ΓΓ
0
2

=
[ΊΊ
0
2

Insert the vector

zs ~cs

ys

[4]
1
0
2

to the right of the tableau and pivot at ^35 = 2.

BASIS INVERSE RHS

z

x7

*9

* 7

^8

^5

0 0 0
1 0 0
0 1 0
0 0 1

0
6
4
4

BASIS INVERSE RI
0 0 -2
1 0 -1/2
0 1 0
0 0 1/2

IS
-8

4
4
2

x5

0

Iteration 2

Now, w = (0, 0, -2). Noting that zy - cj = wa · - Cj, we get

Z] - q = 1, Z2 _ c 2 = 2> z 3 ~ c 3 = ~3>

z4 - c4 = - 1 , z6 - c6 = -4,

Special Simplex Implementations and Optimality Conditions 205

Z9 — c9 = —2.

Therefore, k = 2 and x2 enters the basis:

1 0
0 1
0 0

y2 = B a
2]
0
2_

Γ
-1
0

=
f

-1
0

Insert the vector

z2 ~c2
Y2

to the right of the tableau and pivot at y^·

z
x7

x5

x2

Xg

x5

BASIS INVERSE
0 0 - 2
1 0 -1/2
0 1 0
0 0 1/2

BASIS INVERSE
-2 0 -1

1 0 -1/2
1 1 -1/2
0 0 1/2

RHS
-8
4
4
2

RHS
-16

4
8
2

Iteration 3

We now have w = (-2, 0,-1). Noting that z ■ - c = wa, - c,·, we get

zl-cl=-\, z 3 - c 3 = - 4 , z4-c4=-2,

z 6 - c 6 = - 5 , z 9 - c 9 = - l .

Since z · - c < 0 for all nonbasic variables (x7 just left the basis and so z7 - c 7 <

0), we stop; the basic feasible solution of the foregoing tableau is optimal.

Comparison Between the Simplex and the Revised Simplex Methods

It may be helpful to give a brief comparison between the simplex and the revised
simplex methods. For the revised method, we need an (m + 1) x (m + 1) array as
opposed to an (m + 1) x (n + 1) array for the simplex method. If « is significantly
larger than m, this would result in a substantial saving in computer core storage.
The number of multiplications (division is considered a multiplication) and

206 Chapter 5

additions (subtraction is considered an addition) per iteration of both procedures
are given in Table 5.1. In Exercise 5.6 we ask the reader to verify the validity of
the entries of the table.

From Table 5.1 we see that the number of operations required during an
iteration of the simplex method is slightly less than those required for the revised
simplex method. Note, however, that most practical problems are sparse, that is,
the density d of nonzero elements (number of nonzero elements divided by the total
number of elements) in the constraint matrix is usually small (in many cases d <
0.05). The revised simplex method can take advantage of this situation while
calculating Zj - Cj. Note that z · = wa; and we can skip zero elements of ay

while performing the calculation wa, = Z^i^-a». Therefore, the number of

operations in the revised simplex method for calculating the (z · - c .·)-values (this

is called the pricing step) is given by d times the entries of Table 5.1, substantially
reducing the total number of operations. (At the end of this section, we also discuss
a partial pricing strategy whereby the (z,· - c,)-values are computed at each

iteration for only a selected set of nonbasic variables, thus considerably saving on
computational effort.) While pivoting, for both the simplex and the revised simplex
methods, no operations are skipped because the current tableaux usually fill
quickly with nonzero entries, even if the original constraint matrix was sparse.
(However, see the section on Implementation Remarks and the Notes and
References section on preserving sparsity in a factored-form implementation of the
revised simplex method.)

Empirically, it is often suggested that on the average in most instances,
the simplex method requires roughly on the order of m to 3m iterations. (However,
it has also been suggested that the number of iterations is often proportional to n or
even log2 n.) Examining Table 5.1, since the number of operations per iteration is
of order 0(mn) (that is, it is bounded from above by some constant times mn), the
average empirical complexity of the simplex method is 0(m n). However,
sparsity is usually present and is exploited in simplex implementations. This is
done by storing data in packed form (in which only nonzeros are stored with
appropriate pointers and are alone used in arithmetic calculations), as well as

Table 5.1. Comparison of the Simplex and the Revised Simplex Methods

OPERATION
METHOD

Simplex

Revised

Simplex

Multipli-
cations

Additions

Multipli-
cations

Additions

PIVOTING

(m+ \)(n-m+ 1)

m(n-m + 1)

(m + l)2

m(m + 1)

PRICING

-

—

m{n - m)

m(n - m)

TOTAL

m(n - ni) + n + 1

m(n - m + 1)
9

m(n - m) + (m+ 1)

m(n + 1)

Special Simplex Implementations and Optimality Conditions 207

by maintaining the basis in factored form, as we shall see shortly. Because of this,

a regression equation of the form Kmand^, where a = 1.25 -2.5 and β = 0.33,

usually provides a better fit for overall computational effort.
To summarize, if n is significantly larger than m and if the density d is

small, the computational effort of the revised simplex method is significantly
smaller than that of the simplex method. Also, in the revised simplex method, the
use of the original data for calculating the (zy - Cy)-values (pricing) and the

updated column yk tends to reduce the cumulative round-off error.

Product Form of the Inverse

We now discuss another implementation of the revised simplex method where the
inverse of the basis is stored as the product of elementary matrices. (An elementary
matrix is a square matrix that differs from the identity in only one row or one
column.) For sparse problems, this leads to fewer storage and computational
burdens, and it provides greater numerical stability by reducing accumulated
round-off errors. Although we describe next a more efficient alternative
implementation scheme based on an LU factorization of the basis that is popularly
used in practice, the present discussion is relevant because it lays the conceptual
foundation of several important constructs and ideas.

Consider a basis B composed of the columns aB , ag , . . . ,aB and sup-

pose that B~ is known. Now, suppose that the nonbasic column ak replaces aB ,

resulting in the new basis B. We wish to find B~ in terms of B~ . Noting that a^

= Byt and ag. = Be, where e,· is a vector of zeros except for 1 at the rth position,

we have

B = (aBl,a2,2,...,a/>r_1,afcja2,r+1)...,afiM)

= (Be1,Be2,...,Ber_1,ByA,Ber+1,...,Bem)

= BT,

where T is the identity with the rth column replaced by y^. The inverse of T,

which we shall denote by E, is given as follows:
rth column

I
I

0 0 ··· 0

0

-y\k !yrk

-yik 'yrk

l/yrk

-ymk iyrk

0

0 ··· 0

I

208 Chapter 5

Therefore, B - = T~ B~ = EB~ where the elementary matrix E is specified
above. To summarize, the basis inverse at a new iteration can be obtained by
premultiplying the basis inverse at the previous iteration by an elementary matrix E.
Needless to say, only the nonidentity column g, known as the eta vector, and its
position r need be stored to specify E.

Let the basis Bj at the first iteration be the identity I. Then the basis

inverse B2 at Iteration 2 is B2 = EjBJ" = Ejl= E1? where E! is the elementary

matrix corresponding to the first iteration. Similarly, B3 = E2B2 = E2Ej, and

in general,

B, = Εί_1Ε,_2···Ε2Ε1. (5.1)

Equation (5.1), which specifies the basis inverse as the product of elementary
matrices through their associated eta vectors, is called the product form of the
inverse. Using this form, all the steps of the simplex method can be performed
without pivoting. First, it will be helpful to elaborate on multiplying a vector by an
elementary matrix.

POSTMULTIPLYING

Let E be an elementary matrix with its nonidentity column g appearing at the rth
position. Let c be a row vector. Then

position r

\
1 0 ». gl ... 0"
0 1 ··· g2 ... 0

0 0 ··· gm ·■· 1 (5 2)

(C j , C 2 , . . . , C w) cE

C\,c2,..;Cr_x, Y1cigi,cr+X,...,cn

= (cl>c2>— >cr-l>cS>£T+l'—>c/n)·

In other words, cE is equal to c except that the rth component is replaced
by eg.

PREMULTIPLYING

Let a be an w-vector. Then

Ea

1 S\ °Y°i
0 ... gr ... 0

0 - gm ... 1

Special Simplex Implementations and Optimality Conditions 209

ax+gxar

Srar

_m £m®r _

=

ai
0

_<V

+ ar

E\~

Sr

_&m _

In other words,
Ea = à + arg (5.3)

where a is equal to a except that the rth component ar is replaced by zero.

With the foregoing formulas for postmultiplying and premultiplying a
vector by an elementary matrix, the revised simplex method can be executed
without pivoting. The following discussion elaborates on the simplex calculations.

COMPUTING THE SIMPLEX MULTIPLIER VECTOR w = cgB_ 1

At iteration t we wish to calculate the vector w. Note that

w = csB71=CgEMEi_2---E2E1.

Computing w can be iteratively performed as follows. First compute c5E,_j
according to Equation (5.2). Then apply Equation (5.2) to calculate (CgE/^])E/_25

and so forth. This backward transformation process is sometimes referred to as a
BTRAN process. After w is computed, we can calculate zi -c ,· = wa - c; for the

nonbasic variables. From this we either stop or decide to introduce a nonbasic
variable x^.

COMPUTING THE UPDATED COLUMN y* AND THE RIGHT-HAND-

SIDE b

If xk is to enter the basis at iteration t, then y^ is calculated as follows:

y * = B r 1 a t = E M E t _ 2 - E 2 E , a t .

This computation can be executed by successively applying Equation (5.3) in the
order Ei,E2,...,E/_1. This forward transformation process is sometimes referred

to as an FTRAN process. If y^ < 0, we stop with the conclusion that the optimal
objective value is unbounded. Otherwise, the usual minimum ratio test determines
the index r of the variable xB that leaves the basis. Thus, xk enters and xB leaves

the basis. A new elementary matrix E, is generated where the nonidentity column

g is given by:

-yykfyrk

l/yrk

_-ymk!yrk.

210 Chapter 5

and appears at position r. The new right-hand-side is given by

B ^ b = Ε , Β ^ .

Since BJ b is known from the last iteration, then a single application of Equation

(5.3) updates the right-hand-side vector b.

UPDATING THE BASIS INVERSE

The basis inverse is updated by generating E,, as discussed previously. It is

worthwhile to note that the number of elementary matrices required to represent
the basis inverse increases by 1 at each iteration. If this number becomes large, it
would be necessary to reinvert the basis and represent it as the product of m
elementary matrices (see Exercise 5.9). It is emphasized that each elementary
matrix is completely described by its nonidentity column and its position.

Therefore, an elementary matrix E could be stored as

nonidentity column and r is its position.

where g is the

Example 5.2

Minimize -xj
subject to x\

-x{
2xi

Xj,

- 2x2
+ x2
+ 2x2
+ x2

x2,

+ x3

+ x3

- 2x3

x3

< 4
< 6
< 5
> 0

Introduce the slack variables and x6. The original basis consists of X4, Χ5,

andx6.

Iteration 1

=
4Ί

6
5

B ~

·>

XBX
XB7

-%
—

X4

x5

x6
=

4
6
5

w = c B =(0,0,0).

*-N

X,

x2
x3

=
0
0
0

Note that z · - c ,· way - Cj. Therefore,

zj - q = 1, z2 - c2

Thus, k= 2 and x2 enters the basis:

z3 - c 3 = - 1 .

Special Simplex Implementations and Optimality Conditions 211

Y2=a2

minimum : minimum ml·
Here, xB leaves the basis where r is determined by

b\ b2 b}

\y\i yn ^32.

Therefore, r = 2, that is, xB = x5 leaves the basis and x2 enters the basis. The

nonidentity column of E] is given by

-ynly il
g = 1/̂ 22

-1/2
1/2

-1/2

and E] is represented by

Iteration 2

Update b . Noting Equation (5.3), we have

b = E,

XBX

XB2

*Bi _

=

4
6
5

X4
x2

3

=

=

4
0
5

+ 6
-1/2

1/2
-1/2

=

Γίΐ 3 , xN -
_2J

1
3
2

x\
x5
x3

~

=
-

0
0
0

χ β

z = 0-b2(z2 ~c2) = -6,

w ^ E , =(0 , -2 ,0)^ .

Noting Equation (5.2), then w = (0, - 1 , 0). Note that z;· - c , = w a , - c ,

Therefore,
z l - c l = 2 , z 3 - c 3 = l .

Thus, k = 1 and xt enters the basis. Noting Equation (5.3),

yx = Elal =Ei

Then, xB leaves the basis where r is determined by

f
-1
2

=
"Γ
0
2

-
-1/2Ί

1/2
-1/2

=
3/2

-1/2
5/2

1 U 63 ì . . r
minimum i , >· = minimum <̂

h i y3iJ [3/2 5/2

212 Chapter 5

Therefore, r = 1, that is, xB

column of E2 is given by

x4 leaves and jq enters the basis. The nonidentity

g

Also, E2 is represented by

1/Λΐ
-yn/yu
-yii/yn

2/3'
1/3

-5/3.

Iteration 3

Update b. Noting Equation (5.3), we have

b = E,
"f
3
2

=
"0"
3
2

+ 1
2/3"
1/3

-5/3
=

" 2/3"
10/3

. I/3.

χΒχ

XB2

XB3

=
*\
x2

-x6_

=

" 2/3"
10/3

. 1/3.
X/v —

X4

^5

_ x 3 _

=
"0"
0
0

z = -<3-b\(zy —c\) = -22/3 ,

w = cBE2E1=(-l , -2,0)E2E1.

Applying Equation (5.2) twice, we get

cBE2 =(-4 /3 , -2 ,0) ,

w = (csE2)E1 =(-4/3,-1/3,0).

Note that z - c · = wa ,· - c .·. Therefore,

z 3 - c 3 = - 5 / 3 , z5-c5 =-1/3 .

Since z - c , < 0 for all nonbasic variables, the optimal solution is at hand. The

objective value equals -22/3 and

(x1,x2,x3,x4,x5,x6) = (2/3,10/3,0,0,0,1/3).

LU Decomposition or Factorization of the Basis

The product form of the inverse essentially records the history of pivots per formed
through a collection of the eta vectors. Although this method is conceptually
important and useful, it is computationally somewhat obsolete because it is based
on a complete Gauss-Jordan elimination technique for solving systems of
equations. A more popular technique used by computer packages is the LU
factorization method, which is based on the more efficient Gaussian
triangularization strategy. It derives its name from its use of lower and upper
triangular factors of the basis B. This method is most useful when the problem is

Special Simplex Implementations and Optimality Conditions 213

large-scale and sparse, and it is accurate and numerically stable (round-off errors
are controlled and do not tend to accumulate).

In implementing the simplex algorithm, the systems of equations that
need to be solved are Bxg = b and wB = cB, and then Byfc = ak once an entering

variable xk is determined. The first of these equations gives the basic variable

values. Since the variable values are simply updated at every iteration, it only
needs to be solved initially or whenever B is periodically refactored from scratch in
order to maintain numerical accuracy. The second system computes the simplex
multiplier vector w, which is used to price the nonbasic variables via the
relationship z ■ -c ■ = wa. -c ·. Once a variable xk having zk - ck > 0 has been

chosen to enter the basis, its updated column y^ needs to be computed. This is

done via the third system of equations. The vector y^ provides the information on

how the basic variables change when xk is increased and determines the exiting

variable via the minimum ratio test. Hence, a new basis is obtained along with the
(possibly) revised basic variable values. This process is then repeated.

Now, if B happens to be an upper triangular matrix, say, then the
foregoing systems of equations can be solved easily and accurately. The systems
BxB = b and By^ = ak can be solved by a backward substitution process in which

the last component of the solution vector is given directly by the last equation. This
is substituted in the next to last equation to obtain the next to last component of the
solution vector, and so on. The system wB = cB can be solved similarly by a
forward substitution process in which the components of w are obtained
sequentially in the order w\, w2,... wm.

On the other hand, if B is not (upper) triangular, then it can be made so
through a series of row operations. Algebraically, this process can be represented
as a premultiplication of B by a nonsingular, row-operation transformation matrix
R such that RB = U, an upper triangular matrix. If this is done, then to solve the
system By4 = &k, we can premultiply both sides by R to get RBy^ = Ra^, that is,
Uy^ = ajj., where a'k = Rak. Hence, the upper triangular system Uy^ = a'k can
now be solved by a backward substitution process. An identical strategy can be
used to solve the system BxB = b. In order to solve the system wB = cB, consider

the affine transformation w = w'R. Then the foregoing system becomes w'RB =
cB or w'U = cB, from which w' can be obtained via a forward substitution
process. Knowing w', we can now compute w as w'R. Hence, if the row
operations involved are not too computationally intensive and are well conditioned
(do not involve divisions by small magnitude numbers, for instance), then the
systems of equations can again be solved conveniently and accurately.

Observe that if the row operations required to upper triangularize B
involve a simple row by row Gaussian reduction process, then R would be a lower
triangular matrix. In other words, the first row of B would be left as is, the second
row would have a multiple of the first row added to it in order to zero out the (2, 1)
element of B, the third row of B would have a multiple of the first row and a
multiple of the second row added to it in order to zero out the (3, 1) and the (3, 2)

214 Chapter 5

elements, and so on. In this case, we would have B = R U = LU, a product of a

lower triangular matrix L = R~ and an upper triangular matrix U. Hence, such a
factorization is called an LU factorization, even in instances when R is not lower
triangular.

Obtaining the LU Factorization of B

Typically, in addition to the Gaussian pivots or reductions, we also need to perform
permutations of rows in the factorization in order to obtain desirable pivot
elements. For example, to begin, we may wish to make that row the first row that
has the largest absolute valued coefficient in the first column, so that the Gaussian
pivots associated with zeroing out the first column under the (1, 1) element are
numerically well conditioned. (Of course, if the starting (1,1) element in B is zero,
then some such permutation is imperative.) Hence, the row operation matrix R
may involve a (row interchange) permutation matrix Pj followed by a Gaussian
reduction or pivot matrix G\ used to triangularize the first column (or the first
nontriangular column), then possibly another permutation matrix P2 followed by a
Gaussian triangularization matrix G2, and so on. Hence, if we use r such
operations, we will have

R = (GrPr)-(G2P2)(G1P1) .

Accordingly, a forward transformation process called FTRAN is used to compute

a'k = Rak while solving the system By^ = ak by employing the operators (G;P;)

in the order \,...,r on &k. Similarly, a backward transformation process called

BTRAN is used to compute w = w'R while solving the system wB = c g by

postoperatively using G,P, on w' in the order r, r - 1,..., 1.

Now, let us discuss the construction of the operators defining R. Suppose
that so far we have upper triangularized columns 1,..., k - 1 of B, and we are now
considering the triangularization of a nontriangular column k using, for example,
the operator G,P,. Let B^ be the current partially triangular matrix. Then we first
determine the largest absolute valued element in rows k,k+\,...,mfor column k
in Bk. If this happens to be the (k, k) element itself, then no row interchange

(permutation) is necessary, and in this case P; = I. Otherwise, if this happens to be

the element (/, k), then we need to interchange rows k and t. Hence, the
permutation matrix that accomplishes this is given as follows, where the elements
not shown are zeros:

Special Simplex Implementations and Optimality Conditions 215

P,=

k

t

"1

1

k

0

1

1

1

t

1

0

-i

1

1

(5.4)

Having done this, suppose that the matrix Βλ now appears as follows, where the

blank section has all zeros:

k

Bk=k : P i (G M P M) - (G 1 P ,) B . (5.5)

Now, in order to zero out the elements in column k and in rows (k + 1), ..., m, we
need to premultiply B^ by the following Gaussian pivot matrix G;, where again,
all elements not shown are zeros:

~\k+\),k lb> \k

'bmk I bkk 1.

(5.6)

Observing G;, it is evident why we would not want b^ to be too small.

Also, compare G,· with the Gauss-Jordan pivot or elementary matrix E used in the

product form of the inverse. Needless to say, the matrices P(and G, are stored in

compact or packed form. Namely, only the relevant permutation performed by P;·

216 Chapter 5

is stored, and similarly from G,-, only the nonzeros in rows k + 1, ..., m in column

k, along with their positions are stored. This operation now produces G^B^ =

(G,P;)--(G1P])B from Equation (5.5). This process may now be continued until

we obtain RB= (GrPr)---(GIP1)B = U.

Example 5.3

Suppose that the following matrix B needs to be factored and we need to solve the
system Βχβ = b and wB = cB, where

B
2

-1
2

c 5 =(1,1,2).

Beginning with column 1, we first perform an interchange of rows 1 and 2 in order
to make the (1, 1) element the largest (in absolute value) in column 1. This
corresponds to the permutation matrix Pj, which then yields the matrix Bj.

Β ^ Ρ , Β Pi =
0
1
0

1
0
0

0
0
1

Next, we triangularize column 1 of Bj via the Gaussian pivot matrix Gj, where

1
-1/2
-1/2

0 0
1 0
0 1

which gives,

(G!P,)B =
2 1 -1
0 5/2 5/2
0 3/2 5/2

Continuing, we can now take P2 as the identity matrix, which gives B2

P2(G1P1)B = (GjP^B as before. We then get from Equation (5.6):

G7 =

1

0

0

0 0

1 0

-3/5 1

which gives

(G2P2)(G1P1)B =

1 -1

0 5/2 5/2

0 0 1
= u.

Hence, R = (G2P2)(GjP1) and U is as previously given.

Now, to solve B\B = b, we first compute Rb as follows using an FTRAN

process:

Special Simplex Implementations and Optimality Conditions 217

"3"
9
7

3"
= (G2P2) 15/2

11/2
= G2

3"
15/2
11/2

=
3

15/2
1

Rb = (G2P2)(G,P1)b = (G2P2)G1

Therefore, since RBx5 = Rb, that is, Uxg = Rb, where U is as given above, we

compute xB =(1,2,1)' by backward substitution.

Similarly, in order to solve wB = cB, we first solve w'U = cB by forward

substitution and then compute w = w'R. This gives w' = (1/2, 1/5, 2).
Consequently, applying a BTRAN process, we obtain

w = w'R = (l/2,l/5,2)[(G2P2)(G1P1)]

= (1/2, -1,2)P2(G,P,) = (1/2, - 1 ,2X0 ,^)

= (0,-l ,2)P1=(-l ,0,2).

The reader may wish to observe how the foregoing calculations are performed with
P, and G, stored in the previously mentioned compact form.

Updating the LU Factors

Suppose that we have selected x^ as the entering variable and have determined xr

as the leaving variable in the usual manner. The task now is to update R so that
when operated on the new basis, it produces an upper triangular matrix. Toward
this end, suppose that we delete from B the leaving column, say, column r, then
move the columns (r + 1),..., m leftwards, that is, make the current column / as the
new (/ - l)th column for i = (r + 1),..., m, and insert the entering column &k of xk

as the last (wth) column. Let this new basis be denoted by B n e w . (We would need
to accordingly permute the updated right-hand-side so that the new basic variable
values appear in the same order as their columns are arranged in Bnew.) Noting

that RB is an upper triangular matrix, we now have RBnew appearing as shown

below, where the blank section has all zeros:

RBnew - (5.7)

218 Chapter 5

Note that the columns 1, ..., r - 1 of RBn e w are as in U; the columns r,

..., m - 1 of RBnew are precisely the columns (r + 1), ..., m of U, and the final

column in RBn e w is Ra^. Note that Ra^ is already available from the solution of

the system By^ = ak (why?). Hence, we delete column r from U, move the col-

umns that are to the right of it one position leftwards, and insert Ra^ as the last

column in U, in order to obtain RBn e w. The type of matrix depicted in Equation

(5.7) is called an upper Hessenberg matrix. Note that the elements in the black-
shaded region in Equation (5.7) used to be along the diagonal of U, and hence are
nonzeros, since U is nonsingular. Now, we can perform additional permutations
and Gaussian pivots embodied in Equations (5.4) and (5.6) as before in order to
triangularize RBn e w. The additional factors of the type (G;P,) used are appended
to R in order to derive the new factor R.

Example 5.4

Consider Example 5.3. Suppose that we price the nonbasic variables and select

some variable x4 as the entering variable. Let a4 = (1,-1,0)' and c4 = -2. Hence,

Z4-C4 = w a 4 - c 4 = (-1,0,2)(1,-1,0)' - (-2) = 1 > 0. Furthermore, the system

By4 = a4 gives RBy4 = Ra4, where RB = U, and where

Ra4 =(G2P2)(G1P,)a4 =(G2P2)Gi

= (G2P2)

" -f
3/2

.V 2 .
= G2

" -f
3/2

.1/2.

=

- f
3/2

. "2 /5 .

(5.8)

Hence, Uy4 = Ra4 gives y4 = (-6/5,1,-2/5)'. Consequently, performing the
minimum ratio test, the basic variable corresponding to the second column of B
leaves the basis. Eliminating this second column of B and appending a4 as the

final column of B results in the new basis B n e w . From U and Equation (5.8), we

get (as in Equation (5.7)):

RB„
2 -1 -1
0 5/2 3/2
0 1 -2 /5

Furthermore, on pivoting, the right-hand-side updates to (17/5,2,9/5)'. Because

of the rearrangement of the columns of B n e w , the new right-hand-side is

(17/5,9/5,2)'. To triangularize the second column of RBn e w , we use P3 = I and,
from Equation (5.6), we use

Special Simplex Implementations and Optimality Conditions 219

G3 =
1 0 0
0 1 0
0 -2/5 1

1

which gives,

(G3P3)(G2P2)(G1P,)Bnew = (G3P3)RBnew =
~2 -1 - Γ
0 5/2 3/2
0 0 - 1

— ^new

Hence, the new factors R and U are, respectively, Rnew = (G3P3)(G2P2)(G1P1)

and Unew as given previously. We now compute the new simplex multiplier vector

w, and price the nonbasic variables, and then continue.

Some Implementation Remarks

It should be evident from the foregoing discussion that the LU factorization
technique is particularly well suited for sparse problems, and it can benefit greatly
if the factors R and U are themselves sparse. Toward this end, one can initially try
to permute the rows and columns of the (sparse) matrix B to make it as "upper
triangular" as possible, while trying to reduce any "bumps" and "spikes" that
protrude below the diagonal. An attempt is also usually made to preserve sparsity

in the factors in this fashion, so that although B~ may tend to fill up (become
dense relative to B), the number of nonzeros in the Gaussian pivot matrices and in
U tend to be of the same order as the number of nonzeros in B itself. Of course, in
order to maintain accuracy and sparse storage requirements, and to reduce
computational effort, the current basis should be periodically refactored from
scratch. Exercise 5.59 and the Notes and References section provide further
implementation guidelines.

Most problems also benefit by scaling, in which both rows and columns
are sequentially scaled by dividing throughout with, for example, the average
magnitude of the nonzeros in order to make the coefficient magnitudes in the rows
and columns compatible with each other. This enhances the numerical accuracy of
the algorithm and can also dramatically reduce the solution effort by virtue of the
simplex path generated.

Motivated by the same concepts is the use of a steepest edge entering
variable selection strategy. Here, instead of selecting the variable having simply
the most positive (z; -c ,) -value to enter the basis (Dantzig's Rule), we base the

selection on the most positive value of (z ■ - cAly ,·, where γ= = Μ + ΣΓ);ή ·

Note that γ ■ is the Euclidean norm of the direction vector along the edge associated

with increasing the nonbasic variable x. by a unit. Hence, (z-c .-)//■ is the

negative rate of change in the objective function value per unit distance along this
direction. Of course, in order to conserve solution effort per iteration, the γ.—

quantities need to be updated rather than recomputed from one iteration to the next
(see the Notes and References section). This rule significantly enhances the

220 Chapter 5

performance of the simplex algorithm over the use of Dantzig's Rule, particularly
on unsealed problems. (It has also been observed to assist more strongly with the
dual simplex method that is discussed in Chapter 6.)

Another related strategy is partial pricing or suboptimization. Thus far, we
have conducted a total pricing of all the nonbasic variables at each iteration. This is
convenient and advantageous for problems having no more than 1000 or so variables.
However, for larger-sized problems, such a total pricing operation can be
computationally expensive. It is usually preferable to perform a partial pricing or a so-
called suboptimization process. We describe here one particular implementation of this
process using Dantzig's Rule for selecting an entering variable. To begin, all the
nonbasic variables are priced and the largest (z; - c ,·)-value, say, zk -ck = Amax > 0,

is found. A list L is constructed of the current basic variables and those nonbasic
variables for which Zj - Cj lies within some px percent of Amax. At this point, the

variables not in L are ignored, and the iterations continue by selecting the nonbasic
variable having the most positive (z ; -c;)-value in L for entering the basis. However,

once the most positive (z ,· - c ,·) -value falls below some p2 percent of Amax, or when

the simplex method goes through some N consecutive degenerate iterations, the list L is
reconstructed. If this list were not reconstructed, then the algorithm would eventually
solve the problem where the ignored nonbasic variables are permanently fixed at zero;
hence the name "suboptimization" of this technique. Typical values of p\ and p2 are,

respectively, 0.8 and 0.67 for sparse problems (d < 0.05 - 0.1) and 0.7 and 0.4 for
dense problems. (Here, d is the density of the matrix A.) A typical value of N is about
10-30.

Finally, we mention that for large-scale problems, it is useful to have a
matrix generator program in order to automatically generate the constraints and the
objective function based on the structure of the application instead of manually
inputting the data. The software would then store the nonzero coefficients in
packed form as noted earlier, and then use them appropriately to perform the
foregoing computations. Many modeling languages are now available as user-
friendly interfaces to enable the specifications of problems in algebraic symbolic
format, rather than require a laborious construction of nonzero matrix coefficients
in specified packed formats. The interested reader is referred to the Notes and
References section for further discussions on these topics.

5.2 THE SIMPLEX METHOD FOR BOUNDED VARIABLES

In most practical problems the variables are usually bounded. A typical variable xj

is bounded from below by £ ■ and from above by u-, where i ■ < it-. If we

denote the lower and upper bound vectors by i and u, respectively, we get the
following linear program with bounded variables:

Minimize ex

subject to Ax = b

^ < x < u .

Special Simplex Implementations and Optimality Conditions 221

By standard transformations, we can assume without loss of generality that £ is

finite for eachy = 1, ..., n (why?). If £ = 0, the usual nonnegativity restrictions are
obtained. In fact, any lower bound vector can be transformed into the zero vector
by using the change of variables x' = x — (. The most straightforward (and the
least efficient) method of handling the constraints £ < x < u is to introduce the
slack vectors Xj and x2, leading to the constraints x + xt = u and x - x2 = £■
This increases the number of equality constraints from m to m + In and the number
of variables from n to 2>n. Even if £ = 0 or is transformed into 0, as discussed, the
slack vector Xj is needed, which increases both the constraints and variables by n.

From the foregoing discussion it is clear that the problem size (and hence
the computational effort) would increase significantly if the constraints £ < x < u
are treated in the usual manner by introducing slack vectors. The simplex method
with bounded variables handles these constraints implicitly in a fashion similar to
that used by the simplex method to handle the constraints x > 0. Therefore, the so-
called "working basis" remains of size m x m, and hence such a method is known
as a compact basis method. As in the simplex method, the algorithm of this section
moves from a basic feasible solution to an improved basic feasible solution of the
system Ax = b, £ < x < u (at a nondegenerate pivot step), until optimality is
reached or unboundedness is verified.

Now, observe that the feasible region of the foregoing problem is a

polyhedron in R", and as before, its extreme points are feasible points at which

some n linearly independent hyperplanes are binding. Since Ax = b gives m
linearly independent hyperplanes that are binding at each feasible solution, we seek
p = n- m appropriate additional binding hyperplanes from the inequalities £ < x <
u in order to make up the required set of n linearly independent binding equations
for defining each extreme point solution. (Throughout we only consider constraints
having finite upper or lower bounds to be binding.) Consequently, there arep = n -
m degrees of freedom remaining after imposing the constraints Ax = b, and so, the

given polyhedron is embedded in Rp. We therefore need to associate with an

extreme point some p {independent) nonbasic variables fixed either at their lower
or their upper bounds such that the remaining m (dependent) basic variables are
uniquely determined via the system Ax = b. If more than p, say, q, of the
inequalities £ < x < u are binding at an extreme point, then such an extreme point is
degenerate and has q - p > 1 of the associated basic variables at one of their
bounds. Hence, we define a basic feasible solution as follows, so that a solution x
is an extreme point if and only if it is a basic feasible solution. Details of the proof
based on this exposition are very similar to the case of the set X = {x: Ax = b, x >
0} and are left to the reader in Exercise 5.17.

Definition (Basic Feasible Solutions)

Consider the system Ax = b and £ < x < u, where A is an m x n matrix of rank m.
The solution x to the equations Ax = b is a basic solution of this system if A can be
partitioned into [B, Nj, N2], where the (square) matrix B has rank m, such that with

222 Chapter 5

x partitioned accordingly as (xB, xN , x^) we have xN = £N , xN = uN , and

accordingly, xB = B~ b - B~ N ^ ^ - B^ N2u^ . Furthermore, if lB < xB <

uB, then x is said to be a basic feasible solution. The matrix B is called the

(working) basis, xB are the basic variables, and xN and x^ are the nonbasic

variables at their lower and upper limits, respectively. If, in addition, lB <xB <

uB, then x is called a nondegenerate basic feasible solution; otherwise, it is called

a degenerate basic feasible solution.
The partition [B,Nj, N2] corresponding to a basic (feasible) solution is

said to be a basic (feasible) partition. Two basic (feasible) partitions are said to be
adjacent if all but one nonbasic variable coincides in the two partitions, being fixed
at the same bounds. Note that for a degenerate extreme point, x, each choice of p

= (n - m) defining hyperplanes from the set I < x < u that, along with the m
constraints Ax = b, yield n linearly independent hyperplanes binding at x,
corresponds to a basic feasible partition associated with x.

Example 5.5

Consider the region given by
xx

-χϊ
0

-1

+
+
<
<

x2

2x2
X]

x2

<
<
<
<

5
4
4
4

First introduce the slack variables x3 and x4. This gives the following system

(note that a close examination of the system shows that w3 and H4 can be replaced

by 6 and 10, respectively, if so desired):
X[+

- X [+
x2

2x2

+ x3

0
-1
0
0

+
<
<
<
<

X4
x\

x2
x3
X4

=
=
<
<
<
<

5
4
4
4

00

00

We would like to find all the basic feasible solutions of this system. This can be
accomplished by extracting a basis of the first two constraints, solving the basic
variables in terms of the nonbasic variables, and then fixing the nonbasic variables
at their lower or upper bounds. To illustrate the method select, say, a2 and a4 as
the basic vectors. Then

B = [a2,a4] =

;he first tw

right-hand-side, we get

1 0
2 1

and B"1 = 1 0
-2 1

Multiplying the first two constraints by B and transferring x{ and x3 to the

Special Simplex Implementations and Optimally Conditions 223

X2 — 5 — Xi — X3

x4 = -6 + 3xj + 2x3.

Now, fix X| at its lower or upper bound, x3 at its lower bound, and solve for x2

and x4:

1. xj = 0, x3 = 0 => x2 = 5, and x4 = -6 . Since x4 < 0, this basic solution

is not a basic feasible solution.

2. xl = 4, x3 = 0 => x2 = 1, and x4 = 6. Therefore, (xj, χ2 , Χ3, x4) =

(4, 1, 0, 6) is a basic feasible solution.

The other basic solutions can be obtained in a similar manner. If all of the possible
bases were enumerated, we would see that the basic feasible solutions are (2,3,0,0),
(0,2,3,0), (4,1,0,6), (0, -1,6,6), and (4, -1,2,10). Projecting these points in the (xb

x2) space, we get the extreme points Vj, ..., v5 shown in Figure 5.1. In this
example, n = 4, m = 2, and sop = n - m = 2. In fact, the representation shown in
Figure 5.1 is in the p = 2-dimensional space corresponding to X] and x2 as the
independent variables. Note how each extreme point is formed by some p = 2
linearly independent defining hyperplanes binding in this space. In particular, (x3 =

£3, x4= £4) gives V!, (xj = l\, x4= £Λ) gives v2, {χλ = ux, x3 = l3) gives v3, (x{

= i], x2= i2) gives v4, and (xt = MJ, X2 = £2) g i y e s v5· Hence, as noted
previously, the basic feasible solutions and the extreme points coincide. Observe
also that the extreme points v4 and v5 have the same working basis associated

with them, namely, the columns of the variables x3 and x4. However, they differ

in the bound values assigned to the (independent) nonbasic variables xj and x2, and

hence produce distinct basic feasible partitions and distinct basic feasible solutions.
Furthermore, since all extreme points are nondegenerate here, each has a unique
basic feasible partition associated with it, and the adjacent basic feasible partitions
correspond to adjacent extreme points. We ask the reader to explore a
generalization of this in Exercise 5.18 by imitating the analysis for the
nonnegatively constrained case.

Improving a Basic Feasible Solution

We now know how to characterize a basic feasible solution. We also know that an
optimal basic feasible solution exists provided that the feasible region is not empty
and the optimum is finite (why?). Note, however, that the number of basic feasible

224 Chapter 5

Figure 5.1. Basic feasible solutions.

solutions is large. (The number of basic feasible solutions is bounded above by

n 2n~m_ For each possible way of extracting a basis there are 2n~m ways of

fixing each of the nonbasic variables at their lower and/or upper bounds.)
Therefore, a systematic way of moving among the basic feasible solutions is
needed.

Now, suppose that we have a basis B and suppose that the nonbasic

matrix is decomposed into Nj and N2 , that is, A = [B,Ni,N2]. Accordingly, the

vector x is decomposed into [xB, χ^ , xN] and c is decomposed into [cB, cN ,

cN]. Both the basic variables and the objective function can be represented in

terms of the independent (that is, nonbasic) vectors xN and xN as follows:

xB = B- 1 b-B- 1 N 1 x W l -B- 1 N 2 x^ 2 (5.9)

2 ~ cBxB+cNl
xNl

+cN2
XN2

= c ^ B ^ b - B " 1] * , ! ^ -B-]N2xN2) + cNixNl +cN2xN2

= CgB-1b + (c^-CgB-1N])xy V l+(ci V 2-CgB-1N2)xi V 2. (5.10)

Suppose that we have a current basic feasible solution where x^ = £N , xN =

uN , and lB < xB < uB. This solution is represented by the following tableau.

The right-hand-side column gives the true values of z and xB (denoted by z and

b, respectively) when x^ = £^ and x^ = uN are substituted in Equations (5.9)

and (5.10). We emphasize that this column does not give c^B~ b and B~ b,
which are the right-hand-sides of Equations (5.10) and (5.9), respectively.

Special Simplex Implementations and Optimally Conditions 225

z \B χΝχ xNl RHS

1

0

0 c ^ B - ' N j - c ^ cBB-%-cN2

I B_1N! Β ~ ' Ν 2

z

b

Now, we try to improve the objective by investigating the possibility of modifying

the nonbasic variables. From Equation (5.10) and noting that c^ - c5B~ N[and

cN - cgB~ N2 give the reduced costs Cj - z · of the lower and upper bounded

nonbasic variables, respectively, we get

z = cBBlb- Σ (zj~cj)xj- Σ (zj-cj)xj (5·11)
jsJx jeJ2

where J\ is the set of indices of nonbasic variables at their lower bounds and J2 is

the set of indices of nonbasic variables at their upper bounds. For j e Jj if z ; - c ,·

> 0, it would be to our benefit to increase x- from its current value of £.-.

Similarly, for j e J2, if z ; - c ,· < 0, it would be to our benefit to decrease x.- from

its current value of « . As in the simplex method, we shall modify the value of

only one nonbasic variable while all other nonbasic variables are fixed, and hence
obtain a movement along an edge of the underlying polyhedral set. The index k of
this nonbasic variable is determined as follows. First, examine

maximum \ maximum iz.-cA, maximum {c ,· - z ,· H.
{ yw, l J) jeJ2

 (J J>\

If this maximum is positive, then let k be the index for which the maximum is
achieved. If k e J1; then xk is increased from its current level of £k, and if k e

J2, then xk is decreased from its current level of uk. If the maximum is

nonpositive, then zj - Cj < 0 for all j e Jx and z- - c- > 0 for all j GJ2.

Examining Equation (5.11), this indicates that the current solution is optimal.

To summarize, given a basic feasible solution, if z · - c ■ < 0 for all non-

basic variables at their lower bounds, and if z - c > 0 for all nonbasic variables
at their upper bounds, then we stop with the conclusion that the current solution is
optimal. Otherwise, we choose a nonbasic variable xk according to the foregoing

rule. If xk is at its lower bound, then it is increased; otherwise, it is decreased.

These two cases are discussed in detail next.

226 Chapter 5

Increasing xk from its Current Level lk

Let xk = £k + A k where A k is the increase in xk (currently A k = 0). Noting that

all other nonbasic variables are fixed and that the current value of \B and z are b

and z, respectively, substituting xk = (k + A k in Equations (5.9) and (5.11), or

by the usual dxB/dxk and dz/dxk information, we get

*B
xk

b

h
+ Ai - y *

1
(5.12)

z = z + Ak[-(zk-ck)]. (5.13)

Since zk - ck > 0 (why?), then from Equation (5.13), it is to our benefit to

increase Δ^ as much as possible. However, as A k increases, the basic variables

are modified according to Equation (5.12). The increase in Δ^ may be blocked as

follows.

1. A BASIC VARIABLE DROPS TO ITS LOWER BOUND

Denote the value of A k at which a basic variable drops to its lower bound by γχ.

From Equation (5.12) we have iB < xB = b - Υ^Δ^. Therefore, y^A^ < b -

iB. If y k < 0, then Δ^ can be made arbitrarily large without violating this

inequality and so γ\ = <x> (that is, no basic variable drops to its lower bound).

Otherwise, γχ is given by the following minimum ratio:

lb-*
minimum·^ L : V̂c > 0 r ~ ~ i f y / t ^ O

Π=< \<i<m y yik J yrk (5.14)

co i f y y t ^ o .

The basic variable that reaches its lower bound is a candidate for xB .

2. A BASIC VARIABLE REACHES ITS UPPER BOUND

Denote the value of Δ^ at which a basic variable reaches its upper bound by γ2.

From Equation (5.12), b - y^A^ = \B < uB, and hence ~ykAk < u g - b . If

y^ > 0, then A k can be made arbitrarily large without violating this inequality, and

so Y2 =oo (that is, no basic variable reaches its upper bound). Otherwise, γ2 is

given by the following minimum ratio:

Special Simplex Implementations and Optimality Conditions 227

Ϊ2=\

uB. - bj uB -br
minimum^ —i :yik<0\ = —r- i f y ^ X O

\<i<m -yik -yrk (5.15)

co if yk > 0.

The basic variable that reaches its upper bound is a candidate for xB .

3. xk ITSELF REACHES ITS UPPER BOUND

The value of Ak at which xk reaches its upper bound, uk, is obviously uk - £k.

These three cases give the maximum increase in Ak before being blocked

by a basic variable or by xk itself. Obviously Ak is given by

Δβ- = m i n i m u m ^ , γ2, uk - £k}. (5.16)

If Ak = co, then the increase in xk is not blocked, and by Equation (5.13), the

optimal objective value is unbounded. If, on the other hand, Δ^ < co, a new basic

feasible solution is obtained where xk = ik + Ak and the basic variables are

modified according to Equation (5.12).

Updating the Tableau When the Nonbasic Variable Increases

The current tableau must be updated to reflect the new basic feasible solution. If
^k = uk - £k, then no change of the working basis is made and xk is still

nonbasic, except this time it is nonbasic at its upper bound. Only the RHS column

is changed to reflect the new value of the objective function and the new values of

the basic variables. According to Equations (5.13) and (5.12), z is replaced by z -

(zk - ck)Ak and b is replaced by b - y^A^. On the other hand, if Ak is given

by γi or γ2, then xk enters the basis and xB leaves the basis, where the index r is

determined according to Equation (5.14) if Ak = yi or according to (5.15) if Δ^ =

/2 ■ Except for the RHS column, the tableau is updated by pivoting at yrk . Note

that yrk may be either positive or negative. Since the right-hand-side is computed

separately, this should cause no alarm. The right-hand-side column is updated
according to Equations (5.13) and (5.12), except that the rth component of the new

vector b is replaced by £k + Ak to reflect the value of xk, which has just entered

the basis.
Alternatively, the right-hand-side vector can be updated directly with the

rest of the tableau (although this is not the method of choice in practice). This,
however, requires three distinct operations (which may be performed in any order).
First, we multiply the nonbasic entering column by its current value (either £k or

uk) and add the result to the RHS vector. Next, we multiply the basic leaving

228 Chapter 5

column by the value it will assume (either lB or uB) and subtract the result from

the RHS. Finally, we perform a normal pivot operation on the adjusted RHS
vector.

Decreasing xk from its Current Level uk

This case is very similar to that of increasing xk and is discussed only briefly. In

this case, zk - ck < 0 and xk = uk - Ak where Ak > 0 denotes the decrease in

xk. Noting Equations (5.9) and (5.11), we get

(5.17)

(5.18)

~ x /
.xk_

=
b

.uk_
+ Ak

~Yk~
-1

z = z + Ak[zk~ck].

The maximum value of Δ^ is given by Equation (5.16) where γ\ and γ2
 a r e

specified below:

n

B:
minimum < -

\<i<m -yik
■yik<o\

br -t.

-yrk
i f y ^ X o

i f y ^ o ;

(5.19)

Ϊ2

\uB-bi uB -br

minimum \ ■yik>0\ = ify*X(>
\<i<m y yik j yrk (5.20)

oo if yA < 0.

If Ak = oo, then the decrease of xk is not blocked, and by Equation (5.18), the

optimal objective value is unbounded. If Ak < oo, then a new basic feasible solution

is obtained where xk = uk - Ak, and the basic variables are modified according

to Equation (5.17).

Updating the Tableau When the Nonbasic Variable Decreases

If Ak = uk - ik, then xk is still nonbasic, but at its lower bound. The tableau is
unchanged except for the RHS column, which is updated according to Equations
(5.18) and (5.17). If Ak is given by γχ or γ2, then xk enters the basis, and xB

leaves the basis where r is determined by Equation (5.19) if Ak = γλ and by

Equation (5.20) if Ak = γ2· Except for the RHS, the tableau is updated by pivoting

at yrk. Again yrk could be either positive or negative. The RHS column is

updated according to Equations (5.18) and (5.17), except that the rth component of

the new vector b is replaced by uk - Ak to reflect the value of xk that has just

Special Simplex Implementations and Optimally Conditions 229

entered the basis. We may also again utilize the alternative method described
previously to update the RHS vector.

Getting Started

If no basic feasible solution is conveniently available, we may start the lower-
upper bounded simplex method with artificial variables. This is accomplished by:
(1) setting all of the original variables to one of their bounds; (2) adjusting the

RHS values accordingly; (3) multiplying rows, as necessary, by -1 to get b > 0,
and (4) adding artificial columns. The two-phase or the big-M method may be
employed to drive the artificial variables out of the basis.

Finite Convergence: Degeneracy and Cycling

In the absence of degeneracy, at any iteration, the procedure described previously
either moves from one basic feasible solution to an improved basic feasible
solution, or declares unboundedness. Hence, it must terminate finitely, either with
an optimal solution or with an indication of unboundedness. However, in the
presence of degeneracy, it is possible to perform a degenerate pivot in which γ^ or

Yl is zero. Hence, the working basis changes, but we still remain at the same

extreme point solution. Consequently, it is possible to cycle, that is, go through a
sequence of consecutive degenerate pivots, and loop through the same set of
working bases. Therefore, we need some cycling prevention rule as for the
nonnegatively constrained case. For example, the following lexicographic rule may
be used.

Suppose that for all basic feasible solutions encountered by the algorithm,

the rows of B~ that correspond to degenerate basic variables at their lower

bounds are lexicographic positive, and the rows of B~ that correspond to
degenerate basic variables at their upper bounds are lexicographic negative. A
basic feasible partition [B, N1; N2] that satisfies this property is called a strongly

feasible basic partition. This is readily achieved to begin with by using artificial
variables if necessary. In order to maintain strongly feasible basic partitions, the
following rule can be adopted whenever Ak < oo. (The reader is asked to justify
this rule in Exercise 5.21.) Suppose that the entering variable xk is increased from
its lower bound. If xk blocks itself (Δ^ = uk - ik) and if the resulting partition
with the same basis remains strongly feasible, then no pivot is required. Otherwise
(whether xk blocks itself or not), let Sj be the set of basic variable indices / for

which yik < 0 and x,· is at its upper bound when xk = tk + Ak. Let S2 be the set

of basic variable indices i for which yik > 0 and x; is at its lower bound when xk =

lk + Δ^. Letting BJ~ denote the row of B^1 corresponding to the basic variable

xh determine the unique index r for which BJl/yjk, i e S] u S2 is lexi-

cographically minimum, and pivot xr out of the (working) basis. Similarly,

230 Chapter 5

suppose that the entering variable xk is being decreased from its upper bound. If

xk blocks itself and if the resulting partition with the same basis remains strongly

feasible, then no pivot is required. Otherwise, let S\ = {i: x; is basic, yik < 0, and

Xj = tj when xk = uk - Δ ^ } . Let S2 = {/: Xj is basic, yjk > 0, and JC,· = w,· when
xk = uk ~ ^ki- Then, select xr to exit from the basis where r is the unique index

for which BJ lyik, i ε S^ u 52 is lexicographically maximum. With this rule,

whenever a sequence of degenerate pivots is performed, the vector cBB~ can be

readily verified to be lexicographically decreasing, and hence, cycling cannot
occur. (We ask the reader to provide a proof for this in Exercise 5.21.)

In a similar manner, we can generalize Bland's cycling prevention rule,
for example, to the present case. Suppose that by performing suitable
transformations if necessary, we have the lower bound vector £ = 0. Furthermore,
for convenience, assume that 0 < w,· < co for each i = 1,..., n, and suppose that the
upper bounding constraints are written as x + s = u in the problem, where s > 0 are
the slack variables. Note that given a basic feasible partition [B, Nj, N2] for the

system Ax = b, 0 < x < u, there is an associated basis for the nonnegatively
constrained system Ax = b, x + s = u, x and s > 0, in which the (m + ri) basic
variables are \B, χ^ , sB, and s^ , and the (n - rri) nonbasic variables (at value

zero) are x^ and sN , and vice versa. But as in Section 4.5, Bland's Rule applied

to the latter system would require that the variables be arranged in some order, say,
xi,...,xn, s^,...,sn, and ties for the entering and leaving candidates be broken by

picking the first candidate from this list. The translation of this rule in the present
context is now readily evident using the foregoing equivalence of partitions into
sets of basic and nonbasic variables. (We leave the details to the reader in Exercise
5.22.)

Summary of the Simplex Method for Bounded Variables
(Minimization Problem)

INITIALIZATION STEP

Find a starting basic feasible solution (use artificial variables if necessary). Let \B

be the basic variables and let \N and xN be the nonbasic variables at their lower

and upper bounds, respectively. Form the following tableau where z = cgB~ b +

(cNl-cBB-%)£Ni + (cN2 - c s B- 'N 2)u W 2 and 6 = Β ~ ^ - B~%iNl~

B-'N2uW2 :

Special Simplex Implementations and Optimally Conditions 231

XB

z

1

0

XB

0

I

XJV,

CgB-'N! - c ^

B_1N!

XN2

cBB"1N2 - cN2

B_1N2

RHS

z

b

MAIN STEP

1. If; Cj < 0 for nonbasic variables at their lower bounds and z
j J - J J

> 0 for nonbasic variables at their upper bounds, then the current
solution is optimal. Otherwise, if one of these conditions is violated for
the index k, then go to Step 2 if xk is at its lower bound and Step 3 if

xk is at its upper bound.

2. The variable xk is increased from its current value of £k to £k + Ak.

The value of Ak is given by Equation (5.16) where γ^ and γ2
 a r e

given by Equations (5.14) and (5.15). If Ak = oo, stop; the optimal

objective value is unbounded. Otherwise, the tableau is updated, as
described previously. Repeat Step 1.

3. The variable xk is decreased from its current value of uk to uk - Ak.

The value of Ak is given by Equation (5.16) where γ\ and γ2 are

given by Equations (5.19) and (5.20). If Ak = GO, stop; the optimal

objective value is unbounded. Otherwise, the tableau is updated as
described previously. Repeat Step 1.

It will be helpful to distinguish between nonbasic variables at their lower and upper
bounds during the simplex iterations. This is done by flagging the corresponding
columns by £ and u, respectively.

Example 5.6

Minimize
subject to

-2JC]

2XJ

*l

- 4 x 2 - *3
+ X2 + *3

+ x2 ~ x3
0 < xx

0 < x2

1 < x3

< 10
< 4
< 4
< 6
< 4.

Introduce the slack variables x4 and x5. These are bounded below by 0 and

bounded above by oo. Initially, the basic variables are x4 and x5, and the nonbasic

variables at their lower bound = 0 and x3 = 1. Note that the objective

value is -1 and that the values of the basic variables x4 and x5 are given by 10 -1
= 9 and 4 + 1 = 5 , respectively.

232 Chapter 5

Iteration 1

z
1
0
0

*1
2
2
1

*2 *3
4 1
1 1

© -i

X4

0
1
0

*s
0
0
1

RHS
-1
9
5

z
X4

x5

The maximum value of z ,· - c, for lower bounded nonbasic variables is 4 corre-

sponding to x2 · Therefore, xk = x2 is increased. Then y2 and Δ2 is given

by minimum{/], γ2, u2~ ί2)
 = minimum {γχ, γ2, 6}. Also, γ\ and γ2 are given,

according to Equations (5.14) and (5.15), as follows. First,

Ì 9 - 0 5 -0]
γλ = minimum <- = 5

corresponding to xB = x5 , that is, r = 2. This means that Δ2 can be increased to

value 5 before a basic variable drops to its lower bound. Second, γ2 = co, which

means that Δ2 can be increased indefinitely without any basic variable reaching

its upper bound.

Therefore, Δ2 = minimum {5,00, 6} = 5. The objective value is replaced

by-1 ~{z2 -c2)Δ2 = - 1 - 4 x 5 =-21 and

* 5 .
-Υ2Δ2 =

9
5

- 1
1 5 = 4

0

The value of x2 is given by Δ2 = 5 . Moreover, x2 enters and x5 leaves. The

tableau is updated by pivoting at y22.

Iteration 2

z
1
0
0

xl
-2

1
1

x2
0
0
1

*3
5
2

Θ

x4

0
1
0

x5

-4
-1

1

RHS
-21

4
5

z
x4
x2

All nonbasic variables are at their lower bounds and the maximum value of
2 zj - Cj is 5, corresponding to x3. Therefore, x3 enters, y3

 :

given by

Δ3 = minimum{γ\,γ2,«3 - ^ 3 } = minimum{^1,^2,3}.

-1 , and Δ3 is

Special Simplex Implementations and Optimality Conditions 233

The values of γχ and γ2 are obtained from Equations (5.14) and (5.15) as follows:

4 - 0

corresponding to xB = xB = x4, that is, r = 1. This means that x4 would drop to

its lower limit if x3 were increased by 2. Second,

6 - 5
Ϊ2

1
1

corresponding to xB = xB = x2, that is, r = 2. This means that x2 would reach its

upper bound if x3 were increased by 1. Therefore, Δ3 = minimum {2, 1, 3} = 1 =

γ2 ■ Now, x3 = 1 + Δ3 = 2.

The objective value is replaced by -21 - (z3 - c3) Δ3 = - 2 1 - 5 x 1 = -26.

x4
x2.

- ν 3 Δ 3 = 4
5 - 2

-1 1 = 2
6

Here, x3 enters the basis and x2 reaches its upper bound and leaves the basis. The

tableau (except the RHS, which was updated separately) is updated by pivoting at

Iteration 3

z
X4

x3

z
1
0
0

^
*1
3

(3)
-1

u
x2

5
2

-1

x3

0
0
1

X4

0
1
0

I
x5

1
1

-1

RHS
-26

2
2

The maximum value of z - c ■ for nonbasic variables at their lower bounds is 3,

and Aj is given corresponding to Xj. Therefore, xj is increased. Here, yi =

by

Δ] = minimum {Y\,y2,u\-i\} = minimum {γ\,γ2Α}-

The values of γ\ and γ2 are given by Equations (5.14) and (5.15) as follows.

First,

2 - 0 2
7 l " = 3

corresponding to xB = xB = x4, that is, r = 1. This means that if x\ was

increased by 2/3, x4 would drop to its lower limit and would leave the basis.
Second,

234 Chapter 5

corresponding to xB = xB = x3, that is, r = 3. This means that if x^ was

increased by 2, x3 would reach its upper limit and would leave the basis.

Therefore, Δ] =minimum{2/3,2,4} = 2/3. So, Xj = 2/3. The objective

value is replaced by - 26 - (zj - qJAj = -26 -3 x (2/3) = -28.

_ x 3 .
=

"2"
2_ - y i A i =

~2
2_ -

' 3"
-1 (2/3)= " 0 "

8/3

Here, xj enters the basis and x4 leaves the basis.

The tableau is updated by pivoting at yn = 3, and the RHS is updated

separately where z = -28, xj = 2/3, and x3 = 8/3.

Iteration 4

u £ I
Z Χγ X~y X-7 XA X5 RHS
1
0
0

0 3 0 - 1 0
1 2/3 0 1/3 1/3
0 -1/3 1 1/3 -2/3

-28
2/3
8/3

Since zj - c,· > 0 for nonbasic variables at their upper bounds and z - c · < 0 for

nonbasic variables at their lower bounds, then the foregoing tableau gives an
optimal solution (is it unique?). The variable values are given by (x\,X2, X3,X4,xs)
= (2/3, 6, 8/3, 0, 0) and the objective value is -28.

5.3 FARKAS' LEMMA VIA THE SIMPLEX METHOD

Farkas' Lemma is a key ingredient to establishing the Karush-Kuhn-Tucker
optimality conditions that are both necessary and sufficient for linear programming
problems. The result deals with two linear systems of equations and inequalities,
exactly one of which has a solution in any instance. It turns out that the simplex
method can be used to provide a constructive proof for this result. We state the
lemma, give an insightful proof, and then discuss its geometric interpretation.

Lemma 5.1 (Farkas' Lemma)

One and only one of the following two systems has a solution:

System 1 : Ax > 0 and ex < 0;

System 2: wA = c and w > 0 ,

where A is a given m x n matrix and c is a given «-vector.

Special Simplex Implementations and Optimality Conditions 235

Proof

The variables in the two systems are x and w, respectively. The theorem can be
restated as follows. If there exists an x with Ax > 0 and ex < 0, then there is no w >
0 with wA = c. Conversely, if there exists no x with Ax > 0 and ex < 0, then there
exists a w > 0 such that wA = c.

Suppose that System 1 has a solution x. If System 2 also has a solution w,
then ex = wAx > 0, since w > 0 and Ax > 0. This contradicts ex < 0; therefore,
System 2 cannot have a solution.

Next, suppose that System 1 does not have a solution. Consider the
Problem P: Minimize {ex : Ax > 0}. Note that zero is the optimal value for
Problem P (why?). Putting P in standard form by writing x = x' - x", where x', x"

> 0, and denoting the surplus variable vector in the inequality constraints as s, we
obtain the equivalent problem:

P' : Minimize {ex'-cx" : A x ' - Ax"-s = 0, x',x",s > 0}.

Note that x' = x" = 0, s = 0 is an optimal extreme point solution to P'. Starting
with s as the initial set of basic variables, we can use a cycling prevention rule to
obtain an optimal basis for P' such that "z ,· - c ,·" < 0 for all the variables. (Such a

basis exists by Theorem 4.1.) Let w = "c s B~ " be the set of simplex multipliers

associated with this basis B, say. Since "Z;-CJ = wa, - c , " < 0 for all the

variables, we get wA — c < 0, -wA + c < 0, and -w < 0 from the columns of the
variables x', x", and s, respectively. Hence, we have constructively obtained a w
> 0 such that wA = c. The proof is complete.

Alternative Forms of Farkas' Lemma

Several variants of Lemma 5.1 exist that deal with other pairs of systems of
equations and inequalities, exactly one of which has a solution in any instance.
These results are collectively known as Theorems of the Alternative. We state one
such variant as Corollary 5.1 for the sake of illustration and present another form
of this result in Exercise 5.34.

Corollary 5.1 (Alternative Form of Farkas' Lemma)

One and only one of the following two systems has a solution:

System 1 : Ay < 0, y < 0, and cy > 0;

System 2: wA < c and w > 0.

This form can be easily deduced from the format in Lemma 5.1 by changing

236 Chapter 5

System 2 into equality form. Since wA < c and w > 0 is equivalent to (w, v) . = c

and (w, v) > (0, 0), then from Lemma 5.1, System 1 must read - x > L and ex <

0, that is, Ax > 0, x > 0, and ex < 0. Putting y = -x gives the desired result.

Geometric Interpretation of Farkas' Lemma

Denote the rth row of A by a', / = 1, ..., m, and consider System 2. Here, wA = c

and w > 0 simply means that c = Σ™ι *^»', w,· > 0 for / = 1, ..., m. In other words,

System 2 has a solution if and only if c belongs to the cone generated by the rows

of A, namely the vectors a , ..., am. Hence, Farkas' Lemma asserts that either c
belongs to the cone generated by the rows A or it does not. In the former case,
System 1 has no solution, and in the latter case, it does. For convenience in
illustration, let us equivalently restate System 1 as requiring to find a solution y
satisfying Ay < 0 and cy > 0 (put y = -x). Geometrically, such a vector y should

make an angle > 90° with each row of A since a'y < 0 for i = 1, ..., m, and it

Figure 5.2. System 1 has a solution.

.2

Cone
Figure 5.3. System 2 has a solution.

Open half-space

Special Simplex Implementations and Optimality Conditions 237

should make an angle < 90° with the vector c since cy > 0. Therefore, System 1 has
a solution if and only if the intersection of the cone {y: Ay < 0} and the open half-
space {y: cy > 0} is not empty. Figure 5.2 shows a case where System 1 has a
solution (with any y in the shaded region yielding a solution x = -y to System 1).
Figure 5.3 shows a case where System 2 has a solution. Accordingly, System 2 has
no solution in Figure 5.2, and System 1 has no solution in Figure 5.3.

5.4 THE KARUSH-KUHN-TUCKER OPTIMALITY CONDITIONS

The Karush-Kuhn-Tucker (KKT) conditions form the backbone of nonlinear pro-
gramming in general. These conditions are necessary for optimality for differentiable
nonlinear programming problems that satisfy certain regularity conditions (known as
constraint qualifications) and suffice to indicate optimality for certain differentiable
nonlinear programming problems that satisfy various generalized convexity
properties (see the Notes and References section). For linear programming problems,
these conditions are both necessary and sufficient, as we shall be seeing, and hence
form an important characterization of optimality. These conditions will be widely
used in the remainder of this book. Later, we present a simple, geometrically
motivated derivation of this result for linear programming problems. (In fact, this
derivation can be readily generalized to obtain necessary optimality conditions for
differentiable nonlinear programming problems under suitable constraint
qualifications by considering appropriate first-order linearizations at an optimal
solution.)

The Karush-Kuhn-Tucker Conditions for Inequality
Constrained Problems

Consider the following linear programming problem:

Minimize ex

subject to Ax > b

x > 0 ,

where c is an «-vector, b is an w-vector, and A is an m x n matrix. Let x be any
feasible solution to this problem. Denote by Gx > g the set of inequalities from Ax
> b and x > 0 that are binding at x. Observe that if x is an optimal solution, then
there cannot be any improving feasible direction d at x. Mathematically, there
cannot be a direction d such that cd < 0 and Gd > 0. Otherwise, by moving along
such a direction from x, the objective function value would fall, since cd < 0, and
we would remain feasible to the constraints Gx > g, since G(x + 2d) = G x + IGd
= g + AGd > g, for any λ > 0. Moreover, for some step length λ > 0, we would also
remain feasible to the constraints that are nonbinding at x. Since the system cd < 0
and Gd > 0 cannot have a solution, by using Farkas' Lemma, we deduce that there
exists a u > 0 such that uG = c. Let us now rewrite this statement in terms of the

constraints Ax > b and x > 0. Toward this end, let a' be the rth row of A, i = 1,...,
m, and let e ,· be a vector of zeros except for a 1 in they'th position. Define

/ = {/:a'x = o;·}

238 Chapter 5

as the set of binding constraints at x from the set Ax > b, and define

J = {j:xj=0)

as the set of binding constraints at x from the set x > 0. Hence, the rows of G are

comprised of a', i e / , and e ,·, j e J. Accordingly, letting u = (w; for / e / , v.-

for j e J) > 0, we can rewrite the conditions uG = c, u > 0 as

Z w / a
/ + Σ v 7 e y =c (5.21)

iel jeJ
wt > 0 for i e I, and Vj > 0 for j e J. (5.22)

Equations (5.21) and (5.22), along with the feasibility of x are the KKT conditions
for the foregoing linear programming problem. So far, we have shown that these
conditions must necessarily hold at an optimal solution x to this problem.
Geometrically, Equations (5.21) and (5.22) assert that the objective gradient c can
be represented as a nonnegative linear combination of the gradients of the binding

constraints at an optimal solution, where a' is the gradient of the constraint a'x >
bj and e, is the gradient of the constraint x · > 0. In other words, Equations (5.21)

and (5.22) say that the objective gradient c must lie in the cone generated by the
gradients of the binding constraints.

Conversely, suppose that Equations (5.21) and (5.22) hold at some
feasible point x with / and J as defined. Consider any other feasible solution x to
the linear program. Then, multiplying both sides of Equation (5.21) by (x - x)

and using the fact that a'x = ty for / e / and e x = 0 for j e J, we obtain

c x - c x = X Wj(a'x-bj)+ X vjejx>0
iel jeJ

since a'x > bt for / e / , e x > 0 for j e J, and Equation (5.22) holds true. Hence,

ex > ex for any feasible solution x (in fact, feasible simply to the inequalities
binding at x), and so, x is an optimal solution.

Consequently, we have shown that a feasible solution x is optimal to the
foregoing linear program if and only if Equations (5.21) and (5.22) hold true, that
is, if and only if the objective gradient c lies in the cone generated by the gradients
of the binding constraints at x. Hence, the KKT conditions given by Equations
(5.21) and (5.22) along with the feasibility of x are both necessary and sufficient
for the optimality of x. These conditions are usually written in the following
convenient form. Define the vectors w = (v^, ..., wm) > 0 and v = (vj, ..., vn) > 0.
Note that w, and v must be zero corresponding to the nonbinding constraints.

Under this restriction, Equation (5.21) can be written as wA + vi = c, or simply,
wA + v = c. Hence, the KKT conditions can be equivalently stated as requiring a
solution (x, w, v) to the following system:

Ax > b, x > 0 (5.23)

Special Simplex Implementations and Optimality Conditions 239

wA + v = c, w > 0, v > 0 (5.24)

w(Ax - b) = 0, vx = 0. (5.25)

The first condition (5.23) merely states that the candidate point must be feasible;
that is, it must satisfy the constraints of the problem. This is usually referred to as
primal feasibility. The second condition (5.24) is usually referred to as dual
feasibility, since it corresponds to feasibility of a problem closely related to the
original problem. This problem is called the dual problem and will be discussed in
detail in Chapter 6. Here, w and v are called the Lagrangian multipliers (or
Lagrange multipliers, or dual variables) corresponding to the constraints Ax > b
and x > 0, respectively. Finally, the third condition (5.25) is usually referred to as
complementary slackness. Since w > 0 and Ax > b, then w(Ax - b) = 0 if and only
if either vv; is 0 or else the rth slack variable is 0, that is, the rth constraint in Ax >

b is binding. Similarly, vx = 0 if and only if either x- is 0 or else v, is 0. Hence,

Equations (5.24) and (5.25) are equivalent to Equations (5.21) and (5.22).
The following example illustrates the Karush-Kuhn-Tucker conditions.

Example 5.7

Minimize -xj - 3x2
subject to JCJ - 2x2 ^ ~4

-Χγ - *2 - ~ 4
Xy, X2 - 0·

Equations (5.23), (5.24), and (5.25) represent a useful tool in verifying whether a
certain point is optimal. To illustrate, suppose we were told that the optimal
solution of the foregoing problem is the point (0, 0). We see geometrically in
Figure 5.4 or by using the simplex method that (0, 0) is not an optimal solution.
First, inequality (5.23) holds since (0, 0) is indeed a feasible solution. Since none
of the first two constraints is binding (that is, Xj - 2x2 > -4 and - X\ - x2 > ~4),
then W| = w2 = 0, in order to satisfy Equation (5.25). Since w = 0, then from

Figure 5.4. Verification of the KKT conditions.

240 Chapter 5

Equation (5.24) we must have c = v, that is, v = (-1, -3). However, this violates
the nonnegativity of v. Therefore, (0, 0) could not be an optimal solution for this
problem.

Now, suppose that we were told that the optimal point is (4/3, 8/3). In
order to check whether this is a true statement, we can use the KKT conditions.
Since xx, x2 > 0, then vl = v2 = 0 in order to satisfy complementary slackness.
From Equation (5.24), w must satisfy the system c - wA = 0, that is,

w\ -w 2 = -1

-2w[- w2 = -3

and hence wx = 2/3 and w2 = 5/3. Note that w > 0 and Ax = b, and hence, w(Ax -

b) = 0. Therefore, conditions (5.23), (5.24), and (5.25) hold true, and (4/3,8/3) is

indeed an optimal solution.
The following example illustrates the geometric interpretation of the KKT

conditions.

Example 5.8

Minimize -x\ - 3x2
subject to X! - 2x2 ^ _ 4

-X\ - x2 > -4
Xj, x2 > 0.

The gradients of the objective function and the constraints are given below:

c = (-1, -3)

a1 = (1, - 2)

a2 = (-1, -1)
ei = (1, 0)
e2 = (0, 1).

Let us consider the four extreme points of Figure 5.5.

1. The extreme point x = (0, 0)': The binding constraints are the
nonnegativity constraints. We see from Figure 5.5 that c does not
belong to the cone of the gradients ej and e2 of the binding constraints.

Therefore, (0,0)' is not optimal.

2. The extreme point x = (0,2)': The binding constraints are xx - 2x2 >

-4 and xj > 0. Here, c does not belong to the cone generated by the

gradients a and e} of the binding constraints. So, (0,2)' is not optimal.

Special Simplex Implementations and Optimality Conditions 241

Figure 5.5. Geometry of the KKT conditions.

3. The extreme point x = (4/3,8/3)': The binding constraints are xx - 2x2

> -4 and -JCJ - x2 > -4 . Here, c belongs to the cone of the gradients a

and a of the binding constraints. Therefore, (4/3,8/3)' is an optimal

point.

4. The extreme point x = (4,0)': The binding constraints are ~X\ - x2 >

-4 and x2 > 0. Here, c does not belong to the cone generated by the

gradients a and e2 of the binding constraints, and hence, (4,0)' is not

optimal.

The Karush-Kuhn-Tucker Conditions for Equality Constraints

Consider the following linear programming problem in equality form:

Minimize ex

subject to Ax = b

x > 0 .

By changing the equality into two inequalities of the form Ax > b and -Ax > -b ,

the KKT conditions developed earlier would simplify to

Ax = b, x > 0 (5.26)

wA + v = c, w unrestricted, v > 0 (5.27)

vx = 0. (5.28)
The main difference between these conditions and the conditions for the inequality
problem is that the Lagrangian multiplier vector (or dual vector) w corresponding
to the constraint Ax = b is unrestricted in sign.

242 Chapter 5

Optimally at a Basic Feasible Solution

Consider the following problem:

Minimize ex

subject to Ax = b

x > 0 .

Assume that rank (A) = m. Let us reinvestigate how the simplex method recognizes
an optimal basic feasible solution. Suppose that we have a basic feasible solution x
with basis B and let us examine conditions (5.26), (5.27), and (5.28). Obviously,
(5.26) holds true. The condition c - wA - v = 0 can be rewritten as follows, where
v is decomposed into \B and \N:

(cB, cN) - w(B, N) - (v s , yN) = (0, 0). (5.29)

To satisfy the complementary slackness condition vx = 0, since xN = 0, it suffices

to have \B = 0, so that vx = v#x s + v^x^ = 0. With vs = 0, Equation (5.29)

reduces to the following two equations:

cB - w B = 0

cN - w N - νΛτ=0.

From the first equation we get w = c5B~ , and from the second equation we get

vN = cN - wN = cN - cBB_1N.

To summarize, given a basic feasible solution, condition (5.26) automatically holds
true. Equation (5.28) is satisfied by letting \B = 0, and the condition wA + v = c is

satisfied by letting w = cgB~ and \N = cN - cBB~ N. The only possible

source of violation of the Karush-Kuhn-Tucker conditions is that v^ might not be

nonnegative. Note, however, that vN consists of the (cj - zy)-values for the

nonbasic variables. Therefore, the nonnegativity of v^ in Equation (5.27) is

violated if c,· - z ■ < 0 for some nonbasic variable. Of course, if c .· - z,· > 0 for

each nonbasic variable, then \N > 0 and all the Karush-Kuhn-Tucker conditions

are met. These are precisely the simplex termination criteria.

Reinterpretation of the Simplex Method

From the previous discussion, the simplex method can be interpreted as a
systematic procedure for approaching an optimal extreme point satisfying the
Karush-Kuhn-Tucker conditions. At each iteration, feasibility (called primal
feasibility) is satisfied, and hence, condition (5.26) always holds true. Also,
complementary slackness is always satisfied, since either a variable x ■ is nonbasic

and has value zero, or else v.· = c.· - z = 0, and hence v · x = 0 for ally, i.e.,

Special Simplex Implementations and Optimality Conditions 243

vx = 0. Therefore, condition (5.28) is always satisfied during the simplex method.
Condition (5.27) (called dual feasibility; more on this in Chapter 6) is partially
violated during the iterations of the simplex method. Condition (5.27) has two
portions, namely, wA + v = c and v > 0. The first portion always holds true by

letting w = CgB~ and v = (\B, \N) = (0, cN - c g B ~ N). However, the second

portion, namely nonnegativity of c^ - cgB~ N, which is part of dual feasibility, is

violated, until of course, an optimal basis is reached. To summarize, the simplex
method always satisfies primal feasibility and complementary slackness. Dual
feasibility is violated, and the violation is used to try and improve the objective
function value by increasing the nonbasic variable having the most negative
c ■ - Zj, for example, until dual feasibility is also satisfied.

Finding the Lagrangian Multipliers from the Simplex Tableau

We already know that \B = 0 and \N = cN - cgB~ N. Therefore, the Lagrangian

multiplier v corresponding to the constraint x ■ > 0 can be easily obtained from

row 0 of the simplex tableau. More precisely, v, is the negative of the z · - c,

entry in row 0 under the x, column.

Now, we turn to the Lagrangian vector w = cgB~ corresponding to the

constraints Ax = b. The method for obtaining w from the simplex tableau was
discussed in Chapter 3. We shall elaborate on this further. Recall that row 0 of the
simplex method consists of z,· - c · fory = 1,...,«, which is given by the vector

CgB~ A - c. If the matrix A has an identity matrix as a portion of its columns,

then in row 0 under these columns, we have csB~ I - c = w — c, where è is the
part of the cost vector c corresponding to the identity columns in the original
problem. By simply adding the vector c to w - c in row 0, we get w.

EXERCISES

[5.1] Solve the following linear program by the revised simplex method:

Minimize Xj + 4x2 - 7x3 + x4 + 5x5
subject to xj - (3/4)x2 + 2x3 - (1/4) x4 = 6

- (1/4) x2 + 3x3 - (3/4) x4 + x5 = 5
Xj, x 2 , x 3 , Χ4, Xj > 0.

[5.2] Solve the following linear program by the revised simplex method:
Maximize - 2x2 + x3
subject to xj - 2x2 + x3 > -4

X] + x2 + x3 < 7
zxj — x2 — x3 s 5
x1; x2, x3 > 0.

244 Chapter 5

[5.3] Solve the following problem by the revised simplex method using the
product form of the inverse:

Maximize 3x{ + 2x2 + X3 + X4
subject to 8x[+ 3x2 + 4x3 + x4 < 7

2xj + x2 + X3 + 5 x 4 < 3
X\ + 4 x 2 + 5x3 + 2 x 4 < 8
X|, x 2 , Χ3, x 4 > 0.

[5.4] Repeat Exercise 5.3 using an LU-factorization of the basis.

[5.5] Solve Exercise 5.1 using the product form of the inverse.

[5.6] Verify the entries in Table 5.1.

[5.7] An automobile manufacturer has contracted to export 400 cars of model A
and 500 cars of model B overseas. The model A car occupies a volume of 12 cubic
meters, and the model B car occupies a volume of 16 cubic meters. Three ships for
transporting the automobiles are available. These arrive at the port of destination at
the beginning of January, the middle of February, and the end of March,
respectively. The first ship only transports model A cars at $450 per automobile.
The second and third ships transport both types at a cost of $35 and $40 per cubic
meter, respectively. The first ship can only accommodate 200 cars, and the second
and third ships have available volumes of 4500 and 6000 cubic meters,
respectively. If the manufacturer has contracted to deliver at least 250 and 200 cars
of models A and B by the middle of February and the remainder by the end of
March, what is the shipping pattern that minimizes the total cost? Use the revised
simplex method.

[5.8] Apply the revised simplex method to the following problem, both with and
without the lexicographic cycling prevention rule. (This is the example used in
Chapter 4 to illustrate cycling.)

Minimize - (3/4) x4 + 20x5 - (1/2) x6 + 6x7
subject to xj + (1/4) x4 - 8x5 - x6 + 9x7 = 0

x2 + (1/2) x4 - 12x5 - (1/2) x6 + 3x7 = 0
x3 + x6 = 1

Xj, x2, X3, x4, X5, x^, x7 ^ 0.

[5.9] In the revised simplex method with the product form of the inverse, the
number of elementary matrices increases by 1 at each iteration. If the number of
elementary matrices becomes excessive, it would be necessary to reinvert B. Let B

be a basis. Show how B can be reinverted such that B - is represented as the
product of m elementary matrices. Illustrate by an example.

[5.10] Determine the number of multiplications and additions needed per iteration
of the revised simplex method using the product form of the inverse. How can we
take advantage of sparsity of nonzero elements in the matrix A? Give a detailed
comparison between the simplex method and the revised simplex method using the
product form of the inverse. Repeat using an LU-factorization of the basis.

Special Simplex Implementations and Optimality Conditions 245

[5.11] How would you use the revised simplex method to solve a bounded
variables linear programming problem? Consider the following bounded variables
linear program:

Maximize z = X\ - 2x2
subject to -JCJ - x2 < 1

2xj - x2 < 1
-2 < X] < 1

x2 < 2.

a. Draw the feasible region in the (xj, x2) space and identify the optimal

solution. Is this degenerate? Why or why not?
b. For the extreme point (xl5 x2) = (1, 1), identify the working basis B

and set up the revised simplex tableau by determining B~ , c5B~ , the

objective function value, and the basic variable values. Continue
solving the problem from this basic feasible solution using the bounded
variables revised simplex algorithm.

c. Denote the right-hand-sides of the first two constraints by i\ and b2.

What conditions must i\ and b2 satisfy for the optimal partition to

remain optimal?

[5.12] Use the simplex method for bounded variables to solve the following
problem:

Minimize xt + 2x2 + 3x3 - x4
subject to 2xj - x2 + x3 - 2x4 < 6

—Xj + ZX2 — X3 + X4 S o

2xj + x2 - X3 > 2
0 < x{ < 3
1 < x2 < 4
0 < x3 < 8
2 < x4 < 5.

[5.13] Use the simplex method for bounded variables to solve the following
problem:

Maximize 2xj + x2 + 3x3
subject to 3xj + x2 + x3 < 12

-Χχ + X2 < 4
x2 + 2x3 < 8

0 < xx < 3
0 < x2 < 5
0 < x3 < 4.

[5.14] Solve the following problem by the simplex method for bounded variables:
Maximize 2x] + 3x2 - 2x3
subject to xj + 3x2 + x3 < 8

2x[+ x2 - x3 > 3
xt < 4

-2 < x2 < 3
x3 > 2.

246 Chapter 5

[5.15] A manufacturing firm would like to plan its production/inventory policy for
the months of August, September, October, and November. The product under
consideration is seasonal, and its demand over the particular months is estimated to
be 500, 600, 800, and 1200 units, respectively. Currently, the monthly production
capacity is 600 units with a unit cost of $30. Management has decided to install a
new production system with a monthly capacity of 1200 units at a unit cost of $35.
However, the new system cannot be installed until the middle of November.
Assume that the starting inventory is 250 units and that at most 400 units can be
stored during any given month. If the holding inventory cost per month per item is
$5, find the production schedule that minimizes the total production and inventory
cost using the bounded simplex method. Assume that demand must be satisfied
and that 100 units are required in inventory at the end of November.

[5.16] a. Solve the following (knapsack) problem.

Maximize 2xj + 3x2 + 8x3 + x4 + 5x5
subject to 3xj + 5x2 + 11*3 + ^x4 + ^x5 - ^

X[, x2, X3, X4, X5 St 0.

b. Give a generalized closed-form solution for the following problem in
terms ofthe ratios c;la;, j= 1,..., n:

Maximize C]Xt +···+ cnxn

subject to ajX[H l· anxn < b
X[, · · · , xn > 0,

where c; and a; are positive scalars for each j .

c. What is the form of the optimal solution if cj and a ; are allowed to

be any scalars in Part (b)?
d. Extend Parts (b) and (c) to include upper bounds on the variables.

[5.17] Consider the problem: Minimize ex subject to Ax = b, I < x < u. Show in
detail that the collection of extreme points and the collection of basic feasible
solutions as defined in Section 5.2 are nonempty and equal, given that the problem
is feasible and that I is finite.

[5.18] For the bounded variables linear program, what is the relationship between
basic feasible partitions [B, Ήχ, Ν2] and extreme points? What is the relationship
between adjacent basic feasible partitions and adjacent extreme points, both for the
nondegenerate and the degenerate cases?

[5.19] Consider the problem: Minimize ex subject to Ax = b, 0 < x < u. Show that
the basic feasible solutions defined in Section 5.2, and the basic feasible solutions
that would be obtained if the constraint x < u is transformed into x + xs = u and
xs > 0 are equivalent.

[5.20] Compare the simplex method of Chapter 3 with the lower-upper bounded
simplex method. Determine the number of operations (additions, multiplications,
and so on) when each of the two methods is applied to the same lower-upper
bounded linear program.

Special Simplex Implementations and Optimality Conditions 247

[5.21J Show in detail that the simplex method for bounded variables discussed in
Section 5.2 converges in a finite number of steps in the absence of degeneracy.
Discuss in detail the problem of degeneracy and prove that the lexicographic rule
given in Section 5.2 maintains strongly feasible basic partitions and prevents
cycling.

[5.22] Using the characterization in Exercise 5.19 for the problem: Minimize ex
subject to Ax = b, 0 < x < u, and the discussion on Bland's cycling prevention rule
in Section 4.5, devise a version of Bland's Rule for this bounded variables linear
program.

[5.23] Illustrate the lexicographic as well as Bland's cycling prevention rules on
the following bounded variables linear program:

Maximize z = 2xj
subject to -2x[

2x[

*1

0 < xl < 1,

[5.24] Solve the following problem by the sim

Maximize 6xj + 4x2

subject to 4xj - 3x2

3xj + 2x2

0
0
0

+
+
+
-

x2
x2 <

3x2 <
x2 <

; 0
; 6
; 1

0 < x 2 < 3 / 2 .

plex method for bounded variables:

+
+
+
<
<
<

2x3

x3 <
4x3 <

*1 *
x2 <
^3 ^

6
8
3
2

00.

[5.25] Solve the following problem by the simplex method for bounded variables:

Minimize 2xt + 6x2 - X3
subject to 2xj + x2 + 4x3

2xj + ox2 — 5x-x

[5.26] Consider the following problem:
Minimize xl + 3x2
subject to -xi - 2x2

—Xi — X 2

JXJ
 — 3x 2

X j , X 2 ,

-
+
+

+
-
+
-

4x4 +
x4 +
X4

0 <
1 <
0 <
1 <
0 <

4*3
x3 <

2x3 <
4x3 <

x3 >

*5
x5 =

=
*1 ^
x2 <
x3 <
x4 <
*5 ^

-12
-6

-24
0.

10
7
3
4
8
2
4.

Let xa be an artificial variable with an activity vector b < b = (-12, - 6 , -24) .
Introducing the restrictions 0 < xa < 1 and letting xa = 1 would lead to a starting
basic feasible solution of the new system. Use the bounded simplex method to find
a basic feasible solution of the original system.

[5.27] Solve the following problem by the simplex method for bounded variables:

248 Chapter 5

Minimize 2xj + x2
subject to Xj + x2 > 4

X\ - 2x2 ^ 0
x, > 2
x2 > 1.

[5.28] Solve the following problem by the simplex method for bounded variables.
Begin with xj at its lower bound and x2 at its upper bound.

Maximize 3xj + 2x2
subject to xl + 2x2 < 8

X[+ x 2 < 5
0 < χλ < 3
0 < x2 < 4.

[5.29] Solve Exercise 1.12.

[5.30] A farmer who raises chickens would like to determine the amounts of the
available ingredients that will meet certain nutritional requirements. The available
ingredients and their costs per serving, the units of nutrients per serving of the
ingredients, and the units of daily nutrient requirements are summarized below:

NUTRIENT

Protein

Carbohydrates

Vitamins

$cost/serving

CORN

8

4

2

0.15

INGREDIENT
LIME

4

2

3

0.08

ALFALFA

4

4

4

0.05

MINIMUM DAILY
REQUIREMENT

10

6

5

Find an optimal mix using the revised simplex method with the product form of the
inverse. Use only one artificial variable.

[5.31] Show that the following two problems are equivalent:
P[: Minimize ex P2 : Minimize ex

subject to bj < Ax < b2 subject to Ax + s = b2
x > 0. x > 0

0 < s < b2 - bj.

Use the simplex method for bounded variables to solve the following problem after
reformulating it as above:

Minimize 3xj - 4x2
subject to 3 < xj + x2 < 4

-15 < 3xj - 5x2 < 2
Xl, x2 > 0.

[5.32] A government has allocated $20 billion of its budget for military purposes.
Sixty percent of the military budget will be used to purchase tanks, planes, and
missile batteries. These can be acquired at a unit cost of $600,000, $2 million, and
$800,000, respectively. It is decided that at least 200 tanks and 200 planes must be

Special Simplex Implementations and Optimality Conditions 249

acquired. Because of the shortage of experienced pilots, it is also decided not to
purchase more than 300 planes. For strategic purposes the ratio of the missile
batteries to the planes purchased must fall in the range from 1/4 to 1/2. The
objective is to maximize the overall utility of these weapons where the individual
utilities are given as 1,3, and 2, respectively. Find an optimal solution.

[5.33] Let Q = {Ι,.,.,η}, Pj^Q with P, r\Pj = 0 for i,j = \,...,r and i +j, and

r
U Pf = Q. Develop an efficient method to solve the following problem

/=1
where c ,· > 0 for each/:

Maximize Σ c.-x.-

subject to Z>Q < Σ Xj ^ ô

b\ < Σ xj < b"h Vi = l,...,r

0<Xj<uj, VjeQ.

Apply the method to the following problem:

Maximize 10xj + 6x2 + 3x3 + 5x4 + 8x5
subject to 30 <X) + x2 + X3 + x 4 + x 5 < 100

2<x t + x2 < 40
25 < 80

0 < Xi, x4, x5 < 30
0 < x2, x3 < 20.

[5.34] Suppose that the following system has no solution:

Ax = 0, x > 0, and ex > 0.

Devise another system that must have a solution. {Hint: Use Farkas' Lemma.)

1
0

-1

f
2
4

[5.35] LetA= 0 2 and c = (- l , 5). Which of the following two systems has

a solution?

System 1 : Ax < 0, ex > 0;

System 2: wA = c w > 0 .

Illustrate geometrically.

[5.36] Consider the problem: Minimize ex subject to Ax = b, x > 0. Let B be a
basis. After adding the redundant constraints xN - Χχ= 0, the following
equations represent all the variables in terms of the independent variables xN:

250 Chapter 5

\pj RHS

csB
-1N - c^

B-1N

- I

cBb

b

0

The simplex method proceeds by choosing the most positive zj - cj , say, zk - ck.

Then xk enters the basis and the usual minimum ratio test indicates that xB

leaves the basis. The foregoing array can be updated by column pivoting at yrk as

follows:
1. Divide the Mi column (pivot column) by -yrk.

2. Multiply the Mi column (pivot column) by y ■ and add to the jth

column.

3. Multiply the Mi column by br and add to the right-hand-side.

4. Remove the variable xk from the list of nonbasic variables and add xs

instead in its place. Note that no row designations are changed.
This method of displaying the tableau and updating it is usually called the
column simplex method. Show that pivoting gives the representation of all
the variables in terms of the new nonbasic variables. In particular, show that

pivoting updates the tableau such that the new cBB_1N - cN, B_1N,

B~ b, and csB~ b are immediately available.

[5.37] Referring to Problem 5.36, solve the following problem using the column
simplex method:

Maximize Xj + 2x2 + 3x3
subject to 3x] + 2x2 + 4x3 < 6

-xj + 3x2 + 4x3 < 8
2xj + x2 - x3 < 2

X], χ 2 , Χ3 ^ 0.

[5.38] Referring to Problem 5.36, is it possible to extract the inverse basis from a
typical column simplex tableau? If so, how can this be done?

[5.39] Consider the problem: Minimize ex subject to Ax = b, x > 0. Suppose that x
is an optimal solution. Further suppose that Xj > 0 fory = l,...,p, and Xj = 0 fory =

p + 1,..., n. Show that the system Ad = 0, d +1,..., dn > 0, and cd < 0 has no

solution d in R". Hence, use Farkas' Lemma to derive the KKT conditions for this
problem. Also, directly show that any solution to these KKT conditions is optimal
for this problem.

[5.40] Consider the following problem:

Special Simplex Implementations and Optimality Conditions 251

Maximize
subject to

xj + 2JC2

-2x] + X2
x2

X\ + X2

Χγ, Χ2

<
<
<
>

2
4
5
0

Starting at the origin, solve the problem by the simplex method, and exhibit that
the optimal solution satisfies the KKT conditions. At each iteration, point out the
source of violation of the optimality conditions. Interpret the KKT conditions
geometrically at each extreme point encountered.

[5.41] Write the KKT optimality conditions for each of the following problems:

a. Maximize ex
subject to Ax < b

x > 0.

b. Maximize ex
subject to Ax > b

x > 0.

c. Minimize ex
subject to Ax < b

x > 0.

d. Minimize ex
subject to Ajx = b]

A2x > b2
x > 0.

e. Minimize ex
subject to Ax = b

£<x < u.

[5.42] Consider the problem: Maximize ex subject to Ax < b, x > 0. Introducing
the slack vector xs, we get the equivalent problem: Maximize ex subject to Ax +
xs = b, x > 0, xs > 0. Write the Karush-Kuhn-Tucker optimality conditions for
both problems. Show equivalence of these optimality conditions, and show that the
Lagrangian multipliers corresponding to the nonnegativity constraints xs > 0 are

equal to the Lagrangian multipliers of each of the constraint sets Ax + xs = b and

Ax < b in the two respective problems.

[5.43] Consider the problem: Minimize ex subject to Ax > b, x > 0. Let x* be an

optimal solution. Suppose that A is decomposed into
M

and b is decomposed

into bi
b2

such that Ajx* = bj and A2x* > b 2 . Show that x* is also an optimal

solution to the problem: Minimize ex subject to Ajx > b[, x > 0, and to the

problem: Minimize ex subject to AyX = b1 ; x > 0.

252 Chapter 5

[5.44] Consider the linear programming problem: Minimize ex subject to Ax = b,
x > 0. It is well known that a feasible point x is an optimal solution if and only if
there exist vectors w and v such that

c - w A - v = 0
v > 0

vx = 0.

Is it possible that x is optimal if v;· > 0 for all i Φ], for some j , whereas v < 0 and

the corresponding x,· = 0? In other words, is it possible to have an optimal

solution with one of the Lagrangian multipliers (shadow prices) of the
nonnegativity constraints being negative? Explain why or why not. Illustrate by a
numerical example. (Hint: Construct a linear program with an optimal degenerate
basic feasible solution. Try different basis representations. See Exercise 3.43b.)

[5.45] Consider the following problem:

Maximize 2xj - 2x2 + X3
subject to X] + x2 + x3 < 8

3xi + x2 < 4
-xj + 2x2 - x3 < 4

X|, X7, X3 ^ 0.

Solve the problem by the simplex method, illustrating at each iteration any source
of violation of the KKT conditions.

[5.46] Consider the following problem:

Maximize 2xj + 3x2
subject to xj + x2 < -8

-2xl + 3x2 < 0
xj, x2 > 0.

a. Solve the problem geometrically. Starting at the origin, at each iteration
identify the variable that enters and the variable that leaves the basis.

b. Write the KKT conditions and show that they hold at optimality.

[5.47] Convert the KKT conditions for the linear programming problem:
Minimize {ex : Ax > b, x > 0} to equivalently requiring a solution to a system of
linear inequalities. Is there a computational advantage in such a transformation?

[5.48] A manufacturer produces two items with unit profits $12.00 and $15.00.
Each unit of item 1 uses 4 man-hours and 3 machine-hours. Each unit of item 2
uses 5 man-hours and 4 machine-hours. If the total man-hours and machine-hours
available are 300 and 450, respectively, find an optimal solution and verify
optimality by the KKT conditions. Interpret the optimality conditions geometrically.
Give an economic interpretation of the KKT conditions at the optimal point. (Hint:
Recall the economic interpretation of w\ and w2.)

[5.49] Consider the problem: Minimize ex subject to Ax = b, x > 0. Given a
feasible point x, formulate a problem that will find a feasible direction that best
improves the objective function for a unit step length, if one exists. How does this
problem relate to the original problem?

Special Simplex Implementations and Optimally Conditions 253

[5.50] Consider the linear programming problem: Minimize ex subject to Ax = b,
x > 0. Let x be a basic feasible solution with basis B. The simplex method (with
Dantzig's Rule) proceeds by increasing a nonbasic variable having the most
positive z; - C:.

a. Devise a procedure in which all nonbasic variables with positive
(z, -c,)-values are increased. How are the basic variables modified?

By how much would you increase the nonbasic variables? Interpret
increasing several variables simultaneously.

b. At some iterations we may have more than m positive variables. How
would you represent the corresponding point in a tableau format? (Hint:
Nonbasic variables may be either positive or zero.)

c. At some iteration you may have a positive nonbasic variable that has a
negative ZJ-CJ. What happens if you decrease x ?

d. Use the ideas of Parts (a), (b), and (c) to construct a complete algorithm
for solving linear programs where several nonbasic variables are
simultaneously modified. How do you recognize optimality? What are
the advantages and disadvantages of your procedure?

e. Illustrate your procedure by solving the following problem:

Minimize
subject to

-3x[
2xj

x\
2xj

xl>

— zx2 — X3
+ x2 + 3x3

+ 2x2

+ x3
x2' x3

<
<
<
>

12
6
8
0.

f. Consider the following alternative procedure for modifying the
nonbasic variables. For each nonbasic variable x,·, let

(zj - e, if x · > 0
dJ maximum {0, Zj - cj} if Xj = 0.

Modify the nonbasic variables according to the d,· -values and the basic

variables according to the relationship

xB =b-\^y jdj,

where J is the index set of the nonbasic variables, the vector b represents
the current values of the basic variables, and λ > 0 is to be determined.
Interpret this method and compare it with the method in Part (d). Solve
the problem in Part (e) by this procedure.

[5.51] The accompanying diagram depicts the region given by α^χ^ + α2χ2 < b

and xj, x2 > 0. Let (x1? x2) be the shown point. Indicate on the diagram the
value of the slack variable. How can you generalize the result to n variables?

254 Chapter 5

χ2

i*2

[5.52] The following is an idea of a graphical example of the simplex method at
work:

a.

Optimal solution

*1

Give the starting basis and each succeeding basis until the optimal point
is reached. Specify the entering and leaving variables,

b. If the optimal point is unique, could the simplex method have gone in
the direction it did assuming that the entering variable is that with the
most positive z,· - c .· ? Explain.

[5.53] Consider the problem: Minimize ex subject to Ax = b, x > 0. Let x* be the
unique optimal extreme point. Show that the second best extreme point must be

adjacent to x*. What happens if the uniqueness assumption is relaxed?

[5.54] Suppose that we are given an extreme point x of a polyhedral set X. Con-
sider the following alternative definition to that given in Section 2.6. An extreme
point y Φ x is called adjacent to x if there exists a hyperplane that supports X and
its intersection with X is the line segment joining x and y. In the accompanying
diagram, obviously x2 and x5 are extreme points of X that are adjacent to Xy,
whereas x3 and x4 are not adjacent to x{. Now, let X consist of all points

satisfying Ax = b and x > 0, where A is an m x n matrix with rank m. Further
suppose that X is bounded. Let x be a nondegenerate basic feasible solution
(extreme point). Characterize the collection of adjacent extreme points. What is
their number? What happens if the nondegeneracy assumption is relaxed? In each
case justify your answer. Also, formally establish the equivalence of this definition
with that in Section 2.6.

Special Simplex Implementations and Optimality Conditions 255

[5.55] Referring to Exercise 5.54, show that the simplex method moves from an
extreme point to an adjacent extreme point in a nondegenerate pivot. (Hint:
Suppose you have a basic feasible solution x with basis B consisting of the first m
columns of A. Further suppose that xk entered the basis. Consider the hyperplane

passing through x, and whose normal vector is (p, pB~ N + (1, 1,..., 1, 0, 1,..., 1)),
where p is an arbitrary w-vector and the zero component of (1, 1, ..., 1, 0, 1,..., 1)
appears at position k - m.)

[5.56] Consider the collection of points satisfying x > 0 and Ax = b, where A is an
m x n matrix with rank m. Further suppose that the region is bounded. Let x0 be

an extreme point of the region, and let Xj, x2,..., x^ be its adjacent extreme points
in the region (refer to Exercise 5.54). Let x be any point in the region. Show that x
can be represented as

k

x = *o+ Σ A / (x / - X o) > w n e r e Mi ^ ° . Vy = l,...,£.

Interpret this result geometrically. [Hint: Let x0 =

variables are placed first for convenience). Show that
0

0

B ' b
(the nonbasic

minimum·; — : ytj > 0 >.]
\<i<m \yu

[5.57[Suppose that the boundedness restriction in Exercise 5.56 is dropped. Can
you generalize the foregoing result? Interpret your result geometrically. {Hint:
Introduce the notion of an adjacent direction. Then x in the region can be
represented as

256 Chapter 5

χ = χ0 + Σ μ,·(χ/ -*ο)+ Σ Mjdj
jel jeJ

where //.· > 0 for j e I u J, x for j GI are adjacent extreme points, and d for

j e J are adjacent extreme directions.)

[5.58] Show that an extreme point of a bounded polyhedral set has a minimal
objective if and only if it has an objective that is smaller than or equal to that of
any adjacent extreme point. Can you generalize the result to the unbounded case?
(Hint: Use Exercises 5.56 and 5.57.)

[5.59] Given a basis B, consider an LU factorization such that PBQ = LU, where
P and Q respectively permute the rows and columns of B, and where L and U are
resultant lower and upper triangular factors. Show how each of the systems
wB = cB for computing the simplex multiplier vector w, and By^ = &k for

determining the updated column of an entering variable xk can be solved via the

solution of two appropriate triangular equation systems.

NOTES AND REFERENCES

1. The revised simplex method was devised by Dantzig and Orchard-Hays
[1953] (also see Dantzig and Orchard-Hays [1954] for the product form of
the inverse). For further reading on this topic, refer to Dantzig [1963a].

2. The experimentation related to fitting the regression equation Kmand^ for
computational effort in solving linear programs appears in Knolmayer
[1982]. For information on theoretical bounds on computational effort using
the simplex method, see Chapter 8.

3. The simplex method using the LU-factorization of the basis was introduced
by Bartels and Golub [1969] and is said to employ the "elimination form of
the inverse." For more information on this subject, see Gill et al. [1974] and
Saunders [1976a, b]. For factorizations designed for use in a parallel
computing environment, refer to Helgason et al. [1987]. In an alternative
LU factorization approach, the rows and columns of B are suitably
permuted (using permutation matrices P and Q), based on which the lower
and upper triangular factors L and U, respectively, are computed such that
PBQ = LU. In particular, when determining the simplex multiplier vector w
via the system wB = c g , this entails solving two triangular systems (see
Exercise 5.59). However, Hu and Pan [2008] show how the simplex
multiplier vector can be updated from one iteration to the next based on
updates to the LU factors such that only one triangular system is solved.
This yields a computational advantage, particularly for dense problems.

4. The steepest edge variations of the rules for selecting entering variables are
discussed in Harris [1975] and in Goldfarb and Reid [1977]. For problem
scaling, see Kuhn and Quandt [1962], Tomlin [1975], and Sherali et al.
[1983]. The concept of partial pricing or suboptimization discussed in
Section 5.1 is standard and in widespread use. The particular description
given here has been adapted from Frendewey and Glover's [1981]
experiments on large-scale linear programs with embedded networks. Also,

Special Simplex Implementations and Optimality Conditions 257

see Gibbs et al. [1983]. For model and input/output management of large-
scale linear programs, see Greenberg [1983] and Murphy and Stohr [1986].
Several modeling languages have been developed to enable a convenient
input of a linear programming model into a solver, without requiring the
user to manipulate the data into a particular packed-form representation as
needed by the solver. Examples of commercial modeling languages include
AMPL, OPL, GAMS, and LINGO. Examples of commercial solvers include
CPLEX, OSL (see Forrest and Tomlin (1990)), and LINDO. (Refer to their
respective online Web sites.)

5. In Chapter 7 we describe the use of the revised simplex method in solving
large-scale problems in the context of decomposition by generating
columns at each iteration.

6. The simplex method for bounded variables was developed by Dantzig
[1955] at the RAND corporation to provide a shortcut routine for solving a
problem of assigning personnel. The method was independently developed
by Charnes and Lemke [1954].

7. The strongly feasible partition lexicographic cycling prevention rule for
bounded variables linear programming problems was proposed by
Cunningham [1976] and Murty [1978]. For further developments involving
generalized upper bounds (GUBs) and variable upper bounds (VUBs), the
interested reader is referred to Dantzig and Van Slyke [1965] and Schrage
[1975, 1978].

8. The Karush-Kuhn-Tucker optimality conditions for nonlinear programs
were developed independently by Karush [1939] in his master's thesis, and
by Kuhn and Tucker [1950]. A specialization of these conditions for linear
programs is given in Section 5.4. For further reading on the theorems of the
alternative and the KKT conditions, the reader may refer to Bazaraa,
Sherali, and Shetty [2006], Mangasarian [1969], and Zangwill [1969]. The
KKT conditions for linear programming and the subject of duality are very
closely associated. This fact will become apparent when the reader studies
Chapter 6.

This page intentionally left blank

SIX: DUALITY AND SENSITIVITY
ANALYSIS

For every linear program we solve, there is another associated linear program
that we happen to be simultaneously solving. This new linear program satisfies
some very important properties. It may be used to obtain the solution to the
original program, and its variables provide extremely useful information about
the set of optimal solutions to the original linear program.

This leads to rich economic interpretations related to the original linear
programming problem. In fact, the roots of this problem lie in the characteriza-
tion of the optimality conditions for the original linear program. For the sake of
expository reference, we shall call the original linear programming problem the
primal (linear programming) problem, and we shall call this related linear pro-
gram the dual (linear programming) problem. Although the term "dual" comes
from linear algebra, the term "primal" was suggested as an appropriate Latin
antonym by Dantzig's father, Tobias Dantzig (who was a mathematician), to
substitute for the cumbersome phrase, "the original problem of which this is the
dual." Actually, the terms primal and dual for this related pair of linear pro-
gramming problems are only relative, because the dual of the "dual" is the
"primal" itself.

We shall begin by formulating this new dual (linear programming)
problem and proceed to develop some of its important properties. These
properties will lead to two new algorithms, the dual simplex method and the
primal-dual algorithm, for solving linear programs. Finally, we shall discuss the
effect of variations in the data, that is, the cost coefficients, the right-hand-side
coefficients, and the constraint coefficients, on the optimal solution to a linear
program.

6.1 FORMULATION OF THE DUAL PROBLEM

Associated with each linear programming problem there is another linear pro-
gramming problem called the dual. The dual linear program possesses many
important properties relative to the original primal linear program. There are two
important forms (definitions) of duality: the canonical form of duality and the
standard form of duality. These two forms are completely equivalent. They arise
respectively from the canonical and the standard representation of linear
programming problems.

Canonical Form of Duality

Suppose that the primal linear program is given in the (canonical) form:

P : Minimize ex
subject to Ax > b

x > 0.

Then the dual linear program is defined by:

259

260 Chapter 6

D : Maximize wb
subject to wA < c

w > 0.

Note that there is exactly one dual variable for each primal constraint and
exactly one dual constraint for each primal variable. We shall say more about
this later.

Example 6.1

Consider the following linear program and its dual:

P : Minimize 6x\ + 8x2
subject to 3xj + x2 - 4

5jq + 2x2 S 7
X[, x2 - 0.

D : Maximize 4wj + 7w2
subject to 3wj + 5w2 < 6

Wi + 2 w 2 < 8
Wj, w 2 > 0.

Before proceeding further, try solving both problems and comparing their
optimal objective values. This will provide a hint of things to come.

In the canonical definition of duality it is important for Problem P to have
a "minimization" objective with all "greater than or equal to" constraints and all
"nonnegative" variables. In theory, to apply the canonical definition of duality
we must first convert the primal linear program to the foregoing format.
However, in practice it is possible to immediately write down the dual of any
linear program. We shall discuss this shortly.

Standard Form of Duality

Another equivalent definition of duality may be given with the primal linear
program stated in the following standard form:

P : Minimize ex
subject to Ax = b

x > 0.

Then the dual linear program is defined by:

D : Maximize wb
subject to wA < c

w unrestricted.

Example 6.2

Consider the following linear program and its dual (compare this with Example
6.1 above):

Duality and Sensitivity Analysis 261

P : Minimize 6xj + 8x2
subject to 3*i + x2 -

5xj + 2x2
Xj , X2,

D : Maximize 4wj + 7w2
subject to 3wj + 5w2

Wj + 2w2

- w2
Wj, W2

x3 = 4
- x4 = 7

x3, x4 > 0.

< 6
< 8
< 0
< 0

unrestricted.

Given one of the definitions, canonical or standard, it is easy to demonstrate that
the other definition is valid. For example, suppose that we accept the standard
form as a definition and wish to demonstrate that the canonical form is correct.
By adding slack variables to the canonical form of a linear program, we may
apply the standard form of duality to obtain the dual problem.

P : Minimize ex D : Maximize wb
subject to Ax -

x,
- Ixs = b

xs > 0.
subject to wA < c

-w l < 0
w unrestricted.

But since -wl < 0 is the same as w > 0, we obtain the canonical form of the dual
problem.

Dual of the Dual

Since the dual linear program is itself a linear program, we may wonder what its
dual might be. Consider the dual in canonical form:

Maximize wb
subject to wA < c

w > 0.

Applying the transformation techniques of Chapter 1, we may rewrite this prob-
lem in the form:

Minimize (-b')w'
subject to (-A')w' > (-c')

w' > 0.

The dual linear program for this linear program is given by (letting x' play the
role of the row vector of dual variables):

Maximize x' (-c')
subject to x ' (-A') < (-b')

x' > 0.

But this is the same as:

262 Chapter 6

P : Minimize ex
subject to Ax > b

x > 0,

which is precisely the original primal problem. Thus, we have the following
lemma, which is known as the involutory property of duality.

Lemma 6.1

The dual of the dual is the primal.

This lemma indicates that the definitions may be applied in reverse. The
terms "primal" and "dual" are relative to the frame of reference we choose.

Mixed Forms of Duality

In practice, many linear programs contain some constraints of the "less than or
equal to" type, some of the "greater than or equal to" type, and some of the
"equal to" type. Also, variables may be "> 0," "< 0," or "unrestricted." In
theory, this presents no problem since we may apply the transformation
techniques of Chapter 1 to convert any "mixed" problem to one of the primal or
dual forms discussed, after which the dual can be readily obtained. However,
such conversions can be tedious. Fortunately, it is not actually necessary to
make these conversions, and it is possible to state immediately the dual of any
linear program.

Consider the following linear program:

P : Minimize CJXJ + c2X2 + c3x3

subject to AJJXJ + A12X2 + A n x 3 > bj
A21x, + A22x2 + A23x3 < b 2
A3lxl + A32x2 + A33x3 = b3

Xj > 0, x2 < 0, x3 unrestricted.

Converting this problem to canonical form by multiplying the second set
of inequalities by - 1 , writing the equality constraint set equivalently as two
inequalities, and substituting, x2 = - x 2 , x3 = x3 - x!j, we get:

Minimize qxj - c2x2 + c3x3 - c3x^
subject to AJJXJ - A[2x2 + A13x3 - A13x^ > bj

-A21X! + A22x2 - A23x3 + A23x5 > - b 2
A31xl - A32x2 + A33x3 " A33x3 ^ b3

-A31xl + A32x2 " A33x3 + A33x3 ^ ~b3
Xj > 0, X2 > 0, X3 > 0, X3 > 0.

Denoting the dual variables associated with the four constraint sets as Wj,

w2, w3, and w3, respectively, we obtain the dual to this problem as follows:

Duality and Sensitivity Analysis 263

w ^ j - w2b2 + w3b3 - w^b3

W 1 A 11 - W 2 A 2 1 + W 3 A 3 1 " W 3 A 3 1 ^ c l
W 1 A 1 2 + W 2 A 2 2 - W 3 A 3 2 + W3A32 < - C 2

W 1 A 1 3 - W 2 A 2 3 + W 3 A 3 3 ~ W 3 A 3 3 ^ c 3
w,A13 + w2A2 3 - w3A33 + w5A33 < - c 3

w, > 0, w2 > 0, w3 > 0, W3 > 0.

Finally, using w2 = - w 2 and w3 = w3 - w^, the foregoing problem

may be equivalently stated as follows:

D : Maximize Wjb] + w2b2 + w3b3

subject to WJAJI + w2A2i + w3A31 < C[

WjA12 + w2A2 2 + w3A32 > c2

W1A13 + W2A23 + W3A33 = c3
Wi > 0, w2 < 0, w3 unrestricted.

Note how this form of the dual D relates to the original primal problem P,
where Wj, w2, and w3 are the dual variables associated with the three sets of

constraints in P; similarly, Xj, x2, and x3 are the "dual" variables associated
with the three sets of constraints in D. Furthermore, note that the first set of
constraints in P were already in the required form, and hence, W] > 0 in D. The
second constraint set needed to be multiplied by -1 in order to be put in the
required form, and hence, w2 < 0 in D. Similarly, because of the transformation

needed on the third set of constraints in P, we obtain w3 as unrestricted in D.

Likewise, the transformations needed on the variables in P to put it in the
required canonical form dictate the form of the constraints in D. With these
observations, the dual D to the problem P can now be written directly without
using the intermediate transformation steps. These results are summarized in
Table 6.1. In Exercise 6.1, we ask the reader to repeat this derivation using the
standard form of duality.

Example 6.3

Consider the following linear program:

Maximize Βχγ + 3x2 - 2x3
subject to JCJ - 6JC2 + x3 > 2

5xj + 7x2 - 2x3 = -4
Xj < 0, x2 > 0, x3 unrestricted.

Applying the results of the table, we can immediately write down its dual:

Maximize
subject to

264 Chapter 6

Table 6.1 Relationships Between Primal and Dual Problems

i
>

nj

u

MINIMIZATION
PROBLEM

> 0

<o
Unrestricted

>

<

* *

MAXIMIZATION
PROBLEM

<

>

>o
<o

Unrestricted

IS

C
O

U

ce w

CO

>

Minimize
subject to

2w|

-6w[

- 4w2

+ 5w2

+ 7w2

- 2w2

Wj < 0, w2

> 3
= -2
unrestricted.

6.2 PRIMAL-DUAL RELATIONSHIPS

The definition we have selected for the dual problem leads to many important
relationships between the primal and dual linear programs.

The Relationship Between Objective Values

Consider the canonical form of duality and let x0 and w0 be any feasible solu-

tions to the primal and dual programs, respectively. Then Ax0 > b, x0 > 0,

w0A < c, and w0 > 0. Multiplying Ax0 > b on the left by w0 > 0 and w0A < c

on the right by x0 > 0, we get

cx0 > w0Ax0 > w0b.

The result is the following. This is known as the weak duality property.

Lemma 6.2

The objective function value for any feasible solution to the minimization
problem is always greater than or equal to the objective function value for any
feasible solution to the maximization problem. In particular, the objective value
of any feasible solution of the minimization problem gives an upper bound on
the optimal objective of the maximization problem. Similarly, the objective
value of any feasible solution of the maximization problem gives a lower bound
on the optimal objective of the minimization problem.

As an illustration of the application of this lemma, suppose that in

Example 6.1 we select the feasible primal and dual solutions x0 = (7/5,0)' and

w0 = (2, 0). Then cx0 = 42/5 = 8.4 and w0b = 8. Thus, the optimal solution

for either problem has objective value between 8 and 8.4. This property can be

Duality and Sensitivity Analysis 265

invoked to terminate the solution of a linear programming problem with a near
optimal solution.

The following corollaries are immediate consequences of Lemma 6.2.

Corollary 6.1

If x0 and w0 are feasible solutions to the primal and dual problems,

respectively, such that cx0 = w0b, then x0 and w0 are optimal solutions to

their respective problems.

Corollary 6.2

If either problem has an unbounded objective value, then the other problem
possesses no feasible solution.

Corollary 6.2 indicates that unboundedness in one problem implies
infeasibility in the other problem. Is this property symmetric? Does infeasibility
in one problem imply unboundedness in the other? The answer is, "Not
necessarily." This is best illustrated by the following example:

Example 6.4

Consider the following primal and dual problems:

P : Minimize —x\ — x2
subject to Xj - x2 > 1

-x\ + x2 > 1
X\, *2 - 0·

D : Maximize w\ + w2
subject to Wj - w2 < -1

-M\ + VV2 < -1
w\, vv2 > 0.

On graphing both problems (in Figure 6.1), we find that neither problem
possesses a feasible solution.

Origin of Duality and the Karush-Kuhn-Tucker (KKT)
Optimality Conditions

Recall from Chapter 5 that the optimality conditions for a linear program state

that a necessary and sufficient condition for x* to be an optimal point to the
linear program: Minimize ex subject to Ax > b, x > 0 is that there exists a vector

w* such that

1. Ax*>b, x* >0

2. w*A<c, w*>0

3. w*(Ax* - b) = 0

(c - w*A)x* = 0.

266 Chapter 6

*■ Wj

Figure 6.1. An example of infeasible primal and dual problems.

Condition 1 simply requires that the optimal point x* must be feasible to the
primal. In light of our discussion of duality, we can now interpret Condition 2.

This condition indicates that the vector w* must be a feasible point for the dual

problem. From complementary slackness (Condition 3), we find that ex* =

w b. Hence, w must be an optimal solution to the dual problem. Consequently,
the feasible region of the dual problem arises from Condition 2. Its objective
function arises from the fact that any w feasible to the dual must satisfy wb <

ex* by the weak duality property. Conditions 2 and 3 state, however, that the

KKT solution provides a w* that is feasible to the dual and for which w*b =

ex*. Hence, w* must maximize wb over the dual feasible region. Symmetrically,

the KKT optimality conditions for the dual problem imply the existence of a
primal feasible solution whose objective is equal to that of the optimal dual
(why?). This leads to the following lemma, which is known as the strong duality
property.

Lemma 6.3

If one problem possesses an optimal solution, then both problems possess
optimal solutions and the two optimal objective values are equal.

It is also possible to see how the dual problem arises naturally in the
context of the simplex algorithm. Each tableau in canonical form represents a
situation in which some multiples w\,...,wm of the m rows in Ax - xs = b have

been added to the objective row, where xs > 0 is the vector of slack variables.
This means that the objective row coefficients for the x-variables are -c + wA,
those for the xs variables are -w, and the right-hand-side is wb. Note that dual

Duality and Sensitivity Analysis 267

feasibility (Condition 2) requires a set of these so-called simplex multipliers w
such that the canonical objective row coefficients are nonpositive for all the x-
and xs -variables. Indeed, if the primal problem has been solved to optimality,

then the available simplex multipliers w = cgB , where B is the optimal basis

matrix, satisfy these dual feasibility conditions. Moreover, if x is a primal
optimal solution, its objective value ex* coincides with w*b, the right-hand-
side value in the objective row of the optimal tableau. In view of the weak
duality property of Lemma 6.2, we have that, at optimality, the simplex

multipliers w* must be a maximizing solution to wb subject to the constraints
wA < c and w > 0, that is, to the so-called dual linear programming problem.

Lemma 6.3 provides an insightful result that is related to Corollary 6.2.
For the linear program P: Minimize ex, subject to Ax > b, x > 0, consider the
homogeneous form of its dual problem, namely, HD: Maximize wb, subject to
wA < 0, w > 0. Note that the dual to HD has the same feasible region as P.
Hence, if HD is unbounded, then by Corollary 6.2, P is infeasible. Conversely, if
P is infeasible, then HD must be unbounded, or else, since HD is feasible (w = 0
is a feasible solution), it must have an optimal solution. But Lemma 6.3 tells us
that the dual to HD then has an optimal solution; that is, P is feasible, a contra-
diction. Therefore, we have the following result. We ask the reader to verify this
using Example 6.4. It is insightful to note that the homogeneous form of the dual
arises from the dual problem via a characterization of its recession directions as
in Chapter 2.

Corollary 6.3

The primal problem is infeasible if and only if the homogeneous form of the
dual problem is unbounded (and vice versa).

By utilizing the foregoing results we obtain two important basic theorems
of duality. These two theorems will permit us to use the dual problem to solve
the primal problem and, also, to develop new algorithms to solve both problems.

The Fundamental Theorem of Duality

Combining the results of the lemmas, corollaries, and examples of the previous
section we obtain the following:

Theorem 6.1 (Fundamental Theorem of Duality)

With regard to the primal and dual linear programming problems, exactly one of
the following statements is true:

1. Both possess optimal solutions x* and w* with ex* = w*b.
2. One problem has an unbounded optimal objective value, in which

case the other problem must be infeasible.
3. Both problems are infeasible.

268 Chapter 6

From this theorem we see that duality is not completely symmetric. The
best we can say is that (here optimal means having a finite optimum, and un-
bounded means having an unbounded optimal objective value):

P OPTIMAL O D OPTIMAL

P(D) UNBOUNDED =s> D(P) INFEASIBLE

P(D) INFEASIBLE => D(P) UNBOUNDED OR INFEASIBLE

P(D) INFEASIBLE <£> D(P) UNBOUNDED IN
HOMOGENEOUS FORM

Complementary Slackness and the Supervisor's Principle

We have seen that if x and w are any pair of primal and dual feasible solutions
to the linear program: Minimize ex, subject to Ax > b, x > 0, then they are both
optimal to their respective problems if and only if they have the same objective
value (that is, ex = wb). This is known as the supervisor's principle because it
provides a simple check by which a "supervisor" can verify the (simultaneous)
optimality of a pair of candidate primal and dual feasible solutions. The KKT
conditions tell us that another equivalent supervisor's principle is to check for

the complementary slackness conditions (written as Condition 3). Indeed, if x*

and w* respectively satisfy primal and dual feasibility (Conditions 1 and 2),

then ex* = w*b, that is, w*(Ax* - b) + (c - w*A)x* = 0 holds true, if and only

if Condition 3 is satisfied, since w* > 0, Ax* - b > 0, c - w*A > 0, and x* > 0.

In expanded form, since w* > 0 and Ax* - b > 0, then w* (Ax - b) = 0 implies

w*(a'x* - bt) = 0 for / = 1,..., m. Similarly, (c - w*A)x* = 0 implies (c,—

w*ay·)x* = 0 fory = 1,..., n.

Thus, we have the following theorem:

Theorem 6.2 (Complementary Slackness Theorem)

Let x* and w* be any feasible solutions to the primal and dual problems in the
canonical form. Then they are respectively optimal if and only if

(cj -w*ay)x* =0, j = ί,.,.,η

and

w*(a!x* -bi) = 0, i = l,...,m.

This is a very important theorem relating the primal and dual problems. It
obviously indicates that at least one of the two terms in each expression must be
zero. In particular,

Xj > 0 => w a ,· = Cj

Duality and Sensitivity Analysis 269

w &j < Cj =>■ Xj = Ό

Wj > 0 = > a x =bi

ax >bt =Φ w,- =0.

Hence, at optimality, if a variable in one problem is positive, then the corre-
sponding constraint in the other problem must be tight. If a constraint in one
problem is not tight, then the corresponding variable in the other problem must
be zero.

Suppose that we let xn+i = a i x - è / > 0, i = \,...,m, be the m slack vari-

ables in the primal problem and let wm+J- = c ■ - w a >0,j= 1, ..., n, be the n

slack variables in the dual problem (in Chapter 5 while stating the KKT
conditions, wm+ .· was denoted by v,). Then we may rewrite the complementary

slackness conditions as follows:

x*-w*m+j=°> j = l-,n

w;*x«+i= 0 ' i = \,...,m.

This relates variables in one problem to slack variables in the other problem. In
particular, x ■ and wm+J- fory = 1,..., n, and similarly, xn+i and wt for i = l,...,m,

are known as complementary pairs of variables.

Using the Dual to Solve the Primal Problem

We now have at hand some powerful analytical tools, in the form of the two
theorems of this section, to utilize the dual problem in solving the primal
problem. Let us illustrate this potential usefulness by the following example:

Example 6.5

Consider the following primal and dual problems:

: Minimize 2x\ + 3x2

subject to xj + x2

2χγ - 2x2

X\, %2>

: Maximize 4w\ + 3w2

subject to Wj + 2w2
W] - 2w2

2wy + 3w2
Wj + W2

3>V] + W2

Wi, W2

+ 5x3

+ 2*3
+ 3x3

x3,

< 2
< 3
< 5
< 2
< 3
> 0.

+
+
+

2x4
X4

X4
X4,

+ 3x5
+ 3x5

+ X5

x5

>
>
>

4
3
0.

270 Chapter 6

Figure 6.2. Solving the dual problem graphically.

Since the dual has only two variables, we may solve it graphically as shown in

Figure 6.2. The optimal solution to the dual is w\ = 4/5, w\ = 3/5 with objec-

tive value 5. Right away we know that z* = 5. Utilizing the theorem of

complementary slackness, we further know that = 0 since none

of the corresponding complementary dual constraints are tight. Since w*, w^ >

0, then x* + 3x1 = 4 and 2xj + x5 = 3. From these two equations we get x* = 1

and X5 = 1. Thus, we have obtained a primal optimal solution by using the

duality theorems and the foregoing dual optimal solution.

6.3 ECONOMIC INTERPRETATION OF THE DUAL

Consider the following linear program and its dual:

P : Minimize ex D : Maximize wb
subject to Ax > b subject to wA < c (6.1)

x > 0. w > 0.

Let B be an optimal basis for the primal problem with cB as its associated cost

vector. Suppose that this optimal basic feasible solution x* is nondegenerate.
Denoting J as the index set for the nonbasic variables x ■, which may include

both slack and structural variables (that is, J £ {\,...,n + m}), we have

z = csB"'b - Σ (ZJ ~ Cj)Xj = w*b - Σ {Zj ~ Cj)xj. (6.2)

If the rth right-hand-side bt is perturbed slightly (positively or negatively),

since the current basic feasible solution remains feasible, we maintain its

Duality and Sensitivity Analysis 271

optimality. Hence, if z is the optimal objective function value and B, is the

rth column of B~ , we have

— = cBBJl=w*. (6.3)
db,. '

Thus, w* is the rate of change of the optimal objective value with a unit

increase in the rth right-hand-side value, given that the current nonbasic vari-

ables are held at zero (regardless of feasibility). Because w* > 0, z* will increase

(respectively, decrease) or stay constant as b, increases (respectively, decreases).

Economically, we may think of w as a vector of shadow prices for the
right-hand-side vector. To illustrate, if the rth constraint represents a demand
for production of at least bt units of the rth product and ex represents the total

cost of production, then w,· is the incremental cost of producing one more unit

of the rth product. Put another way, w,· is Uve fair price we would pay to have
an extra unit of the rth product.

We may also interpret the entire dual problem economically. Suppose
that we engage a firm to produce specified amounts b\, b2,-.;bm of m outputs or
goods. The firm may engage in any of n activities at varying levels to produce
the outputs. Each activity j has its own unit cost c , and we agree to pay the

total cost of production. From our point of view, we would like to have control
over the firm's operations so that we can specify the mix and levels of activities
that the firm will engage in so as to minimize the total production cost. If ay-
denotes the amount of product / generated by one unit of activity j , then
Σ%\αϋχί represents the units of output i that are produced. These must be

greater than or equal to the required amount b,. Therefore, we wish to solve the

following problem, which is precisely the primal problem:
n

Minimize X c.x,

»
subject to Σ α,-,χ, > bh i-\,...,m

7=1
xj > 0, ; = 1,...,«.

Instead of trying to control the operation of the firm to obtain the most desirable
mix of activities, suppose that we agree to pay the firm unit prices wj, w2,...,wm

for each of the m outputs. However, we also stipulate that these prices
announced by the firm must be fair. Since a;y is the number of units of output i

produced by one unit of activity j and w· is the unit price of output i, then

272 Chapter 6

Σ*ιΙ\αϋ™ί c a n be interpreted as the unit price of activity j consistent with the

prices wj, w2,...,wm. Therefore, we tell the firm that the implicit price of activity

j , namely Σί=ι%*ί'/, should not exceed the actual cost c,-. Therefore, the firm

must observe the constraints T,1L\aijwi -cj f°rJ = U—>"· Within these con-

straints the firm would like to choose a set of prices that maximizes its return

Σ^ ι Wjbj. This leads to the following dual problem considered by the firm:

m
Maximize Σ W/fy

(=1

m
subject to Σ auwi - c/> j = \,...,n

Wj > 0, i = \,...,m.

The main duality theorem states that, provided an optimum exists, there is an
equilibrium set of activities and set of prices where the minimal production cost
is equal to the maximal return. That the two objectives are equal at optimality
becomes intuitively clear by noting that they represent the fair charge to the
customer, where the primal objective is derived by cost considerations and the
dual objective is arrived at by a pricing mechanism. These shadow prices are
often used by regulated industries, such as electric utilities, to set ana justify
prices.

Observe that the complementary slackness theorem says that if, at opti-

mality, Σ/=!«(/**■ >t>i, then w* = 0, that is, if the optimal level of activities

that meets all demand requirements automatically produces an excess of product
i, then the incremental cost associated with marginally increasing £,- is naturally

zero. Similarly, if T^a^w* <Cj, then x* = 0, that is, if the total revenue

generated via the items produced by a unit level of activity j is less than the
associated production cost, then the level of activity j should be zero at
optimality.

Interchanging the roles of the previous primal and dual problems, there is
another interesting economic interpretation that can be given. Consider the
following pair of dual problems, where the problems D and P have been
rewritten as P and D, respectively:

n

P : Maximize Σ c.-x.-
7=1
n

subject to Σ αϋχϊ - bj, iori = \,...,m
7=1

x > 0.

Duality and Sensitivity Analysis 273

m
D : Minimize Σ biwi

i = l

m
subject to Σ ajjWj > Cj, for j = \,...,n

i=\
w > 0.

Assume that problem P is a product-mix problem in which n products are being
manufactured using some m types of resources. Here, x ■ represents the number

of units (per year) produced of product j , and bt represents the number of units
available for resource / fory = 1,..., n and i = 1,..., m. A unit of product y' fetches
a profit of c. units and consumes a;y units of resource i for i = 1,..., m.

As before, let w;- denote the shadow price or the imputed value or the

fair market price/rent for a unit of resource i. Then the dual constraints have the
following interpretation. Observe that if the manufacturer considers renting out
the m resources at unit prices W],...,wm instead of manufacturing the mix of
products, then every unit of product/ not manufactured would result in a loss of
profit of e,- units but would earn a rent of Z^ciyW,· units by virtue of the

resources this releases. The dual constraints ensure that this venture is at least as
profitable as manufacturing the products. However, in order to maintain fair or
competitive prices while guaranteeing this profitability, the dual objective seeks
to minimize the total rent. The main duality result tells us that, provided an
optimum exists, the resulting total rent will match the total optimal profit
obtainable by manufacturing the products. Hence, w, imputes a value that the

manufacturer ascribes to a unit of the rth resource from the viewpoint of
optimally operating the production process. In particular, at optimality, the
complementary slackness theorem says that if not all available units of resource

/ are utilized, then the marginal worth w* of an extra unit of resource i is

naturally zero. Similarly, if the net value YJ^a^w* of the resources consumed

by a unit level of production of product j exceeds the realizable profit c., then

the optimal production level of product 7 should be zero.

Shadow Prices Under Degeneracy

Now, consider the pair of primal and dual problems given in Equation (6.1), and
assume that we have a degenerate optimal basic feasible solution. Then, while

the derivative of z in Equation (6.2) with respect to bt remains w* in the usual

sense of the derivative where all other parameters bk, k* i, and x , j e J,

are held constant at their present values, this may not reflect the true "shadow

price." That is, Equation (6.3) may not be valid. In fact, as will be seen later, z*

274 Chapter 6

z (*)\

β\ Pi

Figure 6.3. Variation in z* as a function of ft,·.

may not be a differentiable function of ft,·. In other words, a perturbation in ft,·
may make the current optimal basis infeasible and a change in basis may be
required.

To be more precise, let us assume that D in Equation (6.1) is feasible so

that P is not unbounded for any value of b. Let us denote by z (ft,·) the optimal

objective function value as a function of the right-hand-side (parameter) ft,·.

Then, as long as ft,· varies in a region that leaves P feasible, by the extreme point

optimality property and the duality theorem, we have z (ft,·) = maximum {wJb :

j = \,...,E}, where wJ, j = \,...,E, are the extreme points of the dual feasible

region. Note that this admissible region for ft,·, which leaves P feasible, is a

polyhedral set F c i , given by b'd < 0 for all extreme directions d of the dual

feasible region (why?). Denoting Yjk^iw
J
kbk as w^ for j = l,...,E, we can

rewrite z*(ft,·) as follows:

z*(b() = maximum{M^ + w/ft,· : j = Ι,.,.,Ε}. (6.4)

Observe that z (ft,·) is the pointwise maximum of a finite number of

affine functions in the variable ft,·, as long as ft,· e F. Hence, as is shown in

Figure 6.3, z*(ft,·) is piecewise linear and convex over F. Also, since an increase

in ft,· makes the feasible region of P more restrictive, z*(b;) is also nondecreas-

ing as ft,· increases.

Referring to Figure 6.3 and assuming that z* (·) is composed of four

affine functions with the associated dual extreme points as shown in the figure,

consider ft,· = β\. At this point, z*(ft,·) is differentiable, and in fact, 8z*/3ft,· =

w;, which agrees with Equation (6.3). However, when ft,· = β2, for example,

z (ft,·) has a kink at this point and is nondifferentiable. Note that when ft,· = /72>

Duality and Sensitivity Analysis 275

the dual has alternative optimal extreme point solutions w , w , and w . This

implies degeneracy at optimality in the primal problem, for if an optimal primal

basic feasible solution x* with basis B is nondegenerate, then by the comple-
mentary slackness theorem, any dual optimal solution w must satisfy the dual
constraints with respect to the basic variable columns as equalities, that is, wB =

c g must hold true. This gives w = c#B~ as the unique dual optimum, a con-

tradiction. In fact, since any optimal dual extreme point solution must be com-

plementary to x*, the dual constraints corresponding to the q < m positive basic

variables in x* must be binding. This gives q linearly independent binding
hyperplanes at optimality in the dual from the (m + ri) inequalities defining the
dual feasible region. Each choice of (m - q) additional (linearly independent)
hyperplanes that gives some optimal dual extreme point corresponds to a choice
of the (m - q) columns of the variables (structural or slacks) in P associated
with these constraints. Therefore, because of the linear independence, this
corresponds to a choice of a basis in P, and since the nonbasic variables for this

basis are zero in x*, this is a basis associated with x*. Hence, the alternative

optimal dual extreme point solutions all correspond to alternative bases associ-

ated with the primal degenerate vertex x .
Now, from Equation (6.4), we can define the one-sided (right-hand and

left-hand) directional derivatives of z*(bj) with respect to bj. The right-hand

derivative, denoted d+z*/dbh gives the rate of change in z* with an increase in

bj. As evident from Equation (6.4) (see Figure 6.3), so long as P remains

feasible as bj increases marginally (else, the right-hand shadow price is infi-

nite), we have

d+z*
= maximum!^ : w·7 is an optimal dual vertex at b{}. (6.5)

dbj

Similarly, the left-hand derivative, denoted d~z*/dbj, gives the negative of the

rate of change in z* as bj decreases. Again, from Equation (6.4), referring to

Figure 6.3, this is given by

d~z*
= minimum{My : wJ is an optimal dual vertex at bt}. (6.6)

dbj

Equations (6.5) and (6.6) respectively give the right-hand and left-hand shadow

prices associated with the rth right-hand-side. Observe that if x* is nondegener-

ate, so that there is a unique dual optimal extreme point w*, we get d+z*ldbj =

d~z*ldbj = w*, as in Equation (6.3). Later, we shall comment on how these

right-hand and left-hand shadow prices can be easily computed in general via a
parametric analysis.

276 Chapter 6

Example 6.6

Consider the (generic) instance of Problem P of Equation (6.1) as depicted in
Figure 6.4. Here, m = 3; n = 2; x3, x4, and x5 are the slack variables associated

with the three primal constraints, and Aj, A2, and A3 denote the gradients of
the three rows of A. Observe that since the feasible half-spaces are Ax > b, the
normal vectors - Aj, - A2, and - A 3 are as shown in the figure. Note that each

dual basis has two basic variables.

First, consider Figure 6.4a This problem has a unique primal optimal

solution x*. The KKT conditions at x* require -c to be written as -wlAl -

w2A2, and hence, w^ andw2 are both positive and are uniquely determined.
* —1

That is, there is a unique dual extreme point solution given by w = "cgB ".

(Here, wj and w2 are the basic variables, and w3, w4, and w5 are nonbasic,

where w4 and w5 are the slack variables for the two dual constraints.) Because

the maximum in Equation (6.4) is unique, Equation (6.3) holds and we have

dz*/di\ = w* > 0, dz*/db2 = w2 > 0, and dz* Idb?, = w3 = 0. It is instructive to

note that in the optimal tableau representing x*, <3z*/3r3 = - (z3 - c 3) = w*.

Note that the edge along which we move when we hold x4 = 0 and increase x3

is precisely the direction in which the optimal solution moves when i\ is

(marginally) increased.

Second, in Figure 6.4a, rotate -c so that it aligns with the vector - Aj. We

now have alternative optimal primal solutions, one of which is degenerate.

However, since x* is still optimal, and since by the KKT conditions, all optimal

dual solutions must be complementary to x*, we only need to examine any one

primal optimal solution, say, x*, in order to capture all dual optimal solutions.

Applying the KKT conditions at x*, we find that again there is only one dual
optimal solution w* where w[> 0 is a solution to - W] Aj = -c , and w2 = w3 =0.
Hence, Equation (6.3) again holds true, although the primal problem has a
degenerate optimum.

Finally, consider Figure 6.4b, where x* is the unique optimum.
However, it is degenerate and there are two optimal bases, having either x3 and

x5 as nonbasic variables, or x4 and x5 as nonbasic variables. (Note that not all

z · -c ■ < 0 for the choice of nonbasic variables x3 and x4 ; in fact, for this

choice, z4-c4 > 0 (why?).) Hence, each of these two optimal bases gives a dual

optimal extreme point. The first basis gives a dual optimal vertex w in

Duality and Sensitivity Analysis 277

>■ X]

Case (a)

Figure 6.4. Illustration of shadow prices.

Case (b)

which W[and vv3 are basic, with M\ > 0, w3 > 0, and w2 = 0. The second basis
7 7 7

gives a dual optimal vertex w in which w2 and vv3 are basic, with w\ = 0, w2 >

0, and w3 > 0. In the first case, -c is written (uniquely) in terms of-Aj and - A 3

as -WjA! - w3A3, and in the second case, -c is written (uniquely) in terms of
7 7

- A 2 and - A 3 as - w 2 A 2 - w 3 A 3 . By completing the parallelogram in Figure
1 7

6.4b to compute the foregoing vector representations, note that w3 < H>3 .

Hence, from Equations (6.5) and (6.6), we get
— - = w;>0, — - = wt=0, — = wj>0, — = w 2 = 0 ,
dt>i ot\ db2 002

and

<5 z 2 1 · ■ d~z 1
= w3 > 0 and is greater than = w3 > 0.

dlh, db^
We ask the reader to verify these right-hand and left-hand shadow prices by
actually perturbing the respective constraints in Figure 6.4b in the appropriate

directions. (For example, to realize d+z/db] and d~z/dby, perturb the first con-

straint parallel to itself in the direction of Aj and - A (, respectively.) In Exercise

6.21, we ask the reader to repeat the analysis with -c aligned along -A j .

6.4 THE DUAL SIMPLEX METHOD

In this section, we describe the dual simplex method, which solves the dual
problem directly on the (primal) simplex tableau. At each iteration we move
from a basic feasible solution of the dual problem to an improved basic feasible

278 Chapter 6

solution until optimality of the dual (and also the primal) is reached, or else,
until we conclude that the dual is unbounded and that the primal is infeasible.

Interpretation of Dual Feasibility on the Primal Simplex Tableau

Consider the following linear programming problem:
Minimize ex
subject to Ax > b

x > 0.

Let B be a basis that is not necessarily feasible and consider the following
tableau:

SLACK VARIABLES

x2 xn+\ RHS
1

0

0

0

ζ , - q

y\\

yn

ym\

z2 - c 2 ·

Ά2 ■

yn ■

ymi ■

zn cn

y\n

yin

ymn

zn+\ cn+\

Λ,η+1 '

yi,n+\ ■

ym,n+\ ·

zn+m n+m

y\,n+m

y2,n+m

ym,n+tn

cBb

\

h

K

XB2

XD

The tableau represents a primal feasible solution if è,· > 0 for / = 1,..., m; that is,

if b = B~ b > 0. Furthermore, the tableau is optimal if z ,· - c ,· < 0 for/ = 1,..., n

+ m. Define w = csB~ . For/ = 1,..., n, we have

-1
Zi -c, =cRB a,· -c,- wa; -Ci. -j -j-^-B1* "j - / j V"·

Hence, zj-c; < 0 for/ = 1,..., n implies that wa, - c , < 0 for/ = 1,..., n,

which in turn implies that wA < c. Furthermore, note that a„+i = - e; and cn+i =

0 for /' = 1,..., m, and so we have

'«+! '-»+/ wa„
= w(-e ;) -0

= -w(-, i = \,...,m.

In addition, if zn+i -cn+i < 0 for i = 1,..., m, then w(- > 0 for / = 1,..., m, and so,

w > 0. We have just shown that z ; -c; < 0 for/ = 1,..., n + m implies that wA

< c and w > 0, where w = c#B~ . In other words, dual feasibility is precisely

the simplex optimality criteria z ; -c ; < 0 for all/. At optimality, w* = cfiB~

and the dual objective value w*b = (cgB~)b = c#(B- b) = cfib = z*, that is,

the optimal primal and dual objective values are equal. Thus, we have the
following result:

Duality and Sensitivity Analysis 279

Lemma 6.4

At optimality of the primal minimization problem in the canonical form (that is,

z; -c; < 0 for ally), w*

Furthermore, w* = - (z n 4

-1 : c#B is an optimal solution to the dual problem.

c„+i) = -z„+i foTi=i,...,m.

Note that a symmetric analysis holds for the equality constrained case.
* —1

For an optimal tableau with basis B, taking w = c B B , we again have that the

primal optimality conditions z ,· -c >· < 0 imply w*a - c · < 0 for 7 = I,..., n, that

is, w* is dual feasible. Moreover, the optimal primal objective value z* equals

problem.

w*b, and so the solution w* = c 5 B is optimal to the dual

The Dual Simplex Method

Consider the following linear programming problem:

Minimize ex
subject to Ax = b

x > 0.

In certain instances it is difficult to find a starting basic solution that is

feasible (that is, all è, > 0) to a linear program without adding artificial

variables. In these same instances it might be possible to find a starting basis,

which is not necessarily feasible, but that is dual feasible (that is, all z ,· - c ,· < 0

for a minimization problem). In such cases it is useful to develop a variant of the
simplex method that would produce a series of simplex tableaux that maintain
dual feasibility and complementary slackness and strive toward primal
feasibility.

Xy. -RHS x\ xk

1

0

0

0

0

z \ ~ c \ ■

y\\ ■

yi\ ■

JVi ·

ym\ ■

■ zj~cj ■

- y\j ■

■■ y2j ■

■ yrj ■

■■ ymj ■

■■ zk~ck ■

■■ y\k ■

■■ yik ■

■■ @ ■

ymk

zn cn

■■ yu

■■ yin

■ yrn

ymn

— Cgb

h
h

br

K

z

xBl

XB2

xBr

XD

tJry7

Consider the tableau representing a basic solution at some iteration.
Suppose that the tableau is dual feasible (that is, z ; —ci < 0 for a minimization

problem). If the tableau is also primal feasible (that is, all bj > 0), then we have

280 Chapter 6

an optimal solution. Otherwise, consider some br < 0. By selecting row r a s a

pivot row and some column k such that vr£ < 0 as a pivot column, we can make

the new right-hand-side b'r > 0. Through a series of such pivots we hope to

make all bi > 0 while maintaining all z ; -c; < 0, and thus achieve optimality.

The question that remains is how do we select the pivot column so as to
maintain dual feasibility after pivoting. The pivot column k is determined by the
following minimum ratio test:

— — = minimum-M J- : yrj < 0>. (6.7)

>7* [yrj J J

Note that the new entries in row 0 after pivoting are given by

y„-
(zj ~cji = (z ; ~ cj) (zk ~ ck)■

yrk

If yrj > 0, and since zk -ck < 0 and yrk < 0, then {yrjlyrk){zk -ck) > 0, and

hence (z —e.-)' < z ■ —e,-. Since the previous solution was dual feasible, then

z · - e.- < 0, and hence (z ,· - c,)' < 0. Next, consider the case where y ■ < 0. By

Equation (6.1) we have
zAZ£L<zI—iL

yrk yrj

Multiplying both sides by _y · < 0, we get Zj -cj - (yrjlyrk){zk -ck) < 0, that

is, (z -Cj)' < 0. To summarize, if the pivot column is chosen according to

Equation (6.7), then the new basis obtained by pivoting at yrk is still dual

feasible. Moreover, the dual objective after pivoting is given by c#B- b -

(zk -ck)brlyrk. Since zk -ck<0,br< 0, and yrk < 0, then -(zk -ck)brlyrk > 0

and the dual objective improves over the current value of cBB~ b = wb.

We have just described a procedure that moves from a dual basic feasible
solution to an improved (at least not worse) basic dual feasible solution. To
complete the analysis we must consider the case when y > 0 for all j , and

hence no column is eligible to be the pivot column. In this case the /th row

reads: Σ/^w^/ = K- Since y ■ > 0 for ally, and x ■ is required to be nonnegative,

then YsjyyjXj > 0 for any feasible solution. However, br < 0. This contradiction

shows that the primal is infeasible, and so, the dual is unbounded (why?). In
Exercise 6.38 we ask the reader to show directly that the dual is unbounded by
constructing a direction satisfying the unboundedness criterion.

Duality and Sensitivity Analysis 281

Summary of the Dual Simplex Method (Minimization Problem)

INITIALIZATION STEP

>B"'a, Cj < 0 for ally (in Find a basis B of the primal such that z · - c = c g ~ „

Section 6.6 we describe a procedure for finding such a basis if it is not immedi-
ately available).

MAIN STEP

1. If b = B~ b > 0, stop; the current solution is optimal. Otherwise,

select a pivot row r with br < 0; say, br = minimum {b,}.

2. If yr: > 0 for all j , stop; the dual is unbounded and the primal is

infeasible. Otherwise, select the pivot column k by the following
minimum ratio test:

zk~ck 'ί-= minimum <; — — : y · < 0 >.
yrk J

3. Pivot at yrk and return to Step 1.

In Exercise 6.62, we ask the reader to develop a similar algorithm for the
bounded variables case.

Example 6.7

Consider the following problem:
Minimize 2xj
subject to xy

2X[
X,,

+ 3x2

+ 2x2

- x2
x2>

+ 4x3

+ x3 > 3
+ 3x3 > 4

x3 > 0
A starting basic solution that is dual feasible can be obtained by utilizing the
slack variables x4 and x5. This results from the fact that the cost vector is

nonnegative. Applying the dual simplex method, we obtain the following series
of tableaux:

z
X4

*5

z
1
0
0

xl

-2
-1

©

x2

-3
-2

1

x3

-4
-1
-3

X4

0
1
0

*5
0
0
1

RHS
0

-3
-4

z

X4

*1

z
1
0
0

xx

0
0
1

x2
-A

-1/2

x 3
-1

1/2
3/2

X4

0
1
0

*5
-1

-1/2
-1/2

RHS
4

-1
2

282 Chapter 6

z Xi X9 -̂ 3 -*-4 -̂ -5
RHS 1

0
0

0 0 -9/5 -8/5 -1/5
0 1 -1/5 -2/5 1/5
1 0 7/5 -1/5 -2/5

28/5
2/5

11/5

Because b > 0 and z ,· -c ,·< 0 for ally, an optimal pair of primal and dual solu-

tions are at hand. In particular,

{x{,x*2,xl,x*A,xl) = (11/5,2/5,0,0,0), and (w*, w\) = (8/5,1/5).

Note that wj and w\ are, respectively, the negatives of the z -c ■ entries under

the slack variables x4 and x5. Also, note that in each subsequent tableau, the

value of the objective function is increasing, as it should, while solving the dual
(maximization) problem, given nondegenerate pivots.

The Complementary Basic Dual Solution

Consider the pair of primal and dual linear programs in canonical form, where A
is m x n.

P : Minimize ex D : Maximize wb
subject to Ax > b subject to wA < c

x > 0. w > 0.

Recall that the variables xj,..., x„ in the primal are complementary to the

slack variables wm+i, —,wm+n in the dual, and the slack variables x„+\, —,xn+m

in the primal are complementary to the variables w\,...,wm in the dual. Now,

consider any basis B for the primal problem (feasible or not). The corresponding

tableau for this basis has (M\, ...,wm) = cBW as the simplex multipliers that

have been used with the constraint rows when adding them to the objective row.

Accordingly, for this solution w, the (z -c.)-values for the x -variables are

wa, - Cj = —wm+j forj = 1,..., n, and the zn+j - cn+i values for the x„+;—

variables are - w;- for i = 1,..., m, as seen at the beginning of this section. Now,

Zj-Cj = 0 for x basic, j e{l,...,n + m}, and in fact, making these Zj-c.-

equal to zero uniquely determines the (z ■ -c)-values for the nonbasic

variables. In other words, putting the dual variables complementary to the basic
x,-variables equal to zero, uniquely determines from the dual equality system

the other dual variables that are complementary to the nonbasic x.—variables.

Hence, the dual solution, the negative of which appears in the objective row of
the current tableau, is a basic dual solution. The basic dual variables are
complementary to the nonbasic primal variables, and correspondingly, the
nonbasic dual variables are complementary to the basic primal variables. Hence,

Duality and Sensitivity Analysis 283

letting \OB and xON be the basic and nonbasic variables, respectively, from

the variables x^,...,xn and letting xSB and xSN be the basic and nonbasic

variables, respectively, from the slack variables (x„+\, ...,x„+m), we can rewrite

the primal constraints as

A 1 1 x O S + A12XCW _ x SN

A 2 1 x O S + A22XCW ~XSB ~ b 2 -

Then the primal basis B is given by the columns of xOB
 an<^ XSB a s

B

xOB

ΓΑ„
_A21

XSB

0

- I

(6.8)

(6.9)

Now, denote by wOB and w0iy the dual variables associated with the two con-

straint sets in Equation (6.8). Let w ^ and wSB be the slack variables in the

dual constraints written with respect to the columns of the variables xOB and

χΟΛί, respectively. Then, with c partitioned accordingly as (c0B, cON), the

dual constraints can be written as follows:

Ai, I W U + A U L + W ' Μ1"ΌΒ L21WCW SN cOB

A l o W n o + A r " ' cON-Μ 2 " Ό β ">-A22wOiV +yvSB

Hence, the complementary dual basis associated with the primal basis B has
v/OB and wSB as the basic variables and is given by

w OB

[Ai,
_A'l2

0

I

(6.10)

We ask the reader to verify in Exercise 6.39 that the matrix (6.10) is

invertible given that B" in Equation (6.9) exists, and in fact, the dual basic

solution corresponding to Equation (6.10) gives (v^,..., wm) = cgB~ , where cB

= (c0B, 0). Note that since the basic variables in one problem are complemen-

tary to the nonbasic variables in the other problem, the complementary slackness

condition holds for this primal-dual pair of basic solutions.
Next, consider the following pair of primal and dual problems in standard

form:

P : Minimize ex
subject to Ax = b

x > 0.

D : Maximize wb
subject to wA < c

w unrestricted.

284 Chapter 6

Given any primal basis B, there is, as previously, an associated complementary
dual basis. To illustrate, introduce the dual slack vector ws so that wA + ws =
c. The dual constraints can be rewritten in the following more convenient form:

A V + I w ^ = C '

w' unrestricted

wl > 0.

Given the primal basis B, recall that w

straints, we get

>-i c#B . Substituting in the dual con-

c'-AV
t

c

VCNJ
f

N'
0

(B-Vei

-\\t j

(6.11)

Note that w = cBB~ and Equation (6.11) lead naturally to a dual basis. Since

both cgB~ and c'N -N ' (B~)'C'B are not necessarily zero, then the vector w

and the last n - m components of w s , which are complementary to the primal

nonbasic variables, form the dual basis. In particular, the dual basis correspond-
ing to the primal basis B is given by

B'

N'

0

ln-m

The rank of the preceding matrix is n. The primal basis is feasible if B b > 0
and the dual basis is feasible if ws > 0; that is, if cN - cBB~ N > 0 (see
Equation (6.11)). Even if these conditions do not hold true, the primal and dual
bases are complementary in the sense that the complementary slackness
condition (wA - c)x = 0 is satisfied, because

(wA-c)x = wix = (0,cAr - c g B N)
o

= 0.

To summarize, during any dual simplex iteration, we have a primal basis that is
not necessarily feasible and a complementary dual feasible basis. At termina-
tion, primal feasibility is attained, and so all the KKT optimality conditions hold
true.

Duality and Sensitivity Analysis 285

Finite Convergence of the Dual Simplex Method

First, let us establish finite convergence in the absence of dual degeneracy. Note
that the dual simplex method moves among dual feasible bases. Also, recall that
the difference in the dual objective value between two successive iterations is

-{zk-ck)brlyrk. Note that br < 0, y^ < 0, and zk-ck < 0, and hence,

-(zk -ck)brlyrk > 0. In particular, if zk-ck < 0, then the dual objective strictly

increases, and hence no basis can be repeated and the algorithm must converge
in a finite number of steps. By the foregoing characterization of the
complementary dual basis, and because xk is a nonbasic primal variable, then
the dual slack of the constraint wa^ < ck is basic. Assuming dual nondegener-
acy, this dual slack variable must be positive so that wa^ < ck, that is, zk-ck<

0. As discussed, this would guarantee finite convergence, since the dual
objective strictly increases at each iteration.

In the presence of dual degeneracy, however, we need a cycling preven-
tion rule in order to guarantee finite convergence. From the discussion in
Section 4.6 and noting that the dual simplex method is essentially applying the
ordinary simplex algorithm to the dual problem, we can readily devise cycling
prevention rules. In particular, the following lexicographic cycling prevention
rule may be used. Suppose that we have a dual feasible tableau for which

CJ~ZJ is lexicographically positive for each nonbasic variable column. Note

that this is the updated nonbasic variable column, with the negative of the
objective row coefficient. A technique to obtain a starting tableau satisfying this
property is presented in Section 6.6. Then, having selected a pivot row r in the

dual simplex tableau with br < 0, we can scale each of these lexicographically

positive nonbasic columns that have a negative yr; coefficient in row r by

dividing it by -yr; and picking the resulting lexicographically minimum column

from among these as a pivot column. We ask the reader in Exercise 6.41 to
show that this will maintain the lexicographic positivity property and, in fact,
prevent cycling. Similarly, noting that every entering and leaving basic variable
in the primal problem has a corresponding leaving and entering complementary
variable in the complementary dual basis, Blond's Rule may be readily adapted
to prevent cycling in the dual simplex method. Identical to the discussion in
Section 4.6, of all the candidates for pivot rows, and similarly for pivot columns,
we can break ties (if any) by favoring the x,· -variable having the smallest

index. We defer the details of this rule to Exercise 6.41.

6.5 THE PRIMAL-DUAL METHOD

Recall that in the dual simplex method, we begin with a basic (not necessarily
feasible) solution to the primal problem and a complementary basic feasible
solution to the dual problem. The dual simplex method proceeds by pivoting
through a series of dual basic feasible solutions until the associated compie-

286 Chapter 6

mentary primal basic solution is feasible, thus satisfying all of the KKT
optimality conditions.

In this section we describe a method, called the primal-dual algorithm,
which is similar to the dual simplex method in that it begins with dual feasibility
and proceeds to obtain primal feasibility while maintaining complementary
slackness. However, an important difference between the dual simplex method
and the primal-dual method is that the primal-dual algorithm does not require
the dual feasible solution to be basic. Given a dual feasible solution, the primal
variables that correspond to tight dual constraints (so that complementary slack-
ness is satisfied) are determined. Using Phase I of the simplex method, we
attempt to attain primal feasibility using only these variables. If we are unable to
obtain primal feasibility, we change the dual feasible solution in such a way as
to admit at least one new variable to the Phase I problem. This is continued until
either the primal becomes feasible or the dual becomes unbounded.

Development of the Primal-Dual Method

Consider the following primal and dual problems in standard form where b > 0.

P : Minimize ex D : Maximize wb
subject to Ax = b subject to wA < c

x > 0. w unrestricted.

Let w be an initial dual feasible solution, that is, wa < c ■ for a l l / By comple-

mentary slackness, if wa. = c·, then x■ is allowed to be positive and we

attempt to attain primal feasibility from among these variables. Let Q = {/': wa,·

- Cj = 0}, that is, Q is the set of indices of primal variables allowed to be
positive. Then the Phase I problem that attempts to find a feasible solution to the
primal problem among variables in the set Q becomes:

Minimize X Ox- + lxa

JeQ
subject to X a x + xa = b

xj > 0 for j e g

xa > 0.

We utilize the artificial vector xa to obtain a starting basic feasible solution to

the Phase I problem. The Phase I problem is sometimes called the restricted
primal problem.

Denote the optimal objective value of the foregoing problem by x0. At

optimality of the Phase I problem either x0
 = 0 o r xo > 0- When x0

 = 0, we have
a feasible solution to the primal problem because all the artificial variables are
zeros. Furthermore, we have a dual feasible solution, and the complementary
slackness condition (way - CJ)XJ = 0 holds true because either j e Q, in which

case wa - c · = 0, or else j g Q, in which case x.- =0 . Therefore, we have an

Duality and Sensitivity Analysis 287

optimal solution of the overall problem whenever x0 = 0. If x0
 > 0, primal

feasibility is not achieved and we must construct a new dual solution that admits
a new variable to the restricted primal problem in such a way that x0 might be

decreased. We shall modify the dual vector w such that all the basic primal
variables in the restricted problem remain in the new restricted primal problem,
and in addition, at least one primal variable that did not belong to the set Q is
passed to the restricted primal problem. Furthermore, this variable is such that it
reduces x0 if introduced in the basis. In order to construct such a dual vector,
consider the following dual of the Phase I problem:

Maximize vb
subject to va < 0, j e Q

v < 1
v unrestricted.

Let v* be an optimal solution to the foregoing problem. Then, if an
original variable x ■ is a member of the optimal basis for the restricted primal,

the associated dual constraint must be tight, that is, v*a ■ = 0. Also, the criterion

for basis entry in the restricted primal problem is that the associated dual

constraint be violated, that is, v*a · > 0. However, no variable currently in the

restricted primal has this property, since the restricted primal has been solved

optimally. For j £ Q, compute v*a,. If v*a, > 0, then if x■ could be passed

to the restricted primal problem it would be a candidate to enter the basis with
the potential of a further decrease in x0 . Therefore, we must find a way to force

some variable x ,■ with v*a > 0 into the set Q.

Construct the following dual vector w', where θ> 0:

w' = w + #v*.

Then,

w 'a , -c , · = (w + #v*)a,· -c,·
J J ' J 1 (6 12)

= (w a y - c y) + (9(v*a7·).

Note that wa, -c ■ = 0 and v*a,- < 0 for j eQ. Thus, Equation (6.12) implies

that w'a, —e.- < 0 for j e Q. In particular, if x with j eQ is a basic variable

in the restricted primal, then v a,· = 0 and w'a -c, = 0, permittingy in the new

restricted primal problem. If j fé Q and v*a < 0, then from Equation (6.12)

and noting that wa, - c , < 0, we have w'a -c ■ < 0. Finally, consider j 0 Q

with v*a, > 0. Examining Equation (6.12) and noting that wa -c ■ < 0 for

288 Chapter 6

j 0 Q, it is evident that we can choose a Θ > 0 such that w'a · - c . < 0 for

j & Q with at least one component equal to zero. In particular, define Θ as

follows:

Θ = " (w a * ~°k) = minimum ~(W*y ~°j) : y \ > 0 > 0. (6.13)

*&k J [v*ay j

By the definition of Θ and from Equation (6.12), we see that w'aA -ck = 0.

Furthermore, for eachy with v*a .■ > 0, and noting Equations (6.12) and (6.13),

we have w ' a , - c · <0.
To summarize, modifying the dual vector as detailed previously leads to a

new feasible dual solution where w'a,· -c ■ < 0 for ally. Furthermore, all the
variables that belonged to the restricted primal basis are passed to the new
restricted primal. In addition, a new variable xk that is a candidate to enter the
basis, is passed to the restricted primal problem. Hence, we continue from the
present restricted primal basis by entering xk, which leads to a potential reduc-
tion in XQ.

Case of Unbounded Dual

The foregoing process is continued until either x0 = 0, in which case we have

an optimal solution, or else, x0 > 0 and v*a · < 0 for all j fé Q. In this case,

consider w' = w + θ*. Since wa -c.· < 0 for ally and by assumption v*a < 0

for ally, then from Equation (6.12) w' is a dual feasible solution for all Θ > 0.
Furthermore, the dual objective value is

w'b = (w + 9*)b = wb + <9v*b.

Since v*b = x0 (why?) and the latter is positive, then w'b can be increased

indefinitely by choosing Θ arbitrarily large. Therefore the dual is unbounded and
hence, the primal is infeasible. Alternatively, note that the total (usual) Phase I
problem has the current restricted Phase I solution as an optimum (why?). Since
x0 > 0, the primal is infeasible.

Summary of the Primal-Dual Algorithm (Minimization Problem)

INITIALIZATION STEP

Choose a vector w such that wa - c .■ < 0 for ally.

Duality and Sensitivity Analysis 289

MAIN STEP

1. Let Q = {/: wa · - c = 0} and solve the following restricted primal

problem:

Minimize Σ Ox,- + lxa

subject to X a ,x · + xa = b
j*Q

x > 0 for j e g

xa > 0.

Denote the optimal objective value by x0. If x0 = 0, stop; an optimal

solution is obtained. Otherwise, let v* be the optimal dual solution
to the foregoing restricted primal problem.

2. If v*a ,· < 0 for ally, then stop; the dual is unbounded and the primal

is infeasible. Otherwise, let

- (w a - c .) „
Θ = minimum·^ — : v â · > 0 > > 0,

j { v**j j

and replace w by w + θ*. Repeat Step 1.

Example 6.8

Consider the following problem:

Minimize 3x(+ 4x2 + 6x3 + 7x4 + x5
subject to 2xj - x2 + x3 + 6x4 - 5x5 - x6 = 6

X] + Χ-χ + 2 x 3 + X4 + 2X5 — Χη = 3

Xi , X 2 , Χ3, -^4> -£5 > -^6 ' ^7

The dual problem is given by the following:

Maximize 6wj + 3w2
subject to 2vV] + vv2 < 3

- w j + w 2 < 4
wj + 2 w 2 < 6

6wj + w 2 < 7
- 5 w [+ 2 w 2 < 1

-wx < 0
- w2 < 0

w\, w2 unrestricted.

An initial dual feasible solution is given by w = (\ν\,χν2) = (0,0). Substituting w
in each dual constraint, we find that the last two dual constraints are tight so that
Q = {6, 7}. Denoting the artificial variables by xg and x9, the restricted primal
problem becomes as follows:

290 Chapter 6

Minimize Xg + Xg
subject to -x 6 + xg = 6

— Χγ + Xg = 3
Xg, X7, Xg, Xg > 0.

The optimal solution to this restricted primal is clearly (x6,x7,xg,x9) = (0,0,6,3)

and the optimal objective value x0 = 9. The dual of the foregoing restricted

primal is the following:

Maximize 6vj + 3v2
subject to -vj < 0

- v2 < 0
vj < 1

v2 < 1
vj, v2 unrestricted.

Utilizing complementary slackness, we see that since x8 and Xg are basic, the

last two dual constraints must be tight and v* = (vj", v2) = (1, 1). Computing

v*a · for each column j , we have v*aj = 3, v*a2 =0, v a3 = 3, v a4 =7, and

v*a5 = - 3 . Then #is determined as follows:

Θ = minimum{-(-3/3),-(-6/3),-(-7/7)} = ^

and w' =(0 ,0)+1(1 , 1) = (1, 1).
With the new dual solution w' we recompute Q and obtain Q = {1,4},

giving the following restricted primal:

Minimize Xg + Xo
subject to 2xj + 6x4 + xg = 6

Xi + XA + Xg = 3
X], X4, Xg, X9 > 0.

This time an optimal solution to the restricted problem is given by

(χ!,Χ4,χ8,χ9) = (3,0,0,0),

with XQ = 0. Thus we have an optimal solution to the original problem with the

optimal primal and dual solutions being

(X]*,x2,X3,X4,x|,X6,X7) = (3,0,0,0,0,0,0), and (wj\w2) = (l, 1).

Tableau Form of the Primal-Dual Method

Let Zj-c; be the row zero coefficients for the original primal problem, and let

Zj -c,- be the row zero coefficients for the restricted primal problem. Then for

each original variable x · , we have

ZJ ~ CJ = w a i " CJ a n d ii ~ ÒJ = ™J ~ ° = v a i ·

Duality and Sensitivity Analysis 291

We also have

wa, -CJ

va, Zj-Cj

and
(way· -cj) + 9y&j = (zj -cj) + 0(zj - èj) .

We can carry out all of the necessary operations directly in one tableau. In this
tableau we have two objective rows; the first gives the (z ,· -c ,)-values, and the

second gives the (z - c.)-values. We shall apply this tableau method to the

foregoing problem. The initial tableau is displayed below. In this example, w is
initially (0, 0), so that z · ■CJ ■■MfRj-Cj -c ■ and the right-hand-side entry

in the z-row is zero. When w Φ 0, we still compute z · - c = wa.· - c , but also

initialize the RHS entry of the z-row to wb instead of zero. [Try initializing the
tableau with w = (1, 0).]

Xj Xn -£3 -£4 -£5 Xfo X~j Xg XQ RHS
- 3 - 4 - 6

0 0 0
2 -1 1
1 1 2

-7
0
6
1

-1
0

-5
2

0
0

-1
0

0
0
0

-1

0
-1

1
0

0
-1
0
1

0
0
6
3

Since we begin with x8 and xq in the basis for the restricted primal, we must

perform some preliminary pivoting to zero their cost coefficients in the Phase I
objective. We do this by adding the first and second constraint rows to the
restricted primal objective row. Then z · - c = 0 for the two basic variables xg

and x9. Let G indicate the variables in the restricted primal problem, that is,

those for which z - c, = 0. As the restricted primal problem is solved, only the

variables flagged with o are allowed to enter the basis.

D D Q D

Xì Xn X"\ XA X$ X() XI XQ XQ RHS
z

x 0

*8
Xq

Since ij - c ■ < 0 for all variables in the restricted problem, we have an optimal

solution for Phase I. Then Θis given by

Rz/-C/) - 1
Θ = minimum^ —-^—^— : z · - c ■ > 0 >

{ ZJ~CJ \
= minimum{-(-3/3),-(-6/3),-(-7/7)} = 1.

-3
3
2
1

-4
0

-1
1

-6
3
1
2

-7
7
6
1

-1
-3
-5
2

0
-1
-1
0

0
-1
0

-1

0
0
1
0

0
0
0
1

0
9
6
3

292 Chapter 6

Thus we add one times the Phase I objective row to the original objective row.
This leads to the following tableau. The Phase I problem is solved by only
utilizing the variables in the set Q, that is, those with z · - c . · = 0.

z

x0
xs
X9

z
x0
X4
x9

z
x0
x4
x\

3
x\ x2 x3

D

*5 x6 x7

Ώ
xs

□
x9 RHS

0
3
2
1

D
X,

0
4/6
2/6

D
x\
0
0
0
1

-4
0

-1
1

*2
-4

7/6
-1/6

7/6

*2
-A

0
-3/4

7/4

- 3
3
1
2

*3
-3

11/6
1/6

11/6

*3
-3

0
-3/4
11/4

0
7

(è)
1

D
X4

0
0
1
0

□
X4

0
0
1
0

-4
-3
-5

2

x5

^4
17/6
-5/6
17/6

x5

^1
0

-9/4
17/4

-1
-1
-1
0

*6
-1

1/6
-1/6

1/6

H
-1
0

-1/4
1/4

-1
-1
0

-1

x7

-1
-1
0

-1

x7

-1
0

2/4
-6/4

0 0
0 0
1 0
0 1

D

*8
0

-7 /6
1/6

-1/6

D
x8

0
-1

1/4
-1/4

9
9
6
3

D
Xg RHS

0
0
0
1

9
2
1
2

D
Xo -RH.S
0

-1
-2/4

6/4

9
0
0
3

Because x0 = 0, the optimal solution is found, namely:

(x1*,X2,X3,X4,X5,X6,X*) = (3,0,0,0,0,0,0)

whose objective value is 9.

Finite Convergence of the Primal-Dual Method and an Insight

Recall that at each iteration an improving variable is added to the restricted
primal problem. Therefore, in the absence of degeneracy in the restricted primal
problem, the optimal objective x0 strictly decreases at each iteration. This

means that the set Q generated at any iteration is distinct from all those gener-
ated at previous iterations. Since there is only a finite number of sets of the form
Q (recall g c {1,2,...,«}) and none of them can be repeated, the algorithm ter-
minates in a finite number of steps.

Let us provide an insight into the primal-dual algorithm that readily
resolves the convergence issue under degeneracy, following Section 4.6. Note
that the primal-dual method is essentially working on the total Phase I problem
of minimizing the sum of the artificial variables lxa subject to Ax + xa = b, x

> 0 and \a > 0. However, it is restricting the nonbasic variables that can be

chosen to enter the basis via the dual vector w. At any tableau, either we have

Duality and Sensitivity Analysis 293

z · -èj - va, < 0 for ally, in which case the total Phase I problem has been

solved, or we have z ,· - c · va, > 0 for some nonbasic variables. In the former

case, if XQ > 0, then because the (total) Phase I problem has a positive optimal

solution value, the primal is infeasible. On the other hand, if x0
 = 0> then the

current primal-dual pair (x, w) satisfies the KKT conditions, and is hence
primal-dual optimal. Otherwise, if the total Phase I problem has not been solved
as yet, the manipulation of w guarantees that at each iteration, some nonbasic
variable x,- having z. - c , = va > 0 is introduced into the set Q, and is hence

enterable. Therefore, we are essentially using the primal simplex algorithm on
the (total) Phase I problem along with a restricted entering variable criterion.
Consequently, by employing the usual lexicographic rule of Section 4.6, which
is independent of how one selects an entering variable, we can obtain finite
convergence even in the presence of degeneracy. The minor details of this
implementation are left to the reader in Exercise 6.50.

6.6 FINDING AN INITIAL DUAL FEASIBLE SOLUTION:
THE ARTIFICIAL CONSTRAINT TECHNIQUE

Both the dual simplex method and the primal-dual method require an initial
dual feasible solution. In the primal tableau, this requirement of dual feasibility
translates to z,· - c . < 0 for ally for a minimization problem. We shall now see

that this can be accommodated by adding a single new primal constraint.
Suppose that the first m columns constitute the initial basis and consider

adding the constraint Σ":=ίη+χΧι < M, where M> 0 is large. The initial tableau

is displayed below, where x„+1 is the slack variable of the additional constraint.

z

xn+\
XX

X2

xm

Z

1
0
0

0

0

X,

0
0
1

0

0

x 2 ·

0 ·
0 ·
0 ·

1 ·

0 ·

xm
■ 0

• 0
• 0

• 0

• 1

xm+\
zm+\ ~cm+\

1

y\,m+\

yi,m+\

ym,m+l

xn

zn ~ cn
1

• y\n

■ yin

ymn

xn+l
0

1

0

0

0

RHS

c B b

M

h
h

K

This additional constraint bounds the nonbasic variables, and thus indirectly
bounds the basic variables and thereby the overall primal problem. To obtain a
dual feasible solution in the new tableau we let

zk~ck = maximum {z ■ - c,-}.
j

Once column k has been selected, we perform a single pivot with column k as an
entry column and column n + 1 as an exit column. In particular, to zero zk - ck

we shall subtract zk -ck times the new row from the objective function row.

294 Chapter 6

Note that the choice of k and the single pivot described ensure that all new
entries in row 0 are nonpositive, and thus we have a (basic) feasible dual
solution. With this starting solution, either the dual simplex method or the
primal-dual simplex method can be applied, eventually leading to one of the
following three cases:

1. The dual problem is unbounded.

2. Optimal primal and dual solutions are obtained with x*+[> 0.

3. Optimal primal and dual solutions are obtained with x*+1 = 0.

In Case 1 the primal problem is infeasible. In Case 2 we have an optimal
solution to the primal and dual problems. In Case 3, the new bounding
constraint is tight at optimality. If z„+1 -c„+ 1 < 0, then xn+l is nonbasic and

this new bounding constraint limits the primal solution. As M increases, the
objective will continue to reduce indefinitely; hence, the primal problem is
unbounded. However, if z„+1 - c„+1 = 0, then the current primal solution is

optimal (though not basic to the original problem). In Exercise 6.43 we ask the
reader to explore this case in detail.

Furthermore, in Exercise 6.44 we ask the reader to show that applying the
artificial constraint technique to the primal problem is equivalent to applying the
single artificial variable technique (described in Chapter 4) with the big-M
method to the dual problem and vice versa.

Example 6.9

Suppose that we wish to apply the dual simplex method to the following tableau:

Σ Xi Χ'γ X-5 ΧΛ X C RHS
1
0
0

0 1 5 - 1 0
1 2 - 1 1 0
0 3 4 - 1 1

0
4
3

Adding the artificial constraint x2
 + x3 + x4 - M whose slack is x6, we get

the following tableau:

Z Xi Xo X3 ΧΛ Χζ Χ Α RHS
1
0
0
0

0
0
1
0

1
1
2
3

5

(!)
-1
4

-1
1
1

-1

0
0
0
1

0
1
0
0

0
M
4
3

From this tableau we find that maximum {z .· - c ,■} = z^~c3 = 5· Pivoting in the

x3 column and the x6 row, we get the following new tableau that is dual

feasible. The dual simplex method can now be applied in the usual manner.

Duality and Sensitivity Analysis 295

Z Xi X2 X'X XA X$ ^ 6

RHS 1
0
0
0

0
0
1
0

-4
1
3

-1

0
1
0
0

-6
1
2

-5

0
0
0
1

-5
1
1

-4

-5M
M

M + 4
- 4 M + 3

6.7 SENSITIVITY ANALYSIS

In most practical applications, problem data are not known exactly and are often
estimated as best as possible. It is therefore important to study the effect on
optimal solutions for the problem to variations in certain data, without having to
resolve the problem from scratch for each run. Also, at early stages of problem
formulation, some factors might be overlooked from the viewpoint of analytical
simplicity. It is useful to explore the effect on the current solution of accommo-
dating some of these factors. Furthermore, in many situations, the constraints are
not very rigid. For example, a constraint might reflect the availability of some
resource. This availability can be increased by extra purchase, overtime, buying
new equipment, and the like. It is desirable to examine the effect of relaxing
some of the constraints on the value of the optimal objective value without
having to resolve the problem. Moreover, the principal utility of a model is not
simply to determine an optimal solution or policy for a given problem or
situation, but rather to provide a facility (or an oracle) to derive quantitative
insights into the modeled system by posing various "what-if queries such as:
what might be the effect of alterations in certain key influential exogenous or
endogenous parameters on the optimal solution; or what might be the benefit of
investing in some new potential option or activity or technology; or how would
the system be perturbed if we shut down an ongoing operation? The
investigation of these and other related issues constitutes sensitivity analysis or
what-if analysis. In this section, we shall discuss some methods for updating an
optimal solution under different problem variations.

Consider the following problem:

Minimize ex
subject to Ax = b

x > 0.

Suppose that the simplex method produces an optimal basis B. We shall
describe how to make use of the optimality conditions (primal-dual relation-
ships) in order to find a new optimal solution, if some of the problem data
change, without resolving the problem from scratch. In particular, the following
variations in the problem will be considered. In doing so, we will also provide
some further insights into duality.

Change in the cost vector c.
Change in the right-hand-side vector b.
Change in the constraint matrix A.
Addition of a new activity.

296 Chapter 6

Addition of a new constraint.

Change in the Cost Vector

Given an optimal basic feasible solution, suppose that the cost coefficient of one
(or more) of the variables is changed from ck to c'k. The effect of this change
on the final tableau will occur in the cost row; that is, dual feasibility might be
lost. Consider the following two cases:

Case I: xk Is Nonbasic

In this case, cB is not affected, and hence, z ■ = cgB~ a. is not changed for

a n y / Thus, z£ - c£ is replaced by zk-c'k. Note that zfc-cfc < 0, since the

current basis was optimal to the original problem. If zk-c'k = (z# - c^) +

(ck - c'k) is positive, then xk must be introduced into the basis and the (primal)

simplex method is continued as usual. Otherwise, the old solution is still optimal
with respect to the new problem.

Case II: xk Is Basic, Say, xk = xB

Here, cB is replaced by c'B . Let the new value of z be z'·. Then z' -c,· is

calculated as follows:

z) -cj =cBB-1aj -CJ=(CBB-^J -Cj) + (0,0,...,cBt -cBt,0,...,0)yy·

= (zj -cj) + (c'Bt - cBf)ytJ for ally.

In particular, for j = k, zk~ck = 0, and ylk = 1 , and hence, z'k-ck =c'k -ck.

As we should expect, z'k - c'k is still equal to zero. Therefore, the cost row can

be updated by adding the net change in the cost of xB = xk times the current t

row of the final tableau, to the original cost row. Then, z'k - ck is updated to

z'k-c'k = 0. Of course the new objective value CgB~ b = c#B~ b +

(c'B - cB)bt will be obtained in the process.

Example 6.10

Consider the following problem:

Minimize -2xj + x2 - χτ,
subject to X\ + x2 + Χτ, ^ 6

-xx + 2x2 ^ 4
Χγ, Χ2, Χ^ ^ U.

The optimal tableau is given as follows:

Duality and Sensitivity Analysis 297

z Xj X2
 x3 x4 x5 RHS

1
0
0

0 -3 -1 -2 0
1 1 1 1 0
0 3 1 1 1

-12
6
10

Suppose that c2 = 1 is replaced by - 3 . Since x2 is nonbasic, then z2-c2 =

(z2-c2) + (c2 -c2) = -3 + 4 = 1, and all other z ■ -c,· are unaffected. Hence,

x2 enters the basis in the following tableau:

Z Xi X2 X 3 ΧΛ Χς RHS
1
0
0

0 1 - 1 - 2 0
1 1 1 1 0
0 0 1 1 1

-12
6
10

The subsequent tableaux are not shown. Next, suppose that q = -2 is replaced

by zero. Since x\ is basic, then the new cost row, except z\-c\, is obtained by

multiplying the row of X\ by the net change in q [that is, 0 - (-2) = 2] and

adding to the old cost row. The new z\ - q remains zero. Note that the new

z3 - c3 is now positive and so x3 enters the basis in the following tableau:

Z Xy X2 X3 X4 Xj RHS
1
0
0

0 - 1 1 0 0
i i (V) i o
0 3 1 1 1

0
6
10

The subsequent tableaux are not shown.

Change in the Right-Hand-Side

If the right-hand-side vector b is replaced by b', then B~ b will be replaced

by B_1b'. The new right-hand-side can be calculated without explicitly

evaluating B"V. This is evident by noting that B " V = B"'b + B_1(b' - b). If

the first m columns originally form the identity, then B~ (b' - b) =

ZJ=xyj{b'j -bj), and hence B ^ b ' = b + Z J ^ y / * / -* /) · S i n c e ZJ ~CJ' - °

for all nonbasic variables (for a minimization problem), the only possible

violation of optimality is that the new vector B~ b' may have some negative

entries. If B~ b ' > 0, then the same basis remains optimal, and the values of the

basic variables are B~ b' and the objective has value csB~ b'. Otherwise, the

dual simplex method can be used to find a new optimal solution by restoring
primal feasibility.

298 Chapter 6

Note that this case is similar to the previous case in that we are changing

the cost vector in the dual problem. Hence, if B~ b' > 0, then dual optimality is
maintained. Otherwise, in the available dual basic feasible solution, the nonbasic
dual variable complementary to a negative basic primal variable is enterable,
and we proceed by applying the simplex algorithm to the dual as previously.

Example 6.11

Suppose that the right-hand-side of Example 6.10 is replaced by ! . . Note that

B 1 1 0
1 1 , and hence B b' = 1 0

1 1 } \ . Then, B " V > 0, and

hence the new optimal solution is Xj = 3, x5 = 7, x2 = χτ, = X4 = 0.

Change in the Constraint Matrix

We now discuss the effect of changing some of the entries of the constraint
matrix A. Two cases, namely, changes involving nonbasic columns and changes
involving basic columns are discussed. The dual operations of changing rows in
A are also discussed.

Case I: Changes in Activity Vectors for Nonbasic Columns (Changes in
Rows with Basic Slack Variables)

Suppose that the nonbasic column a,- is modified to a'-. Then, the new updated

column is B~ a' and z'· - c = c£B~ a'· - c ·. If z'· - c < 0, then the old solu-

tion is optimal; otherwise, the simplex method is continued, after column j of

the tableau is updated, by introducing the nonbasic variable x ,·.

Changing a nonbasic variable column in the primal corresponds to chang-
ing a dual constraint for which the slack variable is basic. Hence, the dual
operation for this case identifies with changing the row (in a "primal" problem)
where the associated slack variable is basic. In this case, the new row simply
replaces the old row and is then updated to bring the tableau into canonical
form. If the slack variable is negative when this is accomplished, then we may
continue by using the dual simplex algorithm, starting by pivoting on this row,
and hence, entering the complementary dual variable into the basis.

Case II: Changes in Activity Vectors for Basic Columns (Changes in Rows
with Nonbasic Slack Variables)

Suppose that a basic column a, is modified to a' . Now, it is possible that the

current set of basic vectors no longer form a basis after the change. Even if this
does not occur, a change in the activity vector for a single basic column will

change B~ , and thus the entries in every column.

Duality and Sensitivity Analysis 299

This change is handled very easily in two steps. First, assume that a new

activity x'j is being added to the problem with column a'· (and objective coef-

ficient C;). Second, eliminate the old variable x · from the problem. The first

step is accomplished by computing y' = B~ a'· and z'· -c , · = cgB~ a'- - c,·,

where B is the current basis matrix. This gives the updated column for x'-. If the

element y'j- in the basic row for x ■ and the column of x'· is not zero, then x' can

be exchanged for x ■ in the basis and the column of the old variable x .■ can be

eliminated from the problem (why?). This pivot might destroy either or both
primal and dual feasibility, but we can restore primal or dual feasibility using
artificial variables if necessary and reoptimize. On the other hand, if y'j,- = 0,

then the current set of basic vectors with the new column for x no longer forms

a basis (why?). In this case, one way to eliminate x · from the problem is to treat

it as an artificial variable that is basic in that row and to resort to the two-phase
or the big-M method.

The dual operation for this case is to change a row in the problem where
the corresponding slack variable is nonbasic. Since several coefficients in the
updated slack variable column can be nonzero, this row may have multiples of it
added to several other rows. For convenience, let us refer to the slacks in the old
and the new form of this rth constraint as xsi and x'si, respectively. Then the
dual operations to the ones given previously are as follows: First, add this new
row with x'si basic and update the tableau into canonical form. (Some related
mathematical details are given later in the discussion on adding a new
constraint.) If the element in this row and the column of xsi is nonzero, then
exchange x'sj for xsi in the basis. (This corresponds to the case y'j- Φ 0 above.)

Delete the representation of xS(· in terms of the nonbasic variables from the
problem, since the old form of the constraint is no longer needed. Otherwise, if
the exchange of x'si for xsi in the basis is not possible, we can change the right-
hand-side of the old (< type) constraint to a big-M value in order to make this
old form of the constraint essentially redundant to the problem and continue the
optimization by using the dual simplex method. This corresponds to the
handling of the case y'jj = 0.

Example 6.12(a)

Suppose that in Example 6.10, a2 is changed from I ~) to I -1 . Then,

* - M . ?)(!)-(?)

300 Chapter 6

c B B - , a ^ - C 2 = (- 2 , 0) ' 2 -l = - 5 .

Thus, the current optimal tableau remains optimal with column x2 replaced by

(-5,2,7/ .

Next, suppose that column a] is changed from I ,) to , . Then,

yi B ' a !

c B B- , a ; -c 1 =(-2 ,0)(_ (})- (-2) = 2.

Here, the entry in the Χχ row of yj is zero, and so the current basic columns no

longer span the space. Adding the column (2,0,-1)' of xj and making xj an

artificial variable in the basis with a big-A/penalty in the objective function, we
get the following tableau:

z
xx

x5

z
1
0
0

*1
-M

(!)
0

x[
2
0

-1

x2

-3
1
3

*3
-1

1
1

x4

-2
1
1

x5

0
0
1

RHS
-12

6
10

After preliminary pivoting at row xj and column X] to get zj - cj = 0, that is,

to get the tableau in canonical form, we can proceed with the big-M method.

-!) Finally, suppose that column aj is changed from (_.) to (A Then,

* - " - ' « - (! ?)(
c B B~ 1 a ; - C l =(-2 ,0) (3) - (-2) = -4.

In this case, the entry in the xj row of yj is nonzero and so we add the column

(-4,3,9)' of x(, perform a pivot in the xj column and the row for xj in the

following tableau, and proceed with x\ eliminated:

z
xx

x5

z
1
0
0

1

X,

-A

(1)
9

x2

-3
1
3

x3

-1
1
1

X/\

-2
1
1

x5
0
0
1

RHS
-12

6
10

The subsequent tableaux are not shown.

Duality and Sensitivity Analysis 301

Example 6.12(b)

Suppose that in Example 6.10 the first constraint is changed to x2 — χτ, < 6.

Call the new slack variable x\ and add this constraint to the optimal tableau

with x\ basic in the new row. This gives the following tableau (in canonical

form):

Z Xi Xj X3 XA X5 XA RHS
1
0
0
0

0
1
0
0

-3
1
3
1

-1
1
1

-1

-2
1
1
0

0
0
1
0

0
0
0
1

-12
6

10
6

Note that the element in row x\ and column x4 is zero. (Otherwise, we could
have pivoted on this element and deleted the resulting representation of x4 in
terms of the nonbasic variables in the last row.) Hence, we change the right-
hand-side of the old first (< type) constraint to M This makes the updated
right-hand-side vector equal to (-2M, M, M + 4, 6). Note that we still have
optimality in this case, with the objective value of order —M. (The old constraint
is restricting the optimum with ZA-CA < 0.) Hence, the new problem is
unbounded.

Adding a New Activity

Suppose that a new activity x„+1 with per-unit cost c„+] and consumption

column a„+1 is considered for possible inclusion within the model. Without

resolving the problem, we can easily determine whether involving x„+1 is

worthwhile. First, we calculate z„+1 - cn+1. If zn+l - cn+\ < 0 (for a

minimization problem), then x*+1 = 0 and the current solution is optimal. On

the other hand, if z„+] - cn+l > 0, then we introduce x„+1 into the basis and

use the simplex method to continue to find a new optimal solution.

Example 6.13

Consider Example 6.10. We wish to find a new optimal solution if a new

(-A
activity x6 > 0 having c6 = 1 and a6 = is introduced. First, we calculate

z 6 - c 6 and y6:

z 6 " c 6 = w a 6 " c 6

= (-2,0)^]-l = l

ye = B a 6 = x ,
-1

1

302 Chapter 6

Therefore, x6 is introduced in the basis by pivoting at the x5 row and the x6

column in the following tableau:

z

x5

z
1
0
0

xl
0
1
0

x2

-3
1
3

x3

-1
1
1

X4

-2
1
1

x5

0
0
1

x6
1

©

RHS
-12

6
10

The subsequent tableaux are not shown.

Adding a New Constraint

Suppose that a new constraint is added to the problem. As discussed in the
section on modifying the A matrix, this operation is dual to that of adding a new
activity. If the given optimal solution to the original problem satisfies the added
constraint, it is then obvious that this point is also an optimal solution of the new
problem (why?). If, on the other hand, this point does not satisfy the new
constraint, that is, if the constraint "cuts away" the given optimal solution, we
can use the dual simplex method to find a new optimal solution. These two
cases are illustrated in Figure 6.5, and they correspond to the two foregoing
cases related to adding a new activity.

Suppose that B is the optimal basis that is available before the constraint

am+ x < bm+i is added. The corresponding canonical system is as follows:

z + (csB"1N-ci V)xi V =c s B _ 1 b

χ β + Β *Nx N B ' b . (6.14)

The constraint am+ x < bm+i is rewritten as a#+ \B +a^+ xN +xn+\ =bm+y where

am+1 is decomposed into (ag+ , a™+) and x„+] is a nonnegative slack variable.

New constraint
New optimum

New constraint

Figure 6.5. Addition of a new constraint.

Duality and Sensitivity Analysis 303

,/K+l Multiplying Equation (6.14) by &B and subtracting from the new constraint

gives the following system:

(■ m+\
N '

z + (cfiB
 lN-cN)x

N

xB+B'lNxN

h

= CgB^'b

-H

, j»+l B ln)xN + X, n+l

B " b

è ^ - a ^ B - ' b .

These equations give us a basic solution of the new system (why?). The only
possible violation of optimality of the new problem is the sign of bm+\ -

a£+1B_1b . So if bm+l -ag+1B 'b > 0 , then the current solution is optimal.

Otherwise, if èm+1 - a^ + 1 B 'b < 0 , then the dual simplex method can be used

to restore primal feasibility, and hence, restore optimality.
Note that if an equality constraint is added after bringing the tableau to

canonical form, we can use an artificial variable as a basic variable in this row
and continue with the primal two-phase or the big-M method. The dual opera-
tion is to add an unrestricted variable x . The equivalent dual technique is to

add the updated version of this column to the tableau. Since the variable is unre-
stricted, we can use its positive or negative column and thus assume that the
variable x ,· has z ,· - c ,■ < 0. Now, we impose the bound restriction x · > —M.

Using the transformation x' = x · + M > 0 to obtain a nonnegatively

constrained variable x'- in lieu of x , we can continue optimizing with the dual

simplex method. Alternatively, we could have used the transformation
x ■ = x'j - x"j, with x'j, x"j > 0, and added the two columns of x' and xj to the

problem in lieu of that for x ·. (What is the equivalent dual technique?)

Example 6.14

Consider Example 6.10 with the added restriction that -xj +2x3 >2. Clearly,
the optimal point (xj,x2,X3) = (6,0,0) does not satisfy this constraint. The
constraint -χχ + 2x3 > 2 is rewritten as χλ - 2x3 + x6 = -2 , where x6 is a non-
negative slack variable. This row is added to the optimal simplex tableau of
Example 6.10 to obtain the following tableau:

z
X,

X,

x6

z
1
0
0
0

x\
0
1
0
1

x2
-3

1
3
0

x3

-1
1
1

-2

•̂ 4
-2

1
1
0

x5

0
0
1
0

x6
0
0
0
1

KH$
-12

6
10
-2

304 Chapter 6

Multiply row 1 by -1 and add to row 3 in order to restore column xj to a unit

vector. The dual simplex method can then be applied to the following resulting
tableau:

2 Xi Xj X"l XA X$ X(\ RHS
1
0
0
0

0
1
0
0

-3
1
3

-1

-1
1

Θ

-2
1
1

-1

0
0
1
0

0
0
0
1

-12
6

10
-8

Subsequent tableaux are not shown.

An Application of Adding Constraints in Integer Programming

The linear integer programming problem may be stated as follows:

Minimize ex
subject to Ax = b

x > 0.
x integer.

A natural method to solve this problem is to ignore the last condition, x integer,
and solve the problem as a linear program. At optimality, if all of the variables
have integral values, then we have an optimal solution to the original integer
program (why?). Otherwise, consider adding a new constraint to the linear pro-
gram. This additional constraint should delete the current optimal noninteger
linear programming solution without cutting off any feasible integer solution.
Such a constraint is referred to as a valid inequality or a valid cut. Adding the
new constraint to the optimal tableau, we apply the dual simplex to reoptimize
the new linear program. The new solution is either integral or not. The
procedure of adding constraints is repeated until either an all-integer solution is
found or infeasibility results (indicating that no integer solution exists). How,
then, can such a cutting plane be generated?

Consider any optimal simplex tableau when a noninteger solution results.

Let br be nonintegral. Assume that the basic variables are indexed from 1 to m.

The equation associated with br is

n _
xr+ Σ yrJXj=br.

j=m+l

Let Irj be the greatest integer that is less than or equal to yrj (Irj is called the

integer part of yrj). Similarly, let Ir be the integer part of br. Let Frj and Fr

be the respective fractional parts, that is,

Frj = yrj ~ !rj a n d Fr=br-Ir.

Then 0 < F ■ < 1 and 0 < Fr < 1 (why?). Using this, we may rewrite the basic

equation for xr as

Duality and Sensitivity Analysis 305

xr+ Σ {Irj+Frj)Xj=Ir+Fr.
j=m+\

Rearranging terms, we get
n n

Xr "T 2 J rj j f I ^ Π j '

j=m+\ j=m+\

Now, the left-hand-side of this equation will be integral for any feasible integer
solution (why?). The right-hand-side is strictly less than 1, since Fr < 1,

Frj > 0, and x .■ > 0. But since the right-hand-side must also be integral because

it equals the left-hand-side, we may conclude that it must be less than or equal
to zero (there are no integers greater than zero and less than one). Thus, we may
write

Fr- Σ FrjXj<0.

However, since x ■ is currently nonbasic (and hence x.· = 0) for/ = m + 1,..., n

and Fr > 0, the current optimal (noninteger) linear programming solution does

not satisfy this additional constraint. In other words, this new constraint will cut
off the current optimal solution if added to the current optimal tableau. The dual
simplex method can then be applied to obtain a new optimal linear programming
solution, which can be again tested for integrality. Such a procedure is called a
cutting plane algorithm. This cut is called Gomory's dual fractional cut.

Example 6.15

Consider the following integer program:
Minimize 3xj + 4x2
subject to 3xj + x2 > 4

xx + 2x2 > 4
x\, x2 > 0
Xl, x2 integer.

In Figure 6.6 we show the optimal linear programming and integer program-
ming solutions, respectively.

Ignoring the integrality restrictions, the following tableau gives the opti-
mal linear programming solution:

Z Xj X 2 X-5 XA RHS
1
0
0

0 0 -2/5 -9/5
1 0 - 2 / 5 1/5
0 1 1/5 -3/5

44/5
4/5
8/5

Since this solution is nonintegral, we may select a fractional variable for
generating a cut (including z). Select x2. (Note: Selecting different variables

may generate different cuts.) The equation for the basic variable x2 is

306 Chapter 6

Figure 6.6. A graphical solution for Example 6.15.

h =
Pi

1,
= 3/5,

x2+l /5x3 - 3/5 x4 = 8 / 5 ·
From this we get

723=0, 7 2 4 = - l ,

^23 =1/5, % =2/5,
and the additional constraint becomes

l/5x3+2/5x4 >3/5 (cut).

Adding this constraint with slack variable x5 to the tableau and applying the

dual simplex method, we get the following tableaux:

z X] Xj x 3 x& Χς RMS

z
X,

x2
x5

1
0
0
0

0
1
0
0

0 -2/5
0 -2/5
1 1/5
0 <£/?)

-9/5
1/5

-3/5
-2/5

0
0
0
1

44/5
4/5
8/5

-3/5

z
x\

x7.
x3

z
1
0
0
0

X)

0
1
0
0

x2

0
0
1
0

x3

0
0
0
1

X4

-1
1

-1
2

x5

-2
-2

1
-5

RHS
10
2
1
3

Hence, we have obtained the optimal integer solution x* = (2,1)' with only one

cut. If in the foregoing tableau some variable had turned out noninteger valued,

Duality and Sensitivity Analysis 307

we would have generated a new cut and continued. In most integer programs,
we might typically need to repeat this cutting plane process many times.

It is interesting to examine the cut in terms of the original variables.
Substituting x3 = 3xj + x2 - 4 and x4 = x\ + 2x2 - 4 into 1/5 x3 + 2/5 x4 > 3/5
and simplifying, we get

Xj + x2 > 3 (cut in terms of x\ and x2).

It can easily be seen that the addition of this constraint to Figure 6.6 yields the
required integer optimum. Finite convergence of such a procedure may be
achieved by using an appropriate dual lexicographic pivot rule (see the Notes
and References Section).

Some Additional Issues in Sensitivity Analysis

There are three pertinent issues related to sensitivity analysis in linear
programming that need to be discussed. The first is performing sensitivity
analysis in a revised simplex implementation. Here, the cases discussed

previously are treated similarly, except that we only need to update c#B~ , B~ ,

and B~ b, as the case might be, in order to obtain the new revised simplex
tableau. We hence leave the details to the reader in Exercise 6.55, but point out
one important concept. Suppose that we have added a new row to the problem

that has the coefficient vector ag+ in the columns of the current basic

variables. Also, suppose that the slack or artificial variable x„+1 whose column

is a unit vector has been made basic in this new row. Then the new basis, B n e w ,

and its inverse appear as given below:

XB xn+\

B

a£+1

0

1

B '

-a£+ 1B-'

0

1

This construct is useful in updating the revised simplex tableau in such a
case. The second issue relates to performing sensitivity analysis for bounded
variables linear programming problems. Again, the various cases discussed in
this section (including changes in bounds on the variables) may be handled
similarly, except that we need to ensure that the designated nonbasic variables
are always at either their lower or upper bounds and that the basic variables are
feasible to their bounds. Although the former condition is readily maintained,
the following technique may be used in order to maintain the latter condition.
Suppose that an update has been made while maintaining the nonbasic variables
at their lower or upper bounds, but ignoring the bound restrictions on the basic
variables. Let Ab be the vector having the smallest norm that needs to be added
to the basic variable values in order to make them feasible to their bounds. Hence,
Afy =(-BÌ~xBi if xBi < ^Bh &bi = uBi ~xBi ^ xBi > uBi> an<^ A6,· = 0 otherwise.
Then, we introduce an artificial variable x„+1 with -Ab as its updated column

308 Chapter 6

and with 0 < x„+] < 1 as its bound restriction. Observe that by making x„+1

nonbasic at its upper bound we obtain a basic feasible solution to the artificial
problem (why?). Hence, we may now proceed with the two-phase or the big-M
method. (Alternatively, we can use a bounded variables version of the dual
simplex method, if applicable (see Exercise 6.62).) We leave the details of the
various sensitivity analysis cases to the reader in Exercise 6.61.

Finally, a third issue related to sensitivity analysis is the so-called toler-
ance approach. Here, we are concerned with a tolerance on the simultaneous
and independent variations in the coefficients of the objective function or of the
right-hand-side so that the current optimal basis remains optimal. More
precisely, consider the original and the perturbed linear programs P and P',
respectively, where c-, j = 1,..., n, are given constants and a.-, j = 1,..., n,
denote perturbation parameters, as follows:

n

P : Minimize X c -x·
7=1
«

subject to "L ciijXj -bj for; = l,...,m

x>0.
n

P': Minimize Σ (cj +ajCj)Xj (6.15)
y=i

n
subject to Σ auXj =bt for i = 1,..., m

7=1

x>0.

Observe that if c' = c fory = 1,..., n, then 100a.· gives a percentage variation

(positive or negative) in the objective coefficient c, of the variable x ·. Given

an optimal basis B for P, the question raised in this context is: What is the maxi-

mum value CUQ > 0 such that whenever - « Q < a < CCQ for each/ = 1,..., n, we

will still have B as an optimal basis in P'. The value a$ is then a maximum

allowable tolerance on variations in the objective coefficients with respect to c'.

Note that when c' = c, a0 gives a (maximum) permissible accuracy tolerance

on estimating the (nonzero) objective coefficients so that current basis remains
optimal.

A symmetric question can be addressed with respect to right-hand-side
perturbations using the original and perturbed linear programs P and P',
respectively, defined as follows:

Duality and Sensitivity Analysis 309

Minimize Σ c X:

n
subject to Σ a^Xj = ty for i = 1,.

x>0 .

P': Minimize Σ c,x,· (6.16)

subject to Σ ay* · = bj + /?,·£>/ for / = 1,...,m
7=1

x>0.

Here, we are interested in determining a maximum allowable tolerance /?0 ^ 0

o« variations in the right-hand-side values with respect to b ' , given an optimal

basis B for P such that whenever -β$ < /?, < β$ for each /' = 1,..., m, we will

still have B as an optimal basis in P'.

In order to determine «Q, let B denote an optimal basis for P, let cBj,

c'Bi, and aBi denote the corresponding basic variable coefficients in the vectors

c, c', and a, respectively, let J Ψ 0 denote the index set for the nonbasic

variables, let y · = B~ a · denote the updated column for x ■, j e J, with

coefficients y^, i = 1, ..., m, corresponding to the rows of the basic variables

xBi, i = 1, ..., m, and as usual, let zj -Cj = c#B~ ay -Cj for j e J. Then, B

remains an optimal basis in P' if and only if the objective row coefficients in
P' are nonpositive for the canonical representation with respect to the basis B.
In other words, we must have

m
Σ (pBi + aBic'Bi)yiJ - (cj + aye}) < 0 for each jeJ,
i=\

that is,

Σ c'BiyyaBi - ccjc'j < (cj - zj) for each jeJ. (6.17)
i=\

We now need to obtain a$ as the largest nonnegative value such that so long as

-«o ^aj ^ « 0 ' m e v a l u e of the left-hand-side in Equation (6.17) is no more

than (c ~zj)- 0, for each j e J. But the largest value that the left-hand-side

in Equation (6.17) can ever get subject to - α 0 - aj - ao> J = 1>—> n> f°r anY

«0 > 0 is (Σ™ i \cBiyij \ + \c'j)a0· Therefore, we have

310 Chapter 6

I I I I

«0 = maximum<αΰ>0: Σ ks;>y·\ + \c'j\ a0 -(cj ~zj) f ° r e a c n 7 e-^
I V/=1) J

(6.18)

Denoting J+ ={j eJ : Y™= λ \ο'Βίγ^ + ìc'j > 0}, we get in closed-form:

«o = minimum-
• r+ m I I I I

7ej ite+k
(6.19)

i=l

Similarly, denoting the components of B as By , i,j = 1,..., m, and

letting b = B~ b, we have that B is an optimal basis in P' of Equation (6.16) if

- 1 , and only if it is feasible, that is, Σ"}={{Β1]
ιψ]+β]ο)) > 0 for each / = 1,...,

This can be rewritten as requiring that

m.

7=1
for each i = \,...,m. (6.20)

Given any β0 > 0, the largest possible value of the left-hand-side in Equation

(6.20) subject to -β0 < β] < β0 fory = 1,..., m, is (Σ%

Hence, we obtain

BUbJ)β0 (why?).

β0 = maximum^ /?0 :

Denoting / + = {/ e {1,...,m) : £ J =]

m

Σ
U=i

B'-K
v J

y90<è, for/= !,...,/« (6.21)

Bi'bJ

βθ = minimum

>0}, we get

k

Σ
y=i

Btb'j

(6.22)

In closing this section, we remark that the foregoing analysis is only one
type of tolerance issue that may be addressed. For example, we might wish to
determine such maximum tolerances subject to other imposed restrictions on
variations in objective or right-hand-side parameters. In other words, certain
bounds on some of these parameters or certain interrelationships in their
variations may be known a priori in terms of additional restrictions on the a —

or the β,—values. Such cases are readily analyzed by including these constraints

along with -a0 < <Xj < a0, j = \,...,n (or -β0 < fij < β0 , j = 1,..., m) when

determining the maximum possible value of the left-hand-side in Equation
(6.17) [or in Equation (6.20)] before formulating and solving Equation (6.18) for

«0 [°r Equation (6.21) for β^]. The following example illustrates this point:

Duality and Sensitivity Analysis 311

Example 6.16

Consider Example 6.10 with the optimal basis B = (aj,a5) as given there.

Suppose that c' = c. Hence, J = {2, 3, 4}, c'B = (-2, 0), and we obtain

{(CJ-ZJ), jeJ} = {3, 1, 2}, {|C)|, jeJ} = {\, 1, 0}, and { Σ £ ι ^ 4 J e J}

= {2, 2, 2}. Hence, from Equation (6.19), we get α0
 = minimum {3/3, 1/3, 2/2}

= 1/3. Consequently, the objective coefficients can vary within a tolerance of

33 — percent and the given basis will remain optimal.

Now, suppose that the objective coefficients of X] , Χ4, and x5 are known

with certainty to be -2 , 0, and 0, respectively, but variations in c2 and c3 are

permissible. Then c' = (0, 1, - 1 , 0, 0), and so Uc'ji, j e J} = {1, 1, 0} and c'B

= (0, 0). This gives J+ = {2, 3}, and we get from Equation (6.19) that a§ =

minimum {3/1, 1/1} = 1. Therefore, subject to the stated restrictions, a 100
percent tolerance in variation is permissible.

On the other hand, suppose that c' = c, but we know that the objective

coefficient for xj will vary from its given value by no more than ±25 percent.

Now, the relationships (6.17) require that -2«[- a 2 ^ 3 , -2arj + a 3 <1, and

-2a\ < 2. Hence, given that - a 0 < a,· < a0 f°rJ = 1>-··>5 and that -1/4 < a\ <

1/4, the maximum values of the left-hand-sides of the foregoing three inequali-
ties are, respectively, 2[πάη{α$,\Ι4}] + a$, 2[πήη{α0,1/4}] + α:0, and 2[min{«0>

1/4}]. We need to find the largest value a™ of a0 such that these quantities

are respectively no more than 3, 1, and 2. Because we know that «Q* — 1/3

(why?), we have min{«Q*, 1/4} = 1/4, and so, α " = m a x iao '■ l /2 + a0 ^ 3 ,

1 / 2 + a0 -1> a nd 1 / 2 < 2}. This gives «Q* = minimum {5/2,1/2} = 1/2. Therefore,

a 50 percent, instead of only a 33 — percent, variation in the objective coeffi-

cients is permissible, given a maximum variation of 25 percent in q.
Finally, let us illustrate the case of variations in the right-hand-side.

Assuming that b' = b, we have b = (6,10)', B = 1 0
1 1

, and Σ7=1
Βϋ^ equals

6 and 10 for the first and second basic variable rows, respectively. Hence, from

Equation (6.22), β^ = minimum {6/6, 10/10} = 1, that is, a 100 percent varia-

tion in the right-hand-sides is permissible for the given basis to remain optimal.

312 Chapter 6

6.8 PARAMETRIC ANALYSIS

Parametric analysis is used quite often in large-scale linear programming and in
nonlinear optimization, where we often find a direction along which the objec-
tive function gradient or the right-hand-side vector of the constraints are
perturbed, and then we seek to ascertain the resulting trajectory of optimal
solutions. Hence, we are interested in determining optimal solutions to a class of
problems by perturbing either the objective vector or the right-hand-side vector
along a fixed direction. Observe that in the latter context, shadow prices can be
determined as a special case.

Perturbation of the Cost Vector

Consider the following problem:

Minimize ex
subject to Ax = b

x > 0.

Assume that B is an optimal basis. Suppose that the cost vector c is perturbed
along the cost direction c', that is, c is replaced by c + λ c' where λ > 0. We are
interested in finding optimal solutions and corresponding objective values as a
function of λ > 0. Decomposing A into [B, N], c into (c^c^y), and c' into

(CB,CV), we get

z-(cB+Àc'B)\B-(cN+Àc'N)xN = 0

Bxg + N\N = b.

Updating the tableau and denoting c^yy by z'j, we get

z+ Σ [(zj -cj) + À(z'j -c'ji^Cj = Cgb + Ac^b

*B + Σ yjXj = b,
jeJ

where J is the set of current indices associated with the nonbasic variables. The
current tableau has λ = 0 and gives an optimal basic feasible solution for the
original problem without perturbation. We would first like to find out how far
we can move in the direction c' while still maintaining optimality of the current
point. Let S = {j : (ζ'- -c ■) > 0}. If S = 0 , then the current solution is optimal

for all values of 1 > 0 (why?). Otherwise, we calculate A as follows:

Ì = m i n i m u m J " ^ ' ^ 0 } = ±ίΐΞ*1. (6.23)
jsS [z'j-c'j J z'k-c'k

Let λχ = λ. For λ e [0, λ\] the current solution is optimal and the optimal objective

value is given by cgb + Ac5b = cgB~ b + ̂ CgB- b. For λ efO,/^], the objective

row coefficients in the simplex tableau are replaced by (z ■ - c .) + A(z' -c ' ·) .

Duality and Sensitivity Analysis 313

At λ = λ], xk is introduced into the basis (if a blocking variable exists). After the

tableau is updated, the process is repeated by recalculating S and X and letting

À2 - A. For Λ, e [Λ-ι,/Ι2] the new current solution is optimal and its objective

value is given by cgb + Acgb = cgB~ b + Ac'BB~ b where B is the current
basis. The process is repeated until S becomes empty. If there is no blocking
variable when xk enters the basis, then the problem is unbounded for all values
of λ greater than the current value.

Example 6.17

Consider the following problem:

Minimize -xl - 3x2
subject to X[+ x2 < 6

- X | + 2x 2 ^ 6
X], X2 > 0

It is desired to find optimal solutions and optimal objective values of the class of
problems whose objective function is given by (-1 + 2λ, -3 + λ) for λ > 0; that
is, we perturb the cost vector along the vector (2,1). First we solve the problem
with λ = 0 where x3 and x4 are the slack variables. The optimal tableau for λ =
0 is given by the following:

z

x2

z
1
0
0

X]

0
1
0

x2

0
0
1

x3

-5/3
2/3
1/3

X4

-2/3
-1/3

1/3

RHS
-14

2
4

In order to find the range over which this tableau is optimal, first find

c'nB-1N-c'w: cfl N-

c'BB_1N-c', N = c f i(y3>y4)-(c3>c4)
"2/3 -1/3
_ 1/3 1/3 (2,1) (0,0) = (5/3,-1/3).

(6.24)

Therefore, 5= {3}, and from Equation (6.23), X is given by

-(z3-c3) -(-5/3)
À-- = 1.

Z3 - C3 5/3

Therefore, λ\ = 1 and for λ e [0,1] the basis [a!,a2] remains optimal. The opti-

mal objective value ζ(λ) in this interval is given by

ζ(λ) = Cgb + /lcgb

= -14 + 2(2,1) -14 + 8A.

314 Chapter 6

Noting Equation (6.24), the objective row coefficients of the nonbasic variables
x3 and x4 are given by

(z 3 - c 3) + l (z 3 - c 3) = - 5 / 3 + (5/3)1

(z4 - c4) + λ(ζ\ - c\) = - 2/3 - (1/3)1.

Hence, the optimal solution for any λ in the interval [0,1] is given by the
following tableau:

z
x\
x2

At λ = 1 the coefficient of x3 in row 0 is equal to 0 and x3 is introduced in the

basis leading to the following new tableau:

z
1
0
0

X,

0
1
0

x?
0
0
1

x3

-5/3 + (5/3)1
2/3
1/3

Λ4

-2/3 - (1/3)1
-1/3
1/3

RHS
-14 + 81

2
4

z
x3

x2

z
1
0
0

X,

0
3/2

-1/2

x2
0
0
1

x3

0
1
0

x4

-1
-1/2

1/2

RHS
-6

3
3

We would now like to find the interval [1, λ^] over which the foregoing tableau
is optimal. Note that

3/2^
*i - ci = csy! - q = (0, -3) I _ ^ I + 1 = 5/2

-3/2 z4-c4=cBy4-c4 =(0,-3)1 / 2 J - 0 =

A -c[= c'By{ -c[= (0 , 1) [_ ^] - 2 = - V 2

z 4 - c 4 = c ^ y 4 - c 4 = (0 , 1) ^ 1 ^ 1 - 0 = 1/2.

Therefore, the objective row coefficients for the nonbasic variables xx and x4

are given by

(z! - q) + λ(ζ[-c[) = 5/2-(5/2)1

(z4 - c4) + l (z 4 - c4) = - 3/2 + (1/2) 1.

Therefore, for /I in the interval [1, 3] these values are nonpositive and the basis
consisting of a3 and a2 is optimal. Note that the value 1 = 3 can also be
determined as follows:

Duality! and Sensitivity Analysis 315

S = {4} and λ·-
- (z 4 - c 4) ^ 3 / 2

z4 - c4 1/2
:3.

Over the interval [1,3] the objective function z(X) is given by

ζ(λ) cgb +Acgb

(0,-3)
'3 Ì (3^

3 J + A(0,1) -9 + 3A.

Hence, the optimal tableau for A e [1, 3] is given as follows:

z

x2

At A = 3 the coefficient of x4 in row 0 is equal to zero, and x4 is introduced in

the basis leading to the following tableau:

z
1
0
0

*1

5/2 - (5/2) λ
3/2

-1/2

*■>

0
0
1

*1
0
1
0

X4

-3 /2 + (1/2) λ
-1/2
1/2

RHS
-9 + 3/1

3
3

z
x3

z
1
0
0

x\
-5

1
-1

*2
0
1
2

*3
0
1
0

X4

0
0
1

RHS
0
6
6

We would like to calculate the interval over which the foregoing tableau is
optimal. First, we compute

-2 z l ~ c l =cByi~c\

-1. z 2 ~ c 2 = C S V 2 - C 2

Therefore, 5 = 0 and hence, the basis [a3,a4] is optimal for all λ e [3,co].

Figure 6.7 shows the optimal points and the optimal objective as a function of A.
Note that this function is piecewise linear and concave. In Exercise 6.65 the
reader is asked to show that this is always true. The breakpoints correspond to
the values of A at which alterative optimal solutions exist.

Perturbation of the Right-Hand-Side

Suppose that the right-hand-side vector b is replaced by b + Ab' where A > 0.
This means that the right-hand-side is perturbed along the vector b'. Since the
right-hand-side of the primal problem is the objective of the dual problem,
perturbing the right-hand-side can be analyzed as perturbing the objective
function of the dual problem. We shall now handle the perturbation directly by
considering the primal problem. Suppose that we have an optimal basis B of the
original problem, that is, with A = 0. The corresponding tableau is given by

z + (csB'

"fl

N

+ B

cN)xN =
1

C g B _ 1 b

'Nx N = B ' b ,

316 Chapter 6

where cgB N - c ^ < 0. If b is replaced by b + Ab', the vector c#B N-cN

will not be affected; that is, dual feasibility will not be affected. The only change

is that B~ b will be replaced by B~ (b + Ab'), and accordingly, the objective

value becomes cgB~ (b + Ab'). As long as B~ (b + Ab') is nonnegative, the

current basis remains optimal. The value of λ at which another basis becomes

optimal, can therefore be determined as follows. Let S = {/' : b\ < 0} where b' =

B~'b'. If S = 0 , then the current basis is optimal for all values of λ > 0. Other-
wise, let

A = minimum < —=- > = —=-.
ieS {-b'i} -b'r

(6.25)

Let A[= A. For A e [0, Aj] the current basis is optimal, where χβ = B~ (b + Ab')

and the optimal objective value is cBB~ (b + Ab'). At Aj the right-hand-side is

replaced by B~ (b + Ajb'), xB is removed from the basis, and an appropriate

variable (according to the dual simplex method criterion) enters the basis. After
the tableau is updated, the process is repeated in order to find the range \\,Xj\

over which the new basis is optimal, where λ^ = A from Equation (6.25) using

the current basis. The process is terminated when either S is empty, in which
case the current basis is optimal for all values of λ greater than or equal to the
last value of A, or else when all the entries in the row whose right-hand-side
dropped to zero are nonnegative. In this latter case no feasible solutions exist for
all values of 1 greater than the current value (why?).

Example 6.18

Consider the following problem:

Figure 6.7. Optimal objective values and optimal solutions as a function of A.

Duality and Sensitivity Analysis 317

Minimize -x{ - 3x2
subject to x\ + x2 < 6

-xj + 2x2 < 6

It is desired to find the optimal solution and optimal basis as the right-hand-side

is perturbed along the direction , , that is, if b = L- is replaced by b + Ab'

= I , I +A . for A > 0. The optimal solution with λ = 0 is shown below, where

x3 and x4 are the slack variables:

z

*1

*2

z
1
0
0

*1
0
1
0

x2

0
0
1

x3

-5/3
2/3
1/3

•*4
-2/3
-1/3

1/3

RHS
-14

2
4

To find the range over which the basis is optimal, we first calculate b'

b' = B- 1b '
2/3 -1/3'
1/3 1/3

Therefore, S= {1}, and from Equation (6.25) \ is given by

\ _ 2
A, ■ = 2.

Therefore, the basis [aj,a2] remains optimal over the interval [0, 2]. In particu-

lar, for any λ e [0,2] the objective value and the right-hand-side are given by

z{X) = c5b + l c B b '
f2

(-1,-3)| - | + A(-1,-3) -14 + Λ

b + /lb' = in: 2-λ
4

and the simplex tableau appears as follows:

z
X,

x2

z
1
0
0

X,

0
1
0

x2

0
0
1

x3

-5/3
2/3
1/3

X4

-2 /3
-1/3

1/3

RHS
-14 + 2

2- λ
4

At A = 2, χβ = X] drops to zero. A dual simplex pivot is performed so that xj

leaves the basis and x4 enters the basis leading to the following tableau:

318 Chapter 6

z
X4

x2

z
1
0
0

x\
-2
-3

1

x2
0
0
1

*3
-3
-2

1

X4

0
1
0

RHS
-12

0
4

To find the range [2, λχ] over which this tableau is optimal, we first find b and b':

b = B_1b =

b' = B V =
Γ

"-2 1
1 0

-2 1"|

1 oj

T6"
|_6

-Γ
1

"-6"
6

" 31
- 1

Therefore, S= {2} and λχ is given by

h-
b2

h -b2 -(-1)
6.

For A in the interval [2, 6] the optimal objective value and the right-hand-side
are given by

z(A) = c s b + /lcsb'

= (0,-3)MÌ + A(0>-3)ijjì = -18 + 3A

b + Ab' =
- 6

6
+ λ

3

- 1

- 6 + 3A

6-λ

1
0
0

-2 0 - 3 0
-3 0 - 2 1

1 1 1 0

-18 + 3/1
-6 + 3,1

6 - / 1

The optimal tableau over the interval [2, 6] is depicted below:

Z X] Xj X*i ΧΛ JxrlS

z
x4
x2

At λ = 6, x2 drops to zero. Since all entries in the x2
 r o w a r e nonnegative, we

stop with the conclusion that no feasible solutions exist for all λ > 6. Figure 6.8
summarizes the optimal bases and the corresponding objective values for λ > 0.
Note that the optimal objective value as a function of λ is piecewise linear and
convex. In Exercise 6.66 we ask the reader to show that this is always true. The
breakpoints correspond to the values of A for which alternative optimal dual
solutions exist.

Comment on Deriving Shadow Prices via a Parametric Analysis

Observe that parametric analysis can be used to ascertain the structure of the

optimal value function z (è,·) (see Equation (6.4)) as a function of bh in the

neighborhood of the current value of bj, for any / e {1,..., m). Accordingly, we

can then determine the right-hand and left-hand shadow prices with respect to

Duality and Sensitivity Analysis 319

Figure 6.8. Optimal objectives and bases as a function of λ.

ty as the respective right-hand and left-hand derivatives of z* (ty) at the current

value of bt, where the former value is taken as infinity in case an increase in ό;·

renders the primal problem in Equation (6.1) infeasible.
More specifically, consider determining the right-hand shadow price

with respect to bh for some ie{\,...,m}. In this case, the right-hand-side b is
replaced by b + Ab', where b' = e;-, the rth unit vector. Accordingly, we can
now perform the foregoing parametric analysis until we arrive at a tableau that
remains optimal as λ increases from zero (up to some positive level) or else, we
detect unboundedness of the dual (infeasibility of the primal) as λ increases
from zero. In the former case, the right-hand shadow price is given by

Wj = (cgB~); for the corresponding current tableau, and in the latter case, it is
infinite in value. In a similar manner, we can compute the left-hand shadow
price as the w, value corresponding to the tableau that remains optimal as λ
increases from the value of zero, where the right-hand-side is now perturbed
according to b - Ae,·. Exercise 6.70 asks the reader to illustrate this approach.

EXERCISES

[6.1] Use the standard form of duality to obtain the dual of the following
problem. Also verify the relationships in Table 6.1.

inimize CjX] + c2X2
bjectto A n x , + A|2X2

A21X! + A22x2

A 3 1 x l + A 3 2 x 2

+ C3X3

+ A13x3 > bj
+ A23x3 < b 2

+ A33x3 = b3

X! > 0

x2 < 0
x3 unrestricted

[6.2] Give the dual of the following problem:

320 Chapter 6

Maximize -2xj + 3x2 +
subject to -2x] + x2 +

2x[+
-2x2 +

isider the following problem:
Maximize -JCJ
subject to 2xj

X,

X] ,

5x3
3x3 +
x3

x3 +

x2,

+ 3x2
+ 3x2

- 3x2
x2

x^

X4
x\
x3
X4

<
>
>

> 5
= 4
< 6
< 0
> 0

unrestricted

6
-3

0.

[6.3]

a. Solve the problem graphically.
b. State the dual and solve it graphically. Utilize the theorems of duality

to obtain the values of all the primal variables from the optimal dual
solution.

[6.4] Solve the following linear program by a graphical method:
Maximize 3xj +
subject to 6x[+

3xj +
X,,

(Hint: Utilize the dual problem.)

[6.5] Consider the following problem:

Maximize 10xj + 24x2 +
subject to xj + x2 +

2xj + 4x2 +
X\, *2'

3x2
9x2
2x2
x2,

20x3

2x3

3x3

*3>

+ 21x3
+ 25x3 < 15
+ 25x3 < 20

x3 > 0.

+ 20x4 + 25x5

+ 3x4 + 5x5

+ 2x4 + x5
X4, X5

<
<
>

19
57
0.

a. Write the dual problem and verify that (wj, w2) = (4, 5) is a feasible

solution.
b. Use the information in Part (a) to derive an optimal solution to both

the primal and the dual problems.

[6.6] Consider the following problem:

Minimize
subject to

2X]
X,

- 2 x j

Xl,

+ 15x2 + 5x3
+ 6x2 + 3x3
+ 5x2 - 4x3

x2> x3'

+ 6X4
+ X4 >
+ 3x4 <

x4 >

2
-3

0.

a. Give the dual linear problem.
b. Solve the dual geometrically.
c. Utilize information about the dual linear program and the theorems

of duality to solve the primal problem.

[6.7] Consider the following linear programming problem:

Maximize 2xj + 3x2 + 5x3
subject to Xj + 2x2 + 3x3 < 8

Xl - 2x2 + 2x3 < 6
Xj, Χ2, x3 — ^·

Duality and Sensitivity Analysis 321

a. Write the dual problem.
b. Solve the foregoing problem by the simplex method. At each itera-

tion, identify the dual variable values and show which dual con-
straints are violated.

c. At each iteration, identify the dual basic and nonbasic variables,
along with the corresponding 3 x 3 dual basis.

d. Show that at each iteration of the simplex method, the dual objective
is "worsened."

e. Verify that at termination, feasible solutions of both problems are at
hand, having equal objective values and with complementary slack-
ness holding.

[6.8] The following simplex tableau shows the optimal solution of a linear
programming problem. It is known that x4 and x5 are the slack variables in the

first and second constraints of the original problem. The constraints are of the <
type.

Z X] Xj X-^ ΧΛ Χ^ RHS
1
0
0

0 -2 0 - 4 - 2
0 1/4 1 1/4 0
1 -1/2 0 -1/6 1/3

-35
5/2

2

a. Write the original problem.
b. What is the dual of the original problem?
c. Obtain the optimal solution of the dual problem from the tableau.

[6.9] The following refer to a primal-dual (min-max) pair P and D of linear
programming problems in canonical form. Provide a brief explanation with your
answers.

a. If a basic solution to the primal is infeasible and has an objective
value less than the optimal value, then the associated complementary
dual basic solution is feasible. True or False?

b. For the linear program: Minimize {xj : 2xj - x 2 > 0, -2xj +3x2 > -6,
x > 0}, consider the basic feasible solution with a basis comprised of
the columns of Xj and the slack variable in the second constraint.
Give the associated complementary dual basic solution. What can
you say about this pair of primal-dual basic solutions?

c. If P has alternative optimal solutions and if w is any optimal basic

feasible solution for D, then w* must be degenerate. True or False?

d. Let z* be the common (finite) optimal value of P and D. Suppose
that x is a basic infeasible solution to P whose complementary dual
basic solution is feasible. Is it possible that the common objective

value of this pair of primal-dual basic solutions is z*?

e. If P is unbounded, it is possible to change its right-hand-side and
make it have a finite optimum. True or False?

f. Referring to Figure 6.4a, suppose that -c is aligned along -Aj .

Consider the basic solution with basis B = [a2 ,a4 ,a5] . Comment on

322 Chapter 6

the corresponding pair of complementary primal and dual basic solu-
tions with respect to feasibility, optimality, and degeneracy.

[6.10] Consider the problem: Minimize z subject to z - ex = 0, Ax = b, x > 0.
a. State the dual.
b. At optimality, what will be the value of the first dual variable?

Explain.

[6.11] Prove that if a given basic feasible solution to some linear programming
problem is optimal, the same basic vectors will yield an optimal solution for any
right-hand-side vector that lies in the cone spanned by these basic vectors.

[6.12] Consider the problem: Minimize ex subject to Ax = b, x > 0. Let B be a
basis that is neither primal nor dual feasible. Indicate how you can solve this
problem starting with the basis B.
[6.13] Consider the problem: Minimize ex subject to Ax = b, x > 0 where m =

n, c = b ' and A = A'. Show that if there exists an x0 such that Ax0 = b, x0 > 0,

then x0 is an optimal solution. (Hint: Use duality.)

[6.14] Consider the following bounded variables linear program:

Maximize
subject to

X,

- 2 x j
X,

-2
-1

+ x2
+ x2

- x2
< X!

< x2

<
<
<
<

2
0
2
2.

a. Solve the problem graphically in the (xj, x2) space.

b. Give all optimal basic feasible partitions. (Specify sets of basic and
nonbasic variables at optimality.)

c. For the extreme point (xj, x2) = (0, 2), construct the bounded vari-
ables simplex tableau and perform one iteration. Is the resulting
tableau optimal?

d. Graphically verify whether the following is true or false. Starting at
the point where the slack from the second constraint and x2 are
nonbasic at their lower bounds, if one introduces x2 into the basis,
then the resulting basic feasible solution is optimal.

e. Write the dual to the foregoing problem by associating a dual
variable with each of the six inequality constraints.

f. Using the graph of Part (a), compute the set of dual optimal solutions
and determine why or why not the dual has alternative optimal solu-
tions.

g. Graphically add the constraint Xj + x2 < 4 to the problem. Is there a

degenerate optimal dual basic solution? Is there a nondegenerate
optimal dual basic solution?

[6.15] Consider the problem: Minimize ex subject to Ax = b, £ < x < u, where ί
and u are finite.

a. Give the dual.
b. Show that the dual always possesses a feasible solution.

Duality and Sensitivity Analysis 323

c. If the primal problem possesses a feasible solution, what conclusions
would you reach?

[6.16] Show directly that if the primal problem: Minimize ex subject to Ax > b
and x > 0 has no feasible solutions, and if the dual problem has a feasible
solution, then the dual problem is unbounded. {Hint: Use Farkas' Lemma. If the
system Ax > b and x > 0 has no solution, then the system wA < 0, w > 0, wb > 0
has a solution.)

[6.17] Show by duality that if the problem: Minimize ex subject to Ax = b and
x > 0 has a finite optimal solution, then the new problem: Minimize ex subject
to Ax = b' and x > 0 cannot be unbounded, no matter what value the vector b'
might take.

[6.18] The Sewel Manufacturing Company produces two types of reclining
chairs for sale in the Northeast. Two basic types of skilled labor are involved—
assembly and finishing. One unit of the top—of-the-line recliner requires 2 hours
of assembly, 1 hour of finishing, and sells for a profit of $25. A unit of the
second-line recliner requires 1 hour of assembly, 1/2 hour of finishing, and

sells for a profit of $15. Currently there are 120 assembly hours and 85 finishing
hours available to the company. The company is involved in labor negotiations
concerning salary modifications for the coming year. Provide the company with
indications of the worth of an hour of assembly worker's time and an hour of
finishing worker's time.

[6.19] Use the main duality theorem to prove Farkas' Lemma. [Hint: Consider
the following pair of primal and dual problems:

Minimize Ox Minimize wb
subject to Ax = b subject to wA < 0

x > 0. w unrestricted.]

[6.20] Show that if a set of constraints is redundant, then the corresponding dual
variables can only be specified within a constant of addition (that is, if one dual
variable in the set is changed by an amount Θ, then all dual variables in the set
would change by appropriate multiples of Θ).

[6.21] In Figure 6.4b suppose that -c is aligned along - Ap In terms of dual
optimal solution values, derive the right-hand and the left-hand shadow prices
with respect to perturbations in l\, b2, and b^.

[6.22] For the example in Exercise 1.28, what dual variable in the optimal

linear programming solution will yield the equilibrium price p*l Interpret this

using the figure of Exercise 1.28 that shows the supply-demand interaction.

[6.23] Consider a pair of primal and dual linear programs in standard form.
a. What happens to the dual solution if the Ath primal constraint is

multiplied by a nonzero scalar A?
b. What happens to the dual solution if a scalar multiple of one primal

constraint is added to another primal constraint?
c. What happens to the primal and dual solutions if a scalar multiple of

one primal column is added to another primal column?

324 Chapter 6

[6.24] Consider the problem: Maximize ex subject to Ax = b, x > 0. Let z - c ,·,

yy, and bt be the updated tableau entries at some iteration of the simplex

algorithm. Indicate whether each of the following statements is true or false.
Discuss.

a . y t j = -
dxBj

dxj

u dz

b. Zj -Cj = .
1 J Bxj

c. Dual feasibility is the same as primal optimality.
d. Performing row operations on inequality systems yields equivalent

systems.
e. Adding artificial variables to the primal serves to restrict variables

that are really unrestricted in the dual.
f. Linear programming by the simplex method is essentially a gradient

search.
g. A linear problem can be solved by the two-phase method if it can be

solved by the big-M method.
h. There is a duality gap (difference in optimal objective values) when

both the primal and the dual programs have no feasible solutions.
i. Converting a maximization problem to a minimization problem

changes the sign of the dual variables.
j . A linear program with some variables required to be greater than or

equal to zero can always be converted into one where all variables
are unrestricted, without adding any new constraints.

[6.25] Let x* be an optimal solution to the problem: Minimize ex subject to a'x

= bj, i = 1,..., m, x > 0. Let w be an optimal dual solution. Show that x* is also

an optimal to the problem: Minimize (c -w£a)x subject to a'x = bh i = 1,..., m,

ίφ^χ>0, where w*k is the kth component of w*. Discuss.

[6.26] Show that discarding a redundant constraint is equivalent to setting the
corresponding dual variable to zero.

[6.27] Two players are involved in a competitive game. One player, called the
row player, has two strategies available; the other player, called the column
player, has three strategies available. If the row player selects strategy i and the
column player selects strategy j , the payoff to the row player is cy and the

payoff to the column player is -Cy. Thus, the column player loses what the row

player wins and vice versa; this is a two—person zero-sum game. The following
matrix gives the payoffs to the row player:

1 2 3
1
2

2
-3

-1
2

0
1

Duality and Sensitivity Analysis 325

Let Xj, x 2 , and x3 be probabilities with which the column player will select the

various strategies over many plays of the game. Thus xj + x2 + X3 = 1, X\, x2 ,

X3 > 0. If the column player applies these probabilities to the selection of her

strategy for any play of the game, consider the row player's options. If the row

player selects row 1, then her expected payoff is 2xi - x2. If the row player

selects row 2, her payoff is -3xl + 2x2 + x3. Wishing to minimize the maximum

expected payoff to the row player, the column player should solve the following
linear program:

Minimize
subject to

z
X, + X2

zxi — x 2

-3xj + 2x2

*1> x2

x3

*3

= 1
< z
< z

x3 > 0
unrestricted.

Transposing the variable z to the left-hand-side, we get the column player's
problem:

Maximize z
subject to x\

z - 2x\
z + 3x[

X|,

+ x2

+ *2
- 2x2

*2>

+ X3

- x3

x3

z

=
>
>
>

1
0
0
0

unrestricted.

a. Give the dual of this linear program.
b. Interpret the dual problem in Part (a). (Hint: Consider the row

player's problem.)
c. Solve the dual problem of Part (a). (Hint: This problem may be

solved graphically.)
d. Use the optimal dual solution of Part (c) to compute the column

player's probabilities.
e. Interpret the complementary slackness conditions for this two-

person zero-sum game.

[6.28] The following is an optimal simplex tableau for a maximization problem
having all < constraints:

SLACKS

Xi X7 X3 X4 X5 Xf.

~T~]

x3

x5

Give the optimal solution.
Give the optimal dual solution.
Find dzldb\. Interpret this number.

RHS
1
0
0
0

0
1
0
0

0
1
0

-2

0
0
1
0

3
2
1

-1

0
0
0
1

5
1
4
3

Θ
2
2
1

326 Chapter 6

d. Find 9xj / Sx6. Interpret this number.
e. If you could buy an additional unit of the first resource for a cost of

5/2, would you do this? Why?
f. Another firm wishes to purchase one unit of the third resource from

you. How much is such a unit worth to you? Why?
g. Are there any alternative optimal solutions? If not, why not? If so,

give one.
h. Find the objective value Θ.

[6.29] The following are the initial and current tableaux of a linear program-
ming problem:

z
x6
xl

z
1
0
0

*1
1
5
1

x2

6
-4
-1

x3
-1
13
5

X4

a
b
c

x5
5
1
1

x6
0
1
0

x7

0
0
1

RHS
0

20
8

z
x3

x2

z
1
0
0

xl x2 x 3
72/7 0 0
-1/7 0 1

-12/7 1 0

X4 X5

11/7 8/7
-2/7 3/7
-3/7 8/7

x6
Till
-1/7
-5/7

*7
-50/7

4/7
13/7

RHS
60/7
12/7
4/7

a. Find a, b, and c.

b. Find B_1.

c. Find dx21 dx5.

d. Find 9x3/9è2.

e. Find dz/dx6.
f. Find the complementary dual solution.

[6.30] Solve the following linear program by the dual simplex method:

Minimize 2xj
subject to 2x]

Xj,

3x2

2x2

x2

x 2 ,

+ 5x3

+ 3x3

- x3

x3 ,

6x4
X4

3x4

X4

> 3
< -3
> 0.

[6.31] Solve the following problem by the dual simplex method:

Maximize -4xt -
subject to 2x]

X|,

[6.32] Consider the following problem:

5x-Minimize 3xj
subject to Xj

Xj,

l2
+ 2x2

- x2
X 2 ,

6x2

3x2

x 2 ,

x3
x3

2x3
x3,

5x3
3x3 > 3
2x3 > 6

x3 > 0.

2x4

3x4

X4
X4,

- 4x5

+ x5

- x5
x5

< 6
> 3
> 0.

a. Give the dual problem.

Duality and Sensitivity Analysis 327

b. Solve the dual problem using the artificial constraint technique.
c. Find the primal solution from the dual solution.

[6.33] Consider the following linear programming problem:

Maximize 2x\
subject to Xj

3x|
X j ,

- 3x2
+ x2

+ x2
x2

>
<
>

3
6
0.

You are told that the optimal solution is xj = 3/2 and x2 = 3/2. Verify this

statement by duality. Describe two procedures for modifying the problem in
such a way that the dual simplex method can be used. Use one of these
procedures for solving the problem by the dual simplex method.

[6.34] Apply the dual simplex method to the following problem:
Minimize 2w\ + W3
subject to 1/4 wx

8wi
Wj

- 9 w j

Wy,

- 1/2 w2

+ 12w2

+ l/2w2 -
- 3w2

w2,

<
<

- W3 <

<
W3 >

-3/4
20

-1/2
6
0.

[6.35] Suppose that an optimal solution to the problem: Minimize ex subject to
Ax > b, x > 0, exists. Prove the following complementarity theorem.

a. A variable is zero for all primal optimal solutions if and only if its com-
plementary dual variable is positive for some dual optimal solution.

b. A variable is unbounded in the primal feasible set if and only if its
complementary dual variable is bounded in the dual feasible set.

c. A variable is unbounded in the primal optimal set if and only if its
complementary dual variable is zero for all dual feasible solutions.

d. A variable is positive for some primal feasible solution if and only if
its complementary dual variable is bounded in the dual optimal set.

[6.36] Consider the following problem:

: Minimize 2xj - 4x2
subject to xj + x2

- *2
x, x2

>
>
>

2
-5

0

a. Solve P graphically.
b. Give the dual of P. Solve the dual graphically.
c. Illustrate the theorem of the previous exercise for each primal and

dual variable, including slacks.

[6.37] Show that the dual simplex algorithm is precisely the primal simplex
algorithm applied to the dual problem. Be explicit.

[6.38] Show that, in the dual simplex method, if br < 0 and yrj > 0 fory = 1,...,

n, then the dual is unbounded (and the primal is infeasible) by constructing a

328 Chapter 6

suitable direction. (Hint: Consider w = cgB + ÀBr, where Br is the rth row of

B-1.)

[6.39] Given the primal basis in Equation (6.9), show that the complementary
dual basis in Equation (6.10) is invertible and corresponds to the dual solution

(wl,...,wm)= c s B - 1 .

[6.40] In Section 6.5 we showed that the complementary dual basis matrix for
the linear program in standard form is given by

B'

N'

0

*n-m

a. Give the complete starting dual tableau.
b. Give the inverse of this basis matrix.
c. Use the result of Part (b) to develop the dual tableau associated with

this basis matrix.

[6.41] Provide the details and the justification for the lexicographic method and
Bland's method discussed in Section 6.4 for preventing cycling in the dual sim-
plex method.

[6.42] Apply the perturbation technique to the dual simplex method to ensure
finiteness. Specifically consider the following perturbed problem:

Minimize (c + e)x
subject to Ax = b

x > 0.

where ε = (ε ,ε ,...,εη) is a vector formed from the powers of a positive scalar

ε. Compare the derived procedure with the one produced by the lexicographic
method developed in Exercise 6.41.

[6.43] Suppose that the artificial constraint technique (with slack xn+\) is
utilized to find a starting dual solution. Show that if this constraint is tight at
optimality and z„+1 - c„+1 < 0, then the primal problem is unbounded. Explain

in detail the case when this constraint is tight at optimality, but zH+[-c„+ 1 = 0.
How large should M be in order to reach these conclusions? Illustrate your
answer using the problem to minimize X] - x2 subject to -X] + x2 < 1 and x > 0.

[6.44] Show that the artificial constraint technique applied to the primal
problem is precisely the single artificial variable technique (of Chapter 4) with
the big-M method applied to the dual problem and vice versa. (Hint: Consider

the dual of: minimize 0xB + (cN - cgB~ N)xw subject to xB + B~ Nx^ = B~ b,

xB, xN>0.)

[6.45] Apply the primal-dual algorithm to the following problem:

Duality and Sensitivity Analysis 329

Maximize 5xi
subject to 3*1

x\
9xl

X] ,

+ 2x2 + X3 + 4x4 + 6x5

+ 5x2 - 6x3 + 2x4 + 4x5 =
+ 2x2 + 3x3 - 7x4 + 6x5 >
- 4x2 + 2x3 + 5x4 - 2x5 =

Xo ί X"? i X4 5 X5 —

[6.46] Solve the following problem by the primal-dual algorithm:

Minimize 2xj + 2x3 - x4

subject to X] + x2 + X3 + X4

25
2

16
0.

x2

LX\ — X2 + JX3 — ^-X4
<
>
> X[, X 2 , X3, X4

[6.47] Apply the primal-dual method to the following problem:

Minimize
subject to

8xj

Xj

X\,

7x2

x2

x2

x2,

4x 3 + 2 x 4 + 6x5

*3

*3
x3>

X4
X4

X4,

x5

x5,

7x 6

x6

x6
x6

6
5
5
4
2
0.

J6.48] Solve the fol lowing problem by the p r ima l -dua l a lgori thm:

Max imize 2xj + 6x 2

subject to xj + x 2 > 3
Xj + 2x 2 < 3
Xj, x 2 > 0.

[6.49] W h e n is the p r ima l -dua l a lgori thm preferred to the dual s implex a lgo-

r i thm and vice versa?

[6.50] Us ing the restricted (total) Phase I interpretation of the p r ima l -dua l

a lgori thm, g ive the details of a lexicographic cycl ing prevent ion rule. (Hint: See

Sect ion 6.5.)

[6.51] Suppose that at the end of the restricted pr imal p rob lem w e have x 0 > 0

and v*a ■ < 0 for al ly. Us ing Fa rkas ' L e m m a , show that the pr imal p rob lem has

n o feasible solution.

[6.52] Cons ider the fol lowing opt imal tableau o f a maximiza t ion p rob lem

where the constraints are of the < type:

SLACKS

z
x\
*?

*3

z
1
0
0
0

x\
0
1
0
0

*2
0
0
1
0

*3
0
0
0
1

X4

2
-1
2

-1

xs

0
0
1

-2

x6

2
1/2
-1
5

*7
1/10
1/5

0
-3/10

*8
2

-1
1/2

2

RHS
Θ
2
3
1

a. Find the optimal objective value Θ.

330 Chapter 6

b. Would the solution be altered if a new activity x9 with coefficients

(6,0,-3)' in the constraints, and price of 7, were added to the
problem?

c. How large can t\ (the first constraint resource) be made without

violating feasibility?
[6.53] Consider the tableau of Exercise 6.52. Suppose that we add the constraint
2x\ -x2+ 2x3 < 2 to the problem. Is the solution still optimal? If not, find a new
optimal solution.

[6.54] Consider the following linear programming problem and its optimal final
tableau shown below:

Final Tableau:

Maximize
subject to

z
x\
x5

z
1
0
0

\
0
1
0

2*i
x\

-*i
X,,

x2

1
2
3

+ x2 -
+ 2x2 +
+ x2 -

x2,

X-j X4

3 2
1 1

-1 1

*3
*3

2*3
x3

xl
0
0
1

< 8
< 4
> 0.

RHS
16
8

12

a.

b.

c.

d.

Write the dual problem and give the optimal dual variable values
from the foregoing tableau.
Using sensitivity analysis, find a new optimal solution if the
coefficient of x2 in the objective function is changed from 1 to 5.
Suppose that the coefficient of x2 in the first constraint is changed
from +2 to 1/6. Using sensitivity analysis, find a new optimal
solution.
Suppose that the following constraint is added to the problem: x2 +
2x3 = 3. Using sensitivity analysis, find the new optimal solution.

If you were to choose between increasing the right-hand-side of the
first and second constraints, which one would you choose? Why?
What is the effect of this increase on the optimal value of the
objective function?
Suppose that a new activity x6 is proposed with unit return 6 and

consumption vector a6 = (2,1)'. Find a new optimal solution.

[6.55] Develop in detail the rules to conduct sensitivity analyses for the
different cases in Section 6.7 using a revised simplex implementation. Solve
Part (d) of Exercise 6.54 using this implementation. (Hint: See the end of
Section 6.7.)

[6.56] A product is assembled from three parts that can be manufactured on two
machines A and B. Neither machine can process different parts at the same time.
The number of parts processed by each machine per hour are summarized below:

f.

Duality and Sensitivity Analysis 331

MACHINE A MACHINE B
Part 1 10 8
Part 2 16 12
Part 3 - 25

Management seeks a daily schedule (for 8 hrs/day) of the machines so that the
number of assemblies is maximized. Currently the company has three machines
of type A and five machines of type B.

a. Solve the problem.
b. If only one machine can be acquired, which type would you recom-

mend and why?
c. Management is contemplating the purchase of a type A machine at a

cost of $100,000. Suppose that the life of the machine is 10 years and
that each year is equivalent to 2000 working hours. Would you
recommend the purchase if the unit profit from each assembly is $ 1 ?
Why or why not?

[6.57] A farmer has 500 acres of land and wishes to determine the acreage
allocated to the following three crops: wheat, corn, and soybeans. The man-days
required, preparation cost, and profit per acre of the three crops are summarized
below. Suppose that the maximum number of man-days available are 5000 and
that the farmer has $80,000 for preparation.

CROP MAN-DAYS PREPARATION COST $ PROFIT $
Wheat 6 100 60
Corn 8 150 100
Soybeans 10 120 80

a. Find an optimal solution.
b. Assuming an 8-hour work day, would it be profitable to the farmer

to acquire additional help at $3 per hour? Why or why not?
c. Suppose that the farmer has contracted to deliver at least the equiva-

lent of 120 acres of wheat. Use sensitivity analysis to find a new
optimal solution.

[6.58] An airline company wishes to assign two types of its aircraft to three
routes. Each aircraft can make at most two daily trips. Furthermore, 3 and 4
aircraft of types A and B are available, respectively. The capacity of type A
aircraft is 140 passengers and that of type B aircraft is 100 passengers. The
expected number of daily passengers on the three routes is 300, 700, and 220,
respectively. The operating costs per trip on the different routes are summarized
below:

OPERATING COST FOR A GIVEN ROUTE
AIRCRAFT TYPE 1 2 3

A 3000 2500 2000
B 2400 2000 1800

a. Find an optimal solution of the continuous linear programming prob-
lem. Does this solution make any sense?

332 Chapter 6

b. Using the cutting plane algorithm of Section 6.7, find an optimal
integer solution.

[6.59] The tourism department of a certain country would like to decide which
projects to fund during the coming year. The projects were divided into three
main categories: religious, historical, and construction (hotels, roads, recreation
centers, and so on). Three proposals A, B, and C for restoring religious sites are
submitted, with estimated costs of $5, $7, and $4 million, respectively. Four
proposals D, E, F, and G for the restoration of historical sites are submitted with
respective estimated costs of $15, $12, $8, and $9 million. Finally, five proposals
H, I, J, K, and L for constructing new facilities are submitted. These cost $2,
$15, $22, $12, and $15 million, respectively. In order to determine the relative
priority of these projects, experts from the tourism department developed a
scoring model with the following scores for proposals A, B, C, D, E, F, G, H, I, J,
K, L: 5, 6, 2, 7, 11, 1, 7, 2, 10, 9, 5, and 4, respectively. The department decides
that at least one project of each category must be funded. Projects E and F
represent a continuation of a plan that started during the previous year, and at
least one of them must be funded. Furthermore, at most two historical and three
construction projects can be chosen. Which projects should the tourism
department fund in order to maximize the total score and not to exceed $90
million? (Hint: Suppose that project/ is chosen if x = 1 and is not chosen if x-

= 0. First solve the continuous linear program by the bounded simplex method
and then add appropriate cuts.)

[6.60] Assuming c' = c and b' = b, find the maximum allowable tolerances CCQ

and /?Q on variations in the objective coefficients and on the right-hand-sides
respectively, to maintain the (optimal) basis of Exercise 6.54 as optimal. Sup-
pose it is known that the objective coefficient for xl can vary no more than ±30

percent. How does this affect α$? On the other hand, suppose it is known that

the variation βχ in the first constraint is no more than 50 percent of the variation

/?2 in the second constraint. How does this affect /?Q ?

[6.61] Develop in detail the rules to conduct sensitivity analyses for the differ-
ent cases in Section 6.7 for the bounded variables simplex algorithm. Include the
case of changing bounds on variables. To illustrate, consider Example 5.6 in

Section 5.2 and suppose that the column of x2 is changed from (1,1)' to (-1,-1)'.
Update the optimal solution using sensitivity analysis on the given final tableau.
Repeat assuming that the upper bound on x2 is changed from 6 to 1/2. (Hint:
See the end of Section 6.7.)

[6.62] Develop the details of a dual simplex algorithm for the bounded
variables simplex algorithm. Provide convergence arguments. Illustrate by using
this algorithm to update the optimal solution for the sensitivity analysis in-
stances of Exercise 6.61. (Hint: Choose a row of a basic variable that violates its
upper or lower bound as the pivot row, and pick an appropriate pivot column
where the change in the nonbasic variable upon pivoting improves the bound

Duality and Sensitivity Analysis 333

infeasibility in this pivot row, while maintaining dual feasibility. Change this
nonbasic variable until the basic variable in the current row reaches its nearer
bound. Proceed with this same row if infeasibility persists, until it is resolved.)

[6.63] Consider the following algorithm known as the Criss-Cross or the Self-
Dual Method. Suppose that a basic solution to the problem: Minimize {ex : Ax
= b, x > 0} is given. If this is primal feasible, proceed using the primal simplex
algorithm. Similarly, if this is dual feasible, proceed using the dual simplex
algorithm. Otherwise, perform the following type of iteration. If the elements in
a primal infeasible row are all nonnegative, then stop; the primal is infeasible. If
the elements in a dual infeasible column (with z · - c , > 0) are all nonpositive,

stop; the dual is infeasible. Otherwise, perform a primal or dual pivot as follows.
(One can alternate between primal and dual pivots.) For a primal pivot, pick a
nonbasic (dual infeasible) column having z · - c > 0 and find a leaving

variable by performing the usual minimum ratio test, but using only the primal
feasible rows. However, pivot as usual and update the entire tableau. If no such
pivot is possible using any dual infeasible column in this manner, try a dual
pivot. For a dual pivot, pick a primal infeasible row and determine a pivot
column by performing the usual (dual simplex) minimum ratio test, but using
only the dual feasible columns. Again, if a pivot column is available, then pivot
by updating the entire tableau. If no such pivot is possible using any primal
infeasible row in this manner, then try a primal pivot. However, if the primal
pivot was already found to be unperformable, then stop; no (finite) optimal solu-
tion exists.

a. Justify the three termination statements of the algorithm.
b. Illustrate the algorithm using the slack variables as a starting basis in

Example 4.3 of Section 4.2.
c. Show that the algorithm will converge finitely (barring cycling) if a

constraint ΣΓί=\ *; ^ M is added to the problem after a finite number

of iterations (typically after 2(w + m) iterations), where M is
arbitrarily large, and then only the primal pivots are performed until
dual feasibility is achieved, whence the usual dual simplex algorithm
is used.

[6.64] Consider Exercise 6.3. Suppose that the cost vector is modified in the
direction (+1, -1). Using parametric analysis on the cost vector, find the
sequence of optimal solutions.

[6.65] Prove that parametric analysis on the cost vector in a minimization prob-
lem always produces a piecewise-linear and concave function ζ(λ).

[6.66] Prove that parametric analysis on the right-hand-side vector in a mini-
mization problem always produces a piecewise-linear and convex function z(X).

[6.67] Consider the following problem:
Maximize 2xj + 4x2 + 5x3

subject to X] + x2 + 2x3 < 8
x\ - x2 + 3x3 < 4
X\, X2,

 x3 - 0.

334 Chapter 6

a.
b.

c.

Find an optimal solution.
Find a new optimal solution if the cost coefficient c2 changes from 4
to-4 .
Determine optimal solutions as the cost coefficient c2 varies over
the entire real line (-co, co).

[6.68] Consider the following optimal tableau of a maximization problem where
the constraints are of the < type:

SLACKS
. * .

z

*l
x2

*3

z
1
0
0
0

x\
0
1
0
0

x2

0
0
1
0

*3
0
0
0
1

x4

2
-1
2

-1

x5
0
0
1

-2

*6
2

1/2
-1

5

x7
1/10

1/5
0

-3/10

*R
2

-1
1/2

2

RHS
17
3
1
7

ί\-θ where (9 varies Construct the sequence of optimal solutions for b{ ■

between 0 and co.

[6.69] Consider the following problem:
Minimize -X[
subject to X[

- X)

* 1 >

a. Solve the problem by the simplex method.
b. Suppose that the vector c = (-1, 1, -2) is replaced by (-1, 1, -2) +

λ(2, -2, 3) where λ is a real number. Find optimal solutions for all
values of A.

[6.70] Consider the following linear program, where i\ = 2, b2 = 2, and th, =

2/3:

+ zx2
+ x2
+ 2x2

x2,

- zx3

+ 2x3

+ 3x3 x3

<
<
>

6
9
0.

Vlaximize
subject to

*1
*1

2x[

Xj,

+ 2x2

+ 2x2

+ X2
x2
x2

<
<
<
>

A|
A*
*3
0

a. Solve this problem by the simplex method.
b. Using parametric analysis, determine the right-hand and the left-

hand shadow prices with respect to each of l\, Z ,̂ and b^ at their
respective current values.

[6.71] Consider the following primal problem:
Minimize ex
subject to Ax > b

X G X,

where X is a polyhedral set. (Often the set X consists of constraints that are easy
to handle.) Associated with the foregoing primal problem is the following
Lagrangian dual problem:

Duality and Sensitivity Analysis 335

Maximize / (w)
subject to w > 0

where flyv) = wb + minimumxe^· (c - wA)x.

a. Show that if x0 is feasible to the primal problem, that is, Ax0 > b

and x0 e X, and w0 is feasible to the Lagrangian dual problem, that

is, w0 >0, then cx0 > / (w 0) .
b. Suppose that X is nonempty and bounded and that the primal

problem possesses a finite optimal solution. Show that

minimum ex = maximum f(w)
Ax > b w > 0.
xeX

[6.72] Consider the problem: Minimize xj+2x2 subject to 3x]+x 2 >6 ,

-X] + x2 ^ 2, jq + x2 < 8, and X\,x2 > 0. Let X = {x : - x \ + x2 ^ 2, xj + x2 < 8,

xu x2 >0}.

a. Formulate the Lagrangian dual problem, where w is the Lagrangian
multiplier associated with the first constraint in the above problem.

b. Show thatflw) = 6w + minimum {0,4 - 2w, 13 - 14w, 8 - 24w}.
(Hint: Examine the second term in fiw) in Exercise 6.71 and enumer-
ate the extreme points of X graphically.)

c. Plot flw) as a function of w.
d. From Part (c) locate the optimal solution to the Lagrangian dual

problem.
e. From Part (d) find the optimal solution to the primal problem.

[6.73] Prove that if K is a skew symmetric matrix (that is, K = - Κ '), then the

system
Kx > 0, x > 0

possesses at least one solution x such that Kx + x > 0. (Hint: Apply Farkas'
Lemma to the system Kx > 0, x> 0, e.x > 0. Repeat for each j and combine

solutions by summing.)

[6.74] Apply the result of the previous problem to the system:

Ax-rb>0 , x > 0
-wA + re > 0, w > 0

w b - c x > 0 , r > 0 .

a. Use this result to derive the fundamental theorem of duality.
b. Use this result to prove that at optimality there exists at least one pair of

primal and dual optimal points with the property that if a variable in one
problem is zero, then the complementary variable in the other problem is
positive. This is called the strong theorem of complementary slackness,
or the strict complementary slackness property.

336 Chapter 6

c. Illustrate the strong theorem of complementary slackness geometri-
cally. (Hint: Consider a linear program where the objective function
contours are parallel to one of the constraints and alternative optimal
solutions result.)

d. When must the solution to the strong complementary slackness theorem
not occur at an extreme point? (Hint: Consider Part (c).)

[6.75] Consider Beale's example of cycling discussed in Chapter 4 (Example
4.11). Let P denote the problem in which the last constraint in this example is
deleted.

a. Following Example 4.11, construct a sequence of tableaux for Problem
P that exhibit cycling.

b. Write the dual D to Problem P and plot its constraints (in two
dimensions). For each basic feasible solution for Problem P in the cycle
of Part a, exhibit the corresponding complementary dual basis in your
graphical plot.

c. Based on geometrical observations in Part b, devise appropriate rules by
which a traversal of bases in the dual problem would correspond to
cycling among a sequence of bases representing a given vertex in the
primal problem. Discuss how you might use this geometric insight to
construct alternative examples of linear programs that exhibit the
phenomenon of cycling.

NOTES AND REFERENCES

1. John von Neumann is credited with having first postulated the existence
of a dual linear program. His insights came through his work in game
theory and economics together with a strong mathematical component.
Many individuals have continued to develop and extend the basic duality
theorems, notably Tucker [1960a] and A. C. Williams [1970]. Also, see
Dantzig [1982] for his pioneering contributions to duality theory.

2. For more details on shadow prices and relationships with directional
derivatives for nondifferentiable convex functions, see Akgul [1984] and
Bazaraa et al. [2006]. For a related application to marginal cost pricing for an
electric utility, where a closed form derivation for the dual variables is
presented, see Sherali et al. [1984].

3. The dual simplex method was first developed by Lemke [1954].
4. The primal-dual algorithm was developed by Dantzig, Ford, and Fulkerson

[1956]. This development was fostered out of the work of Kuhn [1955] on
the assignment problem. Also, see Paparrizos et al. [2003] for recent
improvements on this approach.

5. The cutting plane application in integer programming presented in Section
6.7 is mainly for illustration. For more up-to-date information on integer
programming methods, see Schrijver [1986], Johnson et al. [1985], Crowder
et al. [1983], and Nemhauser and Wolsey [1998].

6. The tolerance approach to sensitivity analysis presented in Section 6.7 is
from Wendell [1984, 1985a, b]. Also, see Freund [1985] for sensitivity
analysis involving simultaneous changes in constraint coefficients. For a

Duality and Sensitivity Analysis 337

discussion on using sensitivity analyses to handle the effect of uncertainty
versus incorporating uncertainty directly within models, see Higle and
Wallace [2003].

7. The Criss-Cross algorithm presented in Exercise 6.63 is from Zionts
[1969, 1974].

8. Exercise 6.75 uses duality to provide insights into the geometry of cycling
as motivated by Avis et al. [2008].

This page intentionally left blank

SEVEN: THE DECOMPOSITION
PRINCIPLE

This chapter discusses the Dantzig-Wolfe decomposition technique and its
relationships with Benders partitioning and Lagrangian relaxation techniques for
dealing with large-scale and/or specially structured linear programming prob-
lems. It is not unusual in a corporate management model or in a logistics model
to produce a linear program having many thousands of rows and a seemingly
unlimited number of columns. In such problems, some method must be applied
to convert the large problems into one or more appropriately coordinated
smaller problems of manageable size. The Dantzig-Wolfe, Benders, and
Lagrangian relaxation techniques, which are all equivalent for linear program-
ming problems, and which we simply refer to as applying the decomposition
principle, do exactly this.

Even if a linear program is of manageable size, some of its constraints
might possess a special structure that permits efficient handling. In such cases,
we would like to partition the linear program into one part having a general
structure and another part having a special structure in a manner such that a
more efficient solution method can be devised. Again, the decomposition
principle can be applied to such a linear program to achieve the desired effect.

The decomposition principle is a systematic procedure for solving large-
scale linear programs or linear programs that contain specially structured
constraints. The constraints are partitioned into two sets: general constraints (or
complicating constraints) and constraints having a special structure. It will
become apparent that it is not necessary for either set to have special structure,
however, special structure, when available, enhances the efficiency of the
procedure.

The strategy of the decomposition procedure is to operate on two separate
linear programs: one over the set of general constraints and one over the set of
special constraints. Information is passed back and forth between the two linear
programs until an optimal solution to the original problem is achieved. The lin-
ear program over the general constraints is called the master problem, and the
linear program over the special constraints is called the subproblem. The master
problem passes down a continually revised set of cost coefficients (or prices) to
the subproblem, and receives from the subproblem a new column (or columns)
based on these cost coefficients. For this reason, such a procedure is also known
as a column generation method or & price directive algorithm.

We shall begin by assuming that the special constraint set is bounded.
Once the decomposition principle is developed for this case and we have dis-
cussed how to get started, we shall relax the boundedness assumption. We shall
also extend the procedure to problems having multiple subproblems, and exhibit
its relationship with other procedures.

339

340 Chapter 7

7.1 THE DECOMPOSITION ALGORITHM

Consider the following linear program, where X is a polyhedral set representing
specially structured constraints, A is an m x n matrix, and b is an w-vector:

Minimize ex
subject to Ax = b

x e X.

To simplify the presentation, assume that X is nonempty and bounded (this
assumption will be relaxed in Section 7.4). Since X is a bounded polyhedral set,
then any point x e X can be represented as a convex combination of the finite
number of extreme points ofX Denoting these points by Xj,x2,...,x(, any x e X
can be represented as

t
x = Σ Λ-.-χ,-

Σλ: = 1
7=1

Àj > 0, j = l,...,t.

Substituting for x, the foregoing optimization problem can be transformed into
the following so-called master problem in the variables Aj, λ^,..., λ, :

t
Minimize X(c x /)^ · /

7=1

subject to Σ (Axy)Ay = b (7.1)
7=1

Σ λ] = 1 (7.2)
7=1

Aj>0, j = l,...,t. (7.3)

Since t, the number of extreme points of the setX, is usually very large, attempt-
ing to explicitly enumerate all the extreme points χ1,χ2,...,χ/, and explicitly
solving this problem is an onerous task. Rather, we shall attempt to find an
optimal solution to the problem (and hence to the original problem) without
explicitly enumerating all the extreme points.

Application of the Revised Simplex Method

Consider solving the foregoing master problem by the revised simplex method.
Suppose that we have a basic feasible solution λ = {λΒ, λΝ). Further suppose

that the associated (m + 1) χ (m + 1) basis inverse B~ is known (the process of
initialization is discussed in detail in Section 7.3). Denoting the dual variables

corresponding to Equations (7.1) and (7.2) by w and a, we get (w, a) = cgB~ ,

The Decomposition Principle 341

where cB is the cost coefficient vector of the basic variables with c ■ = ex · for

each basic variable λ .■. The basis inverse, the dual variables, the values of the

basic variables, and the objective function value are displayed below, where

S-»-'(ì):
BASIS INVERSE RHS

(w,a)

B-1

ètfb

b

The revised simplex method proceeds by concluding that the current solution is
optimal or else by deciding to increase a nonbasic variable. This is done by first
calculating

TAX;
zk-ck = maximum z ,· - c, = maximum (w,or)

\<j<t \<j<t

j

1 " c x ;
(7.4)

= maximum w Ax. + « - ex..
\<j<t J J

Since zj —è: = 0 for basic variables, then the foregoing maximum is

nonnegative. Thus, if zk -ck = 0, then zj - Cj < 0 for all nonbasic variables and

an optimal solution is at hand. On the other hand, if zk-ck > 0, then the

nonbasic variable Xk may be increased.

Determining the index k using Equation (7.4) directly is computationally

infeasible because t is usually very large and the extreme points x,· correspond-

ing to the nonbasic variables A, are not all explicitly known. Therefore, an

alternative scheme must be devised. Since X is a bounded polyhedral set, the
maximum of any linear objective function over this set will be achieved at one
of its extreme points. Therefore,

maximum (wA - c)x .■ + a = maximum (wA - c)x + a.

To summarize, given a basic feasible solution {λΒ, λΝ) having dual variables

(w, a), we solve the following linear subproblem, which is "easy" because of
the special structure of X:

Maximize (wA - c)x + a
subject to x e X.

Note that the objective function contains a constant. This is easily handled by
initializing the (right-hand-side) value for z to a instead of the normal value of
0. Let \k be an optimal solution to the foregoing subproblem with objective
value zk-ck. If zk-ck = 0, then the basic feasible solution {λΒ, λΝ) is opti-
mal. Otherwise, if zk-ck > 0, then the variable Xk enters the basis. As in the

342 Chapter 7

revised simplex method, the corresponding column | * | is updated by premul-

tiplying it by B giving yk = B giving y^ = B * . Note that y^ < 0 cannot occur since

X was assumed to be bounded, producing a bounded master problem. The

updated column \ k k is adjoined to the revised simplex tableau. The variable

λΒ leaving the basis is determined by the usual minimum ratio test. The basis

inverse, dual variables, and RHS are updated by pivoting at yrk. After updating,

the process is repeated.
We now have all the ingredients of the decomposition algorithm, a sum-

mary of which is given below. Note that the step of solving the master program
provides an improved feasible solution to the overall problem whenever a non-
degenerate pivot is performed, and that the subproblem checks whether z -c,-

< 0 for all A-, or else determines the most positive zk-ck.

Summary of the Decomposition Algorithm

INITIALIZATION STEP

Find an initial basic feasible solution for the system defined by Equations (7.1),
(7.2), and (7.3) (getting an initial basic feasible solution is discussed in detail in
Section 7.3). Let the basis be B and form the following master array where (w,

»-i a) = c#B (recall that èj = cxy), and b = B 1

BASIS INVERSE RHS
(w,a)

B '

c^b

b

MAIN STEP

1. Solve the following subproblem:

Maximize (wA-c)x + a
subject to x e X.

Let \k be an optimal basic feasible solution with objective value
zk-cic. If zk - ck = 0 stop; the basic feasible solution of the last
master step is an optimal solution to the overall problem. Otherwise,
go to Step 2.

The Decomposition Principle 343

2. Let y t = B] * , and adjoin the updated column * k to the

master array. Pivot at yrk where the index r is determined as follows:

br ■ ■ f bi Λ
-1— = minimum < —— :yik > 0 >.
yrk \<i<m+\ [yik J

This updates the dual variables, the basis inverse, and the right-
hand-side. Repeat Step 1 using the resulting updated master array.

Some Remarks on the Decomposition Algorithm

1. Note that the foregoing algorithm is a direct implementation of the
revised simplex method, except that the calculation of zk - ck is per-
formed by solving a subproblem. Therefore, the algorithm converges
in a finite number of iterations, provided that a cycling prevention
rule is used in both the master step and the subproblem in the pres-
ence of degeneracy.

2. At each iteration, the master step provides (at a nondegenerate pivot
step) a new improved basic feasible solution for the system given by
Equations (7.1), (7.2), and (7.3) by introducing the nonbasic variable
Xk that is generated by the subproblem. At each iteration, the sub-
problem provides an extreme point xk, which corresponds to an updated

column , and hence, as pointed out previously, this proce-
zk~ck

yk
dure is sometimes referred to as a column generation method.
At each iteration, a different dual vector is passed from the master
step to the subproblem. Rather than solving the subproblem anew at
each iteration, the optimal basis of the last iteration could be utilized
by modifying the cost row.
At each iteration, the subproblem need not be completely optimized.
It is only necessary that the current extreme point \k satisfies zk -

ck = (wA-c)x t + a > 0. In this case, Xk is a candidate to enter the
basis of the master problem.
If the master constraints are of the inequality type, then we must
check the z ,· - c .· for nonbasic slack variables in addition to solving

the subproblem. For a master constraint i of the < type having an
associated slack variable sh we get

zs,·-c*,· = (* .«) (o) - 0 = w / ·

344 Chapter 7

Thus, for a minimization problem, a slack variable associated with a
< constraint is eligible to enter the basis if w, > 0. (Note that the

entry criterion is w, < 0 for constraints of the > type.)

It should be clear that if there are other variable columns that are
explicitly maintained in the master problem in addition to the λ -
variable columns or the slack columns, then like the latter, these
columns also may be priced using the simplex multiplier vector (w,
a) in the usual manner in order to test for their eligibility to enter the
basis. (See Exercise 7.20.)

6. Assume that the original linear program is feasible and that A i s m x
n of rank m, so that the master problem has basic feasible solutions
with bases of size (m + 1) x (m + 1). Since there are m linearly
independent constraints Ax = b binding at every feasible solution, we
are searching for an optimum over some p = (n - m) dimensional

subset of X. Hence, at an optimal extreme point solution x* to the
original linear program, (at least) some p linearly independent

constraints defining X must be binding. Consequently, x* lies on (at
most) some (n - p) = m dimensional face of X. From the discussion
of Chapter 2 it follows that since this face is itself (at most) an m-
dimensional polytope with its vertices being a subset of the vertices

of X, we can manage to represent x using at most (m + 1) vertices
of X. Hence, we will need at most (m + 1) positive λ-variables at
optimality. This of course concurs with the size of the master
problem basis.

On this (at most) m dimensional face of X, there may be several

ways of representing x* in terms of at most (m + 1) extreme points
of X. Computationally, it so turns out that one can usually achieve a
convex combination of a set of extreme points of X that brings the
resulting solution to within 1-5 percent of optimality fairly quickly.
However, it has been observed on many classes of problems that the
tail-end convergence rate in obtaining a more exact representation
for an optimal solution can be very slow. (The algorithm need not
produce an extreme point optimal solution for the original problem
when alternative optima exist.) Hence, in practice, the procedure is
frequently terminated once it comes to within 1-5 percent of
optimality. The next discussion provides a useful construct for
implementing such a termination criterion. In addition, Exercises
7.42 and 7.43 describe certain stabilized column generation
implementation techniques to improve the convergence behavior of
the Dantzig-Wolfe decomposition method in particular, and of
column generation procedures in general (also, see the Notes and
References section).

The Decomposition Principle 345

Calculation and Use of Lower Bounds

Recall that the decomposition algorithm stops when maximum z ■ - c = 0.

Because of the enormous number of variables (λ\, λ^,..., \), continuing the compu-
tations until this condition is satisfied may be exceedingly time-consuming for
large problems.

We shall develop a lower bound on the objective value for any feasible
solution to the overall problem, and hence, a lower bound on the optimal objective
value. Since the decomposition algorithm generates feasible points having
nonworsening objective values via the master problem, we have a sequence of
nonincreasing upper bounds. Hence, we may stop when the difference between
the objective value of the current feasible point and the available lower bound is
within an acceptable tolerance. This may not give the true optimal solution, but
will guarantee a good feasible solution, within any desired accuracy from the
optimum. Consider the following subproblem:

Maximize (wA - c)x + a
subject to x e X,

where w is the dual vector passed from the master step. Let the optimal objec-
tive value of the foregoing subproblem be zk-ck. Now, let x be any feasible
solution to the overall problem, that is, Ax = b and x e X. By the definition of
zk-ck, and because x e X, we have

{wA-c)x + a<(zk-ck).

Noting that Ax = b, this inequality implies that

cx>v/Ax-(zk-ck) + a = yvb + a-(zk-ck) = cBb-(zk-ck).

Since this is true for each x e Xwith Ax = b, then

minimum ex > èBb - (zk - ck).
Ax=b

In other words, cBb-(zk -ck) is a lower bound on the optimal objective value
for the overall problem. Note that cBb is the current best upper bound. How-
ever, the lower bounds thus generated need not be monotone and we need to
maintain the best (greatest) lower bound.

7.2 NUMERICAL EXAMPLE

Consider the following problem:

346 Chapter 7

Figure 7.1. Representation of Xby two sets.

Minimize
subject to

- 2 x [
x\
x\
x\
x\

X\,

- x2

+ x2

+ 2x2

*2>

+
*3
x3

x3
2x3

x3,

+

+

+
+

X4

< 2
2x4 < 3

< 2
< 5

x4 < 2
x4 < 6
x4 > 0.

Note that the third and fourth constraints involve only xj and x2, whereas the

fifth and sixth constraints involve only x3 and x4 (we shall have more to say

about this special structure later). If we let X consist of the last four constraints
in addition to the nonnegativity restrictions, then minimizing a linear function
over X becomes a simple process, since the subproblem can be decomposed into
two subproblems. Therefore, we shall handle the first two constraints as Ax < b,

where A = 1 0 1 0
1 1 0 2 , and the remaining constraints as x e X. Note

that any point (xj,x2,x3,x4) inXmust have its first two components and its last

two components in the respective sets Χχ and X2 that are depicted in Figure

7.1.

Initialization Step

The problem is reformulated as follows, where x],x2,...,x/, are the extreme

points ofX, è: = ex .· fory = \,...,t, and s > 0 is the slack vector:

The Decomposition Principle 347

Minimize Σ c -A ■
7=1

t
subject to Σ (Ax ,·)A ,· + s

7=1

Aj > 0,

s > 0.

b

1

j = \,-,t

Let the starting basis consist of s and λ\ where Xj = (0, 0, 0, 0) is an extreme

point of X with CX[= 0. Therefore,

[Ί
0
0

0
1
0

0]
0
1

The vector (w,or) = c s B

B

0B _ 1 =0 , and b = B_ 1 This gives the

following tableau, where the first three columns give (wl,w2,a) in row 0 and

B in the remaining rows:

BASIS INVERSE RHS
z

51
s2

\

0
1
0
0

0
0
1
0

0
0
0
1

0
2
3
1

Iteration 1

SUBPROBLEM

Solve the following subproblem:

Maximize (wA - c)x + a
subject to x e X.

Here, {w^,w2) = (0, 0) from the foregoing array. Therefore, the subproblem is
as follows:

Maximize 2xj + x2 + χτ, - x$ + 0
subject to x e X.

This problem is separable in the vectors (xi,x2) and (x3,x4) and can be solved
geometrically. Using Figure 7.1, it is easily verified that the optimal solution is
x2 = (2,3/2,3,0) with objective value z2 -c2 = 17/2. Since z2-c2= 17/2 > 0,

348 Chapter 7

then λχ corresponding to x2 is introduced into the basis. The lower bound

equals c5b - (z2 - c2) = 0 -17/2. Recall that the best objective value so far is 0.

MASTER STEP

z2 _^2 = 17/2, and

Ax7
1 0 1 0
1 1 0 2

Γ 2 " 3/2
3
0

5
7/2

Accordingly,

Ax2

1

-1

5
7/2

1

is updated by premultiplying by B . This yields

y 2 = B

We therefore insert the column

5
7/2

1
= 1

5
7/2

1
=

5
7/2

1

z 2 ~ c 2

. ?2
=

"17/2"
5

7/2
1

into the foregoing array and pivot. This leads to the following two tableaux (the
À2 column is not displayed after pivoting):

BASIS INVERSE RHS A.
z

*1
s2
4

z

s2

0 0 0
1 0 0
0 1 0
0 0 1

BASIS INVERSE
-17/10 0

1/5 0
-7/10 1

-1/5 0

0
2
3
1

0
0
0
1

RHS
-17/5

2/5
8/5
3/5

17/2

7/2

The best-known feasible solution to the overall problem is given by

The Decomposition Principle 349

= (3/5) (0,0,0,0) + (2/5)(2,3/2,3,0) = (4/5,3/5,6/5,0).

The current objective value is -17/5 . Also,(w\,w2,a) = (-17/10,0,0).

Iteration 2

Since wj < 0, Sj is not eligible to enter the basis.

SUBPROBLEM

Solve the following problem:

Maximize (wA-c)x + «
subject to x e X,

where

w A - c = (-17/10,0) 1 0 1 0
1 1 0 2 (-2,-1,-1,1) = (3/10,1,-7/10,-1).

Therefore, the subproblem is as follows:

Maximize (3/10) xx + x2 - (7/10) x3 - x4 + 0
subject to xeX.

This problem decomposes into two problems involving (x\,x2) and (x3,x4).

Using Figure 7.1, the optimal solution is x3 =(0,5/2,0,0) with objective value

z3 - c3 =5/2. Since Z3 - c3 > 0, then A3 is introduced into the basis.

The lower bound is cgb - (z3 - c3) = -17/5 - 5/2 = -5.9. (Recall that the
best-known objective value so far is -3.4.)

MASTER STEP

z3 - c3 = 5/2, and

A x i
Ì 0 1 0
1 1 0 2

" 0 "
5/2
0
0

" 0
5/2

y 3 = B
Ax3

1

1/5 0 0"
7/10 1 0
-1/5 0 1

" 0 "
5/2

1
=

" 0 "
5/2

1

350 Chapter 7

We therefore insert the column into the foregoing array and pivot.
Z3-C3

This leads to the following two tableaux (the A3 column is not displayed after

pivoting):

z

h
s2

BASIS INVERSE RHS
-17/10 0 0

1/5 0 0
-7/10 1 0

-1/5 0 1

-17/5
2/5
8/5
3/5

A.
5/2

0

BASIS INVERSE RHS
-6/5 0

1/5 0
-1/5 1
-1/5 0

-5/2
0

-5/2
1

-49/10
2/5
1/10
3/5

z

h
si

h
The best-known feasible solution to the overall problem is given by

X = /l2X2+/Ì3X3

= (2/5) (2,3/2,3,0) + (3/5) (0,5/2,0,0) = (4/5,21/10,6/5,0).

The current objective value is -4.9. Also,{w\,w2,a) = (-6/5,0,-5/2).

Iteration 3

Since wj < 0, S\ is not eligible to enter the basis.

SUBPROBLEM

Solve the following subproblem:

Maximize (wA-c)x + a
subject to x e X,

where

w A - c = (-6/5,0) 1 0 1 0
1 1 0 2 -(-2,-1,-1,1) = (4/5,1,-1/5,-1).

Therefore, the subproblem is as follows:

Maximize (4/5) xl+x2- (1/5) x3 - x4 - 5/2
subject to x e X.

Using Figure 7. 1, the optimal solution is x4 = (2,3/2,0,0) with objective value

Z4 - c 4 = 3/5, and so, A4 is introduced into the basis.

The Decomposition Principle 351

The lower bound is given by c s b - (z4 - c4) = —49/10 - 3/5 = - 5.5. Recall

that the best-known objective value so far is -4.9. If we were interested only in
an approximate solution, we could have stopped here with the feasible solution
x = (4/5,21/10,6/5,0), whose objective value is -4.9.

MASTER STEP

z4 - c 4 =3/5, and

Axd =
Ì 0 1 0
1 1 0 2_

Γ2]
3/2
0
0

" 2 "
7/2

The updated column y4 is given by

y 4 = B "
Ax4

1

1/5 0 0
1/5 1 -5/2
1/5 0 1

2
7/2

1
=

2/5
3/5
3/5

We therefore insert the column 4 4 in the foregoing array and pivot. This

leads to the following two tableaux (the A4 column is not displayed after

pivoting):

z

s2

BASIS INVERSE
-6/5 0 -5/2
1/5 0 0

-1/5 1 -5/2
-1/5 0 1

RHS
-49/10

2/5
1/10
3/5

3/5
2/5

3/5

BASIS INVERSE
-1 -1 0
1/3 -2/3 5/3

-1/3 5/3 -25/6
0 -1 7/2

RHS
-5
1/3
1/6
1/2

h

The best-known feasible solution to the overall problem is given by

X — ^9X7 +Λ3Χ3 + / t 4 X 4

= (1/3) (2,3/2,3,0) + (1/2) (0,5/2,0,0) + (1/6) (2,3/2,0,0) = (1,2,1,0).

The objective value is - 5 . Also, (w\,w>2, ci) = (-1,-1,0).

Iteration 4

Since wj < 0 and w2 < 0, neither η nor s2 is eligible to enter the basis.

352 Chapter 7

SUBPROBLEM

Solve the following subproblem:

Maximize (wA - c)x + a
subject to x e X,

where

w A - c = (- l , - l) 1 0 1 0
1 1 0 2 (-2,-1,-1,1) = (0,0,0,-3).

Therefore, the subproblem is as follows:

Maximize Oxj + 0x2 + 0x3 - 3x4 + 0

subject to x e X.

Using Figure 7.1, an optimal solution is x5 =(0,0,0,0) with objective value

z5-c5 = 0, which is the termination criterion. Also, note that the lower bound is

c s b - (z 5 - c 5) = - 5 - 0 = -5 , which is equal to the best (and therefore optimal)

solution value known so far.
To summarize, the optimal solution is given by (xi,x2,x3,x4) = (1,2,1,0)

with objective value - 5 . The progress of the lower bounds and the objective
values for the primal feasible solutions generated by the decomposition
algorithm is shown in Figure 7.2. Optimality is reached at Iteration 4. If we were
interested in an approximate solution, we could have stopped at Iteration 3, for
example, since we have a feasible solution with an objective value equal to
-4.9, and meanwhile are assured (by the lower bound) that there exists no
feasible solution having an objective value less than -5.5.

The optimal solution (x1;x2,X3,X4) = (1,2,1,0) is shown in Figure 7.3 in

the two sets X\ and X2. Note that (1, 2) is not an extreme point of X{ and (1,

0) is not an extreme point of X2. Note, however, that we can map the master

constraints

Xl + x3 < 2
x\ + x2 + 2x4 ^ 3

into the (xi,X2) space by substituting x3 = 1 and x4 = 0. This leads to the two

restrictions X\ < 1 and xj +x2 < 3, which are shown in Figure 7.3. We see that

(1, 2) is an extreme point of X\ intersected with these two additional constraints.

Similarly, in the (x3,x4) space, by substituting the values Xj = 1 and x2 = 2, the

master constraints reduce to x3 < 1 and 2x4 < 0. Again, (1, 0) is an extreme

point of X2 intersected with these additional constraints. It is worthwhile

The Decomposition Principle 353

Iteration

Figure 7.2. Progress of the primal objective values and the lower bounds.

Figure 7.3. Illustration of the optimal solution.

noting that the decomposition algorithm may not provide an optimal extreme
point of the overall problem if alternative optima exist. The reader may refer to
Exercise 7.13.

7.3 GETTING STARTED

In this section, we describe a method for obtaining a starting basic feasible solution
for the master problem using artificial variables, if necessary. These artificial
variables are eliminated by the use of Phase I or by the big-M method. If there
is a positive artificial variable at termination, then the overall problem has no
feasible solution.

Inequality Constraints

Consider the following problem:

354 Chapter 7

Minimize £ (cx.)A,·
7=1
/

subject to X (Axj)Àj < b

Σ Α , = 1
7=1

A, > 0, j = l,...,t.

If there is a convenient Xj e X with Axj < b, then the following basis is at

hand, where the identity corresponds to the slack vector s > 0:

B
"I

0

Axj

1 B"
I

0

- A X]

1

The initial array is given by the following tableau:

BASIS INVERSE RHS

z
s

Now, suppose that there is no obvious x e X with Ax < b. In this case, after
converting the master problem to equality form by adding appropriate slack
variables, the constraints are manipulated so that the RHS values are nonnega-
tive. Then artificial variables are added, as needed, to create an identity matrix.
This identity matrix constitutes the starting basis. The two-phase or big-M
methods can be used to drive the artificial variables out of the basis.

0
I
0

CXi

-Axj

1

» !
b - Axj

1

Equality Constraints

In this case, m + 1 artificial variables can be introduced to form the initial basis,
and the two-phase or the big-Ai method can then be applied.

7.4 THE CASE OF AN UNBOUNDED REGION X

For an unbounded set X, the decomposition algorithm must be slightly modified.
In this case, points in X can no longer be represented only as a convex combina-
tion of the extreme points, but rather as a convex combination of the extreme
points plus a nonnegative linear combination of the extreme directions. In other
words, x e X if and only if

The Decomposition Principle 355

Σ X-jXj + Σ Mjdj

ΣΑ;=1

Ay>0,

^•>o,
7=1,··

7=1,·

.,?

.,*

where X],x2,...,x?, are the extreme points ofX, and d i ,d 2 , . ,d^ are the extreme
directions of X. The primal problem can be transformed into a so-called master
problem in the variables λ^,λι,.,.,λ, and μ^,μ^,—,μ^ as follows:

Minimize Σ (cxy)Ay + X (cdy)/^-
7=1 7=1

t £
subject to Σ (AxyHy + Σ (Ady)//,· =b (7.5)

7=1 7=1

Σ Ay = 1 (7.6)
7=1

Ay>0, y = l,...,i

MjZO, j = \,...,L

Because t and i are usually very large, we shall attempt to solve the foregoing
problem by the revised simplex method. Suppose that we have a basic feasible
solution for the foregoing system with basis B, and let w and a be the dual vari-
ables corresponding to Constraints (7.5) and (7.6), respectively. Hence, B~ ,

(w,a) = cgB~ (cg is the vector of cost coefficients for the basic variables), and

b = B~ , I are known, and are displayed below:

BASIS INVERSE RHS

(w,a)

B-1

cBb

b

Recall that the current solution is optimal to the overall problem if z ■ - c . < 0

for each variable. In particular, the following conditions must hold at optimality:

Xj nonbasic: 0 > z
7 7

(w,a) Ax J - ex · = wAx · + a - ex ■ (7.7)

μj nonbasic => 0 > z - c ■ = (w, a) Ad
Q ;] - c d , = w A d , - c d , . (7.8)

356 Chapter 7

Since the number of nonbasic variables is very large, checking Conditions (7.7)
and (7.8) by generating the corresponding extreme points and directions is
computationally intractable. However, we may determine whether or not these
conditions hold by solving the following subproblem. More importantly, as this
subproblem is solved, we shall see that if the Conditions (7.7) or (7.8) do not
hold, then a nonbasic variable having a positive zk-ck, and hence eligible to
enter the basis, will be found.

Maximize (wA - c)x + a
subject to XGX.

First, suppose that the optimal objective value for this subproblem is unbounded.
Recall that when this occurs, an extreme direction d^ is found such that

(wA-c)dj >0. This means that Condition (7.8) is violated. Moreover, zk -ck

= (wA-c)dj > 0 and μ/ί is eligible to enter the basis. In this case, * is

updated by premultiplying by B~ , and the resulting column k k is inserted in
\ Vk)

the foregoing array and the revised simplex method is continued.
Next, consider the case where the optimal solution value is bounded. A

necessary and sufficient condition for boundedness is that (wA - c)d · < 0 for

all extreme directions, and so, Condition (7.8) holds true. Now, we check
whether Condition (7.7) holds true. Let xk be an optimal extreme point and

consider the optimal objective value, zk-ck, to the subproblem. If zk-ck < 0,

then by the optimality of xk, for each extreme point x ■ of X, we have

(wA-c)x,· + a<(wA-c)xk + a =zk-ck < 0,

and hence, Condition (7.7) holds true and we stop with an optimal solution to
the overall problem. If, on the other hand, zk-ck > 0, then Ak is introduced

into the basis. This is done by inserting the column * * into the foregoing
I y*)

array and pivoting, where yk = B~ k . Note that, as in the bounded case, if

the master problem includes slack or other explicitly present variables, then the
(zj - e,-)-values for these variables must be (explicitly) checked before

deducing optimality. Also, the bounded subproblems yield lower bounds as for
the previous case.

To summarize, solving the foregoing subproblem leads us either to
terminate the algorithm with an optimal solution, or else to identify an entering
nonbasic variable. We now have all the ingredients for a decomposition

The Decomposition Principle 357

Figure 7.4. Illustration of an unbounded X.

algorithm for the case of an unbounded set X. Example 7.1 illustrates such an
algorithm. We ask the reader in Exercise 7.12 to write a step-by-step procedure
for this case.

Example 7.1

Minimize -x\ - 2x2 - XT,
subject to xj + x2 + Xj ^ 12

-X\ + x2 < 2
-x, + 2x2 < 8

x3 < 3
X j , X2 5 X3 — U.

The first constraint is handled as Ax < b, and the rest of the constraints are taken
to define X. Note that X decomposes into the two sets displayed in Figure 7.4.
The problem is transformed into ^,.,.,λ, and μ\,...,μ(as follows:

/ i
Minimize Σ (Cx/Hy + Σ (cdy)/^,·

y=i y=i

subject to Σ(Αχ7·)Α7· + Σ (Ad,)/^· <b
7=1 7=1

Σ ^ · = ΐ

Ay>o, 7 = 1,...,/
/ iy>0, j = l,...J.

358 Chapter 7

Note that Xj = (0, 0, 0) belongs to X and Axj = 0 + 0 + 0 < 12. Therefore, the

initial basis consists of \ (corresponding to X[) plus the slack variable s. This

leads to the following array, where w = a =0:

BASIS INVERSE RHS

0 0
1 0
0 1

0
12

1

Iteration 1

SUBPROBLEM

Solve the following subproblem:

Maximize (wA - c)x + a

subject to x e X.

Since w = a = 0 and A = (1, 1, 1), this problem reduces to the following:

Maximize xj + 2x2 + x3 + 0
subject to -xj + x2 < 2

-x, + 2x2 < 8
x3 < 3

X], x 2 , Χ3 ^ 0.

Note that the above problem decomposes into two problems in (xl,x2) and x3.

The optimal value of x3 is 3. The other part of the problem can be solved

geometrically or by the simplex method, where x4 and x5 are the slack

variables. The simplex method yields the following tableau:

Z ΧΆ Xy XA XK RHS
1
0
0

- 1 - 2 0 0
-1 (1) 1 0
- 1 2 0 1

0
2
8

This problem is unbounded by noting the X] column. Suppose, however, that we

continue by introducing x2 via Dantzig's Rule for the simplex method to obtain

the following sequence of tableaux:

Z X] Xj XA Xs. RHS
1
0
0

- 3 0 2 0
- 1 1 1 0
0 0 - 2 1

4
2
4

The Decomposition Principle 359

z
x2
x\

z
1
0
0

x\
0
0
1

x2
0
1
0

x^
-A
-1
-2

x5

3
1
1

RHS
16
6
4

Now, as ;t4 increases by one unit, z increases by four units, x\ increases by two

units, and x2 increases by one unit; that is, in the (X],x2) space we have found

(2\
a direction d leading to an unbounded objective value. In the (xl,x2,x^)

space, d] is given by (2,1,0)' (why?). Also, (wA-c)dj =4 (the negative of

-4 in row 0 under x4) and so, μ\ is introduced into the basis.

MASTER STEP

zj - cj = 4 , and

Adj =(1,1,1)
f^\

v«y

y i = fi-
l i Ad,

0

-1 :„ where B is obtained from the initial array of the master problem. In particu-
lar,

yi =

We therefore introduce the column | ' ' | in the master array and pivot. (The

"1 0"
0 1

"3"
0 =

"3"
0

//^column is not displayed after pivoting.)

BASIS INVERSE RHS

\

4

0 0
1 0
0 1

0
12

1

BASIS INVERSE Rl·
-4/3 0

1/3 0
0 1

IS
-16

4
1

£L
4

360 Chapter 7

Iteration 2

w = -4/3 and « = 0. Because w < 0, s is not a candidate to enter the basis.

SUBPROBLEM

Solve the following subproblem:

Maximize (wA - c)x + a

subject to x e X.

This reduces to the following:

Maximize -(l/3)X[+ (2/3) x2 + 0
subject to -Χ[+ x2 < 2

-X\ + 2 x 2 < 8
Χχ, Χ2 - 0·

Here, the value a = 0 is added to only one of the subproblems. Obviously, x3 =

0 at optimality above. The above problem in the variables (x1?x2) is solved by

utilizing the corresponding tableau of the last iteration, by deleting row 0 and
introducing the new costs as follows:

Σ Xi Xy XA Χξ RHS
1
0
0

1/3 -2 /3 0 0
0 1 - 1 1
1 0 - 2 1

0
6
4

To put this tableau in canonical form, we multiply row 1 by 2/3 and row 2 by

-1/3 and add to row 0 to obtain the following tableau:

Z Xi X T XA X< RHS
1
0
0

0 0 0 1/3
0 1 - 1 1
1 0 - 2 1

8/3
6
4

The foregoing tableau is optimal (not unique). The optimal objective value of

the subproblem is (z2 - c 2) = 8/3 > 0, and so, λχ corresponding to x2 = {x\, x2,

x3) = (4, 6, 0) is introduced into the basis. A lower bound on the problem is now

available as c ^ b - (z 2 - c 2) = -16 -8 /3= -56/3.

MASTER STEP

z2-C2= 8/3, and

Maximize -(1/3) x3

subject to 0 < x3 < 3.

Ax2 =10

The Decomposition Principle 361

y 2 = B
-1 Ax2

1
1/3 0"

0 1
10/3

1

We therefore introduce 2 2 into the master array and pivot. (The λ^-

column is not displayed after pivoting.)

BASIS INVERSE RHS

z
Ml

Ml
h

-4/3 0
1/3 0
0 1

-16
4
1

BASIS INVERSE RHS
-4/3 -8/3

1/3 -10/3
0 1

-56/3
2/3

1

h
8/3

Observe that the known lower bound of -56/3 matches with the revised upper
bound above, and hence an optimum is at hand. Let us verify this nonetheless.

Iteration 3

Note that w = -4 /3 did not alter from the last iteration. Hence, 5 is still not a

candidate to enter the basis. Also, the optimal solution of the last subproblem
remains the same (see Iteration 2). The objective value of 8/3 was obtained for
the previous dual solution with a = 0. For a - -8/3 we have Z3 - c3 = 8/3 - 8/3
= 0, which is the termination criterion, and the optimal solution is therefore at
hand. More specifically, the optimal solution x* is given by

V;
4

1 6
0

+ Mdi

+ (2/3)
2
1
0

=

16/3
20/3

0

The optimal objective value is -56/3.

7.5 BLOCK DIAGONAL OR ANGULAR STRUCTURE

In this section, we discuss the important special case when the set X has a block
diagonal structure. In this case, X can itself be decomposed into several sets
Xl,X2,:.,Xr, each involving a subset of the variables that do not appear in any
other set. If we decompose the vector x accordingly into the vectors
Xj,x2,...,X7·, the vector c into Cj,C2,..-,Cy, and the matrix A of the master con-
straints Ax = b into the matrices A], Α2,..., Α7·, we get the following problem:

362 Chapter 7

+ C7-X7·

+ ATxT = b
< bj

< b 2

X] , X 2 , · · . , X7- > 0 ,

where X,· = {x, :B,x; <b ; ,x ; > 0} for i = \,...,T.

Problems having the foregoing structure arise frequently in network
flows with several commodities (see Chapter 12) and in the allocation of scarce
resources among competing activities. Problems of this structure can be solved
by the decomposition algorithm of this chapter (see Section 7.2 and Example
7.1). However, this block diagonal or angular structure of X can be exploited
further, as will be discussed in this section.

For subproblem i, x, ε Xt if and only if

'■■ Λ

X,· = Σ % x y + Σ ftijA,j

h
Σ % = 1

7=1
%>0, j = l,...,tj

where xy, y = 1,...,/,, and d„·, j = !,...,£j, are respectively the extreme points

and the extreme directions (if any exist) of Xt. Replacing each x,· by the

foregoing representation, the original problem can be reformulated as the
following master problem:

T ti T lt

Minimize Σ Σ (c^ /Hy + Σ Σ (c,d; Λμί ·
ι=1 y=l i=\j=\

subject to Σ Σ (A;Xy)Xtj + Σ Σ (A;d,)M y = b (7.9)
i=ij=i /=iy=i

Σ % = 1 i = l,...,T (7.10)

^j^ 0, J = \,...,ti, Ì = \,...,T

Mij>0, j = l,...,ti, i = l,...,T.

Note the difference in the foregoing formulation and that of Section 7.2. Here,
we allow different convex combinations and linear combinations for each sub-
problem i and we accordingly have T convexity constraints [the constraints of
Equation (7.10)]. This adds more flexibility, but at the same time, increases the
number of constraints from m + 1 to m + T.

Minimize CJXJ + c2x2 +···
subject to AjXi + A2x2 +...

BiXi
B2x2

The Decomposition Principle 363

Suppose that we have a basic feasible solution for the foregoing system
with an (m + T) x (m + T) basis B. Note that each basis must contain at least one
variable L· from each block i (see Exercise 7.32). Furthermore, suppose that

B~ , b = B~ L , (•w,a) = (wl,...,wm,al,...,aT) = cBB~ are known, where cB

is the cost coefficient vector for the basic variables (£y = c;x;y for Ay, and

c,y = c,dy for //«). These are displayed below in a revised simplex tableau:

BASIS INVERSE RHS

(w,a)

B-1

c5b

b

This solution is optimal if z,,· - c,,· < 0 for each variable (naturally z,y - èy = 0

for each basic variable). In particular, the following conditions must hold true at
optimality:

Ay nonbasic => 0 > z(y - èy = wA,-x,y + a,· - c,-x;y (7.11)

//,y nonbasic => 0 > z;,- - èy = wA,d,y - c,-d,y. (7.12)

We can easily verify whether Conditions (7.11) and (7.12) hold true or not by
solving the following subproblem for each / = 1,..., T:

Maximize (wA;· - c;-)x,· + a ;

subject to Xj eXj.

If the optimal objective value is unbounded, then an extreme direction Aik is
found such that (wA,· -c,-)d^ > 0; that is, Condition (7.12) is violated, and μ{ίί

is enterable into the basis because zjk -cik = (wA; -cf)aik > 0. If the optimal
objective value is bounded, then automatically Condition (7.12) holds true for
subproblem /'. Let \ik be an optimal extreme point solution for the subproblem.

If the optimal objective value zik -cik = \νΑ;χ;Α +α, -c,-x^ < 0, then Condition

(7.11) holds true for subproblem i. Otherwise, Àjk can be introduced into the

basis. When all subproblems have zik - cjk < 0, then an optimal solution to the

original problem is obtained. If the master problem contains other explicit
variables including slack variables, then we must also (explicitly) check the
(z,· - c)-values for these variables (as we did in Section 7.1) before

terminating.
To summarize, each subproblem i is solved in turn. If subproblem / yields

an unbounded optimal objective value, then an extreme direction dik is found

whose corresponding variable μΛ is a candidate to enter the master basis. If

364 Chapter 7

subproblem i yields a bounded optimal value and wAj\ik +at -CjXjk > 0, then

an extreme point xjk is found whose corresponding variable Àjk is a candidate

to enter the master basis. If neither of these events occurs, then there is currently
no candidate column to enter the master basis from subproblem i. If no sub-
problem yields a candidate to enter the master basis, then we have an optimal
solution. Otherwise, we must select one (or more) λ - or μ-columns from among
the various candidates to enter the master basis. We may use the rule of
selecting the one having the most positive zik -cjk, or just the first positive
zik ~Cik> a n a s o o n · Ifwe use t n e mie of the first positive zik -cik, then we may
stop solving the subproblems after the first candidate becomes available. On
selecting the candidate, we update the entering column, pivot on the master array,
and repeat the process. Note that we could sequentially enter the generated
candidate columns as necessary, each time selecting the one having the most
positive updated value of zik - cik (if any such enterable column exists),
pivoting to update the master array, and then re-pricing the remaining generated
candidate columns.

Calculation of Lower Bounds for the Case of Bounded Subproblems

Let X!,X2,...,X7· represent a feasible solution to the overall problem so that x; e Xt

for each i and Σ; A;x(= b. By the definition of zik -cik, we have

(wA; -c()x;- +α;· < (zik -cik)

or

c,·*,· > wAji; + «,· - (zik - cik).

Summing on /', we get

XCjX; > wIAj-X,· + Σ « ; - Σ (% ~Cìk).
i i i i

But Zc ; x i =cx a n Q ΣΑ,-χ,- =b. Thus, we get
I i

ex > wb + a\ - Σ (zik - cik)
i

or

cx>cBb-Z(zik-cik).
i

The right-hand-side in this inequality provides a lower bound on the problem.
This is a natural extension of the case for one bounded subproblem presented
earlier.

The Decomposition Principle 365

Example 7.2

Minimize
subject to

- 2 x j
x\

x\

X\,

- x2
+ x2

x2

+ x2
x2

x2,

—
+
+

-

3*3
*3

2x3

x3
x3

*3>

— x4

+ x4 < 6
+ x4 < 4

< 6
< 2

+ x4 < 3
+ x4 < 5

x4 > 0.

The first two constraints are treated as Ax < b, and the rest of the constraints are
taken to represent X. Note that X decomposes into two sets, as shown in Figure
7.5.

The problem is transformed into the following:

h h
Minimize Σ {t*\j)hj + Σ (£2*2j)h.j

7=1 7=1
Ί h

subject to Σ (AjXl7)/ll7- + Σ (A2X2j)h.j - b

7=1 j=\

Σλυ=\
7=1

7=1

where q = (-2,-1), c 2 = (- 3 , - l) , A!

j = \,...,tl

j = l,...,t2

1 1
0 1 , and A2

1 1
2 1

. Note that

xu =(x!,x2) = (0,0) and x21 = (x3,x4) = (0,0) belong to X1 and X2, respec-
tively, and satisfy the master constraints. Therefore, we have a basic feasible
solution for the overall system where the basis consists of sh s2, λλ t , and λ^χ (jj
and s2 are the slacks). This leads to the following master array:

s2
Al

BASIS INVERSE
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

RHS
0
6
4
1
1

366 Chapter 7

Figure 7.5. The region X for Example 7.2.

The first four entries of row 0 give M\, W2, ah and a2, respectively. The matrix

B~ appears under these entries.

Iteration 1

Solve the following two subproblems:

SUBPROBLEM 1 SUBPROBLEM 2

Maximize (w A j - c ^ x j + a i Maximize (w A 2 - c 2) x 2 + « 2
subject to Xj e l i - subject to x2eX2.

Since w = (0, 0) and a = (0, 0), these reduce to maximizing 2xj + x2 + 0 and

maximizing 3x 3 +x 4 +0 over the two respective regions of Figure 7.5. The

optimal solutions are respectively given by x]2 = (xi,x2) = (6, 0), with objective

value 12, and x22 =(^3,^4) = (5, 0), with objective value 15. Thus, (wAj -
cl)xl2 + «i = 12 and (wA2 -c2)x22 +a2 = 15. Therefore, A12 and λτ^ are both

candidates to enter. Select λχχ because z22 - c22 =15 is the most positive. Note

that a lower bound on the problem is 0 - 12 - 15 = -27.

MASTER PROBLEM

Form the column

and note that

z22-c22 =15.

A2x22

0
1

The Decomposition Principle 367

A2X22 =
"1 f

2 1_

"5"

0 =
~5~

10 5

f A Y > A 2 X 2 2
0 =

(5)
10
0

»-i This column is updated by premultiplying by B = I. We therefore insert this
column along with z22 - c22 in the master array and update the current basic
feasible solution by pivoting. (The column for A^2 is not displayed after
pivoting.)

À22_ BASIS INVERSE
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

RHS
0
6
4
1
1

15

é
0
1

hi

h\

Note that w\ = 0, w2 = -3/2, «j = a2 = 0.

0
1
0
0
0

BASIS INVERSE
-3 /2 0 0
-1/2 0 0
1/10 0 0

0 1 0
-1/10 0 1

RHS
-6

4
2/5

1
3/5

Iteration 2

Because s2 just left the basis, it will not be a candidate to immediately reenter.

We next solve the following two subproblems:

SUBPROBLEM 1

Maximize (wAj - c ^ + o ^
subject to Xj e Χ^.

These problems reduce to the following:

SUBPROBLEM 1

Maximize 2x\ -(l/2)x2 +0
subject to (*], x2) e X\.

SUBPROBLEM 2

Maximize (wA2 - c2) x2 + «2
subject to x2 e X2.

SUBPROBLEM 2

Maximize 0x3 - (1/ 2)x4 + 0
subj ect to (JC3, Χ4) e X2.

The optimal solutions are respectively X[3 = (x\,x2) = (6,0), with objective value
Z13 - < Ì3 = (W A i _ c i) x i3 +a\ =12, and x23 = (x3,x4) = (5,0), with objective value
z23 _^23 =(wA2 -C2)x23 + a 2 = 0· Thus, there is no candidate from Subproblem

368 Chapter 7

2 at this time and Xu is a candidate to enter the master basis. The lower bound

available at this stage is -6 - 12 — 0 = —18.

MASTER PROBLEM

Form the column

z 1 3 -c 1 3 =12.

' A l X l 3 ^
1

V ° J

and note that

Alx13
"1 f
0 1

"6n

0 =
"6"

0 ί

fAiXn^
1

I o J
=

r 6 i
0

1

Updating this column, we get

y o = B - 1
Ά , χ ^

v 0 j

0
1

We therefore insert this column along with z^-c^ =12 into the master array
and update the current basic feasible solution by pivoting as follows (the column
for A]3 is not displayed after pivoting):

h.2

0
1
0
0
0

BASIS INVERSE
-3/2 0 0
-1/2 0 0
1/10 0 0

0 1 0
-1/10 0 1

RHS
-6
4

2/5
1

3/5

12

0
1
0

A13

-2
1/6

0
-1/6

0

BASIS INVERSE
-1/2 0 0

-1/12 0 0
1/10 0 0
1/12 1 0

-1/10 0 1

RHS
-14
2/3
2/5
1/3
3/5

Note that M\ = -2, w2 = -1/2, «j = a2 = 0.

The Decomposition Principle 369

Iteration 3

Since wj < 0 and w2 < 0, neither jj nor s2 is a candidate to enter the basis. We

next solve the following two subproblems:

SUBPROBLEM 1 SUBPROBLEM 2

Maximize (wAj -CJ)XJ+a j Maximize (w A 2 - c 2) x 2 + a 2

subject to X j e Z j . subject to x 2 e X 2 -

These problems reduce to the following:

SUBPROBLEM 1 SUBPROBLEM 2

Maximize 0x\ - (3/2)x2 + 0 Maximize 0x3 -(3/2)x4 +0

subject to (x],x2)^X\. subject to (x 3 ,x 4) eX 2 ·

From Figure 7.5, x14 = (x1?x2) = (0, 0), with objective value 0, and x24 = (x3,x4)

= (0, 0), with objective value 0 are optimal solutions. Thus, (wAj -Cj)x14 + «j =

(wA2 -c 2)x 2 4 +cc2 =0 , and an optimal solution has been found. The lower and

upper bounds now match. From the master problem, an optimal solution x* is
given by

χ I = Λΐχ11+/113χ13

3"loJ+3"loj = lvO
= λ2Χ\2Χ +λ22χ22

- Kw-e
Therefore, x* = (xi,x2,x3,x4) = (4, 0, 2, 0) with objective value -14 solves the

original problem.

Economic Interpretation

The decomposition algorithm has an interesting economic interpretation. Con-
sider the case of a large system that is composed of smaller subsystems indexed
by / = Ι,.,.,Τ. Each subsystem i has its own objective, and the objective function
of the overall system is the sum of the objective functions of the subsystems.
Each subsystem i has its constraints designated by the set Xj, which is assumed

to be bounded for the purpose of simplicity. In addition, all the subsystems share
a few common resources, and hence, the consumption of these resources by all
the subsystems must not exceed the availability given by the vector b.

370 Chapter 7

Recalling the economic interpretation of the dual variables (Lagrangian
multipliers), w, is the rate of change of the objective as a function of 6;·. That is,

if bj is (marginally) replaced by ty+A, holding the current nonbasic variables in

the master problem at zero, then the objective value is modified by adding νν,-Δ.

Hence, -w,· can be thought of as the price of consuming one unit of the ith

common resource. Similarly, -α,- can be thought of as the price of consuming a

portion of the rth convexity constraint.
With this in mind, the decomposition algorithm can be interpreted as

follows. With the current proposals of the subsystems, the superordinate (total
system) obtains a set of optimal weights for these proposals and announces a set
of prices for using the common resources. These prices are passed down to the
subsystems, which modify their proposals according to these new prices. A
typical subsystem / solves the following subproblem:

Maximize (wA; - c,·)x,· + «,·
subject to Xj e Xh

or equivalently,

Minimize (c,· - wA;)x(- a;

subject to x; eXj.

The original objective function of subsystem / is c(x;. The term -ννΑ,-χ,· reflects the

indirect price of using the common resources. Note that A;x, is the amount of

the common resources consumed by the proposal x ; . Since the price of using

these resources is -w, then the indirect cost of using them is -wA,-x,·, and the

total cost is (c,· — wA,-)x,·. Note that the term -wA;x, makes proposals that use

much of the common resources unattractive from a cost point of view. Subsys-

tem i announces an optimal proposal xik. If this proposal is to be considered,

then the weight of the older Xy-proposals must decrease in order to "make

room" for this proposal; that is, Σ / % m u s t decrease from its present level of 1.

The resulting saving is precisely a,. If the cost of introducing the proposal xik

is less than the saving realized; that is, if (c; - wA;)xik - al < 0, or

(wA,· -c,-)x,-fc + a,· >0 , then the superordinate would consider this new pro-

posal. After all the subsystems introduce their new proposals, the superordinate

determines an optimal mix of these proposals and passes down new prices. The

process is repeated until none of the subsystems has a new attractive proposal;

that is, when (c,· - wA;)xJ/t - α · > 0 for each ;'.

The Decomposition Principle 371

7.6 DUALITY AND RELATIONSHIPS WITH OTHER
DECOMPOSITION PROCEDURES

The Dantzig-Wolfe decomposition procedure discussed in this chapter is
equivalent for linear programming problems to two other well-known partition-
ing/decomposition/relaxation techniques, namely the Benders decomposition
and the Lagrangian relaxation methods To expose this relationship, consider a
linear programming problem P of the following form. (The choice of equalities
and inequalities is only for the sake of illustration; other forms may be readily
handled.)

P : Minimize ex
subject to Ax = b

X E J V E { X : D X > (1 , X > 0 } ,

where A is m x « and D is m x n. For convenience, let us assume that X is
nonempty and bounded. (We ask the reader in Exercise 7.36 to explore the
following connections for the case of unbounded X.)

Now, let us write the dual D to Problem P. We designate w and v as the
dual variables associated with the constraints Ax = b and Dx > d, respectively.

D : Maximize wb + vd
subject to wA + vD < c

w unrestricted, v > 0.

Observe that when w is fixed at some arbitrary value, we obtain a linear pro-
gramming problem in the variables v. In particular, this linear program may be
specially structured or easy to solve. Assuming this to be our motivation, let us
proceed by partitioning Problem D, while treating the variables w as complicat-
ing variables as follows:

wb + maximum vd

subject to vD < c - wA

v > 0
D: Maximize-

= Maximum-^ wb + minimum (c-wA)xk (7.13)
wunres [xeX J

Here, we have written the dual to the inner optimization problemat the last step,
noting the definition of X. Since X is assumed to be nonempty and bounded, the
inner minimization problem in Equation (7.13) attains an extreme point optimal
solution. Denoting Χι,.,.,χ, as the vertices of Xas before, we have that D is

equivalent to the problem of maximizing {wb + minimumy-=1 ((c-wA)x,·}

over unrestricted values of w. Denoting z as the objective function in {■}, this
may be rewritten as the following master problem.

372 Chapter 7

MP : Maximize z
subjectto z < wb + (c-wA)x · fory = l,...,f (7.14)

z, w unrestricted.

Note that MP is inconvenient to solve directly because it typically has far too
many constraints. Hence, we can adopt a relaxation strategy, in which only a
few of the constraints in Equation (7.14) are explicitly maintained. Suppose that
for such a relaxed master program we obtain an optimal solution (z\w). Then z"
is an upper bound on the optimal value to the original problem (why?). Further-
more, (z,w) is optimal for MP if and only if (z,w) is feasible to all constraints
in Equation (7.14) (why?). Hence, in order to check if any constraint in Equation
(7.14) is violated, we wish to check if z < wb + (c-wA)x,· for ally = 1,...,/, that

is, if z < wb + minimum J=1 ; /{(c-wA)xy}. However, the latter problem is

equivalent to the linear programming subproblem:

wb +minimum {(c-wA)x}. (7.15)
xeX

If z is less than or equal to the optimal objective value in Equation (7.15), then
we are done. (In fact, in this case, z will be equal to the optimal value in Equa-
tion (7.15) since z is equal to wb + (c-wA)x for some je{\,...,t} in the

solution to the relaxed master program.) Otherwise, if \k solves Problem (7.15),
we have z > wb + (c - wA)x^, and we can generate the constraint
z<wb + (c-wA)xyt, and add it to the current (relaxed) master program and
reoptimize. Observe that this new constraint cuts off or deletes the previous
master problem solution (z, w). This process may be repeated until the solution

(z, w) to some relaxed master problem gives z equal to the optimal value in
Equation (7.15). This must occur finitely since X has only a finite number of
vertices.

The foregoing procedure is known as Benders partitioning or Benders
decomposition technique. (Its generalization to nonlinear or discrete problem
structures is addressed in Exercise 7.38 and in the Notes and References
section.) Problem (7.14) (or its relaxation) is referred to as Benders {relaxed)
master problem, its constraints are referred to as Benders constraints or Benders
cuts (from their role of deleting previous master problem solutions), and
Problem (7.15) is known as Benders subproblem. However, note that Problem
(7.15) is also the subproblem solved by the Dantzig-Wolfe decomposition
method, and that the Benders master program (7.14) is simply the dual to the
Dantzig-Wolfe master problem with Constraints (7.1)—(7.3). (Here, the
nonnegative dual multipliers associated with the constraints (7.14) are A., j =

\,...,t; these variables sum to unity by virtue of the column of the variable z in
Problem MP.) Therefore, Benders algorithm is called a row generation
technique in contrast with the Dantzig-Wolfe column generation procedure. It
follows that if at the end of each relaxed master program solution, we maintain

The Decomposition Principle 373

only those generated rows in Equation (7.14) that have currently nonbasic slack
variables, and so whose complementary dual variables A,· are basic, then the

resulting algorithm is precisely the same as the decomposition algorithm of
Section 7.1. In particular, the starting solution technique of Section 7.3 provides
an initial bounded Benders master program. Also, when Benders algorithm
terminates, the available optimal primal solution may be computed as the sum of
the products of the x,—solutions and the corresponding dual variables λ: that are

associated with the explicitly present constraints (7.14) in the final Benders
relaxed master problem. (Note that this sum is a convex combination.)
Furthermore, note that if we did not delete any of the constraints generated by
Benders algorithm and solved each relaxed Benders master program to
optimality, the equivalent implementation for the Dantzig-Wolfe method would
be to optimize each master program over all the A,—variable columns generated

thus far.
Observe that the foregoing discussion also indicates how to recover an

optimal set of dual multipliers (w , v) for the Problem P after solving it using

the Dantzig-Wolfe decomposition algorithm. The vector w is directly available

as the optimal set of multipliers associated with the constraints (7.1). The corre-

sponding solution v* is obtainable from the first inner maximization problem in

Equation (7.13) after fixing w at w . Hence, if the second inner minimization

subproblem in Equation (7.13) is solved with w = w , then v* is obtained as the
set of optimal dual multipliers associated with the constraints in X. For instance,

in the example of Section 7.2, we obtain (w>[,H>2) = (-1, -1). Furthermore, with

w = w fixed, the (final) subproblem solved is to maximize {-3*4 : xe X},

which yields an optimal set of dual multipliers v* = (0, 0, 0, 0) for the
constraints 3, 4, 5, and 6 in the example.

It may also be noted that the Dantzig-Wolfe and the Benders decompo-
sition methods are respectively classified as price directive and resource
directive schemes. The former type of procedure conducts the coordination in
the decomposition method by adjusting prices or objective function coefficients
via Lagrangian multipliers. On the other hand, the latter type of procedure is
dual to this scheme, and conducts this coordination by adjusting the common
resource availabilities (right-hand-sides) by fixing certain variable values.

There is another general price-directive optimization strategy for P that
finds an equivalence with the foregoing methods when solving linear program-
ming problems, namely the Lagrangian relaxation technique (See Exercise
6.71.) Observe from Equation (7.13) that if we denote the function in {·}, which
is a function of w, as θ(\ν), we can equivalently state D as the following
problem:

Maximize {0(w) : w unrestricted} (7.16)

374 Chapter 7

where

#(w) = wb + minimum {(c - wA)x : x e X). (7.17)

Problem (7.16) is known as a Lagrangian dual to Problem P. Problem (7.17) is
the associated Lagrangian subproblem. Note that in Problem (7.17), the con-
straints Ax = b have been accommodated into the objective function of P via the
Lagrangian multipliers w. By the foregoing discussion, it is evident that the
maximum value in Problem (7.16) matches with the optimal objective value for
P, and hence, 6>(w) provides a lower bound for this optimal value for any
arbitrary w. This is why Problem (7.16) is called a "Lagrangian dual" problem.
Furthermore, since #(w) = wb + minimum =[!?{(c-wA)x,}, we have that

#(w) is a piecewise linear and concave function of w (why?). Hence, Problem

(7.16) seeks an unconstrained maximum for this function. Although several
nonlinear search methods for nonsmooth optimization problems may be used to
solve Problem (7.16), the Benders procedure is evidently one viable solution
technique. This cutting plane or row generation scheme can be viewed as a
tangential approximation method for solving Problem (7.16), in which only a
few of the tangential supports or segments z < wb + (c-wA)x -,j = l,...,t that

describe θ(·) are generated. Here, z is the value measured along the θ(-)-axis.
Using this viewpoint, the relaxed master problem MP from Equation (7.14)
employs an outer linearization of Problem (7.16), using only a subset of the
tangential supports that actually describe the piecewise linear function #(·). If w
solves this problem with objective value z, then z is an upper bound on the
optimal value of Problem (7.16). However, if z=#(w) itself, then w is

optimal for Problem (7.16) (why?). Otherwise, z > # (w) = wb +
minimum {(c-wA)x : x e X} = wb + (c-wA)x^, say, as produced by the Sub-
problem (7.17), which coincides with the Benders subproblem (7.15). Hence,
the tangential support z < wb + (c - wA)x^ is generated and included in the

outer-linearization of #(·), and the procedure is repeated until termination is
obtained. At termination, the optimal primal solution may be recovered by
weighting each x ■ in Equation (7.14) by the corresponding dual multiplier Àj, if

positive at optimality, and summing.
Exercises 7.42 and 7.43 explore further refinements to accelerate the

convergence behavior of Benders and Lagrangian relaxation approaches using
the boxstep method and its extensions, as well as the associated corresponding
stabilized column generation implementation techniques for the Dantzig-Wolfe
decomposition procedure.

Example 7.3

Consider the linear programming problem given in the example of Section 7.2.
Denote the dual variables associated with the constraints as (\ν],%ν2,νί,ν2,ν^,
v4) and write the dual as follows:

The Decomposition Principle 375

Maximize 2wx + 3H>2 + 2vj + 5v2 + 2v3 + 6v4

subject to w\ + n>2 + Vj + v2 < -2
w>2 + 2v2 < -1

ΜΊ - V3 + 2V4 < -1
2w>2 + v3 + v4 < 1

w < 0, v < 0.

Treating w as the complicating variables, we obtain the Benders master problem
in this case as follows:

Maximize z
subject to z < 2w>i + 3w>2 + x^ (-2 - Ĥ - M^)

+xj2(-l-w2) + xj3(-l-wi)+xj4(l-2»2)
forj = l,...,t

z unrestricted, w < 0,

where x,· = (χβ,χ:2,χ:3,χ:4), j = 1,-, t, are the vertices of A" as defined in

Section (7.2). The corresponding Lagrangian dual problem is given as follows:

Maximize {#(w) : w < 0}

where, for a given w = (n^, w>2), we have

#(w) = 2m + 3w2 + minimum{(-2 - w\ - w2)x\ + (-1 - W2)x2
xeAT

+ (-l-W[)jC3 +(1-2M2)J«4}.

Note that evaluating #(w), given w, is precisely equivalent to solving the

Benders subproblem.

Suppose that as in Section 7.2 we begin with the vertex Xj = (0, 0, 0, 0)

of X. Hence, the relaxed Benders master problem is of the form:

Maximize z
subject to z < 2w\ + 3w2

w<0.

The optimal solution is jf = 0 and w = (0, 0). Hence, using only the tangential

support z ^ 2ft\ +3w2 for θ(·), we obtain w = (0, 0) as the maximizing solu-

tion. Solving the Benders subproblem with w = (0, 0), that is, computing θ(\ν),

we get #(w) = -17/2 , which is realized at x2 =(2,3/2,3,0). Since #(w)<z~,

we generate a second Benders cut or tangential support using x2:

z < 2wx +3w>2 + 2 (- 2 - n \ - w2) + (3/2)(-1 - w2) + 3 (- l - wx)

= -n/2-3wl-(l/2)w2.

This leads to the following relaxed Benders master program:

376 Chapter 7

Maximize z
subject to z < 2wj + 3w2

z<-17/2-3w, - (l /2)w 2

w<0.

The optimal solution is I = -17/2 and w = (-17/10, 0). The slack variables in
both constraints are nonbasic, and hence, both constraints are retained. (The
respective dual variables are 3/5 and 2/5.) Solving the Benders subproblem, we
compute #(w) = -59/10, which is realized at x3 = (0, 5/2, 0, 0). Since
z > #(w), we generate a third Benders constraint or tangential support as

z<2wj + 3w2 + (5/2)(- l -w2) = -5 /2 + 2 wx +(l/2)w2.

Appending this to the master problem, we obtain:

Maximize z
subject to z < 2w[+ 3w2

z <-17/2-3w,-(1/2) w2

z < - 5 / 2 + 2w1+(l/2)w2

w<0.

The optimal solution to this problem is z = -49/10 and w = (-6/5, 0), with the
slack in the first constraint being basic. (The optimal dual multipliers are Aj = 0,
À2 = 2/5, and A3 = 3/5.) Hence, the first constraint may be deleted from the
current outer-linearization. (A deleted constraint can possibly be regenerated
later.) Observe how these computations relate to the calculations in the
numerical example of Section 7.2. We ask the reader in Exercise 7.37 to
continue the solution process by next computing #(w) and, finally, to recover
primal and dual optimal solutions upon completion.

EXERCISES

[7.1] Use the Dantzig-Wolfe decomposition principle to solve the following
problem:

Maximize 3x] + 5x2 + 2x3 + 3x4

subject to 2xj + 4x2 + 5x3 + 2x4 < 7
2xj + 3x2 < 6

Xj + 4x2 < 4
3x3 + 4x4 > 12
x3 < 4

x4 < 3
Xj, x 2 , x 3 , x 4 ^ 0.

[7.2] Solve the following problem by the Dantzig-Wolfe decomposition
technique:

The Decomposition Principle 377

Minimize
subject to

-x,
X,

X,

-x,

x\,

- 2x2
+ 2x2

+ x2
+ 2x2

x2>

+ 3x3
+ 3x3

*3
x3,

+ x4

+ x4

+ x4
X4

>
<
<
>
>

40
2
2
8
0.

[7.3] Solve the following problem by the Dantzig-Wolfe decomposition
algorithm:

Minimize -xj - 2x2 - 3x3 - 2x4
subject to 3xj + x2 + 2x3 + x4 < 12

-X! + x2 < 4
-xt + 2x2 < 12

3x3 + 2x4 < 9

Xj, X2 5 ·*3 ' -*·4 — ^·

[7.4] Consider the following linear programming problem:

Maximize Xj
subject to xj + 3x2 < 9/4

2xj - 3x2 < 0
x e X = {(x,,x2):0<x1 <1 ,0<χ 2 <1}.

a. Solve this problem graphically.
b. Solve using the Dantzig-Wolfe decomposition method. Comment on

the number of extreme points of X used at optimality in terms of
Remark 6 of Section 7.1

c. Does the Dantzig-Wolfe master program (7.1)—(7.3) have alternative
optimal solutions? Does the original problem have alternative opti-
mal solutions? Explain.

[7.5] Solve the following linear programming problem by the Dantzig-Wolfe
decomposition method using one convexity constraint. Show the progress of the
lower bound and primal objective. Obtain primal and dual solutions.

Minimize
subject to

-x,
*1
xx

X\,

— 3x2 + x3
+ x2 + x3
+ x2

x3
- x3

x2, x3,

— x4
+ x4

+ 2x4
+ x4

x4

< 7
< 5
< 6
< 3
> 0.

[7.6] Solve the following problem using the Dantzig-Wolfe decomposition
technique with one convexity constraint. Show the progress of the lower bound
and primal objective value. Obtain primal and dual solutions.

378 Chapter 7

Minimize -xj
subject to xj

- * i
xl

2xj

X j ,

- 2x2

+ 2x2

+ x2
+ 3x2
+ x2

*2>

-
+
+

2x3

3x3
2x3

x3

x3
x3>

— X4

+ x4 < 40
+ x4 < 10

< 30
< 20
< 10

x4 < 10
+ x4 < 15

x4 > 0.

[7.7] Solve the following problem by the Dantzig-Wolfe decomposition
technique using two convexity constraints:

Maximize 3xj + x2

subject to 2χγ + x2

~x\ + x2
3xi

X j , X 2 ,

Lie following problem:

Minimize Xj -
subject to 3xj +

Xj +

0 < x b

+ 3x3

+ x3

- 4x3
x3

" x3
x3,

3x2 -
2x2 +

x2 ~
x2>

— x4

+ x4 < 12
< 2
< 5

+ x4 < 4
+ x4 < 3

x4 > 0.

4x3

x3 < 6
2x3 > 2

x3 < 3.

a. Set up the problem so that it can be solved by the Dantzig-Wolfe
decomposition algorithm.

b. Find a starting basis in the λ-space.
c. Find an optimal solution by the Dantzig-Wolfe decomposition

algorithm and compare this approach with the bounded variables
simplex method.

[7.9] Apply the Dantzig-Wolfe decomposition algorithm to the following
problem:

Minimize
subject to

- 3 x j
6x[

0<xu

+
-

x2

2x2
x2,

-
+

5x3

3x3

*3

<
<

4
1.

[7.10] Consider the following (transportation) problem:

The Decomposition Principle 379

Minimize XJI + 5x12 + 4x;3 + 3x14 + 2x2[+ 3x22 + 4*23 + 5x24
subject to Xu + X]2 + X[3 + Xi4 =600

x21 + x22 + x23 + x4 ~ ^00
Χη + X2i = 300

X]2 + X22 = 300
x13 + x23 = 400

x14 + x24 = 400
X j l , X j 2 , X j3 , Xj4, X 2 J , X 2 2 , X 2 3 , X 2 4 > 0 .

a. Set up the problem so that it can be solved by the Dantzig-Wolfe
decomposition algorithm using four convexity constraints.

b. Find an optimal solution using this decomposition algorithm.

[7.11] Solve the following linear program entirely graphically using Dantzig-
Wolfe decomposition:

Minimize 3x] + 5x2 + 3x3 - 2x4 + 3x5
subject to X] + x2 + x3 + x4 > 3

3xj + x2 + 5x3 + x4 - 2x5 > 6
X[+ 2x3 - x4 > 2
Xi, X2 ; X 3 ? X-4? x 5 — ^ ·

{Hint: Let the first constraint denote Ax > b and the next two constraints
represent X. Then take the dual of each set.)

Indicate how this approach may be generalized to any number m of, say,
equality constraints. {Hint: Let the first constraint denote Ax = b and the
remaining m - 1 constraints be part of the subproblem. Then treat the
subproblem in a similar way as above.)

[7.12] Construct both a flow chart and detailed steps of the Dantzig-Wolfe
decomposition algorithm for solving the problem: Minimize ex subject to Ax =
b, x G X, where X is not necessarily bounded.

[7.13] Is it possible that the Dantzig-Wolfe decomposition algorithm would
generate an optimal nonextreme point of the overall problem in case of
alternative optimal solutions? Discuss. {Hint: Consider the following problem
and start with the extreme point (0, 0):

Maximize x\ + x2
subject to X! + x2 < 3/2

0<x, , x2 < 1.)

[7.14] Solve the following problem by the Dantzig-Wolfe decomposition
algorithm. Use Phase I to get started in the λ-space.

Maximize 4xj + 3x2 + X3
subject to X] + x2 + x3 < 6

3xj + 2x2 > 6
-Xi + x2 > 2

2x3 > 5
X\, Χ2 ■> ^3 — *J ■

380 Chapter 7

[7.15] An agricultural mill produces cattle feed and chicken feed. These prod-
ucts are composed of three main ingredients, namely, corn, lime, and fish meal.
The ingredients contain two main types of nutrients, namely, protein and cal-
cium. The following table gives the nutrients' contents in standard units per
pound of each ingredient:

NUTRIENT
Protein
Calcium

CORN
27
20

INGREDIENT
LIME FISH MEAL

20 30
30 20

The protein content must lie in the interval [22, 25] per pound of cattle feed.
Also the calcium content must be greater than or equal to 22 per pound of the
cattle feed. Similarly, the protein content and the calcium content must be in the
intervals [21, 24] and [21, 29], respectively, per pound of the chicken feed. Sup-
pose that 3000, 2500, and 1000 pounds of corn, lime, and fish meal,
respectively, are available. Also, suppose that it is required to produce 4000 and
2000 pounds of the cattle and chicken feed, respectively. Let the price per pound
of the corn, lime, and fish meal be respectively $0.20, $0.15, and $0.25.
Formulate the blending problem with an objective of minimizing the cost.

Solve the problem by the Dantzig-Wolfe decomposition algorithm using
two convexity constraints. Extra corn and fish meal can be obtained but, because
of shortages, at the higher prices of $0.22 and $0.27 per pound. Would you
advise the mill to consider extra corn and fish meal and modify their blending at
these prices? Why or why not?

[7.16] A company has two manufacturing facilities, one in Atlanta and one in
Los Angeles. The two facilities produce refrigerators and washer/dryers. The
production capacities of these items in Atlanta are 5000 and 7000, respectively.
Similarly, the capacity of the Los Angeles facility is 8000 refrigerators and 4000
washer/dryers. The company delivers these products to three major customers in
New York City, Seattle, and Miami. The customer's demand is given below:

DEMAND / CUSTOMER NEW YORK SEATTLE MIAMI
Refrigerators 4000 5000 4000
Washer/dryers 3000 3000 4000

The items are transported from the manufacturing facilities to the customers via
a railroad network. The unit transportation costs (no distinction is made between
the two items) are summarized below. Also, because of limited space, the
maximum number of refrigerators and/or washer/dryers that can be transported
from a facility to a customer is given in the following table:

CUSTOMER
FACILITY

Atlanta
Unit shipping cost $
Max. number of units

NEW YORK
7

6000

SEATTLE
15

3000

MIAMI
8

8000
T . . Unit Shipping cost $ 15
Los Angeles — ,—°—~—: r—r

12 20
Max. number of units 3000 9000 3000

The Decomposition Principle 381

It is desired to find the shipping pattern that minimizes the total transportation
cost.

a. Formulate the problem.
b. Use the Dantzig-Wolfe decomposition technique with two convexity

constraints to solve the problem.

{Note: This problem is called a multicommodity transportation problem. The
subproblem decomposes into two transportation problems. If you are familiar
with the transportation algorithm, you can use it to solve the subproblems.
Otherwise, use the simplex method to solve the subproblems.)

[7.17] A company owns two refineries in Dallas and New York. The company
can purchase two types of crude oil: light crude oil, and heavy crude oil at the
prices of $15 and $10 per barrel, respectively. Because of shortages, the maxi-
mum amounts of these crudes that can be purchased are 3 million and 2 million
barrels, respectively. The following quantities of gasoline, kerosene, and jet fuel
are produced per barrel of each type of oil:

Light crude oil
Heavy crude oil

GASOLINE
0.40
0.32

KEROSENE
0.20
0.40

JET FUEL
0.35
0.20

Note that 5 percent and 8 percent of the light and heavy crude are lost during the
refining process, respectively. The company has contracted to deliver these
products to three consumers in Kansas City, Los Angeles, and Detroit. The
demands of these products are given below:

Kansas City
Los Angeles
Detroit

GASOLINE
300,000
600,000
900,000

KEROSENE
800,000
400,000
300,000

JET FUEL

800,000
500,000

It is desired to find the amounts that must be purchased by the company of each
crude type at each of its refining facilities, and the shipping pattern of the
products to Kansas City, Los Angeles, and Detroit that satisfy the demands and
minimize the total cost (purchase plus shipping). The shipping and handling of a
barrel of any finished product from the refineries to the consumers is given
below:

KANSAS CITY LOS ANGELES DETROIT
Dallas Refinery $0.70 $0.50 $0.70
New York Refinery $0.40 $0.90 $0.40

a. Formulate the problem.
b. Suggest a decomposition scheme for solving the problem.
c. Solve the problem using your scheme in Part (b).

[7.18] Assume that a linear program requires 3w/2 iterations for a solution.
Also, assume that standard techniques of pivoting are used to update the basis
inverse and RHS vector [together, these constitute an {m + 1) χ (m + 1) matrix if
we ignore the z column]. If there is no special structure to the constraint matrix,

382 Chapter 7

then is there an optimal split for Dantzig-Wolfe decomposition? That is, find
m\ + m2 = m s u c n m a t m e first m\ constraints form the master problem and the
next TM2 constraints are subproblem constraints, and the total "effort" is

minimized. Let the "effort" be defined by the number of elementary operations
(additions, subtractions, multiplications, and divisions).

[7.19] In the previous problem suppose that m\ and m2 are given and that the

second m2 constraints are of a special structure. Specifically, suppose that the

subproblem requires only 5 percent of the normal effort to yield a solution when
treated by itself.

a. Should the problem be decomposed for efficiency?
b. Is there a critical value of the percentage effort required?

[7.20] Develop the master and the subproblem using the Dantzig-Wolfe
decomposition technique for the following linear programming problem. Assume
that X is polyhedral and has a special structure. Formally state the decomposition
algorithm for this case.

Maximize ex + dy
subject to Ax + Dy < b

xeX.

[7.21] Consider the problem: Minimize ex subject to Ax = b, Dx = d, x > 0.

Suppose that w* and w2 are the optimal dual solution vectors associated with

the constraints Ax = b and Dx = d, respectively. Consider the problem:

Maximize (w*A -c)x subject to x e X = {x : Dx = d,x > 0}. Assume that X is

bounded. Let x*,x2,...,x£ be alternative optimal solutions of the foregoing

problem that are extreme points of the set X. Show that an optimal solution of
the original problem can be represented as a convex combination of

Xj,x2,...,x£, that is,

X = Σ hjXj
7=1
k
Σλ:=\
y=i
Zj>0, j = i,...,k.

Is this true if Jf is unbounded? Prove this assertion or give a counterexample and
modify the representation statement.

[7.22] Consider the feasible and bounded problem: Minimize ex subject to Ax

= b, x e X. Suppose that w A - c = 0 where w* is the optimal Lagrange multi-
plier vector associated with the constraints Ax = b. Does this imply that there

exists an optimal solution x* that belongs to the interior of X? Is the converse of
this implication true? Interpret your answers geometrically.

The Decomposition Principle 383

[7.23] Consider the problem: Minimize ex subject to Ax = b, x e X. Suppose
that X has a block diagonal structure. The Dantzig-Wolfe decomposition
algorithm can be applied by using either one convexity constraint or several
convexity constraints, one for each subproblem. Discuss the advantages and
disadvantages of both strategies. Which one would you prefer and why?

[7.24] Develop the derivation of a lower bound on the optimal objective value
when using the Dantzig-Wolfe approach for the case of an unbounded sub-
problem region.

[7.25] Suppose that the columns added during each master step of the Dantzig-
Wolfe decomposition algorithm are stored. In particular, suppose that the master
problem at iteration/? is as follows:

p
Minimize Σ (c x /)^ /

y=i
p

subject to Σ (Ax.-)λ- = b

P

7=1
Aj>0, j = \,...,p,

where x1;...,x„ are the extreme points generated so far. Discuss the details of

such a decomposition procedure and compare this with that of Section 7.1.
Illustrate by solving the problem of Section 7.2.

[7.26] Referring to Exercise 7.25, consider the following master problem:

p
Minimize X (cx.)/L

y=l
p

subject to Σ(Αχ,-)λ. =b

p
Σ ^ · = ΐ

7=1
Xj >0, j = \,...,p.

Write the dual of this master problem. Suppose that the dual problem has been
solved instead of this problem; how does the decomposition algorithm proceed?
Give a detailed algorithmic statement and relate to the discussion in Section 7.6.
Show convergence of the procedure and interpret it geometrically.

[7.27] Give a detailed analysis of the cases that may be encountered as artificial
variables are used to find a starting basis of the master problem in Dantzig-
Wolfe decomposition. Discuss both the two-phase method and the big-A/
method.

384 Chapter 7

[7.28] Consider the following cutting stock problem. We have standard rolls of
length £, and an order is placed requiring bj units of length ih where i = 1,...,
m. It is desired to find the minimum number of rolls that satisfy the order.

a. Formulate the problem.
b. Apply the Dantzig-Wolfe decomposition algorithm to solve the

problem, neglecting integrality requirements. Discuss in detail. (Hint:
Consider the column a, representing they'th cutting pattern. Here, a ,■

is a vector of nonnegative integers; ay, the z'th component, is the

number of rolls of length l-t in the y'th cutting pattern. Develop a

scheme for generating these a.—columns. What is the master

problem and the subproblem?)

[7.29] Consider the following problem:

+ C2X2 + ·■■+ CT\T

+ A2X2 +
Minimize
subject to

coxo
D0

xo
D l x 0

+
+
+

Clx,
A,x,

Bl* l

■ + ATxT

+ Μ$γΧγ
xr

= b0

= b,
= b2

= bj-

> 0.

D2X0 + I*2X2

D r x 0

x0> xl> x 2 '

Describe in detail how the Dantzig-Wolfe decomposition technique can be used
to solve problems of the foregoing structure. (Hint: Let the first set of
constraints be the constraints of the master problem. The subproblem consists of
the remaining constraints. Take the dual of the subproblem and solve it by
decomposition. This becomes a "three-level" algorithm. The subproblem is said
to have a dual-angular structure.)

[7.30] Consider the following staircase structured linear program:

Minimize CJXJ + c2x2 + c3x3 + c4x4 + —l· cT\T

subject to
Α , χ ι = bj

B,X! + A2x2 = b 2

B2x2 +A3X3 = b 3

B3X3 + A4x4 = b 4

Xj, x2, x3, x4, · · · , x7"-i, x r — 0·

a. Writing xi as a convex combination (with weights \j, j = \,...,Εγ)

of vertices in X\ ={x:A]X! =bj,Xi >0}, assumed to be nonempty

and bounded, use the Dantzig-Wolfe decomposition principle on the
problem.

The Decomposition Principle 385

b. For the master program obtained in Part (a), define X2 as the set of

Z]j, j = l,...,E\ and x2 that satisfy the constraints involving only

these variables (that is, not involving the variables x 3 , . . . , x r . Use the

Dantzig-Wolfe decomposition principle on this master problem with

subproblems solved over X2 to obtain a second-level nested

decomposition of the problem.
c. Continuing in this fashion, propose a multilevel nested decomposi-

tion algorithm for this problem.

[7.31] Solve the following generalized linear programming problem by
decomposition:

Minimize -2xj + 5x2 - 4x3

subject to X] + 2x2 + 1̂X3 < 6
3xj - 6x2 + G2X3 - 3

3α] + 2a2 = 6
X] , Χ2, Χ3 , £2], #7 — ^ ·

[Hint: Let X = {(al,a2):3ai+ 2a2 = 6 , αγ,α2 > 0}.]

[7.32] Consider the following problem:

T
Minimize Σ c

(
x,·

i=\
T

subject to X Α,·χ,· = b
i=\
Xj e l ; , i = l,...,T.

Show that any basis in the λ-space for the Dantzig-Wolfe master program
having Tconvexity constraints must contain at least one L· for each i = Ι,.,.,Τ.

[7.33] Many options are available while solving the subproblem(s) and the
master problem in Dantzig-Wolfe decomposition. These include the following:

a. The subproblem is terminated if an extreme point \ k is found with

zk~ck> 0. Then Àk is introduced in the master problem.

b. Several columns can be generated from the subproblem(s) at each
iteration.

c. At least one additional column is added to the master problem while
explicitly storing all the previously generated columns. In this case
the master problem reduces to finding an optimal mix of all columns
generated so far.

Discuss in detail the foregoing options and compare and contrast them.
Elaborate on the advantages and disadvantages of each option.

[7.34] Consider the following problem:

386 Chapter 7

τ τ
Minimize Σ e ,-χ,- + Σ dyVy

7=1 7=1
subjectto χ ·_ι - χ ■ +Α y · =b ·, j = \,...,T

\T =b
0 < X j < u 7 - , j = l,...,T
o<yy<u}, y = i,...,r

where x0 is a known vector.

a. What class of problems lend themselves to this general structure?
What is the interpretation of the vectors xy and yy? (Hint: Examine

a discrete control system.)
b. How can the Dantzig-Wolfe decomposition algorithm be applied to

this system? (Hint: Choose every other constraint to form the master
constraints.)

c. Apply the procedure in Part (b) to solve the following problem, using
x0 = 80:

Minimize χχ + x2 + χτ, + χ^ + 2γλ + 5y2 +4>>3 +6y4

subject to x0 - x{ + yx

xx-x2 + y2

x2 - x3 +y3

X3 — X4 +JV4

X4

0<

.35] Consider the following problem:

Minimize CjX] + C2X2 + —l" cT\T

subjectto AJXJ + A2x2+ ■■■+ ATxT

B,x,
B2x2

Orr\rr

= 40

= 50

= 60

= 40

= 30

< 40

0< yx,y2 < 40

0 < ^ , ^ 4 < 5 0 .

< b
< b,
< b 2

< bT

X], x 2 , ..., x r > 0.

The following implementation of the Dantzig-Wolfe decomposition principle is
a possibility. The subproblem constraints are:

A)X[+ A2x2 + —h AT\T < b
x,, x2, ■·-, \T > 0,

The Decomposition Principle 387

and the master constraints are B]Xj < b1; B2X2 - ^2'-'^τχτ - ^τ Describe the
details of such an algorithm. What are the advantages and the disadvantages of
this procedure? Does this scheme have an economic interpretation? Use the
devised algorithm to solve Exercise 7.2.

[7.36] Provide the development of Benders partitioning algorithm and the
Lagrangian relaxation method given in Section 7.6 for the case of unbounded X
{without artificially bounding this set). Give a formal and complete statement of
the algorithm you develop and establish its convergence. Illustrate by applying
this algorithm to Example 7.1, and identify the step-by-step relationship of this
procedure with the Dantzig-Wolfe decomposition method of Section 7.4.

[7.37] Complete the solution of Example 7.3 in Section 7.6, and interpret the
solution process as an application of the Benders and the Lagrangian relaxation
techniques. Provide both primal and dual solutions.

[7.38] Consider the generalization of Benders partitioning algorithm for the
following nonlinear and/or discrete problem:

Minimize ex + / (y)
subject to Ax + By = b

x >0
y ey,

where c, b, x, y are vectors, A, B are matrices,/is an arbitrary function, and Y is
an arbitrary set.

a. Show that the problem can be reformulated as follows:

Minimize z
subject to z> / (y) + w(b-By) for each w eW

y e F ,

where W = {w unrestricted: wA < c}. {Hint: The original problem can be
reformulated as follows:

Minimize
yeY

f{y) + minimum ex
Ax=b-By

x>0

Now, take the dual of:

Minimize ex
subject to Ax = b - By

x >0.)

b. Show that z >fiy) + w(b - By) for each wA < c if and only if z >Xy)
+ Wy(b - By) and dy(b - By) < 0, for each extreme point w,· and

every extreme direction d ,·, respectively, of the region W.

c. Make use of Part (b) to reformulate the problem in Part (a) as
follows:

388 Chapter 7

Minimize z
subjectto z > / (y) + wy-(b-By), j = \,...,t

d y (b - B y) < 0 , j = \,...,i

y e 7,

where Wi,...,wi and di,...,d^ are, respectively, the extreme points

and the extreme directions of W.
d. Without explicitly enumerating W|,...,w, and dt,...,d^ beforehand,

devise a decomposition algorithm for solving the problem in Part (c).
{Hint: Devise the Master Problem (MP) and Subproblem (SP) as
below:

MP : Minimize z
subjectto z > / (y) + w y (b-By) , j = \,...,t'

d 7 (b - B y) < 0 , j = \,...J'

yeY,

where Wj,...,w,' and d],...,d^ are, respectively, the extreme points

and extreme directions generated so far.

SP : Maximize w(b - By)
subject to wA < c,

where y is obtained from the optimal solution to the master problem.)
e. How would you obtain the optimal (x, y) at termination of the

decomposition algorithm in Part (d)? (Note: This algorithm is
Benders partitioning procedure. Note that the set Y can be discrete,
and so, the procedure can be used for solving mixed-integer
problems. In this case, the master problem in Part (d) is a pure
integer programming problem and the subproblem is a linear
program.)

[7.39] Apply Benders partitioning procedure of Exercise 7.38 to solve the
following problem [let ((X), x2) be x and (x3, Χ4) be y] :

Minimize
subject to

-x,
X,

-3x]
2x]

x\,

- 2x2
+ 2x2

+ 2x2
+ x2

x2>

— 3X3 — X4
+ ZX3 + X4

3X3 + X4
X3, X4

<
<
<
<
>

12
6
6
8
0,

[7.40] A company is planning to build several warehouses for storing a certain
product. These warehouses would serve two major customers having monthly
demands of 3000 and 5000 units. Three candidate warehouses having respective
capacities 4000, 5000, and 6000 can be constructed. Using the estimated
construction cost of the warehouses, their useful life, and time value of money,
the construction cost per month for the three warehouses is estimated as $9000,
$15,000, and $8000, respectively. The unit transportation cost from the three
candidate warehouses to the customers is given below:

The Decomposition Principle 389

CUSTOMER
WAREHOUSE
1
2
3

1 2
2.50 3.00
3.00 3.00
3.50 3.25

Use Benders partitioning procedure of Exercise 7.38 to determine which
warehouses to construct and the corresponding shipping pattern.

[7.41] Consider the following linear program in n variables and having m
constraints, where a , j = !,...,«, and b are w-vectors:

P : Maximize X c.-x.-
7=1
n

subject to 'Σ, a.-Xj <b (7.18)
7=1
x>0.

Let w, = (w,.,...,w,) be a non-zero binary «-vector (i.e., having components

equal to zero or one). Note that there are k = 1,...,2" - 1 = K such distinct

vectors. For each k e {\,...,K}, define an aggregate column g e Rm as:

n n
g, = Σ a .w having an associated cost coefficient / = Σ c.w...

* , =] J V * ;_[7 N

Accordingly, formulate the following linear program:

K
P': Maximize Σ f,À,

k=\ h k

K
subject to Σ g, A, <b (7.19)

k=\ k K

λ>0.

a. Show that Problem P can be equivalently solved as Problem P'.

b. Noting that Problem P' has an exponential number of columns (since K =

2" -1), devise a column generation algorithm to solve it. (Hint: Given

optimal dual variables associated with (7.19) for some restricted version of

Problem P' having K' « 2" - 1 columns, explicitly price the variables of
Problem P and hence compute a most enterable column for Problem P', if
one exists.)

c. How would you recover an optimal solution to Problem P from that for P'?
{Hint: Examine the relationship between the constraint representations
(7.18) and (7.19) to write x in terms of w and λ.)

390 Chapter 7

d. Extend the approach of Parts a-c to the case where Problem P has bounded
variables of the form 0 < x. <\,j = \,...,n (possibly after scaling). (Hint:

Note that any solution x to this Problem P can be represented as a convex
combination of the extreme points of the unit hypercube W = {w: 0 < w <

1} cJ?" , whose 2" extreme points are defined by all possible binary

vectors in R".)

[7.42] Consider the following pair of primal and dual linear programs P and D,
where Aismx n and D is m' χ η:

P : Minimize ex D : Maximize wb + vd
subject to Ax = b subject to wA + vD < c

x e X = {x : Dx > d, x > 0} w unrestricted, v > 0.

Let Problem BMP denote the Benders master problem defined by Equation
(7.14).

a. Show that the dual to Problem BMP (call this DWMP) is the Dantzig-
Wolfe master program given by Equations (7.1) - (7.3).

b. Now, suppose that in Problem BMP, we impose the bounds w~ < w < w+

on the w-variables, where the lower and upper bounds w~ and w+ are
estimated to (possibly) capture an optimal set of values for the w-variables.
Explain how this might help the Benders algorithm to converge faster to an
optimal solution. (Hint: Examine the geometry of the tangential
approximation or outer linearization interpretation of Benders (or the
Lagrangian relaxation) procedure discussed in Section 7.6.)

c. Given the bounds in Part b, suppose that we find an optimal solution w

via Benders algorithm such that w~ < w* < w+. Show that w* is (part of)
an optimal solution to Problem D.

d. In Part c, if the stated condition does not hold true, suggest how you might

adjust the bounds [w~,w+] and reiterate to optimally solve Problem D

using the Benders decomposition technique. (This is referred to as a boxstep
method.)

e. For the Problem BMP in Part b to which we had added the bounding

constraints w~ < w < w+ (call this BMP'), designate y+ and y~ as the

dual variables associated with the constraints w < w + and - w < - w ~ ,
respectively, and write the corresponding dual problem (call this DWMP').
Compare the problems DWMP and DWMP' and comment on their relative
structures.

f. Using Part e, extend the analysis of the modified Benders algorithm devised
in Parts b-d to an equivalent modified implementation of the Dantzig-

The Decomposition Principle 391

Wolfe decomposition method (this is referred to as a stabilized column
generation implementation).

[7.43] Consider the Problem BMP' defined in Exercise 7.42, and suppose that
we further modify this to derive the following problem:

BMP+: Maximize ζ - π + δ + - π " δ " (7.20)

subject to z + w(Axy - b) < ex · fory = 1,...,/ (7.21)

w ' - π " < w < w + + 7 t + (7.22)

(z,w) unrestricted, (π+,π~) >0,

where π+ and π~ are variable vectors, and δ+ and δ~ are suitable
corresponding objective coefficient vectors that penalize any deviation of w

outside the given bounds [w~,w+].

a. Discuss the relationship between Problems BMP' and BMP+. In particular,
for what selection of parameter values δ+ and δ~ would BMP+ reduce to
BMP'?

b. Extend your response to Parts c and d of Exercise 7.42 to the case of

Problem BMP+.

c. Associate dual variables A.-, j = l,...,t, y+ , and y~ with the respective

constraints (7.21), and the pair of bounding constraints w-π"1" < w+ and

- w - π " <-w~ in (7.22), and write the dual to Problem BMP+ (call this

DWMP+). Translate your analysis for the modified Benders approach in
Part b to describe a corresponding modified Dantzig-Wolfe algorithm as

applied to Problem DWMP+. (This is a further extension of a stabilized
column generation implementation with respect to that discussed in
Exercise 7.42).

NOTES AND REFERENCES

1. The decomposition algorithm of this chapter is an adaptation of the
Dantzig-Wolfe decomposition principle [1960, 1961]. The latter was
inspired by the suggestions of Ford and Fulkerson [1958b] for solving the
special case of multicommodity network flow problems.

2. The decomposition method presented in this chapter is closely associated
with the concepts of generalized Lagrangian multipliers, tangential approxi-
mation of the Lagrangian dual function, and the dual cutting plane
algorithm, as discussed in Section 7.6. For further reading on these topics
the reader may refer to Bazaraa, Sherali and Shetty [2006], Everett
[1963], Geoffrion [1971], Lasdon [1970], Kelley [1960], and Zangwill

392 Chapter 7

[1969]. Exercise 7.41 describes a counterintuitive technique here to Oguz
[2002], which creates an equivalent representation of a given general
linear program by exponentially blowing up the number of variables and
then applying column generation. This is shown to have some
computational promise for the bounded-variables case.

3. In addition to the Dantzig-Wolfe and similar decomposition algorithms,
the literature covers a plethora of other decomposition methods. These
can be classified as price-directive and resource-directive algorithms. In
the former, a direction for modifying the Lagrangian multipliers of the
coupling constraints is found and then a suitable step size is taken along
this direction. See, for example, Geoffrion [1970], Lasdon [1970], Grinold
[1972], Balas [1966b], Held, Wolfe, and Crowder [1974], Bazaraa and
Goode [1979], Minoux [1986], Lubbecke and Desrosiers [2002], and
Desrosiers and Lubbecke [2005]. The resource-directive algorithms
proceed by finding a direction for modifying the shares of the common
resources among the subproblems and then determining the step size. The
reader may refer to Geoffrion [1970, 1974], Lasdon [1970], Abadie
[1963], Minoux [1986], and Guignard-Spielberg [2004].

4. In Exercise 7.38 we described the partitioning scheme of Benders [19621
that was specialized in Section 7.6. This scheme is particularly suited for
solving mixed-integer programming problems.

5. For an in-depth geometric analysis of the Dantzig-Wolfe decomposition
algorithm, see Todd [1983]. For implementation issues, see Ho and Loute
[1981, 1983]. Birge [1985] provides some further insights into this proce-
dure, and Wittrock [1985] applies it to the dual of the staircase structured
problem of Exercise 7.30. (The approach sketched in Exercise 7.30 is from
Glassey [1973].) For generalizations of Dantzig-Wolfe/Benders algo-
rithms, see Geoffrion [1972] and Burkard et al. [1985].

6. Marsten [1975] and Marsten et al. [1975] describe the boxstep method for
accelerating the convergence behavior of Benders algorithm. (Related
ideas can also be used to improve Lagrangian relaxation procedures.)
This has inspired duality-based concepts of stabilized column generation
for markedly improving the computational behavior of column generation
procedures in general, and Dantzig-Wolfe decomposition in particular.
These ideas are briefly described in Exercises 7.42 and 7.43, and are
discussed in greater detail in the papers by duMerle et al. [1999] and
Desaulniers et al. [2001].

7. Column generation methods are also frequently combined with branch-
and-price techniques for solving (specially structured) mixed-integer
programming problems. The interested reader is referred to the papers by
Barnhart et al. [1998] and Vanderbeck [2000], as well as to a general
review paper by Wilhelm [2001].

EIGHT: COMPLEXITY OF THE
SIMPLEX ALGORITHM AND
POLYNOMIAL-TIME ALGORITHMS

In this chapter we discuss some fundamental computational complexity issues and
theoretically efficient, that is to say, polynomial-time, algorithms for solving linear
programming problems. We begin by discussing the issue of exponential versus
polynomial-time algorithms based on a worst-case computational performance
analysis. According to this classification scheme, the simplex algorithm is shown to
be "bad," because it exhibits an exponential growth in effort on certain classes of
problems as problem size increases. Fortunately, there are some average-case
theoretical results that help resolve the discrepancy between the worst-case
theoretical results and the observed practical efficiency of the simplex algorithm.
However, there do exist theoretically efficient algorithms for linear programming
problems that exhibit a growth in solution effort that is polynomial in the size of
the problem. The two well-publicized algorithms of Khachian and Karmarkar fall
in this category. Although Khachian's algorithm has failed to be of practical
computational value, the underlying concept behind Karmarkar's algorithm is far
more promising. We therefore relegate the development of Khachian's algorithm to
the exercises (see Exercises 8.12-8.17), but treat Karmarkar's algorithm in detail in
this chapter. We also comment on several interior point algorithmic variants that
have been inspired by Karmarkar's algorithm, but that are computationally much
more effective. Curiously, all of these algorithms are nonlinear approaches to linear
programming problems. Although a preparation in nonlinear programming theory
and algorithms will provide additional insights to the reader, we maintain a level of
presentation, aided by geometric motivations, that will require a knowledge of only
some basic linear algebra and calculus on the part of the reader. The reader is also
encouraged to review the material in Chapter 2.

8.1 POLYNOMIAL COMPLEXITY ISSUES

As the field of Operations Research continued to develop following the birth of
linear programming, a rich collection of different types of problems were intro-
duced along with a host of competing solution algorithms. Consequently, there
arose a need to be able to formally classify and compare problems and algorithms
from the viewpoint of their computational tractability. To address this need, in the
1970s, computer scientists and operations research analysts introduced the issue of
computational complexity of problems and algorithms. The idea here is to conduct
an evaluation of the problem or algorithm based on its performance in a worst-case
type of situation, with an aim to ascertain how difficult a problem is to solve in the
worst case, or what is the growth in computational effort of an algorithm as a
function of the size of the problem in the worst case. Such an analysis provides a
performance guarantee for an algorithm that solves a given class of problems.

393

394 Chapter 8

Since our primary purpose is to relate this development with the study of
linear programming problems, let us present some relevant issues with respect to
this particular class of problems. Consider the linear programming optimization
problem:

Minimize {ex : Ax = b, x > 0},
where A is m x « and where m, n > 2. We assume here and throughout this
chapter that the data is all integer, perhaps converted to this form from rational
data. By an instance of this problem, we mean a particular member of this class
of problems having specific parameter values or data. Hence, the specification of
values for m, n, c, A, and b defines an instance of a linear programming
problem. The size of an instanceof this problem is represented by the entities (m,
n, L), where L is the number of binary bits required to record all the data of the
problem and is known as the input lengthof an instance of the problem. Note that
the number of binary bits required to represent a positive integer Δ is l~log(l +
Δ)1, where Γ1 denotes the rounded-up value and, throughout this chapter, log()
denotes logarithm to the base 2. For example, in order to represent any integer

Δ Ε [2r, 2r+ -1] for an integer r > 1, we require (r + 1) binary bits. If Δ is of

either sign, we can use an extra bit to record its sign, and therefore we can

represent Δ using 1 +["logli+ |Δ|)Ί, bits. Consequently, the data of the foregoing

linear program can be recorded by a binary encoding schemeusing the following
number of bits:

£ = {l + flog(l + m)l} + {l + flog(l+ii)l} + z{l + riog(l + |cJ-|)]}
j

+Σ z{i+["iog(i+|a&.|)]}+z{i+[iog(i+|*/|)l}.
J I

Consider an algorithm that finitely solves a linear programming problem.
In order to analyze its computational complexity we are required to determine an
upper bound on the effort required to solve any instance of this problem. This
effort may be measured in terms of the number of elementary operations such as
additions, multiplications, and comparisons that are required to solve the problem
as a function of the size of the problem. Fortunately, an exact count of the total
number of such operations is unnecessary. We are only required to determine a
function g(m, n, L) in terms of the size of the problem, such that for some
sufficiently large constant τ > 0, the total number of elementary operations
required by the algorithm to solve the problem is no more than ig{m, n, L). In
such a case, we say that the algorithm is of order of complexity 0(g(m, n, L)).
When the function g(m, n, L) is a polynomial in m, n, and L, the algorithm is said
to be a polynomial-time algorithm, or of polynomial complexity or to be
polynomially bounded For example, if an algorithm actually involves a

maximum of, say, 6m n + I5mn + 12m elementary operations to solve any
instance of some given class of problems, where the problem size is determined

by m and n, we can simply say that it is of complexity 0(m n) (why?). Hence, in

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 395

lieu of deriving the foregoing exact expression for the effort, we are only
required to ascertain that the growth in effort for this algorithm is dictated

dominantly by the function g(m, n,L) = m n (which, in this case, is independent
ofL).

Since we are only required to determine an upper bound on the solution
effort, we need not compute L exactly in defining the size of an instance of a
problem. In other words, if we take L as some lower bound on the actual number
of bits required to record the data and exhibit a polynomial growth in effort as a
monotone increasing function of this quantity, then this would also imply a
polynomial bound on the effort in terms of the actual size of the problem. Hence,
for instance, we may take L to be the following value in our analysis of linear
programming problems:

L =

l + log/K + logn + x [l + log(l + |cy|)] + Z Z [l + log(l + |ay|)

+ Z[l + log(l + |ò;|)]
(8.1)

Our infatuation, or even obsession, with a polynomial-time algorithm can

be well appreciated by comparing the growth of n versus 2n. Let "«" represent

the size of some problem, and let A\ and A2 be two algorithms for this problem.

Further suppose that Algorithm Ax is of complexity 0(n) and that Algorithm

A2 is of complexity 0(2"). This means that there exist constants τ\ and τ2

such that the total number of elementary operations required by Algorithms A\

and A2 are respectively bounded by the expressions τ{η and τ22".

Consequently, for a problem of size n = 50, assuming η = r2 = 1, although

Algorithm Αγ will perform no more than 2500 operations, the number of

operations required by Algorithm A2 can get as high as 1.1259 x 10 —an

astronomical figure! There are two obvious anomalies with this system of
evaluation. First, we would prefer low-order polynomials. A polynomial-time

algorithm with complexity 0(n) would clearly be of no greater practical value

than Algorithm A2. Second, we would like the polynomial coefficient

magnitudes to be relatively small. If τ{ = 2 and τ2 — 1, then although the

effort with Algorithm A2 blows up considerably faster with an increase in n than

with Algorithm A\, the latter algorithm is unmanageable from a practical

viewpoint for any value of n > 1. However, Algorithm A2 is at least manageable

for some sufficiently small values of n.
It is worthwhile to note the role played by the binary encoding scheme in

defining a polynomial-time algorithm. Suppose that an algorithm was proposed
for linear programming problems that was of order 0(mnA) in complexity, where
Δ is the largest coefficient in absolute value from c, b, and A. Then this

396 Chapter 8

algorithm is not of polynomial complexity. In fact, defining L\ = log(A) as
representing the size of the problem (for example, for fixed m and ri), we see that
the algorithm is of an exponential complexity of order 0(mn2^) . Suppose that
we had adopted to measure the size of the problem in terms of a stroke encoding
(or unary encoding) scheme, i.e., a scheme that uses one stroke for every unit of
data. Then to store the integer Δ > 0 we would require Δ strokes or spaces, so that
the problem size would be determined by the triplet (m, n, Δ) and not by (m, n,
log Δ). In this case, the algorithmic effort is indeed bounded above by a
polynomial in (m, n, Δ). Such an algorithm is referred to as being pseudo-
polynomial. We shall see later in Chapter 10 that the Hungarian algorithm for
solving the linear assignment problem is pseudo-polynomial in complexity.

On the other hand, an algorithm whose complexity depends only on the
number of problem parameters, as determined for linear programs by m and n,
for example, and is independent of the magnitudes of these parameters, is said to
be genuinely or strongly polynomial. Whereas no strongly polynomial algorithm
is known to exist for general linear programming problems, such algorithms
indeed exist for the special class of network structured linear programs.

In concluding this section, let us place the foregoing discussion in the
context of the approach taken by computer scientists. In the domain of computer
science, problems are usually posed as decision problems rather than optimiza-
tion problems. For example, the linear programming optimization problem has as
its counterpart the following linear programming decision problem:

Given c, b, and A (of the appropriate dimensions) and given a
rational number K, does there exist a rational vector x such that Ax
= b, x > 0 , andcx<ICi

A polynomial-time algorithm for a decision problem may be (informally)
defined as one that can "solve" any instance of the problem using a number of
elementary operations bounded above by some polynomial in the size of the
problem. By "solve," we mean halt with an answer yes, given a yes-instance of
the decision problem. Hence, if we have a polynomial-time algorithm, and we
are given a no-instance of a problem, it is sufficient to exceed the established
polynomial bound without triggering a suitable termination criterion to conclude
that the answer is no. Therefore, the polynomial bound on the effort required to
solve the problem holds true for all instances. Decision problems for which some
polynomial-time algorithm is known to exist are said to belong to the
distinguished Class P of problems.

It is fruitful to see the relationship between polynomial-time algorithms
for optimization problems and those for decision problems. A polynomial-time
algorithm for an optimization problem can clearly solve a decision problem in
polynomial time (how?). Conversely, suppose that we have a polynomial-time
algorithm for the linear programming decision problem. Consider an instance of
the optimization problem that is feasible and bounded. Then there exists a basic

feasible solution of objective value < 2 in magnitude (see Exercise 8.11).

Hence, the optimal value lies in the interval [-2 ,2]. Assuming that the algo-

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 397

rithm for solving the decision problem also actually produces a solution for a
yes-instance, we can use this algorithm to solve the optimization problem by
repeatedly performing a bisection search on this interval. This can be done as
follows:

First, using K = 0, which is the midpoint of the current interval of

uncertainty [-2 ,2], it can be found in polynomial time whether or not the

optimal value lies in the interval [-2 , 0] or [0,2]. Using the appropriate

interval that contains the optimal value, this interval of uncertainty can again be
bisected; this process can be continued until, say, the optimal value is known to

—7 J

lie in the interval [vj, v2] where v2 - vj < 2 . Since the initial interval of uncer-
tainty is of length 2 + , and this is halved at each bisection, we can obtain this
reduced interval of uncertainty after using 3L + 2 applications of the decision
problem algorithm (why?). This means that we will have used a polynomial-time
algorithm a polynomial number of times, and hence, we will have accomplished
this in polynomial time. If a corresponding solution in this interval is not yet
available, it can be obtained by applying the decision problem with the task of
finding a solution x having ex < v2. As will be shown later in Section 8.5, given
a solution with this accuracy in objective value, we can apply a polynomial time
"rounding scheme" in order to determine an optimal solution to the optimization
problem. Hence, the optimization problem can be solved in polynomial time by
using a polynomial-time algorithm for the decision problem.

We now proceed to demonstrate that the simplex algorithm is of
exponential complexity, and then present in detail a particular polynomial-time
algorithm for solving linear programming problems.
8.2 COMPUTATIONAL COMPLEXITY OF THE
SIMPLEX ALGORITHM

When Dantzig first introduced the simplex algorithm, the intuition-based
reaction of the research community was that this algorithm would not prove to be
very efficient. By its nature, the simplex algorithm crawls along the edges of a
polyhedron and makes no attempt to skip through its interior or over higher
dimensional faces. In fact, it occasionally stalls during a sequence of degenerate
pivots at some extreme point. However, researchers were pleasantly surprised
when, in practice, this method performed exceedingly well. For most practical
problems, this method has been empirically observed to take roughly 3m/2
iterations, and seldom more than 3m iterations, where the coefficient matrix A is
m x n. As pointed out in Chapter 5, a regression equation of the type

Km ' nd ' , for example, where d is the density of the matrix A, may typically
predict the performance of the simplex algorithm on a given problem quite well.
However, the fact remains that the algorithm is indeed entrapped in the

potentially combinatorial aspect of having to examine up to I n vertices that the

algorithm could possibly visit. Since

398 Chapter 8

ίη\ n\(n-\ n — (m — \)

m — (m — \) m\(n — rri)\ \m)\m-\)\m — 2/

whenever n > m, the potential of an exponential order of effort for some
problems is quite plausible.

The fear of exponential effort with the simplex method was confirmed in
1971 when Victor Klee and George Minty produced a class of problems defined
by some m = n equality constraints in 2n nonnegative variables, for which the
simplex algorithm requires 2" -1 iterations, traversing all the vertices of the
problem. This class of problems results by defining the feasible region as a

suitable distortion of the «-dimensional hypercube in R", which has 2" vertices.

Mathematically, the problem in R" may be stated as follows, where ε is some
rational number in the interval (0, 1/2):

Maximize xn

subject to 0 < Xj < 1
εχ,·_ι <Xj < 1 - £Xj-\ for j = 2,..., n

Xj^O, j = \,...,n.

After suitably transforming this problem, we exhibit that, using Dantzig's rule of
entering the nonbasic variable having the largest reduced cost and starting at the

origin, the simplex algorithm traverses 2" -1 edges of this polytope and visits all

the 2" vertices.
In order to restate this problem in a desired form, consider the linear

transformation:

y].=xl>yj=(xj-£Xj-l)/£J'~1 foTj = 2,...,n. (8.2)

Using this transformation and putting θ= Ι/ε, we obtain the following equivalent
problem. (The algebraic details are left to the reader in Exercise 8.5.)

n
Maximize X y :

7=1
subject to y\ < 1

.£1 _ M
(8.3)

) ' , · + 2 Σ Λ < ^ 1 for7- = 2,...,«
k=l

yu...,y„>0.

For convenience, define sy,...,sn as the slack variables associated with the n

structural constraints in Problem (8.3). Observe that the basic solution having

basic variables {si,...,sn_\,yn) is feasible, yielding y = (Ο,.,.,Ο,ό'"-) with objec-

tive function value θ"~ . Noting the final structural constraint and the objective

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 399

Figure 8.1. Illustration of the Klee-Minty type polytopes for n=2 and «=3.

function in Problem (8.3), this clearly corresponds to an optimal solution to this
problem (why?). In Exercise 8.4 we ask the reader to verify this by computing
the (z ■ - Cj)-values for the nonbasic variables.

Let us now consider the case n = 2. The problem in this case is of the form
to maximize y\ + y2, subject to yx < 1, y2 + 2y\ <Θ, and y\,y2 ^ 0. Figure 8.1a
shows the feasible region using θ=3. Note that for the origin, the basic variables
are (sx,s2). Hence, the (z^·-c,)-values for yx and y2 are both-1. Selecting

j] as the entering variable takes us to the adjacent extreme point solution with

basis (y\,s2). Continuing, we now follow the simplex path {A, B, C, D} shown

in Figure 8.1a. In doing so, we traverse the 2 basic feasible solutions having
respective basic variables (si,s2), (y\,s2), (y\,y2), and finally (s^,y2). The
reader may verify that z,· -c ■ = -1 for the entering variable at each iteration.

Note that if we had broken the tie at the first iteration by selecting y2 as the

entering variable, we would have solved this problem in one iteration.

Next, consider the case n = 3. The problem in this case is of the form to

maximize y\+y2+yi,, subject to y\ < 1, y2 +2yx < Θ, y^ +2y^ +2y2 ^ θ , and

y\,y2,y-i ^0. Figure 8.1 b shows the feasible region using 0 = 3 as previously.
Now, let us make the following observation. First, notice that with j 3 = 0, the

400 Chapter 8

extreme points in the (yx, y2) space obtained for the case n = 2 are still extreme

points in the present case; s3 is the third basic variable. The corresponding sets

of basic variables are (sx,s2,s3), (yx,s2,s3), (yx,y2,s3), and (-S], >>2,53). Second,

observe that in moving from each one of these bases to the next, the (z · - c,·) -

value for the entering variable is -1 as for the case n = 2. The (z · - c)-value

for the new nonbasic variable y3 also remains at -1 throughout, since the last

component of the simplex multiplier vector cBB~ is zero for all these bases B.
Hence, the simplex path {A, B, C, D} for the case n = 2 remains a simplex path
for the case n = 3 under Dantzig's entering rule. Moreover, y3 remains enterable

throughout. Third, at the vertex D, we must enter y3, and because s3 and y3 can-

not both be basic, s3 must leave the basis. For the remaining iterations, y3

remains basic. Using the last equation to solve for y3 in terms of yx, y2, and s3

and eliminating y3 from the problem gives the same problem as for the case n =

2, except that the objective coefficients of yx and y2 are now - 1 . In other

words, it is as if the n = 2 problem has been changed from a maximization to a
minimization problem at the end of its solution! Consequently, maintaining
Dantzig's entering criterion, the simplex path simply reverses through the bases
for the case n = 2, with y3 being the additional basic variable throughout. We
now visit the vertices E, F, G, and H in Figure 8. lo, with respective sets of basic
variables (sl,y2,y3), (y{,y2,y3), Oi ,s2 ,y3) , and (s:,s2,y3). Therefore, in solving

this problem, we have traversed 2 -1 edges and visited (all the) 2 extreme
points in the process.

This is now readily generalized using an inductive argument. For example,

for the case n = 4, we first go through the set of 2 bases having basic variables
(SUS2,S3,S4), (^,52,^3^4)' C V l ^ ' ^ ' ^) ' (Λ , ^ ' ^ . ^ Χ (W 2 * yì^4),
{y\,y2,y^,s4), (yus2,y3,s4), and (sus2,y3,s4). This sequence is obtained by
using the n = 3 case with s4 as the additional basic variable. Then, y4 enters and
s4 leaves the basis, giving the set of basic variables (s^,s2, 73,^4). The
sequence of pivots reverses with the maximization problem for the n = 3 case
effectively turning into a minimization problem when y4 is held basic. We next

generate the 2 bases with basic variables (si,s2,y3,y4), (ylt s2,y3,y4),

Ο ι , ^ . Λ . ^ Χ (sx,y2,y3,y4), (sl,y2,s3,y4), (yl,y2,s3,y4), {yx, s2,s3,y4),

and (si,s2,s3,y4). This results in 2x2 =2 bases over 2 -1 pivots. The

construction of the formal inductive proof is now straightforward and is left to
the reader in Exercise 8.6. It is interesting to observe that for the general case «,

all throughout the first 2"' basic feasible solutions, the variable yn remains
enterable. Recall the definition of a stage from Chapter 4! Also, notice that at the

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 401

end of 2"~ pivots, the basic variables are (si,S2,—,sn_2, yn-\,yn)- If ^«-1 is
entered at this pivot, then the optimum results. (This corresponds to going from E
to H in Figure 8.le.) However, both yl and s„_! have zj -Cj = -1 here, and the

choice of entering y\ takes us through the reverse sequence of pivots.

Notice the exorbitant amount of effort as problem size increases. Assume

that the problem having n constraints in In nonnegative variables requires 0.25w
elementary operations per pivot, and that each operation takes one nanosecond

(10~ sec) to perform. Then, the estimated computational effort for n = 50 is

22.3 years; for n = 60 it is over 328 centuries! One may argue that the simplex
algorithm did have an opportunity to solve the foregoing problem in one
iteration. In fact, by scaling the columns, for example, using the transformation

Yi = 2~' yt, we can eliminate the ties in the entering criterion at the first iteration

and thereby solve the problem in one iteration unarguably. Observe also that the
rule of entering the variable that gives the maximum improvement in the
objective function value also solves this problem unambiguously in one iteration.
Moreover, this criterion is invariant with respect to scaling and problem
representation, since it is intimately connected with the structure of the polytope
itself. In 1973, however, Robert Jeroslow exhibited the existence of problem
classes that yield an exponential effort with the maximum-improvement entering
criterion as well. In fact, for some fixed integer r > 1, if one were to perform all r
next pivots, and select the r-pivot simplex path that gives the best improvement
in objective value, then the algorithm would still exhibit an exponential trend on
some classes of problems. The root of the problem is therefore in the myopic or
local viewpoint of the simplex algorithm whereby decisions are based on the
local combinatorial structure of the polytope, and where the motion is restricted
to an edge path.

8.3 KHACHIAN'S ELLIPSOID ALGORITHM

Confronted with the exponential worst-case behavior of the simplex algorithm,
the question of whether there existed a polynomial-time algorithm for solving
linear programming problems remained open until 1979, when it was answered
affirmatively by L. G. Khachian. Khachian proposed a polynomial-time
algorithm for determining a solution (if one exists) to the open set of linear
inequalities S = {x : Gx < g}, where G is r x q with r and q > 2, and where G and
g have all integer components. This algorithm either finds a solution in S, if one
exists, or else concludes that S is empty. Its basic mode of operation is as
follows:

First, the method defines a ball or sphere in Rq, centered at the origin and
having a radius that is large enough to encompass a sufficiently large volume of
S, assuming that S is nonempty. If the center of this ball is in S, then the
algorithm terminates. Otherwise, the method proceeds to construct a suitable
sequence of ellipsoids that are monotonically shrinking in volume, but all of
which contain the region of S that was captured by the initial ball. Whenever the
center of any ellipsoid is found to lie in S, the algorithm terminates. The principal

402 Chapter 8

result states that if S is nonempty, then the center of some ellipsoid will lie in S
within a number of iterations that is bounded above by a polynomial in the size
of the problem. Moreover, if this bound on the number of iterations is exceeded,
then the algorithm can terminate with the assertion that S is indeed empty.
Exercises 8.12-8.17 deal with the details of this algorithm. How such an
algorithm helps solve the linear programming (optimization) problem in
polynomial time is addressed in Exercises 8.20-8.23. In particular, it is shown
that the linear programming problem to minimize {ex : Ax > b, x > 0}, where A
is m x n, can be solved by this algorithm with an effort of complexity 0[(m +

ri) L], where L is given by Equation (8.1).

Unfortunately, computational experience with Khachian's algorithm and
its variants has been very disappointing. This has contributed to the realization
that one ought to consider as "efficient" only low-order polynomial algorithms,
perhaps those that are also strongly or genuinely polynomial. The practical per-
formance of Khachian's algorithm is strongly connected with its theoretical
worst-case bound. The example in Exercise 8.24 exhibits the strong dependency
of algorithmic effort on the magnitudes of the input data. Hence, the initial
excitement that this algorithm generated, both from the theoretical viewpoint and
from the simplicity of its steps (which are programmable even on a hand
calculator), fizzled out as it was realized that even problems having about 100
variables can require an enormous amount of effort. Today, Khachian's
algorithm serves mainly as a theoretical tool to analyze complexity issues related
with various row generation procedures for combinatorial optimization problems.
We encourage the reader who is interested in the theoretical aspects of this
algorithm, either from a linear or a discrete/nonlinear programming viewpoint, to
study Exercises 8.12-8.17 and 8.20-8.23, as well as the relevant papers cited in
the Notes and References section.

8.4 KARMARKAR'S PROJECTIVE ALGORITHM

The simplex method, having undergone considerable refinement and sophistica-
tion in implementation, had no serious competition until 1984 when N. Karmarkar at
AT&T Bell Laboratories proposed a new polynomial-time algorithm for linear
programming problems. This algorithm addresses linear programming problems
of the following form:

Minimize ex
subject to Ax = 0 ÌO ,s

lx = 1 (8-4)

x > 0,

where A is m x n of rank m, n > 2, c and A are all integers, 1 is a row vector of «
ones, and where the following assumptions (Al) and (A2) hold:

(\ lY
(Al) The point x0 = —,...,— is feasible in Problem (8.4).

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 403

Figure 8.2. Projective transformation of the feasible region.

(A2) The optimal objective value of Problem (8.4) is zero.

At first glance, the form of the linear program (8.4) and the accompany-
ing assumptions (Al) and (A2) may appear to be unduly restrictive. However, as
shown later, any general linear programming problem can be (polynomially) cast
in this form through the use of artificial variables, an artificial bounding
constraint, and through variable redefinitions, if necessary. Moreover, we will
show that the analysis under these conditions can be readily extended to
polynomially solve the general linear programming problem. Let us therefore
proceed with the derivation of a polynomial-time algorithm to solve Problem
(8.4) under assumptions (Al) and (A2). Note that under these assumptions,
Problem (8.4) is feasible and bounded, and hence, has an optimum.

Starting with x0 = (1/«,...,l/«)' and k = 0, the algorithm performs the fol-

lowing iterative steps, given any feasible solution x^ > 0. Define the diagonal matrix

D^ = axag{xk\,...,xkn}, where x^ = {xkl,...,x/m}1, and consider the following vari-
able transformation:

Dl 'x
y = —-—

ID*1*
that is,

yt= n
Xi'Xki fori=l,...,«. (8.5a)

Observe that the feasible region in Problem (8.4) is described by the intersection
of the (n - w)-dimensional linear subspace defined by the homogeneous set of
equalities Ax = 0 with the (n - l)-dimensional simplex Sx = {x : lx = 1, x > 0}.

The intersection is some (n- m— l)-dimensional region. Figure 8.2 illustrates a
situation in n = 3 dimensions with a single (m = 1) homogeneous equality
constraint. Under the transformation (8.5a), any point in Sx is transformed into a

404 Chapter 8

point in the (n - l)-dimensional simplex Sy = {y: ly = 1, y > 0}. In particular,

the current point x^ is transformed into the point y0 = (1/«,..., 1/w)', the center

of the simplex Sy (see Figure 8.2). Note that if we were to have used the affine

transformation y' = D^ x, which is simply a scaling operation, then a point

x e Sx would, for example, transform into a point y' as shown in Figure 8.3. If

this point y' is projected onto Sy along the ray defined by the origin and y',

then we would obtain the point y given by the transformation (8.5a), as shown in
Figure 8.3. This amounts to dividing y' by the sum of its components, as in

transformation (8.5a), so that the components of y sum to one. For this reason,
the transformation (8.5a) is known as a projective transformation. Performing
this operation on the feasible region in the x-space results in the feasible region
in the y-space as illustrated in Figure 8.2.

To algebraically describe this feasible region in the y-space, consider the inverse
projective transformation obtained by solving for x in Sx from Equation (8.5a).

This yields x = (D^yXlD^'x). Since lx = 1 in Sx, we have (lD/ty)(lD^1x) = 1.

Hence, (1D^ x) = l/(lD^y). Substituting this into the previous expression for x

yields

(8.5b)
iD*y

Therefore, the transformation (8.5a, b) maps points from the simplex Sx onto the

simplex Sy, and vice versa.

Under the transformation (8.5a, b), the linear program (8.4) equivalently
becomes the following problem in the y-space over a subset of the simplex Sy:

Minimize \ ^ 1 : AD^y = 0,ly = 1, y > 0 1 . (8.6)
l 1 D * y J

Note that although the constraints remain linear because Ax = 0 is homogeneous,
the objective function has been transformed into a quotient of linear functions.
This type of problem is known as a linear fractional programming problem.
However, by Assumption (A2), the optimal objective value in Equation (8.6) is
zero. Hence, we can equivalently minimize the numerator in the problem, since
the denominator is positive and bounded away from zero for all y e Sy. This

leads to the following problem:

Minimize{cy:Py = P0,y > 0}, (8.7)

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 405

Figure 8.3. Projective transformation.

Figure 8.4. Main step of Karmarkar's algorithm.

B(y0,r)nSy

B(y0,ar)nSy

where

c ^ c D u P .
AD,

1
and Pn =

Rather than solve Problem (8.7), which is equivalent to solving the origi-
nal problem, we will optimize a particular simpler restriction of this problem.
This will yield a new feasible solution. By iteratively repeating this step, we shall
be able to polynomially obtain an optimal solution to the original problem.

406 Chapter 8

Figure 8.5. Illustration of Karmarkar's algorithm.

To define this restriction, consider the «-dimensional sphere or ball 5(yo, r)

with center at y0 = (ì/η,...,Ι/ή)' and with the appropriate radius r such that the
intersection of this ball with the simplex constraint {y : ly = 1} is an (n - 1)-
dimensional ball having the same center and radius, which is inscribed within
Sy (see Figure 8.4). Note that this radius r is the distance from the center

(l/n,...,l/n)' of the simplex to the center of one of its facets. But the facets of

Sy are simply one lower dimensional simplices. Hence, considering the facet at

which the component y^ is zero, for example, we obtain r as the distance from

(1/«,...,l/«)r to (0, 1 / (/ J - 1) , . . . , 1 / (M - 1)) ' . This gives r= l/yjn(n-l).

Consider a restriction of Equation (8.7) in which we seek to minimize cy

subject to Py = PQ, y > 0, and y e B(y0,ar), where 0 < a < 1 is some constant.

The specific choice of a is addressed later. Note that we have shrunk the
inscribed ball by the factor a, and so its radius is ar. Moreover, by remaining
feasible to this restriction, the iterates remain strictly positive. Since y > 0 is
implied by the intersection of the ball and the simplex constraint {y : ly = 1}, this
restriction is equivalent to the problem:

Minimize{cy : Py = P0,(y - y 0) ' (y - y 0) * a2r2}, (8.8)

where {y : (y-yo) (y ~ y o) - a r } describes the ball B(yQ,ar). Figure 8.4
depicts the feasible region over the two-dimensional simplex (for n = 3).

Observe that the system Py = P0 defines an (» - m - l)-dimensional

affine subspace that passes through the center of the ball B(yQ,ar). Hence, the
feasible region in Problem (8.8) is an (n - m - l)-dimensional ball centered at
y0. Figure 8.5 illustrates a situation for n = 4, and m = 1 over an n - 1 = 3

dimensional simplex. It should be evident that the optimal solution to Problem
(8.8) is obtained by simply projecting the negative gradient of the objective

function - c ' , centered at y0, onto the null space, or the constraint surface, of

Complexity of the Simplex Algorithm and Polynomial—Time Algorithms 407

Py = P0, and then moving from y0 along this projected direction to the

boundary of the ball B(y0,ar). (See Figures 8.4 and 8.5.) Observe that the

simplicity of this solution process is a consequence of the fact that we are
optimizing a linear function over a ball, and that we are currently located at the

center of this ball. Denoting the projection of the gradient vector 'c' as (the
column vector) c„ and the optimum to Problem (8.8) as yn e w, we get

C P

ynew ^ Ο - ^ Ϊ Γ Ί Ϊ · (8-9a)
IM

[Note that if c„ = 0, then any feasible solution is optimal (why?), and we may

terminate with x^ as an optimal solution to Problem (8.4).]
In order to calculate c„, observe that since c lies on the constraint

surface of Py = P0, the vector (c' - c „) is contained in the space spanned by the

gradients to Py =P0 . Hence, there exists a vector w such that P'w =Έ* - c _ .

Multiplying both sides by P, we get PP'w = Pc1, because Pc^ = 0 by definition.

Noting that A is of full row rank and that x^ > 0, the square matrix PP' is

invertible (see Exercise 8.25). This yields w = (PP')~ Vcl. Hence, we have

cp = ~c' - P'w given as

CP I - P ' (P P ') - 1 p l c ' . (8.9b)

In Exercise (8.26), we ask the reader to use an alternative approach to
show that the optimal solution to Problem (8.8) is given by Equations (8.9a, b).
We remark here that the solution w is the solution to the least-squares problem

2
of minimizing P'w over w E R^m+ ' (see Exercise 8.27). Hence, in lieu of

explicitly computing c„ using Equation (8.9b), we may obtain c„ by deriving a

solution w to this problem by using any nonlinear search method, and then

setting c = c' - P ' w . In either case, the formula (8.9b) gives c„.

Given ynew in Equation (8.9a), the corresponding revised vector χ^+1 in

the x-space is obtained via the inverse transformation (8.5b) as

% . ^ . (8-10)

Observe that ynew > 0 since it lies in the interior of the (n - l)-dimensional

sphere inscribed in Sy. Hence, x i + 1 > 0 in Equation (8.10). This completes one

iteration. The process may now be repeated after incrementing k by one. As
shown in Section 8.5, the objective value in Problem (8.4) of the sequence of

408 Chapter 8

iterates thus generated approaches the optimal objective value of zero in the limit
as k -> oo, although not necessarily monotonically. Hence, for practical
purposes, this process may be terminated when the objective value gets suffi-
ciently close to zero.

For theoretical purposes, consider the following lower bound L on the
input length for Problem (8.4):

L = l + log(l + |cy- max |) + log(|detmax|)

where c,· max is the largest numerical value of any cost coefficient c,·, and

|detmax| is the largest numerical value of the determinant of any basis for Prob-
lem (8.4). It follows from a property of the determinants stated in Exercise 8.9
that L is indeed a lower bound on the input length for Problem (8.4), since

log(|detmax|) < log(l + ffi) + £;Z/k)g(l + U..). (Note that an alternative, although

larger, lower bounding value of L is given by replacing log(|detmax|) with the

latter term, as illustrated in Example 8.2.) In the next section, we shall
demonstrate that by using a value of a = (n - l)/3«, the algorithm produces a

solution of objective value smaller than 2~ within lOnL iterations, with an

overall effort of polynomial complexity 0(n ' L). Once this occurs, an exact

extreme point optimal solution to Problem (8.4) may be obtained via the
following polynomial-time procedure.

Starting with the final iterate \k obtained with objective value cxk < 2~L,

this procedure finds an extreme point solution with at least as good an objective
value using the following method known as a purification scheme. If n linearly
independent constraints are binding at x^, then it is already a basic feasible

solution. Otherwise, there exists a direction d Φ 0 lying in the null space of the
binding constraints, that is, satisfying the homogeneous equality system
corresponding to the binding constraints. The method now moves the current
iterate along the direction d if cd < 0, and along the direction -d otherwise, until
some constraint blocks any further motion by feasibility considerations. This
motion must be blocked because the feasible region is bounded. Note that at the

new solution, the objective value is no more than cx^ < 2~ and at least one

additional linearly independent constraint is binding. Proceeding in this fashion,
a basic feasible solution x to Problem (8.4) can be obtained having an objective

value strictly less than 2~ .

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 409

*3

Feasible region

'41,

Figure 8.6. Illustration for Example 8.1.

Note that this process involves at most n - (m + 1) such steps, since it
begins with the (m + 1) linearly independent equality constraints in Problem (8.4)
binding and then adds at least one additional linearly independent binding
constraint to this set at each step. Moreover, note that each step is of polynomial
complexity (why?). Hence, x is determined from the final iterate x^ in polyno-
mial time. (See Exercise 8.31 for efficiently implementing this process with a
polynomial bound of 0(m «).)

We now show that this resulting extreme point solution x is indeed
optimal for Problem (8.4). For this reason, the process is known as an optimal
rounding routine. Since the data is all integer, any basic feasible solution for

Problem (8.4) with basis B has objective value "c#B~ b " given by NID, where N

and D are integers, and where D = |det B| (why?). But D < 2 , where L is

defined as previously. Hence, by Assumption (A2), any nonoptimal extreme
point solution for Problem (8.4) must have a positive objective value NID > \ID

> 2~ . But because 0 < ex < 2" , we must therefore have ex = 0, i.e., x is an
optimal solution to Problem (8.4).

Summary of Karmarkar's Algorithm

INITIALIZATION

Compute r = l/yjn(n-l), L= l + logll + \cj max) + log(|detmax|) , and select

a = («- l) /3«. Let x0 = (!/«,.. . ,!/«/ and put k = 0.

410 Chapter 8

MAIN STEP

If cx^ < 2" , use the optimal rounding routine to determine an optimal solution,

and stop. (Practically, since 2~ may be very small, one may terminate when
c\k is less than some other desired tolerance.) Otherwise, define

Ok=diag{xk],...,xkn}, y 0 = |

~ADt

1 P '

n

'k and c = cDj.

and compute

vnew ■y0-ar^-r where c„ = Γ ΐ - Ρ ' (Ρ Ρ ') _ 1 Ρ
CP

Hence, obtain χ^+[=(O)cynev/)/(lOjcynew). Increment k by one and repeat the

Main Step.

OPTIMAL ROUNDING ROUTINE

Starting with \k, determine an extreme point solution x for Problem (8.4) with

ex < cx^ < 2~ , using the earlier purification scheme. Terminate with x as an

optimal solution to Problem (8.4).

Example 8.1

Consider the linear programming problem:

Minimize x2

subject to X\ + x2 - 2x3 = 0
X] + X2 + X3 = 1

Χχ, Xji X^ — (J·

Here, n = 3 and m = 1. The feasible region of dimension n - m - 1 = 1 is

illustrated in Figure 8.6. Clearly, the point x0 = (1/3,1/3,1/3)' is feasible and the

solution (2/3,0,1/3)' is optimal with objective value zero. Hence, Assumptions

(Al) and (A2) are satisfied. We also have r = 1 / Λ/6 and a = 2/9.

Iteration 1

Starting with x0 and k = 0, we define D0 = diag(l/3, 1/3, 1/3). Noting that

1D^ x = Σ;3χ; = 3, the projective transformation (8.5a) gives y = x. Hence, the

problem in the y-space coincides with that of Figure 8.6. The current point in the

y-space, as always, is y0 = (1/3,1/3,1/3)'.

We now compute ~c=cOk =(0,1/3,0). For use in Equation (8.9b), we

compute the following using A = [1, 1,-2]:

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 411

P = AD*
1

1/3 1/3 -2/3"
1 1 1

pp ' '2/3 0"
0 3

(ΡΡ'Γ1 '3/2 0'
0 1/3

(PP')_ 1P = 1/2 1/2 -1
1/3 1/3 l/3_

P ' (PP') _ 1P =
1/2 1/2 0"
1/2 1/2 0

0 0 1

From Equation (8.9b), we obtain

1/2
1/2

0

-1/2 0"
1/2 0

0 0

0"
1/3

0
=

Γ-1/6Ί
1/6

0
|cp I = Vl/62+l/62+0 = V2/6.

Observe that the direction -c„ takes us from (1/3,1/3,1/3)' toward the optimal

solution (2/3,0,1/3)' in this case. Using Equation (8.9a), this gives us

1/3
1/3
1/3

-(2/9)(l/V6-)(6/V2~)
Γ-1/6Ί

1/6
0

=
Γ0.397484"
0.269183
0.333333

Transforming into the x-space via Equation (8.10), we obtain Xj = ynew for this

first iteration. The present objective value is cxj = 0.269183.

Iteration 2

We now have k = 1. We define

Ό{ =diag {0.397484, 0.269183,0.333333}, c=cD* = (0,0.269183,0)
and

P = AD*
1

0.397484 0.269183 -0.666666
1 1 1

From Equation (8.9b), we compute

i-p^pp'r 'pV =
0.1324029
0.1505548
0.0181517

and c J =0.2013121.

Substituting into Equation (8.9a) gives, using ari c J = 0.4506524, that

1/3
1/3
1/3

0.4506524 ynew

From Equation (8.10), we obtain

D i y n e w

-0.1324029
0.1505548

-0.0181517

0.3930009
0.2654855
0.3415134

0.1562112
0.0714641
0.1138378

x, =
Diy„
l D i y lJnew

IDtfnew =0.3415131,

0.457409
0.209258
0.333333

412 Chapter 8

This completes the second iteration. The current objective function value is cx2 =

0.209258.
It should be evident that the iterates xk being generated are of the type

(1/3 + 6», 1/3-0, 1/3)' where Θ is gradually increasing. In fact, by carrying out

these computations, it may be verified that Θ approaches 1/3 in the limit as

k -> oo. Note that L = [Ί + log(2) + log(3)l = 4, and so, 2~L = 0.0625 for our

problem. Hence, theoretically, we may halt the computations when cxA <

0.0625. This happens for k=6, for which we obtain x6 = (0.606509, 0.060158,

0.333333)', with cx6 =0.060158.

Finally, let us optimally round this solution. Note that only the two
(linearly independent) equality constraints in the problem are binding at x6.

Hence, we need to first determine a solution d = (di,d2,d^)^ 0 to the

homogeneous system d\ + d2 -2c/3 = 0 and di+d2+djl =0 . Solving for d\ and

i/3 in terms of d2, we get d\ = -d2 and d^ = 0. Arbitrarily taking d2 = 1 gives

the direction d = (-1, 1, 0)'. Since cd = 1 > 0, we move along the direction -d

= (1, - 1 , 0)'. The constraint x2 > 0 blocks the motion along this direction after

a step length of 0.060158 and yields the required third linearly independent con-

straint. The new solution x = (0.666667, 0, 0.333333)' is therefore an extreme

point solution, which is moreover optimal.

Example 8.2

As another illustration of the computations and the progress of the iterates in
Karmarkar's algorithm, consider the linear program of the form (8.4):

Minimize -X] - 2x2 + 4x5

subject to x\ — %2 + 2*3 - 2x5 = 0
X] + 2x2 + + x4 - 4x5 = 0
Xj 4- X2 + X3 + X4 + X5 = 1

x > 0.

Note that the solution x0 =(1/5,1/5,1/5,1/5,1/5)' is feasible here. Observe from

the second constraint that the objective value is nonnegative for all feasible

solutions, while it is zero for the feasible solution x* =(0,2/5,2/5,0,1/5)'.

Hence, x* is optimal with objective value zero, and so, the required assumptions
(Al) and (A2) hold true.

We now have n = 5, so r = l/V20 and a = 4/15. Following the earlier

suggestion of using log(l + w) + X;Z/log(l+ a,·,) in lieu of having to compute

log(|detmax |), we have L = Γΐ + log(5) + log(3) + {4 log(2) + 3 log(3) + log(5)}l =

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 413

16, so that 2 = 0.00001526. We start with the known feasible, positive solution
x0 with objective value 0.2.

Iteration 1

The following quantities are computed:

D0 = diag{0.2,0.2,0.2,0.2,0.2}, y0 = (0.2,0.2,0.2,0.2,0.2)',

c = (-0.2,-0.4,0,0,0.8),

0.2 -0.2 0.4 0.0 -0.4^
P = 0.2 0.4 0.0 0.2 -0.8

1.0 1.0 1.0 1.0 1.0

0.6947 -0.1474 -0.3754 -0.2175 0.0456
-0.1474 0.2737 0.2211 -0.3579 0.0105
-0.3754 0.2211 0.2854 -0.1181 -0.0129
-0.2175 -0.3579 -0.1181 0.7415 -0.0480
0.0456 0.0105 -0.0129 -0.0480 0.0047

I - P ' (P P ') _ 1 P

c = (-0.0435,-0.0716,-0.0236,0.1483,-0.0096)' : : 0.1722

arc. : v 0 ' : (0.2151, 0.2248, 0.2082, 0.1487, 0.2033)'.

Hence,
Doyn

1 1 Ι Λ * 11CW

1Doynew
for this first iteration, and cxj = 0.1487. This is now repeated with Xj leading to
the sequence

x 2 = (0.2268, 0.2446, 0.2149, 0.1078, 0.2059)' with cx2 = 0.1078,

x 3 = (0.2355, 0.2596, 0.2200, 0.0769, 0.2079)' with cx3 =0.0769,
until we obtain

x 2 6 = (0.2569681, 0.2972037, 0.2329655, 0.0000150, 0.2128477)'

withcx26 =0.000015.

Note that cx26 < 2~L = 0.00001526 at termination.

To perform an optimal rounding, note that corresponding to x = x26, the

three (linearly independent) equality constraints in the problem are binding.
Hence, we need to determine a nonzero solution to the homogeneous system:
dx-d2 + 2^3 - 2d5 = 0, di + 2d2 +d4- 4d5 = 0, and dx+d2+d-i+d4+d5 = 0 .
Solving for d\, d2, and i/3 in terms of d4 and d5, we get <ή =d4+20d5,
d2 = -d4 - 8i/5, and i/3 = -d4 -13d5. Arbitrarily setting d4 = 1 and d5 = 0 gives

414 Chapter 8

the direction d = (1, - 1 , - 1 , 1, 0)'. Since cd = 1 > 0, we move along the

direction -d. This motion is blocked by the constraint x4 > 0 at a step length of

0.000015, which leads to the new solution x = (0.2569531, 0.2972187,

0.2329805, 0, 0.2128477)'. Observe that ex = 0, and so we are incidentally

already at an optimal solution, but one that is nonextremal. Continuing, we now

have four linearly independent constraints binding. Adding the constraint d4 = 0

to this homogeneous system, we obtain d\ = 20d5, of2
 = ~8i/5, and d^ = -I3d5,

in terms of d5. Arbitrarily setting d5 = 1 gives the direction d = (20, -8 , -13, 0,

1)'. Noting that cd = 0, we can move along this direction d. The constraint x3 >

0 blocks the motion along this direction at a step length of 0.017921576, which

yields the revised solution x = (0.6153846, 0.1538461, 0, 0, 0.2307692)'.

Because there are five linearly independent constraints binding at this new
solution x, it is an optimal extreme point solution. Note that if we had moved
along the direction -d at the previous step, we would have reached the solution

(0, 0.4, 0.4, 0, 0.2)', which happens to be the other of the two alternative optimal

extreme point solutions for this problem.

Converting a General Linear Program into Karmarkar's Form

Consider a general linear programming problem:
Minimize {ex: Ax = b ,x>0}, (8.11)

where A is m x n of rank m and the data is all integer. We shall now describe
how to convert this problem into the form of Problem (8.4) required by
Karmarkar, while satisfying assumptions (Al) and (A2). (See Exercises 8.42 and
8.45 for alternative techniques.)

Toward this end, let us begin by first regularizing Problem (8.11), that is,

adding a bounding constraint X"-^x<Q. Here, Q may be taken as some

known (hopefully small) integer bound on the sum of the variables, derived from
feasibility and/or optimality considerations. Noting Exercise 8.10, we can take

Q = 2 in the worst case, where L is given by Equation (8.1). If this constraint is

binding at optimality with the objective value of the order -2 ' ', then the given
Problem (8.11) can be deduced to be unbounded.

Adding this constraint along with a slack variable xn+\, we may rewrite

Problem (8.11) as follows:
Minimize {ex : Ax = b,lx + xn+l = Q, x > 0,xn+l > 0}.

At this stage, we can homogenize the constraints Ax = b by equivalently
replacing the right-hand-side b with b(i\ + xn+l)/Q, noting the foregoing final
equality constraint. However, this will ruin any sparsity structure in A since b is
usually dense. Alternatively, let us introduce a dummy variable xn+2 along with

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 415

the constraint xn+2 = 1 to equivalently rewrite the constraints as Ax - bx„+2 = 0,

xn+2 = 1, lx + xn+] +x„+2 = 2 + U plus the nonnegativity restrictions. Using the

final equality constraint to homogenize the constraint xn+2 = 1, we can equiva-

lently write the problem as follows:

Minimize {ex : Ax - bx„+2 = 0, lx + x„+1 - Qxn+2 = 0,

lx + x„+1 +xn+2 = (β + 1),χ>0,χ„+1 >0,x„+2 >0}.

Next, let us use the transformation x- = (β + 1)>\, j = 1,...,« + 2, in order to

obtain unity as the right-hand-side of the final equality constraint above and
hence derive the following equivalent problem:

Minimize {cy:Ay-by„+2 = 0,\y + yn+x -Qyn+2 =Q,ly + yn+l +yn+2 =1,

y>0,7„+ 1>0, j ;„+ 2>0}.

The constraints in Problem (8.12) are now of the form in Problem (8.4). In order
to satisfy Assumption (Al), let us introduce an artificial variable yn+i into
Equation (8.12) with objective coefficient Mand constraint coefficients such that
the solution (yi,...,yn+i)-[l/(n + 3),...,\/(n + 3)]t is feasible. For this to occur,
the coefficients of each of the resulting homogeneous constraints must add to
zero, and the coefficient of yn+$ in the final equality constraint must be unity.

Note that a value of M having a magnitude 2 ^ ' exists that ensures that the
artificial variable j>„+3 will be zero at optimality, provided that Problem (8.12) is

feasible (see Exercise 8.28). Hence, the input length of Problem (8.12) with the
artificial variable is still of 0(L). This artificial problem is then given as follows:

Minimize cy + Μγη+^

subject to Ay-bj>„+2-[Al'-b]j>„+3 = 0
iy + ̂ + i - 2 y „ + 2 - (« + i - 0 ^ + 3 = o (8.13)

ly+yn+i+yn+2+yn+3 = l

yj >0, V/ = l,...,« + 3.

Problem (8.13) is of the form (8.4) in (n + 3) variables, with [l/(n + 3),...,l/(« +

3)]' being a feasible solution. Moreover, its size is polynomially related to that of

Problem (8.11), that is, its input length is of 0(L).
Finally, consider Assumption (A2). In the following section, we show how

we can solve a linear program of the form (8.4) that satisfies Assumption (Al),
but that dispenses with Assumption (A2). Using this technique, Problem (8.11)
may be solved via Problem (8.13). However, a simple, though computationally
inadvisable, way of satisfying Assumption (A2) in the earlier derivation is as
follows.

By linear programming duality, note that the optimality conditions for
Problem (8.11) require a solution, if one exists, to the system

Ax = b, x > 0, wA<c, and cx = wb. (8.14)

416 Chapter 8

Putting these constraints in a standard form of the type AY = b' and x' > 0, the
foregoing transformations may be used to obtain a formulation having the
structure of Problem (8.13), where the objective function is simply the
minimization of the artificial variable y„+j. If the original problem has an

optimum, then Problem (8.13) has an optimal objective value of zero. Moreover,
its solution yields both primal and dual optimal solutions to the original Problem
(8.11). Otherwise, the objective value of problem (8.13) is positive at optimality.
This will be revealed by the inability of the algorithm to drive the objective value

below 2~ within the polynomial bound lOn'L' on the number of iterations as
established in the following section, where L' = O(L) represents the input length

of the transformed problem (8.13), and ri is the number of variables in this
transformed problem. In this case, the original problem is either infeasible or
unbounded, and this may be resolved by similarly testing for primal and dual
feasibility.

Example 8.3

To illustrate the use of duality in concert with the foregoing transformations,
consider the following linear programming problem:

Maximize 2xj + x2

subject to X\ — *2 - 2
xj + 2x2 < 4
Xj, *2 - 0·

The dual to this problem is given as follows:

Minimize {2wj + 4w2 : wj + w2 > 2,-w\ + 2w2 > 1, w\ and w2 > 0}.

Adding slack variables (x3,X4) and (TV},H>4) in the primal and dual problems,
respectively, we need to determine a solution to the following system in order to
find a pair of primal and dual optimal solutions:

Xj — x2 + X3 =2, Xj + zx2 + x4 = 4
*V[+ w2 — W3 = 2, —w\ + 2w2 - W4 = 1,

2xj + x2 = 2w] + 4w2, and x > 0, w > 0.

Let us now introduce the bounding constraint Χ,χ,- +Σ, w; < Q. (An examination

of the foregoing system suggests that Q = 15 is sufficiently large.) Adding a

slack variable s1(this constraint becomes Σ/*/+Σ;^,-+sj = 0 . Next, we

introduce a new dummy variable s2 along with the restriction that s2 = 1, and use

this variable to homogenize the problem constraints. Furthermore, we replace s2 = 1

and Σ,·χ;- +>ZÌWÌ +S\ =Q with the equivalent constraints Σί*/+ Σ/W; + *i -

Qs2 = 0 and Σ,*, +Σ; wi +S]+s2 =(Q + \). This yields the system:

Xj - x2 + x3 - 2s2 =0, Xj + 2x2 + X4 - 4s2 = 0,

M\ + w2 - H>3 - 2s2 = 0, -W[+ 2w2 - w4 - s2 =0,

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 417

2x] + x2 - 2W[- 4w2 = 0,

Σ,· *i +Σί W,· + Si - 0S2 = °. Σ/ *,· +Σί W; + i! + S2 = (Q + 1),

and x > 0, w > 0, sl > 0, s2 > 0.

Next, we use a change of variables defined by x · = (β + Ι)^, fory = 1,..., 4, H>7- =

(2 + 1)^4+7 fory = 1,...,4, ij = (β + 1)>'9, and s2 = (ζ? + 1)>Ίο· This produces the

following system:

>Ί - ^ 2 + ^ 3 -2>Ίο = 0 ' yi + 2y2+y4-4yio = °>

^+^ό-^-^ιο =°. -ys + iye-ys-yio = 0'

Σ .V/- 2>Ίθ = °> Σ Λ = 1 , and j / , > 0, V/ = 1 10.
(= 1 1=1

Finally, introducing the artificial variable _yn with constraint coefficients such
that the sum of the coefficients in each homogeneous constraint is zero, and
accommodating j j j in the final equality constraint as well (so that Assumption
(Al) holds true), we get the following problem:

Minimize y\ \
subject to yl - y2 + y3 - 2yl0

y\ + 2yi + y*
ys + ye - yi - 2y\o

-ys + 2y6 - j 8 - yio
2yx + y2 - 2y5 - 4y6

;=1
11
Σ y, = 1, and y > 0.
i = l

The problem is now in the required form (8.4), and it satisfies Assumptions (Al)
and (A2). Using Karmarkar's algorithm to solve this problem will yield a pair of
primal and dual optimal solutions to the original linear program.

8.5 ANALYSIS OF KARMARKAR'S ALGORITHM: CONVERGENCE,
COMPLEXITY, SLIDING OBJECTIVE METHOD, AND BASIC
OPTIMAL SOLUTIONS

In this section we begin with a convergence and complexity analysis of
Karmarkar's algorithm applied to Problem (8.4) under Assumptions (Al) and
(A2). Next, we present a sliding objective function technique that dispenses with
Assumption (A2) and solves Problem (8.4) in polynomial time under
Assumption (Al) alone. As before, the polynomial-time rounding routine we
adopt is a purification scheme that, in fact, yields an optimal basic solution.

+
-
+
+
+

yn -■

4^0 =
y\\ =
Λι :

3 ^ i l :

= 0
= 0
= 0
= 0
= 0

418 Chapter 8

Using transformation (8.13) of the previous section thus provides the capability
of obtaining an optimal basic solution to a general linear program (8.11), given
that one exists. We show that given such a solution, a primal basis B whose
complementary dual basis is also feasible may be obtained in polynomial time.
As discussed in Chapter 6, the latter capability is important from the viewpoint of
deriving insightful duality interpretations in terms of shadow prices and for
performing useful sensitivity analyses.

Constructs for the Convergence and Complexity Analysis

In order to prove the convergence of the algorithm and establish its polynomial-
time complexity, there are two constructs that we employ. The first is the
consideration of a relaxation of Problem (8.7), which complements its restriction
(8.8). The second is the use of a novel function, known as the potential function,
which measures the progress of the algorithm in a very clever fashion and helps
establish its polynomial-time complexity.
To construct the required relaxation of Problem (8.7), consider the «-dimensional
ball B(yQ,R) in the y-space that has its center at y0, coinciding with that of the

simplex Sy, and that has radius R such that B(yQ,R) intersected with {y : ly =

1} is an (n - l)-dimensional ball that circumscribes Sy (see Figure 8.7). Hence, R

is the distance from the point (\/n,..., \ln)' to any vertex of Sy, say, (1, Ο,.,.,Ο)'.

This gives R = ^{n -1) /' n . Now, consider the problem obtained by adding the

redundant constraint y sB(y0,R) in Problem (8.7), but relaxing (deleting) the

nonnegativity restrictions:

Minimize {cy:Py = P 0 , (y - y 0) / (y - y 0) < / ? 2 } . (8.15)

Again, the feasible region in Problem (8.15) is an (n - m - l)-dimensional
ball centered at y0, defined by the intersection of the (n - m - l)-dimensional

affine subspace {y:Py = P0} with B(y0,R). Figure 8.7 shows this intersection

for a case with n = 3 and m = 1. (For an instance with n = 4 and m = 1, a similar
intersection with respect to the inscribed (shrunk) sphere is shown in Figure 8.5.)
Hence, the optimal solution ynew to Problem (8.15) is obtained in a similar
fashion to Equation (8.9), and is given by

R*p
y n e w = y o - | i il' (8 · 1 6)

hi
where c„ is defined in Equation (8.9b) (see Figure 8.7). We can now obtain an

estimate for the progress made with respect to the objective function cy in the

y-space as follows. Note first of all from Equation (8.9) that indeed cynew <~cy0

if c„ * 0 , since ^(yo_ynew) = (ci:''^co I cp) = a;r\\cp >0- The last equality here

follows from the fact that c~' = c p + P' (ΡΡ')"'Pc' from Equation (8.9b), and so,

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 419

cc„ = c J + cP'(PP') Pc„ = c J , because Pc^, = 0 by definition. In fact,

denoting y* as an optimal solution to Problem (8.7), since Problem (8.8) (solved

by ynew) is a restriction of this problem and Problem (8.15) (solved by ynew) is

a relaxation of this problem, we have

(0,0,1)

5(y0,tf)n{y:iy = i

B(y0,ar)nSy

(0 ,1 , 0)

Figure 8.7. Relaxation over the circumscribed ball.

cYnew ^cy*<;cynew <cy0.

Moreover, using this along with Equations (8.16) and (8.9b), we get

*\ - —̂ 0 < c (y 0 - y n e w) < c (y 0 - y) < c (y 0 - y n e w)
R

r cc .
R

ar
c(y o - y n ,)·

Hence, this asserts that c (y 0 -y*)< (/ e / a r) c (y 0 -y n e w)= (R/ar)[c(y0- y*)-

c(ynew -y*)]· Solving for^(ynew -y*) in terms of c(y0 -y*) > 0, we obtain

c(y new y) < i _ a r _ i a

c(y0-y*) R ("- 1)

Note that under Assumption (A2), we have cy* = 0, so that

(8.17)

cy„ -<i- a
< n (8 ' 1 8)

cy0 (" - 1)
Equation (8.17) tells us that at any iteration, with respect to the objective

function t:y, the gap to optimality is reduced by 100 a/(n - 1) percent. However,
c = cDA is dependent on the particular iteration k, and moreover, Equation (8.17)
only guarantees a decrease in the numerator of Problem (8.6). In fact, the

420 Chapter 8

fractional objective in Problem (8.6), and hence the original objective function in
Problem (8.4) may not fall and may actually increase. Fortunately, there is
another function that preserves strict monotonicity, and hence assures conver-
gence to optimality. In fact, it assures polynomial-time convergence. This
function is known as a potential function, and is given by

/ (ι) = Σ 1 η ex = «ln(cx)- Σ ln(*y)
7=1

(8.19a)

where ln() denotes logarithm to the Naperian (natural) base e. (Taking the anti-
log of Equation (8.19a), note that we can equivalently employ the multiplicative

Γ lUn

potential function ex /' n'Li·*/ m n e u of Equation (8.19a). The logarithmic
transformation is taken here only for mathematical convenience.)

Observe that while the projective transformation (8.5) does not preserve
the linearity of a function as seen by the objectives in Equations (8.4) and (8.6), it
does preserve ratios of linear functions. Indeed, under Equation (8.5), CX/JC,· =

cOky/xkjyj =Έγ/χίι:γy so that the potential function (8.19a) transforms as

follows:

F(y) = f o*y It

= Σ ΐ η
7=1

cy _ n n
nln(cy)- Σ ln(j , ·) - Σ ln(jfc/).

7=1 7=1

(8.19b)

Let us now measure the decrease in the value of the potential function
(8.19a), or equivalently in the potential function (8.19b) in the y-space at
iteration k. Using the potential function (8.19b), we obtain

^ η ε ν ν) - ^ θ) = " 1 η cyn

cyo
- Zln[«j(new)y]

7=1

since Jo; = l /« for/'= 1,..., n. However, from Equation (8.18), we deduce that

Cynew In
cyo

<ln 1- a
(»- l) .

< — a
(«-1)

by a property of the ln() function. Using this equation, we derive

na "
F(ynew)-F(y0)<- , ,. Σ ln[«J(new)y].

(«-1) y=i
(8.20)

Consequently, if -H"i=i^[ny^new)j] is sufficiently less than nal(n-1),

we will obtain a sufficient drop in the potential function. This will enable us to
guarantee the desired convergence results. In fact, defining a = nal(n-\) and

selecting 0 < a < 1 small enough so that ^{n-1)/ n a = ^nl{n-\)a < 1, we will
show that

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 421

implies that

« y - 1 < a<\, ly = l, and

a2

y > 0

j=\ J 2(1-a)2

(8.21a)

(8.21b)

1, Observe that ynew satisfies the conditions in Equation (8.21a) since ly r

ynew > 0, and from Equation (8.9a), |«ynew
 _ l | = noer=-J(n—l)/ na < 1. Using

Equation (8.21b) in Equation (8.20), we obtain

1
F(ynew)-nyo)^-a+-

a2
1 _ na

— < — , when« = = —.
>2 5 (n-1) 3

(8.22)
2(1 -ay

Therefore, when a = 1/3, the function F()and consequently, the potential
function /(·), falls by 1/5 every iteration. This means that over k iterations,

/ (x *) - / (* o) ^ - # 5 . B u t

/ (χ *) - / (χ ο) = "1 η

since XQ = (\/n,...,l/n) . Hence,

«In

ex»
CXn

- Σ ln(«%)

ex n k
< Σ ln(iujy)—-.

cx0J j=l 5

Γ Ί " "
But using the fact that the geometric mean FI'LiC**.·) is n o more than the
arithmetic mean \\kln and that lxk = 1, we have

Σ ln(n^,·) = «In
(n ^

n Π *f
u'=1

1/n

< iin[lxA] = 0.

This therefore means from the previous inequality that

In cxA

ex
< for all A =0, 1,2,...

5«
(8.23)

Hence, although the objective function value may increase from one
iteration to the next, a sufficient overall decrease from the original objective
value at k = 0 is maintained as the iterations progress. In fact, from Equation

(8.23), when c\k < (cx0)e~k/5n < 2~L, we will have cxk < 2~L. Therefore, when
k = 10«L, we will have

ί .. \
cxk <(cx0)e -k/5n Σ Cjln {e~2L)<{2L){2~2L) = T'L.

422 Chapter 8

Furthermore, each iteration requires no more than 0(n) computations, and so

the algorithm is of polynomial complexity 0(n L).

More strongly, observe that

AD^A' 0

0 n
PP'

and that the only change in this matrix from one iteration to the next is in the
elements of the diagonal matrix Y)k. Accordingly, Karmarkar shows how a slight

modification of the algorithm, based on updating rather than recomputing an
appropriate inverse in the gradient projection operation, can be made to run with

0(n ') effort per iteration. This results in an overall reduced polynomial

complexity of 0(n ' L) for the modified algorithm.

To conclude this subsection, let us sketch the derivation of Equation
(8.21a, b). Toward this end, consider the following optimization problem, which

enables us to bound -YPj=i^[nyA subject to the conditions in Equation (8.21a):

Maximize j - £ ln[«y;·] : (wy -1)'(«y -1) <(^—ί-)a 2 , ly = l,y > o i . (8.24)

Observe from the first constraint that since its right-hand-side is less than one,
we must have y > 0 for feasibility in Problem (8.24) (why?). Because the
objective function is equivalent to minimizing the product [y\y2"-yni> it c a n be
shown that at optimality in Problem (8.24) (see Exercise 8.30), the first constraint
is binding. Moreover, it can be shown (see Exercise 8.30) that some 1 < q < (n -
1) components of an optimal solution are the same and are equal to the value U,
say, while the remaining (n - q) components are equal to some common value V,

where 0 < U< 1/ra < V< 1. Since ly = 1 and («y -1) ' («y -1) = [(« -1) / n]a2 must

be satisfied, we get qU + (n - q)V= 1 and q{nU'— 1) + (« - q){nV'- 1) = [(«

- \)ln]a . This gives

nU= (1-θι),ην= (l + <92)

where

(n-l)(n-q)a ^ _ _q^ {%^
\ q n (n-q)

Note that the optimal solution is positive, as required. Hence, we get for some 1
<q<(n~ 1) that the objective value in Equation (8.24) satisfies

- £ Hnyj 1 < -qln[l-^-(n-q)ln[l + θ2]. (8.26)
7=1

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 423

By the well-known second-order Taylor or Mean Value Theorem applied to the

function ln(), we get for any 0<6>< 1 that 1η[1-<?] = -<9-0 2 /2Δ 2 , where

(1 - 0) < Δ < 1 . This in turn means that -\η[\-θ]<θ + θ212{\-θ)2. Similarly,

- ln[l + Θ] < -θ + Θ / 2 for any 0 < Θ < 1. Using these inequalities in Equation

(8.26) along with the fact that 0 < 0f < 1 for i = 1, 2 and using Equation (8.25), we

obtain

-ZHnyj]
7=1

£ 1 fl+-
θί

2(i - ^ r
+ {n-q) -θ2 +

 θί
1 2

Φ\
2(1 -ΘΧΥ

(» - i)

η-φχ(2-θχ)

(n-q)

a
n 2{\-θχΫ

1- ^ , (2 - ^ i)

a2
a

2(\-θχγ 2(1-ay
since 0<θχ<α<l. This establishes Equation (8.21a, b) and completes our

derivation.

Dealing With an Unknown Optimal Objective Value and Obtaining a Basic
Optimal Solution

We now describe a method for solving Problem (8.4) under Assumption (Al), but
without Assumption (A2) that requires the optimal objective value of Problem
(8.4) to be zero. This method conducts an interval search for the optimal
objective function value, and is known as a sliding objective functionmethod. As
before, we augment this method with a purification scheme that determines an
optimal basic feasible solution to Problem (8.4). Hence, given any general linear
program (8.11), we can transform it into the form (8.13) and determine an
optimal basic feasible solution, if one exists, to the given problem.

Toward this end, let us first show how we can (polynomially) determine

whether the optimal value v , say, for Problem (8.4) is positive or nonpositive.

Suppose that v* < 0, so that cy* < 0, where y* solves Problem (8.7). Let us pro-

ceed by assumingthut v* = 0. Now, if cynew < 0 at any iteration k, then we know

that v* < 0 and we stop. Otherwise, if both cy0 > 0 and cynew > 0, then noting

that Equation (8.17) holds irrespective of the sign on v , we have

eyn ;cyo
a

(n-1)
+ cy

a

(«-1)
^cy 0

1-- a
(«-!)

424 Chapter 8

so that Equation (8.18) continues to hold true. Consequently, we obtain the usual
decrease of 1/5 in the potential function value as in Equation (8.22) at this

iteration. If we do not stop before k = lOraZ, iterations with the indication that v <

0, then we will have obtained a feasible solution \k satisfying cx^ < 2~ by this

time. This will then indicate to us that there does exist a feasible solution with a
nonpositive objective value (why?), and such a solution may be found by using
the optimal rounding routine of Section 8.4.

On the other hand, if v* > 0, then denoting B as an optimal basis for

Problem (8.4), we have v* =^7^61(8)) for some positive integer N (why?).

Hence, we know that v* > l/|det(B)| > 2~ by the definition of I . Consequently,

within k = \0nL iterations, we must experience a violation in the promised
decrease of 1/5 in the potential function value at some iteration, or else we would

produce an iterate x^ with cx^ <2~ , as before. This would then contradict that

v* >2~ . Therefore, within lOnL iterations, we can recognize that v* > 0.
Let us now use this technique for recognizing the sign on the optimal

value of Problem (8.4) in order to solve this problem. To begin with, suppose that

we have some integer lower and upper bounds I and u, respectively, on v*. Note
that we can take I as the smallest coefficient c. (why?) and u as [cx0]. Clearly,

[£,u]c[-2L,2L]. We will now perform a bisection search starting with this

interval of uncertainty.

Suppose that we have some current interval of uncertainty, and that z* is
the midpoint of this interval. Consider the following modification of Problem (8.4):

Minimize {cx-z*(lx): Ax = 0,lx = l,x> 0}. (8.27)

Note that the objective function value in Problem (8.27) is a constant z* smaller
than that in Problem (8.4) for all feasible solutions (why?). Hence, the two
problems are equivalent. Moreover, the objective value in Problem (8.27) is

nonpositive if and only if z* > v*. Furthermore, at the Ktìa. bisection, z* = I +
K K

[N(u -1)12], where N is some integer satisfying 0<N< 2 . Also, the current
K—1

interval of uncertainty is of length (u-l)l2 . A s long as the interval of

uncertainty is of length >2~2L, we have (u-£)/2K~l >2~2L or 2K~l <

(u-£)22L < 23L+1, that is, we have K < 3L + 2. This means that as long as the
—9 J K

interval of uncertainty is of length > 2 , we have N and 2 bounded above by

2 + . Therefore, after integerizing the objective in Problem (8.27) by mul-
is

tiplying with 2 , we still have the size of the integer input length in Problem
(8.27) of order 0(L). Consequently, in 0(nL) iterations, we can recognize the
sign on the objective function in Problem (8.27) as before, and therefore

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 425

ascertain whether z* > v* or z* < v*. This enables us to halve the current interval
of uncertainty. (The minor details of this argument follow readily and are left to
the reader in Exercise 8.35. Note that in practice, we can use the best-known
solution generated at any bisection stage to further reduce the interval of
uncertainty.) In this fashion, we can continue bisecting the interval of uncertainty

—IT

until it is reduced to length less than 2 . This happens after at most 3L + 2
bisections.

Now, denote the final interval of uncertainty as [£,u]. By applying the
optimal rounding routine following the solution of Problem (8.27) with z* = u if
necessary, we can assume that we also have a solution x to Problem (8.4), with
objective value z < u. Starting with the solution x, we can use the purification
scheme to obtain in polynomial time a revised solution x, which is an extreme
point of Problem (8.4) having an objective value c x < z . This resulting basic
feasible solution x is indeed optimal to Problem (8.4). If this were not so, then
there would exist another basic feasible solution x of objective value ex < ex .
Denoting Bt and B2 as the bases corresponding to x and x, respectively, we
would then have (with obvious notation) 0 < ex - ex = N] / D] - N2 ID2 where
Dj =|det(B;)|, i = 1, 2, and where N] and N2 are integers. Hence, this would

—2/ —IT
yield ex - ex > 1 / D\D2 > 2 by the definition of L, leading to ex < ex - 2
This contradicts that (u-l)<2 and that z and v e[£,u].

This method provides a technique for obtaining an optimal extreme point
solution for a general linear program of the form (8.11). After converting it to the
equivalent form (8.13), we can use this procedure and determine a basic optimal
solution to Problem (8.13). Of course, if jv„+3 > 0 at optimality, then Problem

(8.11) is infeasible. Furthermore, if yn+i = 0 at optimality, being nonbasic with a

negative "z · - c " value, then Problem (8.11) is unbounded (why?). Otherwise,

>W3 = 0, yn+i > 0 is basic, and yn+2 = 1 l(Q +1) is basic at an optimal extreme
point of Problem (8.13). Therefore, the corresponding solution to Problem (8.11)
obtained via the transformation x = (Q + l)y,;j = 1,—, n, gives an optimal basic

solution to Problem (8.11). Furthermore, using the corresponding optimal basis
B, we can solve the system wB = cB (in the usual notation) in polynomial time to

obtain the associated complementary dual basic solution. If this is feasible, then
it is also optimal for the dual problem. However, in the presence of degeneracy,
some degenerate simplex pivots may be required in order to obtain an optimal
basis B whose complementary dual basis is also feasible. Although this latter step
is not of polynomial complexity, such a basis B can indeed be obtained in
polynomial time as follows:

Suppose that in addition to the foregoing primal vertex, an optimal dual
vertex with an associated basis is also available (via the use of a similar
polynomial-time scheme, if necessary). Denote by v , j = !,...,«, the slack

426 Chapter 8

variables in the constraints for the dual to Problem (8.11). Let v:,j = \,...,n, be

the values of these variables at the given optimal dual vertex. Define J = {j e

{Ι,.,.,η}: V: = 0}. Note that the set J includes the indices of the m nonbasic v . -

variables and those of any degenerate basic v,-variables. Hence, the columns of

x · for j e J have rank m. Moreover, the latter columns include those for the

currently positive x—variables, which are themselves linearly independent.

Hence, we can construct a primal basis B by Gaussian elimination in polynomial
time, using the columns of the x.-variables for j e J, while including those for

the positive x —variables. This basis B represents the given primal vertex (why?).

Furthermore, the given dual solution is the (unique) complementary dual basic
solution corresponding to B, and so the basis B satisfies the desired property.

Example 8.4

Consider the following linear programming problem:

Minimize -5xj - 6x2 - 4x3 - 4x4

subject to X{ ~ x2 + 2x3 - 2x5 = 0
X! + 2x2 + + x4 - 4x5 = 0
Xj + x2 + X3 + x4 + x5 = 1

x > 0.

Notice that if we add 4(xj +x2 +x3 + x4 + x5) to the objective function, we obtain

the problem of Example 8.2. Hence, the optimal objective value for this example is

v* = -4 , attained at (0,2/5,2/5,0,1/5)', as in Example 8.2.

Suppose that we assume the optimal objective value to be z = - 3 . Sub-
tracting -3(X, x,) from the objective function modifies this function to:

Minimize - 2xj - 3x2 - x3 - x4 + 3x5.

Notice that since z* >v*, the optimal value with respect to the foregoing
modified objective is negative (in fact, it is equal to -1). Applying Karmarkar's
algorithm while assuming this value to be zero results in an objective value of
-0.8 corresponding to the starting solution itself. Hence, we immediately

recognize that v < z = - 3 .

On the other hand, suppose that we assume the optimal objective value to

be z* = - 5 . Subtracting -5(X x) from the objective function modifies this

function to:

Minimize - x2 + x3 + x4 + 5x5.

Since z* < v*, the foregoing modified objective has a positive optimal value (in
fact, it is equal to +1). Applying Karmarkar's algorithm and assuming this value
to be zero gives at the very first iteration an improvement in the potential
function of the amount

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 427

/ ? (ynew)-^(yo) = " l n

= (5) In

cyn

cyo

0.221606

Σ ln[^(new)y]
7=1

-ln(0.9505476) =-0.12932.
0.22973

(The reader may verify these values by performing one iteration of Karmarkar's
algorithm.) Since the guaranteed descent of 0.2 in the potential function value is

not obtained at this iteration, we recognize that v* > z* = - 5 . The bisection search
uses such a technique to iteratively reduce the interval of uncertainty to a
sufficiently small length.

Example 8.5

Consider the problem of Example 8.4. Let us illustrate the purification procedure

by arbitrarily applying it to the starting solution x0 = (0.2, 0.2, 0.2, 0.2, 02)'

itself. Here, the three equality constraints alone are binding. A direction d lying

in the null space of these constraints should satisfy d\— d2 + 2d^ - 2d5 = 0,

dl+2d2+d4-4d5=0, and dx +d2 + d^ +d4 + d5 =0 . Solving this system for

d\, i/3, and d4, say, we obtain d\ = -d2 -8i/5, dj = d2 +5d5, and d4 = -d2 +

\2d5. Hence, for example, arbitrarily putting d2 = 1 and d5 = 0 gives a direction

d = (-1, 1, 1, - 1 , 0) that keeps the binding constraints tight. Note that cd = - 1 ,
and so this direction is improving. Moving along this direction, we are blocked
by both x\ and x4 dropping to zero simultaneously at a step length of 0.2
(why?). This results in the new (improved) feasible solution (0.2, 0.2, 0.2, 0.2,
0.2)' + 0.2(-l, 1 , 1 , - 1 , 0) ' = (0, 0.4, 0.4, 0, 0.2)'. It may be verified that the
three equality constraints in the problem along with xj = 0 and x4 = 0, which

are binding at the current solution are linearly independent. Hence, we have
reached an extreme point solution. For this problem, we have coincidentally
attained optimality by purifying the starting solution itself. Since this optimum is
nondegenerate, the associated complementary dual basic solution is also optimal.

As far as computational experience with the basic algorithm and the
transformation (8.13) is concerned, it has been shown to yield very competitive

results with respect to the simplex algorithm, particularly for large {m + n> 10)
and sparse problems. (Many of the variants of Karmarkar's algorithm discussed
in Section 8.6 and mentioned in the Notes and References section have been
shown to be substantially faster than the simplex algorithm for such problems.) It
may be noted that Karmarkar's algorithm and its variants typically converge
within about 50 iterations (almost independently of problem size!), making very
rapid initial improvements in objective value in relation to their tail-end
convergence rate. This implies the following two noteworthy points.

First, the algorithmic efficiency can be improved by reducing the effort
per iteration. Note that the major task in an iteration of the algorithm is to
compute the projection c . in Equation (8.9b). This step also requires a very

428 Chapter 8

careful implementation in order to avoid numerical errors from a rapid loss in
feasibility of the iterates. (See the Notes and References section for a variant that
permits approximate projections.) Recall that c„ in Equation (8.9b) is given by

2
C - F * W c' - P ' w , where w solves the least-squares problem o v e r w e 5 m + 1 .

A factored-form implementation is recommended to control the numerical
accuracy while solving this problem (see Exercise 8.40). Hence, the effort for
computing c„ can be reduced by solving this associated least-squares problem

more efficiently. Alternatively, an appropriate technique may be used for directly

computing (PP')~ in Equation (8.9b), which exploits the fact that the only

change from one iteration to the next in computing c is in the diagonal matrix

Ok.

Second, it also has been suggested that one use Karmarkar's algorithm for
some initial iterations, "purify" the available solution to an extreme point having
at least as good an objective value, and then switch over to the simplex algorithm
in order to complete the optimization process. This has yielded some
encouraging results. Another suggestion that appears worthwhile is to drop
variables that are approaching zero from the problem as the iterations progress,
and hence reduce the dimension of the problem as well as avoid the possible ill-
conditioning of the matrix PP', which is associated with its determinant getting
too close to zero. This is done at the expense of somehow later resurrecting some
deleted variables if necessary. Strategies of this type may be used to enhance the
computational performance of the algorithm.

8.6 AFFINE SCALING, PRIMAL-DUAL PATH FOLLOWING,
AND PREDICTOR-CORRECTOR VARIANTS OF INTERIOR
POINT METHODS

Inspired by the concept of Karmarkar's algorithm of deriving an efficient proce-
dure for solving linear programming problems by traversing a trajectory that
seeks a pathway toward optimality through the relative interior of the feasible
region, there followed a flurry of activity at devising alternative mechanisms for
generating such trajectories that might lead to computationally more effective
procedures. A vast body of literature has accumulated since then (see the Notes
and References section for some key survey articles), and collectively, the
different variants of such procedures are referred to as interior point methods.
Indeed, many of these methods are rooted in some well-known classic nonlinear
programming algorithms that predate Karmarkar's method by about two decades.
Some of these variants as specialized for linear programming problems are not
known to be polynomially bounded, whereas others have been shown to have an

improved polynomial complexity of 0(n L) as compared with the 0(n ' L)

procedure proposed by Karmarkar. More importantly, suitable implementations
of these methods, which frequently ignore the theoretical restriction on step-
lengths that guarantee polynomial-time behavior in favor of computational
efficiency, have proven to be very effective and preferred alternatives over the

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 429

simplex method. This is particularly so for large-scale (m + n > 10 or so) and
sparse linear programs that do not possess any particular special structures
(which are typically exploitable by the simplex method). We briefly discuss in
this section some of the more effective variants of these interior point methods
that have been popularly adopted by modern-day commercial software, and we
refer the reader to the Notes and References section for further reading on these
methods and their convergence characteristics.

Affine Scaling Methods

Soon after Karmarkar proposed his novel approach, several researchers
questioned the use of the curious form (8.4) of linear programs, as opposed to the
standard form of primal and dual problems given below, where A is an m χ η
matrix of rank m:

P : Minimize ex D : Maximize wb
subject to Ax = b subject to wA + v = c (8.28)

x>0. v>0,w unrestricted.

Additionally, they also questioned the use of the projective nonlinear
transformation (8.5), in contrast with the related affine transformation:

y = D^x, i.e., x = Oky, (8.29)

where as before, D^ = diaglx^j,...,*£„}, given a feasible interior point solution

xk > 0. This gave rise to the class of affine scaling methods, which actually

rediscovered an identical procedure proposed previously in the Soviet literature
by I. Dikin in 1967. Under the transformation (8.29) at any iteration k based on
the current interior feasible solution xk, Problem P is equivalently given by the
following problem in the y~space:

Minimize cD^y
subject to AD^y = b (8.30)

y > o.
Defining the gradient of the objective function in (8.30) as c = cD^, and follow-

ing the same derivation as for Equation (8.9b) with AOk playing the role of P in

this context, we can derive the projection of c' onto the null space of the equality
constraints in (8.30) as follows:

cp =[I - (AD y t / [AD|A / r 1 (AD / t)]c ' . (8.31)

If c ,̂ = 0, then the current solution yk = Ό^ xk = l ' is optimal for (8.30), and

correspondingly, the solution xk (and indeed, any feasible solution to P) is

optimal for P (why?). Otherwise, we take a step size λ along the negative pro-
jected gradient direction to obtain

y*+i = y * - ^ V (8.32a)

430 Chapter 8

Using (8.29), this translates to the following motion in the x-space upon
premultiplying (8.32a) throughout by D^:

xi+i = xk - ÀDkcp = xk + Mk > (8.32b)

say, where d^ = -D^c Note that the maximum value Àmax of λ that would

maintain feasibility of x^+i is given by the usual "minimum ratio test" as:

λ—— = minimum^ —-— : dti < 0 >. (8.33)
"max | _ (^ } kj |

Assuming that the feasible region is bounded (by using an artificial bounding
constraint if necessary), we have ^ax < oo. However, in order to maintain the
positivity of the iterates, we adopt a step-length that is short of the maximum
step length, i.e., we take

/1 = «Λτιαχ. where 0 < α < 1 . (8.34)

(In practice, a is selected to lie in the interval 0.95-0.99.) This completes an
iteration. Incrementing k by one, the foregoing process is repeated. It can be

shown that if this process generates a sequence { c„ } —> 0, then the corresponding

sequence of iterates {x^} approaches x*, an optimal solution to P, with the sequence

w^ = (AD^A')~ (ADfc)i' approaching an optimal dual solution. (Hence, a prac-

tical termination criterion is to stop the process whenever c J becomes suffi-

ciently small.) If both P and D are nondegenerate, this convergence can be shown

to hold true for any 0 < a < 1. However, under degeneracy, it has been exhibited

through an example that the procedure can fail to converge to an optimum

whenever a > 0.995, whereas one can prove in general that convergence (even

under degeneracy) holds true provided a < 2/3. Note that when convergence does

occur, we can optimally round the solution to an exact solution in a finite number

of iterations once the optimality gap becomes smaller than 2 , as before.
However, this convergence process is not known to be polynomially bounded. In
fact, it is suspected that by making a < 1 sufficiently large, the procedure can be
contrived to follow a path close to the boundary that approximately parallels the
simplex path described for the Klee-Minty example in Section 8.2, thereby
portending an exponential worst-case complexity behavior. Nonetheless, this
method is quite effective in practice. Finally, we comment that the foregoing
procedure has been applied to P and is therefore called the primal affine scaling
method; similar approaches adopted for D, or for both P and D simultaneously
give rise to the respective classes of dual affine scaling, and primal-dual affine
scaling methods.

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 431

Primal-Dual Path-Following Methods

Consider the pair of primal and dual linear programs in Equation (8.28) where
the feasible region for P is nonempty and bounded (perhaps artificially so), and
let us examine the following Barrier Problem BP, which is parametrized by a
barrier parameter μ>0:

BP : Minimize \ β{\) = e x - / / £ ln(jcy) : Ax = b I. (8.35)

Observe that the nonnegativity constraints in Problem P of Equation (8.28) have
been incorporated into the objective function in Problem (8.35) along with a
"barrier term" that approaches oo if any x —value approaches zero (from the positive

side). It is well known from nonlinear programming (see the Notes and Refer-
ences section) that given any desired level of accuracy ε > 0, there exists a
μ > 0 small enough such that the corresponding optimal solution to Problem

(8.35) is positive and has an objective value in Problem (8.28) within ε of
optimality. In fact, by the strict convexity of the objective function in Problem
(8.35) and the stated assumptions on P, for every μ > 0, there exists a unique

optimum x say, to (8.35), where x^ approaches an optimum for P as μ -¥ 0+.

In fact, similar to the case of linear programs, the following Karush-Kuhn-Tucker
(KKT) conditions for (8.35) are both necessary and sufficient for optimality,
where the right-hand-side of Equation (8.36b) is the gradient of the objective
function in Problem (8.35):

Ax = b (8.36a)

wA = c- / / [l /x , , . . . , l /x„] . (8.36b)

To imitate the KKT conditions for P, and noting the form of D in Problem (8.28),
let us substitute v = μ[\Ιχχ,...,\1χη] in Equation (8.36b). This yields the so-
called perturbed KKT conditions (which are equivalent to Equation (8.36), but
are specially designated because they admit algorithmic steps and related
performance characteristics that would be quite different from applying similar
techniques directly to Equation (8.36)):

Ax = b (8.37a)

wA + v = c (8.37b)

VjXj=M,Vj=l,.../i. (8.37c)

Note that given any μ > 0, and the corresponding unique optimum x„ > 0 to

Problem BP, Equation (8.37c) yields an associated unique value of v > 0, and

Equation (8.37b) then yields a unique value for w„, since A has full row rank

(note that a solution exists since these are necessary optimality conditions). Let
us denote the triplet (x,w,v) by ξ, and accordingly, let ξμ = (x„ ,w„ ,v„) .

(Note that throughout, for notational convenience, x is a column vector whereas

432 Chapter 8

w and v are row vectors). The trajectory ξμ, generated as a function of μ as

μ —» 0+, is called the central path (motivated by the interiority of the solutions

thus produced). Observe that from Equations (8.37a)-(8.37c), we have that the
optimality gap ex - wb is given by

n
cx - wb = vx + wAx - wAx = Σ VJXJ = ημ. (8.38)

y=i

Hence, as μ —> 0+, the sequence of primal and dual feasible solutions x„ and

(w„, v„) respectively approach optimal solutions to P and D.

However, rather than follow the central path precisely (which would be
computationally demanding), it turns out that it is sufficient to adopt a path that is
close enough to the central path in a well-defined sense, in order to achieve
(polynomial-time) convergence. More specifically, at any iteration k, suppose
that we have a current solution ξίί = (x^,w^,v^), which is close enough to ξμ

for some current value of μ^ > 0 in that:

Ax£ =b,x/c > 0, W£ A + \k = c,\k > 0, (Wyj. is unrestricted), (8.39a)

and

Z(vkjxkj-Mk) <fyk, while Σ Vkjxki =nVk> (8.39b)

where 0 < Θ < 0.5 is a constant. Note that whereas Equation (8.37c) might hold
true only approximately in the sense of Equation (8.39b), the second condition in
(8.39b) asserts that the sum of the equations in Equation (8.37c) should hold true
exactly. In particular then, by Equation (8.38), the duality gap cx^ -w A b equals

ημ^ We now reduce the value of μ to

A / t + i = M . (8-4°)

where 0 < β < 1, and accordingly, we derive a direction of motion d* =

(ax,Aw,dv) in the primal-dual space based on an attempt to satisfy Equation

(8.37) for this revised value of μ = μ^χ. Specifically, let us therefore examine

the system
\(xk+ax) = b

(w j t + d w) A + (v A + d v) = c

(vkj+dVj)(xkj+dXj) = Mk+l> Y / = 1.....M.

Noting Equation (8.39a), this reduces to the system

A d x = 0 (8.41a)

dwA + d v = 0 (8.41b)

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 433

vkjdxj
+xkjdVj=Mk+\-vkfckj-d^dx, Y/=l,. . . ,n. (8.41c)

Observe that the system (8.41) is linear except for the quadratic product term
dv.dx. in Equation (8.41c). Moreover, if we neglect this product term, then this

system yields a unique solution d i ={àx,Aw,av) (see Exercise 8.53). Indeed,

this direction turns out to be equivalent to that obtained by applying a single step
of Newton's classic optimization method to the perturbed KKT system given in
Equation (8.37). Adopting a unit step size along this (Newton) direction, we
obtain the new iterate

&+!=&+<!£■ (8-42)

It can now be shown, noting Equations (8.39) and (8.40), that if we select
<?

β = 1--η=, where δ = θ = 0.35, (8.43)
v«

say, then the new iterate £A+1 thus obtained would be close enough to ξ„ on

the central path in the sense defined by Equation (8.39) (see Exercise 8.54).
Hence, in particular, the optimality gap would be given by Equation (8.38). This
means that for each iteration k, we would have that the optimality gap satisfies
(noting (8.40) and assuming that v0x0 = ημ0 to start):

ak-*rkb = nuk = n!io0
k=yoxQpk<\\\Q\\\\xo\\fl

k<22L/3k, (8-44)

where it can be shown that | x 0 | < 2 and ||v0| < 2 (see Exercise 8.10). There-

fore, this gap would be lesser than 2 , thereby permitting an optimal polynomial-

time rounding as in Section 8.4, whenever 22L /?* < 2~2L, i.e., k > 4Z,ln(2)/

[-In (/?)]. But from (8.43) and a property of the ln() function, we have

-ln(/?) = -ln(l—U>^=.

Therefore, by the iteration k > 4L ln(2) Ι[δ I v/i], that is, in iterations, we

would have the optimality gap being lesser than 2 . Similar to Karmarkar's

algorithm, the effort per iteration is 0(n ') (see Exercise 8.55), leading to an

overall 0(n L) algorithm.

Note that because the value of β is very close to unity, especially as n
increases, the decay of//-values as controlled by Equation (8.40) can be very
slow, leading to a painfully slow convergence process. Hence, a somewhat more
aggressive strategy of decreasing μ is adopted in practice, thereby sacrificing the
provable polynomial-time behavior in exchange for a highly improved empirical
computational performance. For example, one strategy that has been successfully
used is to let

434 Chapter 8

Mk+ì = Mk/n ifn ^ 5 0 0 0 ' a n d fk+\ = Mk/Jn i f " > 5 0 0 0 · (8·45)

In closing, we comment here that an application of an affine scaling strategy to
the barrier problem BP defined in Equation (8.35), instead of to the original
underlying linear program P, recovers the standard affine scaling method in the
limit as μ -> 0. However, by holding μ > 0 but sufficiently small to enable an
optimal rounding, the convergence of such an affine scaling process can be
shown to hold for all values of the step-length parameter 0 < a < 1 analogous to
Equation (8.34) (see Exercise 8.43), regardless of degeneracy.

Predictor-Corrector Algorithms

One of the most computationally effective interior point variants is a predictor-
corrector approach, as applied to the foregoing primal-dual path-following
algorithm. The basic idea behind this technique originates from the successive
approximation methods implemented for the numerical solution of differential
equations. Essentially, this method adopts steps along two successive directions
at each iteration. The first is a predictor step that adopts a direction based on the
system (8.41) under the ideal scenario of μ^+ι =0, but again neglecting the
second-order term dv,dx,, V/ = Ι,.,.,κ. Let d'c be this direction obtained. A

tentative revised iterate |£+ 1 is computed as |£+ 1 =ξί(+λά'ξ, where the step-

length λ is taken close to the maximum step length λ^^ that would maintain

positivity of the x- and v-variables, similar to the mechanism of Equation (8.34).

(Here, we can take a = 0.95-0.99, say.) Then a revised value ^ + 1 of the

parameter μ is determined via a scheme of the type of Equation (8.45) or based
on some suitable function of the optimality gap or complementary slackness
violation (see Equation (8.38) and Exercise 8.57) at ξ^ and at ££+i · Using this
value of //A+1 in Equation (8.41), but this time replacing the quadratic product
term in Equation (8.41c) by the estimate d'v d'x , V/' = \,...,n, as determined by

ά'ξ, in lieu of simply neglecting this nonlinear term, a revised direction d; is

derived. (Note that because of the similarity of the systems that determine d;

and d;, factorizations developed to solve for the former direction can be

reutilized to obtain the latter direction.) The revised direction d; thus

determined is then used to take a step from ξ^ to give the new iterate ξίί+ί. This

correction toward the central path is known as a corrector step. Observe that the
system (8.41) could be solved repeatedly in this manner by using the most recent
direction components to estimate the quadratic term on the right-hand-side in
Equation (8.41c), in order to obtain a more accurate estimate ^ + 1 corresponding

to the parameter μ^+\. Numerical results suggest that this might be a promising
alternative to using a single corrector step.

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 435

EXERCISES

[8.1] Solve the problem to minimize 3 ^ + 2x2, subject to jq + 2x2 > 2 and x\ > 0,
x2 > 0, using Karmarkar's algorithm by equivalently transforming the problem into
the form (8.4) that satisfies Assumptions (Al) and (A2). Plot the iterates you
generate in the (jq ,x2) space.

[8.2] Consider the problem to minimize 3xj +2x2 subject to x\ +2x2 -X3 =2 ,

Xl +x2 +x3 +x4 = 4, x > 0. Transform this equivalently into the form (8.4) as in

Equation (8.13) that satisfies Assumption (Al), but not necessarily Assumption
(A2). Use Karmarkar's sliding objective function method described in Section 8.5
to solve the resulting problem.

[8.3] Provide the details of an approach that uses a polynomial time algorithm for
the linear programming decision problem in order to polynomially solve the linear
programming optimization problem. What is the complexity of the latter in terms
of the complexity of the former?

[8.4] With respect to the problem of Equation (8.3), show that the (z ■ -c)-values

corresponding to the basis with basic variables (sy,s2,..;Sn_i,yn) are all

nonnegative.

[8.5] Demonstrate that the transformation (8.2) reduces the Klee-Minty problem
to the form in Problem (8.3).

[8.6] Following the arguments in Section 8.2, give a detailed proof by induction

that for Problem (8.3) in «-dimensions there exists a simplex path of length 2" -1
from the origin to the optimum using the most negative z .■ - C: entering rule

(Dantzig's Rule).

[8.7] Plot the (original) Klee-Minty polytope for n = 2 and n = 3. What is the
relationship between these polytopes and the ones shown in Figure 8.1? Analogous
to the statement of Exercise 8.6, what precise complexity assertion can you make
with respect to the original Klee-Minty problem?

[8.8] Consider the linear programming problem to:

Maximize

subject to

Σ IO""'JC;
y'=1

2 Σ l&~Jxj
7 = 1

J '

+ *,-<100M

Xj>0

for; = 1,..

fory = l,.

.,«

..,r

a. Demonstrate graphically for n = 2 and n = 3 that using (Dantzig's)
most negative z - c,· entering rule, the simplex method can go

through 2" -1 pivots, starting at the origin.
b. Provide a proof by induction for the statement in Part (a) for general

n.

436 Chapter 8

[8.9] Given a square matrix B with components By , i = 1,..., m,j = 1,..., m, show

by induction that |detB| < ΓΊ" =1 (1 + ÌBy). (Hint: Use the column (row)-wise

expansion formula for det B.)

[8.10] In the usual notation, let x = (xB,xN) be a basic feasible solution of the

system Ax = b, x > 0, where A is m x n of rank m and where the data is all integer.

Show that the kth component xB of xB satisfies xB <2 l(mn), where

L = Γΐ + log m + log/? + Σ Σ [Ι + log(l + ky|)l

+Σ[ι + ΐο8(ΐ+|6,-)|]1.
i

Here, ay and ty are the components of A and b, respectively. Hence, show that

\\x\\<2L /n.

[8.11] For the linear programming problem to minimize ex subject to Ax = b, x >
0, where A is m x n and where the data is all integer, define L as in Equation (8.1).
Using Exercise 8.10, and assuming the linear program to be feasible and bounded,

show that the optimal objective value lies in the interval [-2 ,2].

The following exercises 8.12-8.17 relate to Khachian's algorithm for
determining in polynomial time if there exists an x belonging to the set

5 = { x : G x < g }
or to conclude that S = 0 , where G is r x q, g is r x 1, with r and q > 2, and
where the data is all integer:
[8.12] Define

I = r i + logr + logg + I X [l + log(l + |Gy|)]

+Z[i+iog(i+|g;.)|]l

and let EQ = {x : |x | < 2L}. Show that if S Φ 0 , then

v o l [£ 0 n S] > 2 - (? + 1) I

where νοΙ(Π) denotes the ^-dimensional volume. (Hint: The volume of a q-

dimensional simplex with vertices vi,...,v +) is given by

(l / 9 !) det
1 1 ·■■ 1

vi v2 ··· v9 + !

[8.13] (Khachian 's Main Step 1) Starting with k = 0, suppose that at iteration k,
the ellipsoid Ek defined as follows is given:

Ek ={x:(x-xk)'Q-k
l(x-xk)<l}

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 437

where xk is the center of the ellipsoid and Q^ is a q x q symmetric positive

definite matrix (that is, y 'Q/ty>0 for all y * 0) . In particular, det(Qyt)^ 0.

Given Ek, if xk e S, then halt. Otherwise, let the most violated constraint

defining S be G v x<g v . Hence, Gvxk>gv. Geometrically, translate the

hyperplane Gvx = gv parallel to itself in the (feasible) direction of -G'v until it

becomes tangential to the ellipsoid Ek at the point y^ (see Figure 8.8). Show

that

yk=xk+àk> where dA =
Ì¥

Next, compute Y^ as the point on the hyperplane Gvx = gv obtained by moving

from xk in the direction d^. Hence, Y^ = xk + Akdk for some step length Xk.

Show that Xk = (gv -Gvxk)/(Gvdk) and that lk > 0. Also, show that if Àk > 1,

then S = 0 and the procedure can terminate.

[8.14] (Khachian's Main Step 2) Assuming that Zk < 1 in Exercise 8.13, let x i + 1

be the point on the line segment [Y^, y^] that divides this in the ratio 1 :q. Hence,

0+4?)., xk+\ 1 q

U+1;
Y* +

1 |

U+U y* ■Xi. +-

(1 + 9)

Define the new ellipsoid Ek+\ = {x : (x - xk+l)' Qk+\ (x - x^+i) ^ 1} with center at

xk+{ and with Q^+1 given by the following expression:

Q*+i =
q2Q-4)

(<?2-i)

Q _ 2 0 ± ^) _ ,
(?+ 1X4+1)

Show that:
a· Qk+\ ' s symmetric and positive definite (given that so is Q^).

b. The point y^ lies on the boundary of Ek+i.

c. The hyperplane Gvx = Gvy^ is tangential to Ek+^ at yk.

d. Ekn{x:Gvx<gv}^Ek+i where Ek = {x:(x-xk)'Q^(x-xk)<l}.

438 Chapter 8

G„x = Gvyt

Figure 8.8. Geometry of the main step of the ellipsoid algorithm.

Inductively show that E0r\S <^EknS cEk for all k = 1, 2,..., that is, each of

the ellipsoids Εχ, E2,... contains at least that portion of S that was captured by E0.

[8.15] Let V] and V2 be two vectors such that V/V2 > 0. Let 6>be a scalar. Using

suitable row operations, show that

det = (1-0). \-θ\λ\'2Ι\{\2

[8.16] Using the fact that the volume of the ellipsoid Ek equals K0A/det(Q^),

where V0 is the volume of the unit sphere in Rq, use Exercise 8.15 to show that

V 0 l (^) < e -* / 2 ^>VOl (i s 0) < e-*/2(l+?)29(1+i>.

[8.17J Using Exercises 8.12-8.16, conclude that if S*0, then by 6{q + \)2L

iterations, the algorithm will find a solution in S. Hence, if no solution is found in

6{q + \) L iterations, then S = 0 . Therefore, show that the overall complexity of

the algorithm is 0{q L).

[8.18] Consider the open system of inequalities Gx < g that defines the set

S = {x = (x^,x2)'--X\ -x2 <-l ,*i <1}·
Show that with L = 2, the assertion of Exercise 8.12 holds true. Use Khachian's
algorithm with L = 2 to find a solution to this system. Illustrate the progress of
the algorithm graphically.

[8.19] Consider the open inequality system X\-x2 >1, 2xt +3x2 > 6, jq >0 ,

x2 >0. Show that with L = 2, the assertion of Exercise 8.12 holds true. Use

Khachian's algorithm with L = 2 in order to find a solution to this system. Illustrate
the progress of the algorithm graphically.

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 439

[8.20] In order to be able to use Khachian's algorithm for solving linear
programming problems, one needs to be able to determine if the closed system of
inequalities Gx < g has a solution, where G is r χ q, with r and q > 2, and G and g
have all integer components. Toward this end, define S = {x : Gx < g} and
consider the following open inequality system, where 1 is a row vector of r ones,
and where L is defined in Exercise 8.12:

Gx < g + (2~L) l ' , that is, (2L)Gx < (2L)g +1'.

Use Farkas' Lemma (see Chapter 5) to show that S is nonempty if and only if

this open inequality system has a solution. Show that the complexity of deter-

mining whether or not S is empty by Khachian's algorithm is 0(rq L).

[8.21] {Optimal Rounding Routine) Suppose that we are given a solution x to the

open inequality system Gx < g + (2~)l ' , where L is defined as in Exercise 8.12.

Suppose that we are to determine from that a solution to the system Gx < g. Of

course, if Gx < g, then we are done. Otherwise, define s, (x) = g,- - G,x as the

slack in the rth constraint G,-x < g, corresponding to a given solution x. Note that

we have s(-(x) < 0 for some ;' e {1,..., r), but that s,(x) > —2~ for each i = 1,..., r.
(This evidently means that only a small adjustment in x may be required to obtain
s,(x)>0 for all i = 1,..., r; hence, the name of this routine.) Consider the
operations of the following two steps:

Step 1. First, refine x to a solution xnew, which is such that (i)
5;(xnew)>min{0,ii(x)}, and (ii) every row of G can be written as a linear
combination of the rows with index set V = {i: st (xnew) ^ 0}. Show how this can
be achieved in polynomial time. (Hint: If x does not satisfy these conditions,
select a row Gk of G, with k ί V, which is not spanned by G,·, i e V, and find a

solution d(* 0) to the system of equations G;d = 0 for i e V, G^d = 1. Consider

the ray x = x + Ad,A>0, and take a suitable step along this ray. Repeat.)

Step 2. Given xnew from Step 1 along with the set V, find a maximal

linearly independent set of rows from the set G;, ieV. Let these rows be G,·,

ieJczV. Then show that any solution to the system G,-x = g, for i e J, yields

the desired solution to the system Gx < g.

Derive a polynomial complexity bound for this routine.
]8.22] This exercise describes an alternative approach to determining a solution to
a closed system of inequalities via Khachian's algorithm. Consider the closed
system of inequalities Gx < g, where G is r x q. Suppose that we have a solution x
satisfying G ; x < g (for i = 1,..., p, where p < r. Examine the open system of

inequalities G,x < g,·, for / = 1,..., p + 1, and suppose that this system is empty.

Show that G „+1x = g„+1 for all feasible solutions to Gx < g. By solving for some

variable in this equation in terms of the others, show how the system Gx < g can be

440 Chapter 8

reduced to an equivalent one with one fewer variable and constraint. How can you
repeatedly use this process along with Khachian's algorithm to determine in
polynomial time whether or not a closed system Gx < g (with integer data) has a
feasible solution? What is the complexity of this procedure?

[8.23] Consider solving the following linear program in canonical form: Minimize
ex, subject to Ax > b, x > 0, where A is m x n. Show that solving this problem is
equivalent to determining a solution to a certain closed system of inequalities. How
would you decide if the given linear program is infeasible or unbounded, given that
the latter inequality system has no solution? Using Exercise 8.20, show that the

overall complexity of using Khachian's algorithm is 0[(m + n) L], where L is

given by Equation (8.1).

[8.24] Consider the open inequality system in R given by xl + 0x2 <1 + ί/θ and

-xl+0x2<-l, where # > 5 / V 2 . Let x0 = (1 + (V2 / 5), 0)' and define

EQ = { X : (X - X 0) ' Q O (x - x o) ^ l } , where Q0 =21 so that EQ is a circle with

center at x0 and with radius V2. (Hence, this corresponds to "Z," = 1/2.) Using this

as a starting solution, apply Khachian's algorithm (Exercises 8.12-8.17) using Xk

= 0. (This corresponds to Khachian's original algorithm.)
a. Give the geometric interpretation of using the formulas for \k+i and

Q;t+i of Exercise 8.14 with Xk = 0. Illustrate with a sketch similar to
Figure 8.8.

b. Derive closed form expressions for x^ and Q^ as a function of
iteration k.

c. Determine the smallest integer k such that xk satisfies the inequality

system. Show that by making Θ arbitrarily large, we can make the
algorithm go through an arbitrarily large number of iterations before
terminating. What does this say about the complexity of Khachian's
algorithm using real data?

d. Suppose that Θ is an integer. Make the coefficients of the open
inequality system to be integer-valued and determine L from Exercise
8.12. What does Part (c) say about the practical computational
relationship of Khachian's algorithm with the quantity U!

[8.25] Show that the matrix PP' is invertible, where P is defined as in Equation (8.7),
with A being m x n of rank m and with Ok =diag{x!ci,...,xim}, given x^ > 0.

[8.26] The Karush-Kuhn-Tucker optimality conditions for Problem (8.8) assert
that the negative gradient of the objective function should be contained in the cone
spanned by the gradients of the binding constraints. Use this fact to show that
ynew defined by Equation (8.9) solves Problem (8.8).

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 441

- P ' w over w unrestricted in [8.27] Consider the problem of minimizing

sign. Show by setting the gradient of the objective function equal to zero that

w = (PPf)~ Pc* solves this problem.

[8.28] Use Exercise 8.10 to show that there exists a value of Mof magnitude 2 * '
such that the artificial variable j n + 3 in the problem of Equation (8.13) is zero at
optimality, given that the problem in Equation (8.12) is feasible.

[8.29] Determine the value a of a that minimizes the expression -a + a I

2(1 - a) in Equation (8.22). Why does this not necessarily imply that the value a

is the best value for obtaining a maximum reduction in the potential function F(·)?
How would you go about finding a better value of a from the viewpoint of
reducing F(·)? (Hint Examine the derivation of the inequalities in Equations
(8.20) and (8.21).)

[8.30] The Karush-Kuhn-Tucker optimality conditions for Problem (8.24), where
the constraints are written as < inequalities, require the gradient of the objective
function to lie in the cone spanned by the gradients of the binding constraints.
Show that at optimality for Problem (8.24), the first constraint is binding and that y
> 0. Using the stated optimality conditions, show that at optimality in Problem
(8.24), some 1 < q < (n - 1) components of y are equal to a value U and the
remaining components are equal to a value V, where U and V satisfy Equation
(8.25).

[8.31] a. Using the procedure of Exercise 8.21, provide the details and the
complexity analysis of an optimal rounding routine for Karmarkar's
algorithm as applied to Problem (8.4) under Assumptions (Al) and
(A2). In particular, define L as in Equation (8.1). Show that it is
sufficient to determine a solution xk to Problem (8.4) with objective

function value cxk < 2~ in order to round this solution by using

Exercise 8.21 to an optimal solution to Problem (8.4) (with a zero
objective function value) in polynomial time.

b. Illustrate the method of Part (a) by providing the details of optimally
rounding the solution \26 obtained for Example 8.2.

c. What is the relationship of this procedure with the rounding routine
given in Section 8.4?

d. Present a simplex pivot type of scheme for efficiently implementing
the optimal rounding routine of Section 8.4. Show that this process

has a complexity bound of 0(m ri).

[8.32] Consider the potential function / (x) = ln[cx/lx]. Show how this trans-
forms in the y-space under the projective transformation (8.5). Can this potential
function be used to analyze the complexity of Karmarkar's algorithm? (Hint
Examine the relationship between f(x) and ex for Problem (8.4).)

442 Chapter 8

[8.33] Analyze in detail the complexity of a single iteration of Karmarkar's
algorithm for Problem (8.4).

[8.34] Using the development of Sections 8.4 and 8.5, show how you can use
Karmarkar's algorithm to determine whether a given linear program is infeasible or
whether it is unbounded.

[8.35] Provide the details of Karmarkar's algorithm and its complexity for solving
Problem (8.4) via Problem (8.27) and the sliding objective method, under
Assumption (Al) but treating the optimal objective value as unknown. Include an
analysis of the optimal rounding via the purification step.

[8.36] Provide the complexity of solving the (general) linear programming
problem (8.11) via Karmarkar's algorithm using the transformation of this problem
into Problem (8.13) and the details of Exercise 8.35.

[8.37] Illustrate the procedure of Exercise 8.35 using Example 8.4 in Section 8.5

with the information that the optimal objective value v e [-6,0].

[8.38] Consider the linear assignment problem to minimize Σ™ ι Σ7=ι cijxij subject

to Σ™ι*// = 1 fory = l,.../n, Σ"}=χχ^ = 1 for i = 1,..., m, and x > 0. Suggest a
suitable transformation to use Karmarkar's algorithm for solving this problem.
Provide an algorithmic statement, including a suggested starting solution and any
algorithmic specializations. In particular, how would you exploit the fact that the
extreme points are integer valued? (Hint: With c integer, once a solution within a
unit of optimality is found, it can be optimally rounded by purification.)

[8.39] Consider the linear transportation problem to minimize Σ ^ ι Σ Ϊ ^ , ν * / /

subject to Σ ^ Χ ,) ^ Si for i = 1,..., NS, Σ ^ ^ = dj for/ = 1,..., ND, and x > 0,

where NS is the number of sources with respective supplies s,-, i = l,...JVS, and

where ND is the number of sinks with respective demands d -, j = l,...JVD.

(Assume all integer data and that Z/Ifsj - Σ / ^ ^ / ·) Repeat the analysis of

Exercise 8.38 for this problem.

[8.40] Consider the following QR factorization method for obtaining the least-

c ' - P ' w in order to determine squares solution w to the problem of minimizing

c „ of Equation (8.9b) via c „ = ~c' - P'w . Given P' of full column rank, its QR

decomposition yields P' =QR, where Q is an n x n orthogonal matrix (that is,

QQ' = I) and R is an n x (m + 1) matrix of the form Ri
0

. Here, R] is (m + 1) χ

(m + 1), nonsingular, and upper triangular. (See the Notes and References section

for details on performing such a decomposition.) Denote Q c Cl

C2
with c

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 443

being of dimension (m + 1) and c2 being of dimension (n - m - 1). Using this

decomposition, show that w is given as the solution to the linear, triangular

system Rj w = Cj. Furthermore, show that c „ = Q

[8.41] Suppose that you use the techniques of Sections 8.4 and 8.5 to determine a
basic solution to the primal-dual formulation in Equation (8.14). Does this
necessarily yield an optimal primal basis whose complementary dual basis is dual
feasible? If not, then under what conditions will this be obtained automatically, and
what additional work may be required otherwise? Give the details of a polynomial-
time scheme for finding such a basis. Explain the significance of being able to
obtain such a basis.

[8.42] Consider the linear programming problem to minimize ex subject to Ax = b
and x > 0, where A is m x n of rank m, the feasible region is bounded, and where

the data is all integer. Suppose that the optimal objective value v* and some
(rational) feasible solution x > 0 to this problem are known.

a. Show that by using the transformation

1D-Ix + 1 I D ' x + l
and by replacing the resulting fractional objective by the objective

function cDy-v* j 0 , one obtains an equivalent linear program of the

form (8.4).
b. Establish the polynomial-time complexity of Karmarkar's algorithm

with respect to the original problem using this approach.
c. Is the equivalence of Part (a) true if the feasible region of the original

problem is unbounded?
d. Consider the following linear programming problem:

Minimize -Xj - 2x2
subject to X] - x2 + x-} = 1

X[+ 2 x 2 + x 4 = 2
Xj, x 2 , Χ3, Χ4 ^ 0.

Using x = (0.5, 0.5, 1, 0.5)' and v = -2 , show that this problem is

equivalent to that of Example 8.2.
[8.43] Consider the linear programming problem P given in Equation (8.28),
where A is m x n of rank m < n and where the data is all integer. Without loss of
generality, assume that the feasible region is bounded and that a feasible solution
x0 > 0 is known. (Show how one may use artificial variables and bounds, if

necessary, for this purpose.) Construct the so-called barrier function problem
defined by Equation (8.35) for a given barrier parameter μ>0. Consider the

following Affine Scaling variant of Karmarkar's algorithm:

444 Chapter 8

Initialization. Let x0 be the given positive feasible solution, set k = 0, q = 0.97,

and select μ = min{2"2L_1 In, 10~12}, where L = Γΐ + Σ/Σ7·log(l + |ay |)Ί.

Step 1 (Dual estimates, projected gradient, and direction of motion, based on a

projected gradient step in the y-space, where y = D^ x. The latter transformation

gives the algorithm its name.) Given xk, define Ok = aiag{xki,...,xkr!}, ck = cDk,

and P^ = ADk. Compute the following:

Dual estimate: w^ = (P ^ y ' p ^ c / -μΐ']

Reduced cost vector: R^ = c' -μΌ^ ΐ ' - A'w^

Projected gradient vector: cpk =[l-?t
k(¥lcP

t
k)~

lPk][c'k -μΐ']

Direction of motion: dk =-Okcpk.

Step 2 (Termination test). If w^ is dual feasible in Problem (8.28) and

cxk - b w j < 2 , then purify x^ to an extreme point of Problem (8.28) and

terminate. Otherwise, continue.

Step 3 (New iterate.) Set xk+ì =xk+Àkak, where the step length Àk is given by

; · · J ; O-g)2! Ak = minimum^ ^Anax > <·
μ J

1 [dkj)
where = maximum-^ —:j = l,...,n>.

Anax [xkj J
Increment k by one and return to Step 1.

a. Show that the algorithm generates a sequence of positive iterates χ .̂,

*= 0,1,2,....
b. Show that the algorithm either stops finitely with an optimal solution

xk to Problem (8.29) in case c„J = 0 for some k, or else, ignoring

the termination test at Step 2, an infinite sequence of primal-dual

iterates (xk,yvk) is generated such that the sequence jncpk }—>0.

Moreover, for any convergent subsequence {x^w^}^ indexed by K,

with limit point (x,w), show that x > 0 and that x solves Problem

(8.29).
c. Show that w obtained in Part (b) is dual feasible to Problem (8.28).

Moreover, show that the duality gap between x and w in Problem

(8.28) is e x - b ' w = ημ.

d. Show that the reduced cost vector R^ approaches zero as k —» QO, and

that the dual iterate w^ becomes dual feasible in Problem (8.28) once

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 445

Rk is sufficiently close to zero. Hence, with μ defined as previously,

show that the algorithm terminates finitely at Step 2.
e. Present a purification process for obtaining a pair of optimal primal

and dual extreme point solutions to Problem (8.28) after termination
at Step 2.

f. Comment on the use of μ = 0. (This was the original affine scaling
algorithm.)

[8.44] Consider the linear programming problem given in Exercise 8.42d. Starting

with the solution x0 = (0.5, 0.5, 1, 0.5)' apply the affine scaling algorithm of

Exercise 8.43 to solve this problem. Show the progress of the iterates with respect
to feasibility and objective values in Problems P and D of Equation (8.28), and
purify the resulting solution to a pair of optimal primal and dual extreme point
solutions to Problems P and D, respectively.

[8.45] Suppose that the system Ax = b, x > 0 has a positive feasible solution.
Consider the following Phase I problem, where x0 > 0 is arbitrarily chosen and λ
is an artificial variable:

PI : Minimize{/t: A x - (2 - / l) b - (/ l - l) A x 0 = 0,x >0,A > 0}.

Note that (x,/t) = (x0,2) > 0 is a feasible, positive solution. Show that PI has an

optimal value that is strictly less than one. Also, show that for any feasible

solution (χ,Λ) to PI, where λ < 1, the solution χ = [(\-λ)χ0+χ]/(2-λ) is a

positive, feasible solution for the given linear system. Using Exercises 8.42 and
8.43, suggest a two-phase procedure for Karmarkar's algorithm, as well as for its
affine scaling variant.

[8.46] Show that the dual iterate w^ for the affine scaling algorithm of Exercise

8.43 is the solution to a certain least-squares problem. Provide a geometric inter-
pretation for this latter problem.

[8.47] Solve the problem of Exercise 8.2 using the affine scaling algorithm of
Exercise 8.43, starting with the solution (x^,x2,x^,X4) = (1, 1, 1, 1). Repeat this
using the affine scaling algorithm (with μ = 0) described in Section 8.6.
[8.48] Consider the linear programming problem:

Minimize {ex : Ax = b, - 1 < x· < 1 for j = 1,...,«}, (8.46)

where A is m x n of rank m and where the data is all integer. Show how a
problem having general lower and upper bounds i,- and M, on the x.-

variables, where —«><£ ■ <u,-<c0, can be put into this form. Assume (using

artificial variables if necessary) that there exists some known feasible solution

x0 to Problem (8.46) satisfying - l ' < x 0 < l ' . Analogous to Exercise 8.43,

construct the following barrier function problem for Problem (8.46) that uses a

barrier term to keep the variables strictly within their bounds:

446 Chapter 8

Minimize ìcx-μΣ [log(l + Xj) + log(l-Xj)]:Ax = b>. (8.47)

Here, μ > 0 is of magnitude 2~ ' \ and is assumed to be sufficiently small so
that a solution near enough to an optimum to Problem (8.47) can be purified to
an optimal solution to Problem (8.46). Consider the following Bounded
Variables Affine Scaling Algorithm.

Initialization. Let - l ' < x0 < l' be the initial feasible solution. Set the iteration

counter k = 0, and select q e [0.97,0.99] and μ = 2~~0{L\

Step 1. (Dual estimates, projected gradient, and direction of motion, based on a

projected gradient step in the y-space, where y = D^ x.) Given xk, define

Ok =diag{DA1,...,Dfoj}, where Dkj =mm{l + xkJ, \-xkj) for j = Ι,.,.,η, and

define S(xk) = [Si(xkl),...,S„(xkn)]
t where Sj(xkj) = {-2Dkjxkj)l{\-xlj) for; =

1,..., n. (Note that -1 < Sj(xkj)< 1 for y = 1,..., n.) Denote \ = cD^, Vk = ADA,

and compute the following:

Dual estimate: w t = {PkY
t
ky

XYk[c,
k-μδ{χΙί)\

Reduced cost vector: R t = c' - μ ϋ ^ £(χΑ) - A'w

Projected gradient vector: cpk = OkRk ^[l-Pt
k(PkF

t
ky

iVk][c'k-MS(xk)]

Direction of motion: d^ = -Okcpk .

Step 2. (Termination test.) If c„J = 0, then stop with xk as an optimal solution

to Problem (8.47); purify x^ to an optimal vertex of Problem (8.46). (Practically,

one would stop if c ^ is sufficiently small.)

Step 3. (New iterate.) Set xk+l =xk+ Akdk where the step length lk is given by

Àk = minimum j qÀmsx, (1 - q2)2 14μ

where

1
■ = maximum

ΛΜΧ 7=l.-.n

dkj dkj
max < >0.

β-Hj) (1 + ̂) J

Increment k by one and return to Step 1.

a. Show that the bounded variables affine scaling algorithm either stops
finitely with an optimal solution xk to Problem (8.47) in case

c„J =0 , or else, an infinite sequence of primal and dual iterates

{x^w^} is generated such that the sequence j wcpk > -> 0. Moreover,

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 447

for any convergent subsequence {X£>WA;}A: indexed by K with limit
point (x,w), we have - l ' < x < l ' and that x solves Problem (8.47).

b. Show that the dual iterates w^ correspond to a dual feasible solution
to Problem (8.46) for all k. Obtain an expression for the duality gap
between the primal and dual solutions x^ and w^ for Problem (8.46).
Suggest a termination criterion based on this duality gap that will
permit a purification to a pair of optimal primal and dual extreme
point solutions for Problem (8.46).

[8.49] Solve the following problem using the bounded variables affine scaling
algorithm, after transforming it to the form required by Exercise 8.48:

Minimize -xj
subject to 2xj + x2 + X3 = 2

Xi — X2 + X4 = 4

-1<X!<2 , - 3 < x 2 < - l , 0 < x 3 < 7 , 0 < x 4 < 3 .

Use the solution x = (0, -2,4,2)' as the starting solution.

[8.50] For the bounded variables affine scaling algorithm of Exercise 8.48,
consider the following alternative affine transformation to be used in Step 1 of the
algorithm:

x = Dyty where D^ =d iag | | l - x | , J , y = l,...,«j.

Using the same barrier function problem (8.47), state an affine scaling algorithm
analogous to the one in Exercise 8.48 and establish a similar convergence result.

[8.51] Illustrate the algorithm of Exercise 8.50 using the example of Exercise 8.49.
[8.52] Consider the problem of estimating the parameters of a linear regression
model b = Ax - E, where b = (oj,...,Z>„)' is a vector of « observations, A is an « x
m matrix with each row corresponding to values of some m independent variables,
x is a vector of m parameters to be estimated, and E is a vector of n random errors
that are independently and identically distributed according to some distribution.
We are interested in finding out a set of values for the parameters x that minimize

Y" ÌFÌ A=lp;|·
a. Formulate this problem as a linear programming problem.
b. Write the dual to this problem and show how the bounded variables

affine scaling algorithm of Exercise 8.48 can be used to solve this
problem.

[8.53] Consider the system in Equation (8.41). Denoting X^ and V^ as diagonal
matrices having the respective components of x^ and vk as the diagonal ele-
ments, verify that Equation (8.41c) (without the final quadratic term) can be
equivalently rewritten as follows:

V ^ + X ^ / ^ l ' - V ^ l ' ,

448 Chapter 8

where l i s a column vector of ones. Hence, show that the solution to this along
with Equations (8.41a and b) yields dt uniquely via:

d'w=(Ay^xkA
tylA\^[ykxki' - ^ + 1 i ']

d(, = -A'd'w

i ^ v i ' b w i ' - V A i ' - x X] .
[8.54] In the primal-dual path-following algorithm, suppose that ξίί = (xk, wk,

\k) satisfies Equation (8.39), where θ= 0.35. Revising μ/(to μ/ί+ί according to

Equation (8.40), where /?is given by Equation (8.43), let Αμ be given via the sys-

tem in Equation (8.41) (see Exercise 8.53), and define £*+i as in Equation (8.42).

Show that 4>+i and μλ+1 satisfy the conditions (8.39) with k replaced by k + 1.

[8.55] Analyze in detail the complexity of a single iteration of the primal-dual

path-following algorithm, and show that it is polynomially bounded by 0(n).

2 5

(This can be reduced to a complexity order of 0(n ·) using an argument due to
Karmarkar of updating the solution to the system in Equation (8.41) from one
iteration to the next, in lieu of solving it from scratch at each iteration.)

[8.56] Consider the problem to minimize 2x\ +3x2 +*3, subject to 3x] + 2JC2 +

4x3 = 9, x > 0. Solve this problem using the primal-dual path-following method

using a starting solution (k = 0) of xk = (1, 1, 1)', wk = - 1 , where w is the dual

variable associated with the single equality constraint, and μί(= 5. Is this starting

solution on the central path?
[8.57] Resolve the example of Exercise 8.56 using the predictor-corrector path-
following algorithm described in Section 8.6, starting with the same solution as
given in Exercise 8.56 and adopting the following rule to update the parameter μ:

_ [y'k+\x'k+\]
Mk+\ ~ ·

mkxk

Give an interpretation of this formula. (Hint: Observe that

n \
)

NOTES AND REFERENCES

1. The concept of "good" or polynomially bounded algorithms was
independently proposed by Edmonds [1965], and Cobham [1965]. See
Cook [1971], Karp [1972], Garey and Johnson [1979], and Papadimitriou
and Steiglitz [1982] for further reading on this subject.

i"*+l
yk+lxk+\

yk*k

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 449

2. For the complexity analysis of the simplex method under various pivoting
rules, see Klee and Minty [1972], Jeroslow [1973], Avis and Chvatal
[1978], and Goldfarb and Sit [1979]. (Exercise 8.8 uses Chvatal's [1983]
approach.)

3. Around 1957, Warren Hirsch conjectured (see Dantzig [1963a]) that for
bounded polyhedral sets with/facets in n dimensions, any two vertices of
the polytope are connected by a simplex path of length at most (f - ri).
This is referred to as the Hirsch conjecture. Klee and Walkup [1967]
showed the necessity of boundedness of the polyhedral set and established
this conjecture under the restriction/- n < 5. (Klee [1965a] showed this
conjecture to be true for n < 3.) The monotonic-bounded Hirsch
conjecture asserts that there exists a simplex path between any two
vertices of length no more than (f - ri), which additionally has
nonincreasing objective function values. Todd [1980] has shown this
conjecture to be false for n > 4. For a related result on the zero-one set
partitioning problem, see Balas and Padberg [1970].

4. Average-case probabilistic complexity analyses of the simplex method
appear in the novel work of Borgwardt [1982a, b] and Smale [1983a, b].
This independent work has been coordinated and extended by Haimovich
[1983]. Also, see Todd [1989] for a survey.

5. The Soviet mathematician L. G. Khachian [1979] was the first to intro-
duce linear programming problems in the Class P of problems. Proofs of
the results appear in Khachian [1981] and Gacs and Lovasz [1981]. The
latter paper contains the ideas of Exercises 8.14, and the optimal rounding
scheme of Exercise 8.21. Khachian's ellipsoid algorithm derives its ideas
from earlier work by other Soviet mathematicians including Shor [1970a,
b]. Analysis of this algorithm using finite precision arithmetic appears in
Khachian [1980] and Grotschel et al. [1981]. The "deep cut" variation
discussed in Exercises 8.12-8.17 was first presented in Shor and
Gershovich [1979]. The unbounded complexity of Khachian's algorithm
with real, noninteger data was demonstrated by Traub and Wozniakowski
[1982] (see Exercise 8.24). A polynomial variant of Khachian's algorithm
that uses simplices in lieu of ellipsoids appears in Yaminitsky and Levin
[1982]. An excellent survey appears in Bland et al. [1981]. Also, see the
survey paper of Shor [1983] and the development of the ellipsoid
algorithm in Murty [1983] and Schrijver [1986] for further details.

6. Using a polynomial-time linear programming subroutine, Tardos [1985,
1986] showed that the linear program to minimize ex subject to Ax < b
with integer data can be solved in a number of elementary arithmetic
operations bounded by a polynomial in the size of A alone. Hence,
network structured problems, for example, admit genuinely or strongly
polynomial algorithms. Megiddo [1983] also derived a strongly polyno-
mial algorithm for linear programs having at most two nonzero
coefficients in the objective function and in each of the constraints.

7. The projective polynomial-time algorithm for linear programming was
proposed by N. Karmarkar [1984a, b, 1985] at AT&T Bell Laboratories,
U.S.A. Lawler [1985] and Padberg [1986] discuss the use of larger step

Chapter 8

sizes, and Goldfarb and Mehrotra [1988] and Anstreicher [1986a] validate
techniques using approximate projection operations. An alternative to
using the sliding objective function/bisection scheme is presented in Todd
and Burrell [1986] and Anstreicher [1985]. Charnes et al. [1984] exhibited
a worst-case linear convergence rate for Karmarkar's algorithm. However,
Iri and Imai [1986] developed a modification that is quadratically
convergent. For additional analyses on superlinearly convergent primal-
dual path-following methods, see Mehrotra [1993], Tapia et al. [1995], Ye
et al. [1993], Zhang et al. [1992], and Zhang and Tapia [1993].
Implementation suggestions and transformations for solving general linear
programs by Karmarkar's method appear in Tomlin [1985] and Shanno
and Marsten [1985], in particular. The two-phase approach of Exercise
8.45 is from Kojima [1986]. For factorizations in solving the least-squares
problem accurately, see Dongarra et al. [1979], Heath [1982], George and
Heath [1980], and Todd and Burrell [1986]. Relationships of Karmarkar's
algorithm to projected Newton barrier methods have been shown by Gill
et al. [1986], and to the ellipsoid algorithm have been demonstrated by
Todd [1989] and Ye [1987]. For computational experience using linear
assignment problems, see Aronson et al. [1985]. The purification scheme
first found its elements in Charnes et al. [1965]. Also, see Kortanek and
Jishan [1988]. Sherali et al. [1988] showed how to use such a scheme for
optimally rounding to a basic feasible solution. Ye [1987] also discusses
how to obtain an optimal basis via Karmarkar's algorithm, and Ye and
Kojima [1987] discuss how to recover dual solutions. Variants and
discussions related to Karmarkar's projective algorithm appear in
Anstreicher [1986b, e], Asie et al. [1986], Blair [1986], Blum [1985],
Chang and Murty [1987], de Ghellinck and Vial [1986], Gay [1987],
Gonzaga [1985, 1987b], Kojima [1986], Lustig [1985], Megiddo [1985,
1986a, b], Murty [1985], Nazareth [1986], Rinaldi [1986], Ye [1985a, b],
and Chiù and Ye [1985b], among others. (See Note 8 for the affine scaling
and the path-following variants.) For exploiting special structures using a
variant of Karmarkar's projective algorithm, see Todd [1988]. Anstreicher
[1997], Freund and Mizuno [1996], and Monma [1987], provide survey
articles; see also Martin [1999], Saigal [1995], Terlaky [1998], and
Vanderbei [1996].

The affine scaling variant of Karmarkar's algorithm finds its origin in
Dikin [1967, 1974], but was rediscovered independently by Barnes
[1986], Vanderbei et al. [1986] and Cavalier and Soyster [1985], follow-
ing Karmarkar's algorithm. Barnes [1986], Vanderbei et al. [1986],
Kortanek and Shi [1987], and Sherali [1987] prove convergence under
various conditions. Sherali et al. [1988] have presented an assumption-
free convergence analysis of a perturbation of this algorithm. (Exercises
8.43, 8.48, and 8.50 are derived from this paper.) For exploiting special
structures using this variant, see Chandru and Kochar [1986]. Adler et al.
[1986] and Monma and Morton [1987] have also independently developed
dual affine variants of Karmarkar's algorithm. Megiddo and Shub [1987]
have exhibited a worst-case exponential behavior for the affine scaling

Complexity of the Simplex Algorithm and Polynomial-Time Algorithms 451

algorithm with infinitesimal steps (continuous trajectory) on the Klee-
Minty [1972] polytope by starting the algorithm close enough to a vertex.
See Saigal [1995] and Vanderbei [1996] for detailed analyses regarding
the convergence of the affine scaling method under degeneracy. By
adopting an additional step that centers the iterate within the polytope,
Barnes [1987] has derived a polynomial-time variant of the affine scaling
algorithm. This centering amounts to increasing the denominator of
Karmarkar's multiplicative potential function, while the usual gradient-
based step is aimed at reducing the numerator of this potential function.
Hence, we obtain a polynomial-time behavior. This approach falls under
the category of path-following algorithms. These algorithms have been

motivated by the work of Megiddo [1986b], and include the 0(n L)

algorithms of Ben Daya and Shetty [1988], Gonzaga [1987a], Monteiro
and Adler [1989a, b], Renegar [1988], Vaidya [1987], and Ye and Todd
[1987], among others (see Terlaky [1998] and Martin [1999] for further
references and discussions). In particular, McShane et al. [1988] provide
implementation details and computations using the primal-dual path-
following method of Monteiro and Adler [1989a], which is discussed in
Section 8.6. The work of Gonzaga [1987a, b] also motivates a
bidirectional search in the y-space based on the projection of the vector 1,
in addition to that of the vector -cD^, onto the null space of P^ = AD^ in

the context of the affine scaling method. Gonzaga [1988] also shows how
to derive a polynomial-time affine scaling variant through a potential
function minimization process. For a polynomial-time primal-dual affine
scaling variant of Karmarkar's algorithm, see Monteiro et al. [1990]. The
popular predictor-corrector variants of primal-dual path-following
algorithms were introduced by Mehrotra [1991, 1992], and
computationally implemented by Lustig et al. [1992a, b]. Kojima et al.
[1993] (see implementation aspects in Lustig et al. [1994a, b]), and Zhang
and Zhang [1995] provide convergence analyses and polynomial
complexity proofs for such variants. Carpenter et al. [1993] explore
higher-order variants of predictor-corrector methods. For extensions of
interior point methods to quadratic and convex nonlinear programs, see
the exposition given in den Hertog [1994], Nesterov and Nemirovskii
[1993], and Yudin and Nemirovskii [1976].

9. Similar to Khachian's [1979] algorithm, Dunagan and Vempala [2008]
discuss an algorithm to solve linear programs by finding a solution to a

system of linear inequalities. Given m linear inequalities in R", assumed
to contain a ball of radius p 0 , they devise a randomized perceptron-like
algorithm (from machine learning) based on a periodic re-scaling
technique to find a feasible solution with probability (1 - δ), where 0 < S<

1, in polynomial time with complexity 0{mn log(«)log(l//?0) +

mn log(«)log(l/<5)).

This page intentionally left blank

NINE: MINIMAL COST NETWORK
FLOWS

In this chapter, we present a specialization of the simplex algorithm to network
structured linear programming problems. This specialization, known as the net-
work simplex algorithm, performs the simplex operations directly on the graph or
the network itself. We also discuss appropriate data structures that facilitate the
implementation of such a graph-theoretic procedure on the computer. The overall
efficiency with which such a procedure operates enables one to solve problems
200-300 times faster than with a standard simplex approach that ignores any
inherent special structures other than sparsity. Hence, very large problems can be
solved with a reasonable amount of effort. Note that the network simplex
algorithm has been shown to exhibit worst-case exponential behavior on certain
classes of transportation problems, although new polynomial-time variants are
emerging. Moreover, there exist (strongly) polynomial-time algorithms for
network flow problems based on an iterative scaling method or on an
implementation of a dual simplex method, as well as specialized types of
polynomial-time primal simplex algorithms. Also, Khachian's and Karmarkar's
polynomial-time algorithms could be used, specialized to exploit the coefficient
matrix form and sparsity. However, the algorithms discussed in this chapter and in
Chapter 11 are by far the most effective in practice. Furthermore, this chapter lays
the foundation for studying polynomial-time dual-simplex algorithms, as well as
more advanced topics dealing with generalized networks, extracting network or
generalized network structures or substructures from given linear programming
problems, and solving network flow problems with side-constraints and/or side-
variables. We refer the reader to the Notes and References section for reading
material on these topics.

We begin our discussion by introducing network structured linear pro-
grams and some associated concepts from graph theory that are relevant to our
study. Next, we present an important property possessed by the coefficient
matrix that gives this problem its special structure, and we characterize a basis
matrix in graph-theoretic terms. This leads us into developing the network sim-
plex algorithm for the nonnegatively constrained as well as for the bounded
variables problem. Thereafter, we examine data structures for representing the
basis matrix that enable us to implement simplex types of algorithms on the
computer. This discussion includes terminology and concepts that are important
in educating the reader sufficiently to study much of the modern literature on
network flow programming.

9.1 THE MINIMAL COST NETWORK FLOW PROBLEM

Consider a directed network or a digraph G, consisting of a finite set of nodes
(vertices or points) < / = {1,2,..., m) and a set of directed arcs (links, branches,
edges, or lines). ' / = {(i,j), (k, £),...,(s, t)} joining pairs of nodes in /. Arc (/,

453

454 Chapter 9

j) is said to be incident at nodes i andj and is directed from node / to nodey. We
shall assume that the network has m nodes and n arcs. Figure 9.1 presents a
network having four nodes and seven arcs.

With each node i in G we associate a number bt that represents the

available supply of an item (iffy > 0) or the required demand for the item (if ty <

0). Nodes with bj > 0 are called sources, and nodes with bt < 0 are called sinks.

Iffy = 0, then none of the item is available at node / and none is required; in this

case, node /' is called a transshipment (or intermediate) node. Associated with

each arc (i,j) we let x,·. be the amount of flow on the arc (we assume x,y > 0),

and we let c,·.· be the unit shipping cost along this arc.

We shall assume that the total supply equals the total demand within the

network, that is, Σ™ i fy = 0. If this is not the case, that is, Σ™ i bj > 0, then we

can add a dummy demand node, m + 1, with bm+x = -Σ/uify and arcs with zero

cost from each supply node to the new node.
The minimal-cost network flow problem may be stated as follows: ship

the available supply through the network to satisfy demand at minimal cost.
Mathematically, this problem becomes the following (where summations are
taken over existing arcs):

m m
Minimize Σ Σ Ci/Xy

m m
subject to Σ xij - Σ x/ci = fy> ' = h---,m (9.1)

j=\ k=\
χί/·^°> i,j = l,-,m.

Constraints (9.1) are called the flow conservation, or nodal balance, or Kirchhoff
equations and indicate that the flow may be neither created nor destroyed in the

network. In the conservation equations, Σ?=ι % represents the total flow out of

node /, while Σ^=ι*& indicates the total flow into node i. These equations

require that the net flow out of node i, Σ^=] Xy - Σ™=\ *ki > should equal bt. So, in

particular, if bt < 0, then there should be more flow into / than out of i. This
problem is also said to be uncapacitated. The problem that includes upper
bounds on arcs is said to be capacitated and is considered subsequently.

The minimal cost flow problem might arise in a logistics network in
which people and materials are being moved between various points in the
world. It may be associated with the movement of locomotives between points
in a railroad network to satisfy power for trains while minimizing travel costs.
Minimal cost network flow problems occur in the design and analysis of
communication systems, supply chain and distribution problems, oil pipeline
systems, tanker scheduling problems, and a variety of other areas.

Minimal Cost Network Flows

ς<
Figure 9.1. Example of a network.

Clearly, the minimal cost flow problem is a linear program and can be
solved in any one of several ways. One way is to apply the ordinary primal
simplex algorithm to the problem. What we seek in this chapter is a simplifica-
tion of the simplex method so that it can be applied directly on the network
without the need of a simplex tableau.

9.2 SOME BASIC DEFINITIONS AND TERMINOLOGY FROM
GRAPH THEORY

Consider the digraph G(, I ',■'/) introduced earlier with node set, / and arc

set, V This graph is said to be proper if the cardinalities of / and · ^satisfy

|. / | ^ 2 and |. V | > 1. Two nodes in the graph are said to be adjacent if they

are directly connected by some arc. For the directed arc (i, j) e · "/, node i is

called its from-node and nodej is called its to-node. For any node i, the set of
nodes j for which there exists an arc (i, j) is called the forward-star of /.
Similarly, for any node /, the set of nodes j for which there exists an arc (/', i) is
called the reverse-star of /.

Throughout our study, we will be concerned with graphs that have
directed arcs only, that is, with digraphs. In contrast, an arc that has no
orientation and that permits flow in either direction is called an undirected arc.
A graph that has all undirected arcs is called an undirected graph. If a graph has
both directed and undirected arcs, then it is called a mixed graph. Note that in
the context of the minimum cost network flow problem, if there exists an
undirected arc (i,j) with a cost q, > 0, then this can be equivalently replaced by

two oppositely oriented directed arcs (/',_/) and (J, i), each with the same unit cost
Cj-. However, this construction is not valid if c,y < 0 for flow in either direction.

In such a case, if the problem is feasible, then we can take any feasible solution
to the original problem and superimpose on it an infinite circulation of flow
from i to j along (;', f) and back from j to i along (j, i) in the transformed
network. In this manner, we can maintain feasibility in Problem (9.1) (assuming
that this is feasible) and drive the objective function to -oo, while in reality, such
a circulation of flow results in a zero additional flow and cost in the original
problem.

Continuing, a path from node i0 to /_ is a sequence of arcs P = {(/0, /]),

(il,Ì2%—Àip-iJp)}
 m which the initial node of each arc is the same as the

459

456 Chapter 9

terminal node of the preceding arc in the sequence and ί0,...,ί are all distinct

nodes. Thus each arc in the path is directed "toward" i„ and "away from" i0. A

chain is a similar structure to a path except that not all arcs are necessarily
directed toward node ip. Figure 9.2a illustrates a path, and Figure 9.2b presents

a chain. A circuit is a path from some node ;0 to i plus the arc (i ,i0). Thus, a

circuit is a closed path. Similarly, a cycle is a closed chain. Figures 9.2c and
9.2d depict circuits and cycles. Every path is a chain but not vice versa. Every
circuit is a cycle but not conversely.

These definitions refer to what are known as simple paths, chains, circuits,
or cycles. We will assume that these definitions apply unless otherwise
specified. A nonsimple path, for example, can permit nodes in the set z0, i\,...,ip

to repeat and hence, may include circuits. For example, the set of arcs {(1, 2),(2,
3),(3, 4),(4, 2),(2, 3),(3, 5),(5, 6),(6, 7),(7, 5),(5, 8)} describes a nonsimple path
from node 1 to 8, with the sequence of nodes i0, i\,...,ip visited being i0 = 1,

2, 3, 4, 2, 3, 5, 6, 7, 5, and 8 = ip.

Throughout this chapter, we shall assume that the underlying graph G for
the minimum cost network flow problem is connected, that is, there exists a
chain between every pair of nodes in G. This property is also referred to as
yielding a weakly connected graph. A strongly connected graph is one where
there is a (directed) path from each node to every other node. A complete graph
is one where each node is connected by an arc to every other node. Hence, a
complete digraph on m nodes has m(m - 1) arcs. A subgraph G'(I ' , " / ') of a

graph G(/ ,·."/) is one that satisfies . / ' c / and ■ V c ■ "/, with the under-
standing that if (i,j) e . / ' , then both / andj are in , / ". If G' Φ G, then G' is
said to be a proper subgraph of G. If ,. / ' =, / , then G' is said to be a
spanning subgraph of G, that is, it "spans" all the nodes of G. A subgraph
G'(I ','/') of G(l , " /) is said to be induced by the node set , / ' if ."/ '
includes all the arcs in , Xthat have both their associated nodes present in . / '.
For example, referring to Figure 9.1, the subgraph induced by the node set,. / "
= {1,2, 4} is the graph having nodes 1, 2, and 4, and with the arc set . V = {(1,
2), (2, 4), (4, 1)}. A component of a graph G is a subgraph that is connected and
that is not a proper subgraph of another connected subgraph. Hence, the
components of a graph are maximal connected subgraphs-they are "separable
pieces" of a graph. For example, if we delete arcs (1, 2), (1, 3), and (4, 1) in
Figure 9.1, the resulting graph has two components (which ones?).

A tree is a connected graph having no cycles. We call a tree an
arborescence if there exists some node r (called a root node) such that there
exists a (directed) path connecting node r to every other node in the tree. A
spanning tree, defined with respect to some underlying graph G, is a tree that
includes every node of the graph, that is, it is a spanning, connected subgraph
having no cycles. Figure 9.2e illustrates a spanning tree of the graph in Figure

Minimal Cost Network Flows

(a) A path (b) A chain

(c) A circuit (d) A cycle

(e) A tree

Figure 9.2. Paths, chains, circuits, cycles, and trees.

9.1. Figures 9.2a and 9.2b are also examples of spanning trees. Figures 9.2c and
9.2d are not trees. Note that a graph having no cycles has a tree as each of its
components (why?). Such a graph is called a forest. Similarly, a spanning forest
defined with respect to a graph G is a spanning subgraph of G having no cycles.
The rank or degree of a node is the number of arcs incident at it. The in-degree
of a node i is the number of arcs that have i as their to-node, and the out-degree
of ; is the number of arcs that have / as their from-node. Hence, (in-degree of i)
+ (out-degree of/) = (degree of/). For example, in Figure 9.1, the in-degree of
node 1 is 1 and its out-degree is 2; its degree is 3. A node having degree 0 or 1
is an end node. (Sometimes, the end node of a tree is referred to as a leaf node.)
For example, nodes 1 and 4 are end (leaf) nodes of the tree in Figure 9.2a.

We shall see shortly that trees play a very central role in network flow
problems because they help us characterize bases of the coefficient matrix in
Problem (9.1). Let us examine some additional facts concerning tree graphs.

Property 1

Let T be a proper tree graph having m(> 2) nodes, and let (/, j) e T. Then
disconnecting (i,j) from T, that is, removing the arc (i,j) from T but leaving the
nodes / andj in T, decomposes T into two trees 7j and T2. This follows since
disconnecting (/, j) must result in r > 2 components, each component being a
tree, or else, by putting back (/, j), we would have a cycle in T, a contradiction.

459

458 Chapter 9

Because putting back (/', J) can connect no more than two components by
definition, and because Tis connected, we must have r = 2.

Property 2

A proper tree graph has at least two end nodes. This is clearly true for a tree
having only two nodes. By induction, suppose that this is true for a tree having
2,...,(m - 1) nodes, and let us show that it is true for a tree having m nodes,
where m>3. Select some (i,j) e Tand disconnect it from T, creating two trees
7j and T2, each having no more than (m - 1) nodes. If 7] or T2 has only one

node, then by the induction hypothesis, the total number of end nodes in 7j and

T2 is at least 3 (why?). Moreover, by putting back (/,/), we can lose at most one

of these end nodes. Hence, Trias at least two end nodes. Otherwise, if both 7]

and T2 have at least two nodes, then they have at least four end nodes in total,

and putting back (/, j) can result in a loss of at most two end nodes. This again
shows that Thas at least two end nodes.

Property 3

A tree having m nodes has (m - 1) arcs. This is clearly true for m = 1 or 2. By
induction, assume that this property holds for a tree having (m - 1) nodes and
consider a tree with m nodes, m > 3. By Property 2, an end node i exists.
Disconnect the (unique) arc incident at the end node and obtain two trees 7] and

T2 (by Property 1), where 7j = {/}. Hence, 7j has zero arcs, and T2 has (m -

1) nodes. By the induction hypothesis, it has (m - 2) arcs. Therefore, Thas (m -
2)+ 1 = (m- 1) arcs.

These fundamental properties help establish several equivalent characteri-
zations of a tree graph.

Equivalent Characterizations of a Tree Graph T

(a) T is connected and has no cycles.
(b) T is connected and has (m - 1) arcs.
(c) T has (m - 1) arcs and has no cycles.
(d) T is connected, but disconnecting any arc from T results in two

components.
(e) T has no cycles, but adding any new arc to T results in a graph

having exactly one cycle. (Such a graph is called a one-tree.)
(f) T has a unique chain connecting each pair of its nodes.

Observe that Statements (a), (b), and (c) assert that any two of the three
characteristics of being connected, having no cycles, and having (m - 1) arcs
implies the third. Furthermore, we shall see later that Statements (d) and (f) play
a role in computing and updating dual and primal variables. Statement (e)
pertains to the representation of a nonbasic variable column in terms of the basic
variable columns.

Minimal Cost Network Flows 459

The equivalence of these characterizations is readily established. For
example, consider Statements (a) and (b). Note that Statement (a) implies State-
ment (b) by Property 3. Statement (b) also implies Statement (a), because if T is
connected, has (m - 1) arcs, and contains a cycle, then we can delete an arc from
the cycle and not destroy connectedness (why?). Using this method, we can
obtain a connected graph having no cycles, but one that has fewer than (m - 1)
arcs—a contradiction to Property 3. Hence, Statements (a) and (b) are equiva-
lent. Similarly, Statements (a) and (c) are equivalent since Statement (a) implies
Statement (c) by Property 3, and Statement (c) implies Statement (a), because if
it did not, then we would have a graph T having (m - 1) arcs and with no cycles
that is not connected. Then, by adding an arc between any two components, we
can reduce the number of components by one without creating any cycle
(why?). Continuing in this fashion, we can obtain a connected graph having no
cycles, but one that has more than (m - 1) arcs—a contradiction to Property 3.
Hence, Statements (a) and (c) are equivalent. The equivalence of Statement (a)
with the other characterizations is easily shown in a similar manner using these
properties. This is left to the reader in Exercise 9.9.

9.3 PROPERTIES OF THE A MATRIX

Consider the coefficient matrix A associated with the constraint set (9.1). The
matrix A has one row for each node of the network and one column for each arc.
Each column of A contains exactly two nonzero coefficients: a "+1" and a " - 1 . "
The column associated with arc (/,_/) contains a "+1" in row /, a " - 1 " in row/,
and zeros elsewhere. Thus, the columns of A are given by

au=ei-ej

where e; and e,· are unit vectors in Rm, with ones in the rth andy'th positions,

respectively. The A matrix is called the node-arc incidence matrix for the
graph. The A matrix for the network of Figure 9.1 is:

A = :

Rank of the A Matrix

Assume that A is a node-arc incidence matrix of a connected digraph. Clearly,
the A matrix does not have full rank, since the sum of its rows is the zero vector.
To show that A has rank m - 1 we need only select an (m - 1) x (m - 1)
submatrix from A that is nonsingular.

Let T be any spanning tree in the network G. By deleting arcs involved in
a cycle, we can show constructively that such a tree exists. From the earlier

1
2
3
4

0,2)
1

-1
0
0

(1,3)

1
0

-1
0

(2,3)

0
1

-1
0

(2,4)

0
1
0

-1

(3,2)

0
-1

1
0

(3,4)

0
0
1

-1

(4,1)

-1
0
0
1

460 Chapter 9

Figure 9.3. Reduction of 7to T.

discussion, T consists of the m nodes of G together with (m - 1) arcs of G that
do not form a cycle. Consider the m x (m - 1) submatrix AT of A associated
with the nodes and arcs in T. Since m>2,T has at least one end k. Accordingly,
the Ath row of AT contains a single nonzero entry. Permute the rows and

columns of AT so that this nonzero entry is in the first row and first column.

Then, A7- becomes

~±1

P

0

Aji
AT =

Delete the first row and column of AT and consider the matrix A τ · , which is

(m - 1) x (m - 2). Correspondingly, obtain the graph 7" from T by removing
node k and the incident arc (see Figure 9.3). Note that T' is also a tree. It must
contain at least one end, say, node i. Permuting the rows and columns of Ατ· so

that the single nonzero entry in row I is in the first row and column, we may
write AT as

±1

P\

P2

0

±1

q

0

0

A r _

We can continue in this manner exactly m - 1 times, after which all m - 1
columns of AT are fixed. Deleting the remaining bottom row of AT, we will

have an (m - 1) x (m - 1) matrix Bj- that is lower triangular with nonzero

diagonal elements and therefore, nonsingular. Thus, the rank of A is m - 1.
If we select columns (1,3), (2, 3), and (3, 4) from the node-arc incidence

matrix for the network of Figure 9.1, we get the following lower triangular
matrix after using the foregoing permutation process, with (end) nodes selected
in the order 1, 2, and 3, and by finally discarding row 4:

Minimal Cost Network Flows 461

(1,3) (2,3) (3,4)

1
B r =2

1
0

-1

0
1

-1

0
0
1

The corresponding spanning tree is given as follows:

©X©
The Artificial Variable

Recall that the simplex method always starts with a full rank constraint matrix.
We demonstrated earlier that the rank of A is m - 1. Therefore, an artificial
variable could be added so that the rank of the new matrix is m. Introducing an
artificial variable corresponding to node m (any other node would do) leads to
the constraint matrix (A,em). We need not penalize the artificial variable, since

it must be zero in any feasible solution to the artificial problem (why?).
Any basic solution must contain m linearly independent columns, and

hence the artificial variable must appear in every basic solution. If we liberalize
our definition of an arc, then the new column can be viewed as an arc beginning
at node m and terminating in space (see Figure 9.4). This one-ended arc is
called a root arc. The associated node (m) is called a root node.

Characterization of a Basis Matrix

We determined the rank of A by examining the submatrix associated with any
spanning tree. This also demonstrates that a spanning tree together with a single
artificial variable corresponds to a basis for the A matrix. A graph of this type is
called a rooted spanning tree and is illustrated in Figure 9.5. Note that the
associated basis matrix B obtained by adding the root arc and the root node as
the last column and row, respectively, to B r is lower triangular, because BT is

Figure 9.4. A generalized graph G.

462 Chapter 9

Figure 9.5. A basis subgraph is a rooted spanning tree.

lower triangular and the root arc column is e,„. This is shown below for the

previous example.

1
2
3
4

(1,3)

1
0

-1
0

(2,3)

0
1

-1
0

(3,4)

0
0
1

-1

root arc

0"
0
0
1

B =

A rooted spanning tree corresponds to a (lower triangular) basis for (A,em). The

converse of this is also true. Namely, any basis for (A,em) is a node-arc

incidence matrix of a rooted spanning tree. To see this, let B be an m x m basis
matrix of (A,em), and let GB be the graph whose node-arc incidence matrix is

B. Since the artificial column must be a part of every basis and since B is m x m,
GB is a rooted spanning subgraph of G, that is, it is a spanning subgraph plus

the root arc. Besides the root arc, it has (m - 1) arcs. Furthermore, it must be
connected or else, it contains a component having no root arc. However, the
rows of B corresponding to the nodes in such a component must add to zero
since each basic arc column having nonzero entries in these rows has a + 1 and a
-1 in these rows and zeros elsewhere. Hence, GB has m nodes and one root arc,
it is connected, and has (m - 1) arcs. By the equivalent characterization (b) of a
tree in the foregoing section, GB is a rooted spanning tree.

Although the previous argument implies that GB cannot contain a cycle,

it is instructive to see this property more directly. Suppose that GB is a rooted

spanning subgraph of G, and by contradiction, suppose that GB contains a cycle

(see Figure 9.6). Select some arc (i,j) in the cycle and orient the cycle in the
direction of that arc. Then, for each column of B associated with an arc in the
cycle, assign a coefficient of+1 if the arc is in the direction of orientation of the
cycle and -1 otherwise. Applying these coefficients to the respective columns in
B, we find that the weighted sum of these columns is the zero vector. In Figure
9.6 we have

ay -Hj -*ek+aip +&
Pq +··■ = (e,· -e_,-)-(et -ej)-(e(-ek)

+ (e^-e„) + (e„-e„) + --- = 0.

Minimal Cost Network Flows 463

Figure 9.6. Illustration of a linearly dependent set of columns.

Thus, the columns of B could not have been linearly independent. This
contradiction shows that GB contains no cycles. But GB contains m nodes and
m - 1 arcs. Hence, GB is a tree (why?).

To summarize, we have shown that each basis consists of the root
together with a spanning tree (see Figure 9.5), and conversely. Thus, we have
the following theorem holding true.

Theorem 9.1

Consider a minimum-cost network flow problem defined on a connected
digraph G having one root arc. Then B is a basis matrix for this problem if and
only if it is the node-arc incidence matrix of a rooted spanning tree of G.

If we have a minimum-cost network flow problem defined on a graph G
having more than one component, each component having at least one root arc,
or if the problem is defined on a graph G having only one component but more
than one root arc, then a basis is characterized in general by a rooted spanning
forest (see Exercise 9.37). However, as shown in Section 9.7, we can easily
transform such a problem equivalently to a form where G is a connected digraph
having a single root arc. Hence, Theorem 9.1 characterizes a basis matrix
without loss of generality.

Triangularity, Integrality, and Total Uniniodulariry

For a minimum-cost network flow program defined on a digraph G having one
root arc, we have seen that every basis B corresponds to a rooted spanning tree.
Moreover, this basis has elements ±1 or 0 and can be put in lower triangular
form with +1 or -1 on the diagonals. This fact implies two very useful features.
First, the systems of equations BxB = b and wB = cB that determine the values

of the basic variables xB and the dual variables (simplex multipliers) w can be

efficiently solved by a simple forward or backward substitution process. We
shall see shortly how these equations can be solved directly on the network
itself. Second, if the ty -values are all integers, then since det B = ±1 and B has
all integer components, we see by Cramer's Rule or by directly solving the
triangular system that the solution to Bxg = b is all integer. Hence, every

extreme point is integer-valued. Therefore, if the problem requires an integer
optimal solution, then we can solve it by simply determining an optimal extreme

464 Chapter 9

point solution to the linear programming network flow problem obtained by
ignoring the integrality restrictions.

There is a richer property that the matrix A satisfies, namely, that of total
unimodularity. A matrix A is said to be totally unimodular if every square
submatrix of A has determinant +1, - 1 , or 0. In the case of the node-arc
incidence matrix A, since all entries are ±1 or 0, every l x l submatrix has
determinant ±1 or 0. Hence, by induction, suppose that this property is true for
every square submatrix of size (k - 1) x (k - 1), and let A^ be any k χ k
submatrix of A, where k > 2. We must show that det Ak = ±1 or 0. Note that
each column of A^ has either all zeros or only a single nonzero entry that is +1
or - 1 , or it has exactly two nonzero entries, namely a +1 and a - 1 . If any column
of A^ is zero, then det Ak = 0. If any column of A^ has a single nonzero
entry, then expanding the determinant of A^ by the minors of that column, we
get det A^ = ± det A^_i, where A^_i is a square submatrix of size (k-l) x (k
- 1). By the induction hypothesis, det Ak_\ = ±1 or 0, and hence det Ak = ±1
or 0. Otherwise, every column of A^ must have a +1 and a - 1 . In this case,
since the rows of Ak add up to the zero vector, we have that det A^ = 0.
Hence, A is totally unimodular.

Note that this proof holds true even if we delete rows or columns from A,
or more importantly, if we add ± unit vector columns to A. These columns may
correspond to slack or surplus or artificial variable columns. The resulting
coefficient matrix in such cases continues to be totally unimodular. Conse-
quently, det B = ±1 for all bases B, and every extreme point is integer-valued

for integer right-hand-sides b. For any basis B, the inverse matrix B~ is also
comprised of elements that are ±1 or 0 (why?). Furthermore, the updated
column y(y in any canonical representation (simplex tableau) of a basic solution

is comprised of ±1 or 0 elements. To see this, note that y;.· is given by the

system By,y = a,-.·. Hence, the kth element yyk of y; is given by Cramer's Rule as

_ detBA

where Bk is obtained from B by replacing its Mi column with a;y. Hence, B^

is a square submatrix of A, and so det Bk - ±1 or 0. Because det B = ±1, it

follows that yij!c = ±1 or 0. Hence, any column a,-.· can be obtained by the

simple addition and subtraction of basic variable columns. (We shall also see
this fact constructively later.)

To summarize, we have shown that the matrix A , comprised of the

node-arc incidence matrix of a graph along with ± unit vector columns, is

totally unimodular. Hence, for any basis B of A0, B and B~ have elements

that are ±1 or 0, det B = det B~ = ±1, the extreme points of {x : A x = b, x >

Minimal Cost Network Flows 465

0} are all integer-valued for any integer vector b, and B A has all ±1 or 0
elements.

9.4 REPRESENTATION OF A NONBASIC VECTOR IN TERMS OF
THE BASIC VECTORS

Consider the basis subgraph GB corresponding to a rooted spanning tree; select

any nonbasic arc (p, q). Because Gs is a tree, we know that there is a unique

chain between nodes p and q. This chain is called a basis equivalent chain, and
together with the nonbasic arc (p, q), constitutes a cycle (see Figure 9.7).
Assigning the cycle an orientation consistent with (p, q), we have

apq ~ apj + akj H h aqt

= (ep-eq)-(ep-ej) + (ek-ej) + --- + (eq-et) = Q

or
apq =apj-akj+----aqf

This development leads to the following simple procedure for represent-
ing any nonbasic column in terms of the basic columns. First, the unique cycle
formed by introducing the nonbasic arc into the basis subgraph is determined.
The cycle is then given an orientation consistent with the nonbasic variable. A
basic column in the cycle that has the same orientation receives a coefficient of
-1 in the representation, and a basic column in the cycle opposite to its
orientation receives a coefficient of +1 in the representation. Other basic
columns receive zero coefficients.

As an example, consider the subgraph of Figure 9.5, which is a basis for
the network of Figure 9.4. Suppose that we seek the representation of the
nonbasic arc (1, 2). Using the foregoing rule, we get

Figure 9.7. Cycle formed by adding a nonbasic arc to the basis tree.

466 Chapter 9

J©

l12 l13 *23 : (e 1 - e 3) - (e 2 - e 3) = e 1 - e 2 .

Note that the coefficients in the representation of the nonbasic column
a„„ in terms of the basic columns give rise to the vector y [that is, they yield

the entries in the simplex tableau under the (p, q) column]. Because the artificial
column never appears in the representation for any other column, and because
the artificial variable always remains basic at value zero, we may select any
value for its associated cost coefficient, say, ca = 0.

9.5 THE SIMPLEX METHOD FOR NETWORK FLOW PROBLEMS

The general steps of the simplex method are as follows. First, find a starting
basic feasible solution. Next, compute zj -cj for each nonbasic variable x-. If

optimality is achieved, stop; otherwise, select an entering column. If
unboundedness is not achieved, determine the exiting (blocking) column and
pivot. The following paragraphs present a discussion of each of these operations
applied to network flow problems. For the moment, we shall postpone the
difficulties associated with identifying a feasible basis (that is, Phase I of the
simplex method) and assume that a feasible basis is at hand. We shall also
assume that the problem is defined on a digraph having one root arc. To fix
ideas, we shall apply each of the foregoing steps to the problem presented in
Figure 9.8.

Computing the Values of the Basic Variables

Adding the artificial arc to node 5, suppose that we select the feasible
basis given by the subgraph in Figure 9.9. The basic system of equations BxB =
b to be solved is

1
0
0
0

-1

0
1

-1
0
0

0
0
1

-1
0

0
0
0
1

-1

0
0
0
0
1

xls

*23

*34

*45
X5

2
5
1

-4
-4

where x5 is the artificial variable associated with node 5.

Taking advantage of the lower triangular structure of the basis matrix, we
may iteratively solve for the basic variables. From the top equation, xl5 =2.

From the second equation, x23 =5 . From the third equation, x34 = 1 + x23
 = 6.

Minimal Cost Network Flows 467

*!=2 ί 1 bA=-A

Figure 9.8. An example network flow problem.

* !=2 (1 bA=-H

Figure 9.9. A basis subgraph.

Next, x45 = -4 + x34 = 2. Finally, x5 = -4 + x15 + x45 = 0 and thus, the basis

is feasible. These same computations can be made directly on the graph in
Figure 9.9 as follows:

Examining node 1 in Figure 9.9, we see that it is an end of the basis tree,
that is, it is a node having only one basic arc incident to it. Hence, the corre-
sponding basic equation contains only one variable, and the value of that
variable can be readily obtained. In this case, arc (1, 5) points out of node 1 and
thus, X]5 has a +1 in row 1. Therefore, x15 = i\ , or x15 =2.

*15= h
by=2 (1) * * x,,=2.

*15

Λ15 ■

Examining node 2, we see that it is an end node and hence, x23 can be
computed similarly:

468 Chapter 9

Ò2=5

Θ
*23

Χ 2 3 -ì>2

X2Ì=5.

Next, notice that node 3 has values assigned for all of its incident arc variables,
except one. Thus, we can use the conservation equation for node 3 to solve for
this remaining variable:

v23 ■

Θ
= 1

x34

xv,~xn - 1

x34 = 6.

We can now solve for x45:

/ x45

Finally, we solve for x5:

*45=2

x^=2\^y
Ϊ5)b5=-4
V

. x5

« *

*—"

*45 -X34 — 4

X45 — 2.,

x5-x15-x45 =-A
x5=0.

The process of obtaining the basic solution proceeds from the ends of the
tree toward the root (see Figure 9.10). As we shall see later, the process of
obtaining the dual variables is just reversed.

End End

Root

Figure 9.10. Computing the values of the basic variables.

Minimal Cost Network Flows 469

Let us provide an insight with respect to the computation of y pq via the

system By _. = a „„, in Section 9.4. Note that this is similar to the system "Βχβ

= b," where &pq plays the role of the vector "b." Since apq -ep-eq, the

situation is analogous to having a supply of 1 at node p and a demand of 1 (net
supply of-1) at node q. All other nodes are transshipment nodes. Hence, the
solution to By „9 = a _. corresponds to sending a flow of 1 along the basis

equivalent chain from/? to q. Consequently, referring to Figure 9.7, the coeffi-
cients of y corresponding to the basic variables x j , xkf, and xts are +1, and

the coefficients corresponding to the basic variables xkj- and xqt are-1.

Computing Dual Variables w and ztj - c,y

Given a basis subgraph, we need to compute z„ - c„ for each nonbasic variable

xq and either stop or proceed by entering a nonbasic variable having a positive

z„ - c,y. Toward this end, we may compute the dual or simplex multiplier vector

w through the system wB = cB, and then determine z„· - c„ through the

expression z„· -c„· = wa„· -c« . For the basis subgraph of Figure 9.9 we have,

[W] , VV2 , W3 , W4 , W5

1
0
0
0

-1

0
1

-1
0
0

0
0
1

-1
0

0 0
0 0
0 0
1 0

-1 1

= [2,-4,0,3,0].

Note that the rows of the lower triangular basis matrix are also permuted
as 1,2, 3, 4, and 5.

Using the last w equation, the one associated with the root arc, we get vv5

= 0. We may now proceed away from the root in the following fashion:

w4 - w 5 = c45 =>w4 =3 + 0 = 3
W3 -W4 = C34 =>W} = 0 + 3 = 3
w2 ~ w3 = c23 =* w2 = -4 + 3 = -1
Wj - w5 = Cj5 => Wj =2 + 0 = 2.

We therefore start by setting the dual variable for the root node at zero
value, and then proceed away from the root node toward the ends of the tree
using the relationship that wi - w = c„ along the basic arcs in the tree.

While the process of computing primal variables consisted of working
from the ends of the basis tree inward toward the root node (see Figure 9.10),
the process of computing dual variables consists of working from the root node
of the basis tree outward toward the ends (see Figure 9.11).

To compute z„ - c„ for the nonbasic arc (i,j), we apply the definition

470 Chapter 9

Root

Figure 9.11. Computing the values of the dual variables.

zij~cij = w a i / - c y
= w(e;-ey)-c / ; / ·
= Wi-Wj-Cjj.

Thus, the zy -ct- can be conveniently computed on the network. Notice also

that by requiring that w; - w- = ci;- along basic arcs, we are actually requiring

that z,·,· - c„ = 0 for basic variables. u u
Using the values of the dual variables obtained earlier, we summarize

below the value of z« -c« for each nonbasic variable Xy.

vw =2

Let us provide some interpretations for the dual variables w,· and for the

reduced costs c„ -z,·,·. The dual variables w,· are sometimes referred to as node
v U l

potentials because of the following analogy. Consider a basis tree and suppose
that the flow sustained by this tree has resulted in certain pressure heads or
"node potentials" at the nodes. Imagine that the Cy values are reverse pressures
or forces along the arcs and that the root node is at a zero potential. The equations

Minimal Cost Network Flows 471

Wj - w: = Cy for the basic arcs assert that the net force w,· - w, along (i,j) due to

the node potential difference equals the back pressure Cy. Hence, the system wB

= cB determines, as if it were, the node potentials w at equilibrium or steady
state, with respect to the flow sustained by the basis tree. For a nonbasic variable
arc (i,j), if Wj - w- -Cy < 0, then this says that the back pressure Cy is at least

as much as the potential difference w, - w, along (z, j), and so the net flow

pressure along (i, j) is nonpositive. If this is true for all nonbasic arcs, then the
entire network is in equilibrium, and we are optimal. On the other hand, if
Wj - Wj - CJ: > 0, then the node potential difference w; - w ,· exceeds the back

pressure Cy. This will have the tendency to force flow along (i, j). Hence, we

can enter Xy into the basis in this case.

Observe that only the differentials, rather than the particular values, of the
w-variables matter in the foregoing analysis. Indeed, since the cost ca on the
root arc can be fixed at any arbitrary value, if w represents the dual variables
calculated with ca = 0, then with an arbitrary cost value ca, the w-values are
given by w,· = w, +ca for all i = 1,..., m. This is evident from the nature of the
system wB = cB (why?). Hence, all the dual variables can be scaled up or down

by a constant if desired.
The node potentials have an interesting marginal cost economic inter-

pretation as well. Recall that wt =dz/ db{ in the usual sense, that is, w; is the
increase in cost if ty is increased (marginally) by a unit and if all other right-
hand-sides and nonbasic variables are held at their current values. But
increasing è, by a unit amounts to putting an extra unit of supply at node i,
which must consequently leak out through the root arc via the unique chain
joining node i to the root node because of the conservation of flow equations.
Hence, wt is the cost of a unit flow along this chain. (Note that some arcs in this
chain may have a reverse orientation, and so the flow on that arc would decrease
by a unit.) For example, for node 2 in Figure 9.9, w2 = c23 +c34 +c4 5 = - 1 , and

for node k in Figure 9.11, wk = % - cy + cfr.

Let us now define Kt = -w,· for i = \,...,m, so that ττ,- is interpreted as the
increase in cost if an extra unit of demand is created at node / (given that flow
can occur only on the arcs in the basis tree). Hence, if each node is imagined to
be a market, π, plays the role of the marginal cost of supplying an extra unit of

the product at market i. (By using ca as previously, we can make all /rz· > 0 if

so desired.) For any basic arc (/, j), the equation w, - w,· = c^ implies that

π j = πι + Cy, that is, we break even if we purchase a unit at market /, transport it

along the arc (i,j), and sell it at market j . Similarly, if w,· - w -Cy < 0 for any

472 Chapter 9

nonbasic arc (/, j), then π- <TT;-+C«; therefore, the foregoing venture is not

profitable. If this is true for all nonbasic arcs, then the market system is in
equilibrium—the current set of basic flows have generated a set of prices that
hold the flows in steady state. On the other hand, if w, - w .■ - Cy > 0 for a

nonbasic arc (i, j), then π ■ > πί + Cy, and an entrepreneur would find it profit-

able to purchase in market i and sell at market y by transporting the product over

the arc (/, J). For example, for the nonbasic arc (1, 3), z13 - c 1 3 = wx - w3 -

c13 =1 , and so it is profitable to pay πχ =-2 per unit at node 1, pay the

transportation cost of c13 = -2 per unit, and receive ;r3 = -3 per unit at node 3.

The net gain is -(-2) - (-2) + (-3) = 1 per unit.
Note also that zy -Cy = cfiy,y -Cy. From Section 9.4, we see that y,y has

a +1 corresponding to basic arcs that point in a direction opposite to the
orientation of flow change in the cycle created by introducing (i, j) in the basis,
a -1 corresponding to basic arcs in the cycle that have the same orientation as
the flow change, and zero otherwise. Hence, zy - Cy is the negative of the cost

of sending a unit along the cycle in the same orientation as (i, j). For example,
zi 3 ~ ci 3 = _c34 ~C45+C15_C13 = 0 - 3 + 2 - (-2) = 1. Therefore, the objective
function will fall by a unit for every unit of flow sent around this cycle in the
orientation of (/,_/). Although this gives another method of computing zy - c« , it

is less efficient than the earlier method of computing zy - Cy through the dual

variables w (why?). Hence, it is not used in practice.

Determining the Exiting Column and Pivoting

When we applied the cycle method to compute zy - Cy for a nonbasic arc, we

essentially identified the pivot process. In the foregoing example, z13 - q 3 > 0

and so, x13 is a candidate to enter the basis. What we must do is proceed to

increase x13, adjust the basic variables to maintain feasibility with respect to the

right-hand-side, and determine the first basic variable (if any) to reach zero.
This blocking basic variable, if it exists, is the exiting variable that leaves the
basis.

Consider the basis tree together with arc (1, 3). If we increase x13 by Δ,

then to provide balance, we must increase x34 by Δ, increase x45 by Δ, and

finally decrease x\ 5 by Δ. This process of adjustment can be thought of as
sending an additional amount of flow Δ around the unique cycle created when
the nonbasic arc is added to the basis tree. Naturally, sending flow against the
direction of an arc corresponds to decreasing flow on the arc.

Minimal Cost Network Flows 473

change

As XJ3 increases by Δ, the only basic variable to decrease is xJ5 and its
new value is x15 = 2 - Δ. Thus, the critical value of Δ is equal to 2, at which
instant xl5 drops to zero and leaves the basis. All of the other basic variables
are adjusted appropriately in value and the new basic solution is given as
follows:

We leave it as an exercise for the reader to show that determining the exiting
variable, and adjusting the values of the basic variables accordingly as described
earlier, is equivalent to performing the usual minimum ratio test and pivoting.

We have seen earlier how the basis tree and the flows are updated in a
pivot operation. To complete the discussion of an iteration of the network
simplex method, let us show how the dual variables may be updated rather than
recomputed from scratch with respect to the new basis tree. Suppose that xpq

enters the basis, and xuv is the exiting variable. Disconnect the leaving arc (w, v)
from the current basis tree. By Property 1 of tree graphs, this decomposes the
tree into two trees 7] and T2, with the root node r, say, belonging to tree 7].
Hence, the new dual variable values for the nodes in 7] will remain the same as
before, since the chains connecting these nodes to the root node remained
unchanged. For tree T2, let us consider two cases. First suppose that q eT2.

474 Chapter 9

Node q is then called the leading node with respect to the entering arc (p, q).
Note that for each (i,j) eT2, we currently have vv(- - w,■ = Cy. If we change all

the Wj -values in T2 by a constant, we will still satisfy w, - w ■ = Cy for all

(i,j)eT2. Consequently, once we know the new value w„(new) of the dual

variable associated with node q, we can compute the new dual value w(vnew) for

each node i in T2 as wi + (wq/new^ -wq), since (w„(new) -w„) is the amount by

which wq has increased. However, denoting Spq=zpq-cpq>Q, we have

Spq=Wp ~ wq~cpq> w h i l e wp ~ ^ (n e w) = cpq (w n y ?) · H e n c e > ^ (n e w) ~

wq = 5pq, and all the dual variables in T2 simply increase by Spq.

On the other hand, ifp is the leading node, that is, peT2, then we have

WpCnew) - wq = c
Pq, a n d wp(new) ~ W

P = ~δ
Pq- Hence, in this case, all the duals

of 7] will remain the same as previously, but the duals of T2 will fall by Spq.

For example, in the foregoing pivot operation, (p, q) = (1, 3) enters and (k, i) =
(1,5) leaves the basis. Disconnecting (1,5), we find that the tree 7] contains the

nodes 2, 3, 4, and 5, but T2 contains node 1 alone. Since ρεΤ2, the dual of

node 1 falls by δ = 1 to the value >%new) = 1 and the duals of the other nodes

remain the same as before.

Summary of the Network Simplex Algorithm

INITIALIZATION STEP

Find an initial basic feasible solution represented by a rooted spanning tree, with
r as the root node. (Section 9.7 discusses how to achieve this, using artificial
variables if necessary.) Compute the basic flows xB and the dual variables w
associated with this basis tree.

MAIN STEP

Compute 5pq = zpq - cpq =Wp-wq- cpq = maximum {zy - Cij = w, - Wj - Cy :

(i,j) is nonbasic}. If z -cpq < 0, then stop; the current solution is optimal. (If

any artificial variables are positive at optimality, the problem is infeasible.)
Otherwise, introduce (p, q) into the basis tree and determine the unique cycle
formed by tracing the basis equivalent chain connecting p and q. Find the
maximum flow Δ > 0 that can be sent along this cycle in the orientation of the
entering arc (p, q). If Δ —> co, then stop; the problem is unbounded. (If the big—
M method is being used and some artificial variable is positive, the original
problem is infeasible; otherwise, it is unbounded.) If Δ is finite, determine an
exiting or blocking variable arc («, v). Update flows by appropriately adjusting
the flows in the cycle by Δ. Disconnect (u, v) from the basis tree and decompose

Minimal Cost Network Flows 475

it into two trees 7j and T2, where the root node r e 7J. Update the basis tree by
adding arc (p, q) to it. Update the dual variables by respectively increasing or
decreasing the dual values of nodes in T2 by δ , according to whether q οτρ is

the (leading) node in T2. Repeat the main step.

9.6 AN EXAMPLE OF THE NETWORK SIMPLEX METHOD

Example 9.1

Consider the network of Figure 9.12. In Figure 9.13 we describe the complete
solution of this minimal cost network flow problem. The value Spq = zpq - cpq

for the entering variable is circled. The exiting variable is denoted by * in the
figure.

9.7 FINDING AN INITIAL BASIC FEASIBLE SOLUTION

We have assumed thus far that we are given a minimum cost network flow
problem defined on a connected digraph having a single root arc and that we
have a starting basic feasible solution represented by a rooted spanning tree to
commence the network simplex algorithm. We now give a method for generally
attaining this situation.

Suppose that by adding any necessary slack or surplus variables and by
employing the usual transformations on variables (including the replacement of
undirected arcs that have nonnegative costs by two oppositely oriented directed

arcs), we have put the given problem in the form: Minimize {ex : A x = b, x >

0}, where A is m x n and is composed of columns that are either ± unit vector
columns or that have a +1 in some row, a -1 in some other row, and zeros
elsewhere. Hence, we have a network structured problem. Although we can

possibly use some of the arcs (columns) in A itself as part of a starting basis,
let us present the general use of an all artificial start.

Suppose that we add an artificial column for every row of A0, the rth
artificial column being ± e, depending on the sign of è, (that is, + e;- if bt > 0;

-e;· otherwise). Also, let us add a redundant row given by the negative of the sum

Figure 9.12. An example network.

476 Chapter 9

Iteration Primal solution Dual solution

4

Pivot

1 dTtA
o

o

δ °

11

4

o
0 2 (J-+ -2(

9
l6Jr> '2

-13

£>

«CT\> φχρ

%5^<\)> ?fv
-5

O '

A = min{4, 1} = 1

A = min{2} = 2

Optimal

x,*3 = 4, *23 = 2, X34 = 5, all other x*- = 0 , z* = - 7 .

Figure 9.13. The solution to Example 9.1.
■» * o of the rows of the "extended" A matrix. The problem constraints then become

as follows, where xa is a vector of artificial variables:

A0

-1A°

±1

+1

+1

+1 ■

+1

• +1

" Ì -
x«)

^ ~ "new

b

lb

Obs erve that each Let the foregoing system be denoted by Anewx'

column in Anew has exactly one +1, one - 1 , and zeros elsewhere. Hence, it may

be viewed as a graph. This new graph has one additional node (m + 1) because

of the new row in An e w. Furthermore, all the original arcs in A are present in

Anew as well, with the unit slack (root) arc columns in A either terminating or

Minimal Cost Network Flows 477

originating at the new node (m + 1) in An e w. Additionally, the new graph has m
new arcs—one arc between each original node and the new node. Observe that
because of the artificial arcs, the graph is clearly connected, and moreover, the
elements of b n e w add to zero as they should. Furthermore, arbitrarily
designating the new node (m+ 1) as the root node r and adding the unit column
e(m+l) t 0 ^new > which acts as the single root arc in the problem, we obtain a full

row rank system. A feasible basis for this new problem is given by that rooted
spanning tree that is defined by the m artificial variable arcs in addition to the
root arc.

Beginning with this artificial basis, we may proceed to apply the two-
phase method or the big-M method, using appropriate costs in each case, until
feasibility is achieved, if at all. If feasibility is achieved, we may drop all of the
artificial arcs not in the basis, keep the basic degenerate artificial arcs with a
big-Mcost in the problem, and continue the optimization.

To illustrate the technique, consider Example 9.1. After adding
appropriate artificial columns and creating the new row, we get the following:

x12 x13 x23 x24 x32 x34 x41 x l x2 x3 x4 *5 4ew
1

-1
0
0
0

1
0

-1
0
0

0
1

-1
0
0

0
1
0

-1
0

0
-1

1
0
0

0
0
1

-1
0

-1
0
0
1
0

1
0
0
0

-1

0
1
0
0

-1

0
0

-1
0
1

0
0
0

-1
1

0
0
0
0
1

Selecting the two-phase method, the artificial variables xj,x2>
x3> a n Q x4 m

Phase I will have cost coefficients of 1 while all other variables have zero cost
coefficients. This leads to the associated network flow problem of Figure 9.14
where the cost coefficient of the root x5 is zero. With this feasible basis at hand

we proceed to solve the Phase I problem, using the procedures developed in this
chapter.

The Phase 1 problem A feasible basis

Figure 9.14. The Phase I network flow problem and a starting
feasible basis.

478 Chapter 9

Example 9.2

As another example, consider the following problem:

Minimize Xj2 + 2x13 + 3x23 - 2x24 + 4x34
subject to x12 + Xj3 < 6

-X12 + X23 + *24 S 4

- x13 - x23 + X34 < -2
- x24 - X34 < -5

X]2, X13, X23, *24> x34 - 0-

This problem states that no more than six and four units of supply are available
at nodes 1 and 2, respectively. At least two and five units of demand also must
be absorbed at nodes 3 and 4, respectively, with additional units being
permissible if this is profitable. We now add slack variables η, s2, S3, and s4

with zero costs and add appropriate artificial variables and x4 with

big-M costs to the problem. Creating a new row equal to the negative of the sum
of the other rows and including the artificial root-arc variable x5 with a zero
cost yields the following system of equations:

*12 x13 x 23 x 2 4 ^34 s\ s2 53 ^4 x\ x2 x3 XA XS
1

-1
0
0
0

1
0

-1
0
0

0
1

-1
0
0

0
1
0

-1
0

0
0
1

-1
0

1
0
0
0

-1

0
1
0
0

-1

0
0
1
0

-1

0
0
0
1

-1

1
0
0
0

-1

0
1
0
0

-1

0
0

-1
0
1

0
0
0

-1
1

0
0
0
0
1

We now ask the reader to draw the graph corresponding to this system, to
construct the starting artificial basis tree, and to optimize using the big-M
method (see Exercise 9.14).

Note also that we could have used the slacks sy and s2 in lieu of the artifi-

cial variables x\ and x2, respectively in the starting basis. This use of an all-

artificial start is only for illustrative purposes.

9.8 NETWORK FLOWS WITH LOWER AND UPPER BOUNDS

It is simple and straightforward to make the transition from the ordinary simplex
method for network flow problems to the bounded variables simplex method for
network flow problems. We briefly review the essential changes required to
effect such an extension to this method.

Getting Started and Computing the Flows

Via standard transformations, including the method of Section 9.7, we can
assume without loss of generality that the given problem is in the form:

Minimize {ex : A x = b,£ < x < u}

Minimal Cost Network Flows 479

where A is an (m + 1) x n node-arc incidence matrix of a connected digraph,
including m appropriate artificial arcs and a single root arc, Σ,-ο,- =0 , and where

-co < £■■ < Uj- < co for all arcs (i,j) in the problem. Using the Phase I or the big-
Ai method, all the original arcs in the problem may be set at one of their (finite)
bounds for the initial basis. This uniquely determines the flow values of the m
artificial variables, and uniquely determines the root-arc flow value as zero
(why?). (Note that the artificial variables should be added with the appropriate
signs so that they are all nonnegative in this solution.) Hence, we have a starting
basic feasible solution. For the remaining iterations, we need not worry about
the conservation of flow equations, since we will automatically enforce these
equations by modifying the flow in cycles. This process will also automatically
update the arc flows. However, if we are given a basic partition and we need to
compute the flows, this may be done by adjusting the right-hand-side values to
b -N\tNX -N2UJV2 (in the notation of Section 5.2) and solving the system

Βχβ = b - Nj-fjyi -^2nN2 (as m Section 9.5).

Computing the Dual Variables and the zy - c^ values

Lower and upper bounds have no effect on the computation of the dual variables
and on the computation of the z,·.· - Cy values. Note, however, that in the

presence of lower and upper bounds the optimality criteria are

and

These are easy to check and we can readily determine whether some nonbasic
variable Xy should be increased or decreased if optimality is not achieved.

Determining the Exiting Column and Pivoting

Once the entering column is selected, it is again an easy task to select the exiting
column and to pivot. We add the entering nonbasic arc, regardless of whether
the variable is increasing or decreasing, to the basis tree and determine the
unique cycle formed. Then, if the entering variable is increasing, we send an
amount Δ around the cycle in the direction of the entering variable. If the
entering variable is decreasing, we send an amount Δ around the cycle against
the direction of the entering variable. Figure 9.15 illustrates these two
possibilities. To compute the critical value of Δ we check those basic variables
increasing as well as those decreasing and the possibility that xy may reach its

other bound. If the last possibility occurs, x,y remains nonbasic (at its other

bound) and all basic variables along the cycle are adjusted accordingly.
Otherwise, the nonbasic variable enters and some basic variable exits at one or

480 Chapter 9

k

/-A

P) -Δ

(a)

Figure 9.15. Two cases for entering are: (a) xy increasing;

(b) Xjj decreasing.

other of its bounds, and all variables along the cycle are adjusted accordingly. If
the basis tree remains the same, the duals are unchanged. Otherwise, the duals
are updated exactly as before.

An Example of the Network Simplex Method in the Presence of Lower and
Upper Bounds

Consider the network flow problem of Figure 9.16. We present, in Figure 9.17,
the complete solution to this problem. We have identified a starting basic

u
feasible solution, thus omitting Phase 1. The notation "

nonbasic arc at value u. The exiting variable is noted by *.

->" represents a

Table 9.1 The Simplex Tableau Associated with the Final Basis in Figure
9.13.

z
x 13
x 2 3
X34

X4

z
1
0
0
0
0

* 1 2
- 6

1
- 1

0
0

* 1 3
0
1
0
0
0

x 2 3

0
0
1
0
0

X24

-2
0
1
1
0

*3 2

- 5
0

- 1
0
0

JC34

0
0
0
1
0

x 4 1

- 5
- 1

0
- 1

0

X4

0
0
0
0
1

R H S
- 7

4
2
5
0

(0,3,4) (0,4, 2) <- {/, u, c)

(1,5,6)
Z>3=3 64 =-8

Figure 9.16. An example network with lower and upper bounds.

Minimal Cost Network Flows 481

Iteration Primal solution Dual solution Pivot

6 0

0 0 0 +Δ

5i

Ò Ó

O D
- 2 / ; + 7

a" ó
xl2 = 3, *13 = 2, Λ24 = 4, x32 = 1, X34 = 4, z = 42.

Figure 9.17. The solution to the example in Figure 9.16.

A = min{3,4, 1} = 1

Optimal

9.9 THE SIMPLEX TABLEAU ASSOCIATED WITH A NETWORK
FLOW PROBLEM

In Section 9.4, we showed how to construct the column y,y for any nonbasic arc

(/', j). Elsewhere, we have seen how to obtain the values of the basic variables
and the zy - Cy values. Thus, it is possible to construct the entire updated

tableau by examining the basis subgraph at the corresponding iteration.
As an example, consider the final (optimal) basis in Figure 9.13 for the

network flow problem of Example 9.1. The simplex tableau for this basis is
given in Table 9.1, where x4 denotes the artificial variable at node 4. To
illustrate how a particular nonbasic column is obtained, consider x12. We have
already indicated how z12 -Cj2 = - 6 may be computed. To produce the other
entries in the column we consider the unique chain formed by adding (1, 2) to
the basis subgraph. The unique chain in the basis tree is C= {(1, 3), (2, 3)}. To
reorient this into a path from 1 to 2 we multiply column xj3 by 1 and x23 by - 1 ;
thus we obtain the coefficients in the tableau. As a check, we see that

l 1 3 ~ a 2 3 = (e l ~ e 3) - (e 2 ~ e 3 >

= e l - e 2 = a 1 2

as required:

The other columns of the simplex tableau are obtained in a similar manner.

482 Chapter 9

9.10. LIST STRUCTURES FOR IMPLEMENTING THE NETWORK
SIMPLEX ALGORITHM

In this section, we will describe an enhancement of the augmented threaded
index (ATI) list structures for efficiently implementing the network simplex
algorithm on the computer. Although simpler labeling techniques are possible,
the method we describe is very efficient. In this process, we shall also introduce
terminology and concepts that are now standard in network programming
literature.

The main construct in any list structure scheme lies in the representation
of a rooted spanning tree. The ATI method prescribes three fundamental node-
length arrays that not only represent the layout of the tree, but also facilitate the
efficient execution of a simplex iteration, and the updating of the primal and
dual solutions and of the list structures. Additionally, three other node-length
arrays obtainable from these three fundamental lists may be explicitly main-
tained in order to enhance the updating of the list structures. These are described
later along with the simplex algorithm and the updating operations.

List Structures: Definitions

Imagine that a rooted spanning tree T having m nodes is given, where r is the
root node, and that this tree is laid out in the convenient form depicted in Figure
9.18. The list structures described here enable the computer to "see" this tree in
the form shown in the figure. The first list is the predecessor index list, denoted
p(i), i = 1,..., m. For any node i,p(i) uniquely gives the node connected to node i
on the chain from / to the root node. For this reason, />(/) is also referred to as the
"down" node of i. In Figure 9.18, for example, p(l) = r, p(9) = 5, p{\7) = 12,
and p(21) = 23. Thus, p(i) precedes /' or is the "parent" of / in the "growth" of
the tree. By convention, we \etp(r) = 0.

Define the level of node i as the number of arcs in the (unique) chain
connecting node / to the root node. Denote this by i(i), i = Ι,...,/w. Hence, ^(1) =
1, ^(10) = 4, £(\7) = 5, and £(i) = 6 for nodes / = 19, 20,..., 25, that is, these
nodes are all at "level" 6 with respect to the tree in Figure 9.18.

Next, let us define the thread index t(i) for i = ί,.,.,τη. Imagine the process
of sewing the nodes of the tree in Figure 9.18 with a needle and a thread;
proceeding from bottom to top, from left to right, and finally, returning to node r
after sewing all the nodes together. The nodes might then be sewn in the order
of the following list τ = {r, 1, 2,4, 8, 14, 19,20, 15, 5, 9, 16, 21, 22, 3, 6, 10, 11,
7, 12, 17, 23, 26, 27, 18, 24, 25, 13, r}. Formally, let us define the subtree
rooted at node i to be that tree 7} that is obtained by disconnecting the arc
connecting / and p(i) and which contains the node /. For the root node r, the tree
Tr is the entire tree T. For example, Γ8 is obtained in Figure 9.18 by
disconnecting the arc (8,4) and is the subgraph of T that is induced by the nodes
8, 14, 15, 19, and 20. The nodes in 7} (other than node i) are called the

successors of i, since node i lies on the chains joining each of these nodes to the

Minimal Cost Network Flows 483

Figure 9.18. List structures for network flow programming.

root node. The immediate successors of i have node i as their predecessor. We
now can define τ as an ordering of the nodes such that for any node i, the list of
its successors, that is, the nodes in the subtree rooted at i, follow it consecutively
in the list. Note that the ordering of the nodes in τ is not unique. For example, by
interchanging the relative positions of nodes 2 and 3 in Figure 9.18 and
following the bottom-top, left-right rule, we would have obtained another valid
ordering. In any case, the ordering should be such that once a node i is "sewn,"
the next set of nodes sewn are the successors of i. The function t{i), also known
as the «ex* node oft, is then identified with τ according to τ = {r, t(r), t(t(r)) =

t2{r), ^(r),..., tm~X{r), tm(r) = r}, where tk(r) composes *(■) with itself A times, 1
< k< m. Hence, t(r) = 1, f(l) = 2, t(2) = 4,..., i(24) = 25, t(25) = 13, and f(13) =
r. Note that the nodes in 3J are readily obtained using the lists t(-) and £(■).

Namely, 7J· is comprised of nodes t (i) = i, t{i), t (/),..., t (i), where k is the

largest positive integer such that £[tJ(i)] > l(i) for/' = \,...,k, if it exists, and is
zero otherwise.

For convenience, a reverse thread index tR() is also sometimes main-

tained, where tR(i) =j if and only if t(j) = i. By way of terminology, the nodes
that come before node i in the list t are called its antecedents, and the preorder
distance of i Φ r is its rank or position in the list τ. The traversal of the tree
following the thread index is called a preorder traversal, and a traversal
following the reverse thread is called a postorder traversal. Additionally,

484 Chapter 9

another useful list both conceptually as well as computationally i s / /) , the final

ofnode i for / = l,...,m. Given that 2} is comprised of the nodes t (/) = /,...,/ (/),

k> 0, the node//) = / (/) is the final node threaded in T{. Loosely speaking,//)
is the "final or last successor" of / in the list τ. Note that if i is an end node, then
T[= i and fij) = i. Let us also denote another list «(/) as the number of nodes in

Th i = \,...,m. Thus,//) = t[n{i)'\i). In Figure 9.18, for example,/8) = 15, w(8)

= 5, /9) = 22, «(9) = 4 , /7) = 13, «(7) = 10./21) = 21, «(21) = 1,/r) = 13, and
«(r) = 28.

Initialization

The foregoing lists are readily constructed for the all artificial basis in which the
tree is comprised of arcs connecting each node and the root node. For this tree,
we have/>(/) = r for all ΐφτ andp(r) = 0, £{i) = 1 for all /Φ r, and £(r) = 0, t(r) =
1, t(l) = 2, t{2) = 3,...,t(m - 1) = r (assuming that node "#«" is the root r). Also,

fj) = i and «(/) = 1 for all / Φ r, while fir) = m - 1 and «(/·) = m.
On the other hand, if a certain advanced basis is available, then these lists

may be initialized as follows. (Use the example of Figure 9.18 while reading
this procedure.) Pick some node as the root node r. Let S(r) be the immediate
successors of r determined by finding the basic arcs incident at r. Then, p{i) = r
and £(i) = 1 for all ie S(r). Pick some node ye S(r), put t(r) =j, and removey
from S(r). Similarly, construct S(j) as the set of all nodes other than node r that
are adjacent to nodey for some basic arc. Assume that SXj) φ 0 . Then/j(/) =j
and i(f) = £(j) + 1 for all / e S(f). Pick some node A e S(j), put t(j) = k, and
remove k from S (/). Continue in this manner until some node e is reached for
which S(e) = 0 . Hence, e is an end node of the basis tree T. In this case, follow
the predecessor index to come down the tree until a node q is reached for which
S(q) Φ 0 . In this event, pick some £e S(q), put t(e) = £, and remove £ from

S(q). While coming down the tree, each node / that is crossed over downwards,
including node e itself, gets node e as its final successor node f\i). Also, the
number of new nodes labeled between threading / and giving node / its /(■}-
value yields «(/). The process can now be continued by constructing S(£) and
proceeding "up" the tree again. The procedure stops at the point when following
the chain down from some end e, it reaches node r and finds S(r) = 0 ,
whereupon, in particular, among other labels, it sets/r) = e and t(e) = r.

Simplex Operations

Observe that each arc in the problem is uniquely identified with some node via
its predecessor index. That is, for each node / Φ r, there is an associated,
uniquely identified arc connecting i andp(t). This arc may be [/,/>(/)] or [p(/), /].
Hence, a node-length array ORIENT(-) may be carried to record the orientation
of the basic arcs, having a + 1 in one case and a - 1 in the other case,
respectively. For example, for node 20, the associated arc is \p(20), 20] = (14, 20)

Minimal Cost Network Flows 485

and ORIENT(20) = - 1 , while for node 8, the associated arc is [8,/>(8)] = (8, 4)
and ORIENT(8) = 1. Consequently, the basic arc flow vector can be stored in a
node-length array FLOW(-), where FLOW(/) is the flow on the arc connecting /
and p(t). Let DUAL(i) represent the dual variable associated with node /. The
arrays DUAL(-) and FLOW(-) are readily initialized via a preorder traversal and
a postorder traversal, respectively. For example, in Figure 9.18, the dual values
may be determined in the order of the nodes r, 1, 2, 4, 8, 14, 19, 20, 15,... as
they appear in τ, based on the arc connecting each node / and its predecessor
p(i), since the dual of p(i) is already computed for each / in this order. Similarly,
the flows may be computed by following the nodes i in the reverse thread order
13, 25, 24, 18, 27, 26, 23, 17, 12,..., and determining the flow on the arc
connecting / and /»(/). This is based on the nodal balance equation for node i in
this order, since the flow on at most one incident arc is unknown in each case.

Suppose that by following the usual pricing scheme, we determine an
entering arc (p, q). The basis equivalent chain may be traced by coming down
from p and q following the predecessor index list />(·) until a first intersection
point k is reached. Note that node k may be p or q itself. Hence, if £(p) > £(q),
say, then we can come down from/» until we reach the level of q, from where it
is known whether or not k = q. If not, then we can come down simultaneously
one level at a time along the two chains until they intersect. While doing this, a
minimum ratio test can be conducted simultaneously (how?), so that the leaving
arc is known once the basis equivalent chain has been traced. Let the leaving arc
connect nodes « and v, where u = p(y) (see Figure 9.18). Note that the actual
leaving arc may be («, v) or (v, «). When the leaving arc is disconnected from T,
the tree not containing the root is the subtree Tv. Let us also assume that q is the

leading node in Tv—the entering arc may actually be (p, q) or (q,p).

Updating Operations

The flows are updated as usual on the basis equivalent chain by tracing down
from p and q to k after determining the flow change Δ. The predecessor index
p() changes only on the q —> v chain, also known as the stem, simply reversing
or inverting on this chain withp(q) =p. Hence, in Figure 9.18, we get/?(v) = 12,
/>(12) = 17, and/>(17) = 8, with p(i) as before, otherwise. Accordingly, the tree
arcs that are associated with the nodes on the stem q —» v through the predecessor
index change in this reversal process, and so the ORIENT() and FLOW(-) vectors
should be appropriately updated. For example, FLOW(12) now corresponds to
the flow on arc (12, 17) and ORIENT(12) = 1. The dual values in T- Tv remain

the same, while the dual values in Tv all increase by Spq = zpq ~c
pq ^{ρ, <l) is

the entering arc, and decrease by δ^ =tqp~ cqp if (#> P) is m e entering arc.

Hence, the dual values can be updated by following the thread index from v t o /
(v). (Notice how n (v) helps in this respect.)

486 Chapter 9

Finally, we need to update /(·), £(■), / ·) , and «(·). This is done by a
grafting process. Notice that Tv is, as if it were, rooted at node v, while Tr =

T- Tv is rooted at r. Suppose that we reroot Tv at q to get Tq, that is, we obtain

the list structures for the new tree Tq, and similarly, obtain the list structures for

2J.'. Then we can simply graft 21 onto Tr by connecting/» and q to obtain the new

tree. In this process, let x =fip) and y = t(x) in Tr, and let z =Αθ) in 21. In Figure

9.18, x= 15, y= 5, and, say, z= 13. Then, because 21 isapar tof21 in the new

tree, we set t(x) = q and t(z) = y. Figure 9.19a illustrates this grafting process.
Also, the levels of the nodes in 21 after grafting will all increase by one plus the

level ofp in T'r. Furthermore,/» and all nodes not in 21 that had the final of node

/» as their last successor in 2J.' will now have z = fi,q) as their last successor.

Letting γ = p(t\fip)]) in T'r, these nodes are on the chain from p to γ, not

including γif γ ^ 0, and on the chain from/» to r, otherwise. In Figure 9.18, we

have J = p[t(l5)] =/»(5) = 2, and so, after grafting, we will have_/(8) =β4) = 13.

(c)

Figure 9.19. Updating process for the list structures, (a) Grafting,
(b) Updating T'r . (c) Rerouting Tv at q.

Minimal Cost Network Flows 487

Similarly, the «(-)-values for each node on the chain from/» to r in Tr (inclusive)

will increase by the number of nodes in Tq. Hence, the principal task in the

grafting process is to update T'r and to reroot Tv at q.

Updating T'r

The p(·) and £(■) values remain the same. For the thread index, because the arc
(w, v) is disconnected, the thread entering Tv and the thread leaving Tv to

reenter T'r need to be cut and reconnected as shown in Figure 9.19b. Let ^and Θ

be such that φ = tR(v) (that is, ί(φ) = v) and θ= t[f(v)]. Then we put ί(φ) = (9in

Tr. The «(-)-values of the nodes on the chain from u to r (inclusive) will fall by

n(v). For updating/(·) in Tr, note that all the nodes that have/v) as their final

node will get the new fili) as their final node. With respect to the previous

indices, we find γ = p[t(f(v))], set δ = fili) if fiu) <£ Tv, and let δ = tR{v),

otherwise. In Figure 9.18,/(v) = 13, i(13) = r,p(r) = 0, and δ= tR{v) = 11. If γ

= 0, as it is here, then we put fii) = δίοτ all / in the chain from u to r inclusive.
Hence, we would have/(3) = / (l) =f(r) = 11 in the example. Otherwise, if γ Φ
0, the f{i) values change for / on the chain from « to γ, not including γ, and
become the same as δ

Rerooting Tv at q

To begin with, consider the stem q —> v. Without loss of generality, for clarity in
exposition, we shall discuss this step with respect to Figure 9.19c. (Several of
the following steps can be made more efficient by a simultaneous processing. A
different scheme using the reverse thread function is also possible.)

If v = q, the updating is vacuous. Hence, suppose that v Φ q. For each
node distinct from q in the stem, find its immediate successors not belonging to
the stem. For example, consider node a in Figure 9.19c. Noting that Tv is

currently rooted at v, t(a) is either q, ah or «2- Say, t(d) = (X\. Then t\f{a{)] is
either q or a2, say, q. Hence, t[f(q)] = a2- But then the level of i[/"(or2)] is le s s

than the level of a and we know that we have found all the immediate
successors of eras the nodes cc\, q, and a2-

Next, update t() as follows. Leave the f(-)-values unchanged for nodes t
in the current subtree rooted at q, except put t[f(q)] = a. Now, put t(a) = «j, and

leave t{i) the same for nodes t in the subtree rooted at a^, except put t\f{(X\)] =

a2. Again, leave t(i) the same in the subtree rooted at a2, except put t\f(a2)] =

β. (Notice how the use of «(■) makes this process efficient.) Hence, we essen-
tially tie up the loose thread ends shown in Figure 9.19c until finally, we put

t[f(v2)] = q-

488 Chapter 9

The levels £(■) of the nodes that are shown explicitly in Figure 9.19c are
obviously available. The levels of the other nodes in subtrees rooted at the nodes
q, oc\, a2, β\, Vj, and v2 change by the same amounts as the levels of these
corresponding nodes.

As far as /(■) and «(·) are concerned, these stay the same for nodes that
are not on the stem. For nodes / on the stem, we have/(j) = / (v2). Also, « (v) =

1 + «(vj) + n(v2), η(β) = 1 + «(/?,) + n(v), n(a) = 1 + n(a{) + n(a2) + η(β), and

n(q) equals the total number of nodes in Tv (the old w(v)).

In conclusion, we mention one important expedient. Note that instead of
the foregoing grafting procedure, we could alternatively have left Tv rooted at v,
rerooted Tr at p to get Tp, and then grafted Tp onto Tv by connecting p and q.

Then node v would have become the new root node. This process can be done
exactly as previously. The tree that is rerooted at p or q is called the upper tree,
while the other is called the lower tree. The decision as to which tree to make
the upper tree depends on the ease with which the rerouting of the "upper" tree
can be effected. Since this effort is directly related to the length of the stem, the
tree having the shorter stem q-v or p-r may be chosen as the upper tree.

9.11 DEGENERACY, CYCLING, AND STALLING

In the absence of degeneracy, the network simplex algorithm converges in a
finite number of iterations as in Chapter 3. (By degeneracy, we mean a basic arc
other than the root arc has a zero flow value; the root arc flow is zero for all
feasible solutions) However, simple examples (see Exercise 9.50) have been
constructed that show that the network simplex algorithm can cycle, that is,
infinitely loop through a sequence of degenerate pivots. Hence, cycling preven-
tion rules need to be employed. It turns out that a special lexicographic type of
rule for the network simplex algorithm is not only easy to implement with no
significant overheads, but is computationally beneficial for highly degenerate
problems as, for example, the linear assignment problem.

The prescribed cycling prevention rule is based on maintaining what are
known as strongly feasible bases. A strongly feasible (basis) tree (SFI) for
Problem (9.1) (including the root arc) is a feasible rooted spanning tree in which
all degenerate arcs (if any) are pointing toward the root A directed arc (i, j) is
said to be "pointing toward the root" if j =/>(/), that is, if/' lies on the chain from
i to the root node r. It is instructive to identify the connection between strongly

feasible and "lexicographically positive" bases of Chapter 4. The fth row of B~

is given as the solution Rf to the system R,B = ej. Observe that this is similar to

the system "wB = cB." Hence, R; may be found by giving the fth basic arc a

cost of 1, the other arcs a cost of zero, and computing the dual variables. If the

nh arc is a root arc, then R; has all ones (why?). If the fth arc is not a root arc,

then from Section 9.5, the component of R(· corresponding to node/' is zero if

the fth arc does not lie on the chain from/' to the root. Otherwise, it is +1 if the

Minimal Cost Network Flows 489

rth arc is pointing toward the root, and is -1 if the z'th arc is pointing away from
the root. In particular, for a basis corresponding to a strongly feasible tree, the

row of B~ corresponding to a degenerate arc has all components equal to 0 or
1. In fact, the foregoing argument shows that a basis B has lexicographic

positive rows in [B~ b, B~] if and only if it corresponds to a strongly feasible
tree (why?). Hence, from Chapter 4 we are guaranteed finiteness if we maintain
strongly feasible trees.

Obtaining an Initial Strongly Feasible Basis

If an all-artificial starting basis is used, then by simply defining the artificial arc
connected to a transshipment node as being directed toward the (dummy (m +
1)5/) root node, we will have a strongly feasible starting basis. On the other
hand, if some advanced starting basis is given, then consider the spanning graph
formed by the arcs having positive flows and let some node be designated as the
root node. This graph is a spanning forest. If it is connected, then it is a strongly
feasible tree. Otherwise, one at a time, connect a component tree not containing
the root node to the one containing the root node, using any arc in the problem
that is pointing from a node in the former tree to one in the latter tree. Such an
arc must of course be degenerate. Notice that if at any stage there are no arcs
pointing from the se tX= {/' : node / is not as yet connected to the root} to the
complement set X, then the problem is separable over the node sets X and X.
This follows because we must have Ziexfy -T,iexfy = 0, and the flow on any

arc from a node in X to a node in X must be zero for all feasible solutions
(why?). Hence, we may solve these separable problems independently. Note that
we already have a strongly feasible tree for the node set X. Alternatively, we
can connect any node in X to the root node via a degenerate artificial arc and
continue this process.

Maintaining Strongly Feasible Trees

Given a strongly feasible basis tree at the beginning of an iteration, and given an
entering arc (p, q), the following simple rule for selecting a leaving variable arc
(w, v) ensures that we maintain a strongly feasible tree. Trace the basis
equivalent chain by tracing the unique chains from p and q to the root node r
until they intersect at some common node k. Figure 9.20a depicts the situation
generically. Note that k can coincide with p and/or r or with q and/or r. Define
the cycle C(e) created as having the orientation of the flow along (p, q) and
commencing at node k, proceeding first along the k —► p chain, then including
arc (p, q), and finally proceeding along the q —► k chain. Determine the exiting
variable in C(e), breaking ties (if any) by selecting the last blocking arc in C(e).
For example, in Figure 9.20b, when (4,7) enters, we havep = 4,q = 7, and k = 5,
and of the blocking arcs (4, 3) and (6, 7), we select (6, 7) as the leaving variable
arc.

It is easy to see following Figure 9.20a that this rule maintains strongly
feasible bases. Note that any degenerate arc not involved in the cycle C(e) is still

490 Chapter 9

pointing toward the root after the pivot, irrespective of the choice for the leaving
variable (why?). Observe that the pivot is degenerate if and only if there exists a
degenerate arc on the chain k —► p. In such a case, since the last degenerate arc
on the chain k—*p leaves the basis, the other degenerate arcs on k —► p are still
pointing toward the root, as are arcs (p, q) and any degenerate arcs that may
have existed on the chain q —* k. If the pivot is nondegenerate, then there are no
degenerate arcs on the chain k —* p. Moreover, any old degenerate arc on the
chain q^>k will now have a positive flow. Hence, we only need to examine the
orientation of any new degenerate arcs created, which must correspond to alter-
native blocking arcs. Because the last blocking arc in C(e) has been selected to
leave the basis, the other blocking arcs are pointing toward the root after the
pivot, and so we maintain a strongly feasible tree.

In Chapter 4, it was proven that the foregoing algorithm will converge
finitely. However, a more direct argument based on the network simplex
algorithm is instructive. Note that it is sufficient to show that the algorithm
cannot cycle (why?). Consider a degenerate pivot in which (p, q) enters with

cpq > 0. The leaving variable arc (u, v) must lie on the chain k—>p.
pq PI

Hence, p is the leading node in the subtree 7] that is obtained when (u, v) is
disconnected from the current tree and that does not contain the root node.
Consequently, the dual values of the nodes in 7] fall by Spq, while the dual

values of the nodes in T- 7] remain the same. Therefore, in a sequence of degen-
erate pivots, the sum of the dual variables, for example, provides a strictly
(decreasing) monotone function that guarantees that a basis tree cannot repeat.
This establishes the finite convergence of the network simplex algorithm. Note

that as in Chapter 4, the vector (c#B

over all iterations (why?).

b,cgB) is lexicographically decreasing

Entering arc

Figure 9.20. Maintaining strongly feasible trees, (a) Generic situation, (b)
An example.

Minimal Cost Network Flows 491

This cycling prevention rule is readily extended to the bounded variables
network simplex algorithm. A strongly feasible basis tree may be defined here
as one in which the basic arcs that are degenerate at their lower bounds are
pointing toward the root and those basic and degenerate at their upper bounds
are pointing away from the root. Then, the same leaving variable rule (which
includes the case of the entering arc blocking itself) maintains strong feasibility
and guarantees finite convergence. We leave the details to the reader in Exercise
9.38.

Stalling and its Prevention

Although the foregoing technique guarantees finite convergence, it is still entirely
possible that the algorithm may stall at an extreme point, that is, go through a
number of consecutive degenerate pivots that, although finite, is exponential in
m and ». For example, if b = 0 in Problem (9.1), then all possible bases
represent the same extreme point, namely, the origin, and there may be an expo-
nential number of such bases that one may enumerate before terminating with
Zj; - Cjj < 0 for all nonbasic variables. In fact, there exist examples exhibiting

this phenomenon (see the Notes and References section). In any case, it seems
desirable to devise a rule that would guarantee that the number of consecutive
degenerate pivots is bounded above by a polynomial in m and n.

As seen in Chapter 4, a key to preventing stalling is to keep the length as
well as the number of stages small. Recall that a stage is a sequence of degener-
ate pivots in which no nonbasic variable remains enterable throughout and no
strict subset of this sequence has the same property. The length of a stage may
be controlled by adopting an appropriate "affirmative action" rule for selecting
an entering variable. For example, the Least Recently Considered (LRC) vari-
able choice rule discussed in Chapter 4 guarantees that the number of pivots in a
stage is no more than n. It turns out that independent of the rule for choosing an
entering variable, if we maintain strongly feasible basis trees as previously, then
the number of stages in a sequence of consecutive degenerate pivots is no more
than the number of degenerate basic variables at the current extreme point.
Hence, the number of stages in a sequence of degenerate pivots is bounded
above by m, so that the number of consecutive degenerate pivots using strongly
feasible bases in conjunction with the LRC entering rule, for example, is
bounded above by the polynomial mn. This underscores the relevance of main-
taining strongly feasible bases.

To establish the preceding bound on the number of stages, let Γ0, T\,...,TM

be the basis trees in a sequence of consecutive degenerate pivots such that either
optimality is recognized at TM or the pivot executed on TM is nondegenerate.

Notice that the nondegenerate basic arcs are common in all of the trees T0,

Τγ,...,ΤΜ (why?). Consider the spanning graph formed by these nondegenerate

basic arcs. Let this graph have (tree) components Gl5 G2,...,Gp, where P < m. In

each of the trees TQ,...,TM, these components Gy,...,Gp are connected to each

other via some P-l degenerate arcs. In particular, let TM be as shown in Figure

492 Chapter 9

9.21, with the root node r&G\. Let L < P - 1 be the maximum number of
degenerate arcs in the chain from any node to the root node in TM. Observe that
P = 7 and L = 3 in Figure 9.21. We shall show that the number of stages in the
sequence TQ,...,TM is no more than L, and hence no more than m - 1.

Toward this end, let us make certain observations. First, since T0,...,TM

are strongly feasible and the pivots in this sequence are degenerate, the dual
variable of each node is nonincreasing in this sequence and the sum is strictly
decreasing. Second, since the leaving arc is degenerate in each pivot, the dual
variables of the nodes in each subgraph G, either remain the same or all strictly
decrease by the same amount for i = \,...,P in each pivot. Third, denoting w as
the dual values in TM, we have that wt = wt, for all i e G{ in each of the trees
T0,...,TM, since the arcs in G] are basic in all these trees. Fourth, from the first
point above, as long as the dual values of the nodes in any subgraph are not
equal to their values in w, they are strictly greater than these values.

By contradiction, suppose that the procedure goes through more than L
stages. Consider a subgraph Gk at the first "level" in TM. By the "level" of a

subgraph we will mean the number of degenerate arcs in a chain in TM

connecting any node in this subgraph to the root node. Suppose that for some
tree T-,j e {Ο,.,.,Μ- 1}, the dual values w, of nodes i e G^ are strictly greater

than Wj. In particular, let (p, q) be the degenerate arc connecting G^ to Gj in TM.

Then, in the tree T- we have wp - wq - cpq = w„-wq- cpq > wp - w - cpq = 0

Figure 9.21. Final tree TM in a sequence of degenerate pivots.

Minimal Cost Network Flows 493

(why?). As long as the dual values in Gk are not equal to those in w, arc (p, q)
remains enterable and a stage persists. By the time the first stage is over within
the sequence T0,...,TM, we will have w,· = w, for all i^Gk. This equality holds
in every tree after this stage.

Inductively, assume that the procedure has gone through some I > 1

stages and the dual values of nodes in subgraphs at levels i or lower are all at

their corresponding values in w. Consider a subgraph Gk at level (£ + 1) and let

(p, q) be the first degenerate arc encountered in the chain from any node in Gk

to the root node. If κ>;· > iv,· for i e Gk in any tree following stage i, then as

before, in this tree we have wp -wq -cpq = wp-wq -cpq > wp - wq - cpq = 0

so that arc (p, q) is enterable. As long as the dual values in Gk are not fixed at

their corresponding values in w, (p, q) remains enterable and stage (I + 1) per-

sists. When stage (i + 1) is completed within the sequence TQ,...,TM, the dual

values of nodes in subgraphs at level (I + 1) are all at their values in w. Conse-
quently, the number of stages in the sequence T0,...,TM, cannot be more than L.
This establishes the required result.

Another Useful Entering Variable Choice Rule that Prevents Stalling

Besides the partial pricing rule for selecting an entering variable described in
Chapter 3 and the LRC rule described in this chapter, there is another competi-
tive entering variable selection rule that is well suited to how data are
customarily stored. Suppose that the arcs in the problems are stored in a one-
dimensional array with arcs having node 1 as their from-node appearing first,
then arcs having node 2 as their from-node, and so on. Consider the following
rule. Suppose that an arc having node j at its from-node has just entered.
(Assume _/' = 1 to initialize.) Then the next entering variable is chosen as the best
enterable arc with node j again as its from-node, and if none exists, then the best
enterable arc having nodey + 1 as its from-node, and so on, considering arcs
having nodes/ + 2,..., m, 1, 2,..., and nodey- 1 as their from-node, in this order.
Then, we show that the maximum number of consecutive degenerate pivots

using strongly feasible basis trees is no more than mL, which is less than m .
Note that the use of strongly feasible basis trees ensures that the number

of stages in a sequence of degenerate pivots is no more than L, independent of
the rule for choosing an entering variable. To show that the length of a stage is
no more than m, consider a tree 7\ in the sequence TQ,...,TM_\ that leads to a

degenerate pivot. Let w be the dual values in T-. Suppose that arc (p, q) enters,

say, where p e Gk. Referring to Figure 9.21 (assuming that this represents tree

Tj and not TM), note that the pivot will be degenerate if and only if q does not

lie in Gk or in its "successors," that is, if and only if the basis equivalent chain

includes the degenerate arc (w, v), which is defined as the first degenerate arc

494 Chapter 9

encountered by tracing from any node in G^ to the root node. Moreover, by the

rule for breaking ties for the leaving variable (see Figure 9.20a), the arc (w, v)
must be the leaving variable arc. Consequently, if (p, q) enters degenerately,
then the dual values of nodes in Gk and its successors reduce by δρ„ = z „ -cpq

> 0, while those of the other nodes remain the same. Let these revised dual

variables in 7\+1 be called w'. Because the set of nodes in Gk or in its succes-

sors have been unaffected by the pivot, for any node £ not in this set, we have
w'p ~we ~cpl = (wp -5pq)-™l ~cpl = (wp ~wi 'CpU'Spq ^ ° s i n c e 8pq w a s

the most positive zpt -cpt value among all arcs of the type (p, t). If some arc

having node p as its from-node is now enterable, the resulting pivot must be
nondegenerate. Consequently, if the next pivot is degenerate, the from-node
cannot be node p, which means that in a sequence of degenerate pivots the
length of a stage is < m. This establishes the required bound. In Exercise 9.49
we ask the reader to consider another variation of this rule.

9.12 GENERALIZED NETWORK PROBLEMS

Consider a linear programming problem of the form:

Minimize ex
subject to Ax = b

x > 0,

where the matrix A is m x n of rank m and where each column a of A has at

most two nonzero entries. Then one may conceptualize the constraints Ax = b as
a set of generalized nodal flow balance equations on a graph G(. / , "/) that is
constructed as follows. Let / be the set of m nodes {l,...,m}, with node / being
associated with the rth row of A. For each column a · of A having two nonzero

entries, occurring, say, in rows p and q, construct an undirected link L .■ between

nodes/) and q. For each column a of A having a single nonzero entry, occurring,

say, in row p, construct an undirected link L .■ incident at node p. Let ' / denote

the set of these links, and let x.- denote the flow associated with link L·.

Additionally, for each node p, examine the links that are incident at p and
associate with each such link L- at the point of incidence at p a multiplier equal

to the coefficient in column a and row p. Then the nodal balance equations

assert that at each node p, the sum of the weighted flows on the incident links,
where the weights equal the corresponding incident multipliers, must equal b„.

Because of this interpretation of modified flows, this type of problem is called a
generalized network or a network flow with gains problem. Problems of this
type are used to model a variety of situations involving a gain or loss in flow or
the transformation of one type of product to another in a network-based system.
(See Exercises 9.54 - 9.55.)

Minimal Cost Network Flows 495

As an illustration, consider the following example problem:

Minimize 3xj
subject to 2x]

- * i

X] ,

+ *2

+ 3x2

x2,

- x3

x3
3x3

x3,

+ 2x4

+ 2x4

X4

X4,

+ x5

+ 2x5

- x5
x5,

- 2x6
+ 3x6

- x6

x 6 '

+ Χη
= 6

- x7 = 0
= 8

+ 3x7 = 8
= 2

x7 > 0

The corresponding graph G(- / , ·"/) is shown in Figure 9.22a along with the

multipliers associated with the seven links.
Consider the subgraph GB(l ,'/β) of G(I , ·"/) shown in Figure

9.22b, where the quantity bt is shown against each node i, for /' = 1,...,5.
Suppose that the flows are permitted to be positive only on the links shown in
Figure 9.22b, that is, the flows x6 and x7 are restricted to zeros. Then at node 1,

we have 2xj = 6 or x\ = 3; at node 2, we must therefore have 3x2 - x\ = 0 or x2

= X]/3 = 1. Notice how the structure of the rooted tree is used to compute these

values, as in the network simplex method. Similarly, treating the second

component in Figure 9.22b as a tree for a fixed value of x3, we must have at

node 3 that 2x4 = 8 - x3 or x4 = 4 - (x3/2); we must have at node 4 that 2x5 = 8

- 3x3 or x5 = 4 - (3/2)x3, and we must have at node 5 that x4 - x5 = 2. Substituting

for x4 and x5 in terms of x3 into this last equation gives x3 = 2, from which we

obtain x4 = 3 and x5 = 1. Hence, this solution, which is feasible and is uniquely

obtained when x6 and x7 are fixed at zero, is a basic feasible solution (why?).

Notice how this directly generalizes the network simplex technique for solving

the system Bxg = b.

(a) (b)

Figure 9.22. Example of a generalized network, (a) Network, (b) Basis.
This example illustrates the following general characterization of a basis

of A. Let B be any basis of A. Corresponding to B, construct a spanning sub-

496 Chapter 9

graph GB(, I ,'/B) of G(l ,-"/) as follows. Let / be the set of nodes 1,...,

m, and let ■ YB be the set of links corresponding to the columns of B. Let

GBi{- I ,·,. Vg,), / = 1,..., r, be the r > 1 components of GB. Then, as we show

next, each component GBi, i = \,...,r, is either a rooted tree or is a one-tree. Such

a graph GB is called a pseudorooted spanning forest. Note that r = 2 in the

example, and that one component is a rooted tree, while the other component is
a one-tree.

To establish the foregoing claim, let mi = |. / , | be the number of nodes

in component / for / = 1,..., r. Note that since GBi is connected, we have from

Property 3 of tree graphs that |. YBi | > (m,- -1) for i = 1,..., r. Suppose that for

some /, we have | YBi | = (w, -1) , so that GBi is a tree graph. Consider the Th-

rows of B corresponding to the nodes in . / ,·'. Observe that these rows have

nonzero entries only in the (w; -1) columns corresponding to the links in · ~/Bi,

and so, these rows cannot be linearly independent, a contradiction to the fact

that B is a basis. Consequently, we must have | -/Bi | > mi for i = l,...,r. How-

ever, Z / = i w i = w a nd Σ/=ι | S/Bi | = m > m e t o t a l number of basic columns.

Hence, we must have |,~/Bi | = w; for each / = l,...,r. By our equivalent charac-

terizations of tree graphs in Section 9.1, it then follows that each component,

which is a connected graph on some /w;- nodes and having w; links, must either
be a rooted tree graph or a one-tree graph.

As a result of this characterization, any basis B of A can be arranged into
r diagonal blocks Bl v . . ,Br , with B(representing the square (generalized)

incidence matrix of component GBi for / = 1,...,/-. Hence, the various operations

associated with the simplex method, including the computation of dual
variables, the generation of an updated column, and the pivot and update
operations, can now be specialized to exploit this characterization and be
performed essentially on the graph itself.

For example, in order to solve the system wB = cB for the basis illus-

trated in Figure 9.22b, we may compute {y\\, w2) from the first component of the

basis graph and compute (w^, w4, w5) from the second component by directly

generalizing the network simplex technique using the appropriate link

multipliers. This yields 3w2 = 1 from the root arc incident at node 2 or w2 = 1/3,

and from link (1, 2) we get 2w[- w2 = 3 or vv̂ = 3/2 + w2/2 = 5/3. Similarly,

from the second component, for a fixed value of w3, say, we obtain from link

(3,4) that vv3 + 3w4 = - 1 , that is, w4 = - 1/3 - w3/3, and from link (4,5) we

obtain that 2w4 - w5 = 1, that is, w5 = 2H>4 - 1 = -5/3 - (2/3)w3, and finally, we

obtain from link (3, 5) that 2w3 + w5 = 2. Substituting for w5 in this last

equation gives 2w3 - 5/3 - (2/3)w3 = 2 or w3 = 11/4, which yields w4 = -5/4,

Minimal Cost Network Flows 497

and w5 = -7/2. Having now determined w = (5/3, 1/3, 11/4, -5/4, -7/2), we may

price the nonbasic variables by computing z,· -c ■ = wa · - c ·. This gives z6 - c 6

= 3w| - w3 - c6 = 5 - 11/4 + 2 = 17/4 and z7 -c7 = -w2 +3w4 — c-j — -1/3 -

15/4 - 1 = -61/12. Hence, x6 is enterable. We may now generate the updated

entering column y6 by solving the system By6 = a6 in a manner similar to the

solution of the system B\B = b, and then perform the pivot and updating

operations. We leave the details of specifying the general rules for this
procedure and the completion of the example to the reader in Exercise 9.48.

EXERCISES

[9.1] Solve the following network flow problem.

[9.2] Suppose that the following figure represents a railroad network. The
numbers beside each arc represent the time it takes to traverse the arc. Three
locomotives are stationed at point 2 and one locomotive at point 1. Four
locomotives are needed at point 6. Find the minimum total time solution to get
the power required to point 6.

[9.3] Put the following problem in the standard form (Problem (9.1)). Construct
an all artificial initial basis and optimize using the two-phase or the big-M
method.

498 Chapter 9

Minimize4xj2 +3xj3 +2*23 ~2x4 2 +6x34+3x35 +3x64 +x^ -4χγ5 +2x75
subject to Xj2 + X]3 ^ 6

-X12 + X23 - *42 = - 2
~~ x13 ~ x23 + x34 + x35 = 3

+ X42 - X34 - X64 < -6
~ x35 ~x65 - x75 ^ ~ 4

+ x64 +x65 - x76= 2
+ x75 + x76= 3

X12, X13, X23' x42> x34> x35> x64' x65> x75' x76 - °-

[9.4] Solve the following flow problem. {Note: Σέ,- * 0.) Does it have alterna-

tive optimal solutions?

£,=2 ^ b4=-4
CU

[9.5] Consider the following network flow problem.

In addition: Node 1 can produce an unlimited supply of units at a cost of two per
unit; Node 2 can produce up to three units at a cost of four per unit; Node 3
needs three units; and Node 4 needs five units. Find an optimal production and
shipping policy.

[9.6] Solve the following transportation problem by the network simplex
method of this chapter:

/ *
10

Minimal Cost Network Flows 499

[9.7] If it is known in advance that a certain arc will be carrying positive flow in
any optimal solution to an uncapacitated network flow problem, what
simplifications can be made in the solution method?

[9.8] Show that the two root arcs and the chain between them form a dependent
set.

o-<f
[9.9] Provide a complete detailed proof for the equivalence of the six
characterizations of a tree given in Section 9.2.

[9.10] Solve the following network flow problem using x13, x34, and x42 as

part of a starting basis.
él =3 6,=5

■2<-c;;

&j=-2

[9.11] It is often necessary (particularly in the dual simplex algorithm and in
integer programs) to generate a row of the simplex tableau. Indicate how this
can easily be done for a network flow problem. Illustrate by generating the row
associated with x[3 in the starting simplex tableau for Exercise 9.10. [Hint:

Remove some arc (basic in a given row) of the basis tree, thereby separating the
nodes into two subsets. Then consider the set of nonbasic arcs going between
the two node sets—those in the same direction as the given basic arc and those
in the opposite direction.]

-1 associated with

associated with

[9.12] Indicate how we can generate a row or a column of B

a network flow problem. Illustrate by generating the row of B~
X|3 in the initial basis for Exercise 9.10.

[9.13] Apply the two-phase method and the big-M method to the network of
Exercise 9.10 to find an optimal solution.

[9.14] Draw the underlying graph for the transformed problem of Example 9.2.
Optimize using the big-M method. Start with an all artificial variable basis.

[9.15] Prove or give a counterexample: In order for a variable to be basic in a
given row of the linear program for a network flow problem, the variable must
have a nonzero entry (that is, ±1) in that row of the original constraint matrix;
that is, the arc must be incident with the associated node.

[9.16] According to the rule of Section 9.5, show that the root is the last basic
variable to be assigned a value.

500 Chapter 9

[9.17] In the network flow problem of Section 9.1, suppose that we locate a
path from a supply point to a demand point. Putting as much flow as possible on
the path, decreasing the corresponding supply and demand, suppose that we
repeat this process until all supplies are allocated (and demands satisfied).

a. Will the feasible solution obtained be basic?
b. If not, how can the solution obtained be made basic?

[9.18] Solve the following network flow problem. (Note; For this choice of 6,·-

values, we will have found a shortest path from node 1 to node 4.)

[9.19] Consider the following network. Node 1 has five units available. Node 3
has two units available. Node 2 needs four units. Node 4 needs one unit.

a. Set up the linear program for this problem.
b. Solve the problem by the network simplex method. Is the optimal

solution obtained degenerate?

[9.20] Starting with xj2 , *24 > a nd *3i as part of a basis where x14 is nonbasic

at its upper bound and where all other Xy variables are nonbasic at their lower

bounds, solve the following network flow problem:

Minimal Cost Network Flows 501

[9.21] Apply the two-phase method and the big-Mmethod to Exercise 9.20.
[9.22] Solve the following network flow problem:

(u,c)

[9.23] Solve the following network flow problem:

fr,=0

6, =0

y,u,c)

h=o

(0, 5, -1)

[9.24] Indicate how we can handle lower and upper capacity constraints on flow
through a node i. (Hint: Consider splitting node / into two nodes.)

(l,u)

yùg ^ΤΜ^ΜΕ^

[9.25] Consider the following network of cities. Each city must be visited
exactly once by some salesman traveling in a nontrivial circuit. Use network
flows to indicate the number of salesmen necessary and their routes to minimize
the total distance traveled. Assume that an unlimited number of salesmen are
available at no cost to be positioned wherever needed. (Hint: See Exercise 9.24.)
Can we impose the additional constraint that only one salesman be used? (This
would be the classic traveling salesman problem.)

502 Chapter 9

[9.26] Show that a network flow problem having zero lower bounds and finite
upper bounds can be converted to one having zero lower bounds and no
(infinite) upper bounds. [Hint: Consider splitting arc (i,j) as shown.]

b, bj b, -uv bj+^j

Derive this transformation algebraically by performing appropriate row opera-
tions after converting the upper bounding constraints to equalities. Illustrate by
converting the following network to one without upper bounds:

[9.27] Indicate how any finite-valued, uncapacitated, minimal-cost flow prob-
lem of Section 9.1 can be transformed into a transportation problem. Illustrate
by the network shown. (Hint: Locate the minimal cost path from each supply
point to each demand point.) How would you achieve this transformation for
capacitated problems? (Hint: See Exercise 9.26.)

[9.28] Consider the following network for a minimum-cost network flow
problem with the net supply values (è,·) shown on the nodes and the arc costs c,y

shown on the arcs:

Minimal Cost Network Flows 503

a. Construct a rooted spanning tree with Node 2 as the root node and
the arcs (1, 2), (2, 3), (2, 5), (3, 6), and (4, 5) along with the root arc
as basic. Determine the associated primal and dual solutions for this
basis.

b. Show that this basis is dual feasible. On the graph, perform a dual
simplex iteration in which the dual variable complementary to x25
enters the (dual) basis. Show all details.

[9.29] Consider a feasible minimum-cost network flow programming problem
(9.1) being solved using an all-artificial start basis along with the big-M
method. In terms of the cost on chains from nodes to the root node, prescribe a
value of M that is sufficiently large. (Hint: Consider any optimal basis to the
original problem and determine how big M should be so that the artificial
nonbasic arcs have Zy - Cy < 0.)

[9.30] Indicate how the lexicographic simplex method may be applied to the
network flow problem. Identify each step with that using strongly feasible basis
trees.
[9.31] Develop in detail two algorithms for solving network flow problems that
are respectively based on the dual simplex and the primal-dual methods.

[9.32] Suppose that a minimum-cost network flow program contains an
undirected arc (i,j) with a cost per unit flow of ci}·. Show how the corresponding

variable Xy appears in the mathematical formulation of the problem before using

any transformations on this variable.

[9.33] How can we handle undirected arcs when £ = 0 and c > 0 in a network
flow problem? (Hint: Consider replacing a single undirected arc by two
oppositely directed arcs.) What happens when Cy < 0 or when £y > 0 for some

arc(s) (/, _/)? Relate the transformation used to solve the problem of Exercise
9.32.

[9.34] Show how a network flow problem with £ = 0, for which the cost
function associated with each arc is piecewise linear and convex, can be solved
by the methods of this chapter. (Hint: Consider adding parallel arcs—one for
each segment—with proper costs and upper bounds.) Can the methods of this
chapter be also used for network problems having piecewise linear and concave
functions? Explain.

[9.35] How can we transform a network flow problem with some ly Φ 0 into

one with all £ = 0? Illustrate by the following network:

504 Chapter 9

[9.36] Consider the following network flow problem with the 6,· -values shown

on the nodes and with the triple (£y, Uy, c,y) shown on the arcs. Convert this

problem to an equivalent network flow problem having all lower bounds equal
to zero.

[9.37] Prove that when we discard a redundant constraint, a network flow basis
is characterized by a rooted spanning forest (a collection of trees, each having
exactly one root, which spans the node set). Using this characterization, develop
the representation of a nonbasic column in terms of the basic columns. Utilize
your results to describe a complete simplex method for network flow problems
without any redundant constraint. Apply the method to the network in Exercise
9.10 with the last constraint deleted.

[9.38] Using the definition given in Section 9.11 of a strongly feasible basis tree
for bounded variables network flow problems, show how the rule given there
maintains strong feasibility and prevents cycling. (Hint: See Exercise 9.26!)

[9.39] A company has requirements for a certain type of machine during the
next N months of Dt per month, i = 1, 2,..., N. These requirements must be met,

although excesses are permitted to any desirable extent. No machines are avail-
able at the beginning of month 1. At the beginning of each of the N months, the
company may purchase machines. The machines are delivered immediately; that
is, there is no lead time. The company may purchase machines that last one
month, two months, and so on up to M months. The number of months a
machine is usable is called its service life. The cost of a machine depends on the
month in which it is bought and on its service life. In particular, a machine
bought in the rth month with service life of A: months costs cilc dollars. Naturally, a
machine that lasts longer costs more, so that cjp < cjs for/? < s.

a. Formulate a mathematical statement for this problem, assuming that
the objective is to minimize the sum of the monthly costs. Let xik be

Minimal Cost Network Flows 505

the number of machines bought in month / with service life of k
months,

b. Derive an equivalent formulation for the general problem as a net-
work flow problem. Use N = 4 and M = 3 to illustrate, summarizing
the resultant formulation on a network. (Hint: Consider elementary
row operations to obtain a 1 and -1 in every column.)

[9.40] The following network represents an electrical power distribution net-
work connecting power generating points with power consuming points. The
arcs are undirected; that is, power may flow in either direction. Points 1,4, 7,
and 8 are generation points with generating capacities and unit costs given by
the following table.

Generating Point
1 4 7 8

Capacity (thousands of
kilowatt hours)
Unit Cost ($/1000 kilowatt
hours)

100

50.0

60

63.5

80

75.0

150

84.5

Points 2, 5, 6, and 9 are consuming points with demands of 35,000 kwh, 50,000
KWH, 60,000 kwh, and 40,000 kwh, respectively. There is no upper bound on
the transmission line capacity. The unit cost of transmission on each line
segment is $25.0 per 1000 kwh.

a. Set up the power distribution problem as a network flow problem.
b. Solve the resulting problem.

[9.41] Consider the following production-transportation-inventory problem. A
firm produces a single product at two locations in each of two time periods. The
unit costs and production limits vary by time period and are given in the follow-
ing table:

Production
Location

1
2

Time Period
1 2

$30/6 $50/2
$35/10 $57/9

Unit cost/
Production limit

The product will be shipped (instantaneously) to each of two locations to satisfy
specified demands over the two periods. These demands are as follows:

Consumer Time Period
Location 1 2

1 3 1
2 5 4

506 Chapter 9

The unit shipping cost varies over time and is given by the following:

Production
Location

1
2

Period 1 ; Consumer
Location:

1 2
$60 $65
$50 $75

Production
Location

1
2

Period 2; Consumer
Location:

1 2
$65 $90
$75 $100

Finally, the product may be held in inventory at the production and consumer
locations to satisfy later period needs. The relevant data are given below.

Production Location
1 2

$1/2 $3/3

Consumer Location
1 2

,«- ,. ς , „ Unit cost/ Inventory
limit

Set up a network flow problem that can be used to solve the problem of
minimizing the total cost to satisfy the demand over the two periods. (Hint:
Create a separate node that represents each location at each time period.
Shipping arcs connect nodes for the same time period; inventory arcs connect
nodes in different time periods.)

[9.42] Formulate Exercise 1.16 as a network flow problem. Solve this problem
by the network simplex method.

[9.43] Thirty million barrels of oil must be transported from Dhahran in Saudi
Arabia to the ports of Rotterdam, Marseilles, and Naples in Europe. The
demands of these ports are, respectively, 8, 18, and 4 million barrels. The
following three alternative routes are possible (see accompanying map).

a. From Dhahran, around Africa (through the Cape of Good Hope) to
Rotterdam, Marseilles, and Naples. The average transportation and han-
dling cost per barrel is $2.20, $2.40, and $2.45, respectively.

b. From Dhahran to the city of Suez, and then through the Suez Canal to Port
Said. From Port Said the oil is shipped to Rotterdam, Marseilles, and
Naples. The average transportation and handling cost from Dhahran to the
city of Suez is $0.35 and the additional unit cost of transporting through the
canal is $0.25. Finally, the unit transportation costs from Port Said to
Rotterdam, Marseilles, and Naples are, respectively, $0.30, $0.23, and
$0.20.

c. From Dhahran to the city of Suez, and then through the proposed pipeline
system from Suez to Alexandria. The average transportation cost per
barrel through the pipeline system is $0.17, and the unit transportation
costs from Alexandria to Rotterdam, Marseilles, and Naples are $0.28,
$0.22, and $0.20.

Furthermore, 35 percent of oil in Dhahran is transported by large tankers that
cannot pass through the Suez Canal. Also, the pipeline system from Suez to
Alexandria has a capacity of 10 million barrels of oil.

a. Formulate the problem as a general network flow problem.
b. Use the procedures of this chapter to find an optimal shipping pattern.

Minimal Cost Network Flows 507

„ — —>**Rotterdam

/
« /
I /
I /
1 /
\ i
\i
1
\
\
\

\
\

Marseilles f X / ^ ^ \

; Naples L t - ^ ^ s

j . "^ϊ>^. ̂ -l·/ Port Said

"~ ^ ,-Suez Canal
Alexandria y"*sSuez

pipeline "

[9.44] a. State the dual problem for the lower-upper bounded network flow
problem in Section 9.8.

b. Give the values of all of the optimal dual variables for Figure 9.17 at
iteration 2.

c. Verify optimality by computing the dual objective function.

[9.45] Consider the following network:

(8, -3)

(«, e)

"CD—**a
bA=-5 & = 6

508 Chapter 9

Consider a basis given by x2i>
 x23> x34> x52 an^ m e artificial (root arc) variable

xa with x14 nonbasic at its upper bound and all other variables nonbasic at their

lower bounds, that is, zero.

a. Find the basic solution. Is it feasible?
b. Give the basis in lower triangular form.
c. Give the simplex tableau associated with the specified basic solution.
d. State the dual program.
e. Find the complementary dual solution. Is it feasible?
f. Regardless of costs, perform one pivot on the network to bring x14 into

the basis.
g. Is the new basis optimal?

[9.46] Show that the coefficient matrix for the lower-upper bounded network
flow problem is totally unimodular. This matrix is of the form:

X

A
I
I

sl
0
- I
0

s2
0
0
I

RHS
b
£
u

[9.47] a. Provide the values of p(i), £{i), t{f), tR{i),f{i), η{ΐ) for i = r, 1 27
corresponding to the tree in Figure 9.18.

b. If this was an advanced starting basis, show how you would construct
these lists {without using a graphical display) and how you would com-
pute the flow and dual values using these lists.

c. For the pivot shown in Figure 9.18, provide a precise account of how
these lists and quantities are updated using T'r as the lower tree.

d. Repeat Part (c) using Tv as the lower tree.

[9.48] Consider the generalized network problem introduced in Section 9.12.
Given the characterization of a basis as a pseudorooted spanning forest, develop
specialized rules for computing the complementary dual basic solution, generat-
ing the updated column of an entering variable, and for performing the pivot
operation and updating the basis along with the associated primal and dual
solutions. Illustrate using the example of Section 9.12.

[9.49] Consider a minimum-cost network flow problem in which the nodes are
numbered 1, 2,...,m and the arcs are stored in the same order as those having
node 1 as their from-node, then those having Node 2 as their from-node, and so
on. Suppose that the following rule for selecting an entering variable is adopted.
If an arc having node/ as its from-node was last selected, pick the next arc as
the best enterable arc having the earliest node in the listy + l,...,m, 1, 2,...j as its
from-node. Using this rule in conjunction with strongly feasible trees, show that
the maximum number of consecutive degenerate pivots is bounded above by
mL, where L is the largest number of degenerate arcs in any chain from a node
to the root node in the final tree TM of the degenerate sequence. {Hint: Follow

Minimal Cost Network Flows 509

the original stalling prevention proof of Section 9.11. Note that it is no longer
necessarily true that the stage length is less than or equal to m in this case.)

[9.50] Consider a network flow problem with three vertices that each have è, =

0 and with twelve arcs given as follows. Between each pair of nodes / and j ,
there are two arcs from i toy having costs +1 and - 1 , respectively, and there are
also two reverse arcs fromy to / having costs +1 and - 1 , respectively. Consider a
starting basis in which the arc (1, 2) with cost 1 and the arc (2, 3) with cost -1
are basic. By always keeping one arc with a cost 1 and one arc with a cost -1
basic, and entering appropriate arcs in the cyclic order between 1 and 3, then
between 2 and 3, and next between 1 and 2, starting with the entering arc from 1
to 3 with a cost - 1 , construct a sequence of bases that exhibits the phenomenon
of cycling. (Hint: Try to construct a cycle of length 12, that is, trees TQ, T{,...Tn,

7]2, where 7]2 - 7b, in which for each i = 0, 1,...,5, the tree 7J+6 is identical to 7J-

except that the two basic arcs of the same cost have reverse orientations.)

[9.51] Consider a directed graph G(. / ",·."/) and suppose that a two-commodity

minimum-cost network flow problem is defined on this digraph, where x and y
denote the flow variables for the two respective commodities.

Minimize ex + dy
subject to X xy - X xki=^li fori = \,...,m

j:(i,j)€.Y k:(k,i)e.V
Σ yy- Σ yki=b2i fori = l,...,m

j:(ij)e./ k:(k,i)e.Y
θιχ<γ< θ2χ
x,y>o,

where 0 < θ\ < θ2 are given constants.

a. Add nonnegative slack variable vectors Sj and s2 to write #]X<y<#2x

as i^x-y + Sj = 0 and y - # 2 x + s2 = 0. Show that the nonnegativity

constraints on x and y are implied by the other constraints.
b. Treating x and y as unrestricted above, solve for them in terms of the

slack variables and eliminate them from the problem. Demonstrate that
the resulting problem is a network flow problem separable in the vari-
ables Sj ands2.

c. Comment on the algorithmic implications of this strategy.

[9.52] Develop a method to solve a linear program of the form:

Minimize ex + cn+lxn+l

subject to Ax + a„+1x„+1 = b
x>0,x„ + 1 >0,

where A is a node-arc incidence matrix. Apply the method to the following
problem:

510 Chapter 9

Minimize 5xj + 3x2 + 4x3 + 3x4 + 5x5 + x6

subject to X] + x2 + x6 = 2
—Xj + X3 4- X4 — 2ΧΛ

 = 3
- x2 - X3 + x5 + 2x6 = - 1

- x4 - x5 - x6 = - 4
Xj, X2, X3, X4, X5, -̂ δ - 0·

[9.53] Can the results of Exercise 9.52 be generalized to the case where the
constraint matrix is of the form (A, D), where A is a node-arc incidence matrix
and D is any arbitrary matrix? Apply the method to the previous problem with

the additional column x7 having a7 = (1 , - 6 , 2 , 0) ' and c7 = - 4 .

[9.54] Consider the investment problem presented in Exercise 1.1. Construct a
generalized network to represent this flow with gains problem. Solve this
problem using the algorithm discussed in Section 9.12.

[9.54] In the copper market, copper ore is mined at different mines i = \,...,M,
having respective supplies st tons, i = Ι,.,.,Μ, and shipped to various smelters y

= l,...JS, where it is processed to produce blister copper, which is then sent to

different refineries, k = \,...,K, which produce high purity copper. This final

product is used to satisfy demands d(, 1= \,...,L, occurring in some L end-use

markets. There also exist predominantly copper-based scrap metal markets r =

l,...,R, having respective supplies ar tons, r= \,...,R, which feed back copper

into the system by shipping this copper-based scrap metal to the refineries for

purification. Assume that a ton of ore sent from mine / to smeltery will produce

ccjj e (0,1) tons of blister copper at smelter j at a total mining, transportation,

and smelting cost of Cy per ton; a ton of blister copper sent from smelter j to

refinery k will produce ββ e (0,1) tons of refined copper at a total

transportation and refining cost of C:k per ton; a ton of scrap metal sent from

scrap metal market r to refinery k will produce yrìi e (0,1) tons of refined

copper at a total transportation and refining cost of crk per ton; and that the

distribution cost from each refinery k to end-use market I is ck(per ton of

refined copper. For this simplified single period description of the copper
market, construct a generalized network of the form depicted in Figure 9.22a to
find a least cost copper processing and distribution solution, displaying the Z>; -

values at the nodes, and the A-matrix elements and cost coefficients on the
edges. Define your decision variables associated with the different types of
edges. Discuss how you might extend this model to a multi-period situation.
(Soyster and Sherali (1981) describe a more sophisticated multi-period model
for the U.S. copper market.)

[9.55] Consider the linear program LP to minimize ex subject to Ax = b, x > 0,
where A is an m x n matrix of rank m < n. Consider any column a of A

Minimal Cost Network Flows 511

associated with the variable x-. For example, let a ,■ = (3, 2, -4, 6, 0,...,0)', and

suppose that we write

[*j]xj =

" 3 "

2

0

0

χβ +

0"

0

-4

6

0

0

xy2, where we additionally impose Χβ = χ / · 2 (= χ /) -

(This technique is called variable splitting based on its operation, and the
relationship of the type x ·] = x -2 is referred to as an equal-flow constraint.)

Show how the general linear program LP can thus be converted to a generalized
network flow problem with equal-flow side-constraints. Referring to the
Lagrangian relaxation decomposition strategy in Chapter 7, discuss how you
might exploit this induced structure to solve LP.

NOTES AND REFERENCES

1. The simplex method for general network flow problems is a natural exten-
sion of the work on the transportation problem and the work of
Koopmans [1949] relating linear programming bases for transportation
problems and trees in a graph. On this subject, also see Ahuja et al. [1993]
and Bertsekas [1991, 1998].

2. Computational experience with the network simplex algorithm, as
reported by Glover et al. [1974a, b], Langley and Kennington [1973], Ali
et al. [1978], and others, indicates that this algorithm compares favorably
with several other procedures for solving network flow problems.
However, recent work by Bertsekas [1985] and Bertsekas and Tseng
[1988a, b; 1994] has resulted in a primal-dual type of algorithm (see
Chapter 11) that appears to dominate the primal simplex algorithm. The
codes RELAX and RELAXT based on this algorithm solve the standard
NETGEN benchmark test problems (Klingman et al. [1974]) two-four
times faster than the primal simplex code RNET written at Rutgers
University. All commercial LP solvers have a specialized option to solve
network structured problems (e.g., the popular software CPLEX has the
NETOPT option based on the network simplex algorithm). For an
application of interior point methods to network flow problems, see
Mehrotra and Wang [1996].

3. Zadeh [1973] has exhibited the worst-case exponential behavior of the
primal simplex and the primal-dual network algorithm among others,
using a class of modified transportation problems. Edmonds and Karp
[1972] were the first to propose a polynomial-time algorithm for network
flow problems. Their procedure is based on a scaling technique that
solves a sequence of network flow problems with modified (scaled)

512 Chapter 9

right-hand-side values, where the solution to each problem is obtained
from the previous one via at most m shortest path problems, and where
the first problem is a shortest path problem. Tardos [1985] and Orlin
[1984] showed how this algorithm can be modified to derive strongly
polynomial dual simplex types of algorithms for minimum cost network
flow programming problems. A first polynomial-time primal simplex
type of network flow algorithm is presented in Orlin [1997]. (Also, see
Sokkalingham et al. [2000].)

4. The discussion of list structures in Section 9.10 is based on the
enhancements to the augmented threaded index (ATI) method of Glover
et al. [1974a] as discussed in Barr et al. [1979]. (See Barr et al. [1979] for a
discussion on rerooting Tv at q based on reverse threads as an alternative

to the technique presented here.) Glover and Klingman [1982] present
some computational comparison studies. For an alternative to perform
tree-based operations using a data structure called dynamic trees, see
Sleator and Tarjan [1983, 1985].

5. The strongly feasible bases of Section 9.11 were introduced by
Cunningham [1976]. Their equivalence with lexicographic positivity was
exhibited by Orlin [1985]. The instance of cycling in Exercise 9.50 is
from Cunningham [1979]. Cunningham [1979] also exhibits the occur-
rence of stalling and discusses its prevention. Orlin [1985] has shown that
using Dantzig's entering criterion along with the lexicographic cycling
prevention rule, the maximum number of consecutive degenerate (primal
simplex) pivots for the minimum cost network flow problem is bounded

by 0(m n log m).
6. A general technique for converting linear programs to network flow

problems wherever possible via elementary row operations and variable scal-
ing (i.e., finding hidden networks) is presented in Bixby and Cunningham
[1980] (see Exercise 9.39). See also Klingman [1977]. Cunningham
[1983] shows an instance in which the elimination of unrestricted
variables can help in such a conversion process. In cases where a com-
plete conversion is not possible, methods for exploiting network substruc-
tures are discussed in Glover et al. [1978], Glover and Klingman [1981],
and Frendewey and Glover [1981]. Also see Patty [1987] for a survey.

7. Section 9.12 (also see Exercise 9.48) discusses the extension of the
models of this chapter to the flow with gains or the generalized network
models. Jewell [1962] first solved this problem by a primal-dual method.
Ellis Johnson [1965], Langley [1973], and others have since treated the
problem via the simplex method. For further reading on this subject, see
McBride [1981], Elam et al. [1979], Glover et al. [1974b], Kennington and
Helgason [1980], and Bertsekas and Tseng [1988a, b; 1994]. Goldfarb
and Lin [2002] discuss interior point methods for this class of problems.

TEN: THE TRANSPORTATION
AND ASSIGNMENT
PROBLEMS

Transportation and assignment problems are important network structured linear
programming problems that arise in several contexts and that have deservedly
received a great deal of attention in the literature. Although these problems are
special cases of network flow problems, we have seen in the previous chapter
that any finite-valued, capacitated or uncapacitated, minimum-cost network
flow problem can be transformed into an equivalent (uncapacitated) transporta-
tion problem (see Exercise 9.27). In fact, although the assignment problem is
itself a special case of the transportation problem, any transportation problem,
and hence any (capacitated) minimum-cost network flow problem, can be
equivalently transformed into an assignment problem, as shown in Section 10.7.
However, this is computationally inadvisable. Nonetheless, this feature is one
reason for the interest generated by this pair of problems.

Algorithmically, the uncapacitated or the capacitated transportation
problem may be solved using the techniques of the previous chapter. Some
specialization in implementation is possible, but for the most part, the basic
technique remains the same. For the sake of exposition, we will present some of
these specializations in the context of the transportation tableau, which is
customarily used to pedagogically present the network simplex algorithm for
transportation problems. Although we will rely on the previous chapter for justi-
fications and proofs, and we will exhibit the relationships of the method presented
here with the general techniques of the foregoing chapter, the discussion in the
present chapter is more or less self-contained.

On the other hand, because of its very special structure, a host of
specialized algorithms have been proposed for the assignment problem. The
well-known and instructive Hungarian algorithm, which led to the development
of a general primal-dual algorithm for linear programming problems, is pre-
sented here. We also comment on a specialization of the strongly feasible
network simplex algorithm for assignment problems, known as the alternating
basis algorithm, which yields a competitive solution procedure. Another algo-
rithm that runs up to seven times faster than the latter algorithm is based on a
successive shortest-path procedure. We present this method here, but postpone
the actual solution of the shortest-path subproblems to Chapter 12.

10.1 DEFINITION OF THE TRANSPORTATION PROBLEM

Consider m origin points, where origin i has a supply of s·,· units of a particular

item (commodity). In addition, suppose that there are n destination points, where

513

514 Chapter 10

destination j requires dj units of the commodity. We assume that sh d, > 0.

Associated with each link (i,j), from origin /' to destination y, there is a unit cost
Cjj for transportation. The problem is to determine a feasible "shipping pattern"

from origins to destinations that minimizes the total transportation cost. This
problem is known as the Hitchcock or the transportation problem.

Let Xj- be the number of units shipped along link (i, j) from origin i to

destination j . Furthermore, assume that the problem is balanced, that is, the total
supply equals the total demand. Hence,

m n

Σ*; = Σ d:.

If the total supply exceeds the total demand, then a dummy destination can be
created having demand dn+\ = Z ; 5 , - Σ , ά , - , and cin+l = 0 for i = 1,..., m.

Assuming that the total supply equals the total demand, the linear programming
model for the transportation problem becomes as follows.

Minimize
c l l * l l + ·■· +c\nx\n + c21*21 + - +c2r,x2n +

subject to

xn + ■■■ + xln

x2l+ ■■■ + x2n

' +cm\xm\ + '

xm\ + '
+ xm\

' xm\ '

·· +C

·,

mnxmn

4-r

+xmn
xmn

= s\
= s2

= sm
= dx

= dn
> 0.

xn + x2\

x\n + x2n
Xn,... X] n, ^21 ' · · ·» x2n>

The transportation problem is graphically illustrated in Figure 10.1.
The underlying graph, which is comprised of the origin and destination

nodes Oh i = 1,..., m and Dj,j = 1,..., n, respectively, and the connecting links or

arcs, is said to be bipartite. That is, the nodes are partitioned into two sets such
that all the arcs in the network are directed from a node in the first set to a node
in the second set. It is a complete bipartite graph in the sense that all such
possible arcs are present. Here, we assume that if any connection between an
origin-destination pair (/, j) is prohibited, then the corresponding cost
coefficient c(y is large enough so that the variable % is essentially an artificial

variable in the problem. The problem also may be represented by a
transportation tableau in which the rows l,...,m represent the origin nodes, the
columns j = 1,..., n represent the destination nodes, and the cell in row i and
column j represents the flow variable Xj-. The corresponding cost coefficient c,-.

is often displayed as shown in cell (i,j).

The Transportation and Assignment Problems 515

Figure 10.1. Illustration of the graph of a transportation problem.

Destinations
. 1 2 - 3

1

2

Origins ciJ Supplies

d\ d2 - dj - dn

Demands

We can cast the transportation problem in matrix form if we let

x = \x\l>x\2>--->x\n>x2i>--->x2n>--->xmn)

c = (.cU'cl2'—'c\n'c2i'—'c2n'—'cmn)

b = (shs2,...,sm,-dl,-d2,...,-dn)'

A = (a11,a]2,...,a1„,a2i,...,a2„,...,am„)

where

a(/ — ei ~ em+j

and e,· and em +. are unit vectors in Rm+", with ones in the z'th and (m +j)th

positions, respectively. The reader should note that we have multiplied the
demand constraints through by -1 in order to be consistent with Chapter 9. An
identical derivation without this operation is readily evident. With these
definitions the problem takes the following form:

Minimize ex
subject to Ax = b

x > 0.

516 Chapter 10

The A matrix, which is the node-arc incidence matrix defined in Chapter 9 and
which is of dimension (m + ri) x mn has the following special form:

A =

mn colum
1 0
0 1

0 0 ·
- I - I

ins
0 Ί

• 0

1
- I

m + n rows

where 1 is an «-row vector of all ones and I is an n x n identity matrix. It is the
A matrix that gives the transportation problem its special structure.

As an example of a transportation problem, consider a 2-origin, 3 -
destination transportation problem with data as indicated below.

1
Origin 2

1
c„=4
c21=2

Destination
2

c12=7
c22=4

3
c13=5
c 2 3 = 3

15 10 25

30
20

For this problem,

A =

1 1 1 0 0 0
0 0 0 1 1 1

- 1 0 0 - 1 0 0
0 - 1 0 0 - 1 0
0 0 - 1 0 0 - 1

Feasibility of the Transportation Problem

Under the assumption that total supply equals total demand, the transportation
problem always has a feasible solution. For example, it is easy to show that

Xjj
Sidj

i=\,...,m, j=l,...,n,

where d = X;-5; = ILjdj, is a feasible solution. Note that for each feasible vector

x, every component xt- is bounded as follows:

0 < Xj- < minimum{s;,d.·}.

We know that a bounded linear program having a feasible solution has an
optimal solution. Thus, we now need to describe how to find an optimal
solution.

10.2 PROPERTIES OF THE A MATRIX

We shall examine some of the properties of the A matrix that give the
transportation problem its special structure. As we shall see, these properties
permit a simple and efficient application of the simplex method for transporta-
tion problems.

The Transportation and Assignment Problems 517

Rank of the A Matrix

Clearly, rank (A) φ m + n, since the sum of the rows equals zero. In fact, as seen
in Chapter 9, the rank of A is m + n - 1. Hence, we are left with two choices for
a basis—we can either delete the last row, or any row, leaving m + n - 1 linearly
independent constraints for which a basis exists, or we can add an artificial
variable in one constraint. When applying the simplex method, we shall select
the latter approach and augment A with a new artificial or root arc variable xa

having a column em+„. Henceforth, we denote A = (A, em+n).

Total Unimodularity of the A Matrix

The single most important property that the transportation matrix possesses is

the total unimodularity property. In Chapter 9, we showed that the A matrix is
totally unimodular, that is, the determinant of every square submatrix formed

from it has value - 1 , 0, or +1. This means that every basis B of A , and hence

its inverse, has determinant ±1, and that the elements of B~ are all ±1 or 0
(why?). Using Cramer's Rule (see Section 2.2), we conclude that the updated
simplex column y;y of the variable χ„- in a canonical representation with respect

to the basis B, which is given as a solution to the linear system By,y = a;y, is

comprised of elements that are ±1 or 0. This means that any vector a,y can be

obtained by the simple addition and subtraction of basic vectors. It is instructive
to see how we can construct such a representation on the transportation tableau.

In particular, in the representation of the nonbasic vector a,y = e,· - eOT+ ,·

in terms of basic vectors, there must be a basic vector of the form Aik =
ei ~em+k w i m a coefficient of +1. Then there must exist a basic vector of the

form a t t = e(-cm+!c with a coefficient of-1 in the representation. This process

continues until finally there must exist a vector of the form a · = e„ - e m + ,■ with

a coefficient of+1 in the representation. A typical representation of &„■ is

aij = aik ~ aik + a & ~ aus + auj

= (e
i -

e
m + *) - (e ^ - e w + / t) + (e ^ - e m + i)

\eu ~ em+s) + (eH — em+j)

~~ e i — em+7 ·

A representation of the nonbasic vector a(y in terms of the basic vectors is illus-
trated by the transportation matrix (tableau) in Figure 10.2. Note that the cell (/,
j) together with the cells (i, k), (£, k), (i, s), (u, s), and (u,j) form a cycle in the
matrix. The cells (/, k), (£, k), (I, s), («, 5), and («,/) form a chain in the matrix
between cell (/, k) and cell («, j). Other basic cells that do not appear in

518 Chapter 10

j k

(+Γ

(zi

H

1

M

Figure 10.2. Illustration of the representation of a(y in terms of the

basic vectors.

the representation of a;y are not shown in Figure 10.2. Also, note that the signs

of the coefficients alternate throughout the chain.

Characterization of a Basis on a Transportation Tableau

In Chapter 9, we saw that any basis B of A corresponds to a rooted spanning
tree and vice versa. In the sense of the transportation tableau, the interpretation
of this fact is as follows. The basis is rooted, that is, it (necessarily) contains the
root arc xa. The remaining (m + n~ 1) basic variables correspond to some cells

in the transportation tableau. The basis must be spanning, that is, there must be
at least one basic cell in each row and in each column of the transportation
tableau, or else, a row of B would have all zero elements (why?), which would
disqualify it as a basis. Finally, the basis must be a tree, that is, the (m + n - 1)
basic cells should not contain a cycle, or else we can write one column of B in
terms of the others.

Figure 10.3 shows a basis on the transportation tableau as well as its
graph representation. The basic cells are identified with Bs on the transportation
tableau and the corresponding arcs are depicted on the graph. Note that there is a
unique chain connecting every pair of basic cells shown by the lines in Figure
10.3, that is, there is a unique way of getting from any row or column of the
tableau to another row or column while stepping along the basic cells. This
corresponds to a unique chain comprised of basic arcs connecting any pair of
nodes in the basis graph. For example, to get from origin 1 to destination 3, we
step along the basic cells or arcs (1, 2), (2, 2), and (2, 3). This connectedness
property is a consequence of the fact that the basis has (m + n- 1) basic arcs or
cells and has no cycles.

The basis is also lower triangular (after a suitable permutation of its rows
and columns). Because the basis graph is a tree having at least two nodes, it has
at least one end node that is not the root node, that is, not a node at which the
root arc is incident. Since such an end node is one at which only one arc is
incident, this corresponds to a row or column of the transportation tableau that
has only one basic cell. In Figure 10.3 the origin nodes 1 and 3 and the
destination node 1 are the ends of the basis tree. Let us now select the end

The Transportation and Assignment Problems 519

B —

B

1
1

B—

—B

1
1

B

Figure 10.3. Illustration of a basis on the transportation tableau and the
transportation graph.

0[, say, and permute the rows and columns of B so that its first row and column

correspond to Οχ and x12, respectively. Deleting Ογ and its incident arc in the

graph, and hence, deleting row 1 along with the basic cell (1, 2) in the
transportation tableau, the remaining graph or tableau represents another tree
having one less node. Repeating this process, we obtain B in lower triangular
form. The rows and columns identify the sequence in which the ends and their
corresponding incident arcs have been considered.

0\
D2

= A
o2
03
D3

xu

1

! - 1
1 0
1 0
ί 0

0

x22
0

-1
0
1
0
0

x21
0
0

-1
1
0
0

x23
0
0
0
1
0

-1

x33
0
0
0
0
1

-1

xa
0
0
0
0
0
1

Because of the triangularity of the basis, the systems of equations Bxg = b, wB

= cB, and By,y = a;y for computing the flows, the dual variable values, and the

representation of a nonbasic variable column in terms of the basic variable
columns, respectively, can be solved very simply and efficiently. The solution of
these systems of equations on the transportation tableau, along with the accom-
panying simplex operations are addressed next.

520 Chapter 10

10.3 REPRESENTATION OF A NONBASIC VECTOR IN TERMS OF
THE BASIC VECTORS

We have determined that each nonbasic cell together with a subset of the basic
cells forms a cycle and that the basic cells in this cycle provide the required
representation for the nonbasic cell. Then we saw that the set of basic cells
forms a spanning tree on the transportation matrix. We further know that there is
a unique chain between every pair of cells in the tree; otherwise, cycles would
exist. All of this suggests that to find the representation of a given nonbasic cell
(/,_/) we can use the chain in the basic tree between some basic cell in row i and
some basic cell in column /. This is essentially accurate except that not all basic
cells in this chain (in the transportation matrix) are in the representation.

To produce the proper representation for a given nonbasic cell (variable)
we simply locate the unique cycle, in the basis graph, containing the arc associ-
ated with the particular nonbasic cell. Then all of the basic cells of the
transportation matrix associated with the arcs of the cycle in the graph are
required for the representation of the nonbasic cell. The process of locating the
representation directly on the transportation matrix is essentially the same, except
that not all basic cells in the unique cycle are used. In this case, we use only
those cells of the chain for which there is another cell of the chain in the same
row and another cell of the chain in the same column, that is, the corners of the
cycle.

To illustrate, consider Figure 10.4. Suppose that we want to represent
a14 in terms of the basic vectors. In Figure 10.5 the unique cycle of the graph is

given by (1, 4), (3, 4), (3, 1), (1, 1). Deleting the nonbasic arc (1, 4), we are left
with the unique basic chain (3, 4), (3, 1), (1, 1). As we already know, these are
assigned alternating signs of+1 and-1, giving the following representation:

a 1 4 = a n - a 3 1 + a 3 4 ,

which we may verify by

ei - e4+4 = (β! - e4+1) - (e3 - e4+1) + (e3 - e4+4).

1 2 3 4 5

B —

B

1

— B - -

1

B

-<?

Figure 10.4. Illustration of finding the representation of a nonbasic cell.

The Transportation and Assignment Problems 521

Figure 10.5. The cycle in the graph associated with the basis of Figure 10.4.

If we had sought the representation from the transportation tableau, we
would first obtain the unique cycle (1, 4), (1, 2), (1, 1), (2, 1), (3, 1), (3, 3), (3,
4). Other than the nonbasic cell (1,4), the corners of the cycle are cells (1, 1),
(3,1), and (3,4).

The representation is given below:

+a,i B

"31 B

"14

B +a 34

As another example, we shall represent the vector a42 associated with the

nonbasic cell (4,2) in terms of the basic variables. Tracing the cycle C in the
transportation tableau, we get

C= {(4, 2), (1, 2), (1, 1), (2, 1), (3, 1), (3,3), (4, 3)}.

The required basic cells are the corners (1, 2), (1, 1), (3, 1), (3, 3), and (4, 3).
Hence, the representation is

a 42= a 12- a l l+ a 31- a 33+ a 43>

which can easily be verified as correct. Pictorially, the representation is (ignor-
ing other basic points) as follows. Although this appears to be two cycles, it is
actually one cycle through the basic cells and cell (4,2), since the cell (3,2),
where the lines cross, is not basic.

-a,, B

+a31 B

B +al:

B -a ,

O B +a43

-a4 2

522 Chapter 10

The Role of the Artificial Variable in the Transportation Problem

We note that the representation of a nonbasic vector involves only basic vectors
associated with the unique chain through the basic cells. In particular, the
artificial vector never becomes involved in any representation, and therefore, the
artificial variable will always remain zero. This fact will allow us essentially to
ignore the artificial variable in the application of the simplex method to
transportation problems.

10.4 THE SIMPLEX METHOD FOR TRANSPORTATION PROBLEMS

The general steps in the application of the simplex method to a linear program
are as follows:

1. Find a starting basic feasible solution.

2. Compute z - c for each nonbasic variable. Stop or select an enter-

ing column.
3. Determine an exiting column.
4. Obtain the new basic feasible solution and repeat Step 2.

We shall show how each of these steps can be carried out directly on the
transportation tableau.

Finding a Starting Basic Feasible Solution

In Section 10.2 we produced a feasible solution for the transportation problem.
However, the solution was not basic. While it would not be difficult to convert
that solution into a basic feasible solution, we shall consider another procedure
for obtaining a basic feasible solution. This method is called the northwest
corner rule. During its process, as a variable % is assigned a value, we reduce

the corresponding s, and dj by that value. Let the reduced values of s, and dj be

denoted by st and dj, respectively. In particular, to start with, s,· = s,- and dj = dj.

Assuming that the total supply equals the total demand, beginning in cell
(1, 1) we let

xj i = minimum {S], d\}

and replace ij by ij -x\\ and d\ by d\ -x\\. Then, if ij > 0, we move to cell
(1,2), let

X\2= minimum {ij, d2}

and replace ij by ή -X\2 and d2 by d2 — JC12- However, if ή = 0, then we
move to cell (2, 1), let

x21 = minimum {s2, d\}

The Transportation and Assignment Problems 523

and replace s2 by s2 -x2\ and d\ by d] — JC2I- Note that the case η = rfj produces

degeneracy, because after computing xu, the revised values fj and <ή are both

zeros. Hence, the basic variable x2i = 0. (Observe that in this case we could

have alternatively moved to the cell (1,2) and made the variable x\2 basic at

value zero.) In the general case, after assigning some variable xkl the value

xki = minimum {sk,df},

we replace sk by sk -xk(and df by df -xk(. If {k, I) = (m, ri), we terminate.

Otherwise, if sk > 0, we move to the cell (k, i + 1), which must exist (why?),

and compute xk<g+n = minimum {sk,de+i}. On the other hand, if sk = 0, we

move to the cell (k + 1, i), which must exist (why?), and compute xk+\j =

minimum {sk+\,d^}. Note that if sk = dg in the computation of xke, then in the

latter case we will have the revised d(= 0 and we would obtain xk+ì e as a

degenerate basic variable. The process of assigning a variable the minimum of
the remaining supply or demand, adjusting both, and moving to the right, or
down, one cell at a time continues until all supplies and demands are allocated.
Figure 10.6 illustrates how the process might work.

The northwest corner rule produces exactly m + n - 1 basic, nonnegative
jc;. variables. Each time an JC,·,· is made basic and assigned some nonnegative

value, either a supply or a demand constraint is satisfied. When m + n - 1
variables have been assigned values, then m + n - 1 of the constraints are
satisfied. Noting that one of the constraints of the transportation problem is
redundant, then all the constraints are met.

The graphical structure of the basic cells is obviously connected and
spanning. To demonstrate that the graph is a spanning tree and therefore a basis,
it remains only to show that it contains no cycles. (Actually, this follows from
the additional fact that the graph has m + n - 1 basic arcs.) Since, at each step,
either the row or column index of the basic variable is increased by 1, it is not

B-) Ί
1

B—·.

~-B — «—5
1 1
L —B

άχ ί/2 ^3 "̂ 4 <^5

Figure 10.6. Graphical illustration of how the northwest corner rule might
allocate values to the variables.

524 Chapter 10

1

2

3

4

1

15—

2

Ί *
5 —

3

-»·31—

4

->9

ι ♦
50

1 25

χ χ o

Χ χ χ ο

X 0

X 0

dj X X
o χ

0

X
0 X

X
0

Figure 10.7. Example of the northwest corner rule.

possible to make a new variable in an earlier row or column basic—the only
way to produce cycles. Therefore, the northwest corner method produces a basic
feasible solution. An alternative procedure, called Vogel's approximation method,
is described in Exercise 10.25.

To illustrate, consider the transportation tableau of Figure 10.7 where the

supplies and demands are indicated. We first let x n = minimum {s\,d\} = 15,

decrease S\ and d\ by x^ = 15, and move to cell (1, 2), since ή > 0. Next, let

xn = minimum {η, d2} = minimum {15, 20} = 15, decrease η and d2, and
move to cell (2, 2), since ·?} = 0. This process is continued until all supplies and

demands are satisfied. Notice that we do have the required number of basic
variables, namely 7 = m + n - 1. The blank cells are nonbasic and the associated
variables have zero values.

Computing zy - c^ for Each Nonbasic Cell

Given a basic feasible solution, our next task is to determine whether that
solution is optimal or to select an entering variable. Now,

zij cij ■cBy ij cij-

We have shown how to obtain the components of y,y, that is, the coefficients of

the representation of a,·.· in terms of the basic vectors. Since y,y consists of 1, - 1 ,

and 0 elements, then cBy,y is calculated by simply adding and subtracting the

costs of some basic variables. To illustrate, consider Figure 10.2. The zy -Cy

value for the nonbasic variable Xy is given by

Zjj — Cy — (Cuj — Cus + C(s — Cgfc + Cjfc) — Cjj.

Using the data of the example in Section 10.1 and the basis indicated
below, we get the following result:

The Transportation and Assignment Problems 525

4
n

2

7

4

5

3 1
B

1

2

z 2 1 - c 2 1 = 4 - 5 + 3 - 2 = 0

*22~c22 = 7 - 5 + 3 - 4 = 1

and x22 is a candidate to enter the basis.

The optimality criterion for the transportation problem is given by zy - Cy

< 0 for each nonbasic variable Xy. A given cell (k, (!) is a candidate to enter the

basis if zki - Cfci > 0.
The foregoing procedure for calculating zy - cy utilizes the form

Zij CU
C D B a.-f-C;;

The vector y(y is determined by constructing the unique cycle through cell (i,j)

and some of the basic cells, as discussed earlier. Hence, this method is some-
times called the cycle method. Note, however, that calculating Zy - Cy can be

alternatively performed as follows, which is the preferable method.

2 · - — C··
V V

CBB a y - c / , = w a
y ' - c i / · ·

Since &y has a 1 in the rth and a -1 in the (m +/)th position, then wa,y = w, ,j.

Hence, zy - Cy - ui - v ■ - c, •y. This method of calculating zy „, ■

Let wh /,..., m, be denoted by w; and wm+j,j = 1,..., n, by v.-. Then the dual

vector w is given by

w = («i,...,wm,v1,...,v„).

VJ
cu is thus called

the ί/κα/ variable method or the (w;, vA-method.

Because the dual vector is given by w = cgB~ , then w is the solution to

the system

wB = cB,

where

" = (a w " ' a i f >em+n)

CB = (cpq>-">cst>ca)

526 Chapter 10

and Λ ,&st are m + n - 1 basic columns, c ,cst are their corresponding
w

cost coefficients, em+n is the artificial column, and ca is its cost coefficient.
Because the value of the artificial variable will never vary from zero, as
previously shown, the value of ca does not matter. For convenience, we shall

select ca = 0. Because B is triangular, we have an easy system to solve. The

system

(itl,...,um,vl,...,vn)(apq,...,ast,em+n) = (cpq,...,cst,0)

is equivalent to (since a,y = e, -em+J):

up ~ vg ~ cpq

v„=0.

The foregoing system has m + n variables and m + n equations. Utilizing the
concept of triangularity, we back-substitute the value vn = 0 into each equation

where v„ appears and solve for a M-variable. Using this newly found in-

variable, we back-substitute to find some v^-variable value(s), and so on.
As an illustration, consider the example problem of Section 10.1 with the

basis as indicated. The last dual variable v3 receives the value zero from the
artificial column.

Using the artificial column

Using the basic cell (2, 3)

Using the basic cell (1,3)

Using the basic cell (1,2)

Using the basic cell (1,1)

"2

« l -
«i -

" 1 -

= > v 3 = 0

- v3 = 3 => «2 = 3

- v3 = 5 => «i = 5

- v 2 = 7 = > v 2 = - 2

- vj = 4 => vj = 1.

1

Al
B-

1]

2

il
B-

A}

3

_5J

1̂
B

v, v2 v3

Only the basic cells are used to solve for the dual variables. Given the w-vector ,
we may compute zy - cy for each nonbasic variable in order to determine an

entering column. In particular:

z21_c21 = u2 ~vl ~c2\ = 3 - 1 - 2 = 0
z22~c22 = « 2 - v 2 - c 2 2 =3 + 2 - 4 = 1

The Transportation and Assignment Problems 527

and, again, we see that x22 is a candidate to enter the basis.

Determination of the Exiting Column

Once a column (cell), say, (k, I), has been selected to enter the basis, it is an
easy matter to determine the exiting column. Recall that the coefficients in the
basic representation for that column are the negatives of the rates of change of
the corresponding basic variables with a unit increase in the nonbasic (entering)
variable. Thus, if the entry in column y ^ corresponding to a basic variable is
- 1 , then the basic variable will increase at the same rate as the nonbasic variable
xki increases. If this entry is +1, then the basic variable will decrease at the

same rate as the nonbasic variable xk(increases.

Let L· be the value of xt- in the current solution and let Δ be the amount

by which the nonbasic variable xy increases. Because each component of yke is

either 1,-1, or 0, then the usual minimum ratio test gives
Δ = minimum {χψ basic cell (i,j) has a +1 in the representation

of the nonbasic cell (k, £)}.

Given Δ, we proceed to adjust the values of the variables around the cycle by
this amount, according to the sign of the coefficient in the representation. For
the example of Section 10.1 with the basis indicated below, as x22 enters the
basis, we get the following result:

x n =15

B-

= 10 x13=5

B
30

20 Ó
*23=20

B

15 10 25

Δ = minimum {χ\2,χ2ΐ) = minimum {10,20} = 10.

The new solution is given by

x\2 = x\2 - Δ = 10-10 = 0 (leaves the basis)
X13
x23

X22

xu

χ 1 2 - Δ = 10-10 = 0
χ 1 3 +Δ = 5 + 10 = 15
χ 2 3 - Δ = 20-10 = 10
Δ =10
15 (unchanged).

The new basis is identified in the following tableau:

528 Chapter 10

xu=15
B-

XJ7 =10 Λ,22

B-

x13=15

x23=10
- 5

30

20

15 10 25

10.5 ILLUSTRATIVE EXAMPLES AND A NOTE ON DEGENERACY

Example 10.1

Consider the transportation problem indicated by the data of Figure 10.8. The
number in the upper left-hand corner of each cell is the cost associated with the
particular variable. The starting basic feasible solution produced by the
northwest corner method is illustrated in Figure 10.9.

Beginning with (1, 3), we price out each of the nonbasic cells by the
cycle method:

Z13~C13 =(12-18 + 12)-13 = -7
z i4 -c i 4 = (12-18 + 16)-8 = 2
z15-c15 =(12-18 + 16-14 + 10)-14 = -8

Z45-C45 =(10-18 + 13)-12 = -7 .

1

2

3

4

1

ioj
15]

17|

19

2
12

18

16

18

3

rJ

12

13 1

20
Γ""

4

1\
\e\
14

2jJ

5

ill
J9j
10

n\

6
19

20

18l

13 |

dj 10

22

39

14

11 13 20 24 15

Figure 10.8. Example data for a transportation problem.

1

2

3

4

1

10

2

8

3

3

13

4

6

14

5

24

6

1

14

Figure 10.9. The northwest corner basic solution.

The Transportation and Assignment Problems 529

The current values of the basic variables and the tree are shown in Figure
10.10; the Zy—Cj.- values for the nonbasic variables are the circled values.

Because z„· - c„ = 0 for the basic variables, these are not indicated. Note that

the z„ - Cjj values could have been alternatively calculated more efficiently as

follows. First solve for the dual variables (their values are summarized in Figure
10.10).

artificial column

basic cell (4, 6)

basic cell (3, 6)

basic cell (3, 5)

basic cell (3, 4)

basic cell (2, 4)

basic cell (2, 3)

basic cell (2, 2)

basic cell (1,2)

basic cell (1, 1)

«4

"3"

"3"

"3"

u2

"2

«2

«,-

" l -

~ v 6

~v6

'v5

- V 4

- V 4

~ v 3

-v2

-v2 =

- V j =

= 13

= 18

= 10

= 14

= 16

= 12

= 18

= 12

= 10

^v6

= > W4

= > W3

^v5

=>v4

= > M 2

=> v3

=> v2

=>«,=

=>V! =

= 0

= 13

= 18

= 8

= 4

= 20

= 8

= 2

= 14

= 4 .

Then, Zjj -c„- = «,· - v · -c„·. For example, zj4 - q 4 = »! - v 4 - c 1 4 = 1 4 - 4 - 8

= 2. Figure 10.10 indicates that the maximal z„ -c„ value is zi4-cy4 = 2.

Therefore, x14 enters the basis. Referring to Figure 10.10, we see that

a 1 4 = a 1 2 - a 2 2 + a 2 4

and the corresponding cycle is as follows:

(1,2) 0,4)

(2, 2)- -(2,4)

From this we find

10
B-

CO

Θ
Θ

8

3

0
Gì)

PT)

13 D

Θ
Θ

(j)

6 „

14
B

Θ

®
i?)

24

ί?)

Pi')

®
1

γ 4
w = 4 = 2 v, v6=0

Figure 10.10. The (z,y -c^-values for the nonbasic cells.

«,=14

«2=20

«3=18

«4 =13

530 Chapter 10

*ΐ4 = minimum {Χ\2,Χ2Λ) = minimum {8,6} = 6
xn = 8 - 6 = 2
x22 = 3 + 6 = 9
x24 = 6 - 6 = 0 (leaves the basis).

The new basis and the values of the basic variables are summarized in
Figure 10.11. Using the dual variable method, Zy-Cy is calculated for each

nonbasic variable.
As indicated by the circled entries in Figure 10.11, x32 can be selected as

the entering variable. The cycle associated with cell (3, 2) is as follows:

0,2) -

(3, 2)

-0 ,4)

■ (3, 4)

From this we obtain
x32 = minimum {x\2>x34Ì = minimum {2,14} = 2
X]2 = 2 - 2 = 0 (leaves the basis)
x14 = 6 + 2 = 8
x34 = 1 4 - 2 = 12.

The new basic feasible solution and the new z,-,· - c„ values are given in
U v

Figure 10.12. Examining the z-y -cy entries, we find that χ2ι ·δ enterable. The

associated cycle is as follows:
(1,1) (1,4)

(2 , 1) - - (2 , 2)

(3,2) (3,4)

From this we obtain

1

2

3

4

1

10

0
(~*)

Θ

2 3

2

9
*

Θ
@

R
13 rr

Θ
Θ

4

6 „
(r*)

14
B

Gi\

5

0
Θ
24

Cn)

6

Θ
Θ

1

Y 4

«,=12

«2=18

«3=18

«4 =13

V| = 2 v2 = 0 v3 = 6 v4 = 4 v5 = 8 v6 = 0

Figure 10.11. Second basic feasible solution.

The Transportation and Assignment Problems 531

10

Θ
©
®

©
9 p_

2

@

©
1 3 D

©
i-is)

8 „
®

12

©

©
@

24

©

©
©

1

γ 4

t/j =12

w2=20

M 3 = 1 8

w4 = 1 3

Vj = 2 v2 = 2 v3 = 8 v4 = 4 v5 ^

Figure 10.12. Third basic feasible solution.

v6=0

1

9 i

©
Θ

! -2 ^
V ©

©
11

©

©
1 3 D

©
©

17
j9

©
3

©

(ίθ;

Θ
24

©

Θ
©

1

Y 4

Mj = 1 2

a 9 =17

M3= li

«4 =13

V] = 2 v2 = 2 v3 = 5 v4 = 4 v5 :

Figure 10.13. Fourth basic feasible solution.

v 6 =0

x2i = minimum {ή] , x3 4 , x2 2} = minimum {10,12,9} = 9
jcn = 1 0 - 9 = 1
x14 = 8 + 9 = 17
x34 = 1 2 - 9 = 3
x32 = 2 + 9 = 11
x22 = 9 - 9 = 0 (leaves the basis).

Figure 10.13 presents the new basic feasible solution and the new
z„ - cu. Because z„ - c,·,· < 0 for each nonbasic variable, the indicated solution is

y y y y

optimal.

Example 10.2

(Degeneracy)

Consider the example of Figure 10.14. Applying the northwest corner rule to
this example we obtain the following sequence of calculations:

*n = minimum {s^,^} = minimum {20,10} = 10

η = 2 0 - 1 0 = 10, c/j = 1 0 - 1 0 = 0

532 Chapter 10

x12 = minimum {s\,d2} = minimum {10,10} = 10

sx =10-10 = 0, d2 =10-10 = 0.

At this point we may move to either (2, 2), or to (1, 3). Suppose that we move to
(2, 2).

x22 = minimum {s2,d2} = minimum {30,0} = 0

s2 = 3 0 - 0 = 30, d2 = 0 - 0 = 0

JC23 = minimum {s2,d^} = minimum {30,20} = 20

s2 = 3 0 - 2 0 = 10, i?3 = 2 0 - 2 0 = 0

x24 = minimum {s2,d4} = mmimum {10,50} = 10

s2 =10-10 = 0, d4 =50-10 = 40

X34 = minimum {53,d4} = minimum {40,40} = 40

s3 = 4 0 - 4 0 = 0, ^ 4 = 4 0 - 4 0 = 0.

2 i : 3

Γ
_14j

12

12

nl

JT

1Λ

l]

9]

1

3 |

4 s,

20

30

40

dj 10 10 20 50

Figure 10.14. An example of degeneracy.

1

2

3

1

10
B-

Θ

CO

2

10

0

Θ

3

@

20

Pl\

4

©
10

40 1
B

tt] = — 0

u2 =1

«3=3

Vj=-10 v2 = —11 v 3 =^l v4=0

Figure 10.15. Initial (degenerate) basic feasible solution.

The Transportation and Assignment Problems 533

All other xi}—variables are nonbasic and are assigned zero values. The initial

basic feasible solution is given in Figure 10.15. As required, there are m + n - 1
= 3 + 4 - 1 = 6 basic variables forming a spanning tree. Note, however, that the
basic feasible solution is degenerate since the basic variable x22

 = 0· F°r each
nonbasic variable we calculate z/; - ci;- by the dual variable method. The values

are displayed in circles in Figure 10.15 for the nonbasic variables. Because
z3l _ c3 l = 1 > m e n x3i enters the basis. The corresponding cycle is as follows:

(1,1)—(1,2)

(2, 2)- •(2,4)

(3,1)- (3,4)

x31 = minimum {jcj j ,x 2 2 > ̂ 34} = minimum {10,0,40} = 0

xu = 1 0 - 0 = 10

JC21 =10 + 0 = 10

x22 = 0 - 0 = 0 (leaves the basis)

x24 =10 + 0 = 10

x34 = 4 0 - 0 = 40.

Note that x22 leaves the basis and x31 enters the basis at a zero level. This
results in the same extreme point solution, but a different basis. The new basis
and the new (z,y -c«)-values for the nonbasic variables are shown in Figure

10.16. Since z,-;-c,·,· < 0 for each nonbasic variable, the current solution is
y y

optimal.
Notice that in this example we have

20 = ^ =dx+d2 =10 + 10

10 10

^>

20 10

40

u2 = 1

Figure 10.16. Optimal basic feasible solution.

534 Chapter 10

or, in other words, the sum of a subset of the supplies equals that for a subset of
the demands. We shall show that this is always true when degeneracy occurs in
the transportation problem.

A Necessary Condition for Degeneracy in the Transportation Problem

Suppose that at some iteration of the transportation algorithm we obtain a
degenerate basic feasible solution, such as that shown in Figure 10.17. Deleting
one of the degenerate cells disconnects the tree into several components as
shown in Figure 10.18. Summing the supply constraints over the variables in
one of the components, say, Cj, we obtain

C, c,

Summing the demand constraints over the variables in the same component, we
get

Σχ» =Zdj.
c, c.

Together, these equations imply that

Σ«; =ΣίΛ·-
c, c,

Thus, a necessary condition for the presence of degeneracy is that a proper
subset of the rows and columns have their total supply equal to their total
demand. Therefore, there is no degeneracy (and cycling) if no such proper
subset exists (see Exercise 10.21).

Figure 10.17. A degenerate basis.

3

1

!

\l

l i

3

Ì- —B—

1
1

1
1

-B i

c,

Figure 10.18. Components created by deleting a zero basic cell.

The Transportation and Assignment Problems 535

10.6 THE SIMPLEX TABLEAU ASSOCIATED WITH A
TRANSPORTATION TABLEAU

We have all of the information available to construct the simplex tableau
associated with a transportation tableau, if we so desire. In Section 10.3, a
method was described for calculating the updated column vector y;y. In Section

10.4, we saw how to calculate zy -Cy for a nonbasic variable Xy. This informa-
tion together with the basic solution provide all the necessary entries in the
simplex tableau.

As an example, consider the transportation problem given by the
following data:

1 2 3 s,

■10

6 |

nj 12a

9] L
dj 15 15 10

Figure 10.19 presents the initial transportation tableau and the associated
simplex tableau (including the artificial variable). Examining either tableau, we
see that x2i enters the basis and x22 leaves. We ask the reader to verify the
entries in the simplex tableau by generating the (z,-. -c,·.·)- and the y,-.—values
from the transportation tableau.

10.7 THE ASSIGNMENT PROBLEM: (KUHN'S) HUNGARIAN
ALGORITHM

An important special case of the transportation problem is the case where m = n,
each Sj = 1, and each d.- = 1. This special case is called the assignment

problem. As an example, suppose that we have m individuals and m jobs. If

1 2 3

15
B

Θ

5

10
B

(AOJ

10

V]=0 v 2 = - l v 3 = 0

z
*11
x\2
X22
χΊλ

*a

z
1
0
0
0
0
0

*11
0
1
0
0
0
0

*12
0
0
1
0
0
0

*13
-10

0
1

-1
1
0

*21
2
1

-1
1
0
0

x22
0
0
0
1
0
0

*23
0
0
0
0
1
0

*a
0
0
0
0
0
1

RHS
375

15
5

10
10
0

Figure 10.19. An initial transportation tableau and the associated
simplex tableau.

536 Chapter 10

individual / is assigned to job/ , the cost incurred will be c„ . We wish to find

the minimal cost assignment or a one-to-one matching of individuals to jobs. In
each basic feasible solution x„- = 1 means that individual / is assigned to job/ ,

and Xy = 0 indicates that individual / is not assigned to job/.

Because the assignment problem is a special case of the transportation
problem, we could apply the transportation algorithm developed in this chapter.
Note, however, as will be discussed in more detail, that the constraints of the
assignment problem admit exactly m positive variables at each basic feasible
solution. The number of basic variables is 2m - 1. Thus, if the transportation
algorithm is used, we would have m - 1 basic variables at zero level, leading to
a highly degenerate problem. A partial resolution of this difficulty is addressed
in Section 10.8. In this section, we shall exploit the special structure of the
assignment problem to derive a competitive primal-dual type of algorithm.

A mathematical model for the assignment problem is given as follows:

m m
Minimize Σ Σ <?„·*„·

1=17=1
m

subject to X x(;- = 1, i = l,...,m
7=1

m
- Σ * ί / = - 1 , j = \,...,m

!=1
x„· = 0 ori, / , / = \,...,m.

In matrix form, the assignment problem can be stated as follows:

Minimize ex
subject to Ax = b

Xy = 0 ori, / , / = \,...,m,

where x = (xjj,...,xlw,...,xmi,...,xmm), A is a 2mxm matrix whose (/', /)th

column is a„· = e;- - e m + , for i = 1,..., m and/ = 1,..., m, and b = (1,-1)', where 1

is a row-vector of m ones. Thus, we see that A is the same constraint matrix as
that for the transportation problem. The underlying graph is bipartite, and so the
assignment problem is sometimes referred to as a "minimum weighted matching
problem on a bipartite graph" with weights c„. Applying the total

unimodularity property of A, we know that an optimal basic feasible solution to
the assignment problem with the constraint x(. = 0 or 1 replaced by x„ > 0 will

be all integer. Furthermore, as a result of the constraints, no x„- value can exceed

1. Hence, all xy· values will be either 0 or 1 in an optimal solution to the linear

program. This permits us to replace the constraint x„ = 0 or 1 by the constraint

X// > 0. Thus, we obtain the following:

The Transportation and Assignment Problems 537

Minimize ex
subject to Ax = b

x > 0.

It is interesting to note that any transportation problem can be
equivalently transformed into (its special case) an assignment problem. This is
readily, although inefficiently, accomplished by making s,· copies of origin Oh

each with a unit supply for / = \,...,m, and similarly, by making d ■ copies of

destination Dj, each with a unit demand for/ = \,...,n. The problem hence becomes

one of matching the d = Σ,-s,· = Σ dj units of supply and demand, where the

cost of matching a unit of supply from a copy of 0, to a unit of demand at a

copy of Dj is Cj-.

Observe that the assignment polytope has ml extreme points. Viewing the
assignment constraints as matching m "origins" Oh i = \,...,m, to m destinations

Dj,j = \,...,m, there are evidently m\ possible matchings, each corresponding to

some permutation of the destinations being matched with the origins 0\,...,Om.

For each matching, choosing the corresponding x„- variables that equal 1 as

basic variables, we obtain m basic variables that are unity. Figure 10.20a depicts
the situation for some matching with m = 4. To complete the basis, we need to
select (m - 1) (degenerate) variables or arcs so that the resulting graph is
connected and hence, a tree. (Note that a connected assignment subgraph with
(2m - 1) arcs cannot contain a cycle.) Figure 10.20b shows one choice of
degenerate basic arcs. Because every feasible integer solution is a matching, and
every matching is an extreme point of the assignment polytope, the assignment
polytope has ml vertices. Moreover, every basic feasible solution has (m - 1)
degenerate arcs, as noted earlier. In fact, it can be shown that every vertex has

(2m~)(mm~) bases representing it. Furthermore, given any pair of extreme

points x Φ y , either x and y are adjacent vertices or there exists a third extreme

point z such that x and z are adjacent and so are y and z (see Exercises 10.41
and 10.42).

The Dual Problem

The dual of the assignment problem, with the nonnegativity restrictions replac-
ing the 0 - 1 constraints, can be written as follows:

© L^@ @\o—*®
(pi) L_HS) @l > ? ®

(a) (b)

Figure 10.20. Matchings and basic feasible solutions.

538 Chapter 10

m m
Maximize Σ ui - Σ v.-

i=\ j=\
subject to Uj-Vj <Cjj, i,j = \,...,m

w(,v unrestricted, i,j = \,...,m.

The complementary slackness conditions are given by

{cij-ui+vj)xij=<d, i,j=\,...,m.

Thus, if we can find a set of feasible values for the x, u, v, variables that satisfy
complementary slackness, the resulting primal-dual solution will be optimal.

A feasible dual solution is given by

ùj = minimum {ci;}, i = \,...,m
\<j<m

V;· = -minimum {c, - « , } , j = \,...,m.
\<i<m

From this we see that w,· is the minimum c;, in row i and v, is the negative of the

minimum c„ - z5; in column/

The Reduced Matrix

Consider a reduced cost coefficient matrix where c„- is replaced by c„- = c„- -

Uj + v ■. In other words, the reduced cost matrix is obtained by first subtracting

from each row the minimum in that row, and then on the resulting matrix
subtracting from each column the minimum in that column. The reduced matrix
will have a zero in every row and column, and all of its entries will be
nonnegative. The reduced matrix is actually the matrix of dual slack variables
(why?).

Suppose that we can find a feasible set of x„-variables such that each

Xj- with value 1 is associated with a zero cell of the reduced matrix. Then, by

complementary slackness, we can conclude that we have an optimal solution.
What, then, constitutes a set of feasible x„ -values? Reviewing the constraints

of the assignment problem, it is clear that we must have exactly one x„ in each

row equal to 1 and exactly one x„- in each column equal to 1. Thus, in a feasible

solution, there will be exactly m of the xy -variables equal to 1, the rest being

zero.
Let us illustrate the foregoing ideas with an example. Consider the

following cost coefficient matrix for an assignment problem:

The Transportation and Assignment Problems 539

3

0

4

2

2

1

1

5

5

2

-1

3

4

3

3

4

Row minimum

2

0

-1

2

Subtracting the row minimum from each element in the row, we get the follow-
ing tableau:

1

1 ! 1

2

3j
4L

0

5

0

2

0

1

2

3

3

3

2

0

1

4

2

3

4

2

Column minimum

Subtracting the column minimum in the new matrix from each element in the
column, we get the reduced matrix as follows:

(=^)

1

2

3

4

1

1

0
5

0

2

0
1

2

3

3

3

2

0
1

4

0

1

2

0
Now, if we let x12 = *2i = x33 = x44 = 1 a ° d if we let all other x^—values be

zero, then we have a feasible solution with positive x,-, -values associated with

the indicated zero cells of the reduced matrix, thus producing an optimal
solution.

It is not always so easy to find an optimal solution. Take, for example,
the following cost matrix:

2 5 7

4 2 1

2 6 5

i=cy)

The reduced matrix is given by:

0

3

0

2

0

3

5

0

3

(=*?)

540 Chapter 10

Here, it is not possible to set three of the x„- -variables equal to 1 such that all

three positive xy-values occur in zero cells and no two positive x^-values

occur in the same row or column.

A Partial Solution

Notice that for the foregoing reduced matrix, the maximum number of xy

variables associated with the zero cells, which can be set equal to 1 without any
two positive x„-values occurring in the same row or column, is two. For

example, we might let xj j = x22 = 1, or xj | = X23 = 1, or X31 = x22 = 1, or x31 =

X23 = 1. In this case, the maximum number of cells having zero c„· -values such

that no two cells occupy the same row or column is two. The corresponding
cells are called independent. Notice also that if we were to draw a set of lines
through the rows and columns to cover the zeros so that there is at least one line
through each zero, the minimum number of such lines for this matrix is two: A
line through column 1 and a line through row 2.

1 2 3

1[_ Φ

3

-Θ-

We see in this example that the maximum number of independent zero cells and
the minimum number of lines required to cover the zeros are equal. This result,
which is true in general, is given by the following theorem. We shall not prove
this theorem here. (In Chapter 12, Exercise 12.17 asks the reader to show that
this theorem is a special case of the maximal flow-minimal cut theorem for
networks. At that time we also suggest a method for systematically finding the
required number of lines. Also, see Exercise 10.38 and Exercise 10.39.)

Theorem 10.1

The maximum number of independent zero cells in a reduced assignment matrix
is equal to the minimum number of lines to cover all the zeros in the matrix.

Modifying the Reduced Matrix

Suppose that we have not yet obtained an optimal solution, that is, we cannot
find a feasible set of positive x„ -values associated with the zero cells of the

reduced matrix. Consider the covered matrix obtained by covering the zeros in
the reduced matrix by using the fewest number of lines. Let k be the number of
lines required. Also, let Sr ={/j,/2,...} be the set of uncovered rows and Sc =

{j\, 72,...} be the set of uncovered columns. Define Sr =M-Sr and Sc =

M -Sc, where M= {1, 2,..., m). Finally, \tip be the number of rows in Sr and

q be the number of columns in Sc. Then, k = {m -p) + {m- q).

The Transportation and Assignment Problems 541

Let c0 be the minimum uncovered element, that is,

c0 = minimum {c.·,·} > 0.
ìeSr

 J

JcSc

It can be easily demonstrated that a new dual feasible solution is given by

uj = ùj + CQ , i eSr

uj = ùj, i e.Sr

V/=vy·, jeSc

Vj=Vj+c0, jeSc.

In the reduced matrix having elements Cy -ut + v,, this is equivalent to sub-

tracting c0 from each uncovered row and adding c0 to each covered column.

Another way to view this is that c0 is subtracted from each uncovered element

and added to each twice-covered element. The new reduced cost coefficient
matrix has nonnegative elements and a zero in every row and column (why?).

For the previous 3 x 3 matrix, we have c0 = minimum {2, 5, 3, 3} = 2

and the new reduced cost matrix is given by:

1 2 3

0

5

H

L0]

0

1

3

m
1

Notice that now a feasible set of x,.--values exists having positive χί;·-values

associated with the zero cells (zero dual slack variables).
Note that primal feasibility is attained, dual feasibility is maintained

(since the entries in the reduced cost matrix are nonnegative), and finally,
complementary slackness holds true (since xy = 1 only if the corresponding

dual slack is zero). Thus, the Karush-Kuhn-Tucker conditions are satisfied and an

optimal solution given by xj*2 = XJT, = x^\ =1 (with all other x* -values equal to

0) is at hand.

Summary of the Hungarian Algorithm

The algorithm developed in this section may be summarized as follows.

INITIALIZATION STEP

For each row of the cost matrix, subtract the minimum element in the row from
each element in the row. For each column of the resulting matrix, subtract the
minimum element in the column from each element in the column. The result is
a reduced matrix.

542 Chapter 10

MAIN STEP

2.

Draw the minimum number of lines through the rows and columns to
cover all zeros in the reduced matrix. If the minimum number of
lines is m, then an optimal solution is available. Otherwise, go to
Step 2.
Select the minimum uncovered element. Subtract this element from
each uncovered element and add it to each twice-covered element.
Return to Step 1.

An Example

Consider the following cost matrix:

1

2

3

4

5

The reduced matrix is as follows:

2

-1

-2

1

7

3

1

4

3

1

5

3

3

4

2

1

6

5

1

1

4

2

0

4

2

Here, the minimum number of lines to cover all zeros is three. The minimum
uncovered element is 1. Subtracting this from each uncovered element, and
adding it to each twice-covered element, yields the following reduced matrix:

Again, we do not have an optimal solution at hand. The minimum uncovered
element is 1. Subtracting 1 from each uncovered element, and adding it to each
twice-covered element, leads to the following reduced matrix:

The Transportation and Assignment Problems 543

1 2 3 4 5

1

0
0

0

8

Έ
0

4

0

0

1

1

2

0

\o\

0

7

7

0
2

1

1

0
1

1

In this matrix, an optimal solution is given by *i2 = *2l = *35 = *44 = *53 =1

and all other x*-values equal to zero.

In Exercise 10.40 we ask the reader to show that the Hungarian method
for assignment problems is precisely the primal-dual algorithm applied to the
assignment problem.

Finite Convergence of the Hungarian Algorithm

Whenever we cannot find a feasible set of x„-values having ones associated

with the zero cells of the reduced matrix, we repeat the process of drawing lines
and adjusting the reduced matrix. We show below that we can only do this a
finite number of times before an optimal solution is found. Clearly, an optimal
solution can be found if all reduced costs become zero. To show finiteness we
note that the reduced costs are always nonnegative and that

Σ (èy-Cy) + Σ_ (Cy-Cy)
(Sr,Sc) (Sr,Sc)

+ _Σ (Cij-Cij)+ _Σ_ (Cy-Cy)
(Sr,Sc) (Sr,Sc)
Σ c0+ Σ 0+ Σ 0+ _Σ_ (-c0)

(Sr,Sc) (Sr,Sc) (Sr,Sc) (Sr,Sc)

pqc0-(m-p)(m-q)c0

m(p + q-m)c0.

Butp + q is the number of uncovered rows and columns, so that

p + q-m = (2m -k)-m = m-k,
where k is the total number of covered rows and columns. By Theorem 10.1, £ is
also the maximum number of independent zero cells. In particular, k < m because
otherwise, we would have had an optimal solution at the last iteration.
Therefore,

ZZ(Cy -Cy) = m(m- k)c0

i J

is a positive integer provided that the original cost matrix consists of integers.
Because the entries in the reduced cost matrix are always nonnegative by
construction, and because the sum of the entries is reduced by a positive integer

ΣΣ%-ΣΣ^·
» j ' j

544 Chapter 10

at each iteration, the algorithm stops in a finite number of steps. At termination
we have an optimal solution since the Karush-Kuhn-Tucker conditions hold
true.

As a final insight with respect to the Hungarian method, consider the
following variation in the method. Suppose that at each step of covering the
zeros of the reduced matrix, in lieu of using the fewest number of lines k, we

cover the zeros using some k < m lines, if possible (else, an optimal solution is
at hand). As before, then, let c0 be the minimum resultant uncovered element

and suppose that we perform the same type of reduction operation. From the
foregoing discussion or the corresponding dual solution adjustment, we have
that the difference between the new and the previous dual objective values is
given by

[I w i - I v y l - E w i - I v y]
' J · J

= c0\Sr | - c 0 | S c | = c 0 (w - | 5 ^ j - | s c \) = c0(m-k)>l.

Hence, we obtain a dual ascent by at least a unit, and since the dual objective
value is bounded above, we will converge in a finite number of iterations.
Observe, however, that in order to maximize the dual ascent at each iteration, it

is not simply sufficient to select the minimum number of lines k = k to cover
the zeros of the reduced matrix because the value CQ is also governed by this
covering process. That is, we can try and devise a mechanism to cover the zeros
using k <m lines, whenever possible, such that the resultant product c0 (m - k)

is maximized in order to accelerate the convergence process. The Notes and
References section cites some improved modifications of the Hungarian method
conducted along these lines.

10.8 ALTERNATING PATH BASIS ALGORITHM FOR
ASSIGNMENT PROBLEMS

We have seen that every basic feasible solution to the assignment problem has
degeneracy of order (m - 1). In fact, it has been empirically observed that
typically 90 percent of the pivots used to solve the assignment problem by the
usual primal simplex algorithm are degenerate when m > 500. This should not
be surprising since we know that every non-optimal vertex is either adjacent to
an optimal vertex or is adjacent to a neighbor of this optimal vertex. Hence, it
stands to reason that if we devise a primal simplex algorithm that circumvents a
sizeable portion of the degenerate pivots, then a significant savings in
computational effort will result. The alternating path basis algorithm is a step in
this direction. This algorithm is a special case of the strongly feasible network
simplex algorithm discussed in Chapter 9, in which we additionally designate an
origin node as the root node. For the assignment problem, a strongly feasible
basis that has an origin node as a root node is called an alternating path basis.
Because the algorithm encounters only strongly feasible bases, that is, bases in
which all degenerate arcs point toward the root, it automatically circumvents

The Transportation and Assignment Problems 545

several bases representing the extreme points of the assignment polytope. As a
result, this procedure yields about a 25% savings in pivots over the usual
network simplex algorithm.

Figure 10.20b shows an alternating path basis that is a chain graph. Such
a basis can always be used to initialize the algorithm, given any choice of a
starting one-to-one matching. (Exercise 10.47 indicates why this may be an
advantageous starting point in the absence of any other information.) Figure
10.21a displays a typical alternating path basis. Figure 10.21b exhibits a basis
representing this same extreme point that is not an alternating path basis (why?).
Note that the name "alternating path" arises from the fact that the arcs having
flows of one and zero alternate on the chain from any node to the root node.
These arcs are respectively called one-arcs and zero—arcs. Observe, however,
that not any feasible basis having an origin node as a root node and having one-
arcs and zero-arcs alternating is an alternating path basis. For example, consider
the basis obtained (with m = 5) in Figure 10.21b by removing 03, £>3, Οη, and

D-j along with their incident arcs. In fact, it can be easily shown (see Exercise

10.45) that a feasible basis is an alternating path basis if and only if all one-arcs
are pointing away from the root. This holds if and only if an origin node is a root
node having one incident basic arc (other than the root arc), and all other origin
nodes have exactly two incident arcs. This gives a special structure to an
alternating path basis that can be algorithmically exploited.

The algorithm using alternating path bases follows exactly the strongly
feasible tree network simplex procedure of Chapter 9. However, some speciali-
zations are possible. For example, observe that a pivot with entering arc
(Oj,D ·) is nondegenerate if and only if D is a successor of Oh that is, O, lies

on the chain from £>,■ to the root node. Whether the pivot is degenerate or not,

the leaving arc, by the strongly feasible tree rule, is the one incident at 0, in the

basis equivalent chain or in the cycle that is formed by adding (Oj,DA to the

basis graph. By noting that each origin node has a unique immediate successor,
which is the destination node assigned to it, the tree may be stored by
considering each such origin-destination pair as a single "married" unit, thereby
reducing the storage and updating requirements by roughly one-half. We ask the
reader to explore these specializations in Exercise 10.50.

Computationally, the primal-dual algorithm of the previous section
dominates the alternating path basis algorithm for totally dense problems when
the cost parameters are in the range 0-100. However, unlike the primal-
simplex-based approaches, the primal-dual algorithm is quite sensitive to
ranges in cost coefficients, as evident from its computational complexity. (It is
also instructive to examine its finite convergence arguments.) Hence, the
primal-simplex-based approaches dominate this algorithm for cost ranges
exceeding 0-1000. Nonetheless, as the papers cited in the Notes and References
section indicate, primal-dual types of algorithms do provide competitive
alternatives to primal-simplex-based approaches for the assignment problem.

546 Chapter 10

10.9 A POLYNOMIAL-TIME SUCCESSIVE SHORTEST PATH
APPROACH FOR ASSIGNMENT PROBLEMS

In this section, we will briefly present a polynomial-time algorithm for assign-
ment problems based on solving a succession of shortest path problems.
Although specialized polynomial-time techniques for solving shortest path
problems on digraphs that do not contain any negative cost circuits will be
discussed later in Chapter 12, we shall be content here to assume that a
procedure is available that polynomially produces a basic optimal solution to a
shortest path network flow problem as defined later. Computationally, when the
procedure described in this section is used in conjunction with an efficient
shortest path algorithm, it has been found to run up to seven times faster than the
alternating path basis algorithm of the previous section.

Let us present the fundamental algorithmic strategy of a successive
shortest path approach using an example with m = 3 and with cost coefficients
as given below:

1 2 3

1

2

3

3

1

1

2

3

5

2

4

2

Suppose that at any intermediate step of the procedure, we have at hand a partial
assignment solution in which some origin-destination pairs are tentatively

Figure 10.21. Alternating path basis for assignment problems.

The Transportation and Assignment Problems 547

matched. Let the sets UO and UD, respectively, contain the unassigned or active

origin and destination nodes, and let UO and UD be their respective

complements. To begin with, UO and UD are both empty. Let x denote the
present partial assignment solution. Hence, x = 0 at the initialization step, and
whenever an origin-destination assignment is made, the corresponding
component of x will be set equal to one. Also, assume that currently
| UO | = | UD | > 1 so that x is infeasible to the assignment problem.

Given a partial solution x, we first execute the shortest path step. For
this purpose, let us construct a special network from the assignment graph as
follows. For convenience, let the origin node 0, be indexed as /' for / = \,...,m,
and let the destination node £>,· be indexed as m + j for/ = 1,..., m. Create an

additional dummy root node 0 and connect this to each origin node in UO using
a zero cost arc. (Let the flow on this arc be represented by the nonnegative
variable z,·, for /' e UO.) For each (Oj,Dj) pair for which xy is currently unity,

create the reverse arc (m +j, i) and let the cost on this arc be -Cy. (Let the flow

on this arc be represented by the nonnegative variable y^ = 1 - JC,· ; note that

currently, we therefore have y^ = 0.) All the other (OhDA arcs in the

assignment graph for which xy = 0 are present as the usual arcs (/, m +j) in this

new graph with the same variable x,y and cost cy. Next, place a supply of | UD |

= | UO | at node 0, and place a demand of one unit at each of the destination

nodes m+j for £),· e UD. Let all the other nodes be transshipment nodes. The

resulting network flow problem can be solved as the shortest path problem
SP(x), which seeks a shortest path from node 0 to all the origin and destination

nodes in this network (not just to D e UD). Exercises 10.53 asks the reader to

show that SP(x) actually results from relaxing the assignment problem by

aggregating the unassigned origin node constraints; using the transformation yt-

= 1 - Xj- for each (0 ; ,D ■) pair for which χ,- = 1 ; and tentatively relaxing the

nonnegativity restriction on the latter x^—variables (i.e., not imposing y^ < 1 in

SP(x)).

Note that -ST^x) is feasible, (i.e., a path exists from node 0 to each of the
origin and destination nodes in the underlying network for SP(x)), since we are
considering a complete bipartite assignment network problem. (For a problem
on a non-complete bipartite graph, if SP(x) is infeasible, then so is the original

assignment problem—see Exercise 10.46.) Hence, if SP(x) is not unbounded,
that is, it does not contain any circuit having a total negative cost, then it has an
optimal solution. This is clearly so for the starting problem SP(x) with x = 0,
since the graph for this problem has all the original assignment graph arcs, and

548 Chapter 10

has a supply of m at the root node 0 and a demand of one at each of the
destination nodes m +j,j = I,..., m. This is depicted in Figure 10.22a, where the
supplies and demands are shown against each node and the costs are shown on
the respective arcs. In fact, an optimal basic feasible solution here has basic arcs
(0, i), i = 1,..., m, and (k■, m +j),j = I,..., m, where kj e argmin {cy\ / = 1,...,

m}. Figure 10.22b shows an optimal basis for the example problem, where the
optimal dual variables are shown against the nodes. Later, we show that the
primal feasible problem SP(\) is always dual feasible as well, and hence always

has an optimal solution. In this case, efficient polynomial-time algorithms
described in Chapter 12 may be used to obtain a basic optimal solution. Let
T(x) represent the corresponding optimal basis tree, which will, in fact, be an

arborescence with node 0 as the root node (e.g., see Figures 10.22b and 10.22d).
The next step of the algorithm is the flow augmentation step. In particular, the
basis tree T(x) obtained at the previous step gives shortest paths from node 0

through some unassigned origin nodes, to all the unassigned destination nodes.
Let us pick any such destination node m +j (which has a unit demand) and trace
the chain (reverse path) to the root node 0. This chain must finally pass through
some unassigned origin node /', say, before reaching the root node 0. Along the
corresponding path from / to m + j , let us complement the partial assignment
values. Note that since the origin and destination nodes alternate on this path, as
do the zero and one partial assignment values, the origin and destination nodes

in UO or UD on this path remain in these respective sets. Additionally, we have

/ e UO and (m +j) e UD, so that the cardinality of UO (and hence, UD) falls by
one. Observe that, in effect, this amounts to sending a unit of flow along this
path (from node 0), where the Xy-variables on this path go from xy = 0 to xy =

1, and the yy—variables on this path also go from yy = 0 to J« = 1, i.e., the

corresponding Xy-variables transition from Xy = 1 to Xy = 0; hence, the

complementation process. If there is another chain (reverse path) from another
unassigned destination node to the root node 0 that goes through some other
origin node in the updated UO set, then this step is repeated with respect to this
path. This is carried out sequentially until the final updated graph contains no
such path. Note that any two paths considered sequentially at this step must be
disjoint since the basis tree has no cycles. If UD (and hence, UO) is empty at
the end of this step, then as shown later, the current assignment x is optimal.
Otherwise, we return to the shortest path step and repeat the procedure. Since
| UD | drops by at least one at each iteration, we can loop through these two steps

at most m times, which yields an 0(m) polynomial-time algorithm (assuming
"3

that the complexity of the shortest path algorithm is 0(m)-see Chapter 12).

The Transportation and Assignment Problems 549

E
-**
o
en

I

!

s
tZ

550 Chapter 10

For the example problem, we can trace a path {0, 3, m + 1} to destination
node 1 in Figure 10.22b at the flow augmentation step. This gives x3j = 1, UO
= {1,2}, and UD = {2, 3}. A second path to destination 2 can be traced as {0, 1,
m + 2}, which yields x12 = 1, UO = {2}, and UD = {3}. No additional disjoint

paths can be traced, and so currently we have the partial assignment solution x]2

= jc3l = 1, and Xj- = 0 otherwise.

Repeating the shortest path step, the new SP(x) graph obtained is shown

in Figure 10.22c. An optimal basis tree (arborescence) T(x) for this problem is

shown in Figure 10.22d. At the flow augmentation step, we trace the path {0, 2,
m + 1, 3, m + 3} from node 0 to the unassigned destination node m + 3. Note
that currently, x21

 = 0> *3i = 1 0-e-> 731 = 0)> ar,d JÉ33 = 0 alternate on this path.
Complementing these values, we get x2i

 = 1> *3i = 0 0-e·' 731 = 1)' a n ^ S33 = 1·
The value x12 = 1 remains unaffected. Hence, the resulting assignment solution
is x12 = X21 = X33 = 1, and Xy = 0 otherwise, with UO = UD = 0 . We therefore

terminate, claiming this solution to be optimal, with the corresponding optimal
dual solution to the assignment problem being given by the optimal dual
solution to the final shortest path problem SP(x) solved, as shown against the
nodes in Figure 10.22d.

To justify this algorithm, consider an optimal basis tree T(x) for the

shortest path problem SP(\) at some iteration. Note that, as shown above, an

optimal solution exists for SP(x) at the initial step when x = 0. Presently,

assume that an optimum exists for the current shortest path problem SP(x)

corresponding to the given partial assignment x, and we shall inductively verify

later than an optimum must then exist for the subsequent shortest path problem

in case there remain unassigned origins and destinations. Accordingly, let

w = (W],...,wm,wm+i,...,wm+m) be the associated set of optimal dual multipliers

for SP(x). Note that if Xy = 0, then arc (/, m + j) is present in the problem

SP(x) and we have w;- -vvm+ < c,·., with this constraint holding as an equality

if the arc (/, m +f) belongs to T(x). On the other hand, if Xy = 1, then arc (m +j,

i) is present in the problem SP(x) with a cost -c,·,· and, moreover, this arc must

belong to the shortest path tree T(x) since this is the only arc coming into node /'

e UO. Therefore, we have wm+j - wt = -Cy or w;· - wm+j = Cy. Consequently,

w is dual feasible to the assignment problem: Minimize {ex : Ax = b, x > 0}
and is complementary slack with respect to x (why?). Moreover, the tree T(x)

also contains the arcs (0, i), V i e UO, because these are the only arcs coming
into the respective unassigned origin nodes. Hence, we also have w, = 0, V i e
UO.

The Transportation and Assignment Problems 551

_ Transshipment , , .· ,.
Sources , r Destinations

Figure 10.23. Example of a transshipment problem.

Now, let xnew be the revised partial assignment solution obtained from x

based on the flow augmentation step. Consider any (i,j) for which 3c^ew = 1. If

XJ: = 1 also, then the arc (m +j, i) belongs to T(x) as indicated above and we

have wm+j -w,· = -Cy, i.e., wt -wm+- = Cy. On the other hand, if Xy = 0, then

the arc (/', m + j) must have been present in T(x) to be involved in the flow

augmentation step (whence we obtained xyev/ = 1), and so we again have

Wj -wm+- =Cy. Consequently, xnew is also complementary slack with respect

to w. Hence, if xnew is a feasible assignment solution, that is, the revised UD =

0 , then it is optimal. Otherwise, we construct the problem SP(xnev/). But for

SP(xnev/), the solution w is still dual feasible, because (a) for the z;-arcs, / e

UO, we have w0 ~ ™i = 0 since w0 = 0, and wt = 0, V i e UO from above; (b)

for the jc,y—arcs we have w, - wm+ ,· < Cy since w is dual feasible to the

assignment problem; and (c) for the yy-arcs (corresponding to xjjev/ = 1), we

have wm+j -wi =-Cy, i.e., Wj-wm+j =Cy since xnew is complementary slack

with respect to w from above. Hence, SP(xnew) is primal and dual feasible;

therefore, it has an optimal solution. The algorithmic process can now continue,
and after at most m iterations, we achieve optimality.

10.10 THE TRANSSHIPMENT PROBLEM

In the transportation problem studied in this chapter we have assumed that each
point is either an origin, where goods are available, or a destination, where goods
are required. Suppose that, in addition, there are intermediate points where
goods are neither available nor required, but where goods can be transshipped.
The problem of finding a shipping pattern having the least cost is called the
transshipment problem and is illustrated in Figure 10.23.

This problem is a particular type of network flow problem that can be
solved directly using the network simplex algorithm of Chapter 9, for example.

552 Chapter 10

It is also possible to convert this problem into a transportation problem by
tracing shortest paths between each origin-destination pair (see Exercise 9.27).

Another procedure for converting the model into a transportation problem
is to add buffer stocks at certain nodes, as discussed in Exercise 10.51.

EXERCISES

[10.1] Consider the following transportation problem:

1 2 3 J,·

3

2
d

3 5 - 2

2 3 4

a. Construct a basic feasible solution by the northwest corner method.
Show the basis tree.

b. Find an optimal solution.

[10.2] Solve the following assignment problem by the transportation method:

PERSON

JOB

2

1]
2

j j

±\
1\

±1

j>J
2

_6j

[10.3] Consider the transportation problem corresponding to the following
tableau:

5

7

8

2

12

9

6

5

7

5

6

8

25

30

50

Cj- matrix

17 38 20 30

a. Solve the problem by the transportation algorithm.
b. Suppose that c24 is replaced by 2. Without resolving the problem,

find a new optimal solution.

c. How large should q 2 be made before some optimality condition of

the solution in Part (a) is violated?
[10.4] The following is a transportation tableau:

The Transportation and Assignment Problems 553

1

/

3

4

1

->to
15

8

a
14

2

/

12

9

12

3
1 0

12

to
6

to
11

to

4
o

15

12

12

&
12

14 15

a. Is the solution basic?
b. Show that the solution is optimal.
c. Does this problem have alternative optimal solutions?
d. Give the original linear programming problem and its dual.
e. Derive the optimal solution to the dual problem.
f. Give the optimal simplex tableau associated with the foregoing

transportation tableau.
g. Suppose that c43 is increased from 11 to 15. Is the solution still

optimal? If not, find a new optimal solution.

[10.5] Consider Exercise 10.4.
a. Add 10 to each ctj. Applying the cycle method, is the tableau still

optimal?
b. Multiply each c,y by 10. Applying the cycle method, is the tableau

still optimal?
c. Repeat Parts (a) and (b) for a general constant k.
d. What can we conclude from Part (c) for transportation problems?

[10.6] Solve the following transportation problem:

Origin

Destination
1 2 3

5

1

2

4

7

5

1

5

3

·*/
3

Cjj matrix
7

[10.7] Consider the following transportation problem:

554 Chapter 10

Origin
1

2

</,·

Destination

1 2

2

1

1

1

4

3

3

1

4

4

3

5

c,y matrix

a. Prove by duality theory that

(x1] ,x1 2 ,x13,x2 1 ,x22,x23) = ((). 3>°> 1,0,4)

is an optimal solution.
b. Interpret, economically, the dual variables for the solution in Part (a).

[10.8] Consider the following transportation problem:

7

4

2

2

3

1

-1

2

3

0

3

4

10

30

25

Cjj matrix

10 15 25 15

a. Give the northwest corner starting basic feasible solution.
b. Find an optimal solution.
c. What is the effect on the optimal solution if q j is changed to 0?

[10.9] Consider the data of Exercise 10.8. Apply the method of Section 10.1 to
obtain a feasible solution. Convert the feasible solution into a basic feasible
solution. Show the basis tree.

[10.10] Consider the following data for a transportation problem:

1

2

3

1

14

52

99

2

87

35

20

3

48

21

71

4

27

81

63

71

47

95

c« matrix

dj 71 35 47 60

a. Indicate a starting basic feasible solution by the northwest corner
rule. Give the basis tree.

b. Find an optimal solution.
c. Give the simplex tableau associated with the basic feasible solution

in Part (a).

[10.11] The following tableau depicts a feasible solution to a transportation
problem. Is this solution basic? If not, then starting with this solution, construct
a basic feasible solution. Compare the costs of the two solutions. Do the columns
of variables X] j , x12, x 2 3 , X32 > x33 > x34 > a n ^ xa yield a basis?

The Transportation and Assignment Problems 555

XU

1

/ 2

3

6

3

8

3

5,

6

8

(io)
1

2

8

&
9

(18)

7

(
2

20

(io
15

35

42

23

α7 20 10 40 30

[10.12] On Tuesday, the GT Railroad Company will have four locomotives at
IE Junction, one locomotive at Centerville, and two locomotives at Wayover
City. Student trains each requiring one locomotive will be at A-Station, Fine
Place, Goodville, and Somewhere Street. The local map gives the following
distances:

A-
Station

Fine
Place Goodville

Somewhere
Street

IE Junction
Centerville
Wayover City

15
6
17

38
61
14

45
18
6

11
30
10

How should they assign power (locomotives) so that the total distance traveled
is minimized?

[10.13] An automobile manufacturer has assembly plants located in the
Northwest, Midwest, and Southeast. The cars are assembled and sent to major
markets in the Southwest, West, East, and Northeast. The appropriate distance
matrix, availabilities, and demands are given by the following chart.

Southwest East West Northeast

Northwest
Midwest
Southeast

1200
400
800

8500
800

1200

1850
900

1000

2250
1400
1100

2,500,000
1,800,000
1,600,000

dj 2,000,000 1,500,000 1,200,000 1,200,000

a. Assuming that cost is proportional to distance, find an optimal ship-
ment pattern.

b. Assuming that cost is proportional to the square of distance, find an
optimal shipment pattern.

[10.14] A company has contracted for five jobs. These jobs can be performed in
six of its manufacturing plants. Because of the size of the jobs, it is not feasible
to assign more than one job to a particular manufacturing facility. Also, the
second job cannot be assigned to the third manufacturing plant. The cost
estimates, in thousands of dollars, of performing the jobs in the different
manufacturing plants, are summarized below.

556 Chapter 10

PLANT
JOB
1
2
3
4
5

1
60
66
81
30
50

2
55
73
78
42
55

3
42
—
72
38
40

4
57
68
80
50
60

5
20
75
85
46
56

6
52
63
78
42
70

a. Formulate the problem of assigning the jobs to the plants so that the
total cost is minimized.

b. Solve the problem by the transportation algorithm.
c. Solve the problem by the Hungarian assignment algorithm.
d. Apply the primal-dual algorithm to this problem. Make all possible

simplifications.

[10.15] An airline company can buy gasoline from three suppliers. The
suppliers have available 2K, 6K, and 6K gallons, respectively. The company
needs gasoline at three locations with each location requiring 5K, 3K, and 2K
gallons, respectively. The per/A^ gallon quoted price for gas delivered to each
location is as follows:

Location
1 2 3
3

6

1

1

2

9

1

7

12

How can the company buy the gasoline to minimize the total cost?
[10.16] Describe in detail how any finite-valued, capacitated minimum-cost
network flow programming problem can be transformed into an equivalent
assignment problem.

[10.17] Referring to the transportation problem defined in Section 10.1, state
whether the following are true or false and provide a brief justification.

a. If the total supply of a proper subset of the origin nodes equals the
total demand of a proper subset of the destination nodes, then there
exists a degenerate basic feasible solution.

b. The entries in any updated simplex tableau column add to unity.
c. Given an optimal basic feasible solution, if some of the cost coeffi-

cients of the basic variables are decreased, the solution remains
optimal.

[10.18] Devise a method for applying the lexicographic simplex method
directly on the transportation tableau. Show how the northwest corner rule can
be used to obtain a starting basic feasible solution with lexicographically

positive rows in (B~ b, B~).

The Transportation and Assignment Problems 557

[10.19] Show that if the cost coefficient for the artificial variable is increased
by an amount #in the transportation problem, then all of the ut and v.- variables

will change by the same amount Θ. Show that the cost coefficient of the artificial
variable does not matter in the computation of Zy - Cy.

[10.20] Show how a transportation problem having rational supplies, demands,
and cost coefficients can be scaled into an equivalent transportation problem
having integer data.

[10.21] Show that if we define

S; =$;+£·, i= 1,..., Iti

dj=dj, j=l,...,n-l

d„=d„ + m£,

then by a proper choice of ε we can totally avoid degeneracy in the transporta-
tion problem (and maintain an equivalent problem).

[10.22] Consider a transportation problem having m sources and n sinks with
respective supplies and demands s,·, / = 1,..., m, and d:,j = 1,..., «. Assume that

only a subset . ~/ of the possible arcs (i, f) are present in the problem having
given cost coefficients c«, and with each source and sink node having at least

one incident arc. Create a dummy source node (m + 1) with supply equal to

Y?i=\dj, and create a dummy sink node (n + 1) with demand equal to Σ™ι*/·

Also, construct slack arcs (i, n + 1), i = 1,..., m + 1 with zero cost coefficients,
and construct artificial arcs (m + l,j),j= 1,..., n, with cost coefficients equal to
M.

a. Show that the following value of M is sufficient to ensure that the
total flow on the artificial arcs is at its minimum feasible value at
optimality.

M= 1 + {sum of the Q largest c« -values, (i,f) e , /}

~ {sum of the {Q- 1) smallest cy -values, (/,_/') e -" /}

where Q = minimum {m,«,Π.~/|/2|}, and where Γ-Ί denotes the

rounded-up integer value.
b. Examining the role played by M in your proof, comment on how

alternative bounds on Mmay be derived.

[10.23] Consider the following problem:

558 Chapter 10

Minimize Σ Σ c,·,*,-.·
,=iy=l
n

subject to Σ % = si > / = 1,...,m
7=1
m

Y,pijxij=dj, j = \,...,n

Xjj>0, i = \,...,m, j-\,...,n,

where p^ > 0 for all /, j . Extend the transportation algorithm of this chapter to

handle the foregoing problem (which is sometimes referred to as the generalized
transportation problem).

[10.24] Formulate the problem of Exercise 1.13 as a generalized transportation
model, and use the procedure of Exercise 10.23 to find an optimal solution.

[10.25] The following is Vogel's approximation method for obtaining a
reasonably good starting basic feasible solution to a transportation problem:
Step 0. Begin with all cells unallocated.
Step 1. In the problem at hand, compute for each row and each column the

difference between the lowest and next lowest cost cell in the row or
column.

Step 2. Among those rows and columns at hand, select the one that yields a
maximum difference.

Step 3. Allocate as much as possible to the xi-variable having the least cost

coefficient in the selected row or column. Decrease the corresponding
supply and demand. Drop the row or column whose supply or demand
is zero.

Step 4. Make any allocations where only one unallocated cell remains in a row
or column. After reducing the corresponding supply and demand and
dropping the row or column, repeat Step 4 as necessary.

Step 5. Stop if no rows and columns remain. Otherwise, return to Step 1 with
the reduced problem.

a. Show that Vogel's approximation method leads to a basic feasible
solution, after including any required zero cells.

b. Apply Vogel's method to the data of Exercises 10.2, 10.6, and
10.8.

[10.26] The following is the matrix minimum method for obtaining a reasonably
good starting feasible solution for a transportation problem:
Step 0. Begin with all cells unallocated.
Step 1. Identify the lowest-cost unallocated cell in the matrix and allocate as

much as possible to this cell.
Step 2. Reduce the corresponding supply and demand, dropping the one going

to zero, and repeat Step 1 until all supplies and demands are allocated.

a. Show that the procedure produces a basic feasible solution.
b. Apply the procedure to the data of Exercises 10.6 and 10.8.

The Transportation and Assignment Problems 559

[10.27] Show how sensitivity analysis with respect to varying each of the cy-,

Sj-, and d -parameters can be conducted on a transportation tableau.

[10.28] Prove or give a counterexample: For a variable to be basic in a particu-
lar row of the linear program for a transportation problem, the variable must
have a nonzero entry in that row.

[10.29] Show how the dual simplex method can be applied to transportation
problems directly on the transportation tableau.

[10.30] Devise a formal procedure for identifying the unique cycle of basic
cells associated with an entering nonbasic cell. The procedure must specify the
cells having coefficients 1,-1, and 0 in the representation of the nonbasic cell.
(Such a procedure must be developed when the transportation algorithm is
coded on a digital computer.)

[10.31] Give the dual of a transportation problem. Is it possible to readily
specify a feasible solution to the dual problem? If so, starting with this solution,
devise a method for applying the primal-dual method directly to a transportation
tableau.

[10.32] Consider the following capacitated transportation problem:

Minimize

subject to

2J L cijxij

n
}_, Xjj — Sj,

7=1
m
ΣΧη =dj,
i=\

0<Xij<Uij,

i = \,...,m

j = \,...,n

i = \,...,m, j = !,...,«.

Specialize the bounded variables simplex method of Chapter 5 (or Chapter 9) to
solve the foregoing transportation problem on the transportation tableau.
Describe all details: Finding a starting basic feasible solution, computing the dual
variables and the (ZJ- - c^)-values, and determining the entering, and the

leaving variables.

[10.33] Consider Exercise 1.14.
a. Formulate the problem.
b. Solve the problem by the capacitated transportation algorithm that you

developed in Exercise 10.32.
c. Suppose that the third manufacturing company lost one of its other

contracts so that 700 tons are available to the furniture company. Find a
revised optimal solution.

[10.34] Apply the Hungarian method to the following assignment problem:

1
3
4
0

6
5
2

4
4
4

5
-2
1

3
6
5

Cost matrix

560 Chapter 10

4 6 3 3 5
6 4 5 2 7

4
5

[10.35] Given an optimal reduced matrix for an assignment problem, show how
to construct an optimal basis tree for the associated linear program. Demonstrate
by the following reduced matrix:

3
0
0
1

2
3
0
0

0
4
2
2

4
0
4
1

[10.36] A carpenter, plumber, and engineer are available to perform certain
tasks. Each person can perform only one task in the allotted time. There are four
tasks available, three of which must be done. The inefficiency matrix for person
/ assigned to tasky is as follows:

SOLDERING FRAMING DRAFTING WIRING
Carpenter
Plumber
Engineer

4
2
6

Which person should be assigned to which job? {Hint: Create a dummy person.)
Which job will go unfinished? Now suppose that each person can perform up to
two tasks, and all tasks must be done. What should they do?

[10.37] Sally, Susan, and Sandra will go on a date with Bob, Bill, and Ben.
Sally likes Bill twice as much as Bob and three times as much as Ben. Susan
likes Bill three times as much as Bob and seven times as much as Ben (Ben is a
loser!). Sandra likes Bob about as much as Bill, but likes them both about six
times as much as Ben. How should the couples pair up so that in the aggregate
the girls are as happy as possible? If one girl is willing to stay home, which one
should it be? Which boy will lose out? (You guessed it!)

[10.38] Describe a procedure suitable for computer coding that will find,
directly on the reduced matrix, the maximum number of independent zero cells
in the reduced matrix (or equivalently, the minimum number of lines to cover all
zeros). The reader may wish to study Exercise 12.17.

[10.39] Use the theorems of duality to prove that the minimum number of lines
to cover all zeros in a reduced assignment matrix equals the maximum number
of independent zero cells. {Hint: Consider the problem:

Maximize

subject to

ΣΣ-Xy
' j

c,=0

Xij>0, V(i,7),

where a;y = e, + em+ .· and the sum in the constraint is taken only over zero cells

of the reduced matrix. Take the dual of this linear program and examine its
properties.)

The Transportation and Assignment Problems 561

[10.40] Compare the Hungarian method for the assignment problem with the
primal-dual method applied to the assignment problem.

[10.41] Show that every vertex of the assignment polytope of Section 10.7 has

(2m~){mm~) bases representing it.

[10.42] Referring to the assignment polytope of Section 10.7, show that two
extreme points x ^ y are adjacent if and only if P(x)u/>(y) contains exactly

one cycle, where P(x), for a given vertex x, is the subgraph of the assignment
graph that contains only the positive flow arcs (see Figure 10.20a, for example).
Show that given any pair of extreme points x Φ y of the assignment polytope,

either x and y are adjacent or there exists an extreme point z such that x and z as
well as y and z are adjacent. (Hint: Recall that x and y are adjacent if and only if
they have bases representing them such that the union of the respective spanning
tree graphs contains exactly one cycle.)

[10.43] Show that each new dual solution in the assignment procedure specified
in Section 10.7 is feasible.

[10.44] Show how one can construct the simplex tableau associated with an
optimal assignment matrix.

[10.45] a. Show that a feasible basis for an assignment problem is an
alternating path basis if and only if all one-arcs are pointing away
from the root, which is also equivalent to having an origin node as
the root node, with a single arc incident at the root node, and with
all other origin nodes having exactly two incident arcs,

b. Give equivalent definitions of "alternating path bases" by designat-
ing a demand node as the root node.

[10.46] Consider an assignment problem for which the underlying bipartite
graph is not complete. Suppose that we construct the shortest path problem
SP(x) for some partial solution x, as in the successive shortest path algorithm of

Section 10.9. Show that if SP(x) is infeasible, then so is the original assignment

problem. (Hint: Show that based on a feasible assignment, if one exists, a (reverse)
path can be constructed from any unassigned destination node to the root node 0
in SP(x).)

[10.47] Show that given any basis representing an extreme point of the
assignment polytope, the maximum number of potential nondegenerate pivots
on this basis graph is m(m - l)/2, and the minimum number is (m - 1). Show
that the maximum number is achieved if and only if the basis tree is a chain
graph (see Figure 10.20b) and the minimum number is achieved on a basis in
which all the degenerate arcs originate at some node or all terminate at some
node. Can both types of bases be alternating path bases?

[10.48] Is it true that a feasible basis for an assignment problem in which some
origin node is the root node, and in which the one-arcs and the zero-arcs alter-
nate on the chain from any node to the root node is an alternating path basis?

562 Chapter 10

[10.49] Solve the problem in Exercise 10.2 using the successive shortest path
algorithm of Section 10.9. At each iteration, give the basic primal and dual
optimal solutions to the shortest path problem SP(x). Demonstrate that this
dual solution is feasible to the original assignment problem as well as to the
updated shortest path problem £P(xnew), and that it is complementary slack

with respect to both x and xnew.

[10.50] Using the alternating path basis algorithm for solving assignment prob-
lems, provide details for all the specializations you can make in the algorithmic
operations, including any specializations in the list structures of Chapter 9.

[10.51] Given a transshipment problem, the following procedure is suggested to
convert it into a transportation problem. First the nodes are classified into the
following mutually exclusive categories:

1. Pure source: a node that only ships.
2. Pure sink: a node that only receives.
3. Transshipment node: a node that may ship and receive.

A transportation tableau is constructed as follows. The origins are the pure
sources and the transshipment nodes. The availability at each transshipment
node / is replaced by s,· + B, where st is the maximum of zero and the net out of

node /, and B is a buffer stock to be specified later. The destinations are the pure
sinks and the transshipment nodes. The requirement at a transshipment node i is
dj + B, where di is the maximum of 0 and the net into node i. If there is no

direct link from node / to node j , then % is equal to M, where M is a large

positive number. Also, c = 0 for transshipment nodes. Finally, B is a large

positive number, say, B - Σ·?,··

a. Using the foregoing instructions, form the transportation tableau
corresponding to the above transshipment problem, where the
availability at nodes 1, 2, and 3, are respectively, 10, 20, and 15, and
the requirements at nodes 5, 6, and 7 are, respectively, 10,25, and 10.

b. Solve the problem using the transportation algorithm. Interpret the
solution. What is the interpretation of the buffer Bl

c. Show that the procedure outlined in this exercise is valid in general.
{Hint: On the original flow conservation constraints, use appropriate

The Transportation and Assignment Problems 563

substitutions of the type where a new variable equals B minus the
sum of some variables.)

d. Convert the problem into a transportation problem using the least
cost method discussed in Section 10.10. Apply the transportation
algorithm and interpret your solution.

[10.52] If it is known in advance that a certain variable will be positive in any
optimal solution to a transportation problem, what simplifications can result in
the solution method?

m m
[10.53] Consider the assignment problem AP to minimize Σ Σ c//xi/> subject

m m
to Σ x„- =1 for each origin i = l,...,m; - X f c = _ ' f°r e a c n destination j =

7=1 ;=1

\,...,m, and x > 0. Suppose that we are applying the successive shortest path
algorithm to solve this problem, where at a certain main step in this procedure,

we are given a partial assignment x having |UO | = |UD \ = q>\ and UO =

UD = m - q > 1. Accordingly, construct a relaxation of Problem AP as

follows:

(i) Aggregate the unassigned origin constraints to obtain
m m

Σ Σ Xy = <?· Now, define zi = Σ x„-, \/i ε UO, and
ieUOj=l j=\

rewrite this equation as the following set of constraints:

Σ Zi=q

ieUO

m

Σ Χ , 7 - Ζ , · = 0 , Vi e UO.
7=1

(ii) For each (/,_/) such that x; = 1, use a change of variables y„- =

1 - Xjj, and impose yy- > 0 (but not yt- < 1, i.e., relax xy > 0 for

these x(y-variables).
a. Show that the resulting relaxed problem is a minimum cost network

flow program that is defined as SP(x) in Section 10.9.
b. Explain how the flow augmentation step of the successive shortest

path algorithm ensures that the relaxed nonnegativity constraints in
the transformation (ii) above are not violated when revising x to

564 Chapter 10

NOTES AND REFERENCES

1. Hitchcock [1941] is credited with the first formulation and discussion of
a transportation model. Dantzig [1951c] adapted his simplex method to
solve transportation problems. Charnes and Cooper [1954] developed an
intuitive presentation of Dantzig's procedure through what is called the
"stepping stone" method. In this chapter, we called this the "cycle
method."

2. Koopmans [1949] was the first to note the relationship between basic
solutions in the transportation problem and the tree structure of a graph.
Other good discussions are provided by Dantzig [1963a] and Johnson
[1965].

3. The bound on the value of M in Exercise 10.22 is derived in Sherali
[1988].

4. A good study of the properties of the assignment polytope appears in
Balinski and Russakoff [1974]. In addition to the results in Exercises
10.41 and 10.42, they show that the assignment polytope is of dimension

7 9

(m - 1) , has m facets, and has a simplex path linking any two vertices
of length no more than 2m - 1. Therefore, the Hirsch conjecture (see the
Notes and References section of Chapter 8) holds for this polytope.

5. The Hungarian method for the assignment problem was developed by
Kuhn [1955]. This method finds its roots in the work of the Hungarian
mathematician Egervàry [1931], hence its name. Kuhn's paper led to the

general primal-dual method for linear programs in the following year.
6. McGinnis [1983] presents a computational comparison between the

Hungarian algorithm and the primal simplex alternating path basis algo-
rithm. For improvements and variations in the Hungarian algorithm, see
Bertsekas [1981], Carpenito and Toth [1980], Redlack and Huang [1987],
Jonker and Volgenant [1986], and Sherali and Driscoll [2003]. In
particular, the last two papers examine alternatives to simply covering the
zeros in the reduced matrix using the fewest number of lines versus
focusing on a maximal dual improvement. Balinski [1984, 1985]
provides an excellent study of the dual polyhedra of transportation and
assignment problems, and exhibits why dual-based simplex approaches
may be more suitable for these problems than primal procedures.

7. The alternating path basis algorithm was developed by Barr et al. [1977].
This algorithm turns out to be a special case of the strongly feasible tree
algorithm of Cunningham [1976] that was independently developed for
general network flow problems. The results in Exercises 10.45 and 10.50
are from the former paper. The result in Exercise 10.47 is from Bazaraa
and Sherali [1982].

8. The successive shortest path algorithm for assignment problems dis-
cussed in Section 10.9 is from Glover et al. [1986]. The threshold shortest
path subroutine is used to derive a computationally very efficient
algorithm. For another successive shortest path algorithm, see Engquist
[1982]. Other polynomial algorithms for the assignment problem appear

The Transportation and Assignment Problems 565

in Akgul [1986a], Balinski [1985] (see Goldfarb [1985] for an
improvement of this "signature algorithm"), Balinski [1986], and Hung
[1983]. Also, see Orlin [1985] for some relevant discussions.

9. The reader interested in a further study of transportation problems
involving aggregation and disaggregation methods for large-scale prob-
lems is referred to Balas [1965], Zipkin [1980], and Zipkin and Raimer
[1983].

This page intentionally left blank

ELEVEN: THE OUT-OF-
KILTER ALGORITHM

In Chapter 9, we presented a network simplex method for solving minimal-cost
network flow problems. In this chapter, we present another method for solving
minimal-cost network flow problems, called the out-of-kilter algorithm. This
algorithm is similar to the primal-dual algorithm in that it begins with dual
feasibility, but not necessarily primal feasibility, and iterates between primal and
dual problems until optimality is achieved. However, it differs from the primal-
dual algorithm (as strictly interpreted) in that the out-of kilter algorithm does
not always maintain complementary slackness. In fact, the principal thrust is to
attain complementary slackness. A version of the algorithm can be designed in
which we maintain primal and dual feasibility (not necessarily basic solutions)
and strive to achieve complementary slackness. Computationally, the state-of-
the-art primal simplex codes run two-three times faster than traditional out-of-
kilter codes. However, advances in primal-dual methods that use the basic
ingredients of the out-of-kilter algorithm, although in a manner different from
this algorithm, have resulted in algorithms that run two-four times faster than
the best primal simplex code with the speed-up factor increasing by an order of
magnitude for large problems. (We provide some related comments on such
procedures in the concluding section of this chapter, and refer the reader to the
Notes and References section for further reading on this subject.) From this
viewpoint, the concepts of the various algorithmic steps presented in this chapter
are important.

11.1 THE OUT-OF-KILTER FORMULATION OF A MINIMAL-COST
NETWORK FLOW PROBLEM

For convenience of presentation, the form of the minimal-cost flow problem
that we shall work with is:

m m
Minimize X Σ %%

/=iy=i
m m

subjectto Σ Xjj ~ Σ Xki = ®> i = \,...,m (H-l)
7=1 k=\

Xy^iij, i,j = \,...,m
Xij^uy, i,j = \,...,m,

where it is understood that the sums and bounding inequalities are taken over
existing arcs only. We call any flow (choice of the x;- -variables) that satisfy the

equality constraints in Problem (11.1) a conserving flow. A conserving flow that
satisfies the remaining constraints ί^ < Xy < u^ is & feasible flow (solution).

567

568 Chapter 11

We shall assume that cy, £y, and Uy are integers and that -oo < iy < Uy < oo.

Since all right-hand-side values of the flow conservation equations in Problem
(11.1) are zero, we conclude that the flow in the network does not have a
starting point or an ending point, but circulates continuously throughout the
network. Thus a conserving flow in the network will involve flows along cir-
cuits (directed cycles). For this reason, the representation in Problem (11.1) is
known as a circulatory network flow problem.

The foregoing formulation is completely equivalent to the formulation of
the minimal-cost network flow problem presented in Chapter 9. This is readily
seen by noting that a minimum cost network flow problem can be first of all put
in the form (11.1) with a general (integer) right-hand-side vector b instead of a
zero vector in the flow conservation constraints, and in particular, with 0 < iy <

Uy < co for all (i,j). Here, we assume that the variables Xy that are unbounded

from above are artificially bounded by using Uy = M, where M is sufficiently

large. By replacing each right-hand-side magnitude |è; | with a variable yi, where

yt is bound restricted as |6,·| < yt < |è,|, it is readily seen how we can transform

the given problem into the form (11.1) (see Exercise 11.1). Hence, in particular,
note that we may possibly have some ly = Uy in Problem (11.1).

We emphasize here that the homogeneous form in Problem (11.1) is only
for the sake of convenience. The same algorithm discussed in the sequel is
applicable with a general right-hand-side vector and with -oo < ly < Uy < oo,

given a starting solution that is flow-conserving (perhaps to an artificial net-
work). More specifically, consider a bounded variables network flow problem in
the following general form as discussed in Chapter 9.

Minimize {cy : Ay = b, £ < y < u},

where A is a node-arc incidence matrix, and where -co < L· < uy < co, for all

arcs (i, j). Now let y be any arbitrary flow-conserving solution that satisfies

Ay = b, and consider the transformation

x = y - y , i.e., y = y + x.
Under this transformation, the preceding problem becomes:

Minimize {c(y + x) : Ay + Ax = b, ^ - y < x < u - y } .

Dropping the constant term cy from the objective function, using the fact that

Ay = b, and defining £ = £ - y and u = ΰ - y , this problem is equivalent to:

Minimize {ex : Ax = 0,£ < x < u},

where -co < £■■ < uy < co. This problem is now in the form (11.1). Note that in

this form, x can be interpreted as the modification in the given flow y that is

required to achieve an optimal solution (if one exists). Hence, Problem (11.1)
can essentially be viewed as a flow augmentation formulation of a minimal-cost

The Out-of-Kilter Algorithm 569

network flow program. We ask the reader to explore this concept further in
Exercises 11.2 and 11.3.

The Dual of the Circulatory Network Flow Problem and Its Properties

If we associate a dual variable w; with each node's flow conservation equation

in Problem (11.1), a dual variable hy with the constraint Xy < uy (which is

treated as -Xy > -uy for the purpose of taking the dual), and a dual variable Vy

with the constraint Xy > iy , the dual of the out-of-kilter formulation for the

minimal-cost network flow problem is given by:
mm mm

Maximize Σ Σ tyVy - Σ Σ Uyhy
i=l y'=i '=l y=l

subject to Wj - W: + Vy - hy = Cy, i, j = 1,..., m
fc,-,v,·,· > 0, /', / = \,...,m

IJ IJ J

Wj unrestricted, / = 1,...,/»,
where the summations and the constraints are taken over existing arcs. The dual
problem has a very interesting structure. Suppose that we select any set of up-
values (we shall assume throughout the development that the w, -values are
integers). Then the dual constraint for arc (i,j) becomes

Vij ~ kij = Cij ~ Wi + Wj . hij * 0, Vy > 0,

and is satisfied by letting
Vy - maximum {0, Cy - w,· + w .·}

hy = maximum {0,-{cy - w,· + w ■)}.

Thus, the dual problem always possesses a feasible solution given any set
of Wj -values. In fact, the choices of Vy and hy just given yield optimal values

of Vy and hy for a fixed set of Wj -values (why?).

The Complementary Slackness Conditions

The complementary slackness conditions for optimality of the out-of-kilter
formulation are (review the Karush-Kuhn-Tucker optimality conditions) the
following:

Oty-%)vi/=0> i,j=\,...,m (11.2)

(uy -Xij)hy = 0 , /,; = 1,..., m. (11.3)

Define Zy -Cy = Wj - w- - c« . Then by the definition of Vy and hy we get

Vy = maximum {0,-(zy -Cy)} (11.4)

hy = maximum {0, zy -Cy}. (11.5)

Note that z;,-c,·,- would be the familiar coefficient of JC,·,· in the objective
y y y J

function row of the lower-upper bounded simplex tableau if we had a basic

570 Chapter 11

solution to the primal problem. However, we need not have a basic solution
here, and no such implication of a basis is being made here by this notation.

Given a set of w,· -values, we can compute Zy -Cy = wi-W; -Cy.

Noting Equations (11.4) and (11.5), the complementary slackness conditions
(11.2) and (11.3) hold only if

Zy - Cy < 0 => Vy > 0 => Xy = £y, l,j = 1,..., W

Zy ~ Cy > 0 => hy > 0 => Xy = Uy , Ì,j=\,..., ÌYI.

Conversely, if Xy = iy for all (i,j) such that zy -Cy < 0, and if Xy = Uy

for all (/,/) such that zy -c« > 0, then defining Vy and /^· as in Equations (11.4)
and (11.5), respectively, we have complementary slackness holding true. Hence,
we obtain the following key result that embodies the optimality conditions of
Problem (11.1), as well as the principal thrust of the out-of-kilter algorithm.

Theorem 11.1

Let x be any conserving flow, and let w = (w\,...,wm) be any integer vector.

Then x and w are, respectively, primal and dual optimal solutions to Problem
(11.1) if and only if for all (i,j)
Zy-Cy < 0 implies Xy = iy,

Zy - Cy > 0 implies Xy = Uy ,

Zy -Cy = 0 implies iy < Xy < Uy,

where (Zy - ci}) = w,· - Wj - Cy for all (/,/).

The problem then is to search over values of the w; -variables and flow

conserving Xy -variables until the three conditions of Theorem 11.1 are

satisfied.
Consider Figure 11.1a. Selecting a set of starting w, -values, say, each

Wj = 0, and a conserving flow, say, each xy = 0, we can check for optimality.

Figure 11.1b displays the values for Zy-Cy, Xy, and w, for the network of

Figure 11.1a. In Figure 11.1b we see that z12 -C)2 = - 2 and xJ2
 = 0 (=^12)' a n ^

thus arc (1, 2) is said to be in-kilter, that is, well. On the other hand,
z23 ~c23 = ^ a nd *23 = 0 (< «23), and thus arc (2, 3) is said to be out-of-kilter,
that is, unwell or in improper condition. Hence, the name out-of-kilter.

To bring arc (2,3) into kilter we must either increase x23
 o r decrease

z23_ c23 by changing the w,—values. This is exactly what the out-of-kilter
algorithm attempts to do. During the primal phase of the out-of-kilter algorithm
we shall be changing the x^-values in an attempt to bring arcs into kilter.

During the dual phase we change the w;· -values in an attempt to reach an in-

kilter state.

The Out-of-Kilter Algorithm 571

The Kilter States and Kilter Numbers for an Arc

The in-kilter and out-of-kilter states for each arc in a network are given in
Figure 11.2. Note that an arc is in kilter if ί^ < χ^ < Uy and the conditions (of

Theorem 11.1) hold true. As we change the flow on arc (i,j), the arc moves up
and down a particular column in Figure 11.2 depending on whether x^ is

increased or is decreased. As we change the w, -values the arc moves back and

forth along a row. Figure 11.2b gives a graphical depiction of the kilter states of
an arc. Each of the cells in the matrix in Figure 11.2a corresponds to a particular
subregion in Figure 11.2b.

In order to assure that the algorithm will converge, we need some meas-
ure of the "distance" from optimality. If we can construct an algorithm that
periodically (at finite intervals) reduces the distance from optimality by an
integer, then the algorithm will eventually converge.

There are many different measures of distance for the out-of-kilter
method. We present in Figure 11.3 one measure of distance that we call the
kilter number Ky for an arc (i, j). The kilter number is defined here to be the

minimal change of flow on the arc that is needed to bring it into kilter. The
kilter number of an arc is illustrated graphically in Figure 11.3b. Notice that
since all terms involve absolute values, the kilter number for an arc is nonnega-
tive. Also, notice that if the arc is in-kilter, the associated kilter number

(fpUpCy)

(0, 3, 0)

M\ = 0 W2 = 0

^41-c41 - °
(0.6.-3) x4 1=0

z23~c23 - 3

(0,5,-1)

(a) (b)

Figure 11.1. An example network: (a) The network, (b) Values of wt, zy -

(*·· V · ·

572 Chapter 11

Zy-Cy<0 Zy~Cy=0 Zy - Cy > 0

Xy>Uy

xu=uy

iy<Xy<Uy

X- =?■■

X- <(■■

Out-of-kilter

Out-of-kilter

Out-of-kilter

In-kilter

Out-of-kilter

Out-of-kilter

In-kilter

In-kilter

In-kilter

Out-of-kilter

Out-of-kilter

In-kilter

Out-of-kilter

Out-of-kilter

Out-of-kilter

(a)

xij

Out-of-kilter

In-kilter

Out-of-kilter

Out-of-kilter

In-kilter

Out-of-kilter

—>■ 2·- — C--

(b)
Figure 11.2. The possible kilter states for an arc.

is zero, and if the arc is out-of-kilter, the associated kilter number is strictly
positive. Note that if Zy - Cy < 0, then arc (/, j) is in-kilter only if the flow is

equal to £y, and hence the kilter number \Xy -ty\ indicates how far the current

flow Xy is from the required value iy. Similarly, if Zy -c« > 0, then the kilter

number \xy - w J gives the distance from the required flow of Uy. Finally, if

Zy -Cy = 0, then the arc is in-kilter if (y < Xy < Uy. In particular, if Xy > Uy,

then the arc is brought in-kilter if the flow decreases by \xy -Uy\, and if Xy <

iy, then the arc is brought in-kilter if the flow increases by * ; y-^J» and

hence we obtain the entries in Figure 11.3, as shown under the column zy -cy

= 0.

The Out-of-Kilter Algorithm 573

z ! / - c ! / < ° zij-cy=0 zij-cij>0

x- =£■■

1 jr.. _ / . . 1
\ 9 >l\

Γ
xij - (-ij

0

1
X- -(■■

XiJ~U'j\

0

0

0

xij -ij

\XiJ~UV

0

xij-«y

xìj~uìj

xij-uìj

(a)

K

}KV

rK„

}Kv

(b)

Figure 11.3. The kilter numbers JT«.

One method of assuring finite convergence of the out-of-kilter algorithm
is to guarantee the following:

1. The kilter number of any arc never increases.
2. At finite intervals, the kilter number of some arc is reduced (by an

integer).

This is exactly what we shall be able to achieve.

11.2 STRATEGY OF THE OUT-OF-KILTER ALGORITHM

As indicated before, the out-of-kilter algorithm may be generally viewed as a
primal-dual type of algorithm. In this respect the generic steps of the algorithm
are as follows:

1. Begin with a conserving flow, such as each jc,y = 0, and a feasible

solution to the dual with w arbitrarily chosen, such as each w, = 0,

and with L· and vy as defined in Equations (11.4) and (11.5) for all

arcs (/',/)· Identify the kilter states and compute the kilter numbers.

574 Chapter 11

2. If the network has an out-of-kilter arc, conduct a primal phase of the
algorithm. During this phase an out-of-kilter arc is selected and an
attempt is made to construct a new conserving flow in such a way
that the kilter number of no arc is worsened and that of the selected
arc is improved.

3. When no such improving flow can be constructed during the primal
phase, the algorithm constructs a new dual solution in such a way
that no kilter number is worsened and Step 2 is repeated.

4. Iterating between Steps 2 and 3, the algorithm eventually constructs
an optimal solution or determines that no feasible solution exists.

The Primal Phase: Flow Change

During the primal phase, the out-of-kilter algorithm attempts to decrease the
kilter number of an out-of-kilter arc by changing the conserving flows in such a
way that the kilter number on any other arc is not worsened. Examining Figure
11.3, we see that the flows must be changed in such a way that the
corresponding kilter states move closer to the in-kilter states. For example, for
the out-of-kilter state χ„- > u„- and z« - c„- < 0, we can decrease χ„- by as

much as ixy -(-A before the arc comes into kilter. If we decrease jc,·.· beyond

this, the arc will pass the in-kilter state (we do not want this to happen). Also,
we do not permit any increase in this x„- value. A similar analysis of the other

kilter states produces the results in Figure 11.4a.

Several cells in Figure 11.4a deserve special attention. The out-of-kilter
state X:,- > «,·,· and z„ - c„ = 0 indicates that the flow can be decreased by as

much as % -i„· . Referring to Figure 11.3, we see that we really only need to

decrease the particular x„- by ixy -« , · / , a smaller amount, to reach an in-kilter

state. However, as can be seen in Figure 11.3, we may continue to decrease χ„-

by an amount up to \χ„- — tA from its original value and the arc will still remain

in-kilter. It might be indeed desirable to do this in order to aid other arcs in
reaching in-kilter states. Also, an arc in the in-kilter state for which £y < x„- <

Ujj and Zjj - Cy = 0 may have its flow appropriately either increased or

decreased, while still maintaining its in-kilter status. Figure 11.4b illustrates the
permitted flow changes graphically.

Now that we have ascertained how much an individual flow on an arc
may change, we must still determine what combination of flows we can change
in order to maintain a conserving flow. If x is the vector of (current) conserving
flows, then the conservation of flow equality constraints in Problem (11.1) can
be rewritten as Ax = 0, where A is the node-arc incidence matrix. If Δ is a
vector of flow changes, then we must have

The Out-of-Kilter Algorithm 575

Zy-CyKO Zij-Cij=0

Xy>Uy

X- <(■■

(a)

(b)

Figure 11.4. Permitted flow change directions and amounts.
Α(χ + Δ) = 0 or ΑΔ = 0.

If ΑΔ = 0 for a nonzero Δ, then the columns of A corresponding to the nonzero
components of Δ must be linearly dependent. Since A is a node-arc incidence
matrix, then each column of A has exactly one +1 and one - 1 , and the nonzero
components of Δ must correspond to a (not necessarily directed) cycle or a set
of cycles (why?). Hence, flows must be changed along a cycle or a set of cycles
in order to continue satisfying the conservation of flow equations.

Given an out-of-kilter arc, we need to construct a cycle containing that
arc. This cycle must have the property that when assigned an orientation and
when flow is added, no arc has its kilter number worsened. A convenient
method for doing this is to construct a new network G' from the original
network according to the information in Figure 11.4. First, every node of the
original network is in the new network. Next, if an arc (i, j) is in the original
network and the flow may be increased, then arc (i, j) becomes part of the new
network with the appropriate permitted flow change being as indicated in Figure

576 Chapter 11

11.4. Finally, if an arc (;', j) is in the original network and the flow can be
decreased, then arc (/', i) becomes part of the new network with the permitted
flow change being as indicated for arc (i, j) in Figure 11.4. Arcs in the original
network having £y < χ(- < Uy and Zj- -cy = 0 will produce two arcs, (i,j) and

(j, i), each with an appropriate permitted flow change in the new network. Arcs
not permitted to change in flow are omitted entirely from G'.

Given the example indicated in Figure 11.1, a new network G' is con-
structed by the foregoing rules and is presented in Figure 11.5. To illustrate,
consider arc (1, 3) in Figure 11.1. Note that x13 < i1 3 and z(3 - c 1 3 < 0. From

Figure 11.4 the flow on (1, 3) can increase to ^13 = 1. This results in arc (1, 3)

in Figure 11.5, with a permitted flow change of 1.
Once the new network G' is constructed and an out-of-kilter arc (p, q)

in G' is selected, we look for a circuit (directed cycle) containing that arc in G'.
This circuit in G' corresponds to a cycle in G. The flow in the cycle in G is
changed according to the orientation provided by the circuit in G'. The amount
of change is specified by the smallest permitted flow change of any arc that is a
member of the circuit in G'. If no circuit containing the selected out-of-kilter
arc exists in G', then we proceed to the dual phase of the algorithm.

We remark here that the construction of G' presented is only for
pedagogical purposes. In essence, given an actual out-of-kilter arc (p, q) in G',
we wish to determine if there exists a circuit in G' that involves this arc. Note
that this arc may be (p, q) or (q, p) in G, depending on whether an increase or a
decrease in the flow on this arc is required in G. Hence, in G', we need to find a
(directed) path from q to p. This may be done by constructing a tree T that
begins with the node q, and at each stage scans for a pair of nodes i andy with
i e T and j £ T such that there is an arc (z, j) in G that can permit a flow

increase or such that there is an arc (j, i) in G that can permit a flow decrease.
Arcs of this type are called label eligible arcs. If such an arc exists, it is used to
include nodey in the tree Tand the process repeats. If node/» gets included in T
at any step, then we will have found a circuit in G' oriented along (p, q) that
permits a positive flow change. This situation is called a breakthrough. If no

(T) 0
Permitted flow

6 -*r—"" change

<i> j {ì)
Figure 11.5. The modified network G' for Figure 11.1.
additional nodes can be added to Tat some step and piT, then there does not

exist any circuit in G' involving (p, q) (why?). This situation is called a

The Out-of-Kilter Algorithm 577

nonbreakthrough. In this event, we proceed to the dual phase with the nodes in
T forming a set X and the remaining nodes in X. A labeling scheme that
constructs such a tree T is described in Section 11.5. For now, let us continue to
work with the network G'.

As an illustration of the primal phase, consider the modified network G'
of Figure 11.5. We select an out-of-kilter arc, say, (1, 3). From Figure 11.5, we
see, that a circuit exists in G' containing arc (1, 3), namely, C = {(1, 3), (3, 4),
(4, 1)}. Hence, we can change the flow around the associated cycle in G,
increasing flows on arcs having the orientation of the circuit in G' and
decreasing flows on arcs against the orientation of the circuit in G', and obtain
an improved (in the kilter number sense) solution. The amount of permitted
change in flow is Δ = minimum {1, 5, 3) = 1. The new solution and associated
modified network is given in Figure 11.6a. Arcs (2, 3) and (3, 4) are still out-
of-kilter in G. Selecting one of the associated arcs in G' (see Figure 11.6b), say,
(2, 3), we attempt to find a circuit in G' containing the selected arc. Because no
such circuit exists, we must pass to the dual phase of the out-of-kilter
algorithm. The tree Tin this case consists of nodes 3,4, and 1, and arcs (3, 4) and
(4, l)fromG'.

It is convenient (but not necessary—see Section 11.6) for the various
proofs of convergence to work on the same out-of-kilter arc (p, q) until it
comes in-kilter. We shall assume throughout our discussion of the algorithm
that this is done.

The Dual Phase: Dual Variable Change

When it is no longer possible to construct a circuit in G' containing a specific
out-of-kilter arc, then we must change the (z^ -c,y)-values so that no kilter

number is worsened and either the out-of-kilter arc is brought into kilter or
some new arcs are introduced into G' that would eventually allow us to find a
circuit containing the out-of-kilter arc under consideration.

. /

Permitted flow
change

x34-l

(a) G (b) G
Figure 11.6. The new solution for the network of Figure 11.1.

Since Zjj -q.· = Wj -w.- —Cy, we must change the w;—values in order to

change the (z,·.· -c-)-values. Let (p, q) be an out-of-kilter arc in G', and let X

be the set of nodes in G' that can be reached from node q along some paths in

578 Chapter 11

G'. Hence, X is the set of nodes in the tree T constructed earlier. Let

X = , / -X. where / ' = {\,...,m). Note that neitherXnor X is empty when

we pass to the dual phase, since q e X and peX. For (p, q) = (2, 3) in Figure

11.6 we haveX = {3, 4, 1} and X = {2}. In Figure 11.7, we illustrate the setsX

and X.
We would like to change the w,—values so that no kilter number is

worsened and the set X gets larger periodically. If at least one node comes intoX
at finite intervals, then eventually p will come into X and a circuit will be
created in G'. We have implicitly assumed that X will not get smaller. To ensure
this, we should change the W; -values so that all arcs having both ends in X are
retained in the modified graph.
Consider zy- - cy· = w; - Wj - ctj . If w,· and wj are changed by the same

amount, then zy - cy remains unchanged. Thus, we can ensure that the set X

will contain at least all of the same nodes after a dual variable change if we
change all of the w; -values in X by the same amount Θ. Suppose that we leave

the Wj -values in X unchanged. Then the only arcs that will be affected will be

arcs going fromXto X and from X toX. Specifically, if θ> 0 and we change
the Wj -values according to

, _\wi+6, ÌGX
W ' - { wh ieX

then the revised (zy - c«)-values are given by

(zij ~ cij)' = zij ~ cij i f ' e xj J e x_
or i e X, j e X.

However, if / e X and j e X , we get

Figure 11.7. Xand X in G for (p, q) = (2,3) in Figure 11.6.

(zij ~ cij)' = (wi +θ)~ wj ~ cij
= (Zij-Cij)+ Θ.

Also, for i e X and j e X we get

The Out-of-Kilter Algorithm 579

(zij~cij)' = wi-(\Vj+e)-ciJ

= ^ij-Cij)-e.

Thus, arcs from X to X will have their (zy- -cy)-values increased by Θ,

and those from X to X will have their (z„- - c„·)-values decreased by Θ. We

must determine Θ so that the kilter number of no arc is worsened and the kilter
state of some arc is changed. First, we must identify the arcs that can be in the
set (X, X) and in the set (X,X). (The notation (X, Y) represents the set S = {(x,

y): l e i , y^Y}· The set of arcs in G going between X and X, in either

direction, are said to constitute the cut with respect to X and X, and will be

denoted by [X,X]. Hence, [X,X] = (X,X)u(X,X).)

Examining Figure 11.4, we see that the set (X, X) cannot contain an arc

associated with the kilter state Xy < iy and Zy -cy < 0, since such an arc (/',/)

in G would become an arc in G' with the result that if i can be reached (along a
path) from q, then j can be reached from q, and thus j e X (a contradiction).
Examining the remaining kilter states, we find that the only candidates for
membership in (X,X) are those identified in Figure 11.8. Recall that arcs from
X to X in G have their (z„--c„)-values increased. Thus, these arcs change

kilter states in a left-to-right fashion as indicated in Figure 11.8a. Examining an
arc from X to X in G that has Xy > Uy and z„- -c„ < 0, we see from Figure 11.3

that as # increases, Ky decreases from Ky= \xy -tyl to Ky = \xy -w„- and

thereafter remains constant. Thus, for such an arc, we can increase Θ as much as
we like and the arc's kilter number will never increase. Hence, such an arc gives
rise to an upper limit on #of cc, as indicated in Figure 11.8a. Any arc from X to
X in G that has Xy = Uy and zy - Cy < 0 will have its kilter number first

decrease and then remain unchanged as Θ increases (why?). Thus, again co is an
upper limit on the permitted change in Θ for such an arc to ensure that no kilter
number will worsen. However, examining an arc from X to X in G that has iy

< Xy < Uy and z„ - c„- < 0, we see that the associated kilter number Ky first

decreases (to zero), then starts to increase. In order to eliminate the potential

increase in Ky for the arc we must place a limit of \zy -Cy\ on Θ. Similarly, we

must place a limit of z„· -c„· on #for arcs having Xy = iy and z„- -c„- < 0. This

analysis justifies the entries in Figure 11.8. Each of the possible cases for arcs in
(X, X) is graphically portrayed in Figure 11.8b.

A similar analysis of arcs from X to X in G gives rise to the information
in Figure 11.9.

580 Chapter 11

Insofar as worsening of kilter numbers is concerned, Figures 11.8 and 11.9
indicate that we need only compute Θ based on arcs from X to X having x; <

Ujj and arcs from X to X with Xy > £y. However, if we proceed to define a

method of computing Θ based only on these considerations, difficulties would
arise in interpreting the meaning of the value Θ = co. Matters are greatly
simplified if, instead of strict inequalities on flow (that is, Xy < Uy and Xy >

£y), we admit weak inequalities on flow (that is, Xy < Uy and Xy > (y). The

reason for this deviation from intuition will become apparent when we proceed
to establish convergence of the algorithm.

(X,X)^

Xy>Uy ,

xij=uij I

ii<x<i<ua\

X- -(.■■ i Λ*7 ιν 1

x- <(■■

zv-C{j<Q zij- - c , = 0 Zii~Cy>0

P:· rl*

p m rA*

P , . rT

P „ .

Pi

Ps

1

1

PJ .

p6

1 *
J y

-

Γ

Implied
limit on Θ

6><oo

<9<oo

θψν-ΰ·ί\

e**i-cy

Figure 11.8. Possible kilter states for arcs from AT to X in G and limits on Θ.

The Out-of-Kilter Algorithm 581

xij>uij

xij=uij

ij < xij < uij
f

x - =!■■ '
V V 1

x <(■■ i

h -Cij< 0

Ps

%

zff-cii = 0

,P
" 4

.*

Zy-Cy>0

• P
t / * W X Z

• P ■ ri

t P ■ * t >

limit on Θ

\ *Φ*-<ν
I H2*"^

] #<oo

1 <9<oo

(Χ,Χ) (a)

Figure 11.9. Possible cases for arcs from X to Xin G and limits on Θ.

The previous discussion concerning limits on Θ based on kilter number
considerations and on (yet to be established) convergence properties leads to the
following formal procedure for computing Θ.

In G define S\ and S2 by

S\ = {(*', j) :ieXJs X, z^ - ctj < 0,xtj < utj}

and

Let

S2={(i,j):ieX,jeX,zij- ctj >0,χϋ>ί y}.

9\ = minimum {\zu - c,-,·}
(Uj)eSl

 l J Ji

θ2 = minimum {z„ - c - }
(z,/)eS2 ' 7 |

= minimum {θ\,θ2},

where #,· = co if S, is empty. Thus, # is either a positive integer or oo. These

two possibilities are briefly discussed.

582 Chapter 11

Case l : O<0<oo.

In this case, we make the appropriate changes in w,· (that is, w\ = w,· + Θ if

i e X and w\ = vv; if / ε X) and pass to the primal phase of the algorithm.

Case 2: θ=<χ>.

In this case, the primal problem has no feasible solution. (We shall show this
shortly.)

This completes the specification of the dual phase of the out-of-kilter
algorithm and provides the foundation of the overall out-of-kilter algorithm.

As an illustration, consider the example of Figure 11.1 with the current
solution specified by Figures 11.6 and 11.7. Here,

S, ={(1,2)}, θχ=\-2\=2

S2={(2,3)}, 0 2 = | 3 | = 3

θ= minimum {2, 3} = 2.

This gives rise to the following change in dual variables:

w{ = Wj + Θ = 2
w2 = w2 = 0

W3 = W3 + Θ = 2

w\ = w4 + Θ = 2.

The Xj— values and the new (z^ -c,-.-)-values are given in Figure 11.10a. Passing

to the primal phase of the out-of-kilter algorithm, we see that G' in Figure
11.10b contains a circuit involving arc (2, 3), and so we may change the flows.
The remaining iterations are not shown.

There is really no need to work directly with the dual variables them-
selves since we may transform the (z,·.- - c;y)-values directly as follows:

(Zj-Cj) if is X,j sXorie X,j ε X

izij-cij)' = \{zij-cij) + e i f ieX,jeX
(zy -Cy)-e if isX,jeX.

In Exercise 11.18 we ask the reader to show how the dual variables can be
recovered from these (z^ - c„-) -values anytime we need them. Note that the

(z„ - Cjj) -values are integral (why?).

The Out-of-Kilter Algorithm 583

M\ = 2 w,=0

Z41~c41 - 0
x41:

Permitted
flow

change

(a) G (b) G

Figure 11.10. The new solution obtained from Figure 11.6 after the first dual
variable change.

As an example of infeasibility, consider the example network of Figure
11.11a. Selecting a set of xy- and wi -values, we find in Figure 11.1 lb that arc

(2, 1) is out-of-kilter. Setting up G' in Figure 11.11c, we find no circuit con-

taining the arc (2, 1). In this case, X= {1} and X = {2}. Here, Sx=0 (the

empty set) and S2 = 0, and thus θ= <x>. It is clear by examining w12 and i2i

that no feasible solution exists.

Infeasibility of the Problem When θ= οο

Suppose that during some application of the dual phase of the out-of-kilter
algorithm, we reach the case where Θ = co. When this occurs, we must have S\

= S2 = 0 . Since Si = 0 , then by reviewing the definition of S\, we conclude

that i e X and j e X imply one of the following cases:

1. ZJ: - Cy < 0 and % > u^ ;

zy-cy =0;

zij-cv > 0 ·

From Figure 11.8 and since / e X and j ε X, possibility (2) or (3) can hold only

if Xj- > Uy. Hence, S^ = 0 holds true only if x,y > Uy for / e X and j e X.

Similarly, S2 - 0 holds true only if / e X and j e X implies that x^ < (.y.

Hence, Sl = S2 = 0 implies

ieXJeX (11.6)

and
x - <(■■

Xy -Uy

if

if ieXJsX. (11.7)

584 Chapter 11

(£,u,c)

VM

(a) G

1

Permitted flow
change

ccz^

(b) wi,xij,SDàzij-ci v ' — v v

(c) G' (d) J i andX
Figure 11.11. An example of an infeasible network.

In particular, consider the out-of-kilter arc (p, q) in G'. lf(p, q) is in G, then by
Equation (11.7) we have x

of-kilter, then z
PI ■ pq

. Suppose that x
PI -pq

. Since (p, q) is out-

pq - cpq > 0, violating the assumption that 52 = 0 . Thus,

xpq ^lpq If, on the other hand, (q, p) is in G, then by a similar argument, we

may show that x„ > uqp. Thus, at least one of the inequalities (11.6) or (11.7) is

strict. Summing these two inequalities, we get

ieZ ieX ieX
jeX jeX jeX

Since the current flow given by the x„· -values is conserving, then the equality

constraints in Problem (11.1) hold true. Noting that the node set consists of X u X
and that X n X = 0 , these conservation of flow constraints can be written as

i= \,...,m.

Σ xu
ieX
jzX

2- xy "*" 2._ ·*« 2. x/i 2._ *// — u,
yejr ;ex ye* y6x

Summing these equations over i e X, we get

Σ xs

Noting that

and that

2. Χη ' L xij 2 . % ji
ieX ieX jeX ieX
jaX j&X jex jeX

2_, Xy 2_ Xjj,
ieX jeX

= 0.

Lu X ji 2J xii >
i<=X
jeX

ieX
jeX

the foregoing equation reduces to

The Out-of-Kilter Algorithm 585

Σ * 0 - Σ * « = Ο . (11.9)
ieX ieX

jeX JEX

Substituting in Equation (11.8), we get
0 > Σ « , ν - Σ Λ - (11-10)

ieX ÌGX
j&X jeX

Suppose by contradiction that there is a feasible flow represented by L· for i,j

= \,...,m. Therefore, uy > Xy and -£y > -L·, and so, Equation (11.10) gives
o> Σ « ι ? - Σ ^ · > Σ % - Σ % - (ii . l i)

;eX ieX / e * ieX
JeX JeX jzX j^X

But since the L· -values represent a feasible flow, they must be conserving. In a

fashion similar to Equation (11.9), it is clear that the right-hand-side of the
inequality in (11.11) is equal to zero. Therefore, Equation (11.11) implies that 0
> 0, which is impossible. This contradiction shows that if Θ = co, there could be
no feasible flow.

Note that if we had defined S{ and S2 by strict inequalities on Xy (namely,

Xy < Uy and Xy > ly, respectively), we could not have produced the strict

inequality needed in Equation (11.8).

Convergence of the Out-of-Kilter Algorithm

For the purpose of the following finite convergence argument we make the
assumption that the vectors £, u, and c are integer-valued.

In developing a finite convergence argument for the out-of-kilter
algorithm, there are several properties of the algorithm that should be noted.
First, every time a circuit is constructed in G' containing an out-of-kilter arc,
the kilter number of that arc and of the total network is reduced by an integer
(why?). We can construct only a finite number of circuits containing out-of-
kilter arcs before an optimal solution is obtained (why?). Second, after each dual
variable change, the kilter state of each arc in G that has both ends in X remains
unchanged. Hence, if (p, q) is not in kilter, then after a dual variable change,
each node in X before the change is in X after the change. Two possibilities
exist. One possibility is that a new node k may be brought into X by virtue of an
arc being added in G' from some node in Xto node k. Each time this occurs the
set X grows by at least one node. This can occur at most a finite number of times
before node/? becomes a member of Xand a circuit is created containing (p, q).
Thus, if the algorithm is not finite, it must be the case that an infinite number of
dual variable changes take place without the set X increasing or Θ equalling co.
We shall show that this cannot occur.

Suppose that after a dual variable change, no new node becomes a member
of X; that is, Xdoes not increase. Then, upon passing to the next dual phase, we
have the same sets X and X and the same xit -values. In addition, each arc

http://ii.li

586 Chapter 11

from X to X has had its Zy - Cy increased and each arc from X to X has had

its z,y - cy decreased. Thus, after the dual variable change, the new sets S{ and

S2 satisfy

S{ c S} and S2 c S2

(why?). Furthermore, by the choice of the (finite) value of Θ, at least one arc has
been dropped from either Sj or S2. Thus, at least one of the foregoing inclusions

is proper. Now, Sl and S2 may decrease at most a finite number of times before

SiuS2 = 0 and Θ = 00 occurs, in which case the algorithm stops.

This completes a finiteness argument for the out-of-kilter algorithm. We
now summarize the algorithm and present an example.

11.3 SUMMARY OF THE OUT-OF-KILTER ALGORITHM

The complete algorithm consists of three phases: the initialization phase, the
primal phase, and the dual phase.

Initialization Phase

Begin with a conserving (integer) flow, say, each Xy = 0, and an initial set of

(integral) dual variables, say, each w;· = 0. Compute ζ(- -Cy = w,· - w- -Cy.

Primal Phase

Determine the kilter state and the kilter number for each arc. If all arcs are in
kilter, stop; an optimal solution has been obtained. Otherwise, select or continue
with a previously selected out-of-kilter arc. From the network G construct a
new network G' according to Figure 11.4. For each arc (z, j) in G that is in a
kilter state that permits a flow increase, place an arc (i,j) in G' with a permitted
flow increase, as indicated in Figure 11.4. For any arc (i,j) in G that is in a kilter
state that permits a flow decrease, place an arc (/', /') in G' with the permitted
flow as indicated in Figure 11.4. For those arcs in G that are members of states
that permit no flow change, place no arc in G'. In G\ attempt to construct a
circuit containing the selected out-of-kilter arc (p, q). If such a circuit is
available, we have a breakthrough. Determine a flow change Δ equal to the
minimum of the permitted flow changes on arcs of the circuit. Change the flow
on each arc of the associated cycle in G by the amount Δ using the orientation
specified by the circuit as the direction of increase. In particular, let x'y = Xy +

A if (i, j) was a member of the circuit in G'; let x'y = Xy - A if (j, i) was a

member of the circuit in G'; let x'y = Xy otherwise. Repeat the primal phase. If

no circuit containing arc (p, q) is available in G', we have a nonbreakthrough,
and we pass to the dual phase. (Note that the construction of the tree T described
in Section 11.2 can be used to detect breakthroughs or a nonbreakthrough, in
lieu of actually constructing the graph G'.)

The Out-of-Kilter Algorithm 587

Dual Phase

Determine the set of nodes X that can be reached from node q along a path in
G'. (This is available via the tree T constructed as in Section 11.2.) Let
X =._ / -X. In G, define Sx and S2 by

5, = {(/, j) :ieX,je X, zy - Cy < 0, Xy < Uy}

S2 = {(}, j) :ieX,je X, zy ~ Cy > 0,Xy >£y}.

Let

Θ = minimum {z· - c,·,· , °o}.
(i,j)^SluS2 ' J 7 |

If θ = κ>, stop; no feasible solution exists. Otherwise, change the w, -values

and the corresponding (z« - <:,%■) -values according to:

w,· +6* if ieX

(zii-cii)' =

if / e l

(^■-c^·) if (i,j)e(X,X)v(X,X)

(zy-Cy) + 9 if (/ ,7)e(X,X)
(zy-Cy)-O if 0,7) e (* , *)

and pass to the primal phase.

11.4 AN EXAMPLE OF THE OUT-OF-KILTER ALGORITHM

Consider the network given in Figure 11.12. Initializing the out-of-kilter algo-
rithm with each xy = 0 and each

phases given in Figure 11.13.

: 0, we get the sequence of primal and dual

^(^ij'Uij'Cij)

(0, 4, -3)

(2,5,-1)
Figure 11.12. An example network.

588 Chapter 11

w7 - 0

»i =0 (7

(b) Nonbreakthrough and the First Dual Phase

H>2 =3

3 j ^ 5 = 0

(c) Nonbreakthrough and the Second Dual Phase

w = 4 (l)

(p,?) = (l,2)
C= {(1,2), (2, 4), (4, 5), (5,1))
Δ = 2

(A?)=(3,4) _
X = {l,2,4,5},A- = {3}
S,={(2,3)},S2 = {(3,4)}
0 = 3

(3, 4) is in-kilter
(/>,<j-)=(4,5)

Χ = {1,5},Α' = {2,3,4}
Sj = {(l,2),(5,2)}
S2 = {(4,5)}
0 = 1

* O * Λ
%? xi2-AJC23=U

3^)^3=0 2̂4 = 2^34=0

X45 — z, X5] — Z

X52=0,z* = 0

4 '

w 4 = 3

(d) An Optimal Solution

Figure 11.13. The out-of-kilter method solution for Figure 11.12.

The Out-of-Kilter Algorithm 589

11.5 A LABELING PROCEDURE FOR THE
OUT-OF-KILTER ALGORITHM

Either for hand or computer calculations there are simple and convenient ways
to maintain the information required to solve a minimal-cost flow problem by
the out-of-kilter algorithm. Suppose that we associate with each node j a label
L(j) = (+/, Aj). A label (/, Aj) indicates that the flow on arc (z, j) could be

increased by an amount Δ ,· without worsening the kilter number of any arc. A

label (-;', Δ) indicates that the flow on arc (j, /) could be decreased by an

amount Δ without worsening the kilter number of any arc. Note that Δ repre-

sents the current estimate of the amount of flow change that can take place along

some cycle containing an out-of-kilter arc and either arc (/', j) or (j, i) in such a

way that the kilter number of no arc is increased. The labeling algorithm

becomes as follows.

INITIALIZATION STEP

Select a conserving flow, for example, each xy = 0, and a set of dual variables,

such as each w,- =0.

Main Step

1. If all arcs are in kilter according to Figure 11.2, stop; an optimal solution is
obtained. Otherwise, select (or continue with a previously selected) out-of-
kilter arc, say (s, t). Erase all labels. If (s, t) is in one of the states where a
flow increase, Δ^, is required according to Figure 11.4, then set q = t,p = s,

and L(q) = (+p,Ast). Otherwise, if (s, i) is in one of the states where a flow

decrease, Δ^ , is required according to Figure 11.4, then set q = s, p = t,

and L(q)= (-p,As,)-
2. If node / has a label, nodey has no label, and flow may be increased by an

amount Δ,·.· along arc (/,_/) according to Figure 11.4, then assign nodey' the

label L(j) = (+ /, Δ) where Δ ■ = minimum {Δ,, Δ,γ}. If node i has a label,

node/ has no label, and flow may be decreased by an amount Δ ,-,· along arc

(J, i) according to Figure 11.4, then give nodey the label L(J) = (-ϊ,Δ,·)

where Δ = minimum (Δ;·,Δ 7) . Repeat Step 2 until either node/? is labeled

or until no more nodes can be labeled. If node/? is labeled, go to Step 3 (a
breakthrough has occurred); otherwise, go to Step 4 (a nonbreakthrough
has occurred and the labeled nodes are in the tree 7).

590 Chapter 11

3. Let Δ = Δ„. Change flow along the identified cycle as follows. Begin at

node/?. If the first entry in L(p) is +k, then add Δ to x^. Otherwise, if the

first entry in L(p) is -k, then subtract Δ from xplc. Backtrack to node k and

repeat the process until node p is reached again in the backtracking process.
Go to Step 1.

4. Let X be the set of labeled nodes and let X = = / -X. Define Sj = {(i,j):

iel,jeX, zy -cy < 0, Xy <uy) and S2 = {(/,/): ieX, jeX, zy -ci}

> 0, xy ^iy}. Let Θ = minimum Uzy - Cy , co: (z, j) e S\ u S2} ■ If Θ = co,

stop; no feasible solution exists. Otherwise, let
[WÌ+Θ if ieX

(zg-Ci,)'--

Wi \Wi if ieX

and

\zy-cy) if (i,j)e(X,X)u(X,X)
(zy-cy) + e if (i,j)e(X,X)
(zy-cy)-e if (i,j)e(X,X)

and return to Step 1.

An Example of the Labeling Algorithm

We shall illustrate the labeling method for the out-of-kilter algorithm by
performing the first two iterations represented in Figure 11.13a and b. From
Figure 11.13a we find that arc (1, 2) is an out-of-kilter arc whose flow must be
increased.

The sequence of operations of the labeling algorithm are as follows:

1. (s,/) = (1, 2), 4 = 2,/? =1,1(2) = (+1,2).
2. L(4) = (+2,2).
3. Z(5) = (+4,2).
4. Z(l) = (+5,2).
5. Breakthrough: Δ = 2.

6. Li(l) =+5 => x'5l =x5l +Δ = 2.

7. Li(5) = +4=>x^5 = χ 4 5 + Δ = 2.

8. I , (4) = +2 => χ'24 = χ24 + Δ = 2.

9. Z1(2) = +l=>x{2 =x\2+A = 2-
10. Erase all labels, (s, t) = (3,4),q = 4,p = 3, L{4) = (+ 3, 4).
11. 1(5) = (+4, 3).
12.1(1) = (+5, 3).
13.L(2) = (-4,2).
14. Nonbreakthrough: X= {1, 2,4, 5}, X = {3}, θ= 3.
15. Wy = W2 = W4 = W5 = 3, H>3 = 0.

file:///zy-cy

The Out-of-Kilter Algorithm 591

Since arc (3, 4) is now in-kilter, we select another out-of-kilter arc, erase all
labels, and continue.

11.6 INSIGHT INTO CHANGES IN PRIMAL AND
DUAL FUNCTION VALUES

It is instructive to see how the primal (penalty) and dual objective function
values change in the primal and dual phases of the out-of-kilter algorithm. Not
only does this provide an alternative convergence argument in which we need
not necessarily work on the same out-of-kilter arc until it comes in kilter, but it
also provides an insight into other acceptable ways of modifying primal and
dual solutions.

First, consider the primal phase. Define for each arc (/, J) in G a function
jR.· (Xjj) that measures the infeasibility of a conserving flow x as follows:

Pjj (xij) = maximum {0, iy - x-.·} + maximum {0, Xy - if,·}.

Note that Py(xy) = 0 if and only if ly < x;: < Uy, and is positive otherwise.

Construct a primal penalty functionfix) defined for any conserving flow x as
follows:

/ (x) = a + M Z f t (*) (H.12a)
(U)

where M i s sufficiently large (for example, M>2 Σ c^-piax {«iy- iy, \uy ,
(ij)

k,y }, assuming that -°° < ly < uy < °° and that the algorithm is initialized with
Xlj = 0 for all (/,/). Observe that the function fix) composes the original objec-
tive function with a penalty term and is similar to the big-M objective function.
For x restricted to be flow-conserving, we have Ax = 0 and so, wAx = 0.
Subtracting wAx = 0 from the expression in Equation (11.12a) and noting that
(c - wA) has components (cy -Zy), we can equivalently rewrite this function as

/(x) = Σ icy -zy^j + ΜΣ Ifj(xij) (11.12b)

for any conserving flow x. Whenever we have a breakthrough in the primal
phase, we modify the flow in a cycle in G such that no kilter number worsens,
and the kilter number of at least one arc strictly reduces. In particular, no Pu^xy)

term increases (why?). If any such term decreases (by an integer), then since M
is large enough, so does the value of./(■). On the other hand, if no Py(xy) term

decreases in the cycle, then we must have £y < xy < uy for all arcs (/,/) in this

cycle (why?). Thus, the penalty term in Equation (11.12) remains constant
during the flow change. However, from Figure 11.4 and the foregoing fact, if
any arc (i,j) in the cycle satisfies Zy -Cy < 0, then we must have ly < XJ: < uy

and Xy must be decreasing in the breakthrough. Similarly, if zy — c« > 0 for any

592 Chapter 11

arc (/,/) in the cycle, then we must have iy < xy < Uy and X;: must be increasing

in the breakthrough. In either event, the first term in Equation (11.12b) strictly
falls. Because we cannot have Zy ~ Cy = 0 for all arcs (/, j) in the cycle in this

case (why?), we again obtain a strict decrease in_/(■). Therefore,_/()falls by an
integer at every primal breakthrough.

Next, consider the dual phase. Note from Equations (11.4) and (11.5) that
hjj - v« - (z» - c«) = 0 for all (/, j). Using the current primal flow x, we can

equivalently rewrite the dual objective function as follows:

Σ Xy(cy-Zy) + Σ {tij-Xij>ij+ Σ (Xij-Uij)hj- (11-13)
(hj) ('■>./) i'J)

During the dual phase, assuming that θ< °°, we note that Zjj ~Cy increases by Θ

for all (i,j) e (Χ,Χ), and decreases by θΐοτ all (i,j)e (X,X). Hence, from

Equation (11.9), the first term in Equation (11.13) remains constant (why?).

Next, consider an arc (i , /)e {X,X). Referring to Equations (11.4) and (11.5)

and Figure 11.8, suppose that cjy = zy - c« < 0. Since cy increases by Θ, we have

that vy decreases by Θ and h» remains zero in case iy < Xy < uy, and v,y

decreases by min {Θ, \cy\} and h» increases by max {0, Θ-icy } in case x^ >

uy. Therefore, the corresponding term (ly - Xjj)vy + (xy - ui\)^hj in Equation

(11.13) remains unchanged if and only if Xjj = iy, that is, arc (i,j) is in-kilter,

and increases by a positive integer otherwise. Furthermore, if zy - Cy > 0, then

hy increases by Θ, Vy remains zero, and we have Xy > Uy. Consequently, the

corresponding term in Equation (11.13) remains unchanged if and only if Xjj =

Uy, that is, arc (/, j) is in-kilter, and increases by a positive integer otherwise.

Similarly, consider (i,y)e (X,X). lfcy=Zy - c« > 0, then hy falls by ^and Vy

remains zero in case £y < Xf: < uy, and Ẑ ·.· falls by min {Θ, cy) and vy increases

by max {0, Θ-Cy} in case Xjj < iy. On the other hand, if zy -Cy < 0, then vy

increases by Θ and /%,· remains zero, while we have Λ ·̂ < iy. Again, the

corresponding term in Equation (11.13) remains unchanged if and only if (/,/) is
in kilter, and increases by a positive integer otherwise. Because the out-of-kilter
arc (p, q) is either in (X, X) or (X, X) in G, we obtain a strict increase (by an
integer) in the dual objective value during any iteration of the dual phase.

Because the primal penalty function _/(·) in Equation (11.12) falls by an
integer in a primal breakthrough, and the dual objective function (11.13)
increases by an integer in every dual phase iteration, the difference given by the
primal minus the dual function values (call it the duality gap) falls by an integer
every iteration. Hence, if 5j = 0 and S2-0 is not realized, the duality gap

The Out-of-Kilter Algorithm 593

must become nonpositive finitely. In this event, if PAxy) = 0 for all (/,/), that

is, we have feasibility, then the current solution (x, w) is primal-dual optimal.
On the other hand, if some PAxy) is positive, then since it is an integer, we

have from Equation (11.12a) that the dual value is > ex + M >

Σ(/ ,·)icy max {My , \tjj\}· This exceeds any possible feasible value realizable in

Problem (11.1). Hence, the dual is unbounded and the primal is infeasible, and
so we may terminate.

For the illustrative example of Section 11.4, we compute M> 2(4 + 6 + 5
+ 15 + 12) = 84, say, M= 85. For the starting solution (x,w) = (0, 0), we have

flO) = M(2 + 2) = AM= 340 and the dual objective value is 2 - 5 - 1 2 = - 1 5
from Equations (11.12) and (11.13), respectively. After the first breakthrough,
the primal penalty function value becomes 2(1) + 2(-l) + M(0) = 0. Note that
feasibility is achieved and will be maintained by the algorithm henceforth
(why?). After the first dual phase, the dual objective value becomes 1(2 - 5) =
- 3 , which is an increase of 12 units from -15. After the second (consecutive)
dual phase, the dual objective value also becomes zero. Thus, we achieve optimality.

Observe that by keeping track of the duality gap, we need not work with
the same out-of-kilter arc until it comes in-kilter in order to guarantee finite
convergence. Furthermore, any algorithmic scheme that ensures that the duality
gap decreases from its previous lowest value (not necessarily monotonically) by
an integer at finite intervals, is guaranteed to converge finitely.

11.7 RELAXATION ALGORITHMS

We close our discussion in this chapter by providing some elements of another
highly competitive class of primal-dual methods, known as relaxation algo-
rithms, for solving minimal-cost network flow programming problems. (Actu-
ally, this technique can be extended to solve general linear programming problems
as well.) The approach adopted by this algorithm is to maintain dual feasibility,
along with complementary slackness with respect to a pseudoflow, where the
latter satisfies the flow-bounding constraints but not necessarily the flow
conservation equations. The method then strives to attain primal feasibility via
suitable flow augmentations, and in the event of a specific type of primal
nonbreakthrough following certain flow adjustments, it modifies the dual
variables in order to obtain a dual ascent.

To elucidate somewhat further, consider a minimal-cost network flow
problem that is cast in the following form:

Minimize {ex: Ax = b,0< x<u} (1114)
m

where A is an m x n node-arc incidence matrix of a connected digraph, Σ ty = 0,

and where 0<«y <co, V(i,_/). Examining (7.16) and (7.17), we can write the

Lagrangian dual to Problem (11.14) as follows:
Maximize {#(w) : w unrestricted} (11.15a)

where

594 Chapter 11

θ(\ν) = wb + minimum {(c -wA)x:0<x<u} (11.15b)

= wb - maximum {(wA - c)x : 0 < x < u}.

Note that if we define c^ =z^ -cy· =-w; -Wj -cy-,V0',/), as before, we can sim-

plify the computation of #(w) in Equation (11.15b) as:

0(^0 = wb-ZIw / y max {0,^·}. (11.15c)
(ij)

Now, suppose that we have a current dual solution w. (To begin with, we
can use w = 0, or estimate some advanced-start solution.) Let x evaluate #(w)
via Equation (11.15b). If this pseudoflow x is a "flow," i.e., it also satisfies
Ax = b, then x is a primal feasible solution for which <9(w) = wb +(c - wA)x =
ex + w(b - Ax) = ex. Hence, the dual and primal objective values match, and so,

x and w are respectively optimal to the primal and dual problems. Otherwise,
we compute the net excess function e(/) = Z>,-A,-x at each node / = 1,..., m,

m m
where A,· is the rth row of A. Note that since Σ ty = 0 and Σ A; = 0 (why?), we

i=l i=l
m _

have that X e(i) = 0. However, since Ax Φ b at this point, some nodes have a
i = l

net excess resident supply (e(i) > 0), and some other nodes have a net unsatis-

fied demand requirement (e(r') < 0). Observe also that in the solution of the

subproblem (11.15b), if c„· > 0, then we must have x},- =«„·, and if c,-.· < 0, then

we must have x„· = 0. However, if c„· = 0, then we have the flexibility of select-

ing any value for x„· e[0,w„]. The relaxation algorithm (so-called because of

this Lagrangian relaxation framework employed) consequently attempts to begin

with some node t having e(t) > 0, and examines if this excess net supply can be

dissipated from node / along an incident arc (t, j) that has % = 0, or in the

reverse direction along an incident arc (/', t) that has c,·, = 0. If saturating these

arcs (i.e., making the maximum permissible flow augmentations along these
arcs) yet leaves an excess supply, then a single-node nonbreakthrough results.
In this event, the dual variable value wt of this node can be increased to obtain
a dual ascent, thereby indicating that w was indeed a non-optimal dual solution
(see Exercise 11.35; in fact, it is the frequent occurrence and the efficiency of
such single-node dual ascent steps that are largely responsible for the
computational effectiveness of this method.) Naturally, if this dual ascent leads
to an indication of unboundedness of the dual problem, then we can declare the
primal problem to be infeasible and terminate the algorithm. Otherwise, in case
all the excess e{t) can possibly be dissipated, the procedure dissipates this excess
only in a fashion such that the receiving node/ has e(j) < 0. In this manner, the
resultant primal breakthrough improves the overall feasibility of the current
primal solution x (while maintaining it optimal for Problem (11.15 b)), without

The Out-of-Kilter Algorithm 595

worsening any excess function values (i.e., without driving any of these values
further away from zero). If e(t) gets reduced to zero, then we select another node
that has a positive excess (if it exists; else we have achieved optimality), and we
repeat this process. On the other hand, if e(t) is still positive, then we begin
growing a tree T comprised of nodes having nonnegative excess values and
connecting arcs that have zero (f -values and that have positive residual
capacities (i.e., would permit a flow change leading away from node t). In this
process, treating the nodes in T as a supernode of the type / in the foregoing
single-node case, and treating the cut [T,T] as the arcs incident at this
supernode, we again seek a similar type of dual ascent, or a primal
breakthrough, or else, grow the tree further. Therefore, while the dual solution is
not yet optimal, because the excess function imbalances do not worsen and the

m

total imbalance Σ | e(01 strictly falls finitely often while the dual solution

remains unchanged, we finitely obtain a dual ascent by at least a unit amount.
Hence, either a dual ascent leads to dual unboundedness (thereby establishing
primal infeasibility), or we attain dual optimality finitely. Thereafter, we must
obtain a sequence of primal breakthroughs, resulting in a finite convergence to a
pair of primal and dual optimal solutions. We refer the reader to the Notes and
References section for further details on this algorithm. Also, see Exercise 11.43
for some related dual ascent concepts.

EXERCISES

[11.1] Show by manipulating the constraint equations mathematically that any
minimal-cost network flow problem of the type discussed in Chapter 9 can be
transformed into the out-of-kilter form (11.1) with, in particular, 0 < £y < Uy <

oo, V(/, _/'), by adding an additional node and at most m additional arcs. Explain

how you would compute, and use in this context, upper bounds on the values
that the variables can attain at extreme point solutions.

[11.2] Consider the minimal-cost network flow problem: Minimize ex subject
to Ax = b, i < x < u, where A is a node-arc incidence matrix. Define a
conserving flow to be any x satisfying Ax = b (the conservation equations).
Show that without transforming the network to the out-of-kilter form, the out-
of-kilter algorithm can be applied directly on the original network with a
starting conserving flow to solve the problem.

[11.3] Referring to Exercise 11.2, suppose further that we initialize the algo-
rithm with a (possibly artificial) conserving flow that is also feasible to the
bounds. Develop in detail the primal and dual phases of the algorithm. State the
possible cases that may arise in this specialization. Also, show directly that the
primal and dual objective values strictly improve during a (primal) breakthrough
and during a dual phase, respectively.

[11.4] Solve the following problem by the out-of-kilter algorithm:

596 Chapter 11

(i,u,c)

(1,4,-2)

[11.5] Solve the problem of Exercise 11.4 after replacing (^31,«31,c31) for arc

(3,1) by (-1,5, 5).

[11.6] Consider the following network flow problem:

(l,u,c\

a. Give the kilter state of each arc.
b. Solve the problem by the out-of-kilter algorithm.

[11.7] Solve the following problem by the out-of-kilter algorithm:

,u,c)

[11.8] Show how the out-of-kilter algorithm detects infeasibility in the follow-
ing problem:

The Out-of-Kilter Algorithm 597

(i,u,c)

(1,2,2)
[11.9] Solve the following problem by the out-of-kilter algorithm:

2) Al,u,c)

(0,5,-1)

[11.10] Consider the following network flow problem:

2 (i,u,c)

ò, =5f 1 4) b d = ^

Z>3=-5

a. Solve the problem by the network simplex method of Chapter 9.
b. Transform the problem into a circulation form and solve it by the

out-of-kilter algorithm.

[11.11] Consider the following network flow problem having flows as indicated:

(2,5,-1)
2 > 2 = 2

(0,6,3)'
■ (£,u,c)

x34 = 0
:^4

a. Ignoring the fact that the fy-values are not zero, apply the out-of-
kilter algorithm directly to the foregoing network with the starting
x;-.-values as given.

b. Solve by the network simplex method of Chapter 9.
c. Are the solutions of Parts (a) and (b) the same? Discuss!

598 Chapter 11

[11.12] Show that after each dual phase we can replace each new w; by w,· -
wk, where k is some arbitrary node, and the out-of-kilter algorithm remains
unaffected. (In a computer implementation, we might do this to force one dual
variable, such as wk, to remain zero and keep all of the dual variables from
getting too large.)

[11.13] How can alternative optimal solutions be detected in the out-of-kilter
algorithm?

[11.14] Explain in detail the data and list structures you would use in order to
efficiently implement the out-of-kilter algorithm. Compare your storage require-
ment with that for a primal (network) simplex implementation.

[11.15] In the primal phase of the out-of-kilter algorithm, suppose that we need
to find a (directed) path from q to p (in G'), given an out-of-kilter arc (p, q).

Consider the construction of the usual flow change tree T described in Sections
11.2 and 11.5. Recall that starting with T= {q}, each node that is included in T
receives a label equal to the (positive) flow it can receive from q. Suppose that
at each step we add to T that node, which among all candidates that can be
connected to nodes already in T, can receive the largest flow change label. Show
that if p e T, then this procedure will have found the maximum flow change

path from q top in G'.

[11.16] Is there any difficulty with the out-of-kilter algorithm when tj- = w;-

for some (i, j)l Carefully work through the development of the out-of-kilter
algorithm for this case!

[11.17[Suppose that we have a feasible solution to Problem (11.1). Assuming
that the selected arc remains out-of-kilter, is it possible for no new node to
come into Xafter a dual variable change? Discuss!

[11.18] Suppose that we work only with the (z,·.· - c,-,)-values after the initial

dual solution and never bother to change the w;-values. Show how the up-

values can be recovered anytime we want them. {Hint: The w;-values are not

unique. Set any one wi = 0.)

[11.19] Interpret the dual of the out-of-kilter formulation of Problem (11.1)
from a marginal-cost viewpoint.

[11.20] Show that the dual solution given in Section 11.1 is optimal for a fixed
set of Wj -values.

[11.21] Demonstrate directly that the dual objective function value is unbounded
as Θ —* oo when S\ = 0 and S2 = 0 during the dual phase of the out-of-kilter

algorithm.

[11.22] Considering the out-of-kilter problem, show that a feasible solution
exists if and only if for every choice of X and X = * / ' — X we have

The Out-of-Kilter Algorithm 599

Σ tij < Σ Uij
ieX ieX

jeX jeX

(Hint: Review the section on the case where θ= οο.)

[11.23] Is there any problem with degeneracy in the out-of-kilter algorithm?
[11.24] If during the primal phase we permit some kilter numbers to increase as
long as the sum of all the kilter numbers decreases, will the out-of-kilter algo-
rithm work? How could this be made operational?

[11.25] Extend the out-of-kilter algorithm to handle rational values of Cy, iy,

and Uj- directly.

[11.26] In the out-of-kilter algorithm, show that if no cycle exists in the subset
of arcs in G with Xy Φ ty and Xy Φ Uy, then the current solution corresponds

to a basic solution of the associated linear program. Indicate how the out-of-
kilter algorithm can be initiated with a basic solution if one is not readily
available. Illustrate using the network given below with the indicated conserving
flow. (Hint: Start with a conserving flow. If a cycle exists among arcs where Xy

Φ £y and Xy Φ Uy, consider modifying the flow around the cycle in a direction

that improves the penalty function value in Equation (11.12).)

r?\ (4>7>4) , y r \

/ (i,u,c)

(0,4,2)
x23=\

v_y x34 -1 v_y

[11.27] Using the results of Exercise 11.26, if the out-of-kilter algorithm is
initialized with a basic solution to the linear program, show how a basic solution
can be maintained thereafter. (Hint: Let E = {(/, j): Xy Φ ly and Xy Φ uy).

Start with only appropriate arcs associated with E as members of G'. Whenever
a circuit exists, change flows. Eliminate any residual cycles in E, as in Exercise
11.26. Otherwise, after developing X, add an appropriate arc to G' that is not a
member of E and that enlarges X; then work with E as much as possible again. If
no circuit still exists in G', add another arc that is not in E but does not enlarge
X. Continue as often as necessary. If no such arc that does not belong to E exists
that enlarges X, then pass to the dual phase. This is an example of block
pivoting.)

[11.28] Suppose that we are given a network having m nodes and n arcs, all
lower bounds equal to zero, positive upper bounds, and no costs involved. Show
how the out-of-kilter algorithm can be used to find the maximum amount of

600 Chapter 11

flow from node 1 to node m. {Hint: Consider adding an arc from node m to node
1 with £ml = 0, umX = oo, cml = -1 with all other c^ -values set at zero.)

[11.29] Find the maximum flow in the following network from node 1 to node
4 using the out-of-kilter algorithm. (Hint: Refer to Exercise 11.28.)

[11.30] Suppose that we are given a network having m nodes and n arcs with a
cost Cjj for each arc. Assume that there are no negative total cost (directed)

circuits. Show how the out-of-kilter algorithm can be used to find the shortest
(least) cost path from node 1 to node m via the following construction. Add an
arc from node m to node 1 having £ml =um\ = 1 and cm] = 0. Set the lower and
upper bounds of all other arcs at 0 and 1, respectively. Can this scheme be used to
find the shortest simple path from node 1 to node m in the presence of negative
cost circuits? Explain.

[11.31] Let Cjj be the length associated with arc (i,j) in a given network having

no (directed) circuits. It is desired to find a path with the shortest distance and
that with the maximum distance between any two given nodes. Formulate the
two problems so that the out-of-kilter algorithm can be used. Make all possible
simplifications in the application of the out-of-kilter algorithm for these two
problems. What is the significance of assuming that the network has no circuits?
(Hint: See Exercise 11.30.)

[11.32] An assembly consists of three parts A, B, and C. These parts go through
the following operations in order: forging, drilling, grinding, painting, and assem-
bling. The duration of these operations in days is summarized below:

Part
A
B
C

Forging
1.2
2.3
3.2

Duration of Operation
Drilling Grinding

0.8 1.0
0.5 0.6
1.0 —

Painting
0.7
0.5
0.6

Upon painting, parts A and B are assembled in two days and then A, B, and C
are assembled in one day. It is desired to find the least time required for the
assembly (this problem is called the critical path problem).

a. Formulate the problem as a network problem.
b. Solve the problem by any method you wish.
c. Solve the problem by the out-of-kilter algorithm.

The Out-of-Kilter Algorithm 601

d. Solve the problem by the simplified procedure you obtained in
Exercise 11.31.

e. Because of the shortage of forging machines, suppose that at most
two parts can go through forging at any particular time. What is the
effect of this restriction on the total processing duration?

[11.33] Provide an interpretation of the primal network simplex algorithm for
bounded variables in terms of an appropriately restricted execution of the primal
and dual phases of the out-of-kilter algorithm. In particular, specify the flow
change Δ > 0 along with the appropriate circuit in the "primal phase," the sets X,
X, and the value θΐοτ the "dual phase."

[11.34] For the problem in Equation (11.1), develop an expression for the rate
in change in dual objective value as the value of the dual variables of nodes in
some subset X of ■ / are (marginally) increased. If this rate is positive, how
would you determine the best possible value by which to increase the dual
variables of nodes in X? How could you use this information algorithmically?
(Also, see Exercise 11.43.)

[11.35] Consider the event of the single-node nonbreakthrough described for
the relaxation algorithm of Section 11.7. Derive an expression for the amount by
which the corresponding dual variable value wt can be increased, and show that

this results in an increase in the dual objective function value, where the dual is
specified in Equation (11.15).

[11.36] Suppose that the air freight charge per ton between locations is given by
the following table (except where no direct air freight service is available):

Location
1
2
3
4
5
6
7

1
—
13
28
—
47
36
18

2
13
—
12
25
32
—
22

3
28
12
—
28
50
28
10

4
—
25
28
—
18
20
35

5
47
32
50
18
—
26
37

6
35
—
28
20
26
—
22

7
18
22
10
35
37
22
—

A certain corporation must ship a certain perishable commodity from locations
1, 2, and 3 to locations 4, 5, 6, and 7. A total of 40, 70, and 50 tons of this com-
modity are to be sent from locations 1, 2, and 3, respectively. A total of 25, 50,
40, and 45 tons are to be sent to locations 4, 5, 6, and 7, respectively. Shipments
can be sent through intermediate locations at a cost equal to the sum of the costs
for each of the legs of the journey. The problem is to determine the shipping
plan that minimizes the total freight cost. Formulate the problem and solve it by
the out-of-kilter algorithm.

[11.37] Coal is being hauled out of Kentucky bound for locations in the
Southeast, Southwest, Midwest, Northwest, and Northeast. The network of
routes is given below.

602 Chapter 11

Northeast

Northwest

Southwest Southeast

The demands are given by the following chart:

LOCATION DEMAND (1000s OF TONS)
Southeast
Southwest
Northwest
Midwest
Northeast

5
3
10
8

20
Kentucky has a supply of 65,000 tons per week. In addition to the nonnegativity
restrictions, there is an upper limit on the flow of 17,000 tons on each arc. Ignoring
the return route for coal cars, use the out-of-kilter algorithm to find the least
cost distribution system for coal.

[11.38] Water is to be transported through a network of pipelines from the big
dam to the low valley for irrigation. A network is shown where arcs represent
pipelines and the number on each arc represents the maximum permitted rate of
water flow in kilo-tons per hour. It is desired to determine the maximum rate of
flow from the big dam to the low valley.

Big dam

Low valley

a.

b.
c.

Formulate the problem so that it can be solved by the out-of-kilter
algorithm.
Solve the problem by the out-of-kilter algorithm.
Through the use of a more powerful pumping system the maximum
rate of flow on any arc can be increased by a maximum of 15 kilo-
tons of water per hour. If the rate is to be increased on only one
pipeline, which one would you recommend and why.)

The Out-of-Kilter Algorithm 603

[11.39] The "Plenty of Water Company" wishes to deliver water for irrigation
to three oases: the sin oasis, the devil's oasis, and the pleasure oasis. The
company has two stations A and B in the vicinity of these oases. Because of
other commitments, at most 700 kilo-tons and 300 kilo-tons can be delivered
by the two stations to the oases. Station A is connected with the sin oasis by a 13
kilometer pipeline system and with the devil's oasis by a 17 kilometer pipeline
system. Similarly, Station B is connected with the pleasure oasis by a 21
kilometer pipeline system and with the devil's oasis by a 7 kilometer pipeline
system. Furthermore, the pleasure oasis and the devil's oasis are connected by a
road allowing the transportation of water by trucks. Suppose that the sin oasis,
the devil's oasis, and the pleasure oasis require 250, 380, and 175 kilo-tons of
water. Furthermore, suppose that the transportation cost from station A is $0.06
per kilo-ton per kilometer, and the transportation cost from station B is $0,075
per kilo-ton per kilometer. Finally, suppose that the transportation cost between
the pleasure oasis and the devil's oasis is $0.25 per kilo-ton.

a. Formulate the problem so that the out-of-kilter algorithm can be
used.

b. Solve the problem by the out-of-kilter algorithm.
c. Suppose that a road is built joining the sin oasis and the devil's oasis

with a shipping cost of $0.15 per kilo-ton. Would this affect your
previous optimal solution? If so, find a new optimal solution.

[11.40] A manufacturer must produce a certain product in sufficient quantity to
meet contracted sales in the next four months. The production facilities available
for this product are limited, but by different amounts in the respective months.
The unit cost of production also varies according to the facilities and personnel
available. The product can be produced in one month and then held for sale in a
later month, but at an estimated storage cost of $2 per unit per month. No
storage cost is incurred for goods sold in the same month in which they are
produced. There is currently no inventory of this product, and none is desired at
the end of the four months. Pertinent data are given below.

Month

1
2
3
4

Contracted
Sales

20
30
50
40

Maximum
Production

40
50
30
50

Unit Cost of
Production

15
17
16
19

Formulate the production problem as a network problem and solve it by the out-
of-kilter algorithm.
[11.41] Show how a transportation problem and an assignment problem can be
solved by the out-of-kilter algorithm.

[11.42] Consider a general linear program of the form: Minimize ex subject to
Ax = b, i < x < u. Suppose that we begin with a solution x that satisfies Ax = b.
Develop primal and dual phases of a linear programming algorithm, based on
the out-of-kilter algorithm, for solving this general linear program.

604 Chapter 11

[11.43] Consider the network flow problem stated in Equation (11.14) and its
dual problem given by Equations (11.15a) and (11.15c), and assume that an
optimum exists. Let x be a primal feasible solution and let w be an integral m-
vector.

(a) Show that #(w) in (11.15c) can be written as

#(w) = ex + Σ Σ Xji (WJ ■Wj -Cy)-ZZMy-max {0,w;· -w,· -Cy}. (11.16)
(ij)

(Hint: Rewrite wb as wb = (wA - c)x + ex.)

(b) Consider an out-of-kilter arc (p, q) in G' and suppose that the primal phase

results in a nonbreakthrough, yielding the cut [X, X] with q e Xand/? e X,
where X is the set of nodes in the tree T described in Section 11.2. Consider
augmenting the dual variables w according to:

Wj = Wj + Θ, Vi e X, and w;· = wh Vi e X, where Θ > 0. (11.17)

Let h(0) be the function of # obtained by substituting (11.17) into (11.16).

Compute the right-hand derivative of h(0) with respect to Θ at the value

Θ = 0 (i.e., the rate of change of h with respect to an increase in Θ from the

value Θ = 0), and show that this is given as follows, where c"« = wt -

W; -Cjj,V(i,j) in this equation:

d+h(0)

ΘΘ
0=0

(iJ)e(X,X) (i,j)e(X,X)
*S<0

Σ Σ (liy-Xy)- Σ Σ
(UMx,x)

XyX)
(UMX,x)

:^.<0

(11.18)

(c) Show that the second and fourth terms in (11.18) are zero. What is the
interpretation of the first and third terms in (11.18) in terms of the kilter
numbers of the arcs in the cut [X, X]7 Hence show that the expression in
(11.18) has a value of at least one, thereby yielding a dual ascent of at least
one unit as Θ is increased. By how much can Θ be increased while
maintaining the same rate of ascent as in (11.18)?

(d) Discuss if it is possible to get a further ascent in the dual objective value
h(0) if é?is increased beyond the value determined in Part c. Accordingly,
explain how you might solve the line search problem to maximize {h(G) : Θ

> 0} using the expression (11.18). Show that while this might worsen some
kilter numbers, the out-of-kilter algorithm can still achieve finite
convergence when the dual phase is implemented with such a linear search
strategy. (Hint: Examine the effect on the duality gap.)

The Out-of-Kilter Algorithm 605

(e) If the cut [X, X] is not necessarily determined as a consequence of a
nonbreakthrough in the primal phase, but is arbitrarily selected with both X
and X being nonempty, verify that (11.18) still holds true. Hence, discuss
how you might perform coordinate ascent steps or single-node ascent steps
(see Section 11.17) in the present context when either X or X is a singleton.
How would you incorporate such ascent steps within the overall framework
of the out-of-kilter algorithm, and what is the potential advantage of
employing such a strategy?

NOTES AND REFERENCES

1. Fulkerson [1961a] developed the out-of-kilter algorithm for network
flow problems. For a slightly different development of the out-of-kilter
algorithm, see Ford and Fulkerson [1962], and for a specialization, see
Kennington and Helgason [1980].

2. The presentation of the out-of-kilter algorithm in this chapter follows
that of Clasen [1968], especially the division of states according to values
of flows x„ and reduced costs z.-.-c,·,-.

v y y

3. The spirit of the out-of-kilter algorithm can be extended to a procedure
for general linear programs. This has been done by Jewell [1967]. The
corresponding steps in the general case require the solution to linear
programming subproblems instead of finding cycles or changing dual
variables in a simple way.

4. Barr et al. [1974] provide a streamlined implementation scheme for the
out-of-kilter algorithm along with computational results. Another implemen-
tation scheme is described in Singh [1986]. Computational experience
and comparisons are also provided by Glover and Klingman [1978] and
Hatch [1975].

5. Bertsekas and Tseng [1988b] describe a primal-dual network flow
relaxation algorithm that operates two-three times faster on the NETGEN
benchmark test problems compared with RNET, an effective primal sim-
plex code developed at Rutger's University by Professor Grigoriadis and
Professor Hsu. This algorithm is discussed briefly in Section 11.7. Its
version RELAX-IV, and extension to solve generalized networks are
respectively described in Bertsekas and Tseng [1988b, 1994]. The
principal computational advantage comes from the quick dual ascent
steps using cuts based on single nodes as opposed to determining steepest
ascent cuts (see Exercises 11.34 and 11.43). All modern-day commercial
software have specialized routines to solve network structured problems
that are being continually refined (e.g., the popular software CPLEX has
an efficient network simplex code, NETOPT). For extensions to handle
convex-arc costs, see Bertsekas et al. [1987], and for the design of relaxa-
tion methods for general linear programs (see Tseng and Bertsekas
[1987]). Also, for specializations of interior point methods to solve
network flow problems and computational comparisons with simplex and
relaxation methods, see Mehrotra and Wang [1996].

This page intentionally left blank

TWELVE: MAXIMAL FLOW,
SHORTEST PATH,
MULTICOMMODITY FLOW,
AND NETWORK SYNTHESIS
PROBLEMS

Two special and important network flow problems are the maximal flow prob-
lem and the shortest path problem. Both of these problems can be solved by
either the network simplex method of Chapter 9 or the out-of-kilter algorithm
of Chapter 11. However, their frequent occurrence in practice and the
specialized, more efficient procedures that can be developed for handling these
two problems provide a strong case for considering them separately.

We also include in this chapter an introduction to the class of network
flow problems called multicommodity network flows. In Chapters 9, 10, and 11
we have considered network flow problems in which it was not necessary to
distinguish among the units flowing in the networks. There was essentially a
single commodity or type of unit. There are network flow problems in which
different types of units must be treated. In these instances, supplies and demands
are by commodity type, and the distinction among the commodities must be
maintained. We shall examine this multicommodity flow problem, consider the
difficulty in dealing with it, and present a decomposition-based procedure for
solving it.

Another topic that we introduce is network synthesis. The network flow
problems considered thus far are analysis problems. A network is given, and
some analysis is performed on it. On the other hand, the network synthesis
problem requires one to construct an optimal network (in some defined sense)
that satisfies certain specifications. Several of the tools developed in this book,
including network analysis and decomposition methods, can be used to study
such problems.

12.1 THE MAXIMAL FLOW PROBLEM

We begin by presenting Ford and Fulkerson's labeling method for solving
maximal flow problems. This method is simply a specialization of the out-of-
kilter algorithm applied to the maximal flow problem. Specialized primal sim-
plex implementations have been found to be significantly faster than this
method (with a speed-up factor of 1.5-5) and require only one-third of the
amount of storage. However, this method does provide useful insights, and as
with the general out-of-kilter algorithm, improved primal-dual implementa-
tions can make it more competitive. In fact, at the end of this section, we briefly

607

608 Chapter 12

discuss such a variant known as the preflow-push strategy, which is among the
most efficient (theoretically as well as in practice) methods to solve the maximal
flow problem.

To formally describe the maximal flow problem, consider a network
having m nodes and n arcs through which a single commodity will flow. We
associate with each arc (/', j) a lower bound on flow of ί^ = 0 and an upper

bound on flow of «,·.·. We shall assume throughout the development that the «(y-

values (arc capacities) are finite integers. There are no costs involved in the
maximal flow problem. In such a network, we wish to find the maximum
amount of flow from node 1 to node m.

Let/represent the amount of flow in the network from node 1 to node m.
Then the maximal flow problem may be mathematically formulated as follows:

Maximize /
m m ί / if/' = l

subject to X xtj - Σ xki = < 0 if i Φ1 or m
7=1 *=l [-/ if i = m

Xy^Uy, i,j = l,...,m

Xij>0, i,j = l,...,m,

where the sums and inequalities are taken over existing arcs in the network. This
is called the node-arc formulation for the maximal flow problem since the
constraint matrix is a node-arc incidence matrix. (See Exercise 12.19 for
another arc-path formulation.) Noting that / is a variable and denoting the
node-arc incidence matrix by A, we can write the maximal flow problem in
matrix form as:

Maximize /

subject to (em - β]) / + Ax = 0

x < u

x>0.

Since the activity vector for/is (em -e j) , the difference of two unit vectors, we

may view fas a flow variable on an arc from node m to node 1. This provides
the direct formulation of the maximal flow problem in (out-of-kilter)
circulatory form (with zero right-hand-side values for the flow conservation
equations). Recalling that the out-of-kilter problem dealt with minimization, we
assign a cost coefficient of zero to every flow variable except xm\ = f, which
receives a cost coefficient of -1 .

Arc (m, 1) is sometimes called the return arc. Figure 12.1 presents an
example of the maximal flow problem and its equivalent out-of-kilter network
flow problem. In Figure 12.1 the lower bound lmi = £4i = 0 is derived from the
fact that all Xy = 0 and xml = 0 is a feasible solution to the maximal flow
problem. Thus, the maximal value of xwl will never be less than zero.

Some Network Flow and Network Synthesis Problems 609

<SV

r<l·
oy

(i,u,c)

(0, 2, 0)

^
^

(a)
(0, oo, -1)

(b)

Figure 12.1. An example of a maximal flow problem: (a) Maximal flow
problem, (b) Out-of-kilter equivalent problem.

Before continuing with the development of an algorithm to solve this
maximal flow problem, we introduce the useful and important concept of cuts
(this was briefly alluded to in Chapter 11).

Cut (Separating Node m from Node 1)

Let X be any set of nodes in the network such that X contains node 1 but not
node m. Let X =. / -X. Then the set of arcs that have one endpoint (head or
tail) in X and the other in X is called a cut separating node m from node 1, and
is denoted by [X,X]. (For the sake of interest, we mention here that a cut-set

for a connected network is a minimal cut in the sense that it is a cut that discon-
nects the network, but no proper subset of it has this same property.) The set
(X, X) = {(/, j) : i e X, j e X} is the set of forward arcs of the cut (separating

node m from node 1), and the set (X, X)= {(/, y) : i e X,j e X} is the set oireverse
arcs of the cut (separating node m from node 1). For brevity, we shall refer to
these as the forward cut and the reverse cut, respectively.

Capacity of a Cut

Let [X,X] be any cut in a network G, and let (X,X) and (X,X) be the

corresponding forward cut and reverse cut, respectively. Then

u[X,X]= Σ _utj- Σ_ t,j

(ujtex,x) (i,mx,x)
is called the capacity of the cut. Note that in our context, we have iy =0 for all

arcs (/,/), and so the associated capacity of the forward cut defined as u(X,X)

= ^(i,j)e(X,X)uij e c lu a l s m e capacity of the cut u[X,X]. Hence, we may focus

on identifying just the forward arcs (X, X) associated with the cut (see Exercise
12.7 for an extension). In Figure 12.1a there are several forward cuts separating
node 4 from node 1 in G. They are:

610 Chapter 12

X = {1}, X = {2,3,4} (A",*) = {(1,2), (1,3)}, u(X,X) = 5
A" = {1,2}, ^ = {3,4} (X,X) = {(1,3),(2,3),(2,4)}, « (* , *) = 9
A" = {1,3}, * = {2,4} (X,X) = {(1,2),(3,4)}, u(X,X) = 3
X = {1,2,3}, X = {4} (* , *) = {(2,4), (3,4)}, W(*,X) = 5.

Let [A~,X] be any cut separating node m from node 1 in G. Summing the flow

conservation equations of the maximal flow problem over nodes in X, the flow
variables that have both ends in X cancel and we get

Σ * ΐ , · - Σ *(, ·=/. (12.1)
ieX i&X

Using Xy > ijj = 0 and xy < uy, we get

f< Σ _Uij- Σ iij= Σ _uy. (12.2)
(U)e(X,x) (UMX,X) (UMX,X)

This leads to the following.

Lemma 12.1

The value / o f any (feasible) flow is less than or

any cut (separating node m from node 1).

The Dual of the Maximal Flow Problem

Consider the dual of the maximal flow problem:

m m
Minimize Σ Σ Uyhy

i=l 7=1
subject to wm - W] = 1

Wj - Wj + hy > 0, i,j = l,...,m
hij>Q, i,j = l,...,m,

where w is associated with the flow conservation equations and h is associated
with the constraints x < u. Note that the first dual constraint is associated with
the flow / whose column is ew - β]. A typical column â . of the node-arc

incidence matrix A has +1 in the rth position and -1 in they'th position, which
leads to the dual constraints Wj - w- + L·- > 0.

Let [A", A"] be any cut and consider the foregoing dual problem. If we let

(0 if ieX
Wi=\\ if isX

h J \ if (i,j) e (X,X)
lJ \ 0 otherwise,

equal to the capacity u[X, X] of

Some Network Flow and Network Synthesis Problems 611

then this particular choice of w and h provides a feasible solution to the dual
problem (why?) whose dual objective is equal to the capacity of the cut.

Thus, Lemma 12.1 also follows from the duality theorem, which states
that any feasible solution to a minimization problem has an objective value
greater than or equal to that of the associated maximization problem. As the
reader may suspect, we shall show that the capacity of a minimal cut (i.e., one
having a minimal capacity) is equal to the value of the maximal flow. We shall
prove this constructively. We ask the reader to prove this result in Exercise 12.8
using the earlier duality relationship.

An Algorithm for the Maximal Flow Problem

From Lemma 12.1, if we are able to find a flow and a cut such that w[X,X] = /

we will have the maximal flow (and the minimal cut). We shall do this
constructively by simply specializing the out-of-kilter algorithm to this
problem.

Suppose that we start with any feasible (integer) flow in G, say, each Xy

= 0. From G, we construct G' as follows:

1. If arc (/,_/) is in G and % < uy, then we place arc (i,j) in G' along

with a permitted flow change value Δ,ν = w,·, - %.

2. If arc (i,j) is in G and Xj- > 0, then we place arc (/, i) in G' with a

permitted flow change value Δ ·,· = Xy.

Now, in G', two possibilities exist:

Case 1

A path P exists, in G', from node 1 to node m.

Case 2

No path exists, in G', from node 1 to node m.

In Case 1, we may construct a new feasible flow having a greater objec-
tive value. Let Δ be equal to the minimum permitted flow change on the path P
from node 1 to node m in G', that is, Δ = minimum {Δ# : (/,_/') is in the path}.

Note that Δ is a positive integer (why?). Consider the associated chain P'
(undirected path) in G. Construct a new flow as follows. Add Δ to flows on arcs
of the associated chain in G that have the same direction as the path in G',
subtract Δ from flows on arcs of the associated chain in G that are against the
direction of the path in G', and leave all other arc flows unchanged. The new
flow is feasible (why?). The value of the new flow is / ' = / + Δ (why?).

Assuming that the capacities are finite, Case 1 can occur only a finite
number of times before Case 2 occurs (why?). When Case 2 occurs, let X be the
set of nodes in G' that can be reached along some path in G' from node 1. Let

612 Chapter 12

X =,/ -X and note that node m belongs to X (why?). Consider the cut

[X,X], i.e., the arcs in G between X and X. First, every arc (/,/) in G from Xto

X must have Xy = Uy\ otherwise, there would be an arc (i,j) in G' andy would

be a member of X (a contradiction). Second, every arc (i,j) in G from X to X
must have Xy = 0; otherwise, there would be an arc (/', i) in G' and i would be a

member of X(a contradiction). Substituting in Equation (12.1), we get

Σ u,--0 = f, or u[X,X) = u(X,X) =f.
ieX

Thus, we must have the maximal flow at hand by noting Equation (12.2).
Hence, we have constructively proved the following. (See Exercise 12.7 for a
direct generalization when £y Φ0.)

Theorem 12.1 (Maximal Flow-Minimal Cut Theorem)

The value of the maximal flow in G is equal to the capacity of the minimal cut
in G.

Summary of the Maximal Flow Algorithm

The constructive proof of the maximal flow-minimal cut theorem leads to the
following maximal flow algorithm.

INITIALIZATION STEP

Select a set of feasible (integer) flows, say, each Xy = 0.

MAIN STEP

From G construct G' as follows:

1. All of the nodes in G are in G'.

2. If Xj- < Uy in G, place (/,/) in G' with the permitted flow change on

(/,;) of Ay = uy - xy.

3. If Xy > 0 in G, place (/, /') in G' with the permitted flow change on

(/, 0 Of Αβ = Xy.

Note that arc (i,j) in G will give rise to two arcs in G' if 0 < Xy < uy. Attempt to
locate a path P in G' from node 1 to node m. If no such path exists, stop; an
optimal solution is at hand. Otherwise, let Δ be the minimum permitted flow
change on P in G'. Add Δ to the flows on arcs of the associated chain in G that
have the same direction as the path in G', subtract Δ from the flows on arcs of the
associated chain in G that are against the direction of the path in G', and leave all
other arc flows unchanged. Repeat the main step.

Some Network Flow and Network Synthesis Problems 613

Locating a path in G' from node 1 to node m above is called a
breakthrough, whereas finding no such path is called a nonbreakthrough.

An Example of the Maximal Flow Problem

Consider the network of Figure 12.1a. Figure 12.2 presents the complete
solution to the maximal flow problem for this network.

Basic Solutions in the Maximal Flow Algorithm

In Chapter 9, we characterized basic solutions to a network flow problem.
Recall that a basic solution to a network flow problem consists of a set of
nonbasic variables at one of their lower or upper bounds plus a set of variables
that form a rooted spanning tree. Thus, we may conclude that if the set E = {(i,
j): 0 < Xy < Uy} does not contain a cycle, then we have a basic feasible solution

at each iteration of the maximal flow algorithm (why?).
To identify a basis after each flow change in the maximal flow algorithm,

we take all of the variables in the set E plus an additional number of variables at
one of their bounds to form a spanning tree. This set, together with the artificial
variable (located at node tri), forms a rooted spanning tree (the nonbasic
variables are at one of their respective bounds). Note that since/ the flow in the
network, is a variable, it must be taken onto the left-hand-side of the constraint
system and becomes an arc from node m to node 1 (as discussed previously).

In Figure 12.3 we present bases corresponding to the solutions at each
iteration of the example in Figure 12.2. Notice that the bases in Figures 12.3b
and 12.3d are unique. Also, notice that in Figure 12.3c no basis is possible that
corresponds to the maximal flow algorithm solution at that point. In Exercise
12.9 we suggest a procedure for finding paths in G' in such a way that we shall
always have a basic solution available. Finally, notice that the bases presented in
Figures 12.3a and b are not adjacent. To obtain the basis in Figure 12.3b we
have replaced two basic variables in the basis of Figure 12.3a by two nonbasic
variables. This is an example ofblock pivoting discussed in Chapter 3.

A Labeling Algorithm for the Maximal Flow Problem

Either for hand or computer calculations, there are simple and convenient ways
to maintain the information required to solve a maximal flow problem. As in the
out-of-kilter method, we shall present a (tree construction) labeling algorithm
that does not require the creation of the network G'. Suppose that we associate
with each node y a label L(j) = (±i, Δ ,·) containing two pieces of information.

614 Chapter 12

/ = 0 /=o

G

P= {(1,2), (2,3), (3,4)}
Δ = 1

(a) Initialization and first breakthrough

7\ P= {(1,3), (3,2), (2,4)}

Δ = 1

(b) Second breakthrough

/ = 2

(c) Third breakthrough

/ = 3

►/=2

►/=3

G'

P= {(1,3), (3,4)}

Δ = 1

Optimal solution:

/ = 3, X[2 = x24 = 1 >

^23=0
* — * _ T

*13 _Ji :34-_f
A-=|1,3},X = {2,4}
(jr,Jf) = {(1.2), (3,4)}
u(X,X) = 3.

(d) Nonbreakthrough

Figure 12.2. The solution for the network of Figure 12.1a.

The second entry, Δ ·, in L(J) indicates the amount of flow that can be sent to node

j from node 1 through the current network with given flows, without violating
the capacity constraints 0 < xy< Uy. The first entry, ±i, in L(j) indicates the

previous node in the chain along which flow can be changed. If the first entry in
L(J) is +;', then flow will be added to arc (i,j) ; otherwise, if the first entry is -/,
then flow will be subtracted from arc (/', /). The labeling algorithm becomes as
follows:

Some Network Flow and Network Synthesis Problems 615

INITIALIZATION STEP

Set Xjj = 0 for i,j = 1,..., m.

MAIN STEP

1. Erase any labels and set L(1) = (-, co).

2. If node i has a label, nodey has no label, and xy < uy, then set L(j)

= (+/, Δ ·), where Δ = minimum{A;, Uy - % } · If node i has a label,

nodey has no label, and x ■,· > 0, then set L(j) = (-/, Δ ·), where Δ =

minimum^,-, x 7 } . Repeat Step 2 until either node m is labeled or

until no more nodes can be labeled. Proceed to Step 3.
3. If node m is not labeled, stop; an optimal solution is at hand. Other-

wise, if node m is labeled, then change flows in the network as
follows. Set Δ = Am. Begin at node m and consider the first entry of
L(m). If the first entry is +k, then add Δ to xkm. If the first entry of

L(m) is —k, then subtract Δ from xmk. Backtrack to node k and repeat

the process until node 1 is reached. Return to Step 1.

When the algorithm stops, let X be the set of labeled nodes and
X = , / -X. The set [X, X] is a minimal (capacity) cut.

An Example of the Labeling Algorithm

Suppose that we apply the labeling algorithm to the maximal flow problem of
Figure 12.1a to produce the first two iterations of the maximal flow algorithm
represented in Figure 12.2a and Figure 12.2b. We begin with each xy = 0.

The sequence of labeling operations are as follows:

1. 1(1) = (- ,») .
2. L(2) = (+i,l).
3. 1(3) = (+2,1).
4. 1(4) = (+3,1).
5. Breakthrough: Δ = 1.

6. L,(4) = +3=>x34 =0 + Δ = 1.

7. Ζ1(3) = +2=>χ 2 3 =0 + Δ = 1.

8. Ll(2) = +l=>xn =0 + Δ = 1.

9. Erase all labels, 1(1) = (-,oo).
10. 7,(3) = (+1,4).
11. 1(2) = (-3,1).
12. 1(4) = (+2,1).
13. Breakthrough: Δ = 1.

616 Chapter 12

/=o Ο~ > χ = ο

(a) Initialization and first breakthrough

7=1-

(b) Second breakthrough

7=2

(c) Third breakthrough

7=3-

The unique basis for G

7=2 x = 0

No corresponding basis for G exists

7=3 x = 0

The unique basis for G

(d) Nonbreakthrough

Figure 12.3. Comparison between solutions in the maximal flow algorithm
and bases (when possible) for Figure 12.2.

Some Network Flow and Network Synthesis Problems 617

14. L,(4) = +2=>x24 =0 + Δ = 1.

15. Z!(2) = -3=>x2 3 = 1 - Δ = 0.

16. Z!(3) = +l=>x13 =0 + Δ = 1.

Having completed the change of flows, we erase all labels and continue.
The foregoing sequence of labels is not unique. We selected it because it illus-
trated the method completely. (See Exercise 12.15 for an implementation
variant.)

Some Theoretical and Practical Expedients: Complexity Analysis, a
Polynomial-Time Scaling Algorithm and a Preflow-Push Implementation

To begin the present discussion, let us first analyze the complexity of the fore-

going type of augmenting path algorithm. Letting / * denote the optimal maximal

flow value and U denote the maximum arc capacity, we know now from the
maximal flow-minimal cut theorem that

f* <u(l,, / -{\})<{m-\)U.

Because each breakthrough value Δ is at least 1, the number of primal phases
performed by the algorithm is therefore no more than {m-\)U. Noting that

each such primal phase could at most scan all the arcs (n of them, say), the effort
per iteration is of order 0(n), leading to the order of complexity 0(nmU) for the
overall algorithm. Under binary encoding of data, this algorithm is therefore of

exponential complexity in the size of the problem because U = 2log2 u. How-
ever, it is a pseudopolynomial algorithm, i.e., it is of polynomial complexity in
the size of the problem, provided we record the size of the data using a stroke or
unary encoding scheme (i.e., one "stroke" per unit of the integral data values).

Actually, by using shortest augmenting paths (in terms of the number of
arcs used to reach node m from node 1), one can show that the augmenting path
lengths generated are monotone increasing (nondecreasing), and that within
every n iterations, this path length strictly increases (see the Notes and Refer-
ences section). Noting that the maximum augmenting path length from node 1 to
node m is bounded above by (m - 1), the number of flow augmentations is of
order 0(nm), leading to an overall complexity of 0{n rri). This yields a strongly
polynomial algorithm (i.e., of polynomial complexity in terms of just the
number of nodes and arcs in the problem, and independent of the capacity data).

There is another insightful idea that can be used to convert the out-of-
kilter maximal flow algorithm discussed in this chapter into a polynomial-time
algorithm. This is a useful scaling concept that is actually widely applicable to
more general minimal-cost network flow algorithms (see the Notes and Refer-
ences section). The main idea here is to explore restricted higher values of
breakthroughs first before examining progressively smaller values, ultimately
solving the problem when permitting any breakthrough of value Δ > 1. More
specifically, given a particular lower bound Δ > 1 on the permissible break-

618 Chapter 12

through values that will be examined, we perform a corresponding A-scaling
phase. This step is identical to the primal flow augmenting phase of the out-of-
kilter algorithm discussed earlier, except that in the graph G' (or the flow aug-
menting tree constructed), we include only those arcs whose residual capacity
(permitted flow change) is at least Δ. Consequently, if at all a breakthrough is
obtained, it must necessarily be of value at least Δ. Furthermore, in the event of a
nonbreakthrough, if [X, X] denotes the minimal cut separating nodes 1 and m,
the residual capacity on all the arcs in this cut (where this residual capacity
equals Uy - Xy on the forward arcs and Xy on the reverse arcs) must be strictly

less than Δ (why?). Hence, denoting / n o w as the current value of the maximal

flow objective function, the optimality gap f - / n o w satisfies:

/ * "/now < " Δ ·

With this fundamental concept, suppose now that we initialize the

algorithm with x = 0 and / n o w = 0, and we begin by considering Δ = 2q, where

q = [log2 (U) J, the rounded-down value of log2 U. Observe that this value of

Δ is the greatest power of 2 for which we can hope to achieve a breakthrough of

this level because
2q+i

> U, the maximum arc capacity in the network. Hence,
assuming a connected network (so that n > m - 1), and noting the foregoing
inequalities, we presently have the following upper bound on the current
optimality gap:

(/* " /now) = f<(m-\)U<nU< «2?+1 = 2κΔ.

We now perform the main step as stated below:
MAIN STEP

Given Δ with (/* - fnow) < 2«Δ, perform the Δ-scaling phase as described

above. (Note that the current optimality gap implies that the number of break-
throughs achieved in this phase, each of value at least Δ, is less than 2«.) If Δ =
1, then stop; the current solution is optimal because Δ = 1 permits all possible
remnant breakthroughs. Otherwise, we know from before that in the event of a
nonbreakthrough in the Δ-scaling phase, the current updated value of the
maximal flow / n o w satisfies

(/*-/now)<"A = 2«

Hence, putting Δηενν = Δ/2, we again have (/* - / n o w) < 2«Δηενν, and so we repeat

the main step with Δ replaced by Anew.

Some Network Flow and Network Synthesis Problems 619

Observe that in this process, we will execute the main step using values

of Δ equal to 2?,29_1,...,2°, i.e., (q + 1) or 0(log2 U) times. Because each Δ-

scaling phase has fewer than In breakthroughs, the effort for each such phase is

of complexity 0(n) (why?), leading to a polynomial overall algorithmic com-

plexity of 0(n log2 U).

We conclude this discussion by mentioning that an even better theoretical
9 · 9

complexity of order 0(m n) (which is essentially of order 0(n) for dense
networks) can be achieved by adopting what is known as a preflow-push
strategy. Besides yielding an improved theoretical complexity, this approach has
been shown to significantly enhance the effectiveness of solving maximal flow
problems in practice. Its basic idea is motivated by recognizing that the principal
problem with standard flow augmenting path algorithms is that it is possible for
such augmenting flows to repeatedly traverse long chains having relatively high
residual capacities before hitting some bottleneck arcs at each step, which
results in relatively small breakthrough values. Hence, the method suggests
sending excess flows to intermediate nodes as possible, particularly over such
high capacity long chains, even though not all of this flow will ultimately reach
node m, where the excess flow to a node (other than the starting and terminus
nodes 1 and m) is defined as the total inflow minus the total outflow. This is a
preflow phase. Subsequently, in a push phase, this excess flow is either sent
forward to node m as possible, or, when any remnant excess accumulations
cannot be pushed forward, the excess flows are ultimately sent back to node 1.
In this fashion, the augmenting flows typically tend to traverse the
aforementioned types of long chains only twice: once in the forward preflow
step, and once in the reverse direction during the push phase. We refer the
reader to the Notes and References section for further details on this algorithm,
as well as for an alternative scheme based on pseudoflows (where nodes can
have excess or deficit flows), which yields an improved theoretical complexity
bound of 0(mn\og{m)).

12.2 THE SHORTEST PATH PROBLEM

Suppose that we are given a network G having m nodes, n arcs, and a cost Cy

associated with each arc (i, j) in G. The shortest path problem is: Find the
shortest (least costly) path from node 1 to node m in G. The cost of the path is
the sum of the costs on the arcs in the path.

A Mathematical Formulation of the Shortest Path Problem

We may think of the shortest path problem in a network flow context if we set
up a network in which we wish to send a single unit of flow from node 1 to node
m at minimal cost. Thus, i\ = 1, bm = —1, and bt = 0 for i Φ 1 or m. The
corresponding mathematical formulation becomes:

620 Chapter 12

vlinimize

iubject to

m m

L· L· cijxij
i=\j=l

m m
Σ Xy ~ Σ Xki = \

j=\ k=\ |

Xy = 0 or 1

0
- 1

if i = 1
if / Φ 1 or m
if i = m

i,j = \,...,m,

where the sums and the 0-1 requirements are taken over existing arcs in G. The
constraints Xy = 0 or 1 indicate that each arc is either in the path or not.

Ignoring the 0-1 constraints, we again find the familiar flow conservation
equations. From Chapter 9, we know that the node-arc incidence matrix associ-
ated with the flow conservation equations is totally unimodular. Consequently,
if we replace the binary restrictions on Xy by Xy > 0, then if an optimal solution

exists, the simplex method will automatically obtain an integer basic feasible
solution where the value of each variable is either zero or one. Thus, we may
solve the integer program as the following linear program:

Minimize X Σ CyXy
i=\j=\

subject to

Because the shortest path problem is a minimal-cost network flow prob-
lem, we can solve it by one of the methods described in Chapters 9 and 11.
However, we shall soon see that more efficient methods exist for this problem.

Consider the dual of the shortest path problem:

Maximize
subject to

W]

wt

Wj

— w
¥Vm -Wj<Cy

unrestricted,

i,j = \,...,m

i = l,...,m.

It will be more convenient to make the substitution w\ = -w,·. As we shall
shortly see, w\ - w{ is the shortest distance from node 1 to node / at optimality.
Hence, we can determine the shortest distance from node 1 to all nodes of the
network.

A Shortest Path Procedure When All Costs Are Nonnegative

Consider the case when all Cy > 0. In this case, a very simple and efficient

procedure, known as Dijkstra's algorithm, exists for finding a shortest path
(from node 1 to node m). This method also automatically yields shortest paths
from node 1 to all of the other nodes as well.

Some Network Flow and Network Synthesis Problems 621

INITIALIZATION STEP

Set w{ =Oandle tX={l} .

MAIN STEP

Let X = - / -X and consider the arcs in the set (X,X) = {(i,j):ie X,

jeXj.Let

w' +c = minimum {w· +c·.·}.
P m (iJMX,X) J

Set w'q = w'p + cpq and place node q in X. Repeat the main step exactly m - 1

times (including the first time) and then stop; an optimal solution is at hand.
(Because of the fact that whenever the label of a node q is set at w' = w' + cpq

as above, then this turns out to be the distance of the shortest path from node 1
to node q as established next, we refer to such a procedure as a labelingsetting
algorithm.)

Validation of the Algorithm

We now prove that the algorithm produces an optimal solution. Assume,
inductively, that each w- for ; e X represents the cost of a shortest path from
node 1 to node i. This is certainly true for i = 1 (why?). Consider the algorithm
at some point when a new node q is about to be added to X. Suppose that

w' +cna = minimum {w- +c ■}. (12.3)
p pq (iJMX,x) J

We shall show that a shortest path from node 1 to node q has length
w' = w'p + cpq and can be constructed iteratively as the available shortest path

from node 1 to node/? plus the arc (p, q). Let P be any path from node 1 to node
q. It suffices to show that the length of P is at least w'. Since node 1 is in X and

node q is currently in X, then P must contain an arc (i,j) where i e Xanàj e X
(here, / and j could be p and q, respectively). The length of the path P is thus
equal to the sum of the following:

1. The length from node 1 to node i\
2. The length of arc (i,j), that is, c,·.· ;

3. The length from j to q.

By the induction hypothesis, the length from node 1 to node / is greater than or
equal tow,'. Because the costs of all arcs are nonnegative by assumption, then
the length in Part 3 is nonnegative. Therefore, the length of P is greater than or
equal to w\ + cu. In view of Equation (12.3), and since w' = w' +cpq, it is clear

622 Chapter 12

that the length of P is at least w . This completes the induction argument and

the algorithm is verified.

An Example of the Shortest Path Problem with Nonnegative Costs

Consider the network of Figure 12.4. It is desired to find shortest paths from
node 1 to all other nodes. Figure 12.5 presents the complete solution for this
example. The darkened arcs are those used in the selection of the node to be
added to X at each iteration. These arcs can be used to trace the shortest path
found from node 1 to any given node / (how?). As the reader might suspect, it is
no accident that the darkened arcs form a tree (in fact, an arborescencef. Indeed,
each time a new node is added to the set^f, it is connected to the nodes in X with
an accompanying arc leading to this node from some node presently within X,
which clearly does not create a cycle. (Notice how the predecessor labels of
Chapter 9 can be used here with node 1 as the root node.) The tree thus
generated is known as the shortest path tree, or the shortest path arborescence.

Complexity of Dijkstra's Algorithm and a Primal Simplex Interpretation

As a rough complexity analysis of the foregoing algorithm, observe that the
number of elementary computations in each of the (m - 1) iterations of the

algorithm is bounded above by a polynomial of order 0{m). Thus, the

algorithm has a complexity bound of 0(m). However, it is computationally

beneficial to update the calculations of the path lengths to the nodes rather than
recompute them from scratch at every iteration. That is, whenever a new node is
added to X, its forward star may be scanned to possibly update any of the
distance labels w\ for the nodes in X. The node having the smallest label w\
can then be transferred to X, and the current distance calculations for the nodes
in X can be retained instead of being erased. (Because this smallest label node
will have its label permanently set and never revised again, we still refer to this

Figure 12.4. An example of the shortest path problem.

X

w
j =

 0

X

5
(P

, ?
)

=
 (

!,
2)

(a
)

/«
i=

0
(i

5
/

(P
. ?

)
=

 0
, 4

)

w
'4

=3

w
5

=
3

(e
)

F
ig

ur
e

12
.5

. S
ol

ut
io

n
of

 t
he

 e
xa

m
p

le
 o

f
F

ig
u

re
 1

2.
4.

f
>̂

=0

x\

H
^

=
2

\

(P
,i

)
=

 (
l,

3)

(b
)

/Ή
ί=

ο
M<

7
=

2

^9
 ;

 (p
,?

)
=

(4
,5

)

•v
 «

4
=

3
/

(d
)

S

! ! Ì

624 Chapter 12

procedure as a label-setting algorithm.) In this manner, each iteration is of

complexity 0{m), and the algorithm is of complexity 0(m). Observe also by

the foregoing inductive validation of the algorithm that at each (nonnull) step of
the algorithm, the procedure determines a shortest path from node 1 to the
selected minimal labeled node i. In fact, if at any iteration (< m - 1) of the
algorithm, it turns out that the arc set (X, X) is empty, then the unlabeled nodes

in X are all obviously unreachable from node 1 and the nodes in X have their
shortest paths from node 1 identified by the current shortest path tree. If all
nodes are reachable from node 1, the algorithm will find the shortest paths from
node 1 to all the nodes at the end of iteration (m - 1).

It turns out that the foregoing algorithm is actually an implementation of
the primal simplex method. To see this relationship, assume for convenience
that all nodes are reachable from node 1. Consider a minimum-cost network
flow problem in which a supply of (m - 1) is placed at node 1 and each of the
other nodes has a demand of one unit (i.e., b\ =(/w-l)and bt = - 1 , Vz = 2,...,m).

Suppose that we start with an all artificial basis, by designating node 1 as the
root node, and constructing artificial arcs having big-M cost coefficients to
directly connect node 1 with each of the nodes i = 2,..., m. Then, it is easy to
verify that the first simplex iteration using the rule of entering the variable
having the most positive zy - Cj- value is identical to the first iteration of

Dijkstra's algorithm. In fact, this is true for all the iterations. To see this,
suppose that at some stage, we have a set of nodes still connected to node 1 via the
artificial arcs, while the remaining nodes are connected to node 1 by (directed)
paths in the current shortest path (sub)tree. Let X be a set that contains the latter
nodes, and let X contain the former nodes. Note that the dual variables w(for

nodes / e X are all -M, while the dual variables w; for the nodes i e X are

equal to the negative of the total cost on the arcs in the respective paths
connecting the nodes to node 1 in the current basis tree. Hence, we currently
have Wj = -w\, as given by Dijkstra's algorithm. Note that the maximum (z;%- -

Cy)-value is realized for an arc (i,j) having i e Xandj e X (why?). Therefore,

the value
max {Zj- - Cj-} = max {wt - w- - c,y :ieX,jsX}
(Uj)

= - min {-M + w'j + c^ :i eX,j e X}
(ij)

is realized by the same arc (p, q) as in Dijkstra's algorithm (why?). When the
arc (p, q) enters the basis, the only reverse arc in the resulting cycle is the
artificial arc, which therefore leaves the basis. Moreover, the subtree of the
resulting basis tree induced by the nodes i n l u { q } is identical to the current

shortest path tree constructed by Dijkstra's algorithm. Hence, this algorithm
coincides with a primal simplex implementation and produces an optimal basis
tree for the previously-mentioned network flow problem at termination. This is
verified by the foregoing validation of Dijkstra's algorithm (why?).

Some Network Flow and Network Synthesis Problems 625

A Shortest Path Procedure for Arbitrary Costs

The shortest path algorithm described earlier in this section does not generalize
to the case when the costs are allowed to be negative. Figure 12.6 illustrates this
where the previous algorithm would select node 3 to enter X with w3 = w[+ c13

= 2 as the value of the shortest path from node 1 to node 3. However, it would
be better to first travel to node 2, incurring a higher cost, and then go on to node
3 for a saving.

There still is a fast and efficient method for the shortest path problem
with negative (or mixed-sign) costs. We shall assume, however, that the sum of
the costs on arcs comprising any circuit in G is nonnegative. Without this
assumption, a "traveler" would proceed directly to the circuit in G and traverse
it an infinite number of times with the cost decreasing after each time around the
circuit. Note that placing an upper bound of unity on the arcs does not help solve
this problem! (See Exercise 12.30.) Indeed, the problem of finding a shortest
simple path on networks having mixed-sign costs is NP-complete (see the
computational complexity references of Chapter 8).

It is interesting to note a certain property at this point, which appears to
be intuitively obvious, but is true only in the absence of negative cost circuits.
Suppose that G has no negative cost circuit, and that a shortest simple path from
node 1 to some node q is given by Py ={\,...,p,q}, where node p is the

predecessor of node q on this path. Let the length of the simple path P2 =

{Ι,.,.,ρ} = P\\{q} be L\. Then, Z,j is the length of the shortest simple path from

node 1 to node p. To see this, suppose that, on the contrary, there exists another

shorter simple path P3 from node 1 to node p. If q 0 P^, then we have a

contradiction to Pl being a shortest simple path to node q, because this would

mean that traveling from node 1 to node p as in P3 and then transitioning to

node q would yield a shorter simple path than Px. On the other hand, if q e P3,

then suppose that P}= {l,...,q,...,p}, where the length of the segment from node

1 to node q in P3 equals L^, and the length of the circuit comprised of the

Figure 12.6. An example where the nonnegative cost algorithm
will not work.

626 Chapter 12

segment of P^ from node q to node p, and then back to node q via the arc (p, q),

equals C. Hence, the length of P^ equals L^ +C-cpq, which we are asserting is

lesser than L], i.e., L2+C<L\+cpq. Note that the left-hand-side of this

inequality is the length of a nonsimple path from node 1 to node q, whereas the
right-hand-side equals the length of the shortest simple path P\ from node 1 to
node q, thereby portending the existence of a negative cost circuit. Indeed, since
L\ + cpq < Li because L2 is the length of a particular simple path from node 1 to

node q, we have from the previous strict inequality that Lq+C < Ζ^, or that C <

0, which contradicts our assumption that there does not exist any negative cost
circuit. By induction, therefore, the shortest simple path from node 1 to any
intermediate node in P\ is given by the corresponding segment of Pl from node

1 to that node.
As an example of the foregoing discussion, consider a graph

G(. / ,. - /) with / ■ = {1, 2, 3}, . -/= {(1, 2), (1, 3), (2, 3), (3, 2)}, and

where q 2 = 2, C]3 ~ 5, c23 = 1, and c32 = —4. Then it is readily verified that
the shortest simple path from node 1 to node 3 is given by {1, 2, 3}, which is of
length cj2 +

 c23 = 3, but the shortest simple path from node 1 to node 2 is not {1,
2} of length c12 = 2, but rather, it is given by {1, 3, 2} and is of length q 3 + c32

= 1. Hence, there must exist a negative cost circuit in this graph; indeed, the
loop formed by the arcs (2, 3) and (3, 2) is of length c23 +c32 = - 3 .

The algorithm for the present case works with the dual of the shortest
path problem. Recall that the dual problem with the substitution w[= - w; for i
= \,...,m is given by the following:

Maximize w'm - w\
subject to w'j - w'i < Cy i,j = \,...,m

w'j unrestricted, i = l,...,m.

Because the objective and the constraints involve only differences in variables,
we may set one variable to any value, say w{ = 0 (why?).

In the algorithm for mixed-sign costs we shall begin with a choice of w'
that is "superoptimal" with respect to the dual objective, but which may violate
one or more of the dual constraints. We shall show that by iteratively modifying
w' to satisfy the constraints, one at a time, we shall be able to terminate in a
finite number of steps with an optimal solution.

Considering the set of nodes reachable from node 1 and assuming these
nodes to be i = 2,..., m, and noting the dual constraints, the fundamental task is
to determine a set of labels w'j equal to the length of some path from node 1 to
node / for / = 2,..., m such that

w'· = minimum {W'+q·} for ally = 2,..., m. (12.4)
i:{i,j) exists

Some Network Flow and Network Synthesis Problems 627

If w\, i = 2,..., m, are the respective lengths of the shortest (simple) paths from
node 1 to nodes 2,..., m, then Equation (12.4) must be satisfied in the absence of
negative cost circuits. To see this, consider a shortest simple path P{ = {Ι,.,.,ρ,

j) from node 1 to node j , where node/7 is the predecessor of nodey on this path.
Hence, by our previous discussion, the segment {Ι,.,.,ρ} describes a shortest
simple path to node p, which therefore yields w'- =w'+ c „.· > minimum

i'.(i,j) exists

{w'i + Cjj} = w'u + cuj, say. If equality holds in the foregoing inequality, then

(12.4) is satisfied. Hence, suppose on the contrary that we have

w'u+cuj<w'j.

Now, let P2 = {1,..., u} be a shortest simple path from node 1 to node u, which

is given to be of length w'u. If j g P2, then the foregoing strict inequality

contradicts that w'· is the length of a shortest simple path to nodey (why?). On

the other hand, if j sP2, i.e., P2 = {l,...,j,... u}, then letting! denote the length

of the segment {1,...,_/} in P2, and letting Cdenote the length of the circuit

comprised of the segment {/,..., u} ofP2 plus the length c · of arc (uj), we have

by the foregoing strict inequality and the fact that w'· < L (why?):

L + C = w'u+cuj<w'j<L,

or that C < 0, i.e., there exists a negative cost circuit in G, a contradiction.
Therefore, (12.4) holds true.

Conversely, if Equation (12.4) is satisfied, then the labels w·, i = 2,..., m,
must be the lengths of the desired shortest simple paths. If this is not true for
some nodey' Φ 1, say, then consider a shortest simplest path {1,..., q, r,...,j}
from node 1 to nodey. Note that for each node k in this path, the path from node
1 to node k in this path must be a shortest simple path to node k (why?). Hence,
let node r, say, be the first node in this path for which the label w'r exceeds the
length of a shortest simple path from node 1 to node r. (Here, node r could be
nodey itself.) But from Equation (12.4), we know that w'r < w' + cqr = (the

length of a shortest simple path to q) + cqr, which equals the length of a shortest

simple path from 1 to r, a contradiction. Hence, we have established the
following key result.

Theorem 12.2

Let nodes / = 2,..., m be the nodes reachable from node 1 in a network having no
negative cost (directed) circuit reachable from node 1. Suppose that w\ is the
length of some path from node 1 to node i for / = 2,..., m. Then w\ is the length
of a shortest path from node 1 to node i for i = 2,..., m if and only if Equation
(12.4) holds true.

628 Chapter 12

Consequently, our task is to ensure that Equation (12.4) is satisfied. The
astute reader will have observed the relationship between Theorem 12.2 and the
(Karush-Kuhn-Tucker) primal-dual feasibility and complementary slackness con-
ditions for the shortest path problem. For the case of nonnegative arc costs, we
were able to satisfy Equation (12.4) by a label-setting procedure in which the
first time a node was selected, it received a label equal to the length of its shortest
path from node 1. In view of the example in Figure 12.6, such labels may need
to be revised in the presence of costs having mixed-signs. Hence, the following
modification of Dijkstra's algorithm is known as a label-correcting algorithm.

An algorithm for finding the shortest path distances from node 1 to all the
nodes proceeds as follows, assuming that G has no negative cost (directed)
circuit. Recall that for a node/7, the forward star ofp is the set of nodes y such
that (p,j) is an arc in the network. We also follow the convention that a node not
reachable from node 1 has a shortest path distance of oo and that co + c;y = <x> for

— 00 < Cjj < CO.

INITIALIZATION STEP

Set w{ = 0 and w\ = co for /' Φ 1. Let the scan eligible list SE = {1}.

MAIN STEP

If the scan eligible list SE = 0 , stop; the labels w\ are the shortest path distances
from node 1 to nodes / = 2,..., m. (The corresponding shortest paths are traceable
via the predecessor labels or the "darkened" arcs.) Otherwise, extract (i.e., select
and remove) a node p e SE and scan the forward star of p. For all arcs (p, q)
corresponding to this set for which w'q > w'p + cpq, set w'q=w'p+ cpq, let p be

the predecessor of node q, and replace SE by SE u {q}. (At the end of the step,

the "darkened" edges correspond to the arcs connecting each node / that has w\

< co to its predecessor node.) Repeat the main step.

Figure 12.7. A shortest path example with negative costs.

w
[=

0

u{
=

0

Μ
^

=
0

0

U
$

=
-l

(b
)

SE
 =

 {
\}

. P
ic

k
p

=
 l

vi
f 4

 =
C

O

W
2

>
W

]
+

C
1

2

Se
t w

2
=

w
\ +

c 1
2

=
2

w>
3

>
w

j
+

c 1
3

Se
t w

j =
 w

[
+

C
| 3

=
-1

1-

^
=

0

Pr
ed

ec
es

so
rs

 o
f

no
de

s

2
an

d
3

eq
ua

l n
od

e
1.

SE
 =

 {
2,

3}
. P

ic
k

p
=

 2
.

w
,

>
w

-,
+

c
r

w
4

>
 w

2
+

 c
24

Se
t

vf 4
 =

 w
' 2

+
c 2

4
=

5

N
ew

 p
re

de
ce

ss
or

s
of

 n
od

es

3
an

d
4

eq
ua

l n
od

e
2.

w
j

=
0

wA
_

=
2

H>
2

=
2

5£
 =

 {
3,

4}
.P

ic
kp

 =
 3

V
f 4

>
W

3
+

C
34

Se
t i

v 4
 =

 W
3

+
c 3

4
=

-8

N
ew

 p
re

de
ce

ss
or

 o
f

no
de

4
is

 n
od

e
3.

S
£

=
{4

}.
P

ic
kp

 =
 4

,

re
su

lti
ng

 in
 S

E
 =

 0
.

_g

St
op

; w
e

ha
ve

 a
n

op
tim

al
 s

ol
ut

io
n.

C
on

di
tio

n
(1

2.
4)

 is
 s

at
is

fi
ed

.

3 ft 3 ft.

5;

F
ig

u
re

 1
2.

8.
 T

h
e

so
lu

ti
on

 f
or

 t
h

e
n

et
w

or
k

of
 F

ig
u

re
 1

2.
7.

ve

630 Chapter 12

An Example of the Shortest Path Algorithm for Arbitrary Costs

Consider the network of Figure 12.7 where we wish to find the shortest path
from node 1 to all the nodes. In Figure 12.8 we present the complete solution of
the example by the previous algorithm. There is no required order in which the
nodes must be selected from SE at each stage for the algorithm to converge.
However, as we shall see subsequently, the choice of selecting the next node
from SE does affect both the theoretical and practical efficiency of the
algorithm. When the algorithm stops, Figure 12.8d gives the shortest paths and
their values w\, along with the shortest path tree or arborescence. Arcs (/',_/)
along the shortest path (i.e., belonging to the shortest path tree) have
w'j -w'j = Cy. For any arc (i,j) in the shortest path tree at any stage, where / is

the predecessor of j , if we have the property w' = w\ + Cy holding true, we say

that the corresponding labels are sharp with respect to this arc. Hence, the
foregoing statement asserts that the w'-labels are sharp with respect to the
shortest path tree arcs at termination of the algorithm. We shall provide more
rigor and insights into this observation in the discussion that follows next.

Verification of the Algorithm for Arbitrary Costs

We shall first show that when w[< oo, this value represents the cost of some

path (not necessarily simple) from node 1 to node i. We note that in computing
the cost of a (not necessarily simple) path, we must count the cost of an arc as
many times as the arc appears in the path. Thus, for a nonsimple path P = {(1,
3), (3, 4), (4, 5), (5, 3), (3, 4), (4, 6)} the associated cost would be c]3 +c34 +
c45 + c53 +c34 +c46· As w e s ^ a " see> nonsimple paths play a part in the algo-
rithm only when there is a negative cost circuit in G.

We shall demonstrate that w'j (< oo) represents the cost of a path from

node 1 to node i at every iteration of the procedure.
Now, since we start with w{ = 0 and w'j = oo for i'Φ 1, the result is true at

the first iteration. This is so because w[= 0 represents the cost of the (empty)

path, which contains no arcs, from node 1 to node 1.
Assume that the result is true at iteration t; that is, suppose that w- (< oo)

represents the cost of some (not necessarily simple) path from node 1 to node i.
Consider iteration t+ \. Suppose that for i e SE, we find that w'j + Cy < w'j, in

which case, we set w' = w'j + Cy. By assumption, there exists a path Pt from

node 1 to node / at iteration t having cost w\. Consider the path Pj = P,; u {(i,j)}.

This path has a cost of w'j + Cy = w'- and the result is true at iteration t + 1. Thus,

if w'k < GO, then there exists a (not necessarily simple) path P from node 1 to

node k along which Σ(/ /)ejp% = w'k.

If there is no negative cost circuit in G, then the cost of any nonsimple
path is greater than or equal to the cost of the corresponding simple path after

Some Network Flow and Network Synthesis Problems 631

eliminating the circuits in this path (why?). Hence, in the absence of negative
cost circuits, w'j is bounded from below by the cost of a shortest simple path,

and thus by a finite integer (why?). Finally, treating <x> as a large integer, since 0
< \SE\ < m — 1, and since the two-tuple {T.iw'i, \$E\} lexicographically
decreases by a positive integer at each iteration (why?), the shortest path
algorithm will stop in a finite number of steps if G has no negative cost circuit.
Moreover, at termination, if any w\ = oo, then it is readily verified that node i is
unreachable from node 1, and vice versa.

Let us show that at termination, the labels w\ are the corresponding

shortest path distances. From Theorem 12.2, it is sufficient to show that
Equation (12.4) holds true for the nodes reachable from node 1. Consider any
node q Φ 1, and let node u be the predecessor of node q at termination. Then we
must have w' =w'u+ cu„ i.e., the w' -labels must be sharp for the arc (u, q). To

see this, note that this is true when w' was finally set at its terminal (minimal)

value with node u being its predecessor. If, on the contrary, the label w'u was

subsequently revised (and therefore lowered), then node u would have entered
SE and, when selected for scanning, would have subsequently revised the label
of node q to a lower value, which contradicts the final setting of the label of q.
Hence, we have,

K = w'u + cuq ^ minimum {w\ + ciq } = w'p+cpq, say.
i:(i,q) exists

If equality holds in the foregoing inequality, then (12.4) is satisfied for this
(arbitrary) node q. Hence, on the contrary, suppose that w'q > w'p + cpq.

However, after w'p < oo was set for the final time in the algorithm and was later

selected from SE for the final time, we should have relabeled node q since
w'„ >w'p + cpq. Hence, we have a contradiction and therefore, the algorithm

produces the required shortest paths.
In fact, at termination, the predecessor labels produce a shortest path tree (actually,
an arborescence). To see this, note that we commence with an arborescence
having node 1 as the root node being directly connected to each of the nodes
2,..., m via artificial big-M(virtually, infinite cost) arcs. Inductively, suppose
that we have an arborescence at any given stage when we scan the forward star
of some node p e SE, and discover a node q in this set having w' > w'p + c ,

based on which, we revise the label w'„ to equal w'p + cpq and we set the

predecessor of node q to node/?. If node q already had node/? as its predecessor,
this would not alter the current arborescence (this step would only serve the
purpose of making the labels sharp with respect to the arc (p, q)). Otherwise,
suppose that we trace the chains (reverse paths) from nodes p and q to the root
node 1, and let k be the first common node encountered on these chains. First,
suppose that k Φ q (we might have k = p or k = 1). In this case, let u Φ ρ be the

632 Chapter 12

previous predecessor of node q (which belongs to the non-null chain from q to
k). When we change just the predecessor of node q from u top, this is equivalent
to adding the arc (p, q) to the current arborescence and removing the arc (w, q).
The resulting graph is also an arborescence (why?). Observe that this is akin to
performing a primal network simplex type tree update. However, it is insightful
to note at this point that we are not executing a full dual update because we only
revise the label of node q alone to the lower value, and do not simultaneously
decrease by the same amount the labels of all the nodes in the subtree Tq

containing q that is obtained by deleting arc (w, q) in the current tree, as we
would in a network simplex iteration. Hence, although the node labels are sharp
at termination for the arcs in the final tree, they are not necessarily sharp for all
the arcs in intermediate trees. Hence, unlike as for Dijkstra's algorithm for the
nonnegative cost case, the present scheme differs from a standard network
simplex implementation.

On the other hand, suppose that q = k. In this case, the current
arborescence contains a path P = {1,..., u, q,...,p] from node 1 to node p. By
revising the predecessor label of q from u to p, i.e., by adding the arc (p, q) to
the current arborescence and removing the arc («, q), we would create a circuit
comprised of the segment {q,...,p} in the path P, plus the return arc (p, q). Let
C be the length of this circuit. As one might guess, it must be the case that C <
0, i.e., we have a negative cost circuit in G, which would contradict our standing
assumption. To verify this, let L be the length of the segment {q,..., p} in the
path P, so that C = L + cpq. Note that if the w' -labels were sharp with respect

to all the arcs in the path segment {<?,..., p} within P, we would have
w' =w'+L (why?). However, as discussed above, we may not have this

sharpness property holding true for all the arcs in the path segment {q,...,p} of
P. Hence, in general, we have W > w' +L > w' +cpq +L, or that C = L +

cp < 0, a contradiction.

Assuming that all nodes are reachable from node 1 (via big-M artificial
arcs, if necessary), the reader may now observe that the final resulting shortest
path tree (arborescence) produced is primal feasible for the corresponding
minimum cost network flow program that has b\=m-\ and £,·=-!,

Vi = 2,...,m. Moreover, the dual solution w; = -w\, i = 1,..., m, is dual feasible
and is complementary slack with respect to this solution. Hence, this tree yields
an optimal basis.

We also have at hand a way to determine whether the network contains a
negative cost circuit reachable from node 1. If no negative cost circuit exists,
then c0 = Zc,.<oci/ is a lower bound on the w' -labels (why?). Thus, if any w\

falls below c0 during the algorithm, a negative cost circuit must exist and we

can then terminate the shortest path algorithm.

Some Network Flow and Network Synthesis Problems 633

A Computational Complexity Remark

Suppose that we are given a shortest path problem having nonnegative cost
coefficients. We can use the foregoing procedure for this problem and select at
each stage that node from the scan eligible list SE, which has the smallest label
w'p. Because Cy > 0, all labels revised henceforth will be set at distances greater

than or equal to w' . In particular, this means that node p itself will never have

its label revised again, and so will never re-enter SE. Consequently, the
algorithm can perform at most m iterations in this case. Noting that each
iteration is of complexity 0(m) because it involves scanning only the forward

star of the selected node, the algorithm in this case is of complexity 0(m).

Observe that in such an implementation, we can maintain the scan eligible list
SE as a heap, where the nodes/» e SE are ordered according to nondecreasing w' -

values. (These latter values are referred to as the key for maintaining the heap in
this context, with the associated function key(p) = w' .) Then, at each stage, we

extract (i.e., select and delete) the node from the top of the heap SE (which
simply takes 0(1) time). Also, whenever a new node is introduced into SE, it is
inserted within this list such that we preserve the nondecreasing order of the
corresponding key values. This so-called insert operation can be performed in
0(\og{m)) time. We refer to this enhanced implementation of Dijkstra's basic
algorithm as the Heap-Dijkstra procedure. Note that, in particular, if we are
simply interested in finding a shortest path from node 1 to some specific
terminus node t, then the Heap-Dijkstra procedure can be terminated with an
optimal solution value w't at the stage when node t is extracted from the heap SE

(why?).
It is important to note that, for the arbitrary cost case, some caution needs

to be exercised to ensure a polynomial-time algorithm. For example, a first-in-
first-out scheme for selecting nodes from SE yields a polynomial-time
algorithm, as shown in the following section, while a last-in-first-out scheme is
known to admit an exponential computing effort.

A Labeling Algorithm for the Shortest Path Problem

Either for hand or computer calculations there are simple and convenient ways
to maintain the information required to solve a shortest path problem having
arbitrary costs. Suppose that we associate with each node/ a label L(j) = (/, w')

containing two pieces of information. The second entry, w', in L(J) indicates the

cost (length) of the current "best" path from node 1 to node j . The first entry, i,
in L(J) gives the predecessor node, that is, the node just prior to node j in the
path. Let c0 = Zc..<oc!y· The labeling algorithm is as follows:

INITIALIZATION STEP

Set L(l) = (-, 0), L(i) = (-, oo) for i = 2,..., m, and SE = {1}.

634 Chapter 12

MAIN STEP

If SE=0, stop; the required shortest paths are available. The second label on
the nodes gives the shortest path distances and the paths are traceable using the
first (predecessor) labels. Otherwise, select p e SE. For all arcs (p, q) with q in
the forward star of p such that w' > w' +c„„, set L(q) = {p, w'= w' +cpq),

and replace SE by SEu{q}. If w < c0, stop; there is a negative cost circuit in

G. Otherwise, remove/; from SE and repeat the main step.

An Example of the Labeling Algorithm

Suppose that we use the labeling algorithm to solve the shortest path problem of
Figure 12.7. First, c0 = -1 - 4 - 6 = -11.

The sequence of operations of the labeling algorithms are as follows:

1. L(l) = (-, 0),U2) = (-, oo),L{3) = (- =.), L(4) = (-, oo),SE={\}.
2. p=l,L(2) = (l,2),L(3) = (l,-\),SE={2,3}-
3. p = 2, L(3) = (2, -2), 1(4) = (2, 5), SE= {3, 4}.
4. p = 3,L(4) = (3,-8),SE={4}.
5. p = 4,SE=0.

STOP; 1(2) = (1, 2), L(3) = (2, -2), and 1(4) = (3, -8). The shortest paths to
nodes 2, 3, and 4 are of lengths 2, -2 , and -8 , respectively, and are respectively
determined as {(1, 2)}, {(1, 2), (2, 3)}, and {(1, 2), (2, 3), (3, 4)} by backtrack-
ing using the first labels in L(-).

Identifying a Negative Cost Circuit With the Shortest Path Algorithm

We have already indicated that if w'k < c0 at some point in the shortest path

algorithm, then a negative cost circuit reachable from node 1 exists in G. To find
such a negative cost circuit, begin at node k and apply the following procedure:

INITIALIZATION STEP

Letp = k,C={k}.

MAIN STEP

Let Ly{p) be the first entry in Lip).

1. If Ly (p) > 0, let I = Z·! (/>), and replace L} (p) by ^ (p), and C by C

u{i}. Set/» = I and repeat the main step.

2. If L\(p) < 0, then stop. A negative cost circuit has been found, and
may be traced by starting at the last element in C and proceeding
backwards through C until this element repeats.

Note that the original node £ may not be part of the negative cost circuit.

Some Network Flow and Network Synthesis Problems 635

12.3 POLYNOMIAL-TIME SHORTEST PATH ALGORITHMS FOR
NETWORKS HAVING ARBITRARY COSTS

We will now slightly modify the algorithm for determining shortest paths from
node 1 to all the other nodes in a network having arbitrary cost coefficients in
order to derive an efficient polynomial-time (label-correcting) algorithm. The
particular algorithm we discuss is known as the partitioned shortest path (PSP)
algorithm, because it effectively partitions the scan eligible list SE into two sets,
namely, NOW and NEXT. As implied by the names of these sets, the nodes in
the list NOW are scanned first. This scanning process postpones the
consideration of any new scan eligible nodes into the list NEXT until NOW is
exhausted. At this point, if NEXT is nonempty, its contents are transferred to
NOW and the procedure repeats. This continues until SE = NOW u NEXT is
empty. Notice that the first-in-first-out (FIFO) scheme for selecting a node
from SE is a particular case of this procedure, where nodes are selected from the
top of NOW for scanning, and any new node added to NEXT is inserted at the
bottom of this list. We shall have more to say about this strategy later. The
algorithm is specified next.

Partitioned Shortest Path Algorithm

INITIALIZATION

Set w\ = 0, w'i = °° for i Φ 1, NOW = {1}, NEXT = 0 , and the iteration counter

k = 1. Let CQ be the sum of the negative costs in G.

STEP1

If NOW = 0 , proceed to Step 2. Otherwise, extract (select and delete) a node/»
e NOW. For each arc (p, q) with q in the forward star of p such that
w' > w' + cpq set w' = w'p + cpq and let p be the predecessor of node q. If

w' < CQ for any such node, stop; there exists a negative cost circuit in G. (This

circuit can be traced as discussed above.) If node q is not currently scan eligible,
that is, it is in neither NOW nor NEXT, add it to NEXT. Repeat Step 1.

STEP 2

If NEXT = 0 , then stop; the labels w\ give the shortest path distances. The
shortest paths are traceable by backtracking using the predecessor labels. Other-
wise, put NOW = NEXT and NEXT = 0 (perhaps by simply renaming the
lists), increment k by one, and return to Step 1.

Example of the PSP Algorithm

To illustrate, consider the example of Figure 12.7. As before, let L(-, ■) be the
predecessor and path length label as defined in the previous section. We begin at
iteration k = 1 with NOW = {1}, NEXT = 0 , L(\) = (-, 0), and L(i) = (-, °°) for
ι Φ 1. The operations proceed as follows:

636 Chapter 12

1. k=\ with NOW = {1}, NEXT = 0 :
p = 1, L(2)=(1, 2), L(3)=(1,-1), NOW = 0 , NEXT ={2,3}.

2. A: = 2 with NOW ={2, 3}, NEXT = 0 :
p = 2, Z,(3)=(2, -2), I(4)=(2, 5), NOW = {3}, NEXT = {4}.
p = 3, i(4)=(3, -8), NOW = 0 , NEXT = {4}.

3. A: = 3 with NOW ={4}, NEXT = 0 :
p = 4, NOW = 0 , NEXT = 0 .

The algorithm terminates with 1(2) = (1,2), 1(3) = (2, -2), and L(4) = (3,
-8). These labels give the shortest paths from node 1 to nodes 2, 3, and 4 as
before.

Complexity Analysis of the PSP Algorithm

Assume that the graph G does not contain any negative cost circuit (reachable
from node 1). First of all, note that the algorithm terminates finitely and pro-
duces the shortest paths from node 1 to all the other nodes that are reachable
from it. This follows from the previous section by simply noting that SE = NOW
u NEXT and that the algorithm only specifies a (partial) order in which the
nodes in SE must be considered. However, it is this partitioning of SE that
guarantees a polynomial-time algorithm. As we now verify, the algorithm
performs at most (m - 1) iterations. Because each iteration scans no arc of the
problem more than once, it is of complexity 0(| . ' /1), where \-"/\ is the

number of arcs. Hence, the algorithm is of complexity 0(m\ Y |).

The key property of the algorithm is as follows. Consider the current
(shortest path) partial tree that exists at the beginning of Step 2 at each iteration
k in the algorithm. Then the level of each node in NEXT in this tree is at least k,
where the level of a node is the number of arcs in the chain from this node to
node 1 in the tree. This is clearly true for k = 1. Inductively, assume that this is
true for iteration k and consider iteration (k + 1). Note that at the beginning of
iteration {k + 1), the list NOW coincides with the list NEXT at Step 2 of the
previous iteration. Hence, by the induction hypothesis, each of the nodes in this
list has a level of at least k in the tree. A node that has its label revised in this
iteration is either already in NOW or enters NEXT, but with its level in the tree
being one more than the level of the node that revises its label. Hence, the levels
of the nodes in NEXT at the end of Step 1 (or the beginning of Step 2) of
iteration (k + 1) are at least (k+ 1), thus establishing the required result.

Because of this key property, since a shortest path tree is constructed by
the algorithm in the absence of negative cost circuits in G, the shortest paths
from node 1 to the nodes that are in NEXT at the beginning of Step 2 of each
iteration k involve at least k arcs. This follows since the shortest path to any
node is verified or established in the iteration following the one in which it
shows up in NEXT at Step 2 for the last time. This means that the algorithm
cannot possibly perform more than (m - 1) iterations (why?). (Indeed, if a node
has its label revised at iteration m (or higher), it must lie on a negative cost
circuit, which can be traced as discussed previously.) In fact, some node in
NEXT at Step 2 must have its shortest path already determined at each iteration.

Some Network Flow and Network Synthesis Problems 637

This follows because the current list NEXT becomes the list NOW for the next
iteration, and since all nodes relabeled from this point onward must have a node
in this list on the chain to node 1, we cannot possibly have all the nodes in this
list repeating or else we would have a cycle.

For the foregoing example, at the end of iteration k = 1, node 2 e NEXT
has its shortest path determined, and at the end of iteration k = 2, node 4 e
NEXT has its shortest path determined. Node 3 shows up in NEXT for the last
time at (the end of) iteration k = 1 and has its shortest path determined during
iteration k = 2. The levels of nodes 2, 3, and 4 in the final shortest path tree are
1, 2, and 3, respectively.

As far as computational implementation strategies are concerned, note
that we could maintain the list NEXT as a heap, where the nodes are arranged in
nondecreasing order of the labels w\ (which serve as the key for the heap).

Hence, each time a new node q is introduced into NEXT (or the label of an
existing node q is revised within NEXT), it is inserted (or re-inserted) into
NEXT to preserve the nondecreasing order of the labels w\. Then, once NEXT

is transferred to NOW at the end of any iteration, the nodes are subsequently
extracted one at a time from NOW from the top of the list. However, in spite of
its efficiency, this strategy turns out to be computationally expensive relative to
a simple FIFO procedure because of the relative ease with which shortest path
problems are solved using Algorithm PSP. On the other hand, a slight
modification to the FIFO strategy yields an empirical advantage. In this strategy,
letting w'j be the label of the node that is currently at the top of the list

NEXT, whenever a new node q having the label w' is inserted into NEXT, then

this node q is added to the top of the list NEXT if w' < w' , and otherwise, it

is inserted to the bottom of this list. The following section discusses a somewhat
more sophisticated variation of this concept of maintaining an approximate heap
that turns out to be even more effective in practice.

Threshold Partitioned Shortest Path Algorithm

A noteworthy computationally efficient variant of the PSP algorithm, particu-
larly for nonnegative cost coefficients, has been designed to operate as follows.
At the end of every iteration k, a suitable threshold value t is computed. Instead
of transferring the entire list NEXT into NOW, only those nodes i e NEXT are
placed in NOW that have w\ < t. The value t is tuned heuristically based on the
network structure, but of course always satisfies t > minimum {w\: i e NEXT}.

Additionally, at Step 1 of the PSP algorithm, whenever a node q has its label
updated and q is not a member of NOW, it is checked whether or not the revised
w'q exceeds the current threshold value /. If w' > t, then node q is added to

NEXT as before. Otherwise, node q is added to a separate list NOW' (unless it
is already there) and it is removed from NEXT if it happens to be there. Then,
when NOW becomes empty, the contents of NOW' are transferred to NOW and
the process repeats by scanning the nodes in NOW as before, until both NOW

638 Chapter 12

and NOW are empty. At this point, if we also have NEXT = 0 , then the
method terminates. Otherwise, an appropriate revised threshold value t is
computed, and all nodes i in NEXT that have their label values wj < t are

transferred to NOW, while the remaining nodes are retained in the list NEXT.
The algorithm then resumes processing the nodes in NOW as before.

Observe that when all costs are nonnegative, the nodes having the small-
est w'j -labels in the list NOW' or NEXT that are transferred into NOW have
their shortest path distances already determined, and so will not show up in any
subsequent set. Hence, there can be no more than (m - 1) total transfers from
NOW' or NEXT into NOW. Because the effort involved between each such
transfer is of complexity 0(\ ■'/1), the algorithm is of complexity 0(m\ .r/1).

Computationally, any new nodes added to NOW' or NEXT can either be
appended to the bottom of these lists, or can be inserted into these lists as
suggested for Algorithm PSP. Nodes are typically extracted from the top of the
list NOW for scanning next, but it has also been suggested that nodes from
NOW be selected in a last-in-first-out order. Empirically, the threshold
partitioned shortest path algorithm has been found to be computationally
superior on several types of networks, particularly, having nonnegative costs
(see the Notes and References section).

Some Extensions of Shortest Path Problems

We conclude this section by indicating several interesting variants of shortest
path problems that have been analyzed in the literature. One such variant is the
time-dependent shortest path problem, which frequently arises in transportation
networks that are subject to traffic congestion. Here, the duration required to
traverse any arc (the arc cost) can be time-dependent, i.e., in general, it can be a
function of the time that this arc is entered via its from-node. One can concep-
tualize such networks in an expanded time—space representation in which each
node i is replicated for all possible times t that it can be entered, and accord-
ingly, it is represented by the two-tuple (i, t). An arc connects node (i, t\) to a

node (j, /2) in this network whenever there exists an arc (i,j) in the original

network for which the time to traverse this arc when entering node i at time ίχ

equals (t2 - t \). The "cost" on this arc is therefore simply a constant equal to

(t2 -1\). By conceptualizing the problem over this time-space network either

explicitly or implicitly, depending on the nature of the traversal time functions,
the various algorithms discussed for the standard shortest path problem can be
extended to such time-dependent problems. In particular, if the arc traversal
times possess a first-in-first-out property, i.e., entering an arc at a relatively
earlier time ensures exiting it also at a relatively earlier time, then this time-
dependent shortest path problem is solvable in polynomial time as for the
standard case. Otherwise, in general, the problem is known to be NP-hard (see
the Notes and References section for definitions and details). Further extensions
of this problem have also been considered in which arcs additionally have par-
ticular labels (e.g., designating modes of transportation), and one is required to

Some Network Flow and Network Synthesis Problems 639

determine a time-dependent shortest path for which the corresponding sequence
of labels belongs to a set of acceptable strings of labels. For instance, in a mul-
timodal network having various modes of transportation such as cars, buses,
trains, and even walking or biking, a user might specify various admissible
strings such as, e.g., walk —* train —> bus —► walk, from an origin to a destina-
tion. Here, each specified mode can be repeated several consecutive times via
the arc labels in the prescribed shortest path solution. This is known as a label-
constrained {time-dependent) shortest path problem. Other extensions include
problems where the traversal time on any arc (/, J) might also depend on the
previous arc leading to node i (in order to represent, e.g., left turns versus
straight crossings into arc (/, j) at traffic road intersections), or the traversal
times might be random variables. The former class of problems are called
approach-dependent shortest path problems (and can also be label-constrained
and time-dependent), whereas the latter class of problems are known as
stochastic shortest path problems, or as dynamic stochastic shortest path
problems in the case when the actual traversal cost on an arc is (stochastically)
realized when reaching the entering node of the particular arc. We refer the
reader to the Notes and References section for further details and information
regarding these problems.

12.4 MULTICOMMODITY FLOWS

In all of the flow problems we have considered to this point, it has not been
necessary to distinguish among the units flowing in the network. This class of
network flow problems is called single-commodity flow problems. There is also a
class of network flow problems called multicommodity flow problems in which
it is necessary to distinguish among the flows in the network.

The most natural example of multicommodity flows occurs in rush hour
traffic in any metropolitan city. If the area is divided into zones, then there are a
number of people in zone / who must travel to work in zoney. There are also a
number of people who must travel from zonej to work in zone i. The locations
at which people originate inherit a corresponding supply (b > 0), and where they
wish to go, we obtain a corresponding demand (b < 0). If we treat the problem
as a single-commodity flow problem, a minimal-cost flow procedure (network
simplex or out-of-kilter) would use the supply of people in a given zone to
satisfy the demand in the same zone. This is an unacceptable solution. In this
problem and ones like it, we must distinguish between the different types of
flow and be careful to retain their identity and flow pattern throughout the
optimization procedure. That is, we must essentially have a different flow vector
and a set of conservation equations for each commodity.

As we shall see, multicommodity flow problems do not enjoy the same
special properties as single-commodity flow problems. As an example, consider
the network of Figure 12.9. Suppose that there are three commodities that flow
through the network. The source for commodity 1 is node 1, and the sink for
commodity 1 is node 3. That is, commodity 1 must originate only at node 1 and
terminate only at node 3. Similarly, let the source and sink for commodity 2 be
nodes 2 and 1, respectively. Finally, the source and sink for commodity 3 are
nodes 3 and 2, respectively. With the restriction that the sum of all commodities

640 Chapter 12

flowing on an arc should not exceed the arc capacity Uy = 1, what is the maxi-

mal sum of commodity flows, f\+ f2+ fi, possible in the network?
Finding the maximal flow for the three-commodity problem of Figure

12.9 is relatively simple since there is only one path that each commodity can
take on its way from its source to its sink. The paths for commodities 1, 2, and
3, respectively, are

/>!={(1,2),(2,3)}

P2={(2,3),(3,1)}

F3={(3,1),(1,2)}.

If we place a single unit of flow on any one of the paths, then the other paths are
completely blocked (that is, must have zero flow), and thus the total flow would
be 1. However, there is a better solution available if we do not require integer
flows. Suppose that we place 1/2 unit of flow of commodity 1 on fj, 1/2 unit of

flow of commodity 2 on P2, and 1/2 unit of flow of commodity 3 on P3. In this case,

none of the arc capacities are violated and the total flow of all commodities is
3/2. From this we see that multicommodity flow problems do not necessarily
provide integer flows.

Even though multicommodity flow problems do not have as "nice" a
structure as single-commodity flow problems, they still are linear programs (if
we ignore integrality of the variables). As we shall soon see, multicommodity
flow problems do have a special structure that permits the application of decom-
position techniques.

The Multicommodity Minimal-Cost Flow Problem

Suppose that we are given a network G having m nodes and n arcs in which
there will flow t different commodities. Let u, represent the vector of upper

limits on the flow for commodity i in the arcs of the network. Thus, uipq is the

upper limit on flow of commodity ;' in arc (p, q). Also, let u represent the vector
of upper limits on the sum of all commodities flowing in the arcs of the network.

/ i -

h f2

Figure 12.9. A three-commodity maximal flow problem.

Some Network Flow and Network Synthesis Problems 641

Then, u is the upper limit on the sum of all commodity flows in arc (p, q). Let

c; represent the vector of arc costs in the network for commodity /. Thus, cipq is

the unit cost of commodity / on arc (p, q). Finally, let b, represent the vector of

supplies (or demands) of commodity / in the network. Therefore, biq is the

supply (if bj > 0) or demand (iibig < 0) of commodity i at node q.

The linear programming formulation for the multicommodity minimal-cost
flow problem is as follows:

t
Minimize Σ c

;
x,'

;=1

subject to X x , < u

A x ; = b ; , i = l,...,t
0 < x ; < u ; , i = l,...,t,

where x;- is the vector of flows of commodity /' in the network and A is the node-arc

incidence matrix of the graph. The foregoing formulation is called the node-arc
formulation for the multicommodity flow problem, since it uses the node-arc
incidence matrix.

The multicommodity minimal-cost flow problem possesses the block
diagonal structure discussed in Section 7.5. Therefore, we may apply the block
diagonal decomposition technique to the foregoing problem. The multicom-
modity minimal-cost flow problem has (t + \)n variables and n + mt constraints
(including the slack variables for the coupling constraints and ignoring the
nonnegativity and upper bound constraints 0 < x, < u,·). Thus, even for moderate-
sized problems, the constraint matrix will be large. For example, suppose that
we have a problem having 100 nodes, 250 arcs, and 10 commodities. This
problem will have 2750 variables and 1250 constraints.

Consider the application of the decomposition algorithm to the minimal-cost

multicommodity flow problem. Let X{ ={x(· : Ax,· = b ; , 0 < x ; <u,·}. Assume

that each component of u, is finite so that X, is bounded (see Exercise 12.59 for

a relaxation of this assumption). Then any x, can be expressed as a convex com-

bination of the extreme points of Xt as follows:

_ ki

where

Σ % = ι

4 > o , j = i,...,kh

642 Chapter 12

and χ;·|, χ(·2,...,χ,·£., are the extreme points of Xt. Substituting for x, in the multi-
commodity minimal-cost flow problem and denoting the vector of slacks by s,
we get the following:

t K
Minimize Σ Σ (c/x//)%

1=1 y=i

subject to Σ Σ *,·-% + s = u

ki

Z % = 1 > i = \,...,t
7=1

λ^>0, j = l,...,khi = l,...,t
s>0.

Suppose that we have a basic feasible solution to the multicommodity minimal-
cost flow problem in terms of the /L-variables, and let (w, a) be the vector of

dual variables corresponding to the basic feasible solution (w has n components
and a has / components). Then dual feasibility is given by the following two
conditions:

(i) wpq < 0 corresponding to each spq, and

(ii) wx,y + a, - CjXy < 0 corresponding to each L·.

If any of these conditions is violated, the corresponding variable {spq or L·) is a

candidate to enter the master basis. Here, spq is a candidate to enter the basis if

w > 0. For a given commodity i, a nonbasic ^ -variable is enterable into the

basis if the optimal objective value of the following subproblem is positive
(why?):

Maximize (w - c;)x(· + a,
subject to Ax;- = b,

0 < x , < U i ,

But, since A is a node-arc incidence matrix, this is simply a single-commodity
network flow problem. Thus, it may be solved by one of the efficient techniques
for solving single-commodity network flow problems.

Summary of the Decomposition Algorithm Applied to the Multicommodity
Minimal-Cost Flow Problem

We now specialize the decomposition algorithm of Chapter 7 to the multicom-
modity minimal-cost flow problem.

Some Network Flow and Network Synthesis Problems 643

INITIALIZATION STEP

Begin with a basic feasible solution to the master problem. Store B~ , b =

B~ I "? I, and (w,a) = cBB~ , where c,y =c,-xiy for the Ay—variables. (The

two-phase or the big-M method may be required.)

MAIN STEP

1. Let (w,a) be the vector of dual variables corresponding to the

current basic feasible solution to the master problem. If any wpq > 0,

then the corresponding variable sp is a candidate to enter the master

basis. If Wpq < 0 for each arc, consider the following rth subproblem:

Maximize (w - c,-)x;- + a,-
subject to Ax,· = b(

0 < x ; <uf .

This is a single-commodity flow problem. If the solution xik to this

problem has zik -cik = (w-c,)x,£ +«/ > 0, then Àiìc is a candidate to

enter the master basis.
2. If there is no candidate to enter the master basis, then stop; an

optimal solution is at hand. Otherwise, select a candidate variable,

update its column according to B | ξ^ for s and B~ ' '*

for Xik, and pivot. [Note that epq is a unit vector with the 1 in the

row associated with arc (p, q).] This updates the basis inverse, the
dual variables, and the right-hand-side. Return to Step 1.

An Example of the Multicommodity Minimal-Cost Flow Algorithm

Consider the two-commodity minimal-cost flow problem whose data are given
in Figure 12.10.

The constraint matrix and the right-hand-side are displayed in Figure
12.11 (the lower and upper bound constraints 0 < xt < Uj and 0 < x2 < u2 are
not displayed). Notice the structure of the coupling constraints and the special
structured block diagonal constraints. Also, note that X] and x2 represent the
artificial variables for the two commodities.

INITIALIZATION

To avoid the two-phase or the big-M methods, suppose that we begin with the
following feasible solutions:

644 Chapter 12

(2.0) / (1, -3)
(4, 3, 4, 5, -2) • - *

-H 2 \Upq >U\pq> U2pq ' C\pq ' C2pq)

(hqAq)

Figure 12.10. A two-commodity minimal-cost flow problem.

(3, 4, 2, 1, 0)

Xn =

x112
x123
x134
x141

_ X 1 4 2 _

=

2
3
2
U

u J

and x21 =

x212
x223
x234
x241

. *242 .

=

0

u
3
υ

[3 J

Note that the master basis (in the space of the slack and the ,Ί^-variables

consists of all the slacks, λη, and À%\- The basis and its inverse are:

B

s\2

1
0
0
0
0
0
0

s27,

0
1
0
0
0
0
0

s34

0
0
1
0
0
0
0

s4l

0
0
0
1
0
0
0

s42

0
0
0
0
1
0
0

λη

2
3
2
0
0
1
0

0"
0
3
0
3
0
1

B"

1
0
0
0
0
0
0

0
1
0
0
0
0
0

0
0
0
0
1
0
0

0
0

-3
0

-3
0
1

Here, C[Xu = 13 and c2x2i = 24. Denoting by b, we have

(w,a) = cBB_ 1 = (0, 0, 0, 0, 0, 13, 24) B_ 1 = (0, 0, 0, 0, 0, 13, 24)

Fi
gu

re
 1

2.
11

.
T

he
 c

on
st

ra
in

t
m

at
ri

x
fo

r
th

e
tw

o-
co

m
m

od
ity

 n
et

w
or

k
fl

ow
 p

ro
bl

em
 o

f
F

ig
ur

e
12

.1
0.

£ ?

FI
R

ST
 C

O
M

M
O

D
IT

Y

V
A

R
IA

B
L

E
S

SE
C

O
N

D
 C

O
M

M
O

D
IT

Y

V
A

R
IA

B
L

E
S

SL
A

C
K

 V
A

R
IA

B
L

E
S

C
ou

pl
in

g
co

ns
tr

ai
nt

s

N
od

e-
ar

c
in

ci
de

nc
e

m
at

ri
x

fo
r

S
ub

pr
ob

le
m

 1

N
od

e-
ar

c
in

ci
de

nc
e

m
at

ri
x

fo
r

S
ub

pr
ob

le
m

 2
 x 11

2 -5
 1 0 0 0 0 1

-1
 0 0 0 0 0 0

x 12
3 -1
 0 1 0 0 0 0 1

-1
 0 0 0 0 0

x 13
4 0 0 0 1 0 0 0 0 1

-1
 0 0 0 0

x 14
1 -1
 0 0 0 1 0 -1
 0 0 1 0 0 0 0

x 14
2 -4
 0 0 0 0 1 0 -1
 0 1 0 0 0 0

x x
 0 0 0 0 0 0 0 0 0 1 0 0 0 0

x 21
2 2 1 0 0 0 0 0 0 0 0 1

-1
 0 0

x
22

3 0 0 1 0 0 0 0 0 0 0 0 1
-1

 0

x 23
4 -2
 0 0 1 0 0 0 0 0 0 0 0 1

-1

x 24
1 1 0 0 0 1 0 0 0 0 0 -1

 0 0 1

x 24
2 -6
 0 0 0 0 1 0 0 0 0 0 -1
 0 1

x 2
 0 0 0 0 0 0 0 0 0 0 0 0 0 1

*1
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0

s 23
 0 0 1 0 0 0 0 0 0 0 0 0 0 0

s 34
 0 0 0 1 0 0 0 0 0 0 0 0 0 0

s 41
 0 0 0 0 1 0 0 0 0 0 0 0 0 0

s 4
2 0 0 0 0 0 1 0 0 0 0 0 0 0 0

R
H

S 0 4 3 7 1 5 2 1
-1

-2

 0 -3
 3 0

s ft
. s- ft

<
Ji

646 Chapter 12

B~'b = B"1
u
1
1 j

= B - '

[4
3
7
1
5
1
1

=

[2 1
0
2
1
2
1
1

z = cgB- 1b = 37.

Setting up the revised simplex array:

(w,a)
B 1

c B B ' b

B'b

for the master problem, we get the following:

■*12

·*23

ί 4 1

s42

Iteration 1

First, all wpq < 0. Next, we check whether a candidate from either subproblem

(or commodity) is eligible to enter the master basis.

SUBPROBLEM 1

w\2

0
1
0
0
0
0
0
0

w„
0
0
1
0
0
0
0
0

VK,4

0
0
0
1
0
0
0
0

w41

0
0
0
0
1
0
0
0

w42

0
0
0
0
0
1
0
0

a,
13
-2
-3
-2

0
0
1
0

«2
24

0
0

-3
0

-3
0
1

RHS
37

2
0
2
1
2
1
1

w-Cj =0-C! =(-5,-1,0,-1,-4).

Subproblem 1 is the single-commodity flow problem defined in Figure

12.12. An optimal (maximal) solution is x12 = (2,3,2,0,0)' and the value of the

Subproblem 1 objective is

z12 -C[2 =(w-Cj)Xj2 +«i =-13 + 13 = 0.

Thus, there is no candidate from Subproblem 1.

Some Network Flow and Network Synthesis Problems 647

0 W W « - C 1 M)
(Maximization)

(4, -1)

(5,0)

Figure 12.12. Subproblem 1 at the first iteration.

(U2n>
Wpq -C2pc)

(Maximization)

(2,0)

- (3, -2)
0 3

Figure 12.13. Subproblem 2 at the first iteration.

SUBPROBLEM 2

w - c 2 = 0 - c 2 =(2,0,-2,1,-6).

Subproblem 2 is the single-commodity flow problem defined in Figure 12.13.

An optimal (maximal) solution is x22 = (3,0,3,3,0)' and
z22 ~c22 = (w -c 2)x 2 2 +a2 = 3 + 24 = 27.

Thus, λ^ is a candidate to enter the basis. The updated column for λχ2

(exclusive of z22 - c22) is

B
x22

0
1

= (3,0,0,3,-3,0,1/.

The pivoting process is as follows:

w\2 w23 w34 w4\ w42 " l «2 RHS

s12

■*23

s42

\\

0
1
0
0
0
0
0
0

0
0
1
0
0
0
0
0

0
0
0
1
0
0
0
0

0
0
0
0
1
0
0
0

0
0
0
0
0
1
0
0

13
-2
-3
-2

0
0
1
0

24
0
0

-3
0

-3
0
1

37
2
0
2
1
2
1
1

^22
27

648 Chapter 12

z

*12

*23
S34

hi
s42

/l | |

h.\

wu

0
1
0
0
0
0
0
0

H-23

0
0
1
0
0
0
0
0

WJ4

0
0
0
1
0
0
0
0

w41

-9
-1
0
0

1/3
1
0

-1/3

w42

0
0
0
0
0
1
0
0

A
13

-2
-3
-2

0
0
1
0

«2

24
0
0

-3
0

-3
0
1

RHS
28

1
0
2

1/3
3
1

2/3

Iteration 2

Again, all wpg < 0, and so no spq is a candidate to enter the master basis.

SUBPROBLEM 1

(w - C l) = (-5,-1,0,-10,-4).

Subproblem 1 is the single-commodity flow problem defined in Figure 12.14.

An optimal solution is x]3 =(2,3,2,0,0)' with

z13 _c13 = (w _ c l) x 1 3 +a\ =-13 + 13 = 0.

Thus, there is no candidate from Subproblem 1.

SUBPROBLEM 2

(w - c 2) = (2,0,-2,-8,-6).

Subproblem 2 is the single-commodity flow problem defined in Figure 12.15.

An optimal solution is x23 = (3,0,3,3,0)' with

z23~c23 = (w -C 2) x 2 3+«2 =-24 + 24 = 0.

Thus, there is no candidate from Subproblem 2.
Therefore, we already have an optimal solution as follows:

z* = 28

x* = ληχη =(2,3,2,0,0)'

X2 = ^21X21 + ^ 2 2 x 2 2

= (2/3) (0,0,3,0,3/ + (1/3X3,0,3,3,0)'
= (1,0,3,1,2)'.

Some Network Flow and Network Synthesis Problems 649

(U\pq>Wpq-C\pq) (Maximization)

(4,-1)

-2 -1

Figure 12.14. Subproblem 1 at the second iteration.

12.5 CHARACTERIZATION OF A BASIS FOR THE
MULTICOMMODITY MINIMAL-COST FLOW PROBLEM

Suppose that we proceed to apply the simplex method directly to the multicom-
modity minimal-cost flow problem. We first note from Chapter 9 that the
system Ax, = b, has rank m - 1 so that it is necessary to add an artificial vari-
able for each commodity. Adding this artificial column vector, the overall
constraint matrix is given by

} n rows
} m rows
} m rows

} m rows

x1
I
A
0

0

*?. ·
I
0
A ·

0

• xr
I

• 0
• 0

• A

X

I

o
•

o

where A =[A,eOT] and I =[1,0]. Selecting a basis submatrix from this matrix,

we get

("ipq'Wpq -C2pq)
(Maximization)

(2,0)

- (3, -2)
0 3

Figure 12.15. Subproblem 2 at the second iteration.

650 Chapter 12

B =

E,

A,
0

0

E2 ·

0

A2 ·

0

- E,
0

■· 0

- A,

E

0

0

0

where E,· and E are matrices formed by taking selected columns of I and I,

respectively. The row location of the 1 for a particular column of E,· identifies

the arc used in A,-.

Because B is a basis matrix, each A, must contain a submatrix that spans

Rm. Therefore, each A;· contains an m x m basis (why?). Let us partition A,· into

[B;· | D,·] where B,· is a basis matrix for Ax; = b ; . Note that B; must contain the

artificial column (why?). From Chapter 9, since B; is a basis for a set of single-

commodity flow conservation constraints, B, must correspond to a rooted

spanning tree in G with the artificial variable as the root. Similarly, let us parti-

tion E,· into [E'j | E"]. Substituting into B and rearranging the columns, we get

E;
B,
0

E 7 .

0
B2

·· E;
. 0
. 0

E,*
Dl
0

E? .
0
D2

.. E;

.. 0

.. 0

E
0
0

0 0 B, 0 0 D, 0

In other words, the basis matrix B has the following general structure:

B =
E' E" E
B D 0

Denoting the right-hand-side by b (where b is a column vector consisting

of bj,b2,..., and bt), the basic system Bxg =b reduces to

F;
B

E"
D

ΕΊ
0

x F

*D

lsB j
—

II
b

where xB is decomposed into
xF

*B
This system is not particularly easy to

solve. However, by utilizing the following change of variables, the structure in
the system can be exploited, as we shall outline shortly:

Some Network Flow and Network Synthesis Problems 651

X F

X D
SB

I
0
0

- B ' D o
I 0
0 I

~ X F ~
xb

JB .
(12.5)

This is a nonsingular transformation, and thus we have an equivalent system

with which to work. On substituting for xB in Bxg = b, we get

E' E" E
B D 0

I
0
0

-B_1D 0
I 0
0 I

"x>"
X D
s 5

u
h

L J

i.e.,
E' E"-E'B_ 1D E
B O O

\x'F-
f

X D

LS'B .
—

u
b

■ J

Now, the second set of equations B\'F = b is easy to solve, since it corresponds
to a set of rooted spanning trees, one for each commodity.

Consider the first set of equations in the transformed system after having
solved for \'F:

The solution is

[E"-E'B_1D,E]
l D = u - E ' x > .

XD = [E"-E'B"1D,E]"I(u-E'x>)

and requires the inversion of the matrix [E"-E'B D,E]. While this matrix is

not as easy to invert as B, it is easy to form and understand. First, E is a matrix
of unit columns corresponding to the slack variables in the basis. Second, let us

- l i

»-i

investigate the matrix E"-E'B- 1D.

A typical column of E"-E'B_ 1D corresponding to commodity k is given

by e,·.· -E^B^ a,y, where e,y is a unit vector in Rn having a 1 in the row corre-

sponding to arc (i,j), and a,·.· is a vector in Rm having a 1 in row ; and a -1 in

row/. From Chapter 9, recall that y,y = B~f a,·.· corresponds to a chain from node

i to node/ in the basis tree. Note that the coefficients of y;y actually reorient the

chain into a path. Then, -B~f a/; corresponds to a chain fromy to i in the rooted

652 Chapter 12

spanning tree for commodity k. Each coefficient in -B£ a,y corresponds to a

basic variable in B^. Now, E^ is an n x m matrix with its columns being unit

vectors in R" that identify the basic variables in B^. Thus, -E^B^ a,y simply

expands the m-vector -B~f a,y to an «-vector by assigning zero coefficients

corresponding to all nonbasic arcs of commodity k. Hence, -E^B^ a,y is an n-

vector corresponding to the chain from node j to node i in the rooted spanning

tree for commodity k. Finally, e;y -EJ^B^ a;y corresponds to the unique cycle

formed when the arc (/, j) is added to the basis tree (and the basic arcs are

properly oriented). Thus, knowing B, it is easy to form E" - E ' B - D.
The important conclusion is the following:

Theorem 12.3

A transformed basis matrix for the multicommodity minimal-cost flow problem
corresponds to a rooted spanning tree for each commodity plus a set of cycles
and slack arcs.

Once [E"-E'B~ D,E] is formed as described earlier, we can solve for

x'D and s'B. With the vector

L»i J
now known, we can solve for the basic variables xF, xD, and s g from Equation

(12.5). In Exercise 12.61 we ask the reader to develop a systematic procedure
for computing the dual variables, updating the column of the entering variable,
and the basis inverse. This coupled with the foregoing procedure for computing
the basic variables, represents a direct application of the simplex method for
solving multicommodity flow problems.

An Example of a Basis Matrix for the Multicommodity
Minimal-Cost Flow Problem

Consider the multicommodity minimal-cost flow problem of Figure 12.10
without the upper bound constraints on the individual commodities. Recall that
the constraint matrix is shown in Figure 12.11.

Suppose that we select the basis submatrix (the reader is asked to verify
that this is a basis submatrix) indicated in Figure 12.16.

Applying the transformation of Equation (12.5), we get the matrix

Some Network Flow and Network Synthesis Problems 653

■M12
1
0
0
0
0
1

-1
0
0
0
0
0
0

x123
0
1
0
0
0
0
1

-1
0
0
0
0
0

x134
0
0
1
0
0
0
0
1

-1
0
0
0
0

*141 x\
0 0
0 0
0 0
1 0
0 0

-1 0
0 0
0 0
1 1
0 0
0 0
0 0
0 0

x212
1
0
0
0
0
0
0
0
0
1

-1
0
0

x234 x241 x242 x2
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 - 1 0 0
0 0 - 1 0
1 0 0 0

- 1 1 1 1

s12
1
0
0
0
0
0
0
0
0
0
0
0
0

Ì34 542

0 0
0 0
1 0
0 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Figure 12.16. A basis submatrix.

E;
B,
0

E ?

0

Bo

EJ' -EjBf'D!
0
0

E$ — IL^BO *̂ 2

0
0

E

0
0

(12.6)

Here, Bj consists of x112, -M23, -̂ 134, and xj, whereas B2 consists of *234>
x24l> x242' a nd x2- These two rooted spanning trees are illustrated in Figure

12.17. In addition Ό\ and D2 are represented by x14] and x2i2
 anc^ correspond to

the cycles of Figure 12.17.
Examining Figure 12.17, we see that

(1.2)
. . (2,3)

Ef-EÌBj-'D^ O-(-l) (3,4)
(4,1)
(4,2)

" 0 -
0 -
0 -

1

0

■(-i)l
(-1)
(-1)
- 0

- 0

Ml 2

+1

o
M34

Θ
M23

Θ

(a) (b)
Figure 12.17. Graphical illustration of the basis matrix: (a) Commodity 1
sub-basis, (b) Commodity 2 sub-basis.

654 Chapter 12

X112

1

0

0

0

0

1

-1

0

0

0

0

0

0

X123

0

1

0

0

0

0

1

-1

0

0

0

0

0

X134

0

0

1

0

0

0

0

1

-1

0

0

0

0

xx
0

0

0

0

0

0

0

0

1

0

0

0

0

X234

0

0

1

0

0

0

0

0

0

0

0

1

-1

•*241

0

0

0

1

0

0

0

0

0

-1

0

0

1

■*242

0

0

0

0

1

0

0

0

0

0

-1

0

1

h
0

0

0

0

0

0

0

0

0

0

0

0

1

Ì 4 1

1

1

1

1

0

0

0

0

0

0

0

0

0

h\i

1

0

0

1

-1

0

0

0

0

0

0

0

0

\ l

1

0

0

0

0

0

0

0

0

0

0

0

0

^ 4 542

0 0

0 0

1 0

0 0

0 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Figure 12.18. The transformed basis submatrix.

ÌLn ~~ J^2 2

1-0
0-0
0-0

0-(-l)
0-(+l)

(1,2)
(2,3)
(3,4)
(4,1)
(4,2).

Substituting this information into the transformed basis submatrix of matrix
(12.6), we get the basis representation shown in Figure 12.18.

12.6 SYNTHESIS OF MULTITERMINAL FLOW NETWORKS

The network flow problems considered thus far have been network analysis
problems, in which a certain network is given and we are then required to deter-
mine some specified characteristic of this network. In contrast, the problem
studied in this section is one of network synthesis or network design. Here, a
certain required characteristic of the network is specified, and we have to
synthesize or design a least cost network that satisfies the stated requirements.

More specifically, the particular problem analyzed here is as follows, and
arises in the design of communication networks. Suppose that we are to
construct some undirected network on a specified set of nodes 1,..., m. This
network can be designed by constructing links between node pairs / and j in
some arc set. "■/ This set may or may not be totally dense, but we assume that if

Some Network Flow and Network Synthesis Problems 655

all the potential arcs in · ' / are constructed, then the resulting network will be
connected. In addition to selecting the arcs from "4 we have the freedom of
designing the capacities of these arcs. If arc (/, j) is constructed with capacity
Ujj, then a corresponding cost of c^ > 0 per unit capacity will be incurred.

The constructed network must independently sustain a certain maximal
flow requirement ry > 0 between each pair of nodes or terminals i and/ (hence,

the name of this problem). Note that the requirements η- are specified between

each pair of nodes i and j , and not only for (/, j) e / The problem may be
mathematically stated as follows, where L· denotes the maximum flow between

node pair i andy and is, of course, a function of the constructed network.

Minimize { X q.-Uy '■ fh- ^ fy for each / = 1,..., m - 1 ,j - i + \,...,m,
(ij')e- ' /

and Uj- > 0 for (i,j) e " / } .

Before proceeding to solve this problem, there are two manipulations that
we need to perform. First, we do not need all the m(m - l)/2 structural
constraints in this problem. Intuitively, it should be evident that if the maximal
flow requirements are satisfied for certain key node pairs, then the other flow
requirements ought to be also automatically satisfied. In fact, these key node
pairs turn out to be associated with a certain tree Tr known as the dominant
requirement tree. Only the particular node pairs associated with the (m ~ 1) arcs
in Tr need to have their flow requirement constraints explicitly represented. The
second manipulation involves the representation of the constraints themselves.
The quantities L· are functions of the variables Uu. This translation must be

made in order for us to be able to solve the problem mathematically. Note that
this is readily done using the maximal flow-minimal cut theorem. Namely, for
any node pair (/, j), fy > η- if and only if the capacity of each cut separating

nodes i andy' exceeds η- (why?). (Note that since the network is undirected, we

deal with the cut here, and there is no forward or reverse cut in this context.) Let
k = 1,..., Kjj index the possible cuts separating nodes i andy. For each such k e

Kjj, define a column vector a ^ having | ■"/1 components, one corresponding to

each arc in Ύ, with the component corresponding to arc (p, q) being 1 if this
arc belongs to the cut and zero otherwise. Then, for any node pair (i,j), we may
replace fy > η- by the constraints

K *) ' u > ^ · for*=l,.. . , K,j,

656 Chapter 12

where u is the vector (uy, (i, j) e ■"/). Before we consider the first

manipulation, let us introduce an example problem.

An Example for the Synthesis Problem

Consider the potential network shown in Figure 12.19a, where m = 5, |..Ύ \ =6

with the permissible arcs as shown, and the corresponding costs c,·. per unit

capacity as indicated against the arcs. Additionally, the requirements r^ are as

follows:
r\2 = 3> 13 = 5> r\4 = 3> 15 = 2> r23 = 6>

r24 = 7, r25 = 5, r34 = 8, r35 = 1, r45 = 12.

Dominant Requirement Tree Tr

To define the dominant requirement tree Tr, construct a complete graph Gr on
the node set 1,..., m, with the (undirected) arc between each node pair i and/
having a weight equal to the requirement η.-. Then, Tr is defined as the maximum

spanning tree for Gr, that is, it is a spanning tree for Gr that has the maximum
total weight.

The process of constructing Tr involves a simple one-pass procedure and

may be done as follows. Suppose that the "weights" r^ are sorted from largest to
smallest in a list L. (A complete sort is not necessary.) Select arcs for inclusion
in Tr by proceeding in the order of list L. Skip any arc that results in a cycle with

respect to the arcs already selected. Stop when (m - 1) arcs have been selected.
For the example problem, we would select and skip arcs as follows: select (4, 5),
select (3, 4), select (2, 4), skip (2, 3) (why?), skip (2, 5), select (1,3), and stop.
The resulting tree Tr is shown in Figure 12.19b.

The fact that this "greedy" procedure produces a maximal spanning tree

Tr may be verified as follows. Suppose that the tree T* is some maximal

spanning tree. We will show that the total weight of T* and the constructed tree
Tr are the same. Toward this end, proceed down the list L and find the first arc

(p, q) that belongs to Tr but is not in T*. Add (p, q) to T* and examine the

(unique) cycle formed by (p, q) and the chain C connecting p and q in T*. Note

that ry > rpq for all (i,j) e C since T is maximal. If any (/,/) e C satisfies η-

> rpq, then (i,f) e Tr. If not, then because (i,j) appears before (p, q) in L and it

was not selected for inclusion in Tr, it must have formed a cycle with the arcs

selected for Tr before (/,/)· B u t a ' l s u c r i a r c s a r e a l s o m T* by the definition of
(p, q). Hence, we have a contradiction (why?). But all the arcs in C cannot also
be in Tr since (p, q) e Tr. Hence, there exists an arc (s, t) e C, (s, t) <£ Tr, such

Some Network Flow and Network Synthesis Problems 657

that rst = r (why?). Now, add (p, q) to T* and remove (s, t) from T*. The

resulting tree T*ew is still maximal. However, the number of arcs in Tr that are

not in Tn*ew is one less than the same number with respect to the previous tree

T*. Continuing in this fashion, we will ultimately obtain a maximal spanning

tree T that coincides with Tr.

The claim with respect to Tr is that if we satisfy fy > ry for all (i, j) e

Tr, then we will automatically satisfy fy > ry for all i = l,...,m - \,j = i +

\,...,m. To see this, suppose that for a constructed network, we have satisfied
fij > fy for all (i,j) e Tr, and consider any (p, q) g Tr. Examine the chain C

connecting nodes/) and q in Tr. Then, we have rpq < min {ri;- : (i,j) e C} since

Tr is maximal. But fy > η,- for all (i,f) e C since C is a chain in Tr. Hence, r

< min {fy. (i, j) ε C}. In the constructed network, / equals the capacity

w[X,X] of some cut [X,X] separating/) and q. However, [X,^Q is also a cut

for some node pair s and / with (s, t) e C (why?). (The node s may be p or the
node / may be q.) Consequently, using the maximal flow-minimal cut theorem,
we have that

fpq = u[X, X] > fst > min {fy : (i, j) e C} > rpq.

This establishes the required result.

Column-Generation Algorithm for the Synthesis Problem

Using the foregoing two manipulations and denoting the vector of cost coeffi-
cients (cy, (/, j) e . V) as c, we can formulate the multiterminal network design

problem as follows:

P : Minimize cu

subject to (a p)' u > ry for k = 1,..., Ky, for each (2, j) e Tr

u>0 .

Denoting by w = (w^, k= 1,..., Ky, (i,j) e Tr) the dual variables associated

with the structural constraints, we may write the dual to this problem as follows:

Ka
D : Maximize Σ Σ rywijk

(U)eTrk=\
K.J

subject to Σ Σ (»/,*Η* ^ c (12-7)
(i,j)eTr *=1
w>0.

658 Chapter 12

Observe that similar to the Dantzig-Wolfe master problem of Chapter 7, this
problem has several columns that are not all worthwhile enumerating explicitly.
Hence, we adopt a column generation procedure in the context of a revised
simplex algorithm. Because c > 0, we commence with all slacks as basic in the
starting basic feasible solution. Note that the corresponding complementary dual
variables Π associated with the constraints in Equation (12.7) are all zeros. At
any stage, given a basic feasible solution to D with a simplex multiplier vector
u, we need to price out the nonbasic variables. For the variable Wyk, the reduced

cost " cp - Zjjk" is given by ry- - (a ^ / u . Because we are interested in finding

the variable having the largest reduced cost, we examine the problem:

Maximize j r„- - (a y A . /u | = ry■ - minimum (a ^ / u (12.8)
ft —· 1 j . . . , / v ,',■ ft — 1, . . . y Λ ,■-■

for each (i,j) e Tr. Observe that this problem essentially seeks the minimum
capacity cut separating i andy with respect to the capacity vector u (why?).
Hence, this is equivalent to solving the maximal flow problem between nodes /
and j on the current network using capacities u and determining the corre-
sponding quantity fy. If fy > ry, that is, if the associated minimal cut gives a

nonpositive value in Equation (12.8) for all (ì,j) e Tr, then we are optimal.

Otherwise, we may select the variable Wyk that yields the most positive reduced

cost in Equation (12.8) to enter the basis, pivot, and repeat.

Summary of the Column-Generation Algorithm

INITIALIZATION

Construct a revised-simplex tableau for Problem D associated with the starting
basic feasible solution having all the slack variables s, say, as basic. Hence,

B~ = I is the basis inverse of size | ■ ' /1x | ■"/1, the right-hand-side is c, and

the dual variable vector u is zero.

MAIN STEP

If any uy < 0, then the corresponding slack sy is a candidate to enter the basis.

Generate its updated simplex column and pivot it into the basis. Otherwise, if uy

> 0 for all (/, j), examine the (constructed) network with capacity vector ΰ and
find the maximal flow fy between each pair of nodes (i,j) e Tr. If fy > ry for

all (/,/) e Tr, then stop; ΰ is an optimal set of capacities. Otherwise, select the

most violated constraint, say for (p, q) e Tr, and using the associated minimal

cut k, generate the column a k for the variable w k. From Equation (12.8), the

Some Network Flow and Network Synthesis Problems 659

value "Zpqk ~cpqlc" = fpq -rpq < 0. Update the column apgk (by premultiply-

ing with B~), and perform the usual simplex pivot. Repeat the main step.

Note that since this is a simplex based procedure, it is finitely convergent
provided that some appropriate cycling prevention rule such as the lexicographic
method is employed (see Chapter 5).

Illustrative Example

For the example of Figure 12.19, observe that the Problem D in Equation (12.7)
is of the following form:

Maximize

Σ5>η3Α + I 7 w m +Z8w34A: +Z12w45yt
k k k k

subject to

I (a 1 3 A) w m + Z (a 2 4 i t) w 2 4 f c +Σ(33 4 ί :)>ν34£ + Σ (»45Α:)W45A ^
k k k k

w>0.

' c12 '

Cl3
c23
C24

c35
_ C 4 5

' 2'
3
2
4
3

L2J

Iteration 1

B~ = I, u = 0, B~ c = c. The maximal flows fy = 0 for all (i,j) e Tr, and so the

constraint / 4 5 > 12 is most violated. Arbitrarily select the minimal cut [X, X]

with X= {4}, X = {1, 2, 3, 5}. The corresponding column a4 5 i = a45i is (0, 0,

0, 1,0, 1)', where the ones are in the positions corresponding to arcs (2, 4) and

(4, 5). The pivot results in s45 leaving the basis. The updated revised simplex

tableau is as follows:

*12
*Π
s21
S24

^
s45

0

I

RHS
0
2
3
2
4
3
2

w451

-12
0
0
0
1
0

Ci)

660 Chapter 12

Figure 12.19. Potential network and Tr for the example problem:

(a) Network, (b) Tree Tr.

RHS νν341

sn
sn
s23
w24

s35

*4M

0
1
0

0
0
0
0

0
0
1

0
0
0
0

0
0
0

1
0
0
0

0
0
0

0
1
0
0

0
0
0

0
0
1
0

12
0
0

0
-1

0
1

24
2
3

2
2
3
2

©
0

z341 _ c 341

Iteration 2

Now, M45 = 12, and Uy = 0, otherwise. We find that / 4 5 = 12 and L· = 0, other-

wise, for (i,j) e Tr. Hence, / 3 4 = 0 < 8 is most violated. A minimal cut [X, X]

has X= {2, 3} and X = {1, 4, 5}, for example. The corresponding column for

w34j is a341 = (1, 1, 0, 1, 1, 0)' and its updated version is shown with the fore-

going tableau. The simplex pivot results in s24 leaving the basis (using the

lexicographic rule to break ties). This results in the following revised simplex
tableau:

RHS

s\2

■̂ 13

*23
w 341

•535
w4 5 1

Note that currently, M24 = 8, u45 = 4, and w,y = 0, otherwise. This gives

/]3 =0 , /24 = 8, / 3 4 = 0, and / 4 5 = 4 as the maximal flow values. Hence, the

constraints / 3 4 > 8 and / 4 5 > 12 are both most violated. We can now continue

0
1
0
0
0
0
0

0

0
1
0
0
0
0

0

0
0
1
0
0
0

8
-1
-1
0
1

-1
0

0
0
0
0
0
1
0

4
1
1
0

-1
1
1

40
0
1
2
2
1
2

Some Network Flow and Network Synthesis Problems 661

by generating the appropriate column of w342 or w452- (Note that a sequential

pivot of more than one improving column per iteration is also permissible.) We
ask the reader to complete the solution of this example in Exercise 12.63.

An Efficient Algorithm for a Special Case

We conclude this section by presenting a particularly elegant algorithm for the
special case of the foregoing synthesis problem in which all possible links are
permissible, that is,. ~/= {(i,j), i= 1,..., m-\,j = i+ \,...,m), and also, Cy = 1

for all (/, j) e . ~/ Hence, we are supposed to design a network having the
minimal total capacity that will sustain the flow requirements. The procedure for
this case is presented below, using the example of Figure 12.19 as an
illustration.

STEP1

First, construct the dominant requirement tree Tr. This is illustrated in Figure

12.19b.

STEP 2

Decompose Tr into a "sum" of uniform requirement trees. Namely, construct a

tree Trj that is identical to Tr, but with all arcs having the same weight as the

smallest ry value for (i, j) e Tr. Let this weight be δ. Subtract δ from all the

A;·.—values for (i,j) e Tr and drop the arcs in Tr whose weight has reduced to

zero. This results in a forest of two or more trees. Repeat with each proper tree
in the resulting forest, creating the uniform requirement trees Tr\,Tr2,—,TrK in
the process.

For the tree Tr of Figure 12.19b, the uniform requirement trees are
depicted in Figure 12.20a, where the (uniform) weights in each tree are shown
against the arcs. Here, we obtain K = 4 uniform requirement trees.

STEP 3

For each uniform requirement tree Trj, i = 1,..., K, design a graph G;- that is an

arbitrarily ordered undirected cycle on the nodes in Tri, with each of the arcs in

the cycle having a capacity w(G() equal to one-half the uniform requirement

weight of Trj. Then, an optimal network G* is simply a superposition (sum) of

the graphs G,, i= \,...,K.

For the example, Figure 12.20b shows the cycle graphs Gj,G2,G3, and

G4. Figure 12.20c gives their sum G .

In order to show that G* is indeed optimal, define Rt = max {ry,j φ i}

for i = 1,..., m. Note that by the construction of Tr, we have (why?)

662 Chapter 12

(a)

(c)

Figure 12.20. Synthesis example for a special case: (a) Decomposition of Tr

into uniform requirement trees, (b) Cycle graphs G,· corresponding to Tri, i

= l,...,K=4. (c) Optimal graph G*.

Rj = maximum {rtj,j Φ /} = maximum {?]y}. (12.9)
j:(i,j)eTr

Hence, for our example, from Figure 12.19b, R\ = 5, R2 = 7, R3 = max {5, 8} =

8, R4 = max {7, 8, 12} = 12, and R5 = 12.

Consider any graph G having arc capacities Uj- that is feasible to the syn-

thesis problem. Clearly, by feasibility, the sum of the capacities of the arcs

incident at each node /' must be at least Rj. Hence, the total cost for G satisfies

] m m \ m
ο ι = - Σ Σ « ^ - Σ Λ , - (12.10)

Observe that the constructed graph G* is feasible, since by the construc-
tion of the cycle graphs, we have fj- > η- for all (/, f) e Tr, (actually these

hold as equalities), and so, fy > η,- for all i = 1,..., m- \,j= i+ 1,..., m (why?).

Moreover, the sum of the capacities of the arcs incident at any node p in G*
equals the sum of the uniform flows on the trees Tri that contain node/?. By the
construction of the uniform requirement trees, the latter quantity equals the

Some Network Flow and Network Synthesis Problems 663

maximum value of r over ally" such that (p,j) e Tr. From Equation (12.9),

this is precisely Rp. Hence, following Equation (12.10), the total cost for G* equals

l/2£p=i^?_ which, from Equation (12.10), establishes the optimality of G*.

Note that the flexibility in the algorithm admits several alternative
optimal networks. Hence, it is pertinent to consider optimizing a secondary
objective over all alternative optimal solutions to the present problem. Exercise
12.65 presents a procedure for determining an optimal (minimal total capacity)
network that is flow dominant, that is, it admits a maximal flow between any
node pair that is at least as great as the value obtainable via any other optimal
network.

EXERCISES

[12.1] Find the maximal flow from node 1 to node 8 in the following network.
Identify the associated minimal cut.

[12.2] Consider the production process shown below that indicates the various
paths that a product can take on its way to assembly through a plant. The
number in each box represents the upper limit on items per hour that can be
processed at the station.

a. What is the maximal number of parts per hour that the plant can
handle?

b. Which operations should you try to improve?

Start- 12

8

^ 7

3

% 6

2

L*-
5

10

2

• Finish

[12.3] Find the maximal flow from node 1 to node 7 in the following network.
Identify the associated minimal cut.

664 Chapter 12

[12.4] Discuss the economic meaning of the dual variables in the maximal flow
problem. Interpret both the w,· - and the L· -variables.

[12.5] Two paths are said to be arc disjoint if they contain no common arcs.
Prove that the maximal number of arc disjoint paths from node 1 to node m in a
network is equal to the minimal number of arcs that must be deleted in order to
separate node 1 from node m.

[12.6] In a command and control communications network a commander is
located at one node and his subordinate at another node. Associated with each
link in the network is an effort uy required to eliminate that link from the network.

a. Present a mathematical model that could be used to find the minimal
effort to block all communications from the commander to his sub-
ordinate.

b. Indicate how the problem can be solved by a special algorithm.

[12.7] Consider the maximal flow problem in which the variables are restricted
as - » < 1-- < Xj-< uy < co. Write the dual to this problem. Based on this

answer, define the capacity of a cut so that the maximal flow-minimal cut
theorem holds in this case, assuming feasibility. {Hint See Equation (12.2).)

[12.8] Show that any basic feasible solution to the dual of the maximal flow
problem (with node 1 taken as the root node) corresponds to a certain cut with
the dual objective value equal to the capacity of the cut. Use this along with
Lemma 12.1 to establish the maximal flow-minimal cut theorem.

[12.9] Show that we have a basic feasible solution to the maximal flow problem
if there exist no cycles in the set E = {(i,j) : 0 < x^ < Uj.}. In this case, show

how the basic variables and the simplex tableau can be obtained at any iteration
of the maximal flow algorithm. Furthermore, show that the following procedure
will maintain basic feasible solutions in the maximal flow algorithm.

Step 1. At each iteration, begin with E as defined earlier.
Step 2. Try to find a path from node 1 to node m in G' associated only

with arcs in E.
Step 3. If no path is available from Step 2, then add one arc in G' not

associated with arcs in E to the set E if it permits the labeling of
a new node. With this new arc in E, return to Step 2.

Some Network Flow and Network Synthesis Problems 665

[12.10] What simplifications would result if the network simplex method (of
Chapter 9) is used to solve the maximal flow problem? Give all details.

[12.11] Indicate how lower bounds on flows can be handled in the maximal
flow algorithm. (Hint: Apply a Phase 1 procedure as follows. From G construct
G' by: (1) All nodes in G are in G'. (2) In addition G' contains two new nodes
m + 1 and m + 2. (3) All arcs in G are in G'. (4) i'y = 0, u'y = Uy - ly. (5) If

ly > 0, then place arc (/, m + 2) in G' with w-m+2 = ly and t'im+2 = 0; place

arc (m + \, j) in G' with u'm+ìj = ly and l'm+\,- = 0. (6) Solve for the

maximal flow from node m + 1 to node m + 2 in G'. (7) If at optimality all arcs
out of node m + 1 are saturated (that is, x'y = u'y), then a feasible flow exists in

G and x-y = x'y + ly; otherwise, no feasible solution exists.)

[12.12] Develop a dual simplex method for the maximal flow problem.

[12.13] Consider the following procedure for reducing the size of a network
while finding the maximal flow from node 1 to node m. (Assume ly = 0 and

uy > 0 for all (/,/).)

Step 1. Remove all arcs entering node 1 (the source) and leaving node m
(the sink).

Step 2. Discard any node that has no arcs incident to it.
Step 3. Discard any node, except node 1, that only has arcs leaving it.

Also discard these arcs.
Step 4. Discard any node, except node m, that only has arcs entering it.

Also discard these arcs.

Repeat Steps 2, 3, and 4 until no change results. If node 1 or m is discarded,
stop; the maximum flow is zero. Otherwise, use the maximum flow algorithm.

a. Show that the maximal flow in the resulting network is the same as
in the original network.

b. Is it true that there is a path from node 1 to every node in the
resulting network (assuming that node 1 has not been discarded)? If
not, then what additional operation is required to ensure this?

[12.14] How can node capacities be handled in the maximal flow algorithm?

[12.15] Suggest a scheme for selecting which node to label next in the "labeling
algorithm" for the maximal flow problem so that at each iteration a maximal
flow augmenting path is determined. Comment on the relative computational
advantage of using such a scheme.

[12.16] Exhibit in detail how the labeling algorithm for the maximal flow
problem is equivalent to an application of the out-of-kilter algorithm, in which
several primal phases are performed and the first dual phase adjusts the dual
multipliers and terminates. Is this always the case when using the out-of-kilter
algorithm for any general problem with only one initial out-of-kilter arc?

666 Chapter 12

[12.17] Consider the problem of finding the minimum number of lines to cover
all zeros in the assignment algorithm (refer to Section 10.7). Show that the
maximal flow algorithm can be used to accomplish this task. {Hint: Given the
reduced assignment matrix, construct a maximal flow network G as follows. Let
nodes 1,..., n represent the n rows of the assignment matrix and nodes n + 1,...,
2« represent the n columns of the assignment matrix. If the yth entry in the
reduced matrix is zero, draw an arc from node i to node n + j with uin+ · = <x>.

Add two additional nodes 2n + 1 and In + 2. Add an arc (2ra + 1, /') with u2n+\i

= 1 for i = 1,..., n and an arc (« + i, 2n + 2) with un+i 2n+2 = 1 f°r i = ' , - , «·

Solve for the maximal flow from node In + 1 to node In + 2 in G. The value of
the maximal flow is equal to the minimum number of lines to cover all zeros in
the reduced matrix. To find which lines to use, consider the sets X and X when
the maximal flow algorithm stops. If (2« + 1, i) is in (X, X), draw a line through

row /'. If (n + i, 2n + 2) is in (X,X) draw a line through column /. It still must be

shown that this procedure works.)

[12.18] Apply the procedure of the previous problem to find the minimum
number of lines to cover all zeros in the following reduced assignment matrix.

1 2 3 4
2
0
1
2

0
5
3
0

3
0
2
4

0
2
0
1

[12.19] In this chapter we have provided the node-arc formulation for the
maximal flow problem. Consider an arc-path formulation as follows. Let j =
1,..., / be an enumeration of all the paths from node 1 to node m in the network.
Number the arcs from 1 to n and let

_ 11 if arc / is in path j
P'j ~ (0 otherwise.

The arc-path formulation for the maximal flow problem is given as follows:

Maximize Σ x.-
7=1

t
subject to Σ PyXj ^ Hi,

7=1

Xj>0,
where x. represents the flow on path/.

a. Give the complete arc-path formulation for the maximal flow
problem of Figure 12.1.

b. Solve the linear program of Part (a).

i = \,...,n

j = l,...,t,

Some Network Flow and Network Synthesis Problems 667

[12.20] Consider the arc-path formulation for the maximal flow problem as
given in Exercise 12.19. Suppose that we do not enumerate any paths to begin
with but, decide to apply the revised simplex method with all slack variables in
the starting basic feasible solution. At any iteration of the revised simlex method
let w be the dual vector.

a. What is the simplex entry criterion for (i) a slack variable and (ii) a
path variable?

b. Show that there is an easy method to test the simplex entry criterion
for path variables using the shortest path algorithm.

c. If you always first enter slacks until no more slacks are eligible to
enter, show that you may use the shortest path algorithm for non-
negative costs to test the entry criterion for path variables.

d. Describe the complete steps of the revised simplex method thus
obtained.

e. Apply the revised simplex method developed in this exercise to the
maximal flow problem in Figure 12.1.

[12.21] a. Give the dual of the arc-path formulation for the maximal flow
problem as stated in Exercise 12.19.

b. If we add the restriction that the dual variables must be 0 or 1,
what interpretation can you give the dual problem?

c. Interpret the dual solution obtained in Part (e) of Exercise 12.20.

[12.22] Referring to Exercise 12.19, is the constraint matrix for the arc-path
formulation of a maximal flow problem always unimodular? Prove or give a
counterexample.

[12.23] Modify the maximal flow algorithm to handle undirected arcs.

[12.24] Find the shortest path from node 1 to every other node in the following
network. Identify the shortest path tree obtained.

[12.25] Find the shortest path from node 1 to all nodes for the following
network using Dijkstra's algorithm as well as using the PSP algorithm. Identify
the shortest path tree obtained.

668 Chapter 12

[12.26] Modify the shortest path algorithm for problems having mixed-sign
costs to find the shortest path from every node to node m. Illustrate by finding a
shortest path from every node to node 7 in the following network:

[12.27] Find the shortest path from every node to node 6 in the following
network. Identify the shortest path tree obtained. (Hint: Apply the shortest path
algorithm with nonnegative costs in reverse.)

[12.28] Find the shortest path from node 1 to all the nodes in the following
network. Use the algorithms of both Sections 12.2 and 12.3. Identify the shortest
path tree obtained.

Some Network Flow and Network Synthesis Problems 669

[12.29] a. Apply the shortest path procedure to find the shortest path from
node 1 to node 5 in the following network.

b. What is the difficulty in Part (a)?
c. Solve the problem by the network simplex method of Chapter 9.

Compare with the result in Part (a).

[12.30] Suppose that you are to find the shortest simple path from node 1 to
node m in a network that may contain negative cost circuits. Furthermore,
suppose that you have obtained an optimal solution to the minimum cost flow
problem on this network after designating b\ = 1, bm = - 1 , and bt = 0 otherwise,
and setting bounds 0 < Xu < 1 on all the arcs (i,j) in the problem. How would

you identify the simple path from 1 to m that has a flow of one unit in this
solution? Why is this not necessarily the shortest simple path from 1 to ml
Provide a mathematical formulation of the problem of determining a shortest
simple path.

[12.31] Consider the problem of determining the shortest path from node 1 to
node m in a directed network having no negative cost circuit. How can you
formulate and solve this as an assignment problem? (Hint: Think of a path in
terms of assigning to each node the next node to visit. This ensures that any
feasible assignment solution generates a path from 1 to m.)

[12.32] a. Show how the shortest path algorithm can be used to find the
longest path from node 1 to node m in a network.

b. When finding the longest path, what assumption must be made to
solve this problem in polynomial-time?

c. Use the results of Part (a) to devise direct algorithms for the longest
path problem under the assumption of Part (b).

[12.33] In any project there are usually a set of activities that constitute the
relationships specifying which activities must be completed before a given
activity can start. Project management is concerned with the scheduling and
control of activities in such a way that the project can be completed as soon as
possible after its start. The critical path is a sequence of activities that limits the
early completion time of the project. (It is generally activities on the critical path
that project managers watch closely.)

Consider the following activities with indicated completion times and
precedence relationships:

670 Chapter 12

COMPLETION
ACTIVITY TIME (DAYS) PREDECESSORS

A 4 —
B 7 —
C 2 D, E
D 7 A, B
E 9 B,F
F 7 A
G 4 B, C,F

Find the critical path for this project and the associated project time.

(Hint: Draw an arc with its own beginning and ending nodes for each activity
with the arc cost equal to the completion time of the activity. If activity Q must
precede activity R, then draw an arc from the ending node of activity Q to the
beginning node of activity R with zero cost on the arc. Provide a starting node to
precede all activities and a finishing node to succeed all activities. In the
network thus obtained, the longest path (why not shortest path?) will be the
critical path.)

[12.34] Find both the shortest path and the longest path from node 1 to node 6
in the following network:

[12.35] For the label-correcting shortest path algorithm of Sections 12.2 and
12.3, does every label-correction step correspond precisely with some primal
simplex iteration? If not, what additional modification is required to the shortest
path algorithm to make this correspondence precise?

[12.36] Show that at optimality of the shortest path problem, w, - wm repre-
sents a lower bound on the cost of the shortest path from node i to node m for
each /.

[12.37] a. How can the shortest path algorithm be used to obtain a starting
(not necessarily feasible) solution when the out-of-kilter algorithm
is applied to a minimal-cost network flow problem with nonzero
right-hand-side values?

b. Is there any advantage to doing this?

[12.38] Because Dijkstra's shortest path algorithm for nonnegative costs is
extremely efficient, it would be highly desirable to be able to convert a network
having some negative cost arcs to an equivalent network with nonnegative costs.

Some Network Flow and Network Synthesis Problems 671

Consider the following procedure for accomplishing this in a network G having
m nodes.

INITIALIZATION STEP

Let t = 1 (/ is the iteration counter).

MAIN STEP

1. Let/ '=1.
2. Let c, = minimum Cy. If Έι < 0, replace c„- by Cy - c} for ally and

replace cki by cki + c} for all k.

3. If i < m replace / by / + 1 and return to Step 2. Otherwise, proceed to Step
4.

4. If all e,-, > 0, stop; the equivalent network is obtained. Otherwise, if t <

m + 1, replace / by / + 1 and return to Step 1 ; if / = m + 1, stop; there is a
negative circuit in G.

Upon completing this procedure, if all c„· > 0 we may apply Dijkstra's shortest

path algorithm to the equivalent network. (Note that although the proper path
will be found, its length must be adjusted.)

a. Show that the method works.
b. Apply the method to the networks in Exercises 12.28 and 12.29.
c. Show that if c„ < 0 at iteration m + 1, then there is a negative cost circuit

in G that includes node/. Is it possible to develop a labeling procedure to
find such a negative cost circuit?

d. What is the complexity of this procedure? Comment on its relative advan-
tage.

[12.39] In the shortest path algorithm for problems having mixed-sign costs,
show that at optimality there always exists a path from node 1 to any node k
along which w' = w[+ c„ provided that w'k < GO. Also, show that if Wk = oo,

then no path exists from node 1 to node k.

[12.40] Consider a network having upper bounds and costs (all lower bounds
are zero). Suppose that we wish to find, among all maximal flows from node 1
to node m, the maximum flow that minimizes the total cost. This is sometimes
called the minimal-cost-maximal flow problem.
a. Give a linear programming formulation for the minimal-cost-maximal

flow problem from node 1 to node m in a network.
b. Show how the out-of-kilter method can be used to solve this problem.
c. Apply Parts (a) and (b) to the following network to obtain the minimal-

cost-maximal flow from node 1 to node 4:

672 Chapter 12

[12.41] Consider the following procedure, from Busacker and Gowen, for finding
the minimal-cost-maximal flow from node 1 to node m in a network having
nonnegative costs and all l'y = 0.

INITIALIZATION STEP

Let all Xy = 0.

SHORTEST PATH STEP

From G construct G' as follows. All nodes in G are in G'. If Xy < Uy in G,

place (j,j) in G' with Δ,-.- = Uy - Xy and c'y = Cy. If Xy > 0 in G, place (/, i) in

G' with Aβ = Xy and c'(= -Cy. Find a shortest path from node 1 to node m

in G'. If no path exists, stop; an optimal solution is at hand. Otherwise, pass to
the flow change step.

FLOW CHANGE STEP

Let Δ = minimum{Δ,γ : (i,j) is in the shortest path}. Adjust flows along the

associated chain in G by Δ, increasing flows on arcs that have the same
orientation as that of the path and decreasing flows on arcs that are against the
orientation of the path. Pass to the shortest path step.

a. Apply the algorithm to the example network of the previous problem.
b. Prove that the algorithm converges to an optimal solution in a finite

number of steps. It is necessary to show that (i) negative circuits never
occur in G' ; (ii) after a finite number of flow changes, no path from node
1 to node m will exist, and (iii) on termination, an optimal solution is
obtained. (Hint: Consider the flow in the network as a parameter and
show that after each flow change we have the minimal-cost solution for
that amount of flow.)

c. What difficulties would occur when we admit negative costs?

[12.42] Consider the following algorithm, from Klein, for finding the minimal-
cost-maximal flow from node 1 to node m in a network having mixed-sign
costs and all iy = 0.

INITIALIZATION STEP

Find the maximal flow from node 1 to node m in G.

Some Network Flow and Network Synthesis Problems 673

NEGATIVE CIRCUIT STEP

From G construct G' as follows. All nodes in G are in G'. If x„ < «,-,· in G,

place (/,_/) in C with Δ^ = w„- - x„- and c„ = c„. If x„ > 0 in G, then place

(/, /') in G' with Δ ·,· = Xjj and Cy;· = -Cy. Use the shortest path algorithm or the

method of Exercise 12.38 to find a negative circuit in G'. If no negative circuit
exists, stop; an optimal solution is at hand. Otherwise, pass to the flow change
step.

FLOW CHANGE STEP

Let Δ = minimum {Δ„: (/,/) is in the negative cost circuit}. Adjust flows along

the associated cycle in G by Δ, increasing flows on arcs that have the same
orientation as that of the circuit and decreasing flows on arcs that are against the
orientation of the circuit. Pass to the negative circuit step.

a. Apply the algorithm to the network of Exercise 12.40.
b. Prove that the algorithm converges to an optimal solution in a finite

number of steps.

[12.43] Bob, Ed, and Stu are in a car pool. They each live at points 1, 2, and 7,
respectively, in the following network. They agree to meet at point 10 every
morning at a certain time and proceed from there to their work in a single car.
The numbers on the arcs represent the travel times in minutes.

a. What is the fastest route for each man to the meeting point?
b. How early (counting back from the meeting time) should each man

leave? Would anyone be agreeable to give another a ride to point 10?

[12.44] A single machine is needed to perform a specified function for the next
four years, after which the function and machine will no longer be needed. The
purchase price of a machine varies over the next four years according to the
following table:

674 Chapter 12

YEAR NOW
ONE YEAR
FROM NOW

TWO YEARS
FROM NOW

THREE YEARS
FROM NOW

Purchase price $26,000 $35,000 $39,000 $48,000

The salvage value of a machine depends only on its length of service and is
given by the following table:

LENGTH OF SERVICE 1 YEAR 2 YEARS 3 YEARS 4 YEARS
salvage value $17,000 $7,000 $3,000 $1,000

The annual operating cost varies with length of service, as follows:

LENGTH OF SERVICE NEW 1 YEAR 2 YEARS 3 YEARS
Annual operating cost $3,000 $5,000 $9,000 $18,000

Construct a network in which a shortest path will yield an optimal policy of
purchasing, operating, and salvaging machines over the next four years if
management wishes to minimize the total cost.

[12.45] a. Modify the shortest path algorithm for nonnegative costs to handle
an undirected network,

b. Apply the procedure of Part (a) to find the shortest path from node 1
to node 5 in the following network:

[12.46] Can the shortest path algorithm for problems having mixed-sign costs
be modified to handle undirected arcs?
[12.47] Apply the decomposition algorithm to the following three commodity
minimal-cost flow problem:

(3,1,11

(6,2,5,1,0,-1,4)

(7,4,3,7,3,-2,2)

(-2,1,0)

(VW

(-2,-1,0)

1,2,1)

Some Network Flow and Network Synthesis Problems 675

[12.48] Consider a metropolitan city with the area divided into four zones and a
highway network connecting the zones. Let the following matrix, called the
origin-destination matrix, specify the travel requirements from each (row) zone
to every other (column) zone:

1
2
3
4
5

Travel times and arc (upper) capacities are given as follows:

1
0
2
6
2
1

2
10
0
2
4
1

3
7
3
0
7
3

4
8
4
1
0
4

5
5
4
5
5
0

ARC (1,2) (2,4) (2,5) (3,2) (4,3) (5,1) (5,4)
Travel time (min)
Capacity

20
45

40
39

20
37

22
47

12
36

17
25

13
12

Find a minimal time traffic assignment in the network.

[12.49] Resolve the multicommodity minimal-cost flow problem of Figure
12.10 with M234 = 4 instead of 3. Is it reasonable to expect this solution in

practice?
[12.50] a. Give a linear programming formulation for the two-commodity

maximal flow problem shown below (with no individual commod-
ity upper bounds),

b. Find the two commodity maximal flow in the network.

676 Chapter 12

[12.51] How can lower bounds be handled in the multicommodity minimal-
cost flow problem?

[12.52] Given an optimal solution obtained from the decomposition procedure
for the minimal-cost multicommodity flow problem, indicate how the dual
variables for the individual commodity constraints (Ax,· = b; and x,- <u ;) can
be recovered. Apply the procedure to the example problem in Section 12.4.
[12.53] Discuss the economic meaning of the dual variables for the various
constraints in the multicommodity minimal-cost flow problem (namely, £,· x,· <

u, Ax, = b;, and x;· <u;).

[12.54] Consider the multicommodity maximal flow problem without the indi-
vidual capacity constraints x; < u, for i = l,...,t. A disconnecting set is a gener-
alization of a cut for the single-commodity flow problem. A multicommodity
disconnecting set is a set of arcs that "disconnects" (cuts all paths between) the
source and sink for every commodity. A multicommodity minimal disconnecting
set is one for which the sum of (common) arc capacities is minimal.

a. Give a mathematical formulation for the minimal disconnecting set
problem. (Hint: Take the dual of the arc-path formulation for the
maximal flow problem (see Exercise 12.19) and require the dual
variables to be zero or 1. Give an interpretation of this dual problem.)

b. Show that the capacity of the multicommodity minimal disconnecting
set is greater than or equal to the value of the multicommodity maximal
flow. (Hint: Apply duality theorems to the formulation in Part (a).)

c. Give a minimal disconnecting set for the network of Figure 12.9 and to
the network of Exercise 12.50.

d. Compare the capacity of the minimal disconnecting set and the value of
the maximal flow for both problems of Part (c).

[12.55] Show that a multicommodity minimal disconnecting set (see Exercise
12.54) is the union of single-commodity forward cuts. Is a multicommodity
minimal disconnecting set necessarily the union of single-commodity minimal
forward cuts!
[12.56] Discuss the difficulties, if any, in developing an algorithm for the
multicommodity minimal-cost flow problem that begins with the minimal-cost
flow for each commodity and proceeds to adjust these flows to satisfy the
common upper bounds.
[12.57] Give a node-arc formulation for the multicommodity maximal flow
problem. Develop a decomposition procedure for this formulation and discuss
the nature of the /th subproblem when x; < u; is present and when it is absent.
[12.58] Develop an arc-path formulation for the multicommodity maximal flow
problem without the presence of the constraints x, < u(for i = 1,..., t. Develop a

decomposition procedure for this formulation. (Hint: Consider the formulation
given in Exercise 12.19.)
[12.59] Modify the decomposition algorithm for the minimal-cost multicom-
modity flow problem when the set Xi = {x; : Ax, = b, , 0 < x, < u,} is not bounded.

Some Network Flow and Network Synthesis Problems 677

(This is only possible when for some i at least one component of u; is oo; that

is, there is no upper bound on some arc.)
[12.60] How can undirected arcs be handled in the multicommodity maximal
flow problem? Illustrate on the following three-commodity network:

[12.61] In the multicommodity minimal-cost flow problem suppose that we
have the capability of inverting the matrix [E"-E'B~ D,E]· Show how the origi-
nal primal and dual variables can be obtained. Use this information to develop a
simplex procedure for solving the multicommodity flow problem directly on the
graph. Give all details and illustrate by the problem of Figure 12.10.
[12.62] Consider the problem of synthesizing a network having the following
structure, where the costs per unit capacity are given on the arcs:

a. Determine a set of optimal capacities for these arcs in order to be able to
sustain the following flow requirements: ri2 = 6, r13 = 3, r]4 = 2, r23 = 4,

r24 = 2, and r34 = 7.

b. Repeat, assuming that arc (1, 4) can also be constructed and that Cy = 1 for

all (i,j).

[12.63] Determine an optimal solution to the network synthesis example in
Section 12.6.

[12.64] Let F be a symmetric nonnegative matrix of size m x m with elements
fu, where fu = oo for i = l,...,m. Then F is said to be max flow realizable if

there exists some undirected graph on m nodes for which /J is the maximal

678 Chapter 12

flow between nodes / andy. Show that F is max flow realizable if and only if fy

> minimum {/^,/Η} f°r a u Uj, k. Furthermore, show that if F is realizable,

then it is realizable by a tree graph. What does this say about the maximum
number of distinct maximal flow values between pairs of nodes in any
undirected graph? {Hint: Section 12.6 proves that this condition is necessary. To
prove that it is sufficient, construct a maximal spanning tree for a complete
graph with each arc (i,j) having a weight fy.)

[12.65] Consider the problem of synthesizing a complete undirected graph hav-
ing a minimum total capacity that satisfies given flow requirements r^ between

node pairs / andy. Let G* be an optimal graph, and let ff- be the maximal flow

between node pairs / and j in G*. Now, let Rj = maximum {η, j φ i) be as

defined in Equation (12.9), and compute η- = minimum {Rj,R:} for all node

pairs i and y. Denote by G** an optimal graph obtained by assuming that the

requirements are r*j in lieu of /■« for all (i,j), and let f** be the maximal flow

between node pairs i andy in G**. Show that G** is also optimal for the problem

with requirements r^, and that f** > f*; for all node pairs i andy. Interpret the

significance of G**. Construct G** for the example of Section 12.6 and for the

example of Exercise 12.62. (Hint: First show that (a) f*= < minimum {RhRj}

for all (i,j), and (b) R* = maximum {r*-, j Φ i) = Rj for all /. Use these proper-

ties to establish the required results.)

NOTES AND REFERENCES

1. Ford and Fulkerson [1956] were the first to develop the maximal flow
algorithm for networks. Dantzig and Fulkerson [1956] provided a proof
of the maximal flow-minimal cut theorem. Glover et al. [1984a, b] stud-
ied specialized primal simplex algorithms for the maximal flow problem,
and have shown them to be significantly (1.5-5 times) faster than the
presented labeling techniques, while requiring one-third the amount of
storage. They have also shown that this specialized scheme is roughly 1.8
times faster than a version of a general primal simplex code RNET, even
when it is tuned for maximal flow problems. For determining the maxi-
mal flows between all pairs of nodes in an undirected graph via an
equivalent tree network, see Gomory and Hu [1961]. For a general
detailed discussion on scaling algorithms see Ahuja et al. [1993]. Also,

the strongly polynomial-time method of complexity 0(« m) based on
shortest path flow augmentations is due to Edmonds and Karp [1972]. By
far, the most effective algorithms for solving maximal flow problems are
the preflow-push methods (see Shiloach and Vishkin [1982] and Ahuja et

Some Network Flow and Network Synthesis Problems 679

al. [1993]. Wherease preflow algorithms permit flow imbalances only of
the type where the excess given by the inflow minus the outflow is
nonnegative, a more recent algorithm due to Hochbaum [2008] is based
on pseudoflows where nodes can have excess or deficit (negative excess)
flows. This algorithm, which is of complexity 0(mn\og(m)), first
determines a minimal cut through an equivalent blocking-cut problem,
and then recovers the maximal flow (with additional complexity 0(n
log(m))).

2. The first algorithms for shortest path problems were developed by
Bellman [1958], Dijkstra [1959], Dantzig [1960], Whiting and Hiller
[1960], and Floyd [1962]. A good comparison of these procedures
appears in Dreyfus [1969]. More efficient methods have been developed
by Glover et al. [1985a, b]. Computer implementations of these
algorithms are described by Klingman and Schneider [1986]. A
comprehensive computational study appears in Glover et al. [1984a, b]
and Hung and Divoky [1988], where it is shown that threshold based
partitioned shortest path algorithms dominate other procedures. (Also, see
Bertsekas [1993].) A good exposition on the complexity behavior of
some shortest path implementations is given by Shier and Witzgall
[1981]. Sherali [1991] presents relationships between the partitioned
shortest path algorithm and a dynamic programming routine. Also, see
Fredman and Tarjan [1984] for improved implementations using
Fibonacci heaps. (Additional discussion on heap implementations
appears in Ahuja et al. [1993].) For the use of decomposition techniques
in solving large-scale shortest path problems on special networks, see Hu
[1968], Shier [1973], and Jarvis and Tufekci [1981]. For a more detailed
exposition on the relationship between shortest path algorithms and the
simplex method, see Akgul [1986b], Dial et al. [1979], and Zadeh [1979].
The procedure of Exercise 12.38 was developed by Bazaraa and Langley
[1974], and is based on ideas presented by Nemhauser [1972]. For
generalizations of label setting and label correcting algorithms for
bicriteria shortest path problems, see the survey paper by Skriver [2000];
for characterizing Pareto optimal (non-dominated) solutions to
bicriteria/multi-criteria shortest path problems see Muller-Hannemann
and Weihe [2006]; for time-dependent shortest path problems see Cook
and Halsey [1966], Dreyfus [1969], Halpern [1977], Orda and Rom
[1990], and Sherali et al. [1998]; for label-constrained and approach-
dependent variants of this problem see Barrett et al. [2001] and Sherali et
al. [2003, 2006]; for stochastic shortest path problems see Orda et al.
[1993], Polychronopoulos and Tsitsiklis [1996], and Hutson and Shier
[2009]; for complexity and algorithmic analyses of robust shortest paths
under uncertainty, see Montemanni et al. [2004], Yu and Yang [1998],
and Zielinski [2004]; and for dynamic and dynamic stochastic shortest
path problems, see Psaraftis and Tsitsiklis [1993] and Cheung [1998a, b],
respectively. Pallottino and Scutella [2003] discuss sensitivity analysis
issues under changing arc costs for shortest path problems. Zhang and
Yixun [2003] describe the reverse shortest path problem of finding a least

680 Chapter 12

cost decrement in link costs in order to achieve a specified target
objective value. Also, Sherali and Hill [2009] discuss a time-restricted
reverse shortest path problem of determining a reverse shortest path
under time-restricted arc availabilities and given a specified lower bound
on the start-time. (Such problems arise in air traffic management.)

3. Ford and Fulkerson [1958b] first proposed a column generation
procedure for the multicommodity maximal flow problem. This was the
forerunner to the Dantzig-Wolfe decomposition procedure for general
linear programs. Hartmand and Lasdon [1972] proposed a procedure
based on the simplex method for solving multicommodity flow problems.
For the various exercises on multicommodity maximal flow problems,
see Robacker [1956], Ford and Fulkerson [1958b], Bellmore et al. [1970],
Grigoriadis and White [1972a, b], Hartman and Lasdon [1972], and
Jarvis and Keith [1974]. A good discussion and survey on multicom-
modity flow problems appears in Kennington and Helgason [1980], and
Jones et al. [1993]. Lustig and Li [1992] provide excellent implementa-
tion concepts.

4. The network synthesis problem described in Section 12.6 is from Gomory
and Hu [1962]. Also, see Ford and Fulkerson [1962].

BIBLIOGRAPHY

Abadie, J., On the Decomposition Principle, ORC Report 63-20, Operations
Research Center, University of California, Berkeley, CA, August 1963.

Abadie, J., and A. C. Williams, "Dual and Parametric Methods in
Decomposition," in R. Graves and P. Wolfe (eds.), Recent Advances in
Mathematical Programming, McGraw-Hill Book Co., NY, 1963.

Adler, I., M. G. C. Resende, and G. Veiga, "An Implementation of Karmarkar's
Algorithm for Linear Programming," Operations Research Center, Report
86-8, University of California at Berkeley, May 1986.

Advani, S., "A Linear Programming Approach to Air-Cleaner Design,"
Operations Research, 22(2), pp. 295-297, March-April, 1974.

Aggarwal, S. P., "A Simplex Technique for a Particular Convex Programming
Problem," Canadian Operational Research Society Journal, 4(2), pp. 82-
88, July 1966.

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1993.

Ahuja, R. K., J. B. Orlin, P. Sharma, and P. T. Sokkalingham, "A Network
Simplex Algorithms with 0(n) Consecutive Degenerate Pivots,"
Operations Research Letters, 30(3), pp. 141-148, 2002.

Akgul, M., "Topics in Relaxation and Ellipsoidal Methods," Ph.D. Dissertation,
Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, Ontario, Canada, 1981.

Akgul, M., "A Note on Shadow Prices in Linear Programming," Journal of the
Operational Research Society, 35(5) pp. 425-431, 1984.

Akgul, M., "An Algorithmic Proof of the Polyhedral Decomposition Theorem,"
Naval Research Logistics Quarterly, 35, pp. 463-472, 1988.

Akgul, M., "A Genuinely Polynomial Primal Simplex Algorithm for the
Assignment Problem," Department of Computer Science and Operations
Research, North Carolina State University, Raleigh, NC, 1986a.

Akgul, M., "Shortest Paths and the Simplex Method," Working Paper,
Department of Computer Science, North Carolina State University,
Raleigh, NC, 1986b.

Albers, D. J., and C. Reid, "An Interview with George B. Dantzig: The Father of
Linear Programming," The College Mathematics Journal, 17(4), pp. 292-
314, September 1986.

Ali, A., R. Helgason, J. Kennington, and H. Lall, "Primal-Simplex Network
Codes: State-of-the-Art Implementation Technology," Networks, 8, pp.
315-339, 1978.

Ali, A., R. Helgason, J. Kennington, and H. Lall, "Computational Comparison
Among Three Multicommodity Network Flow Algorithms," Operations
Research, 28(4), pp. 995-1000, 1980.

Arnaldi, E., M. E. Pfetsch, and L. E. Trotter, Jr., "On the Maximum Feasible
Subsystem Problems, IISs and IIS - Hypgraphics," Mathematical
Programming {Series A), 95(3), pp. 533-554, 2003.

681

682 Bibliography

Anstreicher, K. M., "Analysis of a Modified Karmarkar Algorithm for Linear
Programming," Working Paper Series B#84, Yale School of Organization
and Management, Box IA, New Haven, CT, 1985.

Anstreicher, K. M., "A Strengthened Acceptance Criterion for Approximate
Projection in Karmarkar's Algorithm," Operations Research Letters,
5(4), pp. 211-214, 1986a.

Anstreicher, K. M., "A Monotonie Projective Algorithm for Fractional Linear
Programming," Algorithmica, 1, pp. 483-498, 1986b.

Anstreicher, K. M., "A Combined 'Phase I — Phase 11 ' Projective Algorithm
for Linear Programming (To appear in Mathematical Programming),
Technical Report, Yale School of Organization and Management, New
Haven, CT, 1986c.

Anstreicher, K. M., "Interior Point Methods in Theory and Practice,"
Mathematical Programming, Series B, 76(1-2), pp. 1-263, 1997.

Arinal, J. C , "Two Algorithms for Hitchcock Problem," Revue Frangaise de
Recherche Qpéationnelle (France), 33, pp. 359-374, 1964.

Aronofsky, J. S., and A. C. Williams, "The Use of Linear Programming and
Mathematical Models in Underground Oil Production," Management
Science, 8(4), pp. 394-407, July 1962.

Aronson, J., R. Barr, R. Helgason, J. Kennington, A Loh, and H. Zaki, "The
Projective Transformation Algorithm by Karmarkar: A Computational
Experiment with Assignment Problems," Technical Report 85-OR-3,
Department of Operations Research, Southern Methodist University, and
Department of Industrial Engineering, University of Houston, Houston,
1985.

Arrow, K. J., L. Hurwicz, and H. Uzawa (eds.), Studies in Linear and Nonlinear
Programming, Stanford University Press, Stanford, CA, 1958.

Asher, D. T., "A Linear Programming Model for the Allocation of R and D
Efforts," IEEE Transactions on Engineering Management, EM-9 (4), pp.
154-157, December 1962.

Asie, M., V. V. Kovacevic-Vujcic, and M. D. Radosavljevic-Nikolic,
"Asymptotic Behavior and Numerical Stability of Karmarkar's Method
for Linear Programming," University of Belgrade, Belgrade, Yugoslavia,
1986.

Aspvall, B., and R. E. Stone, " Khachiyan's Linear Programming Algorithm,"
Journal of Algorithms, l ,pp. 1-13, 1980.

Assad, A. A., "Multicommodity Network Flows: A Survey," Networks, 8(1), pp.
37-92, 1978.

Aucamp, D. C , and D. I. Steinberg, "The Computation of Shadow Prices in
Linear Programming," Journal of the Operational Research Society, 33,
pp. 557-565, 1982.

Au, T., and T. E. Stelson, Introduction to Systems Engineering, Deterministic
Models, Addison-Wesley, Reading, Mass., 1969.

Avis, D., and V. Chvatal, "Notes on Bland's Pivoting Rule," Mathematical
Programming Study, 8, pp. 24-34, 1978.

Bibliography 683

Avis, D., B. Kaluzny and D. Titley-Peloquin, "Visualizing and Constructing
Cycles in the Simplex Method," Operations Research, 56(2), pp. 512-
518,2008.

Azpeitia, A. G., and D. J. Dickinson, "A Decision Rule in the Simplex Method
that Avoids Cycling," Numerisene Mathematik, 6, pp. 329-331, 1964.

Balas, E., "Solution of Large Scale Transportation Problems Through
Aggregation," Operations Research, 13, pp. 82-93, 1965.

Balas, E., "The Dual Method for the Generalized Transportation Problem,"
Management Science, 12, pp. 555-568, 1966a.

Balas, E., "An Infeasibility Pricing Decomposition Method for Linear
Programs," Operations Research, 14, pp. 847-873, 1966b.

Balas, E., and P. L. Ivanescu, "On the Generalized Transportation Problem,"
Management Science, 11, pp. 188-203, 1964.

Balas, E., and M. W. Padberg, "On the Set Covering Problem," Management
Sciences Research Report #197, Carnegie Mellon University, 1970.

Balinski, M. L., "Integer Programming: Methods, Uses, Computation,"
Management Science, 12(3), pp. 253-313, November 1965.

Balinski, M. L., "An Algorithm for Finding all Vertices of Convex Polyhedral
Sets," SIAM Journal on Applied Mathematics IX, pp. 72-88, 1961.

Balinski, M. L., "The Hirsch Conjecture for Dual Transportation Polyhedra,"
Mathematics of Operations Research, 1984.

Balinski, M. L., "Signature Methods for the Assignment Problem," Operations
Research, 33(3), pp. 527-536, 1985.

Balinski, M. L., "A Competitive (Dual) Simplex Method for the Assignment
Problem," Mathematical Programming, 34(2), pp. 125-141, 1986.

Balinski, M. L., and R. E. Gomory, "A Mutual Primal-Dual Simplex Method,"
in R. L. Graves and P. Wolfe (eds.), Recent Advances in Mathematical
Programming, pp. 17-26, McGraw-Hill Book Co., NY, 1963.

Balinski, M. L., and R. E. Gomory, "A Primal Method for the Assignment and
Transportation Problems," Management Science, 10(3), pp. 578-593,
April 1964.

Balinski, M. L., and A. Russakoff, "On the Assignment Polytope," SIAM
Review, 16(4), pp. 516-525, 1974.

Barnes, E. R., "A Variation on Karmarkar's Algorithm for Solving Linear
Programming Problems," Mathematical Program-ming, 36, pp. 123-134,
1986.

Barnes, E. R., "A Polynomial Time Version of the Affine Scaling Algorithm,"
Presented at the Joint National ORSA/TIMS Meeting, St. Louis, October
1987.

Barnes, J. W., and R. M. Crisp, "Linear Programming: A Survey of General
Purpose Algorithms," AIIE Transactions, 8(1), pp. 212-221, September
1975.

Barnett, S., "Stability of the Solution to a Linear Programming Problem,"
Networks, 13(3), pp. 219-228, September 1962.

Barnett, S., "A Simple Class of Parametric Linear Programming Problems,"
Operations Research, 16(6), pp. 1160-1165, November-December 1968.

684 Bibliography

Barnhart, C , E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H.
Vance, "Branch-and-Price: Column Generation for Solving Huge Integer
Programs," Operations Research, 46(3), pp. 316-329, 1998.

Barr, R. S., F. Glover, and D. Klingman, "An Improved Version of the Out-of-
Kilter Method and a Comparative Study of Computer Codes,"
Mathematical Programming, 7(1), pp. 60-86, 1974.

Barr, R. S., F. Glover, and D. Klingman, "The Alternating Basis Algorithm for
Assignment Problems," Mathematical Programming, 13(1), pp. 1-13,
1977.

Barr, R. S., F. Glover, and D. Klingman, "The Generalized Alternating Path
Algorithm for Transportation Problems," European Journal of
Operational Research, 2, pp. 137-144, 1978.

Barr, R. S., F. Glover, and D. Klingman, "Enhancements of Spanning Tree
Labelling Procedures for Network Optimization," INFOR, 17(1), pp. 16-
34, 1979.

Barrett, C , R. Jacob, and M. V. Marathe, "Formal Language Constrained Path
Problems," SIAM Journal on Computing, 30(3), pp. 809-837,2001.

Bartels, R. H., and G. H. Golub, "The Simplex Method of Linear Programming
Using LU-Decomposition," Communications of the ACM, 12, pp. 266-
268 and 275-278, 1969.

Battersby, A., Network Analysis for Planning and Scheduling, St. Martin's
Press, NY, 1964.

Bazaraa, M. S., and R. W. Langley, "A Dual Shortest Path Algorithm," SIAM
Applied Mathematics, 26(3), pp. 496-501, May 1974.

Bazaraa, M. S., and J. J. Goode, "A Survey of Various Tactics for Generating
Lagrangian Multipliers in the Context of Lagrangian Duality," European
Journal of Operational Research, 3, 322-338, 1979.

Bazaraa, M. S., and H. D. Sherali, "A Versatile Scheme for Ranking the
Extreme Points of an Assignment Polytope," Naval Research Logistics
Quarterly, 28(4), pp. 545-558, 1981.

Bazaraa, M. S., and H. D. Sherali, "A Property of Degenerate Pivots for Linear
Assignment Networks," Networks, 12(4), pp. 469-474, 1982.

Bazaraa, M. S., H. D. Sherali, and C. M. Shetty, Nonlinear Programming:
Theory and Algorithms, John Wiley & Sons, Inc., third edition, 2006.

Bazaraa, M. S., and C. M. Shetty, Foundations of Optimization, Springer
Verlag,NY, 1976.

Beale, E. M. L., "Cycling in the Dual Simplex Algorithm," Naval Research
Logistics Quarterly, 2(4), pp. 269-276, December 1955.

Beale, E. M. L., "An Algorithm for Solving the Transportation Problem When
the Shipping Cost Over Each Route is Convex," Naval Research
Logistics Quarterly, 6(1), pp. 43-56, March 1959.

Bell, E. J., "Primal-Dual Decomposition Programming," U.S.G.R.& D.R. Order
AD-625 365 from CFSTI, Operations Research Center, University of
California, Berkeley, CA, August 1965.

Bellman, R., "On a Routing Problem," Quarterly Applied Mathematics, 16(1),
pp. 87-90, April 1958.

Bibliography 685

Bellmore, M., H. J. Greenberg, and J. J. Jarvis, "Multicommodity Disconnecting
Sets," Management Science, 16, pp. B427-B433, 1970.

Bellmore, M., and R. Vemuganti, " On Multicommodity Maximal Dynamic
Flows," Operations Research, 21, pp. 10-21, 1973.

Ben Daya, M., and C. M. Shetty, "Polynomial Barrier Function Algorithms for
Linear Programming," School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta, GA, 1988.

Benders, J. F., "Partitioning Procedures for Solving Mixed Variables
Programming Problems," Numerisene Methamatik, 4, pp. 238-252, 1962.

Benichoi, M., J. M. Gauthier, G. Hentges, and G. Ribiere, "The Efficient
Solution of Large-Scale Linear Programming Problems — Some
Algorithmic Techniques and Computational Results," Mathematical
Programming, 13, pp. 280-322, December 1977.

Ben-Israel, A., and A. Charnes, "An Explicit Solution of a Special Class of
Linear Programming Problems," Operations Research, 16(6), pp. 1160-
1175, November-December 1968.

Ben-Israel, A., and P. D. Robers, "A Decomposition Method for Interval Linear
Programming," Management Science, 16(5), pp. 374-387, January 1970.

Bennett, J. M., and D. R. Green, "An Approach to Some Structured Linear
Programming Problems," Operations Research, 17(4), pp. 749-750, July-
August 1969.

Berge, C, and A. Ghouila-Houri, Programming, Games and Transportation
Networks, John Wiley & Sons, NY, 1965.

Bertsekas, D. P., "A New Algorithm for the Assignment Problem,"
Mathematical Programming, 21, pp. 152-171, 1981.

Bertsekas, D. P., "A Unified Framework for Primal-Dual Methods in Minimum
Cost Network Flow Problems," Mathematical Programming, 32, pp. 125-
145, 1985.

Bertsekas, D. P., "A Distributed Asynchronous Relaxation Algorithm for the
Assignment Problem," Proceedings of the 24th IEEE Conference on
Decision and Control, Ft. Lauderdale, FL, pp. 1703-1704, December
1985.

Bertsekas, D. P., "Distributed Relaxation Methods for Linear Network Flow
Problems," Proceedings of the 25th IEEE Conference on Decision and
Control, Athens, Greece, pp. 2101-2106, 1986.

Bertsekas, D. P., "The Auction Algorithm: A Distributed Relaxation Method for
the Assignment Problem," Report LIDS-P-1653, March 1987.

Bertsekas, D. P., Linear Network Optimization: Algorithms and Codes, MIT
Press, Boston, MA, 1991.

Bertsekas, D. P., "A Simple and Fast Label Correcting Algorithm for Shortest
Paths," Networks, 23, pp. 703-709, 1993.

Bertsekas, D. P., Network Optimization: Continuous and Discrete Models,
Athena Scientific, 1998.

Bertsekas, D. P., and J. Eckstein, "Distributed Asychronous Relaxation Methods
for Linear Network Flow Problems," Report LIDS-P-1606, Proceedings
of IFAC '87, Munich, Germany, Pergamon Press, Oxford, England, July
1987.

686 Bibliography

Bertsekas, D. P., and D. El Baz, "Distributed Asynchronous Relaxation Methods
for Convex Network Flow Problems," LIDS Report P-1417, SIAM
Journal on Control and Optimization, 25, pp. 74-85, 1987.

Bertsekas, D. P., P. Hosein, and P. Tseng, "Relaxation Methods for Network
Flow Problems with Convex Arc Costs," SIAM Journal on Control and
Optimization, 25, pp. 1219-1243, 1987.

Bertsekas, D. P., and P. Tseng, "The RELAX Codes for Linear Minimum Cost
Network Flow Problems," in FORTRAN Codes for Network
Optimization, Annals of Operations Research (ed. B. Simeone), 13(1),
pp. 125-190, 1988a (LIDS Report P-1469, MIT, 1986).

Bertsekas, D. P., and P. Tseng, "Relaxation Methods for Minimum Cost
Ordinary and Generalized Network Flow Problems," Operations
Research, 36(1), pp. 93-114, 1988b.

Bertsekas, D. P. and P. Tseng, "RELAX-IV: A Faster Version of the RELAX
Code for Solving Minimum Cost Flow Problems," Technical Report,
Department of Computer Science, MIT, Boston, MA, November 1994.

Best, M. J., and K. Ritter, Linear Programming Active Set Analysis and
Computer Programs, Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1985.

Bialy, H., "An Elementary Method for Treating the Case of Degeneracy in
Linear Programming," Unternehmensforschung (Germany), 10(2), pp.
118-123,1966.

Birge, J. R., "A Dantzig-Wolfe Decomposition Variant Equivalent to Basis
Factorization," Mathematical Programming Study 24, ed. R. W. Cottle,
pp. 43-64, 1985.

Birge, J. R., and L. Qi, "Solving Stochastic Linear Programs Via a Variant of
Karmarkar's Algorithm," Technical Report 85-12, University of
Michigan, College of Engineering, Ann Arbor, Michigan, 1985.

Bitran, G. R., and A. G. Novaes, "Linear Programming with a Fractional
Objective Function," Operations Research, 21(1), pp. 22-29, January-
February 1973.

Bixby, R. E., and W. H. Cunningham, "Converting Linear Programs to Network
Problems," Mathematics of Operations Research, 5(3), pp. 321-357,
1980.

Blair, C. E., "The Iterative Step in the Linear Programming Algorithm of N.
Karmarkar," Algorithmica, 1(4), pp. 537-539, 1986.

Bland, R. G., "New Finite Pivoting Rules for the Simplex Method,"
Mathematics of Operations Research, 2, pp. 103-107, May 1977.

Bland, R. G., D. Goldfarb, and M. J. Todd, "The Ellipsoid Method: A Survey,"
Operations Research, 29(6), pp. 1039-1091, November/December 1981.

Blum, L., "Towards an Asymptotic Analysis of Karmarkar's Algorithm," Mills
College, Oakland, CA, and the Department of Mathematics, University of
California, Berkeley, 1985.

Boldyreff, A. W., "Determination of the Maximal Steady State Flow of Traffic
Through a Railroad Network," Operations Research, 3(4), pp. 443-465,
November 1955.

Bibliography 687

Borgwardt, K. H., "Some Distribution Independent Results About the
Asymptotic Order of the Average Number of Pivot Steps in the Simplex
Method," Mathematics of Operations Research, 7(3), pp. 441-462,
August 1982a.

Borgwardt, K. H., "The Average Number of Pivot Steps Required by the
Simplex Method is Polynomial," Zeitschrift fur Operations Research, 26,
pp. 157-177, 1982b.

Borgwardt, K. H., "A Probabilistic Analysis of the Simplex Method,"
Habilitation Thesis, Kaiserslautern, October 1984.

Borgwardt, K. H., The Simplex Method: A Probabilistic Analysis, Algorithms
and Combinatorics 1, Springer-Verlag, 268 p., 1987.

Boulding, K. E., and W. A. Spivey, Linear Programming and the Theory of the
Firm, The Macmillan Company, NY, 1960.

Bouska, J., and M. Cerny, "Decomposition Methods in Linear Programming,"
Ekonomicko-matematicky Obzor (Czechoslovakia), 1(4), pp. 337-369,
1965.

Bowman, E. H., "Production Scheduling by the Transportation Method of
Linear Programming," Operations Research, 4(1), pp. 100-103, 1956.

Bowman, E. H., "Assembly-Line Balancing by Linear Programming,"
Operations Research, 8, pp. 385-389, 1960.

Boyer, D. D., A Modified Simplex Algorithm for Solving the Multicommodity
Maximum Flow Problem, Technical Memorandum TM-14930, The
George Washington University, Washington, D.C., 1968.

Bradley, G. H., "Survey of Deterministic Networks," AIIE Transactions, 7(3),
pp. 222-234, September 1975.

Bradley, G. H., G. G. Brown, and G. W. Graves, "Design and Implementation
of Large-Scale Primal Transshipment Algorithms," Management Science,
24(1), pp. 1-34, 1977.

Bramucci, F., "The Inversion Algorithm in Linear Programming," Metra
(France), 6(2), pp. 357-381, June 1967.

Briggs, F. E. A., "A Dual Labeling Method for the Hitchcock Problem,"
Operations Research, 10(4), pp. 507-517, July-August 1962.

Brosius, L., "Comment on a Paper by M. C. Cheng," Mathematical
Programming, 21, pp. 229-232, 1981.

Brown, G. G. and R. E. Rosenthal, "Optimization Tradecraft: Hard-Won
Insights from Real-World Decision Support," Interfaces, 38(5), pp. 356-
366, 2008.

Brown, G. W., and T. C. Koopmans, "Computational Suggestions for
Maximizing a Linear Function Subject to Linear Inequalities," in T. C.
Koopmans (ed.), Activity Analysis of Production and Allocation, John
Wiley & Sons, NY, pp. 377-380, 1951.

Burdet, C. A., "Generating all the Faces of a Polyhedron," SIAM Journal on
Applied Mathematics XXVI, pp. 479-489, 1974.

Burkard, R. E., H. W. Hamacher, and J. Tind, "On General Decomposition
Schemes in Mathematical Programming," Mathematical Programming,
24, pp. 238-252, 1985.

688 Bibliography

Burrell, B. P., and M. J. Todd, "The Ellipsoid Method Generates Dual
Variables," Mathematics of Operations Research, 10, pp. 688-700, 1985.

Busacker, R. G., and P. J. Gowen, A Procedure for Determining a Family of
Minimal-Cost Network Flow Patterns, ORO Technical Report 15,
Operations Research Office, Johns Hopkins University, 1961.

Busacker, R. G., and T. L. Saaty, Finite Graphs and Networks: An Introduction
with Applications, McGraw-Hill Book Co., NY, 1965.

Cabot, A. V., R. L. Francis, and M. A. Stary, "A Network Flow Solution to a
Rectilinear Distance Facility Location Problem," AIIE Transactions, 2(2),
pp. 132-141, June 1970.

Cahn, A. S., "The Warehouse Problem," Bulletin of American Mathematical
Society, 54, p. 1073, 1948.

Caiman, R. F., Linear Programming and Cash Management, CASH ALPHA,
The M.I.T. Press, Cambridge, Mass., 1968.

Carnion, P., "Characterization of Totally Unimodular Matrices," Proceedings of
American Mathematical Society, 16, pp. 1068-1073, 1965.

Camm, J. D., P. M. Dearing, and S. K. Tadisina, "The Calhoun Textile Mill
Case: An Exercise on the Significance of Linear Programming Model
Formulation," HE Transactions, 19(1), pp. 23-28, March 1987.

Caratheodory, C , "Uber den Variabilitatsbereich der Koeffizienten von
Potenzreihen, die Gegebene Werte Nicht Annehmen," Mathematische
Annalen, 64, pp. 95-115, 1007.

Carpenito, G., and L. Toth, "Algorithm 548 ~ Solution of the Assignment
Problem," A CM Transactions on Mathematical Software, 6(1), 1980.

Carpenter, T. J., I. J. Lustig, M. M. Mulvey, and D. F. Shanno, "Higher Order
Predictor-Corrector Interior Point Methods with Application to Quadratic
Objectives," SIAM Journal on Optimization, 3, pp. 696-725, 1993.

Catchpole, A. R., "The Application of Linear Programming to Integrated Supply
Problems in the Oil Industry," Networks, 13(2), pp. 161-169, June 1962.

Cavalier, T. M., and A. L. Soyster, "Some Computational Experience and a
Modification of the Karmarkar Algorithm," Presented at the 12th
International Symposium on Mathematical Programming, Massachusetts
Institute of Technology, Cambridge, Massachusetts, August 1985.

Cederbaum, I., "Matrices All of Whose Elements and Subdeterminants are 1,
- 1 , or 0," Journal of Mathematics and Physics, 36, pp. 351-361, 1958.

Chadda, S. S., "A Decomposition Principle for Fractional Programming,"
Opsearch, 4(3), pp. 123-132, 1967.

Chandrascharan, R., "Total Unimodularity of Matrices," SIAM Journal of
Applied Mathematics, 17, pp. 1032-1034, 1969.

Chandru, V., and B. S. Kochar, "Exploiting Special Structures Using a Variant
of Karmarkar's Algorithm," Research Memorandum 86-10, School of
Industrial Engineering, Purdue University, West Lafayette, Indiana
47907, 1986.

Chandru, V., and B. S. Kochar. "A Class of Algorithms for Linear
Programming," Research Memorandum 85-14, School of Industrial
Engineering, Purdue University, West Lafayette, Indiana 47907, 1985
(revised June 1986).

Bibliography 689

Chandy, K. M., and T. Lo, "The Capacitated Minimum Spanning Tree,"
Networks, 3(2), pp. 173-181, 1973.

Chang, S. Y., and K. G. Murty, "The Steepest Descent Gravitational Method for
Linear Programming," Technical Report #87-14, Department of
Industrial and Operations Engineering, The University of Michigan, Ann
Arbor, Michigan 48109-2117, 1987.

Charnes, A., "Optimality and Degeneracy in Linear Programming,"
Econometrica, 20(2), pp. 160-170, 1952.

Charnes, A., and W. W. Cooper, "The Stepping Stone Method of Explaining
Linear Programming Calculations in Transportation Problems,"
Management Science, 1(1), pp. 49-69, 1954.

Charnes, A., and W. W. Cooper, Management Models and Industrial
Applications of Linear Programming, John Wiley & Sons, NY, 1961.

Charnes, A., and W. W. Cooper, "Programming with Linear Fractional
Functionals," Naval Research Logistics Quarterly, 9, pp. 181-186, 1962.

Charnes, A., and W. W. Cooper, "On Some Works of Kantorovich, Koopmans,
and Others," Management Science, 8(3), pp. 246-263, April 1962.

Charnes, A., W. W. Cooper, and A. Henderson, An Introduction to Linear
Programming, John Wiley & Sons, NY, 1953.

Charnes, A., W. W. Cooper, and R. Mellon, "Blending Aviation Gasoline: A
Study in Programming Interdependent Activities in an Integrated Oil
Company," Econometrica, 20(2), pp. 135-159, 1952.

Charnes, A., W. W. Cooper, and G. L. Thompson, "Some Properties of
Redundant Constraints and Extraneous Variables in Direct and Dual
Linear Programming Problems," Operations Research, 10, pp. 711-723,
1962.

Charnes, A., and K. O. Kortanek, "An Opposite Sign Algorithm for Purification
to an Extreme Point Solution," Office of Naval Research, Memorandum
No. 84, Northwestern University, Evanston, 1963.

Charnes, A., K. O. Kortanek, and W. Raike, "Extreme Point Solutions in
Mathematical Programming: An Opposite Sign Algorithm, Systems
Research Memorandum No. 129, Northwestern University, Evanston,
1965.

Charnes, A., and C. E. Lemke, A Modified Simplex Method for Control of
Round-off Error in Linear Programming, Carnegie Institute of
Technology, Pittsburgh, PA, 1952.

Charnes, A., and C. E. Lemke, "Minimization of Nonlinear Separable Convex
Functionals," Naval Research Logistics Quarterly, 1(4), pp. 301-312,
December 1954.

Charnes, A., and C. E. Lemke, Computational Theory of Linear Programming,
1: The Bounded Variables Problem, ONR Research Memorandum 10,
Graduate School of Industrial Administration, Carnegie Institute of
Technology, Pittsburgh, Pennsylvania, January 1954.

Charnes, A., and W. M. Raike, "One Pass Algorithms for Some Generalized
Network Problems," Operations Research, 14, pp. 914-924,1966.

Charnes, A., T. Song, and M. Wolfe, "An Explicit Solution Sequence and
Convergence of Karmarkar's Algorithm," Research Report CCS 501,

690 Bibliography

College of Business Administration 5.202, The University of Texas at
Austin, Austin, Texas 78712-1177, 1984.

Cheng, M. C, "New Criteria for the Simplex Algorithm," Mathematical
Programming, 19, pp. 230-236, 1980.

Cheung, R. K., "Iterative Methods for Dynamic Stochastic Shortest Path
Problems," Department of Industrial Engineering and Engineering
Management, Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong, 1998.

Cheung, R. K. "Iterative Methods for Dynamic Shortest Path Problems," Naval
Research Logistics, Vol. 45, pp. 769-789, 1998.

Chester, L. B., Analysis of the Effect of Variance on Linear Programming
Problems. U.S.G.R.& D.R. Order AD-611 273 from Clearinghouse, Air
Force Institute of Technology, Wright-Patterson AFB, Washington, D.C.,
August 1964.

Chien, R. T., "Synthesis of a Communication Net," IBM Journal of Research
and Development, 4(3), pp. 311-320, 1960.

Chinneck, J. W., "An Effective Polynomial-time Heuristic for the Minimum-
Cardinality IIS Set-Covering Problem," Annals of Mathematics and
Artificial Intelligence, 17(1), pp. 127-144, 1996.

Chisman, J. A., "Using Linear Programming to Determine Time Standards,"
Journal of Industrial Engineering, 17'(4), pp. 189-191, April 1966.

Chiù, S. S., and Y. Ye, "Recovering the Shadow Price in Projection Methods of
Linear Programming," Engineering-Economics Systems Department,
Stanford University, Stanford, CA 94305, 1985.

Chiù, S. S., and Y. Ye, "Simplex Method and Karmarkar's Algorithm: A
Unifying Structure," Engineering-Economic Systems Department,
Stanford University, Stanford, CA 94305, 1985.

Christofides, N., Graph Theory: An Algorithmic Approach, Academic Press,
NY, 1975.

Chung, A., Linear Programming, Charles E. Merrill Books, Columbus, Ohio,
1963.

Chvatal, V., Linear Programming, W. H. Freeman and Company, NY/San
Francisco, 1983.

Clark, C. E., "The Optimum Allocation of Resources Among the Activities of a
Network," Journal of Industrial Engineering, 12(1), pp. 11-17, January-
February 1961.

Clasen, R. J., The Numerical Solution of Network Problems Using Out-of-Kilter
Algorithm, RAND Report RM-5456 PR, March 1968.

Clements, R. A., "Linear Programming for Multiple Feed Formulation," NZOR
(New Zealand), 2(2), pp. 100-107, July 1974.

Cline, R. E., "Representations for the Generalized Inverse of Matrices
Partitioned as A = [U, V]," in R. Graves and P. Wolfe (eds.), Recent
Advances in Mathematical Programming, pp. 37-38, McGraw-Hill Book
Co., NY, 1963.

Cobham, A., "The Intrinsic Computational Difficulty of Functions,"
Proceedings of the 1964 International Congress for Logic, Methodology,

Bibliography 691

and Philosophy of Science, Y. Bar-Hille, (ed.), North-Holland,
Amsterdam, pp. 24-30, 1965.

Commoner, F. G., "A Sufficient Condition for a Matrix to be Totally
Unimodular," Networks, 3, pp. 351-365, 1973.

Cook, S. A., "The Complexity of Theorem-Proving Procedures," Proceedings of
the Third Annual ACM Symposium on Theory of Computing, Association
for Computing Machinery, NY, pp. 151-158, 1971.

Cook, K. L., and E. Halsey, "The Shortest Route Through a Network with
Time-Dependent Intermodal Transit Times," Journal of Mathematical
Analysis and Application, 14, pp. 493-498, 1966.

Cooper, L., and J. Kennington, "Non-Extreme Point Solution Strategies for
Linear Programs," Naval Research Logistics Quarterly, 26(3), pp. 447-
461, 1979.

Courtillot, M., "On Varying All the Parameters in a Linear Programming
Problem and Sequential Solution of a Linear Programming Problem,"
Operations Research, 10(4), pp. 471-475, 1962.

Craven, B. D., "A Generalization of the Transportation Method of Linear
Programming," Networks, 14(2), pp. 157-166, June 1963.

Crowder, H., and J. M. Hattingh, "Partially Normalized Pivot Selection,"
Mathematical Programming Study, Number 4, pp. 12-25, December
1975.

Crowder, FL, E. L. Johnson, and M. Padberg, "Solving Large-Scale Zero-One
Linear Programming Problems," Operations Research, 31(5), pp. 803-
834, 1983.

Cunningham, W. H., "A Network Simplex Method," Mathematical
Programming, 11(2), pp. 105-116, 1976.

Cunningham, W. H., "Theoretical Properties of the Network Simplex Method,"
Mathematics of Operations Research, 4(2), pp. 196-208, 1979.

Cunningham, W. H., "A Class of Linear Programs Convertible to Network
Problems," Operations Research, 31(2), pp. 387-390, 1983.

Curtis, F. H., "Linear Programming the Management of a Forest Property,"
Journal of Forestry, 61(9), pp. 611-616, September 1962.

Dantzig, G. B., Programming in a Linear Structure, Comptroller, United States
Air Force, Washington, D.C., February 1948.

Dantzig, G. B., "Programming of Interdependent Activities, 11, Mathematical
Model," in T. C. Koopmans; (ed.), Activity Analysis of Production and
Allocation, John Wiley & Sons, NY, 1951, also published in
Econometrica, 17(3-4), pp. 200-211, July-October 1949.

Dantzig, G. B., "Maximization of a Linear Function of Variables Subject to
Linear Inequalities," in T. C. Koopmans (ed.), Activity Analysis of
Production and Allocation, John Wiley & Sons, NY, pp. 339-347, 1951a.

Dantzig, G. B., "A Proof of the Equivalence of the Programming Problem and
the Game Problem," in T. C. Koopmans (ed.), Activity Analysis of
Production and Allocation, John Wiley & Sons, NY, pp. 359-373, 1951b.

Dantzig, G. B., "Application of the Simplex Method to a Transportation
Problem," in T. C. Koopmans (ed.), Activity of Production and
Allocation, John Wiley & Sons, NY, pp. 359-373, 1951c.

692 Bibliography

Dantzig, G. B., Computational Algorithm of the Revised Simplex Method,
RAND Report RM-1266, The Rand Corporation, Santa Monica, CA,
1953.

Dantzig, G. B., Notes on Linear Programming, Part VII. The Dual Simplex
Algorithm, RAND Report RM-1270, The Rand Corporation, Santa
Monica, CA, July 1954.

Dantzig, G. B., Notes on Linear Programming, Part XI, Composite Simplex-
Dual Simplex Algorithm-1, Research Memorandum RM-1274, The Rand
Corporation, Santa Monica, CA, April 1954.

Dantzig, G. B., Notes on Linear Programming: Parts VIII, IX, X - Upper
Bounds, Secondary Constraints, and Block Triangularity in Linear
Programming, Research Memorandum RM-1367, The Rand Corporation,
Santa Monica, CA, October 1954, also published in Econometrica, 23(2),
pp. 174-183, April 1955.

Dantzig, G. B., "Discrete Variable Extremum Problems," Operations Research,
5(2), pp. 266-277, April 1957.

Dantzig, G. B., On the Significance of Solving Linear Programming Problems
with Some Integer Variables, RAND Report P-1486, The Rand
Corporation, Santa Monica, CA, September 1958.

Dantzig, G. B., On the Shortest Route Through a Network, RAND Report P-
1345, The Rand Corporation, Santa Monica, CA, April 1958. Also,
Management Science, 6(2), pp. 187-190, 1960.

Dantzig, G. B., Linear Programming and Extensions, Princeton University
Press, Princeton, NJ, 1963a.

Dantzig, G. B., "Compact Basis Triangularization for the Simplex Method," in
R. Graves and P. Wolfe (eds.), Recent Advances in Mathematical
Programming, pp. 125-132, McGraw-Hill Book Co., NY, 1963b.

Dantzig, G. B., Optimization in Operations Research: Some Examples,
U.S.G.R.& D.R. Order AD-618 748, Operations Research Center,
University of California, Berkeley, CA, April 1965.

Dantzig, G. B., All Shortest Routes in a Graph, Technical Report 66-3,
Operations Research House, Stanford University, Stanford, CA,
November 1966.

Dantzig, G. B., "Reminiscences About the Origins of Linear Programming,"
Operations Research Letters, 1(2), pp. 43-48, April 1982.

Dantzig, G. B., W. D. Blanttner, and M. R. Rao, All Shortest Routes from a
Fixed Origin in a Graph, Technical Report 66-2, Operations Research
House, Stanford University, Stanford, CA, November 1966.

Dantzig, G. B., L. R. Ford, and D. R. Fulkerson, "A Primal-Dual Algorithm for
Linear Programs," in H. W. Kuhn and A. W. Tucker (eds.), Linear
Inequalities and Related Systems, Annals of Mathematics Study No. 38,
Princeton University Press, Princeton, NJ, pp. 171-181, 1956.

Dantzig, G. B., and D. R. Fulkerson, "Minimizing the Number of Tankers to
Meet a Fixed Schedule," Naval Research Logistics Quarterly, 1(3), pp.
217-222, September 1954.

Dantzig, G. B., and D. R. Fulkerson, "Computation of Maximal Flows in
Networks," Naval Research Logistics Quarterly, 2(4), 1955.

Bibliography 693

Dantzig, G. B., and D. R. Fulkerson, "On the Max-Flow Min-Cut Theorem of
Networks," in H. W. Kuhn and A. W. Tucker (eds.), Linear Inequalities
and Related Systems, Annals of Mathematics Study No. 38, Princeton
University Press, Princeton, NJ, pp. 215-221, 1956.

Dantzig, G. B., D. R. Fulkerson, and S. M. Johnson, "Solution of a Large-Scale
Traveling-Salesman Problem," Operations Research, 2(4), pp. 393-410,
November 1954.

Dantzig, G. B., D. R. Fulkerson, and S. M. Johnson, On a Linear Programming
Combinatorial Approach to the Traveling Salesman Problem, RAND
Report P-1281, The Rand Corporation, Santa Monica, CA, April 1958.

Dantzig, G. B., R. Harvey, and R. McKnight, Updating the Product Form of the
Inverse for the Revised Simplex Method, ORC Report 64-33, Operations
Research Center, University of California, Berkeley, CA, December
1964.

Dantzig, G. B., and D. L. Johnson, "Maximum Payloads Per Unit Time
Delivered Through an Air Network," Operations Research, 12(2),
March-April 1964.

Dantzig, G. B., S. Johnson, and W. White, A Linear Programming Approach to
the Chemical Equilibrium Problem, RAND Report P-1060, The Rand
Corporation, Santa Monica, CA, April 1958.

Dantzig, G. B., and A. Orden, Notes on Linear Programming: Part II - Duality
Theorems, Research Memorandum RM-1265, The Rand Corporation,
Santa Monica, CA, October 1953.

Dantzig, G. B., A. Orden, and P. Wolfe, "The Generalized Simplex Method for
Minimizing a Linear Form Under Linear Inequality Restraints," Pacific
Journal of Mathematics, 5(2), pp. 183-195, June 1955.

Dantzig, G. B., and W. Orchard-Hays, Notes on Linear Programming: Part V -
Alternate Algorithm for the Revised Simplex Method Using Product
Form for the Inverse, Research Memorandum RM-1268, The RAND
Corporation, Santa Monica, CA, November 1953.

Dantzig, G. B., and W. Orchard-Hays, "The Product Form for the Inverse in the
Simplex Method," Mathematical Tables and Aids to Computation, 8(46),
pp. 64-67, 1954.

Dantzig, G. B., and R. M. Van Slyke, Generalized Upper Bounded Techniques
for Linear Programming 1, 11, ORC reports 64-17 (1964), 64-18 (1965),
Operations Research Center, University of California, Berkeley, CA.

Dantzig, G. B. and P. Wolfe, "Decomposition Principle for Linear Programs,"
Operations Research, 8(1), pp. 101-111, January-February 1960.

Dantzig, G. B., and P. Wolfe, "The Decomposition Algorithm for Linear
Programs," Econometrica, 29(4), pp. 767-778, October, 1961.

Dantzig, G. B., and P. Wolfe, Linear Programming in a Markov Chain. Notes on
Linear Programming and Extensions. Part 59, Research Memorandum
RM2957-PR, The Rand Corporation, Santa Monica, CA, April 1962.

de Ghellinck, G., and J.-P. Vial, "A Polynomial Newton Methods for Linear
Programming," Algorithmica, 1(4), pp. 425-454, 1986.

694 Bibliography

de Ghellinck, G., and J. Vial, "An Extension of Karmarkar's Algorithm for
Solving a System of Linear Homogeneous Equations on the Simplex,"
Mathematical Programming, 39(1), pp. 79-92, 1987.

Denardo, E. V., "On Linear Programming in a Markov Decision Problem,"
Management Science, 16(5), pp. 281-288, January 1970.

Dennis, J. B., Mathematical Programming and Electrical Networks, John Wiley
& Sons, NY, 1959.

Dennis, J. E., A. M. Morshedi, and K. Turner, "A Variable-Metric Variant of the
Karmarkar Algorithm for Linear Programming," Mathematical
Programming, 39(1), pp. 1-30, 1987.

Dent, J. B., and H. Casey, Linear Programming and Animal Nutrition, J. B.
Lippincott Co., Philadelphia, PA, 1968.

Desaulniers, G., J. Desrosiers, and M. M. Solomon, "Accelerating Strategies in
Column Generation Methods for Vehicle Routing and Crew Scheduling
Problems," In C. C. Ribeiro and P. Hansen, Eds., Essays and Surveys in
Metaheuristics, pp. 309-324, Boston, Kluwer, 2001.

Desrosiers, J. and M. E. Lubbecke, "A Primer in Column Generation," in
Column Generation, G. Desaulniers, J. Desrosiers, and M. M. Solomon,
Eds., pp. 1-32, Springer, New York, NY, 2005.

Dial, R., F. Glover, D. Karney, and D. Klingman, "A Computational Analysis of
Alternative Algorithms and Labeling Techniques for Finding Shortest
Path Trees," Networks, 9, pp. 215-248, 1979.

Dickson, J. C, and F. P. Frederick, "A Decision Rule for Improved Efficiency
in Solving Linear Programming Problems with the Simplex Algorithm,"
Communications oftheACM, 3, pp. 509-512, 1960.

Dijkstra, E. W., "A Note on Two Problems in Connection with Graphs,"
Numerical Mathematics, 1, pp. 269-271, 1959.

Dikin, I. I., "Iterative Solution of Problems of Linear and Quadratic
Programming," Soviet Mathematics Doklady, 8, pp. 674-675, 1967.

Dikin, I. I., "On the Speed of an Iterative Process," Upraulyaemye Sistemi, 12,
pp. 54-60, 1974.

Doig, A. G., "The Minimum Number of Basic Feasible Solutions to a
Transportation Problem," Journal of the Operational Research Society,
14(4), pp. 387-391, 1963.

Doig, A. G., and A. H. Land, "An Automatic Method of Solving Discrete
Programming Problems," Econometrica, 28, pp. 497-520, 1960.

Dongarra, J. J., C. B. Moler, J. R. Bunch, and G. W. Stewart, "LINPACK User's
Guide," SIAM, Philadelphia, PA, 1979.

Dorfman, R., Application of Linear Programming to the Theory of the Firm,
University of California Press, Berkeley, CA, 1951.

Dorfman, R., P. A. Samuelson, and R. M. Solow, Linear Programming and
Economic Analyses, McGraw-Hill Book Co., NY, 1958.

Dreyfus, S. E., "An Appraisal of Some Shortest Path Algorithms," Operations
Research, 17(3), pp. 395-412, 1969.

du Merle, O., D. Villeneuve, J. Desrosiers, and P. Hansen, "Stabilized Column
Generation," Discrete Mathematics, 194, pp. 229-237, 1999.

Bibliography 695

Duffin, R. J., "Infinite Programs," in H. W. Kuhn and A. W. Tucker (eds.),
Linear Inequalities and Related Systems, Annals of Mathematics Study
No. 38, pp. 157-170, Princeton University Press, Princeton, NJ, 1956.

Duffin, R. J., The Extremal Length of a Network, Office of Technical Services,
Document No. AD-253 665, 1961.

Duffin, R. J., "Dual Programs and Minimum Costs," Journal of the Society for
Industrial and Applied Mathematics, 10, pp. 119-123, 1962.

Duffin, R. J., "Convex Analysis Treated by Linear Programming,"
Mathematical Programming (Netherlands), 4(2), pp. 125-143, April
1973.

Dunagan, J. and S. Vempala, "A Simple Polynomial-Time Rescaling Algorithm
for Solving Linear Programs," Mathematical Programming, Series A,
114, pp. 101-114,2008.

Dyer, M. E., and L. G. Proli, "An Algorithm for Determining all Extreme Points
of a Convex Polytope," Mathematical Programming, 12, pp. 81-96,
1977.

Eckhardt, U., "Theorems on the Dimension of Convex Sets," Linear Algebra
and its Applications, 12, pp. 63-76, 1975.

Edmonds, J., "Paths, Trees, and Flowers," Canadian Journal of Mathematics,
pp. 449-467, 1965.

Edmonds, J., and R. M. Karp, "Theoretical Improvements in Algorithmic
Efficiency for Network Flow Problems," Journal of the ACM, 19(2), pp.
248-264, April 1972.

Egervàry, E., "On Combinatorial Properties of Matrices (1931)," translated by
H. W. Kuhn, Paper No. 4, George Washington University Logistics
Research Project, 1954.

Eggleston, H. G., Convexity, Cambridge University Press, NY, 1958.
Eisemann, K., "The Primal-Dual Method for Bounded Variables," Operations

Research, 12(1), pp. 110-121, January-February 1964.
Elam, J., F. Glover, and D. Klingman, "A Strongly Convergent Primal-Simplex

Algorithm for Generalized Networks," Mathematics of Operations
Research, 4(1), pp. 39-59, 1979.

Elmaghraby, S. E., "Sensitivity Analysis of Multiterminal Flow Networks,"
Operations Research, 12(5), pp. 680-688, September-October 1964.

Elmaghraby, S. E., "The Theory of Networks and Management Science. Part I,"
Management Science, 17(1), pp. 1-34, September 1970.

Elmaghraby, S. E., "The Theory of Networks and Management Science. Part
II," Management Science, 17(2), pp. B54-1171, October 1970.

Engquist, M., "A Successive Shortest Path Algorithm for the Assignment
Problem," INFOR, 20(4), pp. 370-384, 1982.

Eriksson, J. R., "An Iterative Primal-Dual Algorithm for Linear Programming,"
Report LITH-MAT-R-1985-10, Institute of Technology, Linkoping
University, S-581 83 Linkoping, Sweden, 1985.

Evans, J. R., "A Combinatorial Equivalence Between a Class of
Multicommodity Flow Problems and the Capacitated Transportation
Problem," Mathematical Programming, 10(3), pp. 401-404, 1976.

Even, S., Graph Algorithms, Computer Science Press, Maryland, 1979.

696 Bibliography

Everett, H., "Generalized Lagrange Multiplier Method for Solving Problems of
Optimum Allocation of Resources," Operations Research, 11, pp. 399-
417, 1963.

Falk, J. E., "Lagrange Multipliers and Nonlinear Programming," Journal of
Mathematical Analysis and Applications, 19, pp. 141-159, 1967.

Farbey, B. A., A. H. Lard, and J. D. Murchland, "The Cascade Algorithm for
Finding All Shortest Distances in a Directed Graph," Management
Science, 14(1), pp. 19-28, September 1967.

Farkas, J., " Uber die Theorie der einfachen Ungleichungen," Journal Flir die
Reine und Angewandte Mathematik, 124, pp. 1-27, 1901.

Fathi, Y., and C. Tovey, "Affirmative Action Algorithms," Mathematical
Programming, 34, pp. 292-301, 1986.

Ferguson, A. R., and G. B. Dantzig, Notes on Linear Programming: Part XVI -
The Problem of Routing Aircraft - a Mathematical Solution, Research
Memorandum, RM-1369, also RAND Paper P-561, 1954, also
Aeronautical Engineering Review, 14(4), pp. 51-55, April 1955.

Ferguson, A. R., and G. B. Dantzig, "The Allocation of Aircraft to Routes —
An Example of Linear Programming Under Uncertain Demand,"
Management Science, 3(1), pp. 45-73, October 1956.

Fisher, F. P., "Speed Up the Solution to Linear Programming Problems,"
Journal of Industrial Engineering, 12(6), pp. 412-416, November-
December 1961.

Fletcher, R., and M. J. D. Powell, "On the Modification of LDLT
Factorizations," Mathematics of Computation, pp. 1067-1087, 1974.

Flood, M. M., "On the Hitchcock Distribution Problem," Pacific Journal of
Mathematics,^!), 1953.

Flood, M. M., "Application of Transportation Theory to Scheduling a Military
Tanker Fleet," Operations Research, 2(2), pp. 150-162, 1954.

Flood, M. M., "An Alternative Proof of a Theorem of Konig as an Algorithm for
the Hitchcock Distribution Problem," in R. Bellman and M. Hall (eds.),
Proceedings of Symposia in Applied Mathematics, American
Mathematical Society, Providence, RI, pp. 299-307, 1960.

Flood, M. M., "A Transportation Algorithm and Code," Naval Research
Logistics Quarterly, 8(3), pp. 257-276, September 1961.

Florian, M., and P. Robert, "A Direct Search Method to Locate Negative Cycles
in a Graph," Management Science, 17(5), pp. 307-310, January 1971.

Floyd, R. W., "Algorithm 97: Shortest Path," Communications of the ACM,
5(6), p. 345, 1962.

Ford, L. R., and D. R. Fulkerson, "Maximal Flow Through a Network,"
Canadian Journal of Mathematics, 8(3), pp. 399-404, 1956.

Ford, L. R., and D. R. Fulkerson, "A Simple Algorithm for Finding Maximal
Network Flows and an Application to the Hitchcock Problem," Canadian
Journal of Mathematics, 9(2), pp. 210-218, 1957.

Ford, L. R., and D. R. Fulkerson, "Solving the Transportation Problem,"
Management Science, 3(1), pp. 24-32, 1956.

Bibliography 697

Ford, L. R., and D. R. Fulkerson, "A Primal-Dual Algorithm for the
Capacitated. Hitchcock Problem," Naval Research Logistics Quarterly,
4(1), pp. 47-54, 1957.

Ford, L. R., and D. R. Fulkerson, "Constructing Maximal Dynamic Flows from
Static Flows," Operations Research, 6(3), pp. 419-433, 1958a.

Ford, L. R., and D. R. Fulkerson, "Suggested Computation of Maximal Multi-
Commodity Network Flows," Management Science, 5(1), pp. 97-101,
October 1958b.

Ford, L. R., and D. R. Fulkerson, Flows in Networks, Princeton University
Press, Princeton, NJ, 1962.

Forrest, J. J. H., and J. Tomlin, "Implementing Interior Point Linear
Programming Methods in the Optimization Subroutine Library,"
Mathematical Programming Systems RJ 7400 (69202), IBM, 1990.

Forrest, J. J. H., and J. A. Tomlin, "Updating Triangular Factors of the Basis to
Maintain Sparsity in the Product Form Simplex Method," Mathematical
Programming, 2, pp. 263-278, 1972.

Fox, B., "Finding Minimal Cost-Time Ratio Circuits," Operations Research,
17(3), pp. 546-551, May-June 1969.

Frank, H., and I. T. Frisch, Communication, Transmission, and Transportation
Networks, Addison-Wesley, Reading, Mass., 1971.

Francis, R. L., and J. A. White, Facility Layout and Location, Prentice-Hall,
Englewood Cliffs, NJ, 1974.

Frazer, R. J., Applied Linear Programming, Prentice-Hall, Englewood Cliffs,
NJ, 1968.

Fredman, M. L., and R. E. Tarjan, "Fibonacci Heaps and their Uses in Improved
Network Optimization Algorithms," Proceedings of the 25th IEEE
Symposium on the Foundations of Computer Science, pp. 338-346, 1984.

Frendewey, J., and F. Glover, "Improved Algorithmic and Computational
Procedures for Large Scale Embedded Network Linear Programming
Problems," ORSA/TIMS Meeting, Houston, TX, October 1981.

Freund, R. M., "Postoptimal Analysis of a Linear Program under Simultaneous
Changes in Matrix Coefficients," Mathematical Programming Study 24,
ed. R. W. Cottle, pp. 1-13, 1985.

Freund, R. M. and S. Mizuno, "Interior Point Methods: Current Status and
Future Directions," OPTIMA, 51, pp. 1-9, October 1996.

Frisch, K. R., "The Logarithmic Potential Method of Convex Programming,"
Memorandum of May 13, 1955, University Institute of Economics, Oslo,
1955.

Frisch, R., "The Multiplex Method for Linear Programming," Memorandum of
Social Economic Institute, University of Oslo, Oslo, Norway, 1955.

Fulkerson, D. R., "A Network Flow Feasibility Theorem and Combinatorial
Applications," Canadian Journal of Mathematics, 11(3), pp. 440-451,
1959.

Fulkerson, D. R., "Increasing the Capacity of a Network, the Parametric Budget
Problem," Management Science, 5(4), pp. 472-483, July 1959.

Fulkerson, D. R., "On the Equivalence of the Capacity-Constrained
Transshipment Problem and the Hitchcock Problem," Research

698 Bibliography

Memorandum RM2480, The Rand Corporation, Santa Monica, CA,
1960.

Fulkerson, D. R., "An Out-of-Kilter Method for Minimal Cost Flow Problems,"
Journal of the Society for Industrial and Applied Mathematics, 9(1), pp.
18-27, 1961a.

Fulkerson, D. R., "A Network Flow Computation for Project Cost Curves,"
Management Science, 7(2), pp. 167-178. January 1961b.

Fulkerson, D. R., "Flow Networks and Combinatorial Operations Research,"
The American Mathematical Monthly, 73(2), pp. 115-138, February
1966.

Fulkerson, D. R., "Networks, Frames, and Blocking Systems," Mathematics of
the Decision Sciences, Part 1, Lectures in Applied Mathematics, 11 (eds.
G. B. Dantzig and A. F. Veinott), American Mathematical Society, pp.
304-334,1968.

Fulkerson, D. R., and G. B. Dantzig, "Computations of Maximal Flows in
Networks," Naval Research Logistic Quarterly, 2(4), pp. 277-283,
December 1955.

Gacs, P., and L. Lovasz, "Khacian's Algorithm for Linear Programming,"
Mathematical Programming Study 14, North-Holland, Amsterdam, The
Netherlands, pp. 61-68, January 1981.

Gal, T., "Shadow Prices and Sensitivity Analysis Under Degeneracy," OR
Spektrum, 8, pp. 59-71, 1986.

Gale, D., "Neighboring Vertices on a Convex Polyhedron," in H. W. Kuhn and
A. W. Tucker (eds.), Linear Inequalities and Related Systems, Annals of
Mathematics Study No. 38, Princeton University Press, Princeton, NJ, pp.
255-263, 1956.

Gale, D., "A Theorem on Flows in Networks," Pacific Journal of Mathematics,
7, pp. 1073-1082,1957.

Gale, D., Transient Flows in Networks, Research Memorandum RM-2158, The
Rand Corporation, Santa Monica, CA, 1958.

Gale, D., The Theory of Linear Economic Models, McGraw-Hill Book Co., NY,
1960.

Gale, D., On the Number of Faces of a Convex Polytope, Technical Report No.
1, Department of Mathematics, Brown University, 1962.

Gale, D., H. W. Kuhn, and A. W. Tucker, "Linear Programming and the Theory
of Games," Chapter 19 of T. C. Koopmans (ed.), Activity Analysis of
Production and Allocation, Cowles Commission Monograph 13, John
Wiley & Sons, NY, 1951.

Garey, M. R., and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of ΉΡ-Completeness, Freeman, San Francisco, 1979.

Garfinkel, R. S., and G. L. Nemhauser, Integer Programming, John Wiley &
Sons, NY, 1972.

Garvin, W. W., Introduction to Linear Programming, McGraw-Hill Book Co.,
NY, 1960.

Garvin, W. W., H. W. Crandall, J. B. John, and R. A. Spellman, "Application of
Linear Programming in the Oil Industry," Management Science, 3(4), pp.
407-430, July 1957.

Bibliography 699

Gass, S. I., "A First Feasible Solution to the Linear Programming Problem," in
H. Antosiewicz (ed.), Proceedings of the Second Symposium in Linear
Programming, Vols. 1 and 2, DCS/Comptroller, Headquarters, U.S. Air
Force, Washington, D.C., pp. 495-508, January, 1955.

Gass, S. I., Linear Programming: Methods and Applications, 4th ed., McGraw-
Hill, NY, 1975.

Gass, S. I., The Dualplex Method for Large-scale Linear Programs, ORC Report
66-15, Operations Research Center, University of California, Berkeley,
CA, June 1966.

Gass, S. I., and T. Saaty, "The Computational Algorithm for the Parametric
Objective Function," Naval Research Logistics Quarterly, 2(1-2), pp. 39-
45, 1955.

Gass, S. I., and T. L. Saaty, "Parametric Objective Function. Part II:
Generalization," Operations Research, 3(4), pp. 395-401, 1955.

Gassner, Betty J., "Cycling in the Transportation Problem," Naval Research
Logistics Quarterly, 11(1), pp. 43-58, March 1964.

Gay, D. M., "Electronic Mail Distribution of Linear Programming Test
Problems," COAL Newsletter, 13, pp. 10-12, 1985.

Gay, D. M., "A Variant of Karmarkar's Linear Programming Algorithms for
Problems in Standard Form," Mathematical Programming, 37, pp. 81 -90,
1987.

Geary, R. C , and M. C. McCarthy, Elements of Linear Programming, with
Economic Applications, Charles Griffin & Co., London, 1964.

Geoffrion, A. M., "Primal Resource-Directive Approaches for Optimizing
Nonlinear Decomposable Systems," Operations Research, 18(3), pp.
375-403, May-June 1970.

Geoffrion, A. M., "Duality in Nonlinear Programming: A Simplified
Applications-Oriented Development," SIAM Review, 13, pp. 1-37, 1971.

Geoffrion, A. M., "Generalized Benders Decomposition," Journal of
Optimization Theory and Applications, 10, pp. 237-260, 1972.

Geoffrion, A. M., "Lagrangean Relaxation for Integer Programming,"
Mathematical Programming Study, Number 2, pp. 82-114, 1974.

Geoffrion, A. M., "The Purpose of Mathematical Programming is Insight, Not
Numbers," Interfaces, 7(1), pp. 81-92, 1976.

Geoffrion, A. M., "An Introduction to Structural Modeling," Management
Science, 33(5), pp. 547-588, 1987.

George, J. A., and M. T. Heath, "Solution of Sparse Linear Least Squares
Problems Using Givens Rotations," Linear Algebra and Its Applications,
34, pp. 69-83, 1980.

Gibbs, D., F. Glover, D. Klingman, and M. Mead, "A Comparison of Pivot
Selection Rules for Primal Simplex Based Network Codes," Operations
Research Letters, 2(5), pp. 199-202, 1983.

Gill, P. E„ G. H. Golub, W. Murray, and M. A. Saunders, "Methods for
Modifying Matrix Factorizations," Mathematics of Computation, 28, pp.
505-535, 1974.

Gill, P. E., and W. Murray, "A Numerical Investigation of Ellipsoid Algorithms
for Large-Scale Linear Programming," Technical Report SOL 80-27,

700 Bibliography

Systems Optimization Laboratory, Stanford University, Stanford, CA,
October 1980.

Gill, P. E., W. Murray, M. A. Saunders, J. A. Tomlin, and M. H. Wright, "On
Projected Newton Barrier Methods for Linear Programming and an
Equivalence to Karmarkar's Projective Method," Mathematical
Programming, 36, pp. 183-209, 1986.

Gill, P. E., W. Murray, M. A. Saunders, and M. H. Wright, "A Note on
Nonlinear Approaches to Linear Programming," Technical Report SOL
86-7, Department of Operations Research, Stanford University, Stanford,
CA 94305, 1986.

Gill, P. E., W. Murray, M. A. Saunders, and M. H. Wright, "Practical Anti-
Cycling Procedure for Linear and Nonlinear Programming," Technical
Report SOL 88-4, Systems Optimization Laboratory, Department of
Operations Research, Stanford University, Stanford, CA 94305, July
1988.

Gilmore, P. C , and R. E. Gomory, "A Linear Programming Approach to the
Cutting Stock Problem-Part 1," Operations Research, 9, pp. 849-859,
1961.

Gilmore, P. C, and R. E. Gomory, "A Linear Programming Approach to the
Cutting Stock Problem - Part 2," Operations Research, 11(6), pp. 863-
887, 1963.

Glassey, C. R., "Nested Decomposition and Multi-Stage Linear Programs,"
Management Science, 20(3), pp. 282-292, November 1973.

Glickman, T., and H. D. Sherali, "Large-Scale Network Distribution of Pooled
Empty Freight Cars Over Time, With Limited Substitution and Equitable
Benefits," Transportation Research, B (Methodology), 19(2), pp. 85-94,
1985.

Glicksman, M. A., Linear Programming and Theory of Games, John Wiley &
Sons, NY, 1963.

Glover, F., "A New Foundation for a Simplified Primal Integer Programming
Algorithm," Operations Research, 16(4), pp. 727-740, July-August,
1968.

Glover, F., R. Glover, and D. Klingman, "Threshold Assignment Algorithm,"
Mathematical Programming Study 26, pp. 12-37, 1986.

Glover, F., D. Karney, and D. Klingman, "The Augmented Predecessor Index
Method for Locating Stepping-Stone Paths and Assigning Dual Prices in
Distributions Problems," Transportation Science, 6, pp. 171-180, 1972.

Glover, F., D. Karney, and D. Klingman, "Implementation and Computational
Comparisons of Primal, Dual and Primal-Dual Computer Codes for
Minimum Cost Network Flow Problems," Networks, 4(3), pp. 191-212,
1974a.

Glover, F., D. Karney, D. Klingman, and A. Napier, "A Computational Study on
Start Procedures, Basis Change Criteria, and Solution Algorithms for
Transportation Problems," Management Science, 20(5), pp. 793-813,
1974b.

Bibliography 701

Glover, F., D. Karney, D. Klingman, and R. Russell, "Solving Singly
Constrained Transshipment Problems," Transportation Science, 12(4),
pp. 277-297, 1978.

Glover, F., and D. Klingman, "Comments on Note by Hatch on Network
Algorithms," Operations Research, 29(2), pp. 370-373, 1978.

Glover, F., and D. Klingman, "The Simplex SON Algorithm for LP/Embedded
Network Problems," Mathematical Programming Study, 15, pp. 148-176,
1981.

Glover, F., and D. Klingman, "Recent Developments in Computer Implementa-
tion Technology for Network Flow Algorithms," INFOR, 20(4), pp. 433-
452, 1982.

Glover, F., and D. Klingman, "Basic Dual Feasible Solutions for a Class of
Generalized Networks," Operations Research, 20, pp. 126-136, 1972.

Glover, F., D. Klingman, and R. S. Barr, "An Improved Version of the Out-of-
Kilter Method and a Comparative Study of Computer Codes," Report
CS-102, Center for Cybernetic Studies, University of Texas, Austin, TX,
1972.

Glover, F., D. Klingman, M. Mead, and J. Mote, "A Note on Specialized Versus
Unspecialized Methods for Maximum-Flow Problems," Naval Research
Logistics Quarterly, 31, pp. 63-65, 1984b.

Glover, F., D. Klingman, J. Mote, and D. Whitman, "A Primal Simplex Variant
for the Maximum-Flow Problem," Naval Research Logistics Quarterly,
31, pp. 41-61, 1984a.

Glover, F., D. Klingman, and N. Phillips, "A New Polynomially Bounded
Shortest Path Algorithm," Operations Research, 33(1), pp. 65-73,1985a.

Glover, F., D. D. Klingman, N. V. Phillips, and R. F. Schneider, "New
Polynomial Shortest Path Algorithms and Their Computational
Attributes," Management Science, 31(9), pp. 1106-1128, 1985b.

Glover, F., D. Klingman, and J. Stutz, "Augmented Threaded Index Method for
Network Optimization," INFOR, 12(3), pp. 293-298, 1974.

Glover, F., D. Klingman, and J. Stutz, "Extensions of the Augmented
Predecessor Index Method to Generalized Network Problems,"
Transportation Science, 7(4), pp. 377-384, 1974.

Golden, B. L., and T. L. Magnanti, "Deterministic Network Optimization: A
Bibliography," Networks, 7(2), pp. 149-183, 1977.

Goldfarb, D., "Efficient Dual Simplex Algorithms for the Assignment
Problem," Mathematical Programming, 33, pp. 187-203,1985.

Goldfarb, D., J. Hao, and S. Kai, "Anti-stalling Pivot Rules for the Network
Simplex Algorithms," Networks, 20, pp. 79-91, 1990.

Goldfarb, D., and Y. Lin, "Combinatorial Interior Point Methods for
Generalized Network Flow Problems," Mathematical Programming
{Series A), 93(2), pp. 227-246, 2002.

Goldfarb, D., and S. Mehrotra, "A Relaxed Version of Karmarkar's Method,"
Mathematical Programming, 40(3), pp. 289-316, 1988.

Goldfarb, D., and J. K. Reid, "A Practicable Steepest-Edge Simplex Algorithm,"
Mathematical Programming, 12, pp. 361-371, 1977.

702 Bibliography

Goldfarb, D., and W. Y. Sit, "Worst Case Behavior of Steepest Edge Simplex
Method," Discrete Applied Mathematics, 1, pp. 277-285, 1979.

Goldman, A. J., "Resolution and Separation Theorems for Polyhedral Convex
Sets," in H. W. Kuhn and A. W. Tucker (eds.), Linear Inequalities and
Related Systems, Annals of Mathematics Study No. 38, Princeton
University Press, Princeton, NJ, pp. 41-51, 1956.

Goldman, A. J., and D. Kleinman, "Examples Relating to the Simplex Method,"
Operations Research, 12(1), pp. 159-161, 1964.

Goldman, A. J., and A. W. Tucker, "Theory of Linear Programming," in H. W.
Kuhn and A. W. Tucker (eds.), Linear Inequalities and Related Systems,
Annals of Mathematics Study, Number 38, Princeton University Press,
Princeton, NJ, pp. 53-98, 1956.

Goldman, A. J., and A. W. Tucker, "Polyhedral Convex Cones," in H. W. Kuhn
and A. W. Tucker (eds.), Linear Inequalities and Related Systems, Annals
of Mathematics Study, Number 38, Princeton University Press, Princeton,
NJ,pp. 19-39, 1956.

Golomski, W. A., "Linear Programming in Food Blending," Annual Convention
Transactions, 17th Annual Convention, American Society for Quality
Control, pp. 147-152, 1963.

Golub, G. H., and C. F. Van Loan, Matrix Computations, Johns Hopkins
University Press, 1983.

Gomory, R. E., An Algorithm for the Mixed Integer Problem, Research
Memorandum RM-2597, The Rand Corporation, Santa Monica, CA,
1960.

Gomory, R. E., "An Algorithm for Integer Solutions to Linear Programs," in R.
L. Graves and P. Wolfe (eds.), Recent Advances in Mathematical
Programming, McGraw-Hill Book Co., NY, pp. 269-302, 1963a.

Gomory, R. E., "All-Integer Integer Programming Algorithm," in J. F. Muth and
G. L. Thompson (eds.), Industrial Scheduling, Prentice-Hall, Englewood
Cliffs, NJ, pp. 193-206,1963b.

Gomory, R. E., and W. J. Baumol, "Integer Programming and Pricing,"
Econometrica, 28(3), pp. 521-550, 1960.

Gomory, R. E., and T. C. Hu, "Multi-Terminal Network Flows," SIAM, 9(4), pp.
551-570,1961.

Gomory, R. E., and T. C. Hu, "An Application of Generalized Linear
Programming to Network Flows," SIAM, 10(2), pp. 260-283, 1962.

Gomory, R. E., and T. C. Hu, "Synthesis of a Communication Network," SIAM
12(2), pp. 348-369, June 1964.

Goncalves, A. S., "Basic Feasible Solutions and the Dantzig-Wolfe
Decomposition Algorithm," Operations Research Quarterly, 19(4), pp.
465-469, December 1968.

Gonzaga, C. C , "A Conical Projection Algorithm for Linear Programming,"
Memo No. UCB/ERL M85/61, Electronics Research Laboratory, College
of Engineering, University of California, Berkeley, CA 94720, 1985.

Gonzaga, C, "An Algorithm for Solving Linear Programming Problems in

0 (« 3 I) Operations," Memo No. UCB/ERL M87/10, Electronics

Bibliography 703

Research Laboratory, College of Engineering, University of California,
Berkeley, CA 94720,1987a.

Gonzaga, C. C , "Search Directions for Interior Linear Programming Methods,"
Memo #UCB/ERL M87/44, Electronics Research Laboratory, College of
Engineering, University of California, Berkeley, CA 94720, 1987b.

Gonzaga, C. D., "Polynomial Affine Algorithms for Linear Programming,"
Department of Systems Engineering and Computer Science, COPPE-
Federal University of Rio de Janeiro, Caixa Postal 6811, 21941 Rio de
Janeiro, RJ, Brazil, ES-139/88, 1988.

Gorham, W., "An Application of a Network Flow Model to Personnel
Planning," IEEE Transactions on Engineering Management, 10(3), pp.
121-123, September 1963.

Gould, F. J., "Proximate Linear Programming: A Variable Extreme Point
Method," Mathematical Programming, 3(3), pp. 326-338, December
1972.

Granot, F., and D. Klingman, "Editorial: Some Recent Advances in the Theory,
Computation, and Applications of Network Flow Models," INFOR,
20(4), pp. 285-286, 1982.

Graves, R. L., and P. Wolfe (eds.), Recent Advances in Mathematical
Programming, McGraw-Hill Book Co., NY, 1963.

Greenberg, H., "Modification of the Primal-Dual Algorithm for Degenerate
Problems," Operations Research, 16(6), pp. 1227-1230, November-
December 1968.

Greenberg, H. J., "A Functional Description of ANALYZE: A Computer-
Assisted Analysis System for Linear Programming Models," A CM
Transactions on Mathematical Software, 9(1), pp. 18-56, 1983.

Greenberg, H. J., "An Analysis of Degeneracy," Naval Research Logistics
Quarterly, 33, pp. 635-656, 1986.

Greenberg, H. J., "Consistency, Redundancy, and Implied Equalities in Linear
Systems," Annals of Mathematics and Artificial Intelligence, 17, pp. 37-
83, 1996.

Greenberg, H. J., and F. H. Murphy, "Approaches to Diagnosing Infeasible
Linear Program," ORSA Journal on Computing, 3, pp. 253-261, 1991.

Grigoriadis, M. D., "A Dual Generalized Upper Bounding Technique,"
Management Science, 17(5), pp. 269-284, January 1971.

Grigoriadis, M. D., and W. W. White, "A Partitioning Algorithm for the
Multicommodity Network Flow Problem," Mathematical Programming,
3(1), pp. 157-177, 1972a.

Grigoriadis, M. D., and W. W. White, "Computational Experience with a
Multicommodity Network Flow Algorithm," in R. Cottle and J. Krarup
(eds.), Optimization Methods for Resource Allocation, English
University Press, 1972b.

Grinold, R. C, "A Multicommodity Max-Flow Algorithm," Operations
Research, 16, pp. 1234-1238, 1968.

Grinold, R. C , "A Note on Multicommodity Max-Flow Algorithm," Operations
Research, 17, p. 755, 1969.

704 Bibliography

Grinold, R. C , "Calculating Maximal Flows in a Network with Positive Gains,"
working paper WP CP-337, Center for Research in Management Science,
University of California, Berkeley, CA, 1971.

Grinold, R. C, "Steepest Ascent for Large Scale Linear Programs," SIAM
Review, 14, pp. 447-464, 1972.

Gross, O., "The Bottleneck Assignment Problem," Paper P-1630, The Rand
Corporation, Santa Monica, CA, March 1959.

Gross, O., "A Linear Program of Prager's. Notes on Linear Programming and
Extensions," Part 60, Research Memorandum RM-2993-PR, The Rand
Corporation, Santa Monica, CA, April 1962.

Grotschel, M., L. Lovasz, and A. Schrijver, "The Ellipsoid Method and its
Consequences in Combinatorial Optimization," Combinatorica, pp. 169-
197, 1981.

Grotschel, M., L. Lovasz, and A. Schrijver, The Ellipsoid Method and
Combinatorial Optimization, Springer, Berlin, 1986.

Grunbaum, B., Convex Polytopes, John Wiley & Sons, New York, NY, 1967.
Guignard, M., "Lagrangean Relaxation," In M. Resende and P. Pardalos, Eds.,

Handbook of Applied Optimization, Oxford University Press, 2004.
Gunther, P., "Use of Linear Programming in Capital Budgeting," Operations

Research, 3(2), pp. 219-224, May 1955.
Gutnik, L. A., "On the Problem of Cycling in Linear Programming," Dokl. A.

SSR (USSR), 170(1), pp. 53-56, 1966.
Hadley, G., Linear Algebra, Addison-Wesley, Reading, MA, 1961.
Hadley, G., Linear Programming, Addison-Wesley, Reading, MA, 1962.
Hadley, G., and M. A. Simonnard, "A Simplified Two-Phase Technique for the

Simplex Method," Naval Research Logistics Quarterly, 6(3), pp. 221-
226, 1959.

Hagelschuer, P. B., Theory of Linear Decomposition, Springer-Verlag, NY,
1971.

Haimovich, M., "The Simplex Method is Very Good! — On the Expected
Number of Pivot Steps and Related Properties of Random Linear
Programs," Columbia University Press, New York, NY, 1983.

Hakimi, S. L., "On Simultaneous Flows in a Communication Network,"
Document No. AD-267 090, Office of Technical Services, 1961.

Haley, K. B., "The Existence of a Solution to the Multi-Index Problem"
Operational Research Quarterly, 16(4), pp. 471-474, December, 1965.

Halmos, P. R., and H. E. Vaughan, "The Marriage Problem," American Journal
of Mathematics, 72(1), pp. 214-215, January 1950.

Halpern, H. J., "Shortest Route with Time Dependent Length of Edges and
Limited Delay Possibilities in Nodes," Zeitschrift fur Operations
Research,!!,??. 117-124, 1977.

Harris, M. Y., "A Mutual Primal-Dual Linear Programming Algorithm," Naval
Research Logistics Quarterly, 17(2), pp. 199-206, June 1970.

Harris, P M. J., "Pivot Selection Methods of the Devex LP Code," Mathematical
Programming Study, 4, pp. 30-57, 1975. (Also, see Mathematical
Programming, 5, pp. 1-28, 1973.)

Bibliography 705

Hartman, J. K., and L. S. Lasdon, "A Generalized Upper Bounding Algorithm
for Multicommodity Network Flow Problems," Networks, 1, pp. 333-354,
1972.

Hatch, R. S., "Benchmarks Comparing Transportation Codes Based on Primal
Simplex and Primal-Dual Algorithms," Operations Research, 23(6), pp.
1167-1171,1975.

Haverly, C. A., "Results of a New Series of Case Runs Using the Karmarkar
Algorithm," Haverly Systems, Inc., Denville, NJ, 1985a.

Haverly, C. A., "Number of Simplex Iterations for Four Model Structures,"
Haverly Systems, Inc., Denville, NJ, 1985b.

Haverly, C. A., "Studies on Behavior of the Karmarkar Method," Haverly
Systems, Inc., Denville, NJ, 1985c.

Heady, E. O., and W. Candler, Linear Programming Methods, Iowa State
College Press, Ames, IA, 1958.

Heath, M., "Some Extensions of an Algorithm for Sparse Linear Least Squares
Problems," SIAM Journal on Scientific and Statistical Computing, 3, pp.
233-237, 1982.

Held, M., P. Wolfe, and H. D. Crowder, "Validation of Subgradient
Optimization," Mathematical Programming, 6, pp. 62-68, 1974.

Helgason, R. V., J. L. Kennington, and H. A. Zaki, "A Parallelization of the
Simplex Method," Department of Operations Research, Southern
Methodist University, Dallas, TX, 1987.

Heller, I., "Constraint Matrices of Transportation-Type Problems," Naval
Research Logistics Quarterly, 4, pp. 73-78, 1957.

Heller, I., "On Linear Programs Equivalent to the Transportation Problem,"
SIAM, 12(1), pp. 31-42, March 1964.

Heller, I., and C. B. Tompkins, "An Extension of a Theorem of Dantzig's," in
H. W. Kuhn and A. W. Tucker (eds.), Linear Inequalities and Related
Systems, Annals of Mathematics Study No. 38, Princeton University
Press, Princeton, NJ, pp. 247-254, 1956.

Hertog, D. den, Interior Point Approach to Linear, Quadratic and Convex
Programming Algorithms and Complexity, Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1994.

Higle, J. L. and S. W. Wallace, "Sensitivity Analysis and Uncertainty in Linear
Programming," Interfaces, 33(4), pp. 53-66, 2003.

Hillier, F. S., and G. J. Lieberman, Introduction to Operations Research, 4th ed.,
Holden-Day, Inc., San Francisco, CA, 1986.

Himmelblau, D., A Decomposition of Large Scale Problems, North-Holland,
Amsterdam, 1973.

Hitchcock, F. L., "Distribution of a Product from Several Sources to Numerous
Localities," Journal of Mathematical Physics, 20, pp. 224-230, 1941.

Ho, J. K., and E. Loute, "An Advanced Implementation of the Dantzig-Wolfe
Decomposition Algorithm for Linear Programming," Mathematical
Programming, 20, pp. 303-326, 1981.

Ho, J. K., and E. Loute, "Computational Experience with Advanced
Implementation of Decomposition Algorithms for Linear Programming,"
Mathematical Programming, 27(3), pp. 283-290, 1983.

706 Bibliography

Hochbaum, D. S., "The Pseudoflow Algorithm: A New Algorithm for the
Maximum-Flow Problem," Operations Research, 56(4), pp. 992-1009,
2008.

Hoffman, A. J., "How to Solve a Linear Program," in H. Antosiewicz (ed.),
Proceedings of the Second Symposium in Linear Programming, Vols. 1
and 2, DCS/Comptroller, Headquarters U.S. Air Force, Washington, DC,
pp. 397-424, January, 1955.

Hoffman, A. J., "Cycling in the Simplex Algorithm," Report No. 2974, National
Bureau of Standards, Washington, DC, 1953.

Hoffman, A. J., and J. B. Kruskal, "Integral Boundary Points of Convex
Polyhedra," in H. W. Kuhn and A. W. Tucker (eds.), Linear Inequalities
and Related Systems, Annals of Mathematics Study, Number 38,
Princeton University Press, Princeton, NJ, pp. 233-246, 1956.

Hoffman, A., N. Mannos, D. Sokolowsky, and N. Wiegmann, "Computational
Experience in Solving Linear Programs," Journal of the Society for
Industrial and Applied Mathematics, 1 (1), pp. 17-33, 1953.

Hu, J-F. and P-Q. Pan, "An Efficient Approach to Updating Simplex Multipliers
in the Simplex Algorithm," Mathematical Programming, Series A, 114,
pp. 235-248, 2008.

Hu, T. C, "The Maximum Capacity Route Problem," Operations Research,
9(6), pp. 898-900, November-December 1961.

Hu, T. C, "Multi-Commodity Network Flows," Operations Research, 11(3), pp.
344-360, May-June 1963.

Hu, T. C , "On the Feasibility of Multicommodity Flows in a Network,"
Operations Research, 12, pp. 359-360, 1964.

Hu, T. C , "Multi-Terminal Shortest Paths," U.S.G.R.& D.R. Order AD-618 757
from Clearinghouse, Operations Research Center, University of
California, Berkeley, CA, April 1965.

Hu, T. C , "Minimum Convex Cost Flows," Naval Research Logistics
Quarterly, 13(1), pp. 1-9, March 1966.

Hu, T. C , "Revised Matrix Algorithms for Shortest Paths in a Network," SIAM,
15(1), pp. 207-218, January 1967.

Hu, T. C , "Laplace Equation and Network Flows," Operations Research, 15(2),
pp. 348-356, April 1967.

Hu, T. C, "Decomposition Algorithm for Shortest Paths in a Network,"
Operations Research, 16(1), pp. 91-102, January-February 1968.

Hu, T. C , Integer Programming and Network Flows, Addison-Wesley,
Reading, MA, 1969.

Hung, M. S., "A Polynomial Simplex Method for the Assignment Problem,"
Operations Research, 31, pp. 595-600, 1983.

Hung, A S., and J. J. Divoky, "A Computational Study of Efficient Shortest Path
Algorithms," Computers and Operations Research, 15(6), pp. 567-576,
1988.

Hung, M. S., and W. O. Rom, "Solving the Assignment Problem by
Relaxation," Operations Research, 28(4), pp. 969-982, 1980.

Bibliography 707

Hutson, K. R. and D. R. Shier, "Extended Dominance and a Stochastic Shortest
Path Problem," Computers and Operations Research, 36(2), pp. 584-596,
2009.

Hwang, C. L., and A. S. Masud, Multiple Objective Decision Making Methods
and Applications: A State of the Art Survey, Springer, NY, 1979.

Iri, M., "A New Method of Solving Transportation Network Problems," Journal
of the Operations Research Society of Japan, 3(1-2), pp. 27-87, October
1960.

Iri, M., "An Extension of the Maximum-Flow Minimum-Cut Theorem to
Multicommodity Networks," Journal of the Operations Research Society
of Japan, 5(4), pp. 697-703, 1967.

Iri, M., and H. Imai, "A Multiplicative Barrier Function Method for Linear
Programming," Algorithmica, 1(4), pp. 455-482, 1986.

Jacobs, W. W., "The Caterer Problem," Naval Research Logistics Quarterly,
1(2), pp. 154-165, 1954.

Jarvis, J. J., "On the Equivalence Between the Node-Arc and Arc-Chain
Formulations for the Multicommodity Maximal Flow Problem," Naval
Research Logistics Quarterly, 16, pp. 515-529, 1969.

Jarvis, J. J., and A. M. Jezior, "Maximal Flow with Gains Through a Special
Network," Operations Research, 20, pp. 678-688, 1972.

Jarvis, J. J., and P. D. Keith, "Multicommodity Flows with Upper and Lower
Bounds," School of Industrial and Systems Engineering, Georgia Institute
of Technology, Atlanta, GA, 1974.

Jarvis, J. J., and J. B. Tindall, "Minimum Disconnecting Sets in Directed Multi-
Commodity Networks," Naval Research Logistics Quarterly, 19, pp. 681-
690, 1972.

Jarvis, J. J., and S. Tufekci, "A Decomposition Algorithm for Locating a
Shortest Path Between Two Nodes in a Network," Networks, 12, pp. 161-
172,1981.

Jensen, P. A., and J. W. Barnes, Network Flow Programming, Wiley, NY, 1980.
Jeroslow, R. G., "The Simplex Algorithm with the Pivot Rule of Maximizing

Criterion Improvement," Discrete Mathematics, 4, pp. 367-378, 1973.
Jewell, W. S., "Optimal Flow through Networks," Interim Technical Report No.

8, M.I.T. Project, Fundamental Investigations in Methods of Operations
Research, 1958.

Jewell, W. S., "Optimal Flow through Networks with Gains," Operations
Research, 10(4), 1962.

Jewell, W. S., "A Primal-Dual Multicommodity Flow Algorithm," ORC Report
66-24, University of California, Berkeley, CA, 1966.

Jewell, W. S., "Multi-Commodity Network Solutions," Research Report ORC
66-23, Mathematical Science Division, Operations Research Center,
University of California, Berkeley, CA, September 1966.

Jewell, W. S., "A Complex, Complementary Slackness, Out-of-Kilter Algorithm
for Linear Programming," ORC 67-6, University of California, Berkeley,
CA, 1967.

John, F., "Extremum Problems with Inequalities as Subsidiary Conditions," in
Studies and Essays, Wiley Interscience, NY, pp. 187-204, 1948.

708 Bibliography

Johnson, E. L., "Programming in Networks and Graphs," Research Report ORC
65-1, University of California, Berkeley, CA, 1965.

Johnson, E. L., "Networks and Basic Solutions," Operations Research, 14, pp.
619-623, 1966.

Johnson, E. L., M. M. Kostreva, and U. H. Suhl, "Solving 0-1 Integer
Programming Problems Arising from Large-Scale Planning Models,"
Operations Research, 33(4), pp. 803-819, 1985.

Jones, K. L., Lustig, I. J., Farvolden, J. M., and Powell W.B., "Multicommodity
Network Flows: Impact of Formulation on Decomposition,"
Mathematical Programming, 62, 95-117, 1993.

Jones, W. G., and C. M. Rope, "Linear Programming Applied to Production
Planning," Networks, 15(4), December 1964.

Jonker, R., and T. Volgenant, "Improving the Hungarian Assignment
Algorithm," Operations Research Letters, 5(4), pp. 171-175, 1986.

Kahle, R. V., "Application of Linear Programming for Industrial Planning,"
Proceedings of the American Institute of Industrial Engineers, 1962.

Kalaba, R. E., and M. L. Juncosa, "Optimal Design and Utilization of
Communication Networks," Management Science, 3(1), pp. 33-44, 1956.

Kantorovich, L., "Mathematical Methods in the Organization and Planning of
Production," Publication House of the Leningrad State University, 1939.
Translated in Management Science, 6, pp. 366-422, 1958.

Kantorovich, L., "On the Translocation of Masses," Compt. Rend. Academy of
Sciences, U.R.S.S., 37, pp. 199-201, 1942. Translated in Management
Science, 5(1), pp. 1-4, 1958.

Kantorovich, L. V., and M. K. Gavurin, "The Application of Mathematical
Methods to Problems of Freight Flow Analysis," Akademii Nauk SSSR,
Moscow-Leningrad, pp. 110-138, 1949.

Kapur, J. N., "Linear Programming in Textile Industry," Journal of National
Productivity Council (India), 4(2), pp. 296-302, April-June 1963.

Karlin, S., Mathematical Methods and Theory in Games, Programming and
Economics, 1-2, Addison-Wesley, Reading, MA, 1959.

Karmarkar, N., "A New Polynomial-Time Algorithm for Linear Programming,"
Combinatorica, 4, pp. 373-395, 1984a.

Karmarkar, N., "Some Comments on the Significance of the New Polynomial
Time Algorithm for Linear Programming," AT&T Bell Laboratories,
Murray Hill, NJ, 1984b.

Karmarkar, N., "Recent Developments in New Approaches to Linear
Programming," Presented at the SIAM Conference on Optimization,
Houston, May 1987.

Karp, R. M., "Reducibility Among Combinatorial Problems," in R. E. Miller
and J. W. Thatcher (Eds.), Complexity of Computer Computations, pp.
85-103, Plenum, NY, 1972.

Karush, W., "Minima of Functions of Several Variables with Inequalities as
Side Constraints," M.S. Thesis, Department of Mathematics, University
of Chicago, 1939.

Karush, W., "Duality and Network Flow," Report TM-1042-201-00, System
Development Corporation, Document No. AD-402 643, March 1963.

Bibliography 709

Kelley, J. E., "Parametric Programming and the Primal-Dual Algorithm,"
Operations Research, 7(3), pp. 327-334, 1959.

Kelley, J. E., "The Cutting Plane Method for Solving Convex Programs," SIAM,
8(4), pp. 703-712, December 1960.

Kelley, J. E., "Critical-Path Planning and Scheduling, Mathematical Basis,"
Operations Research, 9(2), pp. 296-320, May 1961.

Kennington, J. L., "Multicommodity Network Flows: A Survey," Technical
Report CP74015, Department of Computer Science and Operations
Research, Southern Methodist University, 1974.

Kennington, J. F., and R. V. Helgason, Algorithms for Network Programming,
Wiley-Interscience, NY, 1980.

Khachian, L. G., "A Polynomial Algorithm in Linear Programming," Soviet
Mathematics Doklady, 20, pp. 191-194, 1979.

Khachian, L. G., "Polynomial Algorithms in Linear Programming," USSR
Computational Mathematics and Mathematical Physics, 20, pp. 53-72,
1980.

Khachian, L. G., "Polynomial Algorithms in Linear Programming," Zhurnal
Vichislitel'noi Matematiki i Matematicheskoi Fiziki (in Russian), 20(1),
pp. 51-68, 1980. See also Gacs, P., and L. Lovasz, "Khachian's
Algorithm for Linear Programming," Mathematical Programming Study,
Number 14, North-Holland, Amsterdam, The Netherlands, pp. 61-68,
1981.

Klee, V. L., "A String Algorithm for Shortest Paths in a Directed Network,"
Operations Research, 12(3), pp. 428-432, May-June 1964.

Klee, V., "A Class of Linear Programming Problems Requiring a Large Number
of Iterations," Numerische Mathematik, 7, pp. 313-321, 1965a.

Klee, V., "Paths on Polyhedra I," Journal of the Society of Industrial and
Applied Mathematics, 13, pp. 946-956,1965b.

Klee, V., and G. J. Minty, "How Good is the Simplex Algorithm?" in O. Shisha
(Ed.), Inequalities III, Academic, NY, pp. 159-175,1972.

Klee, V., and D. W. Walkup, "The d-Step Conjecture for Polyhedra of
Dimension d< 6," Acta Mathematica, 117, pp. 53-78, 1967.

Klein, M., "A Primal Method for Minimal Cost Flows," Management Science,
14(3), pp. 205-220, November 1967.

Kleitman, D. J., "An Algorithm for Certain Multi-Commodity Flow Problems,"
Networks, 1, 75-90, 1971.

Klingman, D., "Finding Equivalent Network Formulations for Constrained
Network Problems," Management Science, 23(7), pp. 737-744, 1977.

Klingman, D., A. Napier, and J. Stutz, "NETGEN: A Program for Generating
Large Scale Capacitated Assignment, Transportation, and Minimum Cost
Flow Network Problems," Management Science, 20(5), pp. 814-821,
1974.

Klingman, D., and R. Russell, "Solving Constrained Transportation Problems,"
Operations Research, 23, pp. 91-106, 1975.

Klingman, D. D., and R. F. Schneider, "Microcomputer-Based Algorithms for
Large Scale Shortest Path Problems," Discrete Applied Mathematics, 13,
pp. 183-206, 1986.

710 Bibliography

Knolmayer, G., "Computational Experiments in the Formulation of Linear
Product-Mix and Non-Convex Production-Investment Models,"
Computers and Operations Research, 9(3), pp. 207-219, 1982.

Kobayashi, T., "On Maximal Flow Problem in a Transportation Network with a
Bundle," Journal of the Operations Research Society of Japan, 10(3-4),
pp. 69-75, June 1968.

Koch, J. V., "A Linear Programming Model of Resource Allocation in a
University," Decision Sciences, 4(4), pp. 494-504, October 1973.

Koenigsberg, E., "Some Industrial Applications of Linear Programming,"
Operations Research Quarterly, 12(2), pp. 105-114, June 1961.

Kojima, M., "Determining Basic Variables of Optimal Solutions in Karmarkar's
New LP Algorithm," Algorithmica, 1(4), pp. 499-516, 1986.

Kojima, M., N. Megiddo, and S. Mizuno, "A Primal-Dual Infeasible-Interior-
Point Algorithm for Linear Programming," Mathematical Programming,
61, pp. 263-280, 1993.

Kondor, Y., "Linear Programming of Income Tax Rates," Israel Journal of
Technology (Israel), 6(5), pp. 341-354, November-December 1968.

Koopmans, T. C, "Optimum Utilization of the Transportation System,"
Econometrica, 17(3-4), pp. 136-146, 1949.

Koopmans, T. C. (ed.), Activity Analysis of Production and Allocation, Cowles
Commission Monograph 13, John Wiley & Sons, NY, 1951.

Koopmans, T. C, and S. Reiter, "A Model of Transportation," in T. C.
Koopmans (ed.), Activity Analysis of Production and Allocation, John
Wiley & Sons, NY, pp. 222-259, 1951.

Kortanek, K. O., and Z. Jishan, "New Purification Algorithms for Linear
Programming," Naval Research Logistics Quarterly, 35, pp. 571-583,
1988.

Kortanek, K. O., and M. Shi, "Convergence Results and Numerical Experiments
on a Linear Programming Hybrid Algorithm," European Journal of
Operational Research, 32(1), pp. 47-61, 1987.

Kortanek, K. O., and H. M. Strojwas, "An Application of the Charnes-Kortanek-
Raike Purification Algorithm to Extreme Points and Extreme Directions,"
Department of Mathematics, Carnegie-Mellon University, Pittsburgh,
PA, 1984.

Kotiah, T. C. T., and D. I. Steinberg, "On the Possibility of Cycling with the
Simplex Method," Operations Research, 26(2), pp. 374-376, 1978.

Kozlov, A. and L. W. Black, "Berkeley Obtains New Results with the
Karmarkar Algorithm," Progress Report in SIAM News, 3(19), pp. 3 and
20, 1986.

Kruskal, J. B., "On the Shortest Spanning Subtree of a Graph and the Traveling
Salesman Problem," Proceedings of the American Mathematical Society,
7, pp. 48-50, 1956.

Kuhn, H. W., "The Hungarian Method for the Assignment Problem," Naval
Research Logistics Quarterly, 2(1-2), pp. 83-97, March-June 1955.

Kuhn, H. W., and R. E. Quandt, "An Experimental Study of the Simplex
Method," Proceedings of the Symposia in Applied Mathematics, Vol.
XV, pp. 107-124, American Mathematical Society, 1962.

Bibliography 711

Kuhn, H. W., and A. W. Tucker, "Nonlinear Programming," in J. Neyman (ed.).
Proceedings of the Second Berkeley Symposium on Mathematical
Statistics and Probability, University of California Press, Berkeley, CA,
pp. 481-492, 1950.

Kuhn, H. W. and A. W. Tucker (eds.), Linear Inequalities and Related Systems,
Annals of Mathematics Study, Number 38, Princeton University Press,
Princeton, NJ, 1956.

Kunzi, H. P., and K. Kleibohm, "The Triplex Method," Unternehmensforschung
(Germany), 12(3), pp. 145 -154, 1968.

Kunzi, H. P., and W. Krelle, Nonlinear Programming, Blaisdell, Waltham,
Mass., 1966.

Lagernan, J. J., "A Method for Solving the Transportation Problem," Naval
Research Logistics Quarterly, 14(1), pp. 89-99, March 1967.

Land, A. H., and A. G. Doig, "An Automatic Method for Solving Discrete
Programming Problems," Econometrica, 28, pp. 497-520, 1960.

Land, A. H., and S. W. Stairs, "The Extension of the Cascade Algorithm to
Large Graphs," Management Science, 14(1), pp. 29-33, September 1967.

Langley, R. W., "Continuous and Integer Generalized Flow Problems," Ph.D.
Dissertation, Georgia Institute of Technology, Atlanta, GA, 1973.

Langley, R. W., and J. L. Kennington, "The Transportation Problem: A Primal
Approach," 43rd ORSA National Meeting, May 1973.

Larionov, B. A., "Abridgement of the Number of Operations in the Solution of
the Transportation Problem of Linear Programming," Trudy
Tashkentskogo Instituta Inzhenernogozheleznodorognogo Transporta
(USSR), 29, pp. 211-214, 1964.

Lasdon, L. S., "Duality and Decomposition in Mathematical Programming,"
IEEE Transactions on Systems Science and Cybernetics, 4(2), pp. 86-
100, 1968.

Lasdon, L. S., Optimization Theory for Large Systems, Macmillan, NY, 1970.
Lavallee, R. S., "The Application of Linear Programming to the Problem of

Scheduling Traffic Signals," Operations Research, 3(4), pp. 562, Item D5
(Abstract), 1955.

Lawler, E. G., Combinatorial Optimization: Networks and Matroids, Holt,
Rinehart and Winston, NY, 1976.

Lawler, E. G., "Is Karmarkar's Algorithm for Real?," Presented at the EURO
VII Congress on Operations Research, Bologna, Italy, 1985.

Lee, J., "Hoffman's Circle Untangled," SIAM Review, 39(1), pp. 98-105, 1997.
Lee, S. M., Goal Programming for Decision Analysis, Auerbach, Philadelphia,

PA, 1972.
Lemke, C. E., "The Dual Method of Solving the Linear Programming Problem,"

Naval Research Logistics Quarterly, 1(1), pp. 36-47, 1954.
Lemke, C. E., "The Constrained Gradient Method of Linear Programming,"

SIAM, 9(1), pp. 1-17, March 1961.
Lemke, C. E., and T. J. Powers, "A Dual Decomposition Principle," Document

No. AD-269 699, 1961.
Leontief, W. W., The Structure of the American Economy, 1919-1939, Oxford

University Press, NY, 1951.

712 Bibliography

Liebling, T. M., "On the Number of Iterations of the Simplex Method,"
Operations Research Verfahren (Germany), 17, pp. 248-264, 1973.

Liebling, T. M., "On the Number of Iterations of the Simplex Method," Methods
of Operations Research, XVII, V Oberwolfach-Tagung uber Operations
Research, 13(19), pp. 248-264, August 1977.

Llewellyn, R. W., Linear Programming, Holt, Rinehart and Winston, NY, 1964.
Lombaers, H. J. M., Project Planning by Network Analysis, North-Holland

Publishing Co., Amsterdam, 1969.
Lourie, J. R., "Topology and Computation of the Generalized Transportation

Problem," Management Science, 11(1), September 1964.
Lovasz, L., "A New Linear Programming Algorithm — Better or Worse than the

Simplex Method?" The Mathematical Intelligencer 2, 3, pp. 141-146,
1980.

Lubbecke, M. E. and J. Desrosiers, "Selected Topics in Column Generation,"
Operations Research, 53(6), pp. 1007-1023, 2005.

Luenberger, D. G., Introduction to Linear and Non-Linear Programming,
Second Edition, Addison-Wesley, Reading, MA, 1984.

Lustig, I. J., "A Practical Approach to Karmarkar's Algorithm," Technical
Report Sol 85-5, Department of Operations Research, Stanford
University, Stanford, CA, 1985.

Lustig, I. J., and G. Li, "An Implementation of a Parallel Primal-Dual Interior
Point Method for Multicommodity Flow Problems," Computational
Optimization and its Applications, 1(2), pp. 141-161, 1992.

Lustig, I. J., R. Marsten, and D. F. Shanno, "Computational Experience with a
Globally Convergent Primal-Dual Predictor-Corrector Algorithm for
Linear Programming," Mathematical Programming, 66, pp. 123-135,
1992a.

Lustig, I. J., R. E. Marsten, and D. F. Shanno, "On Implementing Mehrotra's
Predictor-Corrector Interior-Point Method for Linear Programming,
SIAM Journal on Optimization, 2, pp. 435-449, 1992b.

Lustig, I. J., R. Marsten, and D. F. Shanno, "Interior Point Methods for Linear
Programming: Computational State of the Art," ORSA Journal on
Computing 6(1), pp. 1-14, 1994a.

Lustig, I. J., R. Marsten, and D. F. Shanno, "The Last Word on Interior Point
Methods for Linear Programming - For Now, Rejoinder," ORSA Journal
on Computing 6(1), pp. 35, 1994b.

Maier, S. F., Maximal Flows Using Spanning Trees, Report 71-14, Operations
Research House, Stanford University, Stanford, CA, 1971.

Malek-Zavarei, M., and J. K. Aggarwal, "Optimal Flow in Networks with Gains
and Costs," Networks, 1(4), pp. 355-365, 1972.

Mandi, C , Applied Network Optimization, Academic Press, NY, 1979.
Mangasarian, O. L., Non-Linear Programming, McGraw-Hill Book Co., NY,

1969.
Manne, A. S., "Notes on Parametric Linear Programming," RAND Report P-

468, The Rand Corporation, Santa Monica, CA, 1953.
Manne, A. S., Scheduling of Petroleum Refinery Operations, Harvard Economic

Studies, Number 48, Harvard University Press, Cambridge, MA, 1956.

Bibliography 713

Markowitz, H. M., "The Elimination Form of the Inverse and its Application to
Linear Programming," Management Science, 3(3), pp. 255-269, 1957.

Markowitz, H. M., and A. S. Manne, "On the Solution of Discrete Programming
Problems," Econometrica, 25(1), p. 19, January 1957.

Maros, I. G., "A General Phase-I Method in Linear Programming," European
Journal of Operational Research, 23(1), 64-77, 1986.

Marshall, C. W., Applied Graph Theory, Wiley-Interscience, NY, 1971.
Marshall, K. T., and J. W. Suurballe, "A Note on Cycling in the Simplex

Method," Naval Research Logistics Quarterly, 16, pp. 121-137, 1969.
Marsten, R. E., "The Use of the Boxstep Method in Discrete Optimization,"

Mathematical Programming ,SWy, Number 3, pp. 127-144, 1975.
Marsten, R. E., W. W. Hogan, and J. W. Blankenship, "The Boxstep Method for

Large-scale Optimization," Operations Research, 23, pp. 389-405, 1975.
Martin, R. K., Large Scale Linear and Integer Optimization: A Unified

Approach, Kluwer Academic Publishers, Boston, MA, 1999.
Masse, P., and R. Gibrat, "Applications of Linear Programming to Investments

in the Electric Power Industry," Management Science, 3(1), pp. 149-166,
January 1957.

Mattheiss, T. H., "An Algorithm for Determining Irrelevant Constraints and all
Vertices in Systems of Linear Inequalities," Operations Research, 1(1),
pp. 247-260, 1973.

Mattheiss, T. H., and D. S. Rubin, "A Survey and Comparison of Methods for
Finding all Vertices of Convex Polyhedral Sets," Mathematics of
Operations Research, 5(2), pp. 167-185, May 1980.

Mattheiss, T. H., and B. K. Schmidt, "Computational Results on an Algorithm
for Finding all Vertices of a Polytope," Mathematical Programming, 18,
pp. 308-329, 1980.

Maurras, J. F., "Optimization of the Flow Through Networks with Gains,"
Mathematical Programming, 3, pp. 135-144, 1972.

Maurras, J. F., K. Truemper, and M. Akgul, "Polynomial Algorithms for a Class
of Linear Programs," Mathematical Programming, 21, pp. 121-136,
1981.

Mayeda, W., and M. E. Van Valkenburg, "Set of Cut Sets and Optimum Flow,"
U.S.G.R.& D.R. Order AD-625 200 from CFSTI, Coordinated Science
Laboratory, Illinois University, Urbana, IL, November 1965.

McBride, R. D., "Efficient Solution of Generalized Network Problems," Finance
and Business Economics Department, School of Business
Administration, University of Southern California, April 1981.

McGinnis, L. F., "Implementation and Testing of a Primal-Dual Algorithm for
the Assignment Problem," Operations Research, 31(2), pp. 277-291,
1983.

Mclntosh, P. T., "Initial Solutions to Sets of Related Transportation Problems,"
Networks, 14(1), pp. 65-69, March 1963.

McKeown, P. G., "A Vertex Ranking Procedure for Solving the Linear Fixed
Charge Problem," Operations Research, 23(6), pp. 1183-1191, 1975.

McMullen, P., "The Maximum Number of Faces of a Convex Polytope,"
Mathematika, 17, pp. 179-184, 1970.

714 Bibliography

McShane, K. A., C. L. Monma, and D. Shanno, "An Implementation of a
Primal-Dual Interior Point Method for Linear Programming," School of
Operations Research and Industrial Engineering, Cornell University,
Ithaca, NY 14853, 1988.

Megiddo, N., "Is Binary Encoding Appropriate for the Problem-Language
Relationship," Theoretical Computer Science, 19, pp. 1-5, 1982.

Megiddo, N., "Toward a Genuinely Polynomial Algorithm for Linear
Programming," SIAM Journal of Computing, 12, pp. 347-353, 1983.

Megiddo, N., "A Variation on Karmarkar's Algorithm," Preliminary Report,
IBM Research Laboratory, San Jose, CA 95193, 1985.

Megiddo, N., "Introduction: New Approaches to Linear Programming,"
Algorithmica, 1(4), pp. 387-394, 1986a.

Megiddo, N., "Pathways to the Optimal Set in Linear Programming," Research
Report RJ 5295, IBM Almaden Research Center, San Jose, CA, 1986b.

Megiddo, N., and M. Shub, "Boundary Behavior of Interior Point Algorithms in
Linear Programming," Presented at the Joint National TIMS/ORSA
Meeting, New Orleans, LA, May 1987.

Mehrotra, S., "A Self Correcting Version of Karmarkar's Algorithm,"
Department of Industrial Engineering and Operations Research,
Columbia University, New York, NY, 1986.

Mehrotra, S., "On Finding a Vertex Solution Using Interior Point Methods,"
Linear Algebra and its Applications, 152, pp. 233-253, 1991.

Mehrotra, S., "On the Implementation of a Primal-Dual Interior Point Method,"
SIAM Journal on Optimization, 2, pp. 575-601, 1992.

Mehrotra, S., "Quadratic Convergence in a Primal-Dual Method," Mathematics
of Operations Research, 18, pp. 741-751, 1993.

Mehrotra, S. and J. S. Wang, "Conjugate Gradient Based Implementations of
Interior Point Methods for Network Flow Problems," Chapter 11 in AMS
Summer Conference Proceedings, SIAM, L. Adams and J. L. Nazareth,
eds.,pp. 124-142,1996.

Metzger, R. W., and R. Schwarzbeck, "A Linear Programming Application to
Cupola Charging," Journal of Industrial Engineering, 12(2), pp. 87-93,
March-April 1961.

Mifflin, R., "On the Convergence of the Logarithmic Barrier Function Method,"
Numerical Methods of Nonlinear Optimization, Academic Press, NY, pp.
367-369, 1972.

Miller, R. E., "Alternative Optima, Degeneracy and Imputed Values in Linear
Programs," Journal of Regional Science, 5(1), pp. 21-39, 1963.

Mills, G., "A Decomposition Algorithm for the Shortest-Route Problem,"
Operations Research, 14(2), pp. 279-291, March-April 1966.

Minieka, E., "Optimal Flow in a Network with Gains," INFOR, 10, pp. 171-178,
1972a.

Minieka, E., "Parametric Network Flows," Operations Research, 20(6), pp.
1162-1170, November-December 1972b.

Minieka, E., Optimization Algorithms for Networks and Graphs, Marcel
Dekker,NY, 1978.

Minkowski, H., Geometry der Zahlen, Teubner, Leipzig, 2nd ed., 1910.

Bibliography 715

Minoux, M., Mathematical Programming: Theory and Algorithms, John Wiley
& Sons, Inc., New York, NY, 1986.

Minty, G. J., "On an Algorithm for Solving Some Network-Programming
Problems," Operations Research, 10(3), pp. 403-405, May-June 1962.

Mitra, G., M. Tamiz, J. Yadegar, and K. Darby-Dowman, "Experimental
Investigation of an Interior Search Algorithm for Linear Programming,"
Mathematical Programming Symposium, Boston, 1985.

Monma, C. L., "Recent Breakthroughs in Linear Programming Methods," Bell
Communications Research, Morristown, NJ, 1987.

Monma, C , and A. J. Morton, "Computational Experience with a Dual Affine
Variant of Karmarkar's Method for Linear Programming," Bell
Communications Research, Morristown, NJ, 1987.

Monteiro, R. D. C , and I. Adler, "Interior Path-Following Primal-Dual
Algorithms - Part 1 : Linear Programming," Mathematical Programming,
44, pp. 27-42, 1989a.

Monteiro, R. D. C , and I. Adler, "Interior Path-Following Primal-Dual
Algorithms - Part II: Convex Quadratic Programming," Mathematical
Programming, 44, pp. 43-66, 1989b.

Monteiro, R. D. C , I. Adler, and M. G. C. Resende, "A Polynomial-Time
Primal-Dual Affine Scaling Algorithm for Linear and Convex Quadratic
Programming and its Power Series Extension," Mathematics of
Operations Research, 15(2), pp. 191-214, 1990.

Montemanni, R., L. M. Gambardella, and A. V. Donati, "A Branch and Bound
Algorithm for the Robust Shortest Path Problem with Interval Data,"
Operations Research Letters, 32(3), pp. 225-232, 2004.

Moore, E. F., "The Shortest Path Through a Maze," Proceedings of the
International Symposium on the Theory of Switching, Part II, April 2-5,
1957, The Annals of the Computation Laboratory of Harvard University,
Vol. 30, pp. 285-292, Harvard University Press, 1959.

Motzkin, T. S., "Beitràge zur Theorie der Linearen Ungleichungen," Ph.D.
Dissertation, University of Zurich, 1936.

Motzkin, T. S., "The Multi-index Transportation Problem," Bulletin of
American Mathematical Society, 58(4), p. 494, 1952.

Motzkin, T. S., "The Assignment Problem," Proceedings of the 6th Symposium
in Applied Mathematics, McGraw-Hill Book Co., NY, pp. 109-125, 1956.

Motzkin, T. S., and I. G. Schoenberg, "The Relaxation Method for Linear
Inequalities," Canadian Journal of Mathematics, 6, pp. 393-404, 1954.

Mueller, R. K., and L. Cooper, "A Comparison of the Primal Simplex and
Primal-dual Algorithms in Linear Programming," Communications of the
ACM, 18(11), pp. 682-686, November 1965.

Mueller-Merbach, H., "An Approximation Method for Finding Good Initial
Solutions for Transportation Problems," Elektronische Datenverar-
beitung (Germany), 4(6), pp. 255-261, November-December 1962.

Mueller-Merbach, H., "Several Approximation Methods for Solving the
Transportation Problem," IBM-Form 78 106, IBM-Fachbibliothek
(Germany), November 1963.

716 Bibliography

Mueller-Merbach, H., "The Method of Direct Decomposition in Linear
Programming," Ablauf- und Planungsforschung (Germany), 6(2), pp.
306-322, April-June 1965.

Mueller-Merbach, H., "An Improved Starting Algorithm for the Ford-Fulkerson
Approach to the Transportation Problem," Management Science, 13(1),
pp. 97-104, September 1966.

Meuller-Merbach, H., "Optimal Acceleration of Projects by Parametric Linear
Programming," Elektronische Datenverarbeitung (Germany), 9(1), pp.
33-39, January 1967.

Muller-Hannemann, M. and K. Weihe, "On the Cardinality of the Pareto Set in
Bicriteria Shortest Path Problems," Annals of Operations Research, 147,
pp. 269-286, 2006.

Mulvey, J. M., "Pivot Strategies for Primal-Simplex Network Codes," Journal
of the Association for Computing Machinery, 25, pp. 266-270, 1978.

Munkres, J., "Algorithms for the Assignment and Transportation Problems,"
SIAM, 5(1), pp. 32-38, March 1957.

Murchland, J. D., "A New Method for Finding All Elementary Paths in a
Complete Directed Graph," Report LSE-TNT-22, Transport Network
Theory Unit, London School of Economics, London, England, October
1965.

Murchland, J. D., "The Once-Through Method of Finding All Shortest
Distances in a Graph from a Single Origin," Report LBS-TNT-56,
Transport Network Theory Unit, London School of Economics, London,
England, August 1967.

Murphy, F. H., and E. A. Stohr, "An Intelligent System for Formulating Linear
Programs," Decision Support Systems, 2(1), pp. 39-47, 1986.

Murtagh, B. A., Advanced Linear Programming, McGraw-Hill, NY, 1981.
Murtagh, B. A., and M. A. Saunders, "MINOS-5.0 Users Guide," Report SOL

83-20, Department of Operations Research, Stanford University, CA,
1983.

Murty, K. G., "Solving the Fixed Charge Problem by Ranking the Extreme
Points," Operations Research, 16, pp. 268-279, 1968.

Murty, K. G., Linear and Combinatorial Programming, John Wiley & Sons,
Inc., NY, 1976.

Murty, K. G., "Resolution of Degeneracy in the Bounded Variable Primal
Simplex Algorithm," Technical Report 78-1, Department of Industrial
Engineering and Operations Research, University of Michigan, Ann
Arbor, Michigan, 1978.

Murty, K. G., Linear Programming, John Wiley & Sons, Inc. NY, 1983.
Murty, K. G., "Faces of a Polyhedron," Mathematical Programming Study, pp.

1-13,1985.
Murty, K. G., "The Gravitational Method for Linear Programming," Opsearch,

23, pp. 206-214, 1986.
Murty, K. G. and Y. Fathi, "A Feasible Direction Method for Linear

Programming," Operations Research Letters, 3(3), 121-127, 1984.
Naniwada, M., "Multicommodity Flows in a Communication Network,"

Electronics Communications of Japan, 52, pp. 34-40, 1969.

Bibliography 717

Nazareth, J. L., "Homotopy Techniques in Linear Programming," Algorithmica,
1(4), pp. 529-536, 1986.

Nemhauser, G. L., "A Generalized Permanent Labeling Setting Algorithm for
the Shortest Path Between Specified Nodes," Journal of Mathematical
Analysis and Applications, 38, pp. 328-334, 1972.

Nemhauser, G. L., and L. A. Wolsey, Integer and Combinatorial Optimization,
second edition, John Wiley & Sons, Inc., New York, NY, 1998.

Nesterov, Y., and A. Nemirovskii, Interior-Point Polynomial Algorithms in
Convex Programming, SIAM, Philadelphia, PA, 1993.

Nicholson, T. A. J., "Finding the Shortest Route Between Two Points in a
Network," The Computer Journal, 9(3), pp. 275-280, November 1966.

Nickels, W., W. Rodder, L. Xu, and H.-J. Zimmermann, "Intelligent Gradient
Search in Linear Programming," European Journal of Operational
Research, 22, pp. 293-303, 1985.

Oguz, O., "Generalized Column Generation for Linear Programming,"
Management Science, 48(3), pp. 444-452, 2002.

Ohtsuka, M., "Generalization of the Duality Theorem in the Theory of Linear
Programming," Journal of Science of the Hiroshima University, Ser. A-I
(Japan), 30(1), pp. 31-39, July 1966.

Ohtsuka, M., "Generalized Capacity and Duality Theorems in Linear
Programming," Journal of Science of the Hiroshima University, Ser. A-I
(Japan), 30(1), pp. 45-56, July 1966.

Onaga, K., "Optimum Flows in General Communications Networks," Journal of
the Franklin Institute, 283, pp. 308-327, 1967.

Onaga, K., "A Multicommodity Flow Theorem," Electronics Communications
of Japan, 53, pp. 16-22, 1970.

Orchard-Hays, W., "A Composite Simplex Algorithm-II," Research
Memorandum RM-1275, The Rand Corporation, Santa Monica, CA, May
1954a.

Orchard-Hays, W., "Background, Development and Extensions of the Revised
Simplex Method," Research Memorandum RM-1433, The Rand
Corporation, Santa Monica, CA, 1954b.

Orchard-Hays, W., "Elimination and the Simplex Method," Report, CEIR, Inc.,
Bethesda, MD, 1961.

Orda, A., and R. Rom, "Shortest-Path and Minimum-Delay Algorithms in
Networks with Time-Dependent Edge-Lengths," Journal of the
Association for Computing Machinery, 37, pp. 607-625, 1990.

Orda, A., R. Rom, and M. Sidi, "Minimum Delay Routing in Stochastic
Networks," IEEE/ACM Transactions on Networking, 1, pp. 187-198,
1993.

Orden, A., "A Procedure for Handling Degeneracy in the Transportation
Problem," Mimeograph, DCS/Comptroller, Headquarters U.S. Air Force,
Washington, DC, 1951.

Orden, A., "The Transshipment Problem," Management Science, 2(3), pp. 276-
285, 1956.

Orden, A., "A Step Toward Probabilistic Analysis of Simplex Method
Convergence," Mathematical Programming, 19(1), pp. 3-13, July 1980.

718 Bibliography

Orlin, J. B., "A Polynomial-Time Parametric Simplex Algorithm for the
Minimum Cost Network Flow Problem," Sloan W. P. #1484-83, MIT,
Cambridge, MA, 1983.

Orlin, J. B., "Genuinely Polynomial Simplex and Non-Simplex Algorithms for
the Minimum Cost Flow Problem," Sloan W. P. #1615-84, MIT,
Cambridge, MA, 1984.

Orlin, J. B., "On the Simplex Algorithm for Network and Generalized
Networks," Mathematical Programming, 24, pp. 166-178, 1985.

Orlin, J. B., "A Polynomial Time Primal Network Simplex Algorithm for
Minimum Cost Flows," Mathematical Programming, Series B, 78(2), pp.
109-129, 1997.

Osborne, M. R., "Dual Barrier Functions with Superfast Rates of Convergence
for the Linear Programming Problem," Report, Department of Statistics,
Research School of Social Sciences, Australian National University,
1986.

Padberg, M., "Solution of a Nonlinear Programming Problem Arising in the
Projective Method," New York University, NY 10003, 1985.

Padberg, M., "A Different Convergence Proof of the Projective Method for
Linear Programming," Operations Research Letters, 4, pp. 253-257,
1986.

Paige, C. C, and M. A. Saunders, "An Algorithm for Sparse Linear Equations
and Sparse Least-Squares," ACM Transactions on Mathematical
Software, 8, pp. 43-71, 1982.

Pallottino, S., and M. G. Scutella, "A New Algorithm for Reoptimizing Shortest
Paths when Arc Costs Change," Operations Research Letters, 31(3), pp.
149-160, 2003.

Papadimitriou, C. FL, and K. Steiglitz, Combinatorial Optimization, Algorithms
and Complexity, Prentice-Hall, Englewood Cliffs, NJ, 1982.

Paparrizos, K., N. Samaras, and G. Stephanides, "A New Efficient Primal Dual
Simplex Algorithm," Computers and Operations Research, 30(9), pp.
1383-1400,2003.

Paranjape, S. R., "The Simplex Method: Two Basic Variables Replacement,"
Management Science, 12(1), pp. 135-141, September 1965.

Parker, M., and J. Ryan, "Finding the Minimum Weight IIS Cover of an
Infeasible System of Linear Inequalities," Annals of Mathematics and
Artificial Intelligence, 17, pp. 107-126, 1996.

Patty, B. W., "The Networks with Side Constraints Problem," Working Paper
87-04, University of Southern California, Department of ISE, 1987.

Perold, A. F., "A Degeneracy Exploiting LU-Factorization for the Simplex
Method," Mathematical Programming, 19(3), pp. 239-254, November
1980.

Phillips, D. T., and P. A. Jensen, "The Out-of-Kilter Algorithm," Industrial
Engineering, 6, pp. 36-44, 1974.

Phillips, D. T., A. Ravindran, and J. Solberg, Operations Research: Principles
and Practice, John Wiley & Sons, Inc., NY, 1976.

Picard, J.-C. and M. Queyranne, "Selected Applications of Minimum Cuts in
Networks" INFOR, 20(4), pp. 394-422, 1982.

Bibliography 719

Pickel, P. F., "Approximate Projections for the Karmarkar Algorithm,"
Manuscript, Polytechnique Institute of NY, Farmingdale, NY, 1985.

Pierskalla, W. P., "The Multidimensional Assignment Problem," Operations
Research, 16, pp. 422-431, 1968.

Pollack, M., and G. Wallace, "Methods for Determining Optimal Traffic Routes
in Large Communication Networks," U.S.G.R.R. Document Number
AD-434 856, Stanford Research Institute, Menlo Park, CA, June 1962.

Polyak, B. T., and N. V. Tretiyakov, "Concerning an Iterative Method for
Linear Programming and its Economic Interpretation," Economics and
Mathematical Methods, 8, (in Russian), pp. 740-751, 1972.

Polychronopoulos, G. H., and J. N. Tsitsiklis, "Stochastic Shortest Path
Problems with Recourse," Networks, 27, pp. 133-143, 1996.

Potts, R. B., and R. M. Oliver, Flows in Transportation Networks, Academic
Press, NY, 1972.

Prager, W., "On the Caterer Problem," Management Science, 3(1), pp. 15-23,
October 1956.

Prager, W., "A Generalization of Hitchcock's Transportation Problem," Journal
of Mathematical Physics (M.I.T.), 36(2), pp. 99-106, July 1957.

Psaraftis, H. N., and J. N. Tsitsiklis, "Dynamic Shortest Paths in Acyclic
Networks with Markovian Arc Costs," Operations Research, 41, pp. 91-
101, 1993.

Pshchenichnii, B. M., "The Connection Between Graph Theory and the
Transportation Problem," Dopovidi Akademii Nauk URSR (USSR), 4, pp.
427-430, 1963.

Quandt, R. E., and H. W. Kuhn, "On Upper Bounds for the Number of Iterations
in Solving Linear Programs," Operations Research, 12(1), pp. 161-165,
1964.

Ravi, N., and R. E. Wendell, "The Tolerance Approach to Sensitivity Analysis
of Matrix Coefficients in Linear Programming: General Perturbations,"
Journal of the Operational Research Society, 36(10), pp. 943-950, 1985.

Ravindran, A., and T. W. Hill, "A Comment on the Use of Simplex Method for
Absolute Value Problems," Management Science, 19(5), pp. 581-582,
January 1973,

Reban, K. R., "Total Unimodularity and the Transportation Problem: A
Generalization," Linear Algebra and Its Applications, 8, pp. 11-24, 1974.

Redlack, A. and C. C. Huang, "The Assignment Problem: A New Look at an
Old Problem," TIMS/ORSA Joint National Meeting, WA 11.3, New
Orleans, May 4-6, 1987.

Reid, J. K., "A Sparsity-Exploiting Variant of the Bartels-Golub Decomposition
for Linear Programming Bases," Mathematical Programming, 24, pp. 55-
69, 1982.

Renegar, J., "A Polynomial-Time Algorithm Based on Newton's Method for
Linear Programming," Mathematical Programming, 40, pp. 59-93, 1988.

Riesco, A., and M. E. Thomas, "A Heuristic Solution Procedure for Linear
Programming Problems with Special Structure," AIIE Transactions, 1(2),
pp. 157-163, June 1969.

720 Bibliography

Riley, V., and S. I. Gass, Linear Programming and Associated Techniques: A
Comprehensive Bibliography on Linear, Nonlinear and Dynamic
Programming, Johns Hopkins Press, Baltimore, MD, 1958.

Rinaldi, G., "A Projective Method for Linear Programming with Box-Type
Constraints," Algorithmica, 1(4), pp. 517-528, 1986.

Ritter, K., "A Decomposition Method for Linear Programming Problems with
Coupling Constraints and Variables," MRC Report No. 739, Mathematics
Research Center, U.S. Army, University of Wisconsin, Madison, WI,
April 1967.

Robacker, J. T., "Concerning Multicommodity Networks," Research
Memorandum RM-1799, The Rand Corporation, Santa Monica, CA,
1956.

Robinson, S. M., "A Characterization of Stability in Linear Programming,"
Operations Research, 23(3), pp. 435-447, May/June 1977.

Rockafeller, R. T., Convex Analysis, Princeton University Press, Princeton, NJ,
1970.

Rockafellar, R. T., Network Flows and Monotropic Optimization, John Wiley &
Sons, NY, NY, 1984.

Ronde, F. V., "Bibliography on Linear Programming," Operations Research,
5(1), pp. 45-62, 1957.

Roos, C , "On Karmarkar's Projective Method for Linear Programming," Report
85-23, Department of Mathematics and Informatics, Delft University of
Technology, 2600 AL Delft, 1985a.

Roos, C , "A Pivoting Rule for the Simplex Method Which is Related to
Karmarkar's Potential Function," Department of Mathematics and
Informatics, Delft University of Technology, P.O. Box 356, 2600 AJ
Delft, The Netherlands, 1985b.

Rosen, J. B., "The Gradient Projection Method for Nonlinear Programming: Part
I -Linear Constraints," SIAM, 8(1), pp. 181-217, 1960.

Rosen, J. B., "The Gradient Projection Method for Nonlinear Programming: Part
II," SIAM, 9(4), pp. 514-532, 1961.

Rosen, J. B., "Primal Partition Programming for Block Diagonal Matrices,"
Numerical Mathematics, 6, 250-260, 1964.

Rothchild, B., and A. Whinston, "On Two-Commodity Network Flows,"
Operations Research, 14(3), pp. 377-388, May-June 1966a.

Rothchild, B., and A. Whinston, "Feasibility of Two-Commodity Network
Flows," Operations Research, 14, p. 1121-1129, 1966b.

Rothchild, B., and A. Whinston, "Maximal Two-Way Flows," SIAM, 15(5), pp.
1228-1238, September 1967.

Rothfarb, B., N. P. Shein, and I. T. Frisch, "Common Terminal Multicommodity
Flow," Operations Research, 16, pp. 202-205, January-February 1968.

Rothfarb, B., and I. T. Frisch, "On the Three-Commodity Flow Problem,"
SIAM, 17, pp. 46-58, 1969.

Roy, B., "Extremum Paths," Gestion (France), 5, pp. 322-335, May 1966.
Russel, A. H., "Cash Flows in Networks," Management Science, 16(5), pp. 357-

373, January 1970.

Bibliography 721

Rutenberg, D. P., "Generalized Networks," Generalized Upper Bounding and
Decomposition of the Convex Simplex Method," Management Science,
16(5), pp. 388-401, January 1970.

Saaty, T. L., "The Number of Vertices of a Polyhedron," American
Mathematical Monthly, 62(4), pp. 326-331, 1955.

Saaty, T. L., "Coefficient Perturbation of a Constrained Extremum," Operations
Research, 7(3), pp. 294-302, May-June 1959.

Saaty, T. L., "A Conjecture Concerning the Smallest Bound on the Iterations in
Linear Programs," Operations Research, 11, pp. 151-153, 1963.

Saaty, T. L., and S. I. Gass. "The Parametric Objective Function, Part I,"
Operations Research, 2(3), pp. 316-319, 1954.

Saigal, R., "Multicommodity Flows in Directed Networks," ORC Report 67-38,
University of California, Berkeley, CA, 1967.

Saigal, R., "A Constrained Shortest Route Problem," Operations Research,
16(1), pp. 205-209, January-February 1968.

Saigal, R., "On the Modularity of a Matrix," Linear Algebra and Its
Applications, 5, pp. 39-48, 1972.

Saigal, R., Linear Programming: A Modern Integrated Analysis, Kluwer
Academic Publishers, Boston, MA, 1995.

Sakarovitch, M., "The Multi-Commodity Maximum Flow Problem," ORC
Report 66-25, University of California, Berkeley, CA, 1966.

Sakarovitch, M., and R. Saigal, "An Extension of Generalized Upper Bounding
Techniques for Structured Linear Programs," SIAM, 15(4), pp. 906-914,
July 1967.

Saunders, M. A., "The Complexity of LU Updating in the Simplex Method,"
The Complexity of Computational Problem Solving, R. S. Anderssen and
R. P. Brent, eds., Queensland: Queensland University Press, pp. 214-230,
1976a.

Saunders, M. A., "A Fast, Stable Implementation of the Simplex Method Using
the Bartels-Golub Updating," in J. R. Bunch and D. J. Rose (eds.), Sparse
Matrix Computations, Academic Press, New York, NY, pp. 213-226,
1976b.

Sandor, P. E., "Some Problems of Ranging in Linear Programming," Journal of
the Canadian Operational Research Society, 2(1), pp. 26-31, June 1964.

Schrage, L., "Implicit Representation of Variable Upper Bounds in Linear
Programming," Mathematical Programming Study, 4, pp. 118-132, 1975.

Schrage, L., "Implicit Representation of Generalized Variable Upper Bounds in
Linear Programming," Mathematical Programming, 14(1), pp. 11-20,
1978.

Schrijver, A., "The New Linear Programming Method of Karmarkar," CWI
Newsletter, 8, Centre for Mathematics and Computer Science, P.O. Box
4079, 1009 AB Amsterdam, The Netherlands, 1985.

Schrijver, A., Theory of Linear and Integer Programming, Wiley-Interscience,
John Wiley and Sons, Inc., 1986.

Scoins, H. I., "The Compact Representation of a Rooted Tree and the
Transportation Problem," Presented at the International Symposium on
Mathematical Programming, London, 1964.

722 Bibliography

Seiffart, E., "An Algorithm for Solution of a Parametric Distribution Problem,"
Ekonomicko-matematicky Obzor (Czechoslovakia), 2(3), pp. 263-283,
August 1966.

Sengupta, J. K., and T. K. Kumar, "An Application of Sensitivity Analysis to a
Linear Programming Problem," Unternehmensforschung (Germany),
9(1), pp. 18-36, 1965.

Seshu, S., and M. Reed, Linear Graphs and Electrical Networks, Addison-
Wesley, Reading, MA, 1961.

Sethi, A. P., and G. L. Thompson, "The Pivot and Probe Algorithm for Solving
a Linear Program," Mathematical Programming, 29(2), pp. 219-233,
1984.

Shanno, D. F., "A Reduced Gradient Variant of Karmarkar's Algorithm,"
Working Paper 85-10, Graduate School of Administration, University of
California, Davis, CA 95616, 1985.

Shanno, D. F., "Computing Karmarkar Projections Quickly," Mathematical
Programming, 4(1), pp. 61-72, 1988.

Shanno, D. F., and R. E. Marsten, "On Implementing Karmarkar's Method,"
Working Paper 85-1, Graduate School of Administration, University of
California at Davis, CA, 1985.

Shanno, D. F. and R. L. Weil, "Linear Programming With Absolute Value
Functionals," Management Science, 16(5), p. 408, January 1970.

Shapley, L. S., "On Network Flow Functions," Research Memorandum RM-
2338, The Rand Corporation, Santa Monica, CA, 1959.

Shapiro, J. F., "A Note on the Primal-Dual and Out-of-Kilter Algorithms for
Network Optimization Problems," Networks, 7(1), pp. 81-88, 1977.

Sherali, H. D., "Equivalent Weights for Lexicographic Multiple Objective
Programs: Characterizations and Computations," European Journal of
Operational Research, 11(4), pp. 367-379, 1982.

Sherali, H. D., "An Insightful Marginal Cost Analysis for an Electric Utility
Capacity Planning Problem," HE Transactions, 17(4), pp. 378-387, 1985.

Sherali, H. D., "Algorithmic Insights and a Convergence Analysis for a
Karmarkar-type Algorithm for Linear Programs," Naval Research
Logistics Quarterly, 34, pp. 399-416, 1987.

Sherali, H. D., "A Constructive Proof of the Representation Theorem for
Polyhedral Sets Based on Fundamental Definitions," American Journal
of Mathematial and Management Sciences, 7(3/4), pp. 253-270, 1987.

Sherali, H. D., "Bounds on Penalties for Dummy Arcs in Transportation
Networks," European Journal of Operational Research, 36(3), pp. 353-
359, 1988.

Sherali, H. D. On the Equivalence Between Some Shortest Path Algorithms,
Operations Research Letters, 10(2), pp. 61-65, 1991.

Sherali, H. D., and C. G. Baines, "Advanced Basis or Block Pivoting Methods
for Network Structured Linear Programs," Aligarh Journal of Statistics,
3(1), pp. 17-35, 1984.

Sherali, H. D., and S. E. Dickey, "A Extreme Point Ranking Algorithm for the
Extreme Point Mathematical Programming Problem," Computers and
Operations Research, 13(4), pp. 465-475, 1986.

Bibliography 723

Sherali, H. D., and P. J. Driscoll, "The Hungarian Algorithm Revisited,"
Manuscript, Department of Industrial and Systems Engineering, Virginia
Polytechnic Institute and State University, Blacksburg, VA, 2003.

Sherali H. D., and J. M. Hill, "Generating Reverse Time-Restricted Shortest
Paths with Application to Air Traffic Management," Transportation
Research, to appear, 2009.

Sherali, H. D., A. G. Hobeika, and S. Kangwalklai, "Time-dependent Label-
constrained Shortest Path Problems with Applications," Transportation
Science, 37(3), pp. 278-293, 2003.

Sherali, H. D., C. Jeenanunta, C, and A. G. Hobeika, "The Approach-
Dependent, Time-dependent, Label-constrained Shortest Path Problem,"
Networks, 48(2), pp. 57-67,2006.

Sherali, H. D., K. Ozbay, and S. Subramanian, "The Time-dependent Shortest
Pair of Disjoint Paths Problem: Complexity, Models, and Algorithms,"
Networks, 31(4), pp. 259-272, 1998.

Sherali, H. D., and R. Puri, "Models for a Coal Blending and Distribution
Problem," OMEGA - The International Journal of Management Science,
21(2), pp. 235-243, 1993.

Sherali, H. D., and Q. J. Saifee, "Strategic and Tactical Models and Algorithms
for the Coal Industry Under the 1990 Clean Air Act," Network
Optimization Problems: Algorithms, Applications and Complexity,
Series on Applied Mathematics, eds. D.-Z. Du and P. M. Pardalos, World
Scientific Publishing Company, 2, pp. 233-262, 1993.

Sherali, H. D., and C. M. Shetty, "A Primal Simplex Based Solution Procedure
for the Retilinear Distance Multifacility Location Problem," Network,
29(4), pp. 373-381, 1978.

Sherali, H. D., and B. O. Skarpness, and B. Kim, "An Assumption-Free
Convergence Analysis for a Perturbation of the Scaling Algorithm for
Linear Programs, with Application to the Lu Estimation Problem," Naval
Research Logistics Quarterly, 35, pp. 473-492, 1988.

Sherali, H. D., and A. L. Soyster, "Preemptive and Nonpreemptive Multi-
Objective Programs: Relationships and Counter Examples," Journal of
Optimization Theory and Applications, 39(2), pp. 173-186, 1983a.

Sherali, H. D., and A. L. Soyster, "Analysis of Network Structured Models for
Electric Utility Capacity Planning and Marginal Cost Pricing Problems,"
Energy Models and Studies: Studies in Management Science and Systems
Series, pp. 113-134, edited by Benjamin Lev, North-Holland Publishing
Company, 1983b.

Sherali, H. D. A. L. Soyster, and C. G. Baines, "Non-Adjacent Extreme Point
Methods for Solving Linear Programs," Naval Research Logistics
Quarterly, 30(1), pp. 145-162, 1983.

Sherali, H. D., A. L. Soyster, F. H. Murphy, and S. Sen, "Linear Programming
Based Analysis of Marginal Cost Pricing in Electric Utility Capacity
Expansion," European Journal of Operational Research, 11, pp. 349-
360, 1982.

724 Bibliography

Sherali, H. D., A. L. Soyster, F. H. Murphy, and S. Sen, "Intertemporal
Allocation of Capital Costs in Electric Utility Capacity Expansion
Planning Under Uncertainty," Management Science, 30(1), pp. 1-19,
1984.

Shetty, C. M., "A Solution to the Transportation Problem with Nonlinear
Costs," Operations Research, 7(5), pp. 571-580, September-October
1959a.

Shetty, C. M., "Solving Linear Programming Problems with Variable
Parameters," Journal of Industrial Engineering, 10(6), pp. 433-438,
1959b.

Shetty, C. M., "On Analyses of the Solution to a Linear Programming Problem,"
Networks, 12(2), pp. 89-104, June 1961.

Shier, D. R., "A Decomposition Algorithm for Optimality Problems in Tree
Structured Networks," Discrete Mathematics, 6, pp. 175-189, 1973.

Shier, D., and C. Witzgall, "Properties of Labeling Methods for Determining
Shortest Path Trees," Journal of Research National Bureau of Standards,
86, pp. 317-330, 1981.

Shiloach, Y., and U. Vishkin, "An 0(n2 log n) Parallel Max-flow Algorithm,"
Journal of Algorithms, 3, pp. 128-146, 1982.

Shor, N. Z., "Utilization of the Operation of Space Dilation in the Minimization
of Convex Functions," Kibernetika, 6(1), pp. 6-12, 1970a, (English
translation in Cybernetics, 6(1), pp. 7-15, 1970a).

Shor, N. Z., "Convergence Rate of the Gradient Descent Method with Dilatation
of the Space," Kibernetika, 2, pp. 80-85, 1970b. (English translation in
Cybernetics, 6, pp. 102-108, 1970b.)

Shor, N. Z., " Cut-off Method with Space Extension in Convex Programming
Problems," Kibernetika, 1, pp. 94-95, 1977. (English translation in
Cybernetics, 13, pp. 94-96, 1977.)

Shor, N. Z., "Generalized Gradient Methods of Nondifferentiable Optimization
Employing Space Dilation Operators," In Bachem, A., M. Grotschel, and
B. Korte, Mathematical Programming: The State of the Art, pp. 501-529,
Springer-Verlag, Bonn, 1983.

Shor, N. Z., and V. 1. Gershovich, "Family of Algorithms for Solving Convex
Programming Problems," Kibernetika, 15(4), pp. 62-67, 1979. (English
translation in Cybernetics, 15(4), pp. 502-507, 1979.)

Simonnard, M. A., "Transportation-Type Problems," Interim Technical Report
No. 11, Massachusetts Institute of Technology, Cambridge, Mass., 1959.

Simonnard, M. A., "Structure des Bases dans les Problèmes de Transport," Rev.
Fr.Rech. Op., 12,1959.

Simonnard, M. A., Linear Programming, Prentice-Hall, Englewood Cliffs, NJ,
1966.

Simonnard, M. A., and G. F. Hadley, "Maximum Number of Iterations in the
Transportation Problem," Naval Research Logistics Quarterly, 6(2), pp.
125-129, 1959.

Singh, S., "Improved Methods for Storing and Updating Information in the Out-
of-Kilter Algorithm," Journal of the Association for Computing
Machinery, 33(3), pp. 551-567, 1986.

Bibliography 725

Skriver, A. J. V., "A Classification of Bicriterion Shortest Path (BSP)
Algorithms," Asia-Pacific Journal of Operations Research, 17, pp. 199-
212,2000.

Sleator, D. D. and R. E. Tarjan, "A Data Structure for Dynamic Trees," Journal
of Computer System Science, 24, pp. 362-391, 1983.

Sleator, D. D. and R. E. Tarjan, "Self-Adjusting Binary Search Trees," Journal
oftheACM, 32, pp. 652-686, 1985.

Smale, S., "On the Average Speed of the Simplex Method of Linear
Programming," Mathematical Programming, 27(3), pp. 241-262, 1983a.

Smale, S., "The Problem of the Average Speed of the Simplex Method,"
Mathematical Programming, The State of the Art-Bonn 1982, (eds.) A.
Bachem, M. Grotschel, and B. Korte, Springer, Berlin, pp. 530-539,
1983b.

Smith, C. W., "Maximal Flow at Minimal Cost Through a Special Network with
Gains," Thesis, School of Industrial and Systems Engineering, Georgia
Institute of Technology, Atlanta, GA, 1971.

Smith, D. M., and W. Orchard-Hays, "Computational Efficiency in Product
Form LP Codes," in R. Graves and P. Wolfe (eds.), Recent Advances in
Mathematical Programming, pp. 211-218, McGraw-Hill Book Co., NY,
1963.

Sokkalingham, P. T., R. K. Ahuja, and J. B. Orlin, "New Polynomial-Time
Cycle-Canceling Algorithms for Minimum Cost Flows," NetworL·, 36,
pp. 53-63, 2000.

Sommerville, D. M. Y., An Introduction to the Geometry of n-Dimensions,
Dover, NY, 1958.

Soyster, A. L. and H. D. Sherali, "On the Influence of Market Structure in
Modeling the U.S. Copper Industry," OMEGA - The International
Journal of Management Science, 9(4), pp. 381-388, 1981.

Spivey, W. A., Linear Programming, Macmillan, NY, 1963.
Srinivasan, V., and G. L. Thompson, "Accelerated Algorithms for Labeling and

Relabeling of Trees with Applications to Distribution Problems," Journal
oftheACM, 19, pp. 712-726, 1972.

Srinivasan, V., and G. L. Thompson, "Benefit-Cost Analysis of Coding
Techniques for the Primal Transportation Algorithm," Journal of the
Association for Computing Machinery, 20, pp. 194-213, 1973a.

Staffurth, C. (ed.), Project Cost Control Using Networks, The Operational
Research Society and the Institute of Cost and Works Accountants,
London, 1969.

Stevens, B. H., "Linear Programming and Location Rent," Journal of Regional
Science, 3(2), pp. 15-26, 1961.

Stoinova-Penkrova, N., "The Simplex Method without Fractions," Trudove
Vissh Ikonomicheshi Institute Sofia (Bulgaria), 1, pp. 357-370, 1964.

Stokes, R. W., "A Geometric Theory of Solution of Linear Inequalities,"
Transactions of the American Mathematical Society, 33, pp. 782-805,
1931.

Strang, G., " Karmarkar's Algorithm in a Nutshell," SIAM News, 18, p. 13,
1985.

726 Bibliography

Stroup, J. W., "Allocation of Launch Vehicles to Space Missions: A Fixed-Cost
Transportation Problem," Operations Research, 15(6), pp. 1157-1163,
November-December 1967.

Strum, J. E., Introduction to Linear Programming, Holden Day, San Francisco,
1972.

Swanson, L. W., Linear Programming, Basic Theory and Application, McGraw-
Hill Publishing Company, New York, NY, 1980.

Swart, E. R., "A Modified Version of the Karmarkar Algorithm," Department of
Mathematics and Statistics, University of Guelph, Guelph, Ontario,
Canada, 1985.

Swarup, K., "Duality for Transportation Problem in Fractional Programming,"
CCERO (Belgium), 10(1), pp. 46-54, March 1968.

Symonds, G. H., Linear Programming. The Solution of Refinery Problems, Esso
Standard Oil Company, NY, 1955.

Takahashi, I., "Tree Algorithm for Solving Resource Allocation Problems,"
Operations Research Society of Japan, 8, pp. 172-191, 1966.

Tamir, A., "On Totally Unimodular Matrices," Networks, 6, pp. 373-382, 1976.
Tan, S. T., "Contributions to the Decomposition of Linear Programs,"

Unternehmensforschung (Germany), 10(3-4), pp. 168-189, 247-268,
1966.

Tang, D. T., "Bipath Networks and Multicommodity Flows," IEEE
Transactions, 11, pp. 468-474,1964.

Tapia, R. A., Y. Zhang, and Y. Ye, "On the Convergence of the Iteration
Sequence in Primal-Dual Interior-Point Methods, Mathematical
Programming, 68, pp. 141-154, 1995.

Tardos, E., "A Strongly Polynomial Minimum Cost Circulation Algorithm,"
Combinatorica, 5, pp. 247-255, 1985.

Tardos, E., "A Strongly Polynomial Algorithm to Solve Combinatorial Linear
Programs," Operations Research, 34(2), pp. 250-256, 1986.

Terlaky, T., Interior Point Methods of Mathematical Programming, Kluwer
Academic Publishers, Boston, MA, 1998.

Thompson, G. L., F. M. Tonge, and S. Zionts, "Techniques for Removing
Nonbinding Constraints and Extraneous Variables from Linear
Programming Problems," Management Science, 12(7), pp. 588-608,
March 1966.

Thrall, R. M., "The Mutual Primal-Dual Simplex Algorithm," Report No. 6426-
27, University of Michigan Engineering Summer Conferences on
Operations Research, Summer 1964.

Todd, M. J., "The Monotonie Bounded Hirsch Conjecture is False for
Dimension at Least 4," Mathematics of Operations Research, 5(4), pp.
599-601, November 1980.

Todd, M. J., "Large-Scale Linear Programming: Geometry, Working Bases and
Factorizations," Mathematical Programming, 26, pp. 1-20,1983.

Todd, M. J., "Exploiting Special Structure in Karmarkar's Linear Programming
Algorithm," Mathematical Programming, 41(1), pp. 97-114, 1988.

Todd, M. J., "Recent Developments and New Directions in Linear
Programming," in Mathematical Programming: Recent Developments

Bibliography 727

and Applications, M. Iri and K. Tanabe, eds., KTK Science Publications,
Tokyo, Japan, pp. 109-157, 1989.

Todd, M. J., and B. P. Burrell, "An Extension of Karmarkar's Algorithm for
Linear Programming Using Dual Variables," Algorithmica, 1(4), pp. 409-
424, 1986.

Tomizawa, N., "On Some Techniques Useful for Solution of Transportation
Network Problems," Networks, l ,pp. 173-194,1971.

Tomlin, J. A., "Minimum-Cost Multi-Commodity Network Flows," Operations
Research, 14(1), pp. 45-51, February 1966.

Tomlin, J. A., "On Scaling Linear Programming Problems," Mathematical
Programming Study, Number 4, pp. 146-166, December 1975.

Tomlin, J. A., "An Experimental Approach to Karmarkar's Projective Method
for Linear Programming," Ketron, Inc., Mountain View, CA 94040,
1985.

Tompkins, C. B., "Projection Methods in Calculation," in H. A. Antosiewicz
(ed.), Proceedings of the Second Symposium in Linear Programming, 2,
pp. 425-448, National Bureau of Standards, 1955.

Tompkins, C. B., "Some Methods of Computational Attack on Programming
Problems Other Than the Simplex Method," Naval Research Logistics
Quarterly, 4(1), pp. 95-96, March 1957.

Torng, H. C , "Optimization of Discrete Control Systems Through Linear
Programming," Journal of the Franklin Institute, 278, (1), pp. 28-44, July
1964.

Traub, J., and H. Wozniakowski, H., "Complexity of Linear Programming,"
Operations Research Letters, 1, pp. 59-62, 1982.

Truemper, K., "An Efficient Scaling Procedure for Gain Networks," Networks,
6(2), pp. 151-160,1976.

Truemper, K., "Unimodular Matrices of Flow Problems with Additional
Constraints," Networks, 7(4), pp. 343-358, 1977.

Treumper, K., "Algebraic Characterizations of Unimodular Matrices," SIAM
Journal of Applied Mathematics, 35, pp. 328-332, 1978.

Tseng, P., and D. P. Bertsekas, "Relaxation Methods for Linear Programs,"
Mathematics of Operations Research, 12, pp. 569-596, 1987.

Tucker, A. W., "Linear Programming and Theory of Games," Econometrica,
18(2), p. 189, April 1950.

Tucker, A. W., "Linear Inequalities and Convex Polyhedral Sets," in H. A.
Antosiewicz (ed.), Proceedings of the 2nd Symposium in Linear
Programming, 2, National Bureau of Standards, pp. 569-602, 1955.

Tucker, A. W., "Linear and Nonlinear Programming," Operations Research,
5(2), pp. 244-257, April 1957.

Tucker, A. W., "Dual Systems of Homogeneous Linear Relations," in H. W.
Kuhn and A. W. Tucker (eds.), Linear Inequalities and Related Systems,
Annals of Mathematics, Number 38, Princeton University, Princeton, NJ,
pp. 3-18, 1960a.

Tucker, A. W., "Solving a Matrix Game by Linear Programming," IBM Journal
of Research and Development, 4(5), pp. 507-517, November 1960b.

728 Bibliography

Tucker, A. W., "On Directed Graphs and Integer Programs," Technical Report,
IBM Mathematical Research Project, Princeton University, Princeton,
NJ, 1960c.

Tucker, A. W., "Combinatorial Theory Underlying Linear Programs," in R.
Graves and P. Wolfe (eds.), Recent Advances in Mathematical
Programming, McGraw-Hill Book Co., NY, 1963.

Tufekci, S., "Decomposition Algorithms for Finding the Shortest Path Between
a Source Node and a Sink Node of a Network," Naval Research Logistics
Quarterly, 30(3), pp. 387-396, 1983.

Tyndall, W. F., "An Extended Duality Theorem for Continuous Linear
Programming Problems," SIAM, 15(5), pp. 1294-1298, September 1967.

Vaidya, P., "An Algorithm for LP Which Requires 0[((M + N)N + (M
N)**(\.5))NL] Operations," Presented at the Joint National ORSA/TIMS
Meeting, St. Louis, MO, October 1987.

Vajda, S., The Theory of Games and Linear Programming, John Wiley & Sons,
New York, NY, 1956.

Vajda, S., Readings in Linear Programming, John Wiley & Sons, New York,
NY, 1958.

Vajda, S., Mathematical Programming, Addison-Wesley, Reading, Mass., 1961.
Van de Panne, C, Linear Programming and Related Techniques, North-

Holland/ American Elsevier, NY, 1971.
Van de Panne, C , and A. Whinston, "The Simplex and Dual Method for

Quadratic Programming," Operations Research Quarterly, 15(4), pp.
355-388, December 1964.

Van de Panne, C, and A. Whinston, "An Alternative Interpretation of the
Primal-Dual Method and Some Related Parametric Methods," U.S.G.R.&
D.R. Order AD-624 499, University of Virginia, Charlottesville, VA,
August 1965.

Vanderbeck, F., "On Dantzig-Wolfe Decomposition in Integer Programming
and Ways to Perform Branching in a Branch-and-Price Algorithm,"
Operations Research, 48(1), pp. 111-128, 2000.

Vanderbei, R. J., Linear Programming: Foundations and Extensions, Kluwer
Academic Publishers, Boston, MA, 1996.

Vanderbei, R. J., M. S. Meketon, and B. A. Freedman, "A Modification of
Karmarkar's Linear Programming Algorithm," Algorithmica, 1(4), pp.
395-408, 1986.

Veinott, A. F., and H. M. Wagner, "Optimum Capacity Scheduling, I and II,"
Operations Research, 10, pp. 518-546, 1962.

Verkhovskii, B. S., "The Existence of a Solution of a Multi-Index Linear
Programming Problem," Doklady Akademii Nauk SSSR (USSR), 158(4),
pp. 763-766, 1964.

Von Neumann, J., "Uber ein Okonomisches Gleichungssystem und eine
Verallgemeinerung des Brouwerschen Fixpunktsatzes," Ergebnisse eines
Mathematischen Kolloquiums, 8, pp. 73-83, 1937.

Von Neumann, J., "On a Maximization Problem," Manuscript, Institute for
Advanced Studies, Princeton, NJ, 1947.

Bibliography 729

Von Neumann, J., "A Certain Zero-Sum Two-Person Game Equivalent to the
Optimal Assignment Problem" in H. W. Kuhn and A. W. Tucker (eds.),
Contributions to the Theory of Games, 2, Annals of Mathematics Study
No. 28, Princeton University Press, Princeton, NJ, pp. 12-15, 1953.

Von Neumann, J., and O. Morgenstern, Theory of Games and Economic
Behavior, Princeton University Press, Princeton, NJ, 1944.

Votaw, D. F., and A. Orden, "Personal Assignment Problem," in A. Orden and
L. Goldstein (eds.), Symposium on Linear Inequalities and Programming,
10, Planning Research Division, Director of Management Analysis
Service, Comptroller, U.S. Air Force, Washington, DC, pp. 155-163,
1952.

Wagner, H. M., "A Linear Programming Solution to Dynamic Leontief Type
Models," Research Memorandum RM-1343, The Rand Corporation,
Santa Monica, CA, 1954.

Wagner, H. M., "A Two-Phase Method for the Simplex Tableau," Operations
Research, 4(4), pp. 443-447, 1956.

Wagner, H. M., "A Comparison of the Original and Revised Simplex Methods,"
Operations Research, 5(3), pp. 361-369,1957a.

Wagner, H. M., "A Supplementary Bibliography on Linear Programming,"
Operations Research, 5(4), pp. 555-563, 1957b.

Wagner, H. M., "On the Distribution of Solutions in Linear Programming
Problems," Journal of the American Statistical Association, 53, pp. 161-
163, 1958a.

Wagner, H. M., "The Dual Simplex Algorithm for Bounded Variables," Naval
Research Logistics Quarterly, 5(3), pp. 257-261, September 1958b.

Wagner, H. M., "On the Capacitated Hitchcock Problem," Technical Report No.
54, Stanford University, Stanford, CA, 1958c.

Wagner, H. M., "Linear Programming Techniques for Regression Analysis,"
Journal of the American Statistical Association, 54(285), pp. 206-212,
March 1959.

Walker, W. E., "A Method for Obtaining the Optimal Dual Solution to a Linear
Program Using the Dantzig-Wolfe Decomposition," Operations
Research, 17(2), pp. 368-370, March-April 1969.

Walkup, D. W., "The Hirsch Conjecture Fails for Triangulated 27-Spheres,"
Mathematics of Operations Research, 3, pp. 224-230, 1978.

Waugh, F. V., "The Minimum Cost Dairy Feed," Journal of Farm Economics,
33(3), pp. 299-310, August 1951.

Wendell, R. E., "A Preview of the Tolerance Approach to Sensitivity Analysis
in Linear Programming," Discrete Mathematics, 38, pp. 121-124, 1982.

Wendell, R. E., "Using Bounds on the Data in Linear Programming: The
Tolerance Approach to Sensitivity Analysis," Mathematical
Programming, 29, pp. 304-322, 1984.

Wendell, R. E., "The Tolerance Approach to Sensitivity Analysis in Linear
Programming," Management Science, 31, pp. 564-578, 1985a.

Wendell, R. E., "Goal Programming Sensitivity Analysis: The Tolerance
Approach," Decision Making with Multiple Objectives, Springer-Verlag,
NY, pp. 300-307, 1985b.

730 Bibliography

White, D. J., "A Linear Programming Analogue, a Duality Theorem, and a
Dynamic Algorithm," Management Science, 21(1), pp. 47-59, September
1974.

White, W. C, M. B. Shapiro, and A. W. Pratt, "Linear Programming Applied to
Ultraviolet Absorption Spectroscopy," Communications of the ACM,
6(2), pp. 66-67, February 1963.

Whiting, P., and J. Hillier, "A Method for Finding the Shortest Routing Through
a Road Network," Networks, 11, pp. 37-40, 1960.

Wilhelm, W. E., "A Technical Review of Column Generation in Integer
Programming," Optimization and Engineering, 2, pp. 159-200, 2001.

Williams, A. C , "A Treatment of Transportation Problems by Decomposition,"
SIAM, 10(1), pp. 35-48, January-March 1962.

Williams, A. C , "Marginal Values in Linear Programming," SIAM, 11(1), pp.
82-94, March 1963.

Williams, A. C , "Complementary Theorems for Linear Programming," SIAM
Review, 12(1), pp. 135-137, January 1970.

Williamson, J., "Determinants Whose Elements are 0 and 1," American
Mathematical Monthly, 53, pp. 427-434, 1946.

Wittrock, R. J., "Dual Nested Decomposition of Staircase Linear Programs,"
Mathematical Programming Study, Number 24, ed. R. W. Cottle, pp. 65-
86, 1985.

Wolfe, P., "An Extended Composite Algorithm for Linear Programming," Paper
P-2373, The Rand Corporation, Santa Monica, CA, 1961.

Wolfe, P., "A Technique for Resolving Degeneracy in Linear Programming,"
Journal of SIAM, 11, pp. 205-211, 1963.

Wolfe, P., "The Composite Simplex Algorithm," SIAM Review, 7(1), pp. 42-54,
1965a.

Wolfe, P., "The Product Form of the Simplex Method," U.S.G.R.& D.R. Order
AD-612 381, The Rand Corporation, Santa Monica, CA, 1965b.

Wolfe, P., and L. Cutler, "Experiments in Linear Programming," Recent
Advances in Mathematical Programming, R. L. Graves and P. Wolfe
(Eds.), McGraw-Hill, NY, pp. 177-200, 1963.

Wolfe, P., and G. B. Dantzig, "Linear Programming in a Markov Chain,"
Operations Research, 10, pp. 702-710, 1962.

Wollmer, R., "Removing Arcs from a Network," Operations Research, 12(6),
pp. 934-940, November-December 1964.

Wollmer, R., "Maximizing Flow Through a Network with Node and Arc
Capacities," Transportation Science, 2(3), pp. 213-232, August 1968.

Wollmer, R., "The Dantzig-Wolfe Decomposition Principle and Minimum Cost
Multicommodity Network Flows," Paper P-4191, The Rand Corporation,
Santa Monica, CA, 1969.

Wollmer, R., "Multicommodity Networks with Resource Constraints: The
General Multicommodity Flow Problem," Report TM393-50, Jet
Propulsion Laboratory, CA Institute of Technology, Pasadena, CA, 1971.

Woolsey, R. E. D., The Woolsey Papers, ed. R. L. Hewitt, Lionheart Publishing,
Marietta, GA, 2003.

Bibliography 731

Woolsey, R. E. D., and H. S. Swanson, Operations Research for Immediate
Application: A Quick and Dirty Manual, Harper and Row, NY, 1975.

Yadin, D. B., and A. S. Nemirovskii, "Informational Complexity and Efficient
Methods for the Solution of Convex Extremal Problems," Ekonomika i
Mathematicheskie Metody, 12, pp. 357-369, 1976. (English translation in
Matekon, 13(3), pp. 25-45, 1977.)

Yaminitsky, B., and L. A. Levin, "An Old Linear Programming Algorithm Runs
in Polynomial Time," in Proceedings 23rd Annual Symposium on
Foundations of Computer Science, IEEE Computer Society, Long Beach,
CA,pp. 327-328, 1982.

Yaspan, A., "On Finding a Maximal Assignment," Operations Research, 14(4),
pp. 646-651, July-August 1966.

Ye, Y., "Barrier Projection and Sliding Current Objective Method for Linear
Programming," Presented at 12th Mathematical Programming
Symposium, Boston, Engineering Economic Systems Department,
Stanford University, Stanford, CA 94305, 1985a.

Ye, Y., "Cutting-Objective and Scaling Methods — A Polynomial Algorithm
for Linear Programming," Engineering-Economic Systems Department,
Stanford University, Stanford, CA 94305, August 1985b.

Ye, Y., "Recovering Optimal Basis in Karmarkar's Polynomial Algorithm for
Linear Programming," Department of Engineering-Economic Systems,
Stanford University, Stanford, CA, 1987.

Ye, Y., "Karmarkar's Algorithm and the Ellipsoid Method," Operations
Research Letters, 6, pp. 177-182, 1987.

Ye, Y., O. Giiler, R. A. Tapia, and Y. Zhang, "A Quadratically Convergent

O(yfnl)—Iteration Algorithm for Linear Programming," Mathematical
Programming, 59, pp. 151-162,1993.

Ye, Y. and M. Kojima, "Recovering Optimal Dual Solutions in Karmarkar's
Polynomial Algorithm for Linear Programming," Mathematical
Programming, 39(3), pp. 305-318, 1987.

Ye, Y., and M. J. Todd, "Containing and Shrinking Ellipsoids in the Path-
Following Algorithm," Department of Engineering-Economic Systems,
Stanford University, Stanford, CA, 1987.

Yoshida, M., "Some Examples Related to the Duality Theorem in Linear
Programming," Journal of Science of the Hiroshima University, Series A-
I (Japan), 30(1), pp. 41-43, July 1966.

Young, R. D., "A Primal (All-Integer) Integer Programming Algorithm,"
Journal of Research — National Bureau of Standards: B, Mathematics
and Mathematical Physics, 69(3), pp. 213-250, July-September 1965.

Young, R. D., "A Simplified Primal (All Integer) Integer Programming
Algorithm," Operations Research, 16(4), pp. 750-782, July-August 1968.

Yu, G. and J. Yang, "On the Robust Shortest Path Problem," Computers and
Operations Research, 25(6), pp. 457-468, 1998.

Yudin, D. B., and A. B. Nemirovski, "Informational Complexity and Efficient
Methods for the Solution of Convex Extremal Problems," Ekonomika i
Matematicheskie Metody, 12, pp. 357-369, 1976 (in Russian; English
Translatioon in: Maketon 13(3), pp. 25-45, 1977).

732 Bibliography

Zadeh, N., "A Bad Network Problem for the Simplex Method and Other
Minimum Cost Flow Algorithms," Mathematical Programming, 5, pp.
255-266, 1973.

Zadeh, N., "Near-Equivalence of Network Flow Algorithms," Technical Report
No. 26, Department of Operations Research, Stanford University,
Stanford, CA, 1979.

Zangwill, W. I., "The Convex Simplex Method," Management Science, 14(3),
pp. 221-238, November 1967.

Zangwill, W. I., "Minimum Convex Cost Flows in Certain Networks,"
Management Science, 14(7), pp. 429-450, March 1968.

Zangwill, W. I., Nonlinear Programming: A Unified Approach, Prentice-Hall,
Englewood Cliffs, NJ, 1969.

Zeleny, M., Linear Multiobjective Programming, Springer, NY, 1974.
Zhang, S., "On Anti-cycling Pivoting Rules for the Simplex Method,"

Operations Research Letters, 10(4), pp. 189-192, 1991.
Zhang, Y., and R. A. Tapia, "A Superlinearly Convergent Polynomial Primal-

Dual Interior-Point Algorithm for Linear Programming," SIAM Journal
on Optimization, 3, pp. 118-133, 1993.

Zhang, Y., R. A. Tapia, and J. E. Dennis, "On the Superlinear and Quadratic
Convergence of Primal-Dual Interior Point Linear Programming
Algorithms," SIAM Journal on Optimization, 2, pp. 304-324, 1992.

Zhang, J., and L. Yixun, "Computation of the Reverse Shortest Path Problem,"
Journal of Global Optimization, 25(3), pp. 243-261, 2003.

Zhang, Y., and D. Zhang, "On Polynomiality of the Mehrotra-Type Predictor-
Corrector Interior-Point Algorithms," Mathematical Programming, 68,
pp. 303-318, 1995.

Zielinski, P., "The Computational Complexity of the Relative Robust Shortest
Path Problem with Interval Data," European Journal of Operational
Research, 158(3), pp. 570-576, 2004.

Zionts, S., "The Criss-Cross Method for Solving Linear Programming
Problems," Management Science, 15(7), pp. 426-445, March 1969.

Zionts, S., Linear and Integer Programming, Prentice-Hall, Englewood Cliffs,
NJ, 1974.

Zipkin, P., "Bounds for Aggregating Nodes in Network Problems,"
Mathematical Programming, 19, pp. 155-177, 1980.

Zipkin, P., and K. Raimer, "An Improved Disaggregation Method for
Transportation Problems," Mathematical Programming, 26(2), pp. 238-
242, 1983.

Zornig, P., Systematic Construction of Examples for Cycling in the Simplex
Method," Computers and Operations Research, 33(8), pp. 2247-2262,
2006.

Zornig, P., "A Note on Cycling LP Examples with Permutation Structure,"
Computers and Operations Research, 35, pp. 994-1002, 2008.

Zoutendijk, G., Methods of Feasible Directions, Elsevier, NY, 1960.

INDEX

Active constraint, binding, tight, 71
Active nodes, 547
Activity level, 2
Adding:

new activity, 301
new constraint, 302

Addition:
Matrices, 52
Vectors, 46

Additivity assumption, 3
Adjacent:

bases, 106,222,613
extreme directions, 255
extreme points, 73, 254
nodes, 455

Adjoint matrix, 60
Affine:

combination, 48
subspace, 48
transformation, 404
scaling algorithm, 444, 429, 430,

451
Affine scaling methods, 429, 430, 431,

444,445,451
Affirmative action rule, 181, 198, 491
Aggregation method, 389, 563
Aircraft assignment problem, 331
Air quality problem, 37
Algebra of simplex method, 108
Algebraically redundant, 162
Algorithm:

affine scaling, 429, 430, 431, 444,
445,451

assignment:
alternating basis, 544, 564
Kuhn's Hungarian, 535, 541,

564
successive shortest path, 546,

564
Benders, 371,372, 388
bounded simplex, 220, 230, 478
bounded variables affine scaling,

446
Busacker-Gowen, 672
column generation, 339, 343
criss-cross, 333
cutting plane, 305, 372
Dantzig-Wolfe, 340, 680
decomposition, 340, 642
Dijkstra, 620

dual simplex, 499
Fourier-Motzkin, 144
generalized network simplex, 494,

512
good, 449
heap Dijkstra, 633
interior point methods, 429
Karmarkar, 402, 409
Khachian,401,437,450
Klein, 672
labeling, 482, 589, 613, 633
Lagrangian relaxation, 371, 373
maximal flow, 611, 678
multicommodity flows, 639
negative circuit, 632, 634
network simplex, 453, 474
network synthesis, 607, 654, 680
out-of-kilter, 570, 573, 586, 605
partitioned shortest path, 635
path-following, 431
predictor-corrector, 435
primal-dual path following, 431
primal-dual simplex, 285
projective, 402, 450
revised simplex, 202
self-dual, 333
shortest path, 546, 564, 620, 625,

639, 679
simplex, 91, 120,466,522
threshold partitioned shortest path,

637
transportation, 522

Alternative optimal solutions, 20, 92,
115

Algebra of the simplex method, 108
Algebraically redundant, 162
Alternating path basis algorithm, 544,

564
Analysis:

big-M method, 165, 172
convex, 45
parametric, 312
postoptimality (sensitivity), 295
two-phase method, 154

Angular structure, 361, 362
Antecedent nodes, 483
Anticycling rules, 186
Applications of linear programming:

aircraft assignment problem, 331
air quality problem, 37

733

734 Index

assignment problem, 535
capital budgeting, 11
copper market, 510
coal blending and distribution, 15,

36
cutting stock, 10, 191,384
discrete control problem, 386
distribution problem, 37
equilibrium problems, 38, 324
facility location problem, 30
feed-mix, 8, 29
game theory problems, 41, 324
housing renewal planning problem,

34
investment problem, 29, 31, 34
maximal flow problem, 607
menu planning problem, 30
minimal-cost maximal flow

problem, 672
minimal-cost network flow

problem, 453
multicommodity flow problem, 639
personnel training problem, 30
production scheduling, 9, 31, 33
production inventory, 37
production-transportation-

inventory problem, 505
project management problem, 669
project selection problem, 34
rocket launching problem, 35
scheduling problems, 9, 31, 32, 33,

36
tanker scheduling, 13
tourism problem, 332
traffic assignment problem, 37, 675
transportation problem, 11, 32, 513
two-stage stochastic problem with

recourse, 39
warehouse location problem, 388

Approach-dependent shortest path
problem, 639, 679

Arborescence, 456, 622, 631
Arc:

capacities, 608
definition, 453
in-kilter/out-of-kilter, 561
label eligible, 569
one-arcs, 545
zero-arcs, 539

Arc disjoint paths, 664
Arc-path formulation, 608, 666
Artificial intelligence modeling

approach, 42
Artificial technique:

single constraint, 293
single variable, 173

Artificial variable, 153, 198, 522
Assignment problem:

alternating basis, 544, 564
covering, 540, 560, 666
definition, 535
dual problem, 537
finite convergence, 543, 550
independent cells, 540, 560, 666
(Kuhn's) Hungarian algorithm

modifying dual variables, 540
partial solution, 540
polytope, 537, 561, 564
problem, 535
reduced matrix, 538
successive shortest path, 546

Assumptions in linear programming, 3
Augmented matrix, 56, 61
Augmented threaded index, See also

Data structures, 482
Average-case complexity, 449

Back substitution, 56
Balanced transportation problem, 514
Barrier function, 444
Barrier problem, 431
Basic feasible partition, 222
Basic feasible solution:

bounded variables, 222
definition, 62, 94, 95
degenerate, 95, 98, 222
existence, 101
improving, 111, 223
initial, 129, 151, 293, 475, 489, 522
nondegenerate, 95, 222
number of, 97, 224
optimal, 21, 104,225
relationship to extreme points, 99

Basic dual solution, 282
Basic solution, 62, 95
Basic variables, 95, 222
Basis:

adjacent, 106
alternating path, 544, 564
assignment problem, 561
compact, 221
complementary dual, 282
crash, 173
definition, 49, 61, 95
entry criterion, 106, 111, 121, 178,

180,225,493
exit criterion, 112, 121, 178, 180,

479, 527

Index 735

generalized network, 494, 512
Karmarkar's algorithm, 424
matrix, 61, 95
maximal flow problem, 613
multicommodity flow problem, 649
network flow problem, 461, 504
number of, 97, 224
optimal, 21, 104,225
relationship to trees in networks,

461,463,518
transportation, 518
triangularity of in networks, 463,

518
working, 221

Basis equivalent chain, 465, 469
Benders' partitioning procedure, 371,

372, 388
Bidirectional search, 452
Big-M method:

analysis, 167
comparison with two-phase

method, 168
description, 165, 172

Binary encoding, 394
Binding constraints, active, tight, 71
Bipartite graph, 514, 536
Bland's cycling prevention rule, 180,

184,198,230
Block diagonal constraint matrix, 361,

362
Blocking hyperplane, constraint, 106
Blocking variable, 106, 112
Block pivoting, 134, 599, 613
Bounded set, 20, 75
Bounded variable, 220, 478
Bounded variables affine scaling

algorithms, 446
Boxstep method, 374, 390, 392
Branch-and-price, 392
Breakthrough, 576, 586, 594
BTRAN, 209
Bumps, 219
Busacker-Gowen algorithm, 672

Canonical form:
of duality, 259
of linear program, 5, 71, 104
of simplex tableau, 126

Capacitated network, 454
Capacitated transportation problem,

559
Capacity:

arc, 478, 608
cut, 609

disconnecting set, 676
forward cut, 609

Capital budgeting problem, 11
Caratheodory theorem, 77
Central path, 432
Chain:

basis equivalent, 465, 469
in graph, 456
in transportation tableau, 517

Change:
in basis, 50, 109
of constraint coefficients, 298
of cost vector, 296
of right-hand-side, 297

Chord, 70
Circuit, 456, 634
Circulatory network flow problem, 568
Circulation, 568
Class P of problems, 396
Closed chain, 456
Closed interval, 29
Closed path, 456
Closed system, 439
Cofactor, 59
Column generation scheme, 339, 343,

372, 657, 658, 680
Column generation, stabilized, 344,

374,391,392
Column pivoting, 250
Column rank, 61
Column simplex method, 250
Column vector, 45
Combination:

convex, 64
linear, 48

Communication network, 654
Compact basis, 221
Compact form, 214
Comparison:

of simplex and revised simplex,
205

Complementarity theorem, 327
Complementary

basic dual solution, 282
pair of variables, 269
slackness conditions, 239, 268, 538,

569
slackness theorems, 268, 336

Complete graph, 456, 514
Complexity:

average-case, 449
computational, definition, 81, 394
genuinely (strongly) polynomial,

396,450,617

736 Index

of Karmarkar's algorithm, 418
of Khachian's algorithm, 437
order, 394
polynomial, 394
ofPSP algorithm, 636
of shortest path problem, 617, 622,

633
of simplex method, 397
strongly (genuinely) polynomial,

396,450,617
Complicating constraints, 339
Complicating variables, 371
Computational complexity, 394, 397,

418
Component of graph, 456
Concave function, 70
Cone:

convex, 68, 237
generated by vectors, 69
polyhedral, 71
recession, 74

Connected graph:
strongly, 456
weakly, 456

Conserving flow, 567, 595
Constraint:

active, binding, tight, 71
artificial, 293
complicating, 339
coupling, 386
definition, 2
functional, 2
matrix, 2
nonnegativity, 2

Construction of basic feasible
solutions, 94

Consumption column, 301
Control variable, 9
Convergence:

assignment algorithms, 543, 552
bounded variable simplex method,

229
dual simplex method, 285
interior point methods, 429
Karmarkar's algorithm, 418
Khachian's algorithm, 439
maximal flow algorithm, 611
out-of-kilter algorithm, 585, 591
primal-dual method, 292
shortest path algorithms, 622, 630,

633
simplex method, 122, 181

Convex:
analysis, 45

arc costs, 605
combination, 64
cone, 68
function, 64, 70
set, 64

Convexity constraint, 362
Coordinate ascent, 605
Coordinate vector, 46
Corner point, 72
Corners of cycle in transportation

tableau, 517, 520
Corrector step, 435
Cost coefficient, 1
Court scheduling problem, 36
Covering in assignment problem, 540,

560, 666
CPLEX, 511,605
Cramer's Rule, 60
Criss-cross algorithm, 333
Criterion function, 1
Critical path problem, 600, 669
Cut, 305, 372, 609
Cut-set, 609
Cutting plane algorithms, 305, 372
Cutting stock problem, 10, 191, 384
Cycle:

in graph, 456, 575, 634
in transportation tableau, 517, 520

Cycle method for computing z ,·, - c,·,·,
525, 564

Cycling:
example, 175
geometry, 177, 199, 337
in networks, 482, 509
phenomenon, 106,229
practical prevention rule, 180, 198
prevention rules, 178
validation of prevention rules, 182

Dantzig's Rule, 121
Dantzig-Wolfe decomposition method,

340, 642, 680
Data structures, for network flows:

antecedents, 483
augmented threaded index, 482
down, 482
DUAL vector, 485
final of node, 484
grafting, 486
FLOW vector, 485
immediate successor, 483
last successor, 484
list structures, 482
level, 482

Index 737

lower tree, 488
next, 483
ORIENT vector, 484
postorder traversal, 483
predecessor, 482
preorder distances, 483
preorder traversal, 483
reverse thread, 483
subtree rooted at node, 482
successors, 482
thread, 482
upper tree, 488

Decision problem, 396, 436
Decision variables, 2
Decomposition algorithm:

algorithm/principle, 339
block diagonal structure, 361
economic interpretation, 369
getting started, 353
lower bound on objective function,

345, 364
multicommodity network flow

problem, 641
nested, 384, 385
network synthesis problem, 607,

654, 680
unbounded subproblem region, 354

Defining:
hyperplane, 72
variable, 104

Degeneracy:
in assignment problem, 537
in basic feasible solutions, 72, 95,

98,221,222,229
in networks, 488
order, 72
relationship

to cycling, 175
to shadow prices, 273

in transportation problems, 523,
528,531

Degenerate iteration/pivot, 106, 229,
230

Degree of node:
definition, 457
in-degree, 457
out-degree, 457

Degrees of freedom, 104
Density, 206
Dependent:

constraints, 61
variables, 95, 221
vectors, 49

Destination in transportation problems,
513

Determinant of matrix, 59
Deterministic assumption, 3
Digraph, 453, 455
Dijkstra's algorithm, 620
Dimension:

of basis, 50
of Euclidean space, 48
full, 73
of matrix, 51
of set (region), 73
of vector, 45

Directed:
arc, 453
cycle, 456
network, 453

Direction:
associated with unbounded

solution, 118
of convex set, 66
distinct, 68
extreme, 68, 71
of polyhedral set, 66
of ray, 66, 118
recession, 66, 71

Disconnecting an arc, 457
Disconnecting set, 676
Discrete control problem, 386
Discrete optimization, 4
Distribution problem, 38
Divisibility assumption, 3
Dominant requirement tree, 655, 656
Dot product, 47
Dual:

affine scaling, 431
angular structure, 384
canonical form, 259
complementary basis, 282
feasibility and primal optimality,

239, 243
formulation, 259
mixed forms, 262
of assignment problem, 537
of circulatory network-flow

problems, 569
of dual, 261
of maximal flow problem, 610
of out-of-kilter formulation, 569
phase, 577, 587
problem, 239
relationship with primal problem,

264
simplex method, 279

738 Index

standard form, 260
variables, 239, 260, 269

Duality:
Fundamental theorem, 267
and Karush-Kuhn-Tucker

conditions, 265
and Lagrangian multipliers, 239,

243,371
economic interpretation, 270
gap, 324, 592
involutory property, 262
origin, 265
strong, 266
supervisor's principle, 268
theorems, 267, 268
weak, 264

Dual feasibility, 239, 278
Dual simplex method:

bounded variables, 333
development, 277, 499
finite convergence, 285
getting started, 293
summary, 279, 281

Dual variable method, 525
Dynamic shortest path problems, 679
Dynamic stochastic shortest path

problems, 639, 679
Dynamic trees, 512

Economic interpretation:
of decomposition, 369
of duality, 270

Edge
of polyhedron, 73
of graph, 454

Efficient solutions, 8
Elementary matrix, 207
Elementary matrix operations, 54
Elimination form of the inverse, 256
Empty feasible region, 22
Encoding:

binary, 394
stroke, 396, 617

End node of a tree, 457, 518
Entry criterion, 106, 111, 121, 178,

180,225,493
Epigraph, 87
Equal flow constraint, 511
Equality constrained polyhedron, 82
Equilibrium, 39
Equivalent weights, 199
Eta vector, 208
Euclidean norm, 47
Euclidean space, 48

Excess flow, 679
Excess function, 594
Exit criterion, 112, 121, 178, 180,479,

527
Extreme direction, 68, 71, 74
Extreme point:

adjacent, 73, 254
definition, 64, 71,72
optimality at, 91, 114
relationship to basic feasible

solutions, 99
representation theorem, 75, 76

Extract a node/arc, 628, 633, 635
Extreme ray, 68, 71, 74

Face:
improper, 73
proper, 71, 73

Facility location, 30
Factorization:

interior point methods, 450
LU, 212
QR, 443

Fair market price, 271, 273
Farkas' Lemma, 234, 235
Feasible:

flow, 567
region/space, 2
solution, 2
system, 23

Feed mix problem, 8, 29
Fibonacci heaps, 679
Final node, 484
Finite convergence, see Convergence
Finite optimal solution, 91, 114
First-in-first-out, 635, 638
Flow:

in arc, 454
augmentation, 548, 568
conservation equations, 454
excess, 679
maximal, 607
minimal-cost, 454
multicommodity, 639
with gains, 510, 512

Forest graph, 457
Forward arcs of a cut, 609
Forward cut, 609
Forward-star, 455, 628
Fourier-Motzkin elimination method,

144
Fractional part, 304
From-node, 455
FTRAN, 209

Index 739

Full dimensional, 73
Full rank matrix, 61
Functional constraint, 2
Fundamental theorem of duality, 267

Game theory, 42, 324
Gaussian reduction, 56, 63, 214
Gaussian reduction matrix, 214
Gaussian triangularization, 212
Gauss-Jordan reduction, 56, 62, 212
Generalized linear programming

problem, 385
Generalized networks, 512, 494
Generalized transportation problem,

558
Generalized upper bounding, 257
General solution of linear equations, 62
Genuinely (strongly) polynomial, 396,

450, 617
Geometric interpretation:

Farkas' lemma, 236
Karush-Kuhn-Tucker conditions,

237
Geometric redundancy, 71, 190
Geometric solution of linear programs,

18, 104
Geometry of cycling, 177, 199, 337
Gomory's dual fractional cut, 305
Gradient, 29, 65
Grafting, 486
Graph:

bipartite, 514, 536
complete, 456, 514
component, 456
connected, strongly, weakly, 456
definition, 455
digraph, 455
forest, 457
mixed, 455
proper, 455
tree, 456
undirected, 455

Half line, 69
Half-space, 65, 66
Heap Dijkstra procedure, 633
Heap implementation, 633, 637, 679
Hidden networks, 512
Hirsch conjecture, 449, 564
Hitchcock (transportation) problem, 42,

514
Homogeneous system, 74, 267
Housing renewal planning problem, 34

Hungarian (Kuhn's) method, 535, 541,
564

Hyperplane:
definition, 65
normal (gradient) to, 65

Hypograph, 87
Identity matrix, 52
Immediate successor, 483
Improving basic feasible solutions,

111,223
Inputed values, 273
Inactive constraint, 71
Incident, 454
Inconsistent system, 21, 22, 190
Incremental cost, 271
In-degree of node, 457
Independent cells in assignment

problem, 540, 560, 666
Independent variables, 95, 221
Independent vectors, 48
Induced by node set, 456
Infeasible, 21
Initial basic feasible solution, 129, 151,

293, 475, 489, 522
In-kilter, 570
Inner optimization problem, 371
Inner product, 47
Input length of problem, 394
Input-output management, 259
Insert operations, 633
Instance of problem, 394
Integer part of coefficient, 304
Integer programming problem, 304,

536
Integer property:

in assignment problems, 536
in network flow problems, 463
in transportation problems, 517

Integer variable, 304
Interior point methods, 429, 605
Intermediate node, 454
Interval:

closed, 29
open, 29
of uncertainty, 397

Inverse matrix:
calculation, 56
condition for existence, 56
definition, 56
from simplex tableau, 132
product form, 140,207

Investment problem, 29, 31, 34
Involutory property, 262
Irreducible infeasible system, 43

740 Index

Irrelevant constraint, 71
Iteration, 106, 109,473

Karmarkar's (projective) algorithm:
complexity analysis, 418
convergence, 418
description, 402
determining an optimal basis, 424
form of linear program, 414
potential function, 420
sliding objective method, 424

Karush-Kuhn-Tucker conditions:
for equality constraints, 241
geometric interpretation, 237
for inequality constraints, 237
optimality conditions, 265
perturbed, 432
proof, 237
relationship to:

duality, 265
simplex method, 242

Key for heaps, 633
Khachian's algorithm, 401, 437, 450
Kilter:

number, 571
state, 571,572

Kirchhoff equations, 454
Klee-Minty polytope, 398, 399
Klein's algorithm, 672
Knapsack problem, 138, 246
Kuhn's Hungarian algorithm, 537

Label-correcting algorithm, 628
Label eligible arc, 576
Labeling algorithm:

maximal flow, 613
network simplex, 482
out-of-kilter, 589
shortest path, 633

Label-constrained shortest path
problem, 679

Labeling method, 607
Label-setting algorithm, 621, 624, 628
Lagrangian dual problem, 335, 374
Lagrangian multipliers, 239, 243, 371
Lagrangian relaxation, 371, 373
Lagrangian subproblem, 374
Last successor, 484
Leading node, 474
Leaf node, 457
Least-recently-considered rule, 181,

491
Least squares problem, 407
Leaving variable, 106

Left-hand shadow price, 275
Legitimate variables, 153
Length of a stage, 181
Leontief input-output model, 42
Level index, 482
Lexicographically nonnegative vector,

182
Lexicographic ordering, 198
Lexicographically positive vector, 182
Lexicographic cycling prevention rule,

178,285
Linear:

dependence, 49
independence, 48
subspace, 48

Linear combination, 48
Linear equations:

basic solution, 62
Gaussian reduction, 56, 63
general solution, 62
number of solutions, 62
redundant, dependent, 61

Linear fractional program, 404
Linear inequalities, 2, 4
Linear programming problem:

assumptions in, 3
canonical form, 5, 6
examples, 7
formulation, 7
generalized, 385
geometry, 18
standard form, 5, 6

Linear subspace, 48
Linear transformation, 404, 652
Line belonging to set, 90
Line search problem, 604
Line segment, 64
Link (arc), 453
List structures, see Data structures
Longest path problem, 669
Low-order polynomial bound, 395
Lower bounds:

on objective function, 345, 364
on variables, 220, 478, 655

Lower tree, 488
Lower triangular matrix, 53
LU decomposition/factorization, 212

Machine location problem, 29
Machine scheduling problem, 31, 33
Manhattan distance, 30
Manipulation of linear program, 4
Marginal cost, 471
Master array, 342

Index 741

Master Problem, 339, 340, 355, 362,
371

Matching, 536
Mathematical model, 7
Matrix:

addition, 52
adjoint, 60
augmented, 56
definition, 51
determinant, 59
diagonal, 58
elementary, 207
Gaussian reduction, 56, 63, 214
generator, 220
identity, 52
inverse, 56, 63
multiplication, 46, 52
multiplication by a scalar, 52
nonsingular, 56
operations, 52
partitioned, 53
permutation, 214
pivot, 214
positive definite, 438
postmultiplying, 208
premultiplying, 208
rank, 61
singular, 56
skew-symmetric, 53, 325
symmetric, 53
transpose, 53
triangular, 53
upper Hessenberg, 218
of vectors, 46
zero, 52

Matrix minimum method, 558
Maximal flow problem:

algorithm, 611,612, 678
basic solutions, 613
connected subgraphs, 456
cuts, 609
dual problem, 610
formulation, 607
max flow-min cut theorem, 612,

678
multicommodity, 639, 676
scaling algorithm, 617

Maximal flow realizable network, 677
Maximum spanning tree, 656
Menu planning problem, 30
Minimal-cost flow problem:

algorithm, 474, 478
basic characterization, 461, 504
formulation, 453

initial solution 475
lower-upper bounds on arc flows,

478
simplex tableau, 481

Minimal-cost-maximal flow problem,
672

Minimal capacity, 661, 676
Minimal cut, 609
Minimal forward cut, 676
Minimum ratio test, 121, 280
Minimum weighted matching problem,

536
Modeling, 7
Modeling languages, 257
Multicommodity:

basis characterization, 649
decomposition algorithm, 641
maximal flow problem, 640, 680
minimal-cost flow problem, 639,

640, 642
minimal disconnecting set, 676
transportation problem, 381

Multi-criteria shortest path problem,
679

Multiobjective program, 195
Multiterminal network, 657

Negative cost circuit, 632, 634
Nested decomposition method, 384,

385
NETGEN, 511,605
NETOPT, 511,605
Network analysis, 654
Network design, 654
Network, see Graph

circulatory, 568
connected, 456
directed, 453
generalized 494, 512
hidden, 512

Network flow problem, 453, 567, 608,
620

Network flow with gains problem, 494,
512,558

Network simplex algorithm:
computing:

basic solutions, 466
dual variables, 469

determination:
entering variable, 469
exit variable, 472

initial basic feasible solution, 475
labeling algorithm for, 482
list structures for, 482

742 Index

lower-upper bounds, 478
pivoting, 472
tableau associated with, 481

Network synthesis problem, 607, 654,
680

New activity, 301
NEXT list, 635
Next node, 483
Nodal balance, 454
Node:

adjacent, 455
capacitated, 501
definition, 453
end, 457
from-, 455
intermediate, 454
leading, 474
leaf, 457
potential, 470
rank (degree), 457
root, 461
to-, 455
transshipment, 454

Node-arc formulation:
maximal flow problem, 608
multicommodity minimal-cost flow

problem, 641
Node-arc incidence matrix, 459
Nonadjacent extreme point methods,

149
Nonbasic

matrix, 61, 95
variables, 95
variable-space, 104

Nonbinding constraint, 71
Nonbreakthrough, 577, 586, 594
Nonconvex, 64
Nondegeneracy, 95, 222, 557
Nondegenerate basic feasible solution,

95, 222
Nondegenerate iteration/pivot, 107
Nonnegativity constraints, 2
Nonsimple path, 456
Nonsingular matrix, 56
Normal to hyperplane, 48, 65
Norm of vector, 47
Northwest corner rule, 522
Notation, 27
NOW list, 635
NP-complete, 616
Null space, 407
Number of basic feasible solutions, 97,

224

Objective contour, 19
Objective function:

definition, 1
parametric, 312
Phase I, 154
Phase II, 155
piecewise-linear and concave, 315
piecewise-linear and convex, 318,

503
unbounded optimal value, 21, 27,

117,265,267,280,288
value, 2

One-arc, 545
Open halfspace, 237
Open interval, 29
Open set, 87
Optimal (basic feasible) solution, 21,

104, 225
Optimal control problem, 9
Optimal extreme point, 91, 114
Optimality conditions/criterion, 18, 21,

25, 114, 237, 242, 280, 288
Optimal location problem, 29
Optimal rounding procedures, 409,

410,439
Optimal solution set, 20
Optimality gap, 618
Optimization vs. decision problems,

396, 436
Oracle, 295
Origin, 46
Origin-destination matrix, 675
Origin in transportation problems, 513
Orthogonal, 48
Out-degree of node, 457
Outer linearization, 374
Out-of-kilter algorithm:

algorithm, 573, 586, 605
arc, 570
dual of, 569
dual variable change, 577
finite convergence, 585, 591
flow change, 574
formulation, 567
kilter number and states, 571, 572

Packed form, 206, 257
Parallel computations, 256
Parametric analysis

of cost vector, 312
of right-hand-side vector, 313
shadow prices, 318

Pareto-optimal solution, 8, 679
Partial pricing, 206, 220, 256

Index 743

Partition:
basic feasible, 222
strongly feasible basis, 182, 229,

488,491,564
Partition matrix, 53
Partitioned shortest path algorithm, 635
Partitioning method, 371
Path-following algorithms, 451
Path in graph:

closed, 456
definition, 455
nonsimple, 456
simple, 456

Payoff matrix, 324
Penalty function, 591
Perceptron-like algorithm, 452
Perfect competition equilibrium, 38,

324
Performance guarantee, 393
Permutation matrix, 214
Permutation structure, 178, 198
Perpendicular, 48
Persistency, 7
Personnel training problem, 30
Perturbation:

of cost vector, 312
of right-hand-side vector, 315

Perturbation method, 196, 328, 557
Perturbed KKT conditions, 432
Phase I method, 198
Phase I problem, 155
Phase II problem, 155
Piecewise-linear objective function,

315,318,503
Pivot:

block, 134,599,613
column, 250
definition, 106, 127
element, 127
matrix, 214

Player:
column, 324
row, 324

Pointing toward root, 488
Polyhedral:

cone, 70, 71
set, 70

Polyhedron, 70
Polynomial complexity:

definition, 394
genuine (strong), 396, 450, 617
issues, 39

Polynomially bounded, 394
Polynomial-time :

algorithm, 81,394, 396, 546
primal simplex, 512
rounding scheme, 409, 410, 442,

451
scaling algorithm, 617

Polytope, 70, 75
Positive definite matrix, 438
Post-optimality analysis, 296
Postorder traversal, 483
Potential function, 418, 420
Predecessor index, 482
Predictor-corrector algorithm, 435
Preemptive priority:

approach, 195
equivalent weights, 195

Preflow-push strategy, 617, 619, 678
Preorder distance, 483
Preorder traversal, 483
Price (fair), 272
Price-directive decomposition, 339,

373,392
Price-quantity equilibrium, 39
Pricing, 121, 206
Primal:

breakthrough, 594
feasibility, 239
problem, 2, 259
simplex method, 108, 121, 220

Primal^dual method:
case of unbounded dual, 288
development, 286
dual of restricted primal problem,

287
Hungarian algorithm, 535, 541, 564
modifying dual solution, 287
out-of-kilter method, 567
path-following methods, 450
restricted primal problem, 286
summary, 288
tableau format, 290

Primal-dual relationships, 264
Product form of inverse, 140, 207
Production-inventory problem, 37
Production scheduling problem, 9, 31,

33
Production-transportation-inventory

problem, 505
Programming problem:

generalized linear, 385
large scale, 339
linear, 1

Projective:
algorithm, 450
transformation, 404

744 Index

Project management, 669
Project selection problem, 34
Proportionality assumption, 3
Pseudoflow, 593, 619, 679
Pseudo-polynomial, 396, 617
Pseudorooted spanning forest, 496
Purification scheme, 408, 410, 451

QR factorization, 443

Rank:
of matrix, 61
of network flow matrix, 459
of node, 457
of transportation matrix, 517

Ranking extreme points, 196, 199
Ray, 66, 118
Recession:

cone, 74
direction, 66, 74

Rectilinear distance, 30
Reduced assignment matrix, 538
Reduced cost coefficients, 104
Reduced matrix, 538
Redundant:

algebraically, 162
constraints, 61, 71, 73
geometrically, 71, 190

Regression equation, 207, 256
Regularizing, 414
Relationships:

primal vs. dual objective values,
264

primal vs. dual problems, 60, 265,
266

RELAX, 511
RELAX-IV, 605
Relaxation:

algorithms, 593, 605
Lagrangian, 371, 373
strategy, 372, 418

Relaxed master program, 372
RELAXT, 511
Replacing vector in the basis, 50
Representation of nonbasic vector, 132,

465, 520
Representation of polyhedral sets, 75
Representation theorem:

bounded sets, 75
unbounded sets, 76

Requirement space, 22, 23, 25
Rerooting, 487
Residual capacities, 595, 618
Resolution theorem, 77

Resource-directive decomposition,
373, 392

Restricted primal problem, 286
Restriction strategy, 405, 418
Restrictions, see Constraint
Return arc, 608
Reverse arcs of a cut, 609
Reverse cut, 609
Reverse shortest path problems, 679
Reverse-star, 455
Reverse thread index, 483
Revised simplex method:

comparison with simplex method,
205

summary, 201
tableau, 202

Right-hand derivative, 604
Right-hand shadow price, 275
Right-hand-side column, 126
Right-hand-side vector, 2, 126
RNET, 511,605,678
Robust shortest path problems, 679
Rocket launching problem, 35
Root arc (root), 461
Root node, 456, 461
Rooted spanning forest, 463, 504
Rooted spanning subgraph, 462
Rooted spanning tree, 461, 518, 650
Rounding scheme, 409, 410, 442, 451
Row generation technique, 372
Row operations, 54
Row rank, 61
Row vector, 45
Row zero, 126

Saturated arc, 594, 665
Scan eligible list, 628
Scalar multiplication:

of matrix, 52
of vector, 46

Scaling, 219
Scaling method, 617, 618
Schwartz inequality, 47
Self-dual algorithm, 333
Sensitivity analysis:

addition:
new activity, 301
new constraint, 302

bounded variables case, 332
change in:

constraint matrix, 298
cost vector, 296
right-hand-side vector, 297

tolerance approach, 308

Index 745

bounded, 20, 75
convex, 64
operations, 29

Shadow prices, 271, 273
under degeneracy, 273
right-hand/left-hand, 275
via parametric analysis, 318

Sharp labels, 630
Shortest path:

algorithm:
arbitrary costs, 625, 630, 633,

635
nonnegative costs, 620

approach-dependent, 639, 679
arborescence, 622
bicriteria, 679
complexity analysis, 622, 630, 633
dynamic problems, 679
dynamic stochastic problems, 639,

679
extensions, 639
flow augmentations, 679
interpretation of primal simplex,

622, 632
label-constrained, 639, 679
multi-criteria, 679
partitioned method, 635
polynomial-time algorithms, 635
problem, 547, 600,617,679
reverse path problem, 679
robust problem, 679
stochastic, 639, 679
time-dependent, 639, 679
time-restricted reverse problem,

680
threshold partitioned method, 637,

679
tree, 622, 637, 679

Signature algorithm, 565
Simple path, chain, circuit, cycle, 456
Simplex method:

bounded, 220, 230
column method, 250
complexity, 397
dual, 279
finite convergence, 122, 181, 285
implementation remarks, 180, 219
initial solution, 129, 151, 293, 475,

489, 522
interpretation through KKT

conditions, 242
network, 466
optimality criterion, 104, 225, 280

pivoting, 127
polynomial-time, 512
primal, 108, 121
primal-dual, 288
revised, 202
tableau format, 125, 129
transportation, 522

Simplex multipliers, 121, 267
Simplex path, 107
Simplex set:

definition, 107
volume, 437

Simplex tableau:
bounded, 225
dual, 279
interpretation of entries, 131
network, 481
primal, 125
transportation, 535

Simultaneous equations, see System of
linear equations

Single artificial constraint technique,
293

Single artificial variable technique,
173, 198

Single commodity flow problems, 639
Single node ascent step, 605
Single node breakthrough, 594
Singular matrix, 56
Sink, 454
Size of an instance, 394
Skew-symmetric matrix, 53, 335
Slack variable, 4
Sliding objective method, 424
Solution:

basic feasible, 62, 95
efficient, 8
feasible, 2
optimal, 18
Pareto-optimal, 8
space, 18

Solvers, commercial, 257
Source, 454
Space:

Euclidean, 48
requirement, 22, 23, 25
solution, 18

Spanning:
forest, 457
set, 49
subgraph, 456
tree, 456, 518

Sparse, 206, 219
Special structures, 339

746 Index

Spikes, 219
Stabilized column generation, 344,

374,391,392
Stage, 181,491
Staircase structure, 384
Stalling:

definition, 175, 180, 181
in networks, 488, 493
prevention rules, 491
stages, 181,491

Standard form:
of dual, 260
of linear program, 5, 6

State variable, 9
Steepest edge selection, 219, 256
Stepping stone method, 564
Street distance, 30
Strict complementary slackness

property, 336
Strict convex combination, 64
Stroke encoding, 396, 617
Strong duality, 266
Strongly feasible basic partition, 182,

229, 488, 489
Strongly feasible trees, 489, 491, 564
Strongly (genuinely) polynomial, 396,

450,617
Strong theorem of complementary

slackness, 336
Structural:

constraints, 2
variables, 2

Subgraph:
definition, 456
induced by node set, 456
maximal connected, 456
proper, 456
spanning, 456

Submatrix, 53
Suboptimization, 220, 256
Subproblem, 339, 342, 356, 363, 372
Subtree rooted at a node, 482
Successive linear approximation, 4
Successive shortest path algorithm,

546, 562
Successor nodes, 482
Sum vector, 46
Supervisor's principle, 268
Supporting hyperplane, 88
Surplus variable, 4
Symmetric matrix, 53
Synthesis problem, 607, 654, 680
System of linear equations:

basic solution, 62

dependent, 61
Gaussian reduction, 56, 63
Gauss-Jordan reduction, 56, 62,

212
general solution, 62
number of solutions, 62
redundant, 61
solving, 55

Tableau:
assignment, 538
bounded simplex, 225
dual simplex, 279
primal-dual, 290
revised simplex, 202
simplex, 125,481,535
transportation, 514
two-phase, 164

Tangential approximation method, 374
Tangential support, 374
Tanker scheduling problem, 13
Technological coefficients and

constraints, 2
Termination criterion:

infeasibility, 21, 22, 24, 155, 169,
170,280,288

optimality, 18, 19, 114, 169, 242,
280, 288

unboundedness, 21, 27, 92, 117,
169,231,280,288

Theorems of the alternative, 235
Thread index, 482
Threshold partitioned shortest path

algorithm, 637, 679
Tie breaking rule, 178
Tight constraint, binding, active, 71
Time-space network representation,

638
Tolerance sensitivity approach, 308
To-node, 455
Totally unimodular matrix, 463, 464,

517
Tourism problem, 332
Traffic assignment problem, 37, 675
Transposition of matrix, 53
Transportation problem:

algorithm, 522
balanced, 514
characterization of basis for, 518
corners of cycle in tableau, 517,

520
definition, 11,513
degeneracy in, 528, 534
properties of constraint matrix, 516

Index 747

rank of matrix, 517
representation of nonbasic vector,

520
simplex tableau associated with,

535
starting solution, 522, 558
tableau, 514

Transshipment:
node, 454
problem, 551, 562

Traveling salesman problem, 501
Tree:

correspondence to basis in network
flows, 461,463, 518

definition, 456
dominant requirement, 655, 656
end node, 457, 518
equivalent characterizations, 458
maximum spanning tree, 656
one-, 458
properties, 457, 458
rooted, 461, 518, 650
spanning, 456, 518, 650
strongly feasible, 489, 491, 564
uniform requirement, 661

Triangularity of basis in network flows,
463,518

Triangularization, 212
Triangular matrix, 53
Two-person zero-sum game, 324
Two-phase method:

analysis, 157
comparison with big-M method,

168
description, 154

Two-stage stochastic program with
recourse, 39

Unary encoding, 396, 617
Unbounded:

optimal value, 21, 27, 92, 117, 169,
231,265,267,280,288

polyhedral set, 21, 76
subproblem region in

decomposition algorithms, 354
Uncapacitated problem, 454
Undirected graph, 455, 654
Uniform requirement tree, 661
Unimodularity, 517
Unique:

optimal solution, 20, 114
solution, 62

Unit vector, 46
Unrestricted variables, 4, 147

Updated:
basis inverse, 208, 307
column vector, 209, 342
LU factors, 217
network list structures, 485
tableau, 128, 227, 228, 307

Upper bounds on variables, 220, 478
Upper Hessenberg matrix, 218
Upper tree, 488
Upper triangular, 53
Valid cut, 304
Valid inequality, 304
Variable:

artificial, 153, 198,522
basic, 95
blocking, 106, 112
bounded, 220, 478
definition, 2
dual, 239, 260, 269
entering basis, 106, 121, 178,225,

493
flow, 454
integer, 304
leaving basis, 112, 121, 178,479,

527
legitimate, 153
nonbasic, 95
slack, 4
surplus, 4
unrestricted, 4, 147

Variable splitting technique, 511
Variable upper bounding, 257
Vector:

basic, 49
definition, 45
dependent, 49
direction, 66, 71
eta, 208
Euclidean space, 48
independent, 48
lexicographically nonnegative, 182
lexicographically positive, 182
norm, 47
normal, 48, 67
operations, 46
sum, 46
unit, 46
zero, 46

Vertex, 72
Vertex of ray, 66, 118
Vogel's approximation method, 524,

558
Volume of simplex, 437

748 Index

Warehouse location problem, 388
Weak duality, 264 Zero:
Weak theorem of complementary matrix, 52

slackness, 268 vector, 46
Weighted average, 64 Zero-arcs, 545
What-if analysis, 295 Zero-sum game, 324
Working basis, 221

	Title Page
	CONTENTS
	Preface
	ONE: INTRODUCTION
	1.1 The Linear Programming Problem
	1.2 Linear Programming Modeling and Examples
	1.3 Geometric Solution
	1.4 The Requirement Space
	1.5 Notation
	Exercises
	Notes and References

	TWO: LINEAR ALGEBRA, CONVEX ANALYSIS, AND POLYHEDRAL SETS
	2.1 Vectors
	2.2 Matrices
	2.3 Simultaneous Linear Equations
	2.4 Convex Sets and Convex Functions
	2.5 Polyhedral Sets and Polyhedral Cones
	2.6 Extreme Points, Faces, Directions, and Extreme Directions of Polyhedral Sets: Geometric Insights
	2.7 Representation of Polyhedral Sets
	Exercises
	Notes and References

	THREE: THE SIMPLEX METHOD
	3.1 Extreme Points and Optimality
	3.2 Basic Feasible Solutions
	3.3 Key to the Simplex Method
	3.4 Geometric Motivation of the Simplex Method
	3.5 Algebra of the Simplex Method
	3.6 Termination: Optimality and Unboundedness
	3.7 The Simplex Method
	3.8 The Simplex Method in Tableau Format
	3.9 Block Pivoting
	Exercises
	Notes and References

	FOUR: STARTING SOLUTION AND CONVERGENCE
	4.1 The Initial Basic Feasible Solution
	4.2 The Two–Phase Method
	4.3 The Big–M Method
	4.4 How Big Should Big–M Be?
	4.5 The Single Artificial Variable Technique
	4.6 Degeneracy, Cycling, and Stalling
	4.7 Validation of Cycling Prevention Rules
	Exercises
	Notes and References

	FIVE: SPECIAL SIMPLEX IMPLEMENTATIONS AND OPTIMALITY CONDITIONS
	5.1 The Revised Simplex Method
	5.2 The Simplex Method for Bounded Variables
	5.3 Farkas' Lemma via the Simplex Method
	5.4 The Karush–Kuhn–Tucker Optimality Conditions
	Exercises
	Notes and References

	SIX: DUALITY AND SENSITIVITY ANALYSIS
	6.1 Formulation of the Dual Problem
	6.2 Primal–Dual Relationships
	6.3 Economic Interpretation of the Dual
	6.4 The Dual Simplex Method
	6.5 The Primal–Dual Method
	6.6 Finding an Initial Dual Feasible Solution: The Artificial Constraint Technique
	6.7 Sensitivity Analysis
	6.8 Parametric Analysis
	Exercises
	Notes and References

	SEVEN: THE DECOMPOSITION PRINCIPLE
	7.1 The Decomposition Algorithm
	7.2 Numerical Example
	7.3 Getting Started
	7.4 The Case of an Unbounded Region X
	7.5 Block Diagonal or Angular Structure
	7.6 Duality and Relationships with other Decomposition Procedures
	Exercises
	Notes and References

	EIGHT: COMPLEXITY OF THE SIMPLEX ALGORITHM AND POLYNOMIAL–TIME ALGORITHMS
	8.1 Polynomial Complexity Issues
	8.2 Computational Complexity of the Simplex Algorithm
	8.3 Khachian's Ellipsoid Algorithm
	8.4 Karmarkar's Projective Algorithm
	8.5 Analysis of Karmarkar's Algorithm: Convergence, Complexity, Sliding Objective Method, and Basic Optimal Solutions
	8.6 Affine Scaling, Primal–Dual Path Following, and Predictor–Corrector Variants of Interior Point Methods
	Exercises
	Notes and References

	NINE: MINIMAL–COST NETWORK FLOWS
	9.1 The Minimal Cost Network Flow Problem
	9.2 Some Basic Definitions and Terminology from Graph Theory
	9.3 Properties of the A Matrix
	9.4 Representation of a Nonbasic Vector in Terms of the Basic Vectors
	9.5 The Simplex Method for Network Flow Problems
	9.6 An Example of the Network Simplex Method
	9.7 Finding an Initial Basic Feasible Solution
	9.8 Network Flows with Lower and Upper Bounds
	9.9 The Simplex Tableau Associated with a Network Flow Problem
	9.10 List Structures for Implementing the Network Simplex Algorithm
	9.11 Degeneracy, Cycling, and Stalling
	9.12 Generalized Network Problems
	Exercises
	Notes and References

	TEN: THE TRANSPORTATION AND ASSIGNMENT PROBLEMS
	10.1 Definition of the Transportation Problem
	10.2 Properties of the A Matrix
	10.3 Representation of a Nonbasic Vector in Terms of the Basic Vectors
	10.4 The Simplex Method for Transportation Problems
	10.5 Illustrative Examples and a Note on Degeneracy
	10.6 The Simplex Tableau Associated with a Transportation Tableau
	10.7 The Assignment Problem: (Kuhn's) Hungarian Algorithm
	10.8 Alternating Path Basis Algorithm for Assignment Problems
	10.9 A Polynomial–Time Successive Shortest Path Approach for Assignment Problems
	10.10 The Transshipment Problem
	Exercises
	Notes and References

	ELEVEN: THE OUT–OF–KILTER ALGORITHM
	11.1 The Out–of–Kilter Formulation of a Minimal Cost Network Flow Problem
	11.2 Strategy of the Out–of–Kilter Algorithm
	11.3 Summary of the Out–of–Kilter Algorithm
	11.4 An Example of the Out–of–Kilter Algorithm
	11.5 A Labeling Procedure for the Out–of–Kilter Algorithm
	11.6 Insight into Changes in Primal and Dual Function Values
	11.7 Relaxation Algorithms
	Exercises
	Notes and References

	TWELVE: MAXIMAL FLOW, SHORTEST PATH, MULTICOMMODITY FLOW, AND NETWORK SYNTHESIS PROBLEMS
	12.1 The Maximal Flow Problem
	12.2 The Shortest Path Problem
	12.3 Polynomial–Time Shortest Path Algorithms for Networks Having Arbitrary Costs
	12.4 Multicommodity Flows
	12.5 Characterization of a Basis for the Multicommodity Minimal–Cost Flow Problem
	12.6 Synthesis of Multiterminal Flow Networks
	Exercises
	Notes and References

	BIBLIOGRAPHY
	INDEX

