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Preface 

Neural computing is one of the most rapidly expanding areas of 
current research, attracting people from a wide variety of disciplines. 
These people all bring a different background to the area, and one 
of the aims of this book is to  provide a common ground from which 
new developments can grow. Another aim is to explain the basic 
concepts of neural computation to  an interested audience, and so 
this book is about the whole field of neural networks, covering all 
the major approaches and their important results; more especially, 
it is an introduction, developing the concepts and ideas from their 
simple basics through their formulation into powerful computational 
systems. 

We have tried to  assume as little as possible in the reader, and 
have attempted to  set the book out in a clear and logical order. 
As well as showing the basic concepts behind each of the major 
approaches, these have been put in the context of their historical de- 
velopment, so that the reasoning behind the model is as apparent as 
its basic features. We have explained the ideas in English first, and 
have also included the mathematical treatments of the models, for 
which we make no apology. The subject is a mathematical one, and 
the precise formulations of mathematics demonstrate things that are 
difficult to explain in English alone. The important derivations and 
proofs are also included since they form a vital part of the develop- 
ment of the area as a whole, and indicate points at which apparently 
insurmountable problems were reached, and then overcome. As well 
as the mathematics, we have included the basic algorithms for the 
major approaches. These algorithms are a series of steps that imple- 
ment the ideas behind each of the different models, and much can 

xi 
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xii PREFACE 

be gained if they are converted into code for a computer, since fa- 
miliarity with the concepts is best gained by “hands-on” experience. 
They are also useful to  those without access to  computers, however, 
since they set out the steps required in a straightforward way, and 
may clarify some of the comments in the surrounding text. 

Various little pictures crop up again and again in the book-these 
icons contain information about the content of the section in which 
they appear, and are described below. 

This represents a section of text that is mathematical in na- 
:::::::w:: ture. Not all the mathematical parts of the book are in- 

dicated like this, since they are usually important to the overall 
understanding; however, sections with this icon at the start can be 
skipped over at first reading without losing too much of the flow 
of discussion, if you are not familiar with the mathematics. They 
do contain material that is useful and interesting, however, and we 
would suggest that an effort should be made to  look at them on a 
second reading. 

This represents an algorithm for a particular model, and is 
y,. A.: . :  :I.;. 

they should be looked at when they are encountered in the text, but 
again they can be omitted on first reading. 

This symbol appears at the end of every chapter, where we 
have tried to compress the major concepts into a succinct 

summary. These represent the bare bones of the subject, and can 
be used to  check that you have followed the main features of the 
chapter. 

The very end of each chapter contains some suggestions for further 
reading. We have tried to avoid referencing lots of papers from 
many different sources, and instead have directed attention towards 
specific books that deal with a particular subject in depth. Detailed 
references can then be gleaned from these, if appropriate. 

. . . . . . . . . 

:... .... 
designed to  help you locate them within the book. Ideally, 

:e=:: 
:iiiii: . . . . . . . _-____ . . . . . . . . . . . . . . 

What’s Where 

Chapter 1: Introduction contains the background to the subject; the 
first section takes a light philosophical look at the differences between 
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humans and computers. The second section describes a simplified 
model of the real brain. Analogies are drawn between artificial neural 
nets and their biological counterparts. 

Chapter 2: Pattern Recognition contains a discussion of the basic 
concepts and ideas of pattern recognition, necessary since the major- 
ity of tasks that are required of neural networks involve recognition. 
It gives an overview of the predominant standard approaches to  the 
area, so that the place and function of neural systems can be under- 
stood clearly. 

Chapter 3: Basic Neuron develops the basic model of the single- 
layer perceptron, its learning rule, operation and features, and its 
partitioning of pattern space. It shows the problems associated with 
classifying the exclusive-or (XOR) and other non-linear problems. 

Chapter 4: Multilayer Perceptrons develops the model from Chap- 
ter 3, showing how it can be altered to  make it more powerful. It 
covers the concepts of back-propagation, including the generalised 
delta rule, gradient descent, and the concepts of feature extraction 
by hidden units. The energy landscape is evoked to  give a visualisa- 
tion of energy minimisation and the problems of local minima. The 
chapter also contains a section on the applications of the method to  
real problems. 

Chapter 5: Kohonen Self-Organising Networks looks at a different 
paradigm, that of unsupervised learning. It looks at the formation of 
self-organising topological maps and contains a detailed description 
of one of the most influential applications of neural technology, that 
of the phonetic typewriter. 

Chapter 6: Hopfield Networks contains the description of the fully 
connected Hopfield net, and its probabilistic partner the Boltzmann 
machine, as well as a look at some analogies with physical systems, 
and optimisation problems. 

Chapter 7: ART revolves around an explanation of the more 
biologically-inspired approach of Grossberg, highlighting the differ- 
ences between the architecture and approach of this system to those 
covered earlier. 

Chapter 8: Associative Memory expands on the current techniques 
for implementing associative memories and associative neural net- 

Copyright © 1990 IOP Publishing Ltd.
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works, including the RAM nets of Aleksander, the matrix memories 
of Willshaw, and the ADAM system. The parallels between associa- 
tive memories and other neural networks are explored. 

Chapter 9: Into the Looking Glass views the future of neural com- 
puting, and gives an insight into some of the exciting recent devel- 
opments that point the way forward. 

How t o  read this book 

If the aim of the reader is to properly understand neural networks, 
we would suggest that the book is read in order. An alternative 
approach for those particularly interested in the more recent devel- 
opments in the field, and who have some background knowledge, is 
to  briefly read Chapter 3 to familiarise yourself with the founda- 
tions of the subject, followed by Chapters 4 through to 7 .  For those 
with an interest in the biological implications, Chapter 1 should be 
read first, followed by Chapter 7 ,  then Chapters 2-6 and 8 will add 
context. 

Without W h o m .  

Most projects involve the collaboration of a number of people, and 
writing this book has been no exception. We are greatly indebted 
to  a number of people who, through their support, comments and 
criticism, have kept us enthused, put up with our moanings, and 
helped us transform the initial idea into reality. We appreciate their 
assistance and effort, especially that of our colleagues at the Uni- 
versity of York, and in particular those within our research group, 
who have contributed freely to discussions and made us question 
our most basic assumptions-these people have made our work that 
much more interesting and life that much more fun. In particular, 
we would like to  thank Dr. Jim Austin for his support throughout, 
and for the academic arguments that have aided our understanding 
and abetted our enthusiasm. Chris Higgins explained the depths 
of IATEX, and wrote the macros-the good bits of the typesetting 
are due to him, whilst the bad bits are all our own work. Personal 
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thanks must extend to Julia, for her encouragement, support and 
late-night typing. To Derek Wills, for dragging us into the world of 
neural networks in the first place. And to  Janet, who has tolerated 
preoccupations, shared disappointments, read many drafts, and still 
found nice things to say. The book is better because of them all-if 
it is bad, the blame lies with us. 

Russell Beale and Tom Jackson. 
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1 

Introduction 

1.1 HUMANS AND COMPUTERS 

Human beings are more intelligent than computers. Why is that 
said? Has it anything to  do with the fact that I am human, and I 
don’t want to think that a lump of silicon and metal can do all I can 
do? Or is it because computers are different from us, in terms of the 
operations they perform? For instance, calculating the sum of a few 
hundred eight and nine digit numbers is a trivial calculation for a 
computer, but it is asking a lot of even the most adept person. Does 
that make the computer more intelligent than us? An initial answer 
to that may be that it does-so consider crosswords instead. Some 
of us are excellent at doing crosswords, others are terrible-but we 
all can usually manage a couple of clues in an easy one. This sort of 
task is immensely difficult for a computer, however. Solving cross- 
word puzzles usually involves working out what an obscurely worded 
clue is referring to, and takes what we term leaps of intuition and 
guesswork, where we follow lines of enquiry that are not immediately 
obvious but are sparked off by some recollection or idea that hap- 
pens to  come along. Computers can’t do this at all well-perhaps we 
would adjust our definition and say that they were logical, and could 
only do logical things well. Then we may consider vision; an activity 
that would appear perfectly logical to  us-look at something, work 
out what it was, and give it a name, and possibly do something with 
it; if it were a cup of tea, we’d recognise it as such, and drink it-if 
the object was a football coming fast towards us, we’d have to de- 
cide on some more complex course of action. But again, computers 
are very bad at performing simple visual tasks. They have a job to  
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2 INTRODUCTION 

distinguish simple items, and as for actually controlling an arm to 
pick it up or something similar, that requires exceptionally complex 
techniques. 

Perhaps the problem is, because computers can do some of the 
tasks that we do in a fraction of the time, such as add numbers, 
or recall names and addresses accurately months after it first knows 
about them, we expect them to be like us in many other ways as 
well. We are then disappointed when they do not perform as well as 
we want them. This problem is really the one that people in artificial 
intelligence want to tackle, but their efforts, even after 30 years of 
high-quality research, are not sufficient to allow them to make the 
claim that they have computer systems that are artificially intelligent 
in any general sense that we would recognise. The aim of artificial 
intelligence could be summed up as trying to make computers behave 
as they do in the movies-there, the computers seem to always work, 
and are evidently superior to the humans that run round them; a 
far cry from real life and the unpaid wages or huge bill that arise 
because the computer has “done something wrong”. 

Why then can’t computers do the things that we do? One of the 
answers would appear to  be in the nature of their design. We would 
not unreasonably expect that things that are designed to  operate in 
similar ways to  exhibit similar behaviour. If we look inside a com- 
puter, we see a number of chips, containing miniature circuits and 
components, plugged into a circuit board with resistors and other 
things on. If we look inside the brain, we see nothing like such an 
ordered structure: our initial inspection reveals nothing more than a 
convoluted mass of homogeneous grey matter. Further investigation 
reveals that it too contains components, but these are all arranged in 
an immensely complex fashion, each connected to thousands of oth- 
ers. Perhaps it is this difference in design that can account for the 
difference in performance between the systems. Computers are de- 
signed to  carry out one instruction after another, extremely rapidly, 
whereas our brains work with many more slower units. Whereas 
a computer can typically carry out a few million operations every 
second, the units in the brain respond about ten times per second. 
However, they work on many different things at once, which com- 
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HUMANS AND COMPUTERS 3 

puters can’t do. The computer is a high-speed, serial machine, and 
is used as such, compared to  the slow, highly parallel nature of the 
brain. Given this, is it so surprising that the computer fails to  per- 
form in the same way as the brain? It manages tasks which suit 
its design very well: counting is an essentially serial activity, as is 
adding, with one thing done after another, and so the computer 
can beat the brain any time. For vision or speech recognition, the 
problem is a highly parallel one, with many different and conflicting 
inputs triggering many different and conflicting ideas and memories, 
and it is only the combining of all these different factors that allow 
us to perform such feats-but then, our brains are able t o  operate 
in parallel easily and so we leave the computer far behind. Perhaps 
the lesson here is that one thing may be good for one purpose but 
not necessarily for another: just because my computer can add up 
numbers, should I expect it to  solve vision problems easily? 

The conclusion that we can reach from all of this is that the prob- 
lems that we are trying to solve are immensely parallel ones. They 
require the processing of lots of different items of information which 
all interact to  provide a solution. The knowledge required to solve 
these problems comes from many different sources, each with its own 
contribution to  make to the final output. The brain, with its parallel 
design, is able to represent and store this knowledge in an accessible 
way. It is also able to process this knowledge along with the many 
different stimuli that it receives, due again to the parallel nature of 
its operation. Speed is not the important factor-parallelism is, and 
the brain is ideally suited to the task. 

The approach of neural computing is to capture the guiding prin- 
ciples that underly the brain’s solution to  these problems and apply 
them to computer systems. We do not know how the brain represents 
high-level information, so cannot mimic that, but we do know that 
it uses many slow units that are highly interconnected. In modelling 
the brain’s basic systems, we should end up with a solution that is in- 
trinsically suited to parallel problems rather than serial ones. These 
parallel models should be able to  represent knowledge in a paral- 
lel fashion, and process it in a similar way. We can simulate these 
structures in a serial fashion, though, so we do not need to  build new 
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4 INTRODUCTION 

computers. However, the inherently parallel nature of artificial neu- 
ral network systems does make them amenable to  implementation 
on parallel machines, which may offer advantages in terms of speed 
and ultimate reliability; after all, that is how the brain has done it. 
To rework an old adage-we want the right architecture for the right 
job. 

In the following chapters we look at how the study of real neu- 
ral systems has allowed us to model the parallelism that exists in 
the brain, and has given us artificial neural networks that have be- 
haviour that is heading toward what we really want. Whilst we are 
copying the parallelism of the brain, it would also seem sensible to 
notice other useful features of real neural systems and see if we can 
incorporate them into our new networks. 

Perhaps one of the most important of the features is that the 
brain is able learn things-it can teach itself. Learning from example 
is the way in which as children we pick up speech, learn to write, 
eat and drink, and develop our own set of standards and morals. 
The same is not true of conventional computer systems. In these, 
the computer usually has a long and complicated program, which 
gives it specific instructions as to what t o  do at every stage in its 
operation. Each step of the way has to be spelled out, and it is 
fairly obvious that we don’t work this way at all, since when we 
come to write such programs, it takes us many hours of patient and 
careful work to  write down exactly what we mean in a form that the 
computer can understand. For large programs, these instructions 
may be many millions of lines long, and one mistake can cause all 
sorts of unexpected things to  happen; such mistakes are known as 
bugs, and are the blight of a computer scientist’s life. Indeed, these 
mistakes are recognised as being immensely difficult t o  avoid, and 
most large programs have many bugs in them. If you were to  buy 
a new car, you would not expect it to go wrong, but if you were 
to buy a new piece of software, you would be extremely surprised 
if it worked without a mistake. Bugs are accepted as a fact of life. 
But wouldn’t it be nice if instead of having to  develop a program to 
do a task, you could simply let the computer observe the task for a 
while, so that it could learn by example? And who knows, it may 
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THE STRUCTURE OF THE BRAIN 5 

find a better way of doing it than you, so that it was more efficient 
that a simple program would be. It would probably have bugs in it 
initially, so that it occasionally did something wrong-but it would 
learn from its mistakes and not repeat the error. 

1.2 THE STRUCTURE OF THE BRAIN 

The human brain is one of the most complicated things that we have 
studied in detail, and is, on the whole, poorly understood. We do 
not have satisfactory answers to  the most fundamental of questions 
such as “what is my mind?” and “how do I think?”. Nevertheless, 
we do have a basic understanding of the operation of the brain at 
a low level. It contains approximately ten thousand million (10”) 
basic units, called neurons. Each of these neurons is connected to 
about ten thousand (lo4) others. To put this in perspective, imagine 
an Olympic-sized swimming pool, empty. The number of raindrops 
that it would take to  fill the pool is approximately 10”. You’d also 
need at least a dozen full address books if you were to be able to  
contact lo4  other people. 

The neuron is the basic unit of the brain, and is a stand-alone 
analogue logical processing unit. The neurons form two main types, 
local processing interneuron cells that have their input and output 
connections over about 100 microns, and output cells that connect 
different regions of the brain to  each other, connect the brain to 
muscle, or connect from sensory organs into the brain. The operation 
of the neuron is a complicated and not fully understood process on 
a microscopic level, although the basic details are relatively clear. 
The neuron accepts many inputs, which are all added up in some 
fashion. If enough active inputs are received at once, then the neuron 
will be activated and “fire”; if not, then the neuron will remain in 
its inactive, quiet state. A representation of the basic features of a 
neuron is shown in figure 1.1. 

The soma is the body of the neuron. Attached to the soma are 
long, irregularly shaped filaments, called dendrites. These nerve pro- 
cesses are often less than a micron in diameter, and have complex 
branching shapes. Their intricate shape resembles that of a tree in 
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6 INTRODUCTION 

Figure 1.1 The basic features of a biological neuron. 

winter, without leaves, whose branches fork and fork again into finer 
structure. The dendrites act as the connections through which all 
the inputs to the neuron arrive. These cells are able to perform more 
complex functions than simple addition on the inputs they receive, 
but considering a simple summation is a reasonable approximation. 

Another type of nerve process attached to  the soma is called an 
axon. This is electrically active, unlike the dendrite, and serves as 
the output channel of the neuron. Axons always appear on output 
cells, but are often absent from interneurons, which have both inputs 
and outputs on dendrites. The axon is a non-linear threshold device, 
producing a voltage pulse, called an action potential, that lasts about 
1 millisecond ( 10-3s) when the resting potential within the soma rises 
above a certain critical threshold. This action potential is in fact a 
series of rapid voltage spikes. See figure 1.2 for an illustration of this 
“all-or-nothing” principle. 

The axon terminates in a specialised contact called a synapse that 
couples the axon with the dendrite of another cell. There is no di- 
rect linkage across the junction; rather, it is a temporary chemical 
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off 
I 

Figure 1.2 The input to the neuron body must exceed a certain threshold 
before the cell will fire. 

one. The synapse releases chemicals called neurotransmitters when 
its potential is raised sufficiently by the action potential. It may take 
the arrival of more than one action potential before the synapse is 
triggered. The neurotransmitters that are released by the synapse 
diffuse across the gap, and chemically activate gates on the dendrites, 
which, when open, allow charged ions to  flow. It is this flow of ions 
that alters the dendritic potential, and provides a voltage pulse on 
the dendrite, which is then conducted along into the next neuron 
body. Each dendrite may have many synapses acting on it, allowing 
massive interconnectivity to be achieved. At the synaptic junction, 
the number of gates opened on the dendrite depends on the number 
of neurotransmitters released. It also appears that some synapses 
excite the dendrite they affect, whilst others serve to inhibit it. This 
corresponds to altering the local potential of the dendrite in a posi- 
tive or negative direction. A single neuron will have many synaptic 
inputs on its dendrites, and may have many synaptic outputs con- 
necting it to  other cells. 

1.2.1 Learning in Biological Systems 

Learning is thought to occur when modifications are made to the ef- 
fective coupling between one cell and another, at the synaptic junc- 
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tion. Figure 1.3 shows the important features of the synapse in more 
detail. The mechanism for achieving this seems to be to facilitate 

dendrite 

Figure 1.3 The synapse. Neurotransmitters released from the synaptic 
vesicles diffuse across the synaptic cleft and trigger the receivers on the 
dendrite. 

the release of more neurotransmitters. This has the effect of opening 
more gates on the dendrite on the post-synaptic side of the junction, 
and so increasing the coupling effect of the two cells. The adjust- 
ment of coupling so as to  favourably reinforce good connections is an  
important feature of artificial neural net models, as is the effective 
coupling, or weighting, that occurs on connections into a neuronal 
cell. 

1.2.2 The Organisation of the Brain 

The brain is organised into different regions, each responsible for 
different functions, and in humans this organisation is very marked. 
The largest parts of the brain are the cerebral hemispheres, which 
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occupy most of the interior of the skull. They are layered structures, 
the most complex being the outer layer, known as the cerebral cortex, 
where the nerve cells are extremely densely packed to  allow great 
interconnectivity. Its function is not fully understood, but we can 
get some indication of its purpose from studies of animals that have 
had it removed. A dog, for example, can still move in a coordinated 
manner, will eat and sleep, and even bark if it is disturbed. However, 
it also becomes blind and loses its sense of smell-more significantly, 
perhaps, it loses all interest in its environment, not responding to 
people or to its name, nor t o  other dogs, even of the opposite sex. It 
also loses all ability t o  learn. In effect, it loses the characteristics that 
we generally refer to as indicating intelligence-awareness, interest 
and interaction with an environment, and an ability to  adapt and 
learn. Thus the cerebral cortex seems to  be the seat of the higher 
order functions of the brain, and the core of intelligence. 

The cerebral cortex has been the subject of investigation by re- 
searchers for many years, and is slowly revealing its secrets. It 
demonstrates a localisation of functions, in that different areas of 
the cortex fulfill different functions, such as motion control, hearing, 
and vision. The visual part of the cortex is especially interesting. In 
the visual cortex, electrical stimulation of the cells can produce the 
sensation of light, and detailed analysis has shown that specific layers 
of neurons are sensitive to particular orientations of input stimuli, 
so that one layer responds maximally to  horizontal lines, whilst an- 
other responds to  vertical ones. Although much of this structure 
is genetically pre-determined, the orientation-specific layout of the 
cells appears to be learnt at an early stage. Animals brought up 
in an environment of purely horizontal lines do not develop neuron 
structures that respond to vertical orientations, showing that these 
structures are developed due to  environmental input and not purely 
from genetic pre-determination. This se2f-organisation of the visual 
cortex, so called since there is no external teacher t o  guide the devel- 
opment of these structures, is discussed further in Chapter 5 ,  where 
the work of Kohonen has shown that such feature maps can be devel- 
oped in artificial neural systems as a consequence of simple learning 
rules. 
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1.3 LEARNING IN MACHINES 

The ability to  learn is not unique to  the biological world, and is 
captured within our neural network models. However, the concept 
of machine learning goes against many of the commonly held beliefs 
about computers: that they can do only what they are programmed 
to do, and cannot adapt to their surroundings. Whilst it is true on an 
atomic level that  the program controls the machine, the behaviour 
that results does not have t o  be so rigid and deterministic as is 
commonly felt. Having a computer learn to respond correctly t o  a 
given input, or learn t o  play a game, is not a simple concept, and 
it is often felt that complicated programs and systems are required 
to achieve behaviour such as this, that many would class as one of 
the requirements for intelligence. The purpose of this section is to  
discuss these beliefs with reference to  a machine called MENACE, 
developed by Donald Michie in the early 1 9 6 0 ’ ~ ~  which learns how 
to play the game of noughts and crosses. What is interesting is that 
MENACE requires no expensive hardware or clever programming; it 
is constructed from matchboxes, each containing a number of beads. 

MENACE (Matchbox Educable Noughts And Crosses Engine) 
consists of 288 matchboxes, one for every possible distinct board 
position that the opening player can encounter. Each matchbox is 
then filled with a random selection of coloured beads, each colour 
representing a move to a corresponding colour on the board. The 
game is played by selecting at  random a bead from the matchbox 
that corresponds t o  the current board position, with the colour se- 
lected determining the machine’s move. The first game is played, 
with the machine moving completely at random. When the game is 
over, the outcome is fed back into the machine so that it can adapt 
its behaviour in the light of the outcome; i.e. it can learn to play 
better next time. This is achieved by reinforcing all the moves that 
were ultimately successful, when the machine won, and by decreas- 
ing the chance of it making the same bad moves that led to  defeat. 
Learning therefore occurs by adding a bead of the same colour to  
boxes representing a successful series of moves, or by removing a 
bead of the colour that led to  defeat. A draw means that the num- 
ber of beads remains the same. This slow process of learning from 
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experience continues, until the probability of the machine making a 
good move far outweighs the chance of it making a bad one. Once it 
has learnt, the machine is then almost invincible, and the best that 
can be hoped for is to  consistently draw with it. 

This simple device demonstrates some important features of ma- 
chine learning. It usually takes some time for a machine to  achieve 
a good probabilistic solution to  a problem, which is what MENACE 
achieves, but it is possible, given that the reinforcement learning 
takes place. This reinforcement learning is analogous to  that which 
is thought to  occur in the brain when the efficacies of the synap- 
tic junction are increased in order to  promote the recurrence of a 
neural event. No external teacher is required to  train MENACE 
with the tactics of noughts and crosses; it learns the most successful 
strategies purely by example, when the final result is used to modify 
the machine’s subsequent performance. MENACE also has no spe- 
cific location in which the information needed to play successfully 
is stored; rather, it is distributed throughout the machine in the 
probabilities of coloured beads in each box. It treats the process of 
learning to  play the game as a series of smaller sub-problems; each 
box corresponds to  a single situation and a number of possible moves, 
not enough on its own to play the game. Learning occurs in each of 
these boxes, and each box is unaware of the state of the other boxes 
that participate in the game-it only knows the outcome. Successful 
learning can occur since the behaviour of the system as a whole is 
stochastic, and increasing the chance of good moves from one box 
increases the probability of an eventual win. 

But perhaps the most surprising feature of MENACE is that a 
pile of matchboxes can learn to  play a game of noughts and crosses 
at all. 

1.4 THE DIFFERENCES 

We have seen that the brain is excellent at performing many of the 
tasks that we would like computers to perform, such as vision, speech 
recognition, learning by example and so on. We have also seen that 
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the brain is structured in such a way as to make the accomplish- 
ment of these tasks as easy as possible, which inevitably means that 
there are certain things on which it cannot perform so well. The 
compromises that have evolved have been dictated by the most im- 
portant functions, where the ability to learn and adapt, to see and 
interpret sounds has been more important than the ability to add 
up a series of numbers accurately. The brain manages to accomplish 
these complex tasks with an apparent minimum of effort due to its 
highly developed structure, that of a massively parallel system, in 
which many simple processing elements share the job of working out 
what is going on, rather than trying to make one fast node do all 
the work. This division of labour has other advantages as well; since 
many neurons are involved at any one time, the contribution made 
by a single one is not too important, and so if it happens to go 
wrong, it is unlikely to  affect the others in a significant way. This 
distribution of work, known as distributed processing, therefore has 
the advantage that it is tolerant of errors here and there. Indeed, 
because the brain can learn, it is able to  adjust to the permanent 
loss of one of its neurons and can bring in new ones. This abil- 
ity to function with only some of the processing elements working 
correctly is known in computing circles as fault tolerance, for the 
obvious reason that a system, such as the brain, can tolerate faults 
within it without producing nonsense as output. This is a vital fea- 
ture of the operation of the brain, since every day a few neurons die 
as part of the natural course of events. More are lost if the brain gets 
bumped about, but it continues working as if nothing had happened. 
In cases of continuing damage, parallel distributed systems exhibit 
what is known as gmceful degmdation where the performance of the 
system slowly falls from a high level to a reduced level, but without 
dropping catastrophically to zero. Compare this to the situation of 
a single unit working hard to  calculate lots of things quickly enough 
to reach a correct output-if this element breaks down, then there is 
no hope of obtaining a sensible answer, and no hope of coping with 
the situation by transferring some of the work elsewhere. There is 
nowhere else for it to go; a classic example of putting all your eggs 
into one basket! 
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Computers are very different in structure, however. Rather than 
being comprised of many millions of relatively slow, highly intercon- 
nected processing elements like the brain, they consist of one (or 
occasionally, on modern machines, maybe two or a few more) excep- 
tionally fast processor, which is capable of many million calculations 
per second-this makes it good at performing simple, repetitive ac- 
tions like adding numbers, but poorer at the task of processing the 
vast quantities of different types of data that a vision system re- 
quires. They also suffer from not embracing the distributed approach 
in areas apart from speed, in that they are intrinsically intolerant of 
faults. If the processor in a computer breaks, that's it: the screen 
may go blank; worse, an aircraft may crash, or all the lights go out in 
a city-the consequences may be far-reaching and difficult t o  correct 
or even anticipate. 

These problems have led to the current interest in developing com- 
puter systems that adopt the principles developed by millions of 
years of evolution-that is, keep it simple, keep it joined up, and 
have lots of it to share the load. 

Summary 

Brain is parallel, distributed processing system. 
Basic processing unit called the neuron. 
Approximately 10'' neurons each connected to lo4 others. 
Operation of neuron: fires pulse down axon when sufficient in- 
put received from dendrites. Connections via chemical junctions 
called synapses. 
Learning increases efficacy of synaptic junction. 
Machines can learn through positive reinforcement. 
Cerebral cortex shows local areas of specialised function. 
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FURTHER READING 

The following references are to books and articles that address the 
whole field of neural network research, and they constitute a good 
starting point for those readers wishing to follow up references to  a 
particular aspect of the area. 

1. Parallel Distributed Processing, Volumes 1, 2,  and 3. J. L. Mc- 
Clelland & D. E. Rumelhart. Volume 1 covers the foundations 
and many of the current approaches and models, whilst vol- 
ume 2 looks at the subject from a more biological viewpoint. 
Volume 3 contains a tutorial and software. 

2. An Introduction to Computing with Neural Nets. Richard P. 
Lippmann. In IEEE A S S P  Magazine, April 1987. An excel- 
lent, concise overview of the whole area. 

3. An Introduction to Neural Computing. Teuvo Kohonen. In 
Neural Networks, volume 1, number 1, 1988. A general review. 

4. Neurocomputing: Foundations of Research. Edited by Ander- 
son and Rosenfeld. MIT Press, 1988. An expensive book, but 
excellent for reference, it is a collection of reprints of most of 
the major papers in the field. 

5.  Neural Computing: T h e o y  and Practice. Philip D. Wasser- 
man. Routledge, Chapman & Hall, 1989. An introductory 
text. Well- writ t en. 

There are many journals in which papers on neural computing ap- 
pear, but the following list should provide a basis for further research. 

1. Neural Networks. Published bi-monthly. 

2. Network: Computation in Neuml Systems. Published quar- 
terly. 

3. Neural Information Processing Systems (NIPS). Annual con- 
ference proceedings. 

4. IJCNN Conference. Annual conference proceedings. Used to 
be the IEEE conference. 
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Pattern Recognition 

2.1 INTRODUCTION 

Pattern recognition-a strange heading for Chapter 2 of a book on 
neural computing. At least it is, until we point out that pattern 
recognition (in one form or another) is currently the dominating area 
for the application of neural networks. It is a large area of computer 
science in itself, and those wishing to  pursue neural networks will 
not get far before bumping into some of the issues raised by the 
task of pattern recognition. The material that we will discuss in this 
chapter, namely a definition of pattern recognition and an overview 
of current techniques, is essential background reading. Much of the 
mathematics overlaps with that of neural networks, and, to  a large 
extent, the two areas are tackling the same problems. It will only be 
the briefest of introductions to pattern recognition techniques, but 
we hope to  cover all the basic issues that will affect our understanding 
of neural networks. 

2.2 PATTERN RECOGNITION IN PERSPECTIVE 

To appreciate what the pattern recognition problem is all about let us 
consider a task that is fairly basic to the majority of people-reading. 
A significant proportion of the information that we absorb (i.e. that 
is applied to our biological “neural networks”) is presented to  us in 
the form of patterns. The text that you are reading now is presenting 
you with complex and varied patterns in the form of strings ofletters. 
Before we even start to  consider the far reaching cognitive issues of 

15 
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language processing, the visual system must first solve the pattern 
recognition problem. That is, recognising the neatly aligned ink 
stains on this page as alphabetic characters! 

The fact that our visual system copes with this task effortlessly 
we naturally take for granted. However, if we present this task to  a 
computer, we soon begin to realise the enormous complexity of the 
problem. This “classification” is one of the simpler pattern recogni- 
tion tasks. It could be resolved using a template matching technique 
where each letter is read into a fixed size frame and the frame com- 
pared to  a template of all the possible characters. This is the solution 
used in simpler applications, for example matching parts on a factory 
production line, where we can predict the variety of shapes that are 
likely to be encountered. Consider however what would happen if we 
encountered a change in the typeface of the text in our reading task. 
Unless we had a second template set for the new font the technique 
would probably fail miserably at the classification task. 

And further consider the case for handwritten text-it would 
prove a near impossibility to provide templates to cope with the 
widely varying patterns in cursive script (students may well appre- 
ciate the problem of attempting to decipher lecturers’ blackboard 
notes!). Text processing is just one example of the pattern recog- 
nition problem. The difficulties described above are further compli- 
cated when we turn our attention to processing images, speech or 
even stock market trends. 

Later chapters will describe how neural networks provide compu- 
tational techniques that are able to  deal with these problems. First 
though it is necessary to provide a more formal definition of pattern 
recognition techniques. 

2.3 PATTERN RECOGNITION-A DEFINITION 

The fundamental objective for pattern recognition is classification: 
given an input of some form can we analyse that input to  provide a 
meaningful categorisation of its data content? 

A pattern recognition system can be considered as a two stage 
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device. The first stage is feature extraction. The second is classifi- 
cation. 

We define a feature as a measurement taken on the input pattern 
that is t o  be classified. Typically, we are looking for features that 
will provide a definite characteristic of that input type. For exam- 
ple, thinking about our text processing problem again, if we wish to 
distinguish the letter ‘F’ from the letter ‘E’ we would need to  com- 
pare the number of vertical and horizontal strokes in the character. 
Feature extraction is rarely as trivial as the example we have given 
and often poses the greater part of the recognition problem. 

The classifier is supplied with the list of measured features. Its 
task is t o  map these input features onto a classification state, that 
is, given the input features, the classifier must decide which type of 
class category they match most closely. Classifiers typicdy rely on 
distance metrics and probability theory to  do this. Before we look at 
these techniques however, we would first like to  provide some useful 
definitions. 

2.4 FEATURE VECTORS AND FEATURE SPACE 

Classification is rarely performed using a single measurement, or 
feature, from the input pattern. Usually, several measurements are 
required to  be able to  adequately distinguish inputs that belong to  
different categories (or classes, as they are normally called). If we 
make n measurements on our input pattern, each of which is a unique 
feature, then we can use algebraic notation to create a set of these 
features and call it afeature vector. The dimensionality of the vector, 
that is, the number of elements in it, creates an n dimensional feature 
space. 

The simplest way to  describe feature space is to  consider a simple 
two-dimensional e x a m p l e t  hat is we will make two measurements 
on the pattern to  form the feature vector. A rather trivial example 
might be distinguishing ballet dancers from rugby players (as if it 
isn’t obvious!). Thinking about the problem, we might decide that 
two distinctive measurements that categorise each type are height 
and weight. If we make a series of height and weight measurements 
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on typical examples of each, then we can plot the range of readings in 
a two-dimensional Euclidean plane (21, 22) that defines our feature 
space, as shown in figure 2.1. 

height 

+ '  ' +  + 
I t 

weight 

e% Ballet dancer 

+ rugby player 

Figure 2.1 A two-dimensional Euclidean feature space. 

This plot of our measurements helps us t o  visualise the concept 
of our feature space. It does, of course, get a little tricky trying to 
visualise anything above a dimension of three. 

2.5 DISCRIMINANT FUNCTIONS 

Discriminant functions are the basis for the majority of pat- 
tern recognition techniques. Let us think again about our two- 
dimensional rugby-player/ballet-dancer classification problem shown 
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in figure 2.1. Looking at the spread of the measured samples we can 
see they form two distinct clusters. 

The classifier stage is required to  assign a class to  these clusters, 
and also assign a new input example to  one of the classes. Looking at 
the spread of the data in the clusters, we could intuitively decide that 
some line drawn between the two classes could arbitrarily separate 
them. If we could define such a dividing boundary for our data, 
classification would become a process of deciding on which side of 
the boundary any new input falls, as shown in figure 2.2. 

decision boundary 

height f I 

@ Ballet dancer 

+ rugby player 

Figure 2.2 A linear classification decision boundary. 

The mathematical definition of such a decision boundary is a “dis- 
criminating function”. It is a function that maps our input features 
onto a classification space-in the example above, by defining a plane 
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that would separate the two clusters. The above example is an over- 
simplification of the problem and rarely would our decision boundary 
be so easily defined. Even in this simplistic example however it can 
be appreciated that there are an infinite number of boundaries we 
could have drawn to separate the two regions. In practice, though, it 
is advisable to make the discriminant function as simple as possible 
(we have to compute the function at some stage, so the simpler the 
better!). 

In the case above it is fairly obvious that the simplest function that 
would separate the two clusters is a straight line. This represents a 
very widely used category of classifiers known as linear classifiers. 

2.6 CLASSIFICATION TECHNIQUES 

Pattern classification techniques fall into two broad categories- 
numeric and non-numeric. Numeric techniques include determin- 
istic and statistical measures which can be considered as measures 
made on the geometric pattern space. Non-numeric techniques are 
those which take us into the domain of symbolic processing that is 
dealt with by such methods as fuzzy sets. For the purposes of this 
book we shall only consider the numeric techniques as they have 
far more bearing on our discussion of neural computing. That is 
not to say that people do not use neural networks for symbolic data 
manipulation (in the traditional artificial intelligence sense)-many 
research groups are in fact putting a great deal of effort into this 
concept. However, it is perhaps a little esoteric to  be included in 
an introductory text, so barring a brief discussion in the final chap- 
ter on future trends in neural networks we shall restrict ourselves to 
numeric met hods. 

We have already touched on deterministic methods in our discus- 
sion of discriminant functions. We shall be looking more closely at a 
particular implementation of discriminant function analysis known 
as “K nearest neighbour” as well as taking a further look at linear 
classification. For the statistical approach we shall discuss Bayesian 
classification which uses probabilistic estimation of class member- 
ship. These choices have been made on the grounds that they are 
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very widely used classification techniques, so widespread in fact that 
many applications of neural networks are ultimately benchmarked 
against them for performance. For this reason, if no other, it will be 
very useful to  familiarise yourself with them. 

2.6.1 Nearest Neighbour Classification 

Consider the diagram of figure 2.3. 

classl ’ t  BB 

+++’+ 
++ ++ I 

t + 

unclassified pattern 

dI shortest distance to classl 

dz shortest distance to class2 

Figure 2.3 Classification by comparison to the “nearest neighbour”. 

We have two classes represented in pattern space and we wish 
to  decide to  which of the two the unclassified pattern, X ,  belongs. 
Nearest neighbour techniques, in essence, make a decision based on 
the shortest distance to the neighbouring class samples-they assign 
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it to  whichever class it appears to  be closest to (not an unreasonable 
assumption). Formally, that defines a discriminant function f ( X )  
by: 

f ( X )  = closest(class1) - closest(class2) 

For class patterns that are well separated in pattern space, as we 
have shown in figure 2.1, this technique will work by assigning f ( X )  
negative to, say, class 1 membership and f (X)  positive to  class 2 
membership. The range of problems that this simple dichotomiser 
may be applied to is, however, rather restricted (at least in terms of 
useful performance). Consider the case of a rogue pattern, figure 2.4, 
that has class membership of one class but does in fact lie closer 
to another class-it is not typical of its class type but is included 
none the less. In this instance, if our unclassified input is measured 
against the rogue sample, it will invariably result in misclassification. 
The solution to  this fairly basic problem is to take several distance 
measures against many class samples such that the effect of any rogue 
measurement made is likely to be averaged out. This is “K” nearest 
neighbour classification-where “K” is the number of neighbouring 
samples against which we decide to  measure. 

2.6.2 Distance Metrics 

Nearest neighbour methods pose the problem of finding a reliable 
way of measuring the distance from one class sample to  another. 
Obviously, we need to  specify a distance metric that will allow us to 
measure the similarity of pattern samples in the geometric pattern 
space. In practice, several methods are used. 
0 Hamming distance measure. 

its simplicity, is the Hamming distance measure. For two vectors 
The most basic measure, and one that is widely used because of 

x = (q,22, ...) 

y = ( Y l , Y 2 , . . . )  

the Hamming distance is found by evaluating the difference between 
each component of one vector with the corresponding component 
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Figure 2.4 Measuring to the nearest neighbour can produce errors in 
classification if a rogue sample is selected. 
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of the other, and summing these differences to provide an absolute 
value for the variation between the two vectors. The measure is 
defined by: 

The Hamming distance is often used to compare binary vectors. It 
is perhaps obvious that in this case the Hamming distance provides 
a value for the number of bits that are different between two vectors. 
In actual fact the Hamming distance measure for binary data can be 
performed simply by the exclusive-OR function since 

H = C(1.i - Y i l )  

Izi - yil is equivalent to siXOR y; 

0 Euclidean distance measure. 
One of the most common metrics used is the Euclidean Distance 

measure. Consider an example in a rectangular coordinate system 
where we have two vectors ( X  and Y )  that we wish to  find the 
distance between them (d(X, Y)). 

The shortest distance, shown dotted on figure 2.5, is the Euclidean 
distance which is defined by: 

where n is the dimensionality of the vector. 
For the two-dimensional example we have drawn, this gives us: 

There is nothing too strange about that, of course, as it is simply 
Pythagoras’s theorem for the sides of a triangle. A special case is 
given for binary vectors where the metric is then equivalent to the 
square root of the Hamming distance. 

The Euclidean metric is widely used mainly because it is simple 
to  calculate. For binary input vectors the metric reduces to a special 
case which is mathematically equivalent to the square root of the 
Hamming distance. The metric is used in a neural network learning 
algorithm discussed in Chapter 5.  
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X 

Figure 2.5 The Euclidean distance measure. 

0 City block distance (Manhattan) 
A simplified version of the Euclidean distance measure is the city 

block measure. This method performs the Euclidean measure with- 
out calculating the squared or square root functions. Thus 

The effect of this, apart from the obvious one that it is much faster 
to  compute than the Euclidean, is that points of equal distance from 
a vector lie on a square boundary about the vector, as opposed to a 
circular boundary for the Euclidean. This is illustrated in figure 2.6. 

The enclosing circle shown is the Euclidean boundary for equidis- 
tant points about the vector. For the city block distance, anything 
falling on the square boundary will yield the same distance value. As 
you no doubt realise, this does introduce some error into the mea- 
sure, but this is accepted as a compromise between accuracy and 
speed of calculation. 
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Points of equal distance 
lie on a square 

Figure 2.6 City block distance metric. 

0 Square distance. 
Simplifying the Euclidean distance measure still further-but con- 

sequently adding still more error-we have the square distance, 
shown in figure 2.7. With this measure the distance between two 
vectors is defined as the maximum of the differences between each 
element of the two: 

This again defines a square boundary for points equidistant from a 
vector. It is however a larger square than that of the city block, and 
is consequently a coarser measure. As before, however, the error is 
tolerated as a compromise between speed and accuracy. 

That concludes a brief look at distance metrics; it is by no means 
exhaustive but we hope that it it least indicates the possible tech- 
niques available for comparing the similarity of two vectors. In the 
following section, we focus again on the idea of discriminating func- 
tions using decision boundaries rat her than comparison methods. 
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Figure 2.7 The square distance metric. 

2.7 LINEAR CLASSIFIERS 

Linear classification is a pattern recognition technique that is en- 
countered time and time again in the field of neural networks. We 
shall provide an overview of a linear classifier, describe how it can be 
used in pattern recognition, and will endeavour to  unravel the mys- 
teries of the non-linearly sepumble problem that has plagued neural 
network research since the late 1960’s. 

In the preceding discussion about partitioning the pattern space 
by discriminant functions, we have already paved the way for this 
discussion of linear classifiers. Let us think again about the simple 
two-dimensional, two-class discrimination problem, illustrated in fig- 
ure 2.2. We wish to  classify an input into one of two possible classes, 
A or B. We have already described how the classes may be sepa- 
rated in pattern space by the use of a linear decision boundary, but 
how can we implement such a decision boundary in the case of real 
pattern data, and how is the position of the separating boundary 
chosen? 
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In figure 2.8 we show our pat tern space with a new vector added. 
This vector we will describe as a weight vector, W ,  and its orientation 
in pattern space will be used to define a linear decision boundary. 

boundary 

Figure 2.8 Discriminating classes with a linear decision boundary. Note 
the inclusion of the weight vector. 

T h e  decision boundary defines a discriminating function f ( X )  of 
the  form: 

n 

f ( X )  = wixi 
i=l 

where 

X ;  = i - t h  component of an  input vector 
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Wi = i - t h  component of a weight vector 
N = dimensionality of the input vector. 

The output of the function for any input will be either a positive 
or negative value depending upon the the value of the weight vector 
and the input vector. If we let a positive output indicate that the 
input vector belongs to, say, class A and a negative output indicate 
class B then we have a decision mechanism that simply looks for the 
sign of f ( X )  for any input value. 

Class definition: 

if f ( X )  > 0 = class A 
if f ( X )  < 0 = class B 

The problem lies in actually finding a suitable weight vector that will 
give these results for all inputs from class A and class B. If we expand 
the discriminant function using matrix algebra we can visualise the 
dependence of the output on the value of the weight vector. We 
have: 

f(.) = Cwixi - e 
This expands to: 

where 4 is the angle between the vector X and W .  
The cos4 term swings between +/- 1, consequently any value of 

4 greater than +/- 90 degrees between the weight vector and the 
input will reverse the sign of the output of f ( X ) .  This is clearly a 
stmight line decision boundary since the crossover point is at t90 
or -90 degrees. We can see that the function does indeed give us 
a decision boundary but we are no closer to  realising the position 
of this boundary or finding the correct components for the weight 
vector. 

There are two parameters that control.the position of the decision 
boundary in the pattern space-these are the slope of the line and 
the y-axis intercept (standard geometry of a straight line). The slope 
of the line in the function is actually determined by the value of the 
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weight vector. We can see this if we consider the crossover point, or 
boundary condition, when the output of the classifier is zero. 

We have: 

x ~ x w ~ + x ~ x W ~ - o  = 0 

Rearranging this gives us: 

Comparing this to  the equation of a straight line (y = mz t c) 
we can see that the slope of the line is controlled by the ratio of the 
weight values W1 and W2 and the intercept is controlled by the bias 
value, 0. 

Thus far we have proved that if we have the correct value for the 
weight vector we can indeed perform the discriminating process and 
set the position of the decision boundary. What we have not shown 
yet is the critical part-namely finding the weight vector. This, 
unfortunately, is a not a trivial problem! It is most usually found 
by iterative trial and error methods that modify the weight values 
according to  some error function. The error function typically com- 
pares the output of the classifier with a desired response and gives 
an indication of the difference between the two. If we considered 
a general logic implementation of the discriminant function we can 
start to appreciate the scale of the problem. For an n-bit binary 
input there will be 2n possible input patterns. Classifying these us- 
ing t/- dichotomy means that there are 22n possible logic functions 
that would map the n inputs t o  the correct output value. The linear 
classifier, however, can only perform a small number of these pos- 
sible mappings-t hose that are in fact defined as linearly separable. 
Linear separability is a subject that has strong links with the potted 
history of neural network research, and it will be discussed in length 
in Chapter 3. For now, we shall define linear separable problems as 
those that can be satisfied using a single hyperplane decision surface. 

The examples we have discussed so far only show linear classifiers 
discriminating between two possible classes. However, linear classi- 
fiers can also be used to  separate more than two classes, by arranging 
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many decision boundaries and performing several tests to  satisfy the 
conditions for each class. As an example, in a four-class problem (A, 
B, C, D), the decision boundaries can be selected to test between A 
or BCD, if the result is not A then test for B or CD, if not B then 
test for C or D. Similarly for difficult class boundary conditions the 
decision surface can be split up in a piecewise fashion, as shown in 
figure 2.9. 

Classl 

d2 * 

classification 

Classl 

Class2 I :  - I  
+ I  

Figure 2.0 Piecewise linear classification for a non-linearly separable 
pattern, 

In non-linearly separable problems it is also possible to introduce 
the required non-linearity into the decision surface by applying a 
non-linear transformation to the data before it is passed to  the clas- 
sifier stage. This technique is described as a @ machine and such 

Copyright © 1990 IOP Publishing Ltd.



32 PATTERN RECOGNITION 

preprocessing of pattern data before passing it to a pattern classifier 
is common practice. A transform is found that will map the patterns 
into a new coding that is capable of being classified using a linear 
classifier. The major drawback of this approach is that it can be 
slow. 

2.7.1 Conclusion 

This concludes our look at deterministic methods for pattern classi- 
fication. It is far from complete, but hopefully it will provide enough 
background information to  put the forthcoming discussions of neural 
computing techniques into perspective. 

2.8 STATISTICAL TECHNIQUES 

Statistical techniques play a major part in pattern classification. 
Without launching into a deep statistical treatment (you will. be 
glad to  hear) we wish to  discuss the concept of Bayesian classifica- 
tion. It is an important analytical technique, and is very powerful 
and widely used. Using techniques of this kind also has the added 
advantage of forcing us to  think harder about the statistical nature 
of the data that we are dealing with in pattern recognition problems. 
Any method that makes us think long and hard about the nature of 
the problem with which we are dealing-particularly about the char- 
acteristics of the data-cannot be too highly valued. We will make 
the point early in the book that applying any of the techniques de- 
scribed in this book, with any degree of success, relies heavily on 
one understanding the nature of the problem in the first place. That 
may seem like a fairly obvious statement t o  make but in the light 
of recent claims for the “magical” problem solving abilities of neural 
networks we feel it is perhaps a necessary one. Addressing our prob- 
lem statistically we can gain a very useful insight into the nature of 
the pattern data that we are dealing with-as well as perhaps a more 
intuitive feel for what makes pattern recognition problems often so 
difficult to  solve. 
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Bayesian classification relies on the basic statistical theory of prob- 
abilities and conditional probabilities. For pattern classification we 
are using measurements taken from patterns (i.e. the components of 
our feature vector) to  make an estimate of the likelihood, or proba- 
bility, of a pattern belonging to a particular class. Let us give some 
basic definitions; if we let G;, i = 1 , 2 , .  . . , n be our list of possible 
groups or classes then we can define the probability of a pattern 
belonging to  a class as P(Gi)  (where 0 5 P(Gj) 5 1). Using condi- 
tional probabilities d o w s  us to  include knowledge we already have 
about the pattern to  to  improve our estimate of class membership. 
For example, if we try to  predict the possibility of an ace being dealt 
from a pack of cards after, say, ten cards have been dealt out-then 
it is easier to  make that prediction if we know which ten cards have 
already been dealt. If they are dealt face up, and we have already 
seen four aces dealt from the pack, then we could state-without 
too much reason for doubt-that the eleventh card dealt will not be 
an ace. A trivial example, perhaps, but it illustrates that including 
prior knowledge into our estimates will have a considerable influence 
on their reliability. 

Given two events, X and Y ,  we can define conditional probabil- 
ity as the probability of event X given the occurrence of event Y .  
This is written as P(X1Y) .  For pattern recognition, the prior knowl- 
edge that we are combining with the estimate of class membership 
comprises the data measurements taken from the pat t ern-t hat is 
our feature vector X = (z1,52,53,.  . . , z,). Our classification prob- 
lem can now be stated as: given a set of measurements, X, what 
is the likelihood, or probability, of it belonging to  a class Gj- i.e. 
P(GiIX) .  

This is where Bayes’s rule enters-it is a formalisation of the state- 
ment that we have already made. If we make measurements on a 
pattern to  give us a feature vector, X ,  on a pattern that we know 
must come from one class of GI,  Ga, . . . , G, then Bayes’s rule assigns 
it to  a class on the following basis. 
Decide z belongs to class i for 

P(G;IX) > P(Gj1-X) for i = 1 , 2 , .  . . , n i # j 
Put simply, it says that we assign a pattern to  the class that has 
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the highest conditional probability of the vector X belonging t o  it. 
It may come as something of a surprise t o  find that it can be proven 
that this will provide us with the best estimate that we could hope 
for-if we measure our performance in terms of smallest average 
error rate. 

In practice, however, it’s not quite so simple (it sounded too good 
to  be true, didn’t it?). The difficulties arise in actually defining the 
conditional probabilities required for Bayes’s rule. More often than 
not they are in fact not known and must be estimated by some means. 
Obviously the accuracy of the estimates will ultimately determine 
the performance of the classifier in these circumstances. How then, 
are they estimated? Typically, this involves making assumptions 
about the pattern data and describing unknown distributions in the 
data  with “models”. The problem can be simplified if we rearrange 
the constraints of the conditional probability and ask the question, 
given that we know the pattern must belong to  one of n groups, 
what is the probability of obtaining that pattern vector in each of the 
possible groups. We denote this P(X1G;). Although we do not know 
the absolute value of this probability, we can in fact approximate it 
by using a model probability distribution and assuming that it will 
follow the same trend. We may not seem to  have gained a great 
deal by this step, but there is in fact a simple relationship between 
P(G;IX) and P(XIG;), that  is known as Bayes’s law: 

We defined P(G;) earlier as the probability of a pattern belonging 
to  the class Gi-this can be found without too much difficulty. In 
most practical situations P(XIGi) is estimated by assuming that 
it follows the “normal” distribution. Although it may appear that  
this is a somewhat arbitrary decision this model does in fact have 
many useful properties that  make it a particularly apt choice. The 
most obvious is the fact that it is a distribution that does occur in 
many situations-or at least a close approximation of it. It is also a 
good approximation t o  many other distributions. Its most endearing 
quality is the fact that  it is easy to  work with-its distribution has 
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been well researched and there is a large pool of knowledge from 
which to  draw when using it. 

By adopting models for the conditional probability P(X1G;) based 
on a standard distribution-t he normal curve-and applying Bayes’s 
law, we can define a relatively straightforward statistical classifier. 
The performance will depend on how close the pattern data does 
actually fit the model selected, but generally Bayesian classifiers can 
be optimised to  perform extremely well. 

Bayesian classifiers also have further merits that justify their 
widespread use. They can, in fact, be made to  look like a linear clas- 
sifier by making some simple assumptions about the pattern data. 
What is more, this can be done in such a way that we finish with a 
deterministic process that apparently makes no reference to  statis- 
tics at all. The simplifications or assumptions that we have to make 
about the pattern data relate to the spread of the normal distribu- 
tions of the classes. 

If we revert to  a view of the distributions in two-dimensional co- 
ordinates for a two class problem, it can be shown that the pattern 
space is most effectively partitioned by a quadratic decision surface. 
Whilst being relatively easy to  use it can in fact be modified to the 
simplest case of a linear classifier. This is achieved by making the 
assumption that both the class distributions have equal covariance 
matrices. This amounts to saying that the distributions both have 
the same overall shape and spread. The consequence of this is that 
the most accurate partition of the pattern space is in fact achieved by 
a linear surface. This is demonstrated in figure 2.10 with a straight 
line separating a simple two-class case. 

The proof that Bayes’s law does in fact reduce to  a linear clas- 
sifier can be performed analytically by solving Bayes’s law for the 
boundary conditions of the two classes. The solution reduces to  a 
function that is of the form y = mz + c ,  that is, that of a straight 
line. Those who are sufficiently versed in statistical theory may wish 
to pursue this proof in the pattern recognition texts referenced in the 
bibliography, but we shall do no more here than quote the result. 
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linear decision boundary 

Figure 2.10 Bayesian classification reduces to linear classification under 
certain conditions. 

2.9 PATTERN RECOGNITION-A SUMMARY 

This chapter has been written expressly for those who are coming to 
neural networks with no background knowledge of pattern recogni- 
tion. The methods we have discussed will at least provide the bare 
essentials that will be drawn upon in the following chapters on neural 
computing. Neural computing is a subject that spans many diverse 
fields of sciencenone of which is more fundamental t o  a solid grasp 
of the area than an appreciation of the classification methods used 
in pattern recognition. The methods that we have described in this 
chapter are the ones that will be most often referred to in neural 
networks. We hope that they will leave you adequately “armed” to 
appreciate the strengths and weaknesses of neural computing that 
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are discussed in the rest of the book. 

Summary 

Pattern recognition-feature extraction and classification. 
Features are pattern measurements used for comparison. 
Discriminant functions partition up feature space. 
A number of different distance metrics are used. 
Linear classification occurs when classes can be separated by a 
single linear decision boundary. Classes that cannot be separated 
this way are termed non-linearly separable. 
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The Basic Neuron 

3.1 INTRODUCTION 

In Chapter 1, we have examined the structure of the brain, and 
found it t o  be a highly developed mechanism that is relatively poorly 
understood, but capable of immensely impressive tasks. We have 
seen that many of the things that we would like computers to  be 
able to  do, the brain manages exceptionally well, and the idea behind 
neural computing is that by modelling the major features of the brain 
and its operation, we can produce computers that exhibit many of 
the useful properties of the brain. 

We have noted the complexity of the structure of the brain; how- 
ever, it can be viewed as a highly interconnected network of relatively 
simple processing elements. We need a model that can capture the 
important features of real neural systems in order that it will ex- 
hibit similar behaviour. However, the model must deliberately ig- 
nore many small effects, if it is to be simple enough to implement 
and understand. This extraction of a few features deemed important 
and disregard of all others is a general characteristic of modelling; 
the aim of a model is to  produce a simplified version of a system 
which retains the same general behaviour, so that the system can be 
more easily understood. 

3.2 MODELLING THE SINGLE NEURON 

We will firstly consider the features of a single neuron and how we 
can model it. The basic function of a biological neuron is to  add 
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up its inputs, and to produce an output if this sum is greater than 
some value, known as the threshold value. The inputs to the neuron 
arrive along the dendrites, which are connected to  the outputs from 
other neurons by specialised junctions called synapses. These junc- 
tions alter the effectiveness with which the signal is transmitted; 
some synapses are good junctions, and pass a large signal across, 
whilst others are very poor, and allow very little through. The cell 
body receives all these inputs, and fires if the total input exceeds the 
threshold value. This simple biological neuron is shown in figure 3.1. 

Figure 3.1 The basic features of a biological neuron. 

Our model of the neuron must capture these important features. 
We can summarise them as follows: 
0 The output from a neuron is either on or off. 
0 The output depends only on the inputs. A certain number must 

be on at any one time in order to  make the neuron fire. 
The efficiency of the synapses at coupling the incoming signal into 

the cell body can be modelled by having a multiplicative factor on 
each of the inputs to  the neuron. A more efficient synapse, which 
transmits more of the signal, has a correspondingly larger weight, 
whilst a weak synapse has a small weight. 
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input 
multiplicative body - adds 

it’s inputs, 
then thresholds 

input / 

Figure 3.2 Outline of the basic model. 

So now we have our basic model of the neuron, shown in figure 3.2. 
It performs a weighted sum of its inputs, compares this t o  some 
internal threshold level, and turns on only if this level is exceeded. 
If not, it stays off. Because the inputs are passed through the model 
neuron to  produce the output, the system is known as a feedfomard 
one. 

We need t o  formulate this mathematically. If there are n inputs, 
then there are n associated weights on the input lines. The model 
neuron calculates the weighted sum of its inputs; it takes the first 
input, multiplies it by the weight on that input line, then does the 
same for the next input, and so on, adding them all up at the end. 
This can be written as 

total input = weight on line 1 x input on 1 -+ 
weight on line 2 x input on 2 t - t 
weight on line n x input on n 

201x1 t 202x2 t w3x3 t 204x4 t * * t w,x, = 

i=l 

This sum then has t o  be compared to  a certain value in the neuron, 
the threshold value. This thresholding process is accomplished by 
comparison; if the sum is greater than the threshold value, then 
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output a 1, if less, output a 0. This can be seen graphically in 
figure 3.3 where the x-axis represents the input, and the y-axis the 
output. 

?be thresholdhg function is altematively 
known as the “step” function. or the 
“Heanside” function 

h a h o l d  function, 
threaholding at 8.  

0’ e 

Figure 3.3 The thresholding function. 

Equivalently, the threshold value can be subtractec from the 
weighted sum, and the resulting value compared to zero; if the result 
is positive, then output a 1, else output a 0. This is also shown in 
figure 3.3; notice that the shape of the function is the same, but now 
the jump occurs at zero. The threshold effectively adds an offset to 
the weighted sum. An alternative way of achieving the same effect is 
to take the threshold out of the body of the model neuron and con- 
nect it t o  an extra input value that is fixed to  be “on” all the time. 
In this case, rather than subtracting the threshold value from the 
weighted sum, the extra input of +1 is multiplied by a weight equal 
to minus the threshold value, - 8 ,  and added in as well as all the 
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other inputs-this is known as biasing the neuron. The value of -8 
is therefore known as the neuron’s bias or ofSset. Both approaches 
are equivalent, and either is acceptable. 

Calling the output y, we can write 

where f h  is a step function (actually known as the Heaviside func- 
tion) and 

f h ( x )  = 1 x > o  

f h ( X )  = 0 X 5 0 

so that it does what we want. Note that the function produces only 
a 1 or a 0, so that the neuron is either on or off. 

If we use the approach of biasing the neuron, we can define an 
extrainput, input 0, which is always set to  be on, with a weight that 
represents the bias applied to the neuron. The equation describing 
the output can then be written as 

Notice that the lower limit of the summation has changed from 1 to 
0, and that the value of the input xo  is always set t o  1. 

This model of the neuron, shown in figure 3.4, was proposed in 
1943 by McCulloch and Pitts. Their model came about in much 
the same way as we have developed ours, and stemmed from their 
research into the behaviour of the neurons in the brain. It is impor- 
tant to look at the features of this McCulloch-Pitts neuron. It is a 
simple enough unit, thresholding a weighted sum of its inputs to  get 
an output. It specifically does not take any account of the complex 
patterns and timings of actual nervous activity in real neural sys- 
tems, nor does it have any of the complicated features found in the 
body of biological neurons. This ensures its status as a model, and 
not a copy, of a real neuron, and makes it possible to  implement on 
a digital computer. This is the strength of the model-now we need 
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Figure 3.4 Details of the basic model. 

t o  investigate what can be achieved using this simple design. The 
arrangement of the connections between the neurons is important, 
but, continuing our trend of choosing simple models to  get an idea of 
what is happening in a complicated red-world situation, we shall for 
the time being consider only one layer of neurons, where we study 
the outputs of the neurons under a known set of inputs. 

The model neurons, connected up in a simple fashion, were given 
the name “perceptrons” by Frank Rosenblatt in 1962. He pioneered 
the simulation of neural networks on digital computers, as well as 
their formal analysis. In his book “Principles of Neurodynamics ”, he 
describes these perceptrons as simplified networks in which certain 
properties of r ed  nervous systems axe exaggerated whilst others are 
ignored. He stated that they are not intended to serve as detailed 
copies of any real nervous system; in other words, he realised at this 
early stage that he was dealing with a basic model. This fact is of- 
ten lost in the popular press as the idea of computer “brains”, based 
on these techniques, grabs the imagination. We are not attempting 
to  build computer brains, nor are we trying to mimic parts of r ed  
brains-rather we are aiming to  discover the properties of models 
that take their behaviour from extremely simplified versions of nat- 
ural neural systems, usually on a massively reduced scale as well. 
Whereas the brain has at least 10” neurons, each connected to lo4 
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others, we are concerned here with maybe a few hundred neurons at 
most, connected to  a few thousand input lines. 

3.3 LEARNING IN SIMPLE NEURONS 

We need a mechanism for achieving learning in our model neuron. 
Connecting these neurons together may well produce networks that 
can do something, but we need to  be able to train them in order 
for them to do anything useful. As we have seen before, it is the 
ability of these networks to learn that makes them especially useful. 
We also want to find the simplest learning rule that we can, in order 
to keep our model understandable. As is often the case in neural 
computing, inspiration comes from looking at real neural systems. 

Young children are praised for doing well in a maths test. They 
are scolded for rushing across the road without looking. Dogs are 
given titbits to encourage them to come when called. In general, 
good behaviour is reinforced, whilst bad behaviour is reprimanded. 
We can transfer this idea to our network. We must try to reinforce 
behaviour that we want repeated and discourage things that we do 
not. If we have two groups of objects, for example one group of 
several differently written A’s, and the other of B’s, we may want 
our neuron to  tell the A’s from the B’s, as in figure 3.5. We want it 
to output a 1 when an A is presented and a 0 when it sees a B. 

We need to  think about our model neuron, and examine its be- 
haviour, t o  see how we can include the concept of learning within 
our simple design. The guiding principle is to allow the neuron to  
learn from its mistakes. If it produces an incorrect output, we want 
to reduce the chances of that happening again; if it comes up with 
correct output, then we need do nothing. If we set up the neuron 
with random weights on its input lines, corresponding to  a starting 
state in which it knows nothing, we can present an A. The neuron 
will perform the weighted sum of the inputs, and compare this to  
the threshold. If it exceeds the threshold, it will output a 1, whilst 
if it doesn’t, it will output a 0. The likelihood that it will get it 
correct are 50:50 at first, since the inputs t o  the neuron have only 
a random chance of exceeding the threshold. Let us assume it does 
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Figure 3.5 Can we tell the A’s from the B’s? 

get the correct answer, then we do not need to do anything, since 
the model has been successful. But if the neuron produces a 0 when 
we show it an A, we want to increase the weighted sum so that next 
time it will exceed the threshold and so produces the correct output, 
a 1. We would do this by increasing the weights. So, to  reinforce the 
chances of getting a 1, we want t o  increase the weights. 

For inputs that are B’s, we want the neuron to  produce 0’s. This 
means that we want the weighted sum of the inputs to  be less than 
the threshold, and so each time we present a B we want t o  decrease 
the weights, t o  try and force the neuron to  produce a zero next time. 

This means that for the network to  learn, we want t o  increase the 
weights on the active inputs when we want the output t o  be active, 
and t o  decrease them when we want the output to  be inactive. We 
can achieve this by adding the input values to  the weights when we 
want the output to  be on, and subtracting the input values from the 
weights when we want the output to be off. This defines our learning 
rule. Notice that only those inputs which are active at the time will 
be affected; this is sensible since the inactive ones do not contribute 
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to the weighted sum, and so changing them will not affect the result 
for the particular input in question, but may well upset what has 
already been learnt. 

This learning rule is a variant on that proposed in 1949 by Don- 
ald Hebb, and is therefore called Hebbian learning. Hebb postulated 
his rule, that of reinforcing active connections only, from his studies 
of real neuronal systems. The slightly modified version that we use 
retains the notion of only affecting active connections, but we have 
allowed them to be strengthened or weakened. We can do this be- 
cause we can see which way to  alter the weights as we know what the 
result should be. Since the learning is guided by knowing what we 
want to  achieve, it is known as supervised learning. We have devel- 
oped these ideas of learning from the point of view of the model and 
common sense, and have derived a learning rule that is not unlike 
the one postulated for biological systems. It is the dominant method 
used today in learning models. 

This simple idea for learning actually remained untested until 
1951, when Marvin Minsky and Dean Edmonds built a “neural 
network”-it was quite a machine! This large-scale device used 300 
tubes, lots of motors and clutches, and a gyropilot from a World War 
I1 bomber to  move its 40 control knobs. The position of these knobs 
represented the memory of the machine, and Minsky and Edmonds 
spent a long time watching the machine at play, as it adjusted the 
knobs and moved several things all at once. The huge amount of 
wiring connecting it up was full of poorly soldered joints and incor- 
rect connections, but the random nature of the whole system allowed 
it to continue working even when some of the tube “neurons” broke 
down as well. This mechanical contraption was probably the first 
realisation of a learning network. 

Our learning paradigm can be summarised as follows: 

0 set the weights and thresholds randomly 
0 present an input 
0 calculate the actual out put by taking the t hresholded value of the 

weighted sum of the inputs 
0 alter the weights to  reinforce correct decisions and discourage in- 

correct decisions-i.e. reduce the error 
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0 present the next input etc. 

3.3.1 The perceptron learn-ag algorithm 

The learning procedure that we have described can be written 
.,. .... . . ..:::: ... :.:. as the following algorithm, which can be used to implement 

a perceptron network on a computer by coding the steps in any 
programming language. 

2; ..... : 

Perceptron Learning Algorithm 

1. Initialise weights and threshold 
Define w;(t) ,  (0 5 i 5 n), t o  be the weight from input i at t ime t ,  and 
6 t o  be the threshold value in the output node. Set W O  t o  be -9 ,  the 
bias, and 50 t o  be always 1. 

Set w;(O) t o  small random values, thus initialising all the weights and 
the threshold. 
2. Present input and desired output 
Present input 20, q , z 2 , .  . . ,z, and desired output d ( t )  
3. Calculate actual output 

r n  1 

Li=o J 

4. Adapt weights 

if correct w;(t + 1) = w;(t) 
if output 0, should be 1 (class A) w;(t + 1) = w;(t) -t z ; ( t )  

if output 1, should be 0 (class B) w;(t + 1) = wi(t) - z ; ( t )  

Note that weights are unchanged if the net makes the correct decision. 
Also, weights are not adjusted on input lines which do not contribute 
t o  the incorrect response, since each weight is adjusted by the value of 
the input on that line, xi, which would be zero. 
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This is the basic perceptron algorithm. However, various modi- 
fications have been suggested to  this basic algorithm. The first is 
to  introduce a multiplicative factor of less than one into the weight 
adaption term. This has the effect of slowing down the change in 
the weights, making the network take smaller steps towards the so- 
lution. This alteration to the algorithm entails replacing step 4 with 
the following: 

4. Adapt weights-modified version 

if correct wi(t t 1) = w;(t) 
if output 0, should be 1 (class A) w;(t t 1) = wi(t) t qz; ( t )  
if output 1, should be 0 (class B) wi(t t 1) = wi(t) - qz;( t )  

where 0 5 q 5 1, a positive gain term that controls the adaption rate. 

Another algorithm of a similar nature was suggested by Widrow 
and Hoff. They realised that it would be best to  change the weights 
by a lot when the weighted sum is a long way from the desired 
value, whilst altering them only slightly when the weighted sum is 
close to  that required to give the correct solution. They proposed a 
learning rule known as the Widrow-Hoff delta rule, which calculates 
the difference between the weighted sum and the required output, 
and calls that the error. Weight adjustment is then carried out 
in proportion to  that error. This means that during the learning 
process, the output from the unit is not passed through the step 
function-however, actual classification is effected by using the step 
function to produce the t1 or 0 indication as before. 

The error term A can be written 

A = d ( t )  - y ( t )  

where d ( t )  is the desired response of the system, and y(t) is the 
actual response, This takes care of the addition or subtraction, since 
if the desired output is 1 and the actual output is 0, A = t1 and 
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so the weights are increased. Conversely, if the desired output is 0 
and the actual output is t 1 ,  A = -1 and so the weights will be 
decreased. Note that weights are unchanged if the net makes the 
correct decision, since d ( t )  - y ( t )  = 0. 

The learning algorithm is basically the same as for the basic per- 
ceptron, except this time step 4 is replaced by 

4. Adapt weights-Widrow-Hoff delta rule 

A = d ( t )  - y ( t )  
wi(t  t 1) = w i ( t )  t +;(t) 

t 1 ,  if input from class A 
0, if input f rom class B 

d ( t )  = 

where 0 5 77 5 1, a positive gain function that controls the adaption 
rate 

Neuron units using this learning algorithm were called ADALINEs 
(adaptive linear neurons) by Widrow, who also connected many of 
them together into a many-ADALINE structure, or MADALINE. 

Another alternative proposed is to  use inputs that are not 0 or 
1 (binary), but are instead -1 or t1, known as bipo2ar. Using bi- 
nary inputs means that input lines with 0’s on them are not trained, 
whereas bipolar values allow all the inputs to be trained each time. 
This simple alteration helps to speed up the convergence process, 
but often leads to confusion in the literature as some authors discuss 
binary inputs and others bipolar ones. Effectively, they are equiva- 
lent, and the use of one or the other is usually a matter of personal 
preference. 

3.4 THE PERCEPTRON: A VECTORIAL PERSPEC- 
TIVE 

If we write the inputs to a perceptron as a vector X = ( Z O , ~ , .  . . ,x,) 
we can think about the algorithm in a vectorial fashion. This vector 
X has n elements, and so is called n-dimensional. We can only 
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really imagine at most three dimensions, but it is still possible to get 
a feel for what is going on. If we write the weights as another vector 
W = (WO, w1,. . , , wn) then we can replace the weighted sum with 
the identical vector dot product, ie. 

The learning algorithm for the perceptron ensures that the weights 
are adapted to reduce the error each time. We can understand how 
the perceptron learning procedure works on an intuitive level by ex- 
amining the behaviour of the weight vector as the perceptron learns 
patterns. If we continue our example consisting of patterns of A’s 
and B’s, we can see that they can be represented in pattern space as 
shown in figure 3.6. 

this line partitions the 
pattem space into class 

Figure 3.6 Two distinct sets of patterns drawn in 2-d pattern space. 
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The solution to classifying these patterns is to produce a dividing 
line between them, such as the line W in the diagram. Points above 
the line can be regarded as representing patterns from class A, whilst 
those below the line are from class B. This line is what we want our 
perceptron to discover for itself. A line such as this, which separates 
two classes in pattern space, is said to partition the space into two 
classes. 

The perceptron generates this line by adjusting the values of the 
elements of the weight vector, as prescribed by the learning proce- 
dure, so that inputs from the top side of the line produce a 1 as 
output, and inputs from below the line produce a 0. The percep- 
tron starts with a random weight vector (see step 1 of the learning 
procedure) that points anywhere in the pattern space. A pattern 
is presented, and the learning procedure ensures that if the out- 
put is incorrect, the weight vector is altered to  reduce the error. 
This is achieved by moving the vector a finite amount towards the 
ideal weight vector. Eventually, the weight vector becomes the ideal 
weight vector, and gives no error for inputs from either class, thus 
partitioning the pattern space successfully. The perceptron has then 
“learnt” to  distinguish between A’s and B’s. The behaviour of the 
weight vector can be visualised with the help of figure 3.7. The effect 

Figure 3.7 Behaviour of the weight vector in pattern space. 
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of the learning process on the line that partitions the pattern space 
is shown in figure 3.8. As learning progresses, the partitioning of the 
classes evolves from the initial random state into a correct one. 

Figure 3.8 Evolution of the classification line from an initial, random 
orientation into one that successfully classifies the two classes. 

3.5 THE PERCEPTRON LEARNING RULE: PROOF 

We have seen, intuitively, how the perceptron learning rule 
produces a solution; in this section we prove this fact. This 

proof was first proposed by Rosenblatt. His influential result stated 
that,  given it is possible t o  classify a series of inputs, then a percep- 
tron network will find that  classification. In other words, he proved 
that the perceptron weight vector would eventually align itself with 
the ideal weight vector, and would not oscillate around it for ever. 
The proof relies on vector notation, and contains some mathematics. 
It follows the approach taken by Minsky and Papert in their book 
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Perceptrons; it can be skipped on first reading, but none of the con- 
cepts are too difficult, and the mathematics describes what is going 
on in a succinct and elegant way. 

Definitions : 
The input patterns are assumed to come from a space which has 

two classes, Ff and F-. We want the perceptron to  respond with 
+1 if the input comes from Ff and -1 if it comes from F-. 

Consider the set of input values 5; as a vector in i-dimensional 
space, called X, and the set of weights wi as another vector in the 
same space, denoted by W. To make things simple, let us assume 
that the vectors X are of unit length-it makes no difference t o  the 
final result, except clarifying the maths a bit. 

Increasing the weights is performed by adding X to W vectorially, 
and decreasing them means subtracting X from W. 

Replacing w;s;(t) by the vector notation Wax produces the 
following algorithm. 

START 

Choose any value for W 

Choose an X from Ft U F- 
TEST : 

If X E Ff and W .X > 0 goto TEST.  

If X E Ff and W - X  5 0 goto A D D .  

If X E F- and W - X  < 0 goto TEST.  

If X E F- and W .X 2 0 goto S U B T R A C T .  

A D D  : 
Replace W by W+ X 
Goto TEST.  

Replace W by W- X 
Goto TEST. 

S U B T R A C T  : 

Notice that we go to SUBTRACT when X is from class F- , and if we 
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consider that going to SUBTRACT is the same as going to  ADD but with 
X replaced by -X, then we can rewrite the procedure as follows. 

START 

Choose any value for W 

Choose a X from Ft U F- 
TEST 

If X E F -  change the sign of X 
If w ' X  > 0 goto TEST 

otherwise goto A D D .  

ADD : 
Replace W by W+ X 
Goto TEST.  

We can simplify the algorithm still further, if we define F to be 

F+ U -F- i.e., Ft and the negatives of F-, we can say 

START : 
Choose any value for W 

Choose any X from F 
TEST : 

If w 'X > 0 goto TEST 

otherwise goto A D D .  

ADD : 
Replace W by W+ X 
Goto T E S T ,  

The convergence theorem then states that the program will only 
go to  ADD a finite number of times. This is what we have to prove. 
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Proof Assume there is a unit vector W*, which partitions up the 
space, and a small positive fixed number S such that 

W * * X > S  V X E F  
Define w**w 

I WI 
G(W) = 

and note that G ( W )  is the cosine of the angle between W and W*. 
Since IW*l = 1, we can say that 

G ( W )  5 1. (3.1) 

Consider the behaviour of G(W) through A D D .  

Firstly, we can see how the numerator behaves: 

W*.Wt+1 = W * . ( W t t X )  
= W * . W t + W * . X  
> W * - W t + S  

since W* X > S. 
Hence, after the nth. application of ADD we have 

W*.W, >nS ( 3 4  

Now we can consider the denominator, and since W* - X must be 
negative, else the program would not go through ADD , we can say 

IWt+1I2 = Wttl 

= (W, t X) *(W, t X) 
(W,I2 + 2Wt * x + 1x12 = 

However, we know that W . X  must b e  negative, otherwise we would 
not be going through ADD , and we also know that 1x1 = 1, so we can 
write 

2 IWt+ll < IWtI2 + 1 

Copyright © 1990 IOP Publishing Ltd.



LIMITATIONS OF PERCEPTRONS 57 

(notice the = has become a <) and after the nth application of ADD , 

Combining equations (3.2) and (3.3) gives us 

n6 > -  f i  
but we already know that G(W) 5 1, so we can write 

i.e. 

n 5 1/S2 

(3.3) 

(3.4) 

Equation (3.4) is our proof let us consider what it says. In the 
perceptron algorithm, we only go to TEST if W . X > 0. We have 
chosen a small fixed number 6, such that S > 0 and W X > 6. 
Equation (3.4) then says that we can make S as small as we like, 
but the number of times, n, that we go to  ADD will still be finite, 
and will be 5 1/S2. In other words, eventually the perceptron will 
learn a weight vector W that partitions the space successfully, so 
that patterns from F+ are responded to with a positive output and 
patterns from F- produce a negative output. 

3.6 LIMITATIONS OF PERCEPTRONS 

There are limitations to the capabilities of perceptrons, however. 
We have said before that they will learn the solution, if there is a 
solution to be found. To examine this in more detail, notice that the 
perceptron is trying to find the straight line that separates classes. 
It can separate classes that lie on either side of a straight line easily 
enough, but there are many situations where the division between 
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Table 3.1 The exclusive-or function table. 

X Y Z  
0 0 0  
0 1 1  
1 0 1  
1 1 0  

classes is much more complex. Consider the case of the exclusive-or 
(XOR) problem. The XOR logic function has two inputs and one 
output, shown in figure 3.9. It produces an output only if either one 
or the other of the inputs is on, but not if both are off or both are 
on. Representing on by 1, and off by 0, we can write this in a table 
as shown in table 3.1. 

Figure 3.9 The exclusive-or logic symbol. 

We can consider this as a problem that we want the perceptron 
to  learn to  solve: output a 1 if the X is on and Y is off, or is Y is on 
and X is off, otherwise output a 0. It appears t o  be a simple enough 
problem. 

We can draw it in pattern space as shown in figure 3.10. The x- 
axis represents the value of X, the y-axis the value of Y. The heavily 
shaded circles represent the inputs that produce an output of 1, 
whilst the lighter circles show the inputs that produce an output of 
0. Considering the heavily shaded circles and lightly shaded circles 
as separate classes, we find we cannot draw a straight line to  separate 
the two classes (find a ruler, and try it!). Such patterns, as we have 
seen before in Chapter 2, are known as linearly inseparable since no 
straight line can divide them up successfully. Since we cannot divide 
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Coordinate Output 
X Y representation Z Y 

Figure 3.10 The XOR problem in pattern space. 

them with a single straight line, the perceptron will not be able to  
find any such line either, and so cannot solve such a problem. In fact, 
a single-layer perceptron cannot solve any problem that is linearly 
inseparable. 

3.7 THE END O F  T H E  LINE? 

The failure of the perceptron to successfully solve apparently simple 
problems such as the XOR one was first demonstrated by Minsky and 
Papert in their influential book Perceptrons. This book contained a 
detailed analysis of the capabilities and limitations of perceptrons; 
however, the demonstration that perceptrons could only do linearly 
separable problems was regarded as a mortal blow to the area, and 
the majority of the scientific community resolutely walked away. 
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3.7.1 Conclusions 

The single-layer perceptron has shown great success for such a simple 
model. It has exhibited the features of learning that we wanted to 
realise in a system, and has shown that it is able to distinguish 
between different classes of objects if they are linearly separable in 
pattern space. What we need is a way to overcome the restraint 
of linear separability, whilst still retaining the basic features of the 
model and its overall simplicity. The improvement necessary first 
caught large-scale scientific attention in 1986 when Rumelhart and 
McClelland proposed their improved version, called the multilayer 
percept ron. 

3.7.2 A Pause in History 

One of the advantages in a book is that time is an illusion-one 
page turn can take you forward twenty years. In a neural network 
book, this is an advantage. Not much happened in the area after 
Minsky and Papert published their book in 1969, until Rumelhart 
and McClelland produced an improvement in 1986 which fused the 
perceptron idea with some modern adaptations and caused an ex- 
plosion of interest in the field. If the McCulloch-Pitts neuron was 
the father of modern neural computing, then Rumelhart’s multilayer 
perceptron is its child prodigy. 

Summary 

0 Perceptron-artificial neuron. 
0 Takes weighted sum of inputs, outputs t1 if greater than thresh- 

old else outputs 0. 
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Hebbian learning (increasing effectiveness of active junctions) is 
predominant approach. 
Learning corresponds to  adjusting the values of the weights. 
Feedforward supervised networks. 
Can use +1, -1 instead of 0 , l  values. 
Can only solve problems that are linearly separable-therefore 
fails on XOR. 

FURTHER READING 
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neural systems. 
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active neurons. 
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criticisms of single-layer perceptrons are laid out in this book. 
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The Multilayer Perceptron 

4.1 INTRODUCTION 

This chapter explores aspects of the multilayer perceptron, describ- 
ing the modifications that need to  be made to  the basic model neuron 
in order to  be able to solve more complex problems. The derivation 
of the learning rule is given and explained in full, and examples and 
applications of the network demonstrate its capabilities and poten- 
tial. 

4.2 ALTERING THE PERCEPTRON MODEL 

4.2.1 The Problem 

How are we to  overcome the problem of being unable to  solve lin- 
early inseparable problems with our perceptron? An initial approach 
would be to use more than one perceptron, each set up to  identify 
small, linearly separable sections of the inputs, then combining their 
outputs into another perceptron, which would produce a final indi- 
cation of the class to  which the input belongs. This approach to  the 
XOR problem is shown in figure 4.1. 

This seems fine on first examination, but a moment’s thought will 
show that this arrangement of perceptrons in layers will be unable 
to learn. Each neuron in the structure still takes the weighted sum 
of its inputs, thresholds it, and outputs either a one or a zero. For 
the perceptrons in the first layer, the inputs come from the actual 
inputs to the network, while the perceptrons in the second layer 
take as their inputs the outputs from the first layer. This means 

63 
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-\ 

Figure 4.1 Combining perceptrons can solve the XOR problem: percep 
tron 1 detects when the pattern corresponding to  (0, l )  is present, and the 
other detects when (1,O) is there. Combined, these two facts allow percep 
tron 3 to  classify the input correctly. They have to be set up correctly in 
the first place, however; they cannot learn to produce this classification. 
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that the perceptrons in the second layer do not know which of the 
real inputs were on or not; they are only aware of input from the first 
layer. Since learning corresponds to  strengthening the connections 
between active inputs and active units (refer to section 3.3)) it is 
impossible to  strengthen the correct parts of the network, since the 
actual inputs are effectively masked off from the output units by the 
intermediate layer. The two-state neuron, being “on” or “off”, gives 
us no indication of the scale by which we need to adjust the weights, 
and so we cannot make a reasonable adjustment. Weighted inputs 
that only just turn a neuron on should not be altered to  the same 
extent as those in which the neuron is definitely turned on, but we 
have no way of finding out what the situation is. In other words, the 
hard-limiting threshold function (figure 3.3) removes the information 
that is needed if the network is to successfully learn. This difficulty 
is known as the credit assignment problem, since it means that the 
network is unable to  determine which of the input weights should be 
increased and which should not, and so is unable to  work out what 
changes should be made to  produce a better solution next time. 

4.2.2 The Solution 

The way around the difficulty imposed by using the step function 
as the thresholding process is to  adjust it slightly, and use a slightly 
different non-linearity. If we smooth it out, so that it more or less 
turns on or off, as before, but has a sloping region in the middle that 
will give us some information on the inputs, we will be able to de- 
termine when we need to strengthen or weaken the relevant weights. 
This means that the network will be able to  learn, as required. A 
couple of possibilities for the new thresholding function are shown 
in figure 4.2. 

In both cases, the value of the output will be practically one if 
the weighted sum exceeds the threshold by a lot, and conversely, it 
will be practically zero if the weighted sum is much less than the 
threshold value. However, in the case when the threshold and the 
weighted sum are almost the same, the output from the neuron will 
have a value somewhere between the two extremes. This means that 
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A. B. 

Linear threshold 
between limits - 
otherwise, 0 or 1. 

Sigmoidal threshold 

Figure 4.2 Two possible thresholding functions. 

the output from the neuron is able to  be related to its inputs in a 
more useful and informative way. 

Notice that we have altered our model to try and overcome a 
particular difficulty by tracing the root of the problem, the hard- 
limiting thresholding that masks the inputs from the outputs, and 
then adjusting the model so that this can be solved. We have kept 
many of the essential features the same; each neuron still calculates 
the weighted sum, and thresholds it. However the input is now not 
simply on or off, but lies within a range, although the thresholding 
function that we are using approximates to the step function in many 
ways, especially at the extremes of its range. The solution that we 
have adopted is therefore one tailored to  our particular problem, and 
it would be foolish of us to say that real biological neurons also work 
in this way. We are looking at an interesting construction of model 
neurons, and not at a small version of a real brain. This may appear 
obvious to  the reader, but it is surprising how many false claims are 
made about models that have their roots in biological systems, and 
a timely reminder can do no harm. 

We have to  use a non-linear thresholding function, since layers of 
perceptron units using linear functions are no more powerful than 
a suitably chosen single layer. This is because each layer would be 
performing a purely linear operation on its inputs, which could be 
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condensed into one operation. This is easiest to see with a simple 
example. Changing scale is a linear operation, since all things are 
affected by an equal amount. If a network scaled the input by 5 
times in the first layer, and by 2 times in the second, that is exactly 
equivalent to one layer scaling the whole thing by 10 times. 

4.3 THE NEW MODEL 

The adapted perceptron units are arranged in layers, and so the new 
model is naturally enough termed the multilayer pexeptron.  The 
basic details are shown in figure 4.3. 

Figure 4.3 The multilayer perceptron: our new model. 

Our new model has three layers; an input layer, an output layer, 
and a layer in between, not connected directly to  the input or the 
output, and so called the hidden layer. Each unit in the hidden 
layer and the output layer is like a perceptron unit, except that the 
thresholding function is the one shown in figure 4.2, the sigmoid 
function B and not the step function as before. The units in the 
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input layer serve to distribute the values they receive to the next 
layer, and so do not perform a weighted sum or threshold. Because 
we have modified the single-layer perceptron by changing the non- 
linearity from a step function to  a sigmoid function, and added a 
hidden layer, we are forced t o  alter our learning rule as well. We 
now have a network that should be able to  learn to recognise more 
complex things; let us examine the new learning rule in more detail. 

4.4 THE NEW LEARNING RULE 

The learning rule for multilayer perceptrons is called the “gener- 
alised delta rule”, or the “backpropagation rule”, and was suggested 
in 1986 by Rumelhart, McClelland, and Williams. It signalled the 
renaissance of the whole subject. It was later found that Parker had 
published similar results in 1982, and then Werbos was shown to  
have done the work in 1974. Such is the nature of science, however; 
groups working in diverse fields cannot keep up with all the advances 
in other areas, and so there is often duplication of effort. However, 
Rumelhart and McClelland are credited with reviving the perceptron 
since they not only developed the rule independently t o  the earlier 
claims, but used it t o  produce multilayer networks that they investi- 
gated and characterised. Their book, Parallel Distributed Processing 
is still one of the most important books in the field. 

The operation of the network is similar t o  that of the single-layer 
perceptron, in that we show the net a pattern and calculate its re- 
sponse. Comparison with the desired response enables the weights t o  
be altered so that the network can produce a more accurate output 
next time. The learning rule provides the method for adjusting the 
weights in the network, and, as we saw earlier in the chapter, the 
simple rule used in the single-layer perceptron will not work for mul- 
tilayer networks. However, the use of the sigmoid function means 
that enough information about the output is available t o  units in 
earlier layers, so that these units can have their weights adjusted so 
as t o  decrease the error next time. 

The learning rule is a little more complex than the previous one, 
however, and we can best understand it by considering how the net 
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behaves as patterns are taught to it. When we show the untrained 
network an input pattern, it will produce any random output. We 
need to define an error function that represents the difference be- 
tween the network’s current output and the correct output that we 
want it to produce. Because we need to  know the “correct” pat- 
tern, this type of learning is known as “supervised learning”. In 
order to learn successfully we want to  make the output of the net 
approach the desired output, that is, we want to continually reduce 
the value of this error function. This is achieved by adjusting the 
weights on the links between the units, and the generalised delta 
rule does this by calculating the value of the error function for that 
particular input, and then back-propagating (hence the name!) the 
error from one layer to  the previous one. Each unit in the net has 
its weights adjusted so that it reduces the value of the error func- 
tion; for units actually on the output, their output and the desired 
output is known, so adjusting the weights is relatively simple, but 
for units in the middle layer, the adjustment is not so obvious. Intu- 
itively, we might guess that the hidden units that are connected to 
outputs with a large error should have their weights adjusted a lot, 
while units that feed almost correct outputs should not be altered 
much. In fact, the mathematics shows that the weights for a partic- 
ular node should be adjusted in direct proportion to the error in the 
units to which it is connected: that is why back-propagating these 
errors through the net allows the weights between all the layers to 
be correctly adjusted. In this way the error function is reduced and 
the network learns. 

4.4.1 The Mathematics 

Firstly, the notation used is as follows: 
Ep is the error function for pattern p ,  t,j represents the target 

output for pattern p on node j, whilst opj represents the actual 
output at that node. w;j is the weight from node i to  node j. 

Let us define the error function to  be proportional to the square 
of the difference between the actual and desired output, for all the 
patterns to be learnt. 
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i 

The 

The activation of each unit j ,  for pattern p ,  can be written as 

makes the maths a bit simpler, and brings this specific error 
function into line with other similar measures. 

i.e. simply the weighted sum, as in the single-layer perceptron. 
The output from each unit j is the threshold function f j  acting 

on the weighted sum. In the perceptron, this was the step function; 
in the multilayer perceptron, it is usually the sigmoid function, al- 
though any continuously differentiable monotonic function can be 
used. 

opj = fj ( net p j  1 (4.3) 

We can write 

(4.4) 
aE, aEp dnetpj -=  -- 
dwij dnetpj dwij 

by the chain rule. 
Looking a t  the second term in (4.4), and substituting in (4.2), 

dnetpj a - -  - -Cwkjopk 
awij awij 

awjk 7 G O P k  
- - 

(4.5) - - Opi 

dwkj since - = 0 except when k = i when it equals 1. 
dwij 

We can define the change in error as a function of the change in 
the net inputs to a unit as 
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and so (4.4) becomes 

Decreasing the value of E, therefore means making the weight 
changes proportional to Spjopi, i.e. 

APwij = q S , j o ~  (4.8) 

We now need to know what S,j is for each of the units-if we know 
this, then we can decrease E .  Using (4.6) and the chain rule, we can 
write 

aEP - aEp bopj S P j  = -- - --- 
dnet,j dopj dnet,j 

Consider the second term, and from (4.3), 

(4.9) 

(4.10) 

Consider now the first term in (4.9). From (4.1), we can differentiate 
E, with respect to opj, giving 

(4.11) 

Thus 

d p j  = fjl(netpj)(tpj - opj> (4.12) 

This is useful for the output units, since the target and output are 
both available, but not for the hidden units, since their targets are 
not known. 

So, if unit j is not an output unit, we can write, by the chain rule 
again, that 

aEP - BE, dnet,k - -  
a o p j  k 

(4.13) 

= - ~ ~ p k w j k  (4.14) 
k 
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using (4.2) and (4.6), and noticing that the sum drops out since the 
partial differential is non-zero for only one value, just as in (4.5). 
Substituting (4.14) in (4.9), we get finally 

6 p j  = fj(netpj) 6 p k w j k  (4.15) 

This equation represents the change in the error function, with 
respect to  the weights in the network. This provides a method for 
changing the error function so as to  be sure of reducing it. The 
function is proportional to  the errors Spk  in subsequent units, so the 
error has to  be calculated in the output units first (given by (4.12)) 
and then passed back through the net to the earlier units to allow 
them t o  alter their connection weights. It is the passing back of 
this error value that leads to  the networks being referred to as back- 
propagation networks. Equations (4.12) and (4.15) together define 
how we can train our multilayer networks. 

One advantage of using the sigmoid function as the non-linear 
threshold function is that it is quite like the step function, and so 
should demonstrate behaviour of a similar nature. The sigmoid func- 
tion is defined as 

f (ne t )  = 1 / ( 1 +  e-k  ne t )  

and has the range 0 < f ( n e t )  < 1. k is a positive constant that 
controls the “spread” of the function-large values of k squash the 
function until as k ---$ co,f(net) ---f Heaviside function. It also acts 
as an automatic gain control, since for small input signals the slope is 
quite steep and so the function is changing quite rapidly, producing 
a large gain. For large inputs, the slope and thus the gain is much 
less. This means that the network can accept large inputs and still 
remain sensitive to  small changes. 

A major reason for its use is that it has a simple derivative, how- 
ever, and this makes the implementation of the back-propagation 
system much easier. Given that the output of a unit, opj is given by 

k 

opj = f ( n e t )  = 1/(1+ e-k net )  

the derivative with respect to  that unit, f’(net) ,  is given by 
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= k f( net)( 1 - f (ne t ) )  
= k oPj(l - oPj) 

The derivative is therefore a simple function of the outputs. 

4.5 THE MULTILAYER PERCEPTRON ALGORITHM 

:... . .,...: The algorithm for the multilayer perceptron that implements 
:. ..:.: the back-propagation training rule is shown below. It re- 

quires the units to have thresholding non-linear functions that are 
continuously differentiable, i.e. smooth everywhere. We have as- 
sumed the use of the sigmoid function, f (net)  = 1/(1 + e-' ne t )  

since it has a simple derivative. 

.j:.. , ..... :.:: 

Multilayer Perceptron Learning Algorithm 

1. Initialise weights and thresholds 
Set all weights and thresholds to  small random values. 
2. Present input and desired output 
Present input X p  = X O , X ~ , X ~ , .  . . ,zn-l and target output Tp = 
to, t l , .  . . ,tm-l where n is the number of input nodes and m is the 
number o f  output nodes. Set W O  to be -9, the bias, and xo t o  be al- 
ways l. For pattern association, X p  and Tp represent the patterns to be 
associated. For classification, Tp is set to zero except for one element 
set to 1 that  corresponds to the class that  X p  is in. 
3. Calculate actual output 
Each layer calculates 

and passes that  as input t o  the next layer. The final layer outputs values 

O P j .  
4. Adapt weights 
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01 
10 
11 

Start from the output layer, and work backwards. 

1 
1 
0 

w&) represents the weights from node i to node j at time t ,  q is a 
gain term, and 6,j is an error term for pattern p on node j .  

For output units 

For hidden units 

where the sum is over the IC nodes in the layer above node j .  

4.6 THE XOR PROBLEM REVISITED 

In the previous chapter, we saw how the single-layer perceptron was 
unable to solve the exclusive-or problem. Since this problem showed 
the limitations of single-layer perceptrons, it has become the yard- 
stick by which the performance of many new neural systems are 
judged, and many features of the behaviour of multilayer percep- 
trons are revealed by it. 

To quickly review it, the problem is to classify the following cor- 
rectly: 

Input Output + 
Copyright © 1990 IOP Publishing Ltd.
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The first test of the multilayer perceptron is to see if we can produce 
a network that can solve this problem; the two-layer net shown in 
figure 4.4 is able to  produce the correct output. I t  has a three-layer 
structure, with two input units (as we might expect since there are 
two variables in the problem), one unit in the hidden layer, and one 
output unit. The connection weights are shown on the links, and the 
threshold of each unit is shown inside the unit. As far as the output 
unit is concerned, the hidden unit is no different from either of the 
input units, and simply provides another input. 

t 

hidden unit 

I input I 

Figure 4.4 A solution to the XOR problem. 

Notice that the hidden unit’s threshold of 1.5 means that it is off 
unless turned on by both inputs being on. This is an important point 
to  note. It is interesting to  look a t  the behaviour of the network as it 
solves the XOR problem. When both inputs are off (00), the hidden 
unit is also off, and there is no net input t o  the output uni t ,  which 
therefore remains off. When the right input only is o n  ( O l ) ,  the 
hidden unit does not receive enough net input t o  turn it on, so it 
remains off. The output unit sees a net input of $1, which exceeds 
its threshold, and so turns it on. The same happens when the left 
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unit only (10) is on. When both input units are on (11) t.he hidden 
unit receives a net input of $2, which exceeds its threshold value, 
and so it turns on. The output unit now sees a net input of t 1  from 
each of the input units, making +2, and -2 from the hidden unit, 
making 0 in all. This is less than the threshold, and so the unit is 
off. This can be summarised in the table below. 

11 

Considering the hidden unit, we can see that it is detecting when 
both the inputs are on, since this is the only condition under which 
it turns on. Since each of the input units detect when their inputs 
are on, the output unit is fed with three items of information: if the 
left input is on, if the right input is on, and if both the left and the 
right inputs are on. Since the output unit treats the hidden unit as 
another input unit, the apparent input patterns it receives are now 
dissimilar enough for the classification to  be learnt. 

The hidden unit acts as a feature detector, detecting when both 
the inputs are on. It can be viewed as recoding the basic inputs so 
that the network can learn the required mapping of input patterns 
to  output ones. This recoding, or internal representation, is critical 
t o  the functioning of the network. Given enough hidden units, it is 
possible t o  form internal representations of any input pattern such 
that the output units are able to  produce the correct response for a 
specific input. 

The generalised delta rule provides a method for teaching mul- 
tilayer perceptron networks, producing the necessary internal rep- 
resentations on the hidden nodes. It is unlikely that the weights 
produced by a taught network would be as simple as those shown 
above, but the same principles hold. Figure 4.5 shows another solu- 
tion t o  the XOR problem. 

Multilayer perceptrons can appear in all shapes and sizes, with 
the same learning rule for them all. This means that it is possible to 

Copyright © 1990 IOP Publishing Ltd.



THE XOR PROBLEM REVISITED 77 

t 

unit 

I input I 

Figure 4.5 Weights and thresholds of a network that has learnt to solve 
the XOR problem. 

produce different network topologies to  solve the same problem. One 
of the more interesting cases is when there is no direct connection 
from the input to  the output. This and the corresponding XOR 
solution are shown in figure 4.6. The right-hand hidden unit detects 
when both inputs are on, and ensures that the output unit gets a 
net input of zero. When only one of the inputs is on, the left-hand 
hidden unit is on, turning on the output unit. When both inputs are 
off, the hidden units are inactive and so the output unit is off. 

The learning rule is not guaranteed to  produce convergence, how- 
ever, and it is possible for the network to fall into a situation in 
which it is unable to learn the correct output. 

The network shown in figure 4.7 will correctly respond to the input 
patterns 00 and 10, but fails to produce the correct output for the 
patterns 01 or 11. The right-hand input turns on both hidden units. 
These produce a net input of 0.8 at the output unit, exactly the 
same as the threshold value. Since the thresholding function is the 
sigmoid, this gives an output value of 0.5. This situation is stable 
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Figure 4.6 An XOR-solving network with no direct input-output con- 
nections. 

input 

Figure 4.7 A stable solution that does not work. 
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and does not alter with further training. This local minimum occurs 
infrequently-about 1% of the time in the XOR problem. 

Another minor problem can occur in training networks with the 
generalised delta rule. Since the weight changes are proportional to  
the weights themselves, if the system starts off with equal weights 
then non-equal weights can never be developed, and so the net cannot 
settle into the non-symmetric solution that may be required. 

4.7 VISUALISING NETWORK BEHAVIOUR 

Having looked at the generalised delta rule informally, and math- 
ematically, and having examined the multilayer perceptron solving 
the XOR problem, we need a method of visualising what is going 
on in the network. The mathematical analysis of the networks does 
provide a convenient and useful approach t o  the visualisation of their 
behaviour. As we have seen, the network computes an error or en- 
ergy function, E,  = 3 C(tpj - opj)2 which represents the amount by 
which the output of the net differs from the required output. Large 
differences correspond to  large energies, whilst small differences cor- 
respond to small energies. Since the output of the net is related t o  
the weights between the units and the input applied, the energy is 
therefore a function of the weights and inputs t o  the network. We 
can d.raw a graph of the energy function showing how varying the 
weights affects the energy, for a fixed input pattern. Considering this 
for a moment, this means that if we  imagine a very odd network in 
which we can only vary one weight, we can plot a graph of the energy 
function for a particular pattern versus the weight, which may look 
something like figure 4.8. 

If we extend our thinking so that we can vary two weights, we 
will then have two axes for the weights, and the graph of the energy 
function would appear, for example, like figure 4.9. 

We obtain a three-dimensional graph with two weight axes and 
one energy axis; if we allowed another weight t o  vary, then we would 
have another axis t o  add, which would be difficult! In general, we 
can adjust all the weights in a network, and there may be very many 
of them, giving a multidimensional energy function, which we cannot 
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Energy j 

X 

Figure 4.8 The energy function in one dimension, as we vary one weight, 
for a fixed pattern. 

draw. However, it is useful to  consider it as best we can, as a surface 
in 3-d, and just keep reminding ourselves that it is in fact multi- 
dimensional. Our understanding of the higher dimensioned case is 
helped greatly by the analogies that we can visualise easily in the 
3-d situation. This energy surface is a rippling landscape of hills 
and valleys, wells and mountains, with points of minimum energy 
corresponding to  the wells and maximum energy found on the peaks. 
The generalised delta rule aims to  minimise the error function E by 
adjusting the weights in the network so that they correspond to 
those at which the energy surface is lowest. It does this by a method 
known as gradient descent, where the energy function is calculated, 
and changes are made in the steepest downward direction. This is 
guaranteed to find a solution in cases where the energy landscape is 
simple. Each possible solution is represented as a hollow, or a basin, 
in the landscape. These basins of attraction, as they are known, 
represent the solutions to  the values of the weights that produce the 
correct output from a given input. Remember that these basins are 
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W E  U.0 
TI.0- 84.0 
n o -  77.0 
a . 0 -  n o  
1.0. 63.0 
49.0. 1.0 
42.0- 49.0 
3 5 0 -  42.0 
8.0. 35.0 
216- 21.0 
W O .  21.0 

EELON 14.0 

Figure 4.9 The energy function in two dimensions. Notice the ravine on 
the right: starting in the middle near the front and going downhill may 
take you either straight down to the ravine floor, or around the sharp peak 
back right, depending on how often you work out which way is down, and 
where you start from. Notice also that the valley on the left has lots of 
small hollows in its floor. These local minima can trap the solution and 
prevent it reaching the deeper point which occurs about halfway along. 
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actually many-dimensional, but we can only draw them in 3-d. 
It is easiest to  visualise this energy surface as a large, stretchy, 

rubber sheet that is initially flat. The basins of attraction are formed 
by placing heavy balls on the sheet; the sheet deforms downwards 
creating a well. The bottom of the well represents the low energy 
solution that the network has learnt. 

We can also imagine a many-dimensioned space in which each axis 
represented one particular weight-in this case one point in the space 
would represent one unique combination of possible weight values 
that the network could have. This space is known, sensibly enough, 
as the weight sfxlce. Our example of energy space described how we 
could visualise the energy changing as we varied the weights for a 
particular pattern-however, we could have just as easily imagined 
how the energy would change as we varied the input patterns for 
a particular fixed set of weights. Each point in the weight space 
therefore defines a different energy landscape, where the variables 
are the patterns and their corresponding energies. This behaviour is 
shown in figure 4.10. 

* 
adjusting weight in direction that favoun, the storage of pattern A 

Figure 4.10 Diagram showing how changing the weights in a network 
alters the energy landscape. In this case, the weight change from left to 
right favours pattern A since it lowers the energy of that pattern at the 
expense of pattern B. 
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Many of the features associated with multilayer perceptrons are 
easiest to understand if they are considered in terms of the energy 
landscape. 

4.8 MULTILAYER PERCEPTRONS AS CLASSIFIERS 

We have already considered how the multilayer perceptron copes 
with the complicated, linearly inseparable XOR problem; now we 
consider the more general case. The single-layer perceptron is lim- 
ited to  calculating a single plane of separation between classes, which 
is why it fails on problems such as the XOR which are more com- 
plicated. We discussed earlier how a two-layer device could, in prin- 
ciple, solve the XOR problem. Consider a net of three perceptron 
devices as shown in figure 4.11. 

Figure 4.11 Two perceptron units can be combined to produce input for 
a third. 

If the unit in the second layer has its threshold set so that it turns 
on only when both of the first-layer units are on, it is performing a 
logical AND operation. Since each of the units in the first layer de- 
fines a line in pattern space, the second unit produces a classification 
based on a combination of these lines. If one unit is set to respond 
with a 1 if the input is above its decision line, and the other responds 
with a 1 if the same input is below its decision line, then the second 
layer produces a solution as shown in figure 4.12, producing a 1 if it 
is above line 1 and below line 2. 
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line 1 

Figure 4.12 3 perceptrons: the decision region produced by combining 
2 perceptrons with another. 

More than two units can be used in the first layer, which produces 
pattern space partitioning that is a combination of more than 2 lines. 
All regions produced in this way are known as conwez regions or 
conwez hulls. A convex hull is a region in which any point can be 
connected to  any other by a straight line that does not cross the 
boundary of the region. Regions can be closed or open; a closed 
region has a boundary all around it,  as in shapes such as a triangle 
or a circle, whilst an open region does not, as between two parallel 
lines. Examples of closed and open convex regions are shown in 
figure 4.13. 

The addition of more perceptron units in the first layer allows 
us to  define more and more edges-from the points we have made 
above, it is obvious that the total number of sides that we can have 
in our regions will be at most equal t o  the number of units in the 
first layer, and that the regions defined will still be convex. 

However, if we add another layer of perceptrons, the units in this 
layer will receive as inputs, not lines, but convex hulls, and the com- 
binations of these are not necessarily convex, as shown in figure 4.14. 
The combinations of these convex regions may intersect, overlap, or 
be separate from each other, producing arbitrary shapes. 
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opc" cloaed \ 

closed closed 

Figure 4.13 Examples of closed and open convex hulls. 

Figure 4.14 Examples of arbitrary regions formed by the combination 
of various convex regions. 
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Three layers of perceptron units can therefore form arbitrarily 
complex shapes, and are capable of separating any classes. The 
complexity of the shapes is limited by the number of nodes in the 
network, since these define the number of edges that we can have. 
The arbitrary complexity of shapes that we can create, means that 
we never need more than three layers in a network, a statement that  
is referred to  as the KoZmogorov theorem. This can be proved, with a 
bit of complex maths, but it will suffice to  state it here. A summary 
of the perceptron’s classification abilities is shown in figure 4.15. 

The neural network literature is inconsistent when describing net- 
works, since some authors refer to the number of layers of variable 
weights, whilst others describe the number of layers of nodes. This 
causes confusion since the nodes in the first layer, the input layer, 
merely distribute the inputs t o  subsequent layers, and do not per- 
form any summation or thresholding themselves. To confuse matters 
further, some authors miss out these input nodes altogether when 
drawing diagrams! To try t o  clarify the situation: a multilayer net- 
work receives a number of inputs. These are distributed by a layer of 
input nodes that do not perform any summation or thresholding- 
these input nodes have only one input each, so it is clear which they 
are, and obviously pointless for them to  sum their only input. These 
inputs are then passed along the first layer of adaptive weights t o  
a layer of perceptron-like units, which do sum and threshold their 
inputs. This layer is able to  produce classification lines in pattern 
space. The output from this layer is then passed t o  another layer of 
perceptron-like units via adaptable weights, and it is the output of 
this layer that  forms convex hulls in pattern space. A further layer of 
perceptron-like units is reached by another set of adaptive weights, 
and the output of this layer is able to  define any arbitrary shape in 
pattern space. Counting the number of active weight layers, or the 
number of active perceptron layers, this is ii three-layer network. If 
the inactive set of input units is included, it can be c d e d  a four- 
layer network. The general trend is t o  use the former, since it is 
more descriptive. This is summarised in figure 4.16. 

It has been known for a long time that layers of perceptrons would 
be able t o  do more than single ones, but until the generalised delta 
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Perceptron structure XOR problem 

(after Uppwul. IEEE ASSP Apil 1987) 

Meshed classes General region 

Figure 4.15 Neural networks and their corresponding decision regions. 
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the units Qlly 1 -layer net 
dishibutc the (prceptron) 
input. 
t 

2-layer net j 3-tayer net i 

number I of inputs 
d e f m  number of 
lines in final mlution 

I active units 

Figure 4.16 Summary of the boundaries formed by different numbers of 
perceptron layers. 

rule was formulated there was no learning algorithm for such layered 
networks. The use of the sigmoidal non-linearity in the multilayer 
perceptron units transforms the straight line decision surface of the 
perceptron into a smooth curve, and so the regions formed are now 
also bounded by smooth curves, but the overall complexity of the 
shapes of the regions for two- and three-layer networks remains the 
same. 

We can consider classifying patterns in another way. Any given 
input pattern must belong to  one of the classes that we are con- 
sidering, and so there is a mapping from the input to  the required 
class. This mapping can be viewed as a function that transforms 
the input pattern into the correct output class, and we can consider 
that a network has learnt t o  perform correctly, if it can carry out 
this mapping. In fact, any function, no matter how complex, can be 
represented by a multilayer perceptron of no more than three layers; 
the inputs are fed through an input layer, a middle hidden layer, 
and an output layer. As we have already mentioned, this is known 
as the Kolmogorov represent at ion theorem; it is an import ant result 
in that it proves that whatever is done in four or more layers could 
also be done in three. It therefore limits the number of layers that 
are necessary to  represent an arbitrary function, but unfortunately it 
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gives no indication as to  how many units the network requires, how 
they should be connected, or how the weights between them should 
be set. 

4.9 GENERALISATION 

One of the major features of neural networks is their ability t o  gen- 
eralise, that is, to successfully classify patterns that have not been 
previously presented. Multilayer perceptrons generalise by detecting 
features of the input pattern that have been learnt to  be significant, 
and so coded into the internal units. Thus an unknown pattern is 
classified with others that share the same distinguishing features. 
This means that learning by example is a feasible proposition, since 
only a representative set of patterns have to  be taught t o  the net- 
work, and the generalisation properties will allow similar inputs to 
be classified as well. It also means that noisy inputs will be classified, 
by virtue of their similarity with the pure input. It is this general- 
isation ability that allows multilayer perceptrons to  perform more 
successfully on real-world problems than other pattern recognition 
or expert system methods. 

In general, neural networks are good at interpolation, but not so 
good at extrapolation. They are able to detect the patterns that 
exist in the inputs they are given, and allow for intermediate states 
that have not been seen. However, inputs that are extensions of the 
range of patterns are less well classified, since there is little with 
which to compare them. Put another way, given an unseen pattern 
that is an intermediate mixture of two previously taught patterns, 
the net will classify it as an example of the predominant pattern. If 
the pattern does not correspond to  anything similar t o  what the net 
has seen before, then classification will be much poorer. 

4.10 FAULT TOLERANCE 

Multilayer perceptron networks are intrinsically fault-tolerant, since 
they are distributed parallel processing elements, with each node con- 
tributing to the final output response. If a node or its weights are lost 
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or damaged, r e c d  is impaired in quality, but the distributed nature 
of the information means that damage has to be extensive before a 
network’s response degrades badly. The net work therefore demon- 
strates graceful degradation in performance rather than catastrophic 
failure. 

They are also tolerant to noise due to their intrinsic ability to  
generalise from taught examples to corrupted versions of the original 
patterns. 

Damage to a network, whether it takes the form of the loss of 
a few nodes or the incorporation of noise into the training data, 
can often be recovered from by relearning, and in these cases the 
recovery of the network is often very quick. This can be understood 
by examining figure 4.17. Convergence to  the original solution was 

original convergence to 
solutim along ravine 
floa - alow 

, : . < ,  \ 

.-. 

\ 

\ 
\ 

Figure 4.17 Diagram showing how recovery from damage can be achieved 
quickly. 

along a valley floor, and so was slow. The damage done upsets the 
network, but it is quite likely to move it into a state that has a 
large gradient towards the correct solution, and so when relearning 

Copyright © 1990 IOP Publishing Ltd.



LEARNING DIFFICULTIES 91 

occurs, the net moves along this steep gradient and quickly recovers 
the original solution. 

4.11 LEARNING DIFFICULTIES 

The XOR problem demonstrates some of the difficulties associated 
with learning in multilayer perceptrons. Occasionally the network 
settles into a stable solution that does not provide the correct output. 
In these cases, the energy function is in a local minimum. This means 
that in every direction in which the network could move in the energy 
landscape, the energy is higher than at the current position. It may 
be that there is only a slight “lip” to cross before reaching an actual 
deeper minimum, but the network has no way of knowing this, since 
learning is accomplished by following the energy function down in 
the steepest direction, until it reaches the bottom of a well, at which 
point there is no direction to  move in order t o  reduce the energy. 

There are alternative approaches to  minimising these occurrences, 
which are outlined below. 
0 Lowering the gain term 

If the rate at which the weights are altered is progres- 
sively decreased, then the gradient descent algorithm is 
able to  achieve a better solution. If the gain term 77 is 
made large to  begin with, large steps are taken across 
the weight and energy space towards the solution. As 
the gain is decreased, the network weights settle into 
a minimum energy configuration without overshooting 
the stable position, as the gradient descent takes smaller 
downhill steps. This approach enables the network to  
bypass local minima at first, then hopefully locate, and 
settle in, some deeper minima without oscillating wildly. 
However, the reduction in the gain term will mean that 
the network will take longer to  converge. 

0 Addition of internal nodes 
Local minima can be considered to  occur when two or 
more disjoint classes are categorised as the same. This 
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amounts t o  a poor internal representation within the 
hidden units, and so adding more units t o  this layer 
will allow a better recoding of the inputs and lessen the 
occurrence of these minima. 

0 Momentum term 
The weight changes can be given some “momentum” by 
introducing an extra term into the weight adaptation 
equation that will produce a large change in the weight 
if the changes are currently large, and will decrease as 
the changes become less. This means that the network 
is less likely to  get stuck in local minima early on, since 
the momentum term will push the changes over local 
increases in the energy function, following the overall 
downward trend. Momentum is of great assistance in 
speeding up convergence along shallow gradients, al- 
lowing the path the network takes towards the solu- 
tion t o  pick up speed in the downhill direction. The 
energy landscape may consist of long gradually slop- 
ing ravines which finish at  minima. Convergence along 
these ravines is slow, since the direction that has to  
be followed has only a slight gradient, and usually the 
algorithm oscillates across the ravine valley as it mean- 
ders towards a solution, as shown in figure 4.18. This 
is difficult t o  speed up without increasing the chance of 
overshooting the minima, but the addition of the mo- 
mentum term is fairly successful. 
This momentum term can be written as follows: 

S p ~ j i ( t  t 1) = ~ j i ( i )  t 7 6 p j O p i  t a (wji(t) - ~ j i ( t  - 1)) 

where a is the momentum factor, 0 < a < 1. 
0 Addition of noise 

If random noise is added, this perturbs the gradient 
descent algorithm from the line of steepest descent, and 
often this noise is enough to  knock the system out of a 
local minimum. This approach has the advantage that 
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Figure 4.18 The addition of a momentum term can speed up conver- 
gence, especially along a ravine. 

it takes very little extra computation time, and so is 
not noticeably slower than the direct gradient descent 
algorithm. 

4.11.1 Other Learning Problems 

One of the major criticisms of the multilayer perceptron is that it 
requires many presentations of the set of input patterns, and the 
repetition of the corresponding calculation and back-propagation of 
the errors for each pattern, before the network is able to settle into a 
stable solution. The method of gradient descent is intrinsically slow 
to converge in a complex landscape, due to the complexity of the 
energy surface. The addition of the momentum term, as discussed 
in the previous section, often speeds convergence, whilst another 
method is t o  alter the gain term 7. Another alternative solution, 
which also helps to  avoid spurious local minima, is to  take account 
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of second order effects in the gradient descent algorithm. However, 
the increased accuracy of the line of descent offered by this solution 
is offset by the additional computational complexity involved. 

4.12 RADIAL BASIS FUNCTIONS 

An enhancement to the standard multilayer perceptron tech- 
niques uses what are known as radial basis functions. These 

are a set of generally non-linear functions that are built up into one 
function that can partition the pattern space successfully. The usual 
multilayer perceptron builds its classifications from hyperplanes, de- 
fined by the weighted sums Cjw;jz; which are arguments to non- 
linear functions, whereas the radial basis approach uses hyperellip- 
soids to partition the pattern space. These are defined by functions 
of the form q5(IIz - yII) where 1 1 .  . . [ I  denotes some distance mea- 
sure. We can intuitively see that this expression describes some sort 
of multi-dimensional ellipse, since it represents a function whose ar- 
gument is related to a distance from a centre, y. The function s 
in &dimensional space, which partitions the space, has elements S k  

given by 
m 

sk = Xjkd'(llz - y j l l )  
j=1 

In other words, it is a linear combination of these basis functions. 
The advantage of using the radial basis approach is that once the 

radial basis functions have been chosen, all that is left to determine 
are the coefficients X j  for each, to  allow them to partition the space 
correctly. Since these coefficients are added in a linear fashion, the 
problem is an exact one and has a guaranteed solution since there are 
no nasty local minima situations in which to  fall. In effect, the radial 
basis functions have expanded the inputs into a higher-dimensional 
space where they are now linearly separable. 

This approach is guaranteed to produce a function that fits all 
the da ta  points, as long as there is a basis function for each input 
to  be classified. Having one basis function for each input does mean 
that noisy or anomalous data points will also be classified, however, 
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and these will tend to cause distortion. This noise distortion causes 
problems with generalisation; since the classification surface is not 
necessarily smooth, very similar inputs may find themselves assigned 
to very different classes. The solution to this is to reduce the num- 
ber of basis functions to a level at which an acceptable fit to  the 
data is still achieved. This means that the previously exact problem 
becomes one of linear optimisation, but this is not a complex tech- 
nique, and the classification surface will be smooth between the data 
points. 

The choice of which radial basis functions to use is usually made in 
one of two ways. In the absence of any knowledge about the data, the 
basis functions are chosen so that they fit points evenly distributed 
through the set of possible inputs. If we have some knowledge as 
to the overall structure of the inputs, then it is better to try and 
mirror that structure in the choice of functions. This is most easily 
achieved by choosing a subset of the input points, which should have 
a similar distribution to the overall input, as the points to  be fitted. 

The function is usually chosen to be a Gaussian function, i.e. 

whilst the distance measure 1 1 . .  . I [  is taken to be Euclidean: 

i 

where y represents the centre of the hyperellipse. 
This can be represented in a network as shown in figure 4.19. 
The y j k  terms in the first layer are fixed, and the input to  the 

nodes on the hidden layer is given, in the case of the Euclidean 
distance measure, as 

This hidden layer is fully connected to the output layer by con- 
nections of strengths x j k  and it is these that have to be linearly 
optimised. 

The use of radial basis functions is becoming more popular, since 
they need only linear optimisation techniques, which provide a guar- 
anteed, globally optimal solution. The difficulty in using them is in 
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Figure 4.19 A feedforward network showing how i t  represents radial 
basis functions. 
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deciding on the set of basis functions to  be used, in order t o  get an 
acceptable fit to  the data. This is one of a number of techniques 
that essentially preprocess the data and transform it into a higher- 
dimensional space in which the classes are linearly separable. 

4.13 APPLICATIONS 

4.13.1 NETtalk 

One of the most famous and influential network applications is called 
NETtalk, a multilayer perceptron that learns to pronounce English 
text, and was developed by Sejnowski and Rosenberg in 1987. It 
consists of 203 input units, 80 hidden units, and 26 output units, 
one for each phoneme-a phoneme is a basic sound in the language, 
from which all words are composed. This is shown in figure 4.20. A 
window seven letters wide is moved over the text, and the net learns 
to pronounce the middle letter. The windowing of the text before 
and after the pronounced character provides context sensitivity, since 
the sound of letters within a word is dependent on the word itself- 
for example, the “a” in “mean” is virtually silent, in “lamb” it is a 
short, sharp ‘a’, whilst in “class” it is an ‘am’ sound. 

The appealing feature of the network is that it appears to mimic 
the speech patterns of young children, producing an incoherent bab- 
ble at first since the weights are random, then picking out the major 
features of the English language, namely the “eeoo-ee-oo-ee” pat- 
terns that words make. (Listen to the overall sounds made when 
someone speaks. As they talk, their voice rises and falls in the 
same manner as the “ee-oo-ee-oo-ee” phrase-try saying it to get 
the full effect!) Repeated training produces more and more intel- 
ligible speech. The network achieves about 90% correct phoneme 
pronunciation, and its generalisation has also been investigated by 
training it on words from a dictionary, then testing on an unseen set. 
Again, about 90% correct pronunciation of phonemes was reported 
for the training set, with between 80% and 87% on the unseen set, 
increasing as the size of the training set was increased. The net was 
also resistant to damage in the form of random noise added to  the 
weights, and showed a graceful degradation in performance. 
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Figure 4.20 The layout of the NETtalk network. 
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4.13.2 Airline Marketing Tactician 

Have you ever flown on holiday, and found the plane has had half 
a dozen empty seats? Worse for you, have you ever arrived at an 
airport to  check in, only to find that your seat has been double- 
booked and you have to  wait for the next flight? The difficulty this 
causes is one of the dilemmas facing airlines as they struggle to  fill 
all the places on their planes, since empty seats are lost revenue. 
Knowing that a number of people will book and not show up, they 
overbook the seats, trusting that it will all work out in the end. 
The problem they have is that of accurately predicting demand for 
seats and the proportion of passengers that will not turn up (known 
as no-show passengers), so that they can set the overbooking limits 
to allow for these. This tactical marketing aims to  maximise the 
profitability of the airline, who have many conflicting factors to  take 
into account in their strategy. They want to  sell as many seats at 
as high a price as possible, but realise that it is better to sell the 
seats cheaply than not at all. The loss of money from an empty seat 
means that they have to  slightly overbook to  compensate, but the 
cost of a denied boarding for an unlucky customer is much larger 
than the cost of flying with an empty seat. 

The Airline Marketing Tactician (AMT) is a two-stage procedure 
that assists the airline; the first stage consists of a multilayer percep- 
tron that produces forecasts of seat demand, and the second stage 
allocates airline resources to  meet these projected demands using 
standard optimisation techniques. This two-stage system is prefer- 
able to  the direct allocation of resources by the network in a single- 
stage process, since the forecasts that the network produces can be 
checked against the actual demand, and these provide the justifica- 
tion for the allocation decisions. The two-stage process is therefore 
much easier for humans to  follow and analyse. Two networks are 
involved-ne predicts demand for the seats, up to  approximately 
six months ahead, and takes as input such factors as the day of the 
week, the time of the flight, and the price of the tickets. The other 
predicts the no-show rate for each class. There is an interdependency 
between the classes, since if tickets are available at a large discount 
there will be correspondingly less demand for the higher-priced seats. 
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The networks are trained from the airline’s historical data,  and their 
output represents the magnitude of each forecast. One of the prob- 
lems facing the system is that there is no fixed ideal solution, since 
the optimal marketing and allocation changes as the world changes 
and different factors come into play. This means that any prediction 
system must continually adapt to  the changing input, a task that is 
natural for the network but problematical in non-learning systems. 
This gives the network a distinct advantage and means that it is 
currently in successful commercial use. 

4.13.3 ECG Noise Filtering 

An electro-cardiograph (ECG) shows the heartbeat of a patient. 
However, this heartbeat is not always regular, and the monitor- 
ing equipment delivers a signal t o  a screen that contains so much 
noise that it can be difficult to see exactly what is going on. The 
Hecht-Neilsen Neurocomputer Company in America has developed 
a network that filters out the noise and provides a clean signal. The 
net has 50 input units, 12 hidden units, and one output unit, and 
takes as its input 50 time samples of the noisy signal. The magni- 
tude of the output represents the noise-free value at the centre of 
the time-frame. The net uses the inputs before and after the central 
value to  give contextual information and so assist it in producing 
the correct output, just as in the NETtalk application. The use of 
this “past” and “future” information means that the network is al- 
ways running slightly behind the actual signal being received. For 
training, 5120 windows on an ECG were digitised from the recorded 
values of a horse, sampling the input 200 times a second. This set of 
data was collected carefully so that it was noise-free; noise was then 
digitally added and the net trained to produce the original version 
from the noisy one. To give an indication of the success of the ap- 
proach, the net was tested after 20 passes through the training set 
on the same input data but with much more noise added. The net 
produced results that were consistently better than the best adap- 
tive linear filters, and it produced good results even when the noise 
level was up to  50% of the input signal level. 
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Another system, developed by Nestor, is able to  classify heart- 
beats, monitoring them when they are normal, and providing an 
alert if abnormal or potentially dangerous beats occur. 

4.13.4 Financial Applications 

One of the questions frequently asked of new technology is “can it 
predict the stock market?”, and there have been attempts to ap- 
ply neural networks to  this sort of problem. The most successful 
approaches are still likely to  be locked away as company secrets, 
however, and the assumption underlying the question is that it is 
possible to  predict the stock market, an assumption that may not 
be true. 

Networks have been developed that have discovered significant 
patterns in the movement of the markets; notable among these was 
a program that showed a small set of patterns that frequently occur 
in the fluctuation of the Japanese yen compared to the U.S. dol- 
lar. Other systems have been developed to assist in bond trading, 
which seem to offer slight improvements over the more conventional 
computer systems that are already in use; a feature of the finan- 
cial domain is that a slight improvement in predictive success can 
be worth a great deal of money. In one comparison, a converitional 
system predicted the correct move 55% of the time, and was wrong 
45% of the time. The network, working on the same inputs as the 
other system, was undecided 25% of the time. For the remainder, 
it scored 72% correct, which is an improvement. Equities trading, 
futures and exchanges are all areas in which networks have been 
applied, often linking in with other computer prediction systems to 
provide as accurate a result as possible. One financial system, known 
as the trader’s “assistant”, uses a network to  extract the significant 
features from past examples. It then passes them to another system 
which builds rules around those features. The network is allowed to 
adapt to  the distortion and evolution of the market over a period 
of months, and so always provides a current set of critical features, 
which means that the rule base is never out of date. 

Copyright © 1990 IOP Publishing Ltd.



102 THE MULTILAYER PERCEPTRON 

Another area of financial application is loan scoring; this is the 
process of deciding t o  whom it is worth lending money, and how 
much it is worth lending to  them. Delinquency risk assessment, on 
the other hand, is all about gauging how likely a person is t o  default 
on their repayments. Both have seen the successful use of multilayer 
perceptron networks. The advantage of using neural systems is that. 
they can learn from the many thousands of examples in the com- 
pany’s records, extracting and encoding the relevant features that 
indicate what is likely to  happen. They can not only free human ex- 
perts from the more mundane jobs to  concentrate on more difficult 
cases, but can also discover important factors that  have previously 
been unnoticed. One particular network system used the information 
contained in 270,000 previous applications as its training informa- 
tion, using such factors as the applicant’s occupation, whether they 
owned or rented their accommodation, the number of bank accounts 
they had, and so on. Trained on two passes through the data set, the 
net was tested on the loan applications for the first half of 1985 since 
the results of these, in terms of repayment status and profitability, 
were known. Compared to the company’s own approach of using 
discriminant analysis, the network produced results that would have 
increased profitability by 7%. In a delinquency risk assessment ap- 
plication, a network of 6,561 nodes was trained on 5 passes over 5000 
files, which took about 7 hours-its response to  new input took less 
than one second per file, however. Other companies use networks in 
the fields of insurance and mortgage underwriting. 

4.13.5 Pattern Recognition 

Whilst there are many applications of neural networks in diverse 
fields, the underlying principle upon which they operate is one of 
pattern recognition, as we have demonstrated earlier. Consequently 
there are a number of systems that apply themselves directly to  the 
problems of machine vision and object recognition. The Siemens 
group use networks for industrial scene analysis, as well as being 
involved in the CMOS design and manufacture of neural chips. Net- 
works have been applied to  the problem of aircraft identification, and 
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also to  terrain matching for automatic navigation systems. Target 
identification from sonar traces has also been developed, with some 
remarkable results. Attempting to  distinguish hostile contacts from 
non-hostile ones, and given only a day of training the network on ex- 
amples, the net produced 100% correct identification of the target, 
compared to  93% scored by a Bayesian classifier. 

British Rail are currently developing a vision system using a neu- 
ral network that they hope will assist them to monitor level cross- 
ings. The network is designed to produce a high output value if it 
sees that people are on the crossing, and so act as a safety warning 
device. There are many difficulties to  overcome, though, since the 
net must produce a consistently high output whenever people are 
around, whether there is one person or many, whether they are run- 
ning or walking, adult or child. However, such a network has also to  
be insensitive to many other things that may appear in its field of 
view, such as falling leaves, small animals, branches and so on. What 
is more, it also has to  cope with a large variety of lighting conditions 
from daytime to night, spring to  winter, and so the system remains 
under development. 

British Telecom are working, as are many other communications 
companies, on projects that involve the application of perceptrons, 
and much of their effort is involved in speech processing, recognition 
and synthesis. Many firms believe that voice-activated control is 
much more realistic using neural networks than any other method, 
and are making great attempts to  improve this area of the human- 
machine interface. 

There are many commercial applications of networks in character 
recognition, ranging from devices that accept handwritten text as in- 
put to  experimental systems for interpreting hand-drawn diagrams, 
maps or plans. One of the more widely adopted systems performs 
signature verification on cheques for the major banks. Due to the 
high cost in terms of skill and man-hours involved in signature ver- 
ification, it is usually only done on cheques for large amounts; the 
majority are simply checked by the cashier glancing at them. Hu- 
man experts obtain a 50-60% accuracy, a value that is very much 
dependent on the style of the signature, with flamboyant ones being 
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easier to forge. Given a training set containing 75 examples of the 
signature, the network achieves an accuracy of between 92 and 98%, 
in a fraction of the time usually taken. Wider use of the system 
will soon mean that cheques for smaller and smaller amounts can 
be automatically verified, saving the bank and its customers a lot of 
money. 

Summary 

e 

e 
e 

e 

e 

e 

e 

e 

e 

e 
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Multilayer percept ron-layers of percept ron-like units. 
Feedforward, supervised learning. 
Uses continuously differentiable thresholding function (usually 
sigmoid). 
Back-propagation algorithm (generalised delta rule) trains net- 
work by passing errors back down the net. 
Three layers of active units can represent any pattern classifica- 
tion. 
Net develops internal representations of the input’s structure. 
Repeated presentations of training data required for learning. 
Described by energy landscape. 
Learning process will not always converge. 
Variety of approaches to  overcome learning difficulties. 
Radial basis functions separate classes using hyperspheroids and 
can guarantee convergence. 
Applications varied. 

FURTHER READING 

1. Parallel Distributed Processing, Volume 1. J. L. McClelland & 
D. E. Rumelhart. MIT Bradford Press, 1986. Referenced in 
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the previous chapter, it deserves a place here as well since it 
contains the description of the multilayer perceptron as well as 
background material. 

2. Multi-Variable Functional Interpolation and Adaptive Net- 
works. D. S. Broomhead & D. Lowe. HMSO. RSRE report, 
April 1988. A paper that shows the mathematics and use of 
radial basis functions. 

3. Parallel networks that learn to pronounce English text. T. 
J. Sejnowski & C. R. Rosenberg. In Complex Systems, 1987, 
pages 145-168. All about NETtalk. 
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Kohonen Self- Organising Networks 

5.1 INTRODUCTION 

So far we have looked at algorithms that rely on supervised learning 
techniques. In this chapter we will explore unsupervised learning 
methods, and in particular Kohonen’s self-organising maps. As we 
have seen with back propagation techniques, supervised learning re- 
lies on an external training response (the desired response of the 
network) being available for each input from the training class. This 
technique is very useful, and in some ways relates to the human 
learning process. However in many applications, it would be more 
beneficial if we could ask the network to form its own classifications 
of the training data. To do this we have to  make two basic assump- 
tions about the network; the first is that class membership is broadly 
defined as input patterns that share common features, the other is 
that the network will be able to identify common features across the 
range of input patterns. Kohonen’s self-organising map is one such 
network that works upon these assumptions, and uses unsupervised 
learning to modify the internal state of the network to model the fea- 
tures found in the training data. We shall explore this idea fully by 
looking closely at Kohonen’s learning algorithm (and the Grossberg 
ART network in Chapter 7). 

5.1.1 The Self-Organisation Concept 

Kohonen-a Professor of the Faculty of Information Sciences, Uni- 
versity of Helsinki-has worked steadily in the area of neural net- 
works for many years, long before the current surge of interest 
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erupted in the mid 1980’s. He has worked extensively with con- 
cepts of associative memory and models for neurobiological activity. 
His work is characterised by a drive to model the self-organising and 
adaptive learning features of the brain. 

Neurobiologists have long since established that localised areas of 
the brain, particularly across the cerebral cortex, perform specific 
functions. Examples might be speech, vision or motion control, each 
of which can be identified as regions of intense local activity in the 
brain. More recently, evidence has also been found that suggests even 
the localised regions may contain further structures which represent 
the internal mappings of response from sensory organs. A good 
example is found in the auditory cortex region. 

In the auditory cortex it is possible t o  distinguish a spatial order- 
ing of the neurons which reflects the frequency response of the au- 
ditory system. The ordering of the cells within the auditory cortex 
region trace an almost logarithmic scale of frequency. Low frequen- 
cies will generate responses at  one end of the cortex region, high 
frequencies at the opposite extreme. There are arguments for and 
against the idea of internal neuron mappings of this kind. Those 
who oppose it argue the case for the so called “Grandmother cell”. 
This idea suggests that  individual neurons in the brain are coded 
to  represent a specific concept, for example a specific cell could be 
responsible for the task of identifying Grandmother. This argument 
would appear to have little biological justification however-cells in 
the brain die off at a rather alarming rate for those of us who have 
passed the first score of our “three score and ten” (typical estimates 
put the figure at 25000 cells a day). Having an encoding scheme that 
maps concepts t o  unique cells cannot be expected to remain reliable 
with the typical rates of decay of neurons. 

The ideas of self-organisation were proposed as early as 1973 by 
von der Malsburg and followed up in the mid 70’s with computer 
models for self-organisation, by Willshaw and von der Malsburg. 
Their work was particularly biologically motivated-based on the 
development of selectively sensitive neurons (i.e. to light intensity 
and edge orientation) in the visual cortex region. As we discussed 
earlier in the book, biological learning or adaptation is a chemical 
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process that modifies the effectiveness of the synaptic connections at 
the input t o  the neuron cell. There is little doubt that much of the 
high-level structure is genetically placed and fixed from birth, but 
this does not account for our continued experience of learning. There 
is no simple answer to  this question-the biological and physiological 
issues raised are complex. We recently heard the quote “If the brain 
was simple enough to  be understood-we would be too simple to 
understand it!”. Minsky in his book Society of Mind elaborates on 
this complexity and draws the conclusions that the human brain has 
over 400 specialised architectures, and is equivalent in capacity to 
about 200 Connection Machines (Model CM-2). (The book is well 
worth a read if the neurobiological area of this subject interests you.) 
The outcome of Kohonen’s investigations has been the derivation of 
a neural network learning algorithm based on these concepts of self- 
organisation, with very plausible extensions to  the biological realm. 

5.1.2 An Overview 

It has been postulated that the brain uses spatial mapping to model 
complex data structures internally. Kohonen uses this idea to good 
advantage in his network because it allows him to perform data com- 
pression on the vectors to  be stored in the network, using a technique 
known as vector quantisation. It also allows the network to  store data 
in such a way that spatial or topological relationships in the training 
data are maintained and represented in a meaningful way. 

Data compression means that multi-dimensional data can be rep- 
resented in a much lower dimensional space. Much of the cerebral 
cortex is arranged as a two-dimensional plane of interconnected neu- 
rons but it is able to deal with concepts in much higher dimensions. 
The implement ations of Kohonen’s algorithm are also predominantly 
two dimensional. A typical network is shown in figure 5.1. The net- 
work shown is a one-layer two-dimensional Kohonen network. The 
most obvious point to  note is that the neurons are not arranged in 
layers as in the multilayer perceptron (input, hidden, output) but 
rather on a flat grid. All inputs connect to every node in the net- 
work. Feedback is restricted to lateral interconnections to  immedi- 
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f 
U 

input nodes 

Figure 5.1 A Kohonen feature map. Note that there is only one layer of 
neurons and all inputs are connected to all nodes. 

ate neighbouring nodes. Note too that there is no separate output 
layer-each of the nodes in the grid is itself an output node. 

5.2 THE KOHONEN ALGORITHM 

... . ... : The learning algorithm organises the nodes in the grid into 

.. :.:. local neighbourhoods that act as feature classifiers on the 
input data. The topographic map is autonomously organised by a 
cyclic process of comparing input patterns to  vectors “stored” at 
each node. No training response is specified for any training input. 
Where inputs match the node vectors, that area of the map is selec- 
tively optimised to represent an average of the training data for that 
class. From a randomly organised set of nodes the grid settles into a 
feature map that has local representation and is self-organised. The 
algorithm itself is notionally very simple. 

3: ... , ..... :.: 
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Kohonen Network Algorithm 

1. Initialise network 
Define wij(t)  (0 5 i 5 n - 1) to  be the weight from input i t o  node j 
at t ime t. Initialise weights from the n inputs to  the nodes t o  small 
random values. Set the initial radius of the neighbourhood around node 
j ,  Nj(O),  t o  be large. 
2. Present input 
Present input zo(t) ,  q ( t ) , z 2 ( t ) ,  . . . , zn- l ( t ) ,  where z i ( t )  is the input 
t o  node i at t ime t .  
3. Calculate distances 
Compute the distance d j  between the input and each output node j ,  
given by 

n-7 

i=O 

4. Select minimum distance 
Designate the output node with minimum dj  to  be j * .  
5. Update weights 
Update weights for node j *  and i ts  neighbours, defined by the neigh- 
bourhood size Nj*(t) .  New weights are 

" i j ( t  t 1) = W i j ( t )  t V ( t ) ( Z i ( t )  - W&)) 

For j in Nj*(t) ,  
The term ~ ( t )  is a gain term (0 < ~ ( t )  < 1) that decreases in time, 
so slowing the weight adaption. Notice that the neighbourhood Nj*(t)  
decreases in size as t ime goes on, thus localising the area o f  maximum 
activity. 
6. Repeat by going t o  2. 

0 5 i 5 n - 1 

In summary: 
0 Find the closest matching unit to  a training input 
0 Increase the similarity of this unit, and those in the neighbouring 

proximity, t o  the input. 
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5.2.1 Biological Justification 

Is there any biological justification for such a learning rule? As we 
have seen already, Kohonen has based most of his work on close 
studies of the topology of the brain’s cortex region, and indeed there 
would appear to  be a good deal of biological evidence to  support this 
idea. 

We have seen in previous chapters that activation in a nervous 
cell is propagated to  other cells via axon links (which may have an 
inhibitory or excitatory effect at the input of another cell). However, 
we have not considered the question of how the axon links are af- 
fected by lateral distance from the propagating neuron. A simplified 
yet plausible model of the effect is illustrated by the Mexican hat 
function shown in figure 5.2. 

Figure 5.2 The Mexican hat function describes the effect of lateral in- 
terconnection. 

We can see that cells physically close to the active cell have the 
strongest links. Those at a certain distance actually switch to in- 
hibitory links. It is this phenomenon to  which Kohonen attributes 
to the development (at least in part) of localised topological mapping 
in the brain. As we shall see, he has modelled this effect by using 
only locally interconnected networks and restricting the adaption of 
weight values to  localised “neighbourhoods”. 
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Much of the popularity of this paradigm could be attributed to  
the fact that it has a very accessible and “natural” feel to  it, as we 
shall hopefully see when we expand the algorithm. Reading through 
the algorithm, we can see that the learning rule is not complicated. 
There are no troublesome derivatives to  be calculated, as in gradient 
descent methods. Initially all the connections from the inputs to  
the nodes are assigned small random weight values. Each node will 
thus have a unique weight vector, the dimensionality of which is 
defined by the number of components in the input vector. During 
the learning cycle, a set of training patterns (a representative subset 
of the full data set) is shown t o  the network. The action of the 
network under the stimuli of these training inputs can be compared 
to a “winner-take-all” function. A comparison is made between each 
input pattern, as it is presented, and the weight vectors-the node 
with the weight vector closest to  the input pattern is selected as the 
“winner”. The winning node “claims” the input vector and modifies 
its own weight vector to align it with the input. The node has now 
become sensitive to  this particular training input and will provide 
a maximum response from the network if it is applied again after 
training is completed. 

We can see from the algorithm that the nodes in the neighbour- 
hood N ,  of the winning node are also modified. The reason for this 
is that the network is trying to create regions that will respond to  a 
spread of values around the training input. The nodes around the 
winning node are given a similar alignment, and over the course of 
the training cycle this settles to an “average” representation of that 
class pattern. As a consequence, vectors that are close spatially to 
the training values will still be classified correctly even though the 
network has not seen them before. This demonstrates the generali- 
sation properties of the network. 

The two most central issues to  adaptive self-organising learning in 
a Kohonen network are the weight adaption process and the concept 
of topological neighbourhoods of nodes. Both of these ideas are very 
different from the neural networks we have discussed so far, so our 
description of the workings of the Kohonen network will be based 
around these key themes. 
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5.3 WEIGHT TRAINING 

As we have already mentioned, there is no derivative process involved 
in adapting the weights for the Kohonen network. Referring to  the 
algorithm again, we can see that the change in the weight value 
is proportional to the difference between the input vector and the 
weight vector: 

where wij  is the ith component of weight vector to node j ,  for j in 
the neighbourhood N j * ( t )  

The unit of proportionality is q( t ) ,  the learning rate coefficient, 
where 0 < q( t )  < 1. This term decreases the adaption rate with time 
(where by “time” we mean the number of passes through the training 
set). We can visualise the training cycle as having two stages. The 
first stage is creating some form of topological ordering on the map of 
randomly orientated nodes. The training process attempts to cluster 
the nodes on the topological map to reflect the range of class types 
found in the training data. This will be a coarse mapping, where the 
network is discovering how many classes the map must eventually 
identify, and where they should lie in relation to each other on the 
map. These are large scale changes to the orientation of the nodes 
on the map, so the adaption rate is kept high ( q  > 0.5) to allow 
large weight modifications and hopefully settle into an approximate 
mapping as quickly as possible. Once a stable coarse representation 
is found, the nodes within the localised regions of the map are fine- 
tuned to the input training vectors. To achieve this fine-tuning much 
smaller changes must be made to the weight vectors at each node, 
so the adaption rate is reduced as training progresses. Typically the 
fine-tuning stage will take between 100 and 1000 times as many steps 
as finding the coarse representation, if a low value of q is used. 

Each time a new training input is applied to the network the 
winning node must first be located; this identifies the region of the 
feature map that will have its weight values updated. The winning 
node is categorised as the node that has the closest matching weight 
vector to the input vector, and the metric that is used to measure 

(0 5 i 5 n - 1). 
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the similarity of the vectors is the Euclidean distance measure. We 
discussed this metric earlier in Chapter 2. There are, however, a 
few subtleties to  note in implementing the technique in the Kohonen 
network. The Euclidean norm of a vector is a measure of its magni- 
tude. However, we are not so much interested in the magnitude of 
the vectors as in finding out how they are orientated spatially. In 
other words, we will describe two vectors as being similar if they are 
pointing in the same direction, regardless of their magnitude. The 
only way that we can ensure that we are comparing the orientation 
of two vectors, using the Euclidean measure, is t o  first make sure 
that all the weight vectors are normalised. Normalising a vector 
reduces it t o  a unity Zength vector by dividing it by its magnitude- 
for a set of vectors in Euclidean space this means that each vector 
will retain its orientation but will be of a fixed length, regardless of 
its previous magnitude. The comparison of the weight vectors and 
the input vector will now be concerned only with the orientation, 
as required. Another useful advantage of normalising the vectors is 
that it reduces the training time for the network, because it removes 
one degree of variability in the weight space. Effectively that means 
that the weight vectors start in an orientation that is closer t o  the 
desired state, thus reducing some of the reorientation time during 
the training cycle. 

5.3.1 Initialising the Weights 

A note of caution may be inserted at this point concerning the ini- 
tialisation of the weight vectors. So far we have suggested that on 
start-up, the network weights should be set t o  small, normalised 
random values. However, this is an over-simplification because if the 
weight vectors are truly randomly spread, the network may suffer 
non-convergent or very slow training cycles. The reason for this can 
be explained fairly intuitively. Typically the input training vectors 
will fall into clusters over a limited region of the pattern space, cor- 
responding to  their class (at least it is hoped that they will, else 
training will be a difficult process). If the weight vectors, stored 
at the nodes in the network, are randomly spread then the situa- 
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tion could quite easily arise where many of the weight vectors are 
in a very different orientation t o  the majority of the training in- 
puts. These nodes will not win any of the best-match comparisons 
and will remain unused in forming the topological map. The conse- 
quence of this is that  the neighbourhoods on the feature map will be 
very sparsely populated with trainable nodes, so much so that there 
may not be enough usable nodes to  adequately separate the classes. 
This will result in very poor classification performance due t o  the 
inability of the feature map t o  distinguish between the inputs. 

The optimum distribution for the initial weights is one that gives 
the network starting clues as to the number of classes in the train- 
ing data and the likely orientation that each one will be found, but 
considering that this is oft en the very information that we are expect- 
ing the network to find for us it is a rather impractical proposition. 
There are, however, methods to  approximat#e such a distribution. 

One method is t o  initialise all the weights so that they are nor- 
mal and coincident (i.e. with the same value). The training data is 
modified so that,  in the early stages of the training cycle, the vectors 
are all lumped together in a similar orientation to  the start-up state 
of the nodes. This gives all the nodes in the feature map the same 
likelihood of being close t o  the input vectors, and consequently being 
included in the coarse representation of the map. As training pro- 
gresses the inputs are slowly returned to  their original orientation, 
but because the coarse mapping is already defined by this stage, the 
nodes in the feature map will simply follow the modifications made 
to the input values. A similar technique adds random noise to the 
inputs in the early stages of training in an attempt to  distribute the 
vectors over a larger pattern space, and thus utilise more nodes. 

It is also possible t o  attach a threshold value to each node, which 
“monitors” the degree of success or failure that a node has in being 
selected as best-match. If a node is regularly being selected, it will 
temporarily have its threshold raised. This reduces its chance of 
being voted best-match and allows redundant nodes to  be used in 
forming the features of the map. 

The most often used technique, however, and the one quoted by 
Kohonen, is one that we have already mentioned in passing-that of 
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local neighbourhoods around each node. We will now explain how 
this maximises the use of all the nodes in the network and promotes 
topological grouping of nodes. 

5.4 NEIGHBOURHOODS 

In order to model the Mexican hat function for the lateral spread of 
activation in interconnected nodes, Kohonen introduces the idea of 
topological neighbourhoods. This is a dynamically changing bound- 
ary that defines how many nodes surrounding the winning node will 
be affected with weight modifications during the training process. 
Initially each node in the network will be assigned a large neighbour- 
hood (where “large” can imply every node in the network). When 
a node is selected as the closest match to  an input it will have its 
weights adapted to tune it to  the input signal. However, all the nodes 
in the neighbourhood will also be adapted by a similar amount. As 
training progresses the size of the neighbourhood is slowly decreased 
to a predefined limit. To appreciate how this can force clusters of 
nodes that are topologically related, consider the sequence of dia- 
grams shown in figure 5.3 that represents the topological forming of 
the feature clusters during a training session. For clarity, we shall 
show the formation of just one cluster which is centred about the 
highlighted node. 

In A, the network is shown in its initialised state, with random 
weight vectors and large neighbourhoods around each node. The 
arrows within each node can be thought of as a spatial representation 
of the orientation of each node’s weight vector. Training commences 
as previously described; for each training input the best-match node 
is found, the weight change is calculated and all the nodes in the 
neighbourhood are adjusted. 

In B we can see the network after many passes through the train- 
ing set. The highlighted region of the map is beginning to form 
a specific class orientation based around the highlighted node. The 
neighbourhood size has also shrunk so that weight modifications now 
have a smaller field of influence. 

Copyright © 1990 IOP Publishing Ltd.



118 KOHONEN SELF-ORGANISING NETWORKS 
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The effect of shrinking the neighbour- 
hood is to localise areas of similar 
activity. All the units with the shaded 
area in A are initially affected, and 
realign themselves slightly towards the 
winning node’s weight vector. As time 
passes, the neighbourhood is reduced 
and only the nodes in the neighbour- 
hood of the winning node are altered. 
These align themselves more and 
more, until the area around the winner 
consists of similar weight vectors. In 
the resulting network, an input close to 
the one that triggered the original node 
will elicit a response from a node that 
is topologically close. 

Figure 5.3 Training a localised neighbourhood. 

Copyright © 1990 IOP Publishing Ltd.



REDUCING THE NEIGHBOURHOOD 119 

The fully trained network is shown in C. The neighbourhoods have 
shrunk to a predefined limit of four nodes, and the nodes within the 
region have all been adapted to  represent an average spread of values 
about the training data for that class. 

The training algorithm will produce clusters for all the class types 
found in the training data. The ordering of the clusters on the map, 
and the convergence times for training are dependent on the way 
the training data is presented to  the network. Once the network has 
self-organised the internal representation the clusters on the feature 
map can be labelled to  indicate their class so that the network can 
be used to  classify unknown inputs. Note that the network forms the 
internal features without supervision, but the classification labelling 
must be done by hand, once the network has been fully trained. 

5.5 REDUCING THE NEIGHBOURHOOD 

We have already stressed that the neighbourhood size is reduced 
with time during the training sequence. But how quickly do we 
reduce it and to what final size? Unfortunately there are no hard 
and fast rules for adaptive training algorithms of this nature and 
some experiment ation will be required in individual applications. 
However Kohonen does stress that his method is not one that is 
brittle-that is, small changes in system parameters do not reflect 
gross divergence of training results-and also suggests some rules of 
thumb as a starting point for intuitive tweaking! 

We have explained that the adaption rate must be reduced during 
the training cycle so that weight changes are made more and more 
gradual as the map develops. This ensures that clusters form accu- 
rate internal representations of the training data as well as causing 
the network to  converge to a solution within a predefined time limit. 
In typical applications Kohonen suggests that the adaption rate be 
a linearly decreasing function with the number of passes through the 
training set. 

Training is effected not only by the adaption rate and the rate at 
which the neighbourhood is reduced, but also by the shape of the 
neighbourhood boundary. The example we used earlier, in figure 5.3, 
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only discussed the possibility of using a square neighbourhood- 
however, that is not to  say that we cannot define a circular or even 
a hexagonal region, and these may provide optimal results in some 
cases. As with the adaptation rate, however, it is preferable to start 
with neighbourhoods fairly wide initially and allow them to decrease 
slowly with the number of training passes. 

5.5.1 Point Density Functions 

For those who prefer a more mathematical definition of what 
is happening during the training cycle we can explain the 

clustering phenomenon using probability density functions. A prob- 
ability density function is a statistical measure that describes the 
data distribution in the pattern space. For any given point in the 
pattern space, the probability density function will define a value 
for the likelihood of finding a vector at that point. Given a pattern 
space with a known probability density function (i.e. we know how 
the patterns are spread across the pattern space) it can be shown 
that the map will order itself such that the point density of the nodes 
in the feature map will tend to  approximate the probability density 
function of the pattern space (if a representative subset of the data 
is chosen to  train the network). To visualise what this means in 
practice, consider figure 5.4. 

The network is being trained on data from a uniformly distributed 
pattern space within the two-dimensional outer frame-in other 
words, the patterns are evenly distributed across the rectangular 
region. A training set is selected from by choosing independent and 
random points in the pattern space-the randomness will ensure 
that a good representation of the total pattern space is provided. 
The sequence of diagrams represents the state of the weight vectors 
for various stages of the training cycle. The weight vectors are two 
dimensional ( ( X , , X z ) ) ,  and the value of the weight vector defines 
a point in the weight space. The diagrams are plotted by draw- 
ing lines between the points defined by the weights of neighbouring 
nodes. These plots, then, depict the spatial relationship of the nodes 
in the weight space (two dimensional in this case). The final state 
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- 
fig 5.4a 14 

1400 fig 5.k 

t=25 fig 5.4b 

t=10 000 fig 5.4d 

Figure 5.4 Representation of the development of the spatial ordering of 
the weight vectors. 
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of the network shown in figure 5.4 shows how the weight vectors 
have ordered themselves to represent the distribution of the pattern 
space. The nodes have been optimally ordered to  span the pattern 
space as accurately as possible, given the constraint that there is a 
limited number of nodes t o  map the much larger space. 

5.6 LEARNING VECTOR QUANTISATION (LVQ) 

Despite the fact that  the Kohonen network is an unsupervised self- 
organising learning paradigm, Kohonen does in fact make use of a 
supervised learning technique. This he describes as learning vec- 
tor quantisation. This is worth mentioning because it amounts to 
a method for fine-tuning a trained feature map to  optimise its per- 
formance in altering circumstances. A typical situation may be that 
we wish to  add new training vectors to improve the performance of 
individual neighbourhoods within the map. 

The way this is achieved is by selecting training vectors (x) with 
known classification, and presenting them t o  the network to  exam- 
ine cases of misclassification. Again, a best-match comparison is 
performed at each node and the winner is noted (n,). The weight 
vector of the winning node is then modified according to the follow- 
ing criteria. 
For a correctly classified input: 

For an incorrect classification: 

The term ~ ( t )  controls the rate of adaptation, and performs the same 
function as it did in the learning cycle. The application study that 
follows shows how this method may be used t o  add new users t o  a 
speech recognition system by optimising the phoneme classifiers on 
a feature map. 
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5.7 THE PHONETIC TYPEWRITER 

Perhaps one of the best ways of demonstrating the value of an idea 
is by its successful application. Kohonen has applied his feature map 
algorithm to the time honoured problem of speech recognition. This 
is perhaps an ideal application for feature map techniques. The prob- 
lem is one of classifying phonemes in real time. Why is it so ideally 
suited to  the Kohonen method? The phonemes form a small clas- 
sification set with class samples showing subtle variations between 
them. This implies that only a small number of feature detectors 
need to  be formed in the topological map, each of which has many 
nodes in its neighbourhood tuned over a limited range. That is not 
to say that phoneme classification is a trivial problem-far from it! 
Speech recognition is a complex pattern recognition task. Our own 
human recognition of speech works at several levels of perception. 
Apart from the fundamental interpret ation of the speech waveform, 
much of the recognition is done at levels applying context, Inference, 
extrapolation, parsing and syntactic rules. We even perform these 
functions reliably in considerably noisy environments. If you don’t 
believe that statement, think about the cocktail party scenario. We 
are capable of understanding and holding a conversation in the midst 
of the general buzz of discussion. We are able to  ignore the noise of 
conversation around us, and yet, if our name is mentioned in conver- 
sation elsewhere in the room we are very likely to pick it out (and 
be worried by it!), 

From a signal processing perspective the speech waveform is also 
ill-defined and complex. Speech phonemes vary in signal strength 
and shape from speaker to speaker. Even in an individual speaker, 
phonemes vary in the context of the words that they are formed in, 
and invariably the spectral signals of the different phonemes overlap 
for much of their waveform. A great deal of effort has been expended 
over a sustained period to  try to create accurate phoneme classifiers 
using conventional techniques. The simplicity of the solution we are 
about to describe serves to  show the particular merit of Kohonen’s 
technique. 

The driving goal of Kohonen’s work was to build a phonetic type- 
writer-that is a typewriter that could type from dictation. This is 
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perhaps easier in his native tongue of Finnish than it would be in 
other languages (Finnish being a phonetic language), but it was still 
quite a complex task. Kohonen has approached the problem apply- 
ing a mixture of the best of many techniques-he is quick to  point 
out that  neural networks are not a universal panacea for all aspects 
of a data  processing problem. The system that he devised is shown 
schematically in the following figure, figure 5.5. 

0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  

rule base 

word processor 

Figure 5.5 A schematic circuit of Kohonen’s neural based phonetic type- 
writer. 

The neural network is only dealing with one part of the total 
task. The system is not totally “neural”-in fact the neural network 
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is only being used in the critical stage of classifying the phonemes. 
This amounts to vector quantisation of the spectral speech signal. 
Kohonen was striving for a real-time commercial system-this meant 
that where conventional computing techniques provide optimal so- 
lutions, they were adopted within the system. This is most clearly 
seen in the front-end signal processing stage. 

5.7.1 Front-end Preprocessing 

The front-end processing is an essential element to  any neural net- 
work technique. This point cannot be over-stressed. Any neural 
network paradigm will perform poorly if given non-representative 
or inadequate training data. Neural networks do provide a novel 
method of abstracting feature information into a distributed encod- 
ing. They do not, however, by-pass the critical stage in any pattern 
recognition task of adequately defining the salient and characteristic 
features of the data. Kohonen’s system relies on standard digital sig- 
nal processing techniques to extract the phoneme spectral data from 
the voice input. From a microphone input the speech waveform is 
fed into a 5.3 kHz low pass filter driving a 12-bit A/D converter (at 
a sampling rate of 13.03 kHz). A 256 point Fast Fourier Transform 
(FFT) is computed on the digital data from the A/D at 9.83 ms inter- 
vals to  capture the spectral content of the phonemes. Kohonen uses 
the FFT technique because it shows the clustering properties of the 
spectral component better than more conventional coding methods, 
and thus provides a more useful representation on which the classi- 
fier can train. It is also a fast, reliable and well supported technique. 
The output of the FFT is filtered and made logarithmic before the 
information is grouped into a fifteen component continuous pattern 
vector. The information represented in this vector is the instanta- 
neous power in one of fifteen frequency bands ranging from 200 Hz 
to 5 kHz. Before being applied to the network as input the compo- 
nents have the signal average removed and are then normalised to  a 
constant length. Kohonen also uses a sixteenth vector component to  
represent other information about the signal. He chose to  use this 
to represent the rms value of the speech signal. 
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In the preprocessing stage Kohonen has quantised the voice input 
to  a 16-bit feature vector. The feature vector is a short time slice of 
the speech waveform. These features were used t o  train the network. 
It is important to  note that the network was not trained on phoneme 
data, but only the time-sliced speech waveforms. The nodes in the 
network, however, become sensitised t o  the phoneme data because 
the network inputs are centred around phonemes. The network is 
able to find these phonemes in the training data without them be- 
ing explicitly defined. The clusters that are formed during training 
must then be labelled afterwards by hand. This involves present- 
ing isolated phoneme samples to the network and finding the region 
of maximum response on the topographical map. In Kohonen’s ex- 
periments 50 samples of each test phoneme were used t o  label the 
network after it was trained on voice data. A typical topological fea- 
ture map is shown in figure 5.6. It shows the trained network with 
the labelling attached-Kohonen describes it as a phonotopic map. 

Figure 5.6 A phoneme feature map. Kohonen calls this a “phonotopic 
map”. 

The map classifies the more readily defined phonemes-that is, 
those with relatively stable and predictable speech waveforms. In 

Copyright © 1990 IOP Publishing Ltd.



THE PHONETIC TYPEWRITER 127 

practice most phonemes have a much longer duration than the Sam- 
pling rate used of 9.38 ms. The true duration is typically in the order 
of 40-400 ms. Consequently the classification of a phoneme is made 
on the basis of several consecutive inputs. Kohonen classifies the 
phonemes over a number of inputs using simple heuristic rules. One 
of these relies on the fact that many phonemes have spectra with 
a unique stationary state by which they can be identified. Alter- 
natively, a sequence of inputs may be monitored-if the phonotopic 
map’s response is constant for a number of consecutive inputs then 
those inputs correspond to a single phoneme. 

It is also possible to visualise the speech waveform as a dynamic 
trace across the phonotopic map. This is shown in figure 5.7. The 
steps represent input samples at 9.38 ms intervals. The trace shows 
the stationary states of the spoken phonemes converging at localised 
points on the map. Kohonen does not perform classification using 
these traces, but he does suggest that they provide a new way of 
visualising phonetic strings, that may be of use in applications such 
as teaching aids for the deaf. 

Figure 5.7 The map shows the phonetic trace of the Finnish word 
“humpilla” across the map. 
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5.7.2 Auxiliary Maps 

The “plosive” phonemes (e.g. b/ t /g)  have very transient spectra 
characterised by a high burst of initial energy followed by a period 
of comparative silence. Kohonen found that the standard phonotopic 
map did not perform very well at  classifying this type of phoneme. 
His solution was to  use auxiliary maps (called transient maps) to 
classify just the plosive type phonemes. The auxiliary maps were 
trained on the spectra of the plosive phonemes. The results of such 
a simple modification to the map was an overall improvement in the 
recognition accuracy of six to  seven per cent. 

5.7.3 Post Processing 

The last stage of the phonetic typewriter is the translation from the 
phonetic transcription t o  orthographic. It is here that the errors 
from the classification stage must be corrected. The majority of er- 
rors are caused by an effect known as coarticulation. Coarticulation 
is the variation in the pronunciation of a phoneme that is caused 
by the context of the neighbouring phonemes. To deal with this ef- 
fect, Kohonen has adopted a rule based system that constructs the 
correct grammar from the phonetic translation. The rule base is 
large-typically 15000-20000 rules and deals primarily with context 
sensitivity of phonemes. It would be impractical t o  attempt to  de- 
fine rules t o  account for coarticulation without considering context. 
The rule base would be prohibitively large if it were to  deal with all 
permutations and it could not cope with the contradictory cases so 
often found in a language. Kohonen’s rule base has been developed 
from actual example speech data and its correct phonetic transcrip- 
tion. Much like the neural network stage the rules have been derived 
from example rather than explicitly. 

The grammar rule base has been implemented efficiently using 
hash coding ( a  software technique for content addressable memory) 
and operates in near real time-even for a large rule base. The out- 
put of the rule base is contextually corrected phonetic strings that 
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can produce orthographic text t o  drive a word processor environ- 
ment. 

5.7.4 Hardware Implementation 

The system has been designed with standard digital hardware. The 
host computer is an IBM PC/AT with two auxiliary DSP coproces- 
sor boards. Both coprocessors are based on the TMS32010 Digital 
Signal Processor. One board is responsible for the preprocessing of 
the speech signal, the other is performing the feature map classifi- 
cation. Post processing is done by the host PC. Even using such 
standard hardware (much faster DSP’s are now available) the recog- 
nition system performs at an almost true rate of speech; only a slight 
pause is required between words. 

5.7.5 Performance 

The performance figures that follow are quoted by Kohonen from 
his experiments with the system. Performance figures are always 
difficult to  analyse without understanding the full context of the 
tests. However, it is worth quoting those for the system as they are 
fairly indicative of the usefulness of adopting a neural based solution 
in this type of application. 

Correct classification of phonemes from the phonotopic map stage 
varies between 80 and 90 per cent depending upon speaker and the 
text. The system accuracy after correction by the grammar rule base 
increases to between 92 and 97 per cent. This figure is measured by 
letter accuracy on the orthographic output and is for an unlimited 
vocabulary. 

A performance issue that must also be considered is the flexibility 
of the system in adapting to new users. Kohonen’s system is par- 
ticularly amenable to  the addition of new speakers. They are added 
using the supervised learning technique, learning vector quantisa- 
tion, that was described earlier in the chapter. Fine-tuning a map 
to a new speaker typically requires 100 words and can be completed, 
according to Kohonen, in ten minutes. 
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5.7.6 Conclusion 

Hopefully, working through this application example has brought two 
main issues forward. The first is an indication of how self-organising 
networks may be used in practice. The second is an appreciation of 
how neural networks may be embedded at the system level. There 
has been much hysteria concerning the application of neural net- 
work techniques and many exaggerated claims for their performance. 
Neural networks are far from being a universal panacea for all com- 
puting situations, but Kohonen’s system level approach shows how 
the strengths of neural techniques (parallelism, generalisation, noise 
tolerance) may be used in conjunction with conventional techniques 
t o  create very powerful computing tools. 

Summary 

Kohonen nets are self-organising, with similar inputs mapped t o  
nearby nodes. 
All the nodes are in one two-dimensional layer. 
“Mexican hat” function of lateral excitation and inhibition. 
Neighbourhood of interactions decreases with time. 
Successfully implemented t o  produce a phonetic typewriter. 
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Hopfield Networks 

6.1 INTRODUCTION 

One of the major contributions to  the area of neural networks was 
made in the early 1980’s by John Hopfield, who studied an autoas- 
sociative network that has some similarities with the perceptrons 
studied in earlier chapters, but also some important differences. Hop- 
field’s contribution was not simply the suggestion of a suitable model, 
but his extensive analysis and study, which has led to his name be- 
ing associated with the network. He developed the use of an energy 
function, and related the networks t o  other physical systems. The 
Hopfield net consists of a number of nodes, each connected to  every 
other node: it is afubly-connectednetwork, and is shown in figure 6.1. 
An alternative view of the Hopfield net is shown in figure 6.2. 

It is also a symmetricully-weighted network, since the weights on 
the link from one node to  another are the same in both directions. 
Each node has, like the single-layer perceptron, a threshold and a 
step-function, and the nodes calculate the weighted sum of their in- 
puts minus the threshold value, passing that through the step func- 
tion to  determine their output state. The net takes only 2-state 
inputs-these can be binary ( 0 , l )  or bipolar (-l,+l). However, 
the bipolar values make the mathematics a little clearer, so we will 
take the easiest route. What really distinguishes the Hopfield net 
from the networks discussed earlier is the way in which it produces 
a solution. 

Looking at figure 6.1, or figure 6.2, which show what a fully- 
connected net is like, there are no obvious input or output 
connections-each node is the same as any other! This is the major 
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Figure 6.1 The  Hopfield network. 

Figure 6.2 The Hopfield network-alternative view. 
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feature of the Hopfield network, and this difference in architecture 
means that the network operates in a different way. Inputs to  the 
network are applied to  all nodes at once, and consist of a set of 
starting values, +1 or -1. The network is then left alone, and it 
proceeds to cycle through a succession of states, until it converges 
on a stable solution, which happens when the values of the nodes no 
longer alter. The output of the network is taken to be the value of 
all the nodes when the network has reached a stable, steady state. 
The reasons behind this behaviour will be outlined in the following 
sections, but a simple way of visualising the system is to consider 
that since each node is connected to every other, the value that is on 
one node affects the value of them all. The initial state represents a 
lot of different values each trying to  affect each other. This is likely 
to be unstable, since one value may be trying to  turn other nodes on, 
while another is trying to  turn them off. As the net moves through 
a succession of states, it is trying to reach a compromise between all 
the values in the network, and the final steady state represents the 
“best compromise” solution that the network can find. In this state, 
there are as many inputs trying to  make a unit turn on as there are 
trying to  make it turn off, so it remains in its stable state. 

The operation of the network is radically different from that of a 
perceptron system, in which inputs are applied and the net produces 
an output which represents the solution. In the Hopfield net, this 
first output is taken as the new input, which produces a new output, 
and so on; the solution occurs when there is no change from cycle 
to cycle. It is therefore pertinent to  ask if the learning procedure is 
also different. Is there a sensible way to  store a set of patterns in a 
Hopfield net? If so, what is it, and why does it work? In the rest of 
this chapter, we provide answers to these questions. 

6.2 THE HOPFIELD MODEL 

The algorithm governing the operation of the Hopfield net is 
shown on the following page. 
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Hop field Net work Algorithm 

1. Assign connection weights 

where w;j is  the connection weight between node i and node j ,  and xi" 
is element i of the exemplar pattern for class s, and is either t1 or -1. 
There are M patterns, from 0 t o  M - 1, in total. The thresholds of the 
units are zero. 

2. Initialise with unknown pattern 

where p;( t )  is the output of node i at t ime t .  

3. Iterate until convergence 

The function fh is the hard-limiting non-linearity, the step function, as 
in figure 3.3. Repeat the iteration until the outputs from the nodes 
rem ai n u nc ha nged . 

The weights between the neurons are set using the equation given 
in the algorithm, from exemplar patterns for all classes. This is the 
teaching stage of the algorithm, and associates each pattern with 
itself. The recognition stage occurs when the output of the net is 
forced to match that of an imposed unknown pattern at time zero. 
The net is then allowed to iterate freely in discrete time steps, until 
it reaches a stable situation when the output remains unchanged; the 
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net thus converges on the solution. The autoassociation of patterns 
should mean that the presentation of a corrupt input pattern will 
result in the reproduction of the perfect pattern as the output- 
the network therefore acts as a content-addressable memory. (Refer 
to  Chapter 8 for further details on associative memories and their 
general properties.) 

0 initialise the network 
0 input unknown pattern 
0 iterate to convergence. 

The operation of the Hopfield network can be summarised as 

6.3 THE ENERGY LANDSCAPE 

The Hopfield net can best be understood in terms of the now ubiqui- 
tous energy landscape. We have seen how successful it is in describ- 
ing the behaviour of perceptrons, since it provides a visual analogy 
that allows us to form an intuitive view of what is happening. The 
same is true for a Hopfield network. The energy landscape has hol- 
lows that represent the patterns stored in the network. An unknown 
input pattern represents a particular point in the energy landscape, 
and as the network iterates its way to  a solution, the point moves 
through the landscape towards one of the hollows. These basins of 
attraction represent the stable states of the network. The solution 
from the net occurs when the point moves into the lowest region of 
the basin; from there, everywhere else in the close vicinity is uphill, 
and so it will stay where it is. This is directly analogous to the three- 
dimensional case where a ball placed on a landscape of vdeys and 
hillsides will move down towards the nearest hollow, settling into a 
stable state that doesn’t alter with time when it reaches the bottom. 

We can express this in more detail if we look at it mathematically. 
The energy function for the perceptron was E = iC(tpj - o ; ) ~ ,  
but this depends on knowledge of the required output as well as the 
actual output of the net. For the Hopfield net, which steps its way 
towards a solution, the required intermediate steps aren’t known, and 
we therefore need something more applicable to  this architecture. 
However, it would be sensible to retain some of the features of the 
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perceptron energy funct,ion: it should be large for large errors, and 
small for small errors. The weight values in the network must affect 
the energy, as must the actual patterns presented, so the energy 
function must reflect these requirements. 

We can identify a suitable energy funct.ion for the Hopfield net as 

i j f i  i 

where w;j represents the weight between node i and node j of the 
network, and xi represents the output from node i. The threshold 
value of node i is represented as Ti. As the output is fed back into 
the net, the outputs at any one time represent the next set of inputs, 
and so both the weights and the inputs are explicitly represented as 
required. The weights in the network contain the pattern informa- 
tion, and so all the patterns are included in this energy function. 
Kodes are not connected directly to  themselves, and so the terms 
wii are zero. Since the connections are symmetric, wij = wj;. 

Having defined our error function we can now answer the questions 
posed earlier about storing and recalling patterns. If we make our 
patterns occupy the low points in the energy landscape, then we can 
perform gradient descent on the energy function in order t o  end up 
in one of these minima, which will represent our solution. 

6.3.1 Storing Patterns 

111=2 In order t o  store a pattern, we need t o  minimise the value 
of the energy function for that particular pattern so that it 

occupies a minimum point in the energy landscape. However, we 
also want t o  leave any previously stored patterns in their hollows, so 
that adding new patterns doesn’t destroy all the previous informa- 
tion. The weight matrix contains the information about the stored 
patterns, so we want t o  try to find an expression for the weight values 
that will produce a minimum in the energy function. 

Considering this in terms of the energy function, we want t o  min- 
imise 

@ 
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for a particular pattern s that has a set of input elements 

We want each term to be negative, and so we require Cix;T; t o  
be negative. This can be achieved by setting T; to the opposite sign 
of x; for a particular pattern. However, a different pattern will have 
different values of x; and then the threshold term may well increase 
the value of E .  In order to avoid this, the best that we can do is 
to set the threshold to  zero, which will not decrease or increase the 
value of the energy function for any of the patterns. 

We write x: to  mean element i of input pattern s, which can be 
either +1 or -1. Now, wij is the weight between nodes i and j 
as before, and contains the pattern information from all the taught 
patterns. This means that we can split the weight matrix into two 
parts, one which represents the effects of all the patterns except the 
s th  one, denoted by wij, and a second which is the contribution 
made by the s th  pattern alone, shown as w : ~ .  This means that we 
can rewrite the energy function in t.wo parts 

(20, $1, * ’ , 2,-1). 

where we have separated the contribution made t o  the energy func- 
tion from the s t h  pattern. This can be thought of as viewing the 
energy as a “signal” plus a “noise” term; the “signal” is the energy 
due t o  the pattern s, whilst the “noise” is due to the contributions 
from all the other patterns. 

Storing this pattern corresponds to  making the energy function 
as small as possible. The first term corresponds to  the “noise”, and 
we cannot do much t o  alter this, but we can reduce the contribution 
made by the second, “signal” term. In other words, t o  store pattern 
s, we want t o  minimise the contribution t o  the energy function from 
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the s th  energy term, and so make 

as small as possible. 
This corresponds to making 

i j # i  

as large as possible, due to  the minus sign in (6.3). 
Now, the elements in xi are either t1 or -1; however, xi2 is a lways  

positive, so if we make the energy term dependent on xi2x.3 it will 
always be positive, and so the sum will be as large as possible. 

We can do this most simply by equating 

C WfjX’iXj = XTXj” 
i j#i  i j#i  

and noticing that all we have to  do is t o  make the weight term 

w?. = 2.2. 
23 a 3 

This means that we have our result; setting the values of the 
weights w$ = xixj minimises the energy function for pattern s. In 
order t o  calculate the weight values for all the patterns, we sum this 
equation over all patterns t o  get an expression for the total weight 
set between nodes as 

3 S 

Comparing this t o  step 1 of the algorithm, we see that they are 
identical, and we now know that step 1 really does store all the initial 
patterns in the network. 

Referring to  equation (6.3), altering the wi j  each time will alter 
the value of E d  except3 somewhat, so adding patterns does disrupt 
the previous storage t o  some extent, but this is unavoidable. 

The Hopfield net has no iterative learning algorithm as such; pat- 
terns are simply stored by lowering their energies. The network has 
no hidden units, and so is unable to encode the data. 
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6.3.2 Recall 

Having stored our patterns in the net, we now need to  be 
able to  recall them. This can be accomplished if we perform 

gradient descent on our energy function, so we need a method to  
do this. Considering our energy function in (6.1), we need to cal- 
culate the contribution that a particular node’s value makes to the 
energy, and then we can cycle around the net, reducing each node’s 
contribiition until the energy value is at a minimum. 

We can express the energy function in two parts, splitting off the 
contribution made by the kth node. 

The lcth neuron changes output state from 5 k l  to  2 k 2 .  The difference 
in energy AE = E 2  -El  caused by the state change A x k  = x k 2  - X k l  

is given by evaluating equation (6.4) for X k 2  and X k l ,  then subtract- 
ing, and can be written as 

The first two terms in (6.4) are unaffected by the alteration of neu- 
ron l c ,  and so remain unchanged and cancel out. Since the matrix 
w i j  is symmetric, we can interchange the indices and simplify the 
expression to 

Cj X j W k j  is the weighted sum of the inputs to node k ,  and T k  is 
the threshold of unit I C .  Now, the threshold of every node was set 
to zero in the storage phase, in order t o  ensure that the patterns 
occupied the minima in the energy function. Remembering that the 
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node’s output is either a $1 or a -1, decreasing AEk will mean 
outputting a $1 if the weighted sum is greater than zero, and -1 if 
it is less than zero, since this will always serve to  reduce the value 
of AEk. If we compare this t o  the update function for nodes in a 
Hopfield network, given by 

> o  x ; - -+$ l  
= o 

i f k  < o  x ; + - l  
remain in previous state 

we can see that the update function performs this operation, and 
so implements gradient descent in E .  This allows us to  recall our 
patterns from the net by cycling through a succession of states, each 
of which has a lower energy (or, if the weighted sum is equal t o  the 
threshold, an equal energy) than the previous one. This relaxation 
into lower energy states continues until a steady state of low energy 
is reached, when the net has found its way into a minimum and so 
produced the pattern. 

There are two subtly different methods of actually performing the 
update, which produce slightly different behaviour in the network. 
The update can be carried out on all nodes simultaneously, where 
the values in the network are temporarily frozen and all the nodes 
then compute their next state. This new state represents one update 
across the entire network, and the following state is then computed. 
This operation is known as synchronous updating. The alternative 
approach, called asynchronous updating, occurs when a node is cho- 
sen at  random and updates its output according to the input it is 
receiving. This process is then repeated. The main difference be- 
tween the methods is that in the case of asynchronous updating, the 
change in output of one node affects the state of the system and can 
therefore affect the next node’s change. This means that the order 
in which the nodes are updated affects the behaviour of the network 
to  some extent. The effects are evident in the r e c d  stage, since 
the random nature of the choice of the next node t o  be updated 
alters the sequence of patterns that the network evolves through. 
With synchronous updating, all nodes are updated together and so 
the intermediate patterns do not alter. The asynchronous updating 
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therefore adds some uncertainty, or non-determinism into the path 
that will be taken from the input to  the final steady state. However, 
both methods share the same general characteristics of the network, 
and the use of synchronous or asynchronous updating is rarely an 
import ant fact or. 

The assumptions made in the Hopfield network of a symmetric, 
zero-diagonal weight matrix are central to  its operation. Even slight 
deviations from this symmetry can give rise to networks that are 
unstable and do not settle into any final state. One of the current 
research areas is the investigation of different connectivities and the 
effects that these have on the behaviour of the network. Hopfield 
himself has extended the model in a different direction, showing that 
a smooth function like the sigmoid can be used, with similar results 
to  that of the step function. 

6.3.3 An Example 

Figure 6.3 shows a set of patterns that were used to train a Hopfield 
network. Figure 6.4 shows how the network operates. It is presented 

0 123 
4 5 6 7  

Figure 6.3 The training set for the Hopfield network. 

with a corrupted pattern as input, and proceeds to cycle through a 
series of intermediate states, slowly recovering the correct solution as 
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shown. Each pattern in the sequence has a lower energy than the one 
before it,  and these patterns keep evolving until the network reaches 
a minimum in the energy function, at which stage the outputs a.re 
unaltered from cycle to  cycle and the net has produced its solution. 

Figure 6.4 The network is presented with a corrupt input pa.tt.ern, and 
the sequence shows how it net cycles through successive states unt,il it, has 
recovered a stable result. 

Experimentally, the overlap between stored patterns, as we men- 
tioned above, causes interference effects and errors occur in the re- 
covery of patterns if more than about 0.15N patterns are stored, 
where N is the number of nodes in the network. This means that for 
a network with 100 nodes, errors are likely to occur if the number 
of patterns stored exceeds 15. These error states are stable outputs 
from the network that do not correspud to any taught patterns-in 
terms of the energy landscape, there has been sufficient interference 
between patterns to form intermediate local minima states that were 
not taught to  the network, but which the network thinks are perfectly 
acceptable solutions. Such states are known as nzetnstable shtes .  
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6.4 THE BOLTZMANN MACHINE 

The Hopfield net converges to local minima which may not give the 
optimal solution. We need a method that allows us to  escape from 
these local hollows and move into some deeper well that represents 
a better result. If the solution to the inputs is represented as a small 
ball on the energy landscape, it is easy to  imagine that giving this 
ball some intrinsic energy (thermal energy) will allow it t o  randomly 
move about in the potential wells and probably escape from local 
minima. This “shaking” of the nominally stable situation needs to 
be done carefully however, as violent shaking is as likely to move the 
solution away from a stable point as towards it. The best method is 
to provide a lot of energy at first, and slowly reduce the amount as 
the network works its way towards a global solution. 

This idea is similar to that in metallurgy, where the low energy 
state of a metal is produced by melting it, then slowly reducing its 
temperature. This annealing of a metal ensures that it reaches a 
st able, low energy configuration. 

Thermal noise is added to  the network; to begin with, high tem- 
peratures are simulated resulting in a lot of thermal noise, then “tem- 
perature” is slowly lowered so that the amount of thermal noise de- 

,creases. This is achieved by using a similar structure and learning - algorithm to  the Hopfield net, coupled with a probabilistic update 
rule. This network is called a Boltzmann machine. Each node in the 
network calculates which state it should switch into to  reduce the 
energy, as before, but instead of just switching, it changes to  that 
state depending on the value of the probability function. This means 
that sometimes the network doesn’t switch into a lower energy state, 
but allows jumps to  be made into higher energy states, and it is this 
feature that allows local minima to  be escaped. The probability 
function is chosen so that if the unit will achieve a great reduction 
in the overall energy by changing its state, then it will probably be 
allowed to  change, but if there isn’t a great deal to  be gained either 
way, the likelihood of it changing is much more uncertain. It also 
has a parameter to  vary its “temperature”-at high temperatures, 
jumps to  higher energy states are much more likely to occur than at 
lower temperatures. As the temperature is lowered, the probability 
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of assuming the correct low energy state approaches one, and the 
network is said to  have reached t h e m a l  equilibrium. 

We can express this mathematically as follows. Each unit in the 
network computes an energy gap, given by 

and switches into the state that  is of lower energy according t o  the 
probabilistic update rule, i.e. with probability 

The network can settle into one of a large number of global energy 
states, the distribution of which is given by the Boltzmann distribu- 
tion. If we let P, be the probability of the network settling into some 
global energy state of energy E,, then the Boltzmann distribution 
has the form 

pa = keWEafT 

i.e. it is dependent on the energy of the state and the temperature 
of the system. Calling Pp  be the probability of a state with energy 
Ep,  we can write 

The network is allowed to  settle into thermal equilibrium, when the 
probabilities of states no longer alter, and are dependent on their 
energy. If E, is a lower energy state than Ep, then we can see that 

Ea < E p  
e - ( E a - E d / T  > 1 

therefore P,/Pp > 1 
so P, > Pa 
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This means that as the network approaches thermal equilibrium, 
lower energy states are more probable, dependent only on their rel- 
ative energy. 

At high temperatures, the net reaches equilibrium quickly, but 
good global energy states are not much more likely to occur than 
poor ones. Reducing the temperature while the network is run- 
ning is called simulated annealing, and allows the system to reach 
low temperature equilibrium in the quickest way possible. The high 
temperatures allow local minima states to  be escaped via higher en- 
ergy states, but also allow transitions from lower minima to higher 
ones with almost equal probability. As the temperature is lowered 
however, the probability of escaping from a higher energy minima 
to a lower one falls, but the probability of travelling in the reverse 
direction falls even faster, and so more low energy states are reached. 
Eventually the system settles down at low temperature in thermal 
equilibrium. This means that it is the output probabilities of the 
states that become constant, not the values of the states themselves. 
The effect of the temperature on the probabilistic function that gov- 
erns the chance of an unit changing state is shown in figure 6.5. 
Notice that in high temperature situations, the probability of chang- 
ing into a higher energy state for any particular input value is greater 
than for lower temperature situations. 

This description of simulated annealing is an oversimplification; 
since the energy landscape is a highly dimensional space, the energy 
barrier between states is usually massively degenerate. This means 
that there are many ways of passing from one state to  another, which 
increase exponentially with the amount of thermal noise added to  the 
system. With such a large number of paths along which to  escape, it 
is even more likely that the system will move into the lower energy 
state. 

The temperature alteration is achieved by adjusting the steepness 
of the sigmoid function, which effectively determines the probability 
that a unit will actually go into its natural, or non-noisy, state. If 
the unit exceeds the threshold by a large amount then it will always 
attain value 1, whilst if it is far enough below the threshold, then 
it will always have value 0. Just above threshold, the probability 
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0 10 20 -20 -10 

Figure 6.5 The effect of temperature on the transition probability func- 
tion 1/[1 + exp(-AEk/T)]. The probability of a transition to a higher 
energy state is greater at higher temperatures than it is at lower ones. 

of becoming 1 is greater than l /2 ,  and just below threshold, the 
probability of turning off is greater than l / 2 .  Decreasing the tem- 
perature decreases the probability that a unit will have its natural 
state altered. The function described above follows the Boltzmann 
distribution, just as in statistical mechanics. 

The rate at  which the temperature is decreased is important, since 
this affects the opportunities that  the network has t o  develop a glob- 
ally optimal solution. If the temperature is lowered too quickly, the 
net does not have enough opportunity t o  escape from local minima 
and so a good solution is not reached. Conversely, if the temperature 
is lowered very slowly, the network can escape from local minima but 
will take a long while t o  converge to  a final solution. Examination 
of the behaviour of the network can help to  alleviate this problem to  
some extent however. At high temperatures, the net moves into high 
energy states easily, and the overall energy of the system is high. At 
the other extreme, low temperatures mean that transitions to higher 
energy states are extremely rare, and the net will tend t o  stay in 
its current state of relatively low energy. However, the transition 
between these two states is not a gentle one, since there is a period 
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during the lowering of the temperature when the transitions from 
higher t o  lower energy minima occur much more often than transi- 
tions in the opposite direction, from low energy minima t o  high. It 
is during this period that the overall energy of the network decreases 
most rapidly, and so the time spent in this transition period should 
be as long as possible. 

<E 

Phase transition 

IOW temperature llgn 

Figure 6.6 Graph of average energy of the network (y-axis) plotted 
against temperature (z-axis). The phase transition is clearly shown, where 
the mean energy of the system falls very quickly for a small reduction in 
temp er at we. 

This behaviour is akin to  the phase transitions encountered in 
substances as they cool and change from one state to another- 
there is a critical temperature (the melting or boiling point!) a t  
which the state of the system suddenly changes from a high overall 
energy t o  a much lower one. The phase transition for a Boltzmann 
machine is sketched in figure 6.6. Fastest convergence to a good 
global minimum will occur if the temperature is decreased in such a 
way as t o  spend most of the time in the phase transition part of the 
graph. However, actually determining the phase transition point in 
practice is difficult. 
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6.4.1 Learning in Boltzmann Machines 

Learning occurs in two phases in Boltzmann machines. The network 
is fully connected, but an arbitrary choice is made as to  which units 
are to be input units and which are t o  be output units. In the 
first phase, the input and output units are clamped t o  their correct 
values. The net is then allowed to  cycle through its states, with the 
temperature being gradually lowered until the hidden units reach 
thermal equilibrium. Weights that connect two units that  are both 
on are then incremented. In the second phase, only the inputs are 
clamped to their correct values, with the hidden and output units 
left free. The net runs as before until it reaches thermal equilibrium, 
and then weights between any two units that  are on are decremented. 
The first phase reinforces connections that lead from the input t o  the 
output, whilst the second “unlearns” poor associations. 

In a Boltzmann machine, the deepest global minima are usually 
reached since the system can escape from local minima by allowing 
jumps to  intermediate higher energy states, and the probability that 
the system settles into these minima is dependent only on the en- 
ergy of the state, as shown by equation (6.9). In other words, the 
system is most likely t o  occupy the best minimum. This fact allows 
us to observe that this is a recall procedure if all our patterns oc- 
cupy global minima; therefore, if we can find a way to  store the pat- 
terns in the global minimum states then we have a ready-made recall 
method. Alternatively, since there is a direct relationship between 
the probability of a state occurring and its global energy, we can 
store probability distributions in our network, by making the energy 
of a particular state proportional t o  the probability of it occurring. 
This gives us a direct representation of probability in a system. The 
learning procedure for Boltzmann machines which achieves this is 
given below. 

First, we choose arbitrary units in the network to be input units 
and output units, with the remainder assuming the role of “hidden” 
units, as in figure 6.7. 

The distinction between layers is not as clear as in multilayer per- 
ceptrons; the Boltzmann net is fully interconnected with the output 
units connected back up to the input units and the hidden units. 
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Figure 6.7 Visualisation of the division of the fully-connected net into 
‘‘layers’’ For clarity, not all the connections between units have been 
shown. 

As we have stated, the learning procedure is in two phases, 
an incremental stage and a decremental stage. ::::, , ;.::::,, ./.. . ..... 

~~~ 

Bo1 tzmann Machine Learning Algorithm 

Phase 1-incremental 
1. Clamp the input and output units to their correct values. 
2. Let the net cycle through its states. Calculate the energy of a state 

A& = X W k i S i  - 8 k  0 5 i 5 N -  1 
i 

then switch t o  lower energy state with probability pk where 

1 

pk = 1 + e-AEk/T 

Reduce T until output is stable. 
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3. Increment the weight between two units if they are both on 

Phase 2-decremental 
1. Clamp the input only, leave the output and hidden units free. 
2. Let the net reach thermal equilibrium again-run as in Phase 1. 
3. Decrement the weights between units if they are both on. 

Continue this until the weights are stable. 

6.4.2 Why does this work? 

We can see how this algorithm achieves learning by considering the 
behaviour of the weights in the system as they are altered. With 
a forced output, the weights between “on” units are incremented in 
phase 1. Notice that this is Hebbian learning-incrementing weights 
between active units. If the net produces the same output in phase 
2, showing it has learnt the correct response, then the same weights 
will be decremented, and the two phases will cancel each other out. 
However, if the output is not matched, then some of these weights 
will be left on, whilst others will be turned off. After a period of time, 
only the weights between units that produce the correct output will 
have been left on. 

6.4.3 Mean Field Theory 

One of the problems with the simulated annealing process is that the 
probability of switching into a state is calculated by summing the 
weighted outputs minus the threshold (equations (6.7) and (6.8)) 
of all the other units in the network. Because these units are also 
changing their output over time, we ought to calculate the probabil- 
ity based on the average output of the other units, and this takes 
time to compute. We can simplify the problem by replacing the 
binary state of a unit by a real ;umber which represents the prob- 
ability of that unit being in the on state, and use this to estimate 
its average effect on the unit in question. This is similar to “mean 
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field theory” in physics, where the average effect of different fields 
acting on a particle is approximated by the effect of the average of 
the different fields (figure 6.8). 

Figure 6.8 The mean field approximation: each unit feels the effects of 
the average of the other units. 

Expressed mat hematically, and using 

G(s)  = 1/(1 t e-2) 

and (x) t o  represent the mean value of 2, our correct expression can 
be written 

(6.10) 

where s j  are stochastic states; this equation represents the average 
effect of the varying states. 

The approximation is written as 

where 

(6.11) 

(6.12) 
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This represents the effect of the average states. 
In using the mean field approximation we introduce errors into the 

system, since we cannot represent the average of the s j  states accu- 
rately. However, we avoid the sampling error at  equilibrium since we 
have represented the units’ output probabilities directly. These er- 
rors mean that the Boltzmann learning procedure is no longer strictly 
correct, but the system still works, and it does so much faster. In 
summary, the mean field net therefore approximates the Bolt zmann 
machine but operates much more quickly. 

6.4.4 Spin Glasses 

, , , . . . , . . 
1+1 Hopfield made a great breakthrough in the understanding of 

:::’::::,;:;.’:( . . . . . . . . the behaviour of Hopfield and Boltzmann nets by demon- 
strating that their behaviour could be expressed in terms of the 
energy function, and that the energy function itself was similar t o  
the energy function encountered in the world of spin glass theory in 
physics. 

Spin glasses are disordered, frustrated magnets. That is, they are 
materials comprised of particles that each have a particular “spin”, 
which makes them want t o  be aligned in a common direction. How- 
ever, there are usually additional forces trying t o  align the particles 
differently, such as the presence of an external field or localised effects 
due to  surrounding particles; these competing ordering instructions 
are what is meant by “frustrated”. The “disordered” refers t o  the 
fact that there are quenched random constraints on the particles, 
due perhaps to  the lattice in which they find themselves. 

The behaviour of these systems has been studied in detail by physi- 
cists, and the form of the energy function, the structure of the energy 
space, and the stable states of the system are known. 

We can see how the two systems are analogous by considering the 
form of their energy functions. Although we will go no further than 
to  demonstrate the mapping between the two, this is important since 
it shows that the techniques of statistical mechanics can be applied 
in the analysis of highly-connected networks. 
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The two states of the model neuron, “on7’ and “off”, can be repre- 
sented by the states xi  = +1 or - 1 which we can interpret as “spin 
up” or “spin down” states. The behaviour of the system is described 
by the energy function given before (equation (6.1)), quoted again 
for convenience 

1 E = - - w i j x i ~ j  -t XiT; 
i jjrii i 

The weights wij can be positive or negative, and the total input to 
a neuron is given, like before, as 

(6.13) 
.I 

The output of the neuron is given by a probability function depen- 
dent on the sum of weighted inputs minus some threshold, passed 
through a non-linear function as usual: 

pi = @( ui - Ti) 

We can consider the idealised case where 0 is the Heaviside function, 
and the probability that the state is simply equal to the value of that 
function is 1, as in the Hopfield net. Therefore the output at the next 
time interval ( t  t 1) is given by 

(6.14) 

Stability requires that the outputs be equal to the inputs, and so 
%(ti-1) = x i ( t )  = constant. Noting equation (6.13), (6.14) can be 
written as 

(6.15) 

If the output from the network is stable, then this equation will hold. 
Compare this to the situation in spin glass theory, where the par- 

ticles’ behaviour is governed by an energy function of the form 

H = - w ; ~ u ; u ~  - his; (6.16) 
. .  
$.I i 
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The first term corresponds t o  the interactions between pairs of par- 
ticles, and the second t o  locally pervasive effects on single particles. 
The matrix w;j is symmetric, so wij  = wji. The condition for stabil- 
ity against single spin flips from a; i -oi, which will increase the 
energy of the system, is 

~i = sign w ; j ~ j  - hi (6.17) 
[ j  I 

Comparison of equations (6.1) and (6.16) show that a similar en- 
ergy function governs the operation of the two systems, and what 
is more, the conditions for stability are comparable as well. Equa- 
tions (6.17) and (6.15) are identical for symmetric weights and an 
appropriate choice of h; t o  match w;j and Ti. 

The use of spin glass theory in the analysis of Hopfield networks 
has been very successful, and some of the more important results 
are outlined below. There are expected to be two classes of spurious 
states for finite values of the storage density a = P / N ,  where P 
is the number of stored patterns and N is the number of nodes. 
These are metastable states other than the stored pattern states, and 
mixture states which overlap with several of the stored prototypes. 
In addition, there are “spin glass” states, which bear little relation 
to  the stored states and can therefore be considered as spurious for 
memory retrieval. Pattern retrieval is possible up to  about a = 
0.15 with little error, whilst above this there is a sharp collapse 
in the retrieval ability of the network. The effect of temperature 
on the system acts like noise, and for low values can smooth the 
energy surface and eliminate metastable states, but for high values 
no retrieval solutions, only spin glass ones, are found. 

6.5 CONSTRAINT SATISFACTION 

The Boltzmann machine produces solutions that are equivalent to 
minima in the energy function. We can use the Boltzmann machine, 
like the Hopfield net, as a content-addressable memory, by ensuring 
that we make the patterns stored occupy the minima in this energy 
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function. This corresponds t o  finding an optimal output for the 
given energy function, since the network converges to  some minimum 
value. It is therefore possible that the same network design can 
optimise other problems. If we can express the constraints that we 
want to  satisfy in terms of a suitable energy function, the network 
will produce a solution to that function that minimises the energy. 
This means that we have to  construct our energy function so that it 
represents the constraints that we wish to minimise. For example, if 
we wish to minimise the cost of transporting goods, and the cost is 
proportional to the distance the goods have to  be moved, the energy 
function will have to be large when the distances involved are large, 
and small when the journeys are short. Minimising this will then 
correspond to  minimising the transport costs. 

6.5.1 The Travelling Salesman Problem 

The Boltzmann machine can be used for much more complex con- 
straint satisfaction involving a number of possibly conflicting require- 
ments. One of the most interesting problems of this nature is known 
as the “travelling salesman problem” (TSP), and has been studied 
by many different people using different techniques. It is widely used 
as a test problem, and is to constraint satisfaction problems what 
the XOR problem is to pattern classifiers. The TSP problem is this: 
imagine you are a travelling salesman for a company. You have to  
visit all the cities in your area, returning home when finished, but 
you don’t want to  visit any city more than once. The cities are 
different distances apart, and the problem you face is to  decide the 
shortest route for you to  take. 

The best solution to  a TSP is very difficult to find, and the time 
taken to  solve it grows exponentially as the number of cities in the 
tour increases. For this reason, any ((good” solution will do. It is 
a constraint satisfaction problem, the constraints being that each 
city must be visited once and only once, and that the distance trav- 
elled between cities must be as short as possible. If such an energy 
function is constructed, then minimising that function corresponds 
to producing a solution that optimises the constraints. In order to  

Copyright © 1990 IOP Publishing Ltd.



158 HOPFIEL D NETWORKS 

solve the TSP problem, it has to  be cast into a form which the net- 
work can represent. Since the solution is a list of cities to  be visited 
in a particular order, we need an approach which allows us to  specify 
both the city and the position in which it is visited. If there are n 
cities, each can occur in one of n positions. If we assume that the 
city t o  be visited is represented by a neuron with an on state, then, 
as we want to visit only one city at a time, all the neurons repre- 
senting the other cities must be off. For n cities, we need n neurons 
to  represent this. As an example, in a 4 city problem, if city A is to  
be visited first, then we want the first neuron t o  have its output set 
to  1, with all the others at 0 

1 0 0 0  

Since we need n neurons to represent the position in the tour of one 
city, it follows that we need n neurons t o  represent the positions of 
the n cities. Therefore, the representation that we can use for the 
TSP problem is a square matrix of n by n nodes, in which the cities 
are represented along one side, and the possible positions along the 
other. An example of this for a 4 city tour is shown below. 

0 0 0 1  
0 1 0 0  

In this example, city A is visited first, then D,  B and lastly C. We 
need t o  construct our energy function so that minimum states corre- 
spond to  good solutions. It needs to produce short paths, but must 
also represent valid tours. A valid tour occurs when each city is vis- 
ited only once, which corresponds to there being only one term set 
t o  1 in the rows of the matrix, and that each city is visited, which 
means that there must be one, but only one, term set to  1 in the 
matrix columns. Another constraint which helps t o  promote valid 
tours is that  there should be no more than n 1’s in the matrix as a 
whole. If we write Vx; to  represent the network’s outputs, then the 
X subscript represents a city name and the i subscript the position 
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it appears in the tour. We can write an energy function for these 
conditions as 

The first term is zero if and only if each city row X contains only one 
1. The second term is zero if and only if each position in the tour 
column contains only one entry set to  one, whilst the third term is 
zero if and only if there are n entries in the matrix as a whole. These 
terms therefore favour states that correspond to  valid tours for the 
TS P. 

We need to  add another term to this energy function in order to 
make it favour short paths. We can express this as another term to 
be added to the first three, of the form 

where dxy represents the distance between the two cities X and Y .  
The part after the dxy  term is non-zero only if the cities X and 
Y occur next to each other on the tour route, and in this case the 
term for the summation is equal to  the distance between those cities. 
Thus the whole summation is equal to  the length of the path for that 
tour. 

When added together, and with the constants A, B and C suffi- 
ciently large, the really low energy states of the energy function will 
have the form of a valid tour. The energy of the state represents the 
length of the tour-the very lowest energy state will represent the 
optimal, shortest tour. Since the energy function contains all the 
information needed to  solve the problem, we must provide inputs to  
the system that are not biased towards any one tour, so we use small 
random values and let the net calculate the optimal result. The in- 
puts are not unimportant; a different starting state may well lead to  
a different tour, but both will be good solutions to  the problem. 

The results obtained from the Hopfield net are shown in figure 6.9. 
The most difficult problem is finding a suitable set of constants that 
guarantee a valid tour and allow the network to  converge within a 
reasonably short time. 
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Figure 6.9 Results obtained in a typical travelling salesman problem, for 
10 cities. ‘A’ shows a random route, whilst ‘B’ and ‘C’ are results obtained 
by the network. ‘B’ is also the optimal route. The histogram in ‘D’ shows 
the number of walks of a particular length that exist: the values below 3.0 
have been magnified 100 times for clarity. The arrow below the horizontal 
axis shows the results obtained by the network. 
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6.5.2 The Elastic Net 

There have been other approaches to  optimisation tasks as exempli- 
fied by the travelling salesman problem. One of the more successful 
approaches is the eEastic net of Durbin and Willshaw. The elastic 
net can be thought of as a number of beads connected by elastic into 
a ring. For the travelling salesman problem, the ring is expanded so 
that it satisfies two constraints: 

1. Each city should eventually have a bead at its location, thus en- 
suring the route passes through all the cities. This is achieved 
by having cities pull nearby beads towards them. 

2. The elastic should be as short as possible, thus minimising the 
distance travelled. 

The cities therefore pull the beads towards them, with a force that 
falls off with distance like a Gaussian function, and beads pull neigh- 
bouring beads towards them. As time passes, constraint 1 is made 
more important than constraint 2. This is achieved by making the 
variance, or spread, of the Gaussian function smaller, thus pulling 
the bead closer and closer to  the city’s location. This is shown in 
figure 6.10. 

These constraints can be expressed as terms in an energy function. 
The first is dependent on the distance from the city to  a bead, and is 
the argument to a function that decreases with increasing distance. 
It is this function that is chosen to be the gaussian. The second 
constraint is satisfied by making nearby beads as close together as 
possible. These can be combined to  give an expression for the change 
in position of a bead, written as Ayj, as 

AYj = C W i j ( S 2  - Yj) t Pk(Yj+l - 2Yj t Yj-1) 
i 

where the 5; represent the positions of the cities. The w;j term 
decreases with distance, and the second term represents the elastic 
tension in the net that pulls neighbouring beads together. The so- 
lutions obtained by the elastic net are generally better than those 
obtained with the Hopfield net, and it has the advantage that it 
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Figure 6.10 The elastic net shown as it evolves towards a solution to the 
travelling salesman problem 
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scales up to  very large numbers of cities relatively well, unlike the 
Hopfield net. 

0 Hopfield net-symmetric, fully connected. 
0 Iterates to  solution. 
0 Acts as autoassociative memory. 
0 Boltzmann machineHopfield net with probabilistic update rule. 
0 Uses simulated annealing (high temperature falling to  low) to as- 

sist convergence to global minima. 
0 Can solve constraint satisfaction problems. 
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Adaptive Resonance Theory 

7.1 INTRODUCTION 

Whatever their merits or failings there is little doubt that neural 
networks remain a controversial area within the world of computer 
science. Within the body of research itself, however, nobody’s work 
is viewed more controversially than that of Dr. Stephen Grossberg. 
Over the last twenty years Grossberg has contributed a vast range 
of theory to  the field covering most areas of human psychology and 
neurobiology. With a background in mat hematics and neurobiology 
his work is characterised by rigorous attention to  mathematical detail 
and accuracy. His long term research goal is to develop a unified 
body of theory and mathematical methodology to bring together the 
many diverse areas encompassed within the study of neurobiological 
systems. His belief is that progress in the area will be hindered until 
a solid underlying body of mathematics has been evolved to  describe 
the complex dynamics of neurobiological systems. 

Grossberg’s work has not been restricted to analysing the dynam- 
ics of individual neural cells, but has been directed towards find- 
ing solutions to  many of the neurobiological “mysteries)’, at what 
might be described as the “systems” level. More specifically, he has 
addressed the question of how complex systems can be developed 
using locally interactive and highly interconnected regions of cells. 
A quick scan through his published material will show that being 
controversial has certainly not hindered his progress-he has papers 
proposing models for such diverse concepts as cognition, motor con- 
trol (limb movement), vision, perception and self-organisation. They 
are complex models, usually fully described by non-linear differen- 
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tial equations, based on behavioural data, and in most cases they are 
able t o  replicate many of the subtle dynamics displayed in natural 
biological systems. 

One of Grossberg’s major concerns was establishing stability in a 
self-organising system. Such a complex network as the brain, with 
its massive interconnectivity and “modular” architecture, must have 
a means of maintaining stability at all levels. The network we are 
about t o  discuss was developed from studies into stable neural archi- 
tectures. Most neural network paradigms are plagued by a problem 
known as the stability-plasticity dilemma. This is a rather grand def- 
inition for the basic problem that networks have of not being able to 
learn new information on top of old. In a multilayer perceptron net- 
work, for example, trying to  add a new training vector to  an already 
trained network may have the catastrophic side-effect of destroying 
all the previous learning by interfering with the weight values. With 
training times for large networks requiring considerable amounts of 
computer time (hours, even days) this is a serious limitation. 

Grossberg’s best known work in the neural computing world is 
his adaptive resonance theory. It is a self-organising network that 
has been able t o  solve the stability-plasticity dilemma. This partially 
explains the network’s high profile, although Grossberg’s application 
of the model to  pattern recognition problems has also raised interest. 

7.2 ADAPTIVE RESONANCE THEORY-ART 

The adaptive resonance theory (hereafter referred to  as ART) was 
developed t o  model a massively parallel architecture for a self- 
organising neural pattern recognition network, based on biological 
and behavioural data. The major feature of ART, proposed by 
Grossberg and Gail Carpenter, is the ability t o  switch modes be- 
tween plastic (the learning state where the internal parameters of 
the network can be modified) and stable ( a  fixed classification set), 
without detriment to  any previous learning. The network also dis- 
plays many behavioural type properties, such as sensitivity t o  con- 
text, that  enables the network to  discriminate irrelevant information 
or information that is repeatedly shown t o  the network. 
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The following discussion of the ART paradigm will be fairljl “ m e  
chanical”, in that we have curtailed much of the descriptive detail 
relating to  psychological or cognitive effects. We have included what- 
ever we feel adds to a fuller understanding of the workings of the net- 
work, but we have, by and large, reduced the description to  a fairly 
basic level. We must also mention that the ART network is imple- 
mented in three versions (ART-1, ART-2, ART-3) and the following 
discussion will only cover ART-1 in depth. 

7.3 ARCHITECTURE AND OPERATION 

The ART network relies on details of architecture far more than 
most other neural network paradigms. The layers of the network 
have different functions-unlike the fairly homogeneous layers of the 
multilayer perceptron or Kohonen networks-and there are external 
parts to  the layers that control the data flow through the network. 
Because of this, it is probably worth explaining the way that the ar- 
chitecture is implemented, before going on to describe the operation 
of the network during learning and classification. 

7.3.1 The ART architecture 

The ART network is shown schematically in figure 7.1. 
It has two layers; the first is the input/comparison layer and the 

second is the output/recognition layer. We shall use the terms 
comparison for input and recognition for output interchangeably 
throughout the discussion (with apparently reckless abandon) be- 
cause the functionality of the layers changes during the various cy- 
cles. These layers are connected together, again unlike most other 
networks, with extensive use of feedback-from the output layer to 
the input layer and also between the nodes of the output layer as 
lateral inhibition. Some of these weights are shown in figure 7.2. 

This means that the ART network has feedforward weight vectors 
from the input layer t o  the output layer and feedback weight vectors 
from the output to  the input layer. We will designate these feedfor- 
ward and feedback paths W and T respectively, to avoid confusion. 
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output layer 

control-2 
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control-1 

t layer 

input 

Figure 7.1 The ART architecture. 
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Figure 7.2 The weights within the ART architecture. 

For each layer there are also logic control signals that control the 
data flow through the layers at each stage of the operating cycle- 
these we will designate control-1 and control-2. The respective inputs 
are common to each node in the input and output layers. Between 
the input and output layers there is also a reset circuit. This plays a 
vital role in the network; it performs more than simply a reset func- 
tion for the output nodes-it is actually responsible for comparing 
the inputs to a vigilance threshold that determines whether a new 
class pattern should be created for an input pattern. 

This is the basic architecture of the ART network; the points to  
note are the extensive feedback connections, the separate functions 
of each layer, and the external control signals-all of these will now 
be explained in operation. 

Copyright © 1990 IOP Publishing Ltd.



170 ADAPTIVE RESONANCE THEORY 

7.3.2 ART-1 Operation 

There are several phases to  learning or classification in an ART 
network. The most obvious difference from most other network 
paradigms is that the continually modified input vector is passed 
forwards and backwards (resonated) between the layers in a cyclic 
process. We shall describe the action of the network in terms of the 
activity at the separate layers for each phase. These phases can be 
broadly divided into an initialisation phase, a recognition phase, a 
comparison phase and a search phase. 

7.3.3 The Initialisation Phase 

The initialisation of an ART network requires more work than is the 
case for most other neural networks, which is perhaps not surprising 
because it has more features to  it than most others. The two control 
signals, control-1 and control-2, direct the data flow through the 
network during the various learning or classification phases. Control- 
1 determines the course of data flow for the input layer-its binary 
value toggles the first layer of nodes between its two modes; input 
and comparison. The state of control-1 is one whenever a valid input 
(i.e. non-zero) is presented t o  the network but is forced to  zero if 
any node in the recognition layer is active. Control-2 is the simpler 
of the two-its binary value enables or disables the nodes in the 
recognition layer. It is one for any valid input pattern but zero after 
a failed vigilance test (this disables the recognition layer nodes and 
resets their activation levels to  zero). 

The weight vectors, W and T ,  must also be initialised. The feed- 
back links are simple; they are all set to  binary one, inferring that 
every node in the output is initially connected to  every node in the 
input via a feedback link. The feedforward links are set to  a constant 
r e d  value determined by: 

where n is the number of input nodes. 
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The vigilance threshold is also set in the range 0 < p < 1. The 
significance of this will become apparent during the discussion of the 
operating cycle. 

7.3.4 The Recognition Phase 

In the recognition phase the input vector is passed through the net- 
work from the input layer and its value is matched against the clas- 
sifications represented at each node in the output layer. We shall 
discuss how the recognition layer nodes adopt these classifications 
during the training cycle. 

The nodes in the input layer each have three inputs: a component 
of the input vector z;, the feedback signal from the output layer, and 
the control-1 signal. Data flow through the input layer is controlled 
by the “two-thirds” rule suggested by Grossberg and Carpenter-if 
any two inputs to a node are active then a one is output from the 
node, otherwise the node is held at zero output. 

The recognition phase has parallels with the Kohonen network 
discussed in Chapter 5 .  Each weight vector W at each recognition 
node can be thought of as a “stored template”, or exemplar class 
pattern. The input vector is compared to the exemplar at each 
node and the best-match is found. The best-match comparison is 
done by computing the dot product of the input vector and a node’s 
weight vector-the node with the closest weight vector t o  the input 
will yield the largest result. Several nodes in the recognition layer 
may in fact respond with a high level of activation due to  the input 
vector, but the lateral inhibition between the nodes now comes into 
play, turning off each node except the maximum response node. This 
node will inflict the largest inhibitory effect on the other nodes, so 
that although all the nodes are actually trying to  turn each other 
off, it will be the maximum response node that dominates the effect. 
Each node also has positive feedback to  itself to reinforce its own 
output value. The combined effects of reinforcement and lateral 
inhibition will ensure that only one node remains significantly active 
in the layer. 
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The winning node is now required to  pass its stored class pattern 
(T-the class exemplar) back to  the comparison layer. If we recall 
that  the exemplar is actually stored as a binary weight vector in 
the feedback links to  the input layer, we can see that the exemplar 
can actually be passed to  the comparison layer by simply mapping 
the winning node's activation (which is forced to  one by the action 
of the positive reinforcement) through the feedback weights t o  the 
input layer. If this is difficult t o  visualise then consider the diagram 
of figure 7.3 that  shows just the feedback links from the winning 
node in the recognition layer to the input layer. 

wlnnlng node 

' vector. T. 

x, x2 x3 

Figure 7.3 It is the feedback vector that stores the exemplar vector. 

7.3.5 The Comparison Phase 

Two vectors are present at the input layer for the comparison 
phase-remember that each node in the input layer has three in- 
puts. On one input of each node the input vector is clamped and 
on the second input the exemplar vector from the recognition layer 
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is clamped. The third input is the control-1 signal which is zero for 
the duration of this phase because the recognition layer has a fully 
active node. The situation is depicted in figure 7.4. 

Figure 7.4 The input layer with all three inputs applied. 

The two-thirds rule applies for calculating the output of each node. 
The exemplar vector and the input vector are thus ANDed together 
(control-1 is zero and so has no effect on the output) t o  produce a 
new vector on the output of the comparison layer. This we will call 
the comparison vector and designate 2. The comparison vector is 
passed to  the reset circuit along with the current input vector. 

7.3.6 Vigilance Threshold 

The reset circuit is responsible for testing the similarity of the input 
vector and the comparison vector against the vigilance threshold. 
The test is a ratio count of the number of ones in both the in- 
put vector and the comparison vector. It is not a difficult ratio to 
evaluate-the dot product of the comparison vector and the input 
vector will yield a count of the matching ones in each pattern. This 
is divided by the bit count of the one bits in the input vector to 
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provide a ratio, S, which is subsequently compared to  the vigilance 
value. 

test: Is S > p 

If S is greater than the vigilance threshold, p, then the classification 
is complete and the class membership is indicated by the active node 
in the output layer. If the ratio is below the threshold then this 
implies that we have not found the correct best-match exemplar, 
and the network enters the search phase. 

7.3.7 The Search Phase 

During the search phase the network is attempting to  find a new 
matching vector in the recognition layer for the current input vec- 
tor. First the present active output node is disabled and its out- 
put zeroed. This has a twofold effect: the node is prevented from 
entering any further best-match comparisons for the current input 
pattern, and the control-1 signal is forced t o  zero, since the outputs 
of the recognition layer are again all zero. The input vector is now 
reapplied to  the recognition layer and the best-match comparison is 
recalculated as described above. The network enters the comparison 
phase again, which ends with the new recognition layer exemplar be- 
ing tested against the vigilance threshold. This process is repeated, 
consecutively disabling nodes in the output layer, until a node is 
found in the recognition layer that  matches the input to within the 
limits of the vigilance threshold. If no such node is found then the 
network makes the decision to  declare the input vector an unknown 
class and allocate it t o  a previously unassigned node in the output 
layer. 

This completes the working description of the various st ages of the 
ART network and explains how data is dynamically routed around 
the network in a “resonant” fashion. The term r a m a n t  is most ap- 
propriate, because of the way in which the input vector is “bounced” 

Copyright © 1990 IOP Publishing Ltd.



ART ALGORITHM 175 

back and forth between the input and output layers before it finds a 
stable state. As you can see, there is a good deal more complexity in 
the ART network than in the majority of other neural network algo- 
rithms. The algorithm itself, however, is neither notionally difficult 
nor computationally complex. It can be implemented, as suggested 
by Lippmann, in the following fashion. 

7.4 ART ALGORITHM 

... ... The ART algorithm is given below. 
:.: " '  
::A ..... :.:. 

..:.: 

The ART1 Algorithm 

1. Initialise 

t i j ( 0 )  = 1 
1 

1 + N  
W i j ( 0 )  = - 

0 i i S N - l  O < j < M - 1  

Set p,  where 0 5 p < 1 
where t i j ( t )  i s  the top-down and wij( t )  is the bottom-up connection 
weight between node i and node j at t ime t .  It is these weights that 
define the exemplar specified by output node j .  p is the vigilance thresh- 
old which determines how close an input has t o  be to  correctly match 
a stored exemplar. There are M output nodes and N input nodes. 
2. Apply new input 
3. Compute matching 

i=O 
0 < j  < M - 1  
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pj is the output of node j and xi is element i of the input which can 
be either 0 or 1. 
4. Select best matching exemplar 

5. Test 

YES go to 7 
NO go to 6 

6. Disable best match 
Set output of best match node to 0. Go to 3. 
7. Adapt best match 

8. Repeat 
Enable any disabled nodes, then go to 2. 

7.5 TRAINING THE ART NETWORK 

The training cycle for the ART network has a different learning phi- 
losophy to  other neural network paradigms. The learning algorithm 
is optimised to  enable the network to  re-enter the training mode at 
any time, to  incorporate new training data. As we discussed earlier, 
this is a practical solution to  the stability-plasticity problem, and 
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the ART network is possibly one of the only neural networks that 
can cope with learning in a continually varying environment. The 
following discussion will describe the factors that affect the learning 
performance of the network. 

There are, in fact, two training schemes for ART, which are de- 
scribed as fast learning and slow learning. Fast learning is so called 
because the weights in the feedforward path are set to  their optimum 
values in very few learning cycles-in fact, in most implementations, 
they are learnt in a single pass of the training data. Conversely, slow 
learning forces the weights to adapt slowly over many training cycles. 
The advantage of this technique is that the weights are trained to 
represent the statistical average of the input data for any particular 
class. This means that more attention will be given to finding the 
salient features of the input patterns that determine the classifica- 
tions. Generally it seems that fast learning is the method most often 
adopted-although this may be for no other reason than that it is 
simpler to  implement. 

ART is very sensitive to variations in its network parameters dur- 
ing the training cycle. Undoubtedly the most critical parameter 
is the vigilance threshold, which can dramatically alter the perfor- 
mance of the network. Also important is the initialisation of the 
feedforward weight vectors-they must all be set to  low values at the 
start of training. If any vector is not initialised to  a small value it 
will dominate the training process, because it will invariably win the 
best-match comparison at the recognition phase. This means that 
all the input vectors will be assigned to just one output node-by 
any stretch of the imagination that is a broad categorisation pro- 
cess! Consequently, the algorithm forces all the weights to small, 
equal values during initialisation. 

The vigilance parameter controls the resolution of the classifica- 
tion process. A low choice of threshold (< 0.4) will produce a low 
resolution classification process, creating fewer class types. Con- 
versely, a high vigilance threshold (tending to  1) will produce a very 
fine resolution classification, meaning that even slight variations be- 
tween input patterns will force a new class exemplar to  be made. In 
many cases, a high value will make the network too sensitive to dis- 
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similarities between inputs of the same class, and will quickly assign 
all the available output nodes to  new classes. A major criticism of 
the ART network is that  it performs poorly in noisy input conditions 
because of this vigilance problem. However, it must be noted that 
this is not an oversight on Grossberg’s part, rather it is an attempt 
t o  make the network’s performance sensitive to  its environment. By 
this we mean that context is taken into account; depending upon 
the circumstances, a discrimination problem can demand coarse or 
fine categorisation. We know from our own experience that in some 
circumstances we are quite willing t o  accept a very broad generalisa- 
tion of a concept, whereas in other circumstances it would be highly 
undesirable to  have anything less than a very accurate delineation. 
As an example, consider the vast multitude of shapes and sizes that 
we include under the category of table. We don’t learn the specific 
features of every table we see, in order t o  be able t o  recognise a table. 
Conversely, learning telephone numbers would be  of little use to  us 
if we simply remembered that they need six digits and (sometimes) 
a code number. 

Ultimately, whether the network’s sensitivity t o  the vigilance pa- 
rameter is an advantage or a failing depends upon the perspective in 
which the role of ART is seen. As a model of contextual sensitivity 
to  training data, it performs in a very plausible manner when com- 
pared to behavioural data; as an engineering tool t o  perform pattern 
recognition, it has severe drawbacks. 

To illustrate the sensitivity of the network t o  changes in the vig- 
ilance parameter we include the following examples modelled after 
Grossberg’s experimental results, figure 7.5. 

With a low vigilance threshold ( p  = 0.2) the number of bits in the 
vertical stroke of the input pattern is enough to  warrant each of the 
input vectors t o  be assigned to  the same node at  the output layer 
and consequently the same class. With a high vigilance threshold 
( p  = 0.8), the features of the input patterns are examined much 
more carefully and they are considered to be sufficiently different for 
a unique class t o  be assigned to  each. 

The optimal solution may be to vary the vigilance value dynami- 
cally during the training process. A low initial value would quickly 
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Figure 7.5 The classification performance of the network is controlled by 
the vigilance parameter, p. Two examples of training, with different values 
of p,  are shown. 
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assign the coarse clustering of the input patterns and increasing this 
later in the training cycle may optimise the classification. In keeping 
with his drive to  model real cognitive processes, Grossberg describes 
the possibility of modifying the vigilance value during training as a 
“punishment event”. By that Grossberg means that if the network 
makes an erroneous classification, then the network should be “pun- 
ished” for it. Punishment takes the form of negative reinforcement 
which amplifies the activity passed t o  the reset circuit and subse- 
quently modifies the value of the vigilance parameter. The punish- 
ment must be administered by an external circuit that monitors the 
response of the network; this implies that the network is now using 
reinforced learning rat her than unsupervised. 

7.5.1 Scaling the Feedforward Weights 

The ART model includes a process in the learning algorithm that 
incorporates what Grossberg describes as “self-scaling” of the feed- 
forward real valued weight vector, W .  The effect of this process is 
as critical to the classification performance of the network as the 
vigilance parameter, since it makes a step towards distinguishing 
noise from the signal in an input vector. We can explain the scaling 
process by looking at  the equation for adapting the weights in the 
feedforward Dath: 

The term Z k  in the denominator is equal to the number of active 
bits in the comparison vector (because the vector is binary). Con- 
sequently, we can see that all the weight components, Zij, are “nor- 
malised” by the active bit count of ones in the comparison vector. 
This causes the comparison vectors with a high number of bits set 
t o  one t o  produce smaller weight values than those with a compar- 
atively low active bit count. The effect this has on the classification 
process is best explained by the following example. Consider two 
input patterns, representing different classes: 

2 1  = 1 0 0 0 0 0  
22 = 1 0 0 1 1 1  
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If scaling was not used during the learning stage then the feedforward 
weights would be set t o  the same values as the feedback weights, 
where no scaling is used: 

w1=21 = 1 0 0 0 0 0  
w 2 = 2 2  = 1 0 0 1 1 1  

If 21 is applied to  the network again after training, the response 
of nodes one and two in the recognition layer will in fact be the 
same (the dot product of 21 with w1 or w2 is the same in either 
case). Either node is, therefore, equally likely to  win the best-match 
comparison. If node 2 wins then the network is in trouble! Apart 
from the input being erroneously classified, the exemplar for node 
two will in fact be corrupted since it will be modified to follow the 
form of the input vector 21-thus undoing its previous training. 

However, using scaling during training will in fact create the fol- 
lowing feedforward weight values: 

Let L=2; 
w ~ = 1 0 0 0 0 0  
w2 = .4 0 0 .4 .4 .4 

Reapplying input vector 21 will now produce a different dot product 
value for each weight vector and, in this case, 21 will only activate 
node one, to  produce the correct classification. 

Summing up these results we can see that scaling prevents any 
vector that is a subset of another being classified in the same cat- 
egory. The consequence of this is that two vectors that share com- 
mon features, but are in different classes, can still be distinguished. 
Grossberg describes the action of the self-scaling technique as the 
discovery of critical features in a context sensitive manner. 

7.5.2 The Training Cycle 

For completeness we will work through a training cycle, describing 
how the input vector is passed through the stages of the network 
before finally being assigned to  an output node. We will assume 
that the network has three input nodes, an arbitrary number of, 
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Input 
1 
1 
0 

Table 7.1 The twethirds rule. 

Recognition layer Control-1 Result by 2/3 rule 
1 1 1 
1 0 1 
1 0 0 

say, twenty output nodes and is initialised: control-1 and control-2 
are both zero, the output layer is all zero and the weight vectors 
are in their starting states; feedforward weights are set to  a value 
determined by: 

where N = dimensionality of the input vector. 1 
W” = ’’ (It N )  

and the exemplar patterns, stored in the feedback weights, are all set 
to binary one. The input vector, XI, can now be applied to the input 
layer. The “two-thirds” rule determines the response of the layer to 
the input pattern; at this point we have only two active inputs on the 
input layer; the input signal and the control-1 signal which is binary 
one (signifying that there is a valid input to  the network). This has 
the effect of ANDing the input vector with the control-1 signal which 
means that the input vector is passed unchanged through to  the next 
layer. 

This layer is of course the recognition layer, where the input vector 
is matched against the feedforward vectors at each node by calcu- 
lating the dot product of the input and weight vectors. However, 
because all the feedforward weights are initialised to the same start- 
ing value, it will be an arbitrary choice as to which is selected as the 
best-match. The node selected as the winner in the recognition layer 
passes its stored exemplar back to the input layer, and the control-1 
signal is forced back to  zero. The input layer now has three inputs- 
the input vector, the exemplar vector and the control-1 signal. The 
output of the layer by the two thirds rule is shown in table 7.1. 

The comparison vector (1,1,0) and the input vector (1,1,0) are 
now both passed to the reset circuit for the vigilance test. The 
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similarity ratio for the two vectors is evaluated-which in this case 
is quite simply 1 : 1 because the vectors are identical-and the result 
is compared to  the vigilance threshold. The vigilance is 0.8 so the 
similarity ratio is above the threshold value and the input vector is 
assumed to  be correctly classified. Once the vigilance test is passed, 
the winning node weight vector is updated to incorporate the features 
of the input vector. This is done by ANDing the old exemplar vector 
with the current input: 

where A is the logical AND operator. 

ified to: 
Thus, for our input, the winning node will have its exemplar mod- 

The input vector, X I ,  is now stored as a class type at the node in 
the recognition layer. 

If we now apply another training input to the network, X2 = 
(1,0,  l), and recalculate the matching scores at the recognition layer, 
we will find that the node assigned to  the X1 input will be the 
winning node. This is because its feedforward weight values are much 
larger than those of the other, as yet, unassigned nodes. As a result 
the exemplar for class 1 (input X I ) ,  will be passed, erroneously, 
to  the comparison layer with the input XI. However, if we trace 
the exemplar thrcjugh to  the reset circuit as before, we obtain the 
following result: 

S = 1/2 = 0.5 

Now S < p so the network decides that, although node one was 
chosen as the best-match, it is actually a wrong classification and 
the network enters the reset phase. This means that node one will 
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be disabled (for the duration of the present input), the recognition 
layer reset t o  all zero and the vector reapplied to  the recognition 
phase without node one. In this case the classification will proceed 
as for the first input and X2 will be assigned t o  a unused output 
no de. 

One important feature to note is that the learning time for the 
network is much faster than the iterative convergence procedures 
proposed for most other neural networks. When learning a new 
pattern the slowest part of the process is actually performing the 
search in the recognition layer. However, even this process is not slow 
in comparison to  other neural learning paradigms because the search 
process is actually performed in parallel. The best-match comparison 
is computed simultaneously for each node in the recognition layer 
rather than sequentially. The most important feature is that none 
of the weight values are modified at all until the search process has 
halted and one node has been selected. Usingfust learning the weight 
values are modified t o  update the classification to  a perfect match 
in just one presentation of the input. Any subsequent learning will 
refine these classifications (still in one pass) by incorporating more 
features found in the class training examples. We must once again 
stress, however, that the performance issues are still heavily dictated 
by the choice of vigilance threshold, which has almost total control 
of the network’s generalisation and classification properties. 

We made the point earlier in the chapter that it is somewhat am- 
biguous t o  call this process a learning cycle since the learning mech- 
anisms that we have described stay intact throughout the operation 
of the network. This implies that whenever a new input is presented 
to  the network during the classification process if no suitable match- 
ing classification is found then one is added to  the recognition layer. 
The only limit to  this process is the number of nodes that remain un- 
committed in the layer-the search and learning process will always 
terminate on an unassigned node. If no nodes are available then the 
input will remain unclassified. In practice, the learning process does 
in fact settle to a steady state, as a significant number of classifica- 
tions are formed at the recognition layer, since the likelihood of a 
new input matching one of the known classes will increase. 
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7.6 CLASSIFICATION 

The ART network exploits to the full one of the inhereQt advantages 
of neural computing techniques; namely parallel processing. It mod- 
els the mechanisms that allow the human brain to  perform recogni- 
tion rapidly despite the apparently prohibitive size of the knowledge 
base that has to be searched. Furthermore, despite the vast number 
of internal representations in the brain, encoding abstract knowledge 
concepts, there is no evident conflict in the recognition or recall of 
familiar objects. This would appear to  indicate that there is lit- 
tle plausible evidence for the brain using such methods as semantic 
nets or sequential tree structures to represent data internally. This 
conjecture-controversial as it may be in some quarters-is upheld 
by Grossberg and others, and stresses the need for parallel search 
methods. In this respect Grossberg and Carpenter make two claims 
for the performance of the ART network. The first of these is that, 
despite the size and complexity of the encodings in the recognition 
layer, familiar input patterns (which implies those classes of input 
used to  train the network) will have direct access to  the classifica- 
tion nodes in the output layer. The second claim is that the network 
uses a self-adjusting memory search that will optimally search the 
recognition layer, in parallel, to classify an unfamiliar input. We 
have broached these points already in our discussion of the search 
and recognition phases. The classification of any input is done in an 
inherently parallel fashion since the input vector is presented to each 
of the nodes in the recognition layer simultaneously. This has the 
obvious implication that the technique can be made parallel at the 
implementation stage; however, this was not the primary concern of 
Grossberg. He has attempted to  show how mechanisms to  allow a 
parallel search may be implemented at the neuron level. Similarly 
for the idea of direct access to recognition nodes. Any unfamiliar 
input pattern will still activate a node in the recognition layer if it 
shares enough salient features to patterns learned previously. As we 
have already described, how close the features have to be is deter- 
mined by the level of the vigilance threshold (which can be likened 
to a control parameter that moderates sensitivity to context in the 
training data). 
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The most important point to  note about the network in the clas- 
sification stage is that it remains open to  adaption in the event of 
new information being applied to  the network. If an unknown input 
is applied t o  the network ART will always attempt t o  assign a new 
class in the recognition layer by assigning the unknown input to a 
node. The prohibitive limit t o  this process is the number of nodes 
available in the recognition layer. As we discussed earlier it is the 
ability of the network to  switch between stable and plastic states 
without detriment to  the performance of previously learned data or 
t o  the speed of classification that makes it a unique example of a 
neural network. It can again be considered a natural embodiment 
of the human learning process which cannot be described as hav- 
ing a learning cycle (unless we make it three score and ten!) and is 
perfectly adapted to merging new experience with old. 

7.7 CONCLUSION 

That completes an operational overview of the ART network. 
Through it we have attempted to  remove some of the “mystique” 
and confusion surrounding the implement ation of adaptive resonance 
theory, by providing a “nuts and bolts” description of how the net- 
work operates. We did mention earlier, that there are three models 
of adaptive resonance theory, called, not surprisingly, ART-1, ART- 
2 and ART-3, and this discussion has only covered ART-1. ART-1 
and ART-2 are actually very similar, the major difference being that 
ART-2 is a “real valued” implementation of ART-1. By that,  we 
mean the input layer takes real valued vectors as inputs, as opposed 
to  binary vectors in ART-1. A typical example of a real valued in- 
put might be a grey scale pattern obtained from an image processing 
system, where the elements of the vector are usually discrete values 
in the range 0-255. 

The architecture for ART-1 and ART-2 are basically the same, 
but there are subtle differences in the implementation of the input 
layer to  deal with the use of real valued vectors. The input layer has 
also been split into several functional layers so that much more com- 
plex matching of recognition layer and comparison layer data can 
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be achieved. This incorporates such effects as feature enhancement, 
noise suppression, sparse coding and expectation from the recogni- 
tion layer. Positive feedback is also used between the buffers of the 
input layer. The performance of the ART network is vastly improved 
and it has been applied to  applications such as pattern recognition, 
speech perception and radar classification. 

ART-3 uses the same network topology as ART-2, but it uses 
equations that model the dynamics of chemical neurotransmitters. 
Grossberg and Carpenter have turned their attention to  mapping the 
functionality of the ART model onto a representation of a biological 
neural architecture. In doing so they have also countered a major 
criticism of ART-1 and ART-2: that the network did not use a dis- 
tributed representation for the internal coding of the categories. It 
also means that the input and output layers of the network are sim- 
ilar because they use the same node model. The significance of this 
is that the network can now be modularised, such that the output 
layer of one network feeds directly into the input layer of another, 
enabling hierarchies of networks to be built. ART-3 also accepts real- 
time constantly varying inputs, the input is continually monitored 
and when the signal changes significantly a reset phase is triggered 
that searches the recognition/learning cycle. This is probably the 
closest a network has come to modelling both the architecture and 
the dynamics of a biological neural network. 

7.7.1 Terminology 

It is worth mentioning before we close this chapter that we have not 
used Grossberg’s terminology during our discussion of ART. The 
main reason for this is that Grossberg’s description of parts of the 
network are couched in “psychological” phraseology, and we thought 
it would be of more benefit to avoid this extra confusion. We shall 
endeavour to  put the record straight now though, and explain Gross- 
berg’s terminology, primarily for the benefit of those who wish to 
read further into his work, and still relate back to  the description we 
have given here. 
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The most significant difference is Grossberg’s definition of the 
weight vectors. For simplicity, we have labelled them as the feed- 
forward and feedback weight vectors, which we hope is fairly self- 
explanatory. Grossberg, however, prefers t o  describe the weights 
as memory traces. The stored exemplar vector, T ,  and the feed- 
forward weights W ,  he describes as long term memory traces-the 
analogy is quite clearly drawn from his interest in biological systems. 
The exemplar vector is “locked” into memory as a consequence of 
learning-barring minor updates t o  this data as new information 
comes along, we require this information to be stored long term 
and in a stable state. The short term memory traces correspond to  
transient states of the network, in other words, the activity at the 
recognition and comparison layers. These states are not stored, they 
are continually modified during the learning process as the memory 
is searched for matching information. Once a stable output state 
has been found, these short term memory traces are reset, ready for 
new information t o  be presented. One other minor point about the 
weights is that Grossberg describes the feedforward connections as 
a bottom-up adaptive filter. This is simply another way of thinking 
about the transform of the input vector through the weight matrix, 
and because the ART model is based on cognitive effects, it is per- 
haps more useful, in some circumstances, t o  think about the weights 
“filtering” the information that is passed through them. 

The comparison layer and the recognition layer are described as 
a feature representation field , F1, and a category representation 
f i e l d ,  F2, respectively. These are intuitive labels that  describe the 
functionality of the layers during the learning/classification cycle. 

The control signals, that  we have called control-1 and control-2, 
are labelled as attentional gain control channels by Grossberg. The 
reason for this is that  Grossberg chooses to  describe the function of 
these signals in terms of subtle cognitive effects, such as subliminal 
activity and attention priming. These effects are modelled on cogni- 
tive or behavioural data, and although interesting in themselves, we 
did not feel that  they were within the scope of this text. 
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7.8 SUMMARY OF ART 

The ART network has many significant differences from other neural 
paradigms. The most notable achievement of the ART model is the 
ability to  deal with the stability-plasticity dilemma of learning in 
a changing environment. The network will continue to  add new 
information, until it utilises all of the available memory, and will 
continually refine the knowledge stored within it as new information 
is presented. The network has been rigorously proven to be stable 
and does not suffer from any convergence problems such as local 
minima. The learning algorithm is unsupervised and requires only 
one pass through the training set to learn the internal representations 
(if fast-learning is used). ART can also deal with both binary or real 
valued inputs under the ART-1 or ART-2 guises. 

The criticisms of ART (ART-1-later models have significantly 
improved the performance and plausibilty of the network) are aimed 
at the poor results in noisy input conditions, the use of non- 
distributed coding of data (i.e. ART uses the “Grandmother)’ cell ap- 
proach), and the implausible “neural” architecture of the network- 
despite it being based on biological studies. 

Summary 

ART is an unsupervised, vector-clustering, competitive learning 
algorithm. 
ART has provided a solution to  the stability-plasticity learning 
dilemma. 
ART is fully described mat hematically by non-linear differential 
equations. 
ART is based on cognitive and behavioural models. 
ART uses extensive feedback between input and output layers. 
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0 ART is implemented for both real and binary inputs. 

Further Reading 

1. Neural Networks and Natural Intelligence. S. Grossberg. MIT 
Bradford Press, 1988. The definitive collection of papers from 
Grossberg’s group. 

2. The ART of Adaptive Pattern Recognition. G. A. Carpenter 
& S. Grossberg. In IEEE Computer, volume 21, number 3, 
March 1988. An introductory paper to  ART. Useful discussion 
and a good source of further references. 
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Associative Memory 

Associations are common within our everyday experience. We are 
easily able to put names to  faces, to  recall that someone looks famil- 
iar because they work with us, and so on. We form links between 
people, events and places, between shapes and objects and concepts, 
and this ability allows us to  build our own representation of the 
world as we see it. Inputs to our senses usually trigger off a cas- 
cade of associations and recollections, each one prompting the next; 
a piece of music may evoke memories of warm summer evenings and 
images of a particular person, or a barking dog may make us smile 
at some childhood incident. It is clear that human memory works 
in an associative fashion, but, in more general terms, we can de- 
scribe associative memory as a memory system such that an input 
specifically evokes the associated response. 

Computational models of associative memory have been studied 
for many years, and much of the work in neural networks draws 
on the ideas developed in this field. The distinction between an 
“associative memory” and a “neural network” is imprecise, and is 
often a matter of personal preference since many networks operate as 
associative memories (for example, the Hopfield network associates 
patterns with themselves), whilst some associative memories perform 
the same processing as a network. 

8.1 STANDARD COMPUTER MEMORY 

Associative memory appears familiar to us since it corresponds to 
the way in which our own memories operate. However, the memory 
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of a conventional computer does not work in the same way. In a stan- 
dard computer memory, each piece of distinct information is stored 
in its own seFtion of memory, and is accessed by knowing the value of 
its location, i.e. its address. This local storage of information needs 
some form of address decoder in order to designate or retrieve the 
information. It is like wanting t o  send a friend a letter; you may well 
know their name, but to  get the letter t o  them you have t o  search 
through your address book to find their address, send the letter to  
that address, and then they will receive it. Unfortunately if we only 
know their name, but have no address, we cannot send them the let- 
ter. We can extend the analogy further-just as your friend lives in 
a house at one address, so another completely different person lives 
next door, at a different address. Likewise in a computer memory, 
one piece of information is stored after another, each at  a different 
address. Each piece of information is quite likely to  be unrelated to  
the information on either side of it, just as people in adjacent houses 
often have nothing in common. This type of memory, where the in- 
formation is stored sequentially, is called a listing memory, since the 
information is stored as a list. When recalled, the same information 
is reproduced*in the same sequential fashion as you pass down the 
list. A simple example of a listing memory is a tape recorder. 

Associative memory, however, requires us to  associate some re 
sponse to  a particular input, so that when we present that input, we 
get the required output. It would be possible to  produce a long list 
that  contained all the inputs and their corresponding outputs, and 
then scan it looking for the correct input match and so the corre- 
sponding output, but this seems excessively complicated. Not only 
do we have t o  record al l  the questions as well as the associated an- 
swers, but we dso have to  move down the list each time. Instead, 
if we consider both the input and the output t o  be a patterned sig- 
nal, we can envisage associating the two patterns by transforming 
the first into the second. The memory would only have to hold the 
required transformations, and not an explicit list of input-output 
pairs. In other words, we consider the input and output as vectors, 
and associate them by producing a matrix that transforms the in- 
put vector into the output vector. This matrix holds a mapping 
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from one specific stimulus onto the associated response, and so is 
known as a mapping memory. The important point is that the input 
and response can each be represented by a patterned signal, and the 
mapping transforms one pattern into the other; there is no direct 
correspondence between individual elements of the patterns, only 
between the patterns as a whole. 

In associative memories, the aim is for the presentation of one 
set of input signals to elicit the recall of another set of signals from 
the memory. This implies that the input signal contains all the 
necessary information to  access the stored pattern, without the need 
for any decoding. The idea of accessing the memory on the basis 
of the structure of the input pattern gives rise to  the term content- 
addressable memory (CAM). 

With standard memory access, knowing part of address of the ob- 
ject t o  be retrieved is useless. Content-addressable memory, on the 
other hand, is able to recall the complete description of an object de- 
spite only having part of the input available. This tolerance to input 
noise makes these types of memories useful for pattern completion 
tasks, and for closest match recognition of unseen inputs. 

Since there is no direct correspondence between the input and the 
response, there is no one memory location that specifically defines 
the out put; the whole of the matrix is involved. A memory with this 
non-localised representation is known as a distributed memory. In 
a distributed memory, each memory element holds traces of many 
stored items, and it is only when viewed collectively that these indi- 
vidual elements form a coherent whole. There are many advantages 
to distributed memories since the same properties that are in neural 
nets are applicable. Due to  the non-localised storage of the mapping, 
no single part is of critical importance to the overall transformation, 
and so the matrix is resistant t o  damage. This is untrue in a con- 
ventional memory. Distributed memories are also tolerant of faults, 
either in the memory matrix itself or in the input patterns. Again, 
this is due to  the fact that it is the overall pattern that is important 
and a few isolated errors are negligible. However, it is important to 
remember that recall is only possible if the memory can produce a 
selective response to  the input. Since the memory contains many 
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mappings from one pattern t o  another, it must be able t o  separate 
the required output from the corrupting overlap of the other pat- 
terns. 

So far, we have discussed the association between the “input” and 
the “output” without reference t o  any particular type of input or 
output, but in fact there are two types of association depending on 
the nature of the two patterns t o  be associated. We have already seen 
that we can tolerate errors in the input since the overall effect will 
still be sufficient to  allow recall. With this in mind we can associate 
a pattern with itself by making the input and response patterns the 
same, whereupon presentation of an incomplete pattern on the input 
will result in the recall of the complete pattern. Recall of this nature 
is called autoassociative. If the input pattern is taught in association 
with a different output pattern, then the presentation of this input 
will cause the corresponding pattern to  appear on the output; such 
a memory is termed heterassociative. This is shown in figure 8.1. 

8.2 IMPLEMENTING ASSOCIATIVE MEMORY 

The question is, given that associative memory appears superior to  
conventional memory, can we actually implement such a system on 
a computer? 

Let us first consider the implementation of content-addressable 
memory, and then examine whether this is in fact associative mem- 
ory. A simple form of content-addressable memory can be imple- 
mented in standard computer memory using a technique known as 
hash coding. In hash coding, the address for storage is made a func- 
tion of the item to be stored, and is determined by some mapping 
algorithm. For example, suppose we want to  store pairs of words 
like 

0 shopping list 
0 tea time 

We can choose t o  hash code these pairs on the first two letters of the 
first word to  produce the address, making it equal t o  the sum of the 
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autoassociative 

memory 

heteroassociative 

recall from 

incomplete input 

1 1 I I I 

Figure 8.1 The different types of association: autoassociation and het- 
eroassociation. The use of an autoassociative system for pattern completion 
is shown in the bottom figure. 
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alphabet positions of the letters. Given that ‘s’ is the 19th letter in 
the alphabet, and ‘h’ the 8th, the word pair “shopping list” would 
be stored at location 19 -t 8 = 27, whilst t=20, e=5 means that “tea 
time” would be stored at location 25. 

For recall, the same algorithm is applied t o  the input in order to 
recover the location. The data is scattered throughout the memory 
area, its position dependent only on its contents and not in any 
regular order. However, there are problems with hash coding. The 
item that is used as the hash code is known as the key; this key has 
to  be unique since only one address can be computed from each key. 
Different associations with the same key would cause a clash since 
they would both try t o  occupy the same storage location, and only 
one item can be held at  any one address. Collisions can also occur 
when the computed address of two different keys happens t o  be the 
same. Returning t o  our example, we would not be able t o  store the 
extra item 
e shoe polish 
since the ‘sh’ address will be the same as for “shopping list”. Like- 
wise, 
e pink tablecloth 
causes problems, since with p=16, i=9, it collides with “tea time” 
at address location 25. 

So, does this implement true associative memory? Hash coding 
does provide content-addressable memory, decoding the input t o  pro- 
vide the response, but it requires the key word t o  be known exactly. 
Our ideal associative memory should provide recall on the basis of 
incomplete, noisy and distorted input cues, so we need to consider 
whether there is a better way. 

8.3 IMPLEMENTATION IN RAMS 

Associative memories can be implemented in random access mem- 
ories (RAMS), an approach which has been pioneered by Professor 
Igor Aleksander. The elements of a random access memory are shown 
in figure 8.2. 
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write enable data in 

Figure 8.2 The elements of a basic random access memory. 

There are n address lines, each taking a binary value of 1 or 0, so 
there are 2n distinct address patterns a t  the input, each accessing 
one address. Each address can store one bit of information which 
would appear on the data-out line when accessed. This is known as 
the “read” mode, and is different to  the “write” or “teach” mode. 
The teach mode is entered by activating the write-enable terminal, 
which, as its name implies, allows data to  be written into the RAM. 
In this mode, the contents of the addressed location can be changed 
to  the logical value determined by the data-in terminal, i.e. $1 or 
0. This RAM can act as a simple pattern recogniser; if the pattern 
is applied at the n binary inputs, it can be taught by energising 
the write-enable input and setting the data-in line t o  one. These n 
inputs together produce a unique address, which is used t o  store the 
data-in value of t1. In the recognition stage, when the RAM is in 
the read mode, the RAM will output this 1 if the same addressing 
pattern occurs on its inputs. However, the RAM will only respond t o  
those patterns on which it has been taught and will not extend the 
recognition to  other similar patterns. Also, it requires a complete 
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pattern on its input. This appears to  be no better than using hash 
coding, but networks of RAMS are able to  act in a more complex 
way, as shown by the following example. 

Figure 8.3 shows an arrangement where a 3 by 3 matrix is con- 
nected to  three RAMs. 

01 1 
output 

common teach A 

Figure 8.3 Matrix connected to three RAM units. 

The training set shown in figure 8.4 is presented. The RAMS 
are taught to  respond with a 1 for those patterns that are in the 
training set. Since the results of the RAMs are passed through the 
“and” gate, only those patterns causing all three RAMS t o  respond 
positively would be classified in the same way as the training set. 

Looking at the training set, we can see that the three RAMs look 
at one row of the pattern each, and, during training, each RAM sees 
only two different addressing sub-patterns. Each ram will output a 
1 when its sub-pattern occurs, so the net will recognise any possible 
combination of these three rows. This means that the net will recog- 
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Figure 8.4 Training set for three-RAM net. 

nise all of the patterns shown in figure 8.5 since these are all made 
up of combinations of the training set sub-patterns. 

Since there are 3 x 3 = 9 locations in the grid, each of which can 
be in one of two states, either 1 or 0, there are 2’ = 512 different 
possible patterns that can be represented on the grid. Three of these 
were presented in training, and we get recognition of these three, plus 
the five additional ones shown in figure 8.5. They are similar, since 
they have at most one bit set differently from one of the training 
patterns. The net generalises from the taught patterns to include 
these other similar patterns, which are therefore collectively known 
as the generalisation set. 

The ability of the recogniser to  generalise is an important feature 
of such a system, and the size of the generalisation set is controlled 
by the diversity of patterns in the training set. If the number of 
subpatterns seen is greater, so will be the size of the generalisation 
set, since there are more possible combinations of the sub-patterns. 
The gate used to  combine the RAMs output for the output decision 
is also crucial, since all RAMs have to see a known sub-pattern for 
classification to occur with an AND gate, whilst only one has to  
respond for classification to occur if an OR gate is used. These 
combinations of RAMs are known as single-layer RAM nets. Their 
generalisation properties are summarised in figure 8.6. 

This simple architecture divides the set of all possible patterns 
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Figure 8.5 The generalisation set: extra patterns that the network recog- 
nises. 

into those that are in the generalisation set, and those that are not. 
Most pattern recognition problems require more categories than this, 
and so many RAM nets are used in conjunction, each net trained to 
respond to one class of pattern. These nets are modified so that 
instead of having a gate to combine the RAMS output, the decision 
is left to a maximum response detector. This is shown in figure 8.7. 

These modified RAM nets are known as discriminators, and the 
maximum response detector assigns classification to the discrimina- 
tor that shows the highest response to  the input pattern. A pattern 
is classed as “unknown” if there are equal responses from two or 
more discriminators, since this implies that the pattern is a member 
of more than one class. The type of generalisation that this ar- 
rangement demonstrates is dependent on the training data used and 
the pattern of connectivity of the RAM units, since this determines 
the sub-patterns that are encountered by each discriminator. The 
generalisation can also be controlled by setting a certain minimum 
difference between the responses of the two maximum discrimina- 
tory units, such that this difference has to  be exceeded before the 
pattern is classed as “unknown”. In this way, patterns that evoke 
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Figure 8.6 Summary of the generalisation properties. 
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U 

discriminators 

Figure 8.7 Matrix connected to three RAM units, feeding a maximum 
response detector. 

nearly equal responses from two classes will be classified as unknown 
as well, therefore reducing the size of the generalisation set. 

8.4 RAMS AND N-TUPLING 

The RAM network was developed from a recognition process first 
described by Bledsoe and Browning in 1959. Known as the n-tuple 
process, it is a general form of the RAM implementation. The term 
“n-tuple” derives from the fact that  each unit accepts n inputs as a 
group, or tuple. Rather than these n inputs addressing a memory lo- 
cation, the tuple produces an output that is dependent on the inputs, 
usually one bit set t o  1 in 2n possible outputs. More complicated 
examples are allowed in which more than one bit is set, but these 
are not discussed here, since their behaviour is a simple extension 
from the usual case. 
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As we can see, the tupling function outputs a unique value de- 
pending on the values of its inputs, and this output has a constant 
number of bits set to 1, i.e. in this case, one. This is true for tu- 
ples with a larger number of inputs, as long as there are 2n possible 
output lines. This constant number of bits set to 1 is useful since it 
forms a sparse coding of the input. In a tuple with four input lines, 
for example, there may be any number of bits set to one from none 
to  four. However, the output from the tupling function will only ever 
have one bit in sixteen set to 1, with the rest zero. 

The n-tuple units sample parts of an input image, as shown in 
figure 8.8. 

Figure 8.8 The tuples sample the image randomly. 

The mapping of image bits onto the tuples is usually random, but 
specific mappings can be used if required. Each tuple unit “sees” 
a small portion of the image, and responds according to  the input 
it receives, independently of the responses of the other tuples. If a 
tuple responds to a certain input pattern, this means that any input 
that has the same pattern of bits on the tuple input will provoke the 
same response from the tuple. This is shown in figure 8.9. 

The bits that are not sampled by the tuple are free to  take on 
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either value without affecting the output of the tuple and therefore 
its recognition. However, these free bits are not usually ignored since 
another tuple may have them as its input. 

W 

/+ 
If this pattern produces a 
specific output from the 
tu le, then so will all of the 
otRer ones below. 

... . . . . . .. . . . . . . . . . . . . . 

Figure 8.9 More than one local pattern can produce the same output 
from one tuple. 

This ability to  respond to  patterns that have not been seen before 
is an essential feature of the system, and is known as generalisation. 

The random mapping of the tupling, with its non-linear binary 
logic, means that patterns that are not linearly separable can  be 
successfully classified, as long as the fuple sampling overlaps the pat- 
tern boundaries and so gets a different input for each of the different 
pat terns. 
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8.5 WILLSHAW’S ASSOCIATIVE NET 

A true associative memory is known as Willshaw’s associative net. 
It is a distributed mapping memory, with binary inputs, “evoking” 
an association between the input pattern and the required output 
pattern. It can be visualised as a matrix of initially unlinked wires, 
one horizontal wire for each of the bits in the input, and a number 
of vertical wires, one for each bit in the output. In the teaching 
phase, each input example is presented along with the bit pattern 
with which it is to  be associated. This pattern appears on the verti- 
cal wires, whilst the input appears on the horizontal wires. A “link”, 
i.e. a weight of t 1 ,  is set in the memory matrix wherever an active 
vertical wire crosses an active horizontal wire. This process is re- 
peated for the whole example set. This simple learning rule uses 
only binary links, so that once formed a link remains in place; if 
a new pattern requires a link in an empty position, one is formed, 
but if the position already has a link, then nothing is altered. The 
learning of patterns therefore happens in one pass through the ma- 
trix, without the need for the iterative processes that other methods 
require. The Willshaw net is shown in figure 8.10. 

In recall, the input pattern is presented as before, and the output 
pattern is calculated by summing the number of links in each col- 
umn that are activated by the input. These integer totals are then 
t hresholded to  recover the original binary pattern. 

We can express this mathematically as’follows. Let the mem- H ::::::;::,;:;:,;:: ory matrix = M;j,  the input vector = Ai,  output vector Bj. 

. . . . . . . . . 

la .& 

Then teaching can be expressed by 

1 A i , B j  = 1 
0 otherwise Mij = 

The recalled vector Rj is given by 
n 

Rj = Mpj.A,  (8.2) 
p = o  

This vector R is then thresholded to recover the estimate of the 
associated pattern B’. 
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-1- 
I 

Figure 8.10 The Willshaw net: nodes in black represent weights of $1, 
whilst nodes in white represent zero weight or no connection. 

8.5.1 Problems 

There are some problems with the Willshaw net when trying to  recall 
patterns. Whenever the output should be a 1, the net will always 
produce a 1, since the correct links will have been set. However, if 
the output should be 0, there may have been enough links set by the 
storage of other patterns to  give a false positive output, and the net 
may respond with a 1 when the 0 is required. Knowing at what level 
to set the threshold is problematical too; if it is set too low then too 
many bits are set in the output pattern, but if it is too high, not 
enough bits are recovered. What is usually done is to choose a level 
that is equal to  the number of bits set to  one in the input pattern. 
For example, an input pattern with 3 bits set to one would have a 
threshold level of 3 as well. 

Since links are set in the matrix whenever there is a 1 in the 
input pattern, patterns with a high proportion of 1’s soon cause the 
net to have the vast majority of the links set and so recall becomes 
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impossible. Such a situation is known as satumtion, and has to be 
avoided in systems that strive for accurate responses. 

8.6 THE ADAM SYSTEM 

An improvement on the Willshaw net has been suggested by Dr. Jim 
Austin, and is known as the ADAM (advanced distributed associa- 
tive memory) net. This incorporates the n-tupling discussed earlier 
as a pre-processor which samples the input and feeds the memory 
matrix. This matrix is in many respects the same as the Willshaw 
net, but is split into two parts, as shown in figure 8.11. The reason 
for splitting the memory into the two sections is t o  allow the intro- 
duction of an intermediate “class” pattern, C, which has a known 
number of bits set to 1. Instead of the memory storing the associa- 
tion A + B, it stores A + C in the first matrix, and C --+ B in the 
second. Overall, the memory has still associated A with B, but via 
an intermediary stage. This seems at first sight simply a little more 
complicated, but the introduction of the class pattern allows much 
more accurate recall, since the characteristics of the class pattern 
can be precisely determined. 

The thresholding of the matrix response is done using a technique 
known as n-point thresholding rather than the standard form of set- 
ting to  one all the values above or equal to  a certain level, and setting 
the rest to zero. N-point thresholding selects the n highest values 
and sets those to  one, returning all the remaining values to  zero. 
This effectively gives a dynamic threshold level that is adjusted un- 
til a fixed number n of bits is recovered. This is much more successful 
in recalling the associated pattern than the standard static threshold 
method, especially as the class pattern that is being recalled has a 
known number of bits set to  one, and so the value of n is determined. 
This is easiest to see with an example. 

The matrix is taught with the first pattern and its associated 
class pattern. The second diagram shows the matrix after many 
other patterns have also been taught. On presentation of the first 
pattern, the response is shown, calculated by summing all the links 
that intersect with an active horizontal wire in each vertical column. 
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The input and its 
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The memory after being 
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-_-- 

Figure 8.11 The ADAM matrix showing its appearance after teaching 
and the equivalence of the n-point thresholding at  high response levels. 

Copyright © 1990 IOP Publishing Ltd.



THE ADAM SYSTEM 209 

If a Willshaw threshold of 4 were used, then the response would 
be as shown in the second row, i.e. 10001010. Notice that this 
has recovered the class pattern required. If the n-point threshold is 
used, there were 3 bits set t o  one in the original class pattern, so 
we select the three highest values in the response, and this produces 
the correct output as well, i.e. 10001010. For response levels that 

. .... . . .... . ..... ....... ... ......... ............I.. ........ ... . . . . . . . . ........ .. ... ........ .................... * 

11 0 0 0 1 0 1 0 r-poinfthmhokfing I 

Figure 8.12 The ADAM matrix: n-point thresholding at low levels is 
much more successful than the fixed value approach. 

are lower, however, the n-point technique is much more effective. 
Consider figure 8.12. The inputs t o  the system have two errors, 
resulting in a response from the matrix that is very low. Using a 
fixed level for thresholding does not recover any pattern at all, but 
the n-point technique manages to  correctly produce the associated 
class pattern. 

The ADAM system then enters a second stage, where the class 
pattern recalled from the matrix is passed into a second matrix, 
which associates this class pattern with a final output pattern. This 
two-stage association has a number of advantages. The class pat- 
tern acts as an intermediate stage with a known number of set bits, 
allowing the n-point thresholding technique to be used on noisy, in- 
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complete, o r  otherwise corrupted input. This would be impossible to  
do if the input were associated directly with the output since there 
would not then be a known number of bits set to one, and so the n- 
point technique is inoperable. The class pattern entering the second 
memory is a hopefully noise-free vector that allows accurate recall 
in the second matrix of the final output pattern. The use of the 
class pattern is also storage-efficient, saving on the size of memory 
required. If an m by n pixel image is to  be associated with an 5 by 
y output image, then m -  n 2. y bits of storage are required to  make 
the matrix. If an intermediate class pattern of a bits is used, then 
the storage requirements become ( m  n U )  t ( a .  z y) = a( mn t xy) .  
Since mnay is much larger than mn + ay, space is saved. For ex- 
ample, if we associate a 512x512 image with itself, then m, n,  x and 
y are all 512. Basic storage requires 5124 = 68719476736 bits (8589 
Mbytes), but the use of a class pattern of, say, 64 bits needs storage 
of 64 a 2 5122 = 33554432 bits (4.19 Mbytes), which represents a 
large saving on memory space. 

The use of the n-tuple preprocessing has two major advantages; 
it copes with non-linearly separable patterns, as we have seen, and 
so allows the ADAM system to resolve such problems as the XOR 
one. To put this in more mathematical terms, the non-linear logic in 
the tupling function provides a mapping that transforms any input 
into one that is linearly separable, given the right sampling by the 
tuples. It also ensures that the inputs to the memory matrix are 
sparsely coded, so that there are not many active lines in any input, 
and this helps prevent the memory matrix from becoming saturated. 
The whole system architecture can be seen in figure 8.13. 

8.6.1 Applications 

The ADAM memory was originally developed for scene analysis, al- 
though it is also used as a fast-learning network for a variety of 
classification problems. It has the advantage that it learns new ex- 
amples with one pass through the matrix and so does not require 
the back-propagation of errors, or repeated iterations. However, i t  
has no adaptive internal representation, and so cannot code higher- 
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Figure 8.13 The ADAM system architecture. 
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order features of the input, unlike the multilayer perceptron. This 
limits its generalisation abilities, which come mainly from the tupling 
function. Sampling the input, the pertinent features that allow clas- 
sification are not discovered explicitly but left to probability that 
some of them fall in regions sampled by different tuples. Since the 
tuple sampling is random, it is likely that important features are de- 
tected by at least some of the tuples, and generalisation occurs from 
these. 

8.7 KANERVA'S SPARSE DISTRIBUTED MEMORY 

A different implementation of associative memory was proposed by 
Kanerva in 1984, and can function as an autoassociative memory, 
a heteroassociative memory, or a sequential sequence memory. A 
sequential sequence memory is one in which the presentation of one 
pattern elicits the recall of a different pattern, which itself causes the 
recall of another, and so on. In a conventional memory, we have seen 
that data is stored by writing it into one of a number of locations 
each specified by a unique address, and is recalled by reading out the 
contents of the specified location. The addresses are represented by 
binary vectors, and the number of possible addresses is dependent 
on the length of this vector. If the length of the address vector is n, 
then there are 2" unique addresses that can be accessed, and these 2n 
addresses make up what is known as the address spce .  If n is large, 
then 2" is very large indeed-for n = 1000, 2n exceeds the number of 
atoms in the universe. If we wanted to consider using memories with 
large n, the number of physical locations quickly becomes impossibly 
huge and there is no way of actually implementing this amount of 
storage. 

A method of actually implementing a memory system that was 
able to use large addresses was proposed by Kanerva. His approach 
is to  randomly choose a small set of m addresses, where m is typi- 
cally between a million and a billion, that are to be identified with 
actual storage locations. Since the value of m will be very much less 
than the 2" possible addresses, these will be sparsely distributed over 
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the address space, which is why the memory is called a “sparse dis- 
tributed memory” (SDM). In order to write into this memory, both 
the address and the data are required, just as for a conventional 
memory, but the address is a bit pattern that is allowed to  be any 
one of the 2n possibilities. There will be a few of the m locations in 
memory that have their addresses close to the actual input address, 
and the data is written into these locations. In this context, “close” 
means all those addresses that lie within a Hamming distance h of 
the original address. In other words, if the n-bit address patterns 
are considered to lie in an n-dimensional space, then all the selected 
patterns will correspond to  all those physical locations that have ad- 
dresses within a hypersphere of radius h centred on the actual input 
address. This is shown in figure 8.14. 

m selected addresses, 
sparsely distributed 
throughout address 
space \ ’  

(hyperiphere of radius h - 
data written to locations contained 
within this space 

Figure 8.14 Diagrammatic form of the SDM, demonstrating the Ham- 
ming hypersphere containing the selected addresses. 
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Instead of overwriting the contents of the previous value stored 
in any selected location, the data is added in, since there may be 
occasions when we have to  write two or more sets of data into the 
same location. This will occur if the hyperspheres chosen by different 
input addresses are sufficiently close toget her to overlap, causing 
the selection of the same address by different inputs. This means 
that each location of the SDM consists of a set of n counters. For 
the system to be effective, the vectors are considered to  consist of 
bipolar ( t l ,  -1) values rather than binary ( 1 , O )  values, since the 0’s 
in binary vectors are ignored when added, but the -1’s in bipolar 
vectors are not: 1 t 0 = 1, whereas 1 t (-1) = 0. For recall in the 
SDM, all the selected locations that lie within the Hamming distance 
of the input address are read, and the values in each of the n counters 
are added in parallel t o  yield n sums. Each of these sums is then 
thresholded at zero, with a +1 output if the sum is greater than 
zero, -1 if it is less than zero, and the value remaining unchanged 
if it happens to  equal zero. This threshold process is usually able 
to  separate out the required pattern from the corrupting overlap of 
other similar patterns, if not too many patterns have been stored. 

The advantage of such a system is that it enables large address 
patterns t o  be associated with physical storage locations, and so 
complex inputs that are represented as large bit patterns can act 
as the address for storage. This means that the SDM acts as a 
content-addressable memory. What is more, since the actual storage 
locatioiis that are accessed lie within a certain Hamming distance 
of the address provided, most of the locations accessed will be the 
same if an input address has a small number of incorrect bits. This 
ensures that recall is still possible even if the addressing pattern 
contains a few errors, and so the SDM can act as a true associative 
system. In other words, a slightly corrupted input pattern should 
still lie within the hypersphere of the actual address centre, and so 
the data recovered will be what was originally stored. The memory 
functions as a heteroassociative one if the data vector stored is of a 
different size t o  the accessing data address, and as an autoassociative 
memory when the data stored is actually the address. The principles 
for autoassociative recall hold for the sequential sequence case, only 
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the recovered output is taken as the new input t o  generate the next 
pattern. 

8.8 BIDIRECTIONAL ASSOCIATIVE MEMORIES 

Bidirectional associative memories (BAMs) were proposed in 1988 
by Kosko, and they can be seen as a two-layer non-linear feedback 
network, as shown in figure 8.15. Patterns sweep from one neuron 
layer to the next, and then back again, slowly relaxing into a stable 
state that represents the network’s association of the two patterns. 

Figure 8.15 The BAM seen as a two-layer network. 

The weights in the forward pass can be represented as a connec- 
tion matrix M ,  whilst those in the backward pass are given by the 
transpose of this matrix, denoted M T .  The use of the connection ma- 
trix’s transpose makes the BAM interesting, since this distinguishes 
it from other systems which use a different matrix of connections for 
the backward pass. 

The BAM stores pairs of patterns A;,  B;, and is autoassociative if 
B; = A; and heteroassociative if B; is different from A;.  In a stan- 
dard heteroassociative memory such as the Willshaw net discussed 
earlier, A is presented to M ,  then thresholded to  produce output B 
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that is hopefully closer t o  the stored pattern B; than to  all the other 
patterns Bj, if A was closer to A;. However, we have seen that this 
assumption is not always valid, and we would like a procedure that 
would allow us to increase the accuracy of the final recall. The BAM 
achieves this by passing the output B back through the system to 
produce a new value, A’, which should be closer t o  the stored pat- 
tern A; than was the original pattern A .  This new value is passed 
forwards again, producing a better estimate B‘, and the process re 
peats until it settles down t o  a steady resonance between the stored 
patterns A; and B;. The advantage of using the transpose of the 
matrix M T  is that  it requires no additional information, and this 
information is locally available to  each node. Kosko has proved that 
the BAM converges to  a fixed pair of stored patterns by extend- 
ing Hopfield’s argument , and demonstrates that the Hopfield case 
of autoassociation is simply a specialised case of the BAM, when 
B = A .  In other words, the sequence A --$ M + B,  followed by 
B -+ M T  + A’, which continues, producing a series of approxima- 
tions ( A ,  B ) ,  (A’ ,  B’), (A”,  B”), . . . will converge t o  a steady resonant 
state that  reverberates between the fixed pairs ( A f ,  Bj) .  Having 
proved that any matrix M is bidirectionally stable in this way, he 
goes on to  show that patterns cannot only be recalled from a fixed 
matrix M ,  as in the Hopfield net, but that if small changes are made 
to  M in accordance with a Hebbian learning rule, it will learn to 
associate two patterns. In this case, as the patterns oscillate back 
and forth, pattern information is allowed to  seep into the weights, 
resulting in the learning of an association between the two patterns. 

8.9 CONCLUSION 

We have discussed the main principles of associative memory, as well 
as focussing on the major approaches currently in use. The distinc- 
tion between these forms of memories and neural networks is a hazy 
one, since each can play the role of the other. The approaches to 
associative memory tend t o  offer advantages in the speed of storage 
of patterns, but are unable to  perform the complex data represen- 
tation tasks in the same way that multilayer perceptrons can. This 
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means that practical decisions as to the suitability of one method 
over another have to be carefully considered. 

Summary 

e 

e 

e 

e 

e 

e 

e 

e 

e 

e 

Two stored patterns are autoassociative if they are the same, and 
heteroassociative if they are different. 
Sequential access memories retrieve one pattern after another via 
autoassociation. 
Content-addressable memory (CAM) is accessed via knowledge of 
its contents, not its address. 
Hash coding implements CAM. 
Random access memories used to implement associative memory. 
n-tupling takes many small samples from an image. Produces 
sparsely coded output. 
Willshaw net provides associative memory. Matrix of binary con- 
nections set to 1 whenever both active. Requires thresholding to  
recover pattern. 
ADAM provides more effective thresholding and storage than 
Willshaw net by using n-tuple preprocessing and n-point thresh- 
olding to  recover intermediate pattern with known number of bits. 
Sparse distributed memory implemented by selecting a few phys- 
ical locations to  represent many similar addresses. 
Bidirectional associative memory resonates two patterns via a ma- 
trix and its transpose. 
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Into the Looking Glass 

9.1 OVERVIEW 

The purpose of this chapter to  to look ahead to  the future of neu- 
ral computing. There are two major areas of implementation that 
are developing rapidly: the hardware neural network chips, and the 
optical computing field. The mathematical techniques used in the 
analysis of networks are also becoming more diverse, and improve- 
ments in understanding can be expected from developments in the 
theoretical areas of the subject. The interchange of ideas across the 
boundaries of scientific disciplines means that it is practically im- 
possible to  predict what the future has in store, but the two areas of 
hardware realisation both have great potential. It is not the purpose 
of this chapter to be comprehensive in scope and description, but to  
paint the broad outlines of future developments. 

9.2 HARDWARE AND SOFTWARE IMPLEMENTA- 
TIONS 

The majority of the networks that we have discussed exist as software 
simulations only, barring the optical Hopfield and RAM associative 
memory networks. By this we mean it is not possible to buy inte- 
grated circuits that contain an artificial neural network. The results 
and applications that have been quoted in this book all stem from 
software simulations on standard computer hardware from IBM-PCs 
to  high-performance parallel machines. The reason that we have in- 
cluded the algorithms in each chapter is primarily so that the inter- 
ested reader can actually code them into programs. We recommend 
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that you consider doing this because it provides a very useful insight 
into the workings of the learning methods for these algorithms. 

If, however, you are not in a position to code the algorithms your- 
self, then you may wish t o  consider one of the numerous software 
packages available that simulate most of the major neural paradigms. 
These are available from such companies as Nestor, Hecht-Nielson, 
Science Application International Corporation (SAIC) and Neural- 
ware, t o  name but a few. New software products are regularly ar- 
riving on the market, with prices ranging from anywhere between 
twenty and ten thousand pounds. It might be worth adding a note 
of caution about the computing resources that are required t o  run 
typical software simulations of neural networks. One common fea- 
ture that all the various algorithms share is a significant amount 
of “number-crunching”-any network of practical dimensions will 
place heavy demands on the processing power required during train- 
ing. The main mathematical processing is the multiply and add for 
the weights of each node in the network. For methods such as back- 
propagation, there is also the error derivative for gradient descent 
learning. Any computer that is t o  run simulations of neural net- 
works ideally requires a large amount of storage memory ( to  deal 
with the large vector matrices) and a fast microprocessor. Typically, 
software simulation of neural networks is performed using computers 
with add-on accelerator boards (or co-processor boards) that  have 
high-performance processors on them, capable of very fast multiply 
and add operations. On slow computers, without these boards, it is 
not unreasonable to  expect training times of several hours or even 
days for some applications. 

This leads us on to  think about hardware for neural networks. Al- 
though we have already said that there are no commercially available 
neural network integrated circuits, there are actually several large 
electronic device companies about t o  release such products. There 
are many practical difficulties in implementing a neural network a t  
chip level-the most obvious of which is that neural networks, by na- 
ture, are complex adaptive systems. It is very difficult t o  implement 
adaptive weights in integrated circuit technology. Three approaches 
are currently taken: analogue, digital and fixed weight. Analogue 
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techniques for creating modifiable weight connections include vari- 
able resistors, FET gate voltage control and capacitive storage meth- 
ods. However, the major drawback of most of these methods is that 
they require large amounts of silicon space, resulting in only a very 
low density of neural nodes available on a chip. Digital techniques 
use addressable registers to store and modify the weights. This tech- 
nique is useful but is again limited by the space required for multiply 
and add units on the silicon. The third alternative avoids the prob- 
lem of modifying weight values by only allowing the value of the 
weights to be set once. The idea behind this is to learn the correct 
weight matrix, in a simulation environment, and then load this into 
the chip permanently. 

All the methods also suffer from the other drawback of neural net- 
works, namely high interconnectivity. It is both costly and difficult 
to  design integrated circuits wth complex data pathways between the 
layers of nodes, and even when it is achieved it invariably means that 
the topology of the neural network is fixed. These restrictions mean 
that in many application environments integrated circuit technology 
is just not suitable. VLSI technology is advancing at a remarkable 
rate, however, and these implementation difficulties will not hin- 
der progress of neural network chips for too long. One technology 
that may provide some answers, particularly to  the interconnectivity 
problem, is optical computing. 

9.3 OPTICAL COMPUTING 

9.3.1 Introduction 

The purpose of this section is to give a very brief overview of the 
developments taking place in optical computing, with particular ref- 
erence to  the effects these may have on the artificial neural systems 
of the future. A comprehensive review is outside the scope of this 
book; this is simply meant to  sketch the broadest of outlines. 
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9.3.2 What is Optical Computing? 

In order t o  compute we need to  transport data from place to place, 
connect components together, store data, and be able to switch on 
and off. The electronic equivalents of these functions are wires or 
conducting pathways on silicon, electrical junctions, memory, and 
the transistor. 

Optical computing uses light to  transport information instead of 
electrical signals. This approach holds two major advantages for 
computation in general and artificial neural networks in particular. 
The first is in the inherently high speeds achievable-data can flow 
at the speed of light, and optical switches can go much faster than 
electronic ones. However, for neural computing in particular, the 
more important reason is due to  the fact that one beam of light can 
cross another and emerge completely unaffected by its encounter, 
whereas two electrical wires cannot. This opens up the potential for 
massive interconnectivity within a small space. 

A simple lens can be thought of as a powerful interconnection 
device. The image that it forms is a collection of rays of light reflected 
from the object, and the lens effectively connects millions of these 
rays from the object to  the image, as shown in figure 9.1. These light 

object lens image 

Figure 9.1 A lens offers immense interconnectivity. 
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rays can come close together and cross without affecting the data 
carried in either one, which is why the image can be formed. Such 
huge connection densities are impossible to  achieve with electrical 
circuits even if they are routed on silicon, since each path must be a 
certain distance from its neighbours to  avoid interference. 

Storage in optical systems is accomplished using holograms. The 
physical principles underlying the hologram are not relevant t o  this 
book-suffice to  say that holograms are a sort of three-dimensional 
photograph, containing enough information to  reconstruct an image 
of a solid object. Holograms can also be used as switches by directing 
light that falls on to them in different directions dependent on the 
initial angle of approach of the beam. The amount of information 
that can be stored in a hologram is huge, since a single one can hold 
many images. 

Optical switches can also be made. One approach is to  affect a 
crystal structure with an electric or magnetic field, which alters. its 
optical properties, and so affects incoming light differently. These 
work at speeds of around lo-'' seconds, compared to  the best tran- 
sistor switching times of down to seconds. Other switching 
devices use non-linear crystals that alter the amount of light that 
they transmit depending on the intensity of the incoming beam. The 
best optical switches are currently switching at speeds up to  
seconds, which gives them the speed edge over electronic ones. 

9.4 OPTICAL COMPUTING AND NEURAL NET- 
WORKS 

Optical influences on neural networks fall into one of two areas, either 
in implementing parallel matrix multipliers or in holographic pattern 
recognisers. 

9.4.1 Matrix Multiplication 

Many of the operations in networks require the evaluation of a set 
of inputs multiplied by some weight matrix, and this process can be 
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implemented in an optical system. If the weight matrix is W;j, then 
the weighted sum of the inputs Xi to a unit j is given by 

We can see that the i-th input is only of interest to the elements in 
the i-th row in determining the result. The inputs are represented 
by a beam of light and are spread out to span the rows of the grid. 
Each element of the grid contains a piece of photographic film whose 
transmittance is proportional to  the value of the weight in the matrix. 
A photodetector receives its input from a lens that gathers all the 
light that emerges from one column of the grid, and the intensity of 
the light it receives is a sum of values that depend on the product 
of the intensity of the input signal and the transmittance of the 
“weight” through which it has passed. This is shown in figure 9.2. 

inwts 
&lied 
to rows 

’r sources . 

outputs collected 
from columns 

9 

photodetectors 

B 

weight matrix 
with different 
transmissivities 

Figure 9.2 An optical matrix multiplier. 

The summing operation can occur in parallel, and the speed of 
the system is independent of the size of the weight array, and so 
can be scaled up without becoming any slower. This opens the way 
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for very large networks with correspondingly large weight matrices. 
Currently the weight matrix has to be altered by substituting a dif- 
ferent mask, so automatic learning is not possible, but research is 
in progress to  investigate the use of liquid crystal cells which could 
have a variable density. 

9.4.2 Holographic Pattern Recognition 

Holographic pattern recognisers are essentially resonant systems; a 
typical example, due to  Abu-Mostafa and Psaltis, (Scientific Amer- 
ican, March 1987), is shown in figure 9.3. 

The key to  the operation of the system is the threshold device. 
This is a non-linear reflector, which reflects most strongly from its 
front surface the pattern that appears brightest on its back. The 
input is passed to a beam splitter which sends one copy of the input 
on the front of the threshold device, and passes another to  a holo- 
gram. This hologram contains several stored images that represent 
the patterns that the system is to recognise. The input pattern is 
passed through this hologram, which correlates these pat terns and 
the input. The correlations are a measure of the similarity between 
the patterns, and the pattern that is the most similar is the bright- 
est. This is passed through a pinhole which separates the images, 
and via a mirror and lens through another hologram like the first. 
This correlates the new images, and passes the results to the rear 
of the threshold device. The back of the threshold device therefore 
receives a set of images corresponding to the stored images in the 
system. The brightest one of these will be the one that the original 
image was most similar to, and this means that this pattern will 
be most strongly reflected from the front of the device. This new 
enhanced pattern will then pass round the loop for further enhance- 
ment, and the system will quickly settle into a state in which the 
pattern most like the input pattern goes round and round the loop 
until stopped. The speed that the system relaxes into this steady 
state is impressive, and it is capable of recovering an image when 
only a very small proportion of the original is presented. 
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m 

output image 

input image 

Figure 9.3 A holographic pattern recognition system. 
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9.4.3 Conclusion 

The question arises as to  why all neural networks are not currently 
built optically; the answer is that the current technology is unable 
to provide images of a reasonable quality. The holographic recogni- 
tion system is bulky and difficult t o  align correctly, but is likely to  
improve its performance as further research is done. Such systems 
are pushing the barriers of technology to the limits; however, ad- 
vances will be made given time and money. Another difficulty arises 
if the optical system is to be part of a larger electronic one, since 
there is then the need for an optical-electronic interface between the 
two. Whilst it is difficult t o  provide a good interface between the 
two types of systems, Demetri Psaltis and his co-workers have pre- 
pared holographic memories using an electronically-addressed array 
of lights as the input. Optical systems offer intrinsic parallelism, the 
potential for massive interconnectivity within a small volume, and 
computation speeds substantially faster than electronic approaches. 
The time will come when such esoteric systems will become much 
more commonplace. 
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