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Rules

d
1. Constant: —c¢=0
onstan dxc

3. Sum: %[f(x) + gx)l=f(x)+ g'(x)
d flx) _ g)f (%)~ flx)g'(x)

5. Quotient:

2. Constant Multiple: %cf(x) =cf"(x)

dx g(x)

7. Power: dix” =nx" !

X

Functions
Trigonometric:
d .
9. —sinx=cosx
dx

d 2
12. —cotx=—csc” x
dx

Inverse trigonometric:

15. isin_1 x= 1
dx 1-«2
18. icot_1 x=- 1
dx 1+ x2
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21. %sinhx =coshx

d 2
24. —coth x = —csch
x x
Inverse hyperbolic:
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dx
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X 1-x?
Exponential:
d
33. —e* =¢e"
dx

Logarithmic:
d 1
35. —In|x|==

[g(x)

4. Product: %f(x)g(x) =f(x)g’(x) + g(x)f'(x)

6. Chain: %f(g(x)) =f"(g(x)g’(x)

8. Power: %[g(x)]" =nlgx)" g’ (x)

d .

10. —cosx=-sinx
dx

13. —secx =secxtanx
dx

16. icos_1 xX=-
dx 1-«2

19. isec_1

1
dx x_|x|\/x2—1

22. icosh x =sinh x
dx

25. i sech x = —sech x tanh x
dx

28. icosh’1 x= 1
dx x2-1
31. isechf1 x=- 1
xv1l— a2
d

34. —b*=b"(nbd
dx (nb)

d
36. alogb x=

x(Inb)

d 2
11. —tanx =sec” x
dx
14. —cscx=-cscxcotx
dx
17. Ltantg=—1 5
dx 1+x
d a 1
20. —cs¢ X =——F———
dx |x|\/x2—1
23 itanhx—sech2x
" dx
26 icschx——cschxcothx
T dx
29. itanh’lxz 1
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32. icsch ly=— 1
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Note: Some techniques of integration, such as integration by parts and partial fractions, are
reviewed in the Student Resource and Solutions Manual that accompanies this text.
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PREFACE

TO THE STUDENT

Authors of books live with the hope that someone actually reads them. Contrary to
what you might believe, almost everything in a typical college-level mathematics text
is written for you and not the instructor. True, the topics covered in the text are cho-
sen to appeal to instructors because they make the decision on whether to use it in
their classes, but everything written in it is aimed directly at you the student. So I
want to encourage you—no, actually I want to fell you—to read this textbook! But
do not read this text like you would a novel; you should not read it fast and you
should not skip anything. Think of it as a workbook. By this I mean that mathemat-
ics should always be read with pencil and paper at the ready because, most likely, you
will have to work your way through the examples and the discussion. Read—oops,
work—all the examples in a section before attempting any of the exercises; the ex-
amples are constructed to illustrate what I consider the most important aspects of the
section, and therefore, reflect the procedures necessary to work most of the problems
in the exercise sets. I tell my students when reading an example, cover up the solu-
tion; try working it first, compare your work against the solution given, and then
resolve any differences. I have tried to include most of the important steps in each
example, but if something is not clear you should always try—and here is where
the pencil and paper come in again—to fill in the details or missing steps. This may
not be easy, but that is part of the learning process. The accumulation of facts fol-
lowed by the slow assimilation of understanding simply cannot be achieved without
a struggle.

Specifically for you, a Student Resource and Solutions Manual (SRSM) is avail-
able as an optional supplement. In addition to containing solutions of selected prob-
lems from the exercises sets, the SRSM has hints for solving problems, extra exam-
ples, and a review of those areas of algebra and calculus that I feel are particularly
important to the successful study of differential equations. Bear in mind you do not
have to purchase the SRSM; by following my pointers given at the beginning of most
sections, you can review the appropriate mathematics from your old precalculus or
calculus texts.

In conclusion, I wish you good luck and success. I hope you enjoy the text and
the course you are about to embark on—as an undergraduate math major it was one
of my favorites because I liked mathematics that connected with the physical world.
If you have any comments, or if you find any errors as you read/work your way
through the text, or if you come up with a good idea for improving either it or the
SRSM, please feel free to either contact me or my editor at Brooks/Cole Publishing
Company:

charlie.vanwagner @cengage.com

TO THE INSTRUCTOR

WHAT IS NEW IN THIS EDITION?

First, let me say what has not changed. The chapter lineup by topics, the number and
order of sections within a chapter, and the basic underlying philosophy remain the
same as in the previous editions.

Xi
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PREFACE

In case you are examining this text for the first time, Differential Equations with
Boundary-Value Problems, 7th Edition, can be used for either a one-semester course
in ordinary differential equations, or a two-semester course covering ordinary and
partial differential equations. The shorter version of the text, A First Course in
Differential Equations with Modeling Applications, 9th Edition, ends with
Chapter 9. For a one-semester course, [ assume that the students have successfully
completed at least two-semesters of calculus. Since you are reading this, undoubt-
edly you have already examined the table of contents for the topics that are covered.
You will not find a “suggested syllabus” in this preface; I will not pretend to be so
wise as to tell other teachers what to teach. I feel that there is plenty of material here
to pick from and to form a course to your liking. The text strikes a reasonable bal-
ance between the analytical, qualitative, and quantitative approaches to the study of
differential equations. As far as my “underlying philosophy” it is this: An under-
graduate text should be written with the student’s understanding kept firmly in
mind, which means to me that the material should be presented in a straightforward,
readable, and helpful manner, while keeping the level of theory consistent with the
notion of a “first course.”

For those who are familiar with the previous editions, I would like to mention a
few of the improvements made in this edition.

* Contributed Problems Selected exercise sets conclude with one or two con-
tributed problems. These problems were class tested and submitted by in-
structors of differential equations courses and reflect how they supplement
their classroom presentations with additional projects.

» Exercises Many exercise sets have been updated by the addition of new prob-
lems to better test and challenge the students. In like manner, some exercise
sets have been improved by sending some problems into early retirement.

e Design This edition has been upgraded to a four-color design, which adds
depth of meaning to all of the graphics and emphasis to highlighted phrases.
I oversaw the creation of each piece of art to ensure that it is as mathemati-
cally correct as the text.

* New Figure Numeration It took many editions to do so, but I finally became
convinced that the old numeration of figures, theorems, and definitions had to
be changed. In this revision I have utilized a double-decimal numeration sys-
tem. By way of illustration, in the last edition Figure 7.52 only indicates that
it is the 52nd figure in Chapter 7. In this edition, the same figure is renumbered
as Figure 7.6.5, where

Chapter Section

Vi

7.6.5 < Fifth figure in the section

I feel that this system provides a clearer indication to where things are, with-
out the necessity of adding a cumbersome page number.

* Projects from Previous Editions Selected projects and essays from past
editions of the textbook can now be found on the companion website at
academic.cengage.com/math/zill.

STUDENT RESOURCES

* Student Resource and Solutions Manual, by Warren S. Wright, Dennis G. Zill,
and Carol D. Wright (ISBN 0495385662 (accompanies A First Course in
Differential Equations with Modeling Applications, 9e), 0495383163 (ac-
companies Differential Equations with Boundary-Value Problems, 7e)) pro-
vides reviews of important material from algebra and calculus, the solution of
every third problem in each exercise set (with the exception of the Discussion
Problems and Computer Lab Assignments), relevant command syntax for
the computer algebra systems Mathematica and Maple, lists of important
concepts, as well as helpful hints on how to start certain problems.
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* DE Tools is a suite of simulations that provide an interactive, visual explo-
ration of the concepts presented in this text. Visit academic.cengage.com/
math/zill to find out more or contact your local sales representative to ask
about options for bundling DE Tools with this textbook.

INSTRUCTOR RESOURCES

e Complete Solutions Manual, by Warren S. Wright and Carol D. Wright (ISBN
049538609X), provides worked-out solutions to all problems in the text.

e Test Bank, by Gilbert Lewis (ISBN 0495386065) Contains multiple-choice
and short-answer test items that key directly to the text.

ACKNOWLEDGMENTS

Compiling a mathematics textbook such as this and making sure that its thousands
of symbols and hundreds of equations are (mostly) accurate is an enormous task, but
since I am called “the author” that is my job and responsibility. But many people
besides myself have expended enormous amounts of time and energy in working
towards its eventual publication. So I would like to take this opportunity to express my
sincerest appreciation to everyone—most of them unknown to me—at Brooks/Cole
Publishing Company, at Cengage Learning, and at Hearthside Publication Services
who were involved in the publication of this new edition. I would, however, like to
single out a few individuals for special recognition: At Brooks/Cole/Cengage,
Cheryll Linthicum, Production Project Manager, for her willingness to listen to an
author’s ideas and patiently answering the author’s many questions; Larry Didona
for the excellent cover designs; Diane Beasley for the interior design; Vernon Boes
for supervising all the art and design; Charlie Van Wagner, sponsoring editor; Stacy
Green for coordinating all the supplements; Leslie Lahr, developmental editor, for
her suggestions, support, and for obtaining and organizing the contributed prob-
lems; and at Hearthside Production Services, Anne Seitz, production editor, who
once again put all the pieces of the puzzle together. Special thanks go to John
Samons for the outstanding job he did reviewing the text and answer manuscript
for accuracy.

I also extend my heartfelt appreciation to those individuals who took the time
out of their busy academic schedules to submit a contributed problem:

Ben Fitzpatrick, Loyola Marymount University

Layachi Hadji, University of Alabama

Michael Prophet, University of Northern lowa

Doug Shaw, University of Northern lowa

Warren S. Wright, Loyola Marymount University

David Zeigler, California State University—Sacramento

Finally, over the years these texts have been improved in a countless number of
ways through the suggestions and criticisms of the reviewers. Thus it is fitting to con-
clude with an acknowledgement of my debt to the following people for sharing their
expertise and experience.

REVIEWERS OF PAST EDITIONS
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INTRODUCTION TO DIFFERENTIAL

EQUATIONS

1.1 Definitions and Terminology

1.2 Initial-Value Problems

1.3 Differential Equations as Mathematical Models
CHAPTER 1 IN REVIEW

The words differential and equations certainly suggest solving some kind of
equation that contains derivatives y’, y”, . . . . Analogous to a course in algebra and
trigonometry, in which a good amount of time is spent solving equations such as
X2 + 5x + 4 = 0 for the unknown number x, in this course one of our tasks will be
to solve differential equations such as y” + 2y" + y = 0 for an unknown function
y = o).

The preceding paragraph tells something, but not the complete story, about the
course you are about to begin. As the course unfolds, you will see that there is more
to the study of differential equations than just mastering methods that someone has
devised to solve them.

But first things first. In order to read, study, and be conversant in a specialized
subject, you have to learn the terminology of that discipline. This is the thrust of the
first two sections of this chapter. In the last section we briefly examine the link
between differential equations and the real world. Practical questions such as How
fast does a disease spread? How fast does a population change? involve rates of
change or derivatives. As so the mathematical description—or mathematical

model —of experiments, observations, or theories may be a differential equation.
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

1.1

DEFINITIONS AND TERMINOLOGY

REVIEW MATERIAL

e Definition of the derivative

Rules of differentiation

Derivative as a rate of change

First derivative and increasing/decreasing
Second derivative and concavity

INTRODUCTION The derivative dy/dx of a function y = ¢(x) is itself another function ¢'(x)
found by an appropriate rule. The function y = ¢** is differentiable on the interval (—, %), and
by the Chain Rule its derivative is dy/dx = 0.2xe®'". If we replace ¢*'*" on the right-hand side of
the last equation by the symbol y, the derivative becomes

d
2 = 024y, (1)
dx

Now imagine that a friend of yours simply hands you equation (1)—you have no idea how it was
constructed—and asks, What is the function represented by the symbol y? You are now face to face
with one of the basic problems in this course:

How do you solve such an equation for the unknown function y = ¢(x)?

A DEFINITION The equation that we made up in (1) is called a differential
equation. Before proceeding any further, let us consider a more precise definition of
this concept.

DEFINITION 1.1.1 Differential Equation

An equation containing the derivatives of one or more dependent variables,
with respect to one or more independent variables, is said to be a differential
equation (DE).

To talk about them, we shall classify differential equations by type, order, and
linearity.

CLASSIFICATION BY TYPE If an equation contains only ordinary derivatives of
one or more dependent variables with respect to a single independent variable it is
said to be an ordinary differential equation (ODE). For example,

A DE can contain more
than one dependent variable

y V
dy d*y dy dx dy
Zhsy=¢, — - 4ey=0, d =4+==2x+ 2
x VT a2 ax Y and T Ty @

are ordinary differential equations. An equation involving partial derivatives of
one or more dependent variables of two or more independent variables is called a
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partial differential equation (PDE). For example,

*u  u Pu  u u u v
Lo, R T e 22T
ox ot ot ay 0x

3)
are partial differential equations.”

Throughout this text ordinary derivatives will be written by using either the
Leibniz notation dy/dx, d*y/dx?, d*y/dx?, . . . or the prime notation y', y",y", . . ..
By using the latter notation, the first two differential equations in (2) can be written
a little more compactly as y' + 5y = ¢* and y” — y" + 6y = 0. Actually, the prime
notation is used to denote only the first three derivatives; the fourth derivative is
written y® instead of y””. In general, the nth derivative of y is written d"y/dx" or y®.
Although less convenient to write and to typeset, the Leibniz notation has an advan-
tage over the prime notation in that it clearly displays both the dependent and
independent variables. For example, in the equation

unknown function
or dependent variable

&

dr?

L independent variable

+ 16x =0

it is immediately seen that the symbol x now represents a dependent variable,
whereas the independent variable is . You should also be aware that in physical
sciences and engineering, Newton’s dot notation (derogatively referred to by some
as the “flyspeck” notation) is sometimes used to denote derivatives with respect
to time . Thus the differential equation d’s/dt*> = —32 becomes § = —32. Partial
derivatives are often denoted by a subscript notation indicating the indepen-
dent variables. For example, with the subscript notation the second equation in
(3) becomes uy = u,; — 2u,.

CLASSIFICATION BY ORDER The order of a differential equation (either
ODE or PDE) is the order of the highest derivative in the equation. For example,

second order —% r first order
d?y dy\? o
W + 5(%) 4y =e

is a second-order ordinary differential equation. First-order ordinary differential
equations are occasionally written in differential form M(x, y) dx + N(x, y) dy = 0.
For example, if we assume that y denotes the dependent variable in
(y — x) dx + 4xdy = 0, then y' = dy/dx, so by dividing by the differential dx, we
get the alternative form 4xy" + y = x. See the Remarks at the end of this section.

In symbols we can express an nth-order ordinary differential equation in one
dependent variable by the general form

Fix, v, y',...,y") =0, 4)

where F'is a real-valued function of n + 2 variables: x, y, y', . . ., y(”). For both prac-
tical and theoretical reasons we shall also make the assumption hereafter that it is
possible to solve an ordinary differential equation in the form (4) uniquely for the

“Except for this introductory section, only ordinary differential equations are considered in A First
Course in Differential Equations with Modeling Applications, Ninth Edition. In that text the

word equation and the abbreviation DE refer only to ODEs. Partial differential equations or PDEs
are considered in the expanded volume Differential Equations with Boundary-Value Problems,
Seventh Edition.
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highest derivative y™ in terms of the remaining n + 1 variables. The differential
equation

n

Y _ ' (n=1)

- XY, EECEERENE) s 5
T Yy y) Q)
where f1is a real-valued continuous function, is referred to as the normal form of (4).
Thus when it suits our purposes, we shall use the normal forms

dy d?y

L —fay  ad 52 =y

dx dx

to represent general first- and second-order ordinary differential equations. For example,
the normal form of the first-order equation 4xy’ + y = xisy’ = (x — y)/4x; the normal
form of the second-order equation y” — y" + 6y = 0is y” = y" — 6y. See the Remarks.

CLASSIFICATION BY LINEARITY An nth-order ordinary differential equation (4)
is said to be linear if F is linear in y, y’, . . ., y*. This means that an nth-order ODE is
linear when (4) is a,(x)y™ + a,—;(xX)y" Y + - - - + a,(x)y’ + ag(x)y — g(x) =0 or
ny n—1
xn

d
Y + -+ al(x)d—y + Clo(.x)y = g(-x) (6)
X

+ a,— l(x) dx"™ 1

( )
a, (X
n /
Two important special cases of (6) are linear first-order (n = 1) and linear second-

order (n = 2) DEs:

dy d?y dy
al(x)a + a)(x)y = gx)  and az(x)ﬁ + a,(x) i ag(x)y = g(x). (1)

In the additive combination on the left-hand side of equation (6) we see that the char-
acteristic two properties of a linear ODE are as follows:

 The dependent variable y and all its derivatives y’, y”, . . ., y® are of the
first degree, that is, the power of each term involving y is 1.

e The coefficients ag, ay, . ..,a,of y,y', ..., y(”) depend at most on the
independent variable x.

The equations

d? d
(y —x)dx +4xdy=0, y"—2y+y=0, and —y+x—y—5y=e"
dx? dx

are, in turn, linear first-, second-, and third-order ordinary differential equations. We
have just demonstrated that the first equation is linear in the variable y by writing it in
the alternative form 4xy" + y = x. A nonlinear ordinary differential equation is sim-
ply one that is not linear. Nonlinear functions of the dependent variable or its deriva-
tives, such as sin y or e¥’, cannot appear in a linear equation. Therefore

nonlinear term: nonlinear term: nonlinear term:

coefficient depends on y nonlinear function of y power not 1
: d? d*
y 1 y 2
I — )y + 2y = ¢, — +siny =0, and — +y2=0
S ) y 2 ) P

are examples of nonlinear first-, second-, and fourth-order ordinary differential equa-
tions, respectively.

SOLUTIONS As was stated before, one of the goals in this course is to solve, or
find solutions of, differential equations. In the next definition we consider the con-
cept of a solution of an ordinary differential equation.
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DEFINITION 1.1.2 Solution of an ODE

Any function ¢, defined on an interval / and possessing at least n derivatives
that are continuous on /, which when substituted into an nth-order ordinary
differential equation reduces the equation to an identity, is said to be a
solution of the equation on the interval.

In other words, a solution of an nth-order ordinary differential equation (4) is a func-
tion ¢ that possesses at least n derivatives and for which

F(x, p(x), ¢’ (x), ..., d"(x) =0 for all x in I.

We say that ¢ satisfies the differential equation on 1. For our purposes we shall also
assume that a solution ¢ is a real-valued function. In our introductory discussion we
saw thaty = €% is a solution of dy/dx = 0.2xy on the interval (—o, o).

Occasionally, it will be convenient to denote a solution by the alternative
symbol y(x).

INTERVAL OF DEFINITION  You cannot think solution of an ordinary differential
equation without simultaneously thinking inferval. The interval [ in Definition 1.1.2
is variously called the interval of definition, the interval of existence, the interval
of validity, or the domain of the solution and can be an open interval (a, b), a closed
interval [a, b], an infinite interval (a, o), and so on.

I EXAMPLE 1 Verification of a Solution

Verify that the indicated function is a solution of the given differential equation on
the interval (—o0, ).

(@) dy/dx = xy"; y=gx* (b)Y -2 +y=0; y=xe

SOLUTION One way of verifying that the given function is a solution is to see, after
substituting, whether each side of the equation is the same for every x in the interval.

(a) From

we see that each side of the equation is the same for every real number x. Note

thaty'"> = 127 is, by definition, the nonnegative square root of 1= x*.

(b) From the derivatives y' = xe* + ¢* and y"” = xe* + 2¢* we have, for every real
number x,
left-hand side: V' =2y +y=(xe" + 2&) — 2(xe* + &) + xe* = 0,
right-hand side: 0. |

Note, too, that in Example 1 each differential equation possesses the constant so-
Iution y = 0, —o0 < x < . A solution of a differential equation that is identically
zero on an interval / is said to be a trivial solution.

SOLUTION CURVE The graph of a solution ¢ of an ODE is called a solution
curve. Since ¢ is a differentiable function, it is continuous on its interval / of defini-
tion. Thus there may be a difference between the graph of the function ¢ and the
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(a) functiony = 1/x,x # 0

(b) solution y = 1/x, (0, %)

FIGURE 1.1.1

The functiony = 1/x
is not the same as the solutiony = 1/x

INTRODUCTION TO DIFFERENTIAL EQUATIONS

graph of the solution ¢. Put another way, the domain of the function ¢ need not be
the same as the interval / of definition (or domain) of the solution ¢. Example 2
illustrates the difference.

I EXAMPLE 2 Function versus Solution

The domain of y = 1/x, considered simply as a function, is the set of all real num-
bers x except 0. When we graph y = 1/x, we plot points in the xy-plane corre-
sponding to a judicious sampling of numbers taken from its domain. The rational
function y = 1/x is discontinuous at 0, and its graph, in a neighborhood of the ori-
gin, is given in Figure 1.1.1(a). The function y = 1/x is not differentiable at x = 0,
since the y-axis (whose equation is x = 0) is a vertical asymptote of the graph.
Now y = 1/x is also a solution of the linear first-order differential equation
xy" +y = 0. (Verify.) But when we say that y = 1/x is a solution of this DE, we
mean that it is a function defined on an interval I on which it is differentiable and
satisfies the equation. In other words, y = 1/x is a solution of the DE on any inter-
val that does not contain 0, such as (=3, —1), (%, 10), (=0, 0), or (0, =). Because
the solution curves defined by y = 1/x for =3 < x < —1 and% < x < 10 are sim-
ply segments, or pieces, of the solution curves defined by y = 1/x for —o0 < x <0
and 0 < x < =, respectively, it makes sense to take the interval 7 to be as large as
possible. Thus we take I to be either (—, 0) or (0, ). The solution curve on (0, %)
is shown in Figure 1.1.1(b). |

EXPLICIT AND IMPLICIT SOLUTIONS You should be familiar with the terms
explicit functions and implicit functions from your study of calculus. A solution in
which the dependent variable is expressed solely in terms of the independent
variable and constants is said to be an explicit solution. For our purposes, let us
think of an explicit solution as an explicit formula y = ¢(x) that we can manipulate,
evaluate, and differentiate using the standard rules. We have just seen in the last two
examples that y = l—lﬁx“, y=xe*, and y = 1/x are, in turn, explicit solutions
of dy/dx = xy"?, y" — 2y’ + y =0, and xy’ + y = 0. Moreover, the trivial solu-
tion y = 0 is an explicit solution of all three equations. When we get down to
the business of actually solving some ordinary differential equations, you will
see that methods of solution do not always lead directly to an explicit solution
y = ¢(x). This is particularly true when we attempt to solve nonlinear first-order
differential equations. Often we have to be content with a relation or expression
G(x, y) = 0 that defines a solution ¢ implicitly.

DEFINITION 1.1.3 Implicit Solution of an ODE

A relation G(x, y) = 0 is said to be an implicit solution of an ordinary
differential equation (4) on an interval /, provided that there exists at least
one function ¢ that satisfies the relation as well as the differential equation
on [

It is beyond the scope of this course to investigate the conditions under which a
relation G(x, y) = 0 defines a differentiable function ¢. So we shall assume that if
the formal implementation of a method of solution leads to a relation G(x, y) = 0,
then there exists at least one function ¢ that satisfies both the relation (that is,
G(x, ¢(x)) = 0) and the differential equation on an interval 1. If the implicit solution
G(x, y) = 0 is fairly simple, we may be able to solve for y in terms of x and obtain
one or more explicit solutions. See the Remarks.
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I EXAMPLE 3 Verification of an Implicit Solution

The relation x> + y? = 25 is an implicit solution of the differential equation

dy _ _
dx y

X

®)

on the open interval (—5, 5). By implicit differentiation we obtain

(a) implicit solution d d ﬂ

d
Leslp=2,y w42y L=,
x*+yr=25 dx” dx) T dx > or . Y dx 0

Solving the last equation for the symbol dy/dx gives (8). Moreover, solving
x? 4+ y? =125 for y in terms of x yields y = *=\/25 — x%. The two functions
y=¢x)= V25 —x>and y = ¢,(x) = —\V25 — x? satisfy the relation (that is,
x>+ ¢p7 =25and x> + q,’)% = 25) and are explicit solutions defined on the interval

(=5, 5). The solution curves given in Figures 1.1.2(b) and 1.1.2(c) are segments of
the graph of the implicit solution in Figure 1.1.2(a). |

Any relation of the form x> + y> — ¢ = 0 formally satisfies (8) for any constant c.
However, it is understood that the relation should always make sense in the real number

(b) explicit solution system; thus, for example, if ¢ = —25, we cannot say that x> + y?> + 25 =0 is an
VBT —5<x<5 implicit solution of the equation. (Why not?)
Y1 = X5 = X

Because the distinction between an explicit solution and an implicit solution
should be intuitively clear, we will not belabor the issue by always saying, “Here is

y e .. .
5 an explicit (implicit) solution.”

5 FAMILIES OF SOLUTIONS The study of differential equations is similar to that of
P integral calculus. In some texts a solution ¢ is sometimes referred to as an integral
of the equation, and its graph is called an integral curve. When evaluating an anti-
derivative or indefinite integral in calculus, we use a single constant ¢ of integration.
Analogously, when solving a first-order differential equation F(x, y, y') =0, we
usually obtain a solution containing a single arbitrary constant or parameter c. A

(¢) explicit solution solution containing an arbitrary constant represents a set G(x, y, ¢) = 0 of solutions
called a one-parameter family of solutions. When solving an nth-order differential

yzz—v25—x2,—5<x<5 . P ’ (,,)y_ & . .
equation F(x, y, y',...,y") =0, we seek an n-parameter family of solutions
FIGURE 1.1.2  An implicit solution G(x, v, c1, ¢y . . ., ¢y) = 0. This means that a single differential equation can possess
and two explicit solutions of y' = —x/y an infinite number of solutions corresponding to the unlimited number of choices

for the parameter(s). A solution of a differential equation that is free of arbitrary
parameters is called a particular solution. For example, the one-parameter family
y = c¢x — x cos x is an explicit solution of the linear first-order equation xy’ — y =

P J < x? sin x on the interval (—2, o). (Verify.) Figure 1.1.3, obtained by using graphing soft-

c>0 ware, shows the graphs of some of the solutions in this family. The solution y =

c=0 —Xx cos x, the blue curve in the figure, is a particular solution corresponding to ¢ = 0.

N //\ Similarly, on the interval (—20, ©), y = cje* + cxe* is a two-parameter family of solu-

\.7/ c<o0]”" tions of the linear second-order equation y” — 2y’ + y = 0 in Example 1. (Verify.)

/ Some particular solutions of the equation are the trivial solutiony = 0 (¢c; = ¢, = 0),
y=xe*(c;=0,cp=1),y=5¢"—2xe* (c; =35, ¢y = —2), and so on.

N J Sometimes a differential equation possesses a solution that is not a member of a

family of solutions of the equation—that is, a solution that cannot be obtained by spe-

FIIGU RE1 ) 1 -.3 Some solutions of cializing any of the parameters in the family of solutions. Such an extra solution is called

LTy S sy a singular solution. For example, we have seen thaty = 1 x* and y = 0 are solutions of

the differential equation dy/dx = xy!/? on (—°, ®). In Section 2.2 we shall demonstrate,

by actually solving it, that the differential equation dy/dx = xy"? possesses the one-
parameter family of solutions y = (%xz + c)z. When ¢ = 0, the resulting particular
solutionisy = %6)(4. But notice that the trivial solution y = 0 is a singular solution, since
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(a) two explicit solutions

y

c=-1,
x<0

(b) piecewise-defined solution

FIGURE 1.7.4 Some solutions of
xy' —4y=0

it is not a member of the family y = (i X+ c)2; there is no way of assigning a value to
the constant ¢ to obtain y = 0.

In all the preceding examples we used x and y to denote the independent and
dependent variables, respectively. But you should become accustomed to seeing
and working with other symbols to denote these variables. For example, we could
denote the independent variable by 7 and the dependent variable by x.

I EXAMPLE 4 Using Different Symbols

The functions x = ¢; cos 4f and x = ¢, sin 41, where c| and c; are arbitrary constants
or parameters, are both solutions of the linear differential equation

x" 4+ 16x = 0.
For x = ¢ cos 4t the first two derivatives with respect to f are x' = —4c; sin 4t
and x" = —16¢; cos 4. Substituting x” and x then gives

x" + 16x = —16¢, cos 4t + 16(c, cos 41) = 0.
In like manner, for x = ¢, sin 47 we have x” = —16c¢, sin 4t¢, and so
x" + 16x = —16¢,sin 4t + 16(c, sin 4t) = 0.

Finally, it is straightforward to verify that the linear combination of solutions, or the
two-parameter family x = ¢; cos 4¢ + ¢, sin 4, is also a solution of the differential
equation. [ ]

The next example shows that a solution of a differential equation can be a
piecewise-defined function.

I EXAMPLE 5 A Piecewise-Defined Solution

You should verify that the one-parameter family y = cx* is a one-parameter family

of solutions of the differential equation xy’ — 4y = 0 on the inverval (—, ). See
Figure 1.1.4(a). The piecewise-defined differentiable function

-t x<0
y:

X x=0

is a particular solution of the equation but cannot be obtained from the family
y = ex* by a single choice of c; the solution is constructed from the family by choos-
ingc = —1forx <0andc =1 forx = 0. See Figure 1.1.4(b). [ |

SYSTEMS OF DIFFERENTIAL EQUATIONS Up to this point we have been
discussing single differential equations containing one unknown function. But
often in theory, as well as in many applications, we must deal with systems of
differential equations. A system of ordinary differential equations is two or more
equations involving the derivatives of two or more unknown functions of a single
independent variable. For example, if x and y denote dependent variables and ¢
denotes the independent variable, then a system of two first-order differential
equations is given by

dx_ oo
» = flt,x,y)
)
dy
— = g(t, x, y).

dt
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A solution of a system such as (9) is a pair of differentiable functions x = ¢ (?),
y = ¢»(t), defined on a common interval /, that satisfy each equation of the system
on this interval.

I REMARKS

(i) A few last words about implicit solutions of differential equations are in
order. In Example 3 we were able to solve the relation x* + y? = 25 for
y in terms of x to get two explicit solutions, ¢;(x) = V25 — x*> and
¢d,(x) = —V25 — 2, of the differential equation (8). But don’t read too much
into this one example. Unless it is easy or important or you are instructed to,
there is usually no need to try to solve an implicit solution G(x, y) = O for y
explicitly in terms of x. Also do not misinterpret the second sentence following
Definition 1.1.3. An implicit solution G(x, y) = 0 can define a perfectly good
differentiable function ¢ that is a solution of a DE, yet we might not be able to
solve G(x, y) = 0 using analytical methods such as algebra. The solution curve
of ¢ may be a segment or piece of the graph of G(x, y) = 0. See Problems 45
and 46 in Exercises 1.1. Also, read the discussion following Example 4 in
Section 2.2.

(i1) Although the concept of a solution has been emphasized in this section,
you should also be aware that a DE does not necessarily have to possess
a solution. See Problem 39 in Exercises 1.1. The question of whether a
solution exists will be touched on in the next section.

(iii) It might not be apparent whether a first-order ODE written in differential
form M(x, y)dx + N(x, y)dy = 0 is linear or nonlinear because there is nothing
in this form that tells us which symbol denotes the dependent variable. See
Problems 9 and 10 in Exercises 1.1.

(iv) It might not seem like a big deal to assume that F(x, y,y’, ..., y") = 0 can
be solved for y(”), but one should be a little bit careful here. There are exceptions,
and there certainly are some problems connected with this assumption. See
Problems 52 and 53 in Exercises 1.1.

(v) You may run across the term closed form solutions in DE texts or in
lectures in courses in differential equations. Translated, this phrase usually
refers to explicit solutions that are expressible in terms of elementary (or
familiar) functions: finite combinations of integer powers of x, roots, exponen-
tial and logarithmic functions, and trigonometric and inverse trigonometric
functions.

(vi) If every solution of an nth-order ODE F(x, y, y', ..., y(”)) = (0 on an inter-
val I can be obtained from an n-parameter family G(x, y, ¢j, ¢a, . . ., ¢;) = 0 by
appropriate choices of the parameters c;, i = 1, 2, . . ., n, we then say that the

family is the general solution of the DE. In solving linear ODEs, we shall im-
pose relatively simple restrictions on the coefficients of the equation; with these
restrictions one can be assured that not only does a solution exist on an interval
but also that a family of solutions yields all possible solutions. Nonlinear ODEs,
with the exception of some first-order equations, are usually difficult or impos-
sible to solve in terms of elementary functions. Furthermore, if we happen to
obtain a family of solutions for a nonlinear equation, it is not obvious whether
this family contains all solutions. On a practical level, then, the designation
“general solution” is applied only to linear ODEs. Don’t be concerned about
this concept at this point, but store the words “general solution” in the back of
your mind—we will come back to this notion in Section 2.3 and again in
Chapter 4.
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EXERCISES 1.1

Answers to selected odd-numbered problems begin on page ANS-1.

In Problems 1-8 state the order of the given ordinary differ-
ential equation. Determine whether the equation is linear or
nonlinear by matching it with (6).

1. (1 —x)y" — 4xy'+ S5y = cos x

dSy (dy>4
2. x——(—=] +y=0
e dx Y

3. 5YY — 5y +6y=0

d*u  du
4, — + — + u = cos(r + u)
dr®  dr
d2y (dy>2
5. —==,/1+|—
dx? dx
d*R k
6. — = ——
dr? R?

7. (sin 0)y” — (cos Oy’ =2
=2
8.56—(1—%)9& +x=0

In Problems 9 and 10 determine whether the given first-order
differential equation is linear in the indicated dependent
variable by matching it with the first differential equation
given in (7).

9. > — 1)dx+xdy=0;iny;inx
10. udv+ (v + uv — ue") du = 0;in v; in u
In Problems 11-14 verify that the indicated function is an

explicit solution of the given differential equation. Assume
an appropriate interval [ of definition for each solution.

1. 2y +y=0; y=e

dy
dt

13. y" — 6y’ + 13y =0; y=e*cos2x

=20t

12. + 20y =24; y=

e

(Sl e
W

14. y" + y=tanx; y = —(cosx)In(sec x + tan x)

In Problems 15-18 verify that the indicated function
y = ¢(x) is an explicit solution of the given first-order
differential equation. Proceed as in Example 2, by consider-
ing ¢ simply as a function, give its domain. Then by consid-
ering ¢ as a solution of the differential equation, give at least
one interval / of definition.

15. y—x)y =y —x+38, y=x+4Vx+2

16. y' =25+ y% y=5tan5x
17. vy =2xy% y=1/(4—x?)
18. 2y’ =y3cosx; y= (1 —sinx)~ 2

In Problems 19 and 20 verify that the indicated expression is
an implicit solution of the given first-order differential equa-
tion. Find at least one explicit solution y = ¢ (x) in each case.
Use a graphing utility to obtain the graph of an explicit solu-
tion. Give an interval / of definition of each solution ¢.

17).4 2X — 1

19. 2 = x - 1)1 - 2x): In -
dt X -1

20. 2xydx + (X2 —y)dy =0, —2x’y+y>=1

In Problems 21-24 verify that the indicated family of func-
tions is a solution of the given differential equation. Assume
an appropriate interval I of definition for each solution.

f

dp
2. = =pu - Py p=—X
dt 1+ ¢

d 2 o 2 2
22. & +2xy=1, y= e"f e'dt + ce™
dx 0

d? d
23. _dx); — 4711 +4y =0; y=ce* + cxe**
d’y d’y y
24. i T + 2x2 b s +y = 12x%

y=cx '+ cx + csxInx + 427
25. Verify that the piecewise-defined function

—x%, x<0
y:

X2, x=0

is a solution of the differential equation xy’ — 2y =0
on (—%®, ®).

26. In Example 3 we saw that y = ¢1(x) = V25 — x* and
y = ¢y(x) = —V25 — x* are solutions of dy/dx =
—x/y on the interval (—35, 5). Explain why the piecewise-
defined function

[ VB -2 —5<x<0
YT1-V2s =2 0=x<5

is not a solution of the differential equation on the
interval (=5, 5).



In Problems 27-30 find values of m so that the function
y = €™ is a solution of the given differential equation.

27. y' +2y=0
29. y" =5y +6y=0

28. 5y' =2y
30. 2y" + 7y —4y=0

In Problems 31 and 32 find values of m so that the function
y = x™ is a solution of the given differential equation.

3. ) +2y' =0
32. X% —Txy' + 15y =0

In Problems 33-36 use the concept that y = ¢, —0 < x < %,
is a constant function if and only if y' = 0 to determine
whether the given differential equation possesses constant
solutions.

33. 3xy' +5y=10

3.y =y +2y—3

35. y—1)y' =1

36. y" +4y" + 6y =10

In Problems 37 and 38 verify that the indicated pair of

functions is a solution of the given system of differential
equations on the interval (—o, ©).

dx d*x
37 T =x+3 38 =yt e
a7 Y dr? yre
dy d*y
E=5x+3y; F=4x—€’;
X = e 2+ 3¢, Xx = cos 2t + sin 2t + %e’,

y=—e %+ 5¢% y = —cos 2t — sin 2t — %e’

Discussion Problems

39. Make up a differential equation that does not possess
any real solutions.

40. Make up a differential equation that you feel confident
possesses only the trivial solution y = 0. Explain your
reasoning.

41. What function do you know from calculus is such that
its first derivative is itself? Its first derivative is a
constant multiple k of itself? Write each answer in
the form of a first-order differential equation with a
solution.

42. What function (or functions) do you know from calcu-
lus is such that its second derivative is itself? Its second
derivative is the negative of itself? Write each answer in
the form of a second-order differential equation with a
solution.

1.1 DEFINITIONS AND TERMINOLOGY ° 11

43. Given that y = sin x is an explicit solution of the
d

first-order differential equation d_y = V1 — y* Find
x

an interval I of definition. [Hint: I is not the interval
(=00, %).]

44. Discuss why it makes intuitive sense to presume that
the linear differential equation y” + 2y’ + 4y = 5sin ¢
has a solution of the form y = A sin ¢ + B cos f, where
A and B are constants. Then find specific constants A
and B so that y = A sin ¢ + B cos ¢ is a particular solu-
tion of the DE.

In Problems 45 and 46 the given figure represents the graph
of an implicit solution G(x, y) = 0 of a differential equation
dy/dx = f(x, y). In each case the relation G(x, y) =0
implicitly defines several solutions of the DE. Carefully
reproduce each figure on a piece of paper. Use different
colored pencils to mark off segments, or pieces, on each
graph that correspond to graphs of solutions. Keep in mind
that a solution ¢ must be a function and differentiable. Use
the solution curve to estimate an interval / of definition of
each solution ¢.

45. y

46. y

FIGURE 1.1.6 Graph for Problem 46

47. The graphs of members of the one-parameter family
x* +y3 = 3cxy are called folia of Descartes. Verify
that this family is an implicit solution of the first-order
differential equation

dy _y(y' —2x)
dx  x(2y? — X%
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48.

49.

50.

51.

52.

53.

4.

5S.
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The graph in Figure 1.1.6 is the member of the family of
folia in Problem 47 corresponding to ¢ = 1. Discuss:
How can the DE in Problem 47 help in finding points
on the graph of x* + y3 = 3xy where the tangent line
is vertical? How does knowing where a tangent line is
vertical help in determining an interval / of definition
of a solution ¢ of the DE? Carry out your ideas,
and compare with your estimates of the intervals in
Problem 46.

In Example 3 the largest interval I over which the
explicit solutions y = ¢(x) and y = ¢,(x) are defined
is the open interval (—5, 5). Why can’t the interval I of
definition be the closed interval [—5, 5]?

In Problem 21 a one-parameter family of solutions of
the DE P’ = P(1 — P) is given. Does any solution
curve pass through the point (0, 3)? Through the
point (0, 1)?

Discuss, and illustrate with examples, how to solve
differential equations of the forms dy/dx = f(x) and

d*y/dx* = f(x).

The differential equation x(y')> — 4y’ — 12x* = 0 has
the form given in (4). Determine whether the equation
can be put into the normal form dy/dx = f(x, y).

The normal form (5) of an nth-order differential equa-
tion is equivalent to (4) whenever both forms have
exactly the same solutions. Make up a first-order differ-
ential equation for which F(x, y, y’) = 0 is not equiva-
lent to the normal form dy/dx = f(x, y).

Find a linear second-order differential equation
F(x, v, y', y") = 0 for which y = c1x + ¢,x? is a two-
parameter family of solutions. Make sure that your equa-
tion is free of the arbitrary parameters c; and c;.

Qualitative information about a solution y = ¢(x) of a
differential equation can often be obtained from the
equation itself. Before working Problems 55-58, recall
the geometric significance of the derivatives dy/dx
and d?y/dx?.

XZ

Consider the differential equation dy/dx = e™*.
(a) Explain why a solution of the DE must be an
increasing function on any interval of the x-axis.

(b) What are Emm dy/dx and lgnao dy/dx? What does

this suggést about a soluti;n curve as x —> *o?

(¢) Determine an interval over which a solution curve is
concave down and an interval over which the curve
is concave up.

(d) Sketch the graph of a solution y = ¢(x) of the dif-
ferential equation whose shape is suggested by
parts (a)—(c).

56.

57.

58.

INTRODUCTION TO DIFFERENTIAL EQUATIONS

Consider the differential equation dy/dx =5 — y.

(a) Either by inspection or by the method suggested in
Problems 33—36, find a constant solution of the DE.

(b) Using only the differential equation, find intervals on
the y-axis on which a nonconstant solution y = ¢(x)
is increasing. Find intervals on the y-axis on which
y = ¢(x) is decreasing.

Consider the differential equation dy/dx = y(a — by),
where a and b are positive constants.

(a) Either by inspection or by the method suggested
in Problems 33—-36, find two constant solutions of
the DE.

(b) Using only the differential equation, find intervals on
the y-axis on which a nonconstant solution y = ¢(x)
is increasing. Find intervals on which y = ¢(x) is
decreasing.

(c) Using only the differential equation, explain why
y = a/2b is the y-coordinate of a point of inflection
of the graph of a nonconstant solution y = ¢ (x).

(d) On the same coordinate axes, sketch the graphs of
the two constant solutions found in part (a). These
constant solutions partition the xy-plane into three
regions. In each region, sketch the graph of a non-
constant solution y = ¢(x) whose shape is sug-
gested by the results in parts (b) and (c).

Consider the differential equation y’ = y? + 4.

(a) Explain why there exist no constant solutions of
the DE.

(b) Describe the graph of a solution y = ¢(x). For
example, can a solution curve have any relative
extrema?

(¢) Explain why y = 0 is the y-coordinate of a point of
inflection of a solution curve.

(d) Sketch the graph of a solution y = ¢(x) of the
differential equation whose shape is suggested by
parts (a)—(c).

Computer Lab Assignments

In Problems 59 and 60 use a CAS to compute all derivatives
and to carry out the simplifications needed to verify that the
indicated function is a particular solution of the given differ-
ential equation.

59.

60.

Y& — 20y + 158y” — 580y’ + 841y = 0;

y = xe> cos 2x

xy" + 2x%y" + 20xy’ — 78y = 0;

v =20 cos(SInx) 3 sin(5 1In x)
X X
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e Normal form of a DE
e Solution of a DE
e Family of solutions

INTRODUCTION
differential equation

Solve:

where yg, yi,...

Y (xo) = yi, ...

solutions of the DE

FIGURE 1.2.1
first-order IVP

Solution of

solutions of the DE

(

\

m=y,
| - |
(*0> Yo) |
L L

——1—
FIGURE 1.2.2 Solution of

second-order IVP

Subject to:

We are often interested in problems in which we seek a solution y(x) of a
so that y(x) satisfies prescribed side conditions—that is, conditions imposed on

the unknown y(x) or its derivatives. On some interval / containing x, the problem

d"y
dx"

=y y, ..oy h)

(1)
Y0) = Yo, ' () = v - ., Y D) = v,

,yu—1 are arbitrarily specified real constants, is called an initial-value
problem (IVP). The values of y(x) and its first n — 1 derivatives at a single point xg, y(xo) = yo,
, v D(xp) = y,_1, are called initial conditions.

FIRST- AND SECOND-ORDER IVPS The problem given in (1) is also called an
nth-order initial-value problem. For example,

dy .
Solve: — = f(x,y)
dx )
Subject to: y(%) = Yo
d Solve: DY~ fenw
an olve: R AR 3)
Subject to: y(x) = o, ¥ (%) =

are first- and second-order initial-value problems, respectively. These two problems
are easy to interpret in geometric terms. For (2) we are seeking a solution y(x) of the
differential equation y’ = f(x, y) on an interval / containing x so that its graph passes
through the specified point (xg, yo). A solution curve is shown in blue in Figure 1.2.1.
For (3) we want to find a solution y(x) of the differential equation y” = f(x, y, y') on
an interval I containing x, so that its graph not only passes through (x, yo) but the slope
of the curve at this point is the number y;. A solution curve is shown in blue in
Figure 1.2.2. The words initial conditions derive from physical systems where the
independent variable is time ¢ and where y(ty) = y¢ and y'(fy) = y; represent the posi-
tion and velocity, respectively, of an object at some beginning, or initial, time .

Solving an nth-order initial-value problem such as (1) frequently entails first
finding an n-parameter family of solutions of the given differential equation and then
using the # initial conditions at x( to determine numerical values of the n constants in
the family. The resulting particular solution is defined on some interval / containing
the initial point x.

I EXAMPLE 1T Two First-Order IVPs

In Problem 41 in Exercises 1.1 you were asked to deduce that y = ce* is a one-
parameter family of solutions of the simple first-order equation y" = y. All the
solutions in this family are defined on the interval (—o, ). If we impose an initial
condition, say, y(0) = 3, then substituting x = 0, y = 3 in the family determines the
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FIGURE 1.2.3 Solutions of two IVPs

|
|
|
|
|
|
|
|
|
: |
|

_1‘

|

|

|

|

|

|

|

|

|

(a) function defined for all x except x = +1

-1

(b) solution defined on interval containing x = 0

FIGURE 1.2.4  Graphs of function
and solution of IVP in Example 2
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constant 3 = ce” = ¢. Thus y = 3¢" is a solution of the IVP

y =y, y0) =3.

Now if we demand that a solution curve pass through the point (1, —2) rather than
(0, 3), then y(1) = —2 will yield =2 = ce or ¢ = —2¢~ ! In this case y = —2¢* ' is
a solution of the IVP

yo=y oy = -2
The two solution curves are shown in dark blue and dark red in Figure 1.2.3. [ |
The next example illustrates another first-order initial-value problem. In this

example notice how the interval I of definition of the solution y(x) depends on the
initial condition y(xp) = yo.

I EXAMPLE 2 Interval I of Definition of a Solution

In Problem 6 of Exercises 2.2 you will be asked to show that a one-parameter family
of solutions of the first-order differential equation y’ + 2xy> = 0isy = 1/(x*> + ¢).
If we impose the initial condition y(0) = —1, then substituting x =0 and y = —1
into the family of solutions gives —1 = 1/c or ¢ = —1. Thus y = 1/(x*> — 1). We
now emphasize the following three distinctions:

 Considered as a function, the domain of y = 1/(x> — 1) is the set of real
numbers x for which y(x) is defined; this is the set of all real numbers
exceptx = —1 and x = 1. See Figure 1.2.4(a).

* Considered as a solution of the differential equation y' + 2xy* = 0, the
interval I of definition of y = 1/(x*> — 1) could be taken to be any
interval over which y(x) is defined and differentiable. As can be seen in
Figure 1.2.4(a), the largest intervals on which y = 1/(x*> — 1) is a solution
are (—oo,—1), (=1, 1), and (1, ).

 Considered as a solution of the initial-value problem y' + 2xy* = 0,
y(0) = —1, the interval I of definition of y = 1/(x*> — 1) could be taken to
be any interval over which y(x) is defined, differentiable, and contains the
initial point x = 0; the largest interval for which this is true is (—1, 1). See
the red curve in Figure 1.2.4(b). [ |

See Problems 3—6 in Exercises 1.2 for a continuation of Example 2.

I EXAMPLE 3 Second-Order IVP

In Example 4 of Section 1.1 we saw that x = ¢ cos 4¢ + ¢; sin 4¢ is a two-parameter
family of solutions of x” + 16x = 0. Find a solution of the initial-value problem

T T
"+ 16x = 0, —]=-2, X|z)=1 4
o <2> ! <2> @
SOLUTION  We first apply x(7/2) = —2 to the given family of solutions: ¢; cos 27 +
¢y sin 27 = —2. Since cos 27 = 1 and sin 27 = 0, we find that c; = —2. We next apply

x'(m/2) = 1 to the one-parameter family x(f) = —2 cos 4 + ¢, sin 4t. Differentiating
and then setting ¢ = 7/2 and x" = 1 gives 8 sin 27 + 4c¢, cos 27 = 1, from which we
see that ¢, = }. Hence x = —2 cos 47 + | sin 41 is a solution of (4). u

EXISTENCE AND UNIQUENESS Two fundamental questions arise in consider-
ing an initial-value problem:

Does a solution of the problem exist?
If a solution exists, is it unique?
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For the first-order initial-value problem (2) we ask:

Does the differential equation dy/dx = f(x, y) possess solutions?

Existence {Do any of the solution curves pass through the point (xo, yo)?

When can we be certain that there is precisely one solution curve

Uniqueness { passing through the point (xq, yo)?

Note that in Examples 1 and 3 the phrase “a solution” is used rather than “the solu-
tion” of the problem. The indefinite article “a” is used deliberately to suggest the
possibility that other solutions may exist. At this point it has not been demonstrated
that there is a single solution of each problem. The next example illustrates an initial-
value problem with two solutions.

I EXAMPLE 4 AnIVP Can Have Several Solutions

Each of the functions y =0 and y = %.ﬁ satisfies the differential equation
dy/dx = xy"’* and the initial condition y(0) = 0, so the initial-value problem

dy _

1/2’ 0)=0
s O

has at least two solutions. As illustrated in Figure 1.2.5, the graphs of both functions
pass through the same point (0, 0). |

Within the safe confines of a formal course in differential equations one can be
fairly confident that most differential equations will have solutions and that solutions of
initial-value problems will probably be unique. Real life, however, is not so idyllic.
Therefore it is desirable to know in advance of trying to solve an initial-value problem
whether a solution exists and, when it does, whether it is the only solution of the prob-
lem. Since we are going to consider first-order differential equations in the next two
chapters, we state here without proof a straightforward theorem that gives conditions
that are sufficient to guarantee the existence and uniqueness of a solution of a first-order
initial-value problem of the form given in (2). We shall wait until Chapter 4 to address
the question of existence and uniqueness of a second-order initial-value problem.

THEOREM 1.2.1 Existence of a Unique Solution

Let R be a rectangular region in the xy-plane defined bya =x=b,c =y =d
that contains the point (xg, yo) in its interior. If f(x, y) and df /dy are continuous
on R, then there exists some interval Iy: (xo — h, xo + h), h > 0, contained in
[a, b], and a unique function y(x), defined on /, that is a solution of the initial-
value problem (2).

The foregoing result is one of the most popular existence and uniqueness theo-
rems for first-order differential equations because the criteria of continuity of f(x, y)
and 9f/dy are relatively easy to check. The geometry of Theorem 1.2.1 is illustrated
in Figure 1.2.6.

I EXAMPLE 5 Example 4 Revisited

We saw in Example 4 that the differential equation dy/dx = xy'/? possesses at least
two solutions whose graphs pass through (0, 0). Inspection of the functions
a_f X

,y) = xy'”? and =—
S y) = xy ay 2y1/2
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shows that they are continuous in the upper half-plane defined by y > 0. Hence
Theorem 1.2.1 enables us to conclude that through any point (x¢, o), yo > O in the
upper half-plane there is some interval centered at xo on which the given differential
equation has a unique solution. Thus, for example, even without solving it, we know
that there exists some interval centered at 2 on which the initial-value problem
dy/dx = xy"?, y(2) = 1 has a unique solution. [

In Example 1, Theorem 1.2.1 guarantees that there are no other solutions of the
initial-value problems y’" =y, y(0) =3 and y’ =y, y(1) = —2 other than y = 3¢*
and y = —2¢* !, respectively. This follows from the fact that f(x, y) =y and
df/dy = 1 are continuous throughout the entire xy-plane. It can be further shown that
the interval I on which each solution is defined is (—, ).

INTERVAL OF EXISTENCE/UNIQUENESS Suppose y(x) represents a solution
of the initial-value problem (2). The following three sets on the real x-axis may not
be the same: the domain of the function y(x), the interval I over which the solution
y(x) is defined or exists, and the interval I of existence and uniqueness. Example 2
of Section 1.1 illustrated the difference between the domain of a function and the
interval [ of definition. Now suppose (xo, yo) is a point in the interior of the rectan-
gular region R in Theorem 1.2.1. It turns out that the continuity of the function
f(x, y) on R by itself is sufficient to guarantee the existence of at least one solution
of dy/dx = f(x, y), y(xo) = yo, defined on some interval I. The interval I of defini-
tion for this initial-value problem is usually taken to be the largest interval contain-
ing xo over which the solution y(x) is defined and differentiable. The interval /
depends on both f(x, y) and the initial condition y(xy) = yg. See Problems 31-34 in
Exercises 1.2. The extra condition of continuity of the first partial derivative df/dy
on R enables us to say that not only does a solution exist on some interval / con-
taining xo, but it is the only solution satisfying y(x¢) = yo. However, Theorem 1.2.1
does not give any indication of the sizes of intervals I and [y; the interval I of
definition need not be as wide as the region R, and the interval Iy of existence and
uniqueness may not be as large as I. The number i > 0 that defines the interval
Iy: (xo — h, xo + h) could be very small, so it is best to think that the solution y(x)
is unique in a local sense—that is, a solution defined near the point (xg, yo). See
Problem 44 in Exercises 1.2.

I REMARKS

(i) The conditions in Theorem 1.2.1 are sufficient but not necessary. This means
that when f(x, y) and 9f/dy are continuous on a rectangular region R, it must
always follow that a solution of (2) exists and is unique whenever (x, yo) is a
point interior to R. However, if the conditions stated in the hypothesis of
Theorem 1.2.1 do not hold, then anything could happen: Problem (2) may still
have a solution and this solution may be unique, or (2) may have several solu-
tions, or it may have no solution at all. A rereading of Example 5 reveals that the
hypotheses of Theorem 1.2.1 do not hold on the line y = 0 for the differential
equation dy/dx = xy'’?, so it is not surprising, as we saw in Example 4 of this
section, that there are two solutions defined on a common interval —h < x < h
satisfying y(0) = 0. On the other hand, the hypotheses of Theorem 1.2.1 do
not hold on the line y = 1 for the differential equation dy/dx = |y — 1.
Nevertheless it can be proved that the solution of the initial-value problem
dy/dx = |y — 1|, y(0) = 1, is unique. Can you guess this solution?

(i) You are encouraged to read, think about, work, and then keep in mind
Problem 43 in Exercises 1.2.
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EXERCISES 1.2

Answers to selected odd-numbered problems begin on page ANS-1.

In Problems 1 and 2, y = 1/(1 + c1e™¥) is a one-parameter
family of solutions of the first-order DE y' = y — y% Find a
solution of the first-order IVP consisting of this differential
equation and the given initial condition.
1. y(0) = —3 2. y(—-1) =2

In Problems 3-6, y = 1/(x? + c) is a one-parameter family
of solutions of the first-order DE y’ + 2xy*> = 0. Find a
solution of the first-order IVP consisting of this differential
equation and the given initial condition. Give the largest
interval / over which the solution is defined.

3.9 =3
5. y(0) =1

4. y(—=2) =3
6. y(%) = —4
In Problems 7-10, x = ¢j cos t + ¢ sin ¢ is a two-parameter
family of solutions of the second-order DE x” + x = 0. Find
a solution of the second-order IVP consisting of this differ-
ential equation and the given initial conditions.

7. x(0) = —1, x'(0)=38

8. x(m/2)=0, x'(w/2)=1

9. x(m/6) =1 xX(m/6)=0
10. x(m/4) = V2, x'(w/4) =2V2
In Problems 11-14, y = cje* + cpe™* is a two-parameter
family of solutions of the second-order DE y” — y = 0. Find
a solution of the second-order IVP consisting of this differ-
ential equation and the given initial conditions.
11. y(0) =1, y'(0) =2
12. y() =0, y'(Q)=e
13. y(=1) =5, y(=1)=-5
14. y(0) =0, »'(0)=0
In Problems 15 and 16 determine by inspection at least two
solutions of the given first-order [VP.
15. y' =3y?3, y(0)=0
16. xy' =2y, y(0)=0
In Problems 17-24 determine a region of the xy-plane for
which the given differential equation would have a unique

solution whose graph passes through a point (xo, y¢) in the
region.

dy

17.
dx

d
=y 18. o VXxy
dx

dy dy
19. x— = 20, = —y=
. dx Y dx y=x

21. (4 —y?)y' =x? 22. (1 +yY)y" = x?
23. (x> +y2)y' =y? 24. (y—x)y =y+x

In Problems 25-28 determine whether Theorem 1.2.1 guar-
antees that the differential equation y’ = Vy? — 9 pos-
sesses a unique solution through the given point.

25. (1,4)
27. (2, -3)

26. (5,3)
28. (=1, 1)

29. (a) By inspection find a one-parameter family of solu-
tions of the differential equation xy’ = y. Verify that
each member of the family is a solution of the
initial-value problem xy’ =y, y(0) = 0.

(b) Explain part (a) by determining a region R in the
xy-plane for which the differential equation xy’ =y
would have a unique solution through a point (xo, yo)

inR.
(¢) Verify that the piecewise-defined function
B {o, x<0
Y x, x=0

satisfies the condition y(0) = 0. Determine whether
this function is also a solution of the initial-value
problem in part (a).

30. (a) Verify that y = tan (x + ¢) is a one-parameter family
of solutions of the differential equation y' = 1 + y2.
(b) Since f(x, y) = 1 + y%and 9f/dy = 2y are continu-
ous everywhere, the region R in Theorem 1.2.1 can
be taken to be the entire xy-plane. Use the family of
solutions in part (a) to find an explicit solution of
the first-order initial-value problem y' =1 + y?,
v(0) = 0. Even though x; =0 is in the interval
(—2, 2), explain why the solution is not defined on
this interval.

(c) Determine the largest interval / of definition for the
solution of the initial-value problem in part (b).

31. (a) Verify that y = —1/(x + ¢) is a one-parameter
family of solutions of the differential equation
y =y
(b) Since f(x, y) = y*> and 9f/dy = 2y are continuous
everywhere, the region R in Theorem 1.2.1 can be
taken to be the entire xy-plane. Find a solution from
the family in part (a) that satisfies y(0) = 1. Then
find a solution from the family in part (a) that
satisfies y(0) = — 1. Determine the largest interval /
of definition for the solution of each initial-value
problem.
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(¢) Determine the largest interval / of definition for the
solution of the first-order initial-value problem
y" =2, y(0) = 0. [Hint: The solution is not a mem-
ber of the family of solutions in part (a).]

32. (a) Show that a solution from the family in part (a)
of Problem 31 that satisfies y' =y, y(1) =1, is
y=1/2 — x).

(b) Then show that a solution from the family in part (a)
of Problem 31 that satisfies y' = y2, y(3) = —1, is
y=1/2 — x).

(c) Are the solutions in parts (a) and (b) the same?

33. (a) Verify that 3x> — y?> = ¢ is a one-parameter fam-
ily of solutions of the differential equation
ydy/dx = 3x.

(b) By hand, sketch the graph of the implicit solution
3x? — y? = 3. Find all explicit solutions y = ¢(x) of
the DE in part (a) defined by this relation. Give the
interval / of definition of each explicit solution.

(c) The point (—2, 3) is on the graph of 3x* — y> = 3,
but which of the explicit solutions in part (b) satis-
fies y(—2) = 37

34. (a) Use the family of solutions in part (a) of Problem 33
to find an implicit solution of the initial-value
problem y dy/dx = 3x, y(2) = —4. Then, by hand,
sketch the graph of the explicit solution of this
problem and give its interval I of definition.

(b) Are there any explicit solutions of y dy/dx = 3x
that pass through the origin?

In Problems 35-38 the graph of a member of a family
of solutions of a second-order differential equation
d*y/dx* = f(x,y,y') is given. Match the solution curve with
at least one pair of the following initial conditions.

@ y)=1, yd)=-2

b) y(=1H)=0, y(=DH=-4

(© yhH=1, y)=2

(@ y©0)=—1, y'(0)=2

(e) y(0O)=~-1, y(©0)=0

®) y(0)=-4, y(0)=-2

35. y

-5+

FIGURE 1.2.7 Graph for Problem 35

36.

37.

38.

FIGURE 1.2.10 Graph for Problem 38

Discussion Problems

In Problems 39 and 40 use Problem 51 in Exercises 1.1 and
(2) and (3) of this section.

39.

40.

41.

Find a function y = f(x) whose graph at each point (x, y)
has the slope given by 8e?*+ 6x and has the
y-intercept (0, 9).

Find a function y = f(x) whose second derivative is
y" = 12x — 2 at each point (x, y) on its graph and
y = —x + 5 is tangent to the graph at the point corre-
sponding to x = 1.

Consider the initial-value problem y' = x — 2y,
¥(0) = 1. Determine which of the two curves shown
in Figure 1.2.11 is the only plausible solution curve.
Explain your reasoning.



42.

43.

44.
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FIGURE 1.2.11 Graphs for Problem 41

Determine a plausible value of xy for which the
graph of the solution of the initial-value problem
y' + 2y =3x — 6, y(xo) = 0 is tangent to the x-axis at
(x0, 0). Explain your reasoning.

Suppose that the first-order differential equation
dy/dx = f(x, y) possesses a one-parameter family of
solutions and that f(x, y) satisfies the hypotheses of
Theorem 1.2.1 in some rectangular region R of the
xy-plane. Explain why two different solution curves
cannot intersect or be tangent to each other at a point

(xo, y()) in R.

The functions y(x) = j¢x*, —% < x < and
o) 0, x<0
x =
Y Tl6x4, x=0

have the same domain but are clearly different. See
Figures 1.2.12(a) and 1.2.12(b), respectively. Show that
both functions are solutions of the initial-value problem

y y

(a) (b)
FIGURE 1.2.12 Two solutions of the IVP in Problem 44

dy/dx = xy"?, y(2) =1 on the interval (—o, o).
Resolve the apparent contradiction between this fact
and the last sentence in Example 5.

Mathematical Model

45. Population Growth Beginning in the next section

we will see that differential equations can be used to
describe or model many different physical systems. In
this problem suppose that a model of the growing popu-
lation of a small community is given by the initial-value
problem

dp

o 0.15P(r) + 20, P(0) = 100,
where P is the number of individuals in the community
and time ¢ is measured in years. How fast—that is, at
what rate—is the population increasing at t = 0? How

fast is the population increasing when the population
is 500?
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REVIEW MATERIAL

Newton’s second law of motion
Hooke’s law

Kirchhoff’s laws

Archimedes’ principle

INTRODUCTION

these models in Chapters 3 and 5.

Units of measurement for weight, mass, and density

In this section we introduce the notion of a differential equation as a
mathematical model and discuss some specific models in biology, chemistry, and physics. Once we
have studied some methods for solving DEs in Chapters 2 and 4, we return to, and solve, some of

MATHEMATICAL MODELS It is often desirable to describe the behavior of
some real-life system or phenomenon, whether physical, sociological, or even eco-
nomic, in mathematical terms. The mathematical description of a system of phenom-
enon is called a mathematical model and is constructed with certain goals in mind.
For example, we may wish to understand the mechanisms of a certain ecosystem by
studying the growth of animal populations in that system, or we may wish to date
fossils by analyzing the decay of a radioactive substance either in the fossil or in the
stratum in which it was discovered.
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Construction of a mathematical model of a system starts with

(i)  identification of the variables that are responsible for changing the
system. We may choose not to incorporate all these variables into the
model at first. In this step we are specifying the level of resolution of
the model.

Next

(if) we make a set of reasonable assumptions, or hypotheses, about the
system we are trying to describe. These assumptions will also include
any empirical laws that may be applicable to the system.

For some purposes it may be perfectly within reason to be content with low-
resolution models. For example, you may already be aware that in beginning
physics courses, the retarding force of air friction is sometimes ignored in modeling
the motion of a body falling near the surface of the Earth, but if you are a scientist
whose job it is to accurately predict the flight path of a long-range projectile,
you have to take into account air resistance and other factors such as the curvature
of the Earth.

Since the assumptions made about a system frequently involve a rate of change
of one or more of the variables, the mathematical depiction of all these assumptions
may be one or more equations involving derivatives. In other words, the mathemat-
ical model may be a differential equation or a system of differential equations.

Once we have formulated a mathematical model that is either a differential equa-
tion or a system of differential equations, we are faced with the not insignificant
problem of trying to solve it. If we can solve it, then we deem the model to be reason-
able if its solution is consistent with either experimental data or known facts about
the behavior of the system. But if the predictions produced by the solution are poor,
we can either increase the level of resolution of the model or make alternative as-
sumptions about the mechanisms for change in the system. The steps of the model-
ing process are then repeated, as shown in the following diagram:

- Express assumptions in terms Mathematical
of differential equations formulation

|
If necessary,

alter assumptions Solve the DEs
or increase resolution
of mlodel
Check model Display model predictions Obtain

predictions with
known facts

(e.g., graphically) solutions

Of course, by increasing the resolution, we add to the complexity of the mathemati-
cal model and increase the likelihood that we cannot obtain an explicit solution.

A mathematical model of a physical system will often involve the variable time 7.
A solution of the model then gives the state of the system; in other words, the values
of the dependent variable (or variables) for appropriate values of ¢ describe the system
in the past, present, and future.

POPULATION DYNAMICS One of the earliest attempts to model human popula-
tion growth by means of mathematics was by the English economist Thomas Malthus
in 1798. Basically, the idea behind the Malthusian model is the assumption that the rate
at which the population of a country grows at a certain time is proportional” to the total
population of the country at that time. In other words, the more people there are at time 7,
the more there are going to be in the future. In mathematical terms, if P(f) denotes the

“If two quantities u and v are proportional, we write «  v. This means that one quantity is a constant
multiple of the other: u = kv.
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total population at time ¢, then this assumption can be expressed as

dpP P dP P |

dt o dt o M
where k is a constant of proportionality. This simple model, which fails to take into
account many factors that can influence human populations to either grow or decline
(immigration and emigration, for example), nevertheless turned out to be fairly accu-
rate in predicting the population of the United States during the years 1790—1860.
Populations that grow at a rate described by (1) are rare; nevertheless, (1) is still used
to model growth of small populations over short intervals of time (bacteria growing
in a petri dish, for example).

RADIOACTIVE DECAY The nucleus of an atom consists of combinations of pro-
tons and neutrons. Many of these combinations of protons and neutrons are unstable —
that is, the atoms decay or transmute into atoms of another substance. Such nuclei are
said to be radioactive. For example, over time the highly radioactive radium, Ra-226,
transmutes into the radioactive gas radon, Rn-222. To model the phenomenon of
radioactive decay, it is assumed that the rate dA/dr at which the nuclei of a sub-
stance decay is proportional to the amount (more precisely, the number of nuclei)
A(?) of the substance remaining at time #:

dA dA
—xA or =

— = kA. 2
dt dt 2

Of course, equations (1) and (2) are exactly the same; the difference is only in the in-
terpretation of the symbols and the constants of proportionality. For growth, as we
expect in (1), k > 0, and for decay, as in (2), k < 0.

The model (1) for growth can also be seen as the equation dS/dr = rS, which
describes the growth of capital S when an annual rate of interest r is compounded
continuously. The model (2) for decay also occurs in biological applications such as
determining the half-life of a drug—the time that it takes for 50% of a drug to be
eliminated from a body by excretion or metabolism. In chemistry the decay model
(2) appears in the mathematical description of a first-order chemical reaction. The
point is this:

A single differential equation can serve as a mathematical model for many
different phenomena.

Mathematical models are often accompanied by certain side conditions. For ex-
ample, in (1) and (2) we would expect to know, in turn, the initial population Py and
the initial amount of radioactive substance A, on hand. If the initial point in time is
taken to be t = 0, then we know that P(0) = Py and A(0) = Ay. In other words, a
mathematical model can consist of either an initial-value problem or, as we shall see
later on in Section 5.2, a boundary-value problem.

NEWTON'’S LAW OF COOLING/WARMING  According to Newton’s empiri-
cal law of cooling/warming, the rate at which the temperature of a body changes is
proportional to the difference between the temperature of the body and the temper-
ature of the surrounding medium, the so-called ambient temperature. If 7(¢) repre-
sents the temperature of a body at time ¢, T,, the temperature of the surrounding
medium, and dT/dt the rate at which the temperature of the body changes, then
Newton’s law of cooling/warming translates into the mathematical statement

ar r_r I T-1) 3)
— - or — =K -
dt m [/l m’o

where k is a constant of proportionality. In either case, cooling or warming, if 7}, is a
constant, it stands to reason that £k < 0.
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INTRODUCTION TO DIFFERENTIAL EQUATIONS

SPREAD OF A DISEASE A contagious disease—for example, a flu virus—is
spread throughout a community by people coming into contact with other people. Let
x(#) denote the number of people who have contracted the disease and y(#) denote the
number of people who have not yet been exposed. It seems reasonable to assume that
the rate dx/dt at which the disease spreads is proportional to the number of encoun-
ters, or interactions, between these two groups of people. If we assume that the num-
ber of interactions is jointly proportional to x(f) and y(f)—that is, proportional to the
product xy—then

— = kxy, 4

2 “)
where k is the usual constant of proportionality. Suppose a small community has a
fixed population of n people. If one infected person is introduced into this commu-
nity, then it could be argued that x(#) and y(¢) are related by x + y = n + 1. Using
this last equation to eliminate y in (4) gives us the model

dx
— =kx(n +1 — x). (&)
dt

An obvious initial condition accompanying equation (5) is x(0) = 1.

CHEMICAL REACTIONS The disintegration of a radioactive substance, governed
by the differential equation (1), is said to be a first-order reaction. In chemistry
a few reactions follow this same empirical law: If the molecules of substance A
decompose into smaller molecules, it is a natural assumption that the rate at which
this decomposition takes place is proportional to the amount of the first substance
that has not undergone conversion; that is, if X(¢) is the amount of substance A
remaining at any time, then dX/dt = kX, where k is a negative constant since X is
decreasing. An example of a first-order chemical reaction is the conversion of #-butyl
chloride, (CH3);CCl, into #-butyl alcohol, (CH3);COH:

(CH,);CCl + NaOH — (CH;);COH + NaCl.

Only the concentration of the #-butyl chloride controls the rate of reaction. But in the
reaction

CH;CI + NaOH — CH;0H + NaCl

one molecule of sodium hydroxide, NaOH, is consumed for every molecule of
methyl chloride, CH3Cl, thus forming one molecule of methyl alcohol, CH3OH, and
one molecule of sodium chloride, NaCl. In this case the rate at which the reaction
proceeds is proportional to the product of the remaining concentrations of CH3Cl and
NaOH. To describe this second reaction in general, let us suppose one molecule of a
substance A combines with one molecule of a substance B to form one molecule of a
substance C. If X denotes the amount of chemical C formed at time ¢ and if « and 8
are, in turn, the amounts of the two chemicals A and B at ¢ = 0 (the initial amounts),
then the instantaneous amounts of A and B not converted to chemical C are « — X
and B — X, respectively. Hence the rate of formation of C is given by

ax

— = k(e — X)(B — X), (6)
dt

where k is a constant of proportionality. A reaction whose model is equation (6) is

said to be a second-order reaction.

MIXTURES The mixing of two salt solutions of differing concentrations gives
rise to a first-order differential equation for the amount of salt contained in the mix-
ture. Let us suppose that a large mixing tank initially holds 300 gallons of brine (that
is, water in which a certain number of pounds of salt has been dissolved). Another



input rate of brine
3 gal/min

e’y
constant | // v/ Z
300 gal - ST

<-4
! |
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output rate of brine
3 gal/min

FIGURE 1.3.1 Mixing tank

FIGURE 1.3.2 Draining tank
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brine solution is pumped into the large tank at a rate of 3 gallons per minute; the
concentration of the salt in this inflow is 2 pounds per gallon. When the solution in
the tank is well stirred, it is pumped out at the same rate as the entering solution. See
Figure 1.3.1. If A(¢) denotes the amount of salt (measured in pounds) in the tank at
time 7, then the rate at which A(7) changes is a net rate:

dA input rate output rate
= - o - = Rm o Rmzl' (7)
dt of salt of salt

The input rate R;, at which salt enters the tank is the product of the inflow concentra-
tion of salt and the inflow rate of fluid. Note that R;, is measured in pounds per
minute:

concentration

of salt input rate input rate
in inflow of brine of salt

R;, = (2 1b/gal) - (3 gal/min) = (6 Ib/min).

Now, since the solution is being pumped out of the tank at the same rate that it is
pumped in, the number of gallons of brine in the tank at time 7 is a constant 300 gal-
lons. Hence the concentration of the salt in the tank as well as in the outflow is
c(f) = A(1)/300 Ib/gal, so the output rate R, of salt is

concentration

of salt output rate  output rate
in outflow of brine of salt
l l l
_(A®) _ L AD L,
R,, = (—300 lb/gal) (3 gal/min) = 100 Ib/min.

The net rate (7) then becomes

dA A dA 1
—=6--—— o —+-—A=6 (8)
di 100 dr 100

If r;, and r,,, denote general input and output rates of the brine solutions,” then
there are three possibilities: r;, = Fouss Fin = Four, and 1y, < roye. In the analysis lead-
ing to (8) we have assumed that r;,, = r,,,. In the latter two cases the number of gal-
lons of brine in the tank is either increasing (#;, > r,,;) or decreasing (r;, < r,,) at
the net rate r;, — r,,.. See Problems 10—-12 in Exercises 1.3.

DRAINING A TANK In hydrodynamics Torricelli’s law states that the speed v of
efflux of water though a sharp-edged hole at the bottom of a tank filled to a depth &
is the same as the speed that a body (in this case a drop of water) would acquire in
falling freely from a height =—that is, v = \/2gh, where g is the acceleration due to
gravity. This last expression comes from equating the kinetic energy %mv2 with the
potential energy mgh and solving for v. Suppose a tank filled with water is allowed to
drain through a hole under the influence of gravity. We would like to find the depth &
of water remaining in the tank at time #. Consider the tank shown in Figure 1.3.2. If
the area of the hole is A, (in ft?) and the speed of the water leaving the tank is
v = V2gh (in ft/s), then the volume of water leaving the tank per second is A, \/2gh
(in ft3/s). Thus if V(¢) denotes the volume of water in the tank at time ¢, then

av

o TAWV2gh, €)

“Don’t confuse these symbols with R;, and R,,,, which are input and output rates of salt.
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(a) LRC-series circuit

Inductor

inductance L: henries (h)
di
dt

L

voltage drop across: L

Resistor
resistance R: ohms (£2)
voltage drop across: iR

Capacitor
capacitance C: farads (f)

1
voltage drop across: cd

[
1
C
(b)

FIGURE 1.3.3  Symbols, units, and

voltages. Current i(f) and charge ¢(z) are
measured in amperes (A) and coulombs
(C), respectively

building

ground

FIGURE 1.3.4 Position of rock

measured from ground level
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where the minus sign indicates that V is decreasing. Note here that we are ignoring
the possibility of friction at the hole that might cause a reduction of the rate of flow
there. Now if the tank is such that the volume of water in it at time 7 can be written
V(t) = A,,h, where A,, (in ft?) is the constant area of the upper surface of the water
(see Figure 1.3.2), then dV/dt = A,, dh/dt. Substituting this last expression into (9)
gives us the desired differential equation for the height of the water at time ¢:

dh A, a7 (10)
— = —— o,

dt A, s
It is interesting to note that (10) remains valid even when A, is not constant. In this
case we must express the upper surface area of the water as a function of 7—that is,

A,, = A(h). See Problem 14 in Exercises 1.3.

SERIES CIRCUITS Consider the single-loop series circuit shown in Figure 1.3.3(a),
containing an inductor, resistor, and capacitor. The current in a circuit after a switch
is closed is denoted by i(#); the charge on a capacitor at time ¢ is denoted by g(#). The
letters L, R, and C are known as inductance, resistance, and capacitance, respectively,
and are generally constants. Now according to Kirchhoff’s second law, the im-
pressed voltage E(¢) on a closed loop must equal the sum of the voltage drops in the
loop. Figure 1.3.3(b) shows the symbols and the formulas for the respective voltage
drops across an inductor, a capacitor, and a resistor. Since current i(¢) is related to
charge ¢(¢) on the capacitor by i = dq/dt, adding the three voltages

inductor resistor
di d’q dq 1
L—=L—, iR=R—, d -
dt dr ' dt an c?

capacitor

and equating the sum to the impressed voltage yields a second-order differential
equation

P L R (1
Cdr a ¢l b

We will examine a differential equation analogous to (11) in great detail in
Section 5.1.

FALLING BODIES To construct a mathematical model of the motion of a body
moving in a force field, one often starts with Newton’s second law of motion. Recall
from elementary physics that Newton’s first law of motion states that a body either
will remain at rest or will continue to move with a constant velocity unless acted on
by an external force. In each case this is equivalent to saying that when the sum of
the forces F = , F,—that is, the net or resultant force— acting on the body is zero,
then the acceleration a of the body is zero. Newton’s second law of motion
indicates that when the net force acting on a body is not zero, then the net force is
proportional to its acceleration a or, more precisely, F = ma, where m is the mass of
the body.

Now suppose a rock is tossed upward from the roof of a building as illustrated in
Figure 1.3.4. What is the position s(7) of the rock relative to the ground at time ¢? The
acceleration of the rock is the second derivative d’s/dt>. If we assume that the up-
ward direction is positive and that no force acts on the rock other than the force of
gravity, then Newton’s second law gives

d?s d?s
m—— = —mg or —
dr-

= —g. (12)

In other words, the net force is simply the weight F = F| = —W of the rock near the
surface of the Earth. Recall that the magnitude of the weight is W = mg, where m is
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positive air resistance
direction O
j gravity
mg

FIGURE 1.3.5 Falling body of mass m

(a) suspension bridge cable

(b) telephone wires

FIGURE 1.3.6 Cables suspended
between vertical supports

0 X

FIGURE 1.3.7 Element of cable
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the mass of the body and g is the acceleration due to gravity. The minus sign in (12) is
used because the weight of the rock is a force directed downward, which is opposite
to the positive direction. If the height of the building is s¢ and the initial velocity of the
rock is vo, then s is determined from the second-order initial-value problem

d?s ,
=8 s0)=1s, s5(0) = (13)
dt

Although we have not been stressing solutions of the equations we have con-
structed, note that (13) can be solved by integrating the constant —g twice with
respect to t. The initial conditions determine the two constants of integration.
From elementary physics you might recognize the solution of (13) as the formula
s() = —1gf + ot + 5.

FALLING BODIES AND AIR RESISTANCE Before Galileo’s famous experiment
from the leaning tower of Pisa, it was generally believed that heavier objects in free
fall, such as a cannonball, fell with a greater acceleration than lighter objects, such as
a feather. Obviously, a cannonball and a feather when dropped simultaneously from
the same height do fall at different rates, but it is not because a cannonball is heavier.
The difference in rates is due to air resistance. The resistive force of air was ignored
in the model given in (13). Under some circumstances a falling body of mass m, such
as a feather with low density and irregular shape, encounters air resistance propor-
tional to its instantaneous velocity v. If we take, in this circumstance, the positive
direction to be oriented downward, then the net force acting on the mass is given by
F = F| + F, = mg — kv, where the weight F'; = mg of the body is force acting in the
positive direction and air resistance F, = —kv is a force, called viscous damping,
acting in the opposite or upward direction. See Figure 1.3.5. Now since v is related to
acceleration a by a = dv/dt, Newton’s second law becomes F = ma = m dv/dt. By
equating the net force to this form of Newton’s second law, we obtain a first-order
differential equation for the velocity v(¢) of the body at time f,

)

= mg — kv. (14)

m
dt

Here £ is a positive constant of proportionality. If s(7) is the distance the body falls in
time ¢ from its initial point of release, then v = ds/dt and a = dv/dt = d’s/dt*. In
terms of s, (14) is a second-order differential equation

d?s kds d?s N kds (15)
m-— = mg — i or m - = mg.
dr? g dt dt? dt 8

SUSPENDED CABLES Suppose a flexible cable, wire, or heavy rope is suspended
between two vertical supports. Physical examples of this could be one of the two
cables supporting the roadbed of a suspension bridge as shown in Figure 1.3.6(a) or
a long telephone wire strung between two posts as shown in Figure 1.3.6(b). Our goal
is to construct a mathematical model that describes the shape that such a cable
assumes.

To begin, let’s agree to examine only a portion or element of the cable between
its lowest point P and any arbitrary point P,. As drawn in blue in Figure 1.3.7, this
element of the cable is the curve in a rectangular coordinate system with y-axis cho-
sen to pass through the lowest point P; on the curve and the x-axis chosen a units
below P;. Three forces are acting on the cable: the tensions T; and T, in the cable
that are tangent to the cable at P and P», respectively, and the portion W of the total
vertical load between the points P; and P,. Let T, =|Ty|, T, =|T,|, and
W = |W| denote the magnitudes of these vectors. Now the tension T, resolves
into horizontal and vertical components (scalar quantities) 7, cos 8 and T sin 6.
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Because of static equilibrium we can write
T, =T,cos 6 and W = T, sin 6.

By dividing the last equation by the first, we eliminate 7> and get tan 6 = W/T. But
because dy/dx = tan 6, we arrive at

dy W 16
dx T, (16)
This simple first-order differential equation serves as a model for both the shape of a
flexible wire such as a telephone wire hanging under its own weight and the shape of
the cables that support the roadbed of a suspension bridge. We will come back to
equation (16) in Exercises 2.2 and Section 5.3.

WHAT LIES AHEAD Throughout this text you will see three different types of
approaches to, or analyses of, differential equations. Over the centuries differential
equations would often spring from the efforts of a scientist or engineer to describe
some physical phenomenon or to translate an empirical or experimental law into
mathematical terms. As a consequence a scientist, engineer, or mathematician would
often spend many years of his or her life trying to find the solutions of a DE. With a
solution in hand, the study of its properties then followed. This quest for solutions is
called by some the analytical approach to differential equations. Once they realized
that explicit solutions are at best difficult to obtain and at worst impossible to obtain,
mathematicians learned that a differential equation itself could be a font of valuable
information. It is possible, in some instances, to glean directly from the differential
equation answers to questions such as Does the DE actually have solutions? If a
solution of the DE exists and satisfies an initial condition, is it the only such solu-
tion? What are some of the properties of the unknown solutions? What can we say
about the geometry of the solution curves? Such an approach is qualitative analysis.
Finally, if a differential equation cannot be solved by analytical methods, yet we
can prove that a solution exists, the next logical query is Can we somehow approxi-
mate the values of an unknown solution? Here we enter the realm of numerical
analysis. An affirmative answer to the last question stems from the fact that a differ-
ential equation can be used as a cornerstone for constructing very accurate approxi-
mation algorithms. In Chapter 2 we start with qualitative considerations of first-order
ODEs, then examine analytical stratagems for solving some special first-order equa-
tions, and conclude with an introduction to an elementary numerical method. See
Figure 1.3.8.

1d
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x
and Jy0=- 20,00+ 0 =

(a) analytical (b) qualitative (¢) numerical

FIGURE 1.3.8 Different approaches to the study of differential equations
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REMARKS

Each example in this section has described a dynamical system—a system that
changes or evolves with the flow of time z Since the study of dynamical
systems is a branch of mathematics currently in vogue, we shall occasionally
relate the terminology of that field to the discussion at hand.

In more precise terms, a dynamical system consists of a set of time-
dependent variables, called state variables, together with a rule that enables
us to determine (without ambiguity) the state of the system (this may be a past,
present, or future state) in terms of a state prescribed at some time #y. Dynamical
systems are classified as either discrete-time systems or continuous-time systems.
In this course we shall be concerned only with continuous-time systems—
systems in which al/l variables are defined over a continuous range of time. The
rule, or mathematical model, in a continuous-time dynamical system is a differ-
ential equation or a system of differential equations. The state of the system
at a time ¢ is the value of the state variables at that time; the specified state of
the system at a time ¢, is simply the initial conditions that accompany the math-
ematical model. The solution of the initial-value problem is referred to as the
response of the system. For example, in the case of radioactive decay, the rule
is dA /dt = kA. Now if the quantity of a radioactive substance at some time 7 is
known, say A(to) = Ao, then by solving the rule we find that the response of the
system for ¢ = 1 is A(f) = Aye" "™ (see Section 3.1). The response A(%) is the
single state variable for this system. In the case of the rock tossed from the roof
of a building, the response of the system—the solution of the differential
equation d’s/dt*> = —g, subject to the initial state s(0) = so, s'(0) = vy, is the
function s(7) = —%gt2 + vt + 50,0 =t = T, where T represents the time
when the rock hits the ground. The state variables are s(f) and s'(f), which
are the vertical position of the rock above ground and its velocity at time t,
respectively. The acceleration s”(¢) is not a state variable, since we have to know
only any initial position and initial velocity at a time #, to uniquely determine
the rock’s position s(f) and velocity s'(f) = v(¢) for any time in the interval
to =t = T. The acceleration s"(f) = a(¢) is, of course, given by the differential
equation s"(f) = —g,0<r<T.

One last point: Not every system studied in this text is a dynamical system.
We shall also examine some static systems in which the model is a differential
equation.

EXERCISES 1.3

Answers to selected odd-numbered problems begin on page ANS-1.

Population Dynamics

1. Under the same assumptions that underlie the model in

(1), determine a differential equation for the population
P(t) of a country when individuals are allowed to
immigrate into the country at a constant rate r > 0.
What is the differential equation for the population P(¢)
of the country when individuals are allowed to emigrate
from the country at a constant rate » > 0?

. The population model given in (1) fails to take death
into consideration; the growth rate equals the birth rate.
In another model of a changing population of a commu-
nity it is assumed that the rate at which the population
changes is a net rate—that is, the difference between

the rate of births and the rate of deaths in the commu-
nity. Determine a model for the population P(7) if both
the birth rate and the death rate are proportional to the
population present at time .

. Using the concept of net rate introduced in Problem 2,

determine a model for a population P(z) if the birth rate
is proportional to the population present at time ¢ but the
death rate is proportional to the square of the population
present at time 7.

. Modify the model in Problem 3 for net rate at which

the population P(r) of a certain kind of fish changes by
also assuming that the fish are harvested at a constant
rate 1 > 0.
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Newton’s Law of Cooling/Warming

5.

A cup of coffee cools according to Newton’s law of
cooling (3). Use data from the graph of the temperature
T(¢) in Figure 1.3.9 to estimate the constants 7}, Ty, and
k in a model of the form of a first-order initial-value
problem: dT/dt = k(T — T,,), T(0) = T.

200 T
150 1
100 1

50T

0 25 50 75 100 *
minutes

FIGURE 1.3.9 Cooling curve in Problem 5

. The ambient temperature 7}, in (3) could be a function

of time 7. Suppose that in an artificially controlled
environment, 7,,(f) is periodic with a 24-hour period,
as illustrated in Figure 1.3.10. Devise a mathematical
model for the temperature 7(¢) of a body within this
environment.

T,
120 1

100+
80
60

40

20+

0 12 24 36 48 ¢

midnight noon midnight noon midnight

FIGURE 1.3.10 Ambient temperature in Problem 6

Spread of a Disease/Technology

7.

Suppose a student carrying a flu virus returns to an iso-
lated college campus of 1000 students. Determine a dif-
ferential equation for the number of people x(#) who have
contracted the flu if the rate at which the disease spreads
is proportional to the number of interactions between the
number of students who have the flu and the number of
students who have not yet been exposed to it.

At a time denoted as t = 0 a technological innovation is
introduced into a community that has a fixed population
of n people. Determine a differential equation for the

INTRODUCTION TO DIFFERENTIAL EQUATIONS

number of people x(#) who have adopted the innovation
at time ¢ if it is assumed that the rate at which the innova-
tions spread through the community is jointly propor-
tional to the number of people who have adopted it and
the number of people who have not adopted it.

Mixtures

9.

10.

11.

12.

Suppose that a large mixing tank initially holds 300 gal-
lons of water in which 50 pounds of salt have been dis-
solved. Pure water is pumped into the tank at a rate of
3 gal/min, and when the solution is well stirred, it is
then pumped out at the same rate. Determine a differen-
tial equation for the amount of salt A(¢) in the tank at
time «. What is A(0)?

Suppose that a large mixing tank initially holds 300 gal-
lons of water is which 50 pounds of salt have been
dissolved. Another brine solution is pumped into the tank
at a rate of 3 gal/min, and when the solution is well
stirred, it is then pumped out at a slower rate of 2 gal/min.
If the concentration of the solution entering is 2 1b/gal,
determine a differential equation for the amount of salt
A(?) in the tank at time 7.

What is the differential equation in Problem 10, if the
well-stirred solution is pumped out at a faster rate of
3.5 gal/min?

Generalize the model given in equation (8) on page 23
by assuming that the large tank initially contains Ny
number of gallons of brine, r;, and r,,, are the input and
output rates of the brine, respectively (measured in gal-
lons per minute), ¢;, is the concentration of the salt in
the inflow, c(¢) the concentration of the salt in the tank
as well as in the outflow at time 7 (measured in pounds
of salt per gallon), and A(?) is the amount of salt in the
tank at time z.

Draining a Tank

13.

Suppose water is leaking from a tank through a circular
hole of area A at its bottom. When water leaks through a
hole, friction and contraction of the stream near the hole
reduce the volume of water leaving the tank per second to
cA, N 2gh, where ¢ (0 < ¢ < 1) is an empirical constant.
Determine a differential equation for the height / of water
at time 7 for the cubical tank shown in Figure 1.3.11. The
radius of the hole is 2 in., and g = 32 ft/s.

circular |,
hole

FIGURE 1.3.71 Cubical tank in Problem 13
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14. The right-circular conical tank shown in Figure 1.3.12
loses water out of a circular hole at its bottom. Determine
a differential equation for the height of the water 4 at
time . The radius of the hole is 2 in., g = 32 ft/s2, and
the friction/contraction factor introduced in Problem 13
isc = 0.6.

FIGURE 1.3.12 Conical tank in Problem 14

Series Circuits

15. A series circuit contains a resistor and an inductor as
shown in Figure 1.3.13. Determine a differential equa-
tion for the current i(¢) if the resistance is R, the induc-
tance is L, and the impressed voltage is E(?).

R
FIGURE 1.3.13 LR series circuit in Problem 15

16. A series circuit contains a resistor and a capacitor as
shown in Figure 1.3.14. Determine a differential equa-
tion for the charge ¢(¢) on the capacitor if the resis-
tance is R, the capacitance is C, and the impressed
voltage is E(?).

FIGURE 1.3.14 RC series circuit in Problem 16

Falling Bodies and Air Resistance

17. For high-speed motion through the air—such as the
skydiver shown in Figure 1.3.15, falling before the para-
chute is opened —air resistance is closer to a power of
the instantaneous velocity v(f). Determine a differential
equation for the velocity v(#) of a falling body of mass m
if air resistance is proportional to the square of the
instantaneous velocity.

FIGURE 1.3.15 Air resistance proportional to square of
velocity in Problem 17

Newton’s Second Law and Archimedes’ Principle

18. A cylindrical barrel s feet in diameter of weight w b
is floating in water as shown in Figure 1.3.16(a). After
an initial depression the barrel exhibits an up-and-
down bobbing motion along a vertical line. Using
Figure 1.3.16(b), determine a differential equation for
the vertical displacement y(¢) if the origin is taken to be
on the vertical axis at the surface of the water when the
barrel is at rest. Use Archimedes’ principle: Buoyancy,
or upward force of the water on the barrel, is equal to
the weight of the water displaced. Assume that the
downward direction is positive, that the weight density
of water is 62.4 1b/ft3, and that there is no resistance
between the barrel and the water.

s/2
s/2

surface 0 __: Fy()

—_——— =

e

(a) (b)

FIGURE 1.3.16 Bobbing motion of floating barrel in
Problem 18

Newton'’s Second Law and Hooke’s Law

19. After a mass m is attached to a spring, it stretches it
s units and then hangs at rest in the equilibrium position
as shown in Figure 1.3.17(b). After the spring/mass

unstretched 5, 1 <0
spring 4 ——4—x=0
equilibrium x®>0
position _l_
@ () (o

FIGURE 1.3.17 Spring/mass system in Problem 19
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system has been set in motion, let x(#) denote the di-
rected distance of the mass beyond the equilibrium po-
sition. As indicated in Figure 1.3.17(c), assume that the
downward direction is positive, that the motion takes
place in a vertical straight line through the center of
gravity of the mass, and that the only forces acting on
the system are the weight of the mass and the restoring
force of the stretched spring. Use Hooke’s law: The
restoring force of a spring is proportional to its total
elongation. Determine a differential equation for the
displacement x(7) at time .

In Problem 19, what is a differential equation for the
displacement x() if the motion takes place in a medium
that imparts a damping force on the spring/mass system
that is proportional to the instantaneous velocity of the
mass and acts in a direction opposite to that of motion?

Newton’s Second Law and the Law
of Universal Gravitation

21.

22,

By Newton’s universal law of gravitation the free-fall
acceleration a of a body, such as the satellite shown in
Figure 1.3.18, falling a great distance to the surface is not
the constant g. Rather, the acceleration a is inversely pro-
portional to the square of the distance from the center of
the Earth, a = k/r?, where k is the constant of proportion-
ality. Use the fact that at the surface of the Earth » = R and
a = g to determine k. If the positive direction is upward,
use Newton’s second law and his universal law of gravita-
tion to find a differential equation for the distance r.

satellite of
mass m %5”
s\ﬁgace
Y
R
FIGURE 1.3.18 Satellite l AL
in Problem 21 Earth of mass M

Suppose a hole is drilled through the center of the Earth
and a bowling ball of mass m is dropped into the hole, as
shown in Figure 1.3.19. Construct a mathematical model
that describes the motion of the ball. At time ¢ let r de-
note the distance from the center of the Earth to the mass
m, M denote the mass of the Earth, M, denote the mass of
that portion of the Earth within a sphere of radius r, and
0 denote the constant density of the Earth.

surface

FIGURE 1.3.19 Hole through
Earth in Problem 22
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Additional Mathematical Models

23.

24.

25.

26.

27.

Learning Theory In the theory of learning, the rate at
which a subject is memorized is assumed to be pro-
portional to the amount that is left to be memorized.
Suppose M denotes the total amount of a subject to be
memorized and A(?) is the amount memorized in time t.
Determine a differential equation for the amount A(?).

Forgetfulness In Problem 23 assume that the rate at
which material is forgotten is proportional to the amount
memorized in time 7. Determine a differential equation
for the amount A(f) when forgetfulness is taken into
account.

Infusion of a Drug A drug is infused into a patient’s
bloodstream at a constant rate of » grams per second.
Simultaneously, the drug is removed at a rate proportional
to the amount x(7) of the drug present at time 7. Determine
a differential equation for the amount x(7).

Tractrix A person P, starting at the origin, moves in the
direction of the positive x-axis, pulling a weight along
the curve C, called a tractrix, as shown in Figure 1.3.20.
The weight, initially located on the y-axis at (0, s), is
pulled by a rope of constant length s, which is kept taut
throughout the motion. Determine a differential equation
for the path C of motion. Assume that the rope is always
tangent to C.

0, 5) ¢

FIGURE 1.3.20 Tractrix curve in Problem 26

Reflecting Surface Assume that when the plane
curve C shown in Figure 1.3.21 is revolved about the
Xx-axis, it generates a surface of revolution with the prop-
erty that all light rays L parallel to the x-axis striking the
surface are reflected to a single point O (the origin). Use
the fact that the angle of incidence is equal to the angle
of reflection to determine a differential equation that

tangent

y
/c
0

PG y) <
0
A\qj
o X
FIGURE 1.3.27 Reflecting surface in Problem 27
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describes the shape of the curve C. Such a curve C is
important in applications ranging from construction of
telescopes to satellite antennas, automobile headlights,
and solar collectors. [Hint: Inspection of the figure
shows that we can write ¢ = 20. Why? Now use an
appropriate trigonometric identity.]

Discussion Problems

28.

29.

30.

31.

32.

Reread Problem 41 in Exercises 1.1 and then give an
explicit solution P(f) for equation (1). Find a one-
parameter family of solutions of (1).

Reread the sentence following equation (3) and assume
that 7}, is a positive constant. Discuss why we would ex-
pect k < 0 in (3) in both cases of cooling and warming.
You might start by interpreting, say, 7(f) > T,, in a
graphical manner.

Reread the discussion leading up to equation (8). If we
assume that initially the tank holds, say, 50 Ib of salt, it
stands to reason that because salt is being added to the
tank continuously for # > 0, A(¢) should be an increas-
ing function. Discuss how you might determine from
the DE, without actually solving it, the number of
pounds of salt in the tank after a long period of time.

Population Model The differential equation

dr . . .
I = (k cos t)P, where k is a positive constant, is a
model of human population P(f) of a certain commu-
nity. Discuss an interpretation for the solution of this
equation. In other words, what kind of population do
you think the differential equation describes?

Rotating Fluid As shown in Figure 1.3.22(a), a right-
circular cylinder partially filled with fluid is rotated
with a constant angular velocity w about a vertical y-axis
through its center. The rotating fluid forms a surface of
revolution S. To identify S, we first establish a coordinate
system consisting of a vertical plane determined by the
y-axis and an x-axis drawn perpendicular to the y-axis
such that the point of intersection of the axes (the origin)
is located at the lowest point on the surface S. We then
seek a function y = f(x) that represents the curve C of in-
tersection of the surface S and the vertical coordinate
plane. Let the point P(x, y) denote the position of a parti-
cle of the rotating fluid of mass m in the coordinate
plane. See Figure 1.3.22(b).

(a) At P there is a reaction force of magnitude F due to
the other particles of the fluid which is normal to the
surface S. By Newton’s second law the magnitude
of the net force acting on the particle is mw?x. What
is this force? Use Figure 1.3.22(b) to discuss the na-

ture and origin of the equations
Fcos 6 = mg, Fsin 6 = mw’x.

(b) Use part (a) to find a first-order differential equation
that defines the function y = f(x).

33.

34.

\
g
i
-

(a)

curve C of
intersection

of xy-plane

and surface Y
of revolution

N\

| tangent line to
curve C at P

(b)
FIGURE 1.3.22 Rotating fluid in Problem 32

Falling Body In Problem 21, suppose r =R + s,
where s is the distance from the surface of the Earth to
the falling body. What does the differential equation
obtained in Problem 21 become when s is very small in
comparison to R? [Hint: Think binomial series for

R+s)2=R2(1+s/R)2]

Raindrops Keep Falling In meteorology the term
virga refers to falling raindrops or ice particles that
evaporate before they reach the ground. Assume that a
typical raindrop is spherical. Starting at some time,
which we can designate as ¢ = 0, the raindrop of radius
ro falls from rest from a cloud and begins to evaporate.

(a) If it is assumed that a raindrop evaporates in such a
manner that its shape remains spherical, then it also
makes sense to assume that the rate at which the rain-
drop evaporates—that is, the rate at which it loses
mass—is proportional to its surface area. Show that
this latter assumption implies that the rate at which
the radius r of the raindrop decreases is a constant.
Find r(¢). [Hint: See Problem 51 in Exercises 1.1.]

(b) If the positive direction is downward, construct a
mathematical model for the velocity v of the falling
raindrop at time t. Ignore air resistance. [Hint:
When the mass m of an object is changing with

d
time, Newton’s second law becomes F = d_t (mv),

where F is the net force acting on the body and mv
is its momentum. |
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35. LetIt Snow The “snowplow problem” is a classic and
appears in many differential equations texts but was
probably made famous by Ralph Palmer Agnew:

“One day it started snowing at a heavy and steady
rate. A snowplow started out at noon, going 2 miles
the first hour and 1 mile the second hour. What time
did it start snowing?”

INTRODUCTION TO DIFFERENTIAL EQUATIONS

Find the text Differential Equations, Ralph Palmer Agnew,
McGraw-Hill Book Co., and then discuss the construction
and solution of the mathematical model.

36. Reread this section and classify each mathematical
model as linear or nonlinear.

CHAPTER 1T IN REVIEW

Answers to selected odd-numbered problems begin on page ANS-1.

In Problems 1 and 2 fill in the blank and then write this result
as a linear first-order differential equation that is free of the
symbol ¢ and has the form dy/dx = f(x, y). The symbol ¢;
represents a constant.

d 10x —

1. — e’ =

dx

d
2. E(S + cle™¥) =

In Problems 3 and 4 fill in the blank and then write this result
as a linear second-order differential equation that is free of
the symbols ¢; and ¢, and has the form F(y, y”) = 0. The
symbols ¢y, ¢p, and k represent constants.

2
3. 2 (c; cos kx + ¢, sin kx) =

2
4. e (¢, cosh kx + ¢, sinh kx) =

In Problems 5 and 6 compute y’ and y” and then combine
these derivatives with y as a linear second-order differential
equation that is free of the symbols c; and ¢, and has the form

F(y, y" ") = 0. The symbols ¢; and ¢, represent constants.
5. y=cie* + crxe* 6. y = cie* cos x + cpe’ sin x

In Problems 7-12 match each of the given differential equa-
tions with one or more of these solutions:

@y=0, (®y=2 (@y=2x (@ y=2"
7. xy' =2y 8.y =2

9.y =2y —4 10. xy' =y

11. y" + 9y =18 12. xy" —y'=0

In Problems 13 and 14 determine by inspection at least one
solution of the given differential equation.

13. y' =y’ 14. y' = y(y — 3)

In Problems 15 and 16 interpret each statement as a differen-
tial equation.

15. On the graph of y = ¢(x) the slope of the tangent line at
a point P(x, y) is the square of the distance from P(x, y) to
the origin.

16. On the graph of y = ¢p(x) the rate at which the slope
changes with respect to x at a point P(x, y) is the nega-
tive of the slope of the tangent line at P(x, y).

17. (a) Give the domain of the function y = x*3.

(b) Give the largest interval I of definition over which
y =x%* is solution of the differential equation
3xy’ — 2y =0.
18. (a) Verify that the one-parameter family y*> — 2y =
x> — x + cis an implicit solution of the differential
equation 2y — 2)y’ = 2x — 1.
(b) Find a member of the one-parameter family in
part (a) that satisfies the initial condition y(0) = 1.

(¢) Use your result in part (b) to find an explicit
function y = ¢(x) that satisfies y(0) = 1. Give the
domain of the function ¢. Is y = ¢ (x) a solution of
the initial-value problem? If so, give its interval I of
definition; if not, explain.

19. Given that y = x — 2/x is a solution of the DE xy’" +
y = 2x. Find x( and the largest interval I for which y(x) is
a solution of the first-order IVP xy’ + y = 2x, y(xo) = 1.

20. Suppose that y(x) denotes a solution of the first-order
IVP y" = x> + y2, y(1) = —1 and that y(x) possesses
at least a second derivative at x = 1. In some neigh-
borhood of x = 1 use the DE to determine whether
y(x) is increasing or decreasing and whether the graph
y(x) is concave up or concave down.

21. A differential equation may possess more than one fam-

ily of solutions.

(a) Plot different members of the families
y=¢1(x) = x>+ ¢, and y = pyx) = —x* + cu.

(b) Verify that y = ¢(x) and y = ¢o(x) are two
solutions of the nonlinear first-order differential
equation (y')? = 4x°.

(c) Construct a piecewise-defined function that is a
solution of the nonlinear DE in part (b) but is not a
member of either family of solutions in part (a).

22. What is the slope of the tangent line to the graph of a
solution of y' = 6y + 5x° that passes through (—1, 4)?

In Problems 23-26 verify that the indicated function is a
particular solution of the given differential equation. Give an
interval of definition / for each solution.

23. y"+y=2cosx—2sinx; y=uxsinx + xcosx

24, y" +y=secx; y=xsinx + (cos x)ln(cos x)



25. 32" +xy' +y=0; y=sin(nx) 32

26. x*y" + xy' + y = sec(In x);
y = cos(In x) In(cos(In x)) + (In x) sin(In x)

In Problems 27-30, y = cje® + coe™™ — 2x is a two-
parameter family of the second-order DE y” — 2y’ — 3y =

6x + 4. Find a solution of the second-order IVP consisting 33.

of this differential equation and the given initial conditions.
27. y(0)=0,y'(0)=0 28. y(0) = 1,y"(0)= -3
2. y(h)=4,y'(H)=-2 30. y(—-1)=0,y'(-DH =1

31. The graph of a solution of a second-order initial-value

problem d?y/dx* = f(x, y, y"), y(2) = o, ¥'(2) = y1, is
given in Figure 1.R.1. Use the graph to estimate the val-
ues of yg and y;.

FIGURE 1.R.T  Graph for Problem 31

34.
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. A tank in the form of a right-circular cylinder of radius
2 feet and height 10 feet is standing on end. If the tank
is initially full of water and water leaks from a circular
hole of radius % inch at its bottom, determine a differen-
tial equation for the height /# of the water at time .
Ignore friction and contraction of water at the hole.

The number of field mice in a certain pasture is given by
the function 200 — 10z, where time ¢ is measured in
years. Determine a differential equation governing a
population of owls that feed on the mice if the rate at
which the owl population grows is proportional to the
difference between the number of owls at time ¢ and
number of field mice at time .

Suppose that dA/dr = —0.0004332 A(f) represents
a mathematical model for the radioactive decay of
radium-226, where A(r) is the amount of radium (mea-
sured in grams) remaining at time ¢ (measured in years).
How much of the radium sample remains at the time ¢
when the sample is decaying at a rate of 0.002 gram per
year?



FIRST-ORDER DIFFERENTIAL

EQUATIONS

34

2.1 Solution Curves Without a Solution
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2.1.2 Autonomous First-Order DEs

2.2 Separable Variables

2.3 Linear Equations

2.4 Exact Equations

2.5 Solutions by Substitutions

2.6 A Numerical Method

CHAPTER 2 IN REVIEW

The history of mathematics is rife with stories of people who devoted much of their
lives to solving equations—algebraic equations at first and then eventually
differential equations. In Sections 2.2—-2.5 we will study some of the more
important analytical methods for solving first-order DEs. However, before we start
solving anything, you should be aware of two facts: It is possible for a differential
equation to have no solutions, and a differential equation can possess a solution yet
there might not exist any analytical method for finding it. In Sections 2.1 and 2.6
we do not solve any DEs but show how to glean information directly from the
equation itself. In Section 2.1 we see how the DE yields qualitative information
about graphs that enables us to sketch renditions of solutions curves. In Section 2.6
we use the differential equation to construct a numerical procedure for

approximating solutions.
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2.1

SOLUTION CURVES WITHOUT A SOLUTION

slope = 1.2

(a) lineal element at a point

y

solution
curve

2.3)

tangent

(b) lineal element is tangent to
solution curve that passes
through the point

FIGURE 2.1.1

A solution curve is

tangent to lineal element at (2, 3)

REVIEW MATERIAL

e The first derivative as slope of a tangent line
e The algebraic sign of the first derivative indicates increasing or decreasing

INTRODUCTION Let us imagine for the moment that we have in front of us a first-order differ-
ential equation dy/dx = f(x, y), and let us further imagine that we can neither find nor invent a
method for solving it analytically. This is not as bad a predicament as one might think, since the dif-
ferential equation itself can sometimes “tell” us specifics about how its solutions “behave.”

We begin our study of first-order differential equations with two ways of analyzing a DE qual-
itatively. Both these ways enable us to determine, in an approximate sense, what a solution curve
must look like without actually solving the equation.

2.1.1 DIRECTION FIELDS

SOME FUNDAMENTAL QUESTIONS We saw in Section 1.2 that whenever
f(x, y) and of/dy satisfy certain continuity conditions, qualitative questions about
existence and uniqueness of solutions can be answered. In this section we shall see
that other qualitative questions about properties of solutions— How does a solution
behave near a certain point? How does a solution behave as x — %?—can often be
answered when the function f depends solely on the variable y. We begin, however,
with a simple concept from calculus:

A derivative dy/dx of a differentiable function y = y(x) gives slopes of tangent
lines at points on its graph.

SLOPE Because a solution y = y(x) of a first-order differential equation

dy _ .
—=fxy ()
dx

is necessarily a differentiable function on its interval / of definition, it must also be con-
tinuous on /. Thus the corresponding solution curve on / must have no breaks and must
possess a tangent line at each point (x, y(x)). The function fin the normal form (1) is
called the slope function or rate function. The slope of the tangent line at (x, y(x)) on
a solution curve is the value of the first derivative dy/dx at this point, and we know
from (1) that this is the value of the slope function f(x, y(x)). Now suppose that (x, y)
represents any point in a region of the xy-plane over which the function fis defined. The
value f(x, y) that the function f assigns to the point represents the slope of a line or, as
we shall envision it, a line segment called a lineal element. For example, consider the
equation dy/dx = 0.2xy, where f(x, y) = 0.2xy. At, say, the point (2, 3) the slope of a
lineal element is (2, 3) = 0.2(2)(3) = 1.2. Figure 2.1.1(a) shows a line segment with
slope 1.2 passing though (2, 3). As shown in Figure 2.1.1(b), if a solution curve also
passes through the point (2, 3), it does so tangent to this line segment; in other words,
the lineal element is a miniature tangent line at that point.

DIRECTION FIELD If we systematically evaluate f over a rectangular grid of
points in the xy-plane and draw a line element at each point (x, y) of the grid with
slope f(x, y), then the collection of all these line elements is called a direction field
or a slope field of the differential equation dy/dx = f(x, y). Visually, the direction
field suggests the appearance or shape of a family of solution curves of the
differential equation, and consequently, it may be possible to see at a glance certain
qualitative aspects of the solutions—regions in the plane, for example, in which a
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FIGURE 2.1.2  Solution curves
following flow of a direction field
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(b) some solution curves in the
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FIGURE 2.1.3 Direction field and
solution curves
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solution exhibits an unusual behavior. A single solution curve that passes through a
direction field must follow the flow pattern of the field; it is tangent to a line element
when it intersects a point in the grid. Figure 2.1.2 shows a computer-generated direc-
tion field of the differential equation dy/dx = sin(x + y) over a region of the xy-plane.
Note how the three solution curves shown in color follow the flow of the field.

I EXAMPLE T Direction Field

The direction field for the differential equation dy/dx = 0.2xy shown in Figure 2.1.3(a)
was obtained by using computer software in which a 5 X 5 grid of points (mh, nh),
m and n integers, was defined by letting —5=m =5, -=5=n =35, and h = 1.
Notice in Figure 2.1.3(a) that at any point along the x-axis (y = 0) and the
y-axis (x = 0), the slopes are f(x, 0) = 0 and f(0, y) = 0, respectively, so the lineal
elements are horizontal. Moreover, observe in the first quadrant that for a fixed value
of x the values of f(x, y) = 0.2xy increase as y increases; similarly, for a fixed y the
values of f(x, y) = 0.2xy increase as x increases. This means that as both x and y
increase, the lineal elements almost become vertical and have positive slope ( f(x,y) =
0.2xy > 0 for x > 0, y > 0). In the second quadrant, |f(x, )| increases as |x| and y
increase, so the lineal elements again become almost vertical but this time have
negative slope (f(x, y) = 0.2xy < 0 for x < 0, y > 0). Reading from left to right,
imagine a solution curve that starts at a point in the second quadrant, moves steeply
downward, becomes flat as it passes through the y-axis, and then, as it enters the first
quadrant, moves steeply upward—in other words, its shape would be concave
upward and similar to a horseshoe. From this it could be surmised that y — oo
as x — *oo. Now in the third and fourth quadrants, since f(x, y) = 0.2xy > 0 and
f(x,y) = 0.2xy < 0, respectively, the situation is reversed: A solution curve increases
and then decreases as we move from left to right. We saw in (1) of Section 1.1 that
y = e**" is an explicit solution of the differential equation dy/dx = 0.2xy; you
should verify that a one-parameter family of solutions of the same equation is given
by y = ce®™’. For purposes of comparison with Figure 2.1.3(a) some representative
graphs of members of this family are shown in Figure 2.1.3(b). [ |

I EXAMPLE 2 Direction Field

Use a direction field to sketch an approximate solution curve for the initial-value
problem dy/dx = sin y, y(0) = _%.

SOLUTION Before proceeding, recall that from the continuity of f(x, y) = siny and
df/dy = cos y, Theorem 1.2.1 guarantees the existence of a unique solution curve
passing through any specified point (x, yo) in the plane. Now we set our computer soft-
ware again fora5 X 5 rectangular region and specify (because of the initial condition)
points in that region with vertical and horizontal separation of % unit—that is, at
points (mh, nh), h = %, m and n integers such that —10 =m = 10, —10 = n = 10.
The result is shown in Figure 2.1.4. Because the right-hand side of dy/dx = sinyis 0

aty = 0,and at y = —, the lineal elements are horizontal at all points whose second
coordinates are y = 0 or y = —m. It makes sense then that a solution curve passing
through the initial point (0, —%) has the shape shown in the figure. [ |

INCREASING/DECREASING Interpretation of the derivative dy/dx as a function
that gives slope plays the key role in the construction of a direction field. Another
telling property of the first derivative will be used next, namely, if dy/dx > 0 (or
dy/dx < 0) for all x in an interval I, then a differentiable function y = y(x) is
increasing (or decreasing) on I.
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I REMARKS

Sketching a direction field by hand is straightforward but time consuming; it is
probably one of those tasks about which an argument can be made for doing it
once or twice in a lifetime, but it is overall most efficiently carried out by means
of computer software. Before calculators, PCs, and software the method of
isoclines was used to facilitate sketching a direction field by hand. For the DE
dy/dx = f(x, y), any member of the family of curves f(x, y) = ¢, ¢ a constant,
is called an isocline. Lineal elements drawn through points on a specific iso-
cline, say, f(x, y) = c; all have the same slope c;. In Problem 15 in Exercises 2.1
you have your two opportunities to sketch a direction field by hand.

2.1.2 AUTONOMOUS FIRST-ORDER DEs

AUTONOMOUS FIRST-ORDER DEs In Section 1.1 we divided the class of ordi-
nary differential equations into two types: linear and nonlinear. We now consider
briefly another kind of classification of ordinary differential equations, a classifica-
tion that is of particular importance in the qualitative investigation of differential
equations. An ordinary differential equation in which the independent variable does
not appear explicitly is said to be autonomous. If the symbol x denotes the indepen-
dent variable, then an autonomous first-order differential equation can be written as
f(y,y") = 0 or in normal form as
dy

dx

JF). 2

We shall assume throughout that the function fin (2) and its derivative f" are contin-
uous functions of y on some interval /. The first-order equations

S fx,y)
J !

dy
— =02
dx Y

dy

d
i an

1+ y?
are autonomous and nonautonomous, respectively.

Many differential equations encountered in applications or equations that are
models of physical laws that do not change over time are autonomous. As we have
already seen in Section 1.3, in an applied context, symbols other than y and x are rou-
tinely used to represent the dependent and independent variables. For example, if ¢
represents time then inspection of

dA dx

aT
= — = —+ — — = —
kAL S =kl -x, S =KT T,

dA 6 1 A
drt 100
where k, n, and T, are constants, shows that each equation is time independent.
Indeed, all of the first-order differential equations introduced in Section 1.3 are time
independent and so are autonomous.

CRITICAL POINTS The zeros of the function fin (2) are of special importance.
We say that a real number ¢ is a critical point of the autonomous differential
equation (2) if it is a zero of f—that is, f(c) = 0. A critical point is also called an
equilibrium point or stationary point. Now observe that if we substitute the constant
function y(x) = c into (2), then both sides of the equation are zero. This means:

If ¢ is a critical point of (2), then y(x) = c is a constant solution of the
autonomous differential equation.

A constant solution y(x) = ¢ of (2) is called an equilibrium solution; equilibria are
the only constant solutions of (2).



38 o CHAPTER 2

P-axis

a

b

FIGURE 2.1.5 Phase portrait of
dP/dt = P(a — bP)

; \-(X{)’O)

X
(a) region R
[RCEC o

(0, y0) o
CWma | S
Ri—

(b) subregions Ry, R,, and R3 of R

FIGURE 2.1.6 Lines y(x) = ¢ and
y(x) = ¢, partition R into three horizontal
subregions

FIRST-ORDER DIFFERENTIAL EQUATIONS

As was already mentioned, we can tell when a nonconstant solution y = y(x) of
(2) is increasing or decreasing by determining the algebraic sign of the derivative
dy/dx; in the case of (2) we do this by identifying intervals on the y-axis over which
the function f(y) is positive or negative.

I EXAMPLE 3 An Autonomous DE

The differential equation

ar P(a — bP)
9 _ pa - bp),
dt

where a and b are positive constants, has the normal form dP/dt = f(P), which is (2)
with t and P playing the parts of x and y, respectively, and hence is autonomous.
From f(P) = P(a — bP) = 0 we see that 0 and a/b are critical points of the equation,
so the equilibrium solutions are P(f) = 0 and P(f) = a/b. By putting the critical points
on a vertical line, we divide the line into three intervals defined by —o < P <0,
0 < P <a/b,a/b <P <, The arrows on the line shown in Figure 2.1.5 indicate
the algebraic sign of f(P) = P(a — bP) on these intervals and whether a nonconstant
solution P(¢) is increasing or decreasing on an interval. The following table explains
the figure.

Interval Sign of f(P) P(1) Arrow
(=, 0) minus decreasing points down
0, a/b) plus increasing points up
(a/b, ») minus decreasing points down

Figure 2.1.5 is called a one-dimensional phase portrait, or simply phase
portrait, of the differential equation dP/dt = P(a — bP). The vertical line is called a
phase line.

SOLUTION CURVES Without solving an autonomous differential equation, we
can usually say a great deal about its solution curves. Since the function f in (2) is
independent of the variable x, we may consider f defined for —o < x < or for
0 = x < o0, Also, since fand its derivative f" are continuous functions of y on some
interval [ of the y-axis, the fundamental results of Theorem 1.2.1 hold in some hori-
zontal strip or region R in the xy-plane corresponding to /, and so through any point
(x0, ¥o) in R there passes only one solution curve of (2). See Figure 2.1.6(a). For the
sake of discussion, let us suppose that (2) possesses exactly two critical points ¢ and
¢, and that ¢; < ¢;. The graphs of the equilibrium solutions y(x) = ¢; and y(x) = ¢,
are horizontal lines, and these lines partition the region R into three subregions Rj,
R», and Rs, as illustrated in Figure 2.1.6(b). Without proof here are some conclusions
that we can draw about a nonconstant solution y(x) of (2):

e If (xg, yo) is in a subregion R;, i = 1, 2, 3, and y(x) is a solution whose graph
passes through this point, then y(x) remains in the subregion R; for all x. As
illustrated in Figure 2.1.6(b), the solution y(x) in R, is bounded below by c;
and above by ¢, that is, ¢; < y(x) < ¢, for all x. The solution curve stays
within R, for all x because the graph of a nonconstant solution of (2) cannot
cross the graph of either equilibrium solution y(x) = ¢; or y(x) = c,. See
Problem 33 in Exercises 2.1.

e By continuity of f we must then have either f(y) > 0 or f(y) < 0 for all x in
a subregion R;, i = 1, 2, 3. In other words, f(y) cannot change signs in a
subregion. See Problem 33 in Exercises 2.1.
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 Since dy/dx = f(y(x)) is either positive or negative in a subregion R;, i = 1,
2, 3, a solution y(x) is strictly monotonic—that is, y(x) is either increasing
or decreasing in the subregion R;. Therefore y(x) cannot be oscillatory, nor
can it have a relative extremum (maximum or minimum). See Problem 33
in Exercises 2.1.

e If y(x) is bounded above by a critical point ¢ (as in subregion R; where
y(x) < ¢; for all x), then the graph of y(x) must approach the graph of the
equilibrium solution y(x) = c¢; either as x — % or as x — —. If y(x) is
bounded—that is, bounded above and below by two consecutive critical
points (as in subregion R, where ¢; < y(x) < ¢; for all x)—then the graph
of y(x) must approach the graphs of the equilibrium solutions y(x) = ¢; and
y(x) = ¢3, one as x — % and the other as x — —. If y(x) is bounded below
by a critical point (as in subregion R3 where ¢, < y(x) for all x), then the
graph of y(x) must approach the graph of the equilibrium solution y(x) = c;
either as x — % or as x — —. See Problem 34 in Exercises 2.1.

With the foregoing facts in mind, let us reexamine the differential equation in
Example 3.

I EXAMPLE 4 Example 3 Revisited

The three intervals determined on the P-axis or phase line by the critical points
P = 0and P = a/b now correspond in the rP-plane to three subregions defined by:

Ry —0 < P <0, Ry 0<P<alb, and Rya/b<P <,

where —oo < t < %, The phase portrait in Figure 2.1.7 tells us that P(¢) is decreasing
in Ry, increasing in R,, and decreasing in R3. If P(0) = Py is an initial value, then in
R1, Ry, and R3 we have, respectively, the following:

(i)  For Py < 0, P(¢) is bounded above. Since P(7) is decreasing, P(f)
decreases without bound for increasing ¢, and so P(f) — 0 as t — —.
This means that the negative r-axis, the graph of the equilibrium solution
P(t) = 0, is a horizontal asymptote for a solution curve.

(iiy For 0 < Py < a/b, P(t) is bounded. Since P(¢) is increasing, P(f) —>a /b
as t — @ and P(t) — 0 as t — —oo. The graphs of the two equilibrium
solutions, P(f) = 0 and P(f) = a /b, are horizontal lines that are horizontal
asymptotes for any solution curve starting in this subregion.

(iii) For Py > a /b, P(¢) is bounded below. Since P(¢) is decreasing, P(f) —>a /b
as t —> o0, The graph of the equilibrium solution P(f) = a /b is a horizontal
asymptote for a solution curve.

In Figure 2.1.7 the phase line is the P-axis in the tP-plane. For clarity the origi-
nal phase line from Figure 2.1.5 is reproduced to the left of the plane in which
the subregions R;, R,, and R; are shaded. The graphs of the equilibrium solutions
P(f) = a/b and P(¢) = 0 (the t-axis) are shown in the figure as blue dashed lines;
the solid graphs represent typical graphs of P(r) illustrating the three cases just
discussed. ]

In a subregion such as R; in Example 4, where P(¢) is decreasing and unbounded
below, we must necessarily have P(f) — —c. Do not interpret this last statement to
mean P(f) — — as t — o; we could have P(f) — — as t— T, where T> 0 is a
finite number that depends on the initial condition P(#y) = Py. Thinking in dynamic
terms, P(f) could “blow up” in finite time; thinking graphically, P(f) could have a
vertical asymptote at t = 7 > 0. A similar remark holds for the subregion R3.

The differential equation dy/dx = sin y in Example 2 is autonomous and has an
infinite number of critical points, since sin y = 0 at y = n7r, n an integer. Moreover,
we now know that because the solution y(x) that passes through (0, —%) is bounded
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above and below by two consecutive critical points (—7 < y(x) <0) and is
decreasing (sin y < 0 for —7 <y < 0), the graph of y(x) must approach the graphs
of the equilibrium solutions as horizontal asymptotes: y(x) — — as x — % and
y(x)—>0asx— —»,

I EXAMPLE 5 Solution Curves of an Autonomous DE

The autonomous equation dy/dx = (y — 1)* possesses the single critical point 1.
From the phase portrait in Figure 2.1.8(a) we conclude that a solution y(x) is an
increasing function in the subregions defined by —oc <y < 1 and 1 <y < o, where
—oo < x < o0, For an initial condition y(0) = yp < 1, a solution y(x) is increasing and
bounded above by 1, and so y(x) — 1 as x — ; for y(0) = yg > 1 a solution y(x) is
increasing and unbounded.

Now y(x) = 1 — 1/(x + ¢) is a one-parameter family of solutions of the differ-
ential equation. (See Problem 4 in Exercises 2.2) A given initial condition determines
a value for c. For the initial conditions, say, y(0) = —1 <1 and y(0) =2 > 1, we
find, in turn, that y(x) =1 — 1/(x + %), and y(x) =1 — 1/(x — 1). As shown in
Figures 2.1.8(b) and 2.1.8(c), the graph of each of these rational functions possesses

y Y i
I+ -+ } x=1
4 increasing } ©,2) ‘
I T |
1, = N e T
I I I 1 ! I I I I I 1 /
T T T ; / T T T X T T T ; T X
B SUS)) T
4 increasing } | 1 }
i |
2) |
\ \
(a) phase line (b) xy-plane (¢) xy-plane
y(0) <1 y(0) >1
FIGURE 2.1.8 Behavior of solutions neary = 1
a vertical asymptote. But bear in mind that the solutions of the IVPs
dy dy
—=(y— D% y0) = -1 and —=(y— D32 y0) =2
dx dx
are defined on special intervals. They are, respectively,
1 1
YO = 1= —1 <x<w® and Yo =1 = —o<x<L

T
2

The solution curves are the portions of the graphs in Figures 2.1.8(b) and
2.1.8(c) shown in blue. As predicted by the phase portrait, for the solution curve
in Figure 2.1.8(b), y(x) — 1 as x — oc; for the solution curve in Figure 2.1.8(c),
y(x) — » as x — | from the left. [ |

ATTRACTORS AND REPELLERS Suppose that y(x) is a nonconstant solution of
the autonomous differential equation given in (1) and that c is a critical point of
the DE. There are basically three types of behavior that y(x) can exhibit near c. In
Figure 2.1.9 we have placed c on four vertical phase lines. When both arrowheads on
either side of the dot labeled ¢ point toward c, as in Figure 2.1.9(a), all solutions y(x)
of (1) that start from an initial point (xo, yo) sufficiently near ¢ exhibit the asymp-
totic behavior lim,_,.. y(x) = c. For this reason the critical point ¢ is said to be
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asymptotically stable. Using a physical analogy, a solution that starts near c is like a
charged particle that, over time, is drawn to a particle of opposite charge, and so c is
also referred to as an attractor. When both arrowheads on either side of the dot
labeled ¢ point away from c, as in Figure 2.1.9(b), all solutions y(x) of (1) that start
from an initial point (xy, yo) move away from c as x increases. In this case the critical
point c is said to be unstable. An unstable critical point is also called a repeller, for
obvious reasons. The critical point ¢ illustrated in Figures 2.1.9(c) and 2.1.9(d) is
neither an attractor nor a repeller. But since ¢ exhibits characteristics of both an
attractor and a repeller—that is, a solution starting from an initial point (xo, yo) suffi-
ciently near c is attracted to ¢ from one side and repelled from the other side—we say
that the critical point ¢ is semi-stable. In Example 3 the critical point a/b is
asymptotically stable (an attractor) and the critical point O is unstable (a repeller).
The critical point 1 in Example 5 is semi-stable.

AUTONOMOUS DEs AND DIRECTION FIELDS If a first-order differential equa-
tion is autonomous, then we see from the right-hand side of its normal form
dy/dx = f(y) that slopes of lineal elements through points in the rectangular grid used
to construct a direction field for the DE depend solely on the y-coordinate of the points.
Put another way, lineal elements passing through points on any horizontal line must all
have the same slope; slopes of lineal elements along any vertical line will, of course,
vary. These facts are apparent from inspection of the horizontal gold strip and vertical
blue strip in Figure 2.1.10. The figure exhibits a direction field for the autonomous equa-
tion dy/dx = 2y — 2. With these facts in mind, reexamine Figure 2.1.4.

EXERCISES 2.1

Answers to selected odd-numbered problems begin on page ANS-1.

2.1.1 DIRECTION FIELDS dy —0.01xy?
2. — = "0
dx
In Problems 1-4 reproduce the given computer-generated _ _
LT P £ puters (@) y(=6) =0 (b) y(0) =1
direction field. Then sketch, by hand, an approximate solu- © y(0) = —4 ) y(8) = —4
tion curve that passes through each of the indicated points. ) y(0) = y®) =
Use different colored pencils for each solution curve.
y
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In Problems 5—-12 use computer software to obtain a direc-
tion field for the given differential equation. By hand, sketch
an approximate solution curve passing through each of the

given points.

5.y =x 6.y =x+y
(@ y(0) =0 (@ y(—2)=2
(b) y(0) = =3 (b) y(1) = —3

dy _ _ dy 1

7. ydx = —x 8. Ay
@ y(1) =1 (@) y(0) =1
(b) y(0) = 4 (b) y(—2) = —1
d d

9. d_i)c =02x*+y 10. d_i)c = xe
(@) y(0) =3 (@) y(0) = —2
(b) y(2) = —1 (b) y(1) = 2.5

P =y~ cos T dy .y
11. y' =y coszx 12.dx 1 T

@ y2) =2 @ y(-3) =2

(b) y(=1) =0 ) y(3) =0

In Problems 13 and 14 the given figure represents the graph
of f(y) and f(x), respectively. By hand, sketch a direction
field over an appropriate grid for dy/dx = f(y) (Problem 13)
and then for dy/dx = f(x) (Problem 14).

13. f

FIGURE 2.1.15 Graph for Problem 13
14.

FIGURE 2.1.16 Graph for Problem 14

15. In parts (a) and (b) sketch isoclines f(x, y) = c (see the
Remarks on page 37) for the given differential equation
using the indicated values of c. Construct a direction field
over a grid by carefully drawing lineal elements with the
appropriate slope at chosen points on each isocline. In
each case, use this rough direction field to sketch an ap-
proximate solution curve for the IVP consisting of the DE
and the initial condition y(0) = 1.

(a) dy/dx = x + y; c an integer satisfying —5 =c¢ =35
() dy/dx =x*+y5c=1,c=1l,c=%c=4

Discussion Problems

16. (a) Consider the direction field of the differential equa-
tion dy/dx = x(y — 4)> — 2, but do not use tech-
nology to obtain it. Describe the slopes of the lineal
elements on thelinesx = 0,y = 3,y = 4,andy = 5.

(b) Consider the IVP dy/dx = x(y — 4)> — 2,y(0) = yo,
where yp < 4. Can a solution y(x) — o as x —> ?
Based on the information in part (a), discuss.

17. For a first-order DE dy/dx = f(x, y) a curve in the plane
defined by f(x, y) = 0 is called a nullcline of the equa-
tion, since a lineal element at a point on the curve has zero
slope. Use computer software to obtain a direction field
over a rectangular grid of points for dy/dx = x> — 2y,



and then superimpose the graph of the nullcline y = %xz
over the direction field. Discuss the behavior of solution
curves in regions of the plane defined by y < %xz and by
y > %xz. Sketch some approximate solution curves. Try
to generalize your observations.

18. (a) Identify the nullclines (see Problem 17) in
Problems 1, 3, and 4. With a colored pencil, circle
any lineal elements in Figures 2.1.11, 2.1.13, and
2.1.14 that you think may be a lineal element at a
point on a nullcline.

(b) What are the nullclines of an autonomous first-order
DE?

2.1.2 AUTONOMOUS FIRST-ORDER DEs

19. Consider the autonomous first-order differential equa-
tion dy/dx = y — y* and the initial condition y(0) = .
By hand, sketch the graph of a typical solution y(x)
when y has the given values.
(@) yo>1 b o<y <1
€ —1<y,<0 d) yo< —1

20. Consider the autonomous first-order differential equation
dy/dx = y* — y* and the initial condition y(0) = y,. By
hand, sketch the graph of a typical solution y(x) when yg
has the given values.

(@) yo>1
(c) _l<y()<0

() 0 < yo< 1
d) yo<—1

In Problems 21-28 find the critical points and phase portrait
of the given autonomous first-order differential equation.
Classify each critical point as asymptotically stable, unstable,
or semi-stable. By hand, sketch typical solution curves in the
regions in the xy-plane determined by the graphs of the
equilibrium solutions.

dy dy
2. —=y*-3 22, — =y2 —y?
dx y y dx y y
d d
23. 2= (y - oy 4.2 =10 +3y -y
dx dx
dy dy
25. =~ =y —y) 26— =y2 -4 —y)
dx dx
dy dy _yer — 9y
27. —=yln(y + 2 28 —=——"—
dx Y Iny ) dx e

In Problems 29 and 30 consider the autonomous differential
equation dy/dx = f(y), where the graph of fis given. Use the
graph to locate the critical points of each differential equa-
tion. Sketch a phase portrait of each differential equation.
By hand, sketch typical solution curves in the subregions in
the xy-plane determined by the graphs of the equilibrium
solutions.
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/

c y

29. f

FIGURE 2.1.17  Graph for Problem 29

30. f

FIGURE 2.1.18 Graph for Problem 30

Discussion Problems

31. Consider the autonomous DE dy/dx = (2/m)y — sin y.
Determine the critical points of the equation. Discuss
a way of obtaining a phase portrait of the equation.
Classify the critical points as asymptotically stable,
unstable, or semi-stable.

32. A critical point ¢ of an autonomous first-order DE is
said to be isolated if there exists some open interval that
contains ¢ but no other critical point. Can there exist an
autonomous DE of the form given in (1) for which every
critical point is nonisolated? Discuss; do not think pro-
found thoughts.

33. Suppose that y(x) is a nonconstant solution of the
autonomous equation dy/dx = f(y) and that ¢ is a
critical point of the DE. Discuss. Why can’t the graph
of y(x) cross the graph of the equilibrium solution
y = ¢? Why can’t f(y) change signs in one of the
subregions discussed on page 38?7 Why can’t y(x) be
oscillatory or have a relative extremum (maximum or
minimum)?

34. Suppose that y(x) is a solution of the autonomous equa-
tion dy/dx = f(y) and is bounded above and below by
two consecutive critical points ¢; < ¢y, as in subregion
R, of Figure 2.1.6(b). If f(y) >0 in the region, then
lim,— y(x) = c¢». Discuss why there cannot exist a num-
ber L < ¢, such that lim,—. y(x) = L. As part of your
discussion, consider what happens to y’(x) as x — o,

35. Using the autonomous equation (1), discuss how it is
possible to obtain information about the location of
points of inflection of a solution curve.
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36. Consider the autonomous DE dy/dx = y> — y — 6. Use
your ideas from Problem 35 to find intervals on the
y-axis for which solution curves are concave up and
intervals for which solution curves are concave down.
Discuss why each solution curve of an initial-value
problem of the form dy/dx = y* —y — 6, y(0) = v,
where —2 <y, < 3, has a point of inflection with the
same y-coordinate. What is that y-coordinate? Carefully
sketch the solution curve for which y(0) = —1. Repeat
for y(2) = 2.

37. Suppose the autonomous DE in (1) has no critical
points. Discuss the behavior of the solutions.

Mathematical Models

38. Population Model The differential equation in
Example 3 is a well-known population model. Suppose
the DE is changed to

dp P(aP — b)

= = P(aP — b),

dt
where a and b are positive constants. Discuss what
happens to the population P as time ¢ increases.

39. Population Model Another population model is

given by

dp

— = kP — h,

dt
where / and k are positive constants. For what initial
values P(0) = P, does this model predict that the popu-
lation will go extinct?

40. Terminal Velocity In Section 1.3 we saw that the

autonomous differential equation

v
m— =mg — kv,
dt §

41.

42.

where k is a positive constant and g is the acceleration
due to gravity, is a model for the velocity v of a body of
mass m that is falling under the influence of gravity.
Because the term —kv represents air resistance, the
velocity of a body falling from a great height does not in-
crease without bound as time ¢ increases. Use a phase
portrait of the differential equation to find the limiting, or
terminal, velocity of the body. Explain your reasoning.

Suppose the model in Problem 40 is modified so
that air resistance is proportional to v2, that is,

dv
—-—= — k2.
m—. = mg v
See Problem 17 in Exercises 1.3. Use a phase portrait
to find the terminal velocity of the body. Explain your

reasoning.

Chemical Reactions When certain kinds of chemicals
are combined, the rate at which the new compound is
formed is modeled by the autonomous differential
equation

X k(e = X)(B — X)

2 e Ko - - X),

dt
where k>0 is a constant of proportionality and
B > a > 0. Here X(¢) denotes the number of grams of
the new compound formed in time 7.

(a) Use a phase portrait of the differential equation to
p p q
predict the behavior of X(f) as t — oo.

(b) Consider the case when a = 8. Use a phase portrait
of the differential equation to predict the behavior
of X(t) as t — © when X(0) < «. When X(0) > a.

(¢) Verify that an explicit solution of the DE in the case
when k=1 and a =8 is X(t) =a — 1/ + ).
Find a solution that satisfies X(0) = « /2. Then find
a solution that satisfies X(0) = 2a. Graph these
two solutions. Does the behavior of the solutions as
t — oo agree with your answers to part (b)?

2.2 SEPARABLE VARIABLES

REVIEW MATERIAL

parts) by consulting a calculus text.

e Basic integration formulas (See inside front cover)
e Techniques of integration: integration by parts and partial fraction decomposition
e See also the Student Resource and Solutions Manual.

INTRODUCTION  We begin our study of how to solve differential equations with the simplest of
all differential equations: first-order equations with separable variables. Because the method in this
section and many techniques for solving differential equations involve integration, you are urged to
refresh your memory on important formulas (such as [ du/u) and techniques (such as integration by
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Consider the first-order differential equation
dy/dx = f(x,y). When f does not depend on the variable y, that is, f(x, y) = g(x), the
differential equation

dy

it A— 1

i g(x) (D
can be solved by integration. If g(x) is a continuous function, then integrating both
sides of (1) gives y = [g(x) dx = G(x) + ¢, where G(x) is an antiderivative (indefi-
nite integral) of g(x). For example, if dy/dx =1 + e>*, then its solution is
y=J(1+e¥)drxory=x+ i + c.

A DEFINITION Equation (1), as well as its method of solution, is just a special
case when the function f in the normal form dy/dx = f(x, y) can be factored into a
function of x times a function of y.

DEFINITION 2.2.1 Separable Equation

A first-order differential equation of the form

dy

dx

= gh(y)

is said to be separable or to have separable variables.

For example, the equations

d d
2 _ y2xe3 and & _ y + sinx
dx dx

are separable and nonseparable, respectively. In the first equation we can factor
f(x,y) = y2xe3¥™ as

gx)  h(y)
oo
fy) = yre™ = (xe™)(y%e?),

but in the second equation there is no way of expressing y + sin x as a product of a
function of x times a function of y.
Observe that by dividing by the function A(y), we can write a separable equation

dy/dx = g(x)h(y) as
dy
p(y) I gx), (2)
X

where, for convenience, we have denoted 1/k(y) by p(y). From this last form we can
see immediately that (2) reduces to (1) when A(y) = 1.

Now if y = ¢(x) represents a solution of (2), we must have p(¢ (x))d'(x) = g(x),
and therefore

fp(¢>(X))¢'(X) dx = fg(x) dx. 3)

But dy = ¢'(x) dx, and so (3) is the same as

f p(y)dy = f gwydx or  H(y) =Gk +c, “

where H(y) and G(x) are antiderivatives of p(y) = 1/h(y) and g(x), respectively.
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FIRST-ORDER DIFFERENTIAL EQUATIONS

METHOD OF SOLUTION Equation (4) indicates the procedure for solving
separable equations. A one-parameter family of solutions, usually given implicitly, is
obtained by integrating both sides of p(y) dy = g(x) dx.

NOTE There is no need to use two constants in the integration of a separable equa-
tion, because if we write H(y) + ¢; = G(x) + ¢, then the difference ¢, — ¢ can be
replaced by a single constant ¢, as in (4). In many instances throughout the chapters
that follow, we will relabel constants in a manner convenient to a given equation. For
example, multiples of constants or combinations of constants can sometimes be
replaced by a single constant.

I EXAMPLE T Solving a Separable DE

Solve (1 + x)dy — ydx = 0.

SOLUTION Dividing by (1 + x)y, we can write dy/y = dx/(1 + x), from which it

follows that
Jo-]
y 1 +x

In|y| =1In|1 + x| + ¢,

y = eln‘lﬂch‘ = elnllﬂ‘ + €“ < laws of exponents
= Ci
|1+ x|e [T+ x|=1+x x=—1
— iec'(l + x). ‘I +,\"‘ = —(1 + x), x<—1

Relabeling *e as ¢ then gives y = ¢(1 + x).

ALTERNATIVE SOLUTION Because each integral results in a logarithm, a judicious
choice for the constant of integration is In|c| rather than c. Rewriting the second
line of the solution as In|y| = In|1 + x| + In|c| enables us to combine the terms on
the right-hand side by the properties of logarithms. From In|y| = In|c(1 + x)| we
immediately get y = c(1 + x). Even if the indefinite integrals are not all logarithms,
it may still be advantageous to use In|c|. However, no firm rule can be given. [ |

In Section 1.1 we saw that a solution curve may be only a segment or an arc of
the graph of an implicit solution G(x, y) = 0.

I EXAMPLE 2 Solution Curve

d
Solve the initial-value problem—y = —f, y4) = =3.
dx y
SOLUTION Rewriting the equation as y dy = —x dx, we get

2 2

y X
Jydy = —fxdx and E) = — + ¢

We can write the result of the integration as x” + y? = ¢” by replacing the constant
2¢; by 2. This solution of the differential equation represents a family of concentric
circles centered at the origin.

Now whenx =4,y = —3,s016 + 9 =25 = ¢2. Thus the initial-value problem
determines the circle x” + y? = 25 with radius 5. Because of its simplicity we can
solve this implicit solution for an explicit solution that satisfies the initial condition.
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IVP in Example 2
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Solution curve for the
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We saw this solution as y = ¢o(x) ory = — V25 — x?, =5 < x < 5 in Example 3 of
Section 1.1. A solution curve is the graph of a differentiable function. In this case the
solution curve is the lower semicircle, shown in dark blue in Figure 2.2.1 containing
the point (4, —3). [ |

LOSING A SOLUTION Some care should be exercised in separating variables,
since the variable divisors could be zero at a point. Specifically, if » is a zero
of the function &(y), then substituting y = r into dy/dx = g(x)h(y) makes both sides

zero; in other words, y = r is a constant solution of the differential equation.
d
But after variables are separated, the left-hand side of Ty) = g(x) dx is undefined at r.
y
As a consequence, y = r might not show up in the family of solutions that are obtained
after integration and simplification. Recall that such a solution is called a singular

solution.

I EXAMPLE 3 Losing a Solution

d
Solve ¥ = y2 — 4,
dx
SOLUTION We put the equation in the form

dy
¥4

1 |
— _4 4 =
dx or [y R 2} dy = dx. (®)]

The second equation in (5) is the result of using partial fractions on the left-hand side
of the first equation. Integrating and using the laws of logarithms gives

1 1
Zln|y - 2] —Zln|y +2|=x+¢

y—2
or Inj—/—| =4x + ¢, or
y+2

Here we have replaced 4¢; by c;. Finally, after replacing e by ¢ and solving the
last equation for y, we get the one-parameter family of solutions

1 + ce™
2 -

1 — ce®’

y= (6)

Now if we factor the right-hand side of the differential equation as
dy/dx = (y — 2)(y + 2), we know from the discussion of critical points in Section 2.1
that y = 2 and y = —2 are two constant (equilibrium) solutions. The solution y = 2 is a
member of the family of solutions defined by (6) corresponding to the value ¢ = 0.
However, y = —2 is a singular solution; it cannot be obtained from (6) for any choice of
the parameter c. This latter solution was lost early on in the solution process. Inspection
of (5) clearly indicates that we must preclude y = *2 in these steps. [ |

I EXAMPLE 4 An Initial-Value Problem

d
Solve (¢ — y) cos xd—y = ¢’sin2x, y(0) = 0.
X
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SOLUTION Dividing the equation by e” cos x gives

¥ —y sin 2x

—dy = dx.
2 cos x

Before integrating, we use termwise division on the left-hand side and the trigono-
metric identity sin 2x = 2 sin x cos x on the right-hand side. Then

integration by parts — f (@ —ye)dy =2 j sin x dx

yields e’ +tyeV+e V= —2cosx + c (7)

The initial condition y = 0 when x = 0 implies ¢ = 4. Thus a solution of the initial-
value problem is

e’ tye P+ eV=4—2cosux. ) m
USE OF COMPUTERS The Remarks at the end of Section 1.1 mentioned
that it may be difficult to use an implicit solution G(x, y) = 0 to find an explicit
solution y = ¢ (x). Equation (8) shows that the task of solving for y in terms of x may
present more problems than just the drudgery of symbol pushing—sometimes it
simply cannot be done! Implicit solutions such as (8) are somewhat frustrating; nei-
ther the graph of the equation nor an interval over which a solution satisfying y(0) =
0 is defined is apparent. The problem of “seeing” what an implicit solution looks like
can be overcome in some cases by means of technology. One way" of proceeding is
to use the contour plot application of a computer algebra system (CAS). Recall from
multivariate calculus that for a function of two variables z = G(x, y) the two-
dimensional curves defined by G(x, y) = ¢, where c is constant, are called the level
curves of the function. With the aid of a CAS, some of the level curves of the func-
tion G(x,y) = e¥ + ye ¥ + e¢”¥ + 2 cos x have been reproduced in Figure 2.2.2. The
family of solutions defined by (7) is the level curves G(x, y) = c. Figure 2.2.3 illus-
trates the level curve G(x, y) = 4, which is the particular solution (8), in blue color.
The other curve in Figure 2.2.3 is the level curve G(x, y) = 2, which is the member
of the family G(x, y) = c that satisfies y(7/2) = 0.

If an initial condition leads to a particular solution by yielding a specific value of
the parameter c in a family of solutions for a first-order differential equation, there is
a natural inclination for most students (and instructors) to relax and be content.
However, a solution of an initial-value problem might not be unique. We saw in
Example 4 of Section 1.2 that the initial-value problem

d
T=x 30 =0 ©)
X

has at least two solutions, y = 0 and y = #x“. We are now in a position to solve the
equation. Separating variables and integrating y~/? dy = x dx gives

2 2 2
2y1’2=£+c1 or y=<£+c>.
2 4

When x = 0, then y = 0, so necessarily, c = 0. Therefore y = %x“. The trivial solution
y = 0 was lost by dividing by y'2. In addition, the initial-value problem (9) possesses
infinitely many more solutions, since for any choice of the parameter a =0 the

“In Section 2.6 we will discuss several other ways of proceeding that are based on the concept of a
numerical solver.
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piecewise-defined function

0, x<a
Y L -, x=a

satisfies both the differential equation and the initial condition. See Figure 2.2.4.

SOLUTIONS DEFINED BY INTEGRALS If g is a function continuous on an open
interval / containing a, then for every x in /,

ifx 1 dt =
) s = g,

You might recall that the foregoing result is one of the two forms of the fundamental
theorem of calculus. In other words, f * g(9) dr is an antiderivative of the function g.
There are times when this form is convenient in solving DEs. For example, if g is
continuous on an interval / containing xy and x, then a solution of the simple initial-
value problem dy/dx = g(x), y(x,) = yy, that is defined on I is given by

y(x) =y + J g(r) dt

0

You should verify that y(x) defined in this manner satisfies the initial condition. Since
an antiderivative of a continuous function g cannot always be expressed in terms of
elementary functions, this might be the best we can do in obtaining an explicit
solution of an IVP. The next example illustrates this idea.

I EXAMPLE 5 An Initial-Value Problem

dy .
Solve —=¢*, y(3)=>5.
dx

SOLUTION The function g(x) = e~ is continuous on (—, %), but its antideriva-
tive is not an elementary function. Using ¢ as dummy variable of integration, we can

write
X dy X )
—dt = “dt
L dt L ¢

Yo, = f ‘et
3

X

¥x) — () = f e Far

3

X

y(x) = y3) + Je’zdt.

3

Using the initial condition y(3) = 5, we obtain the solution

yx) =5 + j et d. m
3

The procedure demonstrated in Example 5 works equally well on separable
equations dy/dx = g(x) f(y) where, say, f(y) possesses an elementary antiderivative
but g(x) does not possess an elementary antiderivative. See Problems 29 and 30 in
Exercises 2.2.
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REMARKS

(1) As we have just seen in Example 5, some simple functions do not possess
an antiderivative that is an elementary function. Integrals of these kinds of
functions are called nonelementary. For example, [3 e " dt and [sin x> dx are
nonelementary integrals. We will run into this concept again in Section 2.3.

(@) In some of the preceding examples we saw that the constant in the one-
parameter family of solutions for a first-order differential equation can be rela-
beled when convenient. Also, it can easily happen that two individuals solving the
same equation correctly arrive at dissimilar expressions for their answers. For
example, by separation of variables we can show that one-parameter families of
solutions for the DE (1 + y?) dx + (1 + x?) dy = 0 are

arctan x + arctany = ¢ or

As you work your way through the next several sections, bear in mind that fami-
lies of solutions may be equivalent in the sense that one family may be obtained
from another by either relabeling the constant or applying algebra and trigonom-
etry. See Problems 27 and 28 in Exercises 2.2.

EXERCISES 2.2

Answers to selected odd-numbered problems begin on page ANS-1.

In Problems 1-22 solve the given differential equation by

separation of variables.

11.
12.
13.

14.

15.

17.

19.

d
. ﬁ = sin 5x 2.
.dx+ e¥dy=0 4.
dy
x—=4 6.
* dx Y
ﬂ e3x+2y 8
dx

d + 1)?
.ylnxd—x=<y—> 10.

y X

cscydx + sec’xdy =0

sin 3x dx + 2y cos*3x dy = 0

(e + D% Vdx + (e + D% dy=0

dy
— = (x+ 1)
P (x+ 1

x(1 +yH2dx = y(1 + x»)2 dy

ds

— =kS 16.
dr

P

d—=P—P2 18.
dt

d +3x—y -

dy _ xy 3x—y—3 20.
dx xy—2x+4y—38

d
21 22 = Ty 2. (¢ + e =y
dx

initial-value problem.

_ d

dy — (y — 1)%dx =0 23,d—’::4(x2+1), x(m/4) = 1
dy

— +2xy2=0 d 2 —1

dx 24._y:y s 2=2

dx x*—1 @)

_dy 2

Xy 2 — -y —2x—y d
ey eV +e 25.x2—y=y—xy, y(—1) = —1

dx

dy 2y-|—3>2 dy _ _s

2) 26 —+2y=1, y0) =3

dx <4x+5 dr ’

3
27. V1 —y*dx — V1 — x*dy = 0, )’(0):%

28. (1 +xYHdy+x(1+4y)dx=0, y(1)=0

In Problems 29 and 30 proceed as in Example 5 and find an

explicit solution of the given initial-value problem.

dy s
d 29. —=ye ¥, y4)=1
%~ ko - 70 oY YW
dt
d
AN 30. T = yisin?, y(-2)=!
o TN = Nie dx
t
31. (a) Find a solution of the initial-value problem consisting
@ _xy +2y—x—2 of the differential equation in Example 3 and the ini-
dx xy—3y+x-—3 tial conditions y(0) = 2, y(0) = —2, and y(%) = 1.

In Problems 23-28 find an explicit solution of the given



32.

33.
34.

(b) Find the solution of the differential equation in
Example 4 when In c¢; is used as the constant of
integration on the left-hand side in the solution and
4 In ¢ is replaced by In c¢. Then solve the same
initial-value problems in part (a).

d
Find a solution of xd—y = y? — y that passes through
X
the indicated points.
@ 0,1  (b) (0,0

© (.2 @ (2.}

Find a singular solution of Problem 21. Of Problem 22.
Show that an implicit solution of
2xsin”ydx — (x> + 10) cos ydy = 0

is given by In(x?> + 10) + csc y = c. Find the constant
solutions, if any, that were lost in the solution of the dif-
ferential equation.

Often a radical change in the form of the solution of a differen-
tial equation corresponds to a very small change in either the
initial condition or the equation itself. In Problems 35-38 find
an explicit solution of the given initial-value problem. Use a
graphing utility to plot the graph of each solution. Compare
each solution curve in a neighborhood of (0, 1).

3s.

36.

37.

38.

39.

40.

d
=01 YO0 =1
X
d
=y - 1% y0) =101
dx
d
D =12+ 001, y0) =1
dx
d
Dy =12 =001, yO0) =1
dx
Every autonomous first-order equation dy/dx = f(y)

is separable. Find explicit solutions y;(x), y2(x), y3(x),
and y4(x) of the differential equation dy/dx =y — y?
that satisfy, in turn, the initial conditions y;(0) = 2,
¥,(0) = %, y3(0) = —%, and y4(0) = —2. Use a graphing
utility to plot the graphs of each solution. Compare these
graphs with those predicted in Problem 19 of Exercises
2.1. Give the exact interval of definition for each solution.

(a) The autonomous first-order differential equation
dy/dx =1/(y —3) has no critical points.
Nevertheless, place 3 on the phase line and obtain
a phase portrait of the equation. Compute d*y/dx>
to determine where solution curves are concave up
and where they are concave down (see Problems 35
and 36 in Exercises 2.1). Use the phase portrait
and concavity to sketch, by hand, some typical
solution curves.

(b) Find explicit solutions y;(x), y2(x), y3(x), and y4(x)
of the differential equation in part (a) that satisfy,
in turn, the initial conditions y;(0) = 4, y,(0) = 2,

41.

42,
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y3(1) =2, and y4(—1) = 4. Graph each solution
and compare with your sketches in part (a). Give
the exact interval of definition for each solution.

(a) Find an explicit solution of the initial-value problem

dy 2x +1
dx 2y

» y(=2)=—1.

(b) Use a graphing utility to plot the graph of the solu-
tion in part (a). Use the graph to estimate the inter-
val I of definition of the solution.

(c) Determine the exact interval / of definition by ana-
Iytical methods.

Repeat parts (a)—(c) of Problem 41 for the IVP consist-
ing of the differential equation in Problem 7 and the ini-
tial condition y(0) = 0.

Discussion Problems

43.

44.

45.

46.

47.

48.

(a) Explain why the interval of definition of the explicit
solution y = ¢,(x) of the initial-value problem in
Example 2 is the open interval (=5, 5).

(b) Can any solution of the differential equation cross
the x-axis? Do you think that x> + y> =1 is an
implicit solution of the initial-value problem
dy/dx = —x/y, y(1) = 0?

(a) If a > 0, discuss the differences, if any, between
the solutions of the initial-value problems consist-
ing of the differential equation dy/dx = x/y and
each of the initial conditions y(a) = a, y(a) = —a,
y(—a) = a,and y(—a) = —a.

(b) Does the initial-value problem dy/dx = x/y,
¥(0) = 0 have a solution?

(¢) Solve dy/dx = x/y, y(1) =2 and give the exact
interval I of definition of its solution.

In Problems 39 and 40 we saw that every autonomous
first-order differential equation dy/dx = f(y) is
separable. Does this fact help in the solution of the

d
initial-value problemd—y = V1 + ysin’y, y(0) = 37
x

Discuss. Sketch, by hand, a plausible solution curve of
the problem.

Without the use of technology, how would you solve
d
(Vi +x) 2 =y +y2
dx
Carry out your ideas.

Find a function whose square plus the square of its
derivative is 1.

(a) The differential equation in Problem 27 is equiva-
lent to the normal form

@_\/l—yz
dx 1 — x?
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in the square region in the xy-plane defined by
|x| <1, |y| < 1. But the quantity under the radical is
nonnegative also in the regions defined by |x| > 1,
ly| > 1. Sketch all regions in the xy-plane for
which this differential equation possesses real
solutions.

(b) Solve the DE in part (a) in the regions defined by
|x| >1,|y| > 1. Then find an implicit and an
explicit solution of the differential equation subject
to y(2) = 2.

Mathematical Model

49.

Suspension Bridge In (16) of Section 1.3 we saw that
a mathematical model for the shape of a flexible cable
strung between two vertical supports is

dy W

dx T/ (19)
where W denotes the portion of the total vertical load
between the points P and P, shown in Figure 1.3.7. The
DE (10) is separable under the following conditions that
describe a suspension bridge.

Let us assume that the x- and y-axes are as shown in
Figure 2.2.5—that is, the x-axis runs along the horizon-
tal roadbed, and the y-axis passes through (0, a), which
is the lowest point on one cable over the span of the
bridge, coinciding with the interval [—L/2, L/2]. In the
case of a suspension bridge, the usual assumption is that
the vertical load in (10) is only a uniform roadbed dis-
tributed along the horizontal axis. In other words, it is
assumed that the weight of all cables is negligible in
comparison to the weight of the roadbed and that the
weight per unit length of the roadbed (say, pounds per
horizontal foot) is a constant p. Use this information to
set up and solve an appropriate initial-value problem
from which the shape (a curve with equation y = ¢(x))
of each of the two cables in a suspension bridge is
determined. Express your solution of the IVP in terms
of the sag h and span L. See Figure 2.2.5.

_ y L
cable (
'/ h (sag)
-t
L/2 L/2 *

L (span) gl
roadbed (load)

T

FIGURE 2.2.5 Shape of a cable in Problem 49

Computer Lab Assignments

50.

(a) Use a CAS and the concept of level curves to
plot representative graphs of members of the

family of solutions of the differential equation
dy 8x +5 . s

=5 . Experiment with different numbers
dx 3y + 1

of level curves as well as various rectangular
regions definedbya =x=b,c=y=d

(b) On separate coordinate axes plot the graphs of the
particular solutions corresponding to the initial
conditions: y(0) = —1; y(0)=2; y(—1) =4
y(—1) = —3.

51. (a) Find an implicit solution of the IVP

2y +2)dy — (4x* + 6x)dx = 0, y(0) = —3.

(b) Use part (a) to find an explicit solution y = ¢(x) of
the TVP.

(¢) Consider your answer to part (b) as a function only.
Use a graphing utility or a CAS to graph this func-
tion, and then use the graph to estimate its domain.

(d) With the aid of a root-finding application of a CAS,
determine the approximate largest interval / of defi-
nition of the solution y = ¢(x) in part (b). Use a
graphing utility or a CAS to graph the solution
curve for the IVP on this interval.

52. (a) Use a CAS and the concept of level curves to

plot representative graphs of members of the
family of solutions of the differential equation
dy  x(1 —x)
dx  y(=2+y)
numbers of level curves as well as various rectan-
gular regions in the xy-plane until your result
resembles Figure 2.2.6.

Experiment with different

(b) On separate coordinate axes, plot the graph of the
implicit solution corresponding to the initial condi-
tion y(0) = % Use a colored pencil to mark off that
segment of the graph that corresponds to the solu-
tion curve of a solution ¢ that satisfies the initial
condition. With the aid of a root-finding application
of a CAS, determine the approximate largest inter-
val I of definition of the solution ¢. [Hint: First find
the points on the curve in part (a) where the tangent
is vertical. ]

(c) Repeat part (b) for the initial condition y(0) = —2.

0

. —\

FIGURE 2.2.6 Level curves in Problem 52
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2.3

LINEAR EQUATIONS

REVIEW MATERIAL
e Review the definition of linear DEs in (6) and (7) of Section 1.1

INTRODUCTION We continue our quest for solutions of first-order DEs by next examining lin-
ear equations. Linear differential equations are an especially “friendly” family of differential equa-
tions in that, given a linear equation, whether first order or a higher-order kin, there is always a good
possibility that we can find some sort of solution of the equation that we can examine.

A DEFINITION The form of a linear first-order DE was given in (7) of Section 1.1.
This form, the case when n = 1 in (6) of that section, is reproduced here for
convenience.

DEFINITION 2.3.1 Linear Equation

A first-order differential equation of the form
dy
a,(x) ==+ ap(®)y = g) ey
dx

is said to be a linear equation in the dependent variable y.

When g(x) = 0, the linear equation (1) is said to be homogeneous; otherwise, it
is nonhomogeneous.

STANDARD FORM By dividing both sides of (1) by the lead coefficient a;(x), we
obtain a more useful form, the standard form, of a linear equation:

dy A
—. TPy = f(0). )
dx

We seek a solution of (2) on an interval I for which both coefficient functions P and
[fare continuous.

In the discussion that follows we illustrate a property and a procedure and end
up with a formula representing the form that every solution of (2) must have. But
more than the formula, the property and the procedure are important, because these
two concepts carry over to linear equations of higher order.

THE PROPERTY The differential equation (2) has the property that its solution is
the sum of the two solutions: y = y. + y,, where y. is a solution of the associated
homogeneous equation

d

=+ Py =0 3)
dx

and y, is a particular solution of the nonhomogeneous equation (2). To see this,

observe that

dy, + P(x).\‘f] + [
dx

dy,
dx

Y Y

0 J(x)

d
— e Tyl + POy, + y,] = [ =f).

e + P(x)y,
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Now the homogeneous equation (3) is also separable. This fact enables us to find y,
by writing (3) as

dy
— + Px)dx =0
y

and integrating. Solving for y gives y. = ce /P®4* For convenience let us write
ye = cyi(x), where y; = e /P@4x The fact that dy, /dx + P(x)y; = 0 will be used
next to determine y,,.

THE PROCEDURE We can now find a particular solution of equation (2) by a pro-
cedure known as variation of parameters. The basic idea here is to find a function
u so that y, = u(x)y;(x) = u(x)e /@9 is a solution of (2). In other words, our as-
sumption for y, is the same as y. = cy(x) except that ¢ is replaced by the “variable
parameter” u. Substituting y, = uy; into (2) gives

Product Rule zero
! l
dy, du B dy, du
LS Py = 1) or W T P | + e = 1
du
SO — = .
Y1 dx S
Separating variables and integrating then gives
du = de and u= @dx.
yi(x) yi(x)
Since yi(x) = e /P4 we see that 1/y,(x) = e/P@* Therefore

X
Y, = uy; = ( de)e—fP(x)dx — e—fP(x)dx j efP(x)dxf(x) dx,

i)
and y = ce [P@dr 4 ef”(")d’“fef”(")d)f(x) dx. 4)
%(_/ v

Ve y

P

Hence if (2) has a solution, it must be of form (4). Conversely, it is a straightforward
exercise in differentiation to verify that (4) constitutes a one-parameter family of
solutions of equation (2).

You should not memorize the formula given in (4). However, you should
remember the special term

e/P0dx 5)
because it is used in an equivalent but easier way of solving (2). If equation (4) is
multiplied by (5),

POy = ¢ 4 f eIPWdxf(x) dx, (6)

and then (6) is differentiated,

d
E [efP(x)dxy] — efP(x)dxf(x), (7)
d
we get efP(X)dxd—y + P(x)elP0dxy = IPdxf(x), ®)
X
Dividing the last result by ePdx gives (2).
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METHOD OF SOLUTION The recommended method of solving (2) actually
consists of (6)—(8) worked in reverse order. In other words, if (2) is multiplied by
(5), we get (8). The left-hand side of (8) is recognized as the derivative of the prod-
uct of e/P®4x and y. This gets us to (7). We then integrate both sides of (7) to get the
solution (6). Because we can solve (2) by integration after multiplication by e/7®4x,
we call this function an integrating factor for the differential equation. For conve-
nience we summarize these results. We again emphasize that you should not mem-
orize formula (4) but work through the following procedure each time.

SOLVING A LINEAR FIRST-ORDER EQUATION

(i) Put alinear equation of form (1) into the standard form (2).

(if) From the standard form identify P(x) and then find the integrating
factor e/P™4x,

(iii) Multiply the standard form of the equation by the integrating factor.
The left-hand side of the resulting equation is automatically the
derivative of the integrating factor and y:

d

7” ()/fP(.\)(I.\y] =1 ()yl’(,\)t/\f(x)-

(iv) Integrate both sides of this last equation.

I EXAMPLE T Solving a Homogeneous Linear DE

d
Solve 2 — 3y = 0.
dx

SOLUTION This linear equation can be solved by separation of variables.
Alternatively, since the equation is already in the standard form (2), we see that
P(x) = —3, and so the integrating factor is /(") = ¢73* We multiply the equation
by this factor and recognize that

d d
e 3,3 =0 isthesameas  ——[e y] = 0.
dx dx

Integrating both sides of the last equation gives e **y = c. Solving for y gives us the

explicit solution y = ce?, —o0 < x < o0, ]

I EXAMPLE 2 Solving a Nonhomogeneous Linear DE

d
Solve 2 — 3y = 6.
dx

SOLUTION The associated homogeneous equation for this DE was solved in
Example 1. Again the equation is already in the standard form (2), and the integrat-
ing factor is still el(73dx = 3% This time multiplying the given equation by this
factor gives

d d
& e ¥y = 6e ¥, which is the same as o [e Y] = 6e 3.
X

edx

Integrating both sides of the last equation gives e ¥y = —2¢ 3+ ¢ or
y=—2+ ce¥, —oo < x <0, |
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The final solution in Example 2 is the sum of two solutions: y = y. + y,, where
y. = ce* is the solution of the homogeneous equation in Example 1 and yp = —2is
a particular solution of the nonhomogeneous equation y’ — 3y = 6. You need not
be concerned about whether a linear first-order equation is homogeneous or nonho-
mogeneous; when you follow the solution procedure outlined above, a solution of a
nonhomogeneous equation necessarily turns out to be y = y. + y,. However, the
distinction between solving a homogeneous DE and solving a nonhomogeneous
DE becomes more important in Chapter 4, where we solve linear higher-order
equations.

When ay, ag, and g in (1) are constants, the differential equation is autonomous.
In Example 2 you can verify from the normal form dy/dx = 3(y + 2) that —2 is a
critical point and that it is unstable (a repeller). Thus a solution curve with an
initial point either above or below the graph of the equilibrium solution
y = —2 pushes away from this horizontal line as x increases. Figure 2.3.1, obtained
with the aid of a graphing utility, shows the graph of y = —2 along with some addi-
tional solution curves.

CONSTANT OF INTEGRATION Notice that in the general discussion and in
Examples 1 and 2 we disregarded a constant of integration in the evaluation of the
indefinite integral in the exponent of e/”®%*_If you think about the laws of exponents
and the fact that the integrating factor multiplies both sides of the differential equa-
tion, you should be able to explain why writing [ P(x)dx + ¢ is unnecessary. See
Problem 44 in Exercises 2.3.

GENERAL SOLUTION  Suppose again that the functions P and fin (2) are con-
tinuous on a common interval /. In the steps leading to (4) we showed that if (2) has
a solution on 7, then it must be of the form given in (4). Conversely, it is a straight-
forward exercise in differentiation to verify that any function of the form given in
(4) is a solution of the differential equation (2) on /. In other words, (4) is a one-
parameter family of solutions of equation (2) and every solution of (2) defined on 1
is a member of this family. Therefore we call (4) the general solution of the
differential equation on the interval /. (See the Remarks at the end of Section 1.1.)
Now by writing (2) in the normal form y' = F(x, y), we can identify
F(x,y) = —P(x)y + f(x) and dF /dy = —P(x). From the continuity of P and f on the
interval I we see that F and dF/dy are also continuous on /. With Theorem 1.2.1 as
our justification, we conclude that there exists one and only one solution of the
initial-value problem

d
d—y + Py = £, () = Yo ©)
X

defined on some interval I containing x. But when x is in /, finding a solution of (9)
is just a matter of finding an appropriate value of ¢ in (4)—that is, to each x( in / there
corresponds a distinct ¢. In other words, the interval / of existence and uniqueness
in Theorem 1.2.1 for the initial-value problem (9) is the entire interval /.

I EXAMPLE 3 General Solution

d
Solve x =2 — 4y = x%~.
dx

SOLUTION Dividing by x, we get the standard form

dy 4
o ;y = xe". (10)
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From this form we identify P(x) = —4 /x and f(x) = x’e* and further observe that P
and f are continuous on (0, «). Hence the integrating factor is

we can use In x instead of In |x| since x > 0

l

e*4fdx/x = ¢~4nx = eln)c’4 = x4,

Here we have used the basic identity »'°" = N, N > 0. Now we multiply (10) by
x~*and rewrite

d
y = xe* as — [x"%y] = xe.
dx

It follows from integration by parts that the general solution defined on the interval
(0, ®)isx 4y =xe* —e* + cory = x’¢" — x*e* + cex*. |

Except in the case in which the lead coefficient is 1, the recasting of equation
(1) into the standard form (2) requires division by a;(x). Values of x for which
aj(x) = 0 are called singular points of the equation. Singular points are poten-
tially troublesome. Specifically, in (2), if P(x) (formed by dividing ay(x) by a;(x))
is discontinuous at a point, the discontinuity may carry over to solutions of the
differential equation.

I EXAMPLE 4 General Solution

d
Find the general solution of (x> — 9) d_y +xy=0.
X

SOLUTION We write the differential equation in standard form

&y, _*
dx x*—9

y=0 (11)
and identify P(x) = x/(x2 = 9). Although P is continuous on (—, —3), (=3, 3), and

(3, »), we shall solve the equation on the first and third intervals. On these intervals
the integrating factor is

eIx dx/(x*=9) — e;jzx dx/(x*—9) — eg In[x*—9] — m
After multiplying the standard form (11) by this factor, we get

%[my}o

Integrating both sides of the last equation gives Vx*> — 9y = c. Thus for either

C

x >3 or x < —3 the general solution of the equation is y = ————. ]
g q : Z—9
Notice in Example 4 that x = 3 and x = —3 are singular points of the equation

and that every function in the general solution y = ¢/Vx? = 9 is discontinuous at
these points. On the other hand, x = 0 is a singular point of the differential equation
in Example 3, but the general solution y = x%* — x** + cx* is noteworthy in that
every function in this one-parameter family is continuous at x = 0 and is defined
on the interval (—%, ) and not just on (0, %), as stated in the solution. However,
the family y = x%¢* — x** + cx* defined on (—%, %) cannot be considered the gen-
eral solution of the DE, since the singular point x = O still causes a problem. See
Problem 39 in Exercises 2.3.
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I EXAMPLE 5 An Initial-Value Problem

d
Solve 2 + y =x, y(0) = 4.
dx

SOLUTION The equation is in standard form, and P(x) = 1 and f(x) = x are contin-
uous on (—o%, ). The integrating factor is e/%* = ¢, so integrating

d [e*y] *
— = xe
dx Y

gives e*y = xe* — e* + c. Solving this last equation for y yields the general solution
vy =x — 1 + ce . But from the initial condition we know that y = 4 when x = 0.
Substituting these values into the general solution implies that ¢ = 5. Hence the
solution of the problem is

y=x—1+5" —-owolx<ox (12) m

Figure 2.3.2, obtained with the aid of a graphing utility, shows the graph of (12)
in dark blue, along with the graphs of other representative solutions in the one-
parameter family y = x — 1 + ce™". In this general solution we identify y. = ce™
and y, = x — 1. Itis interesting to observe that as x increases, the graphs of al/l mem-
bers of the family are close to the graph of the particular solution y, = x — 1, which
is shown in solid green in Figure 2.3.2. This is because the contribution of y, = ce™*
to the values of a solution becomes negligible for increasing values of x. We say that
Y. = ce *is a transient term, since y. — 0 as x — . While this behavior is not a
characteristic of all general solutions of linear equations (see Example 2), the notion
of a transient is often important in applied problems.

DISCONTINUOUS COEFFICIENTS In applications the coefficients P(x) and
f(x) in (2) may be piecewise continuous. In the next example f(x) is piecewise con-
tinuous on [0, ») with a single discontinuity, namely, a (finite) jump discontinuity at
x = 1. We solve the problem in two parts corresponding to the two intervals over
which fis defined. It is then possible to piece together the two solutions at x = 1 so
that y(x) is continuous on [0, %).

I EXAMPLE 6 An Initial-Value Problem

1, 0=x=1,

dy =
_— + = — W
Solve U y=fx), y0)=0 here  f(x) {0, x> 1.

SOLUTION The graph of the discontinuous function fis shown in Figure 2.3.3. We
solve the DE for y(x) first on the interval [0, 1] and then on the interval (1, «). For
0 =x =1 we have

dy . d
—+y=1 or, equivalently, — [e*y] = €.
dx dx

Integrating this last equation and solving for y gives y = 1 + cje*. Since y(0) = 0,
we must have ¢; = —1, and therefore y = 1 — ¢ *, 0 = x = 1. Then for x > 1 the
equation

dy
~+y=0
dx Y
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leads to y = ce”*. Hence we can write

11— 0=x=1,
y:

—X
ce x> 1.

By appealing to the definition of continuity at a point, it is possible to determine c;
so that the foregoing function is continuous at x = 1. The requirement that
lim,_,;- y(x) = y(1) implies that ce™' =1—e"! or c;=e— 1. As seen in
Figure 2.3.4, the function

1 —e™, 0=x=1,
y:

(e — 1)e ™, x> 1 (13

is continuous on (0, ©). [ |

It is worthwhile to think about (13) and Figure 2.3.4 a little bit; you are urged to
read and answer Problem 42 in Exercises 2.3.

FUNCTIONS DEFINED BY INTEGRALS At the end of Section 2.2 we dis-
cussed the fact that some simple continuous functions do not possess antiderivatives
that are elementary functions and that integrals of these kinds of functions are called
nonelementary. For example, you may have seen in calculus that [e™* dx and
[sin x? dx are nonelementary integrals. In applied mathematics some important func-
tions are defined in terms of nonelementary integrals. Two such special functions are
the error function and complementary error function:

2 7 2 (7,
erf(x) = \/%J e " dt and erfc(x) = \/%f e " dt. (14)
0 X

From the known result [ e dt = V7/2" we can write (2/V7) [Je " dt = 1.
Then from [, = [ + [ itis seen from (14) that the complementary error func-
tion erfc(x) is related to erf(x) by erf(x) + erfc(x) = 1. Because of its importance
in probability, statistics, and applied partial differential equations, the error func-
tion has been extensively tabulated. Note that erf(0) = O is one obvious function
value. Values of erf(x) can also be found by using a CAS.

I EXAMPLE 7 The Error Function

d
Solve the initial-value problemd—y — 2xy =2, y0) =1.
X

SOLUTION Since the equation is already in standard form, we see that the integrat-
ing factor is e * dx, so from

d . . o :

—— eyl =27 weget y=2¢ J e " dt + ce. (15)
dx 0

Applying y(0) = 1 to the last expression then gives ¢ = 1. Hence the solution of the

problem is

y = 2ex2J e dt + e ory = e[l + Vaerf(x)].
0

The graph of this solution on the interval (—o, ), shown in dark blue in Figure 2.3.5
among other members of the family defined in (15), was obtained with the aid of a
computer algebra system. |

“This result is usually proved in the third semester of calculus.
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USE OF COMPUTERS The computer algebra systems Mathematica and Maple
are capable of producing implicit or explicit solutions for some kinds of differential
equations using their dsolve commands.”

I REMARKS

(i) In general, a linear DE of any order is said to be homogeneous when
g(x) =0 in (6) of Section 1.1. For example, the linear second-order DE
y" — 2y’ + 6y = 0 is homogeneous. As can be seen in this example and in the
special case (3) of this section, the trivial solution y = 0 is always a solution of
a homogeneous linear DE.

(if) Occasionally, a first-order differential equation is not linear in one variable
but is linear in the other variable. For example, the differential equation

&
dx x+y?

is not linear in the variable y. But its reciprocal

—x=x+y2 or — =g =

dy dy
is recognized as linear in the variable x. You should verify that the integrating
factor /"% = ¢7Y and integration by parts yield the explicit solution
N — —y2 — 2y — 2 + ce” for the second equation. This expression is, then,
an implicit solution of the first equation.

(éif) Mathematicians have adopted as their own certain words from engineer-
ing, which they found appropriately descriptive. The word transient, used
earlier, is one of these terms. In future discussions the words input and output
will occasionally pop up. The function fin (2) is called the input or driving
function; a solution y(x) of the differential equation for a given input is called
the output or response.

(iv) The term special functions mentioned in conjunction with the error func-
tion also applies to the sine integral function and the Fresnel sine integral
introduced in Problems 49 and 50 in Exercises 2.3. “Special Functions” is
actually a well-defined branch of mathematics. More special functions are
studied in Section 6.3.

*Certain commands have the same spelling, but in Mathematica commands begin with a capital letter
(Dsolve), whereas in Maple the same command begins with a lower case letter (dsolve). When
discussing such common syntax, we compromise and write, for example, dsolve. See the Student
Resource and Solutions Manual for the complete input commands used to solve a linear first-order DE.

EX E RC | S E S 2 . 3 Answers to selected odd-numbered problems begin on page ANS-2.
In Problems 1-24 find the general solution of the given dif- , s 2 , _ 3
5.y +3x7y = 6. y +2xy=
ferential equation. Give the largest interval / over which the Y ryea Y e
general solution is defined. Determine whether there are any 7. X%y +xy=1 8.y =2y+x>+5
transient terms in the general solution. d d
_y — = 32 qi —y =
J J 9.xd y = x°sinx 10.xd +2y=3
X X
1. Z=sy 2.2 1oy=0
dx dx dy dy
p p ll.xd—+4y=x3—x 12.(I-F)c)d——xy=)c-|—x2
X X
3.2 y=en 4.3 1 12y=14
dx dx 13. x%" + x(x + 2)y = €*



14. xy' + (1 + x)y = ¢ *sin 2x
15. ydx —4(x + y%) dy =0
16. ydx = (ye¥ — 2x) dy

d
17. cosx—y + (sinx)y = 1
dx
2o Ay 3
18. cos“x sin x —— + (cos’x)y = 1
dx
dy _
19. x + H— + (x + 2)y = 2xe™*
dx
d
20. (x + 222 =5 -8y — 4xy
dx

d
21. d—;-f—rsecH:cosG

22.cji—1;+2tP=P+4t—2

d
23 24 BGx+ Dy=e¢e™
dx

d
24. (2= DE 42y = (x + 17
dx

In Problems 25-30 solve the given initial-value problem.
Give the largest interval / over which the solution is defined.

25. xy' +y=¢f, y1)=2
d
26. y—x —x=27 y)=5
dy
27 Ldi +Ri=E, i0) =i
. L— i=E, i) =i,
dt 0
L, R, E, and i, constants

dT
28. = KT =T, T(O)=T,

k, T,,, and T, constants
d
2. x+ D 4+ y=tnx, y(1) =10
dx
30. y' + (tanx)y = cos’x, y(0) = —1
In Problems 31-34 proceed as in Example 6 to solve the

given initial-value problem. Use a graphing utility to graph
the continuous function y(x).

d
31. d_y + 2y = f(x), y(0) = 0, where
X
o) I, 0=x=3
x =
0, x>3
d
32. 24y = f(0), y(0) = 1, where
dx
£ = 1, 0=x=1
* -1, x>1
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d
33. d—y + 2xy = f(x), (0) = 2, where
X

x, 0=x<1
0, x=1

f(X)={

d
34. (1 + x2)d—y + 2xy = f(x), y(0) = 0, where
X

X, 0=x<1

—X, x=1

f(X)={

35. Proceed in a manner analogous to Example 6 to solve the
initial-value problem y’ + P(x)y = 4x, y(0) = 3, where

2, 0=x=1,

P(x) =
) {—Z/X, x> 1.

Use a graphing utility to graph the continuous function
y).

36. Consider the initial-value problem y’ + ey = f(x),
y(0) = 1. Express the solution of the IVP forx > 0O as a
nonelementary integral when f(x) = 1. What is the so-
lution when f(x) = 0? When f(x) = ¢*?

37. Express the solution of the initial-value problem
y' —2xy =1, y(1) = 1, in terms of erf(x).

Discussion Problems

38. Reread the discussion following Example 2. Construct a
linear first-order differential equation for which all
nonconstant solutions approach the horizontal asymp-
totey = 4 as x — o,

39. Reread Example 3 and then discuss, with reference
to Theorem 1.2.1, the existence and uniqueness of a
solution of the initial-value problem consisting of
xy' — 4y = x%* and the given initial condition.

(@) y0) =0 (b) y(0) = y0,y0>0
(©) y(xp) = y0,%x0>0,y0>0

40. Reread Example 4 and then find the general solution of
the differential equation on the interval (—3, 3).

41. Reread the discussion following Example 5. Construct a
linear first-order differential equation for which all solu-
tions are asymptotic to the line y = 3x — 5 as x —> .

42. Reread Example 6 and then discuss why it is technically
incorrect to say that the function in (13) is a “solution”
of the IVP on the interval [0, ©).

43. (a) Construct a linear first-order differential equation of
the form xy’ + ao(x)y = g(x) for which y. = ¢/x?
and y,=x’. Give an interval on which
y = x* + ¢/x? is the general solution of the DE.

(b) Give an initial condition y(xg) = yo for the DE
found in part (a) so that the solution of the IVP
is y=x>—1/x’. Repeat if the solution is
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y = x>+ 2/x% Give an interval I of definition of
each of these solutions. Graph the solution curves. Is
there an initial-value problem whose solution is
defined on (—oe, 0)?

(¢) Is each IVP found in part (b) unique? That is, can
there be more than one IVP for which, say,
y = x3 — 1/x3, x in some interval I, is the solution?

44. In determining the integrating factor (5), we did not use
a constant of integration in the evaluation of [P(x) dx.
Explain why using [P(x) dx + ¢ has no effect on the
solution of (2).

45. Suppose P(x) is continuous on some interval / and a is a
number in /. What can be said about the solution of the
initial-value problem y’ + P(x)y = 0, y(a) = 0?

Mathematical Models

46. Radioactive Decay Series The following system
of differential equations is encountered in the study of the
decay of a special type of radioactive series of elements:

dx

a -

dy

E = )\]x - )\zy,

where A | and A, are constants. Discuss how to solve this
system subject to x(0) = xo, y(0) = y¢. Carry out your
ideas.

47. Heart Pacemaker A heart pacemaker consists of a
switch, a battery of constant voltage E(, a capacitor with
constant capacitance C, and the heart as a resistor with
constant resistance R. When the switch is closed, the
capacitor charges; when the switch is open, the capacitor
discharges, sending an electrical stimulus to the heart.
During t