A guide to Google Colab - Part 3

Goals:

  • Clone a github repository which contains some Pytorch examples
  • Install Pytorch on Google Colab
  • Run some Pytorch examples

First, let's mount our Google drive! (Note: please wait! this will take a moment!)

In [1]:
from google.colab import drive
drive.mount('/myDrive/')
Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3Aietf%3Awg%3Aoauth%3A2.0%3Aoob&scope=email%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdocs.test%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fpeopleapi.readonly&response_type=code

Enter your authorization code:
··········
Mounted at /myDrive/

I assumed that you have a folder named "Colab Notebooks" in your Google Drive. You may want to use a different folder. Then, run the following command to clone the project into the folder.

In [54]:
!git clone https://github.com/pytorch/examples "/myDrive/My Drive/Colab Notebooks/pytorch-examples"
Cloning into '/myDrive/My Drive/Colab Notebooks/pytorch-examples'...
remote: Enumerating objects: 9, done.
remote: Counting objects: 100% (9/9), done.
remote: Compressing objects: 100% (8/8), done.
remote: Total 1724 (delta 1), reused 1 (delta 1), pack-reused 1715
Receiving objects: 100% (1724/1724), 38.82 MiB | 8.37 MiB/s, done.
Resolving deltas: 100% (905/905), done.

Let's go into mnist directory in pytorch-examples. This folder contains a python file named main.py that implements a convolution network to classify MNIST digits using Pytorch.

In [60]:
root = "/myDrive/My Drive/Colab Notebooks/pytorch-examples"
import os
os.chdir(root+'/mnist')
!ls
main.py  README.md  requirements.txt

We need Pytorch. However, Google Colab does not have Pytorch. So, we need to install it. Note that if you go to the official site of Pytorch, you will see that you need to specify your machine's configuration. Here, we are using an instance of Google Colab's virtual machine. Colab works on Linux. Run the following codes to install pytorch. (Or try this !pip3 install torch torchvision)

In [26]:
from os import path
from wheel.pep425tags import get_abbr_impl, get_impl_ver, get_abi_tag
platform = '{}{}-{}'.format(get_abbr_impl(), get_impl_ver(), get_abi_tag())

accelerator = 'cu80' if path.exists('/opt/bin/nvidia-smi') else 'cpu'

!pip install -q http://download.pytorch.org/whl/{accelerator}/torch-0.4.0-{platform}-linux_x86_64.whl torchvision
tcmalloc: large alloc 1073750016 bytes == 0x555920bd4000 @  0x7fd9b0d992a4 0x5558c4f25b68 0x5558c501192d 0x5558c4f3901a 0x5558c4f3dd72 0x5558c4f368ca 0x5558c4f3e24e 0x5558c4f368ca 0x5558c4f3e24e 0x5558c4f368ca 0x5558c4f3e24e 0x5558c4f368ca 0x5558c4f3e7d3 0x5558c4f368ca 0x5558c4f3e24e 0x5558c4f368ca 0x5558c4f3e24e 0x5558c4f3dd72 0x5558c4f3dd72 0x5558c4f368ca 0x5558c4f3e7d3 0x5558c4f3dd72 0x5558c4f368ca 0x5558c4f3e7d3 0x5558c4f368ca 0x5558c4f3e7d3 0x5558c4f368ca 0x5558c4f3e24e 0x5558c4f368ca 0x5558c4f361e9 0x5558c4f66bdf

Example 1: Check version

In [62]:
import torch
print(torch.__version__)

import torchvision
print(torchvision.__version__)
0.4.0
0.2.1

Example 2: MNIST

Before running the following code to train an mnist classifier, edit the file main.py and remove the reduction argument. I am not a Pytorch guy! So I don't know why this keyword does not work! (Note that removing this keyword will result in performing averaging instead of summation in the loss function)
By running the following command, the MNIST dataset is downloaded and saved in ../data (you can check it in your Google Drive!) Then, the network is trained.

In [58]:
!python main.py
Train Epoch: 1 [0/60000 (0%)]	Loss: 2.373651
Train Epoch: 1 [640/60000 (1%)]	Loss: 2.310517
Train Epoch: 1 [1280/60000 (2%)]	Loss: 2.281828
Train Epoch: 1 [1920/60000 (3%)]	Loss: 2.315808
Train Epoch: 1 [2560/60000 (4%)]	Loss: 2.235439
Train Epoch: 1 [3200/60000 (5%)]	Loss: 2.234249
Train Epoch: 1 [3840/60000 (6%)]	Loss: 2.226109
Train Epoch: 1 [4480/60000 (7%)]	Loss: 2.228646
Train Epoch: 1 [5120/60000 (9%)]	Loss: 2.132811
Train Epoch: 1 [5760/60000 (10%)]	Loss: 2.113179
Train Epoch: 1 [6400/60000 (11%)]	Loss: 2.030113
Train Epoch: 1 [7040/60000 (12%)]	Loss: 1.877119
Train Epoch: 1 [7680/60000 (13%)]	Loss: 1.894014
Train Epoch: 1 [8320/60000 (14%)]	Loss: 1.725610
Train Epoch: 1 [8960/60000 (15%)]	Loss: 1.739437
Train Epoch: 1 [9600/60000 (16%)]	Loss: 1.533461
Train Epoch: 1 [10240/60000 (17%)]	Loss: 1.549235
Train Epoch: 1 [10880/60000 (18%)]	Loss: 1.498123
Train Epoch: 1 [11520/60000 (19%)]	Loss: 1.502510
Train Epoch: 1 [12160/60000 (20%)]	Loss: 1.326281
Train Epoch: 1 [12800/60000 (21%)]	Loss: 1.236888
Train Epoch: 1 [13440/60000 (22%)]	Loss: 1.243505
Train Epoch: 1 [14080/60000 (23%)]	Loss: 0.932353
Train Epoch: 1 [14720/60000 (25%)]	Loss: 0.943364
Train Epoch: 1 [15360/60000 (26%)]	Loss: 1.114814
Train Epoch: 1 [16000/60000 (27%)]	Loss: 1.122974
Train Epoch: 1 [16640/60000 (28%)]	Loss: 1.039028
Train Epoch: 1 [17280/60000 (29%)]	Loss: 1.034557
Train Epoch: 1 [17920/60000 (30%)]	Loss: 0.837697
Train Epoch: 1 [18560/60000 (31%)]	Loss: 1.096114
Train Epoch: 1 [19200/60000 (32%)]	Loss: 1.017020
Train Epoch: 1 [19840/60000 (33%)]	Loss: 1.125287
Train Epoch: 1 [20480/60000 (34%)]	Loss: 0.972650
Train Epoch: 1 [21120/60000 (35%)]	Loss: 0.840127
Train Epoch: 1 [21760/60000 (36%)]	Loss: 0.832300
Train Epoch: 1 [22400/60000 (37%)]	Loss: 0.779812
Train Epoch: 1 [23040/60000 (38%)]	Loss: 0.668639
Train Epoch: 1 [23680/60000 (39%)]	Loss: 0.954052
Train Epoch: 1 [24320/60000 (41%)]	Loss: 0.666618
Train Epoch: 1 [24960/60000 (42%)]	Loss: 0.823918
Train Epoch: 1 [25600/60000 (43%)]	Loss: 0.777713
Train Epoch: 1 [26240/60000 (44%)]	Loss: 0.479919
Train Epoch: 1 [26880/60000 (45%)]	Loss: 0.742106
Train Epoch: 1 [27520/60000 (46%)]	Loss: 0.760975
Train Epoch: 1 [28160/60000 (47%)]	Loss: 0.641163
Train Epoch: 1 [28800/60000 (48%)]	Loss: 0.729141
Train Epoch: 1 [29440/60000 (49%)]	Loss: 0.809032
Train Epoch: 1 [30080/60000 (50%)]	Loss: 0.807876
Train Epoch: 1 [30720/60000 (51%)]	Loss: 0.660017
Train Epoch: 1 [31360/60000 (52%)]	Loss: 1.038869
Train Epoch: 1 [32000/60000 (53%)]	Loss: 0.503807
Train Epoch: 1 [32640/60000 (54%)]	Loss: 0.485682
Train Epoch: 1 [33280/60000 (55%)]	Loss: 0.477208
Train Epoch: 1 [33920/60000 (57%)]	Loss: 0.638251
Train Epoch: 1 [34560/60000 (58%)]	Loss: 0.835420
Train Epoch: 1 [35200/60000 (59%)]	Loss: 0.453797
Train Epoch: 1 [35840/60000 (60%)]	Loss: 0.878027
Train Epoch: 1 [36480/60000 (61%)]	Loss: 0.486478
Train Epoch: 1 [37120/60000 (62%)]	Loss: 0.753955
Train Epoch: 1 [37760/60000 (63%)]	Loss: 0.654475
Train Epoch: 1 [38400/60000 (64%)]	Loss: 0.479842
Train Epoch: 1 [39040/60000 (65%)]	Loss: 0.550988
Train Epoch: 1 [39680/60000 (66%)]	Loss: 0.619028
Train Epoch: 1 [40320/60000 (67%)]	Loss: 0.507909
Train Epoch: 1 [40960/60000 (68%)]	Loss: 0.670269
Train Epoch: 1 [41600/60000 (69%)]	Loss: 0.431634
Train Epoch: 1 [42240/60000 (70%)]	Loss: 0.467366
Train Epoch: 1 [42880/60000 (71%)]	Loss: 0.463084
Train Epoch: 1 [43520/60000 (72%)]	Loss: 0.654702
Train Epoch: 1 [44160/60000 (74%)]	Loss: 0.604984
Train Epoch: 1 [44800/60000 (75%)]	Loss: 0.447935
Train Epoch: 1 [45440/60000 (76%)]	Loss: 0.448044
Train Epoch: 1 [46080/60000 (77%)]	Loss: 0.472945
Train Epoch: 1 [46720/60000 (78%)]	Loss: 0.701945
Train Epoch: 1 [47360/60000 (79%)]	Loss: 0.424748
Train Epoch: 1 [48000/60000 (80%)]	Loss: 0.454524
Train Epoch: 1 [48640/60000 (81%)]	Loss: 0.477744
Train Epoch: 1 [49280/60000 (82%)]	Loss: 0.618845
Train Epoch: 1 [49920/60000 (83%)]	Loss: 0.441788
Train Epoch: 1 [50560/60000 (84%)]	Loss: 0.538795
Train Epoch: 1 [51200/60000 (85%)]	Loss: 0.660148
Train Epoch: 1 [51840/60000 (86%)]	Loss: 0.431412
Train Epoch: 1 [52480/60000 (87%)]	Loss: 0.613825
Train Epoch: 1 [53120/60000 (88%)]	Loss: 0.465359
Train Epoch: 1 [53760/60000 (90%)]	Loss: 0.628077
Train Epoch: 1 [54400/60000 (91%)]	Loss: 0.370612
Train Epoch: 1 [55040/60000 (92%)]	Loss: 0.586689
Train Epoch: 1 [55680/60000 (93%)]	Loss: 0.390014
Train Epoch: 1 [56320/60000 (94%)]	Loss: 0.327559
Train Epoch: 1 [56960/60000 (95%)]	Loss: 0.507480
Train Epoch: 1 [57600/60000 (96%)]	Loss: 0.370664
Train Epoch: 1 [58240/60000 (97%)]	Loss: 0.388799
Train Epoch: 1 [58880/60000 (98%)]	Loss: 0.523447
Train Epoch: 1 [59520/60000 (99%)]	Loss: 0.598093

Test set: Average loss: 0.0002, Accuracy: 9405/10000 (94%)

Train Epoch: 2 [0/60000 (0%)]	Loss: 0.470916
Train Epoch: 2 [640/60000 (1%)]	Loss: 0.210711
Train Epoch: 2 [1280/60000 (2%)]	Loss: 0.356534
Train Epoch: 2 [1920/60000 (3%)]	Loss: 0.506210
Train Epoch: 2 [2560/60000 (4%)]	Loss: 0.237110
Train Epoch: 2 [3200/60000 (5%)]	Loss: 0.278420
Train Epoch: 2 [3840/60000 (6%)]	Loss: 0.475663
Train Epoch: 2 [4480/60000 (7%)]	Loss: 0.474693
Train Epoch: 2 [5120/60000 (9%)]	Loss: 0.291893
Train Epoch: 2 [5760/60000 (10%)]	Loss: 0.511268
Train Epoch: 2 [6400/60000 (11%)]	Loss: 0.396071
Train Epoch: 2 [7040/60000 (12%)]	Loss: 0.400062
Train Epoch: 2 [7680/60000 (13%)]	Loss: 0.570561
Train Epoch: 2 [8320/60000 (14%)]	Loss: 0.280094
Train Epoch: 2 [8960/60000 (15%)]	Loss: 0.389267
Train Epoch: 2 [9600/60000 (16%)]	Loss: 0.415635
Train Epoch: 2 [10240/60000 (17%)]	Loss: 0.509592
Train Epoch: 2 [10880/60000 (18%)]	Loss: 0.323109
Train Epoch: 2 [11520/60000 (19%)]	Loss: 0.315953
Train Epoch: 2 [12160/60000 (20%)]	Loss: 0.425256
Train Epoch: 2 [12800/60000 (21%)]	Loss: 0.477006
Train Epoch: 2 [13440/60000 (22%)]	Loss: 0.512797
Train Epoch: 2 [14080/60000 (23%)]	Loss: 0.768390
Train Epoch: 2 [14720/60000 (25%)]	Loss: 0.373473
Train Epoch: 2 [15360/60000 (26%)]	Loss: 0.403764
Train Epoch: 2 [16000/60000 (27%)]	Loss: 0.436422
Train Epoch: 2 [16640/60000 (28%)]	Loss: 0.377981
Train Epoch: 2 [17280/60000 (29%)]	Loss: 0.309124
Train Epoch: 2 [17920/60000 (30%)]	Loss: 0.335952
Train Epoch: 2 [18560/60000 (31%)]	Loss: 0.449727
Train Epoch: 2 [19200/60000 (32%)]	Loss: 0.629582
Train Epoch: 2 [19840/60000 (33%)]	Loss: 0.369373
Train Epoch: 2 [20480/60000 (34%)]	Loss: 0.421323
Train Epoch: 2 [21120/60000 (35%)]	Loss: 0.362353
Train Epoch: 2 [21760/60000 (36%)]	Loss: 0.602461
Train Epoch: 2 [22400/60000 (37%)]	Loss: 0.332647
Train Epoch: 2 [23040/60000 (38%)]	Loss: 0.434016
Train Epoch: 2 [23680/60000 (39%)]	Loss: 0.309780
Train Epoch: 2 [24320/60000 (41%)]	Loss: 0.439433
Train Epoch: 2 [24960/60000 (42%)]	Loss: 0.244156
Train Epoch: 2 [25600/60000 (43%)]	Loss: 0.320011
Train Epoch: 2 [26240/60000 (44%)]	Loss: 0.290765
Train Epoch: 2 [26880/60000 (45%)]	Loss: 0.641062
Train Epoch: 2 [27520/60000 (46%)]	Loss: 0.275221
Train Epoch: 2 [28160/60000 (47%)]	Loss: 0.330871
Train Epoch: 2 [28800/60000 (48%)]	Loss: 0.447913
Train Epoch: 2 [29440/60000 (49%)]	Loss: 0.417425
Train Epoch: 2 [30080/60000 (50%)]	Loss: 0.439291
Train Epoch: 2 [30720/60000 (51%)]	Loss: 0.339246
Train Epoch: 2 [31360/60000 (52%)]	Loss: 0.292304
Train Epoch: 2 [32000/60000 (53%)]	Loss: 0.505118
Train Epoch: 2 [32640/60000 (54%)]	Loss: 0.425261
Train Epoch: 2 [33280/60000 (55%)]	Loss: 0.426719
Train Epoch: 2 [33920/60000 (57%)]	Loss: 0.364924
Train Epoch: 2 [34560/60000 (58%)]	Loss: 0.406070
Train Epoch: 2 [35200/60000 (59%)]	Loss: 0.636075
Train Epoch: 2 [35840/60000 (60%)]	Loss: 0.460837
Train Epoch: 2 [36480/60000 (61%)]	Loss: 0.400673
Train Epoch: 2 [37120/60000 (62%)]	Loss: 0.287236
Train Epoch: 2 [37760/60000 (63%)]	Loss: 0.322719
Train Epoch: 2 [38400/60000 (64%)]	Loss: 0.254464
Train Epoch: 2 [39040/60000 (65%)]	Loss: 0.345899
Train Epoch: 2 [39680/60000 (66%)]	Loss: 0.362181
Train Epoch: 2 [40320/60000 (67%)]	Loss: 0.308415
Train Epoch: 2 [40960/60000 (68%)]	Loss: 0.338849
Train Epoch: 2 [41600/60000 (69%)]	Loss: 0.738289
Train Epoch: 2 [42240/60000 (70%)]	Loss: 0.407792
Train Epoch: 2 [42880/60000 (71%)]	Loss: 0.252234
Train Epoch: 2 [43520/60000 (72%)]	Loss: 0.234799
Train Epoch: 2 [44160/60000 (74%)]	Loss: 0.236716
Train Epoch: 2 [44800/60000 (75%)]	Loss: 0.373811
Train Epoch: 2 [45440/60000 (76%)]	Loss: 0.295831
Train Epoch: 2 [46080/60000 (77%)]	Loss: 0.443412
Train Epoch: 2 [46720/60000 (78%)]	Loss: 0.372460
Train Epoch: 2 [47360/60000 (79%)]	Loss: 0.459296
Train Epoch: 2 [48000/60000 (80%)]	Loss: 0.222927
Train Epoch: 2 [48640/60000 (81%)]	Loss: 0.194848
Train Epoch: 2 [49280/60000 (82%)]	Loss: 0.289654
Train Epoch: 2 [49920/60000 (83%)]	Loss: 0.349498
Train Epoch: 2 [50560/60000 (84%)]	Loss: 0.310730
Train Epoch: 2 [51200/60000 (85%)]	Loss: 0.430103
Train Epoch: 2 [51840/60000 (86%)]	Loss: 0.480240
Train Epoch: 2 [52480/60000 (87%)]	Loss: 0.236234
Train Epoch: 2 [53120/60000 (88%)]	Loss: 0.307188
Train Epoch: 2 [53760/60000 (90%)]	Loss: 0.279072
Train Epoch: 2 [54400/60000 (91%)]	Loss: 0.240781
Train Epoch: 2 [55040/60000 (92%)]	Loss: 0.209316
Train Epoch: 2 [55680/60000 (93%)]	Loss: 0.266671
Train Epoch: 2 [56320/60000 (94%)]	Loss: 0.248095
Train Epoch: 2 [56960/60000 (95%)]	Loss: 0.418421
Train Epoch: 2 [57600/60000 (96%)]	Loss: 0.461359
Train Epoch: 2 [58240/60000 (97%)]	Loss: 0.353400
Train Epoch: 2 [58880/60000 (98%)]	Loss: 0.401144
Train Epoch: 2 [59520/60000 (99%)]	Loss: 0.346248

Test set: Average loss: 0.0001, Accuracy: 9586/10000 (96%)

Train Epoch: 3 [0/60000 (0%)]	Loss: 0.511905
Train Epoch: 3 [640/60000 (1%)]	Loss: 0.301071
Train Epoch: 3 [1280/60000 (2%)]	Loss: 0.469065
Train Epoch: 3 [1920/60000 (3%)]	Loss: 0.375524
Train Epoch: 3 [2560/60000 (4%)]	Loss: 0.216433
Train Epoch: 3 [3200/60000 (5%)]	Loss: 0.369009
Train Epoch: 3 [3840/60000 (6%)]	Loss: 0.278727
Train Epoch: 3 [4480/60000 (7%)]	Loss: 0.427139
Train Epoch: 3 [5120/60000 (9%)]	Loss: 0.233043
Train Epoch: 3 [5760/60000 (10%)]	Loss: 0.310233
Train Epoch: 3 [6400/60000 (11%)]	Loss: 0.337354
Train Epoch: 3 [7040/60000 (12%)]	Loss: 0.344165
Train Epoch: 3 [7680/60000 (13%)]	Loss: 0.395338
Train Epoch: 3 [8320/60000 (14%)]	Loss: 0.310753
Train Epoch: 3 [8960/60000 (15%)]	Loss: 0.419105
Train Epoch: 3 [9600/60000 (16%)]	Loss: 0.286377
Train Epoch: 3 [10240/60000 (17%)]	Loss: 0.194102
Train Epoch: 3 [10880/60000 (18%)]	Loss: 0.197192
Train Epoch: 3 [11520/60000 (19%)]	Loss: 0.403153
Train Epoch: 3 [12160/60000 (20%)]	Loss: 0.274780
Train Epoch: 3 [12800/60000 (21%)]	Loss: 0.220420
Train Epoch: 3 [13440/60000 (22%)]	Loss: 0.347923
Train Epoch: 3 [14080/60000 (23%)]	Loss: 0.273567
Train Epoch: 3 [14720/60000 (25%)]	Loss: 0.253692
Train Epoch: 3 [15360/60000 (26%)]	Loss: 0.199628
Train Epoch: 3 [16000/60000 (27%)]	Loss: 0.212681
Train Epoch: 3 [16640/60000 (28%)]	Loss: 0.246277
Train Epoch: 3 [17280/60000 (29%)]	Loss: 0.371214
Train Epoch: 3 [17920/60000 (30%)]	Loss: 0.352649
Train Epoch: 3 [18560/60000 (31%)]	Loss: 0.329059
Train Epoch: 3 [19200/60000 (32%)]	Loss: 0.520884
Train Epoch: 3 [19840/60000 (33%)]	Loss: 0.321161
Train Epoch: 3 [20480/60000 (34%)]	Loss: 0.173570
Train Epoch: 3 [21120/60000 (35%)]	Loss: 0.213814
Train Epoch: 3 [21760/60000 (36%)]	Loss: 0.365140
Train Epoch: 3 [22400/60000 (37%)]	Loss: 0.550874
Train Epoch: 3 [23040/60000 (38%)]	Loss: 0.315863
Train Epoch: 3 [23680/60000 (39%)]	Loss: 0.407930
Train Epoch: 3 [24320/60000 (41%)]	Loss: 0.293472
Train Epoch: 3 [24960/60000 (42%)]	Loss: 0.202417
Train Epoch: 3 [25600/60000 (43%)]	Loss: 0.229407
Train Epoch: 3 [26240/60000 (44%)]	Loss: 0.127372
Train Epoch: 3 [26880/60000 (45%)]	Loss: 0.231388
Train Epoch: 3 [27520/60000 (46%)]	Loss: 0.252991
Train Epoch: 3 [28160/60000 (47%)]	Loss: 0.323540
Train Epoch: 3 [28800/60000 (48%)]	Loss: 0.538975
Train Epoch: 3 [29440/60000 (49%)]	Loss: 0.322273
Train Epoch: 3 [30080/60000 (50%)]	Loss: 0.183331
Train Epoch: 3 [30720/60000 (51%)]	Loss: 0.253175
Train Epoch: 3 [31360/60000 (52%)]	Loss: 0.324845
Train Epoch: 3 [32000/60000 (53%)]	Loss: 0.251241
Train Epoch: 3 [32640/60000 (54%)]	Loss: 0.336655
Train Epoch: 3 [33280/60000 (55%)]	Loss: 0.313223
Train Epoch: 3 [33920/60000 (57%)]	Loss: 0.454837
Train Epoch: 3 [34560/60000 (58%)]	Loss: 0.170750
Train Epoch: 3 [35200/60000 (59%)]	Loss: 0.244435
Train Epoch: 3 [35840/60000 (60%)]	Loss: 0.195073
Train Epoch: 3 [36480/60000 (61%)]	Loss: 0.345108
Train Epoch: 3 [37120/60000 (62%)]	Loss: 0.278598
Train Epoch: 3 [37760/60000 (63%)]	Loss: 0.218793
Train Epoch: 3 [38400/60000 (64%)]	Loss: 0.287310
Train Epoch: 3 [39040/60000 (65%)]	Loss: 0.274616
Train Epoch: 3 [39680/60000 (66%)]	Loss: 0.097904
Train Epoch: 3 [40320/60000 (67%)]	Loss: 0.341571
Train Epoch: 3 [40960/60000 (68%)]	Loss: 0.315088
Train Epoch: 3 [41600/60000 (69%)]	Loss: 0.365613
Train Epoch: 3 [42240/60000 (70%)]	Loss: 0.293647
Train Epoch: 3 [42880/60000 (71%)]	Loss: 0.196777
Train Epoch: 3 [43520/60000 (72%)]	Loss: 0.088222
Train Epoch: 3 [44160/60000 (74%)]	Loss: 0.392760
Train Epoch: 3 [44800/60000 (75%)]	Loss: 0.097802
Train Epoch: 3 [45440/60000 (76%)]	Loss: 0.242959
Train Epoch: 3 [46080/60000 (77%)]	Loss: 0.233115
Train Epoch: 3 [46720/60000 (78%)]	Loss: 0.308320
Train Epoch: 3 [47360/60000 (79%)]	Loss: 0.230800
Train Epoch: 3 [48000/60000 (80%)]	Loss: 0.321063
Train Epoch: 3 [48640/60000 (81%)]	Loss: 0.375167
Train Epoch: 3 [49280/60000 (82%)]	Loss: 0.139469
Train Epoch: 3 [49920/60000 (83%)]	Loss: 0.272992
Train Epoch: 3 [50560/60000 (84%)]	Loss: 0.340776
Train Epoch: 3 [51200/60000 (85%)]	Loss: 0.355403
Train Epoch: 3 [51840/60000 (86%)]	Loss: 0.155090
Train Epoch: 3 [52480/60000 (87%)]	Loss: 0.179023
Train Epoch: 3 [53120/60000 (88%)]	Loss: 0.303225
Train Epoch: 3 [53760/60000 (90%)]	Loss: 0.127476
Train Epoch: 3 [54400/60000 (91%)]	Loss: 0.305985
Train Epoch: 3 [55040/60000 (92%)]	Loss: 0.334631
Train Epoch: 3 [55680/60000 (93%)]	Loss: 0.361212
Train Epoch: 3 [56320/60000 (94%)]	Loss: 0.289112
Train Epoch: 3 [56960/60000 (95%)]	Loss: 0.313953
Train Epoch: 3 [57600/60000 (96%)]	Loss: 0.548181
Train Epoch: 3 [58240/60000 (97%)]	Loss: 0.134213
Train Epoch: 3 [58880/60000 (98%)]	Loss: 0.338072
Train Epoch: 3 [59520/60000 (99%)]	Loss: 0.276611

Test set: Average loss: 0.0001, Accuracy: 9697/10000 (97%)

Train Epoch: 4 [0/60000 (0%)]	Loss: 0.383451
Train Epoch: 4 [640/60000 (1%)]	Loss: 0.203270
Train Epoch: 4 [1280/60000 (2%)]	Loss: 0.238818
Train Epoch: 4 [1920/60000 (3%)]	Loss: 0.322409
Train Epoch: 4 [2560/60000 (4%)]	Loss: 0.375902
Train Epoch: 4 [3200/60000 (5%)]	Loss: 0.164150
Train Epoch: 4 [3840/60000 (6%)]	Loss: 0.212402
Train Epoch: 4 [4480/60000 (7%)]	Loss: 0.251358
Train Epoch: 4 [5120/60000 (9%)]	Loss: 0.216792
Train Epoch: 4 [5760/60000 (10%)]	Loss: 0.321498
Train Epoch: 4 [6400/60000 (11%)]	Loss: 0.297037
Train Epoch: 4 [7040/60000 (12%)]	Loss: 0.182845
Train Epoch: 4 [7680/60000 (13%)]	Loss: 0.246318
Train Epoch: 4 [8320/60000 (14%)]	Loss: 0.477240
Train Epoch: 4 [8960/60000 (15%)]	Loss: 0.179840
Train Epoch: 4 [9600/60000 (16%)]	Loss: 0.195521
Train Epoch: 4 [10240/60000 (17%)]	Loss: 0.253881
Train Epoch: 4 [10880/60000 (18%)]	Loss: 0.277786
Train Epoch: 4 [11520/60000 (19%)]	Loss: 0.226974
Train Epoch: 4 [12160/60000 (20%)]	Loss: 0.236465
Train Epoch: 4 [12800/60000 (21%)]	Loss: 0.134410
Train Epoch: 4 [13440/60000 (22%)]	Loss: 0.143215
Train Epoch: 4 [14080/60000 (23%)]	Loss: 0.286758
Train Epoch: 4 [14720/60000 (25%)]	Loss: 0.213467
Train Epoch: 4 [15360/60000 (26%)]	Loss: 0.173835
Train Epoch: 4 [16000/60000 (27%)]	Loss: 0.199458
Train Epoch: 4 [16640/60000 (28%)]	Loss: 0.285372
Train Epoch: 4 [17280/60000 (29%)]	Loss: 0.280726
Train Epoch: 4 [17920/60000 (30%)]	Loss: 0.313475
Train Epoch: 4 [18560/60000 (31%)]	Loss: 0.294834
Train Epoch: 4 [19200/60000 (32%)]	Loss: 0.207383
Train Epoch: 4 [19840/60000 (33%)]	Loss: 0.219744
Train Epoch: 4 [20480/60000 (34%)]	Loss: 0.275060
Train Epoch: 4 [21120/60000 (35%)]	Loss: 0.468476
Train Epoch: 4 [21760/60000 (36%)]	Loss: 0.249823
Train Epoch: 4 [22400/60000 (37%)]	Loss: 0.473506
Train Epoch: 4 [23040/60000 (38%)]	Loss: 0.174089
Train Epoch: 4 [23680/60000 (39%)]	Loss: 0.181804
Train Epoch: 4 [24320/60000 (41%)]	Loss: 0.225974
Train Epoch: 4 [24960/60000 (42%)]	Loss: 0.214781
Train Epoch: 4 [25600/60000 (43%)]	Loss: 0.360860
Train Epoch: 4 [26240/60000 (44%)]	Loss: 0.292142
Train Epoch: 4 [26880/60000 (45%)]	Loss: 0.212564
Train Epoch: 4 [27520/60000 (46%)]	Loss: 0.421580
Train Epoch: 4 [28160/60000 (47%)]	Loss: 0.145797
Train Epoch: 4 [28800/60000 (48%)]	Loss: 0.186721
Train Epoch: 4 [29440/60000 (49%)]	Loss: 0.150159
Train Epoch: 4 [30080/60000 (50%)]	Loss: 0.378528
Train Epoch: 4 [30720/60000 (51%)]	Loss: 0.144539
Train Epoch: 4 [31360/60000 (52%)]	Loss: 0.226689
Train Epoch: 4 [32000/60000 (53%)]	Loss: 0.164089
Train Epoch: 4 [32640/60000 (54%)]	Loss: 0.304837
Train Epoch: 4 [33280/60000 (55%)]	Loss: 0.265629
Train Epoch: 4 [33920/60000 (57%)]	Loss: 0.287068
Train Epoch: 4 [34560/60000 (58%)]	Loss: 0.285403
Train Epoch: 4 [35200/60000 (59%)]	Loss: 0.269815
Train Epoch: 4 [35840/60000 (60%)]	Loss: 0.085518
Train Epoch: 4 [36480/60000 (61%)]	Loss: 0.420862
Train Epoch: 4 [37120/60000 (62%)]	Loss: 0.136135
Train Epoch: 4 [37760/60000 (63%)]	Loss: 0.299046
Train Epoch: 4 [38400/60000 (64%)]	Loss: 0.195031
Train Epoch: 4 [39040/60000 (65%)]	Loss: 0.193720
Train Epoch: 4 [39680/60000 (66%)]	Loss: 0.295083
Train Epoch: 4 [40320/60000 (67%)]	Loss: 0.329599
Train Epoch: 4 [40960/60000 (68%)]	Loss: 0.221367
Train Epoch: 4 [41600/60000 (69%)]	Loss: 0.352944
Train Epoch: 4 [42240/60000 (70%)]	Loss: 0.220328
Train Epoch: 4 [42880/60000 (71%)]	Loss: 0.427901
Train Epoch: 4 [43520/60000 (72%)]	Loss: 0.191625
Train Epoch: 4 [44160/60000 (74%)]	Loss: 0.222399
Train Epoch: 4 [44800/60000 (75%)]	Loss: 0.089040
Train Epoch: 4 [45440/60000 (76%)]	Loss: 0.169473
Train Epoch: 4 [46080/60000 (77%)]	Loss: 0.160626
Train Epoch: 4 [46720/60000 (78%)]	Loss: 0.215215
Train Epoch: 4 [47360/60000 (79%)]	Loss: 0.158428
Train Epoch: 4 [48000/60000 (80%)]	Loss: 0.158811
Train Epoch: 4 [48640/60000 (81%)]	Loss: 0.154177
Train Epoch: 4 [49280/60000 (82%)]	Loss: 0.264236
Train Epoch: 4 [49920/60000 (83%)]	Loss: 0.363211
Train Epoch: 4 [50560/60000 (84%)]	Loss: 0.147806
Train Epoch: 4 [51200/60000 (85%)]	Loss: 0.141175
Train Epoch: 4 [51840/60000 (86%)]	Loss: 0.275700
Train Epoch: 4 [52480/60000 (87%)]	Loss: 0.275807
Train Epoch: 4 [53120/60000 (88%)]	Loss: 0.471929
Train Epoch: 4 [53760/60000 (90%)]	Loss: 0.334664
Train Epoch: 4 [54400/60000 (91%)]	Loss: 0.189815
Train Epoch: 4 [55040/60000 (92%)]	Loss: 0.380074
Train Epoch: 4 [55680/60000 (93%)]	Loss: 0.143756
Train Epoch: 4 [56320/60000 (94%)]	Loss: 0.210418
Train Epoch: 4 [56960/60000 (95%)]	Loss: 0.074293
Train Epoch: 4 [57600/60000 (96%)]	Loss: 0.281315
Train Epoch: 4 [58240/60000 (97%)]	Loss: 0.431379
Train Epoch: 4 [58880/60000 (98%)]	Loss: 0.234782
Train Epoch: 4 [59520/60000 (99%)]	Loss: 0.443469

Test set: Average loss: 0.0001, Accuracy: 9744/10000 (97%)

Train Epoch: 5 [0/60000 (0%)]	Loss: 0.526699
Train Epoch: 5 [640/60000 (1%)]	Loss: 0.146328
Train Epoch: 5 [1280/60000 (2%)]	Loss: 0.267061
Train Epoch: 5 [1920/60000 (3%)]	Loss: 0.197870
Train Epoch: 5 [2560/60000 (4%)]	Loss: 0.365284
Train Epoch: 5 [3200/60000 (5%)]	Loss: 0.405225
Train Epoch: 5 [3840/60000 (6%)]	Loss: 0.393590
Train Epoch: 5 [4480/60000 (7%)]	Loss: 0.301428
Train Epoch: 5 [5120/60000 (9%)]	Loss: 0.172054
Train Epoch: 5 [5760/60000 (10%)]	Loss: 0.321626
Train Epoch: 5 [6400/60000 (11%)]	Loss: 0.132384
Train Epoch: 5 [7040/60000 (12%)]	Loss: 0.233974
Train Epoch: 5 [7680/60000 (13%)]	Loss: 0.377445
Train Epoch: 5 [8320/60000 (14%)]	Loss: 0.168215
Train Epoch: 5 [8960/60000 (15%)]	Loss: 0.131074
Train Epoch: 5 [9600/60000 (16%)]	Loss: 0.324022
Train Epoch: 5 [10240/60000 (17%)]	Loss: 0.171283
Train Epoch: 5 [10880/60000 (18%)]	Loss: 0.090830
Train Epoch: 5 [11520/60000 (19%)]	Loss: 0.382126
Train Epoch: 5 [12160/60000 (20%)]	Loss: 0.131575
Train Epoch: 5 [12800/60000 (21%)]	Loss: 0.201085
Train Epoch: 5 [13440/60000 (22%)]	Loss: 0.260417
Train Epoch: 5 [14080/60000 (23%)]	Loss: 0.209992
Train Epoch: 5 [14720/60000 (25%)]	Loss: 0.284642
Train Epoch: 5 [15360/60000 (26%)]	Loss: 0.217786
Train Epoch: 5 [16000/60000 (27%)]	Loss: 0.237606
Train Epoch: 5 [16640/60000 (28%)]	Loss: 0.222922
Train Epoch: 5 [17280/60000 (29%)]	Loss: 0.181022
Train Epoch: 5 [17920/60000 (30%)]	Loss: 0.223055
Train Epoch: 5 [18560/60000 (31%)]	Loss: 0.251572
Train Epoch: 5 [19200/60000 (32%)]	Loss: 0.305420
Train Epoch: 5 [19840/60000 (33%)]	Loss: 0.134483
Train Epoch: 5 [20480/60000 (34%)]	Loss: 0.146125
Train Epoch: 5 [21120/60000 (35%)]	Loss: 0.343406
Train Epoch: 5 [21760/60000 (36%)]	Loss: 0.265331
Train Epoch: 5 [22400/60000 (37%)]	Loss: 0.228911
Train Epoch: 5 [23040/60000 (38%)]	Loss: 0.142105
Train Epoch: 5 [23680/60000 (39%)]	Loss: 0.202304
Train Epoch: 5 [24320/60000 (41%)]	Loss: 0.246190
Train Epoch: 5 [24960/60000 (42%)]	Loss: 0.240228
Train Epoch: 5 [25600/60000 (43%)]	Loss: 0.192894
Train Epoch: 5 [26240/60000 (44%)]	Loss: 0.173004
Train Epoch: 5 [26880/60000 (45%)]	Loss: 0.163632
Train Epoch: 5 [27520/60000 (46%)]	Loss: 0.146411
Train Epoch: 5 [28160/60000 (47%)]	Loss: 0.426880
Train Epoch: 5 [28800/60000 (48%)]	Loss: 0.123550
Train Epoch: 5 [29440/60000 (49%)]	Loss: 0.302521
Train Epoch: 5 [30080/60000 (50%)]	Loss: 0.125200
Train Epoch: 5 [30720/60000 (51%)]	Loss: 0.138874
Train Epoch: 5 [31360/60000 (52%)]	Loss: 0.073579
Train Epoch: 5 [32000/60000 (53%)]	Loss: 0.245884
Train Epoch: 5 [32640/60000 (54%)]	Loss: 0.272967
Train Epoch: 5 [33280/60000 (55%)]	Loss: 0.331716
Train Epoch: 5 [33920/60000 (57%)]	Loss: 0.282765
Train Epoch: 5 [34560/60000 (58%)]	Loss: 0.087803
Train Epoch: 5 [35200/60000 (59%)]	Loss: 0.217498
Train Epoch: 5 [35840/60000 (60%)]	Loss: 0.137978
Train Epoch: 5 [36480/60000 (61%)]	Loss: 0.173309
Train Epoch: 5 [37120/60000 (62%)]	Loss: 0.279590
Train Epoch: 5 [37760/60000 (63%)]	Loss: 0.263498
Train Epoch: 5 [38400/60000 (64%)]	Loss: 0.181718
Train Epoch: 5 [39040/60000 (65%)]	Loss: 0.255031
Train Epoch: 5 [39680/60000 (66%)]	Loss: 0.097662
Train Epoch: 5 [40320/60000 (67%)]	Loss: 0.288037
Train Epoch: 5 [40960/60000 (68%)]	Loss: 0.351782
Train Epoch: 5 [41600/60000 (69%)]	Loss: 0.247443
Train Epoch: 5 [42240/60000 (70%)]	Loss: 0.121090
Train Epoch: 5 [42880/60000 (71%)]	Loss: 0.247940
Train Epoch: 5 [43520/60000 (72%)]	Loss: 0.095442
Train Epoch: 5 [44160/60000 (74%)]	Loss: 0.327494
Train Epoch: 5 [44800/60000 (75%)]	Loss: 0.210919
Train Epoch: 5 [45440/60000 (76%)]	Loss: 0.308306
Train Epoch: 5 [46080/60000 (77%)]	Loss: 0.283116
Train Epoch: 5 [46720/60000 (78%)]	Loss: 0.322720
Train Epoch: 5 [47360/60000 (79%)]	Loss: 0.141194
Train Epoch: 5 [48000/60000 (80%)]	Loss: 0.155493
Train Epoch: 5 [48640/60000 (81%)]	Loss: 0.279040
Train Epoch: 5 [49280/60000 (82%)]	Loss: 0.143175
Train Epoch: 5 [49920/60000 (83%)]	Loss: 0.186716
Train Epoch: 5 [50560/60000 (84%)]	Loss: 0.148668
Train Epoch: 5 [51200/60000 (85%)]	Loss: 0.187844
Train Epoch: 5 [51840/60000 (86%)]	Loss: 0.330497
Train Epoch: 5 [52480/60000 (87%)]	Loss: 0.350030
Train Epoch: 5 [53120/60000 (88%)]	Loss: 0.300682
Train Epoch: 5 [53760/60000 (90%)]	Loss: 0.188495
Train Epoch: 5 [54400/60000 (91%)]	Loss: 0.231396
Train Epoch: 5 [55040/60000 (92%)]	Loss: 0.180557
Train Epoch: 5 [55680/60000 (93%)]	Loss: 0.145958
Train Epoch: 5 [56320/60000 (94%)]	Loss: 0.422280
Train Epoch: 5 [56960/60000 (95%)]	Loss: 0.135156
Train Epoch: 5 [57600/60000 (96%)]	Loss: 0.201596
Train Epoch: 5 [58240/60000 (97%)]	Loss: 0.251806
Train Epoch: 5 [58880/60000 (98%)]	Loss: 0.355534
Train Epoch: 5 [59520/60000 (99%)]	Loss: 0.289681

Test set: Average loss: 0.0001, Accuracy: 9757/10000 (98%)

Train Epoch: 6 [0/60000 (0%)]	Loss: 0.241769
Train Epoch: 6 [640/60000 (1%)]	Loss: 0.204252
Train Epoch: 6 [1280/60000 (2%)]	Loss: 0.337168
Train Epoch: 6 [1920/60000 (3%)]	Loss: 0.192640
Train Epoch: 6 [2560/60000 (4%)]	Loss: 0.167889
Train Epoch: 6 [3200/60000 (5%)]	Loss: 0.206232
Train Epoch: 6 [3840/60000 (6%)]	Loss: 0.158683
Train Epoch: 6 [4480/60000 (7%)]	Loss: 0.264739
Train Epoch: 6 [5120/60000 (9%)]	Loss: 0.226367
Train Epoch: 6 [5760/60000 (10%)]	Loss: 0.064817
Train Epoch: 6 [6400/60000 (11%)]	Loss: 0.244415
Train Epoch: 6 [7040/60000 (12%)]	Loss: 0.208979
Train Epoch: 6 [7680/60000 (13%)]	Loss: 0.157422
Train Epoch: 6 [8320/60000 (14%)]	Loss: 0.271373
Train Epoch: 6 [8960/60000 (15%)]	Loss: 0.200890
Train Epoch: 6 [9600/60000 (16%)]	Loss: 0.223573
Train Epoch: 6 [10240/60000 (17%)]	Loss: 0.272707
Train Epoch: 6 [10880/60000 (18%)]	Loss: 0.106059
Train Epoch: 6 [11520/60000 (19%)]	Loss: 0.234719
Train Epoch: 6 [12160/60000 (20%)]	Loss: 0.153302
Train Epoch: 6 [12800/60000 (21%)]	Loss: 0.286034
Train Epoch: 6 [13440/60000 (22%)]	Loss: 0.205256
Train Epoch: 6 [14080/60000 (23%)]	Loss: 0.225036
Train Epoch: 6 [14720/60000 (25%)]	Loss: 0.177635
Train Epoch: 6 [15360/60000 (26%)]	Loss: 0.355354
Train Epoch: 6 [16000/60000 (27%)]	Loss: 0.131433
Train Epoch: 6 [16640/60000 (28%)]	Loss: 0.120960
Train Epoch: 6 [17280/60000 (29%)]	Loss: 0.204652
Train Epoch: 6 [17920/60000 (30%)]	Loss: 0.229926
Train Epoch: 6 [18560/60000 (31%)]	Loss: 0.174806
Train Epoch: 6 [19200/60000 (32%)]	Loss: 0.183799
Train Epoch: 6 [19840/60000 (33%)]	Loss: 0.239440
Train Epoch: 6 [20480/60000 (34%)]	Loss: 0.385592
Train Epoch: 6 [21120/60000 (35%)]	Loss: 0.417520
Train Epoch: 6 [21760/60000 (36%)]	Loss: 0.220968
Train Epoch: 6 [22400/60000 (37%)]	Loss: 0.175077
Train Epoch: 6 [23040/60000 (38%)]	Loss: 0.141992
Train Epoch: 6 [23680/60000 (39%)]	Loss: 0.153215
Train Epoch: 6 [24320/60000 (41%)]	Loss: 0.212310
Train Epoch: 6 [24960/60000 (42%)]	Loss: 0.133514
Train Epoch: 6 [25600/60000 (43%)]	Loss: 0.261122
Train Epoch: 6 [26240/60000 (44%)]	Loss: 0.283612
Train Epoch: 6 [26880/60000 (45%)]	Loss: 0.394510
Train Epoch: 6 [27520/60000 (46%)]	Loss: 0.078062
Train Epoch: 6 [28160/60000 (47%)]	Loss: 0.190539
Train Epoch: 6 [28800/60000 (48%)]	Loss: 0.164226
Train Epoch: 6 [29440/60000 (49%)]	Loss: 0.191821
Train Epoch: 6 [30080/60000 (50%)]	Loss: 0.201779
Train Epoch: 6 [30720/60000 (51%)]	Loss: 0.123816
Train Epoch: 6 [31360/60000 (52%)]	Loss: 0.080671
Train Epoch: 6 [32000/60000 (53%)]	Loss: 0.139634
Train Epoch: 6 [32640/60000 (54%)]	Loss: 0.216230
Train Epoch: 6 [33280/60000 (55%)]	Loss: 0.210472
Train Epoch: 6 [33920/60000 (57%)]	Loss: 0.089774
Train Epoch: 6 [34560/60000 (58%)]	Loss: 0.188745
Train Epoch: 6 [35200/60000 (59%)]	Loss: 0.281396
Train Epoch: 6 [35840/60000 (60%)]	Loss: 0.220271
Train Epoch: 6 [36480/60000 (61%)]	Loss: 0.268656
Train Epoch: 6 [37120/60000 (62%)]	Loss: 0.523529
Train Epoch: 6 [37760/60000 (63%)]	Loss: 0.378742
Train Epoch: 6 [38400/60000 (64%)]	Loss: 0.280642
Train Epoch: 6 [39040/60000 (65%)]	Loss: 0.296551
Train Epoch: 6 [39680/60000 (66%)]	Loss: 0.205661
Train Epoch: 6 [40320/60000 (67%)]	Loss: 0.201317
Train Epoch: 6 [40960/60000 (68%)]	Loss: 0.110486
Train Epoch: 6 [41600/60000 (69%)]	Loss: 0.112068
Train Epoch: 6 [42240/60000 (70%)]	Loss: 0.174746
Train Epoch: 6 [42880/60000 (71%)]	Loss: 0.241495
Train Epoch: 6 [43520/60000 (72%)]	Loss: 0.303549
Train Epoch: 6 [44160/60000 (74%)]	Loss: 0.142237
Train Epoch: 6 [44800/60000 (75%)]	Loss: 0.148537
Train Epoch: 6 [45440/60000 (76%)]	Loss: 0.169703
Train Epoch: 6 [46080/60000 (77%)]	Loss: 0.295839
Train Epoch: 6 [46720/60000 (78%)]	Loss: 0.077247
Train Epoch: 6 [47360/60000 (79%)]	Loss: 0.156170
Train Epoch: 6 [48000/60000 (80%)]	Loss: 0.221277
Train Epoch: 6 [48640/60000 (81%)]	Loss: 0.313294
Train Epoch: 6 [49280/60000 (82%)]	Loss: 0.226801
Train Epoch: 6 [49920/60000 (83%)]	Loss: 0.179619
Train Epoch: 6 [50560/60000 (84%)]	Loss: 0.325818
Train Epoch: 6 [51200/60000 (85%)]	Loss: 0.122626
Train Epoch: 6 [51840/60000 (86%)]	Loss: 0.110798
Train Epoch: 6 [52480/60000 (87%)]	Loss: 0.142486
Train Epoch: 6 [53120/60000 (88%)]	Loss: 0.464635
Train Epoch: 6 [53760/60000 (90%)]	Loss: 0.331677
Train Epoch: 6 [54400/60000 (91%)]	Loss: 0.210523
Train Epoch: 6 [55040/60000 (92%)]	Loss: 0.273049
Train Epoch: 6 [55680/60000 (93%)]	Loss: 0.148325
Train Epoch: 6 [56320/60000 (94%)]	Loss: 0.261807
Train Epoch: 6 [56960/60000 (95%)]	Loss: 0.083502
Train Epoch: 6 [57600/60000 (96%)]	Loss: 0.143875
Train Epoch: 6 [58240/60000 (97%)]	Loss: 0.171255
Train Epoch: 6 [58880/60000 (98%)]	Loss: 0.261712
Train Epoch: 6 [59520/60000 (99%)]	Loss: 0.249309

Test set: Average loss: 0.0001, Accuracy: 9785/10000 (98%)

Train Epoch: 7 [0/60000 (0%)]	Loss: 0.215102
Train Epoch: 7 [640/60000 (1%)]	Loss: 0.131275
Train Epoch: 7 [1280/60000 (2%)]	Loss: 0.069194
Train Epoch: 7 [1920/60000 (3%)]	Loss: 0.104071
Train Epoch: 7 [2560/60000 (4%)]	Loss: 0.179451
Train Epoch: 7 [3200/60000 (5%)]	Loss: 0.248513
Train Epoch: 7 [3840/60000 (6%)]	Loss: 0.173441
Train Epoch: 7 [4480/60000 (7%)]	Loss: 0.243722
Train Epoch: 7 [5120/60000 (9%)]	Loss: 0.198971
Train Epoch: 7 [5760/60000 (10%)]	Loss: 0.101612
Train Epoch: 7 [6400/60000 (11%)]	Loss: 0.232090
Train Epoch: 7 [7040/60000 (12%)]	Loss: 0.315571
Train Epoch: 7 [7680/60000 (13%)]	Loss: 0.239443
Train Epoch: 7 [8320/60000 (14%)]	Loss: 0.340601
Train Epoch: 7 [8960/60000 (15%)]	Loss: 0.050898
Train Epoch: 7 [9600/60000 (16%)]	Loss: 0.194004
Train Epoch: 7 [10240/60000 (17%)]	Loss: 0.136828
Train Epoch: 7 [10880/60000 (18%)]	Loss: 0.258005
Train Epoch: 7 [11520/60000 (19%)]	Loss: 0.409187
Train Epoch: 7 [12160/60000 (20%)]	Loss: 0.131922
Train Epoch: 7 [12800/60000 (21%)]	Loss: 0.178241
Train Epoch: 7 [13440/60000 (22%)]	Loss: 0.068387
Train Epoch: 7 [14080/60000 (23%)]	Loss: 0.417622
Train Epoch: 7 [14720/60000 (25%)]	Loss: 0.141857
Train Epoch: 7 [15360/60000 (26%)]	Loss: 0.475218
Train Epoch: 7 [16000/60000 (27%)]	Loss: 0.331239
Train Epoch: 7 [16640/60000 (28%)]	Loss: 0.218433
Train Epoch: 7 [17280/60000 (29%)]	Loss: 0.087861
Train Epoch: 7 [17920/60000 (30%)]	Loss: 0.185781
Train Epoch: 7 [18560/60000 (31%)]	Loss: 0.123277
Train Epoch: 7 [19200/60000 (32%)]	Loss: 0.116893
Train Epoch: 7 [19840/60000 (33%)]	Loss: 0.167921
Train Epoch: 7 [20480/60000 (34%)]	Loss: 0.205522
Train Epoch: 7 [21120/60000 (35%)]	Loss: 0.136235
Train Epoch: 7 [21760/60000 (36%)]	Loss: 0.284596
Train Epoch: 7 [22400/60000 (37%)]	Loss: 0.226520
Train Epoch: 7 [23040/60000 (38%)]	Loss: 0.158972
Train Epoch: 7 [23680/60000 (39%)]	Loss: 0.201735
Train Epoch: 7 [24320/60000 (41%)]	Loss: 0.196866
Train Epoch: 7 [24960/60000 (42%)]	Loss: 0.348597
Train Epoch: 7 [25600/60000 (43%)]	Loss: 0.282424
Train Epoch: 7 [26240/60000 (44%)]	Loss: 0.118476
Train Epoch: 7 [26880/60000 (45%)]	Loss: 0.158547
Train Epoch: 7 [27520/60000 (46%)]	Loss: 0.187790
Train Epoch: 7 [28160/60000 (47%)]	Loss: 0.107565
Train Epoch: 7 [28800/60000 (48%)]	Loss: 0.105622
Train Epoch: 7 [29440/60000 (49%)]	Loss: 0.355571
Train Epoch: 7 [30080/60000 (50%)]	Loss: 0.269021
Train Epoch: 7 [30720/60000 (51%)]	Loss: 0.091620
Train Epoch: 7 [31360/60000 (52%)]	Loss: 0.129190
Train Epoch: 7 [32000/60000 (53%)]	Loss: 0.192322
Train Epoch: 7 [32640/60000 (54%)]	Loss: 0.290810
Train Epoch: 7 [33280/60000 (55%)]	Loss: 0.167235
Train Epoch: 7 [33920/60000 (57%)]	Loss: 0.086800
Train Epoch: 7 [34560/60000 (58%)]	Loss: 0.135100
Train Epoch: 7 [35200/60000 (59%)]	Loss: 0.227101
Train Epoch: 7 [35840/60000 (60%)]	Loss: 0.248887
Train Epoch: 7 [36480/60000 (61%)]	Loss: 0.294561
Train Epoch: 7 [37120/60000 (62%)]	Loss: 0.230433
Train Epoch: 7 [37760/60000 (63%)]	Loss: 0.150416
Train Epoch: 7 [38400/60000 (64%)]	Loss: 0.104069
Train Epoch: 7 [39040/60000 (65%)]	Loss: 0.106915
Train Epoch: 7 [39680/60000 (66%)]	Loss: 0.372378
Train Epoch: 7 [40320/60000 (67%)]	Loss: 0.207565
Train Epoch: 7 [40960/60000 (68%)]	Loss: 0.065137
Train Epoch: 7 [41600/60000 (69%)]	Loss: 0.347302
Train Epoch: 7 [42240/60000 (70%)]	Loss: 0.172198
Train Epoch: 7 [42880/60000 (71%)]	Loss: 0.109692
Train Epoch: 7 [43520/60000 (72%)]	Loss: 0.080982
Train Epoch: 7 [44160/60000 (74%)]	Loss: 0.080288
Train Epoch: 7 [44800/60000 (75%)]	Loss: 0.151189
Train Epoch: 7 [45440/60000 (76%)]	Loss: 0.151043
Train Epoch: 7 [46080/60000 (77%)]	Loss: 0.120681
Train Epoch: 7 [46720/60000 (78%)]	Loss: 0.073592
Train Epoch: 7 [47360/60000 (79%)]	Loss: 0.282301
Train Epoch: 7 [48000/60000 (80%)]	Loss: 0.146001
Train Epoch: 7 [48640/60000 (81%)]	Loss: 0.269991
Train Epoch: 7 [49280/60000 (82%)]	Loss: 0.242981
Train Epoch: 7 [49920/60000 (83%)]	Loss: 0.067744
Train Epoch: 7 [50560/60000 (84%)]	Loss: 0.283833
Train Epoch: 7 [51200/60000 (85%)]	Loss: 0.322808
Train Epoch: 7 [51840/60000 (86%)]	Loss: 0.268276
Train Epoch: 7 [52480/60000 (87%)]	Loss: 0.141551
Train Epoch: 7 [53120/60000 (88%)]	Loss: 0.196744
Train Epoch: 7 [53760/60000 (90%)]	Loss: 0.332197
Train Epoch: 7 [54400/60000 (91%)]	Loss: 0.309745
Train Epoch: 7 [55040/60000 (92%)]	Loss: 0.149245
Train Epoch: 7 [55680/60000 (93%)]	Loss: 0.177063
Train Epoch: 7 [56320/60000 (94%)]	Loss: 0.076496
Train Epoch: 7 [56960/60000 (95%)]	Loss: 0.098253
Train Epoch: 7 [57600/60000 (96%)]	Loss: 0.323857
Train Epoch: 7 [58240/60000 (97%)]	Loss: 0.147353
Train Epoch: 7 [58880/60000 (98%)]	Loss: 0.205689
Train Epoch: 7 [59520/60000 (99%)]	Loss: 0.228839

Test set: Average loss: 0.0001, Accuracy: 9795/10000 (98%)

Train Epoch: 8 [0/60000 (0%)]	Loss: 0.292745
Train Epoch: 8 [640/60000 (1%)]	Loss: 0.120792
Train Epoch: 8 [1280/60000 (2%)]	Loss: 0.135363
Train Epoch: 8 [1920/60000 (3%)]	Loss: 0.164676
Train Epoch: 8 [2560/60000 (4%)]	Loss: 0.114712
Train Epoch: 8 [3200/60000 (5%)]	Loss: 0.287538
Train Epoch: 8 [3840/60000 (6%)]	Loss: 0.117525
Train Epoch: 8 [4480/60000 (7%)]	Loss: 0.151503
Train Epoch: 8 [5120/60000 (9%)]	Loss: 0.068311
Train Epoch: 8 [5760/60000 (10%)]	Loss: 0.173197
Train Epoch: 8 [6400/60000 (11%)]	Loss: 0.277148
Train Epoch: 8 [7040/60000 (12%)]	Loss: 0.074069
Train Epoch: 8 [7680/60000 (13%)]	Loss: 0.364987
Train Epoch: 8 [8320/60000 (14%)]	Loss: 0.072494
Train Epoch: 8 [8960/60000 (15%)]	Loss: 0.136759
Train Epoch: 8 [9600/60000 (16%)]	Loss: 0.296852
Train Epoch: 8 [10240/60000 (17%)]	Loss: 0.103341
Train Epoch: 8 [10880/60000 (18%)]	Loss: 0.150845
Train Epoch: 8 [11520/60000 (19%)]	Loss: 0.081442
Train Epoch: 8 [12160/60000 (20%)]	Loss: 0.156578
Train Epoch: 8 [12800/60000 (21%)]	Loss: 0.177557
Train Epoch: 8 [13440/60000 (22%)]	Loss: 0.250457
Train Epoch: 8 [14080/60000 (23%)]	Loss: 0.136040
Train Epoch: 8 [14720/60000 (25%)]	Loss: 0.134271
Train Epoch: 8 [15360/60000 (26%)]	Loss: 0.276332
Train Epoch: 8 [16000/60000 (27%)]	Loss: 0.218526
Train Epoch: 8 [16640/60000 (28%)]	Loss: 0.222499
Train Epoch: 8 [17280/60000 (29%)]	Loss: 0.077347
Train Epoch: 8 [17920/60000 (30%)]	Loss: 0.151819
Train Epoch: 8 [18560/60000 (31%)]	Loss: 0.219843
Train Epoch: 8 [19200/60000 (32%)]	Loss: 0.190889
Train Epoch: 8 [19840/60000 (33%)]	Loss: 0.099739
Train Epoch: 8 [20480/60000 (34%)]	Loss: 0.285653
Train Epoch: 8 [21120/60000 (35%)]	Loss: 0.120615
Train Epoch: 8 [21760/60000 (36%)]	Loss: 0.179479
Train Epoch: 8 [22400/60000 (37%)]	Loss: 0.217448
Train Epoch: 8 [23040/60000 (38%)]	Loss: 0.125785
Train Epoch: 8 [23680/60000 (39%)]	Loss: 0.154384
Train Epoch: 8 [24320/60000 (41%)]	Loss: 0.103312
Train Epoch: 8 [24960/60000 (42%)]	Loss: 0.116148
Train Epoch: 8 [25600/60000 (43%)]	Loss: 0.226390
Train Epoch: 8 [26240/60000 (44%)]	Loss: 0.098650
Train Epoch: 8 [26880/60000 (45%)]	Loss: 0.202164
Train Epoch: 8 [27520/60000 (46%)]	Loss: 0.100702
Train Epoch: 8 [28160/60000 (47%)]	Loss: 0.292449
Train Epoch: 8 [28800/60000 (48%)]	Loss: 0.085550
Train Epoch: 8 [29440/60000 (49%)]	Loss: 0.132873
Train Epoch: 8 [30080/60000 (50%)]	Loss: 0.140347
Train Epoch: 8 [30720/60000 (51%)]	Loss: 0.104647
Train Epoch: 8 [31360/60000 (52%)]	Loss: 0.081841
Train Epoch: 8 [32000/60000 (53%)]	Loss: 0.156113
Train Epoch: 8 [32640/60000 (54%)]	Loss: 0.318736
Train Epoch: 8 [33280/60000 (55%)]	Loss: 0.085701
Train Epoch: 8 [33920/60000 (57%)]	Loss: 0.088705
Train Epoch: 8 [34560/60000 (58%)]	Loss: 0.342402
Train Epoch: 8 [35200/60000 (59%)]	Loss: 0.166592
Train Epoch: 8 [35840/60000 (60%)]	Loss: 0.065936
Train Epoch: 8 [36480/60000 (61%)]	Loss: 0.288784
Train Epoch: 8 [37120/60000 (62%)]	Loss: 0.344001
Train Epoch: 8 [37760/60000 (63%)]	Loss: 0.125484
Train Epoch: 8 [38400/60000 (64%)]	Loss: 0.148977
Train Epoch: 8 [39040/60000 (65%)]	Loss: 0.086165
Train Epoch: 8 [39680/60000 (66%)]	Loss: 0.211954
Train Epoch: 8 [40320/60000 (67%)]	Loss: 0.328222
Train Epoch: 8 [40960/60000 (68%)]	Loss: 0.369507
Train Epoch: 8 [41600/60000 (69%)]	Loss: 0.061260
Train Epoch: 8 [42240/60000 (70%)]	Loss: 0.102083
Train Epoch: 8 [42880/60000 (71%)]	Loss: 0.154937
Train Epoch: 8 [43520/60000 (72%)]	Loss: 0.136727
Train Epoch: 8 [44160/60000 (74%)]	Loss: 0.241387
Train Epoch: 8 [44800/60000 (75%)]	Loss: 0.115584
Train Epoch: 8 [45440/60000 (76%)]	Loss: 0.161828
Train Epoch: 8 [46080/60000 (77%)]	Loss: 0.145702
Train Epoch: 8 [46720/60000 (78%)]	Loss: 0.189414
Train Epoch: 8 [47360/60000 (79%)]	Loss: 0.219590
Train Epoch: 8 [48000/60000 (80%)]	Loss: 0.297140
Train Epoch: 8 [48640/60000 (81%)]	Loss: 0.058468
Train Epoch: 8 [49280/60000 (82%)]	Loss: 0.333354
Train Epoch: 8 [49920/60000 (83%)]	Loss: 0.143101
Train Epoch: 8 [50560/60000 (84%)]	Loss: 0.219106
Train Epoch: 8 [51200/60000 (85%)]	Loss: 0.124515
Train Epoch: 8 [51840/60000 (86%)]	Loss: 0.080556
Train Epoch: 8 [52480/60000 (87%)]	Loss: 0.220966
Train Epoch: 8 [53120/60000 (88%)]	Loss: 0.066355
Train Epoch: 8 [53760/60000 (90%)]	Loss: 0.171026
Train Epoch: 8 [54400/60000 (91%)]	Loss: 0.161316
Train Epoch: 8 [55040/60000 (92%)]	Loss: 0.153295
Train Epoch: 8 [55680/60000 (93%)]	Loss: 0.348095
Train Epoch: 8 [56320/60000 (94%)]	Loss: 0.129968
Train Epoch: 8 [56960/60000 (95%)]	Loss: 0.259951
Train Epoch: 8 [57600/60000 (96%)]	Loss: 0.173553
Train Epoch: 8 [58240/60000 (97%)]	Loss: 0.305707
Train Epoch: 8 [58880/60000 (98%)]	Loss: 0.099230
Train Epoch: 8 [59520/60000 (99%)]	Loss: 0.212924

Test set: Average loss: 0.0001, Accuracy: 9816/10000 (98%)

Train Epoch: 9 [0/60000 (0%)]	Loss: 0.079323
Train Epoch: 9 [640/60000 (1%)]	Loss: 0.286593
Train Epoch: 9 [1280/60000 (2%)]	Loss: 0.085763
Train Epoch: 9 [1920/60000 (3%)]	Loss: 0.265807
Train Epoch: 9 [2560/60000 (4%)]	Loss: 0.145771
Train Epoch: 9 [3200/60000 (5%)]	Loss: 0.112922
Train Epoch: 9 [3840/60000 (6%)]	Loss: 0.200996
Train Epoch: 9 [4480/60000 (7%)]	Loss: 0.142001
Train Epoch: 9 [5120/60000 (9%)]	Loss: 0.171615
Train Epoch: 9 [5760/60000 (10%)]	Loss: 0.219111
Train Epoch: 9 [6400/60000 (11%)]	Loss: 0.121241
Train Epoch: 9 [7040/60000 (12%)]	Loss: 0.165811
Train Epoch: 9 [7680/60000 (13%)]	Loss: 0.107933
Train Epoch: 9 [8320/60000 (14%)]	Loss: 0.469319
Train Epoch: 9 [8960/60000 (15%)]	Loss: 0.155425
Train Epoch: 9 [9600/60000 (16%)]	Loss: 0.260249
Train Epoch: 9 [10240/60000 (17%)]	Loss: 0.249099
Train Epoch: 9 [10880/60000 (18%)]	Loss: 0.108027
Train Epoch: 9 [11520/60000 (19%)]	Loss: 0.295349
Train Epoch: 9 [12160/60000 (20%)]	Loss: 0.229297
Train Epoch: 9 [12800/60000 (21%)]	Loss: 0.170714
Train Epoch: 9 [13440/60000 (22%)]	Loss: 0.130689
Train Epoch: 9 [14080/60000 (23%)]	Loss: 0.160045
Train Epoch: 9 [14720/60000 (25%)]	Loss: 0.096786
Train Epoch: 9 [15360/60000 (26%)]	Loss: 0.343305
Train Epoch: 9 [16000/60000 (27%)]	Loss: 0.089230
Train Epoch: 9 [16640/60000 (28%)]	Loss: 0.087048
Train Epoch: 9 [17280/60000 (29%)]	Loss: 0.222524
Train Epoch: 9 [17920/60000 (30%)]	Loss: 0.196789
Train Epoch: 9 [18560/60000 (31%)]	Loss: 0.139464
Train Epoch: 9 [19200/60000 (32%)]	Loss: 0.364201
Train Epoch: 9 [19840/60000 (33%)]	Loss: 0.184264
Train Epoch: 9 [20480/60000 (34%)]	Loss: 0.358588
Train Epoch: 9 [21120/60000 (35%)]	Loss: 0.117137
Train Epoch: 9 [21760/60000 (36%)]	Loss: 0.145588
Train Epoch: 9 [22400/60000 (37%)]	Loss: 0.168730
Train Epoch: 9 [23040/60000 (38%)]	Loss: 0.209654
Train Epoch: 9 [23680/60000 (39%)]	Loss: 0.086675
Train Epoch: 9 [24320/60000 (41%)]	Loss: 0.239534
Train Epoch: 9 [24960/60000 (42%)]	Loss: 0.212524
Train Epoch: 9 [25600/60000 (43%)]	Loss: 0.254639
Train Epoch: 9 [26240/60000 (44%)]	Loss: 0.229474
Train Epoch: 9 [26880/60000 (45%)]	Loss: 0.203544
Train Epoch: 9 [27520/60000 (46%)]	Loss: 0.193628
Train Epoch: 9 [28160/60000 (47%)]	Loss: 0.208155
Train Epoch: 9 [28800/60000 (48%)]	Loss: 0.141017
Train Epoch: 9 [29440/60000 (49%)]	Loss: 0.094801
Train Epoch: 9 [30080/60000 (50%)]	Loss: 0.296131
Train Epoch: 9 [30720/60000 (51%)]	Loss: 0.159564
Train Epoch: 9 [31360/60000 (52%)]	Loss: 0.100721
Train Epoch: 9 [32000/60000 (53%)]	Loss: 0.229705
Train Epoch: 9 [32640/60000 (54%)]	Loss: 0.429516
Train Epoch: 9 [33280/60000 (55%)]	Loss: 0.332226
Train Epoch: 9 [33920/60000 (57%)]	Loss: 0.168803
Train Epoch: 9 [34560/60000 (58%)]	Loss: 0.173486
Train Epoch: 9 [35200/60000 (59%)]	Loss: 0.135947
Train Epoch: 9 [35840/60000 (60%)]	Loss: 0.127091
Train Epoch: 9 [36480/60000 (61%)]	Loss: 0.297337
Train Epoch: 9 [37120/60000 (62%)]	Loss: 0.156834
Train Epoch: 9 [37760/60000 (63%)]	Loss: 0.405716
Train Epoch: 9 [38400/60000 (64%)]	Loss: 0.134249
Train Epoch: 9 [39040/60000 (65%)]	Loss: 0.082479
Train Epoch: 9 [39680/60000 (66%)]	Loss: 0.122936
Train Epoch: 9 [40320/60000 (67%)]	Loss: 0.137343
Train Epoch: 9 [40960/60000 (68%)]	Loss: 0.108289
Train Epoch: 9 [41600/60000 (69%)]	Loss: 0.098429
Train Epoch: 9 [42240/60000 (70%)]	Loss: 0.067356
Train Epoch: 9 [42880/60000 (71%)]	Loss: 0.110135
Train Epoch: 9 [43520/60000 (72%)]	Loss: 0.096491
Train Epoch: 9 [44160/60000 (74%)]	Loss: 0.253454
Train Epoch: 9 [44800/60000 (75%)]	Loss: 0.157230
Train Epoch: 9 [45440/60000 (76%)]	Loss: 0.169301
Train Epoch: 9 [46080/60000 (77%)]	Loss: 0.141514
Train Epoch: 9 [46720/60000 (78%)]	Loss: 0.212609
Train Epoch: 9 [47360/60000 (79%)]	Loss: 0.108132
Train Epoch: 9 [48000/60000 (80%)]	Loss: 0.128629
Train Epoch: 9 [48640/60000 (81%)]	Loss: 0.163764
Train Epoch: 9 [49280/60000 (82%)]	Loss: 0.119731
Train Epoch: 9 [49920/60000 (83%)]	Loss: 0.154034
Train Epoch: 9 [50560/60000 (84%)]	Loss: 0.152267
Train Epoch: 9 [51200/60000 (85%)]	Loss: 0.053886
Train Epoch: 9 [51840/60000 (86%)]	Loss: 0.108673
Train Epoch: 9 [52480/60000 (87%)]	Loss: 0.124303
Train Epoch: 9 [53120/60000 (88%)]	Loss: 0.204565
Train Epoch: 9 [53760/60000 (90%)]	Loss: 0.187487
Train Epoch: 9 [54400/60000 (91%)]	Loss: 0.133514
Train Epoch: 9 [55040/60000 (92%)]	Loss: 0.137428
Train Epoch: 9 [55680/60000 (93%)]	Loss: 0.050837
Train Epoch: 9 [56320/60000 (94%)]	Loss: 0.205850
Train Epoch: 9 [56960/60000 (95%)]	Loss: 0.175952
Train Epoch: 9 [57600/60000 (96%)]	Loss: 0.305810
Train Epoch: 9 [58240/60000 (97%)]	Loss: 0.101633
Train Epoch: 9 [58880/60000 (98%)]	Loss: 0.105160
Train Epoch: 9 [59520/60000 (99%)]	Loss: 0.315622

Test set: Average loss: 0.0001, Accuracy: 9834/10000 (98%)

Train Epoch: 10 [0/60000 (0%)]	Loss: 0.097688
Train Epoch: 10 [640/60000 (1%)]	Loss: 0.118289
Train Epoch: 10 [1280/60000 (2%)]	Loss: 0.113985
Train Epoch: 10 [1920/60000 (3%)]	Loss: 0.199488
Train Epoch: 10 [2560/60000 (4%)]	Loss: 0.348783
Train Epoch: 10 [3200/60000 (5%)]	Loss: 0.130896
Train Epoch: 10 [3840/60000 (6%)]	Loss: 0.387860
Train Epoch: 10 [4480/60000 (7%)]	Loss: 0.228294
Train Epoch: 10 [5120/60000 (9%)]	Loss: 0.221053
Train Epoch: 10 [5760/60000 (10%)]	Loss: 0.187114
Train Epoch: 10 [6400/60000 (11%)]	Loss: 0.017330
Train Epoch: 10 [7040/60000 (12%)]	Loss: 0.115623
Train Epoch: 10 [7680/60000 (13%)]	Loss: 0.091393
Train Epoch: 10 [8320/60000 (14%)]	Loss: 0.150872
Train Epoch: 10 [8960/60000 (15%)]	Loss: 0.123215
Train Epoch: 10 [9600/60000 (16%)]	Loss: 0.277278
Train Epoch: 10 [10240/60000 (17%)]	Loss: 0.249497
Train Epoch: 10 [10880/60000 (18%)]	Loss: 0.314627
Train Epoch: 10 [11520/60000 (19%)]	Loss: 0.148233
Train Epoch: 10 [12160/60000 (20%)]	Loss: 0.253433
Train Epoch: 10 [12800/60000 (21%)]	Loss: 0.165765
Train Epoch: 10 [13440/60000 (22%)]	Loss: 0.095515
Train Epoch: 10 [14080/60000 (23%)]	Loss: 0.196772
Train Epoch: 10 [14720/60000 (25%)]	Loss: 0.154946
Train Epoch: 10 [15360/60000 (26%)]	Loss: 0.097302
Train Epoch: 10 [16000/60000 (27%)]	Loss: 0.075378
Train Epoch: 10 [16640/60000 (28%)]	Loss: 0.103841
Train Epoch: 10 [17280/60000 (29%)]	Loss: 0.542589
Train Epoch: 10 [17920/60000 (30%)]	Loss: 0.193030
Train Epoch: 10 [18560/60000 (31%)]	Loss: 0.058140
Train Epoch: 10 [19200/60000 (32%)]	Loss: 0.164775
Train Epoch: 10 [19840/60000 (33%)]	Loss: 0.116774
Train Epoch: 10 [20480/60000 (34%)]	Loss: 0.098373
Train Epoch: 10 [21120/60000 (35%)]	Loss: 0.152201
Train Epoch: 10 [21760/60000 (36%)]	Loss: 0.158482
Train Epoch: 10 [22400/60000 (37%)]	Loss: 0.181521
Train Epoch: 10 [23040/60000 (38%)]	Loss: 0.127969
Train Epoch: 10 [23680/60000 (39%)]	Loss: 0.141418
Train Epoch: 10 [24320/60000 (41%)]	Loss: 0.131132
Train Epoch: 10 [24960/60000 (42%)]	Loss: 0.094523
Train Epoch: 10 [25600/60000 (43%)]	Loss: 0.250731
Train Epoch: 10 [26240/60000 (44%)]	Loss: 0.196437
Train Epoch: 10 [26880/60000 (45%)]	Loss: 0.198200
Train Epoch: 10 [27520/60000 (46%)]	Loss: 0.124787
Train Epoch: 10 [28160/60000 (47%)]	Loss: 0.143860
Train Epoch: 10 [28800/60000 (48%)]	Loss: 0.130015
Train Epoch: 10 [29440/60000 (49%)]	Loss: 0.128928
Train Epoch: 10 [30080/60000 (50%)]	Loss: 0.108551
Train Epoch: 10 [30720/60000 (51%)]	Loss: 0.063688
Train Epoch: 10 [31360/60000 (52%)]	Loss: 0.089477
Train Epoch: 10 [32000/60000 (53%)]	Loss: 0.166978
Train Epoch: 10 [32640/60000 (54%)]	Loss: 0.081646
Train Epoch: 10 [33280/60000 (55%)]	Loss: 0.247325
Train Epoch: 10 [33920/60000 (57%)]	Loss: 0.114443
Train Epoch: 10 [34560/60000 (58%)]	Loss: 0.146846
Train Epoch: 10 [35200/60000 (59%)]	Loss: 0.156275
Train Epoch: 10 [35840/60000 (60%)]	Loss: 0.204058
Train Epoch: 10 [36480/60000 (61%)]	Loss: 0.389685
Train Epoch: 10 [37120/60000 (62%)]	Loss: 0.106072
Train Epoch: 10 [37760/60000 (63%)]	Loss: 0.122947
Train Epoch: 10 [38400/60000 (64%)]	Loss: 0.158832
Train Epoch: 10 [39040/60000 (65%)]	Loss: 0.212625
Train Epoch: 10 [39680/60000 (66%)]	Loss: 0.190883
Train Epoch: 10 [40320/60000 (67%)]	Loss: 0.119547
Train Epoch: 10 [40960/60000 (68%)]	Loss: 0.138365
Train Epoch: 10 [41600/60000 (69%)]	Loss: 0.159457
Train Epoch: 10 [42240/60000 (70%)]	Loss: 0.115805
Train Epoch: 10 [42880/60000 (71%)]	Loss: 0.059752
Train Epoch: 10 [43520/60000 (72%)]	Loss: 0.233170
Train Epoch: 10 [44160/60000 (74%)]	Loss: 0.207679
Train Epoch: 10 [44800/60000 (75%)]	Loss: 0.068984
Train Epoch: 10 [45440/60000 (76%)]	Loss: 0.265697
Train Epoch: 10 [46080/60000 (77%)]	Loss: 0.204301
Train Epoch: 10 [46720/60000 (78%)]	Loss: 0.085270
Train Epoch: 10 [47360/60000 (79%)]	Loss: 0.129904
Train Epoch: 10 [48000/60000 (80%)]	Loss: 0.154879
Train Epoch: 10 [48640/60000 (81%)]	Loss: 0.333942
Train Epoch: 10 [49280/60000 (82%)]	Loss: 0.134290
Train Epoch: 10 [49920/60000 (83%)]	Loss: 0.173393
Train Epoch: 10 [50560/60000 (84%)]	Loss: 0.165202
Train Epoch: 10 [51200/60000 (85%)]	Loss: 0.162377
Train Epoch: 10 [51840/60000 (86%)]	Loss: 0.083045
Train Epoch: 10 [52480/60000 (87%)]	Loss: 0.079579
Train Epoch: 10 [53120/60000 (88%)]	Loss: 0.093638
Train Epoch: 10 [53760/60000 (90%)]	Loss: 0.197897
Train Epoch: 10 [54400/60000 (91%)]	Loss: 0.141999
Train Epoch: 10 [55040/60000 (92%)]	Loss: 0.165381
Train Epoch: 10 [55680/60000 (93%)]	Loss: 0.099536
Train Epoch: 10 [56320/60000 (94%)]	Loss: 0.251508
Train Epoch: 10 [56960/60000 (95%)]	Loss: 0.065102
Train Epoch: 10 [57600/60000 (96%)]	Loss: 0.431946
Train Epoch: 10 [58240/60000 (97%)]	Loss: 0.183199
Train Epoch: 10 [58880/60000 (98%)]	Loss: 0.407611
Train Epoch: 10 [59520/60000 (99%)]	Loss: 0.314210

Test set: Average loss: 0.0000, Accuracy: 9839/10000 (98%)

Example 3: A simple neural network

Here, is another simple pytorch example which I downloaded from here. This example fits a two-layer network to random data. However, before running the example, first remove the reduction argument from the expression defining loss function! (as we did it for the Example 2).

In [46]:
# -*- coding: utf-8 -*-
import torch

# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

# Create random Tensors to hold inputs and outputs
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

# Use the nn package to define our model and loss function.
model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out),
)
loss_fn = torch.nn.MSELoss()

# Use the optim package to define an Optimizer that will update the weights of
# the model for us. Here we will use Adam; the optim package contains many other
# optimization algoriths. The first argument to the Adam constructor tells the
# optimizer which Tensors it should update.
learning_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for t in range(500):
    # Forward pass: compute predicted y by passing x to the model.
    y_pred = model(x)

    # Compute and print loss.
    loss = loss_fn(y_pred, y)
    print(t, loss.item())

    # Before the backward pass, use the optimizer object to zero all of the
    # gradients for the variables it will update (which are the learnable
    # weights of the model). This is because by default, gradients are
    # accumulated in buffers( i.e, not overwritten) whenever .backward()
    # is called. Checkout docs of torch.autograd.backward for more details.
    optimizer.zero_grad()

    # Backward pass: compute gradient of the loss with respect to model
    # parameters
    loss.backward()

    # Calling the step function on an Optimizer makes an update to its
    # parameters
    optimizer.step()
(0, 1.0399448871612549)
(1, 1.0127382278442383)
(2, 0.9862440228462219)
(3, 0.9604975581169128)
(4, 0.9357196688652039)
(5, 0.9117013216018677)
(6, 0.8884192705154419)
(7, 0.8658498525619507)
(8, 0.8438955545425415)
(9, 0.8226255178451538)
(10, 0.8019316792488098)
(11, 0.781884491443634)
(12, 0.7623889446258545)
(13, 0.743523120880127)
(14, 0.7253612875938416)
(15, 0.7077023983001709)
(16, 0.6906373500823975)
(17, 0.6740445494651794)
(18, 0.6579065918922424)
(19, 0.6421589255332947)
(20, 0.626873791217804)
(21, 0.6119142770767212)
(22, 0.5973230600357056)
(23, 0.5831117033958435)
(24, 0.5692239999771118)
(25, 0.555722713470459)
(26, 0.5425689220428467)
(27, 0.5296918749809265)
(28, 0.5170916318893433)
(29, 0.5048167705535889)
(30, 0.4928136467933655)
(31, 0.4810701012611389)
(32, 0.4696010947227478)
(33, 0.4583776891231537)
(34, 0.44743603467941284)
(35, 0.4367571771144867)
(36, 0.4263865351676941)
(37, 0.41625022888183594)
(38, 0.4062841832637787)
(39, 0.396533727645874)
(40, 0.3870033621788025)
(41, 0.3776722550392151)
(42, 0.3685188889503479)
(43, 0.3595620095729828)
(44, 0.35076025128364563)
(45, 0.3421204686164856)
(46, 0.3336712718009949)
(47, 0.3254075348377228)
(48, 0.3173092305660248)
(49, 0.30938681960105896)
(50, 0.3016127943992615)
(51, 0.29397842288017273)
(52, 0.28651413321495056)
(53, 0.2791885435581207)
(54, 0.2720264196395874)
(55, 0.2650095820426941)
(56, 0.25813716650009155)
(57, 0.25142258405685425)
(58, 0.2448357790708542)
(59, 0.23837760090827942)
(60, 0.2320663034915924)
(61, 0.2258930504322052)
(62, 0.21984103322029114)
(63, 0.21393270790576935)
(64, 0.20817610621452332)
(65, 0.2025449275970459)
(66, 0.19701847434043884)
(67, 0.19160166382789612)
(68, 0.18629172444343567)
(69, 0.1811296045780182)
(70, 0.17608778178691864)
(71, 0.1711496263742447)
(72, 0.16631850600242615)
(73, 0.16159312427043915)
(74, 0.15698324143886566)
(75, 0.1524806171655655)
(76, 0.14808949828147888)
(77, 0.14379936456680298)
(78, 0.1396062672138214)
(79, 0.13550740480422974)
(80, 0.13150236010551453)
(81, 0.12758885324001312)
(82, 0.12377242743968964)
(83, 0.12005691230297089)
(84, 0.11643408238887787)
(85, 0.11290253698825836)
(86, 0.10945405811071396)
(87, 0.10608841478824615)
(88, 0.10281498730182648)
(89, 0.09962429851293564)
(90, 0.0965193659067154)
(91, 0.0934956818819046)
(92, 0.09055440127849579)
(93, 0.0876845195889473)
(94, 0.08488873392343521)
(95, 0.08216538280248642)
(96, 0.07952049374580383)
(97, 0.07694515585899353)
(98, 0.07444293797016144)
(99, 0.07200442254543304)
(100, 0.06963548064231873)
(101, 0.06733433902263641)
(102, 0.06509789079427719)
(103, 0.0629168301820755)
(104, 0.06079805642366409)
(105, 0.05873542279005051)
(106, 0.05673372000455856)
(107, 0.05478786304593086)
(108, 0.05290016531944275)
(109, 0.05106498673558235)
(110, 0.04928257316350937)
(111, 0.04755670577287674)
(112, 0.045883335173130035)
(113, 0.04425622150301933)
(114, 0.04267922788858414)
(115, 0.04115071892738342)
(116, 0.039668008685112)
(117, 0.03823353722691536)
(118, 0.036843568086624146)
(119, 0.035499945282936096)
(120, 0.03419632092118263)
(121, 0.032935597002506256)
(122, 0.03171474486589432)
(123, 0.03053225949406624)
(124, 0.029387827962636948)
(125, 0.02828199230134487)
(126, 0.02721169963479042)
(127, 0.026175931096076965)
(128, 0.02517428994178772)
(129, 0.02420603297650814)
(130, 0.023271452635526657)
(131, 0.022367211058735847)
(132, 0.021494904533028603)
(133, 0.02065267041325569)
(134, 0.019839514046907425)
(135, 0.01905370131134987)
(136, 0.018297377973794937)
(137, 0.017566243186593056)
(138, 0.016860060393810272)
(139, 0.016179433092474937)
(140, 0.015523483045399189)
(141, 0.014891056343913078)
(142, 0.014280972070991993)
(143, 0.0136934919282794)
(144, 0.01312757283449173)
(145, 0.012582285329699516)
(146, 0.012057144194841385)
(147, 0.011550987139344215)
(148, 0.011064061895012856)
(149, 0.010595316998660564)
(150, 0.010144194588065147)
(151, 0.009710493497550488)
(152, 0.009293089620769024)
(153, 0.008891928009688854)
(154, 0.008506153710186481)
(155, 0.008135931566357613)
(156, 0.007779931183904409)
(157, 0.007437871303409338)
(158, 0.007109491620212793)
(159, 0.006794381886720657)
(160, 0.006491917185485363)
(161, 0.0062016271986067295)
(162, 0.00592260155826807)
(163, 0.00565518019720912)
(164, 0.005398910958319902)
(165, 0.00515322620049119)
(166, 0.00491737574338913)
(167, 0.00469172140583396)
(168, 0.004474855028092861)
(169, 0.0042671700939536095)
(170, 0.004068297334015369)
(171, 0.0038779042661190033)
(172, 0.003695521969348192)
(173, 0.003520999802276492)
(174, 0.003354029729962349)
(175, 0.0031944066286087036)
(176, 0.003041766118258238)
(177, 0.0028958707116544247)
(178, 0.0027564503252506256)
(179, 0.0026232278905808926)
(180, 0.002496097469702363)
(181, 0.002374449511989951)
(182, 0.002258440712466836)
(183, 0.0021484275348484516)
(184, 0.0020438111387193203)
(185, 0.0019439324969425797)
(186, 0.0018486876506358385)
(187, 0.0017577959224581718)
(188, 0.0016712404321879148)
(189, 0.001588677056133747)
(190, 0.0015099109150469303)
(191, 0.0014348553959280252)
(192, 0.0013634080532938242)
(193, 0.0012953367549926043)
(194, 0.0012304179836064577)
(195, 0.001168722053989768)
(196, 0.0011100124102085829)
(197, 0.0010541121009737253)
(198, 0.001000907621346414)
(199, 0.0009502557804808021)
(200, 0.0009021104197017848)
(201, 0.0008562676375731826)
(202, 0.0008126312168315053)
(203, 0.0007711296784691513)
(204, 0.0007316690753214061)
(205, 0.0006941977189853787)
(206, 0.000658564327750355)
(207, 0.0006246989360079169)
(208, 0.0005924883880652487)
(209, 0.0005618963623419404)
(210, 0.0005328060360625386)
(211, 0.0005051691550761461)
(212, 0.00047892332077026367)
(213, 0.00045398552902042866)
(214, 0.00043031509267166257)
(215, 0.0004078551137354225)
(216, 0.00038650663918815553)
(217, 0.0003662478702608496)
(218, 0.0003470259252935648)
(219, 0.0003287854779046029)
(220, 0.0003114747232757509)
(221, 0.00029504759004339576)
(222, 0.0002794682513922453)
(223, 0.00026468021678738296)
(224, 0.0002506655000615865)
(225, 0.0002373730530962348)
(226, 0.00022476489539258182)
(227, 0.00021280634973663837)
(228, 0.00020147397299297154)
(229, 0.00019075145246461034)
(230, 0.00018057074339594692)
(231, 0.00017092855705413967)
(232, 0.0001617853995412588)
(233, 0.00015311819151975214)
(234, 0.00014489951718132943)
(235, 0.0001371085672872141)
(236, 0.00012973410775884986)
(237, 0.00012275201152078807)
(238, 0.00011614339746301994)
(239, 0.00010987896530423313)
(240, 0.00010394058335805312)
(241, 9.832110663410276e-05)
(242, 9.308203880209476e-05)
(243, 8.818191417958587e-05)
(244, 8.354875899385661e-05)
(245, 7.916612958069891e-05)
(246, 7.501698564738035e-05)
(247, 7.109301805030555e-05)
(248, 6.738306547049433e-05)
(249, 6.387292523868382e-05)
(250, 6.0550402849912643e-05)
(251, 5.7407876738579944e-05)
(252, 5.443486588774249e-05)
(253, 5.1619583246065304e-05)
(254, 4.895710662822239e-05)
(255, 4.643625652533956e-05)
(256, 4.404992432682775e-05)
(257, 4.1790415707509965e-05)
(258, 3.96504947275389e-05)
(259, 3.76257739844732e-05)
(260, 3.570581611711532e-05)
(261, 3.388716504559852e-05)
(262, 3.2165069569600746e-05)
(263, 3.053358886973001e-05)
(264, 2.898678030760493e-05)
(265, 2.752110958681442e-05)
(266, 2.6130601327167824e-05)
(267, 2.4813711206661537e-05)
(268, 2.356454569962807e-05)
(269, 2.238028173451312e-05)
(270, 2.1257856133161113e-05)
(271, 2.019203020608984e-05)
(272, 1.918136331369169e-05)
(273, 1.822264675865881e-05)
(274, 1.7313343050773256e-05)
(275, 1.6450307157356292e-05)
(276, 1.5631119822501205e-05)
(277, 1.4854309483780526e-05)
(278, 1.4116184502199758e-05)
(279, 1.3420431059785187e-05)
(280, 1.2760826393787283e-05)
(281, 1.2135450560890604e-05)
(282, 1.1541494131961372e-05)
(283, 1.0977548299706541e-05)
(284, 1.0442034181323834e-05)
(285, 9.933161891240161e-06)
(286, 9.449999197386205e-06)
(287, 8.991125469037797e-06)
(288, 8.554933629056904e-06)
(289, 8.140485078911297e-06)
(290, 7.746303708699998e-06)
(291, 7.371833817160223e-06)
(292, 7.015826213319087e-06)
(293, 6.677261808363255e-06)
(294, 6.355513960443204e-06)
(295, 6.049228431947995e-06)
(296, 5.758022780355532e-06)
(297, 5.480962045112392e-06)
(298, 5.2174100346746854e-06)
(299, 4.966630513081327e-06)
(300, 4.728053681901656e-06)
(301, 4.500909653870622e-06)
(302, 4.2848114389926195e-06)
(303, 4.079059635841986e-06)
(304, 3.883188583131414e-06)
(305, 3.696725343615981e-06)
(306, 3.5192911127523985e-06)
(307, 3.350350425534998e-06)
(308, 3.1894519452180248e-06)
(309, 3.0362607503775507e-06)
(310, 2.8903527891088743e-06)
(311, 2.751462716332753e-06)
(312, 2.619142378534889e-06)
(313, 2.4931789539550664e-06)
(314, 2.373164761593216e-06)
(315, 2.258883341710316e-06)
(316, 2.1500404727703426e-06)
(317, 2.0463553482841235e-06)
(318, 1.947614236996742e-06)
(319, 1.8535372419137275e-06)
(320, 1.763929162734712e-06)
(321, 1.6786398191470653e-06)
(322, 1.5973082554410212e-06)
(323, 1.5198972960206447e-06)
(324, 1.4461664932241547e-06)
(325, 1.3759232615484507e-06)
(326, 1.3090059383102925e-06)
(327, 1.2453165254555643e-06)
(328, 1.1845813787658699e-06)
(329, 1.1267944728388102e-06)
(330, 1.071732071977749e-06)
(331, 1.019369847199414e-06)
(332, 9.694083473732462e-07)
(333, 9.21849562018906e-07)
(334, 8.765552479417238e-07)
(335, 8.334499170814524e-07)
(336, 7.924181772978045e-07)
(337, 7.53332585645694e-07)
(338, 7.161202120187227e-07)
(339, 6.806727697039605e-07)
(340, 6.469285267485247e-07)
(341, 6.148216016299557e-07)
(342, 5.842518930876395e-07)
(343, 5.551452773033816e-07)
(344, 5.274819727674185e-07)
(345, 5.010953145756503e-07)
(346, 4.7603234065718425e-07)
(347, 4.521808136814798e-07)
(348, 4.294666382520518e-07)
(349, 4.0785184296510124e-07)
(350, 3.872977742958028e-07)
(351, 3.6774352452084713e-07)
(352, 3.4915359492515563e-07)
(353, 3.314467562631762e-07)
(354, 3.1462960237149673e-07)
(355, 2.9861658390473167e-07)
(356, 2.834055976563832e-07)
(357, 2.689356222163042e-07)
(358, 2.551726652200159e-07)
(359, 2.420917155632196e-07)
(360, 2.2965392076912394e-07)
(361, 2.1783189652069268e-07)
(362, 2.0660498023516993e-07)
(363, 1.9593305466969468e-07)
(364, 1.8579125082851533e-07)
(365, 1.7615684555494227e-07)
(366, 1.669901195100465e-07)
(367, 1.58297211783065e-07)
(368, 1.5004204101387586e-07)
(369, 1.421953470526205e-07)
(370, 1.3473618309944868e-07)
(371, 1.2766743395786762e-07)
(372, 1.2094550072561105e-07)
(373, 1.1457071025233745e-07)
(374, 1.0852708953734691e-07)
(375, 1.0277980067030512e-07)
(376, 9.732351458069388e-08)
(377, 9.214895158038416e-08)
(378, 8.724376954205582e-08)
(379, 8.257699590785705e-08)
(380, 7.816607450195079e-08)
(381, 7.397560608524145e-08)
(382, 7.000635093845631e-08)
(383, 6.623267978511649e-08)
(384, 6.265680951855757e-08)
(385, 5.927207169520443e-08)
(386, 5.6061349340552624e-08)
(387, 5.301594541151644e-08)
(388, 5.0128829087725535e-08)
(389, 4.7395829483320995e-08)
(390, 4.4803186938224826e-08)
(391, 4.2353285323315504e-08)
(392, 4.0024566771990067e-08)
(393, 3.7823372878165173e-08)
(394, 3.5740665538241956e-08)
(395, 3.376369761554088e-08)
(396, 3.1895854846197835e-08)
(397, 3.0124532202080445e-08)
(398, 2.845016311425752e-08)
(399, 2.6865688340649285e-08)
(400, 2.5362421496311072e-08)
(401, 2.394560283391911e-08)
(402, 2.2600948668127785e-08)
(403, 2.132805398957771e-08)
(404, 2.012602351442183e-08)
(405, 1.8989609884556558e-08)
(406, 1.791919501670236e-08)
(407, 1.6899569743600296e-08)
(408, 1.5938814712512794e-08)
(409, 1.502868407499136e-08)
(410, 1.4169384776607785e-08)
(411, 1.3360429207409652e-08)
(412, 1.2594531639820161e-08)
(413, 1.1870530336466345e-08)
(414, 1.1188017623453561e-08)
(415, 1.0539845440860063e-08)
(416, 9.929935096408826e-09)
(417, 9.35527122436497e-09)
(418, 8.811599450098129e-09)
(419, 8.296192177681405e-09)
(420, 7.8125976799015e-09)
(421, 7.3550809887024116e-09)
(422, 6.923850826012767e-09)
(423, 6.515894934722155e-09)
(424, 6.13362738377532e-09)
(425, 5.7696039057475446e-09)
(426, 5.429736660289564e-09)
(427, 5.106991274317352e-09)
(428, 4.80323114615544e-09)
(429, 4.517337615084216e-09)
(430, 4.246915263905748e-09)
(431, 3.99334743050872e-09)
(432, 3.754371924458155e-09)
(433, 3.5283007626674134e-09)
(434, 3.315397067993331e-09)
(435, 3.11529890772988e-09)
(436, 2.9264335399403762e-09)
(437, 2.7491962040215867e-09)
(438, 2.582485114643873e-09)
(439, 2.4254425134984103e-09)
(440, 2.276655752808665e-09)
(441, 2.137675370050829e-09)
(442, 2.0062038696977424e-09)
(443, 1.882483502413379e-09)
(444, 1.7678546404553686e-09)
(445, 1.657392112441869e-09)
(446, 1.5543278886198664e-09)
(447, 1.4579614182608225e-09)
(448, 1.3675752752462245e-09)
(449, 1.2823485606716645e-09)
(450, 1.2022631779018411e-09)
(451, 1.12726528112006e-09)
(452, 1.0564906727239531e-09)
(453, 9.897802577540915e-10)
(454, 9.272635992374489e-10)
(455, 8.690672070876815e-10)
(456, 8.1366680060313e-10)
(457, 7.620251096795982e-10)
(458, 7.135042001671366e-10)
(459, 6.682516762168689e-10)
(460, 6.256473117360883e-10)
(461, 5.855460005754765e-10)
(462, 5.47932088590386e-10)
(463, 5.123678148422073e-10)
(464, 4.79403516884247e-10)
(465, 4.486133131642589e-10)
(466, 4.1955416918426636e-10)
(467, 3.9219907876919535e-10)
(468, 3.668534920286959e-10)
(469, 3.4258793024655176e-10)
(470, 3.204245757615354e-10)
(471, 2.9940164236741396e-10)
(472, 2.7976837513321584e-10)
(473, 2.6117866203101414e-10)
(474, 2.4409740895237064e-10)
(475, 2.2786179887379632e-10)
(476, 2.1272021644147543e-10)
(477, 1.985208386567905e-10)
(478, 1.8559552505958976e-10)
(479, 1.7323617540476732e-10)
(480, 1.6175036310350777e-10)
(481, 1.5090424743124942e-10)
(482, 1.4066703357684673e-10)
(483, 1.3133036325108094e-10)
(484, 1.2264977922171738e-10)
(485, 1.1381937753407456e-10)
(486, 1.0641694470070462e-10)
(487, 9.904745079669652e-11)
(488, 9.260037181491043e-11)
(489, 8.619395475140124e-11)
(490, 8.019883368515224e-11)
(491, 7.474771496207566e-11)
(492, 6.964414461796409e-11)
(493, 6.509921768316218e-11)
(494, 6.053542389583555e-11)
(495, 5.633932209647696e-11)
(496, 5.24747363617184e-11)
(497, 4.876997070080158e-11)
(498, 4.545695417301765e-11)
(499, 4.2353270196526793e-11)