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Using the “Freshman’s Dream” to Prove
Combinatorial Congruences

Moa Apagodu and Doron Zeilberger

Abstract. Recently, William Y.C. Chen, Qing-Hu Hou, and Doron Zeilberger developed an
algorithm for finding and proving congruence identities (modulo primes) of indefinite sums
of many combinatorial sequences, namely those (like the Catalan and Motzkin sequences)
that are expressible in terms of constant terms of powers of Laurent polynomials. We first
give a leisurely exposition of their approach and then extend it in two directions. The Laurent
polynomials may be of several variables, and instead of single sums we have multiple sums.
In fact, we even combine these two generalizations. We conclude with some super-challenges.

1. INTRODUCTION. In the article [4], the following type of quantities were con-
sidered:

(
rp−1∑

k=0

a(k)

)

mod p ,

where,

1. a(k) is a combinatorial sequence, expressible as the constant term of a power
of a Laurent polynomial of a single variable (for example, the central binomial
coefficient

(2k
k

)
is the coefficient of x0 in (x + 1

x )2k).
2. r is a specific positive integer.
3. p is an arbitrary prime.

Let x ≡p y mean x ≡ y (mod p), in other words, that x − y is divisible by p.
The method in [4], while ingenious, is very elementary. The main “trick” is:

The freshman’s dream identity ([10]): (a + b)p ≡p a p + bp.

Recall that the easy proof follows from the binomial theorem and noting that
(

p
k

)

is divisible by p except when k = 0 and k = p. This also leads to one of the many
proofs of the grandmother of all congruences, Fermat’s little theorem, a p ≡p a, by
starting with 0p ≡p 0 and applying induction to (a + 1)p ≡p a p + 1p.

The second ingredient in the method in [4] is even more elementary. It is:

Sum of a Geometric Series:
n−1∑

i=0

zi = zn − 1
z − 1

.

The focus in the Chen–Hou–Zeilberger article [4] was both computer-algebra
implementation and proving a general theorem about a wide class of sums. Their paper
is rather technical, hence the first purpose of the present article is to give a leisurely
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introduction to their method, and illustrate it with numerous simple examples. The sec-
ond, main, purpose, however, is to extend the method in two directions. The summand
a(k) may be the constant term of a Laurent polynomial of several variables, and
instead of a single summation sign, we can have multisums. In fact we can combine
these two.

2. NOTATION. The constant term of a Laurent polynomial P(x1, x2, . . . , xn), alias
the coefficient of x0

1 x0
2 · · · x0

n , is denoted by CT [P(x1, x2, . . . , xn)]. The general coef-
ficient of xm1

1 xm2
2 · · · xmn

n in P(x1, x2, . . . , xn) is denoted by

[xm1
1 xm2

2 · · · xmn
n ] P(x1, x2, . . . , xn) .

Example 1.

CT
[

1
xy

+ 3 + 5xy − x3 + 6y2

]
= 3 , [xy]

[
1

xy
+ 3 + 5xy + x3 + 6y2

]
= 5.

We use the symmetric representation of integers in (− p
2 , p

2 ] when reducing modulo
a prime p.

Example 2. 6 (mod 5) = 1 and 4 (mod 5) = −1.

3. REVIEW OF THE CHEN–HOU–ZEILBERGER SINGLE VARIABLE CASE.
In order to motivate our generalization, we will first review, in more detail than given
in [4], some of the results of [4]. Let’s start with the central binomial coefficients,
sequence A000984 in the great OEIS ([7], https://oeis.org/A000984).

Proposition 1. For any prime p ≥ 5, we have

p−1∑

n=0

(
2n
n

)
≡p

{
1, if p ≡ 1 mod 3
−1, if p ≡ 2 mod 3.

Proof. Using the fact that

(
2n
n

)
= CT

[
(1 + x)2n

xn

]
,

and the freshman’s dream identity, (a + b)p ≡p a p + bp, we have

p−1∑

n=0

(
2n
n

)
=

p−1∑

n=0

CT
[(

(1 + x)2n

xn

)]
=

p−1∑

n=0

CT
[(

2 + x + 1
x

)n]

= CT

[(
2 + x + 1

x

)p − 1

2 + x + 1
x − 1

]

≡p CT

[
2p + x p + 1

x p − 1

1 + x + 1
x

]

(by freshman’s dream)

≡p CT

[
2 + x p + 1

x p − 1

1 + x + 1
x

]

(by Fermat’s little theorem)
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= CT

[
1 + x p + 1

x p

1 + x + 1
x

]

= CT
[

1 + x p + x2p

(1 + x + x2)x p−1

]

= [x p−1]
[

1
1 + x + x2

]
= [x p−1]

[
1 − x
1 − x3

]

= [x p]

( ∞∑

i=0

x3i+1

)

+ [x p]

( ∞∑

i=0

(−1) · x3i+2

)

.

The result follows from extracting the coefficient of x p in the above geometric series.

Proposition 1′.

2p−1∑

n=0

(
2n
n

)
≡p

{
3, if p ≡ 1 mod 3
−3, if p ≡ 2 mod 3.

Proof.

2p−1∑

n=0

(
2n
n

)
=

2p−1∑

n=0

CT
[(

2 + x + 1
x

)n]
= CT

[(
2 + x + 1

x

)2p − 1

2 + x + 1
x − 1

]

= CT

[(
6 + 4x + 4

x + x2 + 1
x2

)p − 1

2 + x + 1
x − 1

]

≡p CT

[(
6 + 4x p + 4

x p + x2p + 1
x2p

)
− 1

2 + x + 1
x − 1

]

.

Obviously, only the terms
4
x p

and
1

x2p
contribute to the constant term. Discarding all

the other ones and simplifying, we get that this equals

[x2p−1]
[

1 + 4x p

1 + x + x2

]
= [x2p−1]

[
1

1 + x + x2

]
+ 4 · [x p−1]

[
1

1 + x + x2

]

= [x2p−1]
[

1 − x
1 − x3

]
+ 4 · [x p−1]

[
1 − x
1 − x3

]

= [x2p−1]
[

1
1 − x3

]
+ [x2p−1]

[ −x
1 − x3

]

+ 4 · [x p−1]
[

1
1 − x3

]
+ 4 · [x p−1]

[ −x
1 − x3

]

= [x2p]

[ ∞∑

i=0

x3i+1

]

+ [x2p]

[ ∞∑

i=0

(−1) · x3i+2

]

+ 4 · [x p]

[ ∞∑

i=0

x3i+1

]

+ 4 · [x p]

[ ∞∑

i=0

(−1) · x3i+2

]

.
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The result follows from extracting the coefficients of x2p in the first two geometric
series above and the coefficient of x p in the last two.

The same method (of [4]) can be used to find the “mod p” of
rp−1∑

n=0

(
2n
n

)
for any

positive integer r . This leads to the following proposition, whose somewhat tedious
proof we omit.

Proposition 1′′. For any prime p ≥ 5 and any positive integer r ,

rp−1∑

n=0

(
2n
n

)
≡p

{
αr , if p ≡ 1 mod 3
−αr , if p ≡ 2 mod 3,

where

αr =
r−1∑

n=0

(
2n
n

)
.

For the record, here are the first ten terms of the integer sequence αr :

1, 3, 9, 29, 99, 351, 1275, 4707, 17577, 66187.

The sequence αr is Sequence A6134 ([7], https://oeis.org/A006134). Note that
αr is the number of ways of tossing a coin less than 2r times and getting as many
Heads as Tails.

The most ubiquitous sequence in combinatorics is sequence A000108 in the OEIS
([7], https://oeis.org/A000108, that, according to Neil Sloane, is the longest

entry), the super-famous Catalan numbers, Cn := (2n)!
n!(n + 1)!

, that count zillions of

combinatorial families (see [8] for some of the more interesting ones).

Proposition 2. Let Cn denote the nth Catalan number. Then, for every prime p ≥ 5,

p−1∑

n=0

Cn ≡p

{
1, if p ≡ 1 mod 3
−2, if p ≡ 2 mod 3.

Proof. Since Cn =
(2n

n

)
−
( 2n

n−1

)
, it is readily seen that

Cn = CT
[
(1 − x)

(
2 + x + 1

x

)n]
.

We have

p−1∑

n=0

Cn =
p−1∑

n=0

CT
[
(1 − x)

(
2 + x + 1

x

)n]
= CT

[
(1 − x)

((
2 + x + 1

x

)p − 1
)

2 + x + 1
x − 1

]

≡p CT

[
(1 − x)

((
2 + x p + 1

x p

)
− 1

)

2 + x + 1
x − 1

]

(by freshman’s dream).
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Since only the term 1
x p in the numerator contributes to the constant term, this equals

[x p−1]
[

1 − x
1 + x + x2

]
= [x p−1]

[
(1 − x)2

1 − x3

]

= [x p]
[

x
1 − x3

]
+ [x p]

[ −2x2

1 − x3

]
+ [x p]

[
x3

1 − x3

]

= [x p]

[ ∞∑

i=0

1 · x3i+1

]

+ [x p]

[ ∞∑

i=0

(−2) · x3i+2

]

+ [x p]

[ ∞∑

i=0

1 · x3i+3

]

,

and the result follows from extracting the coefficient of x p from the first or second
geometric series above. (Note that we would never have to use the third geometric
series since p > 3.)

The same method (of [4]) can be used to find the mod p of
rp−1∑

n=0

Cn for any specific

positive integer r . In fact, one can keep r general, but then the proof is rather tedious,
and we will spare the readers (and ourselves, from typing it).

Proposition 2′. Let Cn denote the nth Catalan number. Then, for any positive integer
r , we have

rp−1∑

n=0

Cn ≡p

{
βr , if p ≡ 1 mod 3
−γr , if p ≡ 2 mod 3,

where

βr =
r−1∑

n=0

Cn, γr =
r−1∑

n=0

(3n + 2)Cn.

For the record, the first ten terms of the sequence of integer pairs [βr , −γr ]
are [1, −2], [2, −7], [4, −23], [9, −78], [23, −274], [65, −988], [197, −3628],
[626, −13495], [2076, −50675], [6918, −191673]. We note that the sequence βr

is sequence A014137 in the OEIS ([7], https://oeis.org/A014137) but at this
time of writing (June 9, 2016), the sequence γr is not there (yet).

Not as famous as the Catalan numbers, but not exactly obscure, are the Motzkin
numbers, Mn , sequence A001006 in the OEIS ([7], https://oeis.org/A001006),
that may be defined by the constant term formula

Mn = CT
[
(1 − x2)

(
1 + x + 1

x

)n]
.

Proposition 3. Let Mn denote the nth Motzkin number. Then, for any prime p ≥ 3, we
have

p−1∑

n=0

Mn ≡p

{
2, if p ≡ 1 mod 4
−2, if p ≡ 3 mod 4.
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Proof.

p−1∑

n=0

Mn =
p−1∑

n=0

CT
[
(1 − x2)

(
1 + x + 1

x

)n]
= CT

[
(1 − x2)

((
1 + x + 1

x

)p − 1
)

1 + x + 1
x − 1

]

≡p CT

[
(1 − x2)

(
1 + x p + 1

x p − 1
)

1 + x + 1
x − 1

]

= CT

[
(1 − x2)

(
x p + 1

x p

)

x + 1
x

]

= CT

[
x(1 − x2)

(
x p + 1

x p

)

1 + x2

]

= [x p−1]
[

1 − x2

1 + x2

]
= [x p]

[
x

1 + x2

]
− [x p]

[
x3

1 + x2

]

= [x p]

[ ∞∑

i=0

(−1)i x2i+1

]

+ [x p]

[ ∞∑

i=0

(−1)i+1x2i+3

]

,

and the result follows from extracting the coefficient of x p from the first and second
geometric series above by noting that when p ≡ 1 (mod 4), i is even in the first series
and odd in the second one, and vice versa when p ≡ 3 (mod 4).

The same method, applied to a general r , yields the following.

Proposition 3′. Let Mn denote the nth Motzkin number. Then, for any prime p ≥ 3:

rp−1∑

n=0

Mn ≡p

{
2δr , if p ≡ 1 mod 4
−2δr , if p ≡ 3 mod 4,

where δr is the sequence of partial sums of the central trinomial coefficients, sequence
A097893 in the OEIS([7], https: // oeis. org/ A097893 ) whose generating func-
tion is

∞∑

r=0

δr xr = 1
(1 − x)

√
(1 + x) (1 − 3 x)

.

4. MULTISUMS AND MULTIVARIABLES. We now extend the Chen–Hou–
Zeilberger method for discovery and proof of congruence theorems to multisums and
multivariables.

Proposition 4. Let p ≥ 5 be prime; then

p−1∑

n=0

p−1∑

m=0

(
n + m

m

)2

≡p

{
1, if p ≡ 1 mod 3
−1, if p ≡ 2 mod 3.

Proof. Let P(x, y) = (1 + y)

(
1 + 1

x

)
and Q(x, y) = (1 + x)

(
1 + 1

y

)
. Then

(
n + m

m

)2

=
(

n + m
m

)(
n + m

n

)
= CT

[
P(x, y)n Q(x, y)m

]
.
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We have

p−1∑

m=0

p−1∑

n=0

(
m + n

m

)2

=
p−1∑

m=0

p−1∑

n=0

CT
[
P(x, y)n Q(x, y)m

]

= CT

[
p−1∑

m=0

[
(P(x, y)p − 1)Q(x, y)m

P(x, y) − 1

]]

= CT
[(

P(x, y)p − 1
P(x, y) − 1

)(
Q(x, y)p − 1
Q(x, y) − 1

)]
.

Using the freshman’s dream, (a + b)p ≡p a p + bp, we can pass to mod p as above
and get

p−1∑

m=0

p−1∑

n=0

(
m + n

m

)2

≡p CT
[(

P(x p, y p) − 1
P(x, y) − 1

)(
Q(x p, y p) − 1
Q(x, y) − 1

)]

= CT
[

(1 + y p + x p y p)(1 + x p + x p y p)

(1 + y + xy)(1 + x + xy)x p−1 y p−1

]

= [x p−1 y p−1]
[
(1 + y p + x p y p)(1 + x p + x p y p)

(1 + y + xy)(1 + x + xy)

]

= [x p−1 y p−1]
[

1
(1 + y + xy)(1 + x + xy)

]
.

It is possible to show that the coefficient of xn yn in the Maclaurin expansion of
the rational function 1

(1+y+xy)(1+x+xy)
is 1 when n ≡ 0 (mod 3), −1 when n ≡ 1

(mod 3), and 0 when n ≡ 2 (mod 3). One way is to do a partial fraction decom-
position and extract the coefficient of xn , getting a certain expression in y and n, and
then extract the coefficient of yn . Another way is by using the Apagodu−Zeilberger
algorithm ([2]), which outputs that the sequence of diagonal coefficients, let’s call
them a(n), satisfy the recurrence equation a(n + 2) + a(n + 1) + a(n) = 0, with ini-
tial conditions a(0) = 1, a(1) = −1.

A bit of more work, which we omit, leads to the following.

Proposition 4′. For any prime p ≥ 5 and any pair of positive integers r, s, we have

rp−1∑

n=0

sp−1∑

m=0

(
n + m

m

)2

≡p

{
ϵrs, if p ≡ 1 mod 3
−ϵrs, if p ≡ 2 mod 3,

where

ϵrs =
r−1∑

m=0

s−1∑

n=0

(
n + m

m

)2

.

We finally consider partial sums of trinomial coefficients.
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Proposition 5. Let p > 2 be prime; then we have

p−1∑

m1=0

p−1∑

m2=0

p−1∑

m3=0

(
m1 + m2 + m3

m1, m2, m3

)
≡p 1.

Proof. First observe that
(m1+m2+m3

m1,m2,m3

)
= CT

[
(x+y+z)m1+m2+m3

xm1 ym2 zm3

]
. Hence,

∑

0≤m1,m2,m3≤p−1

(
m1 + m2 + m3

m1, m2, m3

)
=

∑

0≤m1,m2,m3≤p−1

CT
[
(x + y + z)m1+m2+m3

xm1 ym2 zm3

]

= CT

⎡

⎣
∑

0≤m1,m2,m3≤p−1

(x + y + z)m1+m2+m3

xm1 ym2 zm3

⎤

⎦

= CT

⎡

⎣

⎛

⎝
p−1∑

m1=0

(
x + y + z

x

)m1

⎞

⎠

⎛

⎝
p−1∑

m2=0

(
x + y + z

x

)m2

⎞

⎠

⎛

⎝
p−1∑

m3=0

(
x + y + z

x

)m3

⎞

⎠

⎤

⎦

= CT

[
( x+y+z

x )p − 1
x+y+z

x − 1
·

( x+y+z
y )p − 1

x+y+z
y − 1

·
( x+y+z

z )p − 1
x+y+z

z − 1

]

= [x p−1 y p−1z p−1]
[
(x + y + z)p − x p

y + z
· (x + y + z)p − y p

x + z
· (x + y + z)p − z p

x + y

]
.

So far this is true for all p, not only p prime. Now take it mod p and get, using the
freshman’s dream in the form (x + y + z)p ≡p x p + y p + z p, that

p−1∑

m1=0

p−1∑

m2=0

p−1∑

m3=0

(
m1 + m2 + m3

m1, m2, m3

)
≡p [x p−1 y p−1z p−1]

(
y p + z p

y + z
· x p + z p

x + z
· x p + y p

x + y

)

= [x p−1 y p−1z p−1]

(
p−1∑

i=0

(−1)i yi z p−1−i

)⎛

⎝
p−1∑

j=0

(−1) j z j x p−1− j

⎞

⎠
(

p−1∑

k=0

(−1)k xk y p−1−k

)

= [x p−1 y p−1z p−1]

⎡

⎣
∑

0≤i, j,k<p

(−1)i+ j+k x p−1− j+k yi+p−1−k z p−1−i+ j

⎤

⎦ .

The only contributions to the coefficient of x p−1 y p−1z p−1 in the above triple sum come
when i = j = k, so the desired coefficient of x p−1 y p−1z p−1 is

p−1∑

i=0

(−1)3i =
p−1∑

i=0

(−1)i = (1 − 1 + 1 − 1 + · · · + 1 − 1) + 1 = 1.

With more effort, one can get the following generalization.
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Proposition 5′. Let p ≥ 3 be prime, and let r, s, t be any positive integers. Then,

rp−1∑

m1=0

sp−1∑

m2=0

tp−1∑

m3=0

(
m1 + m2 + m3

m1, m2, m3

)
≡p κrst ,

where

κrst =
r−1∑

m1=0

s−1∑

m2=0

t−1∑

m3=0

(
m1 + m2 + m3

m1, m2, m3

)
.

The same method of proof used in Proposition 5 yields (with a little more effort) a
multinomial generalization.

Proposition 6. Let p ≥ 3 be prime, then

p−1∑

m1=0

· · ·
p−1∑

mn=0

(
m1 + · · · + mn

m1, . . . , mn

)
≡p 1.

In fact, the following also holds.

Proposition 6′. Let p ≥ 3 be prime, and let r1, . . . , rn be positive integers. Then we
have

r1 p−1∑

m1=0

· · ·
rn p−1∑

mn=0

(
m1 + · · · + mn

m1, . . . , mn

)
≡p κr1...rn ,

where

κr1...rn =
r1−1∑

m1=0

· · ·
rn−1∑

mn=0

(
m1 + · · · + mn

m1, . . . , mn

)
.

5. SUPER-CONGRUENCES. If a congruence identity that is valid modulo a prime
p is also valid modulo p2 (or better still, modulo p3 and beyond), then we have a super-
congruence. The grandmother of all super-congruences is Wolstenholme’s theorem
([11]; see also [9]) that asserts that

(
2p − 1
p − 1

)
≡p3 1,

and that improves on the weaker version
(2p−1

p−1

)
≡p2 1, first proved by Charles Bab-

bage ([3]), better known for more impressive innovations.
To our surprise, most (but not all!) of the above congruences have super-congruence

extensions. The method of [4], as it stands now, is not applicable since the “freshman’s
dream” is only valid modulo p, hence we have no clue how to prove the extensions.
We leave them as challenges to our readers.
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Super-conjecture 1. For any prime p ≥ 5,

p−1∑

n=0

(
2n
n

)
≡p2

{
1, if p ≡ 1 mod 3
−1, if p ≡ 2 mod 3.

More generally,

Super-conjecture 1′′. For any prime p ≥ 5 and any positive integer r ,

rp−1∑

n=0

(
2n
n

)
≡p2

{
αr , if p ≡ 1 mod 3
−αr , if p ≡ 2 mod 3,

where

αr =
r−1∑

n=0

(
2n
n

)
.

Super-conjecture 2. Let Cn denote the nth Catalan number. Then, for every prime
p ≥ 5,

p−1∑

n=0

Cn ≡p2

{
1, if p ≡ 1 mod 3
−2, if p ≡ 2 mod 3.

More generally,

Super-conjecture 2′. Let Cn denote the nth Catalan number. Then, for any positive
integer r ,

rp−1∑

n=0

Cn ≡p2

{
βr , if p ≡ 1 mod 3
−γr , if p ≡ 2 mod 3,

where

βr =
r−1∑

n=0

Cn, γr =
r−1∑

n=0

(3n + 2)Cn.

[Added in revision: Conjectures 1′′ and 2′ have now been proved; see [6].]

We note that poor Motzkin does not seem to have a super-extension, but Proposition
4 sure does.

Super-conjecture 4. Let p ≥ 5 be prime; then

p−1∑

n=0

p−1∑

m=0

(
n + m

m

)2

≡p2

{
1, if p ≡ 1 mod 3
−1, if p ≡ 2 mod 3.

More generally,
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Super-conjecture 4′. For any prime p ≥ 5, and any pair of positive integers r, s, we
have

rp−1∑

n=0

sp−1∑

m=0

(
n + m

m

)2

≡p2

{
ϵrs, if p ≡ 1 mod 3
−ϵrs, if p ≡ 2 mod 3,

where

ϵrs =
r−1∑

m=0

s−1∑

n=0

(
n + m

m

)2

.

The most pleasant surprise is that Propositions 5 and 5′ can be “upgraded” to a cubic
super-congruence, i.e., it is still true modulo p3.

Super-conjecture 5. Let p > 2 be prime. Then, we have

p−1∑

m1=0

p−1∑

m2=0

p−1∑

m3=0

(
m1 + m2 + m3

m1, m2, m3

)
≡p3 1.

More generally,

Super-conjecture 5′. Let p ≥ 3 be prime, and let r, s, t be any positive integers. Then

rp−1∑

m1=0

sp−1∑

m2=0

tp−1∑

m3=0

(
m1 + m2 + m3

m1, m2, m3

)
≡p3 κrst ,

where

κrst =
r−1∑

m1=0

s−1∑

m2=0

t−1∑

m3=0

(
m1 + m2 + m3

m1, m2, m3

)
.

[Added in revision: Conjectures 4′ and 5′ have now been proved; see [1].]

To our bitter disappointment, Propositions 6 and 6′, for n ≥ 4 summation signs, do
not have super-upgrades.

6. LOTS AND LOTS OF COMBINATORIAL CHALLENGES. Perhaps the
nicest proof of Fermat’s little theorem, a p ≡p a, is Golomb’s ([5]) combinatorial proof
that notes that a p is the number of (straight) necklaces with p beads, using beads of a
different colors, and hence a p − a is the number of such (straight) necklaces that are
not all of the same color. For any such necklace, all its p circular rotations are distinct
(since p is prime), hence the set of such necklaces can be divided into families, each

of them with p members, and hence there are
a p − a

p
“circular” necklaces (without

clasp), and this must be an integer.
Each and every quantity in the propositions and conjectures above counts a natural

combinatorial family. For example,
p−1∑

n=0

(
2n
n

)
counts the number of binary sequences
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with the same number of 0’s and 1’s whose length is less than 2p. Can you find a mem-
ber of this set that when you remove it, and p ≡ 1 (mod 3), you can partition that set
into families each of them with exactly p (or better still, for the super-congruence, p2)
members? And when p ≡ 2 (mod 3), can you find two such members?

REFERENCES

1. T. Amdeberhan, R. Tauraso, Two triple binomial sum supercongruences, preprint, https://arxiv.
org/abs/1607.02483.

2. M. Apagodu, D. Zeilberger, Multi-variable Zeilberger and Almkvist–Zeilberger algorithms and the sharp-
ening of Wilf–Zeilberger theory, Adv. Appl. Math. 37 (2006) 139–152, http://www.math.rutgers.
edu/~zeilberg/mamarim/mamarimhtml/multiZ.html.

3. C. Babbage, Demonstration of a theorem relating to prime numbers, Edinburgh Philosophical J. 1 (1819)
46–49.

4. W. Y. C. Chen, Q. Hou, D. Zeilberger, Automated discovery and proof of congruence theorems for partial
sums of combinatorial sequences, J. Difference Equ. Appl. 22 (2016) 780–788.

5. S. W. Golomb, Combinatorial proof of Fermat’s “little” theorem, Amer. Math. Monthly 63 (1956) 718.
6. J. C. Liu, On two conjectural supercongruences of Apagodu and Zeilberger, preprint, https://arxiv.

org/abs/1606.08432.
7. N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org/.
8. R. P. Stanley, Catalan Numbers, Cambridge Univ. Press, New York, 2015.
9. E. W. Weisstein, Wolstenholme’s theorem, http://mathworld.wolfram.com/Wolstenholmes

Theorem.html.
10. Wikipedia contributors, Freshman dream, Wikipedia, The Free Encyclopedia, http://en.wikepedia.

org/wiki/Freshman’s_dream.
11. J. Wolstenholme, On certain properties of prime numbers, Quart. J. Pure Appl. Math. 5 (1862) 35–39.

https://en.wikipedia.org/wiki/Wolstenholme’s_theorem.

DORON ZEILBERGER (Ph.D. 1976) has so far academically fathered 25 brilliant academic children,
including the coauthor of the present article. For more information, just visit Zeilberger’s homepage.
Rutgers University, 110 Frelinghuysen Rd., Piscataway, NJ 08854
DoronZeil@gmail.com

MOA APAGODU received a B.Sc. and M.Sc. from Addis Ababa University in Oromia, Ethiopia; advanced
diploma from the Abdus Salam International Centre for Theoretical Physics (ICTP) in Mathematics, Trieste,
Italy; and Ph.D. from Rutgers University, Piscataway, NJ, USA. He is currently an associate professor of
mathematics at Virginia Commonwealth University: notable work: Apagodu−Zeilberger algorithms.
Virginia Commonwealth University, Richmond, VA 23238
mapagodu@vcu.edu

608 c⃝ THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 124

This content downloaded from 192.148.225.18 on Sat, 22 Jul 2017 05:25:53 UTC
All use subject to http://about.jstor.org/terms

https://arxiv.org/abs/1607.02483.
https://arxiv.org/abs/1607.02483.
https://arxiv.org/abs/1606.08432
https://arxiv.org/abs/1606.08432
http://oeis.org/.
http://mathworld.wolfram.com/WolstenholmesTheorem.html.
http://mathworld.wolfram.com/WolstenholmesTheorem.html.
http://en.wikepedia.org/wiki/Freshman's_dream.
http://en.wikepedia.org/wiki/Freshman's_dream.
https://en.wikipedia.org/wiki/Wolstenholme's_theorem
mailto:DoronZeil@gmail.com
mailto:mapagodu@vcu.edu

	Introduction.
	The freshman's dream identity
	Sum of a Geometric Series:

	Notation.
	 Example 1.
	 Example 2.

	Review of the Chen–Hou–Zeilberger Single Variable Case.
	Proposition 1.
	Proposition 1'.
	 Proposition 2.
	Proposition 2'.
	Proposition 3.
	Proposition 3'.

	Multisums and Multivariables.
	Proposition 4.
	Proposition 4'.
	Proposition 5.
	Proposition 6.
	Proposition 6'.

	Super-Congruences.
	Super-conjecture 1.
	Super-conjecture 1''.
	Super-conjecture 2.
	Super-conjecture 2'.
	Super-conjecture 4.
	Super-conjecture 4'.
	Super-conjecture 5.
	Super-conjecture 5'.

	Lots and Lots of Combinatorial Challenges.

