'$ R i
o 4 Wt R
’ - -I’ g

- "< i
Quick answers to common problems

Git Version Control
Cookbook

90 hands-on recipes that will increase your productivity when
using Git as a version control system

Aske Olsson open source

Ra S m u S VOS S communily experience distiled

PUBLISHING

ww.allitebooks.co

http://www.allitebooks.org

Git Version Control
Cookbook

90 hands-on recipes that will increase your productivity
when using Git as a version control system

Aske Olsson

Rasmus Voss

open source

community experience distilled
PUBLISHING

BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Git Version Control Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2014

Production reference: 1170714

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78216-845-4
www . packtpub.com

Cover image by Benoit Benedetti (benoit .benedetti@gmail.com)

[vww allitebooks.cond

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Aske Olsson

Rasmus Voss

Reviewers
Kenneth Geisshirt

Shashikant Vaishnav

Commissioning Editor
Martin Bell

Acquisition Editor
Rebecca Youé

Content Development Editor
Govindan K

Technical Editors
Manal Pednekar

Anand Singh

Copy Editors
Mradula Hegde

Gladson Monteiro

Adithi Shetty

Project Coordinator
Shipra Chawhan

Proofreaders
Simran Bhogal

Maria Gould
Ameesha Green

Paul Hindle

Indexers
Hemangini Bari

Mariammal Chettiyar
Mehreen Deshmukh
Tejal Soni

Priya Subramani

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

[vww allitebooks.cond

http://www.allitebooks.org

About the Authors

Aske Olsson has more than 10 years of experience in the software industry.
With a background as an electrical engineer, he has used every tool available

for development, from a soldering iron over Assembly, C, and Java programming to
different SCM, build- and issue-tracking systems.

Aske has worked for Nokia for 6 years, where he was one of the leading forces behind
complex tool transformation and renewal projects. Among them was a broad adoption
of Git SCM, Gerrit Code Review, and Jenkins Cl.

Currently, Aske works at Schantz, a company developing advanced IT solutions for the
financial sector. He develops and maintains their continuous delivery pipeline.

Aske is also one of the four founding partners in the software development tools and
processes company Switch-Gears ApS, where he helps customers, large and small, increase
the maturity and productivity of their software delivery efforts by moving the customers from
legacy tools and working modes to modern open source based tools and processes.

Aske has more than 4 years of experience working with Git, and since 2011, he has been
teaching Git in regular training sessions, from basic Git to its advanced usage.

First, | would like to thank my wife and two kids (soon to be three) for
supporting me and putting up with me while writing this book.

I would also like to thank Rasmus Voss for co-authoring the book with me.
Last but not least, | would like to thank Knud Poulsen, Emanuele Zattin,
Lars Pedersen, and the rest of the tool renewal team at Nokia for all the
good discussions around Git.

[vww allitebooks.cond

http://www.allitebooks.org

Rasmus Voss is specialized in continuous integration, software releasing, and process
automation. His vast knowledge on these areas has been built by a 10-year career in Nokia
mobile phones in Copenhagen, Denmark and Beijing, China, where he started optimizing
autotesting for the Series 30 platform. He later moved to software releasing and became part
of the team that upgraded the software delivery chain from an old version control system CM
Synergy to Git, incorporating Gerrit for code review and Jenkins for single commit verification,
software releasing, and much more. Rasmus spent 2 years in China working for Nokia where
he sparred with developers, release managers, test engineers, and leaders to optimize the
process so that developers could spend time coding and testers knew what

they were testing.

Today, Rasmus has his own company VossCon, where he consults with companies on how to
make the most of developers and testers by optimizing software releasing, providing visibility
in the delivery chain, upgrading the tool chain, automating tedious processes, and training
developers. He also holds courses on Git, Gerrit, and Jenkins.

First and foremost, | would like to thank my wife and four kids for putting
up with me and the stress it has been moving back to Denmark while
starting a company, writing a book, and also trying to be the best family
father | could be.

I would also like to thank Nokia for the career opportunities they gave

me. Thanks to Aske Olsson for co-authoring the book with me. Thanks to
Jonas Christensen from Schneider Electric who signed the first contract for
my company. Thanks to Knud Poulsen for introducing me to Git, Gerrit,
and Jenkins.

[vww allitebooks.cond

http://www.allitebooks.org

About the Reviewers

Kenneth Geisshirt is a chemist by education and a geek by nature. He has been
programming for the last three decades. For more than 20 years, he has been using
Unix and Linux as his primary operating system.

He is currently working at Realm, a small database company. He is working on language
bindings (Python, Objective C, Node.js, and so on), and Git is an integrated tool in his daily
work flow.

Kenneth has reviewed books on Vim, Linux system programming, and Octave. He has also
written books on PAM and Linux, and numerous featured articles on open source software.

Shashikant Vaishnav was born and brought up in a desert town of Jodhpur, Rajasthan,
India. He is currently a contract developer at Click Here Media, United Kingdom.

His research interests primarily focus on the areas of technology in education and developing
software that takes into consideration the needs of elementary learners.

He has also been involved with Moodle LMS for quite a long time as a student. While being an
undergraduate, he participated in Google's Summer of Code program and integrated Apache
Solr with Moodle. He also participated as a mentor in the Google Code-in 2013 program for
Sugar Labs.

He completed his undergraduate degree at Government Engineering College, Bikaner,
with a Bachelor of Engineering and Technology in Computer Science in 2013. In college,
he formed a group named LUGB (Linux User Group Bikaner).

Besides his academics focus, he harbors a deep interest for music and sports. He loves to
blog about his experiences with open source technology, travel, and life. To allure himself at
times, he reads spiritual books, does photography, and hacks around with open source stuff.

| want to thank Packt Publishing for giving me the opportunity to contribute
towards this great effort.

[vww allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more

You might want to visit www . Packt Pub . com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

PACKT

http://PacktLib.PacktPub.com

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

» Fully searchable across every book published by Packt
» Copy and paste, print and bookmark content

» On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

[vww allitebooks.cond

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

Preface 1
Chapter 1: Navigating Git 5
Introduction 5
Git's objects 7
The three stages 12
Viewing the DAG 17
Extracting fixed issues 20
Getting a list of the changed files 23
Viewing history with Gitk 24
Finding commits in history 26
Searching through history code 28
Chapter 2: Configuration 31
Configuration targets 31
Querying the existing configuration 34
Templates 36
A .git directory template 38
A few configuration examples 40
Git aliases 44
The refspec exemplified 48
Chapter 3: Branching, Merging, and Options 53
Introduction 53
Managing your local branches 54
Branches with remotes 57
Forcing a merge commit 61
Using git rerere to merge known conflicts 65
The difference between branches 71

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Introduction

Auto-squashing commits

Introduction
Adding your first Git note

Introduction

and Scripts

Introduction

Introduction

Chapter 4: Rebase Regularly and Interactively, and Other Use Cases 73
73
Rebasing commits to another branch 74
Continuing a rebase with merge conflicts 75
Rebasing selective commits interactively 78
Squashing commits using an interactive rebase 81
Changing the author of commits using a rebase 86
89
Chapter 5: Storing Additional Information in Your Repository 95
95
926
Separating notes by category 100
Retrieving notes from the remote repository 104
Pushing notes to a remote repository 108
Tagging commits in the repository 110
Chapter 6: Extracting Data from the Repository 115
115
Extracting the top contributor 115
Finding bottlenecks in the source tree 120
Grepping the commit messages 126
The contents of the releases 128
Chapter 7: Enhancing Your Daily Work with Git Hooks, Aliases,
133
133
Using a branch description in the commit message 134
Creating a dynamic commit message template 138
Using external information in the commit message 144
Preventing the push of specific commits 148
Configuring and using Git aliases 153
Configuring and using Git scripts 158
Setting up and using a commit template 159
Chapter 8: Recovering from Mistakes 163
163
Undo - remove a commit completely 164
Undo - remove a commit and retain the changes to files 167
Undo - remove a commit and retain the changes in the staging area 169
171

Undo - working with a dirty area

Redo - recreate the latest commit with new changes
Revert - undo the changes introduced by a commit
Reverting a merge

Viewing past Git actions with git reflog

Finding lost changes with git fsck

Chapter 9: Repository Maintenance

Table of Contents

175
179
181
186
188

193

Introduction

Pruning remote branches

Running garbage collection manually

Turning off automatic garbage collection
Splitting a repository

Rewriting history - changing a single file

Back up your repositories as mirror repositories
A quick submodule how-to

Subtree merging

Submodule versus subtree merging

Chapter 10: Patching and Offline Sharing

193
194
196
199
200
205
206
209
214
221

223

Introduction

Creating patches

Creating patches from branches
Applying patches

Sending patches

Creating Git bundles

Using a Git bundle

Creating archives from a tree

Chapter 11.: Git Plumbing and Attributes

223
224
227
229
231
235
238
241

245

Introduction

Displaying the repository information
Displaying the tree information
Displaying the file information

Writing a blob object to the database
Writing a tree object to the database
Writing a commit object to the database
Keyword expansion with attribute filters
Metadata diff of binary files

Storing binaries elsewhere

Checking the attributes of a file
Attributes to export an archive

245
246
248
251
255
257
258
261
264
267
272
273

Table of Contents

Chapter 12: Tips and Tricks 277
Introduction 277
Using git stash 278
Saving and applying stashes 284
Debugging with git bisect 286
Using the blame command 292
Color Ul in the prompt 293
Autocompletion 295
Bash prompt with status information 297
More aliases 300
Interactive add 304
Interactive add with Git GUI 310
Ignoring files 313
Showing and cleaning ignored files 317

Index 319

Preface

Git is the clear leader in the new paradigm of distributed version control systems. Originally
developed by Linus Torvalds as a source control management (SCM) system for the Linux

kernel to replace the proprietary SCM BitKeeper, Git has since conquered most of the open
source world and is also used by lots of organizations for their private/proprietary projects.

This book is designed to give you practical recipes for everyday Git usage. The recipes can

be used directly or as an inspiration for you. The book will cover the Git data model through
practical recipes and in-depth explanations so you get a deeper understanding of the internal
workings of Git. This book will show you the following topics:

» Working with the history. With Git, you have all the history stored locally. Use it to
search through the history, view the history, find the last commit touching a particular
line, and so on.

» Using branches effectively with options and strategies to push, pull, and merge.

» Storing and extracting additional metadata in the Git repository.

» Disaster recovery: local and global.
Git Version Control Cookbook gives you precise step-by-step instructions to various common
and uncommon Git operations. The book can help ease your daily work with Git by providing

recipes for common issues, useful tips and tricks, and in-depth clarifications of why and
how they work.

What this book covers

Chapter 1, Navigating Git, shows how Git stores files and commits. Examples will visually show
you the data model and how to navigate the history and database with simple commands.

Chapter 2, Configuration, shows how a lot can be configured in Git and how configuration
targets are set, the different configuration levels, and some useful targets.

Preface

Chapter 3, Branching, Merging, and Options, will give you a deeper understanding of
branching and the options for easy push/pull targets. It also shows you the different
merge strategies and some tips on how to record merge resolutions.

Chapter 4, Rebase Regularly and Interactively, and Other Use Cases, shows you how
rebasing can be used instead of merging along with a lot of other use cases of rebase:
cleaning up the history before publishing, testing single commits, and so on.

Chapter 5, Storing Additional Information in Your Repository, takes you on a tour of Git notes.
It will show you how to tie additional information to a commit, and how to use and see this
information again.

Chapter 6, Extracting Data from the Repository, will show you how to extract statistics and
other metadata from the repository.

Chapter 7, Enhancing Your Daily Work with Git Hooks, Aliases, and Scripts, contains a
collection of recipes to help you automate much of the tedious daily work.

Chapter 8, Recovering from Mistakes, walks you through several recovery scenarios, from
local undo, to where-is-my-old-commit, to global recovery scenarios.

Chapter 9, Repository Maintenance, is a collection of recipes that concern the maintenance
and management of repositories, from forcing garbage collection, over-splitting, and joining
repositories to complete history rewriting.

Chapter 10, Patching and Offline Sharing, shows you how to work offline with Git and share
the work by means other than pushing and pulling.

Chapter 11, Git Plumbing and Attributes, has a collection of recipes that show you how to
utilize the filter feature of Git and a small collection of recipes that cover some of the useful
but not widely known plumbing commands.

Chapter 12, Tips and Tricks, is a collection of recipes that covers various topics, from
simple tips to displaying the current branch in your prompt to advanced Git tools,
such as bisect and stash.

What you need for this book

To follow and recreate the recipes from this book, you will need a computer preferably running
a *NIX operating system. You will need Git installed, preferably Git Version 1.8 or later.

If you are a Windows user, we recommend the Git Extensions package, which ships both
a graphical and textual (bash) Git interface. The latter is required for the recipes in this book.

Preface

Who this book is for

This book targets both developers, as well as professional build/release managers who want
a practical guide for the next level of Git. There is something for everyone. Starting with the
Git data model and advancing through branching to metadata and hooks, all through an
easy-to-read recipe structure, the transition from simple everyday use cases to advanced
repository handling is smooth. The book can be easily read and understood by readers from
all categories. The book requires basic knowledge of common GNU/Linux tools and shell/
bash scripting.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input are shown as follows: "Again, we will use the JGit
repository with the master branch pointing to b14a939."

Any command-line input or output is written as follows:
$ git log -G"isOutdated" --oneline

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "We can just write the
commit message in the field in the bottom of the screen and hit Commit."

% Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

(3 |-

www.packtpub.com/authors

Preface

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub. com. If you purchased this book elsewhere,
you can visit http: //www.packtpub.com/support and register to have the files
e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find

any errata, please report them by visiting http: //www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will

be uploaded to our website, or added to any list of existing errata, under the Errata section

of that title.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.

At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Navigating Git

In this chapter, we will cover the following topics:

» Git's objects

» The three stages

» Viewing the DAG

» Extracting fixed issues

» Getting a list of the changed files
» Viewing the history with Gitk

» Finding commits in the history

» Searching through the history code

Introduction

In this chapter, we will take a look at Git's data model. We will learn how Git references its
objects and how the history is recorded. We will learn how to navigate the history, from finding
certain text snippets in commit messages to the introduction of a certain string in the code.

Navigating Git

The data model of Git is different from other common version control systems (VCSs) in the
way Git handles its data. Traditionally, a VCS will store its data as an initial file followed by a
list of patches for each new version of the file.

Commits over time >

[Version 1] [Version 2] [Version 3] [Version 4] [Version 5] [Version 6]

fleB —» Al > A2
file C —» A1 > A2 >

=
@
o
v
-
E]
v
P
>
N

Git is different; instead of the regular file and patches list, Git records a snapshot of all the files
tracked by Git and their paths relative to the repository root, that is, the files tracked by Git in the
file system tree. Each commit in Git records the full tree state. If a file does not change between
commits, Git will not store the file once more; instead, Git stores a link to the file.

Commits over time >
[Version 1] [Version 2 J [Version 3] [Version 4 J [Version 5] [Version 6]
| [| I [I
file A A Al A2 A2 A3
I I I I I I
file B B1 B1 B1 B2 B2
| I | | | |
file C C1 C1 c2 c2 C3
I I I I I I
file D D D1 D D2 D2

This is what makes Git different from most other VCSs, and in the following chapters,
we will explore some of the benefits of this powerful model.

Chapter 1

The way Git references the files and directories it tracks is directly built into the data model.
In short, the Git data model can be summarized as shown in the following diagram:

HEAD
Pointer to a . l
snapshot e
branch

Tree contents 1ree_D C1
tag
File contents blob

The commit object points to the root tree. The root tree points to subtrees and files.
Branches and tags point to a commit object and the HEAD object points to the branch that
is currently checked out. So for every commit, the full tree state and snapshot are identified
by the root tree.

Git's objects

Now that you know Git stores every commit as a full tree state or snapshot, let's look closer
at the object's Git store in the repository.

Git's object storage is a key-value storage, the key being the ID of the object and the
value being the object itself. The key is an SHA-1 hash of the object, with some additional
information such as size. There are four types of objects in Git, branches (which are not
objects, but are important), and the special HEAD pointer that refers to the branch/commit
currently checked out. The four object types are as follows:

» Files, or blobs as they are also called in the Git context

» Directories, or trees in the Git context

» Commits

» Tags

We will start by looking at the most recent commit object in the repository we just cloned,
keeping in mind that the special HEAD pointer points to the branch currently checked out.

[vww allitebooks.cond

http://www.allitebooks.org

Navigating Git

Getting ready

To view the objects in the Git database, we first need a repository to be examined.
For this recipe, we will clone an example repository located here:

$ git clone https://github.com/dvaske/data-model.git

$ cd data-model

Now you are ready to look at the objects in the database, we will start by looking first at the
commit object, then the trees, the files, and finally the branches and tags.

How to do it...

Let's take a closer look at the object's Git stores in the repository.

The commit object

The special Git object HEAD always points to the current snapshot/commit, so we can
use that as a target for our request of the commit we want to have a look at:

$ git cat-file -p HEAD

tree 34fa038544bcd9%aed660c08320214baff£94150b

parent a90d1906337a6d75£1dc32da647931£932500d483

author Aske Olsson <aske.olsson@switch-gears.dk> 1386933960 +0100
committer Aske Olsson <aske.olsson@switch-gears.dk> 1386941455 +0100

This is the subject line of the commit message

It should be followed by a blank line then the body, which is this text.
Here you can have multiple paragraphs etc. and explain your commit. It's
like an email with subject and body, so get people's attention in the
subject

The cat-file command with the -p option pretty prints the object given on the command
line; in this case, HEAD, which points to master, which in turn points to the most-recent
commit on the branch.

We can now see the commit object, consisting of the root tree (tree), the parent commit
object's ID (parent), author and timestamp information (author), committer and timestamp
information (committer), and the commit message.

Chapter 1

The tree object

To see the tree object, we can run the same command on the tree, but with the tree ID
(34fa038544bcd9aed660c08320214baff£94150b) as the target:

$ git cat-file -p 34fa038544bcd9%aed660c08320214baff£f94150b

100644 blob £21dc2804e888fee6014d7e5blceee533b222cl5 README .md
040000 tree abc267d04fb803760b75be7e665d3d69eeced32£8 a sub directory
100644 blob b50£80ac4d0a36780£9c0636£43472962154alla another-file. txt
100644 blob 92f046£f17079aa82c924a%9acf28d623fcb6ca727 cat-me. txt

100644 blob bb2fe940924c65b4alcefcbdbe88c74d39eb23cd hello world.c

We can also specify that we want the tree object from the commit pointed to by HEAD,

by specifying git cat-file -p HEAD"{tree}, which would give the same results as
the previous one. The special notation HEAD" { tree } means that from the reference given,
(HEAD) recursively dereferences the object at the reference until a tree object is found.

The first tree object is the root tree object found from the commit pointed to by the master
branch, which is pointed to by HEAD. A generic form of the notation is <rev>"<type> and
will return the first object of <type> searching recursively from <revs.

From the tree object, we can see what it contains: file type/permissions, type (tree/blob),
ID, and pathname:

Type/ Type ID/SHA-1 Pathname

Permissions

100644 blob £21dc2804e888fee6014 README.md
d7e5blceee533b222cl5

040000 tree abc267d04fb803760b75 a_sub
be7e665d3d69eeed32£8 directory

100644 blob b50f80ac4d0a36780£f9c another-file.
0636f43472962154alla txt

100644 blob 92f046£17079aa82c924 cat-me.txt
a9acf28de623fcb6ca727

100644 blob bb2fe940924c65bdalce hello-world.c
fcbdbe88c74d39eb23cd

Navigating Git

The blob object
Now, we can investigate the blob (file) object. We can do it using the same command,
giving the blob ID as target for the cat-me. txt file:

$ git cat-file -p 92f046£17079aa82c924a%9acf28d623£fcb6ca727
This is the content of the file: "cat-me.txt."

Not really that exciting, huh?

This is simply the content of the file, which we will also get by running a normal cat cat-me.
txt command. So, the objects are tied together, blobs to trees, trees to other trees, and the
root tree to the commit object, all by the SHA-1 identifier of the object.

The branch

The branch object is not really like any other Git objects; you can't print it using the
cat-file command as we can with the others (if you specify the -p pretty print,
you'll just get the commit object it points to):

$ git cat-file master

usage: git cat-file (-t|-s|-e|-p|<type>|--textconv) <object>

or: git cat-file (--batch|--batch-check) < <list of objects>
<type> can be one of: blob, tree, commit, tag.

$ git cat-file -p master
tree 34fa038544bcd%9aed660c08320214bafff94150b
parent a90d1906337a6d75£1dc32da647931£932500d483

Instead, we can take a look at the branch inside the .git folder where the whole Git
repository is stored. If we open the text file .git/refs/heads/master, we can actually
see the commit ID the master branch points to. We can do this using cat as follows:

$ cat .git/refs/heads/master
34acc370b4d6ae53£051255680feaefaf7£7850d4

We can verify that this is the latest commit by running git log -1:

$ git log -1
commit 34acc370b4d6ae53£f051255680feaefaf7£7850d4

]

Chapter 1

Author: Aske Olsson <aske.olsson@switch-gears.dk>

Date: Fri Dec 13 12:26:00 2013 +0100

This is the subject line of the commit message

We can also see that HEAD is pointing to the active branch by using cat with
the .git /HEAD file:
$ cat .git/HEAD

ref: refs/heads/master

The branch object is simply a pointer to a commit, identified by its SHA-1 hash.

The tag object

The last object to be analyzed is the tag object. There are three different kinds of tags:

a lightweight (just a label) tag, an annotated tag, and a signed tag. In the example repository,
there are two annotated tags:

$ git tag

v0.1

vl.0

Let's take a closer look at the v1. 0 tag:

$ git cat-file -p v1.0

object 34acc370b4d6ae53f051255680feaefaf7£78504

type commit

tag v1.0

tagger Aske Olsson <aske.olsson@switch-gears.dk> 1386941492 +0100

We got the hello world C program merged, let's call that a release 1.0

As you can see, the tag consists of an object, which in this case is the latest commit on
the master branch, the object's type (both, commits, and blobs and trees can be tagged),
the tag name, the tagger and timestamp, and finally a tag message.

Navigating Git

The Git command git cat-file -p will pretty print the object given as an input. Normally,
it is not used in everyday Git commands, but it is quite useful to investigate how it ties
together the objects. We can also verify the output of git cat-file, by rehashing it with the
Git command git hash-object; for example, if we want to verify the commit object at HEAD
(34acc370b4d6ae53f051255680feaefaf7£7850d), we can run the following command:

$ git cat-file -p HEAD | git hash-object -t commit --stdin
34acc370b4d6ae53£f051255680feaefaf7£78504

If you see the same commit hash as HEAD pointing towards you, you can verify whether it is
correct withgit log -1.

There's more...

There are many ways to see the objects in the Git database. The git 1ls-tree command
can easily show the contents of trees and subtrees and git show can show the Git objects,
but in a different way.

See also

» For further information about Git plumbing, see Chapter 11, Git Plumbing and
Attributes, almost at the end of this book.

The three stages

We have seen the different objects in Git but how do we create them? In this example,
we'll see how to create a blob, tree, and commit object in the repository. We'll learn about
the three stages of creating a commit.

Getting ready

We'll use the same data-model repository as seen in the last recipe:

$ git clone https://github.com/dvaske/data-model.git
$ cd data-model

Chapter 1

How to do it...

First, we'll make a small change to the file and check git status:

$ echo "Another line" >> another-file.txt
$ git status
On branch master

Your branch is up-to-date with 'origin/master'.

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working
directory)

modified: another-file.txt

no changes added to commit (use "git add" and/or "git commit -a")

This, of course, just tells us that we have modified another-file.txt and we need to use
git addto stage it. Let's add the another-file.txt file and run git status again:

$ git add another-file.txt
$ git status
On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: another-file.txt

The file is now ready to be committed, just as you have probably seen before. But what
happened during the add command? The add command, generally speaking, moves files
from the working directory to the staging area, but more than this actually happens, though
you don't see it. When a file is moved to the staging area, the SHA-1 hash of the file is created
and the blob object is written to Git's database. This happens for all the files added and every
time a file is added, but if nothing changes for a file, this means it is already stored in the
database. At first, this might seem that the database is growing quickly, but this is not the
case. Garbage collection kicks in at times, compressing and cleaning up the database and
keeping only the objects that are required.

[}

Navigating Git

We can edit the file again and run git status:

$ echo 'Whoops almost forgot this' >> another-file.txt
$ git status
On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: another-file. txt

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working
directory)

modified: another-file.txt

Now, the file shows up both in the Changes to be committed and Changes not staged for
commit sections. This looks a bit weird at first, but there is of course an explanation. When
we added the file the first time, the content of it was hashed and stored in Git's database.
The changes from the second change of the file have not yet been hashed and written to
the database; it only exists in the working directory. Therefore, the file shows up in both
the Changes to be committed and Changes not staged for commit sections; the first
change is ready to be committed, the second is not. Let's also add the second change:

$ git add another-file.txt

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: another-file. txt

Chapter 1

Now, all the changes we have made to the file are ready to be committed and we can
record a commit:

$ git commit -m 'Another change to another file'
[master 55e29e4] Another change to another file

1 file changed, 2 insertions(+)

As we learned previously, the add command creates the blob object, the tree, and commit
objects; however, they are created when we run the commit command. We can view these
objects with the cat-file command, as we saw in the previous recipe:

$ git cat-file -p HEAD

tree 162201200b5223d48ea8267940c8090b23cbfb60

parent 34acc370b4d6ae53£f051255680feaefaf7£7850d4

author Aske Olsson <aske@schantz.com> 1401744547 +0200
committer Aske Olsson <aske@schantz.com> 1401744547 +0200

Another change to another file
The root-tree object from the commit is:

$ git cat-file -p HEAD"{tree}

100644 blob £f21dc2804e888fee60l4d7e5blceee533b222cl5 README.md

040000 tree abc267d04fb803760b75be7e665d3d69eeed32f8 a_ sub directory
100644 blob 35d31106c5d6£fdb38c6bla6fb43a90bl83011la4b another-file.txt
100644 blob 92f046£17079aa82c924a9acf28d623fcb6ca727 cat-me.txt
100644 blob bb2fe940924c65b4alcefcbdbe88c74d39eb23cd hello world.c

From the previous recipe, we know the SHA-1 of the root tree was
34fa038544bcd9aed660c08320214baff£94150b and of the another-file. txt file
was b50f80ac4d0a36780f9c0636£43472962154alla, and as expected, they changed

in our latest commit when we updated the another-file. txt file. We added the same file,
another-file.txt, twice before we created the commit, recording the changes to the history
of the repository. We also learned that the add command creates a blob object when called. So
in the Git database, there must be an object similar to the content of another-file. txt the
first time we added the file to the staging area. We can use the git fsck command to check
for dangling objects, that is, objects that are not referred by other objects or references:

$ git fsck --dangling
Checking object directories: 100% (256/256), done.
dangling blob ad46f2da274ed6c79al6577571a604d3281cd6d9

]

Navigating Git
Let's check the contents of the blob using the following command:

$ git cat-file -p ad46f2da274ed6c79al1l6577571a604d3281cd6d9
This is just another file
Another line

The blob is, as expected, similar to the content of another-file. txt when we added
it to the staging area the first time.

The following diagram describes the tree stages and the commands used to move
between the stages:

4 '
workin , .git director
: g staging area 9 cory
directory (repository)
- / v
)
< git checkout
Populate working directory & staging area
— git add ——)
Create blobs
— git commit >
Create trees & commits
\ v, \ J

» For more examples and information on the cat-file, f£sck, and other plumbing
commands, see Chapter 11, Git Plumbing and Attributes.

Chapter 1

Viewing the DAG

The history in Git is formed from the commit objects; as development advances, branches are
created and merged, and the history will create a directed acyclic graph, the DAG, due to the
way Git ties a commit to its parent commit. The DAG makes it easy to see the development

of a project based on the commits. Please note that the arrows in the following diagram are
dependency arrows, meaning that each commit points to its parent commit(s), hence the
arrows point in the opposite direction of time:

HEAD
Multiple parents

v0.1 c98f570 —— T0fd2ec ¢—— 0806aB8b

97ce729 |¢«—— B8fB4bcd <+—— 08e022e |¢—— 44fle0b +«—— 485884e <+—— ad0d190 |¢—— 34dacc37

5fb761le |[¢+——— 3571299 «—— B82cdS66 v1.0

Multiple children

feature/2

A graph of the example repository with abbreviated commit IDs

Viewing the history (the DAG) is built into Git by its git log command. There are also a

number of visual Git tools that can graphically display the history. This section will show
some features of git log.

Getting ready

We will use the example repository from the last section and ensure that the master branch
is pointing to 34acc37:

$ git checkout master && git reset --hard 34acc37

In the previous command, we only use the first seven characters (34acc37) of the commit ID;
this is fine as long as the abbreviated ID used is unique in the repository.

[vww allitebooks.cond

http://www.allitebooks.org

Navigating Git

How to do it...

The simplest way to see the history is to use the git log command; this will display the
history in reverse chronological order. The output is paged through 1ess and can be further
limited, for example, by providing only the number of commits in history to be displayed:

$ git log -3
This will display the following result:

commit 34acc370b4d6ae53f051255680feaefaf7£7850d4
Author: Aske Olsson <aske.olsson@switch-gears.dk>
Date: Fri Dec 13 12:26:00 2013 +0100

This is the subject line of the commit message.

It should be followed by a blank line then the body, which is this
text. Here

you can have multiple paragraphs etc. and explain your commit. It's
like an

email with subject and body, so get people's attention in the subject

commit a90d1906337a6d75£f1dc32da647931£932500d83
Author: Aske Olsson <aske.olsson@switch-gears.dk>
Date: Fri Dec 13 12:17:42 2013 +0100

Instructions for compiling hello world.c
commit 485884efdbac68cc7b58c643036acd3cd208d5c8
Merge: 44f1e05 0806a8b
Author: Aske Olsson <aske.olsson@switch-gears.dk>
Date: Fri Dec 13 12:14:49 2013 +0100

Merge branch 'feature/1"

Adds a hello world C program.

1
‘Q Turn on colors in the Git output by running git config --global

color.ui auto

]

Chapter 1

By default, git log prints the commit, author's name and e-mail ID, timestamp, and the
commit message. However, the information isn't very graphical, especially if you want to
see branches and merges.

To display this information and limit some of the other data, you can use the following options
with git log:

$ git log --decorate --graph --oneline --all

The previous command will show one commit per line (- -oneline) identified by its
abbreviated commit ID and the commit message subject. A graph will be drawn between the
commits depicting their dependency (- -graph). The --decorate option shows the branch
names after the abbreviated commit ID, and the --al1 option shows all the branches,
instead of just the current one(s).

$ git log --decorate --graph --oneline --all

* 34acc37 (HEAD, tag: v1.0, origin/master, origin/HEAD, master) This is
the sub...

* a90d190 Instructions for compiling hello world.c

* 485884e Merge branch 'feature/1'

oo

This output, however, gives neither the timestamp nor author information, due to the way
the - -oneline option formats the output.

Fortunately, the 1og command gives us the possibility to create our own output format.
So, we can make a history view similar to the previous. The colors are made with the
$C<color-name>text-be-colored%Creset syntax: including the author and
timestamp information, and some colors to display it nicely:

$ git log --all --graph --pretty=format:\

'%Cred%h%Creset -%C(yellow)%d%Creset %s %Cgreen(%ci) %C(bold
blue) <%an>%Creset'

data-model (master)$ git

Navigating Git

This is a bit cumbersome to write, but luckily it can be made as an alias so you only have to
write it once:

git config ----global alias.graph "log --all --graph
--pretty=format:'%Cred%h%Creset -%C(yellow)%d%Creset %s %Cgreen(%ci)
%C(bold blue)<%an>%Creset'"

1
‘Q Now, all you need to do is call git graph to show the history

as you saw previously.

Git traverses the DAG by following the parent IDs (hashes) from the given commit(s).

The options passed to git log can format the output in different ways; this can serve
several purposes, for example, to give a nice graphical view of the history, branches, and
tags, as seen previously, or to extract specific information from the history of a repository to
use, for example, in a script.

» For more information about configuration and aliases, see Chapter 2,
Configuration.

Extracting fixed issues

A common use case when creating a release is to create a release note, containing among
other things, the bugs fixed in the release. A good practice is to write in the commit message
if a bug is fixed by the commit. A better practice is to have a standard way of doing it, for
example, a line with the string "Fixes-bug: " followed by the bug identifier in the last part
of the commit message. This makes it easy to compile a list of bugs fixed for a release note.
The JGit project is a good example of this; their bug identifier in the commit messages is a
simple "Bug: " string followed by the bug ID.

This recipe will show you how to limit the output of git 1log to list just the commits since the
last release (tag), which contains a bug fix.

Getting ready

Clone the JGit repository using the following command lines:

$ git clone https://git.eclipse.org/r/jgit/jgit
$ cd jgit

=]

Chapter 1

If you want the exact same output as in this example, reset your master branch to the
following commit, b14a93971837610156e815ae2eee3baaaSb7a44b:

$ git checkout master && git reset --hard bl4a939

How to do it...

You are now ready to look through the commit log for commit messages that describe the
bugs fixed. First, let's limit the log to only look through the history since the last tag (release).
To find the last tag, we can use git describe:

$ git describe

v3.1.0.201310021548-r-96-gb14a939

The preceding output tells us three things:

» Thelasttagwasv3.1.0.201310021548-r
» The number of commits since the tag were 96
» The current commit in abbreviated form is b14a939

Now, the log can be parsed from HEAD t0 v3.1.0.201310021548-r. But just running git
log 3.1.0.201310021548-r..HEAD will give us all the 96 commits, and we just want

the commits with commit messages that contain "Bug: xxxxxx" for our release note. The
xxxxxx is an identifier for the bug, for example, a number. We can use the - -grep option
with git log for this purpose: git log --grep "Bug: ".This will give us all the commits
with "Bug: " in the commit message; all we need now is just to format it to something we
can use for our release note.

Let's say we want the release note format to look like the following template:

Commit-id: Commit subject
Fixes-bug: xxx

Our command line so far is as follows:
$ git log --grep "Bug: " v3.1.0.201310021548-r..HEAD

This gives us all the bug fix commits, but we can format this to a format that is easily parsed
with the - -pretty option. First, we will print the abbreviated commit ID $h, followed by a
separator of our choice |, then the commit subject s, (first line of the commit message),
followed by a new line %$n, and the body, $b:

--pretty="%h|%s%n%b"

The output of course needs to be parsed, but that's easy with regular Linux tools
such as grep and sed:

Navigating Git

First, we just want the lines that contain " | " or "Bug: ":
grep -E "\||Bug: "

Then, we replace these with sed:

sed -e 's/|/: /' -e 's/Bug:/Fixes-bug:/'

The entire command put together gives:

\$ git log --grep "Bug: " v3.1.0.201310021548-r..HEAD --pretty="%h|%s%n%b"
| grep -E "\||Bug: " | sed -e 's/|/: /' -e 's/Bug:/Fixes-bug:/'

The previous set of commands gives the following output:

£86a488: Implement rebase.autostash

Fixes-bug: 422951

7026658: CLI status should support --porcelain

Fixes-bug: 419968

e0502eb: More helpful InvalidPathException messages (include reason)
Fixes-bug: 413915

f4dae20: Fix IgnoreRule#isMatch returning wrong result due to missing
reset

Fixes-bug: 423039

7dc8a4f: Fix exception on conflicts with recursive merge
Fixes-bug: 419641

99608f0: Fix broken symbolic links on Cygwin.

Fixes-bug: 419494

Now, we can extract the bug information from the bug tracker and put the preceding code in
the release note as well, if necessary.

First, we limit the git log command to only show the range of commits we are interested

in, then we further limit the output by filtering the "Bug: " string in the commit message.

We pretty print the string so we can easily format it to a style we need for the release note and
finally find and replace with grep and sed to completely match the style of the release note.

=

Chapter 1

There's more...

If we just wanted to extract the bug IDs from the commit messages and didn't care about the
commit IDs, we could have just used grep after the git log command, still limiting the log
to the last tag:

$ git log v3.1.0.201310021548-r..HEAD | grep "Bug: "

If we just want the commit IDs and their subjects but not the actual bug IDs, we can use the
--oneline feature of git log combined with the - -grep option:

$ git log --grep "Bug: " --oneline v3.1.0.201310021548-r..HEAD

Getting a list of the changed files

As seen in the previous recipe where a list of fixed issues was extracted from the history, a list
of all the files that have been changed since the last release can also easily be extracted. The
files can be further filtered to find those that have been added, deleted, modified, and so on.

Getting ready

The same repository and HEAD position (HEAD pointing to b14a939) as seen in the previous
recipe will be used. The release is also the same, whichisv3.1.0.201310021548-r.

How to do it...

The following command lists all the files changed since the last release
(v3.1.0.201310021548-r1):

$ git diff --name-only v3.1.0.201310021548-r..HEAD
org.eclipse.jgit.packaging/org.eclipse.jgit.target/jgit-4.3.target
org.eclipse.jgit.packaging/org.eclipse.jgit.target/jgit-4.4.target
org.eclipse.jgit.pgm.test/tst/org/eclipse/jgit/pgm/DescribeTest.java
org.eclipse.jgit.pgm.test/tst/org/eclipse/jgit/pgm/FetchTest.java
org.eclipse.jgit.pgm/src/org/eclipse/jgit/pgm/Describe.java

The git diff command operates on the same revision range as git log did in the
previous recipe. By specifying - -name-only, Git will only give the paths of the files as
output changed by the commits in the range specified.

Navigating Git

There's more...

The output of the command can be further filtered; if we only want to show which files have
been deleted in the repository since the last commit, we can use the --diff-filter switch
with git diff:

$ git diff --name-only --diff-filter=D +v3.1.0.201310021548-r..HEAD

org.eclipse.jgit.junit/src/org/eclipse/jgit/junit/
SampleDataRepositoryTestCase.java

org.eclipse.jgit.packaging/org.eclipse.jgit.target/org.eclipse.jgit.
target. target

org.eclipse.jgit.test/tst/org/eclipse/jgit/internal/storage/file/GCTest.
java

There are also switches for the files that have been added (2), copied (C), deleted (D),
modified (M), renamed (R), and so on.

See also

» For more information, visit the help page by running git help diff

Viewing history with Gitk

We saw earlier how we can view the history (the DAG) and visualize it with the use of git

log. However, as the history grows, the terminal representation of the history can be a bit
cumbersome to navigate. Fortunately, there are a lot of graphical tools around Git, one of
them being Gitk, which works on multiple platforms (Linux, Mac, and Windows).

This recipe will show you how to get started with Gitk.

Getting ready

Make sure you have Gitk installed:

$ which gitk
/usr/local/bin/gitk

If nothing shows up, Gitk in not installed on your system, or at least is not available on
your SPATH.

Change the directory to the data-model repository from the objects and DAG examples.
Make sure the master branch is checked out and pointing to 34acc37:

$ git checkout master && git reset --hard 34acc37

=

Chapter 1

How to do it...

In the repository, run gitk --all & to bring up the Gitk interface. You can also specify the
commit range or branches you want similarto git log or provide --all to see everything:

$ gitk --all &

Instructions for compiling hello_world.c
Merge branch ‘feature/1’

Fixes warnings with -Wall flag
Remove warnings when compiling
Adds a hello world C program

Add another file to the repository
More master info in README

Adds python and perl hello worlds

Aske Olsson <aske.olsson@switcl
Aske Olsson <aske.olsson@switcl
Aske Olsson <aske.olsson@switcl
Aske Olsson <aske.olsson@switch
Aske Olsson <aske.olsson@switcl
Aske Olsson <aske.olsson@switch
Aske Olsson <aske.olsson@switcl
Aske Olsson <aske.olsson@switch
Aske Olsson <aske.olsson@switcl
Aske Olsson <aske.olsson@switch

Makes hello_wor

This is the subje Aske Olsson <aske.olsson@switcl 2013-12-13 12:26:00 |

2013-12-13 12:17:42
2013-12-13 12:14:49
2013-12-13 12:14:35
2013-12-13 12:13:07
2013-12-13 12:12:37
2013-12-13 12:07:41
2013-12-13 11:42:25
2013-12-13 12:37:40
2013-12-13 12:35:02
2013-12-13 12:30:36

Adds Java hello world
Update README with master branch info
Initial commit for data-model-repository

2013-12-13 11:42:01
2013-12-13 11:41:03 |-

Aske Olsson <aske.olsson@switcl
Aske Olsson <aske.olsson@switch

sHa1ID: 34acc370b4doae53f051255680feaefaf7f7850d (-:-)_M 1 13 |
Find next prev |<nmmi containing: 0 [Exact <JAlflds <
search | @ patch Tree

2 1 1gnore space change [Line diff .| Comments
- = a_sub_directory/readme
cat-me.txt

% Diff - Old version ~ Mew version Lines of context: 3

Author: Aske Olsson <aske.olsson@switch-gears.dk> 2013-1
Committer: Aske Olsson <aske.olsson@switch-gears.dk= 201
Tags: v1.0

Parent: a920d1906337a6d75f1dc32da6479311932500d83 (Instruc
Branches: master, remotes/origin/master

Follows: v@.1

Precedes:

This is the subject line of the commit message

It should be followed by a blank line then the body,
you can have multiple paragraphs etc. and explain you
email with subject and body, so get people's attentio|

|
@@ -0,0 +1 @@
+A file in a sub directory

1 1 [

Gitk parses the information for every commit and the objects attached to it to provide an easy
graphical information screen that shows a graph of the history, author, and timestamp for
each commit. In the bottom half, the commit message and the patches for each file changed
and the list of files changed by the selected commit are displayed.

Though very lightweight and fast, Gitk is a very powerful tool. There are many different context
menus regarding clicking on a commit, a branch, or a tag in the history view. You can create
and delete branches, revert and cherry-pick commits, diff selected commits, and much more.

=]

Navigating Git

There's more...

From the interface, you can perform a find and search. Find looks through the history and
search looks through the information displayed in the lower half of Gitk for the currently
highlighted commit.

Finding commits in history

You already saw in the previous recipe how we can filter the output of git 1log to only list
commits with the string "Bug: " in the commit message. In this example, we will use the
same technique to find specific commits in the entire history.

Getting ready

Again, we will use the JGit repository, trying to find commits related to the keyword
"Performance". In this recipe, we will look through the entire history, so we don't
need the master branch to point to a specific commit.

How to do it...

As we tried earlier, we can use the - -grep option to find specific strings in commit
messages. In this recipe, we look at the entire history and search every commit that
has "Performance" in its commit message:

$ git log --grep "Performance" --oneline --all

9613b04 Merge "Performance fixes in DateRevQueue"

84afea9 Performance fixes in DateRevQueue

7cad0ad DHT: Remove per-process ChunkCache

d9b224a Delete DiffPerformanceTest

e7a3e59 Reuse DiffPerformanceTest support code to validate algorithms

fblc7bl Wait for JIT optimization before measuring diff performance

In this example, we specifically ask Git to consider all of the commits in the history,

by supplying the - -al1l switch. Git runs through the DAG and checks whether the
"pPerformance™" string is included in the commit message. For an easy overview of the
results, the - -oneline switch is also used to limit the output to just the subject of the
commit message. Hopefully then the commit(s) we needed to find can be identified from
this much shorter list of commits.

=]

Chapter 1

Note that the search is case sensitive; had we searched for "performance" (all in lower
case), the list of commits would have been very different:

$ git log --grep "performance" --oneline --all

5ef6d69 Use the new FS.exists method in commonly occuring places
2be6927 Always allocate the PackOutputStream copyBuffer

437be8d Simplify UploadPack by parsing wants separately from haves
e6883df Enable writing bitmaps during GC by default.

374406a Merge "Fix RefUpdate performance for existing Refs"
fldea3e Fix RefUpdate performance for existing Refs

84afea9 Performance fixes in DateRevQueue

8a9074f Implement core.checkstat = minimal

130ad4e Delete storage.dht package

d4fed9c Refactored method to find branches from which a commit is
reachable

We also could have used the find feature in Gitk to find the same commits. Open Gitk with
the --all switch, type Performance in the Find field and hit Enter. This will highlight the
commits in the history view and you can navigate to the previous/next result by pressing
Shift + up arrow, Shift + down arrow, or the buttons next to the Find field. You will still,
however, be able to see the entire history in the view with the matching commits highlighted:

Filo Edit View Help

Include supported extensions in PackFile constructor. Colby Ranger {Eranger@google.c 2013-01-28 20:49:01)

Fix while boundries in DateRevQueue.add() Gustaf Lundh <gustaf.lundh@son 2013-02-25 18:24:16
Merge "Performance fixes in DateRevQueue" Shawn Pearce <sop@google.com: 2013-02-25 17:50:21
Performance fixes in DateRevQueue Gustaf Lundh <gustaf.lundh@son 2013-02-01 13:20:31
Update last release version to 2.3.1.201302201838-r Matthias Sohn <matthias.schn@s 2013-02-24 00:11:21
Deploy Maven artifacts to Eclipse Nexus repository Matthias Sohn <matthias.schn@s 2013-02-23 10:11:26
Implement recursive merge strateqy George C. Young <geyoung@rim. 2013-02-21 19:44:40
Fix off by one error in PackReverselndex. Colby Ranger <cranger@google.c 2013-02-21 07:59:35

Merge branch ‘stable-2_3' Matthias Sohn <matthias.sochn@s 2013-02-21 02:34:17
remotesforigin, Prepare 2.3.2-SNAPSHOT bu Matthias Sohn <matthias.sohn@s 2013-02-21 02:13:15
v2.3.1.201302201838-r|)Git v2.3.1.201302201838-r Matthias Sohn =matthias.schn@s 2013-02-21 00:46:22
Merge "Accept Change-Id even if footer contains not well- Matthias Sohn <matthias.sohn@s 2013-02-21 00:35:44

Accept Change-ld even if footer contains not well-formi Stefan Lay =stefan.lay@sap.com= 2013-02-15 12:34:44
Fiv falco nncitivac in hachina uicod hy BathFiltorSraon Boahin Stackor #rohinf@nibhar nrn= 30130710 924118

T

LU S48 Tea9179932995d1e59T8Tdadecb11217382ad il U VRS T

Find nest prev | commit jcontaining: . Performance Exact [aN fiokds -
Search & Patch ~ Trea

| Diff - oK version New wersion Lines of conteat: | 3 & | ignore space change [Line diff . Comments

Author: Gustaf Lundh <gustaf.lundh@sonymobile.coms 2013-° gruge'ice“il:zea-lgﬂﬁI'CJOrgfecIlpsefjglt.rrevwalkfl:lateﬂev

Committer: Gustaf Lundh =gustaf.lundh@sonymobile.com= 280
Parent: 51d@elf26e23d04ae73054958546159e01196a4d (Fix Con
Child: 9613b84d8143c74e729acdadl4e6392078297d33 (Merge ™
Branches: master, remotes/forigin/master,
remotes/origin/stable-3.0, remotes/origin/stable-3.1,
remotes/origin/stable-3.2

Follows: v2.2.0.201212191850-r

Precedes: v3.0.0.201305080800-m7

Performance fixes in DateRevQueue

When a lot of commits are added to DateRevQueue, the |,
. v

vww allitebooks.conl

http://www.allitebooks.org

Navigating Git

Searching through history code

Sometimes it is not enough; by just looking through the commit messages in the history, you
may want to know which commits touched a specific method or variable. This is also possible
using git log. You can perform a search for a string, for example, a variable or method, and
git log will give you the commits, adding or deleting the string from the history. In this way,
you can easily get the full commit context for the piece of code.

Getting ready

Again, we will use the JGit repository with the master branch pointing to b14a939:

$ git checkout master && git reset --hard bl4a939

How to do it...

We would like to find all the commits that have changes made to lines that contain
the method "isoutdated". Again, we will just display the commits on one line each
then we can check them individually later:

$ git log -G"isOutdated" --oneline

£32b861 JGit 3.0: move internal classes into an internal subpackage
c9e4a78 Add isOutdated method to DirCache

797ebba Add support for getting the system wide configuration
ad5238d Move FileRepository to storage.file.FileRepository

4cl1l4b76 Make lib.Repository abstract and lib.FileRepository its
implementation

c9c57d3 Rename Repository 'config' as 'repoConfig'
5¢780b3 Fix unit tests using MockSystemReader with user configuration

cc905e7 Make Repository.getConfig aware of changed config

Eight commits have patches that involve the string "isOutdated".

Git traverses the history, the DAG, looking at each commit for the string "isoutdated" in the
patch between the parent commit and the current commit. This method is quite convenient to
find out when a given string was introduced or deleted and to get the full context and commit
at that point in time.

=]

Chapter 1

There's more...

The -G option used with git 1log will look for differences in the patches that contain
added or deleted lines that match the given string. However, these lines could also have
been added or removed due to some other refactoring/renaming of a variable or method.
There is another option that can be used with git log, -S, which will look through the
difference in the patch text similar to the -G option, but only match commits where there
is a change in the number of occurrences of the specified string, that is, a line added or
removed, but not added and removed.

Let's see the output of the -S option:

$ git log -S"isOutdated" --oneline

£32b861 JGit 3.0: move internal classes into an internal subpackage
c9e4a78 Add isOutdated method to DirCache

797ebba Add support for getting the system wide configuration
ad5238d Move FileRepository to storage.file.FileRepository

4cl4b76 Make lib.Repository abstract and lib.FileRepository its
implementation

5¢780b3 Fix unit tests using MockSystemReader with user configuation

cc905e7 Make Repository.getConfig aware of changed config

The search matches seven commits, whereas the search with the -G option matches eight
commits. The difference is the commit with the ID c9c574d3 is only found with the -G option
in the first list. A closer look at this commit shows that the i sOutdated string is only touched
due to renaming of another object, and this is why it is filtered away from the list of matching
commits in the last list when using the -s option. We can see the content of the commit with
the git show command, and use grep -C4 to limit the output to just the four lines before
and after the search string;

$ git show c9c57d3 | grep -C4 "isOutdated"
@@ -417,14 +417,14 @@ public FileBasedConfig getConfig() {

throw new RuntimeException(e);

}
}
- if (config.isOutdated()) {
+ if (repoConfig.isOutdated()) {
try {
- loadConfig() ;
+ loadRepoConfig() ;

} catch (IOException e) {

s

Configuration

In this chapter, we will cover the following topics:

» Configuration targets

» Querying the existing configuration
» Templates

» A .git directory template

» Afew configuration examples

» Git aliases

» The refspec exemplified

Configuration targets

In this section, we will look at the different layers that can be configured. The layers are:

» SYSTEM: This layer is system-wide and found in /etc/gitconfig
» GLOBAL: This layer is global for the user and found in ~/ .gitconfig

» LOCAL: This layer is local to the current repository and found in .git/config

Getting ready

We will use the jgit repository for this example; clone it or use the clone you already have
from Chapter 1, Navigating Git, as shown in the following command:

$ git clone https://git.eclipse.org/r/jgit/jgit
$ cd jgit

Configuration

How to do it...

In the previous example, we saw how we could use the command git config --listto
list configuration entries. This list is actually made from three different levels of configuration
that Git offers: system-wide configuration, SYSTEM; global configuration for the user, GLOBAL;
and local repository configuration, LOCAL.

For each of these configuration layers, we can query the existing configuration. On a Windows
box with a default installation of the Git extensions, the different configuration layers will look
approximately like the following:

$ git config --list --system
core.symlinks=false
core.autocrlf=true

color.diff=auto

color.status=auto

color.branch=auto
color.interactive=true
pack.packsizelimit=2g

help. format=html
http.sslcainfo=/bin/curl-ca-bundle.crt
sendemail.smtpserver=/bin/msmtp.exe
diff.astextplain.textconv=astextplain

rebase.autosquash=true

$ git config --list --global

merge.tool=kdiff3

mergetool.kdiff3.path=C:/Program Files (x86)/KDiff3/kdiff3.exe
diff.guitool=kdiff3

difftool.kdiff3.path=C:/Program Files (x86)/KDiff3/kdiff3.exe

core.editor="C:/Program Files (x86)/GitExtensions/GitExtensions.exe"
fileeditor

core.autocrlf=true

credential.helper=!\"C:/Program Files (x86)/GitExtensions/
GitCredentialWinStore/git-credential-winst

ore.exe\"
user .name=Aske Olsson

user.email=aske.olsson@switch-gears.dk

=

Chapter 2

$ git config --list --local
core.repositoryformatversion=0

core.filemode=false

core.bare=false

core.logallrefupdates=true

core.symlinks=false

core.ignorecase=true

core.hidedotfiles=dotGitOnly
remote.origin.url=https://git.eclipse.org/r/jgit/jgit
remote.origin.fetch=+refs/heads/*:refs/remotes/origin/*
branch.master.remote=origin

branch.master.merge=refs/heads/master

We can also query a single key and limit the scope to one of the three layers, by using the
following command:

$ git config --global user.email

aske.olsson@switch-gears.dk
We can set the e-mail address of the user to a different one for the current repository:
$ git config --local user.email aske@switch-gears.dk

Now, listing the GLOBAL layer user.email will return aske.olsson@switch-gears.dk,
listing LOCAL gives aske@switch-gears.dk, and listing user.email without specifying
the layer gives the effective value that is used in the operations on this repository, in this case,
the LOCAL value aske@switch-gears.dk. The effective value is the value, which takes
precedence when needed. When two or more values are specified for the same key, but on
different layers, the lowest layer takes precedence. When a configuration value is needed,

Git will first look in the LOCAL configuration. If not found here, the GLOBAL configuration is
queried. If it is not found in the GLOBAL configuration, the SYSTEM configuration is used.

If none of this works, the default value in Git is used.

In the previous example, user.email is specified in both the GLOBAL and LOCAL layers.
Hence, the LOCAL layer will be used.

Querying the three layers of configuration simply returns the content of the configuration
files: /etc/gitconfig for system-wide configuration, ~/ .gitconfig for user-specific
configuration, and .git/config for repository-specific configuration. When not specifying
the configuration layer, the returned value will be the effective value.

s

Configuration

There's more...

Instead of setting all the configuration values on the command line by the key value, it is
possible to set them by just editing the configuration file directly. Open the configuration file
in your favorite editor and set the configuration you need, or use the built-in git config -e
repository to edit the configuration directly in the Git-configured editor. You can set the editor
to the editor of your choice either by changing the $EDITOR environment variable or with the
core.editor configuration target, for example:

$ git config --global core.editor vim

Querying the existing configuration

In this example, we will look at how we can query the existing configuration and set the
configuration values.

Getting ready

We'll use jgit again by using the following command:

$ cd jgit

How to do it...

To view all the effective configurations for the current Git repository, run the following command:

$ git config --list

user.name=Aske Olsson
user.email=askeolsson@switch-gears.dk
core.repositoryformatversion=0

core.filemode=false

core.bare=false

core.logallrefupdates=true
remote.origin.url=https://git.eclipse.org/r/jgit/jgit
remote.origin.fetch=+refs/heads/*:refs/remotes/origin/*
branch.master.remote=origin

branch.master.merge=refs/heads/master

The previous output will of course reflect the user running the command. Instead of Aske
Olsson as the name and the e-mail, the output should reflect your settings.

S E

Chapter 2

If we are just interested in a single configuration item, we can just query it by its
section.key or section.subsection.key:

$ git config user.name

Aske Olsson

$ git config remote.origin.url

https://git.eclipse.org/r/jgit/jgit

Git's configuration is stored in plaintext files, and works like a key-value storage. You can
set/query by key and get the value back. An example of the text-based configuration file is
shown as follows (from the jgit repository):
$ cat .git/config
[core]
repositoryformatversion = 0
filemode = false
bare = false
logallrefupdates = true
[remote "origin"]
url = https://git.eclipse.org/r/jgit/jgit
fetch = +refs/heads/*:refs/remotes/origin/*
[branch "master"]
remote = origin

merge = refs/heads/master

It is also easy to set configuration values. Just use the same syntax as you did when querying
the configuration, except you need to add an argument to the value. To set a new e-mail
address on the LOCAL layer, we can execute the following command line:

git config user.email askeolsson@example.com

The LOCAL layer is the default if nothing else is specified. If you require whitespaces in
the value, you can enclose the string in quotation marks, as you would do when configuring
your name:

git config user.name "Aske Olsson"

s

Configuration

You can even set your own configuration, which does not have any effect on the core Git,
but can be useful for scripting/builds and so on:

$ git config my.own.config "Whatever I need"
List the value

$ git config my.own.config

Whatever I need

It is also very easy to delete/unset configuration entries:
$ git config --unset my.own.config

List the value

$ git config my.own.config

Templates

In this example, we will see how to create a template commit message that will be displayed in
the editor when creating a commit. The template is only for the local user and not distributed
with the repository in general.

Getting ready

In this example, we will use the example repository from Chapter 1, Navigating Git:

$ git clone https://github.com/dvaske/data-model.git
$ cd data-model

We'll use the following code as a commit message template for commit messages:

Short description of commit
Longer explanation of the motivation for the change

Fixes-Bug: Enter bug-id or delete line
Implements-Requirement: Enter requirement-id or delete line

Save the commit message template in SHOME/ . gitcommitmsg. txt. The filename isn't
fixed and you can choose a filename of your liking.

NEQ

Chapter 2

How to do it...

To let Git know about our new commit message template, we can set the configuration
variable commit . template to point at the file we just created with that template;
we'll do it globally so it is applicable to all our repositories:

$ git config --global commit.template $HOME/.gitcommitmsg.txt

Now, we can try to change a file, add it, and create a commit. This will bring up our preferred
editor with the commit message template preloaded:

$ git commit

Short description of commit

Longer explanation of the motivation for the change

Fixes-Bug: Enter bug-id or delete line

Implements-Requirement: Enter requirement-id or delete line

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: another-file.txt

#

]

"\.git/COMMIT EDITMSG" 13 lines, 396 characters

We can now edit the message according to our commit and save to complete the commit.

Eis

vww allitebooks.conl

http://www.allitebooks.org

Configuration

When commit . template is set, Git simply uses the content of the template file as a

starting point for all commit messages. This is quite convenient if you have a commit-message
policy as it greatly increases the chances of the policy being followed. You can even have
different templates tied to different repositories, since you can just set the configuration

at the local level.

A .git directory template

Sometimes, having a global configuration isn't enough. You will also need to trigger the
execution of scripts (also known as Git hooks), exclude files, and so on. It is possible to
achieve this with the template option setto git init. It can be given as a command-line
optiontogit cloneandgit init, orasthe SGIT TEMPLATE DIR environment variable,
or as the configuration option init.templatedir. It defaults to /usr/share/git-core/
templates. The template option works by copying files in the template directory to the .git
(sGIT DIR) folder after it has been created. The default directory contains sample hooks
and some suggested exclude patterns. In the following example, we'll see how we can set

up a new template directory, and add a commit message hook and exclude file.

Getting ready

First, we will create the template directory. We can use any name we want, and we'll use
~/.git_template, as shown in the following command:

$ mkdir ~/.git template

Now, we need to populate the directory with some template files. This could be a hook or
an exclude file. We will create one hook file and an exclude file. The hook file is located in
.git/hooks/name-of -hook and the exclude file in .git/info/exclude. Create the
two directories needed, hooks and info, as shown in the following command:

$ mkdir ~/.git_ template/{hooks, info}

To keep the sample hooks provided by the default template directory (the Git installation),
we copy the files in the default template directory to the new one. When we use our newly
created template directory, we'll override the default one. So, copying the default files to our
template directory will make sure that except for our specific changes, the template directory
is similar to the default one, as shown in the following command:

$ cd ~/.git template/hooks
$ cp /usr/share/git-core/templates/hooks/* .

NED

Chapter 2

We'll use the commit -msg hook as the example hook:

#!/bin/sh
MSG_FILE: ngln

echo "\nHi from the template commit-msg hook" >> $MSG FILE

The hook is very simple and will just add Hi from the template commit-msg hook to
the end of the commit message. Save it as commit-msginthe ~/.git template/hooks
directory and make it executable by using the following command:

chmod +x ~/.git template/hooks/commit-msg

Now that the commit message hook is done, let's also add an exclude file to the example.
The exclude file works like the .gitignore file, but is not tracked in the repository.
We'll create an exclude file that excludes all the * . txt files, as follows:

$ echo *.txt > ~/.git template/info/exclude

Now, our template directory is ready for use.

How to do it...

Our template directory is ready and we can use it, as described earlier, as a command-line
option, an environment variable or, as in this example, to be set as a configuration:

$ git config --global init.templatedir ~/.git template

Now, all Git repositories we create using init or clone will have the default files of the
template directory. We can test if it works by creating a new repository as follows:

$ git init template-example

$ cd template-example

Let's try to create a . txt file and see what git status tells us. It should be ignored by the
exclude file from the template directory:

$ echo "this is the readme file" > README. txt

$ git status

The exclude file worked! You can put in the file endings yourself or just leave it blank and keep
to the .gitignore files.

To test if the commit -msg hook also works, let's try to create a commit. First, we need a file to
commit. So, let's create that and commit it as follows:

$ echo "something to commit" > somefile
$ git add somefile
$ git commit -m "Committed something"

s

Configuration

We can now check the history with git log:

$ git log -1
commit 1f7d63d7e08e96dda3da63eadcl7£35132d24064
Author: Aske Olsson <aske.olsson@switch-gears.dk>

Date: Mon Jan 6 20:14:21 2014 +0100
Committed something

Hi from the template commit-msg hook

When Git creates a new repository, either via init or clone, it will copy the files from the
template directory to the new repository when creating the directory structure. The template
directory can be defined either by a command-line argument, environment variable, or
configuration option. If nothing is specified, the default template directory will be used
(distributed with the Git installation). By setting the configuration as a - -global option, the
template directory defined will apply to all of the user's (new) repositories. This is a very nice
way to distribute the same hooks across repositories, but it also has some drawbacks. As the
files in the template directory are only copied to the Git repositories, updates to the template
directory do not affect the existing repositories. This can be solved by running git init in
each existing repository to reinitialize the repository, but this can be quite cumbersome. Also,
the template directory can enforce hooks on some repositories where you don't want them.
This is quite easily solved by simply deleting the hook files in .git/hooks of that repository.

» For more information on hooks in Git, please refer to Chapter 7, Enhancing Your Daily
Work with Git Hooks, Aliases, and Scripts

A few configuration examples

There are configuration targets in the core Git system. In this section, we'll take a closer look
at a few of them that might be useful in your daily work.

We'll look at the following three different configuration areas:

» Rebase and merge setup
» Expiry of objects
» Autocorrect

=)

Chapter 2

Getting ready

In this exercise, we'll just set a few configurations. We'll use the data model repository from
Chapter 1, Navigating Git:

$ cd data-model

How to do it...

Let's take a closer look at the previously mentioned configuration areas.

Rebase and merge setup

By default, when performing git pull, a merge commit will be created if the history of the
local branch has diverged from the remote one. However, to avoid all these merge commits,
a repository can be configured so it will default to rebase instead of merging when doing git
pull. Several configuration targets related to the option exist as follows:

» pull.rebase: This configuration, when set to true, will pull to rebase the current
branch on top of the fetched one when performing a git pull. It can also be set
to preserve so that the local merge commit will not be flattened in the rebase, by
passing - -preserve-merges to git rebase. The default value is false as
the configuration is not set. To set this option in your local repository, run the
following command:

$ git config pull.rebase true

» branch.autosetuprebase: When this configuration is set to always, any new
branch created with <git branchorgit checkout that tracks another branch
will be set up to pull to rebase (instead of merge). The valid options are as follows:

o never: This is set to pull to rebase (default)

o local: This is set to pull to rebase for local tracked branches

o remote: This is set to pull to rebase for remote tracked branches
o always: This is set to pull to rebase for all tracked branches

To set this option for all the new branches regardless of tracking remote or local
branches, run the following command:

$ git config branch.autosetuprebase always

@l

Configuration

» branch.<names.rebase: This configuration, when set to true, applies only to the
<name> branch and tells Git to pull to rebase when performing git pull on the
given branch. It can also be set to preserve so that the local merge commit will not
be flattened when running git pull. By default, the configuration is not set for any
branch. To set the feature/2 branch in the repository to default to rebase instead
of merge, we can run the following command:

$ git config branch.feature/2.rebase true

Expiry of objects

By default, Git will perform garbage collection on unreferenced objects and clean reflog

for entries, both of which are older than 90 days. For an object to be referenced, something
must point to it; a tree, a commit, a tag, a branch, or some of the internal Git bookkeeping like
stash or reflog. There are three settings that can be used to change this time as follows:

» gc.reflogexpire: This is the general setting to know for how long a branch's
history is kept in reflog. The default time is 90 days. The setting is a length of
time, for example, 10 days, 6 months and it can be turned completely off with
the value never. The setting can be set to match a refs pattern by supplying the
pattern in the configuration setting. gc . <patterns.reflogexpire: This pattern
can, for example, be /refs/remotes/* and the expire setting would then only
apply for those refs.

» gc.reflogexpireunreachable: This setting controls how long the reflog
entries that are not a part of the current branch history should be available in the
repository. The default value is 30 days, and similar to the previous option, it is
expressed as a length of time or set to never in order to turn it off. This setting
can, as the previous one, be set to match a refs pattern.

» gc.pruneexpire: This option tells git gc to prune objects older than the value.
The default is 2 . weeks . ago, and the value can be expressed as a relative date like
3.months.ago. To disable the grace period, the value now can be used. To set a
non-default expiry date only on remote branches, use the following command:

$ git config gc./refs/remote/*.reflogexpire never

$ git config gc./refs/remote/*.reflogexpireunreachable "2 months"
We can also set a date so git gc will prune objects sooner:

$ git config gc.pruneexpire 3.days.ago

=

Chapter 2

Autocorrect

This configuration is useful when you get tired of messages like the following one just
because you made a typo on the keyboard:

$ git statis

git: 'statis' is not a git command. See 'git --help'.

Did you mean this?

status

By setting the configuration to help.autocorrect, you can control how Git will behave
when you accidentally send a typo to it. By default, the value is 0 and it means to list the
possible options similar to the input (if statis is given status will be shown). A negative
value means to immediately execute the corresponding command. A positive value means
to wait the given number of deciseconds (0.1 sec) before running the command, (so there
is some amount of time to cancel it). If several commands can be deduced from the text
entered, nothing will happen. Setting the value to half a second gives you some time to
cancel a wrong command, as follows:

$ git config help.autocorrect 5

$ git statis

WARNING: You called a Git command named 'statis', which does not exist.
Continuing under the assumption that you meant 'status'

in 0.5 seconds automatically...

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#
modified: another-file.txt
#

Setting the configuration targets will change the way Git behaves. The previous examples
describe a few useful methods to get Git to act differently than its default behavior. You should
be sure when you are changing a configuration that you completely understand what that
configuration does. So, check the Git configuration help page by using git help config.

&1

Configuration

There's more...

There are a lot of configuration targets available in Git. You can run git help configanda
few pages down all of them are displayed and explained.

An alias is a nice way to configure long and/or complicated Git commands to represent short
useful ones. An alias is simply a configuration entry under the alias section. It is usually
configured to - -global to apply it everywhere.

Getting ready

In this example, we will use the jgit repository, which was also used in Chapter 1, Navigating
Git, with the master branch pointing at b14a93971837610156e815ae2eee3baaaSb7a44b.
Either use the clone from Chapter 1, Navigating Git, or clone the repository again, as follows:

$ git clone https://git.eclipse.org/r/jgit/jgit
$ cd jgit
$ git checkout master && git reset --hard bl4a939

How to do it...

First, we'll create a few simple aliases, then a couple of more special ones, and finally a
couple of aliases using external commands. Instead of writing git checkout every time we
need to switch branches, we can create an alias of that command and call it git co. We can
do the same for git branch,git commit,and git status as follows:

$ git config --global alias.co checkout

$ git config --global alias.br branch

$ git config --global alias.ci commit

$ git config --global alias.st status
Now, tryto run git st inthe jgit repository as follows:

$ git st
On branch master

nothing to commit, working directory clean

Chapter 2

The alias method is also good to create the Git commands you think are missing in Git. One of
the common Git aliases is unstage, which is used to move a file out of the staging area, as
shown in the following command:

$ git config --global alias.unstage 'reset HEAD --'

Try to edit the README . md file in the root of the jgit repository and add it in the root.
Now, git status/git st should display something like the following:

$ git st

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: README .md

H*+ H

Let's try to unstage README . md and then look at git st as follows:

$ git unstage README.md
Unstaged changes after reset:

M README .md

$ git st
On branch master

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working
directory)

#

modified: README .md

#

no changes added to commit (use "git add" and/or "git commit -a")

A common use case for aliases is to format the history of Git in specific ways. Let's say you
want the number of lines added and deleted for each file in the commit displayed along with
some common commit data. For this, we can create the following alias so we don't have to
type everything each time:

$ git config --global alias.ll "log --pretty=format:\"%C(yellow)%h%Cred%d
%Creset%s %Cgreen(%cr) %C(bold blue)<%an>%Creset\" --numstat"

=]

Configuration

Now, we can execute git 11 in the terminal and get a nice stat output, as shown in the
following command:
$ git 11

bl4a939 (HEAD, master) Prepare 3.3.0-SNAPSHOT builds (8 days ago)
<Matthias Sohn>

6 6 org.eclipse.jgit.ant.test/META-INF/MANIFEST.MF

1 1 org.eclipse.jgit.ant.test/pom.xml

3 3 org.eclipse.jgit.ant/META-INF/MANIFEST.MF

1 1 org.eclipse.jgit.ant/pom.xml

4 4 org.eclipse.jgit.archive/META-INF/MANIFEST .MF

2 2 org.eclipse.jgit.archive/META-INF/SOURCE-MANIFEST .MF
1 1 org.eclipse.jgit.archive/pom.xml

6 6 org.eclipse.jgit.console/META-INF/MANIFEST .MF

1 1 org.eclipse.jgit.console/pom.xml

[
N
[
N

org.eclipse.jgit.http.server/META-INF/MANIFEST.MF

oo

It is also possible to use an external command instead of a Git command. So, small shell

scripts and so on can be embedded. To create an alias with an external command, the alias
must start with an exclamation mark !. The examples can be used when resolving conflicts

from a rebase or merge. In your ~/ .gitconfig file under [alias], add the following:

editconflicted = "1£f() {git ls-files --unmerged | cut -£f2 | sort -u ;
$EDITOR 'f'"

This will bring up your configured $EDITOR with all the files that are in the conflict state
due to the merge/rebase. This quickly allows you to fix the conflicts and get on with the
merge/rebase.

In the jgit repository, we can create two branches at an earlier point in time and merge
these two branches:

$ git branch A 03f78fc

$ git branch B 9891497

$ git checkout A

Switched to branch 'A!

$ git merge B

}

12

Chapter 2

Now, you'll see that this fails to perform the merge, and you can run git st to check the
status ses of a lot of files that are in a conflicted state, both modified. To open and edit
all the conflicted files, we can now run git editconflicted. This brings up $EDITOR with
the files. If your environment variable isn't set, use EDITOR=<you-favorite-editors>
export to set it.

For this example, we don't actually resolve the conflicts. Just check that the alias works
and you're ready for the next alias.

Now that we have solved all the merge conflicts, it is time to add all of those files before we
conclude the merge. Luckily, we can create an alias that can help us with that, as follows:

addconflicted = "!f() { git ls-files --unmerged | cut -£f2 | sort -u ; };
git add 'f£'"

Now, we can run git addconflicted. Later,git status will tell us that all the
conflicted files are added:

$ git st

On branch A

All conflicts fixed but you are still merging.

(use "git commit" to conclude merge)
Changes to be committed:

modified: org.eclipse.jgit.console/META-INF/MANIFEST .MF
modified: org.eclipse.jgit.console/pom.xml

modified: org.eclipse.jgit.http.server/META-INF/MANIFEST.MF
modified: org.eclipse.jgit.http.server/pom.xml

modified: org.eclipse.jgit.http.test/META-INF/MANIFEST.MF

modified: org.eclipse.jgit.http.test/pom.xml

Now we can conclude the merge with git commit:

$ git commit

[A 94344ae] Merge branch 'B' into A

Git simply runs the command the alias is short for. It is very convenient for long Git
commands, or Git commands that are hard to remember exactly how to write. Now, all
you have to remember is the alias and you can always look in the configuration file for it.

@1

vww allitebooks.conl

http://www.allitebooks.org

Configuration

There's more...

Another way to create a kind of Git alias is to make a shell script and save the file with the
name git-<your-alias-name>. Make the file executable and place it somewhere in
your $PATH. You can now run that file simply by running git <your-alias-name> from
the command line.

The refspec exemplified

Though the refspec isn't the first thing that comes to mind when thinking about the Git
configuration, it is actually quite close. In a lot of the Git commands the refspec is used, but
often implicitly, that is, the refspec is taken from the configuration file. If you don't remember
setting a refspec configuration, you are probably right, but if you cloned the repository or
added a remote, you'll have a section in .git/config, which looks something like the
following (this is for the Jgit repository):

[remote "origin"]
url = https://git.eclipse.org/r/jgit/jgit

fetch = +refs/heads/*:refs/remotes/origin/*

The fetch line contains the configured refspec to fetch for this repository.

Getting ready

In this example, we'll be using the jgit repository as our server repository, but we have to
make a clone of it to a bare repository so we can push it. You can't push to the checked out
branch on a non-bare repository as this can overwrite the work area and index.

Create a bare repository from the jgit repository and create a new Git repository where
we can play with the refspec as follows:

git clone --bare https://git.eclipse.org/r/jgit/jgit jgit-bare.git

$
$ git init refspec-tests
$ cd refspec-tests

$

git remote add origin ../jgit-bare.git

We also need to change the branch names on some of the branches to match the example
for name spacing; the following will rename the stable-xxx branches to stable/xxx:

$ for br in $(git branch -a | grep "stable-"); do new=$(echo $br| sed
's/-/\//"); git branch $new $br; done

=

Chapter 2

In the previous shell scripting, the $Snew and $br variables aren't placed in double quotes
(") as good practice for shell scripting would otherwise suggest. This is okay as the variables
reflect the names of the branches in the repository and branch names cannot contain spaces.

How to do it...

Let us set up our new repository to only fetch the master branch. We do this by changing the
fetch line under [remote "origin"] in the configuration file (.git/config), as follows:
[remote "origin"]

url = ../jgit-bare.git

fetch = +refs/heads/master:refs/remotes/origin/master

Now, we will only fetch the master branch and not all the other branches when executing a
git fetch,git pull,oragit remote update origin, as follows:
$ git pull
remote: Counting objects: 44033, done.
remote: Compressing objects: 100% (6927/6927), done.
remote: Total 44033 (delta 24063), reused 44033 (delta 24063)
Receiving objects: 100% (44033/44033), 9.45 MiB | 5.70 MiB/s, done.
Resolving deltas: 100% (24063/24063), done.
From ../jgit-bare
* [new branchl] master -> origin/master

From ../jgit-bare

* [new tagl] v0.10.1 -> v0.10.1
* [new tagl] v0.11.1 -> v0.11.1
* [new tagl] v0.11.3 -> v0.11.3

$ git branch -a
* master

remotes/origin/master

Let's also set up a separate refspec to fetch all the stable/* branches to the local
repository as follows:
[remote "origin"]

url = ../jgit-bare.git

fetch = +refs/heads/master:refs/remotes/origin/master

fetch = +refs/heads/stable/*:refs/remotes/origin/stable/*

@]

Configuration

Now, fetch the branches locally, as shown in the following command:

$ git fetch

From ../jgit-bare

* [new branch] stable/0.10 -> origin/stable/0.10
* [new branch] stable/0.11 -> origin/stable/0.11
* [new branch] stable/0.12 -> origin/stable/0.12
* [new branch] stable/0.7 -> origin/stable/0.7
* [new branch] stable/0.8 -> origin/stable/0.8
* [new branch] stable/0.9 -> origin/stable/0.9
* [new branch] stable/1.0 -> origin/stable/1.0
* [new branch] stable/1.1 -> origin/stable/1.1
* [new branch] stable/1.2 -> origin/stable/1.2
* [new branch] stable/1.3 -> origin/stable/1.3
* [new branch] stable/2.0 -> origin/stable/2.0
* [new branch] stable/2.1 -> origin/stable/2.1
* [new branch] stable/2.2 -> origin/stable/2.2
* [new branch] stable/2.3 -> origin/stable/2.3
* [new branch] stable/3.0 -> origin/stable/3.0
* [new branch] stable/3.1 -> origin/stable/3.1
* [new branch] stable/3.2 -> origin/stable/3.2

We can also set up push refspecs that specify where branches are pushed to by

default. Let's create a branch called develop and create one commit, as shown in

the following commands:

$ git checkout -b develop

Switched to a new branch 'develop'

$ echo "This is the developer setup, read carefully" > readme-dev.txt
$ git add readme-dev.txt

$ git commit -m "adds readme file for developers"

[develop ccb2f08] adds readme file for developers

1 file changed, 1 insertion(+)

create mode 100644 readme-dev.txt

SNED

Chapter 2

Now, let's create a push refspec that will send the contents of the develop branch to
integration/master on origin:
[remote "origin"]

url = ../jgit-bare.git

fetch = +refs/heads/master:refs/remotes/origin/master

fetch = +refs/heads/stable/*:refs/remotes/origin/stable/*

push = refs/heads/develop:refs/remotes/origin/integration/master
Let us push our commit on develop as follows:

$ git push

Counting objects: 4, done.

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 345 bytes | 0 bytes/s, done.
Total 3 (delta 1), reused 0 (delta 0)

To ../jgit-bare.git

* [new branch] develop -> origin/integration/master

As the integration/master branch didn't exist on the remote side, it was created for us.

The format of the refspec is in the form of <source>:<destinations. For a fetch refspec,
this means that <source> is the source on the remote side and <destination> is local.
For a push refspec, <sources> is local and <destinations> is remote. The refspec

can be prefixed by a + to indicate that the ref pattern can be updated even though it isn't a
fast-forward update. It is not possible to use partial globs in the refspec pattern, as shown

in the following line:

fetch = +refs/heads/stable*:refs/remotes/origin/stable*

But it is possible to use namespacing. That's why we had to rewrite the stable-xxx
branches to stable/xxx to fit as a namespace pattern:

fetch = +refs/heads/stable/*:refs/remotes/origin/stable/*

i

Branching, Merging,
and Options

In this chapter, we will cover the following recipes:

» Managing your local branches

» Branches with remotes

» Forcing a merge commit

» Using git rerere to merge Git conflicts

» The difference between branches

Introduction

If you are developing a small application in a big corporation as a developer, or you are trying
to wrap your head around an open source project from GitHub, you have already been using
branches with Git.

Most of the time, you may just be working on a local develop or master branch and didn't
care so much about other branches.

In this chapter, we will show you different branch types and how to work with them.

Branching, Merging, and Options

Managing your local branches

Suppose you are just having your local Git repository, and you have no intentions at the
moment to share the code with others; however, you can easily share this knowledge
while working with a repository with one or more remotes. Local branches with no remotes
work exactly in this fashion. As you can see in the examples, we are cloning a repository,
thus we have a remote.

Let's start by creating a few local branches.

Getting ready

Use the following command to clone the jgit repository to match:

$ git clone https://git.eclipse.org/r/jgit/jgit
$ cd jgit

How to do it...

Perform the following steps to manage your local branches:

1. Whenever you start working on a bug fix or a new feature in your project, you should
create a branch. You can do so using the following code:

$ git branch newBugFix
$ git branch
* master
newBugFix
2. The newBugFix branch points to the current HEAD | was on at the time of the
creation. You can see the HEAD with git log -1:
$ git log -1 newBugFix --format=format:%H
25fe20b2dbb20cac8aa43c5ad64494ef8eabdffc

3. If you want to add a description to the branch, you can do it with the
--edit-description option for the git branch command:

$ git branch --edit-description newBugFix

4. The previous command will open an editor where you can type in a description:
Refactoring the Hydro controller
The hydro controller code is currently horrible needs to be

refactored.

5. Close the editor and the message will be saved.

=

Chapter 3

Git stores the information in the local git config file; this also means that you cannot push
this information to a remote repository.

To retrieve the description for the branch, you can use the - -get flag for the git config
command:

$ git config --get branch.newBugFix.description

Refactoring the Hydro controller

The hydro controller code is currently horrible needs to be refactored.

This will be beneficial when we automate some tasks in Chapter 7, Enhancing Your Daily Work
with Git Hooks, Aliases, and Scripts.

1
‘Q Remember to perform a checkout of newBugFix before you start

working on it. This must be done with the Git checkout of newBugFix.

The branch information is stored as a file in .git/refs/heads/newBugFix:

$ cat .git/refs/heads/newBugFix
25fe20b2dbb20cac8aa43c5ad64494ef8eab4ffc

Note that it is the same commit hash we retrieved with the git log command

There's more...

Maybe you want to create specific branches from specific commit hashes. The first thought
might be to check out the commit, and then create a branch; however, it is much easier to
use the git branch command to create the branches without checking out the commits:

1. If you need a branch from a specific commit hash, you can create it with the git
branch command as follows:
$ git branch anotherBugFix 979e346
$ git log -1 anotherBugFix --format=format:%h
979e346
$ git log -1 anotherBugFix --format=format:%H
979e3467112618cc787e161097986212eaaa4533

Branching, Merging, and Options
2.

As you can see, the abbreviated commit hash is shown when you use h, and the full
commit hash is shown when you use H. You can see the abbreviated commit hash is
the same as the one used to create the branch. Most of the time, you want to create
and start working on the branch immediately:

$ git checkout -b lastBugFix 979e346

Switched to a new branch 'lastBugFix!'

Git switches to the new branch immediately after it creates the branch. Verify with
Gitk to see whether the lastBugFix branch is checked out and another BugFix
branch is at the same commit hash:

$ gitk

File Edit View Help

Rebase interactive should finish if last step is edit Stefan Lay =stefan lay@sap.com=
Merge changes 140f2311c,13c419094 Matthias Sohn <matthias.sochn@sap.c

Add additional RebaseResult for editing commits Stefan Lay <stefan.lay@sap.com=
Add Squash/Fixup support for rebase interactive in RebaseCommand Taobias Pfeifer <to_pfeifer@web. de>
Merge changes 185470d1d,143711486 leGade781 Ic9ab2bbe lebeb0933 |d Shawn Pearce =sop@google.com=
Use absolute paths for file:// URIs in tests Shawn Pearce <sop(@google.com=
Use getPath() in FileResolverTest Shawn Pearce <sop@google.com>
Extract protocol constants to a common class Shawn Pearce <sop@google.com=>
Move repeat() to utility class for tests Shawn Pearce <sop@google.com>
Remove hardcoded target/trash from test cases Shawn Pearce <sop@google.com=
SHA1ID: 979e3467112618cc787elel1097986212eaaa4533 e 9 Row| 1,!| 2850 |
Find next prev commit |containing: v
Search @® Patch O Tree
4. Instead of using Gitk, you can also add -v to the git branch command or

5]

even another v.
$ git branch -v

anotherBugFix 979e346 Interactive Rebase: Do actions if

* lastBugFix 979e346 Interactive Rebase: Do actions if
master 25fe20b Add missing package import for ijg
newBugFix 25fe20b Add missing package import for ijg

Chapter 3

5. With -v, you can see the abbreviated commit hash for each branch and with -vv,
you can also see that the master branch tracks the origin/master branch:

$ git branch -vv

anotherBugFix 979e346 Interactive Rebase: Do actions if e

* lastBugFix 979e346 Interactive Rebase: Do actions if e
master 25fe20b [origin/master] Add missing package
newBugFix 25fe20b Add missing package import for g

Branches with remotes

At some point, it is very likely that you have cloned somebody's repository. This means
you have an associated remote. The remote is usually called origin because it is where
the source originated from.

While working with Git and remotes, you will get some benefits from Git.

We can start with git status and see what we get while working with the remote.

Getting ready

1. We will start by checking out a local branch that tracks a remote branch:
$ git checkout -b remoteBugFix --track origin/stable-3.2

Branch remoteBugFix set up to track remote branch stable-3.2 from
origin.

Switched to a new branch 'remoteBugFix'

2. The previous command creates and checks out the remoteBugFix branch that will
track the origin/stable-3.2 branch. So, for instance, executing git status
will automatically show how different your branch is from origin/stable-3.2, and
it will also show whether your branch's HEAD can be fast forwarded to the HEAD of the
remote branch or not.

3. To provide an example of how the previous step works, we need to do some manual
work that will simulate this situation. First, we find a commit:

$ git log -10 origin/stable-3.2 --oneline
£839d38 Prepare post 3.2.0 builds
699900c JGit v3.2.0.201312181205-r

0f£f691c Revert "Fix for core.autocrlf=input resulting in modified
fil

7}

[vww allitebooks.cond

http://www.allitebooks.org

Branching, Merging, and Options

ldef0al Fix for core.autocrlf=input resulting in modified file and
un

Oceblca Canonicalize worktree path in BaseRepositoryBuilder if set
vi

be7942f Add missing @since tags for new public methods in Config
ea04d23 Don't use API exception in RebaseTodoLine

3a063a0 Merge "Fix aborting rebase with detached head" into
stable-3.

e90438c Fix aborting rebase with detached head

2e0d178 Add recursive variant of Config.getNames () methods

The command will list the last 10 commits on the stable-3.2 branch from the
remote origin. The - -oneline option will show the abbreviated commit hash and
the commit subject. For this recipe, we will be using the following commit:

$ git reset --hard 2e0d178
HEAD is now at 2e0dl178 Add recursive variant of Config.getNames ()

m

This will reset the remoteBugFix branch to the 2e0d178 commit hash.
We are now ready to continue using the free benefits of Git when we have
a remote tracking branch.

We are resetting to a commit that is accessible from the origin/stable-3.2 remote
tracking branch; this is done to simulate that we have performed a Git fetch and new
commits were downloaded for the origin/stable-3.2 branch.

How to do it...

Here, we will try a few commands that assist you when you have a remote tracking branch:

1.

Start by executing git status:
$ git status
On branch remoteBugFix

Your branch is behind 'origin/stable-3.2' by 9 commits, and can be
fast-forwarded.

(use "git pull" to update your local branch)

nothing to commit, working directory clean

NED

Chapter 3

Git is very descriptive when you have a tracking branch and you use git status.
As you can see from the message, you can use git pull to update your local
branch, which we will try in the next example. Now, we will just perform the merge:

Al

‘Q Thegit pull commandisjustagit fetch command and then

agit merge command with the remote tracking branch.

$ git merge origin/stable-3.2
Updating 2e0d178..£839d38
Fast-forward

.../org/eclipse/jgit/api/RebaseCommandTest.java
+++++++++++

./src/org/eclipse/jgit/api/RebaseCommand.java
./jgit/errors/IllegalTodoFileModification.java
./eclipse/jgit/lib/BaseRepositoryBuilder.java

./src/org/eclipse/jgit/lib/Config.java
./src/org/eclipse/jgit/lib/RebaseTodoLine.java

6 files changed, 266 insertions(+), 57 deletions(-)

213

31
59

16

+--

++++++

+ -

+
+ -

create mode 100644 org.eclipse.jgit/src/org/eclipse/jgit/errors/

Ille

2. From the output, you can see it is a fast-forward merge, as Git predicted in the

output of git status

There's more...

You can also add a remote to an existing branch, which is very handy when you realize that
you actually wanted a remote tracking branch but forgot to add the tracking information

while creating the branch:

1. Start by creating a local branch at the 2e0d17 commit:
$ git checkout -b remoteBugFix2 2e0d17

Switched to a new branch 'remoteBugFix2'

s

Branching, Merging, and Options

2. The remoteBugFix2 branch is just a local branch at the moment with no tracking
information; to set the tracking branch, we need to use - -set-upstream-to or -u
as aflagto the git branch command:

$ git branch --set-upstream-to origin/stable-3.2
Branch remoteBugFix2 set up to track remote branch stable-3.2 from
origin.

3. Asyou can see from the Git output, we are now tracking the stable-3.2 branch
from the origin:
$ git status
On branch remoteBugFix2

Your branch is behind 'origin/stable-3.2' by 9 commits, and can be
fast-forwarded.

(use "git pull" to update your local branch)

nothing to commit, working directory clean

4. You can see from the Git output that you are nine commits ahead, and you can use
git pull to update the branch. Remember thata git pull command is just a
git fetch command, and then a git merge command with the upstream branch,
which we also call the remote tracking branch:

$ git pull
remote: Counting objects: 1657, done
remote: Finding sources: 100% (102/102)
remote: Total 102 (delta 32), reused 98 (delta 32)
Receiving objects: 100% (102/102), 65.44 KiB | 0 bytes/s, done.
Resolving deltas: 100% (32/32), completed with 19 local objects.
From https://git.eclipse.org/r/jgit/jgit

25fe20b..50a830f master -> origin/master
First, rewinding head to replay your work on top of it...
Fast-forwarded remoteBugFix2 to

£839d383e6£fbbda26729db7£d57£c917fa47db44.

5. From the output, you can see the branch has been fast forwarded to the
£839d383e6fbbda26729db7fd57fc917fa47db44 commit hash, which is
equivalentto origin/stable-3. 2. You can verify this with git log:

$ git log -1 origin/stable-3.2 --format=format:%H
£839d383e6fbbda26729db7£d57£c917£fa47db44

&)

Chapter 3

Forcing a merge commit

If you are reading this book, you might have seen a lot of basic examples of software
delivery chains and branching models. It is very likely that you have been trying to use
different strategies and found that none of them completely supports your scenario,
which is perfectly fine as long as the tool can support your specific workflow.

Git supports almost any workflow. | have often encountered a situation that requires a
merge commit while merging a feature, even though it can be done with a fast-forward
merge. Those who requested it often use it to indicate that you have actually merged
in a feature and want to store the information in the repository.

1
‘Q Git has fast and easy access to all the commit messages, so the repository

should be used as a journal, not just a backup of the source code.

Getting ready

Start by checking out a local branch remote0ldbugFix that tracks origin/stable-3.1:

$ git checkout -b remoteOldBugFix --track origin/stable-3.1

Branch remoteOldBugFix set up to track remote branch stable-3.1
from Switched to a new branch 'remoteOldBugFix'

How to do it...

The following steps will show you how to force a merge commit:

1.

To force a merge commit, you need to use the - -no-ff flag, no-£f is no fast
forward. We will also use - -quiet for minimizing the output and - -edit to allow
us to edit the commit message. Unless you have a merge conflict, Git will create the
merge commit for you automatically:

$ git merge origin/stable-3.2 --no-ff --edit --quiet
Auto-merging
org.eclipse.jgit.test/tst/org/eclipse/jgit/test/resources/
SampleDat

Removing org.eclipse.jgit.test/tst/org/eclipse/jgit/internal/
storage/file/GCTe

Auto-merging org.eclipse.jgit.packaging/org.eclipse.jgit.target/
jgit-4.3.target

[ei-

Branching, Merging, and Options

2.

The commit message editor will open, and you can write a commit message.

Closing the editor creates the merge commit and we are done.

To verify this, you can reset back to origin/stable-3.1 and perform the

merge without the - -no-£f£ flag:
$ git reset --hard remotes/origin/stable-3.1

HEAD is now at da6e87b Prepare post 3.1.0 builds

Now, perform the merge with the following command:
$ git merge origin/stable-3.2 --quiet

You can see the difference using Gitk. The following screenshot shows the
fast forward merge, as you can see our remoteOldBugFix branch points
to origin/stable-3.2:

File Edit View Help

‘&L —{remotes/origin
v3.2.0.201312181205-r| JGit v3.2.0.201312181205-r

Revert "Fix for core autocrif=input resulting in modified file_ "

Fix for core autocrlf=input resulting in modified file and unsmudge

Canonicalize worktree path in BaseRepositoryBuilder if set via config

Add missing (@since tags for new public methods in Config

Don't use API exception in RebaseTodoLine

Merge "Fix aborting rebase with detached head" into stable-3.2

Fix aborting rebase with detached head

Add recursive variant of Config getNames(

Merge branch 'master' into stable-3.2
SHA1ID: |£835d383e6fbbda26729db7£d57£c917fad7dbd4d| & = ngl

Find next prev commit containing: v

Search

Chapter 3

6. The following screenshot shows the merge commit we forced Git to create.
My branch remote01dBugFix is ahead of remotes/origin/stable-3.2,
and the | performed the commit:

File Edit View Help

‘i Prepare post 3.2.0 builds
v3.2.0.201312181205-r] JGit v3.2.0.201312181205-r

Revert "Fix for core autocrif=input resulting in modified file. "

Fix for core.autocrif=input resulting in modified file and unsmudge

Canonicalize worktree path in BaseRepositoryBuilder if set via config

Add missing @since tags for new public methods in Config

Don't use API exception in RebaseTodoLine

Merge "Fix aborting rebase with detached head" into stable-3.2

Fix aborting rebase with detached head

Add recursive variant of Config.q

SHA1ID: |93726404cee53dcc6461e45c48517fef54cdee58 & = Row

Find next prev commit |containing: W

Search

There's more...

Although most branching scenarios expect you to completely merge branches, there

are situations when while working in a real environment, you only need to merge specific
pieces of one branch into another branch. Using the - -no-commit option, Git will make
the merge and stop before committing, allowing you to modify and add files to the merge
commit before committing.

(&5}

Branching, Merging, and Options

As in example, | have been working with projects where versions of strings have been updated
in the feature branch but not in the master branch. So, an automatic merge into master
would replace the current version string used on the master branch, which in my case was
not the intention:

1.

Start by checking out a local remotePartlyMerge branch that tracks origin/
stable-2.3:

$ git checkout -b remotePartlyMerge --track origin/stable-2.3

Branch remotePartlyMerge set up to track remote branch stable-2.3
from origin.

Switched to a new branch 'remotePartlyMerge'

Then, to create the merge and allow you to decide what will be part of the commit,
you can use - -no-commit:

$ git merge origin/stable-3.1 --no-ff --no-commit
a lot of output...
Automatic merge went well; stopped before committing as

requested

Again, Git is very informative; you can see from the output that everything went well
and Git stopped before committing as requested. To continue, let's pretend we didn't
want the org.eclipse.jgit.test directory to be part of the merge commit.

To achieve this, we reset the directory using the git reset <paths> command:

$ git reset ./org.eclipse.jgit.test

Unstaged changes after reset:

M org.eclipse.jgit.test/.gitignore

A lot of output

M org.eclipse.jgit.test/tst/org/eclipse/jgit/util/io/
AutoCRLFOutputStreamTest.java

You can see from the output that you have unstaged changes after the reset; this is
exactly what we want. You can check which unstaged changes you have by running
git status. Now, we will just finish the merge:

$ git commit -m "Merging stable-3.1 without org.eclipse.jgit.test"

[remotePartlyMerge 396f32a] Merging stable-3.1 without

The merge commit is complete. If you runa git status command now, you will
still have the unstaged changes in you work area. To verify whether the result is as
expected, we can use diff for this with git diff to show that the file is as it is on
the origin/stable-2.3 branch:

$ git diff origin/stable-2.3 ./org.eclipse.jgit.test

=

Chapter 3

6. There is no output from dif£; this is the expected result. We are telling the diff
command to diff our current HEAD commit and branch origin/stable-2.3,
and we only care about the diffsin . /org.eclipse.jgit.test:

M If you don't specify HEAD, you will diff with your current WA,
Q and the diff£ command will have a lot of output as you have
unstaged changes.

Using git rerere to merge known conflicts

While working on a feature branch, you probably like to merge daily or maybe more often,
but often when you work on long-living feature branches, you end up in a situation where
you have the same conflict occurring repeatedly.

Here, you can use git rerere which stands for reuse recorded resolution. Git rerere is
not enabled by default but can be enabled with the following command:

$ git config rerere.enabled true

1
‘Q You can configure it globally by adding - -global to the

git configcommand.

How to do it...

Perform the following steps to merge the known conflicts:

1. Inthe jgit repository folder, start by checking out a branch that tracks
origin/stable-2.2:

git checkout -b rerereExample --track origin/stable-2.2

2. Now, change the maven-compiler-plugin version to something personalized such
as 2.5.2 like thisis in line 211. If you run git diff, you should get a result very
similar to the following:

$ git diff

diff --git a/pom.xml b/pom.xml
index 085e00f..d5aecl7 100644
--- a/pom.xml

+++ b/pom.xml

Branching, Merging, and Options

@@ -208,7 +208,7 @@

<plugin>
<artifactId>maven-compiler-plugin</artifactId>
- <version>2.5.1l</version>
+ <version>2.5.2</version>

</plugin>

<plugin>

Now add the file and create a commit:

$ git add pom.xml

$ git commit -m "Update maven-compiler-plugin to 2.5.2"
[rerereExample d474848] Update maven-compiler-plugin to 2.5.2

1 file changed, 1 insertion(+), 1 deletion(-)

Store you current commit in a backup branch named rerereExample2:

$ git branch rerereExample2

Here, git branch rerereExample2 is just storing the current commit as a
branch, as we need to use that for rerere example number 2.

Now, we need to perform the first merge that will fail on auto merge. Then, we can
solve that. After solving it, we can reuse the merge resolution to solve the same
problem in the future:

$ git merge --no-ff v3.0.2.201309041250-rc2
A lot of output ..

Automatic merge failed; fix conflicts and then commit the result.

As we have git rerere enabled, we can use git rerere status to see which
files or paths will be recorded:

$ git rerere status

pom.xml

Chapter 3

7. Edit the pom.xml file and solve the merge conflict so that you can get the diff output
shown as follows. You have to remove the line with 2. 5. 1 and the merge markers:

s . L
‘Q Merge markers are lines that begin with <<<<<<, >>>>>>, of ======;

these lines indicate the points where Git could not perform an auto merge.

$ git diff v3.0.2.201309041250-rc2 pom.xml
diff --git a/pom.xml b/pom.xml

index 60cb0c8..faa7618 100644

--- a/pom.xml

+++ b/pom.xml

@@ -226,7 +226,7 @@

<plugin>
<artifactId>maven-compiler-plugin</artifactId>
- <version>3.l</version>
+ <version>2.5.2</version>

</plugin>

<plugin>

8. Mark the merge as complete by adding pom.xml to the staging area and run git
commi t to finish the merge:
$ git commit
Recorded resolution for 'pom.xml'.

[rerereExample 9b8725f] Merge tag 'v3.0.2.201309041250-rc2' into
rerereExample

9. Note the recorded resolution for the pom.xml output from Git; this will not be here
without enabling git rerere. Git has recorded this resolution to this particular
merge conflict and will also record how to solve this. Now, we can try and rebase
the change to another branch.

&7}

Branching, Merging, and Options
10.

11.

12.

13.

Start by checking out the rerereExample2 branch from our repository:
$ git checkout rerereExample2

Switched to branch 'rerereExample2'

Try to rebase your change on top of the origin/stable-3.2 branch:

$ git rebase origin/stable-3.2

First, rewinding head to replay your work on top of it...

Applying: Update maven-compiler-plugin to 2.5.2

Using index info to reconstruct a base tree...

M pom.xml

Falling back to patching base and 3-way merge...

Auto-merging pom.xml

CONFLICT (content): Merge conflict in pom.xml

Resolved 'pom.xml' using previous resolution.

Failed to merge in the changes.

Patch failed at 0001 Update maven-compiler-plugin to 2.5.2

The copy of the patch that failed is found in:
c:/Users/Rasmus/repos/jgit/.git/rebase-apply/patch

When you have resolved this problem, run "git rebase --continue".
If you prefer to skip this patch, run "git rebase --skip" instead.
To check out the original branch and stop rebasing, run "git
rebase --abort".

You should notice the following output:

CONFLICT (content): Merge conflict in pom.xml

Resolved 'pom.xml' using previous resolution

As the merge conflict is the same in pom.xml, Git can solve the conflict in the file

for you. This is very clear when you open the file and see there are no merge markers,
as the resolution Git had recorded has been applied. Finish the merge by adding
pom.xml and continue the rebase:

$ git add pom.xml
$ git rebase --continue

Applying: Update maven-compiler-plugin to 2.5.2

Chapter 3

14. Start Gitk to see that the commit has been rebased on top of the origin/
stable-3.2 branch:

File Edit View Help

a remotes/origin Prepare post 3.2.0 builds
v3.2.0.201312181205-r| JGitv3.2.0.201312181205-r

Revert "Fix for core autocrif=input resulting in modified file.. "

Fix for core.autocrif=input resulting in modified file and unsmudge

Canonicalize worktree path in BaseRepositoryBuilder if set via config

Add missing @since tags for new public methods in Config

Don't use APl exception in RebaseTodoLine

Merge "Fix aborting rebase with detached head" into stable-3.2

Fix abarting rebase with detached head

Add recursive variant of Config.getNames() methods

SHA1 ID: |787abab3fd345e35275dcel518d7ca570e1d15c3 & = Row

Find next prev commit containing: v

Search

You can try the same scenario with merging and it would merge the file automatically for you.

There's more...

When you merge different branches often and you are not sure which branch a specific
error fix is a part of, it is actually quite easy to find out.

1. You need to find a commit you are interested in getting this information for.
Then, use the - -contains flag for the git branch command:

$ git branch --contains 06ddeel
anotherBugFix
lastBugFix
master
newBugFix
remoteBugFix
remoteBugFix2
remoteOldbugFix

* rerereExample2

Branching, Merging, and Options

2.

[

The previous command lists all the branches that have the specific commit.
If you leave out the <commit > option, Git will check HEAD. So, for instance,
checking out the rerereExample2 branch and executing the following command,
you will see the commit is present only on that branch:
$ git checkout rerereExample2

Switched to branch 'rerereExample2'

$ git branch -a --contains

* rerereExample2

1
‘Q The -a option indicates that you wish to check all the remote

branches as well. If you leave this out, it will check only local branches.

However, as you can see, our commit is not on any remote branch as the commit
has just been created locally and has not been pushed to any remotes yet.

s . . .
‘Q You can use tags, branch names, or commit hashes while using the

git branch -a --contains command.

Let's try to see the branches where the v2.3.0.201302130906 tag is present:
$ git branch -a --contains v2.3.0.201302130906
anotherBugFix
lastBugFix
master
newBugFix
remoteBugFix
remoteBugFix2
remoteOldbugFix
remotePartlyMerge
* rerereExample2
remotes/origin/HEAD -> origin/master
remotes/origin/master
remotes/origin/stable-2.

3
remotes/origin/stable-3.0
remotes/origin/stable-3.1

2

remotes/origin/stable-3.

That tag is in quite a lot of branches.

Chapter 3

The difference between branches

Checking the difference between branches can show valuable information before merging.

A regular Git diff between two branches will show you all the information, but it can be rather
exhausting to sit and look at; maybe you are only interested in one file. Thus, you don't need
the long unified diff.

Getting ready

To start with, we decide on two branches, tags, or commits we want to see the diff
between. Then, to list files that have changed between these branches, you can use
the - -name-only flag.

How to do it...

Perform the following steps to see the difference between the branches:

1. Diffthe origin/stable-3.1 with origin/stable-3.2 branch:
$ git diff --name-only origin/stable-3.1 origin/stable-3.2 org.
eclipse.jgit/src/org/eclipse/jgit/transport/org.eclipse.jgit/src/
org/eclipse/jgit/transport/BasePackFetch

More output..

2. We are building the command in this pattern, thatis, git diff [options]
<commit> <commit> <paths.Then, we can diff what we care about while looking
into the differences between branches. This is very useful if you are responsible for a
subset of the source code, and you wish to diff that area only.

3. Let's try the same diff between branches, but this time we will diff the entire
branches, not just a subdirectory; however, we only want to show the deleted or
added files between the branches. This is done by using the --diff-filter=DA
and - -name-status options. The - -name-status option will only show the
filenames and the type of change. The --diff-filter=DA option will only
show the deleted and added files:

$ git diff --name-status --diff-filter=DA origin/stable-3.1
origin/stable-3.2

D org.eclipse.jgit.junit/src/org/eclipse/jgit/junit/Sam
A org.eclipse.jgit.packaging/org.eclipse.jgit.target/jg

More output..

7}

Branching, Merging, and Options

4. This shows the files that have been added and deleted while moving from
origin/stable-3.11t0origin/stable-3.2:

5. If we switch the branches around like in the following command, we will get the
opposite result.
$ git diff --name-status --diff-filter=DA origin/stable-3.2
origin/stable-3.1
A org.eclipse.jgit.junit/src/org/eclipse/jgit/junit/Sam
D org.eclipse.jgit.packaging/org.eclipse.jgit.target/jg

More output..

Note that the indication letters A and D switched places because now we want to know
what happens if we move from origin/stable-3.2t0o origin/stable-3.1.

There are more options in the help files for Git. Just run git merge --helporgit branch
- -help to see what other options you have. The option | have used and the examples shown
are all examples that have given me the edge while working with Git as a release manager
and Git mentor at Nokia.

Rebase Regularly and
Interactively, and Other
Use Cases

In this chapter, we will cover the following topics:

» Rebasing commits to another branch

» Continuing a rebase with merge conflicts

» Rebasing selective commits interactively

» Squashing commits using an interactive rebase
» Changing the author of commits using a rebase

» Auto-squashing commits

Introduction

Rebase is an incredibly strong feature of Git. Hopefully, you have used it before; if not,
you might have heard about it. Rebasing is exactly what the word implies. So, if you have
a certain commit A that is based on commit B, then rebasing A to C would result in
commit A being based on commit C.

As you will see in the different examples in this chapter, it is not always as simple as that.

Rebase Regularly and Interactively, and Other Use Cases

Rebasing commits to another branch

To start with, we are going to perform a very simple rebase where we will introduce a
new file, commit this file, make a change to it, and then commit it again so that we end
up with 2 new commits.

Getting ready

Before we start, we need a repository to work in. You can use a previous clone of jgit,
but to get a close to identical output from the example, you can clone the jgit repository.

The jgit repository can be cloned as follows:

$ git clone https://git.eclipse.org/r/jgit/jgit chapter4
$ cd chapter4

How to do it...

We start by creating a local branch and then make two commits by performing the following
steps; these are the commits that we want to rebase onto another branch:

1. Check out a new branch, rebaseExample, that tracks origin/stable-3.1:
$ git checkout -b rebaseExample --track origin/stable-3.1

Branch rebaseExample set up to track remote branch stable- 3.1
from origin.

Switched to a new branch 'rebaseExample'

2. Make two commits on the rebaseExample branch as follows:
$ echo "My Fishtank

Gravel, water, plants

Fish, pump, skeleton" > fishtank.txt

$ git add fishtank.txt

$ git commit -m "My brand new fishtank"
[rebaseExample 4b2c2ec] My brand new fishtank
1 file changed, 4 insertions(+)

create mode 100644 fishtank.txt

$ echo "mosquitos" >> fishtank.txt

$ git add fishtank.txt

7

Chapter 4

$ git commit -m "Feeding my fish"
[rebaseExample 2132d88] Feeding my fish

1 file changed, 1 insertion(+)

3. Then, we rebase the change on top of the origin/stable-3.2 branch instead.

$ git rebase origin/stable-3.2

First, rewinding head to replay your work on top of it...
Applying: My brand new fishtank

Applying: Feed the fish

When you execute git rebase, Git starts by finding the common ancestor of the current
HEAD branch and the branch you want to rebase to. When Git finds merge -base, it will find
the commits that are not available on the branch you are rebasing onto. Git will simply try to
apply those commits one by one.

Continuing a rebase with merge conflicts

When you rebase a commit or a branch on top of a different HEAD, you will eventually
see a conflict.

If there is a conflict, you will be asked to solve the merge conflict and continue with the
rebase using git rebase --continue

How to do it

We will be creating a commit that adds the same fishtank. txt file on top of the
origin/stable-3.1 branch; then, we will try to rebase this on top of the rebaseExample
branch we created in the Rebasing commits to another branch section:

1. Check out a branch named rebaseExample?2 that tracks origin/stable-3.1:
$ git checkout -b rebaseExample2 --track origin/stable-3.1
Checking out files: 100% (212/212), donmne.

Branch rebaseExample2 set up to track remote branch stable-3.1
from origin.

Switched to a new branch 'rebaseExample2'

Rebase Regularly and Interactively, and Other Use Cases

2. Make a commit on the branch.
$ echo "My Fishtank

Pirateship, Oister shell

Coconut shell

">fishtank. txt

$ git add fishtank.txt

$ git commit -m "My brand new fishtank"
[rebaseExample2 39811d6] My brand new fishtank
1 file changed, 5 insertions(+)

create mode 100644 fishtank.txt

3. Tryto rebase the branch on top of the rebaseExample branch.
$ git rebase rebaseExample
First, rewinding head to replay your work on top of it...
Applying: My brand new fishtank
Using index info to reconstruct a base tree...
<stdin>:12: new blank line at EOF.
+
warning: 1 line adds whitespace errors.
Falling back to patching base and 3-way merge...
Auto-merging fishtank.txt
CONFLICT (add/add): Merge conflict in fishtank.txt
Failed to merge in the changes.
Patch failed at 0001 My brand new fishtank
The copy of the patch that failed is found in:

c:/Users/Rasmus/repos/chapter4/.git/rebase-apply/patch

When you have resolved this problem, run "git rebase --continue".
If you prefer to skip this patch, run "git rebase --skip" instead.

To check out the original branch and stop rebasing, run "git
rebase --abort".

Chapter 4

4. As predicted, we have a conflict. Solve the conflict in your preferred editor.
Then, add the file to the index using git add and continue with the rebase.

$ git add fishtank.txt
$ git rebase --continue

Applying: My brand new fishtank

5. We can now check with gitk to see whether our change is rebased on top of
the rebaseExample branch, as shown in the following screenshot:

File Edit View Help

My brand new fishtank

My brand new fishtank

remotes/origin repare post 3.2.0 builds
P 3.2.0 build
JGitv3.2 0201312181205-r

Revert "Fix for core_autocrif=input resulting in maodified file_ "

As we learned from the first example, Git will apply the commits that are not available on
the branch you are rebasing to. In our example, it is only our commit, as we made it, that is
available on the rebaseExample2 branch.

There's more...

You might have noticed in the output of the failing rebase that you have two extra options
for the commit.

When you have resolved this problem, run git rebase --continue. If you prefer to skip
this patch, run git rebase --skip instead. To check out the original branch and stop
rebasing, run git rebase --abort.

The first extra option we have is to totally ignore this patch by skipping it; you can do this
using git rebase --skip.In our example, this will cause our branch to be fast-forwarded
to the rebaseExample branch. So, both our branches will point to the same commit hash.

The second option is to abort the rebasing. If we choose to do this, then we will go
back to the branch as it was prior to starting the rebase. This can be done using
git rebase --abort.

Rebase Regularly and Interactively, and Other Use Cases

Rebasing selective commits interactively

When you are working on a new feature and have branched from an old release into a feature
branch, you might want to rebase this branch onto the latest release. When looking into the
list of commits on the feature branch, you realize that some of the commits are not suitable
for the new release. So, when you want to rebase the branch onto a new release, you will need
to remove some commits. This can be achieved with interactive rebasing, where Git gives you
the option to pick the commits you wish to rebase.

Getting ready

To get started with this example, you need to check the previously created branch,
rebaseExample; if you don't have this branch, follow the steps from the Rebasing
a few commits section and use the following command:

$ git checkout rebaseExample
Switched to branch 'rebaseExample'
Your branch is ahead of 'origin/stable-3.1' by 109 commits.

(use "git push" to publish your local commits)

Notice that because we are tracking origin/stable-3.1, the Git checkout will tell us
how far ahead we are in comparison with that branch.

How to do it

We will try to rebase our current branch, rebaseExample, on top of the origin/
stable-3.1 branch by performing the following steps. Remember that Git will apply
the commits that are not available on the branch we are rebasing to; so, in this case,
there will be a lot of commits:

1. Rebase the branch onto origin/stable-3.1 by using the following command:

$ git rebase --interactive origin/stable-3.1

2. What you will see now is a list of all the commits you will be rebasing onto the
origin/stable-3.1 branch. These commits are all the commits between the
origin/stable-3.1 and rebaseExample branches. The commits will be applied
from top to bottom, so the commits will be listed in reverse order, at least compared
to what you would normally see in Git. This actually makes good sense. The commits
have the keyword pick to the left and then the abbreviated commit hash, and finally
the title of the commit subject.

@

Chapter 4
If you scroll down to the bottom, you will see a list like the following one:

pick 43405e6 My brand new fishtank
pick 08d0906 Feed the fish
Rebase da6e87b..08d0906 onto da6e87b

#

Commands:

p, pick = use commit

r, reword = use commit, but edit the commit message

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

£, fixup = like "squash", but discard this commit's log message
x, exec = run command (the rest of the line) using shell

#

These lines can be re-ordered; they are executed from top to
bottom.

#

If you remove a line here THAT COMMIT WILL BE LOST.

#

However, if you remove everything, the rebase will be aborted.
#

Note that empty commits are commented out

So, if we only want our fishtank commits to be based on top of the origin/
stable-3.1 branch, we should remove all the commits except for our two commits.

Remove all the lines except for the two commits at the bottom; for now, leave pick
as the keyword. Save the file and close the editor, and you will get the following
message from Git:

Successfully rebased and updated refs/heads/rebaseExample.
Now, with gitk, try to check whether we accomplished what we predicted. The next

screenshot shows our two fishtank commits on top of the origin/stable-3.1
branch. The following screenshot is what we expected:

File Edit View Help

My brand new fishtank

‘ Prepare post 3.1.0 builds
v3.1.0201310021548-r] JGit w3.1.0.201310021548-r

Fix order of commits in rebase todo file header

Prepare post 3.1.0 RC1 builds

v3.1.0.201309270735-rc1] JGit v3.1.0.201309270735-rc1

Rebase Regularly and Interactively, and Other Use Cases

There's more...

The same thing could actually be achieved with a single small Git command. We have been
rebasing commits from the origin/stable-3.2 branch to the rebaseExample branch
onto the origin/stable-3.2 branch. This can also be achieved in the following manner:

$ git rebase --onto origin/stable-3.1 origin/stable-3.2 rebaseExample
First, rewinding head to replay your work on top of it...

Applying: My brand new fishtank

Applying: Feed the fish

The --onto origin/stable-3.2 flag tells Git to rebase onto origin/stable-3.2,

and it has to be from origin/stable-3.1 to the rebaseExample branch. So, we end

up having rebaseExample branch to the branch of the origin/stable-3.1 and the like.
The next diagram shows before the rebase example where we have our two commits on top

of origin/stable-3.2, then after the rebase where our commits are on top of origin/stable-3.1
as we wanted:

Before After

[rebaseExample
[Origin/stable-3.2 I

E rebaseExample]

[Origin/stable-3.2

[origin/stable-3.1 j

[origin/stable-3.1

(&)

Chapter 4

Squashing commits using an interactive

rebase

When | work on a local branch, | prefer to commit in small increments with a few comments
on what | did in the commits; however, as these commits do not build or pass any test
requirements, | cannot submit them for review and verification one by one. | have to merge
them in my branch, and still, cherry picking my fix would require me to cherry-pick twice the
number of commits, which is not very handy.

What we can do is rebase and squash the commits into a single commit or at least a smaller
number of commits.

Getting ready

To get started with this example, we need a new branch, namely rebaseExample3,
that tracks origin/stable-3. 1. Create the branch with the following command:
$ git checkout -b rebaseExample3 --track origin/stable-3.1

Branch rebaseExample3 set up to track remote branch stable-3.1 from
origin.

Switched to a new branch 'rebaseExample3'

How to do it...

To really showcase this feature of Git, we will start by being six commits ahead of the
origin/stable-3.1 branch. This is to simulate the fact that we have just created six
commits on top of the rebaseExample3 branch; to do this, perform the following steps:

1. Find a commit that is between origin/stable-3.1 and origin/stable-3.2
and list the commits in reverse order. If you don't list them in reverse order, you can
scroll down to the bottom of the output and find the commit we will use, as shown in
the following snippet:

$ git log origin/stable-3.1..origin/stable-3.2 --oneline --reverse
8a51c44 Do not close ArchiveOutputStream on error

3467e86 Revert "Close unfinished archive entries on error"

£f045a68 Added the git-describe implementation

Obe59ab Merge "Added the git-describe implementation"

£fdc80£f7 Merge branch 'stable-3.1'

7995d87 Prepare 3.2.0-SNAPSHOT builds

5218f7b Propagate IOException where possible when getting refs.

s

Rebase Regularly and Interactively, and Other Use Cases

2.

Reset the rebaseExample3 branch to the 5218f7b commit; this will simulate that
we have six commits on top of the origin/stable-3.1 branch. This can be tested
by running the status of Git as follows:

$ git reset --hard 5218f7b

HEAD is now at 5218f7b Propagate IOException where possible when
getting refs.

$ git status
On branch rebaseExample3
Your branch is ahead of 'origin/stable-3.1' by 6 commits.

(use "git push" to publish your local commits)

nothing to commit, working directory clean

Now we have these six commits on top of the origin/stable-3.1 branch, and
we want to squash these commits into two different commits instead of six commits.
This can be done by simply running git rebase --interactive. Notice thatwe
are not specifying which branch we want to rebase to since we have already set up

a tracking branch when we created the branch using - -track. To continue, let's
execute the rebase command as follows:

$ git rebase --interactive

pick 8a51c44 Do not close ArchiveOutputStream on error
pick f045a68 Added the git-describe implementation
pick 7995d87 Prepare 3.2.0-SNAPSHOT builds

pick 5218f7b Propagate IOException where possible when getting
refs.

The editor will open, and you will see four commits and not six as you would expect.
This is because the rebase in general refuses to take merge commits as part of the
rebase scenario. You can use the - -preserve-merges flag. As per the Help section
of Git, this is not recommended.

According to the Help section in Git - -preserve-merges instead of
ignoring merges, tries to recreate them.

% The - -preserve-merges flag uses the - -interactive machinery
e internally, but combining it with the - -interactive option explicitly is
generally not a good idea unless you know what you are doing (see the
BUGS in the following snippet).

[

Chapter 4

Edit the file so it looks as follows:

pick 8a51c44 Do not close ArchiveOutputStream on error
squash f045a68 Added the git-describe implementation
pick 7995d87 Prepare 3.2.0-SNAPSHOT builds

squash 5218f7b Propagate IOException where possible when getting
refs.

Remember that commits are listed in reverse order as compared to the Git log.

So, while squashing, we squash up into the commits we have marked with the pick.
When you close the editor, Git will start the rebase from top to bottom. First, apply
8a51c44 and then squash £045a68 into the commit 8a51c44. This will open the
commit message editor that contains both the commit messages. You can edit the
commit messages, but for now, let us just close the editor to finish with the rebase
and the squashing of these two commits. The editor will open one more time to
complete the squashing of 5218£7b into 7995d87. Use gitk to verify the result.

The following screenshot is as expected; now, we only have two commits on top of
the origin/stable3-1 branch:

File Edit View Help

Do not close ArchiveQutputStream on error

‘ Prepare post 3.1.0 builds
v3.1.0.201310021548-r] JGit v3.1.0.201310021548-r

Fix order of commits in rebase todo file header

Prepare post 3.1.0 RC1 builds

v3.1.0.201309270735-rc1] JGit v3.1.0.201309270735-rc 1

Attempt to fix graph layout when new heads are introduced

Prepare re-signing pgm's ueberjar to avoid SecurityException

If you check the commit message of the HEAD commit, you will see that it has the
information of two commits, as shown in the following command. This is because
we decided not to change the commit message when we made the change:

$ git log -1
commit 9c96a651££f881c7d7c5a3974fa7al%9a9c264d0al
Author: Matthias Sohn <matthias.sohn@sap.com>

Date: Thu Oct 3 17:40:22 2013 +0200

Prepare 3.2.0-SNAPSHOT builds

Rebase Regularly and Interactively, and Other Use Cases

Change-Id: Iac6cf7a5bb6l46ee3fe38abe8020fc3£fc4217584
Signed-off-by: Matthias Sohn <matthias.sohn@sap.com>

Propagate IOException where possible when getting refs.

Currently, Repository.getAllRefs() and Repository.getTags()
silently

ignores an IOException and instead returns an empty map.
Repository

is a public API and as such cannot be changed until the next
major

revision change. Where possible, update the internal jgit APIs
to

use the RefDatabase directly, since it propagates the error.

Change-Id: I4e4537d8bd0fa772£388262684c5c4cal929dc4c

There's more...

Now we have squashed two commits, but we could have used other keywords when editing
the rebase's to-do list.

We will try the fixup functionality, which works like the squash functionality, by performing
the following steps; the exception is that Git will select the commit message of the commits
with the pick keyword:

1.

Start by resetting back to our starting point.
$ git reset --hard 5218f7b

HEAD is now at 5218f7b Propagate IOException where possible when
getting refs.

$ git status
On branch rebaseExample3
Your branch is ahead of 'origin/stable-3.1' by 6 commits.

(use "git push" to publish your local commits)

nothing to commit, working directory clean

=

Chapter 4

As you can see, we are back at the starting point, that is, we're six commits ahead
of the origin/stable-3.1 branch. Now, we can try the fixup functionality. Start
the interactive rebase and change the file according to the following output. Notice
that you can use £ instead of £ixup.

$ git rebase --interactive

pick 8a51c44 Do not close ArchiveOutputStream on error

f £045a68 Added the git-describe implementation

pick 7995d87 Prepare 3.2.0-SNAPSHOT builds

f 5218f7b Propagate IOException where possible when getting refs.

Once you close the editor, you will see rebase's progress through Git. As predicted,
the commit message editor will not open; Git will just rebase the changes into two
commits on top of the orgin/stable-3.1 branch.

$ git rebase --interactive

[detached HEAD 70b4eb7] Do not close ArchiveOutputStream on error
Author: Jonathan Nieder <jrn@google.com>

6 files changed, 537 insertions(+), 2 deletions(-)

create mode 100644 org.eclipse.jgit.test/tst/org/eclipse/jgit/
api/DescribeComma

ndTest.java

create mode 100644 org.eclipse.jgit/src/org/eclipse/jgit/api/
DescribeCommand. ja

va

[detached HEAD c5bc5cc] Prepare 3.2.0-SNAPSHOT builds

Author: Matthias Sohn <matthias.sohn@sap.com>

67 files changed, 422 insertions(+), 372 deletions(-)

rewrite org.eclipse.jgit.http.server/META-INF/MANIFEST.MF (61%)
rewrite org.eclipse.jgit.java7.test/META-INF/MANIFEST.MF (66%)
rewrite org.eclipse.jgit.junit/M