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Dynamic Bayesian models are developed for application in 
nonlinear, non-normal time series and regression problems, 
providing dynamic extensions of standard generalized linear 
models. A key feature of the analysis is the use of conjugate 
prior and posterior distributions for the exponential family pa- 
rameters. This leads to the calculation of closed, standard-form 
predictive distributions for forecasting and model criticism. 
The structure of the models depends on the time evolution of 
underlying state variables, and the feedback of observational 
information to these variables is achieved using linear Bayesian 
prediction methods. Data analytic aspects of the models con- 
cerning scale parameters and outliers are discussed, and some 
applications are provided. 
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1. INTRODUCTION 

1.1 General 

During the 1960s, the introduction of computers enabled 
static linear models and simple "derivable stationary" state- 
space models to be used profitably for the analysis and pre- 
diction of a wide variety of processes. It was soon evident, 
however, that the applications of such models often impose 
unrealistic assumptions. Many inappropriate "static" regres- 
sions were, and still are, uncritically applied to production 
processes or economic series in order to estimate what are 
really dynamic effects. In forecasting systems, a general as- 
sumption, arising from the academic desire for restrictive struc- 
tures, is that a single simple model adequately represents a 
particular series at all possible times. Furthermore, the chosen 
models have often been restricted to the class of stationary or 
linearly derivable stationary models. There is still much con- 
fusion over local and global models in the work of some mod- 
elers. In particular, the argument that, locally, the form of a 
smooth function can be well represented by a low-order Taylor 
series model has been extended to the totally unjustified and 
often unconscious assumption that it can always be represented 
by such a model with constant coefficients. Many of the early 
applied forecasting approaches recognized the stationarity as- 
sumption to be inadequate and embedded the routine statistical 
model within a complete forecasting system operating accord- 
ing to the principle of management by exception. The excep- 
tions are roughly of two kinds: (a) feedback, when a model 
monitoring system indicates a poor performance from the rou- 
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tine model, and (b) feedforward, when external subjective in- 
formation is combined with routine statistical data. However, 
the methods for incorporating subjective information were ad 
hoc and rarely reflected the increased uncertainty associated 
with the occurrence of unusual events. 

Towards the end of the decade, in an attempt to overcome 
some of these disadvantages, Harrison and Stevens (1976a) 
defined the class of dynamic linear models (DLM's) and de- 
veloped the Bayesian approach to dynamic modeling and fore- 
casting. The fundamental idea is that at any time t, the process 
under study is viewed in terms of meaningful parameters 0, 
and that given a history D, current knowledge with respect 
to the future is sufficiently described by a set of probability 
distributions: for the current state (0, I D,); for future states 
(Ot+k+1 I Ot+k), k ? 0, defining the system model; and for 
observations (Yt+k O Ot+k), k : 0. This approach is built on 
existing practice in the sense that many common models can 
be reformulated as special static and stationary cases. The real 
power, however, is that the reformulation provides many ad- 
ditional facilities such as are required for operating with little 
or no data, communicating subjective information, routinely 
handling "exceptions" using predesigned models, on-line mon- 
itoring and model discrimination, on-line estimation of param- 
eters, modeling probabilistic (stochastic) transfer functions, 
and many more. 

Major progress in practical modeling methodology was made 
in a different direction in the early 1970s based on the theo- 
retical development of the generalized linear model (GLM) 
(Nelder and Wedderburn 1972). This work provided a unified 
framework for the study of a wide variety of data structures, 
and the ensuing development of the interactive GLIM computer 
program (Baker and Nelder 1978) led to an explosion in the 
application of formal parametric statistical models. The exten- 
sion of regression techniques to non-normal sampling models 
with effects on a nonlinear scale provided what has become in 
the United Kingdom one of the most important modeling tools 
of applied statisticians and research workers. More recently, 
much research effort has been devoted to further theoretical 
development and refinement of the basic GLM to encompass 
more complex nonlinear relationships. 

As useful as these models are, however, they suffer from 
some basic and, from a practical viewpoint, highly important 
drawbacks, some of which are as follows: (a) In common with 
standard linear regression techniques, the imposition of a static 
model implies fixed relationships and effects across observa- 
tions. As noted earlier, this is viewed as an academic and 
restrictive assumption that leads to inflexibility in modeling 
and is often contradicted by reality. (b) The complexity of the 
likelihoods is such that exact inferences about observed rela- 
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tionships (estimation) and further observations (prediction) are 
precluded. The GLIM program approximations based on 
asymptotic theory are generally used, but the extent to which 
they are adequate in any particular application is usually un- 
clear. (c) Practically important extensions involving sources of 
stochastic variation other than that in the sampling model (i.e., 
random effects) increase the complexity of the analysis. These 
types of models are similar to Bayesian GLM's with structured 
hierarchical priors that suffer the same problem of intractability 
(West 1984). (d) The GLIM program does not cater for the 
sequential processing of observations that is particularly de- 
sirable for time series applications. (e) A mainframe computer 
package, whose use requires relatively advanced mathematical 
and statistical expertise, is required for application of the GLM 
technology as it stands. This may have limited the application 
of these models, particularly in commercial and management 
areas. 

The Bayesian approach to modeling presented here provides 
an alternative to the standard GLM that does not suffer those 
drawbacks. Exponential-family sampling models have been 
used in simple cases by several authors including Smith (1979), 
Souza (1981), and Azzalini (1983). The general models in 
Section 3 are related to these works and are, in part, dynamic 
Bayesian extensions of the GLM, though they go far beyond 
that particular class to complex nonlinear and even nonexpo- 
nential family models. An illustration of a nonlinear application 
was given in Migon and Harrison (1985). Three key features 
of the models are (a) the sequential analysis and the use of 
conjugate prior distributions that lead to closed form updating 
and predictive distributions; (b) the important concept of using 
a guide relationship (Section 3.1) on which to base the choice 
of parameters of these prior distributions [this clearly separates 
the parameters of the sampling model from the underlying 
mathematical "system model" of the process under study and 
clarifies the inference problem (Section 3.2) considerably]; and 
(c) the computations that are no more demanding than those 
of the standard dynamic linear model. The sequential updating 
recursions for estimation and prediction are simple to program 
and may be performed on the smallest microcomputers. 

1.2 Generalized Linear Models 

A general, non-Bayesian approach to the analysis of static 
regression problems in the exponential family was given by 
Nelder and Wedderburn (1972) under the name of generalized 
linear models, and the application of the related methodology 
has spread rapidly due to the availability of comprehensive 
computer packages for such analyses (Baker and Nelder 1978). 
West (1985) discussed Bayesian inference and data analysis 
for generalized linear models. 

The general exponential family sampling model for the ob- 
servation Y, is specified by the density 

P(Y, I qt, k) = exp[4{Y,tit - a(t,)}]b(Y,, 0), (1. 1) 

where il is the natural parameter of the distribution satisfying 

E[Y, I -ii, i] = IlI = i(q1,) (1.2) 

and / is a scale parameter with 

V[Y, | 77,, (/] = a(~,)/I4 ( 1.3) 

In Sections 2 and 3 of this article, 4 is assumed known and 
the dependence of the sampling density on 0 is temporarily 
ignored with (1.1) written as p(Y, I i,). Unknown scale param- 
eters are considered in Section 4, and there the conditioning 
on 0 is made explicit. 

The static GLM relates ', to a known (n x 1) vector of 
regressors F, via 

g(}t) = i,= F'0, (1.4) 

where 0 is the unknown regression parameter vector and g( ) 
a specified nonlinear function. In practice, taking g(') to be 
the identity function often provides a satisfactory model (e.g., 
log-linear and logistic-linear in the Poisson and binomial cases, 
respectively), although there may be several candidate func- 
tions to be examined, typically subject to A, being real valued. 
The GLM framework provides a class of models suitable for 
application in many practical problems, but due to the com- 
plexity of the resulting likelihoods, standard analyses provide 
only approximate inferences based on asymptotic results. In 
any extension of the GLM framework to encompass dynamic 
models in which, of course, standard asymptotic results do not 
apply, it will be necessary to seek some other way of providing 
precise inferences about regression parameters and future ob- 
servations. To generalize to dynamic models, it is natural to 
replace 0 throughout with 0, as in the DLM; the model dis- 
cussed in Section 2 has the essential features of such a for- 
mulation, yet it avoids the associated problems of intractability. 

The model presented takes as a focus the problem of explicit 
sequential calculation of the forecast distributions for future 
observations in simple and standard form. By way of notation, 
define D, = {l,, D,_ 1}, where for t 2 1, 1t {Y,, F,, and all 
other relevant information available at time t but not t 1- , 
and Do represents all relevant information available at t = 0. 
Then the closed form Bayesian analysis with the forecast dis- 
tribution for (Yt I D, -) available in standard form is obtained 
if the prior for the natural parameter has the conjugate form 

p(it Dt,1) = c(at, fig) * exp[at,t - Afa(qt)], (1.5) 

denoted (t | Dt-1) - CP[at, fil, for some a, and f,B. For then 

p(Y,t |D,1) = c(a t + A), 3, +- b(Y,, 4) (1.6) 

may be obtained directly, and the posterior distribution for 
(,t I D,) is the updated conjugate form CP[a, + 4)Y,, f,B + 4)]. 

Given the restriction of p(q, I D,t ) to the form specified, 
the question remaining is that of specifying the structure of the 
model by relating i, to the state vector 0,. This is considered 
in Section 3. First, Section 2 provides a reformulation of the 
standard normal DLM on which the nonlinear models are based. 

2. NORMAL DYNAMIC LINEAR 
MODELS REVISITED 

2.1 The DLM and Discounting 

In the case of normality, the function g( ) in (1.4) is the 
identity so that i, = i, for all t. In this section the sampling 
variance is assumed known and constant, equal to 1 / 4. Other 
models in which 4) depends on t fall within the general frame- 
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work but will not be considered here. The normal DLM is 
specified by setting 0 of (1.4) to 0, and defining the state 
evolution by 

ot = Gt0,t + w,, w, - N[Ot, W], (2.1) 

where G, is a known (n x n) state transition matrix, W, is a 
known (n x n) covariance matrix, and w, is independent of 
( It- I Dt1). Assuming that (00 I Do) - N[mo, CO], and letting 
It = {Y,, Ft, G,, Wj}, leads to the prior 

(0,t Dt,1) - N[at, Rj] (2.2) 

and the posterior 

(Ot D,) - N[mt, Cj], (2.3) 

where 

a,= G= mt l, 

=GtCt-IG,' + Wt, 

mt = at + ste t,l(qt 0 + 1), 

Ct = Rt - sts,/(qt 4 + 1), (2.4) 

with 

St = RtFt, 

qt = F t'st, 

et= Yt - ft 

ft= Faat (2.5) 

Due to the equivalence of those normal theory results and 
least squares estimation of an unknown mean when the variance 
is known, Equations (2.4) define the so-called Kalman-filter 
recursions (Kalman 1963). These form the basis of the auto- 
matic updating of the components of mt and Ct, which are used 
in the calculation of forecast distributions. Concerning the evo- 
lution of the state vector in (2.1), the deterministic, linear 
transformation of 0,- i to GtOt -l is followed by the addition of 
the stochastic term wt, which increases the covariance matrix 
from Gt Ct- I G' to Rt to model increasing uncertainty over time. 
For successful practical implementation the specification of 
suitable structure and magnitude of Wt is crucial and generally 
a difficult task. Ameen and Harrison (1985) have suggested a 
conceptually simple alternative approach using discount pa- 
rameters in a generalization of simple exponential smoothing 
techniques. In that paper the matrix Rt was given by 

Rt = BtGtCt,lG'Bt, (2.6) 

where B, is an (n x n) diagonal matrix of positive discount 
factors /l,A, (i = 1, . . . , n) with fiA < 1. Generally Gt will 
be block diagonal with each block representing a particular 
model component, and then the discount factors corresponding 
to a given block will usually take the same value. Clearly (2.6) 
provides for the required increased uncertainty over time using 
a natural multiplicative discounting of information. Ameen and 
Harrison also discuss other methods of discounting and the 
relationship with the original DLM; in this article the form 
(2.6) is used. Concerning notation, note that the discount factor 
f,S, is the square of that used by Ameen and Harrison (1985). 

2.2 Reformulation of the DLM 

As a basis for the development of non-normal models in 
Section 3, a reformulation of the standard normal analysis just 
detailed is discussed here. In this model, i, = F 0, so that, 
using (2.2) and (2.5), 

(q, I Dt_ X) - N[ft, qt] (2.7) 

Now the likelihood for Y1, given 0, depends on 0, only 
through q,, so by Bayes's Theorem, 

P(0t I?It I D,) a p(Y, q t)P(Ot, It I Dt-1) 

a p(Y, | t)p(t Dt,1)p(0, I 't, Dt-,1) 

? p(rZ| Dt)p(0t |t, Dt-1), (2.8) 

where the first term here is the posterior for the scalar quantity 
rt, given I, based on the prior (2.7); so it has the standard 
form ('t I D,) - N[gt, p,], where 

g, = f, + q,tw,l(q, 0 + 1), 

P, = q, - q 20 (q,t + 1). (2.9) 

The second term in (2.8) is calculated from the joint (singular) 
normal prior distribution of 0, and ,t, given by 

[0, t] 
[at) 

(st 
Rt)]* (.0 

Using standard normal theory, (0t I at, Dt- ) - N[,a Rt], where 

a = at + st(qt - ft)lqtg 

R= R, - s,slq,. (2.11) 

The Kalman-filter equations are obtained by noting that from 
(2.8), 

E[0t I DJ] = E[E[0t I rt, Dt1 ] I Dt] 

= E[f.t I Dt] 

= at + St (gt - ft)lqt, (2.12) 

V[0t I Dt] = V[E[0t I qt, Dt-,] I DJ] 

+ E[V[0t I t, Dt-1] I Dt] 

- V[a I D] + E[Rt I Dt] 

Rt - sts'(l - ptlqt)lqt. (2.13) 

Substituting gt and pt into these equations gives the required 
values of mt and C,. So in this case, the updating of the dis- 
tribution of the state vector is achieved using Bayes's Theorem 
for the scalar r, and then filtering back the relevant information 
via the conditional distribution of (0t I r7t, Dt-1). Given the 
prior for (q, I Dt -), mt depends on It only through the change 
in the mean of rt; the updated covariance matrix Ct depends 
on I, only through the change in the variance of q,. Similarly, 
the calculation of the forecast distribution of (Y, I Dt, ) depends 
on the prior for 0t only through the parameters of p(rqt I Dt- l). 
In this case, since all of the distributions involved are normal, 
the mean and covariance parameters determine the distribution. 
In the next section, non-normal analogs of this model are de- 
veloped in which the prior and posterior distributions for the 
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state vector are only partially specified in order to obtain a 
tractable sequential analysis with predictive distributions avail- 
able in standard form. 

3. THE DYNAMIC GENERALIZED LINEAR MODEL 

3.1 Basic Structure and Analysis 

Suppose that the sampling model at time t has the form 
(1. 1) and that the natural parameter t has the conjugate prior 
CP[at, ,B,] of (1.5) for some at and ,B,. A direct dynamic ex- 
tension of the standard GLM would be provided by relating q, 
via the nonlinear transformation g(t) to 

At = F'Et, (3.1) 

where Ot is an underlying state vector having a time evolution 
similar to that of the DLM. To do this, however, would impose 
severe restrictions on the form of the prior for t. To avoid 
this it is recognized that the model involving Ot is a fiction, a 
modeler's "guide" to reality. Accordingly the link between 
g(t) and At is used simply as a guide to forming the prior for 
it; the notation g(q,) ) At will represent this guide relationship. 

The prior and posterior distributions of the state vector will 
not now be normal; the following models assume only that by 
analogy with the DLM, the first- and second-order moments 
of the state vector Ot are given by 

(Ot-I I Dt-1) - [mt,_, Ct_J] (3.2) 

and that the time evolution for the model is defined by sup- 
posing that 

(0, Dt_1) - [at, Rt], (3.3) 

where 

at = Gtmt-l and R, = BtGtCt-IG'Bt (3.4) 

with the transition matrix G, and the discount matrix Bt known. 
Notice that the physical representation (2.1) may be used, 
although of course, w, is not necessarily normal. Furthermore, 
the full distribution of the state vector is unspecified; only the 
mean and covariance matrix are assumed. Finally, from (3.1), 

= E[,t I D,t1] =F,a, 

= V[)t I Dt_ 1] = F'RtF, 

and 

st C[)t, 01 I Dt_1] = RtFt. 

At this point the prior for the natural parameter ?t is only 
partially specified, having the conjugate form 

(It I Dt_ 1) - CP[a,, fi,] (3.5) 

with, as yet, no restriction on the values of at and ,B,. These 
values are chosen on the basis of the guide relationship 
g(,t) - i,; fixing the first two moments of g(q,) will determine 
at and ,B,. The guide relation suggests the values of f, and q, 
for these moments [and s, for the covariance between g(q,) and 
O1, and these are used in this article. It should be stressed that 
this is not necessary; other values may be chosen to incorporate 
further subjective information, to allow intervention or to avoid 
numerical difficulties as noted in the applications in Sec- 
tion 5. 

On the basis of this specification, it is immediate that the 
forecast distribution for (Y, I D,1-) has the standard form (1.6) 
and the posterior for (, I D,) has the conjugate form CP[a, + 
4Y1, ,B, + 4]. A full Bayesian analysis requires also the poste- 
rior for (0, I D,), but this is not available because the prior for 
(Ot I Dt 1) is only partially specified and the model does not 
provide a likelihood for Ot. The model as developed so far 
does not, however, require the complete specification to pro- 
ceed to time t + 1; only the mean and covariance matrix of 
(0, I Dt) are needed and these satisfy the identities 

mt = E[E[0, I C,, DJ]] (3.6) 

and 

C, = V[E[0O I t,, DJ]] + E[V[0, I qt, D,]]. (3.7) 

Furthermore, as in the normal case, (0 I |t, Dt) is conditionally 
independent of It from the factorization in (2.8) so that the 
conditional moments in the inner expectations in (3.6) and (3.7) 
are just those of (0 I |t, Dt1 ). In general these moments will 
be unknown, nonlinear functions of t; the only information 
available is that concerning the joint moments of (g(t), O' | 
Dt_1), 

[ t | -] [at) (st Rt)' (*) 

where the full covariance matrix here is singular. On the basis 
of this information alone, an alternative approach is required 
so that the information in I, may be filtered back to 0O. This 
is discussed in Section 3.2. 

3.2 State Vector Update 

Hartigan (1969) developed the linear Bayesian approach to 
problems of inference in essentially linear models when only 
the first two moments of the prior and likelihood are specified. 
Goldstein (1976) used a similar approach in partially specified 
nonlinear regression problems, suggesting a quasi-Bayesian 
method of providing optimal linear fits to unknown nonlinear 
functions. The linear Bayesian method may be applied in the 
preceding model to provide feedback of the information in I, 
to 0,. 

The density p(Ot I |,, D,_ I) is that of the unknown predictive 
distribution of 0O, given it; the mean is the optimal predictor 
in the sense of minimizing the quadratic risk function trace 
[At(d)] with respect to d, where 

At(d) = E[(0, - d)(0, - d)' I qt, Dt-1]. (3.9) 

The covariance matrix of the distribution is the value of A,(d) 
at the mean. Now, since the mean is unknown, an alternative 
predictor is sought using the linear Bayesian approach; in view 
of the relation (3.1) and the construction of t, it is natural to 
adopt a linear function of g(,t) as a predictor of 0O. Specifically, 
suppose that d is to be chosen such that d = do + dlg(q,) for 
some do and d, and that, in place of (3.9), d minimizes the 
overall quadratic risk (or sum of variances) given by 

r(d)-trace E[A(d) - I 

where the expectation is with respect to p(,t | D1 l). 
In this model the joint moments in (3 .8) suffice to determine 

the required predictor. By directly minimizing r,(d) with re- 
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spect to do and dl, it is easily shown that a unique minimum 
is obtained at d = a,, where 

at = a, + s,(g(qi) - f,)Iq,; (3.10) 

the value of E[A,(d) I D,, ] at the minimum is given by 

R,= R, - s,slq,. (3.11) 

The values 'a, and R, provide an optimal linear predictor of 
(0,t q,, D,_ l) and the associated measure of risk is an essentially 
nonlinear problem. The feedback of the information in I, may 
now be completed by replacing the conditional mean and co- 
variance matrix in (3.6) and (3.7) by ', and R, to obtain the 
expected predictor and related risk given by 

m,= a, + s,(g, -f)lqt 

and 

C, = R, - s,s,(1 - p,lq,)lq,, 

where g, = E[g(qt) I D,] and p, = V[g(t) I D,] may be 
calculated from the fully conjugate posterior for (t, I D,). 

The updating equations for the dynamic generalized linear 
model (DGLM) are now complete and may be used as the basis 
for the analysis of further observations; note that they have 
exactly the same form as the standard Kalman-filter recursions 
with the relevant values of g, and pt substituted. 

3.3 Model Summary and Forecasting 

For reference purposes the full system of recursions is sum- 
marized here. 

1. Observation model 

p(Yt I q,)a exp[4{Y,tl, - a(qt,)}] 

2. Prior 

(Ct D,_ 1) - CP[a,, fi,], 

(Ot Dt_ ,) - [at, Rt]. 

a, and fi, are chosen in accordance with the guide relationship 
g(?t) = F'0, so that E[g(q,) I D,t1] - f, and V[g(qt,) 
D,t-] - q,, where f, = F'a,, s, = R,F,, and q, = F,'s,. 

3. Posterior 

(C, I D,) - CP[a, + qY,, fi, + 5], 

with E[g(t) I D,] = g, and V[g(q,) I D,] = p,. 
4. State update 

(Ot I Dt) - [mt, Ct,] 

with 

m, = a, + s,(g, - f,)lq, and C, = R, - s,sXl - p,lq,)Iq,. 

5. State transition 

a, = G,m,_ 1, R, = B,G,C,_ G,'B,. 

6. For forecasting purposes, predictive distributions for nt.,+k 

and Y,+k (k > 0) available in standard forms. 

Define 

D,(k) = D,+k -{Y,+l, * * * , Y,+k}, k > 0. 

Then extending (3.3) and (3.4) to time t + k, 

(Ot+k I D,1(k)) - [a,(k), R,(k)], 

where for j 2 1, 

a,(j) = G,+ja,(j - 1) 

R,(j) = B,,jG,+jR,(j- -)Gl+jB,j, 

with a,(O) = a, and R,(O) = R,. Here B,,j may be taken as 
Bt+j or, to coincide with the representation (2.1), an alternative 
that ensures that 

R,(j) = G,+jR,(j - 1)G'+j + Wt+j 

for some W,+j. See Ameen and Harrison (1984, section 3) for 
further details. 

Hence 

( It+k I D,_(k)) - CP[a,(k), f,(k)], 

where a,(k), fl,(k) satisfy 

E[g(q,+k) I D,t1(k)] = ft+k = F'+ka,(k) 

and 

V[g(qt+k) I D,_(k)] = qt(k) = F'+kR,(k)F,+k. 

Finally, P(Y,+k I D,_,(k)) has the standard form (1.6) with 
parameters a,(k) and fl,(k). 

4. SCALE PARAMETERS AND OUTLIERS 

4.1 Normal Models With Unknown Variance 

In the normal DLM the observational variance 1/0 is as- 
sumed known, and successful implementation of the resulting 
analysis depends crucially on the choice of 4. A simple mod- 
ification of the model, however, provides a tractable learning 
procedure for unknown 0 that is a minor generalization of 
standard conjugate Bayesian methods (Smith and West 1983). 

Again it should be clear that the following analysis extends 
to more general models with, for example, dynamic variances 
changing deterministically or stochastically in time. 

Suppose that the prior of (2.2) is scaled by 0 with R, replaced 
by R,tl. This results in both s, and q, being divided by 4 and 
hence 

(Ot I 0, D,) - N[m,, Ctl+], 

where 

mt = a, + s,e,l(q, + 1) and C, = R, - s,s,'l(q, + 1), 

with s,, q,, and e, as originally defined in (2.5). Thus the 
standard Kalman-filter recursions apply with the factor 4 set 
to unity. The unknown 0 only appears as a scale parameter 
multiplying the covariance terms. To learn about 0 the con- 
jugate prior is a gamma form, 

(O I D,_1) - G[v,t112, 3,1/2], 

and standard Bayesian manipulations lead to an updated 
G[v,/2, O5,/2] posterior, where 

V,= v,_, + 1, 3S, = 3s,_ + 4t1(q, + 1). 

Point estimates of + or 1/4 can then be calculated sequentially; 
for example, cr2 = 3,IV, iS the posterior harmonic mean of the 
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observational variance. Standard Bayesian results also provide 
the marginal posterior for (0, I D,) in the form of a multivariate 
Student distribution. Similarly, the marginal predictive distri- 
butions have Student forms; for example, 

p(Yt+ XI D,) a [3, + e2+ I(q,+1 + 1)]-v,+ 1/2 

Of course, for vt+1 relatively large, these distributions are ap- 
proximately normal with, for example, 

(Yt+ I D,) - N[f,+1, (q,+, + 1)o?]. 

4.2 Scale Parameters in Non-Normal Models 

West (1985) discussed general ideas concerning scale pa- 
rameters and variance functions in the exponential family of 
distributions. The continuous sampling models have natural 
scale parameters, but the discrete forms do not, for then k in 
(1.1) is fixed usually at unity. Standard inference procedures 
for GLM, however, provide an estimate of scale that is related 
to the deviance measure of goodness of fit (Nelder and Wed- 
derburn 1972). A particular exponential family distribution 
may be embedded in a more general model with an approximate 
scaled likelihood incorporating a general scale parameter 0. 
This scale parameter can be viewed as a goodness-of-fit mea- 
sure with 0 = 1 corresponding to the original distribution; the 
general model provides a likelihood that forms the basis for 
learning about 4. Full details were given in West (1985) and 
will only be summarized here. 

Note that the density (1.1) has the form of a power trans- 
formation of the standard model for which + = 1, 

p(Y, I C,, ) ap(Y, I C,, k = l)+. 

So the standard models (e.g., binomial, Poisson, and gamma) 
having variance a(t) are embedded in the general form with 
variance (q,)I4. 

As in the normal case, a conjugate analysis including the 
unknown scale parameter essentially follows that of Section 3 
as far as i, is concerned. 

In the general model defined by (1.1) and (1.5), let X, be 
the maximum likelihood value for i, based on Y, so that Y, = 
a(X,), h, the prior mode satisfying a, = fl,a(h,), and Z, the 
posterior mode satisfying (a, + Y,) = (/3, + 1)a(Z,). 

Then the deviance functions required by the analysis are 
defined by 

1. observation 

dv(Y, I ii,) = -2 ln[p(Y, t ,, I = 1)Ip(Y, t X,, I = 1)], 

2. prior 

dv(I, I D,1) = -2 ln[p(Q, I D,1)Ip(h, I Dt-1)], 

3. posterior 

dv(It I D,) = -2 ln[p(q, I D,)lp(Z, I Dt)], 

4. residual 

dv(Y, | D,_,) = [dv(Y, | 'i,) + dv(rZ, |I,,],=, 

These functions satisfy a generalization of the quadratic form 
decomposition of normal models that may be deduced directly 

from Bayes's Theorem, 

dv(Y, I I,) + dv(t, I D,,1) = dv(Y, I D,,1) + dv(t, I D,). 

The residual deviance is closely related to the standard de- 
viance measure of residual variation used in the static GLM 
(Baker and Nelder 1978), and in the normal model it reduces 
to the squared standardized residual e,2(q, + 1). The analysis 
in West (1985) uses a gamma prior for (k I D,t ) in the non- 
normal models and leads to an approximate gamma posterior 

(4 I D,) - G[v,/2, 3,12], 

where vt = v,_, + 1 and 3, = 6, I + dv(Y, I D,,1). Then, 
for example, at = 3,Iv, may be calculated recursively as a 
point estimate of 1/0. A useful extension to dynamic scale 
parameters may be achieved simply by discounting v,_, and 
6t,_ before updating. 

In practice the analysis of Section 3 should be performed 
with 4 set at unity and the quantities v, and 3, calculated after 
each update. The posterior for 0 provides a method of moni- 
toring the fit of the standard model; if the model fits the data, 
then values near 0 = 1 will be favored, as simple summaries 
such as U2 will indicate. If f < 1 is indicated, the inference is 
that the model does not adequately explain observed variation 
and further elaboration may be necessary. Conversely, if values 
of 0 > 1 are indicated, then there is apparently less variation 
in the data than is provided for by the standard model and a 
simpler model may be preferred. Illustration of this data-an- 
alytic aid is given in following examples. 

4.3 Outlier Modeling and Intervention 

The multiprocess extension of the normal DLM (Harrison 
and Stevens 1976a,b) provides a model capable of automati- 
cally accommodating outliers and adapting to structural changes 
in the observed series. Multiprocess generalizations of the 
DGLM, and various other monitoring schemes based, for ex- 
ample, on predictive distributions, have been developed and 
applied, but here a simple intervention approach is mentioned. 

West (1981) discussed the modeling of outliers in the DLM 
using heavy-tailed error distributions as alternatives to nor- 
mality. A particularly important class of such distributions is 
that of scale mixtures of normals (West 1984) having densities 
p(Y, I t,) = f(Y, - t,) obtained from the conditional normal 
distribution (Y, I t, t,) - N[q,, 11(/f,], with the scale parameter 
f, having some prior distribution. The influence function of 
the density f(u) is given by - dldu [ln f(u)] = uyV(u), where 
y(Q) is a weight function that acts to limit the influence 
of outliers. For example, if ftQ) is a Student t - k density, 
vy(u) = (k + l)I(k + U2). An extension of the results in West 
(1981) can be used to show that the posterior mean of ,, behaves 
like 

gt = f, + q,tV,e,l(q,tV, + 1), (4.1) 

where t, = yi(e,) estimates f,. Now this is precisely the poste- 
rior mean based on a normal observation with variance 1/ yl,; 

the corresponding posterior variancep, = q,I(q,yi, + 1 ) always 
underestimates the true variance, which often exceeds q, to 
reflect the increased uncertainty about i, due to the large re- 
sidual. The approximation (4. 1) leads to an approximate vari- 
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ance p* = p,(1 + r,), where r, = p,@>(e,)e, is always non- 
negative. 

From a practical viewpoint, if the time series exhibits no 
major structural changes, then simply discounting outliers us- 
ing (4. )-that is, treating Y, as if it was normal with variance 
1 / qit-is generally satisfactory. If abrupt changes are to be 
modeled, however, a large residual le,I may represent either a 
change or an outlier and, based on the data alone, the two 
events cannot be distinguished at time t. Both the multiprocess 
approach and intervention ideas of Ameen and Harrison (1985) 
allow for change by decreasing the discount factors in B, of 
(2.6). This increases the uncertainty about the state parameters 
and leads to greater adaptation to the next observation. A sim- 
pler and useful approach is to intervene by considerably in- 
creasing pt on the occurrence of a large residual after processing 
Y, as if it was normal with variance 1 / It,. This increased un- 
certainty is fed back to C, in (2.13) and hence through to 
(,+1 I D,). This provides a greater degree of adaptation to the 
next observation (the same procedure being applied at t + 1, 
of course) and automatic discrimination between the outliers 
and changes. 

The generalization of this outlier modeling approach to non- 
normal models follows West (1985). As with scale mixtures 
of normal models, the density Y, is given in (1.1), where 0 is 
now replaced by 4,, a scale parameter with a suitable prior 
distribution. The analysis then proceeds with 4, estimated by 
the weight function il,, based not on a squared standardized 
residual, but on the general observational deviance evaluated 
at the prior mode h,. The analog of the Student t - k model, 
for example, has 

yyt = (k + 1)/[k + dv(Y, I ht)]. 

The resulting posterior for (,t D,) is then CP[a, + t',Y,, 
fi, + VIt]. If Y, is extreme, the deviance is large, the weight VIt 
is small, and the outlier is discounted. 

Finally, incorporating a common scale parameter 0 as in 
Section 4.3 simply involves dividing the deviance term by an 
estimate of 1/4 such as U2 of Section 4.1, where now 

dv(Y, I D,t1) = [V,dv(Yy I qt) + dv(rt I Dt_)],=z, 

and z, satisfies (a, + yt,Y,) = (fi, + VI,)a,(Z,). 

5. SPECIAL CASES AND APPLICATIONS 

Two important special cases are the discrete binomial and 
Poisson models. In application, suitable models are often ob- 
tained taking g(Q) to be the identity so that the linear evolution 
is appropriate for the natural parameter i,. This leads to analogs 
of logistic-linear and log-linear models in the binomial and 
Poisson cases, respectively, and these are used in the following 
examples. 

In the Poisson case, the prior CP[a,, fi,] is a log-gamma 
form for it, = ln(,u,), where ,u, is the Poisson mean or rate. 
The mean of (t, D,, ) is y(a,) - ln(f,t), the mode is ln(a,I 
fi,), and the variance is y(a,), where y(a) = f(a)/F(a) is the 
digamma function. At each time t, the values f, and q, are used 
to determine a, and,fi,, as explained in Section 3. Equating f, 
to the mean and q, to the variance of (q1, | D, l) leads to two 
equations that may be solved for a, and,fi, by numerically 

inverting y and y. As noted in Section 3.1, however, f, and q, 
are just guides to the moments of q, and other simpler and 
more convenient values may be used. In Examples 1-4, f, is 
taken as the mode of (h, I D,_ ) and q- I as the curvature at 
the mode, q, = a-'. This in effect replaces y(at) by ln(a,) and 
leads to a, = q7' and fi, = q7' exp( - f,). Then the posterior 
moments for (qt I Dt) are given by 

gt = y(at + Yt) - ln(fit + 1), pt = y(a, + Yt); 

these are easily calculated using the simple recursions y(a) = 

y(a + 1) - a-' and y(a) = y(a + 1) + a-2. 
Similar comments apply to the binomial models. With a 

logistic-linear structure, ,t = ln[,u,/(1 - pt)], where Pt is the 
binomial probability parameter and p, has a beta prior with 
mean atl(at + fit). Using the mode and curvature of (q, I D,_ t) 
for f, and q7- leads to at = q7-'[1 + exp(ft)] and fit - 

qt1 [1 + exp( - ft)]. Then the posterior mean and variance are 
found, using the preceding recursions for y and y, from 

gt = y(a, + Y,) - y(fit + nt -Y), 

qt = y(at + Yt) + y(f,B + nt - Yt), 

where nt is the binomial sample size. 
In each of the following examples, a relatively uninformative 

prior is used for 00, with C0 a diagonal matrix having suitably 
large entries. 

Example 1. The 77 observations plotted as asterisks in 
Figure l(a) are the monthly sales data of an engineering com- 
pany discussed by Chatfield and Prothero (1973) with January 
1965 as t = 1 and May 1971 as t = 77. The linear models 
used for the log observation in that paper perform poorly, 
considerably overforecasting the next year, t = 78-89. Two 
discussants of the paper considered alternative, and more rea- 
sonable, models; one used a less powerful decreasing trans- 
formation of the data (G. Tunnicliffe-Wilson 1973), and the 
other used the original data with a nonconstant variance (P. J. 
Harrison 1973), although both models still overforecasted the 
year ahead. 

The alternative, and possibly more realistic, approach con- 
sidered here uses a Poisson log-linear model with a linear 
growth term and the first five harmonics of the Fourier seasonal 
description of period 12; thus 

Ft = (1, 0; 1, 0, 1, 0, 1, 0, 1, 0, 1, 0), 

Gt = diag(HO, Hi, . . ., H), 

with 

_ = I 
, Hk cos(kp) sin(kp)] ? 0 L? 1' k L-sin(kp) cos(kP)] 

k= 1,...,5, p= 7/6. 

Thus E[Y, I qt, = V[Y, I ] = exp(Q) behaves like 
exp(At) = rtst, where rt is a log-linear trend term and st is a 
log-linear seasonal term. Finally, a constant rate of discounting 
is given by taking Bt = diag(fi,B'12, fl- I'IIo), where Ik is the 
(k x k) identity matrix, fo = .85, and l i, = .99. Here f ir 

is the discount factor corresponding to the trend component 
and fir ' to the seasonal component. 

The full line in Figure 1(a) provides the one-step forecasts 
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Figure 1. Example 7: (a) Sales Data and Forecasts; (b) On-Line Estimated Trend. 

up to t = 77 and then forecasts for the next 12 months from 
t = 77 using this model. The forecast for YI+k, given data up 
to time t, is taken to be the mode Y,(k) of the negative binomial 
predictive distribution p(Y,+k I D,(k)). The effect of the weak 
prior for 0, is evident in the poor predictions for t < 14. The 
year-ahead forecasts in Figure 1(a) are lower than those of the 
models mentioned earlier. For t = 78-84, the actual obser- 
vations and forecasts from t = 77 are given by 

Time t 78 79 80 81 82 83 84 

Observation 260 304 390 614 783 872 540 

Forecast 266 321 448 655 898 912 712 

The forecasts are still overoptimistic. They are, of course, 

much improved as further observations are processed and the 
model adapts further to the change in trend due to the onset 
of recession in late 1970 and early 1971 (t > 71). Figure 1(b) 
shows the on-line estimated trend. In practice the change in 
trend signaled around t = 73, 74 should lead to immediate 
intervention to considerably decrease ,B0 thus increasing the 
uncertainty in the model about the trend component and leading 
to rapid adaptation to the observed change. Finally, note that 
although r, is a log-linear trend term, the estimate in Figure 
l(b) appears to be piece-wise linear. 

This example uses a realistic Poisson sampling model al- 
though, due to the range of observations, a normal dynamic 
model for some transformation of the observations could have 
been successfully applied. The Poisson model, however, re- 
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Figure 2. Example 2: Telephone Data and Forecasts. 

quires no more computational effort than standard normal linear 
models, and in some cases, as in the next example, the latter 
are totally inadequate. 

Example 2. The data plotted as asterisks in Figure 2 are 
the half-hourly counts of incoming telephone calls at the Uni- 
versity of Warwick exchange from Monday, September 6, to 
Sunday, September 12, 1982. 

The data and a nonsequential Bayesian analysis appeared in 
West (1985); note that many of the observations are zero. A 
Poisson sampling model is clearly appropriate and the model 
uses a log-linear level plus seasonal term with the first five 
harmonics of the Fourier description of period 48; thus F,' = 

(1; 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) and G, as in Example 1, with 
Ho = 1 and p = 7r/24. In this case, ftl = .98 for the level 
term and fl = .99 for the seasonal component. Further dis- 
counting is used between days to model stochastic differences 
between parameters from day to day as well as to slow changes 
during the day. This is done using f,l = f,l = .7 at t = 48, 
96, 144, . . ., 288. The full line in Figure 2 gives the one- 
step forecasts (again using the modes of the predictive distri- 
bution) up to midnight on Sunday (t = 336) and then 
the week-ahead forecast from Friday midnight (t = 240) 
for the following Friday [the latter, longer-term predictions 

using the scale-free predictor E[Y,+k I qk = ft+k] = exp(ff+k)]. 

The effect of the weak prior for 00 is clear from the forecasts 
for the first day. The response of the model to the changing 
form from day to day is also clear, especially at the weekend 
in which the change is most marked. 

Example 3. Migon and Harrison (1985) discussed linear 
and nonlinear models used to study the relationship between 
television advertising and consumer awareness and to measure 
the effectiveness of advertising campaigns. Here a particular 
DGLM is applied to one of their data sets. The data, marked 
as asterisks in Figure 3(a), are weekly counts of the number 
of people, out of a nominal total n = 66, who provide a positive 
response to a standard question concerning the advertising of 
a popular chocolate bar. A binomial sampling model is clearly 
appropriate, with E[Y, I qj = n/1,, V[Y, I qj = n/u,(I -/u,), 
and i, = ln[,u,/(l - ,u,)], with n = 66. There are several 
weeks when no data were collected, in which case n = 0. 
Weekly advertising is measured on a standard scale, and if x, 
denotes the advertising in week t, then a suitable measure of 
cumulative advertising is the "adstock" a, = pa,_, + x, where 
p is a decay factor, taken as .9 in this example (see Migon 
and Harrison 1985 for further details). The adstock for this 
example is plotted as the lower graph in Figure 3(a), and the 
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Figure 3. Example 3: (a) Television Data and Forecasts; (b) Adstock Coefficient. 

model here is based on logistic-linear regression on a, with a 
constant term; thus F' = (1, a,) and G, = I2, with B, = 

diag(fl6-', fi''), where fl2 = .9 and fl2 = .95. One further 
feature of the data is that the nature of the advertising campaign 
was changed at t = 96 and t = 156. To enable the model to 
adapt rapidly to any changes in the parameters O' = (Ot, Olt) 
at these times, the discount factors are decreased to .1 at 
t = 96 and t = 156, resulting in greater uncertainty 
[(.i)--5 100 - 300% increase in standard deviation] about 
the state parameters. 

The full line in Figure 3(a) is the one-step forecasts using 
the means of the beta-binomial predictive distributions. Again, 
the effect of the weak prior for 00 is evident in the early stages. 
Figure 3(b) plots the on-line estimate m,, of the adstock coef- 

ficient 0,, and the corresponding two standard-deviation limits. 
Some change is evident at the onset of the new advertising 
campaigns at t = 96 and t = 156. As a final check on the fit 
of the model, the posterior distribution for the scale parameter 
4 of Section 4.2 on a prior with vo = 60 = .01 is G[85.5, 
100.0] with o2 = 1.17. This distribution adequately supports 
the value 4 = 1, indicating that there is no reason to question 
the model. 

Example 4. The final example provides a comparison be- 
tween the standard GLIM program analysis and a DGLM ap- 
plied to a supposedly static regression. The data, recorded in 
Pregibon (1981), consist of 39 binary observations Y, (t = 1, 

. 39) and the values of two continuous regressors XI, and 
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Table 1. Maximum Likelihood Estimates 
of the Elements of 0 

GLIM DGLM 

00 -2.85 (1.36) -2.73 (1.77) 
ol 5.14 (1.88) 5.26 (1.86) 
02 4.53 (1.84) 4.01 (1.72) 

NOTE: Approximate standard errors are in parentheses. 

X2,. The standard logistic model for this data supposes that 
(Y, I at) is Bernoulli with probability p, - 1/[1 + exp( - q,)], 

where 

t= FPO = 00 + 61XIt + 02X2t 

fort= 1,. ..,39. 
The standard maximum likelihood method used in the GLIM 

program produces an estimate for the constant parameter vector 
0 and an approximate covariance matrix based on asymptotic 
normality. In this example the likelihood is unimodal, and the 
estimate of 0 may be viewed as an approximate posterior mode 
from a Bayesian analysis using an uninformative prior. Of 
course, in contrast to the DGLM, the intractability of this model 
precludes the analytic calculation of posterior and predictive 
distributions for the at and Yt. The maximum likelihood esti- 
mates of the elements of 0 are given in Table 1 with their 
approximate standard errors in parentheses. Also given are 
corresponding "estimates" from a DGLM analysis that, for 
this static regression, has all discount factors equal to 1 so that 
Bt = I3 for all t. The prior moments for (0 I Do) were taken 
as mo = 0 and CO = (100)2 I3 to express relatively vague prior 
knowledge; the estimates are simply mt when t = 39, and the 
corresponding standard errors are the square roots of the di- 
agonal elements of Ct when t = 39. 

Clearly these values are in close agreement. The "fitted" 
probabilities in the DGLM are the predictive expectations 
1/[1 + exp(-F 'm39)] of a further response Yt at Ft. These 
also agree closely with those from the GLIM program analysis, 
although the latter have no such interpretation. A final point 
concerns the sequential processing, and hence order depend- 
ence, in the DGLM of data from a supposedly static regression. 
We do not see this as a drawback; the full DGLM provides a 
general and flexible modeling tool, and much of this flexibility 
stems directly from the sequential approach adopted. To ex- 
amine order dependence in this example, however, the DGLM 
analysis was performed again with the data in reverse order; 
the final results coincided with those of the original analysis 
with, for example, the elements of M39 and C39 agreeing to 
four decimal places. 

This example is provided mainly to demonstrate the com- 

parability of the standard GLIM program and DGLM analyses 
using static models. The results are naturally comparable and 
generally uninfluenced by the order in which the sequential 
DGLM is performed. The DGLM formulation easily extends 
from the static to dynamic models to allow for the possibilities 
of time-varying parameters, outliers, and major changes. It is 
also, computationally, much simpler and less demanding. 

[Received January 1984. Revised July 1984.] 
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