Chapter 3: Gauss's Law

\checkmark Electric Flux
\checkmark Gauss's Law
\checkmark Applying Gauss's Law

Session 8:

\checkmark Applying Gauss's Law
\checkmark Examples

Applying Gauss's Law

* Calculating Electric Field of Highly Symmetric Charge Distribution:

Choose a Gaussian surface that satisfies one or more of these conditions:
$|\overrightarrow{\mathbf{E}}|$ constant over the surface.
$\overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=|\overrightarrow{\mathbf{E}}| d A, \overrightarrow{\mathbf{E}}| | d \overrightarrow{\mathbf{A}}$

$$
\oint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{q_{\text {in }}}{\varepsilon_{0}}
$$

$\overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=0$ over the portion of the surface.

Cylindrical Symmetry, Line Charge

Ex 6. Find the electric field at distance r from a line of positive charge of infinite length and constant charge per unit length λ.

$$
\begin{gathered}
\oint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{q_{\text {in }}}{\varepsilon_{0}} \\
\oint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\oint E d A=\frac{q_{\text {in }}}{\varepsilon_{0}} \\
E(2 \pi r \ell)=\frac{\lambda \ell}{\varepsilon_{0}} \\
E=\frac{\lambda}{2 \pi \varepsilon_{0} r}=2 k_{e} \frac{\lambda}{r}
\end{gathered}
$$

Ex 7. (Prob 23.27) A long, straight wire has fixed negative charge with a linear charge density of magnitude $3.6 \mathrm{nC} / \mathrm{m}$. The wire is to be enclosed by a coaxial, thin-walled nonconducting cylindrical shell of radius 1.5 cm . The shell is to have positive charge on its outside surface with a surface charge density σ that makes the net external electric field zero. Calculate σ.

$$
\begin{aligned}
& \overrightarrow{\mathbf{E}}_{\text {wire }}=-\frac{\lambda}{2 \pi \varepsilon_{0} r} \hat{r} \quad \overrightarrow{\mathbf{E}}_{\text {shell }}=\frac{\lambda^{\prime}}{2 \pi \varepsilon_{0} r} \hat{r} \quad(r>R) \\
& \overrightarrow{\mathbf{E}}=\overrightarrow{\mathbf{E}}_{\text {wire }}+\overrightarrow{\mathbf{E}}_{\text {shell }}=0 \quad \square \quad \lambda=\lambda^{\prime}
\end{aligned}
$$

$$
\sigma=\frac{Q}{2 \pi R L}=\frac{\lambda^{\prime}}{2 \pi R}=\frac{3.6 \times 10^{-9}}{2 \pi\left(1.5 \times 10^{-2}\right)}=3.8 \times 10^{-8} \frac{C}{\mathrm{~m}^{2}}
$$

Geiger counter, a device used to detect ionizing radiation

Planar Symmetry, Plane of Charge

Ex 8. Find the electric field due to an infinite plane of positive charge with uniform surface charge density σ.

$$
\begin{gathered}
\oint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\oint E d A=\frac{q_{\text {in }}}{\varepsilon_{0}} \\
2 E A=\frac{\sigma A}{\varepsilon_{0}}
\end{gathered}
$$

$$
E=\frac{\sigma}{2 \varepsilon_{0}}
$$

Ex 9. (Prob 23.36) Figure $23-47$ shows cross sections through two large, parallel, nonconducting sheets with identical distributions of positive charge with surface charge density $\sigma=1.77 \times 10^{-22} \mathrm{C} / \mathrm{m}^{2}$. In unit-vector notation, what is E at points (a) above the sheets, (b) between them, and (c) below them?

$$
\overrightarrow{\mathbf{E}}=\overrightarrow{\mathbf{E}}_{1}+\overrightarrow{\mathbf{E}}_{2}
$$

(a): $\overrightarrow{\mathbf{E}}_{1}=\frac{\sigma}{2 \varepsilon_{0}} \hat{\mathbf{j}}, \overrightarrow{\mathbf{E}}_{2}=\frac{\sigma}{2 \varepsilon_{o}} \hat{\mathbf{j}}$
(b): $\overrightarrow{\mathbf{E}}_{1}=-\frac{\sigma}{2 \varepsilon_{0}} \hat{\mathbf{j}}, \overrightarrow{\mathbf{E}}_{2}=\frac{\sigma}{2 \varepsilon_{0}} \hat{\mathbf{j}}$

$$
\overrightarrow{\mathbf{E}}=\frac{\sigma}{\varepsilon_{0}} \hat{\mathbf{j}}=2 \times 10^{-11} \hat{\mathbf{j}}(\mathrm{~N} / \mathrm{C})
$$

$$
\overrightarrow{\mathbf{E}}=0
$$

(c): $\overrightarrow{\mathbf{E}}_{1}=-\frac{\sigma}{2 \varepsilon_{0}} \hat{\mathbf{j}}, \overrightarrow{\mathbf{E}}_{2}=-\frac{\sigma}{2 \varepsilon_{0}} \hat{\mathbf{j}}$

$$
\overrightarrow{\mathbf{E}}=-\frac{\sigma}{\varepsilon_{0}} \hat{\mathbf{j}}=-2 \times 10^{-11} \hat{\mathbf{j}}(\mathrm{~N} / \mathrm{C})
$$

Properties of a Conductor in Electrostatic Equilibrium

When there is no net motion of charge within a conductor, the conductor is said to be in electrostatic equilibrium.
> The electric field is zero everywhere inside the conductor.
> If the conductor is isolated and carries a charge, the charge resides on its surface.
> The electric field at a point just outside a charged conductor is perpendicular to the surface and has a magnitude of σ / ε_{0}.
$|\overrightarrow{\mathbf{E}}|=\frac{\sigma}{\varepsilon_{0}}$

Ex 10. A solid insulating sphere of radius a carries a net positive charge \mathbb{Q} uniformly distributed throughout its volume. A conducting spherical shell of inner radius b and outer radius c is concentric with the solid sphere and carries net charge $-2 Q$. Find the electric field in the regions labeled and the charge distribution on the shell when the entire system is in electrostatic equilibrium.

$$
\begin{gathered}
\oint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{q_{\text {in }}}{\varepsilon_{o}} \\
{\left[\begin{array}{l}
E_{1}=k_{e} \frac{Q}{a^{3}} r \quad(\text { for } r<a) \\
E_{2}=k_{e} \frac{Q}{r^{2}} \quad(\text { for } a<r<b) \\
E_{3}=0 \quad(\text { for } b<r<c) \\
E_{4}=-k_{e} \frac{Q}{r^{2}} \quad(\text { for } r>c) \\
r=b:-Q ; \quad r=c:-Q
\end{array}\right.}
\end{gathered}
$$

