
Hierarchical Aggregate Classification with Limited Supervision
for Data Reduction in Wireless Sensor Networks∗

Lu Su, Yong Yang, Bolin Ding, Jing Gao, Tarek F. Abdelzaher, and Jiawei Han
Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, IL, 61801, USA

{lusu2, yang25, bding3, jinggao3, zaher, hanj}@illinois.edu

Abstract
The main challenge of designing classification algorithms

for sensor networks is the lack of labeled sensory data, due
to the high cost of manual labeling in the harsh locales where
a sensor network is normally deployed. Moreover, existing
classification techniques dealing with limited label informa-
tion are designed for centralized databases and thus cannot
be directly applied to sensor networks, since delivering all
the sensory data to the sink would cost enormous energy.
To address these challenges, we propose a hierarchical ag-
gregate classification (HAC) protocol which can reduce the
amount of data sent by each node while achieving accurate
classification in the face of insufficient label information. In
this protocol, each sensor node locally makes cluster analy-
sis and forwards only its decision to the parent node. The
decisions are aggregated along the tree, and eventually the
global agreement is achieved at the sink node. In addition, to
control the tradeoff between the communication energy and
the classification accuracy, we design an extended version
of HAC, called the constrained hierarchical aggregate clas-
sification (cHAC) protocol. cHAC can achieve more accu-
rate classification results compared with HAC, at the cost of
more energy consumption. The advantages of our schemes
are demonstrated through the experiments on not only syn-
thetic data but also a real testbed.

∗Research reported in this paper was sponsored by NSF under
grant CNS 1040380 and by the Army Research Laboratory under
Cooperative Agreement Number W911NF-09-2-0053. The views
and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory or
the U.S. Government. The U.S. Government is authorized to repro-
duce and distribute reprints for Government purposes notwithstand-
ing any copyright notation here on.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SenSys’11, November 1–4, 2011, Seattle, WA, USA.
Copyright 2011 ACM 978-1-4503-0718-5/11/11 ...$10.00

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Net-

work Protocols; I.5.2 [Pattern Recognition]: Design
Methodology—Classifier design and evaluation

General Terms
Algorithms, Measurement, Experimentation

Keywords
Sensor Networks, Classification, Data Reduction

1 Introduction
Wireless sensor networks have been prototyped for many

military and civilian applications. Thus far, a wide spectrum
of sensing devices, ranging from simple thermistors to mi-
cropower impulse radars, have been integrated into existing
sensor network platforms. Given the enormous amount of
data collected by all kinds of sensing devices, techniques
which can intelligently analyze and process sensory data
have drawn significant attention.

Classification, which is the task of assigning objects
(data) to one of several predefined categories (classes), is a
pervasive topic in data analysis and processing [1, 2]. Its ba-
sic idea is to use a function (also called classifier) “learned”
from a set of training data in which each object has feature
values and a class label to determine the class labels of newly
arrived data. For example, consider the task of classifying
bird species based on their vocalizations. Suppose we are
interested in two bird species: Song sparrow and American
crow, and consider two vocalization features: call intensity
and call duration1. After learning from the training set, the
following target function can be derived: 1) low call inten-
sity & short call duration → Song sparrow, and 2) high call
intensity & long call duration → American crow. Suppose
there is a bird with unknown species, we can judge which
class it belongs to by mapping its feature values to the corre-
sponding class based on the learnt function.

In the context of sensor networks, species recognition
like the above example is a typical category of classifica-
tion applications [3, 4, 5]. Classification also plays a key
role in many other applications of sensor networks. In target

1We use these two features simply as an illustration, in practice
bird species classification requires much more complicated features
as in the experiment presented in Section 6.

surveillance and tracking, sensor networks should be able to
classify different types of targets, such as cars, tanks, hu-
mans and animals [6, 7, 8]. In habitat monitoring, sensor
networks may distinguish different behaviors of monitored
species [9, 10, 11]. In environmental monitoring, it may
be desired that the environmental (e.g., weather) conditions
be classified based on their impact on humans, animals, or
crops [12]. In health care or assisted living, an intelligent
sensor network may automatically evaluate the health status
of residents, and react when they are in danger [13, 14, 15].

However, existing classification techniques designed for
sensor networks fail to take into account the fact that in many
applications of sensor networks, the amount of labeled train-
ing data is usually small. The lack of labeled sensory data
can be attributed to the remote, harsh, and sometimes even
hostile locales where a sensor network is normally deployed
as well as the continuous variation of the surveilled environ-
ment. In such scenarios, manually creating a large training
set becomes extremely difficult. Without sufficiently large
training set, the learned classifier may not be able to describe
the characteristics of each class, and tends to make bad pre-
dictions on new data. In the area of data mining and machine
learning, some techniques called semi-supervised classifica-
tion have been proposed in order to deal with insufficient la-
bels [1, 2]. However, these schemes assume centralized stor-
age and computation, and cannot be directly applied in the
context of sensor networks where data are distributed over a
large number of sensors.

One possible way to apply centralized classification tech-
niques is to transport all the sensory data to the sink for of-
fline analysis. However, it has been revealed that wireless
transmission of a bit can require over 1000 times more en-
ergy than a single 32-bit computation [16]. Thus, in design-
ing an energy-scarce sensor network, it is desired that each
node locally process and reduce the raw data it collects as
opposed to forwarding them directly to the sink [17, 18],
especially for some data-intensive applications such as au-
dio or video based pattern recognition. This design philoso-
phy has great challenges in traditional low-end sensing plat-
forms such as Mica2 mote [19]. In these platforms, sensor
nodes have limited processing power, memory, and energy
and hence cannot support computation intensive algorithms.
Recently, some powerful sensing systems [20, 21, 22, 23] are
presented, making it feasible to place the classification task
locally on individual nodes so that communication energy
and interference can be significantly reduced.

Moreover, in sensor networks, it often happens that mul-
tiple sensor nodes detect the same events. Different sensor
nodes, due to their inaccuracy (e.g., noise in the data) and
heterogeneity (e.g., different types of sensors), usually ob-
serve the events from different but complementary views.
Therefore, aggregating the outputs of individual nodes can
often cancel out errors and reach a much more accurate re-
sult. However, aggregation of classification results is not an
easy task in the absence of sufficient labeled data due to the
lack of correspondence among the outputs of different nodes.

To address the above challenges, we propose a hierarchi-
cal aggregate classification (HAC for short) protocol for data
reduction in sensor networks, which is built on a hierarchi-

cal tree topology where all nodes detect the same events. In
order to overcome the obstacles presented by insufficient la-
bels, we suggest that sensor nodes conduct cluster analysis,
which groups data points only based on the similarity of their
feature values without any training. The clustering results
can provide useful constraints for the task of classification
when the labeled data is insufficient, since the data that have
similar feature values are usually more likely to share the
same class label. To reduce the amount of data delivered to
the sink, we let each node locally cluster events and report
only its clustering result (also called decision in this paper)
to the parent node instead of sending the raw data which are
normally multi-dimensional numbers or audio/video files.
The decisions are then aggregated along the tree through an
efficient algorithm called Decision-Aggregation which can
integrate the limited label information with the clustering re-
sults of multiple sensor nodes. Finally, the global consensus
is reached at the sink node.

Additionally, to control the tradeoff between the commu-
nication energy and the classification accuracy, we design
an extended version of HAC, called the constrained hierar-
chical aggregate classification (cHAC) protocol. cHAC can
achieve more accurate classification results compared with
HAC, at the cost of more energy consumption.

To demonstrate the advantages of our schemes, we con-
duct intensive experiments on not only synthetic data but also
a real testbed. This testbed is a good example of high-end
sensing system on which various data and computation in-
tensive classification applications can be deployed. In our
evaluation, we design two experiments on the testbed. The
first one is to classify different bird species based on their
vocalizations, and the second one is to predict the intensity
of bird vocalizations as a function of different environmental
parameters measured by the sensor nodes. Both the experi-
mental and simulation results show that the proposed proto-
cols can achieve accurate classification in the face of insuffi-
cient label information, and provide a flexible option to tune
the tradeoff between energy and accuracy.

The rest of the paper is organized as follows. Section 2
introduces the general aggregation model. In Section 3, the
Decision-Aggregation algorithm, which is the aggregation
function used by the HAC and cHAC protocols at each non-
leaf node, is presented. We explain how the HAC protocol
utilizes this algorithm to aggregate the decisions along the
tree in Section 4. In Section 5, the cHAC protocol and the
procedures it invokes are presented. The proposed schemes
are evaluated in Section 6. Then, we summarize the related
work in Section 7, and conclude the paper in Section 8, re-
spectively.
2 Aggregation Model

We consider an aggregation tree [24, 25] T rooted at the
sink node (or base station), and denote the set of sensor nodes
on this tree by ST = {si, i = 1,2, . . . ,nT}. When an event
takes place, all the nodes collect sensory readings about it2.
Let E = {ei, i = 1,2, ..., t} denote the sequence of events

2We assume the aggregation tree is constructed on a set of nodes
which are deployed in proximity. Thus, they can detect the same
events and have similar readings.

S4S3

S0

S2

S4S3

S2S1: D5=F(D1, D3, D4)S1

S0: D=F(D0, D2, D5)

(a) Aggregation Tree (b) Decision Aggregation

Figure 1. An example of decision aggregation

(sorted in chronological order) detected by the sensor nodes.
Suppose only a small portion of the events are labeled, and
our goal is to find out the labels of the rest events. The gen-
eral idea of our solution is as follows. Based on its sensory
readings, each node, say si, divides the events into differ-
ent clusters through its local clustering algorithm. After that,
si forwards the clustering result (referred to as si’s decision,
denoted by Di) to its parent node. At each nonleaf node (in-
cluding the sink node), the decisions of its children nodes,
together with its own decision if it has one, are further ag-
gregated. Figure 1 gives an illustrative example of decision
aggregation. As can be seen, the nonleaf node s1 aggregates
the decisions of s3 and s4, together with its own decision. In
this paper, we use function F(·) to represent the operation
of decision aggregation. Then, s1 forwards the aggregated
decision D5 to the sink node s0. At s0, D5 is further com-
bined with s0 and s2’s decisions. Finally, the global decision
D is obtained. In the next section, we elaborate on the de-
cision aggregation operation F(·). Afterwards, we will dis-
close how the HAC and cHAC protocols invoke F(·) to ag-
gregate the decisions along the aggregation tree in Section 4
and Section 5, respectively.

3 Decision Aggregation
The decision aggregation function F(·) takes the cluster-

ing decisions of multiple sensors as well as the label infor-
mation as the input, and outputs a class label for each event,
indicating which class the event belongs to. Although the
clustering decisions do not give the concrete label assign-
ment, they provide useful information for the classification
task. F(·) utilizes the labels from the few labeled events to
guide the aggregation of clustering decisions such that a con-
solidated classification solution can be finally outputted. In
this section, we first propose to model the decision aggre-
gation problem as an optimization program over a bipartite
graph. Then we present an effective solution and give per-
formance analysis.

3.1 Belief Graph
Given a nonleaf node, suppose it receives n decisions

from its children nodes. In each decision, the events in E are
partitioned into m clusters3. Thus, we have totally l = mn
different clusters, denoted by c j, j = 1,2, ..., l. In this paper,
we call these clusters the input clusters (iCluster for short) of

3Most of the clustering models like K-means can control the
number of clusters. We let the number of clusters equal the number
of classes of the events, which is m.

a decision aggregation. On the other hand, the decision ag-
gregation operation will output an aggregated decision also
composed of m clusters, named as output clusters (oCluster
for short).

e1

Clusters

Events

Labels 21

D2

e2 e3 e4 e5 e6 e7 e8 e9

C5 C6C1 C2 C3 C4

e10

D1 D3

Figure 2. Belief graph of decision aggregation

In this paper, we represent the relationship between the
events and the iClusters as a bipartite graph, which is referred
to as belief graph. In belief graph, each iCluster links to the
events it contains. Figure 2 demonstrates the belief graph
of a decision aggregation. In this case, we suppose there
are t = 10 events, which belong to m = 2 different classes.
Each of the sensor nodes partitions these 10 events into m = 2
clusters based on its local clustering algorithm, and there are
n = 3 decisions. Thus, we have totally l = mn = 6 differ-
ent iClusters. Moreover, to integrate label information into
the belief graph, we add one more set of vertices, which rep-
resent the labels of the events. In belief graph, the labeled
events are connected to the corresponding label vertices. As
shown in Fig. 2, event e3 and e7 are labeled, and thus link
with label vertex 2 and 1, respectively.
3.2 Terminology

The belief graph can be summarized by a couple of affin-
ity matrices:

• Clustering matrix A = (ai j)t×l , which links events and
iClusters as follows:

ai j =
{

1 If ei is assigned to cluster c j.
0 otherwise.

(1)

• Groundtruth matrix Zt×m = (~z1·,~z2·, . . . ,~zt·)T , which re-
lates events to the label information. For a labeled event
ei, its groundtruth vector is defined as:

zik =
{

1 If ei’s observed label is k.
0 otherwise.

(2)

For each of the events without labels, we assign a zero
vector~zi· =~0 to it.

Then, we define two sets of probability vectors that will
work as the variables in the optimization problem formulated
later in the next subsection:

• For an event ei, Let Le
i (i = 1,2, ..., t) denote the ID of

the oCluster to which ei is assigned, namely, the label
of ei. In our optimization problem, we aim at estimat-
ing the probability of ei belonging to the k-th oCluster

(k = 1,2, ...,m), i.e., P̂(Le
i = k|ei). Thus, each event is

associated with a m-dimensional probability vector:

~xi· = {(xik)|xik = P̂(Le
i = k|ei), k = 1,2, ...,m} (3)

Putting all the vectors together, we get a probability ma-
trix Xt×m = (~x1·,~x2·, . . . ,~xt·)T . After X is computed, we
classify the i-th event into the k-th class if xik attains the
maximum in~xi·.

• For an iCluster c j, we also define a m-dimensional prob-
ability vector :

~y j· = {(y jk)|y jk = P̂(Lc
j = k|c j), k = 1,2, ...,m} (4)

where Lc
j is the ID of an oCluster. In practice, P̂(Lc

j =
k|c j) implies the probability that the majority of the
events contained in c j are assigned to the k-th oClus-
ter. In theory, it will serve as an auxiliary variable in the
optimization problem. Correspondingly, the probability
matrix for all the iClusters is Yl×m = (~y1·,~y2·, . . . ,~yl·)T .

In our design, there is a weight parameter associated with
each decision. Initially, each decision is manually assigned
a weight based on the properties (e.g., sensing capability,
residual energy, location, etc) of the sensor node who makes
this decision. The weight of each node represents the im-
portance of the this node, and the nodes which can provide
more accurate readings are assigned higher weights. The ag-
gregated decision has a weight equal to the summation of the
weights of input decisions. All the clusters within a decision
have the same weight as the decision. In the rest of this pa-
per, we use w j to denote the weight of cluster c j

4. Finally,
let bi = ∑m

k=1 zik be a flag variable indicating whether ei is
labeled or not.
3.3 Problem Formulation

With the notations defined previously, we now formulate
the decision aggregation problem as the following optimiza-
tion program:

P : min
X ,Y

t

∑
i=1

l

∑
j=1

ai jw j||~xi·−~y j·||2 +α
t

∑
i=1

bi||~xi·−~zi·||2 (5)

s.t. ~xi· ≥~0, |~xi·|= 1 for i = 1,2, ...,t (6)

~y j· ≥~0, |~y j·|= 1 for j = 1,2, ..., l (7)

where ||.|| and |.| denote a vector’s L2 and L1 norm respec-
tively, and α is a predefined parameter. To achieve consensus
among multiple clustering decisions, we aim at finding the
optimal probability vectors of the event nodes (~xi·) and the
cluster nodes (~y j·) that can minimize the disagreement over
the belief graph, and in the meanwhile, comply with the la-
bel information. Specifically, the first term in the objective
function (Eqn. (5)) ensures that an event has similar proba-
bility vector as the input cluster to which it belongs, namely,
~xi· should be close to ~y j· if event ei is connected to cluster
c j in the belief graph (e.g., event e3 and cluster c1, c4, c6 in
Fig. 2). The second term puts the constraint that a labeled

4Sometimes, we use wi to denote the weight of decision Di or
node si, and hope this causes no confusion.

Algorithm 1 Decision Aggregation
Input: Clustering matrix A, Groundtruth matrix Z, parameters α,
set of weights W , and ε;
Output: The class label for each event Le

i ;

1: Initialize Y (0), Y (1) randomly.
2: τ← 1
3: while

√
∑l

j=1 ||~y
(τ)
j· −~y(τ−1)

j· ||2 > ε do
4: for i← 1 to t do
5: ~x(τ+1)

i· = ∑l
j=1 ai jw j~y

(τ)
j· +αbi~zi·

∑l
j=1 ai jw j+αbi

6: for j ← 1 to l do

7: ~y(τ+1)
j· = ∑t

i=1 ai j~x
(τ+1)
i·

∑t
i=1 ai j

8: τ← τ+1
9: for i← 1 to t do

10: return Le
i ← argmaxk x(τ)

ik

event’s probability vector ~xi· should not deviate much from
the corresponding groundtruth vector~zi· (e.g., event e3 and
~z3·). α can be considered as the shadow price payment for
violating this constraint. Additionally, since ~xi· and ~y j· are
probability vectors, each of their components must be greater
than or equal to 0 and the sum should equal 1.
3.4 Solution

By checking the quadratic coefficient matrix of the ob-
jective function, we can show that P is a convex program,
which makes it possible to find a global optimal solution.
We propose to solve P using the block coordinate descent
method [26]. The basic idea of our solution is: At the τ-th
iteration, we fix the values of ~xi· or ~y j·, then the objective
function of P becomes a convex function with respect to ~y j·
or~xi·. Therefore, its minimum with respect to~xi· and~y j· can
be obtained by setting the corresponding partial derivatives
(i.e., ∂ f (X ,Y)

∂xik
and ∂ f (X ,Y)

∂y jk
, k = 1,2, . . . ,m) to 0:

~x(τ+1)
i· =

∑l
j=1 ai jw j~y

(τ)
j· +αbi~zi·

∑l
j=1 ai jw j +αbi

, ~y(τ+1)
j· =

∑t
i=1 ai j~x

(τ+1)
i·

∑t
i=1 ai j

(8)

The detailed steps are shown in Algorithm 1. The al-
gorithm starts by initializing the probability matrix of in-
put clusters randomly. The iterative process begins in line
3. First, the events receive the information (i.e., ~y j·) from
neighboring clusters and update~xi· (line 5). Then, the events
propagate the information (i.e., ~xi·) to its neighboring clus-
ters to update ~y j· (line 7). Finally, an event, say ei, is as-
signed to the k-th oCluster if xik is the largest probability in
~xi· (line 10). According to [26] (Proposition 2.7.1), by show-
ing the continuous differentiability of the objective function
and the uniqueness of the minimum when fixing ~xi· or ~y j·,
we can prove that (X (τ),Y (τ)) converges to the optimal point.
When solving P, we don’t take into account the constraints
(Eqn. (6) and Eqn. (7)). By inductively checking the L1 norm
of~x(τ)

i· and~y(τ)
j· from τ = 1, it can be found out that the solu-

tion obtained by Algorithm 1 automatically satisfies the con-
straints.

Table 1 shows the first two iterations of the Decision-
Aggregation algorithm (with α = 20 and w j = 1 for all j)
for the belief graph shown in Fig. 2. We start with uniform

Table 1. Iterations of Decision Aggregation
Y (1) X (1) Y (2) X (2)

(0.5,0.5) (0.5,0.5) (0.3913,0.6087) (0.4710,0.5290)
(0.5,0.5) (0.4686,0.5314)

(0.5,0.5)
(0.0652,0.9348)

(0.5725,0.4275)
(0.0536,0.9464)

(0.5,0.5) (0.4710,0.5290)
(0.5,0.5)

(0.5,0.5)
(0.5870,0.4130)

(0.4710,0.5290)
(0.5,0.5) (0.5290,0.4710)

(0.5,0.5)
(0.9348,0.0652)

(0.4130,0.5870)
(0.9464,0.0536)

(0.5,0.5) (0.5314,0.4686)
(0.5,0.5)

(0.5,0.5)
(0.6087,0.3913)

(0.5290,0.4710)
(0.5,0.5) (0.5,0.5) (0.4275,0.5725) (0.5290,0.4710)

probability vectors for the six clusters (Y (1)). Then the prob-
abilities of the events without labels are calculated by aver-
aging the probabilities of the clusters they link to. At this
step, they all have (0.5, 0.5) as their probability vectors. On
the other hand, if the event is labeled (e.g., e3 and e7 in this
example), the labeled information is incorporated into the
probability vector computation where we average the prob-
ability vectors of the clusters each event links to and that of
the groundtruth label (note that the vote from the true label
has a weight α). For example, e3 is adjacent to c1, c4, c6 and
label 2, so we have ~x (1)

3· = (0.5,0.5)+(0.5,0.5)+(0.5,0.5)+α·(0,1)
3+α =

(0.0652,0.9348). During the second iteration, ~y (2)
j· is ob-

tained by averaging the probabilities of the events it contains.
For example, ~y (2)

1· is the average of ~x (2)
2· , ~x (2)

3· , ~x (2)
5· and ~y (2)

9· ,
which leads to (0.3913,0.6087). The propagation continues
until convergence.

3.5 Performance Analysis
It can be seen that at each iteration, the algorithm takes

O(tlm) = O(tnm2) time to compute the probability vectors
of clusters and events. Also, the convergence rate of coor-
dinate descent method is usually linear [26] (in practice, we
fix the iteration number as a constant). Thus, the computa-
tional complexity of Algorithm 1 is actually linear with re-
spect to the number of events (i.e., t), considering that the
number of nodes involved in each aggregation (i.e., n) and
the number of classes (i.e., m) are usually small. Thus, the
proposed algorithm is not more expensive than the classi-
fication/clustering schemes, and thus can be applied to any
platform running classification tasks. Furthermore, since
wireless communication is the dominating factor of the en-
ergy consumption in sensor networks, our algorithm actually
saves much more energy than it consumes.

4 Hierarchical Aggregate Classification
Here we introduce the Hierarchical Aggregate Clas-

sification (HAC) protocol. HAC applies the Decision-
Aggregation algorithm on each of the nonleaf nodes to ag-
gregate all the decisions it collects. The output of the algo-
rithm, i.e., the aggregated decision is forwarded upwards by
the nonleaf node, and serves as one of the input decisions in
the aggregation at its parent node. The message carrying the
decision consists of t entries, corresponding to t events. In
each entry, the index of an event and the ID of the oCluster to
which this event belongs are stored. As previously defined,
the ID of each oCluster is the label of this oCluster. How-

ever, these labels may not be useful in later aggregations,
because the oClusters will probably be combined with other
clusters whose labels are unknown. For instance, at the sink
s0 (shown in Fig. 1(b)), the labeled clusters in decision D5
are combined with unlabeled clusters in D0 and D2. Finally,
the global decision is obtained at the sink node, and each
event is assigned a predefined label.

5 Constrained Hierarchical Aggregate Classi-
fication

In this section, we introduce an extended version of the
HAC protocol, called the Constrained Hierarchical Aggre-
gate Classification (cHAC) protocol. cHAC also uses the
Decision-Aggregation algorithm as the aggregation function.
However, different from HAC which requires that each non-
leaf node aggregates all the decisions it collects, cHAC intel-
ligently plans the decision aggregations throughout the tree
such that more accurate classification results can be obtained
at the cost of more energy consumption. In the rest of this
section, we first use a simple example to illustrate how en-
ergy and accuracy are correlated during the process of deci-
sion aggregation. Then we present the cHAC protocol, to-
gether with the procedures it invokes. Finally, the perfor-
mance of cHAC is analyzed.

5.1 Tradeoff between Energy and Accuracy
Hierarchical aggregate classification, as discussed in the

previous sections, can improve the classification accuracy as
well as the consumption of communication energy through
combining decisions coming from different sensor nodes.
However, decision information is inevitably lost during the
process of aggregation, and this may hurt the accuracy of the
aggregated decision.

S4S3

1

S2

1

1

1

S1: V(1, 1, 0)=1

S0: V(3×1, 0, 0)=1

(a)

S4S3

1

S2

3

1

1

S1: 1, 1, 0

S0: V(1, 1, 0, 0, 0)=0

(b)

S4S3

1

S2

2

1

1

S1: V(1, 1)=1, 0

S0: V(2×1, 0, 0, 0)=0

(c)

Figure 3. An example of energy-accuracy tradeoff

Let’s continue to study the example shown in Fig. 1. Sup-
pose all of the five sensors detect an event and try to pre-
dict the label of this event. To simplify the explanation,
in this case we assume the sensor nodes are doing classi-
fication (not clustering). There are two classes with label
0 and 1 respectively. The local decisions of the nodes are:
D0 = D1 = D2 = 0 and D3 = D4 = 1 (recall that Di is si’s de-
cision). Here we use a simple method, i.e., majority voting,
as the aggregation function F(·). Note that only in this ex-
ample we use majority voting as the aggregation function, in
every other part of this paper, the aggregation function means
the Decision-Aggregation algorithm. Intuitively, given that
the weight of each node is 1, the aggregated result of all the
decisions should be 0, since there are more 0s than 1s among
the 5 atomic decisions.

Figure. 3(a) illustrates the process of hierarchical aggre-
gate classification along the aggregation tree, where the num-
bers on the links imply the number of decisions transmitted
along this link. At node s1, D1, D3 and D4 are combined. The
resultant decision, which is D5, is evaluated to be 1, since
the majority of input decisions (D3 and D4) choose label 1.
Then, D5 is sent to the sink s0, where the final aggregation
happens. Since D5 is the combination of three atomic deci-
sions, its weight is the aggregate weight of three nodes, i.e.,
w5 = 3. Therefore, the final aggregation is calculated as fol-
lows: F(w5D5,w0D0,w2D2) = F(3× 1,0,0) = 1. Clearly,
this result is not accurate, since more than half of the nodes
predict the label of the event to be 0. The problem lies in the
aggregation at node s1, where some decision information,
i.e., D1 = 0 is lost5.

5.2 Problem Formulation
To address this problem, we propose to trade energy for

accuracy. Specifically, we add a constraint to the hierarchical
aggregate classification, namely, in each decision aggrega-
tion along the tree (including the aggregation at the sink), the
weight of each input decision cannot be larger than a prede-
fined percentage of the total weight of all this aggregation’s
input decisions. Formally, suppose D is the set of the in-
put decisions involved in an aggregation (note that D is NOT
the set of all nodes’ decisions), then it must be satisfied that

wi
∑Dk∈D wk

≤ δ for ∀ Di ∈D , where wi (wk) denotes the weight

of decision Di (Dk), and δ is a predefined percentage. In
this paper, we call δ the weight balance threshold, and the
constraint defined above the weight balance constraint. The
weight balance threshold δ is a control parameter which can
tune the tradeoff between energy and accuracy.

Intuitively, the smaller δ is, the larger number of decisions
are combined in each aggregation, and thus the aggregated
decision is closer to the global consensus. For example, if
all the sensor nodes have the same weight and δ = 1

n (n is
the total number of sensor nodes), the weight balance con-
straint requires that each combination takes at least n deci-
sions, which indicates that all the decisions need to be sent
to the sink node without any aggregation on the half way.
Clearly, the result of this aggregation perfectly represents the
global consensus. Moreover, when δ is small, to guarantee
that a large number of decisions are combined in each ag-
gregation, some decisions have to be transmitted for more
than one hop along the aggregation tree, resulting in more
transmissions.

For the simplicity of presentation, we assume that in each
transmission, only one decision is forwarded. We are inter-
ested in the problem of Constrained Hierarchical Aggregate
Classification: Under the weight balance constraint, among

5Note that in this simple example, s1 can send the numbers of 1s
and 0s picked by its children (together with itself) to achieve better
consensus compared with sending the majority voting result only.
However, this solution cannot work for the decision aggregation
problem where only clustering results are available. Since the same
cluster ID may represent different classes in different decisions, we
cannot simply count the number of labels assigned by the decisions.
Furthermore, when the number of classes is large, this solution will
consume excessive energy.

all the legal ways (solutions) which can aggregate the atomic
decisions along the aggregation tree to reach a consensus
at the sink, we want to pick the one with the minimum to-
tal number of transmissions. In fact, the hierarchical aggre-
gate classification problem discussed in previous sections is
equivalent to the case when δ = 1.

Let’s get back to the example shown in Fig. 3. Suppose in
this case, δ is set to be 0.5. Apparently, the aforementioned
solution (Fig. 3(a)) does not satisfy this constraint, since the
weight percentage of D5 in the final aggregation is more than
half. Thus, although the absolute minimum transmission
number (which is 4) is achieved in this case, it is not a valid
solution. In contrast, a feasible solution is shown in Fig. 3(b).
In this scenario, node s1 does not make any aggregation, but
directly forwards the decisions (D1=0, D3=1 and D4=1) to
the sink. This will surely satisfy the balance constraint. In
addition, this solution actually achieves the highest accuracy,
since no information is lost before arriving at the sink node.
However, it results in unnecessary energy consumption (6
transmissions in total). Finally, Fig. 3(c) shows the opti-
mal solution. Specifically, node s1 combines two out of the
three decisions (D5 = F(D3,D4) = F(1,1) = 1), and deliv-
ers the resultant decisions (D1 and D5) to the sink through
2 transmissions. This solution spends 5 transmissions, the
minimum energy consumption that can be achieved under
the weight balance constraint. More importantly, the global
decision achieved by this solution is 0, which correctly rep-
resents the majority of the nodes.

As a matter of fact, the constrained hierarchical aggregate
classification (cHAC) problem is an NP-complete problem.
We prove this proposition by the following theorem:
Theorem 1. The constrained hierarchical aggregate classi-
fication problem is NP-complete.
PROOF. First of all, we restate the cHAC problem as a de-
cision problem. That is, we wish to determine whether the
decision aggregation along a given tree can be done at the
cost of exactly k transmissions. In this proof, we will show
that the equal-size partition problem (ePartition for short), a
known NP-complete problem, can be reduced to cHAC, i.e.,
ePartition ≤P cHAC. The equal-size partition problem is to
decide whether a given set of integers can be partitioned into
two “halves” that have both the same size (number of inte-
gers) and the same sum (summation of the integers).

The reduction algorithm begins with an instance of ePar-
tition. Let A = {a1,a2, · · · ,an} (n ≥ 8) be a set of integers.
We shall construct an instance of cHAC (denoted by Φ) such
that A can be equally partitioned if and only if the answer to
Φ is yes.

S0

?

SnS1 S2

11 1

S0

2

SnS1 S2

11 1

Sn+1: F(BS), F(CS)

(a) (b)

Sn+1

Figure 4. NP-completeness of cHAC

Φ is constructed as follows. An aggregation tree is shown
in Fig. 4(a). The root node s0 has a single child, which is
sn+1. There are n nodes (s1,s2, · · · ,sn) connected to sn+1.
Suppose the weight of node si, i = 1,2, · · · ,n is ai + M,
where M is a very large positive integer. Moreover, the
weights of s0 and sn+1 are ∑n

i=1 ai+nM
2 and 0, respectively. In

this case, the weight balance threshold is set to be δ = 1
3 .

Then, we introduce the formal description of Φ: Is there
a way to solve the cHAC problem on the tree shown in
Fig. 4(a) such that the total number of transmissions is ex-
actly n+2.

Suppose A can be partitioned into two equal-size sub-
sets with equal summation. We denote these two subsets
by B and C . Without loss of generality, we suppose B =
{a1,a2, · · · ,a n

2
} and C = {a n

2 +1,a n
2 +2, · · · ,an}, and thus we

have ∑
n
2
i=1 ai = ∑n

j= n
2 +1 a j. Correspondingly, we put nodes

s1,s2, · · · ,s n
2

in BS and s n
2 +1,s n

2 +2, · · · ,sn in CS (as shown
in Fig. 4(b)). Since wi = ai + M, it can be derived that

∑
n
2
i=1 wi = ∑n

j= n
2 +1 w j, namely, BS and CS have the same to-

tal weight. In addition, no elements in BS and CS violate
the weight balance constraint given that M is a large inte-
ger. Then, we combine decisions in BS and CS at node sn+1,
and use 2 transmissions to send the combined ones to sn+1.
Furthermore, since the weight of each combined decision is
∑n

i=1 ai+nM
2 , which equals s0’s weight, the three decision (two

combined decisions and s0’s decision) can be aggregated at
node s0 without violating the weight balance constraint (re-
call that δ = 1

3). Furthermore, since n transmissions are
needed to move the clustering decision of each leaf node to
node sn+1, altogether n+2 transmissions are used during this
process, and thus the answer to Φ is yes.

Conversely, suppose the answer to Φ is yes. Since n trans-
missions (from si to sn+1) are inevitable, we have to use 2
transmissions to send decisions from sn+1 to s0. It is easy to
see that the only way to achieve this is to combine the deci-
sions at sn+1 into BS and CS with the same weight ∑n

i=1 ai+nM
2 ,

and then send them to s0. For M is large, BS and CS must
have the same size, and thus the corresponding halves B and
C in A also have the same sum ∑n

i=1 ai
2 (and of course, the

same size). So Φ is yes implies that the ePartition instance is
yes.

In summary, ePartition ≤P cHAC is proved, and thus
cHAC is NP-hard. Furthermore, it is straightforward to show
that cHAC∈ NP, and thus a conclusion can be drawn that
cHAC is NP-complete.

The NP-completeness of the constrained decision aggre-
gation problem makes it hopeless to find the optimal solution
in polynomial time. In the rest of this section, we’ll introduce
an approximate solution, which is proved to have a constant
approximation ratio and a polynomial complexity.
5.3 Constrained Decision Aggregation

In this subsection, we introduce the key function of our
solution, which is called constrained decision aggregation.
The constrained decision aggregation procedure works at
each nonleaf tree node, except the sink. It partitions the de-
cisions gathered at this node into different sets and invokes

Decision-Aggregation to combine the decision sets which re-
spect the weight balance constraint.

Intuitively, to guarantee that the final decision aggregation
at the sink node is legal, each decision arriving at the sink
should have a weight smaller than or equal to W = bδWT c
(where WT denotes the total weight of all the sensor nodes
on the aggregation tree). Therefore, at any nonleaf node ex-
cept the sink, the summation of the weights of all the input
decisions involved in any aggregation must not exceed W .
This is an additional constraint called the weight summation
constraint for each nonleaf node. Also, W is referred to as
the weight summation threshold. From the analysis above, it
is easy to see that any solution to the constrained hierarchical
aggregate classification problem satisfies this constraint.

Consequently, at each nonleaf node, before aggregate the
decisions, we need to solve the following problem first: Con-
sider a nonleaf node s0 with n children nodes si, i = 1,2, ...,n.
The goal is to divide the decision set D = {D1,D2, ...,Dn}
into the minimum number of subsets such that each multi-
decision subset respects both the weight summation con-
straint and the weight balance constraint. Since node s0
spends one transmission to forward each aggregated subset
or single-decision subset to its parent, minimizing the sub-
set number implies the minimization of transmission num-
ber. To solve this problem, we introduce Decision-Selection,
an algorithm which can pick a valid subset of decisions as
long as there exists one. Afterwards, we give a formal def-
inition of the Constrained-Decision-Aggregation procedure
which iteratively invokes Decision-Selection and Decision-
Aggregation to select and combine the decisions.

Decision-Selection is a dynamic programming based ap-
proach. First of all, we define a couple of notations. (a)
V [i,w]: V [i,w] = 1 if out of the first i decisions in D , it is
possible to find a subset in which the aggregate weight of
all the decisions is exactly w, and V [i,w] = 0 otherwise. (b)
keep[i,w]: keep[i,w] = 1 if decision Di is picked in the subset
whose total weight is w, and keep[i,w] = 0 otherwise. The
initial settings of V [i,w] are described as below:

V [0,w] = 0 for 0≤ w≤W (9)
V [i,w] =−∞ for w < 0 (10)
V [i,wi] = 1 for 1≤ i≤ n (11)

In Decision-Selection, V [i,w] is recursively calculated
based on Eqn. (12) for 1≤ i≤ n and 0≤ w≤W .

V [i,w] = max(V [i−1,w],V [i−1,w−wi]) (12)

Algorithm 2 describes the detailed steps of Decision-
Selection. Given a particular decision Di and a weight sum
w, what we are concerned about is under which condition Di
could be selected to the output decision set (i.e., set keep[i,w]
to be 1), which can not be directly seen from Eqn. (12).
There are two possible cases. Case 1 happens in line 8. In
this case, among the first i−1 decisions, we can find a subset
with total weight w−wi (i.e., V [i−1,w−wi] = 1), but cannot
find a subset with total weight w (i.e., V [i−1,w] = 0). Obvi-
ously, Di should be selected; Case 2 is in line 12. In this case,

Algorithm 2 Decision Selection
Input: Weight summation threshold W , set of weights W , set of
input decisions D , weight balance threshold δ;
Output: Set of decisions A satisfying both weight summation con-
straint and weight balance constraint;
1: A ←Φ
2: for w← 0 to W do
3: V [0,w]← 0;
4: for i← 1 to n do
5: for w← 0 to W do
6: if wi < w and V [i−1,w−wi] > V [i−1,w] then
7: V [i,w]←V [i−1,w−wi];
8: keep[i,w]← 1;
9: else if wi = w then

10: V [i,w]← 1;
11: if V [i−1,w] = 0 then
12: keep[i,w]← 1;
13: else
14: keep[i,w]← 0;
15: else
16: V [i,w]←V [i−1,w];
17: keep[i,w]← 0;
18: for w←W downto 1 do
19: m← w;
20: for i← n downto 1 do
21: if keep[i,m] = 1 and wi ≤ bδwc then
22: A ← A

⋃{Di};
23: m← m−wi;
24: if A 6= Φ then
25: break;
26: return A

though w = wi, we put Di into the selected set only when no
subset among the first i− 1 decisions has a total weight of
w (i.e., V [i− 1,w] = 0), since the algorithm only picks one
set for a particular weight sum. Decision-Selection has an
important prerequisite: D must be sorted in the ascending
order of weight. The motivation of this prerequisite can be
better understood via Theorem 2.
Theorem 2. Decision-Selection can return a valid decision
set satisfying both the weight summation constraint and the
weight balance constraint, as long as there exists such a set
in D .
PROOF. There is no doubt that given a number 1 < w < W ,
Algorithm 2 can identify a subset of D whose weight sum-
mation is exactly equal to w, if such a subset really exists.
There are at most W subsets found by the algorithm (stored
in keep[i,w]), and all of them satisfy the weight summa-
tion constraint. Thus, we only need to show that if none of
these selected subsets can satisfy the weight balance con-
straint, there does not exist a legal decision subset in D .
The key point is, given a weight summation w, there may
exist multiple valid subsets, and among them, the subset
(denoted by D∗(w)) whose last decision has the smallest
weight is the most likely to satisfy the weight balance con-
straint. This is because the decisions are sorted in the as-
cending order of the weight. Thus, given a decision set, if
the last decision, which has the largest weight, satisfies the
constraint, all the preceding decisions in this set satisfy the
constraint as well. The Decision-Selection algorithm guar-

Algorithm 3 Constrained Decision Aggregation
Input: Set of input decisions D
Output: Set of output decisions Ω
1: Sort D in the ascending order of weight;
2: repeat
3: A ← Decision-Selection(D);
4: D ←D−A ;
5: C ← C

⋃{Decision-Aggregation(A)};
6: until |A |= 0
7: R ←D;
8: Ω← C

⋃
R ;

9: return Ω

antees to pick D∗(w), since a decision Di is selected (i.e.,
keep[i,w] ← 1, line 8 and 12) only when no valid subset
exists among the first i− 1 decisions (i.e., V [i− 1,w] = 0,
line 6 and 11). For example, suppose we have a sorted de-
cision set D = {w1 = 2,w2 = 3,w3 = 4,w4 = 7}, with the
weight sum w = 9 and the balance threshold δ = 1

2 . It is
obvious that there are two subsets of D whose weight sum
equals w. They are D1 = {2,3,4} and D2 = {2,7}. Among
them, only D1, whose last decision has a smaller weight,
can satisfy the weight balance constraint. In the algorithm,
keep[3,9] will be set by 1, and keep[4,9] is assigned to be
0 since V [3,9] = 1. Finally, lines 18-25 exhaustively check
D∗(w) (line 21) with w ranging from W down to 1, and thus
will not miss a valid subset if it does exist.

With Decision-Selection, we are able to design the
Constrained-Decision-Aggregation algorithm. As shown
in Algorithm 3, after sorting D in the ascending order
of weight, Constrained-Decision-Aggregation iteratively in-
vokes Decision-Selection (line 3), and combines the returned
decision set (i.e., A) through the procedure of Decision-
Aggregation (line 5). The resultant aggregated decisions are
stored in a set C . This process repeats until no more set is
found by Decision-Selection, then the residual decisions left
in D are moved to another set R . In line 8, the union of C
and R forms the set of output decisions Ω. Finally, |Ω| trans-
missions are consumed by the subtree root s0 to forward the
output decisions in Ω to its parent node.

5.4 Constrained Hierarchical Aggregate Clas-
sification

The constrained hierarchical aggregate classification
(cHAC) protocol invokes the Constrained-Decision-
Aggregation procedure at each nonleaf node except the sink,
and aggregates the decisions along the tree. Specifically,
suppose n subtrees are connected to a nonleaf node s0.
cHAC applies Constrained-Decision-Aggregation to each
of the subtrees Ti, resulting in a set of aggregated decisions
Ci and a set of residual decisions Ri. After arriving at s0,
these sets form two union sets, which are C0 =

⋃n
i=1 Ci and

R0 =
⋃n

i=1 Ri. Then, cHAC employs Constrained-Decision-
Aggregation on R0, and puts the newly aggregated decisions
in C0. After the algorithm terminates, no decisions left
in R0 can be further combined. Subsequently, s0 spends
|Ω0| = |C0|+ |R0| transmissions to forward the decisions.
Altogether, ∑n

i=0 |Ωi| transmissions are consumed during
this process. In each transmission, the cHAC protocol uses

the same message format as the HAC protocol to carry the
decision.

At the sink node, the procedure of Decision-Aggregation
(not Constrained-Decision-Aggregation) is called, since
none of the arrived decisions has a weight larger than W =
bδWT c. Finally, the global consensus is achieved. It is easy
to see, the cHAC protocol can be easily implemented in a
distributed manner. Each node only needs to collect the de-
cision information from its children and make local aggrega-
tions. Therefore, no global coordination is needed.
5.5 Performance Analysis

In this subsection, we show the approximation ra-
tio and the computational complexity of not only the
Constrained-Decision-Aggregation algorithm but also the
whole constrained hierarchical aggregate classification pro-
cess. We start with the analysis of the Constrained-Decision-
Aggregation algorithm. First of all, we have the following
observation.
Lemma 1. After Constrained-Decision-Aggregation termi-
nates, there are at most one decision in C whose weight is no
more than W

2 .
The basic idea of the proof is: suppose there are two

such decisions, they are resulted from two decision subsets
whose weight summation is no more than W

2 . However, the
Decision-Selection algorithm should have combined these
two subsets into one which satisfies both the weight balance
constraint and the weight summation constraint. In fact, if
there exists a decision in C with a weight less than or equal
to W

2 , we move it from C to R .

2 3

Figure 5. Intervals

According to Algorithm 3, the residual set R contains the
decisions that cannot be aggregated. We project these deci-
sions onto an interval [1,W] based on their weights. Then,
we divide the interval [1,W] into subintervals by the points
2i, i = 1,2, ...,blog2(δW/2)c (together with the point δW/2),
as shown in Fig. 5. Before proving the approximation ratio
of Constrained-Decision-Aggregation in Theorem 3, we first
prove the following claim in Lemma 2.
Lemma 2. Within each interval, there are less than 2

δ deci-
sions in R .
PROOF. By contradiction, suppose there are 2

δ decisions
within an interval delimited by the point 2i−1 and 2i. The
sum of their weights is less than W , for i ≤ blog2(δW/2)c.
Within [2i−1,2i], the aggregate weight of these decisions is
at least 2

δ ·2i−1 = 2i

δ , while the weight of a single decision is
at most 2i. Thus, the weight percentage of any decision in
this interval is at most δ, which satisfies the weight balance
constraint. This contradicts with the fact that Constrained-
Decision-Aggregation leaves them uncombined, so the proof
is completed.
Theorem 3. Suppose OPT is the transmission number in
the optimal solution to the constrained decision aggregation
problem, and SOL is the transmission number in the solution

found by the Constrained-Decision-Aggregation algorithm.
We have SOL≤ 2

δ ·
(

OPT+ log2
δW
2

)
.

PROOF. First of all, we define some notations. Let WD de-
note the total weight of the decisions in D . In addition, R≤
and R> are two subsets of R in which the weights of de-
cisions are smaller than or equal to δW/2 and larger than
δW/2, respectively. An lower bound of OPT is WD/W ,
since every (aggregated) decision has a weight at most W .
In our algorithm, decisions in D are partitioned and aggre-
gated into two sets C and R , and we have SOL = |C |+ |R |=
|C |+ |R≤|+ |R>|. For all the decisions in C whose weights
are at least W/2 and all the decision in R> whose weights
are at least δW/2, we have |C |+ |R>| ≤ WD

δW/2 = 2
δ ·

WD
W ≤

2
δ · OPT, for OPT ≥ WD/W . In addition, by Lemma 2,
we have |R≤| ≤ 2

δ · log2
δW
2 . Thus, combining the above

two inequalities, we can derive the promised bound SOL ≤
2
δ ·

(
OPT+ log2

δW
2

)
.

Then, the computational complexity of Constrained-
Decision-Aggregation is given by Theorem 4.
Theorem 4. Constrained-Decision-Aggregation has a com-
putational complexity of O(n2δW)6.
PROOF. First of all, Constrained-Decision-Aggregation
sorts the decisions in D , which takes a running time of
O(n logn). Then, in the loop between line 2 and 6, Decision-
Selection is repeatedly called, and each takes O(nW). Since
under the weight balance constraint, the number of decisions
picked by Decision-Selection in each iteration must be no
less than 1

δ , the number of times that Decision-Selection is
called is at most δn. Therefore, the overall computational
complexity of the Constrained-Decision-Aggregation proce-
dure is O(n log(n))+δnO(nW) = O(n2δW).

Next, we give the approximation ratio and the computa-
tional complexity of the whole constrained hierarchical ag-
gregate classification process by Theorem 5 and Theorem 6,
respectively.
Theorem 5. Suppose OPT is the transmission number in
the optimal solution to the constrained hierarchical aggregate
classification problem, and SOL is the transmission number
in the solution found by the cHAC protocol. Then, we have
SOL≤ 2

δ ·
(

1+ log2
δW
2

)
·OPT.

PROOF. The proof is similar to the proof of Theorem 3
in spirit, but the bound we derived is a bit weaker. Sup-
pose the tree has n nodes (excluding the sink node). Let
OPT = OPT1 +OPT2 + . . .+OPTn, where OPTi is the num-
ber of transmissions from node si to its parent in the opti-
mal solution. Similarly, SOL = SOL1 +SOL2 + . . .+SOLn,
where SOLi is the number of transmissions from si to its par-
ent in the solution obtained by the cHAC protocol.

In case that si is a nonleaf node, the cHAC protocol
takes the aggregated decisions from its children as the in-
put. Intuitively, the lower bound of OPTi is the optimal
solution (denoted by ÕPTi) to the problem that takes all
the atomic decisions without being aggregated as the in-

6In this analysis, we do not consider Decision-Aggregation,
since it can be decoupled from Constrained-Decision-Aggregation.

put. Thus, similar to the analysis in Theorem 3, we have
SOLi ≤ 2

δ ·
(

ÕPTi + log2
δW
2

)
≤ 2

δ ·
(

1+ log2
δW
2

)
· ÕPTi. If

si is a leaf node, it is apparent that SOLi = OPTi. Since
ÕPTi ≤ OPTi, summing them up for i = 1,2, . . . ,n, we can
derive the promised bound SOL≤ 2

δ ·
(

1+ log2
δW
2

)
·ÕPT≤

2
δ ·

(
1+ log2

δW
2

)
·OPT.

Theorem 6. The cHAC protocol has a computational com-
plexity of O(n2

TW).
Recall that here nT denotes the total number of nodes

on the aggregation tree. In the worst case, the Decision-
Selection algorithm is called for O(nT) times, and each takes
O(nTW) time. Therefore, the overall computational com-
plexity of the cHAC protocol is O(n2

TW).

6 Performance Evaluation
In this section, we evaluate the proposed schemes on

i) Synthetic data, and ii) A solar-powered sensor network
testbed. For the reason of comparison, we design two base-
line methods. Both of the baselines adopt the strategy of
majority-voting, and they are different in the ways of gener-
ating votes. The first baseline method, which we call Clus-
tering Voting, suggests that each node locally groups the
events into different clusters (this part is the same as our
scheme), and then count the labeled events (i.e., how many
events belong to a particular label) in each cluster. Within a
cluster, all the events are assigned the label with the largest
count. For example, suppose there are totally 100 events in
a cluster, with three events labeled 1 and two events labeled
0, then all the 100 events are labeled 1 according to the clus-
tering voting scheme. Finally, the nodes vote to decide the
label of each event. The second baseline, called Classifi-
cation Voting, lets each node apply classification algorithms
(such as decision tree, SVM) on the labeled data, and predict
the labels of the rest. Then, the events are labeled based on
the vote. The detailed experimental results are shown and
explained in the next two subsections.
6.1 Experiment on Synthetic Data

In this part, we evaluate our schemes on synthetic data.
First of all, we randomly build aggregation trees with the
number of tree nodes ranging from 20 to 80. The height of
the trees increases with the augment of tree size. In particu-
lar, the trees of height 3, 4, 5 and 6 contain around 20, 30, 50
and 80 nodes, correspondingly. In order to achieve diversity,
we apply different clustering algorithms (such as K-means,
spectral clustering) to different nodes. Suppose each node
has a weight between 0 and 5. For each height, we evaluate
different tree topologies and record the average results.

Next, we give a brief description on how the synthetic
data is generated. In this experiment, we assume there are
10 different types of sensors, corresponding to 10 features
of the events (e.g., temperature, humidity, etc). Suppose the
events are drawn from 5 different classes (labels), and we
randomly assign the groundtruth labels (from 5 classes) to
10000 events. For each event, based on its assigned label,
we generate its feature values from a Gaussian distribution
in a 10-dimensional (each dimension corresponds to a fea-
ture) data space R10. Therefore, the collection of the events

1 2 3 4 5 6 7 8 9 10
60

65

70

75

80

85

90

95

Label Percentage

A
cc

ur
ac

y

HAC
cHAC, δ=1/2
cHAC, δ=1/3
Clustering Voting
Classification Voting

Figure 6. Comparison of accuracy (Synthetic data)

are drawn from a Gaussian mixture model with 5 compo-
nents, each of which corresponds to a class. After creating
the events, we generate the sensory readings of the nodes.
For each node on the tree, we randomly assign a subset of the
previously defined (10 types of) sensors to it. For each type
of sensor assigned to this node, we generate its sensory read-
ing of each event as follows: we first copy the correspond-
ing feature value of the event and then add random Gaussian
noise to this value. In this way, different nodes with the same
types of sensors would have different sensory readings.

1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9
0

100

200

300

400

δ

E
ne

rg
y

Height=3
Height=4
Height=5
Height=6

1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9
75

80

85

90

95

100

δ

A
cc

ur
ac

y

Height=3
Height=4
Height=5
Height=6

(a) δ on energy (b) δ on accuracy
Figure 7. Impact of δ on energy and accuracy (Synthetic data)

Figure 6 compares the classification accuracy (percent-
age of the correctly classified events) of the proposed hierar-
chical aggregate classification (HAC) and constrained hierar-
chical aggregate classification (cHAC) (with weight balance
threshold δ = 1/2, 1/3, and 1/4, respectively) protocols, and
the two baseline schemes. As can be seen, when the percent-
age of labeled events is less than 10, the proposed protocols
can always achieve better performance than the baselines.
Moreover, with the decrease of label percentage, the accu-
racy of all the five methods degrade. Among them, the accu-
racy of the classification voting decreases the fastest. This is
reasonable since compared with clustering methods, classi-
fication models are normally more sensitive to the label per-
centage. Another notable point is that the cHAC with smaller
δ can achieve higher accuracy.

Figure 7 demonstrates the impact of weight balance
threshold δ on the communication energy (in terms of the
total number of messages transmitted by the tree nodes) and
the classification accuracy of the cHAC protocol. In this ex-
periment, we assume 5% of the events are labeled, and test
four groups of aggregation trees, with height 3, 4, 5 and 6
respectively. As expected, when δ decreases, no matter of
the tree size, more energy is consumed (Figure 7(a)), and

SSolar Panels

N d E lNode Enclosure

Figure 8. Outside look of a solar-
powered sensor node

Waterproof enclosure

ComputerWireless

Router
Battery

Figure 9. Inside look of a solar-
powered sensor node

Air Pressure Sensor Camera

Wind Sensor Tmote MicrophoneWind Sensor Tmote Microphone

Figure 10. Different types of sensors
on the nodes

higher accuracy can be achieved (Figure 7(b)). This con-
firms our scheme’s capability of trading energy for accuracy.
Furthermore, given a δ, the trees with larger height tend to
have higher accuracy, however, at the cost of more energy
consumption. This is because usually better diversity can
be obtained when more nodes are involved in the aggrega-
tion. Finally, when δ becomes lower than a threshold (e.g.,
δ = 1

5 for height-3 trees), the accuracy cannot be improved
any more, since all the atomic decisions (locally made by
each node) have been sent to the sink.

6.2 Experiment on Real Testbed
In this part, we test the performance of the proposed pro-

tocols on our solar-powered sensor network testbed [20].
This outdoor testbed is located on the edge of a forest. Cur-
rently, 9 nodes have been deployed and running since Au-
gust 2008. Figure 8 and Figure 9 show the outside and in-
side look of a node, which comprises of a low-power PC to
provide computing capability as well as a wireless router to
support wireless communication among nodes. The nodes
are equipped with multiple types of sensors, and thus can
provide a broad spectrum of sensing capabilities for differ-
ent environmental monitoring applications. Figure 10 shows
some of the sensors integrated with the nodes, which can
collect the sensory readings of temperature, humidity, light,
wind speed, wind direction, and air pressure. In addition,
the nodes are also equipped with microphones and cameras
which are used to record audio and video information of
wildlife. Readers can refer to [20] for more details on the
system software and hardware architecture, as well as some
implementation issues.

Figure 11. Tree topology of the 9 deployed nodes

We construct an aggregation tree on the 9 deployed nodes,
as shown in Fig. 11. In this tree, node 5 works as the
sink, and all the nodes have weight 1. Furthermore, to
avoid packet collision and overhearing during the process of
decision aggregation, we employ a distributed aggregation

scheduling algorithm proposed by [27]. Under this schedul-
ing strategy, at any time slot only a subset of the sensor nodes
are allowed to send packets and their transmissions do not
interfere with each other. The wireless interfaces of the rest
nodes are shut down so as to save the energy of idle listening.

To illustrate our approach, we design two experiments on
this testbed, which are explained respectively later in this
section.
6.2.1 Classification of Bird Species

In this experiment, we target on automatically recogniz-
ing different bird species based on their vocalizations. Bird
species classification is a typical pattern recognition prob-
lem and has been extensively studied in recent years [3, 28,
29, 30]. Building bird species recognition system normally
involves two phases: feature extraction phase and classifi-
cation phase. In the feature extraction phase, bird vocaliza-
tions are represented with a few acoustical parameters (fea-
tures) of the sound. Here the philosophy is that features
should be selected so that they are able to maximally dis-
tinguish sounds produced by different bird species (classes).
The most widely used parametrization method is the model
of Mel-frequency cepstral coefficients (MFCC), which is
adopted in this experiment. After the features are extracted,
each audio data point is reduced to a vector of features. Sub-
sequently, in the classification phase, classification or clus-
tering algorithms can be directly applied on the feature vec-
tors like usual classification tasks.

Three bird species: song sparrow, American crow, and
red-winged blackbird are studied in this test. They are among
the most frequently observed species around the place where
the testbed is deployed. We select 4000 time periods within
each of which the vocalizations of one species are recorded
by all the sensor nodes of the testbed. The duration of each
period is 1.5 seconds. The goal of this experiment is to deter-
mine the bird species (class) by which the vocalizations are
produced within each time period, given that only a small
percentage of the 4000 time periods are labeled by the above
three species.

Initially, each sensor node locally extracts the MFCC fea-
tures of each audio clip. Then we apply the same five meth-
ods (i.e., the proposed protocols and two baseline schemes)
as in the preceding experiment to the extracted feature vec-
tors, and observe their performance. The accuracies achieved
by the five methods are shown in Fig. 12. Due to the unex-
pected noise in both the feature values and the labels, the
curves are not as smooth as those shown in the experiment

1 2 3 4 5 6 7 8 9 10
55

60

65

70

75

80

85

90

Label Percentage

A
cc

ur
ac

y

HAC
cHAC, δ=1/2
cHAC, δ=1/3
Clustering Voting
Classification Voting

Figure 12. Comparison of accuracy (Species classification)

on synthetic data. However, we can still observe the same
curve patterns as discovered in the previous experiment. In
short, the proposed schemes always perform better than the
baseline methods given a label percentage less than 10.

Different from the experiment on synthetic data in which
energy consumption is approximated by the number of trans-
missions, here we measure the real energy consumption of
not only communication but also computation on the testbed.
In particular, the computation energy include the energy con-
sumed by the classification (or clustering) algorithms as well
as the HAC (or cHAC) protocol. We do not take into ac-
count the energy consumption of sensing since it is usually
smaller than that of computation and communication, and
more importantly, the sensing energy is the same no mat-
ter what kind of classification strategy is used. On the other
hand, the communication energy is referred to as the energy
consumption of sensor nodes by transmitting or receiving
packets. As previously discussed, the extra energy expen-
diture caused by overhearing and idle listening is eliminated
by carefully scheduling the on/off of each node’s wireless
interface.

Figure 13 demonstrates the tradeoff between energy and
accuracy tuned by weight balance threshold δ (when the
cHAC protocol is applied). In this test, we study two sce-
narios when the percentage of labeled data is 2 (LP=2) and 5
(LP=5), respectively. Since in this case the aggregation tree
has only 9 nodes, there are only four possible choices on δ.
However, the relation between energy and accuracy can still
be clearly observed. Figure 13(a) and (c) describe the impact
of δ on the total computation energy as well as the total com-
munication energy under two label percentages. As one can
see, in either case, the computation energy is nearly invari-
ant regardless of δ, since the clustering algorithm locally ex-
ecuted by each node dominates this category of energy con-
sumption. In contrast, the communication energy increases
with the decrease of δ, resulting in the growth of total en-
ergy expenditure. On the other hand, as shown in Fig. 13(b)
and (d), the classification accuracy is improved when δ goes
down. Therefore, our expectation that the cHAC protocol
could trade energy for accuracy is realized. As a compari-
son, we also measure the energy needed to transport all the
extracted feature vectors to the sink. The number is 1073.41
joules, which is difficult for the energy-scarce sensing sys-
tems to afford. This is because the MFCC features are usu-
ally of high dimension and thus it costs enormous energy to
deliver them.

1 1/2 1/3 1/4
0

5

10

15

20

25

30

35

40

δ

E
ne

rg
y

(J
ou

le
)

Computation Energy
Communication Energy

1 1/2 1/3 1/4
65

70

75

80

δ

A
cc

ur
ac

y

(a) δ on energy (LP=2) (b) δ on accuracy (LP=2)

1 1/2 1/3 1/4
0

5

10

15

20

25

30

35

40

δ

E
ne

rg
y

(J
ou

le
)

Computation Energy
Communication Energy

1 1/2 1/3 1/4
70

75

80

85

δ

A
cc

ur
ac

y

(c) δ on energy (LP=5) (d) δ on accuracy (LP=5)
Figure 13. Impact of δ on energy and accuracy (Species
classification)

6.2.2 Classification of Bird Vocalization Intensity
We design the second experiment to test the proposed

schemes on more types of sensors. We build a classifier that
attempts to predict the intensity of bird vocalizations as a
function of the aforementioned six environmental parameters
(features): temperature, humidity, light, wind speed, wind
direction and air pressure. The ground-truth intensity of bird
vocalizations can be measured using microphones located on
the nodes. In this experiment, we define three classes (la-
bels), corresponding to three levels of vocalization intensity:
1) High intensity, 2) Medium intensity, and 3) Low intensity.
The objective of this experiment is as follows. Given the col-
lected environmental data, among which a small percentage
has been labeled into the above three categories, we want
to decide the labels of the rest data. The experiment spans
a period of one month. Every 10 minutes, the sensors of
each node record the sensory readings corresponding to six
features of the environment. Thus, at the end of the month,
each node has collected about 4000 event readings. During
this month, the intensity of bird vocalizations is also mea-
sured and averaged over 10 minute intervals. This average
value is taken as the ground truth.

In this experiment, we test one more baseline scheme,
called Data Aggregation. Different from the five schemes
evaluated in the preceding experiments, instead of aggregat-
ing the decisions, data aggregation directly transports and
averages the raw data along the aggregation tree, and applies
centralized classification techniques on the averaged data at
the sink. The comparison results of accuracy are exhibited
in Fig. 14. As can be seen, the accuracy of data aggregation
is higher than that of the HAC protocol, but lower than the
accuracy of cHAC when all the decisions are delivered to the
sink (i.e., δ = 1/4). This is because some information is lost
during the process of data aggregation. More importantly,
data aggregation consumes about 64.87 joules of energy to
deliver the sensory readings to the sink, much larger than the
communication energy consumed by the proposed protocols.

1 2 3 4 5 6 7 8 9 10
45

50

55

60

65

70

75

80

85

Label Percentage

A
cc

ur
ac

y

HAC
cHAC, δ=1/2
cHAC, δ=1/3
cHAC, δ=1/4
Data Aggregation
Clustering Voting
Classification Voting

Figure 14. Comparison of accuracy (Intensity classification)

1 1/2 1/3 1/4
0

5

10

15

20

25

30

35

δ

E
ne

rg
y

(J
ou

le
)

Computation Energy
Communication Energy

1 1/2 1/3 1/4
65

70

75

δ

A
cc

ur
ac

y

(a) δ on energy (LP=2) (b) δ on accuracy (LP=2)

1 1/2 1/3 1/4
0

5

10

15

20

25

30

35

δ

E
ne

rg
y

(J
ou

le
)

Computing Energy
Communicating Energy

1 1/2 1/3 1/4
70

75

80

δ

A
cc

ur
ac

y

(c) δ on energy (LP=5) (d) δ on accuracy (LP=5)
Figure 15. Impact of δ on energy and accuracy (Intensity
classification)

The reason is that for each event, along each tree link our so-
lution forwards only the index of the class to which the event
belongs, while data aggregation transmits a vector of up to
six numbers. Thus, data aggregation is not an economic so-
lution from the perspective of energy.

The tradeoff between energy and accuracy can be ob-
served in Fig. 15. In this experiment, the ratio of commu-
nication energy over computation energy is larger than that
of the species classification experiment. This is because in
this case the dimension of data (which is 6) is smaller, and
thus the clustering algorithms consume less energy. Clearly,
by tuning weight balance threshold δ, the cHAC protocol can
trade energy for accuracy.

7 Related Work
In sensor networks, data reduction strategies aim at re-

ducing the amount of data sent by each node [17]. Tradi-
tional data reduction techniques [17, 18, 31] select a subset
of sensory readings that is delivered to the sink such that the
original observation data can be reconstructed within some
user-defined accuracy. For example, [17] presents a data re-
duction strategy that exploits the Least-Mean-Square (LMS)
to predict sensory readings without prior knowledge or sta-
tistical modeling of the sensory readings. The prediction is
made at both the sensor nodes and the sink, and each node

only needs to send the readings that deviate from the predic-
tion. [31] explores the use of a centralized predictive filtering
algorithm to reduce the amount of transmitted data. It elim-
inates the predictor on sensor nodes. Instead, it relies on a
low level signaling system at the sink that instructs the nodes
to transmit their data when required. In contrast, the pro-
posed decision aggregation algorithms summarize the sen-
sory readings by grouping similar events into the same clus-
ters, and report only the clustering results to the sink. The
proposed schemes focus more on the similarity among the
data, and hence can be regarded as a kind of decision level
data reduction.

As discussed in the introduction, classification techniques
for sensor networks have been widely studied. For exam-
ple, [12] also studies hierarchical data classification in sen-
sor networks. In this paper, local classifiers built by in-
dividual sensors are iteratively enhanced along the routing
path, by strategically combining generated pseudo data and
new local data. However, as other classification schemes
for sensor networks, this paper assumes that a large amount
of labeled data are available, which is impractical in sen-
sor networks. To solve the problem of learning from dis-
tributed data sets, people have designed methods that can
learn multiple classifiers from local data sets in a distributed
environment and then combine local classifiers into a global
model [32, 33, 34]. However, these methods still focus on
learning from a training set consisting of sufficient labeled
examples.

Moreover, the proposed problems and solutions in this
paper are different from the following work: 1) Data ag-
gregation [24, 25, 35, 36], which combines the data com-
ing from different sensors that detect common phenomena
so as to save transmission energy. Data aggregation tech-
niques often apply simple operations, such as average, max
and min, directly on the raw data, and thus are different from
the proposed decision aggregation schemes which combine
the clustering results from multiple sensor nodes. 2) Mul-
tisensor data fusion [37, 38], which gathers and fuses data
from multiple sensors in order to achieve higher accuracy.
Typically, it combines each sensor’s vector of confidence
probabilities that the observed target belongs to predefined
classes. It is similar to supervised classification, since each
confidence probability corresponds to a labeled class. 3) En-
semble classification [39, 40], which combines multiple su-
pervised models or integrates supervised models with unsu-
pervised models for improved classification accuracy. Exist-
ing ensemble classification methods cannot be directly ap-
plied to our problem setting because they conduct central-
ized instead of distributed classification and they require suf-
ficient labeled data to train the base models.

8 Conclusions
In this paper, we consider the problem of classification

with limited supervision in sensor networks. We propose two
protocols, HAC and cHAC, which work on tree topologies.
HAC let each sensor node locally make cluster analysis and
forward the decision to its parent node. The decisions are ag-
gregated along the tree, and eventually the global consensus
is achieved at the sink node. As an extension of HAC, cHAC

can trade energy for accuracy, and thus is able to provide
flexible service to various applications.

9 References
[1] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.
[2] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and

Techniques, 3rd ed. Morgan Kaufmann, 2011.
[3] J. Cai, D. Ee, B. Pham, P. Roe, and J. Zhang, “Sensor network

for the monitoring of ecosystem: Bird species recognition,” in
ISSNIP, 2007.

[4] W. Hu, V. N. Tran, N. Bulusu, C. T. Chou, S. Jha, and A. Tay-
lor, “The design and evaluation of a hybrid sensor network for
cane-toad monitoring,” in IPSN, 2005.

[5] D. Duran, D. Peng, H. Sharif, B. Chen, and D. Armstrong,
“Hierarchical character oriented wildlife species recognition
through heterogeneous wireless sensor networks,” in PIMRC,
2007.

[6] L. Gu, D. Jia, P. Vicaire, T. Yan, L. Luo, A. Tirumala, Q. Cao,
T. He, J. A. Stankovic, T. Abdelzaher, and B. H. Krogh,
“Lightweight detection and classification for wireless sensor
networks in realistic environments,” in SenSys, 2005.

[7] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang,
V. Naik, V. Mittal, H. Cao, M. Demirbas, M. Gouda, Y. Choi,
T. Herman, S. Kulkarni, U. Arumugam, M. Nesterenko,
A. Vora, and M. Miyashita, “A line in the sand: A wireless
sensor network for target detection, classification, and track-
ing,” Computer Networks, vol. 46, pp. 605–634, 2004.

[8] R. R. Brooks, P. Ramanathan, and A. M. Sayeed, “Distributed
target classification and tracking in sensor networks,” in Pro-
ceedings of the IEEE, 2003, pp. 1163–1171.

[9] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and
J. Anderson, “Wireless sensor networks for habitat monitor-
ing,” in WSNA, 2002.

[10] Y. Guo, P. Corke, G. Poulton, T. Wark, G. Bishop-Hurley, and
D. Swain, “Animal behaviour understanding using wireless
sensor networks,” in LCN, 2006.

[11] B. Sheng, Q. Li, W. Mao, and W. Jin, “Outlier detection in
sensor networks,” in MobiHoc, 2007.

[12] X. Cheng, J. Xu, J. Pei, and J. Liu, “Hierarchical distributed
data classification in wireless sensor networks,” in MASS,
2009.

[13] E. M. Tapia, S. S. Intille, and K. Larson, “Activity recognition
in the home using simple and ubiquitous sensors,” in Perva-
sive, 2004.

[14] K. Lorincz, B.-r. Chen, G. W. Challen, A. R. Chowdhury,
S. Patel, P. Bonato, and M. Welsh, “Mercury: a wearable
sensor network platform for high-fidelity motion analysis,” in
Sensys, 2009.

[15] Z. Zeng, S. Yu, W. Shin, and J. C. Hou, “PAS: A Wireless-
Enabled, Cell-Phone-Incorporated Personal Assistant System
for Independent and Assisted Living,” in ICDCS, 2008.

[16] K. C. Barr and K. Asanovic, “Energy aware lossless data com-
pression,” in MobiSys, 2003.

[17] S. Santini and K. Römer, “An adaptive strategy for quality-
based data reduction in wireless sensor networks,” in INSS,
2006.

[18] K. Römer, “Discovery of frequent distributed event patterns
in sensor networks,” in EWSN, 2008.

[19] J. L. Hill and D. E. Culler, “Mica: A wireless platform for
deeply embedded networks,” IEEE Micro, vol. 22, no. 6, pp.
12–24, 2002.

[20] Y. Yang, L. Wang, D. K. Noh, H. K. Le, and T. F. Abdelza-
her, “Solarstore: enhancing data reliability in solar-powered
storage-centric sensor networks,” in MobiSys, 2009.

[21] R. Pon, M. A. Batalin, J. Gordon, A. Kansal, D. Liu,
M. Rahimi, L. Shirachi, Y. Yu, M. Hansen, W. J. Kaiser,
M. Srivastava, S. Gaurav, and D. Estrin, “Networked infome-
chanical systems: a mobile embedded networked sensor plat-
form,” in IPSN, 2005.

[22] L. Girod, M. Lukac, V. Trifa, and D. Estrin, “The design and
implementation of a self-calibrating distributed acoustic sens-
ing platform,” in SenSys, 2006.

[23] J.-C. Chin, N. S. V. Rao, D. K. Y. Yau, M. Shankar, Y. Yang,
J. C. Hou, S. Srivathsan, and S. Iyengar, “Identification of
low-level point radioactive sources using a sensor network,”
ACM Trans. Sensor Networks, vol. 7, pp. 21:1–21:35, October
2010.

[24] S. M. Michael, M. J. Franklin, J. Hellerstein, and W. Hong,
“Tag: a tiny aggregation service for ad-hoc sensor networks,”
in OSDI, 2002.

[25] B. Krishnamachari, D. Estrin, and S. B. Wicker, “The impact
of data aggregation in wireless sensor networks,” in ICDCSW,
2002.

[26] D. P. Bertsekas, Nonlinear Programming. Athena Scientific,
1995.

[27] B. Yu, J. Li, and Y. Li, “Distributed data aggregation schedul-
ing in wireless sensor networks,” in INFOCOM, 2009.

[28] S. E. Anderson, A. S. Dave, and D. Margoliash, “Template-
based automatic recognition of birdsong syllables from con-
tinuous recordings,” The Journal of the Acoustical Society of
America, vol. 100, no. 2, pp. 1209–1219, 1996.

[29] P. Somervuo, A. Harma, and S. Fagerlund, “Parametric repre-
sentations of bird sounds for automatic species recognition,”
Audio, Speech, and Language Processing, IEEE Transactions
on, vol. 14, pp. 2252–2263, Nov. 2006.

[30] S. Fagerlund, “Bird species recognition using support vector
machines,” EURASIP J. Appl. Signal Process., vol. 2007, pp.
64–64, January 2007.

[31] M. Cordina and C. J. Debono, “Maximizing the lifetime of
wireless sensor networks through intelligent clustering and
data reduction techniques,” in WCNC, 2009.

[32] A. Lazarevic and Z. Obradovic, “The distributed boosting al-
gorithm,” in KDD, 2001.

[33] N. V. Chawla, L. O. Hall, K. W. Bowyer, and W. P.
Kegelmeyer, “Learning ensembles from bites: A scalable and
accurate approach,” J. Mach. Learn. Res., vol. 5, pp. 421–451,
2004.

[34] P. Luo, H. Xiong, K. Lü, and Z. Shi, “Distributed classifica-
tion in peer-to-peer networks,” in KDD, 2007.

[35] J. Gao, L. Guibas, N. Milosavljevic, and J. Hershberger,
“Sparse data aggregation in sensor networks,” in IPSN, 2007.

[36] L. Su, Y. Gao, Y. Yang, and G. Cao, “Towards optimal rate
allocation for data aggregation in wireless sensor networks,”
in MobiHoc, 2011.

[37] D. L. Hall and J. Llinas, Handbook of multisensor data fusion.
CRC Press, 2001.

[38] G. Xing, R. Tan, B. Liu, J. Wang, X. Jia, and C.-W. Yi, “Data
fusion improves the coverage of wireless sensor networks,” in
MobiCom, 2009.

[39] J. Gao, F. Liang, W. Fan, Y. Sun, , and J. Han, “Graph-based
consensus maximization among multiple supervised and un-
supervised models,” in NIPS, 2009.

[40] T. Dietterich, “Ensemble methods in machine learning,” in
Proc. 1st Int. Workshop on Multiple Classifier Systems, Lec-
ture Notes in CS, 1857. Springer, 2000.

